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1 Introduction 

The horse exhibits a number of unusual features during early pregnancy which are unique 

to the genus Equus and differ considerably from corresponding events in other large 

domestic animal species. Moreover, the establishment and maintenance of pregnancy in 

the mare are only partially understood. Successful gestation in mammals critically relies 

on an intact embryo-maternal dialogue. Unlike domestic ruminants and pigs, the nature of 

maternal recognition of pregnancy by which the embryo prevents cyclical luteolysis still 

remains unknown in the mare. 

The objective of this study was to systematically analyze the maternal endometrial 

response to the presence of a conceptus in the mare, in order to gain new insights into the 

early events underlying pregnancy and the complex embryo-maternal dialogue in equids. 

Therefore, a transcriptome study of endometrium samples from six mares at days 8 and 

12 of pregnancy and the corresponding non-pregnant stages was performed by using 

Agilent 4x44k Horse Gene Expression microarrays. 
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2 Review 

2.1 The early events of pregnancy in the mare 

Horses exhibit a number of features during early pregnancy that differ considerably from 

corresponding events in other large domestic animal species. Although establishment and 

maintenance of pregnancy in the mare are not yet completely understood, some early 

embryo-maternal interactions have been investigated to play a substantial role for 

successful gestation. 

2.1.1 The estrous cycle 

Horses are polyestric seasonal breeders. Normal breeding season usually starts in late 

spring and lasts until fall, depending on the duration of daylight. Stimulation of the pineal 

gland, either by natural or artificial light, results in a reduction of melatonin secretion, 

which in turn allows gonadotropin releasing hormone (GnRH) to be secreted in pulses 

from the hypothalamus. GnRH thereby stimulates and regulates the production and 

release of the gonadotropic hormones FSH (follicle stimulating hormone) and LH 

(luteinising hormone) from the anterior pituitary. 

The average length of the estrous cycle in the mare is 21 ± 2 days but it is very variable 

depending on season. During the follicular phase, interfering actions of FSH, LH and 

estrogens result in follicular maturation and ovulation. The rise of estrogens from a 

dominant follicle induces a period of sexual receptivity (estrus) characterized by typical 

estrus behavior and physiological signs such as endometrial edema and relaxation of the 

cervix. Ovulation in the mare occurs spontaneously at the end of a follicular phase, 

determining by definition day 0 of the estrous cycle. In the mare, the LH surge leading to 

ovulation is considered to be longer than in most other animals and to be rather a plateau 

then a peak.  

After ovulation, formation of the corpus luteum (CL) marks the beginning of the luteal 

phase. Under the influence of progesterone, the major steroid hormone secreted by the 

CL, cyclical ovarian activity and estrus behavior are diminished and cervical tone 

increases. In the non-pregnant mare, regression of the CL (luteolysis) is initiated at about 

day 14 by prostaglandin F2alpha (PGF2α) released from the endometrium, followed by an 

immediate decline in circulating progesterone levels, which terminates the luteal phase 

and permits a new ovarian cycle to begin [1, 2]. 
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2.1.2 Oviductal transport  

After ovulation, the ovum is released into the oviduct for potential fertilization. As a special 

feature in the mare, fertilized and unfertilized oocytes are differentially transported within 

the oviduct. While in most mammals both, fertilized and unfertilized oocytes enter the 

uterus at similar times after ovulation, in the mare, unfertilized oocytes are retained in the 

oviduct near the ampullary-isthmic junction, where they degenerate over months [3]. 

Horse oviducts therefore typically yield multiple degenerated oocytes, accumulated from 

sterile ovulations in preceding estrous cycles [4]. However, after successful fertilization, 

embryos are transported all the way down the oviduct, bypassing the unfertilized oocytes, 

and enter the uterus via the prominent uterotubal papilla at the expected time of gestation. 

It has been shown that the embryo itself initiates its oviductal transport by a stage 

dependent secretion of prostaglandin E2 (PGE2). Therefore, the embryo begins to secrete 

appreciable quantities of PGE2 when it reaches the compact morula stage of development 

on day 5 after conception [5, 6]. This embryonic PGE2 acts locally on the wall of the 

oviduct by relaxing the circular smooth muscle fibers, thus allowing a rapid onward 

passage towards the uterus [7]. Furthermore, treatment of pregnant mares with PGE2 has 

been shown to hasten oviductal transport of equine embryos [8]. The differential transport 

of embryos in the equine oviduct impressively illustrates very early embryo-maternal 

interactions, essential for the establishment of pregnancy in the mare. 

The time taken for the cleaving embryo to traverse the oviduct has been shown to be 144 

to 156 h [9]. The last part of the journey – trough the isthmus – is accomplished quite 

rapidly. By the time the embryo enters the uterus, development has progressed to the late 

morula or early blastocyst stage [10]. 

2.1.3 Pre-fixation period 

The pre-attachment phase of the early conceptus within the uterus is an outstanding 

feature of equine pregnancy as it occurs over a considerably longer period than it has 

been observed in many other mammalian species [11], and further includes a highly 

mobile conceptus, surrounded by an acellular glycoprotein capsule. Moreover, embryo 

survival and maintenance of pregnancy during this time critically rely on mutual 

interactions between the pre-attachment conceptus and the maternal organism. 

In coincidence with the time of blastulation, the acellular glycoprotein capsule first 

becomes visible between the trophectoderm and the zona pellucida from around day 6.5 

[10]. During the next 24 h, the zona decreases markedly in thickness before it literally 
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bursts open to allow the expanding blastocyst, now completely enclosed within the 

capsule, to hatch [12, 13]. This glycoprotein capsule, which is one of the most unusual 

features of the equine embryonic development, is secreted initially by the trophectoderm 

cells and subsequently hardens to a thin, elastic membrane, which completely envelops 

the embryo during the second and third week of gestation [14, 15]. Due to its close fitting, 

the trophoblast is not able to elongate, as it does in pigs and ruminants to bring the 

trophoblast in direct contact with the endometrium and to maximize local transmission of 

molecules. Instead, the equine conceptus remains spherical, completely unattached and 

highly mobile within the uterine lumen until days 16/17 [16].  

Conceptus mobility marks another prominent feature during early gestation in the horse 

and is assumed to be of great importance since its restriction results in failure of 

pregnancy [17]. Driven by strong, peristaltic myometrial contractions, the conceptus is 

moved through the uterine lumen many times per day [11]. The embryonic capsule 

thereby probably provides strength and elasticity to the conceptus and enables it to 

withstand the rigorous contractions. Importantly, between days 11 – 14, the time of its 

maximal mobility, the conceptus is thought to act on the endometrium to prevent secretion 

of the luteolytic pulses of PGF2α which would otherwise lead to regression of the CL [11]. It 

is supposed that the constant movement allows the pre-attachment embryo to get in 

contact with most of the endometrial surface, thereby enabling it to signal its presence 

uniformly to the entire endometrium [18].  

In view of these facts it seems surprising that mobility is virtually abolished when pregnant 

mares are treated with the cyclooxigenase-inhibitor flunixin meglumine, thus implicating 

prostaglandins as the primary stimulus for the uterine contractions required for conceptus 

mobility [19]. It is assumed that these prostaglandins arise from the conceptus itself as it 

secretes both, PGE2 and PGF2α, when cultured in vitro [20]. This prostanoic synthetic 

capacity probably enables the conceptus to locally stimulate the peristaltic contractions 

and relaxations of the myometrium that propel it around. However, it remains to be 

determined whether the conceptus is the only source of prostaglandins or if these 

prostaglandins are supplemented by the endometrium abutting the conceptus, possibly 

under the influence of the latter [21, 22]. 

Besides facilitating mobility and providing mechanical protection, the embryonic capsule is 

further essential for embryonic survival, as it plays a crucial role in mediating nutrition and 

development for the unattached conceptus [13, 23]. During its mobile phase, the 

conceptus embarks upon a period of rapid expansion that is also accompanied by a 

steady increase in size and dry-weight of the capsule [10, 24]. Due to its negative 

electrostatic charge, the outer surface of the capsule is very “sticky” towards other 
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proteins and thus binds endometrial secretions onto its surface as it moves through the 

uterus [15]. One of the major capsule-bound proteins is maternally derived uterocalin 

(lipocalin p19), a progesterone-dependent, 19-kDa protein, which is implicated in transport 

of biologically important lipids like polyunsaturated fatty acids and retinol across the 

capsule [25-27]. This is of great importance, since uterine gland secretions (histotrophe) 

are presumed to be the only source of nutrients for the rapidly growing conceptus before a 

direct contact between maternal and fetal tissues is established [16]. 

Finally, the embryonic capsule also contains insulin-like growth factor binding protein 3 

(IGFBP3), which might concentrate maternal insulin-like growth factors (IGFs) in the 

capsule and eventually releases them in a controlled manner, therefore regulating the 

influence of maternal IGFs on the conceptus [28]. 

2.1.4 Fixation of the conceptus 

At about days 16/17, intrauterine migration of the conceptus suddenly ceases as it 

becomes immobilized at the site of subsequent placentation [11, 29]. Since the embryo is 

still surrounded by its glycoprotein capsule, there is only a “fixation” of the conceptus, but 

no implantation at this time. Except for a short period starting around day 35 (formation of 

the endometrial cups), the implantation in equids is non-invasive, and a stable microvillous 

attachment to the luminal cells of the endometrium is not established before 

approximately day 40 after ovulation [30].  

A study of the temporal relationship between the diameter of the uterine horns, uterine 

tone and size of the embryonic vesicle throughout the fixation period [31] showed, that 

fixation occurs when the mobile and growing conceptus attains, on the average, a 

diameter equivalent to the distance between opposite inner walls of the myometrium. The 

uterus becomes turgid by this time and presumably does not expand adequately to 

accommodate continued motility of the expanding conceptus. The high frequency of 

fixation at the caudal proportion of the uterine horn might be attributed to its flexure which 

may act as the greatest impediment to continued embryo mobility [29]. 

But fixation may occur not only as a result of increased conceptus diameter and uterine 

tone, but also because of changes in the embryo‟s capsule and environment. Coincidently 

with fixation, the conceptus becomes flaccid [23] and the capsule surface looses sialic 

acid [15, 24]. The loss of sialic acid and the subsequent decrease of negatively charged 

galactose and N-acetylgalactose residues of the major core type 1 O-glycan exposed on 

the capsule [32] might be important in changing the permeability or „stickiness‟ of the 

capsule thus suggesting an important role in normal fixation of the conceptus.  
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Fixation also coincides with alterations in several capsule-bound proteins, for example 

maternally-secreted uterocalin, which is proteolytically converted to smaller fragments [33] 

at the time of fixation and β2-microglobulin (β2M) which as well undergoes limited 

proteolysis during the fixation period [33, 34] and is subsequently degraded. However, the 

role of this conversion still needs to be determined. 
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2.2 Maternal recognition of pregnancy 

Progesterone produced by a viable corpus luteum is essential for the establishment of 

pregnancy in many, if not all, mammalian species. During the estrous cycle, the CL 

undergoes cyclical luteolysis, which is characterized by an initial decline of progesterone 

secretion, and terminates the female reproductive cycle to permit a new ovarian cycle to 

begin. In the large domestic animal species, PGF2α, which is known as the uterine 

luteolysin, is synthesized and released from the endometrium in a pulsatile pattern during 

late diestrus. This appears to have evolved as a mechanism to increase reproductive 

efficiency, as, in this way, a further opportunity is provided for the female to conceive 

within a relatively short interval of time if she has not conceived following ovulation [35]. 

However, during pregnancy, the CL is sustained over its cyclical lifespan, thereby 

ensuring the ongoing supply of progesterone, which does not only reduce cyclical ovarian 

activity, but also provides a uterine environment suitable for embryonic survival and 

development. The conceptus must therefore somehow prevent cyclical regression of the 

CL, a process commonly referred to as “maternal recognition of pregnancy” (MRP) [36]. 

Several different mechanisms exist in mammalian species to achieve this objective, e.g. 

by suppressing the pulsatile release of luteolytic PGF2α from the endometrium, or by 

protecting the CL against its luteolytic action. Indeed, there is evidence that one or both 

effects may occur in large domestic animal species. 

2.2.1 Maternal recognition of pregnancy in the horse 

In the mare, a primary CL formed at the time of conception is the only source of 

progesterone for at least the first month of pregnancy [37]. In non-pregnant mares, 

luteolysis is triggered by an oxytocin-dependent pulsatile release of PGF2α from the 

endometrium between days 13 and 16 after ovulation [38-41]. Unlike in ruminants or pigs, 

PGF2α is thought to reach the ovaries of the mare only via the peripheral circulation [42] 

where it promptly exerts its luteolytic effect. However, in the presence of a conceptus, the 

cyclical release of luteolytic PGF2α is suppressed to maintain a viable CL [18]. Co-

incubation of conceptus membranes with endometrial tissue has been shown to block 

PGF2α production in vitro [43] and measurements of PGF2α concentrations in uterine 

flushings recovered from cyclic mares reached high values during days 14–16 after 

ovulation, the expected time of luteolysis, but were negligible in pregnant mares at this 

time [20]. The conceptus must therefore somehow prevent production of PGF2α while it 
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traverses the uterus. However, the embryonic signal by which luteostasis is achieved in 

the mare still remains unknown. 

Oxytocin 

Oxytocin is thought to play a central role in luteal regression in the mare. Oxytocin is a 

nonapeptide hormone produced mainly by the hypothalamic magnocellular neurons [44]. 

It is stored in secretory vesicles of the posterior pituitary along with its “carrier protein” 

neurophysin and released into the peripheral circulation in a pulsatile manner during the 

estrous cycle [45, 46]. 

Besides this classical hypothalamo–neurohypophyseal axis, oxytocin has also been 

reported to be produced by other organs such as the ovary, placenta or testis. In contrast 

to ruminants, the ovary of the mare does not appear to be a source for oxytocin during the 

estrous cycle [47]. However, it is of interest that, like in the pig, locally synthesized uterine 

oxytocin is implicated an important role in control of cyclical luteolysis in the mare [48]. 

Oxytocin-mRNA has been identified in the equine endometrium and oxytocin has been 

detected in secretory vesicles of the secretory (nonciliated) cells of the uterine luminal and 

glandular epithelium, and is thought to be secreted into the uterine lumen, where it binds 

to its receptor on luminal epithelial cells and thereby stimulates the pulsatile release of 

PGF2α leading to luteolysis [48-50]. 

Furthermore it has been demonstrated that the response of PGF2α to oxytocin is maximal 

at the time of luteolysis in non-pregnant mares and that this response cannot be induced 

during early pregnancy, neither with endogenous nor with exogenous oxytocin, thus 

implicating an important role for this process in MRP in the horse [40, 51]. However, the 

mechanisms underlying the decreased oxytocin responsiveness in the pregnant mare are 

controversially discussed [41, 51]. 

Prostaglandin F2α synthesis 

When PGF2α was identified as the mediator of luteolysis in the horse, it seemed likely that 

the embryo prevented luteolysis by suppressing the uterine production of prostaglandins. 

Prostaglandins are synthesized from arachidonic acid, an essential fatty acid stored in 

form of membrane phospholipids of the cell. Arachidonic acid is released from 

phospholipids via phospholipase action and converted into the common intermediate, 

prostaglandin H2 (PGH2) by prostaglandin G/H synthases (PTGS). While PTGS1 (also 

known as cyclooxygenase-1, COX-1) is constitutively expressed in most tissues, PTGS2 

(also known as cyclooxygenase-2, COX-2) expression is inducible. Terminal 

prostaglandins are subsequently produced by specific prostanoid synthases like PGE 
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synthase (PTGES) and PGF synthase (PTGFS), which catalyze the isomerization of 

PGH2 to PGE2 and PGF2α. 

Particular attention regarding MRP in the mare has been paid to PTGS2, as it is a rate-

limiting enzyme in prostaglandin synthesis. PTGS2 mRNA and protein have been shown 

to be up-regulated at days 14 and 15 of the estrous cycle, but not at corresponding days 

in pregnant mares [52, 53]. Moreover, PTGS2 mRNA abundance and PGF2α 

concentrations have been shown to be reduced by conceptus secretions in an equine 

endometrial explant culture system [53]. Therefore it has been suggested that the 

conceptus blocks endometrial PGF2α synthesis at least in part by repressing the induction 

of PTGS2 expression during early pregnancy.  

Other proposed mechanisms for MRP 

Although the equine conceptus is known to produce a number of different secretory 

products during early pregnancy, including steroids, prostaglandins, different proteins, and 

peptides [19] such as interferon delta (IFNδ), a member of the type I interferon family [20], 

the nature of the embryonic pregnancy recognition signal which effects luteostasis still 

remains unclear. Finally, the application of small intrauterine devices, e.g. water-filled 

plastic balls, has been demonstrated to prolong the luteal phase in the mare, indicating 

that a form of mechanotransduction by the migrating conceptus may also prevent the 

endometrial cells from releasing PGF2α [21].  

2.2.2 Maternal recognition of pregnancy in the pig 

In the pig, cyclical luteolysis occurs during late diestrus in response to a pulsatile release 

of PGF2α from the endometrium on days 15 and 16 after ovulation. PGF2α is subsequently 

transported to the ovary by a countercurrent transfer between the uterine venous system 

and the ovarian artery and via the lymphatic pathways where it exerts its luteolytic effect 

[54, 55]. 

Estrogen as a pregnancy recognition signal in the pig 

Pregnancy recognition in pigs is thought to occur between days 11 and 12 after ovulation 

[56]. During this time, the blastocyst undergoes marked morphological changes and 

elongates from a spherical to a tubular and filamentous form [57]. The conceptus also 

begins to secrete substantial amounts of estrogens which are known to function as the 

primary pregnancy recognition signal in pigs [58]. These conceptus-derived estrogens 

have been implicated in causing a shift in endometrial PGF2α secretion from an endocrine 
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(towards the uterine venous drainage) to an exocrine (towards the uterine lumen) 

direction. Luteolytic PGF2α is consequently sequestered within the uterine lumen where it 

is unavailable to exert its luteolytic effect on the CL [59-61]. Additionally, the retrograde 

transfer of PGF2α from the venous blood and uterine lymph into the uterus, and the ability 

of the uterine vein and artery wall to accumulate PGF2α, could also constitute part of the 

putative mechanism of CL protection during early pregnancy in pigs [55, 62]. 

Application of exogenous estrogens has been shown to induce pseudo-pregnancy in 

cycling gilts when administered from days 11 to 15 of the estrous cycle [63], thus 

confirming an involvement of estrogens in MRP in the sow. Furthermore, estrogens, either 

of conceptus origin or injected, are thought to stimulate the endometrial release of calcium 

into the uterine lumen, followed by its re-uptake by endometrial and/or conceptus tissues 

within the next 12 hours. This period of release and re-uptake of calcium by the 

endometrium has been shown to be closely associated with redirection of PGF2α in 

pregnant and pseudo-pregnant gilts [64]. However, the specific role for this uterine 

secretory response to estrogen in the maintenance of pregnancy still needs to be 

determined. Furthermore, estradiol itself has been suggested to have a direct luteotropic 

effect [65]. 

Prostaglandin E2 

Another supportive mechanism by which the conceptus is thought to inhibit luteolysis in 

the pig is by changing prostaglandin synthesis in favor of luteoprotective PGE2. Indeed, a 

luteoprotective effect of PGE2 has been frequently demonstrated in pigs [66-68]. It has 

been suggested that estrogens (and PGE2) produced by the porcine conceptus modulate 

the expression of key enzymes in PG synthesis in the trophoblast and the endometrium, 

resulting in a changing pattern of PGF2α and PGE2 secretion during early pregnancy [66]. 

Indeed, increased mRNA levels of microsomal PTGES-1 with simultaneous down-

regulation of PTGFS and carbonyl reductase-1 (CBR1), which converts PGE2 into PGF2α, 

has been observed in day 10-13 pregnant pigs [68, 69]. This may cause predomination of 

endometrial PGE2 secretion and therefore be an effective agent in increasing the 

PGE2:PGF2α-ratio. 

Oxytocin 

The porcine CL also synthesizes oxytocin, although its ability to do so is much lower than 

it is in ruminants. It is believed that the neurohypophysis is the primary source of oxytocin 

in the sow, probably supplemented by locally produced oxytocin from the uterus [35]. 

However, the role for oxytocin and its receptor during luteolysis and early pregnancy in 
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pigs is controversially discussed. On the one hand, the increase in circulating 

concentrations of oxytocin during luteolysis is associated with an increase in uterine 

secretion of PGF2α, and exogenous oxytocin stimulates the secretion of PGF2α in cyclic 

and early pregnant pigs [70]. On the other hand, blocking of oxytocin receptors did not 

prevent luteolysis or change duration of the estrous cycle [71], which does not suggest a 

mandatory role for oxytocin in MRP in the pig. 

Interferons 

The porcine trophoblast also secrets interferons (IFNs) between days 12 and 20 of 

gestation [72], e.g. the major type II interferon (interferon gamma, IFNγ), which is secreted 

in substantial amounts with a peak of synthesis being observed on days 15-16 of 

pregnancy [73], and a novel Type I interferon (interferon delta, IFNδ) [74]. In contrast to 

the ruminant interferon tau, IFNγ does not appear to exhibit antiluteolytic properties in the 

pregnant sow [75]. However, recent studies support a role for porcine trophoblast 

interferons in conceptus implantation as they may stimulate the remodeling and/or 

depolarization of the uterine endometrial epithelium as a prerequisite for blastocyst 

attachment and establishment of a functional placenta [76, 77]. 

2.2.3 Maternal recognition of pregnancy in domestic ruminants 

Cyclical luteolysis in domestic ruminants is induced by an oxytocin-dependent pulsatile 

release of endometrial PGF2α during late diestrus. The ongoing exposure to progesterone 

thereby negatively autoregulates the expression of the progesterone receptor in the 

endometrial epithelium, closely followed by increases in epithelial estrogen receptor 

(ESR1) and oxytocin receptor (OXTR) [78, 79]. This allows oxytocin to induce the uterine 

release of PGF2α pulses. In ruminants, the posterior pituitary acts as the central oxytocin 

pulse generator. Moreover, a positive feedback-loop has been described between luteal 

oxytocin and uterine PGs, hence amplifying the luteolytic pulses of PGF2α [80]. 

Due to the unique structure of its vascular utero-ovarian plexus, PGF2α is then transported 

directly from the uterus to the ovary, possibly by a prostaglandin transporter-mediated 

mechanism, where it exerts its luteolytic effect [81]. In addition, PGF2α is also supposed to 

act partly via the systemic circulation in the cow [35]. 

Interferon tau 

Interferon tau (IFNτ), a ruminant-specific member of the type I IFN family, which is 

synthesized and secreted in substantial amounts by the mononuclear cells of the 
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conceptus trophectoderm, is well established as the primary pregnancy recognition signal 

in ruminants [82, 83],  

The expression of IFNτ occurs during a defined period of conceptus development in cattle 

and sheep. IFNτ mRNA and protein are first detected as trophectoderm forms at the late 

morula to early blastocyst stage of development [84, 85] and increase with advancing age 

of the spherical conceptus. Coincident with the time of MRP, the conceptus changes from 

a spherical to a tubular and filamentous form and IFNT secretion increases dramatically at 

days 14–15 of pregnancy in cattle and at days 12–13 of pregnancy in ovine conceptuses 

[86]. IFNτ subsequently acts on the endometrium in a paracrine manner to prevent 

generation of the luteolytic cascade leading to endometrial secretion of PGF2α.  

In pregnant ewes, it has been supposed that IFNτ suppresses transcription of the ESR1 

gene and thereby prevents estrogen to induce expression of the OXTR gene, as it would 

normally occur during the estrous cycle [87, 88]. In cows, although much of the available 

data are consistent with this hypothesis in sheep, evidence for a similar mechanism 

operating is less clear, since OXTR is up-regulated prior to ESR1 expression during the 

estous cycle. Therefore it is implicated that the bovine conceptus probably exerts a rather 

direct effect on endometrial OXTR gene expression [89-91]. 

Prostaglandin E2 

It seems likely that PGE2, produced by the blastocyst or the endometrium, may also 

counteract the luteolytic effects of PGF2α in pregnant ruminants. As a stimulator of cAMP 

and a vasodilator, PGE2
 has properties that are opposite to PGF2α [92]. In support of this 

view, the infusion of PGE2 into the uterus of non-pregnant ewes delays luteolysis [93]. 

Similar effects  have been observed in cows [94]. Moreover, an increase of PGE2 in 

uterine venous blood has been reported during early pregnancy in ewes [95]. Because of 

its structural similarity to PGF2α, a small amount of PGE2
 may be transported locally from 

the uterine vein to the ovarian artery by a countercurrent transfer. With the use of cultured 

bovine endometrial cells, it has been proposed that IFNτ may transform the response of 

the endometrium to oxytocin from stimulating PGF2α to stimulating PGE2 [96, 97]. 

Furthermore, it has also been reported that recombinant bovine IFNτ reduces PGF2α 

synthesis by blocking the oxytocin-induced expression of COX-2 and prostaglandin F 

synthase [98]. Thus IFNτ may act via multiple pathways to protect the CL from luteolysis 

during early gestation in ruminants. 
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IFNτ -stimulated genes 

IFNτ is further known to stimulate expression of a number of so-called IFNτ-stimulated 

genes (ISGs) that are hypothesized to play a role in endometrial differentiation and 

concepus implantation [61, 99, 100]. A systematic study of maternal transcriptome 

changes in response to the presence of an embryo on day 18 of pregnancy in cattle 

revealed 87 genes up-regulated in pregnant animals during this time. Almost one half of 

these genes were known to be stimulated by type I IFNs. A functional classification of the 

identified genes revealed several different biological processes involved in the preparation 

of the endometrium for the attachment and implantation of the embryo such as genes 

involved in modulation of the maternal immune system and genes relevant for cell 

adhesion and for remodeling of the endometrium. Furthermore, the ISG15ylation system 

has been assumed to play an important role in IFNτ signaling [101]. 

Other factors important for embryo-maternal interaction 

However, although many experimental findings indicate a pivotal role for IFNτ in 

pregnancy recognition of ruminants, a number of other systems (e.g. growth factors) may 

be involved in the embryo-maternal dialogue [100] and subsequently, overlapping actions 

of progesterone, interferon tau, placental lactogen, and growth hormones regulate 

endometrial gland morphogenesis and terminal differentiated function to maintain 

pregnancy. 
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ABSTRACT

Establishment and maintenance of pregnancy in equids is only
partially understood. To provide new insights into early events of
this process, we performed a systematic analysis of tran-
scriptome changes in the endometrium at Days 8 and 12 of
pregnancy. Endometrial biopsy samples from pregnant and
nonpregnant stages were taken from the same mares. Compo-
sition of the collected biopsy samples was analyzed using
quantitative stereological techniques to determine proportions
of surface and glandular epithelium and blood vessels. Micro-
array analysis did not reveal detectable changes in gene
expression at Day 8, whereas at Day 12 of pregnancy 374
differentially expressed genes were identified, 332 with higher
and 42 with lower transcript levels in pregnant endometrium.
Expression of selected genes was validated by quantitative real-
time RT-PCR. Gene set enrichment analysis, functional annota-
tion clustering, and cocitation analysis were performed to
characterize the genes differentially expressed in Day 12
pregnant endometrium. Many known estrogen-induced genes
and genes involved in regulation of estrogen signaling were
found, but also genes known to be regulated by progesterone
and prostaglandin E2. Additionally, differential expression of a
number of genes related to angiogenesis and vascular remodel-
ing suggests an important role of this process. Furthermore,
genes that probably have conserved functions across species,
such as CRYAB, ERRFI1, FGF9, IGFBP2, NR2F2, STC1, and
TNFSF10, were identified. This study revealed the potential
target genes and pathways of conceptus-derived estrogens,
progesterone, and prostaglandin E2 in the equine endometrium
probably involved in the early events of establishment and
maintenance of pregnancy in the mare.

embryo-maternal communication, equus caballus, female
reproductive tract, gene regulation, horse, pregnancy, steroid
hormones, uterus

INTRODUCTION

Progesterone produced from a viable corpus luteum is
essential for establishment and maintenance of pregnancy. In
the mare, cyclical luteolysis takes place between Days 14 and
16 after ovulation. The equine conceptus must therefore
prevent luteal regression, a process commonly referred to as
maternal recognition of pregnancy. In contrast to other large
domestic animal species, the nature of embryo-maternal
communication and maternal recognition of pregnancy in
equids is still not completely understood. Furthermore, a
number of features of equine pregnancy are unique to the genus
Equus and differ from corresponding events in other mammals.

The equine blastocyst enters the uterus between 144 and 156
h after ovulation [1]. Between Day 7 and Day 21, the embryo is
completely enveloped by a tough glycoprotein capsule, which
prevents the trophoblast from elongating and provides its typical
spherical shape [2, 3]. Furthermore, the capsule is thought to
play a protective role, to ensure nutrition, and to facilitate
migration of the equine conceptus [4]. The capsule may also
concentrate growth factors at the embryo-maternal interface and
eventually release them in a controlled manner [5]. Until Day
16, the equine conceptus remains completely unattached within
the uterus and migrates continuously throughout the uterine
lumen driven by peristaltic myometrial contractions [6, 7]. The
constant movement allows the embryo to get in contact with
most of the endometrial surface, likely serving to signal its
presence uniformly to the entire endometrium and to garner
uterine secretions [8]. At Day 17, not only as a result of
increased conceptus diameter and increased uterine tone, but
also because of changes in the embryo’s capsule and uterine
environment, the conceptus becomes immobilized (‘‘fixed’’) at
the base of one of the uterine horns [6, 9, 10].

Although the mechanisms of luteal rescue in the mare are
still unknown, the role of prostaglandins is undisputed. In
cyclic mares luteolysis is triggered by an oxytocin-dependent
pulsatile release of prostaglandin F

2a (PGF
2a) from the

endometrium from Day 14 after ovulation [11]. However, in
the presence of a conceptus, the synthesis and secretion of
PGF

2a in the mare is abrogated [8]. Furthermore, coincubation
of conceptus membranes with endometrial tissue has been
shown to block PGF

2a production in vitro [12]. Although the
signal that accomplishes this effect is not known, the presence
of a conceptus seems to uncouple the oxytocin-induced release
of PGF

2a [8, 13]. It has been demonstrated that the PGF
2a

response to oxytocin is maximal at the time of luteolysis in
nonpregnant mares and that this response cannot be induced
during early pregnancy either with endogenous or with
exogenous oxytocin [13–15]. These data suggest that maternal
recognition of pregnancy, which in the mare is commonly
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believed to occur between Days 14 and 16 [16], may be as
early as Days 11–13 [13].

Another hypothesis is that the antiluteolytic signal produced
by the equine conceptus targets prostaglandin biosynthesis in
order to prevent luteolysis. Prostaglandin G/H synthase 2
(PTGS2; also known as cyclooxygenase 2), a rate-limiting
enzyme in prostaglandin synthesis, has been shown to be up-
regulated at Day 14/15 of the estrous cycle, but not at
corresponding days in pregnant mares [17, 18]. Moreover,
PTGS2 mRNA abundance and PGF

2a concentrations have been
shown to be reduced by conceptus secretions in an equine
endometrial explant culture system [18]. Therefore it has been
suggested that the conceptus blocks endometrial PGF2a
synthesis at least in part by repressing the induction of PTGS2
expression.

What also remains unknown is the nature of the embryonic
pregnancy recognition signal to prevent luteolysis. The equine
conceptus produces a number of different secretory products
during early pregnancy, including steroids, prostaglandins,
different proteins, and peptides [19], such as interferon delta, a
member of the type I interferon family [20]. Moreover, the
application of intrauterine devices has been demonstrated to
prolong the luteal phase in the mare, indicating that a form of
mechanotransduction by the migrating conceptus may prevent
the endometrial cells from releasing PGF

2a [21].
In order to systematically analyze the maternal response,

i.e., the changes in the equine endometrium, to the presence of
a conceptus a transcriptome study of endometrium samples
from six mares at Days 8 and 12 of pregnancy and the
corresponding nonpregnant stages was performed.

MATERIALS AND METHODS

Sample Collection and Experimental Design

In this study, two experiments were performed. Endometrial biopsy
samples were collected from inseminated mares 1) on Day 8 and 2) on Day 12
after ovulation. In both experiments one pregnant and one control
(nonpregnant) sample were taken from every mare by random order. Only
one endometrial biopsy was taken per estrous cycle.

Samples were collected from six normal cycling Bavarian Warmblood
mares belonging to the Bavarian principal and state stud of Schwaiganger,
Germany. Follicular development and ovulation were monitored routinely by
daily transrectal palpation and ultrasound examination. When mares developed
an ovarian follicle of approximately 35 mm in diameter, accompanied by
prominent endometrial edema, they were treated with 1500 IU human chorionic
gonadotropin i.v. (Ovogest; Intervet Deutschland GmbH, Unterschleissheim,
Germany) to induce ovulation. All mares were inseminated artificially with
.500 3 106 freshly collected, progressively motile, extended spermatozoa from
one fertile stallion. Insemination was performed 24 h after induction of
ovulation and was repeated if ovulation had not occurred after 48 h. Endometrial
samples were obtained by transcervical biopsy. Samples were collected 1) on
Day 8 and 2) on Day 12 after flushing of the uterus. On Day 8, mares were rated
pregnant if embryo recovery was successful. On Day 12, pregnancy was
additionally proved by ultrasonographic detection of an embryonic vesicle in the
uterine lumen before flushing. Embryos were flushed transcervically without
sedation using up to four times 1.5 L prewarmed and sterile filtered phosphate
buffered saline (Lonza Verviers Sprl, Verviers, Belgium). The fluid was
recovered directly into sterile glass bottles and subsequently, if necessary,
filtered with an embryo filter system and examined under a microscope (in the
case of Day 8 embryos) for the presence of an embryo.

