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Preface

Intermediaries, such as credit rating agencies and fund managers, play an im-

portant role in financial markets. Credit rating agencies assess the probability

that issuers repay their debt. Many investors pay attention to the ratings of the

major credit rating agencies. Some fund managers are even restricted to invest

in bonds with a specific rating. In addition, many regulators use the ratings of

the major credit rating agencies to evaluate the amount of capital which finan-

cial institutions are required to hold. And fund managers manage a significant

amount of assets.

Yet, the recent financial crisis reminds us that intermediaries, such as credit

rating agencies and fund managers, may not always act in the best interest of in-

vestors, regulators and, eventually, tax payers. The major credit rating agencies,

for instance, have assigned favorable ratings to structured debt products, such as

mortgage-backed securities and collateralized-debt obligations. Favorable ratings

facilitated the sale of structured debt products. The default rates, however, have

been much higher than their initial rating would suggest. As a result, the major

credit rating agencies have been blamed for contributing to the recent financial

crisis.

It is often argued that credit rating agencies have an incentive to assign in-

flated ratings. The problem lies in the business model. The major credit rating
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agencies are paid by issuers who are interested in favorable ratings. This problem

is exacerbated by the possibility of a collusive agreement. If credit rating agen-

cies collude to offer inflated ratings, it may be impossible to detect whether high

default rates are due to a collusive agreement or a common shock. In the wake

of the recent financial crisis, the major credit rating agencies often pointed out

that they all had used similar data, models and assumptions, and claimed that

these had been the best available.

If credit rating agencies assign inflated ratings, the consequences may be se-

rious. Many regulators, for instance, use the ratings of the major credit rating

agencies to determine minimum capital requirements. The Securities and Ex-

change Commission, for example, designates Nationally Recognized Statistical

Rating Organizations, and uses their ratings to determine how much capital fi-

nancial institutions are required to hold. If the ratings then turn out to be

inflated, minimum capital requirements turn out to be too low. And if the rat-

ings turn out to be inflated only once default rates rise, asset prices fall, and a

lot of capital is needed to absorb the losses, the consequences may be disastrous.

In the first chapter, we study a model in which a regulator approves credit

rating agencies, which are paid by issuers. The regulator cannot observe whether

ratings are correct. The regulator can only observe the default rate within a

rating category for each credit rating agency. The default rate may, however,

be influenced by a common shock, and the credit rating agencies may collude to

assign inflated ratings. As a result, if all approved credit rating agencies collude

to assign inflated ratings, the regulator cannot detect whether high default rates

are due to a collusive agreement or a common shock.

We suggest that a regulator should hence not only deter a credit rating agency

from unilaterally offering inflated ratings, but also provide an incentive to deviate
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from a collusive agreement to offer inflated ratings. In the model, the regulator

can do so by denying approval to a credit rating agency with a worse performance

than its competitors, and rewarding a credit rating agency which deviates from

a collusive agreement by reducing the number of approved credit rating agencies

in future periods.

In the wake of the subprime crisis, fund managers sometimes claimed that

they had invested in structured debt products because they had relied on the

ratings of the major credit rating agencies, and were surprised that the default

rates were much higher than their initial rating would suggest. If they had known

about the risks, they argued, they would not have invested in these assets.

In the second chapter, we argue, however, that fund managers might even had

an incentive to invest in structured debt products if they knew about the risks. A

fund’s performance is usually compared to the performance of an index or other

funds. If a fund trails the benchmark, the fund manager is often replaced. If

investment restrictions are appropriate, this may sort out low-ability from high-

ability fund managers. If, however, investment restrictions are inappropriate, this

may lead to excessive risk-taking. To match the benchmark, fund managers may

increase the risk of their portfolio even if this decreases the expected return on

their portfolio.

Some fund managers, for example, are restricted to invest in AAA-rated

bonds. If all AAA-rated bonds offer similar yields at a similar risk, benchmark-

ing may sort out low-ability from high-ability fund managers. Suppose, however,

some AAA-rated bonds, such as AAA-rated mortgage-backed securities, offer

higher yields at a higher risk. Then, to match the benchmark, fund managers

may invest in these bonds even if the expected return on these bonds is lower

than the expected return on other, less risky AAA-rated bonds.
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In the second chapter, we study a model in which fund managers differ in

ability, and are fired if the realized return is lower than the average realized

return. Fund managers can create a perfectly diversified portfolio. High-ability

fund managers can create such a portfolio with a higher return than low-ability

fund managers. In addition, however, fund managers have the opportunity to

gamble. They can invest in a risky asset which increases the risk of the overall

portfolio and decreases the expected return on the overall portfolio. We find that

if the costs of being fired are sufficiently large, fund managers may invest in this

risky asset to match the benchmark.

Though it is often argued that certifiers, such as credit rating agencies and

auditors, may have an incentive to offer inflated certificates, they may not profit

from offering inflated certificates. The reason is twofold. First, certifiers typically

incur costs if they offer inflated certificates. Often they have to spend time and

money to obscure that they offer inflated certificates. In addition, certifiers are

usually caught with some probability if they offer inflated certificates. If they are

caught, they often have to pay a fine. Moreover, they occasionally lose some of

their business. In extreme cases, they even lose all of their business, as in the case

of Arthur Andersen for its role in the Enron scandal. Secondly, the market may

take into account that certifiers have an incentive to offer inflated certificates.

In the third chapter, we study a model in which a certifier is paid by sellers,

and may offer them inflated certificates, but incurs costs if doing so. In contrast

to the certifier, the buyers cannot observe the type of a good. The buyers can only

observe whether the seller owns a certificate, and if so, the type of the certificate.

The sellers are hence interested in favorable certificates.

We show that the certifier may face a commitment problem. The certifier

always offers at least some inflated certificates if the costs of offering the first
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inflated certificate are lower than the sellers’ willingness-to-pay for it. However,

the certifier does not profit from offering inflated certificates, because in equilib-

rium, the buyers cannot be fooled. They anticipate correctly that the certifier

offers a certain amount of inflated certificates, and take this into account in their

willingness-to-pay for a good. The sellers, in turn, take this into account in their

willingness-to-pay for a certificate. By offering inflated certificates, the certifier

thus only incurs costs, but cannot increase its revenue as compared to the sit-

uation in which the certifier does not offer inflated certificates, and the buyers

believe it. However, if the buyers actually believed the certifier did not offer

inflated certificates, the certifier would have an incentive to do so.

Though the number of inflated certificates depends on the costs the certifier

incurs, a certifier may yet oppose an increase in the costs of offering inflated

certificates. On the one hand, an increase in the costs reduces the number of

inflated certificates, and thus indirectly increases the certifier’s profit. On the

other hand, however, an increase in the costs directly reduces the certifier’s profit.

As a result, whether a certifier welcomes tighter regulation or lobbies against it,

may depend on whether the new regulation only imposes higher costs on the

certifier, or also helps to reduce the certifier’s commitment problem significantly.

The following three chapters can be read independently of each other. Each

chapter has its own introduction, appendix and references.



Chapter 1

The Regulation of Credit Rating

Agencies∗

1.1 Introduction

Financial regulators recognize certain credit rating agencies for regulatory pur-

poses. The Securities and Exchange Commission (SEC), for instance, designates

Nationally Recognized Statistical Rating Organizations (NRSROs) and uses the

ratings of NRSROs to evaluate the amount of capital which financial institu-

tions are required to hold.1 In addition, many pension funds and other investors

restrict their bond investments to bonds rated by a NRSRO.

However, it is often argued that credit rating agencies have an incentive to

assign inflated ratings. Credit rating agencies assess the probability that issuers

will default on their bonds. However, the major credit rating agencies are not

paid by investors, but by issuers who are interested in high ratings. In addition,

claiming that their ratings are independent expressions of opinion, credit rating

∗A slightly different version of this chapter has been published in the Journal of Banking
and Finance, 2009, Vol. 33 Issue 7, pp. 1266-1273.

1See e.g. SEC (2003, 2007).
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agencies are immune to legal challenge. Lately, default rates of structured prod-

ucts, such as mortgage-backed securities and collateralized-debt obligations, have

been much higher than their initial rating would suggest. As a result, credit rating

agencies have been accused of assigning inflated ratings to structured products.

This paper studies a repeated principal-agent problem in which a regulator

approves credit rating agencies. While credit rating agencies can observe an

issuer’s type, the regulator cannot. Credit rating agencies offer each issuer a

rating and are paid by the issuers who demand a rating. The regulator cannot

observe whether a credit rating agency assigns correct ratings. The regulator

can only observe the default rate within a rating category for each credit rating

agency. The default rate within a rating category does not only depend on

whether a credit rating agency assigns correct ratings. The default rate can also

be influenced by a common shock. Credit rating agencies may collude to offer

inflated ratings. Yet we show that there exists an approval scheme which induces

credit rating agencies to offer correct ratings.

The model shows that if credit rating agencies do not collude to offer inflated

ratings, the regulator can filter out the common shock by evaluating the relative

performance of credit rating agencies. If the credit rating agencies’ discount factor

is sufficiently high, the threat to deny approval in future periods can deter credit

rating agencies from offering inflated ratings.

However, if all approved credit rating agencies collude to offer inflated ratings,

the regulator cannot detect whether high default rates are due to collusion or the

common shock. As a result, credit rating agencies may collude to offer inflated

ratings.

The model shows that the regulator can prevent a collusive agreement to offer

inflated ratings by providing an incentive to deviate. The model suggests that the
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regulator may reward a credit rating agency which deviates from such a collusive

agreement by reducing the number of approved credit rating agencies in future

periods.

The paper is related to the literature on relative performance evaluation first

analyzed by Holmström (1982) and to the literature on collusion of certification

intermediaries (e.g. Strausz, 2005; Peyrache and Quesada, 2010). Strausz (2005)

and Peyrache and Quesada (2010) study incentives of a certification interme-

diary to collude with a seller of a product. Strausz (2005) derives conditions

under which reputation enables certification intermediaries to resist capture and

shows for instance that honest certification requires high prices and constitutes a

natural monopoly. In contrast, Peyrache and Quesada (2010) focus on an equilib-

rium in which collusion may occur. They show that impatient intermediaries set

lower prices in order to attract sellers with whom stakes for collusion are large.

In contrast to our paper, Strausz (2005) and Peyrache and Quesada (2010) do

not consider collusion between certification intermediaries. Strausz (2005) and

Peyrache and Quesada (2010) moreover assume that buyers detect any collusion

ex post. In our model, the regulator cannot observe whether a credit rating

agency assigns correct ratings. The regulator can only observe the default rate

within a rating category, which may be influenced by a common shock.

There is a growing theoretical literature on credit rating agencies. For exam-

ple, Mählmann (2008) studies implications of rating publication rights and finds

that there exists an equilibrium with partial nondisclosure of low ratings. Skreta

and Veldkamp (2009) study rating shopping. They show that when issuers can

choose from several ratings which rating to disclose, product complexity can lead

to rating inflation, even if credit rating agencies produce unbiased ratings. In

contrast to our paper, Mählmann (2008) and Skreta and Veldkamp (2009) do
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not focus on credit rating agencies’ conflict of interest. Bolton et al. (2010) and

Mathis et al. (2009) study this conflict. Bolton et al. (2010) find that credit

rating agencies may assign inflated ratings when there are many naive investors

or when (exogenous) reputation costs are low. Mathis et al. (2009) model rep-

utation costs endogenously. They find that a credit rating agency may assign

inflated ratings when a large fraction of the credit rating agency’s income stems

from rating complex products. In contrast to our paper, Bolton et al. (2010) and

Mathis et al. (2009) do not consider collusion between credit rating agencies.

The rest of the paper is organized as follows. Section 1.2 presents the model.

Section 1.3 shows that there exists an approval scheme which induces all credit

rating agencies to offer correct ratings. Section 1.4 concludes. Proofs are provided

in the appendix.

1.2 The Model

Consider a model with a regulator, several credit rating agencies (CRAs), and

many issuers. While CRAs can observe an issuer’s type, the regulator cannot.

In period 0, the regulator chooses an approval scheme. The approval wti ∈

{0, 1} of CRA i in period t, t = 1, 2, . . ., can be made contingent on the default

rates which the regulator has observed previously. If the regulator approves

CRA i in period t, wti = 1. If the regulator does not approve CRA i in period t,

wti = 0. Let nt denote the number of approved CRAs in period t (nt =
∑

iw
t
i).

Each period t, t = 1, 2, . . ., consists of 3 stages. At stage 1, the regulator

decides on the approval of CRAs according to the approval scheme. At stage 2,

each CRA chooses a fee and offers a rating to each issuer. At stage 3, issuers
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decide whether and from which CRA to demand a rating. Figure 1.1 illustrates

the time structure in period t, t = 1, 2, . . ..

stage 1

regulator
approves CRAs

stage 2

CRAs
choose fees

& offer ratings

stage 3

issuers
demand ratings

Figure 1.1: Time structure in period t, t = 1, 2, . . .

At the beginning of period t, t = 1, 2, . . ., a continuum of issuers enters. To

simplify notation, its mass is normalized to 1. There are two types of issuers, A

and B. If no shock occurs, type-A issuers have a low default probability dA and

type-B issuers have a high default probability dB, where 0 < dA < dB < 1. Let

m denote the mass of type-A issuers, where 0 < m < 1. In each period, issuers

are uniformly located along the unit interval according to their type. Figure 1.2

illustrates this. While CRAs can observe an issuer’s type and an issuer’s location

on the unit interval, the regulator cannot.

0

6
density

-

issuers

1

1m︸ ︷︷ ︸
type A

︸ ︷︷ ︸
type B

Figure 1.2: Issuers are located along the unit interval according to their type.

