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Zusammenfassung

Die moderne Seismologie zeichnet die Bodenbewegungen mit einem weltweit verteilten
Stationsnetz kontinuierlich auf und gilt damit als datenreiche Wissenschaft. Die Ex-
traktion der im Moment interessierenden Daten aus diesen kontinuierlichen Aufzeich-
nungen, seien es Erdbebensignale oder Nuklearsprengungen oder ä.m., ist eine Her-
ausforderung an die bisher verwendeten Detektions- und Klassifizierungsalgorithmen.
Insbesondere bei der Untersuchung von Erdbeben mit niedrigem Signal-zu-Rausch-
Verhältnis und nur wenigen verfügbaren Stationen ist die automatische Extraktion der
Beben aus den kontinuierlichen Daten bislang nahezu unmöglich. An aktiven Vulka-
nen interessiert Wissenschaftler u.a. die automatische Klassifizierung der verschiedenen
vulkanischen Erdbebentypen, welche sich in der Häufigkeit ihres Auftretens je nach
Aktivitätszustand des Vulkans unterscheiden können. Eine solche automatische Klas-
sifizierung bildet die Grundlage und ermöglicht somit überhaupt erst die automatische
Aktivitätszustandsbestimmung des Vulkans.
Um die automatische Extraktion, oder Detektion, und Klassifizierung von Erdbeben
zu verbessern, werden in der vorliegenden Arbeit Methoden aus der Spracherkennung
verwendet. Die Ähnlichkeit zwischen seismologischen Signalen und Sprache untermau-
ert und rechtfertigt die Verwendung dieser Methoden. Aufbauend auf den Ergebnissen
der Dissertation von Matthias Ohrnberger wurden zunächst diskrete Hidden Markov
Modelle für die automatische Erdbebenklassifizierung der durch Regen induzierten
Seismizität am Hochstaufen Massiv (Bayern) verwendet. Hierzu waren nur geringe
Änderungen des bereits existierenden Algorithmuses notwendig. Durch den Erfolg die-
ser ersten Studie bestätigt, wurde der Diskretisierungsschritt durch die Verwendung
mehrdimensionaler Wahrscheinlichkeitsverteilungen ersetzt, welche in der allgemeinen
Formulierung der Hidden Markov Modelle definiert sind. Die Praktikabilität dieser
Modelle wurde anhand einer automatischen Klassifizierung der vulkanischen Beben
am Vulkan Teide (Teneriffa) überprüft. Eine analoge Anwendung der Hidden Mar-
kov Modelle zur Klassifizierung der Erdbeben am Hochstaufen Massiv war wegen der
dort auftretenden stark längenabhängigen Signale nicht erfolgreich. Um diese durch die
existierenden Algorithmen bedingte Limitierung zu umgehen, werden erstmals in der
Seismologie sogenannte Hidden semi-Markov Modelle in Kombination mit “Weighted
Finite-State Transducers” erfolgreich benutzt. Diese Erweiterung der Hidden Markov
Modelle ist jedoch äusserst rechenaufwendig und damit aus Gründen der Performance
nur bedingt in “Echtzeit” einsetzbar. Ein “post-processing” bereits existierender Da-
ten ist damit nahezu unmöglich. Deshalb wurde die Diskriminierung längenabhängiger
seismischer Signale durch mehrere Parameterbindungen und -schätzungen in den Hid-
den Markov Modellen approximiert. Das daraus abgeleitete Vorgehen wurde an Da-
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tensätzen von geothermisch induzierter Seismizität und von vulkan-seismischen Beben
am Mt. Merapi (Indonesien) überprüft.
Die oben beschriebenen Vorgehensweisen führen neue Methoden zur Erdbebenklassi-
fizierung in der Seismologie ein. Ein Herausstellungsmerkmal ist die gleichzeitige und
vor allem erfolgreiche Anwendung der Methoden auf mehrere echte, d.h. nicht simulier-
te, kontinuierliche Datensätze. Die Evaluation der hier entwickelten Algorithmen und
Theorien wurde anhand von 10.5 Monaten kontinuierlicher seismischer Daten durch-
geführt. Dies beinhaltet insgesamt ca. 13 Millionen Klassifizierungen. Die Ergebnisse
der Klassifizierung sind entweder durchwegs vergleichbar oder in bestimmten Anwen-
dungsfällen sogar besser als bisher verwendete Methoden, wie z.B. manuell erstellte
Erdbebenkataloge oder “short-time-average/long-time-average” Detektionen.
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1 Introduction

The automatic detection and classification of seismic signals is getting more and more
significant since data centers have changed their acquisition and archiving system from
recording and archiving single data snippets to analyzing and storing continuous seismic
waveforms. The resulting large amount of continuous data constitutes the prerequisite
for automatic earthquake detection and classification. Based on this data availability
the individual motivation for the aspired automatism is manifold:
1.) One of the most promising fields of application is volcano seismology. It reflects the
idea that different types of volcano induced seismic signals are produced by different
physical processes within the volcano’s feeder system and therefore represent different
states of volcanic activity. Thus it allows to automatically monitor the volcano activity
based on changes in the number of seismic signal types per time interval.
2.) For seismic networks the performance of an automatic analysis system (e.g. Earth-
worm or SeisComP3, Johnson et al., 1995; Weber et al., 2007) can be improved by
automatically separating signals that matter from those signals that a local service is
not interested in (e.g. nuclear test ban treaty or excluding quarry blasts from local
earthquake catalogues).
3.) The large amount of available continuous data is impossible to classify by hand.
Therefore the seismological community has a strong demand for automatic detection-/
classification methodologies that are able to process considerable amounts of data in a
reasonable computing time in order to build up consistent earthquake statistics. Earth-
quake statistics are necessary for earthquake risk mitigation, fault zone mappings or
seismic tomography.

Detection, i.e. the separation of a signal from the background noise which we are
not interested in, and classification / pattern recognition have a very long tradition in
seismology (e.g. Joswig, 1996) with many different approaches. The varying detection
and classification methods used in seismology as well as their advantages and disad-
vantages are extensively introduced in the subsequent section 2.1. The study presented
here is a continuation of an approach of Ohrnberger (2001) who used double stochastic
models, known as Hidden Markov Models (HMMs), as a new method, which are a well
established technology in speech recognition. From this starting point several major
extensions are made: Firstly to generalize the HMMs to the multidimensional case,
secondly to analyze the impact of their time dependency to earthquakes and conse-
quently, as a third step, to introduce new algorithms to the field of seismology. These
steps required the programming of an extensive amount of framework code which, in
a last step, allowed to apply and verify all suggested algorithms with real data.

7



1 Introduction

This thesis is structured in five main chapters (including the appendix). Each chap-
ter presents a paper, which has been published or is submitted with myself as first
author.

Chapter 2 is a feasibility study for adopting discrete Hidden Markov Models (DHMMs)
to the detection and classification of seismic signals at the Bavarian Earthquake Ser-
vice. It has been published in Geophysical Journal International. The theory is broadly
introduced and the algorithm is arranged in order with the commonly used detection
and classification systems of seismology. The DHMM approach is based on the theory
and programs of Ohrnberger (2001) with minor modifications and extensions like nor-
malized envelope and new post-processing. When applied to data from the Bavarian
Earthquake Service the performance is promising compared to a standard trigger. This
encouraged us to continue the research and development of HMM.

Chapter 3, as a next step, replaces the discretization involved in the DHMM by the
use of multidimensional multivariate probability distributions as defined in the general
HMM definition itself. This chapter has been published in Journal of Volcanology and
Geothermal Research. Basically, the algorithms of Ohrnberger (2001) were replaced
with the algorithms of the Hidden Markov Model/Speech Recognition Toolkit (HTK)
(Young et al., 2002). For this replacement it was necessary to re-program the complete
interface code such that it is possible to apply the HTK on seismological data in a
general and flexible way. However, the elimination of the discretization step of the
DHMM increased the number of free parameters significantly, making the parameters
more prune to over-fitting. The parameters have to be chosen with care, and therefore
the HMMs are applied to a relatively simple classification task. The objective is the
discrimination of three signal classes on Tenerife: noise, earthquake of volcanic origin
inside a 25km zone around Teide and close tectonic earthquakes outside this region.
Again the performance of the system when applied to a single station is promising. It
reaches the accuracy of the local-, “IGN” earthquake catalogue, which is based on a
manual classification using multiple stations.

Chapter 4 applies the proposed HMM to earthquakes of the Bavarian Earthquake Ser-
vice and has been published in Nonlinear Processes in Geophysics. The earthquake
classes in the Bavarian Network differ by epicentral distance, which allows an easy ver-
ification of whether a classification is correct or not. When adapting the algorithms for
the Bavarian Network, the resulting discrimination of near (epicenter distance 10km
- 100km) and reg (epicenter distance 100km - 600km) earthquakes is comparatively
bad. Both classes have similar characteristics, the major difference is the duration
time of the earthquakes. However, the usually assumed time dependence in the HMM
is an unrealistic representation of the duration of near or reg earthquake snippets as
well as earthquake snippets in general. In speech synthesis a similar problem arises:
The synthesised words sound unnatural if the duration of the speech snippets is unre-
alistic. The common solution there are Hidden semi-Markov Models (HSMM), which
incorporate more general duration probabilities for speech. Thus, in chapter 4, HSMM
are applied to the classification of different earthquake classes in the Mt. Hochstaufen
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area in the Bavarian Network. The improvements compared to HMM are significant,
the only drawback is that the computation time increases at least by a factor of 10.

Chapter 5 describes the efforts to back-propagate the advantages of the HSMM into the
HMM scheme and has been submitted to Geophysical Journal International. This step
is taken to prevent long computation times when using HSMM. Minimum durations and
duration probabilties more similar to Gaussians are introduced by coupling multiple
parameters through a clustering approach. The method is applied to a single station
for the detection of earthquakes that are induced by geothermal power plants. It shows
similar results as a manually adapted trigger based on three station coincidences.
For the calculations of this last and all previous chapters well established program
libraries were used whenever possible (Mohri et al., 1997; Ohrnberger, 2001; Young
et al., 2002; Zen et al., 2009). Nevertheless significant extensions and programming
effort was necessary in order to adapt the HMM methodology to seismology. Most
of the newly programmed methods and classes are written in Python and their vast
area of application resulted in the decision to release them as a software package called
ObsPy.

Appendix A introduces ObsPy: A Python toolbox for Seismology and was published
in Seismological Research Letters. ObsPy was initiated and developed by myself and
Robert Barsch at the beginning of this thesis, throughout which commonly usable
methods and classes were constantly released. Together with the contributions of To-
bias Megies, Lion Krischer, Yannik Behr and others ObsPy developed to the most
used seismology package in Python, with contributions from all over the world (see
http://www.obspy.org). In this chapter/appendix many short code recipes are given
in order to emphasize the advantages of using Python with the ObsPy extension. Es-
pecially the examples of how to call a shared C or FORTRAN library directly from
Python without any wrapper code in C, FORTRAN or any other meta wrapper lan-
guage might be interesting for seismologists. It actually allows the scientist to easily
incorporate custom compiled code into an ObsPy framework and to use the well and
continuously tested infrastructure (see http://tests.obspy.org) for file import, file
export, visualization or signal processing.
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2 Continuous Earthquake Detection
and Classification using Discrete
Hidden Markov Models

by Moritz Beyreuther and Joachim Wassermann

Published in Geophysical Journal International, 2008, 175(3), 1055-1066

Abstract

We present a novel technique to solve the automatic detection and classification prob-
lem of earth tremor in a single step by using Hidden Markov Modelling (HMM). While
this technique was originally developed in speech recognition, it already showed great
promise when applied to volcano induced seismic signals. We apply the HMM classifier
to a much simpler problem, i.e. the detection and distance dependent classification of
small to medium sized earthquakes. Using the smaller and possibly not perfect data set
of earthquakes recorded with three stations of the Bavarian Earthquake Service enables
us to better evaluate the advantages and disadvantages of the proposed algorithm and
to compare the results with simple and widely used detection techniques (e.g. recursive
STA/LTA). Overall the performance of HMM shows good results in the pre-triggered
classification tasks and reasonable results in the continuous case. The application of
HMMs is illustrated step by step so it can be used as recipe for other applications.
Special emphasize is given to the important problem of selecting the features, which
best describe the properties of the different signals that are to be classified.

2.1 Introduction

Detection, i.e. the separation of a signal from the background noise which we are
not interested in, and pattern recognition have a very long tradition in seismology
(e.g. Joswig, 1996). In summary, we can distinguish detection and pattern recognition
into three main fields: detecting weak signals in background noise, identifying seismic
phases (automatic phase picking) and the discrimination of different earth tremors by
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2 Continuous Earthquake Detection and Classification using DHMM

its generating process (e.g. tectonic earthquakes vs. artificial explosions). Early appli-
cations of detection and classification, mostly implemented in a cascade like schema,
were part of the developments in monitoring nuclear test ban treaties (Tjostheim, 1981;
Joswig, 1990; Hoffmann et al., 1999).
The majority of these algorithms are based on the computation of so called character-
istic functions as a first step. These functions are then used for detecting the onset
of a phase or of a complete event by using the short term vs. long term average
(STA/LTA). Following the detection step the different waveforms are then often com-
pared to templates of known signal classes (Tjostheim, 1981; Joswig, 1990). For solving
the problem of phase identification numerous algorithms were developed throughout
the last decades (Allen, 1982; Baer and Kradolfer, 1987; Sleeman and van Eck, 1999;
Leonard, 2000; Gentili and Bragato, 2006). Most of them are based again on the com-
putation of characteristic functions, which often contain the computation of the seismic
envelope and / or its behavior in time. When automatization is the key issue, some
algorithms correlate the estimated phases directly with trail locations (binder module
in EARTHWORM Johnson et al., 1995).
The most promising field for applying pattern recognition techniques is seen in vol-
cano seismology. This originates from the idea that different types of volcano induced
seismic signals are produced by different physical processes within the volcanos feeder
system and therefore represent different states of volcanic activity. This idea is re-
flected in the frequency of number of event types per time interval as part of a volcano
monitoring systems. It is also highly desirable to automatize this procedure. The ma-
jority of already developed algorithms is based on Artificial Neuronal Networks (ANN)
which are mainly applied to pre-triggered data (Langer and Falsaperla, 2003; Gentili
and Bragato, 2006; Langer et al., 2006). In this case, features (or in other words char-
acteristic functions) are stored in a so called feature vector (e.g. frequency partition,
envelope etc.) and then are used in the framework of ANN to determine the different
signal classes.

The technique we propose in this study is based on a single step procedure. We
combine detection and classification by using double stochastic models, so called Hid-
den Markov Models (HMMs), which proved to be successful in speech recognition
(e.g. Young et al., 2002). HMMs provide a powerful tool to describe highly variable
time series based on a data driven stochastic model and therefore allow a more general
description of signal classes. This makes it possible to handle large sets of reference pat-
terns (earthquakes or volcanic signals) as opposed to template based pattern matching
techniques (Joswig, 1994). In contrast to classical ANNs, HMMs incorporate the time
dependence explicitly in the models and thus provide a more adequate representation
of the seismic signals. The biggest advantage of HMMs vs. pre-triggered classification
is its application directly to the continuous data stream which enables the detection
and classification of events with small signal to noise ratio (SNR). This is especially
important in the framework of volcano seismology or micro seismicity studies as it is a
priori not clear whether the amplitude of an event is more important for the mechanism
(e.g. volcanic activity or landslides) than its rate of occurrence.
Consequently HMMs were first introduced in seismology in the field of volcano seismol-
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2.1 Introduction

ogy (Ohrnberger, 2001; Alasonati et al., 2006). While the first author already applied
HMMs on continuous seismic data, the latter author describes the technique of so called
Hidden Markov Trees on pre-detected volcanic signals. Wassermann et al. (2007) ap-
plied the technique of HMMs on a volcanic data set, spanning one year. They showed
that the automatic recognition of volcano induced events appears to have the same
statistics of event rates as the recognition of an experienced observer doing interactive
classification on a daily routine analysis (see Fig. 2.1). Even though this result is en-
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Figure 2.1: Number of visual interactive classified earthquakes per day of the local vol-
canologists (plotted as bars) versus automatic classification using discrete
HMMs (plotted as line graphs). Classification according to the local obser-
vatory: VT volcano tectonic, MP multi phase, ROCK rockfall, BaF block
and ash flow.

couraging, the evaluation of the classification result is nearly impossible as it includes
the interactive reclassification of the whole data set with more than 50 000 detected
and classified volcano-seismic events during the time range considered.
Another problem in the evaluation process of volcano induced seismic signals and the
assessment of the performance of automatic pattern recognition systems is the assump-
tions on which the signal separation is based. Only if the separation in e.g. volcanic
tremor, hybrid events or volcano tectonic events (McNutt, 2000) is also justified by
the true underlying physical process, is it possible to evaluate the overall performance
correctly.

In order to circumvent the latter problems, and also because we can increase the
performance of the underlying automatic system used within the Bavarian seismic
network by separating signals that matters from signals a local service is not interested
in the first place, we demonstrate the HMM technique in this paper by applying it to
a limited continuous data set of the Bavarian seismic network. In this case the signal
or class separation is done by simply using the epicentral distance of earthquakes
with respect to the stations used. Therefore it is possible to easily decide whether a
classification is correct or wrong.
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2 Continuous Earthquake Detection and Classification using DHMM

We next formulate the detection and classification problem in the framework of HMMs.
We describe in particular the used features, the properties of the models and explain
the solution of the detection and classification problem by adopting HMMs. Finally
we evaluate the performance of the one step detection and classification algorithm by
comparing its result with the detection rate of a simple recursive STA/LTA trigger.

