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Scheme 1. Overview of the Schiff base-like tetradentate equatorial ligands discussed in this work and the used 
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Scheme 2. Overview of the bidentate axial ligands discussed in this work and the used abbreviations. 
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1 Introduction 

The research on novel magnetic materials for application is confronted with two great 

challenges. On the one side, in the course of technological development in micro-electronics, 

the miniaturisation of the employed magnetic components plays an increasing role, which will 

certainly end up on the molecular scale.[1] As miniaturisation with a top-down approach is 

limited by the spatial resolution of the lithography, the manufacturing of such materials 

follows the bottom-up approach, which uses the concepts of molecular self-assembly or 

molecular recognition to cause single molecules into some useful conformation.[1,2] The 

current challenge in this field is to control the cluster size towards the levels required whilst 

retaining the magnetic/cooperative properties.[1,3] On the other side, conventional inorganic 

magnetic materials (metals, oxides, alloys) are still unrivalled in many fields. Despite 

disadvantageous metallurgical manufacturing processes, their application-specific 

characteristics like magnetic saturation, the coercivity field or critical temperature can be 

modulated over a broad spectrum.[4] Thus, the development of novel molecule-based 

magnetic materials does not primarily aim for optimising these magnetic characteristics, but 

for the combination of magnetic properties with interesting material properties from the 

technological point of view. Therefore, this field of research is focussed on the creation of a 

complete new branch of multifunctional magnetic materials.[4] As an example, the 

combination of magnetic and optical properties envisions applications in the field of display 

devices.[1,5]    

Materials that show magnetic switching such as spin crossover (SCO), where multiple 

electronic states can be accessed through variation in external stimuli like temperature, 

pressure and light, have been identified as a viable class of materials for incorporation into 

devices and potential applications[3]—in particular, when they show properties that depend on 

the history of the system, which results in hysteresis.[6] This confers bistability on the system 

and thus a memory effect, which is of great interest as this aspect holds the potential for 

exploitation in display and memory device units,[1,5] sensing devices[7] and cold channel 

control units in food and medical storages.[8] In this regard, a rapid development of 

multifunctional SCO materials has begun.[9] The current stage of investigation is focused 

much on the interplay and synergic effects between SCO, magnetic coupling, liquid 

crystalline properties, host-guest interactions, non-linear optical properties, electrical 
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conductivity and ligand isomerisation,[9,10,11] or is attended to the rational design of nano-

structured SCO materials and their chemical and physical properties.[12] However, the 

purposeful design and synthesis of such materials is still a great challenge for preparative 

chemists. Having this in mind, this work focuses not only on the synthesis and 

characterisation of new SCO compounds with interesting magnetic behaviour, but also on the 

development of new concepts to understand and explain the observed results. 

1.1 Thermal Spin Transition 

The thermal induced spin transition (ST, spin crossover, SCO) is one of the most fascinating 

and most extensively explored dynamic electronic structure phenomena in coordination 

chemistry and a very promising type of molecular magnet. SCO materials can be switched on 

the molecular level between two (or more) different electronic states, which can be easily 

detected by different means, as the switching progress is associated with a change of the 

physical (magnetic, optical) properties.[5,6] Similar as observed for ferromagnetic materials, 

the switching process may be accompanied by hysteresis effects, but in contrast, this is due to 

a spin state change of the SCO system, in the best of cases between the paramagnetic high-

spin and diamagnetic low-spin state, instead of a re-orientation of the magnetisation. Besides 

temperature, other external physical parameters such as pressure, magnetic fields or 

electromagnetic radiation, here the most thoroughly investigated and most interesting 

phenomenon is the LIESST-effect,[13] or chemical parameters such as counter-ions, 

substituent and solvent effects influence the spin transition. These aspects are well understood 

by now. A long time has passed by, since the first observation of a thermal spin crossover 

complex by Cambi et al. in 1931[14] and the first characterisation of an iron(II) SCO complex 

in 1964.[15] From then on, this field of research has experienced a lively development. One 

primary focus has been the nature of the cooperative interactions between the spin state 

changing complex molecules; these have been recognised as being responsible for special 

features of the spin transition characteristics such as temperature and abruptness of the 

transition and hysteresis effects.[9a] However, the occurrence of hysteresis is to date hardly 

predictable and not yet fully understood. There are two principal explanations for the origin of 

hysteresis during a spin transition: the transition may be associated with a structural phase 

change in the lattice; or the intramolecular structural changes that occur along with a 

transition may be propagated throughout the solid to neighbouring molecules via a highly 
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effective cooperative interaction between the molecules.[6e] The mode of this interaction is not 

always clear, but three principal strategies have been adopted in an attempt to generate it: (i) 

incorporation of aromatic moieties into the ligand structure which promote π-π-interactions 

through stacking throughout the lattice (this also includes van der Waals interactions): a 40 K 

wide hysteresis loop was reported due to π-stacking;[16] (ii) incorporation of hydrogen 

bonding centres into the coordination environment allowing interaction either directly with 

other SCO centres or via anions or solvate molecules: a 70 K wide hysteresis loop was 

observed due to a two-dimensional hydrogen bonding network;[17] (iii) linkage of the spin-

active metal centres via covalent bonds to dinuclear systems or via covalent bridging 

molecules (linkers) to coordination polymers. This idea was suggested by Kahn et al., in order 

to get control over the expansion of intermolecular interactions more efficiently compared to 

“non-covalent” interactions mentioned at (i) and (ii).[18] This resulted in the synthesis and 

characterisation of several iron(II) SCO coordination polymers in the recent years, especially 

one-dimensional coordination polymers as well as dinuclear systems that exhibit e.g. a N4O2-

coordination sphere.[19a]  

The thermal spin crossover of single molecules in solution is always gradual and follows a 

Boltzmann distribution, as all packing effects are switched off.[6c] In the solid state, such a 

spin transition curve can be observed, too, but extensive cooperative interactions give rise to 

various spin transition behaviours including the occurrence of hysteresis, as displayed in 

Figure 1.  

Several chemical parameters influence the spin transition behaviour: non-coordinated counter-

ions or solvent molecules incorporated in the crystal lattice may enhance or diminish 

cooperativity;[20] the substitution of ligands or different substituents at the ligand may 

influence the ligand field strength, as could be shown on N4O2-coordinated iron(II) 

compounds, for example;[19] isotope effects have been observed upon partly deuteration of the 

investigated complexes.[21] Moreover, the preparation of the sample can play a significant 

role: grinding of a crystalline compound may cause crystal defects which disturb the 

cooperative effects.[22] 

 



1. Introduction 

 

 

 

  
 4 
  

 

Figure 1. Schematic representation of the different types of thermal spin transition (high-spin fraction (γHS) vs. 
temperature (T)) observable in the solid state: a) gradual; b) abrupt; c) with hysteresis; d) stepwise; e) 
incomplete. The spin transition temperature T½ is defined as the temperature at which 50% of the SCO-active 
complex molecules have changed their spin state.[6e] 

1.2 Theoretical Aspects of the Spin Crossover 

In principal, spin crossover is feasible for ions with d4–d7 electronic configuration and is 

observed for all these in octahedral coordinated complexes of first transition series ions.[6e] In 

these cases, a spin state with maximum (low-spin, LS) and minimum (high-spin, HS) spin 

pairing is thinkable, depending in first approximation on the ligand field splitting energy � (or 

parameter 10Dq) relative to the mean spin pairing energy P (HS: � << P; LS: � >> P). Of the 

ions which do show typical spin crossover behaviour, the largest number of examples is found 

for the configuration d6 and among these, iron(II) accounts for the vast majority: for Fe(II), on 

the one side, the low-spin d6-configuration has maximum ligand field stabilisation energy; on 

the other side, the relatively large Fe(II) ion induces a weaker ligand field in most ligands, 

contrary, for example, to the smaller Co(III) ion, at which the LS configuration is almost 

always adopted. Hence spin pairing is not so strongly favoured and it is possible to obtain 

relatively stable high-spin (S = 2) or low-spin (S = 0) complexes for a broad range of 

ligands.[6e]  
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Whether a complex shows spin crossover or not, decisively depends on the ligand field 

strength. The Tanabe-Sugano-diagram[23] of Fe(II) (Figure 2) displays that, for complexes 

with weak-field ligands, the HS-5T2-state results as the ground state, which arises from the 
5D-ground state of the free ion. With increasing 10Dq the energy of the LS-1A1-state, which 

arises from the 1I-state of the free ion, is rapidly decreased compared to the 5T2-state. Thus, 

from a critical ligand field strength �crit on, the LS-1A1-state becomes the ground state, 

synonymic to Fe(II) complexes with strong field ligands 

 

 

Figure 2. Tanabe-Sugano-diagram of an octahedral complex, calculated by using the Racah parameters[24] of the 
free iron(II) ion according to Tanabe and Sugano,[23] with the 5T2- (green) and the 1A1-state (blue) highlighted. 

However, as the ligand field splitting depends not only on the properties of the ligand but also 

on the metal-to-ligand distance r, the electronic energies of the particular spin states have to 

be considered as a function of r (Figure 3). Independent of the ligand properties, the 5T2-

potential well is shifted to a higher metal-to-ligand distance compared to the 1A1-potential 

well, as two electrons occupy the σ-anti-bonding eg-orbitals in the HS state (t2g
4eg

2 

configuration), whereas the six d-electrons are situated in the σ-non-bonding t2g-orbitals in the 

LS state (t2g
6 configuration), which affects the bond lengths in a minor degree. X-Ray 

structural studies on SCO iron(II) complexes have shown that the spin state depending metal-

to-donor atom bond length change amounts to significantly 5–10%.[6] The vertical shifting of 
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both potential wells relative to each other, on the contrary, strongly depends on the properties 

of the ligand. Spin crossover is expected, when the zero-point energy difference of both states 

(�E
0

HL = E0
HS − E0

LS) is in the order of magnitude of the thermal energy (kB T ≈ �E
0

HL ≈ 

200 cm−1 at T = 295 K). In this case, at low temperatures, the 1A1-state of lowest enthalpy is 

the thermodynamically stable ground state. On the other side, at temperatures higher than a 

critical temperature Tcrit, the 5T2-state becomes the thermodynamically stable state, as the 

entropy associated with the HS state is much larger than the entropy associated with the LS 

state and therefore the entropy gain overcomes the enthalpy loss.[5a] In detail, approximately 

25% of the total entropy gain accompanying the LS to HS change arises from the change in 

spin multiplicity. The major contribution originates from changes in the intramolecular 

vibrations.[6e,25] Against this background, ranges for 10Dq
HS and 10Dq

LS can be specified, at 

which HS, LS or SCO complexes are expectable (Scheme 1). 

 

Figure 3. Schematic representation of the HS-5T2- (green) and LS-1A1-potential well (blue) for an octahedral 
iron(II) complex in dependence of the metal-to-ligand distance (r). The crossing point of both wells (�crit) 
corresponds to the critical ligand field strength in the Tanabe-Sugano-diagram. 
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10Dq
HS < 11000 cm−1  HS complex 

10Dq
HS ≈ 11500–12500 cm−1 and  

10Dq
LS ≈ 19000–21000 cm−1 spin crossover complex 

10Dq
LS > 21500 cm−1 LS complex 

Scheme 1. 10Dq-ranges at which HS, LS or SCO complexes are expectable. 

1.3 Detecting the Spin Crossover 

There are various methods and techniques to follow a spin transition. A complete overview of 

the experimental methods that are commonly used is provided by Table 1. Most of these 

methods are aimed at the temperature-dependent determination of the magnetic 

susceptibility,[26] which reflects the momentary spin state in the value of the measured 

magnetic moment. Among these methods, the Gouy- and the Faraday-balance are the oldest 

examples, but both methods have become less important because they can only operate at 

ambient temperature. Modern methods like the Foner magnetometer (vibrating sample 

magnetometer) or the SQUID magnetometer use the effect of electromagnetic induction to 

determine the susceptibility depending on the temperature and the applied magnetic field. A 

SQUID is a very sensitive magnetometer, used to measure extremely weak magnetic fields. 

The basic principles of this device are related to superconductivity and quantum tunneling. 

Moreover, paramagnetic temperature-dependent NMR spectroscopy can be used to determine 

the magnetic susceptibility of a compound, especially in solution. However, the temperature 

range of this method is limited to the cold and boiling point of the solvent. The experimental 

NMR setup is known as the Evans-method,[27] which compares the absolute shifting of the 

nuclei in a paramagnetic solution with a diamagnetic reference by using an external reference 

signal. For some complexes, the SCO in solution can be directly evaluated by interpretation of 

the temperature-dependence of their 1H NMR chemical shifts, rather than interpreting the 

susceptibility.[28,29] 

Temperature-dependent X-ray structure analysis directly benefits from the structural changes 

following a spin transition and provides information on the metal-to-ligand bond lengths and 

angles within the inner coordination sphere of the central ion depending on its spin state. 
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A further important method, in particular for 57Fe containing samples, is Mössbauer 

spectroscopy,[30] which is based on the recoil-free resonant absorption and emission of gamma 

rays in solids. This method probes tiny changes in the energy levels of an atomic nucleus in 

response to its environment. The mainly observed types of interaction are the isomer shift, 

which provides information about the spin state and the oxidation state, and the quadrupole 

splitting, which is influenced by the spin state and the coordination sphere of the central ion. 

Due to the high energy and extremely narrow line widths of gamma rays, Mössbauer 

spectroscopy is one of the most sensitive techniques.[31] 

Heat capacity measurements (e.g. differential scanning calorimetry (DSC)) on SCO 

compounds provide important thermodynamic quantities, such as enthalpy or entropy changes 

accompanied with a spin transition, moreover, the transition temperature and the order of the 

transition.[6e,25] 

Table 1. Overview of the experimental methods most commonly used to follow a spin transition. 

analytical method characteristic value 

Magnetic measurements magnetic susceptibility 

(effective magnetic moment) 

Calorimetry heat capacity 

Mössbauer spectroscopy isomer shift, quadrupole splitting 

NMR spectroscopy paramagnetic chemical shift, 

magnetic susceptibility  

Vibrational spectroscopy metal-ligand vibrational wavenumber 

UV-Vis spectroscopy d-d/CT excitation energy 

X-Ray structure analysis metal-to-ligand distance 

EXAFS measurements metal-to-ligand distance 
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2 Summary 

2.1 The Ligand System 

This work deals with the synthesis and characterisation of new one-dimensional iron(II) SCO 

coordination polymers which exhibit an octahedral N4O2-coordination sphere around the iron 

centres. On the one side, new tetradentate equatorial ligands were synthesised, which base on 

the Schiff base-like ligand system developed by Jäger et al.
[32] On the other side, new 

bidentate bipyridine and bisimidazole derivatives were synthesised which, offer the ability to 

link the complexes at the axial position to infinite 1D chains. Through specific variation of 

functional groups at the equatorial ligands (e.g. hydroxy groups, phenyl groups), it was 

possible to optimise the interactions between the chains (inter-molecular interactions, e.g. 

hydrogen bonds, π-stacking). These functional groups also influence the ligand field at the 

central atom, but this effect plays a minor role for the system presented here.[19] 

The free equatorial ligand offers two possible tautomeric structures with enol-imine 

functional groups or keto-enamine, respectively. Using the example of the newly developed 

ligand H2L1c, it could be proven by 1H NMR-spectroscopy (Figure 4) and X-ray structure 

analysis (Figure 5) that the equilibrium is shifted to the keto-enamine structure.[33] This is in 

contrast to classic Schiff base ligands like the salen ligand, for example. Upon coordination to 

a metal centre, the bond lengths of the conjugated π-system of the deprotonated ligand 

indicate a balance between both contributing structures and a delocalisation of the negative 

charge over the six-membered chelate ring.[33] 

Manifold combinations from a ligand pool, containing 9 axial and 9 equatorial partial newly 

developed ligands, allowed the synthesis of numerous SCO compounds with versatile spin 

transition behaviours: from gradual or abrupt, to stepwise and with thermal hysteresis. 

Through detailed investigation of the outcomes of magnetic measurements, X-ray structure 

analysis, Mössbauer spectroscopy, DSC and paramagnetic NMR spectroscopy in solution, 

new models were developed in this work to explain the formation of stepwise spin transitions 

and wide thermal hysteresis loops, as observed for some of the compounds presented. On the 

way to the purposeful synthesis of SCO materials and a better understanding and 

predictability of the SCO phenomenon, this is highly important.   
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Figure 4. 1H NMR spectrum (in CDCl3) of the free equatorial ligand H2L1c with the signal assignment and the 
thinkable tautomeric structures “keto-enamine” (left) and “enole-imine” (right) given.  

 

 

 

 

Figure 5. Molecular structures of the free equatorial ligand H2L1c and the corresponding iron(II) complex with 
methanol as axial ligands. For comparison the bond lengths [Å] of the conjugated π-systems are given. The 
hydrogen atoms at the complex structure were omitted for clarity. 
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2.2 The Purposeful Design of Stepwise Spin Transitions 

A quite often observed behaviour of 1D SCO coordination polymers synthesised so far, was a 

stepwise or incomplete spin transition with an intermediate plateau at 50% HS residue. Next 

to highly cooperative systems, stepwise transitions between three or more states attracted the 

interest of several research groups, because of the versatile switching possibilities.[34] To date, 

three different models are discussed for describing stepwise spin transitions. The most 

common among these are systems that have multiple crystallo-graphically distinct metal 

centres at all temperatures, which undergo the spin transition at different temperatures.[29,35] 

Secondly, there are examples that undergo structural phase transition in which one unique 

metal site at high temperatures converts to two sites upon cooling through the first step.[36,37] 

Lastly, and most often related to dinuclear complexes, this type of SCO is explained with the 

formation of [HS-HS], [HS-LS] and [LS-LS] spin pair states.[34]  

To define rules for the purposeful synthesis of 1D SCO materials with two-step spin 

transitions, these phenomenological models are not applicative. In this work, detailed 

investigations on one-dimensional SCO coordination polymers provided a decisive insight 

into the influence of covalent linkers on the spin transition properties. The outcomes of 

magnetic measurements led to the conclusion that no magnetic interactions are mediated over 

the bridging axial ligands,[38] which is essential for the formation of spin pair states, as 

mentioned before. The results demonstrated in addition that covalent linkers do not have the 

ability to directly transmit elastic interactions within the crystal lattice, but indirectly, as the 

number of intermolecular contacts (hydrogen bonds, van der Waals interactions, π-stacking) 

is increased.[19a] Moreover, they can be used to optimise the packing of the molecules in a 

crystal engineering-like approach.[19a] The outcomes of X-ray structure analysis revealed that 

the type of spin transition correlates well with the “flexibility” of the bridging ligand and the 

resulting chain structure, as displayed in Figure 6: for rigid linker molecules like 4,4′-

bipyridine, more often SCO compounds with hysteresis were detected, whereas flexible 

ligands like 1,3-bis(4-pyridyl)propane or bis(1-imidazolyl)methane, which result in the 

formation of pronounced zigzag chain structures, more likely led to stepwise spin transitions, 

even if all iron centres are crystallographically equivalent in the HS state.[39] With regard to 

the plateau in the transition curve, the width of the step (culminating in incomplete spin 

transitions) is strongly dependant of the intensity of intermolecular contacts, as without the 

occurrence of significant interactions only gradual SCO were observed.[39,40]  



2. Summary 

 

 

 

  
 12 
  

 

 

 

Figure 6. Excerpts of the chain structures and the corresponding magnetic measurements of compounds 
[FeL1b(bipy)] (top, ST with hysteresis), [FeL1b(bpea)] (middle, stepwise ST with hysteresis) and [FeL1b(bppa)] 
(bottom, stepwise ST). 
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The findings about the influence of the bridging ligand on the spin transition behaviour 

gathered in this work, allowed the development of a concept for the rational design of spin 

crossover materials with stepwise spin transition in 1D chain compounds: a HS to LS 

transition involves a relocation of the ligands towards the smaller LS molecule. If the 

distances of neighbouring metal centres within a chain structure cannot exactly follow the 

changes of the metal-to-ligand bond length at the LS centre due to restraining interactions 

(sterical hindrance), then the corresponding bonds at the neighbouring centres are elongated 

and thus the HS state is stabilised (Figure 7). For bridging ligands which lead to pronounced 

zigzag structure motives restraining interactions can be more easily imagined compared to 

linear chains.[39]  

 

 

 

Figure 7. Top: schematic representation of the intrachain bond length changes upon SCO to illustrate the 
formation of stepwise spin transitions. Bottom: excerpt of a pronounced zigzag chain structure with alternating 
HS-LS centres along the chain (X = CH2, n = 0–3). 
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2.3 Spin Transitions in Solution 

The investigation of spin transitions in solution is a valuable tool to prove the influence of 

intermolecular interactions or covalent linkers on the spin transition temperature, as in 

solution all packing effects are switched off.[28]  

In this work, for the first time, the spin transition of two iron(II) SCO coordination polymers, 

which exhibit stepwise spin transitions in the solid state, was followed in solution by 

temperature-dependent paramagnetic 1H NMR-spectroscopy.[39] The outcomes for complex 

[FeL1a(bppa)] are shown in Figure 8. The signal assignment confirmed that all iron centres 

retain their octahedral coordination sphere and therefore, the 1D coordination polymers are 

still intact in solution. In comparison with the corresponding solid samples, the obtained 

transition temperatures are abundantly clearly shifted to higher temperatures. Moreover, both 

complexes show gradual spin transitions in solution. These huge differences in SCO 

behaviour demonstrated that the extent of cooperative interactions as well as the transition 

temperature is significantly influenced by packing effects, and the covalent linkers do not 

propagate the cooperative effects.[39] 

 

 

 

 

Figure 8. Left: 1H NMR spectrum and signal assignment for iron(II) SCO coordination polymer [FeL1a(bppa)] 
in [D8]toluene at 75 °C (s = solvent). Right: HS molar fraction vs. temperature for [FeL1a(bppa)] followed in 
solution and in the solid state. 
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2.4 The Crystal Contact Index 

Aiming to quantitatively evaluate the influence of intermolecular interactions on spin 

crossover properties, the crystal contact index (CCI) was established, which correlates the 

sum of short contacts with the strength of the cooperative effect.[40] It provides a good 

estimation to accompany the structural interpretation of spin transition properties obtained by 

X-ray structure analysis and, moreover, allows a qualitative comparison between the SCO 

behaviour of different materials. Therefore, the CCI values of several mononuclear and 

dinuclear SCO complexes as well as coordination polymers were tabulated.[40] To some 

extent, the CCI can also be applied to other systems.  

It was found that, up to spin transitions with small hysteresis loops, the above described 

correlation is in agreement with the model of elastic interactions mediating the structural 

rearrangements during the cooperative SCO in the solid phase. In the case of spin transition 

compounds with wider hysteresis loops the correlation fails, which indicates that there are 

additional mechanisms responsible for cooperative interactions. The CCI can also be used to 

estimate, if solvent molecules included in the crystal packing contribute to the cooperative 

effects or have dilution effects.[40] 

2.5 The Solvent Effect 

The solvent effect describes the influence of molecules (solvent, ligand molecules or counter-

ions), which are additionally intercalated into the crystal lattice besides the complex, on the 

spin transition behaviour. This effect is hardly predictable, as, on the one side, there are 

examples at which the transmission of elastic interactions is improved (positive effect),[40,41] 

on the other side, it is well known that such molecules may have a dilution effect and by this 

inhibit intermolecular contacts (negative effect).[42] The SCO coordination polymer 

[FeL1a(bpea)][39] is an example of a positive solvent effect: for the solvent-free sample, only a 

gradual spin transition was observed, whereas the methanol-containing sample (one methanol 

molecule per asymmetric unit hydrogen bonded to the equatorial ligand) exhibited a 27 K 

wide hysteresis loop.  
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Figure 9. Top left: plot of the χMT product vs. T for the toluene-containing compound [FeL1a(azpy)]�tol (blue 
circles) and the solvent-free sample after being tempered at 400 K (black squares). Bottom left: Mössbauer 
spectra of [FeL1a(azpy)] (temp) at 80 K consisting of a LS quadrupole split doublet (red) with a wide line width 
suggesting two (or more) nonequivalent iron centres (blue, black). Right: molecule packing of [FeL1a(azpy)] 
projected in the ac-plane. 

An impressive example of a negative effect is the pair [FeL1a(azpy)]/[FeL1a(azpy)]·tol (tol = 

toluene),[43] which was thoroughly investigated in this work: the solvent-free system showed a 

two-step SCO with 110 K wide intermediate plateau (IP) at γHS = 50%, whereas the toluene-

containing sample (one toluene molecule per asymmetric unit) showed a gradual SCO, as 

shown in Figure 9. However, after being heated to 400 K, the loss of the included toluene 

molecules resulted in a two-step spin transition very similar to the solvent-free sample. To the 

best of our knowledge, the 110 K wide IP of [FeL1a(azpy)] is the widest obtained so far for 

1D coordination polymers. The related compound [FeL1c(azpy)] also provided a two-step 

SCO with 75 K wide IP.[43] This led to the presumption that the bridging ligand 4,4′-

azopyridine plays a decisive role regarding this phenomenon. The results of X-ray structure 

analysis and Mössbauer spectroscopy (Figure 9) for [FeL1a(azpy)] proved the presence of 

crystallographically distinct iron(II) centres, which are responsible for the occurrence of the 
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steps. A possible explanation for the broadness of the IP was found in the unusual molecule 

packing, as the one-dimensional chains are arranged in planar layers, rectangular to each other 

(Figure 9). This unusual arrangement leads to a very dense molecule packing with numerous 

short restraining interactions, similar as observed for zigzag chains[39] and an interlocking of 

the polymer chains, which counter-act the relocation of the system following the SCO.   

2.6 A New Model for the Explanation of Wide Hysteresis Loops 

Various potential applications for SCO materials with wide thermal hysteresis loops around 

room temperature are thinkable.[1,5,7,8] Therefore, it is very important to find an explanation 

for the occurrence of this phenomenon, as this is essential for a purposeful synthesis of such 

materials. The positive influence of hydrogen bonding in correlation with strong elastic 

interactions was never doubted and is well known in literature,[44,45] but fuelled by the 

observation of a 2D network of hydrogen bonds being responsible for the 70 K wide 

hysteresis loop of compound [FeL1a(Him)2]
[17], this field of research became a new impulse. 

Through ongoing research with this and two other compounds—an isostructural modification 

of [FeL1a(Him)2] with 5 K wide hysteresis loop and the 1D coordination polymer 

[FeL1d[azpy)]·MeOH, which shows a 80 K wide hysteresis loop with methanol and a gradual 

SCO without methanol incorporated in the crystal lattice—a consistent model for the 

explanation of wide hysteresis loops and the role of hydrogen bonds was developed.[46] 

X-Ray structure analysis revealed that these compounds have two characteristics in common: 

firstly, an intermolecular network of hydrogen bonds for the transmission of cooperative 

effects and secondly, one oxygen atom of the Schiff base-like ligand involved in a hydrogen 

bond, which therefore simultaneously acts as hydrogen acceptor and as Lewis base for the 

iron(II) centre. Through substitution of all hydrogen atoms involved in hydrogen bonds by 

deuterium, an isotope effect was observed in all cases, which affected the width of the 

hysteresis loops as well as the transition temperatures (see Figure 10, left).[46] In addition, the 

importance of hydrogen bonding is underlined by the outcomes of DSC measurements, as a 

considerable decrease of the entropy was observed upon deuteriation. These findings 

demonstrated that, first of all, changes in the hydrogen bond network (often, but not 

necessarily, in line with a structural phase transition) affect the spin transition behaviour and, 

second of all, hydrogen bonds significantly influence the ligand field strength, if donor atoms 
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coordinated to the metal centre or atoms in conjugated systems with donor atoms, are 

involved.[46]  

Based on this information, a new model for the explanation of the wide thermal hysteresis 

loops of these compounds was suggested.[46] According to that, a correlation between the 

structural changes upon spin transition, the hydrogen bond strength and the overall ligand 

field strength of the complex exists. Upon cooling, the structural changes result in a 

stabilisation of the LS state, as can be seen in Figure 10 (right). As a consequence, the energy 

gap between the LS and HS potential wells (∆EHL) increases and the transition temperature is 

shifted upwards upon heating. Of course, the same effects occur the other way round. Wide 

thermal hysteresis loops should be observed, if a large enough change in a hydrogen bond 

network involving donor atoms or atoms in conjugated systems with donor atoms is induced. 

Those changes can be associated with reversible structural phase transitions. This concept is a 

further step towards the purposeful design and application of SCO materials. 