For determination of peripheral plasma progesterone (P4) concentrations,
blood samples were collected in ethylenediaminetetraacetic acid tubes from the
jugular vein on Day 0 and directly after biopsy. Blood samples were centrifuged
at 2000 3 g for 10 min and plasma was decanted and stored at �208C until
assay.

In order to analyze tissue composition, the biopsy samples were cut
transversely into six equal and plane-parallel slices. For quantitative stereological
analyses, every second slice was transferred into embedding capsules with their
right cut surface facing downwards, covered with a foam sponge to avoid
distortion of the tissue samples, and fixed by immersion in 4% buffered
formaldehyde. The remaining pieces of the biopsy samples were immediately

transferred into vials containing 4 ml RNAlater (Ambion, Huntingdon, U.K.) for
mRNA expression analysis. The vials were cooled on ice and incubated overnight
at 48C. Samples were stored at�808C until further processing. All experiments
with animals were conducted with permission from the local veterinary
authorities and in accordance with accepted standards of humane animal care.

Quantitative Stereological Analysis

For qualitative histological and quantitative stereological analyses, three
formalin-fixed slices of each biopsy sample were routinely processed and
embedded in paraffin with their right cut surface facing downwards. Histological
sections were cut at a nominal thickness of 3 lm with a rotary microtome,
transferred onto glass slides, and stained with hematoxylin and eosin (H&E).
Quantitative stereological analyses were carried out with newCAST software
(Visiopharm A/S, Hoersholm, Denmark). Slides were displayed on a monitor at
4003 final magnification via a camera (universal camera DP72, Olympus
Deutschland GmbH, Hamburg, Germany) coupled to a microscope (standard
laboratory microscope BX41, Olympus Deutschland GmbH) and images were
superimposed by an adjustable point counting grid. More than 7000 points were
evaluated per biopsy sample to determine the volume densities of surface
epithelium, glandular epithelium, blood vessels, and remaining tissue. The
volume densities (Vv) of the different tissue compartments were obtained by
dividing the number of points hitting a compartment (P(compartment), e.g., points
hitting blood vessels, P(blood vessels)) by the total number of points hitting the
biopsy sample (P(sample)): Vv(compartment/sample)¼ P(compartment)/P(sample).

Microarray Analysis

Total RNA was isolated from the 12 endometrial biopsy samples using
Trizol reagent (Invitrogen GmbH, Karlsruhe, Germany) according to the
manufacturer’s instructions. Quantity and purity of RNA were measured with a
NanoDrop 1000 (PEQLAB Biotechnologie GMBH, Erlangen, Germany).
Quality of total RNA was determined electrophoretically with an Agilent 2100
Bioanalyzer (Agilent Technologies, Waldbronn, Germany). RNA integrity
values ranged from 8.3 to 9.2. Microarray analysis was performed using
Agilent 4x44k Horse Gene Expression microarrays (AMADID 021322). Cy3-
labeled cRNA was produced with the Quick Amp Labeling Kit, one-color
(Agilent Technologies), and hybridized to the microarrays according the
manufacturer’s instructions. Hybridized and washed slides were scanned at 3-
lm resolution with an Agilent DNA Microarray Scanner (G2505C; Agilent
Technologies). Image processing was performed with Feature Extraction
Software 10.5.1.1 (Agilent Technologies). Processed signals were filtered
based on ‘‘Well above background’’ flags (detection in four of six samples in
either one of the two experimental groups) and subsequently normalized with
the BioConductor package vsn [22]. For quality control normalized data was
analyzed with a distance matrix and a heatmap based on pair-wise distances
(BioConductor package geneplotter). Significance analysis was performed
using the Microsoft Excel add-in ‘‘Significance analysis of microarrays’’
(SAM, two-class paired) [23]. Significance thresholds were set as follows: 1)
false discovery rate (FDR) ,5% and fold change at least 1.5-fold and 2) ratio
fold change/q-value �0.75 to have higher confidence for smaller differences.
The data discussed in this publication have been deposited in NCBI’s Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) and are
accessible through GEO Series accession number GSE21046.

Functional Analysis of Array Data

The Agilent horse microarray was reannotated based on Ensembl 55, Entrez
Gene, and BLAST analyses to obtain equine and human (putative orthologous
genes) Entrez Gene identifiers and the corresponding gene information. For
gene set enrichment analysis (GSEA) [24], genes were preranked based on fold
change pregnant vs. control and SAM q-value (log2(fold change þ 2) *
�log10(q-value)). This preranked gene list was compared with GSEA gene sets
c2.all.v2.5.symbols.gmt (curated) and our own published and unpublished gene
sets (see Results). Functional classification of differentially expressed genes
(DEGs) was done with the ‘‘Functional annotation clustering’’ and ‘‘Functional
annotation chart’’ tools of the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) [25] and the text-mining tool CoPub [26], which
finds biomedical concepts from Medline that are significantly linked to the gene
set. Both analyses were performed on the basis of Entrez Gene IDs of the
putative human orthologous genes. Interaction networks were drawn with the
Pathway Architect software (version 3.0.1; Stratagene, Heidelberg, Germany).

Quantitative Real-Time RT-PCR

The same RNA samples as for microarray analysis were used for
quantitative real-time RT-PCR (qPCR). First-strand cDNA was synthesized
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starting from 1 lg total RNA with the Sprint RT Complete-Double PrePrimed
Kit (Takara Bio Europe/Clontech, Saint-Germain-en-Laye, France). The two-
step quantitative real-time PCR experiments were performed as described
previously [27] in accordance with the MIQE guidelines [28]. The LightCycler
DNA Master SYBR Green I protocol (Roche, Mannheim, Germany) was
applied. Primer sequences, annealing temperatures (AT), the appropriate
fluorescence acquisition (FA) points for quantification within the fourth step of
the amplification segment, and the melting points (MP) are shown in
Supplemental Table S1 (all Supplemental Data are available online at www.
biolreprod.org). The cycle number (CT) required to achieve a definite SYBR
Green fluorescence signal was calculated by the second derivative maximum
method (LightCycler software version 3.5.28). The CT is correlated inversely
with the logarithm of the initial template concentration. The CT determined for
the target genes were normalized against the geometric mean of the
housekeeping genes histone (H3F3A), ubiquitin (UBQ3), and 18S rRNA
(DCT) [29]. Finally, with respect to the paired design, the relative expression
difference between the nonpregnant and pregnant state was calculated for each
animal (DDCT). All amplified PCR fragments were sequenced to verify the
resulting PCR product.

Progesterone Assay

Progesterone concentrations in peripheral blood plasma were measured
with a mini VIDAS (bioMérieux Deutschland GmbH, Nürtingen, Germany)
and VIDAS Progesterone kits, a system based on the enzyme-linked fluorescent
assay technique. A detection limit of 0.25 ng/ml and a correlation coefficient of
0.89 towards radio immune assay are certified for the assay by the
manufacturer.

RESULTS

To characterize endometrial responses to the early embryo
in the mare, microarray analyses of Day 8 and Day 12
endometrial biopsy samples were performed in two separate
experiments. A paired design was used, i.e., RNA samples
derived from the same mare were hybridized on the same slide
(4x44k array) to reduce technical and biological variation. The
paired design was chosen to take into account potential
interindividual differences related to genetic background and
other actors. Additional sources for variation were tried to rule
out with the measurement of P4 concentrations and the analysis
of the composition of the endometrial biopsy samples.

Peripheral Plasma Progesterone Concentrations

P4 values showed basal levels on Day 0. On Day 8, plasma
progesterone concentrations ranged from 12.6 to 27.7 ng/ml
and on Day 12 from 12.0 to 35.3 ng/ml. Plasma progesterone
concentrations were not significantly different between preg-
nant and nonpregnant mares on Day 8 and on Day 12,
respectively (t-test: P . 0.05; data not shown).

Quantitative Stereological Analysis

Tissue composition of all endometrial biopsy samples, i.e.,
the volume fractions of luminal epithelium (LE), blood vessels
(BV), glandular epithelium (GE), and remaining tissue (Rest),
was determined by using quantitative stereological techniques
(Supplemental Figs. S1 and S2). Overall, tissue composition
was quite consistent within the biopsy samples (see examples
in Supplemental Fig. S2).

In endometrial biopsy samples collected on Day 8, volume
fractions of the different structures were 0.23%–0.91% (LE),
2.4%–3.9% (BV), 25.8%–35.8% (GE), and 59.3%–71.3%
(Rest). Maximal deviation was 0.41 percentage points (pp)
(LE), 1.3 pp (BV), 4.8 pp (GE), and 3.6 pp (Rest) within
pregnant and control samples of one mare.

In endometrial biopsy samples collected on Day 12, volume
fractions of the different structures were 0.24%–1.82% (LE),
2.7%–3.9% (BV), 22.9%–33.3% (GE), and 62.4%–73.7%
(Rest). Maximal deviation was 0.54 pp (LE; excluding mare

#3), 0.8 pp (BV), 7.7 pp (GE), and 8.6 pp (Rest) within
pregnant and control samples of one mare. In mare #3, volume
fraction of LE was 1.5 pp higher (5.6-fold) in the control
sample than in the pregnant sample.

Microarray Analysis

After data processing and normalization the microarray data
sets were initially analyzed with correlation heatmaps in order
to cluster the data sets of the individual samples according to
their pair-wise correlations. Then statistical analysis was done
to identify DEGs. For the endometrial tissue samples derived
from Day 8 pregnant mares vs. Day 8 control mares, statistical
analysis did not reveal any significant expression differences
(data not shown), even after exclusion of mare #3 (aberrant
expression differences for immune response genes in pregnant
sample).

In contrast to Day 8, differential gene expression was
identified at Day 12 of pregnancy. A heatmap of pair-wise
correlations based on normalized microarray data sets is shown
in Figure 1a for analysis of Day 12 of pregnancy. Samples from
the same mares clustered together, but no grouping could be
observed within samples collected during pregnancy or during
the estrous cycle. The control sample of mare #3 (Fig. 1a, M3
co) showed the lowest correlation to all other samples. A
second heatmap was generated based on a limited number of
hybridization probes, which showed at least 1.5-fold difference
between pregnant and control samples (Fig. 1b). Based on this
reduced data set a clear separation of pregnant and control
samples was obtained. Figure 1c shows a heatmap of log2 fold
changes pregnant vs. control for the six mares. Except for mare
#3, similar expression patterns were observed between mares.
For mare #3, many genes showed inverse expression
differences. Because of the 5.6-fold higher proportion of
luminal epithelium in the control sample compared to the
pregnant sample (Supplemental Fig. S2) and the results of the
heatmap analysis (Fig. 1c), data from mare #3 were excluded
from further analysis. Statistical analysis of Day 12 microarray
data of the remaining five mares revealed 374 DEGs in
endometrial tissue samples of pregnant vs. control mares
(Supplemental Table S2). Of these genes, 332 transcripts
showed at least 1.5-fold higher expression values (in the
following referred to as up-regulated genes) and 42 transcripts
showed lower expression values (in the following referred to as
down-regulated genes) in biopsy samples from pregnant
endometrium compared to control samples. Figure 1c shows
a cluster analysis of log2 fold changes of the DEGs for all six
mares. Whereas similar pregnant to control expression
differences were observed for five of the mares, mare #3
showed for many of these genes either no expression
differences or even inverse differences (Fig. 1c, M3).

Differential expression was in addition analyzed between
Day 8 and Day 12 control samples (see Supplemental Table
S2). Of the Day 12 DEGs (pregnant vs. control), 34 genes were
also differentially expressed in Day 12 compared to Day 8
control samples (fold change .1.5-fold, FDR 5%): 6 of the
Day 12 down-regulated genes and 28 of the up-regulated
genes. Most of the Day 12 of pregnancy down-regulated genes
(5 of 6) showed lower mRNA levels in Day 12 vs. Day 8
control samples. Likewise there were a number of genes up-
regulated from Day 8 to Day 12 in the control samples that
were additionally up-regulated in Day 12 pregnant samples.
Furthermore, there were some genes down-regulated from Day
8 to Day 12 of the estrous cycle but with higher mRNA levels
in Day 12 pregnant compared to Day 12 control samples.
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Validation of Microarray Results by Quantitative
Real-Time RT-PCR

To validate microarray results, 13 of the DEGs were
selected for quantification with real-time RT-PCR (Table 1).
Overall, expression differences found by microarray analysis
were confirmed. For some of the analyzed genes t-test P-values
were not significant (.0.05) because of variations in
expression differences between mares. For most of those
genes, expression differences were significant between Day 8
and Day 12 pregnant samples (Table 2). The comparison of

qPCR data between Days 8 and 12 corresponded well to the
array data and showed that four of the analyzed genes (CTSL1,
FGF9, PTGR1, SLC36A2) were also differentially expressed
between Days 8 and 12 of the estrous cycle (Table 2).
Interestingly, FGF9 was down-regulated at Day 12 of the
estrous cycle compared to Day 8 of the estrous cycle. Samples
derived from mare #3 were also analyzed, and the findings of
the microarray experiment that for many of the DEGs
expression differences were much lower or even inverse were
confirmed (data not shown).

FIG. 1. Microarray analysis of Day 12 pregnant vs. nonpregnant endometrium. Normalized expression data was clustered based on pair-wise correlation
using all detectable probes (a) and after filtering for probes with at least 1.5-fold mean difference between pregnant and control samples (b) (red:
correlation ¼ 1; blue: lowest observed correlation). After statistical analysis a hierarchical cluster analysis of the log2 fold changes of the single mares
limited to the significant genes was performed (c). Mare #3 is also shown but was excluded from the statistical analysis. M, mare #; pr, pregnant; co,
control.
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Bioinformatics Analysis of Microarray Data

In order to get a first characterization of the DEGs, the Day 12
expression data set was ranked according to the expression fold
change and the SAM q-value (see Materials and Methods),
resulting in a ranked gene list containing the most significantly
up-regulated genes on Day 12 of pregnancy at the top and the
most significantly down-regulated genes at the bottom of the list.
This preranked list was compared to gene sets of the GSEA
Molecular Signature Database, of selected published studies, and
of our own published and unpublished studies. Table 3 shows a
number of significantly enriched gene sets, i.e., sets with genes
occurring toward the top of the preranked Day 12 gene list. The
corresponding enrichment plots are shown in Supplemental
Figure S3. The gene set with the highest enrichment score and 24
(of 63) overlapping genes in ranks 1–500 of the Day 12
preranked gene list contains genes up-regulated in equine
endometrium at Day 13.5 of pregnancy [30]. This gene set is
followed by a set of genes up-regulated in human endometrium 7
days after the LH surge (the window of implantation) compared
to 2 days after the LH surge [31] (29 of 129 genes in top 500).
The gene set with the largest number of overlapping genes
within ranks 1–500 was Boquest_CD31þ_vs_CD31�_up (75 of
540 genes). Significant enrichment was also found for the
corresponding gene set Boquest_CD31

þ
_vs_CD31�_dn (38 of

215 genes). These gene sets were obtained from a comparison of
two populations of CD45�CD34

þ
CD105

þ
adipose tissue-

derived adult stromal stem cells that were either CD31
(PECAM1) positive or negative [32]. In addition, gene sets
containing hypoxia-induced genes, genes of the RAS pathway,
TGF-beta-induced genes, targets of the transcription factor
TCF21, vascular endothelial growth factor (VEGF)-induced
genes, estrogen-induced genes [33–36], genes up-regulated in
ovine endometrium between Days 9 and 12 of pregnancy [37],
and prostaglandin E2 (PGE2)-induced genes were found as
significantly enriched. The analysis of gene sets from our own
studies of bovine and porcine endometrium revealed best
enrichment scores for genes up-regulated at Day 14 of
pregnancy in porcine endometrium [38] and at Day 18 of
pregnancy in bovine endometrium (our unpublished data) but
the number of genes in ranks 1–500 of the Day 12 preranked list
was rather small (23 and 25 genes, respectively). Higher
numbers of genes in ranks 1–500 were found for the gene sets
‘‘up-regulated at estrus in bovine endometrium’’ (58 genes) and
‘‘up-regulated at diestrus in bovine endometrium’’ (44 genes).
Additional information for the gene sets and the genes
overlapping with the top 500 of the Day 12 preranked gene
list can be found in Supplemental Table S3.

In the next step the up-regulated genes of ranks 1–500 were
sorted based on their frequencies: 1) in the gene sets ‘‘Up-
regulated in human endometrium during the window of
implantation’’ (two human gene sets were combined), ‘‘Up-
regulated at Day 14 of pregnancy in porcine endometrium,’’ and
‘‘Up-regulated at Day 18 of pregnancy in bovine endometri-
um’’; 2) in the gene sets ‘‘Up-regulated in ovine endometrium
between Days 9 and 12 of pregnancy,’’ and ‘‘Up-regulated at
diestrus in bovine endometrium’’; and 3) in the gene sets ‘‘Up-
regulated at estrus in bovine endometrium’’ and ‘‘Estrogen-
induced genes’’ to find genes that have conserved functions
across mammalian species regarding establishment and main-
tenance of pregnancy. The genes anterior gradient homolog 2
(AGR2, Pr/Co ¼ 1.6, q-value ¼ 0.0348, rank 433), G protein-
coupled receptor, family C, group 5, member B (GPRC5B, Pr/
Co¼ 1.13, q-value¼ 0.0264, rank 480), ubiquitin D (UBD, Pr/
Co¼1.4, q-value¼0.025, rank 395), and ubiquitin-conjugating
enzyme E2L 6 (UBE2L6, Pr/Co ¼ 1.2, q-value ¼ 0.021, rankTA
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401) matched two gene sets containing up-regulated genes
during pregnancy and one genes set up-regulated by progester-
one, but these genes showed no significant up-regulation
according to the thresholds of the significance analysis. B-cell
CLL/lymphoma 6 (BCL6, Pr/Co ¼ 1.7, q-value ¼ 0.039, rank
453), crystallin, alpha B (CRYAB, Pr/Co¼2.2, q-value¼0.003,
rank 85), insulin-like growth factor binding protein 2 (IGFBP2,
Pr/Co ¼ 1.9, q-value ¼ 0.002, rank 74) and stanniocalcin 1
(STC1, Pr/Co ¼ 3.1, q-value ¼ 0.0001, rank 10) matched two
gene sets containing up-regulated genes during pregnancy.
Insulin-like growth factor binding protein 1 (IGFBP1, Pr/Co¼
5.8, q-value¼ 0.004, rank 50) matched one gene set containing
up-regulated genes during pregnancy and two gene sets up-
regulated by progesterone. A list of all genes and their
frequencies in the gene sets is shown in Supplemental Table S4.

To find quantitatively enriched functional terms for the Day
12 up-regulated genes, the DAVID functional annotation
clustering tool was used. This method clusters significantly
enriched functional terms, i.e., significantly more differential
genes were found for a given term than expected, which contain
similar sets of genes. This analysis resulted in a relatively large
number of significant clusters of related functional terms that
represented a variety of biological themes (Supplemental Table
S5). These quantitatively enriched biological themes or
processes included glycoproteins, secretory proteins, membrane
proteins, development, differentiation, angiogenesis, calcium
ion binding, carbohydrate binding, wound healing, apoptosis,
cell migration, tissue remodeling, neurogenesis, cell growth,
and proliferation. The text mining tool CoPub that identifies
biological keywords from the Medline database significantly
linked to a given gene set from a microarray data analysis [26]
also highlighted a list of keywords that were significantly
correlated with the genes up-regulated at Day 12 of pregnancy
(Supplemental Table S6). The obtained keywords confirmed
the results of DAVID functional annotation clustering and
included a number of additional terms such as chemotaxis,
inflammation, cell adhesion, cell invasion, cytoskeleton,
different reproduction-related terms, and endocytosis.

Expression of Genes Involved in Prostaglandin Signaling
and Metabolism

Microarray analysis revealed several up-regulated genes in
Day 12 pregnant endometrium with a significant fold change

ranging from 1.6 to 2.7 that are known to play a role in
prostaglandin signaling and metabolism. In particular, tran-
scripts for prostaglandin E receptors 3 and 4 (PTGER3,
PTGER4), genes similar to prostaglandin F synthase
(LOC100070491, LOC100070501), a prostaglandin transport-
er, and a prostaglandin reductase were found (Table 4). In
addition to these differentially expressed prostaglandin-related
genes, many more transcripts of genes involved in prostaglan-
din signaling and metabolism were found to be expressed in
equine endometrium on Day 12 but were not differentially
expressed according to the thresholds applied in the statistical
analysis (Supplemental Table S7).

Angiogenesis and Steroid Hormone/Prostaglandin
Signaling Interaction Networks

Putative interaction networks for genes related to the
process of angiogenesis (Fig. 2) and genes described in context
of steroid hormone and prostaglandin signaling (Fig. 3), were
generated based on a literature search, CoPub results, and
interactions from the Pathway Architect database and other
public protein interaction databases. For the process of
angiogenesis, genes representing different levels of angiogen-
esis regulation were found, such as members of the
angiopoietin family, members of the VEGF system, hypoxia-
induced genes, and genes regulating endothelial cell fate (Fig. 2
and Supplement to Fig. 2). The interaction network related to
steroid hormone and prostaglandin signaling was clearly
dominated by estradiol (E2) with many E2-regulated genes
(Fig. 3 and Supplement to Fig. 3). There were also a number of
genes described as negative regulators of estrogen receptor 1
(ESR1), genes involved in regulation of growth and differen-
tiation, and genes involved in E2 metabolism. A considerable
number of genes were involved in both networks.

Day 12 of Pregnancy Down-Regulated Genes

For the down-regulated genes, quantitatively enriched
functional terms were obtained neither with DAVID Functional
Annotation Clustering nor with CoPub. The down-regulated
genes belonged to very different functional classes. The five
most down-regulated genes were FXYD domain-containing
ion transport regulator 4 (FXYD4, �3.4), keratin 4 (KRT4,
�2.8), cartilage acidic protein 1 (CRTAC1,�2.4), RELT-like 2
(RELL2, �2.2), and cathepsin L1 (CTSL1, �2.2).

TABLE 2. Quantification of selected genes with quantitative real-time RT-PCR: Day 12 vs. Day 8.a

Gene symbol

qPCR Co 12/8 Array Co 12/8 qPCR Pr 12/8 Array Pr 12/8

FC P-value FC q-value FC P-value FC q-value

CTSL1 �2.6 0.025 �2.7 0.010 �8.4 ,0.001 �7.0 ,0.001
ERRFI1 1.3 0.489 1.5 0.148 2.3 0.002 3.6 ,0.001
FGF9 �2.2 0.007 �1.6 0.019 4.4 0.040 5.9 ,0.001
HHIP �1.1 0.589 1.1 0.435 �1.6 0.063 �1.3 0.137
KDR 1.1 0.490 1.1 0.341 2.3 0.011 1.9 0.003
KLF9 1.1 0.596 1.1 0.272 1.5 0.108 1.5 0.229
OXTR 1.1 0.896 1.2 0.339 2.2 0.032 1.9 0.006
PAQR5 2.1 0.370 1.0 0.511 14.3 0.012 2.2 0.007
PTGER4 1.1 0.829 1.1 0.359 2.6 0.003 2.4 ,0.001
PTGR1 4.2 0.020 1.7 0.054 12.9 0.001 3.9 ,0.001
SFRP1 1.1 0.855 1.2 0.245 1.5 0.126 1.9 0.014
SLC36A2 30-UTRb 2.9 0.029 3.6 0.012 144.2 ,0.001 198.0 ,0.001
SLC36A2 ORFc 2.2 0.024 �1.1 0.312 93.7 ,0.001 2.1 0.001
SLCO2A1 1.2 0.567 1.1 0.384 2.4 0.032 2.0 0.026

a Pr: pregnant; Co: control; FC: fold change.
b UTR, untranslated region.
c ORF, open reading frame.
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DISCUSSION

Biological Model and Quantitative Stereological Analysis
of the Biopsy Samples

In order to reduce biological noise due to genetic variability
in our biological model, pregnant and nonpregnant samples
were obtained from the same mare (paired design) so that each
animal served as its own control. The heatmap in Figure 1a
demonstrates the relevance of genetic variability between

animals by grouping the corresponding pregnant and control
sample of each mare, thus confirming the importance of paired
analysis. Potential effects by the order of sampling were
excluded by randomization, i.e., for some animals the pregnant
samples and for other animals the nonpregnant samples were
taken first.

Because the endometrial tissue is composed of different cell
types, such as surface epithelium, glandular epithelium, stromal
cells, and blood vessels, all biopsy samples were analyzed by

FIG. 2. Interaction network of genes related to the process of angiogenesis. Genes with higher mRNA levels in pregnant endometrium are highlighted in
red, genes with lower levels in blue. Genes/proteins are in white, small molecules in green, and biological processes in yellow. Interaction types: dark
blue squares: binding; light blue squares: expression; green squares: regulation; green circles: promoter binding; cyan triangles: transport; cyan diamonds:
metabolism. Further information on nodes and interactions can be found in Supplement to Figure 2 (navigable HTML).

TABLE 4. Differentially expressed genes involved in prostaglandin signaling and metabolism.

Eca gene symbol Eca gene name
Eca Entrez
gene ID

Hsa gene
symbol Hsa gene name

Hsa Entrez
gene ID

FC
Pr/Coa

q-value
(%)

LOC100053557 similar to protaglandin
receptor EP3E

100053557 PTGER3 prostaglandin E receptor 3
(subtype EP3)

5733 1.8 1.6

LOC100053208 similar to prostaglandin E2
receptor EP4 subtype

100053208 PTGER4 prostaglandin E receptor 4
(subtype EP4)

5734 2.0 0

LOC100070491 similar to prostaglandin F
synthase

100070491 AKR1CL1 aldo-keto reductase family 1,
member C-like 1

340811 2.3 1.3

LOC100070501 similar to prostaglandin F
synthase

100070501 AKR1CL1 aldo-keto reductase family 1,
member C-like 1

340811 2.2 2.1

PLA2G1B phospholipase A2, group IB
(pancreas)

100033889 PLA2G4A phospholipase A2, group IVA
(cytosolic, calcium-dependent)

5321 1.6 0.6

LOC100065438 hypothetical LOC100065438 100065438 SLCO2A1 solute carrier organic anion
transporter family, member 2A1
(prostaglandin transporter)

6578 2.0 2.1

ENSECAG00000004698 PTGR1 prostaglandin reductase 1 22949 2.7 1.8

a FC, fold change; Co, control; Pr, pregnant.
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quantitative stereological analysis to determine quantitative
information about their tissue composition. Overall, tissue
composition was very consistent within the biopsy samples.
This is an important feature because biopsy sample composi-
tion can have a strong influence on microarray findings
because of different mRNA concentration changes in different
cell types. The 5.6-fold higher proportion of luminal epithelial
cells in the Day 12 control sample of mare #3 indicated a
different biopsy sample composition, most probably causing
the lower or even inverse gene expression differences observed
for many of the DEGs for this mare (Supplemental Table S2
and Fig. 1c). This finding underlines the importance to verify
similar biopsy sample composition because this may have a
strong influence on microarray results.

Differential Gene Expression at Days 8 and 12
and Between Days 8 and 12 of the Estrous Cycle

Microarray analysis of endometrial biopsy samples collect-
ed from Day 8 pregnant mares in comparison to corresponding
control samples did not reveal any DEGs. Also, the exclusion
of data from mare #3 because of an aberrant up-regulation of
immune response genes in the pregnant sample did not result in
identification of DEGs. Validation of 13 selected genes by
qPCR confirmed the microarray data for these genes. This
result suggests that there are no detectable changes in mRNA

concentrations in endometrial biopsy samples on Day 8 of
pregnancy in response to the early conceptus, which is in line
with the beginning secretion of appreciable amounts of steroid
metabolites by the equine embryo at around Day 10 of
gestation [39, 40].

In contrast, significant expression differences were observed
at Day 12 of pregnancy. For these genes, gene expression was
also compared between the control samples of Days 8 and 12
and between pregnant samples of Days 8 and 12. Although the
microarray analyses of Days 8 and 12 were performed at
different times and slight technical biases influencing compa-
rability of Day 8 and Day 12 data sets cannot be excluded, the
results of the qPCR validation showed good agreement with
the array results. The additional analysis of the expression
between Day 8 and Day 12 control samples showed that most
of the Day 12 (pregnant vs. control) down-regulated genes are
down-regulated from Day 8 to Day 12 in the control samples as
well, indicating an enhancement of down-regulation of these
genes at Day 12 by the presence of a conceptus. Some of the
genes up-regulated at Day 12 of pregnancy are also down-
regulated from Day 8 to Day 12 in the control samples, i.e., the
higher mRNA levels in Day 12 pregnant compared to Day 12
control samples are rather due to a prevention of down-
regulation in response to the conceptus except for FGF9 and
FGF9-antisense transcripts, which are additionally up-regulat-
ed in Day 12 pregnant samples. Finally, an increased

FIG. 3. Interaction network of genes related to steroid hormone and prostaglandin signaling. Genes with higher mRNA levels in pregnant endometrium
are highlighted in red, genes with lower levels in blue. Genes/proteins are in white, small molecules in green, and biological processes in yellow.
Interaction types: dark blue squares: binding; light blue squares: expression; green squares: regulation; green circles: promoter binding; cyan triangles:
transport; cyan diamonds: metabolism. Further information on nodes and interactions can be found in Supplement to Figure 3 (navigable HTML).
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expression from Day 8 to Day 12 in the control samples is
further enhanced by the presence of a conceptus for some
genes. These relatively complicated expression changes may be
caused by the complex interactions of steroid hormone
regulations in the equine endometrium.

Characterization of the DEGs by GSEA

GSEA revealed a number of enriched gene sets that
provided a first characterization of the obtained DEGs and
helped to identify genes that could have conserved functions
across species. Overall, the number of genes overlapping with
the top 500 genes of the ranked Day 12 gene list that contain
the up-regulated genes was rather low for most of the identified
gene sets. The gene set with the highest enrichment score was
derived from the recently published study by Klein et al. of
Day 13.5 pregnant endometrium in comparison to nonpregnant
endometrium [30]. Similar to our results, more genes with
higher expression levels in pregnant endometrium were found
in this study. The overlap of the Day 13.5 up-regulated genes
with the top 500 of our study was 24 (of 63) but only 2 for the
down-regulated genes (in top 100 down-regulated genes). This
could be an indication that there are different responses to the
conceptus at these two time points of early pregnancy.
However, comparability of the microarray results is limited
because different Agilent microarrays (Klein et al. used a
custom array) and different techniques (Klein et al.: dual-color
hybridization and Axon scanner resulting in lower sensitivity)
were used, and many of the probes on the custom array of
Klein et al. are not well annotated. The significant overlap with
gene sets containing genes up-regulated in human endometri-
um during the window of implantation [31, 41] indicates that
there are similarities in gene expression changes in equine und
human endometrium during early pregnancy. Furthermore,
significant enrichment was found for genes induced at Day 14
of early pregnancy in porcine endometrium [38] and at Day 18
of early pregnancy in bovine endometrium (our unpublished
data), but the number of genes overlapping with the top 500 of
the Day 12 ranked gene list was relatively low. Higher numbers
of overlapping genes with the top 500 were found for genes
regulated during the estrous cycle in bovine endometrium and
estrogen-induced genes in general. The gene set with the
highest overlap with the top 500 genes (Boquest CD31þ vs.
CD31� [32]) comprised genes differentially expressed between
two types of CD45 (PTPRC)� CD34

þ
CD105 (endoglin)

þ

stromal stem cells distinguished by the expression of CD31
(PECAM1). At first glance, the relatively high overlap with
this gene set seems somewhat unexpected but can be explained
by the different cell types present in the endometrium. For
example, bovine endometrial stromal cells have been charac-
terized to have similarities to mesenchymal progenitor cells
[42]. Furthermore, the mRNA coding for CD31 (PECAM1), a
marker of endothelial cells that has also been described in
context of angiogenesis [43], was found as 1.6-fold up-
regulated in the samples of Day 12 pregnant endometrium.
Boquest et al. [32] described the CD31

þ
cells as closely related

to microvascular endothelial cells based on their up-regulated
transcripts, which agrees well with the results of DAVID and
CoPub where terms related to angiogenesis were found as
quantitatively enriched. A substantial overlap was also found
for the CD31

þ
down-regulated gene set (38 genes in the top

500) that contains transcripts associated with extracellular
matrix, transcripts that have been shown as expressed in early
osteoblast differentiation, osteoclast-related transcripts, and
transcripts typical of neuronal tissue [32]. Again, related terms
were found with DAVID and CoPub, such as extracellular

region, tissue remodeling, bone remodeling, neurogenesis, and
inflammation. Overall, the identification of biologically very
different gene sets could reflect 1) differential gene expression
in different compartments of the endometrium and 2) a
response to different embryonic signals. This corresponds to
the fact that the equine conceptus produces different molecules
[19], such as progesterone, E2, and prostaglandins.

