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Zusammenfassung

In dieser Arbeit untersuchen wir Geometrie und Topologie von Riemannschen 3-

Orbifolds, die bezüglich einer Krümmungsskala lokal volumenkollabiert sind. Unser

Hauptergebnis ist, dass eine hinreichend kollabierte geschlossene 3-Orbifold ohne

schlechte 2-Unterorbifolds Thurstons Geometrisierungsvermutung genügt. Wir beweisen

auch eine Version dieses Ergebnisses mit Rand. Kleiner und Lott haben unabhängig und

zeitgleich ähnliche Ergebnisse bewiesen ([KL11]).

Hauptschritt unseres Beweises ist die Konstruktion einer Graphenzerlegung von hin-

reichend kollabierten (geschlossenen) 3-Orbifolds. Wir beschreiben eine grobe Stra-

tifizierung von ungefähr 2-dimensionalen Alexandrov-Räumen, die wir dann für kolla-

bierte 3-Orbifolds zu einer Zerlegung verfeinern; diese Zerlegung kann dann zu einer

Graphenzerlegung vereinfacht werden. Wir schließen unseren Beweis ab, indem wir

zeigen, dass Graphenorbifolds ohne schlechte 2-Unterorbifolds der Geometrisierungsver-

mutung genügen.
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Abstract

In this thesis we study the geometry and topology of Riemannian 3-orbifolds which are

locally volume collapsed with respect to a curvature scale. Our main result is that

a sufficiently collapsed closed 3-orbifold without bad 2-suborbifolds satisfies Thurston’s

Geometrization Conjecture. We also prove a version of this result with boundary. Kleiner

and Lott indepedently and simultanously proved similar results ([KL11]).

The main step of our proof is to construct a graph decomposition of sufficiently collapsed

(closed) 3-orbifolds. We describe a coarse stratification of roughly 2-dimensional Alexan-

drov spaces which we then promote to a decomposition into suborbifolds for collapsed

3-orbifolds; this decomposition can then be reduced to a graph decomposition. We com-

plete our proof by showing that graph orbifolds without bad 2-suborbifolds satisfy the

Geometrization Conjecture.
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1. Introduction

Like manifolds, orbifolds are defined as topological spaces admitting certain local models.

However, whereas manifolds are locally modelled on n-dimensional Euclidean space Rn,

orbifolds generalize this definition by admitting as local models all quotients of Rn by

finite groups of diffeomorphisms.

Although I. Satake [Sa56] introduced a very similar definition in 1956 (so-called V-

manifolds), the term orbifold was first introduced in 1976/77 by W. Thurston ([Th78]).

Thurston’s main interest in orbifolds seems to have been that they can be used in study-

ing the topology and geometry of 3-manifolds; for instance, the basis of a Seifert fibered

3-manifold has a natural structure as a 2-orbifold (cf. [Sc83]). However, orbifolds also

naturally occur in other fields of geometrical studies such as knot theory (cf. [BS87]). Be-

ginning with Thurston, orbifolds have also been studied as geometrical objects sui generis.

For instance, they can be assigned a Riemannian metric and one can investigate the geo-

metric properties of the resulting length space structure (cf. [Bo92]). Orbifolds with lower

sectional curvature bounds are Alexandrov spaces.

In 1981, Thurston also extended his Geometrization Conjecture from manifolds to orb-

ifolds. The (original) Geometrization Conjecture for manifolds stated that every closed

3-manifold admitted a (unique) decomposition as follows: In a first step, the manifold was

reduced by spherical surgery to irreducible (connected sum) components by cutting it open

along embedded 2-spheres and glueing 3-balls into the resulting boundary components. The

summands would then further be cut up along incompressible tori into geometric compo-

nents, i.e. compact 3-orbifolds with toric boundary whose interior admitted a Riemannian

metric modelled on one of the eight (homogeneous) model geometries. Thurston conjec-

tured that all closed 3-orbifolds had a similar decomposition into geometric pieces unless

they contained bad 2-suborbifolds, i.e. closed 2-suborbifolds not globally covered by a mani-

fold. This extended conjecture was motivated by the following observation: For an orbifold

which is the quotient of a manifold by a group of diffeomorphisms, a geometrization of the

orbifold is equivalent to an invariant geometrization of the covering manifold, equivalently,

to a geometrization respecting some symmetry properties of the manifold.

In the years following the formulation of the Geometrization Conjecture, Thurston was
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able to prove it for Haken manifolds (cf. [Th86], [Ot88]). However, the full conjecture still

remained unproved by the beginning of the 21st century. For orbifolds, the Geometriza-

tion Conjecture was confirmed for (locally) orientable orbifolds with non-empty singular

locus by M. Boileau, B. Leeb and J. Porti ([BLP05]). Note that an orbifold is not nec-

essarily locally orientable: it may locally be modelled on a quotient of Rn by a group of

diffeomorphisms which need not be orientation-preserving.

The complete Geometrization Conjecture was proved in 2003 by G. Perelman’s seminal

series of papers on the Ricci flow, based on previous work by R. Hamilton. The central

idea of the proof is to endow a closed 3-manifold M0 with an arbitrary Riemannian metric

g0 and let this metric develop with the Ricci flow equation ġ(t) = −2 Ric g(t). If the initial

metric g0 has positive curvature, the Ricci flow exists for all times and the metrics g(t)

converge after rescaling to a spherical limit metric ([Ha82]). For arbitrary initial metrics,

the Ricci flow may become singular ([Ha95]). However, Perelman ([Pe03]) showed that in

this case it is still possible to construct a Ricci flow with surgery for all times by performing

spherical surgery whenever singularities occur while at the same time maintaining certain

geometric and analytic controls on the Ricci flow. (In particular, the surgery times do not

accumulate.) In a Ricci flow with surgery (M(t), g(t)), the diffeomorphism type of M(t)

may change at surgery times. Following Perelman’s work, several detailed treatments of

the Ricci flow with surgery have been given ([MT07], [Ba07], [KL08]).

As suggested by the corresponding decomposition of hyperbolic 3-manifolds, Perelman

subdivided the Riemannian manifolds (M(t), g(t)) into a thick part and a thin part: For

small v > 0, he defined the thin part M−(t) of (M(t), g(t)) to be the set of all points

x ∈ M(t) with the property that volBr(x) ≤ ρ−1(x)
3v where ρ−1(x) is the smallest real

number r such that sec ≥ −r2 on Br(x) (the so-called curvature scale). The thick part

M+(t) is defined as the closure of the complement of the thin part, M+(t) = M(t) −M−(t).

One obtains the following properties for this thick-thin decomposition of the Ricci flow

([Pe03, Sec. 7.3], cf. also [KL10, Sec. 17]):

For arbitrarily large s0 > 0 there is a function K : (0, ω3) → (0,∞) (where ω3 =

volBR
3

1 (0)) such that for sufficiently small v and large t there following hold: There is

a (possibly non-connected) compact hyperbolic 3-manifold with toric boundary H with

constant sectional curvature −1
4

and an almost-isometry φ : H →֒M(t) such that M+(t) ⊂

φ(H) and that φ(∂H) is a family of incompressible tori in M(t). Moreover, on the com-

plement M̃(t) = M(t) − φ(H) we have that

(i) for all points x ∈ M̃(t) we have vol(Bg(t)(x, ρ−1(x))) < ρ−1(x)
3v0 (with ρ−1 as

above),

(ii) for every boundary component C of M̃(t) there is a hyperbolic manifold cusp XC (a

quotient of a horoball with sectional curvature equal −1
4
) such that the pairs (N100(C), C)
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and (N100(∂XC), ∂XC) habe distance ≤ v in the Cs0-topology, and

(iii) if volB(x, r) ≥ r3v′ for x ∈ M̃(t), v′ ∈ [v, ω3) and r ∈ (0, ρ−1(x)], then ‖∇sR‖ ≤

K(v)r−2−s on B(x, r) for s = 0, . . . , s0.

We sum up these properties by saying that the Riemannian manifold M̃(t) is v-collapsed

at the scale ρ−1 and has (v, s0)-almost cuspidal ends and (v, s0, K)-curvature control below

scale ρ.

Geometrization of the manifold M(t) (and hence of the original manifold M0) now

follows from the following

Theorem 1.0.1 (cf. [Pe03, Thm. 7.4]). Let s0 ∈ N and let K : (0, ω3) → (0,∞) be a

function. If s0 is sufficiently large, then there exists a constant v0 = v0(s0, K) ∈ (0, ω3)

such that the following holds: If a 3-manifold (M, g) is closed or compact with (v0, s0)-

almost cuspidal ends, is v0-collapsed at the scale ρ−1 and has (v0, s0, K)-curvature control

below the scale ρ−1, then M satisfies Thurston’s Geometrization Conjecture.

Theorem 1.0.1 was stated in [Pe03] without proof. In the meantime several proofs have

been published ([SY05], [MT08], [BBBMP10], [KL10]). They are all disjoint from the

analytic study of evolution equations; instead, they are essentially geometric in nature.

The aim of this thesis is to generalize Theorem 1.0.1 to orbifolds. More precisely, our

main result is

Theorem 1.0.2 (cf. Theorem 7.0.2). Let s0 ∈ N and let K : (0, ω3) → (0,∞) be a

function. If s0 is sufficiently large, then there exists a constant v0 = v0(s0, K) ∈ (0, ω3)

such that the following holds: If a 3-orbifold (O, g) is closed or compact with (v0, s0)-almost

cuspidal ends, is v0-collapsed at the scale ρ−1, has (v0, s0, K)-curvature control below the

scale ρ−1 and contains no bad 2-suborbifolds, then O is either closed and admits a C5

Riemannian metric with sec ≥ 0 or satisfies Thurston’s Geometrization Conjecture.

We expect 3-orbifolds satisfying the conditions of the theorem to arise when generalizing

Perelman’s construction of the Ricci flow with surgery to orbifolds (which we do not propose

to do in this thesis). Similarly, we expect closed 3-orbifolds with nonnegative sectional

curvature to be geometric by an orbifold version of Hamilton’s corresponding result for

3-manifolds [Ha82]. Thus, we consider Theorem 1.0.2 as the final step in a possible proof

of the Geometrization Conjecture for manifolds. It should be noted that if we only consider

closed 3-orbifolds O which are very good, i.e. quotients of a manifold by a finite group of

diffeomorphisms, there is an equivariant version of the Ricci flow with surgery by [DL09].

After finishing a preprint of our main results, we learned that B. Kleiner and J. Lott

independently and simultanously proved results similar to our main result, cf. [KL11, Prop.

9.7]. Their method is an extension of their work [KL10] in the manifold case to the orbifold
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case, whereas our approach is closer to an extension of the approach in [MT08]. This is most

noticable in the conical approximation argument we use to obtain a coarse stratification of

sufficiently collapsed 3-orbifolds, and in our construction of the (graph) decomposition of

the collapsed 3-orbifolds (which is quite different from the construction in [KL11, Sec. 12]).

In order to formulate a more concise version of our main result, we refer to one result of

[KL11] in this thesis, namely to their generalization of Hamilton’s application of the Ricci

flow to orbifolds of non-negative curvature (Theorem 6.1.13). The proof of this result is

entirely independent of the methods used in this thesis.

Corollary 1.0.3 (cf. Corollary 7.0.3). Let s0 ∈ N and let K : (0, ω3) → (0,∞) be a

function. If s0 is sufficiently large, then there exists a constant v0 = v0(s0, K) ∈ (0, ω3)

such that the following holds: If a 3-orbifold (O, g) is closed or compact with (v0, s0)-almost

cuspidal ends, is v0-collapsed at the scale ρ−1, has (v0, s0, K)-curvature control below the

scale ρ−1 and contains no bad 2-suborbifolds, then O satisfies Thurston’s Geometrization

Conjecture.

Structure of the text.

In section 2 or this thesis, we first review basic facts on orbifolds in low dimensions.

We then discuss decompositions of 3-orbifolds along spherical and toric 2-suborbifolds and

prove that graph orbifolds in the sense of Waldhausen (cf. section 2.2.3) satisfy Thurston’s

Geometrization Conjecture (Corollary 2.3.3). A standard reference for much of the material

covered in this section is contained in [BMP03].

In the third section, we turn to the study of Riemannian orbifolds. As a preliminary to

the injectivity radius bound proved in section 4.1, we discuss the geometry of the cut locus

of a Riemannian manifold in section 3.3. We also discuss comparison geometry properties

of Riemannian orbifolds with lower curvature bounds: Following [Bo92], we discuss an

orbifold version for Toponogov’s theorem (i.e. we prove that Riemannian orbifolds with

lower curvature bounds are Alexandrov spaces). We also discuss a version of the Soul

Theorem for orbifolds and its implications on the topology of 3-dimensional orbifolds of

non-negative curvature. In this second part of section 3, we use both material from the

corresponding results for Riemannian manifolds (cf. [CE75], [Ka89]) and from the much

more general study of Alexandrov spaces (cf. [BGP92], [BBI01]).

In section 4, we study limits of Riemannian orbifolds. The main results of this section

(Theorems 4.2.7 and 4.2.21) state that after passing to a subsequence, a sequence of com-

plete Riemannian orbifolds with thick base points and uniform bounds on the covariant

derivatives of the curvature operator converges to a Riemannian orbifold satisfying the

same properties, both in the Gromov-Hausdorff and in the smooth sense. In other words,

the space of thick orbifolds with uniform curvature bounds is compact both in the Gromov-
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Hausdorff and the smooth topology. This result has already been proved for orbifolds with

isolated singularities by P. Lu in [Lu01] and for good orbifolds by K. Fukaya in [Fu86]. It

has been stated without proof in [CC07].

We prove our convergence results via a bound on the injectivity radius (Proposition

4.1.4). More precisely, we show that on a thick orbifold with sectional curvature bounds,

the injectivity radius can be uniformly bounded below unless one approaches the boundary

of a singular stratum (equivalently, a lower-dimensional stratum). For manifolds, this

injectivity radius bound is a well-known result (cf. [CGT82]); it is proved in [Lu01] for

orbifolds with isolated singularities. Using our injectivity radius bound, we deduce our

convergence results by the suitable adaptation of a standard argument (cf. [Ba07], [Lu01],

[BLP05]). Part of the results of section 4.1 concerning the local geometry of thick orbifolds

have been obtained jointly with Bernhard Leeb ([FL]).

In the fifth section, we turn to the study of collapsed 3-orbifolds by discussing a coarse

stratification of roughly 2-dimensional Alexandrov spaces. More precisely, we use a conical

approximation argument to show that the points in such a space which do not admit

1-strainers of a certain length and quality accumulate in isolated regions. Outside these

regions, the Alexandrov space is 1-strained which allows us to perform a (coarse) dimension

reduction by considering cross sections to these strainers. We further distinguish points

according to whether they lie in coarse necks, edges or the interior of the Alexandrov

space and study their geometric properties. These considerations are similar in spirit to

considerations in [MT08] and [KL10].

In section 6, we restrict our attention to closed volume collapsed 3-orbifolds. We con-

sider them as Alexandrov spaces which are roughly of dimension ≤ 2 and promote their

coarse stratification to a certain decomposition into 3-suborbifolds. To determine the local

topology of the components in this decomposition, we use a variation (and extension to

additional situations) of the blow-up arguments in [SY00]. We derive a graph decomposi-

tion of the collapsed 3-orbifolds. Combined with the results of section 2, the main result

follows for closed orbifolds (Theorem 6.1.12).

We note that we use the condition of (v, s0, K)-curvature control below scale ρ at only

one step of our argument, namely when determining the local topology of the components

of our decomposition. Using our compactness results from section 4, we find that a sequence

of blow-ups eventually become diffeomorphic to the limit, thus establishing their topology.

Probably, this part of the argument vould be replaced by an orbifold version of Perelman’s

Stability Theorem. We require our curvature control condition precisely to avoid using

the Stability Theorem. In the manifold case, there are proofs of Theorem 1.0.1 using the

Stability Theorem (which do therefore not require curvature conditions below a certain

scale, cf. [KL10, Sec. 18]).
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In the last section, we discuss the case with boundary to obtain the more general The-

orem 7.0.2. We show how almost cuspidal neighbourhoods of boundary components can

be integrated into the decomposition according to the rough stratification from section 6.

Since we control the topology (indeed the geometry) of these almost cuspidal neighbour-

hoods, our main result follows. The results of the last three chapters are contained in the

preprint [Fa11].
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2. Decomposition of 3-orbifolds along

2-orbifolds

2.1 Smooth orbifolds

2.1.1 Definitions

Intuitively speaking, (smooth) manifolds are spaces which locally look like the Euclidean

space Rn. Orbifolds generalize this concept by allowing as local models not only Euclidean

space itself, but also its quotients by linear actions of finite groups. The following definition

formalizes this idea (cf. [Th78, Sec. 13.2], [BMP03, Sec. 2.1.1]).

Definition 2.1.1 (Smooth orbifolds). An n-dimensional (smooth) orbifold On is a

metrizable topological space together with a maximal atlas of orbifold charts.

An orbifold chart (U, Ũ ,ΓU , πU) consists of an open subset U ⊆ O, a connected smooth

n-manifold Ũ (e.g. a smooth ball), a finite subgroup ΓU ⊂ Diff(Ũ), and a continuous map

πU : Ũ → U inducing a homeomorphism Ũ/ΓU
∼=
→ U .

Any two charts (Ui, Ũi,ΓUi
, πUi

), i = 1, 2, must be compatible in the following sense: If

x̃i ∈ Ũi are points with πU1
(x̃1) = πU2

(x̃2), then there exists a diffeomorphism φ̃ : Ṽ1 → Ṽ2

of open neighbourhoods Ṽi of the x̃i with πU2
◦ φ̃ = πU1

.

Finally, the charts must cover O.

It follows from the definition that every manifold is in particular an orbifold of the

same dimension. All orbifolds are locally compact and locally path connected topological

spaces. In particular, they are connected if and only if they are path connected.

Definition 2.1.2 (Orbifold maps). A continuous map f : O → O′ of smooth orbifolds

is called smooth (in the orbifold sense) if it lifts locally to a smooth map (in the manifold

sense) of charts, i.e. if for any point x ∈ O exist charts (U, Ũ ,ΓU , πU) around x and

(U ′, Ũ ′,ΓU ′ , πU ′) around x′ = f(x) and a smooth map f̃U : Ũ → Ũ ′ with f ◦ πU = πU ′ ◦ f̃U .
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A smooth map f is an immersion (submersion, respectively) if it lifts locally to an

immersion (submersion, respectively) of charts. A smooth map f : On → O′n between

orbifolds of equal dimensions is a local diffeomorphism if it can be inverted locally by a

smooth map. It is called a (global) diffeomorphism if it is both a local diffeomorphism and

a homeomorphism.

A sequence of smooth orbifold maps fn : O → O′ is said to converge smoothly to

a smooth orbifold map f∞ : O → O′, fn
C∞

→ f∞, if for any point x ∈ O exist charts

(U, Ũ ,ΓU , πU) around x and (U ′, Ũ ′,ΓU ′ , πU ′) around x′ = f∞(x), and smooth lifts f̃n,U , f̃∞,U :

Ũ → Ũ ′ such that f̃n,U
C∞

→ f̃∞,U .

It is important to note that an orbifold may be homeomorphic, but not diffeomorphic

to a manifold. In order to emphasize this distinction, the underlying space of an orbifold

O, i.e. the orbifold O considered as a topological space without additional structure, is

occasionally denoted by |O|.

We define smooth n-dimensional orbifolds O with boundary by allowing the chart domains

Ũ to be smooth n-manifolds with boundary.

Since the local coordinate changes φ̃ in definition 2.1.1 are smooth, they preserve bound-

aries. Thus, the set ∂O consisting of those points whose preimages in the chart domains

are boundary points is a well defined closed subset of O. We call ∂O the boundary and

O \ ∂O the interior of O.

The boundary ∂O of an orbifold inherits from O a structure as a smooth (n − 1)-

dimensional orbifold without boundary. It has an open collar in O, i.e. an open neighbour-

hood in O diffeomorphic to the product orbifold ∂O× [0, 1) where [0, 1) is to be understood

as a 1-dimensional manifold with boundary.

We define an m-dimensional smooth suborbifold of a smooth orbifold to be a subset whose

preimages in local charts are smooth m-dimensional submanifolds, cf. [BS87, sec. B]. (This

is the more restrictive one of two definitions used in the literature. For the other one, see

e.g. [BMP03, 2.1.3].) Analogously, a subset of an orbifold with boundary is called a proper

suborbifold if its preimages in local charts are proper (smooth) submanifolds.

Orbifolds arise naturally from the following construction (cf. [Th78, Prop. 13.2.1]):

Proposition 2.1.3. Let Mn be an n-dimensional manifold and Γ ⊂ Diff(M) a group of

diffeomorphisms acting properly discontinuously (but not necessarily freely) on M . Then

the quotient space M/Γ is an n-dimensional orbifold.

Proof. Consider the maximal atlas on the metrizable topological space M/Γ containing the

orbifold chart (M/Γ,M,Γ, πΓ) where πΓ : M →M/Γ is the natural projection map.
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In particular, it follows from the proof of the proposition that the quotient space M/Γ

is again a manifold if and only if the group Γ acts freely on M .

Proposition 2.1.3 motivates the following

Definition 2.1.4. An n-dimensional orbifold On is called good if there is an n-dimensional

manifold Mn and a group of diffeomorphisms Γ ⊂ Diff(M) acting properly discontinuously

on M such that O is diffeomorphic to the orbifold M/Γ. It is called is called very good

if moreover the group of diffeomorphisms Γ is finite. An orbifold is called bad if it is not

good.

That bad orbifolds do exist will become clear in section 2.1.3 where we will encounter

examples of 2-dimensional bad orbifolds. A very good orbifold is called spherical (discal,

toric, solid toric) if it is diffeomorphic to the quotient of a round sphere Sn (a closed

unit disc Dn, a flat torus T n, the compact 3-dimensional solid torus D2 × S1) by a finite

isometric group action.

We mention without proof that there is another, equivalent way of stating definition

2.1.4 which is often used in the literature: A covering map of orbifolds is a continuous

map p : Ô → O such that every point x ∈ O has a neighbourhood U with the following

property: For every component V of p−1(U) ⊂ Ô there is an orbifold chart (V, Ṽ ,ΓV , πV )

and a (possibly larger) finite group of diffeomorphisms ΓV ⊂ Γ′
V ⊂ Diff(Ṽ ) such that

(U, Ṽ ,Γ′
V , p ◦ πV ) is an orbifold chart for O. In this sense, an orbifold is good if it is

covered by a manifold, and very good if it is finitely covered by a manifold, i.e. covered by

a manifold such that every point has finitely many preimages.

The proof that the two definitions for good orbifolds given above uses that covering

maps for orbifolds share many of the properties of manifold coverings. In particular, one

can define the deck transformation group of an orbifold covering, and orbifold equivalents

to the fundamental group and the universal covering. (Note that these are not the same

as the fundamental group and the universal covering of the underlying space!) Since we

will not require any of these notions for the purposes of this work, we refer the reader to

the discussion in [Th78, Sec. 13.2].

Throughout this section, we will only discuss smooth (C∞) orbifolds. However, it is

equally possible to define differentiable orbifolds of lower regularity. Thus, in the charts

(U, Ũ ,ΓU , πU) for a Ck orbifold the open sets Ũ are subsets of Ck manifolds, and the finite

groups ΓU consist of Ck-diffeomorphisms of Ũ . Similarly, we only require the coordinate

changes to be Ck-diffeomorphisms. Provided that k is not too small, say k ≥ 4, the follow-

ing discussions also apply to orbifolds of regularity Ck. We will use (Riemannian) orbifolds

of lower regularity in section 6 where they arise as limits of smooth orbifolds.
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2.1.2 Local groups and stratifications of orbifolds

We begin this section by collecting some basic facts about lifting maps of ball quotients to

maps of balls. We restrict our attention to maps between ball quotients of equal dimensions

which lift locally to smooth embeddings and are interested in the existence and uniqueness

of global lifts.

Let B̃1, B̃2 ⊂ Rn be open metric balls and let Γi ⊂ Isom(B̃i) be finite groups. We

denote by pi : B̃i → Bi := B̃i/Γi the quotient projections.

Lemma 2.1.5 (Ambiguity of lifts). (i) Let φ̃, φ̃′ : B̃1 → B̃2 be smooth immersions with

p2 ◦ φ̃ = p2 ◦ φ̃
′. Then there exists a unique transformation γ2 ∈ Γ2 such that φ̃′ = γ2 ◦ φ̃.

In particular, if φ̃ and φ̃′ coincide on an open set, then φ̃′ = φ̃.

(ii) Let ψ̃ : B̃1 → B̃2 be a smooth embedding which maps Γ1-orbits into Γ2-orbits. Then

ψ̃ is equivariant with respect to a unique monomorphism α : Γ1 → Γ2, i.e. for every γ1 ∈ Γ1

holds ψ̃ ◦ γ1 = α(γ1) ◦ ψ̃.

Proof. (i) Suppose first that φ̃ and φ̃′ are embeddings. Then φ̃′ ◦ φ̃−1 is a diffeomorphism

U → U ′ between connected open subsets of B̃2 which moves points inside their Γ2-orbits,

p2 ◦ (φ̃′ ◦ φ̃−1) = p2.

The subset W ⊆ U of points with trivial Γ2-stabilizer is open and dense in U because

it is locally the complement of finitely many proper submanifolds. For any point x̃2 ∈ W

exists a unique transformation γ2(x̃2) ∈ Γ2 such that φ̃′ ◦ φ̃−1 = γ2(x̃2) near x̃2. The

assignment x̃2 7→ γ2(x̃2) is locally constant.

To see that it is globally constant, we fix a Γ2-invariant Riemannian metric g̃2 on B̃2

and observe that φ̃′ ◦ φ̃−1|W becomes a Riemannian isometry. By continuity, φ̃′ ◦ φ̃−1 itself

is isometric. It follows that the identities φ̃′ ◦ φ̃−1 = γ2(x̃2) for x̃2 ∈ W hold on all of U ,

because both sides are Riemannian isometries and they coincide on an open subset. In

particular, γ2(x̃2) is independent of x̃2. This proves the assertion in the case of embeddings.

In the general case when φ̃ and φ̃′ are immersions, the previous argument yields that

for every x̃1 ∈ B̃1 exists a unique γ2(x̃1) ∈ Γ2 such that φ̃′ = γ2(x̃1) ◦ φ̃ near x̃1. Since B̃1

is connected, γ2(x̃1) does not depend on x̃1.

(ii) This follows from part (i) because p2 ◦ ψ̃ ◦ γ1 = p2 ◦ ψ̃ for all γ1 ∈ Γ1.

Lemma 2.1.6 (Existence of lifts). (i) Suppose that φ : B̃1 → B2 is a continuous map

such that for any point x̃1 ∈ B̃1 exists an open neighbourhood Ṽx̃1
and a smooth embedding

φ̃x̃1
: Ṽx̃1

→ B̃2 with p2 ◦ φ̃x̃1
= φ|eVx̃1

. Then there exists a smooth immersion φ̃ : B̃1 → B̃2

with p2 ◦ φ̃ = φ.

(ii) Suppose that ψ : B1 → B2 is a continuous map such that for any point x1 ∈ B1
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exists an open subset Ṽx1
⊂ B̃1 with x1 ∈ p1(Ṽx1

) and a smooth embedding ψ̃x1
: Ṽx1

→ B̃2

with p2 ◦ ψ̃x1
= ψ ◦ p1|eVx1

. Then there exists a smooth immersion ψ̃ : B̃1 → B̃2 with

p2 ◦ ψ̃ = ψ ◦ p1.

Proof. We fix a connected open subset Ṽ0 and a smooth embedding φ̃0 : Ṽ0 → B̃2 with

p2 ◦ φ̃0 = φ|eV0
, and consider finite sequences of connected open subsets Ṽi ⊂ B̃1, points

ỹi ∈ Ṽi ∩ Ṽi−1 and smooth embeddings φ̃i : Ṽi → B̃2 with p2 ◦ φ̃i = φ|eVi
, 1 ≤ i ≤ k.

For any such chain, we can match the local lifts φ̃i by postcomposing them with suitable

transformations in Γ2 such that φ̃i = φ̃i−1 near ỹi, cf. Lemma 2.1.5. This implies a lifting

property for paths: For any continuous path c̃1 : [0, 1] → B̃1 exists a unique path c̃2 :

[0, 1] → B̃2 such that c̃2 = φ̃0 ◦ c̃1 near 0 and φ ◦ c̃1 = p2 ◦ c̃2. Moreover, smooth families

of smooth paths lift to smooth families of smooth paths. It follows that φ̃0 extends to a

smooth lift φ̃ as desired, e.g. by extending it along segments emanating from a basepoint

in Ṽ0.

(ii) The map ψ ◦ p1 satisfies the assumptions of part (i), since we can precompose the

local lifts ψ̃x1
with transformations in Γ1. The claim follows.

By Lemma 2.1.5 the coordinate changes of an orbifold are equivariant. More precisely,

consider two charts (Ui, Ũi,ΓUi
, πUi

) and corresponding points x̃i ⊂ Ũi with πU1
(x̃1) =

πU2
(x̃2) we have by Definition 2.1.1 a coordinate change φ̃ : Ṽ1 → Ṽ2 defined on open sets

x̃i ∈ Ṽi ⊂ Ui such that πU2
◦ φ̃ = πU1

.

We fix a ΓU1
-invariant metric g̃ on Ũ1. Then a sufficiently small metric ball Ṽ ′

1 ⊂ Ṽ1

centered at x̃1 is invariant under the group StabΓU1
(x̃1). Consider a radial segment c in Ṽ ′

1 ,

i.e. a segment starting at x̃1 By construction, the lifts of πU1
◦ c to Ũ1 starting at x̃1 are

precisely the radial segments γ ◦ c for γ ∈ StabΓU1
(x̃1), and these segments are contained

in Ṽ ′
1 .

Now, for any γ′ ∈ StabΓU2
(x̃2), the curve cγ′ := γ′φ̃ ◦ c is a curve in Ũ2 starting at x̃2

and projecting to πU1
◦ c. It follows that φ̃−1 ◦ cγ′ is one of the radial segments γ ◦ c with

γ ∈ StabΓU1
(x̃1), and hence that cγ′ is contained in Ṽ ′

2 = φ̃(Ṽ ′
1) ⊂ Ũ2. In other words,

the ball Ṽ ′
2 is StabΓU2

(x̃2)-invariant. Moreover, the metric (φ̃−1)∗g̃ on V ′
2 is invariant under

the operation of the group StabΓU2
(x̃2). This is clear on the dense set of point where

StabΓU2
(x̃2) acts freely, and hence everywhere by continuity.

Using the exponential map, we can identify Ṽ ′
1 with a metric ball in Tx̃1

Ũ1 on which

the linearized group d StabΓU1
(x̃1) operates isometrically; this identification is equivariant

with respect to the natural identification StabΓU1
(x̃1) ∼= d StabΓU1

(x̃1). We can perform the

same construction for Ṽ ′
2 . It now follows from Lemma 2.1.5 that the coordinate change φ̃ is

equivariant on Ṽ ′
1 with respect to a unique group isomorphism StabΓU1

(x̃1) → StabΓU2
(x̃2).

In particular, the linear representations StabΓUi
(x̃i) → O(n) ⊂ Aut(Tx̃i

Ũi) are isomorphic,
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and unique up to conjugacy.

Definition 2.1.7. For every point x ∈ O, we define its local (isotropy) group Γx ⊂ O(n)

as the (conjugacy class of the) image of the linear representation StabΓUi
(x̃i) → O(n). A

point x is called regular if Γx is trivial, and singular otherwise.

We will often implicitely identify the local isotropy group Γx of a point x ∈ O with the

stabilizer group StabΓU
(x̃) with respect to some orbifold chart.

An orbifold O has a natural stratification into strata of points of equal type. In an orbifold

chart (U, Ũ ,ΓU , πU) around x, the fixed point set of StabΓU
(x̃) ∼= Γx in Ũ is a submanifold

and its connected component through x̃ projects to points in O with the same local group

as x. Hence the equivalence classes of points with the same local groups inherit natural

structures as smooth manifolds, and together form a stratification of O. The dimension

of the stratum Sx through a point x ∈ O equals the dimension of the linear subspace

Fix(Γx) ⊆ Rn. For 0 ≤ d ≤ n = dimO, we write O(d) for the union of all d-dimensional

strata. The boundary of a stratum is a locally finite union of strata of lower dimensions.

Note that, when passing from a stratum to its boundary, the local isotropy group strictly

increases.

The regular points of an orbifold O form the top-dimensional stratum Oreg. It is open,

dense and path connected. Its complement Osing = O − Oreg is called the singular locus

of O. The singular (n − 1)-dimensional stratum O(n−1) consists of the points with local

group ∼= Z2 generated by a hyperplane reflection. Its closure ∂reflO := O(n−1) is usually

referred to as reflector boundary or silvered boundary of O. It is not usually contained

in the boundary ∂O; instead we have the relation ∂reflO ∩ ∂O = ∂refl∂O. The reflector

boundary of O consists of all points whose local group contains a hyperplane reflection.

We call O(n−1) the regular part of the reflector boundary.

A component of the zero-dimensional stratum O(0) must be a point, and is often called

a singular vertex. A component of a one-dimensional stratum O(1) is called a singular edge

(assuming that dimO ≥ 2).

Using local isotropy groups, the notion of a tangent space carries over to orbifolds in a

natural way. Thus, the tangent bundle TO → O of a smooth orbifold O can be defined

locally, with respect to a chart (U, Ũ ,ΓU , πU), as the quotient TŨ/ΓU → U of the tangent

bundle TŨ → Ũ . The restriction TO|Oreg → Oreg of the orbifold tangent bundle to the

regular stratum is the tangent bundle in the manifold sense1. For a point x ∈ O, the tangent

space TxO can be canonically identified with Rn/Γx. The tangent space TxSx ⊆ TxO of

1In section 2.2.1, we will discuss orbifold fiber bundles; the natural map TO → O is an orbifold fibration

with generic fiber Rn as defined there. However, we will not discuss or use this “singular bundle structure”

of TO away from the regular stratum.
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the stratum Sx through x corresponds to the linear subspace Fix(Γx) ⊂ Rn. A (smooth)

vector field on an orbifold O is a section of TO which is locally covered by a (smooth)

vector field.

2.1.3 Examples: Low-dimensional orbifolds

In this section, we give a brief discussion of the local structure of orbifolds of dimension

≤ 3. We are particularly interested in the closed (i.e. compact without boundary) case.

A point in a 1-orbifold is either regular, a boundary point or a reflector boundary point

(with local group O(1) ∼= Z2). In particular, there are precisely two connected closed 1-

orbifolds, namely the circle S1 and the mirrored interval I. The latter has as underlying

topological space |I| the compact interval [0, 1]. However, the boundary points of |I| are

reflector boundary points of I, i.e. ∂reflI = I(0) = ∂|I|.

Next, let O2 be a 2-orbifold, possibly with boundary. A point in the 1-stratum is a reflection

boundary point with local group ∼= D1
∼= Z2 acting by a reflection (on the disc or half-disc).

It may be a boundary point, namely one of the points in ∂O ∩ ∂reflO. If it not a boundary

point, it has a neighbourhood diffeomorphic to V 2(1) := D2/D1.

There are two possibilities for the local structure at a singular point in O(0). It its

local group is ∼= Zp, p ≥ 2, acting by rotations, it is called a cone point of order p. (In

the Riemannian case which we discuss in section 3, this corresponds to a cone angle of
2π
p

.) It then is an isolated singular point in the interior of |O| and has a neighbourhood

diffeomorphic to the disc D2(p) := D2/Zp with cone point of order p. Alternatively, the

local group Γx ⊂ O(2) of a singular point xmay be a dihedral groupDq, q ≥ 2, in which case

x is called a corner vertex of order q.2 Corner vertices are are reflector boundary points

but not boundary points and have neighbourhood diffeomorphic to the sector V 2(q) :=

D2/Dq. Note that ∂reflV
2(q) = ∂|V 2(q)|. Sometimes it will more conventient to also admit

cone points and corner vertices of order 1 which are nothing else than regular interior,

respectively, regular reflector boundary points.

The singular locus Osing consists of the reflector boundary ∂reflO = O(1), which contains

the set of all corner vertices, and of the subset of O(0) of (isolated) cone points. We call

a connected component of O(1) a reflector edge. In a corner vertex, locally two reflector

edges meet.

A connected component of ∂|O| can be a connected component of ∂O or of ∂reflO, or

it can be a chain of consecutive boundary arcs and reflector edges. In the latter case, any

2As a subgroup of O(2), the dihedral group Dq is defined as the isometry group of a regular q-gon. It

is generated by the reflections at two lines through the origin with angle π
q
. As an abstract group, it has

the presentation 〈s1, s2|s
2

1
= s2

2
= (s1s2)

q = 1〉.
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two of the boundary arcs are disjoint, but there may be sequences of consecutive reflector

edges meeting at corner vertices.

Following Thurston [Th78], we will use the following notation for closed 2-orbifolds. Let

Σ be a 2-manifold, possibly with boundary. Then we denote by Σ(p1, . . . , pk; q1, . . . , ql) the

closed 2-orbifold with underlying space Σ, reflector boundary ∂Σ, k cone points of orders pi
located in the interior of Σ and l corner vertices of orders qj lying on ∂Σ. Thus for example

D2(p; ) = D2(p) is a closed 2-orbifold with a reflector boundary circle (and one cone point

of order p). If there are no cone points (k = 0) we write Σ(; q1, . . . , ql). If no corner vertices

occur (l = 0), in particular if ∂Σ = ∅, we write briefly Σ(p1, . . . , pk; ) =: Σ(p1, . . . , pk),

and also Σ(; ) =: Σ. We will only apply this notation if the diffeomorphism type of the

2-orbifold is uniquely determined.

For such a 2-orbifold O = Σ(p1, . . . , pk; q1, . . . , ql), we can define its Euler characteristic

as

χ(O) = χ(Σ) −
k∑

i=1

(1 −
1

pi
) −

1

2

l∑

j=1

(1 −
1

qj
).

The Euler characteristic has a multiplicative property under finite orbifold coverings

([Th78, Prop. 13.3.4]). Thus, for an orbifold covering O′ → O of closed 2-orbifolds where

every regular point of O has k (regular) preimages, we have χ(O′) = k · χ(O).

It is a simple combinatorial exercise to derive the well-known classification of connected

closed orbifolds with χ(O) ≥ 0 (cf. [Th78, Thm. 13.3.6]). They can be arranged in three

classes:

The 2-orbifolds S2, RP 2, S2(p, p), S2(2, 2, p), S2(2, 3, 3), S2(2, 3, 4), S2(2, 3, 5), RP 2(p),

D2,D2(p),D2(; p, p),D2(; 2, 2, p),D2(; 2, 3, 3),D2(; 2, 3, 4),D2(; 2, 3, 5),D2(2; p) andD2(3; 2)

with p ≥ 2 are spherical 2-orbifolds, i.e. quotients of the round 2-sphere (by a finite group

of isometries).

The 2-orbifolds T 2, K2, S2(2, 3, 6), S2(2, 4, 4), S2(3, 3, 3), S2(2, 2, 2, 2), RP 2(2, 2), Ann2,

Möb2, D2(; 2, 3, 6), D2(; 2, 4, 4), D2(; 3, 3, 3), D2(; 2, 2, 2, 2), D2(4; 2), D2(3; 3), D2(2; 2, 2)

and D2(2, 2) are toric, i.e. quotients of the flat 2-torus.

The remaining closed 2-orbifolds with χ(O) ≥ 0 are diffeomorphic to S2(p), S2(p, q),

D2(; p) or D2(; p, q) with 2 ≤ p < q. These orbifolds are bad, as can be verified by

decomposing them into two discal 2-orbifolds (with boundary). A manifold covering such

an orbifold would likewise have to consist out of two 2-discs which is impossible.

In fact these are the only bad 2-orbifolds without boundary ([Sc83, Thm. 2.3]). Since

spherical and toric 2-orbifolds clearly have nonnegative Euler characteristic, we have

Proposition 2.1.8. A closed 2-orbifold has nonnegative Euler characteristic if and only

if it is spherical, toric or bad.
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Consider now a 3-orbifold O3, possibly with boundary. If x ∈ O(1), then the local group

Γx ⊂ O(3) fixes a line, i.e. Γx ∼= Zp or Dp with p ≥ 2 and S2/Γx ∼= S2(p, p) or D
2
(; p, p). We

call the connected component of O(1) containing x a singular edge, respectively, reflector

edge (or circle) of order p. In the reflector case Γx ∼= Dp, locally two reflector faces, i.e.

components of O(2), meet at the edge. The boundary points of the singular and reflector

edges (i.e. of their underlying 1-manifolds) are the cone points and corner vertices of the

2-orbifold ∂O.

If x is a singular vertex, i.e. if x ∈ O(0), then Γx ⊂ O(3) has no nontrivial fixed vec-

tor. Thus, the spherical 2-orbifold S2/Γx must be diffeomorphic to one of RP 2, S2(2, 2, p),

S2(2, 3, 3), S2(2, 3, 4), S2(2, 3, 5), RP 2(p),D2(p),D2(2; p)D2(3; 2),D2(; 2, 2, p),D2(; 2, 3, 3),

D2(; 2, 3, 4) or D2(; 2, 3, 5) with p ≥ 2. We have x ∈ ∂reflO if and only if ∂refl(S
2/Γx) 6= ∅.

The cone points and corner vertices of S2/Γx correspond to singular edges emanating from

the point x.

