Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Synthesis of Functionalized Heterocycles Using Magnesium and Zinc Reagents. Diastereoselective Addition of Allylic Aluminum Reagents to Carbonyl Compounds.

Preparation and Application of Aromatic and Benzylic Manganese Reagents

von

Zhihua Peng

aus

Shandong, China

2011

Erklärung

Diese Dissertation wurde im Sinne von § 13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 (in der Fassung der sechsten Änderungssatzung vom 16. August 2010) von Herrn Prof. Dr. Paul Knochel betreut.

Ehrenwörtliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe bearbeitet.

München, am 7. June 2011

Zhihua Peng

Dissertation eingereicht am 9. June 2011

1. Gutachter: Prof. Dr. Paul Knochel

2. Gutachter: Prof. Dr. Manfred Heuschmann

Mündliche Prüfung am 26. July 2011

This work was carried out from January 2008 to April 2011 under the guidance of Prof. Dr. Paul Knochel at the Department Chemie und Pharmazie of the Ludwig-Maximilians-Universität, Munich.

First, I would like to express my appreciation to Prof. Dr. Paul Knochel for giving me the great opportunity to do my Ph.D. in his group and for his guidance and support in the course of my scientific research.

I am also very grateful to Prof. Dr. Manfred Heuschmann for agreeing to be my "Zweitgutachter" as well as Prof. Dr. Konstantin Karaghiosoff, Prof. Dr. Klaus Wanner, Prof. Dr. Heinz Langhals and Prof. Dr. Rudolf Knorr for their interest shown in this manuscript by accepting to be referees.

Furthermore, I would like to express my gratitude to Dr. Coura Diène for the careful correction of this manuscript.

I thank all past and present co-workers I have met in the Knochel group for their kindness, their help in every respect and the good times we had. Special thanks to my actual and former lab mates Dr. Laurin Melzig, Dr. Andrei Gavryushin, Zhi-Liang Shen, Dr. Anukul Jana, Dr. Georg Manolikakes, Dr. Shigeyuki Yamada, and Kohsuke Kawabata.

Additional thanks go to Dr. Coura Diène, Matthias Schade, Andreas Wagner, Klaus Groll, Thomas Kunz, Cora Dunst, Tomke Bresser, Gabriel Monzon, Tobias Thaler, Andreas Steib, Christoph Sämann, Dr. Shun-Yi Wang, Dr. Shi Tang, Stephanie Seel, Dr. Xavier Mollat du Jourdin, Dr. Alexei Bredihhin and Dr. Christina Despotopoulou for being fantastic colleagues.

I would like to thank Dr. Benjamin Alexander Haag for the collaboration in the field of 1,3,5-triazine and indazole chemistry. My thanks go to Tobias Blümke and Zhi-Liang Shen for the cooperative work on the allylic aluminum chemistry.

I would also like to thank Vladimir Malakhov, Simon Matthe, Renate Schröder and Yulia Tsvik for their help in organizing everyday life in the lab and in the office, as well as the analytical team of the LMU for their invaluable help.

Special thanks to my friends Dr. Yi-Hung Chen, Dr. Ying-Hao Liu, Dr. Li-Na Guo, Dr. Hong-Jun Gao, Dr. Zhi-Guang Zhang, and Dr. Zhi-Bing Dong for their friendship and the nice time we spent together.

I would like to thank my family and my teachers in China for their great support, throughout my studies and my Ph.D.

Finally, I thank my wife Yilei for her love and endless support.

Parts of this Ph.D. thesis have been published

- Benjamin Haag, Zhihua Peng, and Paul Knochel*, Preparation of Polyfunctional Indazoles and Heteroarylazo Compounds Using Highly Functionalized Zinc Reagents, Org. Lett. 2009, 11, 4270-4273.
- Tobias Blümke, Yi-Hung Chen, Zhihua Peng and Paul Knochel*, Preparation of functionalized organoaluminiums by direct insertion of aluminium to unsaturated halides, *Nat. Chem.* 2010, 2, 313-318.
- Zhihua Peng, Benjamin A. Haag, and Paul Knochel*, Preparation of 2-Magnesiated 1,3,5-Triazines via an Iodine-Magnesium Exchange, *Org. Lett.* 2010, *12*, 5398-5401.
- 4) Zhihua Peng, Tobias D. Blümke, Peter Mayer, and Paul Knochel*, Diastereoselective Synthesis of Homoallylic Alcohols with Adjacent Tertiary and Quaternary Centers by Using Functionalized Allylic Aluminum Reagents, *Angew. Chem. Int. Ed.* **2010**, *49*, 8516–8519.
- 5) Zhihua Peng, and Paul Knochel*, Preparation of Functionalized Organomanganese(II) Reagents by Direct Insertion of Manganese to Aromatic and Benzylic Halides, Org. Lett. 2011, 13, 3198-3201.

To Yilei, with love

Table of Contents

A. General Introduction1
1. Overview1
2. Halogen-Metal Exchange Reaction
3. Allylic Aluminum Reagents
3.1 Allylic Metals
3.2 Allylic Aluminum Reagents
4. Organomanganese Reagents
4.1 Preparation of Organomanganese Reagents17
4.2 Reactions of Organomanganese Reagents
5. Objectives
B . Results and Discussion
1. Preparation of 2-Magnesiated 1,3,5-Triazines via an Iodine-Magnesium
exchange
1.1 Introduction: The Chemistry of 1,3,5-Triazine
1.2 Preparation of Functionalized Iodotriazine Derivatives
1.3 Preparation of 2-Magnesiated 1,3,5-Triazines and Their Subsequent
Reactions with Various Electrophiles
1.4 Doubly Magnesiated 1,3,5-Triazine37
1.5 Syntheses of Trimeric and Dimeric Derivatives
1.6 Conclusion
2. Preparation of Polyfunctional Indazoles Using Highly Functionalized Zinc
Reagents41
2.1 Synthetic Strategy41
2.2 Preparation of Highly Functionalized Zinc Reagents
2.3 Preparation of Polyfunctionalized Indazoles
2.4 Conclusion
3. Diastereoselective Synthesis of Homoallylic Alcohols with Adjacent Tertiary
and Quaternary Centers by Using Functionalized Allylic Aluminum Reagents45

3.1 Introduction	45
3.2 Preparation of Functionalized Allylic Chlorides	47
3.3 Preparation of Functionalized Allylic Aluminum Reagents a	and Their
Addition to Aldehydes and Ketones	48
3.3.1 Cyclic Aluminum Reagents	48
3.3.2 Cinnamyl Aluminum Reagents	53
3.3.3 Cyano-Substituted Cyclopentylaluminum Reagent	55
3.3.4 β -Silyl-substituted Crotylaluminum Reagent	56
3.4 Conclusion	57
3.5 Extension of Functionalized Allylic Aluminum Reangents	58
3.5.1 Introduction	58
3.5.2. Preparation of Allylic Chlorides	59
3.5.3 Preparation of Allylic Aluminum Reagents and Their A	ddition to
Aldehydes and Ketones	59
354 Conclusion	62
4. Preparation of Functionalized Organomanganese(II) Reagents	by Direct
 Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides 	by Direct
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides 4.1 Introduction	by Direct 63
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides 4.1 Introduction 4.2 Optimization of The Reaction Conditions 	by Direct 63 63 63
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides	by Direct 63 63 64 65
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides	by Direct 63 63 64 65 68
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides	by Direct 63 63 64 65 68 72
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides	by Direct 63 64 65 68 72 73
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides	by Direct 63 64 64 65 68 72 73 79
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides	by Direct 63 64 64 65 68 72 73 79 79
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides	by Direct 63 64 65 68 72 73 79 79 79
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides	by Direct 63 64 65 68 72 73 79 79 79 79 79 79
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides	by Direct 63 64 64 65 68 72 73 79 79 79 79 79 79 79 79
 4. Preparation of Functionalized Organomanganese(II) Reagents Insertion of Manganese to Aromatic and Benzylic halides	by Direct 63 64 65 68 72 73 79 79 79 79 79 79 79 79 79 73

2. Synthetic Procedures
2.1 Preparation of 1,3,5-Triazine Derivatives83
2.1.1 Typical Procedures
2.1.2 Preparation of 2-Magnesiated 1,3,5-Triazines and 1,3,5-Triazine
Derivatives
2.2 Preparation of Functionalized Indazoles108
2.2.1 Typical Procedures108
2.2.2 Preparation of Starting Materials and Functionalized Indazoles108
2.3 Diastereoselective Synthesis of Homoallylic Alcohols with Adjacent Tertiary
and Quaternary Centers115
2.3.1 Typical Procedures115
2.3.2 Preparation of Allylaluminum Reagents (85a-h)
2.3.3 Preparation of Homoallylic Alcohols and Lactones (87a-u)121
2.4 Extension of Functionalized Allylic Aluminum Reangents136
2.4.1 Typical Procedures
2.4.2 Preparation of Allylic Chlorides
2.4.3 Preparation of Allylic Aluminum Reagents, Homoallylic Alcohols and
Lactones138
2.5 Preparation of Functionalized Organomanganese(II) Reagents by Direc
Insertion of Manganese to Aromatic and Benzylic Halides145
2.5.1 Typical Procedures145
2.5.2 Preparation of Aromatic and Benzylic Manganese Reagents146
D. Appendix
1. X-Ray structures
2. NOE Analysis
3. Curriculum Vitae

Abbreviations

Ac	acetyl
aq.	aqueous
Ar	aryl
Bn	benzyl
Bu	butyl
<i>n</i> Bu	<i>n</i> -butyl
<i>s</i> Bu	<i>s</i> -butyl
tBu	<i>t</i> -butyl
calc.	calculated
conc.	concentrated
δ	chemical shifts in parts per million
d	doublet
dba	trans, trans-dibenzylideneacetone
dr	diastereomeric ratio
EI	electron-impact ionization
eq.	equation
equiv	equivalent
ESI	electrospray ionization
Et	ethyl
EtOAc	ethyl acetate
FG	functional group
GC	gas chromatography
h	hour
HRMS	high resolution mass spectroscopy
IR	infrared
LA	Lewis acid
LDA	lithium diisopropylamide

J	coupling constant (NMR)
Μ	molarity
m	meta
m	multiplet
Me	methyl
min	minute
mmol	millimole
m.p.	melting point
MS	mass spectroscopy
NMP	1-methyl-2-pyrrolidinone
NMR	nuclear magnetic resonance
0	ortho
Oct	octyl
р	para
PEPPSI	pyridine, enhanced, precatalyst, preparation, stabilization, and initiation
PEPPSI Ph	pyridine, enhanced, precatalyst, preparation, stabilization, and initiation phenyl
PEPPSI Ph <i>i</i> Pr	pyridine, enhanced, precatalyst, preparation, stabilization, and initiation phenyl <i>iso</i> -propyl
PEPPSI Ph <i>i</i> Pr q	pyridine, enhanced, precatalyst, preparation, stabilization, and initiation phenyl <i>iso</i> -propyl quartet
PEPPSI Ph <i>i</i> Pr q R	pyridine, enhanced, precatalyst, preparation, stabilization, and initiation phenyl <i>iso</i> -propyl quartet organic substituent
PEPPSI Ph <i>i</i> Pr q R s	pyridine, enhanced, precatalyst, preparation, stabilization, and initiation phenyl <i>iso</i> -propyl quartet organic substituent singulet
PEPPSI Ph <i>i</i> Pr q R s sat.	pyridine, enhanced, precatalyst, preparation, stabilization, and initiation phenyl <i>iso</i> -propyl quartet organic substituent singulet saturated
PEPPSI Ph <i>i</i> Pr q R s sat. tfp	pyridine, enhanced, precatalyst, preparation, stabilization, and initiation phenyl <i>iso</i> -propyl quartet organic substituent singulet saturated tris-2-furylphosphine
PEPPSI Ph <i>i</i> Pr q R s sat. tfp THF	pyridine, enhanced, precatalyst, preparation, stabilization, and phenyl <i>iso</i> -propyl quartet organic substituent singulet saturated tris-2-furylphosphine tetrahydrofuran
PEPPSI Ph <i>i</i> Pr q R s sat. tfp THF TLC	<pre>pyridine, enhanced, precatalyst, preparation, stabilization, and initiation phenyl</pre> iso-propyl quartet quartet organic substituent singulet saturated tris-2-furylphosphine tetrahydrofuran thin layer chromatography
PEPPSI Ph <i>i</i> Pr q R s sat. tfp THF TLC TMS	pyridine, enhanced, precatalyst, preparation, stabilization, and initiation phenyl iso-propyl quartet organic substituent organic substituent singulet saturated tris-2-furylphosphine tetrahydrofuran thin layer chromatography trimethylsilyl
PEPPSI Ph <i>i</i> Pr q R s sat. tfp THF TLC TMS TES	pyridine, enhanced, precatalyst, preparation, stabilization, and phenyl iso-propyl quartet organic substituent organic substituent singulet saturated tris-2-furylphosphine tetrahydrofuran thin layer chromatography trimethylsilyl
PEPPSI Ph <i>i</i> Pr q R s sat. tfp THF TLC TMS TES TP	pyridine, enhanced, precatalyst, preparation, stabilization, and phenyl iso-propyl quartet organic substituent organic substituent singulet saturated tris-2-furylphosphine tetrahydrofuran thin layer chromatography trimethylsilyl triethylsilyl

A. General Introduction

1. Overview

"Today it is not only unwise but rather difficult to accomplish an efficient and selective multiple synthesis without using organometallics".¹

The synthesis of biologically active compounds or natural products for the pharmaceutical and agrochemical industries is one of the most important areas of research. Considering that the construction of complex molecules constantly demands new, straightforward and efficient methods for achieving chemical transformations, undoubtly, developing novel strategies and new reagents for meeting this challenge is a major task of modern organic chemists. Since the first preparation of organometallic reagent (diethylzinc) was performed by Frankland,² it has been proven that organometallics are the most powerful tools in the formation of carbon-carbon and carbon-heteroatom bonds, and they also offer access to complex and biological molecules to organic chemists. Up to now, nearly every metal in the periodic table has been used in synthetic organic chemistry. Among them, a large number of metals were used to prepare organometallic reagents and their displayed reactivities to electrophiles and compatibilities with functional groups have been studied in detail.³ For instance, organolithium compounds have high reactivity to electrophiles, but they display low selectivity and reduced functional group tolerance. In the case of organomagnesium reagents and organozinc reagents which possess a more covalent character of the carbon-metal bond, they have good reactivity and can tolerate a wide range of sensitive functional groups. Moreover, organoaluminum reagents have significant functional group tolerance but suffer from decreased reactivity.

¹ Organometallics in Organic Synthesis, E.-I. Negishi, Wiley-VCH; Weinheim, 1980.

² a) E. Frankland, *Liebigs Ann. Chem.* **1848-9**, *71*, 171; b) E. Frankland, *J. Chem. Soc.* **1848-9**, *2*, 263.

³ a) *Handbook of Functionalized Organometallics*, P. Knochel, Ed., Wiley-VCH: Weinheim, **2005**; b) *Metal-Catalyzed Cross-Coupling Reactions*, 2nd ed., A. de Meijere, F. Diederich, Wiley-VCH: Weinheim, **2004**.

Additionally, organomanganese reagents can behave like transition metal derivatives, which leads to a much different reactivity than that of the previously mentioned organometallic species. Because of their different properties, organometallics offered sufficient optional approaches to perform efficient total synthesis of complex molecules. Therefore, developing methods for the reliable preparation of various organometallics and studying the reactivity of these organometallics are continuously necessary and important, and they are also the main goals of this work.

2. Halogen-Metal Exchange Reaction

Organomagnesium reagents, characterized by excellent reactivity and good function tolerance to a variety of electrophiles, still occupy a central place in organometallic chemistry. Since *Victor Grignard* reported the first preparation of organomagnesium reagents in 1901,⁴ these so-called Grignard reagents have been utilized widely in the areas of academic and process chemistry. The well-established methodologies concerning organomagnesium reagents include addition to carbonyl functions, Kumada cross-coupling, carboxylation with carbon dioxide, and so on.³ Especially, the reactivity and selectivity of organomagnesium reagents can be tuned after the transmetallation with many metallic salts, which dramatically broadened their scope.

The most common way for the preparation of organomagnesium reagents is the oxidative insertion of magnesium metal to organic halides. However, this insertion method is usually hindered by low functional group tolerance.⁵ An alternative method for synthesizing organomagnesium reagents is the halogen-magnesium exchange reaction.⁶

The first reaction of a halogen-magnesium exchange was disclosed by *Prévost* who showed that cinnamyl bromide (1) reacted with EtMgBr, affording

⁴ V. Grignard, Ann. Chim. **1901**, 24, 433.

⁵ Grignard Reagents-New Developments (Ed.: H. G. Richey), Wiley, New York, 2000.

⁶ For selected reviews, see: a) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T. Korn, I. Sapountzis, V. A. Vu. *Angew. Chem. Int. Ed.* **2003**, *42*, 4302; b) A. Boudier, L. O. Bromm, M. Lotz, P. Knochel, *Angew. Chem. Int. Ed.* **2000**, *39*, 4414; c) H. Ila, O. Baron, A. J. Wagner, P. Knochel, *Chem. Commun.* **2006**, 583.

cinnamylmagnesium bromide (2) in a moderate yield (Scheme 1, Eq. 1).⁷ In 1967, *Villiéras* demonstrated that the treatment of CHBr₃ with *i*PrMgCl afforded the corresponding magnesium carbenoid **3** (Scheme 1, Eq. 2).⁸ A few years later, the work of *Tamborski* and *Moore* as well as similar work done by *Furukawa* confirmed this halogen-magnesium exchange reaction.⁹ These excellent pioneer breakthroughs allowed access to polyfunctionalized organomagnesium reagents by a halogen-magnesium exchange reaction.

Scheme 1. First example of a halogen-magnesium exchange (Eq. 1) and bromine-magnesium exchange (Eq. 2).

Subsequently, this convenient method has received attention from several research groups. In 1998, *Knochel* and co-workers discovered that the halogen-magnesium exchange displays a remarkable functional group tolerance. ¹⁰ A variety of arylmagnesium halides bearing sensitive functional groups such as nitriles, esters, or amides can be prepared *via* an I/Mg exchange (Scheme 2).

⁷ C. Prévost, Bull. Soc. Chim. Fr. **1931**, 49, 1372.

⁸ a) J. Villiéras, *Bull. Chem. Soc. Fr.* **1967**, *5*, 1520; b) J. Villiéras, B. Kirschleger, R. Tarhouni, M. Rambaud, *Bull. Chem. Soc. Fr.* **1986**, 470.

⁹ a) C. Tamborski, G. J. Moore, *J. Organomet. Chem.* **1971**, *26*, 153; b) N. Furukawa, T. Shibutani, H, Fujihara, *Tetrahedron Lett.* **1987**, *28*, 5845.

¹⁰ L. Boymond, M. Rottländer, G. Cahiez, P. Knochel, Angew. Chem. Int. Ed. 1998, 37, 1701.

Scheme 2. Preparation of highly functionalized Grignard reagents by an I/Mg exchange.

Over the years, the scope of substrates in halogen-magnesium exchange reaction has been considerably enhanced. For instance, the reaction of amidine-protected diiodoamidine 8 with *i*-PrMgBr in THF afforded the corresponding arylmagnesium species 9 within 5 min. After transmetallation of 9 with CuCN·2LiCl, the resulting copper reagent underwent allylation with 2-methoxyallyl bromide, furnishing the desired allylation product **10**.¹¹ Interestingly, the treatment of unprotected iodoaniline 11 with PhMgCl and *i*PrMgCl formed the dimagnesium derivative 12. Transmetallation with CuCN·2LiCl, followed by the addition of 3-bromoprop-1-yne, gave the desired product 13 in 89% yield.¹² Substrates with highly electrophilic functionalities such as a nitro group can also be used to prepare Grignard reagent. Thus, 4-iodo-3-nitrobenzonitrile **14** reacted with the sterically hindered mesitylMgBr within 5 min at -40 °C, affording the corresponding Grignard reagent 15. After transmetallation with ZnBr₂, the reaction of the resulting zinc reagent with ethyl 4-iodobenzoate (16) in the presence of $[Pd(dba)_2]$ (5 mol%) and tfp (10 mol%) furnished biaryl derivative **17** in 73% yield (Scheme 3).¹³ In comparison to aryl iodides, an I/Mg exchange reaction of alkenyl iodides is slower. However, the

¹¹ D. M. Lindsay, W. Dohle, A. E. Jensen, F. Kopp, P. Knochel, Org. Lett. 2002, 4, 1819.

¹² G. Varchi, C. Kofink, D. M. Lindsay, A. Ricci, P. Knochel, *Chem. Commun.* 2003, 396.

¹³ I. Sapountzis, P. Knochel, Angew. Chem. Int. Ed. 2002, 41, 1610.

presence of an electron-withdrawing functionality directly linked to the double bond facilitates the iodine-magnesium exchange reaction. Thus, the alkenyl magnesium reagent **19** was readily obtained by an iodine-magnesium exchange of ethyl 3-iodo-*p*-cyanocinnamate (**18**) with *i*PrMgBr. Transmetallation with CuCN·2LiCl and reaction with ethyl (2-bromomethyl)-acrylate led to the expected allylation product **20** in 70% yield.¹⁴ In the case of alkyl substrates, the preparation of alkyl magnesium reagents is difficult due to the high reactivity of the resulting alkyl magnesium reagents. Remarkably, the treatment of 2-iodocyclopropanecarboxylate **21** with *i*PrMgCl within 15 min at -40 °C afforded stable *cis*-cyclopropylmagnesium chloride **22**. Reaction with benzaldehyde after transmetallation with CuCN·2LiCl furnished the lactone **23**.¹⁵

¹⁴ I. Sapountzis, W. Dohle, P. Knochel, *Chem. Commun.* **2001**, 2068.

¹⁵ V. A. Vu, I. Marek, K. Polborn, P. Knochel, Angew. Chem. Int. Ed. 2002, 41, 351.

Scheme 3. The scope of the halogen-magnesium exchange reaction.

Additionally, an important application of the halogen-magnesium exchange is the construction of polyfunctionalized heterocycles which are becoming more significant in many fields. To date, a wide range of functionalized five-membered and six-membered heteroaryl magnesium compounds have been synthesized by a halogen-magnesium exchange reaction such as 24a,¹⁶ 24b,¹⁷ 24c,¹⁸ 24d,¹⁹ 24e,²⁰

¹⁶ M. Bergauer, P. Gmeiner, *Synthesis*, **2001**, 2281.

¹⁷ M. Abarbri, J. Thibonnet, L. Bérillon, F. Dehmel, M. Rottländer, P. Knochel, J. Org. Chem. **2000**, *65*, 4618. ¹⁸ F. Dehmel, M. Abarbri, P. Knochel, *Synlett* **2000**, 345.

¹⁹ C. J. Lovely, H. Du, H. V. Rasika Dias, *Org. Lett.* **2001**, *3*, 1319.

Scheme 4. Preparation of functionalized heteroaryl magnesium compounds.

A recent improvement accomplished by Knochel et al. demonstrated that by using a stoichiometric amount of LiCl, the rate of the halogen-magnesium exchange was increased and the reactivity of the resulting Grignard reagent was enhanced. The proposed mechanism is that LiCl breaks the aggregates of *i*PrMgCl affording a more reactive complex 25. By using this reagent *i*PrMgCl·LiCl, new ortho-bromophenylmagnesium halide 26 which is difficult to prepare from 1,2-dibromobenzene was readily generated via a Br/magnesium exchange (Scheme 5).22

²⁰ L. Bérillon, A. Leprêtre, A. Turck, N. Plé, G. Quéguiner, G. Cahiez, P. Knochel, Synlett 1998, 1359.

²¹ A. Leprêtre, A. Turck, N. Plé, P. Knochel, G. Quéguiner, *Tetrahedron*, **2000**, *56*, 265.

²² A. Krasovskiy, P. Knochel, *Angew. Chem. Int. Ed.* **2004**, *43*, 3333.

Scheme 5. The supposed reactive intermediate 25 and selective Br/Mg exchange.

3. Allylic Aluminum Reagents

3.1 Allylic Metals

The addition of allylmetal reagents to carbonyl groups is one of the most common strategies to perform highly stereoselective syntheses of an important structural subunit bearing sequences of stereocenters which is commonly found in polyether antibiotics and polyhydroxylated natural products.²³ To date, allylic organometallic reagents which are derived from a wide range of metals, including magnesium, boron, silicon, aluminum, indium, lithium and so on,²⁴ have been extensively studied. Especially, the excellent pioneering studies of *Heathcock*, ²⁵ *Hoffmann* ²⁶ and *Yamamoto*²⁷ from 1978 to 1980 have shown the potential of allylic organometallics reagents for the control of the stereochemistry of the carbon-carbon formed in additional reactions. Since then, the asymmetric addition of allylic organometallic reagents to carbonyl group or imines has emerged and has been widely used in a variety of asymmetric total synthesis.

Mechanistically, allylic organometallic reagents can be classified in three categories.²⁸ In addition reactions of allylic organometallic reagents of type **I** to carbonyl group, chair-like transition state is presumed. An *anti*-homoallylic alcohol is obtained when (E)-alkene precursor is employed. On the contrary, (Z)-alkene precursor gives a *syn*-homoallylic alcohol (Scheme 6).²⁴

²³ a) P. A. Bartlett, *Tetrahedron* 1980, *36*, 3; b) I. Paterson, M. M. Mansuri, *Tetrahedron* 1984, *41*, 3569; c) R. W. Hoffmann, *Angew. Chem. Int. Ed.* 1987, *26*, 489.
²⁴ For selected reviews, see: a) Roush, W. R. In *Compreh. Org. Synth.*; Heathcock, C. H., Ed.;

²⁴ For selected reviews, see: a) Roush, W. R. In *Compreh. Org. Synth.*; Heathcock, C. H., Ed.; Pergamon: Oxford 1990, Vol. 2, p; b) Y. Yamamoto and N. Asao, *Chem. Rev.* **1993**, *93*, 2207; c) J.W. J. Kennedy and D. G. Hall, *Angew. Chem. Int. Ed.* **2003**, *42*, 4732; d) S. E. Denmark, J. Fu, *Chem. Rev.* **2003**, *103*, 2763; e) Yamamoto, Y. Acc. Chem. Res. **1987**, *20*, 243.

²⁵ C. T. Buse, C. H. Heathcock, *Tetrahedron Lett.* **1978**, 1685.

²⁶ R. W. Hoffmann, H.-J. Zeiss, Angew. Chem. Int. Ed. 1979, 18, 306.

²⁷ Y. Yamamoto, H. Yatagai, Y. Naruta, K. Maruya, J. Am. Chem. soc. 1980, 102, 7107.

²⁸ S. E. Denmark, E. J. Weber, *Helv. Chim. Acta* **1983**, *66*, 1655.

Scheme 6. The addition of allylic organometallic reagents of type I to an aldehyde.

Allylic organometallic reagents of type II undergo addition reaction catalyzed or mediated by a Lewis acid. The postulated pathway allows the generation of only *syn*-diastereomer regardless of the geometry of alkene precursor (Scheme 7).²⁴

Scheme 7. The addition of allylic organometallic reagents of type II to an aldehyde.

Allylic organometallic reagents of type III, which typically are formed *in situ* and presumably equilibrated to the more stable (*E*)-isomer, reacted with aldehydes or ketones mainly leading to the *anti* adduct (Scheme 8).²⁴

Scheme 8. The addition of allylic organometallic reagents of type III to an aldehyde.

In the case of allylboron reagent which belongs in type **I**, cyclic transition state allows to predict the stereochemistry of carbon-carbon bond formed in addition to carbonyl compounds with regards to the geometry of the double bond in the allylic group. For instance, the addition of (*E*)-crotylboron derivative to aldehyde leads to *anti* homoallylic alcohol **27**, whereas the treatment of (*Z*)-crotylboron derivative with aldehyde results in the formation of *syn* adduct **28**. This stereospecific selectivity is well rationalized by cyclic transition states **29** and **30** (Scheme 9).²⁹

Scheme 9. Cyclic TS in the addition of croylboron to aldehyde.

The scope of the addition reaction of allylic boron or boronate reagents to carbonyl compounds has been extended to enantiomerically pure allylic boranes and borinates bearing chiral auxiliaries. The extensively developed chiral structures in allylic compounds include (+)- α -pinene, (-)- α -pinene, (+)-limonene, (-)- β -pinene, (+)-longifolene, (-)-10-methyl- α -pinene, (+)-3-carene as well as tartrate esters. These enantiomerically pure allylic boron reagents react with aldehydes generating the corresponding homoallylic alcohols in both excellent diastereoselectivities and

²⁹ a) R. W. Hoffmann and H.-J. Zeiss, *J. Org. Chem.* **1981**, *46*, 1309; b) K. Fujita, M. Schlosser, *Helv. Chim. Acta*, **1982**, *65*, 1258.

enantioselectivities.30

Allylic zinc reagents have also proven to be an effective tool to form carbon-carbon bond in diastereoselective manner. Recently, *Knochel et al.* reported that substituted allylic zinc reagents can be obtained by using a direct insertion of zinc dust into allyl halides in the presence of LiCl and the resulting allylic zinc reagents reacted with aldehydes or ketones affording homoallylic alcohols bearing adjacent quaternary centers in high diastereoselectivities (Scheme 10).³¹

allylic zinc reagents

Scheme 10. Allylic zinc reagents and selected reaction products.

Allylsilanes as well as allylstannanes have also been studied in detail in stereoselective reactions to aldehydes. The diastereoselectivity can be tuned by adding

³⁰ a) H. C. Brown, P. K. Jadhav, J. Am. Chem. Soc. **1983**, 105, 2092; b) W. R. Roush, A. E. Walts, L. K. Hoong, J. Am. Chem. Soc. **1985**, 107, 8186; c) H. C. Brown, K. S. Baht, J. Am. Chem. Soc. **1986**, 108, 293; d) H. C. Brown, P. K. Jadhav, K. S. Baht, J. Am. Chem. Soc. **1988**, 110, 1535; e) W. R. Roush, L. Banfi, J. C. Park, L. K. Hoong, *Tetrahedron Lett.* **1989**, 30, 6457; f) J. Garcia, S. Masamune, J. Org. Chem. **1987**, 52; g) H. C. Brown, P. K. Jadhav, J. Org. Chem. **1984**, 49, 4089. h) F. Peng, D. G. Hall, J. Am. Chem. Soc. **2007**, 129, 3070.

³¹ a) H. Ren, G. Dunet, P. Mayer, P. Knochel, J. Am. Chem. Soc. **2007**, 129, 5376; b) M. D. Helm, P. Mayer, P. Knochel, Chem. Commun. **2008**, 1916.

Lewis acids.²⁴

3.2 Allylic Aluminum Reagents

Aluminum powder hardly inserts into organic halides to generate organoaluminum reagents even with reactive allyl compounds because of the passivation of the metal surface. However, *Gaudemar*³² and *Miginiac*³³ demonstrated that allylic aluminum reagents could be prepared from allylic bromides using diethyl ether as solvent in the presence of a catalytic amount of HgCl₂. The treatment of these resulting allylic aluminium reagents with dithienium tetrafluoroborate yielded the expected dithianes of type **31** in good yields (Scheme 11).

Scheme 11. The preparation of allylic aluminum reagents in the presence of HgCl₂.

Later, a number of additives such as $SnCl_2$, $PbCl_2$, $V(Cp)_2Cl_2$ and $TiCl_4$ were used to activate the aluminum powder and these Al/additive systems underwent Barbier-type allylation with carbonyl compounds or imines.³⁴

The Barbier-type allylation of aldehydes and ketones was also achieved by using aluminum and catalytic amount of $InCl_3$. Thus, the reaction of benzaldehyde, allyl bromide, aluminum and $InCl_3$ in one pot gave the alcohol **32** in 88% yield. The generation of product can be rationalized by the postulated pathway **33** illustrated in

 ³² a) M. Gaudemar, *Bull. Soc. Chim. Fr.* 1958, 1475; b) A. Stefani, P. Pino, *Hel. Chim. Acta*, 1972, 55, 1110.
 ³³ a) G. Piaotin, P. Migipiag, *L. Org. Chem.* 1985, 50, 1200; b) L. Migipiag Graizalanu, *Bull. Soc.*

³³ a) G. Picotin, P. Miginiac, J. Org. Chem. **1985**, 50, 1299; b) L. Miginiac-Groizeleau, Bull. Soc. Chim. Fr. **1963**, 1449.

³⁴ a) For general activation of aluminum powder, see: S. Saito in *Science of Synthesis* (Ed.: H. Yamamoto), **2004**, vol. 7, p 5; b) K, Uneyama, N. Kamaki, A. Moriya, S. Torii, *J. Org. Chem.* **1985**, *50*, 5396; c) H. Tanaka, T. Nakahara, H. Dhimane, S. Torii, *Tetrahedron Lett.* **1989**, *30*, 4161; d) H. Tanaka, K. Inoue, Ulrike Pokorski, M. Taniguchi, S. Torii, *Tetrahedron Lett.* **1990**, *31*, 3023; e) T. Hirano, B. Hatano, Y. Imamoto, A. Ogawa, *J. Org. Chem.* **1999**, *64*, 7665.

Scheme 12. Barbier-type allylation of aldehydes and ketones using aluminum and catalytic amount of InCl₃.

In 2002, *Takai et al.* reported that allylic aluminum reagents could be prepared by the insertion of aluminum (cut foil, 2 mm-2 mm, 1.0 mmol) to allyl bromide (1.5 mmol) in the presence of a catalytic amount of indium(0) powder (0.050 mmol) in THF (5 mL) at 25 °C within 30 min. The subsequent Grignard-type addition of the allylic aluminum reagent to cyclododecanone (1.0 mmol) at 10 °C within 30 min afforded the desired alcohol in 98% yield. The catalytic amount of InCl₃ in this reaction allows the similar generation of the allylaluminum reagent.³⁶

A reliable method for the preparation of allylic aluminum reagents is by transmetallation from the corresponding allylic lithium, allylic magnesium as well as allylic potassium. The addition of (*Z*)-crotyldiethylaluminum **34** derived from (*Z*)-crotylpotassium and diethylaluminum chloride to chiral aldehyde **35** led to the expected lactone **36** in good 3,4-syn selectivity (Scheme 13).³⁷

³⁵ S. Araki, S.-J. Jin, Y. Idou, Y. Butsugan, *Bull. Chem. Soc. Jpn.* **1992**, 65, 1736.

³⁶ K. Takai, Y. Ikawa, Org. Lett. **2002**, *4*, 1727.

³⁷ D. B. Collum, J. H. McDonald, III, W. C. Still, J. Am. Chem. Soc. **1980**, 102, 2118.

Scheme 13. Diastereoselective addition of allylic aluminum reagent 34 derived from crotyl potassium to an aldehyde.

Furthermore, allylic aluminum reagent **37** bearing alkoxy functionality has been prepared by transmetallation of the corresponding alkoxyallyllithiums with diethylaluminum chloride. The treatment of (*E*)- and (*Z*)-crotyllithium derivatives with *i*Bu₂AlCl or *i*Bu₂AlOMe generated the corresponding (*E*)- and (*Z*)-crotylaluminum reagents **38** and **39**.³⁸ Moreover, heterosubstituted aluminate complexes such as **40**,³⁹ **41**⁴⁰ and **42**⁴¹ have been prepared in a similar manner. The reactions of these allylic aluminum reagents to aldehydes and ketones displayed good diastereoselectivity. For example, the *syn* adduct **44** was observed as the sole product in the addition reaction of allylic aluminum reagent **41** to propionaldehyde **43** (Scheme 14).

³⁸ M. Koreeda, Y. Tanaka, J. Chem. Soc., Chem. Commun. **1982**, 845.

³⁹ M. Yamaguchi, T. Mukaiyama, *Chem. Lett*, **1982**, 237.

⁴⁰ Y. Yamamoto, H. Yatagai, Y. Saito, K. Maruyama, J. Org. Chem. **1984**, 49, 1096.

⁴¹ Y. Yamamoto, Y. Saito, K. Maruyama, J. Chem. Soc. Chem. Commun., 1982, 1326.

Scheme 14. Selected allylic aluminum reagents.

Allylaluminum reagent reacted with prochiral aldehydes in the presence of Sn(OTf)₂ and chiral diamine providing homoallylic alcohol in good yield and moderate optical purity (Scheme 15).⁴²

Scheme15. Asymmetric addition of allylaluminum reagent to prochiral aldehydes.

Finally, allylic aluminum reagents could smoothly undergo Michael addition. Thus, the alkoxy-substituted allylic aluminum reagent **41** reacted with diesters **45** affording a mixture of *anti* and *syn* adducts (**46** and **47**) in the ratio of 1:1 (Scheme 16).⁴³

Scheme 16. Michael addition of allylic aluminum reagent 41.

⁴² T. Mukaiyama, N. Minowa, T. Origama, K. Narasaka, *Chem. Lett.* **1986**, 97.

⁴³ Y. Yamamoto, S. Nishii, *J. Org. Chem.* **1988**, *53*, 3597.

4. Organomanganese Reagents

In 1937, the first examples of organomanganese compounds were disclosed by *Gilman* and *Bailie* who showed the preparation of phenylmanganese iodide and diphenylmanganese by the treatment of phenyllithium with manganese iodide.⁴⁴ Since then, organomanganese compounds have been studied widely due to their excellent chemoselectivity, low toxicity and good availability.⁴⁵

4.1 Preparation of Organomanganese Reagents

4.1.1 Transmetallation from The Corresponding Organolithium or Organomagnesium Reagents

To date, the most commonly used way to prepare organomanganese reagents is by transmetallation from the corresponding organomagnesium or organolithium reagents with manganese halides. As showed in Scheme 17, several types of organomanganese reagents including RMnX, R₂Mn, R₃MnM and R₄MnM₂ have been synthesized depending on the ratio of RMg/MnX₂ or RLi/MnX₂. The stability of these organomanganese reagents increased in the following order: R₂Mn < RMnX < R₃MnM/ R₄MnM₂ (Scheme 17).^{45a}

⁴⁴ a) H. Gilman, J. C. Bailie, *J. Org. Chem.* **1937**, *2*, 84; b) H. Gilman, R. Kirby, *J. Am. Chem. Soc.* **1941**, *63*, 2046.

⁴⁵ For selected reviews, see: a) G. Cahiez, C. Duplais, J. Buendia, *Chem. Rev.* 2009, 109, 1434; b)
S.-H. Kim, R. D. Rieke, *Molecules* 2010, 15, 8006; c) J. M. Concellón, H. Rodríguez-Solla, V. del Amo, *Chem.—Eur. J.* 2008, 14, 10184; d) K. Oshima, *J. Organomet. Chem.* 1999, 575, 1; (e) H. Shinokubo, K. Oshima, *Eur. J. Org. Chem.* 2004, 2081.