2.2 Theory

2.2.1 Feature Extraction

As for most classifiers, the time and amplitude dependent seismogram is pre-processed
in order to transform it into a domain where the earthquake classes are easier distin-
guished. This transformation is known as feature generation. Examples of features
(or in other words characteristic functions) in seismology are envelope, dominant fre-
quency, power of a frequency band or average absolute amplitude of the seismogram.
An experienced seismologist is able to distinguish between earthquake classes “easily”,
therefore it seems promising to pre-process the seismogram for the classifier by includ-
ing features which mimic the eye-brain chain: The sharpness in detail can be modelled
by detailed features of the time-frequency domain (sonogram); the grosser shape in
time, which is recognized by an interaction of eyes and brain, can be mimicked by the
seismogram envelope.
The classifier will only perform well if the used features contain different information
for the different classes. Therefore the crucial step is to actually find d features in which
the classes distinguish themselves most. However, the general formulation of the clas-
sifier allows varying configurations of the generated features, and so in the following
it is only assumed that some d features have been generated. Detailed explanation of
the generation and selection of the features is given in Sec. 2.3.2.

2.2.2 Formulation of the Classification Problem

The classification problem can be expressed as the argument of the maximum proba-
bility of the ith class wi given the observation sequence O = o1o2...oT :

arg max
i
P(wi|O). (2.1)

With the observation ot at time t being either (I) a vector containing the d features in
the case of general HMMs, incorporating continuous density models or (II) a symbol
ot = ot in case of discrete HMMs (DHMM). In the latter case a standard vector
quantifier combined with a pre-whitening transform is used to discretize the feature
sequence.
In summary a vector quantifier is crossplotting the training data in a Rd feature space
and segmenting this feature space in such a way that the resulting point clouds are
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2.2 Theory
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Figure 2.2: Sketch of a vector quantifier: The training data are crossplotted in the
feature space resulting in the black points. The feature space is segmented
(dashed lines) and labeled by the alphabet symbols A, B, and C such that
the point clouds are separated best. A sequence of the green, blue, blue,
blue, red and red points is then vectorquantified by assigning the nearest
segment, i.e. alphabet symbol, resulting in the (alphabet) symbol sequence
A, C, C, C, B and B.

best separated from one another (see Fig. 2.2). Each segment is further labeled with
an alphabet symbol (A, B, and C in Fig. 2.2) forming a so called codebook. The vector
quantization step is then accomplished by crossplotting a point in the d dimensional
feature space and discretizing the resulting Rd feature point by assigning the nearest
(based on the Euclidean distance) R1 alphabet symbol. The number of segments,
(i.e. number of alphabet symbols, three in case of Fig. 2.2) is further referenced as
codebook size. The vector quantifier basically (time independently) pre-classifies the
feature vector and therefore enables us to better control the detection and classification
system. Despite the fact that information is lost by discretizing the feature vector
sequence, we favor the DHMM in order to better control the behavior of the system
and used a standard vector quantifier to produce a discrete symbol sequence (for details
on VQ see e.g. Ohrnberger, 2001). The remainder of the paper refers to DHMM.
A pre-whitening transform is used before the vector quantification in order to make
the feature vectors as independent from each other as possible (in an Euclidean sense).
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2 Continuous Earthquake Detection and Classification using DHMM

Therefore the autocovariance matrix of the feature vectors is decomposed by using the
singular value decomposition and the resulting eigenvectors are used to transform the
feature vectors to the resulting coordinate system (for further details see Kittler and
Young, 1973).

Having explained the observation ot we return now to Eq. 2.1. P(wi|O), the probability
that the true class is wi given the observation symbol sequence O, is not directly
computed but is calculated from P(O|wi), the probability that the observation symbol
sequence is O given the class wi, by the use of the Bayes’s Rule:

P(wi|O) = αP(O|wi)P(wi); with α =
1

P(O)
. (2.2)

P(wi), the prior probability of class wi, can either be computed from past events or
alternatively be seen as uniform for each class (usual assumption in speech recognition,
e.g. Rabiner, 1989). The inverse probability for the observation sequence α = P(O)−1 is
not depending on the class wi and therefore is a constant for the maximum calculation
of Eq. 2.1.

Given the dimensionality of the problem, the direct estimation of P(O|wi) is not feasi-
ble. However, if it is assumed that an underlying parametric model such as a DHMM
is generating the observation sequence, the problem of estimating P(O|wi), the prob-
ability that the observation symbol sequence is O given the class wi, is replaced by
the much simpler problem of estimating P(O|λi), the probability that the observation
symbol sequence is O given the parameters of the DHMM λi (Young et al., 2002).

2.2.3 Parameters of DHMMs

In general, a Hidden Markov Model is a finite state machine, where the states are
hidden from direct observation, that changes state once every time unit. Each
time t that a state qt is entered, an observation symbol ot is then generated
(Young et al., 2002, p. 4).

In detail, a DHMM is described by the parameters:

• πi = P(q1 = i): the probability that the first state q1 is i

• aij = P(qt+1 = j|qt = i): the probability of a state transition from the current
state i to the next state j

• bj(k) = P(ot = k|qt = j), the observation symbol probability of the symbol k
given the current state is j

Fig. 2.3 shows a sketch of a DHMM, where the hidden states are “unhidden” in order
to better illustrate the model parameters. Also for better illustration, we use instead of
an arbitrary symbol sequence the number of car accidents per day in Germany 2005 as
observation with an average of 6160 accidents per day (Statistisches-Bundesamt, 2006).
Consecutive observations during five days O = (7219, 7100, 6700, 5980, 6160) could be
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Figure 2.3: DHMM example, which generates a observation sequence O containing the
numbers of car accidents per day in Germany (on average 6160 accidents
per day) as realizations of different states of the weather (sun, clouds and
rain).

generated by an underlying DHMM, in which the states are different realizations of the
weather: sun, clouds and rain. The double stochastic process in this model is composed
out of: (I) the transition probabilities of the states (sun, clouds and rain), i.e. the
probability of sun tomorrow given that it is cloudy today is a12 = P(qt+1 = 1|qt = 2)

and the (II) the observation probability (the number of car accidents) which differs
in each state, i.e. we assume a high probability of a high number of accidents given
sun shine b1(”high”) = P(ot = ”high”|qt = 1) due to fact that there is denser
traffic and therefore it is more probable to have a car accident. The probability of the
observation sequenceO and state sequence shown in Fig. 2.3 given model parameters λ
is calculated by multiplying the temporal evolution of all probabilities which generated
the observation sequence:

P(O|λ) = π1b1(o1)a11b1(o2)a12b2(o3)a23b3(o4)a32b2(o5). (2.3)

As mentioned in the example, the probability P(O|λ) can be accessed by simply mul-
tiplying the relevant DHMM parameters. However, in order to be practicable in real-
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2 Continuous Earthquake Detection and Classification using DHMM

word applications there are three basic problems that must be solved for the DHMM
(Rabiner, 1989):

Problem 1 Given the observation sequenceO and model λ, how to efficiently compute
P(O|λ)?

Problem 2 Given the observation sequence O, how to choose the corresponding state
sequence q1 . . .qT which best explains the observations?

Problem 3 How to adjust the model parameters λ in order to maximize P(O|λ)?

The solution to problem 1 is efficiently given by the so called forward procedure, where
dynamic programming is used to avoid redundant calculation. Problem 2 is solved by
the Viterbi algorithm which also is based on dynamic programming. An expectation
maximization (EM) algorithm called Baum-Welch is used for the solution of problem
3, the training problem. For details see Schukat-Talamazzini (1995); Rabiner (1989);
Young et al. (2002).

2.2.4 Continuous Classification and Postprocessing

While the classification of a pre-detected feature symbol sequenceO is given by Eq. 2.1
the real-world detection and classification of a continuous feature symbol sequence is
accomplished by cutting feature symbol sequences OTi

of model dependent length Ti,
centered at a midframe, out of the continuous feature symbol stream (see Fig. 2.4).
Here frame is used as synonym for window so as to not mix up with the window used
for feature generation (Sec. 2.3.2). These resulting partial feature symbol sequences are
then evaluated by a normalized log maximum likelihood measure (Juang and Rabiner,
1985; Ohrnberger, 2001):

arg max
i

1

Ti

log P(OTi
|λi). (2.4)

Moving the midframe along the continuous symbol sequence achieves a classification
per frame step.
In order to achieve better performance in this study the following postprocessing steps
are applied.
(I) So as to achieve robustness we average the probability of multiple models λik per
class wi with different number of states k ∈ K:

log P(O|λi) = log K

√∏
k∈K

P(O|λik) =
1

K

∑
k∈K

log P(O|λik). (2.5)

The combination of Eq. 2.4 and Eq. 2.5 results in the following “averaged”, normalized
maximum likelihood measure:

arg max
i

1

TiK

∑
k∈K

log P(OTi
|λik). (2.6)
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t76
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. . . , o73, o74, o75, o76, o77, o78, o79, . . .

. . . , o72, o73, o74, o75, o76, o77, o78, o79, o80, . . .

Midframe of test sequences ot76

Test sequence for model λi,

length Ti

Test sequence for model λj ,

length Tj

Figure 2.4: Sketch of the continuous classification: Feature symbol test sequences OTi

of model dependent length Ti are selected from the continuous symbol
stream shown in the top row around a midframe (colored in yellow) and
classified using a normalized likelihood measure (Eq. 2.6) (modified from
Ohrnberger 2001).

(II) In the continuous case solely classifications with a three times higher probability
than the probability of noise are taken into account. A class dependent minimum event
length is used, which is regulating the number of consecutive classifications of one class
that must occur such that an event is declared. Furthermore the coincidences of the
three stations used in this study are calculated by accepting a classification only if at
least two station declare an earthquake classification.

By using the steps explained in this section the earthquake detection and classification
algorithm can now be built and is applied in the following.

2.3 Case study

2.3.1 Properties of the Different Classes

In this paper we use real data from three seismological stations from the Bavarian
earthquake service to exemplify the steps needed for a DHMM based detection and
classification system. The study area is located in a mountainous region where it is of
interest to separate local from nearby and from regional earthquakes (Fig. 2.5 shows
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2 Continuous Earthquake Detection and Classification using DHMM

example seismograms). The local earthquakes are located within a high mountain and
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Figure 2.5: Common seismogram for the classes reg, near, loc, dn and nn (for class
definition see Tab. 2.1)

the corresponding wave fields are therefore strongly affected by topography. In con-
trast, the nearby and regional earthquakes are less affected by topography due to the
deeper traveling paths and longer wavelengths involved. This is also expressed by their
more similar overall appearance regarding their seismogram.
The classification is crucial for further localizing by using CPU intensive non linear
techniques for the local earthquakes (3D-topographic effects) and more classical tech-
niques for the nearby and regional earthquakes. The classes in this case study are
identified and defined in Tab. 2.1. Noise in this context is referred to as events of

Type Epicenter Dist. Freq. Band Len. Charact. # Events
loc 0km - 10km 6Hz - 30Hz 3s clear P Phase 24
near 10km - 100km 2Hz - 15Hz 26s 24
reg 100km - 600km 0.5Hz - 8Hz 51s solid P,S Phase 25
nn night noise 0.3Hz - 30Hz non anthropogenic 30
dn day noise 0.3Hz - 30Hz anthropogenic 39

Table 2.1: Characteristics of the different classes / training data. Freq. Band for
frequency band, Len. for length, Charact. for characteristics and # Events
for number of events in the training data set.

no interest, so that each part of the seismogram can now be associated with one of
the above classes. The noise is further divided into two subclasses, day noise dn and
night noise nn. nn events are mostly non anthropogenic i.e. metrological influences,
vibrating trees, or similar sources known as ambient noise. In contrast dn events are
mostly anthropogenic, e.g. traffic, logging or saw mills.
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2.3 Case study

Now that the definitions of the classes are given, the next step is to extract features
by which the classes can be distinguished from one another so that the classification
problem is easier to solve.

2.3.2 Feature Extraction and Selection

The determination of the different classes is not directly based on the seismogram itself
but on features extracted from the seismogram (see Sec. 2.2.1). In order to process
the features in near real time, a 3s sliding window with step size 0.05s is used for
computation. Therefore frequencies are nominally resolved down to 1/3s = 0.33Hz.
In the following a short background information regarding the calculation of the used
features is given. This includes a measure of the classes discriminative power for the
different features based on Figs. 2.6, 2.7, and 2.8. The figures show for each feature
and for each class respectively the median and histogram over all events in the class
dependent training data sets (for number of events see Tab. 2.1).
If the features separate the classes in the median or the histogram distribution, i.e. if
the graphs for the different classes do not overlay or in other words are separated, the
discriminative power is assumed to be high.

Sonogram Calculation

In order to model the human analyst, the feature of the short term Fourier transform
STFT (sonogram) introduced by Joswig (1994) is used. The STFT is smoothed by
binning (from klow to khigh) the squared complex short time spectrum Z(ωk) of the
seismogram in n half octave bands (hobn) (Ohrnberger, 2001, p. 78):

hobn = ln

∑khigh(n)

k=klow(n) |Z(ωk)|2∑khigh(N)

k=klow(1) |Z(ωk)|2
. (2.7)

The following gradation is used in this study; hob1 0.47-0.78Hz, hob2 0.70-1.17Hz,
hob3 1.05-1.76Hz, hob4 1.58-2.63Hz, hob5 2.37 - 3.95Hz, hob6 3.56-5.93Hz, hob7

5.33-8.89Hz, hob8 8.00-13.33Hz, hob9 12.00-20.00Hz and hob10 18.00-30.00Hz. In
Fig. 2.6, the hob features separate the classes well for both, the median and the
histogram distribution.

Polarization Analysis

The polarization properties of the three component seismogram X =
((xZ1, .., xZT ′); (xN1, .., xNT ′); (xE1, .., xET ′)) are calculated from the eigenvalue
(λ1 > λ2 > λ3) decomposition of the covariance matrix C = XTX/T ′ of length T ′:
(C−λ2

l1)ul = 0. The features rectilinearity rect, the planarity plan, the azimuth φP
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Figure 2.6: The figures show for each feature and for each class respectively the median
and histogram over all events in the class dependent training data sets. The
features here are hob1 − hob10 Color-coding: reg in blue, near in green,
loc in red, dn in yellow and nn in gray.

and the incidence ϑP are then computed by using the following equations (Kanasewich,
1981, p. 336f):

rect = 1 −
λ2 + λ3

2λ1

(2.8)

plan = 1 −
2λ3

λ1 + λ2

(2.9)

φP = arctan
u1E

sign(u1Z
)

u1N
sign(u1Z

; sign(x) =


1, if x > 0,
0, if x = 0,
−1, if x < 0,

(2.10)

ϑP = arccos |u1Z
|. (2.11)

While the median of the azimuth in case of loc events in Fig. 2.7 separates well
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Figure 2.7: The figures show for each feature and for each class respectively the median
and histogram over all events in the class dependent training data sets.
The features here are rectilinearity rect, planarity plan, azimuth φP and
incidence θP. The spikes in the histogram of rect and plan are due to the
number of bins which is constant for all histograms and not optimal for
rect and plan. Color-coding as in Fig. 2.6.

from all the other classes and while there is a difference visible in the median of the
incidence between earthquakes and noise, the features of the planarity and rectilinearity
do not show clear separation, neither in the median distribution nor in the histogram
distribution.

Complex Trace Analysis

The Hilbert transform xHi
(ω) = sign(ω)xi(ω) of the ith component of the Fourier

transformed seismogram xi(ω) is used for the calculation of the complex trace x
(a)
i (t) =

xi(t) + xHi
(t) and its associated features. The envelope Ai(t) and phase θi(t) (for

details see Taner et al., 1979; Kanasewich, 1981, p. 367f) are defined as follows:

Ai(t) =
√
x2

i(t) + x2
Hi

(t) (2.12)

θi(t) = arctan
xHi

(t)

xi(t)
(2.13)

≈
∫
xi(t

′) d
dt ′
xHi

(t ′) − xHi
(t ′) d

dt ′
xi(t

′)

2πxixHi

dt ′. (2.14)

By using the definition of the envelope and phase, the instantaneous frequency fi, the
instantaneous bandwidth σ2

i , the normalized envelope Âi, the centroid time centri
and the instantaneous phase difference θij can be calculated as follows (for details see
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2 Continuous Earthquake Detection and Classification using DHMM

Taner et al., 1979; Ohrnberger, 2001):

fi =
xi(t)

d
dt
xHi

(t) − xHi
(t) d

dt
xi(t)

2πxixHi

(2.15)

σ2
i =

(
d
dt
Ai(t)

2πAi(t)

)2

(2.16)

Âi = exp

(
const

∫ d
dt
Ai(t)

fNyĀi

dt

)
; Ā smoothed envelope A (2.17)

centri = arg min
t

abs(
∫t

0 Ai(t)dt− 0.5
∫T ′

0 Ai(t
′)dt ′)

T ′
(2.18)

θij = θi − θj. (2.19)

The definition of the newly introduced normalized envelope (Eq. 2.17) is justified as fol-
lows: The smoothed instantaneous bandwidth is normalized by the Nyquist frequency
and is integrated in order to receive a normalized measure of the signals envelope. To
enlarge the variance of that new measure, a constant is multiplied and the exponent is
taken.
The also non standard feature centroid time is the time instance in the 3s sliding win-
dow, where 50% of the area below the envelope is reached (Ohrnberger, 2001).
This feature is another type of a normalized envelope measure and performs well for
the separation of the earthquake classes in the centroid-time time space (see Fig. 2.8).
Good separation in Fig. 2.8 is also obtained by the normalized envelope and the instan-
taneous bandwidth. Also the instantaneous frequency shows good separation in the
histogram distribution while the phase difference shows little separation capabilities.
Having extracted the features, it is now crucial to find and add only those d features to
a DHMM detection and classification which separate the different classes best. Adding
features which do not separate the different classes will result in a reduced performance
of the vector quantifier and consequently affect the following classifier.