 

  

 

Figure 10. Left: plot of the χMT product vs. T for compound [FeL1d(azpy)]�MeOH (black squares) and 
[FeL1d(azpy)]�CD3OD (red squares), indicating an isotope effect, and the gradual spin transition after tempering 
to 400 K (triangles). Right: schematic representation of the HS and LS potential wells before spin transition (LS 
dark blue) and after spin transition (LS light blue). Upon spin transition a change in the H-bond strength results 
in a different ligand field strength for the LS state and therefore a higher energy gap between the LS and HS state 
(∆EHL(1)  ∆EHL(2)). 
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2.7 Synthesis of SCO Compounds in a Crystal Engineering-like Approach 

To get beyond the classical trial-and-error finding of SCO materials that exhibit a hysteresis 

loop, a general idea was to systematically improve the spin transition behaviour of our 

compounds by the means of cooperative effects, using the principals of coordination bonding, 

hydrogen bonding and network design in a crystal engineering-like approach. The developed 

synthesis strategy included to increase the covalent character of our SCO compounds step by 

step by increasing their intermolecular interactions.[47] The principle of this idea is displayed 

in Figure 11: starting with the monomeric compound [FeL1b(1-meim)2]
[41] (1-meim = 1-

methylimidazole), a 2 K wide hysteresis loop was observed due to a two-dimensional network 

of weak van der Waals interactions. The transition from a monomeric ligand system to a 

dimeric system led to an increased cooperativity, as compound [Fe2L2b(1-meim)4]�1-meim[41] 

shows a 21 K wide hysteresis loop due to a 3D network of short intermolecular contacts. 

The implementation of covalent linker molecules, finally leading to the formation of 1D 

coordination compounds, which was the main part of this work, yielded in nearly 30 K wide 

hysteresis loops.[39] Again the transmission of elastic interactions was improved as can be 

seen at compound [FeL1b(bipy)] (Figure 11): a multitude of short contacts between the chains 

were found to be responsible for a 18 K wide hysteresis loop.[22,48] With introduction of 

specific variations at the axial (e.g. a peptide bond at the ligand N-(4-

pyridyl)isonicotinamide)[47] or equatorial ligands (hydroxy groups at the H2L3 ligand 

system)[49] it was possible to even intensify the formation of intermolecular interactions.[47] 

This resulted in a nearly 90 K wide hysteresis for compound [FeL1b(pina)]·x (MeOH), but 

unfortunately the mechanism is not yet fully understood at this example, and a 28 K wide 

hysteresis observed for compound [FeL3b(bpee)]�(bpee)(MeOH).[47] For both examples, no 

data from X-ray analysis were obtained so far.  

The successful transition from mononuclear to dinuclear systems and one-dimensional 

coordination polymers finally led to the connection of dinuclear systems with suitable 

bidentate bridging ligands in order to get dimeric coordination polymers and thus further 

optimise the intermolecular interactions. With the newly synthesised compound 

[Fe2L2a(bpee)]�1.5 tol, which exhibits a 34 K wide hysteresis loop and very likely a ladder-

like 1D double-strand structure, we were able to show for the first time that this strategy can 

be expanded this far.[47] 
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Figure 11. Transition from mononuclear to polynuclear systems. Schematic representation of the synthesis 
strategy to systematically increase the cooperativity of the iron(II) SCO compounds by increasing their covalent 
character in a crystal engineering-like approach.  
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Abstract: Eleven iron(II) 1D coordination polymers with the general formula [FeLeq(Lax)]· 

solvent were synthesised and characterised, where Leq = {diethyl (E,E)-2,2′-[1,2-phenyl-

bis(iminomethylidyne)]bis[3-oxobutanoate] (2-)-N,N′,O3,O3
′} (L1) and {3,3′-[1,2-phenyl-

bis(iminomethylidyne)]bis[pentane-2,4-dione] (2-)-N,N′,O2,O2
′} (L2); Lax = 4,4′-bipyridine 

(bipy), 1,2-bis(4-pyridyl)ethane (bpea) and 1,3-bis(4-pyridyl)propane (bppa) and solvent = 

MeOH, EtOH and toluene (tol). [FeL1(bpea)]·MeOH (3·MeOH) shows an abrupt one-step 

spin crossover with thermal hysteresis (27 K) and [FeL2(bppa)]·MeOH (2·MeOH), 

[FeL2(bpea)] (4), [FeL2(bpea)]·0.25 MeOH (4·0.25 MeOH) and [FeL1(bipy)]·MeOH 

(5·MeOH) show a two-step spin transition with an IP at γHS ≈ 0.5 (IP is intermediate plateau 

and γHS is high-spin mol fraction) and up to 50 K wide hysteresis loops (5·MeOH). 
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[FeL1(bppa)] (1), [FeL2(bppa)]·EtOH (2·EtOH) and [FeL1(bpea)]�1.5 tol (3�1.5 tol) show an 

abrupt incomplete spin transition that stops at γHS ≈ 0.5; for [FeL1(bppa)]·0.25 MeOH (1·0.25 

MeOH) and [FeL1(bpea)] (3) the spin transition is gradual and incomplete. The X-ray crystal 

structures of six complexes were determined (1, 2·MeOH, 3·MeOH, 3·1.5 tol, 4·0.25 MeOH, 

and 5·MeOH). In the case of 4·0.25 MeOH the crystal structures for the HS and LS states 

were determined; for compounds 1, 2·MeOH and 3·1.5 tol the crystal structures of the HS 

state and at the IP were investigated. For all complexes, the iron(II) centre is located in a 

distorted octahedral coordination sphere. Each axially coordinated ligand “connects” two 

iron(II) centres, which results in the formation of extended 1D chains with varying structures 

from linear (bipy) over steplike (bpea) to zigzag (bppa). Analysis of the intermolecular 

interactions reveals that the hysteresis width depends on both the stiffness of the axial ligand 

and the number of intermolecular contacts, while zigzag chains support stepwise spin 

transitions. 

4.1 Introduction 

The bistability of spin transition complexes (spin crossover, SCO) is one of the most 

promising characteristics for new electronic devices in molecular memories and switches as it 

may be controlled by different physical perturbations such as temperature, pressure or light. 

[1,2] Of the possible types of spin transition (gradual, abrupt, with hysteresis, stepwise, 

incomplete), much of the interest is focused on the bistability in highly cooperative systems 

(hysteresis or memory effect) as such compounds can exist in two different electronic states 

depending on the history of the system. Various examples in the literature[1,3] as well as in our 

group[4] demonstrate that the control over intermolecular interactions is a central point for the 

control of cooperative interactions. With regard to this we recently characterised an iron(II) 

spin crossover complex with a 70 K wide thermal hysteresis loop around room temperature 

based on a 2D network of hydrogen bonds between the complex molecules.[5] Next to highly 

cooperative systems, stepwise transitions between three or more states have attracted the 

interest of several research groups, because of the versatile switching possibilities.[6] This type 

of SCO is most frequently obtained for dinuclear complexes and explained with the formation 

of [HS-HS], [HS-LS] and [LS-LS] spin pair states (where HS and LS represent the local high-

spin and low-spin states of the dinuclear species with S = 2 and S = 0 for d6), which could be 

directly monitored, for example, by Mössbauer spectroscopy and switched selectively by 
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different wavelengths.[34] Results from DFT calculations agree with the conclusion of the 

phenomenological model, that the enthalpy of the [HS-LS] state must be lower than the 

average enthalpy of the [LS-LS] and the [HS-HS] states to create conditions for a two-step 

transition (assuming that in the [HS-HS] and [LS-LS] state both iron centres are equivalent).[7] 

Another possibility for having a multistep spin transition is attributed to two (or more) 

different spin crossover sites, each undergoing a transition at different temperatures.[8] Finally, 

there are examples of mononuclear complexes with a unique crystallographic iron(II) site 

where two nonequivalent iron(II) sites appear upon cooling as a result of a crystallographic 

phase transition. In these cases, the effects of ferromagnetic-type long-range and 

antiferromagnetic-type short-range interactions of an elastic origin are responsible for steps in 

the transition curve.[9,10] The most frequently used tool to assign SCO compounds with 

stepwise spin transitions to one of the three possibilities is X-ray structure analysis. The most 

obvious case (and also the most common one) is to have multiple crystallographic distinct 

metal centres at all temperatures. The often very subtle differences between the SCO sites are 

most likely the reason for the observed stepwise spin transitions. This also accounts for 

dinuclear complexes. The compound [Fe(NCS)2(ddpp)]2·4(CH2Cl2) (with ddpp = 2,5-(di-2-

pyridylamine)pyridine) was the first example of a dinuclear complex where an ordered [HS-

LS] state was observed at the intermediate-plateau (IP) temperature. However, this compound 

has two nonequivalent iron sites at all temperatures, which is most likely the reason for the 

stepwise spin transition.[11] Recently, the first examples of a 1D polymeric material 

undergoing a two-step spin transition were presented by Neville, Murray and co-workers.[12] 

Of the two compounds presented, results from X-ray analysis reveal that one 

([Fe(NCS)2(bdpp)], with bdpp = 4,6-bis(2′,2′′-pyridyl)prazine)) has two distinct iron(II) 

centres at each temperature with ordered, alternating HS and LS sites at the intermediate-

plateau temperatures. In contrast to this, the second compound ([Fe(NCSe)2(bdpp)]) has one 

unique iron(II) centre at each temperature with an averaged HS/LS character at the IP 

temperature. For both possibilities, a clear assignment to one of the types of stepwise spin 

transitions is difficult, and the reason for the step in the transition curve cannot be given 

without doubt.[12]  

One of the major goals in spin crossover research is to develop rules that allow the synthesis 

of spin crossover materials with predictable properties. Detailed magnetic and structural 

analyses of spin crossover systems in combination with a comparison between the different 
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systems are necessary to reach this point. The system investigated by our group is highly 

suitable for performing systematic investigations on structure-property relationships. The 

octahedral coordination sphere around the iron(II) centre is generated by an Schiff base-like 

N2O2 coordinating ligand that occupies the equatorial plane. With pyridine- or imidazole-

derivatives at the axial sites, SCO behaviour is observed quite frequently.[13] The replacement 

of the monodentate pyridine by bidentate ligands such as 4,4′-bipyridine (bipy), 1,2-bis(4-

pyridyl)ethane (bpea) or 1,3-bis(4-pyridyl)propane (bppa) results in the formation of 1D 

coordination polymers with the general formula [FeLeq(Lax)]·solvent. A schematic 

representation of the ligands discussed in this work is given in Scheme 1. The combination of 

two equatorial and three axial ligands in different solvents leads to a series of 13 compounds, 

summarised in Table 1, of which the pair [FeL2(bipy)] (6)/[FeL2(bipy)]·0.25 MeOH (6·0.25 

MeOH) is already published.[14] 

Detailed analyses of the structures and the magnetic properties of the remaining 11 

compounds and comparisons with known 1D chain SCO materials allow the development of a 

first concept on how spin crossover materials with stepwise spin transitions can be designed 

rationally and to confirm already existing ideas about cooperative interactions in chain 

compounds. 
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Scheme 1. Schematic representation of the ligands discussed in this work. 

 

Table 1. Overview of the compounds discussed in this work with the used abbreviations. 

Lax/Leq bppa bpea bipy 

H2L1 [FeL1(bppa)] (1)[a] [FeL1(bpea)]·1.5 tol 

(3·1.5 tol)[a] 

[FeL1(bipy)] (5)[b] 

 [FeL1(bppa)]·0.25 MeOH 

(1·0.25 MeOH)[b]  

[FeL1(bpea)] (3)[b] 

[FeL1(bpea)]·MeOH 

(3·MeOH)[c] 

[FeL1(bipy)]·MeOH 

(5·MeOH)[c] 

H2L2 [FeL2(bppa)]·EtOH 

(2·EtOH)[d] 

[FeL2(bpea)] (4)[b] [FeL2(bipy)] (6)[b],[14] 

 [FeL2(bppa)]·MeOH 

(2·MeOH)[b] 

[FeL2(bpea)]·0.25 MeOH 

(4·0.25 MeOH)[c] 

[FeL2(bipy)]·0.25 MeOH 

(6·0.25 MeOH)[c],[14] 

[a] Synthesised in or recrystallised from toluene; [b] synthesised in methanol; [c] crystals obtained by slow 
diffusion techniques in methanol; [d] synthesised in ethanol. 
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4.2 Results 

Magnetic susceptibility studies of thermally induced SCO: The thermal dependence of the 

χMT product (χM is the molar susceptibility and T temperature) for all compounds measured is 

given in Figure 1. For purposes of completeness, the results of the magnetic measurements on 

compounds 6 and 6·0.25 MeOH[14] are given as well. Characteristic values of the 

susceptibility measurements are summarised in the Supplementary material. The room 

temperature χMT value of all compounds, with the exception of 5·MeOH, are in the range of 

3.25 cm3 K mol−1, typical for an iron(II) complex in the HS state. For 5·MeOH, the room 

temperature moment is 2.19 cm3 K mol−1, which is significantly lower, but upon heating to 

350 K, the moment increases to reach a value of 3.20 cm3 K mol−1. Upon cooling (starting 

from the pure HS state), various types of spin transition can be observed for the compounds. 

A complete, one-step spin transition is observed for the previously published compound 6, 

which is accompanied by an 18 K wide thermal hysteresis loop (T½
↓ = 219 K, T½

↑ = 237 K)[14] 

and for 3·MeOH, which is accompanied by an 27 K wide thermal hysteresis loop (T½
↓ = 

155 K, T½
↑ = 182 K). For 1·0.25 MeOH and 3, the spin transition is gradual and incomplete, 

with remaining χMT products at 50 K of 1.09 cm3 K mol−1 and 0.68 cm3 K mol−1, respectively. 

All the other examples show either a two-step spin transition with an IP at γHS ≈ 0.5 

(2·MeOH, 4, 4·0.25 MeOH, 5·MeOH) or an incomplete spin transition that stops at γHS ≈ 0.5 

(1, 2, 2�EtOH, 3�1.5 tol). Compounds 5 and 6·0.25 MeOH[14] are HS in the entire temperature 

range investigated.  

The spin transition behaviour of 5⋅MeOH is more complex than those of the other examples: 

starting the magnetic measurement at room temperature, the χMT values decrease upon 

cooling, first gradually then more rapidly then again gradually from 2.19 cm3 K mol−1 to 

attain a minimum value of 0.46 cm3 K mol−1 at 175 K. The T½
↓ value is 255 K. Further 

cooling causes no significant decrease. The χMT value of 2.19 cm3 K mol−1 indicates that 

approximately two thirds of the iron(II) sites are in the HS state at room temperature. Upon 

heating, the χMT values increase between 200 and 280 K to attain a maximum value of 

1.76 cm3 K mol−1, which indicates that half of the iron (II) sites are in the HS state. The T½
↑(2) 

value of this step is 260 K. Above 280 K, the χMT values increase further to attain a maximum 

of 3.20 cm3 K mol−1 at 350 K, indicative of iron(II) in the HS state. The T½
↑(1) value of this 

step is 309 K. Between 245 and 300 K, the χMT values of the heating mode lie by an average 
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of 0.50 cm3 K mol−1 lower than the values of the cooling mode. When starting the magnetic 

measurement at 350 K, the χMT values remain approximately constant upon cooling at 

3.20 cm3 K mol−1 down to 270 K. Between 270 and 225 K, the χMT values rapidly decrease to 

a first minimum at 1.75 cm3 K mol−1. The T½
↓(1) value of this step is 245 K. Between 225 and 

190 K, the χMT values further decrease to 0.50 cm3 K mol−1. The T½
↓(2) value of the second 

step is 205 K. Below 190 K, the χMT values remain approximately constant. Upon heating, the 

χMT values increase rapidly between 200 and 250 K to attain a broad plateau at 

1.80 cm3 K mol−1. Here, the χMT values consequently lie lower than the values of the cooling 

mode. The T½
↑(2) value of this step is 220 K. Between 250 and 295 K, the χMT values remain 

constant. Above 295 K, the χMT values increase rapidly to a maximum value of 

3.20 cm3 K mol−1 at 320 K. The T½
↑(1) value of this step is 304 K, which results in a 50 K 

wide thermal hysteresis loop for the first step and 15 K for the second step. After the initial 

heating to 350 K, the hysteresis loop can be repeated several times. The varying curve 

progression for the first cycle and all following cycles can have different reasons. Obviously, 

the compound crystallises at room temperature in a mixed HS/LS state (approximately 60/40). 

Upon heating to 350 K the transition curves are shifted to lower temperatures and now a 

complete two-step spin transition is observed. The most likely explanation for this 

observation is a (partial) loss of the included methanol at 350 K. In order to check this theory, 

a TG analysis of compound 5⋅MeOH was performed and the results are given in the 

Supplementary material. Upon heating up to 348 K, approximately 60% of the included 

methanol is lost, and for a complete removal of the solvent, heating above 373 K is necessary. 

Consequently, further heating of the SQUID sample to 400 K results in a complete loss of the 

crystal solvent, and a pure HS compound is obtained as for the separately prepared powder 

sample. These solvent effects are entirely contrary to the effects observed for the pair 6/6·0.25 

MeOH, where the solvent-free compound 6 shows a complete SCO, while the methanol-

containing compound 6·0.25 MeOH is always HS.[14] 

Solvent effects are well known for SCO compounds and a similar dependence can be 

observed for the other chain compounds in this study. For 2·MeOH, upon heating to 400 K for 

60 min, the included solvent is removed, and the transition temperature is shifted to lower 

temperatures (from 168 to 115 K) accompanied with the appearance of a 10 K wide hysteresis 

loop (T½
↓ = 110 K, T½

↑ = 120 K). As a consequence, the second step of the spin transition is 

shifted from 91 K to a temperature somewhere below 80 K and is now kinetically trapped. 
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This becomes obvious in the heating mode of the susceptibility measurements of the tempered 

sample (2). A descent of the χMT value at 80 K is obtained when keeping the temperature 

constant for 60 min while the susceptibility was recorded every 5 min. As a result, the χMT 

values at 80 K drop over this period of time from 1.78 cm3 K mol−1 down to 

1.38 cm3 K mol−1. In the case of 2�EtOH (T½ = 116 K, no hysteresis), the transition 

temperature does not change significantly upon the loss of ethanol, and a 10 K wide thermal 

hysteresis loop is observed as for the tempered methanol sample (2). In contrast to this, the 

transition temperature of the first step of 4 (high-temperature step) is shifted to higher 

temperatures when going from the crystalline sample 4�0.25 MeOH to the solvent-free 

powder sample 4. This indicates that, in general, the influence of solvent effects on the SCO 

behaviour is difficult to predict without any further (structural) information. A strong 

dependence of the spin transition behaviour on included solvent molecules is also observed 

for the different compounds of 3. The gradual incomplete spin transition of the solvent-free 

powder sample 3 can be explained with the absence of significant interchain interactions. This 

example demonstrates that interchain interactions are important for the observation of 

cooperative effects, as already suggested for compound 6.[14] For the two crystalline samples, 

a similar transition temperature is obtained, but the thermal hysteresis loop is more 

pronounced for 3·MeOH (27 K, T½
↓ = 155 K, T½

↑ = 182 K) compared to 3⋅1.5 tol (4 K, T½
↓ = 

165 K, T½
↑ = 169 K). Additionally, the spin transition of 3⋅MeOH is a complete one-step 

transition, while for 3·1.5 tol it stops at γHS ≈ 0.5. 
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Figure 1. Plot of the χMT product vs. T for the different compounds discussed in this work. For completeness, 
the example of 6 and 6·0.25 MeOH[14] are given as well. [a] Tempered at 400 K for one hour; [b] heated to 
350 K. 
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X-Ray structure analysis: Full single-crystal X-ray diffraction structure and refinement 

details have been obtained for the compounds 1
HS, 1

HS-LS, 2
HS·MeOH, 2

HS-LS·MeOH, 

3
HS·MeOH, 3

HS·1.5 tol, 4
HS·0.25 MeOH, 4

LS·0.25 MeOH and 5
LS/LS·MeOH. In the case of 

4·0.25 MeOH, it was possible to determine the structure in the HS and LS states. For 

compounds 1, 2·MeOH and 3·1.5 tol (because of the low measurement quality of 3
HS-

LS·1.5 tol, the crystal structure can only be seen as a motif), it was possible to determine the 

molecule structure at γHS ≈ 0.5, in order to more clearly evaluate the reasons for the step in the 

transition curve. In the case of compound 3·MeOH, the crystals crumbled while cooling 

down. The motif of the X-ray structure of 6HS·0.25 MeOH was reported previously.[14] The 

crystallographic data and refinement details are summarised in Supporting Information, Table 

S1.1–3. Selected bond lengths and angles within the first coordination sphere of the iron 

centre are summarised in Table 2. ORTEP drawings of the asymmetric units of the 

compounds are given in Figure 2.  

In all complexes the iron(II) centres are located in distorted octahedral coordination spheres 

consisting of one equatorially coordinated tetradentate Schiff base-like ligand and two axially 

coordinated bis(monodentate) bridging ligands (bppa, bpea, bipy), bound through terminal 4-

pyridyl groups. Each bridging ligand “connects” two iron(II) centres, which results in the 

formation of extended 1D chains as given in Figure 3. The average Fe-N/O bond lengths and 

angles are within the range reported previously for similar mononuclear,[13] dinuclear[15] and 

polymer[14] HS and LS iron(II) complexes. For 3HS·1.5 tol, one ethoxy carbonyl side group of 

the equatorial ligand as well as one pyridyl ring of the axial ligand bpea are disordered.  

The contents of the asymmetric units for all compounds, with the exception of 5·MeOH, are 

made up of one crystallographically distinct iron(II) centre, when either the pure HS or LS 

state is expected, according to the results of the magnetic measurements. For compound 

5·MeOH, two crystallographically distinct iron(II) centres with slightly different crystal-

lographic environments can be found. In the range of the IP, the asymmetric units are doubled 

and contain two crystallographically distinct iron centres, of which one can be assigned to 

iron(II) in the HS state (Fe1) and one to iron(II) in the LS state (Fe2). 
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Figure 2. ORTEP drawing of the asymmetric units of the compounds discussed in this work, with the spin states 
of the iron(II) centres indicated at the top and the atom numbering scheme used in the text. The ellipsoids are 
shown with a 50% probability. Hydrogen atoms have been omitted for clarity. 



4. Two-Step versus One-Step Spin Transition in Iron(II) 1D Chain Compounds 

 

 

 

  
 44 
  

Table 2. Selected bond lengths [Å] and angles [°] within the first coordination sphere of the iron(II) complexes 
discussed in this work, with spin state S at temperature T.  

compound T/K S Fe-Neq Fe-Oeq Fe-Nax Oeq-Fe-Oeq Nax-Fe-Nax 

200 2 2.091(2)  

2.083(3) 

1.998(2)  

2.012(2) 

2.253(3) 

2.301(3)[d] 

107.47(9) 177.82(8)[d] 

2 2.078(3)  

2.073(2) 

1.994(2)  

2.007(2) 

2.236(3)  

2.283(3) 

106.92(8) 177.11(9) 

1 

100 

0 1.902(2)  

1.908(3) 

1.920(2)  

1.944(2) 

2.000(2)[e]  

2.011(2) 

89.09(9) 178.06(10)[e] 

225 2 2.081(2)  

2.098(2) 

2.013(2)  

2.011(1) 

2.266(2) 

2.239(2) 

109.64(6) 173.42(7) 

2 2.066(3)  

2.075(3) 

2.004(2)  

2.008(2) 

2.238(3)  

2.221(3) 

107.70(10) 172.64(11) 

2·MeOH 

125 

0 1.912(3)  

1.919(3) 

1.948(2)  

1.948(2) 

1.996(3)[f]  

2.035(3) 

92.09(9) 174.55(11)[f] 

200 2 2.094(4)  

2.115(4) 

2.034(3)  

2.016(3) 

2.218(4)[a]  

2.285(5)[b]  

2.291(3)[g] 

110.98(13) 175.81(2)[a,g] 

169.23(2)[b,g]  

2[c] 2.12/2.11 2.04/2.05 2.26/2.22 112.3 173.3 

3·1.5 tol 

 

0[c] 1.91/1.89 1.96/1.95 2.00/2.00 90.1 176.5 

3·MeOH 200 2 2.102(2)  

2.091(2) 

2.013(2)  

2.027(2) 

2.279(2)  

2.256(2)[h] 

109.80(6) 174.29(7)[h] 

293 2 2.087(2)   

2.083(2) 

1.997(2)   

2.015(2) 

2.259(2)  

2.293(2) 

109.85(7) 176.47(8) 4·0.25 

MeOH 

7 0 1.899(3)  

1.892(2) 

1.937(2)   

1.937(3) 

2.012(3)  

2.032(3) 

91.15(10) 176.86(10) 

175 0 1.903(3) 

1.909(3) 

1.926(3)  

1.939(3) 

1.992(4)  

1.996(4)[i] 

87.90(11) 176.49(12)[i] 5·MeOH 

175 0 1.901(3) 

1.898(3) 

1.935(3)  

1.939(3) 

1.981(4)  

2.009(4)[i] 

88.07(11) 176.78(12)[i] 

[a] Related to N3A; [b] related to N3B; [c] values take from a structure motif due to low refinement quality; 
symmetry codes: [d] −1 + x, ½ − y, −½ + z; [e] −1 + x, y, z; [f] −1 + x, y, −1 + z; [g] x, y, −1 + z; [h] −1 + x, 
1 + y, z; [i] 1 + x, y, z. 
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Compounds 1
HS (P21/c) and 2

HS·MeOH (C2/c) crystallise in monoclinic space groups, and 

3
HS·1.5 tol and 3HS·MeOH in the triclinic space group 1P . For 1HS-LS, 2HS-LS·MeOH and 3HS-

LS·1.5 tol, the change in the spin state at the iron(II) centres upon cooling can easily be 

followed by observing the O-Fe-O angle, the so-called bite of the equatorial ligand, which 

changes upon spin transition from about 110° in the HS state to about 90° in the LS state. 

Moreover, a characteristic shortening (ca. 10%) of the bond lengths occurs within the first 

coordination sphere. There are two different reasons for the change in the size of the 

asymmetric unit: for 2
HS·MeOH, upon cooling to 125 K, the symmetry of the system is 

reduced from C2/c to P21/c, half of the systematic extinctions observed at 225 K have 

vanished, as displayed in Figure 4. Consequently, the asymmetric unit of 2
HS-LS·MeOH 

consists of two crystallographically distinct iron(II) centres, as mentioned before. A one-

dimensional chain of alternating HS and LS iron centres is formed as given in Figure 6. In 

contrast to this, at 1HS
 no change in the symmetry of the system is observed relative to 1HS-LS, 

but an elongation of the unit cell along the a axis. Consequently, the cell volume is doubled 

from 3046(2) Å3 at 200 K to 5947(3) Å3 at 100 K. As in 2HS-LS·MeOH, a chain of alternating 

HS and LS iron centres is formed. The latter case is also true for 3·1.5 tol, as no symmetry 

change is observed, but a duplication of the cell volume (1966.5(4) Å3 at 200 K to 

3861.2(3) Å3 at 130 K ). It should be noted that the disorder of the equatorial and axial ligand 

disappears upon reaching the IP. For compound 4·0.25 MeOH, it was possible to determine 

the X-ray structure in the HS and the LS state. In both cases, the compound crystallises in the 

triclinic space group 1P ; unfortunately, we were not able to determine the X-ray structure at 

the plateau at 106 K. The bond lengths and angles around the iron(II) centre differ 

significantly at 298 and 7 K, highlighting the already discussed changes in spin state. Upon 

spin transition, the cell volume is reduced from 1427.8(5) Å3 at 298 K to 1328.4(8) Å3 at 7 K 

and the density rises from 1.337 g cm−3 to 1.436 g cm−3. By considering the additional 

contribution of the thermal contraction, the observed change in the cell volume (�V/V = 7.2%, 

�V = 49.7 Å3/Fe) is in the range expected for an iron(II) SCO complex (contribution of the 

SCO itself: �V/V = 3.8–6%; �V = 25–35 Å3/Fe).[1] Compound 5·MeOH also crystallises in 

the triclinic space group 1P . The asymmetric unit of 5LS/LS·MeOH at 175 K is made up of two 

crystallographically distinct iron(II) centres that are both in the LS state, but with slightly 

geometrical differences within the inner coordination sphere caused by subtly different 

crystallographic environments of Fe1 and Fe2 as a result of incorporated solvent molecules. 
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Crystallographically distinct iron centres are the most likely reason for the step in the 

transition curve. 

