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Zusammenfassung

Proteine sind die molekularen Maschinen der Zelle und gehören zu den essentiel-
len Grundbausteinen des Lebens. Ganze Netzwerke aus dynamischen Protein-Protein
Wechselwirkungen steuern das Leben auf zellulärer Ebene. Thema dieser Arbeit ist
es mittels Computersimulationen ein besseres Verständnis von Proteinkomplexen und
molekularen Rotoren zu erlangen. Hierbei konzentriere ich mich auf drei Schwerpunkt-
themen: Erstens trage ich dazu bei ein besseres Verständnis zur methodischen Unter-
suchung der Energielandschaften von Proteinen und Proteinkomplexen mittels der
Anwendung vektorieller Kräfte zu erlangen. Zweitens wende ich diese Methode an
um den biologisch wichtigen Integrin-Talin Komplex zu studieren, welcher die in-
itiale, kraftleitende Verbindung zwischen Zellinnerem und -äußerem schafft. Drittens
studiere ich wie mittels elektrischer Terahertz-Felder ein molekular Rotor auf einer
Goldoberfläche gesteuert wird.

Kräfte sind von Natur aus vektorielle Größen. Zur eindeutigen Beschreibung sind
Betrag, Richtung und Angriffspunkt nötig. Am Beispiel zweier Protein Komplexe wer-
den Wichtigkeit und Einfluß verschiedener Kraftparameter für die Entwicklung des
Systems unter Krafteinfluss untersucht. Das erste System ist ein Antikörper-Peptid
Komplex. Antikörper sind essentielle Bestandteile des adaptiven Immunsystems und
ihre Hauptaufgabe besteht in der Bindung pathogener Antigene. Anhand einer solchen
Antikörper-Antigen Bindung wird gezeigt, dass die Variation der Kraftangriffspunkte
zu unterschiedlichen Entbindungspfaden mit jeweils zwei Hauptbarrieren führt. Ex-
perimentelle Ergebnisse mittels Atomarer Kraftmikroskopie (AFM) stimmen hierbei
sehr gut mit Molekularen Dynamik (MD) Simulationen des Systems überein. Ferner
konnte ich für alle Entbindungsbarrieren die genauen molekularen Wechselwirkungen
mittels MD Simulationen identifizieren.

Ein weiteres interessantes System ist der Barnase-Barstar Komplex. Die evolutio-
näre Optimierung des Ribonuklease-Inhibitor Komplexes hat eine sehr starke Bindung
geschaffen. Anhand dieses Komplexes werden weitere Protokolle für die Erkundung
der Energielandschaft von Protein Komplexen getestet. Besonders hervorzuheben ist,
das mittels variierender Parameter eine interne Hierarchie der Stabilität der Bindungs-
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Zusammenfassung

und Faltungsmotive erstellt werden kann. Zusätzlich wird gezeigt, dass mit hohen Zug-
geschwindigkeiten die Labilität und somit die Barrieren des Komplexes dominieren,
während bei niedrigen Zuggeschwindigkeiten die Stabilität und die Minima in der
Energielandschaft das Verhalten des Komplexes bestimmen.

Kräfte sind nicht nur Mittel zum Zweck, sondern beeinflussen das Leben auf allen
Längenskalen, von ganzen Organismen bis zu nanoskopischen Proteinen. Für Inte-
grine als die wichtigsten Adhäsionsrezeptoren der Zellen spielen Kräfte physiologisch
eine besonders wichtige Rolle. Das Integrin wird von seinem Ligand Talin aktiviert.
Der Integrin-Talin Komplex stellt die initiale kraftleitende Verbindung zwischen ex-
trazellulärer Matrix und intracellulärem Zytoskelett her. Die zwei wichtigsten Ergeb-
nisse sind die Erweiterung des Aktivierungsmechanismusses des Komplexes um eine
zusätzlich benötigte Kraftkomponente und die Entdeckung der kraftinduzierten Sta-
bilisierung des Komplexes durch die Ausbildung eines stabilisierenden beta-Faltblatts
zwischen Integrin und Talin. Des Weiteren konnte ich zeigen, dass der Komplex ver-
sucht sich entlang seiner mechanisch stabileren Achse auszurichten, falls er frei rotieren
kann.

In der Natur sind molekulare Rotoren wichtige Bausteine für einige essentielle Nan-
omaschinen. Besonders bekannte Beispiele hierfür sind die F1-ATPase oder das Fla-
gellum von Bakterien. In beiden Fällen entscheidet die Rotationsrichtung sogar über
die Wirkung der Maschinen. Für die kontrollierte Verwendung von Rotoren in artifi-
ziellen Nanomaschinen wird ein besseres Verständnis dieser Systeme von nöten sein.
In meinem letzten Projekt untersuche ich einen diethylsulfid Rotor auf einer Gold
(111) Oberfläche mittels MD Simulationen. Die Energielandschaft dieses Rotors kann
mit elektrischen Feldern im Terahertzbereich so manipuliert werden, dass die effekti-
ve Rotationsrichtung und -frequenz im Gigahertzbereich gesteuert werden kann. Eine
theoretische Beschreibung dieses Phänomens und seine Abhängigkeit von der Struktur
des Rotors werden behandelt. Dies kann ein erster Schritt zu einem Interface zwischen
bekannten elektrischen Schaltungen und zukünftigen artifiziellen Nanomaschinen sein.
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Abstract

The scope of this work is to gain insight and a deeper understanding of exploring and
controlling molecular devices like proteins and rotors by fine tuned manipulation via
mechanical or electrical energies. I focus on three main topics. First, I investigate
vectorial forces as a tool to explore the energy landscape of protein complexes. Sec-
ond, I apply this method to a biologically important force transduction complex, the
integrin-talin complex. Third, I use Terahertz electric fields to manipulate the energy
landscape of a molecular rotor on a gold surface and drive their effective rotation
bidirectionally.

Force is by nature a vector and depends on its three parameters: magnitude, direc-
tion and attachment point. Here, the impact of different force protocols varying these
parameters is shown for an antibody-antigen complex and the ribonuclease-inhibitor
complex barnase-barstar. Antibodies are essential for our adaptive immune system in
their function to bind specific antigens. Here, the binding of an antibody to a peptide
is probed with varying attachment points. Different attachment points clearly change
the dissociation pathways. The barriers identified using experimental atomic force
microscopy (AFM) and molecular dynamics (MD) simulations are in excellent agree-
ment. I determine the molecular interactions of two main barriers for each setup. This
results in a common outer barrier of the complex and different inner barriers probed
by AFM. The ribonuclease barnase and its inhibitor barstar form an evolutionary
optimized complex. Different force protocols are shown to determine the hierarchy
of relative stability within a protein complex. For the barnase-barstar complex, the
internal fold of the barstar is identified to be less stable than the barnase-barstar
binding interaction. High velocities probe the lability or barriers of the system while
low velocities probe the stability or energy wells of this system.

Forces impact biological life on totally different length scales which range from
whole organisms to individual proteins. Integrins are the major cell adhesion recep-
tors binding to the extracellular matrix and talin. Talin activates the integrins and
creates the initial connection to the actin cytoskeleton of the cell. Here, I have chosen
to investigate the integrin-talin complex as a biologically important force transduc-
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tion complex. The force dependence of the system is probed by constant force MD
simulations. The two main results include the activation of the complex and its force
response. I demonstrate, that the binding of talin to integrin does not disrupt the
integrin’s transmembrane helix interactions sterically. Since, this disruption is neces-
sary for integrin activation, a modified activation mechanism requiring a small force
application is proposed. The response of the integrin-talin complex normal and par-
allel to the cell membrane is analyzed. The complete dissociation pathways generated
for both directions identify a force-induced formation of a stabilizing beta strand be-
tween integrin and talin only for normal forces. Furthermore, the complex tries to
rotate such that the external force aligns with the more force resistant axis of the
complex.

In nature, molecular rotors are essential building blocks of many molecular ma-
chines and brownian motors like the F1-ATPase or the flagellum of a bacterium. The
direction of rotation often steers different processes in clockwise and counterclockwise
directions. Rotation on the nanoscopic level in artificial devices is still very limited
and requires a deeper understanding. In my last project, I study the switching and
driving of a molecular diethylsulfid rotor on a gold (111) surface by Terahertz electric
fields. The response of the rotational energy landscape to static and oscillation elec-
tric fields is analyzed. Varying the Terahertz driving frequency, the rotation direction
and frequency are controlled. A theoretical framework is presented to describe the
behavior of the molecular rotor. This can be seen as the first step into the direction of
man-made controllable nano-devices driven and controlled by energy from the electric
wall-socket.
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1
Introduction

Biological life arose from inorganic matter by forming a first generation of organic
macromolecules1. These macromolecules gained the ability of self-organization and
self-replication. Life evolved from single- to multi-cellular organisms. Today, all or-
ganisms depend on the functional interaction of highly specialized molecular nanoma-
chines, the proteins.

How can you gain insight into the nanoscopic world of life on the molecular level?
The answer lies in the combination of different approaches. This highly interdisci-
plinary research area, the life sciences, complement each other by accumulating ideas
and exchanging methods and knowledge from physics, biology, chemistry, computer
sciences and medicine. It can be subdivided into many fields of active research. One
of these fields is biophysics. In this interdisciplinary field, physical toolkits and meth-
ods are used to study biological building blocks and systems. My contribution to this
field is the examination and manipulation of the energy landscape of protein-protein
complexes using molecular dynamics (MD) simulations. In addition to these mechan-
ical manipulations I study the control of a non-deterministic molecular rotor with
Terahertz electric fields.

Protein function and protein-protein interactions are determined by their dynam-
ics as well as by their stability2. In the past 15 years, observing protein internal
dynamics became possible due to advanced experimental methods like nuclear mag-
netic resonance (NMR) relaxation experiments3–5. Förster resonance energy transfer
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1 Introduction

(FRET) experiments can be used to study protein folding, protein-protein interac-
tions and in vivo protein transport or turnover6–9. Single-molecule force spectroscopy
like atomic force microscopy (AFM) or optical traps can detect forces resulting from
conformational changes, binding or activation events. The unfolding and refolding of
titin and bacteriorhodopsin10–12 or the ligand dependent fluctuations of calmodulin13

are prominent examples (For details on AFM see Section 2.2.4).

However, experimental techniques are not capable to yield insight into protein dy-
namics on the atomistic level, yet. Therefore, computer simulations can be used to
complement experimental techniques14. Molecular dynamics (MD) simulations in-
tegrate classical Newton dynamics using empirical force fields to simulate the time
development of a system. An ever increasing amount of computational power15,16 and
improving algorithms allow to reach increasing system sizes and simulation timescales
from picoseconds up to a few milliseconds17. Large systems with a few million atoms
like the simulation of virus capsids18,19 or large macromolecules like a ribosome20,21

can be simulated. Simulations of the NTL9(1-39) identify a set of 1.5 ms long fold-
ing pathways17. Even though, biological processes and transitions may require even
longer times under equilibrium conditions. A reduction of the system size using a
coarse graining or the use of implicit water can speed up the simulation at the cost
of reduced accuracy. Parallel approaches like replica exchange molecular dynamics
simulate the system at multiple temperatures22 or intelligent sampling methods like
the Markov Model approach in the NTL9 protein folding can optimize the sampling
of slow processes within a given computational time23. Since the protein dynamics is
determined by their potential energy landscape, the addition of a potential can speed
up such processes. Conformational flooding like methods employ artificial potentials
destabilizing sampled conformations24,25. The drawbacks are that the system can
neither be dynamically steered nor mimicked by experiments. In this work, we use
mechanical and electric energy to influence the energy landscape of the chosen sys-
tems. Mechanical forces are used to achieve optimal steering of the transitions along
the chosen reaction coordinate by tilting the energy landscapes.

The application of forces in MD simulations is realized by mimicking AFM ex-
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periments. Harmonic potentials are used as analogon to mechanical springs which
can manipulate individual atoms, residues or chains. Combining MD simulations
and experiments enable to identify the key events in force-induced unfolding of the
titin immunoglobulin domain I2726 or in the exploration of the energy landscape of
the antibody fragment H6 binding to the leucine zipper GCN4-p1 antigen27 (Section
3.2). Furthermore, MD simulations are challenged to gain predictive character and
first successes have been made14. For example, the talin rod unfolding simulations
predicted decryption of hidden vinculin binding sites under force28. This effect has
been confirmed by magnetic tweezer, total internal reflection and AFM measurements
approximately one year later29.

Forces are characterized by their magnitude, their direction and their specific at-
tachment point. These three characteristics determine the influence of the applied
force on the system and its evolution. An example for the importance of the direc-
tion and attachment point of forces is the well studied molecule ubiquitin. Chains
of ubiquitin molecules linked by different covalent bonds are found in nature. It is
shown by single molecule force experiments and computer simulations that the me-
chanical stability of ubiquitin depends on the attachment points of the force30–32. The
application of forces at different attachment points to a protein is also used by the
group of Prof. M. Rief to probe the green fluorescent protein (GFP) molecule with
single molecule force measurements. They gain the unfolding energy landscape of the
GFP and can model the dependence on the force application to the molecule with an
elastic bond network33–35. The choice of the force application may critically influence
the results of experiments and simulations.

Life at the molecular level is not based on the function of isolated proteins, but
on a finely choreographed interplay of proteins interacting with each other and their
environment. Thus, this work focusses on studying the examination of protein-protein
interactions. My first project in cooperation with Dr. J. Morfill and Prof. H. E. Gaub
combines experimental AFM measurements with MD simulations to explore the en-
ergy landscape of an antibody binding to a target peptide. The binding site of the
complex is not only defined by the binding energy since its dissociation pathways
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differs for each force attachment point. The combined efforts of experiments and sim-
ulations could identify a two barrier unbinding with the higher barrier being dominant
in the equilibrium dissociations and the lower barrier with the smaller potential width
to be dominating the AFM results. The SMD simulations could identify the atomistic
interactions for each barrier (Section 3.2). My second project intensifies the studies on
the influence of different applied force vectors to protein complexes. The well studied
and highly stable barnase barstar complex serves as a model complex. The effect of
attachment points, geometry and loading rates of the applied forces are studied. A
high loading rate (fast pulling) is shown to test the lability of the energy landscape.
Slow changes address the stability of the system. The final conformational state of the
unbound proteins strongly depended on the force attachment points. The individual
folds of both binding partners are shown to be less stable than the protein-protein
binding site (Section 3.3).

Forces are not only a tool to explore and examine proteins. Many biological sys-
tems experience forces in a physiological environment. For example, the gigantic
titin protein fulfills an essential passive role in muscle contraction and elasticity26,37.
The enzymatic role of the titin kinase has been shown to be actively regulated by
forces38. On the cellular level tension plays an important role. Cells forming tis-
sues interact with each other as well as with the extracellular matrix (ECM)39–41.
In this context, adhesion forces and force sensing of the environment are essential.
Integrins are the major class of cell adhesion receptors which mediate cell-cell and
cell-ECM interactions. Furthermore, they transmit bidirectional signals and forces
between ECM and their cytoplasmic domain42,43. The integrins play central roles
in cellular adhesion, migration, apoptosis, development and immune responses44,45.
For functional adhesions, the integrins need to be connected to the cytoskeleton of
the cell46. Recent three-dimensional interferometric photoactivated localization mi-
croscopy (iPALM) measurements showed that the talin molecules bridge the cyto-
plasmic gap between integrins and the cytoskeleton47. Talin is an essential adaptor
protein which activates the integrins on the inside-out signaling pathway48. It is com-
posed of the head domain binding the integrin and its rod domain binding the actin
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cytoskeleton. The rod domain is shown to decrypt hidden vinculin binding sites under
force to allow additional mechanical stabilization29,49. Recently, structures of the in-
tegrins transmembrane region50 is solved by NMR, while the integrin-talin complex51

and the complete talin head group52 are solved by X-ray crystallography. This allows
to study the integrin-talin complex by MD simulations.

In my third project I focus on the direct interface of the integrin-talin complex
by simulating the complex under equilibrium conditions and analyze the fluctuation
behavior of the integrin residues. Finally, I probe the integrin-talin complex with
constant forces in the range of 20 - 500 pN in different directions and identify the
residues important for the mechanical stability of the complex. These residues are
highly conserved and show strong binding. The force response of the complex is found
to to be direction dependent. Further, I determine a force induced formation of an
intermolecular beta-sheet which stabilizes the integrin-talin complex against forces
normal to the plane of the cell membrane. This is the key mechanism in the self-
strengthening force response of the complex. Based on these results, we proposed a
force dependent activation of the integrin extending a recently published mechanism
by Anthis et al.51. More details can be found in Chapter 4.

My last project is a cooperation with Prof. R.D. Astumian. Complementing my
previous work, the energy landscape of a molecular diethylsulfide (DES) rotor on a
gold (111) surface is now influenced by Terahertz electric fields instead of by mechan-
ical forces. But why should we study molecular rotation? Since the invention of the
wheel approx. 4000 BC, rotation in the macroscopic world is part of our daily lives.
Cars, engines or soccer - so much depends on rotation. In the nanoscopic world ro-
tations are as widely spread as in the macroscopic. Rotations occur around chemical
bonds or in essential machines like the F1-ATPase53 or the bacterial flagellar motor54.
However, the behavior of macroscopic systems is different from nanoscopic ones. Low
Reynolds numbers and high thermal noise dominate the behavior of many nanoscopic
systems55,56. The harvesting of molecular rotation for biotechnological devices or a
deep understanding of rotational concepts are yet to be achieved. Our system is a
minimal system of a small molecule rotating on a periodically structured surface in
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vacuum. It has been studied experimentally with a scanning tunneling microscope
(STM) by the group of Prof. E. C. H. Sykes57. We use parallel static and oscillating
electric fields to characterize and drive the molecular rotor depending on its confor-
mational state. The intrinsic energy landscape dependent on the rotational angle and
the current field is simulated. The rotor’s frequency response on the external electric
field could be modeled with two main contributions at the characteristic frequency
and at twice its value. Thus, we provide a theoretical framework for the understand-
ing of electric driving of surface mounted rotational motion. Details can be found in
Chapter 5. This theory can be used as a first step to design biotechnical applications
driven by surface mounted molecular rotors in the GHz regime. This may be a first
step to fuel molecular machines like the F1-ATPase in a highly parallel way directly
by electric current from a power socket.

In summary, I focussed on gaining a better understanding of manipulating and
exploring molecular devices like proteins and rotors by fine tuned manipulation via
mechanical or electrical energies.

10



2
Theory

This chapter describes the theoretical frameworks and basic methods on which this
dissertation is based on. Specific biological details and particular methods used in the
projects can be found in Chapters 3.2 - 5

2.1 Molecular Dynamics simulations

The main method of my thesis are MD simulations. These computer simulations cal-
culate the dynamics of molecular systems like proteins, rotors or membranes using
statistical mechanics and Newton’s equation of motion in atomistic detail. MD simu-
lations are based on the following three main approximations. Textbooks on MD can
give further insight58,59.

2.1.1 Born-Oppenheimer approximation

Aim: Separation of motion into time-independent electron and time-dependent atomic
nuclei motion.

The time-dependent Schrödinger equation describes the time evolution of a quan-
tum system.

HΨ = i~
δΨ

δt
(2.1)

11



2 Theory

where the Hamiltonian H describes the sum of potential and kinetic energy. Ψ is the
wave function which contains the information about all particles of the system and ~
the Planck constant divided by 2π.

Since the analytical calculation of the exact solution of the Schrödinger equation for
multiple nuclei and electrons is not possible, Max Born and J. Robert Oppenheimer
proposed to decouple the motion of the atomic nuclei from the motion of the elec-
trons60. If the velocity of the atomic nuclei is small compared to the electrons, it can
be assumed that the electrons adapt to the state of the atomic nuclei adiabatically
and instantaneously. As a result the wave function Ψ of the complete system can be
written as a product of the time-dependent wave function of the atomic nuclei Ψn and
the time-independent electron wave function Ψe

Ψ(R, r, t) = Ψn(R, t)Ψe(r;R) (2.2)

where R = (R1,R2, ...,RN) and r = (r1, r2, ..., rK) are the coordinates of the N nuclei
and the K electrons, respectively.

The wave function Ψe of the electronic subsystem depends only on the coordinates
R and not on the velocities vR of the nuclei. Thus, the electronic subsystem is solved
given fixed nuclei positions R by

He(R)Ψe(r;R) = Ee(R)Ψe(r;R). (2.3)

The electric Hamiltonian He = H −Hn can be expressed as the Hamiltonian of the
complete system H minus the Hamiltonian of the nuclei Hn. The energy eigenvalues
Ee(R) of eq. 2.3 represent the potential energy surface. By applying 2.2 and 2.3 to
2.1, the following time-dependent Schrödinger equation for the atomic nuclei can be
obtained:

(Tn + Ee(R))Ψn(R, t) = i~
δΨn(R, t)

δt
(2.4)

Tn is the kinetic energy of the nuclei. The Born-Oppenheimer approximation is valid
as long as the electronic eigenvalues Ee of eq. 2.3 are not overlapping. This can
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2.1 MD Simulations

usually be assumed for molecules in the ground state.

2.1.2 Classical dynamics

Aim: Speed up simulations by treating large quantum mechanical systems with clas-
sical physics.

Due to the large number of atoms in current MD simulations, the calculation of
the molecular dynamics is restricted to the motion of the atomic nuclei. Further-
more, solving the time-dependent Schrödinger equation of the system would be too
time consuming. Therefore, the nuclei are treated as classical particles (Ehrenfest
theorem61) with a potential energy

V (R) = E0
e (R) (2.5)

with the potential energy surface of the ground state E0
e (R) according to eq. 2.3. The

motion of the nuclei is described by Newton mechanics:

Fi = mi · ai (2.6)

−∇Ri
V (R) = mi ·

δ2Ri

δt2
(2.7)

with the force Fi and the acceleration ai acting on the ith atom of the system. The
time evolution of the system is calculated in small time steps ∆t by the leap-frog
algorithm62:

vi(t+
∆t

2
) = vi(t−

∆t

2
) +

Fi(t)

mi

·∆t (2.8)

Ri(t+ ∆t) = Ri(t) + vi(t+
∆t

2
) ·∆t. (2.9)

These equations are solved iteratively every time step resulting in trajectories of po-
sitions R(t) (and velocities v(t) = (v1(t),v2(t), ...,vN(t))) for all atoms (i=1,2,...,N)
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in the system. The time step ∆t of the simulation is restricted to 1 fs by the fastest
relaxation times of the system, the bond and angle vibrations involving hydrogen
atoms. These bond vibrations do not generally couple to the global protein domain
motions. They can be constrained by algorithms like LINCS to increase the time step
to 2 - 4 fs63.

2.1.3 Force fields

Aim: Replace solving of electronic Schrödinger equation by using empirical potentials.

Figure 2.1: This figure indicates the different types of potentials used for a force field.

MD simulations require a potential energy landscape V (R) to describe the atomic
interactions in the system. The Born-Oppenheimer approximation reduces this prob-
lem to a time-independent Schrödinger equation which depends on the positions of

14



2.1 MD Simulations

the nuclei of the system only. Due to the large number of electrons in proteins, the
computational costs are to high to solve equation 2.3. Thus, the potential energy
surface is approximated by a force field V (R). It is build from classical potential
energy expressions and their associated adjustable parameters64. Pairwise additivity
of these energy terms is usually assumed.

Figure 2.1 illustrates the main energy terms contributing to a Force Field V (R).
The bonded energy terms describe bond stretching (Vbond), angle bending (Vangle) and
torsion around dihedral angles (Vdih). The non-bonded terms are the Lennard-Jones
(VLJ) and Coulomb (VCoul) potentials.

V (R) = Vbond + Vangle + Vtorsion + VLJ + VCoulomb (2.10)

=
∑

bonds

kb
2

(l − leq)2

+
∑

angles

kθ
2

(θ − θeq)2

+
∑

dihedrals

Vn
2

(1 + cos(nΦ− δ))

+
∑

pairs i, j

4εij

[(
σij
Rij

)12

−
(
σij
Rij

)6]
+

qiqj
4πε0Rij

(2.11)

The bond and angle force field parameters are the force constants kb, kθ, the equilib-
rium angles θeq and equilibrium bond lengths leq. The torsion potential is described
by it multiplicity n, its barrier height Vn and its phase δ. Improper dihedrals are
treated analog to normal angles. The non-bonded parameters are the partial charges
qi and the Lennard-Jones (LJ) parameters εij and σij. Further details can be found
in the review by Prof. W.L. Jorgensen64.

In this thesis, the classical OPLS all atom force field is used for all protein-protein
interaction projects (Chapters 3.2-4)65. For the simulation of the molecular rotor on
gold in Chapter 5 the GolP force field is applied. It is optimized to describe peptide
adsorption to gold in vacuum66.
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2.1.4 Simulation details

In this subsections, some general details of MD simulations used in this thesis are
discussed. All MD simulations are performed using the GROMACS software pack-
age67–70. Further technical details can be found in the GROMACS manual71.

Explicit water and periodic boundary conditions

Proteins do not only interact with other proteins, but their natural environment
features membranes, macromolecules, ions and water as interaction partners. For
simulating protein-protein interactions the complexes are solvated in explicit water
with physiological concentrations of sodium chloride. Periodic boundary conditions
are used to minimize artifacts caused by boundaries58 with simulation boxes large
enough to accommodate all simulated conformations of each system properly.

Non-bonded interactions

The most time consuming step in MD simulations is the calculation of the non-bonded
interactions. The number of interactions scales with O(N2) quadratically with the
number of the atoms N in the simulated system (double sum in eq. 2.11). To improve
the scaling for large systems, the with R−6 fast decaying LJ interactions are typically
cut off between 1.0 to 1.4 nm. The long ranging Coulomb interactions decay slowly
with R−1 and cannot simply be cutoff72. Therefore, the Particle-Mesh Ewald (PME)
algorithm scaling with O(NlogN) is used73. Here, the interaction potential VCoul is
separated into a short ranged term Vsr and a long ranged term Vlr. By calculating the
short ranged term in real space and the long-ranged term in reciprocal space using
Fast Fourier Transformation with a discrete mesh both terms converge quickly74.
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2.1 MD Simulations

Temperature coupling

The temperature T in MD simulations is defined by the kinetic energy Ekin of the
system70

Ekin =
∑

atoms i

mi

2
v2
i =

1

2
NfkBT (2.12)

with Nf degrees of freedom, the Boltzmann constant kB, the velocity vi and mass mi

of the ith atom.

Numerical integration, approximation of non-bonded interactions or dissipative
work done on the system can change the temperature T of a (sub)system. Coupling
the simulation box to a large temperature bath with a fixed reference temperature T0

can correct this effect. Therefore, the Berendsen algorithm75 is based on extending
the simple Newtonian equation 2.6 to a Langevin formulation by introducing a friction
and a stochastic term, using a Gaussian stochastic variable ξi with zero mean.

mi · v̇i = Fi −
mi

2τT
vi + ξi(t) (2.13)

〈ξi(t)ξj(t+ τT )〉 =
mi

τT
kBT0δ(τT )δij (2.14)

It effectively rescales the velocities of the particles (v′ = λv) with a factor

λ =

√
1 +

∆t

τT

(
T0

T
− 1

)
(2.15)

with the coupling time constant τT and the integration time step ∆t. The change in
temperature is then described by

dT (t)

dt
=

1

τT
(T0 − T (t)). (2.16)

The Berendsen thermostat does not result in a well-defined ensemble. Depending on
the coupling time constant τT something between a micro canonical and a canonical
ensemble is created76. In 2007 the velocity rescaling algorithm was developed to allow
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a canonical distribution. It can be understood as a Berendsen thermostat with an
added stochastic term including Wiener noise dW 77

dT (t)

dt
=

1

τT
(T0 − T (t)) + 2

√
T0T (t)

NfτT

dW

dt
. (2.17)

The velocity rescaling algorithm is used in the more recent integrin/talin and rotor
projects.