2.2 Fibrations and decompositions

2.2.1 Fibered 3-orbifolds

Let F be an orbifold without boundary. Following [BMP03, sec. 2.4] we define an orbifold

fiber bundle or orbifold fibration with generic fiber F as a submersion p : O → B of

orbifolds, possibly with boundary, with the following property: For every point x ∈ B

there is a chart φ : Ũ → U around x, a smooth operation Γx y F and a submersion

σ : Ũ × F → O inducing a diffeomorphism between (Ũ × F )/Γx (where we divide out the

diagonal action) and p−1(U) such that p◦σ = φ◦πŨ . In the case with boundary we require

that p−1(∂B) = ∂O; in this case p restricts over the boundary to the orbifold fiber bundle

p|∂O : ∂O → ∂B. Note that orbifold coverings are (the same as) orbifold fiber bundles

with 0-dimensional fiber. We say that a compact orbifold fibers if it is the total space of an

orbifold fibration whose base and fiber have strictly positive dimension and whose generic

fiber is a closed orbifold.

For the remainder of this text, we will restrict ourselves to fibrations of 3-dimensional

orbifolds.

An orbifold Seifert fibration is an orbifold fibration p : O3 → B2 with 3-dimensional

total space O, 2-dimensional base B and 1-dimensional closed connected generic fiber F ,

i.e. F is the circle S1 or the mirrored interval I. A Seifert orbifold is a 3-orbifold admitting

a Seifert fibration. In an orbifold Seifert fibration, every fiber has a neighbourhood which

is fiber preserving diffeomorphic to a solid toric orbifold equipped with a canonical Seifert

fibration. More precisely, suppose that x ∈ B is a point in the base and let Γx be its local
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group. Then the fiber p−1(x) has a saturated neighbourhood of the form (D2 × F )/Γx
with the natural fibration (D2 × F )/Γx → D2/Γx. The action Γx y D2 is effective,

whereas the action Γx y F is in general not. Fibers in the boundary have similar model

neighbourhoods. A classification of Seifert orbifolds, both locally and globally, has been

given in [BS85].

Seifert fibrations of solid toric 3-orbifolds as well as 1-dimensional fibrations of their

toric boudaries are in general not unique. The next result describes which fibrations of the

boundary extend to Seifert fibrations. Let V ∼= (D2×S1)/Γ be a solid toric 3-orbifold. We

call a 1-dimensional fibration of ∂V horizontal if it is isotopic to the fibration ∂V → S1/Γ.

Lemma 2.2.1. A 1-dimensional fibration of the boundary ∂V of a solid toric orbifold V

extends to a Seifert fibration of V if and only if it is not horizontal.

Proof. This is a consequence of the fact that 1-dimensional fibrations of closed flat 2-

orbifolds can be isotoped to be geodesic.

A toric fibration of a 3-orbifold is an orbifold fibration whose generic fiber is a toric

2-orbifold. (Fibrations with 2-dimensional fibers of other topological types will play no

role in this text.)

2.2.2 2-suborbifolds in 3-orbifolds

We recall from section 2.1.1 that a (proper) 2-suborbifold Σ in a 3-orbifold O is a subset

whose preimages in local charts are (proper) 2-submanifolds. It is called two-sided if it has

a product neighbourhood of the form Σ × (−1, 1). It is called locally two-sided at a point

x if it has such a product neighbourhood locally near x, i.e. if Γx does not switch the sides

of the hypersurface π−1
U (Σ) ⊂ Ũ locally at x̃, equivalently, if Γx acts trivially on the line

Tx̃Ũ/Tx̃π
−1
U (Σ) (in some local trivialization Ũ of O near x).

If Σ is not (globally) two-sided then it has a tubular neighbourhood of the form (Σ′ ×

(−1, 1))/Z2 where Z2 acts by a reflection on (−1, 1) and by a (possibly trivial) involution

on Σ′. (To verify this, one can take Σ′ to be the boundary of a tubular neighbourhood of

Σ.) When speaking of a 3-suborbifold O′ ⊂ O we usually suppose that the components of

∂O′ are either components of ∂O or disjoint from ∂O, i.e. two-sided suborbifolds of int(O).

A 3-orbifold O is called irreducible if it does not contain any bad 2-suborbifold and if

every two-sided spherical 2-suborbifold bounds a discal 3-suborbifold. It is called (topolog-

ically) atoroidal if every incompressible two-sided toric 2-suborbifold Σ ⊂ O is boundary

parallel, i.e. bounds a collar neighbourhood ∼= Σ × [0, 1] of a boundary component ∼= Σ.

Let O be a 3-orbifold and let Σ ⊂ O be a proper 2-suborbifold. A compressing discal

2-suborbifold or compression disc for Σ is a discal 2-suborbifold D ⊂ O which intersects Σ
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transversally in ∂D = D ∩Σ such that ∂D does not bound a discal 2-suborbifold in Σ. (If

D is one-sided, we understand this to mean that splitting the connected component of Σ

containing ∂D along ∂D does not yield a discal 2-orbifold. Anyway, one-sided compression

discs can be replaced by two-sided ones by passing to the boundary of a tubular neighbour-

hood.) Note that a spherical 2-suborbifold has no compression discs because every closed

1-suborbifold of a spherical 2-orbifold bounds a discal 2-suborbifold. A compression of Σ is

either a discal 3-suborbifold whose boundary is a component of Σ or a compression disc for

Σ. If Σ admits a compression then it is called compressible, and otherwise incompressible.

Thus a 3-orbifold is irreducible if it contains no bad 2-suborbifolds and if all two-sided

spherical 2-suborbifolds are compressible. The notion of incompressibility is particularly

useful in the irreducible case because then the position e.g. of closed 2-suborbifolds Σ rel-

ative to incompressible 2-suborbifolds Σinc can be simplified by isotopies. Namely, in this

case we can be achieve that Σinc divides Σ into non-discal components.

Discal 3-orbifolds are irreducible. This is formulated but not proved in [BMP03, Thm.

3.1]. A proof can be found in [DL09, 2.4].

More generally, every closed 2-suborbifold of a discal 3-orbifold is compressible. For

nonspherical suborbifolds this follows from the Equivariant Loop Theorem [MY80], cf.

[BMP03, Thm. 3.6]. We will use it only for toric 2-suborbifolds.

2.2.3 Decompositions of 3-orbifolds along 2-suborbifolds

In the following, let O be a compact 3-orbifold.

Consider a finite family of disjoint two-sided closed 2-suborbifolds Σj ⊂ int(O). The

operation of removing from O an open tubular neighbourhood of ∪jΣj is called splitting O

along the Σj. We call the splitting spherical (toric, incompressible) if all Σj are spherical

(toric, incompressible). We will refer to the Σj as splitting 2-suborbifolds. A connected

sum decomposition of O or a (spherical) surgery on O is performed by first splitting O

along a family of spherical 2-suborbifolds and then filling discal 3-orbifolds into the addi-

tional spherical boundary components created by the splitting. (These discal 3-orbifolds

are uniquely determined by the diffeomorphism types of the splitting 2-suborbifolds.) Con-

versely, O is called a connected sum of the 3-orbifolds resulting from this decomposition.

Note that we allow connected sums of connected orbifolds (components) with themselves.

The following result reduces the study of compact 3-orbifolds without bad 2-suborbifolds

to the study of irreducible ones. It is due to Kneser [Kn29] in the manifold case, see

[BMP03, 3.3] for a proof in the case of orientable orbifolds. The argument given there also

extends to the nonorientable case.

Theorem 2.2.2 (Spherical decomposition). A compact 3-orbifold without bad 2-suborbi-
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folds can be decomposed by surgery into finitely many irreducible compact 3-orbifolds. The

non-spherical components of this decomposition are unique up to diffeomorphism.

If a 3-orbifold O contains no bad 2-suborbifolds, then this is also true for its connected

summands: If a summand were to contain a bad 2-suborbifold, it would also contain a

2-sided bad 2-suborbifold. By radially pushing it out of the discal 3-orbifold glued into

the splitting 2-suborbifold, we could then make it disjoint from the surgery region, thus

obtaining a contradiction. (Note that a 2-sided 2-suborbifold of O cannot meet O(0) and

must intersect O(1) and O(2) transversally.)

Remark 2.2.3. If a 3-orbifold O contains bad 2-suborbifolds, it is still possible to de-

compose it into finitely many components in which spherical 2-suborbifolds bound discal

3-orbifolds. However, in this case the splitting is in general not uniquely determined. To

see what can go wrong, consider the following simple counter-example:

Let O1 = S2(2, 4, 4) × S1 (toric) and O2 = S2(2, 4) × S1 (bad). In both orbifolds,

consider a tubular neighbourhood of a singular edge of order 4, and decompose it into

two components U ∼= D2(4) × [0, 1]. Similarly, we decompose the complement of this

tubular neighbourhood in O2 into two components V ∼= D2(2) × [0, 1]. We now can write

O1 = X1 ∪ U
′
1 ∪ U

′
2 and O2 = U1 ∪ U2 ∪ V1 ∪ V2 with U1 ∪ V1

∼= U2 ∪ V2
∼= S2(2, 4) × [0, 1].

If we remove U ′
1 and U1 from O1 and O2 respectively, glue the rests to each other along

the resulting boundary component ∼= S2(4, 4) and call the result O, we have by construc-

tion a decomposition by surgery of O into O1 and O2 and one easily verifies that these

components are irreducible (and non-spherical) by considering their universal coverings.

On the other hand, consider in O the union X = U ′
2 ∪ U2 ∪ V2; it has boundary

∂X ∼= S2(2, 2). Removing X from O has the same effect as removing U ′
1 ∪U

′
2 from O1 and

glueing V1 into the boundary along S1 × [0, 1]. Thus, performing surgery along ∂X yields

the components O′
1 = S2(2, 2, 4)×S1 and O2 = S2(2, 4)×S1 (bad); and O′

1 can be further

surgered along a spherical cross section into the spherical 3-orbifold obtained by glueing

two copies of the spherical cone over S2(2, 2, 4) to each other. These two decopositions of

O by surgery are clearly non-equivalent.

Let us now turn to toric splittings.

Lemma 2.2.4. Suppose that O contains no bad 2-suborbifolds and is split along a toric

family T into compact pieces Oi. Then O is irreducible and T is incompressible (in O) if

and only if all pieces Oi are irreducible and for each piece Oi the portion ∂Oi − ∂O of its

boundary corresponding to T is incompressible (in Oi). Moreover, if in this situation all

boundary components of the Oi are incompressible, then O has incompressible boundary.



2.2 Fibrations and decompositions 19

Proof. The standard proof in the manifold case (cf. [Wa67, 1.8 and 1.9]) carries over. The

“only if” direction uses the fact that toric 2-suborbifolds of discal 3-orbifolds are always

compressible.

There is a canonical splitting of irreducible compact 3-orbifolds along incompressible

toric suborbifolds. It is due to Jaco, Shalen and Johannson in the manifold case and has

be extended to orbifolds by Bonahon and Siebenmann [BS87], see also [BMP03, 3.3 and

3.15].

Theorem 2.2.5 (JSJ-splitting). An irreducible compact 3-orbifold admits an incom-

pressible toric splitting into components each of which is atoroidal or Seifert fibered (or

both). A minimal such splitting is unique up to isotopy.

We will also consider a class of toric splittings with weaker properties. Following Wald-

hausen’s definition [Wa67] in the manifold case, we define a graph splitting of a compact

3-orbifold with toric boundary to be a (not necessarily incompressible) toric splitting into

pieces which admit orbifold fibrations with 1- or 2-dimensional closed fibers. Moreover, the

2-dimensional fibers are required to be toric. We will refer to the pieces with 2-dimensional

fibrations as pieces with toric fibrations. A 3-orbifold admitting a graph splitting is called

a graph orbifold. Briefly, it is a 3-orbifold which can be “cut up into fibered pieces”.

Connected compact 3-orbifolds with toric fibrations and nonempty boundaries are dif-

feomorphic to T×[−1, 1] or (T×[−1, 1])/Z2 with a toric 2-orbifold T and, in the latter case,

with Z2 acting by a reflection on [−1, 1]. Unlike in the manifold case, they are not always

Seifert. This is due to the fact that, whereas a 2-torus or a Klein bottle admits (infinitely

many, respectively, two) circle fibrations, not all toric 2-orbifolds admit 1-dimensional orb-

ifold fibrations 3. Hence, in the orbifold case a graph splitting may comprise non-Seifert

pieces.

Seifert orbifolds with discal base orbifold are solid toric. Any other connected Seifert

orbifold O with nonempty boundary has a base orbifold B of Euler characteristic χ ≤ 0.

If we consider the boundary ∂B of the basis as reflector boundary, we turn B into a good

closed 2-orbifold which by [Th78, Thm. 13.3.6] can be realized as the quotient of a closed

surface Σ with constant curvature −1 or 0 by a finite group of isometries. By pulling back

the Seifert fibration over B to Σ, we can realize O as the quotient of an S1-bundle over Σ

by a finite fiber-preserving group Γ. It is now possible to construct a homogeneous metric

on this S1-bundle such that Γ operates isometrically (see [BMP03, Prop. 2.13]). Because

Γ contains a reflection at the pre-image of ∂B under this quotient, this pre-image must be

totally geodesic, and the curvature of the S1-bundle is 0. It follows that O is a quotient

3Equivalently, the rotational part of a 2-dimensional crystallographic group with torsion is in general

not reducible (cf. the discussion in [Du88]).
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of a closed submanifold of H2 × R or R3 with totally geodesic boundary, depending on

whether χ(B) < 0 or χ(B) = 0. Equivalently, the interior of such a 3-orbifold O is covered

by H2 × R or R3.

Similarly, the 3-orbifolds with toric fibrations and nonempty boundary can be realized

as quotients of flat manifolds with totally geodesic boundary. The existence of these

geometric structures on the non-solid toric pieces of a graph splitting implies that they are

irreducible and have incompressible boundaries.4 Moreover, the pieces with toric fibrations

and nonempty boundaries are atoroidal.

If in a non-trivial graph splitting of O no solid toric pieces occur, then all pieces are

irreducible atoroidal or Seifert orbifolds with nonempty incompressible toric boundaries.

Hence O is irreducible with incompressible toric boundary and the splitting is incompress-

ible, compare Lemma 2.2.4. In particular, a minimal incompressible graph splitting of an

irreducible compact connected 3-orbifold with incompressible toric boundary is canonical

up to isotopy because it coincides with the JSJ-splitting, unless the orbifold admits a toric

fibration over a closed 1-orbifold. Indeed, suppose that a nontrivial minimal incompressible

graph splitting were not minimal as a splitting into atoroidal and Seifert components. Then

for some splitting toric 2-suborbifold T the union of the (one or two) components adjacent

to it cannot be Seifert and must therefore be atoroidal. The definition of atoroidality then

implies that one of these components is ∼= T × [0, 1], contradicting the minimality of the

graph splitting.

2.3 Thurston’s Geometrization Conjecture

2.3.1 Geometric 3-orbifolds

A 3-orbifold carries a geometric structure modelled on one of the eight 3-dimensional

Thurston geometries S3, R3, H3, S2 × R, H2 × R, Nil, ˜PSL(2,R) or Solv if all local

uniformizations can be chosen as submanifolds of the respective model geometry such that

operations of the local groups and local coordinate changes are Riemannian isomteries.

(For a detailed discussion of the eight model geometries, see e.g. [Sc83, §4].)

A compact 3-orbifold is called geometric if its interior admits a complete geometric

structure. Geometric orbifolds are good by [Th78, 13.3.2] and therefore a quotient of the

respective model geometry by a discrete group of isometries. Since every such group has

4For the irreducibility one uses the fact that discal 3-orbifolds are irreducible. Namely, consider an

embedded 2-sphere S ⊂ P̃ in the universal cover of such a piece P preserved by a finite group ΓS of

isometries. With the Hadamard-Cartan Theorem it follows that S is contained in a ΓS-invariant closed

ball on which the ΓS-action is standard. Hence the action on the ball bounded by S is also standard.
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a finite index subgroup operating freely, they are in fact very good. (For the discussion

discrete subgroups of the eight isometry groups, see [Th97, Sec. 4.3, 4.4 and 4.7]; for

the closed caes see also [Du88, Thm. 1].) The uniqueness of geometric structures for 3-

manifolds (see [Sc83, Thm. 5.2]) implies that for a closed geometric 3-orbifold the model

geometry is unique.

All compact Seifert 3-orbifolds without bad 2-suborbifolds are geometric, see [Th97,

ch. 3] and [BMP03, 2.4]. More precisely, a connected closed Seifert orbifold without

bad 2-suborbifolds admits a geometric structure modelled on a unique Thurston geom-

etry different from hyperbolic and solvgeometry (i.e. on S2 × R1, S3, R3, Nil, H2 × R1, or
˜PSL(2,R)).

A solid toric 3-orbifold admits, depending on its topological type, geometric structures

modelled on some or all of the six contractible model geometries. We have already seen

that a non-solid toric connected compact Seifert orbifold with nonempty boundary contains

no bad 2-suborbifolds and admits an H2×R- or R3-structure. (If it admits an R3-structure

then also an H2 × R-structure.) In fact it can be geometrized in a stronger sense; namely,

it admits a Riemannian metric with totally geodesic boundary locally modelled on either

H2 × R or R3.

Connected 3-orbifolds admitting toric fibrations are geometric with one of the three

model geometries ˜PSL(2,R), Nil or R3. Those with nonempty boundary admit euclidean

metrics with totally geodesic boundary and complete R3-structures on their interior. They

are diffeomorphic to T × [−1, 1] or (T × [−1, 1])/Z2 with a toric 2-orbifold T and, in the

latter case, with Z2 acting by a reflection on [−1, 1].

A geometric splitting of an irreducible compact connected 3-orbifold O is an incompress-

ible toric splitting into geometric pieces, i.e. into irreducible compact 3-orbifolds whose

interiors admit complete geometric structures. We refer to the components of the splitting

as geometric pieces. Note that if O itself is not geometric, then the pieces have nonempty

boundaries and admit geometric structures modelled on H3, H2 ×R or R3. In particular, a

nontrivial incompressible graph splitting of O is a geometric splitting into pieces admitting

H2 × R- or R3-structures.

A compact 3-orbifold without bad 2-suborbifolds is said to be decomposable into geo-

metric pieces or to satisfy Thurston’s Geometrization Conjecture if it can be decomposed by

surgery into irreducible compact connected 3-orbifolds which are geometric or admit a ge-

ometric splitting, cf. [BMP03, 3.7]. (Thurston’s Geometrization Conjecture simply states

that all closed orbifolds without bad 2-suborbifolds can be decomposed into geometric

pieces.)
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2.3.2 Graph orbifolds are geometrizable

Graph splittings of compact 3-orbifolds have fairly weak properties; in particular they are

far from being unique. In this section we show that a graph splitting can be improved

to a geometric decomposition. The manifold case of this discussion is due to Waldhausen

[Wa67].

Theorem 2.3.1. Suppose that O is a compact connected 3-orbifold with toric boundary

which contains no bad 2-suborbifolds and admits a graph splitting. If O is irreducible, then it

is either solid toric or has incompressible toric boundary. In the latter case, it is geometric

with model geometry different from S2 × R and H3, or it admits an incompressible graph

splitting (and hence a JSJ-splitting without hyperbolic components). If O is not irreducible,

it can be decomposed by surgery into irreducible orbifolds of this kind.

Proof. Consider a graph splitting of O along a toric family T . If T = ∅, then O is solid

toric, or it is closed and admits an S2 × R-structure, or it is irreducible with (possibly

empty) incompressible boundary and admits a geometric structure modelled on one of the

six geometries different from S2 × R and H3. If O admits an S2 × R-structure, it can be

decomposed by surgery along a spherical cross section into one or two spherical 3-orbifolds.

If T 6= ∅, then the pieces of the splitting have nonempty boundary. If one of the pieces

P is of the form T × [0, 1] with a toric 2-orbifold T , we may reduce T by removing one

of the components of ∂P , unless P is the only piece. In the latter case, O fibers over the

circle and is geometric (with model geometry R3, Nil or Solv).

If no solid toric piece occurs in the graph splitting (and if T 6= ∅), then O is irreducible

with incompressible boundary and the graph splitting is incompressible, cf. Lemma 2.2.4.

If there is a solid toric piece and if adjacent to it there is another solid toric piece or a

one-ended piece with toric fibration, i.e. a piece diffeomorphic to (T × [−1, 1])/Z2 with T

toric and Z2 reflecting on [−1, 1], then O is closed and geometric with model geometry S3

or S2 × R. Since in all other cases we are done or can reduce the splitting by removing a

component from T , we assume that at least one solid toric piece V0
∼= (D2 × S1)/Γ occurs

in the graph splitting and that adjacent to V0 there is a non-solid toric Seifert piece S. We

may further assume that all pieces with toric fibrations are one-ended, i.e. diffeomorphic

to (T × [−1, 1])/Z2 with T toric and Z2 reflecting on [−1, 1].

We denote by q : V0
∼= (D2 ×S1)/Γ → S1/Γ the fibration of V0 by discal cross sections.

Let K ⊳ Γ be the kernel of the action Γ y S1. Via the action K y D2 we may regard K

as a subgroup K ⊂ O(2). The generic discal cross section of V0 is ∼= D2/K. Let p : S → B

denote the Seifert fibration of S. The base B is a non-discal 2-orbifold with nonempty

boundary. Let T0 = ∂V0 = S ∩ V0 ∈ T denote the toric 2-suborbifold separating V0 and S,

and ∂0B = p(T0) the boundary component of B corresponding to T0. It is either a circle
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or an arc connecting two points of ∂reflB ∩ ∂B.

If the fibrations p|T0
and q|T0

of T0 by closed 1-orbifolds are not isotopic, then the

Seifert fibration p can be extended over V0, compare Lemma 2.2.1, i.e. S ∪V0 is Seifert and

we reduce the graph splitting by removing the component T0 from T . (The Seifert piece

“swallows” the adjacent solid toric piece.)

Otherwise, if p|T0
and q|T0

are isotopic, we may assume that they agree, i.e. that the

discal cross sections of V0 fill in Seifert fibers. We then have the identification ∂0B ∼= S1/Γ.

In this situation we find the following class of two-sided spherical 2-suborbifolds adapted

to the graph structure. Let α ⊂ B − Bsing be a properly embedded arc with endpoints

in ∂0B − ∂reflB. It yields the spherical 2-suborbifold Σα ⊂ S ∪ V0 obtained by taking

p−1(α) ⊂ S and attaching to it the pair of discal 2-suborbifolds q−1(∂α) ⊂ V0. Hence

Σα
∼= S2/K where we extend the action of K ⊂ O(2) to R3 using the canonical embedding

O(2) ⊂ O(3). If ∂reflB 6= ∅ we get another similar class of spherical 2-suborbifolds by

taking embedded arcs α̂ connecting a regular boundary point on ∂0B to an interior point

of a reflector edge. In this case we have Σα̂
∼= S2/K̂ where K̂ ⊂ O(2) is an index two

extension of K such that the elements in K̂ −K switch the poles (0, 0,±1) of S2.

We note that the discal 3-orbifold D3/K has a decomposition into a Seifert and a solid

toric piece analogous to the decomposition of S∪V0. Indeed, take an O(2)-invariant decom-

position of D3 into a tubular neighbourhood of the equator S1 × {0} and the complement

of this neighbourhood. By dividing out K, one sees that D3/K is obtained by attaching

the cylinder (D2/K) × [−1, 1] to a product fibration with fiber S1/K and base a bigon

(topological disc) such that the fibrations of the boundaries match. Thus we may split

O along Σα, fill in copies of D3/K into the two spherical boundary components resulting

from the splitting to obtain a (possibly disconnected) 3-orbifold Oα, and extend the graph

splitting to all of Oα by attaching copies of (∂D2/K) × [−1, 1] to the pieces of T0. The

effect on the base of the Seifert piece is that B is split along α and two bigons are attached

along the copies of α. The discal 3-orbifold D3/K̂ is obtained analogously by attaching the

cylinder quotient (D2 × [−1, 1])/K̂, where K̂/K acts on [−1, 1] by a reflection, to a Seifert

manifold with base orbifold a triangular disc ∆ whose boundary consists of two boundary

arcs and one reflector boundary arc. When performing the connected sum decomposition

(surgery) of O along Σα̂ and extending the graph splitting over Oα̂, the effect on the base

of the Seifert piece is that B is again split along α̂, but this time copies of ∆ are attached

along the copies of α̂.

If A is a finite system of disjoint properly embedded arcs αi and α̂j in B as above,

we denote the result of performing simultaneous surgeries along the system of spherical

2-suborbifolds Σαi
and Σα̂j

by OA and equip it with an induced graph splitting along

a toric family TA as explained. The components of T different from T0 correspond to

components of TA, whereas T0 may split up into several components. Furthermore, we
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denote by SA ⊂ OA the Seifert suborbifold corresponding to S and by BA the base of its

Seifert fibration.

Now we choose the system of arcs A so that they split B into pieces as simple as possible.

After making a suitable choice, every connected component B′ of BA is diffeomorphic to

one of the compact 2-orbifolds in the following list:

• Ann2 or the quadrangle Q bounded by two boundary and two reflector edges occuring

in alternating order (a quotient of Ann2 by an involution);

• D2(p) or V 2(p) with p ≥ 1.

Lemma 2.3.2. Suppose that the compact 3-orbifold O′ has a decomposition O′ = S ′ ∪ V ′

along a toric 2-suborbifold T ′ = S ′ ∩ V ′ into a Seifert piece S ′ and a solid toric piece V ′

such that the discal cross sections of V ′ fill in Seifert fibers of S ′. If B′ belongs to the above

list, then O′ is either spherical or solid toric.

Proof. If B′ splits as the product of the compact interval and a connected closed 1-orbifold,

i.e. if B′ is the annulus or the quadrangle, then O′ = S ′ ∪ V ′ ∼= V ′ is solid toric.

If B′ is discal, then S ′ is also solid toric and has the form S ′ ∼= (D2 × F ′)/Γ′ with

faithful action Γ′ y D2 and generic Seifert fiber F ′. Let ∆′ denote the discal cross section

of V ′. Using an identification ∂∆′ ∼= F ′, we form the closed 3-orbifold Ô′ by gluing D2×F ′

and ∂D2 × ∆′ canonically along their boundaries. We extend the Γ′-action from D2 × F ′

to Ô′ by choosing an extension of the Γ′-action on F ′ to ∆′. There exists a Γ′-invariant

spherical structure on Ô′. Hence O′ ∼= Ô′/Γ′ is spherical.

Proof of Theorem 2.3.1 continued. As a consequence of Lemma 2.3.2, the splitting of OA
along the subfamily of TA consisting of those toric 2-suborbifolds, which correspond to the

components of T different from T0, is still a graph splitting. (The pieces resulting from

splitting V0 swallow the corresponding adjacent pieces of S.)

Our discussion yields so far: O is irreducible and satisfies the conclusion of the theo-

rem, or O is closed and admits an S2 × R-structure, or O can be decomposed by surgery

into components which admit graph splittings along strictly fewer toric 2-suborbifolds. By

repeating this process finitely many times, it follows that O can be decomposed by surgery

into irreducible orbifolds satisfying the conclusion of the theorem. In particular, the asser-

tion holds if O is not irreducible. If O is irreducible, then O is diffeomorphic to one of the

components arising from the surgery, and the assertion holds as well.

Corollary 2.3.3. A compact connected 3-orbifold with toric boundary which contains no

bad 2-suborbifolds and admits a graph splitting is decomposable into geometric pieces (i.e.

satisfies Thurston’s Geometrization Conjecture).
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Remark 2.3.4. Let O be as in Theorem 2.3.1. Then the boundary of O is incompressible

if and only if no solid toric components occur in the surgery decomposition of O. Indeed,

suppose that V is a solid toric component. Then there exists a finite family of disjoint

embedded discal 3-suborbifolds Bi ⊂ V such that V −∪iBi embeds into O. There exists a

compression disc for ∂V in V avoiding the Bi, and hence a compression disc for ∂V ⊂ ∂O

in O. Conversely, suppose that ∂O is compressible and consider a compression disc ∆.

Using the property that O contains no bad 2-suborbifolds, we can make ∆ step by step

disjoint from the family of spherical 2-suborbifolds along which the surgery is performed

until ∆ is contained in an irreducible component. This component must be solid toric.
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3. Geometric properties of

Riemannian orbifolds

Definition 3.0.1. A Riemannian orbifold is a smooth orbifold with the additional struc-

ture of (smooth) Riemannian metrics on the local uniformizations Ũ of its orbifold charts.

These metrics must be compatible in the sense that the operations ΓU y Ũ and the local

coordinate changes φ̃ are Riemannian isometries.

We also define Riemannian orbifolds of lower (Ck) regularity as Ck orbifolds with Ck-

differentiable Riemannian metrics on the local uniformizations Ũ satisfying the compatibil-

ity conditions in Definition 3.0.1. Again, we will only discuss smooth Riemannian orbifolds

throughout this section, but our results also hold for Ck Riemannian orbifolds provided that

k is sufficiently large.

On a Riemannian orbifold, there is a canonical representative for the local group Γx ⊂

O(n), namely the action of d StabΓU
(x̃) on the metric vector space Tx̃Ũ for an orbifold

chart (U, Ũ ,ΓU , πU) with x ∈ U and x̃ ∈ π−1
U (x). For a Riemannian orbifold O of dimension

n ≥ 1, the tangent space TxO at a point x is equipped with the angle metric. It is the

(complete euclidean) cone over the unit tangent “sphere” ΣxO which is also called the link

or the space of directions at x. There are canonical isometric identifications TxO ∼= Rd/Γx
and ΣxO ∼= Sd−1/Γx. We have the following formula for angles: Let u, v ⊂ TxO be two

directions at x ∈ O, x̃ ∈ Ũ a lift of x to a local uniformization Ũ and ũ, ṽ ∈ Tx̃Ũ lifts of u

and v respectively. Then

∠x(u, v) = min
γ∈Γx

∠x̃(ũ, γ · ṽ). (3.0.2)

Using a partition of unity, we can give to every smooth orbifold the additional structure

of a Riemannian orbifold. This construction proceeds exactly as in the manifold case. If

f : O → O′ is a smooth immersion of orbifolds, one can pull back a Riemannian metric g′

on O′ to a Riemannian metric f ∗g′ on O. (More precisely, we pull back the metrics on the

local uniformizations. Alternatively, we can consider the orbifold Riemannian metric as a

singular bundle metric g on the orbifold tangent bundle.)
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By definition, spherical, toric, and more generally geometric orbifolds carry a natural

structure as Riemannian orbifolds. Similarly, discal and solid toric orbifolds have natural

Riemannian structures.

We say that a Riemannian orbifolds satisfies certain curvature bounds (e.g. upper or

lower bounds on |∇lR|, sec, Ric or scal) if these bounds are satisfied on all orbifolds charts.

Note that for a Riemannian orbifold, expressions like R(u, v)w for u, v, w ∈ TO are in

general not well-defined.

Given a closed 2-orbifold O, we remove discal neighbourhoods of the singular vertices

in O(0) and apply the Gauss-Bonnet formula to the uniformizations of the resulting com-

ponents. We thus obtain the Gauss-Bonnet formula for orbifolds χ(O) =
∫
O
KdA (cf.

[Th78, Sec. 13.3]). Since one can easily construct Riemannian metrics with K ≥ 0 on all

bad 2-orbifolds, we can rephrase Proposition 2.1.8 as follows: A closed 2-orbifold admits a

Riemannian metric with K ≥ 0 if and only if it is spheric, toric or bad.

3.1 Geodesics and exponential map

Let O be a Riemannian orbifold and consider a smooth curve c in O (i.e. a smooth im-

mersion of orbifolds c : [0, 1] → O). By lifting c to smooth curves in local uniformizations

of O, we can compute its length L(c). Similarly, we can determine the length of piecewise

smooth curves in O. The corresponding path metric gives O a natural structure of a met-

ric length space. (A standard reference on length spaces is [BBI01]; for a very thorough

discussion of Riemannian orbifolds as metric length spaces see [Bo92].)

A curve in a Riemannian orbifold O is called a geodesic if it can be locally lifted to

geodesics in the orbifold charts of O. For a tangent vector v ∈ TO there is a unique

maximal geodesic cv : (αv, ωv) → O, −∞ ≤ αv < 0 < ωv ≤ ∞, with initial condition

ċv(0) = v.

By the convexity of sufficiently small balls in Riemannian manifolds, a geodesic c in

a Riemannian orbifold is always (distance) minimizing on [0, ǫ) and (−ǫ, 0] for some ǫ >

0. However, it is in general not locally minimizing, i.e. minimizing on (−ǫ, ǫ) for some

positive ǫ. Indeed, it is locally minimizing at t = 0 if and only if it is either constant or if

∠c(0)(ċ(t
+), ċ(t−)) = π, equivalently, if and only if c remains in the same stratum near 0.

(Intuitively, if a geodesic crosses a stratum, “short cuts” are possible.) Similarly, geodesics

are in general not suborbifolds: They are locally suborbifolds at t = 0 if and only if for a

local lift c̃ we have Γc(0) · ˙̃c ⊆ {± ˙̃c}.

The strata of a Riemannian orbifold O carry natural structures as Riemannian mani-

folds; they are totally geodesic suborbifolds of O and hence locally convex. However, their
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metric structures are in general not complete, even if O itself is complete. Note that the

tangent space TxSx of the stratum through x ∈ O is the maximal euclidean factor of TxO.

A geodesic variation of a geodesic c : [0, 1] → O is a smooth map α : (−ǫ, ǫ)×[0, 1] → O,

ǫ > 0, such that α(0, ·) = c and all α(s, ·) are geodesics. The vector field J = ∂α
∂s

(0+, ·) :

[0, 1] → TO along c is a Jacobi field. The relevant constructions and computations can be

adopted from Riemannian manifolds by working in chains of orbifold charts along c. For

instance, after choosing local lifts α̃ of α near the endpoints of c, the first variation formula

takes the form

d

ds
|s=0+L(α(s, ·)) = −|J(0)|·cos ∠c̃(0)(J̃(0), ˙̃c(0+))−|J(1)|·cos ∠c̃(1)(J̃(1),− ˙̃c(1−)). (3.1.1)

By our formula for angles 3.0.2, we obtain the first variation inequality

d

ds
|s=0+L(α(s, ·)) ≥ −|J(0)|·cos ∠c(0)(J(0), ċ(0+))−|J(1)|·cos ∠c(1)(J(1),−ċ(1−)). (3.1.2)

Note that equality always holds if c remains in one stratum near each of its endpoints.

The endpoints p = c(0) and q = c(1) of c are said to be conjugate (along c) if there exists

a non-zero Jacobi field J along c with boundary values zero. If p and q are not conjugate,

then Jacobi fields J exist for any given boundary values J(0) ∈ TpO and J(1) ∈ TqO.

Unlike in the manifold case, due to the ambiguity of lifts to charts, there may exist several

Jacobi fields with the same boundary values, however at most finitely many. This occurs

if p or q is singular. More precisely, suppose that βi are (not necessarily minimizing)

geodesic segments of length < π in Σc(i)O, starting in ċ(0+), respectively, −ċ(1−) and that

λ0, λ1 ≥ 0. Then there exists a geodesic variation α of c with the following property: If

λ0 > 0, then for a local lift α̃ of α near c(0) holds |J̃(0)| = λ0, ∠c̃(0)(J̃(0), ˙̃c(0+)) < π, and

the geodesic segment β̃0 in Σc̃(0) connecting ˙̃c(0+) to λ−1
0 J̃(0) projects via the differential

of the chart projection to β0. We can proceed analogously if λ1 > 0. In particular, given

boundary values J(0) and J(1), the Jacobi field J and a corresponding geodesic variation

α can be chosen so that equality holds in (3.1.2).

We will mostly study Riemannian orbifolds O which are complete with respect to the

path metric, equivalently (by Hopf-Rinow), which are geodesically complete, i.e. on which

the geodesics cv are defined on all of R. In this case, closed metric balls are compact and

the path metric is geodesic.

On a complete Riemannian orbifold, the exponential map exp : TO → O, v 7→ cv(1) is

globally defined, and we will use the notation expx := exp |TxO : TxO → O.

The injectivity radius inj(x) in x is defined as the maximal radius r ∈ (0,∞] such that

expx|BTxO
r (0) is an embedding. The conjugate radius conj(x) in x is defined as the distance

to the closest conjugate point, i.e. the minimal norm of a tangent vector v ∈ TxO such that

the endpoints of cx|[0,1] are conjugate to each other. One has 0 < inj(x) ≤ conj(x) ≤ ∞
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(due to the Jacobi Lemma). Lower bounds for conj(x) and local bilipschitz bounds for expx
inside the conjugate radius can be given in terms of local upper sectional curvature bounds

(Rauch estimates). We call an open metric ball Br(x) ⊂ O a standard ball if r ≤ inj(x).

Regarding the continuity properties of the injectivity radius on a complete Riemannian

orbifold, we have

Proposition 3.1.3. The funtion inj : O → (0,∞] is upper semicontinuous on O and

continuous on every stratum O(d).

Proof. Since the limit of minimizing geodesic segments is minimizing, inj is clearly upper

semicontinuous on O. The continuity on strata follows from the continuity of the injectivity

radius on Riemannian manifolds because the strata are locally convex.

For a point x ∈ O, we define Dx ⊆ TxO as the subset of tangent vectors v in x such that

cv|[0,1+ǫ) is minimizing for some ǫ > 0. As in the smooth case, it is an open star-shaped

subset containing the origin, and expx|Dx
is an embedding. The tangential cut locus with

respect to x is defined as ∂Dx ⊂ TxO and its image Cut(x) := expx(∂Dx) ⊂ O is called

the cut locus with respect to x. A point y belongs to the cut locus of x, y ∈ Cut(x) if there

exists no minimizing geodesic from x through y, i.e. if there exists no v ∈ TxO such that

y = expx(v) and cv|[0,1+ǫ) is minimizing for some ǫ > 0.

If inj(x) < ∞, then expx is not injective on ∂Binj(x)(0) or expx is not locally injective

near some v ∈ ∂Binj(x)(0). In either case there exist cut points in ∂Binj(x)(x) and hence

inj(x) = d(x,Cut(x)). We will discuss this in more detail in section 3.3 below.

We observe that the well-known proof of Bishop-Gromov volume comparison for mani-

folds (see e.g. [Ka89, 1.9.4]) can also be applied to Riemannian orbifolds with lower Ricci

curvature bounds. Thus, we have (cf. [Lu01, sec. 1.2])

Proposition 3.1.4 (Bishop-Gromov for orbifolds). Let On be an n-dimensional Rie-

mannian orbifold with Ric ≥ (n − 1)k. Then for each point x ∈ O, the quotient function

volBO
r (x)/vnk (r) is nondecreasing in r with limr→0+ volBO

r (x)/vnk (r) = |Γx|
−1. Here, vnk (r)

is the volume of the r-ball in the simply-connected n-dimensional space form of constant

curvature k.

3.2 Spherical orbifolds

We will derive the properties of complete spherical orbifolds which are relevant to our

purposes from the point of view of isometric group actions on unit spheres. Let Γ ⊂ O(d),

n ≥ 1, be a finite subgroup and consider the complete spherical orbifold Ln−1 = Sn−1/Γ.

We will denote the path metrics on L and Sn−1 by ∠(·, ·). Points v ∈ L correspond to
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Γ-orbits Γ · ṽ ⊂ Sn−1. The Dirichlet fundamental domain D = D(Γ, ṽ) ⊆ Sn−1 around ṽ is

the closure of the set of points which are closer to ṽ than to the other points of the orbit

Γ · ṽ. Either D = Sn−1 or D is a finite intersection of hemispheres, i.e. a convex spherical

polyhedron. In the latter case, ∂D projects onto Cut(v) and the interior of D is identified

with L− Cut(v). It follows that the cut locus is polyhedral and L is obtained from D by

gluing the boundary to itself according to isometric face pairings. Clearly, inj(v) equals

the inradius of D with respect to ṽ (i.e. the radius of the largest ball around ṽ contained

in D) and rad(L, v) equals the circumradius. Note that conj ≡ π on L.

The fixed point set Fix(Γ) is a great sphere or empty, and so is its orthogonal comple-

ment Fix(Γ)⊥ = {v ∈ Sn−1|∠(v, w) = π
2
∀w ∈ Fix(Γ)}. The spherical join splitting

Sn−1 = Fix(Γ) ◦ Fix(Γ)⊥

is Γ-invariant and descends to the spherical join splitting

L ∼= Fix(Γ) ◦ L′ (3.2.1)

with L′ ∼= Fix(Γ)⊥/Γ. The unit sphere Fix(Γ) is the spherical de Rham factor of L. (If one

of the join factors is empty then L coincides with the other one.)

Since the action of Γ on the unit sphere Fix(Γ)⊥ is fixed point free, no orbit can be

contained in a ball of radius < π
2

because otherwise it would have a well-defined center

fixed by Γ. Thus every orbit has Hausdorff distance ≤ π
2

from Fix(Γ)⊥. It follows that

diam(L′) ≤
π

2
. (3.2.2)

In particular, if diam(L) > π
2

then diam(L) = π. Furthermore, rad(L, v) = π if and only if

v ∈ Fix(Γ), and in this case inj(v) = π.

If rad(L, v) < π, then inj(v) ≤ π
2

with equality if and only if D(Γ, ṽ) is the hemisphere

with center ṽ. In the equality case inj(v) = π
2

we also have rad(L, v) = π
2

and every

geodesic starting from v remains distance minimizing precisely up to distance π
2
. Moreover,

Γ · ṽ = {ṽ,−ṽ} and v ∈ L′.

If O is a Riemannian orbifold and L = ΣxO the space of directions in a point x, then the

splitting (3.2.1) becomes

ΣxO ∼= ΣxSx ◦Nx (3.2.3)

where Nx denotes the normal space to the stratum Sx of O through x, i.e. the space of

directions at x orthogonal to Sx. Note that Nx = ∅ if and only if the point x is regular,

and ΣxSx = ∅, equivalently, diam(ΣxO) ≤ π
2

if and only if x is a singular vertex.

