
Supporting IT Service Fault Recovery
with an Automated Planning Method

Dissertation

an der

Fakultät für Mathematik, Informatik und Statistik der
Ludwig-Maximilians-Universität München

vorgelegt von

Feng Liu

Tag der Einreichung: 21.04.2011

Supporting IT Service Fault Recovery
with an Automated Planning Method

Dissertation

an der

Fakultät für Mathematik, Informatik und Statistik der
Ludwig-Maximilians-Universität München

vorgelegt von

Feng Liu

Tag der Einreichung: 21.04.2011
Tag der mündlichen Prüfung: 06.06.2011

1. Berichterstatter: Prof. Dr. Heinz-Gerd Hegering
Ludwig-Maximilians-Universitiät München

2. Berichterstatter: Prof. Dr. Gabi Dreo Rodosek
Universität der Bundeswehr München

Acknowledgement

This dissertation not only presents the research results that I have achie-
ved while working as a researcher at the chair of Prof. Dr. Dieter Kranzlmüller
and Prof. Dr. Heinz-Gerd Hegering, it is also an evidence of friendship and
selfless help I got from the MNM Team during the completion of this work.

First and foremost, I’d like to express my heartfelt appreciation to my
thesis advisor Prof. Dr. Heinz-Gerd Hegering for his committed guidance
and kind advice during all phases of my work. As his doctoral student, I
have deeply benefited from his knowledge, deep-insight and decades-long
experience in the research area of network management. Also I would like to
thank Prof. Dr. Gabi Dreo for the helpful discussions and important advice
during the preparation of this work. I’d like to thank Prof. Dr. Kranzlmüller
for his support during the final phase of my research.

As a member of the MNM Team, I have been privileged to get countless
help, suggestions and support from all team members. Especially I want
to thank Dr. Vitalian Danciu and Dr. Michael Schiffers, whose suggestions
and advice helped me greatly in my research. I am indebted to you all, my
friends! Thank you for the experience and memory that I will cherish for
always.

I am grateful to my parents for their encouragement and their confidence
in me. I am also indebted to my wife and my daughter for their patience and
understanding during all phases of my work. Compared to what you have
done for me, a simple “thank you” seems to be pale to express my gratitude.

Feng Liu
Munich, July 2011

Abstract

Despite advances in software and hardware technologies, faults are still
inevitable in a highly-dependent, human-engineered and administrated IT
environment. Given the critical role of IT services today, it is imperative
that faults, having once occurred, have to be dealt with efficiently and effec-
tively to avoid or reduce the actual losses. Nevertheless, the complexities of
current IT services, e.g., with regard to their scales, heterogeneity and highly
dynamic infrastructures, make the recovery operation a challenging task for
operators. Such complexities will eventually outgrow the human capability
to manage them. Such difficulty is augmented by the fact that there are few
well-devised methods available to support fault recovery.

To tackle this issue, this thesis aims at providing a computer-aided ap-
proach to assist operators with fault recovery planning and, consequently, to
increase the efficiency of recovery activities. We propose a generic framework
based on the automated planning theory to generate plans for recoveries of
IT services. At the heart of the framework is a planning component. Assi-
sted by the other participants in the framework, the planning component
aggregates the relevant information and computes recovery steps accordin-
gly. The main idea behind the planning component is to sustain the planning
operations with automated planning techniques, which is one of the research
fields of artificial intelligence. Provided with a general planning model, we
show theoretically that the service fault recovery problem can be indeed sol-
ved by automated planning techniques. The relationship between a planning
problem and a fault recovery problem is shown by means of reduction bet-
ween these problems. After an extensive investigation, we choose a planning
paradigm that based on Hierarchical Task Networks (HTN) as the guideline
for the design of our main planning algorithm called H2MAP .

To sustain the operation of the planner, a set of components revolving
around the planning component is provided. These components are respon-
sible for tasks such as translation between different knowledge formats, per-
sistent storage of planning knowledge and communication with external sy-
stems. To ensure flexibility in our design, we apply different design patterns
for the components. We sketch and discuss the technical aspects of imple-
mentations of the core components. Finally, as proof of the concept, the
framework is instantiated to two distinguishing application scenarios.

Zusammenfassung

Trotz zahlreicher Fortschritte in Software- und Hardware-Technologien,
bilden Fehlersituationen nach wie vor einen festen Bestandteil des IT-Betriebs.
Angesichts der Wichtigkeit von IT-Diensten, ist es unerlässlich, die durch
Fehler verursachten Störungen unverzöglich zu beheben, damit die betroffe-
nen Dienste die erwarteten Funktionalitäten ohne erhebliche Unterbrechun-
gen weiter liefern können. Angesichts der Komplexität, Dynamik und Hete-
rogenität moderner IT Dienst-Landschaften, stellt die Planung der Wieder-
herstellung fehlerhafter Dienste eine große Management-Herausforderungen
dar. Zudem gibt es derzeit kaum wissenschaftlich fundierte Methoden oder
Werkzeuge, Administratoren bei der Wiederherstellung von Diensten zu un-
terstützen.

Diese Arbeit liefert einen Beitrag zum Schließen dieser Lücke durch den
Vorschlag und die prototypische Implementierung eines generischen Frame-
works für das automatische Planen von Wiederherstellungsprozessen für IT
Dienste. Das Herzstück des Frameworks bildet eine Komponente, die in der
Lage ist, einen Wiederherstellungsplan anhand der verfügbaren Informa-
tionen (sog. Recovery Knowledge) automatisch zusammenzustellen. Dazu
werden Techniken aus dem Automated Planning, einer Forschungsrichtung
der künstlichen Intelligenz, verwendet. In einem allgemeinen Planungsmo-
dell wird gezeigt, dass das Dienst-Wiederherstellungsproblem in ein Pla-
nungsproblem transformiert werden kann. Damit können Techniken, die
für das Lösen von allgemeinen Planungsproblemen adquat sind, auf die
Planung von Dienst-Wiederherstellungen anwendet werden. Wir entwerfen
einen Planungsalgorithmus, der auf dem Hierarchical Task Networks (HTN)
Planungsparadigma basiert. Im Vergleich zu anderen Paradigmen, ist das
HTN-basierte Modell flexibler und effizienter.

Um den Einsatz der Planungskomponente zu unterstützen, besitzt das
Framework eine Reihe weiterer Komponenten, die unter anderem dafür ver-
antwortlich sind, Planungswissen abzuspeichern, aktuelle Informationen bzgl.
der Infrastrukturen und Dienste zu akquirieren oder Informationsformate zu
transformieren. Die Planungskomponente kooperiert mit diesen Komponen-
ten, um die Planungsoperationen durchzuführen bzw. die Lösungspläne auf
den Zielsystemen auszuführen.

Um die Flexibilität zu gewährleisten, verwenden wir im Frameworkde-
sign spezifische Entwurfsmuster, damit Änderungen der Planungsumgebung
nur geringe Modifikationen nach sich ziehen. Zum Abschluss zeigen wir die
Tragfähigkeit und Einsetzbarkeit des Frameworks in zwei unterschiedlichen
Anwendungsbeispielen.

Contents

1 Introduction 1

1.1 Research Problem and Vision of Solution 4

1.1.1 Problem Statement . 5

1.1.2 Vision . 5

1.1.3 Research Questions . 7

1.2 Scope and Alignment . 10

1.2.1 Autonomic Computing 10

1.2.2 IT Service Management 11

1.2.3 Dependability Research 12

1.3 Delimitations to Other Dissertations 13

1.4 Thesis Outline . 14

1.5 Summary . 15

2 Terminology and Requirements Analysis 17

2.1 Definition of Terms . 18

2.1.1 Terms on IT Services 18

2.1.2 Fault and Fault Recovery 20

2.1.3 Definitions of Plan, Planning and Planning Algorithm 25

2.2 Scenarios . 26

2.2.1 Scenario 1: Recovery of Web Hosting Services 26

2.2.2 Scenario 2: Fault Recovery in Grid Computing 31

2.2.3 Visionary Solution and Requirement Analysis 37

2.2.4 A Framework-based Solution 37

2.2.5 Requirements Analysis 41

2.3 Summary . 48

I

3 Related Work 51

3.1 Fundamentals of Automated Planning 52

3.1.1 Planning Paradigms 54

3.1.2 Applications of Planning 63

3.2 State-of-the-Art: Planning Applications in IT Management . 67

3.2.1 Configuration Management 68

3.2.2 Change Management 73

3.2.3 Fault Management . 74

3.2.4 Grid Computing . 77

3.3 Evaluations of Existing Approaches 79

3.4 Summary . 81

4 A Conceptual Model of the Recovery Planning Framework 83

4.1 Fault Recovery as a Planning Problem 85

4.1.1 Formalising Service Fault Recovery Problems 85

4.1.2 A General Planning Model 89

4.1.3 Problem Reduction . 93

4.2 Recovery Knowledge . 99

4.2.1 Specifying Recovery Knowledge 103

4.2.2 A Language for Recovery Knowledge 106

4.2.3 Translation to a Planning Language 115

4.3 Recovery Planning Algorithm 136

4.3.1 HTN as Planning Paradigm 137

4.3.2 Fundamental Planning Algorithm Design 143

4.3.3 Assured Properties of the Algorithm 149

4.3.4 Augmentations for IT Recovery Planning 152

4.4 Recovery Planning Framework 166

4.4.1 Overview of the Framework 166

4.4.2 Planning Component 169

4.4.3 Data Processing Component 174

4.4.4 Knowledge Repository 182

4.4.5 Planning System Interfaces 184

4.5 Summary . 190

5 Prototypical Applications and Evaluations 193

5.1 Implementations of Core Components 194

5.1.1 Knowledge Translation Components 194

5.1.2 Planning Algorithm 200

5.2 Applications . 202

5.2.1 Suggested Deployment and Provisioning 203

5.2.2 Recovery Planning in Cloud Computing 207

5.2.3 Portability of the Framework 213

5.3 Evaluation . 216

5.3.1 Framework . 216

II

5.3.2 Planning & Scheduling 217
5.3.3 Knowledge & Repository 220
5.3.4 Data Processing . 221
5.3.5 Plan Evaluation . 222
5.3.6 Workflow & Execution 222
5.3.7 Overall Fulfilment of the Requirements 223

5.4 Summary . 225

6 Conclusion and Future Work 229
6.1 Conclusion . 229

6.1.1 Putting All Pieces Together 229
6.1.2 Research Questions Answered 233

6.2 Future Work . 234

Appendices 243

Appendix A Grammar of PDDL v3 245

Appendix B Implementation of the Language Translation Com-
ponents 257
B.1 Lexer Code . 257
B.2 Parser Code . 272
B.3 Example Grammar of an Action Block 294

Appendix C Example Output of the Applications 297
C.1 Fault Recovery Planning in Cloud Infrastructure 297
C.2 Change Planner . 299

III

1
Introduction

Contents

1.1 Research Problem and Vision of Solution 4

1.1.1 Problem Statement 5

1.1.2 Vision . 5

1.1.3 Research Questions 7

1.2 Scope and Alignment 10

1.2.1 Autonomic Computing 10

1.2.2 IT Service Management 11

1.2.3 Dependability Research 12

1.3 Delimitations to Other Dissertations 13

1.4 Thesis Outline . 14

1.5 Summary . 15

Recent advances in the research and development of information tech-
nology (IT) have made deep social impacts. Society increasingly relies on
IT services to exchange information, foster research and education as well as
support commercial activities. From the perspective of IT service providers,
this trend is something of a double-edged sword: on one hand, it opens up
new business opportunities by offering novel services; on the other hand, to
sustain the increasing number of offered services, operators have to struggle
with intricate management problems in the highly complex IT environment.

Meanwhile, the lucrative IT service market has attracted many IT service
providers competing for market share. This furious competitions compels
providers to offer better service quality at a competitive cost in order to gain
an edge over competition. They must find ways to reduce management costs
without seriously impairing service quality. Finding balanced solutions is
difficult. Such difficulty is furthermore augmented by the following aspects:

1

CHAPTER 1. Introduction

1. Varieties of Services. IT services today span a wide range of areas.
Those services require rather complex infrastructure to sustain their
operations. Consequently managing such diversities in highly hetero-
geneous IT environments poses challenges for IT personnels. More-
over, the requirements on ”classical” IT services have been evolving
over time, for example, a customer, who was once satisfied with sim-
ple web-hosting services to provide static content, may now need extra
application servers to provide business logic and database servers as
back-end to provide dynamic data services.

2. Management Complexity. Considering the rapid growth of complex-
ities of IT services and the associated infrastructure, even the most-
skilled IT staffs find it difficult to cope with the growing complexities
[KC03, Kep05] and those complexities will eventually outgrow human
capabilities to manage them. Additionally, the knowledge required to
manage IT services and underlying infrastructure are very demanding
and becoming highly specialized; this poses an extra barrier for IT
personnel of large data centres.

3. Consolidation of Infrastructure. To cut the total cost of ownership
(TCO), the current trend of consolidation of infrastructure urges IT
providers to take their infrastructure under the central organisation
and co-locate them in fewer facilities. Emerging technologies such as
virtualisation and Grid computing pose new problems to all aspects of
management. Consolidation of infrastructure leads to a high-density
of services, which have to be managed with limited resources.

4. Critical Role of IT. IT is becoming a critical component of business
models. It is the common belief now that the success of a business
largely relies on how good its IT operates. This claim has two impli-
cations: first, the non-functioning of IT could cause a business catas-
trophic losses, both financially and in terms of reputation. For ex-
ample, a 22-hour outage by EbayTMcaused an estimated $3-million to
$5-million loss in revenue and its stock dropped 8.63 on the news of
outages on that day and a 1-hour outage of a brokerage system may
cause around $6.5 million [Dav02]; second, if faults inevitably happen,
a quick reaction is essential to keep the losses to a minimum.

Despite the advances of technology, service failures are still inevitable in
a highly inter-dependent, human-engineered and administrated IT environ-
ment [FP02, Her02]. Human errors, false configurations, software/hardware
defects or power outages [Bre01], to name just a few, are all possible causes
of service failures. Given the critical role of IT today, it is imperative that
faults, having once occurred, have to be dealt with both efficiently and ef-
fectively.

2

CHAPTER 1. Introduction

Fault management encompasses detection, isolation, diagnosis and re-
covery [HAN99]. The main objectives of fault management are to detect
and recover faults quickly and to reduce the impact of a fault. Recovery, as
the last phase of fault management, means eliminations of diagnosed faults
using technical means and reinstatement of the impacted service, so that it
can continue to deliver the expected functionalities.

Issues which make management of today’s IT services difficult obviously
have impacts on the fault recovery process. The challenges of fault recovery
in a modern, large-scale IT environment are specified as follows:

• High fault rate. Significant number of services and their associated
components can lead to a high fault rate. Components can be impacted
by faults at anytime. The fact that some service providers (such as
GoogleTM) base their services mostly on off-the-shelf hardware makes
this problem obvious. Furthermore, in today’s data centres, a large
number of services are run by a limited number of operators (the op-
erator to component proportion at GoogleTM1:500). To recover from
multiple faults efficiently, operators need to plan as well as schedule
their recovery operations accordingly, and automate the recovery pro-
cess where possible.

• Intricate dependencies exacerbate the difficulty to perform fault re-
covery. Constantly evolving infrastructure is common and introduces
new dependencies at different levels. Adoption of new hardware, soft-
ware and constant updates to services are the main reasons for an
evolving service infrastructure. Whereas knowledge on dependency is
crucial, the fault recovery operations have to consider the changes in
dependencies between services and components.

• High demand on the efficiency of recovery. The critical role of IT
service for businesses requires that faults, once they have occurred,
be efficiently recovered to avoid or to reduce the actual losses. This
requires, besides the efficient fault detection and diagnosis, quick deter-
minations of viable recovery solutions which could effectively reinstate
the impacted services.

• Different service classes require diverse recovery prioritisations. The
prioritisation of recovery operations is especially important in cases of
multiple service faults, which is not unusual as discussed previously
(refer to the discussion on high fault rate); in such cases, recovery
actions must be duly planned and scheduled.

• Volatile infrastructure state during the recovery process. In a large
IT environment where multiple services are hosted, the state of in-
frastructure is changing dynamically, even during the recovery. For

3

1.1 Research Problem and Vision of Solution

example, additional faults could appear and invalidate the original re-
covery strategy; in such cases, the recovery process need to be adapted
dynamically to the changing states, so that recovery can be carried out
consistently.

• Human errors during the recovery become obvious. A study [BP01]
showed that operator-related errors accounted for about 75% of to-
tal observed faults in IT and operators tend to make more errors in
stressful situations such as recovery services with time constrain.

• High requirement on the management knowledge. Fault recovery is
a knowledge-intensive operation; it requires the integration of various
management knowledge in order to produce a viable plan. Unfortu-
nately such knowledge is currently available in a distributed and unor-
ganized manner. In case of fault, considerable time is needed to collect,
process and integrate this informations, which unnecessarily prolongs
the recovery period, thus negatively affecting system availability. With
this fact recognised, it is clear that one of the major challenges regard-
ing fault recovery is the large number of non-uniform information or
knowledge sources contributing to the recovery process. The Infor-
mation Technology Infrastructure Library (ITIL) [Com07] explicitly
addresses the importance of management knowledge and proposes an
integrated Service Knowledge Management System with a layered ar-
chitecture for the storage, integration, processing and presentation of
management information.

In conclusion, the complexity of current IT services makes the recov-
ery operation a challenging task for operators. Despite its importance, ap-
proaches for service fault recovery have not yet been thoroughly addressed,
compared to other management disciplines. To fill this gap, this thesis ad-
dresses the challenges regarding automated fault recovery. Based on the
automated planning theory [NGT04, LaV07], we investigate using auto-
mated planning approaches to solve service fault recovery problems. In the
following section, the problem statement and specific research questions are
presented more detail.

1.1 Research Problem and Vision of Solution

Motivated by the aforementioned management challenges, in this section
we present and discuss the main research problem and our vision on the
solution. To tackle the presented problem, we divide it into several specific
research questions. We illustrate and sketch our visionary solution to provide
an overview.

4

1.1 Research Problem and Vision of Solution

��
��
��
��
����
��
��
��

��
��
��
��
������

��
��
��
���
�
�
�

��
��
��
��
�����

�
�
�
�����
�
�
�

�
�
�
�
���

�
�
�
�����
�
�
�

�
�
�
�
��

priority

SLA,

Relations,
dependencies

Notification

of fault

Recovery

plan
Admin

Database
System

Database
System

Router
Router

Switch
Switch

Infrastructure

Admin

Database
System

Database
System

Router
Router

Switch
Switch

Infrastructure

recovery action
(may fail...)

constraints

Policy,

priority

SLA,

Relations,
dependencies

Notification

of fault

constraints

Policy,

knowledge

Expert

generate

evaluate

approve

(semi−automated)
execute

Figure 1.1: The Vision of the Proposed Approach

1.1.1 Problem Statement

The main problem statement of this thesis is articulated and summarised as
follows:

Having recognised that faults are inevitable during the opera-
tion of IT services, growing complexities and highly dynamic
infrastructure make the planning for a service fault recovery an
intricate task for operators [BP01]. Such difficulty is augmented
by the fact that there are few well-devised methods available
to support such activities. Additionally, studies [Bre01, DO03,
Kuh97, DO02, BP01] showed that human error occuring during
the fault recovery is one of the major factors contributing to
an increased Mean-Time-to-Repair (MTTR) value. They iden-
tified that the majority of such faults are caused by unsystem-
atic and unplanned recovery activities. The main research issue
concerning this work is therefore to investigate how to provide
a computer-aided approach to assist operators with fault recov-
ery planning and scheduling and, consequently, to increase the
efficiency of fault recovery activities.

1.1.2 Vision

Figure 1.1 illustrates an envisioned solution of this work. The left half of
the figure shows a traditional approach where the administrative overhead
regarding fault recovery completely falls back on human operators, which

5

1.1 Research Problem and Vision of Solution

make them at the centre of recovery processes. In order to find a feasible
plan, he has to aggregate and process the relevant recovery knowledge. This
time-consuming manual approach is inefficient and error-prone in a highly
complex IT environment.

The right half of the figure depicts the main idea of this research, which is
to develop a framework based on the automated planning theory to generate
recovery plans for of IT services failures. This framework supports service
operators regarding the fault recovery process by addressing the following
issues:

• Modelling and representation of recovery knowledge.

• Integration of recovery knowledge into plan reasoning processes.

• Providing an automated approach to process recovery knowledge (i.e.
translation between different formats, storage and retrieval of knowl-
edge etc.).

• Facilitating reuse of management knowledge.

Instead of completely relying on the human operators, a planning frame-
work provides a computer-aided mechanism which aggregates the relevant
information and computes recovery plans. Based on the computed solutions,
the operators could verify and selects suitable solutions as needed. With this
approach, the overhead of planning the recovery solution is greatly reduced.
Additionally, the finding of plan solutions can be performed much faster
than by a purely manual approach.

Additionally, this research explores the strengths and weaknesses of the
proposed method in the area of service recovery planning. Whereas fault
recovery is an integral part of the fault management process, this framework
also maintains interfaces to other fault management processes such as fault
diagnosis.

Figure 1.2 provides an overview of the envisioned recovery process. As
soon as the recovery process is initiated, a plan generation component is
triggered to compute recovery plans for the reported fault. To achieve this,
it needs to correlate information from different sources, for example, the
dependency and current state of the impacted service, constraints on time
and cost of recovery as well as available recovery options. However, it could
not be guaranteed that a plan can always be found by the planning compo-
nent. In such cases, recovery planning should be either retried or fall back
on operators to make decisions. If a plan is successfully found, it needs to be
evaluated and checked before execution, for example, by means of reviewing
or editing by operators. The successfully evaluated plan will be then exe-
cuted to reinstate the impacted service into operational state. Finally the
result from recovery needs to be evaluated to see if the recovery goal is met.

6

1.1 Research Problem and Vision of Solution

Plan
Execution

Evaluation
&

Selection

Plan

Generation

&
Scheduling

Plan

Evaluation

Result

End

Initiation

Success?
Result

Execution

Success?

Success?

Plan
Gen.
&

Sched.

Yes

Yes

No

Yes

No

Success?

Plan

Evaluation

Selection

Evaluation
&

No

No

Yes

Figure 1.2: Overview of the recovery process

Nevertheless, during the plan evaluation, execution and result evaluation
phases, exceptions also need to be considered and handled, an example of
such an exception could be a new fault during fault recovery, which transits
the state of the impacted service to a new fault state that cannot be treated
by the original recovery plan.

Based on the illustrated vision, the main research focus would be on the
plan generation and scheduling component with interfaces to other com-
ponents. It shall not only possess the capability to automatically generate
recovery plans and schedules, but also handle exceptions during the different
phases and be responsible to dynamically adapt the recovery plan.

The benefits of this research are manifold: on one hand, it supports
the service operator in dealing with complex recovery cases by automating
the composition of recovery plans and schedules; on the other hand, using
a systematic recovery planning method can increase the overall efficiency
of the recovery process and help the operator to carry out the recovery
operations in a more systematic way. Finally, the focus of this research
provides a novel way to service recovery planning based on formal and well-
established methods.

1.1.3 Research Questions

The envisioned solution to the main research problem can be broken down
into the following specific research questions that need to be addressed.

Q1: How can a recovery plan, recovery actions and applicable recovery con-
straints be modelled?

Recovery actions are fundamental elements that a recovery plan con-
sists of. In order to compose a viable recovery plan, proper actions

7

1.1 Research Problem and Vision of Solution

need to be selected based on their properties such as the time re-
quirement, costs and pre-conditions etc. These properties need to be
identified and considered in the model of recovery action.

A recovery plan consists of a sequence of recovery actions and it is
characterised through its attributes such as the aggregated time of the
plan. The identification of these attributes will directly contribute to
the plan selection if, for example, multiple recovery plans with the
same recovery objective but different time requirements exist. It is,
however, necessary to point out that elicitation of the knowledge on
recovery actions is not within the scope of this dissertation; however,
there is wealth of work that has been done in the area on knowledge
engineering research.

Recovery constraints are conditions that must be considered by the
plan compositions, for example, the maximum recovery time for a par-
ticular service or the maximum costs of the recovery activity for that
service. This information needs to be properly identified and modelled.
Meanwhile, it is important to investigate where such constraints could
be derived from.

Q2: How could actions and constraints be properly stored so that the plan-
ning and scheduling mechanism can query that informations when nec-
essary?

In addition to the plan knowledge modelling, recovery actions need to
be properly stored as well, so that planning and scheduling methods
could query those actions when needed. A proper repository needs to
be provided to facilitate querying and storing operations; it should act
as a knowledge base for the automated planning operation.

Q3: How could plans be generated automatically? Is there any existing
approach from other research fields we could learn from?

Automated plan generation is one of the main research issues this the-
sis investigates; there are some existing approaches from research areas
such as automated planning, which are concerned with automated plan
compositions. Automated planning is a branch of Artificial Intelligence
(AI) research. Unlike other strong AI approaches, which try to give
systems “intelligence”, automated planning methods are based on solid
algorithms, which have been successfully applied in different areas in
industry and research. The purpose of automated planning methods
is to provide knowledge-integration and decision support to complex
planning processes. In the context of IT management, several con-
tributions exist which investigate into applying automated planning
in change management [BS05] and configuration management [NA07],
but hardly any work exists on fault recovery planning.

8

1.1 Research Problem and Vision of Solution

Nevertheless automated planning methods in their original forms could
not be directly applied to the service fault recovery; modifications
and adaptations are necessary. Moreover, different plan generation
methods are associated with different complexities and have their own
constraints and limitations; choosing a proper approach requires an in-
depth analysis of existing algorithms. However, automated planning
methods has been successfully applied to application areas such as
space exploration program, military operation planning and industrial
production planning, to name just a few; the experience gained from
these applications is helpful and indispensable for this research.

Q4: How could plans dynamically be adapted to a new service state?

In a real-world scenario, successful executions of a particular recovery
action cannot always be assumed, which means it is possible that exe-
cutions of certain steps in a plan failed (for example, because of instant
changes of infrastructure). In such cases, the planning mechanism has
to provide the possibility to adapt the original plan dynamically to
the new service state. To achieve this goal, the results of the plan ex-
ecution need to be fed back to the planning component in a real-time
manner.

Q5: How can the correctness of a generated recovery plan be automatically
verified?

A recovery plan needs to be verified to ensure its correctness before it
can be executed by a human administrator or by an underlying system.
Since a manual verification of a complex recovery plan is an arduous
and error-prone process, an automated support is needed to check
the correctness of the generated plan. In this context, the correctness
could mean whether the generated plan fulfils the desired management
objectives or whether the costs (either time or money) of the computed
plan results are in alignment with corresponding constraints.

Q6: How can the relevant management knowledge be integrated into plan-
ning process?

Management knowledge is indispensable for the recovery plan compo-
sition. Such information exists in different sources, examples are policy
repositories and monitoring databases. The planning process needs to
integrate such knowledge during the planning process. Additionally,
such knowledge must be converted into a format which the automated
planning process can understand.

9

1.2 Scope and Alignment

1.2 Scope and Alignment

This work touches upon three different research domains: automated com-
puting, IT service management and system dependability. This section pro-
vides an overview of how this thesis is related to these research areas.

1.2.1 Autonomic Computing

The main objective of autonomic computing [KC03, Kep05, GC03] is to
equip systems with self-managing capabilities to cope with complex man-
agement tasks that operators are currently facing.

The IBM-proposed K-MAPE model of autonomic management consists
of four key functional phases: monitoring, analyzing, planning and execut-
ing. An additional knowledge base is presented in this model to support
those key functions. The monitoring function is designed to supervise the
current system and collect data regarding operational states as well as per-
formance indices of the system. These data are subsequently analysed by an
analysis function based on the existing knowledge. The planning function
composes a plan according to the results of previous analysis and plans ac-
tions to achieve the desired management objectives. The planning function
relies on knowledge that is available in a knowledge base. Such knowledge
could encompass actions that are required in order to reach the determined
management goals. Additionally, the autonomic computing includes four
aspects of self-management. They are briefly explained below:

Self-Configuration Automated configuration of systems follows high-level
policies representing management goals.

Self-Optimization Systems are continually seeking opportunities to im-
prove their own performance and efficiency.

Self-Healing System automatically detects, diagnoses and repairs localized
hardware and software problems.

Self-Protection System automatically defends against malicious attacks
or cascading failures.

This research is related to the planning phase and knowledge bases of the
autonomic computing model. It also addresses the research issues regarding
the self-healing aspect of autonomic management. This work is applicable
to the self-healing aspect in a way that it investigates issues regarding how
to automatically compose a recovery plan based on the existing knowledge
such as a dependency model, available recovery actions etc. Additionally,
this thesis proposes using the automated planning methods to facilitate the
planning function suggested by the aforementioned model.

10

1.2 Scope and Alignment

1.2.2 IT Service Management

Figure 1.3 shows the scope of this thesis from an IT service management
perspective. As mentioned above, this work falls into the area of fault man-
agement, which consists of fault detection, fault diagnosis, fault isolation
and fault recovery. Within the fault management dimension, the focus of
this work lies on recovery, particularly on the planning of recovery solutions.
The suggested approach intends to facilitate recovery planning by means of
automated correlation and reasoning on fault repair actions, configuration
information of resources etc.[Rod02].

Service

Life Cycle

Service

Roles

Accounting

Security

Capacity

Performance

Fault Management

Functions

Management

Disciplines

Plan

C
ustom

er

Fault

Business

Enterprise

Service

IT Oper.

N
egotiation

Provision

O
peration

C
hange

W
ithdraw

al

D
et

ec
ti
on

D
ia

gn
os

is

R
ec

ov
er

y

Is
ol

at
io

n

P
rovider

S
ide−

Indep.

Figure 1.3: Scope regarding IT Service Management

An IT service has its lifecycle, which starts with planning of a service
and ends with the withdrawal of that service. This work concentrates on
the operational phase of an IT service, during which the correctness of a
running service is monitored and controlled. As fault is an inevitable fact,
an efficient fault recovery process during the operational phase is especially
important for a service provider because during this phase, customers are
actually using that service, and once impacted by fault, the efficiency of the
fault recovery process will directly influence the customers’ perceived service
availability as well as swiftness of the provider’s reaction to the fault.

Disciplines of IT management are classified into several levels. As shown
in Figure 1.3, the business management deals with the management of a
company as a whole, which involves tasks such as financial management
and strategic planning, whereas enterprise management mainly deals with
concreting and specifying abstract business goals. The management on the

11

1.2 Scope and Alignment

operation level handles management tasks regarding systems, network and
applications, i.e. it deals with management of networks and end systems.
The objective of service management is to fill the gap between managing
resources (also sub-services) with respect to the business objectives of the
organisation. The research focus of this thesis with respect to management
disciplines lies on the recovery planning from a service perspective. In the
meantime, the recovery of a service will finally boil down to the recovery
actions on the operation level, where concrete recovery actions are being
performed.

According to the MNM service model [GHH+02], a service consists of
customer domain and provider domain. The user and customer access a
particular service through the side independent part of the model. Details
of the MNM service model are provided in Chapter 2 of this thesis. This
work concentrates on the recovery of those faults, whose root causes are
in the provider’s domain, i.e. user-perceived service faults not related to
the service provider are not within the scope of this work, for example, a
configuration error of a user’s email client may give that user the impression
that email service is not available, such a fault is confined to the customer
domain of a service.

1.2.3 Dependability Research

Figure 1.4 shows how this work is related to the dependability research. Def-
initions on dependability in this work are rely on concepts and taxonomy
suggested by Laprie et. al. [LR04]. Dependability is characterised by five at-
tributes: availability, reliability, safety, confidentiality, integrity and main-
tainability. This work addresses availability and maintainability aspects.
Availability means the readiness of a correct service and it is determined by
Mean-Time-to-Failure(MTTF) and Mean-Time-to-Repair(MTTR). An effi-
cient recovery process directly contributes to minimising the MTTR value
therefore increases the availability of a service.

There are different means to achieve dependability. Fault prevention
and fault forecasting are counted as proactive means to prevent faults from
happening and using statistical methods to predicate faults that might hap-
pen in future. This work, however, focuses on the reactive means to achieve
dependability through fault tolerance and fault removal. Fault tolerance is
carried out through error detection and system recovery. The system recov-
ery transforms an erroneous system state into an operational state. Fault
removal means to eliminate current faults or reduce the severity of faults,
which is directly related to the efficient recovery process.

The maintenance attribute includes repair and modification of the sys-
tem that take place during the operational phase. It encompasses various
forms: corrective maintenance, preventive maintenance, adaptive mainte-
nance and augmentative maintenance. This work is related to corrective

12

1.3 Delimitations to Other Dissertations

Attributes

FaultFault
Tolerance

Fault
Removal

Fault
Forecasting

Means
to attain
Dependability

Dependability

Phase of	

Fault
Types

Fault Occurrence

Confidentiality

Safety

Reliability

Maintainability

Availability

Byzantine Erratic Halt Crash

Forms of		

Maintenance

Corrective

Preventative

Adaptive

Augmentive

Prevention

Operational Faults

Development Faults

Figure 1.4: Scope regarding Dependability Research

maintenance, which means to remove reported faults.

Regarding the phases of fault occurrence, this work is related to opera-
tional faults, which occur during the delivery of a service. The development
faults during the development phase are not covered in this work.

1.3 Delimitations to Other Dissertations

The theses of Sailer [Sai07], Hanemann [Han07] and Schmitz [Sch08] are
closely related to this work. Sailer addressed the construction of a man-
agement information base that includes all information needed regarding
technical service management. Information such as dependencies of services
is crucial for service recovery planning and could be directly used by the ap-
proaches suggested in this thesis. The work of Hanemann mainly addressed
the issue of fault diagnosis which is an important part of fault management.
His approach is based on service-oriented event correlations which are based
on case-based reasoning and rule-based reasoning. The list of identified root
causes of faults could be used as inputs for the approach suggested in this
thesis. The thesis from Schmitz mainly addressed the issues on the analysis
of actual or assumed resource failures and determine their impacts on the
services regarding the agreed SLA. In his suggested framework, he also pro-
posed a decision aid to determine the appropriate recovery action as well
as a recovery tracking mechanism. Nevertheless the framework does not

13

1.4 Thesis Outline

provide a proper plan composition mechanism. Despite open questions, his
work could be regarded as a foundation and a reference on which to build a
more concrete recovery planning approach.

In her post-doctoral thesis, Dreo [Rod02] provided a generic framework
for IT service management based on the FCAPS management functional
areas. The present thesis is related to the fault management part, specifi-
cally the fault recovery planning and formalisation as well as deployment of
knowledge base for fault recovery, of her post-doctoral work.

1.4 Thesis Outline

Figure 1.5 illustrates the structure of this thesis. The dashed-line in Figure
1.5 show the relationships between topics between chapters and the solid-line
connections describe relationships within the specific chapter.

Chapter 1 introduces the current IT management challenges and con-
sequent research problems regarding the service fault recovery. A research
scope is provided to offer an overview of the research areas, to which this
dissertation is related.

Chapter 2 starts with specific definitions and explanations of the ter-
minology used throughout this work in order to avoid ambiguities. Then
scenarios regarding fault recovery are investigated with the intention to mo-
tivate and structure the requirements for the solution. Finally a complete
list of requirements for our solution is derived and discussed.

Chapter 3 gives an overview of the related work. It starts with a general
introduction of automated planning research with its theory and applica-
tions. We then present and analyse the existing competitive approaches on
fault management with a focus on the fault recovery aspect. The investi-
gated approaches are evaluated against the requirements derived from the
previous chapter.

Chapter 4 provides our design of a service fault recovery planning frame-
work. To justify the feasibility of leveraging the automated planning theory
to solve the recovery problem, we build a model for fault recovery and draw
the equivalence between the two problem models. We show that with a
proper transformation, a fault recovery problem can be transformed into a
general planning model, thus to be solved with automated planning method.
With this theoretical background in place, we investigate different planning
paradigms and propose a design of the core planning algorithm based on
the HTN planning paradigm. We also specify a language to encode plan-
ning knowledge, so that it could be used by the planner to compute solutions.
In the final part of this chapter, we propose a flexible framework design with
components revolving around the planning subsystems.

Chapter 5 addresses implementation aspects of the core components in
the framework. As the proof of concept, we demonstrate the applicability

14

1.5 Summary

of our approach to selected applications scenarios. Finally we evaluate the
framework against the derived requirements to show the degree of fulfillment.

Chapter 6 summarises and concludes the work that has been done in
this thesis. As an outlook, we discuss potential research directions for the
future work.

Chapter 2

Chapter 4

Chapter 1

Scopes of Research

Approaches

Problem Statement & Research

Questions

A Planning Algorithm

for Service Recovery Planning

Modeling of Recovery Actions/Plan

Chapter 5

Evaluation of the Framework

Prototypical Implementation & Evaluation

Implementation of Core Components

Generic Deployment Process

Plan for Change Mgt.Recovery Planning in Cloud

Chapter 6

Requirement Analysis

Chapter 3

Related Work

Introduction

Delimitation to other MNM Diss.

A Recovery Planning Framework

Analysis of Planning Paradigms

Conceptual Model of the Recovery

Planning Framework

Theory

Applications

Information Modeling & Mgt.

Competitive Approaches

Analysis of Competitive Approaches

Conclusion and Future Work

Summary and Conclusion

Open Questions & Future Research Directions

Definitions of Terms

Requirement Analysis

Scenarios

Automated Planning

Figure 1.5: Approach and Layout of this Dissertation

1.5 Summary

This chapter provides an overview of novel aspects of the modern IT ser-
vice landscape and, consequently, discusses the new management challenges.
These challenges are explained in detail with focus on fault management,
which is one of the key subjects among all functional areas of IT manage-
ment. To address these challenges, the manual-based approaches are obvi-
ously no longer sufficient, especially by planning for fault recovery processes.

15

1.5 Summary

We therefore envision an automated planning framework as a solution to
assist human administrators by planning for the recovery activities. The re-
search focus of this dissertation is thus set on investigating and designing the
recovery planning framework to assist human administrators by composing
recovery plans in case of service failure. To achieve this objective, specific
research questions are derived and discussed. This chapter is concluded with
an overview of the structure of this dissertation.

16

2
Terminology and Requirements Analysis

Contents

2.1 Definition of Terms 18

2.1.1 Terms on IT Services 18

2.1.2 Fault and Fault Recovery 20

2.1.3 Definitions of Plan, Planning and Planning Algo-
rithm . 25

2.2 Scenarios . 26

2.2.1 Scenario 1: Recovery of Web Hosting Services . . . 26

2.2.2 Scenario 2: Fault Recovery in Grid Computing . . 31

2.2.3 Visionary Solution and Requirement Analysis . . . 37

2.2.4 A Framework-based Solution 37

2.2.5 Requirements Analysis 41

2.3 Summary . 48

We begin this chapter by introducing the definitions of terminologies
that are used in this work. Since our work spans several research disciplines,
thus the provided definitions are related to IT service management, system
dependability and automated planning. Clear definitions of terminology
used in this work help to avoid ambiguities in future discussions.

Following the definition of terminology, two fault management scenarios
are presented to reflect the real-world management cases. The depicted sce-
narios range from a simple web-hosting service to the recovery of services
in Grid. For each scenario, the challenges with regard to fault recovery are
discussed in detail, which motivate the development of an automated recov-
ery planning framework as the main focus of this research. Consequently,
we propose a framework design with the main idea of applying the planning
approach to automatically compose recovery procedures based on the fault

17

2.1 Definition of Terms

<<role>> <<role>>

user customer

service

provider

<<role>>

side

customer

side

independent

side

provider

Figure 2.1: Basic MNM Service Model

situations. An overview of the framework is sketched with brief discussions
of its sub-components.

Finally, requirement analysis of the framework is conducted. Require-
ments are categorised according to the individual component comprising this
framework. A brief discussion is given to each requirement to explains its
incentive. The purpose of the requirement catalogue is to shape and guide
the development of the targeted framework.

2.1 Definition of Terms

2.1.1 Terms on IT Services

Terms concerning IT service management throughout this work rely on the
MNM service model [GHH+02], which is designed as a generic model to
define a service. As shown in Figure 2.1, the MNM Service model consists
of provider side, customer side and side-independent part.

Provider Side: A provider is responsible for offering a customer the sub-
scribed services. This includes implementations of the services to-
gether with their management functionalities. The services are made
accessible to the customer through an interface called Service Access
Point (SAP). To properly manage that service, an interface to Cus-
tomer Service Management (CSM) is implemented which allows the
customer to access the management functionalities, for example, in
the case of a service disruption perceived by the customer.

Side-Independent Part: This part of the model connects the customer
and provider domains, but does not belong to either side. A service
that a customer perceives is defined abstractly within this part which
consists of its functionalities and associated QoS parameters.

Customer Side: An offered service is subscribed by a customer, who con-
sequently enable a service users to access and use the service. The
customer manages the offered service through the CSM interface.

18

2.1 Definition of Terms

customer domain

supplies supplies

provider domain

«role»

provider

accesses uses concludes accesses

implements observesrealizes

provides directs

substantiates

usesuses

manages

implementsrealizes

manages

service

concludes

QoS
parameters

usage
functionality

service
access point

management
functionality

service implementation service management implementation

service
agreement

c
u

s
to

m
e

r
s

id
e

p
ro

v
id

e
r

s
id

e
s

id
e

 i
n

d
e

p
e

n
d

e
n

t

«role»

user
«role»

customer

CSM
access point

service
client

CSM
client

Figure 2.2: A Detailed View on MNM Service Model [GHH+02]

A detailed view on the MNM service model is given in Figure 2.2 [GHH+02].
A recursive application of the MNM service model is possible, which enables
the definition of a chained service, for which diverse sub-providers and sub-
services are combined to form a complex service.

Whereas the main focus of this work is on the service recovery and
it is frequently conducted by a provider, therefore the further discussion
is focused on the provider’s side. Nevertheless, it is not always trivial to
completely differentiate the roles of provider and customer. For example, in
a chained service where a provider of a sub-service could be a customer of
another sub-service at the same time. Therefore, it is necessary to give clear
definitions on the terms related to the customer domain. Some definitions
concerning the concept of an IT service are summarised as followings:

Service: A service in a generic sense is a set of functionalities, which a
service provider offers to a customer. As defined in the MNM service
model, a service is composed of usage and management functionali-
ties. A customer or a user accesses the offered service through the
CSM and SAP interfaces. Additionally, as part of the service defini-
tion, a set of Quality-of-Service (QoS) parameters is used to note the
minimum service quality required by the customer. Those parameters
are documented in the Service Level Agreement (SLA).

19

2.1 Definition of Terms

Sub-service: A complex service may consist of several sub-services, which
implement partial functionalities to that service. A sub-service is ei-
ther provisioned by a provider internally or located externally across
the organisational domains. In short, a sub-service is a service, on
which another service depends.

Resources: Resources are hardware or software components which realise
specific functionalities required by a service or a sub-service. Physi-
cal server, server applications, network links, databases etc. can be
categorised as resources.

Administrator: An administrator is a member of technical personnel whose
tasks are mainly concerned with resource management, e.g. keeping
and maintaining the resource in the operational state.

Service Manager: A service manager has an administrative role; he is re-
sponsible for not only keeping the targeted service operational but also
for guaranteeing that the QoS of the delivered service is in accordance
with the SLA. A service manager ought to have an overview of the
service he is in charge of. Often, the service manager needs to work
with the administrator cooperatively to solve the service problem.

customer and user: A customer is usually a legal entity or an organisa-
tion which has a contractual relationship with a service provider. A
user is an individual who consumes the offered service.

2.1.2 Fault and Fault Recovery

As terms regarding faults, failures and errors are often used in a perplexing
manner, it is necessary to give each of these terms a proper definition to
avoid confusion and to allow a common understanding. The diversity and
dependency of IT components which interact with each other to provide
expected services requires that a clear distinction needs to be made.

According to Laprie et. al. [LR04] a service delivered by a system is
characterised by its behaviors that are perceived by users. The user is
another system or person, who receives the service from the provider. If
the user is another system, it gets access to the service through the service
interface, and a person as the user gets the service delivered from the use
interface. A provider has internal states as well as external states. The
states that are perceivable by the user at the service interface are said to be
external states and the remaining of system states are denoted as internal
states. A sequence of external states comprises the service.

Despite some minor differences, it is easy to recognise that Laprie’s def-
inition of service is in alignment with the MNM service model, thus their
definitions of error, fault and failure can be used in the context of IT service

20

2.1 Definition of Terms

fault error

failure

activation

propagation
causation

Figure 2.3: Transitions between Fault, Failure and Error

as well. Given the definitions of service, the terms failure, error and fault
are defined as follows:

Failure. A failure is an event that occurs when the delivered service deviates
from its correct behaviour. A service is said to have failed if it could
not comply with the promised functional specifications.

Error. An error is the part of the system’s state that may lead to a failure.
For example, a damaged data packet transmitted over the network is
an error, which may cause failure but not necessarily. It is worth noting
that many errors do not propagate to the service interface; therefore,
not all errors are causes of service failure, e.g. a corrupted data packet
is unlikely to crash a service.

Fault. A fault is the adjudged or hypothesised cause of an error, e.g., a
noisy network connection is often the cause for the corruption of data
packets transmitted over that network. A fault is an unwanted but
possible constellation of system states.

These three terms are closely related to each other. The relationships
and transitions between error, fault and failure are shown in Figure 2.3

A fault is active when it starts to produce errors, otherwise it is dormant.
A dormant fault is the fault which is located inside a system but not yet
activated, e.g., a logic fault in a function not yet called or faults in hardware
components not yet used by the system are said to be in a dormant state.
Once the component is called by the system, it starts to produce errors and
switches into active state. An error could cause a chain of errors which
results in failure; this process is called propagation of errors. A service
failure results when errors propagate to the service interface and cause the
delivered service to deviate from the correct service. A fault may be caused
by failure, e.g., an error in the configuration file of an application server
leads to server failure and renders the web application, which depends on
that application server, unusable. This is a fault (from the system’s aspect)
and the fault is induced by the failure of the application server.

21

2.1 Definition of Terms

The focus of this work is on the recovery of faults, which are, by the def-
inition, adjudged or hypothesized causes of errors and failures of services.
Those faults are determined by the fault detection and diagnosis, which are
integral parts of fault management process precedent to recovery. This work
assumes that the root causes of a service failure have already been deter-
mined by the fault detection and diagnosis. Related approaches concerning
fault detection and fault diagnosis are extensively treated by [Han07, Sch08]
in details.

Fault Types

Despite the rich diversities, faults in IT systems can be generally categorised
into the following types [TS07]:

Transient Fault. This class of faults occurs once and then disappears. For
example, electromagnetic disturbance near the network cable could
cause the loss or corruption of data packets sent over that network
and therefore disrupts the service. The network communication is
normal again when such disturbance has gone.

Intermittent Fault. This class of faults resembles transient faults, but
they reappear when several contributing factors occur simultaneously.
An exceedingly overloaded web server could cause transient faults
when the user cannot access the desired pages; accessibility resumes
when the unexpected large number of access requests of the server
becomes normalised.

Permanent Fault. This class of faults continues to exist until the faulty
components are replaced. A software bug, defect hardware etc. are
typical examples of permanent fault.

Failure Semantics

Failure semantics describe the behaviours that faults are likely to exhibit.
It is crucial to distinguish various failure semantics, since organising proper
recovery actions depends on failure behaviours of the impacted service. To
classify different types of failure semantics, several schemata have been de-
veloped [Gär99, Cri91]. Table 2.1 gives an overview of those types and their
corresponding interpretations.

Fault Recovery

Fault recovery is a process that utilises technical means to transform a sys-
tem state, which contains a fault or multiple faults into a state in which an
agreed service could be expected by the users of that system. In other words,
fault recovery is an activity which reinstates a defect service to its normal

22

2.1 Definition of Terms

Failure Semantic Interpretation

Crash Failure A service halts prematurely and does not respond to
an external query. Once a service halts, nothing is
heard from it anymore. A service is in an undefined
state.

Fail-stop A service fails to respond to service requests and to
deliver the correct service. It goes into a defined stop
state. In some cases, a service may also announce its
unavailability.

Timing Failure A service’s response lies outside the specific time in-
terval.

Omission Failure A service fails to send or receive messages. With a
send omission failure, for example, a service may have
correctly received a request and produced correct re-
sponse, but then failed to send it to the requester.
Vice versa, a service may omit the service request
with a receive omission failure.

Byzantine Fail-
ure

A service fails by producing an arbitrary response in
arbitrary time. This is the most difficult failure type
to determine because the impacted service exhibits a
random combination of failures discussed above. In
the worst case, it may produce false-positive results,
which make such failures even more difficult to be
determined.

Table 2.1: A Classification of Failure Semantics

operational state. The fault recovery process is mostly done reactively after
a fault has already impacted a service. An effective recovery process should
bring the system back to its normal operational state as soon as possible by
minimising the disruption period.

There are several ways to deal with faults: fault prediction and preven-
tion, fault isolation and masking, fault recovery and service re-induction.
Fault treatment in the context of this work refers to the corrective mainte-
nance or the systematic usage of compensation for a faulty service. Other
related terms such as fault detection and diagnosis are also important to
the recovery, since a correctly detected and diagnosed root cause of a fault
is fundamental to a successful recovery. However, as the main topic of this
dissertation is recovery, an in-depth discussion of those terms is beyond the
focus of this dissertation.

Clear distinctions and delicate relationships should be identified between
them, even though the boundaries between those terms are not always clear.

Fault prediction and prevention methods are designed to prevent ser-

23

2.1 Definition of Terms

vice failure in both a predicative and preventive way. An early recog-
nition of system anomalies, which could lead to a service failure if
left unattended, is one of the keys to a successful fault prevention.
Approaches such as statistical fault predictions [CKR05, LL06] and
machine-learning-based fault-proneness analysis [Gon08] are all valid
examples for the prediction of faults before they affect the system.
Fault prevention reduces the rate of actual fault occurrences.

Fault masking and isolation approaches are designed to hide and iso-
late fault events from users, so that the users’ perceived service is
still in an operational state, even if it has been already impacted by
faults. Fault isolation could be done through the replacement of faulty
components with approaches such as job migration, redundant infras-
tructures [Sch06] etc. which provide opportunities for fault masking.
To some extent, fault masking could be considered as a temporal ap-
proach for the fault mitigation.

Fault recovery and service re-induction are usually done after service
failures, i.e. fault recovery does not prevent service failures, nor does it
masks faults for users1. The main focus of recovery is finding and im-
plementing proper strategies to mitigate as well as to repair the fault.
Finally the repaired system should be announced and re-inducted as
well. Although an efficient fault recovery process does not necessarily
increase the reliability of a service, however, it does increase the avail-
ability of that service by reducing the Mean-Time-To-Repair (MTTR)
value in the service availability calculation.

The main difference between those methods lies in the time point, rela-
tive to the fault occurrence, by which proper fault treatment methods could
be invoked. Fault prevention and prediction approaches recognise the ten-
dency of potential faults before they happen, whereas a fault isolation and
masking approach is applied during or after faults take place. Fault recovery
approach is usually done after faults and their resulting damages have been
impacted and reported.

Despite their differences, a rigorous separation of those fault handling
methods is inappropriate. Compared with others, fault recovery is a more
border term, for instance in order to temporally mitigate the impact of a
fault during a recovery, fault masking methods could be used to reduce
the user-perceived service outage whilst the defected service component is
being repaired. The fault prevention and prediction can lead to recovery as
well, for example, an early recognition of an overloaded application server
could trigger the activation of a load-balance mechanism to avoid a potential
timing fault regarding the response time of that server.

1Although under some circumstances, fault masking could be a part of the fault recov-
ery process as well

24

2.1 Definition of Terms

2.1.3 Definitions of Plan, Planning and Planning Algorithm

The term planning could be interpreted differently in different application
domains; some examples of planning in general are financial planning, robot
motion planning and military operation planning. However, despite these
differences, planning does share some commonalities:

• Every planning procedure is intended to reach a goal or an objective.

• Every planning procedure is a part of a decision-making process.

• Every planning procedure usually involves multiple steps or strategies.

• Every planning procedure has to deal with limited resources.

Thus, planning in general can be formally defined as the reasoning side
of acting [NGT04]. It is an elaboration process to select and to organise ac-
tions by anticipating their expected outcomes. The planning process targets
achieving pre-determined goals by executing the selected actions.

The investigation into planning originates from the research of multi-
agent systems (MAS), where software agents have to either adapt them-
selves to environmental changes or affect the environment according to the
pre-defined goal. To achieve that goal, an agent must be capable of finding
actions in particular sequences or causal order, upon which it could act.
The process of coming up with a sequence of actions is called planning in
MAS. Planning is also frequently referred to as problem-solving in artifi-
cial intelligence research, where solutions in the form of action sequences
or strategies are searched for according to the given objectives and other
additional conditions. Chapter 3 covers planning in more detail.

It is worth to note that, depending on how the states of the environ-
ment are represented and how time is modelled by solving the particular
planning problem, planning could be categorised as discrete-space planning
and continuous-space planning. The term space in this context refers to the
state space involved in the planning that captures possible situations that
could arise during the planning operations. It could, for example, repre-
sent the continuous movement of robotic arms or the velocity and speed of
a helicopter, whose state spaces are continuous, e.g., they are uncountably
infinite. Planning under such cases is called continuous-space planning, for
example, to plan an optimal path for the arm movement of a robot with con-
straints on the length of the path and time of the movement. Furthermore
the time for planning such activities is critical and therefore is explicitly
modeled in continuous-space planning. To solve such planning problems,
geometric models or differential equations are needed to characterise the
continuous-space planning problem and the methods that solve planning
problems in continuous-space are frequently referred to as motion planning
in the control theory.

25

2.2 Scenarios

In contrast to continuous-space planning, discrete-space planning mod-
els its state space in a discrete manner and generally less time critical, for
example, the state space of a board game such as chess can be easily dis-
cretized because these are countable finite states involved. Compared to
its counterpart, time is less critical and hence it is implicitly modelled in
terms of sequence order or succession of the actions in this kinds of planning
problem. The planning process discussed throughout this dissertation refers
to planning in a discrete space.

Having introduced the term planning we now provide several definitions
on terms, which are related to planning; more detailed discussions on plan-
ning and planning algorithms are given in Chapter 3:

• A plan is the result of a planning process. It imposes a specific strat-
egy or behaviour on a decision maker [LaV07]. A plan consists of a
sequence of actions with causal relationships to each other. Those ac-
tions transform the current state of a underlying system into a desired
state.

• A planning algorithm consists of procedures which are intended to
compute and compose plans. A software entity that instantiates plan-
ning algorithms is frequently called planner. The research on planning
algorithms is part of the research realm of automated planning.

• A planning system is a system which not only has a planner as a core
component for plan syntheses, but also possesses the capabilities to
exchange information and interact with other relevant external com-
ponents through its interfaces.

2.2 Scenarios

To show the necessities of a computer-aided planning framework to assist the
fault recovery process of modern IT services, two scenarios are discussed in
this section. The range of selected scenarios intends to reflect IT service at
different scales and complexities. For each of those scenarios, a general de-
scription of the setting is presented first and then challenges and difficulties
of current fault recovery approaches in the scenario are discussed individu-
ally. Finally a comprehensive catalog of the requirements of an automated
planning system is derived from the discussion.

2.2.1 Scenario 1: Recovery of Web Hosting Services

This scenario depicts a generic web-hosting service which customers use to
provide dynamic and static web content. A data centre usually hosts a large
quantity of such services for different customers with various requirements.
To ensure the quality of the provided services, a service level agreement

26

2.2 Scenarios

Subservice
Resource

SW:Apache Subservice

Resource

SW:MySQLDNS:Server

Resource

Resource

HW:Web Server

User

Browser

Resource

SAP

P
ro

v
id

e
r

S
id

e

C
u

s
to

m
e

r

S
id

e

Resource

S
id

e

In
d

e
p

. Service Management Interface

SW:named

Resource

Customer

Web−Hosting Service

HW:DB Server

Figure 2.4: A Generic Web-Hosting Scenario Model

(SLA) is typically signed between customer and service provider to deter-
mine issues such as availability of services, service recovery time and maxi-
mum time for the service outage, to name just a few. Those terms must be
observed and honoured by the service provider during the service operation.

Scenario

To simplify the discussion, the details of an instance of a hosting setting are
given and discussed. Figure 2.4 illustrates a typical setting of such a service.

In this scenario, the customer operates a typical 3-tier web application
service. The service is provisioned by the service provider, who maintains
an amount of resources to sustain the required services. Those resources
include an Apache server as front-end to deliver the content over the hyper-
text transfer protocol (HTTP) and a database system which provides the
dynamic content according to the inputs from the user. In a typical 3-tier
web application architecture, there is usually an application server required
to deal with the business logic. To make the scenario readily comprehensi-
ble, it is assumed that the web application is integrated into the front-end.
Additionally, a Domain Name System (DNS) is also required to do the name
resolutions. The DNS and the database servers are also considered as the
sub-services which are required by the web application. In this scenario, it
is assumed that the sub-services are provided by the provider in the same
organisational domain, although it is also possible for a sub-service to be
offered by another provider across the organisational boundary.

The service provider supplies two different interfaces to the customer
and user, respectively. The SAP is the interface where a user submits his

27

2.2 Scenarios

requests to and receives the results from the web application, i.e. it is where
a user perceives the service. The user accesses the SAP by means of using
a client; in this case, the client is simply a computer with a web-browser
installed. Besides the SAP, a service interface is offered by the provider to
the customer, who requires access to the service functionalities. A service
interface could be as simple as a hotline telephone number to help desk or
as complicated as a multiple-page web form.

In order to get the current operational states of the service, a monitor-
ing system is usually required to fulfill this task. Meanwhile, the monitoring
system also provides information on the measurement of the QoS parame-
ters.

In the provider’s domain, a service manager has an overview of the ser-
vice and is responsible for the operation of the service offered. He has contact
with the service management interface and possesses the responsibilities to
coordinate the fulfillment of the service requests. In contrast to the ser-
vice manager role, an administrator is a member of technical personnel,
who is responsible for the operation and maintenance of resources such as a
Apache server, DNS server, etc. Those two roles need to work cooperatively
to maintain the services.

In the case of a service failure, for example, the desired web page could
not be delivered or the queries to database through the web front-end returns
database not accessible message. Those failures could be perceived by a user
and he usually contacts the operator of this service for further support. If
the perceived service failure is caused by the customer-written code, then the
customer is responsible for recovering the impacted service. On the other
hand, if the customer ascertains that he is not the cause of the failure, then
a service request is dispatched to the provider to determine the causes and
to recover the service. In the latter case, the fault management process is
activated if the registered fault is confirmed.

Typical Fault and Recovery Strategies

Table 2.2 shows potential faults that could impact the web-hosting scenario.
In addition to fault types, the table also shows the corresponding failure
semantics and possible recovery strategies that could be applied. Note that
all faults that are observed and considered are on the provider side. Faults
that are liable to have be made by customers or users are not the focus of
this discussion and therefore are not considered.

As examples, Table 2.2 lists some of the common faults to be seen in a
web-hosting scenario. In this table, the symptoms describe the failure ap-
pearances a customer or a user usually experience when service is disturbed
by faults. Faults could either be triggered by customer or user or be caused
by the service provider. After service failure is reported and registered, the
service provider needs to first determine if the cause of the reported failure

28

2.2 Scenarios

S
y
m

p
to

m
s

F
a
u

lt
C

a
u

se
F
a
il
u

re
S

e
-

m
a
n
ti

c
P

o
ss

ib
le

R
e
c
o
v
e
ry

S
tr

a
te

g
ie

s

W
eb

se
rv

er
st

o
p

s
re

sp
on

d
in

g
to

se
rv

ic
e

re
q
u

es
ts

S
er

ve
r

cr
a
sh

es
C

ra
sh

fa
il

u
re

U
si

n
g

fa
il

ov
er

si
te

fo
r

th
e

te
m

p
o-

ra
l

op
er

at
io

n
,

sw
it

ch
in

g
b

ac
k

to
p

ri
-

m
ar

y
si

te
on

ce
re

p
ai

re
d

T
h

e
re

sp
o
n

se
ti

m
e

to
g
et

re
-

su
lt

s
ex

ce
ed

s
th

e
a
gr

ee
d

ti
m

e
fr

a
m

e
d

u
ri

n
g

p
ea

k
ti

m
e

W
eb

a
n

d
d

a
ta

b
as

e
se

rv
er

ar
e

ov
er

lo
ad

ed
T

im
in

g
fa

il
u

re
R

ed
ir

ec
t

p
ar

ti
al

re
q
u

es
ts

to
lo

ad
b

al
an

ci
n

g
si

te

U
se

r’
s

u
p

d
at

es
to

d
a
ta

b
a
se

a
re

ig
n

o
re

d
D

at
a
b

as
e

ca
ch

in
g

ov
er

fl
ow

ed
O

m
is

si
on

R
ed

o/
u

n
d

o
lo

g
sh

ip
p

in
g

C
o
n

n
ec

ti
o
n

s
b

et
w

ee
n

w
eb

fr
o
n
t-

en
d

an
d

d
at

a
b

as
e

is
b

ro
ke

n

so
ft

w
a
re

b
u

g
s

in
ap

p
li
ca

ti
on

se
rv

er
,

w
h

ic
h

p
ro

v
id

es
fu

n
c-

ti
on

a
li

ti
es

su
ch

as
co

n
n

ec
ti

on
p

o
ol

in
g

an
d

se
ss

io
n

m
an

ag
e-

m
en

t

F
ai

l-
st

op
U

p
d

at
e

ap
p

li
ca

ti
on

se
rv

er
to

n
ew

ve
rs

io
n

C
u

st
o
m

er
co

u
ld

n
ot

in
st

al
l

n
ew

a
p

p
li

ca
ti

o
n

s
a
p

p
li

ca
ti

o
n

co
n
ta

in
er

n
ee

d
s

to
b

e
u

p
d

a
te

d
O

m
is

si
on

U
p

d
at

e
ap

p
li

ca
ti

on
co

n
ta

in
er

on
th

e
se

rv
er

T
ab

le
2.

2:
T

y
p

ic
al

F
a
u

lt
s

an
d

R
ec

ov
er

y
S

tr
at

eg
ie

s
fo

r
W

eb
-H

os
ti

n
g

S
ce

n
ar

io

29

2.2 Scenarios

is caused by faults on his side. In our scenario, we currently consider the
faults that are in provider’s domain.

After the responsibility has been determined, root causes of the service
failure (i.e. faults) need to be hunted down by technical personnel; Table
2.2 shows possible root causes of the enlisted service failures and their cor-
responding failure semantics. Root cause analysis is one of the essential
procedures involved in the fault management; the correctness of root cause
analysis directly influence the efficiency and success of the fault recovery.
Although root cause analysis is not the focus of this work, a wealth of work
complementary to this research is available on the research of root cause
analysis in IT service management [Han07, Sch08].

Fault recovery strategies provide potential treatments for particular faults.
There are admittedly many different recovery strategies available to treat
those faults other than the ones listed; we only list a subset of several com-
mon practices which are usually employed in daily operation.

Challenges

In order to efficiently and correctly recover the faults, there are a number of
challenges regarding fault recovery that need to be addressed in this scenario:

• Scale of recovery operations. In the scenario above, we merely de-
scribed a simplified instance of a typical web-hosting service. In the
operation of a real-world data centre, hundreds of such services are
hosted on interdependent resources in a large-scale manner. For ex-
ample, the Leibniz Supercomputing Centre (LRZ) is currently hosting
approximately 350 such services for diverse research institutions and
customers. Such services are run by under-numbered technical person-
nel such as administrators. Moreover, in such a complex IT environ-
ment, faults could impact any service instance in a random manner,
therefore multiple faults are common scenarios. Administrators are
constantly facing the challenges of dealing multiple faults.

• Efficiency of the discovery of recovery solutions. Faults, once they
have occurred, must be treated efficiently , this requires that recovery
solutions and recovery plans must be found in a timely manner. Fur-
thermore, recovery solutions and plans should be made in accordance
with policies and constraints on the resources.

• Prioritisation of recovery operations. Customers with different service
classes obviously should be treated with corresponding priority during
the recovery. This fact should be reflected and is especially impor-
tant during the planning of recovery operations, when multiple faults
happened concurrently.

30

2.2 Scenarios

• Coordination of recovery operations. The complexity of today’s net-
worked services requires that fault recovery operations involves dif-
ferent roles (e.g., service manager, database administrator, network
operators, etc.); therefore the operation must be coordinated. The
coordination of operations should be considered during the recovery
planning.

• Utilisation of recovery knowledge. Knowledge such as applicable re-
covery strategies for the particular fault situations and management
policies etc. are essential factors for successful recovery operations and
must be considered during the recovery planning phase. Unfortunately
such knowledge is scattered throughout the organisation in an often
dis-organized manner.

• Dependencies between underlying resources. Dependencies are gener-
ally difficult to capture and they are usually not well-documented.
A successful recovery operation requires a good understanding of un-
derlying dependencies between components which, in most cases, are
missing during the fault recovery. Non-understandings or even mis-
understandings of the dependencies aggravate the recovery process or
even unintentionally introduce new faults with the recovery.

2.2.2 Scenario 2: Fault Recovery in Grid Computing

Grid computing has been the focus of distributed and high-performance com-
puting research for many years. The primary goal of Grid computing services
is to provide an easy-to-access, on-demand computing platform for scientists
around the globe to solve large-scale, computation and data-intensive sci-
entific problems; these include the grand challenges in high-energy physics,
genomic and biological research, computation and simulation of fluid me-
chanics etc., to name just a few. The increasing computational and storage
requirements for solving such problems are pushing the traditional high-
performance computing platforms further to their limits, on the other hand,
the research communities require that more computing power and more stor-
age should be provided in both efficient and cost-effective ways to facilitate
computer-assisted problem-solving.

The idea of grid computing is to share computing power (such as CPU
cycles) and storages over geographically distributed, multi-institutional com-
puting infrastructures so as to provide a collaborative, shared problem-
solving platform for scientists. Meanwhile, the complexity of underlying
distributed infrastructures must be transparent to the users of such a plat-
form. The grid middleware conceals heterogeneities and geographical diver-
sities of infrastructures.

The collaborations of the different tasks are achieved by Virtual Organ-
isations (VOs), in which different communities of researchers (grid users)

31

2.2 Scenarios

Organisation COrganisation A Organisation B

Organisation A Organisation B Organisation COrganisation C

VO 1 VO 2

Virtual Organisation

Resource Level

Services

Figure 2.5: Overview on Grid Computing

across various research institutions with the same research purposes are as-
sembled into virtual groups. Researchers utilise grid computing services by
means of scientific workflows where different service components are com-
posed accordingly to achieve predefined goals. The details on the imple-
mentation of services are transparent to the users. The users apply the
submitting interfaces locally to submit their jobs to be processed.

Figure 2.5 shows an overview of Grid computing. At the bottom level,
computational resources are offered by real organisations such as data cen-
tres. The types of offered resources include hardware, such as computing
nodes, mass storage facilities, network components, and software, e.g. simu-
lation software or customised software components for special purposes (e.g.,
protein fold predications).

At service level, resources are aggregated to provide desired service en-
tities, e.g., simulation software needs to be installed on required servers,
corresponding computing nodes need to be added and network components
need to be provisioned in order to provide inter-connections. To facilitate
easy access, each service has a corresponding interface where it can be called
with parameters. The users of a service could be human or other services
if it is a part of a compounded service. Currently services are made avail-
able by grid middleware, which also takes care of issues such as security,
accounting, remote access and job scheduling, etc.

At VO level, institutions with same research interests are formulated
dynamically into virtual organisations. The lifecycle of a VO consists of
initialisation, operation, adaptation and dissolution. In a VO, members
agree to share of Grid services with each other.

Managing grid services is a daunting task. All aspects of classical man-
agement, including management of fault, configuration, accounting, perfor-

32

2.2 Scenarios

mance and security (FCAPS), need to be considered in order to keep the ser-
vices operational. Multiple levels of abstraction and the cross-institutional
infrastructure augment the difficulties of the effective management of grid
computing services. In this scenario we analyse the challenges and what is
necessary to be done for the fault recovery of grid services.

Scenario

Fault management is one of the most important research issues regard-
ing management of Grid services. Due to the hierarchical abstraction of
services and the distributiveness of underlying resources, Grid services are
more prone to failures than traditional computing services [ARSS05]. Al-
though Mean-Time-between-Failure values of individual components have
been constantly improved, a large number of participating components con-
nected through unreliable networks make it impossible to completely rule
out faults in a Grid [SG06]. Therefore faults in Grid should be accepted as
facts rather than exceptions.

Scientists as primary users of Grid systems rely on them to meet their
massive computational and data requirements. They need a reliable com-
puting environment to finish their complex scientific computation workflows.
It is crucial for them to get their computing jobs done reliably in a Grid en-
vironment. Once a fault unavoidably happens, it should be solved as quickly
as possible and, in the meantime, losses of results and data must be reduced
to minimum.

Table 2.3 shows several fault scenarios which are commonly observed
by operators and users. In this table, symptoms describe the appearances
of diverse faults that could be perceived by users. In most cases, they
realise that their jobs are in trouble by a significant delay in retrieving
the computing results or when their jobs just hang. Fault cause shows
possible root causes of the failure symptoms. Since Grid is such a complex
system, same fault symptoms could be caused by different root causes. It
is up to fault detection and root cause analysis processes to pinpoint the
right causes. Failure semantic maps the fault to the fault classes. Possible
recovery strategies describe general steps that could be taken to remedy
the fault so that the computation could be either resumed or started anew.
Note that these recommendations are given in very general and high-level
forms; these high-level descriptions still need to be resolved into sequences
of executable actions. Furthermore, different computing sites are guided by
management policies; these policies must be considered during the search
for specific recovery solutions.

33

2.2 Scenarios

S
y
m

p
to

m
s

F
a
u

lt
C

a
u

se
F
a
ilu

re
S

e
-

m
a
n
tic

P
o
ssib

le
R

e
c
o
v
e
ry

S
tra

te
g
ie

s

S
ign

ifi
can

t
d

elay
fo

r
u

ser
to

retrieve
jo

b
ou

tp
u

t
M

alfu
n

ction
in

g
of

R
esou

rce
B

roker
T

im
in

g
F

ailu
re

R
ep

lace
th

e
R

esou
rce

B
roker

an
d

re-
su

m
e

th
e

job
.

C
o
m

p
u

tin
g

elem
en

ts
p

erm
a
-

n
en

tly
w

a
itin

g
for

in
p

u
t

S
to

rage
elem

en
t

is
h

old
in

g
d

a
ta

n
ecessary

for
th

e
com

p
u

-
tation

O
m

ission
fail-

u
re

U
se

rep
licas

of
d

ata
if

availab
le.

J
o
b

co
m

p
letion

is
d

elay
ed

or
fails

b
eca

u
se

o
f

m
ism

a
tch

in
g

b
etw

een
jo

b
req

u
irem

en
ts

an
d

a
llo

ca
ted

resou
rces

In
fo

rm
ation

in
d

ex
is

failed
to

b
e

u
p

d
ated

on
tim

e
T

im
in

g
failu

re
U

p
d

ate
th

e
in

form
ation

in
d

ex
an

d
m

igrate
or

resu
b

m
it

job
s.

C
erta

in
com

p
u

tin
g

sites
ca

n
-

n
ot

ex
ch

an
ge

in
fo

rm
a
tio

n
N

etw
ork

con
n

ection
is

b
roken

b
etw

een
th

ose
tw

o
sites

C
rash

failu
re

S
w

itch
to

an
oth

er
con

n
ection

or
u

se
altern

ative
site.

D
u

rin
g

th
e

jo
b

p
ro

cessin
g
,

certain
site

is
n

o
lon

ger
re-

sp
o
n

d
in

g

H
a
rd

w
are

failu
re

ren
d
ers

site
u

n
u

sab
le

O
m

ission
fail-

u
re

M
igrate

p
art

of
job

s
to

oth
er

site,
roll

b
ack

to
th

e
m

ost
recen

t
ch

eck
-

p
oin

ts
if

p
ossib

le
to

red
u

ce
th

e
losses.

T
ab

le
2.3:

T
y
p

ical
F

au
lt

an
d

R
ecov

ery
for

G
rid

S
cen

ario

34

2.2 Scenarios

Challenges

To make Grid services more reliable while accepting the fact that faults are
unavoidable, researchers have to confront with many challenges, this section
discusses several important ones regarding fault recovery in Grid systems.

• Levels of abstraction augment the difficulties to recovery operations.
As shown in Figure 2.5 the operation of a Grid system is built on dif-
ferent abstraction levels; the vertical dependencies between hardware
resources and services need to be resolved during recovery operations.
In the meantime, horizontal dependencies in terms of workflows of
computational jobs and their underlying service components pose ex-
tra problems on recovery operations.

• Users of Grid services are mostly not computer experts; however, once
a fault happens in their job workflows, they are commonly exposed
to the gory details of failure information, which they can neither cor-
rectly interpret nor derive recovery solutions [MCBS03]. Users have
to communicate with operators or administrators in order to work out
correct solutions. Those processes unnecessarily prolong the recovery
time and postpone the completion of computation. On the other hand,
operators do not have special knowledge of the scientific workflows and
their corresponding requirements for components; therefore the com-
munication and coordination between users and operators during fault
recovery are arduous processes. Finding a way to support the coordi-
nation of different roles and bridge the knowledge gap between those
roles at the different abstraction levels during fault recovery amounts
to another challenge for researchers.

• Management policies/constraints of participating computing sites must
be considered during the recovery planning. Grid involves resources
expanded over different computing sites, which belong to various in-
stitutions; these participating institutions usually have policies which
guide the operation of resources, for example, a computing cluster or
storage facilities could be used as a part of Grid resources only during
a certain time of the day or the bandwidth of a network connection
may vary according to the management policies. Since fault recovery
in Grid context frequently requires job rescheduling and reallocation of
computing resources between different sites, those management poli-
cies must be observed during the planning of the recovery operation.
However, designing an applicable recovery solution plan while consid-
ering all applicable management policies would become a challenging
task as the number of applicable management policies across different
computing sites increases. These policies impose extra conditions on
the planning of fault recovery processes. While human are inefficient

35

2.2 Scenarios

at constraint-solving, it would be beneficial to have an integrated auto-
mated mechanism deal with these constraints during the fault recovery
planning.