 

 

 

Figure 3. ORTEP drawing of the zigzag chain structure of compounds 1HS and 2HS·MeOH with the axial bppa 
ligand, the steplike chain structure of 3HS·MeOH and 4

HS·0.25 MeOH with the bpea ligand and the linear chain 
structure of 5LS/LS·MeOH with the bipy ligand. 
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Figure 4. Reciprocal space [0 k l] section of compound 2·MeOH at 225 K and 125 K represented with the Layer 
Program. 

The step in the transition curve of compound 1 and 2·MeOH is clearly related to the formation 

of an alternating [HS-LS] chain, and this may also be the case for 3·1.5 tol; however, the 

order/disorder transition has to be kept in mind. For 1 and 2·MeOH, the iron centres are 

clearly crystallograpically equivalent in the HS state, while at the IP, two crystallographically 

distinct iron centres are obtained. This superstructure is only generated upon spin transition. 

Of the three already existing possibilities for the explanation of two-step spin transitions, two 

possibilities can be ruled out: the first one—two or more nonequivalent iron centres, can be 

excluded according to the results from X-ray structure analysis. The second possibility—the 

formation of energetically stable [HS-LS] pairs, is also not very likely. The formation of such 

pairs is associated with antiferromagnetic interactions between the neighbouring iron 

centres.[7] Results from magnetic measurements on polymer HS iron(II) compounds of this 

ligand type show that the magnetic exchange interaction along the polymer chain is 

negligible.[16] Hence, there is only the possibility of intermolecular interactions, generated 

through cooperative long-ranged (ferromagnetic-type) interactions or antiferromagnetic 

interactions between the HS and the LS sublattices. However, this model does not help us to 

define rules for the purposeful synthesis of 1D SCO materials with two-step spin transitions. 

Consequently, a new model is needed to explain the differences in the magnetic properties of 

the 1D chain compounds presented in this paper. A detailed comparison of intra- and 

interchain interactions is necessary to develop this model. Table 3 shows selected intra- and 
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interchain distances between the iron centres. Table 4 summarises intermolecular hydrogen 

bonds and short contacts, whereas in the Supplementary material detailed lists of 

intermolecular hydrogen bonds and short intermolecular contacts are given. 

Table 3. Selected intra- (Fe� � �Fe) and interchain (Fe� � �Fe*) iron(II) distances [Å] of the coordination polymers 
discussed in this work. 

compound T/K S FeHS
� � �FeHS FeLS

� � �FeLS FeHS
� � �FeLS Fe� � �Fe* 

1 200 2 10.01  / / 8.25 

 100 2/0 / / 9.91/10.06 / 

2·MeOH 225 2 13.14/13.80 / / 8.55 

 125 2/0 / / 12.95/13.58 / 

3·1.5 tol 200 2 13.85 / / 13.96 

3·MeOH 200 2 13.88 / / 10.22 

4·0.25 MeOH 293 2 13.83 / / 8.68 

 7 0 / 13.33 / 8.34 

5·MeOH 175 0 / 11.10 / 7.56 

 

 

In order to provide a better overview of the influence of packing effects on the spin transition 

properties, in the following, the differences in the crystal packing are compared by pairs with 

the different axial ligands as sort key.  

The first pair of structures to be compared are the compounds with bppa as bridging ligand, 

namely 1 and 2·MeOH (top of Figure 5). The infinite 1D chains of 1 propagate along [2 0 1] 

for 1HS and [1 0 0] for 1HS-LS, a consequence from the symmetry change. The strong distortion 

of the axial bridging ligand results in the formation of zigzag chains. Between adjacent chains 

there is a multitude of short interactions, mainly between the ethoxy carbonyl side groups of 

the equatorial ligand and the CH groups of the axial ligand. Accompanied with the SCO, a 

change of the intrachain Fe� � �Fe separation distance can be observed. One could expect this 

is to be due to the decrease in the Fe-Lax distances from HS to LS. Along the [HS-HS] chain 

of 1
HS, a Fe� � �Fe separation distance of 10.01 Å can be found which changes upon spin 

transition to the IP along 1HS-LS alternately to 9.91 and 10.06 Å. Surprisingly, a shortening of 
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the FeHS
� � �FeLS separation distance can only be seen for one chain link, whereas the other one 

is elongated, although at every second iron centre, the Fe-Lax bond lengths decrease. A closer 

look reveals that the end-to-end distances of the strongly twisted bppa ligands elongate 

significantly from 6.98 Å at 1HS
 to 7.06/7.27 Å at 1HS-LS. The bppa ligand can be thought to 

“compensate” the shortening of the Fe-Lax distances, so that on average the chain length 

remains the same. The relative position of the iron centres and the equatorial ligands does not 

change, possibly because of the restraining interactions caused by the short contacts given in 

Table 4. The infinite 1D chains of 2·MeOH (HS and LS) propagate along the [1 0 1] direction. 

The distortion of the axial bridging ligand results also in the formation of zigzag chains, but 

with an angle of about 56° between the planes of neighbouring equatorial ligands, the 

distortion is weaker than in 1. Between the hydroxy hydrogen atom (H9) of the methanol 

molecule and the oxygen atom (O4) of one acetyl side group of the equatorial ligand, a 

hydrogen bond is formed. This is only of indirect importance; however, the oxygen atom as a 

strong H-bond acceptor is “occupied” and cannot form any kind of interchain interaction. 

Furthermore, a number of weak van der Waals contacts occur, mainly involving the second 

acetyl oxygen atom (O3), the methanol hydroxy oxygen atom (O9) and CH groups of the 

axial ligand. In the HS state, all hydrogen bonds are mediated by the methanol molecule, 

while in the HS/LS state, one additional direct contact is observed (see Table 4). By looking 

at the intrachain Fe� � �Fe separation distance, another situation can be observed for compound 

2·MeOH relative to 1. Two differently elongated chain links can be found at 2
HS·MeOH 

(13.14 and 13.80 Å), which change significantly to 12.95 and 13.58 Å in 2HS-LS·MeOH on the 

IP. The changes in the end-to-end distances of the bppa ligands (∆ = 0.04 and 0.06 Å) are not 

as pronounced as observed for compound 1, thus the shortening of the Fe-Lax distances are 

only marginally compensated. The more pronounced zigzag chain in the case of 1, in 

combination with the sterically more-demanding equatorial ligand L1 and the more direct (not 

mediated over the included methanol molecule) interchain interactions, results in the fact that 

the single chains of 1 are more strongly wedged together than in 2·MeOH, as illustrated in 

Figure 5. Thus, the changes in the bond lengths expected upon spin transition cannot be as 

easily followed for 1 relative to 2·MeOH, and the spin transition behaviour changes from a 

complete two-step transition (2·MeOH) to an incomplete spin transition for 1 that stops at the 

IP. 
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Figure 5. Plot of the crystal packing of the iron(II) coordination polymers 1, 2·MeOH, 3·1.5 tol and 3·MeOH. 1 
and 2 refer to the different iron centres in the HS/LS state. Hydrogen bonds are shown as dashed lines. Hydrogen 
atoms are omitted for clarity. 

The infinite 1D chains of 3·MeOH and 3·1.5 tol have the base vectors [1 1 0] and [0 0 1], 

respectively (Figure 5, bottom). Because of the less-flexible ethyl bridge of the axial ligand 

bpea (instead of the propyl bridge of bppa), a stepped chain structure is observed for both 

compounds compared to the zigzag structure mentioned above. The intrachain Fe� � �Fe 

separation distances are almost identical: 13.88 (3·MeOH) and 13.85 Å (3·1.5 tol). The 

methanol molecule of 3·MeOH is hydrogen bonded to one ethoxy oxygen atom (O4) of the 

equatorial ligand. The other carboxylate oxygen atoms and carbonyl oxygen atoms of the 

equatorial ligand form weak interactions with CH groups of the axial ligand of adjacent 

chains. These interactions together with the other short contacts are the most likely 

explanation for the 27 K wide hysteresis loop in this compound. The molecule packing of 



4. Two-Step versus One-Step Spin Transition in Iron(II) 1D Chain Compounds 

 

 

 

  
 51 
  

3·1.5 tol has a lower density than that in 3·MeOH (1.291 relative to 1.363 g cm−3), possibly 

because of the relatively huge disordered toluene molecules incorporated between the chains. 

This can also be seen by comparing the interchain Fe� � �Fe* separation distances (Fe* is the 

iron centre generated through the symmetry operation −x, −y, −z), which are significantly 

longer in 3·1.5 tol (13.96 relative to 10.22 Å, Table 3). Consequently only a few interchain 

interactions can be found (see Table 4), mainly between both carbonyl oxygen atoms of the 

equatorial ligand and carbon-bonded hydrogen atoms of the axial ligand bpea. This 

satisfactorily explains the reduction in the hysteresis width when going from the methanol- to 

the toluene-containing sample. This pair also illustrates that it is important to compare all 

intermolecular contacts, as the number of hydrogen bonds is the same for both compounds. 

However, no explanation for the IP of 3·1.5 tol can be derived from the crystal packing, as 

was possible for 1 and 2·MeOH. Therefore, it can be assumed that the disorder observed in 

the HS structure is responsible for the incomplete spin transition with only 50% of the iron 

centres involved. The infinite 1D chains of 4·0.25 MeOH (HS and LS) propagate along [1 1 0] 

with the same stepped structure observed for compounds 3·MeOH and 3·1.5 tol. Upon spin 

transition, the intrachain Fe� � �Fe distance is shortened about 0.50 Å, whereas the end-to-end 

distance of the axial bpea ligand is only shortened about 0.01 Å, which highlights the stiffness 

of bpea. In comparison with compound 3, the solvent molecule seems to influence the SCO 

behaviour of compound 4 in a similar way, because, for both examples, the loss of methanol 

is accompanied with a decrease in the cooperativity when comparing the solvent-containing 

and the solvent-free sample. In contrast to compound 3·MeOH with its full occupancy 

methanol molecule involved in strong hydrogen bonds, the structure of 4·0.25 MeOH only 

contains a quarter occupancy methanol, which is furthermore not hydrogen bonded to one of 

the carbonyl oxygen atoms of the equatorial ligand. Therefore, both acetyl oxygen atoms of 

the equatorial ligand form nonclassical hydrogen bonds to adjacent chains involving the CH 

groups of the axial ligand, which explains the observed hysteresis loop, and are probably also 

responsible for the small IP in the heating mode. 

The molecule structure of 5LS/LS·MeOH was determined at 175 K, thus all iron(II) centres are 

in the LS state. Because of the slightly different chemical surroundings as a result of an 

additional disordered methanol molecule, two complex molecules with nonequivalent iron(II) 

sites can be found in the asymmetric unit. The infinite 1D chains of compound 5·MeOH run 

along [1 0 0] and are totally linear because of the bridging ligand bipy. Adjacent chains are 
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arranged in a way that the ethoxy carbonyl side groups of the equatorial ligand point to each 

other. Consequently, many short intermolecular interactions can be observed. Every methanol 

molecule forms a hydrogen bond to a carboxylate oxygen atom of one of the equatorial 

ligands. However, whereas for Fe1, typical hydrogen bond values are found (H99� � �O13: 

1.95 Å, see Table 4); in the case of Fe2, a significantly weaker hydrogen bond is observed 

(H98b� � �O23: 2.32 Å, Table 4) and, additionally, the methanol molecule is disordered. This 

supports the results from the magnetic measurements and TG analysis, that, upon heating to 

350 K, only one of the two methanol molecules is lost and two crystallographically different 

iron centres are obtained, which undergo spin transition at different temperatures. Short 

interactions are also observed between the remaining carboxylate oxygen atoms and CH 

groups of the axial ligand and the acetyl CH3 groups of adjacent chains, as summarised in 

Table 4. In the magnetic measurements, different widths are observed for the two hysteresis 

loops, and the question arises whether this is reflected in the X-ray structure. In Figure 6, a 

top view of the packing of the chains in the crystal is given. The 1D chains of equivalent iron 

centres form layers along the c axis that alternate along the b axis. The summary of the 

intermolecular interactions given in Table 4 reveals that, between the chains of Fe1, more and 

shorter contacts are observed relative to the Fe2-Fe2 interactions. Between the layers (Fe1-

Fe2 interactions), even fewer contacts are observed. Thus, the different hysteresis widths can 

be explained with differences in the number and strength of interchain contacts. 
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Figure 6. Top view of the crystal packing of the iron(II) coordination polymer 5·MeOH. Hydrogen bonds shown 
as dashed lines. Hydrogen atoms are omitted for clarity. 1 and 2 refer to the different iron centres in the HS/LS 
state. 

Table 4. Summary of intermolecular contacts per iron centre of the iron(II) coordination polymers discussed in 
this work. The number of contacts to solvent molecules is given in parentheses. For details about the hydrogen 
bonds with d(D� � �A) < R(D) + R(A) + 0.50 Å, d(H� � �A) < R(H) + R(A) −0.12 Å, D-H� � �A > 100.0° and for 
details about the short contacts with � = d(I� � �J) − (R(I) + R(J)) (sum of the van der Waals radii) see 
Supplementary material. 

compound H-Bond � > 0.2 Å � = 0.20 − 0.1 Å � < 0.1 Å ∑ (solvent) 

1
HS 2  2 6 10 

1
HS-LS 3  2 8.5 13.5 

2
HS·MeOH (2)  1 4 5 (2) 

2
HS-LS·MeOH (2) 0.5 3 9 12.5 (2) 

3
HS·1.5 tol 4  1 (1) 1 (1) 6 (2) 

3
HS·MeOH 3 (1) 1 2 9 15 (1) 

4
HS·0.25 MeOH 2 (1) 3 (3) 3 (3) 8 (7) 

4
LS·0.25 MeOH 2 (1) 2 (2) 12 (2) 16 (5) 

5·MeOH[a] 2/1/0 (3) 0/0/1 (2) 3/0/1 (2) 2/4/1 (9) 7/5/3 (16) 

[a] Distinguished between Fe1-Fe1/Fe2-Fe2/Fe1-Fe2 interactions and contacts to the solvent (MeOH). 
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Investigations in solution by using 
1
H NMR spectroscopy: Variable-temperature NMR 

spectroscopy is a valuable tool to follow a spin transition in solution by interpretation of the 

temperature dependence of the 1H NMR chemical shifts.[15b] In order to prove the influence of 

the intermolecular interactions on the transition temperature and the appearance of a step 

during a SCO, compounds 1 and 3·1.5 tol were dissolved in [D8]toluene, as, in solution, all 

packing effects are switched off. For all other compounds, the solubility in toluene was too 

low for measurement by this method and another solvent with similar properties (liquid range, 

non-coordinating) was not available. Before starting T-dependent measurements, it was 

important to verify that all iron centres retain their octahedral coordination sphere and 

therefore the 1D coordination polymers are intact in solution. This could be confirmed by the 

signal assignment, which is shown in Figure 7. The resonances of the equatorial ligand L1 

appear in a similar region as reported previously for mononuclear iron(II) complexes of this 

ligand with different axial ligands (pyridine[15b] and 4-cyanopyridine[13c]). The signals are 

therefore assigned to the methyl group (a) and the ethyl group (b, c) of the substituents of the 

equatorial ligand. The signal at about 10 ppm with a relative intensity of 1 is assigned to the 

proton d of the phenlyene ring. The signals of the two remaining protons of the equatorial 

ligand are not assigned. By considering the NMR spectra of this type of complex in 

pyridine,[15b] the HC-N proton signal should be in the 400–500 ppm region of the spectrum, 

but it is very broad and therefore difficult to detect. The signal for the second proton of the 

phenylene ring is probably in the −5 to 5 ppm region of the spectrum, but is too broad to be 

detected because of additional signals from the solvent, impurities and the axial ligand. In 

each of the NMR spectra of 1 and 3, in Figure 7, three remaining signals are observed, which 

belong to the axial ligands bppa and bpea. By assuming a chain structure, the bridging ligand 

bppa has a mirror plane in C26/C32, and four different signals are expected with the relative 

intensities of 2:2:2:1. If a penta-coordinated complex was to be considered (polymeric chain 

broken into monomers), seven different signals would be expected, each with the relative 

intensity of 1. As the chemical shift is strongly influenced by the paramagnetic iron centre, 

and this influence decreases rapidly with increasing distance from the metal centre (number of 

bonds), many of the signals would be expected in the diamagnetic region. In the case of 

complete dissociation, all the signals of the axial ligand would be expected in the diamagnetic 

region, which is not the case. For the remaining signals, a relative intensity of 2 is observed, 

which clearly proves the polymeric chain structure of the complex in solution. With regard to 
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the different line widths, signal g with the smallest line width is assigned to the CH2 group 

farthest away from the paramagnetic centre, and signals e and f are assigned to the proton 

ortho (e) and meta (f) to the pyridine nitrogen. The last signal (C26/32) could not be assigned, 

probably because it is too weak and in the diamagnetic region of the spectrum. The same 

observation can be made for chain complex 3. Here, only three signals with the relative 

intensities 2:2:2 are expected, by assuming an octahedral complex, as observed in the NMR 

spectra. The resonances appear in a similar region to those for the bppa ligand and are thus 

assigned the same way as shown in Figure 7. 

 

 

 

Figure 7. 1H NMR spectra and signal assignment for complex 1 (left) and 3 (right) in [D8]toluene at 348 K 
(s = solvent). 

Figure 8 illustrates the shift of the NMR signals with temperature for complex 1. In Figure 9, 

the isotropic shifts of the protons of the equatorial ligand are plotted vs. inverse temperature 

(Curie plot) for both complexes. Starting at 358 K, upon cooling, the NMR signals are shifted 

to the more paramagnetic regions of the spectra, thus showing Curie behaviour. This is 

confirmed by the nearly linear temperature dependence seen in the Curie plots in the high-

temperature region (T > 285 K, 1/T < 3.5×103 K−1). This behaviour is similar to that expected 

for pure HS complexes. Below this point, the isotropic shift tends to zero, which indicates the 

start of the spin transition, as reported previously for this type of SCO complex with pyridine 

as axial ligands.[15b] From the 1H signals of the NMR spectra shown in Figure 8, only signals 

a–d, f and g can be observed over the whole temperature range investigated. Of those signals, 
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only the chemical shifts of signals a–d, which are assigned to the equatorial ligand, show the 

described behaviour. The T-dependence of the chemical shifts of signals f and g, which are 

assigned to the axial ligand, is different; especially, in the high-temperature region no, Curie 

behaviour is observed. The most likely reason for this is the possibility of the axial ligand to 

rotate freely around the z axis. Attempts to analyse this behaviour by using the T-dependent 

fitting program (TDF), applied successfully for the mononuclear complexes,[15b] were not 

fruitful, and those resonances are not considered in the further discussion. 

By assuming Curie behaviour for the high-spin species, the isotropic shift multiplied by the 

temperature is constant as long as the spin state does not change. A normalised plot of δiso T 

vs. T therefore reflects the high-spin mole fraction (γHS) of the complex as a function of 

temperature. In Figure 10, the transition curves of the averaged signals obtained in solution 

are compared with the results of the SQUID measurements in the solid state for both 

compounds. Because of the low solubility of both compounds at low temperature, only the 

beginning of the spin transition in solution could be detected by this method. Nevertheless, 

some trends can be observed as can be seen in Figure 10. When the transition curves of 1 and 

3 obtained in solution are compared, both complexes show a gradual spin transition starting at 

similar temperatures of about 300 K. In the case of 1, no indications for an abrupt SCO 

resting on a step as observed for the solid state analogue can be found. In comparison to the 

corresponding solid compounds (1, T½ = 165 K; 3·1.5 tol, T½ = 123 K), the transition 

temperatures obtained in solution are clearly shifted to higher temperatures. These huge 

differences in SCO behaviour illustrate that the extent of cooperative interactions, as well as 

the transition temperature, is significantly influenced by packing effects. 
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Figure 8. T-dependence of the chemical shifts of the 1H signals a–d of complex 1 between 358–248 K 
(s = solvent). The relative position of the resonance of signals a and f at 358 K is tagged with a line to more 
clearly illustrate the T-dependent shift of the signal. 
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Figure 9. Chemical shifts δiso of the assigned 1H signals of complex 1 (left) and 3 (right) plotted vs. inverse 
temperature. 

 

 

Figure 10. HS molar fraction γHS vs. T for complex 1 (left) and 3 (right) followed in solution and in the solid 
state. 
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4.3 Discussion 

Different types of spin transition were obtained for the 13 compounds discussed in this work 

going from complete SCO to two-step SCO to incomplete SCO resting at the IP. In the same 

way, the cooperative interactions vary from gradual spin transition to up to 50 K wide thermal 

hysteresis loops. Some correlation can be found between the used axial bridging ligand, the 

width of the IP and the thermal hysteresis loop. 

The width of the thermal hysteresis loop increases in the order bppa < bpea < bipy for both 

equatorial ligands (L1: 0 K, 4 K, 58 K; L2: 10 K, 22 K, 18 K, always highest values 

considered). The occurrence of a thermal hysteresis loop correlates well with the flexibility of 

the used bridging ligand and the number of interchain contacts, especially weak hydrogen 

bonds. For the more rigid ligand 4,4′-bipyridine, wide thermal hysteresis loops are observed, 

while the flexible bppa ligand only leads to stepped transitions or small thermal hysteresis 

loops. This is in agreement with literature results where 1D chains with iron(II) ions linked by 

loose bridges (e.g. bis(tetrazole) bridges with flexible spacers)[17] or ridged linkers without 

significant intermolecular interactions (bpea,[18] bipy,[19] dicyanamide[20]) result in gradual 

SCO behaviour. Combinations of intermolecular and intramolecular interactions contribute to 

the cooperative mechanisms during the spin transition and thus wide hysteresis loops. It is 

important to note that a combination of both interaction pathways is necessary to observe 

wide hysteresis loops. On the one hand, ridged linkers with no significant intermolecular 

interactions result in gradual spin transitions. On the other hand, if the number of inter-

molecular contacts is in the same order of magnitude, as for the examples presented in this 

work, the more ridged linkers lead to wider hysteresis loops. This is in agreement with the 

analytical solution of 1D systems where width and shape of the hysteresis loop depends on 

the balance between long- and short range interactions.[21] 

In the case of two-step or incomplete spin transitions, two different reasons have to be 

distinguished. For 3·1.5 tol and 5·MeOH, crystallograpically nonequivalent iron centres are 

clearly responsible for the incomplete/two-step spin transition. This is not the case for the 

other examples. Here, the width of the plateau (T½ (1)–T½ (2)) decreases in the order bipy < 

bpea < bppa (L2: 0 K, 18 K, 77 K; L1: incomplete or disorder). With regard to the plateau in 

the transition curve, an interesting model was recently proposed by Koudriavtsev et al. for 

monomer complexes that can be transferred to our polymer systems. This quasi-chemical 

model uses specific molecular interactions for the description of stepwise or incomplete spin 
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transitions for mononuclear complexes.[22] A HS → LS transition in a pair of HS molecules 

with attractively interacting ligands (e.g. hydrogen bonds) involves a relocation of the ligands 

towards the smaller LS molecule. If the Fe� � �Fe distances do not follow exactly the changes 

in Fe-L bonds in the LS species, then the corresponding bond in the HS partner is elongated 

and the HS state is thus stabilised.[21] This principle can be very easily transferred to polymer 

chain compounds. In Figure 11 a schematic illustration of the proposed model is given. 

 

 

 

Figure 11. Schematic illustration of the model proposed for stepwise spin transitions (X = CH2, n = 0–3). 

 

The remaining question is why some of the compounds have one-step and others have two-

step spin transitions; or in other words, are there factors that determine whether the Fe� � �Fe 

distances can follow exactly the changes in Fe-L bonds or not. The pair 1 and 2·MeOH gives 

an indication of which factors inhibit a change in the Fe� � �Fe separation distance: a 

pronounced zigzag chain in combination with a number of interchain contacts results in an 

incomplete SCO for 1. In the case of 2·MeOH, the zigzag motive is less pronounced and less 

interchain contacts are observed, thus the second step can be observed. An even smaller step 

is observed for 4·0.25 MeOH—the chain is nearly linear, the number of interchain contacts 

does not change significantly, and for the linear chain compound 6, no steps in the transition 

curve are observed, although there are several interchain contacts that are responsible for the 



4. Two-Step versus One-Step Spin Transition in Iron(II) 1D Chain Compounds 

 

 

 

  
 61 
  

thermal hysteresis loop. Thus, a pronounced zigzag structure of the 1D chain in combination 

with several interchain contacts result in stepwise spin transitions, even if all iron centres are 

equivalent in the HS state.  

4.4 Conclusion 

The synthesis and characterisation of several new 1D chain iron(II) spin crossover compounds 

is described in this paper. A comparison of the spin transition behaviour and the results from 

X-ray structure analysis lead to two conclusions for the rational design of spin crossover 

materials. The first, and to some extend already discussed, theory is that a combination of 

intermolecular and intramolecular interactions contributes to the cooperative mechanisms 

during the spin transition and thus to wide hysteresis loops. The second hypothesis is that a 

pronounced zigzag structure of the 1D chain in combination with several interchain contacts 

result in stepwise spins transitions, even if all iron centres are equivalent in the HS state. 

Further examples and further ongoing experiments, including photomagnetic investigations, 

DSC measurements and Mössbauer spectroscopy, are necessary to prove this theory. This 

work is already in progress and will be part of a subsequent publication. 
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4.5 Experimental Section 

Magnetic measurements: Magnetic susceptibility data were collected by using a Quantum 

Design MPMSR-2 SQUID magnetometer under an applied field of 0.5 T over the temperature 

range 2–350 K in the settle mode. The samples were placed in gelatine capsules held within a 

plastic straw. The data were corrected for the diamagnetic magnetisation of the ligands by 

using tabulated Pascal’s constants, and of the sample holder. The measurements were 

analyses by using the CGS system. 

NMR spectroscopy: [D8]toluene (D, 99.6%) was purchased from Euriso-top. The solvent 

was degassed with argon and stored over molecular sieves. The NMR samples were prepared 

under argon by using Schlenk techniques and locally-made sealing equipment. Saturated 

solutions of the iron(II) complexes were prepared and stored in sealed or air-tight 5 mm NMR 

tubes. The NMR spectra were recorded on a JEOL EX 400e spectrometer operating at 

400.182 MHz equipped with a variable-temperature unit in the temperature range 198–358 K. 

X-Ray structure determination: The intensity data were collected on an Oxford XCalibur 

diffractometer (1, 3·MeOH), a Nonius Kappa CCD diffractometer (2·MeOH, 3·1.5 tol, 

5·MeOH) and a Huber 4-circle diffractometer (4·0.25 MeOH) by using graphite-

monochromated MoKα radiation. The data were corrected for Lorentz and polarisation effects. 

The structures were solved by direct methods (SIR-97)[23] and refined by full-matrix least-

square techniques against F0
2 (SHELXL-97).[24] The hydrogen atoms were included at 

calculated positions with fixed displacement parameters. ORTEP-III[25] was used for the 

structure representation, SCHAKAL-99[26] to illustrate molecule packings. The 

crystallographic data are summarised in Supporting Information, Table S1.1–3. The quality of 

the data of 3�1.5 tol in the mixed high-spin/low-spin state is inferior. We will therefore only 

be publishing the conformation of the molecule and the crystallographic data. 

CCDC 793143 (1HS), CCDC 793144 (1HS-LS), CCDC 684269 (2HS·MeOH), CCDC 684270 

(2HS-LS·MeOH), CCDC 973145 (3HS·1.5 tol), CCDC 973146 (3HS·MeOH), CCDC 973147 

(4HS·0.25 MeOH), CCDC 973149 (4HS-LS·0.25 MeOH) and CCDC 973149 (5LS/LS·MeOH) 

contain the supplementary crystallographic data for this paper. These data can be obtained 

free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. 

uk/data_request/cif. 
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Synthesis: The syntheses of the iron(II) complexes were carried out under argon by using 

Schlenk tube techniques. All solvents were purified as described in the literature[27] and 

distilled under argon. [FeL1(MeOH)2] and [FeL2(MeOH)2] were prepared as described in the 

literature.[28] 1,3-Bis(4-pyridyl)propane and 1,2-bis(4-pyridyl)ethane were purchased from 

Sigma-Aldrich and used as received, 4,4′-bipyridine was purchased from Acros Organics and 

used as received.   