At stage 1, the regulator decides on the approval wti ∈ {0, 1} of CRA i ac-

cording to the approval scheme. Approving a CRA for the first time generates

approval costs cA. Approval costs cA may be interpreted as costs to establish a
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CRA. Let zti ∈ {0, 1} denote whether the regulator approves CRA i for the first

time in period t.

zti =

 1 if wti = 1 and wt−1
i = 0

0 otherwise.
(1.1)

At stage 2, each CRA chooses a fee and offers a rating to each issuer. There

are two rating categories, again A and B. Rating category A indicates that an

issuer is of type A and rating category B indicates that an issuer is of type B.

CRA i chooses fee f ti ∈ R+
0 and rating threshold ati ∈ [0, 1]. CRA i offers issuers,

who are located on or to the left of ati on the unit interval, an A rating, and

issuers, who are located to the right of ati on the unit interval, a B rating. If

ati = m, CRA i offers all type-A issuers an A rating and all type-B issuers a B

rating. If ati > m, CRA i offers some issuers inflated ratings. Figure 1.3 illustrates

this. Issuers are uniformly located along the unit interval on the horizontal axis

according to their type. m issuers are of type A. If ati > m, CRA i offers type-B

issuers an A rating. We assume that CRAs publish a rating only if an issuer

demands a rating.

0

6
density

1

1m

-

issuersati︸ ︷︷ ︸
type A

︸ ︷︷ ︸
type B︸ ︷︷ ︸

A rating

︸ ︷︷ ︸
B rating

Figure 1.3: If ati > m, CRA i offers type-B issuers an A rating.

At stage 3, issuers decide whether and from which CRA to demand a rating.

We assume that issuers demand a rating only from an approved CRA. An issuer’s
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utility of an A rating is ∆, where ∆ > 0. An issuer’s utility of a B rating is 0.

∆ could easily be endogenized, for instance, as the difference between the price

of a bond with an A rating and the price of a bond with a B or no rating. An

issuer’s utility is hence given by

UIs =



∆− f ti if it demands a rating from CRA i

and receives an A rating

0− f ti if it demands a rating from CRA i

and receives a B rating

0 if it does not demand a rating.

(1.2)

Therefore, each issuer demands a rating from the approved CRA which offers

the issuer an A rating at the lowest fee, provided this fee does not exceed ∆. If

several approved CRAs offer an issuer an A rating at the same fee and this fee

is the lowest fee and does not exceed ∆, the issuer randomizes among them. If

no approved CRA offers an issuer an A rating at a fee which does not exceed ∆,

the issuer does not demand a rating.

Let Dt
i ∈ [0, 1] denote the mass of issuers who demand a rating from CRA i

in period t. The mass of issuers who demand a rating from CRA i thus depends

on whether the regulator approves CRA i, the number of approved CRAs, the

rating thresholds and the fees:

Dt
i = Dt

i(w
t
i , n

t, ati, a
t
−i, f

t
i , f

t
−i) (1.3)

If the regulator does not approve CRA i in period t (wti = 0), no issuer

demands a rating from CRA i by assumption, so

Dt
i = 0. (1.4)
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If the regulator approves only CRA i in period t (wti = 1 and nt = 1), the

mass of issuers who demand a rating from CRA i is given by

Dt
i =

 ati if f ti ≤ ∆

0 if f ti > ∆.
(1.5)

Suppose now that the regulator approves CRA i (wti = 1) and at least one

other CRA in period t (nt ≥ 2). Suppose further that all other approved CRAs

choose the same fee f t−i and the same rating threshold at−i. The mass of issuers

who demand a rating from CRA i is then given by

Dt
i =



ati if f ti < f t−i and f ti ≤ ∆

1
nta

t
i if f ti = f t−i ≤ ∆ and ati ≤ at−i

ati − nt−1
nt a

t
−i if f ti = f t−i ≤ ∆ and ati > at−i

0 else.

(1.6)

At the end of period t, t = 1, 2, . . ., the regulator observes the default rate

within each approved CRA’s rating category A. Let xti denote the default rate

within CRA i’s rating category A in period t. The regulator incurs monitoring

costs cM for each approved CRA. Results do not change, if the regulator can also

observe the default rate within CRA i’s rating category B.

The default rate xti does not only depend on rating threshold ati. It can also

be influenced by a common shock ηt. If CRA i rates a continuum of issuers, an

individual shock, which affects the default probability of just one issuer, does not

influence the default rate within CRA i’s rating category A. A common shock,

by contrast, which affects many or all issuers (e.g. an industry- or economy-wide

shock), has an effect on the default rate within CRA i’s rating category A.
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With probability 1 − p, the common shock ηt = 0. With probability p, the

common shock ηt is positive and uniformly distributed on the interval (0, 1].

Results do not change, if the common shock ηt can take on negative values as

well.

The common shock ηt increases the default probability of types-A and -B

issuers to dA + ηtA and dB + ηtB, where ηtA = (1− dA)ηt and ηtB = (1− dB)ηt. This

assumption has two implications. First, because the common shock ηt < 1, the

default probability of type-A issuers is lower than the default probability of type-

B issuers: Because ηt < 1, dA + ηtA < dB + ηtB. Second, the default probability

of type-A issuers can take on any value in the interval [dA, 1]. Apart from these

two implications, results do not depend on the functional form of ηtA and ηtB.

To simplify the analysis, we assume that defaults are uncorrelated. As a

result, V ar(xti) = V ar(ηt). Let qti denote the proportion of type-A issuers in

CRA i’s rating category A in period t. The default rate xti is then given by

xti = qti(dA + ηtA) + (1− qti)(dB + ηtB), (1.7)

where ηtA = (1 − dA)ηt and ηtB = (1 − dB)ηt. This assumption has again two

implications. First, if the proportion of type-A issuers in CRA i’s rating cate-

gory A is larger than the proportion of type-A issuers in CRA j’s rating cate-

gory A, the default rate within CRA i’s rating category A is smaller than the

default rate within CRA j’s rating category A for any common shock ηt < 1:

If qti > qtj, x
t
i < xtj ∀ηt < 1. Second, the regulator cannot detect a collusive

agreement to offer inflated ratings, if no CRA deviates from it. If CRAs collude

to offer inflated ratings, default rates increase, but do not differ from each other.

Since the default probability of type-A issuers can take on any value in the in-

terval [dA, 1], the regulator cannot detect whether high default rates are due to
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a collusive agreement or the common shock. If, however, a CRA deviates from

such a collusive agreement, default rates differ and the regulator can detect the

collusive agreement by evaluating the relative performance of CRAs.

CRAs are only interested in their monetary payoff. Let δRA denote a CRA’s

discount factor. CRA i’s utility function is given by

URA,i = (1− δRA)
∞∑
t=1

δt−1
RAD

t
i(·)f ti . (1.8)

The regulator wants to induce all approved CRAs to offer correct ratings.

This assumption is motivated by the observation that financial regulators often

rely on ratings of certain recognized CRAs, for instance to evaluate the amount

of capital which financial institutions are required to hold. However, we do not

assume that the regulator wants to influence the CRAs’ pricing behaviour, as

the price-setting has only distributive effects in this model. Let δRe denote the

regulator’s discount factor. The regulator incurs costs of

(1− δRe)
∞∑
t=1

δt−1
Re

[
cA
∑

i
zti︸ ︷︷ ︸

approval costs

+ cM
∑

i
wti︸ ︷︷ ︸

monitoring costs

]
. (1.9)

In period t = 0, the regulator hence chooses an approval scheme which minimizes

approval and monitoring costs subject to two constraints. First, the regulator

has to induce all approved CRAs to offer correct ratings. Second, the regulator

has to approve at least one CRA in each period.

1.3 Inducing Correct Ratings

This section considers approval schemes which can induce all approved CRAs to

offer correct ratings. First, we assume that CRAs do not collude to offer inflated

ratings. Then, we relax this assumption.
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1.3.1 In Absence of Collusion

If CRAs do not collude to offer inflated ratings, the regulator can easily induce all

approved CRAs to offer correct ratings. Consider the following approval scheme.

Approval scheme 1 Approve two CRAs in period 1. Replace CRA i in subse-

quent periods, if and only if xi > xj.

According to approval scheme 1, the regulator approves two CRAs and eval-

uates the relative performance of approved CRAs. If the default rate within

CRA i’s rating category A is larger than the default rate within CRA j’s rating

category A, the regulator denies approval to CRA i in all future periods and

grants approval to another CRA. As the following proposition shows, approval

scheme 1 can induce each approved CRA to offer correct ratings.

Proposition 1.1 Suppose the regulator chooses approval scheme 1. If δRA is

sufficiently high, there exists a subgame perfect equilibrium in which both approved

CRAs offer correct ratings.

The intuition for Proposition 1.1 is as follows. CRAs can collude to choose

fee ∆ using trigger strategies. If the CRAs’ discount factor δRA is sufficiently high,

there exists a punishment phase which is sufficiently long, such that an approved

CRA has no incentive to deviate from choosing fee ∆, and sufficiently short, such

that an approved CRA has no incentive to deviate from the punishment phase. If

CRAs collude to choose fee ∆, CRAs make a profit ∆ per issuer who demands a

rating. If CRAs do not collude to offer inflated ratings, the regulator can filter out

the common shock η by evaluating the relative performance of approved CRAs.

If, in addition, the CRAs’ discount factor δRA is sufficiently high, the threat to

deny approval in all future periods deters CRAs from offering inflated ratings.



The Regulation of Credit Rating Agencies 17

The regulator could also approve just one CRA and induce this CRA to offer

correct ratings. Consider the following approval scheme.

Approval scheme 2 Approve one CRA in period 1. Replace this CRA in sub-

sequent periods, if and only if xi > dA.

According to approval scheme 2, the regulator approves one CRA. Therefore,

the regulator cannot filter out the common shock η by evaluating the relative

performance of approved CRAs. If the default rate within rating category A is

larger than default probability dA, the regulator denies approval to the CRA in all

future periods and grants approval to another CRA. As the following proposition

shows, approval scheme 2 can also induce the approved CRA to offer correct

ratings.

Proposition 1.2 Suppose the regulator chooses approval scheme 2. If δRA is

sufficiently high in relation to p, the approved CRA offers correct ratings.

The intuition for proposition 1.2 is as follows. The approved CRA can again

make a profit ∆ per issuer who demands a rating. If the approved CRA offers

correct ratings, the regulator only replaces the CRA, if the common shock η is

positive. If the approved CRA offers inflated ratings, the regulator replaces the

CRA in any case. The approved CRA hence has no incentive to offer inflated

ratings, if the CRAs’ discount factor δRA is sufficiently high in relation to the

probability p that the common shock η is positive. If the approved CRA chooses

a lower rating threshold and offers some type-A issuers a B rating, less issuers

demand a rating. The default rate however does not decrease, as the approved

CRA still offers only type-A issuers an A rating. The approved CRA hence has

no incentive to choose a lower rating threshold.



The Regulation of Credit Rating Agencies 18

However, as the following proposition shows, approval scheme 2 may be inef-

ficient.

Proposition 1.3 If δRe is sufficiently high and monitoring costs cM are suffi-

ciently smaller than approval costs cA, approval scheme 1 generates less costs

than approval scheme 2.

The intuition is straightforward. If the regulator chooses approval scheme 1,

the regulator approves two CRAs and replaces CRA i, if xi > xj. Given that

both CRAs offer correct ratings, the regulator does not have to replace a CRA.

If the regulator however chooses approval scheme 2, the regulator approves one

CRA and replaces the CRA, if xi > dA. The regulator hence has to replace

the approved CRA, if the common shock η is positive, even if the CRA offers

correct ratings. Thus, approval scheme 2 generates lower monitoring costs than

approval scheme 1, but may require the regulator to replace the approved CRA,

even if the CRA offers correct ratings. If the regulator’s discount factor δRe is

sufficiently high, approval scheme 2 hence generates higher approval costs than

approval scheme 1.

It is plausible that monitoring costs cM are sufficiently smaller than approval

costs cA. Monitoring costs cM represent costs to monitor default rates. Approval

costs cA may be interpreted as costs to establish a CRA.

1.3.2 Preventing Collusion

Approval scheme 1 however does not provide an incentive to deviate from a

collusive agreement to offer inflated ratings. As the following proposition shows,

CRAs may hence collude to offer inflated ratings.
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Proposition 1.4 If the regulator chooses approval scheme 1, CRAs may collude

to offer inflated ratings.

The intuition for proposition 1.4 is twofold. First, each approved CRA gets a

higher payoff, if both approved CRAs collude to offer inflated ratings. Suppose

both approved CRAs collude to offer inflated ratings. As a result, more issuers

demand a rating from each approved CRA and default rates increase. However, as

default rates do not differ (xi = xj), the regulator does not deny approval to the

colluding CRAs in future periods. Second, approval scheme 1 does not provide

an incentive to deviate from such a collusive agreement. Suppose CRA i offers

less inflated ratings than CRA j. As a result, less issuers demand a rating from

CRA i, and the default rate within CRA i’s rating category A decreases. The

default rate within CRA j’s rating category A is thus larger than the default rate

within CRA i’s rating category A (xj > xi). Consequently, the regulator denies

approval to CRA j in all future periods and approves another CRA to replace

CRA j. Since the regulator immediately approves another CRA to replace CRA j,

CRA i does not benefit from deviating. Given that CRA j sticks to the collusive

agreement, it is optimal for CRA i to stick to the collusive agreement.