Scheme 17. Types of organomanganese reagents.

The manganese halides used in transmetallation reactions include manganese iodide, manganese bromide and manganese chloride. LiBr or LiCl allows the preparation of the ate-complexes MnX_2 ·LiX and the resulting organomanganese reagents which are more stable and more soluble in the solvent. Among various solvents, THF and ether are the commonly used solvents in the preparation of organomanganese reagents.^{45a} This approach allows the generation of a large variety of organomanganese reagents such as aryl, benzyl, allyl, alkyl, alkenyl, alkynyl and heteroarylmanganese reagents and this method displays an excellent functional group tolerance.⁴⁶

4.1.2 Commercial Manganese Insertion into Reactive Organic Halides

The direct insertion of commercial manganese powder into organic halides is difficult because the surface of Mn metal mostly consists of hydroxides and oxides. According to the literature, only reactive substrates such as allylic halides and α -halogenesters can be used to react with commercial Mn powder giving the corresponding organomanganese reagents, which are trapped immediately with ketones or aldehydes (Barbier conditions), affording the desired alcohols. The first example was disclosed by *Hiyama* who described that Mn (7 eq.) reacted with allyl bromide (6 eq.) in the

⁴⁶ a) G. Cahiez, D. Bernard, J. F. Normant, *Synthesis* 1977, 130; b) G. Friour, G. Cahiez, J. F. Normant, *Synthesis* 1984, 37; c) G. Cahiez, M. Alami, *Tetrahedron* 1989, 45, 4163; d) G. Cahiez, B. Laboue, *Tetrahedron Lett.* 1989, 30, 3545; e) G. Cahiez, L. Razafintsalama, B. Laboue, F. Chau, *Tetrahedron Lett.* 1998, 39, 849; f) G. Cahiez, B. Laboue, P. Tozzolino, Eur. Patent 283359, 1988; g) *Chem. Abstr.* 1989, 110, 114306; h) G. Cahiez, B. Laboue, P. Tozzolino, Eur. Patent 374015, 1990; (i) *Chem. Abstr.* 1990, 113, 191644.

presence of an aldehyde or a ketone leading to homoallylic alcohol in 83% yield (Scheme 18, Eq. 1).⁴⁷ In 1989, *Cahiez et al.* reported that the scope of this reaction can be extended to substituted allylic halides when ethyl acetate was employed as a solvent (Scheme 18, Eq. 2).⁴⁸

Scheme 18. Insertion of commercial Mn into allylic halides.

Later, *Cahiez* and co-workers found that a catalytic amount of metallic halide such as ZnCl₂, CuCl₂, CdCl₂ or HgCl₂ can activate commercial manganese powder. This activated system allows the preparation of crotylmanganese reagents and prenylmanganese reagents (Scheme 19).⁴⁸

Scheme 19. Activation of Mn surface by catalytic ZnCl₂.

Takai also reported that allylmanganese reagents were formed in the presence of catalytic amounts of both PbCl₂ and TMSCl (Scheme 20).⁴⁹

⁴⁷ T. Hiyama, M. Sawahata, M. Obayashi, *Chem. Lett.* **1983**, *8*, 1237.

⁴⁸ a) G. Cahiez, P.-Y. Chavant, *Tetrahedron Lett.* 1989, *30*, 7373; b) G. Cahiez, P.-Y. Chavant, P. Tozzolino, Eur. Patent 323332, 1989; c) *Chem. Abstr.* 1990, *112*, 38679; d) G. Cahiez, P.-Y. Chavant, P. Tozzolino, Fr. Patent 2625500, 1989; e) *Chem. Abstr.* 1990, *112*, 35281.

⁴⁹ K. Takai, T. Ueda, T. Hayashi, T. Moriwake, *Tetrahedron Lett.* **1996**, *37*, 7049.

Scheme 20. Activation of commercial Mn by both PbCl₂ and TMSCl.

4.1.3 Activated Manganese Insertion into Organic Halides

Although the direct insertion reaction of commercial manganese powder to organic halides is straightforward, effective and inexpensive, the scope of this reaction is limited as previously shown. The activated manganese metal prepared from manganese halides, namely *Rieke*-metal, is highly reactive. By using *Rieke*-Mn, a wide range of functionalized substrates such as aryl halides, heteroaryl halides, benzyl sulfonates and alkyl halides were readily converted to the corresponding organomanganese reagents (Scheme 21).⁵⁰

Scheme 21. The scope of substrates in the oxidative addition of Rieke-Mn.

4.1.4 Deprotonation Using TMP₂Mn·LiCl Base

Recently, *Knochel et al.* demonstrated that a direct deprotonation using TMP_2Mn allowed smooth preparation of functionalized aryl manganese reagents. A variety of functionalized aromatic substrates including arenes and heterocycles are readily

⁵⁰ a) S.-H. Kim, R. D. Rieke, *Synth. Commun.* **1998**, 28, 1065; b) R. D. Rieke, S.-H. Kim, X. Wu, *J. Org. Chem.* **1997**, 62, 6921; c) R. D. Rieke, Y. S. Suh, S.-H. Kim, *Tetrahedron Lett.* **2005**, 46, 5961; d) S.-H. Kim, R. D. Rieke, *Tetrahedron Lett.* **1999**, 40, 4931; e) G. Cahiez, A. Martin, T. Delacroix, *Tetrahedron Lett.* **1999**, 40, 6407; f) J. Tang, H. Shinokubo, K. Oshima, *Synlett* **1998**, 1075.

manganated under mild conditions. Thus, the highly functionalized aryl manganese reagent **50** was prepared by the treatment of benzophenone derivative **49** with base **48**. Its Cu-catalyzed allylation reaction with 3-bromocyclohex-1-ene furnished the polyfunctional benzophenone **51** in 74% yield. Similarly, N-benzylbenzimidazole **52** is converted to the corresponding heterocyclic manganese reagent **53** using base **48**. Its addition to the aldehyde gave the desired alcohol **54** in 84% yield. The arylmanganese reagent **56** prepared under the similar condition underwent an oxidative amination with lithium amine providing the aniline **57** in 81% yield (Scheme 22).⁵¹

Scheme 22. The deprotonation of arenes and heterocycles by TMP₂Mn base.

4.1.5 Halogen-Manganese Exchange Reaction

Only few halogen-manganese exchange reactions have been reported. Hosomi

⁵¹ S. H. Wunderlich, K. Marcel, P. Knochel, Angew. Chem. Int. Ed. 2009, 48, 7256.

demonstrated that the reaction of allylbromide with Bu₄MnLi₂ in THF afforded an allylic manganese reagent.⁵² The treatment of various unsaturated organic iodides with Bu₄MnLi₂ or Bu₃MnLi leads to intramolecular cyclization (Scheme 23).⁵³

Scheme 23. Radical cyclization promoted by trialkylmanganate reagent.

4.2 Reactions of Organomanganese Reagents

Organomanganese compounds can be used to perform chemoselective 1,2-additions, acylations, metal catalyzed cross-coupling reactions, carbometalations, as well as copper-catalyzed conjugate additions (Scheme 24).⁵⁴

⁵² M. Hojo, H. Harada, H. Ito, A. Hosomi, *Chem. Commun.* **1997**, *21*, 2077.

⁵³ a) J. Nakao, R. Inoue, H. Shinokubo, K. Oshima, J. Org. Chem. **1997**, 62, 1910; b) R. Inoue, J. Nakao, H. Shinokubo, K. Oshima, *Bull. Chem. Soc. Jpn.* **1997**, *70*, 2039. ⁵⁴ Reference 45a and its cited references.

Scheme 24. Reactions of organomanganese compounds.

5. Objectives

Heteroarylmetal reagents are key intermediates for the construction of complex heterocyclic compounds. Among heterocycles, 1,3,5-triazine and its derivatives have been proven to be important in many aspects. In the first project, using highly efficient halogen-magnesium exchange reaction, we planned to prepare functionalized magnesiated 1,3,5-triazine derivatives which could be a powerful tool to synthesize various complex 1,3,5-triazine derivatives. Especially, we tried to meet the challenge of the syntheses of dimeric and trimeric 1,3,5-triazine derivatives (Scheme 25).

Scheme 25. Preparation of 2-magnesiated 1,3,5-triazine and 1,3,5-triazine derivatives.

Another subject dealt with the development of allylic aluminum reagents. The goal of this project was to prepare allylic aluminum species bearing various sensitive functional groups. Additionally, the diastereoselectivity of the addition of these reagents to aldehydes or ketones was investigated (Scheme 26).

Scheme 26. Diastereoselective addition of allylic aluminum reagents to carbonyl compounds.

Finally, the preparation of aromatic and benzylic manganese species was studied. Although organomanganese reagents have a lot of advantages, the efficient methods for the preparation of organomanganese reagents are limited. The objective was to develop a new, straightforward and effective method for the preparation of aromatic and benzylic manganese reagents from commercial manganese powder. Also, their reactivity towards various electrophiles was investigated (Scheme 27).

Scheme 27. Preparation of organomanganese reagents.

B. Results and Discussion

1. Preparation of 2-Magnesiated 1,3,5-Triazines via an Iodine-Magnesium Exchange

1.1 Introduction: The Chemistry of 1,3,5-Triazine

Heterocycles have gained increased significance in modern chemistry.⁵⁵ Among N-containing heterocycles, 1,3,5-triazine derivatives ⁵⁶ have found numerous industrial applications as pharmaceuticals,⁵⁷ liquid crystals,⁵⁸ reactive dyes,⁵⁹ and organic light-emitting diodes (OLEDs).⁶⁰ Four types of methods for the construction of 1,3,5-triazine derivatives are well established: (1) Ring-closure reactions are the most commonly used strategy for the successful synthesis of a large variety of 1,3,5-triazine derivatives (Scheme 28, Eq. 1).^{61, 56a} (2) 1,3,5-Triazine derivatives can be prepared by using ring enlargement (Scheme 28, Eq. 2).^{62, 56a} (3) Aromatization has been proven to be a useful approach towards 1,3,5-triazine derivatives (Scheme 28, Eq. 3).^{63, 56a} (4) Substitution of existing substituents allows the smooth preparation of

⁵⁵ a) A. F. Pozharskii, A. T. Soldatenkov, A. R. Katritzky, In *Heterocycles in Life and Society*; Wiley-VCH: Weinheim, 1997; b) T. S. Eicher, S. Hauptmann, In The Chemistry of Heterocycles, 2nd ed.; Wiley-VCH: Weinheim, 2003; c) A. R. Katritzky, In Advances in Heterocyclic Chemistry; Academic Press: Oxford, 2002; Vol. 82. ⁵⁶ For reviews, see: a) S. V. Angerer, In *Science of Synthesis*; Weinreb, S. M., Ed.; Thieme:

Stuttgart, 2003; Vol. 17, pp 449; b) G. Giacomelli, A. Porcheddu, In Comprehensive Heterocyclic Chemistry III; Turnbull, K., Ed.; Elsevier Science: Oxford, 2008; Vol. 9, pp 197; c) G. Blotny, Tetrahedron 2006, 62, 9507.

⁵⁷ a) A. Dhainaut, G. Regnier, A. Tizot, A. Pierre, S. Leonce, N. Guilbaud, L. Kraus-Berthier, G. Atassi, J. Med. Chem. 1996, 39, 4099; b) S. Ronchi, D. Prosperi, F. Compostella, L. Panza, Synlett 2004. 1007.

⁵⁸ a) A. Kohlmeier, D. Janietz, S. Diele, *Chem. Mater.* **2006**, *18*, 1483; b) H. C. Holst, T. Pakula, H. Meier, Tetrahedron 2004, 60, 6765; c) E. Beckel, N. Cramer, A. Harant, C. Bowman, Liq. *Cryst.* **2003**, *30*, 1343. ⁵⁹ K. Xie, Y. Sun, A. Hou, J. Appl. Polym. Sci. **2007**, *103*, 2166.

⁶⁰ a) A. Kulkarni, C. Tonzola, A. Babel, S. Jenekhe, *Chem. Mater.* **2004**, *16*, 4556; b) J.-W. Kang, D.-S. Lee, H.-D. Park, Y.-S. Park, J. W. Kim, W.-I. Jeong, K.-M. Yoo, K. Go, S.-H. Kim, J.-J. Kim, J. Mater. Chem. 2007, 17, 3714; c) T.-Y. Chu, M.-H. Ho, J.-F. Chen, C. H. Chen, Chem. Phys. Lett. 2005, 415, 137; d) H. Inomata, K. Goushi, T. Masuko, T. Konno, T. Imai, H. Sasabe, J. Brown, C. Adachi, Chem. Mater 2004, 16, 1285; e) J. Pang, Y. Tao, S. Freiberg, X.-P. Yang, M. D'Iorio, S. Wang, J. Mater. Chem. 2002, 12, 206.

⁶¹ F. C. Schaefer, J. Org. Chem. 1962, 27, 3608.

⁶² K. Sakai, J.-P. Anselme, Bull. Chem, Soc. Jpn. 1972, 45, 306.

⁶³ T. P. Popovich, B. S. Drach, J. Org. Chem. **1987**, 23, 2158.
a large number of functionalized 1,3,5-triazine derivatives (Scheme 28, Eq. 4).^{64, 56a}

Scheme 28. Preparations of 1,3,5-triazine derivatives.

However, the efficient syntheses of polyfunctional 1,3,5-triazines, including dimeric and trimeric triazine derivatives by using known methodologies, remain a synthetic challenge. As shown previously, metalated heterocyclic intermediates have proven to possess great potential for the concise synthesis of functionalized heterocycles.⁶⁵ Especially, polyfunctionalized organomagnesium compounds show a high tolerance

⁶⁴ R. Menicagli, S. Samaritani, V. Zucchelli, *Tetrahedron*, **2000**, *56*, 9705.

⁶⁵ a) T. Delacroix, L. Bérillon, G. Cahiez, P. Knochel, J. Org. Chem. 2000, 65, 8108; b) M. Poirier, F. Chen, C. Bernard, Y.-S. Wong, G. G. Wu, Org. Lett. 2001, 3, 3795; c) W. Dohle, A. Staubitz, P. Knochel, Chem.—Eur. J. 2003, 9, 5323; d) M. Mosrin, M. Petrera, P. Knochel, Synthesis 2008, 3697; e) G. Monzon, P. Knochel, Synlett 2010, 304.

toward a wide range of functional groups and are easily accessible, e.g., via Br/Mg or I/Mg exchange reaction.^{66, 6a-c} It has been reported that the reactions of 2-chloro-4,6-dimethoxy-1,3,5-triazine with ketones using lithium powder and substoichiometric amounts of naphthalene involving a lithiated 1,3,5-triazine intermediate afford the corresponding alcohols in 13-50% yield (Scheme 29).⁶⁷ Therefore, metalated 1,3,5-triazine intermediate is a potential reagent for carbon-carbon bond formation in the area of complex 1,3,5-triazine derivatives.

Scheme 29. The postulated lithiated 1,3,5-triazine intermediate.

We planned to develop a straightforward and practical preparation of fully substituted 1,3,5-triazines *via* magnesiated triazines as well as synthetic routes to highly functionalized 1,3,5-triazine dimers and trimers which are expected to be valuable advanced materials.

1.2 Preparation of Functionalized Iodotriazine Derivatives

First of all, in order to investigate the reactivity of metalated 1,3,5-triazine reagents, we designed a short route to synthesize iodotriazine derivatives of type 61 bearing various sensitive functional groups. Starting from inexpensive and commercial 2,4,6-trichloro-1,3,5-triazine, the raw material 2,4-dichloro-6-phenyl-1,3,5-triazine vield.^{56a} The (58) readily obtained in 72% treatment was of 2,4-dichloro-6-phenyl-1,3,5-triazine 58 with HI (57%) between 0 °C and 25 °C over 12 h furnished 2,4-diiodo-6-phenyl-1,3,5-triazine (59) in 67% yield.⁶⁸ We envisioned

⁶⁶ a) F. Cresty, P. Knochel, *Synthesis* **2010**, 1097; b) L. Melzig, C. Rauhut, P. Knochel, *Synthesis* **2009**, 1041.

⁶⁷ I. Gómez, E. Alonso, D. J. Ramón, M. Yus, *Tetrahedron* **2000**, *56*, 4043.

⁶⁸ G. Vlád, I. T. Horváth, J. Org. Chem. 2002, 67, 6550.

that the functionalized iodotriazine derivatives of type **61** could be prepared by using a well-established Negishi cross-coupling⁶⁹ reaction of the intermediate **59** with functionalized organozinc reagents. After screening the palladium catalysts, $Pd(PPh_3)_2Cl_2$ was employed as an effective catalyst and allowed a smooth preparation of functionalized iodotriazine derivatives in 47-80% yield (Scheme 30).

Scheme 30. Preparation of functionalized iodotriazine derivatives.

Thus, the reaction of 2,4-diiodo-6-phenyl-1,3,5-triazine (59) with $C_8H_{17}ZnBr \cdot LiCl$ obtained after transmetallation of the corresponding Grignard reagent with ZnBr₂·2LiCl in the presence of 1 mol% Pd(PPh₃)₂Cl₂ afforded the iodotriazine derivative 61a 60% In in yield (entry 1. Table 1). addition, 2,4-diiodo-6-phenyl-1,3,5-triazine (59) reacted with thienyl zinc reagent $60b^{70}$ in THF within 5 h in the presence of 1 mol% Pd(PPh₃)₂Cl₂ leading to the iodotriazine derivative 61b (entry 2). Similarly, 2,4-diiodo-6-phenyl-1,3,5-triazine (59) smoothly undergoes Pd-catalyzed cross-coupling reactions with various organozinc reagents 60e-k furnishing the desired adducts 61e-k in 47-72% yield (entries 3-9).

⁶⁹ a) J.-X. Wang, J. McCubbin, M. Jin, R. Laufer, Y. Mao, A. Crew, M. Mulvihill, V. Snieckus, Org. Lett. 2008, 10, 2923; b) A. de Meijere, P. von Zezschwitz, S. Braese, Acc. Chem. Res. 2005, 38, 413; (c) K. Albrecht, O. Reiser, M. Weber, B. Knieriem, A. de Meijere, Tetrahedron 1994, 50, 383; d) E. Negishi, A. King, N. Okukado, J. Org. Chem. 1977, 42, 1821; e) E. Negishi, Acc. Chem. Res. 1982, 15, 340; f) Ø. Rist, M. Begtrup, J. Chem. Soc., Perkin Trans. 2001, 1, 1566; g) C. James, A. Coelho, M. Gevaert, P. Forgione, V. Snieckus, J. Org. Chem. 2009, 74, 4094; h) Z. Zhao, A. Jaworski, I. Piel, V. Snieckus, Org. Lett. 2008, 10, 2617; i) E. Negishi, L. F. Valente, M. Kobayashi, J. Am. Chem. Soc. 1980, 102, 3298; j) X. Zeng, M. Quian, Q. Hu, E. Negishi, Angew. Chem. 2004, 116, 2309; Angew. Chem., Int. Ed. 2004, 43, 2259; k) G. Manolikakes, M. Schade, C. Munoz Hernandez, H. Mayr, P. Knochel, Org. Lett. 2008, 10, 2765; l) Z. Dong, G. Manolikakes, J. Li, P. Knochel, Synthesis 2009, 681.

⁷⁰ A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem., Int. Ed. 2006, 45, 6040.

entry	organozinc reagent	product, yield (%)
	C ₈ H ₁₇ ZnBr ⋅ LiCl	
1	60a	61a : 60%
	Znl · LiCl	
2	60b	61b : 80%
_	ZnI · LiCI CO ₂ Et	$\begin{array}{c} Ph \\ N \\ N \\ CO_2Et \end{array}$
3	60e	61e : 55%
	ZnBr · LiCl	
4	60f	61f : 72%
	ZnI · LiCI CO ₂ Et	$\begin{array}{c} Ph & N & I \\ N & N \\ CO_2 Et \end{array}$
5	60g	61g : 51%
	ZnI · LiCl	Ph N I N N EtO ₂ C
6	60h	61h : 66%

Table 1 Preparation of functionalized iodotriazine derivatives viaNegishiCross-Coupling

In the case of 4-iodo-*N*,*N*,6-triphenyl-1,3,5-triazin-2-amine (**61c**), it was obtained in 80% yield by the treatment of 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**) with lithium diphenylamide prepared by addition of BuLi to a solution of diphenylamine in THF (Scheme 31). 2-chloro-4,6-diphenyl-1,3,5-triazine reacted with HI (57%) between 0 $^{\circ}$ C and 25 $^{\circ}$ C over 12 h furnished 2-iodo-4,6-diphenyl-1,3,5-triazine **61d** in 75% yield (Scheme 31).

Scheme 31. Preparation of iodotriazine derivatives 61c and 61d.

1.3 Preparation of 2-Magnesiated 1,3,5-Triazines and Their Subsequent Reactions with Various Electrophiles

With key functionalized iodotriazine derivatives at hand, we started to seek an effective I/Mg exchange reagent for these iodotriazine derivatives. We found that in comparison to well-established Hal/Mg exchange reagents such as *i*PrMgCl,^{71, 3a} the Grignard reagents BuMgCl and OctMgBr are less nucleophilic and more selective, avoiding undesired substitution Thus, the products. reaction of 6-iodo-4-octyl-2-phenyl-1,3,5-triazine (61a) with BuMgCl (1.1 equiv, -78 °C, 10 min) provided the corresponding triazinylmagnesium chloride (62a), which after transmetallation with ZnBr₂·LiCl (1.1 equiv, -20 °C, 30 min) undergoes a cross-coupling with ethyl 4-iodobenzoate (63a) in the presence of Pd(dba)₂ (5 mol%) and tfp (10 mol%), affording the trisubstituted 1,3,5-triazine derivative 64a in 62% yield (entry 1, Table 2). Additionally, a copper-catalyzed allylation (CuCN·2LiCl, 20 mol%) of 62a with ethyl (2-bromomethyl)acrylate (63b) produced the acrylate 64b in 73% yield (entry 2). In the same manner, a range of 1,3,5-triazinylmagnesium reagents bearing electron-donating functional groups such as a 2-thienyl group (62b), a diphenylamino group (62c), or an aryl group bearing various substituents (62d-j)

⁷¹ C. Rauhut, C. Cervino, A. Krasovskiy, P. Knochel, *Synlett* **2009**, 67.

were prepared by reaction with BuMgCl or OctMgBr (1.1 equiv, -78 °C, 10 min) with 2-iodo-1,3,5-triazine derivatives (61a-j). The resulting 1,3,5-triazinylmagnesium reagents 62b-j reacted with various electrophiles 63b-e affording the fully substituted 1,3,5-triazines 64c-m in 59-75% yield (entries 3-13). Thus, a Cu(I)-catalyzed allylation (CuCN·2LiCl, 20 mol%) of the magnesiated triazine 62b with ethyl 2-(bromomethyl)acrylate (63b) furnished the trisubstituted acrylate 64c in 59% yield (entry 3). Similarly, the magnesium reagent 62c afforded, after a Cu(I)-mediated benzoylation with 63c (CuCN·2LiCl, 1.1 equiv), the triazinyl ketone 64d in 71% yield (entry 4). Moreover, the substituted 2-triazinyl alcohol 64e was obtained after addition of the organomagnesium reagent 62d to PhCHO (63d) in 61% yield (entry 5). Remarkably, also electron-poor triazines 61e,f underwent a smooth I/Mg-exchange with BuMgCl (1.1 equiv, -78 °C, 10 min) affording the functionalized 1,3,5-triazinylmagnesium reagents 62e,f. Subsequent Cu(I)-catalyzed allylation (CuCN·2LiCl, 20 mol%) with ethyl 2-(bromomethyl)acrylate (63b) or addition to PhCHO (63d) afforded the trisubstituted 1,3,5- triazines 64f and 64g in 54-71% yield (entries 6 and 7). The 1,3,5-triazine-based Grignard reagents 62g-j bearing electron-withdrawing functional groups such as ester, cyano, and halo groups in the ortho- or para-position of the phenyl substituent were prepared via a rapid I/Mg exchange with OctMgBr (1.1 equiv, -78 °C, 10 min) from the corresponding substituted 2-iodo-1,3,5-triazines 61g-j. In comparison to BuMgCl, OctMgBr avoids side products due to a nucleophilic substitution of the triazine ring. Thus, the 1,3,5-triazinylmagnesium reagent 62g afforded, after addition to PhCHO (63d) or p-NC-C₆H₄CHO (63e), the functionalized 1,3,5-triazinyl alcohols 64h-i in 63-75% yield (entries 8 and 9). Similarly, a Cu-catalyzed allylation of 62g provided the triazinylsubstituted acrylate 64j in 71% yield (entry 10). The ethoxycarbonyl-, bromo-, and cyano-substituted triazinylmagnesium reagents 62h-j underwent similar additions to PhCHO (63d) or Cu-mediated benzovlation with PhCOCl (63c), leading to trisubstituted 1,3,5-triazine derivatives 64k-m in 63-68% yield (entries 11-13).

Table 2. Functionalized 1,3,5-triazine derivatives of type 64 obtained by I/Mg

 exchange and subsequent quenching with an electrophile

^{*a*} Isolated yield of analytically pure product. ^{*b*} Obtained after I/Mg exchange with BuMgCl (-78 °C, 10 min). ^{*c*} Obtained after I/Mg- exchange with OctMgBr (-78 °C, 10 min). ^{*d*} Obtained after transmetallation with ZnBr₂·LiCl (1.1 equiv) and subsequent Negishi cross-coupling with ethyl 4-iodobenzoate in the presence of Pd(dba)₂ (5 mol%) and tfp (10 mol%). ^{*e*} Obtained after addition of CuCN·2LiCl (20 mol%). ^{*f*} Obtained after transmetallation with CuCN·2LiCl (1.1 equiv).

1.4 Doubly Magnesiated 1,3,5-Triazine

In general, the preparation of bis-magnesiated aromatics requires harsh reaction conditions, and only a few examples have been reported.⁷² However, the I/Mg exchange of 2,4-diiodo-1,3,5-triazine (**59**) with *s*BuMgCl (2.2 equiv, -78 °C, 10 min) readily furnished the doubly magnesiated 1,3,5-triazine **65** (>90% yield). Transmetallation of **65** with CuCN·2LiCl (2.2 equiv, -78 °C to -40 °C) afforded the biscopper derivatives which after allylation or acylation produced the bis-functionalized triazines **67** and **68** in yields of 67% and 38%, respectively (Scheme 32).

⁷² a) R. D. Rieke, S. E. Bales, J. Am. Chem. Soc. 1974, 96, 1775; b) F. Bickelhaupt, Angew. Chem., Int. Ed. 1987, 26, 990; c) E. Bartmann, B. Bogdanovic, N. Janke, S. Liao, K. Schlichte, B. Spliethoff, J. Treber, U. Westeppe, U. Wilczok, Chem. Ber. 1990, 123, 1517; d) D. R. Armstrong, W. Clegg, S. H. Dale, D. V. Graham, E. Hevia, L. M. Hogg, G. W. Honeyman, A. R. Kennedy, R. E. Mulvey, Chem. Commun. 2007, 598; e) C. E. Reck, C. H. Winter, Organometallics 1997, 16, 4493; f) F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. Gavryushin, P. Knochel, Chem.—Eur. J. 2009, 15, 7192; g) I. Marek, Chem. Rev. 2000, 100, 2887; h) H. J. R. DeBoer, F. J. J. DeKanter, O. S. Akkerman, F. Bickelhaupt, Main Group Met. Chem. 2001, 24, 841.

Scheme 32. Preparation of the dimagnesiated 1,3,5-triazine derivatives 67 and 68

1.5 Syntheses of Trimeric and Dimeric Derivatives

Conjugated molecules bearing 1,3,5-triazine moieties may exhibit useful opto-electronic properties.⁷³ We have used the functionalized triazinylmagnesium reagents of type **62** for the syntheses of dimeric and trimeric derivatives **70**, **72** and **74** (Scheme 33 and 34). Thus, 2-iodo-4,6-diphenyl-1,3,5-triazine (**61d**) undergoes a smooth I/Mg exchange with BuMgCl (1.1 equiv, -78 °C, 10 min) and leads after a transmetallation with ZnCl₂ (1.05 equiv, -78 °C, 10 min) to the corresponding 1,3,5-triazinylzinc chloride **69** (>90% yield). Subsequent Pd(0)-catalyzed cross-coupling with the iodotriazine **61d** (1.0 equiv, -78 to 25 °C, 24 h) provided the dimeric triazine **70** in 57% yield (Scheme 33). Similarly, the I/Mg exchange reaction of 2-iodo-4-(4-butylphenyl)-6-phenyl-1,3,5-triazine (**61k**) with sBuMgCl (1.1 equiv, -78 °C, 10 min) followed by ZnCl₂ addition furnished the 1,3,5-triazinylzinc reagent

⁷³ H. Zhong, E. Xu, D. Zeng, J. Du, J. Sun, S. Ren, B. Jiang, Q. Fang, *Org. Lett.* **2008**, *10*, 709.

71. Subsequent Negishi cross-coupling with **61g** (1.0 equiv) using Pd-PEPPSI-*i*Pr⁷⁴ (5 mol%, 25 °C, 24 h) led to the dimeric triazine **72** in 52% yield (Scheme 33).

Scheme 33. Preparation of dimeric triazines 70 and 72.

The trimeric triazine derivative **74** was prepared from the iodotriazine **61g** by I/Mg exchange and transmetallation with ZnCl₂, leading to the zinc reagent **73** (>90% yield). Negishi cross-coupling of **73** with 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**) in the presence of Pd-PEPPSI-*i*Pr⁷⁴ (5 mol%, 25 °C, 24 h) affords the triazine **74** in 45% yield (Scheme 34).

Scheme 34. Preparation of tristriazine derivative 74.

⁷⁴ a) C. J. O. Brien, E. A. B. Kantchev, N. Hadei, G. A. Chass, A. Lough, A. C. Hopkinson, M. G. Organ, *Chem.—Eur. J.* 2006, *12*, 4743; b) M. G. Organ, S. Avola, I. Dubovyk, N. Hadei, E. A. B. Kantchev, C. J. O. Brien, C. Valente, *Chem. —Eur. J.* 2006, *12*, 4749; c) S. Sase, M. Jaric, A. Metzger, V. Malakhov, P. Knochel, *J. Org. Chem.* 2008, *73*, 7380.

1.6 Conclusion

In summary, we have developed a new method for the preparation of stable monoand bis(1,3,5-triazinyl)magnesium reagents, which react with aldehydes, acid chlorides, and allylic halides, furnishing a wide range of new functionalized fully substituted 1,3,5-triazine derivatives. Remarkably, dimeric and trimeric triazine derivatives were also prepared using triazinylzincs as key intermediates.

2. Preparation of Polyfunctional Indazoles Using Highly Functionalized Zinc Reagents

2.1 Synthetic Strategy

Among various heterocyclic compounds, indazoles have found numerous applications in the areas of pharmaceuticals, agrochemicals, and polymers.⁷⁵ As previously shown, organometallics are versatile reagents for the preparation of complex heterocycles. Especially, organozinc compounds have excellent compatibility with nitrogen functionalities at high oxidation degree such as nitro groups, azides, and triazenes.⁷⁶ It has been reported that diphenylzinc species reacted with diazonium salts giving azo compounds.⁷⁷ We envisioned that the treatment of diarylzinc reagent **76** (which can be prepared by an I/Mg exchange and a subsequent transmetallation with ZnBr₂·LiCl) with diazonium salt **77** can provide the desired indazole of type **80** by intramolecular nucleophilic substitution of the 2-chloromethylarylazo intermediate **78** and the subsequent proton abstraction (Scheme 35).

Scheme 35. Tentative synthesis of indazole of type 80.

2.2 Preparation of Highly Functionalized Zinc Reagents

Functionalized 2-iodobenzyl chlorides of type 75 were generated in two steps in

⁷⁵ a) A. Schmidt, A. Beutler, B. Snovydovych, *Eur. J. Org. Chem.* **2008**, 4073; b) W. Stadlbauer, *Sci. Synth.* **2002**, *12*, 227; c) H. Cerecetto, A. Gerpe, M. González, V. Arán, C. Ochoa de Ocáriz, *Mini-Rev. Med. Chem.* **2005**, *5*, 869; d) V. Minkin, D. Garnovskii, J. Elguero, A. Katritzky, O. Denisko, Adv. Heterocycl. Chem. **2000**, *76*, 157; e) J. van Ooijen, J. Reedijk, *J. Magn. Magn. Mater.* **1979**, *12*, 4; f) G. Sagi, K. Szucs, L. Otvos, *J. Med. Chem.* **1992**, *35*, 4549; g) O. Dann, P. Nickel, *Liebigs Ann. Chem.* **1963**, *667*, 101; h) M. De Angelis, F. Stossi, K. Carlson, B. Katzenellenbogen, J. Katzenellenbogen, *J. Med. Chem.* **2005**, *48*, 1132.

 ⁷⁶ a) I. Sapountzis, P. Knochel, *Angew. Chem., Int. Ed.* **2002**, *41*, 1610; b) C.-Y. Liu, P. Knochel, *J. Org. Chem.* **2007**, *72*, 7106; c) C.-Y. Liu, P. Knochel, *Org. Lett.* **2005**, *7*, 2543.

⁷⁷ D. Curtin, J. Tveteen, J. Org. Chem. **1961**, 26, 1764.

35-53% yield (Scheme 36). For example, the reaction of 3-iodo-4-methyl-benzoic acid ethyl ester with *N*-bromosuccinimide (1.1 equiv) in the presence of dibenzoylperoxide (10 mol%) in THF provided crude 4-bromomethyl-3-iodobenzoic acid ethyl ester. Subsequent treatment with LiCl (2.5 equiv) led to the expected product **75a** in 60% yield (two steps). 2-Iodobenzyl chlorides **75b** and **75c** were obtained respectively in similar manner (Scheme 36).

Scheme 36. Preparation of functionalized 2-iodobenzyl chlorides of type 75

With functionalized 2-iodobenzyl chlorides at hand, the corresponding diarylzinc reagents were prepared by using the well-established I/Mg exchange reaction. Thus, the treatment of functionalized 2-iodobenzyl chlorides of type **75** with *i*-PrMgCl·LiCl (1.05 equiv, -20 °C, 30 min) furnished 2-chloromethylphenylmagnesium chlorides. Transmetallation with ZnBr₂·LiCl (0.55 equiv, -20 °C to 25 °C, 20 min) provided the desired diarylzinc reagents of type **76** (Scheme 37).

Scheme 37. Preparation of functionalized diarylzinc reagents of type 76.

2.3 Preparation of Polyfunctionalized Indazoles

The resulting zinc reagent **76a** was then added to aryldiazonium tetrafluoroborate **77a** in a 1:1 THF:NMP mixture (NMP = *N*-methyl-2-pyrrolidone) at -40 °C. After stirring the reaction mixture at 25 °C (30 min) and warming the solution to 50 °C for 1 h, 2-(4-ethoxycarbonyl-phenyl)-2*H*-indazole-6-carboxylic acid ethyl ester (**80a**) was isolated in 71% yield (entry 1, Table 3). Similarly, the diarylzinc reagent **76a** reacted with aryldiazonium tetrafluoroborate **77b-c** affording the corresponding indazoles **80b-c** in 68-90% yield (entries 2-3). In addition, the diarylzinc reagents **76b** and **76c** were converted to the desired adducts **80d** (75% yield) and **80e** (66% yield) respectively under similar conditions (entries 4-5).

 Table 3. Aryl-2*H*-indazole synthesis by the reaction of di(2-chloromethylaryl) zinc

 with aryldiazonium tetrafluoroborate

^{*a*} With ZnBr₂·LiCl (0.55 equiv), a transmetallation was performed. ^{*b*} Yield of analytically pure product.

2.4 Conclusion

Therefore, we have developed a short and convenient synthetic route to 2-aryl-2*H*-indazoles by using highly functionalized arylzinc reagents.

3. Diastereoselective Synthesis of Homoallylic Alcohols with Adjacent Tertiary and Quaternary Centers by Using Functionalized Allylic Aluminum Reagents

3.1 Introduction

Addition reactions of nucleophiles to carbonyl compounds are excellent reactions for generating quaternary centers in a diastereoselective manner.⁷⁸ Especially the addition of allylic organometallics to aldehydes or ketones proceeds in several cases with high diastereoselectivity.⁷⁹ This novel strategy has been widely applied for the construction of the complex molecules. For instance, *Paterson* and co-workers used this methodology in the total synthesis of Swinholide A. Homoallylic alcohol **82** was prepared in 60% yield with complete diasteroselectivity by exposing aldehyde to the (+)-Ipc-derived crotylboration reagent⁸⁰ (Scheme 38).⁸¹ As previously shown, the scope of this reaction has been extended to allylic zinc reagents, allylic silane reagents, allylic titanium reagents and so on.⁸²

⁷⁸ a) E. J. Corey, A. Guzman-Perez, Angew. Chem. 1998, 110, 402; Angew. Chem. Int. Ed. 1998, 37, 388; b) J. Christoffers, A. Mann, Angew. Chem. 2001, 113, 4725; Angew. Chem. Int. Ed. 2001, 40, 4591; c) M. d_Augustin, L. Palais, A. Alexakis, Angew. Chem. 2005, 117, 1400; Angew. Chem. Int. Ed. 2005, 44, 1376; d) G. Sklute, D. Amsallem, A. Shabli, J. P. Varghese, I. Marek, J. Am. Chem. Soc. 2003, 125, 11776; e) G. Sklute, I. Marek, J. Am. Chem. Soc. 2006, 128, 4642; f) B. Breit, P. Demel, C. Studte, Angew. Chem. 2004, 116, 3874; Angew. Chem. Int. Ed. 2004, 43, 3786; g) H. Li, P. J. Walsh, J. Am. Chem. Soc. 2004, 126, 6538; h) J. W. J. Kennedy, D. G. Hall, J. Am. Chem. Soc. 2002, 124, 898; i) S. E. Denmark, J. Fu, J. Am. Chem. Soc. 2001, 123, 9488; j) S. E. Denmark, J. Fu, Org. Lett. 2002, 4, 1951; k) J.-N. Heo, G. C. Micalizio, W. R. Roush, Org. Lett. 2003, 5, 1693; l) J. P. Das, H. Chechik, I. Marek, Nat. Chem. 2009, 1, 128.