• Recovery tasks need to be resolved into implementable actions. Even
if solutions to fault recovery in Grid are found, for example, using a
replica of the data or migrating computing jobs to other similar site,
they are usually high-level descriptions of the recovery strategies or
solution sketches. These solution sketches have to be further resolved
into executable recovery actions, which could be carried out either
manually or automatically. The concretisation processes demand high
expert knowledge and a deep understanding of the underlying systems
as well as middleware itself. To correctly derive an implementable
recovery plan is a great challenge faced by Grid operators as well as
users; a recent survey [MCBS03] on Grid dependability shows that
48% of survey participants have great difficulties implementing the
application-independent fault recovery actions. They simply do not
have a clue what steps to take to recover from faults, even if they are
provided with solution sketches.

• Heterogeneity of underlying resources poses a challenge on the recovery
knowledge. Grid infrastructure involves a large quantity of heteroge-
neous applications, middleware, network components etc. To find a
recovery solution in such a complex system, it is not reasonable to
expect a single operator or user of a Grid system to possess all of
the necessary in-depth knowledge on the underlying systems, let alone
the knowledge on the fault recovery. On the other hand, management
knowledge is distributed among different resources in different forms,
such as CMDB databases, management policy repositories and other
proprietary formats. To collect the desired knowledge, one needs to
not only query those resources manually but also deal with different
formats. The necessity of finding ways to unify the search and applica-
tion of management knowledge must be one of the primary objectives
of improving Grid management.

• Faults during the recovery need to be considered. The original recov-
ery plan must be adapted to the new state of the underlying system.
A Grid is a highly dynamic system; underlying resources constantly
change their states. A previously composed recovery plan may quickly
become outdated; therefore the recovery plan must be dynamically
adapted to the recent state of the underlying system. However, the
manual process of composing the recovery plan and reacting effectively
to the changing states is not adequate and, therefore, this process must
be automated.

36

2.2 Scenarios

Recent research on Grid is much more focused on the development of
middleware to provide basic functionalities rather than on providing means
to facilitate management of Grid. The scenario above is intended to show
the challenges regarding fault recovery, which is an essential facet of man-
agement of a Grid system. Having introduced problems and challenges re-
garding fault recovery, this dissertation endeavors to design an automated
approach to compose recovery plans in a Grid system. This approach is ex-
pected to assist users and operators to compose feasible recovery plans across
different abstraction levels of a Grid system based on formalised recovery
knowledge.

2.2.3 Visionary Solution and Requirement Analysis

In this section, a framework of the visionary solution to the identified re-
search challenges is proposed and briefly discussed. Based on this framework
and its functional components, we conduct the analysis process to derive the
system requirements for the framework.

2.2.4 A Framework-based Solution

As stated in Chapter 1, the main objective of this dissertation is to design a
framework with planning capabilities that acts as an integral part of a man-
agement system to assist fault recovery processes. To achieve that goal, we
need a framework that not only encapsulates the core capabilities of plan-
ning, but also considers the communication and information exchanges with
external management components. Figure 4.17 offers an overview of the
proposed framework and its interfaces to external management components.

The central part of this framework is the planning component, which
provides the main functionalities to compose and schedule recovery action
plans. An automated planning algorithm realises such functionalities by
selecting recovery procedures while observing constraints that are applicable
to the particular recovery activities. Scheduling of the recovery steps can be
done either as a part of the planning process or as the separate procedure
depending upon the particular planning algorithm under consideration.

The planning operation is based on information provided by several sup-
porting components: the knowledge base is a structured repository which
holds the recovery-relevant information like available actions and methods
which are both described by proper annotations. Recovery actions are
atomic steps that can be directly executed on the target system, for ex-
ample, restarting the network interface is an atomic action that could be
controlled by a script. Compared to recovery actions, recovery methods are
high-level constructs of fault recovery activities which may include proper
recovery actions or cascade with other methods. The recovery methods are
not directly executable and need to be further refined. The separation of

37

2.2 Scenarios

Discovery

Knowledge

Plan Evaluation

Automated

Execution Admins.

Human

Data Pre−Processing

Knowledge

Repository

Monitoring

Data
Management

Policy

Plan Execution

Planning

Figure 2.6: An Overview of the Planning Framework

recovery methods and recovery actions provides a flexible way to dynami-
cally compose recovery plans. On the other hand, the construct allows to
encode the best recovery practice, e.g., by properly composing the method
construct.

To populate the knowledge base with data, the component provides an
interface to external knowledge discovery components, which serves as a data
source for discovery and enrichment of recovery knowledge. It is worth not-
ing that the knowledge discovery itself is a highly complex and yet active
research area in computer science; approaches such as data-mining, machine-
learning and various reasoning methods [TLC+09] have been used to facil-
itate the knowledge discovery process. The planning component retrieves
the necessary data from the knowledge base in order to achieve the planning
objective.

To find applicable plans, the planning component needs to be sustained
with a set of service states, these include the current state of the observed
service and set of desired goal states to be expected after the recovery is
done. The current state of the observed services can be provided by exter-
nal monitoring facilities, which are available to the vast majority of man-
agement systems; therefore, the framework provides an interface to external
monitoring components. Additionally, as we discussed, a feasible recovery
plan should abide by and honour the management policies; these policies
can be used as constraints to control the plan compositions. The data pre-
processing component manipulates the data received from external compo-
nents and translates them into a format that can be applied by the planning

38

2.2 Scenarios

process.
Additionally the composed plans can be evaluated and checked by plan

evaluation for their correctness and validity. This procedure could be done
in multiple ways, ranging from a simple verification of the recovery met-
rics to applying model checking approaches [FL00, RRD04]. Depending on
the evaluation results, plans can be selected either by automated means
according to a set of metrics or simply by human administrators. Finally,
depending on whether the execution requires human involvement, recov-
ery plans are either handed over to an automated execution mechanism or
human operators for the actual implementations. The plan execution com-
ponent is responsible for this procedure; it could integrate workflow engines
to execute the designated recovery plan. The effect of each recovery step
will be observed by the monitoring system and fed back to the framework
to control the actual effectiveness of the plan. Figure 2.7 shows the inter-
actions between components and their corresponding method calls of the
framework in sequences diagram. More details on the design of framework
and rationals of such design will be discussed in Chapter 4.

39

P
la

n
 &

S
c
h

e
d

u
lin

g
M

o
n

it
o

ri
n

g

D
a

ta

K
n

o
w

le
d

g
e

D
is

c
o

v
e

ry

D
a

ta

P
re

p
ro

c
e

s
s
in

g
R

e
c
o

v
e

ry

P
o

lic
y

K
n

o
w

le
d

g
e

R
e

p
o

s
it
o

ry

P
la

n

E
x
e

c
u

ti
o

n

q
u
e
r
y
K
D
B
(
)

g
e
t
C
o
n
s
t
r
a
i
n
t
s
(
)

[
i
f

A
V
A
I
L

=

T
R
U
E
]

c
h
e
c
k
P
l
a
n
(
)

s
e
n
d
S
t
a
t
e
D
e
s
c
r
i
p
t
i
o
n
(
)

s
e
n
d
M
o
n
i
t
o
r
D
a
t
a
(
)

g
e
t
R
e
c
o
v
e
r
y
P
o
l
i
c
y
(
)

g
e
t
S
t
a
t
e
D
e
s
c
r
i
p
t
i
o
n
(
)

s
e
n
d
R
e
c
o
v
e
r
y
P
o
l
i
c
y
(
)

e
v
a
l
P
l
a
n
(
)

s
e
n
d
D
o
m
a
i
n
F
i
l
e
(
)

[
i
f

E
V
A
L

=

F
A
L
S
E
]

r
e
d
o
P
l
a
n
(
)

k
n
o
w
l
e
d
g
e
A
v
a
i
l
(
)

s
e
t
A
v
a
i
l
T
r
u
e
(
)

[
i
f

S
U
C
C
E
S
S

=

F
A
L
S
E
]

r
a
i
s
e
E
x
c
e
p
t
i
o
n
(
)

s
u
c
c
e
s
s
(
)

[
i
f

E
V
A
L

=

T
R
U
E
]

e
x
e
c
u
t
e
P
l
a
n
(
)

[
i
f

A
V
A
I
L

=

F
A
L
S
E
]

a
c
t
i
v
a
t
e
K
D
(
)

[
i
f

S
U
C
C
E
S
S

=

T
R
U
E
]

p
o
p
u
l
a
t
e
K
D
(
)

g
e
t
M
o
n
i
t
o
r
D
a
t
a
(
)

P
la

n

E
v
a

lu
a

ti
o

n

i
n
i
t
(
)

s
e
n
d
C
o
n
s
t
r
a
i
n
t
s
(
)

h
a
n
d
l
e
E
X
C
P
_
1
(
)

h
a
n
d
l
e
E
X
C
P
_
2
(
)

p
l
a
n
A
v
a
i
l
(
)

[
i
f

A
V
A
I
L

=

F
A
L
S
E
]

Figure 2.7: Interactions between Components of the Framework

40

2.2 Scenarios

2.2.5 Requirements Analysis

Having presented the scenarios and the sketch of the proposed framework,
we discuss in this section the specific requirements for this framework. The
purpose of the requirement analysis process is to further determine the func-
tional and non-functional characteristics of the framework and of its compris-
ing components in order to facilitate and to guide its further development.
The derived requirements are not only concerned with the framework as a
whole, but also focus on the essential capabilities of the core components
introduced in the previous section. Requirements are derived based on the
framework and its components.

Framework Requirements

General requirements illustrate properties that the framework as a whole
has to fulfill. They are described in the following:

F1: Generic Framework The framework should be applicable to address
the planning activities of generic IT services rather than being limited
to specific application scenarios. It should not be bound to specific
technologies and application domains as well.

F2: Scalability The framework should scale well. This means that the
target framework should be adaptable to the complex recovery situ-
ations and can produce feasible recovery plans as the operation en-
vironment becomes intricate. The framework should offer acceptable
performance characteristics, particularly in terms of time needed for
the plan composition.

F3: Usability The framework should be easy to use for its users such as
service operators. The intricate internal working principles should be
transparent to the user of this framework; this implies that no steep
learning process should be required in order to use it. Moreover, it
should provide a friendly user interface, where results of the planning
can be presented in a straightforward manner.

F4: Interoperability The framework is designed not as a stand-alone en-
tity which works solely on its own, but rather as an enhancement to
the current management system. Hence, it should possess the capa-
bility to interact with other management components which provide
complementary planning information and functionalities to the plan-
ning framework. For example, to gain the current state of a service;
it must not design an monitoring component if its own, since most of
the management systems are coupled with monitoring capability.

F5: Adaptability The framework should be easily adaptable to an exist-
ing management infrastructure in order to cooperate with them. This

41

2.2 Scenarios

requires that the framework provides well-defined interfaces to facili-
tate the interoperability with external components.

Planning and Scheduling Requirements

As the core of the framework, the planning component performs actual plan-
ning procedures and schedules the plan executions according to the con-
straints and conditions provided. To achieve these objectives, the following
requirements should be fulfilled by this component:

P1: Planning Capability The core function of the target framework is
the automated planning capability. Based on the recovery knowledge,
the planning function should be capable of fulfilling the following spe-
cific requirements:

P1.1: Automated Planning This requirement depicts the basic func-
tionality of the planning. Planning in this case is an informed
problem-solving process; the algorithm operates on the available
information and desired outcomes and tries to come up with one
or a set of solutions to achieve the desired planning objectives.

P1.2: Generic Planner The automated planner should be generic
and independent of the use cases. However, this does not rule out
the possibilities of situation-based optimisation of the planner to
achieve better performance.

P1.3: Efficiency of Planning The fault recovery plan should be
composed automatically in an efficient way. The efficiency in
this context means both timeliness and correctness of the plan-
ning results, i.e. the planning mechanism should find a feasible
plan in a short time which is in alignment with the constraints
and conditions posed on the recovery.

P1.4: Plan Optimisation Optimising plans in terms of time and
costs, e.g., some of the plan steps should be executed in parallel
in order to reduce the total recovery time. The planner should
integrate temporal information into the planning process so as to
be able to recognise such opportunities as parallelization.

P1.5: Plan Adaptability Changing plans adaptively to address the
dynamics of the underlying system. The planner should con-
stantly check the changing state of the system and adapt to the
changes.

P1.6: Exception Handling Handling exceptions during the plan-
ning. The planner operates on the a priori knowledge that is
available; thus it is possible that no proper recovery plan could

42

2.2 Scenarios

be found by the planning process. The planner should be capa-
ble of catching and handling such kinds of exceptions as noted in
Figure 2.7.

P1.7: Plan Granularity The composed plan should be fine-grained
to the level that is directly implementable either by means of
automation or with human assistance. All steps involved in the
composed plan should be atomic actions that could not be further
decomposed by the planner.

P1.8: Handling Different Levels of Recovery The planner should
be capable of supporting recovery planning of different abstrac-
tion levels. As shown in the previous scenarios, recovery of ser-
vices could be boiled down to recoveries on different levels, for ex-
ample, in the Grid scenario, a recovery at the workflow level has
vertical dependencies to the underlying services and resources;
the recovery plan should take such dependencies into considera-
tions.

P2: Scheduling Capability Complementary to the recovery planning, the
framework should be capable of scheduling for executions of the se-
lected actions. Scheduling is especially important when limited re-
sources concerning recovery are available, for example, if multiple users
are impacted by the service faults, obviously those users who have
higher service class should have a corresponding priority during the
recovery. Furthermore, if the recovery planning system has to process
multiple recovery requests, the requests queue should be scheduled as
well.

P3: Constraints Solving Capability Recovery activities are constrained
by factors such as time, financial costs, personnel, technical resources
etc. Those constraints have to be taken into consideration in order
to compose a feasible recovery plan, therefore, the constraint-solving
ability must be included in the core mechanisms of the targeted frame-
work.

P4: Policy Integration Capability This capability is directly related to
constraint-solving requirement of the target framework. Relevant man-
agement policies need to be translated into and represented as con-
straints so as to be processed during the recovery planning mecha-
nism. An information model regarding the management policy needs
to be established. Examples on the integration of those policies into
the recovery process have already been given in the above scenarios.

P5: Fault Coverage Capability As one of the core capabilities, the frame-
work should be capable of recovering the diagnosable faults. The cover-

43

2.2 Scenarios

age of faults is depending on the a priori recovery knowledge available
to the system.

P6: Handling Multiple Information Types Planning a recovery is ob-
viously an information-intensive task. To achieve a workable result,
the planning mechanism should be capable of integrating multiple in-
formation resources. Existing management information such as moni-
toring data, management policies and alike need to be handled by the
framework.

P7: Collaboration Capability To generate recovery plans, the planner
needs various inputs from different data sources as shown in Figure
4.17 and Figure 2.7; thus it should possess the capability to collaborate
and exchange information with those data resources.

Knowledge and Knowledge Repository Requirements

The following requirements describe properties that are related to the knowl-
edge and knowledge repository. Essentially the knowledge repository pro-
vides the planning and scheduling component with the information for com-
position and scheduling of recovery plans.

K1: Identifying and Classifying Recovery Knowledge The term Re-
covery knowledge is a very general description. To build a planning-
relevant recovery knowledge repository, we must firstly identify and
specify what recovery knowledge is, i.e. what could be considered as
recovery knowledge in the context of IT services? Those could be,
for example, recovery procedures that are commonly used or specific
actions applicable to a certain fault situation, etc. Additionally, we
have to classify such knowledge into different categories, since recovery
activities on different levels of service abstraction could be interpreted
differently, for example, a recovery strategy such as job migration on
the scientific workflow of the Grid computing scenario may be different
to that on the resource level of the Grid. The classification of such
recovery knowledge provides a way to organise and build relationships
between them.

K2: Recovery Knowledge Repository The purpose of the repository is
to provide the opportunity to persistently store the recovery knowledge
and to facilitate knowledge reuses. It serves as an indispensable facility
to enable the planning process. The term knowledge in this context
denotes actions and methods that have been previously identified and
are relevant to fault recovery for different services.

K3: Providing Structured Recovery Knowledge Recovery of IT ser-
vices may require the knowledge from different application domains,

44

2.2 Scenarios

e.g., recoveries of web server, middleware, back-end systems or han-
dling faulty scientific workflows. The persistently stored knowledge
should be properly organised to avoid an unstructured “knowledge
soup” situation, in which knowledge concerning different applications
is mixed up into a mess and hampers the efficiency of the planning
process.

K4: Interfacing with Knowledge Discovery Tools Although the knowl-
edge elicitation is not the focus of the current research, there should
be the possibility to access external knowledge discovery components.
The purpose of the external knowledge elicitation and knowledge dis-
covery is to enrich the recovery knowledge base, so that more fault
cases could be covered.

K5: Modelling of Recovery Knowledge The representation and usage
of the recovery knowledge is one of the keys to a successful recovery
planning. In order to facilitate the automated planning process, an in-
formation model which describes different types of recovery knowledge
and their characteristics should be devised. An information model of
recovery knowledge provides sharable, reusable and structured infor-
mation requirements on the prescriptions of recovery-related knowl-
edge.

K6: Encoding and Reusing Recovery Methods Methods for the fault
recovery should be encoded and reused in the fault recovery plan-
ning. Those methods should reflect the best practices and approaches
of recovering particular services. However, as stated in both scenar-
ios above, knowledge on recovery methods exist distributed around
or across organisations in an informal way, therefore, collecting and
eliciting such knowledge at the time of need is an arduous process.
Consequently, such inefficient knowledge management unnecessarily
prolongs the recovery period. To overcome this problem, recovery
methods need to be properly encoded so as to facilitate the reuse of
those procedures.

Data Pre-processing Requirements

The data pre-processing component is designed to translate and to format
the data from external components into the one that can be utilised as
input for the planning mechanism. It provides the planning and scheduling
component with the ability to gather information which is external to the
framework. Such information includes: current state of the faulty service
and management policies that is relevant to the recovery.

D1: Translating relevant Knowledge into Planning Format The tar-
geted framework should be capable of translating external information

45

2.2 Scenarios

into the format that could be applied by the planning operation. This
requirement is directly related to the requirement of the information
modelling, while the information model provided by the framework
should cover the modelling of external inputs from other systems.

D2: Representing the States of an impacted Service The framework
should provide ways to represent the states of the impacted service.
The state of components of the service should be properly described.
The state information is intended to be used to describe the initial
states, objective states as well as state transformation of the fault
recovery process.

D3: Representing the Recovery Policy as Constraints The composed
plans should abide by any constraint that may be applied to the re-
covery. Those constraints could be related to the metrics such as time,
costs and usage of resources. Such constraints are mostly expressed
by the management policies, thus the planning and scheduling mech-
anism should provide the capability to represent such policies in the
form of constraints, so that the planning and scheduling component
could integrate those constraints into the planning process.

Plan Evaluation Requirements

Correctness is a critical factor for recovery plans. According to the IEEE
Standard Glossary of Software Engineering Terminology [Boa90], correctness
is defined as a characteristic of a software system that is free from faults and
meets the specific requirements of the users so that their expectations of the
system could be fulfilled. In the context of fault recovery, the user’s expec-
tation is to recover the impacted services with the generated recovery plans
and thus the plans should be correct. To this end, the framework should
provide possibilities to verify and evaluate the correctness and feasibility
of the composed plans. The planning evaluation component is designed to
serve this purpose. The following requirements should be fulfilled:

E1: Performance Evaluation To ensure the optimal recovery time and
to minimise the MTTR factor, the generated plan should be checked
against its performance. For example, if the scheduled recovery plan is
optimised by means of identifying activities that could be overlapped
during the execution or if the performance characteristics of all in-
volved resources conform with the requirement of the recovery.

E2: Cost Evaluation A recovery activity in a real-world scenario is usu-
ally constrained by costs. The evaluation mechanism should provide
the opportunity to evaluate the total costs of the plan in order to check
if the automated generated plan conforms to the financial constraints
provided.

46

2.2 Scenarios

E3: Temporal Evaluation The time-span for the planned recovery activ-
ity should be verified as well. The planned recovery procedures should
comply with the temporal requirement of recovery, which is defined by
the SLA.

Workflow and Execution Requirements

Workflow is a natural way to express the procedure-based recovery plans.
For example, migrating and restarting a computing job to another node in
a Grid system (scenario 2) could be described in a workflow form. Addi-
tionally, the fact that workflow management systems are widely deployed
and used [AHA04] provides the targeted framework with the possibilities to
execute the composed plan. The following are requirements concerning the
workflow component of the framework.

W1: Execution Engine The execution engine should serve as an interface
between the recovery planning framework and the underlying system.
It implements the composed plan and actuates the target system with
the steps described in the plan according to the specific schedule de-
termined by the planner.

W2: Coordination of Execution Not all recovery steps could be auto-
mated and executed by machines. For some tasks, human interven-
tions are indispensable for a successful completion of the recovery jobs.
Thus, the execution mechanism should possess the capability to coor-
dinate those tasks that could not be automated with those that could
be executed without the human attendance.

W3: Compatibility to the existing Systems This component should be
compatible with the tools and applications that have already been
deployed in a management environment; therefore, generic interfaces
should be provided by the execution engine to pass information on the
recovery strategies to the underlying executing mechanism, when it is
provided.

W4: Control over Executions The framework should possess the capa-
bility to have control over the execution of the recovery plans. As
stated in requirements F5 and P1.5, the framework must be adaptive
to the changes of the underlying system or service. This implies that
it should have some basic controls over the workflow executions, such
as being able to halt the execution, restart or undo some of the specific
plan steps etc. This is required when, for example, an instant change
of the underlying system invalidates the current plan or, when an error
during the execution of a particular step requires a retry of that step.

47

2.3 Summary

2.3 Summary

In this chapter, the concepts related to IT services, fault and fault recovery
with their related terms as well as the terms for planning were first intro-
duced to rule out any ambiguities in the rest of the discussion. Then two
scenarios of IT services with different scales and purposes were presented to
show the necessities of an automated planning framework to assist human
administrators to compose a plan efficiently during the fault recovery pro-
cesses. In each of these scenarios, a general overview was provided to allow a
common understanding of the settings. Challenges and problems regarding
planning of fault recovery were discussed in detail for each scenario as mo-
tivations of this research. Based on the scenarios introduced, an automated
recovery planning framework was proposed as a solution and discussed as a
seminal introduction to the succeeding research. In order to shape and to
guide further research and development, requirement analysis was conducted
in order to drive and define the specific characteristics of the framework. Re-
quirement analysis was carried out based on the individual components as
well as the framework as a whole. They encapsulate six categories: gen-
eral requirements of the framework, planning and scheduling requirements,
knowledge and repository requirements, data pre-processing requirements,
plan evaluation requirements and workflow & execution requirements. The
next chapter is intended to give an overview of the state-of-the-art of auto-
mated planning technologies and their application in IT management. The
selected approaches will be evaluated against our requirements.

48

2.3 Summary

Requirements List

Category ID Requirement Details

Framework

F1 Genericity
F2 Scalability
F3 Usability
F4 Interoperability
F5 Adaptability

Planning & Scheduling

P1 Planning Capability
- P1.1 Automated Plan Composing
- P1.2 Generic Planner
- P1.3 Efficiency on Planning
- P1.4 Plan Optimisation
- P1.5 Plan Adaptability
- P1.6 Exception Handling
- P1.7 Plan Granularity
P2 Scheduling Capability
P3 Constraints Solving Capability
P4 Policy Integration Capability
P5 Fault Coverage Capability
P6 Handling Multiple Information Types
P7 Collaboration Capability

Knowledge & Repository

K1 Classifying and Identifying Recovery Knowl-
edge

K2 Recovery Knowledge Repository
K3 Providing Structured Recovery Knowledge
K4 Interfacing with Knowledge Discovery Com-

ponents
K5 Modelling of Recovery Knowledge
K6 Encoding and Reusing Recovery Methods

Data Pre-processing
D1 Translating Knowledge into Planning Format
D2 Service State Representation
D3 Policy to Constraints Representation

Evaluation
E1 Performance Evaluation
E2 Cost Evaluation
E3 Temporal Evaluation

Workflow & Execution
W1 Execution Engine
W2 Coordination of Execution Mechanism
W3 Compatibility
W4 Control over Executions

Table 2.4: An Overview on the Requirement Catalogue

49

50

3
Related Work

Contents

3.1 Fundamentals of Automated Planning 52

3.1.1 Planning Paradigms 54

3.1.2 Applications of Planning 63

3.2 State-of-the-Art: Planning Applications in IT
Management . 67

3.2.1 Configuration Management 68

3.2.2 Change Management 73

3.2.3 Fault Management 74

3.2.4 Grid Computing 77

3.3 Evaluations of Existing Approaches 79

3.4 Summary . 81

This chapter aims to provide an overview of the research endeavours
regarding the applications of automated planning techniques in the man-
agement of IT services and other engineering disciplines. The main purpose
of this chapter is to review and critically analyse the comparable approaches,
especially those which are related to IT management. Instead of narrowing
our views merely to the fault recovery aspect, we also investigate some of
the most important applications and research efforts related to planning,
which cover the other management areas such as configuration and change
management as well. Followed by the detailed discussion of the related re-
search, an evaluation of the mentioned approach is done accordingly. To
the best of our knowledge, a comprehensive framework-based solution to
solve the planning problem has been only marginally addressed in the re-
search of IT management, therefore a component-based evaluation approach
is considered to be more reasonable and fair under such circumstance. The

51

3.1 Fundamentals of Automated Planning

evaluations are carried out according to the requirements which were derived
in the previous chapter.

In order to make the discussions in this chapter more comprehensive, a
detailed investigation of the automated planning theory and different forms
of planning paradigms is given before the related approaches are investigated
and evaluated. To show the general applicabilities of the planning in the
real-world applications, we also shred some light on the applications that
are not directly related to the IT management. This chapter concludes with
the discussion on the drawbacks of current approaches and how the research
of this dissertation is going to endeavour towards improvements.

3.1 Fundamentals of Automated Planning

Since automated planning forms the cornerstone of the suggested frame-
work, it is indispensable to provide some background knowledge on this
technique first. Therefore, in this section we provide a formal introduction
to the automated planning theory and investigate some fundamental plan-
ning paradigms which embody the automated planning theory in different
ways.

The research on automated planning was brought up by the research of
multi-agents systems (MAS), in which agents are deployed in an environ-
ment to perform pre-defined tasks. Due to the dynamics of the environment,
agents must either adapt themselves to environmental changes (for example,
autonomous robot) or take actions to regulate the environment (frequently
used in control theory). The agents must make decisions themselves. These
decisions help the agents to complete their tasks and reach their objectives.
The decisions are frequently represented in the form of a sequence of ac-
tions, i.e. plans. To achieve this, the agents need to have the perception
of their environment in order to make effective plans. This perception is
frequently referred to as the environment model. The information necessary
for building up the environment model is supplied by agents’ sensors.

As previously stated, planning is a process of selecting and organising
actions to be taken under certain conditions to achieve designated objectives.
Automated planning is a study of such a process computationally. It is one
of the classical research fields of artificial intelligence (AI), which concerns
using well-established searching and reasoning techniques to generate plans
according to the current state of the underlying dynamic systems and the
pre-defined states.

Algorithmically, a planning problem in general has as input a set of
actions, predictive model of an underlying dynamic system and a set of pre-
defined goals. The output to a planning problem is one or more courses
of actions that fulfill the designated goal. A planner operates based on
the input and elaborates on a subset of actions, which transit the current

52

3.1 Fundamentals of Automated Planning

state of the system to the goal state. Advanced planners also schedules the
executions of the selected actions, which are guided by the set of control
rules.

Conceptually, the definition of a planning problem is similar to that of
the Kripke Structure [CGP99] and could be denoted as :

P = (Σ, s0, g)

where Σ is a representation of a state-transition system and s0 denotes
the current state or the initial state of the underlying dynamic system; g
represents the goal state. A state-transition system is an abstract model of
a planning system and is defined as a triple:

Σ = (S,A, γ)

where S is a set of states {s1, . . . , sn} and A = {a1, . . . , an} is a set
of actions to be chosen from. γ is a state-transition function, which takes
the current state sn as well as a selected action an as input and brings the
system to the next state. In order to assist the reasoning process in the
selection of actions, each action ai, i ∈ 1, . . . , n in the action set is supplied
with further descriptions:

aprei , aposti ⊆ S

The first notation aprei denotes the pre-conditions of this action, which
are conditions that have to be fulfilled before this action can be chosen.
The aposti describes the post-condition of the action, in other words, the
effect of the action. In some cases, a cost function c(ai, si) > 0 is also
needed to evaluate costs of the action ai associated with the state si. This
function is meaningful when more than one option is available for planner
to choose from. For example, the costs involved for recovering a web server
with restarting or with switching the server to a standby system are surely
different. The cost could be, for example, financial cost or time costs etc.,
according to the application scenarios.

A solution to a planning problem P is a sequence of actions:

(a1, . . . , ak), k ≤ n

which transits a system from the initial state s0 to the pre-defined goal
state. The state-transition function γ maps actions to the new state:

s1 = γ(s0, a1), . . . , sn = γ(sn−1, an)

.

Provided with the above information, a planning algorithm finds a plan
by searching in the space of possible states configurations. Different planning

53

3.1 Fundamentals of Automated Planning

algorithms utilise various methods to generate a plan. To illustrate the idea
of automated planning, Algorithm 1 shows the algorithmic description of a
very general and representative form of state-space-based planning, which
will be introduced in the following section on planning paradigms.

Algorithm 1: The General Planning Procedure [NGT04]

Input : O: a set of actions;
s0, g: initial & goal states.

Output: π: plan
1 s← s0;
2 π ← ∅;
3 while True do
4 if s satisfies g then
5 return π;
6 end
7 A← {a|a ∈ O&precond(a) true in s};
8 applicable ← A;
9 if applicable = ∅ then

10 return Failure;
11 end

12 end
13 Choose a ∈ applicable;
14 s← γ(s, a);
15 π ← π.a;

3.1.1 Planning Paradigms

Having been an important topic of research for decades, the automated
planning research community has developed and proposed different planners
and planning paradigms, ranging from those which could merely solve small-
scale “toy” problems to those which are applied to solve real-world problems
such as navigating unmanned vehicles and planning for military operations.
We enumerate some of the planning paradigms and their characteristics.

State-Space Planning

State-space planning is the most straightforward form of automated plan-
ning paradigm. This breed of planners are based on exploring the complete
search space. In this case, the search space is a subset of the state space,
which contains all possible states of the environment (world).

As input, it takes the description of a planning problem P, which includes
the initial state of the environment, the goal state and, most importantly,
the description of the transition system. The planner starts from the initial

54

3.1 Fundamentals of Automated Planning

state a0 and searches for the proper actions, whose pre-conditions are fulfilled
by the descriptions of the current state. The search continues until either
an solution, whose post-condition is equal to the goal state, is successfully
found or otherwise it exits with a failure. Figure 1 shows the details of
such a planning paradigm. An action ai is said to be applicable if the pre-
conditions of the action is a subset of the current state si, i.e. aprei ⊆ si. A
planning goal g is said to have been achieved with action ak, if apostk ⊆ sg.

One of the most important ingredients of state-space planning is the
searching process for the proper actions. There are different flavours imple-
mented for searching: forward-search starts by the initial states and works
towards the goal, whereas backward-search begins with the goal state and
works iteratively towards the initial state. Both search strategies produce
sub-goals during the process if, at a certain stage of operation, a sub-goal is
reached, which satisfies either the goal (by forward-search) or the initial state
(by backward-search), the algorithm stops and returns the current set of ac-
tion as solution. It has been proofed that state-space based approaches are
sound and complete [NGT04]. The algorithm selects non-deterministically
the next action as a candidate to be evaluated; however, this step could be
done deterministically as well, for example, searching approaches such as
A*, breadth/deep first or greedy search can all be applied.

An obvious drawback of state-space planning paradigm is its confined
scalability. When the complexity of the planning problems scales up, e.g.,
when the size of the searching space grows, the time/memory costs of this
approach become inadmissible, even if some optimisation methods have been
tried. The naive version of the state-space planning algorithm has the com-
plexity O(n3), where n is the length of the plan. Additionally, state-space
planning also suffers from other problems, such as the Sussman Anomaly
[Sus75] by solving some particular classes of planning problems. Finally,
the state-space planning approach can only elaborate on linear plans, but
plans are not always structured linearly [SC75]. Due to those reasons, the
state-space planning approach is only confined to solving limited class of
small size problems and has been hardly applied to real-world applications.
However, as one of the earliest efforts in automated planning research, this
approach builds a solid foundation for further research on other planning
paradigms.

Plan-Space Planning

Compared to the state-space planning approach, the plan-space planning
follows a different path towards plan composition. As its name suggests,
the search space of the plan-space planning consists of partial plans, which
are constructs involving multiple atomic action steps with specific causal
relationships between those steps. The planning process starts with a partial
plan and constantly refines this incomplete plan by adding new actions,

55

3.1 Fundamentals of Automated Planning

establishing new causal relationships between actions and applying ordering
constraints to the existing plan until a well-articulated and executable plan
is found. A partial plan π can be described as:

π = (A, �, B, L)

where A is a set of actions involved in the plan, � represents the ordering
of actions, B is a set of binding constraints and L denotes a set of causal
relation between actions.

Different to state-space planning, plan-space planning composes plans
by refining a partial plan until the pre-determined description of the goal
state is satisfied. The planning process involves four types of operations:

i.) Inserting actions into the partial plan for the plan’s refinement.

ii.) Establishing causal links between selected actions.

iii.) Imposing ordering constraints on the existing plan.

iv.) Binding variables and instantiating the plan.

Operationally, the planning process is proceeded by searching backwards
from the goal state. The initial partial plan consists of two symbolic actions:
ainit, agoal, where ainit only contains post-conditions corresponding to the
initial states and agoal has only pre-conditions which are equal to the goal
state. Unlike state-space planning, an action selected by the planner does
not have to fulfill all the pre-conditions of its successor (searching from
backwards); only partial fulfillment of the pre-conditions is required to make
the selection decision on actions. In this way, the non-linearity of the plan
structure could be covered and it allows the planning process to be conducted
in a distributed manner as well. Actions are repeatedly inserted into the
incomplete plan until the initial state (or the goal state, in the case of
a forward search) is reached. The causal links between actions are also
established during the planning process. Finally the plan is initiated as a
totally ordered set of executable actions.

An important issue to be considered is the conflicts between the pre-
conditions of the two selected actions that may result in an inconsistency of
the plan. In planning, such inconsistency is called threat, e.g., if two selected
actions have a causal relation ai

p−→ aj , where p is the post-condition of
ai and pre-condition of aj . Suppose there is an action ac, which has a
post-condition ¬p. We say that the action ac is a threat to the causal
link ai

p−→ aj if the ordering constraint ai � ac � aj is true. In other
words, the action ac eliminates the pre-condition of aj and makes this partial
plan inconsistent. Such inconsistency could be resolved by, for example,
rearranging the ordering constraint. All potential threats are checked and
resolved in the plan-space planning.

56

3.1 Fundamentals of Automated Planning

a k

a i

Planning

Direction

inita

a goal

Action

Post−Condition

Pre−Condition

Causal Link

Has

Ordering Constraints

Figure 3.1: A Simple Example of Plan-Space Planning

Figure 3.1 shows a simple instance of plan-space operations. A partial
plan π is said to be the solution to a planning problem, if and only if:

i.) Initial (goal) state is reached by the backward (forward) searching of
actions;

ii.) No threat is involved in the plan π:

iii.) Ordering constraints and variable binding constraints are consistent.

Plan-space planning has some obvious advantages over the traditional
state-space based approach: the property of working on partial plans im-
bues the planner with the capability to decompose a planning problem into
subproblems, through which parallelization could be applied to increase the
efficiency of the planning process. Thus, the solution plans do not need to
be strictly linear in their structures, which enables the planner to solve more
planning problem types.

The disadvantage of this sort of planner is that the partial plan refine-
ment process as well as the detection and resolutions of the threats are
computationally expensive operations. Without optimisation, the comput-
ing time would be a major influencing factor to the efficiency on the complete
planning operation.

Graph-based Planning

Both planning approaches introduced above are not efficient enough to solve
large-scale problems. They suffer from some common deficiencies: firstly,

57

3.1 Fundamentals of Automated Planning

both approaches are not scalable. As the problem size grows, the complexity
of finding a solution rapidly becomes inadmissible. Secondly, the branching
factor is a major problem which makes both approaches inefficient, since
every action, including irrelevant ones, whose pre-conditions are fulfilled by
the current state, will be tried, even if it may not finally lead to a viable
final solution. Finally it is very hard to apply heuristic optimisation to those
approaches without further ado.

To circumvent these problems, graph-based planning is proposed [BF97].
The idea of graph-based planning is to reduce the searching time by encod-
ing the planning problem, with its constraints explicitly embedded, in a
graph structure. The operations of graph-based planning consist of two
stages: plan graph construction and solution extraction. In the first stage, a
multiple-layered graph is built starting from the initial state of the planning
problem, where the state is expressed in propositional logic.

The layers are built in an interleaving manner with states and actions.
The even-numbered layers are states and odd-numbered layers contain ap-
plicable actions. The edges between layers connect pre-conditions and post-
conditions with corresponding actions. Starting from an initial state s0, the
graph is expanded by applying actions that are relevant to the current state.
The selected actions produce a new set of states which describe the expected
post-conditions after those actions are executed. During the construction
of the plan graph, it is of vital importance that the consistency within the
action layers must be checked to see if there is any conflict in the current
graph. A partial graph is inconsistent if one of its layers contains actions
that are mutually exclusive, i.e. a valid plan could not possibly contain both
of those actions. These mutually exclusive actions could be checked in two
ways by the algorithm: checking for action interference and checking for
competing needs, where interference means two actions are not independent
of each other and competing needs means both actions have pre-conditions
that are mutually exclusive. During the setup process of the plan graph,
old states are modified by deleting propositions or adding new propositions
from the current set of propositions.

Within each layer that contains state descriptions, a goal-check process
is performed to see if the current set of state descriptions contains the goal
state. If not, the graph will be further expanded, otherwise the graph con-
struction phase is ended with success and the plan extraction phase starts
to backtrack to the solution. The current state description scurrent satis-
fies the goal state sgoal if the propositional description of the goal state is
its true subset (sgoal ⊂ scurrent). Furthermore, the description of the cur-
rent state may contain a solution to the problem if there are no mutually
exclusive propositions appearing in this level. The solution extraction pro-
cedure starts with backtracking to actions that lead to the fulfillment of each
sub-goal and proceed iteratively until the initial state is reached.

58

3.1 Fundamentals of Automated Planning

L0 L1 L2 L3 L4 L5 L6

Plan Graph Construction

Plan Solution Extraction

state

goal state

actions

state unchanged

logical relations

Figure 3.2: Plan Graph Planning

Figure 3.2 illustrates the graph planning. In this figure, the circles repre-
sent the propositional description of the state and the boxes represent the ac-
tions. The solid-lines connect actions with their propositional pre-conditions
and corresponding post-conditions. The dashed-lines between some of the
propositional descriptions of the states illustrate that the propositions would
not be changed by the action, e.g., they remain consistent before and after
the execution of the actions. Experimental results [BWE+94] show that the
graph-based partial ordering planning approach achieves significant perfor-
mance gain over state-space or plan-space-based planners.

Hierarchical Task Network

The basic idea behind Hierarchical Task Network (HTN) [EHN94] planning
is the refinement of the planning tasks based on the decompositions of those
tasks at different hierarchical levels. In the definition of HTN planning, there
are three kinds of tasks: decomposable tasks, primitive tasks and goal tasks.
As the name suggests, the decomposable tasks are those tasks that could be
refined into more detailed levels and could not be directly executed. On the
other hand, primitive tasks are directly executable operations; they are also
called atomic operations. Finally, the goal tasks describe the desired final
states of the targeted systems; they are identical to planning objectives of
other planning paradigms.

Unlike the planners that have been discussed so far, the HTN plan-
ner introduces a new element called method into the planning procedures.

59

3.1 Fundamentals of Automated Planning

A method is a construct which contains the refinements of more specific
operations organised in a form of partial network. Operations could in-
clude atomic actions or other methods. The planning operations is an it-
erative process of decomposing high-level tasks into lower-level operations
until there are no more decomposable tasks. The planning process main-
tains a tree-like structure, where nodes are decomposable tasks and leaves
contain atomic operations. The main purpose of HTN-based planning is not
to achieve a defined goal, but rather to find out how to perform a given set
of atomic or decomposable tasks.

Despite the difference in how planning operations are performed, the
HTN-based planner has as input a similar definition to the planning problem
description P that we previously discussed, which includes a state transition
system Σ, the initial state description s0 and the planning objective g. A
method M for the decomposition of tasks is defined as follows:

M = (MID,Mtask,Mpre,Mnetwork)

where MID denotes a unique name of the methods which distinguishes
these methods from others. Mtask describes this decomposable task; Mpre

is a set of literals, which describes the pre-conditions of this tasks, and
Mnetwork contains a partial network that includes the sub-tasks of these
methods. Note that the sub-tasks could contain another set of decompos-
able tasks or primitive tasks, or both. A method is total-ordered if its
corresponding subtasks are total-ordered. Algorithm 2 gives a description
of the HTN-based planning paradigm. Note that during the task decom-
position process, attention should be placed on avoiding conflicts between
refined tasks and other existing tasks. With minor modifications to the
planning methods, constraints could also be applied to the HTN planning;
these constraints include ordering constraints, resource usage constraints,
time constraints and so forth. The capability to handle different types of
constraints greatly extends the applicability of the automated planner.

In practice, HTN-based planning is one of the most applied planning
paradigms for solving real-world planning problems. Several reasons [NGT04]
contribute to the popularity of HTN planning: first, the hierarchical struc-
ture of the plan structure resembles the natural way of humans solve prac-
tical problems. High-level tasks are resolved in a step-by-step manner into
the low-level implementation details. Second, HTN planning provides ways
to encode human knowledge into an automated process, which dramatically
enhances the qualities of solution plans. Third, the HTN-based planners are
domain-independent. Provided with different knowledge of the planning do-
mains, HTN algorithms could be used to solve planning problems regarding
those domains. Finally, the HTN-based planning paradigm is efficient, both
theoretical studies [BWE+94] and empirical experience [FL02] show that
such planners can achieve significant performance gains over other planners.

60

3.1 Fundamentals of Automated Planning

Algorithm 2: General HTN-Planning Paradigm

Input : P : definition of a planning problem;
T : the task network, where tprimitive, tdecomposable ∈ T ;
M : set of methods.

Output: π: a sequence of primitive tasks.
1 π ← ∅;
2 Choose t ∈ T, where tpost−condition satisfies sgoal, sgoal ∈ P ;
3 π = π.t;
4 while True do
5 if t ∈ π ∧ ∀t ∈ Tprimitive then
6 Resolve conflicts in π;
7 if Success then
8 return π;
9 else

10 return Failure;
11 end

12 end
13 Choose m ∈M ;
14 Decompose t with m;

15 end

Additionally, the HTN-based planners proved to be sound and complete
from an algorithmic perspective [NGT04, EHN94].

Other Planning Paradigms

The planning paradigms introduced in the previous section illustrate the
basic forms and ideas behind the automated planning approaches. As mul-
tifaceted as the planning problems are, a rich set of approaches from other
research perspectives have been proposed to solve planning problems. This
section purposes to present different ideas for solving planning problem with-
out delving too deeply into details.

Planning as Satisfiability. The idea behind planning as satisfiability is to
encode the planning problem, including descriptions of initial and goal
states, actions and state transformation functions, into propositional
formulas. The transformed planning problem can then be solved using
known algorithms that solves satisfiability problems, e.g., the Davis-
Putnam [DP60] procedures. The planning as satisfiability shows that
general reasoning techniques based on the first-order logic resolution
and theorem proving could be used as means to solve planning prob-
lems; however, the performance of such approaches could not compete

61

3.1 Fundamentals of Automated Planning

with search-based planners. Therefore, planning based on satisfiability
has not been widely applied to solve real-world problems.

Planning by Model Checking. Proposed by Cimatti et al. [CGGT97],
the idea of planning by model checking is to transform a planning
problem into a verification problem. Model checking is a formal way
to verify the system properties and system behaviours based on a
formalised state model, i.e. it checks whether a system would never
reach some undesired states or that it would always reach desired
states. Provided with the definition of a planning problem (encoded in
Kripke model), a model-checking-based planner produces the solution
by calculating whether the goal is true in the current model. One of
the advantages of such kinds of planner is that they allow the planning
domain to have a nondeterministic characters, which is reflected in
many planning problems. The obvious disadvantage is that if the
number of states increases, the model checking approach could be very
inefficient. To solve such a problem, optimisations such as applying
symbolic model checking [BCM+92] are proposed, which allow a more
concise, less redundant representation of states with symbols.

Planning as Constraint Solving. Constraint satisfaction problems (CSP)
have been the topic of computer science research for years. Many
powerful approaches have been developed to solve CSP. Given a set
of constraints with their domains and a set of variables with values
that they may take, an algorithm to solve CSP means finding values
for each of those variables, such that given constraints are satisfied.
There are several ways to apply constraint-solving to planning prob-
lems: first, the planning problem could be converted into a constraint
solving problem, e.g., encoding a given planning problem P into a
CSP P ′, a solution to the planning problem P exists if a solution to
the corresponding CSP P ′ is achievable by some well-known CSP al-
gorithms, such as AC4 [MH86]. However, such an approach is only
limited to certain classes of planning problem: the bounded planning
problems [NGT04], which are restricted to finding a plan with cer-
tain solutions with length at most k and the integer value k must be
provided as one of the parameters of a planning problem. The sec-
ond way to apply constraint-solving techniques to planning problems
is to use constraints to enhance the planning algorithms. For example,
the plan-space and graph-based planning approaches use precedence
constraints and consistency constraints to guarantee the correctness of
the solution. To solve the planning problem with limited or concurrent
resource and time conditions, constraint-solving techniques could be
applied or integrated as well to augment the original planning algo-
rithms [NFF+05].

62

3.1 Fundamentals of Automated Planning

Beyond all techniques introduced previously in this section, a rich set of
alternatives has been proposed to solve planning problems, such as planning
with Petri-Net reachability [NM02] and planning based on Markov Deci-
sion processes [KLC95, RPPCD08]. Each of these approaches has its pros
and cons concerning efficiencies, flexibilities and complexities. A planner
that works efficiently in one application domain may result in disaster in
another. An application-domain independent choice of planning paradigms
is therefore not rational without tailoring and customizing the planner to
serve the needs of specific application areas. Having surveyed the general
principle of planning with different paradigms, in the following section we
investigate the applications of different automated planning methods and
planning systems to solve real-world planning problems.

3.1.2 Applications of Planning

Automated planning methods have been successfully applied and integrated
in different application areas, including space exploration, industrial appli-
cations, military operations etc. In this section we provide an overview of the
application domains that are not directly related to IT management. The
purpose of this section is to show the applicability of automated planning in
a broader sense, on one hand and, on the other hand, the planning-related
problems in those areas resemble the problems that our research intends to
tackle; the commonalities and analogies of those applications can help us to
leverage our further research.

• Automated Planning in NASA Mars Mission Operations [BJMR05].
The Mars Exploration Rover (MER) is an unmanned vehicle developed
by NASA to carry out diverse scientific investigations on the surface of
Mars. The MER possesses the capability to maneuver automatically
on the ground and, equipped with a broad set of scientific equipment
such as hazard camera, spectrometer, microscopic imager and rock
abrasion tools, it is expected that the MER conducts different surface
investigation missions according to the given high-level objectives. Due
to many factors (such as the massive delay of signals with a round-trip
time around 15 - 20 minutes) that limit the communication between
ground control and the vehicle, it is impossible for ground control to
communicate with the MER in a real-time manner. On the other hand,
considering the complexity of MER’s operation plan composition and
unpredictability of the operation environment on Mars, it is impossible
for operators on Earth to make a detailed operations plan in real-time.
Consequently, the MER has to make decisions itself according to the
research objectives given in the form of high-level descriptions. High-
level mission objectives are provided regularly by the experts at ground
control. The MER has to observe constraints in terms of time, energy

63

3.1 Fundamentals of Automated Planning

costs and priorities of tasks during the plan composition phase.

To address this challenge, researchers at NASA employed a planning-
based framework called the Mixed Activity Plan Generator (MAP-
GEN) [NPV+05] to tackle the mission planning problem. The core of
this framework is a HTN-like planner, which refines the high-level goal
task into low-level implementation details. All decomposable tasks are
termed activities and are defined in a structure called the mission ac-
tivity dictionary. The core task for the planner is to decide whether a
task with its sub-tasks needs to be included in the current mission plan
and how conflicts of such mutually exclusive actions can be resolved.
To serve such purposes, a planner implementation called Extendable
Uniform Remote Operations Planning Architecture (EUROPA) [FJ03]
is used to reason on solutions as well as to represent the plan. The
unique feature of this planner is that it allows the information of solu-
tion time, usage of resources, mutual exclusion of actions and concur-
rency to be represented and integrated into the plan reasoning process.
Parameters for temporal conditions of activities are expressed as con-
straints of the solution. A constraint-solving algorithm is applied in
this planner to find the best solution while observing that no constraint
is breached during the process.

• Planning in Robotics. Planning techniques have been traditionally
applied in robotics to plan the path of the robot’s movement in either
a 2-dimensional or 3-dimensional world or to decide the movement of
the robotic arms to achieve certain objectives. Therefore, planning in
robotics is frequently referred to as motion planning. The planning
process of robotic research differentiates slightly from the concept we
have seen so far; the main difference is the description of the state
space, which a planning algorithm observes. In robotics, the state
space is a continuous space, in contrast to the state space we have dis-
cussed so far, which is discrete. The continuous planning space is usu-
ally represented by a set of mathematical equations to model the world,
in which a robot moves. The general approach for the motion plan-
ning involves operations to define the 2D or 3D geometry models and
transform these models. The results of the transformation forms the
configuration space, which is comparable to the state space of planning
in discrete state spaces. The dimensions of configuration spaces deter-
mine the freedom of the robot’s movement and the motion planning
in this stage could be regarded as searching in this high-dimensional
space for the planning solution. To that end, it is necessary to trans-
form the continuous model into a discrete model. There are multiple
ways to perform such kinds of operations, e.g., combinatorial motion
planning [Str00] and sampling-based motion planning [Lat91, BB05].
With a successful transformation, algorithms for discrete space could

64

3.1 Fundamentals of Automated Planning

be integrated into the motion planning approaches.

• Planning in Pervasive Computing. Pervasive computing, sometimes
known as ubiquitous computing, ambient intelligence or smart envi-
ronment, is a research area that targets enabling automated interac-
tion between diverse embedded computing elements and the users of
such systems. With assistance of such computing environments, users
should be capable of achieving their desired objective with less efforts.
To this end, it is required that the rich set of computing elements
should have the capability to be self-managing and automated. The
services in a pervasive computing environment usually comprise dif-
ferent sub-services offered by the computing elements and need to be
dynamically assembled as the objective of the users may be constantly
changing.

Automated planning techniques have been recently proposed [PBA+07]
and integrated [RC04, MU08] to achieve the dynamic composition of
complex services according to high-level goal descriptions from the
users. Rangananthan et al. [RC04] proposed a framework integrated
with the planning capability. It perceives the state of the operat-
ing environment, generating the goal states according to the abstract
objectives defined by users. The centrepiece of the framework is a
meta-planning procedure, which heavily depends on the planner called
BlackBox [KS85]. The BlackBox planner treats the planning problem
as satisfaction problems (SAT). The input for the planner is a set
of problem descriptions defined in the STRIPS format (Stanford Re-
search Institute Problem Solver) [FN71]. The problem description will
be converted into SAT format and solved as a SAT problem. The state
of each device and service is represented by one or more predicates.
Services and devices have interfaces through which their states could
be queried by the planning framework. The meta-planning procedure
gets the goal from users or other applications and generates a set of
final states which satisfy the goal. The best final state is chosen based
on the utility function. The BlackBox planner tries to find a solu-
tion plan according to the chosen final state. If no solution could be
found, it switches to alternative final states, otherwise the solution
is dispatched to the executing mechanism. The planing execution is
constantly monitored by the framework for a possible failure in the
execution. In case of failure, the action will either be tried or aborted.
Marquardt [MU08] follows a similar approach, different types of plan-
ners are tested within the simulation environment set up by authors,
including UCPOP [PW92], SGP [WAS98], BlackBox [KS85] and a self-
implemented planner called TOP. The purpose of this work is to test
and compare the performance of the given planner in the context of
smart environments with different sized planning problems. Patkos et

65

3.1 Fundamentals of Automated Planning

al. [PBA+07] discussed the applications of distributed AI for ambient
intelligence; the authors discussed the issue of collaborative problem-
solving with distributed planning and multi-agent coordination, which
is regarded as key to the planning operation across multiple domains.
A detailed survey and discussion on the state-of-the-art and open is-
sues are presented in their paper.

• Web Services Composition Planning. The W3C defines a web service
(WS) as the following [BHM+04]:

... a software system designed to support interoperable machine-
to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically
WSDL). Other systems interact with the Web service in a
manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialisation
in conjunction with other Web-related standards.

With the recent proliferations of WS and service-oriented architecture
(SOA), which is built on the foundation of WS, it is no longer possible
that a single WS could cover the intricate needs of users with complex
objectives. This leads to the fact that different WS need to cooper-
ate and interact with each other in order to fulfill the requirements
of users. To this end, it is required that complex web services must
be dynamically created and adapted to the needs of users [PTD+08].
As the services are constantly becoming more complicated, a manual
approach to composing a complex web service is no longer capable
of addressing the dynamically changing environment and, moreover,
such an approach cannot adapt to constantly changing service goals.
To address this issue, a wealth of proposals have been made recently
to apply AI-based planning techniques for the automated service com-
positions.

Carman et al. [CST03] formalised the web service composition prob-
lem as a planning problem. A semantic-type matching algorithm is
proposed in their paper. Together with an interleave search and ex-
ecution algorithm, the suggested approach allows a basic automated
service composition. Similar research was conducted by Vukovic et al.
[VR05], who discussed and applied the HTN-based planner to aug-
ment a context-aware application development process. Two different
planning algorithms - Simple Hierarchical Ordered Planner 2 (SHOP2)
and TLPlan - are evaluated and compared with regard to their abil-
ities in terms of the domain description, planning control structures
and capabilities to plan optimisation. Similarly Sirin et al. [SPW+04]
proposed an approach which combines the application of the OWL-
S [BHL+04] and the SHOP2 planner. They described an algorithm

66

3.2 State-of-the-Art: Planning Applications in IT Management

to translate an OWL-S based service description into the planning
domain for the SHOP2 planner. McDermott [McD02] suggested an
estimated-regression-based planning approach for the composition of
WS. While most of research on applying automated planning in WS
composition are built on the premise that the behaviours of web ser-
vices are deterministic and predicable, in most of cases, however, the
WS and underlying environment are constantly changing in the real-
world application scenarios, which limits the applicabilities of the clas-
sical planning approaches with a static model of WS and the under-
lying execution environment. To alleviate such problems, Doshi et al.
[DGAV05] proposed an approach based on Markov Decision Processes
(MDP) to model the planning environment as well as the behaviors of
WS with uncertainty.

A great deal of work has been done to apply different types of auto-
mated planning techniques to solve real-world problems; the research men-
tioned above is just a slice of application instances of those application
areas. With the rapid advances in the research on planning, this technique
has been constantly extending its application domains, for example, by as-
sisting the planning in military operations [BBB+04, AMB+08], supporting
manufacturing [Nau95, TK00, RDF05], planning for the emergency evacua-
tions [MAABN99, XSTK04] and gaming [YRB+04, AMP05], etc., to name
just a few. In the next section, we will concentrate on the planning in the
IT management domains.

3.2 State-of-the-Art: Planning Applications in IT
Management

It was only recently that the IT management research communities discov-
ered the powerful features of automated planning techniques to solve their
problems. Prior to that, there had been scant research dealing with either
the theoretical aspects of automated planning in IT management or prac-
tical management applications that utilise the features of planning. In this
section, we investigate closely some of the related research of automated
planning in IT management. Through the research of related work we con-
firm that, although being a promising technique, research regarding the
application of planning techniques in IT management is still in its infancy .
For the sake of completeness, we chose not to confine our investigation solely
to the planning in fault management, but also to include functional man-
agement areas such as configuration management and change management.
Additionally, the current status of planning in Grid computing is also in-
cluded in this investigation. For each reviewed work a detailed discussion is
included to analyse both the advantages and disadvantages of the approach.

67

3.2 State-of-the-Art: Planning Applications in IT Management

Workflow Engine

System

Planner

Controller
System

State

specs
Actions planplan

specs

Workflow
description

FEEDBACKFLOW

Figure 3.3: Architecture of FEEDBACKFLOW

Finally a summary of the evaluation against the requirements derived from
the previous section is presented to serve as an overview of the related work.

3.2.1 Configuration Management

IT services and their underlying systems need to be properly configured to
meet the objectives of business and individuals. Modern IT services usually
consist of a large amount of sub-systems and components, including software
and hardware. Manual configuration of such complex, multi-components
systems is not only a costly, but also an error-prone task without an intel-
ligent support mechanism. Automated planning in the context of config-
uration management could give operators flexibility to automatically find
proper configuration actions and synthesise configuration workflows. Plan-
ning system should have the ability to transform the high-level configuration
goal into a specific, executable workflow. During the planning process, it
should also consider applicable configuration policies in order to guarantee
that a solution conforms to the enterprise policies.

Andrzejak et al.[AA05] designed a prototypical framework called FEED-
BACKFLOW, which incorporates an automated planning component to
compose complex configuration tasks. As its name suggests, this frame-
work is based on the closed-loop control with feedbacks, including plan-
ning, execution, results validation and replanning. As Figure 3.3 shows,
the FEEDBACKFLOW framework consists of a planner, a controller and
a workflow engine. The controller is responsible for taking the declarative
action specifications from operators, which include atomic actions such as
an installation of certain types of software components or setting param-
eters to certain values. The description of system is based on the system
states, which are denoted with PDDL syntax. The controller triggers the

68

3.2 State-of-the-Art: Planning Applications in IT Management

consecutive steps based on aforementioned inputs. The planner is supplied
with plan specifications and it finds a configuration plan that is applica-
ble. The generated plan is translated by the controller into XML format
and forwarded to the workflow engine for execution. Each workflow has a
state manager unit, which keeps tracking the execution status of actions,
and a stop unit in case a non-recoverable failure takes place. A further unit
is designed to represent the selected atomic actions. Upon termination of
execution, the system manager unit updates the controller, which decides
either to repeat the planning cycle or to terminate the whole process.

The planner in this framework is based on the Model-Based Planner
(MBP) [BCP+01]. MBP synthesises plans in terms of symbolic model check-
ing, in which a propositional formula is used to represent a finite state
automaton. The advantage of using MBP is that it not only does plan
composition, but also includes plan validation and plan simulation, where
the generated plans are verified for their correctness according to the given
property and their executions could also be simulated on a given domain
model as well. Moreover, MBP can work with a partially observable plan-
ning domain, which means the status of domain is only available after the
execution of the selected actions during runtime. In terms of configuration
management, one could not expect the status of the planning domain to be
fully observable during the planning phase, so some sensing actions need to
be performed to detect the current state. Although MBP is claimed to be
a highly efficient planner, integration in FEEDBACKFLOW shows that it
suffers from a critical performance limit. The prototype of FEEDBACK-
FLOW only works well with small examples. Experiments have shown that
it takes an excessively long time to compute a complex plan, which makes
the practical value of the framework questionable. The major bottleneck
of FEEDBACKFLOW, we believe, lies in the planner, where both domain
model and plans are constructed with symbolic model checking; despite
the performance improvement against explicit model checking approach, it
is still a time-consuming approach. Other disadvantages of the suggested
approach are: it does not provide an information model to describe the
configuration actions, and representation is based on the simple PDDL de-
scriptions. The work is merely built on the premise that the configuration
actions and description of states are automatically available. Such assump-
tions seriously limit the feasibility of the approach in practice. Furthermore,
for the framework as a whole, no effort is made towards the integration of
the framework to the current management infrastructure. Since the publi-
cation of the work, no further research and development has been carried
out and the framework remains a prototypical design.

The work from Arshad et. al [NA07] called Planit specifically targets
on the optimal software deployment and reconfiguration issues. The moti-
vation behind Planit is to cope with intricate software configuration tasks,

69

3.2 State-of-the-Art: Planning Applications in IT Management

Goal Config

Artifact List

Storage
Persistent

Planit LPG Planner

System

Figure 3.4: Architecture view of Planit

where many inter-related factors such as time constraints and states of ap-
plications etc. need to be considered during the process. The conventional
configuration methods, which assume a static deployment environment and
static plan, are neither effective nor scalable. The proposed approach deals
with such dynamics based on the process called sense-plan-act. The archi-
tecture adopts a domain of reconfigurable systems, whose model consists of
three types of entity: component, connector and machine. Component is
a software entity, connector describes communication links and machine is
where the component and connector are located.

As Figure 3.4 shows, the architecture is much like FEEDBACKFLOW
introduced previously. As the mediator of the architecture, the Planit com-
ponent consists of two core sub-components: the Reconfiguration Manager
and the Problem Manager. Upon receipt of system events from sensor
agents, the reconfiguration manager delegates them to the Problem Man-
ager, where the current system state and goal state are derived. The goal
state is computed by checking the explicit and implicit configurations, which
denote a non-specific predicate of the system after plan is executed and infor-
mation of detailed described artifacts of the configuration has been gathered.
Together with the domain description file, the Planit component sends de-
rived initial and goal states to the external planner. Note that all input
files to the planner are written in a PDDL-conforming format. The Planit
relies on the LPG planner[GS02] for plan syntheses; it searches iteratively
for better plans, and plans are judged by metrics, such as time. The re-
configuration manager selects the best plan for execution on the system.
The persistent storage is used to store contingency plans, which cannot be
changed during the life of the system.

The LPG planner is based on the local search of planning graphs to
solve planning problems. It enjoys a reputation of having a fast planning
speed. The experimental results from Arshad et al. show that, with 60 con-
figuration items including servers and network devices, the best plan could
be found within 20 seconds. Furthermore, it considers the costs of actions

70

3.2 State-of-the-Art: Planning Applications in IT Management

during the planning process, which plays a central role in the syntheses of
the configuration plans. Moreover, the LPG planner could find multiple
plans with which same configuration objectives could be achieved with dif-
ferent costs. This feature provides multiple possibilities for administrators
to consider, in case the best plan fails, it could be decided whether to per-
form a re-plan process or to use alternative plans that are readily available.
However, Planit still suffers from several drawbacks: for example, plan ex-
ecution is done in a batch fashion; in the real-world scenario, system states
are changing constantly, and a plan made several minutes previously could
be invalid already; therefore, a plan and execution interleaving model would
be more realistic. Despite the fast speed shown by experimental results,
Planit still suffers from scalability problems. The performance bottleneck is
the planner; the experiments conducted by the authors limit the number of
configuration artifacts to 120. The external LPG planner is taken without
any application-specific optimisations, for example, searching space could
be reduced using constraints which are derived from management policies.
The produced plan is a sequence of change actions that is to be executed;
however, the aspect of the scheduling of the configuration activities is ig-
nored. Scheduling is important in the configuration management when, for
example, multiple configuration tasks need to be carried out with limited
resources. Additionally, the proposal from Arshad et al. does not suggest
how to integrate the framework into an existing management infrastructure.
Finally, there are no information models considering configuration items, ac-
tions etc. provided, the prototype of the framework utilises a very naive way
to model the configuration problems.

Srivastava et al. [SBS04] proposed a planning framework Planner4J [Sri04]
for the IBM Agent Building and Learning Environment (ABLE) [BSP+02].
The ABLE framework is one of the major undertakings made by IBM to
embody the Autonomic Computing [KC03, Kep05] concept. It provides a
lightweight Java agent framework together with a library of intelligent soft-
ware components and a set of development tools. The main purpose of the
framework is to facilitate building multi-agent autonomic systems based on
a set of toolkit and an agent platform. In this context, an agent is a software
entity that performs different tasks, ranging from dynamically configuring
applications from the library of software components regarding user require-
ments or automatically managing systems assigned to that agent. Planner4J
is a framework designed to build and to reuse the planning components in
applications. It provides a set of common interfaces that are essential for
solving planning problems, such as actions, domain and plan descriptions
as well as planning problem definitions. Planner4J is comprised of two ma-
jor parts: the Planner4J-Core module and Planner4J-Classical module. A
set of interfaces is defined in the core module, whereas the implementations
of those interfaces are contained in the classical module. The implementa-

71

3.2 State-of-the-Art: Planning Applications in IT Management

tion of the planner is based on the classical STRIPS-based [FN71] planner.
The implementation follows the principle of the state-space searching tech-
nique and could solve the planning problems formulated by PDDL1 (the
first version of the language PDDL). The advantage of separating planning
interfaces and implementations allows a developer to implement different
planners, whilst the interfaces to the users persist. Nevertheless, the type of
planners that could be implemented is limited to the planning by heuristic
searching. This limitation is caused by the static definitions of the inter-
faces. The Planner4J framework is prototypically applied to ABLE in order
to enable the planning capability of the agent-building environment.

To summarise, instead of concentrating on the planning and scheduling
itself, the Planner4J focuses more on how to facilitate the integration of the
planning techniques by providing a set of pre-defined interfaces pertaining to
the planning as well as data needed by planning operations. The functioning
of the framework is completely dependent on the implementation of the
interfaces as well as the system that is tightly coupled to the framework.
The framework is, in fact, a software layer, which couples the planning
techniques with the underlying target system. Therefore, it could not be
properly viewed as a full-qualified planning framework.

Recently Levanti et al. [LR09] proposed another planning-based configu-
ration and management of distributed systems. The work is based on the ap-
proach called Stream Processing Planning Language (SPPL) [RL05, RL06],
which is proposed as an extension to the classical PDDL planning formal-
ism by adding planning language constructs that allow multiple input and
output ports for the components. Instead of focusing on the activities or ac-
tions, the SPPL concentrates more on the planning of the data streams. In
SDDL, an action is an abstraction of a data processing components, which
have certain requirements on the input and output data; those requirements
are formulated as pre-condition and post-condition in SPPL terms. The
planning operations are carried out based on the reasoning on the state of
the data instead of the state of system.

Based on the SPPL formalism, the approach from Levanti et al. explic-
itly uses tags to express the configuration goals; those goals can be achieved
by planning the interactions of different components involved, i.e. users of
the planning system provide high-level management and configuration goals
with a set of selected tags representing features and a final state of the
desired system. According to those user inputs, the planning system finds
the action plan, which is represented in a directed Acyclic Graph (DAG)
form. One of the key concepts of this system is the reusable modules, which
consist of action modules and option modules. The action modules include
those executables that could change the state of the system, such as con-
figure, restart and connect of a system component. The option module
supplies values for the configurations such as the TCP-port number of a

72

3.2 State-of-the-Art: Planning Applications in IT Management

Target System

Task
Graph

Plan

Runtime
Dependency
Model

change

edit

edit

Control
Interface

Policy/SLA
requests

Library

Task Graph Builder

Planner & Scheduler

Deployment System

Task Graph

Figure 3.5: Overview of the CHAMPS Framework

service. The planning process completely depends on the state-search-based
heuristic from SPPL. The final solution is expressed in terms of workflow
and, consequently, the workflow will be handed over to the deployment sys-
tem for execution. The approach proposed by the authors does not provide
the capability to capture the dynamic of the underlying resources and in-
frastructure, e.g., the solution plan is composed in a offline fashion, which
could cause the inconsistency between the solutions and the current states
of the infrastructure. Additionally, it is not explained how the tags could
be prepared for the planning operations.

3.2.2 Change Management

IT systems need to be changed in order to accommodate the shifting needs
of users. Change activities include applying fixes, updating software and
upgrading hardware and so forth with goals to enhance the performance of
a target system. Change management is a process to manage those activ-
ities. Planning is one of the critical steps involved in change management
in a highly complex and inter-dependent IT environment. Challenges re-
garding automating change planning involve consideration of dependencies
of systems and components, incorporating policies in the planning process
and capturing/reusing the best practices or change receipts. An effective
change plan should minimize the time and cost of the change activities and,
in the same time, be non-intrusive by reducing the impact of changes related
incidents [Com07]. We look into several applications which address those
challenges with automated planning feature.

The Change Management with Planning and Scheduling (CHAMPS)
framework proposed by Keller et al. [KHW+04] undertakes a different ap-
proach to planning and scheduling of change activities. Figure 3.5 provides
an overview of the architecture of the CHAMPS framework. The core part of
the framework consists of two components: the Task Graph Builder (TGB)

73

3.2 State-of-the-Art: Planning Applications in IT Management

and the Planner and Scheduler (P&S). The main objective of TGB is to de-
termine the temporal and location constraints for the planning tasks. TGB
is also responsible to create reusable workflows from existing dependency
model. The workflows are expressed in the form of a task graph with partial
order, which transforms a system’s state from the current state to the next
workable state. The task graphs are meant to be reused as much as possible;
therefore, based on the previous deployment experience, a rough estimation
of the duration of the partial workflow is possible. This estimation is crucial
for the P&S component to make a feasible scheduled plan.

As its name suggests, the P&S component is responsible for the plan-
ning and scheduling of the plan. Other than the aforementioned planning
approaches, the P&S component of the CHAMPS system focuses on the op-
timisation rather than composition of the change plans. Based on the task
graphs and constraints provided by the TGB component, the P&S compo-
nent determines the order of the graphs and reasons to solve the constraints.
Another task of this component is to bind the abstract plans to the physical
resources according to financial and technical constraints. The final change
plan produced by the planner will be submitted to the deployment system
to perform the actual change operations.

The CHAMPS approach provides a rudimentary form of plan reuse in
terms of partial plans expressed in task graphs. Additionally, an interface
is provided to the human administrators to allow human interventions to
control the change planning operation throughout the whole process. The
planning concept presented in the research drifts away from the traditional
definition of the planning concept, in which it concentrates more on the
optimisation and binding of plans than searching and reasoning for the so-
lution. However, the CHAMPS framework is built on the premise that the
underlying targeting system is static and the execution of change plans is
an error-free process, which is unrealistic in real-world change operations.
Furthermore, no concept related to model change information and change
items is provided in the design.

3.2.3 Fault Management

Although the application of automated planning in fault management is
promising and the powerful features of planning techniques could relieve op-
erators from arduous planning tasks, our survey in this area surprisingly only
results in very few related works concerning applying planning techniques
to assist fault management.

Arshad et al. [Ars06a, Ars06b] investigated the fault recovery in dis-
tributed systems and proposed a planning-based approach for dealing with
fault recovery in such systems. The fault recovery model suggested by the
authors is based on the sense-plan-execute phases, which is a simplified ver-
sion of K-MAPE [KC03, GC03] model. In the sense phase, the states of the

74

3.2 State-of-the-Art: Planning Applications in IT Management

underlying system are detected by a monitoring process. The monitoring
process either listens to the heartbeat signal of the components or sends a
control package to the components. In the case that the monitoring pro-
cess detects failures in the components, the planning phase is initiated to
automatically find a plan that could recover the fault while minimising the
side-effects to other healthy components. Finally, in the execute phase, the
plan is implemented by assembling the related recovery actions in terms of
scripts.

The planning phase is the core part of the proposal. It comprises of
four stages: in the first stage, the dependency of the system is analysed
to determine the state of the components. The second stage is to find a
configuration so that the failed system is expected to work correctly again
with this configuration. The third stage targets at calculating a recovery
plan that could fulfill the proposed configurations. Finally, the abstract
plan is translated into a series of scripts which could be directly executed
on the system. The cornerstone of the planning phase is the planner that
automatically calculates a solution plan towards the goal configurations. To
this end, the authors integrated the LPG planner [GS02], which finds a
solution to planning problems based on the local search and graph analysis.
During the plan execution, the current system state is constantly monitored
[NA05]; in the case of failure during failure recovery, a new plan is computed
accordingly.

Whereas the approach suggested by the authors is certainly interesting,
there are obvious deficiencies to be observed. The monitoring component
proposed is an abstract device; there is no indication given in their work as to
how this component could be properly implemented in a real-world scenario.
The sense phase is designed to find failures in the system; however, failure
detection itself in large-scale systems is a hard problem for management.
The authors’ approach is merely based on the discussion of the small scenario
where failure detection is relatively trivial. The same argument applies to
the detection of dependency of the system; as the scale of the observed
systems grows, the graph-based approach to describe the dependency of
the system may not work. Like most other planning-based applications, the
planning problem is defined in a domain file described by PDDL, the issue of
how to transform the data from the monitoring data into a planning format
is only discussed marginally. For the planning phase, the author proposed to
use the LPG planner, which is an efficient planner; however, the strength and
features of the planner are not fully exploited by the approach, for example,
this planner allows the integration of a cost concept, which could be mapped
to time costs or monetary cost of recovery actions, which are essential to
the recovery plans. Additionally, the planning domain formalism is very
rudimentary; temporal and cost metrics that are important to a recovery
plan in a real-world scenario are completely missing. Directly related to that,

75

3.2 State-of-the-Art: Planning Applications in IT Management

no scheduling capability is provided in the suggested approach because the
planner is not capable of handling time constraints, which is essential for the
scheduling of the plan. Furthermore, the aspect regarding how to integrate
the proposed approach into the management infrastructure is also missing.