[FeL1(bppa)] (1): [FeL1(MeOH)2] (0.25 g, 0.49 mmol) and 1,3-bis(4-pyridyl)propane 

(0.98 g, 4.93 mmol) were dissolved in toluene (15 mL) and heated to reflux for 1 h. After 

cooling down to room temperature, a fine crystalline black precipitate had formed that was 

filtered off, washed with toluene (2 × 5 mL) and dried in vacuo (yield: 0.21 g, 67%). Crystals 

suitable for X-ray analysis formed in the mother liquor within a few weeks. IR (KBr): ν�� = 

1679(s) cm−1 (OC=O); MS (DEI-(+), 70 eV): m/z (%): 442 (71) [FeL1+], 198 (100) [bppa+]; 

elemental analysis calcd (%) for C33H36FeN4O6 (640.20): C 61.88, H 5.67, N 8.75; found: C 

61.58, H 5.65, N 8.71. 

[FeL1(bppa)]·0.25 MeOH (1·0.25 MeOH): [FeL1(MeOH)2] (1.67 g, 3.30 mmol) and 1,3-

bis(4-pyridyl)propane (3.27 g, 16.5 mmol) were dissolved in methanol (25 mL) and heated to 

reflux for 1 h. After cooling down to room temperature, a fine crystalline black precipitate had 

formed that was filtered off, washed with methanol (2 × 5 mL) and dried in vacuo (yield: 0.96 

g, 46%). Elemental analysis calcd (%) for C33.25H37FeN4O6.25 (648.52): C 61.58, H 5.75, N 

8.64; found: C 61.53, H 5.73, N 8.68.  

[FeL2(bppa)]·MeOH (2·MeOH): A mixture of [FeL2(MeOH)2] (0.75 g, 1.96 mmol) and 

1,3-bis(4-pyridyl)propane (1.94 g, 9.80 mmol) in methanol (10 mL) was heated to reflux for 

1 hour. After cooling at 5 °C for 24 h, a crystalline black precipitate was obtained that was 

filtered off, washed with methanol (2 × 5 mL) and dried in vacuo (yield: 0.75 g, 62%). IR 

(KBr): ν�� = 1642(s) cm−1 (C=O); MS (DEI-(+), 70 eV): m/z (%): 382 (64) [FeL2+], 367 (17) 

[FeL2+ − CH3], 198 (89) [bppa+], 93 (100) [bppa+ − C7H8N]; MS (ESI): 778 (2) [FeL2+ + 2 

bppa], 580 (4) [FeL2+ + bppa + H], 199 (100) [bppa+ + H]; elemental analysis calcd (%) for 

C32H36FeN4O5 (612.50): C 62.75, H 5.92, N 9.15; found: C 62.54, H 5.78, N 9.14. 

[FeL2(bppa)]·EtOH (2·EtOH): A solution of [FeL2(MeOH)2] (0.52 g, 1.36 mmol) and 1,3-

bis(4-pyridyl)propane (1.35 g, 6.81 mmol) in ethanol (60 mL) was heated to reflux for 4 h. 

After cooling to room temperature, 2·EtOH was obtained in the form of fine black crystals 
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that were filtered off, washed with ethanol (2 × 5 mL) and dried in vacuo (yield: 0.44 g, 52%). 

IR (KBr): ν�� = 1643(s) cm−1 (C=O); MS (DEI-(+), 70 eV): m/z (%): 382 (96) [FeL2+], 367 (27) 

[FeL2+ − CH3],198 (100) [bppa+]; MS (ESI): 580 (4) [FeL2+ + bppa], 199 (100) [bppa+ + H]; 

elemental analysis calcd (%) for C33H38FeN4O5 (626.52): C 63.26, H 6.11, N 8.94; found: C 

63.15, H 5.92, N 9.12. 

[FeL1(bpea)] (3): A solution of [FeL1(MeOH)2] (0.26 g, 0.51 mmol) and 1,2-bis(4-

pyridyl)ethane (0.95 g, 5.13 mmol) in methanol (30 mL) was heated to reflux for 1 h. After 

cooling down to room temperature, a brown powder was obtained that was filtered off, 

washed with methanol (2 × 5 mL) and dried in vacuo (yield: 0.22 g, 69%). Elemental analysis 

calcd (%) for C32H34FeN4O6 (626.48): C 61.35, H 5.47, N 8.94; found: C 61.12, H 5.48, N 

8.96. 

[FeL1(bpea)]·MeOH (3·MeOH): Crystals of [FeL1(bpea)] suitable for X-ray analysis were 

obtained from a slow diffusion process by using a Schlenk tube, which was, to a certain 

height, parcelled by a glass wall into two chambers. [FeL1(MeOH)2] (0.55 g, 1.09 mmol) was 

placed at the base of one chamber, and 1,2-bis(4-pyridyl)ethane (1.00 g, 5.43 mmol) was 

placed in the other chamber. Solvent methanol was carefully filled just as high to allow little 

diffusion between the chambers. After two weeks, 3·MeOH was obtained in form of black 

crystals. Elemental analysis calcd (%) for C33H38FeN4O7 (658.21): C 60.19, H 5.82, N 8.51; 

found: C 60.17, H 5.52, N 8.71. 

[FeL1(bpea)]·tol (3·1.5 tol): A solution of [FeL1(MeOH)2] (0.22 g, 0.43 mmol) and 1,2-

bis(4-pyridyl)ethane (0.81 g, 4.34 mmol) in toluene (15 mL) was heated to reflux for 1 h. 

After cooling down to room temperature, black crystals of 3·1.5 tol had formed which were 

filtered off, washed with toluene (2 × 5 mL) and dried in vacuo (yield: 0.20 g, 62%). IR 

(KBr): ν�� = 1688(s) cm−1 (OC=O); MS (DEI-(+), 70 eV): m/z (%): 442 (100) [FeL1+], 184 (41) 

[bpea+]; elemental analysis calcd (%) for C42.5H46FeN4O6 (764.69): C 66.75, H 6.06, N 7.33; 

found: C 66.54, H 5.99, N 7.45. 

[FeL2(bpea)] (4): [FeL2(MeOH)2] (0.57 g, 1.28 mmol) and 1,2-bis(4-pyridyl)ethane (2.35 g, 

12.8 mmol) were dissolved in methanol (45 mL) and heated to reflux for 1 h. After cooling 

down to room temperature, a dark brown precipitate was obtained that was filtered off, 

washed with methanol (2 × 5 mL) and dried in vacuo (yield: 0.50 g, 69%). Elemental analysis 
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calcd (%) for C30H30FeN4O4 (566.43): C 63.61, H 5.34, N 9.89; found: C 64.09, H 5.60, N 

10.18. 

[FeL2(bpea)]·0.25 MeOH (4·0.25 MeOH): [FeL2(MeOH)2] (0.62 g, 1.62 mmol) and 1,2-

bis(4-pyridyl)ethane (1.49 g, 8.11 mmol) were dissolved in methanol (57 mL) and heated to 

reflux for 1 h. After cooling down to room temperature, a crystalline black precipitate was 

obtained that was filtered off, washed with methanol (2 × 5 mL) and dried in vacuo (yield: 

0.49 g, 53%). Crystals of 4·0.25 MeOH suitable for X-ray analysis were obtained from a slow 

diffusion process by using methanol solutions of the pyridine (pyr) diadduct [FeL2(pyr)2]
[13a] 

(0.15 g, 0.28 mmol) and of bpea (0.26 g, 1.41 mmol) at 50 °C. Elemental analysis calcd (%) 

for C30.26H31.06FeN4O4.26 (574.92): C 63.25, H 5.44, N 9.75; found: C 62.51, H 5.55, N 9.60. 

[FeL1(bipy)] (5): A solution of [FeL1(MeOH)2] (0.49 g, 0.97 mmol) and 4,4′-bipyridine 

(1.51 g, 9.68 mmol) in methanol (35 mL) was heated to reflux for 1 h. After cooling down to 

room temperature, a violet precipitate had formed which was filtered off, washed with 

methanol (2 × 5 mL) and dried in vacuo (yield: 0.37 g, 64%). Elemental analysis calcd (%) 

for C29H29FeN4O6 (598.43): C 60.21, H 5.05, N 9.36; found: C 60.12, H 5.05, N 9.62. 

[FeL1(bipy)]·MeOH (5·MeOH): Crystals of 5·MeOH were obtained from a slow diffusion 

process by using methanol solutions of [FeL1[MeOH)2] (0.10 g, 0.19 mmol) and of bipy 

(0.15 g, 0.94 mmol). After one week, violet acicular crystals had formed. Elemental analysis 

calcd (%) for C31H34FeN4O7 (630.47): C 59.06, H 5.44, N 8.89; found: C 59.04, H 5.12, N 

9.11. 

Supplementary material: An overview of the magnetic properties of the compounds, the 

intermolecular hydrogen bonds and nonclassical hydrogen bonds, the short intermolecular 

contacts and the thermogravimetric analysis of 5·MeOH are presented on the WWW under 

http://dx.doi.org/10.1002/ejic201001363. 
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4.7 Supporting Information 

Table S1.1. Single-crystal diffraction data and parameters of the compounds discussed in this work. 

compound 1
HS 

1
HS-LS 

2
HS·MeOH 2

HS-LS·MeOH 

formula C33H36FeN4O6 C66H72Fe2N8O12 C32H36FeN4O5 C64H72Fe2N8O10 

Mr / g mol−1 640.51 1281.02 612.50 1225.00 
crystal system monoclinic monoclinic monoclinic monoclinic 
space group P21/c P21/c C2/c P21/c 
a / Å 12.292(6) 19.714(5) 17.861(4)  17.857(5)  
b / Å 18.983(8) 18.697(5) 15.197(3)  15.105(5)  
c / Å 16.256(5) 16.196(5) 22.713(5)  22.214(6)  

α / ° 90.00     90.00     90.00       90.00       

β / ° 126.59(2) 95.047(5) 97.918(1) 98.077(2) 

γ  / ° 90.00     90.00     90.00       90.00       

V / Å3 3046(2)   5947(3)   6106.3(2)   5932.3(3)   
Z 4 4 8 4 
ρ / g cm−3 1.397 1.431 1.332 1.372 
µ  / mm−1 0.547 0.560 0.540 0.556 
crystal size 0.24 × 0.22 × 0.08 0.25 × 0.16 × 0.10 0.10 × 0.09 × 0.03 0.10 × 0.09 × 0.02 
T / K 200(2) 100(2) 225(2) 125(2) 
diffractometer Oxford XCalibur Oxford XCalibur KappaCCD KappaCCD 

λ (MoKα) / Å 0.71073 0.71073 0.71073 0.71073 

θ-range / ° 3.78–25.31 3.80–25.37 3.24–27.48 3.15–25.32 
reflns. collected 56020 62758 23796 36238 
indep. reflns. (Rint) 5544 (0.0629) 10855 (0.0793) 6996 (0.0471) 10807 (0.0779) 
mean σ (I) / I 0.0602 0.0981 0.0522 0.0872 
reflns. with I ≥ 2σ (I) 3360 5852 4601 6611 
x, y (weighting scheme) 0.0484, 0 0.0361, 0 0.0549, 2.2532 0.0712 
parameters 401 801 386 768 
restraints 0 0 0 0 
R (F) (all data)[a] 0.0345 (0.0720) 0.0389 (0.0992) 0.0443 (0.0791) 0.0564 (0.1058) 
wR (F2)[b] 0.1011 0.0998 0.1206 0.1544 
GooF 1.058 0.999 1.026 1.023 
shift/errormax 0.001 0.000 0.002 0.001 
max., min. resd. dens. /  
e Å−3 

0.451, −0.262 0.511, −0.466 0.335, −0.352 0.857, −0.590 

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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Table S1.2. Single-crystal diffraction data and parameters of the compounds discussed in this work. For the 
structure motif of 3HS-LS·1.5 tol only the crystal data are given. 

compound 3
HS·MeOH 3

HS·1.5 tol 
3

HS-LS·1.5 tol 

formula C33H38FeN4O7 C85H92Fe2N8O12 C163H176Fe4N16O24 
Mr / g mol−1 658.52 1529.37 2966.60 
crystal system triclinic triclinic triclinic 

space group 1P  1P  1P  

a / Å 11.7025(3)  12.7120(13)          12.7815(6) 
b / Å 12.2137(4)  13.0428(13) 16.7360(6) 
c / Å 12.4828(2)  13.8537(15) 18.4934(8) 

α / ° 72.9593(15) 68.631(10)  94.294(3) 

β / ° 80.6512(16) 75.539(9)   101.732(3) 

γ  / ° 70.5753(11) 68.030(10)  90.514(3) 

V / Å3 1604.6(7)  1966.5(4)   3861.2(3) 
Z 2 1 1 
ρ / g cm−3 1.363 1.291 1.281 
µ  / mm−1 0.523 0.435 0.422 
crystal size 0.22 × 0.17 × 0.06 0.32 × 0.20 × 0.09 0.32 × 0.20 × 0.09 
T / K 200(2) 200(2) 130(3) 
diffractometer KappaCCD Oxford XCalibur Oxford XCalibur 

λ (MoKα) / Å 0.71073 0.71073 0.71073 

θ-range / ° 3.44–27.44 3.82–24.74  
reflns. collected 13747 13020  
indep. reflns. (Rint) 7275 (0.0310) 6707 (0.0320)  
mean σ (I) / I 0.0497 0.0985  
reflns. with I ≥ 2σ (I) 5605 3668  
x, y (weighting scheme) 0.0325, 1.2232 0.0784  
parameters 412 507  
restraints 0 93  
R (F) (all data)[a] 0.0429 (0.0639) 0.0557 (0.1038)  
wR (F2)[b] 0.1053 0.1469  
GooF 1.059 0.894  
shift/errormax 0.002 0.000  
max., min. resd. dens. / e Å−3 0.295, −0.425 0.587, −0.399  

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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Table S1.3. Single-crystal diffraction data and parameters of the compounds discussed in this work. 

compound 4
HS·0.25 MeOH 4

LS·0.25 MeOH 
5

LS/LS·MeOH 

formula C30.27H31.06FeN4O4.27 C30.25H31FeN4O4.25 C31H34FeN4O7 
Mr / g mol−1 574.95 574.31 630.47 
crystal system triclinic triclinic triclinic 

space group 1P  1P  1P  
a / Å 11.559(2) 11.037(2) 11.0987(15) 
b / Å 11.818(3) 11.633(6) 14.6555(13) 
c / Å 11.951(2) 12.196(2) 19.575(4) 

α / ° 76.206(19) 72.949(36) 75.432(11) 

β / ° 67.861(16) 65.328(16) 75.985(14) 

γ  / ° 72.519(17) 71.960(23) 74.820(10) 

V / Å3 1427.8(5) 1328.4(8) 2920.7(7) 
Z 2 2 4 
ρ / g cm−3 1.337 1.436 1.434 
µ  / mm−1 0.571 0.613 0.572 
crystal size 0.20 × 0.20 × 0.12 0.20 × 0.20 × 0.12 0.34 × 0.13 × 0.11 
T / K 293 7 175(2) 
diffractometer Huber 4-circle Huber 4-circle Oxford XCalibur 

λ (MoKα) / Å 0.71073 0.71073 0.71073 

θ-range / ° 1.82–25.35 1.87–25.35 3.80–25.32 
reflns. collected 7335 6316 50123 
indep. reflns. (Rint) 4714 (0.0185) 4063 (0.0274) 10642 (0.0808) 
mean σ (I) / I   0.0710 
reflns. with I ≥ 2σ (I)   6431 
x, y (weighting scheme) 0.0376, 0.8415 0.0261, 14043 0.0628, 3.6444 
parameters 368 483 788 
restraints 0 0 0 
R (F) (all data)[a] 0.0384 (0.0420) 0.0517 (0.0733) 0.0564 (0.1140) 
wR (F2)[b] 0.0996 0.0941 0.1521 
GooF 1.146 1.177 1.030 
shift/errormax   0.001 
max., min. resd. dens. / e Å−3 0.300, −0.303 0.433, −0.519 0.734, −0.642 

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 

 
 



 

 

 

  
  
  



 

 

 

  
  
  



5. X-Ray Structure and Magnetic Properties of Dinuclear and Polymer Iron(II) Complexes 

 

 

 

  
 75 
  

5 X-Ray Structure and Magnetic Properties of Dinuclear and 

Polymer Iron(II) Complexes 

Wolfgang Bauer[a] and Birgit Weber*[a] 

 

[a] Ludwig-Maximilians-Universität München, Department Chemie und Biochemie, 

Butenandtstr. 5–13 (Haus F), 81377 München, Germany 

 

Keywords: Iron, N,O ligands, X-Ray Structure, Magnetic properties 

 

Published in: Inorg. Chim. Acta 2009, 362, 2341–2346. 

 

Abstract: Five new octahedral iron(II) complexes [FeL2(bpma)]�EtOH (1), [FeL2(bipy)]� 

DMF (2), [FeL1(bpee)] (3), [Fe2L3(1-meim)4]�4 1-meim (4) and [FeL1(DMAP)2] (5), with L1 

and L2 being tetradentate N2O2
2− coordinating Schiff base-like ligands (L1 = {diethyl (E,E)-

2,2′-[1,2-phenyl-bis(iminomethylidyne)]bis[3-oxobutanoate] (2-)-N,N′,O3,O3
′}, L2 = {3,3′-

[1,2-phenyl-bis(iminomethylidyne)]bis[pentane-2,4-dione] (2-)-N,N′,O2,O2
′}) and L3 being 

an octadentate dinucleating N2O2
2− coordinating Schiff base-like ligand ({tetraethyl 

(E,E,E,E)-2,2′,2′′,2′′-[1,2,4,5-phenyl-tetra(iminomethylidyne)]tetra[3-oxobutanoate] (2-)-N, 

N′,N′′,N′′′,O3, O
3
′,O3
′′,O3

′′′}); bpma = bis(4-pyridylmethyl)amine, bipy = 4,4′-bipyridine, 

bpee = trans-1,2-bis(4-pyridyl)ethylene, 1-meim = 1-methylimidazole and DMAP = 4-

dimethylaminopyridine, have been synthesised and characterised by using X-ray structure 

analysis and T-dependent susceptibility measurements. Both methods indicate that all iron(II) 

centres are in the paramagnetic high-spin state over the whole temperature range investigated. 

The O-Fe-O angle, the so-called bite of the equatorial ligand, is with an average of 111° in the 

region typical for high-spin iron(II) complexes of this ligand type. In the case of compound 1 

an infinite two-dimensional hydrogen bond network can be found, for the compounds 2–4 no 

hydrogen bond interactions are observed between the complex molecules. A comparison of 

the curve progression obtained from the magnetic measurements of the mononuclear complex 

5 and the polymeric complexes 1–3 leads to the conclusion that no magnetic interactions are 

mediated over the bridging axial ligands. For the dinuclear complex 4 weak antiferromagnetic 

interactions between the two iron centres are found. 
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5.1 Introduction 

Octahedral iron(II) complexes are an interesting class of complexes because of the possible 

occurrence of the spin crossover phenomenon. This switching behaviour on the molecular 

level between two or more states by the change of temperature, pressure or light is of 

potential interest for future applications as for example in molecular switches or memory 

devices.[1,2] If technical applications are envisioned, spin crossover (SCO) complexes with 

wide thermal hysteresis loops are necessary. The occurrence of such a cooperative behaviour 

is strongly connected with the efficiency by which the volume changes associated with the 

spin transition can be transmitted through the crystal. Covalent linkers between the single 

metal centres are a promising possibility as the spreading of those contacts can be easily 

controlled by a preparative chemist. This did establish a lively interest in polymer SCO 

compounds, but also in dinuclear systems. The latter are the simplest system of spin-coupled 

polymers and provide fundamental information about intramolecular magnetic interactions 

and a possible synergy between those interactions and the SCO properties. It seems, that week 

intramolecular interactions are responsible for the direct HS-HS ↔ LS-LS transformation,[3] 

while a plateau in the γHS ≈ 0.5 (γHS = HS molar fraction) region might be either due to the 

intramolecular energetic stabilisation of an HS-LS species[4,5] or due to intermolecular 

interactions.[6] The intramolecular energetic stabilisation is often associated with 

antiferromagnetic exchange interactions and the investigation of the magnetic properties of 

pure high-spin (HS) complexes is of great importance in order to understand the 

corresponding dinuclear or polymer SCO systems. 
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In this paper we present the synthesis, magnetic properties and results from X-ray structure 

analysis of five new octahedral iron(II) complexes, one monomer [FeL1(DMAP)2] (5), one 

dimer [Fe2L3(1-meim)4]�4 1-meim (4) and three polymer compounds [FeL2(bpma)]�EtOH 

(1), [FeL2(bipy)]�DMF (2) and [FeL1(bpee)] (3). Complexes of this type of tetradentate 

N2O2
2− coordinating Schiff base-like ligands are known to be suitable for the synthesis of spin 

crossover compounds if N-heterocycles are used as axial ligands.[7,8,9] This paper will 

concentrate on the influence of the covalent bridges on magnetic exchange interactions in 

those compounds. The understanding of those properties is essential for the understanding of 

the SCO properties in related di- and polynuclear complexes. 

 

 

 

Scheme 1. General schema of the ligands discussed in this work and the used abbreviations. 
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5.2 Results and Discussion 

Synthesis of the complexes: Scheme 1 shows the general structure of the complexes 

discussed in this work together with the used equatorial and axial ligands and their 

abbreviations. The complexes can be obtained in a one-pot reaction by conversion of the 

equatorial ligand with a slight excess of iron(II) acetate in the presence of the desired axial 

ligand. Methanol is the most frequently used solvent so far, but for the synthesis of polymeric 

chains ethanol and dimethylformamide was also used. Alternatively, an iron complex of the 

tetradentate equatorial ligand with methanol as axial ligands ([FeL1/2(MeOH)2] or 

[Fe2L3(MeOH)4]) can be prepared in a first step that is then converted with the desired axial 

ligand in a second step. To ensure the formation of octahedral complexes with both axial 

coordination sites occupied, a 30–50 molar excess of the axial ligand is used for the synthesis 

of the mono- and dinuclear complexes 5 and 4. However, to obtain polymeric chains instead 

of mononuclear complexes the molar excess mustn’t be this high on the one side but not too 

low on the other side to prevent the formation of penta-coordinated species. Accordingly, a 

ratio of 1:10 of iron complex to axial ligand is used. Additionally the reaction time is 

extended to several hours to ensure the formation of the thermodynamically stable chain 

compound 

 

X-Ray structure analysis: Crystals suitable for X-ray structure analysis were obtained for all 

complexes. The crystallographic data are summarised in Supporting Information Table S1.1–

2. Due to the low quality of the crystals of 3, only the motive of the structure could be 

obtained and therefore we will only discuss the conformation of this polymeric chain. Figures 

1, 2 and 3 display the monomer units of the polymer chains and the molecule structure of the 

mono- and dinuclear complex, respectively. Selected bond lengths and angles are summarised 

in Table 1. The bond lengths and angles within the first coordination sphere of the iron 

centres are within the region reported for octahedral HS iron(II) complexes of the same ligand 

type.[7–9] The average bond lengths are 2.10 Å (Fe-Neq), 2.03 Å (Fe-Oeq) and 2.26 Å (Fe-Nax). 

A characteristic tool for the determination of the spin state of this type of iron(II) complexes 

is the O-Fe-O angle, which changes from about 110° in the HS state to about 90° in the LS 

state. Obviously all complexes reported here are in the HS state, because the angle is in the 

region between 108° to 113°. The Nax-Fe-Nax angle is not ideally linear but in the region 

between 170° to 180°, which is also in the region reported so far for this type of complexes.[7–
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9] Due to the octahedral coordination sphere for all complexes the iron centre is situated in the 

plane of the equatorial ligand. 

 

 

 

Figure 1. ORTEP drawing of the monomer unit of the three polymer chain compounds 1, 2 and 3. Hydrogen 
atoms and additional solvent molecules were omitted for clarity. Thermal ellipsoids are shown with a 50% 
probability. 
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Table 1: Selected bond lengths [Å] and angles [degree] within the first coordination sphere of the iron 
complexes [FeL2(bpma)]�EtOH (1), [FeL2(bipy)]�DMF (2), [FeL1(bpee)] (3), [Fe2L3(1-meim)4]�4 1-meim (4), 
[FeL1(DMAP)2] (5). 

compound Fe-Neq Fe-Oeq Fe-Nax Oeq-Fe-Oeq Nax-Fe-Nax 

1 2.102(2) 

2.095(2) 

2.033(2) 

2.028(2) 

2.250(3) 

2.252(3) 

110.37(8) 169.45(9) 

2 2.090(3) 

2.087(4) 

2.016(3) 

2.010(3) 

2.301(3) 

2.274(3) 

108.13(12) 176.99(13) 

3 

 

2.101(5) 

2.092(5) 

2.044(4) 

2.017(4) 

2.262(4) 

2.280(4)[a] 

112.71(17) 169.76(17)[a] 

4 

 

2.094(2) 

2.112(2) 

2.052(2) 

2.023(2) 

2.217(2) 

2.248(2) 

111.10(9) 173.94(9) 

5 

 

2.082(4) 

2.097(4) 

2.017(3) 

2.018(3) 

2.220(4) 

2.304(4) 

111.22(14) 169.09(17) 

Symmetry code: [a] −1 + x, y, −1 + z. 

 

 

Figure 2. ORTEP drawing of the molecule structure of the dinuclear complex 4. Hydrogen atoms and solvent 
molecules were omitted for clarity. Thermal ellipsoids are shown with a 50% probability.  
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Figure 3. ORTEP drawing of the molecule structure of the mononuclear complex 5. Hydrogen atoms and 
solvent molecules were omitted for clarity. Thermal ellipsoids are shown with a 50% probability. 

For the characterisation of potential spin crossover complexes it is very important to 

investigate the intermolecular interactions, because there is a close relation between the type 

of intermolecular contacts and the cooperative interactions between the single metal centres 

during the spin transition. The term cooperativity describes the efficiency of the crystal lattice 

to transmit the geometry changes and electronic features that occur during a spin transition 

from one molecule to another. Besides π-stacking and van der Waals interactions, particularly 

hydrogen bonds are thought to play a central role as information transmitter.[10] They are 

stronger than the first two possibilities and the volume changes during the spin transition can 

be transmitted more efficiently through the crystal. Analysing the complexes presented in this 

paper, only 1, with its bridging axial ligand containing a NH group, is able to form strong 

hydrogen bonds as classified by Jeffrey et al.
[11] The other examples have no suitable donor 

groups. This is in agreement with the obtained results: complex 1 forms an infinite two-

dimensional hydrogen bond network in the plane (0 0 1) as illustrated in Figure 4. The amine 

nitrogen N5 acts as donor via H51 and the carbonyl oxygen O4 of the substituent at the 

equatorial ligand serves as hydrogen bond acceptor, linking the polymer chains along [1 0 0] 

and [0 1 0]. No classical hydrogen bonds can be found for complexes 2–5. Here only weak 

interactions are observed, mainly between aromatic CH protons of the axial ligands and 

carbonyl or carboxylate oxygen of the substituents at the equatorial ligands. The packing of 
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the molecules in the crystals are illustrated in the Supplementary material. In compounds 1, 2 

and 4 solvate molecules were found to be incorporated in the crystal lattice, which can have a 

noticeable influence on the spin transition behaviour in SCO complexes as we recently 

reported for three examples.[7b,8b,c] For the magnetic exchange interactions communicated 

over the covalent linker they are of no importance, hence this is not considered any further. 

 

 

 

Figure 4. Packing of the polymer chains of 1 in the crystal projected in the plane (110). An infinite 2D hydrogen 
bond network in the plane (001) is observed (dashed lines). 
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Magnetic susceptibility data: The magnetic properties of the complexes were investigated 

by using a Quantum Design MPMSR-XL SQUID magnetometer in the temperature range 

from 295–5 K. The measurements indicate that all compounds are HS over the entire 

temperature range with the magnetic moment remaining constant down to approximately 

50 K for all the complexes. Figure 5 gives a plot of the χMT product vs. temperature (with χM 

being the molar susceptibility) for the mononuclear complex 5, the dinuclear complex 4 and 

the polymer chain compound 3 as typical representative. The plots of compounds 1 and 2 are 

illustrated in the Supplementary material.  