⁷⁹ For additions of allylic organometallics to carbonyls, see: a) S. R. Chemler, W. R. Roush in *Modern Carbonyl Chemistry* (Ed.: J. Otera), Wiley-VCH, Weinheim, Germany, **2000**, Chapter 10;
b) S. E. Denmark, N. G. Almstead in *Modern Carbonyl Chemistry* (Ed.: J. Otera), Wiley-VCH, Weinheim, Germany, **2000**, Chapter 11; c) *Stereoselective Synthesis, Methods of Organic Chemistry* (Houben-Weyl), (Eds.: G. Helmchen, R. Hoffmann, J. Mulzer, E. Schaumann), Thieme, Stuttgart, **1996**, Vol. 3; d) S.-W. Li, R. A. Batey, *Chem. Commun.* **2004**, 1382; e) C. T. Buse, C. H. Heathcock, *Tetrahedron Lett.* **1978**, 1685; f) Y. Yamamoto, H. Yatagai, Y. Naruta, K. Maruyama, J. Am. Chem. Soc. **1980**, *102*, 7107; g) Y. Yatsumonji, T. Nishimura, A. Tsubouchi, K. Noguchi, T. Takeda, *Chem. Eur. J.* **2009**, *15*, 2680.

⁸⁰ a) H. C. Brown, K. S. Bhat, R. S. Randad, J. Org. Chem. **1989**, 54, 1570; b) H. C. Brown, K. S. Bhat, J. Am. Chem. Soc. **1986**, 108, 5919.

⁸¹ a) I. Paterson, K.-S. Yeung, R. A. Ward, J. G. Cumming, J. D. Smith, *J. Am. Chem. Soc.* **1994**, *116*, 9391; b) I. Paterson, J. D. Smith, R. A. Ward, J. G. Cumming, *J. Am. Chem. Soc.* **1994**, *116*, 2615. c) K. C. Nicolaou, S. A. Synder, *Classics in Total Synthesis II* Wiley-VCH, Weiheim, 2003.

⁸² For references, see: Chapter **A**.

Scheme 38. Addition reaction of allylboron reagent in total synthesis of Swinholide A

Recently, *Knochel* and co-workers have shown that functionalized allylic zinc reagents can be prepared from allylic chlorides by the reaction of zinc powder in the presence of LiCl. Their addition to aldehydes and ketones proceeds with high diastereoselectivities.³¹ Nevertheless, the preparation of allylic zinc reagents bearing sensitive functional groups (such as a cyano or an ester function) is limited due to the high reactivity of such allylic organometallics.⁸³ Besides zinc, aluminum is a metal which has many attractive features: it is of low toxicity, inexpensive and due to the low ionic character of the carbon-aluminum bond, it may tolerate a number of important functional groups.⁸⁴ The preparation of unsaturated aluminum organometallics from commercial Al-powder is in general difficult, but a proper activation of the aluminum surface allows an effective insertion of aluminum to aryl

⁸³ a) N. E. Alami, C. Belaud, J. Villieras, *J. Organomet. Chem.* **1988**, *348*, 1-9; b) N. E. Alami, C. Belaud, J. Villieras, *J. Organomet. Chem.* **1988**, *353*, 157-168; c) M. Gaudemar, *Bull. Soc. Chim. Fr.* **1963**, *7*, 1475.

⁸⁴ Organoaluminum reagents: a) E.-i. Negishi, T. Takahashi, S. Baba, D. E. Van Horn, N. Okukado, J. Am. Chem. Soc. **1987**, 109, 2393; b) E.-i. Negishi, Acc. Chem. Res. **1982**, 15, 304; c) S.-L. Ku, X.-.Hui, C.-A. Chen, Y.-Y. Kuo, H.-M. Gau, Chem. Commun. **2007**, 3847; d) G. Zweifel, J. A. Miller in Organic Reactions (Ed.: W. G. Dauben), John Wiley & Sons, New York, **1984**.

halides.⁸⁵ Previously, allylic aluminum reagents were prepared from allylic bromides according to *Gaudemar*³² and *Miginiac*³³ using diethyl ether as solvent in the presence of a catalytic amount of HgCl₂.

We wish to develop a practical synthesis of functionalized allylic aluminum reagents bearing various substituents by performing an insertion of commercial Al-powder to various allylic chlorides or bromides as well as their diastereoselective addition to aldehydes and ketones.

3.2 Preparation of Functionalized Allylic Chlorides

Starting from readily available allylic alcohol, the corresponding functionalized allylic halides were obtained by treatment with chlorination reagent such as thionyl chloride. Thus, the reaction of 6-hydroxy-cyclohex-1-enecarboxylic acid ethyl ester⁸⁶ (83b) with thionyl chloride in benzene at 25 °C within 24 h afforded the desired allylic chloride 84b in 77% Similarly, from vield. starting ethyl 5-hydroxycyclopent-1-enecarboxylate⁸⁷ (83c), the corresponding allylic chloride 84c was given in 70% yield. This condition can be applied for preparing the allylic chloride bearing a cyano function **84g** from 5-hydroxycyclopent-1-enecarbonitrile⁸⁷ (83g). The treatment of 3-methoxybenzaldehyde with vinylmagnesium bromide and subsequent reaction with TiCl₄ provided the functionalized cinnamyl chloride 84e in 57% yield.⁸⁸ (E)-(1-chlorobut-2-en-2-yl)trimethylsilane (84h) was prepared in 60% yield from the corresponding allylic alcohol 83h⁸⁹ in ether at 25 °C within 24h (Scheme 39).

⁸⁵ T. D. Blümke, Y.-H. Chen, Z. Peng, P. Knochel, *Nat. Chem.* **2010**, *2*, 313.

⁸⁶ Prepared according to: List, A. Dochring, M. T. H. Fonseca, A. Job, R. R. Torres, *Tetrahedron* **2006**, *62*, 476.

⁸⁷ Prepared according to: T. Yamane, M. Takahashi, K. Ogasawara, *Synthesis*, **1995**, 444.

⁸⁸ M. J. Fuchter, J.-N. Levy, Org. Lett. **2008**, 19, 4919.

⁸⁹ Prepared according to: R. K. Boeckman, JR., D. M. Blum, B, Ganem, N. Halvey, *Org. Synth.* **1978**, *58*, 152

Scheme 39. Preparation of functionalized allylic halides.

3.3 Preparation of Functionalized Allylic Aluminum Reagents and Their Addition to Aldehydes and Ketones

3.3.1 Cyclic Aluminum Reagents

Preliminary studies have shown that an appropriate activation of aluminum is essential for achieving a smooth insertion to organic halides. ⁹⁰ Thus, 3-bromocyclohex-1-ene (**84a**) reacts with Al-powder (1.5 equiv) and $InCl_3 (1 \text{ mol}\%)^{91}$

⁹⁰ Aluminum powder has been previously activated by PbCl₂, SnCl₂, TiCl₄ for insertion into allyl bromides and chlorides, see: a) K, Uneyama, N. Kamaki, A. Moriya, S. Torii, *J. Org. Chem.* **1985**, *50*, 5396; b) H. Tanaka, T. Nakahara, H. Dhimane, S. Torii, *Tetrahedron Lett.* **1989**, *30*, 4161; c) H. Tanaka, K. Inoue, Ulrike Pokorski, M. Taniguchi, S. Torii, *Tetrahedron Lett.* **1990**, *31*, 3023. For general activation of aluminum powder, see: S. Saito in *Science of Synthesis* (Ed.: H. Yamamoto), **2004**, vol. 7, p 5.

⁹¹ We assume that InCl₃ activates the Al-surface; see also: a) K. Takai, Y. Ikawa, *Org. Lett.* **2002**, 4, 1727; b) S. Araki, S.-J. Jin, Y. Idou, Y. Butsugan, *Bull. Chem. Soc. Jpn.* **1992**, 65, 1736.

in THF at 0 °C within 2 h and provides the corresponding allylic aluminum reagent **85a** in 82% yield.⁹² Its reaction with 4'-bromoacetophenone (**86a**, 0.7 equiv, 1 h, -78 °C) leads to the *syn*-homoallylic alcohol (**87a**) in 97% yield as only diastereoisomer (dr > 99:1).⁹³ Functional groups like an ester are readily compatible with this procedure. Thus, starting from ethyl 6-chloro-cyclohex-1-enecarboxylate (**84b**), the functionalized allylic aluminum reagent (**85b**) is obtained in 77% yield (25 °C, 16 h). It also reacted well with 4'-bromoacetophenone (**86a**, 0.7 equiv) affording the homoallylic lactone (**87e**) with excellent diastereoselectivity (dr > 99:1 and 81% yield). In addition, ethyl 5-chlorocyclopent-1-enecarboxylate (**84c**) reacted with Al-powder (3 equiv) and InCl₃ (5 mol%) in THF affording the aluminum reagent **85c** within 16 h at 25 °C (60% yield). However, in contrast to the six-membered analogue (**85b**), a lactone formation is disfavoured and the reaction with 4'-bromoacetophenone (**86a**) yields the ester-substituted homoallylic alcohols (**87j**) in 71% yield (Scheme 40).

⁹² Yields were determined by iodometric titration after transmetallation with ZnCl₂: A. Krasovskiy, P. Knochel, *Synthesis* **2006**, 890.

⁹³ The stereochemistry has been established by a comparison with the literature (¹H-NMR and ¹³C-NMR spectra): M. Yasuda, K. Hirata, M. Nishino, A. Yamamoto, A. Baba, *J. Am. Chem. Soc.* **2002**, *124*, 13442.

Scheme 40. Preparation of the allylic aluminum reagents 85a-c and their addition to 4'-bromoacetophenone (86a).

The reaction scope of such additions has been studied and we found that the allylic aluminum reagent **85a** reacts well with variously substituted aromatic ketones. Thus, the addition to methyl 4-acetylbenzoate (**86b**, 0.7 equiv) furnishes the homoallylic alcohol **87b** (dr > 99:1; 98% yield; Table 4, entry 1). Remarkably, despite the seemingly high nucleophilicity of the allylic aluminum reagent, the reagent **85a** adds

50

smoothly to 1-(4-nitrophenyl)ethanone (**86c**, 0.7 equiv) without reacting with the nitro group and the homoallylic alcohol **87c** (dr > 99:1) is isolated in 95% yield (entry 2). An unprotected amino group is also compatible with the aluminum reagent under these reaction conditions and the addition of **85a** to 2-amino-5-chlorobenzaldehyde (**86d**, 0.7 equiv) affords the amino-alcohol **87d** (dr > 99:1) in 95% yield (entry 3). Various aromatic aldehydes and ketones (**86e-g**) react with the functionalized allylic aluminum reagent **85b**, leading to the corresponding lactones (**87f-h**) in 77-87% yield (dr > 98:2, entries 4-6). Also, the reaction of the functionalized allylic aluminum reagent **85c** with 4-acetylbenzoate (**86b**) provides the ester-substituted homoallylic alcohols **87i** in 70% yield (entries 7).

Table 4. Diastereoselective preparation of homoallylic alcohols and lactones of type87 using allylic aluminum reagents of type 85.

entry	aluminum reagent ^a	carbonyl electrophile ^b	product ^{c, d}
	Al _{2/3} Br	MeO ₂ C	MeO ₂ C
1	85a	86b	87b : 98%; 99:1
		O ₂ N Me	O ₂ N HO ^W Me
2	85a	86c	87c : 95%; 99:1
		CI CHO NH ₂ CHO	CI NH ₂ OH
3	85a	86d	87d : 95%; 99:1
	Al _{2/3} Cl	MeO ₂ C	O H CO ₂ Me
4	85b	86e	87f : 78%; 99:1 ^{<i>e</i>}

^{*a*} All reactions were carried out on a 1-4 mmol scale. ^{*b*} 0.6-0.7 equivalents of electrophiles have been used. ^{*c*} Isolated yield of analytically pure products. ^{*d*} The diastereoselectivities were determined by ¹H-NMR analysis. ^{*e*} The structures have been established by X-ray analysis.

The diastereoselectivity can be best rationalized by a chair-like transition state **A** (Scheme 41). Also, the stereochemistry of homoallylic alcohols **87a** and **87d** has been established by comparison with the literature.^{93, 31} The structure of the bicyclic lactone **87f** has been proven by X-ray analysis (CCDC-775024) and the structures of the analogue **87e** and **87h** were determined by ¹H NMR and NOESY NMR analysis. Again, X-ray analysis of **87j** has been used to establish its structure (CCDC-775025) (Scheme 41)

Scheme 41. Chair-like transition state and X-ray analysis of 87f and 87j.

3.3.2 Cinnamylaluminum Reagents

Similarly, the reaction of Al-powder (1.5 equiv) and $InCl_3$ (1 mol%) with cinnamyl chloride (**84d**) provides the aluminum reagent **85d** (73% yield) within 2 h at 25 °C. Addition to methyl ketones such as 4'-bromoacetophenone (**86a**, 0.7 equiv), methyl 4-acetylbenzoate (**86b**, 0.7 equiv) or 4-acetylbenzonitrile (**86g**, 0.7 equiv), affords the corresponding alcohols **87k-m** in almost quantitative yields, with high diastereoselectivities (>98% yield, entries 1-3, Table 5). Remarkably, in contrast to the preparation of the corresponding cinnamylzinc reagent⁹⁴, little homo-coupling of the allylic reagent is observed. Even a more electron-rich cinnamyl chloride (**84e**) bearing a methoxy group provides the corresponding aluminum reagent **85e** using Al-powder (1.5 equiv) and $InCl_3$ (1 mol%; 25 °C, 11 h, 71% yield). It adds smoothly to

⁹⁴ M. Gaudemar, Bull. Soc. Chim. Fr. 1962, 974.

4-cyanobenzaldehyde (**86f**, 0.7 equiv) or 4'-bromoacetophenone (**86a**, 0.7 equiv) affording the polyfunctional *anti*-homoallyllic alcohols (**87n-o**) in 74-95% yield (entries 4-5). Interestingly, a cinnamylaluminum phosphate (**85f**) could be readily prepared by reacting the phosphoric cinnamyl ester (**84f**) with Al-powder (1.5 equiv) and InCl₃ (1 mol%) in THF (25 °C, 12 h, 70% yield). Trapping this new organometallic reagent with aliphatic methyl ketones such as 1-cyclohexylethanone (**86h**, 0.7 equiv) or 3-methylbutan-2-one (**86i**, 0.7 equiv) furnishes the corresponding homoallylic alcohols bearing two adjacent stereo-controlled tertiary and quaternary centers **87p-q** (dr > 97:3) in 62-90% yield (entries 6-7). The structures of all homoallylic alcohols resulting from the addition to ketones and aldehydes could be established either by literature comparison^{31, 93} or X-ray analysis in the case of **87n** (CCDC-775023) (Scheme 42).

87 using allylic aluminum reagents of type 85.				
entry	aluminum reagent ^a	carbonyl electrophile ^b	product ^{c, d}	
	Ph Al _{2/3} Cl		Br Ph HO ^{N''} Me	
1	85d	86a	87k : 99%; 98:2	
			MeO ₂ C HO ^N Me	
2	85d	86b	87I : 99%; 96:4	
			NC HO ^W Me	
3	85d	86g	87m : 98%; 94:6	
	MeO Al _{2/3} Cl		NC	

Table 5. Diastereoselective preparation of homoallylic alcohols and lactones of type87 using allylic aluminum reagents of type 85.

^{*a*} All reactions were carried out on a 1-4 mmol scale. ^{*b*} 0.6-0.7 equivalents of electrophiles have been used. ^{*c*} Isolated yield of analytically pure products. ^{*d*} The diastereoselectivities were determined by ¹H-NMR analysis. ^{*e*} The structures have been established by X-ray analysis.

3.3.3 Cyano-Substituted Cyclopentylaluminum Reagent

Usually, cyano-substituents react rapidly with allylic organometallics such as zinc reagents (Blaise reaction).⁹⁵ Remarkably, a cyano function is well tolerated during the Al-insertion reaction. Thus, the preparation of a cyano-substituted cyclopentylaluminum reagent (85g) achieved can be starting from 5-chloro-cyclopent-1-enecarbonitrile (84g) using Al-powder (1.5 equiv) and InCl₃ (20 mol%) in 24 h at 25 °C (ca. 60% yield). The addition of this aluminum reagent to a ketone or an aldehyde affords the homoallylic alcohols 87r and 87s in 70-89% yield (dr > 99:1, Scheme 42). An X-ray analysis for 87s has been performed (CCDC-775026) (Scheme 42).

⁹⁵ a) P. Knochel, J. F. Normant, *J. Organomet. Chem.* **1986**, *309*, 1; b) E. E. Blaise, *Compt. Rend.* **1901**, *132*, 478.

Scheme 42. Preparation of a cyano-substituted allylic aluminum reagent (85g) and X-ray analysis of 87n and 87s.

3.3.4 β-Silyl-Substituted Crotylaluminum Reagent

In the case of a β -silyl-substituted crotylaluminum reagent (**85h**), which was prepared starting from the β -silyl-substituted crotyl chloride **84h**, the addition to benzaldehyde (**86j**, 0.7 equiv) and 4'-bromoacetophenone (**86a**, 0.7 equiv) was also selective, and the *syn*-homoallylic alcohols **87t** (dr > 89:11, 96% yield) and **87u** (dr > 97:3, 76% yield) were obtained (Scheme 43).

87u: 76%; dr: 97:3

Scheme 43: Preparation of a trimethylsilyl-substituted allylaluminum reagent (**85h**) and its addition reactions. Reactions and conditions: a) benzaldehyde (**86j**, 0.7 equiv), -78 °C, 1 h; b) 4'-bromoacetophenone (**86a**, 0.7 equiv), -78 °C, 1 h.

3.4 Conclusion

In summary, we have demonstrated that allylic aluminum reagents can be conveniently prepared using aluminum powder in the presence of catalytic amounts of InCl₃ from allylic chlorides or bromides under mild conditions. The addition to various functionalized aldehydes or ketones affords polyfunctionalized homoallylic alcohols, bearing adjacent tertiary and quaternary centers with good diastereoselectivity.

3.5 Extension of Functionalized Allylic aluminum Reangents

3.5.1 Introduction

As previously mentioned, *Paterson* constructed homoallylic alcohol **81** using addition reaction of the (+)-Ipc-derived crotylboration reagent to an aldehyde in the total synthesis of Swinholide A.^{80, 81} The subsequent protection, Wacker oxidation, generation of enolate and Mukaiyama aldol reaction afforded the adduct **89** in 5 overall steps (Scheme 44).

Scheme 44. The proposed allylmetal reagent

We envisioned the development of a new allylic metal reagent of type **90** with masked ketone moiety which would allow the generation of product **89** in only two steps (Scheme 44).

3.5.2 Preparation of Allylic Chlorides

Inspired by the need of the mentioned new allylic metal reagent, we prepared the starting allylic chlorides **92a** and **92b** according to literature.⁹⁶ Thus, the treatment of cyclohexanone with LDA and TESC1 at -78 °C within 5 h led to (cyclohex-1-en-1-yloxy)triethylsilane (**91a**) in 92% yield. Its reaction with NCS at 0 °C furnished the expected allylic chloride **92a** in 46% yield. Similarly, starting from 1-benzylpiperidin-4-one, the corresponding 1-benzyl-3-chloro-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridine (**92b**) was obtained in 40% yield (Scheme 45).

Scheme 45. Preparation of starting allylic chlorides 92a and 92b.

3.5.3 Preparation of Allylic Aluminum Reagents and Their Addition to Aldehydes and Ketones

To our delight, using the well-established method for the preparation of allylic aluminum reagents developed in our laboratories,⁹⁷ ((6-chlorocyclohex-1-en-1-yl)oxy) triethylsilane (**92a**) reacts with Al-powder (3.0 equiv) and $InCl_3$ (5 mol%) in THF at 25 °C within 14 h and provides the corresponding allylic aluminum reagent **93a** in 70% yield. Also, the preparation of allylic aluminum reagent **93b** can be achieved

⁹⁶ a) T. V. Lee, J. Toczek, *Tetrahedron Lett.* **1982**, *23*, 2917; b) G. F. Hambly, T. H. Chan, *Tetrahedron Lett.* **1986**, *27*, 2563.

⁹⁷ Z. Peng, T. D. Blümke, P. Mayer, P. Knochel, Angew. Chem. Int. Ed. 2010, 49, 8516.

starting from 1-benzyl-3-chloro-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridine **92b** using Al-powder (3.0 equiv) and $InCl_3$ (5 mol%) in 14 h at 25 °C (70% yield, Scheme 46).

Scheme 46. Preparation of allylic aluminum reagents 93a and 93b.

The reaction of the allylic aluminum reagent **93a** with cyclohexanecarboxaldehyde (**94a**, 0.7 equiv, -78 °C, 2 h) afforded the homoallylic alcohol **95a** in 75% yield (dr > 90:10, entry 1, Table 6). Various aromatic aldehydes and ketones (**94b-d**) react with the allylic aluminum reagent **93a**, leading to the corresponding alcohols (**95b-d**) in 57-76% yield (dr > 90:10, entries 2-4). In addition, the allylic aluminum reagent **93b** reacted with aldehydes and methyl ketones such as 3,4,5-trimethoxybenzaldehyde (**94e**, 0.7 equiv), 4-acetylbenzonitrile (**94f**, 0.7 equiv) or methyl 4-formylbenzoate (**94g**, 0.7 equiv), providing the corresponding alcohols **95e-j** in 61-70% yield, with high diastereoselectivities (dr > 93:7, entries 5-7, Table 6). Interestingly, the allylic aluminum reagent **93b** reacted with ethyl 2-acetylbenzoate (**94f**, 0.7 equiv) giving the homoallylic lactone **95h** in 70% yield with high diastereoselectivity (dr > 97:3, entry 8, Table 6).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	entry	aluminum reagent ^a	carbonyl electrophile ^b	product ^{c, d}
1 93a 94a 95a: 72%, dr: 90:10 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$		OTES Al _{2/3} Cl	СНО	ÖH O SiEt ₃
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	93a	94a	95a : 72%, dr: 90:10
2 93a 94b 95b: 76%, 93:7 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			CHO	NC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	93a	94b	95b : 76%, 93:7
3 93a 94c 95c: 57%, dr: 95:5 $\downarrow \downarrow \downarrow G_{CO_2Et}$ 95d: 63%, dr: 90:10 $\downarrow \downarrow \downarrow I_{2/3}Cl$ $\downarrow I_{II}$			CF3	F ₃ C OH O
$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$	3	93a	94c	95c : 57%, dr: 95:5
4 93a 94d 95d: 63%, dr: 90:10 $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			Me CO ₂ Et	Me _O SiEt ₃
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	93a	94d	95d : 63%, dr: 90:10
5 93b 94e 95e: 62%, dr: 95:5 $NC \rightarrow NC \rightarrow NC \rightarrow HO^{NC} Me_{O} SiEt_{3}$ 6 93b 94f 95f: 70%, dr: 93:7		OTES Al _{2/3} Cl	MeO OMe	MeO MeO MeO MeO SiEt ₃
$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & &$	5	93b	94e	95e : 62%, dr: 95:5
6 93b 94f 95f : 70%, dr: 93:7			NC Me	NC HO ^w Me _O SiEt ₃
	6	93b	94f	95f : 70%, dr: 93:7

Table 6. Diastereoselective preparation of homoallylic alcohols and lactones of type**95** using allylic aluminum reagents of type**93**.

^{*a*} All reactions were carried out on a 1-4 mmol scale. ^{*b*} 0.6-0.7 equivalents of electrophiles have been used. ^{*c*} Isolated yield of analytically pure products. ^{*d*} The diastereoselectivities were determined by ¹H-NMR analysis.

3.5.4 Conclusion

Preliminary study showed that these special allylic aluminum reagents can be conveniently prepared using aluminum powder in the presence of catalytic amounts of InCl₃ from allylic chlorides under mild conditions. The addition to various functionalized aldehydes or ketones affords polyfunctionalized homoallylic alcohols, bearing adjacent tertiary and quaternary centers with good diastereoselectivity. The application of this new allylic aluminum reagent and the subsequent Mukaiyama reaction of the resulting polyfunctionalized homoallylic alcohols are ongoing in our laboratory.
4. Preparation of Functionalized Organomanganese(II) Reagents by Direct Insertion of Manganese to Aromatic and Benzylic Halides

4.1 Introduction

Functionalized organometallics are versatile reagents for forming carbon-carbon bonds reactions in organic synthesis.^{1, 3a} Organomanganese reagents,⁴⁵ due to their excellent chemoselectivity, low toxicity and good availability, have found widespread chemoselective 1,2-additions, ⁹⁸ acylations, ⁹⁹ performing applications for cross-coupling reactions,¹⁰⁰ as well as copper-catalyzed conjugate additions.¹⁰¹ Despite these advantages, the preparation methods of organomanganese(II) reagents are limited. Most organomanganese(II) reagents are prepared by transmetallation from the corresponding organolithium or organomagnesium reagents with manganese halides.⁴⁶ Recently, a directed manganation using TMP₂Mn·2LiCl allows the generation of the functionalized arylmanganese compounds by a directed deprotonation.⁵¹ Moreover, organomanganese(II) reagents are difficult to generate by an oxidative addition to organic halides using commercial manganese powder due to the passivation exhibited by commercial Mn. To date, commercial manganese powder

⁹⁸ a) Y. Ahn, W. W. Doubleday, T. Cohen, *Synth. Commun.* **1995**, 25, 33; b) T. Kauffmann, H. Kieper, H. Pieper, *Chem. Ber.* **1992**, *125*, 899; c) G. Cahiez, B. Figadère, *Tetrahedron Lett.* **1986**, 27, 4445; d) M. T. Reetz, K. Rölfing, N. Griebenow, *Tetrahedron Lett.* **1994**, *35*, 1969; e) C. Boucley, G. Cahiez, S. Carini, V. Cerè, M. Comes-Franchini, P. Knochel, S. Pollicino, A. Ricci, J. Organomet. Chem. **2001**, *624*, 223.

⁹⁹ a) G. Cahiez, A. Masuda, D. Bernard, J. F. Normant, *Tetrahedron Lett.* **1976**, *36*, 3155; b) K. Ritter, M. Hanack, *Tetrahedron Lett.* **1985**, *26*, 1285; c) G. Cahiez, B. Laboue, *Tetrahedron Lett.* **1989**, *30*, 7369; d) G. Cahiez, D. Luart, F. Lecomte, *Org. Lett.* **2004**, *6*. 4395.

¹⁰⁰ a) G. Cahiez, F. Lepifre, P. Ramiandrasoa, *Synthesis* **1999**, 2138; b) M. Rueping, W. Ieawsuwan, *Synlett* **2007**, 247; c) E. Riguet, M. Alami, G. Cahiez, *J. Organomet. Chem.* **2001**, 624, 376; d) A. Leleu, Y. Fort, R. Schneider, *Adv. Synth. Catal.* **2006**, 348, 1086; e) G. Cahiez, S. Marquais, *Tetrahedron Lett.* **1996**, 37, 1773; f) J. G. Donkervoort, J. L. Vicario, J. T. B. H. Jastrzebski, R. A. Gossage, G. Cahiez, G. van Koten, *J. Organomet. Chem.* **1998**, 558, 61; g) H. Kakiya, R. Inoue, H. Shinokubo, K. Oshima, *Tetrahedron Lett.* **1997**, 38, 3275.

¹⁰¹ a) G. Cahiez, M. Alami, *Tetrahedron* **1989**, *45*, 4163; b) S. Marquais, M. Alami, G. Cahiez, *Org. Synth.* **1995**, *72*, 135.

inserts only into reactive organic halides such as allylic halides or α -halogenoesters.^{47, 48, 49} By using highly activated Mn (*Rieke*-Mn), the insertion to aromatic and benzylic halides can be achieved.^{102, 50} Recently, we have reported that LiCl facilitates the insertion of various metals (Zn,¹⁰³ Mg,¹⁰⁴ In¹⁰⁵). By adding small amounts of a metallic salt like InCl₃ and PbCl₂ as pioneered by *Takai*,¹⁰⁶ we were able to prepare functionalized aromatic, benzylic and allylic aluminum reagents under mild conditions.¹⁰⁷

We envisioned that commercial manganese activated by adding suitable metallic salts could be insert into aromatic or benzylic halides affording the corresponding organomanganese reagents.

4.2 Optimization of The Reaction Conditions

An extensive sceening of various metallic salts on the insertion of commercial manganese powder(3.0 equiv) to 1-chloro-3-iodobenzene (**96**) in the presence of LiCl (1.5 equiv) in THF was undertaken. Preliminary experiments showed that several additives such as TiCl₄, ZrCl₄, CeF₃ and ZnBr₂ provided a trace of arylmanganese reagent **97** (entries 1-4, Table 7). The addition of only PbCl₂ or only InCl₃ led to the corresponding arylmanganese species **97** in 10-15% yield (entries 5-6). The yield of the arylmanganese species **97** can be improved by the addition of both metallic salts (entries 7-10). The combination of InCl₃ (2.5 mol%) and PbCl₂ (2.5 mol%) allows the generation of the arylmanganese species **97** (43% yield, entry 7).

¹⁰² a) T. Hiyama, M. Obayashi, A. Nakamura, *Organometallics* 1982, *1*, 1249; b) A. Fürstner, H. Brunner, *Tetrahedron Lett.* 1996, *37*, 7009; c) S.-H. Kim, M. V. Hanson, R. D. Rieke, *Tetrahedron Lett.* 1996, *37*, 2197; d) S.-H. Kim, R. D. Rieke, *Synth. Commun.* 1998, *28*, 1065; e) R. D. Rieke, S.-H. Kim, X. Wu, *J. Org. Chem.* 1997, *62*, 6921; f) H. Kakiya, S. Nishimae, H. Shinokubo, K. Oshima, *Tetrahedron* 2001, *57*, 8807.

¹⁰³ a) A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, *Angew. Chem. Int. Ed.* **2006**, *45*, 6040; b) A. Metzger, M. A. Schade, P. Knochel, *Org. Lett.* **2008**, *10*, 1107.

¹⁰⁴ F. M. Piller, P. Appukkuttan, A. Gavryushin, M. Helm, P. Knochel, *Angew. Chem. Int. Ed.* **2008**, 47, 6802.

¹⁰⁵ a) Y.-H. Chen, P. Knochel, Angew. Chem. Int. Ed. **2008**, 47, 7648; b) Y.-H. Chen, M. Sun, P. Knochel, Angew. Chem. Int. Ed. **2009**, 48, 2236.

¹⁰⁶ K. Takai, Y. Ikawa, Org. Lett. **2002**, *4*, 1727.

¹⁰⁷ a) T. D. Blümke, Y.-H. Chen, Z. Peng, P. Knochel, *Nat. Chem.* **2010**, *2*, 313; b) Z. Peng, T. D. Blümke, P. Mayer, P. Knochel. *Angew. Chem. Int. Ed.* **2010**, *49*, 8516.

	CI Pin (3.0 equiv) LiCl (1.5 equiv) catalyst THF, 50 °C 96	97
entry	catalyst	yield of 97 ^{<i>a</i>}
1	TiCl ₄ (10 mol%)	trace
2	ZrCl ₄ (10 mol%)	trace
3	$CeF_3(10 \text{ mol}\%)$	trace
4	$ZnBr_2$ (10 mol%)	8%
5	$PbCl_2$ (5 mol%)	10%
6	$InCl_3$ (5 mol%)	15%
7	InCl ₃ (2.5 mol%), PbCl ₂ (2.5 mol%)	43%
8	InCl ₃ (2.5 mol%), BiCl ₃ (2.5 mol%)	26%
9	InCl ₃ (2.5 mol%), SnCl ₂ (2.5 mol%)	16%
10	ZnCl ₂ (2.5 mol%), PbCl ₂ (2.5 mol%)	33%

Table 7. Catalyst optimization of insertion reaction of commercial manganese powder to aryliodide.

Mnl

^{*a*} The yield was determined by GC.

Next, we investigated the scope of this insertion reaction of commercial mangenese powder to organic halides.

4.3 Preparation of Aromatic Manganese Reagents

I

The reaction of 3-bromo-4-fluorobenzonitrile (**98a**) in THF with manganese powder (3 equiv) in the presence of LiCl (1.5 equiv), 2.5% InCl₃ and 2.5% PbCl₂ at 50 °C was complete within 24 h and led to the corresponding arylmanganese reagent (**99a**) in 64% yield. Subsequent Negishi cross-coupling with ethyl 4-iodobenzoate (**100a**, 0.6 equiv) in the presence of Pd-PEPPSI-*i*Pr (5 mol%) afforded the biphenyl derivative **101a** in 70% yield. Additionally, a smooth allylic substitution of **99a** with ethyl (2-bromomethyl)acrylate (**100b**, 0.6 equiv) furnished the acrylate **101b** in 71% yield (Scheme 47). Both catalytic amounts of InCl₃ and PbCl₂ and a stoichiometric amount of LiCl are required for an efficient insertion reaction. By using only InCl₃ or only PbCl₂, only a trace of the arylmanganese species is formed. This salt combination

allows a unique activation of the Mn-surface.

Scheme 47. Preparation of (5-cyano-2-fluorophenyl)manganese(II) bromide (99a) and subsequent reaction with electrophiles.

Similarly, 2-bromo-1-chloro-4-(trifluoromethyl)benzene (98b) was converted to the corresponding organomanganese reagent 99b (50 °C, 24 h, 72% yield). It readily underwent a 1,2-addition to 3-formylbenzonitrile (100c) providing the functionalized alcohol 101c in 73% yield (entry 1, Table 8). Manganese powder inserted into the functionalized thiophene (98c) in the presence of LiCl (1.5 equiv), 2.5% $InCl_3$ and 2.5% PbCl₂ between 0-25 °C within 12 h giving the arylmanganese reagent 99c (70% yield). It was converted to the functionalized ketone derivative 101d (68% yield) and the biaryl derivative 101e (77% yield) respectively by an acylation reaction with 4-chlorobenzoyl chloride (100d, 0.6 equiv) and a Pd-catalyzed cross-coupling reaction with ethyl 3-bromobenzoate (100e, 0.6 equiv) (entries 2-3). In the same manner, various substituted aryl iodides such as **98d-f**, bearing substituents such as chloride or a trifluoromethyl group, were readily converted to the corresponding arylmanganese reagents at 25 °C within 12-24 h. Subsequent acylation and 1,2-addition afforded the expected polyfunctionalized adducts **101f-h** in 72-85% yield (entries 4-6). Remarkably, manganese powder chemoselectively inserted into ethyl 2,3,5-triiodobenzoate (98g), yielding (2-(ethoxycarbonyl)-4,6-diiodophenyl)manganese(II) iodide (99g). Its treatment with aldehyde 100c (0.6 equiv) afforded the desired 101i lactone in 68% yield (entry 7). Moreover, heterocyclic 4,5-diiodo-2,6-dimethoxypyrimidine (**98h**) was converted selectively to the organomanganese reagent (**99h**) which underwent acylation and 1,2-addition giving the functionalized benzophenone derivative **101j** and alcohol derivative **101k** in 71-78% yield (entries 8-9).

Table 8. Functionalized aromatic manganese(II) halides obtained by direct insertion of commercial manganese powder into aromatic halides and subsequent quenching with electrophiles

^{*a*} Isolated yield of analytically pure product. ^{*b*} 0.7 Equivalents of electrophile were used. ^{*c*} 0.6 Equivalents of electrophile were used. ^{*d*} Obtained after cross-coupling with ethyl 3-bromobenzoate (**100e**) in the presence of Pd-PEPPSI-*i*Pr (5 mol%).

4.4 Preparation of Benzylic Manganese Reagents

In the case of benzylic chlorides or bromides, a smooth manganese insertion occurs at 25 $^{\circ}$ C in the presence of 2.5% InCl₃ and 2.5% PbCl₂. These insertions proceed best in the absence of LiCl since this salt favors extensive homo-coupling reactions. Thus, the reaction of 1-chloro-3-(chloromethyl)benzene (**102a**) with Mn powder (3.0 equiv) in the presence of 2.5% InCl₃ and 2.5% PbCl₂ afforded the benzylic manganese reagent **103a** within 14 h at 25 $^{\circ}$ C. A Cu-catalyzed 1,4-addition reaction with

nitrostyrene (**100j**, 0.7 equiv) provided the nitro derivative (**104a**) in 80% yield (Scheme 48).

Scheme 48. Preparation of (3-chlorobenzyl)manganese(II) chloride (103a) and its 1,4-addition to nitrostyrene (100j)

A smooth addition of the benzylic manganese reagent 103a to the benzaldehyde 100h (0.7 equiv) generated the functionalized alcohol derivative **104b** in 73% yield (entry 1, Table 9). Also, the treatment of the benzylic manganese reagent 103a with 4-chlorobenzoyl chloride (100d, 0.7 equiv) produced the ketone derivative 104c in 75% yield (entry 2). Several functionalized benzylic substrates (102b-f) readily underwent a manganese insertion in the presence of 2.5% $InCl_3$ and 2.5% $PbCl_2$ as catalysts, followed by quenching with various electrophiles, affording the desired products 104d-k in 66-88% yield (entries 3-10). However, the manganese insertion into benzylic chlorides bearing an ester and a cyano group led to unsatisfactory yields. In comparison, by using benzylic bromides, a smooth insertion proceeds at 25 $^{\circ}\mathrm{C}$ allowing the direct preparation of ester- or cyano-functionalized benzylmanganese bromides. For instance, the reaction of butyl 3-(bromomethyl)benzoate (102g) with Mn powder (3 equiv) in the presence of 2.5% InCl₃ and 2.5% PbCl₂ furnished the benzylic manganese bromide 103g within 17 h at 25 °C. A Pd-catalyzed cross-coupling with 4-bromobenzonitrile (100m, 0.6 equiv) or ethyl 4-iodobenzoate (100a, 0.6 equiv) generated the expected products 1041-m in 67-71% yield (entries 11-12). Similarly, 3-(bromomethyl)benzonitrile (102h) was converted to the corresponding benzylic manganese reagent 103h, followed by an allylic substitution with ethyl (2-bromomethyl)acrylate (100b, 0.6 equiv), producing the allylated product

104n in 45% yield (entry 13).

Table 9. Functionalized benzylmanganese(II) halides obtained by direct insertion of commercial manganese powder into benzylic halides and subsequent reaction with electrophiles

^{*a*} Isolated yield of analytically pure product. ^{*b*} 0.7 Equivalents of electrophile were used. ^{*c*} Obtained after cross-coupling with 4-bromobenzonitrile (**100m**) in the presence of Pd(PPh₃)₄ (10 mol%). ^{*d*} Obtained after cross-coupling with ethyl 4-iodobenzoate (**100a**) in the presence of Pd(PPh₃)₄ (10 mol%). ^{*e*} 0.6 Equivalents of electrophile were used. ^{*f*} Obtained after cross-coupling with ethyl 4-bromobenzonitrile (**100m**) in the presence of Pd-PEPPSI-*i*Pr (5 mol%). ^{*g*} Obtained after cross-coupling with ethyl 4-iodobenzoate (**100a**) in the presence of Pd-PEPPSI-*i*Pr (5 mol%).