The regulator can again approve two CRAs and prevent the approved CRAs

from colluding to offer inflated ratings by providing an incentive to deviate from

such a collusive agreement. Consider the following approval scheme.

Approval scheme 3 Approve two CRAs in period 1. Deny approval to CRA i

in all future periods, if and only if xi > xj. Approve another CRA to replace

CRA i, if and only if in the following periods xj > dA.

Approval scheme 3 is similar to approval scheme 1 in some respects. The

regulator again approves two CRAs and evaluates the relative performance of
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approved CRAs. If xi > xj, the regulator again denies approval to CRA i in all

future periods.

Unlike approval scheme 1, approval scheme 3 however provides an incentive

to deviate from a collusive agreement to offer inflated ratings. If xj > xi, the

regulator does not immediately approve another CRA to replace CRA j. The

regulator only approves another CRA, if in the following periods xi > dA. As the

following proposition shows, approval scheme 3 can hence prevent the approved

CRAs from colluding to offer inflated ratings.

Proposition 1.5 Suppose the regulator chooses approval scheme 3. If δRA is suf-

ficiently high, there exists a subgame perfect equilibrium, in which both approved

CRAs offer correct ratings. In addition, approval scheme 3 prevents the approved

CRAs from colluding to offer inflated ratings.

The intuition is as follows. First, given CRA j offers correct ratings, it is again

optimal for CRA i to offer correct ratings. Second, each CRA has an incentive

to deviate from a collusive agreement to offer inflated ratings. Suppose CRA i

and CRA j collude to offer inflated ratings and CRA j sticks to the collusive

agreement. If CRA i offers less issuers an inflated rating than CRA j, there

are two effects. First, the mass of issuers who demand a rating from CRA i

decreases. Second, the default rate within CRA j’s rating category A is larger

than the default rate within CRA i’s rating category A (xj > xi). The regulator

consequently denies approval to CRA j and grants CRA i a monopoly, until

xi > dA. If CRA i offers marginally less issuers an inflated ratings than CRA j,

the mass of issuers who demand a rating from CRA i decreases only marginally.

Still xj > xi. Thus, given CRA j offers inflated ratings, it is optimal for CRA i

to offer marginally less issuers an inflated rating.
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1.4 Conclusion

The model shows that there exists an approval scheme which can induce credit

rating agencies to offer correct ratings. The model suggests that a regulator

should both deter a credit rating agency from unilaterally offering inflated ratings,

and provide an incentive to deviate from a collusive agreement to offer inflated

ratings. The model indicates that a regulator should both threaten to deny

approval in future periods if a credit rating agency’s performance is worse than its

competitors’, and reward a credit rating agency which deviates from a collusive

agreement to offer inflated ratings by reducing the number of approved credit

rating agencies in future periods.

Financial regulators recognize certain credit rating agencies and rely on their

ratings. However, it is unclear whether the current regulatory approach induces

credit rating agencies to assign correct ratings. Currently, financial regulators

neither explicitly threaten to deny recognition in future periods nor explicitly

offer to reward a credit rating agency which deviates from a collusion to offer

inflated ratings.
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1.5 Appendix

Proof of Proposition 1.1

Suppose the regulator chooses approval scheme 1.

Consider the following strategy.

Choose rating threshold m in each period. In period 1, choose fee ∆.

In period t > 1, choose fee ∆, if both approved CRAs chose fee ∆ in

the previous period. Also choose fee ∆, if both approved CRAs chose

fee 0 in the previous τ periods, where

ln(2δRA − 1)

ln δRA
− 1 ≤ τ ≤

ln[(1− δRA) 2
m

(1−m)]

ln δRA
.

Otherwise, choose fee 0.

The strategy of an approved CRA hence involves two phases: a (potentially

infinite) collusive phase in which the CRA chooses rating threshold m and fee ∆

and a (τ -period) punishment phase in which the CRA chooses rating threshold m

and fee 0. If both approved CRAs play the two-phase strategy, they only collude

on prices, not on rating thresholds.

Suppose that CRA j chooses rating threshold m and fee ∆. The mass of

issuers who demand a rating from CRA i is then given by

Di =



ai if fi < ∆

1
2
ai if fi = ∆ and ai ≤ m

ai − 1
2
m if fi = ∆ and ai > m

0 else.

(1.10)
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If both approved CRAs choose rating threshold m (and thus offer correct

ratings) and fee ∆, each type-A issuer randomizes among them, while type-B

issuers do not demand a rating. As a result, issuers of mass m
2

demand a rating

from CRA i (Di = m
2

). The default rates within both approved CRA’s rating

category A do not differ (xi = xj). Each approved CRA hence gets the payoff

(1− δRA)
∞∑
t=1

δt−1
RA

m

2
∆ =

m

2
∆. (1.11)

If CRA i instead chooses a higher rating threshold ai > m (and thus offers

inflated ratings), the mass of issuers who demand a rating from CRA i increases

for any given fee fi ≤ ∆. (If fi > ∆, no issuer requests a rating from CRA i

irrespective of its rating threshold ai.) The default rate within its rating cate-

gory A increases as well. As the default rate within CRA i’s rating category A

is consequently larger than the default rate within CRA j’s rating category A

(xi > xj), the regulator denies approval to CRA i in all future periods. If a single

approved CRA chooses a higher rating threshold ai > m, it hence maximizes its

payoff by maxizing its payoff in this period. An approved CRA maximizes its

payoff in this period, if it chooses rating threshold ai = 1 (and thus offers all

issuers an A rating) and fee fi = ∆− ε, where ε is arbitrarily small. In this case,

all issuers demand a rating from the CRA (Di = 1). The deviation yields the

payoff

(1− δRA)
[
1 (∆− ε) +

∞∑
t=2

δt−1
RA 0

]
(1.12)

An approved CRA has no incentive to choose a higher rating threshold ai > m,

if

m

2
∆ ≥ (1− δRA)(∆− ε), (1.13)
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or

δRA ≥ 1− m

2
. (1.14)

If CRA i instead chooses a lower rating threshold ai < m (and thus offers

(some) type-A issuers a B rating), the mass of issuers who demand a rating from

CRA i decreases for any given fee fi ≤ ∆. (If fi > ∆, no issuer requests a rating

from CRA i irrespective of its rating threshold ai.) Since CRA i still offers only

type-A issuers an A-rating, the default rate within CRA i’s rating category A

does not decrease. An approved CRA hence has no incentive to choose a lower

rating threshold ai < m.

If CRA i only deviates from choosing fee ∆, it maximizes its payoff by choosing

fee fi = ∆−ε, where ε is arbitrarily small. In this case, all type-A issuers demand

a rating from CRA i (Di = m). If either approved CRA deviates from choosing

fee ∆, the (τ -period) punishment phase begins. The deviation hence yields the

payoff

(1− δRA)
[
m(∆− ε) +

τ+1∑
t=2

δt−1
RA 0 +

∞∑
t=τ+2

δt−1
RA

m

2
∆
]
. (1.15)

An approved CRA has no incentive to deviate from choosing fee ∆, if

m

2
∆ ≥ (1− δRA)

[
m(∆− ε) +

∞∑
t=τ+2

δt−1
RA

m

2
∆
]
. (1.16)

This is equivalent to
τ+1∑
t=1

δt−1
RA ≥ 2, (1.17)

or

τ ≥ ln(2δRA − 1)

lnδRA
− 1. (1.18)
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An approved CRA hence has no incentive to deviate from choosing fee ∆, if the

punishment phase is sufficiently long.

2δRA − 1 > 0, (1.19)

if

δRA >
1

2
, (1.20)

which holds, if

δRa ≥ 1− m

2
(1.21)

and

m < 1. (1.22)

Note that m < 1 holds by assumption. For δRA ∈
]

1
2
, 1
]
,

∂

∂δRA

( ln(2δRA − 1)

lnδRA
− 1
)

< 0 (1.23)

lim
δRA→ 1

2

( ln(2δRA − 1)

lnδRA
− 1
)
→ ∞ (1.24)

lim
δRA→1

( ln(2δRA − 1)

lnδRA
− 1
)

= 1. (1.25)

The (lower) threshold for the length of the punishment phase decreases with the

CRAs’ discount factor δRA. If δRA converges to 1
2
, the threshold goes to ∞. If

δRA converges to 1, the threshold converges to 1.

If at least one approved CRA deviates from choosing fee ∆, the two-phase

strategy prescribes choosing rating threshold m and fee 0 for τ periods.
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Suppose that CRA j chooses rating threshold m and fee 0. The mass of issuers

who demand a rating from CRA i is then given by

Di =



1
2
ai if fi = 0 and ai ≤ m

ai − 1
2
m if fi = 0 and ai > m

ai −m if 0 < fi ≤ ∆ and ai > m

0 else.

(1.26)

Let us consider the first period of the punishment phase. If neither approved

CRA deviates from the punishment phase, each approved CRA gets the payoff

(1− δRA)
[ τ∑
t=1

δt−1
RA 0 +

∞∑
t=τ+1

δt−1
RA

m

2
∆
]

= δτRA
m

2
∆. (1.27)

Given that CRA j does not deviate from the punishment phase, CRA i can only

increase its payoff in this period by choosing a higher rating threshold ai > m (i.e.

by offering inflated ratings). As the default rate within CRA i’s rating category A

is consequently larger than the default rate within CRA j’s rating category A

(xi > xj), the regulator denies approval to CRA i in all future periods. If CRA i

deviates from the punishment phase by choosing a higher rating threshold ai > m,

it hence maximizes its payoff by choosing rating threshold ai = 1 (i.e. by offering

all issuers an A rating) and fee fi = ∆. In this case, all type-B issuers demand

a rating from CRA i (Di = 1 − m). All type-A issuers demand a rating from

CRA j (Dj = m). The deviation yields the payoff

(1− δRA)
[
(1−m) ∆ +

∞∑
t=2

δt−1
RA 0

]
. (1.28)
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An approved CRA has no incentive to deviate in the first period of the pun-

ishment phase, if

δτRA
m

2
∆ ≥ (1− δRA)(1−m)∆ (1.29)

or

τ ≤
ln[(1− δRA) 2

m
(1−m)]

ln δRA
. (1.30)

Hence, an approved CRA has no incentive to deviate in the first period of the

punishment phase, if the punishment phase is sufficiently short.

ln[(1− δRA) 2
m

(1−m)]

ln δRA
≥ 1, (1.31)

if

δRA ≥
2− 2m

2−m
, (1.32)

which holds, if

δRa ≥ 1− m

2
(1.33)

and

m ≥ 0. (1.34)

Note that m > 0 holds by assumption. For δRA ∈
[

2−2m
2−m , 1

]
,

∂

∂δRA

( ln[(1− δRA) 2
m

(1−m)]

ln δRA

)
> 0 (1.35)

lim
δRA→ 2−2m

2−m

( ln[(1− δRA) 2
m

(1−m)]

ln δRA

)
= 1 (1.36)

lim
δRA→1

( ln[(1− δRA) 2
m

(1−m)]

ln δRA

)
→ ∞. (1.37)

The (upper) threshold for the length of the punishment phase increases with the
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CRAs’ discount factor δRA. If δRA converges to 2−2m
2−m , the threshold converges

to 1. If δRA converges to 1, the threshold goes to ∞.

Let us now consider the t-th period of the punishment phase. If neither

approved CRA deviates from the punishment phase, each approved CRA gets

the payoff

δ
τ−(t−1)
RA

m

2
∆. (1.38)

Given that CRA j does not deviate from the punishment phase, CRA i maximizes

its payoff in this period by choosing rating threshold ai = 1 (i.e. by offering all

issuers an A rating) and fee ∆. The deviation again yields the payoff

(1− δRA)(1−m)∆. (1.39)

An approved CRA has no incentive to deviate in the t-th period of the punishment

phase, if

δ
τ−(t−1)
RA

m

2
∆ ≥ (1− δRA)(1−m)∆ (1.40)

Since

δ
τ−(t−1)
RA > δτRA (1.41)

for

t > 1, (1.42)

an approved CRA has no incentive to deviate in any period of the punishment

phase, if it has no incentive to deviate in the first period of the punishment phase.

There exists a punishment phase, which is sufficiently long, such that an ap-

proved CRA has no incentive to deviate from choosing fee ∆, and sufficiently

short, such that an approved CRA has no incentive to deviate from the punish-

ment phase, if there exists a τ ∈ N, which satisfies inequality (1.18) and (1.30).
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∃τ ∈ N, which satisfies inequality (1.18) and (1.30), if

ln(2δRA − 1)

lnδRA
− 1 + 1 ≤

ln[(1− δRA) 2
m

(1−m)]

ln δRA
, (1.43)

or

δRA ≥ 1− m

2
. (1.44)

That is, there exists a punishment phase, which is sufficiently long, such that

an approved CRA has no incentive to deviate from choosing fee ∆, and suffi-

ciently short, such that an approved CRA has no incentive to deviate from the

punishment phase, if δRA ≥ 1− m
2

.

Thus, if the regulator chooses approval scheme 1 and if δRA ≥ 1 − m
2

, there

exists a subgame perfect equilibrium, in which both approved CRAs offer correct

ratings.

Proof of Proposition 1.2

Suppose that the regulator chooses approval scheme 2.

The mass of issuers who demand a rating from the approved CRA is given by

D =

 a if f ≤ ∆

0 if f > ∆.
(1.45)

It is hence optimal for the approved CRA to choose fee ∆. Let us now consider

the CRA’s choice of rating threshold a.