In this study we visually select the features with the best discriminative power using
Fig. 2.6, 2.7, 2.8. These features are then combined to feature collections (fv) with
different total numbers of features, see Table 2.2. Given a feature collection and a

Notation Corresponding features

fv11 hob3 − hob10, Âz,σz, centrz
fv16 φP, ϑP,hob1 − hob10, ÂZ,σZ, fZ, centrZ
fv25 hob1 − hob10, ÂZ,N,E,σZ,N,E, fZ,N,E, centrZ,N,E,

θNZ,NE,ZE

fv29 φP, ϑP,hob1 − hob10, ÂZ,N,E,σZ,N,E, fZ,N,E,
centrZ,N,E, θNZ,NE,ZE

Table 2.2: Structure of feature collections (for feature definitions see Sec. 2.3.2).

24



2.3 Case study

0.00
0.05
0.10
0.15
0.20

Â
Z

0 3 6 9
2
3
4
5
6
7

σ Z

0 3 6 9

4
6
8

10

f Z

0 3 6 9

0.4
0.5
0.6
0.7
0.8

ze
n

tr Z

0 3 6 9

0.12
0.16
0.20
0.24

θ N
Z

0 3 6 9

Time in [s] Time in [s]

Figure 2.8: The figures show for each feature and for each class respectively the median
and histogram over all events in the class dependent training data sets.
The features here are phase difference θNZ, instantaneous frequency fZ,
centroid time centrZ, normalized envelope Â and instantaneous phase σZ.
The zeros in the histogram of θNZ are due to the number of bins which is
constant for all histograms and not optimal for θNZ. Color-coding as in
Fig. 2.6.

training data set (see Tab. 2.1) features are generated from the training data, pre-
whitened, vector quantified (64 codebook size, recall Sec. 2.2.2) and used as input for
the next step where DHMMs are trained for each class.

2.3.3 Classifier and System Performance

As the number of states is unknown it is beneficial to average over multiple HMMs
with different number of states. The number of states in a HMM (e.g. 3 in Fig. 2.3)
should be as small as possible in order to estimate robust parameters especially in the
presence of a small training data set. On the other hand the model should be complex
enough, i.e. have a large enough number of states, to describe the appropriate class
characteristics. Being also bound by computational processing time three DHMMs per
class are trained with a total number of 3, 4 and 5 states.
After having trained the various DHMMs the detection and classification system is
completed. The following approaches are then used to determine the performance of
the trained DHMMs, i.e. the classifier:

(I) Usually the performance is tested on single, pre-detected events applying Eq. 2.5.
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2 Continuous Earthquake Detection and Classification using DHMM

In speech recognition this is done on an independent pre-labeled (class memberships
are known) test data set, which was previously separated from the training data set.
In our case there is just a limited amount of training data available. Therefore it is
not possible to further reduce the size of the training data set by separating a test
data set. Consequently, as a first check, the training data are reevaluated. This test
is not impartial as the classifier is evaluated with the same events which are used for
training. However, due to the low computational costs this method is interesting for
evaluating DHMMs with different feature collections and selecting the one with the
best discriminative power.
Fig. 2.9 exemplifies the results of four reevaluations of the training data using different
feature collections. The figure shows the true class against the classified class. In order
to evaluate the best feature collection, the different types of errors and their corre-
sponding error weight need to be discussed.
A true noise event which is classified as earthquake is called false alarm; a true earth-
quake which is classified as noise is called missed event and a true earthquake which is
classified as a different earthquake type is called confused event. Since reclassifying the
whole data set is the only possibility to correct for a missed event, it is common to put
the error weight of a missed event higher than of a false alarm. Indeed, a false alarm
can be easily corrected by re-verifying only the already classified events. In case of the
confused event there is no need for sorting out any false alarms and consequently the
lowest weight is put on this kind of error.
Applied to Fig. 2.9 we get the following results: There are no missed events in feature
collections fv11, fv16, fv25 and fv29 at all. Fv11 and fv16 are the only ones which have
no false alarm and they both have the same classification rates (diagonal elements)
for the earthquake classes; only in the classification of the noise classes fv16 performs
slightly better (see Fig. 2.9).

(II) A computational more expensive test is the “leave one out” method. Here an
independent test data set is simulated by removing one event from the training data
set, training the DHMMs from the remaining events and finally classifying the removed
event with these DHMMs (Eq. 2.5). This procedure is repeated in a loop over all of
the events of the training data set, thus achieving a better measure of the classifiers
performance.
Fig. 2.10 shows the results of the “leave one out” method in the form of a confusion
matrix. Here, in all feature collections, 6% of the reg events are missed. The position
of the false alarms are marked in Fig. 2.10 by a red rectangle. Fv11 has together with
fv16 the lowest false alarm rate of 12%. Focusing on the correct classifications (sum
of diagonal elements) fv11 performs better and is consequently used (in agreement
with the previously described evaluation criterions, see Sec. 2.3.3, I) for the following
continuous classification.

(III) Since the “leave on out” method is based on single pre-detected events with
certain length, continuous data are a more realistic performance test for the detection
and classification system. E.g. in only one hour 60 · 60s/0.25s = 14400 (frame rate
0.25s) symbol sequences are classified, thus giving a better view of the DHMM detection
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Figure 2.9: Confusion matrix in case of the reevaluation of the training data set. An-
notations as follows: cb64fv11-RMOA denotes codebook (cb) with size 64,
feature collection fv11 (see Tab. 2.2) and the station name is RMOA

and classification as the in total 142 events in the training data set (see Tab. 2.1).

The continuous, one step detection and classification is based on Eq. 2.6, i.e. no pre-
detector is used, and the postprocessing steps described in Sec. 2.2.4 are applied.
To provide a better understanding Fig. 2.11 shows an example of a continuous classified
seismogram. In the top row a seismogram containing two loc earthquakes is shown in
black. The bottom row displays the corresponding averaged log probabilities for each
class. The log probabilities are calculated in a sliding frame (frame rate 0.25) with class
dependent length (Fig. 2.4) and averaged over three HMMs per class (Eq. 2.6). It can
be seen that the probability of the loc class increases during the local events. At the
same time the probability of the two noise classes decreases (the onset of the probability
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Figure 2.10: Confusion matrix in case of the “leave on out” method. Annotations as
follows: cb64fv11-RMOA denotes codebook (cb) with size 64, feature col-
lection fv11 (see Tab. 2.2) and finally the station RMOA. The position of
the false alarms in the confusion matrix are emphasized by a red rectangle.

change lies actual before the loc events due to the 3s window of the feature generation).
A classification is raised as soon as the log probability of an earthquake class is greater
than the probability of a noise class and the seismogram is colored according to the
presently active earthquake class. The coda of the loc class is confused as near,
however, in the postprocessing the minimum event length, introduced in Sec. 2.3.2,
tries to avoid confused events in that case.

The performance was tested for a one month period starting on June 1st 2004. Cer-
tainly earthquakes falling in this time period are excluded from the training data
set. For the evaluation of the results a recursive STA/LTA, which proved to be suf-
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Figure 2.11: Top: Seismogram of two local events recorded with vertical component.
Color sections correspond to final continuous classification without post-
processing. Bottom: Log probabilities for each class (blue ≡ reg, green
≡ near, red ≡ loc, yellow ≡ dn and gray ≡ nn).

ficient as event detector regarding its low computational costs and good performance
(Withers et al., 1998), was applied to the same time period. As trigger parameters a
1s STA window, a 30s LTA window and threshold 4 respectively 1.5 for switching the
trigger on and off were used (Trnkoczy, 1998). The coincidence of the three stations
was calculated such that an simultaneous detection was raised if at least two of three
stations detected an event. The results in the continuous case are shown in Tab. 2.3,
the comparison to the recursive STA/LTA is shown in Tab. 2.4 and discussion follows
in the next section.

DHMM # of loc # of near # of reg

missed events: 8 (22%) 0 (0%) 5 (26%)
confused events: 3

(78%)
6

(100%)
4

(74%)
correct events: 26 7 10

total earthquakes: 37 13 19

Table 2.3: Classification performance of DHMM on a one month continuous seismic
period.

DHMM rec. STA/LTA

missed events: 13 (19%) 7 (10%)
detected events: 56 (81%) 62 (90%)

total earthquakes: 69 69

Table 2.4: Comparison of the detection rates (without classifying) between DHMM and
the recursive STA/LTA on a one month continuous seismic period.
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2 Continuous Earthquake Detection and Classification using DHMM

2.4 Discussion

In the continuous case one month, i.e. 30 · 24 · 60 · 60s/0.25s = 10368000 (frame rate
0.25s, see Sec. 2.2.4) symbol sequences, are selected from the continuous symbol stream
and classified using DHMMs. The DHMMs detect (correct + confused events) 78% of
all loc events, 100% of all near events and 74% of all reg events (see Tab. 2.3). Mea-
suring the classification performance DHMMs classify 26 (70%) loc events, 7 (54%)
near events and 10 (53%) reg events correctly.
The intrinsic similarities between the reg and near class are the origin of higher con-
fused event rates and consequently lower classification rates; already apparent in the
“leave one out” method (Fig. 2.10). Joining the classes reg and near to a regnear

class results in 27 (27/32 ≈ 84%) correct events for the regnear class, together with
the unchanged 27 (70%) correct events for the loc class.
In order to rate these results a recursive STA/LTA detector is applied to the same time
period. The recursive STA/LTA detects 90% of all earthquakes (sum of loc, near,
far events) as compared to the DHMMs with an overall detection rate (correct + con-
fused events) of 81% (see Tab. 2.4). The false alarms of both methods are comparable
with 223 for the DHMM and 219 for the recursive STA/LTA. However, in contrast to
the recursive STA/LTA the DHMM not only detects but also classifies the detection.
Furthermore, when comparing the DHMM detection and classification rates (Fig. 2.3)
with other classification algorithms, the erroneous detection rate of the pre-detector
(here 10%) still needs to be subtracted. This means e.g. that 80% successful classi-
fications for a pre-triggered ANN classifier would reduce to respectively 72% (Langer
et al., 2006; Ibs-von Seht, 2008).

Certainly an improvement of the DHMM classification could be achieved by running
first the recursive STA/LTA detector and then the HMM on the pre-detected data,
similar to Langer et al. (2006); Ibs-von Seht (2008). Especially the good performance
in the “leave one out” method would suggest this approach.
However, the main goal of this study was to present a detection and classification
system which needs not to rely on a prior detection and thus can operate directly on the
continuous data, which consequently allows the classification of low SNR earthquakes
which would usually fall through the standard detector.

Even with a small sized data set (in total 142 sequences), the DHMM detection and
classification achieves reasonable results. In contrast to template based pattern recog-
nition, where templates of the whole training data set need to be stored for later clas-
sification, for DHMMs one probabilistic model per class is estimated from the training
data and in the following the training data can be discarded. This allows the use of
nearly unlimited amounts of training data (e.g. 160000 sequences in speech recogni-
tion). By running the DHMM continuously, earthquakes will be detected and classified
which then can sequentially be added to the training to estimate improved DHMMs.

Furthermore a problem we have not addressed so far is the occurrence of mixed earth-
quakes, i.e. two or more earthquakes whose signals are running into each other. Defi-
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nitely there is need for more research in this area.
Another point is, as already mentioned, a potential loss of information due to vector
quantization of the DHMM. The migration to continuous HMMs which incorporate
multivariate probability densities could improve the results and be less sensible to the
feature selection.

2.5 Conclusion

We presented an alternative method for detecting and classifying earthquakes. This
method is not based upon the usual system which is a short time average/long time av-
erage (STA/LTA) detector combined with e.g. an Artificial Neuronal Network (ANN)
or template based pattern recognition. We prefer Hidden Markov Models (HMM) be-
cause of their strength in single step detection and classification, their explicit incorpo-
ration of the time and their major success in speech recognition. In speech recognition
HMMs are favored over Time Delay Neuronal Networks (TDNN), an implementation
of time windows in several ANN layers in order to process time dependent signals
(e.g. Waible et al., 1989), or over template based pattern recognition in combination
with Dynamic Time Wrapping (DTW), a similarity measure of signals which may vary
in time or speed (e.g. Myers et al., 1980). Both show lower performance. HMM as
TDNN and template based pattern recognition are not based on the time and am-
plitude dependent seismogram itself but on features estimated from the seismogram
which clearly characterize the different classes. Special emphasis in this study was
given to the determination of these features which is crucial for the performance of the
classifier.
For testing the performance of this technique, discrete HMMs (DHMMs) are applied
to three stations of the Bavarian earthquake service. The signal or class separation in
this case is done by simply using the epicentral distance of earthquakes with respect
to the stations used. Therefore it is possible to easily decide whether a classification is
correct or wrong. Using this possibly smaller data set enables us to better evaluate the
advantages and disadvantages of the proposed algorithm and to compare the results
with simple and widely used detection techniques. The application to this data set is
also of interest as for further hypocenter determination on real time analysis it is crucial
to use cost intensive non linear techniques for local earthquakes inhabiting strong 3D
topographic site effects and classical techniques for nearby and regional earthquakes.
Thus the class memberships need to be known in advance.

Overall, the performance of the discrete HMM (DHMM) shows good results for the
pre-triggered “leave one out” method with no missed events at all and 4% false alarms.
For the continuous case DHMMs are used to detect and classify a continuous one
month period. In order to rate the DHMM results a recursive STA/LTA detector is
applied to the same period. When comparing only the number of detected events,
which underestimates the performance of the DHMM method as it not only detects
but also classifies, the recursive STA/LTA detection performs slightly better with a
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2 Continuous Earthquake Detection and Classification using DHMM

90% detection rate compared to the DHMM detection and classification with 82%
respectively. However, when comparing the DHMM to other classification systems,
where the erroneous detection rate of the pre-detector needs to be included, the DHMM
detection and classification certainly shows comparable results.

The purpose of this paper was to demonstrate the possibility of a classification system
which directly operates on continuous data, thus making it possible to detect low
SNR earthquakes which usually would fall through the pre-detector. The possibility
of applying such a one step detection and classification system increases in relevance
as more and more stations continuously record data.

Based on the aspects discussed in this paper, one step HMM detection and classification
is competitive to common detection and classification systems.
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Abstract

A possible interaction of (volcano-) tectonic earthquakes with the continuous seis-
mic noise recorded in the volcanic island of Tenerife was recently suggested. Also
recently the zone close to Las Cañadas caldera shows unusual high number of near
(<25km), possibly volcano-tectonic, earthquakes indicating signs of reawakening of the
volcano putting high pressure on the risk analyst. Certainly for both tasks consistent
earthquake catalogues provide valuable information and thus there is a strong demand
for automatic detection and classification methodologies generating such catalogues.
Therefore we adopt methodologies of speech recognition where statistical models, called
Hidden Markov Models (HMMs), are widely used for spotting words in continuous au-
dio data. In this study HMMs are used to detect and classify volcano-tectonic and /
or tectonic earthquakes in continuous seismic data. Further the HMM detection and
classification is evaluated and discussed for a one month period of continuous seismic
data at a single seismic station. Being a stochastic process, HMMs provide the pos-
sibility to add a confidence measure to each classification made, basically evaluating
how “sure” the algorithm is when classifying a certain earthquake. Moreover, this pro-
vides helpful information for the seismological analyst when cataloguing earthquakes.
Combined with the confidence measure the HMM detection and classification can pro-
vide precise enough earthquake statistics, both for further evidence on the interaction
between seismic noise and (volcano-) tectonic earthquakes as well as for incorporation
in an automatic early warning system.
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3.1 Introduction

The basaltic shield structure of Tenerife (Canary Islands, Spain), built between 12
and 3.3 Ma, is now hosting the 3.5 Ma Las Cañadas volcanic complex (Mart́ı et al.,
1994), including a caldera due to a series of collapses (Mart́ı and Gudmundsson, 2000).
The most recent structure within the caldera is the Teide-Pico Viejo volcanic complex
(TPV), 200 Ka, that produced both basaltic effusive (e.g. 1909 Eruption of Chinyero)
and phonolitic explosive eruptions (e.g. Montaña Blanca, about 2 Ka). This bimag-
matism poses serious difficulties on hazard assessment.
Several seismic stations have been recently installed to improve monitoring after the
appearance of anomalous clusters of seismic events below the island. These stations
have been recording not only discrete events but also a continuous seismic noise, which
shows a strong anthropogenic component but definitely contains a significant natural
signal. A review of the analysis carried out on this seismic noise can be found e.g. in
Carniel et al. (2008a).
An important issue is the possible influence of regional (i.e. also purely tectonic, non-
volcano-tectonic) events on the time features of the seismic noise, an influence that
has been noted elsewhere before (e.g. Ambrym, see Carniel et al., 2003; Stromboli, see
Carniel and Tárraga, 2006). Evidence exists of significant eruptions being triggered in
the past by regional earthquakes, so that the study of this influence can be extremely
important for hazard assessment (e.g. Tungurahua, see Tárraga et al., 2007; Villarrica,
see Tárraga et al., 2008; Raoul Island, see Jolly and Scott, 2007). Manga and Brodsky
(2006) present an extensive review of other cases. It has been demonstrated that even
very distant earthquakes can have an influence on active calderas (e.g. Nisyros, see
Gottsmann et al., 2007).

