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Abstract

We analyse the effects of thermal quasiparticles in leptogenesis using hard-thermal-loop-resummed

propagators in the imaginary time formalism of thermal field theory. We perform our analysis in

a leptogenesis toy model with three right-handed heavy neutrinos N1, N2 and N3. We consider

decays and inverse decays and work in the hierarchical limit where the mass of N2 is assumed to

be much larger than the mass of N1, that is M2 �M1. We neglect flavour effects and assume that

the temperatures are much smaller than M2 and M3. We pay special attention to the influence of

fermionic quasiparticles. We allow for the leptons to be either decoupled from each other, except

for the interactions with neutrinos, or to be in chemical equilibrium by some strong interaction,

for example via gauge bosons. In two additional cases, we approximate the full hard-thermal-loop

lepton propagators with zero-temperature propagators, where we replace the zero-temperature

mass by the thermal mass of the leptons m`(T ) in one case and the asymptotic mass of the

positive-helicity mode
√

2m`(T ) in the other case. We calculate all relevant decay rates and CP -

asymmetries and solve the corresponding Boltzmann equations we derived. We compare the final

lepton asymmetry of the four thermal cases and the vacuum case for three different initial neutrino

abundances; zero, thermal and dominant abundance. The final asymmetries of the thermal cases

differ considerably from the vacuum case and from each other in the weak washout regime for zero

abundance and in the intermediate regime for dominant abundance. In the strong washout regime,

where no influences from thermal corrections are commonly expected, the final lepton asymmetry

can be enhanced by a factor of two by hiding part of the lepton asymmetry in the quasi-sterile

minus-mode in the case of strongly interacting lepton modes.





Zusammenfassung

Wir analysieren die Effekte von thermischen Quasiteilchen in Leptogenese, wobei wir Propagatoren

verwenden, die durch harte thermische Schleifen resummiert sind. Wir arbeiten im Imaginär-

zeit-Formalismus der thermischen Feldtheorie. Unsere Analyse wird in einem Beispielmodell von

Leptogenese mit drei rechtshändigen Neutrinos N1, N2 und N3 durchgeführt. Wir betrachten

Zerfälle und inverse Zerfälle und nehmen den hierarchischen Grenzfall an, in dem die N2-Masse

wesentlich größer als die N1-Masse ist, das heißt M2 � M1. Wir vernachlässigen Flavoureffekte

und nehmen an, dass die Temperaturen sehr viel kleiner sind als M2 und M3. Wir legen beson-

deres Augenmerk auf den Einfluss der fermionischen Quasiteilchen und lassen sowohl eine völlige

Entkopplung der Leptonmoden bis auf die Neutrinowechselwirkung zu, als auch eine starke Kop-

plung der Moden, beispielsweise durch Eichbosonen. In zwei zusätzlichen Fällen nähern wir den

vollständigen, durch harte thermische Schleifen resummierten Leptonpropagator durch normale

Vakuumpropagatoren an, die eine Masse erhalten, die in einem Fall der thermischen Leptonmasse

m`(T ) und in einem anderen Fall der asymptotischen Masse der positiven Helizitätsmode,
√

2m`(T )

entspricht. Wir berechnen alle relevanten Zerfallsraten und CP -Asymmetrien und lösen die

hergeleiteten Boltzmann-Gleichungen. Wir vergleichen die resultierende Leptonasymmetrie der vier

thermischen Fälle und des Vakuumfalls für drei verschiedene Anfangswerte der Neutrinoverteilung;

verschwindende, thermische und dominante Anfangsverteilung. Die Leptonasymmetrien der ther-

mischen Fälle unterscheiden sich in gewissen Parameterregionen stark vom Vakuumszenario als

auch untereinander; nämlich im schwachen Washout-Regime für verschwindende Anfangsverteilung

und im intermediären Regime für dominante Anfangsverteilung. Außerdem vergrößert sich die

finale Leptonasymmetrie im starken Washout-Regime, wo typischerweise keine thermischen Effekte

erwartet werden, um einen Faktor von etwa zwei, wenn ein Teil der Leptonasymmetrie auf die

quasisterile Minus-Mode im Falle stark wechselwirkender Leptonmoden übertragen wird.





Introduction

The question of the origin of all things that we observe and that are present in our life and

surroundings, which in its last consequence is nothing else than the question of the origin of mankind

itself, has always fascinated us and driven us to search for answers in science, religion, philosophy

and the arts. On the scientific side, physics as the study of the laws of nature (ἡ φυσική “nature”)

and within physics, cosmology (ὁ κὸσμος “order”) as the science of the order and the evolution of

the universe, address this question and have their own formulation of it. What is the origin of the

matter that is the building block of all things we observe, including ourselves?

The matter in nature consists of electrons, which belong to the leptons (λεπτός “small”), and

the much heavier protons and neutrons, which belong to the baryons (βαρύς “heavy”) and are in

turn made up of quarks. The theory that describes how the smallest ingredients of matter, the

elementary particles, interact, is the standard model of particle physics (SM), which has been tested

to great accuracy by experiment. According to the SM, matter particles, quarks or leptons, can

only be created in pairs together with their antiparticles, that is, antiquarks and antileptons. If

we assume that the early universe was indeed without form and void1 [5] , that is in the language

of particle physics, there was no excess of one particle species over the other, there would have

to be an equal amount of particles and antiparticles today. More specifically, since annihilation

of particles and antiparticles proceeds at fast rates, no structures like atoms, molecules, galaxies,

stars, planets, DNA, cells and finally living organisms could have formed and we would observe2 a

universe populated almost exclusively by photons and the slowly interacting neutrinos. There are

only two possible ways out of this obviously wrong scenario: Either we assume an excess of matter

over antimatter as an initial condition of the big bang or we find some mechanism which does not

strictly obey the conservation of baryon and lepton number and can create such an asymmetry

dynamically in some early phase of the evolution of the universe.

It might seem tempting to assume an excess of particles over antiparticles as an initial condi-

tion of the universe, or more specifically the excess of baryons over antibaryons, since this is the

asymmetry we measure on cosmological scales. The fact that this approach has to be refused is

not even mainly because it would be a highly unsatisfactory approach from a scientific point of

1In fact, according to standard cosmology, the early universe was by no means void, but rather a vibrant soup of
all particles that we know and possibly many more species interacting rapidly with each other.

2Or rather, not observe.
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view, but the assumption itself clashes with another important theory in early universe cosmology,

inflation. There is broad consensus that, in order to cure serious problems of cosmology, the early

universe must have undergone such a phase of rapid expansion, which is so fast that it would dilute

any baryon asymmetry we could realistically impose as an initial condition of the young universe.

We are thus bound to find a mechanism that creates a baryon asymmetry dynamically, we need a

theory for baryogenesis.

Among the many baryogenesis theories that solve the problem of the matter-antimatter asym-

metry, we focus on a variant called leptogenesis [6], which is a particularly attractive model since

it simultaneously solves two problems: The creation of a baryon asymmetry via the detour of a

lepton asymmetry on the one hand, and the explanation of why the neutrinos have such a small

mass compared to all the other particles of the SM via the seesaw mechanism [7–10] on the other

hand. In short, one adds heavy, right-handed neutrinos to the SM, which interact with the SM

neutrinos and suppress their mass. In the early universe, these heavy neutrinos decay into leptons

and Higgs bosons and create a lepton asymmetry, which is lateron converted to a baryon asymmetry

by anomalous SM processes [11,12].

Ever since the development of the theory 25 years ago, the calculations of leptogenesis dynamics

have become more refined and many effects and scenarios that have initially been neglected have

been considered3. Notably the question how the hot and dense medium of SM particles influences

leptogenesis dynamics has received increasing attention over the last years [14–21]. At high tem-

perature, particles show a different behaviour than in vacuum due to their interaction with the

medium: they acquire thermal masses, modified dispersion relations and modified helicity proper-

ties. All these properties can be summed up by viewing the particles as thermal quasiparticles with

different behaviour than their zero-temperature counterparts, much like the large zoo of single-

particle and collective excitations that are known in high density situations in solid-state physics.

At high temperature, notably fermions can occur in two distinct states with a positive or negative

ratio of helicity over chirality and different dispersion relations than at zero temperature.

Thermal effects have been considered by references [14–21]. Notably reference [15] performs an

extensive analysis of the effects of thermal masses that arise by resumming propagators using the

hard thermal loop (HTL) resummation within thermal field theory (TFT). However, the authors

approximated the two fermionic helicity modes with one simplified mode that behaves like a vacuum

particle with its zero-temperature mass replaced by a thermal mass4. Due to their chiral nature,

there are serious consequences to assigning a chirality breaking mass to fermions, hence the effects

of abandoning this property should be examined. Moreover, it seems questionable to completely

neglect the negative-helicity fermionic state which, according to TFT, will be populated at high

temperature. We argue in this study that one should include the effect of the fermionic quasipar-

3For an excellent review of the development in this field, we refer to reference [13].
4Moreover, an incorrect thermal factor for the CP -asymmetry was obtained, as has been pointed out in refer-

ence [22].
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ticles in leptogenesis calculations and possibly in other early universe dynamics, since they behave

differently from zero-temperature states with thermal masses, both conceptually and regarding

their numerical influence on the final lepton asymmetry. We do this by analysing the dynamics

of a leptogenesis toy model that includes only decays and inverse decays of neutrinos and Higgs

bosons, but takes into account all HTL corrections to the leptons and Higgs bosons, paying special

attention to the two fermionic quasiparticles. In a slightly different scenario, we assume chemical

equilibrium among the two leptonic modes, thereby simulating a scenario where the modes interact

very fast. As a comparison, we calculate the dynamics for two models where we approximate the

lepton modes with ordinary zero-temperature states and modified masses, the thermal mass m`(T )

and the asymptotic mass of the positive-helicity mode,
√

2m`(T ).

The thesis is structured as follows: In chapter 1, we present a short overview over leptogenesis

and explain the standard dynamics. We also discuss the limitations of our approach, where we

do not include flavour and resonant effects or effects from a possible abundance of N2 or N3.

Chapter 2 is devoted to a brief and comprehensive introduction into TFT in the framework of the

imaginary time formalism (ITF), where we present the necessary ingredients for the further analysis,

in particular frequency sums for fermions and bosons. We pay special attention to the resummation

of hard thermal loops, which form the basis for the description of thermal quasiparticles. In

chapter 3, we present the toy model of leptogenesis and calculate decays and inverse decays. At

high temperature, the thermal mass of the Higgs bosons becomes larger than the neutrino mass,

such that the neutrino decay is no longer possible and is replaced by the decay of Higgs bosons

into neutrinos and leptons. We discuss in detail the conceptual and numerical differences of the full

two-mode approach to the one-mode approach and the vacuum result. The CP -asymmetry for the

different approaches is the main topic of chapter 4. The CP -asymmetry in the two-mode approach

consists of four different contributions due to the two possibilities for the leptons in the loops.

We present some useful rules for performing calculations with the fermionic modes and compare

the analytical expressions for the CP -asymmetries in different cases. We restrict ourselves to the

hierarchical limit where the mass of N1 is much smaller than the mass of N2, that is M2 �M1. The

temperature dependence of the CP -asymmetry is discussed in detail for the one-mode approach,

the two-mode approach and the vacuum case. The differences between the asymmetries and the

physical interpretation of certain features of the asymmetries are explained in detail. Chapter 5

deals with the evaluation of the Boltzmann equations. We derive the equations and explicitly

perform the subtraction of on-shell propagators for our cases in appendix E. We compare our four

thermal scenarios, wich are the decoupled and strongly coupled two-mode approach and the one-

mode approach with thermal and asymptotic mass, to the vacuum case. We show the evolution

of the abundances for three different initial conditions for the neutrinos, that is zero, thermal and

dominant abundance. We explain the dynamics of the different cases in detail and find considerable

differences both of the thermal approaches to the vacuum case and of the two-mode cases to the

one-mode cases. We summarise the main insights of this work in the Conclusions and give an
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outlook on future work and prospects.

In appendix A, we present Green’s functions at zero temperature, while in appendix B, we derive

the analytical solution for the lepton dispersion relations. Some quantities relating to leptogenesis

in the vacuum case are derived in appendix C. In appendix D, we present analytical expressions

for the CP -asymmetry contributions of the two cuts through {N ′, `′} and {N ′, φ′}5, which we did

not consider in chapter 4, since we are working in the hierarchical limit. Appendix E is devoted to

the detailed description of a correct subtraction of on-shell propagators in our scenario.

5We shamelessly stole our notation for the cuts in the vertex contribution from reference [21].



CHAPTER 1

Leptogenesis

1.1 The Matter-Antimatter Asymmetry

The matter-antimatter asymmetry of the universe is usually expressed as

η ≡ nB − nB̄
nγ

∣∣∣∣
0

, (1.1)

where nB, nB̄, and nγ are the number densities of baryons, antibaryons, and photons, respectively,

and the subscript 0 implies that the value is measured at present cosmic time. There might be an

excess of leptons over antileptons as well, but its contribution to the energy density of the universe

is small compared to the contribution of the baryons.

The photon density is proportional to T 3 and the temperature of the universe is inferred via

the cosmic microwave background radiation (CMB), which shows an almost perfect blackbody

spectrum. The baryon density can be inferred in two ways: First, from the abundances of the

light elements D, 3He, 4He and 7Li, which are a direct probe of the primordial abundances formed

during the big bang nucleosynthesis (BBN) phase at redshifts z ∼ 1010. Of these, the deuterium

abundance depends most sensitively on the baryon-to-photon ratio η, while the other elements

exhibit a weaker dependence. A measurement of the abundances gives [23]

η = (5.8± 0.7)× 10−10 (1.2)

at 95% confidence level, see figure 1.1. Second, there exist even more stringent constraints on η,

which originate in the observation of the CMB anisotropies. The anisotropies reflect the acoustic

oscillations of the photon-baryon fluid at the time of decoupling, which in turn depend on the

baryon-to-photon ratio at this time, at a redshift z ∼ 1000. A high baryon density enhances the

odd peaks in the angular power spectrum relative to the even peaks, as can be seen in figure 1.2.

The measurement of the CMB anisotropies from the 7-year Wilkinson Microwave Anisotropy Probe
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Figure 1.1: The observed abundances of light elements compared to the standard BBN predic-
tions [23]. The smaller boxes indicate 2σ statistical errors only, the larger ones the combined 2σ
statistical and systematic errors.
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Figure 1.2: The dependence of CMB temperature anisotropies on the baryon abundance Ωb ≡
ρB/ ρcrit compared with data [25], where ρcrit is the critical energy density of the universe. The
relation to η is given by η = 2.74× 10−8 Ωb h

2, where h ≡ H0/(100 km s−1 Mpc−1) = 0.72± 0.08 is
the present Hubble parameter.

(WMAP) data gives [24]

η = (6.16± 0.16)× 10−10 . (1.3)

The agreement of these two indicators at extremely different redshifts is an important success

of standard big-bang cosmology. One might be tempted to assume this asymmetry as an initial

condition of the universe, but as we hinted at in the introduction, there are at least two grave

arguments against such an assumption. The first argument is that such an initial condition would

be a highly fine-tuned one, since it would imply that for every 100 million quark-antiquark pairs,

there would have been one additional quark. The second argument comes from the broad agreement

that the universe has undergone an inflationary expansion in its very early phase that solves some

otherwise unresolvable problems from cosmological observations. The inflationary phase would

wash out any asymmetry that might have existed after the big bang. Thus, we need a theory that

creates the baryon asymmetry dynamically after inflation. Such theories are commonly referred to

as baryogenesis theories.

1.2 Sakharov’s Legacy

Sakharov has formulated three necessary conditions [26] that baryogenesis theories have to fulfil1:

1There are exotic models that do not fulfill all of these conditions, but still produce a baryon asymmetry, such as
Dirac leptogenesis for example, which does not require a violation of lepton number [27].
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• Baryon number B non-conservation:

It is immediately clear that processes which create a baryon asymmetry do not conserve

baryon number B.

• C and CP symmetry violation:

Processes that are invariant under the discrete transformations of charge conjugation C or the

product of charge conjugation and parity reversal, CP , will not create a baryon asymmetry.

This is because in these cases, the B violating processes that create baryons proceed at

the same rate as their C- and CP -conjugated processes which create an equal amount of

antibaryons. Thus we need C- and CP -symmetry violation.

• Deviation from thermal equilibrium:

In chemical equilibrium, the entropy is maximal if the chemical potentials associated with

non-conserved quantum numbers, such as B in our case, vanish. Since also the masses of

quarks and antiquarks are equal by CPT -invariance, the phase space densities

fi(p) =
1

1 + e
√
p2+m2

i /T
(1.4)

are equal in thermal equilibrium and thus also the number densities.

1.3 Why Does the Standard Model Fail?

In principle, all three Sakharov conditions are met in the standard model of particle physics (SM).

1.3.1 B non-conservation

Baryon and lepton number, B and L, are accidental symmetries in the SM and are conserved at tree

level. However, at the one-loop level, B and L are not conserved in anomalous diagrams where the

B and L currents couple to two electroweak gauge bosons through a fermion triangle [28–31]. In the

vacuum structure of the electroweak theory, there are non-perturbative transitions from one vacuum

to a different vacuum with differing B and L numbers [32]. These instanton transitions change

B and L by three each and conserve B − L. At zero temperature, the instantons are suppressed

by the instanton action, i.e. exp(−8π2/g2), where g is the SU(2) coupling constant, so that their

rate is negligible. However, there are static, but unstable field configurations which correspond to

saddle points of the field energy of the gauge-Higgs system, so-called sphaleron configurations [11].

These saddle points can be reached thermally and mediate a thermal transition from one vacuum to

another vacuum. At temperatures above the electroweak scale, T > TEW ∼ 100 GeV, the sphaleron

processes are fast and in equilibrium [12]. Thus, they will also wash out any previously existing B

or L asymmetry that is not linked to a B − L asymmetry.
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1.3.2 C and CP violation

The weak interactions violate C maximally since only left-handed particles and right-handed an-

tiparticles couple to the gauge bosons, whereas their charge conjugated states, left-handed an-

tiparticles and right-handed particles do not couple via SU(2)L gauge interactions. Only a charge

conjugation together with a parity transformation (CP ) converts left-handed particles into their

right-handed antiparticles. However, even CP -symmetry is broken in the SM in B- and K-meson

systems through a CP -violating phase in the quark mixing matrix [33]. If appropriately nor-

malised [34], this CP violation is still several orders of magnitude too small as to produce an

asymmetry of the order η ∼ 10−10. This is one reason why baryogenesis does not work in the

SM without any additional assumptions. Therefore, any reasonable baryogenesis theory needs

additional sources for CP violation.

1.3.3 Deviation from thermal equilibrium

In the early universe, there may be a departure from thermal equilibrium during the electroweak

phase transition [35,36], which is in principle suitable to create a baryon asymmetry. The deviation

from equilibrium occurs in particle interactions through the bubble walls between the broken and

the unbroken phase. In order to obtain an irreversible asymmetry, the potential barrier between

the two phases has to be large enough, that is the phase transition has to be strongly first order.

This imposes constraints on the Higgs potential, which in turn relate to an upper bound on the

Higgs mass. However, the experimental lower bound on the Higgs mass is too high as to allow for

this kind of phase transition and we arrive at the second reason why baryogenesis does not work in

the SM. The theory requires an additional mechanism to obtain a sufficient departure from thermal

equilibrium.

1.3.4 Ways out: baryogenesis theories

We see that successful baryogenesis needs two new ingredients: First, new sources of CP violation

and second, a different mechanism for a departure from thermal equilibrium2. Moreover, any

mechanism that creates a B or L asymmetry at higher temperatures also has to violate B − L,

otherwise this asymmetry will be washed out by the sphaleron interactions. Several possibilities

to meet these requirements have been investigated, such as leptogenesis [6], grand unified theory

(GUT) baryogenesis [39–46], electroweak baryogenesis [37,38], the Affleck-Dine mechanism [47,48]

and other, more exotic variants (see, e.g. reference [49]). Leptogenesis is the model that we focus

on in this work.

2Or additional degrees of freedom that allow for a first order phase transition, like in the minimal supersymmetric
standard model (MSSM) with a light stop particle [37, 38].
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1.4 Leptogenesis

1.4.1 The unbearable lightness of neutrino masses and the seesaw as a way out

The attractiveness of leptogenesis [6] arises from the feature that in addition to creating a baryon

asymmetry, it simultaneously solves a seemingly unrelated puzzle, which is the smallness of neutrino

masses. If one turns the argument around, by employing a seesaw mechanism [7–10] in order

to explain why neutrinos have a non-zero, but extremely small mass, we naturally arrive at a

mechanism for the generation of the baryon asymmetry without additional effort.

There is experimental evidence that at least two neutrinos have a non-zero mass which is several

orders of magnitude smaller than the masses of the charged fermions. Oscillation experiments have

established two mass-squared differences between the neutrino mass eigenstates and global fits

give [23]

∆m2
21 = m2

2 −m2
1 = (7.59± 0.20)× 10−5 eV2 ≡ m2

sol,

|∆m2
32| = |m2

3 −m2
2| = (2.43± 0.13)× 10−3 eV2 ≡ m2

atm .
(1.5)

Neutrinos are the only SM fermions for which a Majorana mass term is in principle allowed since

they do not carry a U(1) charge,

Lmν =
1

2
νcα[m]αβνβ + h.c. , (1.6)

where να are the neutrino fields and the superscript c denotes charge conjugation. The subscripts

α and β denote the neutrino flavour and [m]αβ is the Majorana mass mixing matrix. This operator,

however, is not invariant under the SU(2)L gauge group, so the simplest operator which respects the

symmetry of this gauge group and reduces to equation (1.6) upon spontaneous symmetry breaking

is the dimension five operator ( ¯̀c
αφ)(`βφ), where

`α =

(
να

`−α

)
(1.7)

is the lepton doublet with flavour α and

φ =

(
φ+

φ0

)
(1.8)

the Higgs doublet. This operator in turn is not renormalisable, so it must be the effective remnant

of new physics that is realised at a higher energy scale, in order not to spoil the renormalisability of

the theory. Thus, if there is new physics above the electroweak scale, it will induce this dimension

five operator at lower energies unless some symmetry prevents it. This observation is a strong
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argument in favour of Majorana mass terms. Moreover, Dirac mass terms of the form mνR νL

require the addition of right-handed neutrinos at low energy that are singlets under the SM gauge

group and whose existence could only be inferred via the exclusion of a low energy “Majorana”

type mass. If the dimension five operator is induced via tree-level interactions with heavy particles

at a mass scale M , which can be much higher than the electroweak breaking scale MEW, this will

automatically lead to a light neutrino mass scale of M2
EW/M for Yukawa couplings of order one,

which explains the smallness of neutrino masses. Since these heavy particles can be viewed as

suppressing the mass of the neutrinos, the mechanism is called seesaw mechanism.

Since the heavy particles have to couple to a Higgs doublet and a lepton doublet, there are

three prominent possibilities, which are called seesaw type I–III:

• Type I: The heavy particles are SU(2)L-singlet fermions [7–10];

• Type II: The heavy particles are SU(2)-triplet scalars [10,50–53];

• Type III: The heavy particles are SU(2)-triplet fermions [54–56].

The type I seesaw is the simplest and the framework in which leptogenesis is usually implemented,

so we concentrate on this type.

We add two or three singlet fermions Ni to the SM, sometimes referred to as “right-handed

neutrinos”, which are assumed to have rather large Majorana masses Mi, close to the scale of some

possibly underlying grand unified theory (GUT), EGUT ∼ 1015, 1016 GeV. The additional terms of

the Lagrangian can be written in the mass basis of the charged leptons and of the singlet fermions

as

L = i N̄i∂µγ
µNi − λiαN̄i(φ

aεab`
b
α)− 1

2

∑

i

MiN̄iN
c
i + h.c. , (1.9)

where the Higgs doublet φ is normalised such that its vacuum expetation value (vev) in

〈φ〉 =

(
0

v

)
(1.10)

is v ' 174 GeV and λiα is the Yukawa coupling connecting the Higgs doublet, lepton doublet and

heavy neutrino singlet. The indices a and b denote doublet indices and εab is the two-dimensional

total antisymmetric tensor which ensures antisymmetric SU(2)-contraction.

The effective mass matrix [m]αβ of the light neutrinos as defined in equation (1.6) can be written

as

[m]αβ =
∑

k

λαkM
−1
k λβkv

2 . (1.11)

It can be diagonalised as

Dm = UT [m]U , (1.12)
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where Dm = diag(m1,m2,m3) and U is the leptonic mixing matrix, also called Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) matrix. It is a 3× 3 unitary matrix and therefore depends, in general,

on six phases and three mixing angles. Three of the phases can be removed by redefining the phases

of the charged lepton doublet fields. Doing this, the matrix U can be conveniently parameterised

as

U = Û · diag(1, eiα, eiβ) , (1.13)

where α and β are called Majorana phases. If the neutrinos had Dirac mass terms, the Majorana

phases could be removed by redefining the phases of the neutrino fields. The matrix Û can be

parameterised in a way similar to the Cabbibo-Kobayashi-Maskawa (CKM) matrix,

Û =




c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

s23c12 − c23s13c12e
iδ −s23c12 − c23s13s12e

iδ c23c13


 , (1.14)

where cij = cos θij and sij = sin θij and θij are the angles of rotations in flavour space, which

connect the flavour basis with the mass basis.

Thus there are twelve physical parameters at low energies in the leptonic sector of the SM if we

add the mass matrix of equation (1.11): the three charged lepton masses me, mµ, mτ , the three

neutrino masses m1, m2, m3, and the three angles and three phases of the PMNS matrix U . Of

these parameters, seven have been measured, me, mµ, mτ , ∆m2
21, |∆m2

32|, θ12 and θ23. There exists

an upper bound on the angle θ13, however, the mass of the lightest neutrino and the three phases

of U are experimentally not accessible at the moment.

In the case of three heavy neutrinos, there are nine additional parameters in the high-energy

theory, amounting to 21 parameters in total. These high-energy parameters cannot be measured

at experimentally accessible scales, but are nevertheless important for leptogenesis. Moreover, if

one assumes only two right-handed neutrinos [57], there are fourteen parameters in total and one

of the light neutrinos is massless such that its corresponding phase also vanishes. This amounts to

ten physical parameters at low energy and four additional parameters at high energy. Such “two-

right-handed-neutrino” (2RHN) models are attractive since they have strong predictive power. We

will concentrate on the case of three heavy neutrinos in this work, since it allows for the possibility

that all light neutrinos have mass and the number of generations is the same as at low energy.

1.4.2 Sakharov and leptogenesis

We examine whether and how the Sakharov conditions are fulfilled in leptogenesis. The heavy

neutrinos only couple to the lepton and Higgs doublets, thus the processes Nj → `iφ and Nj → ¯̀
iφ̄

are the only possible tree-level decays. Since the Lagrangian in equation (1.9) violates L, there is

more than one possibility to assign a lepton number to the heavy neutrinos. One usually assigns to

them a lepton number of zero, then the decays violate lepton number and also, very importantly,
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B − L by one unit. A lepton and B − L asymmetry can thus be generated at high temperatures,

which will be converted to a baryon asymmetry by the sphaleron processes at the electroweak scale.

Charge conjugation C is violated maximally in the SM and the Yukawa couplings λαk can have

CP -violating phases. However, CP violation can only arise via an interference of the tree-level

decay and its higher order corrections, most importantly the one-loop contribution.

Concerning the third Sakharov condition, the heavy neutrinos will decouple from thermal equi-

librium when the expansion rate of the universe is faster than the interaction rate, i.e. if the decay

rate Γ of the neutrinos is smaller than the Hubble rate H. They will in this case nevertheless decay

into lepton and Higgs doublet, but the decay will be out of equilibrium.

1.4.3 A simple model

We see that the Sakharov conditions can in principle be fulfilled in leptogenesis, it remains to be

determined, which lepton and baryon asymmetry will be generated for which parameters of the

high energy theory.

Creating a lepton asymmetry

In order to introduce the calculations one has to perform in leptogenesis, we will make some

simplifying assumptions and present a model which serves as an example for determining the

leptogenesis dynamics. Firstly, we assume that the masses of the heavy neutrinos are strongly

hierarchical, i.e. M1 � M2 � M3. This corresponds to the hierarchical masses of the standard

model fermions and simplifies the calculation. If the reheating temperature is larger than the masses

of the two heavier neutrinos, one cannot neglect the effect of producing the N2 and N3. Thus, in

order to simplify calculations, we assume a reheating temperature which is lower than these masses

but larger than M1 in order to allow for a thermal production of the leptogenesis protagonists.

Furthermore, we will, again for the sake of simplicity, also neglect flavour effects, even though they

play an important role. We assume that the lepton states `N1 , into which the N1 decay, will keep

coherence of their flavour mixing until there are no N1 processes. This is only true if leptogenesis

happens at a temperature larger than about 1012 GeV, below which processes mediated by the

τ -Yukawa coupling become fast [58, 59]. However, flavour effects depend on the Yukawa couplings

and do not necessarily have to be important below these temperatures. Moreover, the thermal

effects which are examined in this thesis can be extended to include flavour effects if appropriately

modified. This work aims at giving an insight into the effect of quasiparticles, where adding flavour

might be an important second step in the future. We refer the reader who wishes to learn about

flavour effects and the possible influence of N2 and N3 to the review by Davidson et al. [13]. He or

she will find an extensive list of references therein.
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Figure 1.3: The CP -asymmetry M0M∗1. The graph in the middle is the self-energy contribution,
the graph on the right the vertex contribution. In the self-energy diagram, the Higgs boson and
lepton can be particles or antiparticles.

The CP -asymmetry

The CP -asymmetry in a lepton flavour i that arises in the decay of a heavy neutrino of generation

j is defined as

εi ≡
Γ(Nj → φ`i)− Γ(Nj → φ̄ ¯̀

i)

Γ(Nj → φ`i) + Γ(Nj → φ̄ ¯̀
i)
. (1.15)

The tree-level amplitude cannot be different for the CP -conjugated process, but if one considers

the one-loop level, the interference terms in the squared sum of the matrix elements for tree level,

M0, and one-loop level, M1, can be CP -asymmetric, i.e. M0 M∗1 6= M̃0 M̃∗1, where M̃i denotes

the CP -conjugated matrix elements.