For v ∈ ΣxO with inj(v) = rad(ΣxO, v) = π
2

our discussion above shows that v ∈ Nx

and the geodesic cv is reflected at x, cv(−t) = cv(t).
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Remark 3.2.4. A finite group has finitely many irreducible orthogonal representations.

As a consequence, there are finitely many isometry classes of complete spherical d-orbifolds

with a given lower volume bound.

Thus, given a bound on the order of local isotropy groups, there are only finitely many

possible types of strata in the stratification of O.

The following technical result will be needed later.

Lemma 3.2.5. For a > 0 there exists ǫ = ǫ(n, a) > 0 such that: Let v1, v2 ∈ L and suppose

that L− Bπ
2
−ǫ(v1) − Bπ

2
−ǫ(v2) has volume ≥ a. Then ∠(vi, L

′) ≥ ǫ and the projections v′′i
of the vi to Fix(Γ) satisfy ∠(v′′1 , v

′′
2) ≤ π − 2ǫ.

In particular, the spherical de Rham factor Fix(Γ) of L is nontrivial and diam(L) = π.

Proof. According to Proposition 3.1.4, the subset Bπ
2
+ǫ(vi)−Bπ

2
−ǫ(vi) has volume ≤ 2C(d)·

((1− 2ǫ
π
)−(n−1)−1). Hence, if ǫ = ǫ(d, a) > 0 is chosen sufficiently small, then the hypotheses

of the lemma imply that L 6= Bπ
2
+ǫ(v1) ∪ Bπ

2
+ǫ(v2). By (3.2.2), for every v′ ∈ L′ we have

rad(L, v′) = π
2
. It follows that ∠(vi, L

′) ≥ ǫ.

Using again (3.2.2), we note that Bπ
2
+ǫ(v

′′
i )◦L

′ ⊆ Bπ
2
+ǫ(vi). (An elementary calculation

in S1 ◦ S1 ∼= S3 ⊂ C2 shows that the spherical join of two arcs with lengths π
2

+ ǫ and π
2

has diameter π
2

+ ǫ.) Therefore Fix(Γ) 6= Bπ
2
+ǫ(v

′′
1) ∪ Bπ

2
+ǫ(v

′′
2). This in turn implies that

∠(v′′1 , v
′′
2) ≤ π − 2ǫ.

3.3 Geometry at closest cut points

Let O be a complete Riemannian orbifold and x ∈ O a point. In order to better under-

stand how expx can fail to be injective at radius inj(x), we begin with the following two

observations:

Lemma 3.3.1. Suppose that d(x, y) = inj(x) < conj(x) and that cvi
|[0,1], i = 1, 2, are two

different minimizing geodesics from x to y. Then they fit together to form a geodesic loop

of length 2 inj(x) based at x with midpoint y which is locally minimizing also at y.

Proof. Let us denote by ui := −ċvi
(1−) ∈ ΣyO the directions of the segments at y. Since

y is not conjugate to x along cvi
, there exist geodesic variations αi(s, t) of cvi

|[0,1] which

fix the endpoint x and for which ∂
∂s
|s=0+α1(·, 1) = ∂

∂s
|s=0+α2(·, 1) ∈ ΣyO is equal to a

midpoint (angle bisector) w of u1 and u2. The αi may be chosen so that equality holds

in the first variation inequality (3.1.2). Therefore, if ∠y(u1, u2) < π, these variations are

shortening and expx is not injective on the open d(x, y)-ball around the origin. This implies

inj(x) < d(x, y) which is absurd.
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Lemma 3.3.2. Suppose that 0 < d(x, y) = inj(x) < conj(x) and that there exists a unique

minimizing geodesic cv|[0,1] from x to y. With −→qp := −ċv(1
−) we have either

(i) −→yx ∈ TySy and expx is locally injective at v, or

(ii) inj(−→yx) = rad(ΣyO,
−→yx) = π

2
and cv is reflected at y, i.e. cv(1 − t) = cv(1 + t).

Note that in case (ii) the geodesic cv|[0,2] is also a geodesic loop of length 2 inj(p) based at

p.

Proof. We assume that inj(−→yx) < π
2

in ΣyO. Then exp
ΣyO
−→yx is not injective on the open

π
2
-ball around the origin, i.e. there exist two different geodesic segments β0 and β1 in ΣyO

with equal length l < π
2

from −→yx to a direction u with ∠(−→yx, u) < π
2
. (The segments βi

could be chosen minimizing.) Since y is not conjugate to x along cv, it follows (cf. section

3.1) that there exist two different geodesic variations (αi(s, t)) of cv|[0,1] fixing the endpoint

x with α1(, ·, 1) = α2(, ·, 1) and ∂
∂s
|s=0+α1(·, 1) = ∂

∂s
|s=0+α2(·, 1) = u. They may be chosen

so that for local lifts α̃i of the αi near y the geodesic segments β̃i in Σỹ connecting −̃→yx to

J̃i(1) project to βi. (This distinguishes them.) By (3.1.2), the variations αi shorten cv|[0,1].

Hence, expx is not injective on the open d(x, y)-ball around the origin, a contradiction.

This shows that inj(−→yx) ≥ π
2
.

If inj(−→yx) = π, then −→yx ∈ TySy and cv is contained in Sy for t close to 1. Since y

is not conjugate to x, in this case expx is locally injective in v. On the other hand, if
π
2
≤ inj(−→yx) < π, then our discussion of complete spherical orbifolds in section 3.2 implies

that alternative (ii) holds.

Suppose now that inj(x) < ∞. Then, as already mentioned, expx is not injective on

∂Binj(x)(0) or expx is not locally injective near some v ∈ ∂Binj(x)(0). From the previous two

lemmas we conclude

Proposition 3.3.3 (Closest cut points). If inj(x) < conj(x) and if y ∈ Cut(x) with

d(x, y) = inj(x), then there exists a geodesic loop λ of length 2 inj(x) based at x. The

midpoint y of λ divides it into two minimizing segments σ1 and σ2 from x to y. Either

∠y(σ1, σ2) = π, or σ1 = σ2 and it is the unique minimizing segment connecting x and y.

In the latter case holds inj(−→yx) = rad(ΣyO,
−→yx) = π

2
.

Proof. Let cv|[0,1] be a minimizing geodesic from y to x. If expx is locally injective in

v, then there must exist another minimizing geodesic from x to y because cv|[0,1+ǫ] is not

minimizing for any ǫ > 0. Lemma 3.3.1 applies and we are in the case when ∠y(σ1, σ2) = π.

On the other hand, if there is a unique minimizing geodesic yx, then expx cannot be locally

injective in v and we are in case (ii) of Lemma 3.3.2, i.e. σ1 = σ2.

Remark 3.3.4. If λ is a geodesic loop based at x (not necessarily with minimizing halves),

then inj(x) ≤ 1
2
L(λ).
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3.4 Toponogov’s Theorem for orbifolds

Throughout this section, we fix a comparison curvature value k ∈ R. We denote by (M2
k , dk)

the simply-connected 2-dimensional model space of constant curvature k with its standard

metric.

Let (X, d) be a complete metric length space and consider inside X a triangle consisting

of three points x1, x2, x3 ∈ X and three minimizing segments |x1x2|, |x2x3| and |x1x3|. We

also require that the circumference of a triangle (the sum of the lengths of its sides) be

≤ 2πk−
1
2 . (We consider this condition to be trivially satisfied if k ≤ 0.)

For such a triangle, there is a comparison triangle in M2
k consisting of three points

x̄1, x̄2, x̄3 ∈M2
k such that dk(x̄i, x̄j) = d(xi, xj). These points and the minimizing geodesics

|x̄ix̄j| between them are determined up to isometry unless we have k > 0 and (after

permuting indices if necessary) d(x1, x2) = d(x2, x3) + d(x1, x3) = πk−
1
2 . In this case,

we arrange the comparison triangle such that x̄3 ∈ |x̄1x̄2|. The angle at x̄1 between the

geodesics |x̄1x̄2| and |x̄1x̄3| is therefore well-defined; we call it the comparison angle (with

respect to the comparison curvature value k) at x1 between x2 and x3 and denote it by

∠̃x1
(x2, x3). We define ∠̃x2

(x1, x3) and ∠̃x3
(x1, x2) analogously.

We recall that for a metric length space (X, d) and two minimizing segments c1, c2
emanating from a point x ∈ X, the angle at x between c1 and c2 is determined by

cos ∠x(c1, c2) = lim
s,t→0

s2 + t2 − d(c1(t), c2(t))
2

2st

if this limit exists. If c1 and c2 end at two points y1 and y2 respectively, we sometimes

write ∠x(y1, y2) := ∠x(c1, c2) although the value of this expression also depends on c1 and

c2.

For a complete metric length space (X, d), the following three conditions are equivalent

(cf. [BGP92, 2.7], [BBI01, Thm. 4.3.5]). They all express the notion that triangles are

“thicker” than in M2
k .

(i) For every triangle with vertices x1, x2, x3 ∈ X and y ∈ |x1x2|, one has d(x3, y) ≥

dk(x̄3, ȳ) where ȳ ∈ |x̄1x̄2| is the point on the comparison triangle determined by d(x1, y) =

dk(x̄1, ȳ).

(ii) For any two minimizing segments c1, c2 emanating from some point x ∈ X, the

function (s, t) 7→ ∠̃x(c1(s), c2(t)) is well-defined and non-increasing in s and t (when the

other variable is unchanged).

(iii) Angles between segments inX are well-defined and complementary in the sense that

for two segments |x1x2| and |y2y2| with y1 ∈ |x1x2| we have ∠y1(x1, y2) + ∠y1(x2, y2) = π.

Moreover, for every triangle with vertices x1, x2, x3 ∈ X we have ∠̃x3
(x1, x2) ≤ ∠x3

(x1, x2).



3.4 Toponogov’s Theorem for orbifolds 35

Definition 3.4.1. A complete metric length space (X, d) is an Alexandrov space of curva-

ture ≥ k if it satisfies conditions (i) - (iii) above.

By Perelman’s version of Toponogov’s Theorem [BGP92, Thm. 3.2], a complete metric

length space (X, d) is already Alexandrov (of curvature ≥ k) if conditions (i) - (iii) hold

locally, i.e. if every point x ∈ X there is a neighbourhood x ∈ Ux ∈ X such that conditions

(i) - (iii) hold on Ux. A (not necessarily complete) metric length space satisfying this

condition is also called a local Alexandrov space.

The classical version of Toponogov’s Theorem (see e.g. [Ka89, 4.2]) asserts that a (complete)

Riemannian manifold with sectional curvature ≥ k is an Alexandrov space of curvature

≥ k. We will now show (cf. [Bo92, Thm. 1]) that the same is also true for Riemannian

orbifolds with sectional curvature ≥ k. Indeed, we will see that such an orbifold is locally

“more strongly curved” near its singularities than a Riemannian manifold satisfying the

same curvature condition (such as its local uniformization). Intuitively speaking, positive

curvature is “concentrated” in the singularities.

Proposition 3.4.2. A complete Riemannian orbifold with sectional curvature ≥ k is an

Alexandrov space of curvature ≥ k.

Proof. Let O be a Riemannian orbifold with sectional curvature ≥ k. By our discussion

above, it is sufficient to verify that condition (iii) holds locally on O. Angles between

segments in O exist and are complementary by our discussion in section 3.1.

For x ∈ O, let U be a standard ball around x with (finite) cover Ũ . We choose

Ux ⊂ U sufficiently small such that all minimizing geodesics between points in Ux are

entirely contained in U . Consider a triangle with edges x1, x2, x3 ∈ Ux. For some lift x̃3

of x3 in Ũ , we lift the geodesics c1 = |x3x1| and c2 = |x3x2| to geodesics c̃1 and c̃2 in

Ũ starting from x̃3 such that ∠x̃3
(̇̃c1(0),˙̃c2(0)) = ∠x3

(ċ1(0), ċ2(0)), equivalently, such that

∠x̃3
(x̃1, x̃2) = ∠x3

(x1, x2) where x̃1 and x̃2 are the end points of c̃1 and c̃2, respectively.

By construction we have d(x1, x2) ≤ d(x̃1, x̃2), and hence ∠̃x3
(x1, x2) ≤ ∠̃x̃3

(x̃1, x̃2).

Applying Toponogov’s Theorem to the Riemannian manifold Ũ with sectional curvature

≥ k, we now conclude that ∠̃x3
(x1, x2) ≤ ∠̃x̃3

(x̃1, x̃2) ≤ ∠x̃3
(x̃1, x̃2) = ∠x3

(x1, x2) which

completes the proof.

Remark 3.4.3. The observation in the proof that d(x1, x2) ≤ d(x̃1, x̃2) makes clear how

an orbifold with sectional curvature ≥ k is more strongly curved near its singularities than

its local uniformization. If for instance Ũ has constant sectional curvature (so that ∠̃ = ∠

on Ũ), it is still possible that ∠̃x3
(x1, x2) < ∠x3

(x1, x2) for a suitably chosen triangle in Ux.

On a generic Alexandrov space, minimizing segments cannot in general be naturally
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extended beyonf their end points. Conversely, geodesics on a complete Riemannian orbifold

O have natural extensions, and we can also consider triangles with one side a not necessarily

minimizing geodesic. Thus, we also allow triangles consisting of three points x1, x2, x3 ∈ O,

two minimizing geodesics c1 = |x1x3| and c2 = |x2x3| and a geodesic c connecting x1 and

x2. However, for a comparison triangle to exist we have to require that l(c) ≤ d(x1, x3) +

d(x2, x3) and that the circumference of the triangle be ≤ 2πk−
1
2 . In this case, we choose

the comparison triangle such that dk(x̄1, x̄2) = l(c).

Proposition 3.4.4 (Toponogov for orbifolds). Let O be a complete Riemannian orb-

ifold with sectional curvature ≥ k. For a triangle in O consisting of three points x1, x2, x3 ∈

O, two minimizing geodesics c1 = |x1x3| and c2 = |x2x3| and a geodesic c connecting x1

and x2, we have ∠̃x1
(x2, x3) ≤ ∠x1

(x2, x3) and ∠̃x2
(x1, x3) ≤ ∠x2

(x1, x3).

Proof. Consider a triangle with corners x1, x2, x3 ∈ O as in the proposition. We subdivide

the (not necessarily minimizing) geodesic c by choosing points x1 = y1, . . . , yl = x2 such

that c is minimizing between yi and yi+1 for all 1 ≤ i < l. (That this is possible follows

from our discussion in 3.1.) We also choose minimizing geodesics γl from x3 to the yl such

that γ1 = c1 and γl = c2.

By applying condition (iii) to the resulting triangles with sides γi, γi+1 and a part of c,

we obtain ∠̃yi
(yi+1, x3) ≤ ∠yi

(yi+1, x3) and ∠̃yi+1
(yi, x3) ≤ ∠yi+1

(yi, x3) for all 1 ≤ i < l. In

particular, we have

∠̃yi
(yi−1, x3) + ∠̃yi

(yi+1, x3) ≤ π (3.4.5)

for all 1 < i < l.

We now arrange the comparison triangles next to each other in M2
k such that the

geodesics γ̄i = |x̄3ȳi| coincide. The resulting gegodesic polygon is convex by (3.4.5); it

consists of two geodesics of length l(c1) and l(c2), respectively, and a number of geodesics

with total length l(c). If we now “straighten out” this polygon to the comparison triangle

for our original triangle, we observe that ∠̃x1
(x2, x3) ≤ ∠̃x1

(y2, x3) ≤ ∠x1
(γ̇(0), γ̇1(0)) =

∠x1
(x2, x3) and analogously ∠̃x2

(x1, x3) ≤ ∠x2
(x1, x3).

3.5 The orbifold Soul Theorem

Throughout this section, we closely follow the well-known proof of the Soul Theorem for

manifolds. Let us consider a complete non-compact non-negatively curved orbifold O

without boundary. Then for every point p ∈ O there is a ray ρ (an isometric embedding

ρ : [0,∞) → O) emanating from p. For any such ray we define the associated Busemann

function as βρ(x) := limt→∞(d(ρ(t), x) − t) for all y ∈ O. (Because (d(ρ(t), x) − t) is
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nonincreasing in t and bounded below by −d(p, x), βρ is well defined on all of O and

1-Lipschitz.)

By Proposition 3.4.4 the function βρ is concave along (not necessarily minimizing)

geodesics: Suppose there is a geodesic segment c : [0, 1] → O and s ∈ (0, 1) such that

βρ(c(s)) < s ·βρ(c(1))+(1− s) ·βρ(c(0)). For sufficiently large t > 0, we choose minimizing

segments from c(0), c(s) and c(t) to ρ(t). For these segments we still have d(c(s), ρ(t)) <

s · d(c(1), ρ(t)) + (1 − s) · d(c(0), ρ(t)). On the other hand, we compute for the Euclidean

comparison angle that d0(c̄(s), ρ̄(t)) ≤ s ·d0(c̄(1), ρ̄(t))+(1−s) ·d(c̄(0), ρ̄(t)). It follows that

we have comparison angles (with respect to the comparison curvature value k = 0) satisfy-

ing ∠̃c(s)(c(0), ρ(t))+ ∠̃c(s)(c(1), ρ(t)) > π, and hence ∠c(s)(c(0), ρ(t))+∠c(s)(c(1), ρ(t)) > π

which is impossible. Thus, the function β := minρ βρ (where the minimum runs over all

rays ρ in O with ρ(0) = p; this is a compact family of rays) is also well-defined, 1-Lipschitz

and concave along geodesics. For every point x ∈ O there is a ray ρx emanating from x

such that β(ρx(s)) = β(x) − s.

It follows that for all t ≥ 0 the subsets Ct := {β ≥ t} ⊂ O are totally convex in

the sense that for any two points x1, x2 ∈ Ct all geodesic segments between x1 and x2

are entirely contained in Ct. Moreover, C0 is closed and compact (or it would contain

another ray emanating from p ∈ C0), and hence so are all Ct for t ≥ 0. Hence in any local

uniformization πU : Ũ → U near a point x ∈ Ct, the lift π−1(Ct ∩ U) ⊂ Ũ is a totally

convex subset of Ũ . But locally closed totally convex subsets of Riemannian manifolds

are embedded submanifolds with (possibly nonsmooth) boundary locally supported by a

cone in the tangential space (see [CE75, 8.6 – 8.8]). Hence the sets Ct are contained in the

closure of embedded suborbifolds in O. We set C(1) := Ctmax
where tmax is the maximal

value of t such that Ct is nonempty. If N (1) is the maximal embedded suborbifold in O

such that C(1) = N (1), we set ∂C(1) = C(1) −N (1). We have dimN (1) < dimO.

Suppose that ∂C(1) 6= ∅. Using Rauch comparison, we can proceed as in the manifold

case (see [CE75, 8.9 – 8.10]) to show that the sets Ca := {x ∈ C(1) | d(x, ∂C(1)) ≥ a} are

also totally convex closed compact subsets of O. We set C(2) = Camax
where again amax

is the maximal value of a such that Ca is nonempty. If N (2) is the maximal embedded

suborbifold in O such that C(2) = N (2), we have dimN (2) < dimN (1). After repeating this

process a finite number of times if necessary, we arrive at a totally convex, totally geodesic

compact suborbifold S without boundary such that dimS < dimO, a so-called soul of

O. Moreover, the distance function d(S, ·) has no critical points on O − S: Every point

x ∈ O − S is contained in ∂C for some totally convex compact subset of O (either one of

the Ct or one of the Ca), and therefore a lift of x to a local uniformization is contained

in the boundary of a totally convex subset of a Riemannian manifold. Again from the

study of such sets, we can find near x a vector field making angle > π
2

with all minimizing

geodesics to S (cf. [CE75, 8.8]).
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The normal bundle ν(S) of the soul S is diffeomorphic to a small tubular neighbourhood

of Bǫ(S) ⊂ O. On the other hand, we can construct a smooth gradient-like vector field

X on O − Bǫ/2(S) such that d(S, ·) decreases along the integral curves of X at least

linearly (i.e. has uniform negative directional derivative): By the last observation in the

last paragraph, such vector fields exist locally and we can average them using a partition

of unity (cf. [Ka89, 5.2.2]). We have now completed an orbifold version of the proof of the

Soul Theorem which was originally given by Cheeger and Gromoll [CG72] for non-compact

non-negatively curved manifolds:

Proposition 3.5.1 (Soul Theorem for orbifolds). A complete non-compact Rieman-

nian orbifold with sectional curvature ≥ 0 contains a totally convex and totally geodesic

closed suborbifold, a so-called soul, and is diffeomorphic to the normal bundle of the soul.

3.5.1 Classification of non-compact 3-orbifolds with sec ≥ 0

To derive the classification of all non-compact complete 3-orbifolds with sec ≥ 0 from the

Soul Theorem, we will also use the splitting theorem for general Alexandrov spaces (see

[BBI01, Sec. 10.5]) which states that if an Alexandrov space of curvature ≥ 0 contains a line

(an isomtric embedding of R), it splits off a line metrically. Thus, if a complete Riemannian

orbifold O with sectional curvature ≥ 0 contains a line, it splits as the metrical product

R ×O′ with O′ a complete Riemannian orbifold with dimO′ = dimO − 1.

Proposition 3.5.2. Every connected complete non-compact Riemannian 3-orbifold with

sectional curvature ≥ 0 is either diffeomorphic to a discal (dimS = 0) or a solid toric

(dimS = 1) 3-orbifold, or isometric to Σ2 × R or (Σ2 × R)/Z2 where Σ2 is a closed 2-

orbifold with sectional curvature ≥ 0, and Z2 operates isometrically on Σ2×R (dimS = 1).

Proof. The proposition is clear for dimS = 0. For dimS = 2 it is sufficient to observe that

after passing to a double covering if necessary, S separates ν(S) and hence O. Thus, O

contains a line and the splitting theorem applies.

If dimS = 1 and S is a circle, we obtain O by starting with D2(p)× [−1, 1] or V 2(p)×

[−1, 1] and identifying the boundary components. Thus, O is diffeomorphic to a bundle

over S1 with fiber R2/Γ for some finite subgroup Γ ⊂ O(2). If S is diffeomorphic to

the mirrored interval, O can be obtained from D2(p) × [−1, 1], p ≥ 1, by gluing each of

the boundary components D2(p) × {±1} either to itself via a half-rotation or reflection

or by making it a reflector boundary component (there are six such orbifolds), or from

V 2(p) × [−1, 1], p ≥ 1, by gluing each of the boundary components V 2(p) × {±1} either

to itself via the reflection at its bisector or by making it a reflector boundary component

(there are three such orbifolds). In both cases the orbifold O is diffeomorphic to a solid
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toric 3-orbifold.

Remark 3.5.3. We also note an alternative construction for the case where the soul is

a mirrored interval: In this case, O can also be obtained by starting with two quotients

of the 3-ball, each with boundary RP 2(p), S2(2, 2, p) or D2(p) for some fixed p ≥ 1, and

glueing them together along a closed pointed disc D2(p) contained in both boundaries.

The (interior of the) resulting 3-orbifolds are then diffeomorphic to the ones obtained from

D2(p) × [−1, 1] discussed in the proof.

Similarly, we could start with two quotients of the 3-ball, each with boundaryD2(; 2, 2, p)

or D2(2; p) for some fixed p ≥ 1, and then identify two sectors V 2(p). In this way, we obtain

precisely the orbifolds diffeomorphic to the ones obtained from V 2(p) × [−1, 1].
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4. Convergence of thick orbifolds

Let On≥2 be a complete connected Riemannian orbifold with bounded sectional curvature

| sec | ≤ κ. We will assume a certain thickness (non-collapsedness) in the volume sense in

a base point p ∈ O, namely that

vol(Br(p)) ≥ v

for certain constants r, v > 0. Since we are assuming a lower curvature bound, thickness

in the base point propagates over the entire orbifold.

Lemma 4.0.1 (Thickness propagates). For R, r′ > 0 there is v′ = v′(n, κ, r, v, R, r′) >

0 such that the following holds: If for p, p′ ∈ O holds vol(Br(p)) ≥ v and d(p′, p) ≤ R, then

vol(Br′(p
′)) ≥ v′.

Proof. Since vol(Br+R(p′)) ≥ v by our assumption, Bishop-Gromov volume comparison

(3.1.4) yields a lower bound for vol(Br′(p
′)) if r′ ≤ r +R.

If one imposes an upper bound on the order of local isotropy groups, equivalently, a

lower bound on the volume of links, then small local volume implies small injectivity radius

(again by Bishop-Gromov). The converse is not true, since the injectivity radius tends to

zero as one approaches a singular stratum of S. The main result of the next section (Prop.

4.1.4) is that this is the only way for the injectivity radius to become small in a thick (i.e.

volume non-collapsed) region, or in other words that close to a point with small injectivity

radius there is a more singular point.

4.1 An injectivity radius bound on thick orbifolds

We begin with another application of volume comparison to show that in a thick point a

certain amount of directions can be extended up to a certain length as minimizing geodesic

segments. Let us denote by Lr′ ⊆ ΣpO the open subset of directions u such that cu remains

distance minimizing up to a distance > r′.
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Lemma 4.1.1 (Long directions). There are r′ = r′(n, κ, v) ∈ (0, r) and a = a(n, κ, r, v) >

0 such that the following holds: If vol(Br(p)) ≥ v, then vol(Lr′) ≥ a.

Proof. We denote by vn,−κ(ρ) the volume of a ρ-ball in the n-dimensional model space Mn
−κ

of constant sectional curvature −κ. We choose r′ so that vn,−κ(r
′) < v

2
(so r′ < r.) Since

vol(Br(p)) ≤ vn,−κ(r
′) +

vol(Lr′)

vol(Sn−1)
vn,−κ(r),

we obtain a lower bound for vol(Lr′).

If the injectivity radius in p is small, then the directions pointing to closest cut points

are short in the sense that they cannot be extended beyond length inj(p) as minimizing

segments. The lower curvature bound forces via triangle comparison that long and short

directions have at least almost right angles. We now apply our earlier discussion of closest

cut points in section 3.3.

Lemma 4.1.2 (Almost right angles between long and short directions). For ǫ > 0

there is i = i(κ, r, ǫ) ∈ (0, π√
κ
) such that the following holds: Suppose that inj(p) ≤ i and

that q is a closest cut point for p. If x is a point at distance d(p, x) ≥ r from p, then every

minimizing segment px has angle ≥ π
2
− ǫ with every minimizing segment pq.

Proof. Due to the upper curvature bound κ we have conj(p) ≥ π√
κ

and therefore look for

a value of i in (0, π√
κ
). Let λ be a geodesic loop of length 2 inj(p) based at p and with

midpoint q, as given by Proposition 3.3.3. We consider the geodesic “triangle” with twice

the (minimizing) side px and third (non-minimizing) side λ. Triangle comparison as in

Proposition 3.4.4 yields the assertion. (If r ≥ π√
κ
, we replace x by a point x′ on px closer

to p.)

If the injectivity radius in some point is small compared to the local volume, then the

positions of long and short directions are restricted because they are almost angle π
2

apart

and the set of long directions has a certain volume. This inhibits the short directions from

spreading out too much and one finds directions in which the injectivity radius decays at

a definite rate.

Lemma 4.1.3 (Decay of injectivity radius along strata). There exist i = i(n, κ, r, v) >

0 and δ = δ(n, κ, r, v) > 0 such that the following holds: If vol(Br(p)) ≥ v and inj(p) ≤ i,

then there exists a direction w ∈ ΣpO tangent to the stratum Sp of O through p such that

the injectivity radius has decay ≤ −δ along Sp in the direction of w (in the barrier sense).

If in particular p is a singular vertex of O with vol(Br(p)) ≥ v, then inj(p) > i.

By “barrier sense” we mean that for a smooth curve γ : [0, ǫ) → Sp with γ̇(0) = w there

is a smooth function f : [0, ǫ) → R with ḟ(0) = −δ such that inj(γ(t)) ≤ f(t) for t near 0
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with equality in t = 0.

Proof. Let r′, a > 0 be the constants depending on n, κ, r, v given by Lemma 4.1.1, let

ǫ = ǫ(n, a) > 0 be the constant given by Lemma 3.2.5, and let i = i(κ, r′, ǫ) > 0 be the

constant given by Lemma 4.1.2.

Suppose that vol(Br(p)) ≥ v and inj(p) ≤ i. The subset Lr′ ⊆ ΣpO of r′-long directions

in p has volume ≥ a by Lemma 4.1.1. Let λ be a geodesic loop of length 2 inj(p) based

at p as given by Proposition 3.3.3, and let vi = Σpσi ∈ ΣpO denote the directions of its

ends. By Lemma 4.1.2, ΣpO − Bπ
2
−ǫ(v1) − Bπ

2
−ǫ(v2) contains Lr′ and hence has volume

≥ a. We consider the join decomposition (3.2.3) and denote by v′′i the projection of vi
to the sphere factor ΣpSp. As a consequence of Lemma 3.2.5, the v′′i are well-defined and

∠(v′′1 , v
′′
2) ≤ π − 2ǫ. In particular, ΣpSp 6= ∅ and p cannot be a singular vertex.

We choose w ∈ ΣpSp as the midpoint (bisector) of the directions v′′1 and v′′2 . The points

vi, v
′′
i , w are the vertices of a spherical triangle embedded in ΣpO. It has a right angle

at v′′i and, by Lemma 3.2.5, the two adjacent sides have length ≤ π
2
− ǫ. Therefore the

side opposite to v′′i has length ≤ π
2
− ǫ′ < π

2
, where π

2
− ǫ′ is defined as the length of the

hypothenuse of an isosceles right-angled spherical triangle with two sides of length π
2
− ǫ.

Let γ : [0, ǫ′′) → Sp be a smooth curve with γ̇(0) = w. According to our discussion in

section 3.1, there exists a variation (λs)s∈[0,ǫ) of λ by geodesic loops λs with base points γ(s)

such that γ̇(0) = w and such that equality holds in the first variation inequality (3.1.2).

So,
d

ds
|s=0L(λs) = − cos ∠p(v1, w) − cos ∠p(v2, w) ≤ −2 sin ǫ′ =: −δ(d, κ, r, v).

The assertion follows, cf. Remark 3.3.4.

By “integrating” Lemma 4.1.3, we obtain the desired lower injectivity radius bound

away from the boundary of strata. Since the comparison arguments based on the curvature

bounds are local, we obtain a more general local version of the result.

Proposition 4.1.4 (Lower injectivity radius bound away from the boundary of

strata). There exist i = i(n, κ, r, v) > 0 and c = c(n, κ, r, v) > 0 such that the follow-

ing holds: Let On≥2 be a complete Riemannian orbifold and let p ∈ O. Suppose that

vol(Br(p)) ≥ v and that on Br(p) the sectional curvature is bounded by | sec | ≤ κ. Then

inj(p) ≥ min(i, c · d(p, ∂Sp)).

Proof. Assume first that | sec | ≤ κ everywhere on O and vol(Br(x)) ≥ v for all x ∈ O.

Let i and δ be the constants in Lemma 4.1.3. For some small ǫ > 0, the function φ :=

inj +(1− ǫ)δ · d(p, ·) is continuous on the stratum Sp, cf. Proposition 3.1.3. Due to Lemma

4.1.3, it has no local minimum on {inj ≤ i} ∩ Sp. Putting ρ := (1 − ǫ)−1 i
δ

we observe that

for λ ∈ (0, 1] we have φ > λi on ∂Bλρ(p) ∩ Sp. Therefore, if inj(p) ≤ λi, the closed ball
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Bλρ(p) ∩ Sp cannot be compact. This means that Bλρ(p) ∩ ∂Sp 6= ∅, i.e. d(p, ∂Sp) ≤ λρ.

The assertion follows with c = i
ρ
.

In the general case, if we assume the curvature bounds | sec | ≤ κ only on Br(p) and

the volume bound vol(Br(p)) ≥ v only in p, we first decrease v using Lemma 4.0.1 so that

vol(B r
2
(x)) ≥ v for all x ∈ B r

2
(p). Then we proceed as before (with r

2
taking the role of r).

In order not to leave Br(p), we decrease ρ if necessary, so that ρ ≤ r
2
.

Remark 4.1.5. One can strengthen the conclusion of the proposition by replacing d(·, ∂Sp)

with the intrinsic distance from ∂Sp inside the stratum Sp.

The following result generalizes [BLP05, Prop. 3.19] to the case of variable curvature

and arbitrary dimension.

Corollary 4.1.6 (Small ball contained in small standard ball). For s > 0 there

exist radii 0 < ρ(n, κ, r, v, s) < ρ′(n, κ, r, v, s) < s such that the following holds: If O and p

are as in Proposition 4.1.4, then the metric ball Bρ(p) is contained in a standard ball with

radius ≤ ρ′.

Proof. To facilitate notation, let us again first assume that | sec | ≤ κ on all of O and

vol(Br(x)) ≥ v for all x ∈ O. Lemma 4.1.3 provides a lower injectivity radius bound

i0 = i0(n, κ, r, v) > 0 on the set of singular vertices O(0). We may decrease it artificially

so that i0 = i0(n, κ, r, v, s) < s. Proceeding by induction, one obtains from Proposition

4.1.4 lower injectivity radius bounds il = il(n, κ, r, v, s) > 0 on O(l) − Nil−1/4(O
(l−1)) for

l = 1, . . . , n and one can arrange that s > i0 >> i1 >> · · · >> in. It follows that for every

point x ∈ Nil/2(O
(l))−Nil−1/2(O

(l−1)), the ball Bil/2(x) is contained in a standard ball with

radius il. Thus the assertion holds with ρ := in
2

and ρ′ := i0. As for Proposition 4.1.4, the

estimates can be localized.

4.2 Compactness of thick orbifolds

4.2.1 Gromov-Hausdorff and smooth convergence of orbifolds

We recall, e.g. from [Gr81, ch. 3] and [BBI01, ch. 7, 8.1], that a sequence of pointed metric

spaces (Xk, xk), k ∈ N, converges in the Gromov-Hausdorff sense to a pointed metric space

(X∞, x∞),

(Xk, xk)
GH
−→ (X∞, x∞), (4.2.1)

if for all r, ǫ > 0 there exist for sufficiently large k (not necessarily continuous) maps

fk : BXk
r (xk) → X∞ such that fk(xk) = x∞, |dX∞(fk(yk), fk(zk)) − dXk(yk, zk)| < ǫ for all

yk, zk ∈ BXk
r (xk), and BX∞

r−ǫ (x∞) ⊆ Nǫ(fk(B
Xk
r (xk))).
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An ǫ-net in a metric space Y is an ǫ-separated subset ν ⊆ Y (i.e. any two points in ν

have distance > ǫ from each other) with dH(ν, Y ) ≤ ǫ. For a function N : (0,∞)2 → N we

denote by LN the space of isometry classes of pointed complete length spaces (X, x) such

that for all r, ǫ > 0 the ǫ-nets in BX
r (x) have cardinality ≤ N(r, ǫ). Note that the metric

spaces in LN are proper and geodesic.

It is a basic fact (see e.g. [BBI01, Thm. 8.1.10]) that LN is compact with respect to

the Gromov-Hausdorff topology, i.e. any sequence of pointed metric spaces in LN has a

convergent subsequence. The pointed limit metric space is unique up to isometry if it

is complete and boundedly compact, i.e. if all closed bounded sets in it are compact (see

[BBI01, Thm. 8.1.7]). Given a convergent sequence (4.2.1) in LN , the balls of a fixed radius

around the base points converge in the sense of pointed Gromov-Hausdorff distance,

dGH((BXk
r (xk), xk), (B

X∞

r (x∞), x∞)) → 0

for all r > 0. That is, for every r > 0 there exist isometric embeddings ιk : BXk
r (xk) →֒ Z

and ι∞ : BX∞

r (x∞) →֒ Z into some auxiliary metric space Z with the property that

dZH(BXk
r (xk), B

X∞

r (x∞)) → 0 and xk → x∞ in Z, where dZH denotes the Hausdorff distance

of subsets of Z. (Here we use that in a length space concentric metric balls of radii r1, r2 > 0

have Hausdorff distance ≤ |r1 − r2|.) One may think of the family of embeddings ιk and

ι∞ as a local realization of the convergence (4.2.1). Once a realization is fixed, it makes

sense to speak of the convergence of sequences (xk) of points xk ∈ BXk
r (xk). A diagonal

argument shows that one can choose compatible realizations of the convergences of r-balls

simultaneously for all r > 0.

When considering metric spaces with additional structure, one may be interested in pro-

moting Gromov-Hausdorff convergence to stronger forms of convergence which establish a

closer tie between the approximators and the limit space.

Definition 4.2.2. We say that a sequence of pointed connected Riemannian n-orbifolds

(Ok, pk) converges smoothly (or in the Cheeger-Gromov sense) to a pointed complete con-

nected Riemannian n-orbifold (O∞, p∞),

(Ok, pk)
C∞

−→ (O∞, p∞), (4.2.3)

if for every relatively compact open subset W∞ ⊆ O∞ containing the base point p∞ there

are for sufficiently large k diffeomorphisms Φk : W∞ → Wk onto open subsets Wk ⊂ Ok

such that Φ−1
k (pk) → p∞ in O∞ and Φ∗

kgk
C∞

→ g∞.

Note that we require the approximating diffeomorphisms to be only almost base point

preserving instead of exactly base point preserving as in [Lu01, Def. 3.4]. In the mani-

fold case this would make no difference, but in the orbifold case it does because orbifold
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diffeomorphisms preserve the singular stratifications. It seems natural to choose the defi-

nition of smooth convergence such that if pk → p∞ is a convergent sequence in a connected

Riemannian orbifold O then (O, pk)
C∞

→ (O, p∞). We observe that smooth convergence

implies convergence of stratifications because local orbifold diffeomorphisms preserve the

stratification of orbifolds.

As in the manifold case one can show that under appropriate conditions, smooth limits

are unique up to Riemannian isometry, for instance, if one requires them to be complete.

Also, if O∞ is complete (and hence also the Ok), then smooth convergence (4.2.3) implies

Gromov-Hausdorff convergence with respect to the associated path metrics.

4.2.2 Orbifold structures on Gromov-Hausdorff limits

For an integer n ≥ 2, a nondecreasing function κ : (0,∞) → [0,∞) and constants r0, v0 > 0,

we denote by On,κ,r0,v0 the space of isometry classes of pointed complete connected smooth1

Riemannian n-orbifolds (O, p), such that | sec | ≤ κ◦d(p, ·), i.e. such that for every r > 0 the

sectional curvature on Br(p) is bounded by | sec | ≤ κ(r), and such that vol(Br0(p)) ≥ v0.

The local lower curvature bounds imply via Bishop-Gromov volume comparison (Prop.

3.1.4) that the thickness (volume non-collapse) in the base point propagates across the

orbifold and can be bounded below in terms of the distance from the base point, i.e. there

are uniform estimates vol(Br(x)) ≥ v(n, κ, r0, v0, d(p, x), r), cf. Lemma 4.0.1. Moreover,

the size of ǫ-nets in metric balls can be bounded above, and hence On,κ,r0,v0 ⊂ LN for a

suitable counting function N(r, ǫ) = Nn,κ,r0,v0(r, ǫ). In particular, the space Od,κ,r0,v0 is

Gromov-Hausdorff precompact.

We are interested in the Gromov-Hausdorff closure of On,κ,r0,v0 , more precisely, in the

local structure of limit spaces in the Gromov-Hausdorff boundary ∂GHOn,κ,r0,v0 , and in

compactness properties of On,κ,r0,v0 and related spaces with respect to the finer topologies

of smooth convergence. Since by construction lower Alexandrov curvature bounds pass

to Gromov-Hausdorff limits, we already know that the limit spaces in ∂GHOn,κ,r0,v0 have

again local lower curvature bounds in the Alexandrov sense.

If we impose more regularity on a space of orbifolds, we can also expect the limit spaces

to be more regular and to obtain stronger compactness properties. For an integer n ≥ 2,

a function D : N0 × (0,∞) → [0,∞) and constants r0, v0 > 0, we denote by On,D,r0,v0 the

space of isometry classes of pointed complete connected smooth Riemannian n-orbifolds

(O, p) for which vol(Br0(p)) ≥ v0 and ‖∇lR‖ ≤ D(l, r) on Br(p) for all l ≥ 0 and r > 0.

Clearly, Od,D,r0,v0 ⊂ Od,κ,r0,v0 for suitable κ(r) = κD(0,·)(r) and On,D,r0,v0 is also Gromov-

1Since we are only interested in curvature at the moment, it would actually suffice to require only

regularity of class C4, say.
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Hausdorff precompact.

We consider a sequence of pointed Riemannian orbifolds (Ok, pk) ∈ On,κ,r0,v0 . Due to

the Gromov-Hausdorff precompactness of On,κ,r0,v0 , we may assume after passing to a

subsequence that the (Ok, pk) converge to a limit space,

(Ok, pk)
GH
−→ (X∞, p∞).

When investigating the local structure of X∞ near some point x∞, we fix a constant R >>

d(p∞, x∞) and a realization of the Gromov-Hausdorff convergence of balls (BOk

R (pk), pk)
GH
→

(BX∞

R (p∞), p∞) in some auxiliary ambient metric space Z.

We now apply our uniform lower injectivity radius bounds obtained in section 4.1 to

the orbifolds Ok.

Proposition 4.2.4. Any point in X∞ is contained in an open metric ball which is a

Gromov-Hausdorff limit of standard balls in the Ok.

Proof. Given a point x∞ ∈ X∞, Corollary 4.1.6 implies that there exists a point x′∞ ∈ X∞
(arbitrarily close to x∞) and a sequence of points x′k ∈ Ok such that x′k → x′∞ (in Z) and

lim infk→∞ inj(x′k) > d(x∞, x
′
∞). Then for d(x∞, x

′
∞) < r < lim infk→∞ inj(x′k) we have

(BOk
r (x′k), x

′
k)

GH
−→ (BX∞

r (x′∞), x′∞). (4.2.5)

and the BOk
r (x′k) are standard balls for large k.