In the specific case of Tenerife, a bi-directional interaction between the time evolu-
tion of the continuous seismic noise and the occurrence of (volcano-) tectonic events
is postulated. On one hand continuous seismic noise evolution can be used to forecast
the occurrence of volcano-tectonic events at least in a statistical sense (Tárraga et al.,
2006), on the other hand tectonic events are associated with changes in the intensity,
spectral and/or dynamic features of continuous seismic noise (Carniel et al., 2008a).
The statistics that one can build regarding these possible interactions is however sig-
nificantly reduced by the low signal to noise ratio (SNR) that usually characterizes the
seismic data recorded on the island, and only few attempts have been made in order
to detect events with algorithms more sophisticated than the classical STA/LTA ratio
(see e.g. Del Pin et al., 2008). There is therefore a strong demand for automatic de-
tection / classification methodologies able to process considerable amounts of data in
a reasonable computing time and build a consistent statistics of tectonic events occur-
rence times, that can be then compared with time series of changes visually observed
(Carniel et al., 2008a) or statistically detected (Fattori Speranza and Carniel, 2008) in
the seismic noise.

In this paper we take the approach to automatic detection / classification of volcano-
tectonic and tectonic events on Tenerife island by adopting speech recognition method-
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ologies. One of the motivation for doing so is based on the intrinsic similarity between
seismogram signals and speech signals (see Fig. 3.1 or Ohrnberger (2001)). In speech
recognition Hidden Markov Models (HMMs) are successfully applied for spotting spo-
ken words in continuous audio data. Therefore we propose to use HMMs for spotting
earthquakes in continuous seismic data, eliminating the need for any pre-triggering and
thus being predestined for low SNR.

Figure 3.1: Top figure shows an audio signal of the word “dry” compared to the bottom
figure showing an earthquake recorded at BDG station. The word “dry”
has a duration of 2.7s, the earthquake has a length of 37s. The similarity
between vocal utterances and earthquakes is one of the motivations to use
speech recognition techniques for earthquake detection and classification.

An informal, illustrative insight into the structure of HMMs is given in the next sec-
tion together with a probabilistic treatment of the detection and classification task. A
roadmap of applying HMMs to automatic detection and classification at BDG station
(Tenerife) is following. Further the performance on a continuous one month period is
evaluated, discussed and conclusions are drawn.
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3.2 Theory of Continuous Hidden Markov Models

Before providing a probabilistic treatment of the detection and classification task, some
informal insight into the structure of HMMs is given. Fig. 3.2 illustrates an example
HMM generating a seismogram. The model is assumed to be composed out of the
three states (1, 2, 3). The observation ot = ot is considered to be the amplitude of
the seismogram at time t, thus the seismogram of length T can be represented as a
sequence of observations, i.e. amplitude values, o1o2 · · ·oT .
The model changes state i every time t, where the probability for changing to state
j is given by the state transition probability aij. The state transitions to state j are
assumed to be independent of all previous states except the most recent i. Generally
the allowed state transitions are drawn as arcs (arrows) in the model, thus in the HMM
of Fig. 3.2 only state transitions into the same state or into the next state are allowed.
Each time t a state i is entered an observation is generated from the observation
probability distribution bi(ot), which differs for each state i. E.g. in Fig. 3.2 the
observation probability distribution for the first state b1(ot) gives high probability
for generating low to medium amplitude values; it does not forbid to generate high
amplitude values, it just makes them less probable. This built-in flexibility makes the
HMM very powerful.

The HMM can be seen in Fig. 3.2 from a generative viewpoint as follows: The observed
amplitude values of the first part of the seismogram are obtained by first choosing
to stay in (changing into) state 1 for t ∈ [1, t1[. Each time t ∈ [1, t1[ staying in
state 1 the observed amplitude value ot is sampled from the first state observation
probability distribution. The amplitude values of the middle part of the seismogram
are then sampled from the second state observation probability distribution b2(ot) with
t ∈ [t1, t2[. The probability distribution b2(ot) in Fig. 3.2 gives higher probability for
high amplitude values, thus resulting in higher sampled amplitudes; low amplitude
values are still not impossible, just less probable. The final part of the seismogram is
then sampled from b3(ot) with t ∈ [t2, T ] conditioned on staying in state 3.
Thus the probability for the observation sequence, i.e. the seismogram, conditioned
on the model of Fig. 3.2 can be calculated by multiplying the temporal evolution of
the state transition probabilities and the corresponding observation probabilities of the
amplitude values ot:

P(o1o2 · · ·oT |{aij,bi();∀i, j}) = 1 · b1(o1)a11b1(o2)a11b1(o3) · · ·a12b2(ot1
)a22·

·b2(ot1+1) · · ·a23b3(ot2)a33b3(ot2+1) · · ·a33b3(oT ).
(3.1)

The parameters bi(),aij are organized in an overall structure called HMM λ =

{aij,bi();∀i, j}. The 1 in Eq. 3.1 accounts for the initial state probability of the first
state. This probability is 1 due to the restricted model in Fig. 3.2 which allows no
alternative initial state.
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1 2 3
a12 a23

a11 a22 a33
t1 t2
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b2(ot)

ot

b3(ot)

Figure 3.2: Sketch of a HMM generating a seismogram: The observed amplitude of the
first part of the seismogram is generated from the observation probability
distribution b1(ot), i.e. the model stays in (changes into) state qt = 1 for
every sample t ∈ [1, t1[. The middle part of the seismogram is controlled
by b2(ot), t ∈ [t1, t2[, thus resulting in higher amplitudes. And the final
part of the seismogram is generated from b3(ot), t ∈ [t2, T [.

The probability of some event X, given the occurrence / instantiation of Y is known as
conditional probability and denoted by P(X|Y). Thus in the framework of conditional
probabilities the model parameters can also be defined as follows:

• The state transition from state i to state j is the probability that the next state
qt+1 is j given the occurrence of the current state qt is i: aij = P(qt+1 = j|qt =

i).

• The observation probability distribution bi(ot) of state i is the probability of the
observation ot conditioned that the current state qt is i: bi(ot) = P(ot|qt = i).

By providing a model like the one shown in Fig. 3.2 it is possible to calculate the
probability of the observation sequence P(o1o2 · · ·oT |λ) given the HMM λ.

The task in the classification is now to find the most probable class k, given the
observation sequence O. By effectively replacing the class k by the class representative
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HMM λk, the classification task can be formulated as the most probable model λk,
given the observation sequence (seismogram) O = o1o2 · · ·oT :

k = arg max
k
P(k|O) = arg max

k
P(λk|O). (3.2)

The probability of the model given the observation P(λk|O), likewise the HMM λk

which are trained based on class dependent training data sets, are calculated using
well established algorithms of speech recognition (for general information on HMM see
Rabiner, 1989; Young et al., 2002; Schukat-Talamazzini, 1995).

Although depicted in Fig. 3.2 for illustration purposes, the amplitude is of course not
a relevant observation, also called feature, in which earthquake classes differ and thus
can easily be distinguished. Other features like the spectrogram, the envelope or the
instantaneous bandwidth are ways better suited. In general a mixtures of multivariate
Gaussian distribution bi(ot) is used to estimate a multi dimensional feature vector ot.
Having given a short informal insight into the theory of HMM, the realization of a
HMM based earthquake detection and classification algorithm is described in the next
section.

3.3 Realization of a HMM based Earthquake Detection
and Classification Scheme on Tenerife

On the island of Tenerife, four major seismogram classes are identified (compare to
Fig. 3.3): The “NEAR” class, which corresponds to earthquakes inside the 25km
boundary (possibly volcano-tectonic); the “FAR” class corresponding to earthquakes
outside the 25km boundary but inside a 75km distance (mainly tectonic). This bound-
ary was proposed for discrimination of volcano-tectonic and regional tectonic earth-
quakes by Tárraga et al. (2006). The “DN” class, accounting for noise during day
(more anthropogenic) and the “NN” class accounting for noise during night (more
non-anthropogenic). Example seismograms for all classes recorded at BDG station are
shown in Fig. 3.4. BDG is a short period seismic station installed on the island of
Tenerife (see Fig. 1 in Del Pin et al., 2008, for details on the location) by the Depar-
tamento de Volcanoloǵıa, CSIC, Madrid (Ortiz et al., 2001); BDG uses a 1Hz Mark
sensor and continues sampling with 16bit at 50Hz.

Different features were calculated from the seismogram and the following were chosen
to be relevant for the detection and classification task at BDG station: The short
time Fourier transform in 10 binned logarithmic frequency bands ranging from 0.5Hz
- 25Hz. Joswig (1994) shows that this features, also called sonogram, gives distinct
information of the particular seismogram. A normalized version of the instantaneous
amplitude, also known as seismic envelope (Beyreuther and Wassermann, 2008a), the
time derivative of the envelope called instantaneous bandwidth (Barnes, 1993) (i.e. a
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Figure 3.3: Map showing 25km region around Teide volcano. Earthquakes falling inside
the region are represented as small circles in light gray, earthquake outside
the 25km region are represented as medium circles. Small circles falling
outside the 25km region are due to 2 digit accuracy of the IGN catalogue.
Circles in dark gray depict earthquakes in the training data set.

delta impulse has unlimited bandwidth), the instantaneous frequency (Taner et al.,
1979) and the centroid time (Ohrnberger, 2001) which is the time in a sliding window
where half of the area below the envelope is reached. Thus, all together 14 features
are used, resulting in a 14 dimensional feature space. The features are generated in
a tapered 3s window with step size 0.04s. Full description of the calculation of the
features can be found in Ohrnberger (2001); Beyreuther and Wassermann (2008a).

For each class training samples are selected based on classifications of the IGN catalogue
(http://www.ign.es, see also Fig. 3.3). In total 119 samples for the DN class, 65 samples
for the NN class, 25 samples for the NEAR class and 23 samples for the FAR class were
selected. Example seismograms of the training data sets are shown in Fig. 3.4. Due
to the low SNR we were only able to extract 23 FAR earthquakes which were visible
for the seismological analyst at BDG for the training (large dark circles in Fig. 3.3).
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Figure 3.4: Typical seismograms for the classes FAR, NEAR, DN and NN. Far earth-
quakes have origin outside the 25km zone (see Fig. 3.3), the origin of the
NEAR earthquakes is inside the 25km zone, the DN class stands for mostly
anthropogenic noise during day time and the NN noise class depicts mostly
non-anthropogenic noise during night.

Even though there were more training data for the NEAR class available we used only
a subset (small dark circles in Fig. 3.3) in order to approximately match the size of the
FAR training data. This training samples are then used to compute the HMMs with
the HTK software (Young et al., 2002).

In order to realize an “earthquake spotter”, crude noise models (DN and NN), known
as garbage, filler or catch-all models (e.g. see Knill and Young, 1994), are trained to
catch all “non-earthquakes”. This is achieved by training the variances of the garbage
models, i.e. the variance of bi(ot), together with earthquake models (FAR and NEAR).
The result is a vague catch-all model since it has wide variance and therefore poor
probabilistic scores. Consequently the score of the garbage models (DN and NN) is
tuned relative to the earthquake models (see left plot in Fig. 3.5).
Next to the vague garbage models good models are needed for the earthquake classes.
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o

b(o)

o

b(o)

Figure 3.5: The left plot shows in gray the probability distribution of the (FAR or
NEAR) earthquake model relative to probability distribution of the (DN
or NN) garbage model denoted with a dotted line. Since the garbage model
has wide variance and therefore poor probabilistic scores, the garbage mod-
els (DN and NN) are tuned relative to the FAR and NEAR class. The
probability distribution of the tuned garbage model is shown by the shifted
solid line. The plot on the right shows two Gaussian mixtures, denoted by
dotted lines, whose superposition allows a better fit to an arbitrary proba-
bility density; thus provides a good model for the earthquake classes. The
superposition, shown as solid line, is filled with gray color.

Because the training data size is quite low compared to speech recognition with training
data bases consisting of 160000 telephone utterances (Qing et al., 2000), there is a
tradeoff between finding a good model and having limited amount of data. In this study
we resolve this tradeoff by splitting the variance of the earthquake classes (NEAR and
FAR) into two mixtures in order to allow a better fit to the real observation probability
distribution (see right plot in Fig. 3.5). At the same time each of the two mixtures
are trained for the earthquake classes for all states together and shared. Sharing the
variances results in robustness by effectively reducing the number of parameters to
estimate. However the means are trained separately for each class.

Respecting the manipulations described in the last paragraph, HMMs are trained for
each class based on the training data and are in the following used to detect and
classify earthquakes. As soon as the HMMs are trained for each class the training
data can be discharged resulting in a fast classification by Eq. 3.2. Due to taking the
argument of the maximum in Eq. 3.2 all the probability information of the resulting
classification is lost. This can be circumvented by also calculating how many times the
probability of detecting an earthquake exceeds the probability of detecting noise. This
probability measure, called confidence (known as likelihood scores in Knill and Young,
1994, p. 3-5) is computed by dividing the probability of detecting an earthquake class
by the probability of detecting a noise class:

conf. =
P(λk∈{FAR,NEAR}|O)

P(λk∈{DN,NN}|O)
. (3.3)

E.g. a confidence level of 2 means that the algorithm computes two times higher
probability of detecting an earthquake than of detecting noise. In the implementation
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two classifiers are running in parallel, one containing all classes and one with only DN
and NN classes. The probabilities for the corresponding HMMs are calculated in a 16s
sliding window with 50% overlap.

The classifier is evaluated in a continuous one month period starting at 1. September
2004 and ending at 30. September 2004. Earthquakes in this period are excluded
from the HMM training data sets. In one month 30 · 24 · 3600s/(16s · 50%) = 324000
observation sequences are evaluated using the HMM detector and classifier. 324000
is further used as the total number of noise events, neglecting the small number of
earthquakes, in order not to clutter Tab. 3.1. The results are given for the whole test
data set and a small subset containing only events with SNR higher than 2. The noise
amplitude is measured as the maximum amplitude in a one minute time window before
the event. The signal amplitude is measured as the maximum amplitude in a window
containing the signal.
An independent classification was performed by two experienced seismological analysts
on the same time period as follows: in case a clear earthquake was found which was
not included in the IGN catalogue, it was added to the earthquake list. In case a vague
signal was visible in the time frame where IGN classified an earthquake the earthquake
was added to the earthquake list. On the other hand vague signals which were not in
the IGN catalogue were rated as false alarms. Thus the resulting correct detections
are a lower bound of the real correct detections. The results are shown in Tab. 3.1 and
further discussed in the next section.

3.4 Discussion

The final results are shown in Tab. 3.1. There are roughly 139/30 ≈ 4.6 false alarms,
26/30 ≈ 0.9 correct classified earthquakes and 8/30 ≈ 0.3 missed earthquakes per
day. The false alarms with 4.6 per day are still a reasonable amount to verify for the
seismologist. At the same time at a lower bound 76% of the earthquakes are correctly
detected, 24% are missed. IGN catalogued 35 earthquakes in this period, 27 of them
were visible at BDG, 8 were not present — not event as vague signal. On the other
hand 7 earthquakes which were not catalogued by IGN were detected and classified.
Certainly for an observatory mainly focused on cataloguing earthquakes the number
of missed earthquakes are not really acceptable and multi station networks or higher
quality data are to be taken into account. But for an observatory mainly focussed on
monitoring the alert level of volcanoes, the number of false negatives is acceptable and
the HMM detection and classification is a promising starting point.

Due to the probabilistic framework it is possible to calculate the confidence (Eq. 3.3)
of the correct classified earthquakes. Tab. 3.1 shows that the algorithm is quite “sure”
as soon as it detects an earthquake; the probability of detecting an earthquake is
on average 452.9 times higher than the probability of detecting noise. On the other
hand, the algorithm is “unsure” when detecting a false alarm where the probability
of detecting an earthquake is only on average 1.2 times higher than the probability of
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3.4 Discussion

# of Events Av. Conf. Conf.>2 and SNR>2

missed earthquakes 8 3
correct earthquakes 26 452.9 18

26/34 ≈ 76% 18/21 ≈ 86%

correct noise 323861 597
false alarms 139 1.2 3

139/324000 ≈ 0.04% 3/600 ≈ 0.5%

Table 3.1: Classification results for a continuous one month period starting at 1.
September 2004 and ending at 30. September 2004.

noise. Thus the confidence measure provides valuable information for the seismological
analyst in order to evaluate the detections, where false alarms are mixed up with
correctly classified earthquakes.

The low SNR ratio at BDG station combined with the good performance of the con-
fidence measure suggests to evaluate the performance on a small subset of the data
set with high SNR. Therefore we choose only earthquakes having SNR higher than
2, resulting in 21 earthquakes. At the same time the detections were restricted to
solely confidence greater than 2, i.e. we require the algorithm to give a twice as high
probability of detecting an earthquake than of detecting noise, resulting also in 21
detections. 3 earthquakes were missed and there are also 3 false alarms. These 18
highly confident earthquakes contain 86% of the major, i.e. high SNR, earthquakes
recorded at BDG station. Therefore 18 of the 26 correct classified earthquakes could be
marked as highly confident earthquake detections providing valuable information for
the seismological analyst. On the other hand 34−21 = 13 earthquakes (13/34 ≈ 35%)
have SNR lower than 2. The algorithm is still able to detect 26 − 18 = 8 low SNR
earthquakes (8/13 ≈ 62%), which are certainly tough to extract using the standard
detectors, (e.g. STA/LTA, Withers et al., 1998).