There are two contributions to the one-loop amplitudeM1 as displayed in figure 1.3. One is the

self-energy contribution where a virtual Nk is exchanged in the s-channel. The second one is the

vertex-correction graph. There is only a CP -asymmetry if the virtual Nk is a different generation

than Nj , i.e. N2 or N3 for the decay of N1. The CP -asymmetry is proportional to the imaginary

part of the one-loop diagram which in turn corresponds to assuming an on-shell condition for the

loop propagators. In the self-energy diagram, one can only put the Higgs boson and lepton on the

mass shell and Nk is necessarily off-shell since Mk 6= Mj . In the vertex correction, it is kinematically

not possible to put the neutrino in the loop on its mass shell since it is heavier than the Higgs

boson and the lepton. Thus, again, the Higgs boson and the lepton are on-shell. We will see in

chapter 4 that at finite temperature, also the neutrino can be on its mass shell.

The calculation of the CP -asymmetry is worked out in Appendix C.2. Including all contribu-

tions, it is written as

εi =
1

8π

1

(λ†λ)jj
Im
[
λ∗ij(λ

†λ)jkλik

]
g(xkj) +

1

8π

1

(λ†λ)jj
Im
[
λ∗ij(λ

†λ)kjλik

] 1

1− xkj
, (1.16)

where

xkj ≡M2
k/M

2
j (1.17)
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and

g(x) =
√
x

[
1

1− x + 1− (1 + x) ln

(
1 + x

x

)]
xkj�1−→ − 3

2
√
x

(1.18)

and we have summed over the lepton generations in the loop. The second term in equation (1.16)

corresponds to the self-energy diagram with particles in the loop as opposed to antiparticles. It is

lepton flavour changing but lepton number conserving. Moreover, it does not exhibit an imaginary

part if we sum over the final state lepton flavors i, so that

ε ≡
∑

i

εi =
1

8π

1

(λ†λ)jj
Im

{[
(λ†λ)jk

]2
}
g(xkj) . (1.19)

The dominant contribution to the CP -asymmetry in N1 decays, which we consider, comes from N2

in the loop since M3 �M2. In our further analysis, we will neglect the effect of M3 and set j = 1

and k = 2. In the limit of hierarchical right-handed neutrinos, it is possible to derive an upper

bound on the CP -asymmetry in N1 decays, the so called Davidson–Ibarra-bound [60],

ε .
3

8π

M1

v2
(m3 −m1) ≈ 3

8π

M1

v2

√
∆m2

atm , (1.20)

since in this limit, the light neutrino spectrum is expected to be hierarchical as well.

Anticipating the discussion of the next two sections, it is possible to parameterise the resulting

baryon asymmetry by three numbers as

η = d ε κ , (1.21)

where d is a factor which accounts for the dilution of the asymmetry through the expansion of the

universe and the distribution into different particle species. It is of the order ∼ 0.01. The efficiency

factor κ parameterises the dynamics of leptogenesis and how much of the asymmetry is washed out

by other processes and is for a vanishing initial lepton asymmetry given by

κ =
n` − n¯̀

ε neq
`

. (1.22)

It is calculated by solving the Boltzmann equations that govern the evolution of the particle species

and usually of the order ∼ 0.1. Since we have to explain an asymmetry of η ∼ 5× 10−10, we can,

for typical efficiency factors, require a CP -asymmetry of ε ∼ 10−6. Together with the Davidson–

Ibarra-bound, this translates to a lower bound on the mass of the lightest heavy neutrino of about

M1 &
8π

3

v2

√
∆m2

atm

ε ∼ 109 GeV . (1.23)
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The gravitino problem

If one assumes that the heavy neutrinos are produced thermally, a reheating temperature of

TRH > M1 is needed in order to produce a sufficient amount of neutrinos and this can lead to the

so-called gravitino problem, which we discuss by closely following reference [13]. In certain models

of supersymmetry (SUSY), a high reheating temperature leads to an overproduction of gravitinos.

The gravitinos are long-lived and will decay into lighter particles if they are not the lightest su-

persymmetric partner (LSP). If too many gravitinos decay during or after BBN, the decays will

destroy the agreement between predicted and observed light element abundances [61–64]. There

are several possibilities to avoid such a scenario, both on the SUSY side and on the leptogenesis

side. The possibilities on the SUSY side include the following:

1. The gravitinos decay before BBN. Heavy enough gravitinos arise in anomaly-mediated sce-

narios [65], but not in standard gravity mediated scenarios.

2. Late-time entropy production can dilute the gravitino abundance, but it also dilutes the B−L
asymmetry [66]

3. The gravitino is the LSP (and the dark matter particle), in which case the bound on TRH is

less restrictive [67,68]. The gravitino is indeed the LSP in gauge-mediated scenarios.

We assume that either SUSY is not realised in nature, which does not pose a problem to our

leptogenesis model, or that one of the above scenarios solves the gravitino problem. This way, it is

possible to consider temperature regimes T > M1.

Converting a lepton to a baryon asymmetry

The L asymmetry, which is generated at high temperature, is partially converted into a B asym-

metry by the electroweak sphaleron processes, which are in equilibrium above ∼ TEW. Taking into

account the chemical potentials of all particles, it can be worked out (e.g. reference [13]) that

YB =
c

c− 1
YL = c YB−L , (1.24)

where

YX =
nX
s

(1.25)

is the number density nX of species X over the entropy density s and c = YB/YB−L accounts for

the sphaleron conversion of a B − L asymmetry into a B asymmetry. In the SM, c = 12/37 for a

smooth electroweak phase transition.
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Solving Boltzmann equations

The intuitive requirement for the neutrino decays to be out of equilibrium is that they decay slower

than the universe expands, that is the decay rate

Γ =
(λ†λ)11M1

8π
=
m̃1M

2
1

8πv2
(1.26)

is smaller than the Hubble rate H, where

m̃1 =
(λ†λ)11v

2

M1
(1.27)

is the conveniently defined effective neutrino mass, which is of the order of the light neutrino mass

scale. In the language of this mass, the out-of-equilibrium condition reads

m̃1 < 8π
v2

M2
1

H

∣∣∣∣
T=M1

= m∗ ' 1.1× 10−3 eV , (1.28)

where m∗ is called equilibrium neutrino mass. The parameter region where this condition is satisfied

is called strong washout regime. However, leptogenesis is also possible when m̃1 > m∗. This can

be seen if one solves the set of Boltzmann equations [69,70]

dNN1

dz
= −(D + S)(NN1 −N eq

N1
), (1.29)

dNB−L
dz

= −εD(NN1 −N eq
N1

)−WNB−L , (1.30)

where NX is the number density of the species X per comoving volume which contained one photon

when T � M1. The temperature is contained in z = M1/T and (D,S,W ) = (ΓD,ΓS ,ΓW )/(Hz),

where ΓD is the decay rate, ΓS the sum of all N1 scattering rates, and ΓW the sum of all processes

that wash out the generated L asymmetry, such as inverse decays for example. We derive a simple

version of equations (1.29) and (1.30) in appendix C.3.

Solving these equations typically gives efficiency factors of κ ∼ 0.1. The baryon asymmetry can

be approximated as

YB '
135 ζ(3)

4π4g∗
c ε κ , (1.31)

where the first factor is the equilibrium N1 number density divided by the entropy density at

T �M1. The number of relativistic degrees of freedom g∗ is given by

g∗ =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑

i=fermions

gi

(
Ti
T

)4

, (1.32)

where i denotes species with mass mi � T and the factor 7/8 arises from the difference in Fermi
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and Bose statistics [71]. At the temperature of leptogenesis, all SM particles have negligible masses,

so g∗ = 106.75. The expressions η and YB are related via photon and entropy density today as

YB =
nγ0

s0
η ' η

7.1
. (1.33)



CHAPTER 2

Thermal Field Theory

The topic of this work is the role of the equilibrium quantum effects that are implied by the

presence of a hot, dense medium for leptogenesis models. The influence of the medium is studied

by means of an effective, statistical quantum field theory, which takes into account the temperature

of the surrounding medium, hence called thermal field theory (TFT). In this chapter, we give an

introduction into TFT and explain the methods and formalisms we use later on. The reader who

wishes to learn more about TFT is referred to the books by Kapusta [72], LeBellac [73] and Das [74].

Our presentation follows the more intuitive approach of Thoma’s lecture notes [75].

2.1 Green’s Functions at Finite Temperature

Thermal field theory comprises all three basic branches of modern physics, namely quantum me-

chanics, relativity and statistical physics. We want to derive Feynman rules and diagrams at finite

temperature. To this end, we consider the two-point Green’s function or propagator. We would

like to find an expression for this quantity at finite temperature. For simplicity, we consider the

case of a scalar field φ. The propagator at T = 0 is worked out in Appendix A and is the vacuum

expectation value of the time-ordered product of two fields at spacetime points x and y,

i ∆F = 〈0|Tφxφy|0〉 . (2.1)

At finite temperature, the vacuum expectation value of an operator A has to be replaced by the

quantum statistic expectation value of the corresponding statistical ensemble,

〈0|A|0〉 → 〈A〉ρ ≡ tr(ρA) , (2.2)
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where ρ is the density operator of the statistical ensemble. For the canonical ensemble, which we

will consider, it is given by

ρ =
1

Z
e−βH , (2.3)

where

β ≡ 1

T
(2.4)

and H is the Hamiltonian operator of the system with the discrete eigenvalues and eigenstates

H|n〉 = En|n〉 . (2.5)

The partition function is

Z = tr(e−βH) , (2.6)

so we can write

〈A〉ρ =
1

Z
tr(Ae−βH) =

1

Z

∑

n

〈n|A|n〉e−βEn , (2.7)

where the sum is over all thermally excited states |n〉 of the system, which are eigenstates of

the Hamiltonian H. Since the heat bath is a distinguished reference frame for our situation, our

calculations are not Lorentz-invariant. We will always work in the rest frame of the heat bath,

which is the preferred rest frame at finite temperature.

Calculating the statistical expectation value for the scalar propagator, we have

i∆T>0
F (x− y) =

1

Z

∑

n

〈n|T{φ(x)φ(y)}|n〉e−βEn . (2.8)

Using the Fourier representation of φ in equation (A.3) in the propagator for the case x0 > y0 gives

i∆T>0
F (x− y) =

1

Z

∫
d3k

(2π)3/2

d3k′

(2π)3/2

1

(2ωk)1/2

1

(2ω′k)
1/2

×
∑

n

e−βEn〈n|[a(k)e−iK·x + a†(k)e iK·x][a(k′)e−iK′·x + a†(k′)e iK′·x]|n〉
(2.9)

The states

|n〉 = |n1(k1), n2(k2), . . . , ni(ki)〉 (2.10)

are orthonormalised states with ni bosons of momentum ki. Acting with the creation and destruc-
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tion operators on |n〉 according to equation (A.4) results in

i∆T>0
F (x− y) =

1

Z

∫
d3k

(2π)3/2

d3k′

(2π)3/2

1

(2ωk)1/2

1

(2ω′k)
1/2

×
∑

n

e−βEn{[n(k) + 1]δ3(k− k′)e−iK·x+iK′·y + n(k)δ3(k− k′)eiK·x−iK′·y}

=
1

Z

∫
d3k

(2π)3

1

2ωk

∑

n

e−βEn{[n(k) + 1]e−iK·(x−y) + n(k)eiK·(x−y))}
∣∣∣∣∣
k0=ωk

.

(2.11)

We use

1

Z

∑

n

n(k)e−βEn =
1

eβωk − 1
≡ fB(ωk) , (2.12)

where En =
∑

k ωkn(k) and fB(ωk) is the Bose-Einstein distribution. Using this relation, we find

i∆T>0
F (x− y) =

∫
d3k

(2π)3

1

2ωk
{[1 + fB(ωk)]e

−iK(x−y) + fB(ωk)e
iK(x−y)} . (2.13)

We see that for T = 0, which implies that fB = 0, we arrive at the vacuum result of equation (A.7).

We can interpret this result as follows: The zero-temperature part describes the usual propagation

of a particle from y to x. However, on top of spontaneous creation at y, there is also induced

creation at x (proportional to nB) and absorption at x (∝ nB) due to the presence of the thermal

particles in the bath. The propagator in equation (2.13) is the propagator of a free field without

interactions, and forms the starting point for perturbation theory when we add interactions.

2.2 Imaginary Time Formalism

The propagator (2.13) is a useful quantity, but not very helpful in constructing Feynman rules. We

need a representation which consists of a 4-dimensional K-integration, so that we can formulate

Feynman rules in momentum space. To achieve this, we continue the propagator analytically to

imaginary times t with 0 ≤ τ ≡ it < β and sum over the discrete energies

k0 = 2πinT , (2.14)

the so-called Matsubara frequencies instead of integrating, so that

∫
dk

2π
→ iT

∞∑

n=−∞
. (2.15)
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The propagator can be written as

i∆T>0
F (x) = iT

∑

n

∫
d3k

(2π)3

i

K2 −m2
e−iK·x . (2.16)

One can also motivate the introduction of imaginary time in the following way: for τ = it→ β,

the Boltzmann factor exp(−βH) has the form of the time evolution operator exp(−iHt). As a

consequence, thermal propagators become periodic in β,

∆T>0
F (x− y) = ∆T>0

F (x,y, τ, 0) = ∆T>0
F (x,y, τ, β) , (2.17)

where we have taken τx = τ and τy = 0. In general

∆T>0
F (τ) = ∆T>0

F (τ + nβ) (2.18)

holds for any integer n.

The two consequences of this relation are:

1. The time τ is restricted to the interval [0, β], the so-called Kubo-Martin-Schwinger- or KMS-

condition.

2. The Fourier integral over k0 in vacuum quantum field theory (QFT) becomes a Fourier series

over the Matsubara frequencies k0 = 2πinT . (For fermions we have k0 = (2n+ 1)iπT , as

described in section 2.4.

In real life, it is usually necessary to integrate over more than one propagator. In these cases,

it is difficult to perform the summation over the zeroth component of the loop momentum k0.

A convenient way out of this problem is to use the so-called Saclay representation, which is a

mixed representation, performing the Fourier transformation in time only. In the following, we use

∆ ≡ ∆T>0
F and write the propagator in the Saclay representation, leads to

∆(τ, ωk) = −T
∑

k0

e−k0τ∆(K) , (2.19)

where the Fourier coefficients are given by

∆(K) = −
∫ β

0
dτek0τ∆(τ, ωk) . (2.20)

We can perform the sum (2.19),

∆(τ, ωk) =
1

2ωk

{
[1 + fB(ωk)]e

−ωkτ + fB(ωk)e
ωkτ
}
, (2.21)
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which agrees with equation (2.13).

It is often convenient to write the propagator as the sum

∆(τ, ωk) =
∑

s=±1

s

2ωk
[1 + fB(sωk)]e

−sωkτ =
∑

s=±1

∆s(τ, ωk), (2.22)

where we allow for negative energies sωk in fB(sωk). In frequency space, the two parts also

decompose,

∆(K) =
∑

s=±1

∆s(K) =
∑

s=±1

s

2ωk

1

k0 − sωk
, (2.23)

where the relations

∆s(τ, ωk) = −T
∑

k0

e−k0τ∆s(K) ,

∆s(K) = −
∫ β

0
dτek0τ∆s(τ, ωk) (2.24)

hold for the propagator parts as well.

2.3 The Scalar Field

We write down the Feynman rules for a simple interaction theory, the neutral scalar field with a

φ4 interaction, given by the Lagrangian

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − g2φ4 , (2.25)

where φ is a real field and m the mass of the corresponding particles. We can derive the Feynman

rules for the interaction of these fields. One can follow the operator formalism with which we

started in the derivation of the finite temperature Green’s functions in section 2.1 and which relies

on the interaction picture and a thermal equivalent of Wick’s theorem at zero temperature. As

usual in QFT, there is a second approach, which is to derive the Feynman rules from the path

integral formalism. Both derivations can be found in the literature [72–74].

The Feynman rules for this theory read as follows:

1. The propagator is given by

i ∆T>0
F (K) =

i

K2 −m2
(2.26)

with k0 = 2πinT .
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K

Figure 2.1: The φ4-tadpole.

2. In loop integrals we make the replacement

∫
d4K

(2π)4
→ iT

∑

k0

∫
d3K

(2π)3
. (2.27)

3. The vertex reads as in vacuum −i 4!g2.

4. Symmetry factors, e.g. 1/2 for the tadpole, are the same as in vacuum.

As a simple example of a loop diagram, we compute the tadpole of the φ4-theory shown in

Fig. 2.1. According to the above Feynman rules, we get

Π = i
1

2

(
−i 4!g2

)
iT
∑

k0

∫
d3k

(2π)3
i ∆(K) . (2.28)

The Saclay representation (2.20) proves useful in this calculation,

Π = 12g2

∫
d3k

(2π)3

∫ β

0
dτ∆(τ, ωk)T

∑

k0

ek0τ , (2.29)

since the Matsubara frequency k0, over which we have to sum, appears in the propagator only in

the exponent, which makes the summation simple at the expense of introducing another integral

over τ . The sum reduces to a δ-function,

T

∞∑

n=−∞
ek0(τ−τ ′) = T

∞∑

n=−∞
e2πinT (τ−τ ′) = Tδ(T (τ − τ ′)) = δ(τ − τ ′) . (2.30)

Thus we get

Π = 12g2

∫
d3k

(2π)3
∆(0, ωk) (2.31)

= 6g2

∫
d3k

(2π)3

1

ωk
[1 + 2fB(ωk)] .

The first term in the sum [1 + 2fB(ωk)] leads to an ultraviolet (UV) divergence, but is identical
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to the corresponding zero-temperature term. The second term results in a finite integral since fB

falls off exponentially fast for large momenta. We see that the tadpole can be decomposed into a

vacuum and a finite temperature part,

Π = ΠT=0 + ΠT>0 , (2.32)

and it is sufficient to renormalise the divergence of the vacuum term. The finite temperature part

can be integrated analytically if m = 0 and in this case yields the simple result

ΠT>0 = g2T 2 . (2.33)

In fact, one can show that generally, renormalisation at zero temperature is sufficient to remove

all UV divergences of the theory at finite temperature. We do not prove this statement here, but

the interested reader can find a proof in chapter 3.5 of Bellac’s book for example [73]. However,

the property can be understood in a more intuitive way: temperature does not modify the theory

at distances much smaller than 1/T and thus, the ultraviolet divergences are the same as at zero

temperature. Infrared (IR) divergences, on the other hand, are a different story and we will deal

with them in chapter 2.5.

In more complex calculations, we often have to perform the Matsubara sum over two or more

propagators, so it is useful to write down these frequency sums for further reference: One such sum

is given by

T
∑

k0

∆(K)∆(P −K) = T
∑

k0

∑

s1,s2

∆s1(K)∆s2(P −K) , (2.34)

where we can in principle allow the two bosons corresponding to the two propagators ∆(P −K)

to have different masses m1 and m2. We can perform this sum by using the Saclay representa-

tion (2.20), transforming the Matsubara sum into a δ-function and executing the imaginary time

integrals. We arrive at1

T
∑

k0

∆s1(K)∆s2(P −K) = − s1s2

4ωkωq

1 + fB(s1ω1) + fB(s2ω2)

p0 − s1ω1 − s2ω2
, (2.35)

where ω1 =
√
k2 +m2

1 and ω2 =
√

(p− k)2 +m2
2 are the energies of the fields.

1The frequency-space propagators in Bellac’s book [73] are defined with a minus sign relative to our convention
∆thiswork
s (K) = −∆Bellac

s (K). He defines the Fourier transformation for the mixed representation with a minus sign,
so the mixed-representation propagators agree with this work. Moverover, the frequency sums involve exactly two
propagators, so they agree with this work as well.
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Another frequency sum,

T
∑

k0

k0∆s1(K)∆s2(P −K) , (2.36)

can be evaluated by integrating the Fourier representation of ∆(τ) by parts [73]. We arrive at

T
∑

k0

k0∆s1(K)∆s2(P −K) = − s2

4ω2

1 + fB(s1ω1) + fB(s2ω2)

p0 − s1ω1 − s2ω2
, (2.37)

so we see that the calculation amounts to replacing k0 by the respective propagator pole sωk.

2.4 The Dirac Field

We are considering spin 1/2 particles in a spinor representation ψ(x) with the free Lagrangian

density

LDirac = ψ(i γµ∂µ −m)ψ , (2.38)

where we work in the chiral or Weyl representation of gamma matrices.

We define a fermion Matsubara propagator through

Sγδ(x− y) = 〈T{ψγ(x)ψδ(y)}〉ρ , (2.39)

where γ and δ denote spinor indices and ρ indicates that we are taking the statistical expectation

value for a density operator ρ, for which we take the canonical ensemble (2.3).

Similar to the scalar field, the fermion propagator obeys a KMS condition when going to imag-

inary time t with τ = i t, however, the fermion propagator is antiperiodic in β,

S(x− y) = S(x,y, τ, 0) = −S(x,y, τ, β) , (2.40)

where τx = τ and τy = 0. The minus sign arises when changing the time order of ψ and ψ because

the spinors anticommute. In general

S(τ) = (−1)nS(τ + nβ) (2.41)

holds for any integer n.

Because of the antiperiodicity, the Matsubara frequencies are given by

k0 = (2n+ 1)iπT , (2.42)
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where n is an integer. Analogous to equation (2.16), one can derive the Fourier representation of

the Matsubara propagator,

iS(x) = iT
∑

k0

∫
d3k

(2π)3

i ( /K −m)

K2 −m2
e−iK·x . (2.43)

If we write the propagator as2

S(K) =
/K −m
K2 −m2

= ( /K −m) · ∆̃(K) , (2.44)

then the mixed representation is given by

∆̃(τ, ωk) = −T
∑

k0

e−k0τ ∆̃(K) , (2.45)

where

∆̃(K) = −
∫ β

0
dτek0τ ∆̃(τ, ωk) . (2.46)

As in the scalar case, one can perform the sum in equation (2.45),

∆̃(τ, ωk) =
1

2ωk

{
[1− fF (ωk)] e−ωkτ − fF (ωk)e

ωkτ
}

(2.47)

=
∑

s=±1

s

2ωk
[1− fF (sωk)]e

−sωkτ

=
∑

s=±1

∆̃s(τ, ωk) ,

where

fF (ωk) =
1

eβωk + 1
(2.48)

is the Fermi-Dirac distribution and we allow for negative energies sωk. As in the scalar case, the

two parts decompose in frequency space as well,

∆̃ =
∑

s=±1

∆̃s(K) =
∑

s=±1

s

2ωk

1

k0 − sωk
, (2.49)

2Note that ∆̃(K) = 1/(K2−m2) is not the same as the scalar propagator ∆(K) because the Matsubara frequencies
k0 = (2n+ 1)iπT are different for fermions.
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where again the relations

∆̃s(τ, ωk) = −T
∑

k0

e−k0τ ∆̃s(K) (2.50)

and

∆̃s(K) = −
∫ β

0
dτek0τ ∆̃s(τ, ωk) (2.51)

hold.

It is straightforward to calculate the following four basic frequency sums as in Eqs. (2.35) and

(2.37):

1. Fermion-boson case:

T
∑

k0

∆s1(K)∆̃s2(P −K) = − s1s2

4ωkωq

1 + fB(s1ω1)− fF (s2ω2)

p0 − s1ω1 − s2ω2
,

T
∑

k0

k0∆s1(K)∆̃s2(P −K) = − s2

4ω2

1 + fB(s1ω1)− fF (s2ω2)

p0 − s1ω1 − s2ω2
. (2.52)

2. Fermion-antifermion case:

T
∑

k0

∆̃s1(K)∆̃s2(P −K) = − s1s2

4ωkωq

1− fF (s1ω1)− fF (s2ω2)

p0 − s1ω1 − s2ω2
,

T
∑

k0

k0∆̃s1(K)∆̃s2(P −K) = − s2

4ω2

1− fF (s1ω1)− fF (s2ω2)

p0 − s1ω1 − s2ω2
. (2.53)

We can obtain Eqs. (2.52) – (2.53) by replacing fB(sω) for a bosonic line by −fF (sω) for a fermionic

line. The substitution fB(k0)→ −fF (k0) is in fact a systematic rule for substituing a fermionic line

for a bosonic line in an arbitrary Feynman graph. We will not prove this rule, but the interested

reader is referred to the treatment by, e.g. Bellac [73].

For gauge fields, it can be shown [73] that the propagator reads

Dµν(K) =
gµν

K2 −m2
(2.54)

in Feynman gauge. We will not explicitly employ the gauge field propagator in the future discus-

sion, even though it is used in deriving the thermal masses of the Higgs bosons and leptons in

references [76–79], to which we refer in section 3.4. We quote the Feynman gauge, other gauges

can be found in reference [73].
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2.5 Hard Thermal Loop Resummation

One might expect that with the formalism and techniques of the preceding sections, it is possible

to calculate all diagrams in all finite temperature field theories. However, using the perturbation

theory as described, one encounters the following serious problems:

1. IR divergences: A famous example is the energy loss of a heavy fermion in a plasma [80,81].

2. Gauge dependent results: An example of this is the gluon damping rate in a hot QCD plasma,

which turns out to be different in different gauges [82,83]

3. Power counting: It turns out that the resummation of infinitely many higher order diagrams

can contribute at a lower order in perturbation theory than expected.

In order to cure or at least alleviate these problems, the so called hard thermal loop (HTL)

resummation technique has been invented in the late 80s and in the beginning of the 90s by Braaten

and Pisarski [84,85]. Instead of using bare propagators and vertices, they suggested to use effective

vertices and effective propagators, constructed by resumming certain diagrams, the so-called HTL

self energies. In this way an improved perturbation theory has been established, which we briefly

present.

2.5.1 HTL self energies

Our first step is to isolate the diagrams that should be resummed into effective propagators. To

this end, we distinguish between two scales. In a hot plasma, there are two momentum scales,

the hard scale T and the soft scale gT , where we assume for now that the coupling constant g is

much smaller than one. One could add more scales, such as g2T for example, but two scales will

be sufficient for our discussion. The diagrams to be resummed are the HTL self energies, one-loop

diagrams in which the external momenta are soft (∝ gT ) and all internal momenta hard (∝ T ).

For the scalar self energy with the φ4 interaction in Fig. 2.1, the result in the HTL limit is the

same as the full result of equation (2.33). However, in the case of a fermion, the bare self energy

is gauge dependent [86] like the gluon self energy, whereas in the HTL limit we obtain a different,

gauge independent result, which we present in the following.

In all practical calculations of this thesis, the bare mass of fermions will be negligible compared

to the temperature, so we study only the case of massless fermions. The plasma introduces the

rest frame of the heat bath as a special Lorentz frame. In a general frame, the heat bath has

four-velocity uα with uαuα = 1. In the rest frame of the plasma, we can write uα = (1, 0, 0, 0) and

/u = γ0. The general expression for the self-energy in the rest frame of the thermal bath is given

by [76]

Σ(P ) = −a(P )/P − b(P )/u , (2.55)
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P ∼ gT

Q ∼ T

P −Q ∼ T

Figure 2.2: The HTL fermion self-energy

where the factors a and b are given by

a(P ) =
1

4p2

[
tr
(
/PΣ
)
− p0tr (γ0Σ)

]
, (2.56)

b(P ) =
1

4p2

[
P 2tr (γ0Σ)− p0tr

(
/PΣ
)]
,

where the traces are evaluated in the HTL approximation [73], and one finds

T1 ≡ tr
(
/PΣ
)

= 4m2
F

T2 ≡ tr (γ0Σ) = 2m2
F

1

p
ln
p0 + p+ i ε

p0 − p+ i ε
(2.57)

with the effective fermion mass

m2
F =




e2T 2/8 for QED

g2T 2/16 for a Yukawa interaction LY = −gψψφ .
(2.58)

We will not need a resummed gauge boson propagator, therefore we will not quote the gauge

boson self energy. Again, the interested reader will find information in the literature [73].

2.5.2 Effective propagators and dispersion relations

We can construct effective propagators which lead to an improved perturbation theory by re-

summing the HTL self energy diagrams. For a scalar field with a self energy Π, the resummed

propagator is given by the Dyson-Schwinger equation in Fig. 2.3. This diagrammatic equation

reads

i ∆∗ = i ∆ + i ∆ (−i Π) i ∆ + . . .

=
i

∆−1 −Π
=

i

K2 −m2 −Π
, (2.59)
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Figure 2.3: The resummed scalar propagator.

where K is the momentum of the propagator and m the zero temperature mass. The dispersion

relation for a particle is given by the pole of its propagator, and for the bare propagator we get

K2 −m2 = k2
0 − ω2(k) = 0 , (2.60)

that is

k0 = ω(k) =
√
k2 +m2 . (2.61)

However, at finite temperature we get a different effective propagator for a collective mode with

an effective mass meff =
√
m2 + Π, where it is often possible to neglect the zero temperature mass

m with respect to the self energy such that meff =
√

Π. The dispersion relation of the collective

scalar particle is then given by

ωeff =
√
k2 +m2

eff . (2.62)

Effective masses and dispersion relations as above, generated by the interaction with a medium,

have been introduced in various areas in physics, such as the effective mass of an electron in a

crystal or the reduced velocity of a photon in a medium.

Considering fermions, we restrict ourselves to the case where the bare mass is negligible and,

in a similar way as in equation (2.59), we get for the effective propagator

S∗(K) =
1

/K − ΣHTL(K)
, (2.63)

where ΣHTL is given by Eqs. (2.55)–(2.58). It is very convenient to rewrite this propagator in the

helicity-eigenstate representation [87,88],

S∗(K) =
1

2
∆+(K)(γ0 − k̂ · γ) +

1

2
∆−(K)(γ0 + k̂ · γ), (2.64)
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Figure 2.4: The two dispersion laws for fermionic excitations compared to the standard dispersion
relation ω2 = k2 +m2

F .

where k̂ = k/k,

∆±(K) =

[
−k0 ± k +

m2
F

k

(
±1− ±k0 − k

2k
ln
k0 + k

k0 − k

)]−1

(2.65)

and mF is the effective fermion mass defined in equation (2.58).