4.5 Conclusion

In summary, we have developed a convenient method for the preparation of functionalized arylmanganese halides and benzylic manganese halides by direct insertion of commercial manganese powder into aromatic and benzylic halides in the presence of 2.5% InCl₃ and 2.5% PbCl₂. These organomanganese reagents smoothly undergo 1,2-addition, acylation, allylic substitution, Pd-catalyzed cross-coupling, and copper-catalyzed conjugate addition with various electrophiles affording the desired products in good yields.

5. Summary and outlook

This work includes three topics: the first part was focused on the construction of heterocycles such as 1,3,5-triazines and indazoles by using organomagnesium or organozinc reagents. Furthermore, the addition of allylic aluminum reagents to aldehydes or ketones in a diastereoselective manner was investigated in detail. Finally, we developed a new method for the preparation of aromatic and benzylic manganese reagents by a direct insertion of commercial manganese powder to aromatic or benzylic halides.

5.1 Preparation of 2-Magnesiated 1,3,5-Triazines and Trimeric and Dimeric Derivatives

A convenient method for the preparation of stable mono- and bis(1,3,5-triazinyl)magnesium reagents has been developed. This kind of Grignard reagents having good compatibility with a variety of sensitive functional groups react with aldehydes, acid clorides, and allylic halides, furnishing a wide range of new functionalized fully substituted 1,3,5-triazine derivatives (Scheme 49).

Scheme 49. Preparation of 1,3,5-triazine derivatives using 2-magnesiated 1,3,5-triazines.

2-Magnesiated 1,3,5-triazine has been utilized successfully to synthesize a dimeric 1,3,5-triazine derivative which may exhibit useful opto-electronic properties (Scheme 50).

Scheme 50. Preparation of dimeric 1,3,5-triazine derivative.

A remarkable preparation of a trimeric 1,3,5-triazine derivative was performed (Scheme 51).

Scheme 51. Preparation of trimeric 1,3,5-triazine derivative.

5.2 Preparation of Functionalized Indazoles

We have developed a short and convenient synthetic route to 2-aryl-2*H*-indazoles by using highly functionalized arylzinc reagents. This reaction displays an excellent functional group tolerance (Scheme 52).

Scheme 52. Preparation of functionalized indazoles.

5.3 Diastereoselective Synthesis of Homoallylic Alcohols

A practical protocol for the generation of allylic aluminum reagents was developed. In addition, the addition to various functionalized aldehydes or ketones affords polyfunctionalized homoallylic alcohols, bearing adjacent tertiary and quaternary centers with good diastereoselectivity (Scheme 53).

The scope of this method was extended to cinnamyl substrates. Cinnamyl aluminum reagents can be conveniently prepared using aluminum powder in the presence of catalytic amounts of $InCl_3$ and their addition to carbonyl compounds showed also high diastereoselectivities (Scheme 54)

Scheme 54. Diastereoselective addition of cinnamyl aluminum reagents to carbonyl compounds

The diastereoselectivity can be best rationalized by a chair-like transition state and the structures of the homoallylic alcohols have been proven by X-ray or NOESY NMR analysis.

5.4 Extension of Functionalized Allylic Aluminum Reagents

The allylic aluminum reagents can be conveniently prepared using aluminum powder in the presence of catalytic amounts of $InCl_3$ from allylic chlorides under mild conditions. The addition to various functionalized aldehydes or ketones affords polyfunctionalized homoallylic alcohols, bearing adjacent tertiary and quaternary centers with good diastereoselectivities (Scheme 55).

Scheme 55. Diastereoselective preparation of homoallylic alcohols.

5.5 Preparation of Functionalized Organomanganese(II) Reagents by Direct Insertion of Manganese to Aromatic and Benzylic Halides

We have developed a convenient method for the preparation of functionalized arylmanganese halides by direct insertion of commercial manganese powder into aromatic halides in the presence of LiCl with both 2.5% InCl₃ and 2.5% PbCl₂ as catalysts. These organomanganese reagents smoothly undergo 1,2-addition, acylation, allylic substitution, Pd-catalyzed cross-coupling, and copper-catalyzed conjugate addition with various electrophiles affording the desired products in good yields (Scheme 56).

Scheme 56. Preparation of functionalized arylmanganese halides and their reactions with electrophiles.

The extension to the preparation of benzylic manganese halides was performed. Benzylic manganese reagents can be obtained by direct insertion of commercial manganese powder into aromatic halides in the presence of 2.5% InCl₃ and 2.5% PbCl₂ (Scheme 57).

Scheme 57. Preparation of functionalized benzylic manganese halides.

C. Experimental Section

1. General Considerations

All reactions were carried out with magnetic stirring and, if the reagents were air or moisture sensitive, in flame-dried glassware under argon. Syringes which were used to transfer reagents and solvents were purged with argon prior to use.

1.1. Solvents

Solvents were dried according to standard procedures by distillation over drying agents and stored under argon.

CH₂Cl₂ was predried over CaCl₂ and distilled from CaH₂.

DMF was heated to reflux for 14 h over CaH₂ and distilled from CaH₂.

EtOH was treated with phthalic anhydride (25 g/L) and sodium, heated to reflux for 6 h and distilled.

 Et_2O was predried over CaH_2 and dried with the solvent purification system SPS-400-2 from INNOVATIVE TECHNOLOGIES INC.

NMP was heated to reflux for 14 h over CaH₂ and distilled from CaH₂.

THF was continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen.

Triethylamine was dried over KOH and distilled.

Solvents for column chromatography were distilled prior to use.

1.2. Reagents

All reagents were obtained from commercial sources and used without further purification unless otherwise stated. Liquid aldehydes and acid chlorides were distilled prior to use.

Preparation of Organometallic Reagents:

*i*PrMgCl·LiCl solution in THF was purchased from Chemetall.

*i***PrMgCl** solution in THF was purchased from Chemetall

PhMgCl solution in THF was purchased from Chemetall

*n*BuLi solution in hexane was purchased from Chemetall.

Zinc reagents were prepared according to: (a) A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, *Angew. Chem. Int. Ed.* 2006, 45, 6040; (b) A. Metzger, M. A. Schade, P. Knochel, *Org. Lett.* 2008, 10, 1107; (c) S. Sase, M. Jaric, A. Metzger, V. Malakhov, P. Knochel, P. J. Org. Chem. 2008, 73, 7380.

CuCN·2LiCl solution (1.00 M) was prepared by drying CuCN (7.17 g, 80.0 mmol) and LiCl (6.77 g, 160 mmol) in a Schlenk-flask under vacuum at 140 °C for 5 h. After cooling, THF (80 mL) was added and stirring was continued until the salts were dissolved.

Preparation of the reagent OctMgBr (1 M in THF)

A 1-L three-necked round-bottom flask equipped with a magnetic stirring bar, reflux condenser, addition funnel, and a thermometer was charged with magnesium turnings (14.2 g, 0.584 mol). The flask was gently heated under argon atmosphere (50 °C), while the magnesium turnings were vigorously stirred for 1 h affording activation of the magnesium surface. After cooling to 25 °C and addition of THF (50 mL), ca. 10 mL of a solution of octyl bromide (96.5 g, 0.50 mol) in THF (400 mL) was added to the suspension while continuously stirring. The reaction started after ca. 2-3 min as indicated by a small rise in temperature. Thereafter, the remaining solution of OctBr was added dropwise over a period of 4 h while keeping the temperature below 30 °C. After stirring the reaction mixture for additional 2 h, the supernatant solution was then cannulated into a new dry, argon-flushed Schlenk flask and titrated with iodine affording the concentration of active octylmagnesium bromide (1.0 M).

Preparation of ZnCl₂ solution (1 M in THF)

A dry and argon-flushed 250 mL Schlenk-flask, equipped with a magnetic stirring bar and a septum, was charged with $ZnCl_2$ (20.45 g, 0.15 mol). The salt was heated to 140 °C under high vacuum for 6 h. After cooling to 25 °C, dry THF (150 mL) was added slowly and stirring was continued until the salt was dissolved (4 h) forming a clear colourless solution, which was kept over molecular sieves (4 Å).

Preparation of ZnBr₂·LiCl solution (1 M in THF)

A dry and argon-flushed 250 mL Schlenk-flask, equipped with a magnetic stirring bar and a septum, was charged with $ZnBr_2$ (33.81 g, 0.15 mol) and LiCl (6.35 g, 0.15 mol). The salts were heated to 140 °C under high vacuum for 6 h. After cooling to 25 °C, dry THF (150 mL) was added slowly and stirring was continued until the salts were dissolved (4 h) forming a clear colourless solution, which was kept over molecular sieves (4 Å).

1.3. Content Determination of Organometallic Reagents

Organzinc and organomagnesium reagents were titrated against I₂ in a 0.5 M LiCl solution in THF according to: A. Krasovskiy, P. Knochel, *Synthesis* **2006**, *5*, 890. **Organolithium** reagents were titrated against menthol using 1,10-phenanthroline as indicator in THF according to: H.-S. Lin, L. A. Paquette, *Synth. Commun.* **1994**, *24*, 2503.

1.4. Chromatography

Flash column chromatography was performed using silica gel 60 (0.040-0.063 mm) from Merck.

Thin layer chromatography was performed using SiO_2 pre-coated aluminium plates (Merck 60, F-254). The chromatograms were examined under UV light at 254 nm

and/or by staining of the TLC plate with one of the solutions given below followed by heating with a heat gun:

- KMnO₄ (3.0 g), 5 drops of conc. H_2SO_4 in water (300 mL).

- Phosphomolybdic acid (5.0 g), $Ce(SO_4)_2$ (2.0 g) and conc. H_2SO_4 (12 mL) in water (230 mL).

1.5. Analytical Data

NMR spectra were recorded on VARIAN Mercury 200, BRUKER AXR 300, VARIAN VXR 400 S and BRUKER AMX 600 instruments. Chemical shifts are reported as δ -values in ppm relative to the residual solvent peak of CHCl₃ (dH: 7.26, dC: 77.0). For the characterization of the observed signal multiplicities the following appreviations were used: s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sept (septet), m (multiplet).

Mass spectroscopy: High resolution (HRMS) and low resolution (MS) spectra were recorded on a FINNIGAN MAT 95Q instrument. Electron impact ionization (EI) was conducted with an electron energy of 70 eV.

For the combination of gas chromatography with mass spectroscopic detection, a GC/MS from Hewlett-Packard HP 6890/MSD 5973 was used.

Infrared spectra (IR) were recorded from 4500 cm⁻¹ to 650 cm⁻¹ on a PERKIN ELMER Spectrum BX-59343 instrument. For detection a SMITHS DETECTION DuraSampl*IR* II Diamond ATR sensor was used. The absorption bands are reported in wavenumbers (cm⁻¹)

Melting points (m.p.) were determined on a BÜCHI B-540 apparatus and are uncorrected.

2. Synthetic Procedures

2.1 Preparation of 1,3,5-Triazine Derivatives.

2.1.1 Typical Procedures (TP)

TP1: Typical procedure for the preparation of iodo-1,3,5-triazine derivatives (61a-k).

To a solution of 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 2.0 mmol) and Pd(PPh₃)₂Cl₂ (14 mg, 0.02 mmol) in THF (20 mL) in a dry and argon-flushed Schlenk-flask was added dropwise a solution of organozinc reagent (1.2 equiv) in THF prepared according to literature procedure at -10 °C followed by continously stirring for 2 h. After stirring for 13 h at 25 °C, the reaction mixture was quenched with brine (5 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed *in vacuo* and the residue was subjected to flash column chromatography affording the corresponding iodo-1,3,5-triazines **61a-k**.

TP2: Typical procedure for the preparation of 1,3,5-triazin-2-ylmagnesium halides (62a-j)

A dry and argon-flushed Schlenk-flask, equipped with a magnetic stirring bar and a septum, was charged with iodo-1,3,5-triazine derivative (1 mmol) in THF (1 mL) followed by dropwise addition of a solution of alkylmagnesium reagent (1.1 equiv) at -78 °C. The reaction mixture was stirred for 10 min at the same temperature. Complete iodine-magnesium exchange was monitored by GC analysis of reaction aliquots, quenched with brine using tetradecane as internal standard.

2.1.2 Preparation of 2-Magnesiated 1,3,5-Triazines and 1,3,5-triazine derivatives.

Synthesis of 2,4-diiodo-6-phenyl-1,3,5-triazine (59).

A 50 mL round-bottom flask was charged with HI (57% solution, 20 mL). The solution was cooled to 5 °C and 2,4-dichloro-6-phenyl-1,3,5-triazine (4.52 g, 20 mmol) was added at the same temperature. The reaction mixture was allowed to warm up to 25 °C slowly and stirred for 48 h at 25 °C. The mixture was neutralized carefully with solid potassium carbonate, and decolorized with a saturated aqueous solution of sodium disulfite. Water was added until the solution was formed. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (3 x 50 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed *in vacuo*. Purification by flash column chromatography (silica gel, pentane / EtOAc = 50:1) afforded 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 5.5 g, 67%) as a white solid.

m. p. = 188.5-190.3 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.49-8.42 (m, 2H), 7.68-7.48 (m, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 170.2, 139.6, 134.4, 132.3, 129.8, 128.9.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3065 (W), 2924 (W), 1469 (S), 1369 (M),

1237 (W), 1205 (M), 1170 (M), 1084 (W), 802 (W), 759 (S), 688 (M), 640 (W).

MS (EI, 70 eV): m/z (%) = 408 (M⁺, 46), 282 (5), 281 (45), 230 (1), 229 (12), 178 (11). 130 (8), 129 (100), 128 (1), 103 (12), 77 (11).

HRMS (EI): Calcd. for $[C_9H_5I_2N_3]^+$: 408.8573; found: 408.8567.

Synthesis of 2-iodo-4-octyl-6-phenyl-1,3,5-triazine (61a).

According to **TP1**, 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 820 mg) reacted with OctZnCl (0.89 M, 2.5 mL). Purification by flash column chromatography (silica gel, pentane / EtOAc = 100:1) afforded 2-iodo-4-octyl-6-phenyl-1,3,5-triazine (**61a**, 474

mg, 60%) as colorless oil.

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 8.52-8.48 (m, 2H), 7.63-7.49 (m, 3H), 2.89 (t, J = 7.8 Hz, 2H), 1.93-1.82 (m, 2H), 1.44-1.26 (m, 10H), 0.91 (t, J = 7.1 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 180.1, 170.7, 142.2, 134.0, 133.4, 129.3, 128.8, 38.7, 31.8, 29.3, 29.3, 29.2, 27.7, 22.7, 14.1.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2923 (W), 2853 (W), 1600 (VW), 1517 (S), 1483 (VS), 1360 (W), 1236 (M), 1175 (W), 1117 (W), 1026 (W), 908 (W), 800 (M), 767 (M), 689 (S).

MS (EI, 70 eV): m/z (%) = 395 (M⁺, 0.2), 309 (1), 297 (6), 267 (2), 129 (100), 103 (20), 77 (21).

HRMS (EI): Calcd. for $[C_{17}H_{22}IN_3]^+$: 395.0858; found: 395.0887.

Synthesis of 2-iodo-4-phenyl-6-(thiophen-2-yl)-1,3,5-triazine (61b).

According to **TP1**, 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 820 mg, 2 mmol) reacted with thiophen-2-ylzinc(II) iodide (0.72 M, 3.3 mL, 2.4 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 50:1) afforded 2-iodo-4-phenyl-6-(thiophen-2-yl)-1,3,5-triazine (**61b**, 453 mg, 62%) as a white solid. **m. p.** = 122.8-124.3 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.57-8.52 (m, 2H), 8.27 (dd, *J* = 3.8 Hz, 1.3 Hz, 1H), 7.69 (dd, *J* = 4.9 Hz, 1.3 Hz, 1H), 7.67-7.50 (m, 3H), 7.23 (dd, *J* = 4.9 Hz, 3.8 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 170.8, 166.9, 142.2, 139.7, 133.9, 133.8, 133.4, 133.1, 129.3, 128.8, 128.7.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2926 (VW), 2247 (VW), 1509 (S), 1474 (VS), 1426 (M), 1364 (M), 1246 (W), 1209 (W), 1086 (W), 1019 (W), 819 (W), 768 (S), 726 (M), 692 (M), 655 (W).

MS (EI, 70 eV): m/z (%) = 364 (M⁺, 43), 321 (13), 281 (9), 275 (3), 273 (12), 239 (15), 238 (100), 229 (2), 137 (4), 136 (7), 135 (93), 129 (75), 108 (18), 77 (12). **HRMS** (EI): Calcd. for $[C_{13}H_8IN_3S]^+$: 364.9484; found: 364.9477.

Synthesis of 4-iodo-N,N,6-triphenyl-1,3,5-triazin-2-amine (61c).

2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 409 mg, 1 mmol) reacted with lithium diphenylamide (1.1 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 50:1) afforded 4-iodo-N,N,6-triphenyl-1,3,5-triazin-2-amine (**1c**, 358 mg, 80%) as a white solid.

m. p. = 205.3-207.1 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.18 (d, *J* = 7.1 Hz, 2H), 7.51-7.35 (m, 7H), 7.34-7.27 (m, 6H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 170.1, 163.6, 142.5, 141.5, 134.5, 132.7, 129.1, 128.9, 128.4, 127.5, 126.8.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3036 (VW), 1584 (W), 1471 (S), 1436 (S), 1371 (S), 1309 (W), 1225 (M), 1165 (M), 1024 (W), 995 (W), 773 (M), 747 (M), 692 (S), 636 (M).

MS (EI, 70 eV): m/z (%) = 451 (17), 450 (M⁺, 83), 449 (27), 323 (29), 296 (16), 220 (100), 167 (53), 129 (27), 103 (21), 77 (74).

HRMS (EI): Calcd. for $[C_{21}H_{15}IN_4]^+$: 450.0341; found: 450.0333.

Synthesis of 2-iodo-4,6-diphenyl-1,3,5-triazine (61d).

A 50 mL round-bottom flask was charged with HI (57% solution, 20 mL). The solution was cooled to 5 °C and 2-chloro-4,6-diphenyl-1,3,5-triazine (2.67 g, 10

mmol) was added at the same temperature. The reaction mixture was allowed to warm up to 25 °C slowly and stirred for 48 h at 25 °C. The mixture was neutralized carefully with solid potassium carbonate, and decolorized with a saturated aqueous solution of sodium disulfite. Water was added until the solution was formed. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (3 x 50 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed *in vacuo*. Purification by flash column chromatography (silica gel, pentane / EtOAc = 100:1) afforded 2-iodo-4,6-diphenyl-1,3,5-triazine (**61d**, 2.69 g, 75%) as a white solid.

m. p. = 146.5-147.8 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.64-8.59 (m, 4H), 7.67-7.53 (m, 6H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 171.1, 142.6, 134.2, 133.4, 129.3, 128.8.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3043 (VW), 2924 (VW), 1587 (W), 1515 (VS), 1480 (VS),1432 (M), 1359 (S), 1314 (W), 1212 (W), 1067 (W),795 (M), 747 (S), 685 (S), 637 (M).

MS (EI, 70 eV): m/z (%) = 358 (M⁺, 2), 232 (36), 207 (10), 130 (10), 129 (100), 127 (1), 126 (1), 103 (22), 77 (35).

HRMS (EI): Calcd. for $[C_{15}H_{10}IN_3]^+$: 358.9919; found: 358.9938.

Synthesis of ethyl 3-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61e).

According to **TP1**, 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 820 mg, 2 mmol) reacted with (3-(ethoxycarbonyl)phenyl)zinc iodide (0.75 M, 3.2 mL, 2.4 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 20:1) afforded ethyl 3-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (**61e**, 474 mg, 55%) as colorless oil. **¹H NMR** (300 MHz, CDCl₃): δ (ppm) = 9.19 (t, *J* = 1.5 Hz, 1H), 8.75 (dt, *J* = 7.7 Hz, 1.5 Hz, 1H), 8.60-8.57 (m, 2H), 8.28-8.26 (m, 1H), 7.63-7.59 (m, 2H), 7.55-7.51 (m, 2H), 4.46 (q, *J* = 7.1 Hz, 2H), 1.46 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (75 MHz, CDCl₃): δ (ppm) = 171.1, 170.2, 165.9, 142.7, 134.7, 134.1, 133.9, 133.6, 133.3, 131.3, 130.3, 129.4, 128.9, 128.8, 61.4, 14.4.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3070 (VW), 2981 (VW), 1716 (S), 1511 (VS), 1490 (VS), 1430 (S), 1354 (M), 1260 (S), 1221 (S), 1149 (M), 1070 (M), 906 (S), 799 (M), 728 (VS), 686 (VS), 638 (M).

MS (EI, 70 eV): m/z (%) = 431 (M⁺, 3), 385 (17), 305 (18), 304 (100), 298 (4), 282 (1), 277 (1), 255 (3), 201 (48), 173 (10), 129 (23), 103 (4).

HRMS (EI): Calcd. for [C₁₈H₁₄IN₃O₂]⁺: 431.0131; found: 431.0117.

Synthesis of 2-(3,5-difluorophenyl)-4-iodo-6-phenyl-1,3,5-triazine (61f).

According to **TP1**, 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 820 mg, 2 mmol) reacted with (3,5-difluorophenyl)zinc bromide (0.68 M, 3.5 mL, 2.4 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 50:1) afforded 2-(3,5-difluorophenyl)-4-iodo-6-phenyl-1,3,5-triazine (**61f**, 529 mg, 67%) as a white solid.

m. p. = 150.0-152.2 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.61-8.56 (m, 2H), 8.17-8.09 (m, 2H), 7.69-7.53 (m, 3H), 7.08 (tt, *J* = 8.4 Hz, 2.4 Hz, 2.3Hz, 1H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 171.3, 168.9 (t, *J* = 3.7 Hz, 1C), 164.9 (d, *J* = 12.1 Hz, 1C), 161.5 (d, *J* = 12.1 Hz, 1C), 142.6, 137.7 (t, *J* = 9.7 Hz, 1C), 133.8, 133.7, 129.4, 128.9, 112.2 (d, *J* = 8.9 Hz, 1C), 111.9 (d, *J* = 8.9 Hz, 1C), 108.6 (t, *J* = 25.5 Hz, 1C).

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3078 (VW), 2925 (VW), 1600 (W), 1516 (S),

1491 (VS), 1361 (M), 1235 (M), 1119 (W), 987 (W), 774 (M), 730 (M), 685 (M), 647 (W).

MS (EI, 70 eV): m/z (%) = 394 (M⁺, 15), 382 (6), 381 (23), 281 (6), 269 (11), 267

(62), 240 (4), 229 (2), 165 (97), 139 (33), 129 (100), 103 (36), 77 (28).

HRMS (EI): Calcd. for $[C_{15}H_8F_2IN_3]^+$: 394.9731; found: 394.9711.

Synthesis of ethyl 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61g).

According to **TP1**, 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 820 mg, 2 mmol) reacted with (4-(ethoxycarbonyl)phenyl)zinc iodide (0.72 M, 3.4 mL, 2.4 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 20:1) afforded ethyl 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (**61g**, 440 mg, 51%) as a white solid. **m. p.** = 172.3-174.5 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.68-8.57 (m, 4H), 8.22-8.17 (m, 2H), 7.68-7.51 (m, 3H), 4.45 (q, *J* = 7.1 Hz, 2H), 1.46 (t, *J* = 7.1 Hz, 3H),

¹³**C** NMR (75 MHz, CDCl₃): δ (ppm) = 171.2, 170.1, 165.9, 142.7, 138.0, 134.6, 133.9, 133.6, 129.8, 129.4, 129.2, 128.8, 61.4, 14.3.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3054 (VW), 2981 (VW), 1709 (S), 1482 (VS), 1353 (M), 1271 (S), 1221 (S), 1069 (M), 1018 (W), 827 (W), 797 (M), 754 (S), 688 (M), 647 (W).

MS (EI, 70 eV): m/z (%) = 432 (100), 322 (6), 217 (13), 145 (1).

HRMS (ESI): Calcd. for $[C_{18}H_{14}IN_3O_2 + H]^+$: 432.0209; found: 432.0200 $([C_{18}H_{14}IN_3O_2 + H]^+)$.

Synthesis of ethyl 2-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (61h).

According to **TP1**, 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 820 mg, 2 mmol) reacted with (2-(ethoxycarbonyl)phenyl)zinc iodide (0.72 M, 3.4 mL, 2.4 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 20:1) afforded ethyl 2-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (**61h**, 569 mg, 66%) as a white solid. **m. p.** = 90.5-92.8 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.58-8.51 (m, 2H), 8.25-8.18 (m, 1H), 7.78-7.73 (m, 1H), 7.68-7.59 (m, 3H), 7.58-7.50 (m, 2H), 4.30 (q, *J* = 7.1 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 171.9, 170.7, 168.9, 141.8, 134.3, 134.2, 133.8, 133.7, 131.8, 130.7, 130.6, 129.5, 129.2, 128.9, 61.6, 14.1.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3068 (VW), 2976 (VW), 1726 (S), 1509 (VS), 1472 (VS), 1357 (M), 1287 (M), 1237 (M), 1217 (M), 1124 (W), 797 (W), 750 (M), 685 (M).

MS (EI, 70 eV): m/z (%) = 431 (M⁺, 7), 386 (9), 385 (18), 304 (65), 277 (5), 276 (26), 275 (6), 274 (9), 249 (2), 201 (14), 173 (37), 130 (27), 129 (100), 104 (3), 77 (12). **HRMS** (EI): Calcd. for $[C_{18}H_{14}IN_{3}O_{2}]^{+}$: 431.0131; found: 431.0119.

Synthesis of 2-(4-bromophenyl)-4-iodo-6-phenyl-1,3,5-triazine (61i).

According to **TP1**, 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 820 mg, 2 mmol) reacted with (4-bromophenyl)zinc iodide (0.68 M, 3.5 mL, 2.4 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 100:1) afforded

2-(4-bromophenyl)-4-iodo-6-phenyl-1,3,5-triazine (61i, 417 mg, 47%) as a white solid.

m. p. = 163.5-165.4 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.55 (d, *J* = 7.7 Hz, 2H), 8.44 (d, *J* = 8.5 Hz, 2H), 7.66 (d, *J* = 8.5 Hz, 2H), 7.64-7.50 (m, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 171.1, 170.1, 142.6, 133.9, 133.6, 133.1, 132.1, 130.7, 129.3, 128.8, 128.6.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3047 (VW), 1585 (W), 1510 (S), 1480 (VS), 1441 (M), 1354 (M), 1221 (M), 1063 (M),1011 (M), 818 (W), 800 (M), 766 (S), 647 (M), 614 (W).

MS (EI, 70 eV): m/z (%) = 436 (M⁺, 9), 313 (5), 312 (27), 311 (5), 310 (31), 208 (43), 206 (45), 180 (7), 129 (100), 102 (16), 77 (21).

HRMS (EI): Calcd. for $[C_{15}H_9BrIN_3]^+$: 436.9025; found: 436.9009.

Synthesis of 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzonitrile (61j).

According to **TP1**, 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 820 mg, 2 mmol) reacted with (4-cyanophenyl)zinc iodide (0.74 M, 3.2 mL, 2.4 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 10:1) afforded 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzonitrile (**61j**, 428 mg, 56%) as a white solid.

m. p. = 176.7-178.5 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.75-8.70 (m, 2H), 8.63-8.58 (m, 2H), 7.88-7.83 (m, 2H), 7.70-7.54 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 171.4, 169.3, 142.7, 138.3, 133.9, 133.7, 132.5, 129.7, 129.5, 128.9, 118.2, 116.5.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3067 (VW), 2918 (VW), 2227 (VW), 1511 (S), 1483 (VS), 1355 (M), 1224 (M), 1068 (W), 800 (W), 773 (M), 690 (W).

MS (EI, 70 eV): m/z (%) = 383 (M⁺, 9), 292 (4), 258 (9), 257 (45), 191 (1), 155 (7),

154 (80), 129 (100), 103 (12), 77 (11).

HRMS (EI): Calcd. for [C₁₆H₉IN₄]⁺: 383.9872; found: 383.9858.

Synthesis of 2-(4-butylphenyl)-4-iodo-6-phenyl-1,3,5-triazine (61k).

According to **TP1**, 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 820 mg, 2 mmol) reacted with (4-butylphenyl)zinc iodide (0.72 M, 3.3 mL, 2.4 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 100:1) afforded 2-(4-butylphenyl)-4-iodo-6-phenyl-1,3,5-triazine (**61k**, 515 mg, 62%) as a white solid.

m. p. = 103.3-104.9 °C.

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 8.63-8.58 (m, 2H), 8.51 (d, *J* = 8.3 Hz, 2H), 7.67-7.51 (m, 3H), 7.36 (d, *J* = 8.3 Hz, 2H), 2.77-2.70 (m, 2H), 1.74-1.62 (m, 2H), 1.41 (qt, *J* = 7.5 Hz, 7.3 Hz, 2H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 171.1, 170.9, 149.3, 142.6, 134.3, 133.3, 131.7, 129.4, 129.3, 128.9, 128.7, 35.8, 33.3, 22.4, 13.9.

IR (Diamond-ATR, neat): v (cm⁻¹) = 2956 (VW), 2928 (VW), 1609 (VW), 1511 (VS), 1479 (S), 1441 (W), 1358 (M), 1221 (M), 1070 (W), 801 (W), 767 (M), 693 (W), 618 (W).

MS (EI, 70 eV): m/z (%) = 416 (100), 306 (49), 257 (24), 177 (7).

HRMS (ESI): Calcd. for $[C_{19}H_{18}IN_3 + H]^+$: 416.0624; found: 416.0619 ($[C_{19}H_{18}IN_3 + H]^+$).

Synthesis of 4-(4-octyl-6-phenyl-[1,3,5]triazin-2-yl)-benzoic acid ethyl ester (64a).

According to **TP 2**, 2-iodo-4-octyl-6-phenyl-1,3,5-triazine (**61a**, 395 mg, 1 mmol) was converted to the corresponding triazinylmagnesium chloride (**62a**) after I/Mg exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted with ethyl 4-iodobenzoate (**63a**, 305 mg, 1.1 mmol) after addition of ZnBr_2 ·LiCl (1 M, 1.1 mL) in the presence of Pd(dba)₂ (5 mol%) and tfp (10 mol%). Purification by flash column chromatography (silica gel, pentane / EtOAc = 20:1) afforded 4-(4-octyl-6-phenyl-[1, 3, 5]triazin-2-yl)-benzoic acid ethyl ester (**64a**, 292 mg, 62%) as a pale yellow solid.

m. p. = 54.8 - 56.4 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.73 (d, *J* = 8.8 Hz, 2H), 8.68 (dd, *J* = 8.0 Hz, 1.5 Hz, 2H), 8.22 (d, *J* = 8.8 Hz, 2H), 7.66-7.52 (m, 3H), 4.46 (q, *J* = 7.1 Hz, 2H), 3.08-3.00 (m, 2H), 2.04-1.93 (m, 2H), 1.56-1.22 (m, 10H), 1.47 (t, *J* = 7.2 Hz, 3H), 0.95-0.86 (m, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 180.5, 171.3, 170.3, 166.2, 140.1, 135.9, 133.7, 132.6, 129.7, 128.9, 128.8, 128.7, 61.3, 39.3, 31.9, 29.5, 29.4, 29.3, 27.7, 22.7, 14.4, 14.1.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3583 (W), 2913 (W), 1724 (M), 1529 (S), 1364 (M), 1278 (S), 1101 (M), 1021 (M), 759 (S), 689 (M), 665 (S).

MS (EI, 70 eV): m/z (%) = 417 (M⁺, 7), 388 (2), 372 (3), 332 (12), 320 (18), 319 (100), 176 (10), 104 (16).

HRMS (EI): Calcd. for $[C_{26}H_{31}N_3O_2]^+$: 417.2416; found: 417.2408.

Synthesis of 2-(4-octyl-6-phenyl-[1,3,5]triazin-2-ylmethyl)-acrylic acid ethyl ester (64b).

According to **TP 2**, 2-iodo-4-octyl-6-phenyl-1,3,5-triazine (**61a**, 395 mg, 1 mmol) was converted to the corresponding triazinylmagnesium chloride (**62a**) after I/Mg exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted with ethyl 2-(bromomethyl)acrylate (**63b**, 213 mg, 1.1 mmol) after addition of CuCN·2LiCl (1 M, 0.2 mL). Purification by flash column chromatography (silica gel, pentane / EtOAc = 20:1) afforded 2-(4-octyl-6-phenyl-[1,3,5]triazin-2-ylmethyl)-acrylic acid ethyl ester (**64b**, 279 mg, 73%) as yellow liquid.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.48 (d, *J* = 8.5 Hz, 2H), 7.57-7.44 (m, 3H), 6.36 (s, 1H), 5.68 (s, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 2H), 2.92-2.85 (m, 2H), 1.89-1.79 (m, 2H), 1.44-1.23 (m, 10H), 1.20 (t, *J* = 7.1 Hz, 3H), 0.87 (t, *J* = 6.7 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 179.8, 176.8, 170.8, 166.8, 136.6, 135.7, 132.4, 128.9, 128.6, 127.1, 60.8, 41.7, 39.1, 31.8, 29.4, 29.3, 29.2, 27.8, 22.7, 14.2, 14.1.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3583 (W), 2956 (W), 2927 (M), 2855 (W), 1720 (S), 1534 (VS), 1380 (M), 1148 (M), 1027 (W), 735 (W).

MS (EI, 70 eV): m/z (%) = 381 (M⁺, 19), 380 (3), 352 (9). 336 (8), 308 (12), 296 (25), 284 (16), 283 (100), 237 (20), 211 (18), 104 (29).

HRMS (EI): Calcd. for $[C_{23}H_{31}N_3O_2]^+$: 381.2416; found: 381.2412.

Synthesis of ethyl 2-((4-phenyl-6-(thiophen-2-yl)-1,3,5-triazin-2-yl)methyl)acrylate (64c).

According to **TP 2**, 2-iodo-4-phenyl-6-(thiophen-2-yl)-1,3,5-triazine (**61b**, 365 mg, 1 mmol) was converted to the corresponding triazinylmagnesium chloride (**62b**) after I/Mg exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted with ethyl 2-(bromomethyl)acrylate (**63b**, 213 mg, 1.1 mmol) after addition of CuCN·2LiCl (1 M, 0.2 mL). Purification by flash column chromatography (silica gel, pentane / EtOAc = 20:1) afforded 2-((4-phenyl-6-(thiophen-2-yl)-1,3,5-triazin-2-yl)methyl)acrylate (**64c**, 213 mg, 59%) as yellow liquid.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.58 (d, *J* = 6.8 Hz, 2H), 8.28-8.23 (m, 1H), 7.65-7.48 (m, 4H), 7.24-7.18 (m, 1H), 6.41 (s, 1H), 5.76 (s, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 4.06 (s, 2H), 1.24 (t, *J* = 7.1 Hz, 3H).

¹³**C** NMR (75 MHz, CDCl₃): δ (ppm) = 177.4, 171.1, 167.6, 166.9, 141.7, 136.6, 135.5, 132.6, 132.3, 131.7, 128.9, 128.6, 128.5, 127.1, 60.8, 41.7, 14.2.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3583 (W), 3066 (W), 2979 (W), 2928 (W), 2253 (W), 1716 (VS), 1519 (VS), 1439 (S), 1375 (S), 1152 (M), 1027 (M), 774 (W), 732 (M), 704 (M), 665 (W).

MS (EI, 70 eV): m/z (%) = 351 (M⁺, 60), 322 (36), 306 (19), 280 (13), 279 (56), 278 (100), 273 (18), 219 (10), 175 (30), 129 (18), 110 (31), 108 (29).

HRMS (EI): Calcd. for [C₁₉H₁₇N₃O₂S]⁺: 351.1041; found: 351.1031.

Synthesis of (4-(diphenylamino)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanone (64d).

According to **TP 2**, 4-iodo-N,N,6-triphenyl-1,3,5-triazin-2-amine (**61c**, 225 mg, 0.5 mmol) was converted to the corresponding triazinylmagnesium chloride (**62c**) after I/Mg exchange reaction with BuMgCl (1.43 M, 0.37 mL, 0.55 mmol) and was reacted with benzoyl chloride (**63c**, 60 mg, 0.55 mmol) after addition of CuCN·2LiCl (1 M,

0.55 mL). Purification by flash column chromatography (silica gel, pentane / EtOAc =

10:1) afforded (4-(diphenylamino)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanone(64d, 154 mg, 71%) as a white solid.

m. p. = 212.6-214.0 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.31 (d, *J* = 7.3 Hz, 2H), 8.09 (d, *J* = 7.3 Hz, 2H), 7.71-7.21 (m, 16H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 190.3, 171.7, 170.5, 165.9, 142.8, 135.5, 134.4, 133.9, 132.6, 130.8, 129.1, 129.0, 128.5, 128.3, 127.6, 126.7.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3583 (W), 3065 (W), 2254 (W), 1969 (W), 1691 (S), 1595 (M), 1537 (S), 1471 (S), 1372 (S), 1221 (M), 908 (S), 733 (M), 638 (W).

MS (EI, 70 eV): m/z (%) = 428 (M⁺, 100), 323 (53), 296 (45), 220 (12), 193 (5), 180 (8), 167 (7), 105 (20), 77 (21).

HRMS (EI): Calcd. for [C₂₈H₂₀N₄O]⁺: 428.1637; found: 428.1627.

Synthesis of (4, 6-diphenyl-[1,3,5]triazin-2-yl)-phenyl-methanol (64e).

According to **TP 2**, 2-iodo-4,6-diphenyl-1,3,5-triazine (**61d**, 359 mg, 1 mmol) was converted to the corresponding triazinylmagnesium chloride (**62d**) after I/Mg exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted with benzaldehyde (**63d**, 117 mg, 1.1 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 10:1) afforded (4, 6-diphenyl-[1,3,5]triazin-2-yl)-phenyl-methanol (**64e**, 205 mg, 61%) as a white solid.

m. p. = 135.5 - 137.5 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.70-8.64 (m, 4H), 7.75-7,53 (m, 8H), 7.46 - 7.30 (m, 3H), 5.97 (s, 1H), 4.97 (br. s, 1H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 178.4, 171.3, 141.2, 135.2, 133.1, 129.1, 128.8, 128.5, 128.1, 126.8, 75.1.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3467 (W), 3064 (W), 2920 (W), 1959 (W), 1539 (S), 1520 (S), 1373 (M), 1372 (M), 1176 (W), 1061(W), 754 (M), 720 (M), 690 (M).

MS (EI, 70 eV): m/z (%) = 239(M⁺, 100), 323 (11), 322 (23), 262 (39), 234 (12), 233 (53), 130 (30), 105 (14), 103 (60).