Gopisetty et al. [GBJ+08] designed an automated planning architecture
for the purpose of storage provisioning and disaster recovery. The archi-
tecture has two separated planners: a provisioning planner and a recovery
planner. The provisioning planner resolves the storage requirements from
users and finds a set of configurations and corresponding implementation
details, whereas the recovery planner is responsible for finding application-
level recovery actions in cases of service failure. As the recovery planner
is directly related to our research, in this section we will discuss the recov-
ery planner instead of investigating the whole architecture. The recovery
planner consists of several components collaborating together to fulfill the
functionality: the discovery engine is designed to gather static information
from the servers, storages, networks and so on that are associated with the
storage service. Furthermore, it collects data on the software applications
and their configuration from those associated devices that are involved in
the service. The knowledge base is a repository which persistently stores
the best recovery practices and suggestions from operators and the sys-
tem designer. The knowledge is in the form of a recipe template, which
describes best-practices such as configuration options and replication tech-
niques that could be applied in cases of storage failure. The match maker
component finds a set of replication technologies to fulfill the requirements
of recovery. The match maker module computes the solution based on the
pre-determined requirements or profiles from the administrators for the spe-
cific services. It takes such information as input and searches the knowledge
base for the qualified solutions. There are two types of searches involved in
the operations: searching in the solution templates for the popular strategies
that could match the requirements or searching in the technology category.
Finally, the search results are consolidated and combined as solutions by the
optimisation and orchestration modules.

Although automated planning technique is not mentioned directly, the
authors applied a searching-based method to find a set of suitable actions
according to the templates in the knowledge base, which mimics the clas-
sic planning operations. The concept of a knowledge base is, on one hand,
designed very close to real-world operations; on the other hand, it is a new
construct that helps system designers to automate the storage management
operations. The approach allows users to explicitly express their require-
ments on the recovery. However, this architecture is solely designed for the
purpose of provisioning and recovery of storage systems; this limits the gen-
erality of the architecture. Additionally, the approach does not provide any
scheduling possibilities for the recovery actions; in cases of multiple faults,

76

3.2 State-of-the-Art: Planning Applications in IT Management

where resources for recovery may be severely limited, such feature is required
in order to compose a feasible plan. The constraints are only partially con-
sidered by the plan optimiser. Although the concept of a knowledge base
is proposed there is no discussion on how to model the different knowledge
in such a repository, for example, best practises on recovery and technical
recipes.

3.2.4 Grid Computing

To cope with the intricate tasks of managing large-scale services based on
Grid computing infrastructures, one of the main challenges is to deal with
the increasing size and complexity of not only distributed system infrastruc-
ture, but also the applications that run on top of it. As we mentioned in the
Grid scenario, management of Grid infrastructure and applications today is
growing beyond the human capability to cope them; issues such as efficiently
composing the workflows for the scientific applications, addressing the dy-
namics of the underlying systems in the runtime as well as tackling the faults
in computation jobs and infrastructure are all need to be addressed in the
further research of Grid computing. Andrzejak et al. [ARSS05, AMF+08]
identified and suggested that Grid need to be more adaptable and autonomic
so as to address the dynamics in both infrastructure and applications. The
authors proposed automated planning as one of the feasible ways to assist
human operators and users to deal with the intricate planning and decision
making process of Grid management.

Blythe et al. discussed the possible role of automated planning in Grid
computing [BDG+03] and showed how the abstract scientific workflows are
mapped onto the Grid infrastructure [DBGCK03]. They further proposed
a knowledge-based approach to capture management knowledge and select
computing resources and applications. The approach is based on the heuris-
tic search and the purpose is to assist scientists to compose efficient work-
flows for data processing in the Grid environment [BDGK03]. In this series
of work, the authors identified and mapped the scientific workflow composi-
tion problem in a Grid computing environment as the planning problem.
The goal is to automate the intricate workflow composition procedures,
which usually require knowledge from diverse areas, as much as possible
and to relieve the burden and excessive knowledge requirements for the
users of the system while the quality of the workflow is still guaranteed.
The defined goals are end-data products specified by the user, who commu-
nicates with the planning system with a set of application-level descriptions
of the desired final data-product. Based on the user inputs, the applied
planning mechanism finds a feasible data processing workflows regarding
criteria such as performance, reliability and resource usage. The knowledge
base is a component that contains a set of operators, which are constructs
that represent application elements that process the input data and pro-

77

3.2 State-of-the-Art: Planning Applications in IT Management

duce data-products. The pre-conditions of the operators express the data
dependency of that component and the post-conditions are the descriptions
of the resulted data. The operators could also contain other relevant infor-
mation as well, for example, the requirements for the physical resources that
run that particular element. The description is formulated in a declarative
language similar to PDDL. The planning procedure is the consumer of the
knowledge and user descriptions described previously. The search process
for the solution plan involves local heuristics and exhaustive search. The
local heuristics is responsible for searching recursively for the steps to fulfill
sub-goals that are generated locally as part of the planning objectives. After
a step is chosen locally, a backtracking procedure is initiated by means of
the exhaustive search to check if the current plan is still feasible with regard
to the current choice. The control rule is applied to represents the local
heuristics explicitly in the planner. This planning techniques is based on
the PRODIGY Planning Architecture from Veloso et al. [VCP+95].

The approach from Blythe et al. has been modified and integrated into
the Grid infrastructure [DKM+02] for the Laser Interferometer Gravitational-
Wave Observatory (LIGO) project [AAD+92] at the California Institute of
Technology. The goal of the LIGO project is to observe the gravitational
wave, which was predicated by Einstein’s theory of relativity. The integrated
AI planner called Pegasus [GDB+04, GRD+07] is implemented based on
earlier work by Blythe et al. to help scientists compose high-quality Grid
job workflows to process massive data produced of the experiments. The
concept of planning knowledge base is embodied as a pervasive knowledge
base in the planning system applied to the LIGO project, which contains
information such as policy, resource index, declarative knowledge on appli-
cations and components in the Grid infrastructures. Upon a user’s request,
the Pegasus systems builds a goal and current initial states, which it passes
to the planner as input. The integrated planner accordingly finds a plan.
Once the solution is found, the plan is transformed into a directed acyclic
graph (DAG) for the execution sub-system of the middleware.

Several deficiencies could be identified in the proposed approach: first, it
does not support the scheduling of the solution; temporal constraints are not
considered in the model. Second, the approach is built on the premise that
the data-processing on the components never fails, which is a relatively un-
realistic assumption, since a Grid infrastructure comprises a large quantity
of software and hardware components as well as inter-connections, which
increases the risk of failure during its operation. In cases of failure, the
Pegasus approach does not provide mechanisms to perform re-planning and
recovery from the current failure. Third, the policies pertaining to planning
tasks are not incorporated in the planning phases, for example, the policy
regarding virtual organisation that authorises the use of a certain set of re-
sources. Finally, plan reuse is not supported by the suggested approach.

78

3.3 Evaluations of Existing Approaches

To build a plan based on the reusable partial plan is a viable approach to
increase the efficiency of the planning process, since the planner does not
have to build a solution from scratch.

3.3 Evaluations of Existing Approaches

In this section, we present an overview of a comprehensive evaluation of the
related work reviewed in the previous part. The evaluation is conducted
according to the requirements we derived in Chapter 2 and is classified
into several categories. Fulfillment of the requirements are represented by
different symbols in Table 3.1 (on page 82), respectively. The symbols in
Table 3.1 carry the following semantics:

- : the issue is addressed and corresponding discussions are provided
in the reviewed work. The solution provided adequately fulfills the
given requirement;

- G#: the issue is addressed marginally, no in-depth discussion is evident
or perceivable in the reviewed work or no suggestions for the solution
is put forward to address the raised question;

- #: the issue is not discussed at all. Even if the criteria are directly
related to the particular related work, in this case, no data or discus-
sion addressing those criteria are provided in the work available for
this review.

- n/a: not applicable, this symbol denotes those requirements that are
not relevant to the particular related work.

Note that, although we covered a wide range of research work in differ-
ent management areas, the requirements are nevertheless generic enough to
represent the common sine qua non to a framework with planning capability
in IT management.

Having reviewed the state-of-the-art of the applications that feature au-
tomated planning techniques, we are now eligible to draw the following con-
clusions and to sketch a landscape of this particular research:

• Our review shows that AI-based planning is a promising field that is
yet to be explored by the IT management research community. Since
planning in general is an integral part of almost every management
discipline, the planning techniques could solve many types of man-
agement problems. On the other hand, however powerful the planning
techniques may be, they cannot replace human administrators in man-
agement operations, but they can be considered as a viable method
to assist and augment the decision process in operations. Currently,

79

3.3 Evaluations of Existing Approaches

the application of AI-based planning in management area is concen-
trated more on configuration management and change management.
Although there is potential, planning in fault management, especially
fault recovery, has not been sufficiently represented and addressed in
the current research landscape. This is exactly the gap that this dis-
sertation is trying to bridge.

• Scheduling of a composed plan is often overlooked by most approaches,
although a plan schedule is an essential part of planning. Frequently,
planning activities are stopped when a plan is found; the question of
when each step of the plan can be operated is often ignored. Fur-
thermore, since the reviewed approaches concentrate on the planning
structure that is only sequential, the opportunities for parallel exe-
cutions of certain parts of the plan, which could lead to a shorter
execution time, are not fully explored. This directly leads to the fact,
that most of solution plans are not necessarily optimised.

• Besides very few exceptions, the most suggested planning systems are
designed as stand-alone approaches which are isolated from the rest of
the available management components. The issues of integration and
collaboration with other management sub-systems are rarely addressed
in the reviewed approaches. A planning system could be more useful
and practical if it could work with existing management components in
a cooperative manner, which could lead to several advantages: on one
hand, the available system could provide planners with information
necessary for the planning process; on the other hand, the planning
results could be directly forwarded to the sub-systems that are capable
of handling the planning solutions, for instance, implementation of the
solution plan by the workflow execution system.

• The most suggested approaches are built on static world models, that
means, it takes the initial states of the target system as input of the
planner, and calculates the solution based on that snapshot of the
underlying system. This ignores the fact that the states of the dynamic
systems are constantly evolving; such a dynamic must be considered
during the planning process in order to find consistent solutions.

• Almost all approaches we have reviewed so far use some types of au-
tomated planners as the core techniques to solve planning problems.
However, the planners are used as they are; they are not tuned or
optimised for the purpose of specific applications, even if a rich set
of opportunities is available. Here the optimisation does not imply
violating the generality of planner, but simply means to increase the
efficiency of the planner. In other cases, the powerful features of the

80

3.4 Summary

planners are not fully exploited, even if they have potentials to perform
better.

• The knowledge base for planning operation is frequently regarded as
a sort of abstract component that is similar to an all-knowing oracle.
Given the importance of this component, most of the reviewed work
unfortunately failed to explicitly address the knowledge base. This in-
cludes what type of knowledge is necessary for planning and how such
knowledge could be represented and stored. An information model for
such knowledge is still missing. For the planning process, the actions,
abstract control rules, constraints etc. are mostly expressed in PDDL
form, which is developed for experts who have knowledge of automated
planning and AI. However, we cannot expect that the actual users of
the planning system have the capability to understand such formula-
tions, and this fact could prevent the practical use of such systems.
Therefore, a more approachable way to model the planning knowledge
is desired, such that the complexity of such knowledge formulation
could be hidden from the users.

3.4 Summary

This chapter provided reviews of the related research work. Given the im-
portance of planning, this chapter began with a detailed overview of the
principles of automated planning. We explained the planning theory as
well as its different paradigms. In addition to the theoretical discussion,
a broad range of planning applications was presented, including robotics,
space exploration, pervasive computing, web-service composition, planning
of military operations and emergency evacuations. Although such work is
not directly related to ours, nevertheless, the problems that the listed ap-
proaches tackle reveal analogies to the problem that we are investigating;
therefore, they could be regarded as useful references. A more detailed re-
view was given concerning the current status of the applications of the plan-
ning techniques in IT management. The review was classified according to
the functional areas of management, including change management, config-
uration management, fault management. The planning in Grid computing
is also included. Finally a comparison was given based on the requirement
catalogue derived in the previous chapter. Although the catalogue is derived
based on the fault recovery planning, the planning problem in IT manage-
ment shares some commonalities in nature. Based on the comparison, we
drew conclusions regarding the current state of research on applications of
automated planning in IT management.

81

C
a
teg

o
ry

ID
R

eq
u

irem
en

ts
F

eed
b
a
ck

fl
o
w

P
la

n
it

P
la

n
n

er4
J

S
P

P
L

C
H

A
M

P
S

A
rsh

a
d
a

G
o
p

isetty
b

P
eg

a
su

s

F
ra

m
ew

o
rk

F
1

G
en

eric
F

ra
m

ew
o
rk

#
#

G#

#
#

F
2

S
ca

la
b

ility
#

#
G#

G#

#
#

G#
F

3
U

sa
b

ility
G#

#

G#

#

F

4
In

tero
p

era
b

ility
G#

G#
G#

#
G#

#

F

5
A

d
a
p

ta
b

ility
#

G#

#

#
#

P
la

n
n

in
g

&
S

ch
ed

u
lin

g

P
1

P
la

n
n

in
g

C
a
p

a
b

ility
-

P
1
.1

A
u

to
m

a
ted

P
la

n
n

in
g

#

G#

-
P

1
.2

G
en

eric
P

la
n

n
er

G#
G#

#

#

#

-
P

1
.3

E
ffi

cien
cy

o
n

P
la

n
n

in
g

#
G#

#

G#
#

n
/
a

#
-

P
1
.4

P
la

n
O

p
tim

isa
tio

n
#

#
#

#
#

#

#
-

P
1
.5

D
y
n

a
m

ic
A

d
a
p

ta
b

ility
G#

#

#
#

#
#

#
-

P
1
.6

E
x
cep

tio
n

H
a
n

d
lin

g
#

#

#
#

#

#
-

P
1
.7

P
la

n
G

ra
n
u

la
rity

G#
#

-
P

1
.8

H
a
n

d
le

d
iff

eren
t

lev
els

o
f

R
eco

v
ery

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

#
#

n
/
a

P
2

S
ch

ed
u

lin
g

C
a
p

a
b

ility
G#

#
#

#
G#

#
#

#
P

3
C

o
n

stra
in

ts
S

o
lv

in
g

G#
#

#
#

G#
#

#
#

P
4

P
o
licy

In
teg

ra
tio

n
#

#

#
G#

#
#

#
P

5
F

a
u

lt
C

o
v
era

g
e

n
/
a

n
/
a

n
/
a

n
/
a

n
/
a

#
#

n
/
a

P
6

H
a
n

d
le

M
u

ltip
le

In
fo

rm
a
tio

n
G#

#
#

G#

#

P

7
C

o
lla

b
o
ra

tio
n

G#
#

G#
#

#

K
n

o
w

led
g
e

R
ep

o
sito

ry

K
1

C
la

ssify
in

g
P

la
n

n
in

g
K

n
o
w

led
g
e

G#
G#

#

#

K
2

K
n

o
w

led
g
e

R
ep

o
sito

ry
#

G#

#

#

G#
K

3
S

tru
ctu

red
P

la
n

n
in

g
K

n
o
w

led
g
e

G#
#

G#

G#
G#

G#
#

K
4

C
o
o
p

era
tin

g
w

ith
K

n
o
w

led
g
e

D
isco

v
ery

#
#

#
#

#
#

G#
#

K
5

M
o
d

ellin
g

o
f

P
la

n
n

in
g

K
n

o
w

led
g
e

G#
G#

G#

G#
G#

#

K
6

E
n

co
d

in
g

&
R

eu
sin

g
P

la
n

n
in

g
M

eth
o
d

s

#

#

#

K
n

o
w

led
g
e

P
ro

cessin
g

D
1

T
ra

n
sla

tin
g

P
la

n
n

in
g

K
n

o
w

led
g
e

#

G#
#

#
#

#

D
2

S
ta

te
R

ep
resen

ta
tio

n
G#

G#
G#

#
#

G#
#

#
D

3
P

o
licy

R
ep

resen
ta

tio
n

#
#

G#
#

#

#

P
la

n
E

v
a
lu

a
tio

n E
1

P
erfo

rm
a
n

ce
E

v
a
lu

a
tio

n
#

G#

#
#

G#

#
E

2
C

o
st

E
v
a
lu

a
tio

n
#

#

G#
#

#

#
E

3
T

em
p

o
ra

l
E

v
a
lu

a
tio

n
#

G#
#

G#
#

#
#

#

W
o
rk

fl
o
w

E
x
ecu

tio
n

W
1

E
x
ecu

tio
n

E
n

g
in

e

G#

#

W

2
C

o
o
rd

in
a
tio

n
o
f

E
x
ecu

tio
n

G#

#
#

#

#

W
3

C
o
m

p
a
tib

ility
#

#
G#

#
G#

#

W

4
C

o
n
tro

l
o
v
er

E
x
ecu

tio
n

#

#
#

#
G#

#
#

T
ab

le
3.1:

E
valu

ation
T

ab
le

of
R

elated
W

ork

a[N
A

0
5
,

A
rs0

6
a
]

b[G
B

J
+

0
8
]

82

4
A Conceptual Model of the Recovery Planning

Framework

Contents

4.1 Fault Recovery as a Planning Problem 85

4.1.1 Formalising Service Fault Recovery Problems . . . 85

4.1.2 A General Planning Model 89

4.1.3 Problem Reduction 93

4.2 Recovery Knowledge 99

4.2.1 Specifying Recovery Knowledge 103

4.2.2 A Language for Recovery Knowledge 106

4.2.3 Translation to a Planning Language 115

4.3 Recovery Planning Algorithm 136

4.3.1 HTN as Planning Paradigm 137

4.3.2 Fundamental Planning Algorithm Design 143

4.3.3 Assured Properties of the Algorithm 149

4.3.4 Augmentations for IT Recovery Planning 152

4.4 Recovery Planning Framework 166

4.4.1 Overview of the Framework 166

4.4.2 Planning Component 169

4.4.3 Data Processing Component 174

4.4.4 Knowledge Repository 182

4.4.5 Planning System Interfaces 184

4.5 Summary . 190

As a key part of this dissertation, this chapter begins with a discussion
of the transformation of an IT service recovery problem into a general plan-
ning problem. Such transformation is also referred to as problem reduction.

83

CHAPTER 4. A Conceptual Model of the Recovery Planning Framework

Problem A Problem A’

Reduction

Solves Solves

Technique

Solution

Figure 4.1: Problem Reduction

If a problem class A is reducible to another problem class A′; it reveals that
two problem classes are essentially equivalent with regard to the complexity
of computing solutions. The reducibility also implies that the solutions of
A′ could provide instances of solutions to A. The purpose of such transfor-
mation is to build a theoretical foundation to show that the service recovery
problem can be transformed into the general planning problem and, there-
fore, the strategies which solve the general planning problem, could also be
employed to solve IT service recovery problems. Figure 4.1 illustrates the
idea of problem reduction.

In order to conduct the transformation operation, we first formalise the
definition of an IT service recovery problem which captures essential ele-
ments of a recovery operation. The definition of IT service in the recovery
problem is partially based on the MNM service model previously introduced.
The definition of the general planning problem model is derived from the
one proposed by Nau et al. [NGT04]. Further research can then be built
based on the theoretical result.

To facilitate automated planning for fault recovery operations, it is es-
sential to specify and formalise the relevant recovery knowledge for planning.
To serve this purpose, we first identify the knowledge items and then specify
recovery information with formal grammar. As a further step, we analyse the
current available planning paradigms in order to make a rational selection
of planning techniques that could serve our purposes. As we have shown in
the previous chapter, the strength of a planning technique could not be un-
chained without further elaboration for a particular application field. Thus,
adaptation and optimisation of the selected planning technique are required
for an efficient planning application. Finally, we propose a design of an au-
tomated fault recovery planning framework with detailed discussions on its
components.

The question of how to embed the planning framework into current man-
agement infrastructure is one of the key aspects to a successful integration.
Conversely, the management infrastructure can also provide the planning
framework with the necessary information to sustain the planning opera-

84

4.1 Fault Recovery as a Planning Problem

tions, for example, state of services and policies that are applicable to the
particular recovery operations, etc. To this end, interfaces as well as infor-
mation models for the exchange of planning information between them are
extensively investigated in this chapter. To summarise, the key contribu-
tions of this chapter are the following:

• Presenting a formal model of the service fault recovery problem in
Section 4.1.1;

• Reduction of the service fault recovery problem as general planning
problem 4.1.3;

• Specifying and formalising the recovery-centric management knowl-
edge and information models to facilitate information exchanges be-
tween the planning framework and the management infrastructure in
Section 4.2;

• A translation mechanism to convert management knowledge into plan-
ning knowledge in Section 4.2.3;

• Choosing and adapting an automated planning paradigm for the de-
sign of the fault recovery planning algorithm in Section 4.3;

• Proposing a design for the planning framework in Section 4.4;

4.1 Fault Recovery as a Planning Problem

Before transforming the fault recovery problem into a general planning prob-
lem, it is essential to formalise the service fault recovery by building a generic
problem model as a foundation for the transformation. A conceptual problem
model is simply a theoretical instrument for describing the main elements of
a problem. Although the model may depart from actual computational or
algorithmic concerns, nevertheless, it could be indeed effective for explaining
the basic concept, clarifying restrictive assumptions and capturing the essen-
tial ingredients of the problem. Based on the proposed model, we then cast
the fault recovery problem as a planning problem and propose ways to solve
it using automated planning techniques. The transformation between those
two models follows the endogenous and horizontal transformation manner,
with which the similarities and corresponding abstraction levels of those
models are preserved.

4.1.1 Formalising Service Fault Recovery Problems

IT service fault recovery is a multifaceted management operation which in-
volves many influential factors. Building a recovery problem model, which

85

4.1 Fault Recovery as a Planning Problem

is generic enough to cover the rich varieties of service types that are avail-
able today, is a non-trivial task. With that in mind, the proposed recovery
problem model focuses on an abstraction level, which includes essential ele-
ments of the recovery operations while intentionally neglecting aspects that
are specific to individual service or technology.

To properly define a service recovery problem, it is indispensable to
model the IT service as a foundation of the discussion. The fundamentals
of the service definition lend themselves well to the MNM service model
introduced in Chapter 2. The definition of IT service is given as follows:

Definition 1 (IT Service). A service S is a tuple {sj , R, C, F}, whereas:

• sj denotes a sub-service and S =
⋃n

j=1 sj.

• R denote a set of resources ri, where ri ⊂ R.

• C is a set of constraints that represent conditions imposed on a service.
Such constraints could, for example, be derived from QoS requirements,
management policy or SLAs etc., which are relevant to a particular
service.

• Dependency functions F , whereas F : S → R and a reverse depen-
dency function F ′ : R → S, which builds the inversed relationship
between the resources and services.

According to the MNM service model, an IT service is a set of func-
tionalities, which a service provider offers to its customer [GHH+02]. To
sustain the desired service functionalities, multiple sub-services are usually
employed in the actual service implementation. The sub-services provide
partial functionalities that are essential for fulfilling the desired service. In
the above definition, a service is a summation of the partial functionalities
that are offered by a set of corresponding sub-services, which could be de-
noted as S =

⋃n
j=1 sj where n is the number of sub-services that a service

is comprised of.

Resources are software or hardware components which realise the specific
functionalities required by a service or a sub-service. For example, the DNS
service in the first scenario in Chapter 2 requires a DNS software package
and a physical machine with a proper operating system (OS) installed to
sustain the implementation.

Shared resources are resources that are used by more than one service,
i.e. if S1 = {r1, r2, r3}, S2 = {r3, r4}, where S1, S2 are two different service
instances, then the shared resource is the result of a joint operation on
the two sets, S1 ∩ S2 = {r3}. Shared resources are especially important
in the virtualised service environment, where, for example, multiple virtual
machines share same physical resources.

86

4.1 Fault Recovery as a Planning Problem

Constraint C is a set of rules that imposes conditions and restrictions on
the characteristics of a service. The characteristics of services can be repre-
sented as a set of variables X = {x1, x2, . . . , xn} and a set of corresponding
value domains D = {D1, D2, . . . , Dn}, where Di ∈ D denotes a set of valid
assignments of variables relevant to the service character xi.

If X ′ ⊆ X , that is X ′ = {x1, x2, x3, . . . , xj}, and let Ω be a subset of
the Cartesian product of value domains relevant to variable xi (xi ∈ X ′),
D1×D2×D3× . . .×Dj , then the constraint CX′ = (X ′,Ω); it denotes a set
of valid assignments of variables relevant to the service.

The dependency function F maps a service S ′ to a set of resources RS′
that are associated with the service S ′. Since the service S ′ may associate
with more than one resource and a particular resource may be used by more
than one service, the function maps a non-injective relationship between
those two domains. The inverse function F−1 , in general, does not exist.
However, to serve the management purposes, it is often required to have
a function that maps the resources to get the services they are associated
with. This is particularly important when shared resources are involved
in different services, for example, in cases where we make a change to a
shared resource, it is necessary to determine the services that depend on the
resources and therefore will be affected as well.

With the definition of IT service provided, we now present a model for
the service fault recovery; it is an integral part of management, which con-
centrates on reinstating the fault-impacted services into normal operation
so that they could continue to offer the services that are agreed between cus-
tomer and provider. In this definition of the fault recovery problem model,
we concentrate on the essential and generic elements of a recovery activity
rather than cover the technological specifics. In fact, given the richness of
the manufacture-specific recovery solutions, it makes less sense to include
those specifics in our recovery model, since it will deviate from our focus of
providing a generic recovery problem model. The definition of the recovery
model is given as follows:

Definition 2 (Service Fault Recovery Problem). A recovery problem model
R is defined as a 4-tuple R = {S, Z, O, T }, whereas:
S: defines a service.
Z: denotes states of a service, where zo, zf ⊂ Z are subsets denoting the

operational and faulty states, respectively.
O: represents a set of recovery options that are currently available.
T : denotes the types and root causes of fault.

If R′ = {S ′, Z ′, O′, T ′} is an instance of a recovery problem model R,
the solution to R′, given the root cause T ′, is a set of recovery options o,
where o = oi, i = 1, ..., n and o ⊂ O′, which fulfills following conditions:

• zf
o1,...,on−→ zo

87

4.1 Fault Recovery as a Planning Problem

• The solution o satisfies c, ∀ c ∈ CS , whereas CS is a set of constraints
regarding the service S.

The definition presented above provides a generic problem model for the
fault recovery of IT services. The target for the recovery operation is a
service S, whose explanation is given in definition 1.

In this definition, we use the term state to represent the current situation
of the observed service. Those descriptions are represented by a subset
of Z, which is a set of descriptions of the possible states of the service.
Two special sets of states zf and zo represent the initial situation, which
contains the fault (zf), and final desired state (zo), in which the service is
reinstated. The state change is caused by the implementation of a recovery
option oi, oi ∈ O; in this definition, we assume that each option o will cause
changes of state. Note that at this stage, we consider the service state as a
general concept and intentionally decouple it from specific implementation
techniques. Those details will be discussed in the chapter on implementation
in details.

Symbol O denotes a knowledge-base structure which contains recovery
options, methods or actions. Operationally it is a part of the manage-
ment knowledge that is essential to fault recovery procedures and encodes
recovery-related information. Each data item in this repository is an indi-
vidual action or set of methods that could be applied to appropriate fault
scenarios. We assume that each recovery action will cause the change of
states in the service S, i.e. zi

oi→ zj , where zi, zj ⊂ Z and oi ∈ O.

Given a definition of a service recovery problem R′, we look for a set of
actions in a proper ordering that transits the current state into the objective
state, in which the expected service could be offered. Furthermore, the solu-
tions should satisfy any constraint that may be required by that particular
service. We are particularly interested in two types of constraint: temporal
and cost.

Generally speaking, temporal constraints are conditions that are related
to time. To be more specific, we distinguish three different types of temporal
constraints in this work: instance, interval and temporal relations. An in-
stance of time refers to some specific time points such as t1, t2, ..., tn and an
interval refers to a period of time that leaps between two time instances, e.g.,
[ti, ti+1]. Finally the ordering constraints express the sequences between ac-
tions, e.g., ti < tj or ti ‖ tj . The capability to process temporal constraints
is essential to solve real-world fault recovery problems which usually involve
different time-related conditions such as scheduling of the recovery actions.

The cost constraints are conditions that are concerned with operational
costs of a holistic recovery procedure. To recover a service from faults,
it is possible that more than one set of options are available to achieve
identical recovery objectives and, obviously, they are associated with various
monetary requirements. Under such circumstances, the cost constraints

88

4.1 Fault Recovery as a Planning Problem

provide a possibility to select the right recovery options so that the solution
would be in alignment with the provided management policy regarding cost
of the operation.

As mentioned earlier, a valid solution to a fault recovery problem not
only transits the current faulty state of a service into an operational state, it
should also satisfy all applicable constraints. More details on the constraints
process are given in the following sections.

In this section we define an IT service model relying on the MNM service
model. A generic problem model for service fault recovery is then formalised
based on the given service definition. The proposed problem model concen-
trates on the essential elements of a generic recovery operation rather than
dig into technical specifics. Based on the problem model, we also define the
solution model for the fault recovery problem, which is a sequence of recovery
options that obey the applicable constraints. The capability of constraint
processing is a particularly important aspect in dealing real-world fault re-
covery problems. In the following section, we discuss the general planning
model, which is partially discussed in Chapter 3. The ultimate goal of those
discussions is to provide a theoretical background for the problem reduction
between the general planning problem and the service fault recovery prob-
lem. As long as the reducibility is shown, we are then justified in formally
solving the fault recovery problem with methods that solve the planning
problem.

4.1.2 A General Planning Model

In this section, we give an extended discussion on the formalisation of the
general planning problem. The fundamentals of the planning model and
some well-known planning paradigms were introduced previously in Chap-
ter 3, hence this part of the discussion focuses on the further details of
the planning model including its representations and applicable restrictive
assumptions.

A planning endeavour of any kind is primarily concerned with achieving
a set of predetermined objectives by taking actions in a particular order. To
briefly recap on the definition, a classical planning problem P [NGT04] can
be simply modelled as a tuple:

P = (Σ, s0, g)

This model includes a state-transition system (also known as a discrete event
system) Σ to model the underlying dynamic systems, an initial state of the
underlying system s0 and an objective state g, where s0, g ⊂ S.

The planning problem model requires a sub-model to describe the un-
derlying system. In this definition, the system is represented by Σ. It can be
conceptually considered as a Kripke structure [CGP99], which is frequently
used to describe and verify a dynamic system. In planning terms, the system

89

4.1 Fault Recovery as a Planning Problem

model is also referred to as the planning domain. A transition of the state
in Σ is caused by implementations of some state-changing actions ai, which
are a subset of the available action set A, e.g., ai ∈ A. A function γ notes
such a transitional relationship between states:

γ
ai→ S × S

A planning problem is said to have a solution when there is a set of actions
in proper orderings, which transform the current state of the underlying
dynamic system s0 into the desired states g, i.e.

γ(s0, a1) = s1, ..., γ(sn−1, ak) = g

Restricted Planning Model

Given the formal definition of the planning problem model, we list and
discuss applicable common restrictive assumptions [Nau07] regarding this
conceptual model. Note that the presented assumptions are very strong
for modelling complex real-world problems; nevertheless, those restrictive
assumptions help us to concentrate on the essence of actual planning prob-
lems and abstract away details that are currently still unimportant to the
problem definition. To adapt the model to the complex real-world planning
problems, relaxations could always be made on those assumptions and cor-
responding techniques could be developed to solve the planning problems.

• Assumption 1: The planning domain Σ has a finite number of states.

• Assumption 2: Σ is a fully observable system. In this context, the
knowledge of system states is completely available.

• Assumption 3: The behaviour of the system to a selected action is
deterministic, meaning the implementation of a selected action will
lead to another system state deterministically.

• Assumption 4: Static Σ. The state of the system would not change
unless a selected action is implemented on the system.

• Assumption 5: The planner handles only the objectives that are
specified in the goal state description g. The objective should be known
to the planner and clearly specified in proper forms.

• Assumption 6: Plans are expressed sequentially.

• Assumption 7: Plans are done offline. This assumption is closely
related to Assumption 4, which assumes that the system model is not
changing during the plan composition phase.

90

4.1 Fault Recovery as a Planning Problem

• Assumption 8: Implementation of any selected action is without
duration, i.e. execution time of the action is only given implicitly.

The above assumptions impose strong conditions on the planning prob-
lem model due to the fact that to emulate problem-solving skill in planning
problems is a non-trivial task; therefore, constraints have to be placed on
the problem model in order to make the problem tractable.

Among the presented assumptions, it is easy to notice that the ma-
jority of them (assumptions 1-4) impose constraints on the description of
the planning domain Σ. Depending on the nature of target systems and
the planning solutions we seek, planning problems could be categorised as
trajectory planning or discrete planning. Those two different categories of
planning problems fulfill the above assumptions differently.

Trajectory planning is frequently termed motion planning, which refers
to a planning process that builds plans for non-linear dynamic systems and
drives that system from initial state into the goal state. To solve such kind
of planning problems, the planning domain, which includes the state space
of the target system, has to be modelled in continuous time. The number
of states in state space is uncountably infinity (e.g., velocity of the robot,
rotation of the motors to control the movement of the robot). For the
purpose of motion planning, the operation environment including obstacles
and other rigid bodies has to be represented as geometrical models as well.
The state space of a motion planning problem is called configuration space
and a solution to the motion planning problem is a continuous path in the
configuration space.

Compared to trajectory planning, the planning problems we investigate
are more of discrete nature and the corresponding planning domains are
formed differently as its counterpart. This class of planning problem usu-
ally has a countable finite number of states in Σ. Differential equations or
geometric models are not required for the description of the discrete planning
problems. Nevertheless, Assumption 1 could be relaxed to include count-
able infinite number of states of a system, however, this relaxation requires
that optimisation must be made during the solution-finding phase in order
to increase the efficiency.

For both trajectory and discrete planning problems, Assumption 2, As-
sumption 3 and Assumption 4 imply that the underlying system is com-
pletely observable and static; the system or planning domain only changes
its states when selected actions are implemented. They also suggest that
all of the changes that are implemented in the system have deterministic ef-
fects. In other words, the planner works on a snapshot of the target system
and assumes that the current system state is preserved during the plan-
ning. A static and isolated operation environment is indeed much easier for
a planner to handle than a highly dynamic one due to the reason that the
planner does not have to constantly update its knowledge of the systems

91

4.1 Fault Recovery as a Planning Problem

and deterministic outcomes of the selected actions raise no exception and
thus avoid the replanning. Nevertheless, such idealised planning situations
do not prevail in real-world applications, for which exceptions and constant
changes of the underlying system are commonly to be expected. To relax
those assumptions, the underlying planning domain Σ has to be modelled
as a stochastic system, which is a non-deterministic state-transition system
that allows probability to transitions between system. This technique is of-
ten called planning under uncertainty. With this extended model, the plan-
ning problem is then transformed into the optimisation problem, in which
the planning algorithm is searching for the optimised solution in terms of a
pre-determined utility function.

The planning problem model that allows stochastic system model is de-
fined as:

Σ = (S, A, P)

where the definitions for S and A are similar to its deterministic coun-
terparts; the symbol P is a probability distribution Pa(s′|s), whereas a is an
action; a ∈ A and both s and s′ are elements of state S, s, s′ ∈ S. It denotes
the possibility that if action a is implemented on the system with state s,
then a will lead to state s′ with that probability. If there exists an action
a ∈ A and state s′ ∈ S, such that Pa(s′|s) 6= 0, then we have:

Σs′∈SP = (s, a, s′) = 1

Techniques such as the Markov Decision Process (MDP) [Bel57], which
are designed to deal with non-deterministic systems, probability and partial
observability, could be employed to deal with planning under uncertainty.

Assumption 5 assumes that the solution to a planning problem is limited
to reaching the goal state defined in g, (g ⊂ S) and no extended goals are
supported during the planning operation. The term extended goals refers to
the conditions or constraints that are imposed on the state transitions during
the planning operation, for example, the planner could be instructed not only
to reach the objective, but also to avoid some particular state transitions that
are not desirable. This assumption could be relaxed by integrating utility
functions into the planning algorithm to allow the evaluations of actions and
transitions. The planning problem with extended goals could be regarded
as optimisation problems and the solutions to such problems is a set of state
transitions that not only fulfill the desired objective but also considers the
predefined constraints or conditions during the planning.

Assumption 6 limits the structure of the solution plan to be expressed
sequentially. However, the plan in a real-world situation could take different
forms, for example, conditional plans under non-deterministic situations and
parallelism of certain steps of the solution to reduce the total implementation
time of the plan. There are different ways to relax this assumption, for

92

4.1 Fault Recovery as a Planning Problem

example, by integrating scheduling techniques into planning operations, we
could recognise the overlap of the planning steps and allow parallel plan
structures.

Assumption 7 assumes that time is implicit in planning operations; tem-
poral conditions or time constraints are abstracted away with this assump-
tion. Each action and each transaction between states is considered instan-
taneous. However, under some planning situations, especially time-critical
planning applications, relaxation of this assumption must be done. By allow-
ing time durations of each action step and transaction, the classical planning
algorithm could be extended to handle the explicit temporal constraints.
Relaxation of this assumption also allows, for example, to apply scheduling
techniques to planning as mentioned above.

Assumption 8 is closely related to Assumptions 2, 3 and 4, where a
static domain is presumed for the classical model of planning problem. This
assumption limits the planner to working on a snapshot of the underlying
system and ignores the dynamic of that system. Since the planner works
offline, no update of the system state is required during the planning phase.
Turning an offline planning problem into an online planning problem is a
non-trivial task; it requires the planner to constantly update the current
situation s0 of the system and a plan may be invalided and the planning
process may constantly be interrupted due to the dynamics of the underlying
system. Recently different approaches have been proposed for dealing with
online planning problems, for example, Ross et al. [RPPCD08] investigated
the online planning for a partial observable Markov process and Chan et
al. [CFR+07] proposed an approach for applying online planning for the
real-time strategy game.

To conclude, this section discussed the assumptions imposed on the re-
strictive planning problem model. The restrictions imposed on this model
are very strong. They reduce the observed model to its essence, thus helping
us to view the problem more clearly. Nevertheless, different strategies are
allowed to relax those assumptions and make the problem model more prac-
tical. For each of those assumptions, we discussed the techniques that are
applicable for reducing those restrictions. The downside of the relaxation
is that they make the planning problem more difficult to solve, although
those relaxations in different combinations are essential to properly model
and represent real-world problems.

4.1.3 Problem Reduction

Based on the problem models built previously, we conduct a formal dis-
cussion in this section of the reduction between the planning problem and
the fault recovery problem. The reduction operations could provide several
useful insights [GJ79, CLRS01, Ski08] for the problem that we are trying to
tackle:

93

4.1 Fault Recovery as a Planning Problem

• With reduction, we can show that the observed problems actually
belongs to the same class of computational complexity as the source
problem.

• Reduction can formally justify that techniques which solve the known
problems class could also be applied to solve the problem for which we
currently seek solutions.

Theoretically a problem P is said to be reducible to another problem P ′,
if any instance of P can be formulated as an instance of P ′, which can provide
solutions to problem P [CLRS01] by calling its routine procedures. If the
transformation could be done by a function f within polynomial time, it is
said that P is polynomial reducible to P ′, denoting P ≤f P

′. It implies that
problem P is not more difficult to solve than P ′ and the solving procedures
of P ′ can be used to solve P [Ski08].

The general idea of the reduction for our purposes is to take the planning
problem model in its restricted form as the source problem Pplanning, whose
solutions are well-known, and try to map the instances of fault recovery
problem Precovery onto the domain of Pplanning.

The general planning model Pplanning is defined to include {Σ, s0, g},
which are essentially the inputs for a planning problem. Σ denotes the
underlying system including a set of state descriptions S and an applicable
action set A. The transformation function γ implements the selected action
and transforms the current state into the next state as indicated by the
post-conditions of the selected action. Traditionally states of a system are
usually described using some planning languages, for example, the Planning
Domain Description Language (PDDL) [GHK+98], which predefines a set
of proposition symbols mapped to each object of the observed system. The
descriptions of system states are then expressed in a conjunctive form of the
propositions. Theoretically if there are n symbols used in the description
language, then there are |S| possible subsets in disposal, where,

|S| = Σn
k=1

(
n

k

)
Note that S includes all possible combinations of propositional descrip-

tions.

Set A is a set of state-changing actions or operators that are applica-
ble to states of the system. Each action has a set of pre-conditions that
express requirements, under which this particular action could be chosen.
Meanwhile, the expected effects of the action implementation is expressed
in terms of post-conditions, which denote the specific changes done to the
system by the selected action. The implementation of actions is realised by
the function γ, which calculates the state transactions:

94

4.1 Fault Recovery as a Planning Problem

γ(ai, si)→ si+1, where si, si+1 ∈ S

The transition function γ maintains an overview of the current status by
means of deleting those predicate symbols that are changed by the action
(denoted as pcondition−(ai)) and adding new symbols that are caused by
this action (denoted as pcondition+(ai)), the new state si+1 after implemen-
tation of the action can be formally expressed as follows:

si+1 = (si − pcondition−(ai)) ∪ pcondition+(ai)

Having the essential input for the planning problem presented, a plan-
ning algorithm is then used to find one or more paths in the state space
between the current state and the goal state. Note that in this stage we con-
sider the planning algorithm merely as a sub-program to be called with the
given problem descriptions P . Techniques introduced in the planning part
in Chapter 3 can be used as such sub-programs to solve planning problems.
Also note that the planning techniques we discuss are domain-independent,
which means they are not tailored or optimised for any particular appli-
cation domains and are universally applicable. Note that for the purpose
of proof, the planning problem in question is in the restrictive form with
assumptions discussed in the previous section.

According to our definition, the input for a service recovery problem
consists of several elements: a service S, which is a target system under
observation; a set of state descriptions Z; a set of available recovery options
O and types and root causes of a problem T . Given an instance of service
recovery problem R′, we seek a set of recovery steps in O that could change
the current fault state to the expected state; in this context, a normal work-
ing service, which could deliver the expected functionalities to the users or
customers of that particular service.

There are two possible ways to show the reducibility between Psource and
Ptarget:

• Turing Reduction. Assume that there is a well-known algorithm A
that solves the source problem Psource and then the Turing reduction
process tries to integrate the algorithm A into the algorithm B of the
target problem Ptarget, which is still to be constructed. A is regarded
as a sub-routine of the algorithm under construction and each time B
tries to solve a target problem, the sub-routine A is called to provide
at least a partial solution for the target problem. The final complexity
of B is then equals to the complexity of A plus the complexity of the
rest of B. With the Turing Reduction, it is shown that A for the source
problem could be used to solve target problem, and the complexity to
solve Ptarget is at least as hard as solving Psource.

95

4.1 Fault Recovery as a Planning Problem

Planning

Algorithms

Planning
Solution

Fault
Recovery Problem

Solution

Recovery

Problem Model

Planning

Problem
Input

Solution

Transformation

Transformation

Figure 4.2: Problem Reduction

• Another more straightforward way is to transform every instance of
the new problem Ptarget into an instance of Psource, and show that an
algorithm A to Psource can directly operate on the instance of Ptarget.
The solution provided by A is then the expected solution of Ptarget.
The complexity of solving the target problem is equal to the complex-
ity of transforming between instances (which is polynomial) and the
complexity of algorithm A. This type of reduction operation is also
known as Many-One Reduction or m-Reduction.

To prove is the relation between the planning problem and service re-
covery problem, Precovery ≤p Pplanning, meaning the fault recovery problem
is polynomial reducible to the planning problem. The key steps of the proof
follow the Many-One Reduction approach, with which each instance of the
recovery problem is transformed into an instance of the planning problem
and thereafter it is solved using selected available planning procedures. Fig-
ure 4.2 illustrates the reduction approach between the planning problem and
the fault recovery problem with solution extraction. The general many-one
reduction approach involves transformation of the problems under observa-
tion into decision problems in order to cover the diversity and heterogeneity
of problem types. For our proof, however, this step is not required, because
both of the problems are identical in terms of solutions and their structures.

Given the problems Pplanning and Precovery, our goal is to prove the
following theorem:

Theorem 1. A service recovery problem is reducible to a planning problem
and can be solved with a planning algorithm.

Proof. In order to show the reducibility between the two problem models,
as a first step we cast a service recovery problem as a planning problem.

96

4.1 Fault Recovery as a Planning Problem

A classical planning problem Pplanning with the set-theoretic represen-
tations of a planning domain [NGT04] can be denoted by a tuple {S,A, γ}.
Let L be a set of proposition symbols that can be used to describe states
in S. If |L| = n, then the problem domain has a total of Σn

k=1nChoosek
possible states (which is equal to 2|L|−{∅}). An action (an operator) ai ∈ A
has pre-conditions and post-conditions that are both subsets of S. Function
γ applies the selected actions and transforms the current state into a new
state. Furthermore, s0 and g denote the initial and pre-determined final
states and they are subsets of S as well.

Suppose we use a set of proposition symbols L′ to delineate the states of
a particular service, thus every state zi ∈ Z is a subset of L′. The size of the
complete state space therefore is equal to 2|L

′|, including an empty state.

According to our previous definition of the service recovery problem
model, the set O denotes possible recovery steps or operations that could
be applied to repair a particular service. Each recovery operation has its
requirements on a set of states, under which this operation could be chosen.
Furthermore each operation is also associated with expected effects on the
service states that this operation could cause. If oprei and oeffecti denote
the requirements and effects of a particular recovery step, respectively, they
could also be represented by subsets of L′, i.e. oprei , oeffecti ⊂ L′. The cur-
rent state of the service containing faults is denoted as T , which is a subset
of state definition Z. A goal state zg ⊂ Z is a configuration of states which
denote a repaired and operational service state.

With the above definitions, we could solve the fault recovery problem
using classical algorithms for solving automated planning problems, such as
state-space planning or plan-space planning etc. Specifically we construct a
state space for the planning algorithms using the state definition of Z of the
observed service. We use T as one of the inputs for the selected planning
algorithm. It denotes the current state of the service that contains a fault.
Additionally, a goal state zo is any configuration of states that can be used to
describe the service as functional. The selected planning algorithm operates
on those inputs for the solutions which can transform the current faulty
service state into a predefined state which satisfies zo. Planning solutions
that are returned by the algorithm constitute selected sequences of recovery
actions that are given by O.

There are several notes regarding this proof that are worthwhile to be
discussed here:

• For this proof, we use a subset of elements from the service fault recov-
ery problem model, which are essential to cast the recovery problem
as a planning problem. However, to achieve a more realistic plan-
ning process, further parameters from the problem definition could be
added, for example, constraints C on the service could be used to fur-

97

4.1 Fault Recovery as a Planning Problem

ther optimise the searching process of the planning algorithm. Since
we only considered the viability of applying the planning algorithm to
solve service fault recovery problem, further parameters for the opti-
misation of the planning process are left out of the current proof.

• To extend the above discussion, the optimisation of the planning al-
gorithm is beyond the focus in this context. The planner under con-
sideration is solely used as an abstract problem-solving paradigm to
operate on an input instance of the service fault recovery problem. In
a more realistic usage context of automated planning, various opti-
misation approaches on the planning algorithms themselves are often
used to improve the efficiency of planning procedures and the quality
of the solutions.

• The assumptions on the restricted planning model discussed in the
previous section are applicable to the planning in this proof to avoid
unnecessary complications. However, as we will discuss in the later
contributions, relaxations on these assumptions could be done for the
constructions of a planner to make the planning more applicable to
real-world planning problems.

Based on the previous discussion, we are now able to draw the following
conclusions:

• The service recovery problem is reducible to planning problems; the
two problem models share a very similar structure, which facilitates
the transformations between their problem instances. This therefore
justifies that using planning algorithms to solve the service recovery
problem is a viable approach.

• Depending on how planning problems are represented, the complexity
of automated planning ranges from class P to NP-Complete and in the
class NEXPTIME under certain conditions; formal proofs are given in
[ENS95, Byl91, LGM98, NGT04]. Therefore it is unrealistic to make
a general statement on the complexity of automated planning. This
implies that given a planning problem, we could not always expect the
algorithms to find an optimal solution. As we use the planning ap-
proach to solve fault recovery problems, the planning algorithm may
not always return the optimal solutions; however, in real-world appli-
cation scenarios, a “good-enough” solution can serve the purpose in
most cases as well.

• There are opportunities to optimise the planning process by using
parameters that are specific to fault recovery problems. The purpose
of using such parameters is to reduce the plan search spaces and guide
the planning process.

98

4.2 Recovery Knowledge

Layer

Planning

Core

Knowledge

Representation

Layer

Management

System Layer

Resource

Layer

Figure 4.3: Relationships between the Planning Algorithm, Knowledge Rep-
resentation and Management System

4.2 Recovery Knowledge

Instrumenting an AI-based planning mechanism to solve practical manage-
ment problems is not an easy task; there is obviously a long way with many
obstacles in between that need to be solved. One of the major issues that
has to be tackled with paramount importance is to systematically specify,
represent and encode management knowledge into a data model that could
be understood and consumed by the planning mechanism. Among others,
this issue is put forward due to the reason that planning knowledge is a
crucial foundation for the operations of the automated planning algorithm.
Even a good planning mechanism cannot compute viable solutions without
properly formated high-quality input of planning knowledge obtained from
different management sources.

To approach this research issue, a path of management information flow
must be first of all clearly defined. Due to the fact that the planning mecha-
nism is not intended to be a stand-alone management approach, it needs to
collaborate with other underlying management components, such as moni-
toring system and execution system of management actions, in a cooperative
manner. To serve this purpose, the data path for the planning inputs should
cover the complete spectrum from management system to planner and vice
versa.

To provide a more clear view of information process procedures and,
at the same time, to follow well-established system design principles, we
suggest a layered view to represent different abstraction and processing lev-
els of the management information. Figure 4.3 illustrates those layers and

99

4.2 Recovery Knowledge

relationships between them. The knowledge processing procedures are here-
with divided into four layers: resource layer, management system layer,
knowledge representation layer and core planning layer. Each layer requires
different degrees of capabilities of information processing.

Resource Layer The first layer represents resources or components, on
which IT services are implemented (see definition 1). The resource
layer consists of software or hardware entities as information sources
that generate raw data upon different events during the service op-
eration. As a sheer information provider, this layer does not pro-
vide any data processing capability. However, depending on the man-
agement system residing on this layer, it may be necessary to store
management-relevant information locally.

Management System Layer This is the layer where management tools
are deployed to perform corresponding management activities. A man-
agement system should be capable of collecting management data from
underlying resource layers and supporting primary operations such as
data correlation or filtering. Management decisions and corresponding
management actions are determined based on those collected data. On
the other hand, the management layer provides interfaces to interact
with the underlying system; any management decisions and resulted
actions could be capable of having effects on the resource through this
layer.

Knowledge Representation Layer The information collected by the man-
agement system layer should be properly modelled and represented
to support management operations such as fault recovery planning.
Management decisions are made based on the available management
knowledge, which could be categorised into two types: system knowl-
edge and knowledge of the management operations. System knowledge
includes information such as the current state of the system, depen-
dencies of the system components etc. The latter type of knowledge
is comprised of management actions which could be applied to the
observed system.

Core Planning Layer The very inner ring is the core planning mecha-
nism which bases its operation on the planning knowledge provided
by the previous layers. The planning core combines different inputs
and computes the proper solution management actions accordingly. As
soon as an action plan is composed, the planning mechanism passes
the solution back to the management system for the execution on the
underlying system.

Knowledge representation in this context implies systematic ways to cod-
ify the knowledge that is relevant to the planning operations. Before we can

100

4.2 Recovery Knowledge

Translation

Rules

Formal

Representation

Planning
Mechanism

A
c
q

u
is

it
io

n
R

e
p

re
s
e

n
ta

ti
o

n
T

ra
n

s
la

ti
o

n
U

s
a

g
e

Information

Management

Planning

Knowledge

Plan

Output

Representation

Specification

Procedure Information

Figure 4.4: Dataflow: from management information to planning knowledge

proceed to plan automatically, formal means to encode as well as to represent
planning knowledge have to be established in order to serve as a basis for
later planning operations. This builds a bridge for data exchanges between
the AI-based planning mechanisms and existing conventional management
systems.

Figure 4.4 further refines the data path for planning operations from
infrastructure to planning algorithm. The path for data processing is or-
ganised into four major phases which deal with knowledge processing in
different layers:

• Acquisition: The knowledge acquisition phase focuses on extracting
recovery-relevant information from management systems, for exam-
ple, the monitoring data relating to the components of the IT service
in question and management policies that are applicable to the recov-
ery activities. Whereas abundant types of knowledge can be available
from various management sources, a relevant set of planning-centric
knowledge types has to be first determined and defined in order to
facilitate the specification of such knowledge for the further process-
ing. Additionally, the knowledge acquisition process has to deal with
the heterogeneity of data formats rooted from various management
resources, because each management system may apply different pro-

101

4.2 Recovery Knowledge

prietary data formats to represent the same piece of information.

• Representation: This phase intends to represent the acquired knowl-
edge in a proper data model, which is independent from proprietary
data formats from underlying management systems or technologies.
The purpose of data representation is to separate the technology-
independent representation schema from acquired management infor-
mation which is technology dependent. To serve this purpose, formal
specifications of the information model for the recovery knowledge have
to be established.

• Translation: After the recovery knowledge has been formally spec-
ified, the next step is to translate such knowledge into the proper
data format that could be consumed by the planning mechanism as
input to produce meaningful plan solutions. To assist the operation
of this phase, a translation mechanism has to be devised to emit the
plan-centric knowledge. The translation process is guided by a set of
translation rules. On the other hand, a solution plan elaborated by
the planning mechanism also needs to be reversely translated into ex-
ecution forms that could be understood by the execution component
due to the fact that the execution component in our design is external
to the planning core.

• Usage: The usage phase is comparatively straightforward. In this
phase, the planner takes the prepared knowledge as input and feeds it
to the planning core as the basis for the computation of solutions. The
results of the operation are one or more viable recovery plans which
could fulfil the recovery objectives. The resulting plans are forwarded
to the execution components of the underlying management systems
for execution.

The management systems or infrastructures provide the knowledge rep-
resentation mechanism with the necessary information obtained from the
managed components correspondingly. The knowledge representation mech-
anism formalises the obtained information and supplies the recovery plan-
ning algorithm with input. The planning algorithm operates based on these
inputs and finds solution plans accordingly. The solution plans are dele-
gated to management systems for further processing, e.g., execution of the
plans. The knowledge itself, however, is a generic and pervasive term that
needs to be further narrowed down to specific definitions. Therefore, the
first step towards a proper representation is to determine what kinds of
knowledge are specifically required for the fault recovery planning opera-
tion. In this section, we first identify types of knowledge that are essential
to recovery planning, then we discuss issues on rules of how such kinds of

102

4.2 Recovery Knowledge

knowledge could be represented and converted into a planning-conforming
data format.

We classify the term knowledge into two categories: infrastructure knowl-
edge and management procedural knowledge. As its name suggests, infras-
tructure knowledge refers to the awareness of the information regarding the
target infrastructure itself. It is inherently bounded to the components of a
particular set of infrastructure including software, hardware, networks etc.
Additionally, the complex relationships between those components are also
one of the key items of the infrastructure knowledge which are frequently
expressed as dependencies.

By management procedural knowledge we refer to knowledge document-
ing how management operations could be implemented, how managed el-
ements could be controlled to achieve the desired effects or functionalities
and what the workflows or processes are to perform management operations.
Management procedural knowledge has more of an abstract nature and the
acquisition of such knowledge is frequently empirical and based on human
inputs. For instance, the procedures on how to re-configure an applica-
tion server is one of many examples of such knowledge. The infrastructure
knowledge provides the necessary information on the participating compo-
nents such as server machine, network devices, software frameworks, operat-
ing systems etc. Furthermore, the control options of those components can
also be made available through the infrastructure knowledge. Management
procedure knowledge is mainly concerned with ways and processes of using
those control options to compose a functioning application server accord-
ing to some rules that may be applicable to the service. Additionally, in a
real-world scenario, management policies in forms of constraints and con-
ditions must be considered in the configuration process, thus they can also
be regarded as part of management procedural knowledge. Effective and
efficient management operations rely on obtaining as well as applying both
infrastructure knowledge and management procedural knowledge in order
to achieve the designated management objectives.

4.2.1 Specifying Recovery Knowledge

Having discussed the types and characteristics of management knowledge,
this section intends to identify and analyse the specific knowledge that is
highly relevant to the fault recovery planning operations. It addresses the
knowledge specification issues as shown in Figure 4.4.

The following types of knowledge are specified for the purpose of fault
recovery:

Managed Entity Managed entities are fundamental elements of in-
frastructure knowledge. A management entity could be a physical or ab-
stract component or any other information items required to be managed.

103

4.2 Recovery Knowledge

According to the formal IT service definition presented in the previous sec-
tion, an IT service consists of one or more managed entities as resources to
sustain the actual functionality offered by the service. Note that a managed
entity could be atomic, meaning management actions could be directly ap-
plied on this entity, for example, an Apache HTTPD software is an atomic
entity, because implementable management actions such as restart, reload,
stop, etc. could be directly applied to the entity. Contrarily, a 3-tier web
application service is an abstract service entity, because in order to operate
on it, management actions have to be resolved into specific implementable
action sequences, for example, to stop a web host service, we may want to
firstly backup current data, check-pointing the on-going transactions, redi-
rect current traffic, stop the web front-end (HTTPD), and stop the web
back-end (application server and DB).

Notification Notifications are generated events by different sources,
e.g., by monitoring tools, or timely information provided by a human ad-
ministrator. The purpose of notification is simply to convey the event infor-
mation of a managed entity, such as a server going offline or a web application
container has been configured. All those events imply state changes in the
underlying system. Functionally, a notification is a carrier of management
events from/to underlying managed entities.

State Information State-based representation is one of the most preva-
lent ways to model behaviours of a particular service [EMME+06, EKK+06].
To precisely describe states of a service, two types of information are re-
quired: operational state and inter-dependencies. The operational state
information reveals the state of a service, e.g. running, stopped, halting,
restarting, etc. Such information could usually be obtained either from
monitoring data or by means of automated service state discovery mecha-
nisms [ZMN05, FHT10]. Complementary to operational state information,
inter-dependencies depict structural information of the observing service,
e.g. server srv1 is running Linux OS with Apache installed. Details on
service dependency are given in the next section. Whereas most planning
algorithms base their operations on states of the underlying system, the
knowledge of states of a service can be mapped naturally into states in terms
of automated planning. In IT operations, monitoring information gathered
from a service could provide an overview of the state of that particular
service.

Dependency Large-scale IT services often have a myriad of inter-
dependencies between their components. As discussed previously, depen-
dency information reveals how components are related to each other in or-
der to provide desired functionalities. The knowledge concerning depen-

104

4.2 Recovery Knowledge

dencies of IT services could either be maintained manually or determined
by automated means. In order to compose a proper recovery plan, various
dependencies must be taken into consideration, e.g., dependencies between
managed entities or dependencies within the managed entity. Dependency
information could be obtained in different ways, for example, if CMDB is
provided, dependencies between components and services are usually read-
ily available there; on the other hand, automated mechanisms to determine
dependencies information are also available [BKK02, Has01].

Management Actions A management plan is usually comprised of
sequences of possible actions which lead to the desired objectives. Observing
from a state-based point of view, an action either transits the current state
of the particular service into a new state or alters conditions of a state in-
ternally. Generally management actions are designated with pre-conditions,
which determine under what circumstances an action could be carried out,
and post-conditions, which reveal what effects the actions could cause on the
system and how a particular management action could influence the current
states of a system or service.

Management Constraints Management constraints are special con-
ditions, to which a service must comply. They are usually specified by
management policies. Constraints could be expressed either numerically or
in words, for example, constraints on time or monetary conditions are usu-
ally expressed using numbers and others constraints, for example, stand-by
failover server must be behind a firewall can only be expressed in words.

Recovery Plan A plan in the context of IT management can be de-
fined as a set of implementable actions in a particular order. A recovery
plans is designed to achieve certain recovery objectives. A feasible plan
from a management perspective is a plan that not only achieves designated
management goals, but also fulfills management constraints that may be
applicable to that particular activity. Additionally, a plan could have many
forms regarding the orderings of the involved actions; in this work we con-
sider the sequential and parallel form of plan actions, which are the two
most frequent orderings of a management plan.

Management Objective In our context, a management objective de-
scribes a goal that is to be reached through implementation of a well-devised
management plan. Specifically a management objective can be represented
by a set of desired service states that a service needs to have after the ex-
ecution of a solution plan. From a current state description of a service,
e.g., the state in which the service is interrupted by faults, the management

105

4.2 Recovery Knowledge

objective provides a goal state in which the impacted service is reinstated
and a composed plan describes a specific way to reach that state.

4.2.2 A Language for Recovery Knowledge

Automated planning mechanisms usually have their own representations for
planning inputs; the previously discussed planning-relevant information ob-
tained from management systems needs to be properly modelled to meet the
planning requirements. In this section information models for the aforemen-
tioned planning knowledge are formally presented and discussed and then
we propose a set of rewriting rules to convert management knowledge into
the format that conforms to the planning.

Managed Entity

Definition Entities are virtual or physical components and informa-
tion items that need to be managed. They are identified by an unique name.
For practical purposes, names are organised in namespaces correspondingly
to management domains. The description of a management entity should
also contain the information on types which further describe the property
of a managed entity, for example, whether an entity is a physical server, a
software application or a configuration file etc. A further required property
is the domain of the entity. By domain, we mean one or more services, to
which an entity may belong. Note that a managed entity can be comprised
of other entities; such intertwined relationships between them are coded in
the dependency information. A managed entity without antecedent enti-
ties builds a top-level plan domain. Correspondingly those managed entities
without dependents denote objects upon which management actions could
be directly implemented. Note that depending on how management entities
are related, they could be further identified as abstract or atomic entities.

Formal Grammar

entity ::= "entity{"

"DOMAIN:" domain ";"

"ID:" identifier ";"

"TYPE:" entityType ";"

"DEPENDENCY:" dep ";"

"}";

domain ::= STRING;

identifier ::= STRING;

entityType ::= STRING;

dep ::= ServiceDep;

106

4.2 Recovery Knowledge

Description An entity is described by its ID, which is a unique name
for an entity in a given service domain, e.g., a web service domain or an email
service domain. The information on service scope is given by the DOMAIN en-
try, which reveals the affiliation of the managed entity to the associated ser-
vice domain. TYPE denotes the class of an entity, e.g., a DNS application can
be an entity class. In the following example, the managed entity dns1 app

belongs to the web service domain and has type dns application. The
dependency of dns1 app is encoded in dns1 app dep (see discussions on
dependency on page 110 for more details).

Example

entity {

DOMAIN: web_service;

ID: dns1_app;

TYPE: dns_application;

DEPENDENCY: dns1_app_dep;

}

Management Notification

Definition Notifications are events generated automatically, e.g., by
monitoring tools, or timely information provided by a human administra-
tor. The purpose of notification is to convey the management information
of a managed entity. In addition to the actual notification message, the
information model should contain the source of the notification, which is
an instance of a managed entity. Furthermore each notification should be
tagged with types, e.g., a notification could convey an state-changing event,
or alert message etc. Finally the time point at which this event is generated
should also be explicitly given in the notification.

Formal Grammar

notification ::= "notification {"

"ENTITY:" entity.ID ";"

"TYPE:" STRING ";"

"EVENT:" STRING ";"

"TIME_STAMP:" DateString TimeString ";"

"}";

Description The Entity field gives information on the source entity,
from which the notification comes. The name of the entity should conform
with the ID of the identity given in the corresponding field of the entity.
The TYPE entry denotes what kind of notifications is in question. The EVENT

107

4.2 Recovery Knowledge

entry denotes the associated event that is encapsulated in this notification.
Finally the TIME STAMP shows the time point when the notification is cre-
ated. In the following example, the notification is generated by the DNS
entity.

Example

notification {

ENTITY: dns1;

TYPE: state;

EVENT: started;

TIME_STAMP: 2010-03-25T12:34:56.101;

}

Another example shows a different type of event which notifies a state
transition event:

notification {

ENTRY: dns1;

TYPE: transition;

EVENT: started crashed;

TIME_STAMP: 2010-03-23T11:24:36.101;

}

State Representation

Definition Chandy and Lamport [CL85] defined a (global) state of a
service (as a distributed system) as a combination of its sub-components
and channel state. This definition can be applied well to IT services, since
our notion of an IT service includes one or more sub-components which
provide partial service functionalities, the corresponding states of the sub-
components need to be aggregated to represent the state of the service in a
holistic way. In the previous section (on page 104), we defined state knowl-
edge to include two types of information: operational state and dependency ;
in this section we mainly concentrate on the representation of operational
information.

Formal Grammar

EntityState ::= "state {"

"ID: "nameOfEntity ";"

"PRECONDITION:" pre-condition ";"

"CURRENT_STATE: " stateOfEntity ";"

"CONTROL_OPTIONS: " act ";"

"[BEHAVIOR_ENTRY:]" API ";"

108

4.2 Recovery Knowledge

"[BEHAVIOR_DO:]" API ";"

"[BEHAVIOR_EXIT:]" API ";"

"}";

nameOfEntity ::= STRING;

pre-condition ::= EntityState;

stateOfEntity ::= STRING;

act ::= {MgtAction};

API ::= {returnVal} identifier "("{parameters}")";

returnVal ::= VOID|INTEGER|FLOAT|BOOL|STRING|LONG;

identifier ::= STRING;

parameters ::= returnValue paraID;

paraID ::= STRING;

Description Operational states are always bounded to certain man-
aged entities. As discussed in the section on managed entities (page 103),
we distinguish between descriptions of states of atomic entities and those
of abstract service state. The managed entity associated with the descrip-
tion of state information is given in the ID entry. To represent the state
information of an atomic entity, we could use predicates to show the pos-
sible states of the entity, e.g., running(serv1). Such information is ex-
pressed in the CURRENT STATE in the definition language. State information
should also document pre-conditions of possible state transitions which ex-
press the conditions of changes from the current state into other potential
states. As soon as a set of pre-conditions of the current state is fulfilled,
management actions could be triggered. State-changing actions are given in
the CONTROL OPTIONS field. Additionally, actions upon entering the current
state, those within the current state and when exiting current state could
be noted in the BEHAVIOR ENTITY, BEHAVIOR DO, BEHAVIOR EXIT, respec-
tively. We define the current state of an abstract service as aggregations
of states of underlying atomic entities which belong to the domain of this
service.

Example The simplified web-hosting service scenario given in Chap-
ter 2 on page 26 is comprised of multiple sub-components (or sub-services)
including a web server, database and DNS which are connected by networks
to provide the desired service. The general state of this service, according
to the above definition, could be defined by combinations of the individ-
ual state of those sub-components. The following example shows a state
definition of a web server in running state.

state = {

ID : httpd;

PRECONDITION : server_1 LinuxOS Apache ConfigFile;

109

4.2 Recovery Knowledge

CURRENT_STATE : running;

CONTROL_OPTION : httpd-stop(server_1, Apache)

httpd-halt(server_1, Apache)

httpd-restart(server_1 Apache);

BEHAVIOR_ENTRY : start(ApplicationContainer)

connect_DB(dbs_1);

BEHAVIOR_EXIT : graceful_stop(Apache)

disconnect_DB(dbs_1);

}

Dependency

Definition Dependency information conveys the knowledge of how
managed entities are interrelated to each other to provide aggregated service
functionalities. Additionally, not only inter-entity dependency is of interest,
intra-dependency is crucial for the management decision as well, as it con-
tains the information on how different components within a managed entity
are related together, for example, the operational environment on which
certain type of applications are depending.

Formal Grammar

ServiceDep ::= "dependency {"

"DEP_ID: " identifier ";"

"DOMAIN: " domain ";"

"TYPE: " typesOfDependency ";"

"ANTECEDENT: " antecedent ";"

"DEPENDENT: " dependent ";"

"[PREREQUISITY]: " prereq";"

"[COREREQUISITY]: " corereq";"

"[EXREQUISITY]: " exreq";"

"[DESCRIPTION]: " description";"

"}";

identifier ::= STRING;

typesOfDependency ::= STRING;

domain ::= STRING;

antecedent ::= {entity};

dependent ::= {entity};

updatedOn ::= dateString;

prereq ::= {entity};

corereq ::= {entity};

exreq ::= {entity};

description ::= STRING;

110

4.2 Recovery Knowledge

Description The dependency information model provides views on
how entities of the service in question are related to each other. Dependen-
cies between components are labelled with unique identifiers, which could be
numbers or descriptive strings; the entry DEP ID serves such a purpose. The
DOMAIN entry illustrates the domain of a service related to this particular
dependency information. Also information on the types of dependency is
essential; typical types of dependencies are, for example, inter-system de-
pendencies or intra-system dependencies. ANTECEDENT and DEPENDENT fields
describe the dependencies between components. In addition to this manda-
tory information, four optional sections are given for further auxiliary in-
formation regarding dependency. The PREREQUISITY contains the required
components and services that are needed before a particular entity could
be put into use, e.g., by installing an application a targeted physical server
must be in running state and a certain type of operating system (OS) must
be installed, and during the runtime a database query must be finished and
returned before further processing is possible. COREREQUISITY denotes the
components that must be run in parallel with the entity in question, for ex-
ample, an application server; a database server must run in parallel with the
web server in order to provide the desired service. EXREQUISITY gives infor-
mation on the components that must be excluded. Finally the DESCRIPTION
section provides supplementary information on the dependency.

Example

dependency{

DEP_ID : dns_service;

TYPE : intra;

DOMAIN : web_service

ANTECEDENT : LinuxOS Server01 BIND9 confFile;

DEPENDENT : named;

PREREQUISITY : LinuxOS Server01 BIND9 confFile;

COREREQUISITY : LinuxOS Server01;

DESCRIPTION : "This provides intra-dependency information

of the dns service in web service domain.";

}

Management Actions

Definition A management action is an embodiment of a direct-executable
management step. It is the basic ingredient of a management plan, which
could include one or more management actions in a particular order. The
management action exists in the form of, for example, system command or
management scripts composed by human administrators of a service with
certain management purposes.

111

4.2 Recovery Knowledge

Formal Grammar

MgtAction ::= "action {"

"ID: " identifie ";"

"DOMAIN: " domain ";"

"ASSOCIATED_MO: "association ";"

"PARAMETERS: "paralist ";"

"RETURN_VALUE: " rt_value ";"

"EXCEPTION_HANDLING: " exceptions ";"

"LOCATION:" loc ";"

"SCHEDULED:" time ";"

"DESCRIPTION: " desc ";"

"CREATED:" date ";"

"}";

identifier ::= STRING|INTEGER;

domain ::= STRING;

association ::= STRING[STRING];

paralist ::= {type STRING};

rt_value ::= VOID|STRING|INTEGER|FLOAT|BOOL;

exceptions ::= MgtAction;

loc ::= URI;

time ::= TimeString;

desc ::= "preconditions{" precond "}" \

"effects{" effects "}";

precond ::= EntityState [EntityState];

effects ::= EntityState [EntityState];

author ::= STRING[STRING];

date ::= DateString;

Description The above grammar describes management actions which
are implementable to specific components. An action is identified by the ID

field with a unique name. The PARAMETERS entry gives a list of typed param-
eters that may be necessary for execution of the actions. Values that may be
returned by an executed action are provided by the RETURN VALUE field. An
executed action on certain components could be either successful or failed.
In cases of execution failure, the triggered exception may cause activations
of further management actions; therefore the EXCEPTION HANDLING field is
defined recursively to address the exceptions that may be raised during the
execution. The LOCATION field gives information on where actions could
be possibly located. DESCRIPTION determines the pre-conditions and post-
conditions of a particular action. The pre-conditions denote under which
service state that particular action could be selected and used; it deter-
mines the conditions, which must hold before the execution of the action.

112

4.2 Recovery Knowledge

The post-conditions are effects that the action could cause, e.g., the effect
of the reconfiguration action is that the DNS service is again in a config-
ured state. Both pre- and post-conditions are described with EntityState,
which was discussed previously. The last two fields AUTHOR and CREATED are
both self-explanatory. They fulfill only a descriptive purpose rather than
functional. The following example shows the description of a management
action to reconfigure the DNS application.

Example

action{

ID: dns-config;

DOMAIN: email_service web_service;

ASSOCIATED_MO: dns-application;

PARAMETERS: configFile

RETURN_VALUE: BOOL;

EXCEPTIONS_HANDLING: mgt_action_dns_exception;

LOCATION: repo://mgt_server/dns/dns_apps/;

SCHEDULED: 2010-04-01T02:00:00;

DESCRIPTION: preconditions{

dns-application.stopped \

dns-machine01.running \

}

effects{

dns-application.configured

};

AUTHOR: Joe;

CREATED: 2010-01-01;

}

The goal of the management action dns-config is to configure a DNS
application. A DNS service may belong to the Email service domain or web
service domain. The management entity this action is associated with is
DNS software applications; other actions may be associated with DNS server
machine. The dns-config action requires a configuration file as its param-
eter and may return a boolean value according to the result of execution.
With an unsuccessful execution, an exception may be raised, which could
be caught by other management actions that are especially designed for the
exception handling. In this case, mgt action dns exception is called upon
exception. Additionally, the management action could be found in the URI
given by the LOCATION field. The instance of the action could be a system
command or a script that fulfills this particular purpose. The time point,
at which this action is scheduled to run is given in the SCHEDULED entry
with a specific date and time. In order to execute the configuration action,

113

4.2 Recovery Knowledge

certain pre-conditions must be met; in this case, the DNS application must
be in the stop state and the hosting server of this service must in a running
state. If executed successfully, the asserted effect of this action is that the
DNS-application is in a configured state.

Recovery Plan

Definition A recovery plan is a sequence of management actions in a
particular order that transit the current state of an IT service which contains
a fault to an expected operational state. The operational state is defined
by the plan objective, which is a set of pre-defined state descriptions of that
service.