Pressure coupling

For the equilibration of the systems, a Berendsen pressure coupling is used75. Analog
with the temperature coupling the system is coupled to an external pressure bath.
The box vectors are scaled to decay toward a chosen reference pressure P0 by

dP (t)

dt
=

1

τP
(P0 − P (t)) (2.18)

. where τP is the time constant for the pressure coupling.
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2.2 Force measurements on proteins

2.2 Force measurements on proteins

The examination of the protein-protein interactions using directed force vectors re-
quires a background about proteins. Their energy landscape and kinetic interaction
models in equilibrium and under force are reviewed. Relevant force probe techniques
will complement this section.

2.2.1 Protein structure

Proteins have different levels of internal structure and organization (Figure 2.2). Their
basic building blocks are the amino acids. The 22 different standard amino acids can
be connected via peptide bonds. The sequence of amino acids is called the primary
structure of a protein.

The functional form of a protein is a complex three dimensional structure. It has
two structural main motifs: α-helices and β-sheets, also called secondary structure
elements. These are stabilized by hydrogen bond interactions and connected via
flexible loops. The final three dimensional structure of a single protein is called
the tertiary structure of the protein. Its formation is often driven by non-specific
hydrophobic interactions and stabilized by hydrogen bonds, salt-bridges, van-der-
Waals interactions and/or disulfide bonds. A complex of multiple proteins is called a
quaternary structure. It is stabilized by the same interactions as a tertiary structure79.

The calculation of the three dimensional protein structure from its amino acid
sequence is still only possible for small proteins80–85. Larger structures are solved with
the help of experiments. Experimental structure determination at atomistic detail
is mainly driven by X-ray crystallography and nuclear magnetic resonance (NMR)
spectroscopy. Both techniques result in static structures of stable conformations. The
importance of protein structures is clearly stated by the Nobel Prize in 1962. It was
awarded for the first atomic structure of a protein using X-ray crystallography to John
Kendrew and Max Perutz86.
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Figure 2.2: This figure shows the different levels of protein structure. (Taken from
Wikipedia78)

2.2.2 Energy landscape of a protein

The description of the protein complexes and molecules in terms of an energy land-
scape is used in all projects of this thesis. The main development of this energy
landscape picture for proteins was done in the field of protein folding. The prediction
of a protein structure from the knowledge of its sequence alone is one of the goals in
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proteomics. According to Anfinsen’s thermodynamic hypothesis, the native structure
of most proteins is a thermodynamically stable structure under the given environmen-
tal conditions87,88. Thus, it is independent of its kinetic folding pathway and depends
only on its intrinsic high dimensional energy landscape.

Figure 2.3: This figure shows different views of protein folding funnels. (Taken from
Dill et. al.89)

Finding the native state by a random search in a huge conformational energy land-
scape would require much longer times than biological folding experiments actually
do. This conflict is thus known as Levinthal’s paradox89. Figure 2.3 A pictures a
golf course potential energy landscape on which a random walk (e.g. by a golf ball)
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would search very long to find the minimum. Levinthal proposed a folding pathway
of intermediates leading to a reduced search time. Lacking a physical basis for this
model, the idea of a funnel shaped energy landscape was introduced89–91 (Fig. 2.3
C). Thus, different pathways can lead to the same energy minimum. The progressive
organization through various stages of partial folding on the way to the native struc-
ture results in a rugged energy landscape92 (Fig. 2.3 D and E). The ruggedness of the
energy landscape around the native structure allows proteins and protein complexes
multiple functional conformations93,94.

For a protein to function, it needs to undergo dynamic changes. The functions of a
protein like enzymatic reactions, conformational changes, association or dissociation
can all be understood as the protein moving on its free energy landscape. Therefore,
these processes are controlled by the energy barriers, plateaus and wells in a rugged
energy landscape (Fig. 2.3 F). As protein-protein complexes are a quaternary protein
structure, these protein complexes can be understood in terms of multidimensional
energy landscapes as well.

2.2.3 Thermodynamics and kinetics

Protein-protein complexes result from an interplay of multiple weak interactions. Only
the sum of multiple interactions designs a stable connection.

Force free molecular interactions A single non-covalent bond between two reac-
tion partners A and B can be described by a two state model

A + B↔ AB. (2.19)

The Arrhenius equation describes the dependence of the rate constant k of such a
reaction in terms of temperature T, Boltzmann constant kB, attempt frequency νon/off
and the height of the activation energy barrier ∆Gon/off

96. In equilibrium the constant
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(a) Arrhenius reaction rates (b) 3D energy landscape

(c) One barrier (d) Two barriers

Figure 2.4: This figure shows a 1-dimensional potential energy landscape of a chemical
bond (Adapted from95). (A) The activation energy of the on/off-reactions
are indicated as ∆Gon/off and the binding energy is ∆G. (B) This graph
shows the schematic energy landscape of a protein-protein interaction.
The green and the blue lines represent different dissociation pathways. (C)
Applying a force results in a tilted energy landscape with an effectively
reduces barrier height ∆Goff . (D) Different potential width of multiple
barriers can lead to a shift of the global maximum position in the tilted
energy landscape.
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binding and unbinding is driven by thermal fluctuations.

k0
on = νone

−∆Gon
kBT (2.20)

k0
off = νoffe

−∆Goff
kBT (2.21)

The dissociation constantKD is a measure for the stability of a bond under equilibrium
conditions. It is defined as

KD =
[A][B]

[AB]
=
koff
kon

=
νoff
νon

e
− ∆G

kBT (2.22)

Assuming ∆G = ∆Goff −∆Gon and νoff ≈ νon equations 2.20, 2.21 and 2.22 result in

KD =
koff
kon

= e
− ∆G

kBT (2.23)

Bell-Evans-model In many biological and experimental systems, bond dissociation
occurs under dynamic load. External forces tilt the energy landscape and thus reduce
the energy of the transition state. The Arrhenius equation was extended by Bell to
describe this influence of external forces for cell adhesion98. The model was further
improved by Evans99,100. The effective decrease of the barrier height is determined
by the applied Force F times the potential width ∆x (red arrow in Figure 2.4 C).
For deep potentials the potential width ∆x can be assumed to be independent of the
applied force. This leads to a force dependent dissociation rate101

koff (F ) = ν0e
−∆Goff−F ·∆x

kBT (2.24)

= k0
offe

F ·∆x
kBT (2.25)

with the natural vibration frequency ν0. From this dissociation rate the time evolution
of existing bonds NB can be described as

dNB

dt
= −koff (t)NB(t) (2.26)
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Integrating eq. 2.26 over time leads to the number of intact interactions NB:

NB(t) = e−
∫ t
0 dt’ koff (t′) (2.27)

= e−
∫ F
0 df koff (f)·ḟ−1

(2.28)

It is assumed, that the force can be expressed as a continuous and reversible function
of time F(t). The dissociation of molecular interactions are influenced by thermal fluc-
tuations, causing a probability distribution of unbinding forces p(F ). It is determined
from the number of dissociated bonds (1−NB) as follows:

p(F ) =
d
dF

(1−NB(F )) (2.29)

= koff (F ) · e−
∫ F
0 dfkoff (f)·ḟ−1

(2.30)

= k0
offe

F ·∆x
kBT · e−k0

off

∫ F
0 df e

F ·∆x
kBT ·ḟ−1

(2.31)

The most probable rupture force F ∗ is defined by the maximum condition dp(F )
dF =

0. For a force independent loading rate Ḟ the most probable rupture force can be
described as

F ∗(Ḟ ) =
kBT

∆x
ln

(
Ḟ∆x

kBTk0
off

)
∝ ln(Ḟ ) (2.32)

The most probable rupture force shows a linear dependence on the logarithm of the
loading rate Ḟ = dF

dt . Thus, in the case of slow pulling (low loading rates), the system
has can be used to determine the natural dissociation rate koff and and the potential
width ∆x.

2.2.4 Single-molecule AFM force spectroscopy

Multiple experimental techniques are available nowadays to investigate the forces on
molecular systems. The most important ones are optical and magnetic tweezers,
biomembrane force probe, molecular force balance as well as the atomic force micro-
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Figure 2.5: The schematic setup of an atomic force microscope. The sample is at-
tached to a piezo for positioning and to the AFM cantilever tip. The
bending of the cantilever as a mechanic spring is detected via the reflec-
tion of a laser beam on a segmented photodiode.

scope (AFM)102–106. Here, we focus on the AFM (Section 3.2) as a high-sensitive single
molecule force spectroscopy technique. It measures and applies forces in the physio-
logical picoNewton range with spactial subnanometer resolution to detect unbinding,
unfolding and stretching forces of single (bio)molecules33,34,37,107–109.

A schematic AFM setup is shown in Figure 2.5. The cantilever, a microscopic
small force sensor is the key-part of the AFM, acting as a sensitive force sensor. The
cantilever bending is detected by a reflected laser beam on a segmented photodiode.
It is described as a linear spring F = sx. The spring constant s is determined by the
cantilever stiffness and the displacement x, measured by the deflection.

For the examination of molecular complexes, one is bound to the cantilever probe
tip and the other is immobilized on a surface mounted on the piezo. For measurement
of the interactions, the cantilever tip is brought into contact with the surface, allowing
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the molecules to interact. Upon retraction of the cantilever, the applied forces are
moderated by the piezoelectric actuators. Generally, the forces are applied with either
a constant velocity of the retracting cantilever or as constant forces controlled by a
force feedback loop.

Force-extension curves are recorded by the AFM. From these, rupture forces (the
force at which a specific interaction dissociates) and rupture lengths (distance at
which the interaction dissociates) are determined. The corresponding loading rate is
determined from the slope of the force versus time curve at the moment of the rupture
event.

2.2.5 Single-molecule force probe MD simulations

Even though the three approximations in Section 2.1 allow the simulations of molecu-
lar systems on the nano- to microsecond time scale, many processes in biology require
longer time scales. As mentioned in the introduction, multiple approaches are avail-
able to gain insight into dynamics on a longer time scale using MD simulations. In this
thesis, force probe simulations with two different puling protocols are used: constant
velocity and constant force.

As discussed in Section 2.2.3, applied forces speed up the simulated protein-protein
dissociations to make them accessible with MD simulations and closely mimic the
AFM experiments from the previous Section 2.2.4. For this, one or more groups of
atoms, so called pull groups, are enforced to move along a predefined pulling direc-
tion. Furthermore, force probe simulations give insight into protein complex reaction
which are either physiologically relevant (integrin-talin complex in Section 4) or are
compared to experiments including force probing (AFM experiments on the antibody-
peptide complex in Section 3.2.
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Constant velocity

For constant velocity probing, a harmonic potential Vspring is added to the atoms of
the pull group.

Vspring(t) =
s0

2
[R(t)−Rspring(t)]

2 (2.33)

where s0 is the spring constant, R(t) is the position of the COM of the pulled atoms
and Rspring(t) is the position of the the spring. The force

F (t) = s0[R(t)−Rspring(t)] (2.34)

is applied by moving the spring position Rspring(t) with constant velocity vspring along
a chosen reaction coordinate

Rspring(t) = Rspring(t = 0) + vspringt. (2.35)

For weak springs, the loading rate Ḟ =
dFspring

dt = s0vspring is directly proportional to
the pulling velocity vspring. The pulling force Fspring on the COM of a group of atoms
is redistributed mass weighted to the individual atoms.

Constant force

In constant force mode, either a linear potential is applied to tilt the energy landscape
in the direction of the reaction coordinate (Fig. 2.4) or the force is added directly to
the calculated forces for each atom of the pull group. The resulting time-independent
tilt of the energy landscape permits a direct insight into the dissociation kinetics of
the probed system by looking at the unfolding or dissociation lifetimes of the system.
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2.3 Molecular rotors

2.3.1 Basic principles

Since the formulation of statistical physics by Maxwell and Boltzmann, the dream of
many scientists was to selectively use fluctuations for driving systems. In this context
it is important to keep the second law of thermodynamics in mind.

Second law of thermodynamics

The change of entropy dS in a closed system is related to the change in heat δQ and
the temperature T via

dS ≥ δQ

T
(2.36)

where the equality holds for reversible and the inequality for irreversible processes. In
the formulation according to Carnot:

"No series of processes is possible whose sole result is the transfer of energy
as heat from a thermal reservoir and the complete conversion of this energy
to work."110

Langevin dynamics

The basic behavior of a rotor is approximated by a one dimensional system interacting
with a thermal bath according to a Langevin equation111.

I
d2θ

dt2
+ Γ

dθ
dt
− δU

δθ
= ξ(T, t). (2.37)

with time t, moment of inertia I, the rotation angle θ and friction constant Γ. ξ is a
stochastic torque representing the thermal fluctuations of the system.
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Fluctuation-Dissipation theorem

The stochastic interaction of the rotor with the bath is divided into two terms111.
First, the purely random stochastic torque ξ has a zero average mean 〈ξ〉 = 0 and
is rapidly varying. Second, a slower, velocity dependent friction term Γdθ

dt influences
the system if the effective average rotation velocity dθ

dt
6= 0. Friction constant Γ and

stochastic torque ξ(T, t) are correlated by the fluctuation-dissipation theorem111

Γ =
1

kBT

∫ ∞

0

〈ξ(t0)ξ(t0 + t)〉dt. (2.38)

This fluctuation-dissipation theorem connects the energy dissipated from the rotor by
friction to the fluctuations of the bath. It connects the friction to an autocorrelation
of the stochastic noise term ξ weighted by the inverse thermal energy.

2.3.2 Classification of rotors

A multitude of rotors is existing. Here, I present a classification of rotors according
to the review of Kottas et al.111.

Definition

The molecular rotor consists of a stator and a rotator which can rotate against each
other. The part with the larger moment of inertia is commonly regarded as the stator.
The axle of the rotor carries the rotator and the rotator turns about the axle. An
axle is not required for a rotor to function. For example, surface mounted R-rotors
don’t have an axle (see below).
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Classification by structure

The structure of a rotor can be classified by different criteria summarized in Table
2.1. This classification occurs according to the chemical bond between rotator and
stator, the environment of the rotor, existence and chemical nature of the axle and
in case of a surface-mounted rotor the type of its mounting. These criteria are taken
from the review111.

Table 2.1: Rotor classification by structure according to review Kottas et al.111

criteria description
chemical bond • covalently bound rotator and stator

• non-covalently bound rotator and stator
environment • free in solution or vapor

• inside solids
• surface-mounted

type of surface mounting • R-rotor: rotator bound to the surface (no axle, surface=stator)
• RS-rotor: stator is fixed on the surface

rotation axis • free in space
• perpendicular to surface (azimuthal rotor)
• parallel to surface (altitudinal rotor)

chemical nature of the axle • single bond
• double bond (highly hindered)
• triple bond
• metal ion
• no axle (e.g. R-rotor)

Classification by function

Not only structure defines a rotor, but also its function (Table 2.2). As for the protein-
protein interactions, the rotor motion can be described by its energy landscape (see
Section 2.2.2). The rotor dynamics depend on the interplay of the various energies in
a system. The energy contributions can be divided into environmental (e.g. thermal
energy), structural (e.g. torsional barriers defined by the structure) and combined
structural/environmental (e.g. dipole coupling) contributions. The rotor motion can
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be classified as driven or random, depending on the effect of the external forces (see
Section 2.3.3).

Table 2.2: Rotor classification by function according to review Kottas et al.111

criteria description
energy contributions • environmental (e.g. temperature)

• structural (e.g. torsional barrier)
• environmental and structural interaction

(e.g. electric dipole coupling to applied electric field)
barrier height • low compared to kBT - frequent reorientation

• high compared to kBT - only driven rotation
rotation mechanism • driven/deterministic - external force dominates dynamics

• random/non-deterministic - thermal energy dominates dynamics
driven rotation • forces caused by external field

• forces due to steric interactions
random rotation • Brownian motion

• Thermally activated hopping

2.3.3 Rotor behavior

Potential energy landscape

The potential energy landscape U has two main contributions: the internal torsional
potential Utor and the interaction energy due to external fields UCoul. The internal
torsional potential describe the potential energy versus the rotation angle in the ab-
sence of external fields. A typical model is a sinusoidal description with n potential
minima and a characteristic amplitude A

Utor = A cos(nθ). (2.39)

The order of the symmetry of rotator and stator often define the number of po-
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tentials as their least common multiple. For example, a three-fold symmetric stator
and a two-fold symmetric rotator have a internal torsional potential with six minima
(e.g. trans-rotor on gold in Chapter 5). In this thesis, the interaction energy is cause
by the external electric field acting on the partial charge distribution of the rotator.
Another example of interaction energy would be the orientation of a dipole along a
rotating electric field112.

Depending on the relative strength of the thermal energy, the torsional barrier
heights and the external field, three typical types of motion can be described. For
a dominating external field, the rotor shows driven motion. Otherwise, the rotor is
subject to random motion. For truly random motion the average change in angle is
zero (〈θ〉 = 0), but random rotors can achieve directional rotation. Random motion is
generally subdivided into Brownian motion dominated by the thermal energy contri-
bution and hindered motion dominated by the intrinsic torsional barriers of the rotor.
In the following all three types of rotor motion are described.

Driven motion

For a driven rotor, the external forces dominate the dynamics of the rotor. The
external potential V is larger than the magnitude of the internal torsional barriers 2A

and the thermal energy kBT (V > kBT and V > 2A). The rotor can be driven by
forces caused by external fields or steric interactions. Three types of motion can be
distinguished for a driven rotor111:

• synchronous motion

• thermal librations within the potential well

• thermally activated hops to neighboring potential wells

With decreasing strength of the external driving source or increasing temperature,
the dominating deterministic synchronous rotation decreases and the other motions
become more important. If the frictional response of the system dominates over the
externally driven torque ( δV

δt
< Γdθ

dt ), then the response of the rotor is a randomly
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driven motion and differs for each cycle of the external field. Still, an effective direc-
tional rotation is caused by the external field.

Brownian motion

In the Brownian motion regime the motion of the rotor is dominated by thermal
energy. Using dU

dθ ≈ 0 to solve eq. 2.37 leads to

〈θ2〉 =
2kBT

Γ

[
t− I

Γ
(1− e−Γt/I))

]
. (2.40)

At long time scales t� I
Γ
this reduces to a random walk.

〈θ2〉 =
2kBT

Γ
t (2.41)

For small time scales, an expansion of eq. 2.40 by Γ
I
t yields a motion with an

angular velocity
√

kBT
I

described by

〈θ2〉 =
kBT

I
t2. (2.42)

Small external fields can cause a preferred direction in this regime.

Hindered motion

Hindered motion is caused if the barrier height 2A of the intrinsic torsional potential
Utor are dominating (2A > kBT and 2A > V and 2A > Γdθ

dt ). The motion of the
rotor is then dominated by thermal librations within the well of the intrinsic torsion
potential. Thermally activated hops can move the system from one well to another
with the probability P ∝ e

− 2A
kBT . This gives rise to the rate of thermally activated

hopping k0 analog to eq. 2.20
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2.3 Molecular rotors

k0 = ν0e
− 2A

kBT (2.43)

with the natural vibration frequency ν0. Using a harmonic small angle estimate on
the sinusoidal torsional potential Utor = A cos(nθ) with n wells and a spring constant
s, assuming F = −sθ and sin θ ≈ θ, results in

dV
dθ
≡ −sθ = −nA sin(nθ) ≈ −n2Aθ (2.44)

s = n2A (2.45)

with

ν0 =

√
s

I
=

√
n2A

I
. (2.46)

Small rotors show characteristic frequencies on the order of ∼ 1 THz113.
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3
Force-Based Analysis of
Multidimensional Energy

Landscapes

3.1 Aims

• Comparison of steered molecular dynamics simulation results with AFM single-
molecule force experiment results

• Examine importance and impact of force application as a vectorial tool and with
different loading rates to explore the energy landscape of a protein complex

• Identify the dependence of the unbinding pathway on the direction of the applied
force for the antibody fragment-peptide complex

• Study the response of the barnase-barstar complex to enforced dissociation in
atomistic detail
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3.2 Antibody-Antigen Interaction

3.2.1 Biological background

Our immune system is a highly complex and adaptive protection mechanism against
infections. Antibodies play an essential part in the adaptive immune response. They
make up to 20 percent of the total amount of proteins in the blood plasma. The
antibodies are collectively called immunoglobulins (Ig) and are produced by B-cells.
Each B-cell produces only a single species of antibody with unique antigen binding
sites79. Here, we focus on the simplest Y-shaped antibody type, the IgG molecules.
Each IgG consists of two heavy and two light chains which are connected by disulfide
bonds. At the short arms of the Y-shaped antibody there are two variable domains
defined by hyper-variable regions in both the heavy and light chain. This variable
region is called Fv fragment and contains the complete antigen binding site. The
recombinant single chain antibody Fv fragment (scFv) H6 is used in our work114.
It binds a truncated GCN4-p1 leucine zipper Y1HLENEVA8RLKK12. The crystal
structure (PDB: 1P4B)115 of this antibody-antigen complex is well known.

3.2.2 Summary

We examine the influence of probing forces on the dissociation pathways of an anti-
body binding its 12 amino acid antigen peptide (Fig. 3.1). The forces were applied
using steered molecular dynamics (SMD) simulation and single-molecule AFM force
spectroscopy. The crystal structure (PDB: 1P4B)115 contains the 12 amino acid anti-
gen. Three different attachment points are chosen, the N-terminus (setup N), the
C-terminus (setup C) and the middle of the peptide at position 8 (setup M). The
same attachment points are probed by AFM and SMD.

The AFM measurements determine the loading rate dependence of the most proba-
ble rupture forces (Fig. 4 in Ref. P1). From these, different potential widths ∆x and
dissociation rates koff are extracted for all three setups according to eq. 2.32 (Table
1 in Ref. P1). Setup N is the least stable (koff = 16.9 · 10−3 s−1) with the smallest
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3.2 Antibody-Antigen Interaction

Figure 3.1: This is the antibody scFv H6 crystal structure binding the truncated
GCN4-p1 leucine zipper. The light chain is indicated in light grey and
the heavy chain in dark grey. The antigen is shown as yellow helix with
the attachment points for the force probing shown as spheres (C,M and N
from left to right).

potential width (∆xN = 0.82 nm). The dissociation of Setup C is 13 times slower
(koff = 1.3 · 10−3 s−1) and has a 23% larger potential width (∆xC = 1.10 nm). Setup
M shows intermediate values for dissociation rate (koff = 7.6 · 10−3 s−1) and potential
width (∆xM = 0.95 nm).

The SMD simulations show different unbinding pathways in atomistic detail for all
three setups (Figs. 7-9 and Table 2 in Ref. P1). In all setups the peptide is zipped off
starting from the force attachment point. For setup M this results in a double zipper
dissociation (Fig. 6 in Ref. P1). For each setup, two main interactions with compa-
rable rupture forces were identified. However, all setups share a pathway-independent
main dissociation barrier in the simulation. This barrier can be attributed to the
rupture of the hydrogen bond between the peptide’s GLUOε-6 and the heavy chain’s
backbone hydrogen GLYH-H40 (Figs. 7c, 8b and 9c in Ref. P1).
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In the setups N and C, the potential widths (∆xN ,∆xC) are in good agreement with
the first rupture lengths r of the SMD simulations (rN1 = 0.88 nm and rC1 = 1.03 nm)
(Fig. 10 in Ref. P1). Hence, the AFM experiments probe the first barrier of the
system attributed to different interactions. For setup N, the hydrophobic contact of
the peptides LEU-3 with the antibody’s light chain TYR-L40 dissociates. In setup C,
the hydrogen bond between the peptide residues VAL-7 and LEU-10 is broken and
the peptide’s C-terminal helix loop opens. The SMD simulations identify a second
barrier for each setup. Their longer rupture lengths (rN2 = 1.72 nm and rC2 = 1.50 nm)
indicate larger potential widths. The enforced tilt of the energy landscape reduces the
outer barriers more strongly. This indicates that the AFM is measuring the different
inner barriers. From the higher rupture forces and the longer rupture lengths of the
first barrier in setup C it can be assumed to have a higher first barrier than setup N.
This results in a qualitatively lower dissociation rate for setup C (kCoff < kNoff, see Fig.
10 in Ref. P1).

Concluding, the comparison of the probed energy barriers of both methods (AFM
and SMD) show an excellent agreement even though the loading rates of the SMD
simulations exceeded those of the AFM experiments by orders of magnitudes. The
direction of the applied forces in single-molecule force spectroscopy clearly define the
preferred dissociation pathway on a multidimensional energy landscape of the protein
complex.

3.2.3 Publication P1

Julia Morfill, Jan Neumann, Kerstin Blank, Uta Steinbach, Elias Puchner, Kay E.
Gottschalk, Hermann E. Gaub.
Force-Based Analysis of Multidimensional Energy Landscapes: Application of Dy-
namic Force Spectroscopy and Steered Molecular Dynamics Simulations to an Anti-
body Fragment-Peptide Complex.
J Mol Biol (2008) 381, pp. 1253-66
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3.3 Barnase-Barstar

3.3.1 Biological background

Ribonucleases are enzymes that catalyze the degradation of RNA into smaller compo-
nents. The bacterium Bacillus amyloliquefaciens excretes the ribonuclease (RNAse)
barnase for food degradation and protection against predators and competitors116.
Since barnase has a lethal effect on all unprotected cells, the Bacillus amyloliquefa-
ciens developed the inhibitor barstar for self-protection. The crystal structure (PDB:
1BRS) shows that a barstar α-helix blocks the active site of the barnase117. The very
high association rate constant of the complex (kon = 108s−1M−1)118 is achieved by
electrostatic steering119–121. The optimal association pathway involves a region near
the RNA binding site122,123. An overlap of the association and dissociation pathways
has been suggested from rigid-body Brownian dynamics simulations with implicit
solvent123.

3.3.2 Summary

The antibody-antigen project shows clearly that forces can be used to examine the en-
ergy landscape of a protein complex dissociation in experiment and simulation. In this
project we use SMD simulations to show that the variation of force parameters can be
used as a differential force assay. We examine additional variations of the geometry
and velocity of force application (Fig. 1 in Ref. P2). These allow to determine the
relative stability of different protein regions within the complex against each other.
For this project, we choose the small and fast binding barnase-barstar complex to op-
timize the computational effort117. In the past, the association of the barnase-barstar
complex has been studied extensively under equilibrium conditions118–123. However,
our simulations contribute new insight into the dynamic response of the complex un-
der non-equilibrium conditions. We can switch the main dissociation pathway of a
protein complex from unfolding to several unbinding pathways. In setup 1, the influ-
ence of the viscous drag compensating the pulling force is increased with increasing
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Figure 3.2: This is the barnase-barstar complex crystal structure (PDB: 1BRS)117.
The dark gray molecule is the barnase RNAse, the light grey is the barnase
with a green highlighted binding helix. The light and dark grey spheres
are the force attachment points for the end-to-end pulling in setups 1 and
1m. The red sphere represents the COM of the complete barstar pulled in
setup 2, while the yellow sphere represents the COM of barstar’s binding
helix pulled in setup 3. The blue sphere represents the COM of the barnase
locally restrained in setups 2 and 3.

pulling velocity. Therefore, it is important from which side the protein complex is
probed (Fig. 3A in Ref. P2). Two main pathways can be identified: the energetically
more costly shearing of barstar’s β-sheet and the cooperative zipper-like unbinding of
the barnase’s N-terminal α-helix (Fig. 6 in Ref. P2). Given enough time in the slow
pulling setups, the system prefers the unbinding of barnase’s α-helix. A rapid change
of the system lacks enough time to relax orthogonally to the reaction coordinate and
the lability instead of the stability of the system is tested. Thus, fast pulling can be
used to study the barriers in the energy landscape.