Genes with Conserved Roles Across Species

The analysis of the endometrium-related gene sets from
different species revealed a number of genes that could have
conserved regulatory roles in the endometrium across species.
Stanniocalcin 1 (STC1) has been described in multiple species,
e.g., as a marker for implantation in pigs [44]. In sheep, STC1
mRNA and protein are up-regulated in the uterine glands after
Day 16 of pregnancy, probably regulating growth and
differentiation of the fetus and placenta [45]. Increase of
STC1 expression has also been shown in rat uterus during
embryo implantation and decidualization [46] and during the
window of implantation in human endometrium [31]. In our
gene expression study of bovine endometrium during the
estrous cycle, highest expression levels were found at estrus,
suggesting an up-regulation by E2 [47]. Crystallin, alpha B
(CRYAB), coding for a member of the small heat shock protein
(HSP20) family, is also up-regulated in human endometrium
during the window of implantation [31, 41] and in bovine
endometrium at Day 18 of pregnancy, as well as at estrus
compared to diestrus (our unpublished data). In human
myometrium CRYAB interacts with HSP27 (HSPB) and
decreased CRYAB expression at the time of labor is thought to
liberate HSP27 (HSPB) that participates in cytoskeletal
remodeling in myometrial cells [48]. Up-regulation of IGFBP2
was also found in porcine endometrium at Day 14 of
pregnancy [38] and at Day 18 of pregnancy [49] as well as
at estrus in bovine endometrium [47]. IGFBP2 expression has
also been shown to be regulated by E2 and progesterone in
human endometrial stromal cells [50]. Furthermore, IGFBP1
has been reported as a common endometrial marker of
conceptus elongation in sheep and cattle [51] and to mediate
progesterone-induced decidualization in human endometrium
[52]. In addition, IGFBP1 and TIMP metallopeptidase
inhibitor 1 (TIMP1) have been demonstrated to inhibit
trophoblast invasiveness in human endometrium [53, 54].
Tumor necrosis factor (ligand) superfamily member 10
(TNFSF10, TRAIL) mRNA has been shown to be up-regulated
in human endometrium during the window of implantation
[31] and in bovine endometrium at Day 18 of pregnancy [55].
Furthermore, a role of TNFSF10 in the modulation of the
cytokine milieu at the implantation site has been suggested
based on the differential regulation of cytokines and chemo-
kines in human endometrial stromal cells by TNFSF10 [56]. In
addition to the genes at the top of Supplemental Table S4, a
literature search revealed further genes described in the context
of pregnancy in other species. Namely, amphiregulin (AREG),
a member of the epidermal growth factor family, has been
attributed a function in embryonic attachment in humans [53].
Abundant expression of insulin-like growth factor binding
protein 7 (IGFBP7) has been found in human glandular
epithelial cells during the secretory phase, and an in vitro
knockdown revealed a role of IGFBP7 protein in differenti-
ation of these cells [57]. In porcine endometrium induction of
prolactin receptor (PRLR) mRNA by estradiol was shown,
whereas coadministration of progesterone abolished this effect
[58]. Expression of the PGE2 receptors PTGER3 and PTGER4
was investigated in the mouse uterus, and the observed
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expression patterns in the preimplantation and postimplanta-
tion period indicated a role in uterine preparation for
implantation and in the process of decidualization, respective-
ly [59]. Moreover, a number of genes (e.g., STC1, ATP2A3,
TRPV5, TRPV6) have been described in the context of calcium
ion binding and regulation of calcium homeostasis that has
been implicated in establishment and maintenance of preg-
nancy in pigs [60]. Finally, genes are up-regulated at Day 12
of pregnancy in equine endometrium that have been described
as essential for successful pregnancy in the mouse, such as
ERBB receptor feedback inhibitor 1 (ERRFI1) [61], a negative
regulator of ESR1 and nuclear receptor subfamily 2, group F,
member 2 (NR2F2, COUP-TFII) [62–64]. NR2F2 has been
shown to repress the oxytocin gene promoter in human uterine
epithelial cells [65] and to regulate stromal cell differentiation
(decidualization) and, indirectly, the suppression of estrogen
activity required for establishing a receptive uterus in the
mouse [63]. In bovine endometrium we found increased
expression at Day 18 of pregnancy [55] and decreased NR2F2
transcript levels in endometrium from clone pregnancies vs.
IVF pregnancies at Day 18 of pregnancy [66].

Genes Related to Angiogenesis and Vascular Remodeling

The search for quantitatively enriched functional terms
(DAVID) and biological keywords (CoPub) associated with the
Day 12 up-regulated genes revealed the highly enriched
functional term angiogenesis. In the context of this process,
increased endometrial vascular perfusion has been shown on
Days 12–16 in both uterine horns of pregnant mares compared
to nonpregnant mares by transrectal color Doppler ultrasonog-
raphy [67]. Also, dysregulation of angiogenesis in the
endometrium during early pregnancy has been found in the
context of pregnancy failure [68]. To get an overview of the
angiogenesis-related genes represented in the DEGs and their
putative interactions, an interaction network was drawn (Fig.
2). DEGs were found for many regulatory systems of the
complex process of angiogenesis, namely the VEGF system
(receptors KDR, NRP2), the angiopoietin family (ANGPT2,
ANGPTL2, ANGPTL4, TEK), different regulators of endothe-
lial cells, and hypoxia-induced genes. There are also negative
regulators of angiogenesis up-regulated in Day 12 pregnant
endometrium, such as thrombospondins 1 and 2 (THBS1,
THBS2), known inhibitors of endothelial cells and angiogen-
esis [69]. The complex regulation of angiogenesis and the
results of the quantitative stereology (no difference in the
proportion of blood vessels between pregnant and control
samples) indicate that there is a remodeling of vascularization
rather than neoangiogenesis or that neoangiogenesis is not yet
microscopically detectable in Day 12 pregnant endometrium.
This remodeling of vascularization is likely to play a role in
maternal support of conceptus growth and in preparing the
uterus for the prospective pregnancy.

Genes Related to Steroid Hormone
and Prostaglandin Signaling

Furthermore, many genes were found that are probably
regulated by the steroid hormones E2 and progesterone in Day
12 pregnant endometrium. This is in line with the finding that
the embryo begins to secrete significant amounts of estrogens
as early as Day 10 after ovulation [70, 71] and progesterone is
the key hormone that prepares the endometrium for establish-
ment and maintenance of pregnancy [72]. Conceptus estrogens
are also supposed to have multiple effects on early pregnancy,
such as stimulation of early conceptus migration and changes

in uterine tonicity, blood flow, and endometrial secretory
activity important to the nutrition of the preimplantation
conceptus [73]. An important mediator of estrogen signaling
in equine endometrium could be FGF9 (microarray 9-fold,
qPCR 8-fold up-regulated in Day 12 pregnant endometrium)
that has been described as an autocrine endometrial stromal
growth factor induced by E2 in human endometrial stroma
[74]. Induction of FGF9 expression by PGE2 through the EP3
receptor was also demonstrated in human endometrium [75]. In
contrast to the localization in human endometrium, FGF9
protein expression in the porcine endometrium has been
detected in the glandular epithelium at Day 14 of pregnancy
[38]. The complex expression pattern of FGF9 mRNA (see
above) and the up-regulation of a putative antisense transcript
(8-fold, Supplemental Table S2) make this gene an especially
interesting candidate.

In addition to genes up-regulated by E2, a number of negative
regulators of estrogen signaling, e.g., KLF5, ERRFI1, and
HSPB2 (Fig. 3), were found as up-regulated that could be
indications for either a negative feedback regulation in response
to the E2 signal or the result of progesterone action on the
endometrium. A study of steroid metabolites produced by the
equine conceptus revealed 17-alpha-OH-progesterone as the
major steroid metabolite [39]. Interestingly, this metabolite binds
to the progestin and adipoQ receptor family member V (PAQR5)
[76], also known as membrane progestin receptor gamma, which
is up-regulated in Day 12 pregnant endometrium (qPCR: 4.7-
fold). PAQR5 is one of the receptors mediating nongenomic
effects of progesterone. The equine conceptus is also known to
secrete prostaglandins E2 and F2-alpha [12] that could play a
role in pregnancy recognition and prevention of luteolysis. A
number of genes that function in context of prostaglandin
signaling and metabolism were found as up-regulated. Further-
more, mRNAs of PGE2 receptors EP3 (PTGER3) and EP4
(PTGER4) were up-regulated, similar to findings in the pig, in
which PTGER2 is up-regulated in early pregnancy [77].
However, in contrast to studies in porcine endometrium, mRNA
levels of prostaglandin E synthases did not differ between
pregnant and nonpregnant equine endometrium. There was also
no difference in mRNA levels for the known PGF

2a synthases;
only two predicted PGF

2a synthases that have homology to
AKR1CL1 (pseudogene in humans) were approximately 2-fold
up-regulated. Unlike in ruminants, where up-regulation of
mRNA for oxytocin receptor (OXTR) is prevented by the
signaling of interferon tau [78], OXTR mRNA was slightly up-
regulated in equine endometrium at Day 12 of pregnancy.

Genes Possibly Related to the Process
of Mechanotransduction

Although the results of this study suggest an endometrial
response to different signaling molecules, this does not exclude
a mechanical signaling induced by the migrating conceptus. In
a recent study a small intrauterine device (water-filled plastic
ball with a diameter of 20 mm) was shown to induce prolonged
luteal function [21], further supporting the concept of
pregnancy recognition via mechanosensation. A study in sheep
also described changes at the maternal-conceptus interface and
uterine wall during pregnancy reflecting an increased mecha-
nosensation and mechanotransduction [79]. Possibly, changes
in mRNA expression levels at Day 12 of pregnancy in the mare
could in part reflect mechanosensation responses to the
conceptus. Some of the up-regulated genes of our study were
already described in the context of mechanotransduction: a
direct response to mechanical force has been shown for
PECAM1 protein [80]; up-regulation of IGFBP1 secretion in
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response to mechanical stretch was found by Harada et al. [81]
in decidualized endometrial stromal cells; two members
(RND1, RND3) of the Rho GTPase family (key regulators of
cytoskeletal signaling) and a Rho GTPase activating protein
(ARHGAP29) are up-regulated in Day 12 pregnant endometri-
um; and Rho activation has been described in the context of
mechanotransduction-associated alveolar epithelial cell differ-
entiation [82].

In conclusion, this study is the first systematic analysis of
maternal transcriptome changes in response to the presence of
an embryo in the mare on Days 8 and 12 of pregnancy. The
stereological analysis of the biopsy samples showed that the
homogenous composition of endometrial biopsies is an
important issue for endometrial transcriptome analysis. No
changes in endometrial gene expression were detectable at Day
8 of pregnancy. The DEGs identified on Day 12 in response to
the early embryo evidence the orchestrated roles of estrogens,
progesterone, and prostaglandin E2 in regulating gene
expression in the equine endometrium in context of establish-
ment and maintenance of pregnancy. Additionally, a form of
mechanotransduction by the migrating conceptus is likely of
importance. A large number of interesting candidate genes and
biological processes were identified as potentially important for
endometrial remodeling in response to the early embryo and
need further detailed analysis.
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1. Introduction
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Progesterone produced from a viable corpus luteum
(CL) is essential for maintenance of early pregnancy in
the mare. During the estrous cycle luteolysis takes plac
between days 14 and 16 after ovulation, due to an oxytocin
dependent pulsatile release of prostaglandin F2� (PGF2�
from the endometrium (Stout et al., 1999). The equine con
ceptus must therefore prevent luteal regression, a proces
commonly referred to as maternal recognition of preg
nancy. Unlike in other large domestic animal species, th
nature of embryo–maternal communication and mater
nal recognition of pregnancy in equids is still not wel
understood. To obtain a systematic overview of transcrip
tome changes in the equine endometrium underlying thi
complex embryo–maternal dialogue, a microarray study o
endometrial biopsy samples from six mares at day 12 o
early pregnancy and the corresponding non-pregnant stag
was performed.

2. Materials and methods

Endometrial samples were collected from six warm
blood mares belonging to the Bavarian principal and stat
stud of Schwaiganger, Germany. All mares were insemi
nated artificially with >5 × 108 freshly collected, extended
stallion spermatozoa. Follicular development and ovu
� This paper is part of the supplement entitled “Proceedings of the
Tenth International Symposium on Equine Reproduction”, Guest Edited
by Margaret J. Evans.
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by transrectal ultrasonography and endometrial biopsies
were obtained on day 12 of pregnancy. Non-pregnan
control samples were obtained from the same mares
on day 12 of a different estrous cycle within breeding
season. Blood samples were collected for measuremen
of peripheral plasma progesterone concentrations. To
estimate composition of the biopsies, they were cut trans
versely into six pieces, and every second piece was used
for quantitative stereology to calculate the proportion
of surface and glandular epithelium. From the remain
ing pieces of the biopsy samples total RNA was isolated
using Trizol® Reagent (Invitrogen, Karlsruhe, Germany)
Microarray analysis was performed using Agilent 4x44k
Horse Gene Expression microarrays (AMADID 021322, Agi
lent Technologies, Waldbronn, Germany). Gene expression
signals were filtered based on ‘well above background
flags and normalized. Statistical analysis was performed
with the Microsoft Excel add-in ‘Significance analysis o
microarrays’ (SAM, two-class paired) (Tusher et al., 2001)
Significance thresholds were set as follows: (1) false dis
covery rate (FDR) <5% and fold change at least 1.5-fold
(2) ratio fold change/q-value ≥0.75 to have greater confi
dence for smaller differences. The Agilent Horse microarray
was re-annotated based on Ensembl 55, Entrez Gene
and BLAST analyses to obtain equine and human (puta
tive orthologous genes) Entrez Gene identifiers and the
corresponding gene information. Functional analysis o
the array data was performed using bioinformatics tools
like Gene Set Enrichment Analysis (GSEA) (Subramanian
et al., 2005) and the Database for Annotation, Visual
ization and Integrated Discovery (DAVID) (Dennis et al.
2003).

http://www.sciencedirect.com/science/journal/03784320
http://www.elsevier.com/locate/anireprosci
mailto:bsachs@lmb.uni-muenchen.de
dx.doi.org/10.1016/j.anireprosci.2010.04.088
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Table 1
Results of Functional Annotation Clustering of genes up-regulated at day 12 of pregnancy.

Functional group description Enrichment scorea # Genesb

Glycoprotein/signal peptide/extracellular region/disulfide bond 14.52 150
Developmental process/cell differentiation 10.57 121
Anatomical structure morphogenesis/blood vessel development/angiogenesis 8.34 50
EGF-like domain/EGF-like calcium-binding/calcium ion binding 5.54 37
Glycoprotein/membrane/plasma membrane 5.38 178
Carbohydrate binding/glycosaminoglycan binding 4.24 15
Response to external stimulus/response to stress/blood coagulation/wound healing 3.94 38
Cell differentiation/apoptosis/regulation of apoptosis/negative regulation of apoptosis 3.76 63
Anatomical structure formation/cell motility 3.63 28
Tissue development/tissue remodeling/bone remodeling 2.38 15
Nervous system development/cell morphogenesis/neurogenesis 2.01 34
Cell morphogenesis/cell growth 1.91 18
Signal transducer activity/receptor activity/transmembrane receptor activity 1.91 80
Cell proliferation/positive regulation of cell proliferation 1.79 38
Regulation of apoptosis 1.76 31
Cytoplasmic vesicle 1.69 14
Di-, tri-valent inorganic cation homeostasis 1.59 11
Enzyme regulator activity/endopeptidase inhibitor activity 1.54 22

a Geometric mean (in −log scale) of member’s p-values of the corresponding annotation cluster.
b Total number of different genes in a functional group.

3. Results
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Statistical analysis of microarray data revealed 374
differentially expressed genes in endometrial tissue sam
ples of pregnant and control mares on day 12. Of these
genes, 332 transcripts showed at least 1.5-fold greate
gene expression values, and 42 transcripts showed lesse
gene expression values in biopsy samples from pregnan
endometrium compared to control biopsy samples. The
gene expression data set was compared to a numbe
of different gene sets (mainly derived from our unpub
lished data) containing, for example, genes up-regulated in
endometrium of ovariectomized cows after estradiol treat
ment, genes up-regulated in bovine endometrium during
estrus and diestrus, respectively, and genes up-regulated
in endometrium of early pregnant pigs (data not shown)
Significant enrichment was found for all of these gene
sets in the data set but no predominant gene set could
be found. DAVID Functional Annotation Clustering of the
up-regulated genes resulted in a number of clusters o
quantitatively enriched functional terms such as extracel
lular region, angiogenesis, calcium ion binding, cell growth
cell proliferation and differentiation (Table 1).

4. Discussion

Microarray analysis of endometrial biopsy samples col
lected from day 12 pregnant mares in comparison to
corresponding control samples revealed several hundred
differentially expressed genes, most of them with greate
mRNA levels in pregnant samples. To reduce biologica
noise due to genetic variability, pregnant and non-pregnan
samples were obtained from the same mare (paired design
so that each animal served as its own control.

Gene set enrichment analysis did not reveal clearly
enriched gene sets corresponding to the obtained gene
expression differences between day 12 pregnant and non
pregnant endometrium. However, there were significan
overlaps with genes induced during early pregnancy in
induced during the luteal phase in bovine endometrium
This finding corresponds to the different potential signaling
molecules produced by the equine conceptus (Betteridge
2000) and suggests a composition of different pregnancy
recognition signals.

Analysis of the known or inferred functions of the identi
fied up-regulated genes revealed a number of significantly
enriched biological themes. One highly enriched functiona
group contains genes related to the process of angiogenesis
Dysregulation of angiogenesis in the endometrium during
early pregnancy has been found in context with pregnancy
failure (Tayade et al., 2007). Furthermore, a number o
genes have been described in context of calcium ion bind
ing and regulation of calcium homeostasis that has been
implicated in establishment and maintenance of pregnancy
in pigs (Choi et al., 2009). Genes related to cell growth, cel
proliferation, and differentiation may reflect the endome
trial remodeling needed for the support of embryo growth
and development. Finally, several genes related to PGE2 sig
naling and prostaglandin metabolism were regulated tha
could have a role for prevention of luteolysis.

This study is the first systematic analysis of materna
transcriptome changes in response to the presence of an
embryo in the mare on day 12 of gestation and provide
the basis for in-depth analyses of the complex changes in
the equine endometrium in response to the early embryo
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4 Discussion and Perspectives 

In addition to the data discussed in Publication 1 “Microarray analysis of equine 

endometrium at days 8 and 12 of pregnancy” and Publication 2 “Identification of 

differentially expressed genes in equine endometrium at day 12 of pregnancy”, further 

aspects will be discussed regarding the early events underlying establishment and 

maintenance of pregnancy in the mare. 

Uterocalin (P19 lipocalin) 

The unusual long pre-attachment period of the conceptus is a special feature in equine 

pregnancy. Therefore, nutrition by endometrial gland secretions seems obviously 

necessary for survival and development of the rapidly growing conceptus before a direct 

contact between maternal and fetal tissues is established [16, 102]. 

One of the major progesterone-dependent endometrial proteins secreted by the 

endometrial glands in the mare is uterocalin (P19 lipocalin). Uterocalin sticks to the 

embryonic capsule as the conceptus moves through the uterine lumen and is thought to 

transport a range of biologically important lipids to the conceptus. Equids appear to need 

particularly large quantities of this protein during early pregnancy, and a limited ability of 

the endometrium to properly secrete P19 is supposed to be one cause for subfertility in 

mares. Furthermore the cessation of P19 secretion coincides with the beginning of 

capsule dissolution (days 20/21), suggesting uterocalin an important role in supplying the 

embryo before a direct contact is established between the maternal and fetal tissues [27, 

103]. Furthermore, uterocalin has been detected in large amounts in the equine 

endometrium during diestrus and early pregnancy [104]. According to these results, P19 

mRNA yielded high expression levels in equine endometrium at day 12, independently of 

the presence of a conceptus. 

Solute carrier family 36, member 2 (SLC36A2) 

Solute carrier family 36, member 2 (SLC36A2) is likely of interest as it displayed the 

greatest expression fold change on day 12 (84.3-fold) and on day 13.5 [105] of pregnancy 

in equine endometrium, compared to the non-pregnant stage. SLC36A2 encodes a 

transporter protein also known as tramdorin1 or PAT2 and is broadly expressed in 

mammalian tissues. PAT2 belongs to the SLC36 transporter family and is known to 

mediate the symport of protons and small amino acids. The more intensively studied 

family member PAT1 (SLC36A1) plays a dual role in mammals, depending on its cell-
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specific subcellular localization. In brain neurons, its localization adjunct to lysosomes 

implies a role in the export of small amino acids generated by lysosomal proteolysis. On 

the other hand, in small intestinal epithelial cells, it is involved in the absorption of small 

amino acids and their derivatives at the apical membrane [106]. Although the 

physiological significance of PAT2 is yet not known, due to the tremendous up-regulation 

of SLC36A2 in pregnant mares, it seems quite possible that it may contribute to the 

increasing histotrophe support essential for survival and development of the early 

conceptus.  

Progestin and adipoQ receptor family, member 5 (PAQR5) 

The steroid hormone progesterone is indispensable for mammalian reproduction by 

controlling key female reproductive events that range from ovulation to implantation, 

maintenance of pregnancy and mammary development. Not all effects of progesterone, 

however, can be explained by the classical model of steroid action and, like other steroid 

hormones, progesterone also elicits a variety of rapid signaling, independently of 

transcriptional or genomic regulation [107]. 

A candidate of special interest in the horse is progestin and adipoQ receptor family 

member-5 (PAQR5), which was significantly up-regulated in day 12 pregnant 

endometrium (qPCR: 4.7-fold). PAQR5, also known as membrane progestin receptor 

gamma (mPRγ) is one of the receptors mediating non-genomic effects of progesterone. 

What makes it even more interesting is that 17-alpha-OH-progesterone, which is the 

major steroid metabolite produced by the conceptus between days 7 and 14 [21], has 

been shown to bind to PAQR5 [108]. 

Membrane progestin receptors (mPRs) are thought to mediate rapid physiological 

functions in a variety of tissues, and several observations have sparked enormous interest 

in the role of these novel receptors in female reproduction [109]. In fish, for example, 

mPRs have been shown to mediate progesterone-dependent oocyte maturation and play 

an important role in stimulating sperm hypermotility [110, 111]. In mammals, mPRs have 

been implicated in the regulation of GnRH secretion in mice, and in the onset of parturition 

in humans [112]. Furthermore recent studies suggest that regulation of gamete transport 

in the oviduct is mediated by mPRβ and mPRγ, via non-genomic receptor mechanisms, in 

several species [113, 114]. 

However, information about endometrial membrane progestin receptors is still limited, but, 

in view of the large quantities of 17-alpha-OH-progesterone secreted by the conceptus 

and the up-regulation of PAQR5 mRNA during early pregnancy, this signaling pathway 

needs to be further investigated, especially regarding its function in the pregnant uterus. 
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Estrogens and Estrogen receptor 1 (ESR1) 

Microarray analysis also revealed a number of negative regulators of estrogen signaling, 

e.g., kruppel-like factor 5 (KLF5), ERBB receptor feedback inhibitor 1 (ERRFI1), and heat 

shock 27kDa protein 2 (HSPB2). However, it did not show differential expression of ESR1 

on day 12 of pregnancy, which coincides with the findings that ESR1 expression levels do 

not differ at day 10, but are significantly decreased by days 13.5 and 15 of pregnancy in 

equine endometrium compared to the corresponding non-pregnant stages [105, 115]. 

These data indicate that there is a down-regulation or suppression of up-regulation of 

ESR1 in pregnant mares during the time when cyclical luteolysis would normally occur, 

which is of particular interest because of the potential involvement of estrogens in 

suppressing luteal regression.  

In face of the large quantities of estrogen synthesized by the equine conceptus from day 

10 after ovulation [21], it might be possible that interfering actions of progesterone and 

conceptus-derived estrogens cause a down-regulation of ESR1 from day 13.5 in pregnant 

mares. Indeed, the amount of steroid receptor mRNA has been shown to change with the 

fluctuating steroid environment in the equine endometrium. Furthermore, estrogens are 

known to regulate expression of its receptor, both positively and negatively, in various 

tissues including the uterus (42–44).  

However, in view of these facts, and since estrogens are known to be the primary 

pregnancy recognition signal in pigs and regulation of its receptor via IFNτ plays a central 

role in inhibition of luteolysis in ruminants, further investigations are needed to discover 

the precise role of ESR1 and its regulation in the context of MRP in the horse. 

Additionally, conceptus estrogens are also supposed to have multiple effects on early 

pregnancy, such as stimulation of early conceptus migration [19], and changes in uterine 

tonicity, blood flow and endometrial secretory activity important for nutrition of the pre-

implantation conceptus [116]. 

Oxytocin receptor (OXTR) 

Oxytocin and its receptor play an important role in luteal regression in mares and 

ruminants by inducing the pulsatile release of luteolytic PGF2α from the endometrium 

during late diestrus. In ruminants, the suppression of ESR1 and OXTR by IFNτ is a central 

event in inhibiting luteolysis during early pregnancy [40]. Likewise, the response of PGF2α 

to oxytocin in the mare is maximal at the time of luteolysis, but is completely diminished 

during early pregnancy and cannot be induced neither with endogenous nor with 

exogenous oxytocin [40, 51]. 
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However, the decreased oxytocin responsiveness preventing luteolysis in days 11 – 14 

pregnant mares [40] is controversially discussed. In one study, the measurement of 

endometrial OXTR protein concentrations revealed significantly increased amounts on 

day 14 of the estrous cycle, but no such increase was evident during pregnancy, 

suggesting that up-regulation of endometrial OXTR is suppressed by the conceptus during 

early pregnancy [51]. In another study, the oxytocin receptor density in pregnant mares 

was similar to that in non-pregnant mares but affinity of the oxytocin receptors was lower 

[41]. In our study, OXTR mRNA was up-regulated 1.6-fold in eindometrial biopsy samples 

from day 12 pregnant mares. Regarding the decreased responsiveness to oxytocin during 

this time, these results suggest that inhibition of PGF2α release in pregnant mares may 

occur rather due to a lower affinity of OXTR towards oxytocin or an uncoupling of the 

oxytocin-induced release of PGF2α, than due to a suppression of OXTR expression as it 

has been reported in ruminants. However, other mechanisms cannot be excluded to 

regulate OXTR expression and information on how the abundance of both mRNA and 

protein fluctuate is required to gain a more complete understanding of its regulation during 

early pregnancy. 

Prostaglandin F2α synthesis 

Since endometrial PGF2α production is largely suppressed during early pregnancy in 

mare, several approaches were made to investigate whether the equine conceptus 

directly suppresses uterine PGF2α synthesis.  

One approach targets cytosolic phospholipase A2 (PLA2G4A; cPLA2). cPLA2 is activated 

by increased intracellular calcium (Ca 2+) levels, resulting in its translocation from the 

cytosol and nucleus to perinuclear membrane vesicles. It is thought to mediate 

endometrial PGF2α production in the horse endometrium as its expression has been 

shown to be negatively correlated with peripheral plasma progesterone concentrations 

and it is therefore highly expressed in the endometrium at the expected time of luteolysis. 

Measurement of cPLA2 mRNA expression levels during the estrous cycle reported basal 

levels on day 8, reaching its maximum at day 15, the expected time of luteolysis. 

Furthermore, equal to lower expression levels have been reported for pregnant mares at 

day 15 compared to day 15 of the estrous cycle, depending on plasma progesterone 

concentrations [117]. In our studies day 8 and day 12 controls also showed similar 

expression levels, and microarray analysis revealed slightly higher levels of cPLA2 in 

pregnant mares on days 12 (1.6-fold) and 16 (1.7-fold, our own unpublished data), 

compared to day 12 of the estrous cycle, indicating that cPLA2 expression is not regulated 

during diestrus prior to the expected time of luteolysis. However, in view of the slightly up-

regulated cPLA2 levels in pregnant endometrium, further analysis needs to provide a 
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better understanding for its role during early pregnancy, although it has to be kept in mind 

that cPLA2 only generates the first intermediate of prostaglandin synthesis,. 

Furthermore, studies were completed to establish whether the conceptus influences 

PTGS2, a rate-limiting enzyme in prostaglandin synthesis. It has been suggested that the 

presence of a conceptus blocks endometrial PGF2α synthesis, at least in part, by 

repressing induction of PTGS2 expression at days 14/15 of pregnancy and in this way 

contributes an important mechanism for preventing luteolysis [52, 53]. Importantly, 

PGHS2 expression in day 14 and day 15 cyclic endometrium has been shown to be 

significantly increased (54-fold; 6-fold) in relation to the corresponding days of early 

pregnancy and to other time points of the diestrus. Additionally, PGHS2 expression levels 

in day 15 pregnant endometrium were similar to those observed in Day 10 and Day 13 

cyclic animals [52]. In our study, PGHS2 did not show significant expression differences 

between pregnant and cyclic mares on day 12, thus confirming the previous findings that 

PGHS2 may not be induced before day 14 of the estrous cycle.  

Finally, mRNA expression of PTGFS has recently been studied, reporting greater 

expression levels in both, cyclic and pregnant mares at days 14-18, compared to PTGFS 

expression levels day 0 of the estrous cycle. Furthermore, PTGFS expression levels were 

significantly higher in cyclic compared to pregnant mares (p<0.05) on day 14, the 

expected time of luteolysis [118]. However, in another study, both, PTGFS mRNA and 

PTGFS protein levels were found to be invariant throughout days 10-15 of the estrous 

cycle and unaffected by pregnancy at day 15 [52]. Microarray analysis as well did not 

detect differences in mRNA levels for the known PTGFS in pregnant and control mares on 

day 8 or on day 12, indicating that PTGFS is at least not targeted by the conceptus until 

day 12 of pregnancy.  

Prostaglandin transporter (PGT) 

Microarray analysis also revealed a number of genes up-regulated in day 12 pregnant 

endometrium that function in the context of prostaglandin signaling and metabolism, such 

as SLCO2A1 (solute carrier organic anion transporter family, member 2A1), commonly 

known as prostaglandin transporter (PGT). PGT is an uptake carrier of prostaglandins 

with high affinity for PGE2 and PGF2α, and constitutes an important part of the 

prostaglandin signal transduction cascade as it contributes to the regulation of local 

prostaglandin concentrations, signal termination and metabolic clearance [119, 120]. In 

human females, PGT have been shown to mediate regulation of prostaglandin action in 

reproductive processes. In endometrial stromal cells, for example, PGT and its mRNA are 

up-regulated during decidualization to mediate the higher uptake of prostaglandins, 
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required for the initiation and maintenance of decidualization [121]. Therefore it is likely 

that the up-regulation of SLCO2A1 detected in our study in early pregnant horses (2.0-

fold) also contributes to the regulation of prostaglandin actions in the endometrium, 

probably involved in preparing the uterus for the upcoming pregnancy. 

Prostaglandin E2 synthesis and Prostaglandin E2 receptors 

In many species, both, the conceptus and the endometrium, also synthesize PGE2, which 

is thought to counteract the luteolytic effects of PGF2α, thereby playing a luteoprotective 

role. PGE2 has also been shown to have a luteoprotective effect in early pregnant pigs. 

Moreover, the porcine blastocyst is supposed to change the PGE2:PGF2α-ratio secreted 

from the uterus in favor of luteoprotective PGE2 by modulating expression of the key 

enzymes in endometrial PG synthesis [66-68]. Similar effects have also been proposed in 

ruminants [96, 97].  

The equine conceptus is also known to secrete PGE2 [43], which possibly plays a 

luteoprotective role in the mare. However, although expression differences have been 

reported for day 14 pregnant compared non-pregnant mares, mRNA levels for both, 

PTGFS and PTGES, did not differ between pregnant and non-pregnant mares on day 12. 

Additionally, the mRNA encoding CBR1, which converts PGE2 into PGF2α, was not 

differentially expressed in pregnant mares as well. Thus, the analysis of mRNA 

expression indicates that i) endometrial PGE2 synthesis is not increased during early 

pregnancy and that ii) the equine conceptus does not affect the endometrial PGE2:PGF2α 

ratio at least until day 12 of pregnancy. 

Furthermore, an important role has been suggested for endometrial PGE2 receptors 

(PTGER) in the embryo-maternal dialogue in mammals, as they mediate local effects of 

PGE2. Four subtypes of G protein-coupled receptors (PTGER1-4), which are encoded by 

four separate genes, are known, but distribution and function varies among species. 

In early pregnant pigs, PGE2 is known to act mainly through endometrial PTGER2, 

resulting in local increase of endometrial vascular permeability and preparation for 

angiogenesis and implantation. Moreover, PTGER2 mRNA and protein, localized in 

luminal and glandular epithelium and blood vessels of porcine endometrium, were 

significantly up-regulated during early pregnancy and it has been suggested that 

estrogens, PGE2 and endometrial PTGER2 are involved in a PGE2 positive feedback loop 

[69]. 