If the approved CRA chooses rating threshold a = m (and thus offers correct

ratings), issuers of mass m demand a rating. As the CRA only offers type-A

issuers an A rating, the regulator only denies approval to the CRA in all future
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periods, if the common shock is positive (η > 0). The CRA hence gets the payoff

(1− δRA)
[
m∆ +

∞∑
t=2

δt−1
RA (1− p)tm∆

]
. (1.46)

If the approved CRA instead chooses a higher rating threshold a > m (and

thus offers inflated ratings), the mass of issuers who demand a rating increases and

the default rate within rating category-A is larger than default probability dA.

The regulator hence denies approval to the CRA in all future periods. If the

approved CRA chooses a higher rating threshold a > m, it hence maximizes its

payoff by maximizing its payoff in this period. The approved CRA maximizes

its payoff in this period, if it chooses rating threshold a = 1 (and thus offers all

issuers an A rating). In this case, all issuers demand a rating (D = 1). The CRA

hence gets the payoff

(1− δRA)
[
1∆ +

∞∑
t=2

δt−1
RA 0

]
. (1.47)

The approved CRA has no incentive to choose a higher rating threshold a > m,

if

(1− δRA)
[
m∆ +

∞∑
t=2

δt−1
RA (1− p)tm∆

]
≥ (1− δRA)∆ (1.48)

or

δRA ≥
1−m
1− p

. (1.49)

If the approved CRA instead chooses a lower rating threshold a < m (and

thus offers (some) type-A issuers a B rating), the mass of issuers who demand

a rating decreases. Since the CRA still offers only type-A issuers an A-rating,

the default rate within rating category A does not decrease. The approved CRA

hence has no incentive to choose a lower rating threshold a < m.
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Thus, if the CRAs’ discount factor δRA ≥ 1−m
1−p , approval scheme 2 can induce

the approved CRA to offer correct ratings.

Proof of Proposition 1.3

Approval scheme 1 incurs costs of

(1− δRe)
[
2cA +

∞∑
t=1

δt−1
Re 2cM

]
. (1.50)

Approval scheme 2 incurs costs of

(1− δRe)
[
cA +

∞∑
t=2

δt−1
Re pcA +

∞∑
t=1

δt−1
Re cM

]
. (1.51)

Approval scheme 1 incurs less costs than approval scheme 2, if

cM < [(1 + p)δRe − 1]cA. (1.52)

(1 + p)δRe − 1 > 0, (1.53)

if

δRe >
1

1 + p
. (1.54)

Note that

∂

∂δRe

(
[(1 + p)δRe − 1]cA

)
> 0. (1.55)

If the regulator’s discount factor δRe converges to 1, approval scheme 1 incurs less

costs than approval scheme 2, if

cM < pcA. (1.56)
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Thus, if the regulator’s discount factor δRe is sufficiently high and monitoring

costs cM are sufficiently smaller than approval costs cA, approval scheme 1 incurs

less costs than approval scheme 2.

Proof of Proposition 1.4

Suppose the regulator chooses approval scheme 1.

As shown in the proof of proposition 1.1, if δRA ≥ 1 − m
2

, there exists a

subgame perfect equilibrium in which both approved CRAs offer correct ratings.

In this equilibium, each approved CRA gets the payoff

(1− δRA)
∞∑
t=1

δt−1
RA

m

2
∆ =

m

2
∆. (1.57)

Consider again the strategies which form the equilibrium. Suppose now that

both approved CRAs collude to choose rating threshold aH > m instead of rating

threshold m. As a result, more issuers demand a rating from each approved CRA

(Di = Dj = aH

2
) and default rates increase. However, as default rates do not

differ (xi = xj), the regulator does not deny approval to the colluding CRAs in

future periods. Each approved CRA hence gets the payoff

(1− δRA)
[aH

2
∆ +

∞∑
t=2

δt−1
RA

m

2
∆
]
. (1.58)

Since

(1− δRA)
[aH

2
∆ +

∞∑
t=2

δt−1
RA

m

2
∆
]
>
m

2
∆, (1.59)

each approved CRA gets a higher payoff, if both approved CRAs collude to offer

inflated ratings.
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Approval scheme 1 does not provide an incentive to deviate from such a col-

lusive agreement. Suppose CRA i and CRA j collude to choose rating threshold

aH > m and fee ∆ and suppose CRA j sticks to the collusive agreement. If CRA i

deviates from the collusive agreement by choosing rating threshold aH − ε, the

default rate within CRA j’s rating category A is larger than the default rate

within CRA i’s rating category A (xj > xi). The regulator consequently denies

approval to CRA j in all future periods and approves another CRA to replace

CRA j. CRA i hence gets the payoff

(1− δRA)
[aH − ε

2
∆ +

∞∑
t=2

δt−1
RA

m

2
∆
]
. (1.60)

Since

(1− δRA)
[aH

2
∆ +

∞∑
t=2

δt−1
RA

m

2
∆
]
> (1− δRA)

[aH − ε
2

∆ +
∞∑
t=2

δt−1
RA

m

2
∆
]
, (1.61)

CRA i has no incentive to deviate from the collusive agreement by choosing rating

threshold aH − ε.

Moreover, if the CRA’s discount factor δRA is sufficiently high, CRA i has no

incentive to deviate from the price collusion. Suppose again that CRA j sticks to

the price collusion and chooses rating threshold aH and fee ∆. If CRA i deviates

from the price collusion by choosing fee ∆ − ε, the punishment phase begins.

Proceeding analogously as in the proof of proposition 1.1, it can be shown that

there exists a punishment phase, which is sufficiently long, such that an approved

CRA has no incentive to deviate from choosing fee ∆, and sufficiently short, such

that an approved CRA has no incentive to deviate from the punishment phase,

if

δRA ≥
2 + aH − 2m

2 + aH −m
. (1.62)
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If aH = m, this condition is equivalent to the prior condition

δRA ≥ 1− m

2
. (1.63)

For m > 0 (which holds by assumption),

∂

∂aH

(2 + aH − 2m

2 + aH −m

)
> 0. (1.64)

If aH = 1, the condition is equivalent to

δRA ≥
3− 2m

3−m
. (1.65)

If m > 0,

3− 2m

3−m
< 1. (1.66)

Thus, if the regulator chooses approval scheme 1, CRAs may collude to offer

inflated ratings.

Proof of Proposition 1.5

Suppose the regulator chooses approval scheme 3.

If δRA ≥ 1 − m
2

, there exists a subgame perfect equilibrium in which both

approved CRAs offer correct ratings. The proof proceeds along the same lines as

the proof of proposition 1.1. It is therefore omitted.

Moreover, approval scheme 3 provides an incentive to deviate from a collu-

sive agreement to offer inflated ratings. Suppose CRA i and CRA j collude to

choose rating threshold aH > m and fee ∆. If both CRAs stick to the collusive



The Regulation of Credit Rating Agencies 35

agreement, each approved CRA gets the payoff

(1− δRA)
[aH

2
∆ +

∞∑
t=2

δt−1
RA

m

2
∆
]
. (1.67)

If CRA i deviates from the collusive agreement and chooses rating threshold

aH − ε, the mass of issuers who demand a rating from CRA i decreases by ε
2
.

The default rate within CRA i’s rating category A decreases as well. As a result

xj > xi. The regulator consequently denies approval to CRA j in all future

periods and approves only CRA i until the default rate within CRA i’s rating

category A is larger than default probability dA. CRA i hence gets the payoff

(1−δRA)
[aH − ε

2
∆+δRAm∆+

∞∑
t=3

δt−1
RA (1−p)t−2m∆+

∞∑
t=3

δt−1
RA p

t−2m

2
∆
]
. (1.68)

Since the payoff from deviating is larger than the payoff from sticking to the collu-

sive agreement, each CRA has an incentive to deviate from a collusive agreement

to offer inflated ratings.

If the regulator approves only CRA i until the default rate within CRA i’s

rating category A is larger than default probability dA, CRA i offers correct

ratings, if the CRAs’ discount factor δRA is sufficiently high. The proof proceeds

along the same lines as the proof of proposition 1.2. It is therefore omitted.

Thus, if δRA is sufficiently high, there exists a subgame perfect equilibrium, in

which both approved CRAs offer correct ratings. In addition, approval scheme 3

prevents the approved CRAs from colluding to offer inflated ratings.
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Mählmann, Thomas, 2008. Rating Agencies and the Role of Rating Publication

Rights. Journal of Banking and Finance 32, 2414-2422.
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Chapter 2

The Appeal of Risky Assets

2.1 Introduction

In the wake of the recent financial crisis, it has often been argued that fund

managers did not know about the risks in their portfolio; otherwise, it has been

argued, they would not have invested in such risky assets. We argue, however,

that fund managers might have known about the risks and invested in the risky

assets nonetheless. We suggest that it might even have been individually optimal

to invest in the risky assets if the expected return on these assets was lower than

the expected return on other, less risky assets.

A fund’s performance is usually compared to the performance of an index or

other funds. If a fund trails the benchmark, the fund manager is often replaced.

We argue that this may lead to excessive risk-taking if fund managers differ in

ability and investment restrictions are inadequate. If investment restrictions are

adequate, benchmarking may sort out low-ability from high-ability fund man-

agers. If, however, investment restrictions are inadequate, benchmarking may

lead to excessive risk-taking. To match the benchmark, fund managers may in-
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crease the risk of their portfolio even if this decreases the expected return on the

portfolio.

Some fund managers, for instance, are restricted to invest in AAA-rated

bonds. If all AAA-rated bonds offer similar yields at a similar risk, benchmark-

ing may sort out low-ability from high-ability fund managers. If, however, some

AAA-rated bonds (e.g. AAA-rated mortgage-backed securities) offer higher yields

at a higher risk, fund managers may invest in these bonds to match the bench-

mark even if their expected return is lower than the expected return on other,

less risky AAA-rated bonds.

We consider a model in which fund managers differ in ability and are fired

if they miss the benchmark. Fund managers can create a perfectly diversified

portfolio and, in addition, gamble. High-ability fund managers can create a per-

fectly diversified portfolio with a higher return than low-ability fund managers.1

In addition, fund managers have the opportunity to invest in a risky asset which

increases the risk of the overall portfolio and decreases the expected return on

the overall portfolio. Fund managers are fired if the realized return is lower than

the average realized return.2 If a fund manager is fired, the fund manager incurs

costs. Besides, fund managers get a fixed wage, receive a share of profits and also

bear a share of losses.

We find that if the costs of being fired are sufficiently large in relation to

the share of the realized return, there exists no equilibrium in which no fund

1Suppose, for instance, high-ability managers may create a perfectly diversified portfolio at
lower costs than low-ability managers, and investors receive the return of the portfolio net of
these costs. Then, high-ability managers can create such a portfolio with a higher net return
than low-ability managers.

2The firing rule is taken as given. If investment restrictions were adequate and fund managers
could not gamble, such a firing rule would sort out low-ability from high-ability fund managers.
The main purpose here, however, is not to design an optimal incentive or sorting scheme; it
is to show that benchmarking may lead to excessive risk-taking if investment restrictions are
inadequate.
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manager invests in the risky asset. If there exists a symmetric3 equilibrium in

pure strategies, low-ability fund managers, at least, invest in the risky asset. We

find that there exists at least one such equilibrium if and only if the returns of

the risky asset or the probability that the risky asset generates a high return are

sufficiently large.4 (If fund managers do not receive a share of the realized return,

our results hold if fund managers incur positive costs if they are fired.)

There is a substantial literature on incentives in funds management.5 Brown

et al. (1996), for instance, show empirically that fund managers with a bad rel-

ative performance increase risk relative to fund managers with a good relative

performance. They informally argue that fund managers may increase risk be-

cause fund inflows are convex in relative performance.6 Taylor (2003) develops a

theoretical model in which fund managers compete for inflows in a winner-takes-

all tournament. Taylor finds, however, that in such a setting, fund managers with

a good relative performance are more likely to increase risk than managers with

a bad relative performance. Our model differs from the prevalent point of view.

We do not consider a situation in which fund managers try to be a ‘winner’. We

consider a situation in which fund managers try not to be a ‘loser’. Khorana

(1996) documents that fund managers with a bad relative performance are more

likely to be replaced. We suppose that this influences investment decisions. And

in contrast to the predictions of Taylor’s model, the predictions of our model are

consistent with Brown et al.’s empirical finding.

There is a number of models in which low-ability fund managers try to mimic

the actions of high-ability fund managers. Trueman (1988) and Dasgupta and

3That is, all low-ability fund managers make the same investment decision and all high-
ability fund managers make the same investment decision.

4The assumption, however, that an investment in the risky asset decreases the expected
return on the overall portfolio still holds.

5Bhattacharya et al. (2008) provide a good literature overview.
6Sirri and Tufano (1998) among others, show empirically that fund inflows are indeed convex

in relative performance.
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Prat (2006), for instance, show that fund managers may trade excessively (termed

‘noise trading’ or ‘churning’) because of career concerns. They argue that low-

ability fund managers (who are uninformed about the future return of a risky

asset) may trade in order to appear to have high ability (i.e. to be informed

about the future return of a risky asset). In our model, however, fund managers

do not try to mimic portfolio choices. Instead, they try to mimic portfolio returns.

The rest of the paper is organized as follows. In section 2.2, we present a

model in which fund managers differ in ability, have the opportunity to take

excessive risk, and are fired if they miss the benchmark. In section 2.3, we

examine investment decisions and characterize possible equilibria. In section 2.4,

we conclude and highlight the importance of adequate investment restrictions.

Proofs are provided in the appendix.

2.2 The Model

Consider a model with many fund managers. The managers differ in ability, have

the opportunity to take excessive risk, and are fired if they miss the benchmark.