So far only the detection results were discussed. But the big advantage of using HMM is
that they are designed to detect and classify signals of multiple different class identities
in one step, easily fast enough to run online. The earthquakes in the one month
continuous classification test split up in 3 FAR earthquakes and 30 NEAR earthquakes.
While the algorithm classified all 3 FAR earthquakes, i.e. 100%, correctly as members
of the FAR class, 4 NEAR earthquakes, i.e. 4/30 ≈ 13%, were misclassified as member
of the FAR class. Certainly the number of tested FAR earthquakes is too small to draw
any conclusions but the high number of correct classifications of NEAR earthquakes,
87%, seem to be a good foundation for an automatic continuous classification.

Before providing a conclusion we want to show how this work compares to previous
studies of HMM applied to seismic signals on the one hand and provide some back-
ground on the differences between the “memory” of the seismic signals on Tenerife and
“memory” of the HMM on the other hand:
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I) In this paper we used continuous HMM, implemented and developed by the HTK
(Young et al., 2002) software package. In comparison to previous applications, where
discrete HMM were used (Ohrnberger, 2001; Beyreuther and Wassermann, 2008a),
continuous HMM are directly used to estimate the time evolution of multi dimensional
feature vectorsOt = o1 · · ·oT and thus makes the discretization step and the resulting
loss of information of discrete HMM unnecessary. The dimensionality combined with
the limited amount of training data made it then necessary to manipulate the variance
in the training in order to obtain robust models (see previous section and Fig. 3.5).

II) The “memory” of HMM constrained by the state transition probabilities aij =

P(qt+1 = j|qt = i) given in the theory section. That is with a 0.04s step size of the
feature generator the next state j is depending only on the current state i (0.04 seconds
before, not taking into account the window size of 3s for feature generation and the
restrictions due to the allowed transitions, the arrows in Fig. 3.2). However Carniel
et al. (2008b) show with the variogram method that the memory of the seismic noise
at Teide-Pico Viejo is roughly 70 hours. This apparent contradiction is easily resolved
by the fact that in this study we train good HMM for the earthquakes themself and use
rough catch-all HMM for the noise classes, making it unnecessary to precisely model
the 70 hours memory of the (seismic) noise. It is also worthwhile to note that the
training of models with 70 hours memory would be computational infeasible.

3.5 Conclusions

The detection and classification of one month continuous raw seismic data recorded at
BDG station during the period 1. September 2004 — 30. September 2004 highlighted
the performance of HMM applied to detection and classification of seismic signals of
possible volcanic origin. Even in low SNR, where it is definitely hard for a seismolog-
ical analyst to detect and classify earthquakes, HMM combined with the confidence
measure can provide helpful information.
Seismic catalogues, like IGN, which are based on multi station networks are truly ir-
replaceable. However, a significant part of the earthquakes catalogued in IGN are not
visible at BDG. This is due to the low SNR resulting from the the strong attenuation
of the volcanic rock (Gudmundsson et al., 2004) and a general high noise level near
the station. On the other hand small earthquakes near BDG station are, due to the
strong attenuation, not detected at the seismic network on which IGN is based. There-
fore the possibility of the HMM method for running automatically on a local station
can provide better information on earthquakes recorded at that single station. This
information about earthquakes measured, together with the analysis of seismic noise,
is precise enough to provide more statistical evidence supporting the hypothesis of a
relationship between the seismic noise and the occurrence of earthquakes (see Tárraga
et al., 2006; Carniel et al., 2008a).
The precision of the HMM detection and classification on BDG data, restricted to
this single station, is not yet enough for automatic cataloguing of earthquakes (but

44



3.6 Acknowledgements

certainly promising enough to call for further applications on multi station or higher
quality data). However certainly HMM can be used in an automatic online alert
level estimation system, where especially the 86% correct high confident (conf. > 2)
earthquakes detections restricted to SNR greater than 2 together should prove to be
valuable; the low false alarm rate of 0.5% is a necessary criterion in such a scenario.
In summary, single station HMM detection and classification can automatically pro-
vide precise enough earthquakes statistics recorded at BDG station which then can
be used for further investigation of the Teide-Pico Viejo volcanic system and, espe-
cially equipped with the confidence information, provide helpful information for the
seismological analyst who catalogues earthquakes and the volcanic risk analyst.
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Abstract

Automatic earthquake detection and classification is required for efficient analysis of
large seismic datasets. Such techniques are particularly important now because access
to measures of ground motion is nearly unlimited and the target waveforms (earth-
quakes) are often hard to detect and classify. Here, we propose to use models from
speech synthesis which extend the double stochastic models from speech recognition by
integrating a more realistic duration of the target waveforms. The method, which has
general applicability, is applied to earthquake detection and classification. First, we
generate characteristic functions from the time-series. The Hidden semi-Markov Mod-
els are estimated from the characteristic functions and Weighted Finite-State Trans-
ducers are constructed for the classification. We test our scheme on one month of
continuous seismic data, which corresponds to 382629 classifications, showing that in-
corporating the time dependency explicitly in the models significantly improves the
results compared to Hidden Markov Models.

4.1 Introduction

The automatic detection and classification of seismic signals is increasing in significance
since data centers have moved from the acquisition and archiving of single data snippets
to streaming continuous seismic waveforms. Automatic detection and classification of
earthquakes is used, for example, to automatically acquire consistent earthquake cat-
alogues at volcanoes, to achieve class-dependent pre-selection of localization methods,

47



4 HSMM based earthquake classification system using WFST

and to exclude quarry blasts from earthquake catalogues.
Our choice to reach a robust detection and classification algorithm is to adopt Hidden
Markov Models (HMMs). This technique is very successfully applied to speech recog-
nition (Young et al., 2002), and has practical applications to the field of seismology
(Ohrnberger, 2001; Beyreuther and Wassermann, 2008a) and other fields (Kehagias
and Fortin, 2006). The advantages and disadvantages of this technique compared to
other approaches is thoroughly covered in Beyreuther and Wassermann (2008a) for the
field of seismology.
HMMs provide a powerful tool to describe highly variable time series based on double
stochastic models. The model acts on characteristic functions or features (estimated
from the seismogram), e.g. the envelope or the power in different frequency bands,
which describe the earthquake better than the pure ground motion signal itself. One
part of the stochastic model represents the time dependency of these derived character-
istic functions; the other part represents the distribution of the characteristic functions
itself. Since this is a fully probabilistic approach, a confidence measure is naturally
also provided.
However, a drawback when using HMMs is that the probability of the duration for a
single part in the HMM (called state) is an exponentially decaying function in time
which is an unrealistic representation for the duration of earthquake classes or speech
(Oura et al., 2008). To overcome this limitation, we apply Hidden semi-Markov Models
(HSMMs) which use the more realistic Gaussians as state duration probability distri-
butions.

The commonly used HMM decoding/classification technique (Viterbi algorithm) can-
not be applied to HSMMs, as it relies strongly on the intrinsic HMM design. Therefore,
we construct Weighted Finite-State Transducers (WFSTs) from the HSMMs for the
purpose of classification (Mohri et al., 2002). This step also allows a much more flexible
model refinement in the actual classification.

In the next section the HMMs are briefly introduced to the field of seismology, followed
by a more detailed description of their HSMM extension and the corresponding WFST
classifier. In order to show the potential for earthquake detection and classification,
we apply HSMM as well as HMM to a one month continuous seismic dataset.

4.2 Theory

4.2.1 Hidden Markov Models

Hidden Markov Models (HMMs) are estimated from a training data set, i.e. they belong
to the class of supervised classification techniques. The models are not operating on
the seismic signal itself but on characteristic functions (also called features) generated
from the seismograms which better represent the different classes of earthquakes.
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4.2 Theory

Figure 4.1a shows an example of a training data set in the time-amplitude space.
The label corresponds to the class name where the classes simply differ in epicentral
distance (reg 100km− 600km, near 10km− 100km, loc 0km− 10km, noise noise).
Note that the near and reg class have a quite similar signature in the time-amplitude
space and therefore are not easy to distinguish. A much better characterization of the
classes is shown in Fig. 4.1b, where different characteristic functions are plotted. Each
band corresponds to a plus minus one standard deviation band around the mean of the
characteristic function amplitude over all available training data for that specific class.
In this representation it is much easier to distinguish the different classes, as can be
seen by comparing the reg and near class (blue and green line) in the characteristic
function space and in the amplitude space, respectively.
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Figure 4.1: Training data examples a) and characteristic functions b) generated from
the training data set (plus/minus one standard deviation around the mean).
Color-coding: reg in blue, near in green, loc in red, noise in yellow. A
histogram over the timespan is appended vertically for each characteristic
function in b). 3s were subtracted from the start and added to the end of
each sample in a) to emphasize the contrast to the noise.

Figure 4.1b also makes clear why it is important to include time dependency in the
model. If time dependency is excluded, the classes can only be distinguished through
their histogram (as appended vertically for each characteristic function). As an example
the half octave band 10 (hob10) may be taken: The reg and near class (blue and
green line) are not easily distinguished in the time independent histogram (Fig. 4.1b).
However they are easily distinguishable in the time dependent characteristic function
itself. For more details on the use of characteristic functions as well as the selection
process, see Ohrnberger (2001) or Beyreuther and Wassermann (2008a).

Figure 4.2 shows a sketch of a HMM for a single earthquake class. The observation
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4 HSMM based earthquake classification system using WFST

is usually a vector containing multiple features, though for visualization purposes we
use a single sample point (o = o) which represents the absolute amplitude. The
HMM segments the earthquake signal in different parts over time i (called states). For
each part an observation probability distribution bi(o) of the characteristic function
(here the absolute amplitude) is estimated. The sequence of the different parts is
controlled by the (state) transition probability (aij), from part (i) to part (j). The
probability of the observation sequence o1,o2,o3,o4,o5... can then be calculated by
taking the product of observation probabilities and state transition probability for each
observation sample, e.g.

b1(o1)a11b1(o2)a12b2(o3)a23b3(o4)a32b2(o5)..., (4.1)

assuming that the state transition sequence is known/given. However, as the transition
sequence is usually not known, the transition sequence which has the maximum proba-
bility is taken. Searching all possible transition sequences is incredibly time consuming
and therefore usually an optimized algorithm (called Viterbi algorithm, see Rabiner,
1989) is used for classification.
In the HMM training procedure, the transition probabilities (aij) and the observation
distributions (bi) are estimated automatically through an expectation-maximization
algorithm. For more details on the theory of HMMs, see Rabiner (1989) and Young
et al. (2002).

1 2 3

ot

b1(ot)

ot

b2(ot)

ot

b3(ot)

a12 a23

a11 a22 a33t1 t2

Figure 4.2: Hidden Markov Model with three different states. The state transition
probabilities are denoted with aij. The observation distribution for each
state is denoted with bi(ot).

4.2.2 The Extension to Hidden semi-Markov Models

The duration probability distribution of a particular HMM state is not included in
the intrinsic HMM design. Nonetheless, according to the definition of HMMs the
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4.2 Theory

probability of staying T time steps in state i can be calculated from the state transition
probabilities (aij) as follows:

aT
ii(1 − aii) = (1 − aii) exp(T log(aii)) = const · exp(−T | log(aii)|); (4.2)

with aii being the self-state transition probability (0 6 aii 6 1), which yields the
negative logarithm in the third part of the equation. The result is an exponentially
decaying function of the duration time T . An exponentially decaying function, however,
is not an adequate representation of the duration distribution of certain states (e.g.,
P-wave and P-coda, S-wave and S-coda etc.) of an earthquake class, as this would
imply that this part (state) has most likely length one or zero (see Fig. 4.3).
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Figure 4.3: Exponential (HMM) versus Gaussian (HSMM) state duration probability
distribution.

An alternative representation is to integrate the state duration probability distributions
explicitly into the HMM. This HMM extension is known as a Hidden semi-Markov
Model (HSMM) (Oura et al., 2006, 2008). In doing so, we are now able to approximate
the duration probabilities through Gaussians. The HSMMs were a breakthrough in
speech synthesis because it is crucial that certain speech parts have the correct duration
since they otherwise sound unnatural (Zen et al., 2004).
Figure 4.4 provides an example of a three state Hidden semi-Markov Model. First a
sample d1 is drawn from the duration probability distribution (Gaussian) of the first
state δ1. Depending on the value of d1, d1 observations o1...od1

are generated with the
corresponding probabilities b1(o1)...b1(od1). Then the second state is entered and the
same procedure is continued for all remaining states. The corresponding probabilities
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δ1 δ2 δ3

b1 b1 b1 b1 b2 b2 b2 b2 b3 b3 b3 b3b1 b3 b3

π1 a12 a22

d1 d1 + d2

5 4 6

Figure 4.4: Hidden semi-Markov Model. The duration probabilities δ1,2,3 are plotted
in the states (lower rectangles). Directly when a state is entered, a sample
is drawn from δ, e.g. five in the part. Consequently five observations are
generated from the observation probability b1 and then the next state is
entered.

are multiplied:

δ1(d1)

d1∏
i1=1

b1(oi1) δ2(d2)

d1+d2∏
i2=d1

b2(oi2) δ3(d3)

d1+d2+d3∏
i3=d1+d2

b3(oi3); (4.3)

with d1 + d2 + d3 = T . The probability of the single HSMM given an observation
sequence o1...oT is the one with the values of d1,d2,d3 which maximize Eq. 4.3. Again
the observation distributions (bi) and the duration probability distribution (δi) are
estimated automatically during HSMM training (for details see Oura et al., 2006).

4.2.3 Weighted Finite-State Transducer decoding

The Viterbi algorithm is standard in HMMs classification (also called decoding). How-
ever, this cannot be applied for HSMMs because its optimized dynamic programming
core relies strictly on the architecture of the HMM state transitions. Viterbi decoding
is optimized and therefore extremely fast. In contrast, Weighted Finite-State Trans-
ducers (WFSTs) unfold the complete HSMM structure, where each unfolded path is
modeled individually at the expense of speed. However, by associating weights such
as probabilities, durations, or penalties to each possible path, the WFSTs provide a
unified framework for representing and refining various models (used by Mohri et al.,
2002, for speech and language processing). WFSTs are the standard HSMM decoder
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4.2 Theory

used in speech recognition (see Oura et al., 2006) and in following we show how to
build up an HSMM decoder with a WFST.

0

5/0

7:loc[1]/2.867

1

7:-/0
7:loc[1]/2.809

2

7:-/0
7:loc[1]/2.759

3

7:-/0 7:loc[1]/2.717

4

7:-/0 7:loc[1]/2.684

Figure 4.5: The Weighted Finite-State Transducer for the first 5 time samples in the
loc model. The lowest path (with 5 arcs) corresponds to the first part in
Fig. 4.4 which is bound to the right by the dashed line labeled d1. While the
nodes only mark the steps in time, the arcs contain the input states, output
labels, and the corresponding weight, which in this case is the negative log
probability of the duration probability.

HSMM state reg 1 reg 2 reg 3 near 1 near 2 near 3 loc 1 loc 2 loc 3 noise 1
WFST input label 1 2 3 4 5 6 7 8 9 10

Table 4.1: The mapping of HSMM states and WFST input labels. Each earthquake
class has three states.

Figure 4.5 shows the first five possible paths for the first state of the loc model. In
total, the number of paths per state in our application ranges between 24-875; however,
for visualization purposes, we show the first five only. The five observations in Fig. 4.4
(first “loc” state) are represented by the lowest path in Fig. 4.5. The other paths
(Fig. 4.4), with 4,3,2 and 1 arcs, would correspond to the drawn values 4,3,2 and 1 of
δ1. The circles in Fig. 4.5 correspond to numbered nodes which the transducer can
pass. All the probabilities are stored in the arcs and described by the corresponding
labels. The annotation “7:-/0” for instance corresponds to the WFST input label 7
(the first of loc, see Tab. 4.1), no output label (“-”) is assigned, and the negative
log probability for this transition is 0 which corresponds to exp(−0) = 100%. The
annotation “7:loc[1]/8.032” assigns the output label “loc[1]” to the path (in principle
any name can serve as a label; we chose the name of the HSMM state as output
label) and a negative log probability of this transition of 8.032 which corresponds to
exp(−8.032) = 0.033%. Therefore, all we need to do to build an earthquake classifier
for the first loc state with a WFST is to link the input label to an HSMM state (Mohri
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et al., 2002) and to assign the negative log probability of the last arcs in the transducer
to the duration probability of all previous arcs, thus setting their probability to 100%.
The probability for staying two samples in state one (the second path from the top in
Fig. 4.5) corresponds to cdf(2)−cdf(1), whereby the cumulative duration distribution
function is denoted as cdf.

The WFSTs allow composition, unification and concatenation of the transducers (for
more details, see Mohri et al., 1997). In order to build up a WFST for the complete
loc earthquake we simply concatenate the transducer for the first, second, and third
loc state into one overall loc earthquake transducer. Figure 4.5 shows the transducer
for the first loc state and Fig. 4.6 represents the concatenated transducer for the whole
loc model.
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Figure 4.6: Concatenated Weighted Finite-State Transducer. The WFST is the result
of concatenating the WFST shown in Fig. 4.5 for the first, second and
third loc state. The labeling of the above figure is described in Fig. 4.5.
The corresponding mapping from HSMM states to WFST input labels is
described in Tab. 4.1. Note that for visualization, only the first 5 paths per
HSMM state are plotted.