Since there are uniform curvature bounds on the balls BOk
r (x′k) and since their volumes

are bounded below uniformly in k, we have that lim infk→∞ vol(Σx′
k
Ok) > 0. Therefore the

links Σx′
k
Ok fall into finitely many isometry types, compare Remark 3.2.4, and after passing

to a subsequence we may assume that they are isometric to each other. Then there exist

a finite subgroup Γ ⊂ O(n) and isometric identifications ik : Rn/Γ
∼=
→ Tx′

k
Ok (preserving

origins).

Let us denote by ek : B
R

n/Γ
r (0)

∼=
→ BOk

r (x′k) the diffeomorphisms obtained from restrict-

ing expx′
k
◦ik, by πΓ : Rn → Rn/Γ the quotient projection, and êk := ek ◦ πΓ : BR

n

r (0) →

BOk
r (x′k). Pulling back the orbifold Riemannian metrics gk from Ok via êk yields smooth

Riemannian metrics ĥk := ê∗kgk on the ball Br(0) ⊂ Rn. If r is chosen sufficiently small, say

r < π/2
√
κ(R), the Rauch estimates imply that the ĥk are uniformly bilipschitz equivalent

to the euclidean metric.

Depending on the additional regularity assumptions which one imposes on the Ok, one

can deduce regularity for the limit space X∞. We assume now that (Ok, pk) ∈ On,D,r0,v0 .

The function κ(r) can be chosen so that On,D,r0,v0 ⊂ On,κ,r0,v0 . Then there are uniform

bounds for the curvature tensors of the metrics ĥk and all their covariant derivatives (for

sufficiently small r as above).
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Lemma 4.2.6 (cf. [Ba07, Lem. 3.2.1]). For r < ∞, l, n ∈ N and constants 0 <

D0, . . . , Dl <∞ there are constants 0 < D′
0, . . . , D

′
l <∞ such that the following holds: Let

(M, g) be an n-dimensional smooth Riemannian manifold with x ∈ M and suppose that

the exponential map is defined on Br(0) ⊂ TxM . If ‖∇kR‖ < Dk on M for all 0 ≤ k ≤ l,

then ‖dlexp∗g‖ < D′
l on Br(0).

Based on the lemma, we may apply Arzelà-Ascoli and pass to a subsequence so that

the ĥk converge to a Γ-invariant smooth Riemannian limit metric ĥ∞ on Br(0),

ĥk
C∞

→ ĥ∞.

The smooth convergence implies Gromov-Hausdorff convergence with respect to the asso-

ciated intrinsic path metrics, (Br(0), dĥk
)
GH
→ (Br(0), dĥ∞), and equally for the Γ-quotients,

(Br(0), dĥk
)/Γ

GH
→ (Br(0), dĥ∞)/Γ.

Note that the balls BOk
r (x′k) may not be convex, but their intrinsic path metrics are

at least locally isometric to their extrinsic metrics obtained by restricting the path metrics

dgk
on the Ok. More precisely, for a point y′k ∈ BOk

r (x′k), both metrics coincide on the

ball around y′k with radius 1
2
(r − dgk

(x′k, y
′
k)). Hence the ball quotients (Br(0), dĥk

)/Γ

are in a uniform way locally isometric to the balls BOk
r (x′k) equipped with their extrinsic

metrics. We conclude with (4.2.5) that BX∞

r (x′∞) is locally isometric to the Riemannian

ball quotient (Br(0), dĥ∞)/Γ. It follows that the limit space X∞ is a smooth Riemannian

n-orbifold O∞, and that O∞ inherits from the Ok the same rate of local non-collapsedness

and the same bounds for the curvature tensor along with all its derivatives. We therefore

have completed the proof of

Theorem 4.2.7 (Gromov-Hausdorff compactness). On,D,r0,v0 is Gromov-Hausdorff

compact.

Using an isometric identification i∞ : Rd/Γ
∼=
→ Tx′∞O∞, we convert the ik into isometries

ιk = ik◦i
−1
∞ : Tx′∞O∞

∼=
→ Tx′

k
Ok (preserving origins). For the corresponding diffeomorphisms

of standard balls

φk := expOk

x′
k
◦ιk ◦ (expO∞

x′∞
)−1 : BO∞

r (x′∞) −→ BOk
r (x′k) (4.2.8)

then holds

φ∗
kgk

C∞

−→ g∞|BO∞
r (x′∞) (4.2.9)

where we denote by g∞ the Riemannian metric on O∞. The Gromov-Hausdorff convergence

(BOk
r (x′k), x

′
k)

GH
−→ (BO∞

r (x′∞), x′∞), (4.2.10)

compare (4.2.5), and the smooth convergence (4.2.9) can be coordinated so that

φk → idBO∞
r (x′∞) (4.2.11)
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uniformly. A priori one has only that for large k the φk are close to isometries ψk of the

limit ball BO∞

r (x′∞), but (4.2.11) can be achieved by replacing the φk with φk ◦ ψ
−1
k .

4.2.3 Riemannian center of mass

We recall from [GK73, Ka77] the construction of a center of mass for sufficiently concen-

trated measures with finite total mass on a Riemannian manifold. We will apply it in the

next section where we will use it to interpolate between (equivariant lifts of) local orbifold

diffeomorphisms.

Let M be a Riemannian manifold. For a point p ∈ M , the function d(p, ·)2 is smooth

and strictly convex near p. Hence, for a measure µ on M with finite mass 0 < ‖µ‖ <∞ and

supported on a sufficiently small ball Bρ(p), the function fµ :=
∫
M
d2(q, ·) dµ(q) is smooth

and strictly convex near p, and it has a unique global minimum near p which one calls the

center of mass C(µ) of µ. The gradient vector field grad fµ, viewed as a smooth section of

the tangent bundle TM → M defined near p, intersects the zero section transversally in

C(µ).

Let λi : M → [0,∞) be smooth (weight) functions, 1 ≤ i ≤ m, such that
∑m

i=1 λi > 0.

Then the map

(q1, . . . , qm)
c
7→ C

(
λ1(q1) · δq1 + · · · + λm(qm) · δqm

)
(4.2.12)

is well-defined on a sufficiently small (open) neighbourhood U of the diagonal ∆ in M×m =

M × · · · ×M , and c|∆ : ∆ →M is the canonical identification.

That c is smooth, can be seen by a transversality argument as follows. Let π : U×M →

M denote the projection onto the second factor. Then

(q1, . . . , qm, x)
s
7→
(
grad

m∑

i=1

λi(qi) · d(qi, ·)
2
)
(x)

is a smooth section of the vector bundle π∗TM → U ×M . It intersects the zero section

precisely along graph(c) and the intersection is transversal. Thus graph(c) is a submanifold

of U×M with codimension dim(M). Moreover, it is transversal to the fibration U×M → U

due to the strict convexity of the functions
∑m

i=1 λi(qi)·d(qi, ·)
2. This shows that c is indeed

smooth.

Our discussion and in particular the smoothness of c imply:

Lemma 4.2.13. Let τ : N →M be a smooth map from a manifold N into a Riemannian

manifold M . Furthermore, for 1 ≤ i ≤ m, let τ ik : N → M be sequences of smooth maps,

k ∈ N, such that τ ik
C∞

→ τ . Then for any compact subset K of N , the map c ◦ (τ 1
k , . . . , τ

m
k )

is defined and smooth on K for sufficiently large k, and c ◦ (τ 1
k , . . . , τ

m
k )

C∞

→ τ .
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Proof. c ◦ (τ 1
k , . . . , τ

m
k )

C∞

→ c ◦ (τ, . . . , τ) = τ .

4.2.4 Promoting Gromov-Hausdorff convergence to smooth con-

vergence

Following the argument in [Ba07, Sec. 3.2], we will now strengthen the Gromov-Hausdorff

convergence of Theorem 4.2.7 to smooth convergence. More precisely, suppose that

(Ok, pk)
GH
−→ (O∞, p∞) (4.2.14)

is a Gromov-Hausdorff convergent sequence in On,D,r0,v0 . We want to show that Gromov-

Hausdorff convergence can be promoted to smooth convergence by passing to a suitable

subsequence. We proved this locally in section 4.2.2 and explain now how to interpolate

local almost isometric smooth approximations to obtain global ones.

Let W∞ ⊆ O∞ be a relatively compact open subset. As in section 4.2.2 we fix a radius

R such that W∞ ⊂ BR(p∞) and a realization of the Gromov-Hausdorff convergence of

balls (BOk

R (pk), pk)
GH
→ (BR(p∞), p∞) in an auxiliary ambient metric space Z.

According to Proposition 4.2.4, W∞ can be covered by finitely many open standard

balls Bri(yi) ⊂ O∞, 1 ≤ i ≤ m, such that the larger balls B16ri(yi) ⊂ O∞ are standard

and Gromov-Hausdorff limits of open standard balls BOk

16ri
(yki ) ⊂ Ok for all 1 ≤ i ≤ m.

Moreover, after passing to a suitable subsequence there exist sequences of diffeomorphisms

φki : B16ri(yi) → BOk

16ri
(yki ) (4.2.15)

such that (φki )
∗gk

C∞

→ g∞|B16ri
(yi) and φki → idB16ri

(yi) uniformly for every i as k → ∞,

cf. (4.2.8, 4.2.9, 4.2.10). Let Γi := Γyi
= Γyk

i
be the corresponding local groups. For

technical reasons, we choose the radii ri pairwise distinct and arrange them in increasing

order r1 < · · · < rm.

For i ≤ j ∈ {1, . . . ,m} we say that i ≺ j if B4ri(yi) ⊂ B16rj(yj). For sufficiently large

k, i.e. k ≥ k0 for some value of k0, we have the implication that if φki (Bri) ∩ φ
k
j (Brj) 6= ∅

for some i ≤ j, then i ≺ j.

For an index pair i ≺ j and sufficiently large k, the transition map ψkij := (φjk)
−1 ◦ φik :

B4ri(yi) → B16ri(yi) is a well-defined orbifold embeddings. (Because there are only finitely

many index pairs i ≺ j, this works for all of them for sufficiently large k.) By the metric

properties of the diffeomorphisms φki and φkj , we have ψkij → idB4ri
(yi) uniformly.

By Lemma 2.1.6, we can lift the transition maps to |Γi| distinct embeddings B̃4ri(yi) →

B̃16ri(yi) which are equivariant with respect to group isomorphisms Γi → Γi.
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Lemma 4.2.16. For any sufficiently small ǫ > 0 there is k0 ∈ N such that for all i < j ∈

{1, . . . ,m} with i ≺ j and k ≥ k0 there is a unique lift ψ̃kij : B̃4ri(yi) → B̃16ri(yi) of ψkij such

that d(ψ̃kij(x), x) < ǫ for all x ∈ B̃4ri(yi). This lift is Γi-equivariant, i.e. ψ̃kij ◦ γ = γ ◦ ψ̃kij
for all γ ∈ Γi.

Proof. Let 1 ≤ i, j ≤ m with i ≺ j. In B̃4ri(yi), let V denote the open subset of all points

with trivial Γi-stabilizer. It is connected unless Γi contains reflections at hyperplanes. In

this case, the different components of V are mapped to each other by reflections in Γi. Let

V0 ⊂ V be a connected component of V .

For small ǫ′ > 0, we have the open set Uǫ′ ⊂ V ⊂ B̃4ri(yi) consisting of all points

x ∈ B̃4ri(yi) such that d(γ · x, x) > ǫ′ for all nontrivial γ ∈ Γi. By construction, Uǫ′ is

Γi-invariant. Let Uǫ′,0 = Uǫ′∩V0. By choosing ǫ′ sufficiently small, we can assume that Uǫ′,0
is connected. (This follows from the fact that every point in V0 lies in Uǫ′,0 for sufficiently

small ǫ′.)

For sufficiently large k the map ψkij|B4ri
(yi) is ǫ′-close to idB4ri

(yi). Thus for every point

x ∈ Uǫ′,0 one lift ψ̃kij of ψkij is uniquely characterized by the property that d(ψ̃kij(x), x) < ǫ′.

(We lift a minimizing segment between the projection pi(x) ∈ B4ri(yi) and its image under

ψkij; this segment is entirely located inside B16ri(yi).) Since Uǫ′,0 is connected, this lift does

not depend on the choice of x. The embedding ψ̃kij : B̃4ri(yi) → B̃16ri(yi) is equivariant

with respect to some group monomorphism αkij : Γi → Γi.

We now claim that ψ̃kij satisfies d(ψ̃kij, id) < ǫ′ on the whole of Uǫ′ even if Γi contains

reflections at hypersurfaces. To verify this claim, let γ ∈ Γi be a reflection at a hyperplane

H which intersects ∂V0. After reducing ǫ′ further if necessary, we can find points z ∈ H and

x ∈ Uǫ′,0 such that z is much closer to x than to all the other hypersurfaces corresponding

to reflections in Γi.

Because φki and φkj are almost local Riemannian isometries for sufficiently large k, we

know that the map ψ̃kij cannot change the length of a curve much, say by more than a

factor ∈ (1
2
, 2). If we apply this result to a minimizing geodesic segment joining z to x and

recall that by construction d(ψ̃kij(x), x) < ǫ′, we obtain that ψ̃kij(z) must be contained in

the same hyperplane H as z.

Since αkij(γ) must fix ψ̃kij(z), this implies that αkij(γ) = γ. Because

d(ψ̃kij ◦ γ(x), γ(x)) = d(γ ◦ ψ̃kij(x), γ(x)) = d(ψ̃kij(x), x) < ǫ′

for all x ∈ Uǫ′,0, it follows that d(ψ̃kij, id) < ǫ′ is also valid on γ ·Uǫ′,0. The claim now follows

by repeating above argument a finite number of times.

Consider now a point x ∈ Uǫ′ and an element γ ∈ Γi. By a computation as above, we

conclude that both γ ◦ ψ̃kij(x) and αkij(γ) ◦ ψ̃
k
ij(x) are ǫ′-close to γ(x) ∈ Uǫ′ which is only
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possible if αkij(γ) = γ. Thus, αkij is precisely the standard inclusion Γi → Γj.

We can make B̃4ri(yi) \ Uǫ′ arbitrarily small as ǫ′ → 0, and again use that ψ̃kij almost

preserves the lengths of geodesic segments to deduce that d(ψ̃kij(x), x) < c(ǫ′) for all x ∈

B̃4ri(yi) for some constant c(ǫ′) → 0 as ǫ′ → 0. This completes the proof of the lemma for

the index pair i, j and there are only finitely many such pairs.

By definition, the transition maps ψkij have the compatibility property that ψkij = ψki′j ◦

ψkii′ wherever they are defined. We will now show that the unique lifts ψ̃kij have a similar

property:

Let 1 ≤ i < i′ < j ≤ m be an index triple with i ≺ i′, i′ ≺ j and i ≺ j. This implies that

Bri(yi) ⊂ B4r′i
(yi′) ⊂ B16rj(yj). Let us now fix a Γi-equivariant embedding ι of B̃4ri(yi) into

B̃16ri′
(yi′). For sufficiently large k (and some sufficiently small ǫ > 0) we now have the two

uniquely determined Γi-equivariant embeddings ψ̃kij and ι−1◦ψ̃ki′j◦ι◦ψ̃
k
ii′ : B̃ri(yi) → B̃4ri(yi).

Since they both lift ψkij and are close to the identity map id eBri
(yi)

, we can conclude as in the

proof of Lemma 4.2.16 that these two maps are identical for sufficiently large k ∈ N. (We

chose ǫ′ > 0 sufficiently small to guarantee Uǫ′ ∩ B̃ri(yi) 6= ∅.) Again, we can simultanously

perform this construction for all the finitely many triples i, i′, j as above.

After passing to a subsequence if necessary, Lemma 4.2.16 implies that we can arrange

that for all 1 ≤ i < j ≤ m with i ≺ j we have uniquely determined lifts ψ̃kij which converge

uniformly to the identity on the uniformizations B̃4ri(yi). We can improve the quality of

this convergence even further:

Lemma 4.2.17. After passing to a subsequence, we have ψ̃kij
C∞

→ id eB4ri
(yi)

uniformly for all

i, j with i ≺ j as k → ∞.

Proof. (cf. [Ba07, Sec. 3.2.3]) For a pair of indices i ≺ j, consider a radial normal geodesic

γ : [0, 4ri) → B4ri(yi) emanating from yi. By the construction of the orbifold diffeomor-

phism φki , φ
k
i ◦ γ is a normal geodesic in BOk

4ri
(yki ) ⊂ Ok emanating from yki . It follows that

ψkij ◦ γ is a geodesic in B16ri(yi) with respect to the pull-back metric (φkj )
∗gk defined on

some open neighbourhood of B4ri(yi) (which we can assume to be independent of k).

Let ỹi be the unique lift of yi in B̃16ri(yi) and fix an isometric identification f : Rn →

Tỹi
B̃16ri(yi). Let exp : BR

n

4ri
(0) → B̃4ri(yi) be the exponential map with d0 exp = f and

(φ̃ki )
∗gk the Γi-invariant lifts of the pull-back metrics (φkj )

∗gk. They are defined on some

open neighbourhood of the closure of B̃4ri(yi) which is independent of k. From the corre-

sponding property of the diffeomorphisms φki , it follows that

(φ̃ki )
∗gk

C∞

→ g∞| eB4ri
(yi)
. (4.2.18)

Our discussion above now implies that the maps ψ̃kij◦exp are exponential maps with respect
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to the lifted pull-back metrics (φ̃ki )
∗gk centered at the points ψ̃kij(ỹi). By construction, these

points converge to ỹi as k → ∞.

The differentials d0(ψ̃
k
ij ◦ exp) are uniformly bounded with respect to g∞ because they

are isometric with respect to metrics which become arbitrarily close to g∞. Thus, after

passing to a subsequence we can assume that d0(ψ̃
k
ij ◦ exp) → fij for some isometry fij :

Rn → Tỹi
B̃16ri(yi).

We now use 4.2.18 to conclude that as k → ∞, the maps ψ̃kij ◦ exp converge smoothly

uniformly to an exponential map expij : BR
n

4ri
(0) → B̃4ri(yi) with respect to the metric g∞

and with differential d0 expij = fij. But since the maps ψ̃kij also converge uniformly to the

identity on B̃4ri(yi), we must have fij = f and hence expij = exp.

This concludes the proof that ψ̃kij converges to the identity on B̃4ri(yi) smoothly uni-

formly. The lemma follows once more from the finiteness of our index set.

In particular, the lemma implies that ψkij
C∞

→ idB4ri
(yi) as k → ∞.

By interpolating the “almost compatible” local approximations φki , we wish to produce

C∞-almost isometric smooth embeddings

Φk : W∞ → Ok

for large k such that (Φk)∗gk
C∞

→ g∞|W∞
and Φk → idW∞

uniformly as k → ∞.

Let λi : O∞ → [0,∞) be smooth functions supported on the Bri(yi) such that
∑

i λi > 0

on W∞. We extend the function λi ◦ (φki )
−1 by zero outside BOk

ri
(yki ) to a smooth function

on all of Ok. Then for all xk ∈ Ok the finitely supported measures

µk(xk) :=
∑

i

(λi ◦ (φik)
−1)(xk) · δ(φi

k
)−1(xk)

are well-defined, because the weight coefficient of one of the point masses is positive only

when its location is well-defined. Note that diam(supp(µk(xk))) → 0 uniformly as k → ∞.

We will construct Φk by applying a center of mass construction to the measure valued

map µk. Since the measures µk(xk) have small supports this could be done pointwise using

the center of mass construction for Riemannian manifolds introduced in [GK73, Ka77], see

section 4.2.3, as long as the supports do not come too close to the singular locus. However,

measures supported near the singular locus have in general no well-defined center of mass.

We circumvent this obstacle by averaging measure valued maps instead of single measures.

This works because the maps under consideration by Lemma 4.2.16 have distinguished lifts

to local charts which then can be averaged using the center of mass for manifolds.

We will first construct averaged maps from open subsets of Ok to O∞ and then show

that these maps coincide on the overlap of the sets ranges. The inverse of these maps will

then be the desired map Φk : W∞ → Ok for all sufficiently large k.



54 4. Convergence of thick orbifolds

We first construct a family of open subsets Ui ⊂ Byi
(ri) ⊂ O∞ with the property that

d(U i, supp(λj)) > 0 for all j < i and W∞ ⊂
⋃
i Ui. In order to do so, we first find open

sets supp(λi) ⊂ Vi ⊂ Bri(yi) with V i ⊂ Bri(yi) and d(V i, supp(λi)) > 0 and then set

Ui := Bri(yi) \ (V 1 ∪ · · · ∪ V i−1). Let Ũi be the Γi-invariant lifts of Ui to B̃ri(yi).

Let λ̃j denote the pull-backs of the functions λj from B4ri(yi) to B̃4ri(yi) using the

natural quotient projection. The center of mass map

(q̃1, . . . , q̃m)
c
7→ C

(
λ̃1(q̃1) · δq̃1 + · · · + λ̃m(q̃m) · δq̃m

)

is defined and smooth close to the diagonal of (B̃∞
4ri

(yi))
×m, cf. (4.2.12). If the function λ̃i

vanishes identically, the function c is well-defined even if its ith entry is not.

We observe that

µk ◦ φ
k
i =

∑

i≺j
(λj ◦ ψ

k
ij) · δψk

ij

on Ui for sufficiently large k: For 1 ≤ j ≤ m we know that φki (Bri) ∩ φ
k
j (Brj) 6= ∅ implies

i ≺ j or j ≺ i, but for all 1 ≤ j < i we have by construction φki (Ui) ∩ φ
k
j (supp(λj)) = ∅.

To define its average on Ui, we note that

C
(∑

i≺j
(λ̃j ◦ ψ̃

k
ij) · δ eψk

ij

)
= c ◦ (ψ̃ki1, . . . , ψ̃

k
im) : Ũi → B̃4ri(yi) (4.2.19)

is Γi-equivariant and descends to a smooth orbifold map Ui → B4ri(yi) which we define to

be the average C(µk ◦ φ
k
i ).

By Lemma 4.2.13, the maps (4.2.19) converge smoothly to the identity as k → ∞, and

hence also C(µk ◦ φ
k
i )

C∞

−→ idUi
. We now define F k

i on φki (Ui) to be the smooth map

C(µk ◦ φ
k
i ) ◦ (φki )

−1.

To complete our construction, it suffices to verify that the maps F k
i defined on the open

sets φki (Ui) coincide on the overlaps φki (Ui)∩ φ
k
i′(Ui′) for sufficiently large k. To verify this,

consider a nonempty intersection φki (Ui)∩φ
k
i′(Ui′) 6= ∅ with i ≺ i′. For sufficiently large k we

observe that φki (Ui′)∩φ
k
l (supp(λl)) = ∅ for all 1 ≤ l < i′. Hence, on (φki )

−1(φki (Ui)∩φ
k
i′(Ui′))

we have

µk ◦ φ
k
i =

∑

i′≺j
(λj ◦ ψ

k
ij) · δψk

ij
.

We now choose a Γi-invariant isometric embedding ι : B̃4ri(yi) →֒ B̃16ri′
(yi′) and use

the compatibility of the lifts ψ̃kij (cf. the discussion after Lemma 4.2.16) to compute

ι ◦ C
(∑

i′≺j
(λ̃j ◦ ψ̃

k
ij) · δ eψk

ij

)
= c ◦ (ι ◦ ψ̃ki1, . . . , ι ◦ ψ̃

k
im) = c ◦ (ψ̃ki′1 ◦ ιψ̃

k
ii′ , . . . , ψ̃

k
i′m ◦ ιψ̃kii′) =

= c ◦ (ψ̃ki′1, . . . , ψ̃
k
i′m) ◦ ι ◦ ψ̃kii′ = C

(∑

i′≺j
(λ̃j ◦ ψ̃

k
i′j) · δ eψk

i′j

)
◦ ι ◦ ψ̃kii′
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and hence (after projecting to O∞)

C(µk ◦ φ
k
i ) = C(µk ◦ φ

k
i′) ◦ ψ

k
ii′

on (φki )
−1(φki (Ui) ∩ φ

k
i′(Ui′)), respectively

C(µk ◦ φ
k
i ) ◦ (φki )

−1 = C(µk ◦ φ
k
i′) ◦ (φki′)

−1.

This completes the proof that F k
i = F k

i′ on the overlap φki (Ui)∩φ
k
i′(Ui′) for sufficiently large

k. By the finiteness of our index set {1, . . . , n} we therefore have for sufficiently large k

constructed well-defined orbifold maps Fk from an open subset of Ok into O∞ satisfying

Fk ◦ φ
k
i |Ui

C∞

−→ idUi
(4.2.20)

uniformly as k → ∞.

For sufficiently large k, it follows from 4.2.20 that the maps Fk are embeddings with

W∞ ⊂ Im(Fk). We now define Φk := (F k)−1|W∞
to obtain orbifold embeddings Φk : W∞ →

Ok such that (Φk)∗gk
C∞

→ g∞|W∞
and Φk → idW∞

uniformly, as desired. It is automatic that

also Φ−1
k (pk) → p∞. This completes the proof of

Theorem 4.2.21 (Smooth compactness). On,D,r0,v0 is compact with respect to the

topology of smooth convergence.

Remark 4.2.22. An alternative approach to the proof of Theorem 4.2.21 is to consider

the frame bundle of orbifolds, thus reducing the problem to studying the O(n)-equivariant

convergence of manifolds. This strategy is pursued in [KL08, Sec. 4].

Later on, we will also require a version of Theorem 4.2.21 for a situation where we only

have uniform bounds on finitely many covariant derivatives of the curvature tensors. In

other words, we are also interested in the space On,l,C,r0,v0 where r0, v0 > 0, l is a (sufficiently

large) natural number, C : (0,∞) → (0,∞) a function and a complete connected smooth

pointed Riemannian orbifold (O, p) is contained in On,l,C,r0,v0 if volB(p, r0) ≥ v0 and on

every ball B(p, r) around p the curvature tensor and its covariant derivatives up to order

l are bounded by the constant C(r).

The proofs presented above for the compactness of On,D,r0,v0 can also be applied to

On,l,C,r0,v0 , with the sole exception that the resulting orbifold structure on a Gromov-

Hausdorff limit and the approximating diffeomorphisms are no longer smooth, but only

have lower regularity Cl
′

(with some l′ < l). More precisely, consider a sequence (Ok, pk) ∈

On,l,C,r0,v0 with Gromov-Hausdorff limit (O∞, p∞). When we apply 4.2.6 to locally obtain

a limit metric in geodesic coordinates on (O∞, p∞), we now have only control on the first

l derivatives of this metric. Thus, we can now only conclude that O∞ has the structure
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of an orbifold of regularity class Cl−2. (Isometries between Riemannian manifolds of class

Cl are only local diffeomorphisms of class Cl−2.) Consequently, the diffeomorphisms which

we interpolate in the proof of Theorem 4.2.21 are only of this lower regularity class, and

we lose two further degrees of regularity in the proof of Lemma 4.2.17. As a special case

of these considerations, we obtain

Theorem 4.2.23. Let r0, v0 > 0 and let C : (0,∞) → (0,∞) be a function. Then

On,20,C,r0,v0 has the following precompactness property: every sequence of orbifolds (Ok, pk) ∈

On,20,C,r0,v0 subconverges C5-smoothly to a C10-smooth Riemannian n-orbifold.



5. Coarse stratification of roughly

≤ 2-dimensional Alexandrov spaces

5.1 Preliminaries

5.1.1 Alexandrov balls

Throughout this section, by a segment we mean more precisely a distance minimizing

geodesic segment. Given two points x and y, then xy denotes one of the possibly several

segments connecting these points.

All arguments from Alexandrov geometry used in this text will be local; we accordingly

work in an appropriate class of local Alexandrov spaces.

Definition 5.1.1 (Alexandrov ball). An Alexandrov ball of curvature ≥ k is a local

Alexandrov space (cf. 3.4 with curvature ≥ k of the form X = B(x, ρ), ρ > 0, with the

additional properties that the closed balls B(x, r) for r ∈ (0, ρ) are metrically complete,

and that for any two points y, z ∈ X with d(y, z)+d(x, y)+d(x, z) < 2ρ there is a segment

yz joining y and z.

The first property can be viewed as metrical completeness “up to radius < ρ” and

the second is a global form of the length space condition. We call x the center of the

Alexandrov ball B(x, ρ) and the minimal number r ∈ [0, ρ] such that B(x, r) = B(x, ρ)

its radius (with respect to x). An Alexandrov space may be regarded as an Alexandrov

ball with infinite radius. For any pair of points in B(x, ρ
2
) or, more generally, in a ball

B(y, r) with d(x, y) + 2r ≤ ρ there is at least one segment connecting them. For any

triple of vertices in B(x, ρ
3
) or, more generally, in a ball B(y, r) with d(x, y) + 3r ≤ ρ

geodesic triangles exist and satisfy triangle comparison, again due to Perelman’s version

of Toponogov’s Theorem for Alexandrov spaces [BGP92, Thm. 3.2].
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5.1.2 Strainers and cross sections

Let X = B(x,R) be an Alexandrov ball with curvature ≥ −1. All points occuring in our

discussion below are supposed to lie in B(x, R
3
).

For a (small) constant θ > 0, a θ-straight n-strainer of length l (> l) in a point x ∈ X

consists of n pairs of points ai, bi at distance l (> l) from x such that ∠̃p(ai, bi) ≥ π − θ,

∠̃p(ai, aj) ≥ π
2
− θ and ∠̃p(bi, bj) ≥ π

2
− θ for all i 6= j, and ∠̃p(ai, bj) ≥ π

2
− θ for all

i, j. (All comparison angles are taken with respect to the comparison curvature value −1,

i.e. in the hyperbolic plane.) We call the strainer < θ-straight if it is θ′-straight for some

θ′ < θ. (Compare the definition of burst points in [BGP92, §5.2] and the definition of

strainers [BBI01, §10.8.2].) We say that a strainer is equilateral if all points ai, bi have the

same distance from x. We analogously define strainers with respect to other comparison

curvature values.

Similarly, we define a θ-straight n1
2
-strainer of length l (> l) in x as such an n-strainer

together with an additional point an+1 at distance l (> l) from x such that ∠̃p(an+1, ai) ≥
π
2
− θ and ∠̃p(an+1, bi) ≥ π

2
− θ for all i ≤ n. We define an infinitesimal strainer as a

configuration of directions in ΣxX satisfying analogous inequalities.

Due to the monotonicity of comparison angles, the existence of a strainer of length l at

x implies the existence of strainers at x of the same type and straightness with any length

l′ < l.

For an n-strainer (a1, b1, . . . , an, bn) in x we put

fi := fai,bi :=
1

2
(d(ai, ·) − d(bi, ·)) −

1

2
(d(ai, x) − d(bi, x))

and f := fa1,b1,...,an,bn := (f1, . . . , fn), normalized to vanish in x. The functions fi are

1-Lipschitz. We call the level sets f−1(t) the cross sections of the strainer and denote by

Σy;ai,bi = f−1
i (fi(y)) and Σy;a1,b1,...,an,bn = f−1(f(y)) the cross sections through the point y.

An important property of Alexandrov spaces and balls (see [BGP92, Cor. 10.8.21]) is

that their (Hausdorff) dimension (of Alexandrov spaces or balls) can be characterized in

terms of strainers as follows. There exists a constant θ̄d 1
2
> 0 such that X has dimension

> d if and only if some point in X admits a θ̄d 1
2
-straight d1

2
-strainer of some positive length.

(This in turn is implied by the existence of a < θ̄d 1
2
-straight infinitesimal d1

2
-strainer in some

point.) These constants need not be extremely small, e.g. θ̄1 1
2

may be chosen arbitrarily in

(0, π
2
) and θ̄2 1

2
in (0, π

10
).

Thus, if a sequence of d-dimensional pointed Alexandrov balls (Xi, xi) with curvature

≥ −1 collapses to a pointed Alexandrov ball (X∞, x∞) of dimension ≤ k < d, (Xi, xi) →

(X∞, x∞), then for any radius r > 0 the supremum of the lengths of θ̄k 1
2
-straight k 1

2
-

strainers in points of B(xi, r) tends to zero as i→ ∞.
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5.1.3 Comparing comparison angles

We will need to compare the comparison angles of (equilateral) 1-strainers with respect to

different model spaces of constant curvature with curvature values in the interval [−1, 0].

We observe that for a triangle with fixed side lengths comparison angles increase mono-

tonically with the comparison curvature value. We are interested in 1-strainers of bounded

length. Consider a triangle ∆ in euclidean space with two sides of length 2 and angle π− θ

between them. We define the angle α(θ) by letting π − α(θ) < π − θ be the comparison

angle of ∆ with respect to hyperbolic space of curvature −1, i.e. the corresponding angle

of a triangle in hyperbolic space with the same side lengths as ∆.

Lemma 5.1.2. The function α(θ) is differentiable in θ = 0 with α′(0+) = (2 coth 2)
1
2 < 3

2
.

Proof. Let l = 4 − h denote the length of the third side of ∆, i.e. l = 4 cos θ
2

and h =
1
2
θ2 +O(θ3).

By the hyperbolic law of cosines, we have cosh l = (cosh 2)2 +(sinh 2)2 cosα = cosh 4−

(sinh 2)2(1 − cosα) = cosh 4 + 1
2
(sinh 2)2α2 + O(α3). Moreover, cosh l = cosh(4 − h) =

cosh 4 − sinh 4 h + O(h2) = cosh 4 − 1
2
sinh 4 θ2 + O(θ3). Combining these equations we

obtain that limθ→0 α
2/θ2 = 2 coth 2 and the lemma follows.

We will frequently use the following application of the lemma. Let (X, x) be an Alexan-

drov space or ball of curvature ≥ −1. Suppose that (a, b) is a 1-strainer at x of length

≤ 2 with comparison angle ∠̃x(a, b) ≥ π − θ with respect to some comparison curvature

value k ∈ [−1, 0]; and hence in particular with euclidean comparison angle (with respect

to k = 0) ≥ π − θ. Then for sufficiently small θ, i.e. θ ∈ (0, θ0) for some universal θ0 > 0,

Lemma 5.1.2 implies that the strainer (a, b) has comparison angle ≥ π− 3
2
θ with respect to

the comparison curvature value −1. For future reference, we also compute that α(π
2
) < 3π

4

by solving the above equations with l = 8
1
2 for α. In other words, if we have an equilateral

1-strainer of length ≤ 2 which is π
2
-straight with respect to some comparison curvature

value in [−1, 0], it is still 3π
4

-straight with respect to all other comparison curvature values

in [−1, 0].

5.2 Uniform local approximation by cones

Alexandrov spaces can in every point be arbitrarily well locally approximated by their

tangent cone if one zooms in sufficiently far (see [BBI01, Thm. 10.9.3]). We need a quan-

titative version of this infinitesmial conelikeness, that is, we need uniform scales on which

one can well approximate by cones. (Compare the scaling argument in [MT08, 3.5].)
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Definition 5.2.1 (Local approximation by cones). We say that the Alexandrov ball

B(y, 1) is in the point z ∈ B(y, 1
2
) on the scale s ≤ 1

2
µ-well approximated by a cone if

the rescaled pointed ball s−1 · (B(z, s), z) has Gromov-Hausdorff distance < µ from the

euclidean cone of radius 1 over some Alexandrov space with curvature ≥ 1 and with base

point in the tip of the cone.

The base of the approximating cone may be empty, in which case the cone is just a

point. The following result says that Alexandrov balls of dimension ≤ d or, more generally,

which are roughly ≤ d-dimensional in the sense that θ̄d 1
2
-straight d1

2
-strainers must be very

short, can be arbitrarily well locally approximated by cones of dimension ≤ d.

Proposition 5.2.2 (Local approximation by cones on uniform scales). For d ∈ N

and σ, µ > 0 exist scales 0 < sd 1
2

= sd 1
2
(σ, µ) << s1 = s1(d, σ, µ) << σ such that any

Alexandrov ball B(y, 1) with curvature ≥ −1 and without θ̄d 1
2
-straight d1

2
-strainers of length

≥ sd 1
2

can in every point z ∈ B(y, 1
2
) on some scale s(z) ∈ [s1, σ] be µ-well approximated

by a cone of dimension ≤ d.

Proof. Consider a sequence of Alexandrov balls B(yk, 1) with curvature ≥ −1 and without

θ̄d 1
2
-straight d1

2
-strainers of length ≥ σ

k
, and suppose that there exist points zk ∈ B(yk,

1
2
)

such that B(yk, 1) can in zk not be µ-well approximated by a cone of dimension ≤ d on any

scale s ∈ [σ
k
, σ]. The (B(yk, 1), zk) Gromov-Hausdorff converge to a pointed Alexandrov ball

(B(y∞, 1), z∞) with curvature ≥ −1 and dimension ≤ d, and z∞ ∈ B(y∞,
1
2
). Now B(y∞, 1)

can on a sufficiently small scale s′ < σ be µ-well approximated in z∞ by (the truncation

at radius 1 of) its tangent cone. Since σ
k
< s′ for large k, we obtain a contradiction.

Throughout the remainder of this text, we fix some small value for σ, say σ = 1
1000

.

5.3 Islands without strainers

Building on 5.2.2 we will now divide our roughly ≤ d-dimensional Alexandrov balls B(y, 1)

with curvature ≥ −1 into two regions according to the (non-)existence of good 1-strainers

on a uniform scale. We will show that the points without such strainers accumulate in

“islands” which are uniformly separated from each other.

Definition 5.3.1 (Hump). For small θ > 0 we call a point z ∈ B(y, 1
2
) a (θ, µ)-hump if

the base of the approximating cone provided by 5.2.2 has diameter < π − θ
2
.

Let H = Hθ,µ ⊂ B(y, 1
2
) denote the subset of (θ, µ)-humps, and let S = Sθ,µ ⊂ B(y, 1)

denote the subset of points admitting < θ-straight 1-strainers of length > 1
11
s1(d, σ, µ),

cf. 5.2.2. We are interested in the distribution of the set H − S for small θ and µ. (Our
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notation suppresses the dependence on d. Later we will only need the case d = 2.)

If the approximation accuracy µ is sufficiently small, then humps and non-humps have

the following properties.

Lemma 5.3.2. For sufficiently small θ > 0 (i.e. 0 < θ ≤ θ0 for some positive θ0) there

exists µ0(θ) > 0 such that for µ ∈ (0, µ0(θ)] the following holds:

(i) A (θ, µ)-hump z admits no θ
4
-straight 1-strainers of length 1

111
s(z), but

(ii) all points in the closed annulus A(z; 1
10
s(z), 9

10
s(z)) do admit θ

11
-straight 1-strainers

of length > 1
11
s(z), i.e. A(z; 1

10
s(z), 9

10
s(z)) ⊂ Sθ,µ. (iii) Moreover, if y′ ∈ B(y, 1

2
) is no

(θ, µ)-hump, then it admits < θ-straight 1-strainers of length > 99
100
s(z) > 1

11
s1(d, σ, µ), i.e.

B(y, 1
2
) ⊂ Hθ,µ ∪ Sθ,µ.

Proof. Property (i) follows from the fact that euclidean comparison angles (with respect

to comparison curvature value 0) are larger than their hyperbolic equivalents (with respect

to comparison curvature value -1).

For the proof of (ii), every point in A(z; 1
10
s(z), 9

10
s(z)) can be made arbitrarily close

to the midpoint of a segment of length > 2
11
s(z) if µ is chosen sufficiently small. This

implies the existence of a < θ-straight 1-strainer of length > 1
11
s(z) at every point in

A(z; 1
10
s(z), 9

10
s(z)) for sufficiently small µ.

To prove (iii), we observe that for every θ > 0 and sufficiently small µ > 0 every point

y′ which is not a (θ, µ)-hump z admits a 1-strainer (a, b) of length > 1
11
s(y′) which is 2

3
θ-

straight as a euclidean 1-strainer, i.e. with respect to the comparison curvature value 0.

By Lemma 5.1.2 and the discussion afterwards this strainer then is also < θ-straight with

respect to comparison curvature value −1 for sufficiently small θ > 0.

Now we show that humps can be grouped into finitely many islands.

Proposition 5.3.3. Let d ∈ N and σ, µ, θ > 0 such that µ ≤ µ0(θ). Suppose that B(y, 1)

is an Alexandrov ball with curvature ≥ −1 and without θ̄d 1
2
-straight d1

2
-strainers of length

≥ sd 1
2
(σ, µ). Then there exist finitely many (θ, µ)-humps zj ∈ Hθ,µ such that

B(y,
1

2
) ⊂

(
⋃

j

B(zj,
1

10
s(zj))

)
∪ Sθ,µ.

Moreover, d(zj, zk) >
9
10
s(zj) for j 6= k.

Proof. Let z, z′ ∈ H − S. Then z′ 6∈ A(z; 1
10
s(z), 9

10
s(z)) and z 6∈ A(z′; 1

10
s(z′), 9

10
s(z′)),

i.e. 1
s(z)

d(z, z′), 1
s(z′)

d(z, z′) 6∈ [ 1
10
, 9

10
]. If z ∈ B(z′, 1

10
s(z′)) but z′ 6∈ B(z, 1

10
s(z)), then

9
10
s(z) < d(z, z′) < 1

10
s(z′), and so B(z, 1

10
s(z)) ⊂ B(z′, 1

9
s(z′)) ⊂ B(z′, 1

10
s(z′)) ∪ S.