Formal Grammar

MgtPlan ::= "plan{"
"ACTIONS:" action ordering ";"

"SCHEDULED_EXECUTE:" exec_time ";"

"CREATED:" crt_time ";"

"ESTIMATED_TOTAL:" totalTime ";"

"ASSERTED_OBJECTIVE:" obj ";"

"}" ;

action ::= MgtAction;

ordering ::= "≺" | "‖" ;

exec_time ::= DateString TimeString;

crt_time ::= TimeString;

totalTime ::= TimeString;

obj ::= objectives;

Description The ACTION field contains one or more management ac-
tions. The execution sequence is determined by the ordering of selected ac-
tions. In this work we consider two types of orderings of actions: sequential
execution (≺) and parallel execution (‖). SCHEDULED EXECUTE reveals when
the plan is scheduled to be implemented. ESTIMATED TOTAL signifies the es-
timated total execution time of the plan. Finally, the ASSERTED OBJECTIVE

reveals the asserted final state of the targeted service after the executions of
the plan.

Example

plan{
ACTIONS: dns-stop ≺ dns-config

≺ dns-validate

114

4.2 Recovery Knowledge

≺ dns-start

≺ dns-test;

SCHEDULED: 2010-04-02T03:00:00

CREATED: 2010-04-02T02:30:00;

ESTIMATED_TOTAL: 00:05:30;

ASSERTED_OBJECTIVE: dns-application.running

dns-application.updated

}

Plan Objectives

Plan objectives should denote the desired final state of the observed state.
They express the goal a management plan should achieve after the execution.

Formal Grammar

obj ::= "objective{"

"ASSERTED_STATE:" EntityState|{EntityState} ";"

"[TIME_REQUIREMENT:]" TimeString ";"

"[COST_REQUIREMENT:]" cost ";"

"};"

cost ::= INTEGER|FLOAT;

Description The ASSERTED STATE denotes the desired asserted states;
it can include one or more ServiceState defined previously. Optionally,
requirements regarding the time and cost constraints could be explicitly
expressed in the last two fields respectively. The plan objectives are either
pre-determined or given by administrators during management activities.

Example

objective{

ASSERTED_STATE: dns-app.running dns-app.updated

dns-app.onServer01

TIME_REQUIREMENT: 00:25:00

}

4.2.3 Translation to a Planning Language

The reason for developing a knowledge translation mechanism is to reduce
the impact of AI-planning technology on the planning system’s users, who
are, in most cases, non-AI specialists. Although the details of planning op-
erations could be hidden from users, nevertheless, they are still required to

115

4.2 Recovery Knowledge

Infrastructure

Knowledge
Mechanism
Translation

DSL

Fault Recovery
DSL

Planning
DSL

Management

Knowledge

Planner

Figure 4.5: An overview of the translation process between DSLs

maintain, extend and continuously improve the planning knowledge. There-
fore, a direct application of planning parlance would set a great barrier for
them to grasp the system and to perform the required tasks.

On the other hand, the planner also needs to collect the system infor-
mation from the infrastructure to support its operations; such information
needs to be processed into a proper language before it can be handed to
the planning algorithm. To bridge these gaps between the planning system,
users and infrastructure information, we need to develop a mechanism that
translates between them.

The knowledge translation mechanism is similar to a formal language
translator, which interprets language A into language B without semantic
bias. The formal languages are generally very high-level languages that are
built and tailored for special purposes. They are also frequently known as
Domain-Specific Languages (DSL). Figure 4.5 providess an overview of the
translation process with input and output. Management and infrastructure
knowledge is aggregated and described in the recovery DSL using formal
grammars.

Before we design a translation architecture, it is essential to under-
stand the source and target languages; therefore, in this section we start
by analysing both the input and output DSL of the translation mechanism.
The focus will be however on the output DSL.

Input DSL In the previous section, we provided the formal specifications
of the knowledge that is required during a recovery process. As the input
DSL for the translation mechanism, such information needs to be properly
parsed into another language that a planner can understand. The input
DSL in fault recovery knowledge is a collection of information from different
resources using the specifications defined above. Since the specifications
and formal grammars with examples have already been given in previous
sections, we will not go into great detail regarding the input language.

Output DSL The output DSL is a language specified to describe the
knowledge necessary for the recovery planning operations. According to the

116

4.2 Recovery Knowledge

theory of automated planning discussed in section 3.1 in Chapter 3, a classic
planning language should at least contain the following information:

• Action: describing actions that can change the state of the observed
systems. The description should include at least a name of the action
with the pre-conditions and post-conditions.

• Transitional system: representing behaviours of the observed system
and its transitions between states.

• Planning goal: describing goals of a planning operations. It is usually
represented by a subset of system state descriptions.

• Initial state: similar to the planning goal, only it illustrates the current
system state.

An aggregation of all the knowledge items shown above is frequently
referred to as the plan domain; a data structure that encompasses plan
domain is usually called the domain file. Depending on the capabilities
of particular planners, an advanced plan domain description can include
much more information than shown above. For example, information on the
constraints and preferences can be added to the plan domain description. If
the planner is capable of doing un-deterministic reasonings, the probabilistic
information on the success of a particular plan actions could also be inserted
into the plan domain.

With the research and development of planning technologies, planning
languages have continuously evolved and been improved by the AI com-
munity. The research effort resulted in an increasing degree of maturity of
the languages in terms of expressiveness and completeness. New language
constructs such as constraints and preferences have also been proposed to
further extend the expressiveness of the planning languages. Meanwhile
discussions and attempts regarding the standardisation of the planning lan-
guage have also been made within the research community.

Due to the above reasons, designing a completely new planning lan-
guage from scratch seems like re-invent the wheel and counter-productive;
however, building a translation mechanism between the aggregated planning
knowledge and planning DSL is still an essential procedure in designing a
real-world planning application. Therefore, in this research, we intend to
use an existing planning language as output of the translation mechanism
and propose a translation process between the input and output DSLs. In
the next section, we analyse several major types of planning languages.

Plan Domain Specification and Representation

The ultimate goal of a plan domain specification language is to formalise
as well as represent and convey the planning knowledge to the planning

117

4.2 Recovery Knowledge

algorithm. Different approaches have been developed by the AI research
community to formally specify the planning knowledge. These approaches
can be categorised as follows:

• Set-theoretic representation. This approach uses a set of propo-
sition symbols P = {p1, p2, ..., pn} to represent states of the world W ,
i.e W ⊂ P . Both the planning goal (objective) and initial state are
subsets of the world W . The description of action is written based on
the propositional logic, which usually has the form:

aaction = {pre(a), effect+(a), effect−(a)}

An action has pre-conditions and has two kind of effects: effect+

adds new states to the current state of the world and effect− deletes
the states that are no longer valid, i.e. states changed by the action.
This representation scheme has the disadvantage that a large space for
propositions is needed even when describing a very simple planning
problem.

• Classical representation. This kind of representation allows the use
of derivatives of first-order logic and planning operators to model the
world and planning problems. States of the world are represented as
sets of logical atoms, for example, the term:

Installed OS(AppSer1,Linux)

conveys the information that Linux is installed on the application
server (AppSer1) as the operating system. Note that terms must
be grounded1 and function free in the classical representation. Fur-
thermore, the closed world2 assumption is applicable to this kind of
description logic. An action description in classical representation is
comprised of pre-conditions and effects. However, instead of proposi-
tions, classical representation uses predicate logic with following the
conditions:

– Action name and list of parameters to uniquely identify the ac-
tion.

– Pre-conditions are conjunctions of positive and function-free lit-
erals.

– Effects are conjunctions of function-free literals that describe
post-condition of a particular action. Negative literals are al-
lowed.

1Variables are not allowed in the terms.
2Unknown conditions are all false.

118

4.2 Recovery Knowledge

An action description example using classical representation:

action: Backup_Data(SRC, DST, File, size)

precond: exist(File, SRC) ∧
capacity_avail(DST, size) ∧
network(SRC, DST)

effects: exist(File, DST) ∧
backup_copy(File)

The above example illustrates a very simple description of data backup
action. In order to backup a particular piece of data using this action,
the conjunction of conditions in the precond must be fulfilled, namely
the target file must be on the source system (SRC) and there must
be enough capacity (capacity avail) in the backup system (DST).
Finally there must be a network connection between the source and
destination system. The effects field shows the consequences of this
action.

• State-variable representation. This representation has an equiv-
alent expressiveness to the classical representation. Instead of a re-
lation, its representation uses state-variable symbols to denote state-
variable function. The value of those functions forms characteristic
attributes of a system state. Description of actions however still re-
lies on the name, pre-condition and effects. Some attributes may not
change during the planning operation; they are usually referred to
as rigid relations, in other words they are invariants of the planning
domain.

action: Backup_Data(SRC: sd, DST: da, File: f, Size: s)

precond: exist(File: f) = sd ∧ capacity_avail(d) = s

∧ network(sa, da)

effects: exist(f) = da ∧ backup_copy(f)

Theoretically classical representation and state-variable representation
have an equivalent expressiveness. A planning problem represented by one of
those representations could be translated into the other with linear increases
in size of description [NGT04]. The set-theoretical representation is weaker
than the other two. Its prohibitive requirement on the space for descriptions
of complex planning problem limits its practical value in modelling real-
world planning tasks.

Having discussed the representation paradigms of planning knowledge,
we investigate several major planning languages that embody the ideas from
the above-mentioned description paradigms. Those languages have been
widely used in the practical planning systems either of an academic nature
or in actual real-world contexts.

119

4.2 Recovery Knowledge

Situation Calculus Situation calculus is a predicate-based formalisation
of states and actions with corresponding effects on the underlying system.
It was originally designed for a logical deduction system for query questions.
The system answers questions about the reachability of a goal state from the
current state. The state transformations take place through a set of state-
changing actions. In a strict sense, situation calculus is not a modelling
language for the planning system; however, it provides theoretical funda-
mentals for the further development of the planning modelling approaches.
Situation calculus formulates the state of the world based on the conjunc-
tion of first-order calculus. Actions are regarded as functions of the involved
entities, for example, migrate(server 1,server 2) denotes the action to
migrate server 1 to server 2. Actions can also be represented as schema
with schema variables, e.g., migrate(x, y) where both variables could be
instantiated to constant symbols. In situation calculus, pre-conditions and
effects of an action are theoretically described by two kinds of axioms: pos-
sibility axioms and effect axioms.

STRIPS The Stanford Research Institute Problem Solver (STRIPS) is a
classical description language designed for the purpose of automated plan-
ning operations. The representation of the planning knowledge such as
state information and plan actions rely on the classical representation rules.
STRIPS describes states of the world also based on first-order logic; however,
only positive literals are allowed in the state representation. Additionally,
it is required that those literals are grounded and function-free. The close-
world assumption is applied to the STRIPS. As plan goals are expressed
as a set of desired states, the rules valid for state representation are also
valid for plan goal representation. Plan actions are described by precondi-
tions and effects. Pre-conditions are expressed as conjunctions of positive
function-free literals and effects expressed as conjunctions of function-free
literals.

ADL The Action Description Language (ADL) is a variant of STRIPS.
ADL relaxes some of the constraints of STRIPS to increase the expres-
siveness of the language. The enhancements are based on the findings of
Pednault [Ped87]. Compared to STRIPS, ADL is based on the open world
assumption and it allows negative literals to appear in the state description.
Furthermore, ADL supports quantified variables and typings of the variables
in the descriptions of plan goals. Literals are formulated with conjunctions
and disjunction. Finally, ADL supports conditional effects in the action de-
scription in the form of A causes L if C, meaning action A leads to effect
L if the condition C is satisfied.

120

4.2 Recovery Knowledge

PDDL The Plan Domain Description Language (PDDL) is a language
standardised by the AI planning research community. Originally in its first
version, PDDL was built based on the STRIPS formalism with various ex-
tensions. By introduction of each new version, new extensions have been
added to the language to enhance the expressiveness.

To describe a planning task, PDDL separates the domain information
and the problem description. The domain information is included in a plan-
ning domain file and the problem description in a problem file. The plan-
ning domain file is comprised of predicates and action operators, which are
reusable for various planning problems about this domain. The transition
system is denoted as the planning domain file. Furthermore, a problem
file includes involving objects, the initial state of the problem and the fi-
nal desired states. The problem file denotes simply the current instance of
the transition system given in the domain file. Syntactically, PDDL has a
Lisp-like notation; a domain file has following structure:

(define (domain <name>)

(:requirements <req1> ...<reqn >)

(:types <subtype1> ...<subtypen> - <type1> ...<typen>)
(:constants <cons1>...<consn>)
(:predicates <p1> <p2>...<pn>)

(: action1)

...

(: actionn)
)

A plan domain is identified by a descriptive name. The requirements

field denotes a set of representation features that could be used in the current
domain specification. Since PDDL is a very generic declarative planning
language, not all features that come with PDDL will be supported by a
planner, therefore, it is essential to declare the set of features a planner
supports during a planning domain compilation. Some basic features it
supports include the following:

• :strips denotes that domain specification supports only basic STRIPS-
style notation.

• :typing allows type names and declarations of variables.

• :negative-preconditions allow negation in goal description.

• :disjunctive-preconditions allow or in goal description.

• :adl denotes that the domain uses some or all of ADL features.

121

4.2 Recovery Knowledge

The :types field declares the types of objects and parameters involved
in planning operations. Types of parameters could be defined as: ?x -

WebServer. Parameters of the same type can be written as: ?x ?y ?z -

WebServer. Declaration of object types can be done in the same way. Typed
variables allow, for example, flexible definitions of actions. The :constant

fields defines object symbols that will not be changed in a particular domain.
All predicates that may be used in a domain are defined in the :predicates
fields.

Finally in a domain description file, available plan actions are defined.
The action description has its own syntax which is similar to the classi-
cal planning description paradigm. As shown in the structure below, each
plan action description is identified by a unique name followed by a list of
typed parameters. Both pre-conditions and effects are explicitly given using
predicates defined in the corresponding domain file.

(:action <name>

:parameters <pmtr1> ... <pmtrn>
:preconditions <pre1> ... <pren>
:effect <eff1> ... <effn>

)

In addition to the domain description file, the problem description pro-
vides information about the current state of an observed transitional system.
As shown below, a problem description structure includes a name that identi-
fies the planning problem. The :domain field shows the particular planning
domain, to which this planning problem is attached. The :objects field
denotes the scope of all participating elements in this particular planning
problem. Finally the :init and :goal fields denote the initial state and
final desired state, respectively.

(define (problem <name>)

(:domain <domain-name>)

(:objects <obj1>...<objn >)
(:init <state1>...<statei>)

(:goal <state1>...<statej>)
)

The above discussion illustrates the essence of the planning domain de-
scription structures and the planning problem structure. With the evolution
of the PDDL standard, improvements have been constantly proposed and
new constructs have been added, which make the language more expressive
and have boosted the ranges and types of planning problems that could be
modelled by PDDL. These improvements enable new language constructs to
be integrated into the language. In the following paragraph, some impor-
tant extensions are discussed, which are essential to model the fault recovery
planning problem domain.

122

4.2 Recovery Knowledge

Operators A set of logical operators are supported by action descriptions
with PDDL: and (∧), or (∨) and not (¬) can appear in pre-conditions,
furthermore, logical quantifiers are also allowed to appear in the pre-
condition part of an action description, including: imply(=⇒),

exists(∃) and forall(∀). In action effects, the quantifier and, not,

forall and when may be used.

Durative Actions The durative actions allow temporal concepts such as
concurrency to be included in the modelling of plan actions. Two
kinds of durative actions can be modelled by PDDL: discretized-time
and continuous-time actions. Both types of action share a similar
structure that is comprised of logical changes caused by the imple-
mentation of actions. Whereas the continuous-time actions are mostly
used to model plan domains where continuously changing values are
essential for actions, we will focus on the discretized-time actions. The
modelling of discrete durative actions is done by means of temporally
annotated conditions and effects. Such annotation of action conditions
allows to express whether the associated proposition must hold at the
beginning of the action, during the action or at the end of the action.
Invariant conditions of a durative action can be explicitly expressed
using the combination of three annotations. Temporal annotation of
effects of an action express whether the effects take place immediately
after the execution of the action or are delayed.

(:durative-action <name>

:parameters <p1>...<pn>
:duration <duration>

:condition <time-conditions>

:effect <time-conditions>

)

The above example illustrates the structure of durative actions. An
action is identified by a descriptive name that is unique in the plan do-
main. A list of parameters is then provided to declare the involved ob-
jects and their corresponding variables. The :duration field explicitly
gives the timespan of an action, for example, (:duration (?duration

5)). Finally :condition and :effect list the conditions and effects,
respectively, of a durative action connected by logical operators.

Plan Metrics PDDL allows plan metrics to be expressed in numeric form.
This feature is especially useful for plan optimisations where plan qual-
ities can be judged by numeric values such as time costs. Plan metrics
can be written in the problem description file with an entry: (:metric
<keyword> <conditions>). According to the types of metric, dif-

123

4.2 Recovery Knowledge

ferent keywords can be applied in the metric entry, e.g., minimise,
maximise, length ... etc.

Plan Preferences Conditions that the user of a planner would prefer to
be satisfied through the execution of plan actions are referred to as
plan preferences. However, the users are also ready to accept the
fact that preferences are violated for various reasons, e.g., costs of the
actions would be prohibitive if preferences are considered or due to
some internal conflicts etc. Therefore, plan preferences can also be
regarded as a kind of soft constraints. PDDL allows plan preferences
to be added as a part of plan goal in the problem description. If
preferences are applicable to all plan problems, they could be written in
the domain description. It has the structure: (:preference <name>

<plan goal>).

Constraints Constraints are conditions that must be true during the ex-
ecution of a plan. In PDDL, such constraints are referred to as state
trajectory constraints which are described using temporal modal oper-
ators. PDDL specifies several temporal operators that could be applied
both in the problem description file and the domain description file,
e.g., always, at end, within, etc. Those temporal constraint op-
erators can be brought in to a domain or problem description file with
:constraints keyword. If constraints are found in a problem file,
it implies that such temporal conditions must hold in every planning
problem concerning this domain, otherwise, constraints are specific to
individual planning problems.

The situation calculus lays important theoretical groundwork for the rep-
resentation of planning knowledge; however, it is not a real language to be
implemented in a real-world planning application. STRIPS and ADL rep-
resent the early attempts to model planning knowledge using programming
language-like structures; however, their confined expressiveness limits their
applicabilities to modelling real-world planning problems.

Comparing to the other modelling approaches for automated planning,
PDDL provides a set of features that increases its practical values in mod-
elling complex real-world planning knowledge. Its expressiveness allows do-
main experts to model rather complex planning problems before these prob-
lems can be handed to planning algorithms. Appendix A gives an overview
of the formal grammar of the PDDL language. Additionally, PDDL is a lan-
guage widely accepted by the research community for automated planning,3

Despite its wide acceptance as the standard language in the planning
research community, it is still hard for a non-AI expert to compile a proper

3PDDL is originally designed for the international planning competition, which is an
international venue for research teams to compete on the performance of their planners.

124

4.2 Recovery Knowledge

planning domain for automated planning operations for real-world applica-
tions by using PDDL directly. The somehow obscure Lisp-like syntax of
PDDL indeed poses an extra challenge for users and maintainers of a plan-
ning system, because they are in most cases domain experts in certain ap-
plication areas rather than AI specialists. As most current knowledge-based
systems still require human input for the enrichment of crucial information
as the foundation of decision-making processes, a knowledge modelling lan-
guage with a steep learning curve and limited acceptance by its domain
users could prevent the prevalence of the system and makes it less useful
than it should be. In the next section, a translation architecture is proposed
to bridge the gap between the recovery knowledge model suggested in the
previous section and PDDL.

Translation Architecture

Issues regarding the specification and representation of the fault recovery
knowledge are discussed in the previous section. Additionally, detailed anal-
ysis is also given on formal specifications of modelling approaches for auto-
mated planning. In this section, a translation architecture including trans-
lation rules is proposed and discussed to fill the gap between the knowledge
representation and actual usage of the planning knowledge. The main topics
of this section are: propose the architecture for the translation operations
and determine translation rules that map the recovery-specific language to
a planning modelling language. The discussion is, however, strictly focused
on the design rationale and theoretical issues such as translation strategies
as well as translation rules; specifics on instrumenting the translation oper-
ations will be presented in detail in the next chapter on implementation.

Architecture As shown in Figure 4.5, functionally, a language translation
architecture reads a DSL and generates another DSL according to the given
rules or models. In our case, the proposed translation architecture reads the
language specified by the grammar presented in section 4.2.2 and produces a
planning specification language such as PDDL. Together with the language
specifications and translation approach, the architecture is a part of the
automated planning framework which is designed to fulfill the requirements
of the planning knowledge and repository identified in section 2.2.5, Chapter
2 (Table 2.4 on page 49 provides an overview of those requirements).

The design of the translation architecture depends on the underlying
translation approaches. Several translation approaches are available for the
translation process: syntax-driven translation, rule-based translation and
model-driven translation. Figure 4.6 illustrates the workflow of knowledge
translation of planning knowledge definition into PDDL descriptions for the
planning operations.

125

4.2 Recovery Knowledge

The translation process is similar to that of building a front-end part of
a compiler. Its main objective is to analyse the syntax as well as semantics
of the input language and to generate the corresponding output, in this case,
PDDL. The input language is defined by the context-free grammar discussed
in the previous section. The first step of translation is the lexical analysis of
the input file. During this phase, the token and its types are produced by
a translation component called the lexical analyzer or lexer. The emitted
token steams are then analysed in the syntax level by the syntax analyser,
by which tokens are recognised and organised according to the given input
language grammar. The syntax analyser produces its results in the form of
intermediate representations (IR), for example, a syntax tree would be one
of the representation possibilities. The result of the syntax analysis is then
further forwarded to the semantic analyser to build IR of the output lan-
guage; during this phase, different approaches could be applied according to
the complexity of the translation, for example, the tree-rewriting technique
re-builds the abstract syntax tree composed by the syntax analysis opera-
tions. Another alternative is to use the string template approach to fill out
the predefined output template during the semantic analysis phase. Finally,
the output language is generated and forwarded to the planning algorithm.

DSL

Input

grammar

DSL

Output

token

IR

IR

generator

analyzer
semanticsyntax

analyzer

translation

lexer

Figure 4.6: Translation Architecture

The multiple-stage knowledge
translation architecture allows flex-
ibility of building the target lan-
guage for the planner. In cases
that the requirements for the in-
put language or output language
are changed, individual components
could be simply swapped out or
modified to adapt to the new re-
quirements, while essential parts of
the translation architecture remain
intact. For instance, if the input

language is changed, only the lexer and syntax analyser need to be adapted
to the new input language. Engineering details on the translation mech-
anisms will be given in the next chapter on the implementations of the
proposed approaches. In next section, we discuss the translation rules.

Building and Translating Plan Domain A crucial step in the trans-
lation process is to define a set of translation rules which map the input
planning knowledge onto the output language, in this case PDDL. The rules
shall provide general guidances during the translation process. In other
words, the translation rules try to associate the information models that are
defined in the recovery knowledge with PDDL’s planning knowledge model.
Once the associations are determined, the translation could be done auto-

126

4.2 Recovery Knowledge

Service State

Dependency

Managed Entity

Management Objective

Notification

Management Constraints

Management Actions

Plan Object

Init. State

Plan Domain

Object Types

Plan Goal

Constr. & Prefer.

Action

P
la

n
n

in
g

 P
ro

b
le

m
 D

e
s
c
rip

tio
n

R
e

c
o

v
e

ry
 K

n
o

w
le

d
g

e
 D

e
s
c
ri
p

ti
o

n

Figure 4.7: Illustration of translation rules that map between two different
models

matically at syntactic level. Figure 4.7 provides an overview of the mapping
between the two information models.

The translation rules can be classified into two main categories: planning
domain and augmented planning information. The basic planning domain
description should include essential planning information that is required by
building an automated planning mechanism, whilst the augmented planning
information extends the plan domain with augmented planning knowledge
(e.g., temporal information, numerical constraints etc.) which enables more
advanced planning operations. In Figure 4.7, the shaded area in the planning
problem description represents the ingredients for building a basic planning
domain.

Building Basic Planning Domain In this section, we discuss details
of transformations between recovery knowledge description and plan the do-
main description, which also explains the fundamental principles of building
a basic planning domain for service fault recovery planning. As discussed in
the previous section, in order to build a basic planning knowledge domain,
the following items are required:

• Plan domain scope. The plan domain scope encapsulates and consol-
idates relevant planning knowledge in a data structure. It provides
a container gathering information that may facilitate the planner to

127

4.2 Recovery Knowledge

�
�
�
�

ME

ME

ME ME

ME ME

Sub−Domain Sub−Domain

Domain

Sub−Domain

Figure 4.8: Plan domain structure

find solutions for problems in that particular domain. As given in the
definition of IT service (Definition 1 on page 86), a complex service
could consist of multiple sub-services in order to sustain its function-
ality. Therefore, a corresponding recovery plan domain can also be
defined in a compound manner. For example, as given in Scenario 1
on page 26, a web-hosting service could consist of various components,
which are (sub-)services themselves, in this case, web server, DB server
and DNS server. Each of those sub-services can have its own domain.
The plan domain for the web-hosting service is then composed of those
three (sub-)domains. Figure 4.8 illustrates an exemplary domain com-
position. In this example, the top domain consists of two sub-domains,
in which one of them contains a further sub-domain.

• Plan object & Object types. The building block of a service domain
is the Managed Entity (ME). There are two types of ME: atomic en-
tity and abstract entity. Atomic entities are elementary components
that a particular service is built upon. Compared to abstract enti-
ties, atomic entities are physical or virtual components, upon which
management actions could be directly executed and take effect. For in-
stance, a physical server which serves as part of a web-host platform is
an atomic entity or an HTTPD daemon serving web request is also an
atomic entity, because management actions could be directly acted on
it so as to affect its state. Contrary to atomic entity, an abstract entity
consists of more than one atomic entity. It also could contain other
abstract entities to sustain its service functionality. For instance, a
web-hosting platform is an abstract entity, because it consists of mul-
tiple atomic entities such as server machine, Apache HTTPD, DNS
server, perhaps a load-balancer. To perform a management action on

128

4.2 Recovery Knowledge

an abstract entity, the action must be refined into sequences of actions
that could be applied to the individual entities which the abstract en-
tity is comprised of. Nevertheless, the abstract entity itself could also
be part of another abstract entity, for example, a web-hosting service
is a part of an online application platform. In Figure 4.8, all domains
can be regarded as abstract entities.

Despite their differences, we define them both as entities in general to
allow a unified definition and easy maintenance of such information,
since only one format is valid for both types of entities. Later on we
use algorithmic approaches to resolve their differences. Every ME is
identified by its unique ID (e.g., pcheger13) and has a type associated
with it (e.g., AppServer pcheger13). In planning parlance, the ME
corresponding to the plan objects that participate in a plan domain
as shown in Figure 4.8. Since varieties of MEs with different function-
alities may participate in a service, typing is required to identify the
classes of MEs which are mapped to the types of plan objects in a
domain.

• Actions. In planning, actions are activities that can change the state of
the underlying system. An action could only be selected and performed
if all its required pre-conditions are fulfilled by the current state of the
system. In the fault recovery planning problem, as defined previously
on page 87, recovery activities are state-changing methods and actions
that can be employed in recovery operations. Whereas in the formal
definition of a management action (on page 111), a management action
is characterised through multiple attributes, a subset of those aspects
is required to build a basic domain for planning knowledge. Basic at-
tributes such as action parameters, the associated management entity
and action description including pre- and post-conditions etc. need
to be included in the mapping process. Depending on the planners,
the rest of the attributes can be used to support advanced planning
features.

• Initial state & Plan goal. The current status of an underlying system
is denoted by the initial state description. For the planning of fault
recovery, the initial state is always a status of a service that contains
one or more fault conditions that hamper the targeted service deliv-
ering its functionalities. The plan goal represents the desired state
after a solution plan has been performed. In terms of service recov-
ery, the goal state denotes the management objectives that should be
met after the recovery plans are executed. Similar to that defined in
planning parlance, both the initial and goal state in service fault re-
covery are technically the subsets of service state, and thus could be
represented using the state representation definition of the recovery

129

4.2 Recovery Knowledge

knowledge description.

• Plan The product of a planning process is a set of actions in a partic-
ular orders, e.g., a plan. The formal definition of a recovery plan on
page 114 contains information on types of action and the ordering of
the plan. These elements could be directly translated from PDDL into
the plan model given in the definition. Besides the sequence orders of
the plan, the current model also considers actions that could be exe-
cuted in a parallel manner. The time conditions provide extra features
if, for example, temporal conditions and constraints are required.

Augmented Planning Knowledge Besides the basic planning knowl-
edge, advanced planning attributes could be added to a plan domain de-
scription to augment more sophisticated automated planning operations. In
terms of service fault recovery, we consider two types of attribute as aug-
mented planning knowledge: plan constraints and plan preferences. Both
attributes are introduced to improve the quality of plan results.

• Plan constraints PDDL has a concept of plan constraints (discussed
on page 124), which asserts the conditions that must be true in every
step of the planning operation. In terms of service fault recovery, such
constraints are frequently documented in management policies. For
example, in a management policy, it may state that during a fault
recovery, the network interface rt1-eth0 must not be affected and
should always be available; in PDDL this could be written as:

(:constraints (available (?rt1-eth0 - IFace)))

Additionally, temporal information could also be integrated as con-
straints, for example, if a plan execution time should be less than 10
minutes in total, this can be expressed in PDDL as:

(:constraints (< TotalTime 10min))

As soon as the planner sees the constraint, the listed conditions are
taken into consideration during the reasoning process.

• Plan preferences The concept plan preferences as discussed on page
124 can be regarded as soft constraints which express conditions that
do not have to be fulfilled at any costs. In terms of service fault
recovery, such attributes could be used to express the preference of the
service recovery planner’s user, for example, to express the preference
“failover site A is always preferred to site B ” could be written as:

130

4.2 Recovery Knowledge

(:constraints

(preference P1

(forall ?x - FailOverSite)

(always ?m - Site_A ?n - Site_B)))

In this way, during the planning operation, the action that involves
Site A is always preferred to another similar actions which involve
Site B whenever possible. But if this rule is violated and other failover
site is used in the plan, the results is still considered to be valid.
Additionally, plan metrics (discussed on page 123) could be used to
reinforce the plan results with preferences.

(:metric

(+ 5 (is-violated P1)))

The above example expresses that if preference P1 is violated, the plan
is punished with extra weight. If the goal of the plan is to minimise the
metric value while reaching the desired system state, increasing metric
value makes this plan less preferable than those plans with lower value,
even if they could transform the system into the same goal state.

Translation Algorithms Translation algorithms are implementations
of the translation rules. All discussed algorithms operate based on the input
files specified by the recovery knowledge specifications. The main purpose of
the translation algorithms is to identify the knowledge types in the input file
and to transform various attributes to the corresponding planning parlance.
The input of the translation algorithms is the recovery knowledge descrip-
tion file compiled according to the given specifications. The output of the
algorithms is the plan domain file and problem description file, respectively.

Plan domain scope. To extract plan domain scope from the recovery plan-
ning knowledge definition, input is required from the Managed Entity (ME)
and Dependency. The algorithm scans through the input file to determine
the plan domain as output. The scope includes the root service domain, in-
termediate sub-services domain and atomic objects as managed entities. As
discussed previously, a compound IT service may encapsulate sub-services
to sustain its functionalities. An intermediate sub-service may be a service
domain itself and contains further services or atomic objects; the roles of
a service domain and intermediate sub-service domain are therefore depen-
dent on the scope of a particular service and could be used interchangeably
according to the context. The atomic elements in a domain are those MEs,
on which the implementable actions could be directly performed. The in-
tertwined relationships between service, sub-service and ME are extracted
from the available dependency information.

131

4.2 Recovery Knowledge

Algorithm 3: Determining the Scope of Plan Domain

Input : Read knowledge definition file f
Result: Determine root plan domains dom, intermediate domains &

atomic objects

1 ReadInBuffer (f);
2 while !EOF do
3 Read (entity e in f);
4 if e→ dependency have no antecedent then
5 e is a root plan domain;
6 Write (e→ domain, dom);

7 end
8 else if e→ dependency have no dependant then
9 mark e as an atomic object;

10 Call object & type processing procedures;

11 end
12 else if e→ dependency has dependant & antecedent then
13 mark e as an intermediate domain;
14 Call object & type processing procedures;

15 end

16 end

Algorithm 3 shows the procedures to extract the scope of a plan domain.
The algorithm reads a knowledge description file in a buffer and determines
its scope by process entities and their dependencies. The algorithm differ-
entiates between three cases:

i.) If an entity does not possess any antecedent, it is noted as a root plan
domain scope (line 4 - 7).

ii.) If an entity does not possess any dependant, it is an atomic entity and
the algorithm calls other procedures to process the entity (line 8-11).

iii.) If an entity has both an antecedent and a dependant, it is an interme-
diate sub-domain (line 12 -14).

The algorithm terminates when all the entities have been processed. It
helps to build a hierarchical tree structure of a service landscape as the ba-
sis for further parsing operations. A tree represents a plan domain which is
represented by its root. All abstract sub-services are represented by internal
nodes of the tree and the leaves of the tree are atomic managed entities, on
which management actions could be directly performed. Note that in the
algorithm, the Write is written as a generic abstract process where actual
parsing operations need to be integrated into the writing process (which will

132

4.2 Recovery Knowledge

Algorithm 4: Translating Plan Objects & Types

Input : Entity e
Output: Write e typed object in specification file dom

1 if e is atomic entity then
2 e→ id as plan object obj;
3 e→ type as object type type;
4 find the root domain dom, s. t. e ∈ dom ;
5 Write (obj, type, dom);

6 else
7 e is intermediate domain;
8 get e’s dependant;
9 Call this procedure recursively until all descendants ei(∀ei ∈ e)

are atomic entities;

be discussed in the following sections) to translate specific knowledge into
planning language.

Plan objects & object types Algorithm 4 shows the translation procedures
for objects and their types into the planning language. The algorithm takes
the id of an atomic entity as an object name and its type as the class of
the object. The processed entity will be finally written in a corresponding
plan domain file as a typed object.

If the input e is an atomic entity, algorithm 4 extracts both the ID and
type of that object and writes them to the plan domain file as dom corre-
sponding entries (line 1 - 5). Otherwise if the input entity is an mediate
domain (a sub-service), it processes the sub-domain recursively until all its
descendants ei are atomic entities and processes them correspondingly (line
6 - 9).

Actions Corresponding to the types of managed entities, two types of man-
agement action need to be distinguished: abstract (non-primitive) actions
and executable actions. An abstract action is a management operation asso-
ciated with a service domain. Those are operations that cannot be directly
performed before they are resolved into specific implementable executable
actions. For example, the management action <Migrate Web Server A to

B> could be a recovery action associated with the web server management
domain, however, this action could not be directly implemented before it
is resolved into some specific implementable action such as copy content to
server B, change default IP address, start site on server, etc.

To denote an action in planning parlance, we need to translate the ID
of an action to symbolise an operation. An action is characterised by its
pre-conditions and post-conditions, which describe its required operational

133

4.2 Recovery Knowledge

states as well as its effect after it has been implemented. An action effect
could be a belief state of the underlying system where a particular man-
agement action is performed. Additionally, a management action usually
requires one or more parameters to be associated with that particular ac-
tion.

Algorithm 5: Translating Plan Actions

Input: Action entry a in file f
Result: Write a’s entries in plan domain file dom

1 if (a→MO) ∈ enon−atomic then
2 a is an abstract action (a task);

3 extract a→ apredescription, a
post
description as pre- & post-conditions of a

decomposable task;
4 extract a→ apara as a list of parameters of the task;

5 extract a→ asub−tasks as a task network;
6 write a→ ID as task name;

7 else
8 a is an implementable action;
9 parse a as a primitive executable action;

Algorithm 5 shows procedures for extracting action information from
an input file. It determines whether the given action is an abstract non-
primitive or executable in a plan domain; if it is an abstract action, it
extracts necessary information from the given specification and establishes
a partial sub-task network. The sub-task networks encode the procedures
for the further refinement of the abstract non-primitive action.

States. A state description enables the planner system to gain an overview
of the underlying service of its current states and, at the same time, allows
the desired goal states to be expressed in the same way. In terms of ser-
vice fault recovery, the current state is always the initial state with fault
for the planner, and the goal state depicts a recovered service defined by
an administrator. The corresponding translation algorithm should be capa-
ble of extracting individual states of managed entities involved in a service
domain.

The algorithm distinguishes two types of state description as discussed
previously. If the input state description is for an atomic managed entity,
the algorithm extracts its ID as the name of an object in a plan domain.
Then the type of object is to be determined with its ID, which could be
matched in the eatomic. Finally the algorithm extracts the states as a predi-
cate of this plan object in a plan domain. If the s is a state description of an
abstract entity, then the algorithm recursively extracts all states of involving

134

4.2 Recovery Knowledge

Algorithm 6: Translating State Information

Input: State description s in specification file f
Result: Write state definition in plan domain file dom

1 if (s→ ID) ∈ eatomic then
2 extract s→ ID as an object in a plan domain;
3 find type of ID;
4 extract s→ CURRENT STATE as predicate;
5 Write CURRENT STATE, Type, ID in dom;

6 else
7 s is description of state of an abstract service;
8 recursively extract all states from its dependants;
9 Write corresponding state with ID and Type in dom;

entities with their ID and types, and finally writes them to plan domain file
dom. The plan goal has syntactically the same form as the current state
description and can be expressed using predicates as well.

Plans A plan is a result of planning operations. Basically a plan is com-
prised of management actions with certain orderings. An advanced plan
could also include temporal information to express its execution schedule
and estimated total execution time. As the product of plan operations, the
translation should be from PDDL to the specification language. An action
in a basic PDDL form was introduced in the previous section (on page 122);
an algorithm to translate a plan is designed as shown in Algorithm 7.

In Algorithm 7, the output of plan file is parsed to extract information
to write into the specification file with format defined on page 114. In line
2-10, each action block is processed in the same order as given in PDDL.
Corresponding information entries are mapped to the entries of the specifi-
cation file spec plan. The asserted service states denote the expected states
that a service is in after the plan is executed; there are extracted and parsed
in line 11-12 and finally written in the target file. If temporal and cost con-
ditions are available, such as durations of action implementations and cost,
they need to be calculated as well to indicate the further attributes of the
computed recovery plan; however, this depends on the capability of planners
of handling temporal information or any numeric information during plan
composition.

Constraints & Preferences Management constraints and preferences can be
expressed in the plan definition language. However, in IT service manage-
ment, such terms are usually documented in legal papers such as SLA; to
automatically translate documents as such into a formal language is seman-
tically difficult, if not impossible. Therefore, if constraints and preferences

135

4.3 Recovery Planning Algorithm

Algorithm 7: Translating Plan

Input : A plan file pddl plan produced by planning algorithm
Output: Sequence of action specifications spec plan

1 Read Plan file pddl plan;
2 while pddl plan hasNextActionBlock do
3 get an action definition block a ∈ pddl plan;
4 extract a→ name as ID of an MgtAct;
5 extract a→ parameters as parameters of MgtAct;
6 extract a→ effects as effects of MgtAct;
7 if a parallelizable with previous action a′ then
8 Write a′ ‖ a in spec plan;

9 else
10 Write a′ ≺ a in spec plan;

11 get from pddl plan the asserted states states after plan is executed;
12 parse state and write in spec plan;
13 if time duration & cost of actions are provided then
14 calculate estimated duration of the plan;
15 calculate estimated plan costs;

must be considered in the planning, such terms could be directly edited by
domain experts and then stored for future use. Details on which constraints
and preferences could be expressed in the planning language are given in
the discussion on page 130.

4.3 Recovery Planning Algorithm

Having the language specifications and the translation mechanism of recov-
ery knowledge for planning operations presented, in this section we discuss
design issues regarding the planning algorithm, which is the core compo-
nent of the recovery planning framework. We lean on the HTN-based plan-
ning paradigm as our design guideline for the planning algorithm and argue
that hierarchical-based problem-solving mechanism is appropriate for ser-
vice fault recovery in IT management. We discuss at the beginning of this
section the rationale of choosing HTN-based planning paradigm from dif-
ferent aspects, such as reduced complexity of HTN-based problem-solving
techniques and expressiveness as well as easy extendability of an HTN-based
knowledge representations. We then propose a design of an algorithm called
the Hierarchical-based Hybrid Management Activity Planner (H2MAP).
Compared to the classical planning approaches, H2MAP allows planning
operations in a mixed initiative manner, where human operator can control
and guide planning procedures. Despite the current concentration on IT ser-

136

4.3 Recovery Planning Algorithm

goal state

initial state decomp. method

back track

initial state

goal state

Figure 4.9: Comparison of state- and HTN-based planning operations

vice recovery planning, H2MAP is designed to be generic enough for other
management operations. With an easily modifiable knowledge base, the
algorithm could be applied to other management areas, e.g., change man-
agement [TFL09]. We start the design of the algorithm with basic planning
functionalities and by observing all assumptions of the automated planning
theory discussion previously. Then more advanced capabilities are added
to the planning algorithm by relaxing certain restrictions and therefore in-
creasing the applicability of the planner.

4.3.1 HTN as Planning Paradigm

At the beginning of this chapter (Section 4.1), we dedicated an entire section
to the discussion of the modelling of the service fault recovery problem as a
planning problem. We also apply the problem reduction technique to show
the transformability between the service recovery model and the general
planning model. This justifies that automated planning can be used to
solve the service recovery problem. In this section, we go a step further to
determine a proper planning paradigm for the service recovery operations.

In Chapter 3, a list of different planning paradigms is presented in order
to give an overview of planning technology. For planning of fault recovery
operations, we selected the HTN-based paradigm as the guideline for de-
signing our planning algorithms. The working principles of the HTN-based
planning paradigm were introduced in Section 3.1.1 of Chapter 3. The ra-
tionale behind this decision is based on the following facts:

• Reduced Search Space with Hierarchical Problem Solving. It is well-
known that applying the hierarchical problem-solving approach to
complex problems with large search spaces can reduce the size of search

137

4.3 Recovery Planning Algorithm

spaces and therefore significantly increases the efficiency of problem-
solving processes [Min61, Kno91]. Both theoretical analysis and em-
pirical studies [Kno91, Kor87, SSD77] showed that the hierarchical
problem-solving technique can reduce the size of search space from
exponential to linear. The HTN-based planning paradigm utilises this
advantage by using concepts such as abstract methods, in which plan
actions are organised into different abstraction levels.

• Domain Configuration Capability. The principle of the HTN-based
planning paradigm applies highly reconfigurable planning knowledge
which allows experts to write the domain-specific knowledge to com-
pile a plan domain. Applying the domain-specific knowledge in the
planning composition process can greatly improve the performance of a
planning system [NGT04, SR02]. Despite the fact that domain-specific
knowledge is used in the HTN-based planning paradigm, the planner
itself still remains generic and domain independent, i.e. the planner is
not bounded to any particular application domain. For example, an
HTN-based planner could be used both in the planning operation for
a fault recovery domain as well as for the change management domain
with properly formulated planning knowledge. This feature makes an
HTN-based planner highly flexible and reusable in various application
situations. Most importantly, with configurable domain knowledge,
HTN allows a certain degree of hybrid planning, meaning a user of the
planning system is capable of influencing and controlling the planning
operation, so that human user and computational methods could work
cooperatively with each other.

• Expressiveness and knowledge reusability. The HTN planning paradigm
is more expressive than other planning approaches, e.g., STRIPS-style
planning [EHN95, NSE+98]. This advantage allows a HTN-planner
to be capable of representing a broader and more complex planning
problems and domains [EHN96]. Despite the efforts that are needed
to initialise a recovery knowledge base, all input knowledge in terms of
recovery methods and recovery actions could be mostly reused as long
as there are no fundamental infrastructure or policy changes. Reuse of
management knowledge brings efficiency by increasing the information
availability.

• Performance. Compared to other classic planning paradigms, such
as state-space based and plan-space based planning, HTN planning
can achieve significantly better performance through using domain-
specific decomposition methods [NAI+03]. Both theoretical studies
[GN92, ST01] and empirical experiments [BK00] showed that HTN-
based planners could quickly solve planning problems that are orders
of magnitude more complex than classical planning methods. Figure

138

4.3 Recovery Planning Algorithm

4.9 illustrates the difference between the state-space and HTN-based
planning operations. Instead of searching the complete state space by
randomly selecting actions that are adaptable to the initial state, an
HTN planner searches a set of adaptable decomposition methods (sym-
bolised with squares on the right hand of Figure 4.9) with integrated
partially ordered plan segments. Due to its hierarchical organisation
of tasks of different detail levels, the search space is greatly reduced
in this way. Furthermore, the chances to backtrack because of the
failure of the partial plan will be significantly reduced through using
hierarchical task networks.

• Applicability. The HTN-based planning paradigm has been widely
adapted in different application domains, such as high-critical mili-
tary operation planning, space explorations and industrial manufac-
turing. Those application examples were introduced in Chapter 3 on
related work. Multiple reasons have led to this wide acceptance of the
paradigm: first, the hierarchical-based approach to problem-solving
resembles how human operators resolve practical problems [SR02], in
which problem-solving steps are hierarchically organised in different
abstraction levels. Second, an HTN-planner allows more human con-
trol to influence and to optimise the planning process itself by integra-
tion of control knowledge [NSE+98], for example, restriction can be
integrated to decomposition methods in order to guide the planning
process. In this way, the plan results can be more realistic and appli-
cable to real-world planning problems where restrictive conditions are
common. Additionally soft constraints that represent preferences of
users of a planning system could also be integrated during the planning
operations.

• Extendability. The flexible domain configuration capability allows
experts to extend domain knowledge. New planning tasks, actions,
constraints (restrictive rules) etc. could be easily added to the do-
main knowledge. Moreover, compared to other planning paradigms,
an HTN-based planner is also easy to be extended to handle more
advanced planning requirements, for example, to integrate temporal
information for the schedule of the plan executions. The hierarchical
organisation of recovery knowledge with various detailed levels also al-
lows domain the designer to focus on the detail level within her domain
of expertise. For example, a domain expert, who is more familiar with
management policies and SLAs, may concentrate on design abstract
planning knowledge such as constraints and high-level tasks.

• Paradigm Maturity. The concept of the HTN-based planning paradigm
has endured as a research topic for many years. Theoretical and prac-
tical experience achieved along the way have significantly improved

139

4.3 Recovery Planning Algorithm

Failover

Setup

EnvironmentReplication

Data
Switch TrafficTest

Connectivity

Storage

Capacitiy

OS

Types

Change

Routing Info

Suspending

Current Service
Running

Config Script

Replicate

env. Variables

Test

Connectivity

Test

Data Avail.

Test

Application

User

Data

Operational

Data
2

3

1

Check Remote

Site

Figure 4.10: An Example of Failover Operation

the planning paradigm. Such improvements are essential driven fac-
tors towards a mature planner. The maturity of HTN-based planning
approaches can be evidenced by their wide applicability in different
areas [NAI+05].

The aforementioned facts are evidently enough to justify our decision to
choose the HTN-based paradigm as our guideline for designing the planning
algorithm for service fault recovery operations. When IT services become
more intricate, management of such services also becomes a challenging task.
To address this issue, one frequently employed approach is to break the man-
agement tasks into units with manageable sizes. Actually the hierarchical-
based approaches have been frequently used in modelling and engineering
technical systems, for example, the B-Method [Sch01, AA96] has been fre-
quently used by system designers and engineers to model, understand and
design technical systems, such as complex control architectures [LT04]. In
the network management area, hierarchical-based approaches have also been
applied [FLSDT10].

Composing a feasible recovery plan during a service being impacted by
faults is a challenging task for a human administrator. Not only does he
have to find a series of recovery actions that may transform the current
state of a faulty service into an operational state, he also needs to consider
factors such as the constraints of using resources, temporal conditions etc.
The constantly growing size and types of services can only exacerbate such
difficulties. To show the complexity of recovery actions, Figure 4.10 shows
a recovery step - failover.

In this example, the task failover is designed to migrate the current ser-

140

4.3 Recovery Planning Algorithm

vice to a remote stand-by system in order to guarantee service continuity
in cases of fault. As shown in the figure, failover is an abstract recovery
operation because it must be decomposed into specific tasks in order to be
implementable. Each layer in the diagram represents a refinement opera-
tion and reveals more specific operations or actions that must be taken in
order to implement their parent tasks. The final executable plan is shown
in the last layer of the diagram (layer 3) where sequences of partial-ordered
actions are organised into an executable plan. The failover example is a
very simple recovery operation to ensure service continuity; however, from
this simple example, we can see that even such a common recovery proce-
dure can be refined and decomposed into a myriad of executable actions
before it could be implemented. Additionally, the failover operation can
merely be one of many recovery steps in order to achieve a recovery goal;
in a real-world situation, many more similar operations must be integrated
into a recovery plan which augments the difficulties of composing a feasible
recovery plan manually, especially for time-critical management operations
such as recovery. To choose failover a possible recovery action, one has
to consider the set of pre-conditions that must be fulfilled, for example, a
remote failover site must be designated before this task is chosen, e.g., in
the state description the pre-condition remote site availability must be true.
Not only pre-conditions could determine the usage of a certain action, other
restrictive conditions could also affect the decision of whether a particular
action could be chosen, for example, if there is a restrictive condition which
states that the cost of the resulting recovery plan must not exceed a certain
amount and if the application of the failover task will violate this policy
then it cannot be chosen.

In parlance of HTN-based planning, the operation failover can be viewed
as a compound task with multiple levels of decomposition operations. The
knowledge about how to decompose such high-level tasks into executable
tasks can be encoded in a data structure called decomposition methods or
just simply methods. Specifically a method contains a partially ordered
tasks network, which prescribes how a particular high-level abstract task
could be refined into more specific tasks. Besides, a method as defined in
the HTN approach, also includes the information about the pre-conditions
under which this particular method could be chosen as a candidate of a
plan. A method represents and encodes standard procedures, best practices or
empirical experiences of management knowledge of conducting a particular
high-level abstract management operation.

Figure 4.11 shows the operation failover in a perspective of task net-
works. Each compound high-level tasks must be decomposed into more spe-
cific tasks by applying appropriate methods. The gray line drawn across
the decomposition process represents the selected method just as previ-
ously discussed. The primary task for a HTN-based planner is therefore

141

4.3 Recovery Planning Algorithm

Figure 4.11: An abstract view of the failover operation based on HTN

to find a set of proper decompositions methods during its operation pro-
cess. An advanced HTN planner should also be capable of observing any
constraints and/or conditions that should be considered by composing a
recovery plan, just like human administrators frequently do. A simple de-
composition method has the following structure:

(

:method <ID/Header>

:parameter <param1...paramj>

:preconditions <
⋂

prei, where i = 1, ..., n>
:task-networks <t1 � t2... � tm>

)

A decomposition method is identified by a name ID which is also commonly
known as a header in planning parlance. Note that a method name could
be shared by different methods, which have distinguished pre-conditions and
different decomposition networks. ID is followed by a list of required param-
eters. The pre-conditions of the method denote under which circumstances
a particular method could be employed. The task networks show how this
abstract method could be decomposed or refined into more specific tasks.
Note that in our fault recovery knowledge specifications, we also categorise
recovery actions into two types: atomic and compound actions. Algorithm
5 (page 134) is designed to automatically identify and translate the recovery
actions from recovery knowledge specifications into corresponding planning
formats. The parsing and translation results of the failover operation in
PDDL is shown in the following:

(:method failover

:parameter ?failOverSite - Site

?currentSite - Site

?sIFACE - NetworkInterface

?tIFACE - NetworkInterface

?userDataLocation - DataLocation

?operationDataLocation - DataLocation

142

4.3 Recovery Planning Algorithm

?setupScripts - DataLocation

:preconditions(and

(avail ?failOverSite)

(OSRunning ?currentSite)

(conn ?sIFACE ?tIFACE)

)

:task-networks (ordered

(checkRemoteSite ?failOverSite)

(dataReplication

?userDataLocation ?operationDataLocation)

(setupEnv ?setupScripts ?failOverSite)

(test ?failOverSite)

(switchTraffic ?currentSite ?failOverSite)

)

The above code snippet shows how the decomposition method could
be represented in PDDL. Note that for the sake of conciseness, the pre-
conditions and parameters are simplified in such a way that an overview
could be easily given in this context; a real-world operations description
encoded in the planning method as well as actions would surely be more
complicated in terms of number of parameters and more restrictive pre-
conditions.

4.3.2 Fundamental Planning Algorithm Design

Having examined the advantages of applying the HTN-based paradigm as
the design guideline, in this section we propose the design of a planning al-
gorithm for IT service fault recovery. We start with the discussion of a näıve
version of the planning algorithm which observes all the restrictive assump-
tions presented previously in section 4.1.2 on page 90. The purpose of the
näıve version is to show the design idea and working principles of an HTN-
based planning algorithm by fault recovery planning. Then we present the
next version of our planning algorithm with considerations of restrictive con-
straints such as temporal constraints and other numeric conditions like costs
of the recovery steps. With consideration for the temporal constraints, we
are allowed to integrate the scheduling feature into the planning algorithm.
Finally, we consider the changing planning environment, e.g., underlying
target systems are more likely to change rather than stand still. Finally, we
propose ways to deal with such system dynamics as uncertainty information
in planning.

143

4.3 Recovery Planning Algorithm

Algorithm

In this section we propose the design of an initial version of the Hierarchical-
based Hybrid Management Activity Planner (H2MAP) for fault recovery
planning. As its name suggests, the planner shall possess the capability to
take plan instructions from its user; therefore the planning operation is done
in a hybrid manner. We refer to H2MAP at this stage as a fundamental ver-
sion, since its current design observes all of the aforementioned assumptions
regarding the planning domain and the underlying target system. However,
the ultimate objective of the planner is to compute a recovery plan which
is a set of recovery actions that could be implemented on the target system
according to the observed current states. Selected actions, when executed,
shall transit the current system to a pre-defined goal state by completing a
set of pre-defined high-level tasks. Since we approach the planning issues
in an incremental manner, the first design of the planning algorithm shall
fulfill following requirements at this stage:

• Given a set of decomposition methods and initial tasks, the planner
should find one or more plans which satisfy the desired goal state
description.

• The ordering of the resulted plan sequence shall be retained as order-
ings of the plan execution. The plan ordering currently considered is
strictly sequential.

• Users of the planner shall have the opportunity to give high-level ab-
stract tasks to control the directions of plan operations.

Details on the Algorithm

The algorithm H2MAP describes a framework of the computational op-
erations of the planner, which is the core part of the recovery planning
architectural framework. The operation of Algorithm H2MAP is based on
several input data, including:

• Initial task list Tinit, which allows input of initial task or tasks to be
decomposed; such initial tasks list can include both atomic actions
and abstract (compound) tasks. It provides the user of the planning
system with the opportunity to determine and control the planning
operations.

• To conduct the planning operation, the planner needs to perceive the
current state of the target service or system. This vital piece of infor-
mation is described by the planning parameter i0 which describes the

144

4.3 Recovery Planning Algorithm

Algorithm 8: H2MAP : A HTN-based Planner

Input : Tinit ⊂M : initial task(s);
i0: description of current systems state;
ig: description of desired goal state.

Data: M : a set of disposable methods and a ∈ A: atomic actions,
where (

∑n
i=1 ai,u) ⊆Mu.

Output: One (or more) ordered fault recovery plan(s) Π, where
Π =

∑m
j=1 aj or fails with no valid Π.

1 Π← current plan, initiated with ∅;
2 if Tinit contains only primitive tasks then
3 Π = Tinit;
4 if GoalTest(Π, ig, i0) then
5 return Π;
6 else
7 return Failure;

8 else

� Comment: tests the solution hitherto �
9 if GoalTest(Π, ig, i0) then

10 return Π ;

11 else

� Comment: goal test fails and Tinit = ∅ �
12 if Tinit = ∅ then
13 return Failure;
14 else
15 Select t0 ∈ Tinit ;
16 if t0 is a decomposable task then
17 Find (M, i0) ⇒ m ∈M ;
18 Apply(m, t0) ⇒

⋃n
i=0 t

i
0 ;

19 change the (belief) state of the target system to i′0 ;

� Comment: Recursive call �
20 H2MAP (

⋃n
i=0 t

i
0, i′0,ig);

21 else

� Comment: In case t0 is a primitive task �
Π← Π

⋃
t0;

22 Apply(t0, i0) ⇒ i′0 ;
23 H2MAP (Tinit \ t0, i′0, ig);

145

4.3 Recovery Planning Algorithm

initial/current state of the system. Syntactically the state informa-
tion is represented using the schema proposed in section 4.2.2 on page
108. Algorithm 6 (page 135) prepares the obtained information by
translating it into the PDDL language which is ready for the planning
operations. As discussed previously on page 104, the state information
can be either obtained from components by automated means such as
through monitoring mechanism or by input from operators.

• The desired state of the system after the computed solution is con-
ducted is denoted using the planning parameter ig. This parameter
is above all necessary for controlling the correctness of the planning
results during the planning process through comparisons with the (par-
tial or complete) computed recovery plan.

The above inputs can be classified into category infrastructure knowledge
as discussed previously in section 4.2 on page 102. However, in order to
conduct successful planning operations, the planner needs to be supported
with the recovery knowledge to sustain its planning operations. Such data
is termed as management knowledge. A related discussion was conducted
in the previous section (4.2) as well. Basically H2MAP necessitates two
types of supporting knowledge:

• A set of decomposable tasks M . The set M contains abstract recovery
tasks that can be selected by the planner during its operation. The
syntactics of method descriptions is given in section 4.2.2 (page 111).
The translation of planning methods into the planning language is
illustrated in Algorithm 5.

• Set of atomic (primitive) actions. Primitive actions are those that are
directly implementable on the service. They are fundamental elements
of a final recovery plan that is implementable on the impacted service.
Their syntactic format for the input and translation algorithms are
given in section 4.2.2 and Algorithm 5 as well.

This supporting information is an essential part of a recovery knowledge
base. The planner needs to constantly query and consult those data during
its operation in runtime so as to choose the right decomposition methods
and actions to perform. We separate them from the standard input of the
H2MAP since, compared to the other input, they play merely an assisting
role as invariant factors, despite their essentiality for the planner.

The final output is one or more executable recovery plans Π which are
the results of decomposition operations. It contains a set of total-ordered
executable atomic actions. A total-ordered plan implies that each action
in the plan is bounded to an ordering relationship (�) and the execution
sequence of the plan is exactly in the ordering of the actions in the plan.

146

4.3 Recovery Planning Algorithm

The H2MAP algorithm starts with an initial empty plan Π. The plan-
ner first scans through the input and verifies the input initial task(s) Tinit
to determine if it only contains primitive actions. If this is the case, no
decompositions are necessary. The planner conducts a goal test operation
based on the initial task(s). The goal test should determine if the goal state
of the target service or system could be reached with the initial task(s) in
the plan. In case the goal test was passed, the initial task is returned as
the solution plan Π, else the algorithm returns failure. This is the simplest
case in the planning operation; where the sequence of primitive actions is
already chosen by human operators, the planner just does a sanity check of
the provided plan to assert the correctness of the solution.

Procedure GoalTest(Π, ig, i0)

1 foreach t ∈ Π do

� Comment: t satisfies current state i0 �
2 tprecond |= i0 ;

� Comment: apply t and change state �
3 Apply(t, i0);

� Comment: update current state i0 �
4 i0 = teffects

⋃
i0 \ teff ;

5 if i0 |= ig then
6 return True;
7 else
8 return False;

The GoalTest procedure checks the given plan to determine if the actions
comprised in the plan could eventually lead to a system state that satisfies
(|=) the desired goal state (ig). The assertion is conducted by updating
the current state of the target service with the effects of t and excluding
the changed states. The assertion process loops through the plan until no
atomic action in the task list remains. The final asserted service states,
which are reached by applying the actions, are compared with the desired
goal state ig; if all desired states are fulfilled then the procedure returns a
boolean value True, otherwise it returns a False signifying that the given
plan cannot fulfill the given planning objective.

Starting with line 9 in Algorithm 23, H2MAP processes and decomposes
the compound tasks accordingly. Line 9 and line 10 apply the GoalTest
procedure as introduced above to test the partial result during the planning
operations. In case the partial result could already fulfill the goal state, then
no further decompositions are necessary. The planner stops its operation and
returns the current partial plan as the final solution. H2MAP also halts if
there are no more tasks in the Tinit and the goal state is still open; in this

147

4.3 Recovery Planning Algorithm

case, the planning operations failed with no valid plan.

In line 15, the algorithm selects the next open task in Tinit and deter-
mines if it is a decomposable task. If positive, the algorithm tries to find
proper decomposition methods in order to refine the abstract task into more
specific ones. A method uses task networks to guide the refinement opera-
tions. A decomposable task mi is said to be applicable if mpre

i ⊆ i0, meaning
the pre-conditions of the method m satisfy the current states of the observed
service.

Procedure Find(M , i0)

1 try mi ∈M ;
2 if mpre

i |= i0 then
3 choose mi as a solution candidate ;
4 else
5 proceed to next method, if M 6= ∅ ;

The Find procedure shown above illustrates how a proper decomposi-
tion method is chosen for the further planning process. In addition to the
fulfillment of the pre-conditions of a chosen method by the current state de-
scription, in order to be chosen by the algorithm, a decomposition method
must be relevant to the task. More specifically, relevance implies that there
is a substitution θ, so that θ(task) = mi, meaning a task mi is relevant to a
compound task if they are unifiable under the substitution θ. The conditions
for a method m to be selected as a proper decomposition are summarised
below:{

mpre
i ⊆ i0, current state i0 satisfies pre− conditions of mi;

θ(t) = mi, whereas θ is a substitution.

Line 18 and line 22 in H2MAP , the Apply procedure is used to update
and to assert new belief state of the system as soon as a suitable method has
been chosen. The current state information i0 is correspondingly updated
and used as a parameter in the recursive call of the algorithm. If t0 is a
primitive task, then it is added to the plan Π as an executable plan action
and current state i0 is updated according to the effects of the selected action.
The open tasks in Tinit with the updated current state description i′0 and goal
state ig are passed as parameters to the recursive call of H2MAP . Note that
in H2MAP , the computed result plan is total ordered. In HTN parlance,
a result plan is said to be totally ordered, if all of its sub-task networks
are totally ordered. The execution of recovery actions will be exactly in
the sequential order of the plan, e.g., optimisation mechanism in the plan
such as parallel execution and interleaved plan execution is currently not
considered in a total-ordered plan.

148

4.3 Recovery Planning Algorithm

...Methods

Further

Decompositions

Further

Decompositions

...

...

...
...

...

Find Find

Find

t1 t2 tn

Tinit
Select ti ∈ Tinit

t2a,1

tmnt21t11

mi ∈M mi ∈M

mj ∈M

t1a,1 tia,j

t22 tpa,qt1a,2

Figure 4.12: Illustration of H2MAP Operations

Figure 4.12 illustrates the operations of the H2MAP algorithm. The
light-coloured cycles in the diagram represents decomposable tasks (e.g.,
tmn) and dark-coloured tasks represent non-decomposable atomic actions (tia,j
where the a in the subscript denotes an atomic action), which are elements
in the final recovery plan. Each shaded area illustrates a branch of recur-
sive planning decomposition operations with corresponding decomposition
methods. The Find function queries the method repository, which is part
of the planning knowledge based introduced earlier. Decomposed tasks are
total-ordered sub-plans with either a set of atomic actions or decomposable
tasks or a mixture of both, as illustrated in the diagram.

Note that, to guarantee the termination of the algorithm in any case,
we explicitly prohibit the recursive definition of a decomposition methods,
meaning a method containing the same decomposable task is called by his
predecessor which could lead to infinite recursive calls of decomposition.
Such a situation makes the whole planning problem undecidable if not ex-
plicitly prevented. If we observe the decomposition structure as a tree, the
recursive-free requirement leads to an acyclic tree structure.

4.3.3 Assured Properties of the Algorithm

Formal discussions regarding algorithmic properties of H2MAP are nec-
essary to show its general characteristics. We approach such analysis by

149

4.3 Recovery Planning Algorithm

investigating two algorithmic properties: soundness and completeness.

Soundness. Theoretically the soundness property of an algorithm implies
that the algorithm returns only valid solutions to an input problem. In
other words, any solution provided by a sound algorithm is expected to
be correct. This is a fundamental property that a reliable algorithm must
possess. A valid solution in our case is a plan comprised of a sequence of
implementable actions, which can transform the current service states into
a set of desired states. If γ is a transition function, Π and ı0 are the solution
plan and initial situation, respectively; a valid (correct) solution to planning
problem P satisfies the following conditions: γ(i0, Π) → ij . If ig ⊆ ij , we
say that the plan solution Π is a valid solution to the planning problem
P . Such correctness of the plan solution is examined by the TestGoal

procedure in the suggested algorithm, which asserted the state of the system
after the decomposition operations have been done, meaning there are only
implementable actions that remain in the plan. The TestGoal procedure
only releases the valid solutions if the solution satisfies the desired goal state,
otherwise it returns failure. The soundness of the algorithm is therefore
guaranteed by the choice of HTN-based approach.

Completeness The completeness of an algorithm suggests that if no so-
lution can be found by the algorithmic procedure to a particular problem,
then no solution to that problem exists. As long as a valid solution exists for
the problem, an algorithm, which satisfies the completeness property, will
find that solution for the input problem. In the case of H2MAP , we show
that the planning algorithm always finds a solution plan when one exists for
the input problem based on the method repository M . We apply the com-
plete induction proof to show the completeness of the H2MAP algorithm;
more specifically we induce the size of the decomposition method repository
in order to substantiate our claim that the algorithm is complete with any
size of M . In other words, if |M | = n denotes the size of a decomposition
method repository M , we induce n in our proof.

|M | = 0: In the base case, the size of the method repository is zero,
representing the situation that no decomposition method is available. In this
trivial case, the algorithm always returns Failure and there is no solution
to the given planning problems either. Thus, the algorithm is complete.

|M | = 1: Under a situation in which only a single decomposition method
m is available, the method could be either selected in the planning process as
a valid decomposition or discarded by the algorithm. In both cases, the algo-
rithm will return deterministically a positive or negative result accordingly.
In the latter circumstance, the algorithm will deterministically return False

as a result, since there is no further method currently disposable to the algo-
rithm. If the method is chosen by the algorithm, exactly two possible results

150

4.3 Recovery Planning Algorithm

will follow: If the result of the decomposition contains only executable prim-
itive actions and the GoalTest procedure in the algorithm returns a True

as an answer, then H2MAP returns the decomposition result as answer to
the planning problem. Otherwise, if the decomposed network contains other
non-primitive tasks or the GoalTest procedure failed, a negative answer is
guaranteed. Thus, in any case the algorithm is complete.
|M | = n: We construct the inductive hypothesis by assuming that with n

decomposition methods available, the algorithm will return correct answers
if there is a valid plan solution available based on the disposable meth-
ods and will terminate with false otherwise. In other words, the algorithm
H2MAP is complete under the condition |M | = n.
|M | = n + 1: In the induction step, we show that the algorithm is

complete with a method repository of size n+ 1 as well. Note that methods
cannot contain any non-primitive task which could lead to violation of the
acyclic property of task networks. As discussed previously, this violation
could cause non-terminating behaviours of the planning algorithm. To proof
is the following lemma:

Lemma 1. The algorithm H2MAP is complete if |M | = n+ 1.

Proof. We show the completeness property of the algorithm H2MAP by
means of proof by contradiction. First, we assume that Lemma 1 is false
and the algorithm is incomplete if the size of method repository M is larger
than n. In this proof, we apply the previous induction assumption that the
algorithm is complete when |M | = n.

Suppose P is the planning problem we intend to solve using the algorithm
with n + 1 optional methods in the repository M ′. By computing plan
solutions, the algorithm either provides solutions or exits with failure. We
discuss these potential results in a case-by-case manner.

If H2MAP returns a failure, it signifies that no solution could be pro-
vided by the algorithmic procedures. However, due to the incompleteness
of the H2MAP as we assumed, suppose there would be a solution based on
the current decomposition method repository M ′ (with size n+ 1) which is
unknown to the algorithm. We argue that such a situation will not occur,
since it contradicts our previous hypothesis that H2MAP is complete when
|M | has size n; a subset of M ′. Obviously the additional method in M ′ could
either contribute to the solution or be discarded by the algorithm during the
planning process; nevertheless, it does not influence the completeness of the
algorithm in both cases. The reason is obvious if the additional method
is discarded during the computation (not contributing to a potential solu-
tion), then we have a repository with size of n, which is |M |. In case it
contributes, the additional decomposition method will be applied as part of
plan solution, if there is any; a situation in which the completeness of the
algorithm is not violated as well. In the current case, the algorithm returns
with a failure implying that the additional method does not contribute to

151

4.3 Recovery Planning Algorithm

the planning process. Therefore, we have the case |M ′| − 1 = |M |. Since
the algorithm is complete with |M | = n, we can therefore conclude that
the assumption, in which a plan solution is missed by the algorithm with
|M ′| = n+ 1, contradicts our hypothesis.

In a further case, in which the planning problem indeed has no solution
based on M ′ and the algorithm returns with a failure, then the algorithm
automatically provides a correct result with n+ 1 methods in this case and
contradicts the assumption that the algorithm is incomplete. In a similar
case, the planning problem has valid solutions based on |M ′| and the al-
gorithm returns positive answer, which contradicts the assumption of the
incompleteness as well. In a final case, the target algorithm returns a valid
solution based on M ′ where the planning problem has actually no valid
solution, which is obviously an implausible situation by nature; a further
discussion of this case is thus not necessary.

To summarise, in the above proof we show on a case-by-case basis that
by a method repository M ′ with size n + 1, the assumption that the sug-
gested algorithm is incomplete could be contradicted in all possible cases.
Therefore, we show that Lemma 1 holds.

With the above proof, we conclude that the algorithm is also complete in
the induction case when M = n+1. Therefore, we argue that the algorithm
H2MAP is complete with any size of a method repository M .

4.3.4 Augmentations for IT Recovery Planning

With the basis planning algorithm H2MAP in place, we develop in this
section several extensions to extend the capabilities of the planner. With
those extensions, we also try to relax several previously discussed restrictive
assumptions generally imposed on the planner. The extensions of the al-
gorithm concentrate on the temporal conditions as planning constraints as
well as the planning in a stochastic domain.

Temporal Enhancements

Time plays a critical role in the fault recovery procedure of IT services, for
example, a practical plan should conform to deadlines that set by service
level specifications which are negotiated and signed between the provider
and customer of the service. Violation of such time constraints will cause
penalties on the service provider, albeit the recovered service. On the other
hand, if every recovery action is extended with time conditions, we could
exploit such information for optimising of the execution of the plan, pro-
vided that conflicts on the resource usages between actions are excluded.
Furthermore, equipped with temporal knowledge, we could conduct reason-
ing operations to examine the consistency of actions in a recovery plan. An

152

4.3 Recovery Planning Algorithm

extension of the temporal reasoning capability is essential for a practical
planner. Our temporal enhancement of the H2MAP planner will concen-
trate on the following aspects:

• Dealing with plan deadlines as plan constraints. With a time-critical
service recovery operation, deadlines are usually defined to constrain
the time needed for the recovery. In such cases, not only must a planner
find a functioning recovery plan, it also has to observe the designated
time windows of the recovery activities. In a very strict circumstance,
any plan that violates the given deadline will be valuated as not useful.

• Integrating an advanced temporal reasoning mechanism to enable the
partially ordered plan structure. In the basis algorithm, we assumed
that all the partial plan networks involved in the operations are total-
ordered, which could be a limitation when the planner is used in real-
world situations, where an deal plan may include constructs such as
parallel execution of the recovery actions when there are no conflicts
or sharing of participating resources. We discuss therefore in the fol-
lowing section a planner extension which could process such structures
during the planning operations.

• Securing temporal consistency of the plan actions. A consistent plan
is the one without temporal conflicts between involved actions. To
guarantee the applicability of a recovery plan, it is mandatory to en-
sure the temporal consistency of the plan. If we regard a plan as a
network of operations with a set of particular ordering constraints ex-
isting between pairwise operations, a consistency check ensures that
no constraint is violated plan-wide.

Planning with Deadlines Before the operation of the planner, a dead-
line can either be given by the user of the planner system or be extracted
from other management-related documents like the SLA. A deadline can be
regarded as a temporal constraint with beginning time-point and end time
points. As long as a recovery deadline is given, the total amount of time
that a valid plan requires should be within the defined time period. This
imposes extra requirements on the planner to reason about time during its
operation; the result should not only be a viable solution, but also a valid
solution.

The idea of taking pre-designated deadline into consideration is to prop-
erly propagate the time constraints during the planning process into a task
network hierarchy. A deadline defines a left and a right time boundaries of
the whole plan, which can be written as an interval [ta, te], where ta denotes
the start time reference point and te is the required end time boundary of
the recovery activity. The total time cost of a valid recovery procedure must

153

4.3 Recovery Planning Algorithm

propagate

...

[ta, te]

a11 a21 a31

t2 tnt1

Tinit@[ta, te]

Σ3
i=1a

i
1,duration

Figure 4.13: Illustration of time constraint processing

fall within the given time interval. During the planning operation, the se-
lected tasks are decomposed into either further tasks or primitive actions.
To facilitate such temporal capability, it is essential to give each primitive
action a proper duration, which represents the time cost of that action.
In the previous discussion, we integrated the time factor into the knowl-
edge model of recovery knowledge, specifically as part of the information of
the primitive recovery action. In the PDDL knowledge model, the actions
with explicit time requirement are denoted as durative actions, to which our
knowledge model could directly be mapped using the translation procedure.
Note that we do not encode the time information into decomposition meth-
ods intentionally in order to retain the flexibility of writing decomposition
methods.