In our study, microarray analysis revealed up-regulation of PTGER3 and PTGER4 mRNA, 

similar to findings in the pig, in which PTGER2 is up-regulated in endometrium during 
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early pregnancy. Expression of PTGER3 and PTGER4 have also been investigated in the 

mouse uterus, and the observed expression patterns in the pre-implantation and post-

implantation period indicated a role in uterine preparation for implantation and in the 

process of decidualization [122]. However, the specific roles of these receptors in the 

equine endometrium  remain to be elucidated. 

Mechanosensation 

In a recent study small intrauterine devices (water-filled plastic ball with a diameter of 20 

mm) were shown to induce prolonged luteal function in the mare [123], further supporting 

the concept of pregnancy recognition via mechanosensation, since the hypothesis that an 

IUD might achieve luteostasis through mild inflammation of the endometrium could not be 

confirmed. It is suggested that the close contact to or pressure of an IUD on the uterine 

wall may induce changes in the endometrial cells and therefore prevent them from 

releasing luteolytic pulses of PGF2α.  

Mechanosensation has also been reported to play a role in reproduction in other 

mammals. In humans, for example, the initial contact between the blastocyst and maternal 

tissues is by adhesion of the trophoblast to the uterine epithelium. This event is 

hormonally controlled and requires a certain degree of pressure between the cell surfaces 

[124]. Furthermore, a recent study in sheep has also described changes at the maternal-

conceptus interface and uterine wall during pregnancy, reflecting an increased 

mechanosensation or mechanotransduction [125]. 

In our study, some DEGs in day 12 pregnant endometrium have already been described 

in context with mechanosensation and could in part reflect a response to a form of 

mechanotransduction by the migrating conceptus. Therefore, although the results of our 

study show an endometrial response to different signaling molecules, a mechanical 

signaling induced by the migrating conceptus is not excluded. 
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5 Summary 

The horse exhibits a number of unusual features during early pregnancy, which are 

unique to the genus Equus and differ considerably from corresponding events in other 

large domestic animal species. Moreover, the establishment and maintenance of 

pregnancy in the mare are only partially understood. In order to provide new insights into 

the early events of pregnancy in the horse, a systematic analysis of maternal 

transcriptome changes in equine endometrium in response to the presence of a 

conceptus on days 8 and 12 of pregnancy was performed. 

Endometrial biopsy samples were collected from six Bavarian Warmblood mares on days 

8 and 12 of pregnancy and the corresponding non-pregnant stages. Pregnant and non-

pregnant samples were taken from the same mare respectively (paired design) in order to 

reduce biological noise due to genetic variability. The proportions of surface epithelium, 

glandular epithelium and blood vessels in the biopsy samples were determined with 

quantitative stereological techniques to ensure homogenous tissue composition. 

Microarray analysis was performed using Agilent 4x44k Horse Gene Expression 

microarrays, and expression of selected genes was validated by quantitative real-time RT-

PCR. 

Microarray analysis did not reveal significant changes in endometrial gene expression in 

day 8 pregnant mares compared to day 8 of the estrous cycle, whereas 374 genes were 

differentially expressed in endometrium from day 12 of pregnancy, 332 with higher and 42 

with lower transcript levels than in day 12 non-pregnant mares. 

Gene set enrichment analysis (GSEA), functional annotation clustering and co-citation 

analysis were performed to characterize the DEGs in day 12 pregnant mares in response 

to the presence of a conceptus. Furthermore, two interaction networks of i) genes related 

to steroid hormone and prostaglandin signaling, and ii) of genes related to angiogenesis 

and vascular remodeling were generated.  

Many known estrogen-induced genes and genes involved in regulation of estrogen 

signaling were found, but also genes known to be regulated by progesterone and PGE2, 

that evidence their orchestrated roles in regulating gene expression in the pregnant mare. 

Additionally, some differentially expressed genes possibly reflect a form of 

mechanotransduction by the migrating conceptus. Further, a number of genes related to 

endometrial remodeling, in particular regarding angiogenesis and vascular remodeling 

were found. Finally, GSEA revealed genes that probably have conserved functions across 

species, such as CRYAB, ERRFI1, FGF9, IGFBP2, NR2F2, STC1, and TNFSF10. 
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In conclusion, this study is the first systematic analysis of maternal transcriptome changes 

in response to the presence of an embryo in the mare on days 8 and 12 of pregnancy. 

This study revealed the potential target genes and pathways of conceptus-derived 

estrogens, progesterone, and PGE2 in the equine endometrium probably involved in the 

early events of establishment and maintenance of pregnancy in the mare. A large number 

of interesting candidate genes and biological processes were identified as potentially 

important for endometrial remodeling in response to the early embryo, providing the basis 

for continuative in-depth analyses. 
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6 Zusammenfassung 

Pferde zeigen während der Frühträchtigkeit eine Reihe ungewöhnlicher Merkmale, die 

eine Besonderheit der Gattung Equus sind und sich beträchtlich von den entsprechenden 

Ereignissen anderer großer Haussäugetierspezies unterscheiden. Darüber hinaus sind 

die Etablierung und auch der Erhalt der Trächtigkeit bei der Stute nur teilweise 

verstanden. Um die maternalen Genexpressionsänderungen als Reaktion auf die 

Anwesenheit eines Konzeptus zu erfassen und somit neue Einblicke in die frühe 

Tächtigkeit beim Pferd zu bekommen, wurde eine systematische Transkriptomanalyse 

des Endometriums trächtiger Stuten an Tag 8 und 12 durchgeführt. 

Endometriumproben wurden von sechs Bayerischen Warmblutstuten an Tag 8 und Tag 

12 der Trächtigkeit und an den entsprechenden Tagen des Zyklus entnommen. Trächtige 

und nicht-trächtige Proben stammten jeweils von denselben Stuten (gepaartes Design), 

um Schwankungen aufgrund der genetischen Variabilität zu verringern. Um eine 

homogene Gewebszusammensetzung zu gewährleisten, wurden die Volumenanteile von 

Oberflächenepithel, Drüsenepithel und Blutgefäßen der Biopsieproben mithilfe quantitativ 

stereologischer Techniken bestimmt. Die Mikroarray-Analysen wurden mittels Agilent 

4x44k Horse Gene Expression Mikroarrays durchgeführt und die Expression 

ausgewählter Gene durch quantitative real-time RT-PCR validiert. 

Die Mikroarray-Analyse zeigte keine signifikanten Änderungen der Genexpression an Tag 

8 der Trächtigkeit im Vergleich zu Tag 8 des Zyklus. An Tag 12 dagegen konnten 374 

differentiell exprimierte Gene (DEGs) im Endometrium identifiziert werden, 332 mit 

höheren und 42 mit niedrigeren mRNA-Konzentrationen in trächtigen im Vergleich zu 

nicht-trächtigen Stuten. 

Gene Set Enrichment-Analysen (GSEA), Functional Annotation Clustering und Co-

Zitations-Analysen wurden durchgeführt, um die DEGs im equinen Endometrium an Tag 

12 der Trächtigkeit zu charakterisieren. Desweiteren wurden zwei Interaktionsnetzwerke 

von Genen erstellt die im Zusammenhang mit i) Steroidhormon- und Prostaglandin 

Signalwegen und ii) Angiogenese und vaskulärem Umbau stehen. 

Viele Östrogen-induzierte Gene und Gene die in Östrogen-Signalwege involviert sind, 

aber auch eine Reihe von Genen, die von Progesteron und PGE2 reguliert werden, 

konnten detektiert werden, was deren Einfluss auf die Regulierung der Genexpression im 

Endometrium der trächtigen Stute widerspiegelt. Darüber hinaus deuten einige DEGs 

möglicherweise auf eine Form der Mechanotransduktion durch den mobilen Konzeptus 

hin. Weiter wurden viele Gene gefunden die im Zusammenhang mit den 
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Umbauprozessen des Endometriums stehen, vor allem bezüglich Angiogenese und 

vaskulärer Umstrukturierung. Letztlich deckte die GSEA Gene auf, die 

höchstwahrscheinlich speziesübergreifend eine konservierte Funktion innehaben, wie 

CRYAB, ERRFI1, FGF9, IGFBP2, NR2F2, STC1, und TNFSF10. 

Zusammenfassend ist diese Studie die erste systematische Analyse der 

Transkriptomänderungen im Endometrium der Stute als Reaktion auf die Anwesenheit 

eines Embryos an Tag 8 und 12 der Frühträchtigkeit. Die Untersuchungen 

veranschaulichen die potentiellen Zielgene und Signalwege der vom Konzeptus 

sezernierten Östrogene, Progesteron und PGE2 im equinen Endometrium, die vermutlich 

in die frühen Geschehnisse der Etablierung und den Erhalt der Trächtigkeit der Stute 

involviert sind. Eine große Anzahl interessanter Kandidatengene und biologischer 

Prozesse, die für Umbauvorgänge im trächtigen Endometrium von Bedeutung sind, 

konnten aufgezeigt werden und bieten so die Basis für weiterführende, detaillierte 

Untersuchungen. 
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Supplemental Figure 1: Section of a day 12 endometrial biopsy sample (H&E)  

 

 

LE: luminal epithelium, BV: blood vessels, GE: glandular epithelium, REST: remaining tissue, Bar = 

50μm. 
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Supplemental Figure 2: Quantitative stereological analysis of endometrial biopsy samples. 

 

The volume fraction of luminal epithelium (LE), blood vessels (BV), glandular epithelium (GE) and the remaining tissue (Rest) was determined in biopsy 

samples collected at Day 8 and Day 12 of pregnancy (pr) and the corresponding days of the estrous cycle (co), respectively. M#1. Mare no. 1.
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Supplemental Figure 3: Enrichment plots obtained by the Gene Set Enrichment 

Analysis (GSEA) for the gene sets shown in Table 3. 
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Supplemental Table 1: Primer sequences for quantitative real-time RT-PCR 

 

Gene Forward primer [5´-... -3´] Reverse primer [5´-... -3´] AT [°C] FA [°C] MP [°C] 

H3F3A AGATCCAGGATAAGGAAGGCAT GCTCCACCTCCAGGGTGAT 60 80 87 

UBQ3 AGATCCAGGATAAGGAAGGCAT GCTCCACCTCCAGGGTGAT 60 83 88 

18S rRNA AAGTCTTTGGGTTCCGGG GGACATCTAAGGGCATCACA 60 84 89 

CTSL1 ACGGCGTTTTGGTGGTTGGCT ATGCCCCAATCTTCACCCCAGC 64 77 82 

ERRFI1 TGCAAGCACCCAAATCCAGCCA TTACGCTTCACATGGCCGCCT 60 79 84 

FGF9 ACGTCAGCTCCACTGTTGCCAAA AAGCAAGTGGGCACAGGCAGT 64 80 86 

HHIP TCCGGCTGGATGTGGACACAGA  AGCACATCTGCCTGGATCGTGGA 60 85 89 

KDR ATCCGCCCAGGCTCAGCATACA TTGGGCCAGAGCCAGTCCAAGT 60 79 83 

KLF9 AGGTGAGGCCGCCTATTTCCGA TGCCAGGCAACCCCAAACTCCT 60 82 87 

OXTR TGCAGATGTGGAGCGTCTGGGA TGGAAGAGGTGGCCCGTGAACA 60 85 89 

PAQR5 CGCACGTGCAGATGGAAGCCATA CCGAGGCTGAAGACAAGGCACA 60 81 87 

PTGER4 TGTCTGGCCACTCTCGCTCCTT GCCAGGCACACCTGGAAGCAAA 60 82 87 

PTGER1 TCGGAAGAATTGCCATATGTGGGGC AGTTCTCTAGTTGGTGCTGGGGGAA 64 76 82 

SFRP1 ATTCTCACGGGCAGGTTGGGGA AACCACTGCGGTTCCAGGAGGT 64 85 88 

SLC36A2 ATGAAGGATGCCCGCCGCTT TCCAAACCGCAGGTAGCCCAGA 60 85 87 

SLC36A2 ACCATCCCAGTTGAACCCCGTCT TCAGCTTGACTGGAGCTGGGTCT 60 80 86 

SLCO2A1 CGGCCAAACTGCCATGAGACTGA TGAAACTGGCCCCTGAGGTTGC 60 80 84 
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Supplemental Table 2: Differentially expressed genes in endometrial tissue samples of day 12 pregnant vs. day 12 control mares 
 
 
 

Systematic Name Eca Ensembl Gene ID Eca Entrez 
Gene ID 

Eca Gene 
symbol 

Eca Gene name Hsa 
Entrez 
Gene 

ID 

Hsa Gene 
symbol 

Hsa Gene name Mean 
FC 
D12 

Pr/Co 

SAM 
Scor
e (d) 

SAM 
q-

value 

M#3 
FC 

Pr/C
o 

Mea
n 

FC/ 
M#3 
FC 

FC 
Co 

D12/
D8 

SAM 
q-value 

FC Pr 
D12/D8 

SAM 
q-value 

                 
ENSECAT00000011605 ENSECAG00000010765 100056656 LOC100056656 similar to Acyl-CoA 

synthetase long-
chain family member 
3 

2181 ACSL3 acyl-CoA 
synthetase long-
chain family 
member 3 

-1.6 -5.22 0.0069 1.5 2.1 -1.03 0.2695 -1.59 0.0384 

ENSECAT00000025063 ENSECAG00000023388 100069420 AP3S2,LOC100
069420 

AP-3 complex 
subunit sigma-2  

10239 AP3S2 AP-3 complex 
subunit sigma-2 

-1.6 -5.61 0.0030 1.3 1.2 -1.03 0.4743 -1.36 0.1179 

AJ555456, 
NM_001114607 

ENSECAG00000008500 100136906 AQP5 aquaporin 5 362 AQP5 aquaporin 5 -2.0 -4.29 0.0119 4.5 2.2 1.25 0.2400 -1.88 0.0112 

ENSECAT00000012243 ENSECAG00000011608 100054827 LOC100054827 similar to alveolar 
soft part sarcoma 
chromosome region, 
candidate 1 

79058 ASPSCR1 alveolar soft part 
sarcoma 
chromosome 
region, candidate 
1 

-1.5 -3.85 0.0130 1.3 1.8 -1.20 0.2825 -1.85 0.0019 

ENSECAT00000013979 ENSECAG00000012083 100072684 LOC100072684 similar to ATPase, 
Ca++ transporting, 
ubiquitous 

489 ATP2A3 ATPase, Ca++ 
transporting, 
ubiquitous 

-2.0 -6.06 0.0012 2.7 3.6 1.44 0.1094 -1.51 0.0520 

ENSECAT00000018675 ENSECAG00000017552 100062307 CREB3L4 cAMP responsive 
element binding 
protein 3-like 4 

14832
7 

CREB3L4 cAMP responsive 
element binding 
protein 3-like 4 

-1.8 -5.84 0.0020 1.8 1.7 -1.12 0.3655 -2.10 0.0000 

ENSECAT00000007808 ENSECAG00000007097 100060874 CRTAC1 cartilage acidic 
protein1 

55118 CRTAC1 cartilage acidic 
protein 1 

-2.4 -3.22 0.0317 1.1 3.6 1.63 0.1382 -1.89 0.0046 

ENSECAT00000007651 ENSECAG00000007210 100061532 LOC100061532 similar to cathepsin L 1514 CTSL1 cathepsin L1 -2.2 -4.35 0.0115 3.1 1.8 -2.73 0.0103 -6.99 0.0000 

ENSECAT00000019801 ENSECAG00000018550 100052258 LOC100052258 similar to docking 
protein 4 

55715 DOK4 docking protein 4 -1.7 -4.22 0.0115 1.2 2.8 -1.27 0.2277 -2.25 0.0008 

DN508969      80303 EFHD1 EF-hand domain 
family, member 
D1 

-1.6 -3.95 0.0130 1.7 1.8 1.10 0.3937 -1.56 0.0404 

ENSECAT00000000916 ENSECAG00000000794 100064199 LOC100064199 similar to Embigin 
homolog (mouse) 

13341
8 

EMB embigin homolog 
(mouse) 

-1.5 -4.16 0.0126 1.6 3.5 -1.41 0.1147 -2.08 0.0004 
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DN510735  100050067 FXYD4 FXYD domain 
containing ion 
transport regulator 4  

53828 FXYD4 FXYD domain 
containing ion 
transport 
regulator 4 

-3.4 -3.83 0.0167 -6.7 -1.1 -2.27 0.0454 -6.99 0.0000 

ENSECAT00000017503 ENSECAG00000016546 100063861 GALNT12 UDP-N-acetyl-alpha-
D-
galactosamine:polyp
eptide N-
acetylgalactosaminylt
ransferase 12 
(GalNAc-T12) 

79695 GALNT12 UDP-N-acetyl-
alpha-D-
galactosamine:po
lypeptide N-
acetylgalactosam
inyltransferase 12 
(GalNAc-T12) 

-1.6 -4.75 0.0092 1.5 1.7 1.03 0.5191 -1.77 0.0019 

ENSECAT00000009900 ENSECAG00000009689 100068840 LOC100068840 similar to 
Guanidinoacetate N-
methyltransferase 

2593 GAMT guanidinoacetate 
N-
methyltransferas
e 

-1.6 -4.36 0.0115 1.3 1.0 1.05 0.4916 -1.54 0.0046 

ENSECAT00000021302 ENSECAG00000019938 100061157 GFPT1 Glucosamine--
fructose-6-phosphate 
aminotransferase 1 

2673 GFPT1 glutamine-
fructose-6-
phosphate 
transaminase 1 

-1.6 -5.15 0.0063 1.5 3.2 -1.19 0.2831 -2.02 0.0007 

ENSECAT00000020943 ENSECAG00000019684 100054883 LOC100054883 similar to 
Glucosamine-
phosphate N-
acetyltransferase 1 

64841 GNPNAT1 glucosamine-
phosphate N-
acetyltransferase 
1 

-1.7 -3.82 0.0169 1.4 2.3 -1.31 0.2119 -2.39 0.0007 

ENSECAT00000025114 ENSECAG00000023427 100059540 LOC100059540 similar to hairy and 
enhancer of split 2 
(Drosophila) 

54626 HES2 hairy and 
enhancer of split 
2 (Drosophila) 

-1.8 -8.49 0.0000 1.6 -1.3 -1.02 0.5191 -1.95 0.0006 

CX604860 ENSECAG00000024485 100062868 HHIP Hedgehog-
interacting protein 

64399 HHIP Hedgehog-
interacting 
protein 

-1.7 -6.14 0.0012 -1.6 1.2 1.07 0.4350 -1.32 0.1374 

ENSECAT00000019537 ENSECAG00000018234 100061857 KRT4 keratin 4 3851 KRT4 keratin 4 -2.8 -4.42 0.0113 8.1 17.2 1.34 0.1382 -2.96 0.0008 

XM_001491714  100058910 LOC100058910 similar to Kinesin-
Like Protein family 
member (klp-6) 

1E+08 LOC10013
0097 

hypothetical 
LOC100130097 

-2.0 -3.84 0.0169 4.3 2.0 -2.83 0.0029 -5.60 0.0000 

ENSECAT00000014270 ENSECAG00000013518 100072699 LOC100072699 similar to 
Methyltransferase 11 
domain containing 1 

64745 METT11D
1 

methyltransferas
e 11 domain 
containing 1 

-1.5 -4.08 0.0126 1.4 1.0 1.09 0.4567 -1.43 0.0971 

ENSECAT00000015995 ENSECAG00000015275  MT1B_HORSE Metallothionein-1B 4502 MT2A metallothionein 
2A 

-1.5 -4.18 0.0126 -1.0 -9.0 -1.30 0.0403 -1.85 0.0012 
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ENSECAT00000010294 ENSECAG00000009820 100034193 LOC100034193 BLGI 13815
9 

PAEP beta-lactoglobulin 
pseudogene) 
(Pregnancy-
associated 
endometrial 
alpha-2 
globulin)(PAEG)(
PEG)(Placental 
protein 
14)(PP14)(Proge
sterone-
associated 
endometrial 
protein)(Progesta
gen-associated 
endometrial 
protein) 

-1.7 -5.15 0.0052 2.2 2.3 -1.23 0.1976 -2.25 0.0000 

ENSECAT00000023958 ENSECAG00000022301 100050911 LOC100050911 similar to pyridoxal 
kinase 

8566 PDXK pyridoxal 
(pyridoxine, 
vitamin B6) 
kinase 

-1.5 -4.54 0.0113 1.9 -1.1 1.02 0.5397 -1.39 0.0520 

ENSECAT00000026783 ENSECAG00000024845 100053848 PI16 Peptidase inhibitor 
16 Precursor 

22147
6 

PI16 peptidase 
inhibitor 16 

-1.5 -4.22 0.0115 -1.4 3.2 1.23 0.1681 -1.49 0.0062 

ENSECAT00000022054 ENSECAG00000020058 100052355 LOC100052355 similar to 
Polyribonucleotide 
nucleotidyltransferas
e 1, mitochondrial 
precursor (PNPase 
1) (Polynucleotide 
phosphorylase-like 
protein) (PNPase 
old-35) (3-5 RNA 
exonuclease OLD35) 

87178 PNPT1 polyribonucleotid
e 
nucleotidyltransfe
rase 1 

-1.7 -4.89 0.0092 1.9 -2.2 -1.59 0.0216 -2.39 0.0000 
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ENSECAT00000014219 ENSECAG00000013456 100058914 LOC100058914 similar to 
Phosphoribosyl 
pyrophosphate 
synthetase-
associated protein 1 
(PRPP synthetase-
associated protein 1) 
(39 kDa 
phosphoribosypyrop
hosphate 
synthetase-
associated protein) 
(PAP39) 

5635 PRPSAP1 phosphoribosyl 
pyrophosphate 
synthetase-
associated 
protein 1 

-1.8 -3.86 0.0130 2.1 1.7 -1.18 0.2828 -2.08 0.0002 

ENSECAT00000007691 ENSECAG00000007172 100069969 A6P3D2_HORS
E 

Pleckstrin and Sec7 
domain protein 
Fragment 

5662 PSD pleckstrin and 
Sec7 domain 
containing 

-1.6 -4.09 0.0126 1.4 -7.0 -1.45 0.0216 -2.41 0.0000 

ENSECAT00000024588 ENSECAG00000022970 100065954 LOC100065954 similar to RAB32 10981 RAB32 RAB32, member 
RAS oncogene 
family 

-1.5 -4.67 0.0092 1.7 1.6 1.08 0.3566 -1.52 0.0232 

ENSECAT00000021347 ENSECAG00000020085 100061373 LOC100061373 hypothetical protein 
LOC100061373 

28561
3 

RELL2 RELT-like 2 -2.2 -6.39 0.0000 1.0 -1.9 -1.91 0.0159 -5.10 0.0000 

ENSECAT00000025222 ENSECAG00000023535 100069409 LOC100069409 hypothetical protein 
LOC100069409 

91461 SGK493 protein kinase-
like protein 
SgK493 

-2.1 -5.30 0.0052 -2.5 1.1 -1.05 0.5191 -2.07 0.0006 

ENSECAT00000021490 ENSECAG00000020175 100070338 SLC12A8 solute carrier family 
12 
(potassium/chloride 
transporters), 
member 8 

84561 SLC12A8 solute carrier 
family 12 
(potassium/chlori
de transporters), 
member 8 

-1.5 -4.82 0.0092 1.4 35.0 1.42 0.0430 -1.22 0.2312 

ENSECAT00000017320 ENSECAG00000015404 100034163 LOC100034163 chloride anion 
exchanger solute 
carrier family 26 
member 3-like 
protein 

1811 SLC26A3 solute carrier 
family 26, 
member 3 

-1.6 -4.63 0.0090 2.9 2.7 1.63 0.1529 1.20 0.1207 

ENSECAT00000005957 ENSECAG00000005266 100070575 LOC100070575 hypothetical 
LOC100070575 

6652 SORD sorbitol 
dehydrogenase 

-1.6 -3.67 0.0208 1.2 2.7 -1.27 0.2029 -2.02 0.0000 

ENSECAT00000023110 ENSECAG00000021717 100053106 SPDEF similar to SAM 
pointed domain 
containing ets 
transcription factor 

25803 SPDEF SAM pointed 
domain 
containing ets 
transcriptionfact. 

-1.9 -5.11 0.0052 2.3 22.9 1.43 0.0430 1.06 0.3671 
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ENSECAT00000022839 ENSECAG00000021481 100052744 LOC100052744 similar to 
Somatostatin 
receptor type 2 
(SS2R) (SRIF-1) 

6752 SSTR2 somatostatin 
receptor 2 

-1.6 -4.59 0.0113 -2.9 3.6 -1.26 0.1407 -1.90 0.0058 

ENSECAT00000018256 ENSECAG00000016969 100051799 LOC100051799 similar to stimulated 
by retinoic acid gene 
6 homolog 

64220 STRA6 stimulated by 
retinoic acid gene 
6 homolog 
(mouse) 

-1.7 -4.32 0.0115 -1.0 1.9 1.11 0.3389 -1.62 0.0041 

ENSECAT00000026750 ENSECAG00000024798 100057098 LOC100057098 similar to KIAA0984 
protein 

23329 TBC1D30 TBC1 domain 
family, member 
30 

-1.6 -5.09 0.0052 1.8 1.4 1.12 0.3905 -1.42 0.0645 

ENSECAT00000026301 ENSECAG00000024314 100059793 LOC100059793 hypothetical 
LOC100059793 

7089 TLE2 transducin-like 
enhancer of split 
2 (E(sp1) 
homolog, 
Drosophila) 

-1.6 -5.20 0.0052 1.3 3.1 -1.24 0.2551 -2.06 0.0019 

ENSECAT00000017141 ENSECAG00000016225 100061910 LOC100061910 similar to 
Transmembrane 
protein 144 

55314 TMEM144 transmembrane 
protein 144 

-1.7 -7.26 0.0000 2.0 4.0 -1.39 0.1025 -2.39 0.0003 

ENSECAT00000007637 ENSECAG00000007522 100065101 LOC100065101 similar to Thioredoxin 
domain containing 13 

56255 TMX4 thioredoxin-
related 
transmembrane 
protein 4 

-1.5 -4.81 0.0092 1.1 1.4 1.13 0.3905 -1.48 0.0520 

ENSECAT00000008296 ENSECAG00000008224 100056069 LOC100056069 hypothetical 
LOC100056069 

79755 ZNF750 zinc finger protein 
750 

-1.5 -3.76 0.0177 1.4 -2.4 1.60 0.0430 1.05 0.3478 

CD464985        1.5 3.32 0.0113 3.3 1.7 1.26 0.3389 2.44 0.0019 

BI961011        1.5 3.12 0.0126 1.9 -2.6 1.91 0.0430 3.67 0.0000 

ENSECAT00000005098 ENSECAG00000005194       1.6 2.94 0.0130 -1.8 16.9 -1.45 0.0536 -1.44 0.0645 

ENSECAT00000026333 ENSECAG00000024481 100146176 LOC100146176 similar to AHNAK 
nucleoprotein 2  

   1.6 2.83 0.0177 1.2 5.1 1.41 0.0850 2.35 0.0000 

DQ125451        1.6 3.49 0.0082 -2.7 5.2 -1.64 0.1094 -1.19 0.2312 

ENSECAT00000015293 ENSECAG00000014674       1.6 2.79 0.0208 -2.9 5.8 -1.55 0.1094 -1.24 0.1603 

CX602835        1.6 3.61 0.0046 -1.4 2.1 -1.06 0.4134 1.44 0.0397 

DN508071        1.6 2.84 0.0173 1.4 2.2 -1.03 0.5064 1.52 0.0100 

ENSECAT00000006270 ENSECAG00000006311       1.7 3.03 0.0130 1.0 1.5 -1.13 0.3905 1.61 0.0282 

CX594010        1.7 2.74 0.0208 -1.1 1.3 1.04 0.5064 2.16 0.0031 

AY246829        1.7 3.22 0.0115 1.9 1.5 -1.34 0.3655 2.00 0.0019 

ENSECAT00000005125 ENSECAG00000005231       1.8 3.28 0.0113 -2.0 -2.3 -2.01 0.0430 -1.56 0.0209 
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ENSECAT00000005381 ENSECAG00000005480       2.0 2.90 0.0177 -3.8 17.5 -1.86 0.0536 -1.25 0.2070 

L07563, L07564; L07569        2.0 3.07 0.0161 -3.7 2.4 -1.59 0.1976 -1.29 0.1165 

ENSECAT00000017827 ENSECAG00000016970 100072855 LOC100072855 similar to 
hCG2043240 

   2.0 4.00 0.0020 -3.7 -1.6 -2.06 0.0430 -1.37 0.0645 

L07571  100147255 LOC100147255 similar to lambda-
immunoglobulin 

   2.1 3.11 0.0145 -3.0 4.4 -1.82 0.1382 -1.25 0.2312 

CX602982        2.1 3.20 0.0115 -1.1 7.4 1.64 0.0668 2.87 0.0000 

ENSECAT00000011591 ENSECAG00000011261       2.2 3.03 0.0145 1.2 1.6 1.11 0.3389 2.29 0.0012 

BM780446        2.4 3.11 0.0126 -3.2 1.7 1.08 0.4567 3.12 0.0015 

XM_001501228  100066131 LOC100066131 hypothetical protein 
LOC100066131 

   2.5 5.56 0.0000 -1.4 1.9 1.18 0.4134 3.56 0.0008 

ENSECAT00000009965 ENSECAG00000009441       2.6 6.02 0.0000 -3.0 3.3 -1.25 0.1382 2.49 0.0000 

DN508758        3.1 4.14 0.0012 2.4 26.3 1.86 0.0536 6.16 0.0000 

BM780317        3.7 3.40 0.0092 -1.8 3.7 -1.46 0.1094 2.72 0.0031 

ENSECAT00000025397, 
EU810388, EU810390, 
EU810391, EU810392, 
EU810393, EU810394 

ENSECAG00000023696 100188974 LOC100188974 uterine serpin    4.0 4.13 0.0023 3.0 1.2 -1.25 0.4350 4.97 0.0000 

ENSECAT00000007376 ENSECAG00000007258       4.0 2.75 0.0208 -6.5 1.9 -1.64 0.2551 1.59 0.1838 

ENSECAT00000008402 ENSECAG00000008204 100056564 LOC100056564 hypothetical 
LOC100056564 

   4.4 12.5
1 

0.0000 -2.2 2.1 1.31 0.2825 8.13 0.0000 

ENSECAT00000021235 ENSECAG00000018992 100062560 ABCA8 ATP-binding cassette 
sub-family A member 
8  

10351 ABCA8 ATP-binding 
cassette, sub-
family A (ABC1), 
member 8 

1.8 3.73 0.0046 -1.3 -2.5 1.61 0.0216 2.25 0.0077 

ENSECAT00000020403 ENSECAG00000017842 100034074 ABCB1 ATP-binding 
cassette, sub-family 
B (MDR/TAP), 
member 1 

5243 ABCB1 ATP-binding 
cassette, sub-
family B 
(MDR/TAP), 
member 1 

1.6 3.75 0.0044 -1.0 2.4 1.17 0.2479 1.70 0.0040 

NM_001081763  791240 ABCC1 ATP-binding 
cassette, sub-family 
C (CFTR/MRP), 
member 1 

4363 ABCC1 ATP-binding 
cassette, sub-
family C 
(CFTR/MRP), 
member 1 

1.7 3.79 0.0046 1.3 2.6 1.37 0.1775 2.12 0.0143 
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DQ825759  100034164 ABCG2 ATP-binding 
cassette, sub-family 
G (WHITE), member 
2 

9429 ABCG2 ATP-binding 
cassette, sub-
family G 
(WHITE), 
member 2 

1.8 4.49 0.0000 1.0 6.4 1.28 0.0850 2.02 0.0008 

ENSECAT00000009606 ENSECAG00000009385 100066699 LOC100066699 similar to C14ORF29 14544
7 

ABHD12B abhydrolase 
domain 
containing 12B 

1.7 3.58 0.0046 -1.2 7.6 1.45 0.0668 2.39 0.0007 

ENSECAT00000002458 ENSECAG00000000430 100055952 ACE2 Angiotensin-
converting enzyme 2 
Precursor 

59272 ACE2 angiotensin I 
converting 
enzyme (peptidyl-
dipeptidase A) 2 

1.6 4.45 0.0009 1.1 1.5 1.01 0.3738 1.28 0.0919 

ENSECAT00000016072 ENSECAG00000015145 100062175 ACTA2 actin, alpha 2, 
smooth muscle, 
aorta 

59 ACTA2 actin, alpha 2, 
smooth muscle, 
aorta 

2.6 2.80 0.0208 1.7 -2.2 -1.70 0.0430 1.12 0.3257 

ENSECAT00000018746 ENSECAG00000017366 100061064 ADSSL1 adenylosuccinate 
synthase like 1 

12262
2 

ADSSL1 adenylosuccinate 
synthase like 1 

1.8 3.15 0.0115 1.7 5.0 -1.06 0.4350 1.63 0.0209 

ENSECAT00000012711 ENSECAG00000012283 100066130 AGR3 Anterior gradient 
protein 3 homolog 
Precursor 