There are two types of managers who differ in their ability θ, θ ∈ {θL, θH},

θH > θL. Of each type, there is a continuum of mass 1. (That is, half of managers

have high ability. Qualitative results do not change if, instead, a fraction λ,

λ ∈ (0, 1), of managers have high ability.) Managers with ability θL are indexed

by l, l ∈ [0, 1]. Managers with ability θH are indexed by h, h ∈ [0, 1].

At date 1, managers make their investment decisions. Managers can create a

perfectly diversified portfolio and, in addition, gamble. They have the opportu-

nity to invest in a risky asset which increases the risk of the overall portfolio and

decreases the expected return on the overall portfolio. (For instance, a manager
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who is restricted to invest in AAA-rated bonds may have the opportunity to

invest in AAA-rated mortgage-backed securities.) To simplify notation, we nor-

malize the amount of capital available to a manager to 1. Manager l invests al,

al ∈ [0, 1], in the risky asset. Manager h invests ah, ah ∈ [0, 1], in the risky asset.

Managers differ in their ability to create a perfectly diversified portfolio. (Sup-

pose, for instance, high-ability managers may create a perfectly diversified port-

folio at lower costs than low-ability managers, and investors receive the return

of the portfolio net of these costs. Then, high-ability managers can create such

a portfolio with a higher net return than low-ability managers.) To simplify the

model, we assume managers with ability θL can create a perfectly diversified

portfolio which generates a return r0 + θL. Managers with ability θH can create

a perfectly diversified portfolio which generates a return r0 + θH . (Results do

not change if the perfectly diversified portfolios are not risk-free, as long as the

returns are perfectly correlated.)

Managers do not, however, differ in their ability to gamble. (Qualitative

results do not change if managers who have a higher ability to create a perfectly

diversified portfolio also have a higher ability to gamble.) Each manager can

invest in a risky asset with a return R,

R =

 r+ with probability p

r− with probability 1− p.
(2.1)

We assume

r+ > r0 + θH (2.2)

and

E[R] = pr+ + (1− p)r− < r0 + θL. (2.3)
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That is, if the risky asset generates a high return, then the return on the risky

asset is higher than the return on the perfectly diversified portfolio for each

manager. (For instance, AAA-rated mortgage-backed securities offered a higher

yield than other, less risky AAA-rated bonds.) However, the expected return on

the risky asset is lower than the return on the perfectly diversified portfolio for

each manager. (The purpose here is to show that it may be individually optimal

to increase the risk of the portfolio even if this decreases the expected return

on the portfolio. For instance, we want to argue that it might even have been

individually optimal to invest in AAA-rated mortgage-backed securities if the

expected return on these bonds was lower than on other, less risky bonds.)

The return on a manager’s overall portfolio depends on the return on the

perfectly diversified portfolio, the return on the risky asset and the composition

of the overall portfolio. Manager l’s portfolio generates a return Πl,

Πl = r0 + θL + [R− (r0 + θL)]al. (2.4)

Manager h’s portfolio generates a return Πh,

Πh = r0 + θH + [R− (r0 + θH)]ah. (2.5)

The average portfolio return Π̄ depends on the managers’ investment decisions.

An individual manager’s investment decision, however, has no influence on the

average portfolio return because there is a continuum of managers. The average

portfolio return is given by

Π̄ =
1

2

(∫ 1

l=0

Πldl +

∫ 1

h=0

Πhdh

)
(2.6)
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or

Π̄ = r0 +
1

2

{
θL + θH + [R− (r0 + θL)]

∫ 1

l=0

aldl + [R− (r0 + θH)]

∫ 1

h=0

ahdh

}
.

(2.7)

At date 2, returns and payoffs are realized. Managers receive a fixed wage w

and a share s, s ∈ [0, 1], of the realized return. Manager l (h) is fired, if the

realized return πl (πh) is lower than the average realized return π̄. If a manager

is fired, the manager incurs costs c, c ∈ R+
0 . (These costs may be interpreted as

costs of finding a new job.)

The compensation contract and the firing rule are taken as given. If invest-

ment restrictions were adequate and managers could not gamble, the firing rule

would sort out low-ability from high-ability managers. The main purpose here,

however, is not to design an optimal incentive or sorting scheme; it is to show

that if investment restrictions are inadequate and managers can gamble, such a

firing rule may lead to excessive risk taking.

The probability that manager l (h) misses the benchmark depends on the

amount al (ah) the manager invests in the risky asset, and the amount a−l (a−h)

the other managers invest in the risky asset. Let P [Πl < Π̄|al, a−l] (P [Πh <

Π̄|ah, a−h]) denote the probability that manager l (h) misses the benchmark.

Managers are risk-neutral and maximize their expected utility. Manager l

chooses al to solve

max
al∈[0,1]

E[U ] = w + s{r0 + θL + [E[R]− (r0 + θL)]al} − P [Πl < Π̄|al, a−l]c. (2.8)

Manager h chooses ah to solve

max
ah∈[0,1]

E[U ] = w+s{r0 +θH +[E[R]− (r0 +θH)]ah}−P [Πh < Π̄|ah, a−h]c. (2.9)
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2.3 The Appeal of Risky Assets

Managers may not maximize the expected return on the overall portfolio because

they incur costs if the realized return is lower than the average realized return.

We now examine investment decisions and characterize possible equilibria. We

focus on symmetric7 equilibria in pure strategies.

Proposition 2.1 If costs c are sufficiently large in relation to the share s of the

realized return, there exists no equilibrium in which no manager invests in the

risky asset.

The intuition is straightforward. Consider a manager with low ability and

suppose all other managers do not invest in the risky asset. If the manager does

not invest in the risky asset, the manager misses the benchmark with probabil-

ity 1. If, by contrast, the manager invests sufficiently in the risky asset, there

are two effects: On the one hand, the expected return on the overall portfolio

decreases. On the other hand, the probability of matching the benchmark in-

creases. The manager matches the benchmark if the risky asset generates a high

return. If costs c are sufficiently large in relation to the share s of the realized

return, the manager hence invests in the risky asset.

Note that the threshold for costs c decreases with the share s of the realized

return. If managers do not receive a share of the realized return (s = 0), a low-

ability manager always invests in the risky asset (i.e. if c ≥ 0 which is satisfied

by assumption).

Suppose costs c are sufficiently large in relation to the share s of the realized

return and a symmetric equilibrium in pure strategies exists. Then, there is a

7That is, we examine equilibria in which all managers with low ability θL make the same
investment decision and all managers with high ability θH make the same investment decision.
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linear relationship between the amount managers with low ability and managers

with high ability invest in the risky asset:

Proposition 2.2 Suppose costs c are sufficiently large in relation to the share s

of the realized return, and a symmetric equilibrium in pure strategies exists. Then,

al =
θH − θL

r+ − (r0 + θL)
+
r+ − (r0 + θH)

r+ − (r0 + θL)
ah. (2.10)

The intuition is as follows: Suppose costs c are sufficiently large in relation to

the share s of the realized return and a symmetric equilibrium in pure strategies

exists. Then, both low- and high-ability managers must invest just as much in

the risky asset as is necessary to match the benchmark if the risky asset generates

a high return.

There may exist an equilibrium in which only low-ability managers invest in

the risky asset. If high-ability managers invest

ah = 0 (2.11)

in the risky asset, and low-ability managers invest

al =
θH − θL

r+ − (r0 + θL)
(2.12)

in the risky asset, both low- and high-ability managers match the benchmark if

the risky asset generates a high return.

However, there may also exist equilibria in which high-ability managers invest

in the risky asset. If high-ability managers invest

ah = x (2.13)
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in the risky asset, where 0 < x ≤ 1, low-ability managers have to invest

al =
θH − θL

r+ − (r0 + θL)
+
r+ − (r0 + θH)

r+ − (r0 + θL)
x (2.14)

in the risky asset to match the benchmark if the risky asset generates a high

return. And if, in turn, low-ability managers invest

al =
θH − θL

r+ − (r0 + θL)
+
r+ − (r0 + θH)

r+ − (r0 + θL)
x (2.15)

in the risky asset, high-ability managers have to invest

ah = x (2.16)

in the risky asset to match the benchmark if the risky asset generates a high

return.

Hence, if costs c are sufficiently large in relation to the share s of the realized

return and a symmetric equilibrium exists, there is a linear relationship between

the amount low- and high-ability managers invest in the risky asset:

al =
θH − θL

r+ − (r0 + θL)
+
r+ − (r0 + θH)

r+ − (r0 + θL)
ah. (2.17)

The more high-ability managers invest in the risky asset, the more low-ability

managers invest in the risky asset, and vice versa.

Possible symmetric equilibria in pure strategies are depicted in figure 2.1.

Note that low-ability managers, at least, invest in the risky asset (al > 0), and

they invest at least as much as high-ability managers (al ≥ ah).

If costs c are sufficiently large in relation to the share s of the realized return,

at least one symmetric equilibrium exists under certain conditions:



The Appeal of Risky Assets 47

al
1

θH−θL
r+−(r0+θL)

0
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Figure 2.1: Possible equilibria.

Proposition 2.3 Suppose costs c are sufficiently large in relation to the share s

of the realized return. Then, there exists at least one symmetric equilibrium in

pure strategies if and only if

• the returns r+ and r− of the risky asset are sufficiently large, or

• the probability p that the risky asset generates a high return is sufficiently

large in relation to the share s of the realized return.

The intuition is as follows. There exists at least one equilibrium if and only

if there exists an equilibrium in which high-ability managers invest

ah = 0 (2.18)

in the risky asset, and low-ability managers invest

al =
θH − θL

r+ − (r0 + θL)
(2.19)

in the risky asset. The ‘if’ part is obvious. For the ‘only if’ part, note that if

there does not exist an equilibrium in which only low-ability managers invest
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in the risky asset, there does not exist an equilibrium in which both low- and

high-ability managers invest in the risky asset.

There exists an equilibrium in which high-ability managers invest 0 in the risky

asset, and low-ability managers invest θH−θL
r+−(r0+θL)

in the risky asset, if and only

if the returns r+ and r− are sufficiently large, or the probability p is sufficiently

large in relation to the share s of the realized return.8 To see this, consider the

investment decisions of high- and low-ability managers.

First, consider the investment decision of a high-ability manager. Suppose all

low-ability managers invest θH−θL
r+−(r0+θL)

in the risky asset and all other high-ability

managers invest 0 in the risky asset. If the high-ability manager also invests 0

in the risky asset, the manager misses the benchmark with probability 0. If, by

contrast, the high-ability manager invests more than 0 in the risky asset, there are

two negative effects. First, the expected return on the overall portfolio decreases.

And second, the probability of missing the benchmark may increase. Hence, the

high-ability manager also invests 0 in the risky asset.

Now, consider the investment decision of a low-ability manager. Suppose all

high-ability managers invest 0 in the risky asset and all other low-ability man-

agers invest θH−θL
r+−(r0+θL)

in the risky asset. If the low-ability manager also invests

θH−θL
r+−(r0+θL)

in the risky asset, the manager matches the benchmark if the risky

asset generates a high return, but misses the benchmark if the risky asset gener-

ates a low return. That is, the manager misses the benchmark with probability

1− p. If, by contrast, the low-ability manager invests 0 in the risky asset, there

are again two effects. First, the expected return on the overall portfolio increases.

Second, the probability of missing the benchmark changes. The probability of

missing the benchmark now depends on the returns r+ and r− of the risky asset.

8The assumption, however, that the expected return on the risky asset is lower than the
return on the perfectly diversified portfolio still holds.
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If r+ and r− are sufficiently large, the low-ability manager misses the benchmark

with probability 1. If r+ and r− are not sufficiently large, the low-ability manager

only misses the benchmark with probability p.

The reason is as follows. (Consider again the investment decision of a low-

ability manager, and suppose again the manager invests 0 in the risky asset, while

all other low-ability managers invest θH−θL
r+−(r0+θL)

and all high-ability managers

invest 0 in the risky asset.) If the risky asset generates a high return, the low-

ability manager misses the benchmark in any case. If the risky asset generates a

low return, the manager also misses the benchmark if the average portfolio return

does not suffer much. This is the case if r+ and r− are sufficiently large. If the

return r+ is large, the other low-ability managers do not have to invest much

in the risky asset to match the benchmark if the risky asset generates a high

return (i.e. θH−θL
r+−(r0+θL)

is small). And if the return r− is large, portfolio returns do

not suffer much for a given amount invested in the risky asset if the risky asset

generates a low return. Hence, if r+ and r− are sufficiently large, the low-ability

manager misses the benchmark with probability 1 if the manager does not invest

in the risky asset. If r+ and r− are not sufficiently large, the low-ability manager

only misses the benchmark with probability p if the manager does not invest in

the risky asset.

Suppose now the returns r+ and r− are sufficiently large. Then, the low-

ability manager misses the benchmark with probability 1 if the manager does not

invest in the risky asset. Hence, the low-ability manager invests θH−θL
r+−(r0+θL)

in the

risky asset if costs c are sufficiently large in relation to the share s of the realized

return (which is satisfied by assumption).

Note that the threshold for costs c decreases with the share s of the realized

return. If managers do not receive a share of the realized return (s = 0), a low-
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ability manager invests in the risky asset if managers incur positive costs if they

are fired (c ≥ 0).

Now, suppose the returns r+ and r− are not sufficiently large. Then, the low-

ability manager misses the benchmark with probability p if the manager does

not invest in the risky asset. Hence, the low-ability manager invests θH−θL
r+−(r0+θL)

in

the risky asset if the probability p that the risky asset generates a high return is

sufficiently large in relation to the share s of the realized return.