We use ati,j to denote that the time requirement of the action ai is t time
unit. Note we use the generic term time unit rather than specific terms,
such as second, minute or hour alike, in order to keep the discussion gen-
eral. Together with previously defined time boundaries [ta, te], we say a plan
satisfies its deadline constraints if ta <

∑n
i=1 a

t
i 6 te, given a plan solution Π

with |Π| = n. As the planning operation progresses, the deadline is propa-
gated in terms of time constraints through sub-task networks. All accounted
sub-tasks inherit the time boundary from the initial input and pass along
it decomposition paths. Additionally, after each successful evaluation, the
right-side boundary of the time constraint is modified in order to the keep
the time limits up to date. A side-effect of processing temporal constraints
is that, during planning, if the planner found that the actual time cost of a
partial plan solution already surpasses the deadline, it causes the planner to
backtrack and try to find alternative decomposition paths that can satisfy
the given time constraints. The planner follows the principle of the lazy
evaluation, which means that as soon as the violation of time constraint is
found in a method during the operation, regardless how many sub-tasks or
primitive actions in that method still remain to be evaluated, an immediate
backtracking is triggered. The time constraints actually make the planning

154

4.3 Recovery Planning Algorithm

operation more restrictive but bring the basis planner a step closer to a
real-world operation scenario. The propagation paths of the constraints are
symbolised with gray arrows showing the direction of the progresses.

Figure 4.13 shows a partial progress of constraint propagations in the
HTN network. A vertical propagation pushes the given constraints through
hierarchical levels until the level with primitive actions aji is reached. As
soon as the level with primitive actions has been reached, the algorithm
begins to calculate the time cost required by each primitive actions in the
level. The updated constraints after successful evaluations are propagated
to the next task for further processing. The TemporalConstraint procedure
describes related activities to process deadline constraints.

Procedure TemporalConstraint(ati, Π)

1 ∆ = atj ;

2 t′e = ta + ∆ +
∑n

i=1 a
t
i, ∀a ∈ Π;

3 if t′e ≤ te then
4 aj is valid for Π;
5 Π = Π + aj ;

6 else
7 backtrack to the higher level task t, where aj ∈ t;
8 find an alternative decomposition path;

In the TemporalConstraint procedure, an plan action aj under question
and the current (partial) plan Π are used as parameters. The time cost of
aj is extracted and noted as ∆ to the time costs of the current plan. We
used t′e to record the consumed time that can be satisfied by the current
plan Π. Note that the t′e is computed based on the beginning time reference
point ta in the constraints. A comparison with the given deadline te is then
conducted to see if the current actual time cost t′e violates te. With a positive
evaluation, the action aj is inserted into the current plan as a valid action;
otherwise the procedure triggers a backtracking operation. The backtracking
process invalidates the high-level task, with which the action aj associates,
due to the violation of the given time constraint. A new search for an
alternative decomposition method is triggered in order to find another plan
path. Finally, to put the deadline reasoning mechanism into practice, the
durative keyword must be appear in the description by preparing the plan
domain knowledge with PDDL.

Integrating the Advanced Temporal Reasoning Capability Ideally,
timely-optimised recovery plans usually includes not only sequential durative
actions but also parallel activities to shorten the recovery time in general.
However, our HTN-based planner H2MAP currently merely considers the

155

4.3 Recovery Planning Algorithm

si

[dimin, d
i
max]

ei

ai

sj ej

aj [djmin, d
j
max]

[0,∞] ⇐⇒ ai ≺ aj

Figure 4.14: An example of detailed STP structure of HTN actions

totally ordered plans. That means the solution provided by our planner
may solve the input problem, nevertheless, the solution is not temporally
optimised. As a motivating example, consider a recovery plan involving two
tasks ReInstallDatabase and ReInstallWebServer. Obviously if these two
activities do not share the same or have any conflicts in resource usages, they
are temporally independent from each other; thus the plan would be more
efficient if they are conducted in parallel. Otherwise, special constraints
must be used to prohibit parallelism. To deal with such a situation, which is
common in real-world operations, we suggest in this section an integration
of advanced temporal reasoning capability as a further extension to our
H2MAP planner.

To tackle the aforementioned issue, we suggest using the Simple Tem-
poral Problem (STP) [Dec03], which is a constraint satisfaction problem
specifically tailored for efficient temporal reasoning. We propose the inte-
gration of STP as an extension of our HTP planner to support both durative
actions as well as parallel solution plans.

As defined in [Dec03], an STP problem is a triple (X, D, C), where X
is a set of time point variables, D defines the domain for every variable and,
C is a set of binary constraints which are applicable between elements of
X. An extra constraint [aij , bij] ∈ C confines the relative distance between
two time points by requiring aij ≤ tj − ti ≤ bij . Any temporal orderings
could be represented either with qualitative representation or quantitative
representation. Detailed information on both types of temporal represen-
tation is given in [Vil82, All83, VK86]. A qualitative ordering constraint
between two time points, ti and tj can be expressed as [aij , bij] = [0, ∞].
In order to sustain durative as well as parallel actions, we give every plan
action start and end time points. Temporal relationships between these time
points reflect quantitative and qualitative ordering constraints between plan
actions.

We apply an STP data structure to capture not only qualitative ordering
but also quantitative temporal relations. In Figure 4.14, two actions ai and
aj with their start time points and end time points. A qualitative ordering
constraint [0,∞] is imposed between ai and aj , which orders aj after ai.

156

4.3 Recovery Planning Algorithm

sj ej si ei

aj [dj]

sk ek

ak [dk]

Ts Te

Ts

ai ak

aj

Te

ai [di]

[0,∞], ai ≺ ak

Figure 4.15: STP with workflow representations of HTN plans.

Durations of each action are given by the respective [dmin, dmax] between
the start and end time points. This illustrates how a solution plan and
associated STP are related to each other. Figure 4.15 illustrates STP and
corresponding workflow representations of the HTN plans. In the upper
part of the figure, an STP is shown with global start (Ts) and end time
points (Te). Both qualitative and quantitative relations are considered in
the STP diagram. The duration of actions ai, aj and ak are denoted as
d{i,j,k}, respectively. A qualitative temporal ordering [ai ≺ aj] is enforced
by the constraint [0,∞] between ai and ak, stating that actions ai must
precede ak. The lower part of Figure 4.15 represents the translated plan
from STP with parallel executions. Note that as shown in the STP diagram
in the figure, the action aj is temporally unconstrained.

As a recovery plan is continuously decomposed and refined by the algo-
rithm, temporal constraints are added to the associated STP. Every plan
Π has a corresponding STP with start and end time points associated with
it. Ts and Te denote the global start and end time points, respectively.
Each time a task is decomposed by a selected method, all temporal con-
straints between its sub-tasks are posted to enforce the ordering structure
of the sub-workflow as encoded in the decomposition methods. As a task is
accomplished by a set of operators, the task’s temporal properties are inher-
ited by the operators. A durative action ai with duration d can be encoded
by the constraint [d, d] between the time points si and ei. A decomposable
task τ with a deadline t generates the constraint [0, t] between Ts and τf .
We illustrate the process with the following procedure.

The Procedure TempConstraintProc decomposes tasks and forwards tem-
poral constraints in an STP. It decomposes tasks p into a list plisttasklist,
which is comprised of either sub-tasks or actions. Additional ordering con-

157

4.3 Recovery Planning Algorithm

Procedure TempConstraintProc(ptask, Cconstraints, plisttasklist)

1 foreach e ∈ plist do

� Comment: attach start and end points �
2 STP.add(es, ef);

� Comment: e must start after the decomposed task p �
3 STP.addConstraint(Ps → es);

� Comment: e must end before the task p �
4 STP.addConstraint(ef → pf)

5 foreach (p1 → p2) ∈ Cconstraints do

� Comment: add remaining ordering constraints �
6 STP.addConstraint(p1

f → p2
s)

straints C are inserted between the elements of plist.After updating the STP
with new time points and temporal constraints, a path consistency algorithm
can be applied to examine the consistency of the STP. Additionally, it can
also compute the equivalent minimal network of the given STP. Checking of
STP consistency for every potential new action or method decomposition in
the preliminary plan can be accomplished with O(n3) time complexity. It
helps to efficiently prune a large quantity of HTN search space and ensures
that all plans provided by our algorithm are temporally valid. The Path-
Consistency procedure illustrates a conventional path consistency checking
algorithm proposed by [Dec03].

Procedure PathConsistency(C)

1 while not all constraints in C are stabilized do
2 forall the k, 1 ≤ k ≤ n do
3 forall the pairs(i, j):1 ≤ i ≤ j ≤ n, i, j 6= k do
4 cij ← cij ∩ [cik • ckj];
5 if cij = ∅ then
6 Fail with inconsistency;

In this section, we extend our basis planning algorithm H2MAP with
temporal processing capabilities. Given the richness and importance of tem-
poral conditions in the process of fault recovery and IT management in
general, our two extensions consider deadline and temporal orderings of the
recovery actions during the planning process, which are considered to be cru-
cial especially for time-critical recovery actions. We apply temporal condi-
tions as constraints of the planning procedure and propagate those temporal
constraints in the planning hierarchy of our HTN-based algorithm. Further-

158

4.3 Recovery Planning Algorithm

more, to ensure the correctness of the final plan, we use a path-consistency
checking procedure to ensure that our result plans are consistent and valid.

Planning with Uncertainty

In our basis planning algorithm, we assume that the actions included in a
result plan are the only source of change of service states, i.e. the planning
environment is static and the recovery actions have deterministic outcomes.
These reflect only a half-truth of a real-world service recovery scenario, in
which diverse environmental dynamics and external unexpected events fre-
quently appear. This could distort the current knowledge about the state of
the target service possessed by the planner. In this discussion, we attempt to
relax those restrictive assumptions and provide a theoretical framework for
the extension of our basis planner. From a recovery planning perspective, it
could be concluded that the uncertainties can be generally originated from
the following sources:

• Environmental uncertainty. In an IT operational environment, fluctu-
ations of the environment are frequent cases. During planning, unex-
pected events could be generated in the observed infrastructure and
invalidate the planner’s previous knowledge of the states, on which the
computation of recovery plan is based. Such a dynamic could inval-
idate the results of the planning algorithm and renders the recovery
plan as infeasible.

• Non-deterministic execution outcomes of plan actions. Executions of
plan actions could be unsuccessful due to unexpected situations, which
can complicate the recovery process. Non-nominal outcomes of recov-
ery actions are important and sometimes highly critical. Therefore, it
is necessary to model the possible failure of an recovery action similar
to an exception-handling mechanism, for example, possible failure to
restart a server process needs to be considered in the planning.

• Partial observability of the planning environment. In a large-scale
planning environment with many components and sub-services, gain-
ing a complete knowledge of the current state of the system is diffi-
cult, if not impossible. During the planning process, part of the state
variable could simply be unavailable, for instance, if a recovery plan
requires a remote failover site, but during the computation, the state
variables regarding the remote site are not automatically available;
some sensing operations are normally required to get them. In plan-
ning terms, observability refers to the visibility of state variables that
describe the targeted system Σ (the generic planning system model).

Tackling the uncertainty properties in planning is a hard problem, one
of the possible ways to deal with the aforementioned uncertainty issues is

159

4.3 Recovery Planning Algorithm

to integrate Markov Decision Processes (MDP) [Bel03, HJ00, CKL95] into
planning. With an MPD the change flow (evolution) of the planning en-
vironment is modelled as a Markov chain. An utility function is designed
to reward the execution of certain actions for each state. It is required
that the underlying system is modelled as a stochastic system, which is a
non-deterministic state-transition system that assigns probabilities of state
transitions. With the stochastic system, the uncertainty regarding the out-
comes of plan actions can be modelled with a probability distribution func-
tion. To adapt the MDP to the planning, the system model Σ is modified
as Σ = (S,A, P) [NGT04], where S is a finite set of system states and A is
a set of actions as previously defined in the generic planning model. P in
this stochastic-based system model is a modified transitions system (corre-
sponding to γ in the deterministic system model). It defines a probability
distribution for every state transition. Given system states s, s′ ∈ S with
a ∈ A, the probability distribution Pa(s′|s) denotes the probability of state
transition s → s′ with the action a. The solution of an MDP is called the
policy, usually denoted as π. The policy includes the best action to be taken
in each state transition, e.g., π : S × A. A utility function u evaluates a
selected action ai, given a current state sj , and assigns a value to the choice
of action ai in state sj , thus u(ai, sj). The characteristics of Markov deci-
sion processes determines that the MDP is memoryless, which means the
computation of the next optimal action step is only referred to the current
state of the system, not the states that prior to that state.

The expected value of executing the policy from state s can therefore
can be formalised as:

V ∗(s) = max
a∈A(s)

[u(a, s) +
∑
s′∈S

Pa(s′|s)V ∗(s′)]

An optimal policy π is therefore a policy which maximises the utilisation
value and denoted as:

π∗(s) = arg max
a∈A(s)

[u(a, s) +
∑
s′∈S

Pa(s′|s)V ∗(s′)]

Note that depending on the types of optimisation and their applied met-
rics for the utilisation function, arg max could be replaced by arg min if, for
example, we are trying to minimise the cost of the plan. Two classical algo-
rithms are frequently applied to solve MDP problems by finding an optimal
solution policy with the cumulative maximal expected utilisation π∗: value
iteration and policy iteration [Put94].

With the policy iteration algorithm, the current policy (plan) is con-
stantly improved by searching plan actions in each state that have higher
reward value than the action that is currently chosen for that state. The

160

4.3 Recovery Planning Algorithm

initial policy is, however, chosen at random. The algorithm terminates when
no further improvement can be discovered.

The value iteration algorithm for solving an MDP takes a different ap-
proach in finding optimal policies. Instead of striving to iteratively im-
prove the reward values for each state as a policy iteration, the value it-
eration algorithm produces a solution policy in a constructive manner, in
which the optimal policy is computed with successively growing length. In
other words, the algorithm iterates on the length of the policy starting with
V ∗n=0(s) = u(s, a), ∀s ∈ S and for further iteration steps, computes:

π∗n(s) = arg max
a∈A(s)

[u(a, s) +
∑
s′∈S

Pa(s′|s)V ∗n−1(s′)]

The above notation denotes that at each step n, the algorithm computes
a reward value based on the utility function. u with consideration on the
previous evaluation V ∗n−1. A threshold value ε can be defined to terminate
the iterations with the following condition:

max
s∈S
|Vn(s)− Vn−1(s)| < ε

Specifically, when the maximum change in values between the current
and previous value function converges to a value below ε, the algorithm
terminates.

A planning problem can be modelled as an MDP to deal with uncer-
tainties by computing plan solutions. More specifically, an MDP considers
the situation where outcomes of plan actions can variate and the results
are not always corresponding to what the planner expects. To enable the
capability to deal with such uncertainty in the planning realm, it is essential
to extend the modelling of plan actions to incorporate probabilistic values.
A viable approach is to explicitly declare probabilistic effects of executions
in the PDDL action model [YL04] as follows:

(probabilistic p1 e1 p2 e2 p3 e3 ... pn en)

Outcome ei of an action a occurs with probability pi, where

pi ≤ 0 and
k∑

i=1

pi = 1

Nevertheless, a probabilistic-effect pair can also be left out if empty;
in this case the effect description is identical to the conventional PDDL
definition.

Also, MPD-based planning provides a suitable way to include planning
metrics in the planning processes. An utility function u(a, s) needs to be
defined to reward each choice of action. When the cost and rewards both
need to be considered by the same utility function, then a corresponding

161

4.3 Recovery Planning Algorithm

optimal solution is the one that maximises the following value, given a cost
function c(ai, si−1):

arg max[π∗(s)−
∑

a∈A,s∈S
c(ai, si−1)]

Action description of an MPD-based planner should also allow the repre-
sentation of Markovian rewards associated with corresponding state transi-
tions. This could be accomplished by simply adding the keyword reward to
an extended action description scheme. Furthermore, we can define explic-
itly in the plan the goal description as a metric to maximise the utilisation
value or minimise the total plan cost.

As mentioned above, the sources of uncertainty during planning stem
not only from probabilistic outcomes of plan actions, but also from the fluc-
tuations in the environment which induce the uncertainty of an observed
target system. This phenomenon is commonly known as partial observabil-
ity or incomplete plan information. Two possible approaches could be ap-
plied to deal with the partial observability: Partial-Order Markov Decision
Processes (POMDP) [PB01, Bou02] and Interleaved Planning and Execu-
tion. We briefly discuss those two approaches as potential extensions to our
planner theoretically.

POMDP builds directly on the extension of planning with an MDP with
further considerations on the uncertainties of the observed planning environ-
ment. To facilitate that, it is required to incorporate a set of observations
in the planning model. Thus, a simple planning system model is modified
based on the MDP system model as follows:

Σ = (S[blf], A, P,O)

In the model above, we define the states of a system as a set of belief
states S[blf]. Thus, a belief state b ∈ B is defined as a probabilistic distri-
bution over the states. The probability assigned to each state s is denoted
by b(s). The definitions of elements A and P remain identical to those
of the MDP system model. The additional element O is a set of observa-
tions, for each o ∈ O and a ∈ A there is a known probability Pa(o|s) which
gives the probability of observation o after executing the action a in state
s, thus

∑
o∈O Pa(o|s) = 1. Together with the state transition probability

distribution P , the observation O describes a further aspect of the system
dynamics. Additionally, a reward function similar to that of an MDP can be
defined to give numeric values to each calculated plan step. The uncertainty
in this context implies that it is impossible to determine the current state
with complete certainty. In ideal cases, at any given time point, the target
system is assumed to be in some known state sn; with introduction of the
uncertainty concept, instead of being in sn, we say the target system in a

162

4.3 Recovery Planning Algorithm

belief state with probabilistic distribution bn, which can be represented as
follows:

bn = P (sn|on, at, ot−1, an−1, ..., o1, a1), where o ∈ O, a ∈ A

The above representation shows the probability that at time n, the ob-
served system is in state sn given the history on, at, ot−1, an−1, ..., o1, a1. The
probability of observation o ∈ O after executing action a ∈ A can be com-
puted as:

ba(o) =
∑
s∈S

Pa(o|s)b(s)

With the above equation, we can compute the probability with Bayes’
rule that the system will be in state s after applying action a in belief state
b and observing o:

boa =
Pa(o|s)ba(s)

ba(o)

With the above mathematical definitions, a POMDP planning problem
is therefore a tuple P = (Σ, b0, G), where b0 ∈ B is the initial belief state
(a set of possible initial states) and G ∈ B is a set of states that is only
comprised of goal states.

As its MDP counterpart, the goal of solving a POMDP is to find a
policy/plan that maximises the total rewards defined by a reward func-
tion. However, the further consideration of the state probability distribu-
tion makes it extremely computationally expensive; therefore, a more effi-
cient heuristic than the classic approach such as value iteration is needed
in future research. Due to its demanding computational intensity, using
POMDP is currently only suitable for solving small-scale planning prob-
lems, nevertheless, it provides an excellent formal foundation for planning
under environmental uncertainty.

Besides modelling the planning domain as a stochastic system and solv-
ing the planning problem with probabilistic approaches like MDP and POMDP,
another way to deal with uncertainty is through the active adaption of the
plan, which means that an initial plan will be composed on-the-fly and the
plan executed as a classical planning approach. However, during the exe-
cution, the planner keeps sensing and tries to detect environmental changes
and unexpected events. Upon receiving any events that may invalidate the
current plan, the planner is activate to compute or to adapt the current plan
to the new situation.

Figure 4.16 shows the process of plan adaptation through environmental
sensing and active replanning. In this planning model, a planning algo-
rithm, such as H2MAP proposed by this thesis, computes a plan according
to the planning elements suggested by the conventional planning model. The

163

4.3 Recovery Planning Algorithm

Non−Deterministic

Environment
Plan Execution

Controller

Change
Events

Planning Algorithm

Sensing

Plan Replan

Π = a1, a2, ..., an
Π

Figure 4.16: A Model for Active Planning Adaptation with Replanning and
Environmental Sensing

planning results are delivered to the Plan Execution Controller element for
implementation of the plan actions on the target system. The plan con-
troller executes the plan in a step-by-step manner and, meanwhile, senses
any environmental changes. It is important for the controller to detect any
unexpected events that deviate from the expected state. The unexpected
events could be caused by two reasons:

• Any events caused by the plan action that is not in accordance with
the expected events of that action.

• Any events caused by influences that are external to the plan, which
corresponding to the fluctuations of the system under observation.

Since any of these events could invalidate the original plan solution;
therefore as soon as such events take place, the controller detects them and
sends the planner the signal to trigger the replanning operation. In such
cases, the planner re-computes or repairs the current plan according to the
new state of the underlying system and forwards the adapted or repaired
plan to the controller for a new round of execution.

One of the important considerations of applying adaptive planning is
that the time costs of planning operations are a critical factor which can
effect the usability of this approach. Specifically the time required by the
planning operation needs to be less than the average change rate of the
observed system. If this condition is not fulfilled, e.g., the environmental
change rate is much faster than the planning computation, then the planning
operation may not converge.

There are two potential approaches that can help to remedy such a
problem:

• Use a more aggressive and fast planning heuristic. This approach in-
creases the planning efficiency and lowers the time requirement of the

164

4.3 Recovery Planning Algorithm

planning operations. To facilitate a faster planning, we need to use
more aggressive plan searching procedures and integrate them into
our H2MAP algorithm. Approaches such as Anytime A* [HZ07] and
Anytime Repairing A* [LGT04] can be adapted in our algorithm as
sub-procedures to search for promising decomposition methods in the
planning procedure. These time-sensitive algorithms poccess the ca-
pabilities to conduct a searching operation when the time available for
the operation is limited. The initial solution is monotonically improved
if the time for the computation is still available.

• Isolate and “freeze” the system state. Another way to solve the time
problem is to isolate the target system and freeze its states as the
planner gets the initial state description. That means, no external in-
fluences will be accepted and the system is artifically prevented from
evloving. We force the system to be in a state which is deterministic
and guarantees that the plan actions are only sources of state changes.
Nevertheless, the planner still needs to track variable outcomes of plan
actions as we discussed in the section regarding MDP. Although we
could not prevent the system from evolving internally, through isolat-
ing and freezing the system, we reduce the sources of change to a more
controllable quantity.

Concluding Remarks

In this section, we propose and provide detailed discussions of two possible
extensions to our basis planning algorithm H2MAP . The first extension
we consider is to enable the planner to do temporal-based reasoning during
the plan operation. We use temporal conditions as constraints of the plan,
and propagate those constraints in the planning phases to guarantee those
constraints are met in the final solution plan. Furthermore, we use an STP
data structure to model the interval as well as the point time conditions,
which is essential for scheduling and optimising the execution sequences of
the plan. As we modelled the temporal constraints as STP, we could not
only reason on the improved execution sequence, but also check the con-
sistency of the plan using well-known constraint-solving techniques such as
the Path Consistency (PC) algorithm. To further relax the restrictive as-
sumptions of our planning algorithm, we also discuss in details the planning
under uncertainty which is a common case regarding IT service fault re-
covery. We depict two possibilities to enable the planner to do reasoning
under uncertainty: Markov Decision Processes (MDP) and Partial Markov
Decision Processes (POMDP). Both require the modelling of a planning
environment as a stochastic system and the reasoning is conducted using
probability distributions of action outcomes as well as the probabilistic dis-
tribution of belief system states. Due to the computation complexity in a

165

4.4 Recovery Planning Framework

complex application scenario with large quantities of belief states, we further
propose two alternative approaches: active adaptive planning and isolate &
freeze the target system. Both approaches provide architectural solutions for
planning under uncertainties while requiring minimum modifications to the
original planning algorithm.

4.4 Recovery Planning Framework

To put a planning algorithm to practical use requires a properly designed
framework to support its computation. Issues such as information exchanges
between sub-systems, interactions with the external environment and users,
persistent storage of planning knowledge, etc. are all considerations that
have to be carefully made during the design phase of a framework. Addi-
tionally, a framework is going to be used by different application developers
on different systems; therefore, it also needs to be flexible and extendible
enough to address such dynamics.

Having the planning algorithm already in place, in this section we pro-
pose a detailed design of a software framework for IT service fault recov-
ery planning. The framework intends to support the operations of the
H2MAP planner as well as a set of assisting components that revolve around
it. It also provides an extensible development architecture for the developer
to elaborate the planning applications in the recovery domain without sacri-
ficing flexibility, extendability and simplicity. We begin our discussion with
a review of a set of requirements related to the framework in order to ra-
tionalise our design. Then we show the overall architecture of the proposed
framework followed by individual discussions on the layout and functions
of each involved sub-system component. To ensure maximal flexibility and
extendability of our framework, we apply well-established design patterns as
general guidelines of our proposed framework to characterise the ways of in-
teractions and distributions of responsibilities between involved components
in the framework.

4.4.1 Overview of the Framework

A framework manifests and dictates the architecture of an application. The
following is a definition of a framework as given by Gamma et al. [GHJV95]:

[A framework is] a set of cooperating classes that makes up a
reusable design for a specific class of software. A framework
provides architectural guidance by partitioning the design into
abstract classes and defining their responsibilities and collabora-
tions ...

The fault recovery planning framework is thus designed to define an
overall structure of the planning framework and to partition different re-

166

4.4 Recovery Planning Framework

sponsibilities into diverse components. As a guiding design principle for
any complex framework, we partition our design into several cooperative
sub-systems. Thus, the framework design also illustrates how individual
sub-systems collaborate with each other in a thread of plan operation con-
trol. Note that in the further discussions regarding the framework, we use
the terms sub-system and component interchangeably. Our design of an IT
fault recovery planning framework should fulfill the requirements derived in
Chapter 2 on page 41 Framework Requirements. The requirements related
to the fault recovery framework are briefly recapped as follows:

• Generic Framework. The framework shall not be bounded to a specific
application scenario.

• Adaptability & Extendability. The framework shall be flexible. Flex-
ibility in this context means that the design should be easy to be
adapted and extended as the system evolves. A new and improved
planning algorithm shall easily to be plugged into the framework with-
out major modifications to the framework. On the other hand, the
adaptability requirement shall also ensure the easy adaptation of the
framework to other assisting management components. Changes of
sustaining components shall be non-intrusive to the whole framework.

• Usability & Interoperability. The framework shall be easy to use for
users. Complex internal planning principles and working details must
be hidden from users of the planning system. A user-friendly interface
shall be supported to show the plan results in a straightforward and
easy-to-comprehend way for the user to scrutiny as well as verify the
solutions.

To sustain the fault recovery operations, the framework consists of the
following components:

• Planner component for plan generation. As the central element of the
framework, the planner component provides the core planning func-
tionality supported by the algorithm. The operation of the planning
algorithm needs to be assisted by an additional set of operations, which
facilitate information exchanges and inter-component cooperations be-
tween the planner and other sub-systems in the framework. As the
automated planning technology is constantly evolving, new planning
algorithms need to be easily adapted to the framework; therefore, the
planner sub-system should provide the flexibility to allow easy adap-
tations of potential improved or new algorithms into the framework.

• Data processing component. The data processing component is de-
signed as a mediator between different data formats exchanged in the

167

4.4 Recovery Planning Framework

planning system. The main goal of the data processor, on one hand, is
to parse and translate input data into a target language that could be
comprehended by the planner. On the other hand, the results of the
planner need to be communicated back to the external system which
may have different requirements on the representations of the plan
solutions; therefore the mutual communication needs of the planner
require a flexible design, with which new system requirements regard-
ing the representation could be easily adapted. Instead of hard-coding
all operations into the component, a flexible design can provide inter-
faces to the lexical analyser, parser and translator that streamline the
processing of input data from different supporting components into
the format that is supported by the planner. In our case the output
language is PDDL which is the de factor language standard for auto-
mated planner as already discussed in Section 4.2.3. With this design
principle, an implementation of an abstract interface could be eas-
ily swapped according to the representation requirement of the target
system without disturbing the rest of the system.

• Knowledge repository for persistent planning data stores. Fault recov-
ery is obviously a knowledge-intensive management operation. As we
have seen in the algorithm, the planner needs to use available recovery
knowledge to synthesise viable recovery plan solutions. To fulfill this
purpose, recovery information needs to persistently stored and easily
be called by the planner during the planning operation. Furthermore,
recovery knowledge items should be easily added, modified and up-
dated. Details on types of recovery-relevant knowledge were already
discussed in Section 4.2.

• Planning System interfaces. Two types of interfaces should be consid-
ered:interface to execution system (I2ES) and interface to user (I2U).
The I2ES interface provides the planning system the possibility to ac-
cess execution mechanisms of the management of target service, so
that the recovery action steps could be implemented on the target ser-
vice, such execution system could be some workflow execution engine,
where recovery actions are automatically implemented on the target
system or it could also be some hybrid system where human assistance
and human control could be involved. Unlike the I2ES interface, the
I2U is the interface design for the planner to show its solution to the
user of the planning system, so that the user has opportunity to exam
the correctness of the plan results. The user should have chance to
even modify, correct or artificially adapt the plan results, if necessary.
The I2U interface facilitates the interactions between planning system
and its user.

168

4.4 Recovery Planning Framework

K
no

w
le

dg
e

A
cq

ui
si
tio

n

Data Processing

S
y
s
te

m

In
te

rfa
c
ePlanner

Figure 4.17: An Overview of the Planning Framework

Figure 4.17 provides an overview of the framework. As shown in this
figure, all components revolve around the planner components and provide
services to sustain the recovery planning operations. Each component has
its in- and outwards functionalities to be fulfilled, for example, the system
interface has as one of the outward tasks to represents plan results and to
enable interaction between the planning system and its user. The system
interface should track the plan executions and report and unexpected events
from the target services. In the following section, we discuss each compo-
nents and their design in details. We propose our framework design based on
the object-oriented design approach [RBP+91, Boo82]. Figure 4.18 shows a
more detailed view of the proposed recovery framework in UML.

As shown in the figure, the framework maintains interfaces for informa-
tion exchanges between the planning system and external entities; the rest
of the framework components are encapsulated inside the system.

4.4.2 Planning Component

As the core component of the proposed framework, the flexibility of the plan-
ning functionality should be ensured as we discussed in the requirements of
the framework. In our context, the flexibility can be interpreted as the ca-
pability of easy adaptations of new planning algorithms without any major
modifications to the framework itself. As new or improved planning algo-
rithms appear, the framework must readily integrate them into its planning
component. Additionally, in the runtime of the planning operations, the
user should have the opportunity to dynamically select the available plan-
ning algorithms. This implies that, instead of considering the H2MAP as
the only algorithm to fulfill the core planning functionality, the system must
be open to scores of similar algorithms. On the other hand, a user of the
planning system could switch between different algorithms during the run-

169

4.4 Recovery Planning Framework

Management

Component

System

Component

User

Interface

Planning Framework
<<framework>>

Interfacing
with

External Entities

Data

Processing

Planning

Engine

Knowledge

Repository

Persistent Store
Dispatch Info.

Emit Solution

Compose Plan
Retrieve Info.

Translate

Parse

Figure 4.18: An UML View of the Recovery Planning Framework

170

4.4 Recovery Planning Framework

GetPlannerType()

CallPlanner()

GetStateDescription()

GetPlanningGoal()

DispatchResult()

ConnectKnowledgeDB()

<<interface>>

PlannerAlgorithm

Planner()

Planner()

<<implementation>>

PlannerAlternative_A

Planner()

<<implementation>>

PlannerAlternative_B

PlanData

<<interface>>

PlannerConfigurator

Planner()

<<implementation>>

H2MAP

Figure 4.19: Planning Component

time and therefore achieve different plan solutions for consideration. This
approach increases the possibility to obtain viable plan solutions.

To address these requirements, we apply the well-known design practice
Strategy Pattern [GHJV95] to guide our design of the planning component.
Given a set of algorithms which serve similar purposes, the strategy pattern
suggests to encapsulate the algorithms and make them interchangeable. This
approach allows the user to vary algorithm usages independently and, thus
ensures the flexibility and extendability of our design. Figure 4.19 shows
the design of the planner sub-system

As shown above, the planner sub-system maintains an interface Plan-
nerAlgorithm that is common to all candidate planning algorithms, e.g.,
H2MAP and PlannerAlternative A, PlannerAlternative B in this case. Con-
crete implementations of the planning functionality are therefore realised in
the actual planning algorithm codes written in each individual algorithm.
The PlannerConfigurator interface is an single entry point for the caller
code (client) to access the planner algorithm. It forwards the requests of
the planning operations to the planner and the user could also determine
through the PlannerConfigurator interface which planner is to be used for
the current planning operation. Additionally the PlannerConfigurator takes
care of the house-keeping tasks by preparing data required by the planner.
This design constellation allows flexible swapping of the planning algorithm
without major modifications to the sub-system during the runtime of the
planning system. Moreover, as the provider of the core planning functional-
ity, the planner algorithms are detached from assisting tasks and thus kept
as simple and clear as possible. The use of interfaces allows a separation
of concerns in the system design, so that as the planning system evolves,
changes made to part of the system will not seriously damage the holistic
system design.

171

4.4 Recovery Planning Framework

Component Functions Related to Planner

Knowledge Repository The planner component should be capable of
connecting to the repository and retrieving plan-
ning knowledge when necessary.

Data Processing The planner provides the solutions in its own
data format and forwards them to the data pro-
cessing unit to translate into other data formats.
Those formats are either suitable for executing
the actions in the system or suitable for present-
ing them to the user for inspection of solution
plans.

System Interface The planner gets and dispatches the plan solu-
tion indirectly to the system interface, which is
responsible for presenting to the user or execut-
ing the plans on the target system. The indi-
rect communication between the planner com-
ponent and system interfaces is bridged by the
data processing components, as data need to be
mutually parsed and translated into correspond-
ing formats.

Table 4.1: Interfaces of the Planning Component

In order to support the selected planning algorithm, the PlannerConfig-
urator needs to maintain a set of supporting functional operations to other
supporting components to collect and prepare data. The list of the core
operations of the planner component and additional operations concerning
interactions with other components are listed in Table 4.1:

The planner sub-system delegates all those tasks that are not directly
related to the planning algorithm to the PlannerConfigurator, such as data
preparatory jobs. It works as a proxy between the system user and the
planner algorithms. All those required functions for other components are
embodied in the operations listed in the PlannerConfigurator interface as
shown in Figure 4.19. Table 4.2 shows the operations encapsulated in the
configurator interface with a description of each of these operations.

In this design, the planner itself is completely encapsulated in the frame-
work with no direct contact with external entities. This prevents the user
of the system, who in most cases is not a planning expert, from accidentally
altering the core planning algorithms while still giving them the flexibility
to try different planners. The operations listed in Table 4.2 cover the re-
quired functions listed in Table 4.1. The operations ListPlannerTypes and
SetPlannerTypes facilitate the use of different planning algorithms. The

172

4.4 Recovery Planning Framework

Operation Description

SetPlannerType The caller (client) of the planning algorithms
uses this operation to determine types of the
planner it wants to apply for the current plan-
ning operations.

ListPlannerTypes The caller of the planner could get knowledge
of the available planner using this operation.
It lists all optional algorithms with their cor-
responding characteristics for users to chosen
from.

CallPlanner Calls the planner algorithm determined by the
user with all necessary parameters such as de-
scriptions of current system states, desired goal
states, etc.

GetStateDescription The configurator get the state description and
forwards it as one of the parameters to call the
planner algorithm.

GetPlanningGoal The configurator gets the desired goal for the
current planning operations and forwards it to
the planner algorithm.

DispatchResult Plan solutions are dispatched to system inter-
faces for presentations. The results could be
represented as executable action commands or
simply to show the results to the user in proper
human-readable ways.

ConnectKnowledgeDB Establishes the connections to the knowledge
database (knowledge repository) and passes this
connection to the planner, so that the planner
can directly interact with the knowledge repos-
itory during the planning operations.

Table 4.2: Operations in PlannerConfigurator interface

173

4.4 Recovery Planning Framework

Planner Component

Interface to System

Interface to Users

Knowledge Repository

Data Processing Component

present solutionuser knowledge input

submit for execution

feedback

dispatch solution

feedback

System Interface Component

in
sert

knowle
dge

Figure 4.20: Types of data translation operations

CallPlanner operation sends the chosen planner with necessary data and
triggers its operation. ConnectKnowledgeDB prepares the access for the
planner to the domain knowledge and handles established connections to
the planner. The rest of the operations are designed to handle commu-
nications with the sub-systems responsible for getting and translating the
external information such as the description of current states and desired
planning goals.

4.4.3 Data Processing Component

The data processing component is mainly responsible for parsing and trans-
lating planning information between the planner sub-system and other sub-
systems. This sub-system is a host of parsing algorithms presented in the
previous section on knowledge translations. The translation process should
consider the data translation and reformatting of input and output domain-
specific languages (DSL) mutually in two different directions: from the plan-
ner sub-system to the rest and from other knowledge sources to the planner.
Figure 4.20 illustrates various types of data translation directions needed to
be covered by the data processing component.

The translation process from the planner to the rest of the components
concerns translating the planning solution into a format that a user wants.
There would be two alternatives in the current consideration: presenting the
solution to the user interface or submitting the plan solution to the external
management system for implementation. The user should have the oppor-
tunity to determine in which ways he wants the solution to be presented. If
the solutions are intended for direct execution on the target service, the data
processing component needs to parse and translate the current plan solution
into a format that is known to the execution mechanism which is attached
to the planning framework. The targets of the translated format may vary
according to the user’s requirement, for example, a user may require a check

174

4.4 Recovery Planning Framework

to be made of the solution plan with a web-based presentation; in this case
the data processing component has to parse the plan format into HTML or
some other web-based presentation forms. In other cases, a solution plan
may need to be executed on a execution platform that is attached to the
planning system; in this case, the data processing component needs to trans-
late its input from the planner sub-system into a language that is supported
by the attached execution mechanism. For example, if some workflow sys-
tem is attached to the planner system, solutions of the planner have to be
translated into a workflow language that is compatible with the system.

Furthermore, the data processing component also translates the user in-
put into the language that is understandable to the planner. This process is
especially crucial for the enrichment of the planner knowledge in the knowl-
edge repository. For this purpose, we designed a set of simple configuration
language specifications, as presented in Section 4.2.2, with corresponding
translation algorithms (shown in Section 4.2.3), which parses and translates
the knowledge encoded in the configuration language. User input knowledge
is forwarded by the data processing component to the knowledge repository
for future reference.

Optionally, as shown in Figure 4.20, the planner components may need
instant feedbacks from the execution system to monitor the progress of the
plan implementations and reacts accordingly if any unexpected events oc-
cur. In this case, the system interface sends an event notification message
back to the planner through the data processing components, where system-
specific messages are translated into a format that is comprehensible for the
planner. The data processing component forwards the event notifications to
the planner after the translation operation.

Depending on the translation directions, the input and output DSL may
vary in applications. The data processing components must be flexible
enough to cover such dynamics by allowing easy adaptation and extension
of new translation approaches and algorithms for the cases that desired out-
put or input changes. In our design, we assume that the input and output
language of the planner components is invariably PDDL, since it is the de
facto standard planning description language as we discussed in the previ-
ous section. Thus, all information exchanges between the data processing
component and the planner component are conducted using PDDL.

Our translation architecture, as defined in Section 4.2.3, consists of lex-
ical analyser (lexer), syntactic and semantic analysers (as parser) as well
as target language generator. Based on the fact that the output language
is invariantly PDDL, the operations in the data processing component are
shown in Table 4.3.

Figure 4.21 shows the essential operations included in the data process-
ing sub-system. The above half of the workflow illustrates a data process
stream from the planner component to the system interfaces. The plan

175

4.4 Recovery Planning Framework

Direction Target System Description

Planner to Interfaces
Execution System Use PDDL-specific lexer to analyse

the solution from the planner. Use
parser that is specific to the tar-
get execution system (e.g., workflow
system) to translate solution into
the target format.

User Interface Use PDDL-specific lexer to analyse
the solution for representation; use
front-end-specific parser to translate
and generate the target language to
show the results on the user inter-
faces (e.g., web presentation).

Interface to Planner
(User to) Data Proc. Use the lexer specific to the front-

end to get user input and translates
it into PDDL language.

(System to) Data Proc. Optionally, translate the execution
event caught by the execution sys-
tem into a format understandable
by the planner component.

Data Proc. to
Knowledge Repo.

Knowledge Repository Insert translated user input into the
knowledge repository.

Table 4.3: Directions of translations and operations

PDDL
Parser

Client Code

Generator
PDDL
Lexer

Client
Lexer

Client
Parser

Component

Client
Component

Planner

Knowledge

Repo.

IRToken

PDDL
Generator

TokenIR

String

String

Data Processing Component

String

String

String

Figure 4.21: Detailed views on the translation processes in both directions

176

4.4 Recovery Planning Framework

solution produced by the planner component is initially analysed by the
lexical analyser, through which all tokens of the input plan solution are ex-
tracted. The following parsing operation performs semantic analysis using
the parsing algorithms proposed in the previous discussion. The parsing op-
erations emits the given plan input in an Intermediate Representation (IR)
form, such as abstract syntax tree (AST) for code generation mechanisms.
Finally the code generator operation generates the final codes in a format
that is required for the representation. These codes could be destined for the
representation of the plan solution in certain types of user interface repre-
sentation (e.g., HTML for a web-based presentation) or directly submitted
to the target system for execution (e.g., workflow system). To produce
the suitable target code for the target system, general code generation ap-
proaches such as the tree-walking technique [LASU06] can be employed if
the IR is presented as AST. For each target DSL, there is a corresponding
coder generator provided.

Additionally users of the planning system should have the opportunity
to dynamically configure and control the productions of target codes in
different DSL. To fulfill this requirement, we need to provide users with
a set of target code selection operations to allow them to choose among
different code generation mechanisms for various target DSL. The target
code selection operation determines a proper code generator for the target
system. In this way, we separate the analysis process of the input DSL from
the code generation process, so that the analysis part of the process can
remain unmodified even if the types of the target system are changed. For
example, if instead of a web-based presentation, the users want the plan
solution to be presented in a user-specific application such as a desktop-
based client, they only have to develop a suitable code generator for their
own applications and the rest of the translation process can therefore remain
unmodified. This design gives the users of the planning framework maximal
flexibility to adapted the planning system to their own application by simply
re-targeting the output generator. Users can easily extend the framework
in their desired ways. The same principle is also valid for the generation
of the system-specific DSL codes for the target systems so that the data
processing component, hence the planning system, is not bounded to any
specific target execution system and is freely configurable.

The lower part of the translation process stream takes the opposite di-
rection, in which the user input or, optionally, system events in forms of DSL
are translated into the plan description language. The process is similar to
its counterpart. Depending on the sources of the input, the lexer analyses
the structure of the input DSL and gets all tokens extracted. A client-
specific parser then produces the results of the semantic analysis in terms
of IR for the coder generator to produce the target language, in our case,
the PDDL description language. The translation process in this direction is

177

4.4 Recovery Planning Framework

Note

<<interface>>

Parser

Parser()

Parser()

<<implementation>>

PDLParser

Parser()

ClientParser

<<implementation>>

<<implementation>>

ClientLexer

LexAnalyser()

Lexer
<<interface>>

LexAnalyser()

LexAnalyser()

<<implementation>>

PDLexer

<<interface>>

CodeGenerator

CodeGenerator()

<<implementation>>

ClientCodeGenerator

CodeGenerator()

<<implementation>>

PDLGenerator

CodeGenerator()

<<implementation>>

Planner2Client Client2Planner

<<implementation>>

Note

Note

Note

Note

SetKnowlegeItem()

ConnectKnowledgeDB()

<<interface>>

DataPrcessor

Lex()

Parser()

Generator()

DataConfigurator

<<class>>

Note

SetLexer()

SetParser()

CreateP2CProc()

CreateC2PProc()

SetCodeGenerator()

<<create>>

<<create>>

Interface definitions	
of main translation	
operations.

Returns a client to
planner translation	
data process object

Returns a planner to
client translation	
data process object

Main operation to
call data processor
with set parameters

Operations specific
to knowledge
repository

Abstract Factory

Configure types of

lexer, parser &

generator

Figure 4.22: An UML view of the data processing component design

especially important for the enrichment of planning knowledge, where knowl-
edge regarding fault recovery is translated from a user- or system-defined
DSL into a format that is comprehensible for the planner. After a suitable
translation, the input is inserted into the knowledge repository for future
planning operations. For interactive planners, where instant feedbacks of
the target system are required, the translated planning information such
as system event notifications can also be directly forwarded to the planner
component itself, which may influence the current computation. In such
case, although the consumer of the data processing component is changed
(e.g., different planners), nevertheless, the translation process in the data
processing component remains unaffected.

As shown in Figure 4.22, the system design provides its user with possi-
bilities to configure the data processing sub-system of the framework by dy-
namically determining the different parser, lexer and coder generator types.
The user can also use default translating components if no particular prefer-
ences are given. The fact that there are no hard-coded translation processes
in the design allows the holistic planning system to be easily adaptable
to the different target languages and therefore their corresponding target

178

4.4 Recovery Planning Framework

systems. The proposed design of the data processing component uses the
Abstract Factory Pattern [GHJV95], where desired products are assembled
in a component factory and details of the creations of the system are hidden
from users, since they merely get the desired systems as objects delivered
to them from the factory. Nevertheless, we alter the original pattern by
allowing users to determine different translation component to their own
preference; however, the concrete implementation of components and how
the final objects are assembled is still hidden from them as originally pro-
posed by the pattern.

The main participants in the pattern are shown in the box with dashed
lines in Figure 4.22. Different translation components, e.g., lexer, parsers
and code generators, are prepared as a set of interfaces for the object cre-
ations. These interfaces generalise and hide the concrete implementation
codes, so that potential modifications of the implementations or introduc-
tions of new translation mechanism will not affect the system as a whole.
System developers could therefore improve current or add new component
implementations into the abstract factory without affecting the user’s codes,
since the implementation is hidden from the user. Furthermore, the users of
those components are not exposed to the complex internal working details.

As the main component of the sub-system, the DataProcessor defines the
rules for the object creation processes, where core functionalities are declared
as a list of abstract operations. Conceptually a data processor represents ei-
ther the translation of DSL from planner to client or vice versa, as shown in
Figure 4.21; therefore, the interface is implemented by two concrete creation
processes: Planner2Client and Client2Planner which represent both trans-
lation directions. Each of the created translation processes includes a set
of working translation components including lexer, parser and code genera-
tor of various types. Both implementations of the DataProcessor interface
consequently produce and return the user-desired translation mechanism in
each corresponding direction, respectively. The creations are depend on the
set of translation components as listed on the right-hand side of the dia-
gram. However, the actual creation processes as well as implementations of
the components are hidden from the user.

To trigger the generation processes of translation objects, the caller of
the data processing sub-system uses the DataConfigurator class to gain ac-
cess to the factory by initiating the object production mechanism. Since
DataConfigurator embeds the operations to initiate the requests of the ob-
ject creations, it can be regarded as a client of the abstract factory and
the returned objects as the products of the factory. The client relies on
CreateP2CProc and CreateC2PProc operations to drive the object creation
processes. If the user has preferred translation components, he can use the
series of set operations, e.g., SetLexer, SetParser and SetCodeGenerator,
defined in the class to select his desired component types. Otherwise, if

179

4.4 Recovery Planning Framework

no specific preferences of component types are given, the system applies a
default set of components defined by the system developer. The returns of
both operations are objects with concrete implementations of translation
components encapsulated. Provided the proper input data as parameters,
the caller can use these objects to perform desired translation processes and
generate target output languages accordingly to the translation directions.
Albeit its role as initiator, the DataConfigurator ; however, does not have
control over how these objects are created, since the complex internal work-
ings are hidden in the factory, which is a positive effect of our design, because
the details of the creation processes are for the users of the system not ger-
mane. Still the users are left with the possibility to manually determine
component types involved in the returned objects.

Not only is the DataConfigurator applied as the caller of the factory, it
also determines other operations that are not directly related to the trans-
lation processes but are still pertinent for the data processing component.
In the current design, we consider the interaction of data processing sub-
system with the knowledge repository sub-system by connecting the knowl-
edge database and inserting input recovery knowledge. These operations are
carried out by ConnectKnowledgeDB and SetKnowledgeItem operations. In
order to insert the obtained recovery knowledge into the repository com-
ponent, it is essential to first establish the connection to the database that
persistently stores the information. Due to the fact that various types of the
storage mechanisms may be applied as knowledge repository, the Connect-
KnowledgeDB operations wraps the connection operation details and returns
the user to an established database connection object, through which the
data processing component could directly dispatch the translated knowledge
into the target knowledge repository, for example, if the JavaTMis used in
the implementations of the framework, the ConnectKnowledgeDB operation
could establish data connections using JDBC API [JDB] which facilitates
the data processing component to access the target relational database with
operations such as update, query and insert into the database. However, if
an other database such as CouchDB is used as the storage mechanism, then
the ConnectKnowledgeDB should prepare the database connection using ap-
proaches such as jCouchDB [JJCD] to bridge the communications between
the database and data processing component.

In the proposed design, connection details are hidden from the users of
the system. The ConnectKnowledgeDB operation wraps all complex op-
eration details and returns an established database connection to its user
regardless of the type of database applied underneath. After the connection
handle is returned, the data processing component uses the returned handle
to insert the newly obtained knowledge into the knowledge repository. This
operation is simply performed by the SetKnowledgeItem.

To summarise, the goal of the data processing component is to provide

180

4.4 Recovery Planning Framework

DSL translation mechanisms between the components involved in the frame-
work. Due to the variable input and output DSL, flexibility is an essential
factor to be considered in the design. Furthermore, the component should be
easy to use for other components as users and the complex working details
of translation mechanisms should be hidden from the user. To address these
requirements, we applied in our design the abstract factory pattern, with
which the internal working details of the creations of translation objects are
opaques to the user. To invoke the creation operations, the user can simply
rely on an class which serves as the access method, which initiates and trig-
gers the creation operations. The details of the creation are done internally
in the factory, where different implementations of translation components
are dynamically composed into an object. The object which encapsulates
the desired components is returned to user for further application. Further-
more, the component also prepares database connections to the knowledge
repository. To address different types of information storage system that the
planning framework may have, the data processing component wraps the de-
tails of connection establishment into an operation, which simply returns a
connection handle for its user to perform database-specific operations.

To conclude, the proposed design has the following advantages:

• The translation object required by the user can be dynamically cre-
ated either with a default set of translation components or with user-
specified types.

• The design allows the developer to control the creation of user-specific
translation object creations in an actual application and, therefore,
enforces the consistency among the created objects. Because it en-
capsulates the creation processes and separates the user of the system
from the actual implementations of the components, the user can only
manipulate the created instances through the defined abstract inter-
faces.

• The actual creation processes are hidden from the user. As a result,
the user simply gets a translation object returned from the creation
process to address his requirements.

• Due to the abstract interfaces in the design, it is easy for the devel-
oper of the planning system to modify the implementations of diverse
translation components, such as lexer, without influencing the user
code.

• As the target systems evolve, new translation components may be
needed to address such changes. The proposed design allows the sys-
tem developer to easily add new components targeted at new DSL and
thus new systems.

181

4.4 Recovery Planning Framework

4.4.4 Knowledge Repository

The overarching goals of the knowledge repository are relatively straight-
forward: first, it provides a unified central data storage mechanism for the
recovery knowledge and related information for the framework; second, it
facilitates other components to retrieve and manipulate knowledge entries
when necessary.

The knowledge repository interacts with the planning component and
the data processing component, whose designs already include operations
that reflect their usages of the knowledge repository. During the opera-
tion, the planner establishes a connection to the knowledge repository for
retrievals of information that is relevant for its current planning operations.
To reduce the data communication overhead and to suppress the frequency
of data exchanges between the components, the planning information is or-
ganised in the form of plan domain files as we discussed previously, which
include recovery abstract tasks, decomposition methods, and actions that
are available to the current recovery task. By doing so, we allow the planner
to fetch a complete plan domain description file with the necessary plan-
ning knowledge with a single operation. The data entries in the knowledge
repository are description files for certain plan domains. Domain descrip-
tions files are text-based documents with keywords which identify specific
recovery information such as action, decomposition method.

Other than the planner component, the data processing sub-system acts
as an interface for the users to manipulate knowledge entries in the reposi-
tory. Therefore, a data store mechanism of the knowledge should allow some
data manipulation primitives, such as update and insert the newly acquired
knowledge into the database in order to allow users to enrich and extend
data inventories in the repository.

The planning knowledge is encoded in PDDL format for the current
design, which is a document-based data structure as defined by its spec-
ification. Therefore, any data storage system that is capable of persis-
tently retaining semi-structured data types is more appropriate to be ap-
plied as possible implementations of the repository, since they can han-
dle semi-structured or even unstructured data types. Moreover, to facili-
tate the operations related to information retrievals, the select data stor-
age mechanism should also support basic database-like operations which
allow the client of the repository to simple query, update and insert oper-
ations. Despite the fact that there are currently many possible candidates
available for the implementation of a knowledge repository, for example,
document-based data storage approaches for NoSQL data storage systems
[Bar10, CDG+08, LM10] which are currently gaining prominence among
different applications, our discussion is not focused on any particular kind
of storage mechanism or system in order to keep the component as generic
as possible. Decisions on applying which specific storage mechanism as the

182

4.4 Recovery Planning Framework

Operation Functional Description

Update The user invokes this operation to update the currently plan-
ning knowledge such as decomposition methods, action de-
scription.

Insert This operation adds new planning knowledge to the reposi-
tory for certain planning domain description files. The user
could also insert new planning domain into the repository
with this operation.

Delete The user could actively deletes any obsolete planning knowl-
edge if it is no longer required.

Get Retrieve planning domain description files that are required
by the planner.

Table 4.4: Generic Operations for Knowledge Repository

implementations of the knowledge repository is therefore left to the devel-
oper. To that end, we focus our current discussion on the generic operations
that are required to be supported by the knowledge repository to fulfill its
designated functionalities.

Table 4.4 lists four generic primitive operations that must be supported
by the knowledge repository. With those operations, clients of the knowl-
edge repository (either the user or system component) can interact with the
repository to either retrieve or manipulate knowledge entries. The planner
components use the Get operation to retrieve the domain descriptions with
planning knowledge from the repository and caches the retrieved knowledge
in the local storage for instant access during planning. The Update, Insert
and Delete operations allow a user (e.g., domain expert) to manipulate the
knowledge items in the repository. Table 4.23 shows the communications
processes between knowledge repository and other relevant components.

Figure 4.23 (a) offers an overview of the interactions between components
that are related to the knowledge repository as discussed previously; part
(b) of the diagram provides a detailed view of the inter-component activities
in the form of a sequence diagram.

A more advanced design of the knowledge repository can also include fea-
tures such as a syntax-based check of the input recovery knowledge to rule
out possible errors in the input knowledge, so that we can reduce the possi-
bility of false positives in results of the planning operations. Furthermore,
the repository can also be used to log plan history for future references, with
which approaches such as case-based planning [CMAB05] can use the logged
plan history to perform planning operations.

183

4.4 Recovery Planning Framework

Repository

Knowledge

Planner
user
actions

GET()INSERT()

UPDATE()

DELETE()

User input

& actions

Data Proc

Domain Description Files

Repository User InterfaceData ProcessorPlanner

connect

establish

get

send file
input

input

insert

update

delete

translation

(a) (b)

Figure 4.23: (a) Repository operations and interactions with other compo-
nents; (b) Sequence diagram of cooperations between knowledge repository
and relevant components

4.4.5 Planning System Interfaces

The planning system interfaces are the border and mediator between the
planning framework and external systems. They provide ways to facilitate
the participating systems to exchange data and to communicate with each
other in the well-defined manner. From the external systems perspective,
the interfaces provide them with planning solutions that are ready to be
implemented to fulfill the designated management goals. From the frame-
work perspective, the interfaces allow the planning system to acquire new
planning knowledge from the user input. If the planning algorithm is fea-
tured with interaction capability or it requires constant feedbacks from the
plan execution, all such events will also be required to communicate to the
planner through the system interfaces.

As previously shown in Figure 4.18 (on page 170), the planning compo-
nent faces two types of external systems: the user-side systems for presen-
tations of plan solutions and knowledge acquisitions as well as the attached
management/execution systems of the target services for plan executions.

A user-side system refers to any system that users of the planning frame-
work apply to present solutions in their specified ways, for example, while
one may prefer the plan solution to be presented in a web-based system,
others may want the solution to be integrated into their applications. Ad-
ditionally, our system design should also allow users as domain experts to
edit, update and insert planning knowledge from the user interface, so that
the knowledge repository could be enriched for more planning tasks.

An attached management system acts as the execution mechanism for
the planning framework; it is responsible for implementing the devised solu-
tions in their pre-determined order. On the other hand, the attached system
could also monitor the execution during the execution process and provides

184

4.4 Recovery Planning Framework

the planning system with any feedbacks of the execution if required. For
example, a workflow system can be used as an execution mechanism for
plans and a monitoring system can track the execution status of the current
plan and propagates any system event back to the planning framework if
necessary.

Depending on the initiating side, the communications and data exchanges
between participating systems take place in a bi-directional manner. We
classify the operations into two major categories as the following:

• Planning-framework-initiated communications. Messages or data gen-
erated by the planner are internally processed by the planning frame-
work and sent back to external systems for either direct execution or
presentations. The planning framework initiates the communications
with the system interfaces to perform the tasks of calling correspond-
ing external functions for the desired purposes.

• Client-systems-initiated communications. The client systems, either
user-specific or system-specific, send event messages and data back
to the planning system. The client system should be capable of per-
forming such tasks through the defined operations within the system
interfaces component. However, the working processes internal to the
framework are hidden from the calling client.

Based on the discussions above, we extract and define a set of generic op-
erations required to facilitate communications and data exchanges between
the planning framework and external systems. The operations are discussed
separately according to the types of external systems.

Table 4.5 shows a set of operations defined for the user-side system in-
terface. These operations allow the planning framework to render plan solu-
tions and get user input for the plan knowledge repository. A user can apply
this interface for their application-specific implementations to show solution
plans and manipulate knowledge items. In order to perform the knowledge
manipulation operations, a caller needs to specify the types of knowledge
items he wants to update in the call as parameters, e.g., if the knowledge to
be inserted is a decomposition methods or management constraints or man-
agement actions. Additionally, the user also needs to specify the name of a
domain file, in which the plan knowledge is to be edited. The same principle
also applies if the user wants to create or delete certain plan domain files.

Table 4.6 lists operations designated for the mutual communications be-
tween the planning framework and external management systems. The op-
erations allow the planning framework to execute the composed plan on the
system and, furthermore, enable the system to get feedback events back to
the framework if required. After the computation of a recovery plan as a
solution to a recovery problem, the data processing sub-system is triggered

185

4.4 Recovery Planning Framework

Operation Descriptions

RenderPlan This operation in the interface intends to wrap in a
user-specific way to render a plan in a user-specific
ways. The caller of this operation must encapsulate
the platform-specific rendering method for its applica-
tions.

UpdateDomain This operation allows a caller to update planning
knowledge in a designated planning domain file in the
repository. The caller must specify the target plan do-
main and specific knowledge items it wants to update
with this operation.

DeleteDomain Allows a user to delete a specific planning domain file.

CreateNewDomain Allow a user to create a new planning domain.

Table 4.5: Generic operations to the interface for presentation of planning
solution and knowledge acquirement

Operation Description

ExecutePlan This operations allows the planner to call the execut-
ing mechanism of a user-specific system.

DispatchSystemEvents If required by the planner algorithm, the external
management system can optionally dispatch system
events back to the planning framework

Table 4.6: Generic operations to system-specific interface for external man-
agement systems

186

4.4 Recovery Planning Framework

to convert the plan solution into a system-specific DSL and ready for exe-
cution. The framework uses the ExecutePlan operation to implement the
actions in the plan on the target external system. By calling the operation,
the planning framework does not have to be aware of the type of target sys-
tem and how the plans are actually executed. Types of different end-system
should be hidden from the planner. The operation DispatchSystemEvents

works in a different direction to the plan execution operation. By calling
this operation, the external system tries to send a system-generated event
during the planning execution to the planner. The transmitted events mes-
sages are passed by the system interface component to the data processing
component, where the data are translated into the planning language that
is comprehensible to the algorithm.

While the internal workings of the planning system can remain relatively
constant, meaning the involved components and formats for exchanges are
not changed very frequently, types of external systems may, however, vary
drastically according to the application scenario. Some aspects of such dy-
namics have been addressed in the design of the data processing component;
nevertheless, the discussion only concentrates on the data models and trans-
lation of DSL between systems both internal and external to the framework
without consideration of the system aspect of the end-system dynamics. We
deliberately left the discussion of the end-system dynamics to the current
section on the system interfaces component to follow and to advocate the
principle of separation of concerns in the design.

Other than the data processing sub-system, which deals with the conver-
sion of different planning data, the system interface component has to cope
with incoherent external system types users may apply. It is responsible for
calls from or to external systems and takes care of data communications,
regardless of the syntax and semantic of the data that are transported be-
tween the systems. The system interfaces should also facilitate the external
system in order to send information to the framework.

To address the issues of the external system dynamics in the design, the
system interfaces component should be defined in such a way that changes
to the underlying system would not lead to significant modifications of the
framework.

To ensure such flexibility, we apply the principle of the Adapter Pattern
[GHJV95] in our design. The pattern4 suggests using a wrapper instance
to translate an interface of the system into another interface expected by a
foreign system. It proposes a way for two different systems to work together
that otherwise could not be done because of incompatible interfaces. The
working principle of the adapter mechanism is illustrated in Figure 4.24.
With this design principle, the adapter is going to be the only changing

4There are two types of adapters: class adapter and object adapter. In our design we
use the object adapter approach to avoid multiple inheritance.

187

4.4 Recovery Planning Framework

Planning

Framework

External

SystemsAdapter

System Interface

Figure 4.24: Working principle of the adapter pattern

element in the design; systems that intend to communicate with each other
on both sides of the adapter are not aware of the specific interfaces to each
other. The main advantage of the adapter pattern is that through the use
of abstract interfaces, the planning framework can always be reused with
minimal changes to the framework itself. If the underlying systems are
changed, only the interface needs to be adapted to the new systems; the
existing internal components in the planning framework can thus remain
intact for the new application. A user application simply calls the wrapped
operations which map the interface of one system into the target system
interface. In order to apply this design pattern, we assume that the primitive
operations such as performing a plan execution and rendering a solution are
operations that are generic enough to be available on the target systems.

Before we design the interfaces, we first determine the operations that
need to be adapted to the end-systems (also known as the adaptee). From
all operations listed in Tables 4.5 and 4.6, we identify two operations to
be wrapped into the adapter: RenderPlan and ExecutePlan. For both
operations, external end-systems, either user-specific or system-specific, take
the role of adaptee. We base our decision on the fact that the external
systems are sources of changes in most cases. In other words, the data
and operations within the planning framework remain relatively constant.
Therefore, only operations that need to trigger the external systems must
to be adapted in our case; the rest of the generic operations which trigger
the planning framework require almost no changes if the external systems
are changed. To perform these operations, the external systems can directly
call them as needed. For example, if a user-specific system wants to modify
planning knowledge in the repository through a web-based form, he could
simply call the UpdateDomain operations to achieve his goal; if the user-

188

4.4 Recovery Planning Framework

<<interface>>

ExecutePlan()

RenderPlan()

PlanManipulator

<<implementation>>
PresentPlan

PlanPlotter()

<<implementation>>
ShowPlan

Show()

<<implementation>>

WorkflowExecute

Execute()

<<implementation>>
ExecuteEngine

ExecuteAction()
ExecutePlan()

RenderPlan()

<<implementation>>

PlanAdaptor

P
la

n
 P

re
s
e
n

ta
tio

n

P
la

n
 E

x
e
c
u

tio
n

External SystemsPlanning Framework

Planning Mechanism

Figure 4.25: Design and working principle of the adapter for the interface
component

side system is changed to other desktop applications, he could just execute
the same call without any change in the call procedure. Nevertheless, if a
planning framework intends to dispatch a plan solution to different types of
end-systems, it has to alter the calling procedure to meet the requirement
of the changing systems.

Figure 4.25 shows the adapter design in a UML class diagram. As shown
in this design, the planning framework does not have to have the specific
knowledge on the target external systems regarding their procedures to per-
form the desired operations. As access point, the interface PlanManipulator
defines the generic operations that need to be adapted. To conduct opera-
tions on the external systems, the framework simply uses the generic opera-
tions to meet its needs. In the actual implementation, the PlanAdapter re-
alises the PlanManipulator interface; when it gets an operation call from the
planning component, it delegates the calls to corresponding implementations
of the external systems. In the external systems shown in the right-hand
side of the diagram, system-specific implementations are listed as examples.
For the plan presentation operations, two operations are available for two
different user systems, as examples, one uses the PlanPlotter operation and
other relies on the Show method to present the plan solution for the systems
specified by the user. The same principle also applies to the external plan
execution systems as well. The adapter relies on the composition principle
to dynamically tie together the necessary system-specific implementations.

To conclude, the design of the system interface component allows the
information-hiding principle to be applied by encapsulating plan operations
into the framework. In most cases users of the planning framework are not

189

4.5 Summary

interested on how planner operates; rather they care more about how their
designated systems interact with the framework, for example, how the plan
solutions are presented and implemented in their designated applications.
To this end, at the border of the planning framework, the system inter-
face component defines a set of operations to enable data exchanges and
communication between the planning system and external systems, without
revealing the internal working principles of the planning mechanism. With
this set of operations, users could not only easily retrieve and display plan-
ning results on their specific systems, but also input their specific planning
knowledge into the repository with their platform. To execute plans on the
system, the operations defined by the interface allows the framework to easily
talk to different execution systems and monitor any relevant system events
during execution. To ensure the flexibility in the design, especially regard-
ing the dynamics towards the end-systems, we apply the adapter pattern in
the design of the operations with a need to trigger the foreign methods on
the external systems. The adapter decouples the internal planning mecha-
nism from the actual operations of external systems. If external systems are
changed over time, only minimal modifications to the adapter are required.
For the adapter approach to work, we assume that the end-systems possess
operations that semantically match the generic operations defined in the
interface.

4.5 Summary

As the core part of this research, this chapter delivers contributions ranging
from theoretical investigations of solving the IT service recovery problem
with planning techniques to the specific design of the planning algorithm
based on the HTN-based planning paradigm. To support the operation of
the proposed planner, a range of supporting components is required, which
fulfill different purposes in order to sustain the planning operations. Based
on these components, we design a software framework which encapsulates
the working principles of the planning algorithm and decouples the users of
the planning system from the actual planning operations. To guarantee the
extendability and flexibility of the framework, design patterns are applied
in our design. The main contributions of this chapter can be abstracted as
the following:

• Theoretical investigations of solving the IT fault recovery problem as
a planning problem. To provide a solid theoretical foundation for the
further research to be built on, we argue and formally show that auto-
mated planning techniques is a viable approach in fault management
of IT services, especially in the planning of fault recovery operations.
In order to support this argument, we first build a generic model for

190

4.5 Summary

the IT service fault recovery problem by formalising the essential fac-
tors in the model. Then we rely on the problem reduction technique as
the formal method to show the reducibility between the proposed fault
recovery problem model and the generic planning model. The reduc-
tion operation is performed by transforming the fault recovery problem
model into a generic planning problem model. Then the transformed
recovery problem can be solved with a planning technique.

• IT service fault recovery is a knowledge-intensive operation. To sup-
port the automated planning process, we define and model a set of
knowledge types that are required to be served as the basis for the
planning. We provide the language specifications using the formal
grammar for the different recovery knowledge elements. The language
is a Domain-Specific Language (DSL) for the description of recovery
information.

• Knowledge translation mechanism from user input to PDDL. After in-
vestigating diverse description languages for expressing planning knowl-
edge, we choose the Plan Domain Description Language (PDDL) as
the input for the planner. PDDL is the de facto planning language
standard which has been developed and maintained by the interna-
tional research community. Its expressiveness allows descriptions of
complex planning knowledge. Nevertheless, despite its expressiveness,
this language is still hard for the non-AI specialist to grasp, therefore,
to compile a reasonable planning domain description poses a challenge
to users. To reduce such impact, we propose a translation process be-
tween PDDL and the proposed DSL. This allows the users to interact
with the planning mechanism and to build a planning domain without
explicit knowledge of PDDL. The complex details of building a plan-
ning domain are performed by a set of translation algorithms which
analyse and compile the planning domain description according to the
user input.

• Design of the recovery planning algorithm. As one of the core contri-
butions of this chapter, a planning algorithm called H2MAP is pro-
posed. The H2MAP is designed based on the HTN-based planning
paradigm. Compared to other planning paradigms, the HTN-based
planning approach has advantages in terms of performance, knowledge
reusability, domain configuration capability and extendability which
make it a widely accepted planning paradigm for solving real-world
planning problems. The proposed algorithm operates based on the
iterative refining of high-level abstract tasks into low-level planning
actions. Users of the planning algorithm could guide the planning
process by explicitly providing one or more high-level tasks and the
algorithm computes the plan solution according to the current states

191

4.5 Summary

of the target system. The algorithm is shown to be sound and com-
plete. To improve the capability of the H2MAP , we also design
extensions that handle temporal planning knowledge and uncertain
plan information during the operation.

• Design of the planning framework. With the planning algorithm in
place, a framework design is provided, which revolves around and sus-
tains the operations of the planning algorithm. To ensure the flex-
ibility of the design, our proposal of the framework and its compo-
nents is guided by a set of design patterns. The sub-systems involved
in the design cover the data translations and persistent storages of
reusable recovery planning knowledge. The design intends to encap-
sulate the complex planning operations and interactions of the com-
ponents within the planning framework while still providing its users
with well-defined and simple interfaces for data exchanges.

192

5
Prototypical Applications and Evaluations

Contents

5.1 Implementations of Core Components 194

5.1.1 Knowledge Translation Components 194

5.1.2 Planning Algorithm 200

5.2 Applications . 202

5.2.1 Suggested Deployment and Provisioning 203

5.2.2 Recovery Planning in Cloud Computing 207

5.2.3 Portability of the Framework 213

5.3 Evaluation . 216

5.3.1 Framework . 216

5.3.2 Planning & Scheduling 217

5.3.3 Knowledge & Repository 220

5.3.4 Data Processing 221

5.3.5 Plan Evaluation 222

5.3.6 Workflow & Execution 222

5.3.7 Overall Fulfilment of the Requirements 223

5.4 Summary . 225

This chapter starts with discussions of the essential aspects regarding
instrumentations of the core components in general. The focuses are on the
language translation mechanisms and the planning component. We outline
and suggest how these components in the framework could be technically
realised. The discussion on the implementation is, however, generic and
independent from specific technologies.

193

5.1 Implementations of Core Components

To demonstrate applicabilities and the practical values of the approach,
we instantiate and prototypically implement the framework to several ap-
plication scenarios. For that purpose, we choose to show how the planning
framework can be instantiated, adapted and integrated to deal with practi-
cal recovery tasks in managing the service recovery in a Cloud computing
infrastructure. Not only do we address the issues regarding fault recov-
ery management, to proof the portability of our idea for other management
disciplines, we also show an example regarding the planning for change man-
agement. This demonstrates that our framework and the underlying mech-
anism in general are well suited for many management tasks that require
planning.

In the final section of this chapter, we summarise and evaluate the frame-
work against the requirements derived in the Chapter 2 and its degree of
fulfillment is discussed.

5.1 Implementations of Core Components

In this section, we provide insights regarding the implementation outlines
and instrumentation aspects of the core sub-systems. The focuses are on
the planning component and data processing component, since they provide
the most essential services in the entire framework. Whereas the goal of
this chapter is to show how specific system components can be technically
realised, we provide implementation suggestions and methodologies rather
than providing full-fledged programs. These instructions can be applied as
guidelines in the development to construct artifacts of the framework.

5.1.1 Knowledge Translation Components

The translation architecture was explicitly discussed in Chapter 4 in Section
4.2.3 (on page 125). The main working principle of the translation architec-
ture is to first lexically analyse the input description in the form of the DSL
encoded with recovery knowledge from user input. After the analysis has
been done, we parse the results and map the corresponding items into the
planning knowledge structure. Finally the language generator automatically
constructs the target output language, in our case PDDL. To implement this
translation architecture, we need to construct three components, including
Lexer, Parser and Generator, which are similar to those for building a com-
piler for programming languages. To instrument the translation component
we used the antlr tools1, which is an open-source tool with an integrated
development environment for the construction of language compilers.

1antlr, Another Tool for Language Recognition, http://www.antlr.org.

194

http://www.antlr.org

5.1 Implementations of Core Components

Figure 5.1: Syntax diagram of the input planning document

Lexical Analyser

The lexical analyser (lexer) is the first processing unit of the input language.
Its main responsibility is to scan through the input language sentences and
decompose the input into a sequence of tokens. Specifically, a lexer reads the
characters in the input stream and groups them into lexemes together with
their attribute values. Those tokens and corresponding values will be used
by a parser for the structure analysis. Additionally the lexer also performs
house-keeping tasks such as stripping out the write spaces and comments in
the source codes which are not directly related to the semantics of the input
information.

In our context, the lexer reads a set of user input specified by the gram-
mar of the recovery knowledge descriptions (as described in Section 4.2.2)
and extracts the tokens in the input stream. The user input is a text-based
document with different types of recovery knowledge organised in blocks.
Figure 5.1 shows a syntax diagram of an input planning knowledge (pkd)
document as discussed earlier. The document is headed by a description
label which denotes a domain, to which all of the blocks in the document
belong. The concept of the domain was previously discussed in Section 4.2.3.
The start of the input is signified by the BEGIN keyword and is ended with
the END keyword. The loop in the diagram denotes that the definition of the
domain contains at least one block.

Note that to simplify the implementation so that the key idea of the
translation is more clear, instead of automatically extracting domain infor-
mation from the block definitions and clustering the blocks that belong to
the same domain, we explicitly give the domain in the beginning of doc-
ument. Nevertheless, an automated sorting and clustering of the blocks
according to their types, as already defined in Algorithm 3 (on page 132),
can be easily added in the future implementation.