There can be no infinite sequence of points z, z′, z′′, · · · ∈ H − S such that s(z) < 1
9
s(z′) <



62 5. Coarse stratification of roughly ≤ 2-dimensional Alexandrov spaces

1
92 s(z

′′) < . . . because the scales take values in the bounded interval [s1, σ]. Let H1 ⊂ H−S

denote the subset of all points z ∈ H − S for which no point z′ ∈ H − S exists with
9
10
s(z) < d(z, z′) < 1

10
s(z′). We note that ∪z∈H−SB(z, 1

10
s(z)) ⊂ ∪z∈H1

B(z, 1
10
s(z)) ∪ S.

By construction, the relation on H1 defined by z ∼ z′ :⇔ z′ ∈ B(z, 1
10
s(z)) is reflexive

and symmetric, and we have that z 6∼ z′ ⇒ d(z, z′) > 9
10
s(z) and > 9

10
s(z′). To verify

that the relation is also transitive, suppose that z′ ∼ z ∼ z′′ and z′ 6∼ z′′. Then 9
20

(s(z′) +

s(z′′)) < d(z′, z′′) ≤ d(z, z′) + d(z, z′′) < 1
10

(s(z′) + s(z′′)), a contradiction. Thus, “∼” is

an equivalence relation on H1. We call an equivalence class a (θ, µ)-island. Note that the

island containing z is contained in the intersection ∩z′∼zB(z′, 1
10
s(z′)). Since inequivalent

points z′, z′′ ∈ H1 satisfy d(z′, z′′) > 9
20

(s(z′)+s(z′′)), islands are separated, B(z′, 9
20
s(z′))∩

B(z′′, 9
20
s(z′′)) = ∅. In particular, there are only finitely many islands.

If z ∼ z′ and s(z′) < 4s(z), then ⊂ B(z, 1
10
s(z)) ∪ S. Let R ⊂ H1 be a subset which

contains exactly one representative z from each island with almost maximal scale value

s(z) (among its fellow islanders). Then ∪z∈H1
B(z, 1

10
s(z)) ⊂ ∪z∈RB(z, 1

10
s(z)) ∪ S. R is

finite and for any two distinct points z′, z′′ ∈ R holds d(z′, z′′) > 9
10
s(z′). Altogether we

obtain

H ⊂ ∪z∈H−SB(z,
1

10
s(z)) ∪ S ⊂ ∪z∈H1

B(z,
1

10
s(z)) ∪ S ⊂ ∪z∈RB(z,

1

10
s(z)) ∪ S

5.4 The 1-strained region

We will now study the geometry of the region S = Sθ,µ of points admitting good (< θ-

straight) 1-strainers which was introduced in section 5.3.

In the estimates provided in this section we will abstain from giving explicit constants

although this could be done in each case. Instead we use the symbols c, c′, . . . to denote

generic positive constants, i.e. constants which constantly change from estimate to estimate

and which in each estimate (or assertion) take some fixed value independent of the other

parameters θ, l, l′, r, λ, · · · > 0 involved. The estimates hold (or become nontrivial) for

sufficiently small values of the parameter θ, i.e. there exists some θ0 > 0 such that they

hold for all θ ∈ (0, θ0]. By decreasing the upper bound θ0 for θ as we go along, we can also

guarantee that the frequently occuring terms of the form cθ are as small as we wish. We

will always assume that the upper bound θ0 is sufficiently small such that the conclusions

from Lemma 5.3.2 hold.

Throughout this section, let X = B(x, 10) be an Alexandrov ball with curvature ≥ −1.
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5.4.1 Local almost product structure

Let (a, b) be a < 2θ-straight 1-strainer of length > (1 − θ) at x. We want to apply the

following considerations to < θ-straight 1-strainers on scale 1
11
s1(d, σ, µ) which we rescale to

length ≈ 1. They are then not necessarily anymore < θ-straight with respect to comparison

curvature value −1, but by Lemma 5.1.2 they still are < 2θ-straight. In this way, we avoid

that our constants depend on the scale s1(d, σ, µ).

The estimates given below express that near x there is on a certain small scale an

almost product structure with a one-dimensional factor in the direction of the strainer. To

begin with, the points near x admit 1-strainers close to (a, b) of comparable quality and

almost the same length. More precisely, we have

∠̃·(a, b) > π − cθ on B(x, θ) (5.4.1)

with a certain constant c > 1. For future reference, let us denote by C0 > 1 a constant

such that (5.4.1) holds with c = C0. To verify (5.4.1), note that the function d(a, ·)+d(b, ·)

along xx′ has first derivative < θ in x and second derivative < c′ (in a barrier sense) along

the whole segment. Thus d(a, x′) + d(x′, b) < d(a, x) + d(x, b) + c′′θ2 < d(a, b) + c′′′θ2

which implies ∠̃x′(a, b) > π − cθ. It follows that the function fa,b + d(b, ·) + const =

−(fa,b − d(a, ·)) + const = 1
2
(d(a, ·) + d(b, ·)) + const is cθ-Lipschitz on B(x, θ).

One can define near x a coarse flow in the strainer direction which replaces the gra-

dient flows of d(a, ·) and d(b, ·). For t ∈ (−θ, θ) and x′ ∈ B(x, 3θ) let Φa,b
t (x′) be the

intersection point ax′b ∩ f−1
a,b (fa,b(x

′) + t). The resulting maps Φa,b
t : B(x, 3θ) → X are

well-defined only up to small ambiguity because the broken segments ax′b need not be

unique. Correspondingly, these maps are in general not continuous.

However, they are almost distance non-decreasing, d(Φa,b
t x1,Φ

a,b
t x2) > (1−cθ)d(x1, x2)−

c′θ|t|. This follows from triangle comparison applied to ∆(x1, x2, a) or ∆(x1, x2, b) and the

fact that |t| ≤ d(xi,Φ
a,b
t xi) < (1 + c′θ)|t| because fa,b has slope ≈ 1 along axib. They

are also almost inverse to each other, i.e. Φa,b
−tΦ

a,b
t is cθ|t|-close to the identity (where

it is defined). To see this, consider the triangle ∆(x′,Φa,b
t x′,Φa,b

−tΦ
a,b
t x′) and note that

∠̃Φa,b
t x′(x

′,Φa,b
−tΦ

a,b
t x′) < c′′θ by (5.4.1) and again |t| ≤ d(Φa,b

t x′, x′), d(Φa,b
t x′,Φa,b

−tΦ
a,b
t x′) <

(1 + c′θ)|t|. Hence we also have an upper bound d(Φa,b
t x1,Φ

a,b
t x2) ≤ (1 + c′′′θ)d(x1, x2) +

c′′′′θ|t|, i.e. the Φa,b
t |B(x,θ) are (1 + c′′′θt, c′′′′θt)-quasi-isometric.

Let x1, x2 ∈ B(x, θ). Since ∠ ≥ ∠̃ and geodesic triangles in Σxi
X have circumfer-

ence ≤ 2π, (5.4.1) yields ∠x1
(a, x2) + ∠x1

(b, x2),∠x2
(a, x1) + ∠x2

(b, x1) < π + cθ. Since

also ∠̃x1
(a, x2) + ∠̃x2

(a, x1), ∠̃x1
(b, x2) + ∠̃x2

(b, x1) > π − c′θ, we obtain that angles and

comparison angles with a strainer direction almost coincide,

∠x1
(a, x2) − ∠̃x1

(a, x2) < cθ, (5.4.2)
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and

|∠̃x1
(a, x2) + ∠̃x1

(b, x2) − π| < cθ, |∠̃x1
(a, x2) − ∠̃x2

(b, x1)| < cθ. (5.4.3)

As a consequence, d(a, ·) is near x almost affine along segments in the sense that its slope

is almost constant. More precisely,

d(a, x1) − d(a, x2) = d(x1, x2) cosα (5.4.4)

with some angle α satisfying |α − ∠̃x1
(a, x2)| < cθ, as follows from (5.4.2, 5.4.3) and the

monotonicity of the cosine by integrating the derivative of d(a, ·) along x1x2. Estimates of

the same form hold for d(b, ·) and fa,b. (Note that (5.4.4) and the corresponding estimate

d(b, x1)−d(b, x2) = d(x1, x2) cos β with β = π−α′ satisfying |α′−∠̃x1
(a, x2)| < c′θ yield that

fa,b(x1)− fa,b(x2) = d(x1, x2) cosα′′ with cosα′′ = 1
2
(cosα+ cosα′), i.e. |α′′ − ∠̃x1

(a, x2)| <

c′′θ.) It follows that there exists a constant L > 0 such that the function

fa,b −
fa,b(x2) − fa,b(x1)

d(x2, x1)
d(x1, ·) (5.4.5)

and the analogous functions derived from d(a, ·) and d(b, ·) are Lθ-Lipschitz continuous

along the segment x1x2.

In particular, the cross sections of a strainer are topological hypersurfaces almost per-

pendicular to it: If x1, x2 ∈ f−1
a,b (t) ∩B(x, θ), then (5.4.2, 5.4.3) imply

π

2
− cθ < ∠̃x1

(a, x2) ≤ ∠x1
(a, x2) <

π

2
+ cθ (5.4.6)

because the comparison angles of the triangles ∆(x1, x2, a) amd ∆(x1, x2, b) almost agree.

Moreover, the functions d(a, ·), d(b, ·) and fa,b are Lθ-Lipschitz continuous on any segment

with endpoints in the same (piece of) cross section f−1
a,b (t) ∩B(x, θ).

The maps Φa,b
t can be used to compare cross sections, since by their definition they

satisfy Φa,b
t (f−1

a,b (t
′) ∩ B(x, 2θ)) ⊂ f−1

a,b (t
′ + t). Regarding the size of cross sections of n-

strainers (a1, b1, . . . , an, bn) we obtain from (5.4.1, 5.4.6): If points x1, x2 ∈ f−1
a1,b1,...,an,bn

(t)∩

B(x, θ) have distance l, then they admit cθ-straight n1
2
-strainers of length l.

The cross sections of the 1-strainer (a, b) are connected: Let x1, x2 ∈ f−1
a,b (t) ∩ B(x, θ).

For the midpoint m of (a segment) x1x2 holds |fa,b(m)−t| < cθd(x1, x2). As above, by amb

with f−1
a,b (t) we find an almost midpoint y ∈ f−1

a,b (t) at distance < (1
2
+ cθ)d(x1, x2) from x1

and x2. Iterating this procedure yields a continuous curve in f−1
a,b (t) ∩B(x, 3θ) connecting

x1 and x2. (Here one uses the earlier estimates with the parameter 3θ instead of θ.)

To simplify notation, let us put Σo
y;a,b := Σy;a,b ∩B(x, θ).
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Lemma 5.4.7 (Projecting to cross sections). Let y, y1 ∈ B(x, θ) and let z1 be the

intersection point ay1b ∩ Σy;a,b. Then

∣∣∣d(y1, z1) − d(y, y1) · | cos ∠̃y(a, y1)|
∣∣∣ < cθd(y, y1) (5.4.8)

and

|d(y, z1) − d(y, y1) sin ∠̃y(a, y1)| < c′θd(y, y1). (5.4.9)

In particular,

|d(y, z1)
2 + d(z1, y1)

2 − d(y, y1)
2| < c′′θd(y, y1)

2. (5.4.10)

Proof. We put l = d(y, y1) and α1 = ∠̃y(a, y1).

We have |fa,b(y1)− fa,b(y)| ≤ d(y1, z1) ≤ (1 + cθ)|fa,b(y1)− fa,b(y))| and, due to (5.4.4)

and the remark thereafter, fa,b(y1) − fa,b(y) = −l cosα′
1 with |α′

1 − α1| < cθ. This yields

(5.4.8).

To estimate d(y, z1), we consider a comparison triangle for ∆(y, y1, z1). In view of

(5.4.3), we may exchange a and b, and therefore assume without loss of generality that

z1 ∈ y1a. Then α1 > π
2
− cθ, cf. (5.4.6). Regarding ∠̃y1(z1, y), we have ∠̃y1(a, y) ≤

∠̃y1(z1, y) ≤ ∠y1(z1, y) = ∠y1(a, y) and hence

|∠̃y1(z1, y) − (π − α1)| < cθ

because of (5.4.2) and π − cθ < ∠̃y1(a, y) + α1 ≤ π. This information implies (5.4.9).

(Whether we use a hyperbolic or euclidean comparison triangle to compute the length of

the side y′1z
′ corresponding to y1z causes only a difference by a factor < sinh l

l
< 1 + θ2 <

1 + cθ (due to the distortion of the exponential map for hyperbolic plane up to radius

l) and we may therefore work with a euclidean one. Then |1
l
d(y′, z′1) − sin ∠̃y1(z1, y)| <

| cos(π − α1) − cos ∠̃y1(z1, y)| + cθ < c′θ.)

Finally, (5.4.10) is a direct consequence.

5.5 The roughly ≤ 2-dimensional case

We assume now in addition that B(x, 10) is roughly ≤ 2-dimensional in the sense that

there are no θ̄2 1
2
-straight 21

2
-strainers of length λ for some (very small) λ > 0.

5.5.1 Cross sections of 1-strainers

We continue our discussion in section 5.4. The next two results express that the cross

sections of good 1-strainers are now roughly ≤ 1-dimensional.
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Lemma 5.5.1. Let (a, b) be a C0θ-straight > (1−θ
1
2 )-long 1-strainer at a point y ∈ B(x, 5).

Let y1y2 be a segment of length l with endpoints in B(y, θ
3
) and with midpoint m. Let y′

be a point with d(m, y′) > θl. Suppose that fa,b is 3Lθ-Lipschitz on the segments y1y2 and

my′ ∩B(m, θl). Then ∠m(yi, y
′) < cθ for i = 1 or 2, if λ = λ(θ, l) is sufficiently small.

If also d(y1, y
′) ≤ l

3
, then ∠m(y1, y

′) < cθ.

Proof. Let z′ ∈ my′ be the point at distance θl from m. Since fy1,y2 has slope ≡ 1 on y1y2,

there exists a point z ∈ y1y2 ∩B(m, θl) with fy1,y2(z) = fy1,y2(z
′). It satisfies

|fa,b(z) − fa,b(z
′)| ≤ 6Lθ2l (5.5.2)

because fa,b is 3Lθ-Lipschitz on zm and mz′.

The Lipschitz assumption also implies that |∠·(yi, a) −
π
2
|, |∠·(yi, b) −

π
2
| < cθ on (the

interior of) y1y2 and hence |∠̃·(yi, a)−
π
2
|, |∠̃·(yi, b)−

π
2
| < c′θ by (5.4.2). Thus the quadrupel

(a, b, y1, y2) is a c′θ-straight 2-strainer at z. The 11
2
-strainer (y1, y2, z

′) at z is cθ-straight

by (5.4.6). We consider now the 11
2
-strainer (a, b, z′) at z and estimate ∠̃z(a, z

′). Since

d(z, z′) ≤ 2θl and fa,b − d(a, ·) is cθ-Lipschitz on B(y, θ), (5.5.2) translates to |d(a, z) −

d(a, z′)| < c′θ2l. With (5.4.4) it follows that d(z, z′)| cos ∠̃z(a, z
′)| < c′θ2l + c′′θd(z, z′) <

c′′′θ2l.

If d(z, z′) > 2c′′′θ̄−1
2 1

2

θ2l (with the constant c′′′ from the last estimate), then | cos ∠̃z(a, z
′)| <

1
2
θ̄2 1

2
and |∠̃z(a, z

′) − π
2
| < θ̄2 1

2
. Similarly, |∠̃z(b, z

′) − π
2
| < θ̄2 1

2
, and it follows that

(a, b, y1, y2, z
′) is a < θ̄2 1

2
-straight 21

2
-strainer at z with length > 2c′′′θ̄−1

2 1
2

θ2l. This is a

contradiction if λ = λ(θ, l) is sufficiently small, and we conclude that d(z, z′) < c′′′′θ2l and

consequently ∠̃m(z, z′) < cθ.

Suppose without loss of generality that z ∈ my1. Then ∠m(z, z′) − ∠̃m(z, z′) ≤

∠m(y1, z
′) − ∠̃m(y1, z

′) < c′θ, where the last inequality follows from (5.4.2) after rescaling

by the factor l−1. Thus ∠m(y1, y
′) = ∠m(z, z′) < c′′θ, which shows the first assertion.

For the second assertion, suppose that d(y1, y
′) ≤ l

3
but ∠m(y2, y

′) < cθ. Then y′ is

close to my2 or y2 is close to my′. Since d(y2, y
′) ≥ 2l

3
, only the second alternative can

occur and d(m, y′) ' l
2

+ 2l
3
> l. On the other hand d(m, y′) ≤ d(m, y1) + d(y1, y

′) < l, a

contradiction. Thus ∠m(y1, y
′) < cθ.

Lemma 5.5.3 (Roughly one-dimensional cross section). Let l′ ≤ l ≤ θ
50

, y ∈ B(x, 5)

and let (a, b) be a C0θ-straight > (1−θ
1
2 )-long 1-strainer at y. Suppose that diam(Σo

y;a,b) >

40l.

(i) Then there exists a point y′ ∈ Σy;a,b ∩ B(y, l) and a segment y′m of length ≥ 10l,

such that fa,b is 3Lθ-Lipschitz on y′m and Σy;a,b ∩ B(y, l) ⊂ Ncθl(y
′m), if λ = λ(θ, l) is

sufficiently small.
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(ii) Moreover, if diam(Σy;a,b ∩ B(y, l)) < 199
100
l, then y′ can be chosen in B(y, 199

200
l) so

that Σy;a,b ∩B(y′, r) ⊂ Ncθr(y
′m) for all r ∈ [l′, l], if λ = λ(θ, l′) is sufficiently small.

Proof. (i) By assumption, there is q ∈ Σy;a,b with d(y, q) = 20l. (Recall from section 5.4.1

that Σy;a,b is path connected near y.) Letm be the midpoint of yq. Since fa,b is Lθ-Lipschitz

on yq, we have that |fa,b(m)−fa,b(y)| < 10Lθl. Thus for every point z ∈ Σy;a,b∩B(y, l) the

function fa,b has along the segment mz Lipschitz constant < 10
9
Lθ+Lθ = 19

9
Lθ < 3Lθ, cf.

(5.4.5), and 5.5.1 yields that ∠m(y, z) < cθ. It follows that the segments mz have pairwise

angles < 2cθ and are all contained in the c′θl-neighbourhood of an almost longest one

among them. We choose y′ as its endpoint.

(ii) By part (i), the piece of cross section Σy;a,b ∩ B(y, l) is cθl-close to a subsegment

y′z ⊂ y′m where z ∈ y′m is a point with d(y, z) = l and |d(z,m)+l−d(y,m)| < c′θl. Hence

d(y, y′) < ( 99
100

+c′′θ)l. The points in Σy;a,b∩B(y, l), which are further away from m than y′,

must be 2cθl-close to y′, i.e. d(m, ·)|Σy;a,b∩B(y,l) assumes a maximum in Σy;a,b ∩ B(y′, 2cθl).

We replace y′ by this maximum and then have d(y, y′) < 199
200
l. Also by (i), Σy;a,b contains

no l
1000

-long π
2
-straight 1-strainer at y′.

Suppose that Σy;a,b contains a θl′-long π
2
-straight 1-strainer at y′. Using (i) at the point

y′ and on the scale θl′, it follows that for sufficiently small λ = λ(θ, l′) there exists a

segment τ of length almost 2θl′, say, of length 199
100
θl′ along which fa,b is cθ-Lipschitz and

such that y′ lies at distance < c′θ2l′ from the midpoint of τ . (When applying part (i) to

points nearby y, the 1-strainer (a, b) may only be cθ-straight for some constant c > C0 and

(1 − 2θ
1
2 )-long at these points, and we use a version of part (i) with appropriate different

constants.)

We consider d(m, ·) along the middle third τ ′ of τ . The function fa,b is cθ-Lipschitz

along τ and along all segments zm initiating in interior points z of τ ′. Lemma 5.5.1 implies

for sufficiently small λ = λ(θ, l′) that these segments zm have angles < c′θ with τ ′. This

means that d(m, ·) has slope ≈ ±1 along τ ′, i.e. the directional derivatives of d(m, ·) in

directions tangent to τ ′ take values in [−1,−1 + c′′θ2) ∪ (1 − c′′θ2, 1]. (See e.g. [BGP92,

Sec. 11] for a discussion of directional derivatives of distance functions.) If at some interior

point z0 of τ ′ the directional derivatives in the two antipodal directions tangent to τ ′ are

both negative, then d(m, ·) decays with slope ≈ −1 along both subsegments of τ ′ with

initial point z0. In particular, z0 is a maximum of d(m, ·)|τ ′ . If such a point z0 does not

exist, then d(m, ·)|τ ′ is almost affine, i.e. with respect to an appropriate orientation of τ ′ it

increases with slope ≈ 1 along the whole segment.

Since y′ is a maximum of d(m, ·)|Σy;a,b∩B(y′, l
200

), it follows that d(m, ·)|τ ′ attains a max-

imum at a point y′′ ∈ τ ′ close to the midpoint of τ ′, more precisely, at distance < c′′θ2l′

from y′. Furthermore, there are at least two segments σ1 and σ2 connecting y′′ to m whose

initial directions σ̇i(0) (with respect to unit speed parametrizations starting at y′′) are close
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to the two antipodal directions of τ ′ at y′′. Each endpoint of τ lies at distance < c′′′θ2l′

from one of the two segments σ1 and σ2, and hence d(σ1(θl
′), σ2(θl

′)) > 19
10
θl′.

Applying part (i) at y′′ on the scales between θl′ and l yields that for λ(θ, l′) sufficiently

small the continuous function t 7→ 1
t
d(σ1(t), σ2(t)) on [θl′, l] takes values close to 0 and 2,

i.e. in [0, cθ) ∪ (2 − cθ, 2]. However, by the above, it has value ≈ 0 for t = l
1000

and value

≈ 2 for t = θl′, a contradiction. (Note that the smaller the scale, the smaller λ has to be,

and there exists a λ which serves simultaneously for all scales s ∈ [θl′, l].)

Thus Σy;a,b contains no θl′-long π
2
-straight 1-strainer at y′. It follows, again by part (i)

on the scale θl′, that diam(Σy;a,b ∩ ∂B(y′, θl′)) < cθ2l′, and hence every point z ∈ Σy;a,b at

distance d ∈ [θl′, l] from y′ has distance < cθd from y′m. This proves the assertion.

Lemma 5.5.4 (Spreading 1-strainers). Let l, l′, y and (a, b) be as in 5.5.3. Let z, z1, z2 ∈

Σy;a,b ∩ B(y, l) such that (z1, z2) is a π
2
-straight 1-strainer of length r ∈ [l′, 1

2
l] at z. Then

there exists a constant C1 ≥ C0 such that for sufficiently small λ = λ(θ, l′) holds:

(i) The 1-strainer (z1, z2) at z is < C1θ-straight. If moreover the 1-strainer (a, b) is

< 2θ-straight at y and has length > (1−θ), the 2-strainer (a, b, z1, z2) at z is < C1θ-straight.

(ii) All points u ∈ azb ∩B(z,min(100θ−
3
4 r, θ)) admit < C1θ-straight

r
2
-long 1-strainers

contained in Σu;a,b.

Proof. (i) This is a consequence of 5.5.3(i) applied at the point z on the scale r, and of

5.4.6.

(ii) Now we use the (1+cθ, c′θt)-quasi-isometry property of the maps Φa,b
t up to distance

≈ θ from y. We may assume that u = Φa,b
t z with |t| < min(100θ−

3
4 r, θ) and put ui = Φa,b

t zi.

Then d(u, ui) < (1+ cθ)r+ c′θt and d(u1, u2) > (1− cθ)99
50
r− c′θt, using that d(z1, z2) ≈ 2r

according to part (i). We obtain a π
3
-straight 1-strainer (u1, u2) at u contained in Σu;a,b

and with length ≈ r. Close to the midpoints of the segments uui we find a π
2
-straight 1-

strainer (u′1, u
′
2) at u contained in Σu;a,b and with length r

2
. (Compare the argument for the

connectivity of cross sections.) Applying part (i) again on the scale r
2

yields the cθ-straight
r
2
-long 1-strainer, once we can make sure that diam(Σo

u;a,b) > 20r. But this follows from

our assumption that diam(Σo
y;a,b) > 40l ≥ 40r by using the maps Φa,b

t as before.

Remark 5.5.5. As in part (i) of the lemma, we obtain that even if the 1-strainer (z1, z2)

is only 3π
4

-straight, it is also < C1θ-straight and hence in particular π
2
-straight.

5.5.2 Edges

In view of the local product structure, the points y′ obtained in 5.5.3(ii) can be considered

as points “near the edge” of our space. They are characterized by the property that they
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admit no long 1-strainers contained in the cross section. We will now investigate the

geometry near the edge, keeping the assumption of rough 2-dimensionality from section

5.5. Good 1-strainers at points near the edge must be almost perpendicular to the cross

section if they are not too short:

Lemma 5.5.6 (Almost unique 1-strainers near the edge). Let l, y and (a, b) be as

in 5.5.3. Suppose that (a′, b′) is a cθ
1
2 -straight 1-strainer of length ≥ l at y.

(i) If Σy;a,b contains no π
2
-straight c′l-long 1-strainer at y and λ = λ(θ, l) is sufficiently

small, then ∠y(a, a
′),∠y(a, b

′),∠y(b, a
′),∠y(b, b

′) 6∈ [ π
100
, 99

100
π].

(ii) If Σy;a,b contains no π
2
-straight θl-long 1-strainer at y and λ = λ(θ, l) is sufficiently

small, then ∠y(a, a
′),∠y(a, b

′),∠y(b, a
′),∠y(b, b

′) 6∈ [c′θ
1
2 , π − c′θ

1
2 ].

In both cases, y admits no cθ
1
2 -straight l-long 2-strainer.

Proof. There exists a cθ
1
2 -straight l-long 1-strainer (y1, y2) at y. (Choose y1 ∈ ya′ and

y2 ∈ yb′.) We put αi = ∠̃y(a, yi).

By 5.4.4 and the remark afterwards, |fa,b(yi) − fa,b(y) + l cosαi| < cθl. Thus for u1 =

ay1b ∩ Σy2;a,b holds (1 − cθ)d(y1, u1) < |fa,b(y1) − fa,b(y2)| ≤ |fa,b(y1) − fa,b(y)| + |fa,b(y) −

fa,b(y2)| and
1

l
d(y1, u1) < | cosα1| + | cosα2| + cθ,

compare the proof of 5.4.7.

Let zi = ayib ∩ Σy;a,b. According to 5.4.7, we have |d(y, zi) − l sinαi| < cθl. Now the

rough one-dimensionality of the cross section Σy;a,b, i.e. 5.5.3(i) applied on the scale l, and

our assumption in part (ii) yield that d(y, y′) < c′θl and |d(z1, z2) − |d(y, z1) − d(y, z2)|| <

c′′θl. Hence |1
l
d(z1, z2) − | sinα1 − sinα2|| < c′′′θ. With the metric properties of the maps

Φa,b
t it follows that ∣∣∣∣

1

l
d(u1, y2) − | sinα1 − sinα2|

∣∣∣∣ < cθ.

Since (y1, y2) is cθ
1
2 -straight, we have d(y1, y2) > (2 − cθ)l, and (5.4.10) implies

(| cosα1| + | cosα2|)
2 + (sinα1 − sinα2)

2 > 4 − c′θ.

Writing αi = π
2

+ βi, the last inequality becomes 4 sin2 |β1|+|β2|
2

= (sin |β1| + sin |β2|)
2 +

(cos β1 − cos β2)
2 > 4 − c′θ and

sin
|β1| + |β2|

2
> 1 − cθ.

Thus |βi| >
π
2
− c′θ

1
2 and ∠̃y(a, y1), ∠̃y(a, y2), ∠̃y(b, y1), ∠̃y(b, y2) 6∈ [c′θ

1
2 , π − c′θ

1
2 ].
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To pass from comparison angles to angles, we note that if e.g. ∠̃y(a, y1) < cθ
1
2 , then

∠y(a, b
′) = ∠y(a, y2) ≥ ∠̃y(a, y2) > π − c′θ

1
2 . This shows (ii).

Under the assumption of part (i) we obtain weaker but still useful estimates. In this

case, |d(z1, z2) − |d(y, z1) − d(y, z2)|| < (2c′ + c′′θ)l < 3c′l and we obtain the estimates∣∣1
l
d(u1, y2) − | sinα1 − sinα2|

∣∣ < c′′ and |βi| >
π
2
− c′′′. The constant c′′′ depends on the

constant c′ in the hypothesis of (i) and can be made arbitrarily small by choosing c′ small

enough. Assertion (i) follows.

Remark 5.5.7. Similarly, one shows e.g. that if Σy;a,b contains no π
2
-straight θ

1
2 l-long 1-

strainer at y, then ∠y(a, a
′),∠y(a, b

′),∠y(b, a
′), ∠y(b, b

′) 6∈ [c′θ
1
4 , π − c′θ

1
4 ], if λ = λ(θ, l) is

sufficiently small.

We make the following choice of scales to quantify rough edges.

Definition 5.5.8 (Edgy points). A point y ∈ B(x, 5) is called θ-edgy relative to a < 2θ-

straight 1-strainer (a, b) of length > (1− θ) at y if diam(Σo
y;a,b) > θ

5
2 and Σy;a,b contains no

π
2
-straight θ4-long 1-strainer at y.

We say that y ∈ B(x, 5) is θ-weakly edgy relative to a < 2θ-straight 1-strainer (a, b)

of length > (1 − θ) at y if diam(Σo
y;a,b) >

1
2
θ

5
2 and Σy;a,b contains no π

2
-straight 2θ4-long

1-strainer at y.

We call y ∈ B(x, 5) θ-strongly edgy relative to a < 2θ-straight 1-strainer (a, b) of length

> (1 − θ) at y if diam(Σo
y;a,b) >

4
3
θ

5
2 and Σy;a,b contains no π

2
-straight 3

4
θ4-long 1-strainer

at y.

Lemma 5.5.9. Suppose that every point y ∈ B(x, θ) admits a < 2θ-straight 1-strainer

(ay, by) of length > (1−θ) and that (a, b) is a < 2θ-straight 1-strainer of length > (1−θ) at

x such that Σo
x;a,b has diameter ≥ 2θ

5
2 and contains no < C1θ-straight 1-strainer of length

θ4 centered at x. If λ = λ(θ) is sufficiently small, then x is θ-edgy relative to the 1-strainer

(a, b) and moreover, there is a point z ∈ B(x, 2θ4) which is θ-strongly edgy relative to

(az, bz).

Proof. That x is θ-edgy follows immediately from 5.5.4 with r = l′ = θ4 and l = 2θ4.

Applying 5.5.3 on the same scales, we obtain that there is a point z ∈ Σx;a,b∩B(x, 2θ4)

such that Σo
z;a,b ⊂ Σo

x;a,b has diameter ≥ 2θ
5
2 and admits no π

2
-straight 1-strainer of length

1
2
θ4. The 1-strainer (a, b) is still < C0θ-straight at z.

By assumption, the point z admits a < 2θ-straight 1-strainer (a′, b′) of length > (1−θ).

By Lemma 5.5.6, the angles between the two 1-strainers (a, b) and (a′, b′) at z are (after

changing the order of the strainer points if necessary) less than c′θ
1
2 .

For any point z′ ∈ Σz;a′,b′ we have |∠z(a
′, z′)− π

2
| ≤ cθ (by 5.4.6), |∠z(a

′, z′)−∠z(a, z
′)| ≤
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c′θ
1
2 and |∠z(a, z

′) − ∠̃z(a, z
′)| ≤ c′′θ (by 5.4.2). This implies that |∠̃z(a, z

′) − π
2
| ≤ c′′′θ

1
2 .

We now apply 5.4.7 and project the cross section Σo
z;a′,b′ to Σz;a,b. This implies that Σz;a′,b′

contains no π
2
-straight 1-strainer of length 3

4
θ4 centered at z, since such a strainer would

project to a 1-strainer of length ≥ 1
2
θ4 in Σz;a,b with distance ≥ 1

2
θ4 between its end points.

Such a strainer must be π
2
-straight by Lemma 5.5.4.

Similarly, we apply 5.4.7 to project Σo
z;a,b to Σz;a′,b′ . This implies that diam Σo

z;a′,b′ ≥
4
3
θ

5
2 . Thus, z is indeed θ-strongly edgy relative to (a′, b′).

By 5.5.6(ii), at a θ-edgy point y there are no θ3-long cθ
1
2 -straight 2-strainers and any

two θ3-long cθ
1
2 -straight 1-strainers have angle < c′θ

1
2 (in the sense that their pairs of

directions are c′θ
1
2 -Hausdorff close subsets in ΣyX).

The almost uniqueness of 1-strainers at edgy points extends to uniform neighbourhoods:

Lemma 5.5.10 (Almost uniqueness of 1-strainers extends). Let y be θ-edgy relative

to (a, b). Suppose that (ai, bi) are C0θ-straight 1-strainers of lengths ∈ (1 − θ
1
2 , 1 + θ

1
2 ) at

points zi ∈ B(y, θ) for i = 1, 2. Then ∠·(a1, a2),∠·(a1, b2),∠·(b1, a2), ∠·(b1, b2) 6∈ [c′θ
1
2 , π −

c′θ
1
2 ] on B(y, θ), if λ = λ(θ) is sufficiently small.

Proof. The strainers (ai, bi) are c′θ-straight at y, cf. (5.4.1), and hence cθ
1
2 -straight with the

constant c as in the hypothesis of 5.5.6, because c′θ < cθ
1
2 . Applying 5.5.6(ii) with l = θ3 in

the edgy point y yields up to switching a1 and b1 that ∠y(a1, a2),∠y(b1, b2) < c′′θ
1
2 . Due to

our condition on the lengths of the 1-strainers (ai, bi) it follows that they are c′′′θ
1
2 -Hausdorff

close (as two point subsets), which in turn implies that ∠·(a1, a2),∠·(b1, b2) < c′′′′θ
1
2 on

B(y, θ).

Lemma 5.5.11 (Relative position of nearby edgy points). Let x be θ-edgy relative

to (a, b). If λ = λ(θ) is sufficiently small, the following hold:

(i) All points in B(x, θ3) which are θ-weakly edgy are contained in the θ
15
4 -neighbourhood

of axb.

(ii) Suppose that every point y ∈ B(x, θ) admits a < 2θ-straight 1-strainer (ay, by) of

length > (1− θ). Then for every point y′ ∈ axb∩B(x, θ3) we have diam Σy′;ay′ ,by′
< 3

4
θ2 or

y′ lies at distance < θ
15
4 from a point z which is θ-strongly edgy relative to (az, bz).

Proof. (i) Let y ∈ Σx;a,b ∩ A(x, 1
2
θ

15
4 , 2θ3). Then Σx;a,b contains a cθ-straight 1

3
θ

15
4 -long 1-

strainer at y1, cf. 5.5.3(i). By 5.5.4(ii), every point u ∈ ayb∩B(y, 2θ3) admits a cθ-straight
1
6
θ

15
4 -long 1-strainer contained in Σu;a,b. By the metric properties of the maps Φa,b

t , every

point z ∈ B(y, θ3) outside the θ
15
4 -neighbourhood of axb lies at distance < c′θ4 from such

a point u (for some such y) and therefore admits a c′′θ-straight > 1
7
θ

15
4 -long 1-strainer

contained in Σo
z;a,b.
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Suppose that z is θ-weakly edgy with respect to some 1-strainer (a′, b′). Then by Lemma

5.5.10 the two 1-strainers (a, b) and (a′, b′) have angles ≤ c′θ
1
2 at z, and we can project

Σo
z;a,b to Σz;a′,b′ as in the proof of Lemma 5.5.9 to obtain a contradiction.

(ii) Let y′ ∈ axb ∩ B(x, θ3). Suppose that Σo
y′;a,b contains a π

2
-straight 1

2
θ

15
4 -long 1-

strainer at y. Then y′ = ayb ∩ Σx;a,b has distance < cθ4 from x. By 5.5.4, Σo
x;a,b then

contains a c′θ-straight 1
4
θ

15
4 -long 1-strainer at y′, which is also a π

2
-straight > 1

5
θ

15
4 -long

1-strainer at x. This contradicts the θ-edgyness of x. Thus Σo
y′;a,b contains no 1

2
θ

15
4 -long

π
2
-straight 1-strainer at y′.

If diam Σo
y′;a,b < θ

9
8 , by assumption there is a < 2θ-straight 1-strainer (a′, b′) of length

> (1 − θ) at y′. Projecting Σy′;a,b to Σy′;a′,b′ yields that diam Σo
y′;a′,b′ <

3
4
θ2. Otherwise,

5.5.3(ii) applied on the scale l = θ
15
4 yields that Σy′;a′,b′ ∩B(y, 2θ

15
4 ) contains a point z such

that Σo
z;a′,b′ has diameter ≥ θ

9
4 and admits no π

2
-straight 1-strainer of length 1

2
θ4 centered

at z. This implies that z is θ-strongly edgy relative to some 1-strainer (az, bz) as in the

proof of Lemma 5.5.9.

Lemma 5.5.12 (Almost parallel cross sections of edges). Let x be a θ-edgy point

relative to a θ-straight 1-strainer (a, b) with length > (1 − θ), and let y be θ-weakly edgy

relative to another 1-strainer (a′, b′). We consider the truncated cross sections Σ̌x :=

Σx;a,b ∩ B(x, 1
2
θ3) and Σ̌y := Σy;a′,b′ ∩ B(y, 1

2
θ3). If λ = λ(θ) is sufficiently small, the

following hold:

(i) Suppose that Σ̌y and Σ̌y intersect. Then d(x, y) < cθ
7
2 .

(ii) Suppose that d(x, y) ≤ cθ
10
3 . Then the Hausdorff distance dH(Σ̌x, Σ̌y) is less than

θ
99
30 .

Proof. (i) Let z be one of the intersection points of the cross sections Σ̌x and Σ̌y. By 5.5.10,

fa,b−fa′,b′ is cθ
1
2 -Lipschitz on B(z, 1

2
θ3) (in fact, on B(z, θ)), and hence fa,b is cθ

1
2 -Lipschitz

on Σy;a′,b′ ∩B(z, 1
2
θ3). It follows that |fa,b(x)−fa,b(y)| = |fa,b(z)−fa,b(y)| < cθ

7
2 . Since y is

contained in the θ
15
4 -neighbourhood of axb due to 5.5.11, we obtain that d(y1, y2) < c′θ

7
2 .

(ii) Let z = ayb∩Σx;a,b and consider a point u ∈ Σ̌y. By 5.5.10, we have ∠y(a, a
′) ≤ c′θ

1
2 .

Thus, we can apply 5.4.7 to project Σ̌y to Σy;a,b. In particular, the point u projects to a

point v with d(u, v) ≤ c′′θ
7
2 and |d(y, v) − d(y, u)| ≤ c′′′θ3.

Next, we apply the coarse flow Φa,b
−fa,b(y)

to transport Σy;a,b to Σx;a,b. We have z =

Φa,b
−fa,b(y)

and set w := Φa,b
−fa,b(y)

(v). Our condition that d(x, y) ≤ cθ
10
3 and the metric

properties of the flow yield that d(v, w) ≤ c′′′′θ
10
3 and |d(w, z) − d(y, u)| ≤ θ

7
2 . Finally,

Lemma 5.5.11 implies that d(z, x) ≤ θ
7
2 . Thus, the distance between w and Σ̌x is at most

2θ
7
2 . (Here, we use again that close to x the cross section Σx;a,b is almost 1-dimensional,

i.e. close to an interval.)
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All in all, we conclude that d(u, Σ̌x) ≤ θ
99
30 . By switching the roles of Σ̌x and Σ̌y, we

similarly obtain that every point in Σ̌x has distance ≤ θ
99
30 to Σ̌y. This completes the

proof.

For future reference, we observe that the lemma also holds true if we replace Σ̌y by

B(y, 1
2
τθ3) for some τ ∈ (1 − θ, 1 + θ). The proof for (i) goes through unchanged and for

(ii) it suffices to observe that the almost 1-dimensionality of Σy;a′,b′ near y (Lemma 5.5.4)

implies that dH(Σ̌y, B(y, 1
2
τθ3)) < θ

99
30 .

5.6 Necks

A neck occurs where the connected component of a cross section has small diameter.

Definition 5.6.1 (Necklike points). A point y ∈ B(x, 5) is called θ-necklike relative to

a < 2θ-straight 1-strainer (a, b) of length > (1 − θ) (at y) if diam(Σy;a,b) < θ2. We say

that y ∈ B(x, 5) is θ-weakly necklike relative to a < 2θ-straight 1-strainer (a, b) of length

> (1 − θ) at y if diam(Σy;a,b) < 2θ2 and that it is θ-strongly necklike relative to such a

strainer if diam(Σy;a,b) <
3
4
θ2.

Our new definition allows us to reformulate part (ii) of Lemma 5.5.11: Suppose that for

an edgy point x, every point in B(x, θ) admits a < 2θ-straight 1-strainer of length > (1−θ)

Then every point y ∈ axb ∩ B(x, θ3) is θ-strongly necklike or has distance < θ
15
4 from a

point z which is θ-strongly edgy.

Suppose that x is θ-necklike relative to (a, b). Nearby cross sections have comparable

diameters: Using the metric properties of the maps Φa,b
t one sees that

diam(Σz;a,b) < (1 + cθ)θ2 + cθ|fa,b(z) − fa,b(y)| < c′θ2

for z ∈ B(y, θ).

Every segment of length > θ initiating in B(y, θ) must pass through one of the two

cross sections f−1
a,b (fa,b(y) ±

9
10
θ). Hence, triangle comparison and (5.4.2) imply for any

point a′ with d(y, a′) > θ that

∠z(a, a
′),∠z(b, a

′) 6∈ [cθ, π − cθ] (5.6.2)

for z ∈ B(y, θ
2
). In particular, any π

2
-straight 1-strainer (a′, b′) of length > θ at a point in

B(y, θ
2
) is c′θ-straight, and fa′,b′ − fa,b is c′′θ-Lipschitz on B(y, θ

2
).