HRMS (EI): Calcd. for [C₂₂H₁₇N₃O]⁺: 339.1372; found: 339.1366.

Synthesis of ethyl 3-(4-(2-(ethoxycarbonyl)allyl)-6-phenyl-1,3,5-triazin-2-yl) benzoate (64f).

According to **TP 2**, ethyl 3-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (**61e**, 431 mg, 1 mmol) was converted to the corresponding triazinylmagnesium chloride (**62e**) after I/Mg exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted with ethyl 2-(bromomethyl)acrylate (**63b**, 213 mg, 1.1 mmol) after addition of CuCN·2LiCl (1 M, 0.2 mL). Purification by flash column chromatography (silica gel, pentane / EtOAc = 10:1) afforded ethyl 3-(4-(2-(ethoxycarbonyl)allyl)-6-phenyl-1,3,5-triazin-2-yl)benzoate (**64f**, 286 mg, 71%) as colorless oil.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 9.26 (t, J = 1.7 Hz, 1H), 8.81-8.79 (m, 1H), 8.65-8.62 (m, 2H), 8.26-8.24 (m, 1H), 7.63-7.57 (m, 2H), 7.55-7.52 (m, 2H), 6.42 (d, J = 1.4 Hz, 1H), 5.77-5.76 (m, 1H), 4.46 (q, J = 7.2 Hz, 2H), 4.22 (q, J = 7.2 Hz, 2H), 4.11 (s, 2H), 1.46 (t, J = 7.2 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 177.7, 171.4, 170.5, 166.9, 166.2, 136.6, 136.3, 135.6, 133.3, 133.1, 132.7, 131.2, 130.0, 129.0, 128.7, 128.6, 127.2, 61.3, 60.8, 41.8, 14.4, 14.2.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3583 (W), 2981 (W), 2256 (W), 1721 (S), 1529 (S), 1366 (M), 1257 (M), 1152 (M), 1026 (W), 752 (M), 690 (W). MS (EI, 70 eV): m/z (%) = 417 (M⁺, 100), 388 (38), 372 (41), 345 (72), 344 (97), 273 (15), 241 (12), 213 (14), 169 (20), 149 (10), 130 (12), 104 (30). HRMS (EI): Calcd. for $[C_{24}H_{23}N_3O_4]^+$: 417.1689; found: 417.1688.

Synthesis of (4-(3,5-difluorophenyl)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanol (64g).

According to **TP 2**, 2-(3,5-difluorophenyl)-4-iodo-6-phenyl-1,3,5-triazine (**61f**, 395 mg, 1 mmol) was converted to the corresponding triazinylmagnesium chloride (**62f**) after I/Mg exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted with benzaldehyde (**63d**, 117 mg, 1.1 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 20:1) afforded (4-(3,5-difluorophenyl)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanol (**64g**, 202 mg, 54%) as a white solid.

m. p. = 145.2-147.9 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.66-8.61 (m, 2H), 8.17-8.12 (m, 2H), 7.69-7.60 (m, 3H), 7.58-7.54 (m, 2H), 7.41-7.37 (m, 2H), 7.33-7.29 (m, 1H), 7.06-7.02 (m, 1H), 5.94 (d, *J* = 6.1 Hz, 1H), 4.77 (d, *J* = 6.1 Hz, 1H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 178.9, 171.7, 169.4 (t, *J* = 3.5 Hz, 1C), 164.0 (d, *J* = 12.3 Hz, 1C), 162.4 (d, *J* = 12.3 Hz, 1C), 140.8, 138.8 (t, *J* = 9.5 Hz, 1C), 134.7, 133.4, 129.2, 128.9, 128.5, 128.2, 126.7, 111.9 (d, *J* = 5.6 Hz, 1C), 111.1 (d, *J* = 5.6 Hz, 1C), 108.2 (t, *J* = 25.5 Hz, 1C), 75.2.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3477 (W), 3080 (VW), 2924 (W), 1522 (VS), 1369 (S), 1177 (W), 1117 (W), 1062 (W), 986 (W), 878 (W), 697 (M).
MS (EI, 70 eV): m/z (%) = 375 (M⁺, 33), 323 (32), 298 (12), 269 (23), 220 (100), 180 (11), 167 (24), 129 (27), 117 (59), 104 (27), 77 (66). **HRMS** (EI): Calcd. for $[C_{22}H_{15}F_{2}N_{3}O]^{+}$: 375.1183; found: 375.1182.

Synthesis of 4-[4-(hydroxy-phenyl-methyl)-6-phenyl-[1,3,5]triazin-2-yl]-benzoic acid ethyl ester (64h).

According to **TP 2**, ethyl 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (**61g**, 431 mg, 1 mmol) was converted to the corresponding triazinylmagnesium chloride (**62g**) after I/Mg exchange reaction with OctMgBr (1 M, 1.1 mL, 1.1 mmol) and was reacted with benzaldehyde (**63d**, 117 mg, 1.1 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 10:1) afforded 4-[4-(hydroxy-phenyl-methyl)-6-phenyl-[1,3,5]triazin-2-yl]-benzoic acid ethyl ester (**64h**, 309 mg, 75%) as a white solid. **m. p.** = 144.7-146.3 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.69 (dd, *J* = 12.8 Hz, 7.7 Hz, 4H), 8.22 (d, *J* = 8.3 Hz, 2H), 7.74-7.54 (m, 5H), 7.47-7.25 (m, 3H), 5.97 (s, 1H), 4.46 (q, *J* = 7.1 Hz, 2H), 1.47 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 178.7, 171.6, 170.6, 166.0, 140.9, 139.1, 134.9, 134.2, 133.3, 129.8, 129.2, 128.9, 128.8, 128.5, 128.1, 126.7, 75.2, 61.4, 14.4. **IR** (Diamond-ATR, neat): $\tilde{\nu}$ (cm⁻¹) = 3467 (M), 3063 (W), 2982 (W), 2929 (W), 1717 (S), 1520 (S), 1372 (S), 1275 (S), 1104 (M), 909 (M), 760 (M), 731 (S), 698 (M).

MS (EI, 70 eV): m/z (%) = 411 (M⁺, 67), 410 (17), 395 (28). 366 (11), 334 (28), 305 (22), 232 (12), 219 (15), 130 (16), 105 (100).

HRMS (EI): Calcd. for $[C_{25}H_{21}N_3O_3]^+$: 411.1583; found: 411.1573.

Synthesis of ethyl 2-(4-(hydroxy(phenyl)methyl)-6-phenyl-1,3,5-triazin-2-yl) benzoate (64k).

According to **TP 2**, ethyl 2-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (**61h**, 431 mg, 1 mmol) was converted to the corresponding triazinylmagnesium chloride (**62h**) after I/Mg exchange reaction with OctMgBr (1 M, 1.1 mL, 1.1 mmol) and was reacted with benzaldehyde (**63d**, 117 mg, 1.1 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 10:1) afforded ethyl 2-(4-(hydroxy(phenyl)methyl)-6-phenyl-1,3,5-triazin-2-yl)benzoate (**64k**, 261 mg, 63%) as colorless oil.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.61-8.58 (m, 2H), 8.21-8.16 (m, 1H), 7.77-7.73 (m, 1H), 7.65-7.59 (m, 5H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.32-7.28 (m, 1H), 5.92 (s, 1H), 4.77 (br. s, 1H), 4.17-4.06 (m, 2H), 1.02 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 178.3, 172.6, 171.2, 169.1, 140.9, 135.5, 134.8, 134.1, 133.3, 131.4, 130.7, 130.4, 129.2, 129.1, 128.8, 128.5, 128.1, 126.7, 75.1, 61.5, 13.8.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3469 (W), 3064 (W), 2918 (W), 2250 (W), 1725 (S), 1536 (S), 1521 (S), 1374 (M), 1287 (M), 1253 (M), 1177 (W), 1121 (W), 1061 (W), 910 (W), 731 (M), 697 (M), 608 (W).

MS (EI, 70 eV): m/z (%) = 411 (M⁺, 100), 410 (25), 409 (82), 394 (11), 366 (13), 364 (32), 349 (23), 335 (15), 288 (24), 276 (20), 259 (20), 234 (38), 173 (23), 130 (71), 105 (86), 77 (46).

HRMS (EI): Calcd. for $[C_{25}H_{21}N_3O_3]^+$: 411.1583; found: 411.1580.

Synthesis of (4-(4-bromophenyl)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanone (64l).

According to **TP 2**, 2-(4-bromophenyl)-4-iodo-6-phenyl-1,3,5-triazine (**61i**, 438 mg, 1 mmol) was converted to the corresponding triazinylmagnesium chloride (**62i**) after I/Mg exchange reaction with OctMgBr (1 M, 1.1 mL, 1.1 mmol) and was reacted with benzoyl chloride (**63c**, 169 mg, 1.2 mmol) after addition of CuCN·2LiCl (1 M, 1.1 mL). Purification by flash column chromatography (silica gel, pentane / EtOAc = 10:1) afforded (4-(4-bromophenyl)-6-phenyl-1,3,5-triazin-2-yl)(phenyl)methanone (**64l**, 289 mg, 68%) as a white solid.

m. p. = 144.3-146.1 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.69 (d, *J* = 7.1 Hz, 2H), 8.58 (d, *J* = 8.5 Hz, 2H), 8.14 (d, *J* = 7.1 Hz, 2H), 7.75-7.63 (m, 4H), 7.62-7.52 (m, 4H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 190.3, 172.3, 171.5, 170.9, 134.9, 134.4, 134.1, 134.0 133.5, 132.1, 130.9, 130.8, 129.3, 128.9, 128.7, 128.5.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3583 (W), 3064 (W), 2923 (W), 2248 (W), 1686 (S), 1588 (M), 1528 (VS), 1367 (S), 1222 (M), 1176 (W), 1068 (W), 1011 (W), 909 (W), 835 (W), 774 (W), 665 (W), 646 (W).

MS (EI, 70 eV): m/z (%) = 416 (22), 415 (M⁺, 54), 414 (9), 387 (4), 313 (4), 234 (17), 206 (4), 156 (2), 105 (100), 77 (30).

HRMS (EI): Calcd. for $[C_{22}H_{14}BrN_3O]^+$: 415.0320; found: 415.0320.

Synthesisof4-(4-(hydroxy(phenyl)methyl)-6-phenyl-1,3,5-triazin-2-yl)benzonitrile (64m).

According to **TP 2**, 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzonitrile (**61j**, 300 mg, 0.78 mmol) was converted to the corresponding triazinylmagnesium chloride (**62j**) after I/Mg exchange reaction with OctMgBr (1 M, 0.86 mL, 1.1 mmol) and was reacted with benzaldehyde (**63d**, 91 mg, 0.86 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 10:1) afforded 4-(4-(hydroxy(phenyl)methyl)-6-phenyl-1,3,5-triazin-2-yl)benzonitrile (**64m**, 186 mg, 64%) as a white solid.

m. p. = 192.0-194.2 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.76 (d, *J* = 8.5 Hz, 2H), 8.70-8.62 (m, 2H), 7.86 ((d, *J* = 8.5 Hz, 2H). 7.71-7.54 (m, 5H), 7.45-7.29 (m, 3H), 5.98 (s, 1H), 4.79 (br. s, 1H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 179.0, 171.8, 169.9, 140.8, 139.3, 134.7, 133.6, 132.5, 129.5, 129.2, 128.9, 128.6, 128.2, 126.7, 118.3, 116.2, 75.2.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3445 (W), 3062 (W), 2923 (W), 2230 (W), 1575 (W), 1519 (VS), 1371 (S), 1344 (M), 1191 (W), 1020 (W), 910 (W), 821 (W), 695 (W), 665 (W).

MS (EI, 70 eV): m/z (%) = 364 (M⁺, 20), 363 (12), 362 (39). 348 (21), 347 (11), 258 (14), 244 (7), 129 (11), 117 (11), 105 (100).

HRMS (EI): Calcd. for $[C_{23}H_{16}N_4O]^+$: 364.1324; found: 364.1315.

Synthesis of 2,4-di(cyclohex-2-en-1-yl)-6-phenyl-1,3,5-triazine (67).

According to **TP 2**, 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 409 mg, 1 mmol) as converted to the corresponding doubly magnesiated 1,3,5-triazine (**65**) after I/Mg exchange reaction with sBuMgCl (1.77 M, 1.25 mL, 2.2 mmol) and was reacted with 3-bromocyclohex-1-ene (354 mg, 2.2 mmol) after addition of CuCN·2LiCl (1 M, 2.2 mL). Purification by flash column chromatography (silica gel, pentane / EtOAc = 100:1) afforded 2,4-di(cyclohex-2-en-1-yl)-6-phenyl-1,3,5-triazine (**67**, 211 mg, 67%) as colorless liquid.

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 8.55 (dd, *J* = 7.7 Hz, 1.7 Hz 2H), 7.60-7.41 (m, 3H), 6.07-5.85 (m, 4H), 3.76-3.61 (m, 2H), 2.28-1.59 (m, 12H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 181.4, 170.9, 136.2, 132.2, 128.9, 128.7, 128.5, 127.2, 44.5, 27.8, 24.8, 21.4.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3058 (W), 2959 (W), 1674 (M), 1516 (VS), 1378 (W), 1260 (W), 1231 (W), 1025 (M), 776 (M), 699 (M), 650 (W).

MS (EI, 70 eV): m/z (%) = 318 (16), 317 (M⁺, 64), 316 (21), 276 (43), 252 (12), 236 (16), 281 (10), 106 (33), 104 (100), 79 (33), 77 (41).

HRMS (EI): Calcd. for $[C_{21}H_{23}N_3]^+$: 317.1892; found: 317.1893.

Synthesis of 1,1'-(6-phenyl-1,3,5-triazine-2,4-diyl)bis(2,2-dimethylpropan-1-one) (68).

According to **TP 2**, 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 409 mg, 1 mmol) as converted to the corresponding doubly magnesiated 1,3,5-triazine (**65**) after I/Mg exchange reaction with sBuMgCl (1.77 M, 1.25 mL, 2.2 mmol) and was reacted with 3-bromocyclohex-1-ene (354 mg, 2.2 mmol) after addition of CuCN·2LiCl (1 M, 2.2 mL, 2.2 mmol). Purification by flash column chromatography (silica gel, pentane / EtOAc = 50:1) afforded 1,1'-(6-phenyl-1,3,5-triazine-2,4-diyl) bis(2,2-dimethylpropan-1-one) (**68**, 121 mg, 38%) as a white solid. **m. p.** = 60.9-62.8 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.61-8.55 (m, 2H), 7.70-7.52 (m, 3H), 1.43 (s, 18H).

¹³**C** NMR (75 MHz, CDCl₃): δ (ppm) = 204.5, 172.1, 171.0, 134.2, 133.9, 129.4, 128.9, 43.8, 26.7.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3062 (W), 2968 (W), 1710 (S), 1528 (VS), 1477 (M), 1392 (S), 1061 (W), 990 (M), 839 (M), 749 (S), 699 (S), 650 (W).

MS (EI, 70 eV): m/z (%) = 325 (M⁺, 4), 269 (3), 242 (2), 241 (15), 226 (14), 207 (2), 185 (3), 157 (2), 129 (6), 103 (11), 85 (11), 77 (10), 57 (100).

HRMS (EI): Calcd. for $[C_{19}H_{23}N_3O_2]^+$: 325.1790; found: 325.1813.

Synthesis of 4,4',6,6'-tetraphenyl-2,2'-bi(1,3,5-triazine) (70).

According to **TP 2**, 2-iodo-4,6-diphenyl-1,3,5-triazine (**61d**, 359 mg, 1 mmol) was converted to the corresponding triazinylmagnesium chloride (**62d**) after I/Mg exchange reaction with BuMgCl (1.43 M, 0.77 mL, 1.1 mmol) and was reacted with 2-iodo-4,6-diphenyl-1,3,5-triazine (**61d**, 359 mg, 1 mmol) after addition of ZnCl₂ (1 M, 1.1 mL 1.1 mmol) in the presence of Pd(PPh₃)₄ (5 mol%). Purification by flash column chromatography (silica gel, pentane / EtOAc = 10:1) afforded 4,4',6,6'-tetraphenyl-2,2'-bi(1,3,5-triazine) (**70**, 265 mg, 57%) as a yellow solid. **m. p.** = 285.0-287.5 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.92-8.84 (m, 8H), 7.72-7.59 (m, 12H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 172.9, 170.4, 135.6, 133.1, 129.4, 128.8.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3034 (VW), 2924 (VW), 1504 (VS), 1444 (M), 1355 (S), 1245 (W), 1177 (W), 1024 (M), 839 (M), 794 (M), 751 (S), 686 (S), 643 (M).

MS (EI, 70 eV): m/z (%) = 465 (100), 445 (3), 305 (12), 259 (8).

HRMS (ESI): Calcd. for $[C_{30}H_{20}N_6 + H]^+$: 465.1828; found: 465.1821 ($[C_{30}H_{20}N_6 + H]^+$)

 $H]^{+}).$

Synthesis of ethyl 4-(4'-(4-butylphenyl)-6,6'-diphenyl-[2,2'-bi(1,3,5-triazin)]-4-yl) benzoate (72).

According to **TP 2**, 2-(4-butylphenyl)-4-iodo-6-phenyl-1,3,5-triazine (**61k**, 249 mg, 0.6 mmol) was converted to the corresponding triazinylmagnesium chloride after I/Mg exchange reaction with sBuMgCl (1.77 M, 0.37 mL, 0.66 mmol) and was reacted with ethyl 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (**61g**, 216 mg, 0.5 mmol) after addition of ZnCl₂ (1 M, 0.66 mL 0,66 mmol) in the presence of PEPPSI (5 mol%). Purification by flash column chromatography (silica gel, pentane / EtOAc = 5:1) afforded ethyl 4-(4'-(4-butylphenyl)-6,6'-diphenyl-[2,2'-bi(1,3,5-triazin)]-4-yl)benzoate (**72**, 154 mg, 52%) as a yellow solid.

m. p. = 164.6-166.5 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.91-8.88 (m, 2H), 8.85-8.81 (m, 4H), 8.73 (d, *J* = 8.2 Hz, 2H), 8.27 (d, *J* = 8.2 Hz, 2H), 7.68-7.57 (m, 6H), 7.41 (d, *J* = 7.9 Hz, 2H), 4.45 (q, *J* = 7.1 Hz, 2H), 2.77-2.73 (m, 2H), 1.72-1.66 (m, 2H), 1.46 (t, *J* = 7.1 Hz, 3H), 1.44-1.38 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 173.0, 172.9, 172.7, 171.9, 170.5, 169.9, 166.1, 148.9, 139.4, 135.6, 135.3, 134.2, 133.3, 133.0, 132.9, 129.9, 129.4, 129.4, 129.3, 129.2, 128.9, 128.8, 128.7, 61.4, 35.8, 33.3, 22.4, 14.3, 13.9.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3065 (W), 2956 (W), 1715 (S), 1504 (VS), 1357 (M), 1271 (S), 1099 (M), 1017 (M), 829 (W), 764 (S), 688 (S), 648 (M).

MS (EI, 70 eV): m/z (%) = 592 (M⁺, 100), 551 (9), 550 (29), 549 (40), 489 (13). 433 (8), 331 (9), 277 (9), 261 (14), 252 (24), 129 (9), 116 (11), 104 (21).

105

HRMS (EI): Calcd. for $[C_{37}H_{32}N_6O_2]^+$: 592.2587; found: 592.2591.

Synthesis of diethyl 4,4'-(6,6',6''-triphenyl-[2,2':4',2''-ter(1,3,5-triazine)]-4,4''diyl)dibenzoate (74).

According to **TP 2**, ethyl 4-(4-iodo-6-phenyl-1,3,5-triazin-2-yl)benzoate (**61g**, 431 mg, 1 mmol) was converted to the corresponding triazinylmagnesium bromide after I/Mg exchange reaction with OctMgBr (0.72 M, 1.53 mL, 1.1 mmol) and was reacted with 2,4-diiodo-6-phenyl-1,3,5-triazine (**59**, 144 mg, 0.35 mmol) after addition of ZnCl₂ (1 M, 1.1 mL 1.1 mmol) in the presence of Pd-PEPPSI-*i*Pr (5 mol%). Purification by flash column chromatography (silica gel, pentane / EtOAc = 2:1) afforded diethyl 4,4'-(6,6',6"-triphenyl-[2,2':4',2"-ter(1,3,5-triazine)]-4,4"-diyl)dibenzoate (**74**, 121 mg, 45%) as a yellow solid.

m. p. = 185.0-187.1 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.92 (d, *J* = 7.9 Hz, 5H), 8.86 (d, *J* = 7.4 Hz, 4H), 8.27 (d, *J* = 7.4 Hz, 4H), 7.73-7.59 (m, 10H), 4.45 (q, *J* = 7.1 Hz, 4H), 1.45 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 174.3, 173.2, 172.1, 171.0, 169.9, 166.0, 139.2, 135.1, 134.7, 134.4, 133.9, 133.5, 129.9, 129.5, 129.3, 129.0, 128.9, 61.4, 14.3. **IR** (Diamond-ATR, neat): $\tilde{\nu}$ (cm⁻¹) = 3066 (VW), 2927 (VW), 1717 (S), 1504 (VS), 1361 (M), 1270 (S), 1101 (M), 1020 (M), 834 (M), 759 (M), 733 (M), 688 (M), 650 (W).

MS (EI, 70 eV): m/z (%) = 763 (M⁺, 60), 718 (12), 588 (11), 487 (13), 486 (42), 336 (12), 309 (11), 285 (15), 277 (51), 249 (30), 208 (19), 176 (18), 148 (20), 129 (43), 104 (100), 77 (17).

HRMS (EI): Calcd. for $[C_{45}H_{33}N_9O_4]^+$: 763.2656; found: 763.2656.

2.2 Preparation of Functionalized Indazoles

2.2.1 Typical Procedures (TP)

TP1: Typical procedure for the preparation of 2-aryl-2*H*-indazole derivatives (3a-r).

To a solution of the 2-iodobenzyl chloride derivative (3.0 mmol) in THF (2 mL) in a dry and argon-flushed Schlenk-flask was added dropwise a solution of *i*PrMgCl·LiCl (3.2 mmol, 1.8 mL, 1.8 M in THF) at -20 °C. The reaction mixture was stirred for 30 min at the same temperature. GC-analysis of a quenched reaction aliquot shows full conversion. ZnBr₂ solution (1.6 mL, 1.6 mmol, 1 M in THF) was added to the Grignard reagent at -20 °C and allowed to warm to 25 °C. The solution was stirred for 20 min at the same temperature. To a solution of diazonium salt (2.0 mmol) in NMP/THF (1:1) (4 mL) the diarylzinc species was added dropwise at -40 °C, allowed slowly to warm up to 25 °C and stirred for 30 min at 25 °C. The reaction mixture was then stirred at 50 °C for 1 h. The reaction mixture was diluted with diethyl ether (5 mL) and quenched with sat. NH₄Cl (aq.) (5 mL). The aqueous layer was extracted with CH₂Cl₂ (3x 20 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed *in vacuo* and the residue was subjected to flash column chromatography to afford the 2-aryl-2*H*-indazole derivative.

2.2.2 Preparation of Starting Materials and Functionalized Indazoles

Synthesis of 4-chloromethyl-3-iodo-benzoic acid ethyl ester (75a).

To a solution of 3-iodo-4-methyl-benzoic acid ethyl ester (1.16 g, 4 mmol) in THF (10 mL) was added N-bromosuccinimide (783 mg, 4.4 mmol) and dibenzoylperoxid

(97 mg, 0.4 mmol). The resulting mixture was refluxed for 9 h. The resulting mixture was refluxed for 9 h. Subsequently, the solvent was concentrated in vacuo, filtered through a plug of silica and washed with pentane. The solvent was removed *in vacuo*. In a 50 mL round bottom flask the residue was dissolved in THF (15 mL) and LiCl (433 mg, 10 mmol) was added. The resulting mixture was refluxed for 4 h. Subsequently, the solvent was removed in vacuo. Purification by flash column chromatography (silica gel, pentane / EtOAc = 100:1) provided 4-chloromethyl-3-iodobenzoic acid ethyl ester (75a, 776 mg, 60%) as a white solid. **m. p.** = 79.2-80.4 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.52 (d, *J* = 1.8 Hz, 1H), 8.04 (dd, *J* = 1.8 Hz, 8.1 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 4.70 (s, 2H), 4.41 (q, *J* = 6.9 Hz, 2H), 1.41 (t, *J* = 6.9 Hz, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 164.6, 144.3, 140.7, 131.9, 129.8, 129.8, 98.7, 61.5, 50.3, 14.3.

IR (Diamond-ATR, neat): $\tilde{\nu}$ (cm⁻¹) = 1708 (VS), 1292 (M), 727 (S).

MS (EI, 70 eV): m/z (%) = 324 (11), 323 (M⁺, 19), 288 (100), 123 (13).

HRMS (C₁₀H₁₀ClIO₂): Calc.: 323.9414; found: 323.9415 (M⁺).

Synthesis of 1-chloromethyl-4-fluoro-2-iodo-benzene (75b).

To a solution of 4-fluoro-2-iodo-1-methyl-benzene (2.36 g, 10 mmol) in THF (10 mL) was added N-bromosuccinimide (1.96 g, 11 mmol) and dibenzoylperoxid (242 mg, 1 mmol). The resulting mixture was refluxed for 9 h. Subsequently, the solvent was concentrated *in vacuo*, filtered through a plug of silica and washed with pentane. The solvent was removed *in vacuo*. In a 50 mL round bottom flask the residue was dissolved in THF (15 mL) and LiCl (693 mg, 16 mmol) was added. The resulting mixture was refluxed for 4 h. Subsequently, the solvent was removed *in vacuo*.

Purification by flash column chromatography (silica, pentane) provided 4-fluoro-3-chloromethyl-2-iodo-benzene (**75b**, 908 mg, 35%) as colorless oil.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.60 (dd, J = 2.7 Hz, 7.7 Hz, 1H), 7.47 (dd, J

= 6.0 Hz, 8.6 Hz, 1H), 7.10 (dt, *J* = 2.7 Hz, 16.8 Hz, 1H), 4.68 (s, 2H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 163.4 (d, *J* = 251.9 Hz), 136.1 (d, *J* = 3.5 Hz),

131.1 (d, *J* = 8.4 Hz), 126.9 (d, *J* = 23.6 Hz), 116.0 (d, *J* = 20.9 Hz), 99.0 (d, *J* = 8.6 Hz), 50.1 (d, *J* = 0.6 Hz).

IR (Diamond-ATR, neat): $\tilde{\nu}$ (cm⁻¹) = 1693 (w), 1590 (M), 1225 (M), 863 (S).

MS (EI, 70 eV): m/z (%) = 269 (M⁺, 12), 234 (37), 155 (12).

HRMS (C₇H₅ClFI): Calc.: 269.9109; found: 269.9102 (M⁺).

Synthesis of 1,5-dichloro-3-chloromethyl-2-iodo-benzene (75c)

To a solution of 1,5-dichloro-2-iodo-3-methyl-benzene (2.3 g, 8 mmol) in THF (10 mL) was added N-bromosuccinimide (1.6 g, 8.8 mmol) and dibenzoylperoxide (194 mg, 0.8 mmol). The resulting mixture was refluxed for 9 h. Subsequently, the solvent was concentrated *in vacuo*, filtered through a plug of silica and washed with pentane. The solvent was removed *in vacuo*. In a 50 mL round bottom flask the residue was dissolved in THF (15 mL) and LiCl (693 mg, 16 mmol) was added. The resulting mixture was refluxed for 4 h. Subsequently, the solvent was removed *in vacuo*. Purification by flash column chromatography (silica gel, pentane) provided 1,5-dichloro-3-chloromethyl-2-iodo-benzene (**75c**, 716 mg, 54 %) as colorless oil.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.46 (d, *J* = 2.4 Hz, 1H), 7.41 (d, *J* = 2.4 Hz, 1H), 4.71 (s, 2H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 143.8, 140.7, 135.2, 128.8, 127.9, 101.4, 51.6.

IR (Diamond-ATR, neat): $\tilde{\nu}$ (cm⁻¹) = 2362 (S), 1551 (M), 1382 (M), 1266 (W), 1282 (M), 1017 (S), 862 (M), 811 (M).

MS (EI, 70 eV): m/z (%) = 321 (26), 319 (M⁺, 24), 284 (50), 122 (12).

HRMS (C₇H₄Cl₃I): Calc.: 319.8423; found: 319.8408 (M⁺).

Synthesis of 2-(4-ethoxycarbonyl-phenyl)-2*H*-indazole-6-carboxylic acid ethyl ester (80a).

According t o **TP1**, 4-chloromethyl-3-iodo-benzoic acid ethyl ester (**75a**, 324 mg, 1 mmol) was converted to the diarylzinc compound and reacted with p-(ethoxycarbonyl)benzenediazonium tetrafluoroborate (177 mg, 0.67 mmol). Purification by flash chromatograph (silica gel, pentane / EtOAc = 5:1 to 2:1) afforded 2-(4-ethoxycarbonyl-phenyl)-2H-indazole-6-carboxylic acid ethyl ester (**80a**, 161 mg, 71%) as a pale yellow solid.

m. p. = 140.6-142.4 °C

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.61 (s, 1H), 8.54 (s, 1H), 8.26 (d, *J* = 8.7 Hz, 2H), 8.06 (d, *J* = 8.7 Hz, 2H), 7.70-7.78 (m, 2H), 4.40-4.50 (m, 4H), 1.40-1.45 (m, 6H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 166.7, 165.6, 143.3, 131.2, 130.2, 129.6, 122.6, 121.8, 120.5, 120.5, 61.4, 61.2, 14.3, 14.3.

IR (Diamond-ATR, neat): $\tilde{\nu}$ (cm⁻¹) = 3068 (VW), 2984 (W), 1697 (VS), 1604 (M), 1521 (M), 1363 (M), 1257 (S), 1098 (S), 856 (W), 769 (M), 689 (W).

MS (EI, 70 eV): m/z (%): = 339 (20), 338 (M⁺, 100), 293 (70), 265 (17), 192 (9).

HRMS (C₁₉H₁₈N₂O₄): Calc.: 338.1267, found: 338.1242 (M⁺).

Synthesis of 2-(3-acetylphenyl)-2H-indazole-6-carboxylic acid ethyl ester (80b).

According t o **TP1**, 4-chloromethyl-3-iodo-benzoic acid ethyl ester (**75a**, 243 mg, 0.75 mmol) was converted to the diarylzinc compound and reacted with 3-(acetyl)benzenediazonium tetrafluoroborate (117 mg, 0.5 mmol). Purification by

flash chromatograph (silica gel, pentane / EtOAc = 5:1 to 3:1) afforded 2-(3-acetyl-phenyl)-2H-indazole-6-carboxylic acid ethyl ester (**80b**, 104 mg, 68%) as a pale yellow solid.

m. p. = 128.8-130.6 °C

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.61 (s, 1H), 8.55 (s, 1H), 8.51 (s, 1H), 8.20 (d, *J* = 8.1 Hz, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 7.77 (s, 2H), 6.67 (t, *J* = 8.1 Hz, 1H), 4.46 (q, *J* = 7.2 Hz, 2H), 2.72 (s, 3H), 1.45 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (75 MHz, CDCl₃): δ (ppm) = 196.8, 166.8, 149.2, 140.7, 138.5, 130.1, 129.4, 128.0, 125.3, 124.7, 122.4, 121.7, 120.7, 120.5, 120.3, 61.1, 26.8, 14.4.

IR (Diamond-ATR, neat): $\tilde{\nu}$ (cm⁻¹) = 3341 (VW), 3103 (W), 1707 (VS), 1678 (VS),

1441 (M), 1368 (M), 1317 (M), 1243 (S), 1060 (M), 795 (M), 741 (M) , 592 (M).

MS (EI, 70 eV): m/z (%): = 309 (14), 308 (M⁺, 100), 293 (10), 264 (11), 263 (53), 192 (6).

HRMS (C₁₈H₁₆N₂O₃): Calc.: 308.1161, found: 308.1148 (M⁺).

Synthesis of 2-(2-iodophenyl)-2H-indazole-6-carboxylic acid ethyl ester (80c).

According t o **TP1**, 4-chloromethyl-3-iodo-benzoic acid ethyl ester (**75a**, 243 mg, 0.75 mmol) was converted to the diarylzinc compound and reacted with *o*-iodobenzenediazonium tetrafluoroborate (160 mg, 0.5 mmol). Purification by flash chromatograph (silica gel, pentane / EtOAc = 5:1) afforded 2-(2-iodo-phenyl)-2H-indazole-6-carboxylic acid ethyl ester (**80c**, 177 mg, 90%) as a yellow oil.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.60 (s, 1H), 8.22 (s, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.72 - 7.84 (m, 2H), 7.41 - 7.61 (m, 2H), 7.09 - 7.35 (m, 1H), 4.42 (q, *J* = 7.2 Hz, 2H), 1.42 (t, *J* = 7.0 Hz, 3H).

¹³**C** NMR (75 MHz, CDCl₃): δ (ppm) = 166.9, 148.6, 143.5, 140.1, 131.1, 129.1, 129.0, 128.1, 125.2, 123.8, 122.1, 121.8, 120.5, 94.0, 61.1, 14.3.

IR (Diamond-ATR, neat): $\tilde{\nu}$ (cm⁻¹) = 2980 (W), 1710 (VS), 1504 (M), 1353 (W), 1314 (W), 1224 (M), 1088 (M), 1021 (W), 948 (W), 746 (M). MS (EI, 70 eV): m/z (%): = 393 (21), 392 (M⁺, 100), 346 (48), 218 (19), 192 (27). HRMS (C₁₆H₁₃N₂O₂I): Calc.: 392.0022, found: 392.0034 (M⁺).

Synthesis of 4-(6-fluoro-indazol-2-yl)-benzoic acid ethyl ester (80d).

According to **TP1**, 1-chloromethyl-4-fluoro-2-iodo-benzene (**75**b, 406 mg, 1.5 mmol) converted the diarylzinc compound with was to and reacted *p*-(ethoxycarbonyl)benzenediazonium tetrafluoroborate (264 mg, 1 mmol). Purification by flash chromatograph (silica gel, pentane / EtOAc = 5:1) afforded 4-(6-fluoro-indazol-2-yl)-benzoic acid ethyl ester (80d, 212 mg, 75%) as a yellow solid.

m. p. = 159.8-161.2 °C

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 8.49 (s, 1H), 8.22 (d, *J* = 9.0 Hz, 2H), 7.99 (d, *J* = 8.7 Hz, 2H), 7.70 (dd, *J* = 5.4 Hz, 9.2 Hz, 1H), 7.37 (d, *J* = 10.2 Hz, 1H), 6.96 (dt, *J* = 2.1 Hz, 8.7 Hz, 1H), 4.45 (q, *J* = 7.2 Hz, 2H), 1.45 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 165.7, 162.3 (d, J = 244.3 Hz), 150.0 (d, J = 13.5Hz), 143.3, 131.1, 129.7, 122.4 (d, J = 10.5 Hz), 121.0 (d, J = 1.5 Hz), 120.3, 120.1, 115.0 (d, J = 28.6 Hz), 101.0 (d, J = 24.0 Hz), 61.35, 14.35.

IR (Diamond-ATR, neat): $\tilde{\nu}$ (cm⁻¹) = 3073 (W), 2986 (W), 1707 (VS), 1639 (M), 1607 (S), 1370 (M), 1270 (VS), 1101 (VS), 808 (M), 763 (S), 728 (M).

MS (EI, 70 eV): m/z (%) = 289 (19), 284 (M⁺, 100), 239 (74), 210 (18), 192 (8).

HRMS (C₁₆H₁₃FN₂O₂): Calc.: 284.0961, found: 284.0955 (M⁺)

Synthesis of 4-(5,7-dichloro-indazol-2-yl)-benzoic acid ethyl ester (80e).

According to **TP1**, 1,5-dichloro-3-chloromethyl-2-iodo-benzene (**75c**, 482 mg, 1.5 mmol) was converted to the diarylzinc compound and reacted with p-(ethoxycarbonyl)benzenediazonium tetrafluoroborate (264 mg, 1 mmol). Purification by flash chromatograph (silica gel, pentane / EtOAc = 5:1) afforded 4-(5,7-dichloro-indazol-2-yl)-benzoic acid ethyl ester (**80e**, 219 mg, 66%) as a pale yellow solid.

m. p. = 139.6-141.3 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.50 (s, 1H), 8.23 (d, *J* = 8.7 Hz, 2H), 8.03 (d, *J* = 9.0 Hz, 2H), 7.63 (d, *J* = 1.8 Hz, 1H), 7.37 (d, *J* = 1.8 Hz, 1H), 4.45 (q, *J* = 7.2 Hz, 2H), 1.45 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 165.5, 146.2, 142.9, 131.2, 130.4, 128.0, 127.7, 124.5, 123.8, 121.3, 120.6, 118.0, 61.4, 14.3.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2987 (W), 1701 (VS), 1606 (M), 1517 (S), 1365 (M), 1276 (VS), 850 (S), 765 (S).

MS (EI, 70 eV): m/z (%) = 335 (18), 334 (M⁺, 100), 288 (41), 226 (14), 191 (5).

HRMS (C₁₆H₁₂Cl₂N₂O₂): Calc.: 334.0276; found: 334.0280 (M⁺).

2.3 Diastereoselective Synthesis of Homoallylic Alcohols with Adjacent Tertiary and Quaternary Centers by Using Functionalized Allylic Aluminum Reagents

2.3.1 Typical Procedures (TP)

TP1: Typical procedure for the preparation of allylaluminum reagents (85a-h) using the Al/InCl₃ method.

Aluminum powder (1.5 equiv) and $InCl_3$ (1 mol%) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (2.5 mL / mmol) was added. A solution of the corresponding allyl bromide or chloride (1.0 equiv.) in THF (2.5 mL / mmol) was added at the appropriate temperature (0-20°C) and the reaction mixture was stirred until the conversion of the allyl halide reached >95% (monitored by GC-analysis of hydrolyzed reaction aliquots). The remaining aluminum powder was allowed to settle down and the allylaluminum reagent is obtained as a clear solution. Estimation of the yield was performed by iodometric titration after transmetallation with ZnCl₂ as follows: To the clear solution of the allylaluminum reagent was added ZnCl₂ solution (1M in THF, 1.0 equiv.) and the mixture stirred for 15 minutes at 20°C. The resulting allylzinc solution was added dropwise to a solution of iodine (0.5 equiv) in THF (1 mL) until the red colour disappeared.