A block is a typed data structure, i.e. each block contains the recov-
ery information entries which are specific to the corresponding knowledge
types, e.g., recovery action, decomposition methods, description of system
states etc., as they are specifically defined in Section 4.2.2. The informa-
tion types and detailed descriptions are discussed in Section 4.2.1. The
type information is given at the beginning of the block definition by a label,
which signifies the expected knowledge types that are presented inside the
block. For processing of type-specific blocks, a set of sub-rules are defined.
Appendix B.3 shows an example grammar definition of the action block.

195

5.1 Implementations of Core Components

Figure 5.2: Syntax diagram of typed blocks. A block contains multiple
entries of type-specific expressions

Figure 5.3: An example of a grammatical structure of action block in syntax
diagram

Figure 5.2 shows as an example syntax diagram which contains differ-
ent typed information definitions in the form of typed blocks. The different
typed blocks have similar grammatical structures. Depending on the type
information, corresponding sub-rules are invoked if they are correctly recog-
nised to process the input information. The translation mechanism deter-
mines which grammatical sub-rules to follow by recognising the labels that
convey the type information.

For a block definition, the translation mechanism expects a pair of de-
limiter symbols that are used to mark the start and the end of a block input.
Inside a block, a set of description entries specific to that information type is
given. Types of entries are, as already discussed, given in the corresponding
grammatical sub-rules. An information entry represents a block attribute,
which is an expression labelled with a keyword with its corresponding values.
It is separated by a special symbol and ended with a semicolon.

As can be seen from Figure 5.3, a definition of a block entry starts with a
double indentation (INDENT) as syntax sugar; each entry definition contains
an expression which is a combination of keywords in terms of literals and
their corresponding values, separated by a colon. Each block contains at
least one such entry.

With the clearly defined document structures, a lexer is created to anal-
yse the input stream and to find all tokens involved in the document. Details
of the implementation of the lexer are provided in Appendix B, Section B.1.
The implementation code is written in the Java programming language.

196

5.1 Implementations of Core Components

Figure 5.4: A Partial Parser Tree

Parser

After the lexical analysis phase, a set of tokens involved in the input doc-
ument is produced by the lexer. All of the recognised tokens are saved in
a data structure called a symbol table2. Based on the extracted tokens and
defined grammatical rules, a parser performs further operations to analyse
the syntax structure of the inputs by organising the tokens according to the
rules defined in the grammar. The parser must recognise not only the key-
words in the input document, for example identifiers used inside the block
definitions, it also needs to parse the structure and sub-structures of the
input information. Additionally, the parser scrutinises the input language
to determine whether it conforms to the syntax of the given grammar as de-
fined in the previous discussions. It raises exceptions in cases of mismatches
and errors. The main task of the parser is, however, to identify the structure
of the language and to associate the extracted tokens with their correspond-
ing values. The parser emits as result an intermediate data structure called
Abstract Syntax Tree (AST), which reveals the processed syntax structure
of the input information.

As an example, Fig. 5.4 shows a partial AST3 generated by analysing a
simple information block. ased on the grammatical specification, the parser
recognised that the input data is the planning knowledge definition (pkd)
which has, as defined in the grammar, a domainID called domain. The
current definition contains a block typed as plan action by recognising the
label ACTION at the beginning of the block. This event triggers the gram-
matical sub-rule to process the recognised structure as an action block with
information types defined for recovery actions. The implementation code of
the parser is listed in Appendix B. The AST data structure generated by
the parser builds an essential basis for the next processing step to generate
the target language.

2In the current implementation, tokens extracted by the lexer are stored in a file called
PKDL.tokens.

3A complete AST is too large to be presented on this page.

197

5.1 Implementations of Core Components

Generating the Target Language

The last phase of the translation mechanism is to generate the target lan-
guage that conforms to the format expected by the planner. The translation
process requires fully comprehending of the input phases, then selecting an
appropriate output format or construct, and finally filling it with the lan-
guage elements from the input model. In our implementation, the input
language is the knowledge specifications written with the defined grammar.
In order to perform the translation operation, we need to define a set of
rules to guide the generation process. In the current implementation, we
take PDDL as the target output language. Thus, based on the previous lan-
guage analysis results and grammar, we define a set of rules that produce
the PDDL code.

Translation approaches can be roughly classified into several major cate-
gories [LASU06, Par09]: syntax-driven translator, rule-based translator and
model-driven translator. With a syntax-driven translator, the output is im-
mediately emitted as the translator reads input, while a rule-based translator
uses a rule engine to specify the mapping between input and output language
elements. The model-driven translation approaches commonly build up an
internal data structure of the input language before the target languages
are generated. The internal representation of the input languages is an uni-
versal and independent of the output, for example, an AST is one of many
representation possibilities. Compared to other approaches, model-driven
translation is more flexible since the rules that define the generation pro-
cesses are not hard-coded. The separation of the language model and output
mechanism allows us easily adapt the translation component to other output
models as the requirements of output languages change. The separation of
concerns of the model-driven approaches make the whole translation process
easy to maintain and to debug.

In the current implementation, we instrument the StringTemplate [Par04]
engine to assist the target language generation. StringTemplate is one of the
many model-driven translation approaches; nevertheless, compared to other
approaches, the StringTemplate engine enforces a strict separation of models
and views. In other words, the logics concerning the input language analysis
and building of intermediate representation data are kept in the code, and
the output language is encoded in one or group of templates. In this way, as
soon as a requirement on the output language is changed, we could simply
swap out the current template with the one designated for the new out-
put language; the rest of the translation procedures remain intact. In this
way, the code for language analysis phase can be written once and always
be reused, regardless of the target languages. The separation-of-concerns
concept with StringTemplate is in alignment with our design principles of
the knowledge processing component, whose gory details were discussed in
Chapter 4, Section 4.4.3 (on page 174).

198

5.1 Implementations of Core Components

A template encodes a set of structures of the output language, which
can be used to map the analysed input language elements to the output
structures. The mappings of language elements between the input language
and target language were discussed in detail in Chapter 4, Section 4.2.3 (on
page 126). The templates also dictate and instantiate the translation rules,
which means the translation logics expressed in the translation algorithm
could all be embedded in the templates. StringTemplate is a programming
library which can be used to create templates of the output language. The
template defines the keywords and structure of the output. The values that
need to be inserted into the output document are controlled by a set of
attributes defined inside the translation logics.

For a simple translation, the translation logics in terms of template rules
can be directly embedded as part of the input grammar; the corresponding
rules will be triggered if the input stream conforms to the grammar. Never-
theless, it is not a very flexible way to use the library, especially in terms of
translating and generating large, complex, cascaded inputs. The set of the
translation rules could be gathered in groups and put into a file, which only
contains such rules. In the grammar, the grammar rules are matched to the
translation rules defined in the file to generate output. The actual values in
the input stream are extracted by the template and passed to the generation
rules as parameters to set the attributes of a particular generation rule. For
each typed block of the input, we define a set of corresponding translation
rules and group all those rules together in an independent template file.

For example, to translate a parameter list from an input action block,
we define the rule in the template file:

param_header() ::= "(:parameters (and ";

param(v, t) ::= "?<v> - <t>";

param_tail() ::= ") "

In this definition, param is used as a rule name which has an attribute
pms. In the body of rule definition, it produces a parameter definition ex-
pression compatible with PDDL specification, which is:

(:parameters (and ?var1 - type ?var2 - type))

The generation rule is embedded inside the grammar definition of the
corresponding block. The following code shows the integration of the rules.

var : ’VAR’ WS varname WS type WS

-> param(v = {$varname.text}, t = {$type.text});
param : ’PARAMETERS’ -> param_header()

WS COLON WS (var SEMI)+

NEWLINE -> param_tail();

199

5.1 Implementations of Core Components

Upon recognising a parameter entry inside an action block, the param

rule is triggered to perform the generation procedure. With this approach,
if the target language is changed, we simple adapt the definitions of the
translation rules inside the rules file; the rest of the translation approach
does not need to be changed at all. For a complete implementation, a
set of generation rules needs to be defined for each typed block inside a
recovery knowledge description file. For a more complex target domain
descriptions file, for example, if quantifiers such as Forall, Until etc. are
included, sophisticated techniques such as AST tree-walks may be required
to facilitate the language generation process, which will be integrated as
part of our future work.

5.1.2 Planning Algorithm

The planning algorithm performs operations to compose viable plan solu-
tions. A correct solution plan is expected to transform the current state
of the target service, which contains faults, into a set of fault-free states.
The main operational character of the H2MAP planner, as proposed, is to
refine the high-level tasks recursively into finer sub-tasks. The refinement
operations continue until the low-level tasks result. Compared to the classi-
cal planning approaches, the suggested algorithm searches and selects suit-
able decomposition methods instead of pure low-level actions. This property
makes the planning with hierarchy more efficient and practical for real-world
planning tasks, which many involve a large quantity of selectable actions to
be chosen from.

The operation of the H2MAP planning algorithm is sustained by a set of
auxiliary functions. The most essential ones in those functions, as stated in
Algorithm 23 in Chapter 4, are: Apply() and Find(). The Apply() function
is responsible for implementing selected actions in a partial result on the
current infrastructure. Depending on whether the planner is implemented
in interactive or non-interactive mode, this function either simulates the
results of an selected action on the infrastructure model or executes directly
on the real infrastructure by using the system interface.

With the non-interactive simulation of the effects of the selected action,
the planner holds globally a list data structures called CurrentState (denoted
as i0 in Algorithm 23). The list contains a current state descriptions of the
infrastructure which can be dynamically altered during the course of action
executions. As defined, the recovery action model contains a set of effects,
which are the expected state changes as soon as the action is executed,
the CurrentState is thus updated correspondingly to simulate the expected
results. Positive effects listed in the expected results of an action are inserted
into the CurrentState and corresponding negative effects are removed from

200

5.1 Implementations of Core Components

the global list4. With each call of the function with state-changing actions,
the global CurrentState is modified by adding and deleting terms in the list.

(CurrentState
. . .
(running serv1)
(i n s t a l l e d httpd)
(con f i gu r ed serv1 httpd)
(stopped web se rv i c e)
. . .
)

(l i s t (: a c t i on (s t a r t w e b s e r v i c e)
: p r e cond i t i on ((running serv1)

(i n s t a l l e d httpd)
(con f i gu r ed serv1 httpd)
(stopped web se rv i c e))

: e f f e c t s ((add s t a r t e d (web se rv i c e))
(delete stopped (web se rv i c e)))))

The codes above show a simple example encoded in Lisp style to illus-
trate how the plan action changes the current state. The current state list
may contain more states; nevertheless, for the action start web service the
explicitly stated pre-conditions are fulfilled by the current state of the sys-
tem; therefore we preform the action, which has a positive effect that turns
a web service into started state. Furthermore, the stopped state is deleted
by executing this action, as explicitly defined in the action description.

If the there are no more actions to be performed in the plan then the
planner checks to see whether all conditions expressed in the goal description
are satisfied; if so, then the plan is evaluated as a valid solution. In non-
trivial cases, previously discussed constraints regarding temporal and cost
condition also need to be checked against the corresponding values during
the evaluation.

If the planner is implemented in the interactive mode, the selected ac-
tions are directly executed on the system, in which case the changes of the
system states reflect the actual implementation results; thus the planner
needs to wait for the system feedbacks and must duly react to the new
system state.

The function Find() is responsible for finding the next decomposition
method to refine the current tasks. The function is designated to perform
two core tasks: computing a set of valid variable bindings and searching for
the next decomposition method. Since the decomposition methods and ac-
tions are encoded generically with parameters denoted in variables and their
types, during the computation of a plan, these variables must be correctly
bound to a set of instance values that are in alignment with those defined
in the methods or actions. For example, if in the current state description,

4A plan action maintains an add list and a delete list to denote state changes.

201

5.2 Applications

a state of the server can be expressed as: (CurrentState ... (running

LinuxServ1 server)), this means that in the current system state, an con-
stant LinuxServ1 of type server is in a running state. In the pre-conditions
of an action or a decomposition method, there may be a condition expressed
as (running serv1 server). In this case, the planner should compute and
bind the variable in the action serv1 with the constant LinuxServ1 of type
server. To improve the performance of the planning process, it is also pos-
sible to apply the least-commitment technique, which delays the binding
of variables after the primitive plan solution is produced [TEHN96]. With
deferred variable binding, the CSP algorithm can be used to postpone the
computation of variables until absolutely necessary [YC94].

By searching decomposition methods and performing refinement oper-
ations, different strategies could be applied; some candidates are, for ex-
ample, iterative deepening search, breadth-first search, etc. The planner
chooses the next decomposition method by evaluating its pre-conditions to
check if the method is unifiable with current state descriptions. If iterative
deepening searching is applied, the find() function first finds a decompo-
sition method that refines the current abstract task into a abstract task
network and performs the deepening search with the left-most node of the
networks; it iteratively repeats its search until all results in the deepest level
of the left-most node are executable actions. The operation forms a tree-
like structure and halts if all leaves in the tree are non-abstract actions. In
the application example for fault recovery planning of service in a Cloud
computing infrastructure, we use a modified iterative deepening technique
which only works on the most promising node to improve the performance.
In the following section we implement the planner with its essential features
for the application scenarios.

5.2 Applications

Having discussed the implementation aspects, we demonstrate in this section
instantiations of the planning framework for different application purposes.
Before we dive into the concrete examples, we first propose a generic pro-
vision and deployment process, which serves as a guideline for the analysis,
development, testing and improvement of the application. To perform the
tasks for different stages of the process, we define several participating roles
with different specialised responsibilities to support these activities.

Depending on specific scenarios, the instantiations of the original frame-
work are adapted to the corresponding applications. Therefore, the concrete
implementations of components involved in the specific applications might
deviate slightly from the generic design from case to case. Nevertheless,
the guiding principles and working mechanisms of planning operations still
reflect and are in accordance with our original design. For each example, we

202

5.2 Applications

implicitly map the instances of components in the implementations to the
corresponding components in our proposed framework. As the first example,
we discuss an instantiation of the application of management fault recovery
of virtual services in a cloud computing infrastructure. The flexibility of
the proposed planning approach design allows applications that cope with
other management disciplines requiring planning. To demonstrate this prop-
erty, we also apply our approach to change management with only minor
modifications.

5.2.1 Suggested Deployment and Provisioning

We discuss in this section general rules and issues regarding the deploy-
ment and provisioning of the planning system in operational environments.
These are guidelines that reflect deployment patterns of the framework. To
apply the planning framework in an operational environment, we divide the
deployment process into four phases: analysis and provisioning, testing &
calibrating, deployment of the planning system and maintenance & contin-
ued improvement. Different deployment tasks involved in these phases need
to be supported by different specialised roles. To this end, we define in the
next section those expert roles.

Participating Roles

Before we go on to explain these phases, it is essential to define roles that
are required to involve in this process. Roles represent persons who have
certain special capabilities to perform a particular set of tasks. Hence we
specify the following roles: system developer, knowledge engineer and plan
system user.

System developers are responsible for the implementation and devel-
opment tasks of the framework. Before they commence with their tasks,
they make decisions on unifying the development tools to use throughout
the phase, such as programming languages and integrated development en-
vironment (IDE) etc. Also they have to know the allocation and distribution
of the components, given a set of resources and devices. For the internal
system , they write codes for the planner algorithm and implement the
planner’s interfaces to allow information exchanges with other sub-systems.
To facilitate the persistent storage of the planning information, they ought
to choose a suitable database technology for the instantiation of planning
knowledge base. They should decide on the internal representation of the
plan description formats, so that the translation mechanism including lexer,
parser and language generation rules can be correctly developed. For the
system externals, the system developers should carefully analyse the system
interfaces to the management system, to which the planning framework is
attached. For this task, they should closely cooperate with the plan system

203

5.2 Applications

users, who are familiar with the operation environment, to extract and de-
termine the system interfaces so that the planning system and management
system can be properly coupled.

Knowledge engineers are experts who are familiar with knowledge
elicitation and documentation of the management information. They are
responsible for transforming such information into reusable units for the
planner in a suitable way. Experts with this role need to work closely with
system administrators and operators, or even managers of the target service
to distill and to classify the recovery knowledge of the target service. They
need to organise different levels of tasks according to their abstraction levels
and draw clear distinctions between them. Finally together with operators
they encode the knowledge into the specified format usable to the planner.
The ultimate goals of their tasks is to create the initial knowledge base with
well-encoded entries and continuously improve the quality of the knowledge.

Plan system users are end-users of the framework. They are opera-
tors who want to manage recovery processes of the target service with the
planning system. In the preparation phase, they should work together with
the system developers and the knowledge engineers to build up system com-
ponents. Their participation in the development is crucial for the success
of the final developed system. They help the system developers to identify
important system interfaces and system calls from the perspective of the tar-
get services, so that the planner system can be correctly coupled with the
management system. They also need to work with the knowledge engineers
to extract and aggregate management knowledge in the specified format.

To construct a proper implementation of the recovery framework, ex-
perts with those three specialised roles need to cooperate with each other
throughout the different stages of development.

Implementation Phases

We now look closely at the four phases of the deployment process of a
planning system into an operational environment. For this discussion, we
assume that the target services are already running and recovery experiences
are already gained.

Analysis and Provisioning. The initial phase of the deployment of
a planning system is to prepare the system for operation. In this phase, the
system developers and the plan system users are suggested to determine the
target services or systems that are needed to be put under the control of
the planning system. Questions regarding the range of the services, their
participating managed elements and their current corresponding manage-
ment systems need to be firstly answered after a close investigation of the
operational environment. Information sources that may be needed by the
planner to collect required information need to be determined, for example,
in order to get a snapshot of the states of the target service, monitoring data

204

5.2 Applications

need to be collected and aggregated; the sources (providers) of such data
must be pinpointed at this stage. To collect the service information, the
Service-MIB suggested by Sailer [Sai07] is a feasible approach to aggregate
the critical information related to a particular service.

In addition, relevant function calls of the current management system
need to be extracted, so that the interfaces of the planning system could
be correctly implemented with the assistance of those calls. For example,
for the execution of a plan solution, system calls that are related to a pre-
existing workflow system may be required. They also determine the format
and the information representation issues regarding the data processing pro-
cedure. Given a set of available resources, the system developers decide on
the allocations of these available resources and distributions of the system
component, for example, where the software package for the planner compo-
nent should be installed and which server should host the knowledge base.

In this stage, the knowledge engineers need to cooperate with the expe-
rienced operators, perhaps also with the service manager, for the purpose
of recovery knowledge elicitation. They should document the available in-
formation and classify it according to their abstraction levels. Hierarchical
tasks networks are expected to encode different levels of recovery knowledge.
Furthermore, tasks, decomposition methods and actions should be carefully
annotated, for example, an operator may tell in which situations a particu-
lar recovery action could be performed to reach a certain set of goals; this
is corresponding to the pre-conditions and post-conditions of that action.
Furthermore, recovery constraints that are applicable to the target service
also need to be extracted and documented in a data structure that is usable
to the planner.

Testing & Calibrating. Before the planning system is put into practi-
cal use in the operational environment, it needs to be tested and, if necessary,
debugged. In this phase, experts with all of the defined roles should work
together to test, verify and calibrate the planning functionality. The tests
can be performed by operating the planning system in a confined test en-
vironment. Simulated faults are injected as test cases against the current
knowledge base in order to verify the correctness of the planning knowledge
and solution. The computed plan solutions are then compared with standard
solutions; if the solutions deviate from the correct ones, either the planner
component or the knowledge base must be calibrated in order to rule out
any error. On the other hand, since compiling knowledge is a complex pro-
cess, it is difficult to prevent errors in encoding the recovery knowledge to
sneak in; therefore, a careful debugging of the knowledge base is absolutely
necessary.

Deployment. During the precedent phase, the system engineers draw
the requirements and develop the components of the framework. At the same
time, the recovery knowledge is elicited, formatted and documented by the

205

5.2 Applications

knowledge engineers and operators. In this phase, the system is consequently
deployed in the operational environment. Deployment in this context means
that the developed planning system is attached to the management system
and ready to be functional, i.e. the system interfaces of the framework are
implemented accordingly as specified, including system interfaces and user
interfaces. The system developers should ensure that internally all compo-
nents can communicate with each other without any problem and externally
the planning framework should be able to exchange information with exter-
nal systems. Additionally, all components are installed or initialised on the
devices assigned to them and they are ready to be operational. For exam-
ple, the planner component is encapsulated into a software packet installed
on a computationally powerful server machine. A knowledge base could be
hosted using a database, with which the recovery knowledge and informa-
tion can be persistently stored, queried and updated. Since the planning
knowledge is represented in a semi-structured data structure, a NoSQL-
based approach seems to be more suitable for the storage implementation
than a conventional relational database management system.

Maintenance & Continued Improvement As the underlying infras-
tructures and services may be modified and new service elements may be
introduced into the current service landscape, planning knowledge needs to
be updated correspondingly. Out-dated information has to be adapted to
the new situations to guarantee the relevance of the current knowledge. Ad-
ditionally, during actual operations, new management knowledge may be
gained. To reflect such system dynamics, it is essential that the knowl-
edge base has to be continually improved and maintained. This phase is to
ensure that the planner produces high-quality solutions. To facilitate the
operations involved in this phase, the framework design provides interfaces
to update the planning information. The defined interfaces are access points
to the internals of the planning framework, which means that the mainte-
nance and improvement action can be done non-intrusively of the deployed
planning system.

The deployment and operation of a planning system is admittedly a
non-trivial process. Close cooperations between system developers, knowl-
edge engineers and service operators are key to a successful deployment
and operation of the system. The maintenance and continued improvement
requires discipline to diligently document any modification of the service
infrastructure in order to ensure the relevance of already-captured informa-
tion. Nevertheless, we believe that once such jobs have been done correctly,
the long-term benefits of computing and suggesting recovery solutions in
efficient and effective manner will make all efforts invested pay off in the
long-run.

206

5.2 Applications

DatabaseCacheProcess UnitsLoad Balancer

Database

Proc. Stage1 Proc. Stage3

Proc. Stage2 Cache

CacheProcess Unit

Process Unit

VM VM VM VM VM VM VM VM VM VM VM

DatebaseLoad Balancer1

Load Balancer2

A
p
p
.

S
tr
e
a
m

A
p
p
s

W
e
b

A
p
p
.

Physical Infrastructure

P
a
a
S

m
id
d
le
−

w
a
re

Figure 5.5: A Cloud Infrastructure Scenario

5.2.2 Recovery Planning in Cloud Computing

Figure 5.5 illustrates a typical setting of services being provisioned based
on the PaaS (platform-as-a-service) model, as known from e.g., Google Ap-
pEngine, Heroku and the efforts toward data centre consolidation as well as
service re-centralisation. The PaaS/virtualization middleware maps physi-
cal resources to virtual service components and offers flexible allocation and
deployment of virtual resources (e.g., VMs) for the hosted services and pro-
vides software stacks for the hosted IT services, e.g., applications, libraries
and DB systems. Virtual machines are configured and provisioned as dis-
posable elements of the service platform. Figure 5.5 exemplifies two usage
scenarios: the Web App providing dynamic web services based on service el-
ements such as a load-balancer to normalise the network traffic during peak
time, a database for dynamic content and process units to serve HTTP
requests, supported by cache elements to accelerate identical queries. Sim-
ilarly, the Stream App provides a pipelined/staged process service relying
on large numbers of processing elements governed by a load balancer and
database component.

Faults can occur on all layers of this setup, in a horizontal view. Ser-
vices are sustained by multitudinous components. Servers, storage, database
and network components form complex interdependencies, in which a single
faulty component could degrade or even corrupt the whole service. In sce-
nario, a defect physical server could bring down VMs and deteriorate the
associated services.

In a vertical view, multiple layers participate in service delivery. The
stack of components across all layers increase the potential for faults with
different characteristics, depending on the impacted layer. For instance, the
corruption of the virtualization/middleware layer will impact the services
running on top of it, even if the physical server remains intact.

The rate of concurrent failure events in such a large-scale infrastructure
overwhelms the operators due to high service density, operator-to-server
ratio and growing customer expectations on reliability; thus, human-centric

207

5.2 Applications

Monitoring
Agent

Database
State

Execution
Agent

Planner
Recovery

Knowledge
base

...

API functions

a
rc
h
it
e
c
tu
re

R
e
c
o
v
e
ry

w
a
re

m
id
d
le
−

P
a
a
S

Interface
Query

Description
Task

Interface
Execution

Notification

State

State

Solution

VM VM VM VMVM

Figure 5.6: Design of a planning-based recovery architecture

fault management is rendered all but infeasible. What is worse, time-critical
and highly stressful fault recovery leads to an increased rate of human error
both in terms of decisions as well as during the execution of a manage-
ment action. Hence, a solution for fault recovery must support a quick and
effective recovery process.

The proposed solution revolves around the architecture sketched in Fig-
ure 5.6, which incorporates a planner as the core component, as well as the
information sources necessary to the recovery planning process, as stipulated
by the requirements.

The communication between the central planning system and the PaaS
middleware is facilitated by monitoring and execution agents. The monitor-
ing agent is responsible for collecting data and writing them into the state
database, as well as triggering the planner if anomalies are detected. The
execution agent implements selected management actions on the underlying
infrastructure. The knowledge database contains two types of information:
task descriptions (i.e. fault recovery recipes as either abstract or atomic
actions) and system descriptions containing the dependencies between ap-
plications and virtual resources. Ideally, such information is obtained by
discovery mechanisms; lacking that, it may be provided by administrators.

Upon receiving a notification, the planner computes a set of solutions
based on information retrieved from the state database (the current system
status) and the knowledge database (the corresponding task and system
descriptions). The result is written back to the recovery knowledge base
and saved as history data for documentation.

Once plans have been computed they may be examined by human ad-
ministrators with respect to the feasibility and correctness. (To support
such interaction, our prototype includes a web-based front-end.) Finally a
selected plan is enacted by the execution agents on the API of the underlying

208

5.2 Applications

middleware. The execution process is constantly supervised by the moni-
toring agent (in terms of partial state changes), which trigger re-planning
in cases of secondary faults or exceptions.

Figure 5.7 shows the adapted data models applied for the recovery plan-
ning operations in the cloud scenario. In this application, the planning
knowledge is encoded in the JSON (JavaScript Object Notation, RFC 4627)
5 format for its simplicity, since we want to rapid-prototype the application.

The planning algorithm is accompanied by two assisting functions: EVAL-
UATE and APPLY. The EVALUATE function analyses the current global
state (provided by the status parameter) and classifies the states of in-
dividual virtual resources into one of the fault states: hangup, idle, stopped
or missing. These potential states (simply represented by integer values in
our implementation) are determined by symptoms apparent in monitoring
data collected from the virtual infrastructure. More sophisticated evalua-
tion heuristics or utility functions could be applied, see, e.g., [Fis70], to get
more precise classification results.

The algorithm iteratively searches for viable recovery tasks for the in-
volved virtual resource taking into account the pre-conditions provided as
part of recovery knowledge. If a selected task is decomposable, it is then fur-
ther refined according to the “hints” (in the form of a task network) present
in the task description.

The APPLY function commits the selected atomic actions to the current
state model and transits the model into a new state. Effects of atomic (ex-
ecutable) tasks that would change the current state of the observed virtual
resource are reflected as state changes in the statuslist. This new state is
passed to the EVALUATE function to achieve a new set of possible configura-
tions. The configurations with the best estimation values are then further
extended by the recursive call of the planning function (dig). The recursion
ends when the estimated value is below the pre-defined threshold (i.e. there
are no further candidates).

Note that at each level of expansion, only the recovery configuration
with the best evaluation is processed further by the algorithm. The rest of
the possible configurations will be pruned for the purpose of efficiency.

The evaluational experiments are based on simulations performed on
data collected from an operational virtualized environment. The tests were
performed on a Linux machine with a 2.2 GHz CPU and 3 GB memory. For
each test in different test groups, around 10 tests are conducted. Figure 5.8
shows the evaluation results with standard deviations for each data point.

We test the scalability of our approach with respect to three dimensions:
number of VMs, types of faults and length of plan.

In the first experiment, we scale from 15 to 300 VMs and inject 6 dif-
ferent types of faults into the test data. In the first test configuration in

5http://tools.ietf.org/html/rfc4627

209

http://tools.ietf.org/html/rfc4627

5.2 Applications

+ String ID
+ Hash maxThreshold
+ List services
+ int amount

Virtual Machine Type

Virtual Application

+ String ID

+ List services

+ String ID
+ int CPU
+ int mem
+ int storage
+ bool running

Virtual Machine

+ String ID
+ Hash resources

[+ int costs]

+ String ID

State

Cluster

+ String ID
+ List Tasks

Plan

+ Status Est_Status

+ String ID
Effect

+ precondition :
 List[Hash]

+ String ID
+ precondition :
 List[Hash]
+ String action

Task

Service information denotes semantics and
dependencies of the services running on a
virtual infrastructure. A Virtual Application
 is associated with one or more VM−Types.

0..*

0..1

State information encodes the current status

of the underlying infrastructures. Essential

information such as CPU and memory utilization

as well as available storage space taken by

a VM are included as part of VM state

information.

*

0..1

1* *

1

 "cluster": "1",

 "type": "ProcUnit",

 "vapp": "WebApp",

 "cpu": 34,

 "mem": 25,

 "hdd": 70,

 "running": True,

 "services": ["nginx", "app"] }

"ID":{

"WebApp": {

 "procUnit":{

 "amount": 3,

 "clustered": "deny",

 "MAX_threshold":{

 "cpu": 95,

 "mem": 90,

 "hdd": 90, ... },

 "services":["app", "nginx"] },

 "database":{...},

 "loadbalancer:{...}" }

"vApps":{

 }

Plans denote the solutions computed by

the automated planning algorithm. A final

solution plan consists of primitive tasks

that are no longer decomposable. Each

plan has a set of effects which are

expected post−conditions after the execution

of the solution.

1..*
1..*

actions. Two types of tasks are presented
in this model: Abstract Task denotes high level
tasks that could be further refined into more
specific actions; Task describes primitive
action that is atomic and directly implementable.

+ String name

Abstract Task

+ String vmtype
+ List operations

1..*

*

"preconditions": \

"todo": \

"name": "CreateNewDB",

"vmtype": ["database"]

 [{"overload": true}],

"type": 0,

["clone", "migrate"],

"TASK_ID": {

},

Management Tasks encode knowledge on recovery

 "actions":[

 {TASK_1},

 {TASK_2},

 ...],

 "effect":[

 {NEW_STATUS}

"PlanID": {

] },

Figure 5.7: Data Models for Planning Operation used in the Recovery Ap-
plications

210

5.2 Applications

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

T
im

e
[in

 s
]

Number of VMs

(a) Variable number of VMs

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40

T
im

e
[in

 s
]

Number of Faults

(b) Variable number of faults

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25 30 35 40 45

T
im

e
[in

 s
]

Plan Length

(c) Variable plan length

Figure 5.8: Evaluation results of various test configurations

211

5.2 Applications

 "task": {
 "todo": "delete",
 "preconditions": [],
 "type": 1

 },

 "amount": 1,

 "app": "WebApp",

 "type": "ProcUnit",
 "id": "VM_369"
 },
 "vm": "VM_369",

 "level": 4

 "params": {

 "task": {

 "todo": "delete",

 "preconditions": [],
 "type": 1

 },
 "params": {

 "amount": 1,
 "app": "WebApp",

 "type": "ProcUnit",

 "id": "VM_237"
 },
 "vm": "VM_237",

 "level": 5

"vm": "VM_204",

 "preconditions":

 "todo": "restart",

 "app": "WebApp",

 "id": "VM_69"

"vm": "VM_69",

"level": 1

 "preconditions":

"task": {

 "todo": "restart",

[{"running": 1}],

 "type": 1},

"params": {

 "amount": 1,

 "app": "WebApp",

 "type": "ProcUnit",

 "id": "VM_204"

},

"level": 0

"task": {

[{"running": 1}],

 "type": 1},

"params": {

 "amount": 1,

 "type": "ProcUnit",

},

 },

 },

 "level": 2

 "task": {

 },

 },

 "type": 1

 "params": {

 "amount": 2,

 "app": "WebApp",

 "type": "ProcUnit",

 "id": "VM_680"

 "vm": "VM_680",

 "todo": "deploy",

 "preconditions": [],

 "type": 1

 "params": {

 "amount": 2,

 "app": "WebApp",

 "type": "ProcUnit",

 "id": "VM_595"

 "vm": "VM_595",

 "level": 3

 "task": {

 "todo": "restart",

 "preconditions":

[{"running": 1}],

Figure 5.9: An example recovery plan generated by the algorithm. The
generated example plan output is encoded in JSON format

Figure 5.8(a) the algorithm has a steep growth on the landmark of approx-
imately 150 VMs in a service. This behaviour is caused by the fact that
the algorithm initially expands an increasing number of search nodes as the
number of machines grows. A possible remedy to this problem is using
dynamic programming or caching techniques. We consider the runtime of
approximately 4 minutes to find a fault recovery solution in a service in-
volving about 300 VMs to be an acceptable timeframe in real operations.

Figure 5.9 shows an example output of one of the test cases, which in-
volves WebApp running on a PaaS platform. The injected faults simulate
cases in which three virtual Processing Units (PU) do not process the user
requests but still are in running state and showing exceptionally high CPU
and memory usages. Another two PUs have unknown and unretrievable
states. These faults are injected into the state description data. The algo-
rithm rates the first three PUs as corrupted and decides to select restart

as recovery actions. For the latter two PUs, the algorithm decides to deploy
two instance PUs of the same type to replace the missing ones and deletes
the unresponsive instances. A complete description of the implementation
of the proposed recovery framework is published in our paper [LDK10].

212

5.2 Applications

Policy

Engine

Temporal

Reasoner

Change
Catalogue

User Interface

Service

Change Planner

Knowledge Base

CMDB Asset

Figure 5.10: Architecture of Change Management Planner

5.2.3 Portability of the Framework

The proposed planning approach is generic in design so that with minor
modifications, it could be applied to management tasks other than fault
management. To justify such portability, we demonstrate with an example
regarding change management, which uses the planning technique to assist
the complex change management process.

Planning for Change Management

Change management is a management process which ensures that all re-
quests for changes of IT services are carefully designed, evaluated, priori-
tised and scheduled, not only according to technical resources requirements,
but also in alignment with applicable business rules. Without automated
decision support and knowledge management mechanism, handling a large
volume of change requests can cause a bottleneck and become a source of
inefficiency in the management process. To tackle this challenge, we instan-
tiate and adopt the planning approach to providing a machine-supported
design of plans for change actions. Specifically our solution assists the pro-
cess to refine high-level change requests into implementable change actions
which can be directly executed.

Figure 5.10 illustrates the instantiation of the planning framework for
the design of the change process. The architecture includes the following
components:

213

5.2 Applications

• Change Planner. The change planner corresponds to the planning
component of our framework. It applies HTN-based planning to refine
high-level change requests into executable change plans. Recursive in-
vocations of the planner take as parameters a reference to the current
state of the knowledge base, (partial) tasks to be refined and the vari-
able bindings from the previous invocations. Based on these input,
the planner chooses a suitable decomposition method for the abstract
change task that is still to be refined. Before the next invocation of
the planner, the temporal reasoner and policy engine are invoked to
check the consistency as well as the alignment of the partial plan to
the applicable policies. In case of failure in the search, backtracking
operations are initiated.

• Change Catalogue. It is part of the knowledge repository, which persis-
tently stores the change templates and best-practice models. In HTN
terms, the change catalogue corresponds to abstract tasks, decompo-
sition methods and operative actions.

• Temporal Reasoner. Since real-world planning operations frequently
involv parallel and durative actions, a Temporal reasoner is used as
an enhancing approach to the fundamental HTN algorithm to deal
with plan operations that require explicit considerations of time fac-
tors. The temporal reasoner maintains a Simple Temporal Problem
(STP) data structure to enhance the planner with temporal reasoning
capability for durative and parallel executable change actions.

• Policy Engine. Provides rules governing the change procedures. For
every plan operation, the planner queries the policy engine to check
if the intermediate plan conforms to the management policies. Any
off-the-shelf policy engine such as Drools system can be used as an
implementation of the policy engine component.

• Knowledge base. The knowledge base aggregates the information re-
garding the target infrastructure. It acts as an abstract interface be-
tween the planner and different types of IT operation databases, such
as CMDB. The knowledge base provides the planner with a snapshot
of the states of infrastructure at a given time point. Therefore, the
knowledge base provides ways for the planner to query the database
and assert information if necessary. In the implementation, the knowl-
edge base component implements the CIM-based IT operation model.
We use the Hibernate 6 object-relational persistence storage service
as an object-oriented database for configuration items. Queries of the
database are performed using the Hibernate Query Language (HQL).

6Hibernate Relational Persistence www.hibernate.org

214

www.hibernate.org

5.2 Applications

InstallLinuxImage InstallLBSystem

InstallDatabase

DeployApplication

AddDB2Container

InstallLoadBalancer

InstallJ2EEContainer InstallApplication

Figure 5.11: An Example on planning of installation of a J2EE application

• User Interface. The user interface is where the operator or user of the
change plan system could interact with the planner to give instructions
or scrutinise the solution plans.

The participating components and the layout of the architecture are
derived from the instantiation of the framework we proposed. Components
can be easily mapped to those in the original design. The data processing
component is not mapped in this instantiation of the framework, since we
experiment to pass state information and other planning-relevant knowledge
with object-oriented descriptions.

With this architecture, several real-life examples of change are modelled,
including installation, migration of services, specific maintenance operations,
etc. As an example, we demonstrate a simple case of planning an installation
of a J2EE application, which requires configurations of a runtime environ-
ment, installation of the applications and configuration of a load-balancer
component. The knowledge of the plan refinements exists as change tem-
plates in the repository. Figure 5.11 illustrates the change template of the
goal task InstallLBSJ2EEApp with two decompositions for the sub-task In-
stallApplication and InstallLoadBalancer.

To adapt our approach to planning for change activities, we introduce
formalised sets of best change practices. We propose the notion of Change
Catalogues for the implementation. It is a subset of predefined task networks
similar to that of HTN planning. The catalogue is comprised of a set of high-
level IT changes that are available to the requesters of a particular change
activity. For example, a Request for Change (RFC) contains an instance of

215

5.3 Evaluation

a task network.
The change planning approach is capable of generating valid change plans

for realistic enterprise examples in the order of seconds or minutes in a fully
automated mode without any human intervention, depending on the scale of
the input IT model. The experiments operate on a knowledge base with 100
to 1000 configuration items and change catalogues with 20 to 40 tasks with
3 to 10 methods each. The planner also supports a mix-initiative mode of
operations, where the user can interact with the planner by determining the
search space for the planner to explore. The user is then presented with a set
of feasible decomposition methods or implementable change actions for the
refined tasks. In this mode, viable plans are completed in a matter of seconds
due the human assistance during the planning operation. Since by combining
user decisions into operations of the automated planner, the search space
is actively pruned by the user decisions, which offload the computational
burdens of the planner. Since the multiple queries have to be made during
the operations, the knowledge database becomes a bottleneck. This problem
needs to be solved in our future research. More details on the adapted
approach are described in our published work [TFL09].

With the application of the planning framework in the change manage-
ment, we show the portability of our proposed approach to other manage-
ment disciplines. This portability is ensured by the generic design of the
framework. While the planning operation is an integral part of IT man-
agement in general, we are confident that, due to the growing scale, variety
and complexity of IT service, our planning-based approach will find more
applicable areas in the management to simplify the management tasks and
relieve the service operators from the burdens of their daily tasks.

5.3 Evaluation

To show whether our proposed recovery planning framework and its compo-
nents attain their designated goals, we discuss the fulfilment of the approach
against the requirements derived in Chapter 2. For each of derived require-
ment, we provide a brief discussion to justify its degree of fulfilment.

5.3.1 Framework

F1 Genericity The framework design is not limited to specific scenarios or
applications, but can be applied generically to management activities
that require planning. As we showed in the application examples,
not only can the planning framework to be applied to deal with fault
recovery planning tasks, with minor adaptation, it could also be used
to cope with other management activities such as planning for change
management. The current planning algorithm and the layout of the
components contribute to the generic design of the framework.

216

5.3 Evaluation

F2 Scalability The suggested planning framework scales well. The plan-
ning algorithm can handle a large mount of planning information and
generate a usable plan in acceptable time intervals. As shown in the
application example, it can handle as many as hundreds of VMs in
a relatively large virtual infrastructure. In the change management
example, we test the framework with more than one thousand config-
uration items.

F3 Usability The framework is design with usability in mind. To reduce
the impact of the planning technique on end-users, who are not ex-
perts in compiling a plan domain, we developed a configuration lan-
guage that could facilitate the user to encode the planning knowledge.
The language is designed explicitly and simply enough for the users of
the planning system to input basic planning knowledge as part of the
knowledge base. For the complex translation processes between user
input and planning knowledge, we propose a flexible compiling mecha-
nism that takes care of the complex translation details. Furthermore,
to assist the interaction between users and the planning system, the
framework is equipped with an adaptive user interface components
which is responsible for the presentation of solutions and interactions.

F4 Interoperability The framework provides the well-defined interfaces
for interacting with external systems. The main task for the interface
is to facilitate the information exchanges between external manage-
ment system, to which the framework is attached, with the framework
interns. The interface design is system-independent which allows flexi-
ble inter-operations between the planner and various external systems.

F5 Adaptability The design of the system interface allows the planning
system to be easily adaptive to different underlying management sys-
tems. Regardless of the types of the attached management systems,
the abstract operations defined in the system interface can be readily
re-implemented without modifying any internal workings of the plan-
ning mechanism. The interface can be regarded as an adaptor which
lies between systems and translates system calls for the systems on
both sides of it.

5.3.2 Planning & Scheduling

P1 Planning Capability Planning capability is the core functionality pro-
vided by the planning framework. Sustained by the components re-
volving around the system, the planner components generates recovery
plans according the current state of to the target system/service.

P1.1 Automated Planning The automated planning capability is
offered by the H2MAP algorithm, which is designed based on

217

5.3 Evaluation

the HTN-based paradigm. The algorithm could be operative in
two modes: fully automatic mode or hybrid mode, depending on
whether human assistance during the planning operation is given.
An administrator could give the high-level abstract recovery tasks
as initiation and the planning computes, according to the current
situation and different constraints, viable implementable recovery
actions.

P1.2 Generic Planner The algorithm is designed in such a way that
it is not dependable on any recovery use case. The selection of a
domain-configuration planning paradigm as guideline for the al-
gorithm design augments the general applicability of the planning
algorithm.

P1.3 Planning Efficiency As shown in both of our examples, the
planning algorithm is efficient at dealing with large-scale recovery
planning tasks. Depending on the operation mode, the plans
could be found in magnitudes from seconds to minutes.

P1.4 Plan Optimisation We augment the fundamental planning al-
gorithm with the capability to deal with temporal conditions and
uncertainty information during the planning operations. The ca-
pability to process temporal information allows the planner to
compose a plan that can be parallel executed instead of merely
in a pure sequential manner. With considerations on the dura-
tive actions, the planning algorithm is extended to reason and
optimise on time conditions.

P1.5 Plan Adaptability With the extension to the fundamental al-
gorithm to treat uncertain environmental information, the result
plan could be actively adapted to the changing state. By mod-
elling the observed services as stochastic systems, we are capa-
ble of using approaches such as MDP or POMDP to compute
the optimal plan solutions. Furthermore, we suggested other ap-
proaches based on the using a more aggressive planning heuristic
or even isolating and freezing systems during the planning period
to guarantee the correctness of the computed solution.

P1.6 Exception Handling If no plan is found, the planner would
simply return to its user with no solution provided. The com-
pleteness property of the algorithm expresses that the algorithm
will return no solution if none exists based on the currently pos-
sessed planning knowledge. In this case, the planner falls back
on the human administrator for other recovery alternatives.

P1.7 Plan Granularity The final solution plan generated by the
planner is a set of fine-grained, executable actions which can be
directly implemented on the system.

218

5.3 Evaluation

P1.8 Different Levels of Recovery The proposed planner can han-
dle the plan with different abstract levels. A high-level task is
expressed as abstract actions in the planning knowledge base and
it could be refined by refinement methods, which could be re-
garded as recipes to carry out the abstract task. The final plan
is a set of implementable actions in a certain orders, which could
be directly implemented on the systems.

P2 Scheduling Capability With the temporal reasoning ability, the plan-
ner can perform scheduling operations regarding the execution of plan-
ning actions. The planner is capable of arranging sequences of the
execution according to their temporal requirements, so that the plan
execution is optimised. The scheduling for the resources usage is cur-
rently not considered in our approach.

P3 Constraints Solving Capability Temporal-related constraints could
be solved by the planner, which models the planning tasks as Simple
Temporal Problems (STP). Thus, the planner applies constraint solv-
ing algorithm to arrange both durative and parallel actions in solution
plans.

P4 Policy Integration This requirement is directly related to the capa-
bility of constraint-solving. If the policy is properly translated as con-
straints, the planner considers those constraints during its planning
operations. As policy constraints can be expressed either numerically
or in words, the planner currently considers the numerical terms, for
example, temporal or monetary conditions. Constraints expressed in
words is much more difficult to handle because of the semantic prob-
lems.

P5 Fault Coverage The planner could handle the recovery of diagnosable
faults. The general capability of the planner is limited to the set of
recovery knowledge that is currently available in the knowledge base.
The planner is designed as an assistant management system for human
administrators rather than being completely autonomic.

P6 Handling Multiple Information Types During its operation, the
planner aggregates different types of information as part of its com-
putation. As for infrastructure knowledge, the planner observes the
current state of the system as the initial planning state; as for manage-
ment procedural knowledge, the planner’s operation is based on the
recovery methods, abstract tasks and executable actions available in
the knowledge base.

P7 Collaboration Capability The planning framework provides the plan-
ning component with a set of sub-systems that facilitate the collabo-

219

5.3 Evaluation

ration with external systems and the administrator. The external sys-
tems could collaborate with the planning system through well-defined
interfaces, which are flexible regarding being adapted to different ex-
ternal management systems. Additionally, users can also interact with
the planning system through different user interfaces; the planning sys-
tem could be easily adapted to them.

5.3.3 Knowledge & Repository

K1 Identifying & Classify Recovery Knowledge We classify recovery
knowledge into infrastructure knowledge and management procedural
knowledge. Based on this classification, we specify the data models
to describe identified knowledge so that it can be persistently stored
and used by the planner. The knowledge base is a repository for the
management procedural information, which includes the descriptions
of abstract tasks and the decomposition methods. The infrastructure
knowledge is mainly concerned with the information regarding the tar-
get system, e.g., a service that is impacted by faults, which includes
information such as the current state of the target system and depen-
dencies of the components that the system consists of. The planner
requires such knowledge in order to make situation-aware plan deci-
sions. Our planner aggregates all such knowledge into its computing
process.

K2 Recovery Knowledge Repository The framework is designed with
a recovery knowledge base as a persistent storage of the management
procedural knowledge. It provides a well-defined interface for the plan-
ner to query the corresponding recovery knowledge. Additionally, it
also provides the opportunity for the knowledge to be reused, since the
knowledge base can be enriched with user input so that the planner
could cope with more planning problems.

K3 Structured Recovery Knowledge The HTN-based approach allows
the recovery planning knowledge to be represented in different abstrac-
tion levels. High-level recovery activities can be encoded as abstract
tasks which require suitable decomposition methods to refine them
into tasks that are less abstract. The implementable actions could be
simply encoded as atomic actions in the knowledge repository. This
capability is sustained by the proposed data models, which enable the
different abstraction levels of knowledge to be encoded.

K4 Interfacing with Knowledge Discovery Tools In the current de-
sign, we provide well-defined system interfaces for the planning sys-
tem to interact with external elements. For the planning knowledge
elicitation, we currently consider administrators as the main source

220

5.3 Evaluation

of gaining recovery knowledge. For this purpose, an adaptive inter-
face is provided to different user-side systems. Nevertheless, thanks to
the flexible design of the interface, knowledge elicitation and discovery
tools can be connected to the planning system through this interface
without major efforts.

K5 Modelling of Recovery Knowledge To sustain the planning oper-
ation, we not only specify the types of knowledge required by the
planner, but also provide data models for different knowledge types.
The data models describe items that are included in the particular
kind of knowledge and how such items could be represented. The data
models provide a sharable, reusable and structured representation of
the recovery knowledge.

K6 Encoding and Reusing Recovery Methods The recovery method
encodes reusable decomposition recipes which denote how abstract
recovery actions can be resolved into implementable recovery actions.
According to the state of the target system and other constraints, the
planner can reuse those methods while it computes a recovery plan.

5.3.4 Data Processing

D1 Translating relevant Knowledge into Planning Format To reduce
the impact of applying an AI planning system on users, we design
a simple and straightforward description language for the input of
system information and recovery knowledge. Since the planner uses
PDDL as input and output format as default, the relevant knowledge
is translated by the data processing components between the planning
component and external systems. The translation architecture allows
flexible adaptations of the different source formats, e.g., user input,
system events etc.

D2 Representing the Service State The data models we presented in-
clude a model which describes the system state for the planner. The
input of system states can be provided by an external monitoring sys-
tem. The translation component parses the input state information
and generates a PDDL-based description which contains the state in-
formation. The translated information can then be used by the planner
as its input.

D3 Representing Policy as Constraints Policies regarding temporal or
any other numerical constraints can be represented in PDDL, which
is a de facto standard knowledge description language used by most
of the automated planning approaches. In PDDL, they can be simply
represented as either soft constraints or planning preferences as dis-
cussed previously in Section 4.2.3 (on page 130). The planner could

221

5.3 Evaluation

be instructed to take those constraints into consideration (see require-
ments P3 and P4).

5.3.5 Plan Evaluation

E1 Performance Evaluation Augmented with the capability to reason
on temporal constraints and other numerical constraints such as the
monetary cost of recovery actions, the planner is able to evaluate the
performance of the plan solution. Such evaluation processes can be
either embedded during the planning or after the candidate solution
plans have been generated. During the planning, the planner observes
the given conditions and iteratively selects to expand the partial so-
lution recovery plan if the given conditions, such as the deadline, and
cost conditions have not been violated. Tasks with their associated
actions, which violate the given constraints, will not be considered as
a valid step. They cause the planner to backtrack in order to find
alternatives. On the other hand, the planner can also be instructed
to find all possible recovery plans during its operation, regardless of
the given constraints. At the end of the planning phase, the planner
could check the cumulative costs to filter out the plans that violate
the given constraints.

E2 Cost Evaluation Cost evaluations are possible with the proposed plan-
ning approach. The cost could either be conducted, as discussed previ-
ously, during the runtime of the planner or after all possible alternative
plans have been generated. Regarding the representation of the plans
on the user systems, an operator also has the possibility to check and
evaluate solution plans regarding their cost before they are handed
over to the execution mechanism.

E3 Temporal Evaluation Fulfillment of requirements P2, P3 and P4 al-
lows the planner to perform time-based plan evaluations. Parallel exe-
cution possibilities could be identified in order to shorten the recovery
time during the plan execution phase.

5.3.6 Workflow & Execution

W1 Execution Engine An execution engine is intentionally not imple-
mented in the framework, since a specific execution engine makes it
difficult for the entire planning framework to be adapted to the dif-
ferent underlying management systems, which may have various re-
quirements for the execution mechanism. Nevertheless, our planning
framework provides an interface for the execution of the plan on the di-
verse execution platforms. The interface defines operations the planner
can call, regardless of what execution engines are used in the practices.

222

5.3 Evaluation

The detailed information on the execution mechanism is hidden from
the planner. To execute a solution plan, the planner just calls the
well-known execution operation defined in the interface. The actual
system-specific execution mechanism is wrapped in the implementa-
tion of the interface.

W2 Coordination of Execution With user interfaces, the planner could
present a computed recovery plan solution to users. Users have the
opportunity to scrutinise the suggested plan and decide whether it is
ready for execution on the system based on their judgement. Addition-
ally with user systems attached to the planner framework, the users
could decide which plan actions could be executed fully automated
and which may need human attendance for their implementation.

W3 System Compatibility The framework applies the information-hiding
principle in its design. The design with abstract interfaces to the ex-
ternal systems makes it easy to adapt the generic framework to the
specific underlying systems which may dynamically change from ap-
plication to application.

W4 Control over Execution The planning framework delegates the ac-
tual controls of the plan executions to the execution mechanism. With
any exceptions during the plan execution, the planner expects the
underlying execution mechanism to register these events and notify
the planner, so that the planner could react to the new situation ac-
cordingly. The current design does not allows the planner to directly
control the progress of the plan execution; however, if the planning
algorithm requires control operations, such as halt or stop the execu-
tion, they simply be added to the interface definitions. The interface
component can wrap the specific control operations. The adaptive
and extensible characteristic fulfilled by the currently design enables
an easy extension of the planning framework without massive modifi-
cations to the design.

5.3.7 Overall Fulfilment of the Requirements

Table 5.1 summarises and provides an overview of the fulfillment of the
requirements of the suggested recovery planning framework. For each de-
rived requirement, we represent the degrees of fulfillment with the following
symbols:

- the requirement is completely fulfilled.

- G# the requirement is partially fulfilled, but still needs improvement.

- # the requirement is not fulfilled at all.

223

5.3 Evaluation

As can be clearly seen from the results, our proposed planning algorithm
and framework fulfill the vast majority of the requirements we derived. The
framework design defines a generic, adaptive and at the same time usable
architecture for a platform-independent planning system. Instantiations of
the framework show the applicability of using automated planning not only
as a viable approach for fault management, but also as a useful technique
for other management activities that require planning.

As the core of the framework, the planning algorithm employs a generic
planning approach augmented with scheduling and constraint processing
capabilities as they are essential to real-world fault recovery operations.
Nevertheless, to increase the efficiency of the planning algorithm, there is
still room for theoretically and experimentally testing some heuristics to
accelerate searches for plan alternatives. On the other hand, the current
HTN-based algorithm considers those constraints that could be expressed in
numerical form, research is still needed to increase the variates of constraints
that can be incorporated in the planning process, for example, to the express
the condition such as the server must be behind a firewall.

The planning is a knowledge-intensive management process. The plan-
ning algorithm relies on the supporting knowledge for performing its oper-
ations. Thus building a knowledge repository that could persistently store
recovery-related information is essential to sustain the computation of plans.
The knowledge-related parts in the design provide mechanisms which act
not only as a central storage but also as mediator between the planner and
users, through which users could actively enrich the knowledge based with
acquired informations.

To facilitate communication and information exchanges between the
framework and external systems, we include the data processing compo-
nent to our design. The proposed translation mechanism converts the user
input knowledge into a form that can be used as input for the planner; this
approach reduces the issues of composing a plan description domain for the
system users, who most possibly are foreign to the planning techniques. On
the other hand, the translation mechanism can process the system events
and state descriptions that are part of the input for the planner. Addi-
tionally, the translation mechanism is designed in a way to make it flexible
enough to be adapted to other target and goal formats. Although a generic
interface is provided, work still needs to be done to specify the operations
that allows the repository to connect to the knowledge discovery tools other
than through human input, for example, machine-learning approaches that
could discover patterns from execution traces from operators could be re-
garded as a possible source of recovery knowledge.

The evaluation of a result plan is currently carried out implicitly during
the planning phase. Considerations of the temporal conditions allow a par-
tial plan already to be judged by the planning algorithm. The possibility to

224

5.4 Summary

integrate the mechanism to evaluate the cost of the recovery plan is given.
Although not explicitly discussed, the cost conditions could be simply ex-
pressed as numerical terms in the planning knowledge; a simple summation
operation at the end of the plan operation can add together the costs in-
volved in the solution currently found by the algorithm, so that information
regarding the total cost of the solution could be computed.

For the execution of the plan solution, we design an interface that is
generic enough for the planner to call different underlying execution sys-
tems without changing the mechanisms inside the framework. The planner
does not have to have explicit knowledge regarding how the solution plan
is executed; it just calls the generic operations defined by the interface, re-
gardless of the implementations of the interface. Further possibilities can be
added by extending the interface with further operations supported by the
underlying execution and management systems.

Compared to the approaches proposed by the related work listed in
Chapter 3 (on page 82), our approach can obviously accomplish more in
terms of planning capabilities, constraint processing and flexible architec-
ture design. Most importantly, the framework design is generic enough to
be adapted to other management systems, so that only minimum modi-
fications are required when the underlying system, to which the planning
framework is attached, is changed.

5.4 Summary

This chapter first discussed the principles on the prototypical implementa-
tions of the essential components in the planning framework. Specifically
we discussed the instrumentation possibilities of the knowledge translation
component and the planning component. For the knowledge translation
mechanisms, we showed how to implement the lexical analyser, parser and
language generator which are designed to translate the user input informa-
tion into the planning knowledge. As examples, we engineered those crucial
components with antlr tools, which is an open-source tool that is frequently
used for crafting of computer language compilers. For the realisation of the
planning algorithm, we discussed the technical possibilities to implement the
two main functions that sustain the operations of the algorithm.

To justify the applicability of the framework, we instantiated the pro-
posed framework for two application scenarios. In the first application, we
applied the framework to assist service fault recovery in a Cloud computing
infrastructure. If a service hosted by the Cloud infrastructure is impacted
by a fault, the planner is expected to compute possible technical solutions
as remedies to the fault state. The evaluation of different test configura-
tions shows encouraging results and suggests that automated planning is,
indeed, a viable technique to be used in IT management. The prototype

225

5.4 Summary

appears to scale well to a higher number of (potentially faulty) resources
but is sensitive to the number of actual concurrent faults. We note that
effective plan-based management depends not only on a planning algorithm
but also on the availability and quality of management knowledge; effective
monitoring and actuation components are a prerequisite.

In order to show the portability of the planning framework to other man-
agement disciplines, we adapt the framework to change management as the
second application scenario. Based on the high-level change requests, the
planner algorithm computes the viable change actions by observing manage-
ment constraints that are applicable to the change process. Specifically, we
instrument the framework to assist in the planning of the change actions.
A working example based on the Java programming language is developed
to demonstrate viability of adapting the framework to change management.
The developed prototype was tested with real-life examples.

In the final part of this chapter, we evaluated the degree of fulfillment of
the requirements derived at the beginning of this work. The results showed
that our proposed approach fulfills the vast majority of requirements. For
those requirements not directly satisfied by the current approach, the frame-
work offers possibilities for extensions or improvement, thanks to the flexible
and modular design of the framework architecture.

226

Requirements List

Category ID Requirement Details Fulfilment

Framework

F1 Genericity
F2 Scalability
F3 Usability
F4 Interoperability
F5 Adaptability

Planning & Scheduling

P1 Planning Capability
- P1.1 Automated Plan Composing
- P1.2 Generic Planner
- P1.3 Efficiency on Planning G#
- P1.4 Plan Optimisation
- P1.5 Plan Adaptability
- P1.6 Exception Handling G#
- P1.7 Plan Granularity
P2 Scheduling Capability G#
P3 Constraints Solving
P4 Policy Integration G#
P5 Fault Coverage
P6 Handle Multiple Information
P7 Collaboration

Knowledge & Repository

K1 Classifying & Identifying Recovery
Knowledge

K2 Recovery Knowledge Repository
K3 Structured Recovery Knowledge
K4 Cooperating with Knowledge Com-

ponents
G#

K5 Recovery Knowledge Modelling
K6 Encoding & Reusing Recovery

Methods

Data Pre-processing
D1 Translating Planning Knowledge
D2 State Representation
D3 Policy Representation

Evaluation
E1 Performance Evaluation
E2 Cost Evaluation G#
E3 Temporal Evaluation

Workflow & Execution
W1 Execution Engine G#
W2 Coordination of Execution G#
W3 Compatibility
W4 Control over Executions G#

Table 5.1: Fulfillment of Requirements

227

228

6
Conclusion and Future Work

Contents

6.1 Conclusion . 229

6.1.1 Putting All Pieces Together 229

6.1.2 Research Questions Answered 233

6.2 Future Work . 234

This chapter concludes this research with a summary of the contributions
made in this work. As an outlook, several research directions are presented
for future investigation and development.

6.1 Conclusion

6.1.1 Putting All Pieces Together

Faults are a fact of life; the very same principle applies to IT systems as well.
Despite advances in software and hardware technology, faults of different
kinds still inevitably happen to all types of engineered systems, both simple
and complex alike. Instead of treating them as exceptions in operations,
they should be taken as facts in the life-cycle of a technical system.

Once it has been impacted by faults, the service needs to be recovered by
operators as efficiently as possible. Nevertheless, given the scale, complexity
and variety of today’s service operation environments, a completely human-
centric recovery process will overwhelm most operators. To address this
problem, we propose an automated recovery planning framework to assist
human operators composing viable recovery plans.

To achieve that goal, we employ a concept that originates from auto-
mated planning research, which is an integral part of artificial intelligence.
The power of automated planning and its practical values were recognised

229

6.1 Conclusion

only recently. Many mission-critical applications that require planning are
applying this technique to achieve self-managing capabilities.

The main working principle of a planner is to compute the sequence of
actions that are expected to transform the current states into a set of desired
states expressed as the plan goal. During operation, the advanced planning
algorithms also need to consider different applicable restrictive conditions in
order to compose more sophisticated solutions.

Based on the automated planning theory and the general planning model,
we begin our discussion by justifying that fault recovery problems can be
reduced to planning problems, hence they can be solved by techniques that
solve planning problems. To conduct the proof, we first formalise the defini-
tion of fault recovery problems, which catches essential elements required for
recovery. The proof is conducted based on the Turing reduction, in which
the recovery problem model is mapped and transformed into the general
planning model. After the relationship between models is established, the
recovery problem is solved using a planning technique.

With the theoretical groundwork in place, we construct a planning algo-
rithm to provide the core functionality. To design the algorithm, we need to
choose a planning paradigm as our guideline. While there are a number of
paradigms available, the classical planning paradigms, such as state-space
based planning, are not suitable for solving complex real-world problems
because of their formidable complexities for large problem instances. There-
fore, we choose the Hierarchical Task Network (HTN) planning paradigm
as the guide principle to construct our planner. Compared to the tradi-
tional approaches, the HTN-based planning paradigm employs sophisticated
knowledge representations known as hierarchical task networks. Function-
ally, it concentrates on searching of the decomposition methods, which refine
the high-level tasks into low-level executable actions, instead of querying the
complete action spaces for solution. The HTN-based paradigm decomposes
the planning problem into manageable sizes and solves them iteratively until
fine-grained plan actions result, which is similar to how humans solve com-
plex problems. The HTN planning paradigm allows encoding and reusing
of plan knowledge in different hierarchical and abstract levels. On the other
hand, it allows to elicit and codify human knowledge into a reusable and
machine-readable format, so that such knowledge could be used to make
computer-aided plan decisions.

We design and develop an HTN-based planner called H2MAP , which
not only computes plan solutions, but also considers different temporal con-
straints and uncertainty information. Such observations are crucial for real-
world fault recovery scenarios. The operations of the planner are based on
the recovery knowledge base, initial tasks, current states of the observed
service as well as predefined goal states. A user of the planning system
can determine the directions of the planning operation by providing the

230

6.1 Conclusion

H2MAP planning with a set of initial abstract tasks. The planner itera-
tively searches for suitable decomposition methods from the knowledge base
until a viable plan is found which transforms the initial states into goal
states. With considerations on the temporal information, it is capable of
optimising the action execution sequences, which not only consider sequen-
tial but also recognise parallel opportunities. This makes executions more
efficient.

Planning is a knowledge-intensive operation. To support the planner, we
model and specify types of relevant recovery information. We define a set
of formal grammars for a recovery information definition language, which
is straightforward for users to understand and to use. From the planner
perspective, we choose PDDL as the input language, since it is a de facto
language developed and maintained by the planning research community.
Since the vast majority of planners are compatible with PDDL, selecting it
has the advantage that if we change the current planner to other PDDL-
compatible planners, nothing has to be changed in our framework.

In order to reduce the impact of planning technology on users, a trans-
lation mechanism is developed with intention to automatically translate the
user input knowledge into the description language for the planner. Based on
the user input, the translation mechanism first lexically analyses the input
stream and extracts all tokens from the document. Then a parser analyses
the results and tries to comprehend structures of the different input knowl-
edge types. At the final stage, the target language is generated according to
the set of translations rules. We provide a set of translation algorithms to
direct the operations. The translation mechanism has the advantage that
if the source or target language is changes, only minor modifications are
required in order to adapt to the new language.

With the modelling and specifications of recovery language as well as
the planning algorithm in place, we design a framework which dictates
the architecture of the plan applications. The framework is divided into
four functional sub-systems including the planning component, the data-
processing component, the knowledge base and the system interfaces. The
planning component offers core plan functionality sustained by the other
system components that revolve around it. It is a host of the planning algo-
rithms. To ensure the flexibility in the design, we apply the strategy patterns
with generic access point in the form of the interfaces. This future-oriented
flexible design approach enables the developer to integrate new compatible
planners without any major modification to the framework itself.

Equally important to the framework is its knowledge processing compo-
nent. This component is mainly responsible for information translations be-
tween the planner component and other sub-systems. The target and source
of the translation mechanism are expressed in Domain-Specific Languages
(DSL). As input and output may vary from application to application, in

231

6.1 Conclusion

order to keep our design generic, we employ the abstract factory pattern in
our design. To invoke the translation operations, the user can simply rely on
the access point of the concrete translation operations. All internal working
details are hidden from the users. In this way, it is easy to change specific
implementations of the component without influencing the user.

The knowledge repository is a component which serves to persistently
store the planning knowledge and related information. It is a unified storage
mechanism in the framework which facilitates other components to retrieve
and to manipulate knowledge entries when necessary. The current design of
the knowledge repository supports the primitive operations such as update,
insert and query information.

The system interface defines a set of operations to facilitate data ex-
changes and communication between the framework and external systems.
The external systems may be different from use case to use case; therefore,
in order to ensure the flexibility of the framework as a whole, we use the
adaptor class which decouples the internal planning mechanism from the
external systems and makes the framework independent.

Putting all of the pieces together, we present a complete system frame-
work for fault recovery planning. The involved components revolve around
and sustain the planning algorithm. Besides providing its designated func-
tionalities, flexibility is one of the paramount criteria of our design, con-
sidering the dynamic of the external systems. This consideration is behind
the design idea of each single sub-system as well as the framework as a
whole. To address this issue, we employ system design patterns to guar-
antee the maximal flexibility of the planning framework. We sketch and
discuss the technical aspects of implementations of some of the components
of the framework. Finally as proof of the concept, the framework is instan-
tiated to two distinguished application scenarios. In the scenario of service
fault recovery in a Cloud computing infrastructure, management actions are
planned to recover the impacted service running in the infrastructure into
a normalised state. To show the portability of our idea to other manage-
ment disciplines, our further application example scenario concentrates on
change management. The main objective is to use the framework instance
to plan for the change requests. The requests are refined from the abstract
form into concrete implementable change actions. Even if the planning for
change management has different goals and tasks, through this application
example, we show that our generic framework is well suited for change man-
agement as well.

Through the applications as proof of the concept, we show the practical
value of our approach, not only as part of fault management, but also for
other management disciplines that require planning as an integral part of
their management activities. All examples show that planning is indeed a
viable approach to be integrated as part of future management technology.

232

6.1 Conclusion

At the current stage, operators of IT services may not completely rely on the
planner to make management decisions as fine-tuning of the solution may
still be needed; nevertheless, we believe that with the automated approach
providing them with sketches of solutions to their management problems,
the time-to-solution will be dramatically reduced, especially for intricate
large-scale management scenarios.

6.1.2 Research Questions Answered

At the beginning of this work we envisioned our solution to manage intricate
fault recovery problems. Our vision was boiled down to several detailed
research questions. Now with the solution in place, we retrospectively review
the research questions that we have answered in this work. We map the
contributions of this thesis to the questions previously raised (section 1.1.3).

Research question 1 (Q1) is mainly concerned with modelling and speci-
fication of various types of recovery information. In our solution, we specify
the types of information that are required by an automated composition of
the recovery plan. Then we design a language for simplified descriptions of
such knowledge from users. For the planner, we select a planning description
language that is expressive enough to encode rich types of information for
the planning process. To bridge the gap between those two languages, we
present a translation mechanism that is flexible enough so that even if the
target and source languages are changed, only minimum modifications are
required for the adaptation.

To answer research question 2 (Q2), we include the knowledge base
in our framework design. Technically a knowledge base is a data storage
component that has similar functionality to a conventional database. Only
instead of being a full-fledged DBMS system, it is required to fulfill some
basic functions which allow querying, inserting and updating of its data en-
tries. The data entries are planning knowledge described in semi-structured
data types. The knowledge base defines a set of operations which not only
allow the planner to query during its operations, but also facilitate the user
to enrich the content by inserting new planning information and updating
existing data entries.

Question 3 (Q3) is concerned with automated composition of a plan. As
one of the main research issues of this work, we apply the AI-based auto-
mated planning as a technical means to find recovery plans. More specif-
ically, the algorithm design relies on the HTN-base planning paradigm as
guideline. In addition to its sophisticated knowledge representation, the
HTN-based planning paradigm has as the advantage of being capable of
solving complex practical planning problems. Additionally the planner is
augmented with extensions of temporal reasoning capability as well as the
ability to deal with uncertainties during its operations.

To answer research question 4 (Q4), we discuss in section 6 the adaptive

233

6.2 Future Work

approach of planning, which processes the real-time feedbacks from the ex-
ecution of the plans and reacts to the events accordingly. Also uncertainty
information models dynamics of the underlying target systems without ex-
ternal information.

Research question 5 (Q5) deals with the correctness of the plan. In
the current approach, the correctness is ensured in two ways: first a plan
is considered to be correct if its temporal constraints are satisfied. The
algorithm could also be easily extended to handle the cost information in
the planning process, when actions are modelled with, for example, cost
information. These could be expressed as plan preferences as discussed pre-
viously. The other way to ensure correctness is to allow human inspections
as solutions are found by the algorithm. To serve this purpose, we design
in our framework an interface to present the solution to the users, so that
they could have the chance to inspect the solution manually and make any
modifications if necessary before it is executed.

The final question (Q6) concerns the integration of management knowl-
edge into the planning process. In our approach, this is guaranteed by char-
acteristics of the planning algorithm, which integrate the different types of
recovery knowledge into its planning operations. The framework also pro-
vides a system interface to aggregates external information into the plan
knowledge base as part of the framework. Furthermore, to solve the formats
between the planner and external information sources, we design an auto-
mated translation process to convert between different formats. The flexible
design of the translation process ensures that only minimal modifications are
necessary if the requirements for the target and source formats are changed.

6.2 Future Work

The current work lays a solid foundation for further research to be built on.
There are several directions, in which the current planning approach can be
further extended and investigated.

• Fault diagnosis as planning. Whereas the current work focuses on
using planning technology to find recovery actions, we assume the
availability of fault diagnosis results at the time of planning. Fault
diagnosis is nevertheless an equally important phase of the whole fault
management process and should not be neglected. It seems to be a
viable idea to integrate the diagnosis as part of fault recovery plan-
ning. One of the possible ways to achieve this goal is to apply diag-
nostic problem solving [Mci94] which collectively refers to approaches
that consolidate diagnosis, test and repair tasks. Diagnostic problem
solving involves reasoning about the evolution of the target dynamic
system. Given observations of aberrant system behaviours, which are
inconsistent to the expected, the diagnostic problem solving technique

234

6.2 Future Work

generates a series of candidate diagnoses from inconsistencies between
observations and specified system behaviours. At this stage, with a
proper transformation between problem models, we could solve the
diagnosis generation problem with a planning algorithm. Some pio-
neering theoretical work was done recently by Sohrabi et al. [SBM10],
who tried to establish the relationship between the generation of fault
diagnosis of a dynamic system and the automated planning problem.

• Investigate new types of planner for the fault recovery. Albeit its
practical value for real-world applications, to find an optimal plan
solution, the HTN-based planner still requires a significant amount
of computation time. To tackle this issue, we could reuse past plan
solutions to solve current planning problems, if they express a cer-
tain degree of similarity. This approach is called Case-based Planning
(CBP) [CMAB05]. Case-based planning maintains a special memory
to remember past solutions, so that they could be reused and adapted
to solve new planning problems. With the CBP approach, not only
the successful plan will be remembered, but also faulty plans will be
stored. In this way, the planner learns how to reuse successful plans
and how to avoid failures. The goal of using a case-base approach is
clear: we want the planner to remember the plan work it has done
before as experience. When a new problem appears, it can reuse its
past experience to find a solution. Rather than building a plan from
scratch, the CBP-based planner reuses and modifies its past plan.

• More interactions with plan users. The HTN-based H2MAP planner
provides a certain degree of interactions between the user and the
planner. Nevertheless, more complicated interactions are still required
to build a more practical planning system, especially when it comes to
mission-critical planning tasks. The user needs to be presented with
partial solutions even during the planning, so that more controls can be
given to the users. When it comes to the decision points, the planner
helps the user to understand trade-offs between different plan actions
or decomposition methods, so that the user could make more rational
and informed choices. For example, both decomposition methods A
and B could lead to identical results, but A is less time-consuming but
may involve more risk and method B is more stable but more costly.
Under such a situation, human interventions are required to guide the
automated planning process.

• Self-repairing and replanning. The presented framework provides in-
terfaces to interact with the execution system. In a real-life system,
fluctuations happen frequently, either caused by the underlying system
dynamics or induced by the plan execution itself. To increase plan sta-
bility, as soon as exceptions during the plan execution occur, suitable

235

6.2 Future Work

mechanisms are needed to repair or re-plan the original solution. There
are two possible ways to handle such exceptions: self-repair the current
plan or re-plan from scratch. Efficiency trade-offs and the practicality
of these approaches need to be investigated in future research.

• Handle more sophisticated scheduling requirements. In the current
work, we consider scheduling from a temporal perspective. In more
realistic fault recovery cases, scheduling based on resource usages is
also an important aspect that needs to be carefully considered. In-
volving reasoning of resource usages during the planning phase allows
the planner to make the right choice by selecting correct alternatives
among resources. From the planner’s perspective, it means to incor-
porate more constraints regarding the amount of resources and their
time of usage.