 

 

 

Figure 5. Plot of the χMT product vs. T for the compounds 3 to 5. For the dinuclear complex 4, the results from 
the fit with the equation and parameters given in the text are included as solid line. 
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At room temperature the magnetic moment of the polymer chain compounds 1–3 and 

complex 5 is in the region of χMT = 3.1–3.2 cm3 K mol−1, typical for HS iron(II). For the 

dinuclear complex the calculated spin only value is equal to 6.0 cm3 K mol−1. With 

χMT = 7.55 cm3 K mol−1 the experimental value is in good agreement with theory, as the 

additional orbital moment contribution has to be considered. Upon cooling, the moment 

remains almost constant for all compounds. The decrease of the χMT product below 20 K for 

the monomer complex and the polymer chain compounds can be explained with zero-field 

splitting. A comparison of the curve progressing between the mononuclear complex 5 and the 

polymeric chains 1–3 indicates that there are no magnetic interactions mediated over the 

bridging axial ligands independent of the used bridge. For the dinuclear complex 4 the χMT 

product starts to decrease below 75 K, an indication for magnetic exchange interactions. 

Assuming the formula for the magnetic interactions in a S1 = 2 and S2 = 2 spin system with 

H = −J S2�S2,
[12] a weak antiferromagnetic interaction can be estimated to be J = −1.84 cm−1 

(g = 2.26) by fitting the observed data given in Figure 5. This weak coupling corresponds to 

the results obtained for another dinuclear complex of the same ligand type but with different 

substituents at the equatorial ligand (J = −1.08 cm−1, g = 1.96).[9a] It is a little bit surprising 

that complex 1 shows no spin transition as complexes of the ligand L2 with pyridine 

derivatives did so far always lead to SCO compounds and the ligand field strength should be 

in the right region. A possible explanation could be that the hydrogen bond network quenches 

the spin transition by pulling the equatorial and axial ligands away form the iron centre and by 

this increasing the iron-ligand distances. According to the formula 

10Dq(r) ∼ �/r6        (1) 

for uncharged ligands,[1f] with 10Dq being the ligand field strength, � the dipole moment of 

the ligand and r the metal-to-ligand distance, there is a strong relation between the ligand field 

strength and the metal-to-ligand distance. A similar reason, maybe steric hindrance, could 

account for the absence of a spin transition of compound 3. In the case of compound 2 the 

included dimethylformamide molecule is clearly responsible for the absence of spin transition 

behaviour as observed in a solvent-free powder sample of the same complex.[7a] A similar 

observation was made for the inclusion of methanol.[7b] 
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5.3 Conclusion 

In this work the synthesis and characterisation of five new octahedral iron(II) complexes with 

N4O2 coordination sphere is presented. Results from X-ray structure analysis show that only 

the polymeric chain compound 1 forms an infinite two-dimensional hydrogen bond network, 

whereas for the compounds 2 to 4 only weak van der Waals-like interactions are observed 

with no significance for magnetic exchange interactions. Magnetic susceptibility 

measurements indicate that all compounds stay in the HS state over the whole temperature 

range investigated. In the case of complex 1 the hydrogen bond network seems to quench the 

spin transition, whereas for compound 2 the included solvent molecule in the crystal is 

responsible for the absence of a spin transition. A comparison of the progressing of the χMT 

vs. T curves for the polymeric chains 1–3 and the mononuclear complex 5 leads to the result 

that no magnetic interactions are mediated over the bridging axial ligands, independent of the 

used bridge. For the dinuclear compound 4, a weak antiferromagnetic interaction of 

J = −1.84 cm−1 between the two iron(II) centres could be estimated from the experimental 

data. 
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5.4 Experimental Section 

Magnetic measurements: Magnetic measurements of the samples were performed on a 

Quantum-Design-MPMSR-XL-SQUID-Magnetometer in a temperature range from 5 to 

295 K. The measurements were carried out at two field strengths (0.02 and 0.05 T) in the 

settle mode. The data were corrected for the magnetisation of the sample holder, and 

diamagnetic corrections were made by using estimated values according to 

χdia ≈ −0.5 Mcomplex × 10−6. 

X-Ray crystallography: The intensity data of 1 to 5 were collected on a Nonius KappaCCD 

diffractometer by using graphite-monochromated MoKα radiation. Data were corrected for 

Lorentz and polarisation effects. The structures were solved by direct methods (SIR-97)[13] 

and refined by full-matrix least-square techniques against F0
2 (SHELXL-97).[14] The 

hydrogen atoms were included at calculated positions with fixed thermal displacement 

parameters. ORTEP-III was used for structure representation[15] and SCHAKAL-99 was used 

for the presentation of the packing of the molecules in the crystal.[16] Selected distances and 

angles are presented in Table 1. Crystallographic data for all complexes are summarised in 

Supporting Information Table S1.1–2.  

Further details on the crystal structures of compounds 1 (CCDC 691145), 2 (691146), 4 

(691147) and 5 (691144) can be obtained free of charge on application to Cambridge 

Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: 

int.code+(1223)336-033; e-mail fileserv@ccdc.cam.ac.uk). 

Synthesis: All syntheses were carried out under argon by using Schlenk tube techniques. All 

solvents were purified as described in the literature[17] and distilled under argon. The synthesis 

of the ligands H2L1,[18] H2L2,[18] H4L3,[9a] [FeL1(MeOH)2],
[19] [FeL2(MeOH)2]

[19] and 

iron(II)acetate[20] is described in literature. Bis(4-pyridylmethyl)amine was synthesised by 

using the same procedure as reported for Bis(2-pyridylmethyl)amine but with the educts 

functionalised at para-position.[21] Anhydrous 4,4′-bipyridine and 1-methylimidazole were 

purchased from ACROS, trans-1,2-bis(4-pyridyl)ethylene was purchased from Aldrich and 4-

dimethylaminopyridine was purchased from Fluka. 1-Methylimidazole was distilled under 

argon; the others were used as received. 
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[FeL2(4-dpa)]�EtOH (1): [FeL2(MeOH)2] (0.46 g, 1.20 mmol) and an ethanol solution of 

bis(4-pyridylmethyl)amine (1 M, 6.0 mL, 6.0 mmol) were dissolved in ethanol (50 mL) and 

heated to reflux for 4 h. After cooling down to room temperature, a black precipitate was 

filtered off, washed with ethanol (10 mL) and dried in vacuo (yield: 0.51 g, 73%). MS (DEI-

(+), 70 eV): m/z (%): 382 (100) [FeL2+]; elemental analysis calcd (%) for C32H37FeN5O5 

(627.21): C 61.25, H 5.94, N 11.16; found C 61.57, H 5.55, N 11.57. 

[FeL2(bipy)]�DMF (2): [FeL2(MeOH)2] (0.40 g, 0.90 mmol) and 4,4′-bipyridine (1.40 g, 

8.96 mmol) were dissolved in dimethylformamide (40 mL) and heated to reflux for 1 h. After 

cooling down to room temperature, a black precipitate was filtered off that was washed with 

methanol (10 mL) and dried in vacuo (yield: 0.28 g, 58%). Elemental analysis calcd (%) for 

C31H33FeN5O5 (611.18): C 60.89, H 5.44, N 11.45; found: C 61.10, H 5.24, N 11.05. 

[FeL1(bpee)] (3): A suspension of [FeL1(MeOH)2] (0.31 g, 0.61 mmol) and trans-1,2-bis(4-

pyridyl)ethylene (1.12 g, 6.12 mmol) in methanol (35 mL) was heated to reflux for 1 h. After 

cooling down to room temperature the black precipitate was filtered off, washed with 

methanol (10 mL) and dried in vacuo (yield: 0.21 g, 55%). MS (FAB-(+)): m/z (%): 442 (31) 

[FeL1+]; elemental analysis calcd (%) for C32H32FeN4O6 (624.17): C 61.55, H 5.17, N 8.97; 

found: C 61.17, H 5.22, N 8.92.  

[Fe2L3(1-meim)4]�4 1-meim (4): A solution of H4L3 (0.60 g, 0.85 mmol), iron(II)acetate 

(0.38 g, 2.18 mmol) and 1-methylimidazole (1.24 g, 15.2 mmol) in methanol (20 mL) was 

heated to reflux for 1 h. After cooling down to room temperature the brown precipitate was 

filtered off, washed with methanol (10 mL) and dried in vacuo (yield: 0.15 g, 18%). MS 

(FAB-(+)): m/z (%): 805 (85) [Fe2L3+]; elemental analysis calcd (%) for C66H86Fe2N20O12 

(1462.54): C 54.18, H 5.92, N 19.15; found: C 53.54, H 5.81, N 19.42.  

[FeL1(DMAP)2] (5): [FeL1(MeOH)2] (0.85 g, 1.68 mmol) and 4-dimethylaminopyridine 

(10.5 g, 0.086 mol) were dissolved in methanol (30 mL) and heated to reflux for 0.5 h. After 

cooling, the solution was left in the refrigerator (4 °C) to form black crystals that were 

collected, washed with a little methanol and dried in vacuo (yield: 0.8 g, 69%). IR (KBr): 

ν�� = 1683(s) cm−1 (CO); MS (DEI-(+), 70 eV): m/z (%): 442 (10) [FeL1+], 121 (100) 

[DMAP+]; elemental analysis calcd (%) for C34H42FeN6O6Fe (686.25): C 59.47, H 6.17, 

N 12.24; found: C 59.64, H 6.12, N 12.44; DTG: up to 270°C: −39.5% = loss of 2 DMAP 

(theory: 35%); at 280°C: decomposition 
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Supplementary material: Supplementary data associated with this article can be found in the 

online version at doi: 10.1016/j.ica.2008.10.018. 
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5.6 Supporting Information 

Table S1.1. Crystallographic data of the iron complexes discussed in this work. 

compound 1 2 3 

formula C62 H68 Fe2 N10 O9 C59 H59 Fe2 N9 O9 C33 H35 Fe N4 O7 
Mr / g mol−1 1208.955 1149.845 655.50 
crystal system monoclinic triclinic monoclinic 

space group C2/c 1P  P21/a 

a / Å 15.9203(4) 11.6970(5) 11.5169(7) 
b / Å 17.9247(6) 11.9128(7) 23.7546(16) 
c / Å 21.1890(6) 19.5728(10) 12.3096(6) 

α / ° 90.00 82.525(2) 90.00 

β / ° 92.2218(18) 86.110(3) 108.522(3) 

γ  / ° 90.00 89.772(3) 90.00 

V / Å3 6042.1(3) 2697.9(2) 3193.2(3) 
Z 4 2 4 
ρ / g cm−3 1.329 1.415 1.364 
µ  / mm−1 0.544 0.605 0.526 
crystal size 0.17 × 0.12 × 0.02 0.19 × 0.04 × 0.02 0.10 × 0.04 × 0.03 
T / K 200(2) 200(2) 293(2) 
diffractometer KappaCCD KappaCCD KappaCCD 

λ (MoKα) / Å 0.71073 0.71073 0.71073 

θ-range / ° 3.14–25.37 3.16–25.00 3.18–24.99 
reflns. collected 19117 17231 45102 
indep. reflns. (Rint) 5539 (0.0521) 9468 (0.0724) 5612(0.4071) 
mean σ (I) / I 0.0530 0.1185 0.2256 
reflns. with I ≥ 2σ (I) 3902 4944 2231 
x, y (weighting scheme) 0.0944, 2.4737 0.0707, 0 0.0574, 0 
parameters 388 721 412 
restraints 0 0 0 
R (F) (all data)[a] 0.0526 (0.0801) 0.0633 (0.1422) 0.0794 (0.2394) 
wR (F2)[b] 0.1617 0.1645 0.1634 
GooF 1.041 0.971 0.909 
shift/errormax 0.992 0.000 0.000 
max., min. resd. dens. / e Å−3 0.818, −0.409 0.854, −0.641 0.443, −0.377 

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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Table S1.2. Crystallographic data of the iron complexes discussed in this work. 

compound 4 5 

formula C66 H86 Fe2 N20 O12 C34 H42 Fe N6 O6 
Mr / g mol−1 1463.207 686.579 
crystal system triclinic monoclinic 

space group 1P  P21/c 

a / Å 9.7651(3) 15.2180(18) 
b / Å 14.0455(3) 14.4680(11) 
c / Å 15.3282(5) 17.1380(15) 

α / ° 114.2247(10) 90.00 

β / ° 97.1187(9) 114.396(12) 

γ  / ° 105.232(2) 90.00 

V / Å3 1784.57(9) 3436.4(6) 
Z 1 4 
ρ / g cm−3 1.3615 1.3271 
µ  / mm−1 0.480 0.491 
crystal size 0.30 × 0.08 × 0.04 0.27 × 0.12 × 0.07 
T / K 200(2) 293(2) 
diffractometer KappaCCD Stoe IPDS 

λ (MoKα) / Å 0.71073 0.71073 

θ-range / ° 3.25–25.50 1.47–22.39 
reflns. collected 16338 16079 
indep. reflns. (Rint) 6515 (0.0547) 4288 (0.1215) 
mean σ (I) / I 0.0837 0.1680 
reflns. with I ≥ 2σ (I) 4448 1930 
x, y (weighting scheme) 0.0598, 0.1693 0.0131, 0 
parameters 460 433 
restraints 0 0 
R (F) (all data)[a] 0.0569 (0.0957) 0.0421 (0.1148) 
wR (F2)[b] 0.1400 0.0778 
GooF 1.090 0.690 
shift/errormax 0.000 0.000 
max., min. resd. dens. / e Å−3 0.618, −0.535 0.196, −0.309 

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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Abstract: The reaction of iron(II) acetate with the tetradentate Schiff base-like ligands H2L1 

and H2L2 (L12− = {diethyl (E,E)-2,2′-[1,2-phenyl-bis(iminomethylidyne)]bis[3-oxobutan-

oate]}, L22− = 3,3′-[1,2-phenyl-bis(iminomethylidyne)]bis[pentane-2,4-dione]) leads to the 

formation of the octahedral N2O4 coordinated iron complexes [FeL1(MeOH)2] and 

[FeL2(MeOH)2], respectively. Conversion of both with bimm (bis(1-imidazolyle)methane) 

leads to the 1D coordination polymers [FeL1(bimm)]·0.5 MeOH (1) and [FeL2(bimm)] (2). 

Compound 1 is a pure high-spin (HS) complex, which was characterised by using magnetic 

measurements and X-ray structure analysis. Compound 2 undergoes an irregular and 

incomplete thermal spin transition. 

6.1 Introduction 

Spin transition complexes (spin crossover, SCO) are an interesting class of compounds that 

can be switched between two or more states by physical perturbations such as temperature, 

pressure or light.[1] Several applications in the field of information technology can be 

envisioned for this class of substance, especially for complexes that exhibit a wide hysteresis 

around room temperature (memory effect).[2] The occurrence of hysteresis and other types of 
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SCO such as stepwise or abrupt spin transitions depends on the cooperative effects between 

the metal centres during the spin-transition. Different intermolecular interactions such as π-

stacking, hydrogen bonds or van der Waals interactions are suitable transmitters for these 

effects. The application of covalent linkers as suggested by Kahn et al.
[2a] did attract special 

attention over the last years as the spreading of those interactions can be more easily 

controlled. This resulted in the synthesis and characterisation of several iron(II) spin 

crossover coordination polymers.[3] We have shown in a recent review,[4] that covalent linkers, 

most likely, have not the ability to transmit the geometric changes associated with the spin 

transition through the crystal lattice and, by this, increase the cooperative interactions. We 

have clearly demonstrated that the increase of cooperative effects during the spin transition is 

mainly due to an increased number of intermolecular contacts. Furthermore our results have 

shown that covalent linkers can be used to optimise the packing of the molecules in the crystal 

in a crystal-engineering like approach.[4] Next to spin transitions with wide thermal hysteresis 

loops stepwise transitions are also of interest because of the possibility of addressing more 

than two different states. The factor, which determines the presence or absence of steps in the 

transition curve of coordination polymers is the packing of the molecules in the crystals. For 

the previously reported complex [FeL2(bppa)]·MeOH (bppa = 1,3-bis(4-pyridyl)propane),[4] a 

stepwise spin crossover was observed, due to a zigzag-like structure of the 1D chain with 

alternating HS and LS iron(II) centres on the step. Due to the zigzag-structure the interchain 

Fe· · ·Fe distances cannot follow the Fe-L distance changes upon spin transition as easily as 

compared to linear structures because of restraining interactions (steric hindrances) between 

the neighbouring chains. Very likely this is the reason for the stabilisation of the wide step. 

Similar structures and magnetic properties could be obtained by the usage of the axial ligand 

bis(1-imidazolyle)methane (bimm) instead of bppa. So far only few coordination polymers 

were reported for this ligand that were obtained through the self-assembly with different 

metal centres.[5] Those structures indicate that the bimm ligand is well suited for the 

generation of zigzag chain structures. In this paper we present the synthesis and 

characterisation of two polymer iron(II) complexes [FeL1(bimm)]·0.5 MeOH and 

[FeL2(bimm)]. 
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6.2 Results and Discussion 

Synthesis of the complexes: The general route for the synthesis of the 1D octahedral iron(II) 

coordination polymers is depicted in Scheme 1. The complexes could be obtained in a two-

pot reaction. In a first step an iron complex of the tetradentate equatorial ligand (H2L1/2) with 

methanol as axial ligands was prepared.[6] In a second step [FeL1/2(MeOH)2] was converted 

with the axial ligand bimm. To obtain [FeL1(bimm)]·0.5 MeOH (1) and [FeL2(bimm)] (2), a 

5-fold molar excess of the axial ligand was used. Both complexes were characterised by 

elemental analysis, IR and mass spectroscopy as well as T-dependent magnetic susceptibility 

measurements. 

 

 

 

Scheme 1. General procedure for the synthesis of the 1D octahedral iron(II) coordination polymers. 
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X-Ray structure analysis: Crystals suitable for X-ray structure analysis were obtained only 

for 1. The crystallographic data are summarised in Supporting Information Table S1. Figure 1 

displays the asymmetric unit of the octahedral complex. Selected bond lengths and angles 

within the first coordination sphere are summarised in Table 1. 

 

 

 

Figure 1. ORTEP drawing of the asymmetric unit of 1. Hydrogen atoms were omitted for clarity. Thermal 
ellipsoids are shown with a 50% probability. 

Table 1. Selected bond lengths [Å] and angles [degree] within the first coordination sphere of 1 at 200 K. 

Fe-Neq Fe-Oeq Fe-Nax Oeq-Fe-Oeq Nax-Fe-Nax 

2.098(2) 

2.083(1) 

2.048(1) 

2.019(1) 

2.230(1) 

2.262(1)[a] 

108.59(5) 167.52(6)[a] 

Symmetry code: [a] 1 + x, y, z. 
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The bond lengths and angles within the first coordination sphere of 1 are within the region 

reported for HS iron(II) complexes of the same ligand type.[7] The average bond lengths are 

2.09 Å (Fe-Neq), 2.03 Å (Fe-Oeq) and 2.25 Å (Fe-Nax). A characteristic tool for the 

determination of the spin state of this type of iron(II) complexes is the O-Fe-O angle that 

changes from about 110° in the HS state to about 90° in the LS state.[7] For the complex 

reported here, the angle is with 109° clearly in the region typical for the HS state. The Nax-Fe-

Nax angle differs, with 168°, significantly from the expected 180° for an ideal octahedron. A 

possible explanation for the strong distortion is the intermolecular network of non-classical 

hydrogen bonds between the axial and the equatorial ligand (C27-H27· · ·O5, C24-

H24· · ·O1). Selected intermolecular distances shorter than the sum of the van der Waals radii 

are summarised in Table 2. In Figure 2 the packing of the complex in the crystal is displayed. 

For a better understanding of the magnetic properties it is in general necessary to investigate 

short contacts in the crystal packing. Besides the two contacts, which have been already 

mentioned, there is a further non-classical hydrogen bond (C6-H6· · ·O3), which contributes 

to a 3D network of intermolecular interactions between the polymer chains. Furthermore a 

hydrogen bond (O7-H7· · ·O3) between the hydroxy group of the additional solvent molecule 

methanol in the crystal and a carbonyl group of the equatorial ligand is formed (Table 2). The 

methanol molecules occupy a special position (inversion centre) and therefore a disorder 

model was applied. The equatorial ligands within a 1D chain are ordered in a parallel manner, 

because of the distortion of the imidazolyle rings of the axial ligand. 
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Figure 2. Top: Packing of compound 1 in the crystal at 200 K; view along [1 0 0], bottom: excerpt of a 2D layer 
of parallel polymer chains. The network of intermolecular contacts is highlighted (dashed lines). Solvent 
molecules and hydrogen atoms, which do not participate in hydrogen bonding, have been omitted for clarity.  

Table 2. Selected intermolecular distances [Å] and angles [degree] of 1 at 200 K. 

D H A D-H H· · ·A A· · ·D D-H· · ·A 

O7 H7 O3[a] 0.84 2.32 2.956(6) 133 

C6 H6 O3[b] 0.95 2.38 3.185(3) 143 

C24 H24 O1[c] 0.95 2.27 3.258(2) 174 

C27 H27 O5[d] 0.95 2.36 3.302(3) 173 

Symmetry codes: [a] 1 − x, −y, 1 − z; [b] x, 1 + y, z; [c] 1 − x, −y, −z; [d] 1 − x, 1 − y, −z. 
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Magnetic susceptibility data: Magnetic susceptibility measurements for both compounds 

were investigated in the temperature range from 295 to 10 K at 0.05 T by using a Quantum 

Design MPMSR-XL SQUID magnetometer. Figure 3 displays the thermal dependence of the 

χMT product for both compounds.  

 

 

 

Figure 3. Plots of χMT product (filled squares) vs. T for the compounds 1 and 2. Reciprocal molar susceptibility 
χM

−1 (open squares) as function of temperature T and the fits according to the Curie-Weiss law, χM = C/(T − Θ ), 
with the parameters Θ = −2.71 K, C = 3.34 cm3 K mol−1 for compound 1. 

For compound 1 (top of Figure 3) nearly ideal Curie behaviour is observed. Upon cooling, the 

χMT product decreases from a value of 3.34 cm3 K mol−1 at 295 K to a value of 

3.08 cm3 K mol−1 at 20 K. The susceptibility data above 20 K can be fitted very well with the 

Curie-Weiss law (χM = C/(T − Θ)) with the parameters Θ = −2.71 K and C = 

3.34 cm3 K mol−1. The Curie constant C is in a region expected for iron(II) HS complexes and 

the negative Weiss constant Θ in combination with the temperature-dependent decrease of the 

χMT product is an indication for weak antiferromagnetic interactions between the spin centres. 

Compound 1 is a typical iron(II) HS complex. For compound 2 (bottom of Figure 3) the 

situation is more complex. Upon cooling, the χMT product decreases from a value of 

3.31 cm3 K mol−1 at 295 K to a value of 1.37 cm3 K mol−1 at 50 K. The room temperature 

value is in the region typical for an iron(II) HS complex. The curve progressing is very 

irregular with three steps, a remaining HS molar fraction and a small hysteresis for the last 

step. Crystals suitable for X-ray analysis were not obtained until now to elucidate the 

structural reasons for this behaviour. Likely the structure is similar to the observed structure 
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of compound 1, because the equatorial ligands vary only in a small residue (methyl instead of 

ethyl group), which do not participate in intermolecular interactions. A similar network of 

short contacts like the observed 3D network of non-classical hydrogen bonds in 1 could be the 

reason for the cooperative effects (hysteresis) during the spin transition of compound 2. 

However, the multitude of different steps indicates that there are probably more than two 

different iron centres. One reason could be that two or more modifications of the polymer 

chain with different orientations of the rather flexible bimm ligand co-precipitate at the same 

time. The different plateaus in the transition curve of 2 are less pronounced compared to the 

complex [FeL2(bppa)]·MeOH[4] in agreement with the almost linear chain structure observed 

for 1. 

6.3 Conclusion 

We have expected similar structures and magnetic properties for the newly synthesised 

iron(II) coordination polymers with the axial ligand bimm as we have observed for the 

analogous complex [FeL2(bppa)]·MeOH[4] The latter undergoes a stepwise thermal spin 

transition with a wide plateau due to a zigzag-like structure, which stabilises the step 

according to restraining interchain interactions. In the case of the HS compound 1 the 

formation of a zigzag-like chain is prevented by a distortion of the imidazolyle rings of bimm. 

For compound 2 an irregular and incomplete spin transition was observed, which indicates 

several steps and a small hysteresis. Since we have not obtained suitable crystals, we could 

not elucidate the reason for the magnetic behaviour of this complex. Due to the high 

flexibility of the bimm ligand the co-precipitation of two or more modifications of the 

complex with different orientations of the bimm ligand cannot be excluded. For a better 

understanding and predictability of SCO properties less flexible bridging ligands are 

necessary. 
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6.4 Experimental Section 

Magnetic measurements: Magnetic measurements of the fine crystalline samples were 

performed on a Quantum-Design-MPMSR2-SQUID magnetometer in a temperature range 

from 10 to 295 K. The measurements were carried out at 0.05 T in the settle mode. The data 

were corrected for the magnetisation of the sample holder and diamagnetic corrections were 

made by using tabulated Pascals constants. 

X-Ray crystallography: The intensity data of 1 were collected on an Oxford XCalibur 

diffractometer by using graphite-monochromated MoKα radiation. Data were corrected for 

Lorentz and polarisation effects. The structure was solved by direct methods (SIR-97)[8] and 

refined by full-matrix least-square techniques against F0
2 (SHELXL-97).[9] The hydrogen 

atoms were included at calculated positions with fixed thermal parameters. ORTEP-III[10] was 

used for structure representation. Selected distances and angles are presented in Table 1. 

Crystallographic data are summarised in Supporting Information Table S1.  

Further details on the crystal structures (CCDC-734192 for 1) can be obtained free of charge 

on application to Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 

1EZ, UK (Fax: int.code+(1223)336-033; e-mail fileserv@ccdc.cam.ac. uk). 

Synthesis: All syntheses were carried out under argon by using Schlenk tube techniques. 

Methanol was purified as described in literature[11] and distilled under argon. The synthesis of 

the ligands H2L1[12] and H2L2[12] and [FeL1/2(MeOH)2]
[13] is already described in literature. 

Bis(1-imidazolyle)methane (bimm): The ligand bimm, whose synthesis has already been 

reported[14], has been prepared according to the procedure for the synthesis of bis(1-

pyrazolyle)methane[15] and recrystallised from chloroform. 1H NMR (400 MHz, [D6]DMSO, 

22°C, TMS): δ = 7.9 (s, 2H; CH), 7.4 (s, 2H; CH), 6.9 (s, 2H; CH), 6.2  ppm (s, 2H; CH2); 

MS (DEI-(+), 70 eV): m/z (%): 148 (53) [M +], 81 (100) [M + − C3H3N2]; elemental analysis 

calcd (%) for C7H8N4 (148.07): C 56.74, H 5.44, N 37.81; found: 56.26, H 5.30, N 37.48.  

[FeL1(bimm)]·0.5 MeOH (1): A suspension of [FeL1(MeOH)2] (0.50 g, 0.99 mmol) and 

bimm (0.74 g, 4.99 mmol) were refluxed in methanol (20 mL) for 1 h. After cooling down to 

room temperature the dark brown precipitate was filtered off, washed with methanol (5 mL) 

and dried in vacuo (yield: 0.50 g, 83%). IR (KBr): ν�� = 1688(m) (COO), 1663(m), 
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1571(s) cm−1 (CO); MS (DEI-(+), 70 eV): m/z (%): 443 (26) [FeL1+ + H], 442 (100) [FeL1+], 

397 (22) [FeL1+ − OC2H5], 148 (43) [bimm+], 81 (60) [bimm+ − C3H3N2]; elemental analysis 

calcd (%) for C27.5H32FeN6O6.5 (606.42): C 54.47, H 5.32, N 13.86; found: C 54.39, H 5.04, N 

14.04. 

Single crystals of 1 were slowly formed by diffusion techniques in methanol solution after 

several weeks. 