The classifier for the reevaluation of the training data is constructed by unifying the
concatenated WFSTs of the earthquake classes and the noise as shown in Fig. 4.7. In
the classification process the negative log-likelihoods are minimized to find the most
likely path. The WFST for the reevaluation of the training data in the next sections
has in total 1016 different possibilities/paths.
The flexibility in constructing the WFST easily allows the introduction of minimum
and maximum length criteria for the earthquake parts. By, for example, deleting the
arcs pointing from nodes (0 → 5) and (1 → 5) in Fig. 4.5, the resulting WFST has
a minimum duration of two samples. In the classification of an earthquake it should
be impossible to directly travel from HSMM state (1 → 2 → 3) and stay during all
the remaining samples (order of 100 or 1000) in the third HSMM state, which then
basically resembles only the third HSMM state. In order to avoid this behavior, and
to increase the speed of the application, we build the WFST with the minimum length
being the value of the 30th percentile and the maximum length being the 70th percentile
of the duration distribution for each state respectively.
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Figure 4.7: Classifier design for the reevaluation of the training data. By concatenating
the different HSMM states, one WFST per earthquake class is constructed
(Fig. 4.6). The separate WFST for each class can then be unified (i.e. put
in parallel) which results in one large WFST shown here. Note again that
for visualization, only the first 5 paths per HSMM state are plotted.

4.3 Application

The HSMM detection and classification system was applied to a one month period
(2007-09) of continuous data from the seismic station RJOB of the Bavarian Earth-
quake Service (http://www.erdbeben-in-bayern.de). The specified data set was chosen
because the target classes loc, near and reg, which served as examples in the theory
section and are represented and differ by epicentral distance. This enables us to easily
decide whether a classification is correct or not, thus allowing a better evaluation of
the advantages and disadvantages of the proposed algorithms. The training data set
consists of 122 loc, 37 near, 115 reg and 176 noise events.

A first performance test is the reevaluation of the training data set. The models are
trained from the training data and then as a second step, the same training data are
then reclassified by using these trained models (allowing only one class per event as
shown in Fig. 4.7). The results are shown in Fig. 4.8. The detection performance of
HMM versus HSMM (Fig. 4.8) is expressed by the rate of false alarms and missed
events. The missed event rate is higher for HSMM, whereas the false alarm rate is
higher for the HMM. A higher false alarm rate is problematic, because during con-
tinuous classification mostly noise is classified (e.g. 370151 noise classifications in the
following continuous period). Thus, even a low percentage of false alarms lead to a high
total number. Nonetheless, the classification performance of both HMM and HSMM
is similar. The reevaluation of the isolated training data set provides an indication of
the performance, since over-training and performance in various noise conditions is not
covered. Therefore we also chose to classify one month of continuous data.

In one month 370151 classifications are made (3600·24·30/7, with 7s window step size).
The continuous data are classified in a sliding window of class dependent length (loc
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HMM HSMM

------> true class type ------> ------> true class type ------>

reg near loc noise reg near loc noise

reg 0.82 0.08 0.02 0.06 reg 0.84 0.08 0.00 0.00

near 0.18 0.86 0.07 0.01 near 0.11 0.86 0.00 0.00

loc 0.00 0.05 0.91 0.00 loc 0.00 0.05 0.92 0.00

noise 0.00 0.00 0.00 0.93 noise 0.04 0.00 0.08 1.00

Quake Trace: 0.86 Quake Trace: 0.88

Missed Event False Alarm

Figure 4.8: Reevaluation of the training data. To the right the true class type is plotted;
to the bottom the recognized one. E.g., for the HMM reg class, 82% of the
data are correctly classified as reg and 18% are confused as near.

14s, reg 157s, near: 47s), with a window step of 7s. The window length was chosen
such that each class fits about twice inside the window. For each window and type,
a [noise, earthquake, noise] and an only [noise] sequence are classified. This allows
a flexible position of the earthquake in the window and calculation of the confidence
measure P(earthquake)/P(noise), with P being the probability.

Figure 4.9 displays the results of the HMM and HSMM classification. The plot DATA
shows three local earthquakes; the plots HSMM and HMM show the results of the
two different models, respectively. The log probabilities of the earthquake models are
plotted as colored bars, and the log probabilities of the corresponding noise model are
plotted as dashed lines in the same color. An earthquake is detected if the probability
for the earthquake is greater than the probability for noise. The corresponding type is
classified by selecting the earthquake class with the highest confidence measure, which
in Fig. 4.9 corresponds to the vertical distance of the associated noise probability to the
center of the earthquake probability (displayed as a bar). Other classifications in that
period are deleted, even if they are longer than the class with the highest confidence
measure. This procedure is known as “the winner takes all” (see e.g. Ohrnberger,
2001). By comparing the results from the HMM and HSMM classification, it is easy to
see that the classes are much better characterized by the HSMM. Through their rather
simple design the HMM even missclassifies the second and third local earthquake. It
is also clear to see that the reg HSMMs have more realistic minimum duration (the
10s duration of the reg HMM for the third local earthquake is impossible) due to the
more flexible model design in the WFST.

This classification procedure is applied to a one month period of continuous data. In
order to avoid a large number of false alarms, minimum confidence thresholds for a
classification are introduced (for details see Beyreuther et al., 2008b), which are chosen
in such a way that the false alarm rate for both HMM and HSMM are similar. The
results are shown in Tab. 4.2.
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Figure 4.9: The top plot shows three local earthquakes. The second and third plot
shows the resulting log probabilities from HMM and HSMM detection and
classification respectively. Colored bars denote the log probability of the
earthquake classes, while the dashed lines denote the corresponding noise
classes for each earthquake class.

The HSMM clearly outperforms the HMM. However, the results of the HMM and
HSMM could be easily improved by using a different parameterization, e.g. more
states. But since the computation time of the WFST decoding would then increase
dramatically, we choose to use a rather simple setup. The reasons for choosing certain
parameters and the parameters itself are discussed in the following.

4.4 Discussion

A key point for the HMM and HSMM design is the refinement to the correct parameter
set. The parameters are the number of Gaussians which compose the observation
probabilities (called Gaussian mixtures), the number of states in general, the model
topology and the possibility of tying variances etc. The motivation for choosing the
parameters and the parameters themselves are explained in the following.

1.) We use left to right models as explained in the theory section due to the causality
of the earthquakes (Fig. 4.1). For noise, which is clearly time independent (Fig. 4.1),
only one state is used and thus no time dependency is assumed. Due to the limited
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4 HSMM based earthquake classification system using WFST

HMM # of reg # of near # of loc # of noise

correct events: 9 (26%) 4 (25%) 56 (67%) 370084
confused events: 5 (14%) 1 (6%) 12 (14%) 67

missed events: 21 (60%) 11 (69%) 15 (18%) –

total: 35 16 83 370151

HSMM # of reg # of near # of loc # of noise

correct events: 23 (66%) 10 (63%) 75 (90%) 370087
confused events: 5 (14%) 2 (13%) 5 (6%) 64

missed events: 7 (20%) 4 (25%) 3 (4%) –

total: 35 16 83 370151

Table 4.2: Results of one month of continuous classification. Confused events are events
which are misclassified to another earthquake class. The confused events for
the noise class correspond to the false alarms. For the comparison, the
post-processing thresholds for both HSMM and HMM are chosen such that
the false alarm rate stays for both algorithms at about two false alarms per
day.

amount of training data, it is statistically likely to over-train the model parameters.
Consequently for a robust estimation of the parameters, only a limited amount of states
and Gaussian mixtures for the observation probability bi(o) can be used. Also, the
high computational costs of the WFST classification limits us to a maximum amount
of six states (0.5 hours CPU time for 1h of data).

2.) Because of the time-dependent characteristics of the earthquakes themselves
(Fig. 4.1), we use more discretizations in time (6 states) for the earthquake models
and only one for the noise model.

3.) For the noise model we choose a higher number of Gaussian mixtures (4 mixtures)
for the observation probability distributions bi(o) such that a large amount of different
noise sources could be matched. For the earthquake models we use a single mixture.

4.) In previous studies day noise and night noise classes were used, which match the
anthropogenic noise during day time and the non-anthropogenic noise during night
time (Ohrnberger, 2001; Beyreuther and Wassermann, 2008a). In this study, however,
we use only one noise class in order to avoid competing day noise and night noise
models through the competitive training of Young et al. (2002); Zen et al. (2009).

5.) The training of Young et al. (2002) and Zen et al. (2009) allows the computation of
full multidimensional covariance matrices for the observation probability. However, in
order to keep the number of free parameters low, the characteristic functions are first
transformed to their principal axes (using principal component analysis), such that
only the diagonal of the covariance matrices need to be used.
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4.5 Conclusions

We also tried other parameter combinations: earthquake states i from three to six,
Gaussian mixtures of bi(o) from one to six, and tied variances for all models. Clearly
a lower number of earthquake states results in a lower number of discretizations in time
and thus a worse classification result. More interestingly, a higher number of Gaussian
mixtures for the observation probability distributions of the earthquake models did
not achieve better results. This may indicate that the characteristic functions of the
earthquakes are well represented by one Gaussian distribution. Also a higher amount
of mixtures for the noise model did not achieve better results; four mixtures seem to
be robust.

4.5 Conclusions

Seismology is a data rich science which allows nearly unlimited access to measures of
ground motion. The migration of data centers’ data acquisition from event based data
snippets to continuous data has increased the amount of available waveforms dramat-
ically. However, the target waveforms (earthquakes) are hard to detect, particularly
with low signal to noise ratios. Advanced detection and classification algorithms are re-
quired, e.g. for automatically acquiring consistent earthquake catalogues for volcanoes,
for class-dependent pre-selection of localization methods, or for excluding explosions
from earthquake catalogues.

In this study we applied Hidden Markov Models, which are double stochastic mod-
els known from speech recognition for classification. We demonstrated the benefit of
including a more realistic time dependence in the model (HSMM). The classification
of one month of raw continuous seismic data (in total 370151 classifications) shows a
classification performance increase up to 40% using HSMM vs. HMM.
However the performance increase has to be balanced with the increase of CPU time
by a factor of 10 (1/2h CPU time for 1h data), thus making it difficult to process large
data archives. For future work either a much more optimized WFST implementation
needs to be used or the HMM models need to be refined in such a way that the natural
duration of the earthquake parts is better represented.

This paper shows the improved performance from including more realistic time de-
pendencies specifically for HMM. However, an increased performance should also be
possible by including the time dependency in the model design of other supervised
learning techniques such as support vector machines (Langer et al., 2009) or artificial
neuronal networks (Ibs-von Seht, 2008) when classifying time series.
Another major impact on the detection and classification performance, especially the
false alarm rate, is easily achieved by combining the results of several stations, similar
to the coincidence sums of common triggers.

In order to compare the results of this study to other methods in earthquake detec-
tion and classification (e.g. artificial neuronal networks, support vector machines, self
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4 HSMM based earthquake classification system using WFST

organizing maps or tree based classifiers) benchmark data sets are required. Unfortu-
nately these are currently not available for the field of seismology and, concluding the
presented study, we think there is a strong demand for them.
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Abstract

In the case that only one or two seismic stations are available, common triggers often
show too high false alarm rates and thus are hardly applicable. As an alternative, we
design a single station probabilistic earthquake detector with performance rates similar
to common triggers with additional coincidence over several stations. The probabilistic
architecture is adapted from double stochastic models called Hidden Markov Models
which are widely used in speech recognition. However, many pitfalls need to be cir-
cumvented in order to apply speech recognition technology to earthquake detection.
Throughout the paper we concentrate on the adaption steps and show many examples.
The Hidden Markov Models are derived from simple Gaussian classifiers. We apply the
methodology to the detection of anthropogenic induced earthquakes and demonstrate
for a 3.9 months continuous seismic period that the single station probabilistic earth-
quake detector achieves similar detection rates as a common trigger in combination
with coincidence sums over three stations.

5.1 Introduction

For detecting earthquakes, triggers are the common method of choice (Withers et al.,
1998). Especially when combining their output from multiple stations, the detection
rates are high and the false alarm rates low. However, if there are only one or two
stations are available, the false alarm rate increases rapidly and, in the end, the seis-
mologist usually has to interactively re-analyse the continuous data.

In this study we design a probabilistic earthquake detector which shows good perfor-
mance when applied to a single station and thus is extremely valuable in scenarios
where only one or two stations are active. The probabilistic architecture has been
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adopted from speech recognition, the corresponding double stochastic model is known
as Hidden Markov Model (HMM). In geoscience, HMMs are mainly known from the
field of volcano seismology, where they show good performance in classifying seismic
data of volcanic origin (Ohrnberger, 2001; Beyreuther et al., 2008b; Ibáñez et al.,
2009). To demonstrate their potential for seismology, Fig. 5.1 shows 10h of seismic
data recorded at Mt. Merapi including the color coded results of the HMM classifica-
tion. Fig. 5.1 emphasizes the large potential of the HMMs: Even with a high number

Figure 5.1: Classification results for 10h continuous recordings at Mt. Merapi. Color
codes correspond to Hybrids in cyan, PyroclasticDensityFlows in green,
Rockfalls in blue, MultiPhase events in red and VolcanoTectonic in yellow.

of different signals and signal amplitudes, HMMs are able to distinguish the target
classes from each other. This allows the question whether they could be applied to
completely different scenarios (more details on the Mt. Merapi data set see appendix
5.7). Should not the data from a station with high noise level look similar? The noise
may resemble the blue and green events and the target waveform the red or yellow
(Fig. 5.1).
In this paper we focus on seismic monitoring data from deep geothermal power-plants.
Usually the power-plants are located near urban areas where their operating company
can sell the power and more important heat and where we experience the correspond-
ing high level of anthropogenic noise. Consequently the signal to noise ratio is often
low and the small induced earthquakes, which are important for risk assessment, are
not easy to detect. Using a short time average / long time average trigger (STA/LTA),
a band-limited pre-filtering, in combination with coincidence sums over at least three
stations achieves reasonable detection rates. Nevertheless, for monitoring induced seis-
micity often just a few stations are available and some of them might be inoperational
due to technical problems. As a consequence the number of false alarms will be high,
even if coincidence of triggers are tested. For these cases, we designed an earthquake
detector based on Hidden Markov Models, whose performance rate is similar to the
STA/LTA with at least three stations for coincidence sums.
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5.2 From Gaussian Classifiers to Hidden Markov Models

In this paper we try to give an informal and quite natural introduction to HMMs. In
the rest of the paper we concentrate on the system refinement. The procedures, how to
adjust the HMM classification to a probabilistic earthquake detector, are explained in
a cookbook like style with many demonstrative examples. The proposed probabilistic
detector is applied to continuous seismic monitoring data of a geothermal power-plant
and the results are compared to those of a recursive STA/LTA with coincidence sums.

5.2 From Gaussian Classifiers to Hidden Markov
Models

In this section we provide an informal HMM background for the application and the
practically more important issue of system refinement, during which the speech recog-
nition models are actually adapted for seismology. In order to build a detector we
simply recast the detection problem into a classification problem with two classes,
noise for noise and induced for induced seismicity.

For the classification, the seismic signal is not represented by the waveform itself but
by a set of characteristic functions, which better discriminate the different classes
(for more details on features and their selection process, see the studies on discrete
Hidden Markov Models Ohrnberger, 2001; Beyreuther and Wassermann, 2008a). These
characteristic functions are transformed to their principal axis and called features in
the following. The used features are shown in Fig. 5.2. Each event in the training

hob1 (0.47 - 0.78Hz); hob2 (0.70 - 1.2Hz); hob3 (1.1 - 1.8Hz); hob4 (1.6 - 2.6Hz); hob5 (2.4 -
4.0Hz); hob6 (3.6 - 5.9Hz); hob7 (5.3 - 8.9Hz); hob8 (8.0 - 13Hz); hob9 (12 - 20Hz); hob10 (18 -
30Hz); normalized envelope E; instantaneous frequency Z; instantaneous frequency N;

centroid time E; centroid time N;

Table 5.1: A list of the used characteristic functions, separated by semicolons. hob
corresponds to halve octave band, the frequency range is hereby included
in brackets. The characteristic functions are transformed to their principal
axis, the so called features, which are plotted in Fig. 5.2.

data set corresponds to one line. Due to the transparency of the lines a crossing of
multiple lines will result in a more intense color, which allows us to actually see the
trend and the variability of the features. The extreme values are visible too, which
would be omitted when solely plotting the mean and the variance or the median and
the quantiles of the features, respectively.

We focus first on the feature labeled zero (top left in Fig. 5.2). By using all noise
(gray) feature values (over time), we estimate their probability distribution b. In
order to build up a classifier, we also need to estimate the probability distribution
b for the remaining classes (here just the induced class in red is missing). In order
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Figure 5.2: The different features used for optimized HMM detection. Each line corre-
sponds to one event in the training data set, the induced earthquake events
are shown in red, the noise events in gray. The features are the principal
axis of the characteristic functions given in Tab. 5.1 (the first 14 are shown
here). The error-bars correspond to the trained models/Gaussians (see text
for details).

to classify an unknown value o, we choose that class, whose distribution b has the
highest probability for the unknown value o (for visualization see Fig. 5.3). When
classifying multiple values over time t, we multiply the probabilities of every individual
value b(o1)b(o2)b(o3)...b(ot) and again the most probable class, i.e. the one with the
highest product is chosen. However, a single feature might not be enough to distinguish
the classes. Therefore the procedure is generalized and applied to all other features,
resulting in a 15 dimensional distribution b and feature vector o. Obviously, the
described technique works well for stationary signals. So lets secondly focus on the
feature labeled 10 in Fig. 5.2 and examine the induced earthquake class (red lines).
The events are clearly time dependent, especially the values between 1s and 2s change
significantly in time. By estimating only a single distribution b for all values o in
time, one actually blurs all the time dependent characteristics. Similar problems arise
in spectral density estimation; the common approach to avoid this effect is a time-
frequency representation (e.g., short term Fourier transform). An comparable idea is
used here: Separate distributions bi are estimated for individual earthquake segments
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5.3 System Refinement

i. The different segments are then connected with transition probabilities aij (from
segment i to segment j). The combination of all parameters, i.e. all Gaussians bi and
transition probabilities aij, is called HMM.