• Recovery planning in distributed, inter-domain environments. Recov-
ery in an inter-domain environment involves different organisations, for
example, in Grid computing, large amounts of resources are distributed
among several inter-organisational domains. Planning in such inter-
domain scenarios requires the planner to aggregate different sources
of planning knowledge and state informations. Multiple domain de-
scriptions and constraints need to be used as input to the planner in
order to find a globally valid recovery solution. Additionally, a recov-
ery process must also be coordinated among participating institutions
which may have conflicting constraints in terms of recovery policies.
How to efficiently resolve such conflicts is a challenging task for future
research.

• Advanced knowledge organisation and representation. In the current
research, we assume that planning knowledge such as actions, decom-
position methods, constraints etc. are expressed in unified terms in
the description. In a real-world operations, this may not be the case,
since descriptions may be used in different literals with the same se-
mantics (meanings) but in different syntactic forms (representations).
In the worst case, this could seriously disrupt the normal operations
of the planner. To bridge this gap, technologies such as the semantic
web, e.g., RDF [MMM04] and OWL [MVH+04], could be investigated
and applied in future research to offer a unified representation form.

236

List of Figures

1.1 The Vision of the Proposed Approach 5

1.2 Overview of the recovery process 7

1.3 Scope regarding IT Service Management 11

1.4 Scope regarding Dependability Research 13

1.5 Approach and Layout of this Dissertation 15

2.1 Basic MNM Service Model . 18

2.2 A Detailed View on MNM Service Model [GHH+02] 19

2.3 Transitions between Fault, Failure and Error 21

2.4 A Generic Web-Hosting Scenario Model 27

2.5 Overview on Grid Computing 32

2.6 An Overview of the Planning Framework 38

2.7 Interactions between Components of the Framework 40

3.1 A Simple Example of Plan-Space Planning 57

3.2 Plan Graph Planning . 59

3.3 Architecture of FEEDBACKFLOW 68

3.4 Architecture view of Planit 70

3.5 Overview of the CHAMPS Framework 73

4.1 Problem Reduction . 84

4.2 Problem Reduction . 96

4.3 Relationships between the Planning Algorithm, Knowledge
Representation and Management System 99

4.4 Dataflow: from management information to planning knowledge101

4.5 An overview of the translation process between DSLs 116

4.6 Translation Architecture . 126

237

LIST OF FIGURES LIST OF FIGURES

4.7 Illustration of translation rules that map between two differ-
ent models . 127

4.8 Plan domain structure . 128
4.9 Comparison of state- and HTN-based planning operations . . 137
4.10 An Example of Failover Operation 140
4.11 An abstract view of the failover operation based on HTN . . 142
4.12 Illustration of H2MAP Operations 149
4.13 Illustration of time constraint processing 154
4.14 An example of detailed STP structure of HTN actions 156
4.15 STP with workflow representations of HTN plans. 157
4.16 A Model for Active Planning Adaptation with Replanning

and Environmental Sensing 164
4.17 An Overview of the Planning Framework 169
4.18 An UML View of the Recovery Planning Framework 170
4.19 Planning Component . 171
4.20 Types of data translation operations 174
4.21 Detailed views on the translation processes in both directions 176
4.22 An UML view of the data processing component design . . . 178
4.23 (a) Repository operations and interactions with other compo-

nents; (b) Sequence diagram of cooperations between knowl-
edge repository and relevant components 184

4.24 Working principle of the adapter pattern 188
4.25 Design and working principle of the adapter for the interface

component . 189

5.1 Syntax diagram of the input planning document 195
5.2 Syntax diagram of typed blocks. A block contains multiple

entries of type-specific expressions 196
5.3 An example of a grammatical structure of action block in

syntax diagram . 196
5.4 A Partial Parser Tree . 197
5.5 A Cloud Infrastructure Scenario 207
5.6 Design of a planning-based recovery architecture 208
5.7 Data Models for Planning Operation used in the Recovery

Applications . 210
5.8 Evaluation results of various test configurations 211
5.9 An example recovery plan generated by the algorithm. The

generated example plan output is encoded in JSON format . 212
5.10 Architecture of Change Management Planner 213
5.11 An Example on planning of installation of a J2EE application 215

C.1 Web-based representation of the recovery planning problem
and its computed plan solution 298

238

List of Algorithms

1 The General Planning Procedure [NGT04] 54
2 General HTN-Planning Paradigm 61

3 Determining the Scope of Plan Domain 132
4 Translating Plan Objects & Types 133
5 Translating Plan Actions . 134
6 Translating State Information 135
7 Translating Plan . 136
8 H2MAP : A HTN-based Planner 145
- Procedure GoalTest(Π, ig, i0) 147
- Procedure Find(M , i0) . 148
- Procedure TemporalConstraint(ati, Π) 155
- Procedure TempConstraintProc(ptask, Cconstraints, plisttasklist) 158
- Procedure PathConsistency(C) 158

239

240

List of Tables

2.1 A Classification of Failure Semantics 23
2.2 Typical Faults and Recovery Strategies for Web-Hosting Sce-

nario . 29
2.3 Typical Fault and Recovery for Grid Scenario 34
2.4 An Overview on the Requirement Catalogue 49

3.1 Evaluation Table of Related Work 82

4.1 Interfaces of the Planning Component 172
4.2 Operations in PlannerConfigurator interface 173
4.3 Directions of translations and operations 176
4.4 Generic Operations for Knowledge Repository 183
4.5 Generic operations to the interface for presentation of plan-

ning solution and knowledge acquirement 186
4.6 Generic operations to system-specific interface for external

management systems . 186

5.1 Fulfillment of Requirements 227

241

242

Appendices

243

A
Grammar of PDDL v3

Following text shows the grammar definitions of Plan Domain Description
Languange (PDDL) v.31 :

grammar Pddl;

options {

output=AST;

backtrack=true;

}

tokens {

DOMAIN;

DOMAIN_NAME;

REQUIREMENTS;

TYPES;

EITHER_TYPE;

CONSTANTS;

FUNCTIONS;

PREDICATES;

ACTION;

DURATIVE_ACTION;

PROBLEM;

PROBLEM_NAME;

PROBLEM_DOMAIN;

OBJECTS;

INIT;

FUNC_HEAD;

PRECONDITION;

1Reference: ANTLR v3 Grammar List http://www.antlr.org/grammar/list

245

http://www.antlr.org/grammar/list

CHAPTER A. Grammar of PDDL v3

EFFECT;

AND_GD;

OR_GD;

NOT_GD;

IMPLY_GD;

EXISTS_GD;

FORALL_GD;

COMPARISON_GD;

AND_EFFECT;

FORALL_EFFECT;

WHEN_EFFECT;

ASSIGN_EFFECT;

NOT_EFFECT;

PRED_HEAD;

GOAL;

BINARY_OP;

UNARY_MINUS;

INIT_EQ;

INIT_AT;

NOT_PRED_INIT;

PRED_INST;

PROBLEM_CONSTRAINT;

PROBLEM_METRIC;

}

/************* Start of grammar *******************/

pddlDoc : domain | problem;

/************* DOMAINS ****************************/

domain

: ’(’ ’define’ domainName

requireDef?

typesDef?

constantsDef?

predicatesDef?

functionsDef?

constraints?

structureDef*

’)’

-> ^(DOMAIN domainName requireDef? typesDef?

constantsDef? predicatesDef? functionsDef?

246

CHAPTER A. Grammar of PDDL v3

constraints? structureDef*)

;

domainName

: ’(’ ’domain’ NAME ’)’

-> ^(DOMAIN_NAME NAME)

;

requireDef

: ’(’ ’:requirements’ REQUIRE_KEY+ ’)’

-> ^(REQUIREMENTS REQUIRE_KEY+)

;

typesDef

: ’(’ ’:types’ typedNameList ’)’

-> ^(TYPES typedNameList)

;

typedNameList

: (NAME* | singleTypeNameList+ NAME*)

;

singleTypeNameList

: (NAME+ ’-’ t=type)

-> ^(NAME $t)+

;

type

: (’(’ ’either’ primType+ ’)’)

-> ^(EITHER_TYPE primType+)

| primType

;

primType : NAME ;

functionsDef

: ’(’ ’:functions’ functionList ’)’

-> ^(FUNCTIONS functionList)

;

functionList

: (atomicFunctionSkeleton+ (’-’ functionType)?)*

;

247

CHAPTER A. Grammar of PDDL v3

atomicFunctionSkeleton

: ’(’! functionSymbol^ typedVariableList ’)’!

;

functionSymbol : NAME ;

functionType : ’number’ ;

constantsDef

: ’(’ ’:constants’ typedNameList ’)’

-> ^(CONSTANTS typedNameList)

;

predicatesDef

: ’(’ ’:predicates’ atomicFormulaSkeleton+ ’)’

-> ^(PREDICATES atomicFormulaSkeleton+)

;

atomicFormulaSkeleton

: ’(’! predicate^ typedVariableList ’)’!

;

predicate : NAME ;

typedVariableList

: (VARIABLE* | singleTypeVarList+ VARIABLE*)

;

singleTypeVarList

: (VARIABLE+ ’-’ t=type)

-> ^(VARIABLE $t)+

;

constraints

: ’(’! ’:constraints’^ conGD ’)’!

;

structureDef

: actionDef

| durativeActionDef

| derivedDef

;

248

CHAPTER A. Grammar of PDDL v3

/************* ACTIONS ****************************/

actionDef

: ’(’ ’:action’ actionSymbol

’:parameters’ ’(’ typedVariableList ’)’

actionDefBody ’)’

-> ^(ACTION actionSymbol typedVariableList actionDefBody)

;

actionSymbol : NAME ;

actionDefBody

: (’:precondition’ ((’(’ ’)’) | goalDesc))?

(’:effect’ ((’(’ ’)’) | effect))?

-> ^(PRECONDITION goalDesc?) ^(EFFECT effect?)

;

goalDesc

: atomicTermFormula

| ’(’ ’and’ goalDesc* ’)’

-> ^(AND_GD goalDesc*)

| ’(’ ’or’ goalDesc* ’)’

-> ^(OR_GD goalDesc*)

| ’(’ ’not’ goalDesc ’)’

-> ^(NOT_GD goalDesc)

| ’(’ ’imply’ goalDesc goalDesc ’)’

-> ^(IMPLY_GD goalDesc goalDesc)

| ’(’ ’exists’ ’(’ typedVariableList ’)’ goalDesc ’)’

-> ^(EXISTS_GD typedVariableList goalDesc)

| ’(’ ’forall’ ’(’ typedVariableList ’)’ goalDesc ’)’

-> ^(FORALL_GD typedVariableList goalDesc)

| fComp

-> ^(COMPARISON_GD fComp)

;

fComp

: ’(’! binaryComp fExp fExp ’)’!

;

atomicTermFormula

249

CHAPTER A. Grammar of PDDL v3

: ’(’ predicate term* ’)’ -> ^(PRED_HEAD predicate term*)

;

term : NAME | VARIABLE ;

/************* DURATIVE ACTIONS ****************************/

durativeActionDef

: ’(’ ’:durative-action’ actionSymbol

’:parameters’ ’(’ typedVariableList ’)’

daDefBody ’)’

-> ^(DURATIVE_ACTION actionSymbol typedVariableList daDefBody)

;

daDefBody

: ’:duration’ durationConstraint

| ’:condition’ ((’(’ ’)’) | daGD)

| ’:effect’ ((’(’ ’)’) | daEffect)

;

daGD

: prefTimedGD

| ’(’ ’and’ daGD* ’)’

| ’(’ ’forall’ ’(’ typedVariableList ’)’ daGD ’)’

;

prefTimedGD

: timedGD

| ’(’ ’preference’ NAME? timedGD ’)’

;

timedGD

: ’(’ ’at’ timeSpecifier goalDesc ’)’

| ’(’ ’over’ interval goalDesc ’)’

;

timeSpecifier : ’start’ | ’end’ ;

interval : ’all’ ;

/************* DERIVED DEFINITIONS ****************************/

derivedDef

: ’(’! ’:derived’^ typedVariableList goalDesc ’)’!

250

CHAPTER A. Grammar of PDDL v3

;

/************* EXPRESSIONS ****************************/

fExp

: NUMBER

| ’(’ binaryOp fExp fExp2 ’)’ -> ^(BINARY_OP binaryOp fExp fExp2)

| ’(’ ’-’ fExp ’)’ -> ^(UNARY_MINUS fExp)

| fHead

;

fExp2 : fExp ;

fHead

: ’(’ functionSymbol term* ’)’ -> ^(FUNC_HEAD functionSymbol term*)

| functionSymbol -> ^(FUNC_HEAD functionSymbol)

;

effect

: ’(’ ’and’ cEffect* ’)’ -> ^(AND_EFFECT cEffect*)

| cEffect

;

cEffect

: ’(’ ’forall’ ’(’ typedVariableList ’)’ effect ’)’

-> ^(FORALL_EFFECT typedVariableList effect)

| ’(’ ’when’ goalDesc condEffect ’)’

-> ^(WHEN_EFFECT goalDesc condEffect)

| pEffect

;

pEffect

: ’(’ assignOp fHead fExp ’)’

-> ^(ASSIGN_EFFECT assignOp fHead fExp)

| ’(’ ’not’ atomicTermFormula ’)’

-> ^(NOT_EFFECT atomicTermFormula)

| atomicTermFormula

;

condEffect

: ’(’ ’and’ pEffect* ’)’ -> ^(AND_EFFECT pEffect*)

| pEffect

251

CHAPTER A. Grammar of PDDL v3

;

binaryOp : ’*’ | ’+’ | ’-’ | ’/’ ;

binaryComp : ’>’ | ’<’ | ’=’ | ’>=’ | ’<=’ ;

assignOp : ’assign’ | ’scale-up’ | ’scale-down’ | ’increase’ | ’decrease’ ;

/************* DURATIONS ****************************/

durationConstraint

: ’(’ ’and’ simpleDurationConstraint+ ’)’

| ’(’ ’)’

| simpleDurationConstraint

;

simpleDurationConstraint

: ’(’ durOp ’?duration’ durValue ’)’

| ’(’ ’at’ timeSpecifier simpleDurationConstraint ’)’

;

durOp : ’<=’ | ’>=’ | ’=’ ;

durValue : NUMBER | fExp ;

daEffect

: ’(’ ’and’ daEffect* ’)’

| timedEffect

| ’(’ ’forall’ ’(’ typedVariableList ’)’ daEffect ’)’

| ’(’ ’when’ daGD timedEffect ’)’

| ’(’ assignOp fHead fExpDA ’)’

;

timedEffect

: ’(’ ’at’ timeSpecifier daEffect ’)’

| ’(’ ’at’ timeSpecifier fAssignDA ’)’

| ’(’ assignOp fHead fExp ’)’

;

fAssignDA

: ’(’ assignOp fHead fExpDA ’)’

;

252

CHAPTER A. Grammar of PDDL v3

fExpDA

: ’(’ ((binaryOp fExpDA fExpDA) | (’-’ fExpDA)) ’)’

| ’?duration’

| fExp

;

/************* PROBLEMS ****************************/

problem

: ’(’ ’define’ problemDecl

problemDomain

requireDef?

objectDecl?

init

goal

probConstraints?

metricSpec?

’)’

-> ^(PROBLEM problemDecl problemDomain requireDef? objectDecl?

init goal probConstraints? metricSpec?)

;

problemDecl

: ’(’ ’problem’ NAME ’)’

-> ^(PROBLEM_NAME NAME)

;

problemDomain

: ’(’ ’:domain’ NAME ’)’

-> ^(PROBLEM_DOMAIN NAME)

;

objectDecl

: ’(’ ’:objects’ typedNameList ’)’

-> ^(OBJECTS typedNameList)

;

init

: ’(’ ’:init’ initEl* ’)’

-> ^(INIT initEl*)

;

253

CHAPTER A. Grammar of PDDL v3

initEl

: nameLiteral

| ’(’ ’=’ fHead NUMBER ’)’ -> ^(INIT_EQ fHead NUMBER)

| ’(’ ’at’ NUMBER nameLiteral ’)’ -> ^(INIT_AT NUMBER nameLiteral)

;

nameLiteral

: atomicNameFormula

| ’(’ ’not’ atomicNameFormula ’)’ -> ^(NOT_PRED_INIT atomicNameFormula)

;

atomicNameFormula

: ’(’ predicate NAME* ’)’ -> ^(PRED_INST predicate NAME*)

;

goal : ’(’ ’:goal’ goalDesc ’)’ -> ^(GOAL goalDesc) ;

probConstraints

: ’(’ ’:constraints’ prefConGD ’)’

-> ^(PROBLEM_CONSTRAINT prefConGD)

;

prefConGD

: ’(’ ’and’ prefConGD* ’)’

| ’(’ ’forall’ ’(’ typedVariableList ’)’ prefConGD ’)’

| ’(’ ’preference’ NAME? conGD ’)’

| conGD

;

metricSpec

: ’(’ ’:metric’ optimization metricFExp ’)’

-> ^(PROBLEM_METRIC optimization metricFExp)

;

optimization : ’minimize’ | ’maximize’ ;

metricFExp

: ’(’ binaryOp metricFExp metricFExp ’)’

| ’(’ (’*’|’/’) metricFExp metricFExp+ ’)’

| ’(’ ’-’ metricFExp ’)’

| NUMBER

| ’(’ functionSymbol NAME* ’)’

| functionSymbol

254

CHAPTER A. Grammar of PDDL v3

| ’total-time’

| ’(’ ’is-violated’ NAME ’)’

;

/************* CONSTRAINTS ****************************/

conGD

: ’(’ ’and’ conGD* ’)’

| ’(’ ’forall’ ’(’ typedVariableList ’)’ conGD ’)’

| ’(’ ’at’ ’end’ goalDesc ’)’

| ’(’ ’always’ goalDesc ’)’

| ’(’ ’sometime’ goalDesc ’)’

| ’(’ ’within’ NUMBER goalDesc ’)’

| ’(’ ’at-most-once’ goalDesc ’)’

| ’(’ ’sometime-after’ goalDesc goalDesc ’)’

| ’(’ ’sometime-before’ goalDesc goalDesc ’)’

| ’(’ ’always-within’ NUMBER goalDesc goalDesc ’)’

| ’(’ ’hold-during’ NUMBER NUMBER goalDesc ’)’

| ’(’ ’hold-after’ NUMBER goalDesc ’)’

;

/************* LEXER ****************************/

REQUIRE_KEY

: ’:strips’

| ’:typing’

| ’:negative-preconditions’

| ’:disjunctive-preconditions’

| ’:equality’

| ’:existential-preconditions’

| ’:universal-preconditions’

| ’:quantified-preconditions’

| ’:conditional-effects’

| ’:fluents’

| ’:adl’

| ’:durative-actions’

| ’:derived-predicates’

| ’:timed-initial-literals’

| ’:preferences’

| ’:constraints’

255

CHAPTER A. Grammar of PDDL v3

;

NAME: LETTER ANY_CHAR* ;

fragment LETTER: ’a’..’z’ | ’A’..’Z’;

fragment ANY_CHAR: LETTER | ’0’..’9’ | ’-’ | ’_’;

VARIABLE : ’?’ LETTER ANY_CHAR* ;

NUMBER : DIGIT+ (’.’ DIGIT+)? ;

fragment DIGIT: ’0’..’9’;

LINE_COMMENT

: ’;’ ~(’\n’|’\r’)* ’\r’? ’\n’ { $channel = HIDDEN; }

;

WHITESPACE

: (’ ’

| ’\t’

| ’\r’

| ’\n’

)+

{ $channel = HIDDEN; }

;

256

B
Implementation of the Language Translation

Components

B.1 Lexer Code

Following is the code list for the Lexer implementation.

1

2 import org . a n t l r . runtime . ∗ ;
3 import java . u t i l . Stack ;
4 import java . u t i l . L i s t ;
5 import java . u t i l . ArrayList ;
6

7 public class PKDLLexer extends Lexer {
8 public stat ic f ina l int EOF=−1;
9 public stat ic f ina l int T 9 =9;

10 public stat ic f ina l int T 10 =10;
11 public stat ic f ina l int T 11 =11;
12 public stat ic f ina l int T 12 =12;
13 public stat ic f ina l int T 13 =13;
14 public stat ic f ina l int T 14 =14;
15 public stat ic f ina l int T 15 =15;
16 public stat ic f ina l int T 16 =16;
17 public stat ic f ina l int T 17 =17;
18 public stat ic f ina l int T 18 =18;
19 public stat ic f ina l int T 19 =19;
20 public stat ic f ina l int T 20 =20;
21 public stat ic f ina l int T 21 =21;
22 public stat ic f ina l int T 22 =22;
23 public stat ic f ina l int T 23 =23;
24 public stat ic f ina l int T 24 =24;
25 public stat ic f ina l int T 25 =25;
26 public stat ic f ina l int T 26 =26;
27 public stat ic f ina l int T 27 =27;
28 public stat ic f ina l int T 28 =28;
29 public stat ic f ina l int T 29 =29;
30 public stat ic f ina l int T 30 =30;
31 public stat ic f ina l int T 31 =31;
32 public stat ic f ina l int T 32 =32;
33 public stat ic f ina l int NEWLINE=4;
34 public stat ic f ina l int IDENT=5;
35 public stat ic f ina l int WS=6;

257

B.1 Lexer Code

36 public stat ic f ina l int STRING=7;
37 public stat ic f ina l int INTEGER=8;
38

39 public PKDLLexer () { ;}
40 public PKDLLexer(CharStream input) {
41 this (input , new RecognizerSharedState ()) ;
42 }
43 public PKDLLexer(CharStream input , RecognizerSharedState s t a t e) {
44 super (input , s t a t e) ;
45

46 }
47 public St r ing getGrammarFileName () {
48 return "/users/wiss/liufeng/work/diss/mydiss/tools/antlr/PKDL.g" ;
49 }
50

51 public f ina l void mT 9 () throws Recognit ionExcept ion {
52 try {
53 int type = T 9 ;
54 int channe l = DEFAULT TOKEN CHANNEL;
55 {
56 match ("BEGIN") ;
57 }
58 s t a t e . type = type ;
59 s t a t e . channel = channe l ;
60 }
61 f ina l ly {
62 }
63 }
64

65 public f ina l void mT 10 () throws Recognit ionExcept ion {
66 try {
67 int type = T 10 ;
68 int channe l = DEFAULT TOKEN CHANNEL;
69 {
70 match ("END") ;
71 }
72 s t a t e . type = type ;
73 s t a t e . channel = channe l ;
74 }
75 f ina l ly {
76 }
77 }
78 public f ina l void mT 11 () throws Recognit ionExcept ion {
79 try {
80 int type = T 11 ;
81 int channe l = DEFAULT TOKEN CHANNEL;
82 {
83 match (’{’) ;
84 }
85

86 s t a t e . type = type ;
87 s t a t e . channel = channe l ;
88 }
89 f ina l ly {
90 }
91 }
92

93 public f ina l void mT 12 () throws Recognit ionExcept ion {
94 try {
95 int type = T 12 ;
96 int channe l = DEFAULT TOKEN CHANNEL;
97 {

258

B.1 Lexer Code

98 match (’}’) ;
99 }

100

101 s t a t e . type = type ;
102 s t a t e . channel = channe l ;
103 }
104 f ina l ly {
105 }
106 }
107

108 public f ina l void mT 13 () throws Recognit ionExcept ion {
109 try {
110 int type = T 13 ;
111 int channe l = DEFAULT TOKEN CHANNEL;
112 {
113 match (’;’) ;
114 }
115

116 s t a t e . type = type ;
117 s t a t e . channel = channe l ;
118 }
119 f ina l ly {
120 }
121 }
122

123 public f ina l void mT 14 () throws Recognit ionExcept ion {
124 try {
125 int type = T 14 ;
126 int channe l = DEFAULT TOKEN CHANNEL;
127 {
128 match (’:’) ;
129 }
130

131 s t a t e . type = type ;
132 s t a t e . channel = channe l ;
133 }
134 f ina l ly {
135 }
136 }
137

138 public f ina l void mT 15 () throws Recognit ionExcept ion {
139 try {
140 int type = T 15 ;
141 int channe l = DEFAULT TOKEN CHANNEL;
142 {
143 match ("ACTION") ;
144 }
145

146 s t a t e . type = type ;
147 s t a t e . channel = channe l ;
148 }
149 f ina l ly {
150 }
151 }
152

153 public f ina l void mT 16 () throws Recognit ionExcept ion {
154 try {
155 int type = T 16 ;
156 int channe l = DEFAULT TOKEN CHANNEL;
157 {
158 match ("DECOM_METHOD") ;
159 }

259

B.1 Lexer Code

160

161 s t a t e . type = type ;
162 s t a t e . channel = channe l ;
163 }
164 f ina l ly {
165 }
166 }
167

168 public f ina l void mT 17 () throws Recognit ionExcept ion {
169 try {
170 int type = T 17 ;
171 int channe l = DEFAULT TOKEN CHANNEL;
172 {
173 match ("GOAL") ;
174 }
175

176 s t a t e . type = type ;
177 s t a t e . channel = channe l ;
178 }
179 f ina l ly {
180 }
181 }
182

183 public f ina l void mT 18 () throws Recognit ionExcept ion {
184 try {
185 int type = T 18 ;
186 int channe l = DEFAULT TOKEN CHANNEL;
187 {
188 match ("INIT_STATE") ;
189 }
190 s t a t e . type = type ;
191 s t a t e . channel = channe l ;
192 }
193 f ina l ly {
194 }
195 }
196

197 public f ina l void mT 19 () throws Recognit ionExcept ion {
198 try {
199 int type = T 19 ;
200 int channe l = DEFAULT TOKEN CHANNEL;
201 {
202 match ("PLAN") ;
203 }
204

205 s t a t e . type = type ;
206 s t a t e . channel = channe l ;
207 }
208 f ina l ly {
209 }
210 }
211

212 public f ina l void mT 20 () throws Recognit ionExcept ion {
213 try {
214 int type = T 20 ;
215 int channe l = DEFAULT TOKEN CHANNEL;
216 {
217 match ("ID") ;
218 }
219

220 s t a t e . type = type ;
221 s t a t e . channel = channe l ;

260

B.1 Lexer Code

222 }
223 f ina l ly {
224 }
225 }
226

227 public f ina l void mT 21 () throws Recognit ionExcept ion {
228 try {
229 int type = T 21 ;
230 int channe l = DEFAULT TOKEN CHANNEL;
231 {
232 match ("DOMAIN") ;
233 }
234

235 s t a t e . type = type ;
236 s t a t e . channel = channe l ;
237 }
238 f ina l ly {
239 }
240 }
241

242 public f ina l void mT 22 () throws Recognit ionExcept ion {
243 try {
244 int type = T 22 ;
245 int channe l = DEFAULT TOKEN CHANNEL;
246 {
247 match ("PARAM") ;
248 }
249

250 s t a t e . type = type ;
251 s t a t e . channel = channe l ;
252 }
253 f ina l ly {
254 }
255 }
256

257 public f ina l void mT 23 () throws Recognit ionExcept ion {
258 try {
259 int type = T 23 ;
260 int channe l = DEFAULT TOKEN CHANNEL;
261 {
262 match ("DESCR") ;
263 }
264

265 s t a t e . type = type ;
266 s t a t e . channel = channe l ;
267 }
268 f ina l ly {
269 }
270 }
271

272 public f ina l void mT 24 () throws Recognit ionExcept ion {
273 try {
274 int type = T 24 ;
275 int channe l = DEFAULT TOKEN CHANNEL;
276 {
277 match ("SUB_TASKS") ;
278 }
279

280 s t a t e . type = type ;
281 s t a t e . channel = channe l ;
282 }
283 f ina l ly {

261

B.1 Lexer Code

284 }
285 }
286

287 public f ina l void mT 25 () throws Recognit ionExcept ion {
288 try {
289 int type = T 25 ;
290 int channe l = DEFAULT TOKEN CHANNEL;
291 {
292 match ("CURRENT_STATE") ;
293 }
294

295 s t a t e . type = type ;
296 s t a t e . channel = channe l ;
297 }
298 f ina l ly {
299 }
300 }
301

302 public f ina l void mT 26 () throws Recognit ionExcept ion {
303 try {
304 int type = T 26 ;
305 int channe l = DEFAULT TOKEN CHANNEL;
306 {
307 match ("ASSERTED_STATE") ;
308 }
309

310 s t a t e . type = type ;
311 s t a t e . channel = channe l ;
312 }
313 f ina l ly {
314 }
315 }
316

317 public f ina l void mT 27 () throws Recognit ionExcept ion {
318 try {
319 int type = T 27 ;
320 int channe l = DEFAULT TOKEN CHANNEL;
321 {
322 match ("TIME_TOTAL") ;
323 }
324

325 s t a t e . type = type ;
326 s t a t e . channel = channe l ;
327 }
328 f ina l ly {
329 }
330 }
331

332 public f ina l void mT 28 () throws Recognit ionExcept ion {
333 try {
334 int type = T 28 ;
335 int channe l = DEFAULT TOKEN CHANNEL;
336 {
337 match ("COST_TOTAL") ;
338 }
339

340 s t a t e . type = type ;
341 s t a t e . channel = channe l ;
342 }
343 f ina l ly {
344 }
345 }

262

B.1 Lexer Code

346

347 public f ina l void mT 29 () throws Recognit ionExcept ion {
348 try {
349 int type = T 29 ;
350 int channe l = DEFAULT TOKEN CHANNEL;
351 {
352 match ("ORDERING") ;
353 }
354

355 s t a t e . type = type ;
356 s t a t e . channel = channe l ;
357 }
358 f ina l ly {
359 }
360 }
361

362 public f ina l void mT 30 () throws Recognit ionExcept ion {
363 try {
364 int type = T 30 ;
365 int channe l = DEFAULT TOKEN CHANNEL;
366 {
367 match ("SCHEDULED") ;
368 }
369

370 s t a t e . type = type ;
371 s t a t e . channel = channe l ;
372 }
373 f ina l ly {
374 }
375 }
376

377 public f ina l void mT 31 () throws Recognit ionExcept ion {
378 try {
379 int type = T 31 ;
380 int channe l = DEFAULT TOKEN CHANNEL;
381 {
382 match ("TOT_TIME") ;
383 }
384

385 s t a t e . type = type ;
386 s t a t e . channel = channe l ;
387 }
388 f ina l ly {
389 }
390 }
391

392 public f ina l void mT 32 () throws Recognit ionExcept ion {
393 try {
394 int type = T 32 ;
395 int channe l = DEFAULT TOKEN CHANNEL;
396 {
397 match ("OBJECTIVE") ;
398

399

400 }
401

402 s t a t e . type = type ;
403 s t a t e . channel = channe l ;
404 }
405 f ina l ly {
406 }
407 }

263

B.1 Lexer Code

408

409 public f ina l void mWS() throws Recognit ionExcept ion {
410 try {
411 int type = WS;
412 int channe l = DEFAULT TOKEN CHANNEL;
413 {
414 match (’ ’) ;
415

416 }
417

418 s t a t e . type = type ;
419 s t a t e . channel = channe l ;
420 }
421 f ina l ly {
422 }
423 }
424

425 public f ina l void mIDENT() throws Recognit ionExcept ion {
426 try {
427 int type = IDENT;
428 int channe l = DEFAULT TOKEN CHANNEL;
429 {
430 match (’\t’) ;
431

432 }
433

434 s t a t e . type = type ;
435 s t a t e . channel = channe l ;
436 }
437 f ina l ly {
438 }
439 }
440

441 public f ina l void mSTRING() throws Recognit ionExcept ion {
442 try {
443 int type = STRING;
444 int channe l = DEFAULT TOKEN CHANNEL;
445 {
446 int cnt1 =0;
447 loop1 :
448 do {
449 int a l t 1 =2;
450 int LA1 0 = input .LA(1) ;
451

452 i f (((LA1 0>=’A’ && LA1 0<=’Z’) | |
453 (LA1 0>=’a’ && LA1 0<=’z’))) {
454 a l t 1 =1;
455 }
456

457 switch (a l t 1) {
458 case 1 :
459 {
460 i f ((input .LA(1)>=’A’ && input .LA(1)<=’Z’) | |
461 (input .LA(1)>=’a’&&input .LA(1)<=’z’))
462 {
463 input . consume () ;
464 }
465

466 else {
467 MismatchedSetException mse =
468 new MismatchedSetException (null , input) ;
469 r e cove r (mse) ;

264

B.1 Lexer Code

470 throw mse ;
471 }
472 }
473 break ;
474 default :
475 i f (cnt1 >= 1) break loop1 ;
476 EarlyExitExcept ion eee =
477 new EarlyExitExcept ion (1 , input) ;
478 throw eee ;
479 }
480 cnt1++;
481 } while (true) ;
482

483 }
484

485 s t a t e . type = type ;
486 s t a t e . channel = channe l ;
487 }
488 f ina l ly {
489 }
490 }
491

492 public f ina l void mINTEGER() throws Recognit ionExcept ion {
493 try {
494 int type = INTEGER;
495 int channe l = DEFAULT TOKEN CHANNEL;
496 {
497 int cnt2 =0;
498 loop2 :
499 do {
500 int a l t 2 =2;
501 int LA2 0 = input .LA(1) ;
502

503 i f (((LA2 0>=’0’ && LA2 0<=’9’))) {
504 a l t 2 =1;
505 }
506

507

508 switch (a l t 2) {
509 case 1 :
510 {
511 matchRange (’0’ , ’9’) ;
512

513 }
514 break ;
515

516 default :
517 i f (cnt2 >= 1) break loop2 ;
518 EarlyExitExcept ion eee =
519 new EarlyExitExcept ion (2 , input) ;
520 throw eee ;
521 }
522 cnt2++;
523 } while (true) ;
524

525

526 }
527

528 s t a t e . type = type ;
529 s t a t e . channel = channe l ;
530 }
531 f ina l ly {

265

B.1 Lexer Code

532 }
533 }
534

535 public f ina l void mNEWLINE() throws Recognit ionExcept ion {
536 try {
537 int type = NEWLINE;
538 int channe l = DEFAULT TOKEN CHANNEL;
539 {
540 int cnt3 =0;
541 loop3 :
542 do {
543 int a l t 3 =2;
544 int LA3 0 = input .LA(1) ;
545

546 i f ((LA3 0==’\n’ | | LA3 0==’\r’)) {
547 a l t 3 =1;
548 }
549

550

551 switch (a l t 3) {
552 case 1 :
553 {
554 i f (input .LA(1)==’\n’ | | input .LA(1)==’\r’) {
555 input . consume () ;
556 }
557 else {
558 MismatchedSetException mse =
559 new MismatchedSetException (null , input) ;
560 r e cove r (mse) ;
561 throw mse ;}
562 }
563 break ;
564

565 default :
566 i f (cnt3 >= 1) break loop3 ;
567 EarlyExitExcept ion eee =
568 new EarlyExitExcept ion (3 , input) ;
569 throw eee ;
570 }
571 cnt3++;
572 } while (true) ;
573

574

575 }
576

577 s t a t e . type = type ;
578 s t a t e . channel = channe l ;
579 }
580 f ina l ly {
581 }
582 }
583

584 public void mTokens () throws Recognit ionExcept ion {
585 int a l t 4 =29;
586 a l t 4 = dfa4 . p r e d i c t (input) ;
587 switch (a l t 4) {
588 case 1 :
589 {
590 mT 9 () ;
591 }
592 break ;
593 case 2 :

266

B.1 Lexer Code

594 {
595 mT 10 () ;
596 }
597 break ;
598 case 3 :
599 {
600 mT 11 () ;
601 }
602 break ;
603 case 4 :
604 {
605 mT 12 () ;
606 }
607 break ;
608 case 5 :
609 {
610 mT 13 () ;
611 }
612 break ;
613 case 6 :
614 {
615 mT 14 () ;
616 }
617 break ;
618 case 7 :
619 {
620 mT 15 () ;
621 }
622 break ;
623 case 8 :
624 {
625 mT 16 () ;
626 }
627 break ;
628 case 9 :
629 {
630 mT 17 () ;
631 }
632 break ;
633 case 10 :
634 {
635 mT 18 () ;
636 }
637 break ;
638 case 11 :
639 {
640 mT 19 () ;
641 }
642 break ;
643 case 12 :
644 {
645 mT 20 () ;
646 }
647 break ;
648 case 13 :
649 {
650 mT 21 () ;
651 }
652 break ;
653 case 14 :
654 {
655 mT 22 () ;

267

B.1 Lexer Code

656 }
657 break ;
658 case 15 :
659 {
660 mT 23 () ;
661

662 }
663 break ;
664 case 16 :
665 {
666 mT 24 () ;
667 }
668 break ;
669 case 17 :
670 {
671 mT 25 () ;
672 }
673 break ;
674 case 18 :
675 {
676 mT 26 () ;
677 }
678 break ;
679 case 19 :
680 {
681 mT 27 () ;
682 }
683 break ;
684 case 20 :
685 {
686 mT 28 () ;
687 }
688 break ;
689 case 21 :
690 {
691 mT 29 () ;
692 }
693 break ;
694 case 22 :
695 {
696 mT 30 () ;
697 }
698 break ;
699 case 23 :
700 {
701 mT 31 () ;
702 }
703 break ;
704 case 24 :
705 {
706 mT 32 () ;
707 }
708 break ;
709 case 25 :
710 {
711 mWS() ;
712 }
713 break ;
714 case 26 :
715 {
716 mIDENT() ;
717 }

268

B.1 Lexer Code

718 break ;
719 case 27 :
720 {
721 mSTRING() ;
722 }
723 break ;
724 case 28 :
725 {
726 mINTEGER() ;
727 }
728 break ;
729 case 29 :
730 {
731 mNEWLINE() ;
732 }
733 break ;
734 }
735 }
736

737 protected DFA4 dfa4 = new DFA4(this) ;
738 stat ic f ina l St r ing DFA4 eotS =
739 "\1\ uffff \2\22\4\ uffff \11\22\5\ uffff \10\22\1\61\13\22\1\75\7\22\1"+
740 "\uffff \13\22\1\ uffff \5\22\1\125\1\22\1\127\1\22\1\ uffff \4\22\1\ uffff"+
741 "\2\22\1\137\3\22\1\143\1\22\3\ uffff \1\145\2\22\2\ uffff \2\22\1\ uffff"+
742 "\1\152\1\22\2\ uffff \1\154\1\ uffff \4\22\1\ uffff \1\22\1\ uffff \6\22"+
743 "\1\ uffff \1\170\1\22\1\ uffff \1\172\1\ uffff \1\173\2\ uffff" ;
744 stat ic f ina l St r ing DFA4 eofS =
745 "\174\ uffff" ;
746 stat ic f ina l St r ing DFA4 minS =
747 "\1\11\1\105\1\116\4\ uffff \1\103\1\105\1\117\1\104\1\101\1\103\1"+
748 "\117\1\111\1\102\5\ uffff \1\107\1\104\1\124\1\123\1\103\1\115\1\101"+
749 "\1\111\2\101\1\122\1\102\1\110\1\122\1\123\1\115\1\124\1\104\1\112"+
750 "\1\111\1\101\1\111\1\105\1\117\1\103\1\101\1\114\1\124\1\ uffff\1"+
751 "\116\1\101\1\137\1\105\1\122\1\124\1\105\1\137\2\105\1\116\1\ uffff"+
752 "\1\117\1\122\1\115\1\122\1\111\1\101\1\137\1\101\1\115\1\ uffff\1"+
753 "\104\1\105\2\137\1\ uffff \1\122\1\103\1\101\1\116\1\124\1\137\1\101"+
754 "\1\116\3\ uffff \1\101\1\125\1\116\2\ uffff \1\111\1\124\1\ uffff \1\101"+
755 "\1\105\2\ uffff \1\101\1\ uffff \1\114\1\124\1\116\1\111\1\ uffff \1\104"+
756 "\1\ uffff \1\105\1\137\1\107\1\126\1\137\1\104\1\ uffff \1\101\1\105"+
757 "\1\ uffff \1\101\1\ uffff \1\101\2\ uffff" ;
758 stat ic f ina l St r ing DFA4 maxS =
759 "\1\175\1\105\1\116\4\ uffff \1\123\2\117\1\116\1\114\2\125\1\117\1"+
760 "\122\5\ uffff \1\107\1\104\1\124\2\123\1\115\1\101\1\111\1\172\1\101"+
761 "\1\122\1\102\1\110\1\122\1\123\1\115\1\124\1\104\1\112\1\111\1\172"+
762 "\1\111\1\105\1\117\1\103\1\101\1\114\1\124\1\ uffff \1\116\1\101\1"+
763 "\137\1\105\1\122\1\124\1\105\1\137\2\105\1\116\1\ uffff \1\117\1\122"+
764 "\1\115\1\122\1\111\1\172\1\137\1\172\1\115\1\ uffff \1\104\1\105\2"+
765 "\137\1\ uffff \1\122\1\103\1\172\1\116\1\124\1\137\1\172\1\116\3\ uffff"+
766 "\1\172\1\125\1\116\2\ uffff \1\111\1\124\1\ uffff \1\172\1\105\2\ uffff"+
767 "\1\172\1\ uffff \1\114\1\124\1\116\1\111\1\ uffff \1\104\1\ uffff \1\105"+
768 "\1\137\1\107\1\126\1\137\1\104\1\ uffff \1\172\1\105\1\ uffff \1\172"+
769 "\1\ uffff \1\172\2\ uffff" ;
770 stat ic f ina l St r ing DFA4 acceptS =
771 "\3\ uffff \1\3\1\4\1\5\1\6\11\ uffff \1\31\1\32\1\33\1\34\1\35\34\ uffff"+
772 "\1\14\13\ uffff \1\2\11\ uffff \1\20\4\ uffff \1\27\10\ uffff \1\11\1\12"+
773 "\1\13\3\ uffff \1\24\1\23\2\ uffff \1\1\2\ uffff \1\10\1\17\1\ uffff\1"+
774 "\16\4\ uffff \1\7\1\ uffff \1\15\6\ uffff \1\21\2\ uffff \1\22\1\ uffff\1"+
775 "\25\1\ uffff \1\26\1\30" ;
776 stat ic f ina l St r ing DFA4 specialS =
777 "\174\ uffff}>" ;
778 stat ic f ina l St r ing [] DFA4 transit ionS = {
779 "\1\21\1\24\2\ uffff \1\24\22\ uffff \1\20\17\ uffff \12\23\1\6\1\5"+

269

B.1 Lexer Code

780 "\5\ uffff \1\7\1\1\1\15\1\10\1\2\1\22\1\11\1\22\1\12\5\22\1\17"+
781 "\1\13\2\22\1\14\1\16\6\22\6\ uffff \32\22\1\3\1\ uffff \1\4" ,
782 "\1\25" ,
783 "\1\26" ,
784 "" ,
785 "" ,
786 "" ,
787 "" ,
788 "\1\27\17\ uffff \1\30" ,
789 "\1\31\11\ uffff \1\32" ,
790 "\1\33" ,
791 "\1\35\11\ uffff \1\34" ,
792 "\1\37\12\ uffff \1\36" ,
793 "\1\41\21\ uffff \1\40" ,
794 "\1\43\5\ uffff \1\42" ,
795 "\1\44\5\ uffff \1\45" ,
796 "\1\47\17\ uffff \1\46" ,
797 "" ,
798 "" ,
799 "" ,
800 "" ,
801 "" ,
802 "\1\50" ,
803 "\1\51" ,
804 "\1\52" ,
805 "\1\53" ,
806 "\1\54\17\ uffff \1\55" ,
807 "\1\56" ,
808 "\1\57" ,
809 "\1\60" ,
810 "\32\22\6\ uffff \32\22" ,
811 "\1\62" ,
812 "\1\63" ,
813 "\1\64" ,
814 "\1\65" ,
815 "\1\66" ,
816 "\1\67" ,
817 "\1\70" ,
818 "\1\71" ,
819 "\1\72" ,
820 "\1\73" ,
821 "\1\74" ,
822 "\32\22\6\ uffff \32\22" ,
823 "\1\76" ,
824 "\1\77" ,
825 "\1\100" ,
826 "\1\101" ,
827 "\1\102" ,
828 "\1\103" ,
829 "\1\104" ,
830 "" ,
831 "\1\105" ,
832 "\1\106" ,
833 "\1\107" ,
834 "\1\110" ,
835 "\1\111" ,
836 "\1\112" ,
837 "\1\113" ,
838 "\1\114" ,
839 "\1\115" ,
840 "\1\116" ,
841 "\1\117" ,

270

B.1 Lexer Code

842 "" ,
843 "\1\120" ,
844 "\1\121" ,
845 "\1\122" ,
846 "\1\123" ,
847 "\1\124" ,
848 "\32\22\6\ uffff \32\22" ,
849 "\1\126" ,
850 "\32\22\6\ uffff \32\22" ,
851 "\1\130" ,
852 "" ,
853 "\1\131" ,
854 "\1\132" ,
855 "\1\133" ,
856 "\1\134" ,
857 "" ,
858 "\1\135" ,
859 "\1\136" ,
860 "\32\22\6\ uffff \32\22" ,
861 "\1\140" ,
862 "\1\141" ,
863 "\1\142" ,
864 "\32\22\6\ uffff \32\22" ,
865 "\1\144" ,
866 "" ,
867 "" ,
868 "" ,
869 "\32\22\6\ uffff \32\22" ,
870 "\1\146" ,
871 "\1\147" ,
872 "" ,
873 "" ,
874 "\1\150" ,
875 "\1\151" ,
876 "" ,
877 "\32\22\6\ uffff \32\22" ,
878 "\1\153" ,
879 "" ,
880 "" ,
881 "\32\22\6\ uffff \32\22" ,
882 "" ,
883 "\1\155" ,
884 "\1\156" ,
885 "\1\157" ,
886 "\1\160" ,
887 "" ,
888 "\1\161" ,
889 "" ,
890 "\1\162" ,
891 "\1\163" ,
892 "\1\164" ,
893 "\1\165" ,
894 "\1\166" ,
895 "\1\167" ,
896 "" ,
897 "\32\22\6\ uffff \32\22" ,
898 "\1\171" ,
899 "" ,
900 "\32\22\6\ uffff \32\22" ,
901 "" ,
902 "\32\22\6\ uffff \32\22" ,
903 "" ,

271

B.2 Parser Code

904 ""

905 } ;
906

907 stat ic f ina l short [] DFA4 eot = DFA. unpackEncodedString (DFA4 eotS) ;
908 stat ic f ina l short [] DFA4 eof = DFA. unpackEncodedString (DFA4 eofS) ;
909 stat ic f ina l char [] DFA4 min =
910 DFA. unpackEncodedStringToUnsignedChars (DFA4 minS) ;
911 stat ic f ina l char [] DFA4 max =
912 DFA. unpackEncodedStringToUnsignedChars (DFA4 maxS) ;
913 stat ic f ina l short [] DFA4 accept =
914 DFA. unpackEncodedString (DFA4 acceptS) ;
915 stat ic f ina l short [] DFA4 special =
916 DFA. unpackEncodedString (DFA4 specialS) ;
917 stat ic f ina l short [] [] DFA4 transit ion ;
918

919 stat ic {
920 int numStates = DFA4 transit ionS . l ength ;
921 DFA4 transit ion = new short [numStates] [] ;
922 for (int i =0; i<numStates ; i++) {
923 DFA4 transit ion [i] = DFA. unpackEncodedString (DFA4 transit ionS [i]) ;
924 }
925 }
926

927 class DFA4 extends DFA {
928

929 public DFA4(BaseRecognizer r e c o g n i z e r) {
930 this . r e c o g n i z e r = r e c o g n i z e r ;
931 this . decisionNumber = 4 ;
932 this . eot = DFA4 eot ;
933 this . e o f = DFA4 eof ;
934 this . min = DFA4 min ;
935 this . max = DFA4 max ;
936 this . accept = DFA4 accept ;
937 this . s p e c i a l = DFA4 special ;
938 this . t r a n s i t i o n = DFA4 transit ion ;
939 }
940 public St r ing ge tDe s c r i p t i on () {
941 return "1:1: Tokens : (T__9 | T__10 | T__11 | T__12 |

942 T__13 | T__14 | T__15 | T__16 | T__17 | T__18 | T__19 |

943 T__20 | T__21 | T__22 | T__23 | T__24 | T__25 |

944 T__26 | T__27 | T__28 | T__29 | T__30 | T__31 | T__32 |

945 WS | IDENT | STRING | INTEGER | NEWLINE);" ;
946 }
947 }

B.2 Parser Code

1

2 import org . a n t l r . runtime . ∗ ;
3 import java . u t i l . s tack ;
4 import java . u t i l . L i s t ;
5 import java . u t i l . ArrayList ;
6

7 public class PKDLParser extends Parser {
8 public stat ic f ina l St r ing [] tokenNames = new St r ing [] {
9 "<invalid >" , "<EOR >" , "<DOWN >" , "<UP>" , "NEWLINE" , "IDENT" , "WS" , "STRING" ,

10 "INTEGER" , "’BEGIN’" , "’END’" , "’{’" , "’}’" , "’;’" , "’:’" , "’ACTION ’" ,
11 "’DECOM_METHOD ’" , "’GOAL’" , "’INIT_STATE ’" , "’PLAN’" , "’ID’" , "’DOMAIN ’" ,
12 "’PARAM’" , "’DESCR’" , "’SUB_TASKS ’" , "’CURRENT_STATE ’" , "’ASSERTED_STATE ’" ,

272

B.2 Parser Code

13 "’TIME_TOTAL ’" , "’COST_TOTAL ’" , "’ORDERING ’" , "’SCHEDULED ’" ,
14 "’TOT_TIME ’" , "’OBJECTIVE ’"

15 } ;
16 public stat ic f ina l int EOF=−1;
17 public stat ic f ina l int T 9 =9;
18 public stat ic f ina l int T 10 =10;
19 public stat ic f ina l int T 11 =11;
20 public stat ic f ina l int T 12 =12;
21 public stat ic f ina l int T 13 =13;
22 public stat ic f ina l int T 14 =14;
23 public stat ic f ina l int T 15 =15;
24 public stat ic f ina l int T 16 =16;
25 public stat ic f ina l int T 17 =17;
26 public stat ic f ina l int T 18 =18;
27 public stat ic f ina l int T 19 =19;
28 public stat ic f ina l int T 20 =20;
29 public stat ic f ina l int T 21 =21;
30 public stat ic f ina l int T 22 =22;
31 public stat ic f ina l int T 23 =23;
32 public stat ic f ina l int T 24 =24;
33 public stat ic f ina l int T 25 =25;
34 public stat ic f ina l int T 26 =26;
35 public stat ic f ina l int T 27 =27;
36 public stat ic f ina l int T 28 =28;
37 public stat ic f ina l int T 29 =29;
38 public stat ic f ina l int T 30 =30;
39 public stat ic f ina l int T 31 =31;
40 public stat ic f ina l int T 32 =32;
41 public stat ic f ina l int NEWLINE=4;
42 public stat ic f ina l int IDENT=5;
43 public stat ic f ina l int WS=6;
44 public stat ic f ina l int STRING=7;
45 public stat ic f ina l int INTEGER=8;
46

47 public PKDLParser (TokenStream input) {
48 this (input , new RecognizerSharedState ()) ;
49 }
50 public PKDLParser (TokenStream input , RecognizerSharedState s t a t e) {
51 super (input , s t a t e) ;
52 }
53

54 public St r ing [] getTokenNames () {
55 return PKDLParser . tokenNames ; }
56 public St r ing getGrammarFileName () {
57 return "/users/wiss/liufeng/work/diss/mydiss/tools/antlr/PKDL.g" ; }
58

59 public f ina l void pkd () throws Recognit ionExcept ion {
60 try {
61 {
62 pushFollow (FOLLOW domainID in pkd11) ;
63 domainID () ;
64

65 s t a t e . f sp −−;
66

67 match (input ,NEWLINE, FOLLOW NEWLINE in pkd13) ;
68 match (input , 9 , FOLLOW 9 in pkd15) ;
69 match (input ,NEWLINE, FOLLOW NEWLINE in pkd17) ;
70 match (input , IDENT, FOLLOW IDENT in pkd19) ;
71 pushFollow (FOLLOW blocks in pkd21) ;
72 b locks () ;
73

74 s t a t e . f sp −−;

273

B.2 Parser Code

75

76 match (input , 1 0 , FOLLOW 10 in pkd23) ;
77

78 }
79

80 }
81 catch (Recognit ionExcept ion re) {
82 r epor tEr ro r (re) ;
83 r e cove r (input , re) ;
84 }
85 f ina l ly {
86 }
87 return ;
88 }
89

90

91 public f ina l void b locks () throws Recognit ionExcept ion {
92 try{
93 {
94 int cnt1 =0;
95 loop1 :
96 do {
97 int a l t 1 =2;
98 int LA1 0 = input .LA(1) ;
99

100 i f (((LA1 0>=15 && LA1 0<=19))) {
101 a l t 1 =1;
102 }
103

104 switch (a l t 1) {
105 case 1 :
106 {
107 pushFollow (FOLLOW typed block in blocks32) ;
108 typed block () ;
109

110 s t a t e . f sp −−;
111 }
112 break ;
113

114 default :
115 i f (cnt1 >= 1) break loop1 ;
116 EarlyExitExcept ion eee =
117 new EarlyExitExcept ion (1 , input) ;
118 throw eee ;
119 }
120 cnt1++;
121 } while (true) ;
122

123

124 }
125

126 }
127 catch (Recognit ionExcept ion re) {
128 r epor tEr ro r (re) ;
129 r e cove r (input , re) ;
130 }
131 f ina l ly {
132 }
133 return ;
134 }
135

136

274

B.2 Parser Code

137 public f ina l void d e l i m i t o r l () throws Recognit ionExcept ion {
138 try {
139 {
140 match (input , 1 1 , FOLLOW 11 in delimitorl44) ;
141

142 }
143

144 }
145 catch (Recognit ionExcept ion re) {
146 r epor tEr ro r (re) ;
147 r e cove r (input , re) ;
148 }
149 f ina l ly {
150 }
151 return ;
152 }
153

154 public f ina l void d e l i m i t o r r () throws Recognit ionExcept ion {
155 try {
156 {
157 match (input , 1 2 , FOLLOW 12 in delimitorr53) ;
158

159 }
160

161 }
162 catch (Recognit ionExcept ion re) {
163 r epor tEr ro r (re) ;
164 r e cove r (input , re) ;
165 }
166 f ina l ly {
167 }
168 return ;
169 }
170

171 public f ina l void semi () throws Recognit ionExcept ion {
172 try {
173 {
174 match (input , 1 3 , FOLLOW 13 in semi62) ;
175 }
176

177 }
178 catch (Recognit ionExcept ion re) {
179 r epor tEr ro r (re) ;
180 r e cove r (input , re) ;
181 }
182 f ina l ly {
183 }
184 return ;
185 }
186

187

188 public f ina l void co lon () throws Recognit ionExcept ion {
189 try {
190 {
191 match (input , 1 4 , FOLLOW 14 in colon70) ;
192

193 }
194

195 }
196 catch (Recognit ionExcept ion re) {
197 r epor tEr ro r (re) ;
198 r e cove r (input , re) ;

275

B.2 Parser Code

199 }
200 f ina l ly {
201 }
202 return ;
203 }
204

205

206 public f ina l void keyword () throws Recognit ionExcept ion {
207 try {
208 {
209 int cnt2 =0;
210 loop2 :
211 do {
212 int a l t 2 =2;
213 int LA2 0 = input .LA(1) ;
214 i f (((LA2 0>=STRING && LA2 0<=INTEGER))) {
215 a l t 2 =1;
216 }
217 switch (a l t 2) {
218 case 1 :
219 {
220 i f ((input .LA(1)>=STRING && input .LA(1)<=INTEGER)) {
221 input . consume () ;
222 s t a t e . e r rorRecovery=fa l se ;
223 }
224 else {
225 MismatchedSetException mse = new MismatchedSetException (null , input) ;
226 throw mse ;
227 }
228 }
229 break ;
230 default :
231 i f (cnt2 >= 1) break loop2 ;
232 EarlyExitExcept ion eee =
233 new EarlyExitExcept ion (2 , input) ;
234 throw eee ;
235 }
236 cnt2++;
237 } while (true) ;
238

239 }
240 }
241 catch (Recognit ionExcept ion re) {
242 r epor tEr ro r (re) ;
243 r e cove r (input , re) ;
244 }
245 f ina l ly {
246 }
247 return ;
248 }
249

250 public f ina l void input () throws Recognit ionExcept ion {
251 try {
252 {
253 int cnt3 =0;
254 loop3 :
255 do {
256 int a l t 3 =2;
257 int LA3 0 = input .LA(1) ;
258 i f ((LA3 0==STRING)) {
259 a l t 3 =1;
260 }

276

B.2 Parser Code

261 switch (a l t 3) {
262 case 1 :
263 {
264 match (input ,STRING, FOLLOW STRING in input107) ;
265 }
266 break ;
267 default :
268 i f (cnt3 >= 1) break loop3 ;
269 EarlyExitExcept ion eee =
270 new EarlyExitExcept ion (3 , input) ;
271 throw eee ;
272 }
273 cnt3++;
274 } while (true) ;
275 }
276 }
277 catch (Recognit ionExcept ion re) {
278 r epor tEr ro r (re) ;
279 r e cove r (input , re) ;
280 }
281 f ina l ly {
282 }
283 return ;
284 }
285

286 public f ina l void domainID () throws Recognit ionExcept ion {
287 try {
288 {
289 int cnt4 =0;
290 loop4 :
291 do {
292 int a l t 4 =2;
293 int LA4 0 = input .LA(1) ;
294 i f ((LA4 0==STRING)) {
295 a l t 4 =1;
296 }
297 switch (a l t 4) {
298 case 1 :
299 {
300 match (input ,STRING, FOLLOW STRING in domainID163) ;
301 }
302 break ;
303 default :
304 i f (cnt4 >= 1) break loop4 ;
305 EarlyExitExcept ion eee =
306 new EarlyExitExcept ion (4 , input) ;
307 throw eee ;
308 }
309 cnt4++;
310 } while (true) ;
311 }
312 }
313 catch (Recognit ionExcept ion re) {
314 r epor tEr ro r (re) ;
315 r e cove r (input , re) ;
316 }
317 f ina l ly {
318 }
319 return ;
320 }
321

322 public f ina l void typed block () throws Recognit ionExcept ion {

277

B.2 Parser Code

323 try {
324 int a l t 10 =5;
325 switch (input .LA(1)) {
326 case 15 :
327 {
328 a l t 10 =1;
329 }
330 break ;
331 case 16 :
332 {
333 a l t 10 =2;
334 }
335 break ;
336 case 17 :
337 {
338 a l t 10 =3;
339 }
340 break ;
341 case 18 :
342 {
343 a l t 10 =4;
344 }
345 break ;
346 case 19 :
347 {
348 a l t 10 =5;
349 }
350 break ;
351 default :
352 NoViableAltException nvae =
353 new NoViableAltException ("" , 10 , 0 , input) ;
354

355 throw nvae ;
356 }
357

358 switch (a l t 1 0) {
359 case 1 :
360 {
361 match (input , 1 5 , FOLLOW 15 in typed block177) ;
362 match (input ,NEWLINE, FOLLOW NEWLINE in typed block179) ;
363 match (input , IDENT, FOLLOW IDENT in typed block181) ;
364 pushFollow (FOLLOW delimitorl in typed block183) ;
365 d e l i m i t o r l () ;
366

367 s t a t e . f sp −−;
368

369 match (input ,NEWLINE, FOLLOW NEWLINE in typed block185) ;
370 int cnt5 =0;
371 loop5 :
372 do {
373 int a l t 5 =2;
374 int LA5 0 = input .LA(1) ;
375

376 i f ((LA5 0==IDENT)) {
377 int LA5 1 = input .LA(2) ;
378

379 i f ((LA5 1==IDENT)) {
380 a l t 5 =1;
381 }
382 }
383

384 switch (a l t 5) {

278

B.2 Parser Code

385 case 1 :
386 {
387 pushFollow (FOLLOW action in typed block188) ;
388 ac t i on () ;
389

390 s t a t e . f sp −−;
391

392 }
393 break ;
394

395 default :
396 i f (cnt5 >= 1) break loop5 ;
397 EarlyExitExcept ion eee =
398 new EarlyExitExcept ion (5 , input) ;
399 throw eee ;
400 }
401 cnt5++;
402 } while (true) ;
403

404 match (input , IDENT, FOLLOW IDENT in typed block192) ;
405 pushFollow (FOLLOW delimitorr in typed block194) ;
406 d e l i m i t o r r () ;
407

408 s t a t e . f sp −−;
409

410 match (input ,NEWLINE, FOLLOW NEWLINE in typed block196) ;
411

412 }
413 break ;
414 case 2 :
415 {
416 match (input , 1 6 , FOLLOW 16 in typed block201) ;
417 match (input ,NEWLINE, FOLLOW NEWLINE in typed block202) ;
418 match (input , IDENT, FOLLOW IDENT in typed block204) ;
419 pushFollow (FOLLOW delimitorl in typed block206) ;
420 d e l i m i t o r l () ;
421

422 s t a t e . f sp −−;
423

424 match (input ,NEWLINE, FOLLOW NEWLINE in typed block208) ;
425 int cnt6 =0;
426 loop6 :
427 do {
428 int a l t 6 =2;
429 int LA6 0 = input .LA(1) ;
430

431 i f ((LA6 0==IDENT)) {
432 int LA6 1 = input .LA(2) ;
433

434 i f ((LA6 1==IDENT)) {
435 a l t 6 =1;
436 }
437 }
438

439 switch (a l t 6) {
440 case 1 :
441 {
442 pushFollow (FOLLOW method in typed block211) ;
443 method () ;
444

445 s t a t e . f sp −−;
446

279

B.2 Parser Code

447 }
448 break ;
449

450 default :
451 i f (cnt6 >= 1) break loop6 ;
452 EarlyExitExcept ion eee =
453 new EarlyExitExcept ion (6 , input) ;
454 throw eee ;
455 }
456 cnt6++;
457 } while (true) ;
458

459 match (input , IDENT, FOLLOW IDENT in typed block215) ;
460 pushFollow (FOLLOW delimitorr in typed block217) ;
461 d e l i m i t o r r () ;
462

463 s t a t e . f sp −−;
464

465 match (input ,NEWLINE, FOLLOW NEWLINE in typed block219) ;
466

467 }
468 break ;
469 case 3 :
470 {
471 match (input , 1 7 , FOLLOW 17 in typed block224) ;
472 match (input ,NEWLINE, FOLLOW NEWLINE in typed block226) ;
473 match (input , IDENT, FOLLOW IDENT in typed block228) ;
474 pushFollow (FOLLOW delimitorl in typed block230) ;
475 d e l i m i t o r l () ;
476

477 s t a t e . f sp −−;
478

479 match (input ,NEWLINE, FOLLOW NEWLINE in typed block232) ;
480 int cnt7 =0;
481 loop7 :
482 do {
483 int a l t 7 =2;
484 int LA7 0 = input .LA(1) ;
485

486 i f ((LA7 0==IDENT)) {
487 int LA7 1 = input .LA(2) ;
488

489 i f ((LA7 1==IDENT)) {
490 a l t 7 =1;
491 }
492 }
493

494 switch (a l t 7) {
495 case 1 :
496 {
497 pushFollow (FOLLOW goal in typed block235) ;
498 goa l () ;
499

500 s t a t e . f sp −−;
501

502 }
503 break ;
504

505 default :
506 i f (cnt7 >= 1) break loop7 ;
507 EarlyExitExcept ion eee =
508 new EarlyExitExcept ion (7 , input) ;

280

B.2 Parser Code

509 throw eee ;
510 }
511 cnt7++;
512 } while (true) ;
513

514 match (input , IDENT, FOLLOW IDENT in typed block239) ;
515 pushFollow (FOLLOW delimitorr in typed block241) ;
516 d e l i m i t o r r () ;
517

518 s t a t e . f sp −−;
519

520 match (input ,NEWLINE, FOLLOW NEWLINE in typed block243) ;
521

522 }
523 break ;
524 case 4 :
525 {
526 match (input , 1 8 , FOLLOW 18 in typed block248) ;
527 match (input ,NEWLINE, FOLLOW NEWLINE in typed block250) ;
528 match (input , IDENT, FOLLOW IDENT in typed block252) ;
529 pushFollow (FOLLOW delimitorl in typed block254) ;
530 d e l i m i t o r l () ;
531

532 s t a t e . f sp −−;
533

534 match (input ,NEWLINE, FOLLOW NEWLINE in typed block256) ;
535 int cnt8 =0;
536 loop8 :
537 do {
538 int a l t 8 =2;
539 int LA8 0 = input .LA(1) ;
540

541 i f ((LA8 0==IDENT)) {
542 int LA8 1 = input .LA(2) ;
543

544 i f ((LA8 1==IDENT)) {
545 a l t 8 =1;
546 }
547 }
548

549 switch (a l t 8) {
550 case 1 :
551 {
552 pushFollow (FOLLOW state in typed block259) ;
553 s t a t e () ;
554

555 s t a t e . f sp −−;
556

557 }
558 break ;
559

560 default :
561 i f (cnt8 >= 1) break loop8 ;
562 EarlyExitExcept ion eee =
563 new EarlyExitExcept ion (8 , input) ;
564 throw eee ;
565 }
566 cnt8++;
567 } while (true) ;
568

569 match (input , IDENT, FOLLOW IDENT in typed block263) ;
570 pushFollow (FOLLOW delimitorr in typed block265) ;

281

B.2 Parser Code

571 d e l i m i t o r r () ;
572

573 s t a t e . f sp −−;
574

575 match (input ,NEWLINE, FOLLOW NEWLINE in typed block267) ;
576

577 }
578 break ;
579 case 5 :
580 {
581 match (input , 1 9 , FOLLOW 19 in typed block272) ;
582 match (input ,NEWLINE, FOLLOW NEWLINE in typed block274) ;
583 match (input , IDENT, FOLLOW IDENT in typed block276) ;
584 pushFollow (FOLLOW delimitorl in typed block278) ;
585 d e l i m i t o r l () ;
586

587 s t a t e . f sp −−;
588

589 match (input ,NEWLINE, FOLLOW NEWLINE in typed block280) ;
590 int cnt9 =0;
591 loop9 :
592 do {
593 int a l t 9 =2;
594 int LA9 0 = input .LA(1) ;
595

596 i f ((LA9 0==IDENT)) {
597 int LA9 1 = input .LA(2) ;
598

599 i f ((LA9 1==IDENT)) {
600 a l t 9 =1;
601 }
602 }
603

604 switch (a l t 9) {
605 case 1 :
606 {
607 pushFollow (FOLLOW plan in typed block283) ;
608 plan () ;
609

610 s t a t e . f sp −−;
611

612 }
613 break ;
614

615 default :
616 i f (cnt9 >= 1) break loop9 ;
617 EarlyExitExcept ion eee =
618 new EarlyExitExcept ion (9 , input) ;
619 throw eee ;
620 }
621 cnt9++;
622 } while (true) ;
623

624 match (input , IDENT, FOLLOW IDENT in typed block287) ;
625 pushFollow (FOLLOW delimitorr in typed block289) ;
626 d e l i m i t o r r () ;
627

628 s t a t e . f sp −−;
629

630 match (input ,NEWLINE, FOLLOW NEWLINE in typed block291) ;
631

632 }

282

B.2 Parser Code

633 break ;
634 }
635 }
636 catch (Recognit ionExcept ion re) {
637 r epor tEr ro r (re) ;
638 r e cove r (input , re) ;
639 }
640 f ina l ly {
641 }
642 return ;
643 }
644

645 public f ina l void i d e n t i f i e r () throws Recognit ionExcept ion {
646 try {
647 {
648 int cnt11 =0;
649 loop11 :
650 do {
651 int a l t 11 =2;
652 int LA11 0 = input .LA(1) ;
653

654 i f (((LA11 0>=STRING && LA11 0<=INTEGER))) {
655 a l t 11 =1;
656 }
657

658 switch (a l t 11) {
659 case 1 :
660 {
661 i f ((input .LA(1)>=STRING && input .LA(1)<=INTEGER)) {
662 input . consume () ;
663 s t a t e . e r rorRecovery=fa l se ;
664 }
665 else {
666 MismatchedSetException mse = new MismatchedSetException (null , input) ;
667 throw mse ;
668 }
669 }
670 break ;
671

672 default :
673 i f (cnt11 >= 1) break loop11 ;
674 EarlyExitExcept ion eee =
675 new EarlyExitExcept ion (11 , input) ;
676 throw eee ;
677 }
678 cnt11++;
679 } while (true) ;
680 }
681 }
682 catch (Recognit ionExcept ion re) {
683 r epor tEr ro r (re) ;
684 r e cove r (input , re) ;
685 }
686 f ina l ly {
687 }
688 return ;
689 }
690

691

692 public f ina l void ac t i on () throws Recognit ionExcept ion {
693 try {
694 {

283

B.2 Parser Code

695 match (input , IDENT, FOLLOW IDENT in action319) ;
696 match (input , IDENT, FOLLOW IDENT in action321) ;
697 pushFollow (FOLLOW act key in action323) ;
698 act key () ;
699

700 s t a t e . f sp −−;
701

702 match (input ,WS, FOLLOW WS in action325) ;
703 pushFollow (FOLLOW colon in action327) ;
704 co lon () ;
705

706 s t a t e . f sp −−;
707

708 match (input ,WS, FOLLOW WS in action329) ;
709 match (input ,STRING, FOLLOW STRING in action331) ;
710 pushFollow (FOLLOW semi in action333) ;
711 semi () ;
712

713 s t a t e . f sp −−;
714

715 match (input ,NEWLINE, FOLLOW NEWLINE in action335) ;
716

717 }
718

719 }
720 catch (Recognit ionExcept ion re) {
721 r epor tEr ro r (re) ;
722 r e cove r (input , re) ;
723 }
724 f ina l ly {
725 }
726 return ;
727 }
728

729 public f ina l void act key () throws Recognit ionExcept ion {
730 try {
731 {
732 int cnt12 =0;
733 loop12 :
734 do {
735 int a l t 12 =2;
736 int LA12 0 = input .LA(1) ;
737

738 i f (((LA12 0>=20 && LA12 0<=23))) {
739 a l t 12 =1;
740 }
741

742 switch (a l t 1 2) {
743 case 1 :
744 {
745 i f ((input .LA(1)>=20 && input .LA(1)<=23)) {
746 input . consume () ;
747 s t a t e . e r rorRecovery=fa l se ;
748 }
749 else {
750 MismatchedSetException mse = new MismatchedSetException (null , input) ;
751 throw mse ;
752 }
753 }
754 break ;
755

756 default :

284

B.2 Parser Code

757 i f (cnt12 >= 1) break loop12 ;
758 EarlyExitExcept ion eee =
759 new EarlyExitExcept ion (12 , input) ;
760 throw eee ;
761 }
762 cnt12++;
763 } while (true) ;
764 }
765 }
766 catch (Recognit ionExcept ion re) {
767 r epor tEr ro r (re) ;
768 r e cove r (input , re) ;
769 }
770 f ina l ly {
771 }
772 return ;
773 }
774

775 public f ina l void method () throws Recognit ionExcept ion {
776 try {
777 {
778 match (input , IDENT, FOLLOW IDENT in method368) ;
779 match (input , IDENT, FOLLOW IDENT in method370) ;
780 pushFollow (FOLLOW mtd key in method372) ;
781 mtd key () ;
782

783 s t a t e . f sp −−;
784

785 match (input ,WS, FOLLOW WS in method374) ;
786 pushFollow (FOLLOW colon in method376) ;
787 co lon () ;
788

789 s t a t e . f sp −−;
790

791 match (input ,WS, FOLLOW WS in method378) ;
792 match (input ,STRING, FOLLOW STRING in method380) ;
793 pushFollow (FOLLOW semi in method382) ;
794 semi () ;
795

796 s t a t e . f sp −−;
797

798 match (input ,NEWLINE, FOLLOW NEWLINE in method384) ;
799

800 }
801

802 }
803 catch (Recognit ionExcept ion re) {
804 r epor tEr ro r (re) ;
805 r e cove r (input , re) ;
806 }
807 f ina l ly {
808 }
809 return ;
810 }
811

812

813 public f ina l void mtd key () throws Recognit ionExcept ion {
814 try {
815 {
816 int cnt13 =0;
817 loop13 :
818 do {

285

B.2 Parser Code

819 int a l t 13 =2;
820 int LA13 0 = input .LA(1) ;
821

822 i f ((LA13 0==20||LA13 0==24)) {
823 a l t 13 =1;
824 }
825

826 switch (a l t 1 3) {
827 case 1 :
828 {
829 i f (input .LA(1)==20 | | input .LA(1)==24) {
830 input . consume () ;
831 s t a t e . e r rorRecovery=fa l se ;
832 }
833 else {
834 MismatchedSetException mse = new MismatchedSetException (null , input) ;
835 throw mse ;
836 }
837

838 }
839 break ;
840

841 default :
842 i f (cnt13 >= 1) break loop13 ;
843 EarlyExitExcept ion eee =
844 new EarlyExitExcept ion (13 , input) ;
845 throw eee ;
846 }
847 cnt13++;
848 } while (true) ;
849 }
850 }
851 catch (Recognit ionExcept ion re) {
852 r epor tEr ro r (re) ;
853 r e cove r (input , re) ;
854 }
855 f ina l ly {
856 }
857 return ;
858 }
859

860

861 public f ina l void s t a t e () throws Recognit ionExcept ion {
862 try {
863 {
864 match (input , IDENT, FOLLOW IDENT in state407) ;
865 match (input , IDENT, FOLLOW IDENT in state409) ;
866 pushFollow (FOLLOW state key in state411) ;
867 s t a t e k e y () ;
868

869 s t a t e . f sp −−;
870

871 match (input ,WS, FOLLOW WS in state413) ;
872 pushFollow (FOLLOW colon in state415) ;
873 co lon () ;
874