In setups 2 and 3, barnase’s center of mass (COM) is restrained. In setup 2, barstar’s
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COM is pulled away from barnase. This shows, that the intramolecular stability of
barstar’s conformation is less stable than the intermolecular binding to the barnase.
This is reasonable since the evolutionary pressure for the survival of the bacterium
based on a blocked barnase is dominating against the conformational stability of the
inhibitor as long as it still blocks (Fig. 3B in Ref. P2). The direct unbinding of the
proteins is achieved by force application to the COM of the barstar’s binding helix in
setup 3 (Fig. 3C in Ref. P2).

Summarizing, the barnase-barstar simulations show that velocity and geometry
have a strong impact on the development of the system. For an atomistic under-
standing of unbinding or unfolding pathways a variety of force protocols needs to be
tested.

3.3.3 Publication P2

Jan Neumann, Kay E. Gottschalk.
The Effect of Different Force Applications on the Protein-Protein Complex Barnase-
Barstar.
Biophys J (2009) Vol. 91(6) pp.1687-99
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4
Force response of the integrin-talin

complex

4.1 Aims

• Analyze the integrin activation mechanism by talin binding focussing on the
disruption of the salt bridge (β3-D723 - αIIb-R995) which stabilizes the integrin’s
TM helix interactions

• Study the dependence of the integrin-talin complex on the direction of force
response probed parallel and normal to the membrane

• Investigate the design principles of force resistance by combining mechanical
force resistance and natural sensitivity to directional probing
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4 Force response of the integrin-talin complex

4.2 Biological background

4.2.1 Motivation

Protein-protein interactions choreograph the life on the cellular level. Integrins are the
major cell adhesion receptors of cells42. They were optimized by evolution as a force
resistant and functional interface between inside and outside of the cell. Design prin-
ciples combining functional two-way signaling and mechanical force resistance could
improve bioengineering of future nanoscale machinery. The understanding of integrins
as major cell adhesion receptors could also lead to improved medical devices such
as implant coatings resulting in less immune rejection. Integrins are important not
only in cellular processes from cell migration, proliferation to apoptosis, but are also
important targets for pharmaceutical research in fighting inflammation reactions124,
multiple sclerosis125, tumors126,127 or HIV128. The importance of the integrins in basic
research is highlighted by the integrin being the molecule of the month February 2011
of the international most important structure database www.pdb.org.

4.2.2 Integrin

Integrins are heterodimeric transmembrane (TM) adhesion receptors transducing bi-
directional signals and forces through the membrane42,129. They are composed of two
subdomains (α and β). In humans, 18 known α and 8 known β units combine to at
least 24 functional adhesion receptors. Both subdomains of the integrin consist of a
short cytoplasmic tail, a single TM helix and a large extracellular domain. The size
of the extracellular integrin domain contains about 1000 amino acids in the α- and
750 in the β-domain130–132.

The extracellular domain of the integrin has two main conformations - a passive
bent switchblade and an active open switchblade (shown in Fig. 4.1)134. In the passive
form, the TM helices are tightly packed135–137. The α- and β-TM-helices interact via
an outer and an inner membrane clasp50. The outer membrane clasp stabilizes the TM
crossing via a glycine-packing. The inner membrane clasp consists of a hydrophobic
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Figure 4.1: This figure shows the α (blue) and β (green) subunits of the integrin in
a passive (left) and an active (right) conformation. The bound talin is
shown in violet and the bound short fibrinogen peptide is shown in red.
The figure was designed by David S. Goodsell and published by RCSD
PDB133

core (αIIb-F992/F993 - β3-W715) and a salt bridge(αIIb-R995 - β3-D723)

Integrin activation is accompanied by separation of the α- and β-TM helices138.
The dissociation of the inner membrane clasp initiates an inside-out signaling path-
way activating the integrin. This activation is caused by talin binding to the inte-
grin’s cytoplasmic β-tail48,131,139,140. The separation of the extracellular integrin legs
causes the outside-in signaling by initiating the dissociation of the outer membrane
clasp50,141,142.
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Activation and deactivation of integrins can also be caused by applied forces41,143.
Whether this requires vertical41 or lateral forces143 is currently under discussion and
motivates the normal and parallel force applications in our project.

4.2.3 Talin

Talin is a special ligand out of the large variety of molecules that bind the integrin,
the so called integrin adhesome of more than 155 proteins144. Talin binding with its
FERM domain to the cytoplasmic β-tail of the integrin is the essential last step in the
inside-out activation of the integrins139,145,146. Additionally, talin binds actin with its
rod domain147. Thus, talin acts as a force clamp between integrin and cytoskeleton. It
forms the initial force transmitting link between the extracellular matrix (ECM) and
the intracellular actin network47. Figure 1A in Ref. P3 shows a scheme of this force
propagation pathway. Talin completes the mechanical connection from the outside of
the cell to the cell’s mechanical carcass, the cytoskeleton. Additionally, the positively
charged residues of the FERM domain bind to the cell membrane and enhance the
integrin activation51,140,148,149.

4.3 Summary

The integrin-talin interface is essential in the activation of the integrin and in the
early stages of the force transmission from the ECM to the intracellular cytoskeleton.
Here, we study the effect of forces on the initial integrin-talin complex by simulating
the integrin-talin interface region in the recently published complex structure of the
integrin β1D binding to the talin-2 FERM F3 domain50.

A 100 ns long equilibration of this structure results in a stable complex with a root
mean square deviation of the Cα atoms from the initial structure of ∼0.2 nm (Fig.
2A in Ref. P3). A clustering algorithm identifies the most representative structure of
the dominating integrin-talin conformation. The dominating cluster represents 47%
of all frames and three times more than the second largest. From the analysis of the
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structure and the root mean square fluctuations of the amino acids in equilibrium,
three modular binding regions with more flexible interconnects are identified (Table
4.1 and Fig. 3 in Ref. P3). The importance of these tight binding modules is confirmed
by a high evolutionary conservation identified using a multiple sequence alignment.

Table 4.1: This overview lists the three modular binding sites of the integrin we iden-
tify and describes their interaction sites.

integrin binding region interaction type
helix 763F...E769 • hydrophobic interactions of β1D-F763 and β1D-F766

• hydrogen bonds of the charged amino acids
β1D-D759, β1D-E767 and β1DE-769

tryptophan W775 • deep hydrophobic talin binding pocket
• stabilization via a cation-π interaction possible

NPxY motif • hydrogen network of β1D −780 NPIY783

The direct environment of our simulated integrin-talin complex fragment is gener-
ated (Fig. 1B in Ref. P3). We align our long time equilibrated integrin-talin complex
fragment to the adjacent structures including the full talin FERM domain and the in-
tegrin’s α-/β-TM helix bundle50–52. Surprisingly, no steric disturbance resulted from
the αIIb-cytoplasmic tail and the talin FERM domain, both being bound to the in-
tegrin β-tail at the same time. From low force pulling experiments we identify the
N-terminal integrin helix near the membrane as the first secondary structure element
to unfold. We propose that this conformational change disrupts the salt bridge of the
inner membrane clasp (Fig. 9 in Ref. P3). The mechanical stress resulting from the
rotation of the talin head by ∼ 20◦ during its binding to the cell membrane might
already be sufficient to cause these forces required for the integrin activation51.

To identify the force response of the integrin-talin complex, constant force MD
simulations ranging from 20 - 500 pN are performed with two perpendicular pulling
directions. The N-terminal Cα of the β1D integrin is pulled either normal or parallel
to the putative plane of the cell membrane and away from the talin-2 F3 FERM
domain. The integrin-talin COM-COM distance is evaluated as reaction coordinate.
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Dissociation of the complex within the simulation time of 20 ns starts at 200 pN for
parallel forces and at 400 pN for normal forces. Thus, the mechanical force resistance
of the integrin-talin complex parallel to the membrane is weaker than that normal to
it.

To gain an atomistic insight into the dissociation of the complex, a pathway map is
generated. A peak detection algorithm determines (meta)stable intermediate states
from the distance distributions of each force and each probing direction. The struc-
tures of each state are clustered and a dissociation pathway map is generated from the
representative cluster conformations (Figs. 6 and 7 in Ref. P3). From these maps,
the dissociation pathways for normal and parallel pulling are clearly distinguishable.
The three modular binding regions mentioned above unbind characteristically for each
setup. The main difference in the dissociation is the formation of an intermolecular
β-sheet which occurs only for normal pulling (Fig. 8 in Ref. P3). This force induced
strengthening of the complex causes the higher normal force resistance. Ubiquitin is
a prominent example for such a direction dependence of force resistant β-sheets30,150.

Additional end-to-end simulations without talin restraint show a rotation of the
complex. This reorientates the complex to experience the pulling forces along its
more force resistant axis corresponding to the force axis of the normal force pulling
setup.

Summarizing, we clearly show the direction dependence of the mechanical force
resistance in the integrin-talin complex. A force induced complex strengthening is
attributed to the formation of an intermolecular β-sheet. A complex reorientation to
allow this β-sheet formation is identified. Additionally, the steric compatibility of both
integrin α-tail and talin binding to the integrin β-tail was shown. An extension of
the integrin activation model140 is proposed to require the unfolding of the membrane
proximal integrin α-helix loop.
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4.4 Outlook

As described, the talin integrin complex is the initial force resistant connection be-
tween the cell’s cytoskeleton and the extracellular matrix. The force induced strength-
ening of the integrin-talin complex should in the next step be studied including the
TM integrin, a cell membrane and possibly the talin-2 F2 FERM domain. The intro-
duction of mutations which prevent the formation of the force-induced beta-sheet at
the interface can yield additional insight into the mechanical stability of the complex.
Ultimately, the goal is to simulate the complete integrin activation with talin, integrin
and a membrane long enough to identify a conformational change of the extracellu-
lar integrin domain from passive to active state. Additionally the force transmission
pathway in atomistic detail should be identified including the aforementioned system,
actin and an ECM ligand.

4.5 Publication P3

Jan Neumann, Kay E. Gottschalk
The Integrin-Talin Complex under Force.
(submitted to PLoS Comput Biol)
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5
Controlling molecular rotation on

gold

5.1 Aims

• Switching and driving of bidirectional molecular rotation on a gold surface by
Terahertz electric fields

• Understanding the design principles for effective directionality of a non-deterministic
rotor on the nanoscale

• Description of the rotor behavior within a theoretical framework

5.2 Motivation

In nature molecular rotors are essential building blocks of many molecular machines
and brownian motors151. The F1-ATP synthase uses rotations to drive the chemical
fuel production of adenosinetriphosphate (ATP)53,152. The mechanism of a bacterial
flagellum moves or reorientates the bacterium depending on the direction of its rota-
tion54,153. But not only nature builds molecular rotors, also man-made nanodevices
are in desperate need for understanding molecular rotation to improve future artificial
designs.
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5 Controlling molecular rotation on gold

In this field, unidirectional rotation154 and electrically driven rotors112,155 have been
major research topics. The idea to drive a molecular rotor as a parametric pump
was first introduced by Horinek et al. to describe a sub-harmonic rotor response155.
This deterministic rotor is subject to a changing energy landscape. The electric field
is directly coupling to the dipole moment of the rotor. The position of the energy
barriers and energy wells exchange due to the oscillatory driving. In the slow adiabatic
limit, the rotor follows exactly the minima positions and rotates at the same frequency
as the external field. In the parametrically driven mode, the field is changing slightly
faster than the rotor can respond. Thus, it rotates every second cycle and is reflected
at a forming barrier every other cycle.

5.3 Summary

In our simulations a diethylsulfid (DES) rotor on a gold (111) surface is simulated (Fig.
5.1 A). It was modeled analogously to low temperature STM experiments in which the
rotor behavior was experimentally observed on a single-molecule level57. The flexibil-
ity of the molecular rotors and the effective surface interaction are important for the
rotational dynamics of this system156. The observed temperature fluctuations even
at low temperatures make it a simple and dynamic system to study non-deterministic
driving of molecular rotation and allow extensive sampling in computer simulations.
We chose to examine the DES rotor by means of Molecular Dynamics (MD) simula-
tions and its behavior under the influence of externally applied static and oscillating
electric fields. It is a surface-mounted azimuthal R-rotor bound to the gold via a
sulfur gold bond (Table 2.1).

Studying the basics of rotation in non-deterministic systems is essential for further
development of nanotechnology. Our research aims at highly efficient artificial rotors
driven classically by externally controlled devices such as parallel electric fields of
long wavelength infrared light. Here, we show how to control the rotational behavior
of a simple surface mounted rotor using Terahertz electric fields perpendicular to
the surface. Furthermore, we introduce a general theoretical framework to model
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Figure 5.1: (A) Three conformations of the Diethylsulfid rotor on gold (111) surface
are shown with indicated rotation angle θ. (B) The partial charges in
the rotor (δ+ = 0.1675e, δ− = −0.3350e) are influenced by the external
electric field. (C) The potential energy landscape U(θ, ~E) described by
eq. 5.1 versus the rotation angle θ is plotted for high, neutral and low
electric fields. (D) Scheme of the different driving regimes for the trans-1
conformation.
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bidirectional rotation caused by a combination of external driving and parametric
pumping of a non-deterministic system.

The isolated rotor has two intrinsic conformations - cis and trans (Fig. 5.1 A).
Both conformations split in two sub-states when the rotor is bound to the gold (111)
surface. The cis states (cis-1 and cis-2) can be transformed into one another with
a rotation by 180◦. The trans states (trans-1 and trans-2) can only interconvert by
conformational change of the molecule, not by rotation around their sulfur-gold bond.

The rotor’s partial charges can be influenced directly with an electric field (Fig. 5.1
B). All fields were perpendicular to the gold surface and the plane of rotation. From
static field simulations we could characterize the potential energy landscapes of the
different rotor conformations and for different electric field strengths ranging from -9
to +9 V/nm (Fig. 5.1 C, Fig. 2 in Ref. P4). The torsional energy landscape U with
n energy minima per full cycle was fitted by

U(θ, ~E) = A( ~E)cos[nθ + Φ( ~E)] (5.1)

Both amplitude A and phase shift Φ depend on the external field ~E for the trans
conformations. The phase shift Φ has a different sign for trans-1 and trans-2 (Fig. 2
in Ref. P4). As expected from the second law of thermodynamics, no effective driving
is detected with static electric fields. However, the rotational diffusion decreases from
negative to positive external fields. The phase shift Φ is constant for the cis states.

The Terahertz oscillating field ~E(t) = E0cos(ωt) can drive an effective rotation of
the rotor. How is this possible with the potential energy landscape of the rotor U(θ, ~E)

being symmetric at every instant of time? The answer is that the asymmetry necessary
for the driving is induced with the coupled time-dependence of phase shift Φ[ ~E(t)]

and amplitude A[ ~E(t)]. The oscillating phase shift effectively oscillates the position
of the minimum while the amplitude oscillates the barrier heights. The direction and
effective rotation rate depend also on the driving frequency ω (ranging from 1.5 to
7.5THz). The oscillation of the energy minimum causes an oscillation of the peak
of the angle distribution around the minimum position. The phase shift between
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the minimum position and the population peak of the rotor depends on the driving
frequency. For certain driving frequencies, the peak population experiences effectively
a different barrier height for forward and backward rotations due to the coupled
barrier height oscillations. Thus, a directed rotation depending on the external driving
frequency is caused (Fig. 5.1 , Fig. 3 in Ref. P4). The equation of motion for the
rotor motion driven by an external field ~E and thermal noise ξ(t) is similar to eq.
2.37:

I
d2θ

dt2
+ Γ

dθ
dt
− δU(θ, ~E)

δθ
= ξ(t). (5.2)

From this a librational frequency ω0 = n
√

A(0)
I

. Using a reduced mass of 15 amu,
n=6 for the trans conformation and an amplitude of 1kBT , we calculate ω0 = 2.4

THz. Inspired by the knowledge of a combined external and parametric driving, the
following equation describes the effective rotation except for a scaling factor

J = Jmax

{
τ−1(ω − ω0)

1 + [2τ−1(ω − ω0)]2
+

1

1 + [2τ−1(ω − 2ω0)]2

}
(5.3)

using three parameters, the characteristic librational frequency ω0 of approximately
2.8 THz and the damping frequency τ−1 which is a bit less than half the librational
frequency and the maximum rotation frequence Jmax. The first term expresses the
external driving as a Lorentz oscillator and the second term describes the parametric
pumping at double the librational frequency 2ω0. The mirror symmetric rotor confor-
mations trans-1 and trans-2 are driven in different directions. The cis-states without
oscillating phase shift do not show directional rotation, but only frequency-dependent
diffusion.

Concluding, we can control bidirectional rotation of a molecular rotor using Tera-
hertz electric fields. The structural design of the rotor molecule determines the most
effective rotation rate and the preferred directionality of rotation. Both rotation
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rate and directionality can be tuned by varying the external driving frequency. A
theoretical framework is presented to describe the rotation with only two parameters.

5.4 Outlook

Design principles for a tunable rotor with the three states rotating clockwise, rotat-
ing counterclockwise and a random/locked state are suggested. Furthermore, these
simulations can be the starting point for experimental studies to break microscopic
and macroscopic reversibility in molecular systems. This is a first step in the direc-
tion of connecting molecular machines driven by a rotation to the electric wall socket.
The neutral rotor and the parallel electric driving field perpendicular to the surface
both allow an easy parallelization of many rotors. The effective rotation requires no
metal surface but only a surface breaking the symmetry of the rotor. Here, we used
a threefold symmetric gold and a twofold symmetric trans-conformation. This allows
the rotor to be directly mounted on protein machinery. Our rotor is a proof of prin-
ciple. Many optimizations need to be explored until a final product can be achieved.
Important steps on this road are:

• Increase the coupling efficiency of the rotor to the external field by increasing
the dipole moment perpendicular to the surface

• Develop a surface pattern which prefers a rotor conformation. This might allow
a GHz puls which accelerates conformational switching to reset a majority of
the rotors to a desired conformation.

• Develop a rotor with only one possible rotation on the surface and a method to
securely couple it in the right orientation
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5.5 Publication P4

Jan Neumann, Kay. E. Gottschalk and R. Dean Astumian.
Driving and controlling molecular surface rotors with a Terahertz electric field.
(submitted to Science)
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Multidimensional energy landscapes are an intrinsic property of proteins
and define their dynamic behavior as well as their response to external
stimuli. In order to explore the energy landscape and its implications on the
dynamic function of proteins dynamic force spectroscopy and steered
molecular dynamics (SMD) simulations have proved to be important tools.
In this study, these techniques have been employed to analyze the influence
of the direction of the probing forces on the complex of an antibody
fragment with its peptide antigen. Using an atomic force microscope,
experiments were performed where the attachment points of the 12 amino
acid long peptide antigen were varied. These measurements yielded clearly
distinguishable basal dissociation rates and potential widths, proving that
the direction of the applied force determines the unbinding pathway.
Complementary atomistic SMD simulations were performed, which also
show that the unbinding pathways of the system are dependent on the
pulling direction. However, the main barrier to be crossed was independent
of the pulling direction and is represented by a backbone hydrogen bond
between GlyH-H40 of the antibody fragment and GluOε-6peptide of the
peptide. For each pulling direction, the observed barriers can be correlated
with the rupture of specific interactions, which stabilize the bound complex.
Furthermore, although the SMD simulations were performed at loading
rates exceeding the experimental rates by orders of magnitude due to
computational limitations, a detailed comparison of the barriers that were
overcome in the SMD simulations with the data obtained from the atomic
force microscope unbinding experiments show excellent agreement.

© 2008 Elsevier Ltd. All rights reserved.

Edited by D. Case

Keywords: single molecule force spectroscopy; atomic force microscope;
molecular dynamics simulations; energy landscape; antibody–antigen
interaction

Introduction

The knowledge of protein structures has revolu-
tionized the understanding of protein function on
the atomic level. However, crystal structures provide
static pictures and do not account for the fact that
proteins are soft materials, which, due to thermal
fluctuations sample a large ensemble of slightly
different conformations around their average struc-
ture. Multidimensional energy landscapes, which
define the relative probabilities of the conforma-
tional states and the energy barriers between them,
are able to describe the dynamical equilibrium of
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protein conformations.1–3 As a result, the complexa-
tion of two proteins forming a protein–protein
complex also occurs on these multidimensional
energy landscapes. The corresponding complexation
rates of a protein–protein interaction are determined
by the barriers in the underlying energy landscape
(Fig. 1a) that can be influenced by a variety of
internal and external factors such as phosphoryla-
tion, mutations, or even the action of external forces.
All these factors can alter the relative energy barrier
height between different substates or even generate
new local substates.
Since force is an ideal control parameter to explore

the multidimensional energy landscape of a protein
(Fig. 1b), single-molecule force spectroscopy expe-
riments have become an important tool for study-
ing the dynamic function of individual proteins and
protein–protein complexes.4–10 Technically, the appli-
cation of forces on the single-molecule level can be
realized using different experimental techniques as
well as molecular dynamics simulations. The atomic
force microscope (AFM) and laser tweezers have
evolved into the most prominent experimental
tools for the analysis of the mechanical and dissocia-
tion properties of proteins and protein–protein
interactions.11–14

Here, the energy landscape of an antibody frag-
ment–peptide complex was explored using single-
molecule force spectroscopy and molecular dyna-
mics simulations. We chose this system because the
crystal structure of the complex is known,15 and

therefore provides the possibility of explaining the
response of this complex to the externally applied
force with structural data. The peptide antigen was
derived from the leucine zipper domain of the yeast
transcription factor GCN4. For the generation of
antibodies, two proline mutations have been intro-
duced into this 33 amino acid long peptide to
prevent coiled coil formation. Using this peptide,
mice have been immunized and the mouse antibody
genes derived from the spleen cells have been cloned
into a ribosome display system to select and improve
peptide binders.15,16 The antibody single-chain Fv
fragment (scFv; clone H6) was obtained from this
affinity maturation process and has been further
modified by site-directed mutagenesis. In order
to crystallize the complex of scFv fragment and
peptide, a truncated 12 amino acid long peptide was
used, which is recognized by the scFv fragment. The
truncated peptide binds to the scFv fragment in an
α-helical conformation facing the scFv fragment
with the side that binds the complementary peptide
in the leucine zipper. This region of the peptide
corresponds to the so-called trigger sequence, which
has been found by Kammerer et al.17 The trigger
region has been shown to be essential for folding and
coiled coil formation of the leucine zipper and
contains a high α-helical content.18 It is considered
that the interaction of the two peptides upon coiled
coil formation involves assembly of these α-helical
stretches by conformational selection. The similarity
of the peptide conformation in the coiled-coil pep-

Fig. 1. Influence of an externally
applied force on the energy land-
scape of a protein or a protein–
protein complex. (a) Two-dimen-
sional cross-section through the
energy landscape without an exter-
nally applied force (black). In this
picture the protein or the protein–
protein complex (blue) is situated
in one of the closely related subs-
tates at minimal energy. The free
energy difference ΔG between
the folded protein or the bound
protein-protein complex (blue) and
the unbound or unfolded state is
determined by the difference bet-
ween the energy barrier ΔGoff and
the activation energy ΔGon. There-
fore, the barrier between these two
states (ΔGoff), which can be over-
come due to thermal fluctuations,
determines the rate of interconver-
sion (koff). koff is the basal dissocia-
tion rate; Δx is the potential width.
(b) Two-dimensional cross-section
through the energy landscape with
an externally applied force (red). If
an external force F is applied, the
energy landscape is tilted (red),
thereby reducing the energy barrier
by –Fx (broken red line). This reduc-
tion leads to an increase of the disso-
ciation rate.
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tide and in the complex with the antibody fragment
implies that the binding to the antibody fragment
follows a similar mechanism with helix formation
being the prerequisite for binding to the antibody
fragment.
For our studies, the peptide antigen provides the

possibility to vary the attachment points of the pep-
tide, since the amino acid for coupling can be
introduced easily at different positions. This gives
us the possibility to investigate whether the unbind-
ing pathway of the regarded antibody fragment-
peptide complex is changed by the direction of the
applied force, which would point to the existence of a
multidimensional energy landscape. High-resolution
AFM-based single molecule force spectroscopy mea-
surements were performed to determine the basal
dissociation rate koff, which correlates with the height
of the energy barrier, which has to be overcome for
unbinding, and the potential width Δx, which is a
rough measure of the width of the binding potential.
The results for koff were then compared with the koff
values determined under equilibrium conditions
with surface plasmon resonance (SPR).
Complementary, steeredmolecular dynamics (SMD)

simulations were performed to provide additional
information about the energy landscape of the res-
pective antibody fragment-peptide system. Fur-
thermore, SMD simulations allow the analysis of
the chosen unbinding pathway with atomic resolu-
tion.19–22 SMD simulations enable the identification
of the rupture events and the corresponding mole-
cular interactions correlated with these ruptures.

This structural information was related to the results
obtained from the AFM measurements.

Results and Discussion

Single-molecule force spectroscopy

The antibody fragment H6 used in our studies
binds the truncated 12 amino acid long peptide
antigen corresponding to amino acids 17–28 of the
wildtype leucine zipper GCN4-p1.15,23 Here, the
numbering of the structure file (PDB code 1P4B) is
used, which numbers the amino acids of the peptide
from 1 to 12. To explore the energy landscape of the
antibody fragment–peptide complex in detail, force
spectroscopy measurements were performed using
an atomic force microscope (AFM). For this purpose,
the antibody fragment H6was covalently coupled to
a surface containing covalently attached poly(ethy-
lene glycol) (PEG) and the peptide was immobilized
on the cantilever tip in the same way (Fig. 2). The use
of the elastic spacer PEG minimizes nonspecific
interactions and maximizes the probability of de-
tecting specific and single rupture events. Three
configurations representing different attachment
points were analyzed in detail: For configuration
N, a cysteine followed by three glycine residues was
attached to the N terminus (Tyr-1peptide; correspond-
ing to amino acid 17 of the full-length leucine
zipper) in order to couple the peptide to the canti-
lever of the AFM. For configuration M, the coupling

Fig. 2. Experimental setup. The
antibody fragment H6 possessing a
C-terminal cysteine was covalently
immobilized onto an amino-functio-
nalized glass slide using a hetero-
bifunctional poly(ethylene glycol)
spacer. The same coupling chemis-
try was used for the immobilization
of the peptide to the cantilever. N, M
and C show different measurement
configurations. In configuration N, a
cysteine and three glycine residues
were attached to the N terminus of
the peptide. In configuration M,
alanine on position 8 of the peptide
sequence was changed to a cysteine.
In configuration C, three glycine
residues followed by a cysteine
were attached to the C terminus of
the peptide.