If x is θ-necklike relative to a 1-strainer (a, b) with diam Σx;a,b <
1
2
θ2, and if all points in

B(x, θ) admit < 2θ-straight 1-strainers of length > (1−θ) we can conclude from the above

observations as in the proof of Lemma 5.5.9 that all points in B(x, θ) are also θ-strongly

necklike. We now deduce that cross sections of nearby necklike points are almost parallel.
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Lemma 5.6.3 (Almost parallel cross sections of necks). Let x be θ-necklike relative

to (a, b). Furthermore, let y ∈ B(x, θ) be θ-weakly necklike with respect to a 1-strainer

(a′, b′).

(i) If Σx;a,b and Σy;a′,b′ have nonempty intersection, then d(x, y) < c′θ3.

(ii) If d(x, y) < θ
11
6 , then the Hausdorff distance of Σx;a,b and Σy;a′,b′ is less that θ

5
3 .

Proof. The proof is closely related to the one for edges, i.e. 5.5.12.

(i) Let z be one of the intersection points of the cross sections Σx;a,b and Σy;a′,b′ . By

our discussion above, fa,b− fa′,b′ is cθ-Lipschitz on B(z, θ2), and hence fa,b is cθ
1
2 -Lipschitz

on Σy;a′,b′ . It follows that |fa,b(x) − fa,b(y)| = |fa,b(z) − fa,b(y)| < c′θ3.

(ii) Consider a point u ∈ Σ̌y. By 5.6.2, we have ∠y(a, a
′) ≤ c′θ. When projecting Σy;a′,b′

to Σy;a,b, we map u to a point v with d(u, v) ≤ c′′θ3 by 5.4.7. The coarse flow Φa,b
−fa,b(y)

transports v ∈ Σy;a,b to some point w ∈ Σx;a,b with d(v, w) ≤ c′′′θ
11
6 .

This shows that d(u,Σx;a,b) ≤ θ
5
3 . Again, we switch the roles of Σx;a,b and Σy;a′,b′ to

complete the proof.



6. Locally volume collapsed

3-orbifolds are graph

6.1 Setup and formulation of main result

Let (O, g) be a closed connected smooth Riemannian 3-orbifold which does not have non-

negative sectional curvature, sec 6≥ 0.

Definition 6.1.1 (Curvature scale). For −b2 ∈ [−1, 0) we define the −b2-(sectional)

curvature scale in a point x ∈ O as the maximal radius ρ−b2(x) ∈ (0,∞) such that the

rescaled ball Bρ
−b2

(x)−2g(x, 1) = ρ−b2(x)
−1·Bg(x, ρ−b2(x)) has sectional curvature sec ≥ −b2.

Note that

bρ−1 ≤ ρ−b2 ≤ ρ−1. (6.1.2)

The function ρ−b2 is continuous on O. More precisely, ρ−b2 does not oscillate too fast in

the sense that for 0 < λ < 1 one has

(1 − λ)ρ−b2(x) ≤ ρ−b2 ≤ (1 + λ)ρ−b2(x) (6.1.3)

on B(x, λρ−b2(x)).

The rescaled balls Bρ
−b2

(x)−2g(x, 1) are Alexandrov balls with curvature ≥ −b2 and

radius ≤ 1 in the sense of definition 5.1.1.

We study the geometry and topology of 3-orbifolds which are locally collapsed relative

to the curvature scale.

Definition 6.1.4 (Local volume collapse). Let v > 0 and let σ : O → (0,∞) be some

(not necessarily continuous) function. We say that (O, g) is v-collapsed at the scale σ, if

for all points x we have vol(Bσ(x)−2g(x, 1)) < v, equivalently, vol(Bg(x, σ(x))) < vσ(x)3.

If sec 6≥ 0, we say that (O, g) is (v,−b2)-collapsed if it is v-collapsed at the scale ρ−b2 .

Note that if (O, g) is locally v-collapsed at some scale σ ≤ ρ−b2 , Bishop-Gromov
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volume comparison (Proposition 3.1.4) yields that it is locally (v′,−b2)-collapsed with

v′ =
vol(B

−b2
(1))

vol(B0(1))
v ≤ vol(B−1(1))

vol(B0(1))
v (independent of −b2!). Here B−b2(1) denotes the unit 3-ball

with sec ≡ −b2.

Strongly volume collapsed Riemannian 3-orbifolds are, on the scale of their collapse,

close to Alexandrov spaces of dimension ≤ 2 and with curvature ≥ −b2, and the volume

collapse translates into the shortness of 21
2
-strainers, cf. section 5.1.2).

Lemma 6.1.5. For λ > 0 exists v = v(λ) > 0 such that the following holds: If (O, g)

is (v,−b2)-collapsed and x ∈ O, then θ̄2 1
2
-straight 21

2
-strainers in the Alexandrov ball

ρ−b2(x)
−1B(x, ρ−b2(x)) of curvature ≥ −b2 ≥ −1 have length < λ.

Proof. Suppose that the Riemannian 3-orbifolds (Oi, gi) are (1
i
,−b2i )-collapsed but con-

tain points xi which admit such that there are θ̄2 1
2
-straight 21

2
-strainers of length ≥ λ

in the balls ρ−b2i (x)
−1B(x, 1

2
ρ−b2i (x)). Then the rescaled balls ρ−b2(xi)

−1B(xi, 1) Gromov-

Hausdorff subconverge to an Alexandrov ball with dimension ≤ 2 and curvature ≥ −1

which admits θ̄2 1
2
-straight 21

2
-strainers of length λ, a contradiction.

We will require some additional regularity for our Riemannian orbifolds. The conclusions on

the global topology of collapsed 3-orbifolds are valid without this regularity condition, but

it is technically convenient because it avoids the use of (an orbifold version of) Perelman’s

Stability Theorem for Alexandrov spaces and is expected to be satisfied by the output of

the Ricci flow on 3-orbifolds. In the next definition, ω3 denotes the volume of the euclidean

unit 3-ball (cf. [Pe03, 7.4] and [KL10, Thm. 1.3]).

Definition 6.1.6 (Local curvature control). Fix numbers s0 ∈ N, v0 ∈ (0, ω3), a

function K : (0, ω3) → (0,∞) and a scale function σ : O → (0,∞). We say that (O, g)

has (v0, s0, K)-curvature control below scale σ, if the following holds: If volB(x, r) ≥ vr3

for v ∈ [v0, ω3) and r ∈ (0, σ(x)], then ‖∇sR‖ ≤ K(v)r−2−s on B(x, r), equivalently,

‖∇sR‖ ≤ K(v) on the rescaled ball r−1 ·B(x, r) for s = 0, . . . , s0.

We will apply this notion in the following situation.

Lemma 6.1.7. Let (Oi, gi) be a sequence of Riemannian 3-orbifolds as above with (vi, s0, K)-

curvature control below scale ρ−b2, where vi → 0. Furthermore, let xi ∈ Oi be points and

λi → 0 positive numbers. Then, if s0 is sufficiently large, the sequence of rescaled pointed

orbifolds (λiρ−b2(xi))
−1 · (Oi, xi) subconverges either in the Gromov-Hausdorff sense to an

Alexandrov space with curvature ≥ 0 and dimension ≤ 2, or in the C5-topology to a C10-

smooth complete Riemannian 3-orbifold with sec ≥ 0.

Proof. Clearly, we have Gromov-Hausdorff subconverge to a pointed Alexandrov space

(X, x0) with curvature ≥ 0 and dimension ≤ 3. If dim(X) = 3, the convergence can be
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improved using our assumption of local curvature control. The approximating pointed 3-

orbifolds (λiρ−b2(xi))
−1 ·(Oi, xi) are uniformly noncollapsed. Indeed, for any r > 0, we have

volBλ−2
i ρ

−b2
(xi)−2gi

(xi, r) >
1
2
vol3B(x0, r) > 0 for large i, where volume in X is measured

with respect to the 3-dimensional Hausdorff measure. Thus the (vi, s0, K)-curvature control

on (λiρ−b2(xi))
−1 ·Oi below the scales λ−1

i → ∞ applies for large i and yields on the balls

Bλ−2
i ρ

−b2
(xi)−2gi

(xi, r) uniform bounds on the curvature tensor and its covariant derivatives

up to order s0. The smoothness of the limit and the convergence now follow from Theorem

4.2.23.

The main result of this paper is the following (cf. [Pe03, Thm. 7.4], [MT08, Thm. 0.2] and

[KL10, Thm. 1.3]):

Theorem 6.1.8. Let s0 ∈ N and let K : (0, ω3) → (0,∞) be a function. If s0 is sufficiently

large, then there exists a constant v0 = v0(s0, K) ∈ (0, ω3) such that the following holds:

If (O, g) is (v0,−1)-collapsed, has (v0, s0, K)-curvature control below the scale ρ−1 and

contains no bad 2-suborbifolds, then O admits a C5 Riemannian metric with sec ≥ 0, or

can be decomposed by finitely many surgeries into components which are spherical or graph.

Remark 6.1.9. Unlike in the manifold case we cannot conclude that O is always graph,

because there are non-graph 3-orbifolds admitting nonnegatively curved (e.g. spherical or

euclidean) metrics.

One can reduce to the case of a lower diameter bound relative to a curvature scale by

suitably rescaling. Theorem 6.1.8 follows from:

Theorem 6.1.10. Let s0 ∈ N and let K : (0, ω3) → (0,∞) be a function. If s0 is

sufficiently large, then there exists a constant v0 = v0(s0, K) ∈ (0, ω3) such that the fol-

lowing holds: If for some −b2 ∈ [−1, 0) the orbifold (O, g) is (v0,−b
2)-collapsed, satisfies

rad(O, ·) ≥ 1
2
ρ−b2, has (v0, s0, K)-curvature control below the scale ρ−b2, and contains no

bad 2-suborbifolds, then O can be decomposed by finitely many surgeries into components

which are spherical or graph.

Proof that Theorem 6.1.10 implies Theorem 6.1.8. Suppose that (Oi) is a sequence of

(vi,−1)-collapsed orbifolds with (vi, s0, K)-curvature control below the scale ρ−1 where

vi → 0. Then we must show that the Oi satisfy the conclusion of Theorem 6.1.8 for

infinitely many i.

Note that for all b ∈ (0, 1] the Oi are (b−3vi,−b
2)-collapsed and have (vi, s0, K)-

curvature control below the scale ρ−b2 , cf. (6.1.2). Hence we are done if for some −b2 ∈

[−1, 0) we have rad(Oi) ≥
1
2
ρ−b2 for all sufficiently large i.

Otherwise, after passing to a subsequence, there exist sequences of numbers −b2i → 0
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and points xi ∈ Oi such that rad(Oi, xi) <
1
2
ρ−b2i (xi). It follows that ρ−b2i ≡ consti ≥

diam(Oi) and we have collapse to the point in the sense of diam(Oi) · (−min secOi
)

1
2 → 0.

We rescale and increase the −b2i so that diam(Oi) = 1 and min secOi
= −b2i → 0. Then

ρ−b2i ≡ 1.

If v′i = vol(Oi) → 0, then the Oi are (v′i,−b
2
i )-collapsed with (vi, s0, K)-curvature control

below the scales ρ−b2i and with rad(Oi) ≥
1
2
≡ 1

2
ρ−b2i , and we are done by Theorem 6.1.10.

Otherwise, after passing to a subsequence, we have a lower volume bound vol(Oi) ≥

v′ > 0 and, due to the curvature control, uniform (global) bounds on the curvature tensor

and its covariant derivatives up to order s0. If s0 is large enough, it follows that the Oi

subconverge, say, in the C5-topology to a C5-Riemannian 3-orbifold O∞ with sec ≥ 0. In

particular, infinitely many Oi are diffeomorphic to O∞ and therefore admit C5 metrics with

sec ≥ 0.

We fix some arbitrary (more than) sufficiently large value for s0, say s0 := 1000. For

the rest of this section we make the following assumption on the orbifolds we work with:

Assumption 6.1.11. (O, g) is a smooth closed connected Riemannian 3-orbifold such that

sec 6≥ 0 and rad(O, ·) ≥ 1
2
ρ−b2 where −b2 ∈ [−1, 0).

Together with Corollary 2.3.3, Theorem 6.1.8 implies the following

Theorem 6.1.12. Let s0 ∈ N and let K : (0, ω3) → (0,∞) be a function. If s0 is suffi-

ciently large, then there exists a constant v0 = v0(s0, K) ∈ (0, ω3) such that the following

holds: If (O, g) is closed and (v0,−1)-collapsed, has (v0, s0, K)-curvature control below the

scale ρ−1 and contains no bad 2-suborbifolds, then O either admits a C5 metric with sec ≥ 0,

or satisfies Thurston’s Geometrization Conjecture.

We can deal with the first alternative in the theorem by the application of the following

orbifold version of Hamilton’s corresponding application of the Ricci flow to 3-manifolds

with sectional curvature ≥ 0 (see [KL11, Prop. 5.6] and also [Ha03]; for a more detailed

discussion of the lower regularity case cf. [KL10, Lem. 3.11]):

Theorem 6.1.13. Let O be a smooth closed connected 3-orbifold and g a C5 Riemannian

metric on O with sectional curvature ≥ 0. Then O is geometric with model geometry S3,

R3 or §2 × R.

Theorems 6.1.12 and 6.1.13 together yield

Corollary 6.1.14. Let s0 ∈ N and let K : (0, ω3) → (0,∞) be a function. If s0 is suffi-

ciently large, then there exists a constant v0 = v0(s0, K) ∈ (0, ω3) such that the following

holds: If (O, g) is closed and (v0,−1)-collapsed, has (v0, s0, K)-curvature control below the
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scale ρ−1 and contains no bad 2-suborbifolds, then O satisfies Thurston’s Geometrization

Conjecture.

6.2 Conical approximation and humps

Sufficient local volume collapse leads to good local approximation by cones of dimension

≤ 2 on scales comparable to the curvature scale. We now apply our discussion of the

(coarse) geometry of Alexandrov balls in sections 5.2, 5.3 and 5.4 to the orbifold setting

and globalize it relative to the curvature scale. Proposition 5.2.2 for d = 2 and Lemma

6.1.5 imply:

Proposition 6.2.1 (Uniform conical approximation relative to the curvature

scale). For 0 < σ, µ < 1 there are a scale 0 < s1 = s1(σ, µ) << σ and a rate of col-

lapsedness v = v(σ, µ) > 0 such that the following holds: If (O, g) is (v,−b2)-collapsed,

then it can in every point x be µ-well approximated (cf. Definition 5.2.1) on some scale

s(x) ∈ [s1ρ−b2(x), σρ−b2(x)] by a cone of dimension 1 or 2, i.e. by the open interval (−1, 1),

by the half-open interval [0, 1), or by the cone of radius 1 over a circle or an interval of

diameter ≤ π.

Proof. The assertion follows with s1 = s1(σ, µ) := s1(2, σ, µ) from Proposition 5.2.2 and

v = v(σ, µ) := v(s2 1
2
(σ, µ)) from Lemma 6.1.5.

We fix some small value σ ∈ (0, 1
10

) for the upper bound on the local scales of approxima-

tion.

We next wish to divide our orbifold into regions with and without good 1-strainers.

The region with good 1-strainers has locally almost product geometry. It consists of the

points where the bases of approximating cones provided by 6.2.1 have diameter ≈ π.

For small θ > 0, let µ0(θ) > 0 be the constant given by Lemma 5.3.2. For µ ∈ (0, µ0(θ)],

we call a point x ∈ O a (θ, µ,−b2)-hump, if O can in x be µ-well approximated on the scale

s(x) by a cone with base of diameter < π − θ
2
, i.e. by the half-open interval [0, 1) or the

cone of radius 1 over a circle or an interval with diameter < π − θ
2
. In other words, x is a

(θ, µ)-hump of the rescaled ball Bρ
−b2

(x)−2g(x, 1) in the sense of Definition 5.3.1 for d = 2.

If x is no (θ, µ,−b2)-hump, then O can in x be µ-well approximated on the scale s(x) by a

cone with base of diameter ≥ π − θ
2
, i.e. by the open interval (−1, 1) or the cone of radius

1 over a circle or an interval with diameter ≥ π − θ
2
.

We denote by H = Hθ,µ,−b2 ⊂ O the subset of (θ, µ, ρ−b2(x))-humps and by S =

Sθ,µ,−b2 ⊂ O the open subset of points x which admit < θ-straight equilateral 1-strainers

with length in ( 1
11
s1(σ, µ), 3

22
s1(σ, µ)) in the Alexandrov ball (ρ−b2(x))

−1B(x, ρ−b2(x)) of
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curvature ≥ −1.

Throughout the following chapters, we will abbreviate this property by saying that the

points x ∈ Sθ,µ,−b2 admit < θ-straight (equilateral) 1-strainers with length in the interval

( 1
11
s1(σ, µ)ρ−b2(x),

3
22
s1(σ, µ)ρ−b2(x)).

Due to our bound on the approximation accuracy µ, the implications of Lemma 5.3.2

hold: A (θ, µ,−b2)-hump x admits no θ
4
-straight 1-strainers of length 1

111
s(x), but all

points in the closed annulus A(x; 1
10
s(x), 9

10
s(x)) do admit θ

11
-straight 1-strainers of length

> 1
11
s(x) ≥ 1

11
s1(σ, µ)ρ−b2(x), i.e. A(x; 1

10
s(x), 9

10
s(x)) ⊂ Sθ,µ,−b2 . On the other hand, if

x is no (θ, µ,−b2)-hump, then it admits < θ-straight 1-strainers of length > 99
100
s(x) >

1
11
s1(σ, µ)ρ−b2(x). Hence O = Hθ,µ,−b2 ∪ Sθ,µ,−b2 .

Proposition 6.2.2 (cf. Proposition 5.3.3). If µ ≤ µ0(θ) and (O, g) is (v(σ, µ),−b2)-

collapsed (cf. Proposition 6.2.1), then there exist finitely many (θ, µ,−b2)-humps xj ∈

Hθ,µ,−b2 such that

O =

(
⋃

j

B(xj,
1

10
s(xj))

)
∪ Sθ,µ,−b2 .

Moreover, d(xj, xk) >
9
10
s(xj) for j 6= k.

Proof. We proceed as in the proof of Proposition 5.3.3.

Again, there can be no infinite sequence of points x1, x2, · · · ∈ Hθ,µ,−b2 − Sθ,µ,−b2 such

that for all k we have xk ∈ B(xk+1,
1
10
s(xk+1)) and xk+1 6∈ B(xk,

1
10
s(xk)), because then

s(x1) <
1

9k−1 s(xk). But due to the continuity of the curvature scale ρ−b2 , cf. (6.1.3), and

the compactness of O the scales take also in this situation values in a bounded interval,

namely in [s1 min ρ−b2 , σmin ρ−b2 ].

The rest of the proof goes through without change.

6.3 The Shioya-Yamaguchi blow-up

We recall the Shioya-Yamaguchi blow-up argument, see [SY00, Sec. 3, Key Lemma 3.6]. To

simplify matters, we restrict ourselves to certain special situations. Some of our arguments

are different; we also treat some additional cases not mentioned there explicitely.

We will use blow-up arguments in section 6.6 to determine the topological type of subsets

of smooth orbifolds. By this we mean the equivalence class of an orbifold with (possibly

non-smooth) boundary up to homeomorphism in the orbifold sense, i.e. up homeomorphism

respecting the singular stratifications of the two orbifolds. Thus, such a homeomorphism

restricts to a homeomorphism on the various strata of the two orbifolds.
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The advantage of studying only the topological type of orbifolds is that we will not have

to concern ourselves with questions of regularity on topological suborbifolds with boundary

(i.e. subsets which locally lift to topological submanifolds with boundary) of smooth orb-

ifolds. At least in dimension ≤ 3, if two such suborbifolds are homeomorphic in the above

sense and have nonempty interior, their interiors are diffeomorphic: By our discussion in

section 2.1.3, sufficiently small neighbourhoods of their singular loci are diffeomorphic to

each other, and their regular parts are (homeomorphic and hence) diffeomorphic manifolds

of dimension ≤ 3.

6.3.1 General discussion

Consider the following situation. Let B(pi, 1) be a sequence of n-dimensional Riemannian

orbifold balls (i.e. open metric balls of radius 1 in complete Riemannian n-orbifolds without

boundary) with curvature sec ≥ −1 which collapse to an Alexandrov ball of strictly smaller

dimension 1 ≤ m < n,

B(pi, 1) −→ X = B(x, 1). (6.3.1)

We suppose furthermore that the collapse limit X is (0-)conelike in the sense that every

segment initiating in x extends to length 1, and that the closed balls B(pi,
1
2
) are not discal.

Note that the conelikeness of X implies that for any fixed ǫ > 0 the annulus A(pi, ǫ, 1− ǫ)

contains for large i no critical points of the distance function d(pi, ·) such that in particular

B(pi,
1
2
) is a topological suborbifold with boundary.

We recall that a point y in an Alexandrov space Y is critical for a distance function

d(p, ·) if for every direction in σΣyY there is a minimizing segment from y to p making

angle ≤ π
2

with σ. On a smooth orbifold the absence of critical points (on an open subset)

implies that one can construct gradient-like vector fields using a partition of unity (cf. the

discussion in section 3.5).

Let p̂i ∈ B(pi, 1) be any sequence of points with d(p̂i, pi) → 0. The distance function

d(p̂i, ·) must have critical values in (0, 1
2
), because B(pi,

1
2
) is not discal.

Let δi be the maximal critical value in (0, 1
2
), and let qi ∈ B(pi,

1
2
) be a critical point at

distance d(p̂i, qi) = δi from p̂i. Then δi → 0 because X is conelike. For any constant c > 1

one has

B(pi,
1

2
) ∼= B(p̂i, cδi) (6.3.2)

for sufficiently large i, i.e. the topology of the balls B(pi, 1) is concentrated near their

centers. (Note that, also due to the conelikeness of X, there exists a common gradient-like

vector field for d(pi, ·) and d(p̂i, ·), and so B(pi,
1
2
) ∼= B(p̂i,

1
2
).)

To help revealing the local topology at the pi, we form (modulo passing to a subse-
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quence) the blow-up limit

(δ−1
i B(pi, 1), p̂i) −→ (Y, y0). (6.3.3)

The limit space Y is a noncompact Alexandrov space with dimension ≥ m and curvature

≥ 0. Moreover qi → z with z a critical point of d(y0, ·) at distance d(y0, z) = 1.

If no collapse happens any more in the blow-up limit (6.3.3), i.e. if dimY = n, then we

need topological stability in order to relate the topologies of the balls B(pi, 1) and Y . For

instance, if Y and the convergence in (6.3.3) are sufficiently smooth as will be the case in

the situations considered later in the paper, say Y is C10-regular and the convergence is

C5-regular, then one can argue as follows:

There are r, ǫ > 0 and a smooth vector field V on Y − B(y0,
r
2
) such that for all

y 6∈ B(y0,
r
2
) the vector V (y) has angles ≥ π

2
+ ǫ with all segments yy0, compare the proof

of the Soul Theorem in section 3.5. We regard δ−1
i B(p̂i, 2rδi) as embedded in Y for large i.

In particular, p̂i → y0 and V is on a neighbourhood of ∂B(y0, r) gradient-like not only for

d(y0, ·) but also for δ−1
i dB(pi,1)(p̂i, ·), viewed as a function on part of Y . Hence δ−1

i B(p̂i, rδi)

is isotopic (preserving singular strata) to B(y0, r) in Y , and with (6.3.2) we see that B(pi,
1
2
)

is for large i homeomorphic to the closed disc bundle in the normal bundle of the soul of

Y , in other words, to a (small) closed tubular neighbourhood of the soul of Y .

The blow-up limit (6.3.3) is in general still a collapse to lower dimension. The aim of

the following discussion is to find situations when the drop of dimension is strictly smaller

than for the original collapse (6.3.1).

The following construction proceeds as in the proof of Soul Theorem: Let ξ ∈ ΣxX be

a direction at x. Due to conelikeness it is represented by a segment σξ emanating from

x, which unique in view of the lower curvature bound. Fix some t0 ∈ (0, 1), say t0 = 1
10

,

and let σiξ ∈ B(pi, 1) be a sequence of points converging to the point σξ(t0) on σξ at

distance t0 from x. (Our choice of the σξ(t0) is independent of the choice of the p̂i.) The

segments p̂iσ
i
ξ subconverge to a (not necessarily unique) ray ρξ in Y emanating from y0.

Moreover, the normalized distance functions δ−1
i (d(σiξ, ·) − d(σiξ, p̂i)) on the rescaled balls

δ−1
i B(pi, 1) subconverge (due to Arzelà-Ascoli) to a concave 1-Lipschitz function βξ on Y

with βξ(y0) = 0 which decays along ρξ with extremal slope −1, βξ(ρξ(t)) = −t, where we

use a unit speed parametrization ρξ(t) starting at ρξ(0) = y0. In fact, every point y ∈ Y is

the initial point of a ray ρyξ along which βξ decays with slope −1.

In particular, the level sets of βξ have no interior points. The comparison of βξ with

the Busemann function bξ = limt→∞(d(ρξ(t), ·) − d(ρξ(t), y0)) associated to the ray ρξ is

given by the inequality

βξ ≤ bξ.

To verify this, let σiξ(a) denote the point on p̂iσ
i
ξ at (unrescaled) distance aδi from p̂i. Then

d(σiξ, ·) − d(σiξ, p̂i) ≤ d(σiξ(a), ·) − d(σiξ(a), p̂i) for large i and hence βξ ≤ d(ρξ(a), ·) − a for
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all a > 0. Letting a→ ∞ yields the inequality. As a consequence, the convex suplevel sets

of βξ are smaller (not larger) than the corresponding suplevels of bξ.

Since the qi are critical for d(p̂i, ·), we have ∠̃qi(p̂i, σ
i
ξ) ≤

π
2

and lim infi→∞ δ−1
i (d(σiξ, qi)−

d(σiξ, p̂i)) ≥ 0. So

βξ(z) ≥ 0

and z is contained in the totally convex subset ∩ξ{βξ ≥ 0} = {minξ βξ ≥ 0}.

The blow-up expands ΣxX in the following sense: When performing the above con-

struction for two directions ξ and ξ′ at the same time, one obtains for every point y ∈ Y

a pair of rays ρyξ and ρyξ′ satisfying

∠T its(ρ
y
ξ , ρ

y
ξ′) := lim

t→∞
∠̃y(ρ

y
ξ(t), ρ

y
ξ′(t)) ≥ ∠x(ξ, ξ

′). (6.3.4)

This construction can be performed for any finite subset A ⊂ ΣxX and hence yields weakly

expanding maps ǫy,A : A→ titsY .

We will use the following observations:

Lemma 6.3.5. (i) The blow-up limit Y is not isometric to a euclidean space.

(ii) If ΣxX contains an embedded unit l-sphere (i.e. with sec ≡ 1), then so does titsY

and Y splits off an Rl+1-factor. If ΣxX contains an embedded unit l-hemisphere, then

so does titsY and Y contains an isometrically embedded copy of the (l + 1)-dimensional

euclidean halfspace (and in particular splits off an Rl-factor).

Proof. (i) d(y0, ·) has a critical point (at distance 1).

(ii) Choose A as the union of l + 1 pairs of antipodes which span the embedded unit

sphere (corresponding to coordinate axes). Then the expanding map A → titsY must be

an isometric embedding and the assertion follows from the Splitting Theorem for Alexan-

drov spaces. The second assertion follows similarly by applying the first assertion to the

boundary (l − 1)-sphere of the embedded l-hemisphere.

6.3.2 The case of flat conical limits with dimension ≤ 2

We apply the general discussion above in certain special situations. Note that always

dimY ≥ dimX. We aim now to achieve that dimY > dimX by making a good choice of

the p̂i.

Collapse to a flat k-disc. Suppose that X is isometric to the euclidean unit m-disc, m ≥

1. By Lemma 6.3.5, Y splits off an Rm-factor and Y 6∼= Rm. Hence we always obtain

dim(Y ) > m, independently of the choice of the p̂i.
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Collapse to the half-open interval (Noses). Suppose that X = [0, 1) with x = 0. There is

a unique direction ξ at x = 0. We choose p̂i as a “tip” of the nose, i.e. as a maximum of

d(σiξ, ·). Then p̂i → x and the choice of the p̂i is admissible in the sense that d(pi, p̂i) → 0.

The base point y0 is a maximum of βξ and hence βξ(z) = βξ(y0) = 0. If dim(Y ) = 1, then

Y is a halfline since Y 6∼= R by Lemma 6.3.5(i), and βξ = bξ has a unique maximum. This

contradicts z 6= y0. Thus dim(Y ) ≥ 2.

Note that Y contains a flat half-strip, but that nevertheless its geometry is in general

not rigid.

Collapse to a flat 2-disc with cone point or a sector (Humps). Suppose that X is the cone

of radius 1 over a circle or interval with diameter < π. We generalize the cases of noses to

humps by adapting the argument in [SY00, Sec. 3] to this case.

Let A ⊂ ΣxX be a finite subset such that
∑

ξ∈A d(σξ(t0), ·) has a unique maximum in

x. We choose the p̂i as maxima of the corresponding functions
∑

ξ∈A d(σ
i
ξ, ·). Then p̂i → x.

The point y0 is a maximum of
∑

ξ∈A βξ. It follows that βξ(z) = 0 for all ξ ∈ A, and the

totally convex subset ∩ξ∈A{βξ ≥ 0} = ∩ξ∈A{βξ = 0} containing y0 and z has positive

dimension. In particular, dimY ≥ 2.

Suppose that dimY = 2. Then ∩ξ∈A{βξ = 0} is one-dimensional. Let y be an interior

point of a segment y0z. Since the rays ρyξ for ξ ∈ A are perpendicular to y0z, there can

be at most two of them, |A| ≤ 2. Since we are free to choose |A| with any cardinality, we

obtain a contradiction. Thus dimY ≥ 3.

An argument analogous to the last one shows furthermore that the soul of Y (if it

exists) must have codimension ≥ 2. In particular, if dimY = 3, then dim soul(Y ) ≤ 1.

Collapse to the flat 2-halfdisc. Suppose that X is the flat unit halfdisc in {u ∈ R2 : u2 ≤ 0}

centered at x = 0. (This case has not been treated explicitely in [SY00, Sec. 3]. There,

blow-up limits have been obtained under the assumption that diam(ΣxX) < π.)

Lemma 6.3.5 implies that Y contains a flat halfplane, but Y 6∼= R2. In particular, Y

splits metrically as Y ∼= R×W . If dimY = 2, then W is a halfline and Y a flat halfplane.

If dimY = 3, then W is a noncompact Alexandrov surface with curvature ≥ 0. We may

assume that y0 ∈ 0 ×W . The critical points of d(y0, ·) lie on 0 ×W .

If we denote by η± ∈ ΣxX the directions pointing to (±1, 0), then for any y ∈ Y

the rays ρyη± have angle π at y, cf. (6.3.4), and their union is the line R × w through y.

Moreover, {βη+ = βη−} = 0 ×W , and it is the Gromov-Hausdorff limit of the bisectors

{d(σiη+ , ·) = d(σiη− , ·)}.

For any direction ξ ∈ ΣxX we have ∠y(ρ
y
ξ , ρ

y
η±) = ∠x(ξ, η

±) because π = ∠Tits(ρ
y
η+ , ρ

y
ξ)+

∠Tits(ρ
y
ξ , ρ

y
η−) ≥ ∠y(ρ

y
η+ , ρ

y
ξ) + ∠y(ρ

y
ξ , ρ

y
η−) ≥ ∠x(η

+, ξ) + ∠x(ξ, η
−) = π, also by (6.3.4).

Let η ∈ ΣxX denote the (bisector) direction pointing to (0,−1). Then the rays ρyη are
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orthogonal to ρyη± and contained in layers t×W .

We now choose p̂i as a maximum of d(σiη, ·) on the bisector {d(σiη+ , ·) = d(σiη− , ·)}.

Again p̂i → x, and y0 is a maximum of βη on {βη+ = βη−}. If Y is a flat halfplane, then

{βη+ = βη−} is a halfline and y0 its endpoint. This is a contradiction because d(y0, ·) has

critical points and y0 cannot lie on the boundary of the halfplane Y . Thus dimY ≥ 3.

The next observation narrows down the possibilities for a 3-dimensional blow-up limit

Y . Again, we consider the case where e.g. Y is a C10-regular orbifold of non-negative

sectional curvature, and hence has a soul by Proposition 3.5.1.

Lemma 6.3.6. If dimY = dimW + 1 = 3 and dim soul(W ) = 1 (and hence W is a

quotient of the flat cylinder), then W must be one-ended.

Proof. To see this, assume the contrary. Then W splits off a line, i.e. W ∼= R × F 1 with a

connected closed 1-orbifold F 1, and we may assume that y0 ∈ 0×F 1. Since y0 is a maximum

of βη, we have βη(s, f) = −|s|. There are two unit speed rays ρi : [0,∞) → 0×W starting

from y0 in antipodal directions, ∠y(ρ̇1(0), ρ̇2(0)) = π, such that βη(ρi(t)) = −t. From every

point in Y −0×F 1 a unique ray starts along which βη decays with slope 1, and thus for s > 0

we have ρ
ρi(s)
η (t) = ρi(s + t). It follows that there are points xij ∈ {d(σiη+ , ·) = d(σiη− , ·)}

such that, with respect to the rescaled metrics, the segments xijσ
i
η converge to the ray ρj.

In particular, δ−1
i d(p̂i, xij) → 0. On the other hand, without rescaling, the two sequences

of segments converge to the same segment xση(t0).

It follows by continuity that there exist points zij ∈ xijσ
i
η such that d(σiη, zi1) = d(σiη, zi2)

and ∠̃p̂i
(zi1, zi2) = π

3
. We put li = d(zi1, zi2). Then d(p̂i, zij) → 0 and δ−1

i d(p̂i, zij) → ∞.

Moreover, δ−1
i |d(p̂i, zij) − li| → 0. Let mi be the midpoints of segments zi1zi2.

Triangle comparison applied to the triangles ∆(zi1, zi2, σ
i
η) yields ∠zij

(σiη,mi) ' π
2
,

and d(mi, zijσ
i
η) ' li

2
, whereas comparison at ∆(zi1, zi2, p̂i) yields ∠zij

(p̂i,mi) ' π
3

and

d(mi, zij p̂i) '
√

3
4
li. It follows that l−1

i d(mi, xijσ
i
η) is bounded away from 0 and ∠̃p̂i

(zij,mi) ≥

φ0 > 0 for large i. The segments p̂imi subconverge to a ray ρ in Y with initial point y0

and ∠y0(ρj, ρ) ≥ φ0.

Comparison at the triangles ∆(xij, σ
i
η, σ

i
η±) yields that lim inf ∠̃xij

(zij, σ
i
η±) ≥ π

2
. Rescal-

ing with the factors l−1
i → ∞ and taking into account that a Gromov-Hausdorff limit splits

off a line shows that in fact ∠̃xij
(zij, σ

i
η±) → π

2
and furthermore ∠̃xij

(mi, σ
i
η±) → π

2
. Thus

∠y0(ρη± , ρ) = π
2
. In view of ∠y0(ρj, ρ) ≥ φ0, this is a contradiction.

Combining the discussion of collapse in the various special cases, we obtain:

Proposition 6.3.7 (Blow-up limits of strictly larger dimension). If X = B(x, 1) is

a flat cone of dimension ≤ 2, then the base points p̂i can be chosen so that dimY > dimX.
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In fact, the arguments in the special cases above only used the conelikeness of X and

the geometry of ΣxX, and hence the conclusion of Proposition 6.3.7 holds more generally

whenever X is conelike of dimension ≤ 2.

6.4 Strainers

6.4.1 Position relative to the singular locus

A Riemannian orbifold can be considered a local Alexandrov space with a very special

singularity structure. The existence of a strainer in a point has implications for the singular

type of this point. More precisely, for sufficiently small θ > 0, a point admits a θ-straightm-

strainer if and only if its link splits off a join factor isometric to the (m−1)-dimensional unit

sphere, i.e. if and only if the singular stratum containing it has dimension ≥ m. Similarly,

a boundary point admits an m-strainer if and only if the singular stratum containing it

has dimension ≥ m+ 1. Such a strainer must be almost tangent to the singular stratum.

Thus an interior point in a Riemannian 3-orbifold O admits 3-strainers if and only if it

is regular, admits 2-strainers if and only if it is regular or a reflector boundary point, and

admits 1-strainers if and only if it is no singular vertex. For instance, Sθ,µ,−b2 ∩O
(0) = ∅.

6.4.2 Gradient-like vector fields

We recall that for a point p ∈ O the distance function d(p, ·) has directional derivatives. The

derivative ∂vd(p, ·) in the direction of a unit tangent vector v ∈ ΣxO equals − cos(v,Dx,p)

where Dx,p ⊂ ΣxO is the compact subset of the directions of all segments xp. The function

v 7→ ∂vd(p, ·) on the unit tangent bundle of O is lower semicontinuous outside ΣpO, and

there its suplevel sets are open.(This argument also works for the distance function from

a compact subset of O, e.g. from a component of ∂O if O has boundary.)

For x 6= p and c ∈ [0, 1] the subset {v ∈ ΣxO : ∂vd(p, ·) ≥ c} is totally convex and

has diameter ≤ 2 arccos c (e.g. because it has angular distance ≥ π − arccos c from Dx,p).

Such a subset for c > 0 can be nonempty only if x 6∈ O(0), because this requires that

diam(ΣxO) ≥ π− arccos c > π
2
. If it is nonempty for a singular point x ∈ O(1) ∪O(2), then

it contains a singular direction at x.

By the usual construction using a partition of unity, it follows that for c ∈ [0, 1)

there exists a gradient-like vector field X for d(p, ·) on the open subset {x 6= p : ∃v ∈

ΣxO with ∂vd(p, ·) > c} which is tangent to the singular locus and of course satisfies

∂Xd(p, ·) > c.
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For distinct points a and b there exist gradient-like vector fields for d(a, ·) and d(b, ·) on

the open set Sa,b = {∠·(a, b) >
π
2
} ⊂ O − {a, b}. (Note that the function ∠·(a, b) is lower

semicontinuous on O − {a, b}.) More precisely, for φ ∈ (0, π
2
] there exists a gradient-like

vector field X for d(a, ·) on {∠·(a, b) > π − φ} with ∠·(a,X) > π − φ. Such a vector field

satisfies ∠·(b,−X) ≥ ∠·(a, b) − ∠·(a,−X) > π − 2φ and ∠·(b,X) < 2φ. (Note that −X is

defined since X is tangent to the singular locus.) Thus, if φ ≤ π
4

then ∂Xd(b, ·) < 0 and

∂Xfa,b > 0, i.e. X is gradient-like for fa,b.

If (a, b) is a θ-straight 1-strainer at p for sufficiently small θ, then its cross section Σx;a,b

is near p a topological 2-suborbifold, because a gradient-like vector field for fa,b has local

cross sections through p which are smooth 2-suborbifolds, and any two local cross sections

can be isotoped to each other using the flow.

6.4.3 Local bilipschitz charts and fibrations by cross sections

Suppose that (a1, b1, a2, b2, a3, b3) is a < θ-straight 3-strainer at a regular point x ∈ O

for some small θ > 0. Then there exist unit vectors v1, v2, v3 ∈ ΣxO with ∠x(ai, vi) >

π − θ. It follows that ∠x(bi,−vi) > π − 2θ, |∠x(ai, vj) −
π
2
|, |∠x(bi, vj) −

π
2
| < 2θ and

|∠x(vi, vj) −
π
2
| < 3θ for i 6= j. Let Xi be arbitrary commuting smooth vector fields near

x with Xi(x) = vi. By continuity, on a sufficiently small neighbourhood of x they have

length ≈ 1 and satisfy the same angle inequalities ∠·(ai, Xi) > π−θ and their implications.

Thus, they are almost orthogonal, |∠(Xi, Xj)−
π
2
| < 3θ for i 6= j, and gradient-like for the

functions fai,bi associated to the 1-substrainers, ∂Xi
fai,bi >

1
2
(cosφ+cos 2φ) > 1− cθ2, and

|∂Xj
fai,bi| < sin 2θ < 2θ for i 6= j. The Xi are the coordinate vector fields for some local

coordinates, and it follows that (fa1,b1 , fa2,b2 , fa3,b3) restricts to a bilipschitz homeomorphism

from a neighbourhood of x onto an open subset of R3. (Compare the discussion in [BGP92,

Sec. 11.8] and [MT08, 2.4.1].)

An analogous argument can be carried out for a 21
2
-strainer (a1, b1, a2, b2, a3) at a re-

flector boundary point x ∈ O(2). Then the 2-substrainer (a1, b1, a2, b2) is almost tangent

to the reflector boundary. One uses an orbifold chart at x, lifts the functions fa1,b1 , fa2,b2

and constructs fa3,b3 by lifting a3 to a 1-strainer in the chart. Furthermore, one adapts

the smooth vector fields Xi to the reflection ι on the chart, i.e. constructs them so that

ι∗X1 = X1, ι
∗X2 = X2 and ι∗X3 = −X3. One obtains a local bilipschitz homeomorphism

to the 3-dimensional halfspace with reflector boundary.

Consider now a < θ-straight 2-strainer (a1, b1, a2, b2) at a point x. That its cross

section Σx;a1,b1,a2,b2 is near x a bilipschitz 1-suborbifold can be seen as follows: If x is a

regular point, then one can choose an ≈ θ-straight 1-strainer (a′, b′) contained in Σx;a1,b1,a2,b2

and, with respect to the local bilipschitz coordinates near x provided by the 3-strainer

(a1, b1, a2, b2, a
′, b′), the cross section Σx;a1,b1,a2,b2 is a coordinate line. If x is singular, then
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it must be a reflector boundary point. One chooses a point a′ ∈ Σx;a1,b1,a2,b2 near x and

works with the bilipschitz coordinates provided by the 21
2
-strainer (a1, b1, a2, b2, a

′).