This propagator has two poles, the zeros of the two denominators ∆±. The poles can be seen as

the dispersion relations of collective excitations of the fermions that interact with the hot plasma,

k0 = ω±(k) . (2.66)

We have found an analytical expression for the two dispersion relations making use of the Lambert

W function [2], which is calculated in appendix B. The dispersion relations are shown in Fig. 2.4.

Note that even though the dispersion relations resemble the behaviour of massive particles and

ω = mF for zero momentum k, the propagator S∗(K) (2.64) does not break chiral invariance. Both

the self energy Σ(K) (2.55) and the propagator S∗(K) anticommute with γ5. The Dirac spinors

that are associated with the pole at k0 = ω+ are eigenstates of the operator (γ0 − k̂ · γ) and they

have a positive ratio of helicity over chirality, χ = +1. The spinors associated with k0 = ω−, on the

other hand, are eigenstates of (γ0 + k̂ · γ) and have a negative helicity-over-chirality ratio, χ = −1.

At zero temperature, fermions have χ = +1. The introduction of a thermal bath gives rise to

collective fermionic modes which have χ = −1. These modes have been called plasminos since they

are new fermionic excitations of the plasma and have first been noted in references [76,77].

We can introduce a spectral representation for the two parts of the fermion propagator (2.65)
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[89],

∆±(K) =

∫ ∞

−∞
dω

ρ±(ω, k)

ω − k0 − i ε
, (2.67)

where the spectral density ρ±(ω, k) [87,90] has two contributions, one from the poles,

ρpole
± (ω, k) = Z±(ω, k)δ(ω − ω±(k)) + Z∓(ω, k)δ(ω + ω∓(k)) , (2.68)

and one discontinuous part,

ρdisc
± (ω, k) =

1
2 m

2
F (k ∓ ω)

{
k(ω ∓ k)−m2

F [Q0(x)∓Q1(x)]
}2

+
[

1
2 πm

2
F (1∓ x)

]2 × θ(k2 − ω2) , (2.69)

where x = ω/k, θ(x) is the heaviside function and Q0 and Q1 are Legendre functions of the second

kind,

Q0(x) =
1

2
ln
x+ 1

x− 1
, Q1(x) = xQ0(x)− 1 . (2.70)

The residues of the quasi-particle poles are given by

Z±(ω, k) =
ω2
±(k)− k2

2m2
F

, where Z+ + Z− = 1 . (2.71)

One can describe the non-standard dispersion relations ω± by momentum-dependent effective

masses m±(k) which are given by

m±(k) =
√
ω2
±(k)− k2 =

√
2Z(ω, k)mF . (2.72)

These masses are shown in Fig. 2.5.

2.5.3 HTL resummation technique

We have collected the necessary ingredients to build an improved perturbation theory at finite

temperature. We noted that naive perturbation theory suffers from the problems of IR divergences

and gauge dependent results. The reason for this is that the naive perturbative expansion is

incomplete at T > 0. Infinitely many higher order diagrams can contribute to lower order in the

coupling constant. These diagrams can be taken into account by resummation.

We will not discuss the HTL resummation technique for gauge theories in detail (see, e.g. [73]),

but we will present rules for perturbative calculations. One has to consider the self energies in the

HTL approximation, such as Π, Σ∗ and the gauge boson polarisation tensor Π∗µν
3. Due to Ward

3As mention above, we will not need the gauge boson propagator in this work, but we mention it in order to sketch
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Figure 2.5: The momentum-dependent effective masses m±.
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Figure 2.6: The HTL vertex correction

identities, fermion self energies are related to vertices, e.g.

i e [Σ(P1)− Σ(P2)] = (P1 + P2)µΓµ(P1, P2) . (2.73)

Therefore one also has to consider the HTL correction to vertex contributions4, as shown in fig-

ure 2.6, where all internal lines are hard ∼ T . The HTL propagators are constructed by resumming

the self energies via the Dyson-Schwinger equation as explained above. The HTL vertices are given

by adding the HTL correction to the bare vertex. Examples are shown in figure 2.7. When calculat-

ing diagrams, we have to use effective propagators and vertices if all external legs are soft; otherwies

bare propagators and vertices are sufficient. In this way, contributions of the same order in g are

the HTL resummation technique.
4Even though we will not encounter effective vertices in the course of this work, we add them in order to present

a full picture of the HTL theory.
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Figure 2.7: Examples of an effective HTL propagator and an effective vertex.

included, gauge independent results are obtained and the IR behaviour of the theory is improved.

After all, the HTL improved perturbation theory has been successfully applied to thermal QCD

for the description of the quark-gluon plasma (see e.g. [91])

Having outlined the construction of the HTL resummation technique as a perturbation theory

that cures many serious shortcomings of naive perturbation theory at finite temperature, some

remarks concerning our use of HTL propagators seem necessary. First, even though it is sufficient

to use bare propagators and vertices if one external momentum is hard, it is always possible to

resum self-energies and thus capture effects which arise from higher-order loop diagrams and thus

take into account the appearance of thermal masses and modified dispersion relations in a medium.

In fact, since the effective masses we will encounter do typically not satisfy the condition meff � T

but are rather in the range meff/T ∼ 0.1 – 1, the effect of resummed propagators is noticeable even

when some or all external momenta are hard ∼ T . In summary, we always resum the propagators

of particles that are in equilibrium with the thermal bath, that is in our case the Higgs bosons

and the leptons, in order to capture the effects of thermal masses, modified dispersion relation and

modified helicity structures. This approach is justified a posteriori by the sizeable corrections it

reveals, similar to the treatment of meson correlation fuctions in reference [92].





CHAPTER 3

Decays and Inverse Decays

3.1 The Quest of This Thesis

In order to make any statement about the amount of baryon asymmetry that is produced by a

baryogenesis or, in our case, leptogenesis model, one has to adopt a quantitative description of the

dynamics that take place at this phase and result in generating the asymmetry. There are two

ways to do this: One can either adopt the consistent quantum mechanical view of the system and

calculate how quantum systems evolve with time when they are not in equilibrium. Or one can

view the particle distributions as classical distributions and adopt the equations which govern them,

that is, a set of Boltzmann equations. The set of equations that govern the dynamics of the first

non-equilibrium approach are the so called Kadanoff-Baym equations [93] and this approach has

received some attention in recent publications [16,18–20,22,94–99]. The easier and more traditional

Boltzmann approach is possible when interactions are not fast and particles are sufficiently close

to their equilibrium distribution, such that before and after each interaction, they can be seen as

classical particles. The interaction itself is calculated by means of quantum field theory and appears

in the collision term of the equation.

Whichever viewpoint we adopt, we have to calculate the quantum mechanical amplitudes that

enter the equations. Traditionally, amplitudes are calculated in vacuum and inserted into Boltz-

mann equations. However, as densities and temperatures are high, it is important to calculate

amplitudes at finite temperature and compare the result to the zero-temperature case. In this

work, we adopt the Boltzmann view of particle evolution and calculate the corrections due to finite

densities and temperatures. However, the amplitudes are related to the two-point functions one

has to use when adopting the Kadanoff-Baym approach.

The Boltzmann equations, which we stated for zero temperature in equations (1.29) and (1.30),

contain two main quantities, which are calculated from amplitudes: First, the rates with which

interactions take place, that is, the decay and inverse decay rates ΓD and ΓID, the scattering rates

ΓS and the washout rates ΓW . Second, the difference between the L violating rates and their
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CP -conjugates, the CP -asymmetry, which is defined in equation (1.15) for zero temperature. Of

these, the leading order amplitudes in the interaction rates are tree level amplitudes. However,

as explained in section 1.4.3, the CP -asymmetry arises as an interference between tree level and

one-loop amplitudes and is proportional to the imaginary part of one loop diagrams. Thus, for the

CP -asymmetry, the leading order is the one-loop level.

The combination of SM couplings that we write as g in the HTL-corrections gT is typically of

the order g ∼ O(10−1). Since the creation of the lepton asymmetry takes places at temperatures

T ∼ M1, corrections of the order of gT are important to consider if the couplings are as large as

they are in our case. We present a consistent way of calculating these HTL-corrections of order

gT and analyse the effects they imply. Thus, we restrict ourselves to a very basic leptogenesis toy

model which is self-consistent and contains all important features of leptogenesis even if it does

not describe the full scenario in a quantitatively accurate way. More specifically, we look at the

leading order interactions between the protagonists of leptogenesis, the heavy neutrinos N1, as

well as the lepton and Higgs doublets ` and φ. These interactions are decays N1 → LH, inverse

decays LH → N1 and the ∆L = 2 scatterings LH → LH, where by L and H, we denote both the

doublets φ, ` and their charge conjugated states φ, `. Naturally, we have to include a calculation of

the CP -asymmetry, which is a dominant quantity in the sense that there would be no asymmetry

production without it. We include HTL-corrections for the Higgs bosons and the leptons, but not

for the neutrinos, since the Yukawa couplings are much smaller than the SM couplings that give

rise to the HTL effects for Higgs bosons and leptons.

As temperatures are high, particles in the bath acquire different dispersion relations as explained

in section 2.5.2, which can be translated into effective thermal masses. Due to these masses, it may

happen that some interactions are kinematically forbidden, while other processes that would not

be possible in vacuum are allowed. In leptogenesis, there is a temperature where the processes

N1 ↔ LH are forbidden, but the processes H ↔ LN1 are possible. The leptons always have a

lower thermal mass than the Higgs bosons, so L↔ N1H is never allowed. These Higgs decays and

inverse decays are new processes that govern the neutrino and lepton evolution at high temperature,

so they need to be calculated and likewise the CP -asymmetry in these decays since it leads to the

production of a lepton asymmetry.

Thermal corrections to leptogenesis of various kind have been studied before, both in the

Boltzmann-picture [14, 15, 17, 21, 100–104], as well as in the Kadanoff-Baym-picture [16, 18–20,

22, 94–99]. Our self-consistent calculation is a novel approach and we discuss the differences to

the aforementioned works, with a special focus on the extensive and important work by Giudice

et al. [15]. In this chapter, we calculate the leading order HTL corrections to decays and inverse

decays, in chapter 4, we do the same for the CP -asymmetries and in chapter 5, we put our results

into the appropriate Boltzmann equations and evaluate them.
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Figure 3.1: N decay via the optical theorem with dressed propagators denoted by a blob

3.2 Discontinuity of the Fermion Self-Energy in Yukawa Theory

at Finite Temperature

We consider a leptogenesis-inspired model with a massive Majorana fermion N coupling to a mass-

less Dirac fermion ` and a massless scalar φ. The interaction and mass part of the Lagrangian

reads

Lint,mass = gN̄φ`− 1

2
MN̄N c + h.c. , (3.1)

The HTL resummation technique has been considered in [105] for the case of a Dirac fermion with

Yukawa coupling, from which the HTL resummed propagators for the Lagrangian in equation (3.1)

follow directly. We calculate the interaction rate Γ of N ↔ `φ.

We cut the N self-energy and use the HTL resummation for the fermion and scalar propagators

(figure 3.1). According to finite-temperature cutting rules [106,107], the interaction rate reads

Γ(P ) = − 1

2p0
tr[(/P +M) Im Σ(p0 + i ε,p)]. (3.2)

At finite temperature, the self-energy reads

Σ(P ) = −g2T
∑

k0=i (2n+1)πT

∫
d3k

(2π)3
PL S

∗(K) PR D
∗(Q), (3.3)

where PL and PR are the projection operators on left- and right-handed states and Q = P −K.

The HTL-resummed scalar propagator is

D∗(Q) =
1

Q2 −m2
φ

, (3.4)

where m2
φ = g2T 2/12 is the thermal mass of the scalar, created by the interaction with fermions,

and can be calculated analogously to the φ4 self-energy in section 2.3. Due to the reduced Majorana

degrees of freedom, mφ differs from the Dirac-Dirac case by a factor 1/2 [105].

The effective fermion propagator in the helicity-eigenstate representation is given by equa-
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tion (2.64) [87,88],

S∗(K) = −1

2
∆+(K)(γ0 − k̂ · γ)− 1

2
∆−(K)(γ0 + k̂ · γ) ,

∆±(K) =

[
−k0 ± k +

m2
`

k

(
±1− ±k0 − k

2k
ln
k0 + k

k0 − k

)]−1

(3.5)

and

m2
` =

1

32
g2T 2. (3.6)

This again differs from the Dirac case in equation (2.58) by a factor 1/2 [105].

The trace can be evaluated as

tr[(/P +M)PLS
∗(K)PR] = −∆+(p0 − pη)−∆−(p0 + pη), (3.7)

where η = cos θ is the angle between p and k. We evaluate the sum over Matsubara frequencies

by using the Saclay method [108]. For the scalar propagator, the Saclay representation from

equation (2.20) reads

D∗(Q) = −
∫ β

0
dτeq0τ

1

2ωq
{[1 + fB(ωq)]e

−ωqτ + fB(ωq)e
ωqτ}, (3.8)

where ω2
q = q2 +m2

φ. For the fermion propagator, it is convenient to use the spectral representation

as explained in section 2.5.2 [89],

∆±(K) = −
∫ β

0
dτ ′ek0τ ′

∫ ∞

−∞
dω ρ±(ω, k)[1− fF (ω)]e−ωτ

′
, (3.9)

where ρ± is the spectral density [87].

Since the quasi-particles are our final states, we will set K such that 1/∆±(K) = 0. Thus, we

are only interested in the pole contribution

ρpole
± (ω, k) = −ω

2 − k2

2m2
`

(δ(ω − ω±) + δ(ω + ω∓)), (3.10)

where ω± are the dispersion relations for the two quasiparticles, i.e. the solutions for k0 such that

1/∆± (ω±,k) = 0, shown in figure 2.4. The analytic solutions for ω± are explained in appendix B.

One assigns a momentum-dependent thermal mass m±(k)2 = ω±(k)2 − k2 to the two modes as

explained in section 2.5.2 and shown in figure 2.5 and for large momenta the heavy mode m+

approaches
√

2m`, while the light mode becomes massless.

In order to execute the sum over Matsubara frequencies, we write k0 = iωn with ωn = (2n+1)πT

and remember that, when evaluating frequency sums, also p0 = iωm = i (2m+1)πT can be written
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as a Matsubara frequency and later on be continued analytically to real values of p0 [73, 109, 110].

In particular ep0β = eiωmβ = −1. We write

T
∑

n

eiωnτ =
∞∑

n′=−∞
δ(τ − n′β) ,

T
∑

n

e(p0−k0)τek0τ ′ = ep0τδ(τ ′ − τ), (3.11)

since −β ≤ τ ′ − τ ≤ β. After evaluating the sum over k0 and carrying out the integrations over τ

and τ ′, we get

T
∑

k0

D∗(Q)∆±(K) = −
∫ ∞

−∞
dω ρ±(ω, k)

1

2ωq

[
1 + fB(ωq)− fF (ω)

p0 − ω − ωq

+
fB(ωq) + fF (ω)

p0 − ω + ωq

]
.

(3.12)

Integrating ω over the pole part of ρ± in equation (3.10), we get

T
∑

k0

D∗∆± =
1

2ωq

{
ω2
± − k2

2m2
`

[
1 + fB − fF
p0 − ω± − ωq

+
fB + fF

p0 − ω± + ωq

]

+
ω2
∓ − k2

2m2
`

[
fB + fF

p0 + ω∓ − ωq
+

1 + fB − fF
p0 + ω∓ + ωq

]}
,

(3.13)

where fB = fB(ωq) and fF = fF (ω±) or fF (ω∓), respectively.

The four terms in equation (3.13) correspond to the processes with the energy relations indicated

in the denominator, i.e. the decay N → φ`, the production Nφ → `, the production N` → φ and

the production of N`φ from the vacuum, as well as the four inverse reactions [106]. We are only

interested in the process N ↔ φ`, where the decay and inverse decay are illustrated by the statistical

factors

1 + fB − fF = (1 + fB)(1− fF ) + fBfF . (3.14)

The decay is weighted by the factor (1 + fB)(1− fF ) for induced emission of a Higgs boson and a

lepton, while the inverse decay is weighted by the factor fBfF for absorption of a Higgs boson and

a lepton from the thermal bath. Our term reads

T
∑

k0

D∗∆±

∣∣∣∣∣
N↔φ`

=
1

2ωq

ω2
± − k2

2m2
`

1 + fB − fF
p0 − ω± − ωq

. (3.15)
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For carrying out the integration over the angle η, we use

Im
1

p0 − ω± − ωq + i ε
= −πδ(p0 − ω± − ωq) = −πωq

kp
δ(η − η±), (3.16)

where

η± =
1

2kp

[
2p0ω± −M2 − (ω2

± − k2) +m2
φ

]
(3.17)

denotes the angle for which the energy conservation p0 = ω+ωq holds. The integration over η then

yields

∫ 1

−1
dη Im(T

∑

k0

D∗∆±) = − π

2kp

ω2
± − k2

2m2
`

[1 + fB(ωq±)− fF (ω±)], (3.18)

where ωq± = p0 − ω±. It follows that

Γ(P ) =− 1

2p0
tr[(/P +M)Im Σ(P )]

=
1

2p0
Im



g

2T
∑

k0

∫
d3k

(2π)3
tr[(/P +M)PLS

∗PR]D∗





=− g2

8π2p0
Im



T

∑

k0

∫
dk dη k2D∗[∆+(p0 − pη) + ∆−(p0 + pη)]





=
g2

32πp0p

∑

±

∫

−1≤η±≤1
dk

ω2
± − k2

2m2
`

[1 + fB(ωq±)− fF (ω±)]

× [2p0(k ∓ ω±)±M2 ± (ω2
± − k2)∓m2

φ],

(3.19)

where we only integrate over regions with −1 ≤ η ≤ 1.

Using finite temperature cutting rules, one can also write the interaction rates for the two modes

in a way that resembles the zero-temperature case [106]

Γ±(P ) =
1

2p0

∫
dk̃ dq̃ (2π)4δ4(P −K −Q) |M±(P,K)|2

×[1 + fB(ωq)− fF (ω±)],

(3.20)

where

dk̃ =
d3k

(2π)32 k0
(3.21)
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and dq̃ analogously and the matrix elements are

|M±(P,K)|2 = g2ω
2
± − k2

2m2
`

ω± (p0 ∓ pη±) . (3.22)

Now that we have arrived at an expression for the full HTL decay rate of a Yukawa fermion, we

would like to compare it to the conventional approximation adopted for example by reference [15],

which we refer to as one-mode approximation. To this end, we do the same calculation for an

approximated fermion propagator

S∗approx(K) =
1

/K −m`
, (3.23)

This yields the following interaction rate:

Γapprox(P ) =
g2

32πp0p

∫ k2

k1

dk
k

ω
[1 + fB(ωq)− fF (ω)][M2 +m2

` −m2
φ]

=
1

2p0

∫
dk̃ dq̃ (2π)4δ4(P −K −Q)|M|2

× [1 + fB(ωq)− fF (ω)],

(3.24)

where ω2 = k2 +m2
` , ωq = p0 − ω and the integration boundaries

k1,2 =
1

2M2

∣∣∣p0

√
(M2 +m2

` −m2
φ)2 − (2Mm`)2 ∓ p(M2 +m2

` −m2
φ)
∣∣∣ (3.25)

ensure −1 ≤ η ≤ 1, where

η =
1

2kp

[
2p0ω −M2 −m2

` +m2
φ

]
. (3.26)

We see that the matrix element is

|M|2 =
g2

2
(M2 +m2

` −m2
φ). (3.27)

In addition to the dispersion relations and the phase space boundaries for k, there are two major

differences to the two-mode matrix element in equation (3.22). In the two-mode approach, we

integrate over the residue Z±(k) = (ω2
± − k2)/(2m2

` ). For the plus-mode, this residue is mostly

close to unity, but can be as low as 1/2 for low momenta. For the negative mode, the residue is

close to zero for most momenta and only up to 1/2 for low momenta. The rate for the plus-mode

is slightly suppressed compared to the one-mode approach, while the rate for the minus-mode is

considerably suppressed.
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Another difference is the momentum product

P ·K = p0ω − pkη =
1

2

(
M2 +m2

` −m2
φ

)
≡ Σ

2
. (3.28)

For the two-mode approach, we can introduce a chirally invariant four-momentum for the lepton

Kµ
h ≡ ωh(1, h k̂) , (3.29)

where h = ±1 denotes the helicity-over-chirality ratio. Then

P ·Kh = p0ω − hpωηh = h
Σh

2
− p0(hω − k) , (3.30)

where

Σh ≡M2 +m2
h(k)−m2

φ . (3.31)

We see that for the plus-mode, the term p0(ω − k) has to be subtracted from the right-hand side

of equation (3.28), which also suppresses the rate compared to the one-mode calculation. For the

minus-mode, the momentum product is also different from the one-mode approach. This difference

in the momentum products is closely linked to the fact that the modified dispersion relation of the

two-mode calculation leaves the chiral symmetry unbroken.

Continuing our discussion of the one-mode rate, we note that it resembles the zero temperature

result

ΓT=0(P ) =
g2

32πp0p

∫ k2

k1

dk
k

ω

[
M2 +m2

` −m2
φ

]
(3.32)

with zero temperature masses m`, mφ. The missing factor

1 + fB − fF = (1 + fB)(1− fF ) + fBfF (3.33)

accounts for the statistical distribution of the initial or final particles. As pointed out in more detail

in reference [1], we see that the approach to treat thermal masses like zero temperature masses

in the final state [15] is justified for the decay rates, since it equals the HTL treatment with an

approximate fermion propagator. However this approach does not equal the full HTL result.

Concluding this calculation, a caveat has to be added: In this general calculation, the external

Majorana fermion will also acquire a thermal mass of order gT . Thus, if its zero temperature

mass is smaller than its thermal mass, the external fermion also needs to be described by leptonic

quasiparticles to be consistent. However, in the leptogenesis study, the Yukawa coupling giving

rise to the Majorana neutrino decay is much smaller than the couplings giving rise to the thermal

masses of the Higgs boson (scalar) and the lepton (Dirac fermion) and thus the thermal mass of
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the heavy neutrino can be neglected, as pointed out in the previous section.

We have calculated the decay rate assuming a Majorana particle, but the result can be very

easily generalized to the case of two Dirac fermions by inserting the appropriate factors of two in

the decay rate and the thermal masses.

3.3 Decays at High Temperature

When the temperature is so high that mφ(T ) > M , the scalar can decay into the Majorana fermion

and the Dirac fermion1. The calculation can be done in the same way as for the Majorana fermion

decay. The only difference is that in equation (3.13), we take the imaginary part of the factor

1/(p0 + ω∓ − ωq), which corresponds to the scalar decay. The frequency sum corresponding to

equation (3.15) reads

T
∑

k0

D∗∆h

∣∣∣∣∣
φ↔N`

=
1

2ωq

ω2
−h − k2

2m2
`

fB(ωq) + fF (ω−h)

p0 + ω−h − ωq
. (3.34)

where h = ±1 denotes the helicity-over-chirality ratio. In this case, the angle η is given by2

η0
h =

1

2kp
[−2p0ωh + Σφ] , (3.35)

where

Σφ = m2
φ −M2 − (ω2

h − k2) . (3.36)

In order to clarify the momentum relations, we revert the direction of the three-momenta q and p

so that they correspond to the physical momenta of the incoming scalar and outgoing Majorana

fermion. The matrix element can be derived as

|Mh(P,K)|2 = g2Zhωh(p0 − hp · k̂) , (3.37)

where the momentum flip p→ −p compensates the helicity flip h→ −h and

Zh =
ω2
h − k2

2m2
`

(3.38)

is the residue of the modes and the angle for the reverted physical momenta reads

η0
h =

1

2kp
[2p0ωh − Σφ] . (3.39)

1Note that in our model calculation, mφ(T ) > m`(T )
2Note that in this notation, −q and −p are the three-momenta of the initial-state scalar and the final-state

Majorana fermion, since their roles have been inverted.
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3.4 Application to Leptogenesis

When turning to leptogenesis with

δL = iN̄i∂µγ
µNi − λν,iαN̄iφ

†`α −
1

2
MiN̄iN

c
i + h.c., (3.40)

we sum over the two components of the doublets, particles and antiparticles and the three lepton

flavors. Thus we need to replace g2 by 4(λ†νλν)11. Integrating over all neutrino momenta, the decay

density in equilibrium is

γeq
D =

∫
d3p

(2π)3
f eq
N (E) ΓD =

1

2π2

∫ ∞

M
dE E p f eq

N ΓD, (3.41)

where E = p0, f eq
N (E) = [exp(Eβ) − 1]−1 is the equilibrium distribution of the neutrinos and

ΓD = [1 − f eq
N (E)] Γ. We drop the subscript 1 for the neutrino in this section since it is the only

occuring neutrino. The decay density is also present in the Boltzmann equations,

γ(N → HL) =

∫
dp̃Ndp̃Hdp̃L(2π)4δ4(pN − pL − pH) |Mh|2 f eq

N (1− f eq
L )(1 + f eq

H ) . (3.42)

For the Higgs boson decay, the density reads

γ(H → NL) =

∫
dp̃Ndp̃Hdp̃L(2π)4δ4(pN + pL − pH) |Mh|2 (1− f eq

N )(1− f eq
L )f eq

H , (3.43)

where the matrix elements for both decays are related and given by equations (3.22) and (3.37).

The thermal masses are given by [76–79]

m2
φ(T ) =

(
3

16
g2

2 +
1

16
g2
Y +

1

4
y2
t +

1

2
λ

)
T 2 ,

m2
` (T ) =

(
3

32
g2

2 +
1

32
g2
Y

)
T 2. (3.44)

The couplings denote the SU(2) coupling g2, the U(1) coupling gY , the top Yukawa coupling yt and

the Higgs self-coupling λ, where we assume a Higgs mass of about 115 GeV. The other Yukawa

couplings can be neglected since they are much smaller than unity and the remaining couplings are

renormalised at the first Matsubara mode, 2πT , as explained in reference [15] and, in more detail,

in reference [111].

In figure 3.2, we compare our consistent HTL calculation to the one-mode approximation

adopted by reference [15], while we add quantum-statistical distribution functions to their cal-

culation, which equals the approach of using an approximated lepton propagator 1/( /K −m`) as in

equation (3.23) [1]. In addition, we show the one-mode approach for the asymptotic mass
√

2m`.

We evaluate the decay rates for the M1 = 1010 GeV and normalise the rates by the effective neu-
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Figure 3.2: The decay densities for the neutrino and the Higgs boson decay. We show the one-mode
approach with the thermal mass as γm`

and with the asymptotic mass as γ√2m`
; Also the T = 0

rate γ0 and our two modes γ±. The temperature thresholds are explained in the text.

trino mass m̃1, which is often taken as m̃1 = 0.06 eV, inspired by the mass scale of the atmospheric

mass splitting.

In the one-mode approach, the decay is forbidden when the thermal masses of Higgs boson and

lepton become larger than the neutrino mass, M1 < m` + mφ or M1 <
√

2m` + mφ. Considering

two modes, the kinematics exhibit a more interesting behavior. For the plus-mode, the phase space

is reduced due to the larger quasi-mass, and at M1 = m+(∞) + mφ, the decay is only possible

into leptons with small momenta, thus the rate drops dramatically. The decay into the negative,

quasi-massless mode is suppressed since its residue is much smaller than the one of the plus-mode.

However, the decay is possible up to M1 = mφ. Due to the various effects, the two-mode rate differs

from the one-mode approach by more than one order of magnitude in the interesting temperature

regime of z = T/M1 & 1. The
√

2m`-calculation is a better approximation to the plus-mode, but

still overestimates the rate, which is mainly due to the difference between the momentum products

in equations (3.28) and (3.30), that is the helicity structure of the quasiparticles. The residue also

reduces the plus-rate, but the effect is smaller since Z+ is usually close to one.

At higher temperatures, when mφ > M1 +m±(k), the Higgs can decay into neutrino and lepton

modes and this process acts as a production mechanism for neutrinos [15]. The decay φ → N`−
is possible when mφ > M1, while the decay into `+ is possible when mφ > M1 + m`. As for

low temperature, the rate γ+ is unsuppressed only when mφ > M1 +
√

2m`. Our decay density

approaches the decay density of reference [15] at high temperatures, but is about a factor two below.
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This can be explained by the fact that the phase space is smaller due to the larger mass of the lepton,

m` < m`(k) <
√

2m`. Again, the asymptotic mass calculation is a better approximation but still

gives a larger rate due to the momentum product and, to less extent, the residue. We see that the

decay rate rises as ∼ T 4, instead of ∼ T 2 as for the vacuum rate γ0. In the vacuum calculation,

the squared matrix element is proportional to M2
1 . In the finite temperature calculation, it is

proportional to Σφ = m2
φ −m2

` (k)−M2
1 , so the dominant contribution is proportional to m2

φ ∼ T 2

and the rate rises by a factor T 2 faster than the vacuum rate γ0.

Summarising, we can distinguish five different thresholds for the thermal decay rates we dis-

cussed. Going from low temperature to high temperature, these are given by the following condi-

tions:

TN+ : M1 =
√

2m` +mφ ,

TN0 : M1 = m` +mφ ,

Tc : M1 = mφ ,

T φ0 : mφ = m` +M1 ,

T φ+ : mφ =
√

2m` +M1 . (3.45)

We will refer to these thresholds in the following chapters.

As discussed in detail in [1], we confirm by employing HTL resummation and finite temperature

cutting rules that treating thermal masses as kinematic masses as in [15] is a reasonable approxima-

tion. However, quantum statistical functions need to be included as they always appear in thermal

field theory. Moreover, the non-trivial two-mode behaviour of the full HTL lepton propagator is

not accounted for by the conventional one-mode approach. We have calculated the effect of the two

modes in a general way, which is applicable to any decay and inverse decay rates involving fermions

at high temperature. Thus, this calculation is a valuable tool for other particle interaction rates in

the early universe, as other leptogenesis processes, the thermal production of gravitinos or the like.

The behaviour of the decay density of the two lepton modes can be explained by considering the

dispersion relations ω± of the modes and assigning momentum-dependent quasi-masses to them.