Typical procedures for preparation of homoallylic alcohols and lactones (87a-u) by the addition of allylic aluminum reagents to aldehydes or ketones:

Typical Procedure (**TP2**): The allylaluminum halides (**85a-h**) prepared according to **TP1** were added to a solution of an aldehyde or a ketone in THF at -78 °C and the mixture was stirred at this temperature for 1-2 h. After quenching with water (10 mL), the reaction mixture was extracted with ether (3×30 mL). The combined extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. Purification by flash chromatography provided the pure compound.

Typical Procedure (TP3): The allylaluminum halides (**85a-h**) prepared according to **TP1** were added to a solution of an aldehyde or a ketone in THF at -78 °C and the mixture was stirred for 16-24 h warming from -78 °C to 25 °C. After quenching with water (10 mL), the reaction mixture was extracted with ether (3 \times 30 mL). The combined extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. Purification by flash chromatography provided the pure compound.

2.3.2 Preparation of Allylaluminum Reagents (85a-h).

Preparation of 6-chloro-cyclohex-1-enecarboxylic acid ethyl ester (84b):

6-Hydroxy-cyclohex-1-enecarboxylic acid ethyl ester was prepared according to a known literature procedure.⁸⁶ Thionyl chloride (2 mL) was slowly added to the solution of 6-hydroxy-cyclohex-1-enecarboxylic acid ethyl ester (3.4 g, 20 mmol) in benzene (40 mL) at 25 °C. The resulting mixture was stirred for 24 h at 25 °C. After the mixture was cooled with ice-bath, water (20 mL) was added slowly. The reaction mixture was extracted with diethyl ether (3 × 30 mL). The extracts were washed with brine, dried over Na₂SO₄ and concentrated in vacuo. Purification by flash chromatography (eluent: pentane:ether = 1:30) provided the pure compound **84b** (3.3 g, 86%) as colorless oil.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.11 (dd, *J* = 5.1 Hz, 2.7 Hz, 1H), 5.09-5.04 (m, 1H), 4.25 (q, *J* = 7.2 Hz, 2H), 2.49-2.35 (m, 1H), 2.30-2.14 (m, 2H), 2.08-1.66 (m, 3H), 1.3 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 165.3, 142.9, 131.4, 60.7, 52.3, 31.3, 25.5, 15.8, 14.2.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3418 (W), 2952 (W), 2361 (W), 1712 (VS), 1241 (VS), 1062 (S), 761 (S), 660 (M); **MS** (EI, 70 eV): m/z (%) = 188 (M⁺, 13), 160 (11), 152(49), 151 (27), 150 (10), 123 (15), 80 (19), 79 (100).

HRMS (EI): Calcd. for C₉H₁₃ClO₂: 188.0604; found: 188.0607.

Preparation of 5-chloro-cyclopent-1-enecarbonitrile (84g):

5-Hydroxy-cyclopent-1-enecarbonitrile was prepared according to a known literature procedure.⁸⁷ Thionyl chloride (1 mL) was slowly added to the solution of 5-hydroxy-cyclopent-1-enecarbonitrile (1.09 g, 10 mmol) in benzene (10 mL) at 25 °C. The resulting mixture was stirred for 24 h at 25 °C. After the mixture was cooled with ice-bath, water (10 mL) was added slowly. The reaction mixture was extracted with diethyl ether (3 × 20 mL). The extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. Purification by flash chromatography (eluent: pentane:ether = 1:10) provided the pure compound **84g** (670 mg, 53%) as pale-yellow oil.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 6.90-6.84 (m, 1H), 5.07-4.98 (m, 1H), 2.92-2.25 (m, 4H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 152.0, 118.0, 114.5, 63.0, 34.5, 32.1.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3317 (W), 2947 (W), 2228 (M), 1737 (S), 1442 (M), 1325 (M), 1233 (M), 1013 (VS), 881 (S), 811 (S), 718 (VS), 645 (S). MS (EI, 70 eV): m/z (%) = 127 (M⁺, 9), 92 (7), 91 (100), 64 (32). HRMS (EI): Calcd. for C₆H₆ClN: 127.0189; found: 127.0181.

Preparation of 2-cyclohexenylaluminum bromide (85a):

According to the typical procedure (**TP1**), aluminum powder (81 mg, 3 mmol) and $InCl_3$ (4.4 mg, 0.02 mmol) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and

backfilled with argon three times and THF (5 mL) was added. A solution of 3-bromo-1-cyclohexene (**84a**, 322 mg, 2 mmol) in THF (5 mL) was added with a syringe pump within 1 h at 0 °C and the resulting solution was stirred at 0 °C for 1 h. The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield determined by iodometric titration after transmetallation with $ZnCl_2$: 82%.

Preparation of 2-enecarboxylic acid ethyl ester-6-cyclohexenylaluminum chloride (85b):

$$EtO_2C \xrightarrow{CI} AI (1.5 equiv) EtO_2C \xrightarrow{I} InCl_3 (1 mol\%) THF, 25 °C, 16 h$$

According to the typical procedure (**TP1**), aluminum powder (81 mg, 3 mmol) and InCl₃ (4.4 mg, 0.02 mmol) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (2 mL) was added. A solution of 6-chloro cyclohex-1-enecarboxylic acid ethyl ester (**84b**, 377 mg, 2 mmol) in THF (2 mL) was added at 25 °C and the resulting solution was stirred at 25 °C for 16 h. The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 77%.

Preparation of 2-enecarboxylic acid ethyl ester-5-cyclopentenylaluminum chloride (85c):

According to the typical procedure (**TP1**), aluminum powder (81 mg, 3 mmol) and $InCl_3$ (11 mg, 0.05 mmol) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (1 mL) was added. A solution of 5-chloro-cyclopent-1-enecarboxylic acid ethyl ester (**84c**, 174 mg, 1 mmol) in THF (0.5 mL) was added at 25 °C and the resulting solution was stirred at 25 °C for 16 h.

The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 60%.

Preparation of cinnamylaluminum chloride (85d):

Ph
$$CI$$
 $HI (1.5 equiv)$
InCl₃ (1 mol%) Ph $Al_{2/3}CI$
THF, 25 °C, 2 h

According to the typical procedure (**TP1**), aluminum powder (81 mg, 3 mmol) and InCl₃ (4.4 mg, 0.02 mmol) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (2 mL) was added. A solution of cinnamyl chloride (**84d**, 305 mg, 2 mmol) in THF (2 mL) was added at 25 °C and the resulting solution was stirred at 25 °C for 2 h. The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 73%.

Preparation of 3-methoxycinnamylaluminum chloride (85e):

According to the typical procedure (**TP1**), aluminum powder (81 mg, 3 mmol) and InCl₃ (4.4 mg, 0.02 mmol) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (2 mL) was added. A solution of 1-(3-chloro-propenyl)-3-methoxy-benzene (**84e**, 364 mg, 2 mmol) in THF (2 mL) was added at 25 °C and the resulting solution was stirred at 25 °C for 11 h. The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 71%.

Preparation of cinnamylaluminum phosphate (85f):

Ph
$$OP(O)(OEt)_2 \xrightarrow{AI (1.5 equiv)}{InCl_3 (1 mol\%)} Ph AI_{2/3}OP(O)(OEt)_2$$

THF, 25 °C, 12 h

According to the typical procedure (**TP1**), aluminum powder (81 mg, 3 mmol) and InCl₃ (4.4 mg, 0.02 mmol) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (2 mL) was added. A solution of the cinnamyl phosphate (**84f**, 540 mg, 2 mmol) in THF (2 mL) was added at 25 °C and the resulting solution was stirred at 25 °C for 12 h. The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 70%.

Preparation of 2-cyano-5-cyclopentenylaluminum chloride (85g):

According to the typical procedure (**TP1**), aluminum powder (41 mg, 1.5 mmol) and $InCl_3$ (44 mg, 0.2 mmol) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (1 mL) was added. A solution of 5-chloro-cyclopent-1-enecarbonitrile (**84g**, 127 mg, 1 mmol) in THF (1 mL) was added at 25 °C and the resulting solution was stirred at 25 °C for 24 h. The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: *ca*.60%.

Preparation of β -silyl-substituted crotylaluminum (85h):

According to the typical procedure (**TP1**) aluminum powder (41 mg, 1.5 mmol) and $InCl_3$ (7 mg, 0.03 mmol) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (2 mL) was added. A solution of

 β -silyl-substituted crotyl chloride (**84h**, 163 mg, 1 mmol) in THF (1 mL) was added at 25 °C and the resulting solution was stirred at 25 °C for 36 h. The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 73%.

2.3.3 Preparation of Homoallylic Alcohols and Lactones (87a-u)

Synthesis of 1-(4-bromo-phenyl)-1-cyclohex-2-enyl-ethanol (87a):

The allylaluminum reagent **85a** (10 mL) was added to a solution of 4⁻-bromoacetophenone (**86a**, 279 mg, 1.4 mmol) in THF (1.5 mL) according to **TP2**. Purification by flash chromatography (eluent: pentane:ether = 10:1) provides the pure compound **87a** (384 mg, 97%) as colourless oil. dr > 99:1.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.44 (d, *J* = 8.8 Hz, 2H), 7.29 (d, *J* = 8.8 Hz, 2H), 5.98 - 5.89 (m, 1H), 5.76 (d, *J* = 10.5 Hz, 1H), 2.55 - 2.46 (m, 1H), 1.98 - 1.89 (m, 2H), 1.81 (s, 1H), 1.75 - 1.65 (m, 1H), 1.56 (s, 3H), 1.48 - 1.14 (m, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 146.2, 132.2, 130.9, 127.2, 125.9, 120.3, 75.8, 46.4, 28.0, 25.1, 24.3, 21.8.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3435 (S, br.), 2930 (W), 1484 (M), 1393 (M), 1072 (S), 1007 (VS), 829 (M), 720 (M).

MS (EI, 70 eV): m/z (%) = 280 (M⁺, 6), 200 (96), 198 (100), 183 (17), 80 (23).

HRMS (EI): Calcd. for $C_{14}H_{17}BrO$: 280.0463; found: 280.0258. Spectral data matching those reported in the literature.^{93, 31}

Synthesis of 4-(1-cyclohex-2-enyl-1-hydroxy-ethyl)-benzoic acid methyl ester (87b):

The allylaluminum reagent **85a** (10 mL) was added to a solution of methyl 4-acetylbenzoate (**86b**, 250 mg, 1.4 mmol) in THF (1.5 mL) according to **TP2**.

Purification by flash chromatography (eluent: pentane:ether = 9:1) provides the pure compound **87b** (372 mg, 97%) as a white solid. dr > 99:1.

m. p. = 63.0 - 64.5 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.99 (d, *J* = 8.5 Hz, 2 H), 7.49 (d, *J* = 8.5 Hz, 2 H), 5.99 - 5.91 (m, 1 H), 5.79 (d, *J* = 10.5 Hz, 1 H), 3.90 (s, 3 H), 2.61 - 2.50 (m, 1 H), 1.99 - 1.89 (m, 2 H), 1.81 (s, 1 H), 1.77 - 1.63 (m, 1 H), 1.60 (s, 3 H), 1.51 - 1.15 (m, 3 H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 167.1, 152.5, 132.1, 129.3, 128.3, 125.7, 125.3, 76.0, 52.0, 46.4, 27.9, 25.1, 24.3, 21.8.

IR (Diamond-ATR, neat): $\tilde{v} \text{ cm}^{-1}$) = 3506 (M), 2946 (W), 1696 (VS), 1279 (VS), 1112 (M), 711 (M).

MS (EI, 70 eV): m/z (%) = 261(1), 179 (100), 137 (8), 77 (5).

HRMS (EI): Calcd. for $[C_{16}H_{20}O_3 + H]^+$: 261.1491; found: 261.1491 $[C_{16}H_{20}O_3 + H]^+$.

Synthesis of 1-cyclohex-2-enyl-1-(4-nitro-phenyl)-ethanol (87c):

The allylaluminum reagent **85a** (10 mL) was added to a solution of 1-(4-nitrophenyl)ethanone (**86c**, 231 mg, 1.4 mmol) in THF (1.5 mL) according to **TP2**. Purification by flash chromatography (eluent: pentane:ether = 9:1) provides the pure compound **87c** (329 mg, 95%) as a yellow oil. dr > 99:1.

¹**H NMR** (300 MHz, C₆D₆): δ (ppm) = 7.85 - 7.80 (m, 2H), 7.07 - 7.02 (m, 2H), 5.75 - 5.68 (m, 1H), 5.54 - 5.48 (m, 1H), 2.17 - 2.08 (m, 1H), 1.76 - 1.60 (m, 1H), 1.50 - 1.42 (m, 1H), 1.26 (s, 1H), 1.24 - 1.15 (m, 1H), 1.12 (s, 3H), 1.09 - 1.04 (m, 2H). ¹³**C NMR** (75 MHz, C₆D₆): δ (ppm) = 154.0, 146.5, 131.8, 125.9, 125.4, 122.7, 75.2,

46.0, 27.5, 24.9, 24.0, 21.6.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3548 (W), 3028 (VW), 2974 (W), 2932 (W), 2860 (W), 2838 (W), 1600 (M), 1512 (VS), 1492 (M), 1448 (W), 1434 (W), 1408 (W),

1374(W), 1342 (VS), 1264 (W), 1232 (W), 1182 (W), 1142 (W), 1102 (M), 1078 (M),

1064 (M), 1046 (W), 1014 (W), 942 (W), 926 (VW), 906 (W), 894 (W), 880 (M),

852 (S), 770 (W), 756 (W), 740 (W), 724 (M), 704 (S), 678 (W).

MS (EI, 70 eV): m/z (%) = 248 (M⁺, 1), 166 (100), 150 (10), 120 (7).

HRMS (EI): Calcd. for $[C_{14}H_{17}NO_3 + H]^+$: 248.1287; found: 248.1276 $[C_{14}H_{17}NO_3 + H]^+$.

Synthesis of (2-amino-5-chloro-phenyl)-cyclohex-2-enyl-methanol (87d):

The allylaluminum reagent **85a** (10 mL) was added to a solution of 2-amino-5-chloro-benzaldehyde (**86d**, 218 mg, 1.4 mmol) in THF (1.5 mL) according to **TP2**. Purification by flash chromatography (eluent: pentane:ether = 2:1) provides the pure compound **87d** (315 mg, 95%) as a white solid. dr > 99:1.

m. p. = 114.1 - 115.8 °C.

¹**H NMR** (400 MHz, C_6D_6): δ (ppm) = 6.99 (s, 1H), 6.92 (d, J = 7.6 Hz, 1H), 5.98 (d, J = 8.4 Hz, 1H), 5.59-5.47 (m, 1H), 5.22-5.08 (m, 1H), 3.94 (d, J = 8.6 Hz, 1H), 3.71 – 3.26 (bs, 2H), 2.68 – 2.51 (m, 1H), 1.88 – 1.22 (m, 6H).

¹³**C** NMR (100 MHz, C_6D_6): δ (ppm) = 143.7, 129.4, 128.5, 128.0, 127.9, 127.7, 122.1, 117.5, 77.0, 38.9, 25.1, 25.0, 20.6.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3358 (W) , 3159 (W), 2919 (VW), 1604 (W), 1487.5 (M), 1420 (W), 826.5 (VS), 693.4 (S), 667.4 (M), 642.2 (S).

MS (EI, 70 eV): m/z (%) = 237 (M⁺, 3), 220 (4), 158 (29), 156 (100), 93 (29).

HRMS (EI): Calcd. for C₁₃H₁₆ClNO: 237.0920; found: 237.0915.

Synthesisof3-(4-bromophenyl)-3-methyl-3a,4,5,6-tetrahydro-3H-isobenzofuran-1-one (87e):

The allylaluminum reagent **85b** (2 mL) was added to a solution of 4⁻-bromoacetophenone (**86a**, 140 mg, 0.7 mmol) according to **TP3**. Purification by flash chromatography (eluent: pentane:ether = 5:1) provides the pure compound **87e** (172 mg, 81%) as colourless oil. dr > 99:1.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.44 (d, *J* = 8.8 Hz, 2H), 7.00 (d, *J* = 8.8 Hz, 2H), 6.83 (q, *J* = 3.3 Hz, 1H), 2.96-2.85 (m, 1H), 2.32-2.17 (m, 1H), 2.08-1.88 (m, 1H), 1.86 (s, 3H), 1.85 -1.70 (m, 2H), 1.58 -1.39 (m, 1H), 0.51 – 0.34 (m, 1H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 170.0, 140.2, 137.5, 131.4, 129.6, 126.9, 121.8, 87.5, 48.4, 27.8, 24.8, 24.5, 20.9.

IR (Diamond-ATR, neat): \tilde{v} (cm-1) = 2925 (W), 1755 (VS), 1239 (M), 1031 (S), 921 (M), 752 (M), 725 (W).

MS (EI, 70 eV): m/z (%) = 306 (M+, 2), 182 (5), 108 (100).

HRMS (EI): Calcd. for C₁₅H₁₅BrO₂: 306.0255; found: 306.0244.

Synthesis of 4-(3-oxo-1,3,5,6,7,7a-hexahydro-isobenzofuran-1-yl) benzoic acid methyl ester (87f):

The allylaluminum reagent **84b** (4 mL) was added to a solution of 4-formyl-benzoic acid methyl ester (**86e**, 230 mg, 1.4 mmol) in THF (1.5 mL) according to **TP3**. Purification by flash chromatography (eluent: pentane:ether = 3:1) provides the pure compound **87f** (297 mg, 78%) as a white solid. dr > 99:1.

m. p. = 171.3 - 173.3 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 8.01 (d, J = 8.3 Hz, 2H), 7.16 (d, J = 8.3 Hz,

2H), 6.95 (q, *J* = 3.3 Hz, 1H), 5.76 (d, *J* = 9.2 Hz, 1H), 3.91 (s, 3H), 3.41-3.27 (m, 1H), 2.37-2.23 (m, 1H), 2.13 -1.94 (m, 1H), 1.85 -1.63 (m, 2H), 1.63 -1.42 (m, 1H), 0.49 - 0.30 (m, 1H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 170.2, 166.5, 142.4, 138.4, 130.1, 129.7, 127.7, 125.6, 81.8, 52.2, 40.8, 24.9, 24.1, 20.8.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2956 (W), 1762 (S), 1715 (VS), 1292 (VS), 1182 (M), 990 (M), 759 (M).

MS (EI, 70 eV): m/z (%) = 272 (M⁺, 1), 241 (7), 108 (100), 80 (21), 79 (26).

HRMS (EI): Calcd. for C₁₆H₁₆O₄: 272.1049; found: 272.1046.

Synthesis of 4-(3-oxo-1,3,5,6,7,7a-hexahydro-isobenzofuran-1-yl)benzonitrile (87g):

The allylaluminum reagent **85b** (4 mL) was added to a solution of 4-formyl-benzonitrile (**86f**, 184 mg, 1.4 mmol) in THF (1.5 mL) according to **TP3**. Purification by flash chromatography (eluent: pentane:ether = 2:1) provides the pure compound **87g** (291 mg, 87%) as a white solid. dr > 99:1.

m. p. = 153.2 - 155.0 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.65 (d, *J* = 8.8 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 6.97 (q, *J* = 3.4 Hz, 1H), 5.75 (d, *J* = 9.2 Hz, 1H), 3.43-3.29 (m, 1H), 2.39-2.25 (m, 1H), 2.15-1.97 (m, 1H), 1.89 -1.69 (m, 2H), 1.65 -1.45 (m, 1H), 0.46 – 0.29 (m, 1H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 169.9, 142.7, 138.9, 132.3, 127.2, 126.3, 118.3, 112.2, 81.2, 40.7, 24.9, 24.1, 20.8.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2959 (W), 1751 (VS), 1029 (M), 990 (M), 856 (M).

MS (EI, 70 eV): m/z (%) = 240 (2), 239 (M⁺, 0.4), 166 (2), 140 (5), 130 (7), 108

(100).

HRMS (EI): Calcd. for C₁₅H₁₃NO₂: 239.0946; found: 239.0953.

Synthesis of 4-(1-methyl-3-oxo-1,3,5,6,7,7a-hexahydro-isobenzofuran-1-yl)benzonitrile (87h):

The allylaluminum reagent **85b** (4 mL) was added to a solution of 4-acetylbenzonitrile (**86g**, 203 mg, 1.4 mmol) in THF (1.5 mL) according to **TP3**. Purification by flash chromatography (eluent: pentane:ether = 1:1) provides the pure compound **87h** (281 mg, 79%) as a white solid. dr > 98:2.

m. p. = 165.4 - 167.3 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.62 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.3 Hz, 2H), 6.94 (q, *J* = 3.4 Hz, 1H), 3.03-2.89 (m, 1H), 2.33-2.17 (m, 1H), 2.08-1.93 (m, 1H), 1.90(s, 3H), 1.87 -1.74 (m, 2H), 1.61 -1.40 (m, 1H), 0.45 - 0.25 (m, 1H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 169.6, 146.4, 138.0, 132.1, 129.1, 126.1, 118.4, 111.7, 87.2, 48.4, 27.7, 24.8, 24.5, 20.9.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2943 (W), 2226 (W), 1756 (VS), 1679 (W), 1401 (W), 1252 (S), 1240 (VS), 1032 (VS), 1015 (M), 923 (M), 844 (S), 736 (S).

MS (EI, 70 eV): m/z (%) = 253 (0.5), 189 (0.6), 165 (1), 129 (6), 116 (1), 109 (8), 108 (100).

HRMS (EI): Calcd. for C₁₆H₁₅NO₂: 253.1103; found: 253.1093.

4-[1-(2-ethoxycarbonyl-cyclopent-2-enyl)-1-hydroxy-ethyl]-benzoic acid methyl ester (87i):

The allylaluminum reagent 85c (1.5 mL) was added to a solution of methyl

4-acetylbenzoate (**86b**, 107 mg, 0.6 mmol) in THF (1 mL) according to **TP3**. Purification by flash chromatography (eluent: pentane:ether = 4:1) provides the pure compound **87i** (134 mg, 70%) as colourless oil. dr > 98:2.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.93 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.5 Hz, 2H), 6.77 (q, *J* = 1.8 Hz, 1H), 4.21 (dd, *J* = 7.1 Hz, 3.9 Hz, 2H), 3.90 (s, 3H), 3.47-3.36 (m, 1H), 2.22-2.03 (m, 2H), 2.01-1.78 (m, 2H), 1.65 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H).

¹³**C** NMR (75 MHz, CDCl₃): δ (ppm) = 167.6, 167.1, 151.2, 148.9, 136.4, 128.9, 128.4, 125.9, 76.9, 61.1, 56.3, 51.9, 31.8, 28.8, 27.7, 14.2.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3409 (br), 2978 (W), 2950 (W),1711 (VS), 1680 (VS), 1609 (W), 1434 (W), 1275 (VS), 1192 (M), 1097 (S), 1016 (M), 861 (M), 756 (M), 710 (M).

MS (EI, 70 eV): m/z (%) = 287 (4) 279 (3), 241 (6), 179 (56), 163 (9), 140 (100), 112 (30).

HRMS (ESI): Calcd. for $[C_{18}H_{22}O_5 - OH]^+$: 301.1440; found: 301.1433 $[C_{18}H_{22}O_5 - OH]^+$.

Synthesis of 5-[1-(4-bromo-phenyl)-1-hydroxy-ethyl]-cyclopent-1-enecarboxylic acid ethyl ester (87j):

The allylaluminum reagent **85c** (1.5 mL) was added to a solution of 4⁻-bromoacetophenone (**86a**, 119 mg, 0.6 mmol) in THF (1 mL) according to **TP3**. Purification by flash chromatography (eluent: pentane:ether = 10:1) provides the pure compound **87j** (144 mg, 71%) as a white solid. dr > 98:2.

m. p. = 75.1 - 76.6 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.38 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.5 Hz, 2H), 6.79 (q, *J* = 2.2 Hz, 1H), 4.22 (dd, *J* = 7.2 Hz, 3.3 Hz, 2H), 3.43-3.35 (m, 1H), 2.23-2.02 (m, 2H), 1.97-1.80 (m, 2H), 1.61 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 167.7, 148.8, 144.9, 136.5, 130.6, 127.8,

120.6, 76.6, 61.1, 56.3, 31.8, 28.9, 27.8, 14.2.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3404 (W), 2976 (W), 1707 (S), 1679 (S), 1254 (M), 1096 (S), 1006 (S), 827 (M), 757 (S).

MS (EI, 70 eV): m/z (%) = 361 (87),323 (92), 277 (28), 164 (6).

HRMS (ESI): Calcd. for $[C_{16}H_{19}BrO_3 + Na]^+$: 361.0415; found: 361.0410 $[C_{16}H_{19}BrO_3 + Na]^+$.

Synthesis of 2-(4-bromo-phenyl)-3-phenyl-pent-4-en-2-ol (87k):

The allylaluminum reagent **85d** (4 mL) was added to a solution of 4⁻-bromoacetophenone (**86a**, 279 mg, 1.4 mmol) in THF (1.5 mL) according to **TP3**. Purification by flash chromatography (eluent: pentane:ether = 10:1) provides the pure compound **87k** (440 mg, 99%) as colourless oil. dr > 98:2.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.42 (d, *J* = 8.5 Hz, 2H), 7.32-7.05 (m, 7H), 6.19-6.05 (m, 1H), 5.08 (d, *J* = 10.3 Hz, 1H), 4.96 (d, *J* = 17.2 Hz, 1H), 3.58 (d, *J* = 8.8 Hz, 1H), 1.95 (br s, 1H), 1.43 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 145.6, 139.9, 137.1, 130.9, 129.6, 128.3, 127.6, 127.0, 120.7, 118.4, 76.2, 61.9, 28.5.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3353 (W), 2974 (W), 1485 (M), 1075 (M), 1007 (M), 738 (M), 701 (VS).

MS (EI, 70 eV): m/z (%) = 334 (39), 283 (100), 255 (55), 227 (5), 117 (2).

HRMS (ESI): Calcd. for $[C_{17}H_{17}BrO + NH_4]^+$: 334.0807; found: 334.0801 $[C_{17}H_{17}BrO + NH_4]^+$.

Synthesis of 4-(1-hydroxy-1-methyl-2-phenyl-but-3-enyl)benzoic acid methyl ester (87l):

The allylaluminum reagent 85d (4 mL) was added to a solution of methyl

4-acetylbenzoate (**86b**, 250 mg, 1.4 mmol) in THF (1.5 mL) according to **TP2**. Purification by flash chromatography (eluent: pentane:ether = 8:1) provides the pure compound **871** (455 mg, 99%) as a white solid. dr > 96:4.

m. p. = 89.4 - 90.7 °C; ¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.96 (d, J = 8.6 Hz, 2H), 7.41 (d, J = 8.6 Hz, 2H), 7.29-7.22 (m, 3H), 7.15-7.10 (m, 2H), 6.14-6.07 (m, 1H), 5.04 (d, J = 10.3 Hz, 1H), 4.92 (d, J = 17.2 Hz, 1H), 3.90 (s, 3H), 3.61 (d, J = 8.8 Hz, 1H), 2.05 (br s, 1H), 1.45 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 167.0, 151.6, 139.7, 136.8, 129.5, 129.1, 128.4, 128.2, 126.9, 125.6, 118.4, 76.3, 61.8, 52.0, 28.3.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3512 (W), 2974 (W), 2362 (W), 1698 (VS), 1274 (VS), 1101 (M), 916 (M), 699 (VS).

MS (EI, 70 eV): m/z (%) = 314(9), 248 (12).

HRMS (ESI): Calcd. for $[C_{19}H_{20}O_3 + NH_4]^+$: 314.1756; found: 314.1751 $[C_{19}H_{20}O_3 + NH_4]^+$.

Synthesis of 4-(1-hydroxy-1-methyl-2-phenyl-but-3-enyl)-benzonitrile (87m):

The allylaluminum reagent **85d** (4 mL) was added to a solution of 4-acetylbenzonitrile (**86g**, 203 mg, 1.4 mmol) in THF (1.5 mL) according to **TP2**. Purification by flash chromatography (eluent: pentane:ether = 6:1) provides the pure compound **87m** (363 mg, 98%) as a white solid. dr > 94:6.

m. p. = 101 - 102 °C.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.58 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 7.32-7.23 (m, 3H), 7.13-7.10 (m, 2H), 6.13-6.06 (m, 1H), 5.05 (d, J = 10.4 Hz, 1H), 4.93 (d, J = 17.3 Hz, 1H), 3.56 (d, J = 9.1 Hz, 1H), 2.09 (br s, 1H), 1.44 (s, 3H). ¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 151.8, 139.3, 136.5, 131.6, 129.4, 128.4,

127.2, 126.5, 118.9, 118.7, 110.4, 76.2, 61.8, 28.2.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3475 (W), 2981 (W), 2231 (W), 1606 (W), 1367 (W), 922 (S), 839 (M), 716 (S), 696 (VS), 669 (M).

MS (EI, 70 eV): m/z (%) = 281 (100), 249 (8).

HRMS (ESI): Calcd. for $[C_{18}H_{17}NO + NH_4]^+$: 281.1654; found: 281.1648 $[C_{18}H_{17}NO + NH_4]^+$.

Synthesis of 4-[1-hydroxy-2-(3-methoxy-phenyl)-but-3-enyl] benzonitrile (87n):

The allylaluminum reagent **85e** (4 mL) was added to a solution of 4-cyanobenzaldehyde (**86f**, 184 mg, 1.4 mmol) in THF (1.5 mL) according to **TP2**. Purification by flash chromatography (eluent: pentane:ether = 2:1) provides the pure compound **87n** (371 mg, 95%) as a white solid. dr > 97:3.

m. p. = 97.1 - 98.5 °C.

¹**H NMR** (400 MHz, DMSO-d₆): δ (ppm) = 7.66 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 7.11 (t, J = 7.9Hz, 1H), 6.75 (d, J = 7.4 Hz, 2H), 6.71-6.67 (m, 1H), 6.26-6.15 (m, 1H), 5.66 (d, J = 5.1 Hz, 1H), 5.01 (dd, J = 10.3 Hz, 2.1 Hz, 1H), 4.93-4.82 (m, 2H), 3.66 (s, 3H), 3.54-3.48 (m, 1H).

¹³C NMR (100 MHz, DMSO-d₆): δ (ppm) = 159.4, 150.7, 143.7, 138.5, 131.9, 129.4, 128.1, 121.2, 119.4, 117.1, 114.7, 111.9, 109.7, 75.8, 57.7, 55.3.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3476 (M), 2873 (W), 2234 (W), 1605 (M), 1581 (M), 1454 (W), 1274 (M), 1224 (M), 1048 (M), 752 (S).

MS (EI, 70 eV): m/z (%) = 297 (100), 108 (1).

HRMS (ESI): Calcd. for $[C_{18}H_{17}NO_2 + NH_4]^+$: 297.1603; found: 297.1597 $[C_{18}H_{17}NO_2 + NH_4]^+$.

Synthesis of 2-(4-bromo-phenyl)-3-(3-methoxy-phenyl)-pent-4-en-2-ol (87o):

The allylaluminum reagent 85e (4 mL) was added to a solution of

4 -bromoacetophenone (**86a**, 274 mg, 1.4 mmol) in THF (1.5 mL) according to **TP2**. Purification by flash chromatography (eluent: pentane:ether = 9:1) provides the pure compound **87o** (359 mg, 74%) as colourless oil. dr > 92:8.

¹H NMR (400 MHz, DMSO-d₆): δ (ppm) = 7.44 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.15 (t, J = 7.9 Hz, 1H), 6.89-6.84 (m, 2H), 6.77-6.72 (m, 1H), 6.09-6.98 (m, 1H), 5.17 (s, 1H), 4.76 (dd J = 10.1 Hz, 2.1 Hz, 1H), 4.61 (dd J = 17.2 Hz, 1.9 Hz, 1H), 3.69 (s, 3H), 3.52 (d, J = 9.2 Hz, 1H), 1.22 (s, 3H).

¹³**C NMR** (100 MHz, DMSO-d₆): δ (ppm) = 159.0, 148.7, 143.4, 139.1, 130.6, 128.9, 128.5, 122.5, 119.5, 116.5, 115.9, 111.8, 75.6, 61.2, 55.2, 29.1.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3493 (W), 2973 (W), 1597 (M), 1581 (M), 1484 (M), 1260 (M), 1074 (M), 1006 (S), 763 (S).

MS (EI, 70 eV): m/z (%) = 364 (100), 355 (14), 177 (30).

HRMS (ESI): Calcd. for $[C_{18}H_{19}BrO_2 + NH_4]^+$: 364.0912; found: 364.0907 $[C_{18}H_{19}BrO_2 + NH_4]^+$.

Synthesis of 2-cyclohexyl-3-phenyl-pent-4-en-2-ol (87p):

The allylaluminum reagent **85f** (4 mL) was added to a solution of 1-cyclohexylethanone (**86h**, 177 mg, 1.4 mmol) in THF (1.5 mL) according to **TP2**. Purification by flash chromatography (eluent: pentane:ether = 10:1) provides the pure compound **87p** (212 mg, 62%) as colourless oil. dr > 97:3.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.37-7.21 (m, 5H), 6.37 (dt, *J* = 17.3 Hz, 9.8 Hz, 1H), 5.18 (dd, *J* = 10.2 Hz, 1.9 Hz, 1H), 5.10 (dd, *J* = 17.2 Hz, 1.9 Hz, 1H), 3.46 (d, *J* = 9.7 Hz, 1H), 2.06-1.58 (m, 6H), 1.58-0.94 (m, 6H), 0.91 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 141.9, 137.9, 129.5, 128.3, 126.5, 116.8, 75.7, 57.3, 44.6, 27.8, 26.8, 26.7, 21.5.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2930 (W), 2252 (W), 1452 (W), 902 (S), 723 (VS), 649 (M).

MS (EI, 70 eV): m/z (%) = 226 (4), 128 (9), 127 (75), 118 (8), 115 (9), 109 (41), 83

(74), 43 (13).

HRMS (EI): Calcd. for $[C_{17}H_{24}O - H_2O]^+$: 226.1721; found: 226.1701 $[C_{17}H_{24}O - H_2O]^+$. Spectral data matching those reported in the literature. ^{93, 31}

Synthesis of 2,3-dimethyl-4-phenyl-hex-5-en-3-ol (87q):

The allylaluminum reagent **85f** (4 mL) was added to a solution of 3-methylbutan-2-one (**86i**, 120 mg, 1.4 mmol) in THF (1.5 mL) according to **TP2**. Purification by flash chromatography (eluent: pentane:ether = 10:1) provides the pure compound **87q** (257 mg, 90%) as colourless oil. dr > 98:2.

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 7.22-7.38 (m, 5H), 6.39 (dt, J = 17.2 Hz, 9.9 Hz, 1H), 5.19 (dd, J = 10.2 Hz, 1.9 Hz, 1H), 5.13 (ddd, J = 17.2 Hz, 1.8 Hz, 0.7 Hz, 1H), 3.46 (d, J = 9.6 Hz, 1H), 2.00 (hept, J = 6.8 Hz, 1H), 1.40 (br s, 1H), 1.02 (d, J = 6.9 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H), 0.91 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 141.9, 137.9, 129.4, 128.3, 126.5, 116.9, 76.1, 57.7, 34.1, 20.2, 17.6, 16.9.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3581 (W), 3486 (W), 3076 (W), 2977 (W), 1635 (W), 1491 (W), 1387 (W), 1080 (W), 906 (S), 728 (VS), 701 (S).

MS (EI, 70 eV): m/z (%) = 186 (0.3), 161 (2), 128 (2), 118 (85), 117 (29), 87 (100), 71 (3).

HRMS (EI): Calcd. for $[C_{14}H_{20}O - H_2O]^+$: 186.1409; found: 186.1401 $[C_{14}H_{20}O - H_2O]^+$. Spectral data matching those reported in the literature.^{93, 31}

Synthesis of 5-[1-(4-bromo-phenyl)-1-hydroxy-ethyl]-cyclopent-1-enecarbonitrile (87r):

The allylaluminum reagent **85g** (2 mL) was added to a solution of 4⁻-bromoacetophenone (**86a**, 119 mg, 0.6 mmol) in THF (1.5 mL) according to **TP3**.

Purification by flash chromatography (eluent: pentane:ether = 1:1) provides the pure compound **87r** (156 mg, 89%) as a colourless oil. dr > 99:1.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.47 (d, *J* = 8.6 Hz, 2H), 7.34 (d, *J* = 8.6 Hz, 2H), 6.85-6.77 (m, 1H), 3.38-3.27 (m, 1H), 2.32-2.13 (m, 2H), 1.96-1.77 (m, 2H), 1.74 (s, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 154.3, 144.9, 131.2, 127.3, 121.1, 117.8, 114.8, 76.4, 57.9, 32.8, 28.9, 26.2.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3460 (W), 2974 (W), 2217 (W), 1486 (M), 1076 (M), 1006 (S), 830 (M).

MS (EI, 70 eV): m/z (%) = 291 (M⁺, 1), 199 (84), 184 (19), 182 (25), 102 (15), 97 (19).

HRMS (EI): Calcd. for C₁₄H₁₄BrNO: 291.0259; found: 291.0269.

Synthesis of 5-[(4-bromo-phenyl)-hydroxy-methyl]-cyclopent-1-enecarbonitrile (87s):

The allylaluminum reagent **85g** (2 mL) was added to a solution of 4-formyl-benzoic acid methyl ester (**86e**, 98 mg, 0.6 mmol) in THF (1.0 mL) according to **TP3**. Purification by flash chromatography (eluent: pentane:ether = 1:1) provides the pure compound **87s** (108 mg, 70%) as a white solid. dr > 99:1.

m. p. = 119.8 - 121.8 °C.

¹H NMR (300 MHz, CDCl₃): δ (ppm) = 8.02 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.6 Hz, 2H), 6.79 (d, J = 2.4 Hz, 1H), 5.15 (d, J = 3.2 Hz, 1H), 3.91 (s, 3H), 3.34-3.24 (m, 1H), 2.51-2.39 (m, 2H), 2.21 (s, 1H), 2.09-1.94 (m, 1H), 1.82-1.66 (m, 1H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 166.9, 151.9, 147.3, 129.7, 129.4, 125.9, 116.2, 115.8, 72.5, 54.3, 52.1, 32.9, 22.6.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3489 (M), 2955 (W), 1702 (VS), 1283 (VS), 1087 (M).

MS (EI, 70 eV): m/z (%) = 257 (M⁺, 0.3), 226 (4), 166 (11), 165 (100), 133 (11), 93

(11).

HRMS (EI): Calcd. for C₁₅H₁₅NO₃: 257.1052; found: 257.1032.