Suppose that C is a compact connected component of Σx;a1,b1,a2,b2 such that (a1, b1, a2, b2)

is a cθ-straight 2-strainer at all points of C. Then C is a closed 1-suborbifold and hence

homeomorphic to S1 or the mirrored interval I1. The map (fa1,b1 , fa2,b2) yields a product

fibration of a neighbourhood of C by cross sections of the 2-strainer. This can be seen as

follows using the bilipschitz coordinates near the points y ∈ C. The distance functions

fa1,b1 , fa2,b2 given by the 2-strainer and the auxiliary distance function fa3,b3 near y are

normalized so that fai,bi(y) = 0. For sufficiently small ǫi > 0 the map (fa1,b1 , fa2,b2) yields

near y a product fibration of the box {|fai,bi| ≤ ǫi ∀i} over the rectangle [−ǫ1, ǫ1]× [−ǫ2, ǫ2].

By covering C with finitely many such boxes one obtains the fibration of a neighbourhood.

In the above discussion, one or both of the functions fa1,b1 and fa2,b2 can be replaced by

d(ai, ·), because their directional derivatives differ only slightly. (Recall that fai,bi −d(ai, ·)

is c′θ-Lipschitz in the region where (ai, bi) is a cθ-straight 1-strainer, cf. section 5.4.1).

6.5 A decomposition according to the coarse stratifi-

cation

We start by formulating the collapse assumption on the orbifolds (O, g) needed in this

section and the quantities involved in it.

The parameter θ (straightness of 1-strainers) is required to be small, θ ∈ (0, θ0], where

θ0 is sufficiently small for the arguments in sections 5.4 and 5.5 to apply (cf. the discus-

sion at the beginning of section 5.4). The upper bound for θ will be decreased several

times during our later arguments. The parameter µ (accuracy of conical approximation)

needs to be sufficiently small so that the conclusions of 5.3.2 regarding the existence of

θ-straight 1-strainers apply, µ ≤ µ0(θ) with the constant µ0(θ) from there. The param-

eter µ determines (together with the fixed parameter σ) via Proposition 6.2.1 the bound

s1(σ, µ) and the scale ŝµ,−b2 := 1
11
s1(σ, µ)ρ−b2 . Conical approximation in all points x ∈ O

on scales s(x) ∈ [s1(σ, µ)ρ−b2(x), σρ−b2(x)] holds if (O, g) is (v(σ, µ),−b2)-collapsed with

the constant v(σ, µ) > 0 from Proposition 6.2.1.

In order to make the results on edgy points in section 5.5 available, we need to rule

out the existence of θ̄2 1
2
-straight 21

2
-strainers with length λ(θ)ŝµ,−b2(x) at all points x for a

constant λ(θ) which is sufficiently small so that Lemmas 5.5.10, 5.5.11 and 5.5.12 hold. This

is achieved by requiring (O, g) to be (v(θ, µ),−b2)-collapsed for a suitable small constant

v(θ, µ) > 0, cf. Lemma 6.1.5. We make it so small that it is smaller than the constant

v(σ, µ) mentioned above.
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Furthermore, in order to obtain sufficient collapse on the scale θ4ŝµ,−b2(x) for small θ,

we ask that v(θ, µ) ≤ (θ5s1(σ, µ))3. We will also assume that (O, g) has (v(θ, µ), s0, K)-

curvature control below scale ρ−b2 .

6.5.1 The 2-strained region

We define the 2-strained region Rθ,µ,−b2 ⊂ O as the open set consisting of all points x which

admit < C1θ-straight 2-strainers of length > θ4ŝµ,−b2(x), where C1 is the constant from

Lemma 5.5.4. Note that Rθ,µ,−b2 ∩O
(sing) ⊂ O(2).

We will show that for sufficiently small θ the 2-strained region admits metrically an

almost product fibration with short fibers almost orthogonal to the 2-strainers. (The

smallness of the parameter µ is not important at this point, because we are not yet using

the conical approximation from Proposition 6.2.1.)

We begin with a local approximation result:

Proposition 6.5.1. For ǫ > 0 there is θ1 = θ1(ǫ) > 0 such that the following holds: Let

θ ≤ θ1 and µ ≤ µ0(θ). If (O, g) is (v(θ, µ),−b2)-collapsed with (v(θ, µ), s0, K)-curvature

control below scale ρ−b2, and if (a1, b1, a2, b2) is a C1θ-straight θ
4ŝµ,−b2(x)-long 2-strainer

at x, then diam(Σo
x;a1,b1,a2,b2

)−1 · (O, x) is ǫ-close in the pointed C5-topology to the product

R2 × F 1 of the euclidean plane with a connected closed 1-orbifold of diameter 1.

Proof. Let −b2i ∈ [−1, 0) and θi, µi > 0 such that θi → 0 and µi ≤ µ0(θi). Suppose that the

orbifolds (Oi, gi) are (v(θi, µi),−b
2
i )-collapsed with (v(θi, µi), s0, K)-curvature control below

the scales ρ−b2i , and that the (ai1, b
i
1, a

i
2, b

i
2) are C1θi-straight θ4

i ŝµi,−b2i (xi)-long 2-strainers

at the points xi. We have to show that the conlusion of the proposition holds for large i.

Consider the cross sections Σo
i = Σo

(xi;ai
1,b

i
1,a

i
2,b

i
2)

. For any point xi 6= yi ∈ Σo
i , the 21

2
-

strainer (ai1, b
i
1, a

i
2, b

i
2, yi) at xi is θ̄2 1

2
-straight for large i. Since v(θ, µ) ≤ (θ5s1(σ, µ))3, it

follows that λi := (θ4
i ŝµi,−b2i (xi))

−1 diam(Σo
i ) → 0, cf. Lemma 6.1.5. The rescaled pointed

orbifolds (λiθ
4
i ŝµi,−b2i (xi))

−1 · (Oi, xi) Gromov-Hausdorff subconverge to a pointed Alexan-

drov space (X, x0) with dimension ≤ 3 and curvature ≥ 0. Moreover, the broken segments

ai1xib
i
1 and ai2xib

i
2 (sub)converge to two perpendicular lines through x0, and hence X splits

metrically as a product R2 × Σ.

To see that the rescaled cross sections (λiθ
4
i ŝµi,−b2i (xi))

−1 ·Σo
i subconverge to Σ, we note

that (λiθ
4
i ŝµi,−b2i (xi))

−1(d(aij, ·) − d(aij, xi)) and (λiθ
4
i ŝµi,−b2i (xi))

−1(d(bij, ·) − d(bij, xi)) sub-

converge (due to Arzelà-Ascoli) to concave 1-Lipschitz functions αj and βj with αj(x0) =

βj(x0) = 0. The concavity of the sums αj + βj implies together with the triangle in-

equality that the functions αj and βj are constant on fibers pt×Σ. Since for any sequence

points yi ∈ Σo
i we have (λiθ

4
i ŝµi,−b2i (xi))

−1(d(aij, yi)−d(a
i
j, xi)), (λiθ

4
i ŝµi,−b2i (xi))

−1(d(bij, yi)−
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d(bij, xi)) → 0, compare (5.4.6), it follows that Σo
i → Σ. Therefore Σ is a compact 1-

dimensional Alexandrov space of diameter 1.

Since in the blow-up limit (λiθ
4
i ŝµi,−b2i (xi))

−1 · (Oi, xi) → (X, x0) we have no dimension

drop, after passing to another subsequence, the convergence can be improved to C5-smooth

convergence and F 1 = Σ is a connected closed 1-orbifold, cf. Lemma 6.1.7.

We observe that in the proof, the local fibrations induced by 2-strainers as discussed

in section 6.4 locally Gromov-Hausdorff converge to the natural product fibration of X.

They are therefore isotopic by small isotopies to the product approximations in Corollary

6.5.1.

Note that in the situation of the proposition, diam(Σx;a1,b1,a2,b2) << θ4ŝµ,−b2(x). Moreover,

for x ∈ Rθ,µ,−b2 the cross sections Σo
x;a1,b1,a2,b2

of different C1θ-straight θ4ŝµ,−b2(x)-long

2-strainers (a1, b1, a2, b2) at x have Hausdorff distance << diam(Σo
x;a1,b1,a2,b2

) and almost

equal diameters, and we define the width w(x) at x as the infimum of these diameters.

The fiber direction of a local approximation as in Corollary 6.5.1 yields a smooth line

field which is almost vertical in the sense that it is perpendicular to the stratum O(2) and

almost perpendicular to sufficiently long segments. Any two such local line fields almost

agree on the overlaps of their domains of definition, and using a partition of unity we can

combine such local line fields to a global almost vertical line field L = Lθ,µ,−b2 on Rθ,µ,−b2 .

More precisely, for (small) ν > 0 there is θ1 = θ1(ν) > 0 such that the following holds:

If θ ≤ θ1, µ ≤ µ0(θ) and if (O, g) is (v(θ, µ),−b2)-collapsed with (v(θ, µ), s0, K)-curvature

control below scale ρ−b2 , then for x ∈ Rθ,µ,−b2 the line L(x) has angle > π
2
− ν with any

segment of length 10ν−1w(x) initiating in x, and in particular with any segment of length

θ4ŝµ,−b2(x) >> w(x). In fact, a line field Lθ,µ,−b2 with these properties can be constructed

on the slightly larger open set R̂θ,µ,−b2 := ∪x∈R
θ,µ,−b2

B(x, 1
ν
w(x)). The reflector boundary

O(2) is, where it meets Rθ,µ,−b2 , almost horizontal in the sense that it is almost tangent to

sufficiently long segments and, in particular, to sufficiently long 2-strainers.

The trajectories of L starting in a point x ∈ Rθ,µ,−b2 move almost orthogonally to

sufficiently long segments and therefore remain close to the cross section Σo
x;a1,b1,a2,b2

of a

suitable 2-strainer as above for length at least >> w(x).

If x ∈ O(2) ∩ Rθ,µ,−b2 , then the trajectory is orthogonal to O(2) in x and reaches O(2)

again after length ≈ w(x). More generally, all trajectories intersecting B(x, 10w(x)) have

length ≈ w(x) and connect reflector boundary points. The construction of an almost

product fibration by mirrored intervals close to O(2) ∩Rθ,µ,−b2 is therefore immediate.

Away from the reflector boundary, the L-trajectories starting in points x ∈ Rθ,µ,−b2

almost close up after length ≈ 2w(x). The question whether L can be globally perturbed

to an integrable line field with closed trajectories of lengths ≈ 2w(x) has been treated in
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[MT08, Sec. 4.2] in a very similar setting. The discussion there uses only the control on

finitely many derivatives of the curvature tensor and goes through without change in the

situation considered here. One obtains the following result which can be considered as a

version of a special case of Yamaguchi’s Fibration Theorem [Ya91] “without a priori given

base”.

Proposition 6.5.2 (Almost vertical fibration of the 2-strained region, cf. [MT08,

Prop. 4.4]). For ν > 0 there is θ1 = θ1(ν) > 0 such that the following holds: If θ ≤ θ1,

µ ≤ µ0(θ) and if (O, g) is (v(θ, µ),−b2)-collapsed with (v(θ, µ), s0, K)-curvature control

below scale ρ−b2, then there exists an open subset U , Rθ,µ,−b2 ⊆ U ⊆ R̂θ,µ,−b2, such that

every connected component of U is the total space of a smooth orbifold fibration with fiber

S1 or the mirrored interval I, and all fibers have angle < ν with the almost vertical line

field Lθ,µ,−b2.

The local fibrations provided by the product approximations in Corollary 6.5.1 have

only a finite degree of regularity, but the global fibration of U obtained by interpolating

these local fibrations can be smoothed. The smoothness will however not be important to

us.

From now on, we fix some small positive value of ν (e.g. ν = 1
1000

) and set θ1 = θ1(ν).

Moreover, whenever an orbifold is sufficiently collapsed, we implicitely fix a fibration as in

Proposition 6.5.2.

6.5.2 Edges

Definition 6.5.3. We define a point x ∈ Sθ,µ,−b2 to be (θ, µ,−b2)-edgy relative to an equi-

lateral< θ-straight 1-strainer (a, b) at x with length in (ŝµ,−b2(x),
3
2
ŝµ,−b2(x)) if diam(Σo

x;a,b) >

θ
5
2 ŝµ,−b2(x) and if Σx;a,b contains no π

2
-straight θ4ŝµ,−b2(x)-long 1-strainers at x, compare

Definition 5.5.8.

Let us briefly discuss the correspondence between the two definitions 5.5.8 and 6.5.3.

First, we recall from our discussion in section 5.1.3 that a (θ, µ,−b2)-edgy point x relative

to a < θ-straight 1-strainer (a, b) with length in (ŝµ,−b2(x),
3
2
ŝµ,−b2(x)) is also θ-edgy in the

space (ŝµ,−b2(x))
−1 ·B(x, ρ−b2(x)) of curvature ≥ −1 in the sense of Definition 5.5.8: In the

rescaled space, the strainer (a, b) is < 2θ-straight of length > (1− θ) and the cross section

Σx;a,b cannot contain any π
2
-straight 1-strainer of length θ4.

Conversely, suppose that an equilateral 1-strainer (a, b) is < θ-straight at x with length

in (ŝµ,−b2(x),
3
2
ŝµ,−b2(x)) and that in the rescaled space ŝµ,−b2(x)

−1 ·B(x, ρ−b2(x)) the point

x is θ-edgy relative to (a, b) (again in the sense of Definition 5.5.8). Then Remark 5.5.5

together with the discussion at the end of section 5.1.3 implies that x is also (θ, µ,−b2)-
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edgy. For suppose that Σx;a,b contains a π
2
-straight θ4ŝµ,−b2(x)-long 1-strainer at x. Then

after rescaling this strainer is still < 3π
4

-straight and hence in fact < C1θ-straight which is

a contradiction.

By construction, for any x ∈ O there are no θ̄2 1
2
-straight 21

2
-strainers of length λ(θ) in

the rescaled space ŝµ,−b2(x)
−1B(x, 1

2
ρ−b2(x)) Moreover, estimate 6.1.3 implies that on the

ball B(x, θŝµ,−b2(x)) we have the estimate ŝµ,−b2/ŝµ,−b2(x) ∈ (1 − θ, 1 + θ).

This allows us to generalize the above arguments to the following results: If y ∈

B(θŝµ,−b2(x)) is (θ, µ,−b2)-edgy relative to a 1-strainer (a, b) then it is θ-weakly in the

rescaled space ŝµ,−b2(x)
−1 · B(x, ρ−b2(x)) of curvature ≥ −1. Conversely, suppose that

y ∈ B(θŝµ,−b2(x)) admits an equilateral < θ-straight 1-strainer (a, b) with length in

(ŝµ,−b2(y),
3
2
ŝµ,−b2(y)) such that y is θ-strongly edgy relative to (a, b) in the rescaled space

ŝµ,−b2(x)
−1 ·B(x, ρ−b2(x)). Then y is also (θ, µ,−b2)-edgy.

Hence our results from section 5.5.2 can be applied to our present situation and used

to control e.g. the relative position of edgy points.

We will globally construct tubes along the “coarse edges”. Our previous discussion applies

provided that θ and µ are sufficiently small (i.e. θ ≤ θ1 and µ ≤ µ0(θ)), and that (O, g) is

(v(θ, µ),−b2)-collapsed with (v(θ, µ), s0, K)-curvature control below scale ρ−b2 .

For every (θ, µ,−b2)-edgy point x ∈ O, let (ax, bx) be some equilateral < θ-straight 1-

strainer with length in (ŝµ,−b2(x),
3
2
ŝµ,−b2(x)) relative to which x is edgy. (Since 1-strainers

at x are almost unique by Lemma 5.5.6, it does not matter which one we use.) Associated

to it is the truncated cross section Σ̌x = Σx;ax,bx ∩B(x, 1
2
θ3ŝµ,−b2(x)).

For j = 1, 2, 3 we consider the fibers γjx = Σx;ax,bx ∩ B(x, j
8
θ3ŝµ,−b2(x)) of the partial

(topological) product fibration of Σx;ax,bx induced by d(x, ·).(Compare the discussion in

section 6.4.3.) The γjx and also their 1
16
θ3ŝµ,−b2(x)-neighbourhoods are contained in the

2-strained region Rθ,µ,−b2 , and they are almost vertical in the sense that they are isotopic

to a fiber of the fibration given by Proposition 6.5.2 by a small isotopy, say, supported on

the θ4ŝµ,−b2(x)-neighbourhood of γjx.

An almost unique 1-strainer at a (θ, µ,−b2)-edgy point x locally defines a vector field

on the ball B(x, θŝµ,−b2) as in section 6.4.2. By interpolating these fields by a partition

of unity, we obtain a smooth vector field L = Ledge tangent to the singular locus whose

open domain of definition contains the balls B(x, θŝµ,−b2(x)) around the (θ, µ,−b2)-edgy

points x, and which is on these balls almost parallel to the 1-strainers (ax, bx), meaning

that ∠·(Ledge, ax),∠·(Ledge, bx) 6∈ [cθ
1
2 , π − cθ

1
2 ] on B(x, θŝµ,−b2(x)), see Lemma 5.5.10. In

particular, we have |∠·(Ledge, x) −
π
2
| < c′θ

1
2 on the 1

7
θ3ŝµ,−b2(x)-neighbourhood of γ2

x.

We choose a maximal subfamily of pairs (x, Σ̌x) such that the corresponding subset ǫ of

(θ, µ,−b2)-edgy points x is separated in the sense that for any two distinct points x1, x2 ∈ ǫ
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holds d(x1, x2) > θ
10
3 ŝµ,−b2(x1). By Lemma 5.5.12, the Σ̌x for x ∈ ǫ are pairwise disjoint.

We call x1, x2 ∈ ǫ adjacent, if d(x1, x2) < 4θ
10
3 ŝµ,−b2(x1) and if the arc in the Ledge-

trajectory (leaf) connecting x1 to its intersection point with Σ̌x2
does not meet the other

cross sections (x, Σ̌x) for x ∈ ǫ − {x1, x2}. By Lemma 5.5.11, we have d(x1, x2) ≈

θ
10
3 ŝµ,−b2(x1) unless points on the segment x1x2 have no θ-straight ŝµ,−b2-long 1-strainers or

have such strainers with cross sections of diameter ≈ θ
5
2 . The relation of adjacency gener-

ates an equivalence relation on ǫ, and we call an equivalence class a chain of (θ, µ,−b2)-edgy

points. Each chain can be given a linear or cyclic order.

Consider two adjacent edgy points x1, x2 ∈ ǫ. The cross sections Σ̌xi
have Hausdorff

distance < θ
99
30 ŝµ,−b2(x1) by Lemma 5.5.12. Using the integral curves of the line field

Ledge, we flow the 1-orbifolds γjx1
from Σ̌x1

into Σ̌x2
. Their images γ′jx1,x2

in Σ̌x2
are

< θ
9
20

+ 99
30 ŝµ,−b2(x1) < θ

7
2 ŝµ,−b2(x1)-close to the γjx2

, compare the discussion of the maps

Φa,b
t in section 5.4.1. Moreover, since the isotopy of γjx1

to γ′jx1,x2
takes place inside a

θ
98
30 ŝµ,−b2(x1)-ball contained in Rθ,µ,−b2 , γ

′j
x1,x2

is isotopic by a small isotopy to the almost

vertical fibers of the fibration of Rθ,µ,−b2 , and therefore it must inside Σ̌x2
be homotopic

to γjx2
, and hence isotopic by a small isotopy. Thus the trace of the isotopy of γjx1

to

γ′jx1,x2
can be adjusted (by a small isotopy supported near γjx2

) to a 2-suborbifold Sjx1,x2

homeomorphic to ∼= γjx1
× [0, 1], contained in A(x; ( j

8
− 1

100
)θ3ŝµ,−b2(x), (

j
8
+ 1

100
)θ3ŝµ,−b2(x)),

lying between Σ̌x1
and Σ̌x2

, and with boundary γjx1
∪ γjx2

. By concatenating the Sjx1,x2
, we

obtain three disjoint embedded 2-suborbifolds Sj following along the chains of edgy points.

We call the region contained between S1 and the two final cross section of the chain a tube

along the coarse edge.

We observe that by Lemma 5.5.11 all edgy points close to an edgy point x ∈ ǫ are

contained in the corresponding tube along the coarse edge. Again by 5.5.11, a chain can

only end inside a (θ, µ,−b2)-hump or if the cross sections to C0θ-straight ŝµ,−b2-long 1-

strainers have diameter ≈ θ
5
2 . It is also possible that an edgy point has no adjacent edgy

points. We simply discard such isolated cross sections.

The simplest interface between chains of edgy points (the “coarse edge”) and the rest of O

arises for a cyclic chain κ ⊆ ǫ of (θ, µ,−b2)-edgy points. The parts Sjκ ⊂ Sj corresponding

to κ are then closed topological 2-suborbifolds. Let T jκ denote the tube containing κ and

bounded by Sjκ, and let Ai,jκ := T jκ − int(T iκ) for 1 ≤ i < j ≤ 3. The T jκ and Ai,jκ are

compact topological 3-suborbifolds compatibly fibering over the circle, and A1,3
κ ⊂ Rθ,µ,−b2 .

The fiber of T jκ is (homeomorphic to) a compact 2-orbifold with one boundary component.

Note that S2
κ separates S1

κ and S3
κ.

We wish to replace S2
κ by a smooth 2-suborbifold which is vertically saturated, i.e.

saturated with respect to the fibration of Rθ,µ,−b2 , cf. Proposition 6.5.2. To do so, we take

a vertically saturated compact connected 3-suborbifold W such that S2
κ ⊂ int(W ) and
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W ⊂ int(A1,3
κ ). Then W separates S1

κ and S3
κ, and according to Lemma 6.5.4 below, one of

the boundary components of W separates S1
κ and S3

κ. We denote this boundary component

by S2,v
κ .

Then as a consequence of Lemma 6.5.5, S2,v
κ is isotopic to the Sjκ. In other words, we

can isotope S2
κ by an isotopy supported in int(A1,3

κ ) so that it becomes vertically saturated

and the fibrations on it induced by Rθ,µ,−b2 and T 2
κ match. (We observe that the boundary

of every truncated cross ection Σ̌x, x ∈ ǫ can be isotoped by a small isotopy to a fiber of

Rθ,µ,−b2 by the remark after the proof of Proposition 6.5.1.)

Lemma 6.5.4. Let Σ be a connected closed 2-orbifold without singular points and let

W ⊂ Σ × [0, 1] be a compact connected 3-suborbifold disjoint from Σ × 0 and Σ × 1 and

separating them. Then some component of ∂W separates them also.

Proof. For the purpose of this lemma, we consider Σ and Σ′ as compact manifolds, possibly

with boundary.

Based on the existence and uniqueness of smooth structures on 3-manifolds and the

uniqueness up to isotopy of smooth structures on 2-manifolds, we know that there ex-

ists a smooth structure on Σ × [0, 1] with respect to which the embedded topological

2-submanifold ∂W is a smooth submanifold. (Cut along ∂W , put a smooth structure and

glue again after adjusting the induced smooth structures on the boundaries by an isotopy

in a collar. See e.g. [Mu60], [Wh61], [Ep66].)

Moreover, given a smooth structure on Σ (and hence on Σ × [0, 1]), there exists a

homeomorphism of Σ × [0, 1] carrying the embedded topological 2-submanifolds ∂W to a

smooth submanifold. Hence we may work without loss of generality in the smooth category.

Let V denote the component of Σ× (0, 1)− int(W ) containing Σ×0. Then Σ′ = V ∩W

separates Σ×0 and Σ×1, and we have to show that it is connected. Suppose the contrary,

i.e. that it decomposes as the disjoint union Σ′ = Σ′
1 ∪ Σ′

2 of closed 2-submanifolds. Then

there exists an embedded circle γ in Σ× (0, 1) which intersects Σ′
1 once transversally. This

is absurd because γ can be homotoped into Σ × 0.

The following fact is for tori a simple special case of a result of Waldhausen [Wa67, 2.8].

The arguments in the non-orientable and orbifold cases are similar.

Lemma 6.5.5. (i) Let Σ and Σ′ be closed surfaces, each of which is homeomorphic to the

2-torus T 2 or to the Klein bottle K2. Suppose that Σ′ ⊂ Σ× [0, 1] is embedded so that it is

disjoint from Σ× 0 and Σ× 1 and separates them. Then Σ′ is isotopic to Σ× 0 and Σ× 1.

(ii) The same conclusion holds if Σ and Σ′ are closed 2-orbifolds, each of which is

homeomorphic to the annulus Ann2 or the Möbius strip Möb2 with reflector boundary.
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Proof. Again we can assume without loss of generality that Σ′ is a smooth surface, respec-

tively, suborbifold.

(i) Cut open Σ× [0, 1] along an annulus A so as to obtain a solid torus [0, 1]× [0, 1]×S1.

After adjusting Σ′ we can assume that it intersects A transversally in circles. Because

Σ′ separates Σ × [0, 1], every circle which is null-homotopic in A bounds a 2-ball in Σ′.

(Otherwise, by the orientability and irreducibility of the solid torus, such a circle would

decompose Σ′ into an annulus, and we could compress Σ′ to a circle or a point.) Using

irreducibility again, we can isotope Σ′ such that it intersects A only in circles which are not

null-homotopic and decompose Σ′ into annuli. Moreover, we can assume that these circles

are vertical in the fibration of the full torus by circles. Hence every annulus component of

Σ′ − A can be isotoped to be vertical, too. (Cf. [Wa67, 2.4].) Thus, Σ′ can be isotoped to

be vertical in a fibration of Σ × [0, 1] by circles. This clearly implies (i).

(ii) Without loss of generality, we can assume that every boundary component of ∂Σ′

is horizontal in the product Σ× [0, 1]. In the case where Σ is homeomorphic to Ann2, so is

Σ′ and the two boundary components of Σ′ lie above different boundary components of Σ.

As above, we cut open Σ× [0, 1] along a 2-ball B to obtain a 3-ball [0, 1]× [0, 1]× [0, 1].

Again, we arrange that Σ′ is transversal to B and hence intersects it in null-homotopic

circles or in intervals connecting opposite sides of B ∼= [0, 1] × [0, 1] or one side to itself.

Circles in B ∩Σ′ must again bound 2-balls in Σ′ and hence can be removed by suitable

isotopies. (If Σ′ is a Moebius band, this follows from the orientability of the 3-ball. If Σ′

is an annulus which is decomposed into two annuli by a component of Σ′ ∩ B, we would

obtain a compression disc for Σ which is equally impossible.) Similarly, it is impossible

that an interval component of Σ′ ∩B connects one side of B to itself: This can only occur

if Σ was a Moebius band and Σ′ an annulus. However, it follows in this case that Σ′ can

be compressed to the ∂Σ × [0, 1].

This implies that without loss of generality Σ′ ∩ B consists of one or two intervals

connecting opposite sides of the square B. Since they decompose Σ′ into 2-balls, claim (ii)

now follows.

6.5.3 Necks

Throughout this section, we assume that θ < θ1 and µ < µ0(θ) are chosen sufficiently small,

and that (O, g) is (v(θ, µ),−b2)-collapsed with (v(θ, µ), s0, K)-curvature control below scale

ρ−b2 .

We define a point x ∈ O to be (θ, µ,−b2)-necklike relative to an equilateral < θ-straight

1-strainer (a, b) at x with length in (ŝµ,−b2(x),
3
2
ŝµ,−b2(x)) if diam(Σo

x;a,b) < θ2ŝµ,−b2(x),

compare 5.6.1. We call the open subset Nθ,µ,−b2 ⊆ Sθ,µ,−b2 of (θ, µ,−b2)-necklike points the
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necklike region of O. It does not contain any singular vertices, O(0) ∩Nθ,µ,−b2 = ∅.

As in the beginning of the previous section, we verify that a point x ∈ O is (θ, µ,−b2)-

necklike relative to a 1-strainer (a, b) if and only if it is θ-necklike in the rescaled space

(ŝµ,−b2(x))
−1 ·B(x, ρ−b2(x)) in the sense of Definition 5.6.1.

Similarly, if y ∈ B(x, ρ−b2(x)) is (θ, µ,−b2)-necklike it is θ-weakly necklike relative to

(a, b) in (ŝµ,−b2(x))
−1 · B(x, ρ−b2(x)). If y admits an equilateral < θ-straight 1-strainer

(a, b) with length in (ŝµ,−b2(y),
3
2
ŝµ,−b2(y)) and is θ-strongly necklike relative to (a, b) in

(ŝµ,−b2(x))
−1 ·B(x, ρ−b2(x)), it is also (θ, µ,−b2)-necklike.

Thus we can again use the results from section 5.5.2 to control the existence and relative

position of necklike points.

As in section 6.5.2, we construct a smooth line field Lneck tangent to the singular locus whose

open domain of definition contains the balls B(x, θ
3
2 ŝµ,−b2(x)) around all (θ, µ,−b2)-necklike

points x, and which is on every such ball almost parallel to the equilateral 1-strainers (a, b)

at x with length in (ŝµ,−b2(x),
3
2
ŝµ,−b2(x)), i.e. ∠·(Lneck, a),∠·(Lneck, b) < θ

1
2 on that ball.

The line fields Lneck and Ledge can be matched in the overlap of their domains of definition.

For a < θ-straight equilateral 1-strainer (a, b) with length in (ŝµ,−b2(x),
3
2
ŝµ,−b2(x), Σx;a,b

is a closed topological 2-suborbifold almost perpendicular to Lneck, i.e. it has angle > π
2
−c′′θ

with it. We call Σx;a,b a neck cross section through the point x.

If two neck cross sections Σx1;a1,b1 and Σx2;a2,b2 intersect, then they have Hausdorff

distance < cθ3ŝµ,−b2(x) by Lemma 5.6.3. If they are disjoint but also not too far apart

from each other, say if they have Hausdorff distance < θ
5
3 ŝµ,−b2(x), then one can move one

of the cross sections to the other along the trajectories of Lneck, and therefore the Σo
xi;ai,bi

are

in this case topologically parallel, i.e. they bound a product suborbifold ∼= Σo
xi;ai,bi

× [0, 1].

Among all neck cross sections, we choose a maximal subfamily ν such that any two

distinct cross sections Σx1;a1,b1 and Σx2;a2,b2 in ν have Hausdorff distance > θ
5
2 ŝµ,−b2(x1).

In particular, they are disjoint. Due to the compactness of O, ν is finite. Inside ν, we

form equivalence classes of topologically parallel cross sections. Each equivalence class

has a linear or cyclic order. Any two successive cross sections in it are topologically

parallel and bound a cylinder (“segment”) homeomorphic to the product of one of them

with the compact interval. By concatenating these pieces, the equivalence class yields an

embedded neck in O which fibers over the interval or over the circle, unless the equivalence

class consists only of a single neck cross section. Such an isolated neck cross section has

diameter ≈ θ2ŝµ,−b2(x) (with respect to some point x in it); it is contained in the union of

the 2-strained and edgy regions, and we simply disregard it. Any two necks are disjoint.

The union N of all necks is a compact (topological) 3-suborbifold.

A cyclic neck is a closed 3-orbifold and hence fills out O entirely. The topology of cyclic
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necks will be determined later (in section 6.6.1).

A linear neck has two boundary components which are neck cross sections. We call

an end of the neck thick if its boundary Σx;a,b has diameter > θ
49
20 ŝµ,−b2(x), and thin

otherwise. If the end is thin, then nearby Σx;a,b, according to our construction e.g. at

distance < θ
49
20 ŝµ,−b2(x), there must be points outside the 1-strained region Sθ,µ,−b2 , i.e. a

(θ, µ,−b2)-hump, cf. Proposition 6.2.2. The interface between a thin end of a neck and a

hump will be discussed in the next section.

Let Σx;a,b be a neck cross section with diam(Σx;a,b) > θ
49
20 ŝµ,−b2(x). Then every point in

Σx;a,b is (θ, µ,−b2)-edgy or belongs to the 2-strained region Rθ,µ,−b2 .

Let y ∈ Σx;a,b be a point which is not (θ, µ,−b2)-edgy. Then Σx;a,b contains a C1θ-

straight 1-strainer (z1, z2) at y with length θ4ŝµ,−b2(y), cf. Lemmas 5.5.3 and 5.5.4(i). As dis-

cussed in section 6.4.3, the portion Ay = Σx;a,b∩{|fz1,z2| ≤
1
10
θ4ŝµ,−b2(y)}∩B(y, θ4ŝµ,−b2(y))

of the cross section fibers over a compact interval with fibers the fz1,z2-level sets. These

are embedded 1-suborbifolds ∼= S1 or I. Let γy = Σx;a,b ∩ f
−1
z1,z2

(0) = Σo
y;a,b,z1,z2

denote the

central fiber.

To combine these local fibrations to a global one, we choose a maximal family F of γy’s

so that any two distinct γy1 , γy2 ∈ F have Hausdorff distance > 1
100
θ4ŝµ,−b2(y1). The family

F is finite, since Σx;a,b is compact. If γy1 and γy2 have Hausdorff distance < 9
100
θ4ŝµ,−b2(y1),

then γy2 separates Ay1 and is isotopic inside Ay1 (by a small isotopy) to a fiber of the

above fibration of Ay1 . We call γy1 and γy2 adjacent, if they are not separated inside Ay1
by another γy ∈ F . In this case, they have Hausdorff distance ≈ 1

100
θ4ŝµ,−b2(y1). It follows

that the Ay for all γy ∈ F can be simultaneously isotoped (by small isotopies) so that their

fibrations match afterwards. This yields a fibration of part of Σo
x;a,b and, if Σx;a,b contains

no edgy points, a global fibration.

If e ∈ Σx;a,b is a (θ, µ,−b2)-edgy point, then the discussion in section 6.5.2 implies that

∂B(e, 1
2
θ3ŝµ,−b2(e))∩Σx;a,b contains no edgy points and can be slightly isotoped inside Σx;a,b

to match the fibration obtained so far or, vice versa, the fibration can be adapted so that

∂B(e, 1
2
θ3ŝµ,−b2(e)) ∩ Σx;a,b becomes a fiber. Let us call B(e, 1

2
θ3ŝµ,−b2(e)) ∩ Σx;a,b a cap of

Σx;a,b. Since Σx;a,b is compact and connected, it must have two disjoint caps which contain

all (θ, µ,−b2)-edgy points.

In the case when the neck cross section contains no (θ, µ,−b2)-edgy points, we have

Σx;a,b ⊂ Rθ,µ,−b2 and can sandwich it between two nearby neck cross sections and proceed as

in section 6.5.2 (for S2
κ) to isotope it by an isotopy supported nearby (i.e. in the sandwich)

so that it becomes vertically saturated.

If the neck cross section Σx;a,b contains edgy points and hence two caps, then we can

coordinate the fibration of Σx;a,b with the fibration of the tubes T j along the coarse edges,

cf. section 6.5.2, so that the intersection T j ∩ Σx;a,b consists of two fibers of T j, namely
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one for each cap of Σx;a,b. (Here, we refer to the fibration of T j by compact 2-orbifolds

with one boundary component.) This can e.g. achieved by perturbing Σx;a,b by a small

isotopy (using the flow of the vector field Lneck) based near T j ∩ Σx;a,b until it coincides

with the closest tube cross sections of the T j. Moreover, by a small isotopy of the fibration

on Σx;a,b minus the two caps, we can arrange that the intersections Sj ∩Σx;a,b are fibers of

the fibration of Σx;a,b. (In the latter step, we just use that any two noncontractible simple

closed curves in an annular 2-orbifold are isotopic.) Alternatively, we could perturb the

tubes T j by a small isotopy near Σx;a,b.

6.5.4 Humps

We keep our assumption that (O, g) is (v(θ, µ),−b2)-collapsed with (v(θ, µ), s0, K)-curvature

control below scale ρ−b2 for sufficiently small θ, µ > 0. Then the discussion of sections 6.5.1,

6.5.2 and 6.5.3 applies.

Let x ∈ O be a (θ, µ,−b2)-hump as defined after Proposition 6.2.1. This means that on

the scale s(x) ∈ [s1(σ, µ)ρ−b2(x), σρ−b2(x)] of uniform conical approximation provided by

Proposition 6.2.1, O is µ-well approximated in x by a flat disc of radius 1 with cone point

of angle ≤ 2π − θ or by a flat sector of radius 1 with angle ≤ π − θ
2
. (This includes the

half-open interval [0, 1) as the degenerate case of the disc with cone angle 0.)

The closed ball B(xi,
1
2
s(xi)) is a compact 3-suborbifold, since its boundary is almost

orthogonal to radial (with respect to x) θ
11

-straight 1-strainers of length 1
11
s(x), cf. Lemma

5.3.2, and hence a closed topological 2-suborbifold.

If diam(∂B(x, 1
2
s(x))) is not too small, e.g. if diam(∂B(x, 1

2
s(x))) > θ

49
20 ŝµ,−b2(x), then

all points in ∂B(x, 1
2
s(x)) are edgy or 2-strained and, as above in section 6.5.3 for neck

cross sections, we can construct a 1-dimensional fibration on most or all of ∂B(x, 1
2
s(x)).

More precisely, at every point z ∈ ∂B(x, 1
2
s(x)) which is not edgy we can find an almost

radial θ-straight 1-strainer (x, z′) of length 1
2
s(x) and another 1-strainer (a, b) of length

θ4ŝµ,−b2(z) such that the 2-strainer (x, z′, a, b) is cθ-straight (for some positive constant

c, cf. section 5.4.1). This gives us a fibration of ∂B(x, 1
2
s(x) on a neighbourhood of z as

section 6.4.3. If ∂B(x, 1
2
s(x)) contains edgy points, we integrate the corresponding tube

cross sections into its fibration as described in section 6.5.3.

If the conical approximation in x is by a disc with a cone point, then ∂B(x, 1
2
s(x)) ⊂

RO
θ,µ,−b2 and the fibration is global. If the approximation is by a sector, then ∂B(x, 1

2
s(x))

contains edgy points close to the edges of the sector; these and the complement of the

fibered region are covered by two caps whose boundaries are fibers. Since the edge cross

sections (Σo
x;a,b, cf. section 6.5.2) associated to edgy points in ∂B(x, 1

2
s(x)) are also al-

most orthogonal to the radial direction (with respect to x), they can be embedded into
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∂B(x, 1
2
s(x)) using an almost radial gradient like flow. As in section 6.5.3, we can coordi-

nate the fibration of ∂B(x, 1
2
s(x)) with the fibration of the tubes T j along the coarse edge

so that the intersection T j ∩ ∂B(x, 1
2
s(x)) consists of two fibers of T j, one for each cap of

∂B(x, 1
2
s(x)), and the intersections ∂B(x, 1

2
s(x)) are fibers of the fibration of ∂B(x, 1

2
s(x)).

We say that the hump x has a thick end.

On the other hand, consider the case where B(x, 3
4
s(x)) contains a (θ, µ,−b2)-necklike

point. This occurs in particular if diam(∂B(x, 1
2
s(x))) is not too large, e.g. if we have

diam(∂B(x, 1
2
s(x))) < θ

401
200

i ŝµ,−b2(x), because then we have a θ
11

-straight 1-strainer of length

> 1
11
s(x) ≥ 1

11
ŝµ,−b2(x) at a point in ∂B(x, 1

2
s(x)). In this case ∂B(xi,

1
2
s(x)) is via an

almost radial flow isotopic to a cross section of the associated neck, and we have a neck-

hump interface. Such an interface corresponds to a thin end of a neck (as defined in section

6.5.3).

We now have constructed a covering of the orbifold O by finitely many humps B(xi,
1
2
s(xi),

necks, tubes and the fibration of Rθ,µ,−b2 . This follows from Lemma 5.5.9: Consider a point

x which is not contained in the balls B(xi,
1
4
s(xi) for the humps xi; it admits an equilateral

< θ-straight 1-strainer with length (ŝµ,−b2(x),
3
2
ŝµ,−b2(x)). If the diameter of its cross section

is ≥ θ
9
4 and x 6∈ Rθ,µ,−b2 , the lemma implies that x is contained in a tube with no end near

x (cf. our discussion in section 5.5.2).

We now adjust the boundaries of humps, necks and tubes to our fibration of the 2-

strained part Rθ,µ,−b2 . We have already done this in sections 6.5.2 and 6.5.3 for cyclic

chain of edgy points and for thick ends of necks which contain no edgy points. We now pro-

ceed analogously for ∂B(xi,
1
2
s(xi)) for all (θ, µ,−b2)-humps with diam(∂B(x, 1

2
s(xi))) >

θ
49
20 ŝµ,−b2(xi) and conical approximation by a disc with a cone point.

At this point, we discard all necks which are entirely contained in the union of humps,

tubes and Rθ,µ,−b2 . We deal with all remaining neck-hump interfaces as described above.

By our previous discussion, every thick end of a hump or a neck meets Rθ,µ,−b2 . If they

contain no edgy points, we have already isotoped them (by an isotopy supported nearby)

to a vertically saturated 2-suborbifold.

Every thick end (of a hump or a neck) containing edgy points meets precisely two linear

tubes along the coarse edge. By our discussion in section 6.5.2, these tubes can only end

deep inside a neck or a hump, and hence a finite time after leaving the end intersect another

hump or neck in a thick end. By the compactness of (O, g), such a sequence of tubes and

thick ends must eventually close up. The union C of all humps, necks and tubes contained

in such a closed chain is a topological 3-suborbifold with one boundary component ∂0C

which is a topological 2-suborbifold homeomorphic to T 2, K2, Ann2 or Möb2, as follows

from our discussion in sections 6.5.2 and 6.5.3. Of course, C may have other boundary

components if it contains at least one neck.
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For every such chain C, we now extend the suborbifolds Sij (for the different tubes

Tj ⊂ C) to closed 2-suborbifolds SiC isotopic (in C) to ∂0C, e.g. by forming suitable

unions with the first three neck cross sections of a neck in C, and similarly for humps.