1255Unbinding Pathways of an Antibody-Peptide Complex

64



to the cantilever was achieved via a cysteine resi-
due, which replaced Ala-8peptide (corresponding to
amino acid 24 of the full-length leucine zipper) in the
“middle” of the peptide. It is obvious from the
structure of the peptide that Ala-8peptide is not
involved in interactions with the antibody fragment.
However, this amino acid is in the region of the
leucine zipper with the highest helix propensity and
mutations in this region might impair helix forma-
tion.24 For configuration C, a spacer of three glycine
residues followed by a cysteine was attached to the
C terminus of the truncated peptide (Lys-12peptide;
corresponding to amino acid 28 of the full-length
leucine zipper). In the following, the three different
attachment possibilities of the peptide are abbre-
viated to N, M and C. In all experiments, the surface
was approached with the tip of the cantilever,
allowing the antibody fragment–peptide complex
to bind. Subsequently, the cantilever was retracted
and the antibody fragment–peptide complex was
loaded with an increasing force until the complex
ruptured and the cantilever relaxed back into its
equilibrium position. The force applied to this
complex was recorded as a function of the distance
between the cantilever tip and the surface. Fig. 3a
shows three different force-extension curves, which
correspond to the rupture events of the different
antibody fragment–peptide complexes N (red), M
(green) or C (blue) respectively. The force-extension
curves measured for the three different configura-
tions N, M and C exhibit similar rupture forces. To
obtain good statistics, several hundreds of force-
extension curves at different retract velocities were
recorded using only one cantilever for every con-
figuration. The use of one cantilever per configura-
tion is crucial in these experiments to minimize
errors originating from the cantilever calibration.
The rupture force and the rupture length were
determined from the force-extension curves. Force-
time curves revealed the corresponding loading
rate. Fig. 3b and c show the rupture force and
loading rate distributions for configuration N,
measured at a retract velocity of 800 nm/s. The
rupture force histogram was fit with a Gaussian
distribution (black curve) and has a most probable
force of 47.3 pN. The Gaussian distribution of the
loading rates (plotted logarithmically) (Fig. 3c)
shows a maximum at a loading rate of 1307.8 pN
s−1. The maxima of the force and the loading rate
distributions were determined for a large range of
loading rates (from 40 pN s−1 to 31,000 pN s−1) for
all three configurations, which were each measured
with only one cantilever to reduce spring calibration
errors within one measurement. In the following
step these values were plotted in a force versus load-
ing rate (plotted logarithmically) diagram (Fig. 4).
Following the approach used by Evans and co-
workers,4 the basal dissociation rate koff and the
potential widthΔxwere determined from a linear fit
to the data points in the force versus loading rate
diagram (Eq. (1)). The measurements of configura-
tion N resulted in a koff of 16.9(±1.0)×10

−3 s−1 and a
Δx of 0.82±0.01 nm. The denoted errors refer to the

constant estimated error of ±0.2 pN, which includes
the injected noise and oscillations as described in
Materials and Methods. In order to obtain the total
error of the measurement, the systematic error for
the calibration of the spring constant needs to be
taken into account. The resulting maximum and

Fig. 3. Results from the AFM measurements. (a)
Example of three typical force-extension curves measured
for configurations N, M and C. The force-extension curves
show the rupture event of the scFv–peptide complex,
recorded at a retract velocity of 800 nm/s. The red force-
extension curve corresponds to a rupture event measured
for configuration N. The green and blue force-extension
curves were gained for configurations M and C, respec-
tively. All force-extension curves follow the characteristic
shape of an extension curve of the poly(ethylene glycol)
spacer and possess very similar rupture forces. The elastic
behavior of the spacer can be described with the two-state
FJC-fit (black curve). (b) Example of a rupture force
distribution, obtained for configuration N. The rupture
force histogram contains ∼300 rupture events and was
fitted with a Gaussian curve (black). (c) Example of a
loading rate distribution obtained for configuration N.
The histogram of the loading rates was plotted logarith-
mically and fit with a Gaussian curve (black).
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minimum linear fit (see Materials and Methods) re-
veals the following values for koff andΔx: 14.5(±1.0)×
10−3 s−1 for koff,max and 0.79±0.01 nm for Δxmax and
14.8(±1.0)×10−3 s−1 for koff, min and 0.87±0.01 nm for
Δxmin. The obtained values for koff and Δx, including
their calculated errors, for all configurations N, M
and C are given in Table 1. This detailed error ana-
lysis demonstrates that the basal dissociation rates
and the potential widths of the three different con-
figurations N, M and C can be clearly separated. A
comparison of the three different configurations
shows that configuration N possesses the smallest
potential width and the fastest basal dissociation rate,
which corresponds to the smallest energy barrier in
the respective multidimensional energy landscape. In
contrast, configuration C revealed the largest poten-
tial width (Δx = 1.10 ± 0.01 nm) and the slowest basal
dissociation rate (koff=1.3(±1.0)×10

−3 s−1), which
therefore corresponds to the highest energy barrier
of the three measured configurations. The values for
the basal dissociation rate (koff=7.6(±1.0)×10

−3 s−1)
and the potential width (Δx=0.95±0.01 nm) for con-

figuration M are between the values obtained for
configurations N and C. Interestingly, the configura-
tion with the fastest basal dissociation rate has the
smallest potential width (configuration N), and the
configuration with the slowest basal dissociation rate
has the largest potential width (configuration C).
Hence, in our system the length that the complex can
be stretched before it finally ruptures is correlated
with the basal dissociation rate. This correlation has
been observed before for the interaction of different
anti-fluorescein scFv fragments with their antigen
fluorescein.25 For the experiments performed here,
this correlation can originate from a different starting
conformation of the bound complexes. In this case,
the number and strength of the stabilizing interac-
tions would determine the basal dissociation rate and
the potential width. Alternatively, the direction of the
applied force can result in different unbinding
pathways on themultidimensional energy landscape.

Comparison of the basal dissociation rates
(AFM) with surface plasmon resonance
(SPR) data

In order to rule out the existence of different
starting conformations, SPR measurements were
done to investigate whether the attached cysteine
residues (at the N terminus, the C terminus and
the Ala8Cyspeptide mutation) led to different con-
formations of the complex and as a result to diffe-
rences in the dissociation rates and potential widths.
These measurements revealed a dissociation rate
of 1.5(±0.6)×10−3 s−1 for the peptide with the cys-
teine at its N terminus and 0.9(±0.2)×10−3 s−1 for
the peptide with the cysteine at its C terminus. Fur-
thermore, the following equilibrium binding con-
stants were obtained: 13.4(±8.7)×10−9 M for con-
figuration N and 9.2(±5.0)×10−9 M for configuration
C. SPR measurements using the peptide with the
Ala8Cyspeptide mutation failed due to an insufficient
signal. As indicated earlier, the mutation might
reduce the helix propensity and therefore result in
a lower fraction of α-helical peptides that are
available for binding to the antibody fragment. On
the basis of this assumption, the amount of helical
peptides is considered to be too low to produce a
signal in the SPR measurements. Therefore, no con-
clusion can be drawn about the stability of the
complex itself and configuration M is not discussed
further. In contrast, the values for the peptides with
the cysteine attached at the N or C terminus agree
within the experimental error. Concluding from

Fig. 4. Diagram showing the most probable rupture
force plotted against the corresponding loading rate
(logarithmically) for all three configurations N, M and C.
The data points were gained from the Gaussian fits of the
rupture force histogram and the histogram of loading
rates. The red data points (configuration N) were fit to a
straight line. From this linear fit, Δx=0.82±0.01 nm and
koff=16.9(±1.3)×10

−3 s−1 were obtained. The green data
set was measured for configuration M. From the linear fit,
Δx=0.95±0.01 nm and koff=7.6(±1.0)×10

−3 s−1 were
obtained. Finally, the measurement of configuration C
yielded the blue data set. Here, the linear fit led to
Δx=1.10±0.01 nm and koff=1.3(±0.2)×10

−3 s−1.

Table 1. Summary of the values for koff and Δx for the three different configurations N, M and C (AFM and SPR
measurements)

AFM

Original linear fit Maximum linear fit Minimum linear fit SPR

Configuration koff (×10
−3s−1) Δx (nm) koff (×10

−3s−1) Δx (nm) koff (×10
−3s−1) Δx (nm) koff (×10

−3s−1)

N 16.9±1.3 0.82±0.01 14.5±1.0 0.79±0.01 14.8±1.0 0.87±0.01 1.5±0.6
M 7.6±1.0 0.95±0.01 9.2±1.0 0.89±0.01 10.2±1.2 0.97±0.01 –
C 1.3±0.2 1.10±0.01 1.5±0.2 1.04±0.01 2.0±0.2 1.11±0.01 0.9±0.2
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these data, the differences in the basal dissociation
rates and potential widths, observed with the AFM,
do not result from conformational changes in the
peptide resulting from the cysteine residues attached
either at the N or C terminus.
However, from these experiments it cannot be

excluded that the different attachment points lead to
a disturbance of the system when performing the
AFMmeasurements. The structure together with the
SMD simulations (see below) show that one of the
main interactions between the peptide and the scFv
fragment is very close to the N-terminal attachment
point. Hence, the faster dissociation rate observed
for the AFM in comparison to the SPR results might
be caused by a partial unfolding of the peptide close
to the attachment point, so that the interaction is
partially weakened due to the linker used in the
AFM measurements.
Although it cannot be ruled out that the

immobilization on the AFM cantilever leads to
slightly different conformations of the peptide, the
data suggest that the different basal dissociation
rates and potential widths are a consequence of the
direction of the applied force. Assuming that the
direction of the applied force results in different
unbinding pathways, the values obtained for the
basal dissociation rates and potential widths can be
explained as follows. Within the experimental error,
the basal dissociation rate for the peptide with the
C-terminal cysteine determined with SPR agrees
with the koff value obtained for configuration C
with the AFM. This leads to the conclusion, that the
same barrier in the energy landscape is probed. In
contrast, configuration N revealed a 13-fold higher
basal dissociation rate, compared with the SPR
value for the peptide with the N terminal cysteine.
This difference for configuration N can be explained
by considering an energy landscape with at least
two barriers that need to be overcome (Fig. 5a). If
no external force is applied, as is the case in the SPR
measurements, the unbinding of the antibody
fragment–peptide complex always follows the
pathway with the lowest energy barrier. In contrast,
in the AFM measurements the externally applied
force is considered to define the pathway. In
addition, the applied force tilts the energy land-
scape. The expected experimentally observed bar-
rier heights and unbinding pathways are shown in
the 2-D projection in Fig. 5b. For the SPR measure-
ments, the second higher energy barrier is rate
limiting for the unbinding of the antibody frag-
ment–peptide complex, since this barrier has to be
overcome to generate the free antibody fragment
and the peptide (black curve in Fig. 5b). If an
external force is applied, unbinding follows a
different pathway and the energy landscape is
tilted (red curve in Fig. 5b) such that the first
originally lower energy barrier becomes prominent
and is rate limiting. This simplified picture of the
underlying energy landscape is able to explain the
observed higher dissociation rate with the AFM for
configuration N compared with the equilibrium
measurement.

Steered molecular dynamics (SMD) simulations

SMD simulations were done in order to explore
the energy landscape in the high-velocity regime
and to obtain more structure-based information
about the energy barriers.8,19–22,26 The structure PDB
code 1P4B15 of the truncated 12 amino acid long
peptide bound to the antibody fragment was used
for all simulations. Corresponding to the AFM
experiments, three different attachment points on
the peptide were defined (see Fig. 6). A pulling po-
tential was attached to the N terminus of the pep-
tide (configuration N; Ala-1peptide), its C-terminus
(configuration C; Lys-12peptide) and Ala-8peptide

Fig. 5. Simplified model energy landscape explaining
theAFMand SPR unbinding pathways of configurationN.
(a) Three-dimensional representation of the energy land-
scape. In the SPR measurements, the unbinding of the
antibody fragment–peptide complex always follows the
pathway with the lowest energy barrier. In contrast, in
the AFMmeasurements the pathway is determined by the
direction of the applied force. (b) Two-dimensional pro-
jection of the unbinding pathway, including two energy
barriers, in a defined direction. For the SPR measurements
(black curve), the second higher energy barrier is rate
limiting for the unbinding of the antibody fragment–
peptide complex. If an external force is applied, the energy
landscape is tilted (red curve). As a consequence, the first
originally lower barrier becomes prominent and rate
limiting for the unbinding process. Therefore, for config-
uration N, the AFM and SPR measurements probe
different barriers of the energy landscape.
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(configuration M). In contrast to the AFM measure-
ments, no additional amino acid was attached to the
N or C terminus of the peptide and the alanine at
position 8 was not replaced with a cysteine, which
was necessary for the AFM-based analysis. The
pulling potential steered the attached amino acid
directly away from the antibody fragment at a speed
of vpull=2 nm/ns. The all-atom trajectories and the
pulling forces for every time-step were recorded for
every simulation.
An average force-time curve out of 20 trajectories

was generated for every configuration. A character-
istic force-time curvewithminimal root-mean-square
deviation from the average force-time curve is shown
in Figs 7–9. At least 65% of all 20 trajectories show
the main pathway of the average force-time curve
and were used for further analysis. For each con-
figuration, the average times ti

j and average forces
Fi

j (i=1, 2, corresponding to the number of the force
peak; j=N, M, C) were determined by analyzing the
force peaks, which indicate the positions of the major
rupture events in the unbindning pathways, and the
errors were calculated as Gaussian errors.
In configuration N, the peptide is zipped off the

antibody fragment starting from its N terminus.
Here, two main barriers have been identified (Fig. 7;

Table 2). The first barrier is crossed after t1
N=440±

25 ps with a mean force of F1
N=567±25 pN and

corresponds to the rupture of a hydrophobic contact
between the amino acids Tyr-L40 and Leu-3peptide.
For the first rupture event, a rupture length of
r1

N=0.88±0.05 nm was detected. The pathway that
involves this interaction is taken in 75% of all
trajectories. The second rupture event occurs after
t2N=860±28 ps with a mean force of F2

N=716±
23 pN. For this second rupture event, the rupture
length equaled r2

N=1.72±0.06 nm. The force peak,
which corresponds to the second main barrier
crossing and appears in 65% of all trajectories, results
from the rupture of the H-bond between GluOε-
6peptide and the backbone hydrogen GlyH-H40. The
last contact for the unbinding process is formed by
Asn-L69, Arg-L70, Arg-9peptide and Leu-10peptide.
In configuration M, the peptide is separated from

the antibody fragment in a double zipper mode,
which leads to breakage of two stabilizing inter-
actions next to the steered amino acid (Fig. 8).

Fig. 6. Steered molecular dynamics simulations setup.
All molecular dynamics simulationswere started using the
same initial structure. The center of mass (COM) of the
heavy chain VH was fixed in space during the whole
simulation time, whereas the light chain VL was not
constricted. (a) For the simulation of the unbinding forces
the pulling potential was attached to different Cα atoms of
the peptide to yield the configurations N, M and C. (b–d)
Last contacts between the scFv fragment and the peptide
revealed by the SMD simulations. The last contacts bet-
ween the peptide and the antibody fragment are shown for
the respective configurations. The amino acids are identi-
fied in the main text.

Fig. 7. Unbinding process of configuration N. (a)
Force-time curves. The mean average force-time curve
(black) and a representative force-time graph (red) were
plotted. The unbinding process shows two important
events, which correspond to the highlighted force peaks.
The colors of the highlighted force peaks were chosen
according to the colors in the molecular structures (cyan
for the first rupture event and purple for the second rup-
ture event). (b) Structural origin of the first unbinding
event. The first unbinding event (cyan) corresponds to the
rupture of the hydrophobic contact between Tyr-L40 and
Leu-3peptide. The picture shows the molecular structure
shortly before the event is observed. c. Structural origin of
the second unbinding event. The second unbinding event
(purple) corresponds to the rupture of the important H-
bond between GLYH-H40 and GLUOε-6peptide. The picture
shows the molecular structure shortly before the event is
observed. This second rupture event has also been found
in the two other configurations M and C.
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Nevertheless, only one major force peak can be
identified after an average pulling time of t1

M=319±
9 ps (corresponding to a rupture length of r1

M=
0.64±0.02 nm) at an average force of F1

M=1161±
28 pN (Table 2). The main barrier is identified clearly
as the rupture of the H-bond between GlyH-H40
and GluOε-6peptide (in 95% of all trajectories). This
interaction also causes the second rupture event in
the majority of trajectories in configuration N (Fig. 7;
Table 2). Subsequent to this H-bond rupture in
configuration M, after a mean time of additional
ΔtM=40±8 ps (corresponding to ΔrM=0.08 ±
0.02 nm), the double H-bond between AspOδi-H137
and ArgHζi-9peptide (i=1, 2) ruptures (Fig. 8) without a
resolvable additional force peak. The last contact for
the unbinding process in configuration M is formed
via Asn-L68, Asn-L69 and Lys-11peptide on the
C-terminal side. The last contact on the N-terminal
side of the peptide ruptures shortly before the
C-terminal last contact between Leu-3peptide and
His-2peptide of the peptide and Asn-L68, Asp-H33
and Leu-H110 of the scFv fragment.
In configuration C, the peptide is zipped off

starting from its C terminus end. Again, two main
force peaks are identified. The first force peak was
detected after t1

C=514±20 ps (corresponding to a

rupture length of r1
C=1.03±0.04 nm) at a mean force

of F1
C=775±28 pN. This force peak coincides with

the opening of the stabilizing backbone H-bond of
the first peptide helix loop between Val-7peptide and
Leu-10peptide. Hence, the first major rupture event
refers to the opening of the secondary structure of
the peptide and not to the breakage of a peptide–
antibody fragment bond. The rupture of this
interaction on the main unbinding pathway is seen
in 85% of all trajectories. The second barrier crossing
occurred after an average time of t2

C=750±45 ps
with an average rupture length of r2

C=1.50±0.09 nm
and an average force of F2C=720±21 pN. This force
peak is again determined by the rupture of the
H-bond between GlyH-H40 and GluOε-6peptide (Fig. 9;
Table 2). A total of 65% of all trajectories crossed this
second barrier via the main unbinding pathway. The
last contact for the unbinding process of configura-
tion C is formed via His-2peptide , LEU-3peptide, Thr-
L32, Thr-L67, Asn-L68 and Asn-L69.
The three configurations underline the importance

of the H-bond between the backbone of GlyH-H40
and GluOε-6peptide. The breakage of this bond is a

Fig. 8. Unbinding process of configuration M. (a) Force-
time curves. The mean average force curve (black) and a
representative force-time graph (green) were plotted. The
force-time curve shows one major peak highlighted in
purple. (b) Structural origin of the observed unbinding
event. The unbinding event (purple) corresponds to the
rupture of the important H-bond between GlyH-H40 and
GluOε-6peptide. The picture shows the molecular structure
shortly before the event is observed. This rupture event has
also been found in configurations N and C.

Fig. 9. Unbinding process of configuration C (a) Force-
time curves. The mean average force-time curve (black)
and a representative force-time graph (blue) were plotted.
The two important rupture events represented by the force
peaks of the mean curve were highlighted according to the
colors in the molecular structures. (b) Structural origin of
the first unbinding event. The first rupture event (orange)
corresponds to the breakage of a backbone hydrogen bond
stabilizing the α-helical structure of the peptide resulting
in the opening of a peptide loop. The picture shows the
molecular structure shortly before this event is observed.
(c) Structural origin of the second unbinding event. The
second unbinding event (purple) corresponds to the
rupture of the important H-bond between GlyH-H40 and
GluOε-6peptide. The picture shows the molecular structure
shortly before the event is observed. This rupture event
has also been found in configurations N and M.
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dominant rupture event in the majority of all trajec-
tories independent of the pulling vector. The con-
figurations N and C, where the peptide unbinds in a
single zipper mode, show two main rupture events.
In configuration N, the first force peaks occurs earlier
(t1

Nb t1C) and at lower forces (F1NbF1
C) with respect

to configuration C. The respective first force peak in
configurations N and C results from different
molecular interactions. Therefore, different force
vectors probe different pathways through the land-
scape. However, the second force peak corresponds
to the same molecular interaction of GlyH-H40 and
GluOε-6peptide in both configurations. The rupture
forces of this interaction, indicative of the slope of the
energy surface, are comparable in both configura-
tions. And yet, in configuration C, the second force
peak occurs earlier (t2

N Nt2
C). The rupture length for

this second force peak of configuration C (r2C=1.50±
0.09 nm) is hence shorter than in configuration N
(r2

N=1.72±0.06 nm), despite probing the identical
interaction. This is due to the different intramole-
cular distances between force attachment points
and the GluOε-6peptide, demonstrating that, depend-
ing on the configuration, the same barrier can have
different characteristics (here, the barrier width). Fur-
thermore, this interaction between GlyH-H40 with
GluOε-6peptide is also probed in configuration M,
showing a very different fingerprint of the force curve
than in the other two configurations. The shorter
rupture length and higher rupture forces compared
with configurations N and C result from the very
direct force attachment point, again underlining the
fact that the molecular nature of the interaction and
the geometry of the force probing crucially determine
the characteristics of the probed interaction.

Comparison of the SMD and AFM results

Both simulation and experiment probe the respec-
tive antibody fragment–peptide complex at the
same positions on the peptide, thereby exerting
forces in the same directions. SMD simulations, due
to computational limitations, probe the system at
much higher loading rates.22,27 Hence, thermal
relaxation occurs only partially. The system lacks
the time to relax orthogonally to the pulling direc-
tion and resulting from this, lacks the time to explore
the energy landscape locally to find the optimal
pathway to cross the barrier.27 This might lead to a
steeper pathway on the energy landscape potentially

crossing higher barriers and finally resulting in
higher rupture forces. Whereas higher rupture forces
have been observed for all configurations, this effect
is most dominant for configuration M, which
unbinds in a double zipper mode (nearly simulta-
neous rupture of two bonds). In the simulations, as
soon as the first important interaction breaks
(H-bond GlyH-H40, which binds GluOε-6peptide), the
more stable double H-bond of the interaction bet-
ween AspOδi-H137 and ArgHζi-9peptide (i=1, 2)
experiences the full load and ruptures within 40 ps
(Fig. 8). In contrast, in the AFM experiments, the
system can relax orthogonally to the applied force
and can re-arrange after the first breakage. As a re-
sult, after the first breakage the complex might
become so unstable that dissociation occurs on a
timescale too fast to be observed with the AFM.
Furthermore, the Ala8Cys mutation in the peptide

used in the AFM experiments may lead to additional
disturbances of the peptide structure, which may
result in a lower stability of the complex. The muta-
tion lies in that region of the peptide with the highest
probability for α-helix formation and mutations at
this position have been shown to have an influence
on the stability of the leucine zipper.24,28 Although,
as described previously, this mutation is considered
to influence the binding process more than the
stability of the bound complex, a destabilizing con-
tribution of the mutation on the complex cannot be
fully excluded.
A more detailed comparison of the values ob-

tained from the AFM experiments and the SMD
simulations provides an explanation of the energy
barriers on the unbinding pathways for the res-
pective configurations. The comparison of the po-
tential widths obtained with the AFM and the rup-
ture lengths obtained from the SMD simulations
shows that the rupture lengths for configurations N
and C for the first barrier crossing of the main
unbinding pathway (r1

N, r1
C) are in good agreement

with the potential widths obtained with the AFM
(ΔxN, ΔxC) (Tables 1 and 2). Hence, the AFM expe-
riments probe the first barrier observed in the SMD
simulations (Fig. 10). Again, for configurationM, the
observed differences might result from the different
relaxation due to different time regimes and from
the potentially destabilizing mutation, as discussed
above.
Furthermore, the SMD simulations provide further

evidence for the existence of a second energy barrier,

Table 2. Summary of the information obtained from the force curves from the three different configurations N, M and C
(SMD simulations)

Force peak 1 Force peak 2

Configuration t1 (ps) F1 (pN) r1 (nm) Interaction t2 (ps) F2 (pN) r2 (nm) Interaction

N 440±25 567±25 0.88±0.05 Tyr-L40 and
Leu-3peptide

860±28 716±23 1.72±0.06 GlyH-H40 and
GluOε-6peptide

M 319±9 1161±28 0.64±0.02 GlyH-H40 and
GluOε-6peptide

359±8 n. d. 0.72±0.02 AspOδi-H137 and
ArgHζi-9peptide
(i=1, 2)

C 514±20 775±28 1.03±0.04 Loop opening 750±45 720±21 1.50±0.09 GlyH-H40 and
GluOε-6peptide
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which was not shown unambiguously by the AFM
and SPR data. The forces needed to overcome the
second barrier of the main unfolding pathway are of
the same order of magnitude as for the first barrier
crossing. Yet, the second rupture event for config-
urations N and C occurs at nearly twice the distance
of the first rupture event (Table 2). Hence, the second
energy barrier of the main unfolding pathway in the
energy landscape has a large potential width. Outer
barriers are much more influenced by externally
applied forces than inner barriers, due to the tilted
energy landscape. Because of this large potential
width of the second barrier observed in the SMD
simulations, it is plausible that this barrier is not
probed in the AFMmeasurements, even at the lowest
applied loading rates. Therefore, the existence of two
energy barriers is not in conflict with the observation
that the AFM data could be fit with a straight line in
the force versus loading rate plot in Fig. 4.

The SMD data explain the observed potential
widths in the different experimental configurations,
and they provide more information about the basal
dissociation rates of the first barrier crossing ob-
tained from the AFM measurements. As stated
earlier, the results from the SMD simulations show
that the first barrier crossing in configuration C
occurs at a longer rupture length (r1

CN r1
N) and at

a greater force (F1
CNF1

N) than in configuration N.
Since the forces measured with the SMD simula-
tions correspond to the slope of the energy barrier
in the energy landscape, the higher forces observed
in configuration C result from a steeper energy
barrier. This steeper energy barrier together with
the longer rupture length indicates that the first
energy barrier of the main unbinding pathway is
higher in configuration C than in configuration N.
A higher energy barrier corresponds to a lower
dissociation rate. Hence, if — as already concluded
from the comparison of AFM and SPR — the inner
energy barrier is rate-determining for the AFM
experiments (Fig. 5), experiment and simulation
agree on a lower dissociation rate for configuration
C compared with the dissociation rate for config-
uration N (koff,1(C)bkoff,1(N)).