[FeL2(bimm)] (2): A suspension of [FeL2(MeOH)2] (0.24 g, 0.54 mmol) and bimm (0.40 g, 

2.69 mmol) were refluxed in methanol (15 mL) for 1 h. After cooling down to room 

temperature the dark brown precipitate was filtered off, washed with methanol (5 mL) and 

dried in vacuo (yield 0.24 g, 84%). IR (KBr): ν�� = 1558(s) cm−1 (CO); MS (DEI-(+), 70 eV): 

m/z (%): 383 (22) [FeL2+ + H], 382 (96) [FeL2+], 367 (27) [FeL2+ − CH3], 148 (72) [bimm+], 

81 (100) [bimm+ − C3H3N2]; elemental analysis calcd (%) for C25H26FeN6O4 (530.36): C 

56.62, H 4.94, N 15.85; found: C 56.05, H 4.95, N 15.55. 
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6.6 Supporting Information 

Table S1. Crystallographic data of the complex [FeL1(bimm)]·0.5 MeOH (1). 

compound 1 

formula C27.5H32FeN6O6.5 
Mr / g mol−1 606.42 
crystal system triclinic 

space group 1P  
a / Å 10.7629(3) 
b / Å 11.6648(3) 
c / Å 12.3748(3) 

α / ° 112.978(3) 

β / ° 94.543(2) 

γ  / ° 91.001(2) 

V / Å3 1423.87(6) 
Z 1 
ρ / g cm−3 1.414 
µ  / mm−1 0.584 
crystal size 0.38 × 0.34 × 0.32 
T / K 200(2) 
diffractometer Oxford XCalibur 

λ (MoKα) / Å 0.71069 

θ-range / ° 3.8–26.1 
reflns. collected 26315 
indep. reflns. (Rint) 5632 (0.0343) 
mean σ (I) / I 0.0341 
reflns. with I ≥ 2σ (I) 4413 
x, y (weighting scheme) 0.0532, 0 
parameters 372 
restraints 0 
R (F) (all data)[a] 0.0338 (0.0477) 
wR (F2)[b] 0.0910 
GooF 1.065 
shift/errormax 0.001 
max., min. resd. dens. / e Å−3 0.619, −0.387 

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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Abstract: The syntheses and characterisation of two new octahedral iron(II) SCO 

coordination polymers [FeL1(bimm)] (1) and [FeL2(bppa)]�0.5 MeOH (2) (L1 = {2,2′-[1,2-

phenyl-bis(iminomethylidyne)]bis[1-phenylbutane-1,3-dione] (2-)-N,N′,O3,O3
′}, L2 = {di 

ethyl (E,E)-2,2′-[1,2-phenyl-bis(iminomethylidyne)]bis[3-oxo-3-phenylpropan-oate] (2-)-N, 

N′,O3,O3
′}, bimm = bis(1-imidazolyle)methane and bppa = 1,3-bis(4-pyridyl)propane) is 

presented. Results from X-ray structure analysis at different temperatures revealed in case of 

1 that the transition from a gradual to a cooperative SCO with a 5 K wide hysteresis is due to 

an increase of the short intermolecular contacts, which exceed a certain threshold for the 

cooperative effect. In case of compound 2 an incomplete spin transition with a 4 K wide 

hysteresis was observed. The low temperature χMT product remains constant at a value typical 

for a mixed HS/LS state in stepwise spin transitions. A quantitative correlation between the 

cooperative effects of 12 monomer and polymer iron(II) SCO complexes and their structural 

properties derived from X-ray structure analysis, the so-called crystal contact index (CCI) is 

introduced. 
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7.1 Introduction 

There is an ongoing interest in the bistability of spin crossover (SCO) compounds,[1]
 as the 

thermochromism associated with the spin transition (ST) makes them potentially useful for 

various applications such as display and memory device units,[2] sensors[3] and cold channel 

control units in food and medical storages.[4]  

The origin of hysteresis loops in ST materials and their thermal width as well as the reason for 

stepwise or incomplete spin transitions are not yet fully understood. In the case of 1D chain 

SCO compounds, bridges with flexible linkers (triply bis-tetrazole bridges with flexible 

spacers[5] or flexible single bridges as 1,2-bis(4-pyridyl)ethane[6]) so far resulted in gradual 

ST. In the case of rigid linkers the ST behaviour depends on the intermolecular interactions 

(hydrogen bonds, π-stacking, van der Waals interactions) that are discussed to be suitable for 

transmitting cooperative interactions. This was recently demonstrated for 4,4′-bipyridine 

linked SCO complexes, where either gradual[7] or abrupt ST with 18 K wide thermal 

hysteresis loops[8] were obtained. A similar observation was made for triply 1,2,4-triazole 

bridged iron(II) complexes.[9] Stepwise spin transitions are often associated with two or more 

nonequivalent iron centres. This was observed for the first 1D polymeric material undergoing 

a two-step spin transition recently presented by Neville, Murray and co-workers.[10] Of the 

two compounds presented performing a stepwise spin transition, results from X-ray structure 

analysis revealed, that one ([Fe(NCS)2(bdpp)], with bdpp = 4,6-bis(2′,2′′-pyridyl)pyrazine)) 

has two distinct iron(II) centres at each temperature with ordered, alternating HS and LS sites 

at the intermediate plateau (IP) temperatures. In contrast to this the second complex 

([Fe(NCSe)2(bdpp)]) has one unique iron(II) centre at each temperature with an averaged 

HS/LS character at the IP temperature. Great efforts were made by the authors to explain the 

two-step spin transition in this compound. 

In this paper we present two examples for 1D chain iron (II) SCO complexes with flexible 

bridges, but a cooperative spin transition with small thermal hysteresis loops. The complexes 

are obtained by the combination of Schiff base-like equatorial tetradentate ligands H2L1 and 

H2L2 with the bridging axial ligands bimm (bis(1-imidazolyle)methane) and bppa (1,3-bis(4-

pyridyl)propane) (Scheme 1). The two equatorial ligands were so far not used for the 

synthesis of SCO complexes. They can be derived from the ligands H2L3 and H2L4, which 

were demonstrated to be highly suitable for the synthesis of SCO complexes,[11,12] by 
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replacement of two of the methyl groups by phenyl groups. Bimm[13] and bppa[14] were 

already demonstrated to be suitable for the synthesis of SCO complexes of this ligand type. In 

the last section of the manuscript a quantitative model is introduced to correlate the strength 

of the cooperative interactions with the number and intensity of the intermolecular 

interactions. 

 

 

 

Scheme 1. Ligands used in this work. H2L1: R1 = Me,  R2 = Ph; H2L2: R1 = Ph, R2 = OEt; H2L3: R1 = Me, 
R2 = OEt; H2L4: R1 = Me, R2 = Me.  

7.2 Results and Discussion 

Synthesis: Scheme 1 displays the ligands used in this work. H2L1 and H2L2 were synthesised 

as previously described in literature.[15,16] The 1D octahedral iron(II) coordination polymers 

could be obtained in a two-pot reaction. In a first step, iron complexes of the tetradentate 

equatorial ligands H2L1 and H2L2 with methanol as axial ligands were prepared starting from 

iron(II)acetate.[17] In a subsequent ligand substitution reaction [FeL1(MeOH)2] and 

[FeL2(MeOH)2] were converted with the axial-bridging ligands bimm and bppa, respectively, 

to give [FeL1(bimm)] (1), [FeL2(bppa)]�0.5 MeOH (2) and [FeL2(bimm)]�0.5 MeOH (3) in 

good yields. The complexes were fully characterised by elemental analysis, IR and mass 

spectroscopy. X-Ray diffraction data could be obtained for 1 and 2. The magnetic properties 

were determined by T-dependent susceptibility measurements using a SQUID magnetometer. 
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Magnetic properties: Magnetic susceptibility measurements for all compounds were 

performed in the temperature range from 5 to 300 K. The thermal dependence of the product 

χMT (χM is the molar susceptibility and T the temperature) for 1 is displayed at the left of 

Figure 1. The room temperature value, χMT = 3.67 cm3 K mol−1, is within the range expected 

for an iron(II) complex in the HS state. Upon cooling, the χMT product decreases first slowly, 

until at 180 K about 30% of the iron centres are in the LS state. Below this point, the 

remaining HS iron centres perform an abrupt transition into the LS state with χMT = 

0.14 cm3 K mol−1 at 5 K. The critical temperatures are 171 K in the cooling and 176 K in the 

heating mode, corresponding to a 5 K wide thermal hysteresis loop. 

The plot of χMT vs. the temperature for complex 2 is given at the top right of Figure 1. The 

room temperature value of χMT = 3.27 cm3 K mol−1 is typical for iron(II) in the HS state. 

Upon cooling the moment remains constant until about 160 K where a very abrupt ST takes 

place. A 4 K wide thermal hysteresis loop is observed with critical temperatures of 136 K 

upon cooling and 140 K upon heating. In the low temperature region a mixed HS/LS state is 

obtained with χMT = 1.58 cm3 K mol−1. For compound 3 (bottom of Figure 1), nearly ideal 

Curie behaviour is observed. Upon cooling the χMT product decreases from a value of 

3.56 cm3 K mol−1 at 295 K to a value of 3.08 cm3 K mol−1 at 20 K. The susceptibility data 

above 20 K can be fitted very well with the Curie-Weiss law (χM = C/(T − Θ)) with the 

parameters Θ = −5.44 K and C = 3.57 cm3 K mol−1. The Curie constant C is in a region 

expected for iron(II) HS complexes and the negative Weiss constant Θ in combination with 

the temperature dependent decrease of the χMT product could be an indication for weak 

antiferromagnetic interactions between the chains, but other reasons are also possible. This is 

a typical behaviour for an iron(II) HS complex of this ligand type.[18] 
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Figure 1. Plots of the χMT product (filled squares) vs. T for the compounds 1, 2 and 3. Reciprocal molar 
susceptibility χM

−1 (open squares) as a function of T and the fit according to the Curie-Weiss law, 
χM = C/(T − Θ), with the parameters Θ = −5.44 K, C = 3.57 cm3 K mol−1 for compound 3. 

Structural descriptions: Crystals suitable for X-ray structure analysis were obtained for both 

spin crossover complexes 1 and 2. The crystallographic data are summarised in Supporting 

Information Table S1. Selected bond lengths and angles within the first coordination sphere 

are summarised in Table 1. ORTEP representations of the HS forms of 1 and 2 are given in 

Figure 2 and Figure 3, respectively. In the case of 1, the X-ray structure was measured at three 

temperatures before (250 K), during (180 K) and after the spin transition (125 K). In the case 

of 2 a determination of the X-ray structure was only possible for the HS state as the crystals 

crumble while cooling down. 
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Figure 2. ORTEP drawing of the asymmetric unit of 1 at 250 K. Hydrogen atoms were omitted for clarity. 
Thermal ellipsoids are shown with a 50% probability. 

 

Figure 3. ORTEP drawing of the asymmetric unit of 2 at 173 K. Hydrogen atoms were omitted for clarity. 
Thermal ellipsoids are shown with a 50% probability. 
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Table 1. Selected bond lengths [Å] and angles [°] within the first coordination sphere of 1 at 125 K, 180 K and 
250 K and of 2 at 173 K. 

compound T/K S Fe-Neq Fe-Oeq Fe-Nax Oeq-Fe-Oeq Nax-Fe-Nax 

1 250 2 2.090(3) 

2.099(3) 

2.028(3) 

2.027(2) 

2.205(3) 

2.225(3) 

109.47(10) 171.44(11) 

1 180 2/0 2.049(3) 

2.070(3) 

2.014(3) 

2.005(3) 

2.159(3) 

2.177(3) 

106.69(11) 172.00(12) 

1 125 0 1.910(4) 

1.919(4) 

1.931(3) 

1.936(3) 

2.017(3) 

2.017(3) 

91.43(13) 175.21(13) 

2 173 2 2.093(1) 

2.083(1) 

2.004(1) 

2.013(1) 

2.231(1) 

2.249(1) 

106.56(5) 177.26(5) 

 

 

Intramolecular changes upon spin transition of 1: In the HS state the average bond lengths 

within the first coordination sphere of 1 are 2.09 Å (Fe-Neq), 2.03 Å (Fe-Oeq) and 2.22 Å (Fe-

Nax). The values are within the region reported for HS iron(II) complexes of the same ligand 

type.[11–14] Upon spin transition a shortening of the bond lengths of about 10% is observed, as 

discussed for other iron(II) spin crossover complexes in literature.[1] This shortening is more 

pronounced for the axial ligands, which connect the iron centres in the 1D chain, than for the 

equatorial ones in agreement with previous findings on mononuclear analogues.[11–14] The 

average bond lengths in the LS state are 1.91 Å (Fe-Neq), 1.93 Å (Fe-Oeq) and 2.02 Å (Fe-

Nax). A characteristic tool for the determination of the spin state of this type of iron(II) 

complexes is the O-Fe-O angle that changes from 109° in the HS state to 91° in the LS 

state.[11,14] The 1D chain of compound 1 is linear, with the equatorial ligands being parallel to 

each other within one chain. (Figure 4, at the top). 
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Intermolecular interactions of 1: Selected intermolecular distances for the 250 K, 180 K 

and 125 K structure of 1 are shown in Table 2. Selected views of the molecule packing of 1 in 

the crystal at 250 K and 125 K are given in Figure 5. Between 200 K and 180 K compound 1 

undergoes a gradual spin transition with no indications for cooperative interactions. Then 

upon further cooling an abrupt transition with a 5 K wide hysteresis occurs. The initial 

gradual transition is explained by the presence of only a few short intermolecular contacts in 

the high temperature structure (see Figure 5, 250 K). Upon cooling the number of short 

contacts increases. The 180 K-structure has one additional contact beside the other more 

shortened contacts in comparison to the 250 K-structure. This increases the total 

communication of elastic interactions and accounts for a certain threshold value for the 

occurrence of the observed cooperative effect. The additional contact (C7· · ·C8) in the 180 K-

structure facilitates the π-stacking of the 1,2-disubstituted benzene ring of the equatorial 

ligand between adjacent chains and makes the interaction network three-dimensional. The low 

temperature structure (125 K) is characterised by many additional short intermolecular 

contacts which satisfactorily explain the small hysteresis observed in the magnetic 

measurements. 

 

 

 

Figure 4. Top: excerpt of the 1D polymeric chain of compound 1 in the crystal at 250 K, view along [0 0 1]; 
bottom, zigzag motif of the 1D polymeric chain of compound 2 in the crystal at 173 K, view along [1 0 0]. 
Hydrogen atoms have been omitted for clarity. 
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Discontinuous spin transitions were recently associated with order/disorder transitions of 

counter ions[19] or additional ligand molecules[20] in the crystal packing. The order/disorder 

transition at a certain temperature facilitated a significant increase in the number of 

intermolecular contacts below this temperature that exceed a threshold and therefore mediates 

the cooperative effect. Compound 1 does not exhibit an additional disordered counter ion, 

solvent or ligand molecule or any other disordered parts. Thus only the number and the nature 

(or strength) of the intermolecular interactions are important for the discussion of cooperative 

interactions. 

 

 

 

Figure 5. Left: packing of compound 1 in the crystal at 250 K; right: packing at 125 K; top: view along [0 1 0], 
bottom: view along [1 0 0]. Hydrogen atoms, which do not participate in short intermolecular interactions, have 
been omitted for clarity. Crystal contacts shorter than the sum of the van der Waals radii minus 0.1 Å are 
depicted in dashed bond. 
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Table 2. Selected intermolecular distances d(D� � �A) [Å] and differences between atomic distances and the sum 
of the van der Waals radii (vdW) [Å] of 1 at 250 K, 180 K and 125 K. 

D H A T/K d(D� � �A) d − vdW 

C29 H29 O3[a] 250 2.26 −0.46 

   180 2.24 −0.48 

   125 2.42 −0.30 

C32 H32B O2[b] 250 2.48 −0.24 
   180 2.43 −0.29 
   125 2.51 −0.21 

C7  C8[c] 180 3.28 −0.12 

C7  C8[c] 125 3.19 −0.21 

C31 H31 O4[d] 125 2.46 −0.26 

C32 H32B O1[b] 125 2.49 −0.23 

C13 H13A O4[e] 125 2.57 −0.15 

H13A  H21B[e] 125 2.27 −0.13 

C32 H32A C15[f] 125 2.78 −0.12 

C34  C18[a] 125 3.29 −0.11 

C17 H17 C8[a] 125 2.79 −0.11 

H21A  H21B[g] 125 2.30 −0.10 

Symmetry codes: [a] −1 + x, y, z; [b] 1 − x, −y, 1 − z; [c] 1 − x, 1 − y, − z; [d] −1 + x, 1 + y, z; [e] 1 − x, 1 −y, 
1 − z; [f]1 + x, y, z; [g] −x, 1 − y, 1 − z. 

A zigzag motif in the crystal structure of 2: The average bond lengths within the first 

coordination sphere of 2 are 2.09 Å (Fe-Neq), 2.01 Å (Fe-Oeq) and 2.24 Å (Fe-Nax). The values 

are within the region reported for HS iron(II) complexes as discussed above (see Table 1).[11–

14] The O-Fe-O angle is 107° and thus clearly in the range typical for a HS complex. Selected 

intermolecular distances of 2 are summarised in Table 3. In Figure 4 the 1D polymeric chain 

of octahedral iron(II) centres (at the bottom) and in Figure 6 the packing of the chains in the 

crystal are displayed. The 1D chain of 2 exhibits a zigzag motif with an angle between two 

adjacent equatorial ligands of 99°. Such motifs were previously found in the crystal structure 

of the closely related [FeL3(bppa)][14] and [FeL4(bppa)]�MeOH[21] (see Scheme 2). The first 

compound undergoes an incomplete spin transition that stops at an intermediate plateau (IP) 
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while the latter compound undergoes a stepwise thermal spin transition with a very wide step. 

It could be deduced from the structures and the structures of related 1D chain SCO complexes 

that the zigzag motif of the 1D chain as well as a dense packing (intermolecular contacts 

shorter than the sum of the van der Waals radii) are responsible for restraining interactions 

between these chains and hence stabilise the mixed HS/LS state of the step. In general, a 

HS → LS transition in 1D chain compounds involves a relocation of the ligands towards the 

smaller LS molecule. If the Fe· · ·Fe distances cannot follow the changes in Fe-L bonds due to 

restraining interactions, a stabilisation of a mixed HS/LS state can be observed.[14,22] For 

zigzag chains restraining intermolecular interactions can be more easily imagined compared to 

linear structures and therefore wider steps can be expected.[14] The spin transition behaviour of 

1 and 2 is in agreement with this idea. In the case of the linear chain compound 1 a one-step 

ST is observed while for 2 the ST stops at the IP (see Figure 1 and 4). Compound 2 differs 

only in one homotopic residues from the previously published [FeL3(bppa)] and in two 

homotopic residues from the previously published [FeL4(bppa)]�MeOH. Instead of two 

methyl groups in L3 and L4 it contains two sterically more demanding phenyl groups in the 

equatorial ligand, which are distorted out of the plane. The second difference between L2 and 

L4 are two ethoxycarbonyl groups instead of two acetyl groups. In contrast to [FeL3(bppa)] 

(abrupt incomplete one-step spin transition)[14] and [FeL4(bppa)]�MeOH (gradual two-step 

spin transition),[21] compound 2 shows a very abrupt but incomplete spin transition with a 

small hysteresis. The distorted phenyl groups may increase the extent of restraining 

interactions within the zigzag structure and by this prevent the ST of the second half of the 

iron centres. Furthermore, the two ethoxycarbonyl groups of the equatorial ligand provide an 

intertwining of adjacent chains (see Figure 6, left), which are closely connected by several 

short contacts. Moreover, π-stacking of the 1,2-disubstituted benzene rings of the equatorial 

ligand of two adjacent chains (Figure 6, right) may become the most restraining interaction for 

the ligand relocation along [0 0 1] due to the usually pronounced shortening of the axial bond 

lengths. Very likely, all these interactions explain the remaining in the mixed HS/LS state 

through the whole low temperature range as well as the small hysteresis loop. 
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Figure 6. Left: excerpt of a 2D layer of parallel chains of 2 in the crystal packing, view along [0 1 0]; right: π-
stacking of the equatorial ligands of two adjacent chains of 2, view along [1 0 0]. Hydrogen atoms, which do not 
participate in short intermolecular interactions, have been omitted for clarity. Crystal contacts shorter than the 
sum of the van der Waals radii minus 0.1 Å are depicted in dashed bonds. 

 

Table 3. Selected intermolecular distances d(D� � �A) [Å] and differences between atomic distances and the sum 
of the van der Waals radii (vdW) [Å] of 2 at 173 K. 

D H A d(D� � �A) d − vdW 

O7 H7 O6 2.12 −0.60 

C24 H24 O5[a] 2.50 −0.22 

C44 H44B O4[b] 2.53 −0.19 

C41 H41 O3[b] 2.56 −0.16 

C38 H38A O1[c] 2.59 −0.13 

C16 H16 O7[d] 2.59 −0.13 

C7  C9[e] 3.43 +0.03 

Symmetry codes: [a] ½ + x, ½ − y, 1 − z; [b] −½ + x, y, ½ − z; [c] 1 − x, ½ + y, ½ − z; [d] ³⁄₂ − x, ½ + y, z; [e] 
1 − x, −y, 1 − z.  
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Crystal contacts mediate cooperative effects beyond a threshold: There are several 

examples that demonstrate that the number and intensity of contacts shorter than the sum of 

the van der Waals radii correlate with the cooperative nature of the spin transition.[14,23] The 

idea of a threshold for elastic interactions mediating cooperative effects in a spin crossover 

compound led us to the question, if there is a quantitative way to describe structural features. 

We discovered a simple approach to correlate the sum of short contacts of selected structures 

with the strength of the cooperative effect (gradual, abrupt or accompanied by hysteresis). 

Thereby we assume that every short contact (shorter than the sum of the van der Waals radii) 

contributes to the elastic interactions mediating the cooperative effect. Those which are very 

short (non-classical and classical hydrogen bonds) contribute more to the cooperative effect 

than those which are longer (π-stacking, van der Waals contacts). Equation (1) combines all 

these assumptions. The crystal contact index (CCI) is the sum of all short and weighted 

contacts. The differences between the sum of the van der Waals radii (vdW) and the atomic 

distances of the contacts (d) were obtained by using the programme MERCURY 2.2[24] and 

were weighted by an exponential function, in which very short contacts are more pronounced. 

Table 4 gives an overview of the selected compounds, which were analysed by this method. 

The further ligands which are mentioned therein and in the following are displayed in 

Scheme 2. 

∑
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For compound 1 the CCI values represent the results made in the preceding section by 

analysis of the crystal packing. Upon cooling, the CCI value increases from 1.2 (250 K) to 1.5 

(180 K) and finally to 2.2 (125 K) indicating that the strength and the number of short 

contacts increases. Below 180 K the threshold value for the elastic interactions seems to be 

reached and the remaining HS centres perform now a cooperative spin transition. The CCI 

thus helps to explain the observed spin transition. A similar behaviour as for 1 was observed 

for compound 5 ([FeL3(phpy)2], HS: 1.2, LS: 2.0)[12d] with a similar curve progression while 

an opposite trend was observed for the previously published compound 8 ([FeL4(meim)2]� 

meim).[20] Here the CCI value for the HS structure (1.8) is higher than the value for the LS 

structure (1.4). Although the number of short contacts increases upon cooling, the intensity of 
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the contacts decreases. This is in good agreement with the results from the magnetic 

measurements where a 2 K wide thermal hysteresis loop is observed in the beginning and a 

more gradual character is observed in the second part of the transition curve.[20]  

Table 4. Correlation between cooperative effects and structural analysis of selected spin crossover compounds of 
the Jäger-ligand system. Type: m = monomeric, d = dimeric, p = 1D polymeric coordination compound; S = 2: 
high-spin structure, S = 0: low-spin structure; h.w. = hysteresis width [K]; CCI = crystal contact index; �a, �b, 
�c = percentaged difference in cell parameter change upon spin transition; AP = anisotropy parameter; 
CI = crystal index. 

No.  compound ref. type S feature h.w. CCI �a  �b  �c AP CI 

2 1.2 

2/0 1.5 

1 [FeL1(bimm)] this 

work 

p 

0 

gradual,  

then hys. 

5  

2.2 

0.6 −3.8 −2.3 3.3 7.3 

2 [FeL2(bppa)]� 

0.5 MeOH 

this work p 2 hys.,  

incompl. 

4  2.0      

2 0.7 4 [FeL3(py)2] [25] m 

0 

gradual  

1.0 

−1.1 −0.9 −1.5  0.1 0.1 

2 1.2 5 [FeL3(phpy)2] [12d] m 

0 

gradual,  

then hys. 

4  

2.0 

0.6 0.6 −2.6  2.3 4.6 

2 0.9 6 [FeL4(py)2] [12a] m 

0 

hys. 2  

1.0 

0.0 −1.0 −3.8 2.6 2.6 

7 [FeL4(phpy)2]� 

phpy 

[12d] m 0 gradual  1.5          

2 1.8 8 [FeL4(meim)2]� 

meim 

[20] m 

0 

hys., then 

gradual 

2  

1.4 

−0.9 −1.2 −1.1 0.0 0.0 

9 [FeL4(dmap)2] [12a] m 2 hys 9  0.6      

10 [Fe2(L5)(meim)4]� 

2 meim 

[20] d 0 gradual,  

then hys. 

21  2.5 −3.1  −3.8  −2.4 0.3  0.75 

11 [FeL3(Him)2] [26] m 2 hys. 70  4.1         

12 [FeL3(Dim)2] [27] m 2 hys. 66  4.0      

13 [FeL3(Him)2], 

2nd modification 

[28] m 0 hys. 4  4.2       
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Scheme 2. Further ligands discussed in this work. 

On the basis of the data in Table 4, it can be concluded that low cooperativity can be expected 

for CCI values between 0 and 1.5, medium cooperativity between 1.0 and 2.0 and high 

cooperativity for values higher than 2.0. This general trend is visualised on top of Figure 7. 

The CCI value is not only useful to explain the curve progression of spin transition curves, it 

can also be used to estimate if solvent molecules included in the crystal packing contribute to 

the cooperative effects or have a dilution effect. Such dilution effects are well known in spin 

crossover research and have been for example demonstrated for a series of mixed crystals 

with the general composition [M1−xFex(pic)3]X2·solv (solv = MeOH, EtOH; X = Cl, Br; 

M = Co, Zn, Mn) with decreasing x.[29] The relative high LS-CCI-value for compound 7 

([FeL4(phpy)2]�phpy, 1.5)[12d] with an additional non-coordinated ligand molecule phpy can 

clearly be explained with a dilution effect of the additional phenylpyridine, as given in 

Table 5. In the case of compound 8[20] or compound 2 the CCI values corrected by the solvent 

distribution (Table 5) are too low—here the molecules clearly contribute to the cooperative 

effects. For compound 2 the additional methanol molecules cross-link three different zigzag 

chains in the structure and contribute with three short contacts, containing a strong hydrogen 

bond (O7-H7· · ·O6), to the cooperative effect without a doubt (see Table 3). 
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Figure 7. Plots of the crystal contact index (CCI) (top) and the crystal index (CI, at the bottom) against the 
hysteresis width. Values are taken from Table 4 (circles and squares) and from the text (triangles, literature 
examples). 

Of course these values can only be seen as rough guidelines with exceptions due to many 

factors which cannot easily be quantified. Examples for such exceptions are compounds 9[12a] 

and 11–13,
[27–30] see Figure 7, top. In the case of 9 the CCI value leads to a clear 

underestimation of the hysteresis width, whereas for the compounds 11–13 the CCI value is in 

the same order of magnitude but very different hysteresis widths are obtained.[28] In the case 

of 13 an agreement with the steeper branch of the correlation could be discussed, for 11 and 

12 again the hysteresis width is underestimated. Obviously additional factors contribute to the 

cooperative interactions in the case of 9, 11 and 12. Interestingly, for all four complexes 

hydrogen bonds are observed that involve an oxygen atom directly coordinated to the metal 

centre, as illustrated in Figure 8 for 9 and 11. Further going investigations are in progress to 

more clearly analyse the influence of hydrogen bonds on cooperative interactions in spin 

crossover systems. 
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Table 5. Selected CCI values corrected by disregarding of the short contacts provided by additional solvent or 
ligand molecules in the crystal structure (compare with Table 4). 

No. add. mol. S SCO CCI 

(eqn (1)) 

CCI 

(corr.) 

comment on correction 

7 phpy LS grad. 1.5 0.9 better value; dilution effect. 

8 meim HS 

LS 

2 K hys. 1.8 

1.4 

1.0 

0.8 

value too low; meim contri-

butes to the cooperative effect. 

2 0.5 MeOH HS 4 K hys. 2.0 0.5 value too low; MeOH contri-

butes to the cooperative effect. 

 

 

Guionneau et al. reported that very large and anisotropic unit cell modifications and the SCO 

phenomenon are probably indissociable. The unit cell temperature dependence evidences the 

amplitude of the strong structural rearrangement that accompanies the SCO as well as the 

hysteresis width.[30] Therefore we applied equation (2) on the percentaged change in the cell 

parameters a, b and c of compounds whose HS and LS structures are known (Table 4). 

Equation (2) simply calculates the variance of the cell parameter change giving the value of 

the anisotropy parameter (AP). 