15546
5 

AGR3 anterior gradient 
homolog 3 
(Xenopus laevis) 

1.8 2.87 0.0172 1.6 -1.5 -2.13 0.0022 1.09 0.3096 

ENSECAT00000012399 ENSECAG00000010841 100070501 LOC100070501 similar to 
prostaglandin F 
synthase 

34081
1 

AKR1CL1 aldo-keto 
reductase family 
1, member C-like 
1 

2.3 2.79 0.0208 1.3 4.3 1.87 0.1000 2.35 0.0474 

ENSECAT00000022771 ENSECAG00000021292 100070491 LOC100070491 similar to 
prostaglandin F 
synthase 

34081
1 

AKR1CL1 aldo-keto 
reductase family 
1, member C-like 
1 

2.3 3.02 0.0130 1.3 5.1 1.87 0.1000 2.35 0.0474 

ENSECAT00000008116 ENSECAG00000007330 100065123 ALS2CL ALS2 C-terminal-like 
protein 

25917
3 

ALS2CL ALS2 C-terminal 
like 

1.5 5.76 0.0000 -1.6 1.1 1.07 0.4567 1.58 0.0100 

ENSECAT00000011822 ENSECAG00000011198 100072355 LOC100072355 similar to S-
adenosylmethionine 
decarboxylase 
proenzyme 
(AdoMetDC) 
(SamDC) 

262 AMD1 S-
adenosylmethioni
ne decarboxylase 
proenzyme 
Precursor 
(AdoMetDC) 

1.5 3.11 0.0126 -1.7 3.9 1.05 0.1031 1.62 0.1103 

ENSECAT00000002468 ENSECAG00000000816 100055812 LOC100055812 similar to AMP 
deaminase 

272 AMPD3 adenosine 
monophosphate 
deaminase 
(isoform E) 

2.3 4.51 0.0000 -1.6 1.6 1.05 0.3282 2.31 0.0176 

ENSECAT00000017044 ENSECAG00000015894 100051890 ANGPT2 angiopoietin 2 285 ANGPT2 angiopoietin 2 1.6 3.27 0.0113 1.1 2.4 1.20 0.2277 1.87 0.0007 
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XM_001501670 ENSECAG00000016234 100067146 LOC100067146 similar to 
angiopoietin-related 
protein-2 

23452 ANGPTL2 angiopoietin-like 
2 

1.7 4.75 0.0000 1.8 2.5 -1.24 0.1701 1.27 0.1095 

ENSECAT00000009786 ENSECAG00000009211 100067036 ANGPT4 Angiopoietin-4 51129 ANGPTL4 angiopoietin-like 
4 

2.5 2.58 0.0298 1.1 1.2 -1.18 0.4350 2.38 0.0050 

ENSECAT00000023736 ENSECAG00000022239 100071652 LOC100071652 similar to ankyrin 
repeat domain 22 

11893
2 

ANKRD22 ankyrin repeat 
domain 22 

1.9 4.34 0.0000 -1.1 -1.1 1.02 0.5029 1.76 0.0062 

ENSECAT00000022026 ENSECAG00000020314 100061836 ANO1 Anoctamin-1 55107 ANO1 anoctamin 1, 
calcium activated 
chloride channel 

1.9 4.96 0.0000 -4.1 1.4 1.11 0.3869 1.75 0.0697 

ENSECAT00000021769 ENSECAG00000020129 100052045 LOC100052045 similar to Annexin A8 
(Annexin VIII) 
(Vascular 
anticoagulant-beta) 
(VAC-beta) 

244 ANXA8L2 annexin A8-like 2 6.5 8.28 0.0000 1.3 2.8 -1.09 0.1661 6.84 0.0000 

ENSECAT00000008977 ENSECAG00000008739 100065767 LOC100065767 similar to copper 
monamine oxidase 

8639 AOC3 amine oxidase, 
copper containing 
3 (vascular 
adhesion protein 
1) 

2.1 3.16 0.0115 1.1 1.5 1.03 0.4238 1.32 0.1197 

ENSECAT00000026929 ENSECAG00000024701 100067782 LOC100067782 similar to aldehyde 
oxidase 2 

34445
4 

AOX2P aldehyde oxidase 
2 pseudogene 

1.6 3.72 0.0054 1.3 -4.5 -1.47 0.0243 1.55 0.0246 

ENSECAT00000022036 ENSECAG00000020719 100054890 LOC100054890 similar to Amyloid 
beta A4 precursor 
protein-binding family 
B member 2 (Fe65-
like protein) 

323 APBB2 amyloid beta (A4) 
precursor protein-
binding, family B, 
member 2 

1.6 2.76 0.0208 -1.3 3.2 1.04 0.5064 1.60 0.0077 

ENSECAT00000012256 ENSECAG00000011774 100055678 LOC100055678 similar to 
adenomatosis 
polyposis coli down-
regulated 1 

14749
5 

APCDD1 adenomatosis 
polyposis coli 
down-regulated 1 

1.5 3.49 0.0073 1.3 7.8 1.33 0.1094 1.75 0.0145 

ENSECAT00000009311 ENSECAG00000008600 100071824 LOC100071824 similar to 
apolipoprotein B-100 

338 APOB apolipoprotein B 
(including Ag(x) 
antigen) 

1.5 4.00 0.0029 -1.2 1.5 -1.14 0.3761 1.41 0.0663 

CX603769     358 AQP1 aquaporin 1 
(Colton blood 
group) 

2.6 3.54 0.0066 1.1 2.1 1.18 0.2828 2.56 0.0616 
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ENSECAT00000024083 ENSECAG00000022525 100050528 LOC100050528 similar to 
Amphiregulin 
precursor (AR) 
(Colorectum cell-
derived growth 
factor) (CRDGF) 

374 AREG amphiregulin 2.6 2.39 0.0317 2.4 -1.2 1.00 0.4929 1.17 0.2947 

ENSECAT00000017770 ENSECAG00000016534 100034051 LOC100034051 arginase type II 384 ARG2 arginase, type II 2.1 5.75 0.0000 -1.8 -2.1 -1.58 0.0301 1.84 0.0182 

ENSECAT00000010265 ENSECAG00000009393 100051002 LOC100051002 similar to Rho 
GTPase activating 
protein 29 

9411 ARHGAP2
9 

Rho GTPase 
activating protein 
29 

1.8 3.55 0.0073 -1.8 3.7 1.31 0.1148 1.76 0.0077 

ENSECAT00000021030 ENSECAG00000019506 100065030 ARRDC3 arrestin domain 
containing 3 

57561 ARRDC3 arrestin domain 
containing 3 

1.6 2.84 0.0177 1.2 2.0 1.29 0.3150 1.58 0.1507 

ENSECAT00000007366 ENSECAG00000007047 100054817 ASPN asporin 54829 ASPN asporin 1.6 3.32 0.0113 -1.3 1.7 -1.13 0.3337 1.23 0.2183 

ENSECAT00000021520 ENSECAG00000017460 100052912 LOC100052912 similar to Potassium-
transporting ATPase 
alpha chain 2 (Proton 
pump) (Non-gastric 
H(+)/K(+) ATPase 
subunit alpha) 

479 ATP12A ATPase, H+/K+ 
transporting, 
nongastric, alpha 
polypeptide 

1.5 3.17 0.0115 1.1 2.1 1.11 0.3389 1.65 0.0007 

ENSECAT00000018643 ENSECAG00000016114 100064797 ATP6V0A4 V-type proton 
ATPase 116 kDa 
subunit a isoform 4  

50617 ATP6V0A
4 

ATPase, H+ 
transporting, 
lysosomal V0 
subunit a4 

7.8 9.82 0.0000 2.0 2.9 1.16 0.4041 9.36 0.0000 

ENSECAT00000011182 ENSECAG00000010555 100057005 ATP6V1C2 ATPase, H+ 
transporting, 
lysosomal 42kDa, V1 
subunit C2 

24597
3 

ATP6V1C
2 

ATPase, H+ 
transporting, 
lysosomal 42kDa, 
V1 subunit C2 

1.6 3.03 0.0130 2.3 23.1 1.41 0.0536 2.03 0.0007 

ENSECAT00000006093 ENSECAG00000005305  BACE2 Beta-secretase 2 
Precursor 

25825 BACE2 beta-site APP-
cleaving enzyme 
2 

1.9 3.25 0.0122 1.0 1.2 -1.03 0.4879 1.98 0.0003 

CX604253     10974 C10orf116 chromosome 10 
open reading 
frame 116 

2.0 4.01 0.0023 -1.6 2.4 1.27 0.1822 2.61 0.0000 

ENSECAT00000019253 ENSECAG00000018133  C10orf54 Platelet receptor 
Gi24 Precurso 

64115 C10orf54 chromosome 10 
open reading 
frame 54 

1.6 4.14 0.0020 1.3 1.5 -1.08 0.3660 1.41 0.0855 

ENSECAT00000016036 ENSECAG00000015337 100050889 LOC100050889 hypothetical 
LOC100050889 

34399
0 

C2orf55 chromosome 2 
open reading 
frame 55 

2.1 3.78 0.0045 -3.1 2.1 1.09 0.2892 2.61 0.0005 
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ENSECAT00000023752 ENSECAG00000022187 100058920 LOC100058920 similar to 
Uncharacterized 
protein C3orf32 

51066 C3orf32 chromosome 3 
open reading 
frame 32 

2.6 2.75 0.0209 3.0 -2.9 2.35 0.0359 4.19 0.0007 

ENSECAT00000004680 ENSECAG00000004811 100059938 LOC100059938 similar to 
Chromosome 3 open 
reading frame 59 

15196
3 

C3orf59 chromosome 3 
open reading 
frame 59 

1.7 5.18 0.0031 -2.0 2.4 1.16 0.1765 2.02 0.0165 

ENSECAT00000014288 ENSECAG00000013486 100056222 LOC100056222 similar to C4b-
binding protein alpha 
chain precursor 
(C4bp) (Proline-rich 
protein) (PRP) 

722 C4BPA complement 
component 4 
binding protein, 
alpha 

1.7 2.72 0.0208 -3.5 1.8 -1.13 0.3119 1.51 0.0520 

ENSECAT00000017369 ENSECAG00000016569 100064702 LOC100064702 hypothetical protein 
LOC100064702 

90355 C5orf30 chromosome 5 
open reading 
frame 30 

3.2 3.44 0.0082 -1.9 1.2 -1.12 0.4227 3.10 0.0006 

ENSECAT00000026456 ENSECAG00000024559 100059002 LOC100059002 hypothetical protein 
LOC100059002 

15322
2 

C5orf41 chromosome 5 
open reading 
frame 41 

1.6 2.90 0.0153 1.5 2.1 1.31 0.2407 1.99 0.0019 

ENSECAT00000008515 ENSECAG00000008425 100052009 LOC100052009 hypothetical protein 
LOC100052009 

28634
3 

C9orf150 chromosome 9 
open reading 
frame 150 

2.0 3.31 0.0106 -1.4 1.4 -1.14 0.3881 1.60 0.0197 

ENSECAT00000019210 ENSECAG00000018004 100052678 LOC100052678 similar to carbonic 
anhydrase VIII 

767 CA8 carbonic 
anhydrase VIII 

1.7 3.70 0.0063 -1.7 1.7 1.11 0.3149 1.94 0.0002 

ENSECAT00000007157 ENSECAG00000006844 100068106 CALD1 Caldesmon1 800 CALD1 caldesmon 1 1.6 3.00 0.0130 -1.4 1.7 1.18 0.3578 1.79 0.0201 

XM_001498122 ENSECAG00000016034 100068258 LOC100068258 similar to Lice2 beta 
cysteine protease 

840 CASP7 caspase 7, 
apoptosis-related 
cysteine 
peptidase 

1.5 2.83 0.0177 -2.0 2.8 1.05 0.1532 1.31 0.1701 

ENSECAT00000018992 ENSECAG00000017925 100071509 CD200 CD200 antigen 4345 CD200 CD200 molecule 1.9 5.80 0.0000 -1.0 2.6 1.55 0.1707 2.74 0.0002 

ENSECAT00000011095 ENSECAG00000010267 100034221 LOC100034221 lymphocyte surface 
antigen precursor 
CD44 

960 CD44 CD44 molecule 
(Indian blood 
group) 

1.7 4.20 0.0023 -1.5 2.3 -1.13 0.3110 1.67 0.0052 

ENSECAT00000022486 ENSECAG00000021162 100055760 CDH13 cadherin 13 1012 CDH13 cadherin 13, H-
cadherin (heart) 

2.4 6.28 0.0000 1.2 1.4 1.20 0.3790 2.44 0.0002 

ENSECAT00000013286 ENSECAG00000012826  CDO1 Cysteine 
dioxygenase type 1 

1036 CDO1 cysteine 
dioxygenase, 
type I 

1.6 3.00 0.0130 -1.5 -1.9 1.00 0.5580 1.56 0.0520 

ENSECAT00000004474 ENSECAG00000004572 100062138 LOC100062138 hypothetical protein 
LOC100062138 

9023 CH25H cholesterol 25-
hydroxylase 

1.6 4.62 0.0021 1.2 -4.5 -1.46 0.0423 1.05 0.4093 
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ENSECAT00000020510 ENSECAG00000019194 100033828 CHGA chromogranin A 
(parathyroid 
secretory protein 1) 

1113 CHGA chromogranin A 
(parathyroid 
secretory protein 
1) 

4.1 3.64 0.0055 22.5 3.9 2.44 0.1218 11.2 0.0000 

ENSECAT00000010183 ENSECAG00000009680 100058853 LOC100058853 similar to Chloride 
intracellular channel 
protein 1 (Nuclear 
chloride ion channel 
27) (NCC27) 
(Chloride channel 
ABP) (Regulatory 
nuclear chloride ion 
channel protein) 
(hRNCC) 

1192 CLIC1 chloride 
intracellular 
channel 1 

1.6 2.96 0.0130 -1.0 2.9 -1.23 0.1546 1.23 0.1608 

ENSECAT00000007460 ENSECAG00000007010 100034172 LOC100034172 clusterin 1191 CLU clusterin 1.7 2.89 0.0177 -1.4 1.1 1.11 0.4350 1.67 0.0031 

XM_001491941 ENSECAG00000000149 100059301 CNKSR2 connector enhancer 
of kinase suppressor 
of Ras 2 

22866 CNKSR2 connector 
enhancer of 
kinase 
suppressor of 
Ras 2 

1.9 3.62 0.0046 -2.0 -1.3 -1.02 0.5397 1.54 0.2102 

ENSECAT00000023540 ENSECAG00000021944 100055742 COCH coagulation factor C 
homolog, cochlin 
(Limulus 
polyphemus) 

1690 COCH coagulation factor 
C homolog, 
cochlin (Limulus 
polyphemus) 

4.9 2.96 0.0130 -4.7 3.8 1.55 0.1976 7.36 0.0000 

ENSECAT00000019794 ENSECAG00000018359 100072695 A6P3B6_HORS
E 

Collagen, type XIII, 
alpha 1 Fragment 

1305 COL13A1 collagen, type 
XIII, alpha 1 

1.6 4.02 0.0037 -1.5 3.5 -1.30 0.1260 1.31 0.1802 

ENSECAT00000014457 ENSECAG00000013598 100063901 LOC100063901 similar to collagen, 
type XXVIII 

34026
7 

COL28A1 collagen, type 
XXVIII, alpha 1 

1.6 2.79 0.0208 -1.0 1.8 -1.09 0.3807 1.37 0.0724 

ENSECAT00000022446 ENSECAG00000019838 100066148 LOC100066148 similar to alpha-1 
type IV collagen 

1282 COL4A1 collagen, type IV, 
alpha 1 

1.6 2.86 0.0177 2.0 1.2 -1.05 0.4316 1.19 0.1054 

ENSECAT00000020647 ENSECAG00000019508 100062187 LOC100062187 similar to Collagen, 
type VIII, alpha 1 

1295 COL8A1 collagen, type 
VIII, alpha 1 

5.4 2.21 0.0456 1.5 1.3 -1.30 0.4134 2.73 0.0005 

ENSECAT00000013229 ENSECAG00000012064 100058573 LOC100058573 similar to 
Ceruloplasmin 
precursor 
(Ferroxidase) 

1356 CP ceruloplasmin 
(ferroxidase) 

2.0 3.24 0.0111 -
17.5 

-2.2 -1.73 0.0383 1.46 0.0466 

ENSECAT00000010984 ENSECAG00000010700  CREG2 Protein CREG2 
Precursor 

20040
7 

CREG2 cellular repressor 
of E1A-stimulated 
genes 2 

1.8 3.79 0.0053 1.1 22.8 1.48 0.0343 2.52 0.0000 

ENSECAT00000008715 ENSECAG00000008409 100056249 CRTAP Cartilage-associated 
protein 

10491 CRTAP cartilage 
associated 

1.6 2.93 0.0153 -1.2 2.2 -1.02 0.3003 1.13 0.1620 
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protein 

ENSECAT00000012936 ENSECAG00000012507 100061921 LOC100061921 similar to Alpha 
crystallin B chain 
(Alpha(B)-crystallin) 

1410 CRYAB crystallin, alpha B 2.2 3.91 0.0033 -2.4 3.5 1.04 0.4736 2.08 0.0024 

ENSECAT00000009215 ENSECAG00000008566 100055161 CTSE cathepsin E 1510 CTSE cathepsin E 4.5 3.83 0.0039 -6.0 7.5 -1.80 0.0568 2.11 0.0043 

ENSECAT00000020386 ENSECAG00000019087 100054991 LOC100054991 similar to cathepsin K 1513 CTSK cathepsin K 1.6 4.28 0.0000 -1.3 1.1 1.06 0.4567 1.76 0.0031 

ENSECAT00000011206 ENSECAG00000010817 100059014 CTTNBP2NL CTTNBP2 N-terminal 
like 

55917 CTTNBP2
NL 

CTTNBP2 N-
terminal like 

1.5 3.09 0.0126 -1.1 1.8 1.15 0.2825 1.78 0.0007 

ENSECAT00000019475 ENSECAG00000018406 100061442 LOC100061442 similar to SR-PSOX 58191 CXCL16 chemokine (C-X-
C motif) ligand 16 

1.7 2.98 0.0156 -3.3 2.5 -1.26 0.1948 1.61 0.0177 

ENSECAT00000000643 ENSECAG00000000790  CXCL17 VEGF co-regulated 
chemokine 1 
Precursor 

28434
0 

CXCL17 chemokine (C-X-
C motif) ligand 17 

2.4 4.95 0.0000 -3.6 2.0 -1.16 0.4106 2.79 0.0006 

ENSECAT00000003720 ENSECAG00000003837 100050974 LOC100050974 similar to chemokine 
(C-X-C motif) 
receptor 4 

7852 CXCR4 chemokine (C-X-
C motif) receptor 
4 

1.6 3.17 0.0131 -1.3 3.9 -1.11 0.4340 1.33 0.1767 

ENSECAT00000018424 ENSECAG00000017457 100059499 PSCDBP Cytohesin-interacting 
protein / 
LOC100059499 
similar to Pleckstrin 
homology, Sec7 and 
coiled-coil domains, 
binding protein 

9595 CYTIP cytohesin 1 
interacting 
protein 

1.8 3.24 0.0114 -1.4 3.5 -1.35 0.2057 1.06 0.2009 

ENSECAT00000010145 ENSECAG00000009450 100052557 LOC100052557 similar to Aromatic-L-
amino-acid 
decarboxylase 
(AADC) (DOPA 
decarboxylase) 
(DDC) 

1644 DDC dopa 
decarboxylase 
(aromatic L-
amino acid 
decarboxylase) 

1.7 2.88 0.0177 1.4 2.0 -1.15 0.2825 1.34 0.0645 

ENSECAT00000026051 ENSECAG00000024167 100067586 LOC100067586 hypothetical 
LOC100067586 

55601 DDX60 DEAD (Asp-Glu-
Ala-Asp) box 
polypeptide 60 

1.8 3.94 0.0029 -1.8 1.3 1.14 0.4018 2.40 0.0003 

ENSECAT00000024453 ENSECAG00000022804 100055937 DKK3 Dickkopf-related 3 27122 DKK3 dickkopf homolog 
3 (Xenopus 
laevis) 

1.8 5.59 0.0000 -1.2 2.1 -1.01 0.2698 1.39 0.0724 

ENSECAT00000015171 ENSECAG00000014357 100052876 LOC100052876 similar to delta-like 1 28514 DLL1 delta-like 1 
(Drosophila) 

1.9 3.81 0.0057 -1.0 3.3 1.25 0.1512 2.14 0.0004 
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ENSECAT00000005542 ENSECAG00000005588    1755 DMBT1 deleted in 
malignant brain 
tumors 1 

2.1 3.64 0.0046 -7.3 2.0 -1.25 0.3119 2.42 0.0041 

ENSECAT00000010863 ENSECAG00000009336 100061058 DOCK9 Dedicator of 
cytokinesis protein 9 
(Cdc42 guanine 
nucleotide exchange 
factor zizimin-1)  

23348 DOCK9 dedicator of 
cytokinesis 9 

1.5 4.65 0.0000 -2.3 2.3 1.21 0.1965 1.70 0.0042 

ENSECAT00000024598 ENSECAG00000022735 100051829 DOPEY2 Protein dopey-2 9980 DOPEY2 dopey family 
member 2 

2.0 4.39 0.0000 -1.4 2.2 -1.18 0.1976 2.02 0.0007 

ENSECAT00000018689 ENSECAG00000017697 100072509 LOC100072509 similar to RIKEN 
cDNA 1110006O17  

64170
0 

ECSCR endothelial cell-
specific 
chemotaxis 
regulator 

1.7 2.95 0.0130 -1.4 26.8 1.57 0.0536 2.38 0.0005 

ENSECAT00000012106 ENSECAG00000011618 100034060 LOC100034060 preproendothelin 1 1906 EDN1 endothelin 1 1.7 3.79 0.0042 1.9 2.4 1.23 0.1958 2.44 0.0011 

ENSECAT00000011070 ENSECAG00000010447 100066175 LOC100066175 hypothetical 
LOC100066175 

2202 EFEMP1 EGF-containing 
fibulin-like 
extracellular 
matrix protein 1 

1.6 2.78 0.0208 -1.3 2.2 -1.21 0.2277 1.07 0.3854 

ENSECAT00000005524 ENSECAG00000005086  EGLN3 Egl nine homolog 3  11239
9 

EGLN3 egl nine homolog 
3 (C. elegans) 

1.5 3.70 0.0046 -1.5 2.0 -1.22 0.2750 2.03 0.0089 

ENSECAT00000001357 ENSECAG00000000752 100059218 LOC100059218 similar to Ets 
homologous factor 

26298 EHF ets homologous 
factor  

1.6 3.52 0.0073 -3.1 1.2 1.08 0.4236 1.97 0.0000 

ENSECAT00000022944 ENSECAG00000021497 100063668 EMP-1 Epithelial membrane 
protein 1 

2012 EMP1 epithelial 
membrane 
protein 1 

2.4 4.07 0.0020 2.1 1.3 -1.06 0.4326 1.37 0.2639 

ENSECAT00000006533 ENSECAG00000005896 100052983 LOC100052983 similar to EGF, 
latrophilin and seven 
transmembrane 
domain-containing 
protein 1 precursor 
(EGF-TM7-
latrophilin-related 
protein) (ETL protein) 

2015 EMR1 egf-like module 
containing, 
mucin-like, 
hormone 
receptor-like 1 

1.6 3.60 0.0069 1.1 2.2 -1.01 0.4973 1.51 0.0206 

ENSECAT00000022487 ENSECAG00000021102 100067044 LOC100067044 similar to empty 
spiracles homolog 2 

2018 EMX2 empty spiracles 
homeobox 2 

1.6 2.94 0.0164 -2.3 2.6 1.32 0.1910 2.35 0.0001 

ENSECAT00000018614 ENSECAG00000017667 100067528 ENDOD1 Endonuclease 
domain-containing 1 
protein Precursor - 
XP_001497597.2 

23052 ENDOD1 endonuclease 
domain 
containing 1 

2.1 6.97 0.0000 -1.4 -3.0 2.12 0.0268 4.77 0.0000 
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ENSECAT00000013992 ENSECAG00000013035  ENPP1 Ectonucleotide 
pyrophosphatase/ph
osphodiesterase 
family member 1 

5167 ENPP1 ectonucleotide 
pyrophosphatase
/phosphodiestera
se 1 

1.7 4.04 0.0028 -2.0 -1.9 -1.86 0.0269 -1.00 0.1504 

ENSECAT00000012066 ENSECAG00000011627 100058368 ENPP6 ectonucleotide 
pyrophosphatase/ph
osphodiesterase 6 

13312
1 

ENPP6 ectonucleotide 
pyrophosphatase
/phosphodiestera
se 6 

2.4 5.53 0.0000 -1.7 1.8 1.27 0.2825 3.04 0.0000 

CX603777  100051563 ERG v-ets erythroblastosis 
virus E26 oncogene 
homolog (avian)  

2078 ERG v-ets 
erythroblastosis 
virus E26 
oncogene 
homolog (avian) 

1.7 3.17 0.0130 1.1 1.7 -1.02 0.4171 1.50 0.0272 

ENSECAT00000017985 ENSECAG00000017104 100052062 ERRFI1 ERBB receptor 
feedback inhibitor 1 

54206 ERRFI1 ERBB receptor 
feedback inhibitor 
1 

2.6 3.45 0.0086 2.0 3.7 1.54 0.1478 3.64 0.0001 

ENSECAT00000016104 ENSECAG00000015044 100063026 LOC100063026 similar to factor VIII 2157 F8 coagulation factor 
VIII, procoagulant 
component 

1.7 3.94 0.0035 -1.1 1.3 1.10 0.4134 1.94 0.0008 

CX603294 ENSECAG00000007040 100061276 LOC100061276 hypothetical protein 
LOC100061276 

14434
7 

FAM101A family with 
sequence 
similarity 101, 
member A 

3.7 6.80 0.0000 2.1 1.4 -1.20 0.3848 2.31 0.0703 

ENSECAT00000016368 ENSECAG00000015653 100067399 LOC100067399 similar to hCG26607 58489 FAM108C
1 

family with 
sequence 
similarity 108, 
member C1 

1.7 3.06 0.0136 -1.1 2.8 1.36 0.1540 2.21 0.0056 

ENSECAT00000007658 ENSECAG00000007385 100055982 FAM129A family with sequence 
similarity 129, 
member A 

11649
6 

FAM129A family with 
sequence 
similarity 129, 
member A 

1.9 3.32 0.0113 -1.9 -8.7 -1.42 0.0270 1.25 0.0830 

ENSECAT00000020704 ENSECAG00000019173 100063998 FAM13A family with sequence 
similarity 13, member 
A 

10144 FAM13A family with 
sequence 
similarity 13, 
member A 

2.0 3.72 0.0046 1.2 2.4 1.10 0.2254 1.63 0.0150 

ENSECAT00000000067 ENSECAG00000000046 100062666 LOC100062666 similar to Family with 
sequence similarity 
13, member C1 

22096
5 

FAM13C family with 
sequence 
similarity 13, 
member C 

1.8 3.00 0.0130 -1.1 1.7 1.06 0.3535 1.46 0.0152 
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ENSECAT00000023093 ENSECAG00000021708 100072672 LOC100072672 hypothetical 
LOC100072672 

44116
8 

FAM26F family with 
sequence 
similarity 26, 
member F 

2.5 3.78 0.0041 1.4 -1.1 -1.07 0.4990 2.63 0.0000 

CX597239     13158
3 

FAM43A family with 
sequence 
similarity 43, 
member A 

1.8 4.11 0.0028 1.2 1.6 -1.15 0.3154 1.55 0.0623 

ENSECAT00000012287 ENSECAG00000011553 100067716 LOC100067716 similar to 
chromosome 6 open 
reading frame 32 

9750 FAM65B family with 
sequence 
similarity 65, 
member B 

1.6 2.74 0.0208 1.6 2.1 1.22 0.2814 1.68 0.0911 

ENSECAT00000009437 ENSECAG00000009038 100055277 LOC100055277 similar to family with 
sequence similarity 
70, member A 

55026 FAM70A family with 
sequence 
similarity 70, 
member A 

1.6 3.87 0.0058 -1.2 3.4 -1.25 0.1116 1.37 0.1068 

XM_001502870  100063659 FAT4 FAT tumor 
suppressor homolog 
4 (Drosophila) 

79633 FAT4 FAT tumor 
suppressor 
homolog 4 
(Drosophila) 

1.8 3.72 0.0046 1.0 1.4 -1.07 0.3905 1.42 0.0645 

ENSECAT00000026223 ENSECAG00000024399 100059907 LOC100059907 similar to fibroblast 
growth factor 
homologous factor 1 

2257 FGF12 fibroblast growth 
factor 12 

1.5 2.85 0.0177 1.5 2.8 1.21 0.2250 1.62 0.0094 

ENSECAT00000019234 ENSECAG00000018011  FGF13 Fibroblast growth 
factor 13 

2258 FGF13 fibroblast growth 
factor 13 

1.6 3.75 0.0046 -1.5 3.7 -1.16 0.1094 1.34 0.0397 

ENSECAT00000019888 ENSECAG00000018716 100050353 LOC100050353 similar to fibroblast 
growth factor 9 

2254 FGF9 fibroblast growth 
factor 9 (glia-
activating factor) 

8.8 5.57 0.0009 -2.0 -2.1 -1.56 0.0187 5.89 0.0005 

CD535938 ENSECAG00000018716
as 

100050353-
as 

FGF9-as antisense of similar 
to fibroblast growth 
factor 9 

2254 FGF9-as Fibroblast growth 
factor 9 

8.3 6.20 0.0000 -1.6 -2.0 -1.75 0.0312 4.65 0.0006 

ENSECAT00000007435 ENSECAG00000007171 100054096 LOC100054096 hypothetical protein 
LOC100054096 

2267 FGL1 fibrinogen-like 1 3.3 3.27 0.0113 -2.4 -2.5 1.78 0.0270 3.95 0.0000 

ENSECAT00000027018 ENSECAG00000025020 100056943 FHL-1 Four and a half LIM 
domains protein 1 

2273 FHL1 four and a half 
LIM domains 1 

2.0 7.04 0.0000 1.1 -2.5 1.57 0.0216 2.59 0.0007 

ENSECAT00000018723 ENSECAG00000017657 100071081 FOSL2 FOS-like antigen 2 2355 FOSL2 FOS-like antigen 
2 

1.6 6.24 0.0000 1.3 1.8 1.23 0.3149 1.64 0.1229 

ENSECAT00000008260 ENSECAG00000007878 100054067 FRMD3 FERM domain 
containing 3 

25701
9 

FRMD3 FERM domain 
containing 3 

1.5 3.10 0.0126 -1.2 3.6 1.26 0.1094 1.93 0.0019 

ENSECAT00000003375 ENSECAG00000003535 100056475 LOC100056475 similar to Putative 
lymphocyte G0/G1 
switch protein 2 

50486 G0S2 G0/G1switch 2 2.3 2.70 0.0208 2.2 6.3 1.24 0.1976 2.10 0.0031 
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ENSECAT00000002578 ENSECAG00000002702 100063207 GALNT4 UDP-N-acetyl-alpha-
D-
galactosamine:polyp
eptide N-
acetylgalactosaminylt
ransferase 4 
(GalNAc-T4) 

8693 GALNT4 UDP-N-acetyl-
alpha-D-
galactosamine:po
lypeptide N-
acetylgalactosam
inyltransferase 4 
(GalNAc-T4) 

1.6 4.69 0.0000 -1.0 -2.1 -1.01 0.5531 1.88 0.0062 

ENSECAT00000017720 ENSECAG00000016679 100052358 LOC100052358 similar to Polypeptide 
N-
acetylgalactosaminylt
ransferase-like 
protein 2 (Protein-
UDP 
acetylgalactosaminylt
ransferase-like 
protein 2) (UDP-
GalNAc:polypeptide 
N-
acetylgalactosaminylt
ransferase-like 
protein 2) 
(Polypeptide GalNAc 
transferase-like prot 

11724
8 

GALNTL2 UDP-N-acetyl-
alpha-D-
galactosamine:po
lypeptide N-
acetylgalactosam
inyltransferase-
like 2 

3.2 5.73 0.0000 -1.1 2.0 1.39 0.2549 6.08 0.0000 

ENSECAT00000023055 ENSECAG00000021157 100070564 LOC100070564 similar to GTPase 
activating 
Rap/RanGAP 
domain-like 3 

84253 GARNL3 GTPase 
activating 
Rap/RanGAP 
domain-like 3 

1.7 8.19 0.0000 -1.6 1.1 1.03 0.4912 1.72 0.0249 

ENSECAT00000005099 ENSECAG00000005150 100055573 LOC100055573 similar to connexin31 2707 GJB3 gap junction 
protein, beta 3, 
31kDa 

2.5 2.84 0.0177 -1.3 1.3 -1.01 0.5397 2.60 0.0031 

ENSECAT00000021914 ENSECAG00000020587 100034082 LOC100034082 GM2 activator 
protein precursor 

2760 GM2A GM2 ganglioside 
activator 

4.4 7.43 0.0000 2.0 -3.4 2.96 0.0058 10.9 0.0000 

ENSECAT00000021781 ENSECAG00000020518 100063170 LOC100063170 similar to guanine 
nucleotide-binding 
protein alpha 14 