875 s t a t e . f sp −−;
876

877 match (input ,WS, FOLLOW WS in state417) ;
878 match (input ,STRING, FOLLOW STRING in state419) ;
879 pushFollow (FOLLOW semi in state421) ;
880 semi () ;

286

B.2 Parser Code

881

882 s t a t e . f sp −−;
883

884 match (input ,NEWLINE, FOLLOW NEWLINE in state423) ;
885

886 }
887

888 }
889 catch (Recognit ionExcept ion re) {
890 r epor tEr ro r (re) ;
891 r e cove r (input , re) ;
892 }
893 f ina l ly {
894 }
895 return ;
896 }
897

898

899 public f ina l void s t a t e k e y () throws Recognit ionExcept ion {
900 try {
901 {
902 int cnt14 =0;
903 loop14 :
904 do {
905 int a l t 14 =2;
906 int LA14 0 = input .LA(1) ;
907

908 i f ((LA14 0==20||LA14 0==25)) {
909 a l t 14 =1;
910 }
911

912 switch (a l t 14) {
913 case 1 :
914 {
915 i f (input .LA(1)==20 | | input .LA(1)==25) {
916 input . consume () ;
917 s t a t e . e r rorRecovery=fa l se ;
918 }
919 else {
920 MismatchedSetException mse = new MismatchedSetException (null , input) ;
921 throw mse ;
922 }
923

924 }
925 break ;
926

927 default :
928 i f (cnt14 >= 1) break loop14 ;
929 EarlyExitExcept ion eee =
930 new EarlyExitExcept ion (14 , input) ;
931 throw eee ;
932 }
933 cnt14++;
934 } while (true) ;
935 }
936 }
937 catch (Recognit ionExcept ion re) {
938 r epor tEr ro r (re) ;
939 r e cove r (input , re) ;
940 }
941 f ina l ly {
942 }

287

B.2 Parser Code

943 return ;
944 }
945

946

947 public f ina l void goa l () throws Recognit ionExcept ion {
948 try {
949 {
950 match (input , IDENT, FOLLOW IDENT in goal452) ;
951 match (input , IDENT, FOLLOW IDENT in goal454) ;
952 pushFollow (FOLLOW goal key in goal456) ;
953 goa l key () ;
954

955 s t a t e . f sp −−;
956

957 match (input ,WS, FOLLOW WS in goal458) ;
958 pushFollow (FOLLOW colon in goal460) ;
959 co lon () ;
960

961 s t a t e . f sp −−;
962

963 match (input ,WS, FOLLOW WS in goal462) ;
964 match (input ,STRING, FOLLOW STRING in goal464) ;
965 pushFollow (FOLLOW semi in goal466) ;
966 semi () ;
967

968 s t a t e . f sp −−;
969

970 match (input ,NEWLINE, FOLLOW NEWLINE in goal468) ;
971

972 }
973

974 }
975 catch (Recognit ionExcept ion re) {
976 r epor tEr ro r (re) ;
977 r e cove r (input , re) ;
978 }
979 f ina l ly {
980 }
981 return ;
982 }
983

984

985 public f ina l void goa l key () throws Recognit ionExcept ion {
986 try {
987 {
988 int cnt15 =0;
989 loop15 :
990 do {
991 int a l t 15 =2;
992 int LA15 0 = input .LA(1) ;
993

994 i f (((LA15 0>=26 && LA15 0<=28))) {
995 a l t 15 =1;
996 }
997

998 switch (a l t 1 5) {
999 case 1 :

1000 {
1001 i f ((input .LA(1)>=26 && input .LA(1)<=28)) {
1002 input . consume () ;
1003 s t a t e . e r rorRecovery=fa l se ;
1004 }

288

B.2 Parser Code

1005 else {
1006 MismatchedSetException mse = new MismatchedSetException (null , input) ;
1007 throw mse ;
1008 }
1009 }
1010 break ;
1011

1012 default :
1013 i f (cnt15 >= 1) break loop15 ;
1014 EarlyExitExcept ion eee =
1015 new EarlyExitExcept ion (15 , input) ;
1016 throw eee ;
1017 }
1018 cnt15++;
1019 } while (true) ;
1020 }
1021 }
1022 catch (Recognit ionExcept ion re) {
1023 r epor tEr ro r (re) ;
1024 r e cove r (input , re) ;
1025 }
1026 f ina l ly {
1027 }
1028 return ;
1029 }
1030

1031

1032 public f ina l void plan () throws Recognit ionExcept ion {
1033 try {
1034 {
1035 match (input , IDENT, FOLLOW IDENT in plan495) ;
1036 match (input , IDENT, FOLLOW IDENT in plan497) ;
1037 pushFollow (FOLLOW plan key in plan499) ;
1038 plan key () ;
1039

1040 s t a t e . f sp −−;
1041

1042 match (input ,WS, FOLLOW WS in plan501) ;
1043 pushFollow (FOLLOW colon in plan503) ;
1044 co lon () ;
1045

1046 s t a t e . f sp −−;
1047

1048 match (input ,WS, FOLLOW WS in plan505) ;
1049 match (input ,STRING, FOLLOW STRING in plan507) ;
1050 pushFollow (FOLLOW semi in plan509) ;
1051 semi () ;
1052

1053 s t a t e . f sp −−;
1054

1055 match (input ,NEWLINE, FOLLOW NEWLINE in plan511) ;
1056

1057 }
1058

1059 }
1060 catch (Recognit ionExcept ion re) {
1061 r epor tEr ro r (re) ;
1062 r e cove r (input , re) ;
1063 }
1064 f ina l ly {
1065 }
1066 return ;

289

B.2 Parser Code

1067 }
1068

1069 public f ina l void plan key () throws Recognit ionExcept ion {
1070 try {
1071 {
1072 int cnt16 =0;
1073 loop16 :
1074 do {
1075 int a l t 16 =2;
1076 int LA16 0 = input .LA(1) ;
1077

1078 i f ((LA16 0 ==15 | |(LA16 0>=29 && LA16 0<=32))) {
1079 a l t 16 =1;
1080 }
1081

1082 switch (a l t 1 6) {
1083 case 1 :
1084 {
1085 i f (input .LA(1)==15 | |(input .LA(1)>=29 && input .LA(1)<=32)) {
1086 input . consume () ;
1087 s t a t e . e r rorRecovery=fa l se ;
1088 }
1089 else {
1090 MismatchedSetException mse = new MismatchedSetException (null , input) ;
1091 throw mse ;
1092 }
1093 }
1094 break ;
1095

1096 default :
1097 i f (cnt16 >= 1) break loop16 ;
1098 EarlyExitExcept ion eee =
1099 new EarlyExitExcept ion (16 , input) ;
1100 throw eee ;
1101 }
1102 cnt16++;
1103 } while (true) ;
1104

1105 }
1106 }
1107 catch (Recognit ionExcept ion re) {
1108 r epor tEr ro r (re) ;
1109 r e cove r (input , re) ;
1110 }
1111 f ina l ly {
1112 }
1113 return ;
1114 }
1115

1116 public stat ic f ina l BitSet FOLLOW domainID in pkd11 =
1117 new BitSet (new long [] { 0 x0000000000000010L }) ;
1118 public stat ic f ina l BitSet FOLLOW NEWLINE in pkd13 =
1119 new BitSet (new long [] { 0 x0000000000000200L }) ;
1120 public stat ic f ina l BitSet FOLLOW 9 in pkd15 =
1121 new BitSet (new long [] { 0 x0000000000000010L }) ;
1122 public stat ic f ina l BitSet FOLLOW NEWLINE in pkd17 =
1123 new BitSet (new long [] { 0 x0000000000000020L }) ;
1124 public stat ic f ina l BitSet FOLLOW IDENT in pkd19 =
1125 new BitSet (new long [] { 0 x00000000000F8000L }) ;
1126 public stat ic f ina l BitSet FOLLOW blocks in pkd21 =
1127 new BitSet (new long [] { 0 x0000000000000400L }) ;
1128 public stat ic f ina l BitSet FOLLOW 10 in pkd23 =

290

B.2 Parser Code

1129 new BitSet (new long [] { 0 x0000000000000002L }) ;
1130 public stat ic f ina l BitSet FOLLOW typed block in blocks32 =
1131 new BitSet (new long [] { 0 x00000000000F8002L }) ;
1132 public stat ic f ina l BitSet FOLLOW 11 in delimitorl44 =
1133 new BitSet (new long [] { 0 x0000000000000002L }) ;
1134 public stat ic f ina l BitSet FOLLOW 12 in delimitorr53 =
1135 new BitSet (new long [] { 0 x0000000000000002L }) ;
1136 public stat ic f ina l BitSet FOLLOW 13 in semi62 =
1137 new BitSet (new long [] { 0 x0000000000000002L }) ;
1138 public stat ic f ina l BitSet FOLLOW 14 in colon70 =
1139 new BitSet (new long [] { 0 x0000000000000002L }) ;
1140 public stat ic f ina l BitSet FOLLOW set in keyword94 =
1141 new BitSet (new long [] { 0 x0000000000000182L }) ;
1142 public stat ic f ina l BitSet FOLLOW STRING in input107 =
1143 new BitSet (new long [] { 0 x0000000000000082L }) ;
1144 public stat ic f ina l BitSet FOLLOW STRING in domainID163 =
1145 new BitSet (new long [] { 0 x0000000000000082L }) ;
1146 public stat ic f ina l BitSet FOLLOW 15 in typed block177 =
1147 new BitSet (new long [] { 0 x0000000000000010L }) ;
1148 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block179 =
1149 new BitSet (new long [] { 0 x0000000000000020L }) ;
1150 public stat ic f ina l BitSet FOLLOW IDENT in typed block181 =
1151 new BitSet (new long [] { 0 x0000000000000800L }) ;
1152 public stat ic f ina l BitSet FOLLOW delimitorl in typed block183 =
1153 new BitSet (new long [] { 0 x0000000000000010L }) ;
1154 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block185 =
1155 new BitSet (new long [] { 0 x0000000000000020L }) ;
1156 public stat ic f ina l BitSet FOLLOW action in typed block188 =
1157 new BitSet (new long [] { 0 x0000000000000020L }) ;
1158 public stat ic f ina l BitSet FOLLOW IDENT in typed block192 =
1159 new BitSet (new long [] { 0 x0000000000001000L }) ;
1160 public stat ic f ina l BitSet FOLLOW delimitorr in typed block194 =
1161 new BitSet (new long [] { 0 x0000000000000010L }) ;
1162 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block196 =
1163 new BitSet (new long [] { 0 x0000000000000002L }) ;
1164 public stat ic f ina l BitSet FOLLOW 16 in typed block201 =
1165 new BitSet (new long [] { 0 x0000000000000010L }) ;
1166 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block202 =
1167 new BitSet (new long [] { 0 x0000000000000020L }) ;
1168 public stat ic f ina l BitSet FOLLOW IDENT in typed block204 =
1169 new BitSet (new long [] { 0 x0000000000000800L }) ;
1170 public stat ic f ina l BitSet FOLLOW delimitorl in typed block206 =
1171 new BitSet (new long [] { 0 x0000000000000010L }) ;
1172 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block208 =
1173 new BitSet (new long [] { 0 x0000000000000020L }) ;
1174 public stat ic f ina l BitSet FOLLOW method in typed block211 =
1175 new BitSet (new long [] { 0 x0000000000000020L }) ;
1176 public stat ic f ina l BitSet FOLLOW IDENT in typed block215 =
1177 new BitSet (new long [] { 0 x0000000000001000L }) ;
1178 public stat ic f ina l BitSet FOLLOW delimitorr in typed block217 =
1179 new BitSet (new long [] { 0 x0000000000000010L }) ;
1180 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block219 =
1181 new BitSet (new long [] { 0 x0000000000000002L }) ;
1182 public stat ic f ina l BitSet FOLLOW 17 in typed block224 =
1183 new BitSet (new long [] { 0 x0000000000000010L }) ;
1184 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block226 =
1185 new BitSet (new long [] { 0 x0000000000000020L }) ;
1186 public stat ic f ina l BitSet FOLLOW IDENT in typed block228 =
1187 new BitSet (new long [] { 0 x0000000000000800L }) ;
1188 public stat ic f ina l BitSet FOLLOW delimitorl in typed block230 =
1189 new BitSet (new long [] { 0 x0000000000000010L }) ;
1190 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block232 =

291

B.2 Parser Code

1191 new BitSet (new long [] { 0 x0000000000000020L }) ;
1192 public stat ic f ina l BitSet FOLLOW goal in typed block235 =
1193 new BitSet (new long [] { 0 x0000000000000020L }) ;
1194 public stat ic f ina l BitSet FOLLOW IDENT in typed block239 =
1195 new BitSet (new long [] { 0 x0000000000001000L }) ;
1196 public stat ic f ina l BitSet FOLLOW delimitorr in typed block241 =
1197 new BitSet (new long [] { 0 x0000000000000010L }) ;
1198 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block243 =
1199 new BitSet (new long [] { 0 x0000000000000002L }) ;
1200 public stat ic f ina l BitSet FOLLOW 18 in typed block248 =
1201 new BitSet (new long [] { 0 x0000000000000010L }) ;
1202 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block250 =
1203 new BitSet (new long [] { 0 x0000000000000020L }) ;
1204 public stat ic f ina l BitSet FOLLOW IDENT in typed block252 =
1205 new BitSet (new long [] { 0 x0000000000000800L }) ;
1206 public stat ic f ina l BitSet FOLLOW delimitorl in typed block254 =
1207 new BitSet (new long [] { 0 x0000000000000010L }) ;
1208 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block256 =
1209 new BitSet (new long [] { 0 x0000000000000020L }) ;
1210 public stat ic f ina l BitSet FOLLOW state in typed block259 =
1211 new BitSet (new long [] { 0 x0000000000000020L }) ;
1212 public stat ic f ina l BitSet FOLLOW IDENT in typed block263 =
1213 new BitSet (new long [] { 0 x0000000000001000L }) ;
1214 public stat ic f ina l BitSet FOLLOW delimitorr in typed block265 =
1215 new BitSet (new long [] { 0 x0000000000000010L }) ;
1216 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block267 =
1217 new BitSet (new long [] { 0 x0000000000000002L }) ;
1218 public stat ic f ina l BitSet FOLLOW 19 in typed block272 =
1219 new BitSet (new long [] { 0 x0000000000000010L }) ;
1220 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block274 =
1221 new BitSet (new long [] { 0 x0000000000000020L }) ;
1222 public stat ic f ina l BitSet FOLLOW IDENT in typed block276 =
1223 new BitSet (new long [] { 0 x0000000000000800L }) ;
1224 public stat ic f ina l BitSet FOLLOW delimitorl in typed block278 =
1225 new BitSet (new long [] { 0 x0000000000000010L }) ;
1226 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block280 =
1227 new BitSet (new long [] { 0 x0000000000000020L }) ;
1228 public stat ic f ina l BitSet FOLLOW plan in typed block283 =
1229 new BitSet (new long [] { 0 x0000000000000020L }) ;
1230 public stat ic f ina l BitSet FOLLOW IDENT in typed block287 =
1231 new BitSet (new long [] { 0 x0000000000001000L }) ;
1232 public stat ic f ina l BitSet FOLLOW delimitorr in typed block289 =
1233 new BitSet (new long [] { 0 x0000000000000010L }) ;
1234 public stat ic f ina l BitSet FOLLOW NEWLINE in typed block291 =
1235 new BitSet (new long [] { 0 x0000000000000002L }) ;
1236 public stat ic f ina l BitSet FOLLOW set in ident i f i er303 =
1237 new BitSet (new long [] { 0 x0000000000000182L }) ;
1238 public stat ic f ina l BitSet FOLLOW IDENT in action319 =
1239 new BitSet (new long [] { 0 x0000000000000020L }) ;
1240 public stat ic f ina l BitSet FOLLOW IDENT in action321 =
1241 new BitSet (new long [] { 0 x0000000000F00000L }) ;
1242 public stat ic f ina l BitSet FOLLOW act key in action323 =
1243 new BitSet (new long [] { 0 x0000000000000040L }) ;
1244 public stat ic f ina l BitSet FOLLOW WS in action325 =
1245 new BitSet (new long [] { 0 x0000000000004000L }) ;
1246 public stat ic f ina l BitSet FOLLOW colon in action327 =
1247 new BitSet (new long [] { 0 x0000000000000040L }) ;
1248 public stat ic f ina l BitSet FOLLOW WS in action329 =
1249 new BitSet (new long [] { 0 x0000000000000080L }) ;
1250 public stat ic f ina l BitSet FOLLOW STRING in action331 =
1251 new BitSet (new long [] { 0 x0000000000002000L }) ;
1252 public stat ic f ina l BitSet FOLLOW semi in action333 =

292

B.2 Parser Code

1253 new BitSet (new long [] { 0 x0000000000000010L }) ;
1254 public stat ic f ina l BitSet FOLLOW NEWLINE in action335 =
1255 new BitSet (new long [] { 0 x0000000000000002L }) ;
1256 public stat ic f ina l BitSet FOLLOW set in act key342 =
1257 new BitSet (new long [] { 0 x0000000000F00002L }) ;
1258 public stat ic f ina l BitSet FOLLOW IDENT in method368 =
1259 new BitSet (new long [] { 0 x0000000000000020L }) ;
1260 public stat ic f ina l BitSet FOLLOW IDENT in method370 =
1261 new BitSet (new long [] { 0 x0000000001100000L }) ;
1262 public stat ic f ina l BitSet FOLLOW mtd key in method372 =
1263 new BitSet (new long [] { 0 x0000000000000040L }) ;
1264 public stat ic f ina l BitSet FOLLOW WS in method374 =
1265 new BitSet (new long [] { 0 x0000000000004000L }) ;
1266 public stat ic f ina l BitSet FOLLOW colon in method376 =
1267 new BitSet (new long [] { 0 x0000000000000040L }) ;
1268 public stat ic f ina l BitSet FOLLOW WS in method378 =
1269 new BitSet (new long [] { 0 x0000000000000080L }) ;
1270 public stat ic f ina l BitSet FOLLOW STRING in method380 =
1271 new BitSet (new long [] { 0 x0000000000002000L }) ;
1272 public stat ic f ina l BitSet FOLLOW semi in method382 =
1273 new BitSet (new long [] { 0 x0000000000000010L }) ;
1274 public stat ic f ina l BitSet FOLLOW NEWLINE in method384 =
1275 new BitSet (new long [] { 0 x0000000000000002L }) ;
1276 public stat ic f ina l BitSet FOLLOW set in mtd key391 =
1277 new BitSet (new long [] { 0 x0000000001100002L }) ;
1278 public stat ic f ina l BitSet FOLLOW IDENT in state407 =
1279 new BitSet (new long [] { 0 x0000000000000020L }) ;
1280 public stat ic f ina l BitSet FOLLOW IDENT in state409 =
1281 new BitSet (new long [] { 0 x0000000002100000L }) ;
1282 public stat ic f ina l BitSet FOLLOW state key in state411 =
1283 new BitSet (new long [] { 0 x0000000000000040L }) ;
1284 public stat ic f ina l BitSet FOLLOW WS in state413 =
1285 new BitSet (new long [] { 0 x0000000000004000L }) ;
1286 public stat ic f ina l BitSet FOLLOW colon in state415 =
1287 new BitSet (new long [] { 0 x0000000000000040L }) ;
1288 public stat ic f ina l BitSet FOLLOW WS in state417 =
1289 new BitSet (new long [] { 0 x0000000000000080L }) ;
1290 public stat ic f ina l BitSet FOLLOW STRING in state419 =
1291 new BitSet (new long [] { 0 x0000000000002000L }) ;
1292 public stat ic f ina l BitSet FOLLOW semi in state421 =
1293 new BitSet (new long [] { 0 x0000000000000010L }) ;
1294 public stat ic f ina l BitSet FOLLOW NEWLINE in state423 =
1295 new BitSet (new long [] { 0 x0000000000000002L }) ;
1296 public stat ic f ina l BitSet FOLLOW set in state key431 =
1297 new BitSet (new long [] { 0 x0000000002100002L }) ;
1298 public stat ic f ina l BitSet FOLLOW IDENT in goal452 =
1299 new BitSet (new long [] { 0 x0000000000000020L }) ;
1300 public stat ic f ina l BitSet FOLLOW IDENT in goal454 =
1301 new BitSet (new long [] { 0 x000000001C000000L }) ;
1302 public stat ic f ina l BitSet FOLLOW goal key in goal456 =
1303 new BitSet (new long [] { 0 x0000000000000040L }) ;
1304 public stat ic f ina l BitSet FOLLOW WS in goal458 =
1305 new BitSet (new long [] { 0 x0000000000004000L }) ;
1306 public stat ic f ina l BitSet FOLLOW colon in goal460 =
1307 new BitSet (new long [] { 0 x0000000000000040L }) ;
1308 public stat ic f ina l BitSet FOLLOW WS in goal462 =
1309 new BitSet (new long [] { 0 x0000000000000080L }) ;
1310 public stat ic f ina l BitSet FOLLOW STRING in goal464 =
1311 new BitSet (new long [] { 0 x0000000000002000L }) ;
1312 public stat ic f ina l BitSet FOLLOW semi in goal466 =
1313 new BitSet (new long [] { 0 x0000000000000010L }) ;
1314 public stat ic f ina l BitSet FOLLOW NEWLINE in goal468 =

293

B.3 Example Grammar of an Action Block

1315 new BitSet (new long [] { 0 x0000000000000002L }) ;
1316 public stat ic f ina l BitSet FOLLOW set in goal key474 =
1317 new BitSet (new long [] { 0 x000000001C000002L }) ;
1318 public stat ic f ina l BitSet FOLLOW IDENT in plan495 =
1319 new BitSet (new long [] { 0 x0000000000000020L }) ;
1320 public stat ic f ina l BitSet FOLLOW IDENT in plan497 =
1321 new BitSet (new long [] { 0 x00000001E0008000L }) ;
1322 public stat ic f ina l BitSet FOLLOW plan key in plan499 =
1323 new BitSet (new long [] { 0 x0000000000000040L }) ;
1324 public stat ic f ina l BitSet FOLLOW WS in plan501 =
1325 new BitSet (new long [] { 0 x0000000000004000L }) ;
1326 public stat ic f ina l BitSet FOLLOW colon in plan503 =
1327 new BitSet (new long [] { 0 x0000000000000040L }) ;
1328 public stat ic f ina l BitSet FOLLOW WS in plan505 =
1329 new BitSet (new long [] { 0 x0000000000000080L }) ;
1330 public stat ic f ina l BitSet FOLLOW STRING in plan507 =
1331 new BitSet (new long [] { 0 x0000000000002000L }) ;
1332 public stat ic f ina l BitSet FOLLOW semi in plan509 =
1333 new BitSet (new long [] { 0 x0000000000000010L }) ;
1334 public stat ic f ina l BitSet FOLLOW NEWLINE in plan511 =
1335 new BitSet (new long [] { 0 x0000000000000002L }) ;
1336 public stat ic f ina l BitSet FOLLOW set in plan key517 =
1337 new BitSet (new long [] { 0 x00000001E0008002L }) ;
1338 }

B.3 Example Grammar of an Action Block

grammar actions;

options output=template;

INDENT : ’

t’;

DELIM_L : ’’;

DELIM_R : ’’;

COLON : ’:’;

WS : ’ ’;

SEMI : ’;’;

STRING : (’0’..’9’|’a’..’z’|’A’..’Z’)+;

NEWLINE : ’

n’;

action_block:

’ACTION’ NEWLINE INDENT DELIM_L NEWLINE (action)+ INDENT DELIM_R NEWLINE;

//---

//Defintion of an action block

action : (INDENT INDENT act_key);

varname : STRING;

294

B.3 Example Grammar of an Action Block

act_key : (act_id|domain|param|descr);

descr : precond|effect;

domain : ’DOMAIN’ WS COLON WS STRING+ SEMI NEWLINE;

var : ’VAR’ WS varname WS type WS;

act_id : ’ACTION_NAME’ WS COLON WS STRING SEMI NEWLINE;

type : (’Server’|’Router’|’Apache’|’Datebase’|’Firewall’|’WebServer’|’AppServer’);

state : (’Running’|’Halt’|’Stop’|’Starting’);

precond :

’PRECONDITIONS’ WS COLON WS (’(’type WS COLON WS state’)’ WS)+ SEMI NEWLINE;

effect :

’EFFECTS’ WS COLON WS (’(’type WS COLON WS state’)’WS)+ SEMI NEWLINE;

param :

’PARAMETERS’ WS COLON WS (var SEMI)+ NEWLINE;

295

B.3 Example Grammar of an Action Block

296

C
Example Output of the Applications

C.1 Fault Recovery Planning in Cloud Infrastruc-
ture

The following figure shows the Web-based representation of the planning
problem and the computed plan solution.

297

C.1 Fault Recovery Planning in Cloud Infrastructure

Figure C.1: Web-based representation of the recovery planning problem and
its computed plan solution

298

C.2 Change Planner

C.2 Change Planner

Following is an example output of the change activity planner. The goal
of the change plan is to refine the high-level task SpeedUpWebApplication
into implementable change actions. In this application scenario, we want
to speedup a Wiki web application container with load-balancing enabled.
In the result computed by the planner,the J2EE container, which holds
the Wiki web application, is replicated to a newly installed virtual server.
Afterwards a load-balancer is installed and finally, the planner adds the
replica of the web-application container to the load-balancer.

1 \Remaining task network :
2 Pre l iminary plan :
3 Remaining ta sk s : SpeedUpWebApplication ,
4 Ava i l ab l e REFINEMENT OPERATION:
5 [0] UpgradeDatabaseServerHardware
6 [1] UpgradeWebServerHardware
7 [2] MigrateDatabase
8 [3] EnableLoadbalancing
9 [4] UpgradeDatabaseServerAndWebServerHardware

10 Choose a REFINEMENT OPERATION: 3
11 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
12 Cal cu l a t ing b ind ings for task SpeedUpWebApplication and re f inement

EnableLoadbalancing
13 Ava i l ab l e BINDING:
14 [0] J2eeAppl i ca t ion : a p p l i c a t i o n=8=Wiki App l i ca t ion
15 [1] ECommerceJ2eeApplication : a p p l i c a t i o n=11=ECommerce Appl i ca t ion
16 Choose a BINDING: ? 0
17 Backtrack over remaining BINDING? (y/n) ? n
18 Applying method EnableLoadbalancing to task SpeedUpWebApplication
19 Enter temporal dead l ine for sub task In s ta l lLoadBa lance r (−1 for no

dead l ine) : ? −1
20 Enter temporal dead l ine for sub task I n s t a l l J 2 e e A p p l i c a t i o n (−1 for no

dead l ine) : ? −1
21 Enter temporal dead l ine for sub task AddContainerToLoadbalancer (−1

for no dead l ine) : ? −1
22 Enter temporal dead l ine for sub task I n s t a l l J 2 e e S e r v e r (−1 for no

dead l ine) : ? −1
23 Remaining task network :
24 Pre l iminary plan :
25 Remaining ta sk s : Ins ta l lLoadBa lancer , I n s t a l l J 2 e e A p p l i c a t i o n ,

I n s t a l l J 2 e e S e r v e r , AddContainerToLoadbalancer ,
26 Ava i l ab l e FIRST TASK:
27 [0] Task : In s ta l lLoadBa lance r
28 [1] Task : I n s t a l l J 2 e e S e r v e r
29 Choose a FIRST TASK: ? 0
30 Ava i l ab l e REFINEMENT OPERATION:
31 [0] Ins ta l lLoadBa lancer−S c r i p t
32 [1] LoadbalancerOnServer
33 Choose a REFINEMENT OPERATION: ? 0
34 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
35 Cal cu l a t ing b ind ings for task In s ta l lLoadBa lance r and re f inement

Ins ta l lLoadBa lancer−S c r i p t
36 Applying operator Ins ta l lLoadBa lancer−S c r i p t to task

Ins ta l lLoadBa lance r
37 Remaining task network :
38 Pre l iminary plan : Ins ta l lLoadBa lancer−S c r i p t (lb <−− [LoadBalancer

=16= n i l])

299

C.2 Change Planner

39 Remaining ta sk s : I n s t a l l J 2 e e A p p l i c a t i o n , I n s t a l l J 2 e e S e r v e r ,
AddContainerToLoadbalancer ,

40 Cal cu l a t ing b ind ings for task I n s t a l l J 2 e e S e r v e r and re f inement
D e f a u l t J 2 e e S e r v e r I n s t a l l a t i o n

41 Applying method D e f a u l t J 2 e e S e r v e r I n s t a l l a t i o n to task
I n s t a l l J 2 e e S e r v e r

42 Enter temporal dead l ine for sub task SetupServer (−1 for no dead l ine) :
? −1

43 Enter temporal dead l ine for sub task In s t a l l J2 e eConta in e rSo f twa r e (−1
for no dead l ine) : ? −1

44 Remaining task network :
45 Pre l iminary plan : Ins ta l lLoadBa lancer−S c r i p t (lb <−− [LoadBalancer

=16= n i l])
46 Remaining ta sk s : SetupServer , I n s t a l l J 2 e e A p p l i c a t i o n ,

In s ta l l J2eeConta ine rSo f tware , AddContainerToLoadbalancer ,
47 Ava i l ab l e FIRST TASK:
48 [0] Task : SetupServer
49 [1] Task : I n s t a l l J 2 e e A p p l i c a t i o n
50 Choose a FIRST TASK: ? 0
51 Ava i l ab l e REFINEMENT OPERATION:
52 [0] UseEx i s t ingServer
53 [1] I n s t a l l V i r t u a l S e r v e r B y S c r i p t
54 Choose a REFINEMENT OPERATION: ? 1
55 Backtrack over remaining REFINEMENT OPERATION? (y/n) ? n
56 Cal cu l a t ing b ind ings for task SetupServer and re f inement

I n s t a l l V i r t u a l S e r v e r B y S c r i p t
57 Applying operator I n s t a l l V i r t u a l S e r v e r B y S c r i p t to task SetupServer
58 Remaining task network :
59 Pre l iminary plan : Ins ta l lLoadBa lancer−S c r i p t (lb <−− [LoadBalancer

=16= n i l]) , I n s t a l l V i r t u a l S e r v e r B y S c r i p t (mem <−− [I n t e g e r =1000] ,
s e r v e r <−− [WebServer=17= n i l])

60 Remaining ta sk s : In s ta l l J2eeConta ine rSo f tware ,
AddContainerToLoadbalancer , I n s t a l l J 2 e e A p p l i c a t i o n ,

61 Ava i l ab l e FIRST TASK:
62 [0] Task : In s t a l l J2 e eConta in e rSo f twa r e
63 [1] Task : I n s t a l l J 2 e e A p p l i c a t i o n
64 Choose a FIRST TASK: ? 0
65 Cal cu l a t ing b ind ings for task In s t a l l J 2 e eConta in e rSo f twa r e and

re f inement In s ta l l J2eeConta ine rSo f tware−S c r i p t
66 Applying operator In s ta l l J2eeConta ine rSo f tware−S c r i p t to task

In s t a l l J2 e eConta in e rSo f twa r e
67 Remaining task network :
68 Pre l iminary plan : Ins ta l lLoadBa lancer−S c r i p t (lb <−− [LoadBalancer

=16= n i l]) , I n s t a l l V i r t u a l S e r v e r B y S c r i p t (mem <−− [I n t e g e r =1000] ,
s e r v e r <−− [WebServer=17= n i l]) , In s ta l l J2eeConta ine rSo f tware−
S c r i p t (webserver <−− [WebServer=17= n i l] , cont <−− [J2eeContainer
=18= n i l])

69 Remaining ta sk s : AddContainerToLoadbalancer , I n s t a l l J 2 e e A p p l i c a t i o n ,
70 Cal cu l a t ing b ind ings for task I n s t a l l J 2 e e A p p l i c a t i o n and re f inement

I n s t a l l J 2 e e A p p l i c a t i o n−S c r i p t
71 Applying operator I n s t a l l J 2 e e A p p l i c a t i o n−S c r i p t to task

I n s t a l l J 2 e e A p p l i c a t i o n
72 Remaining task network :
73 Pre l iminary plan : Ins ta l lLoadBa lancer−S c r i p t (lb <−− [LoadBalancer

=16= n i l]) , I n s t a l l V i r t u a l S e r v e r B y S c r i p t (mem <−− [I n t e g e r =1000] ,
s e r v e r <−− [WebServer=17= n i l]) , In s ta l l J2eeConta ine rSo f tware−
S c r i p t (webserver <−− [WebServer=17= n i l] , cont <−− [J2eeContainer
=18= n i l]) , I n s t a l l J 2 e e A p p l i c a t i o n−S c r i p t (app <−− [J2eeAppl i cat ion
=8=Wiki App l i ca t ion] , cont <−− [J2eeContainer=18= n i l])

74 Remaining ta sk s : AddContainerToLoadbalancer ,
75 Cal cu l a t ing b ind ings for task AddContainerToLoadbalancer and

re f inement AddContainerToLoadBalancer−S c r i p t

300

C.2 Change Planner

76 Applying operator AddContainerToLoadBalancer−S c r i p t to task
AddContainerToLoadbalancer

77 Found new plan (1) : Ins ta l lLoadBa lancer−S c r i p t (lb <−− [LoadBalancer
=16= n i l]) , I n s t a l l V i r t u a l S e r v e r B y S c r i p t (mem <−− [I n t e g e r =1000] ,
s e r v e r <−− [WebServer=17= n i l]) , In s ta l l J2eeConta ine rSo f tware−S c r i p t
(webserver <−− [WebServer=17= n i l] , cont <−− [J2eeContainer=18= n i l])
, I n s t a l l J 2 e e A p p l i c a t i o n−S c r i p t (app <−− [J2eeAppl i cat ion=8=Wiki
App l i ca t ion] , cont <−− [J2eeContainer=18= n i l]) ,
AddContainerToLoadBalancer−S c r i p t (conta ine r <−− [J2eeContainer=18=
n i l] , lb <−− [LoadBalancer=16= n i l])

78 Backtracking
79 Backtracking
80 Backtracking
81 Backtracking
82 Backtracking
83 Backtracking
84 Backtracking
85

86 Found plans (t o t a l 1)
87 (0) Ins ta l lLoadBa lancer−S c r i p t (lb <−− [LoadBalancer=16= n i l]) ,

I n s t a l l V i r t u a l S e r v e r B y S c r i p t (mem <−− [I n t e g e r =1000] , s e r v e r <−− [
WebServer=17= n i l]) , In s ta l l J2eeConta ine rSo f tware−S c r i p t (webserver
<−− [WebServer=17= n i l] , cont <−− [J2eeContainer=18= n i l]) ,
I n s t a l l J 2 e e A p p l i c a t i o n−S c r i p t (app <−− [J2eeAppl i cat ion=8=Wiki
App l i ca t ion] , cont <−− [J2eeContainer=18= n i l]) ,
AddContainerToLoadBalancer−S c r i p t (conta ine r <−− [J2eeContainer=18=
n i l] , lb <−− [LoadBalancer=16= n i l])

88 Task Ins ta l lLoadBa lance r : s t a r t s [0 . 0 , 3 5 . 0] end [1 0 . 0 , 4 5 . 0]
durat ion [1 0 . 0 , 4 5 . 0]

89 Task I n s t a l l J 2 e e S e r v e r : s t a r t s [0 . 0 , 1 5 . 0] end [2 0 . 0 , 3 5 . 0] durat ion
[2 0 . 0 , 3 5 . 0]

90 Action I n s t a l l V i r t u a l S e r v e r B y S c r i p t : s t a r t s [0 . 0 , 1 5 . 0] end [1 0 . 0 ,
2 5 . 0] durat ion [1 0 . 0 , 1 0 . 0]

91 Action In s ta l l J2eeConta ine rSo f tware−S c r i p t : s t a r t s [1 0 . 0 , 2 5 . 0] end
[2 0 . 0 , 3 5 . 0] durat ion [1 0 . 0 , 1 0 . 0]

92 Task I n s t a l l J 2 e e A p p l i c a t i o n : s t a r t s [2 0 . 0 , 3 5 . 0] end [3 0 . 0 , 4 5 . 0]
durat ion [1 0 . 0 , 2 5 . 0]

93 Task AddContainerToLoadbalancer : s t a r t s [3 0 . 0 , 4 5 . 0] end [3 5 . 0 ,
5 0 . 0] durat ion [5 . 0 , 2 0 . 0]

94 Task SpeedUpWebApplication : s t a r t s [0 . 0 , 1 5 . 0] end [3 5 . 0 , 5 0 . 0]
durat ion [3 5 . 0 , 5 0 . 0]

95 Task In s t a l l J 2 e eConta in e rSo f twar e : s t a r t s [1 0 . 0 , 2 5 . 0] end [2 0 . 0 ,
3 5 . 0] durat ion [1 0 . 0 , 2 5 . 0]

96 Action I n s t a l l J 2 e e A p p l i c a t i o n−S c r i p t : s t a r t s [2 0 . 0 , 3 5 . 0] end [3 0 . 0 ,
4 5 . 0] durat ion [1 0 . 0 , 1 0 . 0]

97 Task SetupServer : s t a r t s [0 . 0 , 1 5 . 0] end [1 0 . 0 , 2 5 . 0] durat ion [1 0 . 0
, 2 5 . 0]

98 Action AddContainerToLoadBalancer−S c r i p t : s t a r t s [3 0 . 0 , 4 5 . 0] end
[3 5 . 0 , 5 0 . 0] durat ion [5 . 0 , 5 . 0]

99 Action Ins ta l lLoadBa lancer−S c r i p t : s t a r t s [0 . 0 , 3 5 . 0] end [1 0 . 0 ,
4 5 . 0] durat ion [1 0 . 0 , 1 0 . 0]

100

101 Total time consumed for HTN planning : 57796ms
102 Total time consumed for task network copying : 0ms (0%)
103 Total time consumed for knowledge base r o l l b a c k s : 735ms
104 Total time consumed for knowledge base a s s e r t i o n s : 1172ms
105 Total time consumed for knowledge base q u e r i e s : 281ms
106 Total time consumed for knowledge base ope ra t i on s : 2188ms

301

C.2 Change Planner

302

Bibliography

[AA96] J.R. Abrial and JR Abrial. The B-book, volume 146. Cam-
bridge University Press Cambridge, UK, 1996.

[AA05] Akhil Sahai Arthur Andrzejak, Ulf Herman. Feedbackflow - an
adaptive workflow generator for systems management, 2005.

[AAD+92] A. Abramovici, W.E. Althouse, R.W.P. Drever, Y. Gursel,
S. Kawamura, F.J. Raab, D. Shoemaker, L. Sievers, R.E.
Spero, K.S. Thorne, et al. LIGO: The laser interferometer
gravitational-wave observatory. Science, 256(5055):325, 1992.

[AHA04] Wil Van Der Aalst, Kees Van Hee, and Wil Van Der Aalst.
Workflow Management: Models, Methods and Systems. MIT
Press, 2004.

[All83] J.F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832–843, 1983.

[AMB+08] J.A. Allen, D. Mott, A. Bahrami, J. Yuan, C. Giammanco,
and J. Patel. A Framework for Supporting Human Military
Planning. In Proceedings of the Second Annual Conference of
the International Technology Alliance, volume 1, 2008.

[AMF+08] A. Andrzejak, C. Mastroianni, P. Fragopoulou, D. Kondo,
P. Malecot, A. Reinefeld, F. Schintke, T. Sch
”utt, G.C. Silaghi, L.M. Silva, et al. Grid Architectural Issues:
State-of-the-art and Future Trends, 2008.

[AMP05] D.W. Aha, M. Molineaux, and M. Ponsen. Learning to win:
Case-based plan selection in a real-time strategy game. Lecture
notes in computer science, 3620:5, 2005.

303

BIBLIOGRAPHY BIBLIOGRAPHY

[Ars06a] Naveed Arshad. A Planning-Based Approach to Failure Recov-
ery in Distributed Systems. PhD thesis, University of Colorado
at Boulder, 2006.

[Ars06b] Naveed Arshad. A Planning-Based Approach to Failure Recov-
ery in Distributed Systems. PhD thesis, University of Coloardo
at Boulder, USA, 2006.

[ARSS05] A. Andrzejak, A. Reinefeld, F. Schintke, and T. Schutt. On
adaptability in grid systems. Future Generation Grids, Core-
GRID series. Springer-Verlag, 2005.

[Bar10] Daniel Bartholomew. Sql vs. nosql. Linux J., 2010, July 2010.

[BB05] B. Burns and O. Brock. Toward optimal configuration space
sampling. In Robotics: Science and Systems, 2005.

[BBB+04] A. Boukhtouta, A. Bedrouni, J. Berger, F. Bouak, and A. Gui-
touni. A survey of military planning systems. In The 9th IC-
CRTS Int. Command and Control Research and Technology
Symposium, 2004.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic model checking: 10 20 states and beyond.
Information and Computation, 98(2):142–170, 1992.

[BCP+01] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso.
MBP: a model based planner. In Proc. of the IJCAI2̆01901
Workshop on Planning under Uncertainty and Incomplete In-
formation, 2001.

[BDG+03] J. Blythe, E. Deelman, Y. Gil, C. Kesselman, A. Agarwal,
G. Mehta, and K. Vahi. The role of planning in grid computing.
In Proceedings of 13th International Conference on Automated
Planning and Scheduling (ICAPS), 2003.

[BDGK03] Jim Blythe, Ewa Deelman, Yolanda Gil, and Carl Kesselman.
Transparent grid computing: a knowledge-based approach. In
15th Innovative Applications of Artificial Intelligence Confer-
ence, 2003.

[Bel57] R. Bellman. A Markovian decision process. 1957.

[Bel03] Richard E. Bellman. Dynamic Programming. Dover Publica-
tions, 2003.

[BF97] A.L. Blum and M.L. Furst. Fast planning through planning
graph analysis. Artificial intelligence, 90(1-2):281–300, 1997.

304

BIBLIOGRAPHY BIBLIOGRAPHY

[BHL+04] M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S. Mcilraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, et al.
OWL-S: Semantic markup for web services. W3C Member
Submission, 2004.

[BHM+04] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion,
C. Ferris, and D. Orchard. Web services architecture. W3C
Working Group Note, 11:2005–1, 2004.

[BJMR05] J. Bresina, A. Jonsson, P. Morris, and K. Rajan. Activity
planning for the mars exploration rovers. In Fourteenth Inter-
national Conference on Automated Planning and Scheduling,
pages 40–49, 2005.

[BK00] F. Bacchus and F. Kabanza. Using temporal logics to express
search control knowledge for planning. Artificial Intelligence,
116(1-2):123–191, 2000.

[BKK02] A. Brown, G. Kar, and A. Keller. An active approach to char-
acterizing dynamic dependencies for problem determination
in a distributed environment. In Integrated Network Manage-
ment Proceedings, 2001 IEEE/IFIP International Symposium
on, pages 377–390. IEEE, 2002.

[Boa90] IEEE Standards Board. IEEE 90: IEEE Standard Glossary of
Software Engineering Terminology. IEEE Std 610.12 - 1990.
The Institute of Electrical and Electronics Engineers, 1990.

[Boo82] G. Booch. Object-oriented design. ACM SIGAda Ada Letters,
1(3):64–76, 1982.

[Bou02] C. Boutilier. A pomdp formulation of preference elicitation
problems. In Proceedings of the National Conference on Arti-
ficial Intelligence, pages 239–246. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2002.

[BP01] A. Brown and D. Patterson. To err is human. In Proceedings
of the First Workshop on Evaluating and Architecting System
dependabilitY (EASY ’01), 2001.

[Bre01] Eric A. Brewer. Lessons from giant-scale services. IEEE In-
ternet Computing, 05(4):46–55, 2001.

[BS05] S. Kambhampati B. Srivastava. Challenges in adapting au-
toamted planning for autonomic computing. In American As-
sociation for Artificial Intelligence, 2005.

305

BIBLIOGRAPHY BIBLIOGRAPHY

[BSP+02] J.P. Bigus, D.A. Schlosnagle, J.R. Pilgrim, W.N.M. III, and
Y. Diao. ABLE: A toolkit for building multiagent autonomic
systems. IBM Systems Journal, 41(3):350–371, 2002.

[BWE+94] Anthony Barrett, Daniel S. Weld, Oren Etzioni, Steve Hanks,
James Hendler, Craig Knoblock, and Rao Kambhampati.
Partial-order planning: Evaluating possible efficiency gains.
Artificial Intelligence, 67:71–112, 1994.

[Byl91] T. Bylander. Complexity results for planning. In Proceedings
of the Twelfth International Joint Conference on Artificial In-
telligence, volume 1, pages 274–279. Citeseer, 1991.

[CDG+08] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R.E. Gruber. Bigtable:
A distributed storage system for structured data. ACM Trans-
actions on Computer Systems (TOCS), 26(2):1–26, 2008.

[CFR+07] H. Chan, A. Fern, S. Ray, N. Wilson, and C. Ventura. Online
planning for resource production in real-time strategy games.
In Proc. of the In. Conference on Automated Planning and
Scheduling, 2007.

[CGGT97] R. Cimatti, E. Giunchiglia, F. Giunchiglia, and P. Traverso.
Planning via model checking: A decision procedure for AR. In
Proceedings of ECP-97, 1997.

[CGP99] E. M. Clarke, Orna Grumberg, and Doron Peled. Model Check-
ing, chapter 2, page 314. MIT Press, 1999.

[CKL95] A.R. Cassandra, L.P. Kaelbling, and M.L. Littman. Acting
optimally in partially observable stochastic domains. In Pro-
ceedings of the National Conference on Artificial Intelligence,
pages 1023–1023, 1995.

[CKR05] Benjamin Cheung, Gopal Kumar, and Sudarshan A. Rao. Sta-
tistical algorithms in fault detection and prediction: Toward a
healthier network. Bell Labs Technical Journal, 9(4):171–185,
2005.

[CL85] K.M. Chandy and L. Lamport. Distributed snapshots: Deter-
mining global states of distributed systems. ACM Transactions
on Computer Systems (TOCS), 3(1):75, 1985.

[CLRS01] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. In-
troduction to algorithms. The MIT press, 2001.

306

BIBLIOGRAPHY BIBLIOGRAPHY

[CMAB05] M.T. Cox, H.É.C. MuÑOz-Avila, and R. Bergmann. Case-
based planning. The Knowledge Engineering Review,
20(03):283–287, 2005.

[Com07] Office Of Government Commerce. Information Technology In-
frastructure Library V3 - Service Transition. The Stationary
Office, 2007.

[Cri91] F. Cristian. Understanding fault-tolerant distributed systems.
1991.

[CST03] M. Carman, L. Serafini, and P. Traverso. Web service compo-
sition as planning. In proceedings of ICAPS03 International
Conference on Automated Planning and Scheduling, Trento,
Italy, 2003.

[Dav02] Patterson David. A simple way to estimate the cost of down-
time. USENIX 16th System Administrators Conference, 2002.

[DBGCK03] Ewa Deelman, James Blythe, Yolanda Gil, and Karan Vahi
Carl Kesselman, Gaurang Mehta. Mapping abstract complex
workflows onto grid environments. 1(1), March 2003.

[Dec03] R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

[DGAV05] P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma. Dynamic
workflow composition: Using markov decision processes. In-
ternational Journal of Web Services Research, 2(1):1–17, 2005.

[DKM+02] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat, L. Pearl-
man, K. Blackburn, P. Ehrens, A. Lazzarini, R. Williams, and
S. Koranda. GriPhyN and LIGO, building a virtual data grid
for gravitational wave scientists. In 11th Intl Symposium on
High Performance Distributed Computing, volume 2002, 2002.

[DO02] David A. Patterson David Oppenheimer. Architecture and
dependability of large-scale internet services. IEEE Internet
Computing, 6(5):41–49, 2002.

[DO03] David A. Patterson David Oppenheimer, Archana Ganapathi.
Why do internet services fail, and what can be done about
it? In Proceedings of USITS 03: 4th USENIX Symposium on
Internet Technologies and Systems. The USENIX Association,
2003.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Jounal of the ACM, 7(3):201–215, 1960.

307

BIBLIOGRAPHY BIBLIOGRAPHY

[EHN94] Kutluhan Erol, James Hendler, and Dana S. Nau. Umcp: A
sound and complete procedure for hierarchical task-network
planning. In Proceedings of the 2nd International Conference
on Artificial Intelligence Planning Systems (AIPS 94), pages
249–254, 1994.

[EHN95] K. Erol, J. Hendler, and D.S. Nau. HTN planning: Complexity
and expressivity, 1995.

[EHN96] K. Erol, J. Hendler, and D.S. Nau. Complexity results for HTN
planning. Annals of Mathematics and Artificial Intelligence,
18(1):69–93, 1996.

[EKK+06] T. Eilam, M.H. Kalantar, A.V. Konstantinou, G. Pacifici,
J. Pershing, and A. Agrawal. Managing the configuration
complexity of distributed applications in internet data centers.
Communications Magazine, IEEE, 44(3):166–177, 2006.

[EMME+06] K. El Maghraoui, A. Meghranjani, T. Eilam, M. Kalantar,
and A.V. Konstantinou. Model driven provisioning: Bridg-
ing the gap between declarative object models and procedural
provisioning tools. In Proceedings of the ACM/IFIP/USENIX
2006 International Conference on Middleware, pages 404–423.
Springer-Verlag New York, Inc., 2006.

[ENS95] K. Erol, D.S. Nau, and VS Subrahmanian. Complexity, de-
cidability and undecidability results for domain-independent
planning. Artificial Intelligence, 76(1-2):75–88, 1995.

[FHT10] L. Field, J. Huang, and M. Tsai. GStat 2.0: Grid information
system status monitoring. In Journal of Physics: Conference
Series, volume 219, page 062045. IOP Publishing, 2010.

[Fis70] P.C. Fishburn. Utility theory for decision making. Storming
Media, 1970.

[FJ03] J. Frank and A. Jónsson. Constraint-based attribute and in-
terval planning. Constraints, 8(4):339–364, 2003.

[FL00] P. Frohlich and J. Link. Automated test case generation from
dynamic models. Lecture notes in computer science, pages
472–492, 2000.

[FL02] M. Fox and D. Long. International planning competition, 2002.

[FLSDT10] J. Famaey, S. Latrea, J. Strassner, and F. De Turck. A hi-
erarchical approach to autonomic network management. In
Network Operations and Management Symposium Workshops

308

BIBLIOGRAPHY BIBLIOGRAPHY

(NOMS Wksps), 2010 IEEE/IFIP, pages 225–232. IEEE,
2010.

[FN71] R. Fikes and N.J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Artificial
intelligence, 2(3/4):189–208, 1971.

[FP02] Armando Fox and David Patterson. When does fast recovery
trump hige reliability? In Proceedings of the Second Workshop
on Evaluating and Architecting System dependabilitY (EASY
’02), San Jose, CA, USA, 2002.

[Gär99] F.C. Gärtner. Fundamentals of fault-tolerant distributed com-
puting in asynchronous environments. ACM Computing Sur-
veys (CSUR), 31(1):1–26, 1999.

[GBJ+08] S. Gopisetty, E. Butler, S. Jaquet, M. Korupolu, TK Nayak,
R. Routray, M. Seaman, A. Singh, C.H. Tan, S. Uttamchan-
dani, et al. Automated planners for storage provisioning and
disaster recovery. IBM Journal of Research and Development,
52(4):353–365, 2008.

[GC03] A.G. Ganek and T.A. Corbi. The dawning of the autonomic
computing era. IBM Systems Journal, 42(1):5–18, 2003.

[GDB+04] Y. Gil, E. Deelman, J. Blythe, C. Kesselman, and H. Tangmu-
narunkit. Artificial intelligence and grids: Workflow planning
and beyond. IEEE Intelligent Systems, pages 26–33, 2004.

[GHH+02] M. Garschammer, R. Hauck, H.-G Hegering, B. Kempter,
M. Langer, I. Radisic M. Nerb, H. Roeller, and H. Schmidt. To-
wards generic service management concepts - a service model
based approach. In The Seventh IFIP/IEEE International
Symposium on Integrated Network Management, 2002.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software, volume
206. Addison-wesley Reading, MA, 1995.

[GHK+98] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram,
M. Veloso, D. Weld, and D. Wilkins. PDDL– the planning do-
main definition language. AIPS-98 planning committee, 1998.

[GJ79] M.R. Garey and D.S. Johnson. Computers and intractabil-
ity: A Guide to the theory of NP-Completeness. Freeman San
Francisco, 1979.

309

BIBLIOGRAPHY BIBLIOGRAPHY

[GN92] N. Guptay and D.S. Nauz. On the complexity of blocks-world
planning. Artifical Intelligence, 56(2-3):223–254, 1992.

[Gon08] Iker Gondra. Applying machine learning to software fault-
proneness prediction. Journal on System Software, 81(2):186–
195, 2008.

[GRD+07] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim.
Wings for pegasus: Creating large-scale scientific applications
using semantic representations of computational workflows. In
PROCEEDINGS OF THE NATIONAL CONFERENCE ON
ARTIFICIAL INTELLIGENCE, volume 22, page 1767. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2007.

[GS02] A. Gerevini and I. Serina. LPG: A planner based on local
search for planning graphs with action costs. In Proc. of the
Sixth Int. Conf. on AI Planning and Scheduling, pages 12–22,
2002.

[HAN99] Heinz-Gerd Hegering, Sebastian Abeck, and Bernhard Neu-
mair. Integrated Management of Networked Systems. The
Morgan Kaufmann Series in Networking. Morgan Kaufmann
Publisher, 1999.

[Han07] Andreas Hanemann. Automated IT Service Fault Diagnosis
Based on Event Correlation Techniques. PhD thesis, Ludwig-
Maximilians-University Munich, 2007.

[Has01] P. Hasselmeyer. Managing dynamic service dependencies. In
12th International Workshop on Distributed Systems: Oper-
ations & Management (DSOM 2001), Nancy, France, pages
141–150, 2001.

[Her02] George W. Herbert. Failure from the field: Complexity kills.
In Proceedings of the Second Workshop on Evaluating and Ar-
chitecting System Dependability, 2002.

[HJ00] P. Haslum and P. Jonsson. Some results on the complexity of
planning with incomplete information. Recent Advances in AI
Planning, pages 308–318, 2000.

[HZ07] E.A. Hansen and R. Zhou. Anytime heuristic search. Journal
of Artificial Intelligence Research, 28(1):267–297, 2007.

[JDB] Oracle Corporation JDBC. The java database con-
nectivity. http://www.oracle.com/technetwork/java/

overview-141217.html.

310

http://www.oracle.com/technetwork/java/overview-141217.html
http://www.oracle.com/technetwork/java/overview-141217.html

BIBLIOGRAPHY BIBLIOGRAPHY

[JJCD] Open Source Project JCOUCHDB Java5 CouchDB Driver.
Java5 couchdb driver. http://code.google.com/p/

couchdb4j/.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of auto-
nomic computing. Computer, 36(1):41–52, 2003.

[Kep05] Jeffrey O. Kephart. Research challenges of autonomic com-
puting. In ICSE ’05: Proceedings of the 27th international
conference on Software engineering, pages 15–22, New York,
NY, USA, 2005. ACM.

[KHW+04] A. Keller, J. Hellerstein, JL Wolf, K. Wu, and V. Krishnan.
The CHAMPS system: Change management with planning
and scheduling. In Proceedings of the IEEE/IFIP Network
Operations and Management Symposium (NOMS 2004), 2004.

[KLC95] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R.
Cassandra. Partially observable markov decision processes for
artificial intelligence. In KI, pages 1–17, 1995.

[Kno91] C.A. Knoblock. Search reduction in hierarchical problem solv-
ing. In Proceedings of the Ninth National Conference on Arti-
ficial Intelligence, pages 686–691. Citeseer, 1991.

[Kor87] R.E. Korf. Planning as search: A quantitative approach. Ar-
tificial Intelligence, 33(1):65–88, 1987.

[KS85] H. Kautz and B. Selman. BLACKBOX: A new approach to
the application of theorem proving to problem solving. In
In Workshop on Planning as Combinatorial Search, in con-
junction with AIPS-98 (Conference on Artificial Intelligence
Planning Systems, 1985.

[Kuh97] D. Richard Kuhn. Source of failure in the public switched
telephone network. Computer, 30(4):31–36, 1997.

[LASU06] M. LAM, A. AHO, R. SETHI, and J. ULLMAN. Compilers,
principles, techniques, and tools. Addison-Wesley, 2006.

[Lat91] J.C. Latombe. Robot motion planning. Springer, 1991.

[LaV07] Steven M. LaValle. Planning Algorithms. Cambridge Univer-
sity Press, 2007.

[LDK10] F. Liu, V. Danciu, and P. Kerestey. A framework for au-
tomated fault recovery planning in large-scale virtualized in-
frastructures. Modelling Autonomic Communication Environ-
ments, pages 113–123, 2010.

311

http://code.google.com/p/couchdb4j/
http://code.google.com/p/couchdb4j/

BIBLIOGRAPHY BIBLIOGRAPHY

[LGM98] M.L. Littman, J. Goldsmith, and M. Mundhenk. The com-
putational complexity of probabilistic planning. Journal of
Artificial Intelligence Research, 9(1):36, 1998.

[LGT04] M. Likhachev, G. Gordon, and S. Thrun. ARA*: Anytime A*
with provable bounds on sub-optimality. Advances in Neural
Information Processing Systems, 16, 2004.

[LL06] Yawei Li and Zhiling Lan. Exploit failure prediction for adap-
tive fault-tolerance in cluster computing. In CCGRID ’06:
Proceedings of the Sixth IEEE International Symposium on
Cluster Computing and the Grid, pages 531–538, Washington,
DC, USA, 2006. IEEE Computer Society.

[LM10] A. Lakshman and P. Malik. Cassandra: a decentralized struc-
tured storage system. ACM SIGOPS Operating Systems Re-
view, 44(2):35–40, 2010.

[LR04] Jean-Claude Laprie and Brian Randell. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans.
Dependable Secur. Comput., 1(1):11–33, 2004.

[LR09] K. Levanti and A. Ranganathan. Planning-based configuration
and management of distributed systems. In Integrated Network
Management, 2009. IM ’09. IFIP/IEEE International Sympo-
sium on, pages 65–72, June 2009.

[LT04] L. Laibinis and E. Troubitsyna. Fault tolerance in a layered
architecture: a general specification pattern in B. 2004.

[MAABN99] H. Muñoz-Avila, D.W. Aha, L. Breslow, and D. Nau. HI-
CAP: An interactive case-based planning architecture and its
application to noncombatant evacuation operations. In PROC
NATL CONF ARTIF INTELL., pages 870–875, 1999.

[MCBS03] R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauve. Faults in
Grids: Why are they so bad and What can be done about it?
In Grid Computing, 2003. Proceedings. Fourth International
Workshop on, pages 18–24, 2003.

[McD02] D. McDermott. Estimated-regression planning for interactions
with web services. In Proceeding of AIPS, 2002.

[Mci94] S.A. Mcilraith. Towards a theory of diagnosis, testing and
repair. In In Proceedings of The Fifth International Workshop
on Principles of Diagnosis, 1994.

312

BIBLIOGRAPHY BIBLIOGRAPHY

[MH86] R. Mohr and T.C. Henderson. Research Note Arc and Path
Consistency Revisited. Artificial intelligence, 28:225–233,
1986.

[Min61] M. Minsky. Steps toward artificial intelligence. Proceedings of
the IRE, 49(1):8–30, 1961.

[MMM04] F. Manola, E. Miller, and B. McBride. RDF primer. W3C
recommendation, 10, 2004.

[MU08] F. Marquardt and A.M. Uhrmacher. Evaluating AI planning
for service composition in smart environments. In Proceedings
of the 7th International Conference on Mobile and Ubiquitous
Multimedia, pages 48–55. ACM New York, NY, USA, 2008.

[MVH+04] D.L. McGuinness, F. Van Harmelen, et al. OWL web ontology
language overview. W3C recommendation, 10:2004–03, 2004.

[NA05] Alexander L. Wolf Naveed Arshad, Dennis Heimbigner. Deal-
ing with failures during failure recovery of distributed systems.
In Design and Evolution of Autonomic Application Software,
2005.

[NA07] Alexander L. Wolf Naveed Arshad, Dennis Heimbigner. De-
ployment and dynamic reconfiguration planning for dis-
tributed software systems. Software Quality Journal, 15(3),
2007.

[NAI+03] D. Nau, T.C. Au, O. Ilghami, U. Kuter, J.W. Murdock, D. Wu,
and F. Yaman. SHOP2: An HTN planning system. Journal
of Artificial Intelligence Research, 20(1):379–404, 2003.

[NAI+05] D. Nau, T.C. Au, O. Ilghami, U. Kuter, D. Wu, F. Yaman,
H. Muñoz-Avila, and J.W. Murdock. Applications of SHOP
and SHOP2. Intelligent Systems, IEEE, 20(2):34–41, 2005.

[Nau95] D.S. Nau. AI planning versus manufacturing-operation plan-
ning: A case study. In In Proceedings of the 14 th International
Joint Conference on Artificial Intelligence, 1995.

[Nau07] D.S. Nau. Current trends in automated planning. AI maga-
zine, 28(4):43, 2007.

[NFF+05] A. Nareyek, E.C. Freuder, R. Fourer, E. Giunchiglia, R.P.
Goldman, H. Kautz, J. Rintanen, and A. Tate. Constraints
and AI planning. IEEE Intelligent Systems, 20(2):62–72, 2005.

313

BIBLIOGRAPHY BIBLIOGRAPHY

[NGT04] Dana Nau, Malik Ghallab, and Paolo Traverso. Automated
Planning: Theory & Practice. Morgan Kaufmann Publishers
Inc., 2004.

[NM02] S. Narayanan and S.A. McIlraith. Simulation, verification and
automated composition of web services. In Proceedings of the
11th international conference on World Wide Web, pages 77–
88. ACM New York, NY, USA, 2002.

[NPV+05] J. Norris, M. Powell, M. Vona, P. Backes, and J.V. Wick.
Mars exploration rover operations with the science activity
planner. In IEEE International Conference on Robotics and
Automation, volume 4, page 4618, 2005.

[NSE+98] D.S. Nau, S.J.J. Smith, K. Erol, et al. Control strategies
in HTN planning: Theory versus practice. In Proceedings of
the National Conference on Artificial Intelligence, pages 1127–
1133. JOHN WILEY & SONS LTD, 1998.

[Par04] T.J. Parr. Enforcing strict model-view separation in template
engines. In Proceedings of the 13th international conference on
World Wide Web, pages 224–233. ACM, 2004.

[Par09] Terence Parr. Language Implementation Patterns: Create
Your Own Domain-Specific and General Programming Lan-
guages. Pragmatic Bookshelf Series. Pragmatic Bookshelf,
2009.

[PB01] P. Poupart and C. Boutilier. Vector-space analysis of belief-
state approximation for pomdps. In Proceedings of the Sev-
enteenth Conference on Uncertainty in Artificial Intelligence,
pages 445–452, 2001.

[PBA+07] T. Patkos, A. Bikakis, G. Antoniou, M. Papadopouli, and
D. Plexousakis. Distributed AI for Ambient Intelligence: Is-
sues and Approaches. Lecture Notes in Computer Science,
4794:159, 2007.

[Ped87] E. Pednault. Formulating multi agent dynamic world problems
in the classical planning framework. In M.P. Georgeff and
A. Lansky, editors, Reasoning about Actions and Plans, pages
42–82. Morgan Kaufmann, 1987.

[PTD+08] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and
B.J. Kr
”amer. Service-oriented computing: A research roadmap.
International Journal of Cooperative Information Systems,
17(2):223–255, 2008.

314

BIBLIOGRAPHY BIBLIOGRAPHY

[Put94] M.L. Puterman. Markov decision processes: Discrete stochas-
tic dynamic programming. John Wiley & Sons, Inc. New York,
NY, USA, 1994.

[PW92] J.S. Penberthy and D. Weld. UCPOP: A sound, complete, par-
tial order planner for ADL. In proceedings of the third interna-
tional conference on knowledge representation and reasoning,
pages 103–114, 1992.

[RBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
W. Lorensen, et al. Object-oriented modeling and design, vol-
ume 38. Prentice hall Englewood Cliffs (NJ), 1991.

[RC04] A. Ranganathan and R.H. Campbell. Autonomic pervasive
computing based on planning. In Proceedings of the First In-
ternational Conference on Autonomic Computing (ICAC’04),
pages 80–87, 2004.

[RDF05] W. Ruml, M.B. Do, and M. Fromherz. On-line planning and
scheduling for high-speed manufacturing. In Proc. of ICAPS,
volume 5, pages 30–39, 2005.

[RL05] A. Riabov and Z. Liu. Planning for stream processing systems.
In Proceedings of the National Conference on Artificial Intel-
ligence, volume 20, page 1205. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999, 2005.

[RL06] A. Riabov and Z. Liu. Scalable planning for distributed stream
processing systems. Proceedings of International Conference
on Automated Planning and Scheduling 2006, 2006.

[Rod02] Gabrijela Dreo Rodosek. A Framework for IT Service Man-
agement. Ludwig-Maximilians-Uniersität München, 2002. Ha-
bilitationsschrift im Fach Informatik.

[RPPCD08] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa. Online
planning algorithms for POMDPs. Journal of Artificial Intel-
ligence Research, 32(1):663–704, 2008.

[RRD04] Stefanie Rinderle, Manfred Reichert, and Peter Dadam. Cor-
rectness criteria for dynamic changes in workflow systems: a
survey. Data Knowl. Eng., 50(1):9–34, 2004.

[Sai07] Martin Sailer. Konzeption einer Service-MIB – Analyse und
Spezifikation dienstorientierter Managementinformation. PhD
thesis, Ludwig-Maximilians-University Munich, 2007.

315

BIBLIOGRAPHY BIBLIOGRAPHY

[SBM10] S. Sohrabi, J.A. Baier, and S.A. McIlraith. Diagnosis as Plan-
ning Revisited. 2010.

[SBS04] B. Srivastava, J.P. Bigus, and D.A. Schlosnagle. Bringing plan-
ning to autonomic applications with ABLE. In Proceedings of
the First International Conference on Autonomic Computing,
pages 154–161. IEEE Computer Society, 2004.

[SC75] E.D. Sacerdoti and A.I. Center. The Non-Linear Nature of
Plans. In Advance papers of the fourth International Joint
Conference on Artificial Intelligence: Tbilisi, Georgia, USSR,
3-8 September 1975, page 206. Morgan Kaufmann, 1975.

[Sch01] S. Schneider. The B-method: an introduction. Palgrave Chip-
penham Wiltshire, 2001.

[Sch06] Klaus Schmidt. High Availability and Disaster Recovery –
Concept, Design, Implementation. Springer, 2006.

[Sch08] David Schmitz. Automated Service-Oriented Impact Analy-
sis and Recovery Alternative Selection. PhD thesis, Ludwig-
Maximilians-University Munich, 2008.

[SG06] B. Schroeder and GA Gibson. A large-scale study of failures in
high-performance computing systems. In Dependable Systems
and Networks, 2006. DSN 2006. International Conference on,
pages 249–258, 2006.

[Ski08] S.S. Skiena. The algorithm design manual. Springer, 2008.

[SPW+04] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN plan-
ning for web service composition using SHOP2. Web Seman-
tics: Science, Services and Agents on the World Wide Web,
1(4):377–396, 2004.

[SR02] Peter Norvig Stuart Russel. Artificial Intelligence: A Modern
Approach. Prentice Hall, 2002.

[Sri04] B. Srivastava. A software framework for applying planning
techniques. Proc. Knowledge Based Computer Systems, Hy-
derabad, 2004.

[SSD77] E.D. Sacerdoti, SRI International. Artificial Intelligence Cen-
ter. Computer Science, and Technology Division. A structure
for plans and behavior. Elsevier New York, 1977.

[ST01] J. Slaney and S. Thiébaux. Blocks world revisited. Artificial
Intelligence, 125(1-2):119–153, 2001.

316

BIBLIOGRAPHY BIBLIOGRAPHY

[Str00] I. Streinu. A combinatorial approach to planar non-colliding
robot arm motion planning. In ANNUAL SYMPOSIUM ON
FOUNDATIONS OF COMPUTER SCIENCE, volume 41,
pages 443–453, 2000.

[Sus75] Gerald J. Sussman. A computer model of skill acquisition.
1975.

[TEHN96] R. Tsuneto, K. Erol, J. Hendler, and D. Nau. Commitment
strategies in hierarchical task network planning. In PRO-
CEEDINGS OF THE NATIONAL CONFERENCE ON AR-
TIFICIAL INTELLIGENCE, pages 536–542, 1996.

[TFL09] D. Trastour, R. Fink, and F. Liu. ChangeRefinery: Assisted
Refinement of High-Level IT Change Requests. In Proceedings
of the 2009 IEEE International Symposium on Policies for
Distributed Systems and Networks-Volume 00, pages 68–75.
IEEE Computer Society, 2009.

[TK00] W. Tan and B. Khoshnevis. Integration of process planning
and scheduling review. Journal of Intelligent Manufacturing,
11(1):51–63, 2000.

[TLC+09] H.M. Tran, C. Lange, G. Chulkov, J. Schnwlder, and
M. Kohlhase. Applying semantic techniques to search and
analyze bug tracking data. Journal of Network and Systems
Management, 17(3), 2009.

[TS07] Andrew S. Tanenbaum and Maarten Van Steen. Distributed
Systems - Principles and Paradigms. Pearson Prentice Hall,
2007.

[VCP+95] M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, and
J. Blythe. Integrating planning and learning: The PRODIGY
architecture. Journal of Experimental & Theoretical Artificial
Intelligence, 7(1):81–120, 1995.

[Vil82] M.B. Vilain. A system for reasoning about time. In Proc.
AAAI, volume 82, pages 197–201, 1982.

[VK86] M. Vilain and H. Kautz. Constraint propagation algorithms
for temporal reasoning. In Proceedings of the Fifth National
Conference on Artificial Intelligence, pages 377–382, 1986.

[VR05] M. Vukovic and P. Robinson. SHOP2 and TLPlan for proactive
service composition. In UK-Russia Workshop on Proactive
Computing, 2005.

317

BIBLIOGRAPHY BIBLIOGRAPHY

[WAS98] D.S. Weld, C.R. Anderson, and D.E. Smith. Extending Graph-
plan to handle uncertainty & sensing actions. In PROCEED-
INGS OF THE NATIONAL CONFERENCE ON ARTIFI-
CIAL INTELLIGENCE, pages 897–904. JOHN WILEY &
SONS LTD, 1998.

[XSTK04] H. Xiong, M. Steinbach, P.N. Tan, and V. Kumar. HICAP: Hi-
erarchial clustering with pattern preservation. In Proceedings
of the 4th SIAM International Conference on Data Mining,
pages 279–290, 2004.

[YC94] Q. Yang and A. Chan. Delaying variable binding committ-
ments in planning. In Proc. 2nd Intl. Conf. AI Planning Sys-
tems, pages 182–187, 1994.

[YL04] H.L.S. Younes and M.L. Littman. PPDDL1. 0: The language
for the probabilistic part of IPC-4. In Proc. International Plan-
ning Competition, 2004.

[YRB+04] R.M. Young, M.O. Riedl, M. Branly, A. Jhala, RJ Martin, and
CJ Saretto. An architecture for integrating plan-based behav-
ior generation with interactive game environments. Journal of
Game Development, 1(1):51–70, 2004.

[ZMN05] F. Zhu, M.W. Mutka, and L.M. Ni. Service discovery in per-
vasive computing environments. Pervasive Computing, IEEE,
4(4):81–90, 2005.

318

	Introduction
	Research Problem and Vision of Solution
	Problem Statement
	Vision
	Research Questions

	Scope and Alignment
	Autonomic Computing
	IT Service Management
	Dependability Research

	Delimitations to Other Dissertations
	Thesis Outline
	Summary

	Terminology and Requirements Analysis
	Definition of Terms
	Terms on IT Services
	Fault and Fault Recovery
	Definitions of Plan, Planning and Planning Algorithm

	Scenarios
	Scenario 1: Recovery of Web Hosting Services
	Scenario 2: Fault Recovery in Grid Computing
	Visionary Solution and Requirement Analysis
	A Framework-based Solution
	Requirements Analysis

	Summary

	Related Work
	Fundamentals of Automated Planning
	Planning Paradigms
	Applications of Planning

	State-of-the-Art: Planning Applications in IT Management
	Configuration Management
	Change Management
	Fault Management
	Grid Computing

	Evaluations of Existing Approaches
	Summary

	A Conceptual Model of the Recovery Planning Framework
	Fault Recovery as a Planning Problem
	Formalising Service Fault Recovery Problems
	A General Planning Model
	Problem Reduction

	Recovery Knowledge
	Specifying Recovery Knowledge
	A Language for Recovery Knowledge
	Translation to a Planning Language

	Recovery Planning Algorithm
	HTN as Planning Paradigm
	Fundamental Planning Algorithm Design
	Assured Properties of the Algorithm
	Augmentations for IT Recovery Planning

	Recovery Planning Framework
	Overview of the Framework
	Planning Component
	Data Processing Component
	Knowledge Repository
	Planning System Interfaces

	Summary

	Prototypical Applications and Evaluations
	Implementations of Core Components
	Knowledge Translation Components
	Planning Algorithm

	Applications
	Suggested Deployment and Provisioning
	Recovery Planning in Cloud Computing
	Portability of the Framework

	Evaluation
	Framework
	Planning & Scheduling
	Knowledge & Repository
	Data Processing
	Plan Evaluation
	Workflow & Execution
	Overall Fulfilment of the Requirements

	Summary

	Conclusion and Future Work
	Conclusion
	Putting All Pieces Together
	Research Questions Answered

	Future Work

	Appendices
	Appendix Grammar of PDDL v3
	Appendix Implementation of the Language Translation Components
	Lexer Code
	Parser Code
	Example Grammar of an Action Block

	Appendix Example Output of the Applications
	Fault Recovery Planning in Cloud Infrastructure
	Change Planner