4
2

4 10
)

_
(

10),,(VarAP ×
−

=×∆∆∆= ∑
n

xx
cba    (2) 

LS

HS1
a

a
a −=∆ ; 

LS

HS1
b

b
b −=∆ ; 

LS

HS1
c

c
c −=∆  

CI = CCI · AP        (3) 

As the variance is a measure of the amount of variation within the values of a variable it could 

be seen as a measure of the anisotropy of the parameter change in this particular case. This 

approach provides also a good correlation between the observed cooperative effect and the AP 

value. If the value is very low, the anisotropy in the cell parameter change is low as well as 

the cooperative effect (e.g. the value is 0.1 for the gradual SCO complex 4 in comparison to 

3.3 for compound 1). 
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Figure 8. Excerpt of the crystal packing of 9 (left) and 11 (right). Hydrogen bonds indicated as dashed lines. 
Hydrogen atoms omitted for clarity. 

Since there are some deviations, equations (1) and (2) are combined by equation (3) to give 

the crystal index (CI), which is the product of both parameters CCI and AP. Equation (3) 

provides an improved correlation as can be seen in Table 4 and at the bottom of Figure 7. A 

nearly linear dependency is observed for the compounds with smaller hysteresis loops, while 

the complex 10 ([Fe2(L5)(meim)4]�2 meim, 21 K wide hysteresis loop)[20] no longer fits into 

the correlation, probably because of its dinuclear nature. At this point it should be noted that 

no difference is observed between the mononuclear complexes and the polymer chain 

compounds with flexible linkers. A disadvantage in using AP and CI values is the limited 

availability of high- and low-spin structures of a particular complex due to crystal damages 

during the spin transition. In contrast, the CCI scale could be used for each structure. The 

concept of the CCI was tested on four SCO complexes that belong to the series [FeL2(NCS)2] 

with L = btz[31] (2,2′-bi-4,5-dihydrothiazin, gradual spin transition), phen[32] (1,10-phen-

anthrolin, abrupt spin transition), dpp (dipyrido[3,2-a:2′3′-c]phenazine, hysteresis 40 K) and 

pm-pea[30] (N-2′-pyridylmethylene-4-phenylethynyl, hysteresis 40 K). For this series the 

increasing cooperative interactions are correlated with an increasing number of intermolecular 

contacts.[23] Indeed, the CCI of the first three complexes rises from 0.6 (btz) over 1.6 (phen) to 

1.8 (dpp). The values of the first two compounds (btz and phen) fit nicely into the correlation 

given at the top of Figure 7, while the value for the system [Fe(dpp)2(NCS)2] is too low, 
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indicating that π-stacking probably cannot be expressed solemnly by the number of 

intermolecular contacts. This suggestion is reinforced by the last example (pm-pea) where a 

significantly lower CCI of 0.8 is obtained although the hysteresis with is similar to those of 

the dpp complex (see Figure 7). 

7.3 Conclusion 

In this work we have presented the synthesis and characterisation of two new octahedral 

iron(II) SCO coordination polymers. Results from X-ray structure analysis at different 

temperatures revealed in case of 1 that the transition from a gradual to a cooperative SCO 

with a 5 K wide hysteresis is due to an increase of the short intermolecular contacts, which 

exceed a certain threshold for the cooperative effect. In case of compound 2 an incomplete 

spin transition with a 4 K wide hysteresis was observed. The low temperature χMT product 

remains constant at a value typical for a mixed HS/LS state in stepwise spin transitions. The 

structure of the 1D polymeric chain of 2 exhibits a further zigzag motif, which was previously 

found in a related compounds with a stepwise or incomplete spin transition.[14,29] Restraining 

interactions provided by the zigzag motif as well as additional restraining interactions of the 

equatorial ligand may stabilise the mixed HS/LS state and make a further progression of the 

spin transition impossible. 

Furthermore we established a correlation between the cooperative effects of 12 iron(II) SCO 

complexes and their structural properties derived from X-ray structure analysis, the so-called 

crystal contact index, CCI. For small hysteresis loops this correlation is in agreement with the 

model of elastic interactions mediating the structural rearrangements during the cooperative 

spin transition in the solid phase. It provides a good estimation to accompany the structural 

interpretation of spin transition properties and can to some extend also be applied to other 

SCO systems. In the case of spin transition compounds with wider hysteresis loops the 

correlation fails, indicating that there are additional mechanisms responsible for cooperative 

interactions. The clarification of the exact nature of those factors will be the topic of 

subsequent work. 
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7.4 Experimental Section 

Magnetic measurements: Magnetic susceptibility data were collected by using a Quantum 

Design MPMSR-2 SQUID magnetometer under an applied field of 0.05 T over the 

temperature range 5 to 300 K. All samples were placed in gelatine capsules held within a 

plastic straw. The data were corrected for the magnetisation of the sample holder and the 

ligands by using tabulated Pascal’s constants. 

X-Ray crystallography: The intensity data of 1 and 2 were collected on an Oxford XCalibur 

diffractometer by using graphite-monochromated MoKα radiation. The data were corrected for 

Lorentz and polarisation effects. The structure was solved by direct methods (SIR-97)[33] and 

refined by full-matrix least-square techniques against F0
2 (SHELXL-97).[34] The hydrogen 

atoms were included at calculated positions with fixed displacement parameters. All non-

hydrogen atoms were refined anisotropically. ORTEP-III was used for the structure 

representation.[35] Graphical representations of the molecular packing were done with 

SCHAKAL-99.[36] The crystallographic data are summarised in Supporting Information 

Table S1.  

Further details on the crystal structures (CCDC-794657, -58 and -59 for 1 at 250 K, 180 K 

and 125 K, CCDC-794656 for 2) can be obtained free of charge on application to Cambridge 

Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: int.code 

+(1223)336-033; e-mail fileserv@ccdc.cam.ac.uk). 

Synthesis: All syntheses were carried out under argon by using Schlenk techniques. Methanol 

was purified as described in literature and distilled under argon.[37] The synthesis of H2L1,[15] 

H2L2,[16] [FeL2(MeOH)2]
[17] and iron(II)acetate[38] is described in literature. The axial ligand 

bimm was prepared according to the literature,[13] bppa was purchased from Aldrich Chemical 

Co. and used as received. 

[FeL1(MeOH)2]: A mixture of anhydrous iron(II)acetate (2.04 g, 11.7 mmol) and H2L1 

(3.12 g, 6.90 mmol) in methanol (150 mL) was heated at reflux for 1 h. After cooling down to 

room temperature the dark purple precipitate was filtered off, washed with methanol 

(2 × 5 mL) and dried in vacuo (yield: 2.85 g, 72%). IR (KBr): ν�� = 1556(s) cm−1 (CO); MS 

(DEI-(+), 70 eV): m/z (%): 507 (33) [FeL1+ + H], 506 (100) [FeL1+], 464 (6) [FeL1+ − 
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COCH3], 429 (4) [FeL1+ − C6H5], 105 (25) [COC6H5
+], 77 (19) [C6H5

+]; elemental analysis 

calcd (%) for C30H30FeN2O6 (602.46): C 63.2, H 5.3, N 4.9; found: C 63.1, H 5.2, N 4.9.  

[FeL1(bimm)] (1): A mixture of [FeL1(MeOH)2] (0.12 g, 0.21 mmol) and bimm (0.25 g, 

1.66 mmol) in methanol (10 mL) was heated at reflux for 1 h. After cooling down to room 

temperature the dark brown precipitate was filtered off, washed with methanol (1 × 3 mL) and 

dried in vacuo (yield: 0.09 g, 65%). IR (KBr): ν�� = 1557(s) cm−1 (CO); MS (DEI-(+), 70 eV): 

m/z (%): 506 (45) [FeL1+], 148 (66) [bimm+], 81 (100) [bimm+ − C3H3N2]; elemental analysis 

calcd (%) for C35H30FeN6O4 (654.50): C 64.2, H 4.6, N 12.8; found: C 63.7, H 4.6, N 12.5.  

Single crystals of 1 were slowly formed by diffusion techniques in methanol solution after 

several weeks. 

[FeL2(bppa)]�0.5 MeOH (2): A mixture of [FeL2(MeOH)2] (0.29 g, 0.45 mmol) and bppa 

(0.25 g, 1.66 mmol) in methanol (20 mL) was heated at reflux for 1 h. After cooling down to 

room temperature the black precipitate was filtered off, washed with methanol (2 × 5 mL) and 

dried in vacuo (yield: 0.23 g, 67%). IR (KBr): ν�� = 1679(s) (COO),1552(s) cm−1 (CO); MS 

(DEI-(+), 70 eV): m/z (%): 567 (43) [FeL2+ + H], 566 (100) [FeL2+], 521 (13) [FeL2+ − 

O2CH5], 198 (23) [bppa+]; elemental analysis calcd (%) for C43.5H42FeN4O6.5 (780.67): 

C 66.9, H 5.4, N 7.2; found: C 67.2, H 5.2, N 7.3.  

Single crystals of 2 were slowly formed by diffusion techniques in methanol solution after 

several weeks.   

[FeL2(bimm)]�0.5 MeOH (3): A mixture of [FeL2(MeOH)2] (0.10 g, 0.16 mmol) and bimm 

(0.12 g, 0.79 mmol) in methanol (10 mL) was heated at reflux for 1 h. After cooling down to 

room temperature the green precipitate was filtered off, washed with methanol (1 × 3 mL) and 

dried in vacuo (yield: 0.08 g, 68%). IR (KBr): ν�� = 1668(m), 1660(m) (COO),1557(s) cm−1 

(CO); MS (FAB-(+), 70 eV): m/z (%): 714 (1) [M +], 566 (4) [M + − bimm], 307 (30), 154 

(100); elemental analysis calcd (%) for C37.5H36FeN6O6.5 (730.57): C 61.6, H 5.0, N 11.5; 

found: C 61.4, H 4.7, N 11.6. 



7. Complete and Incomplete Spin Transitions in 1D Chain Iron(II) Compounds 

 

 

 

  
 132 
  

7.5 References  

 
[1] a) H.A. Goodwin, Coord. Chem. Rev., 1976, 18, 293; b) E. König, Struct. Bonding 

(Berlin) 1991, 76, 51; c) P. Gütlich, A. Hauser, H. Spiering, Angew. Chem. Int. Ed. 

Engl. 1994, 33, 2024, and references therein; d) P. Gütlich, H.A. Goodwin (Eds.), Spin 

Crossover in Transition Metal Compounds I–III, Topics in Current Chemistry, Springer, 

Berlin, Heidelberg, New York, 2004; e) J.A. Real, A.B. Gaspar, M.C. Munoz, Dalton 

Trans. 2005, 2062; f) K. Nakano, N. Suemura, K. Yoneda, S. Kawata, S. Kaizaki, 

Dalton Trans. 2005, 740; g) O. Sato, J. Tao, Y.-Z. Zhang, Angew. Chem. 2007, 119, 

2200; Angew. Chem. Int. Ed. 2007, 46, 2152; h) J.A. Kitchen, S. Brooker, Coord. Chem. 

Rev. 2008, 252, 2072; i) K.S. Murray, Eur. J. Inorg. Chem. 2008, 3101; k) M.A. 

Halcrow, Coord. Chem. Rev. 2009, 2059; l) S. Brooker, J.A. Kitchen, Dalton Trans. 

2009, 7331; m) C.J. Kepert, Aust. J. Chem. 2009, 62, 1079; n) K.S. Murray, Aust. J. 

Chem. 2009, 62, 1081; o) A.B. Koudriavtsev, W. Linert, J. Struct. Chem. 2010, 51, 335. 

[2] a) O. Kahn, C. Jay Martinez, Science 1998, 279, 44; b) O. Kahn, C. Jay, J. Kröber, R. 

Claude, F. Grolière, Patent EP0666561 1995; c) J.-F. Létard, O. Nguyen, N. Daro, 

Patent FR0512476 2005; d) J.-F. Létard, P. Guionneau, L. Goux-Capes, Topics in 

Current Chemistry, Vol. 235 (Eds.: P. Gütlich, H.A. Goodwin), Springer, Wien, New 

York, 2004, 221; e) A. Galet, A.B. Gaspar, M.C. Munoz, G.V. Bukin, G. Levchenko, 

J.A. Real, Adv. Mater. 2005, 17, 2949. 

[3] Y. Garcia, V. Kseofontov, P. Gütlich, Hyperfine Interact. 2002, 139/140, 543. 

[4] Y. Garcia, V Kseofontov, S. Mentior, M.M. Dîrtu, C. Gieck, A. Bhatthacharjee, P. 

Gütlich, Chem. Eur. J. 2008, 14, 3745. 

[5] P.J. van Koningsbruggen, Y. Garcia, O. Kahn, L. Fournès, H. Kooijman, A.L. Spek, 

J.G. Haasnoot, J. Moscovici, K. Provost, A. Michalowicz, F. Renz, P. Gütlich, Inorg. 

Chem. 2000, 39, 1891. 

[6] G.S. Matouzenko, M. Perrin, B. le Guennic, C. Genre, G. Molnar, A. Bousseksou, S.A. 

Borshch, Dalton Trans. 2007, 9, 934. 

 



7. Complete and Incomplete Spin Transitions in 1D Chain Iron(II) Compounds 

 

 

 

  
 133 
  

 
[7] a) G.S. Matouzenko, G. Molnar, N. Brefuel, M. Perrin, A. Bousseksou, S.A. Borshch, 

Chem. Mater. 2003, 15, 550. b) C. Genre, G.S. Matouzenko, E. Jeanneau, D. Luneau, 

New J. Chem. 2006, 30, 1669. 

[8] a) B. Weber, R. Tandon, D. Himsl, Z. Anorg. Allg. Chem. 2007, 633, 1159; b) B. Weber, 

E.S. Kaps, C. Desplanches, J.-F. Létard, Eur. J. Inorg. Chem. 2008, 2963. 

[9] M.M. Dîrtu, C. Neuhausen, A.D. Naik, A. Rotaru, L. Spinu, Y. Garcia, Inorg. Chem. 

2010, 49, 5723. 

[10] S.M. Neville, B.A. Leita, G.J. Halder, C. Kepert, B. Moubaraki, J.-F. Létard, K.S. 

Murray, Chem. Eur. J. 2008, 14, 10123. 

[11]  B. Weber, E.-G. Jäger, Eur. J. Inorg. Chem. 2009, 465. 

[12]  a) B. Weber, E.S. Kaps, J. Weigand, C. Carbonera, J.-F. Létard, K. Achterhold, F.G. 

Parak, Inorg. Chem. 2008, 47, 487; b) B. Weber, E.S. Kaps, J. Obel, W. Bauer, Z. 

Anorg. Allg. Chem. 2008, 1421; c) B. Weber, C. Carbonera, C. Desplanches, J.-F. 

Létard, Eur. J. Inorg. Chem. 2008, 1589; d) B. Weber, E.S. Kaps, C. Desplanches, J.-F. 

Létard, K. Achterhold, F.G. Parak, Eur. J. Inorg. Chem. 2008, 4891. 

[13]  T. Pfaffeneder, W. Bauer, B. Weber, Z. Anorg. Allg. Chem. 2010, 636, 183. 

[14]  B. Weber, Coord. Chem. Rev. 2009, 253, 2432. 

[15]  L. Wolf, E.-G. Jäger, Z. Anorg. Allg. Chem. 1966, 346, 76. 

[16]  E.-G. Jäger, E. Häussler, M. Rudolph, M. Rost, Z. Anorg. Allg. Chem. 1985, 525, 67. 

[17]  a) B. Weber, H. Görls, M. Rudolf, E.-G. Jäger, Inorg. Chim. Acta 2002, 337, 247; b) B. 

Weber, PhD thesis, University of Jena (Germany), 2002; Der Andere Verlag, 

Osnabrück, 2003. 

[18]  W. Bauer, B. Weber, Inorg. Chim. Acta 2009, 362, 2341. 

[19]  V.A. Money, J. Elhaik, I.R. Evans, M.A. Halcrow, J.A.K. Howard, Dalton Trans. 2004, 

65. 

[20]  B. Weber, E.S. Kaps, J. Obel, K. Achterhold, F.G. Parak, Inorg. Chem. 2008, 47, 10779. 

[21]  W. Bauer, W. Scherer, S. Altmannshofer, B. Weber, Eur. J. Inorg. Chem. 2011, 2803. 

 



7. Complete and Incomplete Spin Transitions in 1D Chain Iron(II) Compounds 

 

 

 

  
 134 
  

 
[22]  a) A.B. Koudriavtsev, A.F. Strassen, J.G. Haasnoot, M. Grunert, P. Weinberger, W. 

Linert, Phys. Chem. 5 2003, 3676; b) A.B. Koudriavtsev, A.F. Strassen, J.G. Haasnoot, 

M. Grunert, P. Weinberger, W. Linert, Chem. Phys. 5 2003, 3666. 

[23]  J.A. Real, A.B. Gaspar, V. Niel, M.C. Munoz, Coord. Chem. Rev. 2003. 

[24]  C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L. 

Rodriguez-Monge, R. Taylor, J. van de Streek, P.A. Wood, J. Appl. Cryst. 2008, 41, 

466. 

[25]  G. Leibeling, PhD thesis, University of Jena (Germany), 2003. 

[26]  B. Weber, W. Bauer, J. Obel, Angew. Chem. 2008, 120, 10252; Angew. Chem., Int. Ed. 

2008, 47, 10098; 

[27]  B. Weber, W. Bauer, T. Pfaffeneder, M.M. Dîrtu, A.D. Naik, A. Rotaru, Y. Garcia, Eur. 

J. Inorg. Chem. 2011, DOI: 10.1002/ejic.201100394. 

[28]  B.R. Müller, G. Leibeling, E.-G. Jäger, Chem. Phys. Lett. 2000, 319, 368. 

[29]  H. Spiering, E. Meissner, H. Köppen, E.W. Müller, P. Gütlich, Chem. Phys. 1982, 68, 

65. 

[30]  P. Guionneau, F. Le Gac, S. Lakhoufi, A. Kaiba, D. Chasseau, J.-F. Létard, P. Négrier, 

D. Mondieig, J.A.K. Howard, J.-M. Léger, J. Phys.: Condens. Matter 2007, 19, 326211. 

[31]  J.-A. Real, B. Gallois, T. Granier, F. Suez-Panamá, J. Zarembowitch, Inorg. Chem. 

1992, 31, 4972. 

[32]  B. Gallois, J.-A. Real, C. Hauw, J, Zarembowitch, Inorg. Chem. 1990, 29, 1152. 

[33]  A. Altomare, M.C. Burla, G.M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, 

A.G.G. Moliterni, G. Polidori, R. Spagna, SIR-97, University of Bari, Bari (Italy), 1997; 

J. Appl. Crystallogr. 1999, 32, 115. 

[34]  G.M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen (Germany), 1997. 

[35]  C.K. Johnson, M.N. Burnett, ORTEP-III, Oak-Ridge National Laboratory, Oak-Ridge, 

TN (USA), 1996; L.J. Farrugia, J. Appl. Crystallogr. 1997, 30, 565. 

[36]  E. Keller, SCHAKAL-99, University of Freiburg, Freiburg (Germany), 1999. 

 



7. Complete and Incomplete Spin Transitions in 1D Chain Iron(II) Compounds 

 

 

 

  
 135 
  

 
[37]  Team of authors: Organikum, Johann Ambrosius Barth Leipzig, Berlin, Heidelberg, 

1993. 

[38]  B. Heyn, B. Hipler, G. Kreisel, H. Schreer, D. Walter, Anorganische Synthesechemie, 2. 

edition, Springer, Heidelberg, 1986. 



7. Complete and Incomplete Spin Transitions in 1D Chain Iron(II) Compounds 

 

 

 

  
 136 
  

7.6 Supporting Information 

Table S1. Crystallographic data of the complexes [FeL1(bimm)] (1) and [FeL2(bppa)]�0.5 MeOH (2).  

compound 1 (125 K) 1 (180 K) 1 (250 K) 2 

formula C35H30FeN6O4 C35H30FeN6O4 C35H30FeN6O4 C43.5H42.2FeN4O6.5 
Mr / g mol−1 654.50 654.50 654.50 782.01 
crystal system triclinic triclinic triclinic orthorhombic 

space group 1P  1P  1P  Pbca 

a / Å 10.4117(14) 10.3326(16) 10.3530(16) 19.3122(4) 
b / Å 10.5247(12) 10.8298(17) 10.928(2) 16.5116(3) 
c / Å 15.4338(18) 15.672(3) 15.794(4) 25.1186(5) 

α / ° 74.913(10) 74.763(14) 75.074(19) 90 

β / ° 79.006(11) 80.991(14) 81.233(17) 90 

γ  / ° 64.091(13) 64.329(15) 64.423(18) 90 

V / Å3 1463.0(3) 1523.2(4) 1555.7(5) 8009.7(3) 
Z 2 2 2 8 
ρ / g cm−3 1.486 1.427 1.397 1.297 
µ  / mm−1 0.569 0.546 0.535 0.430 
crystal size 0.27 × 0.11 × 0.05 0.26 × 0.11 × 0.05 0.26 × 0.11 × 0.05 0.41 × 0.34 × 0.22 
T / K 125(2) 180(2) 250(2) 173(2) 
diffractometer Oxford XCalibur Oxford XCalibur Oxford XCalibur Oxford XCalibur 

λ (MoKα) / Å 0.71073 0.71073 0.71073 0.71073 

θ-range / ° 3.83–25.35 3.74–25.35 3.76–25.35 4.20–26.28 
reflns. collected 17191 17037 17523 33558 
indep. reflns. (Rint) 5339 (0.0819) 5537 (0.0631) 5624 (0.0634) 8121 (0.0379) 
mean σ (I) / I 0.1154 0.1010 0.0976 0.0604 
reflns. with I ≥ 2σ (I) 3226 3470 3350 4814 
x, y (weighting scheme) 0.0683, 0 0.0560, 0 0.0527, 0 0.0380, 0 
parameters 417 417 417 509 
restraints 0 0 0 0 
R (F) (all data)[a] 0.0635 (0.1183) 0.0567 (0.1025) 0.0484 (0.0946) 0.0325 (0.0664) 
wR (F2)[b] 0.1494 0.1243 0.1179 0.0744 
GooF 1.025 1.002 0.960 0.841 
shift/errormax 0.000 0.000 0.000 0.001 
max., min. resd. dens. / 
e Å−3 

0.557, −0.344 0.333, −0.299 0.254, −0.238 0.283, −0.346 

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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Abstract: A new tetradentate Schiff base-like ligand H2L (1) (dimethyl (E,E)-2,2′-[1,2-

phenyl-bis(aminomethylidyne)]bis[3-oxobutanoate]) was synthesised and structurally 

characterised. Its reaction with iron(II) acetate leads to the formation of the octahedral N2O4 

coordinated complex [FeL(MeOH)2] (2). The complex is a pure high spin (HS) compound as 

is evident from magnetic measurements and X-ray crystallography. 

8.1 Introduction 

The bistability of spin transition complexes (spin crossover, SCO) is one of the most 

promising possibilities for new electronic devices in molecular memories and switches as it 

may be controlled by different physical perturbations such as temperature, pressure or 

light.[1,2] Of the possible types of spin transition (gradual, abrupt, with hysteresis, stepwise, 

incomplete), much of the interest is focused on the bistability in highly cooperative systems 

(hysteresis or memory effect) as such compounds can exist in two different electronic states, 

depending on the history of the system. With regard to this we recently characterised an 

iron(II) spin crossover complex with a 70 K wide thermal hysteresis loop around room 
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temperature based on a 2D network of hydrogen bonds between the complex molecules.[3] In 

order to more deeply understand the role of hydrogen bonds for cooperative effects in spin 

crossover systems we designed a new ligand with two ethyl groups substituted by methyl 

groups—a comparatively small modification that can, however, significantly influence the 

magnetic properties. In Scheme 1 the general procedure for the synthesis of the new ligand 

and its iron(II) complexes is given. In this paper we present the synthesis and characterisation 

of the free ligand H2L and its octahedral iron(II) complex with two methanol molecules as 

axial ligands. This is the first example of this type of complexes, where we were able to 

analyse the X-ray structure of both, the free ligand and its iron complex. 

8.2 Results and Discussion 

Synthesis: Scheme 1 gives the general synthetic route of the tetradentate Schiff base-like 

ligand H2L (1) and the octahedral iron(II) complex [FeL(MeOH)2] (2). The synthesis of the 

ligand is an adaptation of Claisen,[4] who first described the preparation of oxymethylene 

derivatives and their reaction with amines in the late 19th century and of Jäger and Wolf,[5] 

who first described the preparation of this type of ligand in the 1960s. The synthesis of H2L is 

carried out in two independent steps. At first the methoxymethylene derivative 1a is directly 

synthesised by oxymethylation of methyl acetoacetate using trimethyl orthoformate in acetic 

anhydride. Contrary to literature it is essential to use trimethyl orthoformate instead of triethyl 

orthoformate, in order to prevent the substitution of the methoxy ester group by an ethoxy 

ester group. The second step is the condensation of 1a with 1,2-ortho-phenylenediamine 

(stoichiometric ratio 2:1) in methanol as solvent, which gives 1 (H2L) as a yellow precipitate. 

The synthesis of the octahedral complex 2 ([FeL(MeOH)2]), where L2−, the deprotonated form 

of H2L, acts as equatorial ligand and the methanol moelcules as axial ligands, is carried out in 

a one-pot reaction by treatment of 1 with a slight excess of anhydrous iron(II) acetate in 

methanol. 
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Scheme 1. General route for the synthesis of the Schiff base-like ligand 1 (H2L) and its octahedral iron(II) 
complex 2 ([FeL(MeOH)2]). 

X-Ray structure analysis: Crystals suitable for X-ray analysis of the free equatorial ligand 1 

and its iron(II) complex 2 were obtained by slow crystallisation out of the mother liquor. The 

crystallographic data are summarised in Supporting Information Table S1. Figure 2 displays 

the asymmetric units of 1 and 2, respectively. Selected bond lengths and angles are 

summarised in Table 1. Compound 1 crystallises with the orthorhombic space group Pbca. 

The unit cell contains 8 formula units. The molecular structure of 1 is non-planar and thus the 

N2O2 coordination sites are not in a common plane. This is indicated by the two dihedral 

angles, which are defined by atoms C3-N1-C4-C5 and C10-N2-C9-C8 and display the torsion 

of the conjugated aminomethylidyne chains, which build up the chelate ring, relative to the 

phenylene ring. Their values are 7.6(3)° and 34.3(2)°. The average bond lengths within the 

conjugated π-system of the chelate ring [1.34 Å (C-N), 1.38 Å (C-C), 1.46 Å (C-C) and 

1.24 Å (C-O), see Figure 2] are in line with literature values for similar single and double 

bonds. This leads to the result that the equilibrium between the two possible tautomeric 
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structures “enol-imine” and “keto-enamine” (see Scheme 2) is shifted to the keto-enamine 

form, in contrast to classic Schiff base ligands (e.g. salen). The 1H NMR spectrum, pictured in 

Figure 1, in which a CH-NH coupling constant in the range of 12 Hz is observed, supports 

this finding. Between the carbonyl oxygen atoms O1 and O2 of the acetyl groups and the 

amino groups N1-H1 and N2-H2 intramolecular hydrogen bonds are formed. 

 

 

 

Scheme 2. Possible tautomeric structures of 1, keto-enamine (left) and enol-imine (right). The equilibrium is 
shifted to the keto-enamine form. 

 

Figure 1. 1H NMR spectrum of 1 (in CDCl3) with the signal assignment given at the left. 
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Compound 2 crystallises in the monoclinic space group P 21, with 2 formula units per cell. 

The bond lengths and angles around the iron atom are within the range reported for octahedral 

HS iron(II) complexes of the same ligand type with two axial ligands.[6,7] The average values 

are 2.08 Å (Fe-Neq), 2.00 Å (Fe-Oeq) and 2.23 Å (Fe-Oax). The exact values are listed in 

Table 1. A characteristic tool for the determination of the spin state of this type of iron(II) 

complexes is the O-Fe-O angle, which changes from about 110° in the HS state to about 90° 

in the LS state.[6,7] With 105.6° compound 2 is clearly in the HS state. 

 

 

 

Figure 2. ORTEP drawing of the asymmetric units of ligand 1 (top) and complex 2 (bottom) with selected bond 
lengths [Å] for comparison. For clarity reasons the hydrogen atoms of 2 have been omitted. Displacement 
ellipsoids are shown with a 50% probability. 

Table 1. Selected bond lengths [Å] and angles [°] of complex 2 with estimated standard deviations in 
parentheses. 