9630 GNA14 guanine 
nucleotide 
binding protein 
(G protein), alpha 
14 

1.6 3.01 0.0151 1.1 2.1 1.19 0.2547 1.89 0.0006 
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ENSECAT00000000229 ENSECAG00000000229 100055673 LOC100055673 similar to Chain A, 
Crystal Structure Of 
The Heterodimeric 
Complex Of Human 
Rgs1 And Activated 
Gi Alpha 1 

2770 GNAI1 guanine 
nucleotide 
binding protein 
(G protein), alpha 
inhibiting activity 
polypeptide 1 

1.6 3.11 0.0126 -1.8 1.8 -1.08 0.3264 1.13 0.2092 

ENSECAT00000010298 ENSECAG00000010025 100054222 LOC100054222 similar to glypican-3 
splice 

2719 GPC3 glypican 3 1.6 2.91 0.0177 -1.4 1.8 -1.05 0.4707 1.16 0.2311 

ENSECAT00000000189 ENSECAG00000000234 100058693 GPC6 Glypican-6 Precursor 10082 GPC6 glypican 6 1.7 3.64 0.0046 -1.4 5.5 -1.20 0.1532 1.18 0.2032 

ENSECAT00000017831 ENSECAG00000016756 100051492 LOC100051492 similar to 
glycoprotein M6A 

2823 GPM6A glycoprotein M6A 1.8 4.80 0.0000 -2.9 1.8 -1.13 0.3119 1.69 0.0054 

ENSECAT00000001905 ENSECAG00000000658 100067870 LOC100067870 similar to 
Glycoprotein 
(transmembrane) 
nmb 

10457 GPNMB glycoprotein 
(transmembrane) 
nmb 

2.5 3.03 0.0130 1.2 -1.5 -1.04 0.5302 2.52 0.0015 

ENSECAT00000008678 ENSECAG00000008565 100071585 LOC100071585 hypothetical 
LOC100071585 

2861 GPR37 G protein-
coupled receptor 
37 (endothelin 
receptor type B-
like) 

1.7 3.68 0.0046 -1.2 1.1 -1.01 0.5302 1.64 0.0089 

ENSECAT00000010702 ENSECAG00000010419 100069454 GPRASP2 G protein-coupled 
receptor associated 
sorting protein 2 

11492
8 

GPRASP2 G protein-
coupled receptor 
associated 
sorting protein 2 

1.5 2.84 0.0177 -2.1 2.4 1.17 0.2825 1.92 0.0019 

ENSECAT00000025701 ENSECAG00000023764 100065919 LOC100065919 similar to G protein-
coupled receptor 
kinase 

2869 GRK5 G protein-
coupled receptor 
kinase 5 

1.5 2.99 0.0130 1.1 2.2 1.26 0.2091 1.98 0.0005 

NM_001081953  100034186 LOC100034186 gelsolin 2934 GSN gelsolin 
(amyloidosis, 
Finnish type) 

1.5 4.51 0.0000 -1.3 -3.1 2.26 0.0070 2.24 0.0028 

ENSECAT00000008834 ENSECAG00000008606 100052126 LOC100052126 similar to Granzyme 
K precursor 
(Granzyme-3) (NK-
tryptase-2) (NK-
TRYP-2) 

3001 GZMA granzyme A 
(granzyme 1, 
cytotoxic T-
lymphocyte-
associated serine 
esterase 3) 

1.5 2.80 0.0177 -2.0 2.2 -1.05 0.2334 1.20 0.1814 

ENSECAT00000000640 ENSECAG00000000674 100069760 HAPLN3 Hyaluronan and 
proteoglycan link 
protein 3  

14586
4 

HAPLN3 Hyaluronan and 
proteoglycan link 
protein 3  

2.0 3.65 0.0065 -2.1 1.9 -1.31 0.2572 1.24 0.0427 

ENSECAT00000003577 ENSECAG00000002905 100055240 LOC100055240 similar to Histone 
deacetylase 11 

79885 HDAC11 histone 
deacetylase 11 

1.6 2.85 0.0177 1.3 -2.4 1.57 0.0216 2.20 0.0000 
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ENSECAT00000020769 ENSECAG00000019411 100063706 HERC6 hect domain and 
RLD 6 

55008 HERC6 hect domain and 
RLD 6 

2.8 3.83 0.0035 -1.1 1.6 -1.18 0.3389 2.64 0.0000 

ENSECAT00000014779 ENSECAG00000014094 100073020 LOC100073020 similar to 
hairy/enhancer-of-
split related with 
YRPW motif 2 

23493 HEY2 hairy/enhancer-
of-split related 
with YRPW motif 
2 

1.5 5.19 0.0003 1.1 1.7 -1.09 0.4075 1.47 0.0296 

ENSECAT00000005150 ENSECAG00000005199 100071280 HHEX similar to 
hematopoietically 
expressed 
homeobox 

3087 HHEX hematopoietically 
expressed 
homeobox 

1.5 3.68 0.0065 1.2 1.5 1.09 0.3535 1.73 0.0024 

ENSECAT00000024819 ENSECAG00000023226 100050651 LOC100050651 hypothetical protein 
LOC100050651 

51751 HIGD1B HIG1 hypoxia 
inducible domain 
family, member 
1B 

1.7 4.38 0.0000 1.3 1.0 -1.04 0.4916 1.46 0.0062 

ENSECAT00000018358 ENSECAG00000017324 100050473 LOC100050473 similar to MHC class 
I antigen 

3105 HLA-A major 
histocompatibility 
complex, class I, 
A 

1.6 6.32 0.0000 -1.5 2.0 1.28 0.2523 1.22 0.2031 

ENSECAT00000002405 ENSECAG00000002570 100056091 LOC100056091 hypothetical protein 
LOC100056091 

9957 HS3ST1 heparan sulfate 
(glucosamine) 3-
O-
sulfotransferase 
1 

2.1 3.31 0.0113 -1.0 2.3 -1.36 0.2277 1.84 0.0041 

ENSECAT00000027183 ENSECAG00000025171 100073112 LOC100073112 similar to heparan 
sulfate D-
glucosaminyl 3-O-
sulfotransferase 3A1 

9955 HS3ST3A
1 

heparan sulfate 
(glucosamine) 3-
O-
sulfotransferase 
3A1 

2.1 2.89 0.0177 -1.0 1.4 1.14 0.3655 1.79 0.0282 

ENSECAT00000020548 ENSECAG00000019243 100056429 LOC100056429 similar to 11-beta-
hydroxysteroid 
dehydrogenase type 
1 

3290 HSD11B1 hydroxysteroid 
(11-beta) 
dehydrogenase 1 

2.9 3.33 0.0113 6.2 -9.8 nd  3.76 0.0015 

ENSECAT00000013201 ENSECAG00000012754 100061956 LOC100061956 similar to HSPB2 3316 HSPB2 heat shock 
27kDa protein 2 

1.6 2.79 0.0208 -1.7 1.4 -1.04 0.4756 1.50 0.0100 
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ENSECAT00000020461 ENSECAG00000019345 100050779 LOC100050779 similar to Heat shock 
protein beta-8 
(HspB8) (Alpha-
crystallin C chain) 
(Small stress protein-
like protein HSP22) 
(E2-induced gene 1 
protein) (Protein 
kinase H11) 

26353 HSPB8 heat shock 
22kDa protein 8 

5.0 3.94 0.0035 1.3 -22.3 1.39 0.0270 5.60 0.0000 

ENSECAT00000018086 ENSECAG00000017157 100055430 LOC100055430 similar to immediate 
early response 3 

8870 IER3 immediate early 
response 3 

4.4 3.75 0.0046 3.9 7.6 1.55 0.0668 5.90 0.0000 

ENSECAT00000018190 ENSECAG00000017172 100064838 ISG12(A) ISG12(a) protein-like 83982 IFI27L2 interferon, alpha-
inducible protein 
27-like 2 

1.6 3.54 0.0073 -1.1 -3.8 -1.49 0.0187 -1.94 0.0008 

XM_001496475  100066067 IFIT1L interferon-induced 
protein with 
tetratricopeptide 
repeats 1-like 

43999
6 

IFIT1L interferon-
induced protein 
with 
tetratricopeptide 
repeats 1-like 

1.7 3.65 0.0046 2.0 2.5 -1.05 0.4002 2.00 0.0144 

ENSECAT00000015626 ENSECAG00000014889 100034154 IGFBP-1 insulin-like growth 
factor binding 
protein-1 

3484 IGFBP1 insulin-like 
growth factor 
binding protein 1 

5.8 3.82 0.0036 11.2 1.5 nd  5.19 0.0008 

ENSECAT00000012491 ENSECAG00000012058 100034061 IGFBP-2 insulin-like growth 
factor binding 
protein-2 

3485 IGFBP2 insulin-like 
growth factor 
binding protein 2, 
36kDa 

1.9 4.02 0.0020 -1.9 1.3 1.12 0.4350 1.89 0.0062 

ENSECAT00000019151 ENSECAG00000018104 100034155 IGFBP-3 insulin-like growth 
factor binding 
protein-3 

3486 IGFBP3 insulin-like 
growth factor 
binding protein 3 

3.5 5.89 0.0000 -3.9 -2.8 1.63 0.0270 5.60 0.0000 

ENSECAT00000013593 ENSECAG00000013087 100033844 AGM angiomodulin 3490 IGFBP7 insulin-like 
growth factor 
binding protein 7 

1.7 3.85 0.0038 -1.2 1.1 1.03 0.5025 1.46 0.0210 

ENSECAT00000009745 ENSECAG00000009556 100066058 IGHC1 immunogobulin 
gamma 1 heavy 
chain constant region 

3500 IGHG1 immunoglobulin 
heavy constant 
gamma 1 (G1m 
marker) 

3.3 2.49 0.0298 -5.3 6.6 -1.63 0.0850 -1.27 0.2070 

ENSECAT00000003731 ENSECAG00000003774 100066058 IGHC1 immunogobulin 
gamma 1 heavy 
chain constant region  

3500 IGHG1 immunoglobulin 
heavy constant 
gamma 1 (G1m 
marker) 

3.5 3.37 0.0094 -4.9 13.3 -1.74 0.0640 -1.12 0.3322 
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ENSECAT00000006097 ENSECAG00000006095  IGHG3 Immunoglobulin gamma 3 
heavy chain constant region 
(IGHG3 gene), exon 1-4 

IGHG3  3.5 3.01 0.0130 -4.4 1.2 -2.67 0.0333 1.22 0.3025 

ENSECAT00000015122 ENSECAG00000014509 100052564 LOC100052564 similar to 
hCG2043214 

 IGLV1-40 immunoglobulin 
lambda variable 
1-40 

2.4 2.49 0.0298 -2.4 -2.8 -1.95 0.0430 -1.12 0.3478 

ENSECAT00000015778 ENSECAG00000015109 100060365 LOC100060365 similar to lambda-
immunoglobulin 

28809 IGLV3-1 Ig lambda chain 
V-IV region 

2.3 2.65 0.0236 -3.0 3.5 -1.79 0.1413 -1.28 0.1962 

XM_001499705  100065894 LOC100065894 similar to interleukin 
32 

9235 IL32 interleukin 32 1.6 3.30 0.0113 1.1 -5.5 -1.00 0.5580 1.39 0.0397 

ENSECAT00000003156 ENSECAG00000003315 100146249 IRS2 Insulin receptor 
substrate 2 

8660 IRS2 insulin receptor 
substrate 2 

1.8 5.51 0.0000 1.0 2.2 1.36 0.2253 2.57 0.0021 

ENSECAT00000018839 ENSECAG00000017386 100063434 ITGA1 integrin, alpha 1 3672 ITGA1 integrin, alpha 1 1.6 2.97 0.0130 -1.1 2.5 1.06 0.4383 1.65 0.0197 

ENSECAT00000020530 ENSECAG00000019215 100053462 LOC100053462 similar to integrin 
beta-8 

3696 ITGB8 integrin, beta 8 1.5 3.41 0.0092 1.3 -3.2 2.06 0.0137 3.13 0.0000 

ENSECAT00000023419 ENSECAG00000020933 100052808 ITPR1 Inositol 1,4,5-
trisphosphate 
receptor type 2 

3708 ITPR1 inositol 1,4,5-
triphosphate 
receptor, type 1 

4.1 4.42 0.0000 1.9 4.0 -1.02 0.5029 3.02 0.0006 

ENSECAT00000014473 ENSECAG00000012993 100064289 LOC100064289 similar to Jagged 1 182 JAG1 jagged 1 (Alagille 
syndrome) 

1.5 2.84 0.0177 -1.8 2.3 1.31 0.2031 2.01 0.0017 

ENSECAT00000015802 ENSECAG00000014992 100053905 LOC100053905 similar to C21ORF43 58494 JAM2 junctional 
adhesion 
molecule 2 

1.7 3.45 0.0092 -1.2 9.7 1.30 0.1094 2.06 0.0000 

ENSECAT00000021324 ENSECAG00000020082 100064342 LOC100064342 hypothetical 
LOC100064342 

3781 KCNN2 potassium 
intermediate/smal
l conductance 
calcium-activated 
channel, 
subfamily N, 
member 2 

6.5 3.77 0.0046 2.0 1.6 -1.18 0.4134 4.79 0.0005 

ENSECAT00000016198 ENSECAG00000015488 100147493 LOC100147493 similar to 
intermediate-
conductance 
calcium-activated 
potassium channel 

3783 KCNN4 potassium 
intermediate/smal
l conductance 
calcium-activated 
channel, 
subfamily N, 
member 4 

2.2 3.67 0.0046 1.6 2.3 1.09 0.3905 1.37 0.2224 
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ENSECAT00000021639 ENSECAG00000019429 100033959 KDR kinase insert domain 
receptor 

3791 KDR kinase insert 
domain receptor 
(a type III 
receptor tyrosine 
kinase) 

1.7 3.23 0.0115 1.5 1.3 1.07 0.4119 1.55 0.0599 

ENSECAT00000010895 ENSECAG00000010546 100052058 LOC100052058 similar to kruppel-like 
factor 5 

688 KLF5 Kruppel-like 
factor 5 
(intestinal) 

1.6 4.69 0.0056 1.8 1.2 1.08 0.4582 1.71 0.0089 

CX596677 ENSECAG00000024925 100050300 KLF9 Krueppel-like factor 9 687 KLF9 Kruppel-like 
factor 9 

1.5 2.82 0.0177 1.2 2.0 1.14 0.2722 1.51 0.2290 

ENSECAT00000015505 ENSECAG00000014646 100068133 KNG1 kininogen 1 3827 KNG1 kininogen 1 4.3 4.74 0.0000 -1.5 15.4 2.08 0.0517 7.21 0.0000 

NM_001081768 ENSECAG00000021903 791245 LAMC2 laminin, gamma 2 3918 LAMC2 laminin, gamma 2 2.6 5.89 0.0000 -1.7 2.2 -1.18 0.2825 2.86 0.0000 

ENSECAT00000022362 ENSECAG00000020957 100070310 LOC100070310 similar to lipocalin 2 
(oncogene 24p3) 

3934 LCN2 lipocalin 2 2.8 4.43 0.0000 -3.5 1.9 -1.46 0.3389 3.89 0.0000 

ENSECAT00000011488 ENSECAG00000010840 100071626 LIPA lipase A, lysosomal 
acid, cholesterol 
esterase 

3988 LIPA lipase A, 
lysosomal acid, 
cholesterol 
esterase 

1.6 3.39 0.0092 1.1 -2.5 1.69 0.0187 2.27 0.0007 

XM_001492772  100060540 LOC100060540 similar to lambda-
immunoglobulin 

1E+08 LOC10029
0481 

similar to 
immunoglobulin 
lambda locus 

2.1 2.86 0.0177 -3.0 -5.4 -1.47 0.0347 -1.38 0.0853 

DN508620     64563
8 

LOC64563
8 

similar to 
WDNM1-like 
protein 

1.8 4.37 0.0006 1.8 1.2 -1.02 0.5122 1.53 0.0227 

ENSECAT00000015502 ENSECAG00000014771 100064016 LOX Protein-lysine 6-
oxidase Precursor 

4015 LOX lysyl oxidase 1.6 3.09 0.0126 -1.2 1.6 -1.00 0.3881 1.32 0.1022 

ENSECAT00000006621 ENSECAG00000005573 100070637 LOXL4 Lysyl oxidase 
homolog 4 Precursor 

84171 LOXL4 lysyl oxidase-like 
4 

1.6 3.96 0.0040 1.1 1.4 -1.06 0.4047 1.67 0.0020 

ENSECAT00000026820 ENSECAG00000024824 100052932 XP_001497658.
2 

similar to latrophilin 2 23266 LPHN2 latrophilin 2 1.6 3.15 0.0115 -1.4 1.2 1.03 0.5064 1.56 0.0077 

ENSECAT00000006441 ENSECAG00000006476 100061270 LRRC8D leucine rich repeat 
containing 8 family, 
member D 

23507 LRRC8B leucine rich 
repeat containing 
8 family, member 
B 

1.6 3.61 0.0046 -1.4 2.0 -1.17 0.2677 -1.12 0.1511 

ENSECAT00000021853 ENSECAG00000019691 100070522 LTBP1 latent transforming 
growth factor beta 
binding protein 1 

4052 LTBP1 latent 
transforming 
growth factor 
beta binding 
protein 1 

2.6 6.01 0.0000 -1.5 1.7 1.11 0.3851 2.74 0.0002 

XM_001505010  100066253 LOC100066253 hypothetical protein 
LOC100066253 

4062 LY6H lymphocyte 
antigen 6 
complex, locus H 

1.7 4.51 0.0000 -4.4 1.9 -1.12 0.3333 1.31 0.2318 
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ENSECAT00000020208 ENSECAG00000019109 100063854 LOC100063854 hypothetical protein 
LOC100063854 

7851 MALL mal, T-cell 
differentiation 
protein-like 

1.6 4.26 0.0000 -1.7 4.1 1.23 0.1681 1.93 0.0012 

ENSECAT00000024822 ENSECAG00000022893 100064575 MAN2A1 mannosidase, alpha, 
class 2A, member 1 

4124 MAN2A1 mannosidase, 
alpha, class 2A, 
member 1 

1.8 5.28 0.0000 -1.0 4.0 1.30 0.1532 2.50 0.0000 

ENSECAT00000026898 ENSECAG00000024860 100073186 MAP3K5 mitogen-activated 
protein kinase kinase 
kinase 5 

4217 MAP3K5 mitogen-activated 
protein kinase 
kinase kinase 5 

1.6 3.15 0.0115 -1.5 1.8 -1.18 0.3389 1.49 0.0520 

ENSECAT00000007639 ENSECAG00000007518 100063655 LOC100063655 hypothetical protein 
LOC100063655 

11512
3 

MARCH3 membrane-
associated ring 
finger (C3HC4) 3 

1.7 3.49 0.0073 -1.5 1.1 -1.06 0.4567 1.50 0.0282 

ENSECAT00000008696 ENSECAG00000007798 100061008 LOC100061008 similar to malic 
enzyme 3, NADP(+)-
dependent, 
mitochondrial 

10873 ME3 malic enzyme 3, 
NADP(+)-
dependent, 
mitochondrial 

1.6 3.72 0.0046 -2.3 2.6 -1.35 0.1729 -1.05 0.0260 

ENSECAT00000025391 ENSECAG00000023488 100055637 MED13L mediator complex 
subunit 13-like 

23389 MED13L mediator complex 
subunit 13-like 

1.6 2.86 0.0177 -1.2 2.0 1.17 0.3946 1.61 0.1839 

ENSECAT00000011493 ENSECAG00000010385 100056013 MET met proto-oncogene 
(hepatocyte growth 
factor receptor) 

4233 MET met proto-
oncogene 
(hepatocyte 
growth factor 
receptor) 

1.7 3.55 0.0073 -1.2 2.5 1.48 0.1772 2.63 0.0033 

ENSECAT00000007866 ENSECAG00000007658 100053785 LOC100053785 similar to 
lysophospholipase 
homolog 

11343 MGLL monoglyceride 
lipase 

1.9 3.49 0.0074 -1.1 5.5 1.44 0.1124 2.64 0.0006 

ENSECAT00000011027 ENSECAG00000010721 100063934 LOC100063934 similar to matrix Gla 
protein 

4256 MGP matrix Gla protein 3.0 4.82 0.0000 -1.3 1.3 1.14 0.4236 3.36 0.0000 

XM_001498375  100033918 LOC100033918 microphthalmia 
transcription factor 

4286 MITF microphthalmia-
associated 
transcription 
factor 

1.7 3.39 0.0092 1.1 2.5 1.50 0.1694 2.51 0.0033 

ENSECAT00000012186 ENSECAG00000011719 100053317 MMRN1 multimerin 1 22915 MMRN1 multimerin 1 2.2 2.91 0.0153 -2.0 1.0 1.00 0.4836 1.86 0.0018 

ENSECAT00000026782 ENSECAG00000024812 100062492 MST1R macrophage 
stimulating 1 
receptor (c-met-
related tyrosine 
kinase) 

4486 MST1R macrophage 
stimulating 1 
receptor (c-met-
related tyrosine 
kinase) 

1.9 5.66 0.0000 -1.4 8.7 1.31 0.0668 2.34 0.0005 

CD465149     85027 MSTP150 putative small 
membrane 
protein  

2.9 3.73 0.0041 1.2 1.8 1.16 0.3772 3.28 0.0011 
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ENSECAT00000008458 ENSECAG00000007931 100070060 LOC100070060 similar to mucin 4 4585 MUC4 mucin 4, cell 
surface 
associated 

2.5 3.14 0.0126 -9.2 2.6 -1.37 0.1681 2.22 0.0012 

ENSECAT00000002008 ENSECAG00000002106 100058571 LOC100058571 similar to N-
acetyltransferase 8B 

9027 NAT8 N-
acetyltransferase 
8 (GCN5-related, 
putative) 

1.6 3.28 0.0113 1.0 3.0 1.39 0.1382 1.64 0.0397 

XM_001488410 ENSECAG00000018997 100052657 LOC100052657 similar to nuclear 
factor of activated T-
cells, cytoplasmic, 
calcineurin-
dependent 2 

4773 NFATC2 nuclear factor of 
activated T-cells, 
cytoplasmic, 
calcineurin-
dependent 2 

1.5 3.32 0.0113 1.1 1.9 1.07 0.3046 1.52 0.0083 

ENSECAT00000021581 ENSECAG00000020093 100068418 LOC100068418 similar to type C 
atrial natriuretic 
peptide receptor 

4883 NPR3 natriuretic 
peptide receptor 
C/guanylate 
cyclase C 
(atrionatriuretic 
peptide receptor 
C) 

2.3 4.32 0.0015 -1.1 2.9 1.55 0.1584 2.96 0.0019 

ENSECAT00000008512 ENSECAG00000008381 100146166 LOC100146166  similar to COUP 
transcription factor 2 
(COUP-TF2) (COUP-
TF II) (Nuclear 
receptor subfamily 2 
group F member 2) 
(Apolipoprotein AI 
regulatory protein 1) 
(ARP-1) 

7026 NR2F2 nuclear receptor 
subfamily 2, 
group F, member 
2  

1.5 3.64 0.0046 1.1 -1.0 -1.03 0.5191 1.47 0.0645 

ENSECAT00000018899 ENSECAG00000016824 100066305 NRP2 Neuropilin-2 8828 NRP2 Neuropilin-2 2.0 2.89 0.0177 -3.8 5.1 -1.39 0.1382 1.59 0.0282 

ENSECAT00000026487 ENSECAG00000024611 100051839 LOC100051839 similar to 
neurotrophin 3 

4908 NTF3 neurotrophin 3 1.7 4.19 0.0036 -1.4 3.0 -1.12 0.1668 1.56 0.0946 

ENSECAT00000002536 ENSECAG00000002145 100053752 NUAK1 NUAK family, SNF1-
like kinase, 1 

9891 NUAK1 NUAK family, 
SNF1-like kinase, 
1 

1.7 4.46 0.0000 -1.1 -2.1 1.01 0.5475 1.75 0.0031 

NM_001081773 ENSECAG00000014422 791250 OAS2 2'-5'-oligoadenylate 
synthetase 2, 
69/71kDa 

4939 OAS2 2'-5'-
oligoadenylate 
synthetase 2, 
69/71kDa 

1.5 2.83 0.0169 -1.5 3.6 1.39 0.1682 2.58 0.0001 

ENSECAT00000010293 ENSECAG00000009637 100034107 LOC100034107 OCA2 4948 OCA2 oculocutaneous 
albinism II 

1.9 4.48 0.0000 1.2 5.7 1.55 0.0693 3.13 0.0000 
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ENSECAT00000009190 ENSECAG00000008038 100062728 ODZ4 odz, odd Oz/ten-m 
homolog 4 
(Drosophila) 

26011 ODZ4 odz, odd Oz/ten-
m homolog 4 
(Drosophila) 

1.9 3.50 0.0073 -1.9 1.9 1.17 0.3655 2.54 0.0008 

BM734727     22021
3 

OTUD1 OTU domain 
containing 1 

1.5 4.03 0.0020 1.0 2.2 1.19 0.3119 1.77 0.0019 

ENSECAT00000018873 ENSECAG00000017844 100058848 LOC100058848 similar to oxytocin 
receptor 

5021 OXTR oxytocin receptor 1.6 2.86 0.0177 -1.0 1.6 1.24 0.3389 1.93 0.0062 

ENSECAT00000008438 ENSECAG00000008154 100064749 LOC100064749 similar to progestin 
and adipoQ receptor 
family member V 

54852 PAQR5 progestin and 
adipoQ receptor 
family member V 

2.0 4.15 0.0021 3.0 -1.2 1.03 0.5115 2.25 0.0068 

NM_001101655  100064309 PECAM1 platelet/endothelial 
cell adhesion 
molecule 

5175 PECAM1 platelet/endotheli
al cell adhesion 
molecule 

1.6 3.10 0.0122 -1.3 7.6 1.40 0.0731 2.07 0.0008 

ENSECAT00000013827 ENSECAG00000013131 100054894 LOC100054894 similar to HPDHase 55825 PECR peroxisomal 
trans-2-enoyl-
CoA reductase 

2.5 8.07 0.0000 -1.1 1.8 1.21 0.2825 2.81 0.0015 

ENSECAT00000025907 ENSECAG00000024110 100067723 LOC100067723 similar to 
Proenkephalin A 
precursor 

5179 PENK proenkephalin 2.1 2.78 0.0208 4.4 -1.7 -1.98 0.0225 1.00 0.3743 

ENSECAT00000014506 ENSECAG00000013247 100034167 PER2 period homolog 2 
(Drosophila) 

8864 PER2 period homolog 2 
(Drosophila) 

1.6 3.79 0.0049 -1.0 2.7 1.26 0.1991 2.34 0.0013 

ENSECAT00000006309 ENSECAG00000005228 100059940 LOC100059940 similar to 
Phosphoglycerate 
dehydrogenase 

26227 PHGDH phosphoglycerate 
dehydrogenase 

2.0 3.84 0.0035 1.1 18.7 1.47 0.0187 2.82 0.0000 

ENSECAT00000017734 ENSECAG00000016613 100071564 LOC100071564 similar to LL5 beta 
protein 

90102 PHLDB2 pleckstrin 
homology-like 
domain, family B, 
member 2 

1.9 4.01 0.0020 -1.4 6.8 1.31 0.0850 2.48 0.0000 

ENSECAT00000017184 ENSECAG00000016196 100055765 PIGR Polymeric 
immunoglobulin 
receptor Precursor 
(Poly-Ig receptor) 

5284 PIGR polymeric 
immunoglobulin 
receptor 

1.9 3.26 0.0113 -8.2 -1.5 1.02 0.5397 1.99 0.0015 

ENSECAT00000021930 ENSECAG00000020563 100053898 PIM1 pim-1 oncogene 5292 PIM1 pim-1 oncogene 1.6 3.42 0.0092 -1.6 1.5 1.11 0.4134 1.53 0.0046 

ENSECAT00000014292 ENSECAG00000013700 100050951 LOC100050951 similar to Pirin 8544 PIR pirin (iron-binding 
nuclear protein) 

1.5 4.87 0.0000 -2.6 1.5 1.08 0.3808 1.50 0.0214 

ENSECAT00000026856 ENSECAG00000024810 100033889 PLA2G1B phospholipase A2, 
group IB (pancreas) 

5321 PLA2G4A phospholipase 
A2, group IVA 
(cytosolic, 
calcium-
dependent) 

1.6 3.62 0.0063 -1.6 1.7 -1.20 0.2966 1.54 0.0109 
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ENSECAT00000008239 ENSECAG00000007571 100050239 PLAT plasminogen 
activator, tissue 

5327 PLAT plasminogen 
activator, tissue 

2.5 6.43 0.0000 -1.4 5.3 1.51 0.0943 2.84 0.0007 

ENSECAT00000025706 ENSECAG00000023703 100054233 PLCD1 phospholipase C, 
delta 1 

5333 PLCD1 phospholipase C, 
delta 1 

2.3 3.80 0.0046 -1.8 1.2 1.06 0.4350 2.74 0.0000 

ENSECAT00000018697 ENSECAG00000017520 100055892 LOC100055892 hypothetical protein 
LOC100055892 

84898 PLXDC2 plexin domain 
containing 2 

2.4 2.41 0.0317 1.3 3.0 1.63 0.1152 3.97 0.0000 

ENSECAT00000005858 ENSECAG00000001716 100051646 PLXNA2 Plexin-A2 Precursor 5362 PLXNA2 plexin A2 1.6 4.02 0.0028 -1.5 1.5 -1.02 0.4910 1.59 0.0172 

ENSECAT00000009314 ENSECAG00000009044 100071967 PRDM1 PR domain 
containing 1, with 
ZNF domain 

639 PRDM1 PR domain 
containing 1, with 
ZNF domain 

1.6 3.10 0.0126 1.4 2.2 1.19 0.3119 1.88 0.0008 

ENSECAT00000010056 ENSECAG00000009483 100053793 LOC100053793 similar to prolactin 
receptor 

5618 PRLR prolactin receptor 2.0 2.61 0.0264 -1.1 3.4 1.31 0.2277 2.24 0.0000 

ENSECAT00000004895, 
XM_001495172 

ENSECAG00000004897 100065904 PRNP prion protein 5621 PRNP prion protein 1.8 5.05 0.0000 -2.9 2.7 1.25 0.3066 2.77 0.0000 

ENSECAT00000026279 ENSECAG00000024428 100069445 LOC100069445 similar to endothelial 
cell protein C/APC 
receptor 

10544 PROCR protein C 
receptor, 
endothelial 
(EPCR) 

1.6 2.84 0.0177 -1.3 1.5 1.11 0.4211 1.66 0.0046 

ENSECAT00000005511 ENSECAG00000005563 100060937 LOC100060937 similar to putative 
serine protease 23 

11098 PRSS23 protease, serine, 
23 

2.6 5.64 0.0000 -1.9 1.4 1.13 0.3780 2.81 0.0000 

ENSECAT00000018732 ENSECAG00000017483 100051830 PSD3 pleckstrin and Sec7 
domain containing 3 

23362 PSD3 pleckstrin and 
Sec7 domain 
containing 3 

1.5 3.28 0.0113 -1.5 3.2 1.38 0.1094 2.16 0.0019 

ENSECAT00000014888 ENSECAG00000014239 100053557 LOC100053557 similar to 
protaglandin receptor 
EP3E 

5733 PTGER3 prostaglandin E 
receptor 3 
(subtype EP3) 

1.8 2.97 0.0157 -1.3 2.1 1.17 0.3367 2.05 0.0036 

ENSECAT00000011519 ENSECAG00000011145 100053208 LOC100053208 similar to 
prostaglandin E2 
receptor EP4 
subtype 

5734 PTGER4 prostaglandin E 
receptor 4 
(subtype EP4) 

2.0 7.04 0.0000 -1.3 1.7 1.13 0.3589 2.37 0.0001 

ENSECAT00000005057 ENSECAG00000004698 100058059 PTGR1  Prostaglandin 
reductase 1  

22949 PTGR1 prostaglandin 
reductase 1 

2.7 2.80 0.0177 -2.1 15.4 1.66 0.0536 3.91 0.0000 

ENSECAT00000012202, 
XM_001501199 

ENSECAG00000011293 100071439 R-PTP-
zeta,PTPRZ1 

Receptor-type 
tyrosine-protein 
phosphatase zeta 
Precursor, protein 
tyrosine 
phosphatase, 
receptor-type, Z 
polypeptide 1 

5793 PTPRG protein tyrosine 
phosphatase, 
receptor type, G 

1.8 4.70 0.0010 -2.0 2.1 -1.02 0.3774 1.49 0.0437 
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ENSECAT00000016660 ENSECAG00000015669 100062293 LOC100062293 similar to Ras-related 
protein Rab-3B 
(SMG P25B) 