Synthesis of 2-methyl-1-phenyl-3-trimethylsilanyl-but-3-en-1-ol (87t):

The allylaluminum reagent **85h** (3 mL) was added to a solution of benzaldehyde (**86j**, 74 mg, 0.7 mmol) in THF (1.0 mL) according to **TP2**. Purification by flash chromatography (eluent: pentane:ether = 20:1) provides the pure compound **87t** (158 mg, 96%) as colourless oil. dr: 89:11.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.32-7.12 (m, 5H), 5.73 (d, J = 2.0 Hz, 1H), 5.51 (d, ³J = 2.0 Hz, 1H), 4.66 (d, J = 4.6 Hz, 1H), 2.69 (dq, J = 4.8 Hz, 7.0 Hz, 1H), 1,78 (br s, 1H), 0.89 (d, J = 7.0 Hz, 3H), 0.00 (s, 9H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 155.3, 143.2, 128.0, 126.9, 126.2, 125.6, 74.9, 44.8, 13.4, -0.12.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3564 (br), 2958 (W), 2362 (W), 1248 (M), 906 (S), 835 (S), 727 (VS), 699 (S).

MS (EI, 70 eV): m/z (%) = 217(5), 200 (3), 178(19), 128 (37), 113 (66), 107 (100), 79 (26), 77 (15).

HRMS (EI): Calcd. for $C_{14}H_{22}OSi$: 234.1440; found: 234.1416. Spectral data matching those reported in the literature.^{93, 31}

Synthesis of 2-(4-bromo-phenyl)-3-methyl-4-trimethylsilanyl-pent-4en-2-ol (87u):

The allylaluminum reagent **85h** (3 mL) was added to a solution of 4⁻-bromoacetophenone (**86a**, 140 mg, 0.7 mmol) in THF (1.0 mL) according to **TP2**. Purification by flash chromatography (eluent: pentane:ether = 20:1) provides the pure compound **87u** (174 mg, 76%) as colourless oil. dr: 97:3.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.47 (d, J = 8.6 Hz, 2H), 7.34 (d, J = 8.6 Hz,
2H), 5.93 (d, *J* = 2.4 Hz, 1H), 5.64 (d, *J* = 2.4 Hz, 1H), 2.69 (q, *J* = 7.2 Hz, 1H), 1,73 (br s, 1H), 1,45 (s, 3H), 0.82 (d, *J* = 7.1 Hz, 3H), 0.15(s, 9H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 155.4, 146.9, 130.9, 127.2, 126.9, 120.2, 76.4, 47.4, 30.5, 16.8, -0.76.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 3498 (W), 2955 (W), 1486 (W), 1246 (M), 1078 (M), 1008 (M), 852 (S), 832 (VS), 757 (M).

MS (EI, 70 eV): m/z (%) = 311(0.45), 295 (1), 201(96), 199 (100), 183 (10), 113 (26).

HRMS (EI): Calcd. for $[C_{15}H_{23}BrOSi - Me]^+$: 311.0467; found: 311.0482 $[C_{15}H_{23}BrOSi - Me]^+$.

2.4 Extension of Functionalized Allylic Aluminum Reangents

2.4.1 Typical Procedures (TP)

TP1: Typical procedure for the preparation of allylic aluminum reagents (93a-b).

Aluminum powder (3.0 equiv) and $InCl_3$ (5 mol%) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (2.5 mL / mmol) was added. A solution of the corresponding allylic chloride (1.0 equiv.) in THF (2.5 mL / mmol) was added at the appropriate temperature (0-20°C) and the reaction mixture was stirred until the conversion of the allyl halide reached >95% (monitored by GC-analysis of hydrolyzed reaction aliquots). The remaining aluminum powder was allowed to settle down and the allylaluminum reagent is obtained as a clear solution.

TP2: Typical procedure for the preparation of homoallylic alcohols and lactones (95a-h).

The allylaluminum halides (**93a-b**) prepared according to **TP1** were added to a solution of an aldehyde or a ketone in THF at -78 °C and the mixture was stirred at this temperature for 1-2 h. After quenching with water (10 mL), the reaction mixture was extracted with ether (3×30 mL). The combined extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo*. Purification by flash chromatography provided the pure compound.

2.4.2 Preparation of allylic chlorides

Synthesis of ((6-chlorocyclohex-1-en-1-yl)oxy)triethylsilane (92a).

N-Chlorosuccinimide (1.4 g, 10 mmol) was slowly added to the solution of (cyclohex-1-en-1-yloxy)triethylsilane (2.1 g, 10 mmol) in dichloromethane (100 mL) at 0 °C. The resulting mixture was stirred for 5 h at 0 °C. After the mixture was quench with ice water (20 mL) was added slowly. The reaction mixture was extracted with dichloromethane (3 \times 20 mL). The extracts were dried over Na₂SO₄ and concentrated in vacuo. Purification by flash chromatography (eluent: iso-hexane) provided the pure compound **92a** (1.15 g, 46%) as colorless oil.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 4.98 (dd, *J* = 4.6 Hz, 2.9 Hz, 1H), 4.38-4.33 (m, 1H), 1.52-0.66 (m, 6H), 1.05-0.93 (m, 9H), 0.76-0.62 (m, 6H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 148.7, 107.6, 58.3, 32.9, 23.8, 22.9, 6.7, 5.0. **IR** (Diamond-ATR, neat): $\tilde{\nu}$ (cm⁻¹) = 2952, 1659, 1456, 1231, 1195, 1008, 981, 895, 830, 727, 705.

MS (EI, 70 eV): m/z (%) = 246 (15), 212 (5), 211 (9), 210 (15), 190 (5), 188 (14), 182 (13), 180 (29), 150 (7), 121 (100).

HRMS (EI): Calcd. for [C₁₂H₂₃ClOSi]⁺: 246.1207; found: 246.1207 [C₁₂H₂₃ClOSi]⁺.

Synthesis of 1-benzyl-3-chloro-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridine (92b).

N-Chlorosuccinimide (705 g, 5.3 mmol) was slowly added to the solution of 1-benzyl-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridine (1.6 g, 5.3 mmol) in dichloromethane (50 mL) at -20 °C. The resulting mixture was stirred for 12 h between -20 °C and 25 °C. After the mixture was quench with ice water (20 mL) was added slowly. The reaction mixture was extracted with dichloromethane (3×20 mL). The extracts were dried over Na₂SO₄ and concentrated in vacuo. Purification by flash chromatography (eluent: iso-hexane) provided the pure compound **92b** (0.72 g, 40%) as pale yellow oil.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.47-7.27 (m, 5H), 5.01 (dd, J = 4.4 Hz, 3.0 Hz, 1H), 4.39-4.33 (m, 1H), 3.80 (d, J = 13.6 Hz, 1H), 3.62 (d, J = 13.6 Hz, 1H), 3.33-3.24 (m, 1H), 3.06-2.94 (m, 2H), 2.89-2.81 (m, 1H), 1.11-1.02 (m, 9H), 0.84-0.73 (m, 6H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 147.4, 137.8, 128.9, 128.3, 127.2, 105.1, 61.4, 57.7, 56.8, 51.4, 6.7, 5.0.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2953, 2750, 1668, 1454, 1355, 1136, 1057, 1003, 976, 869, 803, 728.

MS (EI, 70 eV): m/z (%) = 336 (19), 316 (12), 303 (24), 302 (100), 301 (12), 300 (36), 246 (3), 210 (3), 189 (5), 121 (15), 91 (68).

HRMS (EI): Calcd. for $[C_{18}H_{28}CINOSi - H]^+$: 336.1550; found: 336.1541 $[C_{18}H_{28}CINOSi - H]^+$

2.4.3 Preparation of allylic aluminum reagents, homoallylic alcohols and lactones.

Preparation of allylic aluminum reagent (93a).

According to the typical procedure (**TP1**), aluminum powder (162 mg, 6 mmol) and InCl₃ (22 mg, 0.1 mmol) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (2 mL) was added. A solution of ((6-chlorocyclohex-1-en-1-yl)oxy)triethylsilane (**92a**, 492 mg, 2 mmol) in THF (2 mL) was added at 25 °C and the resulting solution was stirred at 25 °C for 16 h. The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 70%.

Synthesis of cyclohexyl(2-((triethylsilyl)oxy)cyclohex-2-en-1-yl)methanol (95a).

The allylaluminum reagent **93a** (4 mL) was added to a solution of cyclohexanecarbaldehyde (**94a**, 157 mg, 1.4 mmol) according to **TP2**. Purification by flash chromatography (eluent: iso-hexane:ether = 50:1) provides the pure compound **95a** (327 mg, 72%) as colourless oil. dr > 90:10.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 4.91-4.89 (m, 1H), 3.85 (dd, J = 8.5 Hz, 1.9Hz, 1H), 2.37-2.32 (m, 1H), 2.17-1.08 (m, 17H), 0.99-0.95 (m, 9H), 0.70-0.63 (m, 6H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 150.9, 106.7, 75.4, 42.0, 41.6, 33.1, 30.6, 29.9, 26.5, 26.0, 24.3, 22.0, 6.8, 5.4.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2928, 2252, 1615, 1449, 1222, 903, 723. MS (EI, 70 eV): m/z (%) = 229 (5), 228 (17), 227 (100), 199 (6), 117 (11), 87 (21). HRMS (EI): Calcd. for $[C_{19}H_{36}O_2Si - H_2O]^+$: 306.2379; found: 306.2377.

Synthesisof3-(hydroxy(2-((triethylsilyl)oxy)cyclohex-2-en-1-yl)methyl)benzonitrile (95b).

The allylaluminum reagent **93a** (4 mL) was added to a solution of 3-formylbenzonitrile (**94b**, 183 mg, 1.4 mmol) according to **TP2**. Purification by flash chromatography (eluent: iso-hexane:ether = 15:1) provides the pure compound **95b** (363 mg, 76%) as colourless oil. dr > 93:7.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.61-7.58 (m, 1H), 7.53-7.47 (m, 2H), 7.42-7.35 (m, 1H), 5.18 (d, J = 3.3 Hz, 1H), 4.95-4.90 (m, 1H), 2.19-2.12 (m, 1H), 2.04-1.94 (m, 2H), 1.75-1.62 (m, 2H), 1.37-1.12 (m, 2H), 0.92-0.86 (m, 9H), 0.69-0.61 (m, 6H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 149.3, 146.9, 130.5, 130.1, 129.8, 128.5, 119.2, 111.8, 106.3, 72.6, 47.6, 24.1, 21.9, 20.9, 6.7, 4.8. **IR** (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2953, 2231, 1670, 1457, 1219, 1009, 904, 727. **MS** (EI, 70 eV): m/z (%) = 325 (1), 248 (5), 247 (17), 246 (100), 181 (1), 115 (28).

HRMS (EI): Calcd. for $[C_{20}H_{29}NO_2Si - H_2O]^+$: 325.1862; found: 325.1851.

Synthesis of 2,2,2-trifluoro-1-hydroxy-1-phenylethyl)cyclohexanone (95c).

The allylaluminum reagent **93a** (4 mL) was added to a solution of 2,2,2-trifluoro-1-phenylethanone (**94c**, 244 mg, 1.4 mmol) according to **TP2**. Purification by flash chromatography (eluent: iso-hexane:ether = 50:1) provides the pure compound **95c** (217 mg, 57%) as colourless oil. dr > 95:5.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.58-7.51 (m, 2H), 7.46-7.32 (m, 3H), 6.42 (s, 1H), 3.34-3.24 (m, 1H), 2.66-2.53 (m, 1H), 2.52-2.42 (m, 1H), 2.27-2.14 (m, 1H), 1.84-1.47 (m, 5H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 216.7, 136.3 (q, J = 1.1 Hz), 128.3, 128.2, 125.8 (q, J = 288.7 Hz), 125.7 (q, J = 1.7 Hz), 78.5 (q, J = 27.9 Hz), 52.0, 44.3, 32.1, 30.5, 25.6.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2944, 1697, 1450, 1265, 1154, 907, 712.

MS (EI, 70 eV): m/z (%) = 203 (3), 105 (21), 86 (12), 42 (100).

HRMS (EI): Calcd. for $[C_{14}H_{15}F_{3}O_{2}]^{+}$: 272.1024; found: 272.1083 $[C_{14}H_{15}F_{3}O_{2}]^{+}$

Synthesis of (2-((triethylsilyl)oxy)cyclohex-2-en-1-yl)(3,4,5-trimethoxyphenyl) methanol (95d).

The allylaluminum reagent **93a** (4 mL) was added to a solution of methyl ethyl 2-acetylbenzoate (**94d**, 269 mg, 1.4 mmol) according to **TP2**. Purification by flash chromatography (eluent: iso-hexane:ether = 15:1) provides the pure compound **95d** (326 mg, 63%) as colourless oil. dr > 90:10.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.86-7.81 (m, 1H), 7.62-7.58 (m, 1H), 7.48-7.42 (m, 2H), 4.94-4.88 (m, 1H), 2.77-2.69 (m, 1H), 2.16-1.93 (m, 2H), 1.73 (s, 3H), 1.70-1.52 (m, 2H), 1.40-1.25 (m, 2H), 0.97-0.89 (m, 9H), 0.70-0.61 (m, 6H).

¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 170.2, 154.2, 149.0, 133.5, 128.5, 126.5, 125.3, 121.4, 106.6, 89.7, 45.3, 26.5, 26.2, 23.7, 20.5, 6.7, 4.9.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2934, 2253, 1759, 1466, 1223, 904.

MS (EI, 70 eV): m/z (%) = 358 (4), 330 (8), 329 (33), 213 (5), 212 (18), 211 (100), 183 (11), 148 (16), 147 (93), 115 (31), 87 (26).

HRMS (EI): Calcd. for $[C_{21}H_{30}O_3Si]^+$: 358.1964; found: 358.1968 $[C_{21}H_{30}O_3Si]^+$

Preparation of allylic aluminum reagent (93b).

According to the typical procedure (**TP1**), aluminum powder (162 mg, 6 mmol) and InCl₃ (22 mg, 0.1 mmol) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (2 mL) was added. A solution of 1-benzyl-3-chloro-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridine (**92b**, 672 mg, 2 mmol) in THF (2 mL) was added at 25 °C and the resulting solution was stirred at 25 °C for 16 h. The insertion reaction was monitored by GC analysis of hydrolyzed reaction aliquots. Yield: 70%.

Synthesis of (1-benzyl-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridin-3-yl) (3,4,5-trimethoxyphenyl)methanol (95e).

The allylaluminum reagent **93b** (2 mL) was added to a solution of 3,4,5-trimethoxybenzaldehyde (**94e**, 137 mg, 0.7 mmol) according to **TP2**. Purification by flash chromatography (eluent: iso-hexane:ether = 4:1) provides the pure compound **95e** (216 mg, 62%) as colourless oil. dr > 95:5.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.42-7.27 (m, 5H), 6.61 (br s, 1H), 6.50 (s, 2H), 5.11 (s, 1H), 4.99 (dd, J = 4.9 Hz, 1.9 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 6H), 3.65-3.47 (m, 2H), 3.31 (dd, J = 15.3 Hz, 4.3 Hz, 1H), 2.98 (d, J = 12.5 Hz, 1H), 2.28-2.27 (m, 1H), 2.33-2.20 (m, 2H), 1.11-1.01 (m, 9H), 0.83-0.73 (m, 6H). ¹³**C NMR** (75 MHz, CDCl₃): δ (ppm) = 153.0, 149.2, 137.7, 136.4, 134.4, 129.4, 128.5, 127.7, 108.7, 102.4, 77.2, 60.8, 58.2, 56.1, 51.6, 50.5, 46.9, 6.7, 5.1. **IR** (Diamond-ATR, neat): $\tilde{\nu}$ (cm⁻¹) = 2958, 2251, 1591, 1128, 902, 721. **MS** (EI, 70 eV): m/z (%) = 499 (0.01), 367 (1), 198 (1), 196 (3), 189 (2), 91 (100). **HRMS** (EI): Calcd. for [C₂₈H₄₁NO₅Si]⁺: 499.2754; found: 499.2759.

Synthesis of 4-(1-benzyl-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridin-3-yl)-1hydroxyethyl)benzonitrile (95f).

The allylaluminum reagent **93b** (2 mL) was added to a solution of 4-acetylbenzonitrile (**94f**, 102 mg, 0.7 mmol) according to **TP2**. Purification by flash chromatography (eluent: iso-hexane:ether = 5:1) provides the pure compound **95f** (219 mg, 70%) as colourless oil. dr > 93:7.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.48-7.15 (m, 9H), 5.00 (dd, J = 4.3 Hz, 2.4 Hz, 1H), 3.63 (d, J = 12.4 Hz, 1H), 3.43 (dd, J = 15.3 Hz, 4.3 Hz, 1H), 3.17 (d, J =

12.4 Hz, 1H), 2.85-2.76 (m, 1H), 2.49-2.41 (m, 1H), 2.30-2.25 (m, 1H), 2.15 (dd, *J* = 11.3 Hz, 3.6 Hz, 1H), 1.50 (s, 3H), 1.09-0.99 (m, 9H), 0.82-0.71 (m, 6H). ¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 155.2, 148.7, 136.5, 131.6, 129.8, 128.5, 127.7, 125.7, 119.1, 109.5, 102.7, 77.4, 61.8, 51.9, 51.5, 48.3, 29.6, 6.8, 5.1.

Synthesis of methyl 4-((1-benzyl-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridin-3-yl)(hydroxy)methyl)benzoate (95g).

The allylaluminum reagent **93b** (2 mL) was added to a solution of methyl 4-formylbenzoate (**94g**, 115 mg, 0.7 mmol) according to **TP2**. Purification by flash chromatography (eluent: iso-hexane:ether = 8:1) provides the pure compound **95g** (199 mg, 61%) as colourless oil. dr > 95:5.

¹**H NMR** (300 MHz, CDCl₃): δ (ppm) = 7.81 (d, J = 8.2 Hz, 2H), 7.46-7.40 (m, 3H), 7.37-7.31 (m, 2H), 6.99 (d, J = 8.2 Hz, 2H), 6.70 (br s, 1H), 5.12 (s, 1H), 5.03 (dd, J =4.9 Hz, 1.9 Hz, 1H), 3.91 (s, 3H), 3.72 (d, J = 12.4 Hz, 1H), 3.39 (dd, J = 14.8 Hz, 5.1 Hz, 1H), 3.26 (d, J = 12.4 Hz, 1H), 2.87-2.76 (m, 2H), 2.16-2.06 (m, 2H), 1.10-1.01 (m, 9H), 0.83-0.73 (m, 6H).

¹³**C** NMR (75 MHz, CDCl₃): δ (ppm) = 167.1, 150.4, 149.1, 136.9, 129.9, 129.3, 128.6, 128.2, 127.8, 125.6, 102.0, 73.5, 62.1, 52.3, 51.9, 48.9, 46.6, 6.7, 5.1.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2952, 1703, 1443, 1280, 1193, 1103, 829, 728. **MS** (EI, 70 eV): m/z (%) = 466 (4), 438 (6), 376 (3), 319 (6), 304 (6), 303 (22), 302 (62), 300 (10), 279 (11), 188 (41), 164 (8), 133 (15), 91 (100).

HRMS (EI): Calcd. for $[C_{27}H_{37}NO_4Si - H]^+$: 466.2414; found: 466.2407 $[C_{27}H_{37}NO_4Si - H]^+$

Synthesis of 3-(1-benzyl-4-((triethylsilyl)oxy)-1,2,3,6-tetrahydropyridin-3-yl)-3methylisobenzofuran-1(3H)-one (95h).

The allylaluminum reagent **93b** (4 mL) was added to a solution of methyl ethyl 2-acetylbenzoate (**94d**, 269 mg, 1.4 mmol) according to **TP2**. Purification by flash chromatography (eluent: iso-hexane:ether = 7:1) provides the pure compound **95h** (478 mg, 70%) as colourless oil. dr > 97:3.

¹**H NMR** (600 MHz, CDCl₃): δ (ppm) = 7.76-7.69 (m, 2H), 7.56-7.51 (m, 1H), 7.41-7.37 (m, 1H), 7.33-7.22 (m, 5H), 4.62 (dd, J = 4.1 Hz, 3.0 Hz, 1H), 3.51-3.42 (m, 2H), 3.10 (dd, J = 15.2 Hz, 3.9 Hz, 1H), 2.89 (dd, J = 11.8 Hz, 3.0 Hz, 1H), 2.71-2.62 (m, 2H), 2.45 (dd, J = 11.8 Hz, 4.4 Hz, 1H), 1.59 (s, 3H), 0.85-0.80 (m, 9H), 0.56-0.50 (m, 6H).

¹³C NMR (150 MHz, CDCl₃): δ (ppm) = 170.0, 153.4, 147.9, 137.8, 132.8, 129.3, 128.2, 128.1, 127.1, 126.4, 124.7, 123.6, 102.7, 89.7, 62.6, 52.3, 51.2, 46.9, 25.1, 6.5, 4.6.

IR (Diamond-ATR, neat): \tilde{v} (cm⁻¹) = 2953, 2874, 1760, 1671, 1465, 1353, 1284, 1208, 1118, 1023, 855, 726, 696.

MS (EI, 70 eV): m/z (%) = 448 (8), 304 (6), 303 (24), 302 (100), 186 (8), 103 (18), 91 (64), 75 (11).

HRMS (EI): Calcd. for $[C_{27}H_{35}NO_3Si - H]^+$: 448.2308; found: 448.2302 $[C_{27}H_{35}NO_3Si - H]^+$

2.5 Preparation of Functionalized Organomanganese(II) Reagents by Direct Insertion of Manganese to Aromatic and Benzylic Halides

2.5.1 Typical Procedures (TP)

TP1: Typical procedure for the preparation of aromatic manganese reagents (99a-h).

LiCl (1.5 equiv.) was placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). After cooled to room temperature, this flask was charged with manganese powder (3 equiv.), $InCl_3$ (2.5 mol %) and PbCl₂ (2.5 mol %) and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (2 mL) was added. Manganese powder was activated with TMSCl (1 mol%). The solution of organic halide in THF (2-8 mL) was then added at the appropriate temperature (0-25 °C) and the reaction mixture was stirred until the conversion of the organic halide reached >95% (monitored by GC-analysis of hydrolyzed reaction aliquots). Yields of these resulting aromatic manganese reagents were determined by iodolysis in THF.

TP2: Typical procedure for the preparation of benzylic manganese reagents (103a-h).

Manganese powder (3 equiv.), InCl₃ (2.5 mol %) and PbCl₂ (2.5 mol %) were placed in an argon-flushed flask and dried for 5 min at 380 °C (heat gun) under high vacuum (1 mbar). The flask was evacuated and backfilled with argon three times and THF (5 mL) was added. Manganese powder was activated with TMSCl (1 mol%). The solution of organic halide in THF (5 mL) was then added at 25 °C and the reaction mixture was stirred until the conversion of the organic halide reached >95% (monitored by GC-analysis of hydrolyzed reaction aliquots). Yields of these resulting benzylic manganese reagents were determined by iodolysis in THF.

2.5.2 Preparation of Aromatic and Benzylic Manganese Reagents

Preparation of (5-cyano-2-fluorophenyl)manganese(II) bromide (99a).

According to **TP1**, 3-bromo-4-fluorobenzonitrile (**98a**, 400 mg, 2 mmol) reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl₃ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (4 mL) within 24 h at 50 °C affording the corresponding aryl manganese reagent **99a** in 64% yield.

Synthesis of ethyl 5'-cyano-2'-fluoro-[1,1'-biphenyl]-4-carboxylate (101a).

Ethyl 4-iodobenzoate (**100a**, 334 mg, 1.2 mmol), Pd-PEPPSI-*i*Pr (47 mg, 5 mol%) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (5-cyano-2-fluorophenyl)manganese(II) bromide (**99a**, 4 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, hexane/Et₂O = 5:1) afforded **101a** (227 mg, 70%) as a white solid.

m. p. = 123.0 - 124.6 °C.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 8.17 (d, *J* = 8.6 Hz, 2H), 7.81 (dd, *J* = 7.1 Hz, 2.1 Hz, 1H), 7.73-7.67 (m, 1H), 7.61 (d, *J* = 8.6 Hz, 2H), 7.35-7.28 (m, 1H), 4.44 (q, *J* = 7.2 Hz, 2H), 1.44 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 165.9, 161.9 (d, *J* = 258.9 Hz), 137.6 (d, *J* = 1.5 Hz), 134.9 (d, *J* = 4.8 Hz), 133.7 (d, *J* = 9.8 Hz), 130.7, 129.9, 129.8 (d, *J* = 14.9

Hz), 128.9 (d, *J* = 3.1 Hz), 117.8 (d, *J* = 24.4 Hz), 117.7 (d, *J* = 0.6 Hz), 109.2 (d, *J* = 4.2 Hz), 61.2, 14.3.

IR (Diamond-ATR, neat): v (cm⁻¹) = 3065 (W), 2983 (W), 2229 (M), 1882 (VW), 1705 (VS), 1608 (M), 1485 (M), 1365 (M), 1272 (VS), 1222 (S), 1100 (VS), 1014 (M), 824 (M), 705 (M).

MS (EI, 70 eV): m/z (%) = 269 (M⁺, 73), 242 (11), 241 (81), 225 (39), 224 (100), 197 (8), 196 (49), 195 (45), 176 (11), 169 (31), 145 (4), 112 (6), 84 (3).

HRMS (EI): Calcd. for [C₁₆H₁₂FNO₂]⁺: 269.0852; found: 269.0846.

Synthesis of ethyl 2-(5-cyano-2-fluorobenzyl)acrylate (101b).

Ethyl 2-(bromomethyl)acrylate (100b, 232 mg, 1.2 mmol), and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (5-cyano-2-fluorophenyl)manganese(II) bromide (99a, 4 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, hexane/ $Et_2O = 10:1$) afforded **101b** (198 mg, 71%) as colorless liquid.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 7.61-7.51 (m, 2H), 7.19-7.10 (m, 1H), 6.33 (s, 1H), 5.58 (d, *J* = 0.6 Hz, 1H), 4.21 (q, *J* = 7.4 Hz, 2H), 3.69 (s, 2H), 1.29 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 165.9, 163.4 (d, *J* = 255 Hz), 137.4 (d, *J* = 0.8 Hz), 135.4 (d, *J* = 6 Hz), 132.6 (d, *J* = 9.7 Hz), 128.1 (d, *J* = 16.5 Hz), 127.4 (d, *J* = 1.1 Hz), 118.1 (d, *J* = 0.6 Hz), 116.7 (d, *J* = 23.8 Hz), 108.4 (d, *J* = 3.9 Hz), 61.0, 30.8 (d, *J* = 2.8 Hz).14.0.

IR (**Diamond-ATR**, **neat**): v (cm⁻¹) = 2984 (VW), 2232 (W), 1712 (VW), 1633 (W),

1495 (S), 1328 (M), 1249 (S), 1145 (S), 1026 (M), 908 (M), 825 (M), 730 (M), 699 (W), 648 (W).

MS (EI, 70 eV): m/z (%) = 233 (M⁺, 100), 205 (53), 202 (42), 187 (53), 186 (14), 184 (41), 159 (97), 158 (92), 157 (64), 133 (52), 106 (16).

HRMS (EI): Calcd. for [C₁₃H₁₂FNO₂]⁺: 233.0852; found: 233.0841.

Preparation of (2-chloro-5-(trifluoromethyl)phenyl)manganese(II) bromide (99b).

According to **TP1**, 2-bromo-1-chloro-4-(trifluoromethyl)benzene (**98b**, 519 mg, 2 mmol) reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl₃ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (4 mL) within 24 h at 50 °C affording the corresponding aryl manganese reagent **99b** in 72% yield.

Synthesisof3-((2-chloro-5-(trifluoromethyl)phenyl)(hydroxy)methyl)benzonitrile (101c).

3-Formylbenzonitrile (**100c**, 183 mg, 1.4 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (2-chloro-5-(trifluoromethyl)phenyl)manganese(II) bromide (**09b**, 4 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, hexane/Et₂O = 2:1) afforded **101c** (316 mg, 73%) as a white solid.

m. p. = 128.1 - 130.0 °C.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 7.96 (d, *J* = 1.7 Hz, 1H), 7.73-7.44 (m, 6H), 6.27 (d, *J* = 3.3 Hz, 1H), 2.88 (s, 1H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 142.9, 141.1, 135.8 (q, J = 1.7 Hz), 131.7, 131.4, 130.6, 130.3, 129.5, 129.9 (q, J = 33.2 Hz) 126.0 (q, J = 3.7 Hz), 124.8 (q, J = 3.7 Hz), 123.6 (q, J = 272.5 Hz), 118.5, 112.6, 71.4.

IR (Diamond-ATR, neat): v (cm⁻¹) = 3455 (M), 3050 (VW), 2923 (VW), 2236 (M), 1609 (W), 1403 (W), 1326 (S), 1277 (M), 1165 (S), 1118 (VS), 1078 (S), 1036 (M), 898 (W), 828 (M), 694 (M), 641 (W).

MS (**EI**, **70** eV): m/z (%) = 311 (M⁺, 65), 292 (14), 276 (15), 258 (14), 208 (52), 206 (71), 177 (15), 160 (21), 144 (28), 130 (73), 104 (100).

HRMS (EI): Calcd. for [C₁₅H₉ClF₃NO]⁺: 311.0325; found: 311.0319.

Preparation of (5-(ethoxycarbonyl)thiophen-2-yl)manganese(II) bromide (99c).

According to **TP1**, ethyl 5-bromothiophene-2-carboxylate (**108c**, 470 mg, 2 mmol) reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl₃ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (10 mL) within 12 h between 0-25 °C affording the corresponding aryl manganese reagent **99c** in 70% yield.

Synthesis of ethyl 5-(4-chlorobenzoyl)thiophene-2-carboxylate (101d).

4-Chlorobenzoyl chloride (**100d**, 210 mg, 1.2 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (5-(ethoxycarbonyl)thiophen-2-yl)manganese(II) bromide (**99c**, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, hexane/Et₂O = 20:1) afforded **101d** (240 mg, 68%) as a white solid.

m. p. = 105.9 - 107.3 °C.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 7.84 (d, *J* = 8.6 Hz, 2H), 7.79 (d, *J* = 4.1 Hz, 1H), 7.59 (d, *J* = 4.1 Hz, 1H), 7.50 (d, *J* = 8.6 Hz, 2H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 186.7, 161.5, 147.1, 140.6, 139.3, 135.5, 133.7, 132.9, 130.6, 128.9, 61.9, 14.2.

IR (Diamond-ATR, neat): v (cm⁻¹) = 3073 (W), 2980 (W), 2961 (W), 2569 (VW), 1701 (VS), 1627 (S), 1585 (M), 1444 (W), 1399 (W), 1249 (VS), 1091 (S), 840 (M), 745 (S), 685 (M).

MS (**EI**, **70** eV): m/z (%) = 294 (M⁺, 78), 265 (19), 249 (16), 248 (75), 220 (14), 183 (63), 154 (39), 140 (32), 139 (100), 111 (49), 75 (17).

HRMS (EI): Calcd. for [C₁₄H₁₁ClO₃S]⁺: 294.0117; found: 294.0112.

Synthesis of ethyl 5-(3-(ethoxycarbonyl)phenyl)thiophene-2-carboxylate (101e).

Ethyl 3-bromobenzoate (**100e**, 206 mg, 0.9 mmol), Pd-PEPPSI-*i*Pr (30 mg, 5 mol%) and THF (1.0 mL) were placed in an argon-flushed flask. To this mixture was added (5-(ethoxycarbonyl)thiophen-2-yl)manganese(II) bromide (**99c**, 7.6 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, hexane/Et₂O = 10:1) afforded **101e** (210 mg, 77%) as a white solid.

m. p. = 80.9 - 82.6 °C.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 8.32 (d, *J* = 1.7 Hz, 1H), 8.07-8.00 (m, 1H), 7.85-7.77 (m, 2H), 7.54-7.46 (m, 1H), 7.39-7.36 (m, 1H), 4.46-4.35 (m, 4H), 1.46-1.36 (m, 6H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 165.9, 162.1, 149.7, 134.2, 133.7, 133.2, 131.4, 130.2, 129.5, 129.1, 127.1, 124.2, 61.3, 61.2, 14.4, 14.3.

IR (Diamond-ATR, neat): v (cm⁻¹) = 2978 (W), 1717 (S), 1693 (VS), 1451 (M), 1366 (M), 1277 (VS), 1238 (S), 1100 (VS), 1080 (S), 1025 (M), 805 (M), 747 (VS), 683 (W).

MS (EI, 70 eV): m/z (%) = 304 (M⁺, 100), 276 (22), 260 (15), 259 (77), 247 (10), 231 (12), 230 (38), 204 (5), 159 (16), 115 (10).

HRMS (EI): Calcd. for $[C_{16}H_{16}O_4S]^+$: 304.0769; found: 304.0761.

Preparation of (2-chloro-5-(trifluoromethyl)phenyl)manganese(II) iodide (99d).

According to **TP1**, 1-chloro-2-iodo-4-(trifluoromethyl)benzene (**98d**, 613 mg, 2 mmol) reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl₃ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (4 mL) within 18 h at 25 °C affording the corresponding aryl manganese reagent **99d** in 84% yield.

Synthesis of (2-chloro-5-(trifluoromethyl)phenyl)(2-fluorophenyl)methanone (101f).

2-Fluorobenzoyl chloride (**100f**, 221 mg, 1.4 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (2-chloro-5-(trifluoromethyl)phenyl)manganese(II) iodide (**99d**, 4 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, hexane/Et₂O = 10:1) afforded **101f** (360 mg, 85%) as a white solid.

m. p. = 50.9 - 52.6 °C.

¹**H** NMR (**300** MHz, CDCl₃): δ (ppm) = 7.88-7.81 (m, 1H), 7.76-7.55 (m, 4H), 7.35-7.27 (m, 1H), 7.17-7.07 (m, 1H).

¹³**C NMR (75 MHz, CDCl₃)**: δ (ppm) = 190.4 (d, *J* = 0.6 Hz), 161.7 (d, *J* = 257.5 Hz), 140.4 (d, *J* = 0.8 Hz), 135.7 (d, *J* = 8.9 Hz), 135.1 (m), 131.3 (d, *J* = 1.1 Hz), 130.7, 129.6 (q, *J* = 33.0 Hz), 128.2 (q, *J* = 3.7 Hz), 126.2 (m), 125.3 (d, *J* = 10.4 Hz), 123.3 (q, *J* = 270.8 Hz), 124.7 (d, *J* = 3.9 Hz), 116.7 (d, *J* = 22.2 Hz).

IR (**Diamond-ATR**, **neat**): v (cm⁻¹) = 3044 (VW), 1664 (S), 1607 (S), 1481 (M), 1455 (M), 1332 (S), 1289 (S), 1171 (S), 1123 (VS), 1079 (VS), 957 (W), 914 (W), 836 (S), 756 (M), 629 (W).

MS (EI, 70 eV): m/z (%) = 302 (M⁺, 73), 209 (28), 207 (100), 180 (11), 178 (38), 143 (9), 123 (79), 95 (70).

HRMS (EI): Calcd. for $[C_{14}H_7ClF_4O]^+$: 302.0122; found: 302.0120.

Preparation of (2-(trifluoromethyl)phenyl)manganese(II) iodide (99e)

According to **TP1**, 1-iodo-2-(trifluoromethyl)benzene (**98e**, 544 mg, 2 mmol) reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), $InCl_3$ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (10 mL) within 23 h at 25 °C affording the corresponding aryl manganese reagent **99e** in 76% yield.

Synthesis of thiophen-2-yl(2-(trifluoromethyl)phenyl)methanone (101g).

Thiophene-2-carbonyl chloride (100g, 205 mg, 1.4 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture added was (2-(trifluoromethyl)phenyl)manganese(II) iodide (99e, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, hexane/ $Et_2O = 20:1$) afforded **101g** (266 mg, 74%) as a white solid.

m. p. = 58.1 - 59.8 °C.

¹**H NMR** (**300 MHz, CDCl₃**): δ (ppm) = 7.83-7.75 (m, 2H), 7.69-7.59 (m, 2H), 7.57-7.49 (m, 1H), 7.35 (dd, J = 3.7 Hz, 1.2 Hz, 1H), 7.13 (dd, J = 4.8 Hz, 3.7 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 187.5, 143.8 (q, J = 0.9 Hz), 137.8 (q, J = 2.2 Hz), 136.0, 135.7, 131.4 (q, J = 1.0 Hz), 130.1, 128.3, 128.2, 128.0 (q, J = 32.3 Hz), 126.8 (q, J = 4.6 Hz), 123.5 (q, J = 274.0 Hz).

IR (Diamond-ATR, neat): v (cm⁻¹) = 3100 (VW), 1979 (VW), 1648 (VS), 1411 (S), 1315 (VS), 1286 (S), 1172 (S), 1149 (M), 1113 (VS), 1045 (M), 846 (M), 775 (M), 730 (W).

MS (**EI, 70 eV**): m/z (%) = 256 (M⁺, 39), 237 (2), 173 (10), 145 (15), 111 (100), 95 (3), 82 (5).

HRMS (EI): Calcd. for $[C_{12}H_7F_3OS]^+$: 256.0170; found: 256.0160.

Preparation of (2,4-dichloro-6-methylphenyl)manganese(II) iodide (99f).

According to **TP1**, 1,5-dichloro-2-iodo-3-methylbenzene (**98f**, 574 mg, 2 mmol) reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), $InCl_3$ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (6 mL) within 12 h at 25 °C affording the corresponding aryl manganese reagent **99f** in 70% yield.

Synthesis of 4-((2,4-dichloro-6-methylphenyl)(hydroxy)methyl)benzonitrile (101h).

4-Formylbenzonitrile (**100h**, 183 mg, 1.4 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (2,4-dichloro-6-methylphenyl)manganese(II) iodide (**99f**, 6 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, hexane/Et₂O = 10:1) afforded **101h** (294 mg, 72%) as a white solid.

m. p. = 156.0-158.3 °C.

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 7.66-7.59 (m, 2H), 7.57-7.41 (m, 2H), 7.34-7.30 (m, 1H), 7.12 (d, J = 2.1 Hz, 1H), 6.58 (d, J = 5.8 Hz, 1H), 2.82 (d, J = 5.8 Hz, 1H), 2.21 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 147.2, 141.4, 136.1, 134.5, 134.3, 132.1, 130.7, 127.4, 126.1, 118.8, 110.8, 70.6, 20.3.

IR (Diamond-ATR, neat): v (cm⁻¹) = 3477 (M), 2927 (VW), 2360 (W), 2231 (M), 1735 (M), 1700 (M), 1392 (M), 1259 (W), 1053 (S), 910 (M), 849 (S), 813 (S), 766 (W), 688 (W).

MS (EI, 70 eV): m/z (%) = 290 (M⁺, 42), 289 (66), 287 (100), 272 (13), 255 (14), 237 (19), 199 (15), 186 (78), 130 (63), 102 (65).

HRMS (EI): Calcd. for $[C_{15}H_{11}Cl_2NO]^+$: 291.0218; found: 290.9944.