Note that the threshold for probability p decreases with the share s of the

realized return. If managers do not receive a share of the realized return (s = 0),

a low-ability manager invests in the risky asset if a high return is at least as likely

as a low return (p ≥ 1
2
).

There may also exist equilibria in which both low- and high-ability managers

invest in the risky asset if the returns r+ and r− are sufficiently large, or the

probability p is sufficiently large in relation to the share s of the realized return. If

high-ability managers invest more than 0 in the risky asset, low-ability managers

face a trade-off similar to those described above. If low-ability managers invest

more than θH−θL
r+−(r0+θL)

in the risky asset, high-ability managers also face a similar

trade-off. Suppose low-ability managers invest more than θH−θL
r+−(r0+θL)

in the risky

asset. Then, if a high-ability manager invests 0 in the risky asset, the manager

misses the benchmark if the risky asset generates a high return. If, by contrast,

the high-ability manager invests sufficiently in the risky asset, the manager misses

the benchmark with probability 0. If costs c are sufficiently large in relation to

the share s of the realized return, the high-ability manager hence invests in the

risky asset.

As a result, managers may face a coordination problem. They would be best

off if only low-ability managers invested in the risky asset. However, they may
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end up in an equilibrium in which both low- and high-ability managers invest in

the risky asset.

2.4 Conclusion

We argue that fund managers may take excessive risk if they differ in ability,

are fired if they miss the benchmark, and have the opportunity to gamble. If

investment restrictions are adequate, benchmarking may sort out low-ability from

high-ability fund managers. If, however, fund managers have the opportunity to

gamble, they may take excessive risk to match the benchmark.

Investment restrictions are often based on ratings. It can be argued that

inflated ratings increase fund managers’ ability to gamble. Hence, inflated ratings

may lead to excessive risk-taking even if fund managers do not take ratings at

face value and know about the risks. Therefore, it is indeed important that credit

rating agencies assign correct ratings.
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2.5 Appendix

Proof of Proposition 2.1

Consider manager l’s investment decision (choice of al) and suppose all other

managers do not invest in the risky asset (a−l = 0). Then, the average portfolio

return is

Π̄ = r0 +
1

2
(θL + θH). (2.20)

If the manager does not invest in the risky asset (al = 0), the portfolio return

is

Πl = r0 + θL. (2.21)

The manager hence misses the benchmark with probability 1 and gets the utility

U = w + s(r0 + θL)− c. (2.22)

The manager’s utility decreases with the amount al invested in the risky asset

until al is sufficiently large such that the portfolio return matches the average

portfolio return if the risky asset generates a return r+. The portfolio return

matches the average portfolio return if R = r+ and

r0 + θL + [r+ − (r0 + θL)]al = r0 +
1

2
(θL + θH) (2.23)

or

al =
θH − θL

2[r+ − (r0 + θL)]
. (2.24)

Let

â ≡ θH − θL
2[r+ − (r0 + θL)]

(2.25)
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and note that

0 < â < 1. (2.26)

If the manager chooses al = â, the manager only misses the benchmark with

probability 1− p. The manager hence gets the utility

E[U ] = w + s{r0 + θL + [E[R]− (r0 + θL)]â} − (1− p)c. (2.27)

Starting from al = â, the manager’s utility again decreases with the amount al

invested in the risky asset.

The manager strictly prefers al = â to al = 0 if

w + s{r0 + θL + [E[R]− (r0 + θL)]â} − (1− p)c > w + s(r0 + θL)− c. (2.28)

This can be rearranged to get

pc > s(r0 + θL − E[R])â. (2.29)

Substituting â and rearranging gives

c > s
θH − θL

2p

r0 + θL − E[R]

r+ − (r0 + θL)
. (2.30)

Hence, if costs c are sufficiently large in relation to the share s of the realized

return, there exists no equilibrium in which no manager invests in the risky

asset.
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Proof of Proposition 2.2

Suppose

c > s
θH − θL

2p

r0 + θL − E[R]

r+ − (r0 + θL)
, (2.31)

and all managers with low ability θL invest the same amount al in the risky asset

and all managers with high ability θH invest the same amount ah in the risky

asset.

First, consider managers with low ability θL. Note that they match the bench-

mark if they match managers with high ability θH . If the risky asset generates a

high return r+, managers with low ability θL match the benchmark if

r0 + θL + [r+ − (r0 + θL)]al = r0 + θH + [r+ − (r0 + θH)]ah (2.32)

or

al =
θH − θL

r+ − (r0 + θL)
+
r+ − (r0 + θH)

r+ − (r0 + θL)
ah. (2.33)

Let

âl(ah) ≡
θH − θL

r+ − (r0 + θL)
+
r+ − (r0 + θH)

r+ − (r0 + θL)
ah, (2.34)

and note that

0 < âl(ah) ≤ 1. (2.35)

There cannot be an equilibrium in which managers with low ability θL in-

vest 0 < al < âl(ah) in the risky asset. Each manager with low ability θL would

be better off investing al = 0 in the risky asset.

There cannot be an equilibrium in which managers with low ability θL in-

vest al > âl(ah) in the risky asset. Each manager with low ability θL would be

better off investing al = âl(ah) in the risky asset.
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Therefore, if there is an equilibrium, managers with low ability θL must invest

either al = 0 or al = âl(ah) in the risky asset.

Now, consider managers with high ability θH . Note that they fall behind the

benchmark if they fall behind managers with low ability θL. If managers with low

ability θL invest al ≤ θH−θL
r+−(r0+θL)

in the risky asset, managers with high ability θH

do not fall behind the benchmark if they invest ah = 0 in the risky asset. If, by

contrast, managers with low ability θL invest al >
θH−θL

r+−(r0+θL)
in the risky asset,

managers with high ability θH fall behind the benchmark if they invest ah = 0 in

the risky asset and the risky asset generates a high return r+.

If al >
θH−θL

r+−(r0+θL)
and R = r+, managers with high ability θH do not fall

behind the benchmark if

r0 + θH + [r+ − (r0 + θH)]ah = r0 + θL + [r+ − (r0 + θL)]al (2.36)

or

ah = − θH − θL
r+ − (r0 + θH)

+
r+ − (r0 + θL)

r+ − (r0 + θH)
al. (2.37)

Let

âh(al) ≡ −
θH − θL

r+ − (r0 + θH)
+
r+ − (r0 + θL)

r+ − (r0 + θH)
al, (2.38)

and note that

0 < âh(al) ≤ 1. (2.39)

If al ≤ θH−θL
r+−(r0+θL)

, there cannot be an equilibrium in which managers with high

ability θH invest ah > 0 in the risky asset. Each manager with high ability θH

would be better off investing less in the risky asset.

Therefore, if al ≤ θH−θL
r+−(r0+θL)

and there is an equilibrium, managers with high

ability θH must invest ah = 0 in the risky asset.
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If al >
θH−θL

r+−(r0+θL)
, there cannot be an equilibrium in which managers with

high ability θH invest 0 < ah < âh(al) in the risky asset. Each manager with high

ability θH would be better off investing ah = 0 in the risky asset.

If al >
θH−θL

r+−(r0+θL)
, there cannot be an equilibrium in which managers with

high ability θH invest ah > âh(al) in the risky asset. Each manager with high

ability θH would be better off investing ah = âh(al) in the risky asset.

Therefore, if al >
θH−θL

r+−(r0+θL)
and there is an equilibrium, managers with high

ability θH must invest either ah = 0 or ah = âh(al) in the risky asset.

By proposition 2.1, al = 0 and ah = 0 cannot be an equilibrium. Thus, if

there is an equilibrium, al ≥ θH−θL
r+−(r0+θL)

.

Note that

âh

(
θH − θL

r+ − (r0 + θL)

)
= 0 (2.40)

and

âh(al) = â−1
l (ah). (2.41)

Therefore, if there is an equilibrium, there is a linear relationship between the

amount managers with low ability θL and those with high ability θH invest in the

risky asset:

al =
θH − θL

r+ − (r0 + θL)
+
r+ − (r0 + θH)

r+ − (r0 + θL)
ah. (2.42)

Proof of Proposition 2.3

Suppose

c ≥ s
θH − θL

p

r0 + θL − E[R]

r+ − (r0 + θL)
. (2.43)

Let

âl(ah) ≡
θH − θL

r+ − (r0 + θL)
+
r+ − (r0 + θH)

r+ − (r0 + θL)
ah (2.44)
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and

âh(al) ≡ −
θH − θL

r+ − (r0 + θH)
+
r+ − (r0 + θL)

r+ − (r0 + θH)
al. (2.45)

There exists a symmetric equilibrium in pure strategies if and only if each

manager with low ability θL prefers

al = âl(ah) (2.46)

to

al = 0, (2.47)

and each manager with high ability θH prefers

ah = âh(al) (2.48)

to

ah = 0. (2.49)

First, consider the investment decision of a manager with high ability θH .

Then, consider the investment decision of a manager with low ability θL.

If all managers with low ability θL invest al = θH−θL
r+−(r0+θL)

in the risky asset,

âh = 0. If all managers with low ability θL invest al >
θH−θL

r+−(r0+θL)
in the risky

asset, âh > 0. In this case, each manager with high ability θH prefers ah = âh to

ah = 0 if

w + s{r0 + θH + [E[R]− (r0 + θH)]âh} ≥ w + s(r0 + θH)− pc. (2.50)
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This can be rearranged to get

c ≥ s
r0 + θH − E[R]

p
âh. (2.51)

Now, consider a manager with low ability θL and suppose the manager invests

al = 0 in the risky asset. Furthermore, suppose all other managers with low

ability θL invest âl in the risky asset and all managers with high ability θH

invest âh in the risky asset. Then, the low-ability manager misses the benchmark

if the risky asset generates a high return r+. If the risky asset generates a low

return r−, the manager also misses the benchmark if

r0 + θL < r0 +
1

2

{
θL + θH + [r− − (r0 + θL)]âl + [r− − (r0 + θH)]âh

}
. (2.52)

This can be rearranged to get

(r0 + θL − r−)âl + (r0 + θH − r−)âh < θH − θL. (2.53)

That is, if the risky asset generates a low return r−, the low-ability manager

misses the benchmark if the other managers do not invest ‘too much’ in the risky

asset.

First, suppose

(r0 + θL − r−)âl + (r0 + θH − r−)âh < θH − θL. (2.54)

Then, a manager with low ability θL misses the benchmark with probability 1.

If, by contrast, the manager also invests al = âl in the risky asset, the manager

matches the benchmark if the risky asset generates a high return r+. That is, the

manager only misses the benchmark with probability 1−p. The manager prefers
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al = âl to al = 0 if

w + s{r0 + θL + [ER− (r0 + θL)]âl} − (1− p)c ≥ w + s(r0 + θL)− c. (2.55)

This can be rearranged to get

c ≥ s
r0 + θL − E[R]

p
âl. (2.56)

Note that âh ≥ 0 and âl ≥ θH−θL
r+−(r0+θL)

. Therefore, there exists at least one

symmetric equilibrium in pure strategies if

c ≥ s
θH − θL

p

r0 + θL − E[R]

r+ − (r0 + θL)
, (2.57)

which is satisfied by assumption, and

(r0 + θL − r−)
θH − θL

r+ − (r0 + θL)
+ (r0 + θH − r−)0 < θH − θL. (2.58)

The latter condition can be rearranged to get

r+ + r− > 2(r0 + θL). (2.59)

Now, suppose

(r0 + θL − r−)âl + (r0 + θH − r−)âh ≥ θH − θL. (2.60)

Then, if a manager with low ability θL invests al = 0 in the risky asset, the man-

ager only misses the benchmark if the risky asset generates a high return r+. If,

by contrast, the manager also invests al = âl in the risky asset, the manager does
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not miss the benchmark if the risky asset generates a high return r+. However,

the manager misses the benchmark if the risky asset generates a low return r−.

The manager prefers al = âl to al = 0 if

w + s{r0 + θL + [E[R]− (r0 + θL)]âl} − (1− p)c ≥ w + s(r0 + θL)− pc. (2.61)

This can be rearranged to get

p ≥ 1

2
+ s

r0 + θL − E[R]

2c
âl. (2.62)

Note again that âh ≥ 0 and âl ≥ θH−θL
r+−(r0+θL)

. Therefore, there exists at least

one symmetric equilibrium in pure strategies if

p ≥ 1

2
+ s

θH − θL
2c

r0 + θL − E[R]

r+ − (r0 + θL)
. (2.63)

Finally, note that if neither

r+ + r− > 2(r0 + θL) (2.64)

nor

p ≥ 1

2
+ s

θH − θL
2c

r0 + θL − E[R]

r+ − (r0 + θL)
, (2.65)

there exists no symmetric equilibrium in pure strategies.
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Chapter 3

The Credibility of Certifiers

3.1 Introduction

It is often argued that certifiers have an incentive to offer inflated certificates.

Recently, credit rating agencies have attracted a lot of attention. They have been

accused of assigning inflated ratings to structured products, such as mortgage-

backed securities and collateralized-debt obligations. In the last decade, auditors

have also been repeatedly in the spotlight. Especially in the wake of the Enron

scandal, they have faced allegations of being lapdogs instead of watchdogs.

The problem, it is argued, lies in the business model. Certifiers are typically

paid by sellers who are interested in favorable certificates. An old proverb says:

‘He who pays the piper calls the tune.’

Yet, certifiers typically also incur costs if they offer inflated certificates. Often

they have to spend time and money to obscure that they offer inflated certificates.

In addition, an inflated certificate is usually detected with some probability. And

if caught, certifiers often have to pay a fine. Moreover, they occasionally lose

some of their business. Sometimes, they even lose all of their business, as in the
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case of Arthur Andersen for its role in the Enron scandal, though this was a rare

event.