The thresholds for neutrino decay reported in reference [15] are shifted and the decay density shows

deviations of more than one order of magnitude in the interesting temperature regime T/M1 ∼ 1,

which has implications for the dynamics of leptogenesis as we will see in chapter 5.



CHAPTER 4

CP-Asymmetries

While the decay rates calculated in the last chapter are the first important ingredient of the Boltz-

mann equations, the CP -asymmetry is the second quantity that enters the Boltzmann equations.

This chapter is devoted to the calculation of the CP -asymmetry at finite temperature for our dif-

ferent scenarios. At low temperature, we calculate the CP -asymmetry in neutrino decays, at high

temperature the CP -asymmetry in Higgs boson decays

4.1 Preliminaries

We are calculating the CP -asymmetry in N1 decays. We denote the decaying N1 by N and the N2

in the loop by N ′. At T = 0, the CP -asymmetry is defined in equation (1.15),

ε0 =
Γ(N → φ`)− Γ(N → φ̄¯̀)

Γ(N → φ`) + Γ(N → φ̄¯̀)
, (4.1)

where Γ are the decay rates of the heavy Ns into Higgs boson and lepton doublet and their CP -

conjugated processes. As we will see in chapter 5, we have to calculate the CP -asymmetry via the

integrated decay rates at finite temperature,

εh(T ) =
γT>0(N → φ`h)− γT>0(N → φ̄ ¯̀

h)

γT>0(N → φ`h) + γT>0(N → φ̄ ¯̀
h)
, (4.2)

where we define the CP -asymmetry for each lepton mode, denoted by h, as introduced in equa-

tion (3.29). We have

γT>0 =

∫
d3pN
(2π)3

fN (pN )ΓT>0(PµN ) , (4.3)
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where fN is the distribution function of the neutrinos and PµN the neutrino momentum. At T = 0,

we write

Γ(Pµ) =
M1

p0
Γrf , (4.4)

where M1 and p0 are the mass and the energy of the neutrino and Γrf is the decay rate in the rest

frame of the neutrino. The integration over the momentum cancels out and the CP asymmetry

via γ is the same as via Γ. At finite temperature, however, the thermal bath breaks Lorentz

invariance and the preferred frame of reference for calculations is the rest frame of the thermal

bath. The momentum dependence of the decay rate cannot be formulated as in equation (4.4) and

the CP -asymmetry as defined in equation (4.1) is momentum dependent. Since we want to decouple

the CP -asymmetry from the momentum integration in the Boltzmann-equations, the definition in

equation (4.2) is the appropriate one.

The CP asymmetry in equilibrium can be written as

εeq
γh(T ) =

∫ d3p
(2π)3 f

eq
N (ΓDh − Γ̃Dh)

∫ d3p
(2π)3 f

eq
N (ΓDh + Γ̃Dh)

, (4.5)

where ΓD = Γ(N → `φ) and Γ̃D = Γ(N → ¯̀φ̄) are the decay rate and the CP -conjugated decay

rate.

We see from equations (3.19), (3.22) and (3.41), that the decay density is written as

γDh =
1

2π2

∫
dEEpf eq

N ΓDh =
1

4(2π)3

∫
dEdk

k

ωh
fNZD |Mh|2 . (4.6)

where

ZD = (1− f eq
N )(1 + f eq

φ − f
eq
` ) = (1 + f eq

φ )(1− f eq
` ) (4.7)

is the statistical factor for the decay, with Bose-enhancement and Fermi-blocking. In the denomina-

tor of the CP -asymmetry, it is sufficient to take the tree-level matrix element,
∣∣∣Mtree

∣∣∣
2

=
∣∣∣M̃tree

∣∣∣
2
.

The CP -asymmetry reads

εγh(T ) =

∫
dE dk k

ωh
fN ZD (|Mh|2 − |M̃h|2)

2
∫

dE dk k
ωh

fN ZD |Mh|2

=
1

γh(N → LH)

1

4(2π)3

∫
dEdk

k

ωh
ZD

(∣∣∣Mh

∣∣∣
2
−
∣∣∣M̃h

∣∣∣
2
)
. (4.8)

The CP -asymmetry arises as the interference between tree-level and one-loop diagrams in the

decay, so we write M = M0 +M1, where M0 is the tree-level amplitude and M1 the sum of
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Figure 4.1: The momentum assignments for the vertex contribution to the CP asymmetry. The
solid lines without arrows are neutrinos, the ones with arrows the leptons and the dashed lines the
Higgs bosons. All momenta are flowing from left to right and P ′ as indicated.

all one-loop amplitudes. The matrix elements can be decomposed as Mi = λiIi such that the

CP -conjugated matrix element is M̃i = λ∗i Ii. Here, λi includes the couplings and Ii accounts for

the kinematics. Thus,

|M|2 − |M̃|2 = −4 ImλCP ImICP , (4.9)

where λCP = λ0λ
∗
1 and ICP = I0I

∗
1 .

4.2 The Vertex Contribution

4.2.1 Going to finite temperature

Calculating the imaginary part of the kinematic term ImICP amounts to calculating the imaginary

part of the one-loop diagram since the tree-level diagram is real. As explained in section 1.4.3,

there are two one-loop diagrams for the neutrino decay, the vertex diagram and the self-energy

diagram. The vertex diagram is shown in figure 4.1, along with the momentum assignments. The

coupling is

λCP = λ0λ
∗
1 = [(λ†λ)jk]

2gSU(2), (4.10)

where gSU(2) = 2 denotes the sum over the Higgs and lepton doublets, λ is the Yukawa coupling

between neutrino and Higgs and lepton doublet, j = 1 is the decaying neutrino family, k = 2 is

the family of the neutrino in the loop and we have summed over all fermion spins and the lepton

families, both external and in the loop. Moreover,

IV = −i

∫
d4k′

(2π)4

[
Mk∆N ′∆φ′(u`PRuN )(uNPRS`′PLu`)

]∗
, (4.11)

where p′, q′ and k′ are the neutrino, Higgs boson and lepton momentum in the loop, ∆N ′ =

(P ′2 −M2
k )−1 is the denominator of the loop neutrino propagator, ∆φ′ accordingly for the loop
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Higgs, PR,L are projection operators, S`′ is the loop lepton propagator and uN and u` are the

external neutrino and lepton spinors.

The external fermions are thermal quasiparticles and can be written as spinors u±` [73] which

are eigenstates of (γ0 ∓ k̂ · γ) and have modified dispersion relations as explained in section 2.5.2.

From chapter 3, we know that

1

2

∑

s

|Ms
±(P,K)|2 = g2ω

2
± − k2

2m2
`

ω± (p0 ∓ pη±) , (4.12)

where s denotes the spin of the neutrino. We can also write the matrix element as

1

2

∑

s

|Ms
±(P,K)|2 =

1

2

∑

s

g2(u±` PRu
s
N )(usNPLu

±
` ) . (4.13)

From equations (4.12) and (4.13) we derive a rule for multiplying the spinors of the lepton states,1

u±` (K)u±` (K) = Z±ω±(γ0 ∓ k̂ · γ), (4.15)

where

Z± =
ω2
± − k2

2m2
`

(4.16)

is the quasiparticle residuum.

The HTL lepton propagator is given in equations (2.64) and (3.5)

S∗(K) = −1

2
∆+(K)(γ0 − k̂ · γ)− 1

2
∆−(K)(γ0 + k̂ · γ) ,

∆±(K) =

[
−k0 ± k +

m2
`

k

(
±1− ±k0 − k

2k
ln
k0 + k

k0 − k

)]−1

(4.17)

and m` is the thermal lepton mass. The Higgs boson propagator is

∆φ′ =
1

Q′2 −m2
φ

, (4.18)

where mφ is the thermal Higgs boson mass. At finite temperature, we sum over the Matsubara

1For the antiparticle spinors v, we replace K by −K and get

v±` (K)v±` (K) = −Z±ω±(γ0 ± k̂ · γ) . (4.14)
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modes,

∫
dk′0
2π
→ iT

∑

k′0

, (4.19)

where

k′0 = (2n+ 1)πiT, (4.20)

since we are integrating over a fermion momentum.

The spin and helicity sum are evaluated as

∑

s,h′

(uh`PRu
s
N )(usNPRS

h′
`′ PLu

h
` ) = −

∑

h′

ZhωhMj∆h′(1− hh′k̂ · k̂′), (4.21)

where h and h′ are the ratios of helicity over chirality for the external and the loop lepton. The

integral reads

IV = −T
∑

k′0,h
′

∫
d3k′

(2π)3
MkMjZhωh

[
∆N ′∆φ′∆

′
h′
]∗
Hhh′
− , (4.22)

where H− = 1− hh′k̂k̂′.
In order to carry out the Matsubara sum, we use the Saclay-representation for the propagators.

For the Higgs propagator it is given in equation (2.20),

∆′φ = −
∫ β

0
dτ eq

′
0τ

1

2ωq′
{[1 + f ′φ(ωq′)]e

−ωq′τ + n′φ(ωq′)e
ωq′τ}, (4.23)

where ωq′ =
√
q′2 +m2

φ is the on-shell Higgs energy with the thermal Higgs mass mφ and fφ′ is

the Bose-Einstein distribution for the Higgs bosons with energy ωq′ . For the lepton propagator the

Saclay representation is given in equation (3.9),

∆′± = ∆′(h′) = −
∫ β

0
dτ ′ ek

′
0τ
′
∫ ∞

−∞
dω′ρh′(ω

′, k′)[1− n′`(ω′)]e−ω
′τ ′ , (4.24)

where

ρh′(ω
′, k′) = −ω

′2 − k′2
2m2

`

[δ(ω′ − ω′h′) + δ(ω′ + ω′−h′)] (4.25)

is the pole part of the lepton spectral density with the two solutions ω′h′ = ω′± for ∆±(ω′±, k
′)−1 =

0. We are only interested in the pole part since it corresponds to the two quasiparticle modes.

Moreover, m` is the thermal lepton mass and f`′ the lepton Fermi-Dirac distribution. The neutrino
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propagator reads

∆N ′ = −
∫ β

0
dτ ′′ ep

′
0τ
′′ 1

2ωp′
{[1− fN ′(ωp′)]e−ωp′τ

′′ − fN ′(ωp′)eωp′τ
′′}, (4.26)

where

ωp′ =
√
p′2 +M2

k (4.27)

is the neutrino on-shell energy, which is unaffected by thermal corrections since the coupling to the

bath is negligible and fN ′ is the Fermi-Dirac distribution for the neutrinos. As usual, we can write

p0 = i (2m + 1)πT as Matsubara frequency and later on continue it analytically to real values of

p0. In particular ep0β = −1.

4.2.2 Frequency sums for HTL fermion propagators

In order to deal with the HTL lepton propagator, we derive frequency sums for the propagator

parts ∆±(K) of a fermion propagator. We write the propagator in the Saclay representation as

∆̃h(K) = −
∫ β

0
dτ ek0τ ∆̃h(τ,k) ,

∆̃h(τ,k) =

∫ ∞

−∞
dω ρhfF (−ω)e−ωτ . (4.28)

Since we are only interested in the pole contribution, we write the corresponding spectral density

as

ρpole
h = −Zh[δ(ω − ωh) + δ(ω + ω−h)] = −

∑

s

Zshδ(ω − sωsh) , (4.29)

where sh in Zsh and ωsh denotes the product of s and h, that is, Zsh = Z+ for s = h = −1 for

example. We have for the propagator

∆̃pole
h (τ,k) = −

∫ ∞

−∞
dω
∑

s

Zshδ(ω − sωsh)fF (−ω)e−ωτ

= −
∑

s

ZshfF (−sωsh)e−sωshτ =
∑

s

∆̃pole
h,s (τ,k),

∆̃pole
h (K) =

∑

s

ZshfF (−sωsh)

∫ β

0
dτ e(k0−sωsh)τ =

∑

s

∆̃pole
h,s (K) ,

∆̃pole
h,s (K) = ZshfF (−sωsh)

∫ β

0
dτ e(k0−sωsh)τ

= −Zsh
1

k0 − sωsh
, (4.30)
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where Zsh = (ω2 − k2)/(2m2
` ) is the quasiparticle residuum.

In dealing with frequency sums of bare thermal propagators, it is very convenient to write

∆s(K) = ∆−s(−K). (4.31)

As explained in section 2.4, replacing a boson by a fermion amounts to replacing fB(ω) by −fF (ω).

Moreover, calculating a frequency sum of k0 times the propagators amounts to replacing k0 with

sω as in

T
∑

k0

k0∆s1(K)∆s2(P −K) = s1ωT
∑

k0

∆s1(K)∆s2(P −K), (4.32)

where ω =
√
k2 +m2 and m is the mass of the first boson. The same holds for fermions.

It is straightforward to work out the frequency sums for the resummed lepton propagator,

T
∑

k0

∆̃pole
h,s1

(k0, ω)∆s2(p0 − k0, ω) = Zs1h
s2

2ω

1− fF (s1ωs1h) + fB(s2ω)

p0 − s1ωs1h − s2ω
, (4.33)

where the other necessary frequency sums can be derived from this by making the appropriate

substitutions.

4.2.3 The frequency sum for the vertex contribution

We calculate the frequency sum of the three propagators in the vertex loop by partial fractioning

∆̃pole
s,h′∆sφ′ ∆̃sN′ = CsφN ′

[
sφ′

2ωφ′
∆̃pole
s,h′ ∆̃sN′ −

sN ′

2ωN ′
∆̃pole
s,h′∆sφ′

]
. (4.34)

We are using ∆N ′(P
′) = ∆N ′(−P ′) and

CsφN ′ =
1

k0 − sφ′ωφ′ + sN ′ωN ′
. (4.35)

The frequency sum is given by

T
∑

k′0

∆̃pole
s,h′∆sφ′∆̃sN ′ = Zsh′

sφ′sN ′

4ωφ′ωN ′
CsφN ′

[
ZshN ′

NshN ′
− Zshφ′

Nshφ′

]
, (4.36)

where

ZshN ′ = 1− fF (sωsh′)− fF (sN ′ωN ′) ,

Zshφ′ = 1− fF (sωsh′) + f(sφ′ωφ′) , (4.37)
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and

NshN ′ = q0 − sωsh′ − sN ′ωN ′ ,
Nshφ′ = p0 − sωsh′ − sφ′ωφ′ . (4.38)

Summing over all propagator parts and the helicity-over-chirality ratios, we get

T
∑

k′0

∑

h′

∆N ′∆φ′∆
′H− =

∑

h′

Zh′

4ωq′ωp′
{E−H− + E+H+} , (4.39)

where

H± = 1± hh′ξ ,
ξ = k̂ · k̂′ . (4.40)

The coefficients E± are given by

E− = F φNAφ
′

` − F `
′NA`` − F φ`

′
A0
` + F `

′`′AN
′

` , (4.41)

E+ = FN
′φ′Aφ

′

` − F 0φ′A`` − FN
′0A0

` + F 00AN
′

` , (4.42)

and the coefficients F ij read

F φN = Bφ
φ −BN

N , FN
′φ′ = BN ′

φ −Bφ′

N ,

F `
′N = B`′

φ −BN
N , F 0φ′ = B0

φ −Bφ′

N ,

F φ`
′

= Bφ
φ −B`′

N , FN
′0 = BN ′

φ −B0
N ,

F `
′`′ = B`′

φ −B`′
N , F 00 = B0

φ −B0
N . (4.43)

The factors BN/φ and A` are given by

Bψ
N/φ =

ZψN/φ

Nψ
N/φ

, Aψ` =
1

Nψ
`

, (4.44)

where the numerators and denominators read

NN
N = p0 − ω′ − ωq′ , N `

` = k0 − ωq′ − ωp′ , Nφ
φ = q0 − ω′ − ωp′ ,

N0
N = p0 + ω′ + ωq′ , N0

` = k0 + ωq′ + ωp′ , N0
φ = q0 + ω′ + ωp′ ,

N `′
N = p0 − ω′ + ωq′ , Nφ′

` = k0 − ωq′ + ωp′ , N `′
φ = q0 − ω′ + ωp′ ,

Nφ′

N = p0 + ω′ − ωq′ , NN ′
` = k0 + ωq′ − ωp′ , NN ′

φ = q0 + ω′ − ωp′ , (4.45)
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Figure 4.2: The momentum assignments for the self-energy contribution. The solid lines without
arrows are neutrinos, the ones with arrows the leptons and the dashed lines the Higgs bosons.

and

ZNN = 1− f`′ + fφ′ , Zφφ = 1− f`′ − fN ′ ,
Z0
N = −(1− f`′ + fφ′) , Z0

φ = −(1− f`′ − fN ′) ,
Z`
′
N = −(f`′ + fφ′) , Z`

′
φ = −(f`′ − fN ′) ,

Zφ
′

N = f`′ + fφ′ , ZN
′

φ = f`′ − fN ′ . (4.46)

We can write

T
∑

k′0

∑

h′

∆N ′∆φ′∆h′H− =
∑

h′

Zh′

4ωq′ωp′

{[
F φNAφ

′

` − F `
′NA`` − F φ`

′
A0
` + F `

′`′AN
′

`

]
H−

+
[
FN

′φ′Aφ
′

` − F 0φ′A`` − FN
′0A0

` + F 00AN
′

`

]
H+

} (4.47)

or, more explicitly,

T
∑

k′0

∑

h′

∆N ′∆φ′∆h′H− =

=
∑

h′

Zh′

4ωq′ωp′

{[(
Bφ
φ −BN

N

)
Aφ
′

` −
(
B`′
φ −BN

N

)
A`` −

(
Bφ
φ −B`′

N

)
A0
` +

(
B`′
φ −B`′

N

)
AN

′
`

]
H−

+
[(
BN ′
φ −Bφ′

N

)
Aφ
′

` −
(
B0
φ −Bφ′

N

)
A`` −

(
BN ′
φ −B0

N

)
A0
` +

(
B0
φ −B0

N

)
AN

′
`

]
H+

}
.

(4.48)

4.3 The Self-Energy Contribution

For the self-energy contribution, the integral IS = IV is the same as for the vertex contribution, only

the momentum relations are different (cf. figure 4.2). The left diagram does not give a contribution

since the combination of couplings, |(λ†λ)jk|2, does not have an imaginary part. We can use the

Saclay representation for the Higgs and the lepton propagator ∆φ′ and ∆′± as in Eqns. (4.23) and



58 4. CP-Asymmetries

(4.24), remembering the different momentum relations. The neutrino propagator simply reads

∆N ′ =
1

M2
j −M2

k

, (4.49)

since the internal neutrino momentum P ′ is the same as the external neutrino momentum P .

We can calculate the frequency sum directly using ep0β = −1,

T
∑

k′0

eq
′
0τek

′
0τ
′

= ep0τδ(τ ′ − τ) . (4.50)

and get

T
∑

k′0

∆φ′∆
′(h′) = −

∫ ∞

−∞
dω′ρ′(h′)

1

2ωq′

(
BN
N −B`′

N

)
. (4.51)

Alternatively, we can use equation (4.33) and write

T
∑

k′0

∆̃pole
h′,s (k′0, ω

′)∆sφ′ (p0 − k′0, ωq′) = Zsh′
sφ′

2ωq′

1− fF (sωsh′) + f(sφ′ωq′)

p0 − sωsh′ − sφ′ωq′
. (4.52)

Both calculations lead to

T
∑

k′0

∑

h′

∆φ′∆
′H− =

∑

h′

1

2ωq′
Zh′ [(B

N
N −B`′

N )H− + (Bφ′

N −B0
N )H+] . (4.53)

4.4 Imaginary Parts

The terms Bψ
N/φ and Aψ` in the vertex contribution correspond to the three vertices where the

denominator fulfills certain momentum relations when set to zero: the BN -terms correspond to the

vertex with an incoming N1 and {`′, φ′} in the loop, the Bφ-terms to the vertex with an outgoing

φ and {N2, `
′} in the loop, and the A`-terms to the vertex with an outgoing ` and {N2, φ

′} in the

loop. As an example, the term

BN
N =

1− f`′ + fφ′

p0 − ω′ − ωq′
(4.54)

corresponds to the incoming neutrino decaying into the lepton and Higgs boson in the loop. Thus,

the terms correspond to cuttings through the two loop lines adjacent to the vertex, however, a

correspondence with the circlings of the RTF [22, 73] is not obvious. Among these cuts, only the

ones which correspond to a N1 or N2 decaying into a Higgs boson and a lepton are kinematically

possible at the temperatures where neutrino decay is allowed, that is where M1 < mφ. These terms
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N1

N2

φ

ℓ

ℓ′

φ′

NN ′
φ

NN ′
ℓ

NN
N

Figure 4.3: The cuts through the vertex contribution at finite temperature. The cuts are closed
to form circles and the line that denotes the decaying particle in the corresponding 1→ 2 process is
indicated by a blob.

are BN
N , AN

′
` and BN ′

φ .

4.4.1 Regarding the N2 cuts

The diagrams develop an imaginary part when one of the denominators of the relevant terms BN
N ,

AN
′

` and BN ′
φ vanishes. The contributions from these denominators, NN

N , NN ′
` and NN ′

φ , correspond

to the three possible cuts shown in figure 4.3. As explained in section 1.4.3, the contribution from

NN
N is the only possible cut at zero temperature. At finite temperature, the other two cuts corre-

spond to exchanging energy with the heat bath. When choosing the imaginary parts corresponding

to these two cuts, the loop momentum K ′ is of the order of M2. Since we assume a strong hier-

archy M2 � M1, the thermal factors fφ′ , f`′ and fN ′ are suppressed by the large loop momentum

and the contributions become very small. In fact, they turn out to be numerically irrelevant in

the hierarchical limit. The physical interpretation of this is as follows: Consider for example the

cut through {`′, N2}, which is given by a vanishing denominator NN ′
φ . The corresponding thermal

weighting factor is the numerator ZN
′

φ = f`′ − fN2 = f`′(1− fN2)− (1− f`′)fN2 . It corresponds to

two processes: absorption of a neutrino from the thermal bath and induced emission of a lepton, or

absorption of a lepton and induced emission of a neutrino. The phase space distribution of the N2s

in the bath is suppressed due to their large mass and also the distribution of `s that have momenta

large enough to fulfill momentum conservation in the process is suppressed, so the process is sup-

pressed. Therefore, the thermal factors suppress the contribution from the N2-cuts. Only when we

have degenerate masses M2 &M1, these cuts will give a contribution similar to the one from NN
N .

In this case2, the energy and temperature scales that correspond to N1 and N2 processes are not

2Note that there is a mass range for M2 where we have a contribution from the N2 cuts but no resonant enhance-
ment by the self-energy contribution, which becomes relevant when ∆M ≡ M2 −M1 ∼ Γ. This mass range is at
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clearly separated and one has to account for the possibility of an asymmetry creation by N2 as well.

Implications of these cuts were discussed in reference [21]. We do not consider the influence of this

cuts, since we are in the hierarchical limit, but we present the analytical expression in appendix D.

4.4.2 Vertex cut through {`′, φ′}

The imaginary part from NN
N , which implies cutting through the lepton and Higgs boson in the loop,

is the only cut that is also possible at zero temperature and the only vertex cut that contributes

in the hierarchical limit3. We denote the angle between p and k′ with η′,

η′ =
p · k′
pk′

. (4.55)

Then

Im

(∫ 1

−1
dη′

1

NN
N

)
= −π

∫ 1

−1
dη′δ(NN

N ) = −π
∫ 1

−1

ωq′

pk′
δ(η′ − η′0) (4.56)

= −πωq′
pk′

,

where the angle is

η′0 =
1

2pk′
(
2p0ω

′ − Σm2

)
(4.57)

and

Σm2 = M2
j + (ω′2 − k′2)−m2

φ. (4.58)

We get

Im


T

∑

k′0,h
′

∫
d3k′

(2π)3
∆N ′∆φ′∆

′H−



NN
N

=
1

4π3
Im


T

∑

k′0,h
′

∫ ∞

0
dk′k′2dη′

∫ π

0
dφ′∆N′∆φ′∆

′H−




=− 1

16π2

∑

h′

∫
dk′dφ′

k′

pωp′
Zh′Z

N
N (A`` −Aφ

′

` )H−. (4.59)

It is sufficient to perform the integration over φ′ from 0 to π since cosφ′ is the only quantity that

depends on φ′.

M1 ∼ ∆M � Γ
3The corresponding CP -asymmetry has been calculated in reference [15], but with a thermal factor 1− f`′ + fφ′ −

2f`′fφ′ instead of the correct 1− f`′ + fφ′ . For details, see reference [22].
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We note that we can write

A`` −Aφ
′

` =
2ωp′

(k0 − ωq′)2 − ω2
p′
≡ 2ωp′∆

V N
N ′ , (4.60)

where ∆V N
N ′ can be viewed as the propagator of the internal neutrino, since we can interpret the

contribution we are looking at as putting the internal Higgs boson on-shell and thus we have

k0 − ωq′ = k0 − q′0 = p′0.

4.4.3 Self-energy cut

For the self-energy diagram, only NN
N contributes. Taking η′ as the angle between p and k′, we get

Im


T

∑

k′0,h
′

∫
d4k′

(2π)4

∑

h′

∆N ′∆φ′∆
′H−



S

=
1

4π3
Im


T

∑

k′0,h
′

∫ ∞

0
dk′k′2dη′

∫ π

0
dφ′∆N′∆φ′∆

′H−




=− 1

16π2

1

M2
j −M2

k

∑

h′

∫
dk′dφ′

k′

p
Zh′Z

N
NH−. (4.61)

Comparing this expression with the contribution from NN in equation (4.59), we see that calculating

the self-energy contribution amounts to replacing ∆V N
N ′ by ∆SN

N ′ = (M2
j −M2

k )−1 in the NN -vertex

contribution. If Mk �Mj , we get

∆V N
N ′ ≈ ∆SN

N ′ ≈ −
1

M2
k

, (4.62)

so the self-energy contribution is twice as large as the vertex contribution, εS ≈ 2 εV , where the

factor two comes from the fact that we have two possibilities for the components of the SU(2)

doublets in the loop of the self-energy diagram. This resembles the situation in vacuum.

4.5 Analytic Expressions for the CP -Asymmetries

4.5.1 Vertex cut through {`′, φ′}

We simplify the analytic expression for εγ(T ) in equation (4.2). For IV in equation (4.22) we get

Im(IV )NN
N

=
MjMk

16π2

Zhω

p

∑

h′

∫ ∞

0
dk′
∫ π

0
dφ′

k′

ωp′
Zh′Z

N
N (A`` −Aφ

′

` )H−, (4.63)
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where it is sufficient to integrate φ′ from 0 to π. The difference of the matrix elements reads for

the vertex contribution

|M(N → `hφ)|2 −
∣∣M(N → ¯̀

hφ̄)
∣∣2 =− gSU(2)Im

{[(
λ†λ
)
jk

]2
}
MjMk

4π2

Zhωh
p

×
∑

h′

∫ ∞

0
dk′
∫ π

0
dφ′

k′

ωp′
Zh′Z

N
N (A`` −Aφ

′

` )H− . (4.64)

Correspondingly, the difference in decay rates reads

γ(N → `hφ)− γ(N → ¯̀
hφ̄) =− gSU(2)Im

{[(
λ†λ
)
jk

]2
}
MjMk

4(2π)5

×
∑

h′

∫
dEdkdk′

∫ π

0
dφ′kF eq

Nh
Zh

k′

pωp′
ZNNZh′(A

`
` −Aφ

′

` )H− , (4.65)

where FhN = f eq
N (1 + f eq

φ )(1− f eq
`h ) is the statistical factor for the decay.

We know from chapter 3 that

∑

s

|Ms
h(N → LH)|2 = gSU(2)gc(λ

†λ)jjZhω(p0 − hpη) , (4.66)

where gc = 2 indicates that we sum over N → φ` and N → φ̄¯̀. Thus

Γ(N → LhH) = gSU(2)gc
(λ†λ)jj
16πpp0

∫
dkkZDZh(p0 − hpη) (4.67)

and

γ(N → LhH) = gSU(2)gc
(λ†λ)jj
4(2π)3

∫
dEdkkfNZDZh(p0 − hpη) , (4.68)

where we have summed over the neutrino degrees of freedom.

We arrive at

εh(T ) =− gSU(2)
Im{[(λ†λ)jk]

2}
γ(N → LhN)

MjMk

4(2π)5

∑

h′

∫
dEdkdk′

∫ π

0
dφ′kF eq

Nh
Zh

k′

pωp′
ZNNZh′(A

`
` −Aφ

′

` )H−

=− Im{[(λ†λ)jk]
2}

gc(λ†λ)jj

MjMk

4π2

∑
h′
∫

dEdkdk′
∫ π

0 dφ′kF eq
Nh
Zh

k′

pωp′
ZNNZh′(A

`
` −A

φ′

` )H−
∫

dEdkkfNZDZh(p0 − hpη)
. (4.69)
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4.5.2 Self-energy cut

For the self-energy contribution, we get

Im(IS)NN =
MjMk

M2
j −M2

k

1

4π2

Zhω

p

∑

hh′

∫ ∞

0
dk′
∫ π

0
dφ′k′Zh′Z

N
NH− . (4.70)

The difference in decay rates reads

γ(N → `hφ)− γ(N → ¯̀
hφ̄) =− gSU(2)Im

{[(
λ†λ
)
jk

]2
}

MjMk

(M2
j −M2

k )

1

(2π)5

×
∑

h′

∫
dEdkdk′

∫ π

0
dφ′kF eq

Nh
Zh
k′

p
ZNNZh′H− . (4.71)

The CP -asymmetry reads

εh(T ) =− gSU(2)
Im{[(λ†λ)jk]

2}
γ(N → LhN)

MjMk

M2
j −M2

k

1

(2π)5

∑

h′

∫
dEdkdk′

∫ π

0
dφ′kF eq

Nh
Zh
k′

p
ZNNZh′H−

=− Im{[(λ†λ)jk]
2}

gc(λ†λ)jj

MjMk

M2
j −M2

k

1

2π2

∑
h′
∫

dEdkdk′
∫ π

0 dφ′kF eq
Nh
Zh

k′

p Z
N
NZh′H−∫

dEdkkfNZDZh(p0 − hpη)
, (4.72)

4.5.3 Symmetry under lepton-mode exchange

We can use equation (4.7) and collect all factors that depend on k and k′,

(1 + fφ − f`)(1 + fφ′ − f`′)ZhZh′kk′∆V N
N ′ H− , (4.73)

where we have suppressed the indices for helicity-over-chirality ratios h and h′. The internal

neutrino momentum p = k + k′ − p′ is symmetric under a replacement of k and k′ and likewise

the difference ω − ωq′ = ω + ω′ − p0. The Higgs boson momenta q = p − k and q′ = p − k′ are

also exchanged when we exchange k and k′. Thus, the CP -asymmetry for the vertex contribution

is symmetric under an exchange of the internal and the external lepton. This can be understood

as follows: Taking the imaginary part of M0M∗1 by putting the internal lepton and Higgs boson

on-shell corresponds to calculating the product of the amplitudes of two decays and one ∆L = 2

scattering with a neutrino in the u-channel, as shown in figure 4.4. It can easily be checked that

this symmetry also holds for the self-energy diagram, where the corresponding ∆L = 2 scattering

has a neutrino in the s-channel.
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× ×

ℓ′ ℓ′

ℓ ℓ

Figure 4.4: The product of diagrams that corresponds to the vertex contribution of the CP asym-
metry at low temperature. It is symmetric under the exchange of the leptons ` and `′.