Conclusions

Awell-characterized antibody–antigen interaction
has been chosen to explore the underlying energy
landscape with a combination of different techni-
ques. The main focus was to investigate if different
pulling directions lead to different unbinding path-
ways and therefore provide a more detailed insight
into the unbinding process of the interaction. SMD
simulations detected two rupture events for every
pulling direction. One rupture event in each config-
uration is determined by the same molecular bond,
whereas the other rupture event originates from the
breakage of different bonds. These findings show
clearly that the underlying energy landscape is
multidimensional. This information could not be
obtained from the AFMmeasurements alone, which
show a linear dependence of the rupture forces on
the logarithm of the loading rate — a feature that is
characteristic for a two-state system with only one
barrier. However, a comparison of AFM and SPR
points to the existence of at least one more barrier.
SPR always probes the lowest energy barrier in the
energy landscape. When performing AFMmeasure-
ments, the complex might be forced to follow a
steeper unbinding pathway, which would result in a
lower dissociation rate (corresponding to a higher
barrier). But, as stated earlier, the basal dissociation
rate for configuration N obtained with the AFM
is higher than the koff value obtained with SPR. This
leads to the conclusion that the energy barrier
probed with the AFM is lower than the energy
barrier that has to be overcome under equilibrium
conditions. Therefore, an additional energy barrier
has to exist along the pulling direction of configura-
tion N (Fig. 5), which is not detectable with the

Fig. 10. Two-dimensional projection of the energy
barriers obtained from the AFM experiments and the
rupture lengths obtained from the SMD simulations. To
summarize the results, the potential widths and basal
dissociation rates have been taken from the AFM mea-
surements and plotted in a 2-D energy diagram (config-
uration N, red; configuration M, green; and configuration
C, blue) to provide an overview of the barriers that need to
be crossed. Further unbinding pathways on the respective
energy landscapes are not known. The arrows above the
energy landscapes indicate the positions of the respective
rupture lengths for the first and second barrier crossing of
the main unbinding pathway, obtained from the SMD
simulations.
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AFM. The results from the SMD simulations further
support this conclusion, since the outer (second)
barrier has a very large potential width so that the
inner (first) barrier is most likely rate-determining
even at the smallest loading rates. For configuration
C, the SMD simulations also show a second barrier,
which is considered to be lower than the first barrier
and which is therefore not probed experimentally.
In conclusion, the experimental set-up chosen for

the AFM measurements, which allows the site-
specific immobilization of the binding partners,
shows clearly that the direction of the applied force
defines the unbinding pathway on a multidimen-
sional energy landscape. This finding points out
clearly that non(site)-specific coupling procedures
provide a simplified picture of the molecular inter-
actions as the contributions of different unbinding
pathways are averaged out.

Materials and Methods

Preparation of the peptides and the scFv fragment

Peptides representing a truncated version of the GCN4-
p1 leucine zipper Y1HLENEVA8RLKK12 were obtained
from Jerini Peptide Technologies GmbH, Berlin, Germany.
A cysteine has been introduced at different positions during
solid-phase synthesis to provide site-specific attachment
points for the immobilization on the cantilever (Fig. 2):
NH2-CGGGYHLENEVARLKK-amide (configuration N),
NH2-YHLENEVCRLKK-amide (configurationM), andNH2-
YHLENEVARLKKGGGC-amide (configuration C).
The expression and purification of the scFv fragment H6

was carried out as described.29 Briefly, the scFv fragment
H6 was expressed with a C-terminal His tag followed
by cysteine to allow a site-specific immobilization. The
plasmid for the periplasmic expression in Escherichia coli is
based on the pAK series.30 The gene for co-expression of
the periplasmic chaperone Skp was introduced.31 The
original His tag was replaced by a His6 tag followed by
two glycine residues and a cysteine. For the expression
and purification of H6, the protocol described by Hanes
et al.16 was slightly modified. In short, the bacteria with the
transformed plasmid were grown at 25 °C in SB medium
(20 g l−1 Tryptone, 10 g l−1 yeast extract, 5 g l−1 NaCl,
50 mM K2HPO4) containing 30 μg ml−1 chloramphenicol.
Expression was induced with 1 mM isopropyl-β-d-
thiogalactopyranoside (IPTG) at an A600 between 1.0 and
1.5. The cells were harvested 3 h after induction by centri-
fugation. Cell disruption was achieved by French press
lysis. The scFv fragment H6 was purified using two
chromatography steps. After chromatography on a Ni2+-
NTA column (Qiagen, Hilden, Germany) using standard
protocols the eluted fraction was loaded directly onto an
affinity column with immobilized antigen. The fractions
from the affinity column were dialyzed against coupling
buffer (50 mM sodium phosphate, pH 7.2, 50 mM NaCl,
10 mM EDTA) and concentrated using Centricon YM-10
(Millipore, Eschborn, Germany). The actual concentration
of the purified scFv fragment H6 was determined by
measuring A280. The extinction coefficient was calculated
using the program Vector NTI (Invitrogen, Karlsruhe,
Germany). The preparation of the purified protein was
adjusted to a concentration of 0.8 mg ml−1 and stored at
−80 °C.

Preparation of slides and cantilevers for the AFM
measurements

Poly(ethylene glycol) (PEG) was used as a spacer bet-
ween the biomolecules and the surfaces. PEG is an ideal
spacer for force spectroscopy measurements25,32–37, as it
provides protein-resistant surfaces,38 thereby reducing
the number of non-specific binding events. In addition,
PEG shows a characteristic force-extension curve, allow-
ing the discrimination between specific and non-specific
interactions during data analysis. The scFv fragment H6
possessing a C terminal cysteine was immobilized on an
amino-functionalized slide using a hetero-bifunctional
NHS-PEG-maleimide (mass = 5000 g/mol; Nektar,
Huntsville, AL, USA). The three peptides were separately
immobilized via their introduced cysteine to an amino-
functionalized cantilever, again using the NHS-PEG-
maleimide spacer (Fig. 2).
In detail, the cantilevers (Bio-lever, Olympus, Tokyo,

Japan) were activated with a 10 min UV-ozone cleaning
treatment and amino modified with 3-aminopropyl-
dimethylethoxysilane (ABCR GmbH, Karlsruhe, Ger-
many) as described.29,35,36 Commercially available
amino-functionalized slides (Slide A, Nexterion, Mainz,
Germany) were used for the immobilization of the scFv
fragment. For the next steps, both surfaces (slide and
cantilever) were treated in parallel as described.39 Briefly,
they were incubated in 50 mM sodium borate buffer, pH
8.5, in order to increase the fraction of unprotonated
amino groups for coupling to the NHS groups of the PEG.
NHS-PEG-maleimide was dissolved at a concentration of
50 mM in borate buffer and incubated on the surfaces for
1 h. In parallel, one of the peptides and the scFv fragment
H6were reduced using TCEP beads (Perbio Science, Bonn,
Germany) in order to generate free thiols. After washing
both surfaces with ultrapure water, a solution of the
peptide (200 μM) was incubated on the cantilever and a
solution of the scFv fragment H6 (0.13 mg/ml) was
incubated on the slide for 1 h. Finally, both surfaces were
rinsed with PBS (10 mM sodium phosphate, pH 7.4,
137 mM NaCl, 2.7 mM KCl) to remove non-covalently
bound material, and stored in PBS at room temperature.

Force spectroscopy

All force measurements were performed with a MFP-1D
AFM (Asylum Research, Santa Barbara, CA, USA) at room
temperature in PBS. The cantilever spring constants were
8.7 pN/nm for the measurement of configuration N (see
Fig. 2), 3.4 pN/nm for themeasurement of configurationM,
and 4.2 pN/nm for the measurement of configuration C
(B-Bio-Lever) and were obtained as described.40,41 During
the experiments, the approach and retract velocity were
held constant, whereas the applied force was adjusted by
changing the distance between the cantilever tip and the
surface to obtain single binding events. Several hundred
approach–retract cycles were carried out to achieve good
statistics. Each experiment was done for different retract
velocities ranging from 50 nm/s to 10 μm/s to obtain
measurements over a broad range of loading rates.

Data extraction

The experimental data were converted into force-
extension curves. From these, the rupture force (the force
at which the antibody fragment–antigen complex rup-
tures), the rupture length and the loading rate were
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determined using the program Igor Pro 5.0 (Wavemetrics,
Lake Oswego, OR, USA) and a custom-written set of
procedures. The rupture force was determined as
described.4,42 The loading rate was determined using the
two-state, freely jointed chain fit to the force-extension
curve, according to previous studies.43

Data analysis

To analyze the data set obtained from one experiment,
which was recorded at a constant retract velocity, the rup-
ture forces, the rupture lengths and the loading rates were
plotted in three histograms. These histograms were ana-
lyzed with a method based on the so-called Bell-Evans
model.4,44 The rupture force and loading rate (plotted
logarithmically) histograms for each data set, i.e. for each
retract velocity, were fitted with a Gaussian distribution to
determine themaxima. Finally, these obtainedmaximawere
plotted in a force versus loading rate diagram. The max-
imum force (from the Gaussian distribution of the rupture
force histogram) represents the most probable force F*:

F* ¼ kBdT
Dx

ln
FdDx

kBdTdkoff
ð1Þ

where kB is the Boltzmann constant, T is temperature, Δx is
the potential width, koff is the basal dissociation rate at zero
force and F* (=dF/dt) is the loading rate. From a linear fit of
the force versus loading rate (pictured logarithmically) plot
and Eq. (1), Δx and koff of the antibody fragment–antigen
complex can be determined from the slope and the intercept
of the linear fit with the abscissa.

Error estimation

To calculate the error of the dissociation rate koff and the
potential width Δx, the following assumptions were
made:

(i) The error in the calibration of the spring constant
constitutes 10 %.

(ii) Injected noise and oscillations lead to an error of
±0.2 pN in the measured rupture force. This value
was estimated from the integration of the frequency
spectrum of the cantilever in PBS to a frequency of
10 Hz.

As described above, koff and Δx can be calculated from
the linear fit to the data points in the force versus loading
rate diagram. Due to the use of only one cantilever for all
data points, the error, originating from the calibration of
the spring constant, leads to systematic higher or lower
rupture forces and loading rates, and therefore to higher
or lower most probable rupture forces and loading rates.
We therefore determined the maximum and minimum
linear fit. From these two fits, themaximum andminimum
koff and Δx can be calculated. In addition, the estimated
value of ±0.2 pN was taken into account. This error is not
systematic and can be added or subtracted from the most
probable rupture force. By using a random generator, a
mean linear fit was calculated. From this, we gained a
mean value for koff and Δx with the corresponding
standard deviation. This procedure was applied to the
original, the maximum and the minimum linear fit in the
force versus loading rate plot to receive the maximum and
minimum koff and Δx with their corresponding standard
deviations.

Proof of specificity

To prove the specificity of the force spectroscopy mea-
surements, experiments were performed, either without
the antibody fragment or without the peptide. By mea-
suring the antibody fragment H6, attached to the surface,
against a cantilever tip passivated with PEG, more than
1000 force-extension curves were recorded. Thereby, less
than 1% non-specific interactions were detected. The
measurements without the peptide led to similar results.

SPR measurements

The measurements of the dissociation rate koff (25 °C)
and the equilibrium constants Kd of the scFv fragment H6
and the peptide with cysteine at either its N or C terminus
were donewith a Biacore X instrument (BIAcore, Freiburg,
Germany). For this purpose a CM5 sensor chip (BIAcore)
was modified via amine coupling according to the
manufacturer's protocol. Clone H6 was diluted in immo-
bilization buffer (10 mM sodium acetate, pH 5.0) to a final
concentration of 11.4 ng/μl and placed onto the chip. The
final signal intensity on the surface was ∼200 RU. A series
of the respective peptide solutions in PBS buffer in the
range of 1.64–400 nM for the measurement of koff and 4–
400 nM for the measurement of Kd was placed onto the
chip. After binding, dissociation was followed at a flow
rate of 50 μl/min. The dissociation and association phase
was fit globally, using the single-exponential fit function of
the program BIAEvaluation 3.2. The equilibrium constants
were gained from separate determination of the dissocia-
tion and association rate.

Molecular dynamics simulations (MD)

All MD simulations were based on the 2.35 Å resolution
X-ray structure 1P4B15 of the antibody scFv fragment
bound to the peptide A1HLENEVA8RLKK12. Here, the
amino acids of the antibody fragment are labeled with the
three-letter code of the amino acid, the location in the VH or
VL domain, and the position in the 1P4B PDB structure. The
amino acids of the peptide are labeled as a combination of
the three-letter code and the number of the amino acid in
the crystal structure. To distinguish between antibody
fragment and peptide amino acids, the residues of the
peptide are identified by the subscript peptide.
The first amino acid of the 1P4B PDB structure differs

from the experimentally used amino acid. We chose not to
mutate the sequence to match the experimental one,
because this would have reduced the resolution of the
structure. The influence of this sequential difference will
not be significant, since it is located at the non-interacting
end of the peptide.
All MD simulations were performed using the software

GROMACS.45–47 We used periodic boundary conditions,
the OPLS-AA force field48 and SPC/E water49 for all MD
simulations. For all simulations first one energy-mini-
mized, equilibrated and pre-oriented state of the proteins
solved in water was generated. This initial structure was
assigned to new Boltzmann-distributed velocities and
again equilibrated shortly before the SMD simulations
were performed.

System preparation

The antibody fragment–peptide structure 1P4Bwas pre-
oriented with the helical peptide axis parallel with the z-
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axis of the system. Then the molecules were solvated in a
6.8 nm×6 nm×11.6 nm waterbox (16,034 H2O) ionized
with 45 sodium and 43 chloride atoms. The overall charge
of the system was neutral.
Steepest descent energy minimization was performed

with a maximum step size of 0.01 nm up to a precision of
2000 kJ/(mol·nm). No pressure or temperature coupling
was used. The cut-off radius for Coulomb and van der
Waals interactions was set to 1 nm.
Afterwards, a water relaxation simulation of 200 ps was

preformed. On all protein atoms, a positional restraint was
placed using a harmonic potential with a force constant of
2000 kJ/(mol·nm2)=3.32 nN/nm on the protein atoms.
The LINCS algorithm was used on all bond constraints.50

Protein and non-protein atoms were coupled separately to
a heat-bath of 300 K using a time constant of 0.1 ps.
All further simulations were performed using fast

particle-mesh Ewald electrostatics with an order of 4 and
a van der Waals cut-off of 1.0 nm. A 1 ns equilibration of
the whole system followed. A leapfrog algorithm with a
time-step of 2 fs was used. All Cα atoms were restrained
with a harmonic potential of 1000 kJ/(mol·nm)=1.8 nN/
nm to avoid an unwanted rotation of the system. The
restraint potential was weak enough to allow small
conformational changes of the backbone due to the
equilibration. The side chains were not restricted and
therefore freely equilibrating. The RMSD (nm) fit of the Cα

position reached a stable plateau within this equilibration
(data not shown). The temperature was restricted to 300 K
analogs to the last step. The resulting structure was used
as the initial structure for all configurations to allow a
better comparison of the results. Before the actual SMD
simulations were performed, for each simulation new
random Boltzmann distributed velocities were assigned
and an additional 200 ps pre-equilibration was performed.

Simulations

In every SMD simulation the antibody fragment was
fixed in space via a COM movement removal of the chain
VH of the antibody fragment. In each configuration, a
different Cα atom was steered away from the antibody
fragment (in the x-direction) with a harmonic potential
using a spring constant of k=1600 kJ/(mol·nm2)
=2.66 nN/nm. This steering was executed for 3 ns at a
speed of vpull=2 nm/ns resulting in a final separation of
6 nm. The strong steering potential forces the attached
atom to follow it closely. No other atom of the peptide is
restricted in any way, leaving it to respond freely to the
forced movement of the attached atom.
Three different configurations were tested in correspon-

dence to the AFM experiments. In configuration N, the Cα

atom of the N-terminal alanine Ala-1peptide of the antigen
peptide was attached to the steering potential. In config-
uration C, the Cα atom of the C-terminal amino acid Lys-
12peptide was attached and in the configuration M the Cα

atom of the eighth amino acid Ala-8peptide was attached. In
contrast to the AFM experiments, no mutation in config-
urationMwas performed, because no cysteine for external
linkage was needed in the SMD simulations.
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The Effect of Different Force Applications on the Protein-Protein Complex
Barnase-Barstar

Jan Neumann and Kay-Eberhard Gottschalk*
Angewandte Physik und Biophysik, Ludwig-Maximilians Universität, Munich, Germany

ABSTRACT Steered molecular dynamics simulations are a tool to examine the energy landscape of protein-protein complexes
by applying external forces. Here, we analyze the influence of the velocity and geometry of the probing forces on a protein
complex using this tool. With steered molecular dynamics, we probe the stability of the protein-protein complex Barnase-Barstar.
The individual proteins are mechanically labile. The Barnase-Barstar binding site is more stable than the folds of the individual
proteins. By using different force protocols, we observe a variety of responses of the system to the applied tension.

INTRODUCTION

Forces are regulating factors on protein complexes. Applica-

tion of forces is important in numerous processes in biolog-

ical systems like cell adhesion or cellular mobility (1–5). In

addition, forces are often used as an experimental tool for

studying the energy landscapes of both individual proteins

and protein-protein complexes (6–8). The interpretation of

these experiments is complex and a thorough description

of the influence of different force protocols on the unbinding

pathways is critical (9). In particular, force-induced unfold-

ing follows pathways that are different from spontaneous

free-solution, chemically-induced, or temperature-induced

types of unfolding (10,11).

Technically, the application of forces on the nanoscale can

be realized using different experimental techniques like

atomic force microscopy (AFM), force pipette, optical twee-

zers, or simulation methods like steered molecular dynamics

(SMD) on the single-molecule level (12–22).

The response of secondary structure elements on different

orientations of external stresses leads to a large range of un-

raveling forces (23–25). In more recent studies, the depen-

dence of the mechanical stability of protein unfolding on

the force linkage is demonstrated. On the model system of

ubiquitin, it is shown, by experiment and simulation, that

different ubiquitin linkages in nature differ in their unfolding

forces and unfolding free energy profiles (26–28). The un-

folding of fibronectin depends critically on the vector of

the applied forces (29). The force response and energy land-

scape of the fluorescence molecule GFP on different force

attachment points has been examined using AFM experi-

ments as well as model simulations (28,30,31). An asym-

metric nature of the force response of the titin kinase in

a symmetrical setup was shown by Gräter et al., demon-

strating the direction dependency of the protein response to

force (32), recently supported by AFM measurements (33).

In force-clamp simulations, possible relations between

forced and chemically induced unfolding pathways have

been suggested (34). These studies underline the importance

of both the history of force application as well as the direc-

tion of the force vector for the observed response.

Applied forces have also been used to estimate binding

energies and to analyze protein-protein complexes. Recently,

SMD simulations were used to force the cytochrome c2

unbinding from the reaction center (35), to unbind an anti-

body-antigen complex (36) as well as to analyze the

protein-protein interaction energies of the TCR-pMHC

complex (37).

A general advantage of SMD simulations over the exper-

imental techniques is that the chosen unfolding pathway can

be analyzed in atomistic detail. However, due to computa-

tional limitations, the used velocities exceed the experi-

mental ones by orders of magnitude. This renders a direct

comparison between experiment and simulation compli-

cated. Thus, insight into the atomistic response to different

force protocols used is crucial for this comparison. Further-

more, it reveals details of the underlying energy landscape

not observable without the explicit control over the experi-

mental parameters offered by the simulation.

In this work, we perform SMD simulations on the protein-

protein complex Barnase-Barstar. We use different attach-

ment points and different velocities of the force application

to observe the response of the model system. This allows

us to gain detailed insight into the effect of differently

applied forces on a protein complex analogous to the depen-

dence of mechanical stability of protein unfolding on the

force linkage.

Barnase is a bacterial RNase, which is excreted by the

bacterium Bacillus amyloliquefaciens and is deadly to unpro-

tected cells (38–42). The natural inhibitor Barstar protects the

bacterium. Due to the high evolutional pressure, the Barnase-

Barstar complex is one of the fastest forming and most stable

complexes known (43).

The fast association of the Barnase-Barstar is electrostati-

cally facilitated (44–46). Poisson-Boltzmann calculations

predicted a stabilizing electrostatic effect in agreement with
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experimental data (47). Brownian dynamics studies of the

Barnase-Barstar complex showed that its association is diffu-

sion-limited and the experimentally measured association

rates can be reproduced (39,44,48,49). Recently, the free

energy landscape of this association has been analyzed. An

optimal association pathway was found involving a region

close to the RNA binding loop of the protein complex

(50,51). An overlap of association and dissociation path-

ways, using rigid-body Brownian dynamics simulations

with an implicit solvent model, has been suggested (51).

Although the equilibrium association of the Barnase-Barstar

complex has been studied to a great extent, the response of

the complex to nonequilibrium conditions has not been

examined as thoroughly. However, during export of the

complex, it is exposed to forces. Furthermore, protein

complexes are in general an attractive target for force studies:

the probing of protein-protein complexes by force can be

regarded as a complex differential assay, where the mechan-

ical stability of the individual folds is compared to the

stability of the noncovalent binding site, depending on a

variety of experimental parameters.

The aim of this study is to investigate the mechanical

stability of this model complex under the influence of

different force applications. Since Barnase needs to be

exported from the cell, we expect a low mechanical stability

of the individual protein. However, since the cell needs to be

protected as long as Barnase is not exported, we expect

a high stability of the Barnase-Barstar binding site inhibiting

RNA binding. Indeed, we demonstrate here that the complex

binding site is more stable than the individual domains. We

recapture basic features of the unbinding transition state. We

show that we can alter the main trajectory from unfolding to

several unbinding pathways by altering the attachment

points of the steering forces. Hence, our simulations probe,

in a differential force assay, the relative stability of regions

within the complex, depending on the force protocol used.

METHODS

All simulations on the Barnase-Barstar complex (PDB code: 1BRS (52))

were performed with the MD simulation software GROMACS Ver. 3.2–

3.3.3 (53,54). Periodic boundary conditions, SPC/E (55) water, and

OPLS-AA (56) force field were used for all simulations.

System preparation

The Barnase-Barstar structure was preoriented in a 4 nm � 5.8 nm � 12 nm

waterbox. The vector connecting Ca
bn7 and Ca

bs86 was oriented parallel to the

z axis of the box. Thirteen Naþ and nine Cl� atoms were added to neutralize

the overall charge of the system at a 75 mM NaCl concentration.

Energy minimization was performed with steepest descent and with

a maximum step size of 0.01 nm. A cutoff radius of 1 nm for Coulomb

and van der Waals interactions was used.

A 200-ps positional restraint simulation followed. All protein atoms were

restrained by a harmonic potential with a harmonic force constant of

2000 kJ
mol,nm2 ¼ 3:32nN

nm
. All bonds were constrained via the LINCS algorithm

(57). The COM translation of the system was removed. Berendsen temper-

ature coupling (58) was used to couple the protein atoms and the nonprotein

atoms separately in two groups with a temperature bath of 300 K and a

time-constant of 0.1 ps.

For all further simulations, electrostatics were calculated with fast

particle-mesh Ewald electrostatics (59) with an order of four and a cutoff

for Coulomb and van der Waals interactions of 1.0 nm.

Five-hundred picoseconds of equilibration were performed using the

leap-frog algorithm with a timestep of 2 fs. All Ca backbone-atoms were

restrained with a harmonic potential with a force constant of 200 kJ
mol,nm

to

avoid a rotation of the system. For equilibration and all SMD runs, the

protein complex and the solvent molecules were coupled to two separate

Berendsen thermostats, setting each temperature to 300 K. In addition,

Berendsen pressure coupling (58) set the whole system to 1 bar with

a compressibility of 4.5 � 10�5 bar�1 and a time-constant of 0.5 ps. The

final structure of this equilibration step was used as the initial structure for

all SMD simulations.

Before an SMD was started, velocities were again randomly assigned and

another 200-ps equilibration were performed.

SMD simulation

For all setups, constant velocity pulling simulations with fast (yfast ¼ 2nm
ns

),

medium (ymedium ¼ 0:5nm
ns

), and slow (yslow ¼ 0:125nm
ns

) pulling velocities

was done. The COM movement was removed for the atom/group where the

complex was fixed in space. A harmonic potential with a spring constant of

k ¼ 1600 kJ
mol,nm2 ¼ 2:66nN

nm
was moved in z direction until the final position

was at least 3.5 nm (up to 6 nm) away from the initial position. The majority

was pulled 5 nm, which results in a pulling time of 2.5 ns for fast, 10 ns for

medium, and 40 ns for slow pulling trajectories. The hard spring constantly

forces the atom to closely follow the harmonic potential spatially and in

time. Because the spring constant was kept constant, its influence on the

loading rate of the AFM did not vary in Setups 1–3. The number of simulated

trajectories per setup and pulling velocity can be found in Table 1.

Setup 1

The harmonic potential mimicking an AFM tip was attached to the Ca atom

of the first residue of the first element with regular secondary structure of

Barnase (Ca
bs86) and fixed the position of the Ca atom of the last residue

of the last element with regular secondary structure of Barstar (Ca
bn7) in

Setup 1. For the mirrored setup, Setup 1m, the attachment points for pulling

and spatial fixation were exchanged (Fig. 1 B).

Setup 2

The COM of Barstar was pulled by the time-dependent harmonic potential,

whereas the COM of Barnase was fixed.

Setup 3

For the direct probing of the protein-protein binding site, the COM of the

Ca values of the Barstar binding helix was the attachment point of the force.

The COM of Barnase was fixed like in Setup 2. Only fast pulling was simu-

lated. Due to the early unbinding of the protein complex, the pulling was

only simulated for 2.25 ns, corresponding to a pulling length of 4.5 nm.

Calculation of effective force and work

First, the time of separation for each single trajectory in Setups 2 and 3 was

determined. The forces exerted on the system after the separation were

assumed to be the drag forces of the molecule through the solvent water.

These drag forces were averaged for each trajectory individually from the

time of the separation to the end of the simulation. To renormalize the forces

after the separation to zero, we subtracted the average drag forces from the

calculated forces. This resulted in an effective force Feff for the separation:

FeffðxÞ ¼ FðxÞ �
�
Fdrag

�
: (1)

Biophysical Journal 97(6) 1687–1699

1688 Neumann and Gottschalk

78



The effective work done during the separation of the complex was calcu-

lated by

WeffðxÞ ¼
Xxi%x

i

FeffðxiÞ � ðxi � xi�1Þ: (2)

These work curves Weff (x) were then averaged for each pulling velocity of

Setups 2 and 3. No average work distributions for Setups 1 and 1m were

calculated since no unbinding is seen.

RESULTS

To understand the influence of force application on the

complex, the unfolding pathways need to be described.

Due to the high complexity of the system, an approach to

reduce this complexity to a small set of descriptive parame-

ters is needed.

We analyzed the unbinding pathways by defining charac-

teristic contacts in the protein, which open during the simula-

tion. A careful analysis of our trajectories led to the definition

of the five specific contacts for the description of the unfolding

pathways.