5865 RAB3B RAB3B, member 
RAS oncogene 
family 

3.5 3.54 0.0073 1.5 -1.3 -1.05 0.5064 3.67 0.0007 

ENSECAT00000005983 ENSECAG00000006060 100051458 RAI2 retinoic acid induced 
2 

10742 RAI2 retinoic acid 
induced 2 

1.5 5.81 0.0000 -2.0 1.1 1.07 0.4541 1.48 0.0323 

ENSECAT00000023599 ENSECAG00000022153 100050263 LOC100050263 similar to RALY RNA 
binding protein-like 

13804
6 

RALYL RALY RNA 
binding protein-
like 

1.5 3.80 0.0046 1.3 12.9 1.63 0.1754 1.84 0.0406 

XM_001494115  100051546 RARB retinoic acid 
receptor, beta 

5914 RARA retinoic acid 
receptor, alpha 

1.5 3.22 0.0115 -1.4 7.6 -1.54 0.0653 -1.31 0.0877 

ENSECAT00000015490 ENSECAG00000014799 100063047 LOC100063047 hypothetical 
LOC100063047 

5919 RARRES2 retinoic acid 
receptor 
responder 
(tazarotene 
induced) 2 

1.7 2.93 0.0130 -1.4 2.5 1.39 0.1681 2.19 0.0000 

ENSECAT00000024212 ENSECAG00000022648 100064529 LOC100064529 similar to carcinoma 
associated protein 
HOJ-1 

11228 RASSF8 Ras association 
(RalGDS/AF-6) 
domain family (N-
terminal) member 
8 

1.7 3.24 0.0119 -1.5 1.1 -1.01 0.5441 1.79 0.0027 

ENSECAT00000003068 ENSECAG00000003124 100056851 RCSD1 Capz-interacting 
protein  

92241 RCSD1 RCSD domain 
containing 1 

1.5 3.42 0.0092 -1.0 -1.1 1.06 0.4916 1.66 0.0145 

ENSECAT00000012594 ENSECAG00000012179 100051067 RGS2 regulator of G-protein 
signaling 2, 24kDa 

5997 RGS2 regulator of G-
protein signaling 
2, 24kDa 

1.8 2.74 0.0208 -1.1 2.5 1.24 0.1976 2.49 0.0000 

ENSECAT00000025401 ENSECAG00000023668 100059437 LOC100059437 similar to regulator of 
G-protein signalling 5 

8490 RGS5 regulator of G-
protein signaling 
5 

1.9 2.69 0.0208 1.2 2.0 1.24 0.2518 2.19 0.0031 

ENSECAT00000003662 ENSECAG00000003386 100051825 LOC100051825 hypothetical protein 
LOC100051825 

57381 RHOJ ras homolog 
gene family, 
member J 

1.7 2.90 0.0177 1.0 2.0 1.09 0.4235 1.39 0.0826 

ENSECAT00000016226 ENSECAG00000015381 100061415 LOC100061415 hypothetical 
LOC100061415 

54453 RIN2 Ras and Rab 
interactor 2 

1.6 3.07 0.0146 1.2 2.2 1.42 0.1963 2.07 0.0390 

ENSECAT00000012082 ENSECAG00000011727 100072691 Rnase5 Ribonuclease 4 
Precursor 

6038 RNASE4 ribonuclease, 
RNase A family, 
4 

2.3 2.99 0.0130 -1.6 2.5 -1.00 0.3078 1.88 0.0130 

ENSECAT00000022372 ENSECAG00000020971 100058747 LOC100058747 similar to Rho-related 
GTP-binding protein 
Rho6 precursor (Rho 
family GTPase 1) 
(Rnd1) 

27289 RND1 Rho family 
GTPase 1 

2.0 2.89 0.0167 2.6 7.5 -1.28 0.0593 1.38 0.0783 
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XM_001488213  100050088 LOC100050088 similar to Rho-related 
GTP-binding protein 
RhoE precursor (Rho 
family GTPase 3) 
(Rnd3) (Rho8) 
(MemB protein) 

390 RND3 Rho family 
GTPase 3 

1.7 7.07 0.0000 1.5 3.5 -1.08 0.2866 1.58 0.0333 

ENSECAT00000004699 ENSECAG00000003462 100051950 RUNX1 Runt-related 
transcription factor 1  

861 RUNX1 Runt-related 
transcription 
factor 1 

2.1 3.30 0.0098 -1.2 6.6 1.46 0.1464 3.03 0.0696 

ENSECAT00000023493 ENSECAG00000021962 100053446 SCHIP1 Schwannomin-
interacting protein 1 

29970 SCHIP1 schwannomin 
interacting 
protein 1 

1.8 5.36 0.0000 -1.1 1.6 1.09 0.4134 1.80 0.0031 

ENSECAT00000022129 ENSECAG00000020842 100054790 LOC100054790 similar to serum 
deprivation response 

8436 SDPR serum 
deprivation 
response 
(phosphatidylseri
ne binding 
protein) 

1.9 3.24 0.0115 -1.0 6.3 1.37 0.0850 2.16 0.0005 

ENSECAT00000015356, 
NM_001114533 

ENSECAG00000011847 100065158 SPI2 alpha-1-antitrypsin 5265 SERPINA
1 

serpin peptidase 
inhibitor, clade A 
(alpha-1 
antiproteinase, 
antitrypsin), 
member 1 

3.1 3.80 0.0043 1.5 2.3 -1.17 0.3898 3.62 0.0011 

ENSECAT00000022717 ENSECAG00000021166 100057505 LOC100057505 similar to 
SCCA2/SCCA1 
fusion protein 

6318 SERPINB
4 

serpin peptidase 
inhibitor, clade B 
(ovalbumin), 
member 4 

3.4 5.15 0.0000 1.2 -2.0 -1.92 0.0159 1.88 0.0209 

ENSECAT00000021200 ENSECAG00000019781 100033931 PAI-1 Plasminogen 
activator inhibitor-1 
Fragment 

5054 SERPINE
1 

serpin peptidase 
inhibitor, clade E 
(nexin, 
plasminogen 
activator inhibitor 
type 1), member 
1 

3.1 2.69 0.0238 7.2 1.9 -1.24 0.3203 1.69 0.1503 

ENSECAT00000012633 ENSECAG00000011753 100067450 LOC100067450 similar to SEC14 and 
spectrin domains 1 

91404 SESTD1 SEC14 and 
spectrin domains 
1 

1.6 3.55 0.0070 -1.1 1.8 -1.00 0.4291 1.68 0.0029 

ENSECAT00000022770 ENSECAG00000021358 100055845 LOC100055845 similar to Secreted 
frizzled-related 
sequence protein 1 

6422 SFRP1 secreted frizzled-
related protein 1 

1.7 3.31 0.0119 -2.1 3.8 1.22 0.2454 1.89 0.0136 
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ENSECAT00000023082 ENSECAG00000021576 100050428 LOC100050428 similar to gamma-
sarcoglycan 

6445 SGCG sarcoglycan, 
gamma (35kDa 
dystrophin-
associated 
glycoprotein) 

1.9 2.88 0.0177 1.3 -2.1 1.52 0.0216 2.40 0.0005 

ENSECAT00000025491 ENSECAG00000023754  SHE SH2 domain-
containing adapter 
protein E Source: 
UniProtKB/Swiss-
Prot Q5VZ18 

12666
9 

SHE Src homology 2 
domain 
containing E 

1.6 3.17 0.0125 -1.2 2.6 1.13 0.2515 1.59 0.0245 

ENSECAT00000010617 ENSECAG00000009334 100060961 LOC100060961 hypothetical protein 
LOC100060961 

6564 SLC15A1 solute carrier 
family 15 
(oligopeptide 
transporter), 
member 1 

2.8 2.44 0.0317 1.5 4.1 -1.45 0.1094 1.90 0.0111 

ENSECAT00000010474 ENSECAG00000010094 100063698 LOC100063698 similar to Solute 
carrier family 25, 
member 36" 

55186 SLC25A36 solute carrier 
family 25, 
member 36 

1.6 6.74 0.0000 -1.6 2.2 1.00 0.2686 1.63 0.0306 

ENSECAT00000000516 ENSECAG00000000303 100034080 SLC2A1 solute carrier family 2 
(facilitated glucose 
transporter), member 
1 

6513 SLC2A1 solute carrier 
family 2 
(facilitated 
glucose 
transporter), 
member 1 

2.0 4.89 0.0011 -1.1 2.2 1.35 0.2361 2.62 0.0015 

XM_001500484  100146160 LOC100146160 similar to Proton 
myo-inositol 
cotransporter (H(+)-
myo-inositol 
cotransporter) (Hmit) 
(H(+)-myo-inositol 
symporter) 

11413
4 

SLC2A13 solute carrier 
family 2 
(facilitated 
glucose 
transporter), 
member 13 

1.7 2.95 0.0130 -1.1 10.0 1.56 0.0668 2.51 0.0000 

DN508408 ENSECAG00000011961 100071541 LOC100071541
3'-UTR 

similar to Proton-
coupled amino acid 
transporter 2 
(Proton/amino acid 
transporter 2) 
(Tramdorin-1) (Solute 
carrier family 36 
member 2) 

15320
1 

SLC36A2 solute carrier 
family 36 
(proton/amino 
acid symporter), 
member 2 

84.3 11.5
4 

0.0000 55.7 -3.7 3.57 0.0116 198 0.0000 
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ENSECAT00000012868 ENSECAG00000011961 100071541 LOC100071541
ORF 

similar to Proton-
coupled amino acid 
transporter 2 
(Proton/amino acid 
transporter 2) 
(Tramdorin-1) (Solute 
carrier family 36 
member 2) 

15320
1 

SLC36A2-
ORF 

solute carrier 
family 36 
(proton/amino 
acid symporter), 
member 2 

2.5 5.51 0.0000 2.0 1.8 -1.12 0.3119 2.07 0.0012 

ENSECAT00000026975 ENSECAG00000024948 100065438 SLCO2A1 Solute carrier organic 
anion transporter 
family member 2A1 

6578 SLCO2A1 solute carrier 
organic anion 
transporter 
family, member 
2A1 

2.0 2.79 0.0206 1.9 1.4 1.08 0.3839 2.05 0.0263 

ENSECAT00000024172 ENSECAG00000022407 100068338 Slit-2 Slit homolog 2 
protein Precursor /  
LOC100068338 
similar to Slit-2 
protein 

9353 SLIT2 slit homolog 2 
(Drosophila) 

1.5 3.75 0.0058 -2.6 1.5 1.16 0.3516 1.46 0.0701 

ENSECAT00000013524 ENSECAG00000012686 100063985 LOC100063985 similar to synuclein 
alpha interacting 
protein 

9627 SNCAIP synuclein, alpha 
interacting 
protein 

1.9 3.98 0.0028 -1.2 2.2 1.24 0.2253 2.16 0.0071 

ENSECAT00000026551 ENSECAG00000024612 100067569 SNED1 sushi, nidogen and 
EGF-like domains 1 [ 

25992 SNED1 sushi, nidogen 
and EGF-like 
domains 1 

1.7 2.91 0.0161 -1.7 2.4 1.03 0.2038 1.41 0.0846 

ENSECAT00000023902 ENSECAG00000022428  SPINK7 Serine protease 
inhibitor Kazal-type 7 

84651 SPINK7 serine peptidase 
inhibitor, Kazal 
type 7 (putative) 

2.3 3.14 0.0121 22.7 -1.1 -2.67 0.0177 -1.19 0.3626 

ENSECAT00000014299 ENSECAG00000013746 100063739 LOC100063739 similar to sprouty 
homolog 1, 
antagonist of FGF 
signaling 

10252 SPRY1 sprouty homolog 
1, antagonist of 
FGF signaling 
(Drosophila) 

1.6 3.25 0.0115 -1.0 1.8 1.07 0.4479 1.59 0.0852 

ENSECAT00000015653 ENSECAG00000014728 100057264 LOC100057264 similar to sushi-
repeat protein 

27286 SRPX2 sushi-repeat-
containing 
protein, X-linked 
2 

1.7 3.27 0.0113 -1.5 3.4 -1.03 0.4916 1.77 0.0041 

ENSECAT00000025335 ENSECAG00000023170 100054693 STAT4 signal transducer 
and activator of 
transcription 4 

6775 STAT4 signal transducer 
and activator of 
transcription 4 

2.0 3.02 0.0130 1.6 1.0 -1.03 0.5302 2.17 0.0000 

ENSECAT00000014465 ENSECAG00000013731 100054071 LOC100054071 similar to 
stanniocalcin 

6781 STC1 stanniocalcin 1 3.1 5.55 0.0000 -1.8 15.8 2.05 0.0513 6.26 0.0000 
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ENSECAT00000024982 ENSECAG00000023308 100060223 LOC100060223 hypothetical protein 
LOC100060223 

26872 STEAP1 six 
transmembrane 
epithelial antigen 
of the prostate 1 

1.8 3.47 0.0073 1.1 7.7 -1.42 0.0850 1.38 0.0520 

ENSECAT00000000416; 
XR_036417 

ENSECAG00000000520 100054971 LOC100054971 similar to death-
associated protein 
kinase-related 
apoptosis inducing 
protein kinase 

9262 STK17B serine/threonine 
kinase 17b 

1.6 3.56 0.0096 -1.1 1.2 1.08 0.4169 1.89 0.0036 

ENSECAT00000023783 ENSECAG00000021653 100053852 SVEP1 Sushi, von 
Willebrand factor 
type A, EGF and 
pentraxin domain-
containing protein 1 

79987 SVEP1 sushi, von 
Willebrand factor 
type A, EGF and 
pentraxin domain 
containing 1 

1.9 2.90 0.0167 1.1 2.1 1.27 0.2401 2.19 0.0016 

ENSECAT00000007290 ENSECAG00000006803 100050854 SYTL2 Synaptotagmin-like 2   54843 SYTL2 synaptotagmin-
like 2 

1.7 5.42 0.0000 -1.1 1.8 -1.14 0.3034 1.35 0.1415 

ENSECAT00000005124 ENSECAG00000004961 100067576 LOC100067576 hypothetical protein 
LOC100067576 

4070 TACSTD2  tumor-
associated 
calcium signal 
transducer 2  

3.2 2.32 0.0378 -1.9 1.8 -1.11 0.4350 1.91 0.0100 

NM_001110134 ENSECAG00000011268 100062690 TAGLN transgelin 6876 TAGLN transgelin 2.3 2.71 0.0228 1.1 2.3 1.13 0.4577 1.92 0.0055 

ENSECAT00000010210 ENSECAG00000009793 100061511 LOC100061511 similar to neuronal 
protein 

29114 TAGLN3 transgelin 3 2.0 3.28 0.0113 2.1 4.5 -1.32 0.1601 1.22 0.1513 

ENSECAT00000024938 ENSECAG00000023297  TDRD10 Tudor domain-
containing protein 10 

12666
8 

TDRD10 tudor domain 
containing 10 

1.6 3.98 0.0020 -1.1 1.3 1.05 0.4747 1.52 0.0325 

ENSECAT00000018137 ENSECAG00000016566 100066963 LOC100066963 similar to receptor 
tyrosine kinase 

7010 TEK TEK tyrosine 
kinase, 
endothelial 

1.5 3.93 0.0035 1.2 7.5 1.36 0.0536 1.92 0.0000 

BM780537 ENSECAG00000006290 100070046 TGM2 Protein-glutamine 
gamma-
glutamyltransferase 
2 

7052 TGM2 transglutaminase 
2 (C polypeptide, 
protein-
glutamine-
gamma-
glutamyltransfera
se) 

1.8 4.54 0.0005 1.8 1.4 1.00 0.4927 1.61 0.0531 

ENSECAT00000009707 ENSECAG00000008923 100057478 THBS1 thrombospondin 1 7057 THBS1 thrombospondin 
1 

1.7 5.72 0.0000 2.2 2.8 -1.59 0.2325 -1.02 0.0808 

ENSECAT00000023244 ENSECAG00000021122 100050044 THBS2 thrombospondin 2 7058 THBS2 thrombospondin 
2 

2.5 4.65 0.0000 2.4 2.0 -1.30 0.2894 2.06 0.0121 

ENSECAT00000019031, 
XM_001487840 

ENSECAG00000018029 100146573 LOC100146573 similar to 
thrombospondin type 
I domain-containing 
1 

55901 THSD1 thrombospondin, 
type I, domain 
containing 1 

1.6 4.42 0.0000 -1.3 1.8 1.12 0.2831 1.60 0.0603 
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ENSECAT00000014937 ENSECAG00000014259 100034220 TIMP-1 tissue inhibitor of 
metalloproteinase-1 

7076 TIMP1 TIMP 
metallopeptidase 
inhibitor 1 

1.8 3.75 0.0050 -1.0 1.4 -1.09 0.4086 1.51 0.0245 

XM_001494169  100062680 LOC100062680 hypothetical protein 
LOC100062680 

7090 TLE3 transducin-like 
enhancer of split 
3 (E(sp1) 
homolog, 
Drosophila) 

1.5 3.45 0.0092 -1.1 1.6 1.04 0.3238 1.29 0.1559 

ENSECAT00000019751 ENSECAG00000018664 100058490 LOC100058490 similar to 
transmembrane 4 L 
six family member 18 

11644
1 

TM4SF18 transmembrane 4 
L six family 
member 18 

1.6 2.84 0.0177 -1.1 2.3 1.18 0.2435 1.67 0.0206 

ENSECAT00000003310 ENSECAG00000003418 100065089 TMEM140 Transmembrane 
protein 140 

55281 TMEM140 transmembrane 
protein 140 

1.6 3.05 0.0122 1.1 3.3 1.43 0.1448 1.80 0.0089 

ENSECAT00000011766 ENSECAG00000011418 100066723 LOC100066723 similar to 
LOC155006 protein 

15500
6 

TMEM213 transmembrane 
protein 213 

6.0 10.9
1 

0.0000 1.8 6.1 1.78 0.0668 11.0 0.0000 

ENSECAT00000020075 ENSECAG00000018940 100064015 LOC100064015 similar to 
LOC124446 protein 

12444
6 

TMEM219 transmembrane 
protein 219 

1.5 6.28 0.0000 -2.9 1.3 1.02 0.5309 1.50 0.0166 

ENSECAT00000023935 ENSECAG00000022424 100146755 TNFRSF12A Tumor necrosis 
factor receptor 
superfamily member 
12A  

51330 TNFRSF1
2A 

tumor necrosis 
factor receptor 
superfamily, 
member 12A 

2.0 3.48 0.0073 1.6 -2.3 1.01 0.5531 2.13 0.0145 

ENSECAT00000022137 ENSECAG00000020810 100066195 LOC100066195 similar to 
glucocorticoid-
induced TNFR-
related protein 

8784 TNFRSF1
8 

tumor necrosis 
factor receptor 
superfamily, 
member 18 

2.0 2.93 0.0130 1.2 2.1 1.05 0.4567 2.31 0.0012 

CX604004, 
ENSECAT00000018293 

ENSECAG00000017269 100068460 LOC100068460 similar to TNFR-
related death 
receptor-6 

27242 TNFRSF2
1 

tumor necrosis 
factor receptor 
superfamily, 
member 21 

2.3 3.67 0.0067 1.2 1.6 1.09 0.3655 2.51 0.0010 

ENSECAT00000020632 ENSECAG00000019391 100064377 LOC100064377 similar to TNF-
related apoptosis-
inducing ligand 

8743 TNFSF10 tumor necrosis 
factor (ligand) 
superfamily, 
member 10 

2.0 4.17 0.0017 -1.1 6.9 1.73 0.0640 3.31 0.0000 

ENSECAT00000011803 ENSECAG00000011429 100059910 LOC100059910 similar to 
hCG1639853 

27324 TOX3 TOX high mobility 
group box family 
member 3 

1.6 2.81 0.0177 -
11.5 

3.7 -1.34 0.1382 1.50 0.0645 

L38383  100056867 LOC100056867 similar to This CDS 
feature is included to 
show the translation 
of the corresponding 
C_region 

6955 TRA@ T cell receptor 
alpha locus 

1.5 3.16 0.0115 -2.4 1.6 -1.06 0.3166 1.28 0.2066 
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ENSECAT00000005859 ENSECAG00000004594 100034071 LOC100034071 epithelial calcium 
channel 1 

56302 TRPV5 transient receptor 
potential cation 
channel, 
subfamily V, 
member 5 

1.7 3.62 0.0046 1.3 1.8 -1.12 0.3119 1.58 0.0282 

ENSECAT00000024399 ENSECAG00000022404 100055509 TRPV6 transient receptor 
potential cation 
channel, subfamily V, 
member 6 

55503 TRPV6 transient receptor 
potential cation 
channel, 
subfamily V, 
member 6 

2.3 5.62 0.0000 1.1 3.8 1.43 0.1681 3.33 0.0000 

ENSECAT00000017616 ENSECAG00000016573 100055873 LOC100055873 hypothetical protein 
LOC100055873 

7102 TSPAN7 tetraspanin 7 1.7 3.17 0.0115 -4.1 4.8 1.33 0.0850 2.22 0.0015 

XM_001495057  100064038 LOC100064038 similar to Tspan8 
protein 

7103 TSPAN8 tetraspanin 8 1.7 3.45 0.0092 -4.4 1.1 1.06 0.4892 2.17 0.0005 

NM_001081820  100033838 UCHL1 ubiquitin carboxyl-
terminal esterase L1 
(ubiquitin 
thiolesterase) 

7345 UCHL1 ubiquitin 
carboxyl-terminal 
esterase L1 
(ubiquitin 
thiolesterase) 

1.6 3.03 0.0135 -2.1 1.7 1.14 0.2832 1.86 0.0020 

ENSECAT00000009010 ENSECAG00000008764 100050109 UNC93A unc-93 homolog A 
(C. elegans) 

54346 UNC93A unc-93 homolog 
A (C. elegans) 

2.5 3.21 0.0115 1.4 -2.2 1.02 0.5397 3.49 0.0000 

ENSECAT00000020357 ENSECAG00000019042 100071097 UP1b Uroplakin-1b / 
LOC100071097 

7348 UPK1B uroplakin 1B 1.7 4.24 0.0010 -
13.1 

1.3 -1.01 0.4166 1.24 0.2029 

ENSECAT00000009366 ENSECAG00000009125 100052016 LOC100052016 similar to uroplakin III 7380 UPK3A uroplakin 3A 1.5 6.19 0.0000 1.0 -1.1 -1.05 0.4916 1.64 0.0100 

ENSECAT00000004661 ENSECAG00000003318 100070306 VIT vitrin 5212 VIT vitrin 2.5 4.46 0.0006 1.9 4.4 1.54 0.0934 2.99 0.0002 

ENSECAT00000024225 ENSECAG00000021859 100050907 VLDLR Very low-density 
lipoprotein receptor 
Precursor 

7436 VLDLR very low density 
lipoprotein 
receptor 

3.5 10.5
8 

0.0000 1.4 6.3 1.40 0.1382 4.35 0.0000 

ENSECAT00000016918 ENSECAG00000015984 100064973 LOC100064973 similar to 
WAS/WASL 
interacting protein 
family, member 1 

7456 WIPF1 WAS/WASL 
interacting 
protein family, 
member 1 

1.7 2.81 0.0193 -1.3 3.1 1.36 0.1302 2.00 0.0270 

ENSECAT00000014004 ENSECAG00000013347 100072430 WISP3 WNT1-inducible-
signaling pathway 
protein 3 Precursor 
(WISP-3) Source: 
UniProtKB/Swiss-
Prot O95389 

8838 WISP3 WNT1 inducible 
signaling 
pathway protein 3 

2.0 2.62 0.0264 1.7 1.8 1.29 0.3119 1.72 0.0266 



Appendix 

87 

ENSECAT00000023038 ENSECAG00000021613 100050661 WWTR1 WW domain 
containing 
transcription 
regulator 1 

25937 WWTR1 WW domain 
containing 
transcription 
regulator 1 

1.5 3.89 0.0029 1.1 2.2 1.30 0.2253 1.76 0.0329 

ENSECAT00000011930 ENSECAG00000011576 100066936 LOC100066936 hypothetical protein 
LOC100066936 

21953
9 

YPEL4 yippee-like 4 
(Drosophila) 

1.6 4.17 0.0012 -1.2 6.1 1.30 0.1398 1.45 0.0630 

ENSECAT00000006598 ENSECAG00000006546 100063937 ZNF521 zinc finger protein 
521 

25925 ZNF521 zinc finger protein 
521 

1.5 2.98 0.0130 1.2 2.5 -1.22 0.1976 1.06 0.3854 

                 

 
Mean FC D12 Pr/Co 

 
Mean fold change day 12 pregnant vs. control for mares #1, 2, 4, 5, 6 

            

M#3 FC Pr/Co Fold change day 12  pregnant vs. control for mare #3              

Mean FC/M#3 FC Ratio of day 12 mean fold change and fold change mare #3             

FC Pr D12/D8 Fold change pregnant samples day 12 vs. Day 8              

FC Co D12/D8 Fold change control samples day 12 vs. Day 8              
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Supplemental Table 3: Additional information for the gene sets and the genes overlapping with the top 500 of the day 12 preranked gene list 
 
 
 
Gene set Desination in Supplemental 

Table 4 
Size ES NES Nom    

p-val 
FDR   
q-val 

FWER  
p-val 

Rank 
at 

Max 

genes 
top 
500 

% genes 
top 
250 

% Genes overlapping with top 500 

              

Up-regulated at day 13.5 of pregnancy in 
equine endometrium 

D13.5 of pregnancy up (Eca) 63 0.833 3.18 0.0000 0.0000 0.0000 634 24 38.1 21 33.3 SLC36A2 ATP6V0A4 TMEM213 GM2A STC1 FGF9 PRSS23 
DOPEY2 ABCG2 IGFBP1 IFIT1 HSPB8 ITPR1 COCH CRYAB 
TACSTD2 TIMP1 RASSF8 GJB5 SLC37A1 IRF7 ANGPTL2 
S100A2 SLC4A11 

Up-regulated in human endometrium  
LH+7 vs. LH+2 

Window of implantation up 
(Hsa) 

122 0.692 2.90 0.0000 0.0000 0.0000 1283 29 23.8 17 13.9 IGFBP3 STC1 LCN2 THBS2 IGFBP1 IER3 TNFSF10 CRYAB 
TEK IL15 STK17B CP ACTA2 MAP3K5 G0S2 RNASE4 
SLC15A1 CLU TAGLN C4BPA TSPAN8 SLPI C10orf10 AGR2 
BCL6 ARID5B HTATIP2 GPRC5B PCDH17 

Boquest_CD31+_vs_CD31-_up Boquest CD31+ vs CD31- up 540 0.562 2.69 0.0000 0.0000 0.0000 2046 75 13.9 37 6.9 STC1 MGP PTGER4 SCHIP1 CTSK DOCK9 RAI2 TPST2 
NPR3 TNFSF10 CD44 COCH SLC7A11 TEK ANXA3 CD74 
PER2 IL15 GPNMB MET JAM2 SDPR HHEX SMAD1 SRPX2 
TSPAN7 ANGPT2 RND1 G0S2 HLA-DMA RNASE4 SERPINE2 
UCHL1 CDO1 COL4A5 FLI1 MFAP4 MATN2 ME1 GPC3 
SPRY1 OXTR PECAM1 LOX KLF6 RGS2 KDR ERG RGS5 
TSPAN8 PLTP PPL ANGPTL2 GSN TPM4 PRKD1 SERPINE1 
MITF THBS1 MMRN2 FRZB ANGPTL4 DPT SERPINA5 CD14 
TM4SF1 VWF ZBTB10 NPY1R DUSP6 TFPI DCN PCDH17 
BST2 DFNA5 

Boquest_CD31+_vs_CD31-_dn Boquest CD31+ vs CD31- dn 215 0.585 2.63 0.0000 0.0000 0.0000 2465 38 17.7 20 9.3 IGFBP3 MGP THBS2 IRS2 CTSK HSPB8 CD44 CRYAB 
ABCA8 TIMP1 STEAP1 GPNMB PLA2G4A MME SVEP1 
RNASE4 SERPINE2 SLIT2 CDO1 MFAP4 GPC3 LOX EFEMP1 
TSPAN8 PLTP PPL PTPN13 GSN NT5E MITF DPT SERPINA5 
TNXB SHOX2 NPY1R RHOBTB3 COL6A3 DCN 

Manalo_hypoxia_up Manalo hypoxia up 84 0.651 2.60 0.0000 0.0000 0.0000 2169 16 19.0 8 9.5 VLDLR IGFBP3 STC1 ENPP1 COL4A1 RGS3 EDN1 CXCR4 
LOX EGLN3 GRK5 ITPR2 ANGPTL4 SHOX2 DUSP6 BCL6 

Genes up-regulated at day 14 of 
pregnancy in porcine endometrium 

D14 of pregnancy up (Ssc) 131 0.568 2.40 0.0000 0.0000 0.0000 1746 23 17.6 14 10.7 STC1 FGF9 TRPV6 IRS2 SLC2A1 PAQR5 IGFBP2 MUC4 
ENPP1 UNC93A STEAP1 PTGR1 GJB3 PSD3 PLXDC2 
FAM105A GULP1 UBD FOSL2 CD14 VWF BCL6 GPRC5B 
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Genes up-regulated at day 18 of 
pregnancy in bovine endometrium 

D18 of pregnancy up (Bta) 226 0.528 2.37 0.0000 0.0001 0.0010 2815 25 11.1 12 5.3 ATP6V0A4 AMPD3 ARG2 MST1R IFIT1 CRYM HERC6 
IGFBP2 CRYAB TACSTD2 SPINK7 IRF7 XAF1 AREG 
CKMT1B TMEM140 PARP14 RTP4 UBD UBE2L6 TM4SF1 
AGR2 TFPI OAS1 BST2 

RAS_oncogenic_signature RAS oncogenic signature 200 0.515 2.30 0.0000 0.0003 0.0080 2601 25 12.5 14 7.0 ARG2 MALL IER3 KLF5 PLXNA2 TIMP1 DLL1 TNFRSF12A 
EFNA5 PRNP GJB3 PIM1 G0S2 GJB5 KLF6 DKK3 NT5E 
ATP2B1 ANGPTL4 EPHA2 DUSP6 BCL6 LRIG3 ARHGAP25 
DUSP4 

TGFbeta_all_up TGFbeta all up 73 0.590 2.30 0.0000 0.0003 0.0090 1447 16 21.9 10 13.7 IGFBP3 THBS2 PLAT IGFBP2 CD44 TIMP1 ITGB8 EFNA5 
COL8A1 RND3 SERPINE1 THBS1 NID1 NEO1 EPHA2 
COL6A3 

Genes up-regulated at estrus in bovine 
endometrium 

Estrus up (Bta) 462 0.480 2.29 0.0000 0.0004 0.0100 1815 58 12.6 34 7.4 KNG1 IGFBP3 STC1 PRSS23 THBS2 CDH13 ARG2 PTGER4 
SCHIP1 IER3 NPR3 SERPINA1 IGFBP2 CD44 SLC7A11 
CRYAB CH25H FXYD5 NR4A3 HSD11B1 LOXL4 TIMP1 
TNFRSF12A UNC93A COL4A1 CP PIM1 SRPX2 ACTA2 G0S2 
ACTG2 SLIT2 RND3 UCK2 GNA14 ME1 OXTR LOX TAGLN 
PROCR C4BPA PRLR GRK5 AREG SLCO2A1 TPM4 
SERPINE1 THBS1 C1QTNF5 MMD NOV TRIB2 SNAI2 GHR 
COL6A3 TFPI IL1R1 P2RY14 

Estrogen-induced genes Estrogen-induced 400 0.483 2.29 0.0000 0.0004 0.0100 1575 47 11.8 21 5.3 KNG1 IGFBP3 STC1 PRSS23 THBS2 CDH13 SCHIP1 IER3 
PHLDB2 WWTR1 IGFBP7 GPC6 EFNA5 COL4A1 PTRF 
STAT4 ANGPT2 SERPINE2 VIM LDB2 MFAP4 MATN2 
PECAM1 KLF6 KDR MFGE8 CYR61 RGS5 GRK5 STAB2 
SFRP1 SLPI SLCO2A1 PTPN13 SLC7A3 ECE1 NT5E KCNJ8 
MMRN2 FRZB DPT UBD CD19 PPP2R2B PLXND1 EDNRA 
DCN 

Up-regulated in receptive (LH+8, day 21) 
vs. pre-receptive (LH+3, day 16) human 
endometrium 

Window of implantation up 
(Hsa) 

44 0.638 2.27 0.0000 0.0000 0.0000 2778 11 25.0 6 13.6 CD44 CRYAB IL15 COL4A1 ACTA2 MAP3K5 MFGE8 SLPI 
UBE2L6 NID1 ARID5B 

Pod1_KO_dn POD1 (TCF21) KO down 592 0.468 2.23 0.0000 0.0005 0.0180 2576 53 9.0 27 4.6 PLAT ENDOD1 PTGER4 SCHIP1 HEY2 NPR3 RAPGEF2 
CRYAB SNCAIP FAM43A WWTR1 TEK ABCB1 PER2 PTPRJ 
MGLL KLHL5 LIPA SDPR HHEX HIP1 PRDM1 CXCR4 VIM 
COL4A5 FLI1 MYO1B RGS2 ERG RIN2 GRK5 APBB2 
TSPAN8 SLCO2A1 HS3ST6 RANBP9 PARP14 GSN GULP1 
NT5E THBS1 MMRN2 C1QTNF7 PLSCR4 MMD TM4SF1 NID1 
TRIB2 DUSP6 ARID5B CRIM1 PCDH17 CABLES1 