In praxis, the segmentation, i.e. the estimation of the transition probabilities of the
earthquake is done automatically by an expectation maximisation algorithm during
HMM training. For each class only the segment sequence with the highest probability
is taken into account during the actual classification. The segments are called states in
the following and the transition probabilities are named state transition probabilities.
The distribution b in general might be composed out of multiple Gaussians, which are
called Gaussian mixtures.

Fig. 5.2 also shows the estimated probability distributions of bi after HMM training as
error-bars. The center of the error-bar represents the mean, the total hight corresponds
to twice the standard deviation (only one mixture is used). The horizontal distance
between multiple error-bar corresponds to the mean duration of a state derived from
the self transition probabilities aii. For a more formal and probabilistic description of
HMMs, see Rabiner (1989); Young et al. (2002).

5.3 System Refinement

In speech recognition the training corpus/databases is large (160000 telephone utter-
ances in Qing et al., 2000), which allows a robust estimate of even a large number of
free HMM parameters. Conversely, in earthquake classification only a low number of
training events (Tab. 5.2) is available and statistically an over-training of the HMM
parameters is likely. In order to nevertheless achieve robust results, the degrees of

Class #Events #DataPoints median(DataP./event)

loc 21 1009 48.0
noise 90 4180 45.0

Table 5.2: The table shows the number of events for training, their total amount of
data-points/time samples and the median amount of data-points per event.

freedom of the HMM parameters (aij,bi; ∀i, j) is limited. It is crucial to refine the
model parameters in such a way, that the HMM best represents the earthquake/event.
Therefore a number of system refinement steps is necessary, which are explained in the
following.

5.3.1 Left-Right Model Topology

In their general definition HMMs allow transitions from any state to another. For
instance in Fig. 5.2, a transition from the last error-bar back to the first error-bar is

65



5 Design of a Probabilistic Earthquake Detector

possible. However, a “beginning” segment (state) will never follow the “coda” segment
(state) of the same earthquake and consequently the model topology is restricted to
self transitions and transitions to the next state. The corresponding model topology
is called “left-right”.

5.3.2 Grand Variance Models

The computation of a robust variance is the most difficult part in the model estima-
tion. Especially a low amount of training samples easily leads to an over-trained (too
small variance) and thus useless model. The reason is that the training data set often
does not represent all possible variations of the events in reality and so only certain
variations are represented by the model.
Figure. 5.3a illustrates the problem. In this figure the dominant frequency content of
the events is used as an example. The light gray points correspond to noise events,
the dark gray points to induced events, respectively. For both classes, a Gaussian is
estimated with mean 5Hz for the noise and 3Hz for the induced class. The most
probable distribution for the unknown point at 1.5Hz (denoted as a cross) is the dis-
tribution noise with the mean at 5Hz, even though the point is much closer to the
mean/center of the induced distribution at 3Hz. This is good if the variance of the
induced distribution is correct which, however, requires a very high amount of training
data. But as soon as the induced distribution is over-trained, which means that the
estimated variance is smaller than it actually is, the point (cross) is misclassified as
noise. This effect results from the normalization of the Gaussians to the area of one.
Therefore a smaller variance will yield a higher probability around the mean but a
lower probability at the sides of the distribution (Fig. 5.3a).
One can avoid that behaviour through grand variance models. By tying the model
variances together (Fig. 5.3b) the dark points corresponding to the induced class are
certainly not described as well by the dark distribution in Fig. 5.3a. Yet, the unknown
point (cross) is classified as the induced class because it has the closest Gaussian center
(for details on grand variance models, see Young et al., 2002, p. 152).

5.3.3 Number of States

How to choose the optimal number of states for a HMM is always under debate. A
higher number of states allows a much better time discretization in the feature space,
thus allowing a better description of the event. But this also has the effect that the
system is easily over-trained (due to the high degree of freedom) and achieves poor
results on unknown data. Our twist, how to allow a high number of states and at the
same time keep the degree of freedom low, is introduced next.
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Figure 5.3: a) Two Gaussians estimated from the dark and light gray points, the centers
of the Gaussians are marked as black triangles. Even though the unknown
point (cross) is closer to the center of the dark gray distribution, the most
probable distribution is the light gray one. This can be circumvented as
shown on the right. b) The two Gaussians are estimated with tied variances.
The best distribution for the unknown point (cross) changes to the closest
distribution center, which is now the dark gray one.

5.3.4 Clustering

In order to further restrict the number of free parameters without loosing too much
time discretization, similar Gaussians (with respect to their euclidean distance) are
tied together with a clustering approach. In the training tied parameters behave like a
single one and so effectively reduce the number of free parameters. So even if there is
a high number of states, only the number of states after clustering need to be trained.
The key parameter for clustering is the target number of states one wishes to have
after clustering, which can be estimated in one of the following ways.

The most intuitive possibility is to count the minimum number of segments one would
use to describe the earthquake in the feature space (Fig. 5.2) and use this as the
target number of Gaussians. The second possibility is to plot the cluster threshold
distance versus the number of states (Fig. 5.4a) and to select the number of clusters
with the scree test. A low value of the cluster threshold distance means that only those
Gaussians are tied together, whose distance between their centers is less or equal the
given low value of the cluster distance. Consequently a low cluster threshold will result
in a high number of Gaussians. In our case we want to tie similar Gaussians while
keeping the prominent ones. We may select 15 cluster Ids.
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Figure 5.4: a) Cluster threshold distance versus the number of states. b) Cluster Id
versus total number of states: circles/states with the same Cluster Id are
tied together. Light gray points correspond to states which have a grand
variance, for the dark gray points the variances are not tied.

One important side-effect of tied states is that it provides the possibility to introduce
a minimum duration for a certain state. Fig. 5.4b shows for instance that the first
state has a minimum length of two time samples. Of course also longer durations
are allowed through the possible transition to the same earthquake segment (state).
However, the actual problem becomes obvious in this example: Consider a HMM
which segments the earthquake in three states and a 20 time-samples long feature
vector to classify. What we actually see in praxis is that in the classification this state
sequence is taken: (1 → 2 → 3 → 3 → 3 → ... → 3). So the 20 time-sample long
signal is mostly represented by the third state (the state transition probabilities aij

are of minor importance in the presence of the probabilities of the multidimensional
distribution bi). In order to avoid the collapse to the third model state, a minimum
duration can be included which inserts new states and ties them to the original one.
So for a minimum duration of 5 time-samples per state, the number of states needs to
be increased to 5 · 3 = 15 and 5 consecutive states needs to be tied to together. The
clustering and the resulting tied states (Fig. 5.4) provided a data driven way to set the
minimum length of each state respectively.

5.3.5 Partly untying the Grand Variance

A better discrimination than through the grand variance models can be achieved by
untying the variances for those time sections of the earthquake, which are not prone to
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5.3 System Refinement

over-training. In the feature plot Fig. 5.2 the variance is quite high at the beginning
and the end of the earthquake and low around 1-2s. This observation is exploited by
untying the variances of the states corresponding to the 1-2s time section. In Fig. 5.4b,
the states with a global variance are indicated in light gray, the points in dark gray
correspond to states whose variances are not tied.

5.3.6 Cutting the Training Data to same Length

In speech recognition the end of a certain word is quite clearly defined. In seismology
the variability of the event-length for the same earthquake class is high and strongly
depends on the coda. The most obvious strategy is to select the length of the event
based on the signal to noise ratio. However, this strategy is problematic as we demon-
strate with the following example (Fig. 5.5): The median length of the induced class
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Figure 5.5: Two events whose length is determined such that all values are above signal
to noise ratio two. Note that the upper event is twice as long as the lower
one. The vertical gray lines indicate a segmentation of the events in three
parts.

is about 2.5s, but there are high SNR samples in the training data set of up to 5s
— which contains more coda. Assume a 3 state model with equipartition in time,
with the last state corresponding to the coda. For the 2.5s event (lower plot) state
1, 2, 3 corresponds to approximately 0-0.8s, 0.8-1.7s, 1.7-2.5s respectively. For the 5s
earthquake there are only 1.7s training data for the first two states. For the third state
there are 3.3s, the same amount as 2 earthquakes would deliver for the first two states.
The expectation maximisation algorithm will over pronounce the coda in the model.
Consequently restricting the events to a maximum length is a crucial and unintuitive
point in the parameter estimation.
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5 Design of a Probabilistic Earthquake Detector

5.3.7 Noise

The time dependency is relevant only for the causal/time dependent earthquake events.
This time dependence is not needed in the case of the noise model, since noise most
commonly does not have a causal or time dependent structure which could be described
by different states. That is why we use a single state HMM (also called General Mixture
Model) for the noise. The exact parametrization of the noise and the induced class is
given in the following section where the probabilistic earthquake detector is applied.

5.4 Application

In this section, the probabilistic earthquake detector is applied to anthropogenic in-
duced seismicity. We think that this application is very promising for evaluating the
performance for the following reasons:

1.) For monitoring geothermal power-plants usually just few stations are used. Typi-
cally there are time intervals where some stations are inactive due to technical difficul-
ties, resulting in just a few stations that are available for detection and classification.
For the detection normally a STA/LTA in combination with coincidence sums might
be the method of choice. However, in cases where there are e.g. only two stations avail-
able, the coincidence sums will not be able to remove noise triggers completely. The
probabilistic earthquake detector, on the other hand, operates on a single station and
allows detection rates similar to classic methods which combine multiple stations.

2.) For an earthquake detection and classification system, the false alarm rate is a
crucial factor. In one month there are approximately half a million noise classification
versus just a few earthquakes. So a realistic noise environment with all sorts of noise
sources is needed for a robust performance measure, especially noise events with a
similar duration as earthquakes. This is given in particular near geothermal power-
plants, which are usually located close to urban areas with the typical low signal to
noise ratio and all kinds of different noise sources (e.g. trucks, pumps, trees).

The two classes, induced earthquakes induced and noise noise served as examples in
the theory section where their features were shown (Fig. 5.2). The trained HMMs for
both classes are shown as error-bars in the same figure. In the following we give a short
description of the parameter constellation, which we used.
Tab. 5.2 showed the number of training events and the corresponding amount of train-
ing samples. In order to better describe the time dependency, an initial induced earth-
quake model with 22 states is used (approximately half of the median number of data
points/time samples per training event see Tab. 5.2) which are then clustered and tied
to 15 independent Gaussians. As a consequence 15 means and variances need to be
estimated from 1009 samples, which result in just about 32 samples per parameter, or
1.5 parameters per event in the training data set. For robust classification we rely on
the grand variance models, where the variance of the earthquake data is high (light
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5.4 Application

# of Events Median. Conf. Conf.>1000

missed earthquakes 3 4
correct earthquakes 18 32046.3 17

18/21 ≈ 86% 17/21 ≈ 81%

correct noise 2270364 2270390
false alarms 32 15.0 8

averaged over 3.9 month 0.3 per day 0.07 per day

Table 5.3: Classification results for a four month period starting on 1. Januar 2010

gray points in Fig. 5.4, see also Fig. 5.2) and we only untie the variance in the middle
part of 1-2s where the waveforms are really sharp and well defined (dark gray points
Fig. 5.4, see also Fig. 5.2).
For the noise model, we use a single state HMM with only one Gaussian mixture.
We tried a maximum of 10 Gaussian mixtures but overall the results did not change
dramatically.

For the performance measure, a 3.9 month period was selected. During this period two
other stations were also active which allowed us to verify the classification results by
locating the events or, if that was impossible, by inspecting the waveforms of different
stations.
For the classification, a 9s sliding window is used with a step of 4.5s. In total 2270400
classifications are made, the results of which are shown in Tab. 5.3. For each window
a [noise, induced, noise] and a only [noise] sequence is classified, which allows to
calculate the confidence level P(induced)/P(noise) (with P being the probability).
Similar to association rules (Hastie et al., 2009, p. 492ff) or the trigger thresholds we
set the minimum confidence level and the minimum log probability of a detection to 3
and -8 respectively. Tab. 5.3 clearly suggests that a further restriction of the confidence
interval will result in a better classification result. By considering only classifications
whose confidence level is above 1000, the false alarm rate per day could be reduced
significantly from 0.3 to 0.07 false alarms per day.

In order to get a reference for these performance rates, a recursive STA/LTA in combi-
nation with coincidence sums was applied to the same time period. Two other stations
were deployed, one was not available for the first 26 days. The STA/LTA window
length was set to 0.5s and to 10s for the STA and LTA window respectively and cus-
tom thresholds for the trigger on and off values were set for each station individually.
In order to achieve reasonable detection rates (Tab. 5.4) it was necessary to pre-filter
the waveforms to 10-20Hz and build a coincidence of all available station (2 for the
first 26 days and 3 for the remainder). Especially when there are only two stations
available, the false alarm rate increases dramatically, and all the false alarms need to
be laborious verified by interactive analysis.
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5 Design of a Probabilistic Earthquake Detector

2 stations 3 stations

missed earthquakes 1 0
correct earthquakes 9 11

false alarms 434 28
false alarms per day 434/26 = 16.7 28/(3 · 30) = 0.31

Table 5.4: Results of a bandlimited STA/LTA for same time span as Tab. 5.3. During
the first 26 days, only 2 stations were active, that is for building coincidence
sums 2 respectively 3 stations were used.

5.5 Conclusions

In this study we show the design of a probabilistic earthquake detector which operates
on a single station. Despite of this limitation, the applied method has only slightly lower
performance than a pre-filtered STA/LTA trigger with coincidence sums of 3 stations.
We applied the detector to induced earthquakes from geothermal power-plants for a
3.9 months period. One of the reference stations was inactive for the first 26 days
and immediately the false alarm rate of the STA/LTA trigger with only two stations
for the coincidence sums rises dramatically. The STA/LTA performs already bad with
two stations available, however, with only one station it is even impossible to extract
the events because of nearly continuous triggering. For these cases the probabilistic
earthquake detector provides a promising and valuable alternative.

The architecture of the probabilistic earthquake detector is based on HMM, a technol-
ogy borrowed from speech recognition. Even though earthquake signals look similar
to speech signals, several pitfalls need to be circumvented in order to apply the HMM
in this field. The main difference is the small waveform training databases in seismol-
ogy and the strongly varying durations of certain earthquake segments (e.g. coda).
Throughout the paper we concentrated on explaining the adaption steps and showed
many examples, such that the taken steps could be used as basis for building other
earthquake detectors or classifiers (appendix 5.7 shows details of the application of the
above described system to seismic data of Mt. Merapi).
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5.7 Appendix: Application to Seismic Data of Mt.
Merapi

For the sake of completeness we want to give some more details of the classification
system shown in Fig. 5.1. There are six different classes Hybrids (HY), PyroclasticDen-
sityFlows (PDF), Rockfall (GU), MultiPhase (MP) and VolcanoTectonic (VT) events.
The size of the training data set is given in Tab. 5.5, the characteristic functions that
were used are given in Tab. 5.6 (for more details on the features and their selection in
case of Mt. Merapi, see Ohrnberger, 2001). Similar to the system refinement section
and the main application, we construct a classifier. We use a class dependent window
length: HY 51s, PDF 383s, GU 146s, MP 52s, UN 37s, VT 90s. The window step is 90s.
The HMM parameter constellation is given in Tab. 5.7 and in the following. Four

Class Name HY PDF GU MP VT noise

# Events 32 19 73 30 30 65
# DataPoints 4364 15533 35141 3478 4988 31420
median(DataPoints/event) 137 872 479 117 167 318

Table 5.5: The table shows the number of events for training, their total amount of
data-points/time samples and the median amount of data-points per event.

hob1 (0.35-0.59Hz); hob2 (0.52-0.88Hz); hob3 (0.80-1.3Hz); hob4 (1.2-2.0Hz); hob5 (1.8-3.0Hz);
hob6 (2.7-4.4Hz); hob7 (4.0-6.7Hz); hob8 (6.0-10Hz); normalized envelope Z; instantaneous

bandwidth Z; centroid time Z;

Table 5.6: A list of the used characteristic functions, separated by semicolons. hob
corresponds to halve octave band, the frequency range is hereby included
in brackets. The characteristic functions are transformed to their principal
axis, which are then called features and used as input for the HMM training.

Class Name HY PDF GU MP VT

# States 52 325 190 44 64
# Clusters 13 8 10 17 12

Table 5.7: Cluster design for the Mt. Merapi data set. The total number of states
per class are given in the first row. The second row the numbers of clus-
ters are given, which correspond to the number of independent states after
clustering.