The contacts 1 and 3 are within Barstar. The contact 2 is

a contact within Barnase, while the contacts 4 and 5 are

between both complex partners (Fig. 1, Table 2). The calcula-

tion of the average fluctuations of these specific contacts

during the whole equilibration show stochastic fluctuations

TABLE 1 The average maximum forces (unfolding for Setups 1 and 1m; unbinding for Setups 2 and 3) for the different pulling

velocities are given with the standard deviation of the forces as error; h.i denotes the average

Velocity Attachment Loading rate/ pN
ns

hFmaxi/pN Error/pN

No. of trajectoriespathway/total

number per setup

Setup 1, unfolding

Barnase Fast C-C 5320 951 61 12/77

Medium C-C 1330 799 55 24/31

Slow C-C 332,5 753 61 7/12

Barstar Fast C-C 5320 903 82 67/77

Medium C-C 1330 809 58 14/31

Slow C-C 332,5 762 33 5/12

Setup 1m, unfolding

Barnase Fast C-C 5320 827 57 70/73

Medium C-C 1330 732 53 15/15

Slow C-C 332,5 737 97 12/12

Barstar Fast C-C 5320 855 1/73

Setup 2, unbinding

Fast COM-COM 5320 1310 95 9/67

Medium COM-COM 1330 1123 65 10/10

Slow COM-COM 332,5 938 97 8/8

Setup 3, unbinding

Fast Helix-COM 5320 1702 175 55/55

Medium Helix-COM 1330 1332 214 10/10

Slow Helix-COM 332,5 1168 201 8/8

FIGURE 1 (A) Contact points for the analysis of the

pathways. The molecular structure of Barnase (dark

gray) complexing Barstar (light gray). The specific

contacts chosen for a description of the unfolding pathways

are shown as colored spheres and denoted with numbers

1–5. (B) Setup 1. The moving potential was attached to

the last Ca-atom Ca
bs86 of the last secondary structural

element of Barstar (highlighted and with velocity arrow

in the direction of pulling), while the spatially fixed poten-

tial was located at Ca
bn7 (with vertical line), the first

Ca-atom of the first secondary structure element of Barnase

(dark gray). (C) Setup 2. The moving potential was

attached directly to the COM of Barstar (left molecule),

while the spatially fixed potential was attached to the

COM of Barnase (right molecule). (D) Setup 3. For a direct

probing of the binding site, the moving potential was

located at the Barstar binding helix (highlighted and with

velicity arrow), while the static potential was attached to

the COM of Barnase (dark gray).
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of their Ca–Ca distances of<0.05 nm. This indicates that they

are in stable regions of the protein complex. However, depend-

ing on the setup, these contacts separate at certain times in our

simulation. A contact is defined as separated if the specific

Ca–Ca distance of the contact is increased by 0.5 nm relative

to the starting structure of the simulation (Fig. 2).The path-

ways are characterized by the pulled distances d1–d5, at which

these specific contacts separate. If the contact did not separate

during the simulation, the respective distance was set to zero.

By analyzing the histograms of distances d1–d5, the response

of the protein complex to force can be described.

Setups 1 and 1m

In Setups 1 and 1m, we chose to simulate the experimental,

directly-accessible force application of the acting force to

single Ca atoms.

We examined the effect of the pulling speed on the unfold-

ing pathways of the probed protein complex. The system was

simulated using three different pulling velocities (yfast ¼ 2nm
ns

,

ymedium ¼ 0:5nm
ns

, and yslow ¼ 0:125nm
ns

). We furthermore

tested this setup with two mirrored force vectors: first, the

moving potential was acting on Barstar (Setup 1, Fig. 1)

and second on Barnase (Setup 1m).

The pathways chosen in these setups are well described

by the distances d1 and d2 (Fig. 2). The value d1 is describing

the unfolding of the probed Barstar b-sheet, while d2 is

characterizing the concerted motion of the outermost Barstar

a-helix away from the core of the protein complex.

Setup 1

Here, the force is acting on Ca
bs86, while Ca

bn7 is fixed (bs,

Barstar; bn, Barnase). Two main unfolding pathways and a

mixture of the two main pathways were observed (Fig. 3 A,

left).
The unfolding of the Barstar b-sheet, described by d1, was

the main unfolding pathway at vfast. The characteristic

contact broke after a pulled distance of 1.7 nm. However,

the concerted movement of the Barnase a-helix shearing

away from the core of the protein, described by d2, was

the main event at the slower pulling speeds (ymedium and

yslow). Here, the contact broke after a pulled distance of

~1.4 nm for the medium and at ~0.9 nm for the slow pulling

velocity. The maximum force on the main pathway are

slightly lower than for the alternative pathway (Table 1).

With decreasing pulling velocity, the maximum forces

decrease. The mixed unfolding pathway was represented

by unfolding at both ends of the protein complex, each

side being unfolded analogous to one of the main pathways.

Setup 1m

Here, we used the mirrored probing protocol of Setup 1

(pulling Ca
bn7 and fixing Ca

bs86).

The Setup 1m shows only one main unfolding pathway.

This unfolding of Barnase from the N-terminus is character-

ized by a distribution of the unbinding distances d2
fast

~1.3 nm, d2
medium ~1.0 nm, and d2

slow ~0.9 nm (Fig. 3 A,

right). The maximum forces during the unfolding decrease,

like in Setup 1, with the pulling speed. The average maximum

forces are much lower than for Setup 1 (Table 1). Hence, the

only speed dependency is shifting the unbinding event to

lower pulling distances and lower forces, without switching

the unbinding pathway, despite nearly identical simulation

parameters.

Setup 2

Here, we used a different SMD simulation scheme and

pulled at the center-of-mass (COM) of the two individual

proteins (Fig. 1 C). This resulted in drastic changes in the

choice of the pathway compared to Setups 1 and 1m. A

different set of specific contacts d3 to d5 describes the taken

pathways (Fig. 3 B).

The main pathway of the COM pulling in Setup 2 was

a two-step process. The two-dimensional histogram of the

unbinding distances shows that the structural distortion of

Barstar at d3 ~0.9 nm is earlier than the unbinding at d5

~1.7 nm (Fig. 3 B). First, an internal rearrangement in Barstar

moved the core of the protein away from the binding helix,

leaving the binding site intact. This increased the separation

d3 until all side-chain interactions of the Barstar binding-

helix with the core of the Barstar protein were broken.

Second, the Barstar binding helix began to unbind from

the binding pocket of Barnase, starting from its C-terminal

end. This caused the partial unbinding of the complex, char-

acterized by d5 (Fig. 3 B). For medium and slow pulling, all

trajectories unbind (all d4 > 0 nm), whereas, at fast pulling

speeds, some trajectories were not fully separated at the

end of the simulation. Furthermore, for medium and slow

pulling velocities, single trajectories show unbinding of the

complex without complex distortions (d3 ¼ 0 nm).

Setup 3

In the third setup, the COM of the Ca-atoms of Barstar’s

binding helix was pulled (Fig. 1 D). This setup was designed

to probe the binding site of the Barnase-Barstar complex

directly.

TABLE 2 The contact separation distances di and the

characteristic atoms used in the analysis to determine

the trajectory path

Contact Side chain 2 Side chain 2 di
eq/nm;in nm fi

eq/nm;in nm

d1 Leubs49 Ilebs84 0.48 0.02

d2 Asnbn5 Ilebn76 0.53 0.02

d3 Leubs34 Valbs70 0.65 0.02

d4 Argbn59 Aspbs35 0.58 0.04

d5 Serbn38 Trpbs44 0.52 0.04

The contacts are given with the three-letter code of the amino acid with the

chain at lower position (bn, Barnase; bs, Barstar) and the number of the

residue in the chain. For each specific contact, the average equilibrium

distance di
eq with its average fluctuation fi

eq is given.
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Here, the rupture of the Barnase-Barstar complex was

described by a continuous unbinding event. It started at

one end of Barstar’s binding helix until a fully unbound state

was reached. No major distortions in the protein structure of

the binding partners were observed.

Unbinding that starts the separation at d4 or d5 can be

observed. Thus, two unbinding pathways exist. For fast pull-

ing, both pathways are overlapping. For medium pulling,

a separation is indicated. For slow pulling, it can be observed

in the two populations in the two-dimensional histogram

(Fig. 3 C).

The main unbinding pathway shifts from starting separa-

tion at the C-terminal end of the Barstar binding helix d5 at

high pulling velocities, to starting with an N-terminal separa-

tion (d4) for medium and slow pulling velocities (Fig. 3 C).

The forces during the trajectory increase to a maximum

force of hFmaxi ~ 1.8 nN. The comparison of the maximum

forces depending on the selected pathway show no signifi-

cant differences (Fig. 4 B). The median maximum forces

of the major pathway with hFmax, 5i ¼ 1.75 nN is only

slightly smaller than hFmax, 4i ¼ 1.80 nN for the minor

pathway. The ruptures occurred after the maximum force

peak (Fig. 4 A). We defined the rupture force in Setup 3 as

the force F(trupt) at the time of the first separation (trupt ¼
min(t4, t5)). The median of the rupture forces of the major

unbinding pathway was hF5i ¼ 1056 pN (t5 < t4) and,

surprisingly, higher than of the minor pathway with

hF4i ¼ 786 pN (t5 > t4) (Fig. 4 C). Since the force describes

the slope of the energy landscape, this behavior can be

explained with an energy landscape of the unbinding event

being an energy funnel with a constantly decreasing slope

after the point of the maximum force (Fig. 4 D). Hence,

the main unbinding pathway has a steeper slope in the energy

landscape at the point of breakage.

Viscous drag forces after separation

After the separation of the complex in Setups 2 and 3, the

pulling forces exerted on the protein are needed to move

the protein through the water. These drag forces Fdrag were

calculated by averaging the forces only after complete sepa-

ration (Table 3). Additional drag forces during the actual

unbinding process are not investigated. Therefore, the drag

forces calculated here are only a lower limit of the drag

forces during the separation. The total amount of the friction

due to viscous drag forces of ~200 pN show that for all pull-

ing velocities, these effects cannot be neglected (Table 3).

A transition from higher to lower drag forces can be seen

if the pulling velocity is decreased from fast to medium

pulling. No major reduction of the average drag forces can

FIGURE 2 Setup 1. These representative distance curves show the devel-

opment of the unfolding parameters d1 (black) and d2 (gray) representing the

three different types of pathways taken during the experiment. The arrows

mark the first time at which the contact showed an increased separation of

0.5-nm larger than the equilibrium distance. This time is defined as the sepa-

ration time t1 or t2. The first graph represents the main pathway at fast pulling

(A), whereas the second shows a typical minor pathway that will become

important in the medium pulling (B). The third pathway (C) can be described

as a superposition of the two main pathways (A and B).
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FIGURE 3 The unbinding and unfolding behavior of the Barnase-Barstar complex is shown by a typical snapshot of the unbinding/unfolding structure, as

well as by histograms comparing the different pulling distances for the specific contacts d1–d5 to rupture. The size of the boxes in the two-dimensional histo-

grams is proportional to the number of events (binning in both directions is 0.2 nm). (A) Unfolding of Setups 1 and 1m. (B) Unbinding of Setup 2. (C)

Unbinding of Setup 3.
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be detected when decreasing the pulling velocity from

medium to slow speeds. In contrast to this, the average of

the maximum pulling forces for Setups 2 and 3 decrease

with every pulling velocity reduction (Table 1). The higher

viscous drag forces of Setup 2 compared with Setup 3 during

fast pulling can be attributed to the increased surface area of

the Barstar in Setup 2 due to the extended protein distortions.

However, even though the viscous drag forces are higher in

Setup 2, Setup 3 shows the higher average maximum forces.

Effective work of the protein-protein separation

For Setups 2 and 3, the average effective work hWeff (x)i on

the protein complex depending on the reaction coordinate

x (distance pulled) was calculated (Fig. 5, A and B). For

both setups, lower pulling velocities result in lower work

due to increased sampling of the energy landscape perpen-

dicular to the reaction coordinate.

The comparison of Setups 2 and 3 shows that the final

effective work of separation is comparable (Fig. 5, C–E).

The work in Setup 2 is higher due to additional conforma-

tional distortions during the separation of the complex. To

separate Barnase and Barstar, Setup 2 requires ~1 nm addi-

tional pulling distance, which leads to an increase in simula-

tion time of ~66% compared to Setup 3.

DISCUSSION

Free, thermal, and forced unfolding

Free, thermal, and chemical unfolding are different from

enforced unfolding (1,10,60). The spontaneous unfolding

of Barnase, without the complexing Barstar, was shown to

differ from the forced unfolding by the import machinery

of the Mitochondria. The spontaneous unfolding starts at

the center region of the protein; the forced unfolding starts

at the N-terminal end without previously inducing a molten

globule state at the import site (1,10), while thermal unfold-

ing induced structural changes within the protein’s core (11).

These results are in line with our simulations in Setup 1 and

Setup 1m, where for slower pulling we also observe an un-

folding starting from the N-terminus of Barstar independent

of the force vector.

Barnase-Barstar in comparison to other proteins

AFM experiments on a fusion protein consisting of a Barnase

domain fused to titin I27 domains showed that Barnase

unfolds at lower forces than the titin domain. The chimera

was pulled at the terminal ends of the proteins (11), leading

to force vectors analogous to our Setup 1. To compare these

experimental results with our simulation, we extrapolated the

titin unfolding forces observed in previous simulations to the

loading rates of our simulations. All forces were extrapolated

due to their logarithmic dependency on the loading rate

(9,61),

TABLE 3 The calculated drag forces of the pulled molecules

through water after the complete separation of the protein

complex

hFdragi/pN stdDev(hFdragi)/pN

No. of

separations

No. of

trajectories

Setup 2

Fast 253 25 9 67

Medium 178 10 10 10

Slow 176 22 8 8

Setup 3

Fast 207 20 55 55

Medium 173 7 10 10

Slow 171 5 8 8

A C

B D

FIGURE 4 Setup 3. (A) Representative force time curve of

the unbinding event in Setup 3. The maximum force Fmax

occurs earlier than the rupture force (F1st), defined by the

force at the time of the first separation. The unbinding ends

at a force F2nd, which is in the range of the viscous drag forces

after the separation. (B) The maximum force histogram

shows that major (Fmax, 5, gray bars) and minor (Fmax, 4,

white bars) pathways are similar. The median maximum

forces of the maximum forces are marked as arrows in the

histogram. The median of major (hFmax, 5i ¼ 1.75 nN,

gray arrow) and minor (hFmax, 4i ¼ 1.80 nN, black arrow)

pathways were comparable. (C) The rupture forces F5

(gray bars) of the main pathway were, on average, higher

than the rupture forces F4 (white bars) of the minor pathway.

The arrows, denoting the median rupture forces of the major

(hF5i ¼ 1056 pN, gray arrow) and minor (hFmax, 5i ¼
786 nN, black arrow) pathways, show that for the major

pathway higher forces were needed. (D) The continuous

unbinding process can be described with a funnel-shaped

energy landscape. With increased reaction coordinate, the

forces, represented by the slope of the energy profile at

a given reaction coordinate, diminish after Fmax was reached.
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Frupt ¼
kBT

Dx
� ln

 
y � Dx

k0
off � kBT

!
; (3)

with the loading rate y, the potential width of the bond Dx,

the Boltzmann constant kB, the temperature T, and the natural

off-rate k0
off. This leads to

Fruptðy1Þ � Fruptðy2Þ ¼ a � ln

�
y1

y2

�
(4)

and results in an extrapolation formula for the rupture force

of

FextrðyÞ ¼ a � ln
y

y1

þ Fruptðy1Þ (5)

with

a ¼ kBT

Dx
¼ Fruptðy1Þ � Fruptðy2Þ

ln

�
y1

y2

� ; (6)

where two data points (yi, Frupt(yi)) need to be known. The

loading rates in Eqs. 5 and 6 are dimensionless.

In agreement with experiment, the average maximum

forces of the Barnase unfolding in Setup 1 (951 pN) and

Setup 1m (828 pN) are lower than the extrapolated unfolding

forces of the titin domain I27 of 1228 pN (Table 4) (62).

Also the unfolding forces of titin domain I1 in its oxidized

(Fextr¼ 1171 pN) as well as its reduced form (Fextr¼ 1022 pN)

are higher (Table 4). The pull-and-wait pulling protocol by

Pabón and Amzel produced an even higher Force peak of

1440 pN (63). Since only one loading rate pair is known,

this force was not extrapolated. The energy for the unfolding

of the force-transmitting domain I27 of titin (500kcal
mol

) (64) is

much higher than for the unbinding of the Barnase-Barstar

system (< 150kcal
mol

in Table 5). These data demonstrate the

mechanical instability of the Barnase-Barstar system as

opposed to the titin family, a family that is designed to operate

in a force-exerting environment.

The extrapolated unbinding forces of reported data on

Barnase unfolding (11) are comparable to our unbinding

forces within the error, if not higher (Table 4). This indicates

that due to the N-terminal unfolding of Barnase, the protein

is not significantly stabilized by being complexed with

Barstar.

Antibody-antigen interactions, where the antigen is a small

helical peptide, showed lower unbinding forces compared to

our results of Setups 2 and 3, but comparable forces to our

unfolding forces (Tables 1 and 4). This demonstrates 1),

the high affinity of the Barnase-Barstar complex; and 2),

the low mechanical stability of the complex.

The rupture forces observed for the TCR-pMHC complex

and cytochrome c2 exceed the forces observed in our simu-

lations (Table 4) (35,37).

A

C

E

D

B

FIGURE 5 The effective work versus the pulled distance

as reaction coordinate for Setup 2 (A) and Setup 3 (B) is

shown. The work decreases with decreasing pulling velocity

from fast pulling at 2 m/s (highest work curve), over

medium pulling at 0.5 m/s (middle work curve), to slow

pulling at 0.125 m/s (lowest work curve). The separation

of the Barnase-Barstar complex is reached at comparable

average effective work values for both setups, but for a sepa-

ration in Setup 2 one needs ~1 nm additional pulling

compared to Setup 3. The direct comparison of the work

in Setup 2 and 3 for fast (C), medium (D), and slow (E) pull-

ing is also shown. (Setup 2 ranges from 0–~2.5nm; Setup 3

from 0–~1.5nm).
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In a biological context, the mechanical instability contrasts

the equilibrium affinity of the complex. Under equilibrium

conditions, the complex has an extremely low off-rate and

virtually never unbinds. The equilibrium stability of the

complex poses some conceptual problems: while within

the cell, Barnase certainly needs to be complexed to ensure

cell survival, and the complex somehow must be opened to

export Barnase. The mechanical instability may be needed

to unfold the complex during export of Barnase to the extra-

cellular space, which would allow the inhibitor to unbind

only at the point of export, and which is consistent with

the N-terminal position of the signal peptide. This would

pose an interesting balance between different aspects of

mechanical-versus-equilibrium stability, which would

ensure maximum protection of the cell while allowing for

unbinding during export.

Influence of drag force

For fast probing, the complex is unfolding at different ends

of the complex (Fig. 3 A) in Setups 1 and 1m. Since all other

parameters are identical, the reason for this different

behavior is the opposite direction of the probing force vector.

The pulling force Fpull is compensated by the harmonic

potential holding the protein (Fhold) and the opposing pres-

sure of the solvent Fsolv (viscous drag). The harmonic poten-

tials (Fpull and Fhold) are invariant to the pulling direction.

Therefore, in the absence of solvent, one would not expect

differences between Setups 1 and 1m. However, the solvent

causes a strongly direction-dependent drag force, which is

also sensitive to the attachment point of the force.

Due to the viscous drag, Fpull > Fhold under nonequilib-

rium conditions. Therefore, in Setup 1, Fbs > Fbn and in

Setup 1m, Fbn > Fbs. These differences in force caused by

drag can explain the observed differences in the trajectories

at high loading rates. At lower loading rates, the influence of

the drag force is reduced (Table 3), rendering the simulations

more similar (Fig. 3). For dual unfolding at both ends, two

barriers need to be overcome, reducing the probability of

such events.

Distortions in Setups 1 and 1m

At fast loading rates, due to the unfolding of Barstar’s final

b-sheet, the structural core of the protein gets disturbed in

Setup 1. The concerted motion of the helix away from the

TABLE 4 The unfolding/unbinding forces and loading rates of a variety of simulated and experimental data

System (reference) Reference Attachment Force/pN Loading rate/ pN
ns

Extrapolated force/pN

Experimental unfolding

Barnase AFM (11) 100 2.1 � 10�6

Barstar AFM (65) <50

Simulated unfolding

Barnase (11) C-C 507 1390 968

Barnase (11) C-C 269 695 968

Barstar (65) C-C 625

Titin kinase activation (32) C-C(2springs) 500 332 988

Titin kinase activation (32) C-C(2springs) 1350 41500 988

Titin I27 (62) 2479 145000 1228

Titin I27 (62) 1870 29000 1228

Titin I27 (63) Pull-and-wait 1440

Titin I1 oxidized (62) 2397 145000 1171

Titin I1 oxidized (62) 1800 29000 1171

Titin I1 reduced (62) 2090 145000 1022

Titin I1 reduced (62) 1570 29000 1022

Ubiquitin (26) N-Term-C-Term 2000 41420

Ubiquitin (26) Lys48-C-Term 1200 41420

Simulated deformation

a-Helix stretching 500

b-Sheet longitudinal shear (23) 1000

b-Sheet lateral shear (23) 40–120

a-Helix longitudinal shear (23) 65–150

a-Helix lateral shear (23) 200

Simulated unbinding in literature

TCR-pMHC (37) Individual 1660

Streptavidin-biotin (70) 800

Antibody-antigen (36) C(N-Term)-COM 716 6640

Antibody-antigen (36) C(Middle)-COM 1161 6640

Antibody-antigen (36) C(C-Term)-COM 775 6640

Cytochrome c2 (35) Absolute COM 1500 6943.5

Extrapolated force peak values at the loading rate of our fast pulling experiments (v ¼ 5320 pN
ns

) were estimated according to Eq. 5. Two data points at different

loading rates were used for the extrapolation.

Biophysical Journal 97(6) 1687–1699

The Effect of Force on Barnase-Barstar 1695

85



structural core of Barnase, in contrast, leaves all the secondary

structure elements intact. Only a few contacts between helix

and structural core are broken (Fig. 6). The lateral unbinding

of the N-terminal helix of Barnase is a gradual, zipperlike

process, while the unfolding of the Barstar b-sheet is a cata-

strophic, cooperative event (Fig. 6). The shearing of a b-sheet

has been implicated to be energetically more costly: it has

been shown that the lateral shearing of helix pairs (comparable

to the shearing away of Barnase’s helix observed here) is

energetically more favorable than the shearing of b-sheets

(Tables 4 and 5) (23). Furthermore, Gräter et al. showed that

the probed geometry of b-sheets is very stable (32). Our obser-

vations at slow pulling velocities, where the system has more

time to relax orthogonally to the pulling vector and where the

unfolding of the Barstar b-sheet is not observed, support

this notion. At slower pulling velocities, only the shearing

of the helix is observed, being the thermodynamically more

favorable process. AFM experiments as well as theoretical

considerations showed the mechanical lability of Barnase

and Barstar (11,60,65) (Tables 4 and 5), in line with the

unfolding observed here. In particular, Barnase was suggested

to unfold during mitochondrial import at forces as low as

~10 pN (60). Hence, the unfolding of Barnase does not

seem to be an artifact of the pulling velocities employed.

Distortions in Setups 2 and 3

To avoid unfolding in the simulations and to gain approxi-

mate insight into equilibrium barriers, different simulation

schemes need to be employed (37). One possibility would

be to go to significantly lower velocities approaching adia-

batic conditions, which is hampered by the accompanied

computational cost. Recently, Cuendet and Michielin devel-

oped an attractive simulation scheme, where the steering

force acts only in the direction of the reaction coordinate

(37). For the sake of simplicity, we changed the attachment

of the probing force and pulled at the centers-of-mass of

different groups of the complex. Unbinding simulations of

complexes often used larger pulling/attachment groups for

avoiding unfolding (35–37).

Attaching the pulling and holding forces to the COM of

the molecules distributed the applied tension equally over

the whole molecules (Setup 2). Although these simulations

are not easily reproduced by AFM measurements, they

nevertheless can give insight into aspects of the complex

observable by other techniques like double mutant cycle or

folding measurements. The resulting structural distortions

of the Barstar show that the overall structural integrity of

Barstar is weaker than that of Barnase, as also shown exper-

imentally (Table 5).

TABLE 5 Computed energies of the Barnase-Barstar and

comparable energies found in literature

System Reference Energy or work/ kcal
mol

Experimental unfolding DG

Barstar free energy of unfolding DG (43) �5.28

Barnase unfolding stability DG (11) 10.2

Simulated unfolding DW

Titin I27 total interaction energy DW[ (64) 500

Simulated deformation energies DE

DE of secondary structure elements

a-Helix stretching (23) 50

b-Sheet longitudinal shear (23) 40

b-Sheet lateral shear (23) 40

a-Helix longitudinal shear (23) 20

a-Helix lateral shear (23) 20

Experimental binding energy DG
Barnase-Barstar free energy

of binding DG

(39) �19

Simulated unbinding Work DW
Barnase-Barstar Setup 2—fast 147

Barnase-Barstar Setup 3—fast 144

Barnase-Barstar Setup 2—medium 106

Barnase-Barstar Setup 3—medium 71

Barnase-Barstar Setup 2—slow 56

Barnase-Barstar Setup 3—slow 51

TCR-pMHC unbinding (37) 380

t=0ps t=430ps t=670ps

t=0ps t=480ps t=500ps

FIGURE 6 The unfolding trajectories of Setups 1 and

1m are shown. (Upper panel) Shearing of Barnase helix.

(Lower panel) Shearing of Barstar sheet. The arrows indi-

cate the direction of the force vector.
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We probe here the stability of the binding of this helix to

Barnase, relative to the binding strength to its own protein

core in a differential force assay. Since the here-probed

off-rate of the complex is dominated by van der Waals

interactions, our results demonstrate that these interactions

of Barstar’s binding helix with its own protein core are

weaker than the interaction with the active side of the

RNase Barnase. In an evolutionary point of view, the

blocking of the active site of the Barnase is essential to

prevent damage to its parental bacterium, while the interac-

tion of Barstar’s binding helix with its own protein core is

only necessary for the orientation of its charges in the asso-

ciation process (66,67). These charges destabilized Barstar

additionally, facilitating the unfolding of the inhibitor (43),

in agreement with our results. For even lower pulling

velocities than used here, the distortions will probably

not be observed, as indicated by rare events at slow pulling

velocities.

Directly addressing the pulling forces to Barstar’s binding

helix (Setup 3) results in unbinding without structural distor-

tions. The stiffness of the helix (23) distributes the external

mechanical tension over the binding interface. The majority

of all direct Barnase-Barstar interactions are mediated by this

helix.

Unbinding pathways

In Setup 3, unbinding pathways without structural distortions

are observed. The high maximum forces (Table 1) point to

a very strong binding of the inhibitor to its RNase. A closer

examination of the complex unbinding reveals that the main

unbinding pathway started separating the complex from the

C-terminal end of Barstar’s binding helix for fast pulling,

and from the N-terminal for medium and slow pulling

(Fig. 3 C, right).
For both pathways, the last contacts involve Argbn59,

Aspbs35, and Aspbs39 (Fig. 7). These residues have been

implicated to be important for the association pathway of

the complex under equilibrium conditions, in particular the

loop from residue 57 to residue 60 of Barnase (41,48). This

indicates that the observed, enforced dissociation pathways

are a good approximation of equilibrium association path-

ways. Based on Brownian dynamics simulations, the overlap

of association and dissociation pathways has been suggested

before (51). The agreement of our simulated dissociation

pathway with proposed association pathways shows that the

probing of the central helix allows us to sample essential

barriers of the equilibrium trajectory. Even the effective

work of enforced unbinding, with WSetup3
eff ¼ 51kcalc

mol
, is only

0 500 1000 1500 2000
Time/ps

0
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1500

2000

Fo
rc

e/
pN

N-terminal Separation
C-terminal Separation

N-terminal Separation C-terminal Separation

Barstar BarstarBarnase Barnase

ARG59 ARG59

ASP39
ASP35

FIGURE 7 Typical last contacts for Setup 3 (upper

panel) and the time of separation (dashed line in lower
panel) of these last contacts in the force distance trace are

shown.
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2–3 times the experimentally determined binding energy of

the complex of dGass ¼ �19kcalc
mol

(39) (Table 5), being thus

in a comparable range despite the nonequilibrium nature of

our simulations. More complex nonequilibrium simulation

schemes of a large protein-protein complex did not reach

a better agreement (37). The effective work values of Setups

2 and 3 show that the conformational distortions in Setup 2

require additional work, especially for the faster and medium

pulling velocities (Table 5).