Appendix 

90 

Genes up-regulated at diestrus in bovine 
endometrium 

Diestrus up (Bta) 466 0.462 2.19 0.0000 0.0009 0.0400 2731 44 9.4 25 5.4 ATP6V0A4 GM2A VLDLR MGP FGF9 PECR ENPP6 ALS2CL 
IGFBP1 KCNN2 SLC2A1 CHGA TNFSF10 RAB3B PHLDB2 
ENPP1 PYGL COL13A1 GPNMB MET SESTD1 PIGR TSPAN7 
CXCR4 MFAP4 RGS2 EGLN3 EFEMP1 PENK C10orf10 PLTP 
TC2N KCNJ8 UBD UBE2L6 FGF12 KCNMB2 S100A13 
KIAA0408 KIAA0922 ARID5B CYP39A1 NR3C2 GPRC5B 

VEGF_MMMEC_all_up VEGF MMMEC all up 84 0.544 2.17 0.0000 0.0011 0.0550 1949 14 16.7 7 8.3 IGFBP3 MGP PIR TNFSF10 EMR1 PIM1 ANGPT2 OXTR KDR 
RGS5 EFEMP1 UBD VWF COL6A3 

Up-regulated in ovine endometrium 
between days 9 and 12 of pregnancy 

D12 vs. D9 of pregnancy up 
(Oar) 

358 0.440 2.07 0.0000 0.0004 0.0010 2947 27 7.5 12 3.4 PLAT PTGER4 IGFBP1 CHGA PHLDB2 PLXNA2 HSD11B1 
SPINK7 MET SLIT2 PCDH18 UCK2 MATN2 GNA14 EMX2 
PECAM1 LOX SOAT1 RGS5 ZFPM2 CADM1 ECE1 KCNJ8 
VWF ZBTB10 AGR2 OAS1 

PGE2 up-regulated genes in human 
monocyte-derived dendritic cells 

PGE2 up in human monocyte-
derived DCs 

121 0.459 1.92 0.0000 0.0004 0.0060 2439 16 13.2 9 7.4 TIMP1 CD74 MET STAT4 G0S2 RNASE4 PRDM1 CXCR4 
TGFBI RGS2 CXCL16 AREG THBS1 BTG1 ARID5B CABLES1 
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Supplemental Table 4: A list of genes and their frequencies in the gene sets 
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UBD 1.38 0.0250 395 5 3 2 1   x x  x  x    x     

AGR2 1.62 0.0348 433 3 3 2 0  x  x x            

GPRC5B 1.13 0.0264 480 3 3 2 0  x x   x           

UBE2L6 1.17 0.0208 401 3 3 2 0  x  x  x           

STC1 3.14 0.0001 10 7 2 2 2 x x x    x x x  x      

CRYAB 2.17 0.0033 85 6 2 2 1 x x  x   x   x     x  

IGFBP2 1.91 0.0020 74 4 2 2 1   x x   x       x   

BCL6 1.68 0.0387 453 4 2 2 0  x x        x  x    

IGFBP1 5.84 0.0036 50 4 3 1 0 x x   x x           

ATP6V0A4 7.81 0.0001 2 3 2 1 0 x   x  x           

FGF9 10.23 0.0035 13 3 2 1 0 x  x   x           

ARID5B 1.41 0.0316 454 4 2 1 0  x    x         x x 

TNFSF10 2.02 0.0018 72 4 2 1 0  x    x   x   x     

VWF 1.54 0.0317 419 4 2 1 0   x  x    x   x     

ENPP1 1.66 0.0029 102 3 2 1 0   x   x     x      

C10orf10 1.95 0.0298 332 2 2 1 0  x    x           

OAS1 1.27 0.0300 477 2 2 1 0    x x            

SLC2A1 1.98 0.0007 65 2 2 1 0   x   x           

SPINK7 2.31 0.0121 151 2 2 1 0    x x            

IGFBP3 3.46 0.0001 8 7 1 1 2  x     x x  x x x  x   

THBS2 2.47 0.0001 17 5 1 1 2  x     x x  x    x   

COL4A1 1.39 0.0059 160 4 1 1 2  x     x x   x      

IER3 4.45 0.0046 64 4 1 1 2  x     x x     x    

ACTA2 2.55 0.0208 191 2 1 1 1  x     x          

SLPI 1.80 0.0264 328 2 1 1 1  x      x         

CD44 1.71 0.0016 75 5 1 1 1  x     x  x x    x   

G0S2 2.33 0.0208 204 5 1 1 1  x     x  x    x   x 

AREG 2.48 0.0382 320 3 1 1 1    x   x         x 

ARG2 2.07 0.0001 25 3 1 1 1    x   x      x    

TFPI 1.57 0.0378 472 3 1 1 1    x   x  x        
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C4BPA 1.72 0.0208 293 2 1 1 1  x     x          

CP 2.00 0.0111 164 2 1 1 1  x     x          

MFGE8 1.39 0.0157 295 2 1 1 1  x      x         

TAGLN 2.25 0.0274 273 2 1 1 1  x     x          

UNC93A 2.52 0.0115 136 2 1 1 1   x    x          

IFIT1 1.47 0.0001 55 2 1 1 0 x   x             

IRF7 1.43 0.0126 246 2 1 1 0 x   x             

IL15 1.41 0.0046 144 2 1 1 0  x       x        

RNASE4 2.07 0.0186 213 4 1 1 0  x       x x      x 

TSPAN8 1.64 0.0224 318 4 1 1 0  x       x x     x  

NID1 1.32 0.0264 420 3 1 1 0  x            x x  

PCDH17 1.30 0.0317 485 3 1 1 0  x       x      x  

TEK 1.50 0.0035 118 3 1 1 0  x       x      x  

BST2 1.45 0.0378 498 2 1 1 0    x     x        

CD14 1.55 0.0317 415 2 1 1 0   x      x        

GJB3 2.51 0.0177 174 2 1 1 0   x          x    

GULP1 1.60 0.0264 361 2 1 1 0   x            x  

IRS2 1.78 0.0001 37 2 1 1 0   x       x       

PARP14 1.30 0.0195 353 2 1 1 0    x           x  

STEAP1 1.84 0.0073 143 2 1 1 0   x       x       

TACSTD2 3.21 0.0378 101 2 1 1 0 x   x             

AMPD3 2.33 0.0001 23 1 1 1 0    x             

CKMT1B 2.29 0.0378 337 1 1 1 0    x             

CRYM 1.36 0.0001 59 1 1 1 0    x             

FAM105A 1.39 0.0208 348 1 1 1 0   x              

FOSL2 4.56 0.0960 409 1 1 1 0   x              

HERC6 2.85 0.0035 70 1 1 1 0    x             

MST1R 1.87 0.0001 33 1 1 1 0    x             

MUC4 2.48 0.0126 91 1 1 1 0   x              

PAQR5 2.03 0.0021 73 1 1 1 0   x              

PLXDC2 2.44 0.0354 306 1 1 1 0   x              

PSD3 1.54 0.0113 205 1 1 1 0   x              

PTGR1 2.67 0.0177 166 1 1 1 0   x              

RTP4 1.32 0.0208 364 1 1 1 0    x             
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TMEM140 1.46 0.0227 352 1 1 1 0    x             

TRPV6 2.28 0.0001 24 1 1 1 0   x              

XAF1 1.33 0.0130 267 1 1 1 0    x             

HTATIP2 1.19 0.0274 474 1 1 1 0  x               

LCN2 2.81 0.0001 12 1 1 1 0  x               

MAP3K5 1.62 0.0115 197 1 1 1 0  x               

SLC15A1 2.76 0.0317 250 1 1 1 0  x               

STK17B 1.58 0.0075 163 1 1 1 0  x               

TM4SF1 1.65 0.0344 417 3 1 1 0    x     x      x  

CLU 1.65 0.0177 268 1 1 1 0  x               

KCNJ8 1.75 0.0308 369 3 2 0 1     x x  x         

PHLDB2 1.87 0.0020 77 3 2 0 1     x x  x         

MET 1.70 0.0073 152 4 2 0 0     x x   x       x 

CHGA 4.05 0.0055 68 2 2 0 0     x x           

LOX 1.48 0.0153 272 5 1 0 1     x  x  x x x      

MFAP4 1.46 0.0130 245 4 1 0 1      x  x x x       

PTGER4 2.04 0.0001 28 4 1 0 1     x  x  x      x  

RGS5 1.88 0.0253 307 4 1 0 1     x   x x   x     

PECAM1 1.59 0.0170 270 3 1 0 1     x   x x        

ECE1 1.33 0.0208 359 2 1 0 1     x   x         

GNA14 1.56 0.0151 257 2 1 0 1     x  x          

HSD11B1 2.93 0.0113 115 2 1 0 1     x  x          

UCK2 1.39 0.0113 233 2 1 0 1     x  x          

MATN2 1.42 0.0130 254 3 1 0 1     x   x x        

SLIT2 1.51 0.0117 216 3 1 0 1     x  x   x       

GM2A 5.36 0.0001 4 2 1 0 0 x     x           

CXCR4 1.61 0.0131 218 4 1 0 0      x     x    x x 

MGP 2.97 0.0001 11 4 1 0 0      x   x x  x     

RGS2 1.81 0.0208 281 4 1 0 0      x   x      x x 

EFEMP1 1.60 0.0208 311 3 1 0 0      x    x  x     

GPNMB 2.47 0.0130 148 3 1 0 0      x   x x       

PLAT 2.47 0.0001 18 3 1 0 0     x         x x  

PLTP 1.45 0.0208 335 3 1 0 0      x   x x       

EGLN3 2.57 0.0371 305 2 1 0 0      x     x      
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PLXNA2 1.57 0.0028 105 2 1 0 0     x        x    

TSPAN7 1.70 0.0115 192 2 1 0 0      x   x        

VLDLR 3.51 0.0001 7 2 1 0 0      x     x      

ZBTB10 1.71 0.0360 421 2 1 0 0     x    x        

ALS2CL 1.53 0.0001 49 1 1 0 0      x           

COL13A1 1.58 0.0044 130 1 1 0 0      x           

CYP39A1 1.40 0.0316 455 1 1 0 0      x           

ENPP6 2.41 0.0001 21 1 1 0 0      x           

FGF12 1.40 0.0270 406 1 1 0 0      x           

KCNMB2 1.46 0.0291 410 1 1 0 0      x           

KCNN2 6.49 0.0046 53 1 1 0 0      x           

KIAA0408 1.30 0.0264 430 1 1 0 0      x           

NR3C2 1.27 0.0298 476 1 1 0 0      x           

PECR 2.46 0.0001 19 1 1 0 0      x           

PENK 2.00 0.0304 329 1 1 0 0      x           

PIGR 1.93 0.0113 171 1 1 0 0      x           

PYGL 1.49 0.0035 121 1 1 0 0      x           

RAB3B 3.51 0.0073 76 1 1 0 0      x           

S100A13 1.31 0.0264 422 1 1 0 0      x           

SESTD1 1.58 0.0070 157 1 1 0 0      x           

TC2N 1.40 0.0212 350 1 1 0 0      x           

CADM1 1.35 0.0187 333 1 1 0 0     x            

EMX2 1.61 0.0164 261 1 1 0 0     x            

PCDH18 1.43 0.0115 226 1 1 0 0     x            

SOAT1 1.43 0.0150 282 1 1 0 0     x            

ZFPM2 1.55 0.0208 319 1 1 0 0     x            

KIAA0922 1.23 0.0264 451 1 1 0 0      x           

PRSS23 2.60 0.0001 15 3 0 0 2 x      x x         

GRK5 1.49 0.0189 310 4 0 0 2       x x   x    x  

SCHIP1 1.81 0.0001 34 4 0 0 2       x x x      x  

SLCO2A1 1.84 0.0283 334 3 0 0 2       x x       x  

CDH13 2.36 0.0001 22 2 0 0 2       x x         

KNG1 4.32 0.0001 6 2 0 0 2       x x         

TIMP1 1.77 0.0050 125 6 0 0 1 x      x   x   x x  x 
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THBS1 1.68 0.0291 368 5 0 0 1       x  x     x x x 

COL6A3 1.34 0.0308 464 4 0 0 1       x   x  x  x   

NT5E 1.43 0.0231 362 4 0 0 1        x  x   x  x  

ANGPT2 1.63 0.0113 194 3 0 0 1        x x   x     

DCN 1.31 0.0321 484 3 0 0 1        x x x       

DPT 1.70 0.0320 393 3 0 0 1        x x x       

EFNA5 1.29 0.0046 155 3 0 0 1        x     x x   

KDR 1.58 0.0185 291 3 0 0 1        x x   x     

KLF6 1.42 0.0145 274 3 0 0 1        x x    x    

MMRN2 1.52 0.0264 375 3 0 0 1        x x      x  

NPR3 2.30 0.0016 67 3 0 0 1       x  x      x  

OXTR 1.64 0.0177 269 3 0 0 1       x  x   x     

PIM1 1.57 0.0092 184 3 0 0 1       x     x x    

SERPINE1 2.05 0.0358 360 3 0 0 1       x  x     x   

SERPINE2 1.30 0.0092 214 3 0 0 1        x x x       

FRZB 1.33 0.0231 381 2 0 0 1        x x        

ME1 1.36 0.0130 262 2 0 0 1       x  x        

PTPN13 1.24 0.0177 345 2 0 0 1        x  x       

RND3 1.70 0.0150 228 2 0 0 1       x       x   

SLC7A11 1.34 0.0012 84 2 0 0 1       x  x        

SRPX2 1.73 0.0113 189 2 0 0 1       x  x        

STAT4 1.99 0.0130 181 2 0 0 1        x        x 

TNFRSF12A 2.03 0.0073 134 2 0 0 1       x      x    

TPM4 1.49 0.0236 356 2 0 0 1       x  x        

TRIB2 1.39 0.0286 429 2 0 0 1       x        x  

VIM 1.38 0.0112 235 2 0 0 1        x       x  

WWTR1 1.52 0.0029 109 2 0 0 1        x       x  

ACTG2 5.80 0.0655 210 1 0 0 1       x          

C1QTNF5 1.70 0.0298 372 1 0 0 1       x          

CD19 1.28 0.0264 436 1 0 0 1        x         

CH25H 1.64 0.0021 92 1 0 0 1       x          

CYR61 5.22 0.0782 300 1 0 0 1        x         

EDNRA 1.30 0.0298 465 1 0 0 1        x         

FXYD5 1.39 0.0020 103 1 0 0 1       x          
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NOV 1.60 0.0317 407 1 0 0 1       x          
GHR 1.77 0.0420 461 1 0 0 1       x          
GPC6 1.59 0.0046 133 1 0 0 1        x         

IGFBP7 1.75 0.0038 110 1 0 0 1        x         
LDB2 1.40 0.0119 242 1 0 0 1        x         

LOXL4 1.58 0.0040 122 1 0 0 1       x          
NR4A3 16.14 0.0786 108 1 0 0 1       x          

P2RY14 2.80 0.0740 491 1 0 0 1       x          

PLXND1 1.39 0.0317 459 1 0 0 1        x         

PPP2R2B 1.26 0.0264 443 1 0 0 1        x         

PRLR 2.04 0.0264 296 1 0 0 1       x          

PROCR 1.62 0.0177 278 1 0 0 1       x          

PTRF 1.39 0.0060 162 1 0 0 1        x         

SERPINA1 3.09 0.0043 71 1 0 0 1       x          

SFRP1 1.62 0.0229 325 1 0 0 1        x         

SLC7A3 1.44 0.0221 349 1 0 0 1        x         

SNAI2 1.48 0.0340 457 1 0 0 1       x          

STAB2 1.52 0.0208 322 1 0 0 1        x         

MMD 1.65 0.0317 399 2 0 0 1       x        x  

IL1R1 1.28 0.0317 488 1 0 0 1       x          

DUSP6 1.37 0.0297 447 4 0 0 0         x  x  x  x  

ANGPTL4 2.08 0.0406 391 3 0 0 0         x  x  x    

GSN 1.46 0.0228 354 3 0 0 0         x x     x  

ANGPTL2 1.55 0.0233 340 2 0 0 0 x        x        

COCH 4.90 0.0130 78 2 0 0 0 x        x        

GJB5 1.49 0.0115 217 2 0 0 0 x            x    

HSPB8 5.02 0.0035 61 2 0 0 0 x         x       

CABLES1 1.47 0.0378 495 2 0 0 0               x x 

CD74 1.43 0.0035 127 2 0 0 0         x       x 

CDO1 1.58 0.0130 222 2 0 0 0         x x       

COL4A5 1.46 0.0126 239 2 0 0 0         x      x  

CTSK 1.60 0.0001 45 2 0 0 0         x x       

EPHA2 1.41 0.0298 438 2 0 0 0             x x   

ERG 1.69 0.0206 297 2 0 0 0         x      x  

FLI1 1.34 0.0113 243 2 0 0 0         x      x  
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MITF 1.70 0.0288 366 2 0 0 0         x x       

GPC3 1.52 0.0153 263 2 0 0 0         x x       

HHEX 1.52 0.0087 183 2 0 0 0         x      x  

NPY1R 1.52 0.0317 427 2 0 0 0         x x       

PER2 1.56 0.0043 131 2 0 0 0         x      x  

PPL 1.28 0.0177 336 2 0 0 0         x x       

PRDM1 1.59 0.0126 215 2 0 0 0               x x 

SDPR 1.86 0.0115 178 2 0 0 0         x      x  

SERPINA5 2.30 0.0474 402 2 0 0 0         x x       

SHOX2 2.00 0.0423 412 2 0 0 0          x x      

ABCG2 1.80 0.0001 36 1 0 0 0 x                

DOPEY2 2.04 0.0001 27 1 0 0 0 x                

ITPR1 3.21 0.0044 69 1 0 0 0 x                

RASSF8 1.74 0.0119 193 1 0 0 0 x                

S100A2 2.98 0.0577 374 1 0 0 0 x                

SLC36A2 70.68 0.0001 1 1 0 0 0 x                

SLC37A1 1.37 0.0115 241 1 0 0 0 x                

SLC4A11 1.33 0.0264 416 1 0 0 0 x                

TMEM213 6.05 0.0001 3 1 0 0 0 x                

ABCA8 1.84 0.0046 112 1 0 0 0          x       

ABCB1 1.60 0.0044 128 1 0 0 0               x  

APBB2 1.55 0.0208 317 1 0 0 0               x  

ARHGAP25 1.28 0.0298 475 1 0 0 0             x    

ATP2B1 1.28 0.0201 365 1 0 0 0             x    

BTG1 1.33 0.0273 432 1 0 0 0                x 

C1QTNF7 1.56 0.0281 382 1 0 0 0               x  

COL8A1 5.36 0.0456 170 1 0 0 0              x   

CRIM1 1.38 0.0326 473 1 0 0 0               x  

CXCL16 1.68 0.0200 289 1 0 0 0                x 

DFNA5 1.45 0.0381 500 1 0 0 0         x        

DKK3 1.50 0.0228 346 1 0 0 0             x    

DLL1 1.88 0.0057 126 1 0 0 0             x    

DOCK9 1.52 0.0001 51 1 0 0 0         x        

EDN1 1.69 0.0137 212 1 0 0 0           x      



Appendix 

98 

G
en

es
 

F
ol

d 
ch

an
ge

 D
12

 

P
r/

C
o 

q-
va

lu
e 

R
an

k 
in

 g
en

e 
lis

t f
or

 

G
S

E
A

 

F
re

qu
en

cy
 in

 a
ll 

ge
ne

 

se
ts

 

F
re

qu
en

cy
 in

 

pr
eg

na
nc

y 
an

d 
P

4 
up

 

F
re

qu
en

cy
 in

 

pr
eg

na
nc

y 
up

 

F
re

qu
en

cy
 in

 E
2 

up
 

D
13

.5
 o

f p
re

gn
an

cy
 

up
 (

E
ca

) 

W
in

do
w

 o
f 

im
pl

an
ta

tio
n 

up
 (

H
sa

) 

D
14

 o
f p

re
gn

an
cy

 u
p 

(S
sc

) 

D
18

 o
f p

re
gn

an
cy

 u
p 

(B
ta

) 

D
12

 v
s.

 D
9 

of
 

pr
eg

na
nc

y 
up

 (
O

ar
) 

D
ie

st
ru

s 
up

 (
B

ta
) 

E
st

ru
s 

up
 (

B
ta

) 

E
st

ro
ge

n-
in

du
ce

d 

B
oq

ue
st

 C
D

31
+

 v
s 

C
D

31
- 

up
 

B
oq

ue
st

 C
D

31
+

 v
s 

C
D

31
- 

dn
 

M
an

al
o 

hy
po

xi
a 

up
 

V
E

G
F

 M
M

M
E

C
 a

ll 
up

 

R
A

S
 o

nc
og

en
ic

 

si
gn

at
ur

e 

T
G

F
be

ta
 a

ll 
up

 

P
O

D
1 

(T
C

F
21

) 
K

O
 

do
w

n 

P
G

E
2 

up
 

                        

EMR1 1.65 0.0069 153 1 0 0 0            x     

ENDOD1 2.06 0.0001 26 1 0 0 0               x  

FAM43A 1.83 0.0028 94 1 0 0 0               x  

HEY2 1.54 0.0003 63 1 0 0 0               x  

HIP1 1.45 0.0104 206 1 0 0 0               x  

HLA-DMA 1.34 0.0092 208 1 0 0 0         x        

HS3ST6 1.87 0.0298 341 1 0 0 0               x  

ITGB8 1.52 0.0056 147 1 0 0 0              x   

ITPR2 1.42 0.0189 321 1 0 0 0           x      

JAM2 1.70 0.0092 173 1 0 0 0         x        

KLF5 1.57 0.0020 93 1 0 0 0             x    

KLHL5 1.40 0.0046 145 1 0 0 0               x  

LIPA 1.62 0.0092 177 1 0 0 0               x  

LRIG3 1.38 0.0317 462 1 0 0 0             x    

MALL 1.64 0.0001 43 1 0 0 0             x    

MGLL 1.90 0.0074 140 1 0 0 0               x  

MME 1.43 0.0066 169 1 0 0 0          x       

NEO1 1.36 0.0278 428 1 0 0 0              x   

PIR 1.50 0.0001 52 1 0 0 0            x     

PLA2G4A 1.56 0.0063 154 1 0 0 0          x       

PLSCR4 1.46 0.0272 398 1 0 0 0               x  

PRKD1 1.31 0.0202 358 1 0 0 0         x        

PRNP 2.89 0.0194 161 1 0 0 0             x    

PTPRJ 1.35 0.0033 132 1 0 0 0               x  

RAI2 1.45 0.0001 56 1 0 0 0         x        

RANBP9 1.37 0.0208 351 1 0 0 0               x  

RAPGEF2 272.53 0.2315 83 1 0 0 0               x  

RGS3 1.29 0.0055 168 1 0 0 0           x      

RHOBTB3 1.40 0.0295 437 1 0 0 0          x       

RIN2 1.58 0.0197 304 1 0 0 0               x  

RND1 2.04 0.0167 199 1 0 0 0         x        

SMAD1 1.44 0.0080 185 1 0 0 0         x        
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SNCAIP 2.07 0.0033 87 1 0 0 0               x  

SPRY1 1.57 0.0162 265 1 0 0 0         x        

SVEP1 1.93 0.0167 211 1 0 0 0          x       

TGFBI 1.43 0.0126 244 1 0 0 0                x 

TNXB 1.49 0.0298 411 1 0 0 0          x       

TPST2 1.32 0.0001 60 1 0 0 0         x        

UCHL1 1.63 0.0135 221 1 0 0 0         x        

ANXA3 1.46 0.0035 123 1 0 0 0         x        

DUSP4 1.45 0.0378 499 1 0 0 0             x    

MYO1B 1.34 0.0115 249 1 0 0 0               x  
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Supplemental Table 5: Results of Functional Annotation Clustering of genes up-regulated 

at day 12 of pregnancy 

 

Functional Annotation Cluster Description1 Enrichm. 

Score2 

Genes
3 

Glycoprotein (129, 2.3); signal peptide (93, 2.1); secreted (61, 2.9); extracellular region (57, 2.8); disulfide bond (83, 2.0) 14.52 150 

Developmental process (99, 2.1); cell differentiation (55, 2.0) 10.57 121 

Anatomical structure morphogenesis (49, 2.9); blood vessel development (17, 6.1); angiogenesis (15, 7.1) 8.34 50 

Egf-like, type 3 (18, 5.8); EGF-like calcium-binding (10, 6.4); calcium ion binding (29, 2.1) 5.54 37 

Glycoprotein (129, 2.3); membrane (112, 1.4); plasma membrane (79, 1.6) 5.38 178 

Carbohydrate binding (15, 3.2); glycosaminoglycan binding (10, 6.8) 4.24 15 

Response to external stimulus (27, 2.9); response to stress (27, 1.7); blood coagulation (9, 6.2); wound healing (10, 5.3) 3.94 38 

Cell differentiation (55, 2.0); apoptosis (25, 2.2); regulation of apoptosis (19, 2.4); neg. regulation of apoptosis (13, 3.9) 3.76 63 

Anatomical structure formation (16, 6.1); cell motility (16, 2.6); cell migration (12, 3.0) 3.63 28 

Tissue development (13, 2.6); tissue remodeling (8, 4.7); bone remodeling (7, 4.5) 2.38 15 

Nervous system development (24, 2.1); cell morphogenesis (17, 2.3); neurogenesis (12, 2.6) 2.01 34 

Cell morphogenesis (17, 2.3); cell growth (8, 2.8) 1.91 18 

Signal transducer activity (54, 1.5); receptor activity (42, 1.4); transmembrane receptor activity (22, 1.1) 1.91 80 

Cell proliferation (24, 2.1); regulation of cell proliferation (14, 1.9); positive regulation of cell proliferation (9, 2.6) 1.79 38 

Regulation of apoptosis (19, 2.4); positive regulation of apoptosis (7, 1.9) 1.76 31 

Cytoplasmic vesicle (14, 2.2); cytoplasmic membrane-bound vesicle (11, 2.1) 1.69 14 

Chemical homeostasis (10, 2.5); di-, tri-valent inorganic cation homeostasis (8, 3.4) 1.59 11 

Enzyme regulator activity (22, 1.9); endopeptidase inhibitor activity (7, 3.0) 1.54 22 

 

1Based on the most meaningful terms; 2geometric mean (in -log10 scale) of member's p-values of the corresponding annotation 

cluster; 3total number of different genes in a functional annotation cluster; in brackets: number of genes and fold enrichment of 

the functional term. 
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Supplemental Table 6: Results of text mining using CoPub 

 

 

 

 

Keyword p-value # 

Genes 

Angiogenesis 2.33E-09 41 

Vasculogenesis 3.52E-04 11 

Response to hypoxia 2.85E-04 10 

Wound healing 3.20E-09 26 

Blood coagulation 1.70E-03 8 

Glycosylation 1.28E-07 38 

N-glycosylation 6.90E-04 16 

Cell proliferation 2.80E-07 61 

Cell differentiation 6.36E-07 49 

Epithelial cell differentiation, proliferation 7.29E-06 17 

Endothelial cell differentiation, activation 1.62E-04 12 

Cell growth, cell growth and/or maintenance 8.89E-06 51 

Apoptosis, cell death 3.86E-07 66 

Induction of apoptosis 5.87E-04 21 

Cell migration 6.09E-07 41 

Cell motility 2.00E-05 25 

Chemotaxis 3.24E-03 19 

Inflammation 5.85E-06 33 

Cell adhesion 2.26E-06 44 

Cell invasion 1.82E-05 21 

Cell-matrix recognition, cell-matrix adhesion 5.33E-03 8 

Cytoskeleton 9.11E-03 30 

Bone remodeling 1.76E-05 13 

Osteoblast differentiation 7.42E-04 13 

Menstrual cycle 9.82E-05 11 

Embryonic development 1.36E-04 31 

Ovulation 3.51E-04 10 

Luteinization 3.92E-04 8 

Luteolysis 4.54E-04 8 

Decidualization 9.41E-04 10 

Prostaglandin metabolism, biosynthesis, 

transport 

1.09E-03 6 

Secretion, secretory pathway 1.43E-04 34 

Ion transport 3.36E-03 9 

Endocytosis 5.15E-03 24 
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Supplemental Table 7 Expression of genes involved in prostaglandin signaling and metabolism 

 

Eca Gene symbol Eca Gene name Eca Entrez Gene ID Hsa Gene symbol Hsa Gene name Hsa Entrez Gene ID FC Pr/Co q-value 

PTGER2 prostaglandin E receptor 2 (subtype EP2), 53kDa 100067279 PTGER2 prostaglandin E receptor 2 (subtype EP2), 53kDa 5732 -1.12 0.272 

LOC100053557 similar to protaglandin receptor EP3E 100053557 PTGER3 prostaglandin E receptor 3 (subtype EP3) 5733 1.76 0.016 

LOC100053208 similar to prostaglandin E2 receptor EP4 subtype 100053208 PTGER4 prostaglandin E receptor 4 (subtype EP4) 5734 2.04 <0.001 

PTGFR prostaglandin F receptor (FP) 100009714 PTGFR prostaglandin F receptor (FP) 5737 -1.35 0.084 

LOC100146680 similar to KIAA1436 protein 100146680 PTGFRN prostaglandin F2 receptor negative regulator 5738 -1.02 0.554 

LOC100067254 hypothetical protein LOC100067254 100067254 PTGDR prostaglandin D2 receptor (DP) 5729 1.22 0.090 

LOC100071157 similar to prostacyclin receptor 100071157 PTGIR prostaglandin I2 (prostacyclin) receptor (IP) 5739 -1.03 0.510 

LOC100034143 prostaglandin E synthase 100034143 PTGES prostaglandin E synthase 9536 -1.09 0.360 

LOC100070332 hypothetical protein LOC100070332 100070332 PTGES2 prostaglandin E synthase 2 80142 -1.09 0.392 

LOC100059858 similar to p23 100059858 PTGES3 prostaglandin E synthase 3 (cytosolic) 10728 1.14 0.083 

LOC100065145 hypothetical protein LOC100065145 100065145 AKR1B1 aldo-keto reductase family 1, member B1 (aldose reductase) 231 -1.01 0.645 

PGFS prostaglandin F synthase 100034026 AKR1C1 aldo-keto reductase family 1, member C1 1645 1.35 0.030 

LOC100057251 similar to prostaglandin F synthase 100057251 AKR1C4 aldo-keto reductase family 1, member C4 1109 1.26 0.065 

LOC100070616 similar to prostaglandin F synthase 100070616 AKR1C4 aldo-keto reductase family 1, member C4 1109 1.33 0.046 

LOC100057212 similar to prostaglandin F synthase 100057212 AKR1CL1 aldo-keto reductase family 1, member C-like 1 340811 1.67 0.078 

LOC100070491 similar to prostaglandin F synthase 100070491 AKR1CL1 aldo-keto reductase family 1, member C-like 1 340811 2.32 0.013 

LOC100070501 similar to prostaglandin F synthase 100070501 AKR1CL1 aldo-keto reductase family 1, member C-like 1 340811 2.25 0.021 

PTGDS prostaglandin D2 synthase 21kDa (brain) 100067921 PTGDS prostaglandin D2 synthase 21kDa (brain) 5730 -1.24 0.041 

LOC100053460 similar to glutathione-requiring prostaglandin D synthase 100053460 PGDS prostaglandin D2 synthase, hematopoietic 27306 1.24 0.392 

LOC100071412 similar to prostacyclin synthase 100071412 PTGIS prostaglandin I2 (prostacyclin) synthase 5740 -1.00 0.592 

PLA2G1B phospholipase A2, group IB (pancreas) 100033889 PLA2G4A phospholipase A2, group IVA (cytosolic, calcium-dependent) 5321 1.56 0.006 

PTGS1 prostaglandin-endoperoxide synthase 1 100034087 PTGS1 prostaglandin-endoperoxide synthase 1 (COX1) 5742 1.14 0.306 

PGHS2 prostaglandin G/H synthase-2 791253 PTGS2 prostaglandin-endoperoxide synthase 2 (COX2) 5743 1.22 0.063 

LOC100065438 hypothetical LOC100065438 100065438 SLCO2A1 solute carrier organic anion transporter family, member 2A1 

(Prostaglandin transporter) 

6578 2.00 0.021 

HPGD hydroxyprostaglandin dehydrogenase 15-(NAD) 100009687 HPGD hydroxyprostaglandin dehydrogenase 15-(NAD) 3248 1.13 0.592 

LOC100061690 similar to NADP+ dependent prostaglandin dehydrogenase 100061690 CBR1 carbonyl reductase 1 873 -1.21 0.289 

LOC100061787 hypothetical LOC100061787 100061787 CBR1 carbonyl reductase 1 873 1.15 0.083 

 ENSECAG00000004698  PTGR1 prostaglandin reductase 1 22949 2.67 0.018 

 ENSECAG00000013284  PTGR2 prostaglandin reductase 2 145482 1.02 0.629 
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