Gaussian mixtures were used for the noise distribution b, and the variances for PDF,
GU and noise were tied together (grand variance).
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5 Design of a Probabilistic Earthquake Detector

The system was evaluated on 3.6 months of continuous seismic data. The outcome
is presented in Fig. 5.6 which shows the results of the HMM classification versus the
interactive event list of the local volcanologists. Note that especially the GU events

Figure 5.6: Continuous classification results for seismic events from Mt. Merapi. The
light red bars correspond to the classification results of the HMM classifica-
tion, the blue bars correspond to the classifications of the local volcanolo-
gists. The period starts on 1998-01-01, the station was inoperable between
1998-03-14 and 1998-06-10. The green triangle marks the onset of an erup-
tion. The bars are transparent, thus a blue bar overlaid with a light red
bar results in a purple bar.

match well the event rates classified by the local volcanologists. The MP events per-
form reasonable in general, and near the onset of the eruption especially well (green
triangle in Fig. 5.6). However, there are still major differences in the VT and PDF rates,
which are partly due to the model design on the one hand and might be due to slight
inconsistencies in the classification behaviour of the local volcanologists in the other
hand. Note also, that the HMMs are operating on a single channel, whereas the vol-
canologists compare the waveforms of several stations in order to set a certain class
type. All training data are from time periods after July first 1998. Another promising
observation is that even though that the waveforms might change slightly in time the
classifications results from January till mid of March still match the event rates of the
volcanologists well.
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6 Conclusion and Outlook

The main goal of this thesis was to develop a prototype automatic detection and clas-
sification system for earthquakes based on up-to-date speech recognition algorithms
which are known as Hidden Markov Models (HMMs). Besides the necessary adapta-
tions concerning pure data-formats and characteristic functions, the research of this
thesis mostly focused on the HMM design in regard to the inherent characteristics of
earthquakes. Especially the variation of earthquake durations, the limited amount of
training data and the extremely long periods of noise play an important role. The
development of the prototype system was devided in four major parts. As a first
step a discrete HMM (DHMM) prototype system was developed, followed by a more
general HMM implementation. A flexible duration was realized in a compound proto-
type consisting of Hidden semi-Markov Models (HSMMs) and Weighted Finite-State
Transducers (WFSTs) whose design was finally approximated through a much faster
performing HMM approach. The results of these four prototypes are discussed in the
following.

The DHMM prototype (Beyreuther and Wassermann, 2008a) was applied to classify
three different types of earthquakes in one month of continuous seismic data (10368000
classifications, 0.25s window step size) at Mt. Hochstaufen (Germany). The results
of three stations were combined and compared to a standard recursive STA/LTA de-
tection system approach. When comparing only the number of detected events, which
underestimates the performance of the DHMM method as it not only detects but also
classifies, the recursive STA/LTA detection performs slightly better with a 90% detec-
tion rate compared to the DHMM detection and classification with 82% respectively.
However, when comparing the DHMM to other classification systems (e.g. support
vector machines or artificial neural networks), where the erroneous detection rate of
the pre-detector needs to be included, the DHMM detection and classification certainly
shows comparable results.

The more general HMM prototype (Beyreuther et al., 2008b) was applied in order to
automatically detect as well as discriminate earthquakes of volcanic and non-volcanic
origin at the Teide-Pico Viejo volcanic complex on Tenerife (Azores). For evaluation
purpose one month of continuous seismic data was processed (324000 classifications,
8s window step size). The HMM classification results of a single seismic station nearly
match the number of earthquakes published in the IGN earthquake catalogue. When
using only earthquakes which were marked by the proposed HMM as high confident
earthquakes, 86% of the earthquakes of the catalogue with a signal to noise ratio greater
than two could be detected. Especially the low false alarm rate with 0.1 false alarms
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per day is remarkable which would allow e.g. to automatically deduce earthquake
statistics or early warning.

The combined HSMM and WFST prototype (Beyreuther and Wassermann, 2011a) was
applied to another month of continuous seismic data (370285 classifications, 7s window
step size) at Mt. Hochstaufen, where the length of the earthquake classes of interest
varies from 2s - 120s. In order to emphasize the performance gain of the HSMM, the
same period was reclassified with the previously proposed HMM. The application of
the more general model and classifier design of the HSMM/WFST prototype allowed a
40% better classification rate than the previously introduced HMM method. However,
the CPU time also increased significantly to finally 0.5h of CPU time for 1.0h of data.

The HMM approximation of the combined HSMM and WFST prototype (Beyreuther
et al., 2011b) was applied to detect earthquakes induced by geothermal power-plants in
3.9 month of continuous seismic data (2270400 classifications, 4.5s window step size).
When using a single station, the applied method shows only slightly lower performance
in comparision to a pre-filtered STA/LTA trigger with coincidence sums of 3 stations.
For the latter, however, one of the reference stations was inactive for the first 26 days
and immediately the false alarm rate of the STA/LTA trigger with only two stations
active rose above the false alarm rate of the HMM.
As a proof of concept the same HMM parameter design was applied to classify 3.6
month continuous volcano seimic data (103680 classifications, 90s window step size)
from Mt. Merapi (Indonesia). In total six different types of volcano seismic events
were classified and in order to evaluate the results, the event rates were compared to
the interactive classifications made by local volcanologists. While some of the earth-
quake types perform especially well, others show still considerable differences. These
differences are most likely caused by the model design and/or they might be due to
slight inconsistencies in the classification behaviour of the local volcanologists.

In summary, the main objective of this thesis was the improvement of the adaption
of HMM design and algorithms to earthquake data. The different HMM prototypes
were successfully applied to various continuous seismic data sets. In total 10.5 month
of continuous seismic data was automatically detected, classified and evaluated. This
corresponds to approximately 13 million classifications. The overall performance
clearly indicates that the automatic HMM based detection and classification is
applicable in seismology as it shows at least similar results as alternative methods in
various applications. Especially when there are only a few stations available, when
the signal to noise ratio is low or when the classification of many different event types
is needed, the automatic HMM based detection and classification outperforms the
mentioned alternative methods.

Future work needs to focus on the combination of different stations, which should
improve the results in a comparable manner as coincidence sums or binder modules
do for trigger algorithms. The differences in the onset times, the probabilities and
confidence measures for each earthquake class and the event length could be used as
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input for support vector machines or tree based classifiers, which then decide whether
an event occurred or not. However, even simple coincidence sums could already improve
the results significantly.
Also applications at other volcanoes or seismic active areas are important in order to
establish the HMM based detection and classification as state of the art automatic
earthquake detection and classification system. Especially the new insights and the
distinctiveness of other datasets will help to further develop the algorithms and the
most favorable HMM design.

The design of the extensive framework code is general and parts of it have been con-
stantly released to the ObsPy toolbox (Beyreuther et al., 2010). Nevertheless, much
expert and theoretical knowledge is still necessary in order to apply the HMM models
to a new area / volcano / dataset. Determining the best HMM design automatically
will allow non speech recognition experts to apply the system, too. Especially a gen-
erally applicable set of characteristic functions would be helpful.
Also the model design still holds room for improvements. Discriminate training (e.g.
the HMMIRest program of HTK) of the HMMs will probably improve the results even
further and the introduction of pruning thresholds in the classification algorithm will
allow even faster processing times. The HSMM and WFST approach can be fur-
ther developed, too. The flexibility of the WFSTs allows to easily constrain, to cus-
tomize and to adapt the decoding process to the specialities of seismology. Using
faster WFST decoders like e.g. juicer (http://juicer.amiproject.org/juicer)
or openfst (http://www.openfst.org) could make this approach much more attrac-
tive.

In order to compare the results of this thesis to other methods in earthquake detection
and classification (e.g. artificial neuronal networks, support vector machines, self orga-
nizing maps or tree based classifiers) benchmark data sets are required. Unfortunately
these are currently not available for the field of seismology and, concluding this thesis,
there is a strong demand for them.
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Ibáñez, J. M., Beńıtez, C., Gutiérrez, L. A., Cortés, G., Garćıa-Yeguas, A., Alguacil,
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A.1 Introduction

The wide variety of computer platforms, file formats and methods to access data in
Seismology often requires considerable effort in preprocessing seismic data. Although
preprocessing work flows are mostly very similar, hardly any software standards exist
to accomplish this task. The objective of ObsPy is to provide a Python toolbox for
seismology that simplifies the usage of Python programming for seismologists. It is in
that conceptually similar to SEATREE (Milner and Thorsten, 2009) or the exploration
seismic software project MADAGASCAR (http://www.reproducibility.org).
In ObsPy the following essential seismological processing routines are imple-
mented and ready to use: reading and writing data only SEED/MiniSEED and
Dataless SEED http://www.iris.edu/manuals/SEEDManual_V2.4.pdf, XML-SEED
(Tsuboi et al., 2004), GSE2 http://www.seismo.ethz.ch/autodrm/downloads/

provisional_GSE2.1.pdf and SAC (http://www.iris.edu/manuals/sac/manual.
html), as well as filtering, instrument simulation, triggering and plotting. There is
also support to retrieve data from ArcLink (a distributed data request protocol for
accessing archived waveform data, see Hanka and Kind, 1994) or a SeisHub database
(Barsch, 2009). Just recently modules were added to read SEISAN data files (Havskov
and Ottemöller, 1999) and to retrieve data with the IRIS/FISSURES Data Handling
Interface (DHI) protocol (Malone, 1997).

Python gives the user all the features of a full-fledged programming language in-
cluding a large collection of scientific open-source modules. ObsPy extends Python
by providing direct access to the actual time series, allowing powerful numeri-
cal array-programming modules like NumPy (http://numpy.scipy.org) or SciPy
(http://scipy.org) to be used and results to be visualized using modules such
as matplotlib (2D) (Hunter, 2007), or MayaVi (3D) (http://code.enthought.com/
projects/mayavi/). This is an advantage over the most commonly used seismo-
logical analysis packages SAC, SEISAN, SeismicHandler (Stammler, 1993) or PITSA
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(Scherbaum and Johnson, 1993) which do not provide methods for general numerical
array manipulation.
Because Python and its previously mentioned modules are open-source there are no
restrictions due to licensing. This is a clear advantage over the proprietary prod-
uct MATLAB (http://www.mathworks.com) in combination with MatSeis (Creager,
1997) or CORAL (Harris and Young, 1997), where the number of concurrent processes
is limited by a costly and restricting license policy.
Additionally, Python is known for its intuitive syntax, it is platform independent and
has a rapidly growing popularity not only in the seismological community (Olsen and
Ely, 2009). Python is used in various fields because of its comprehensive standard
library providing tools for all kinds of tasks (e.g. complete web servers can be written
in a few lines with standard modules). It has excellent features for wrapping external
shared C or FORTRAN libraries, which are used within ObsPy to access libraries for
manipulating MiniSEED (libmseed; http://www.iris.edu/pub/programs) and GSE2
(gse util; http://www.orfeus-eu.org/Software/softwarelib.html#gse) volumes.
Similarly, seismologists may wrap their own C or FORTRAN code and thus are able
to quickly develop powerful and efficient software.
In the next section we will give a brief introduction on the capabilities of ObsPy by
demonstrating the data conversion of SAC files to MiniSEED volumes, removing the
instrument response, applying a low-pass filter and plotting the resulting trace. We
then give an overview how to access an external C or FORTRAN library from within
Python.

A.2 Reading and Writing

ObsPy provides unified access to read seismograms formated as GSE2, MiniSEED, SAC
or SEISAN. For example, entering the following code in a Python shell/interpreter

>>> from obspy.core import read
>>> st = read("my_file")

automatically detects the file format and loads the data into a stream object which
consists of multiple trace objects itself. In MiniSEED as well as GSE2 multiple data
records can be stored into one single file. These separate data records are each read
into one trace object.
The header attributes of the first trace (tr = st[0]) can be addressed by the tr.stats

object (e.g. tr.stats.sampling\_rate). The attribute tr.data contains the data as a
numpy.ndarray object (array-programming). Thus the data can be further processed
by standard Python, NumPy, SciPy, matplotlib or ObsPy routines, e.g. by applying
NumPy’s fast fourier transform for real valued data:

>>> import numpy
>>> print numpy.fft.rfft(tr.data - tr.data.mean())

88

http://www.mathworks.com
http://www.iris.edu/pub/programs
http://www.orfeus-eu.org/Software/softwarelib.html#gse
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For a conversion from one file format to another the write method of the stream object
can be used:

>>> from obspy.core import read
>>> st = read("my_file.sac")
>>> st.write("my_file.mseed",format="MSEED")

By using the concept of streams and traces we will introduce more functions of ObsPy
through the following undergraduate students homework example.

A.3 An Undergraduate-Level Exercise

The task is to extract 30s data via ArcLink from WebDC (http://webdc.eu)
(Fig. A.1, #1), deconvolve the instrument response and simulate an instrument with
1Hz corner frequency (Fig. A.1, #2). The corrected trace should be low-passed at
10Hz (Fig. A.1, #3) and plotted together with the original seismogram (Fig. A.1, #4
and Fig. A.2).
The example in Fig. A.1 can be extended by fetching data from two different stations,
preprocessing them in the same way as in Fig. A.1 and then directly passing the re-
sulting traces to a custom cross-correlation function written in C. The technical details
on how to wrap the custom cross-correlation function or any other C or FORTRAN
function follows in the next section.

A.4 Extending Python with a Custom Shared Library

In general, interpreters (e.g. Python, Perl, R, MATLAB) are considered slower than
compiled source code (e.g. C, FORTRAN). Therefore performance can be optimized by
transferring routines with time critical code from Python to compiled shared libraries.
Python’s foreign function library ”ctypes” enabled the ObsPy developers to pass data
from Python to functions in shared C or FORTRAN libraries. In doing so the Python
memory is accessed directly from the C or FORTRAN function, that is no memory
copying is necessary. Further, the complete interface part is written in the interpreter
language (no modification of the C code) which makes it easy to reuse existing code.
An example of how to access the custom cross correlation C function

void X_corr(float *tr1 , float *tr2 , int param , int ndat1 , \
int ndat2 , int *shift , double* coe_p)

from Python is provided in Fig. A.3 (please notice that a standard cross correlation is
also included in SciPy).

In line 1 and 2 of the program (Fig. A.3) the modules and the shared library are loaded
(.so stands typically for a shared library on Linux, this may vary for other operating
systems). In line 4 and 5 pointers to hold the resulting shift and cross correlation
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from obspy.core import UTCDateTime
from obspy.arclink import Client
from obspy.signal import cornFreq2Paz , seisSim , lowpass
import numpy as np , matplotlib.pyplot as plt
#1 Retrieve Data via Arclink

client = Client(host="webdc.eu", port =18001)
t = UTCDateTime("2009 -08 -24 00:20:03")
one_hertz = cornFreq2Paz (1.0) # 1Hz instrument

st = client.getWaveform("BW", "RJOB", "", "EHZ", t, t+30)
paz = client.getPAZ("BW", "RJOB", "", "EHZ", t,

t+30).values ()[0]
#2 Correct for frequency response of the instrument

res = seisSim(st[0]. data.astype("float32"),
st[0]. stats.sampling_rate ,
paz , inst_sim=one_hertz)
# correct for overall sensitivity , nm/s

res *= 1e9 / paz["sensitivity"]
#3 Apply lowpass at 10Hz

res = lowpass(res , 10, df=st[0]. stats.sampling_rate ,
corners =4)
#4 Plot the seismograms

sec = np.arange(len(res))/st[0]. stats.sampling_rate
plt.subplot (211)
plt.plot(sec ,st[0].data , "k")
plt.title("%s %s" % ("RJOB",t))
plt.ylabel("STS -2")
plt.subplot (212)
plt.plot(sec ,res , "k")
plt.xlabel("Time [s]")
plt.ylabel("1Hz CornerFrequency")
plt.show()

Figure A.1: Advanced Example. Data as well as the instrument response are fetched
via ArcLink (please notice the ArcLink server at http://webdc.eu is some-
times unreachable). A seismometer with 1Hz corner frequency is simulated
and the resulting data are low-passed at 10Hz. An example of the original
and the resulting data is plotted and shown in Fig. A.2.

coefficient are allocated and passed to the C function in lines 6, 7, 8 and 9. Note that
data1 and data2 need to be numpy.ndarrays of type ”float32” (type checking is included
in ctypes but omitted in the example for simplicity). The values of the pointers can
now be accessed via the attributes shift.value and coe\_p.value. At this point we want
to emphasize that this interface design differs from MATLAB where the interfaces need
to be written in the compiled language (MEX-files).
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Figure A.2: Local earthquake recorded at station RJOB. STS-2 instrument in the top
figure, in the bottom figure the simulated instrument with 1Hz corner
frequency low-pass filtered at 10Hz.

1 import ctypes as C
2 lib = C.CDLL("pathto"+"xcorr.so")
3 #

4 shift = C.c_int ()
5 coe_p = C.c_double ()
6 lib.X_corr(data1.ctypes.data_as(C.POINTER(C.c_float)),
7 data2.ctypes.data_as(C.POINTER(C.c_float)),
8 window_len , len(data1), len(data2),
9 C.byref(shift), C.byref(coe_p))

Figure A.3: C Interface for accessing the shared library xcorr.so from the Python side
using ctypes. The resulting shift and correlation coefficient can be accessed
via the attributes shift.value and coe_p.value.

A.5 Discussion and Conclusion

The intention behind ObsPy is not to provide a complete seismological analysis soft-
ware but to give seismologists access to the basic functionalities they need in order to
use Python to easily combine their own programs (Python libraries, modules written
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in C/FORTRAN). It could also be seen as a nucleation point for a standard seismol-
ogy package in Python. Key factors justifying continuation of the ObsPy package
are: test-driven development (currently containing 304 tests), modular structure, re-
liance on well-known third-party tools where possible, open-source code and platform
independence (Win, Mac, Linux). The ObsPy package and detailed documentation
can be accessed at http://www.obspy.org. We encourage any interested user to de-
velop new functions/applications and to make them available via the central repository
https://svn.obspy.org. We believe that such a free and open-source development
environment backed up by Python makes ObsPy a useful toolbox for many seismolo-
gists.
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zielgerichtet zu beenden. Mein ganz besonderer Dank gilt meiner lieben Frau Anja, die
alle Veröffentlichung gegengelesen hat und mich immer noch erträgt.
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