The 2-suborbifold S2
C is then contained in Rθ,µ,−b2 , and we can apply our Waldhausen-like

arguments from section 6.5.2 to isotope it (in the region between S1
C and S3

C) so that it

becomes vertically saturated with respect to the fibration of Rθ,µ,−b2 .

After performing this isotopy, we cut off the tubes Tj by a suitable cross section such

that the fibrations on S2
j induced by Tj and Rθ,µ,−b2 match. The complement of all humps,

necks and tubes is now a saturated subset of the fibration of Rθ,µ,−b2 (see remark after

Definition 5.5.8). By performing a suitable isotopy inside the chain C, we can arrange

that the cross section cutting off the tubes becomes a smooth 2-suborbifold with boundary

intersecting the singular locus and the new boundary of the chain transversally. Similarly,

we can isotope neck-hump interfaces to smooth 2-suborbifolds without boundary. Then the

components of our decomposition of a 3-orbifold (O, g) have piecewise smooth boundary

and their interiors are disjoint open smooth 3-suborbifolds.

Let us sum up our progress so far: For every 0 < θ < θ1 and 0 < µ,< µ0(θ) the follow-

ing holds: If a 3-orbifold (O, g) is (v(θ, µ),−b2)-collapsed with (v(θ, µ), s0, K)-curvature

control, it admits a decomposition (according to its coarse stratification) into topolog-

ical 3-suborbifolds with disjoint interiors and piecewise smooth boundary, namely into

(θ, µ,−b2)-humps, necks, tubes and total spaces of orbifold fibrations with 1-dimensional

fibers.

We also control how the different components of our decomposition intersect each other:

If an end (of a hump or a neck) is thin, a hump ends in a neck and vice versa. If the end is

thick and meets no tubes, it intersects one of the components with 1-dimensional fibration.

In this case the end is toric and vertically saturated with respect to this fibration. Finally,

there is the possibility that a thick end meets precisely two tubes and one of the components

with 1-dimensional fibration. The boundary component of such an end can then be further

decomposed into cross sections of the two tubes and an annular part between them which

again is vertically saturated with respect to the 1-dimensional fibration. A tube which does

not meet any hump or neck is cyclic; its boundary then is toric and vertically saturated.

6.6 Local topology

In this section, we determine the topological structures of the components of the decom-

position we constructed in the previous section. More precisely, we will determine the

topology of cross sections to tubes and necks and the topological type of humps.
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6.6.1 Tube and neck cross sections

In this section we prove that after decreasing θ further if necessary, we can control the

topological type of the cross sections to tubes and necks in sufficiently collapsed 3-orbifolds.

The following proposition is related to an argument in the appendix of [FY92]; see also

[MT08, 4.24] for a simplification of the special case needed here.

Proposition 6.6.1 (Topology of edge cross sections). There exists θ2 > 0 such that

for θ ∈ (0, θ2] and µ ∈ (0, µ0(θ)] the following holds: If (O, g) is (v(θ, µ),−b2)-collapsed

with (v(θ, µ), s0, K)-curvature control below scale ρ−b2, and if x ∈ O is (θ, µ,−b2)-edgy

relative to a < θ-straight 1-strainer (a, b) with length in (ŝµ,−b2(x),
3
2
ŝµ,−b2(x)), then the

truncated cross section Σx;a,b∩B(x, 1
2
θ3ŝµ,−b2(x)) is a connected compact 2-suborbifold with

one boundary component and Euler characteristic χ ≥ 0.

Proof. Let −b2i ∈ [−1, 0) and let θi, µi be sequences of small positive numbers θi → 0

and µi ≤ µ0(θ). We suppose that the orbifolds (Oi, gi) are (v(θi, µi),−b
2
i )-collapsed

with (v(θi, µi), s0, K)-curvature control below scale ρ−b2i , and that the points xi ∈ Oi are

(θi, µi,−b
2
i )-edgy relative to < θi-straight 1-strainers (ai, bi) with lengths in the interval

(ŝµi,−b2i (xi),
3
2
ŝµi,−b2i (xi)).

We consider the neighbourhoods of the points xi on the scales θ3
i ŝµi,−b2i (xi). The rescaled

pointed orbifolds (θ3
i ŝµi,−b2i (xi))

−1 · (Oi, xi) Gromov-Hausdorff subconverge (collapse) to a

2-dimensional Alexandrov space with curvature ≥ 0 which splits off a line. In view of

Lemma 5.5.3, this limit is the pointed flat halfplane with base point on the boundary. The

cross sections Σxi;ai,bi converge to the cross sectional ray of the halfplane through the base

point.

Let zi ∈ Σxi;ai,bi with d(xi, zi) = θ3
i ŝµi,−b2i (xi). Then (ai, bi, xi, zi) is a cθi-straight

2-strainer near the intersection γi = Σxi;ai,bi ∩ ∂B(xi,
1
2
θ3
i ŝµi,−b2i (xi)), for instance in the

θ4
i ŝµi,−b2i (xi)-neighbourhood of it. Note that (θ4

i ŝµi,−b2i (xi))
−1 diam(γi) → 0 because we

have v(θi, µi) ≤ (θ5
i s1(σ, µi))

3.

The following consideration applies for sufficiently large i. From the discussion in sec-

tion 6.4.3 we know that a neighbourhood (of at least comparable size) of γi is fibered by the

level sets of the R2-valued map (fai,bi , d(xi, ·)). In particular, γi ⊂ Σxi;ai,bi is a connected

closed 1-suborbifold. This fibration exists in fact on a larger region, for instance on a neigh-

bourhood of Σxi;ai,bi ∩A(xi,
1

100
θ3
i ŝµi,−b2i (xi),

99
100
θ3
i ŝµi,−b2i (xi)). In particular, d(xi, ·) yields a

product fibration (topologically) of Σxi;ai,bi ∩ A(xi,
1

100
θ3
i ŝµi,−b2i (xi),

99
100
θ3
i ŝµi,−b2i (xi)) over a

compact interval. We note that as a consequence e.g. Σxi;ai,bi ∩B(xi,
3
4
θ3
i ŝµi,−b2i (xi)) (defor-

mation) retracts onto Σxi;ai,bi∩B(xi,
1
2
θ3
i ŝµi,−b2i (xi)). Using the flow of a gradient like vector

field Xi for the 1-strainer (ai, bi) as constructed in section 6.4.2, we obtain a homotopy of

Bi = B(xi,
1
2
θ3
i ŝµi,−b2i (xi)) into Σxi;ai,bi ∩B(xi,

3
4
θ3
i ŝµi,−b2i (xi)) relative Σi = Σxi;ai,bi ∩Bi, and
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together with the retraction Σxi;ai,bi ∩B(xi,
3
4
θ3
i ŝµi,−b2i (xi)) → Σi a retraction ri : Bi → Σi.

It is a retraction in the orbifold sense because Xi is tangential to the singular locus. We

have ∂Σi = γi.

If Bi is homeomorphic to the closed 3-ball, then π1(Σi) ∼= 1 due to the retraction ri,

and hence Σi is a closed 2-disc. More generally, if Bi is discal then ri lifts to an equivariant

retraction r̃i : B̃i → Σ̃i of manifold covers. As before, it follows that Σ̃i is a 2-disc and

thus Σi is discal.

Suppose now that (after passing to a subsequence) none of the Bi is discal. We then

determine the possible topological types of the Bi using the Shioya-Yamaguchi blow-up

argument. Since the Oi also have (v(θi, µi), s0, K)-curvature control below scale ρ−b2i , ac-

cording to our discussion in section 6.3.2, Bi is for large i homeomorphic to the product

[0, 1] × Σ′
i of the compact interval with a connected compact 2-orbifold with Euler char-

acteristic χ ≥ 0 and one boundary component. Namely, after a suitable choice of base

points, all blow-up limits are 3-dimensional of the form (Y, y0) = (R ×W, (0, w0)) with a

noncompact C10-smooth 2-orbifold W with sec ≥ 0, cf. Proposition 6.3.7 and Lemma 6.1.7.

The topology of W is restricted by the orbifold Soul Theorem. If soul(W ) is a point, then

W is discal. If dim soul(W ) = 1, then W is a one-ended quotient of the flat cylinder S1×R,

cf. Lemma 6.3.6. The relation between the topologies of Σ′
i (for a subsequence yielding the

blow-up limit) and W is that W is homeomorphic to the interior of Σ′
i.

Knowing that Bi
∼= [0, 1]×Σ′

i for large i, we derive the topology of the truncated cross

sections Σi using the embeddings Σi ⊂ Bi
∼= [0, 1] × Σ′

i and the retractions ri as before. If

Σ′
i is discal, then we saw above that also Σi is discal (and Σi

∼= Σ′
i). Otherwise, Σ′

i is finitely

covered by an annulus Σ̃′
i and ri lifts to an equivariant retraction r̃i : [0, 1] × Σ̃′

i → Σ̃i of

smooth finite covers. Since the composition π1(Σ̃i) → π1(Σ̃
′
i)

∼= Z
(r̃i)∗
→ π1(Σ̃i) of induced

maps of fundamental groups is the identity, it follows that π1(Σ̃i) ∼= Z or 0 and Σi is finitely

covered by a 2-disc or an annulus. (We do not worry about excluding the case of the disc

here.)

It follows from the proposition and our discussion in section 6.5.3 that for sufficiently

small θ, µ > 0, thick ends of necks in (v(θ, µ),−b2)-collapsed orbifolds with (v(θ, µ), s0, K)-

curvature control have Euler characteristic χ ≥ 0. Thus, we alredy control the topological

structure of necks with at least one thick end. The following result generalizes this to

arbitrary necks, i.e. cyclic necks or linear necks with two thin ends.

Proposition 6.6.2 (Topology of neck cross sections). There exists θ3 > 0 such that

for θ ∈ (0, θ3] and µ ∈ (0, µ0(θ)] the follwoing holds: If (O, g) is (v(θ, µ),−b2)-collapsed

with (v(θ, µ), s0, K)-curvature control below scale ρ−b2, and if x ∈ O is (θ, µ,−b2)-necklike

relative to a < θ-straight 1-strainer (a, b) with length in (ŝµ,−b2(x),
3
2
ŝµ,−b2(x)), then the

corresponding cross section Σx;a,b is a closed 2-suborbifold with one boundary component
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and Euler characteristic χ ≥ 0.

Proof. Let −b2i ∈ [−1, 0) and let θi, µi be sequences of small positive numbers θi → 0

and µi ≤ µ0(θ). We suppose that the orbifolds (Oi, gi) are (v(θi, µi),−b
2
i )-collapsed

with (v(θi, µi), s0, K)-curvature control below scale ρ−b2i , and that the points xi ∈ Oi are

(θi, µi,−b
2
i )-necklike relative to < θi-straight 1-strainers (ai, bi) with lengths in the interval

(ŝµi,−b2i (xi),
3
2
ŝµi,−b2i (xi)).

We let di < θ2
i denote the diameter of the cross sections (ŝµi,−b2i (xi))

−1 · Σxi;ai,bi and

rescale by 2d−1
i . Then after passing to a subsequence, the orbifolds (1

2
diŝµi,−b2i )

−1 · (Oi, xi)

converge to an Alexandrov space (Y, y) of curvature ≥ 0 which splits off a line. The factor

of Y orthogonal to the line is the limit of the rescaled cross sections to the 1-strainers

(ai, bi), and hence has diameter 1 and is a compact Alexandrov space of curvature ≥ 0 and

dimension 1 or 2.

If dim(Y ) = 3, by Lemma 6.1.7 Y is a C10-smooth orbifold and the convergence can be

improved to C5-smooth. It follows that Y is isometric to Σ × R for some closed 2-orbifold

Σ of Euler characteristic χ(Σ) ≥ 0 and diameter 2. For sufficiently large i, we have an

embedding of Σ into Oi which is transversal to the gradient-like vector field Xi for the

strainer (ai, bi). This implies that Σ is isotopic to Σxi;ai,bi .

If dim(Y ) = 2, Y must be isotopic to [−1, 1]×R or S1 ×R. Hence there are constants

φi → 0 such that every point in (1
2
diθiŝµi,−b2i )

−1 · (Oi, xi)∩B(xi, 100) either admits a C1φi-

straight 2-strainer of length φ4
i or lies within φ3

i of a point z admitting a C0φi-straight

1-strainer (a′, b′) of length 1 such that Σz;a′,b′ has diamter ≥ φ
5
2

i and admits no π
2
-straight

1-strainer of length φ4
i .

If Y is isometric to [−1, 1] × R, we construct two tubes of diameter ≈ φ3
i along

(1
2
diθiŝµi,−b2i )

−1 · (Oi, xi) ∩ B(xi, 100) as in section 6.5.2 corresponding to the two edges

of Y . As described in section 6.5.3, we can now decompose Σxi;ai,bi into an annular

part admitting a fibration by 1-dimensional orbifolds and two caps isotopic to cross sec-

tions of the two tubes. Note that for any v > 0 and sufficiently large i, the balls

(1
2
diθiŝµi,−b2i )

−1 · (Oi, xi)∩B(z, 1) centered at points z ∈ (1
2
diθiŝµi,−b2i )

−1 · (Oi, xi)∩B(xi, 10)

uniformly have volume < v with (v, s0, K)-curvature control on scale 1 because of 1 <<

ρ−b2i . Thus we can proceed as in the proof of Proposition 6.6.1 to deduce that for sufficiently

large i the cross sections to both tubes are compact 2-orbifolds with Euler characteristic

χ ≥ 0 and one boundary component. This implies χ(Σxi;ai,bi) ≥ 0.

If on the other hand Y is isometric to S1 × R, it follows as in section 6.5.3 that

for sufficiently large i the cross sections Σxi;ai,bi admit a global fibration by embedded

1-dimensional orbifolds and hence are toric (have Euler characteristic χ = 0).
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6.6.2 Humps

For the remaining part of the proof, we fix θ̄ > 0 such that the results of section 6.5 and

Propositions 6.6.1 and 6.6.2 apply. Thus whenever µ < µ0(θ̄) and a 3-orbifold (O, g) is

(v(θ̄, µ),−b2)-collapsed with (v(θ̄, µ), s0, K)-curvature control, it admits a decomposition

according to its coarse stratification and we have control over the cross sections of all tubes

and necks.

In order to determine the local topology of humps we will improve the quality of our

conical approximations, i.e. make µ sufficiently small. Again, we will adjust the upper

bound for µ in several steps.

We say that a (θ̄, µ,−b2)-hump x ∈ (O, g) is a thick hump if O can in x be µ-well

approximated on scale s(x) by a flat cone with a base of diameter ∈ (π
4
, π − θ̄

2
). In

particular, this excludes the case of conical approximation by the 1-dimensional cones

(−1, 1) or [0,−1). A thick hump must have a thick end in the sense of section 6.5.4.

Proposition 6.6.3 (Topological type of thick humps). There exists 0 < µ1 < µ0(θ̄)

such that the follwing holds: Let 0 < µ < µ1. If (O, g) is (v(θ̄, µ),−b2)-collapsed with

(v(θ̄, µ), s0, K)-curvature control and if x ∈ O is a thick (θ̄, µ,−b2)-hump, then B(x, 1
2
s(x))

is discal or solid toric.

Proof. This is an application of the Shioya-Yamaguchi blow-up discussed in section 6.3.2.

Let b2i ∈ [−1, 0) and µi → 0. Suppose that the orbifolds (Oi, gi) are (v(θ̄, µi),−b
2
i )-collapsed

with (v(θ̄, µi), s0, K)-curvature control and that the points xi ∈ Oi are thick (θ̄, µi,−b
2
i )-

humps, i.e. µi-well approximated on scale s(xi) by flat cones Ci with bases of diameter

∈ (π
4
, π − θ̄

2
).

A subsequence of the cones Ci converges to a flat cone C∞ with a base of diameter

∈ [π
4
, π − θ̄

2
]. It follows that a subsequence of the rescaled balls s(xi)

−1 · B(xi, s(xi)) also

converges to C∞ in the Gromov-Hausdorff sense.

Unless infinitely many of the balls B(xi, s(xi)) are discal, by our results in section 6.3.2

there is a sequence of rescaling factors δi → 0 such that the sequence (δis(xi))
−1 ·B(xi, s(xi)

Gromov-Hausdorff subconverges to a 3-dimensional limit space (Y, y) of curvature ≥ 0. As

discussed in section 6.3.1, (Y, y) is actually a C10-smooth 3-orbifold and the convergence

can be improved to C5-smooth.

The soul of the blow-up limit Y must be a point or 1-dimensional since it cannot be 2-

dimensional by 6.3.2. Hence Y must be either discal or solid toric. Again by our discussion

in section 6.3.1, this implies that for sufficiently large i, the balls B(xi,
1
2
s(xi)) are also

either discal or solid toric.

We can “read off” the topological type of a thick hump from the components of the decom-
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position it intersects. Let µ > 0 be sufficiently small and suppose that the orbifold (O, g)

is sufficiently volume collapsed with curvature control such that it admits a decomposition

according to its coarse stratification and that Proposition 6.6.3 holds. Let x ∈ O be a thick

hump of this decomposition.

If O is in x µ-well approximated on scale s(x) by a flat cone over a circle, equivalently

if ∂B(x, 1
2
s(x)) is contained in Rθ̄,µ,−b2 , it follows that ∂B(x, 1

2
s(x)) admits a fibration by

1-dimensional fibers and hence cannot be spherical. This implies that the hump x is a solid

toric 3-suborbifold bounded by a vertically saturated component of a 1-fibered component

of the decoposition of O.

If the conical approximation ofO in x is by a flat sector, ∂B(x, 1
2
s(x)) intersects precisely

two tubes with cross sections Σ1,Σ2. Both cross sections have Euler characteristic χ ≥ 0.

Since ∂B(x, 1
2
s(x)) can be decomposed into a union of Σ1,Σ2 and an annular (1-fibered)

component, we have χ(∂B(x, 1
2
s(x)) = χ(Σ1)+χ(Σ2). Thus if χ(Σ1) = χ(Σ2) = 0, it follows

that χ(∂B(x, 1
2
s(x)) = 0 and hence that the hump x is again solid toric. Conversely, if at

least one of the Σi is 2-discal, the hump x must be 3-discal.

We cannot expect that the arguments from the proof of the last proposition also work

for general (not necessarily thick) humps, i.e. humps with conical approximation by cones

with a base of arbitrarily small diameter.

In this case, it is possible that the s(xi)
−1 ·B(xi, s(xi)) collapse to a 1-dimensional cone

and that the rescaled blow-ups (δis(xi))
−1 · B(xi, s(xi)) only Gromov-Hausdorff converge

to a 2-dimensional Alexandrov space (Y, y) of non-negative curvature (see section 6.3.2).

We will however see that in this case we can again apply our arguments from section 6.5

to obtain a decomposition of the humps B(xi, s(xi)) with respect to the scale δis(xi) such

that no thin humps or necks occur in the decomposition. When investigating collapse to

the 2-dimensional space Y , we operate on the scale δis(xi) rather than on the natural

curvature scale ρ−b2i . Equivalently, the rescaled orbifolds (δis(xi))
−1 · (Oi, xi) collapse to Y

on scale 1. Note that we have already encountered a similar situation (in a very restricted

setting) in the proof of Proposition 6.6.2.

Throughout the following considerations, we will always assume that ρ−b2 >> 1. This

implies sec ≥ −b2 ≥ −1 on balls of radius 1. Moreover, it means that (v, s0, K)-curvature

control on scale ρ−b2 implies (v, s0, K)-curvature control on scale 1.

We ommit −b2 in our notation to indicate that we work on scale 1 rather than ρ−b2 . For

instance, we say that a 3-orbifold is v-collapsed at a point p if volB(p, 1) < v. Similarly, for

θ, µ > 0 we define the set Rθ,µ as the set of all points admitting < C1θ-straight 2-strainers

of length > θ4s1(σ, µ). Similarly, we define (θ, µ)-edgy points, (θ, µ)-necklike points and

(θ, µ)-humps.

We can adapt our previous results to our new setting of collapse at scale 1. More
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precisely, we have

Lemma 6.6.4. There are θ̂ > 0 and 0 < µ̂ < µ0(θ̂) such that the following holds: Let

(O, g) be a 3-orbifold with sec 6≥ 0 and x ∈ O. Suppose that for some R > 0 the orbifold

O is on the ball B(x, 6R) (v(θ̂, µ̂))-collapsed with (v(θ̂, µ̂), s0, K)-curvature control on scale

1 << ρ−b2, and that diamO ≥ 6R. Then

(i) the orbifold O can in every y ∈ B(x, 5R) be µ̂-well approximated on some scale

s(y) ∈ [s1(σ, µ̂), σ] by a cone of dimension 1 or 2;

(ii) there exists an open subset U , Rθ̂,µ̂ ∩ B(x, 3R) ⊆ U ⊂ B(x, 4R) such that every

connected component of U is the total space of a smooth orbifold fibration with fiber S1 or

the mirrored interval I, and all fibers have angle < ν with the almost vertical line field Lθ̂,µ̂;

(iii) if y ∈ B(x, 4R) is (θ̂, µ̂)-edgy relative to an equilateral θ̂-straight 1-strainer (a, b)

with length in (s1(σ, µ̂), 3
2
s1(σ, µ̂)), then the truncated cross section Σy;a,b∩B(y, 1

2
θ̂3s1(σ, µ̂))

is a connected compact 2-suborbifold with one boundary component and Euler characteristic

χ ≥ 0; and

(iv) if y ∈ B(x, 4R) is a thick (θ̂, µ̂)-hump, then B(y, 1
2
s(y)) is discal or solid toric.

Proof. The proof works exactly as for Propositions 6.2.1, 6.5.2, 6.6.1 and 6.6.3 since in all

of these proofs we rescale by the collapse scale anyway.

We now return to our original discussion of the topological structure of general humps in

a (v(θ̄, µ),−b2)-collapsed 3-orbifold with (v(θ̄, µ), s0, K)-curvature control.

Proposition 6.6.5. There exists 0 < µ2 < µ0(θ̄) such that the following holds: Let 0 <

µ < µ2. If (O, g) is (v(θ̄, µ),−b2)-collapsed with (v(θ̄, µ), s0, K)-curvature control and if

x ∈ O is any (θ̄, µ,−b2)-hump, then (at least) one of the three following cases occurs:

(i) B(x, 1
2
s(x)) is discal or solid toric.

(ii) B(x, 1
2
s(x)) is has the topological type of (Σ× [−1, 1])/Z2 with Σ a closed 2-orbifold

with χ(Σ) ≥ 0 and Z2 operating as a reflection on [−1, 1].

(iii) B(x, 1
2
s(x)) admits a decomposition as in section 6.5 into a 1-fibered part, tubes,

humps and precisely one neck containing A(x, 1
4
s(x), 1

2
s(x)). The cross section of this neck

is a closed 2-orbifold with χ ≥ 0. Finally, all the humps occuring in this decomposition are

discal or solid toric.

Proof. Again, let b2i ∈ [−1, 0) and µi → 0. Suppose that the orbifolds (Oi, gi) are

(v(θ̄, µi),−b
2
i )-collapsed with (v(θ̄, µi), s0, K)-curvature control and that the points xi ∈ Oi

are (general) (θ̄, µi,−b
2
i )-humps, i.e. µi-well approximated on scale s(xi) by flat cones Ci

with bases of diameter < π − θ̄
2
.
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A subsequence of the cones Ci converges to some flat cone C∞ with a base of diameter

< π − θ̄
2
, and thus a subsequence of the rescaled balls s(xi)

−1 · B(xi, s(xi)) also converges

to C∞ in the Gromov-Hausdorff sense.

If the cone C∞ is 2-dimensional, the proof proceeds as for Proposition 6.6.3 to show

that for sufficiently large i we are in case (i) of the proposition.

We now suppose that C∞ is 1-dimensional. It is then isometric to the half-open in-

terval [0, 1) with cone point {0}. Moreover we suppose that for infinitely many i the ball

B(xi, s(xi)) is not discal.

By our discussion in 6.3.2 we therefore have rescaling factors δi → 0 such that the

sequence (δis(xi))
−1 ·B(xi, s(xi)) Gromov-Hausdorff subconverges to a non-compact limit

Alexandrov space (Y, y) of curvature ≥ 0 and dimension 2 or 3.

In case dim(Y ) = 3 Y is again a C10-smooth orbifold and we can improve the con-

vergence to C5-smooth. Depending on the dimension of its soul, Y is discal, solid toric or

diffeomorphic to (Σ×[−1, 1])/Z2 with χ(Σ) ≥ 0 and Z2 operating on [−1, 1] by a reflection.

(We can exclude a product structure since the B(xi,
1
2
s(xi)) and hence Y are one-ended.)

To finish this case, we note again that B(xi,
1
2
s(xi)) is homeomorphic to Y for sufficiently

large i by our discussion in section 6.3.1.

We are now left with the case where C∞ is isometric to [0, 1) and the pointed blow-

up limit (Y, y) is 2-dimensional. Remember from section 6.3.1 that we have a concave

1-Lipschitz function βξ on Y coming from the unique direction at {0} ∈ [0, 1). By con-

struction, y is a maximum of β with β(y) = 0.

We observe two important properties of the space Y with respect to its curvature bound

≥ 0:

(i) For every point z ∈ Y , there is a π
2
-straight 1-strainer of length 1

2
centered at z.

More precisely, let ρzξ be a ray of maximal βξ-decay emanating from z and let y′ ∈ Y be

a maximum of βξ, i.e. βξ(y
′) = 0. Recall that by construction, there is a critical point x at

distance 1 from y with βξ(x) = 0. Concavity of βξ implies βξ = 0 on the whole segment yx

of length 1. Hence we can choose y′ such that d(z, y′) ≥ 1
2
. Since βξ is 1-Lipschitz, we have

d(ρzξ(t), y
′) ≥ |βξ(ρ

z
ξ(t))| ≥ t which implies that for arbitrarily small ǫ > 0 and sufficiently

large t > t0(ǫ) we have ∠̃z(y
′, ρzξ(t)) ≥

π
2
− ǫ. This implies property (i).

(ii) There is a radius R (depending on θ̄ and Y ) such that for every point x ∈ Y with

d(z, y) = r ≥ R there is a θ̄-straight 1-strainer yzz′ of length r.

Otherwise, we could find a sequence of points zi → ∞ with d(zi+1, y) ≥ 2d(zi, y) such

that ∠̃zi
(y, zj) ≤ π − θ̄

4
for i < j. After passing to a subsequence, we can assume that

moreover ∠̃zj
(y, zi) ≤

θ̄
8
: We only have to make sure that d(y, zi) is growing sufficiently fast,

i.e. d(y, zi+1) ≥ λd(y, zi) for some λ(θ̄). But this implies that ∠y(xi, xj) ≥ ∠̃y(xi, xj) ≥
θ̄
4
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for all i 6= j which is absurd.

Since we have by construction (δis(xi))
−1 ·B(xi, s(xi)) → (Y, y), for sufficiently large i

the 6R-balls in (δis(xi))
−1 ·B(xi, s(xi)) are v(θ̂, µ̂)-collapsed with (v(θ̂, µ̂), s0, K)-curvature

control on scale 1 << ρ−b2 . Thus Lemma 6.6.4 applies to these balls.

In particular, for these i every point z ∈ B(δis(xi))−1gi
(xi, 6R) can be µ̂-well be approxi-

mated on scale s(z) ∈ [s1(σ, µ̂), σ] by a flat cone.

If we make i sufficiently large (so that dGH(B(δis(xi))−1gi
(xi, 6R), B(y, 6R)) becomes suf-

ficiently small), we also have conical approximation on the ball B(y, 6R) ∈ Y of slightly

lower quality, say 2µ̂-good approximation. On the other hand, it follows from properties (i)

and (ii) and the fact that Y contains a flat strip of width 1 (see 6.3.2) that the diameters

of approximating cones must be > π
4

on B(y, 6R) and > π− θ̂
2

on A(y,R, 6R). Hence for i

sufficiently large we can deduce that the same bounds on the diameters of approximating

cones hold on the balls B(δis(xi))−1gi
(xi, 6R).

We can now apply Proposition 5.3.3 to obtain a decomposition of B(δis(xi))−1gi
(xi, 6R)

into finitely many (θ̂, µ̂)-humps and the set Si
θ̂,µ̂

of points admitting θ̂-straight 1-strainers

with length in ( 1
11
s1(σ, µ̂), 3

22
1
11
s1(σ, µ̂)). Note that all humps must lie in B(δis(xi))−1gi

(xi, R)

and are thick.

We now proceed as in the proof of Lemma 6.6.4 and construct a covering of the ball

B(δis(xi))−1gi
(xi, 3R) by the total spaces of fibrations with 1-dimensional fibers, tubes and

thick humps as in section 6.5. Note that all humps occuring in this covering are discal or

solid toric.

By construction, the region N = A(δis(xi))−1gi
(xi, 2R, 6R) is homeomorphic to a product

of the interval and ∂B(xi, s(xi)). We add it as a “neck” to our covering ofB(δis(xi))−1gi
(xi, 3R)

and note that all points on its inner boundary ∂B(δis(xi))−1gi
(xi, 2R) are edgy or 2-strained.

Moreover, at every point z ∈ ∂B(δis(xi))−1gi
(xi, 2R) we can by property (ii) find 1-strainers

of length 2R which are almost orthogonal to ∂B(δis(xi))−1gi
(xi, 2R). As in section 6.5.4,

this allows us to construct a 1-dimensional fibration on most or all of ∂B(δis(xi))−1gi
(xi, 2R),

which is either global or capped off by the cross sections of two tubes. (For every point

z ∈ ∂B(δis(xi))−1gi
(xi, 2R) which is not edgy, in the unrescaled hump Bgi

(xi, s(xi)) we

can find a cθ-straight 2-strainer (xi, z
′
i; ai, bi) such that the 1-strainers (xi, z

′
i) and (ai, bi)

have lengths 2Rδis(xi) and θ4s1(σ, µ̂)δis(xi); these yield local fibrations of the boundary

∂B(δis(xi))−1gi
(xi, 2R) ∼= ∂Bgi

(xi, 2Rδis(xi)).) In other words, we treat ∂B(δis(xi))−1gi
(xi, 2R)

like a thick end of the “neck” N .

We now adjust the interfaces in B(δis(xi))−1gi
(xi, 3R) as in section 6.5.4 and extend

N radially away from xi to ∂B(xi,
1
2
s(xi)) using an gradient-like vector field for d(xi, .).

(Recall that there are no critical points for xi at distance > δis(xi).) Thus for sufficiently
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large i we have constructed a decomposition as in case (iii) of the proposition.

6.6.3 Proof of the main result

In this section we complete the proof of Theorem 6.1.10. As explained in section 6.1,

Theorem 6.1.10 together with Corollary 2.3.3 implies our main result Theorem 6.1.12,

which can be further reduced to Corollary 6.1.14 by the Ricci flow argument 6.1.13.

In addition to θ̄ > 0 from section 6.6.2, we fix some 0 < µ̄ ≤ µ2 with µ2 as in Proposition

6.6.5. We set v = v(θ̄, µ̄). Then our discussion so far implies the following:

Let (O, g) be a closed connected 3-orbifold with sec 6≥ 0 and rad(O) ≥ 1
2
ρ−b2 for some

−b2 ∈ [−1, 0) and which contains no bad 2-suborbifold. Suppose that (O, g) is (v,−b2)-

collapsed with (v, s0, K)-curvature control on scale ρ−b2 . Then O admits a decomposition

according to its coarse stratification into finitely many components of the following kind:

total spaces of orbifold fibrations with 1-dimensional fibers, tubes and necks with cross

sections of Euler characteristic χ ≥ 0, and humps which are solid toric, 3-discal or homeo-

morphic to (Σ × [−1, 1])/Z2 as in Proposition 6.6.5.

There are three possibilities for every end of a neck or hump: If the end is thin, a hump

ends in a neck and vice versa. If the end is thick and meets no tubes, it intersects one of

the components with 1-dimensional fibration. In this case the end is toric and vertically

saturated with respect to this fibration. Finally, there is the possibility that a thick end

meets precisely two tubes and one of the components with 1-dimensional fibration. The

boundary component of such an end can then be further decomposed into cross sections of

the two tubes and an annular part between them which again is vertically saturated with

respect to the 1-dimensional fibration. The end can be spherical or toric depending on the

Euler characteristic of the tube cross sections.

In order to complete the proof of Theorem 6.1.10 it therefore suffices to show that after

performing a finite number of surgeries such a decomposition can be simplified to a graph

decomposition.

Because O admits no bad 2-suborbifolds, the cross sections of all necks must be spherical

or toric. We perform surgery across all necks with spherical cross section. If such a neck

bounds a discal component or one of type (Σ × [−1, 1])/Z2 for some closed spherical 2-

orbifold Σ (corresponding to a hump at a thin end of the neck) the resulting summmand

is a finite quotient of S3. Similarly, if O is a cyclic neck with spherical cross section, it is

decomposed by one surgery into a finite quotient of the 3-sphere. We also perform surgery

along the boundaries of all components of type (Σ × [−1, 1])/Z2 with spherical Σ which

are not adjacent to a neck, i.e. coming from humps with thick ends.

The orbifold O may now be disconnected. We discard all spherical summands. Every
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remaining summand admits a decomposition as above without necks with spherical cross

sections or humps of type (Σ × [−1, 1])/Z2 for spherical Σ.

Let V be a 3-discal component of this decomposition. It meets two coarse edges of O;

let T and T ′ be the corresponding tubes. (We do not exclude the case T = T ′.) Due to

Euler characteristic reasons, at least one of the tube cross sections ΣT , ΣT ′ must be discal.

If both are discal, then the two cross sections must be homeomorphic because otherwise

∂V would be a bad 2-suborbifold of O. In this case, V is homeomorphic to ΣT × [0, 1]

and we can replace the union T ∪ V ∪ T ′ by a single tube with cross section ΣT , thereby

simplifying the decomposition.

Because of the finiteness of the decomposition of O, after repeating this step a finite

number of times we can assume that no 3-discal component of the decomposition of O

meets two tubes with discal cross section.

Consider now a tube T with discal cross section. If T is cyclic, it is homeomorphic to

a fibration over S1 with discal fiber and hence to a solid toric 3-orbifold with boundary. If

T is linear, it ends in two 3-discal components V1 and V2 such that the other tubes ending

in the Vi have annular cross section. In this case, the union V1 ∪T ∪V2 is again solid toric,

cf. the discussion after Proposition 3.5.2. By considering these solid toric suborbifolds as

components of our decomposition, we therefore can assume that all tubes occuring in the

decomposition of O have annular cross section.

We recall from sections 6.5.2 and 6.5.4 that for each remaining tube T (which now must

have annular cross section) intersecting the total space U of a fibration with 1-dimensional

fiber, the two (smooth) fibrations of U and T can be matched on the 2-suborbifold T ∩U .

Since every annular 2-orbifold inherits an orbifold fibration with 1-dimensional fiber from

the fibration of the annulus by circles, we can extend the fibration of U to a Seifert fibration

of T ∪ U .

We have now obtained a decomposition along disjoint embedded toric 2-suborbifolds

into components which are total spaces of orbifold Seifert fibrations, solid toric suborbifolds,

necks with toric cross section and components of type (Σ × [−1, 1])/Z2 with toric Σ.

This decomposition now is graph (cf. section 2.2.2). The proof of Theorem 6.1.10 is now

complete.
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boundary

In this section we extend the results of the previous one to a somewhat larger class of

volume collapsed 3-orbifolds.

We define a hyperbolic orbifold cusp to be a complete 3-orbifold with boundary which

is isometric to the quotient of a horoball in hyperbolic 3-space by a cocompact isometric

group action. Thus, a hyperbolic orbifold cusp is diffeomorphic to Σ2 × [0,∞) for some

toric orbifold Σ2 (by Bieberbach’s theroem). With the construction of the Ricci flow

with surgery in mind (cf. [Pe03] and [KL10] for orientable manifolds), we will consider

hyperbolic orbifold cusps with sectional curvature equal to −1
4
.

Definition 7.0.1 (Almost cuspidal ends). A Riemannian 3-orbifold (O, g) with bound-

ary has (v, s0)-almost cuspidal ends if for every component C ⊂ ∂O there is a hyperbolic

orbifold cusp XC such that the pairs (N100(C), C) and (N100(∂XC), ∂XC) habe distance

≤ v in the Cs0-topology.

The following theorem generalizes Theorem 6.1.12 to locally volume collapsed 3-orbifolds

with almost cuspidal ends (compare again [Pe03, Theorem 7.4], [MT08, Theorem 0.2] and

[KL10, Theorem 1.3]).

Theorem 7.0.2. Let s0 ∈ N and let K : (0, ω3) → (0,∞) be a function. If s0 is sufficiently

large, then there exists a constant v0 = v0(s0, K) ∈ (0, ω3) such that the following holds:

If (O, g) is closed or compact with (v0, s0)-almost cuspidal ends, is (v0,−1)-collapsed, has

(v0, s0, K)-curvature control below the scale ρ−1 and contains no bad 2-suborbifolds, then O

is either closed and admits a C5 Riemannian metric with sec ≥ 0, or satisfies Thurston’s

Geometrization Conjecture.

Again, we can use Theorem 6.1.13 to simplify the result of the theorem:

Corollary 7.0.3. Let s0 ∈ N and let K : (0, ω3) → (0,∞) be a function. If s0 is sufficiently

large, then there exists a constant v0 = v0(s0, K) ∈ (0, ω3) such that the following holds:
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If (O, g) is closed or compact with (v0, s0)-almost cuspidal ends, is (v0,−1)-collapsed, has

(v0, s0, K)-curvature control below the scale ρ−1 and contains no bad 2-suborbifolds, then

O is satisfies Thurston’s Geometrization Conjecture.

Proof. Throughout the following proof, we choose s0, θ̄, µ̄ and v = v(θ̄, µ̄) as in the proof

of Theorem 6.1.10.

If (O, g) is closed, (v,−1)-collapsed, has (v, s0, K)-curvature control below scale ρ−1

and contains no bad 2-suborbifolds, we have already shown that the theorem holds.

We therefore now suppose that (O, g) has at least one ((v, s0)-cuspidal) end. In this

case, we first observe that ρ−1(x) ≈ 4 near a boundary component C, say on A(C, 10, 90).

This means that there are points x ∈ O with diamO >> 2ρ−1(x). Hence collapse to a

point cannot occur and we can work with −b2 = −1. (In other words, we do not need to

make use of the more general setting of Theorem 6.1.10.)

After decreasing v if necessary, we obtain that every point x close to a cuspidal end

(again, say on A(C, 10, 90) for a boundary component C ⊂ ∂O) admits a < θ̄-straight

1-strainer of length ŝµ̄,−1(x) almost orthogonal to level sets of d(C, .). In particular, we

conclude A(C, 10, 90) ⊂ Sθ̄,µ̄,−1.

We fix this new value of v and suppose from now on that (O, g) is compact with (v, s0)-

almost cuspidal ends and (v,−1)-collapsed, has (v, s0, K)-curvature control below scale ρ−1

and contains no bad 2-suborbifolds.

We now define the cusped necks of O to be the closed sets N25(C) for all boundary com-

ponents C ⊂ ∂O. On the neighbourhoods N90(C) of the cusped necks, we have smooth

gradient-like vector fields VC for the distance function d(C, .). Cusped necks are homeo-

morphic to Σ2 × [0, 1] for some toric 2-orbifold Σ2. Throughout the following discussion,

we are only interested in the ends of cusped necks which are not boundary components of

O.

By construction, cusped necks are disjoint from each other; they are also disjoint from

the humps in O \
⋃
C N10(C) by 5.3.2 (i).

We will now show how cusped necks can be integrated in our decomposition of O

according to its coarse stratification much like humps. As with humps, we call the end of a

cusped neck thin if there are (θ̄, µ̄,−1)-necklike points in N50(C). This occurs in particular

if the diameter of {d(C, .) = 25} is not too large, say ≤ θ̄
401
200 s1(µ̄,−1). (Remember that

we have seen ρ−1 ≈ 4 on a large neighbourhood of the end, so the above condition means

that the diameter is of order θ
401
200 ŝµ̄,−1 for all points in this neighbourhood.) A thin end of

a cusped neck corresponds to the thin end of a neck (as defined in 6.5.3) and the interface

can be matched up using he flow of VC .

Similarly, we say that the end of a cusped neck is thick if the diameter of {d(C, .) = 25}
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is sufficiently large, say ≥ θ̄
49
20 . In this case, we can proceed as we did for humps in section

6.5.4 and construct a 1-dimensional fibration on all or almost all of {d(C, .) = 25}, with

the possible exception of two tube cross sections. We also can perturb {d(C, .) = 25} such

that it intersects the tubes (if there are any) in tube cross sections (again, using the flow

of VC). If the end of a cusped neck intersects two tubes, it follows immediately that both

tubes have annular cross sections.

We now proceed to construct a decomposition of O as we did in the closed case. Af-

ter adjusting the interfaces of the different components of the decomposition (using our

Waldhausen-type arguments) and performing a finite number of surgeries we again obtain

components which are spherical or admit a further decomposition along (piecewise smooth)

toric suborbifolds into pieces which are orbifold Seifert fibrations, solid toric suborbifolds,

necks with toric cross section or components of type (Σ × [−1, 1])/Z2 with toric Σ. (The

new components coming from cusped necks of O are topologically of the same kind as

necks with toric cross sections.) These decompositions are again graph, which by virtue of

Corollary 2.3.3 completes the proof of the theorem.
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