4.6 The CP -Asymmetry at High Temperature

At high temperature, where we have the decays of Higgs bosons, the CP -asymmetry on amplitude

level is defined as

εφh ≡
∣∣M(φ̄→ N`h)

∣∣2 −
∣∣M(φ→ N ¯̀

h)
∣∣2

∣∣M(φ̄→ N`h)
∣∣2 +

∣∣M(φ→ N ¯̀
h)
∣∣2 , (4.74)

as in equation (5.76). The external momenta are now related as q0 = p0 + k0. The momentum

assignments are shown in figure 4.5. We take q and p as the three-momenta of the initial-state

Higgs boson and the final-state neutrino as in section 3.3, this way we can directly use the results

from the CP -asymmetry in neutrino decays. The matrix elements are the same as for the low

temperature case, so M(φ → N ¯̀
h) corresponds to M(N → φ̄¯̀

h), just the energy relations are

different and the CP -asymmetry is defined with a minus sign relative to low temperature. The

self-energy contribution from the external neutrino line is the only CP -asymmetric self-energy, the

other self energies do not exhibit an imaginary part in the combination of the couplings. The

couplings read

Im
{
λφ0λ

φ∗
1

}
= gSU(2)Im

{[(
λ†λ
)
kj

]2
}

= −gSU(2)Im

{[(
λ†λ
)
jk

]2
}
. (4.75)

The integrals for the vertex and the self-energy-contribution are

Iφ0 I
φ∗
1 = −T

∑

k′0,h
′

∫
d3k′

(2π)3
MkMjZhωh∆N ′∆φ′∆

′
h′H

hh′
− , (4.76)

where we remember that ∆N ′ = 1/(M2
j −M2

k ) for the self-energy graph.
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Figure 4.5: The vertex and the self-energy contribution for the φ decay.

The frequency sum for the vertex diagram reads

T
∑

k′0

∑

h′

∆N ′∆φ′∆
′H− =

=
∑

h′

Zh′

4ωq′ωp′

{[(
Bφ
φ −BN

N

)
AN

′
` −

(
B`′
φ −BN

N

)
A0
` −

(
Bφ
φ −B`′

N

)
A`` +

(
B`′
φ −B`′

N

)
Aφ
′

`

]
H+

+
[(
BN ′
φ −Bφ′

N

)
AN

′
` −

(
B0
φ −Bφ′

N

)
A0
` −

(
BN ′
φ −B0

N

)
A`` +

(
B0
φ −B0

N

)
Aφ
′

`

]
H−
}
.

(4.77)

Since we have M2 � M1, we also have M2 � mφ in the relevant temperature range, so the

possible contributions are from Nφ′

N , NN ′
` and NN ′

φ
4. Again, the N2 cuts can be neglected because

they are kinematically suppressed. When taking the discontinuity of the diagrams, we get for the

angle between p and k′,

η′φ,0 =
1

2pk′
(2p0ω

′ − Σφ) , (4.78)

where

Σφ = m2
φ − (ω′2 − k′2)−M2

1 , (4.79)

so we arrive at

(
εNγhγ

N
εh

)
V

= − ImλCP
4(2π)5

MjMk

∑

h′

∫
dEdkdk′

∫ π

0
dφ′kFφhZh

1

p

k′

ωp′
Zh′Z

φ′

N (AN
′

` −A0
` )H− , (4.80)

4If mφ �M2, we would have contributions from Nφ′

` and Nφ
φ instead
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where we can write

AN
′

` −A0
` =

2ωp′

(k0 + ωq′)2 − ω2
p′

= 2ωp′∆
V φ
N ′ . (4.81)

Contrary to the CP -asymmetry in neutrino decays, this expression can not strictly be seen as the

propagator of the neutrino since the contribution does not correspond to a zero temperature cut but

is a pure thermal effect induced by the presence of leptons and Higgs bosons in the thermal bath.

This is illustrated by the factor Zφ
′

N = fφ′ + f`′ = fφ′(1 − f`′) + (1 + fφ′)f`′
5, which describes the

absorption of a Higgs boson and the stimulated emission of a lepton and the opposite process, the

absorption of a lepton and the stimulated emission of a Higgs boson. Compared to low temperature,

we have replaced ∆V N
N ′ Z

N
N by ∆V φ

N ′ Z
φ′

N .

For the self-energy diagram, the frequency sum is given by

T
∑

k′0

∑

h′

∆N ′∆φ′∆
′H− = ∆N ′

1

2ωq′

∑

h′

Zh′
[
H−

(
B0
N −Bφ′

N

)
+H+

(
B`′
N −BN

N

)]
, (4.82)

after taking the discontinuity, the CP -asymmetry reads

(
εNγhγ

N
εh

)
S

= − ImλCP
(2π)5

MjMk

M2
j −M2

k

∑

h′

∫
dEdkdk′

∫ π

0
dφ′kFφhZh

1

p
k′Zh′(−Zφ

′

N )H− , (4.83)

where

Fφh = f eq
φ (1− f eq

`h )(1− 2f eq
N ). (4.84)

Compared to low temperature, we have replaced ZNN by Zφ
′

N . The self-energy contribution is given

by replacing ∆V φ
N ′ by ∆Sφ

N ′ = (M2
j −M2

k ) in the vertex case. For Mk �Mj , we have

∆V φ
N ′ ≈ ∆Sφ

N ′ ≈ −
1

M2
k

, (4.85)

so the relation εS ≈ 2εV also holds for the Higgs boson decays.

Using fφ(1− f`) = (fφ + f`)fN , the terms that depend on the lepton momenta k and k′ are

(fφ + f`)(fφ′ + f`′)ZhZh′kk
′∆S/V φ

N ′ H− . (4.86)

where now p′ = k+k′+p and ω+ωq′ = ω+ω′+ p0, so the CP -asymmetry in Higgs boson decays

is symmetric under exchanging the internal and external lepton as well.

5Reference [15] obtains a different factor fφ′ − f`′ − 2fφ′f`′ due to an incorrect choice of cutting rules as explained
in reference [22].
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4.7 One-Mode Approach

We also calculate the CP -asymmetry within the one-mode approach where we treat the thermal

mass like a kinematical mass and use lepton propagators (/k − m`)
−1 or (/k −

√
2m`)

−1 as in

section 3.2. The spin sum corresponding to equation (4.21) then reads

∑

s,r

(ur`PRu
s
N )(usNPRS`′PLu

r
`) = 2Mj∆`′K

µK ′µ , (4.87)

where ∆`′ = (k′20 − ω2
k′)
−1. In the frequency sums in equations (4.36) and (4.52), we replace ∆̃pole

sh′

by the usual decomposition ∆s,`′ in equation (2.49), which means replacing Zsh′ by −s/(2ω′) on the

right-hand sides. One can check that in the final expression for the CP -asymmetry, this amounts

to replacing the sum of the helicity contributions

∑

hh′

ZhZh′(1− hh′ξ) by
KµK ′µ
ωkωk′

= 1− kk′

ωkωk′
ξ . (4.88)

This means that in the two mode treatment, it is forbidden for the external and internal lepton to

be scattered strictly in the same direction if they have the same helicity or in the opposite direction

if they have opposite helicity. For the one-mode approximation this is not the case since ωkωk′ is

always larger than kk′. This result illustrates that the leptonic quasiparticles still behave as if they

are massless in terms of the helicity structure of their interactions, while the one-mode approach

is not able to describe this behaviour.

For the CP -asymmetries in the decay densities we get

(∆γNm)V ≡
[
γm(N → φ`)− γm(N → φ̄¯̀)

]
V

= − ImλCP
2(2π)5

MjMk

∑

h′

∫
dEdkdk′

∫ π

0
dφ′

FNhZ
N
N

p
kk′∆V N

N ′
K ·K ′
ωkωk′

,

(∆γNm)S = − ImλCP
(2π)5

MjMk

∑

h′

∫
dEdkdk′

∫ π

0
dφ′

FNhZ
N
N

p
kk′∆SN

N ′
K ·K ′
ωkωk′

,

(∆γφm)V = − ImλCP
2(2π)5

MjMk

∑

h′

∫
dEdkdk′

∫ π

0
dφ′

FφhZ
φ′

N

p
kk′∆V φ

N ′
K ·K ′
ωkωk′

,

(∆γφm)S = − ImλCP
(2π)5

MjMk

∑

h′

∫
dEdkdk′

∫ π

0
dφ′

FφhZ
φ′

N

p
kk′∆Sφ

N ′
K ·K ′
ωkωk′

, (4.89)

where FNh = fN (1− fN )(1 + fφ − f`), Fφh = fN (1− fN )(fφ + f`) .

Let us examine the high temperature behaviour of the one-mode approach by calculating the

CP -asymmetry in the matrix elements of a Higgs boson at rest, where we assume that Mj ,m` �
mφ � Mk. For simplicity, we calculate the self-enegy contribution. The integral that corresponds
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to equation (4.76) reads

I0I
∗
1 = 2T

∑

k′0

∫
d3k′

(2π)3
MkMj

[
∆N ′∆φ′∆

′
`′
]∗
K ·K ′ . (4.90)

The part that contributes to the imaginary part of the diagram is

I0I
∗
1 |φ
′

N = 2

∫
d3k′

(2π)3
MkMj∆N ′

1

4ωq′ωk′
Bφ′

N (K ·K ′) ,

ImBφ′

N = −πZφ′N δ(N
φ′

N ) = −π ωq′
kk′

Zφ
′

N δ(ξ − ξ0) , (4.91)

where ξ ≡ (kk′)/(kk′),

ξ0 =
mφ − k′

k′
(4.92)

and we have neglected Mj and m`. We get

Im(I0I
∗
1 )φ

′

N = − 1

8π

√
x

1− x

∫ ∞

k
dk′Zφ

′

N (2k′ −mφ) , (4.93)

where x ≡M2
k/M

2
j and k = mφ/2. For simplicity, we make the approximation

Zφ
′

N = fφ′ + f`′ ≈ e−ωq′β + e−ωk′β = (1 + e−kβ)e−k
′β , (4.94)

so

Im(I0I
∗
1 )φ

′

N = − 1

8π

√
x

1− x(1 + e−kβ)

∫ ∞

k′1

dk′e−k
′β(2k′ −mφ) . (4.95)

The integral gives

Im(I0I
∗
1 )φ

′

N = − 1

4π

√
x

1− x(1 + e−kβ)T 2e−kβ . (4.96)

We parameterise mφ as mφ = gφT and obtain

∆ |M|2 ≡ |M|2 − |M̃|2 = −8ImλCP Im(I0I
∗
1 ) = 2

ImλCP
π

√
x

1− xT
2e−gφ/2(1 + e−gφ/2) . (4.97)

Using the expression

|Mtot|2 = 4(λ†λ)11K · P = 2(λ†λ)11g
2
φT

2 (4.98)
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we arrive at

ε =
∆|M|2
|Mtot|2

=
ImλCP
(λ†λ)11

1

π

√
x

1− x
1

g2
φ

e−gφ/2(1 + e−gφ/2) =
8

g2
φ

e−gφ/2(1 + e−gφ/2)ε0. (4.99)

Assuming that gφ � 1, we get

εT�M1
rf

ε0
≈ 32

g2
φ

(4.100)

Taking gφ = mφ/T ≈ 0.42 for T = 1012 GeV and using the more accurate term in equation (4.99),

we get ε/ε0 ≈ 70, while we get ε/ε0 ≈ 90 for equation (4.100). We view this result as a rough

approximation of the value of the CP -asymmetry in Higgs boson decays at high temperature.

Both our approximation and the exact numerical solution in the next section give a factor of 100

difference to the CP -asymmetry in vacuum.

4.8 Temperature Dependence of the CP -Asymmetries

We show the temperature dependence of the CP -asymmetries in neutrino decays in the full HTL

calculation and in the one-mode approach form` and
√

2m` in figure 4.6. We chooseM1 = 1010 GeV

and normalise the asymmetries by the product of the CP -asymmetry at zero temperature and the

total decay density in vacuum, ε0γ
tot
0 . As discussed in sections 4.4.3 and 4.6, the vertex contribution

and the self-energy contribution have the same temperature dependence for M2 �M1. Moreover,

as discussed in sections 4.5.3 and 4.6, the asymmetries are the same when we exchange the internal

and the external lepton, therefore the asymmetry for a plus-mode external lepton combined with a

minus-mode internal lepton is the same as the asymmetry for a minus-mode external lepton with a

plus-mode internal lepton, in short, ∆γ+− = ∆γ−+. We see that generally, the thresholds are the

ones we expect from our analysis of the decay rates in section 3.4. For the one-mode calculations we

have the expected thresholds at TN0 for m` and at TN+ for
√

2m`. For all asymmetries where a plus-

mode lepton is involved, that is ∆γ++, ∆γ+− and ∆γ−+, the phase space is reduced similar to the√
2m` case below TN+ and an additional reduction of the phase space sets in between TN+ and TN0

since large momenta k or k′ that correspond to a large mass m(k) become kinematically forbidden.

Between these two thresholds, TN+ and TN0 , the asymmetry for ∆γ+−/−+ becomes larger than the

asymmetry for ∆γ++. This effect occurs because in the (++)-asymmetry the phase spaces of both

the internal and the external lepton are suppressed, while for the mixed modes, (+−) or (−+), only

the phase space of one momentum is suppressed, while the phase space of the other momentum

is still large. The effect is similar to the observation that γ− becomes larger than γ+ above TN+ .

Relying solely on phase-space arguments, one would expect that ∆γ√2m`
is a good approximation

for ∆γ++. The fact that ∆γ++ is clearly smaller than ∆γ√2m`
is due to two suppressing factors:

One factor is the effect of the two residues Zh(k) and Zh′(k
′), which suppress the rate somewhat for
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Figure 4.6: The CP -asymmetries in neutrino decays normalised by the CP -asymmetry in vacuum
and the total decay density in vacuum, ∆γ/(γtot0 ε0). We choose M1 = 1010 GeV and M2 � M1.
The term ∆γh1h2 denotes the difference between the decay rate and its CP conjugated rate, which
is proportional to the CP -asymmetry. Here, h1 denotes the mode of the external lepton, while h2
denotes the mode of the lepton in the loop. For example, ∆γ+− = γ(N → φ`+) − γ(N → φ̄¯̀

+),
where a minus-mode lepton is present in the loop. ∆γm`

and ∆γ√2m`
denote the rate differences

for the one-mode approach with a thermal mass m` and an asymptotic thermal mass
√

2m`.

small momenta k and k′. The other, more important factor is the fact that the helicity structure

and angular dependence of the integrals are different for the (++)- and the
√

2m`-case as explained

in section 4.7. Since neutrino momenta are of the order ∼M1 ∼ T for our temperature range, the

lepton momenta will be of the same order, that is k > m`, and the leptons and Higgs bosons will

preferentially be scattered forward. Thus also the angle ξ between the two leptons will be small and

the factor H− defined in equation (4.40) is suppressed, while the corresponding one-mode factor

1 − ξ(kk′)/(ωkωk′) is larger than H− for small angles and still finite if both leptons are scattered

strictly in the same direction, that is ξ = 1. We have checked numerically that this is the main

reason why ∆γ√2m`
> ∆γ++ in the range 1/2M1 . T . TN+ .

Since the CP -asymmetries follow the corresponding finite-temperature decay rates that are in

figure 3.2, it is very instructive to normalise them via these decay rates, that is γ+, γ−, γm` and

γ√2m`
. This also gives a more intuitive definition of the CP -asymmetries at finite temperature.

These asymmetries are shown in figure 4.7, normalised by the zero temperature CP -asymmetry.

Compared to the normalisation via γ0 in figure 4.6, we see that the (++)-asymmetry does not fall
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Figure 4.7: The CP -asymmetries in neutrino decays normalised by the CP -asymmetry in vac-
uum and the corresponding total decay density at finite temperature, that is ∆γ++/(γ

tot
+ ε0),

∆γ−+/(γtot+ ε0), ∆γ+−/(γtot− ε0), ∆γ−−/(γtot− ε0), ∆γm`
/(γtotm`

ε0) and ∆γ√2m`
/(γtot√

2m`
ε0), where the

CP asymmetries ∆γ are explained in figure 4.6. We choose M1 = 1010 GeV and M2 �M1.

as steeply as the corresponding decay rate γ+ between TN+ and TN0 , so the ratio ∆γ++/γ+ is dented

at the threshold TN+ . This illustrates that the (++)-CP -asymmetry shows a stronger suppression

below the threshold TN+ , since it suffers from two phase space reductions and two residues that

are smaller than one. Therefore, the (++)-asymmetry is not affected as strongly as γ+ by the

additional suppression above TN+ when large momenta k and k′ are forbidden and the transition

over this threshold is smoother than for the decay rate γ+. So γ+ falls more steeply than ∆γ++

above the threshold and the ratio of the two rates has a dent at TN+ . For the (+−)-asymmetry,

this effect is even stronger, since it is less suppressed than the (++)-asymmetry above TN+ , so the

ratio ∆γ+−/(ε0γ−) rises up to a value of O(0.1).

The CP -asymmetries in Higgs boson decays at high temperature are shown in figure 4.8, nor-

malised to ε0γ
tot and we have assumed that M2 �M1, T . The behaviour is similar to the neutrino

decays, where the (−−)-asymmetry is strongly suppressed, while the (+−)-, the (−+)- and the

(++)-asymmetries have a strict threshold at T φ0 and are suppressed due to the reduced phase

space between T φ0 and T φ+, as expected. The (+−)- and (−+)- asymmetries are the same and are

somewhat less suppressed than the (++)-asymmetry between the thresholds T φ0 and T φ+. In our

approximation in the end of section 4.7, we have seen that the difference of the matrix elements

∆|M|2 rises as T 2, so ∆γ rises as T 4, which can be seen in the plot for all finite-temperature
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Figure 4.8: The CP -asymmetries in Higgs boson decays normalised by the CP -asymmetry in
vacuum and the total decay density in vacuum, ∆γ/(γtot0 ε0), where the asymmetries ∆γ are explained
in figure 4.6. We choose M1 = 1010 GeV and M2 �M1.
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Figure 4.9: The CP -asymmetries in Higgs boson decays normalised by the CP -asymmetry in
vacuum and the corresponding total decay density at finite temperature, that is ∆γ++/(γ

tot
+ ε0),

∆γ−+/(γtot+ ε0), ∆γ+−/(γtot− ε0), ∆γ−−/(γtot− ε0), ∆γm`
/(γtotm`

ε0) and ∆γ√2m`
/(γtot√

2m`
ε0), where the

CP asymmetries ∆γ are explained in figure 4.6. We choose M1 = 1010 GeV and M2 �M1.
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asymmetries. The one-mode asymmetries ∆γm` , ∆γ√2m`
and the (++)-asymmetry are very close

to each other at high temperature.

We also normalise the asymmetries to the corresponding decay rates in figure 4.9 and find that

they all approach a constant value at high temperature, as is expected since the decay rates also

rise as T 4. The dents in the ratios ∆γ++/(ε0γ+) and ∆γ+−/(ε0γ+) with an external plus-mode

lepton are similar to the ones for the neutrino decays and due to the very strong suppression of

γ+ below the threshold T φ+. The numerically dominant asymmetries ∆γm` , ∆γ√2m`
and ∆γ++ all

settle at a rather high CP -asymmetry, two orders of magnitude higher than at zero temperature,

as we expect from our approximate calculation for a Higgs boson at rest at the end of section 4.7.

This is partly due to a suppression of |M|2 which rises as m2
φ = g2

φT
2, but mainly due to the larger

difference in matrix elements ∆|M|2 for Higgs boson decays.





CHAPTER 5

Boltzmann Equations

Preliminary

In this chapter, we calculate the Boltzmann equations for leptogenesis. We include decays and

inverse decays involving neutrinos, leptons and Higgs bosons. Concerning the scatterings, we argue

that we can neglect all of them expect the on-shell contribution of the ∆L = 2 scatterings. We take

into account thermal dispersion relations, but assume distributions close enough to equilibrium that

we can use Boltzmann equations. For the distribution functions, we use the full quantum statistics,

that is, Fermi-Dirac and Bose-Einstein statistics, but assume the kinetic equilibrium approximation

fi = ni/n
eq
i f

eq
i . It has been shown by reference [104] that this is a good approximation.

5.1 Particle Kinematics

The Boltzmann equations describe the time evolution of the distribution function of a particle

species ψ. We assume an isotropic and spatially homogeneous universe described by the Friedmann-

Lemaitre-Robertson-Walker (FLRW) metric [71],

ds2 = dt2 − a(t)2

{
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

}
, (5.1)

where a(t) is the cosmic scale factor, which describes the expansion of the universe, k = ±1, 0

specifies the curvature, and (t, r, θ, φ) are the comoving coordinates.

The trajectory of a particle ψ with mass mψ ≥ 0 moving in a gravitational field is given by the

geodesic equations of motion [112]:

dpµψ
dτ

+ Γµνα p
ν
ψ p

α
ψ = 0, (5.2)

dxµψ
dτ

= pµψ. (5.3)
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Since s = mψτ is the eigen-time of the particle, τ is fixed and pµ is the momentum of a particle ψ.

In the FLRW metric the µ = 0 component of Eq (5.2) is given as

dp0
ψ

dτ
+
ȧ

a
p2
ψ = 0, with ȧ =

∂a

∂t
. (5.4)

Writing p0
ψ dp0

ψ = |pψ|d|pψ|, this leads to:

|ṗψ|a+ ȧ|pψ| = 0

⇔ d

dt
(|pψ|a) = 0

⇔|pψ| = const.× 1

a
. (5.5)

Therefore the 3-momentum scales as 1/a.

In general, the Liouville operator describing the evolution of a point particle’s phase space in a

gravitational field is given by

L = pα
∂

∂xα
− Γαβγp

βpγ
∂

∂pα
. (5.6)

With this operator the equations of motion (5.2) and (5.3) can be written for the momentum as

dpµ

dτ
= L [pµ] , (5.7)

and for the space-time as

dxµ

dτ
= L [xµ] . (5.8)

Furthermore, the time derivative of the phase space distribution of a non-interacting gas vanishes,

df(x, p)

dτ
= 0. (5.9)

Using the equations of motion for the particle we obtain the Boltzmann equations for the non-

interacting particle species ψ,

L [fψ(x, p)] = 0. (5.10)

Since we are assuming a Robertson–Walker universe which is isotropic and homogeneous, the

distribution function fψ depends only on t and |pψ|. Therefore, the Boltzmann equation can be
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written as [71]

L [fψ] = Eψ
∂fψ
∂t
−H|pψ|2

∂fψ
∂Eψ

= 0, (5.11)

where we have omitted arguments for the sake of notational clarity.

Since p2
ψ = m2

ψ and because of the spatial isotropy of the Robertson–Walker–Metric, we have

|pψ|2
∂fψ
∂Eψ

= Eψ |pψ|
∂fψ
∂|pψ|

. (5.12)

After dividing by Eψ, equation (5.11) has the form

L′ [fψ] =
∂fψ
∂t
−H |pψ|

∂fψ
∂|pψ|

. (5.13)

Interactions are introduced on the right-hand side by a collision term C [fψ], which drives the

distribution function towards its equilibrium value. The complete Boltzmann equation reads

L′ [fψ] =
∂fψ
∂t
−H |pψ|

∂fψ
∂|pψ|

= C [fψ] . (5.14)

Thus, the Boltzmann equation in a Robertson–Walker universe has the form of a partial differential

equation. However, in the radiation dominated phase of the universe, in which leptogenesis takes

place, equation (5.14) can be written as an ordinary differential equation by transforming to the

dimensionless coordinates z = mψ/T and yψ = |pψ|/T . Using the relation dT/dt = −HT , the

differential operator ∂t − |pψ|H∂|pi| is written as zH∂z, and consequently [113]

∂fψ(z, y)

∂z
=

z

H(mψ)
CD [fψ(z, y)] (5.15)

with H (mψ) = H
∣∣
T=mψ . In this form, the Boltzmann equation can be easily solved numerically

on a grid for specific rescaled momenta y. For the right hand side, we have to sum over the collision

terms of all processes which involve the particle ψ and change the phase space distribution. The

collision term for a process ψ + a+ · · · ↔ i+ j + · · · is given by [71]1

gψ C[ψ + a+ · · · ↔ i+ j + · · · ] = − 1

2Eψ

∫ ∏

α

dp̃α(2π)4δ4(pψ + pa + · · · − pi − pj − · · · )

×
[
|M(ψ + a+ · · · → i+ j + · · · )|2 fψfa · · · (1± fi)(1± fj) · · ·

− |M(i+ j + · · · → ψ + a+ · · · )|2 fifj · · · (1± fψ)(1± fa) · · ·
]
,

(5.16)

1We have chosen a normalisation different from Kolb and Turner, so Chere = 1
2Eψ

CKT
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where α = (a, · · · , i, j, · · · ),
dp̃α =

d3pα
(2π)32Eα

. (5.17)

The terms (1±fi) hold for fermions (−) and bosons (+) and are interpreted as Fermi-blocking (−)

and Bose-enhancement (+). In practice, we will only look at processes which involve three or four

particles, that is, decays, inverse decays and scatterings. We have included the internal degrees of

freedom, gψ, ga, · · · , gi, gj , · · · , in the matrix elements, therefore we need to put gψ in front of the

collision term since it is not included in the phase-space density fψ.

We integrate equation (5.15) over the phase space of the incoming particle with gψ
∫

d3pψ/(2π)3

and arrive at

dnψ
dz

= − z

H(mψ)

∑

processes

[γ(ψ + a+ · · · → i+ j + · · · )− γ(i+ j + · · · → ψ + a+ · · · )] , (5.18)

where

γ(ψ + a+ · · · → i+ j + · · · ) = −gψ
∫

d3pψ
(2π)3

C[ψ + a+ · · · → i+ j + · · · ]

=

∫ ∏

β

dp̃β(2π)4δ4(pψ + pa + · · · − pi − pj − · · · )

× |M(ψ + a+ · · · → i+ j + · · · )|2 fψfa · · · (1± fi)(1± fj) · · · ,
(5.19)

where we now integrate over pψ as well, that is, β = (ψ, a, · · · , i, j, · · · ). The analogous equation

holds for γ(i+ j + · · · → ψ + a+ · · · ).

5.2 Low Temperature

5.2.1 Neutrino evolution

The Boltzmann equation for the evolution of the lightest right-handed neutrino is

dnN1

dz
= − z

H(MN1)

[
γ(N1 → φ`+) + γ(N1 → φ̄¯̀

+)− γ(φ`+ → N1)− γ(φ̄¯̀
+ → N1)

+ γ(N1 → φ`−) + γ(N1 → φ̄¯̀−)− γ(φ`− → N1)− γ(φ̄¯̀− → N1)
]

(5.20)

where `± denote the two lepton modes. We neglect scatterings since they are of higher order in the

coupling constant. We will from now on omit the subscript 1 for the neutrino and write N . The

CP -asymmetry in the matrix element is not relevant for neutrino decay, so we calculate the matrix
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element, which is the same for the above processes and define

∣∣M0
±
∣∣2 ≡ |M(N → HL±)|2 = |M(HL± → N)|2 , (5.21)

where now HL± denotes the sum of leptons and Higgs doublets, `± and φ, and their charge

conjugated states ¯̀± and φ̄. The matrix elements are, however, different for the different lepton

modes and also the momentum-conserving delta functions differ from each other. The subscript ±
means (+) or (−), not the sum. When summing an expression A± that is dependent on the kind

of lepton dispersion relation over the lepton modes, we write
∑
±A±. We have

dnN
dz

= − z

H(MN1)

∑

±
[γ(N → HL±)− γ(HL± → N)] (5.22)

For each of the two lepton modes, we have now

γ(N → HL±)− γ(HL± → N) =

∫
dp̃Ndp̃L±dp̃H(2π)4δ4(pN − pH − pL±)

×
[
|M(N → HL±)|2 fN (1 + fH)(1− fL±)

− |M(HL± → N)|2 (1− fN )fHfL±
]
. (5.23)

The term in square brackets in equation (5.23) reduces to

∣∣M0
±
∣∣2 [fN (1 + fH)(1− fL±)− (1− fN )fHfL±] =

∣∣M0
±
∣∣2 [cN→HL± − cHL±→N ] , (5.24)

where

cN→HL± = fN (1 + fH)(1− fL±) ,

cHL±→N = (1− fN )fHfL± . (5.25)

Throughout this chapter, we make the kinetic equilibrium assumption, that is, the phase space

densities can be written as

fi =
ni
neq
i

f eq
i = xif

eq
i , (5.26)

where

xi ≡
ni
neq
i

, (5.27)

where neq and f eq are the equilibrium number densities and distributions. For the neutrino evo-

lution, we can assume that the Higgs bosons are in equilibrium since they couple very strongly to

the thermal bath, fH = f eq
H . The lepton distributions of the two modes are, strictly speaking, out
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of equilibrium since leptons and antileptons are created asymmetrically. However, the leptons are

much closer to equilibrium than the neutrinos, so the neutrino evolution is not influenced by the

lepton asymmetry. Therefore we approximate the lepton densities with their equilibrium density,

fL± = f eq
L±. We will relax this assumption in the section on the lepton asymmetry evolution.