Preparation of (2-(ethoxycarbonyl)-4,6-diiodophenyl)manganese(II) iodide (99g).

According to **TP1**, ethyl 2,3,5-triiodobenzoate (**98g**, 1.05 g, 2 mmol) reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl₃ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (10 mL) within 16 h between 0-25 °C affording the corresponding aryl manganese reagent **99g** in 60% yield.

Synthesis of 3-(5,7-diiodo-3-oxo-1,3-dihydroisobenzofuran-1-yl)benzonitrile (101i).

3-Formylbenzonitrile (**100c**, 157 mg, 1.2 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (2-(ethoxycarbonyl)-4,6-diiodophenyl)manganese(II) iodide (**99g**, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, hexane/Et₂O = 4:1) afforded **101i** (397 mg, 68%) as a yellow solid.

m. p. = 118.0-119.9 °C.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 8.41 (d, *J* = 1.4 Hz, 1H), 8.34 (d, *J* = 1.4 Hz, 1H), 7.76-7.70 (m, 1H), 7.58-7.45 (m, 3H), 6.16 (s, 1H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 166.8, 151.6, 150.2, 135.1, 134.6, 133.4, 133.3, 132.8, 129.9, 129.5, 117.8, 113.2, 96.0, 90.9, 83.7.

IR (Diamond-ATR, neat): v (cm⁻¹) = 3416 (W), 2964 (W), 2569 (W), 2232 (M), 1768 (S), 1681 (VS), 1435 (M), 1275 (VS), 1232 (S), 1065 (M), 911 (W), 802 (M), 753 (S), 675 (M).

MS (**EI**, **70** eV): m/z (%) = 486 (M⁺, 53), 457 (4), 384 (13), 356 (100), 230 (5), 205 (4), 200 (10), 190 (6), 189 (22), 188 (29), 177 (11), 155 (20), 130 (19), 127 (66), 102 (10).

HRMS (EI): Calcd. for $[C_{15}H_7I_2NO_2]^+$: 486.8566; found: 486.8550.

Preparation of (4-iodo-2,6-dimethoxypyrimidin-5-yl)manganese(II) iodide (99h).

According to **TP1**, 4,5-diiodo-2,6-dimethoxypyrimidine (**98h**, 787 mg, 2 mmol) reacted with manganese powder (330 mg, 6 mmol), LiCl (127 mg, 3 mmol), InCl₃ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (10 mL) within 12 h at 25 °C affording the corresponding aryl manganese reagent **99h** in 65% yield.

Synthesis of (4-chlorophenyl)(4-iodo-2,6-dimethoxypyrimidin-5-yl)methanone (101j).

4-Chlorobenzoyl chloride (100d, 210 mg, 1.2 mmol) and THF (1.5 mL) were placed in argon-flushed flask. То this mixture added an was (4-iodo-2,6-dimethoxypyrimidin-5-yl)manganese(II) iodide (99h, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, hexane/ $Et_2O = 2:1$) afforded **101j** (344 mg, 71%) as a white solid.

m. p. = 176.5-178.8 °C.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 7.78 (d, *J* = 8.8 Hz, 2H), 7.46 (d, *J* = 8.8 Hz, 2H), 4.05 (s, 3H), 3.89 (s, 3H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 191.8, 167.2, 163.5, 140.8, 133.9, 131.0, 129.3, 126.7, 120.7, 55.7, 54.9.

IR (Diamond-ATR, neat): v (cm⁻¹) = 2953 (VW), 2360 (VW), 1738 (W), 1670 (M), 1564 (S), 1523 (S), 1477 (M), 1380 (S), 1314 (M), 1249 (M), 1073 (M), 1009 (S), 917 (S), 869 (M).

MS (EI, 70 eV): m/z (%) = 404 (100), 279 (18), 239 (8), 210 (21), 154 (4).

HRMS (ESI): Calcd. for $([C_{13}H_{10}CIIN_2O_3]^+ + H)$: 404.9503; found: 404.9496 $([C_{13}H_{10}CIIN_2O_3]^+ + H)$.

Synthesis of (3-fluoro-4-methoxyphenyl)(4-iodo-2,6-dimethoxypyrimidin-5-yl) methanol (101k).

3-Fluoro-4-methoxybenzaldehyde (100i, 185 mg, 1.2 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (4-iodo-2,6-dimethoxypyrimidin-5-yl)manganese(II) iodide (99h, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, hexane/ $Et_2O = 1:1$) afforded **101k** (393 mg, 78%) as a white solid.

m. p. = 155.6-157.7 °C.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 7.15-6.86 (m, 3H), 5.96 (d, *J* = 7.7 Hz, 1H), 4.01 (s, 3H), 3.93 (s, 3H), 3.89 (s, 3H), 3.41 (br s, 1H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 166.8, 162.6, 152.2 (d, *J* = 246.0 Hz), 146.8 (d, *J* = 10.7 Hz), 134.9 (d, *J* = 5.3 Hz), 133.2, 121.1 (d, *J* = 3.7 Hz), 120.4, 113.6 (d, *J* = 19.6 Hz), 113.1 (d, *J* = 2.2 Hz), 75.9 (d, *J* = 3.0 Hz), 56.3, 55.5, 54.7.

IR (Diamond-ATR, neat): v (cm⁻¹) = 3328 (W), 2958 (VW), 1560 (M), 1535 (S), 1442 (M), 1362 (S), 1274 (S), 1207 (M), 1109 (M), 1010 (VS), 795 (M), 754 (W).

MS (**EI**, **70** eV): m/z (%) = 419 (M⁺, 71), 415 (11), 401 (10), 388 (17), 294 (17), 292 (100), 274 (52), 260 (35), 217 (12), 152 (31), 138 (10), 127 (15), 112 (14). **HRMS (EI)**: Calcd. for $[C_{14}H_{14}FIN_2O_4]^+$: 419.9982; found: 419.9975.

Preparation of (3-chlorobenzyl)manganese(II) chloride (103a).

According to **TP2**, 1-chloro-3-(chloromethyl)benzene (**102a**, 644 mg, 4 mmol) reacted with manganese powder (660 mg, 12 mmol), $InCl_3$ (22 mg, 2.5 mol %) and PbCl₂ (28 mg, 2.5 mol %) in THF (20 mL) within 14 h at 25 °C affording the corresponding benzylic manganese reagent **103a** in 75% yield.

Synthesis of 1-chloro-3-(3-nitro-2-phenylpropyl)benzene (104a).

Nitrostyrene (**100j**, 208 mg, 1.4 mmol), CuI (26 mg, 10 mol%) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (3-chlorobenzyl)manganese(II) chloride (**103a**, 10 mL) dropwise at -78 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 24 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 10:1) afforded **104a** (308 mg, 80%) as pale yellow liquid.

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 7.39-7.25 (m, 3H), 7.24-7.12 (m, 5H), 6.99-6.91 (m, 1H), 4.63 (dd, J = 7.7 Hz, J = 2.2 Hz, 2H), 3.84-3.71 (m, 1H), 2.99 (d, J = 7.5 Hz, 2H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 139.9, 138.5, 134.3, 129.8, 129.2, 128.9, 127.9, 127.5, 127.3, 127.0, 79.5, 45.8, 39.5.

IR (Diamond-ATR, neat): v (cm⁻¹) = 3031 (VW), 2922 (VW), 1548 (VS), 1428 (M), 1377 (M), 1207 (W), 1078 (W), 908 (W), 776 (M), 697 (S), 682 (M).

MS (EI, 70 eV): m/z (%) = 275 (M⁺, 5), 245 (4), 228 (12), 227 (22), 226 (27), 213 (46), 193 (23), 179 (13), 165 (6), 126 (41), 125 (11), 124 (89), 115 (10), 104 (100), 77 (10).

HRMS (EI): Calcd. for $[C_{15}H_{14}CINO_2]^+$: 275.0713; found: 275.0710.

Synthesis of 4-(2-(3-chlorophenyl)-1-hydroxyethyl)benzonitrile (104b).

4-Formylbenzonitrile (**100h**, 183 mg, 1.4 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (3-chlorobenzyl)manganese(II) chloride (**103a**, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 4:1) afforded **104b** (264 mg, 73%) as a white solid.

m. p. = 95.2 - 96.7 °C.

¹**H NMR (400 MHz, CDCl₃)**: δ (ppm) = 7.63 (d, *J* = 8.3 Hz, 2H), 7.45 (d, *J* = 8.3 Hz, 2H), 7.28-7.16 (m, 3H), 7.07-6.99 (m, 1H), 4.96 (dd, *J* = 7.6 Hz, *J* = 5.4 Hz, 1H), 3.05-2.89 (m, 2H), 2.29 (br s, 1H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 148.7, 139.1, 134.3, 132.2, 129.7, 129.5, 127.7, 127.0, 126.5, 118.7, 111.3, 74.2, 45.4..

IR (Diamond-ATR, neat): v (cm⁻¹) = 3477 (S), 2924 (VW), 2233 (M), 1666 (W), 1599 (M), 1476 (W), 1402 (M), 1228 (M), 1068 (S), 817 (M), 786 (S), 682 (M).

MS (EI, 70 eV): m/z (%) = 257 (M⁺, 1), 239 (2), 204 (3), 203 (3), 202 (1), 190 (1), 176 (1), 132 (100), 128 (23), 104 (39), 91 (19), 76 (15).

HRMS (EI): Calcd. for [C₁₅H₁₂ClNO]⁺: 257.0607; found: 257.0586.

Synthesis of 2-(3-chlorophenyl)-1-(4-chlorophenyl)ethanone (104c).

4-Chlorobenzoyl chloride (**100d**, 245 mg, 1.4 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (3-chlorobenzyl)manganese(II) chloride (**103a**, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 20:1) afforded **104c** (281 mg, 75%) as a white solid.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 7.95 (d, *J* = 8.6 Hz, 2H), 7.46 (d, *J* = 8.6 Hz, 2H), 7.30-7.26 (m, 3H), 7.17-1.13 (m, 1H), 4.25 (s, 2H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 195.5, 139.9, 135.9, 134.6, 130.9, 129.9, 129.6, 129.0, 128.7, 127.6, 127.3, 44.8.

IR (Diamond-ATR, neat): v (cm⁻¹) = 2958 (VW), 2359 (VW), 1716 (S), 1689 (S), 1588 (S), 1476 (M), 1398 (M), 1269 (VS), 1090 (VS), 990 (S), 817 (M), 759 (S).

MS (**EI**, **70** eV): m/z (%) = 265 (0.2), 191 (3), 175 (5), 164 (2), 157 (3), 156 (2), 155 (7), 138 (100), 111 (24).

HRMS (EI): Calcd. for $([C_{14}H_{10}Cl_2O]^+ + H)$: 265.0187; found: 265.0191 $([C_{14}H_{10}Cl_2O]^+ + H)$.

Preparation of (2-chlorobenzyl)manganese(II) chloride (103b).

According to TP2, 1-chloro-2-(chloromethyl)benzene (102b, 322 mg, 2 mmol)

reacted with manganese powder (330 mg, 6 mmol), $InCl_3$ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (10 mL) within 16 h at 25 °C affording the corresponding benzylic manganese reagent **103b** in 72% yield.

Synthesis of 2-(2-chlorophenyl)-1-phenylethanone (104d).

Benzoyl chloride (**100k**, 196 mg, 1.4 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (2-chlorobenzyl)manganese(II) chloride (**103b**, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 16 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 20:1) afforded **104d** (284 mg, 88%) as a pale yellow solid.

m. p. = 54.8 - 56.4 °C.

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 8.15-8.07 (m, 2H), 7.66-7.43 (m, 4H), 7.32-7.24 (m, 3H), 4.47 (s, 2H),.

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 196.3, 136.7, 134.5, 133.3, 133.2, 131.8, 129.5, 128.7, 128.6, 128.4, 126.9, 43.3.

IR (Diamond-ATR, neat): v (cm⁻¹) = 3026 (VW), 2908 (VW), 1715 (M), 1690 (S), 1446 (M), 1330 (M), 1272 (S), 1198 (M), 1116 (W), 989 (M), 750 (S), 684 (S), 656 (M).

MS (EI, 70 eV): m/z (%) = 231 (M⁺, 11), 196 (7), 195 (46), 194 (2), 165 (10), 152 (2), 139 (2), 127 (7), 125 (21), 105 (100), 77 (62).

HRMS (EI): Calcd. for [C₁₄H₁₁ClO]⁺: 230.0498; found: 230.0490.

Synthesis of 2-(2-chlorophenyl)-1-phenylethanol (104e).

Benzaldehyde (**100**], 148 mg, 1.4 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (2-chlorobenzyl)manganese(II) chloride (**103b**, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 9:1) afforded **104e** (241 mg, 74%) as a white solid.

m. p. = 72.7 - 74.5 °C.

¹**H NMR (400 MHz, CDCl₃)**: δ (ppm) = 7.43-7.26 (m, 6H), 7.23-7.14 (m, 3H), 5.03 (dd, J = 8.8 Hz, J = 4.4 Hz, 1H), 3.25-3.04 (m, 2H), 2.02 (br s. 1H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 143.9, 135.9, 134.3, 131.9, 129.5, 128.4, 128.1, 127.6, 126.7, 125.7, 73.4, 43.8.

IR (Diamond-ATR, neat): v (cm⁻¹) = 3278 (M), 3188 (M), 3030 (W), 2892 (W), 1945 (W), 1444 (M), 1203 (W), 1039 (S), 993 (M), 910 (W), 747 (VS), 695 (S), 681 (M).

MS (EI, 70 eV): m/z (%) = 232 (M⁺, 1), 214 (2), 195 (3), 181 (3), 180 (2), 179 (9), 165 (4), 127 (4), 126 (44), 107 (100), 77 (28).

HRMS (EI): Calcd. for [C₁₄H₁₃ClO]⁺: 232.0655; found: 232.0654.

Synthesis of 4-(2-chlorobenzyl)benzonitrile (104f).

4-Bromobenzonitrile (**100m**, 255 mg, 1.4 mmol), $Pd(PPh_3)_4$ (162 mg, 10 mol%) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (2-chlorobenzyl)manganese(II) chloride (**103b**, 10 mL) dropwise at 0 °C. The

reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 5:1) afforded **104f** (266 mg, 84%) as a white solid.

m. p. = 61.8 - 63.5 °C.

¹**H NMR (400 MHz, CDCl₃)**: δ (ppm) = 7.56 (d, *J* = 8.2 Hz, 2H), 7.41-7.37 (m, 1H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.26-7.15 (m, 3H), 4.15 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 145.1, 136.9, 134.2, 132.2, 131.1, 129.8, 129.5, 128.3, 127.1, 118.9, 110.1, 39.3.

IR (Diamond-ATR, neat): v (cm⁻¹) = 3402 (VW), 3069 (VW), 2225 (M), 1920 (W), 1607 (W), 1471 (M), 1433 (M), 1413 (M), 1102 (W), 1048 (M), 915 (W), 805 (M), 758 (S), 741 (VS), 673 (M), 648 (W).

MS (EI, 70 eV): m/z (%) = 227 (M⁺, 43), 205 (28), 192 (100), 191 (27), 190 (43), 179 (14), 165 (38), 125 (9), 95 (10).

HRMS (EI): Calcd. for [C₁₄H₁₀ClN]⁺: 227.0502; found: 227.0505.

Preparation of (3-fluorobenzyl)manganese(II) chloride (103c).

According to **TP2**, 1-(chloromethyl)-3-fluorobenzene (**102c**, 289 mg, 2 mmol) reacted with manganese powder (330 mg, 6 mmol), InCl₃ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (10 mL) within 16 h at 25 °C affording the corresponding benzylic manganese reagent **103c** in 68% yield.

Synthesis of 4-(2-(3-fluorophenyl)-1-hydroxyethyl)benzonitrile (104g).

4-Formylbenzonitrile (**100h**, 183 mg, 1.4 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (3-fluorobenzyl)manganese(II) chloride (**103c**, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 2:1) afforded **104g** (254 mg, 75%) as a white solid.

m. p. = 84.9 - 86.8 °C.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 7.64 (d, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 8.6 Hz, 2H), 7.32-7.23 (m, 1H), 7.01-6.87 (m, 3H), 4.98 (dd, *J* = 7.9 Hz, *J* = 5.4 Hz, 1H), 3.08-2.93 (m, 2H), 2.23 (br s, 1H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 162.8 (d, J = 246.2 Hz), 148.8, 139.5 (d, J = 7.3 Hz), 132.3, 130.1 (d, J = 8.1 Hz), 126.6, 125.2 (d, J = 3.1 Hz), 118.8, 116.4 (d, J = 21.3 Hz), 113.9 (d, J = 21.0 Hz), 111.4, 74.3, 45.6 (d, J = 1.7 Hz).

IR (Diamond-ATR, neat): v (cm⁻¹) = 3461 (S), 2926 (VW), 2232 (M), 1606 (M), 1598 (S), 1484 (M), 1446 (M), 1403 (M), 1247 (S), 1138 (M), 1065 (VS), 1010 (W), 846 (S), 781 (S), 685 (S).

MS (EI, 70 eV): m/z (%) = 223 (8), 222 (17), 221 (14), 202 (5), 201 (4), 194 (4), 132 (100), 130 (91), 110 (93), 104 (52), 77 (24).

HRMS (EI): Calcd. for [C₁₅H₁₂FNO]⁺: 241.0903; found: 241.0890.

Synthesis of ethyl 4-(3-fluorobenzyl)benzoate (104h).

Ethyl 4-iodobenzoate (100a, 386 mg, 1.4 mmol), $Pd(PPh_3)_4$ (162 mg, 10 mol%) and

THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (3-fluorobenzyl)manganese(II) chloride (**103c**, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 2:1) afforded **104h** (292 mg, 80%) as colorless liquid.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 8.02 (d, *J* = 8.6 Hz, 2H), 7.32-7.22 (m, 3H), 7.01-6.85 (m, 3H), 4.39 (q, *J* = 7.2 Hz, 2H), 4.04 (s, 2H), 1.41 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 166.4, 162.9 (d, J = 246.0 Hz), 145.4, 142.6 (d, J = 7.3 Hz), 129.9 (d, J = 8.1 Hz), 129.8, 128.8, 128.7, 124.5 (d, J = 2.8 Hz), 115.7 (d, J = 21.8 Hz), 113.2 (d, J = 21.0 Hz), 60.8, 41.5 (d, J = 1.7 Hz), 14.3.

IR (Diamond-ATR, neat): v (cm⁻¹) = 2984 (VW), 2255 (VW), 1710 (S), 1609 (W), 1449 (W), 1275 (S), 1103 (M), 906 (S), 774 (W), 726 (VS), 648 (W).

MS (**EI**, **70** eV): m/z (%) = 258 (M⁺, 51), 244 (2), 230 (18), 214 (14), 213 (100), 186 (7), 185 (39), 184 (8), 183 (27), 165 (26), 123 (5), 106 (3).

HRMS (EI): Calcd. for [C₁₆H₁₅FO₂]⁺: 258.1056; found: 258.1051.

Preparation of (2-bromobenzyl)manganese(II) chloride (103d).

According to **TP2**, 1-bromo-2-(chloromethyl)benzene (**102d**, 411 mg, 2 mmol) reacted with manganese powder (330 mg, 6 mmol), $InCl_3$ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (10 mL) within 13 h at 25 °C affording the corresponding benzylic manganese reagent **103d** in 70% yield.

Synthesis of 2-(2-bromophenyl)-1-(4-chlorophenyl)ethanone (104i).

4-Chlorobenzoyl chloride (**100d**, 245 mg, 1.4 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. To this mixture was added (2-bromobenzyl)manganese(II) chloride (**103d**, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 20:1) afforded **104i** (290 mg, 67%) as a white solid.

m. p. = 91.7 - 93.2 °C.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 8.01 (d, *J* = 8.8 Hz, 2H), 7.62 (dd, *J* = 8.0 Hz, 1.1 Hz, 1H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.51-7.14 (m, 3H), 4.44 (s, 2H).

¹³C NMR (**75 MHz, CDCl₃**): δ (ppm) = 195.1, 139.7, 134.9, 134.6, 132.8, 131.6, 129.7, 128.9, 128.8, 127.5, 124.9, 45.7.

IR (Diamond-ATR, neat): v (cm⁻¹) = 2942 (W), 1718 (M), 1688 (S), 1590 (M), 1399 (M), 1321 (M), 1271 (S), 1216 (M), 1085 (S), 987 (S), 814 (S), 756 (VS), 730 (M), 654 (W).

MS (**EI**, **70** eV): m/z (%) = 308 (6), 232 (1), 231 (4), 230 (2), 229 (11), 170 (3), 168 (3), 165 (5), 140 (27), 139 (6), 138 (100), 111 (17).

HRMS (EI): Calcd. for $[C_{14}H_{10}BrClO + H]^+$: 308.9682; found: 308.9670 $([C_{14}H_{10}BrClO + H]^+)$.

Preparation of (3-iodobenzyl)manganese(II) chloride (103e).

According to **TP2**, 1-(chloromethyl)-3-iodobenzene (**102e**, 252 mg, 1 mmol) reacted with manganese powder (165 mg, 3 mmol), $InCl_3$ (6 mg, 2.5 mol %) and $PbCl_2$ (7 mg,

2.5 mol %) in THF (5 mL) within 16 h at 25 °C affording the corresponding benzylic manganese reagent **103e** in 68% yield.

Synthesis of 3-(1-hydroxy-2-(3-iodophenyl)ethyl)benzonitrile (104j).

3-Formylbenzonitrile (**100c**, 93 mg, 0.7 mmol) and THF (1 mL) were placed in an argon-flushed flask. To this mixture was added (3-iodobenzyl)manganese(II) chloride (**103e**, 5 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 2:1) afforded **104j** (166 mg, 66%) as a white solid.

m. p. = 98.7 - 100.0 °C.

¹**H** NMR (300 MHz, CDCl₃): δ (ppm) = 7.69-7.43 (m, 6H), 7.16-7.01 (m, 2H), 4.93 (dd, J = 8.0 Hz, J = 5.4 Hz, 1H), 3.01-2.85 (m, 2H), 2.24 (br s, 1H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 144.9, 139.5, 138.4, 135.9, 131.3, 130.3, 130.2, 129.5, 129.2, 128.8, 118.7, 112.4, 94.5, 73.9, 45.4.

IR (**Diamond-ATR**, **neat**): v (cm⁻¹) = 3546 (W), 2223 (W), 1726 (W), 1585 (W), 1430 (W), 1050 (M), 845 (W), 797 (M), 687 (S), 659 (W).

MS (**EI**, **70** eV): m/z (%) = 348 (M⁺, 1), 330 (1), 219 (5), 218 (100), 217 (8), 203 (2), 177 (1), 132 (72), 104 (22), 91 (17), 77 (8).

HRMS (EI): Calcd. for $[C_{15}H_{12}INO]^+$: 348.9964; found: 348.9950.

Preparation of (3-(trifluoromethyl)benzyl)manganese(II) chloride (103f).

MnCl CF₃ According to **TP2**, 1-(chloromethyl)-3-(trifluoromethyl)benzene (**102f**, 389 mg, 2 mmol) reacted with manganese powder (330 mg, 6 mmol), $InCl_3$ (11 mg, 2.5 mol %) and PbCl₂ (14 mg, 2.5 mol %) in THF (10 mL) within 24 h at 25 °C affording the corresponding benzylic manganese reagent **103f** in 71% yield.

Synthesis of ethyl 2-methylene-4-(3-(trifluoromethyl)phenyl)butanoate (104k).

Ethyl 2-(bromomethyl)acrylate (100b, 270 mg, 1.4 mmol) and THF (1.5 mL) were placed in an argon-flushed flask. То this mixture was added (3-(trifluoromethyl)benzyl)manganese(II) chloride (103f, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed in vacuo. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 20:1) afforded **120k** (267 mg, 70%) as colorless liquid.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 7.52-7.36 (m, 4H), 6.19 (d, *J* = 1.4 Hz, 1H), 5.52 (q, *J* = 1.2 Hz, 1H), 4.25 (q, *J* = 7.2 Hz, 2H), 2.92-2.85 (m, 2H), 2.69-2.62 (m, 2H), 1.34 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ (ppm) = 166.9, 142.3, 139.7, 131.9 (q, J = 1.4 Hz), 130.6 (q, J = 31.9 Hz), 128.7, 125.5, 124.2 (q, J = 272.3 Hz), 125.2 (q, J = 3.7 Hz), 122.9 (q, J = 3.9 Hz), 60.7, 34.8, 33.7, 14.2.

IR (Diamond-ATR, neat): $v (cm^{-1}) = 2985$ (W), 1713 (S), 1631 (W), 1449 (W), 1327 (VS), 1160 (S), 1118 (VS), 1072 (S), 1028 (W), 945 (W), 799 (M), 701 (M), 658 (W). MS (EI, 70 eV): m/z (%) = 227 (M⁺, 16), 226 (36), 197 (16), 177 (8), 160 (9), 159 (100), 157 (12), 129 (13), 127 (8), 109 (11).

HRMS (EI): Calcd. for $[C_{14}H_{15}F_3O_2]^+$: 272.1024; found: 272.1016.

Preparation of (3-(butoxycarbonyl)benzyl)manganese(II) bromide (103g).

According to **TP2**, butyl 3-(bromomethyl)benzoate (**102g**, 271 mg, 1 mmol) reacted with manganese powder (165 mg, 6 mmol), $InCl_3$ (6 mg, 2.5 mol %) and $PbCl_2$ (7 mg, 2.5 mol %) in THF (10 mL) within 17 h at 25 °C affording the corresponding benzylic manganese reagent **103g** in 65% yield.

Synthesis of butyl 3-(4-cyanobenzyl)benzoate (104l).

4-Bromobenzonitrile (**100m**, 111 mg, 0.6 mmol), Pd-PEPPSI-*i*Pr (20 mg, 5 mol%) and THF (1 mL) were placed in an argon-flushed flask. To this mixture was added (3-(butoxycarbonyl)benzyl)manganese(II) bromide (**103g**, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 5:1) afforded **104l** (125 mg, 71%) as colorless liquid.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 7.97-7.91 (m, 1H), 7.90-7.86 (m, 1H), 7.59 (d, J = 8.1 Hz, 2H), 7.45-7.26 (m, 4H), 4.33 (t, J = 6.7 Hz, 2H), 4.10 (s, 2H), 1.82-1.70 (m, 2H), 1.56-1.41 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H).

¹³**C NMR (75 MHz, CDCl₃)**: δ (ppm) = 166.4, 145.9, 139.6, 133.3, 132.4, 131.0, 129.9, 129.6, 128.8, 127.9, 118.8, 110.3, 64.9, 41.7, 30.7, 19.2, 13.7.

IR (Diamond-ATR, neat): v (cm⁻¹) = 2961 (VW), 2229 (VW), 1712 (S), 1606 (W), 1281 (S), 1187 (M), 1107 (M), 907 (VS), 728 (VS), 648 (W).

MS (**EI, 70 eV**): m/z (%) = 293 (M⁺, 12), 278 (9), 251 (14), 238 (52), 237 (90), 221 (15), 220 (100), 219 (13), 193 (24), 192 (42), 191 (22), 190 (38), 165 (31), 116 (12),

89 (6), 71 (7).

HRMS (EI): Calcd. for $[C_{19}H_{19}NO_2]^+$: 293.1416; found: 293.1403.

Synthesis of butyl 3-(4-(ethoxycarbonyl)benzyl)benzoate (104m).

Ethyl 4-iodobenzoate (**100a**, 166 mg, 0.6 mmol), Pd-PEPPSI-*i*Pr (20 mg, 5 mol%) and THF (1 mL) were placed in an argon-flushed flask. To this mixture was added (3-(butoxycarbonyl)benzyl)manganese(II) bromide (**103g**, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na_2SO_4 , the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 5:1) afforded **104m** (137 mg, 67%) as colorless liquid.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 7.99 (d, *J* = 8.2 Hz, 2H), 7.94-7.89 (m, 2H), 7.42-7.34 (m, 2H), 7.27 (d, *J* = 8.2 Hz, 2H), 4.38 (q, *J* = 7.1 Hz, 2H), 4.33 (t, *J* = 6.6 Hz, 2H), 4.10 (s, 2H), 1.81-1.71 (m, 2H), 1.55-1.44 (m, 2H), 1.39 (t, *J* = 7.1 Hz, 3H), 0.99 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (**75** MHz, CDCl₃): δ (ppm) = 166.6, 166.5, 145.7, 140.5, 133.3, 130.9, 129.9, 129.8, 128.9, 128.7, 128.6, 127.6, 64.9, 60.8, 41.7, 30.8, 19.3, 14.3, 13.7.

IR (Diamond-ATR, neat): v (cm⁻¹) = 2958 (W), 1712 (VS), 1607 (W), 1443 (W), 1272 (VS), 1177 (M), 1101 (S), 1020 (W), 746 (M), 710 (W).

MS (**EI**, **70** eV): m/z (%) = 340 (M⁺, 24), 295 (50), 285 (17), 284 (75), 267 (88), 256 (57), 239 (100), 212 (23), 211 (49), 194 (17), 166 (34), 152 (21), 111 (21), 82 (14).

HRMS (EI): Calcd. for $[C_{21}H_{24}O_4]^+$: 340.1675; found: 340.1670.

Preparation of (3-cyanobenzyl)manganese(II) bromide (103h).

According to **TP2**, 3-(bromomethyl)benzonitrile (**102h**, 196 mg, 1 mmol) reacted with manganese powder (165 mg, 6 mmol), $InCl_3$ (6 mg, 2.5 mol %) and $PbCl_2$ (7 mg, 2.5 mol %) in THF (10 mL) within 17 h at 25 °C affording the corresponding benzylic manganese reagent **103h** in 52% yield.

Synthesis of ethyl 4-(3-cyanophenyl)-2-methylenebutanoate (104n).

Ethyl 2-(bromomethyl)acrylate (100b, 115 mg, 0.6 mmol) and THF (1 mL) were То this placed in an argon-flushed flask. mixture added was (3-cyanobenzyl)manganese(II) bromide (103h, 10 mL) dropwise at 0 °C. The reaction mixture was allowed to warm to 25 °C and continuously stirred for 14 h followed by quenching with brine (5 mL). The aqueous layer was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic phases were dried over Na₂SO₄, the solvent was removed *in vacuo*. Purification by flash column chromatography (SiO₂, pentane/Et₂O = 4:1) afforded 104n (62 mg, 45%) as colorless liquid.

¹**H NMR (300 MHz, CDCl₃)**: δ (ppm) = 7.53-7.36 (m, 4H), 6.18 (d, *J* = 1.3 Hz, 1H), 5.49 (q, *J* = 1.2 Hz, 1H), 4.24 (q, *J* = 7.2 Hz, 2H), 2.89-2.82 (m, 2H), 2.66-2.59 (m, 2H), 1.34 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (**75 MHz, CDCl₃**): δ (ppm) =166.8, 142.8, 139.3, 133.1, 132.0, 129.8, 129.1, 125.7, 118.9, 112.4, 60.8, 34.5, 33.6, 14.2.

IR (Diamond-ATR, neat): v (cm⁻¹) = 2980 (VW), 2931 (VW), 2228 (W), 1709 (VS), 1630 (W), 1482 (W), 1368 (W), 1299 (M), 1185 (S), 1094 (S), 1027 (M), 945 (M), 796 (S), 689 (S).

MS (EI, 70 eV): m/z (%) = 229 (M⁺, 6), 184 (19), 183 (53), 155 (32), 129 (10), 116 (100), 97 (9), 89 (25), 71 (28).

HRMS (EI): Calcd. for $[C_{14}H_{15}NO_2]^+$: 229.1103; found: 229.1093

D. Appendix

1. X-Ray Structures

1.1 Molecular structure of 87f

O H H CO ₂ Me	
net formula	$C_{16}H_{16}O_4$
$M_{\rm r}/{\rm g}~{\rm mol}^{-1}$	272.296
crystal size/mm	$0.50 \times 0.22 \times 0.11$
T/K	200(2)
radiation	ΜοΚα
diffractometer	'Oxford XCalibur'
crystal system	triclinic
space group	P1bar
a/Å	7.7033(6)
b/Å	8.0736(5)
c/Å	11.7722(7)
α/°	77.329(5)
β/°	89.943(5)
γ/°	70.781(6)
$V/\text{\AA}^3$	672.49(8)
Ζ	2
calc. density/g cm ^{-3}	1.34475(16)
μ/mm^{-1}	0.096
absorption correction	'multi-scan'
transmission factor range	0.98615-1.00000
refls. measured	4440
R _{int}	0.0149
mean $\sigma(I)/I$	0.0389
θ range	4.36–26.34
observed refls.	1953
<i>x</i> , <i>y</i> (weighting scheme)	0.0492, 0
hydrogen refinement	constr
refls in refinement	2725
parameters	182

0
0.0356
0.0881
0.958
0.001
0.186
-0.160

1.2 Molecular structure of 87j

Br HO' Me CO ₂ Et =	
net formula	C ₁₆ H ₁₉ BrO ₃
$M_{ m r}/{ m g}~{ m mol}^{-1}$	339.224
crystal size/mm	$0.33 \times 0.18 \times 0.14$
T/K	173(2)
radiation	ΜοΚα
diffractometer	'Oxford XCalibur'
crystal system	monoclinic
space group	$P2_{1}/c$
a/Å	13.2712(9)
<i>b</i> /Å	12.3323(12)
c/Å	9.6115(8)
$\alpha/^{\circ}$	90
β/°	99.919(7)
$\gamma/^{\circ}$	90
V/Å ³	1549.5(2)
Ζ	4
calc. density/g cm ^{-3}	1.45415(19)
μ/mm^{-1}	2.657
absorption correction	'multi-scan'
transmission factor range	0.86896-1.00000
refls. measured	6200
R _{int}	0.0252
mean $\sigma(I)/I$	0.0661
θ range	4.32–26.43
observed refls.	1969
<i>x</i> , <i>y</i> (weighting scheme)	0.0278, 0
hydrogen refinement	constr
refls in refinement	3128

184
0
0.0309
0.0614
0.853
0.001
0.619
-0.398

1.3 Molecular structure of 87s

MeO ₂ C	
net formula	C ₁₅ H ₁₅ NO ₃
$M_{\rm r}/{ m g}~{ m mol}^{-1}$	257.285
crystal size/mm	$0.26 \times 0.19 \times 0.13$
T/K	173(2)
radiation	ΜοΚα
diffractometer	'KappaCCD'
crystal system	monoclinic
space group	$P2_{1}/c$
a/Å	14.1750(6)
<i>b</i> /Å	7.0899(2)
c/Å	14.2253(5)
α/°	90
β/°	114.1439(19)
$\gamma/^{\circ}$	90
$V/\text{\AA}^3$	1304.57(8)
Ζ	4
calc. density/g cm ⁻³	1.30997(8)
μ/mm^{-1}	0.092
absorption correction	none
refls. measured	9030
R _{int}	0.0342
mean $\sigma(I)/I$	0.0315
θ range	3.14–26.03
observed refls.	1979
<i>x</i> , <i>y</i> (weighting scheme)	0.0484, 0.3295
hydrogen refinement	constr
refls in refinement	2568
parameters	174

restraints	0
restraints	0
$R(F_{\rm obs})$	0.0408
$R_{\rm w}(F^2)$	0.1106
S	1.048
shift/error _{max}	0.001
max electron density/e $Å^{-3}$	0.194
min electron density/e $Å^{-3}$	-0.183

1.4 Molecular structure of 87n

Flack parameter	-1(3)
refls in refinement	1600
parameters	195
restraints	1
$R(F_{\rm obs})$	0.0506
$R_{\rm w}(F^2)$	0.1409
S	0.976
shift/error _{max}	0.001
max electron density/e $Å^{-3}$	0.600
min electron density/e $Å^{-3}$	-0.173

2. NOE Analysis

2.1 NOE Analysis of 87e

2.2 NOE Analysis of 87h

3 Curriculum Vitae

Zhihua Peng

Personal Information

Date of Birth: April, 24, 1979	Place of Birth: Shandong, China
Nationality: Chinese	E-mail: pzh_edward@hotmail.com

Education

01/2008~08/2011	Ludwig-Maximilians-Universität München (LMU) Gen	rmany
09/2000~07/2003	Ph.D. under the supervision of Prof. Dr. Paul Knochel	
	East China Normal University, Shanghai, China	
	Master of Science Degree in organic chemistry	
	Advisor: Prof. Bincai Wu	
09/1996~07/2000	Qufu Normal University, Qufu, China	
	Bachelor. Department of chemistry	

Work Experience

03/2007~11/2007	WuXi Pharmatech Co. Ltd., Shaghai Division, China
04/2006~01/2007	Unilever Research and Development China, Shanghai, China
07/2003~03/2006	Chinese Academy of Sciences (CAS), Shanghai Institute of
	Organic Chemistry (SIOC), Shanghai, China

Publications

- Zhihua Peng, Tobias D. Blümke, Peter Mayer, and Paul Knochel*, Diastereoselective Synthesis of Homoallylic Alcohols with Adjacent Tertiary and Quaternary Centers by Using Functionalized Allylic Aluminum Reagents, *Angew. Chem. Int. Ed.* 2010, 49, 8516–8519.
- Zhihua Peng, Benjamin A. Haag, and Paul Knochel*, Preparation of 2-Magnesiated 1,3,5-Triazines via an Iodine-Magnesium Exchange, *Org. Lett.* 2010, *12*, 5398-5401.
- 3. Zhihua Peng, and Paul Knochel*, Preparation of Functionalized

Organomanganese(II) Reagents by Direct Insertion of Manganese to Aromatic and Benzylic Halides, *Org. Lett.* **2011**, *13*, 3198-3201.

- Benjamin Haag, Zhihua Peng, and Paul Knochel*, Preparation of Polyfunctional Indazoles and Heteroarylazo Compounds Using Highly Functionalized Zinc Reagents, Org. Lett. 2009, 11, 4270-4273.
- Tobias Blümke, Yi-Hung Chen, Zhihua Peng and Paul Knochel*, Preparation of functionalized organoaluminiums by direct insertion of aluminium to unsaturated halides, *Nat. Chem.* 2010, 2, 313-318.
- Shengming Ma*, Shichao Yu and Zhihua Peng, Sc(OTf)3-catalyzed efficient synthesis of b,b-bis(indolyl) ketones by the double indolylation of acetic acid 2-methylene-3-oxobutyl ester, *Org. Biomol. Chem.* 2005, *3*, 1933-1936.
- Shengming Ma*, Shichao Yu, Zhihua Peng, and Hao Guo, Palladium-Catalyzed Functionalization of Indoles with 2-Acetoxymethyl-Substituted Electron-Deficient Alkenes, J. Org. Chem. 2006, 71, 9865-9868.