In this paper, we examine a certifier’s incentive to offer inflated certificates.

We consider a model in which a certifier is paid by sellers. While the certifier

can observe the type of a good, the buyers cannot. The buyers can only observe

whether the seller owns a certificate, and if so, the type of the certificate. The

sellers are hence interested in favorable certificates. The certifier may offer them

inflated certificates, but incurs costs if doing so. We suppose that the costs of

offering inflated certificates increase with the number of inflated certificates.

We find that if the costs of offering the first inflated certificate are lower

than the sellers’ willingness-to-pay for it, the certifier always offers at least one

inflated certificate. However, the certifier does not profit from offering inflated

certificates, because in equilibrium, the buyers cannot be fooled: They believe

correctly that the certifier offers a certain amount of inflated certificates, and

take this into account in their willingness-to-pay for a good. And the sellers take

this into account in their willingness-to-pay for a certificate. The certifier would

hence make a higher profit if the certifier did not offer inflated certificates and

the buyers believed it.

The certifier hence faces a commitment problem. It would be best off if it

did not offer inflated certificates, and the buyers believed it. But if the buyers

actually believed that the certifier does not offer inflated certificates, the certifier

would have an incentive to do so.

The number of inflated certificates obviously depends on the costs the certifier

incurs when offering inflated certificates. If the costs increase, the certifier offers

less inflated certificates in equilibrium.
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Yet, the certifier may oppose an increase in the costs of offering inflated certifi-

cates, because an increase in the costs has two opposing effects on the certifier’s

profit. On the one hand, an increase in the costs reduces the number of inflated

certificates, and thereby indirectly increases the certifier’s profit. On the other

hand, however, an increase in the costs directly reduces the certifier’s profit.

There is a growing literature on certification intermediaries. Several papers

study under which conditions a certifier does not have an incentive to offer inflated

certificates. However, there is also a growing number of papers which show that

a certifier may offer inflated certificates in equilibrium.

Strausz (2005) studies a model in which buyers detect any inflated certificate

ex post, and the certifier goes out of business if caught. He shows that honest

certification requires a patient certifier, high prices, and constitutes a natural

monopoly. In our model, we take a different approach. We consider a situation

in which a certifier offers inflated certificates in equilibrium, and show that the

certifier faces a commitment problem.

Peyrache and Quesada (2010) also study a model in which an inflated certifi-

cate is detected with probability one, and the certifier goes out of business forever

if caught. They focus, however, on an equilibrium in which a certifier may offer

an inflated certificate: They find that an impatient certifier may offer an inflated

certificate with some probability. However, in their model, even a very impatient

certifier does not offer an inflated certificate with probability one. In our model,

we find that a certifier always offers at least one inflated certificate if the costs of

offering the first inflated certificate are lower than the sellers’ willingness-to-pay

for it.

Mathis et al. (2009) study a reputation model to analyze the incentive of a

credit rating agency to assign inflated ratings. They assume that a credit rating
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agency is either committed to tell the truth, or maximizes its payoff. They show

that a credit rating agency which maximizes its payoff may first build a reputation

of being committed, and then ‘cash in’ on its reputation by assigning inflated

ratings. Our model, however, does not rely on the assumption that the buyers

believe that the certifier is committed to tell the truth with positive probability.

In our model, the buyers know that the certifier maximizes its profit.

Bolton et al. (2010) also study the incentive of a credit rating agency to offer

inflated ratings. They assume that a fraction of investors are naive and take

ratings at face value. They find that a credit rating agency may offer inflated

ratings if there are many naive investors and the expected punishment is light.

In contrast to Bolton et al. (2010), our model does not rely on the assumption

that a fraction of buyers are naive. We show that even if buyers cannot be fooled

in equilibrium, a certifier may have an incentive to offer inflated certificates.

In Stolper (2009), we study a model in which a regulator can observe the

default rate within a rating category for each credit rating agency. The default

rate may, however, be influenced by a common shock, and the credit rating

agencies may collude to offer inflated ratings. As a result, the regulator cannot

detect whether high default rates are due to collusion or the common shock.

In Stolper (2009), we hence suggest that a regulator should not only deter a

credit rating agency from unilaterally offering inflated ratings, but also provide

an incentive to deviate from a collusive agreement to offer inflated ratings. In our

model of a certifier’s credibility, we do not consider the possibility of a collusive

agreement. Instead, we show that a certifier may face a commitment problem.

There are several papers which study related commitment problems in other

settings. Barro and Gordon (1983), for instance, study a model in which a central

bank tries to decrease unemployment by increasing inflation. When making its
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decision, the central bank takes inflation expectations as given, and chooses an

excessive rate of inflation. However, in equilibrium, people correctly anticipate

the central bank’s decision. The central bank hence cannot reduce unemployment,

and would be better off if both inflation and the expectation of inflation were zero.

Yet, if the expectation of inflation was actually zero, the central bank would have

an incentive to choose a positive rate of inflation.

Signal-jamming models (first analyzed by Holmström, 1982) often make a

similar point. Stein (1989), for instance, studies a model in which a manager tries

to increase the stock price by pumping up earnings. However, in equilibrium, the

manager cannot fool investors because they take into account that earnings are

inflated. The manager would hence be better off if he (or she) did not manipulate

earnings, and the investors did not suspect that earnings are manipulated. But

if the investors actually believed that the manager does not manipulate earnings,

the manager would have an incentive to do so.

The rest of the paper is organized as follows. In section 3.2, we present the

model. In section 3.3, we consider the certifier’s decision whether to offer inflated

certificates. We show that the certifier faces a commitment problem and analyze

the effect of an increase in the costs of offering inflated certificates. In section

3.4, we conclude. Proofs are provided in the appendix.

3.2 The Model

Consider a model with many sellers, many buyers, and a certifier. Each seller

owns one good, of which there are two types, A and B. Let a denote the number

of sellers who own a type-A good, and let b denote the number of sellers who

own a type-B good. Each seller faces one buyer. A buyer’s utility of a type-A
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stage 1

certifier
chooses fee

& offers certificates

stage 2

sellers
demand certificates

& set prices

stage 3

buyers
demand goods

-

Figure 3.1: The time structure.

good is uA, and a buyer’s utility of a type-B good is uB, where uA > uB. The

buyers cannot, however, observe the type of a good. The certifier, by contrast,

can observe the type of a good. The buyers can only observe whether the seller

owns a certificate, and if so, the type of the certificate. There are two types of

certificates, again A and B. A type-A certificate indicates that a good is of type

A, and a type-B certificate indicates that a good is of type B.

The time structure is as follows. At stage 1, the certifier chooses a (uniform)

fee and offers each seller a certificate. (Results do not change if the certifier

chooses different fees for different types of certificates.) At stage 2, each seller

decides whether to buy the certificate and sets a price for his or her good. At

stage 3, each buyer decides whether to buy the good. Figure 3.1 illustrates the

time structure.

At stage 1, the certifier offers every seller, who owns a type-A good, a type-A

certificate, but may offer sellers, who own a type-B good, a type-B as well as a

type-A certificate. Let x denote the number of sellers who are offered an inflated

certificate.

If the certifier offers sellers an inflated certificate, the certifier incurs costs.

Typically, a certificate which indicates the wrong type is detected with some

probability, and if detected, the certifier is punished. The certifier may, for in-

stance, have to pay a fine or be ignored by buyers in future periods. In addition,

the certifier may have to spend time and money to obscure that it offers inflated
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certificates. We suppose that the probability of detection, the punishment, or the

cost of obfuscation increases with the number of inflated certificates. We hence

assume that the certifier incurs costs K(x), where K(0) = 0 and K ′(x) > 0.

Moreover, to keep the analysis simple, we assume K ′′(x) ≥ 0. We suppose that if

the probability of detection or the punishment varies for different sellers, a certi-

fier first offers an inflated certificate to sellers, for whom the detection probability

or the punishment is low. However, results do not change if K ′′(x) < 0 or K(x)

has an upper bound.

3.3 The Credibility of Certifiers

In this section, we consider the certifier’s decision whether to offer inflated cer-

tificates. First, we show that the certifier faces a commitment problem. Then,

we analyze the effect of an increase in the costs of offering inflated certificates.

3.3.1 A Commitment Problem

To consider the certifier’s commitment problem, we solve the model backwards.

We begin with the buyers’ decision whether to buy the good.

At stage 3, the buyers buy the good if and only if the price is less than

or equal to their willingness-to-pay, which depends on the certificate the seller

owns. If a seller owns a type-B certificate, the buyer knows that the seller owns a

type-B good,1 and is hence only willing to pay uB. If a seller either owns a type-

A certificate or does not own a certificate at all, the buyer’s willingness-to-pay

depends on the buyer’s beliefs.

1Because the certifier may only offer sellers, who own a type-B good, a type-B certificate.
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Suppose the buyers believe that every seller, who is offered a type-A certifi-

cate, buys the certificate, and no seller, who is offered a type-B certificate, buys

the certificate. Let xe denote the buyers’ belief about the number of sellers who

are offered an inflated certificate. Then, if a seller owns a type-A certificate, the

buyer believes that the seller owns a type-A good with probability a
a+xe

and a

type-B good with probability xe

a+xe
, and is hence willing to pay auA+xeuB

a+xe
for the

good. If a seller does not own a certificate, the buyer believes that the seller owns

a type-B good, and is hence only willing to pay uB.

At stage 2, each seller, with or without a certificate, sets a price equal to

the buyer’s willingness-to-pay. The difference in prices determines the sellers’

willingness-to-pay for a certificate. The sellers are willing to pay zero for a type-

B certificate. The willingness-to-pay for a type-A certificate again depends on

the buyers’ beliefs.

Suppose again the buyers believe that every seller, who is offered a type-A

certificate, buys the certificate, and no seller, who is offered a type-B certificate,

buys the certificate. Then, the sellers are willing to pay auA+xeuB
a+xe

− uB for a

type-A certificate, which is equivalent to a(uA−uB)
a+xe

.

The sellers buy the offered certificate if and only if the certifier chose a fee

less than or equal to their willingness-to-pay. Sellers, who are offered a type-A

certificate, buy the certificate if and only if the fee is less than or equal to their

willingness-to-pay for the certificate. Sellers, who are offered a type-B certificate,

buy the certificate if and only if the fee is zero.

At stage 1, the certifier hence chooses a fee equal to the sellers’ willingness-

to-pay for a type-A certificate. As a result, every seller, who is offered a type-A

certificate, buys the certificate, and no seller, who is offered a type-B certificate,

buys the certificate.
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Suppose in the following that the buyers believe correctly that every seller,

who is offered a type-A certificate, buys the certificate, and no seller, who is

offered a type-B certificate, buys the certificate. Then, as shown above, the sellers

are willing to pay a(uA−uB)
a+xe

for a type-A certificate, and the certifier chooses a fee

equal to this amount. Let WTP (xe) denote the sellers’ willingness-to-pay for a

type-A certificate, where

WTP (xe) =
a(uA − uB)

a+ xe
. (3.1)

The certifier’s profit Π(x|xe) is given by

Π(x|xe) = WTP (xe)(a+ x)−K(x). (3.2)

The certifier chooses x to maximize its profit Π given the buyers’ belief xe. (In

equilibrium, the buyers’ beliefs are correct, but, when making its decision, the

certifier takes the buyers’ beliefs as given.)

Suppose there exists an equilibrium with an interior solution. Let x∗ denote

the number of sellers who are offered an inflated certificate in equilibrium. Then,

x∗ is given by

Π′(x = x∗|xe = x∗) = 0. (3.3)

x∗ is hence given by

K ′(x∗) = WTP (x∗). (3.4)

That is, in an equilibrium with an interior solution, two conditions must hold.

First, the marginal costs of offering an inflated certificate are equal to the sellers’

willingness-to-pay for a certificate (K ′(x) = WTP (xe)). Secondly, the buyers

believe correctly that the certifier offers a certain number of inflated certificates
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Figure 3.2: An equilibrium with an interior solution.

(xe = x). Figure 3.2 illustrates this. x∗ is given by the intersection of K ′(x) and

WTP (xe).

In figure 3.2, we can also see:

Proposition 3.1 If K ′(x = 0) < WTP (xe = 0), then, in equilibrium, the certi-

fier offers at least one seller an inflated certificate (x∗ > 0).

That is, if the costs of offering the first inflated certificate are lower than the

sellers’ willingness-to-pay for this certificate (given the buyers believe the certifier

does not offer inflated certificates), then, in equilibrium, the certifier offers at least

one seller an inflated certificate.

The certifier does not, however, profit from offering inflated certificates:

Proposition 3.2 Suppose x∗ > 0. Then, the certifier would make a higher profit

than in equilibrium if the certifier did not offer inflated certificates (x = 0), and

the buyers believed it (xe = 0).

The intuition for this result is straightforward. In equilibrium, the buyers

cannot be fooled. They believe correctly that the certifier offers a certain number



The Credibility of Certifiers 72

of inflated certificates, and take this into account in their willingness-to-pay for

a good. The sellers, in turn, take this into account in their willingness-to-pay

for a certificate. By offering inflated certificates, the certifier hence only incurs

costs, but cannot increase its revenue as compared to the situation in which the

certifier does not offer inflated certificates, and the buyers believe it.

If x∗ > 0, the certifier hence faces a commitment problem. The certifier

would make a higher profit if the certifier did not offer inflated certificates, and

the buyers believed it. But if the buyers actually believed the certifier did not

offer inflated certificates, the certifier would have an incentive to do so.