Using the relation

f eq
N (1 + f eq

H )(1− f eq
L±) = (1− f eq

N )f eq
L±f

eq
H , (5.28)

we can write

cN→HL± = xNf
eq
N (1 + f eq

H )(1− f eq
L±) = (xN − xNf eq

N )f eq
H f

eq
L± ,

cHL±→N = (1− xNf eq
N )f eq

H f
eq
L± , (5.29)

and

cN→HL± − cN→HL± = (xN − 1)f eq
H f

eq
L±. (5.30)

The decay densities are

γ(N → HL±)− γ(HL± → N) =

∫
dp̃Ndp̃L±dp̃H(2π)4δ4(pN − pH − pL±)

×
∣∣M0
±
∣∣2 (xN − 1)f eq

H f
eq
L±

= (xN − 1)γND±, (5.31)

where

γND± =

∫
dp̃Ndp̃L±dp̃H(2π)4δ4(pN − pH − pL±)

∣∣M0
±
∣∣2 f eq

H f
eq
L±. (5.32)

Note that γND± is not the same as the equilibrium decay density in equation (3.42), but differs

from the latter through the thermal factor fHfL. It is an effective decay density, which enters the

Boltzmann equations. The Boltzmann equation for the neutrinos reads

dnN
dz

= − z

H(MN )
(xN − 1)γND , (5.33)

where γND ≡ γ+ + γ−, or, in analogy to equation (1.29),

dnN
dz

= −DN (nN − neq
N ), (5.34)

where

DN =
γND
neq
N

1

Hz
(5.35)
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and we have used H(MN ) = Hz2. Most conveniently, the number densities are normalised by the

entropy density s in order to factorise their dependence on the expansion of the universe. The

entropy density scales as

s = g∗
2π2

45
T 3, (5.36)

where g∗ counts the total number of effectively massless degrees of freedom and is defined in

equation (1.32). We define all number densities in terms of the entropy density as

Yi ≡
ni
s
, (5.37)

then

xi =
Yi
Y eq
i

. (5.38)

The Boltzmann equation reads

dYN
dz

= − z

sH1
(xN − 1)γND , (5.39)

where

H1 ≡ H(T = MN ) =

√
4π3g∗

45

MN

MPl
, (5.40)

and the Planck mass is

MPl = 1.221 · 1019 GeV. (5.41)

5.2.2 Lepton asymmetry evolution

We set up evolution equations for the two different lepton modes separately and define the phase

space density of the lepton asymmetry in the respective mode as

fLh = f`h − f¯̀h. (5.42)

where h = ±1 denotes the helicity-over-chirality ratio of the leptons. The final lepton asymmetry

is then nfin
L = nfin

L+ + nfin
L− after evaluating the Boltzmann equations for each mode separately. The
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Figure 5.1: The s-channel contribution to the ∆L = 2 scattering `φ→ ¯̀φ̄.

Boltzmann equations for leptons and antileptons read

dn`h1

dz
= − z

H(MN )

{
γ(`h1φ→ N)− γ(N → `h1φ)

+
∑

h2

[
γ(`h1φ→ ¯̀

h2 φ̄)− γ(¯̀
h2 φ̄→ `h1φ)

] }
,

dn¯̀h1

dz
= − z

H(MN )

{
γ(¯̀

h1 φ̄→ N)− γ(N → ¯̀
h1 φ̄)

+
∑

h2

[
γ(¯̀

h1 φ̄→ `h2φ)− γ(`h2φ→ ¯̀
h1 φ̄)

] }
, (5.43)

where we have (h1, h2) = ±1 to account for the second lepton involved in the scatterings and we

have only included ∆L = 2 scatterings since the other scatterings involving neutrinos are negligible.

For the evolution of the lepton asymmetry, we have

dnLh1

dz
=− 1

Hz

{
γ(`h1φ→ N)− γ(¯̀

h1 φ̄→ N)− γ(N → `h1φ) + γ(N → ¯̀
h1 φ̄)

+
∑

h2

[
γ(`h1φ→ ¯̀

h2 φ̄)− γ(¯̀
h1 φ̄→ `h2φ) + γ(`h2φ→ ¯̀

h1 φ̄)− γ(¯̀
h2 φ̄→ `h1φ)

] }
. (5.44)

At leading order in the couplings, the ∆L = 2 scatterings are computed at tree level and are

consequently CP -conserving. However, from these scatterings we must subtract the CP -violating

contribution where an on-shell N1 is exchanged in the s channel, shown in figure 5.1. This is

because in the Boltzmann equations the process is already taken into account by inverse decays

with successive decays, `φ→ N → ¯̀φ̄ [15, 114, 115]. We must therefore replace the scattering rate

by the subtracted rate,

γ(`h1φ→ ¯̀
h2 φ̄)→ γsub(`h1φ→ ¯̀

h2 φ̄) ≡ γ(`h1φ→ ¯̀
h2 φ̄)− γon−shell(`h1φ→ ¯̀

h2 φ̄) (5.45)

and γ(¯̀
h1 φ̄ → `h2φ) accordingly, where γon−shell is the on-shell contribution. The Boltzmann
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equations then read

dnLh1

dz
=− 1

Hz

{
γ(`h1φ→ N)− γ(¯̀

h1 φ̄→ N)− γ(N → `φh1) + γ(N → ¯̀
h1 φ̄)

+
∑

h2

[
γsub(`h1φ→ ¯̀

h2 φ̄)− γsub(¯̀
h1 φ̄→ `h2φ)

+ γsub(`h2φ→ ¯̀
h1 φ̄)− γsub(¯̀

h2 φ̄→ `h1φ)
]}
. (5.46)

Since the CP -asymmetry in neutrino decays is defined on amplitude level as

εNh =
|M(N → φ`h)|2 −

∣∣M(N → φ̄¯̀
h)
∣∣2

|M(N → φ`h)|2 +
∣∣M(N → φ̄¯̀

h)
∣∣2 (5.47)

and |M(N → φ`h)|2 +
∣∣M(N → φ̄¯̀

h)
∣∣2 = |M0h|2, we write

|M(N → φ`h)|2 =
∣∣M(φ̄¯̀

h → N)
∣∣2 =

1 + εNh
2
|M0h|2 ,

∣∣M(N → φ̄¯̀
h)
∣∣2 = |M(φ`h → N)|2 =

1− εNh
2
|M0h|2 . (5.48)

It is useful to write the decay rates for the above 1↔ 2 processes as in section 5.2.1,

γ(process) =

∫ ∏

j

dp̃j(2π)4δ4
(∑

pj

)
c(process), (5.49)

where pj denotes the relevant momenta pN , p`h = p¯̀h and pφ = pφ̄ and δ4(
∑
pj) the momentum

conservation δ4(pN −p`h−pφ). The information about the specific process is encoded in c(process)

and we have

cN→`hφ = |M(N → φ`h)|2 fN (1− f`h)(1 + fφ)

c`hφ→N = |M(φ`h → N)|2 (1− fN )f`hfφ

cN→¯̀
hφ̄

=
∣∣M(N → φ̄¯̀

h)
∣∣2 fN (1− f¯̀h)(1 + fφ̄)

c¯̀
hφ̄→N =

∣∣M(φ̄¯̀
h → N)

∣∣2 (1− fN )f¯̀hfφ̄. (5.50)

Since we are looking at the lepton asymmetry, the lepton distributions have to be out of equilibrium,

f`/¯̀h = x`/¯̀hf
eq
`h ,

fLh = xL.hf
eq
`h ,

f`h + f¯̀h ≈ 2f eq
`h , (5.51)

while the Higgs bosons can be assumed to be in equilibrium.
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As explained in appendix E, the scattering rates can be written as

∑

hf

[
γsub(`hiφ → ¯̀

hf φ̄)− γsub(¯̀
hi φ̄→ `hfφ)

]

=
∑

hf

[
γsub(`hfφ→ ¯̀

hi φ̄)− γsub(¯̀
hf φ̄→ `hiφ)

]
=

=

∫
dp̃Ndp̃`hidp̃φ(2π)4δ4(pN − p`hi − pφ)εNhi

∣∣M0
hi

∣∣2 f eq
`hi
f eq
φ (1− f eq

N ). (5.52)

so we define2

csub
h = 2εNh

∣∣M0
h

∣∣2 f eq
`hf

eq
φ (1− f eq

N ) (5.53)

and calculate the integrand for the right-hand side of the Boltzmann equation (5.46),

c(N → `hφ)− c(`hφ→ N)−c(N → ¯̀
hφ̄) + c(¯̀

hφ̄→ N) + csub
h =

= xLhf
eq
`h (f eq

φ + xNf
eq
N )− 2εNh f

eq
`hf

eq
φ (xN − 1)

(
1− 2f eq

N

)
. (5.54)

We can easily check that this term vanishes when the neutrinos are in equilibrium, xN = 1, and

there is no previous lepton asymmetry, xLh = 0.

The Boltzmann equation reads now

dnLh
dz

= − 1

Hz

[
−εNγhγNεh (xN − 1) +

xLh
2

(
γNWh + xNγ

N
Nh

)]
, (5.55)

where γNWh = γNDh is defined in equation (5.32) and

γNεh =

∫
dp̃Ndp̃`hdp̃φ(2π)4δ4(pN − pφ − p`h) |M0|2 f eq

φ f
eq
`h (1− 2f eq

N )

γNNh =

∫
dp̃Ndp̃`hdp̃φ(2π)4δ4(pN − pφ − p`h) |M0|2 f eq

`hf
eq
N ,

εNγh =
1

γεh

∫
dp̃Ndp̃`hdp̃φ(2π)4δ4(pN − pφ − p`h)εNh |M0|2 f eq

φ f
eq
`h (1− 2f eq

N ). (5.56)

We see that the rates and the CP -asymmetries that enter the Boltzmann equations have slightly

different thermal factors than the equilibrium rates and CP -asymmetries in equations (3.42)

and (4.69), which employ the factor fN (1− f`)(1 + fφ) for N decays.

2Note that our factor csub differs from reference [104], where they have the out-of-equilibrium distribution (1−fN )
instead of (1− feq

N ). However, as derived in appendix E, we must employ feq
N , even if we had only one lepton mode,

which also results in a Boltzmann equation for (`− ¯̀) which is slightly different from theirs.
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We may also write

dYLh
dz

= − z

sH1

[
−εNγhγNεh (xN − 1) +

xLh
2

(
γNWh + xNγ

N
Nh

)]
(5.57)

or, corresponding to equation (1.30),

dnLh
dz

= εNγhD
N
εh(nN − neq

N )− (WN
0h +WN

NhxN )nLh, (5.58)

where

DN
εh =

1

Hz

γNεh
neq
N

W0h =
1

Hz

γNWh

2neq
`h

WNh =
1

Hz

γNNh
2neq

`h

. (5.59)

5.3 High temperature

As discussed in chapter 3, the neutrino processes N ↔ `φ are forbidden when the thermal masses of

the Higgs bosons and leptons become too large, that is, when mφ > MN . However, new processes

with the Higgs as single initial or final state are then allowed, φ ↔ N`. These are the dominant

contributions to the neutrino and lepton evolution and they can be CP -violating as well, so they

contribute to generating a lepton asymmetry. We derive the Boltzmann equations for this high

temperature regime in the following.

5.3.1 Neutrino evolution

We derive the Boltzmann equation analogously to section 5.2.1,

dnN
dz

= − 1

Hz

∑

h

[γ(NLh → H)− γ(H → NLh)] . (5.60)

We have

γ(NLh → H)− γ(H → NLh) =

∫
dp̃Ndp̃Lhdp̃H(2π)4δ4(pH − pN − pLh)

×
[
|M(NLh → H)|2 fNfLh(1 + fH)

− |M(H → NLh)|2 (1− fN )(1− fLh)fH

]
. (5.61)
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The tree-level matrix elements
∣∣M0

h

∣∣2 are the same at high temperature for the Higgs-processes,

just the kinematics differ. So we have

∣∣M0
h

∣∣2 ≡ |M(NLh → H)|2 = |M(H → NLh)|2 . (5.62)

Again, we assume the Higgs bosons and leptons to be in equilibrium. We write

|M0|2 [fNfLh(1 + fH)− (1− fN )(1− fLh)fH ] = |M0|2 [c(NLh → H)− c(H → NLh)] . (5.63)

Using the relation

f eq
N f

eq
Lh(1 + f eq

H ) = (1− f eq
N )(1− f eq

Lh)f eq
H , (5.64)

we get

c(NLh → H)− c(H → NLh) = (xN − 1)(1− f eq
Lh)f eq

H . (5.65)

The Boltzmann equation then reads

dnN
dz

= − 1

Hz
(xN − 1)γφD, (5.66)

dYN
dz

= − z

sH1
(xN − 1)γφD, (5.67)

or

dnN
dz

= −Dφ(nN − neq
N ), (5.68)

where γφD = γφD+ + γφD−,

γφDh =

∫
dp̃Ndp̃Lhdp̃H(2π)4δ4(pH − pN − pLh)

∣∣M0
h

∣∣2 f eq
H (1− f eq

Lh) (5.69)

and

Dφ =
γφD
neq
N

1

Hz
. (5.70)
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ℓ

φ ℓ̄

φ̄

N1

Figure 5.2: The u-channel contribution to the ∆L = 2 scattering `φ→ ¯̀φ̄.

5.3.2 Lepton asymmetry evolution

The Boltzmann equations for leptons and antileptons read

dn`h1

dz
= − 1

Hz

{
γ(`h1N → φ̄)− γ(φ̄→ `h1N)

+
∑

h2

[
γ(`h1φ→ ¯̀

h2 φ̄)− γ(¯̀
h2 φ̄→ `h1φ)

] }
, (5.71)

dn ¯`h1

dz
= − z

H(MN )

{
γ(¯̀

h1N → φ)− γ(φ→ ¯̀
h1N)

+
∑

h2

[
γ(¯̀

h1 φ̄→ `h2φ)− γ(`h2φ→ ¯̀
h1 φ̄)

] }
, (5.72)

combined we get

dnLh1

dz
=− 1

Hz

{
γ(`h1N → φ̄)− γ(¯̀

h1N → φ)− γ(φ̄→ `h1N) + γ(φ→ ¯̀
h1N)

+
∑

h2

[
γ(`h1φ→ ¯̀

h2 φ̄)− γ(¯̀
h1 φ̄→ `h2φ) + γ(`h2φ→ ¯̀

h1 φ̄)− γ(¯̀
h2 φ̄→ `h1φ)

] }
. (5.73)

At high temperature, there can be no on-shell neutrino in the s-channel of the ∆L = 2 scatterings,

but there can be an on-shell neutrino exchange in the u-channel as shown in figure 5.2. Again, we

need to subtract the ∆L = 2 rates since the u-channel on-shell neutrino exchange corresponds to

a Higgs decay followed by an inverse decay, `φ→ `N ¯̀→ φ̄¯̀. We replace

γ(`h1φ→ ¯̀
h2 φ̄)→ γsub

u (`h1φ→ ¯̀
h2 φ̄) ≡ γ(`h1φ→ ¯̀

h2 φ̄)− γon−shell
u (`h1φ→ ¯̀

h2 φ̄) (5.74)
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and get

dnLh1

dz
=− 1

Hz

{
γ(`h1N → φ̄)− γ(¯̀

h1N → φ)− γ(φ̄→ `h1N) + γ(φ→ ¯̀
h1N)

+
∑

h2

[
γsub(`h1φ→ ¯̀

h2 φ̄)− γsub(¯̀
h1 φ̄→ `h2φ) + γsub(`h2φ→ ¯̀

h1 φ̄)− γsub(¯̀
h2 φ̄→ `h1φ)

]}
.

(5.75)

We define the CP -asymmetry in Higgs decays as

εφh ≡
∣∣M(φ̄→ N`h)

∣∣2 −
∣∣M(φ→ N ¯̀

h)
∣∣2

∣∣M(φ̄→ N`h)
∣∣2 +

∣∣M(φ→ N ¯̀
h)
∣∣2 , (5.76)

thus

∣∣M(φ̄→ N`h)
∣∣2 =

∣∣M(¯̀
hN → φ)

∣∣2 =
1 + εφh

2
|Mh|2 ,

∣∣M(φ→ N ¯̀
h)
∣∣2 =

∣∣M(`hN → φ̄)
∣∣2 =

1− εφh
2
|Mh|2 . (5.77)

As explained in appendix E, the scattering rates are written as

∑

hf

[
γsub(`hiφ → ¯̀

hf φ̄)− γsub(¯̀
hi φ̄→ `hfφ)

]

=
∑

hf

[
γsub(`hfφ→ ¯̀

hi φ̄)− γsub(¯̀
hf φ̄→ `hiφ)

]

=

∫
dp̃Ndp̃`hidp̃φ(2π)4δ4(pN − p`hi − pφ)εφh

∣∣M0
hi

∣∣2 f eq
`hi

(1 + f eq
φ )f eq

N , (5.78)

so

csub
h = 2εφh

∣∣M0
h

∣∣2 f eq
`h (1 + f eq

φ )f eq
N (5.79)

and we get for the right-hand side of equation (5.75),

c(`hN → φ̄)−c(¯̀
hN → φ)− c(φ̄→ `hN) + c(φ→ ¯̀

hN) + csub
h

= xLhf
eq
`h (f eq

φ + xNf
eq
N ) + 2εφh(1− f eq

`h )f eq
φ (xN − 1)

(
1− 2f eq

N

)
. (5.80)

The Boltzmann equation reads now

dnLh
dz

= − 1

Hz

[
−εφγhγ

φ
εh (xN − 1) +

xLh
2

(
γφWh + xNγ

φ
Nh

)]
, (5.81)
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where

γφεh =

∫
dp̃Ndp̃`hdp̃φ(2π)4δ4(pN − pφ + p`h)

∣∣M0
h

∣∣2 f eq
φ (1− f eq

`h )(1− 2f eq
N )

γφWh =

∫
dp̃Ndp̃`hdp̃φ(2π)4δ4(pN − pφ + p`h)

∣∣M0
h

∣∣2 f eq
φ f

eq
`h

γφNh =

∫
dp̃Ndp̃`hdp̃φ(2π)4δ4(pN − pφ + p`h)

∣∣M0
h

∣∣2 f eq
`hf

eq
N ,

εφγh =
1

γφεh

∫
dp̃Ndp̃`hdp̃φ(2π)4δ4(pN − pφ + p`h)εφh

∣∣M0
h

∣∣2 f eq
φ (1− f eq

`h )(1− 2f eq
N ). (5.82)

Analogous to equation (1.30), we may also write

dnLh
dz

= −εφγhD
φ
εh(nN − neq

N )− (W φ
0h +W φ

NhxN )nLh, (5.83)

where

Dφ
εh =

1

Hz

γφεh
neq
N

W φ
0h =

1

Hz

γφDh
2neq

`h

W φ
Nh =

1

Hz

γφLNh
2neq

`h

. (5.84)

Normalised by the entropy density, the equation reads

dYLh
dz

= − z

sH1

[
−εφγhγ

φ
εh (xN − 1) +

xLh
2

(
γφWh + xNγ

φ
Nh

)]
. (5.85)

5.4 Interacting Modes

The Boltzmann equations in the previous sections were derived under the assumption that the

only interactions in which the leptons take part are the Yukawa interactions with Higgs bosons

and heavy neutrinos, which have very small coupling constants λ. This scenario would imply that

the two modes only interact with each other via intermediate neutrinos or Higgs bosons, where

the distributions and also the asymmetries in each mode are to first approximation decoupled. In

a more realistic model, the lepton modes will couple to each other via the SU(2) and U(1) gauge

bosons W a
µ and Bµ in processes like `± → `∓B. While it is conceptually interesting to consider

the case that the two modes are completely decoupled, it might be more realistic to study the

scenario where the interactions between the lepton modes are fast enough to keep them in chemical

equilibrium.

Chemical equilibrium implies that for species that interact via processes a + b → i + j, the
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corresponding chemical potentials are related as

µa + µb = µi + µj . (5.86)

When the processes which create or annihilate the particles and antiparticles of some species are

fast, for example via a+ ā→ i+ j, where i and j are in equilibrium and their chemical potentials

vanish, then the chemical potentials of a and ā behave as

µa + µā = µi + µj = 0 ,

⇒ µa = −µā . (5.87)

In order to derive the corresponding Boltzmann equation, we introduce a chemical potential µh

for the lepton mode `h. For simplicity, we approximate the distribution with Maxwell-Boltzmann

statistics, an approximation which is sufficient to derive the final Boltzmann equations. The dis-

tribution functions in kinetic equilibrium are

f`h(k) = e−β(ωh−µh) ,

f¯̀h(k) = e−β(ωh+µh) ,

f`h(k)− f¯̀h(k) = e−βωh(eβµh − e−βµh) ≈ 2βµhf
eq
`h , (5.88)

for µh � T . We assume chemical equilibrium between the plus- and the minus-mode,

µ+ = µ− ≡ µ` . (5.89)

Moreover, we can make the approximation that the equilibrium densities are about the same since

the thermal mass m` ≈ 0.2T is too small to affect the momentum integration considerably in

neq
`h

=

∫
d3k

(2π)3
f eq
`h

(k)

,⇒ neq
`+
≈ neq

`−
≈ neq

`,0 , (5.90)

where neq
`,0 is the distribution for massless leptons. With these approximations, we have

nL+ = 2βµ`n
eq
`0

= nL− ,

nL± ≡ nL+ + nL− ≡ 2nLh ,

xL± ≡
nL±
neq
`0

, (5.91)

where the subscript ± indicates that we sum over the two modes, contrary to its use in the previous

sections. We can now add the Boltzmann equations for the two modes in equations (5.57) and (5.85)
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and arrive at

dYL±
dz

= − z

sH1

[
∆γ± (xN − 1) +

xL±
4

(γW± + xNγN±)
]
, (5.92)

where

YL± = YL+ + YL− ,

∆γ± = εγ+γε+ + εγ−γε− ,

γW± = γW+ + γW− ,

γN± = γN+ + γN− . (5.93)

The factor 1/4 comes from the fact that xLh = xL±/2. Depending on the temperature regime, we

either have to employ the Higgs boson or the neutrino rates in the Boltzmann equations.

5.5 One-Mode Approximation

As we did in sections 3.2 and 4.7 for the decay rates and the CP asymmetries, we also employ

the one-mode approach for the Boltzmann equations. The equations are derived in analogy to

sections 5.2 and 5.3 and read

dYN
dz

= − z

sH1
(xN − 1)γDm` ,

dYL
dz

= − z

sH1

[
−∆γm` (xN − 1) +

xL
2

(γWm` + xNγNm`)
]
, (5.94)

where γDm` , γWm` , γNm` and ∆γm` are defined in equations (5.32), (5.56), (5.69) and (5.82) and

one has to make the appropriate replacements for the matrix elements and the lepton dispersion

relations of the one-mode approach for m` and
√

2m`.

5.6 Evaluation of the Boltzmann Equations

We solve the Boltzmann equations for five different scenarios:

1. the zero temperature case with Maxwell-Boltzmann statistics,

2. the two-lepton-mode approach where the two modes do not interact with each other,

3. the two-mode approach where the modes couple strongly to each other,

4. the one-mode approach for a thermal mass m`,

5. and the one-mode approach for an asymptotic thermal mass
√

2m`.
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In the decoupled case, the lepton asymmetries for the plus- and the minus-mode evolve separately

from each other. When solving the equations, one has to specify the initial conditions for the

neutrino abundance and the lepton asymmetry. We assume a vanishing initial lepton asymmetry

and distinguish between three cases for the neutrino abundances:

1. Zero initial abundance: this is the case, for example, when an inflaton field decays mostly

into SM particles and not into the heavy neutrinos.

2. Thermal initial abundance: this can be realised when some additional interactions keep the

neutrinos in equilibrium at T � M1, for example via a heavy Z ′ boson related to SO(10)

unification [116].

3. Dominant initial abundance: this is the case, for example, when an inflaton decays predomi-

nantly into N1.

The coupling (λ†λ)11, which enters the neutrino decay rate, is parameterised by the so-called decay

parameter K, defined as

K ≡ m̃1

m∗
, (5.95)

where m̃1 and m∗ are the effective neutrino mass and the so-called equilibrium neutrino mass,

defined in equations (1.27) and (1.28). The case K > 1 is called strong washout regime and the

case K < 1 weak washout regime.

We want to analyse the evolution of the neutrino abundance and lepton asymmetries for the

weak and strong washout regimes and different initial abundances. To this end, we write the

Boltzmann equations for the different scenarios in the form of equations (5.34), (5.58), (5.68) and

(5.83),

dYN
dz

= −D(YN − Y eq
N ) .

dYL
dz

= ε0Dε(YN − Y eq
N )− (W +WNxN )YL , (5.96)

where

D =
z

H1

γD
sY eq

N

, Dε =
z

H1

∆γ

ε0sY
eq
N

,

W =
z

H1

γW
2sY eq
L
, WN =

z

H1

γN
2sY eq
L
. (5.97)

One usually refers to Dε(YN −Y eq
N ) as source term since this term is responsible for the production

of a lepton asymmetry. The term (W +WNxN )Y eq
L is called washout term since it usually has the

opposite sign as the source term and reduces the production of the lepton asymmetry. The terms
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D, Dε, W and WN are different for the different scenarios. Note that for the finite temperature

cases, Dε is not the same as D and there is an additional washout term WN due to the quantum

statistics. Our analysis closely follows the arguments and explanations in reference [115] and the

interested reader will find a comprehensive explanation of leptogenesis dynamics in the vacuum

case therein.

5.6.1 Weak washout for zero initial abundance

Let us start with the weak washout regime and zero initial abundance. We define a value zeq by

the condition

YN (zeq) = Y eq
N (zeq) . (5.98)

For z � 1, the neutrino abundance is negligible compared to Y eq
N ,

dYN
dz
' DY eq

N , (5.99)

where Y eq
N is approximately constant for z � 1. The entropy density s is proportional to z−3

and γD is proportional to z−2 in vacuum and z−4 for the Higgs boson decays at high temperature

in the finite temperature cases. Thus D ∼ z2 in the vacuum case and D ∼ const. at finite

temperature. Neglecting Y initial
N and zinitial, the integration yields YN ' zD(z)/3 ∼ z3 for the

vacuum case and YN ' zD ∼ z for the finite temperature cases. We show the numerical results

for K = 0.005 and zero initial abundance in figures 5.3 and 5.4, where these power laws for YN (z)

can be observed for z . 0.1. We also see that Y m`
N > Y

√
2m`

N > Y ±N � Y 0
N , which reflects

γm`D > γ
√

2m`
D > γ±D � γ0. Between the thresholds zφ+ and zN+ , the finite-temperature abundances

do not evolve much, which reflects that the decay rates are very low or vanishing in this regime.

The neutrino abundance for the asymptotic mass
√

2m` does not rise at all at high temperature,

while Y m`
N rises slightly between z

φ/N
0 and z

φ/N
+ , where the rate is non-zero. The two-mode rate

γ± is, though very suppressed, present over the whole threshold range between zφ+ and zN+ due to

the minus-modes, so Y ±N rises slightly. At low temperature, z > zeq, the neutrino abundances of

the different scenarios are very close to each other, since for z & 2, the rates are very close to the

vacuum rate, γT>0
D,W,N ' ∆γT>0/ε0 ' γ0. In this regime, YN is much larger than Y eq

N since the

coupling is too small to keep the abundance close to equilibrium.

Having outlined the evolution of the neutrino abundance at high temperature, we can un-

derstand the evolution of the lepton asymmetry at high temperature. The washout term in the

Boltzmann equations proportional to YL is much smaller than the source term Dε(YN −Y eq
N ), since

YL/ε0 � Y eq
N , and we have for z � zeq,

Y T>0
L ' −zε0Dε
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Figure 5.3: Evolution of neutrino abundance YN (z) and lepton asymmetry YL(z) for K = 0.005
and zero initial neutrino abundance. We show the the two-mode cases and the vacuum case.
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Figure 5.4: Evolution of neutrino density and lepton asymmetry for K = 0.005 and zero initial
neutrino abundance. We show the one-mode cases and the vacuum case.
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Y T=0
L ' −zε0

Dε(z)

3
. (5.100)

In the high temperature regime, the lepton asymmetry is negative and follows the neutrino abun-

dance in its absolute value,

YL(z) ' −ε0
Dε

D
YN (z) = −∆γ

γD
YN (z) . (5.101)

For the vacuum case, Dε ≡ D and YL/ε0 ' −YN , while for the finite temperature cases, Dε/D =

∆γ/(ε0γD) ∼ O(101).3 Both behaviours can be observed in figures 5.3 and 5.4. The lepton

asymmetry in the minus-mode obeys the same power law as the other finite-temperature modes,

but is about a factor 100 lower due to the lower rates. The combined (±)-abundance closely follows

the plus-abundance since the influence of the minus-mode rates is very suppressed and also the

different washout term with factor 1/4 instead of 1/2 can be neglected.

Before turning to the intermediate temperatures z ∼ zeq, let us discuss the low temperature

regime. For z > zeq, YN � Y eq
N , so the source term dominates and washout can be neglected. Since

in this regime, DT>0
ε ' DT>0 ' DT=0, we can write

dYL
dz
' ε0D(YN − Y eq

N ) = −εdYN
dz

. (5.102)

To first order, the negative lepton asymmetry created below zeq and the positive contribution from

above zeq have the same magnitude and cancel each other. For the remaining asymmetry that did

not cancel, the washout contribution up to zeq and the exact behaviour of the abundances around

zeq are crucial.