We did not attempt to use nonequilibrium analysis

schemes like the Jarzynski relation (68). These relations

depend on the observation of rare events. The probability

of these events becomes negligible with increasing dissipa-

tion and system size (69). Standard evaluation schemes use

the cumulative expansion of the Jarzynski relation, which

is dependent on a Gaussian distribution of work values

(69). A Gaussian distribution is not usually observed in

simulations with a limited number of trajectories (37).

CONCLUSION

The velocity and geometry of the force application have

a strong effect on the evolution of a system. Rapidly changing

a system may probe the lability of the energy landscape. This

may be very different from slow changes, which test the

stability of the system. Furthermore, the different attachment

points of force have a severe influence on the final conforma-

tion. Summarizing, we showed that an atomistic under-

standing of unbinding or unfolding pathways needs the

application of a variety of force protocols. The applied forces

alter the energy landscape in a nontrivial way. The resulting

propagation of the probed protein through phase space does

not only critically depend on the geometry of force applica-

tion, but equally on the velocity of force application. There-

fore, for a thorough characterization of the effect of force

on a protein complex, multiple simulations with different

probing geometries and different velocities need to be

performed, carefully testing the lability and stability of the

system. Sophisticated attachment simulation schemes allow

rapid, but approximate insight into the main barriers of the

dissociation pathways, deepening our understanding of the

observed system and helping in the design of experiments.
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Abstract 

Integrins are the major transmembrane (TM) cellular adhesion receptors. They bind the 

extracellular matrix and transduce forces to the intracellular space. Talin binds to the 

cytoplasmic !-tail of the integrin with its head domain and links them to the actin cytoskeleton 

with its rod domain. Hence, the integrin-talin complex acts as the force linkage between the 

extracellular matrix and the cytoskeleton of the cell. In this study, we show that the 

associated conformation of the integrin transmembrane domains in the integrins resting state 

can interact with talin without steric clashes. Therefore, talin binding alone may not be 

sufficient for integrin activation. However, a small force of 20 pN applied to the integrin talin 

complex breaks a salt bridge between the integrins !- and "-subunit. The salt bridge has 

previously been shown to lock the integrin in its resting state. Therefore, we propose that the 

integrin activation by talin is force-assisted. The application of constant forces in the range of 

20 - 500 pN to the integrin-talin complex leads to (partial) dissociation of the complex. The 

pathway of dissociation depends on the direction of the force vector. Forces parallel to the 

membrane lead to a zipper-like unbinding. Forces normal to the membrane induce 

strengthening of the complex by formation of a talin-binding beta strand in the integrin tail. 

This mechanism strengthens the integrin-talin complex at the leading edge of the cell, where 

forces normal to the membrane facilitate integrin activation. Our results indicate that the 

integrin-talin complex is physiologically optimized to be strengthened by applied forces only 

at certain locations within the cell. 

Author Summary 

Cells can adhere to the extracellular matrix in the bloodstream, they migrate, and they feel 

and respond to the mechanical properties of their environment. In all these tasks, cells are 

either exposed to external forces or exert forces to their environment. This requires protein 

complexes optimized for withstanding forces. One of these complexes is the intracellular 

complex of integrin, a cell adhesion receptor, with talin, an adaptor protein that links integrins 
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to the cytoskeleton and to many signaling molecules. During the mechanical cycle of cell 

migration, talin needs to bind strongly to integrins at certain location of the cell and to be 

released from integrins at other locations of the cell. By using computational simulations of 

the integrin-talin complex under force, we show here that the direction of force application on 

this vector alters the resistance of this complex to forces. This implies that by altering the 

vector of forces acting on the complex, the cell can regulate the strength of the complex and 

tune it to the needs at a specific cellular location. 

 

Introduction 

Forces impact biological life on different length scales ranging from whole organisms to 

individual proteins. Force is a vectorial quantity, which acts directionally on proteins. Its effect 

on proteins is not only dependent on the magnitude of the force, but also on the direction of 

the force vector [1-5]. Recently, forces are recognized as important regulatory mechanisms 

in cellular events like cell adhesion and cell migration [6,7]. Both experiments and 

computation showed that the extracellular matrix protein fibronectin and the rod domain of 

the intracellular adaptor protein talin unfold partially under physiological stress to expose 

hidden binding sites [8,9]. For these force-triggered signaling events, forces must be 

transduced from the extracellular matrix to the cytoskeleton. The most important family of 

proteins to transduce forces through the cellular membrane are the integrins. Integrins form 

mechanical and signaling connections from the extracellular matrix over the talin adaptor 

proteins to the actin cytoskeleton [10-15]. 

Integrin affinity to extracellular ligands is regulated by the binding of intracellular adaptor 

proteins like talin or kindlin [16-21]. The activation of integrins is accompanied by a 

conformational change of its extracellular domain [22]. This conformational change is 

triggered by separating the transmembrane helices of the integrins’ !- and "-subunit for 

inside-out signaling [6]. Helix separation is supposedly caused by talin binding to the 

intracellular domain of the integrin "-subunit, pushing away the !-subunit [23]. Forces have 
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been identified as an additional regulatory mechanism for the conformation of the integrins 

extracellular domains, depending on the direction of the applied forces [24].  

The integrin-activating protein talin binds the cytoplasmic integrin !-tails predominantly 

with its FERM domain and actin with its rod domain [25,26]. Hence, talin acts as a force 

clamp between the integrin and the cytoskeleton. Figure 1A shows schematically how forces 

are propagated between the extracellular domain and the cytoskeleton through the integrin-

talin complex. 

 Here, we are interested in the effect of forces to the integrin-talin complex. To investigate 

this, we firstly equilibrate the recently published complex structure of talin-2 FERM F3 

domain binding the integrin !1D cytoplasmic tail in a 100 ns molecular dynamics simulation 

[27]. Alignment of our 100 ns equilibrated structure with the recently solved transmembrane 

complex of the integrin "IIb!3 shows that talin binding does not sterically replace the "-subunit 

of the integrin complex. Secondly, we probe  the integrin-!1D talin-F3 FERM subdomain 

complex with constant forces in molecular dynamics simulations. Further, we study the 

impact of forces on this complex. Our simulations show that physiological forces of 20 pN 

induce a conformational change, which potentially activates the integrin. This is the force 

range at which the talin rod starts to decrypt its vinculin binding sites [9]. Single molecule 

force measurements with laser tweezers and atomic force microscopes measured peak 

rupture forces of the integrin-fibronectin complex of 80-100 pN and 120 pN respectively 

[28,29]. Since integrin activation timescales are in the order of seconds, our simulations 

feature higher forces (up to 500 pN) to speed up dissociation processes.   

Applying constant force in different directions, we identify the sequence of intermediate 

dissociation states for forces parallel and normal to the membrane. For forces normal to the 

membrane we observe a force induced strengthening of the integrin-talin complex. This is 

caused by the formation of a force-resistant !-sheet between talin and integrin. We further 

show that when free to rotate the complex orients such that the force vector allows the 

formation of this !-sheet. This constitutes a self-enforcing mechanism of the integrin-talin 

bond. 
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Figure 1: (A) Schematic of force linkage 

from cytoskeleton (violet) to the extracellular 

matrix (orange) through the talin (green) 

integrin (cyan/blue) complex. The blue box 

indicates the structure in (B).  (B) Structural 

representation of the talin-2 FERM domain 

(green) binding the cytoplasmic tail of the 

integrin !1D-tail. The transmembrane region 

of the !3 integrin (pdb:2K9J) is fitted to the 

structure. The membrane binding talin 

residues of F2&F3 are highlighted in red. 

The plane of the membrane is added as grey 

box. The C"-atom to which constant force 

was applied during simulations is marked as 

black sphere. The force vectors normal 

(blue) and parallel (red) to the membrane 

are indicated. The blue box highlights the 

simulated structure shown in (C). (C) 

Representative structure of the most 

populated cluster during complex 

equilibration of the talin-2 F3 (cyan) integrin 

!1D-tail (green) complex. 
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Results 

Equilibrium Simulation 

 

Figure 2: (A) The graph shows the root 

mean square displacement (rmsd) of the C!-

Atoms of the protein. The inlay shows the 

sizes of the larges clusters resulting from 

clustering of the equilibration.  

(B) Representative structure of the most 

populated cluster of 100 ns equilibration of 

the talin-2 F3 (green) integrin "1D-tail (cyan) 

complex. The black boxes indicate the 

positions of the zoom in graphs (C-E).  

 

Here, we study the interface of the integrin-talin complex consisting of the cytoplasmic 

integrin "1D-tail bound to the talin-2 F3 FERM subdomain. Figure 1B highlights the position of 

the simulated system in context with the membrane position and the complete talin-2 FERM 

domain. Figure 2A shows the time-development of the root mean square displacement 

(RMSD) of the C!-atoms of the protein. The 100 ns equilibrium simulation reaches a stable 

plateau at an RMSD of ~0.2nm (Figure 2a). The structures from the equilibration run are 

clustered. One cluster dominates (Figure 2a - inset). A representative conformation of this 

cluster has been chosen as start conformation for further simulations. Based on the analysis 

of the root mean square fluctuations of the individual amino acids during the equilibrium 

simulation, the binding interface of the simulated complex can be divided into three modular 
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regions. The first is the integrin’s membrane proximal helix region. It is stabilized by 

hydrophobic interactions of the phenylalanines !1D-F763 and !1D-F766 as well as by the 

hydrogen bonds of the charged amino acids !1D-D759, !1D-E767 and !1D-E769 (Figure 2C). The 

second region is located at the integrin tryptophane !1D-W775. This tryptophane is bound into 

a deep hydrophobic binding pocket and may be additionally stabilized via a cation-" 

interaction with the talin’s !1D-R361 (Figure 2D). The third region stabilizes the integrin !1D-

780NPIY783 motif via a network of hydrogen bonds (Figure 2E). All those tight binding amino 

acids show low root mean square fluctuation (RMSF) during the 100 ns equilibration of the 

talin-2 F3 integrin !1D complex (Figure 3A). The regions between the integrins’ binding 

modules have higher flexibility and may therefore be of less importance for binding. To 

further analyse the importance of these residues, we perform a multiple sequence alignment. 

The tight binding amino acids are highly conserved, underlining the importance for integrity of 

the complex (Figure 3B). 

 

 

Figure 3: (A) Average amino acid root mean 

square fluctuations (RMSF) of 100 ns free 

equilibration color coded onto structure (red=high, 

white=intermediate and blue=low RMSF). (B) The 

integrin’s amino acid sequence is colored according 

to its conservation like in 3A (except for white being 

replaced by black). The height of the letters 

indicates their evolutionary conservation. 
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To analyze our simulated fragment in a larger structural context, we align current 

structures of the transmembrane complex of integrin !IIb"3 [27] and of the whole talin FERM 

domain [30] with our simulated fragment of the the talin-2 F3/integrin !1D complex (Figure 4). 

Surprisingly, the talin head binding to the integrin !-tail does not sterically disturb the binding 

between the integrin’s "-!-TM-helices.  

 

 

 

Directional Force Probing Simulations 

The full-length integrin structure continues N-terminally through the membrane to its ECM 

binding site. The C-terminus of the talin F3 domain is attached through the talin rod domain 

to the actin cytoskeleton of the cell. Cellular forces acting on the cytoskeleton are transduced 

through the integrin-talin complex to the ECM (Figure 1A). Applying 20 pN between the 

integrin’s C- and the talin’s N-terminus to reproduce physiological conditions lead to talin F3 

subdomain rotation, if the forces are applied end-to-end in a direction parallel to the putative 

Figure 4: The figures show the talin (green) binding the integrin !-tail (cyan). (A) and (B) show both 

sides of the complex. The talin does not interfere with the integrin "-tail (blue). Inlay in (A) shows the 

position of the zoomed in structures. Inlay (B) shows an essential transmembrane salt-bridge. 
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plane of the membrane (Figure 5). After rotation, the forces correspond to a vector normal to 

the putative plane of the membrane. No rotation is observed if the forces are applied normal 

to the plane of the membrane (Figure 5). Hence, in the absence of a membrane the complex 

orients itself such that forces normal to the putative plane of the membrane act on it. A 

rotational movement may be hampered in the cell by interactions with the cell membrane and 

stabilizing influence of the F2 FERM domain. Furthermore, we are interested in the question 

how different force vectors influence the complex. Therefore, to prevent talin from rotation, 

we constrained the C!-atoms of the talin F3 domain by a weak force. The constant force is 

applied only to the integrin N-terminus. 

 

Figure 5: Effect of different force vectors to the relative orientation of the complex over time. A&C: 
Angle of the vector between the N-terminal Ca of Integrin and the C-terminal CA of Talin during 2.5 ns 
of simulation at a force of 20 pN is shown with respect to the vector at time zero. B: The rotation of the 
complex during parallel force application is shown. 

Constant forces between 20 and 500 pN are applied parallel (P) and normal (N) to the 

putative plane of the cell membrane (Fig. 2B). To analyze the enforced dissociation, we have 
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chosen the integrin-talin COM-COM distance as a reaction coordinate. Figures 6C and D 

show its time evolution for all trajectories at 200 pN for normal and parallel forces. From 

these time traces normalized histograms are generated. The normalized histograms of the 

integrin-talin COM-COM distances are calculated for each probing force and direction 

(Figures 6A and B). The peaks indicate stable intermediate states. The ground state shows a 

stable and sharp probability distribution at 20 - 50 pN for normal pulling. The parallel pulling 

is less stable and already starts destabilizing at 50 pN.  

Figure 6: (A) and (B) show the reaction coordinate for multiple trajectories at 200 pN as well as the 

corresponding histograms for parallel and normal pulling respectively. The red areas in the histograms 

were identified as regions representing different dissociation states. (C) and (D) show the probability 

histograms of the talin integrin COM-COM distance depending on the applied constant force for 

parallel and normal pulling respectively.  

Both setups show two prominent intermediate peaks before dissociation. The dissociation 

within 20 ns starts at 200 pN for parallel forces and at 400 pN for normal forces. Thus, the 

talin integrin complex is more resistant to the application of forces normal to the plane of the 

membrane.  
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To understand the dependence of the complex stability on the direction of the force, we 

reconstructed the dissociation pathways. The states are determined by an automated peak 

detection in the COM-COM histograms for each force at each probing direction. A 

representative structure for each peak is obtained. Based on these structures we reconstruct 

the dissociation pathways (Figures 7 and 8).  
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Figure 7: Force dissociation pathway with 

force parallel to membrane 

Figure 8: Force dissociation pathway 

with force normal to membrane 

 

Figures 7 and 8: each box shows the general 

state of the protein complex with a box marking the 

position of the zoom in figure with the important 

amino acids and their labels. Hydrogen bonds are 

shown in blue. Opened hydrogen bonds are 

indicated in red. Gray surfaces represent van-der-

Waals surfaces. 
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Dissociation Pathway under Forces Parallel to Membrane 

Forces parallel to the membrane cause the integrin dissociation from the talin in four main 

steps (Figure 7). First, the integrin helix bends away from the talin and the H-bond between 

!1D-D759 and F3-K337 ruptures (Fig. 7A). For the second step, two pathways exist: either the 

N-terminal integrin helix loop unfolds (Fig. 7B-1) or the integrin helix dissociates 

cooperatively (Fig 7B-2). For this cooperative dissociation !1D-E767 to !1D-E769 form a hinge 

axis around which the helix rotates. The !1D-F763 unbinds from is hydrophobic talin binding 

pocket. Third, the integrin helix dissociates completely and the !1D-W775 binding site is 

probed directly (Fig. 7C). Stable !1D-W775 binding to its pocket can be observed up to 100 pN. 

After the unbinding of the !1D-W775 the hydrogen bond network around the !1D-780NPxY783 

motif (Fig 7D) is the only binding module left. The integrin residues !1D-Q778, !1D-N780 and 

!1D-Y783 each bind to talin by at least two H-bonds. Thus, each has an increased rebinding 

probability if one hydrogen bond ruptures. The talin F3-R361 directly couples F3-D382 to !1D-

Q778 and the !1D-Y783 H-bond network connects to F3-K369 and F3-E385. Thus, forces can be 

distributes to multiple strands of the talin molecule in parallel. 

In the integrin-talin COM-COM time trace in Figure 6A, the last plateau corresponds to the 

state in which only the integrin’s NPxY motif is bound. At 200 pN the plateau is reached after 

2-3 ns, but only one out of seven trajectories shows total dissociation within 20 ns. Thus, the 

hydrogen bond network around the NPxY motif is the most stable binding module in this 

setup. 

Normal dissociation pathway  

Applying forces normal to the membrane causes a different dissociation behavior. Five 

steps lead to dissociation. Two pathways are found.  

First, the !1D-D759 unbinds from F3-K337 and - in contrast to parallel force application - 

rebinds to F3-K329 (Fig 8A). The second step shows again two possible pathways: either the 

hydrophobic interaction of the phenylalanines !1D-F763 and !1D-F766 (Fig. 8B-2) or the 

hydrogen bonds of the glutamic acids !1D-E767 and !1D-E769 (Fig 8B-1) are stable. The two N-
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terminal integrin helix loops as well as the !1D-D759 unbind in either case. In case of stable 

hydrogen bonds, the axis !1D-E767 to !1D-E769 acts as a hinge to allow a reorientation of the 

integrin helix along the direction of the force. The C-terminal loop of the helix opens to allow 

this rotation.  

In the third step, the integrin helix dissociates completely except for the !1D-E769 still 

binding to F3-K377. The integrin helix is now completely unfolded. This N-terminal integrin tail 

aligns with the force direction. This allows the !1D-M771 backbone to bind to the F3-K377. Here, 

the applied mechanical work is partly dissipated into the talin. The !1D-W775 binding site is 

probed partially, but the integrin’s flexible !1D-776DTQ778 loop is not yet stretched. This allows 

the !1D-Q778 to induce a !-sheet binding with the talin (Fig 8C red).  

Next, F3-K377 and then !1D-W775 unbind. Stable !1D-W775 binding in the hydrophobic pocket 

can be found up to 250pN. After its dissociation the integrin tail is stretched along the talin. 

This reorientation facilitates the growth of the !-sheet between talin and integrin (Fig 8D). In 

addition, the !1D-W775 can form an additional stabilizing hydrogen bond to F3-T380. The 

combination of the talin integrin !-sheet binding and the three hydrogen bonds of the !1D-N780 

to talin form a very stable complex. Complete dissociation of the integrin-talin complex within 

20 ns starts only at 400 pN. 

After the first dissociation of the talin integrin complex, the integrin shows rebinding to the 

talin via four hydrogen bonds (Figure 8E). Again F3-K377 is very important. This state is short 

lived. 

 

Discussion 

The integrin-talin interaction is an essential part of the force transduction network from the 

ECM to the cellular cytoskeleton (Figure 1). Here, we highlight two main aspects resulting 

from our simulations. First, we discuss the structural alignment of talin-head binding to the 

integrin TM helix bundle without distortions. Second, we show that the integrin-talin complex 

can be understood as a sensor of the direction of the applied forces important for cellular 

motion. 104
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Structural Discussion 

Integrins bi-directionally signal across the cell membrane. This involves TM helix 

dissociation [31-34], which then causes conformational changes in the integrins extracellular 

domain [24,35]. Recently, the structure of the integrin !IIb"3-TM complex has been solved 

[27]. This complex is stabilized by the inner membrane clasp consisting of two main 

interactions. These are the inter-helical hydrophobic core !IIb-992FF993 with "3-W715 and the 

salt bridge !IIb-R995 to "3-D723. This salt bridge is thought to be disrupted by the F3 talin head 

binding to the integrin tail [23,36]. In our work, we create a structural model encompassing 

the integrin !-"-TM-helices and the complete talin head. This model shows that the talin 

head domain can bind the integrin !-"-TM-helix bundle without disturbing the inner 

membrane claps interactions. Therefore, a purely sterical mechanism of activation may not 

be sufficient. The "1D-D759/F3-K337 interaction can cause a conformational change to replace 

the !IIb-R995/"3-D723 salt bridge as suggested earlier [36]. Hence, talin offers competing 

interaction partners and with this thermodynamically de-stabilizes the integrin TM complex. 

Yet, the energetic difference between a "1D-D759/F3-K337 and a !IIb-R995/"3-D723 is probably 

small, which might cause not complete structural re-arrangements. Therefore, further 

mechanisms enhancing such a mechanism may be desirable. Our simulations show that the 

integrin helix loops connecting the two essential amino acids "3-W715 and "3-D723 are one of 

the first regions of secondary structures to unfold even at the physiologically low forces of 20 

pN. This may in fact be a lower estimate of the forces needed, since stabilizing membrane 

components are missing. In a context of an intact TM complex of the integrins’ !- and "-

subunits, this unfolding would disrupt the !-"-TM-helix interactions (Figure 9). Therefore, a 

small force applied to the integrin-talin complex results in the breakage of the salt bridge !IIb-

R995 to "3-D723. This destabilizes the integrins’ !-"-TM-helix interactions. Hence, our results 

indicate that full integrin activation is fascilitated by a small force acting at the integrin talin 

complex. The rotation of the talin head by ~20° to enable the binding of talin’s positively 

charged residues to the cell membrane proposed earlier causes a mechanical stress. This 

stress might already be sufficient to cause the required forces for integrin activation [36,37]. 
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In addition, forces acting normal to the membrane enable !3-D723 to bind to F3-K329. This 

hydrogen bond is more stable at higher forces (up to 50 pN) than the initial !1D-D759/F3-K337 

interaction.  

 

Figure 9: (A) 
Integrin "-TM 
helix (blue) 
binds integrin 
!-TM-helix 
(cyan). Outer 
salt bridge 
!1D-D759 to 
"IIb-R995 
shown as 
sticks. Both 
parallel (B) 
and normal 
(C) forces 
open salt 
bridge (red 
lines). 

 

Force response of the talin integrin complex 

Integrins are the major force sensors of cells. They convert the physical stimulus ‘force’ 

into a biochemical signal. How the forces stimulate cellular responses is still debated. Talin is 

one of the key players in force sensing [11,38-40]. It has been proposed that forces applied 

to talin lead to local unfolding which exposes hidden binding sites [9]. Previously, Puklin-

Faucher et al. proposed that force applied to the integrin-talin complex can both activate and 

de-activate the integrins [41]. During this cycle, forces activate integrins in the leading edge, 

while they de-activated them in the trailing edge. 

Our results show that the complex dissociation under force depends on the direction of 

the applied force. The complex dissociation is more stable against pulling normal to the 

membrane than parallel to it. Under physiological conditions, this effect would be enhanced 

by the attractive coulomb interactions between talin and the phospholipids of the cell 

membrane [30]. Since the binding free energy of a complex does not change with the 

unbinding force direction, the integrin-talin complex has direction dependent binding and 

unbinding barriers.  
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We will discuss the three modular interaction sites of the integrin-talin complex individually 

before the general biological implications are considered (Figure 2). 

The membrane proximal integrin helix is bound via the hydrophobic interactions of !1D-F763 

and !1D-F766 as well as via hydrogen bonds of !1D-D759, !1D-E767 and !1D-E769. All these are 

highly conserved and their low fluctuations indicate strong binding (Figure 3B). The 

corresponding hydrophobic interactions for the !3-integrin tail were found to be important for 

activation in the first chimerical structure of the membrane proximal integrin !3-tail binding to 

the talin-1 F3-domain [23]. The higher stability in normal force setups at low forces results 

from the rebinding of the !1D-D759 to another lysine F3-K329. The hydrogen bonds of the !1D-

E767 and !1D-E769 are strong enough, that they can act as a hinge region in case of a 

cooperative unbinding of the integrin helix. This hinge region would be a reasonable 

mechanism for the cooperative rotation of the integrin helix by ~20° as proposed in the 

integrin activation by Anthis et al. [36]. 

The membrane distal region has two modular binding sites separated by the very flexible 

!1D-776DTQ778 loop: the !1D-W775 and the !1D-780NPIY783 region (Figure 2). The tryptophane 

!1D-W775 is bound in its hydrophobic pocket and may be stabilized by a cation-" interaction 

with the parallel F3-R361 [25,42]. The !1D-W775 binding site is again direction dependent. 

Forces parallel to the membrane pull the tryptophane on the most direct way out of its 

binding pocket. For normal forces the binding can resist 2.5 times higher forces. This may 

result from pulling the tryptophane into the direction of the wall instead of out of its binding 

pocket.  

The binding module around the NPxY motif consists of many hydrogen bonds and is very 

stable in both pulling directions. Mutational studies underline the importance of this region: 

the mutation Y782A abolishes binding [43]. The fundamental key interaction is the force 

induced formation of a !-sheet between integrin and talin (Figure 10). It is initiated by !1D-

Q778 if normal forces are applied. Such a !-sheet is known to be very force resistant if probed 

in a shear modus. A prominent example would be the direction dependent force resistant of 

the ubiquitin [44-46]. The most recent discovery of biological proteins using !-sheets for force 
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resistance is the spider silk [47,48]. Here, we describe for force-induced binding 

strengthening. Our results further show that, if free to rotate, the complex orients such that 

this enforcement of the complex is possible. Hence, the integrin-talin complex is optimized as 

a self-re-enforcing complex. Interestingly, mutations very close to this region drastically 

improve the affinity of the integrin !1D - talin-2 complex [43]. 

 

Figure 10: 
Comparison 
of crystal 
structure 
(3G9W) 
integrin/talin 
!-sheet (A) 
with normal 
force 
induced !-
sheet (B) 
which 
causes 
increased 
mechanical 
resistance. 

Integrins are activated in the lamellipodium. Here, forces act on the cell membrane due to 

the fast assembly of actin pushing the cell membrane forward and the actin network 

backwards [49,50]. These retrograde forces are necessary to initiate focal complexes [51]. 

The direction of the forces necessary for activation of the integrins is currently under 

discussion. While some recent simulations showed an activating conformational change with 

forces diagonal to the membrane [24]. Puklin-Faucher et al. argument that forces normal to 

the membrane are required [41]. The angle of the force transduction changes with the 

distance of the adhesion site to the lamellipodium. This is caused because the speed of the 

actin network changes as the focal adhesion mature and the actin flow slows down [51]. 

Recent iPalm measurements recaptured in Figure 9 show the same angle dependence of the 

talin linkage between integrin and actin [15]. Our simulations show that the talin integrin 

complex has the intrinsic ability to react to different force vectors with a force induced 

strengthening of the complex. Thus, for the activation of the integrin in the leading edge, 

which requires forces normal to the membrane, the integrin-talin complex is strengthened by 

the formation of a force resistant !-sheet between integrin and talin. With time, the integrin 
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adhesion matures. The total force resistance in mature focal adhesions may be increased by 

ligands. All integrins not part of a focal adhesion as well as many nascent adhesion sites are 

deactivated. Our mechanism predicts, that for non-reinforced integrins, the unbinding is 

facilitated if the integrins are probed more parallel to the membrane as further away from the 

lamellipodium. This mechanism adds a molecular description to the mechanical cycle of 

integrins [41]. Hence, we show that the initial integrin-talin complex senses the distance to 

the lamellipodium due to the direction of applied force. 

In our simulations, as well as in recent structures of the complex, a membrane component 

is missing. This membrane might be important for further stabilization of the complex through 

favorable electrostatic interactions between talin and the cell membrane as well as the 

integrin helix being anchored in the membrane. The effect of the membrane will be tested in 

future computational studies involving membrane components. 