In addition, there may be a welfare loss. The certifier may, for instance, have

to spend time and money to obscure that it offers inflated certificates. Moreover,

if there is a fine for offering inflated certificates, the fine may not be a pure

transfer. If there are costs of imposing the fine, a part of the fine is ‘lost’.

Besides, there may also be a welfare loss which is not captured by our simple

model. For example, it is often argued that credit rating agencies contributed

to the subprime crisis by assigning inflated ratings to mortgage-backed securities

and collateralized debt obligations.

3.3.2 The Effect of an Increase in Costs

The number x∗ of inflated certificates in equilibrium and the profit Π(x = x∗|xe =

x∗) the certifier makes in equilibrium depend on the costs K(x) of offering inflated

certificates. Let

K(x) ≡ ck(x), (3.5)

where k(0) = 0, k′(x) > 0 and k′′(x) ≥ 0. Suppose an equilibrium with an interior

solution exists, and consider an increase in c.
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Figure 3.3: The effect of an increase in costs.

First, consider the effect of an increase in c on x∗. If c increases, the certifier

obviously offers less inflated certificates in equilibrium.

Proposition 3.3 Suppose 0 < x∗ < b. Then, x∗ decreases if c increases.

Figure 3.3 illustrates this. An increase in c shifts ck′(x) up. As a result, the

certifier offers less inflated certificates in equilibrium.

Now consider the effect of an increase in c on Π(x = x∗|xe = x∗). In equilib-

rium, the buyers cannot be fooled (xe = x∗). The profit the certifier makes in

equilibrium is hence given by

Π(x = x∗|xe = x∗) =
a(uA − uB)

a+ x∗
(a+ x∗)− ck(x∗) (3.6)

which is equivalent to

Π(x = x∗|xe = x∗) = a(uA − uB)− ck(x∗). (3.7)

The profit the certifier makes in equilibrium thus depends on the costs ck(x∗) the

certifier incurs in equilibrium.
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An increase in c has two opposing effects on the costs ck(x∗) the certifier

incurs in equilibrium. On the one hand, an increase in c directly increases the

costs the certifier incurs. On the other hand, an increase in c reduces the number

of inflated certificates, and thus indirectly reduces the costs the certifier incurs.

The effect of c on the costs ck(x∗) is given by

d[ck(x∗(c))]

dc
= k(x∗) + c

dk(x∗)

dx

dx∗

dc
. (3.8)

The effect of an increase in c on the profit the certifier makes in equilibrium

hence depends on the properties of the cost function. We get:

Proposition 3.4 Suppose 0 < x∗ < b. Then, the profit the certifier makes in

equilibrium increases with c if

k′′(x∗)

k′(x∗)2
<

1

k(x∗)
− c

a(uA − uB)
, (3.9)

and decreases with c if the inequality is reversed.

The intuition for this result is as follows. If k(x∗) is small, the direct effect

of an increase in c on the costs ck(x∗) is small. If k′(x∗) is large, the effect of a

decrease in x∗ on the costs ck(x∗) is large. And if k′′(x∗) is small, x∗ decreases a

lot if c increases. Hence, if k(x∗) is small, k′(x∗) is large, and k′′(x∗) is small, the

profit the certifier makes in equilibrium increases with c. And vice versa.

Cost functions are often assumed to be linear, quadratic, or exponential. If

the certifier faces a linear cost function, the marginal costs of offering inflated

certificates are constant. If the certifier faces a quadratic or exponential cost

function, the marginal costs of offering inflated certificates increase. We get:
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Proposition 3.5 Suppose 0 < x∗ < b. Then, if the cost function is linear or

quadratic, the profit the certifier makes in equilibrium increases with c. If the

cost function is exponential, the profit the certifier makes in equilibrium decreases

with c.

The costs ck(x) may, for example, be interpreted as the expected fine the cer-

tifier has to pay. c may be interpreted as the fine the certifier has to pay if caught,

and k(x) may be interpreted as the probability of being caught (which increases

with the number of inflated certificates). In this case, to use a more adequate

notation, c could be substituted by f and k(x) by p(x). Then, the certifier would

face an expected fine of p(x)f for offering x inflated certificates. (Alternatively, c

may be interpreted as the fine the certifier has to pay for each inflated certificate

which is detected, and k(x) may be interpreted as the expected number of inflated

certificates which are detected. In this case, to use a more adequate notation, c

could be substituted by f , and k(x) by n(x). Then, the certifier would expect to

pay a total fine of n(x)f for offering x inflated certificates.)

Suppose now that the certifier has to pay a fine f if caught, and that the

certifier is caught with probability p(x). (That is, the certifier faces an expected

fine of p(x)f for offering x inflated certificates.) Then, an increase in the fine has

two effects. On the one hand, an increase in the fine increases the punishment if

caught. On the other hand, an increase in the fine decreases the number of inflated

certificates, and thus decreases the probability of being caught. Proposition 3.5

suggests that the certifier would welcome an increase in the fine if the probability

of being caught increases linearly or quadratically with the number of inflated

certificates. The certifier would, however, oppose an increase in the fine if the

probability of being caught increases exponentially with the number of inflated

certificates.
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3.4 Conclusion

Certifiers often claim that they have no incentive to offer inflated certificates. The

message of this paper, however, is that certifiers face a commitment problem if the

costs of offering the first inflated certificate are lower than the sellers’ willingness-

to-pay for it: A certifier does not profit from offering inflated certificates, because

in equilibrium, the buyers cannot be fooled. The certifier would make a higher

profit if the certifier did not offer inflated certificates, and the buyers believed it.

But if the buyers actually believed the certifier did not offer inflated certificates,

the certifier would have an incentive to do so.

It seems that the costs of offering the first inflated certificate are indeed often

lower than the sellers’ willingness-to-pay for it. Typically, an inflated certificate is

detected with some probability, and if detected, the certifier is usually punished.

Yet, it seems that if a certifier is only a bit too lax, the probability of detection

is low, and if the certifier is caught nonetheless, the punishment is not too harsh.

In the model, we find that the number of inflated certificates depends on the

costs a certifier incurs if it offers inflated certificates. If the costs are low, a

certifier offers a lot of inflated certificates in equilibrium.

It could be argued that credit rating agencies had a strong incentive to assign

inflated ratings to mortgage-backed securities and collateralized-debt obligations,

because they got off lightly for assigning inflated ratings. Granted, they now face

(somewhat) tighter regulation and lost some business, but none of the major

credit rating agencies went out of business, and it is unclear whether they lost

more business than they attracted by offering inflated ratings in the first place.

In the model, we show that a certifier may yet oppose an increase in the costs

of offering inflated certificates. On the one hand, an increase in the costs reduces

the number of inflated certificates, and thus indirectly increases the certifier’s
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profit. On the other hand, however, an increase in the costs directly reduces

the certifier’s profit. Hence, only if the increase in costs reduces the number of

inflated certificates by a large amount, the certifier’s profit increases with the costs

of offering inflated certificates. If, however, the increase in costs does not reduce

the number of inflated certificates significantly, the certifier’s profit decreases with

the costs of offering inflated certificates.

This suggests that whether a certifier welcomes tighter regulation or lobbies

against it may depend on whether the new regulation only imposes higher costs

on the certifier, or also helps to reduce the certifier’s commitment problem sig-

nificantly.
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3.5 Appendix

Proof of Proposition 3.1

Suppose K ′(x = 0) < WTP (xe = 0). Then, there does not exist an equilibrium

in which the certifier does not offer inflated certificates: If the buyers believe the

certifier does not offer inflated certificates (xe = 0), the certifier offers at least

one seller an inflated certificate (x > 0), because

Π′(x = 0|xe = 0) > 0 (3.10)

if

K ′(x = 0) < WTP (xe = 0). (3.11)

There exists either an equilibrium with an interior solution (as characterized in

section 3.3.1), or there exists an equilibrium with a corner solution, where x∗ = b.

Hence, if K ′(x = 0) < WTP (xe = 0), the certifier offers at least one seller an

inflated certificate in equilibrium (x∗ > 0).

Proof of Proposition 3.2

Π(x = 0|xe = 0) > Π(x = x∗|xe = x∗), (3.12)

if

a(uA − uB)

a+ 0
(a+ 0)−K(0) >

a(uA − uB)

a+ x∗
(a+ x∗)−K(x∗) (3.13)

which is equivalent to

K(x∗) > 0 (3.14)
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or

x∗ > 0. (3.15)

Hence, if x∗ > 0, the certifier would make a higher profit than in equilibrium

if the certifier did not offer inflated certificates (x = 0), and the buyers believed

it (xe = 0).

Proof of Proposition 3.3

Suppose 0 < x∗ < b. Then, x∗ is given by

ck′(x∗) =
a(uA − uB)

a+ x∗
. (3.16)

Applying the implicit function theorem yields

dx∗

dc
= − k′(x∗)

ck′′(x∗) + a(uA−uB)
(a+x∗)2

. (3.17)

Because k′(x) > 0 and k′′(x) ≥ 0,

dx∗

dc
< 0. (3.18)

Hence, if 0 < x∗ < b, x∗ decreases if c increases.

Proof of Proposition 3.4

The certifier’s profit is given by

Π =
a(uA − uB)

a+ xe
(a+ x)− ck(x). (3.19)
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In equilibrium, the buyers cannot be fooled (xe = x∗). Hence, in equilibrium, the

certifier’s revenue is given by

a(uA − uB)

a+ x∗
(a+ x∗) = a(uA − uB). (3.20)

The effect of c on Π(x = x∗|xe = x∗) thus depends on the effect of c on ck(x∗(c)),

which is given by

d[ck(x∗(c))]

dc
= k(x∗) + c

dk(x∗)

dx

dx∗

dc
. (3.21)

Suppose 0 < x∗ < b. Then, using (3.16) and (3.17) yields

d[ck(x∗(c))]

dc
= k(x∗)− 1

k′′(x∗)
k′(x∗)2

+ c
a(uA−uB)

. (3.22)

The effect of c on Π(x = x∗|xe = x∗) is thus given by

dΠ(x = x∗|xe = x∗)

dc
= −k(x∗) +

1
k′′(x∗)
k′(x∗)2

+ c
a(uA−uB)

. (3.23)

Hence,

dΠ(x = x∗|xe = x∗)

dc
> 0 (3.24)

if

k′′(x∗)

k′(x∗)2
<

1

k(x∗)
− c

a(uA − uB)
. (3.25)

Note that

1

k(x∗)
− c

a(uA − uB)
> 0 (3.26)

if

a(uA − uB)− ck(x∗) > 0 (3.27)



The Credibility of Certifiers 81

or

Π(x = x∗|xe = x∗) > 0. (3.28)

Finally,

dΠ(x = x∗|xe = x∗)

dc
< 0 (3.29)

if

k′′(x∗)

k′(x∗)2
>

1

k(x∗)
− c

a(uA − uB)
. (3.30)

Hence, if 0 < x∗ < b, the profit the certifier makes in equilibrium increases

with c if

k′′(x∗)

k′(x∗)2
<

1

k(x∗)
− c

a(uA − uB)
, (3.31)

and decreases with c if the inequality is reversed.

Proof of Proposition 3.5

Suppose 0 < x∗ < b. First consider a linear cost function, then consider a

quadratic and an exponential cost function.

First, suppose

K(x) ≡ cx. (3.32)

Then, x∗ is given by

c =
a(uA − uB)

a+ x∗
, (3.33)

or

x∗ =
a(uA − uB − c)

c
. (3.34)

Π(x = x∗|xe = x∗) is thus given by

Π = a(uA − uB)− ca(uA − uB − c)
c

(3.35)
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or

Π = ac. (3.36)

If K(x) = cx, Π(x = x∗|xe = x∗) hence increases with c.

Now, suppose

K(x) ≡ cx2. (3.37)

Then, x∗ is given by

2cx =
a(uA − uB)

a+ x∗
, (3.38)

or

x∗ =

√(a
2

)2

+
a(uA − uB)

2c
− a

2
. (3.39)

Π(x = x∗|xe = x∗) is thus given by

Π = a(uA − uB)− c

(√(a
2

)2

+
a(uA − uB)

2c
− a

2

)2

(3.40)

or

Π =
a(uA − uB)

2
− a2c

2
+

√(
a2c

2

)2

+
a3c(uA − uB)

2
. (3.41)

d[Π(x=x∗|xe=x∗)]
dc

is hence given by

d [Π(x = x∗|xe = x∗)]

dc
= −a

2

2
+

1

2

(
a2

2

)2

2c+ a3(uA−uB)
2√(

a2c
2

)2
+ a3c(uA−uB)

2

. (3.42)

Hence,

d [Π(x = x∗|xe = x∗)]

dc
> 0 (3.43)

if

uA > uB, (3.44)
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which holds by assumption. If K(x) = cx2, Π(x = x∗|xe = x∗) hence increases

with c.

Finally, suppose

K(x) ≡ cex. (3.45)

Then, using (3.23) yields

dΠ(x = x∗|xe = x∗)

dc
= −ex∗ +

1
ex∗

(ex∗ )2
+ c

a(uA−uB)

. (3.46)

Hence,

dΠ(x = x∗|xe = x∗)

dc
< 0 (3.47)

if

1

ex∗
<

ex
∗

(ex∗)2
+

c

a(uA − uB)
(3.48)

or

c

a(uA − uB)
> 0, (3.49)

which holds by assumption. If K(x) = cex, Π(x = x∗|xe = x∗) hence decreases

with c.

Hence, if 0 < x∗ < b and the cost function is linear or quadratic, the profit the

certifier makes in equilibrium increases with c. If the cost function is exponential,

the profit the certifier makes in equilibrium decreases with c.
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