Assuming that YN (z =∞) = 0, we get

Y fin
L ' ε0YN (zeq)− |YL(zeq)| , (5.103)

so we see that the evolution of the difference ∆Y (z) ≡ YN (z) − |YL(z)|/ε0 below zeq is crucial for

the final lepton asymmetry. For the regime 1 . z . zeq, we can write

d∆Y

dz
' Y eq

N (D −Dε) ,

D −Dε =
z

H1

1

sY eq
N

(
γD −

∆γ

ε

)
. (5.104)

For the finite-temperature cases, the CP -asymmetry in the decay rates, ∆γ/ε0, is considerably

3We saw in chapter 4 that ∆γ/(ε0γD) ∼ O(102) at high temperature instead of O(101). The discrepancy is
due to rates and asymmetries that occur in the Boltzmann equations and that are slightly different from the usual
rates and CP -asymmetries in chapters 3 and 4 due to the different statistical factors they employ, for example 1 or
(1− 2feq

N ) instead of the usual factor (1− feq
N ). See the discussion in section 4.5.3 and compare the thermal factors

in equations (3.43) and (5.69).
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smaller than the decay rate γD in the range zN0 . z . 2, which can be seen in figure 4.7. Moreover,

for the one-mode cases, ∆γm/ε0 approaches γm faster than ∆γ++ approaches γ+ for the plus-mode.

Above zN+ , the ratio ∆γ/(ε0γD) for the two one-mode cases is about the same. Thus, the difference

∆D ≡ D − Dε is largest for the two-mode approach, smaller and about the same for the two

one-mode approaches and vanishing for the vacuum approach, ∆D+ > ∆Dm` ' ∆D
√

2m` and

∆D0 = 0. As a result, ∆Y + & ∆Y m` ' ∆Y
√

2m` at zeq and therefore the final asymmetries are

related as Y +
L > Y m`

L ' Y
√

2m`
L � Y 0

L . Note that the final asymmetry is non-vanishing for the

vacuum case, since the washout at higher temperature is larger than at lower temperature due to

the larger decay rate. For the finite temperature cases, the difference D−Dε bin the crucial regime

z ' zeq governs the final asymmetry.

The evolution of the decoupled minus-mode at low temperature is very different but not hard

to understand. The asymmetry rises at z & zN+ , because this is the regime above zc where ∆γ−+

is maximal and therefore D−ε is maximal as well. Between the thresholds zφ+ and zN+ , ∆γ−+

is suppressed by the internal plus-lepton and ∆γ−− is suppressed by the residue of the internal

minus-lepton, so Dε is negligible and Y −L does not rise. Above z ∼ 1, ∆γ−+ falls due to the residue

of the external minus-mode and Y −L does not change. The final lepton asymmetry therefore does

not change its sign above z & zeq and keeps the value it achieves at around 1 . z . 2 where the

CP -asymmetry ∆γ−+ becomes small.

The combined (±)-mode does not evolve differently from the plus-mode since the influence

from the γ− rates can be neglected and also the washout term with the additional factor 1/2 is

not noticeable since washout is very small in all temperature regimes. Summarising, there are

four differing lepton asymmetries in this regime: the vacuum case, the m`-case, the (+)-case and

the (−)-case. The
√

2m`-case yields the same asymmetry as the m`-case and the (±)-case yields

the same asymmetry as the (+)-case. We show the four differing lepton asymmetries together in

figure 5.5.

5.6.2 Strong and intermediate washout for zero initial abundance

For strong washout, the evolution of the neutrino abundance is analogous to the weak washout

regime, with Y T
N ∼ z and Y 0

N ∼ z3, as shown in figures 5.6 and 5.7. The couplings are stronger,

therefore the abundances rise faster and meet Y eq
N earlier at zeq ∼ 1. For larger z, the couplings are

strong enough to keep YN close to equilibrium. The evolution of the lepton asymmetry is nicely ex-

plained in reference [115] for the vacuum case with some rather accurate analytical approximations.

In this work, we are only interested in the difference of the vacuum case to the finite temperature

case. In the strong washout regime, the lepton asymmetries rise rather fast and the washout term,

which competes with the source term, becomes larger than the latter at some temperature zmin,

where the lepton asymmetry reaches its most negative value. The source term becomes small when

YN approaches its equilibrium value, so the washout term drives the asymmetry evolution back to
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Figure 5.5: Evolution of neutrino density and lepton asymmetry for K = 0.005 and zero initial
neutrino abundance. We display the four modes from figures 5.3 and 5.4 that give different final
lepton asymmetries, that is, the plus-mode the minus-mode, the m`-mode and the vacuum case.
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Figure 5.6: Evolution of neutrino abundance YN (z) and lepton asymmetry YL(z) for K = 100 and
zero initial neutrino abundance. We show the two-mode cases and the vacuum case.
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Figure 5.7: Evolution of neutrino abundance YN (z) and lepton asymmetry YL(z) for K = 100 and
zero initial neutrino abundance. We show the one-mode cases and the vacuum case.

zero. At z & zeq, the neutrino abundance slightly overshoots Y eq
N , so the source term changes sign

and adds to the washout term until the lepton asymmetry becomes positive, where the washout

term changes its sign as well and is competing again. At low temperature, source term and washout

term have the same magnitude when the lepton asymmetry reaches a maximum at zmax. Above

zmax, the lepton asymmetry is again driven to zero by the larger washout. At very low temperature,

washout and source term become very small and do not influence the asymmetry further, which

settles at a final value Y fin
L . We see that in the strong washout regime, the dynamics are governed

by the washout term. The evolution of the finite temperature lepton asymmetries is analogous

to the vacuum case, but they settle to a different final value. For the finite temperature cases,

the equilibrium density of leptons is smaller than in the vacuum case due to the thermal mass

m` ∼ 0.2T . The washout term is effectively larger than for the vacuum case and competes with

the source term in a stronger way. Therefore, the asymmetry evolution appears slightly damped

compared to the vacuum case and the final asymmetry is marginally lower. The evolution of the

minus-mode is analogous to the evolution at weak washout, rises fast below zφ+ and does not change

above the thresholds since YN ∼ Y eq
N in this regime. The combined (±)-mode tracks the plus-mode

until washout becomes relevant at z & zeq. The washout term for the (±)-mode is always about a

factor two smaller than for the plus-mode, since we add the minus- and plus-washout rates, where

the minus-rate is always negligible compared to the plus-rate. Thus, the (±)-abundance is less

affected by washout, so the dynamics are affected by the source term in a stronger way and the
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Figure 5.8: Evolution of neutrino abundance YN (z) and lepton asymmetry YL(z) for K = 1 and
zero initial neutrino abundance. We show the two-mode cases and the vacuum case.

final asymmetry is larger. We can view this behaviour as always distributing half the asymmetry

in a mode `− which couples strongly to `+ and is not affected by washout. The final asymmetry is

about a factor two larger than for the other scenarios in the strong washout regime.

The case of intermediate washout is shown in figure 5.8, where we only show the two-mode cases

since in this regime, the final lepton asymmetries of the one-mode cases are the same as for the

plus-mode. The dynamics can be viewed as an interpolation between the strong and weak washout

regimes and the final asymmetries are very similar to each other.

5.6.3 Non-zero initial abundance

We also present the dynamics for thermal and dominant initial abundance in figures 5.9–5.14. For

weak washout and thermal initial abundance, YN � |YL| for low temperatures, and according

to equation (5.103), Y final
L /ε0 ∼ Y initial

N . For weak washout and dominant initial abundance, this

equation holds as well, as can be seen in figures 5.9 and 5.10. For intermediate washout K ∼ 1

and dominant abundance, shown in figures 5.11 and 5.12, the lepton asymmetry production is

stopped between the thresholds for the thermal cases and the production above z ∼ 1 does not

succed in producing an asymmetry as high as in the vacuum case. For the (±)-case, the asymmetry

production is larger since it is not as much affected by washout.

For the strong washout regime and large initial neutrino abundances, the dynamics at high
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Figure 5.9: Evolution of neutrino abundance YN (z) and lepton asymmetry YL(z) for K = 0.005
and thermal initial neutrino abundance. We show the two-mode cases and the vacuum case.
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Figure 5.10: Evolution of neutrino abundance YN (z) and lepton asymmetry YL(z) for K = 0.005
and dominant initial neutrino abundance. We show the two-mode cases and the vacuum case.
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Figure 5.11: Evolution of neutrino abundance YN (z) and lepton asymmetry YL(z) for K = 1 and
dominant initial neutrino abundance. We show the two-mode cases and the vacuum case.
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Figure 5.12: Evolution of neutrino abundance YN (z) and lepton asymmetry YL(z) for K = 1 and
dominant initial neutrino abundance. We show the one-mode cases and the vacuum case.
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Figure 5.13: Evolution of neutrino abundance YN (z) and lepton asymmetry YL(z) for K = 100
and thermal initial neutrino abundance. We show the two-mode cases and the vacuum case.

temperature are interesting, as shown in figures 5.13 and 5.14, but the interplay between source term

and washout term at low temperature governs the final asymmetry as in the zero-abundance case.

We reproduce the well-known fact that the initial conditions do not influence the final asymmetry in

the strong washout regime, while the arguments concerning the equilibrium distribution of leptons

with thermal mass and the reduced washout of the (±)-mode still hold and lead to the same lepton

asymmetry as for zero initial abundance. The decoupled minus-mode is very much affected by the

coupling, that is the decay parameter K, and the initial conditions, since the final lepton asymmetry

is produced at high temperatures. The stronger the coupling, the larger the asymmetry production

of the minus-mode at high temperatures and the larger the final value. Moreover, the larger the

initial deviation of the neutrino abundance from equilibrium, the larger the asymmetry production

and the final asymmetry. The final lepton asymmetry in this mode is thus lowest for neutrinos

with thermal initial abundance.

5.6.4 Final lepton asymmetries

The values of the final asymmetries are shown in figures 5.15–5.17 for different initial abundances.

For zero initial abundance and weak washout, shown in figure 5.15, the asymmetry for the finite-

temperature cases are larger than for the vacuum case by about one order of magnitude due to the

difference of the thermal rates γD and the CP -asymmetries ∆γ at z & zN+ . The lepton asymmetry
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Figure 5.14: Evolution of neutrino abundance YN (z) and lepton asymmetry YL(z) for K = 100
and dominant initial neutrino abundance. We show the two-mode cases and the vacuum case.
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Figure 5.16: Final value of the lepton asymmetry for different values of K for thermal initial
neutrino abundance.

for the plus-mode is also slightly larger than for the one-mode cases due to a suppression of the CP

asymmetry compared to the one-mode approaches. For strong washout, the asymmetry production

in the vacuum case is marginally more efficient than in the thermal cases due to a smaller lepton

equilibrium distribution, while the lepton asymmetry in the (±)-approach is by a factor 2 larger

than in the other cases since half of the asymmetry is in the `−-modes and not affected by washout.

The minus-mode is completely decoupled, the lepton asymmetry bears the opposite sign as the

other lepton asymmetries and rises with stronger couplings, that is with larger decay parameter K.

As discussed in section 5.4, this scenario might not be realistic since the modes will couple to each

other via gauge bosons, so an evolution similar to the (±)-case seems more likely.

For thermal initial abundance and weak washout, shown in figure 5.16, the final asymmetry

equals the equilibrium abundance YL/ε0, while in the strong washout regime, it shows the same

behaviour as in the case of zero initial neutrino abundance. The minus-mode asymmetry is very

low for thermal initial neutrino abundance since the neutrinos are close to equilibrium at high

temperatures. Contrary to the zero initial abundance case, it bears the same sign as the lepton

asymmetries of the other scenarios.

For dominant initial abundance, shown in figure 5.17, the final asymmetries assume their max-

imal value in the weak washout regime, when the coupling is weak enough not to wash them out

at low temperature. For larger couplings K ∼ 1, the thresholds lead to a halted asymmetry pro-
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Figure 5.17: Final value of the lepton asymmetry for different values of K for thermal initial
neutrino abundance.
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duction for the finite temperature cases and not as much asymmetry can be produced as for the

vacuum case. The (±)-case shows a larger asymmetry compared to the other thermal cases due to

the weaker washout. At strong coupling K � 1, the asymmetries are the same as for thermal and

zero initial neutrino abundance. The minus-mode asymmetry is large in all washout regimes, since

the neutrinos are far from equilibrium at high temperatures when the `−-asymmetry is produced.

A summary of the several initial conditions can be seen in figure 5.18, where we have omitted

the
√

2m` case since it is very close to the m` case in all scenarios. In the weak washout regime,

the case with zero initial abundance is most strongly affected by thermal corrections which amount

to one order of magnitude, and the plus-mode asymmetry is additionally enhanced by a factor

of about two. In the intermediate regime, the dominant-initial-abundance case is influenced very

much by thermal corrections. Therefore, a production mechanism for dominant neutrino abundance

has to take into account such thermal effects. In the strong washout regime, one would naturally

expect that thermal corrections can be neglected. We see that this is not the case since for strongly

interacting leptonic quasiparticles, a part of the lepton asymmetry can be hidden in the `−-mode

which is unaffected by washout, thus producing an asymmetry by up to a factor of two larger than

at zero temperature. The effect of the thermal lepton mass on the equilibrium distribution of the

leptons is an interesting feature, but very small and can be neglected for all practical purposes.



Conclusions

We see this work as a contribution to the revived quest for calculating and capturing effects that the

finite density and temperature of the medium has on early universe dynamics. For a minimal and

self-consistent toy model of leptogenesis, which consists only of neutrinos, leptons and Higgs bosons,

we have performed an extensive analysis of the effects of HTL corrections. This implies capturing

the effects of thermal masses, modified dispersion relations and modified helicity structures. We

put special emphasis on the influence of the two fermionic quasiparticles, which show a different

behaviour than particles in vacuum, notably through their dispersion relations, but also the helicity

structure of their interactions. Our work is thus similar to the work done in reference [15], where the

authors of the latter work did not include the effects of fermionic quasiparticles and get a different

result for the CP -asymmetries, which are crucial for the evolution of the lepton asymmetry. Our

toy model produces two lepton asymmetries stored in the two different lepton modes without the

possibility of an equilibration of these asymmetries by SM processes. Since we expect the lepton

modes to interact via gauge bosons in the bath, we examine a second case where the modes are

strongly coupled to each other. As a third and fourth case, we approximate the lepton propagators

by zero temperature propagators with the zero temperature mass replaced by the thermal lepton

mass in one case and the asymptotic mass in the other case. We refer to these cases as one-mode

approach. All four thermal cases are compared to the zero-temperature case.

Our analysis proceeded in three steps: Calculating interaction rates, calculating the necessary

CP -asymmetries and deriving and solving the corresponding Boltzmann equations. We calculated

the decay rates in chapter 3. Thermal decay rates in the context of leptogenesis have been calculated

using vacuum states as external states and replacing the zero-temperature mass by the respective

thermal mass [15]. We calculated the decay rates with the full HTL-dependence via the neutrino

self-energy and the optical theorem. While for scalars, that is the Higgs bosons in our case, this

gives the same result as inserting thermal masses in the kinematics, the results for fermions are

somewhat different, both conceptually and numerically. Neglecting the zero-temperature fermion

mass, the resummation of HTL fermion self-energies results in an effective fermion propagator that

does not break chiral invariance and is split up in two helicity modes. The external fermion states

therefore behave conceptually different from the ones with chirality-breaking thermal masses that

have been inserted in the kinematics by hand. Moreover, one has to take care of one additional
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mode, which has implications for the Boltzmann equations.

In order to understand and describe the behaviour of the modes, we have assigned momentum-

dependent quasi-masses to them in section 2.5.2. Numerically, the presence of the two modes with

momentum-dependent masses leads to different thresholds corresponding to the asymptotic masses

of the two modes,
√

2m` and zero mass, and the zero momentum mass m`. It is a well known fact,

that for large temperatures, the thermal mass of the Higgs boson becomes so large that neutrino

decays are no longer allowed, but rather the Higgs bosons decay into neutrinos and leptons. While

reference [15] finds that decays are possible above or below their respective thresholds, we find

that the decay into the negative mode is always possible, while the decay into the plus-mode is

possible up to the thresholds corresponding to the thermal mass m`, but becomes suppressed by

the reduction of possible lepton momenta at the thresholds with the asymptotic mass
√

2m`. From

pure kinematical arguments, one would expect the one-mode rate with the asymptotic mass to

be a much better approximation to the plus-rate than the one-mode rate for the thermal mass.

The fact that this is not the case shows the importance of the helicity structure of the leptonic

quasiparticles, which suppresses the rate for the plus-mode such that it is much lower than γ√2m`
.

For the Higgs boson decays at high temperature, the thresholds are analogous to the neutrino

decays at low temperature. We observe the same T 4-proportionality for Higgs boson decays as

reference [15].

We calculated the CP -asymmetries in chapter 4. To our knowledge, this is the first correct

calculation of a CP -asymmetry in leptogenesis that includes HTL-corrections.4 We present rules for

the product of spinors that are related to the fermionic quasiparticles in equations (4.14) and (4.15)

and derive frequency sums for the HTL fermion propagator in equation (4.33). We find four different

CP -asymmetries corresponding to the four different choices of lepton modes both in the loop and

as external states. We find the CP -asymmetry to be symmetric under an exchange of the lepton

mode in the loop and the external lepton mode, such that ∆γ+− = ∆γ−+. At finite temperature,

there are three possible cuttings for the vertex contribution, the {`′, φ′}-cut that corresponds to

zero temperature and two additional cuts involving the internal N ′, namely through {N ′, `′} and

{N ′, φ′}, which have been found by [15, 20, 95] and examined more closely in [21], using the real-

time formalism. We obtain the same cuts using the imaginary time formalism and concentrate

on the {`′, φ′}-cut, assuming the hierarchical limit of M2 � M1. As expected from the zero-

temperature result, we find the vertex contribution proportional to the self-energy contribution in

this limit. Contrary to reference [15], we find that the CP -asymmetry in Higgs boson decays is

larger than the asymmetry in neutrino decays by about a factor of 100 if appropriately normalised.

4Reference [15] has an incorrect calculation for the CP -asymmetry of the neutrino and Higgs decays with HTL
corrections in the propagators and thermal masses in the external states. The discrepancy is discussed in detail in
reference [22]. The authors of the first reference get a factor 1 − f`′ + fφ′ − 2f`′fφ′ for the neutrino decays and
fφ′ − f`′ − 2fφ′f`′ for the Higgs boson decays due to an erroneous choice of cutting rules in the real time formalism.
The correct calculation gives 1 − f`′ + fφ′ for the neutrino decays and fφ′ + f`′ for the Higgs boson decays. This
discrepancy is also responsible for our CP -asymmetry in Higgs decays being a factor ten larger than their result.



Conclusions 109

This is due to a suppression of the Higgs boson decay rate and a thermal enhancement of the

CP -asymmetry by the distribution functions of the Higgs bosons and leptons. We compare the

CP -asymmetries in the two-mode approach to the CP -asymmetries in the one-mode approach. We

find that for the two-mode approach, the helicity structure of the modes prohibits the two leptons

to be scattered strictly in the same direction while for the one-mode approach, this direction is

only mildly suppressed. Notably this fact is responsible for suppressing the (++)-CP -asymmetry

compared to the asymmetries of the one-mode approach, as well as the residues of the plus-modes

to less extent.

We derive and evaluate the Boltzmann equations for our approaches in chapter 5, performing

the crucial subtraction of on-shell intermediate states in appendix E5. We compare the results

of the Boltzmann equations for our five cases, that is, decoupled lepton modes, strongly coupled

lepton modes, the one-mode approach with m`, the one-mode approach with
√

2m`, and the

vacuum case. We assume three different initial values for the abundance of neutrinos: zero, thermal

and dominant abundance, motivated by different scenarios for the production of heavy neutrinos

after inflation [15]. In the weak washout regime, we find that using thermal masses enhances

the final lepton asymmetry by about one order of magnitude for zero initial neutrino abundance.

This is due to the fact that the CP -asymmetry and the decay rate evolve differently at z & 1

when using thermal masses, since the CP -asymmetry suffers from an additional suppression by

thermal masses through the leptons and Higgs bosons in the loop. Due to the helicity structure

of the modes, the CP -asymmetry of the plus-mode is additionally suppressed, which results in an

additional enhancement of the plus-mode lepton asymmetry compared to the final asymmetries of

the one-mode approaches. The enhancement we find is similar to the one found in reference [15]

in this regime, but hard to compare quantitatively due to their different approach which includes

scatterings and the discrepancy in the CP -asymmetry. In the strong washout regime, thermal

masses do not show an influence as expected6. However, when we couple the plus- and minus-mode

strongly, we observe an enhancement of the lepton asymmetry by a factor of about two, since we

stored half of the asymmetry in a mode that essentially does not interact with the neutrinos and is

therefore not affected by washout. For intermediate washout, that is K ∼ 1, we find that the lepton

asymmetries with thermal masses are about one magnitude lower than in the vacuum case when we

assume dominant initial neutrino abundance. This is due to the fact that the lower CP -asymmetry

does not succeed in producing as much lepton asymmetry at z & 1 when using thermal masses. A

decoupled minus-mode would show a behaviour completely different from the other thermal cases

and the vacuum case for all initial values of the neutrino abundance. The lepton asymmetry in

such a decoupled mode is produced mainly at high temperature and only slightly affected by the

development at z & 1, where it decouples from the evolution of the other abundances. Therefore,

5The thermal factor (1 − feq
N ) we find is different from the factor (1 − fN ) that reference [104] uses, where they

employ the out-of equilibrium distribution function for neutrinos without deriving their result explicitly.
6There is a slight suppression of the lepton asymmetry for thermal masses, since the thermal mass suppresses the

equilibrium distribution of the leptons somewhat and thereby enhances the washout term.
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the washout parameter K, which determines the coupling strength and thereby the asymmetry

production at high temperatures, is crucial for the final value of the lepton asymmetry in this

mode, as is the initial neutrino abundance.

Summarising, we argue that for an accurate description of medium effects on leptogenesis,

the influence of thermal quasiparticles, notably the effects of the two fermionic modes, cannot be

neglected. Similar to reference [15], our study shows that thermal masses have a strong effect in the

weak washout regime, while the effect of fermionic modes has an additional influence on the final

lepton asymmetry in this regime. We also showed that notably in the strong washout regime, the

presence of a quasi-sterile lepton mode that is not affected by washout can have a non-negligible

effect on the final lepton asymmetry. Future studies should clarify the dynamics of the interaction

between the two fermionic modes and determine whether the evolution of the asymmetries in the

two modes is closer to the decoupled or the strongly coupled case.

Another important aspect that might be studied in future works is the influence of the finite

width of the fermionic modes [117], notably the minus-mode. Such effects could be studied using

Kadanoff-Baym equations [16, 18–20, 22, 94–99] or some other formalism that takes into account

non-equilibrium quantum effects. In the quest for a unified description of finite-temperature effects

on leptogenesis, it is important to include SM interactions in the Kadanoff-Baym studies that are

under way. To this end, quasiparticle excitations of fermions and gauge-bosons should be taken

into account. Last but not least, the fermionic modes might have an influence on other related

dynamics in the early universe that involve fermions, such as thermal production of axions, axinos

or gravitinos. Notably our introduction of sum rules for quasiparticle spinors in equations (4.14) and

(4.15), as well as the derivation of frequency sums in equation (4.33) can be a valuable contribution

to future calculations.

Future experimental results from the neutrino sector and from high-temperature dynamics, such

as RHIC or observations at the LHC, will provide interesting input for these theoretical efforts.

Whatever the outcome of such future experiments and calculations, the quest for a sufficiently

complete and unified description of the influence of the hot, dense medium on early-universe dy-

namics, such as leptogenesis or the production of dark matter particles, is guaranteed to remain an

attractive and vibrant field of research with much insight to be gained both from theoretical and

experimental side.



APPENDIX A

Green’s Functions at Zero Temperature

We consider the case of a scalar field φ(x) with mass m, where x ≡ (x0,x), x0 ≡ t, we are using

natural units ~ = c = kB = 1 and are in the relativistic regime where we use the Minkowski metric

x2 = xµx
µ = gµνx

νxµ = x2
0 − x2. The amplitude of a particle to travel from x to y if x0 < y0

or from y to x if y0 < x0 is called Feynman propagator and is equal to the two-point correlation

function defined as

i ∆F (x− y) ≡ 〈0|T{φ(x)φ(y)}|0〉 , (A.1)

where T denotes the time ordering operator which acts on two fields as

T{φ(x)φ(y)} =

{
φ(x)φ(y) x0 > y0

φ(y)φ(x) x0 < y0

. (A.2)

We can express the scalar field by its Fourier transform

φ(x) =

∫
d3k

(2π)3/2

1

(2ωk)1/2
[a(k)e−iK·x + a†(k)e iK·x]

∣∣∣∣
k0=ωk

, (A.3)

where K ≡ (k0,k) is the four-momentum of the field, ωk ≡
√
k2 +m2 the energy and the Fourier

coefficients represent creation a(k) and destruction operators a†(k), which create or destroy a boson

with momentum k. They act on a state |n(k)〉 with n particles of momentum k as

a(k)|n(k)〉 =
√
n(k) |n(k)− 1〉 (A.4)

a†(k)|n(k)〉 =
√
n(k) + 1 |n(k) + 1〉 , (A.5)

in particular a(k)|0〉 = 0 for all k.

Using the Fourier representation of φ, the Feynman propagator can be written as

∆F (x− y) =

∫
d4K

(2π)4

e−iK·(x−y)

K2 −m2 + i ε
, (A.6)
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where the term +i ε accounts for the so-called Feynman prescription, that is in the complex k0-plane

we integrate above the pole at k0 = ωk and below the pole at k0 = −ωk. When we carry out the

k0-integration, we find for x0 > y0

∆F (x− y) = −i

∫
d3k

(2π)3

1

2ωk
e−iK·(x−y)

∣∣∣∣
k0=ωk

. (A.7)



APPENDIX B

Analytic Solution of the Dispersion Relations for HTL

Fermions

The dispersion relations of the two lepton modes are given by the poles of the corresponding

propagator. Hence, we seek the zeros of

D±(K) = ∆±(K)−1 =

[
−k0 ± k +

m2
`

k

(
±1− ±k0 − k

2k
ln
k0 + k

k0 − k

)]−1

(B.1)

The equations D± = 0 can be transformed by the substitutions

x+ :=
k0 + k

k0 − k
(B.2)

x− :=
k0 − k
k0 + k

=
1

x+
(B.3)

c :=
k2

m2
`

. (B.4)

This yields

D± = ±k
c

1

x± − 1
(−2c− 1 + x± − lnx±) . (B.5)

Further introducing

s := − exp(−2c− 1) (B.6)

leads to

D± =
∓2k

1 + ln(−s)
1

x± − 1
[x± + ln(−s)− lnx±] . (B.7)

Since the prefactor does not have poles for the values of K we are looking at, solving D± = 0

amounts to solving

x± + ln(−s)− lnx± = 0, (B.8)
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which in turn means

s = −x±ε−x± . (B.9)

This is the defining equation of the Lambert W function [118,119], thus the solution reads

x± = −W (s). (B.10)

According to the definition in Eq. (B.6)

− 1/ε ≤ s ≤ 0, (B.11)

thus the two real branches of the Lambert function, W0 and W−1, correspond to the two solutions

we seek. In the range given by Eq. (B.11) W0 ≥ −1 and W−1 ≤ −1. For k0 ≥ k we have x+ ≥ 1

and x− ≤ 1. Hence, the physical solutions for x± read

x+ = −W−1(s) and x− = −W0(s). (B.12)

The corresponding results for ω± are then given by

ω+ = k
W−1(s)− 1

W−1(s) + 1
(B.13)

ω− = −k W0(s)− 1

W0(s) + 1
. (B.14)

Making use of the relations [120]

W0,−1(z) + ln(W0,−1(z)) = ln z, (B.15)

one can directly prove the result by plugging Eqs. (B.13) and (B.14) into Eq. (B.1).



APPENDIX C

Quantities at Zero Temperature

C.1 Decay Rate at Zero Temperature

We know that at T = 0, the decay rate of a heavy neutrino with definite spin at rest is given by

Γrf(N → φ`) =
(λ†λ)jj

16π
Mj , (C.1)

where we have not summed over neutrino spins. Then

ΓD =
Mj

E
Γrf =

Mj

E

(λ†λ)jj
16π

Mj (C.2)

and the decay density for definite neutrino spin is

γD(N → φ`) =
1

2π2

∫ ∞

Mj

dEEpfNΓD (C.3)

=
(λ†λ)jj
4(2π)3

M2
j

∫ ∞

Mj

dEpfN (C.4)

=
(λ†λ)jj
4(2π)3

M3
j TK1

(
Mj

T

)
, (C.5)

where K1(z) is a Bessel function of second kind and z = Mj/T .

C.2 CP -Asymmetry at Zero Temperature

For the CP -asymmetry at zero temperature, the integrals are the same as for T > 0, just the

thermal masses are zero and the lepton propagator is

S′` =
/K ′

K ′2
, (C.6)
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so the spin sum is
1

2

∑

r,s

(u`PRuN )(uNPRS
′
`PLu`) = MjK

µK ′µ∆′`, (C.7)

where

∆′` =
1

K ′2
, (C.8)

and we have averaged over the neutrino degrees of freedom. At zero temperature, we can use the

Cutkosky rules to compute discontinuities, so we replace propagators by δ-functions. There are

three possible cuttings, however, the cuttings which involve N2 correspond to a process where one

massless particle decays into N2 and the other massless particle which is not possible kinematically.