 

Conclusion 

We have shown, that the talin head binding to the integrin does not sterically disturb the 

integrin to force a dissociation of the integrins !-"-TM-helices. Further, we propose a model 

in which small forces cause a stretching of the integrin "1D’s membrane proximal helix. This 

stretching leads to the dissociation of the essential salt bridge !IIb-R995 to "3-D723 between the 

integrin’s !-/"-TM helices. Thus, it facilitates an inside-out activation of the integrin. 

Our simulations show force induced strengthening of the complex for forces normal to the 

membrane by the formation of a "-sheet between the complex partners. The directional 

dependence of the force resistance of the integrin-talin bond supports the biological needs 

for strong nascent adhesion in the leading edge and easily de-activated integrins in the rear 

of the cell.  
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Methods 

Structure  

The studied integrin-talin complex consists of the cytoplasmic integrin !1D-tail and the 

talin-2 F3 FERM subdomain. A subset of the 3G9W structure [27] without the talin F2 FERM 

subdomain is used to optimize for computational speed.  

Molecular Dynamics Simulations 

All MD simulations are done using the software package GROMACS Version 4.05-4.07 

[52-55] with periodic boundary conditions using the OPLS-AA force field [56]. The structure is 

solvated in SPC water [57] with 150mMol NaCl. The energy is minimized using steepest 

descent method with a maximum step size of 0.01nm. The water has been relaxed for 200 

ps while the heavy atoms of the protein have been restrained by a strong harmonic potential 

of 1.66 nN/nm. The electrostatics for the position restraint simulation is calculated using a 

1nm Coulomb cutoff. Solvent and protein are separately coupled to external heat baths at 

300K with a time constant of 0.1ps using Berendsen temperature coupling [58]. 

Afterwards, the system is equilibrated without restraints for 100 ns resulting in a stable 

complex. The equilibration structures every 100 ps are clustered using the gromos clustering 

method of the Gromacs MD software package [59] with a RMSD cutoff of 0.15 nm. The 

representative structure of the dominating cluster is used as an initial structure for further 

simulations.  

Figure 2A shows the structure of the talin-2 F3 FERM subdomain (red) binding the integrin 

!1D-tail (green) resulting from 100 ns free equilibration. The RMSF shown in Figure 3A is 

determined using g_rmsf from the Gromacs MD software package. 

Structure Alignment 

The fully equilibrated structure is aligned with the integrin TM "IIb-!3-bundle (2K9J) [27] 

and the complete talin head domain (3IVJ) [30] binding the integrin !1D-tail. All alignments 
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are made to the equilibrated structure using pymol alignment. The resulting model is shown 

in Figures 2B and 4. 

Setup Structures 

The simulation boxes are generated by resolvating the representative equilibrated 

structure (Figure 2B) in different water boxes for each type of pulling setup. For each box, 

energy minimization, position restraint and a 200 ps long free equilibration simulation analog 

to the one previously described are done. Each constant force molecular dynamics 

simulation is preceded by another 100 ps free equilibration with freshly initiated velocity 

profiles.  

Constant Force Molecular Dynamics Simulations 

Constant forces in the range of 20 pN to 500 pN are simulated. The forces are applied to 

the integrin’s C-terminal C!-atom is probed with a constant force either parallel (P) or normal 

(N) to the putative plane of the cellular membrane. The plane of the membrane is 

perpendicular to the connection from integrin’s C-terminal to talin’s N-terminal C!-atoms. In 

Figure 1B the force vectors are indicated. The positively charged membrane binding talin 

residues are indicated in red. To these residues a plane can be fitted which is the 

approximately parallel to the putative plane of the membrane. To avoid rotations of the talin, 

all C!-atoms of the talin complex are restrained with a weak position restrained (400 pN/nm).  

Representative Structures 

For each setup at each force the probability distribution of the integrin-talin COM-COM 

distances is generated. The extrema of these distributions are determined. All structures with 

COM-COM distances between to minima are attributed to the peak in between these minima. 

Their structures are added to one trajectory. Each peak represents a (semi)stable 

intermediate state. For all peaks with at least 8% population, the representative structure is 

determined by clustering approximately 1000 equially distributed structures within the 

trajectory corresponding to the peak. The gromos clustering method is used with a cutoff of 
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0.3nm and three required nearest neighbors [59]. From these representative structures the 

dissociation pathways for normal and parallel forces are determined. 

Evolutionary Conservation 

For the determination of the evolutionary conservation of the integrin residues, 27 

mammalian integrin beta sequences (!1, !2,!3,!6,!7) from the UniProtKB database are 

aligned to the !1D sequence of our structure using ClustalW [60]. The sequence logo 

visualization of the conservation is done with weblogo 2.8.2 [61,62]. 
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Molecular rotation is important for many biomolecular machines as

well as for synthetic brownian molecular motors. Here we describe

molecular dynamics studies of a diethylsulfide rotor on a gold (111)

surface driven by a high frequency oscillating electric field normal to

the surface. This molecular system has been experimentally studied

with low temperature scanning/tunneling microscopy (STM) exper-

iments (1). In vacuum, the diethylsulfide molecule can exist in either

a trans- configuration, or a higher energy cis-configuration. Here,

we show that on a three-fold symmetric gold surface both cis and

trans forms are split into two distinct configurations (trans-1 and

trans-2, and cis-1 and cis-2) that differ by a phase angle in their

rotational free-energy profiles. A high frequency (THz) AC (alter-

nating current) electric field applied normal to the surface drives

directed rotation of the trans states of the diethylsulfide rotor, with

the two configurations rotating in opposite direction. The maximum

directed rotation rate is 1010 rotations per second, significantly faster

than the rotation of previously reported directional molecular ro-

tors. Understanding the fundamental basis of directed motion of

surface rotors is essential for the further development of efficient
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externally driven artificial rotors. Our results represent a first step

towards the design of a surface-bound molecular rotary motor with

a tunable rotation frequency and direction.
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Control and direction of motion at the molecular level is one of the great overarch-

ing themes of nanoscience (2, 3). Captivated by the mechanisms of biological molecular

motors and rotors, synthetic chemists have recently made great progress in the design

and synthesis of molecular machines, including motors (4), steppers (5), and rotors (6),

many of which function as brownian machines (7) that take advantage of, rather than

fight against, ineluctably present thermal noise. Most of these, however, operate only rel-

atively slowly, well below the MHz regime. Recently, Garcia-Garibay and colleagues (8)

reported on synthesis and characterization of a halogen bonded crystal with a rotational

degree of freedom having a rotation rate in the GHz. The rotation is directionless, with

equal probability in the clockwise and counterclockwise directions. A key goal in con-

struction of a functional molecular machine is to design a mechanism for inputting energy

to drive rapid directed rotation. Chemical driving (9) suffers from diffusional limita-

tions and seems limited to the 10-100 kHz range, consistent with biomolecular machines

driven by, e.g., hydrolysis of ATP . Light (10) offers another possibility (11), but optically

driven devices may be limited by the finite number of excitation/de-excitation cycles a

molecule can undergo before breaking down. Here we discuss driving directed rotation

with externally applied high frequency electric fields.

Inspired by low temperature single-molecule STM experiments on the rotational dy-

namics of thioether surface rotors (1,12) we carried out room temperature (300 K) molec-

ular dynamics studies (13,14) of a diethylsulfide (DES) rotor on a gold (111) surface under

the influence of a high frequency (THz) oscillating electric field normal to the gold surface.

The AC field can drive directed rotation that depends on the conformational state of the

molecule and on the frequency and amplitude of the field. We interpret the mechanism of

the field induced directed rotation in terms of the dependence of the energy landscape of

the different rotor conformations on the static electric field strength. Cycling through in
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itself symmetric energy landscapes allows to create a time dependent asymmetry in the

population of the rotor angles. The frequency dependence can be well fit by a response

function that is the sum of an out-of-phase component at the characteristic frequency of

the rotor and an in-phase component at twice the characteristic frequency of the rotor.

The THz field induces GHz rotation of the molecular rotor making it the fastest rotor (by

far) described to date.

The motion of a diethylsulfide (DES) rotor on a gold (111) surface was investigated

using molecular dynamics (MD) simulations with DFT optimized GolP parameters (15).

The sulfur was bound in an fcc position to the gold thus forming a stationary rotation axis

(Fig 1A). By analyzing the free rotation of the rotor we identified four major conforma-

tions, two trans- and two cis-isomers, by (Fig 1A) that can be classified by two dihedral

angles, δ1(C
1 −C2 − S −C3) and δ2(C

2 − S −C3 −C4), along the backbone of the DES

molecule (C1H3 − C2H2 − S − C3H2 − C4H3). The two cis-forms, cis-1 (δ1 < 0, δ2 > 0)

and cis-2 (δ1 > 0, δ2 < 0), are inter-converted by rotation about an axis normal to the

gold surface. The two trans-isomers are trans-1 (δ1 < 0, δ2 < 0) and trans-2 (δ1 > 0,

δ2 > 0) cannot be converted into one another by rotation about an axis normal to the

gold surface. Simulations of free rotation for several different static field strength ranging

from -9 V/nm to +9 V/nm were carried out. The mean lifetimes in the cis and trans

states varied significantly with the field as shown in Table I. These data were calculated

by analysis of a number of trajectories with a total time of 0.2 ms.

In our initial studies of the rotational motion under the influence of an oscillating

field we noticed that sometimes the rotor turned clockwise, sometimes counter-clockwise,

and sometimes the rotation was not directed at all. Generally the direction of rotation

remained the same during an entire trajectory, although we sometimes observed that

the direction of rotation would abruptly change. At first we ascribed this behavior to
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a residual inertial effect and the switching of the direction to the effects of noise, but

this explanation was ruled out by showing that the net rotation in all cases stopped

very quickly when the field was turned off. Eventually we were able to correlate the

behavior at a given frequency with the conformational state of the molecule. Because

of the length of simulation possible with the oscillating field (5 ns) the conformation

was generally, but not always, constant during simulation of a single trajectory. Due to

computational constraints it was not practical to simulate a long enough trajectory that

the molecule undergoes many conformational transitions during a single run. Thus we

decided to investigate the behavior of the different conformational states of the molecule

separately where during a single trajectory the dihedral angle of the rotor was restrained

to within ±π/9 radians to prevent transition to a different conformational state. This

allowed us to focus on the almost 1-D motion of the rotor around an axis perpendicular

to the gold surface piercing the center of the sulfur atom. The equation of motion for

a 1-D surface rotor with noise is I θ̈ + Γθ̇ − U ′(θ) = ξ(t) (16). In order to determine

the energy landscape U(θ) we obtained the long-time averaged “equilibrium” occupancy

of the rotor as a function of the torsional angle for the different rotor conformations by

simulating 11.4 ms trajectories with restrained dihedral angles to prevent the switching

between different conformations. The energy landscapes for rotation are then given by

relation kBT ln ρ(θ) ∝ U(θ). The landscapes for the two trans- configurations are six-fold

symmetric, with trans-2 shifted by π/6 rad relative to the trans-1 configuration (Fig.

1B), and the landscape for the two cis- configurations are three-fold symmetric, with cis-2

shifted by π/3 degrees relative to cis-1(Fig. 1C).

The interaction between the rotor and the gold surface is influenced by a static elec-

tric field Ez perpendicular to the gold surface. The partial charges of the DES rotor are

distributed such that the negative partial charge of the sulfur (δq− = −0.335e) is com-
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pensated by the two adjacent methylene groups (each δq+ = +0.1675e), leaving the outer

methyl groups uncharged. Figure 1B illustrates that since the sulfur is in the rotational

axis bound to the gold, the main contribution of the static electric field influencing the

rotation is due to a force on the methylene groups. A negative electric field pulls the

ethylene away from the gold surface reducing the torsional barriers slightly compared to

the field free state, while a positive electric field presses the methylene groups closer to

the gold surface thus increasing the torsional barriers. Additionally, the field influences

the position of the minima and maxima of the energy for the trans-states, with the phase

varying by approximately π/60 radians from−9 V/nm to +9 V/nm Figs. 2a and 2b. The

amplitude of the energy profile depends on the field for the cis-states but the phase does

not shift.

The energy landscape for the trans-states is a simple cosine function U(θ, Ez) =

A(Ez) cos [nθ + φ(Ez)] ( n = 3 for cis- and n = 6 for trans- states) at each value of the field,

where the field dependent amplitude is well fit by the relation A(Ez) = A(0)(1+aEz + · · ·)

and we keep only the first correction, with a = .058 nm/V and with A(0) = kBT . The

phase relative to the zero-field case is given by φ(Ez) = bEz, with b = ±.146 (nm/V)

where we take the minus sign for trans-1 and the plus sign for trans-2. An oscillating

electric field normal to the gold surface leads to a time dependent potential in which

both the amplitude A(Ez(t)) and phase φ(Ez(t)) vary in time through the external field

Ez(t) = E0 cos (ωt). In our study the amplitude E0 ranged from 0.75 to 9 V/nm and the

oscillation frequency ω ranged from 1.5 THz to 7.5 THz.

Stimulation of the surface rotor by a time dependent field gives rise to a very rich and

complex set of behaviors of the rotor. Neither of the two cis-states undergo directional

rotation at any field strength or frequency. The effective rotational diffusion rate, however,

does depend significantly on the field parameters. Both trans-1 and trans-2 are driven
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to undergo directed rotation in a strongly frequency dependent way. At each frequency

the magnitude of the driven rotation is a monotonic function of field amplitude up to

about 9 V/nm so in this paper we focus on the largest field amplitude as we consider the

frequency response of the system.

The net rotation rate approaches zero in the zero frequency limit. As the frequency

is increased to greater than THz the rotor begins to undergo net rotation, first one way,

and then the next, passing through zero. The rotation rate falls back to near zero at

slightly higher frequencies. Then, as the frequency increases further there is a large peak

in the net rotational rate. Significantly, the frequency at which the maximum of the high

frequency peak occurs is precisely twice the frequency at which the net rotation goes

through zero in switching between clockwise and counterclockwise rotation at the lower

frequency feature. We can gain insight into this complex behavior by numerically solving

the deterministic equation of motion, which for our sinusoidally oscillating field can be

rewritten

θ̈ + τ−1θ̇ + ω2
0 [1 + aE0 cos (ωt)] [sin (θ + bE0 cos (ωt))] = 0 (1)

There are two relevant characteristic frequencies, the damping frequency τ−1 = Γ
I
, and

the characteristic librational frequency of the molecule near the minima of the sinusoidal

potential ω0 = 2π
√

A(0)
I

/(π/3). For small molecular rotors the librational frequency is

typically of order 1013 radians/sec (6). Using a moment arm r = 1 nm, reduced mass of

15 amu, and an amplitude A0 = 4× 10−21 J ≈ kBT , we calculate ω0 = 2.4 THz. Judging

by the number of overshoots seen in simulations starting with non-zero initial velocity the

damping frequency τ−1 seems to be a bit less than half the librational frequency.

The numerical solution of the deterministic differential equation (1) already foreshad-

ows many of the features observed in the molecular dynamics simulation of the surface

rotor. Most notably, for sufficiently large stimulation and for sufficiently small damp-
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ing, when the external frequency approaches twice the characteristic frequency there is a

period doubling transition close to ω = 2ω0 indicative of parametric resonance. The am-

plitude of oscillation in the position builds over several periods of the external field, finally

reaching a maximum amplitude. The period doubling is similar to the half synchronous

rotation described by Horinek and Michl (17) although here the amplitude of oscillation -

not the rotation rate of the rotor - has twice the period of the external stimulation. Inertia

is essential for the parametrically driven oscillation and there is neither period doubling

nor increase in amplitude of the oscillation if the damping is too strong. However, in

the absence of driving, inertial effects are damped very quickly, within about 4 overshoot

periods (≈ 10−12 s−1) with the parameter values we used, as shown in the inset of Fig.

2D, consistent with what we observed in the MD simulations. The behavior demonstrated

by solving the deterministic equation (1) is not in itself sufficient to explain the observed

directed rotation - the AC field acting alone does not provide sufficient energy to over-

come the barrier. We propose that the rotation is a noise assisted stochastic pumping

process (18) where the asymmetric oscillation in position leads to a greater chance for

thermal activation over the barrier in the clockwise direction than in the counterclockwise

direction for the trans-1 state. To emphasize the diffusional character of the motion we

calculated the probability density near the top of the barrier in both high (positive, Fig.

3A) and low (negative) field. The net currents can be calculated in terms of the simple

diffusion at the top of the barrier averaged over a cycle of the field.

Inspired by the Lorentz model for a bound electron in an oscillating field and by the

behavior of a parametric oscillator (19), we search for a theoretical description of the

observed features of the induced net rotation in the simulations by cobbling together

a linear out-of-phase response function at the characteristic frequency, and an in-phase
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response function at twice the characteristic frequency,

J = Jmax

{
τ−1(ω − ω0)

1 + [2τ−1(ω − ω0)]
2 +

1

1 + [2τ−1(ω − 2ω0)]
2

}
(2)

Rather amazingly this theory describes the frequency dependence of the net rotation quite

well as shown in Fig. 3C. The response at the characteristic frequency arises from a direct

driving of the phase (the equilibrium position in a harmonic approximation, Fig. 2B) while

the response at twice the characteristic frequency arises from parametric modulation of

the amplitude (the spring constant in a harmonic approximation, Fig. 2B). The essential

symmetry breaking occurs because in the trans-1 state the amplitude relative to that at

zero-field is large when the phase is negative relative to that at zero field and small when

the phase is positive relative to that at zero field, and vice versa for trans-2. If either a or

b is zero in Eq. (1) the oscillation is perfectly symmetric under all conditions and there

can be no directed rotation even though energy is continually fed into the system via the

external perturbation.

In the linear driving regime the net rotation is the difference between a large rotation

rate in one direction and an even larger rate in the other direction (Fig. 3E). On the other

hand, in the parametric driving regime the rotation is almost deterministic, with only

very infrequent reverse rotations. At still higher frequency both directed and diffusional

rotation essentially vanish.

We have demonstrated by molecular dynamic simulations that THz applied fields can

be used to drive directed motion, and to control both net rotation and rotational diffusion,

of a diethylsulfide molecule on a gold surface. Near a characteristic frequency (2.8 THz)

that can be calculated from molecular parameters the rotor can be switched between

clockwise and counterclockwise rotational modes by small changes in the frequency of

the applied field. The frequency of the net rotation is relatively small (3 GHz), and the
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Peclet number (the magnitude of the difference divided by the sum of the clockwise and

counterclockwise rates) is about 0.5. At twice this characteristic frequency (5.6 THz)

the rotor is parametrically pumped to undergo directional rotation at a larger rate (10

GHz) and the Peclet number approaches unity since there are essentially no backward

rotations. A simple deterministic model Eq. (1) captures qualitatively the observed

parametric pumping, but the rotation of the molecule requires thermal noise to provide

energy for overcoming the barrier once the large asymmetric oscillation is engendered by

the applied field. The frequency response is well described by a simple theory for the

response function with an out-of-phase component at the characteristic frequency and an

in-phase component at twice the characteristic frequency.

The maximal stimulated net rotation at 10 GHz is very much faster than any other

directional rotor with which we are familiar. Although the high frequency seems more

likely to have significant technological application, it will be impossible to experimentally

access directionality by use of previous mechanisms for sensing directional rotation such

as the tunneling current to the surface from an AFM tip. However, the rotating partial

charge on the inner methyl groups will cause a magnetic field )B = µ0 δq+ /(T r), where µ0

is the magnetic permeability, and T is the period of the rotation. For maximal rotation

rate of 10 GHz this works out to be greater than 10 mG which should be relatively easily

measurable. Conversely, the rotation rate should depend on any magnetic fields, allowing

this rotor to act as a molecular compass (20)

The two distinct trans-states, trans-1 and trans-2, rotate in opposite directions at

every frequency and amplitude. With an equal mixture of these two forms on a surface

there would be no net rotation. Designing some means of switching the relative stability of

the two states would provide a very powerful mechanism for switching the net rotational

direction. An interesting possibility is to use a magnetic field normal to the gold surface
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in combination with a THz field to dynamically favor one state over another, depending

on the direction of the magnetic field, even under conditions where the two conformers are

a priori energetically equivalent. The electric field breaks microscopic reversibility (21),

and the magnetic field then breaks “macroscopic reversibility”. A detailed study of the

conformational dynamics during stimulation would provide important insight into how to

proceed in this direction but such a study will be very computationally intensive.

We have described a molecular dynamics simulation of a very fast surface rotor that can

be sensitively driven and controlled by an external THz AC electric field. We anticipate

that this work will provide stimulation for experimental as well as for further theoretical

work toward the design of controllable rotors that can be used as components in the design

of integrated molecular machines
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Table 1: Lifetimes vs. Field
Field τcis τtrans

-9 V/nm 1.2 ps 7.52 ps
-6 V/nm 1.97 ps 11.45 ps
-3 V/nm 3.48 ps 20.38 ps
0 V/nm 7.7 ps 51 ps

+3 V/nm 15.81 ps 94.27 ps
+6 V/nm 51.79 ps 262.60 ps
+9 V/nm 295.45 ps 850.06 ps
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Fig. 1. (A) conformations (cis, trans-1 and trans-2) of the diethylsulfid rotor bound

in an fcc position to the gold (111) surface . The angle θ (red) around the rotation axis

(black) is explicitly illustrated for the trans-1 conformation. (B) An electric field acts on

the partial charges of the rotor to force the rotor arms slightly away from or toward the

surface. (C) Plot of the logarithm of the probability density, and hence of the free energy

landscape, of the freely rotating trans-1 (blue) and trans-2 (green) conformations. (D)

Plot of the logarithm of the probability density of freely rotating cis-1 (blue) and cis-2

(green) conformations.

Fig. 2. Free energy landscapes at E=+9V/nm (red), at E= 0 V/nm (green) and at

E=-9V/nm (blue) for trans-1 (A) and trans-2 (B) are shown. The electric field shifts

the phase (i.e., the positions of minima and maxima) and modifies the amplitude. The

orange, black and green line correspond to the -π/6, 0 and π/6 positions and are reflected

in (D). (C) Schematic illustration of the motion of an energy minimum in the harmonic

approximation. For trans-1 the minimum shifts to the left when the spring constant is

large and to the right when the spring constant is small. For trans-2 the minimum shifts

to the right when the spring constant is large and to the left when the spring constant is

small. (D) Deterministic simulation of eq. (1). External driving field (violet) and angle

position of the rotor (blue) are shown. The inset shows the damped relaxation of the

rotor position when the field is turned off.

Fig. 3. (A & B) The angle probability distributions (APD) of the rotor at different fre-

quency oscillating electric fields (2THz:green,2.5THz light blue, 3THz:red, 5.5THz:blue)

at the position of the barrier maximum for E=+9V/nm at θ = 13.5◦ ± 0.25◦(A) and

for E = −9V/nm at θ = 11.0◦ ± 0.25◦ (B). The colored numbers on the lines are the

calculated gradients of the APDs. (C) Each point represents the average response of the

rotor in trans-1 conformation over multiple trajectories including the error. The rotor
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dependence on the driving frequency can be described with eq. (2) (solid curve). (D)

Scheme correlating the driving frequency to the resulting direction of rotation and the

sum of slopes at high and low fields for conformation trans-1. (E) Bar graph illustrat-

ing clockwise (positive) and counterclockwise (negative) rotations (pastel colors) and net

rotations (vivid colors).
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Supplemental: Materials and Methods

General

All simulations of the DiEthylSulfid (DES) rotor on a gold (111) surface are performed

with the MD simulation software GROMACS (Vers. 4.0.x) (22). The GolP force field is

used (23). It is optimized for gold (111)surface simulations and based on the OPLS-AA

force field (24). The diethylsulfid parameters have been DFT optimized for this GolP

force field by the group of Stephano Corni (15). The system is simulated in vaccum with

periodic boundary conditions.

The gold is 5 atom layers thick with a surface area of 3.23 × 3.56nm2. The DES is

positioned on the surface with the sulfur in an fcc position on the gold 0.258nm away from

each of its three neighboring gold atoms (25). The position of the sulfur is frozen in space

to simulate the sulfur gold bond and to form a stable axis for the stationary rotation on

the gold. The gold surface and the DES are both neutrally charged. The partial charge

distribution of the DES on the gold can be found in Table 2.

Table 2: The outer two methyl groups are neutrally charged, while the inner two methylen
groups are positively charged, each with half the opposite charge of the central sulfur atom.
Every hydrogen atom holds the same partial charged of +0.06e.

Group CH3 CH2 S each H
Charge [e] 0 +0.1675 -0.335 +0.06

System Preparation

An energy minimization of the system is simulated using steepest descent with a maximum

step size of 0.01nm. A cut-off radius of 1.1nm is used for Coulomb interactions and

1.0nm for van-der-Waals interactions. This energy minimized structure is used as starting
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structure for field free simulations.

All simulations are done at 300K. For all further simulations electrostatics are calcu-

lated with Fast Particle-Mesh Ewald electrostatics (PME) (26) with an order of four and

a cutoff for coulomb and van-der-Waals interactions of 1.0nm. Temperature coupling is

done by a velocity rescaling thermostat (27) coupled to the whole system.

Angle Definition

The rotation angle α is calculated using the vector v connecting the two inner Cα atoms

by α = arctan(vx

vy
)−sign(vy)∗90◦+ncyc×360◦ with ncyc being the number of full rotations.

Relative Energies

The free energies are calculated from the population of the angles α by δE(α) = −kBT ×

ln(N(α)
Nmin

)−min(E(α)), with the rotation angle α (from 0◦ to 120◦), the number of timesteps

N(α) in which the angle is populated and the minimum population count of all angles

Nmin.

Initial Structures for free rotation

For further simulations including an electric field, a set of 10 structures have been chosen

from the final structures of the free rotation simulations with 200ns simulation each, allto-

gether representing a sample of different rotation angles α to increase sampling especially

at high fields. A new starting velocity distribution is generated for each new simulation.

Initial Structures for restrained simulations

For the restrained simulations, the structures of a 200ns long undisturbed rotation tra-

jectory are clustered. The six prominent clusters (every 60◦) of each trans conformation

21

137



are chosen as initial structures. In addition two prominent clusters for each cis state are

simulated.

Restrained simulations

The dihedral angle restraints allows a free development of the system in a range of ±20◦

around the energy minimum of the dihedral angle distributions. Thus, the rotor could

freely explore its energy landscape in the restraint conformation preventing switching to

unwanted conformations.

External Electric Field

An external electric field is applied perpendicular to the gold surface in z-direction. The

electrical field is positive if it points from the rotor to the surface (Fig. 1B). The electric

field strength ranges from -9 to +9 V/nm. The simulation time is 2ns per trajectory.

In the highest field regimes the partial charge distribution of the molecular rotor might

be subject to additional polarization effects, not taken into account by the DFT derived

partial charge distribution.

External Oscillating Electric Field

We apply an oscillating field

E(t) = E0 × cos(ωt) × êz

perpendicular to the gold surface with êz pointing from the rotor to the gold surface.

The strength of the oscillating field E0 ranges from 0.75 to 9 V
nm

, while the oscillation

frequency of the electric field ω ranges from 1.5 to 7.5 THz. Lower oscillation frequencies

interpolated the behavior of the rotor between zero field and 1.5 THz driving, showing
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no additional features. Higher frequencies strongly arrest the rotor on the surface and no

further rotation is observed.
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