The only possible cutting is through the Higgs boson and lepton propagator, so

∆′` → −2πiδ(K ′2), (C.9)

∆′φ → −2πiδ(Q′2). (C.10)

We get

Im(I0I
∗
1 ) = − i

2
Disc(I0I

∗
1 ) = −1

2
MjMkDisc

(∫
d4k′

(2π)4
∆′N∆′φ∆′`KµK

′µ
)

(C.11)

=
MjMk

16π

[
1− (1 + x) ln

1 + x

x

]
, (C.12)

where

x =
M2
k

M2
j

. (C.13)

Analogously, we get for the self-energy

Im(I0I
∗
1 ) =

MjMk

16π

1

1− x . (C.14)

The CP-Asymmetry at zero temperature reads

ε =
1

8π

Im[(λ†λ)2
jk]

(λ†λ)jj
g(x) , (C.15)

where

g(x) =
√
x

[
1

1− x + 1− (1 + x) ln
1 + x

x

]
. (C.16)
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C.3 Boltzmann Equations at Zero Temperature

We can derive the Boltzmann equations for the neutrino and lepton evolution at zero temperature,

approximating the phase-space densities with Maxwell-Boltzmann distributions,

fi(Ei) = exp(−Eiβ) , (C.17)

where energy conservation in scatterings and decays implies

fN = fLfH (C.18)

and there are no Higgs decays at high temperature. For the neutrino evolution, we get, analogous

to equation (5.39),

dYN
dz

= − z

sH1
(xN − 1)γ0, (C.19)

where

γ0 =

∫
dp̃Ndp̃Ldp̃H(2π)4δ4(pN − pH − pL) |M0|2 f eq

N . (C.20)

The matrix element evaluated at zero temperature reads

|M0|2 = 4× 2PN · PL, (C.21)

where the factor 4 comes from summing over ` and ¯̀, as well as over the doublets (e−, φ+) and

(ν, φ0).

We can express the decay rate γ0 in terms of the total decay width Γtot
rf in the rest-frame of the

neutrino,

γ0 = gN

∫
dp3

N

(2π)3

M

EN
Γtot

rf f
eq
N , (C.22)

where gN = 2 accounts for the internal degrees of freedom of the neutrino, the two spins, and

Γtot
rf (N → HL) =

(λ†λ)11M1

4πgN
(C.23)

describes the decay of a neutrino with a definite spin into (φ`) and (φ̄¯̀).

Evaluating equation (C.22), we get

γ0 = gN
M2

2π2
TΓtot

rf K1(z), (C.24)
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where z = M/T and K1(z) is a Bessel function of second kind. For the equilibrium density of the

neutrinos, we get

neq
N = gN

∫
d3pN
(2π)3

f eq
N = gN

M2

2π2
TK2(z), (C.25)

so that

γ0

neq
N

= Γtot
rf

K1(z)

K2(z)
. (C.26)

We can write the Boltzmann equation as

Y ′N = −D(YN − Y eq
N ), (C.27)

where

Y ′X ≡
dYX
dz

, (C.28)

D =
z

H1

γ0

neq
N

= zK
K1(z)

K2(z)
, (C.29)

Y eq
N =

45

4π4

gN
g∗
z2K2(z) (C.30)

and

K =
Γtot

rf

H1
=

m̃

m∗
(C.31)

is called decay parameter.

For the lepton evolution, the subtraction of on-shell propagators can be performed analogously

to the finite temperature case, so that

γsub(`φ→ ¯̀φ̄)− γsub(¯̀φ̄→ `φ) = ε0γ0, (C.32)

where

ε0 ≡
Γ(N → `φ)− Γ(N → ¯̀φ̄)

Γ(N → `φ) + Γ(N → ¯̀φ̄)
(C.33)
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is calculated in appendix C.2. Analogous to equation (5.57), we get

dYL
dz

= − z

sH1

(
−ε0 (xN − 1) +

xL
2

)
γ0, (C.34)

which can be rewritten as

Y ′L = ε0D(YN − Y eq
N )−WYL, (C.35)

where

W ≡ z

H1

γ0

2neq
`

. (C.36)

We have

neq
` = g`

∫
d3p`
(2π)3

f eq
` = g`

T 3

π2
, (C.37)

where g` = 2 accounts for the lepton doublet components, so we get

W =
1

4

gN
g`
z3KK2(z). (C.38)





APPENDIX D

The Other Cuts

D.1 Imaginary Parts

D.1.1 Vertex cut through {N2, φ
′}

We use the conventions for the vertex contribution in N -decays in chapter 4. For NN ′
` , we shift

integration variables to d3q′ after carrying out the Matsubara sum over k′0. We consider the angle

ηq′ =
k · q′
kq′

(D.1)

between k and q′ and write

Im

(∫ 1

−1
dηq′

1

NN ′
`

)
= −πωp′

kq′
, (D.2)

where the angle is

ηkq′,0 =
1

2kq′
(
−2ωωq′ + Σk

)
, (D.3)

and

Σk = M2
k − (ω2 − k2)−m2

φ . (D.4)

The imaginary part reads

Im
(
T
∑

k′0,h
′

∫
d3k′

(2π)3
∆N ′∆φ′∆h′H−

)
NN′
`

=
1

4π3
Im


T

∑

k′0,h
′

∫ ∞

0
dq′q′2dηq′

∫ π

0
dφq′∆N ′∆φ′∆h′H−



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=− 1

16π2

∑

h′

∫
dq′dφ′

q′

kωq′
Zh′

[(
B`′
φ −B`′

N

)
H− +

(
B0
φ −B0

N

)
H+

]
.

(D.5)

D.1.2 Vertex cut through {N2, `
′}

For the NN ′
φ -term, we integrate over k′, and choose the polar angle between q and k′,

ηqk′ =
q · k′
qk′

. (D.6)

We write

Im

(∫ 1

−1
dηqk′

1

NN ′

)
= −πωp′

qk′
, (D.7)

where the angle is

ηqk′0 =
1

2qk′
(
−2ωqω

′ + Σqk′
)
, (D.8)

and

Σqk′ = M2
k − (ω′2 − k′2)−m2

φ. (D.9)

The imaginary part is given by

Im


T

∑

k′0,h
′

∫
d3k′

(2π)3
∆N ′∆φ′∆h′H−



NN′
φ

=
1

4π3
Im


T

∑

k′0,h
′

∫ ∞

0
dk′k′2dηqk′

∫ π

0
dφqk′∆N ′∆φ′∆h′H−




=− 1

16π2

∑

h′

∫
dk′dφ′

k′

qωq′
Zh′Z

N ′
φ (Aφ

′

` −A0
` )H+.

(D.10)

D.2 Analytic Expressions for the CP -Asymmetries

D.2.1 Vertex cut through {N2, φ
′}

We get for NN ′
`

Im(IV )
NN′
`

=
MjMk

16π2

Zhω

k

∑

hh′

∫ ∞

0
dq′
∫ π

0
dφq′

q′

ωq′
Zh′

[(
B`′
φ −B`′

N

)
H− +

(
B0
φ −Bφ′

N

)
H+

]
.

(D.11)
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The difference in decay rates reads

γ(N → `hφ)− γ(N → ¯̀
hφ̄) = −gSU(2)Im

{[(
λ†λ
)
jk

]2
}
MjMk

4(2π)5

×
∑

h′

∫
dEdkdq′

∫ π

0
dφq′kF

eq
Nh
Zh

q′

kωq′
Zh′

[(
B`′
φ −B`′

N

)
H− +

(
B0
φ −Bφ′

N

)
H+

]

(D.12)

and the CP -asymmetry reads

εh(T ) =− gSU(2)
Im{[(λ†λ)jk]

2}
γ(N → LhN)

MjMk

4(2π)5

∑

h′

∫
dEdkdq′

∫ π

0
dφq′kF

eq
Nh
Zh

q′

kωq′
Zh′

×
[(
B`′
φ −B`′

N

)
H− +

(
B0
φ −Bφ′

N

)
H+

]

=− Im{[(λ†λ)jk]
2}

gc(λ†λ)jj

MjMk

4π2

×
∑

h′
∫

dEdkdk′
∫ π

0 dφ′kF eq
Nh
Zh

k′

pωp′
Zh′ [(B

`′
φ −B`′

N )H− + (B0
φ −B

φ′

N )H+]
∫

dEdkkfNZDZh(p0 − hpη)
, (D.13)

D.2.2 Vertex cut through {N2, `
′}

For NN ′
φ , we get

Im(IV )
NN′
φ

=
MjMk

16π2

Zhω

q

∑

h′

∫ ∞

0
dk′
∫ π

0
dφqk′

k′

ωq′
Zh′Z

N ′
φ (Aφ

′

` −A0
` )H+ . (D.14)

The difference in decay rates reads

γ(N → `hφ)− γ(N → ¯̀
hφ̄) =− gSU(2)Im

{[(
λ†λ
)
jk

]2
}
MjMk

4(2π)5

×
∑

h′

∫
dEdkdk′

∫ π

0
dφqk′kF

eq
Nh
Zh

k′

qωq′
ZN

′
φ Zh′(A

φ′

` −A0
` )H+ .

(D.15)

The CP -asymmetry reads

εh(T ) =− gSU(2)
Im{[(λ†λ)jk]

2}
γ(N → LhN)

MjMk

4(2π)5

∑

h′

∫
dEdkdk′

∫ π

0
dφqk′kF

eq
Nh
Zh

k′

qωq′
ZN

′
φ Zh′(A

φ′

` −A0
` )H−

=− Im{[(λ†λ)jk]
2}

gc(λ†λ)jj

MjMk

4π2

∑
h′
∫

dEdkdk′
∫ π

0 dφqk′kF
eq
Nh
Zh

k′

qωq′
ZN

′
φ Zh′(A

φ′

` −A0
` )H−∫

dEdkkfNZDZh(p0 − hpη)
,

(D.16)
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where we integrate over φqk′ and we take the coordinate system differently than for NN
N .



APPENDIX E

Subtraction of On-Shell Propagators

E.1 Low Temperature

We verify the relation in equation (5.52). The scattering rate γ(`φ→ ¯̀φ̄) can be split up into four

scatterings with different kinematics, corresponding to the four possibilities of combining the in-

and outgoing lepton modes. The scattering rates read

γ(`hiφ→ ¯̀
hf φ̄) =

∫
dp̃`hidp̃φdp̃¯̀hf

p̃φ̄(2π)4δ4(p`hi + pφ − p¯̀hf
− pφ̄)

×
∣∣M(`hiφ→ ¯̀

hf φ̄)
∣∣2 f`hifφ(1− f¯̀hf

)(1 + fφ̄), (E.1)

where (hi, hf ) = ±1 denote the helicity-to-chirality ratio of the initial- and final-state leptons (or

antileptons). We will drop the subscript for this appendix part, unless it is necessary, and all

equations are valid for one specific mode for each involved lepton, unless otherwise noted. With

this simplified notation, each of the four matrix elements is evaluated as

∑

s`,s¯̀

∣∣M(`hiφ→ ¯̀
hf φ̄)

∣∣2 =
[
(λ†λ)11

]2
|DN |2 2

[
2(pN · p`hi)(pN · p¯̀hf

)− (pN · pN )(p`hi · p¯̀hf
)
]
,

(E.2)

where we sum over the lepton spins s` and s¯̀ and the lepton flavours and DN = 1/[P 2
N −M2

N +

ip0
NΓN (p0

N )] is the neutrino propagator in the narrow-width approximation and ΓN (p0
N ) the total

width of the neutrino, which equals the total interaction rate, including both lepton modes. Putting

the propagator on its mass shell, P 2
N = M2

N , we get

∑

s`,s¯̀

∣∣Mos(`hiφ→ ¯̀
hf φ̄)

∣∣2 =
[
(λ†λ)11

]2
|Dos

N |2 2
[
2(pN · p`hi)(pN · p¯̀hf

)−M2
N (p`hi · p¯̀hf

)
]
, (E.3)
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where

|Dos
N |2 =

πδ(P 2
N −M2)

p0
NΓN (p0

N )
(E.4)

In vacuum without thermal masses, this reads

∑

s`,s¯̀

∣∣Mos(`φ→ ¯̀φ̄)
∣∣2 =

[
(λ†λ)11

]2
|Dos

N |2 2

[
M4
N

4
(1 + η)

]
, (E.5)

where the dependence on the angle η between the external leptons cancels out in the integration

for symmetry reasons, so we can neglect it and write

∑

s`,s¯̀

∣∣Mos(`φ→ ¯̀φ̄)
∣∣2 =

∑

s`,s¯̀

|M(`φ→ N)|2 |Dos
N |2

∣∣M(N → ¯̀φ̄)
∣∣2 . (E.6)

At finite temperature with quasiparticle dispersion relations, we can not derive equation (E.6)

accurately, but in the narrow-width approximation [15], one assumes that the influence of the

angle between the external particles is negligible and equation (E.6) holds.

Using the relations in equation (5.48), we derive

∣∣Mos(`hiφi → ¯̀
hf φ̄f )

∣∣2 f`hifφ,i(1− f¯̀hf
)(1 + fφ̄,f )−

∣∣Mos(¯̀
hi φ̄i → `hfφf )

∣∣2 f¯̀hi
fφ̄,i(1− f`hf )(1 + fφ,f )

= |Dos
N |2

1

4

∣∣M0
hi

∣∣2
∣∣∣M0

hf

∣∣∣
2 [
fLhi(1− f eq

`hf
) + f eq

`hi
fLhf − 4εNh f

eq
`hi

(1− f eq
`hf

)
]
f eq
φ,i(1− f

eq
φ,f ), (E.7)

where we have neglected terms of order ε2 and x2
L and added the subscripts i and f in the Higgs

boson distributions to clarify which momentum to use,

fφ,i = fφ(ωφ,i) = fφ(ωN − ω`hi) (E.8)

and likewise for fφ,f .

For the tree-level, CP -conserving amplitude, we have

∣∣Mtree(`hiφ→ ¯̀
hf φ̄)

∣∣2 =
∣∣Mtree(¯̀

hi φ̄→ `hfφ)
∣∣2 ≡ |M∆L=2|2hihf . (E.9)

For the full amplitude |M∆L=2|2, the on-shell part is also dominant. Since it is CP -conserving, we

write

|M∆L=2|2hihf ≈ |M
os
∆L=2|2hihf = |Dos

N |2
1

4

∣∣M0
hi

∣∣2
∣∣∣M0

hf

∣∣∣
2

(E.10)

and we get

∣∣Mtree(`hiφ → ¯̀
hf φ̄)

∣∣2 f`hifφ(1− f¯̀hf
)(1 + fφ̄)
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−
∣∣Mtree(¯̀

hi φ̄→ `hfφ)
∣∣2 f¯̀hi

fφ̄(1− f`hf )(1 + fφ)

= |M∆L=2|2hihf
[
fL,hi(1− f eq

`hf
) + f eq

`hi
fLhf

]
. (E.11)

Subtracting equations (E.7) and (E.11), we derive

γsub(`hiφ→ ¯̀
hf φ̄)− γsub(¯̀

hi φ̄→ `hfφ) =

∫
dp̃`hidp̃φdp̃¯̀hf

p̃φ̄(2π)4δ4(p`hi + pφ − p¯̀hf
− pφ̄)

× εNh |Dos
N |2

∣∣M0
hi

∣∣2
∣∣∣M0

hf

∣∣∣
2
f eq
`hi
f eq
φ (1− f eq

`hf
)(1 + f eq

φ )

≡εNh γos
eq(LhiH → LhfH) (E.12)

Using the relations

(1− f eq
`h )(1 + f eq

φ ) = (1− f eq
N )(1− f eq

`h + f eq
φ ), (E.13)

f eq
`hf

eq
φ = f eq

N (1− f eq
`h + f eq

φ ) (E.14)

and f eq
φ f

eq
`h (1− f eq

N ) = (1 + f eq
φ )(1− f eq

`h )f eq
N , (E.15)

which hold for ωN = ω`h + ωφ, it is straightforward to derive

γsub(`hiφ→ ¯̀
hf φ̄)− γsub(¯̀

hi φ̄→ `hfφ) = γsub(`hfφ→ ¯̀
hi φ̄)− γsub(¯̀

hf φ̄→ `hiφ),

γos
eq(LhiH → LhfH) = γos

eq(LhfH → LhiH) (E.16)

Inserting 1 =
∫

d4pN/(2π)4δ4(pN −p`hi−pφ) into equation (E.16), again using the first relation

from equations (E.12) and the expression for the total neutrino width, as derived in chapter 3,

ΓN (p0
N ) =

1

2p0
N

∑

hf=±1

∫
dp̃Lhf p̃H(2π)4δ4(pN − pLhf − pH)

∣∣∣M0
hf

∣∣∣
2

(1− f eq
Lhf

+ f eq
φ ), (E.17)

we arrive at equation (5.52),

∑

hf

[
γsub(`hiφ → ¯̀

hf φ̄)− γsub(¯̀
hi φ̄→ `hfφ)

]

=
∑

hf

[
γsub(`hfφ→ ¯̀

hi φ̄)− γsub(¯̀
hf φ̄→ `hiφ)

]

=

∫
dp̃Ndp̃`hidp̃φ(2π)4δ4(pN − p`hi − pφ)εNh

∣∣M0
hi

∣∣2 f eq
`hi
f eq
φ (1− f eq

N )

≡ εNh γeq(LhiH → N). (E.18)
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E.2 High Temperature

For the u-channel resonance at high temperature when Higgs bosons decay into neutrinos and

leptons while the neutrinos are stable, we can derive a relation similar to equation (5.52). The

width in the on-shell neutrino propagator is then not the decay rate but an interaction rate which

accounts for the processes where the neutrino interacts with the medium, that is, H → NL and

NL→ H. This width acts as a regulator of the u-channel resonance.

In the narrow-width approximation, the on-shell amplitude reads

∑

s`,s¯̀

∣∣Mos(`hiφ→ ¯̀
hf φ̄)

∣∣2 =
∑

s`,s¯̀

∣∣M(φ→ N ¯̀
hf )
∣∣2 |Dos

N |2
∣∣M(N`hi → φ̄)

∣∣2 , (E.19)

where the on-shell propagator is the same as in equation (E.4), but the width ΓN is given by the

kinematically allowed processes, H → NL and NL→ H.

Using the relations in equation (5.77), we derive

∣∣Mos(`hiφi → ¯̀
hf φ̄f )

∣∣2 f`hifφ,i(1− f¯̀hf
)(1 + fφ̄,f )−

∣∣Mos(¯̀
hi φ̄i → `hfφf )

∣∣2 f¯̀hi
fφ̄,i(1− f`hf )(1 + fφ,f )

= |Dos
N |2

1

4

∣∣M0
hi

∣∣2
∣∣∣M0

hf

∣∣∣
2 [
fLhi(1− f eq

`hf
) + f eq

`hi
fLhf + 4εφhf

eq
`hi

(1− f eq
`hf

)
]
f eq
φ,i(1− f

eq
φ,f ), (E.20)

Analogous to equation (E.11), we derive

∣∣Mtree(`hiφ → ¯̀
hf φ̄)

∣∣2 f`hifφ(1− f¯̀hf
)(1 + fφ̄)

−
∣∣Mtree(¯̀

hi φ̄→ `hfφ)
∣∣2 f¯̀hi

fφ̄(1− f`hf )(1 + fφ)

= |M∆L=2|2hihf
[
fL,hi(1− f eq

`hf
) + f eq

`hi
fLhf

]
, (E.21)

so that

γsub(`hiφ→ ¯̀
hf φ̄)− γsub(¯̀

hi φ̄→ `hfφ) = −εφhγos
eq(LhiH → LhfH) (E.22)

Using the relations

(1− f eq
`h )f eq

φ = f eq
N (f eq

`h + f eq
φ ), (E.23)

f eq
`h (1 + f eq

φ ) = (1− f eq
N )(f eq

`h + f eq
φ ) (E.24)

and f eq
φ (1− f eq

`h )(1− f eq
n ) = (1 + f eq

φ )f eq
`hf

eq
N , (E.25)

which hold for ωφ = ω`h + ωN , it is straightforward to derive

γsub(`hiφ→ ¯̀
hf φ̄)− γsub(¯̀

hi φ̄→ `hfφ) = γsub(`hfφ→ ¯̀
hi φ̄)− γsub(¯̀

hf φ̄→ `hiφ),

γos
eq(LhiH → LhfH) = γos

eq(LhfH → LhiH). (E.26)
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Inserting 1 =
∫

d4pN/(2π)4δ4(pφ−p`hi−pN ) into equation (E.26), again using the first relation

from equations (E.23) and the expression for the total neutrino width at high temperature, as

derived in chapter 3,

ΓN (p0
N ) =

1

2p0
N

∑

hf=±1

∫
dp̃Lhf p̃H(2π)4δ4(pH − pLhf − pN )

∣∣∣M0
hf

∣∣∣
2

(f eq
Lhf

+ f eq
H ), (E.27)

we arrive at equation (5.78) ,

∑

hf

[
γsub(`hiφ → ¯̀

hf φ̄)− γsub(¯̀
hi φ̄→ `hfφ)

]

=
∑

hf

[
γsub(`hfφ→ ¯̀

hi φ̄)− γsub(¯̀
hf φ̄→ `hiφ)

]

= −
∫

dp̃Ndp̃`hidp̃φ(2π)4δ4(pN − p`hi − pφ)εφh
∣∣M0

hi

∣∣2 f eq
`hi

(1 + f eq
φ )f eq

N . (E.28)
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[17] A. Anisimov, D. Besak and D. Bödeker, Thermal Production of Relativistic Majorana

Neutrinos: Strong Enhancement by Multiple Soft Scattering, [arXiv:1012.3784].

[18] M. Garny, A. Hohenegger and A. Kartavtsev, Quantum Corrections to Leptogenesis from

the Gradient Expansion, [arXiv:1005.5385].

[19] M. Beneke, B. Garbrecht, C. Fidler, M. Herranen and P. Schwaller, Flavoured Leptogenesis

in the CTP Formalism, Nucl. Phys. B843 (2011) 177–212 [arXiv:1007.4783].

[20] M. Beneke, B. Garbrecht, M. Herranen and P. Schwaller, Finite Number Density

Corrections to Leptogenesis, Nucl. Phys. B838 (2010) 1–27 [arXiv:1002.1326].

[21] B. Garbrecht, Leptogenesis: The Other Cuts, [arXiv:1011.3122].

[22] M. Garny, A. Hohenegger and A. Kartavtsev, Medium Corrections to the CP-Violating

Parameter in Leptogenesis, Phys. Rev. D81 (2010) 085028 [arXiv:1002.0331].

[23] Particle Data Group Collaboration, K. Nakamura et. al., Review of Particle Physics, J.

Phys. G37 (2010) 075021.

[24] E. Komatsu, K. Smith, J. Dunkley, C. Bennett, B. Gold et. al., Seven-Year Wilkinson

Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,

[arXiv:1001.4538].

[25] A. Strumia, Baryogenesis via Leptogenesis, [hep-ph/0608347].

[26] A. D. Sakharov, Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the

Universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35.

http://xxx.lanl.gov/abs/0802.2962
http://xxx.lanl.gov/abs/hep-ph/9704366
http://xxx.lanl.gov/abs/hep-ph/0310123
http://xxx.lanl.gov/abs/1012.5821
http://xxx.lanl.gov/abs/1012.3784
http://xxx.lanl.gov/abs/1005.5385
http://xxx.lanl.gov/abs/1007.4783
http://xxx.lanl.gov/abs/1002.1326
http://xxx.lanl.gov/abs/1011.3122
http://xxx.lanl.gov/abs/1002.0331
http://xxx.lanl.gov/abs/1001.4538
http://xxx.lanl.gov/abs/hep-ph/0608347


Bibliography 133

[27] K. Dick, M. Lindner, M. Ratz and D. Wright, Leptogenesis with Dirac Neutrinos, Phys.

Rev. Lett. 84 (2000) 4039–4042 [hep-ph/9907562].

[28] S. L. Adler, Axial Vector Vertex in Spinor Electrodynamics, Phys. Rev. 177 (1969)

2426–2438.

[29] J. S. Bell and R. Jackiw, A PCAC Puzzle: π0 → γγ in the Sigma Model, Nuovo Cim. A60

(1969) 47–61.

[30] S. Dimopoulos and L. Susskind, On the Baryon Number of the Universe, Phys. Rev. D18

(1978) 4500–4509.

[31] N. S. Manton, Topology in the Weinberg-Salam Theory, Phys. Rev. D28 (1983) 2019.

[32] G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37

(1976) 8–11.

[33] M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak

Interaction, Prog. Theor. Phys. 49 (1973) 652–657.

[34] C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model

and a Measure of Maximal CP Violation, Phys. Rev. Lett. 55 (1985) 1039.

[35] V. A. Rubakov and M. E. Shaposhnikov, Electroweak Baryon Number Non-Conservation in

the Early Universe and in High-Energy Collisions, Usp. Fiz. Nauk 166 (1996) 493–537

[hep-ph/9603208].

[36] M. Trodden, Electroweak Baryogenesis, Rev. Mod. Phys. 71 (1999) 1463–1500

[hep-ph/9803479].

[37] A. Riotto and M. Trodden, Recent Progress in Baryogenesis, Ann. Rev. Nucl. Part. Sci. 49

(1999) 35–75 [hep-ph/9901362].

[38] J. M. Cline, Baryogenesis, [hep-ph/0609145].

[39] A. Y. Ignatiev, N. V. Krasnikov, V. A. Kuzmin and A. N. Tavkhelidze, Universal CP

Noninvariant Superweak Interaction and Baryon Asymmetry of the Universe, Phys. Lett.

B76 (1978) 436–438.

[40] M. Yoshimura, Unified Gauge Theories and the Baryon Number of the Universe, Phys. Rev.

Lett. 41 (1978) 281–284.

[41] D. Toussaint, S. B. Treiman, F. Wilczek and A. Zee, Matter - Antimatter Accounting,

Thermodynamics, and Black Hole Radiation, Phys. Rev. D19 (1979) 1036–1045.

http://xxx.lanl.gov/abs/hep-ph/9907562
http://xxx.lanl.gov/abs/hep-ph/9603208
http://xxx.lanl.gov/abs/hep-ph/9803479
http://xxx.lanl.gov/abs/hep-ph/9901362
http://xxx.lanl.gov/abs/hep-ph/0609145


134 Bibliography

[42] S. Weinberg, Cosmological Production of Baryons, Phys. Rev. Lett. 42 (1979) 850–853.

[43] M. Yoshimura, Origin of Cosmological Baryon Asymmetry, Phys. Lett. B88 (1979) 294.

[44] S. M. Barr, G. Segre and H. A. Weldon, The Magnitude of the Cosmological Baryon

Asymmetry, Phys. Rev. D20 (1979) 2494.

[45] D. V. Nanopoulos and S. Weinberg, Mechanisms for Cosmological Baryon Production,

Phys. Rev. D20 (1979) 2484.

[46] A. Yildiz and P. H. Cox, Net Baryon Number, CP Violation with Unified Fields, Phys. Rev.

D21 (1980) 906.

[47] I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B249 (1985) 361.

[48] M. Dine, L. Randall and S. D. Thomas, Baryogenesis from Flat Directions of the

Supersymmetric Standard Model, Nucl. Phys. B458 (1996) 291–326 [hep-ph/9507453].

[49] A. D. Dolgov, NonGUT Baryogenesis, Phys. Rept. 222 (1992) 309–386.

[50] M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B94

(1980) 61.

[51] J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev.

D22 (1980) 2227.

[52] C. Wetterich, Neutrino Masses and the Scale of B-L Violation, Nucl. Phys. B187 (1981)

343.

[53] G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an

SO(10) Model, Nucl. Phys. B181 (1981) 287.

[54] R. Foot, H. Lew, X. G. He and G. C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of

Leptons, Z. Phys. C44 (1989) 441.

[55] E. Ma, Pathways to Naturally Small Neutrino Masses, Phys. Rev. Lett. 81 (1998)

1171–1174 [hep-ph/9805219].

[56] O. Elgaroy and O. Lahav, Neutrino Masses from Cosmological Probes, New J. Phys. 7

(2005) 61 [hep-ph/0412075].

[57] P. H. Frampton, S. L. Glashow and T. Yanagida, Cosmological Sign of Neutrino CP

Violation, Phys. Lett. B548 (2002) 119–121 [hep-ph/0208157].

[58] A. De Simone and A. Riotto, On The Impact of Flavour Oscillations in Leptogenesis, JCAP

0702 (2007) 005 [hep-ph/0611357].

http://xxx.lanl.gov/abs/hep-ph/9507453
http://xxx.lanl.gov/abs/hep-ph/9805219
http://xxx.lanl.gov/abs/hep-ph/0412075
http://xxx.lanl.gov/abs/hep-ph/0208157
http://xxx.lanl.gov/abs/hep-ph/0611357


Bibliography 135

[59] S. Blanchet, P. Di Bari and G. G. Raffelt, Quantum Zeno Effect and the Impact of Flavor in

Leptogenesis, JCAP 0703 (2007) 012 [hep-ph/0611337].

[60] S. Davidson and A. Ibarra, A Lower Bound on the Right-Handed Neutrino Mass from

Leptogenesis, Phys. Lett. B535 (2002) 25–32 [hep-ph/0202239].

[61] M. Y. Khlopov and A. D. Linde, Is It Easy to Save the Gravitino?, Phys. Lett. B138

(1984) 265–268.

[62] J. R. Ellis, J. E. Kim and D. V. Nanopoulos, Cosmological Gravitino Regeneration and

Decay, Phys. Lett. B145 (1984) 181.

[63] K. Kohri, T. Moroi and A. Yotsuyanagi, Big-bang Nucleosynthesis with Unstable Gravitino

and Upper Bound on the Reheating Temperature, Phys. Rev. D73 (2006) 123511

[hep-ph/0507245].

[64] V. S. Rychkov and A. Strumia, Thermal production of gravitinos, Phys. Rev. D75 (2007)

075011 [hep-ph/0701104].

[65] M. Ibe, R. Kitano, H. Murayama and T. Yanagida, Viable Supersymmetry and Leptogenesis

with Anomaly Mediation, Phys. Rev. D70 (2004) 075012 [hep-ph/0403198].

[66] W. Buchmüller, K. Hamaguchi, M. Ibe and T. T. Yanagida, Eluding the BBN Constraints

on the Stable Gravitino, Phys. Lett. B643 (2006) 124–126 [hep-ph/0605164].

[67] J. L. Feng, S. Su and F. Takayama, Supergravity with a Gravitino LSP, Phys. Rev. D70

(2004) 075019 [hep-ph/0404231].

[68] T. Kanzaki, M. Kawasaki, K. Kohri and T. Moroi, Cosmological Constraints on Gravitino

LSP Scenario with Sneutrino NLSP, Phys. Rev. D75 (2007) 025011 [hep-ph/0609246].

[69] W. Buchmüller, P. Di Bari and M. Plümacher, Cosmic Microwave Background,
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