Fe-Neq Fe-Oeq Fe-Oax Oeq-Fe-Oeq Oax-Fe-Oax 

2.075(2) 

2.0810(19) 

2.011(2)  

1.990(2) 

2.264(2) 

2.189(2) 

105.62(8) 174.77(8) 
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The average values of the bond lengths within the conjugated π-system of the chelate ring 

[1.30 Å (C-N), 1.43 Å (C-C), 1.42 Å (C-C) and 1.26 Å (C-O), see Figure 2] reveal that the 

negative charge of the deprotonated form of the Schiff base-like ligand L2− is delocalised over 

the chelate six-membered ring. For the discussion of cooperative interactions or spontaneous 

magnetic ordering, intermolecular interactions such as hydrogen bonding or π-stacking are 

thought to play a central role as such contacts are necessary for long range ordering effects. In 

complex 2 two different intermolecular hydrogen bonds can be found, which are listed in 

Table 2, leading to an infinite one-dimensional chain with the base vector [0 1 0], as can be 

seen in Figure 3. The hydroxy oxygen atoms of both axial methanol ligands act as hydrogen 

bond donors. In both cases, an ester carbonyl oxygen atom O5 of the respective neighbouring 

complex is the acceptor.  

 

 

 

Figure 3. Molecule packing of the hydrogen bonded (dashed lines) molecules of complex 2 projected along 
[1 0 0]. 

Table 2. Bond lengths (Å) and angles (deg) of intermolecular hydrogen bonds of complex 2 with d(D···A) < 
R(D) + R(A) + 0.50, d(H···A) < R(H) + R(A) − 0.12 Å, D-H···A > 100.0°. 

D H A D-H H· · ·A A· · ·D D-H· · ·A 

O3 H31 O5[a] 0.84 1.93 2.763(3) 175 

O4 H41 O5[b] 0.84 1.92 2.758(3) 173 

Symmetry codes: [a] 2 − x, −½ + y, −z; [b] 2 − x, ½ + y, −z. 
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Magnetic susceptibility data: The magnetic susceptibility of the iron(II) complex 2 was 

measured in the temperature range from 300 to 2 K. The plots of χMT and χM
−1 vs. T (χM being 

the molar susceptibility) are given in Figure 4 (left). Over the whole temperature range 

investigated, 2 remains in the paramagnetic high-spin state, with typical χMT values, 

considering four unpaired electrons (S = 2).  

 

 

 

Figure 4. Plot of the χMT product and χM
−1 vs. T for complex 2 between 5 and 300 K (left) and the fits according 

to the Curie-Weiss law, χM = C/(T − θ), with the parameters θ = −0.65 K and C = 3.33 cm3 K mol−1 for complex 
2. Right: (zero) field-cooled magnetisation ((Z)FCM) plots measured under a weak magnetic field of H < 30G. 

The χMT product slightly decreases from a value of 3.34 cm3 K mol−1 at 300 K to 

3.29 cm3 K mol−1at 110 K, and then again rises to 3.34 cm3 K mol−1at 20 K. The decrease of 

χMT below 20 K is due to zero field splitting. The susceptibility data above 20 K can be fitted 

with the Curie-Weiss law (χM = C/(T − θ)), with the parameters θ = −0.65 K and 

C = 3.33 cm3 K mol−1. The Curie constant C of the complex is in a region expected for 

iron(II) complexes in the high-spin state, and the negative Weiss constant θ together with the 

temperature-dependent decrease of the χMT product above 110 K are indications of weak 

antiferromagnetic interactions between the spin centres. The increase of the magnetic moment 

below 110 K is probably due to spin canting as observed previously for similar complexes of 

this ligand system.[8] A zero field-cooled (ZFCM) and a field-cooled magnetisation (FCM) 

measurement with H = 30 G was performed for compound 2 and the result is shown in 

Figure 4 (right). As expected from results of the magnetic susceptibility measurement only 

very weak indications for long-range magnetic ordering can be found. The FCM measurement 
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exhibits no abrupt increase in the magnetisation (typical for spontaneous magnetic ordering) 

but only a small slope in the magnetisation curve at about 10 K. This is in line with the ZFCM 

measurement. However, the spontaneous magnetic ordering is significantly less pronounced 

compared to other iron(II) complexes of this type with methanol molecules as axial ligands 

and a Schiff base-like equatorial ligand.[8]
 

8.3 Conclusion 

Compound 1 is the first example of this ligand type where the determination of the X-ray 

structure was possible. This enabled us to provide a further proof for the suggested keto-enol 

isomeric structure for this type of Schiff base-like ligands. Upon coordination to a metal 

centre the two amino nitrogens are deprotonated and the negative charge is delocalised over 

the chelate six-membered ring. The magnetic properties of 2 demonstrate how small changes 

in the ligand structure influence the magnetic properties of the related complexes. While for 

other methanol diadducts of this complex type a spontaneous magnetisation due to canted 

antiferromagnetism is observed, for complex 2 the observed effects in the FCM/ZFCM 

measurements are too small to be seriously discussed any further. 
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8.4 Experimental Section 

Magnetic measurements: Magnetic susceptibility data were collected by using a Quantum 

Design MPMSR-2 SQUID magnetometer under an applied field of 0.5 T over the temperature 

range 2 to 300 K. The sample of 2 was placed in gelatine capsules held within a plastic straw. 

The data were corrected for the diamagnetic magnetisation of the ligands by using tabulated 

Pascal’s constants and of the sample holder. 

X-Ray structure determination: The intensity data of 1 were collected on a Nonius Kappa 

CCD diffractometer by using graphite-monochromated MoKα radiation. The intensity data of 

2 were collected on an Oxford XCalibur diffractometer by using graphite-monochromated 

MoKα radiation. The data were corrected for Lorentz and polarisation effects. The structure 

was solved by direct methods (SIR-97)[9] and refined by full-matrix least-square techniques 

against F0
2 (SHELXL-97).[10] The hydrogen atoms were included at calculated positions with 

fixed displacement parameters. ORTEP-III was used for structure representation,[11] 

SCHAKAL-99 to illustrate molecule packings.[12] The crystallographic data are summarised 

in Supporting Information Table S1.  

CCDC 753713 (1) and CCDC 753714 (2) contain the supplementary crystallographic data for 

this paper. These data can be obtained free of charge from The Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 

Synthesis: The synthesis of the iron(II) complex was carried out under argon by using 

Schlenk tube techniques. The solvent methanol was purified as described in literature[13] and 

distilled under argon. The synthesis of iron(II) acetate is described in the literature.[14] 

(E)-Methyl 2-(methoxymethylidyne)-3-oxobutanoate (1a): A mixture of methyl aceto-

acetate (58.1 g, 0.5 mol), trimethyl orthoformate (53.1 g, 0.5 mol) and acetic anhydride 

(102.1 g, 1.0 mol) was heated to reflux for 75 min, while the colour of the reaction mixture 

turned into dark red. At first, under normal pressure the low-boiling side products were 

distilled off. At second, by fractionated vacuum distillation 1a was isolated as slightly yellow 

oil at about 90 °C (1.7 mbar) and used immediately for further synthesis (yield: 39.5 g, 50%). 
1H NMR (270 MHz, CDCl3, 25°C, TMS): δ = 7.52 (s, 1H; CH) 3.95 (s, 3H; CO2CH3), 3.72 

(s, 3H; OCH3), 2.30 ppm (s, 3H; COCH3). 



8. A Promising New Schiff Base-like Ligand for the Synthesis of Octahedral Iron(II) Spin 

Crossover Complexes 

 

 

 

  
 148 
  

H2L (1): To a solution of ortho-phenylenediamine (4.56 g, 42.4 mmol) in methanol (60 mL) 

was added drop-wise a solution of 1a (14.7 g, 93.4 mmol) in of methanol (20 mL). The 

reaction mixture was heated to reflux for 30 min. After cooling to room temperature light-

yellow crystals formed which were recrystallised from methanol. Crystals suitable for X-ray 

analysis formed in the mother liquor at 4 °C within one day (yield: 14.0 g, 92%). M.p. 132–

133 °C; 1H NMR (270 MHz, CDCl3, 25°C, TMS): δ = 12.95 (d, 3J(H,H) = 12.0 Hz, 2H; NH), 

8.36 (d, 3J(H,H) = 12.0 Hz, 2H; CH), 7.23–7.30 (m, 4H; Ar-H), 3.75 (s, 6H; OCH3), 2.54 ppm 

(s, 6H; CH3); MS (DEI-(+), 70 eV): m/z (%): 360 (17) [M +], 285 (84) [C15H13N2O4
+], 253 

(100) [C14H9N2O4
+], 232 (83) [C12H12N2O3

+]; elemental analysis calcd (%) for C18FeH20N2O6 

(360.36): C 59.99, H 5.59, N 7.77; found: C 60.07, H 5.51, N 7.73. 

[FeL(MeOH)2] (2): Anhydrous iron(II)acetate (2.95 g, 17.0 mmol) and H2L (3.60 g, 

10.0 mmol) were dissolved in methanol (100 mL) and heated to reflux for 1 h. After two days 

a black fine-crystalline precipitate has formed that was filtered off, washed with methanol 

(2 × 5 mL) and dried in vacuo. Crystals suitable for X-ray analysis formed in the mother 

liquor within further two days (yield: 4.26 g, 71%). IR (KBr): ν�� = 3398(w) (OH), 1702(s) 

(COO), 1572(s) cm−1 (CO); MS (DEI-(+), 70 eV): m/z (%): 414 (100) [FeL+]; elemental 

analysis calcd (%) for C20FeH26N2O8 (478.3): C 50.23, H 5.48, N 5.86; found: C 49.80, H 

4.43, N 5.85. 
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8.6 Supporting Information 

Table S1. Crystallographic data for H2L (1) and [FeL(MeOH)2] (2). 

compound 1 2 

formula C18H20N2O6 C20H26N2O8Fe 
Mr / g mol−1 360.36 478.28 
crystal system orthorhombic monoclinic 
space group Pbca P21 
a / Å 15.0360(2) 8.9590(6) 
b / Å 8.60200(10) 7.4730(5) 
c / Å 27.3832(4) 15.840(3) 

α / ° 90 90 

β / ° 90 92.955(10) 

γ  / ° 90 90 

V / Å3 3541.73(8) 1059.1(2) 
Z 8 2 
ρ / g cm−3 1.35 1.50 
µ  / mm−1 0.102 0.762 
crystal size 0.35 × 0.25 × 0.20 0.36 × 0.20 × 0.15 
T / K 200(2) 173(2) 
diffractometer KappaCCD Oxford XCalibur 

λ (MoKα) / Å 0.71073 0.71069 

θ-range / ° 3.27–25.03 4.32–26.36 
reflns. collected 18940 4371 
indep. reflns. (Rint) 3124 (0.0297) 3094 (0.0247) 
mean σ (I) / I 0.0184 0.0556 
reflns. with I ≥ 2σ (I) 2660 2659 
x, y (weighting scheme) 0.0486, 2.4133 0.0231, 0 
parameters 239 286 
restraints 0 1 
R (F) (all data)[a] (0.0476) (0.0392) 
wR (F2)[b] 0.1199 0.0603 
GooF 1.072 0.942 
shift/errormax 0.000 0.001 
max., min. resd. dens. / e Å−3 0.281, −0.274 0.220, −0.293 

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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Abstract: Three new spin crossover compounds [FeL1(azpy)] (1), [FeL1(azpy)]�toluene 

(1(tol)) and [FeL2(azpy)] (2), (L1 and L2 are the tetradentate N2O2
2− coordinating Schiff 

base-like ligands {diethyl (E,E)-2,2′-[1,2-phenyl-bis(iminomethylidyne)]bis[3-oxobutan-oate] 

(2-)-N,N′,O3,O3
′} and {dimethyl (E,E)-2,2′-[1,2-phenyl-bis(iminomethylidyne)]bis[3-oxo-

utanoate] (2-)-N,N′,O3,O3
′}, respectively, and azpy = 4,4′-azopyridine) are presented. All 

compounds have been investigated by using T-dependent susceptibility measurements, and 

different types of spin transitions are observed. In the case of 1 and 2, intermediate plateaus 

(γHS ≈ 0.5) with widths of 110 and 75 K, respectively, were observed, while for 1(tol) a 

gradual spin transition is obtained. Upon heating of 1(tol) above 390 K, a loss of the included 

solvent molecule toluene is observed, which results in a two-step spin transition of the 

tempered sample similar to that of 1. Mössbauer spectra of 1, 1(tol) and the tempered sample 

1(temp) reveal two different iron(II) sites in the low-spin (LS) state for all three samples. T-

dependent Mössbauer spectra indicate that the nonequivalent iron centres are one but not the 

only reason for the wide plateau of 1. Results from X-ray structure analysis of 1 in the region 



9. Complete Two-Step Spin-Transition in a 1D Chain Iron(II) Complex with 110 K Wide 

Intermediate Plateau 

 

 

 

  
 154 
  

of the plateau show the presence of two nonequivalent iron centres, of which one is in the 

high-spin (HS) state and one in the low-spin state. The 1D chains with alternating HS and LS 

iron centres are arranged in a parallel manner within one layer; between the different layers, 

the direction of the chains rotates by 90° relative to the previous one. This cross-linked 

arrangement with an interlocking of the layers is most likely the reason for the appearance of 

the wide plateau. 

9.1 Introduction 

Spin transition complexes (spin crossover, SCO) are an interesting class of compounds that 

can be switched on the molecular level between two different states by the use of external 

perturbations such as temperature, pressure or electromagnetic radiation. The SCO bistability 

is one of the most promising aspects for new electronic devices in molecular memories and 

switches, as the switching progress is associated with a change in the magnetic and physical 

properties, which can be easily detected by different means.[1,2] Of the possible types of spin 

transition, stepwise transitions between three or more states attracted the interest of several 

research groups, because of versatile switching possibilities.[3] To date, three different 

possibilities are discussed for describing stepwise spin transitions. One is related to dinuclear 

complexes and explained with the formation of [HS-HS], [HS-LS] and [LS-LS] spin pair 

states (where HS and LS represent the local high-spin and low-spin states of the dinuclear 

species). These states could directly be monitored, for example, by Mössbauer spectroscopy 

and switched selectively by different wavelengths.[3,4] An interplay between intramolecular 

magnetic exchange interactions and spin transition is made responsible for the step in the 

transition curve.[3,5] Another possibility to have a multi-step spin transition is attributed to two 

(or more) different SCO sites, each undergoing a transition at different temperatures.[6] We 

presented a mononuclear system clearly belonging to this category, with a large plateau in the 

range 225–125 K and at γHS ≈ 0.25. The reason for this behaviour is four nonequivalent 

iron(II) sites in the crystal lattice with slightly different chemical surroundings, which result 

from an additional distorted 4-cyanopyridine molecule, in combination with strong π-π-

interactions between two neighbouring molecules.[6g] Finally, there are two examples of 

mononuclear complexes with a unique crystallographic iron(II) site, at which the effects of 

ferromagnetic-type long-range and antiferromagnetic-type short-range interactions of an 
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elastic origin induce a crystallographic phase transition that is responsible for steps in the 

transition curve.[7,8] Those crystallographic phase transitions are accompanied or triggered by 

a symmetry breaking in the crystal, which leads to two[9] or even more[10] intermediate phases, 

each accompanied by a spin-state change in the system. Different theoretical models were 

developed to describe the HS/LS ordering in such systems.[11] 

Recently, the first two examples for a 1D polymeric material undergoing a two-step spin 

transition were presented by Neville, Murray and co-workers.[12] In the case of the first 

complex, the two-step behaviour can be related to two different iron(II) environments, 

whereas for the second complex with a slightly broader intermediate plateau (IP), only one 

distinct iron(II) site is observed at all temperatures. Systematic investigations on a series of 

1D chain compounds with the Schiff base like equatorial ligands used in our group, lead to 

different types of stepwise spin transition.[13,14] Two different reasons were identified to be 

responsible for the step in the transition curve: nonequivalent iron sites in the HS state or, if a 

single iron site is observed in the HS state, a change in symmetry leading to a phase with two 

iron sites (HS, LS) in the region of the plateau. An analysis of the intermolecular interactions 

revealed that a pronounced zigzag structure of the 1D chain combined with restraining 

interactions between the 1D chains (several short contacts) favour such a phase transition and 

lead to steps in the transition curve.[13] 

In this work we present two iron(II) 1D coordination polymers [FeL1(azpy)] (1) and 

[FeL2(azpy)] (2), whose solvent-free samples show a complete two-step spin transition with 

an > 75-K wide IP around room temperature. The SCO of the solvent-containing sample 

[FeL1(azpy)]�toluene (1(tol)) is gradual but can be transferred to a two-step transition by 

solvent-loss. The complexes are based on a N2O2 coordinating Schiff base-like ligand system 

that was demonstrated to be highly suitable for the synthesis of iron(II) SCO complexes if 

combined with N-heterocycles as axial ligands.[15] 4,4′-Azopyridine (azpy) was used as a 

bridging axial ligand. In Scheme 1 the formula of the used ligands and the general synthesis 

route is given. 
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Scheme 1. General synthesis of the 1D octahedral iron(II) coordination polymers discussed in this work. 

9.2 Results 

Magnetic measurements: The thermal dependence of the product χMT (χM is the molar 

susceptibility and T the temperature) for [FeL1(azpy)] (1) and [FeL1(azpy)]�toluene (1(tol)) is 

displayed in Figure 1. Both compounds reach their maximum χMT values not before 400 K. 

Compound 1 shows a complete two-step SCO with a wide IP, whereas 1(tol) shows a 

complete gradual SCO at first, but after being heated to 400 K, the SCO behaviour changes 

into a two-step transition similar to that of 1. The room temperature χMT value of 1 is 

1.63 cm3 K mol−1 and therefore in the region expected for an approximately 50:50 mixture of 

LS and HS iron centres. The maximum χMT value of 2.99 cm3 K mol−1, indicative of iron(II) 

in the high-spin state, is obtained when 1 is heated to 400 K. Upon cooling, the χMT values 

decrease gradually in the temperature range 400–295 K to a value of 1.63 cm3 K mol−1, which 

indicates that half of the iron(II) sites are in the HS state (γHS = 0.5). The T½(1) value of this 

step is 326 K. In the whole temperature range 295–185 K, the χMT values slightly decrease by 

about 0.27 cm3 K mol−1 to a value of 1.36 cm3 K mol−1, which results overall in a 110-K wide 

IP. Below 185 K, the χMT values decrease rapidly to a minimum value of 0.08 cm3 K mol−1 at 

128 K, indicative of iron(II) in its diamagnetic LS state. Upon further cooling, the χMT values 

remain approximately constant. The T½
↓(2) value of the second step is 152 K, which means a 
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separation distance between both T½ values of 174 K. Upon heating, the χMT values remain 

approximately constant up to 150 K, followed by an abrupt increase, with T½
↑(1) = 159 K. 

This results in a thermal hysteresis loop with an average width of 7 K. Above 160 K, the 

curve progression of the heating and cooling mode is identical. The heating and cooling cycle 

could be repeated several times. 

 

 

 

Figure 1. Plot of the χMT product vs. T over the temperature range 50 to 400 K. Left: compound 1 and 
compound 2. Right: compound 1(tol) and 1(tol) after heating to 400 K (1(temp)). 

The room temperature χMT value of 1(tol) is 2.81 cm3 K mol−1, which indicates that almost all 

iron(II) sites are in the HS state. Upon cooling, the χMT values decrease, gradually then more 

rapidly then again gradually, to attain a minimum value of 0.16 cm3 K mol−1 at 50 K, 

indicative of iron(II) in the LS state. A thermal hysteresis is not observed upon heating. 

Above 300 K, the χMT values slightly increase to attain a maximum of 2.88 cm3K mol−1 at 

340 K. The T½ value of this SCO is 222 K. Further heating causes a decrease to a local 

minimum of 2.81 cm3 K mol−1 at 370 K, before the χMT values finally increase up to 

2.99 cm3 K mol−1 at 400 K. This irregularity at about 370 K is probably due to the loss of the 

uncoordinated toluene molecule. This assumption is strengthened when measuring the 

tempered sample (1(temp)) in the cooling mode. The previously obtained gradual SCO 

behaviour is not observed, but a stepwise spin transition curve very similar to the solvent-free 

compound 1. With a maximum χMT value of 2.99 cm3 K mol−1 at 400 K and a minimum value 

of 0.16 cm3 K mol−1 at 50 K, the two-step SCO of 1(temp) is complete too. Marginal 
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differences can be found by looking at the T½ values of 1(temp) (T½(1) = 320 and 

T½(2) = 150 K), which are slightly lower than the values of 1 (T½(1) = 326 and T½(2) = 152 K). 

Further, the SCO curve progression of 1(temp) is more gradual. Thermogravimetric 

measurements of 1(tol) confirm the presumption that the loss of toluene has to be responsible 

for the different spin transition behaviour. At 388 K (boiling point toluene: 384.2 K), 1(tol) 

has lost 13.7% of its mass (theory for one toluene molecule: 12.8%), which is consistent with 

the result from elemental analysis. The differences between the transition curves of 1 and 

1(temp) are most likely because of differences in the particle size (grinding effects). 

The thermal dependence of the product χMT for compound [FeL2(azpy)] (2) is also plotted in 

Figure 1. Overall, 2 provides a complete two-step SCO that reaches its maximum χMT value 

of 3.30 cm3 K mol−1, indicative of HS iron(II), not before 375 K. However, a closer look 

reveals an irregular curve progression, which could be confirmed by calculation of the first 

derivation of the curve (Supplementary material). Altogether four maxima at different 

temperatures were found, which correspond to four inflection points in the χMT vs. T plot. 

Starting at 400 K, the χMT values remain approximately constant between 400 and 370 K. 

Between 370 and 325 K, the χMT values rapidly decrease to attain a minimum value of 

1.72 cm3 K mol−1, which indicates that half of the iron(II) centres are in the HS state. The 

T½(1) value of this step is 365 K. During this first step, an anomaly is observed with an 

inflection point at 340 K. In the temperature range 325–250 K, the χMT values slightly 

decrease by about 0.18 cm3 K mol−1 to a value of 1.54 cm3 K mol−1, which results in a 75-K 

wide IP. Between 250 and 190 K, the χMT values rapidly decrease to a minimum value of 

0.09 cm3 K mol−1, indicative of iron(II) in the LS state. The T½
↓(2) value of this step is 214 K. 

During this second step another anomaly, similar to the previous one, is observed with an 

inflection point at 199 K. Below 190 K, the χMT values remain approximately constant. 

Comparison with the heating mode reveals a 4-K wide hysteresis loop for the second step, 

with a T½
↑(2) value of 218 K. 
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Mössbauer spectroscopy: The two-step SCO of 1 was followed by Mössbauer spectroscopy 

in the temperature range 80 to 300 K in the heating and cooling mode. For comparison, the 

Mössbauer spectra of 1(tol) and 1(temp) were recorded at selected temperatures. Selected 

spectra at different temperatures of the three compounds are given in Figure 2, and the 

corresponding values of the Mössbauer parameters obtained by least-squares fitting are given 

in Table 1. A complete list of all T-dependent Mössbauer parameters and a detailed 

description of the interpretation of the Mössbauer spectra is given in the Supplementary 

material. 

 

 

 

Figure 2. Mössbauer spectra of 1, 1(tol) and 1(temp) at different temperatures; black and blue: LS and green: 
HS 

 



9. Complete Two-Step Spin-Transition in a 1D Chain Iron(II) Complex with 110 K Wide 

Intermediate Plateau 

 

 

 

  
 160 
  

At 80 K (1: until 150 K), the Mössbauer parameters of the three compounds are typical for 

octahedral iron(II) complexes of this ligand type in the LS state (∆EQ ≈ 1.1 cm−1, δ = 0.3– 

0.6 cm−1)[16,17] with no indication of a remaining HS fraction. The Mössbauer spectra of 1 and 

1(temp) are very similar, both consisting of a quadrupole split doublet with a wide line width, 

which suggests two (or more) nonequivalent iron centres. In the case of 1(tol), two 

quadrupole split doublets of two nonequivalent iron centres are clearly visible. Upon heating, 

a new quadrupole split doublet appears with parameters (∆EQ ≈ 2.0 cm−1, δ ≈ 1.0 cm−1) 

typical for iron(II) complexes in the HS state.[16,17] 

Table 1. Representative least-squares-fitted Mössbauer data for 1, 1(tol) and 1(temp). 

compound low-spin 1 low-spin 2 high-spin 

 δ [a] ∆EQ
[a] δ [a] ∆EQ

[a] δ [a] ∆EQ
[a] 

80 K 

1 (100 K) 0.33(1) 1.11(1) 0.53(1) 1.12(1)   

1(tol) 0.30(1) 0.98(1) 0.61(2) 1.07(2)   

1(temp) 0.31(1) 1.17(1) 0.49(1) 1.19(1)   

225 K 

1 (230 K) 0.19(1) 0.98(2) 0.40(1) 1.15(1) 1.03(1) 2.07(1) 

1(tol) 0.34(1) 0.79(2)   0.99(1) 1.99(2) 

1(temp) 0.37(1) 1.22(1)   0.99(1) 2.16(1) 

280 K 

1 0.20(1) 1.01(2) 0.41(1) 1.14(2) 0.99(1) 2.05(1) 

1(tol) 0.31(1) 0.81(2)   0.96(1) 1.96(2) 

1(temp) 0.35(1) 1.22(1)   0.98(1) 2.14(1) 

[a] Isomer shifts (δ, mm s−1) refer to α iron; ∆EQ = quadrupole splitting (mm s−1). Statistical standard deviations 
are given in parentheses. 

At 280 K, the spin transition is not complete for all three compounds, in agreement with the 

outcomes from the susceptibility measurements. However, in the case of 1(tol) a nearly 

complete spin transition would be expected that is not reflected in the spectrum at 280 K. 

Probably, during the long measurement time (one month at 280 K), a partial loss of the 
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included toluene occurs. For 1(tol) and 1(temp) two quadrupole split doublets are observed, 

one is assigned to the HS and one to the LS state. This behaviour is expected for a stepwise 

SCO because of nonequivalent iron centres. Despite this observation, in the case of 1(tol) a 

one-step spin transition is observed. In the case of 1, three quadrupole split doublets are 

clearly visible—two belong to the LS and one to the HS state. This is unexpected, as, in this 

case, a stepwise spin transition is observed. If nonequivalent iron centres are responsible for 

the step, one would assume that first one and then the second iron centre undergo spin 

transition. Thus, at the IP, one doublet for the HS state and one doublet for the LS state should 

be observed as described for 1(tol). For the 1D chain compounds investigated here the 

situation is more complex. Although the area of one of the LS doublets (∆EQ = 1.11 cm−1, δ = 

0.33 cm−1) decreases at the beginning of the spin transition, it does not completely vanish, but 

instead the area of the second LS doublet (∆EQ = 1.12 cm−1, δ = 0.53 cm−1) starts to decrease, 

while the area of the HS doublet continuously increases. A good agreement between the 

transition curve obtained by Mössbauer spectroscopy and SQUID measurements is obtained 

as given in Figure 3. However, the nonequivalent iron centres detected by Mössbauer 

spectroscopy in the LS state clearly cannot be the only reason for the wide IP in the transition 

curve of 1, as they are also observed for 1(tol) with the gradual spin transition. 

 

 

 

Figure 3. Thermal dependence of γHS of 1 obtained from Mössbauer spectroscopy and SQUID measurements. 
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X-Ray structure analysis: Crystals suitable for X-ray structure analysis were obtained for 

compound 1. Additionally, a few single crystals were obtained from a diluted toluene solution 

of 1(tol) with the composition [FeL1(azpy)]�2 toluene (1(2 tol)). The crystal structure of 1 

was determined on the IP at 200 K and in the LS state at 130 K. Unfortunately, the 

crystallographic data of the LS structure were inferior, as twinning occurred upon phase 

transition while cooling down. As a result of technical limitations, a lower temperature was 

not accessible and therefore only the structure motif is presented here. The crystal structure of 

1(2 tol) was determined at 173 K. The crystallographic data of the complexes are summarised 

in Supporting Information Table S1. Selected bond lengths and angles within the inner 

coordination sphere of the iron(II) ion are summarised in Table 2. ORTEP drawings of the 

asymmetric units of 1 (200 K) and 1(2 tol) are given in Figure 4, the atom numbering scheme 

is indicated. In Figure 5, the asymmetric unit of 1 in the LS state is shown. For both materials, 

structure analysis reveals an octahedral iron(II) N4O2 environment consisting of one 

equatorially coordinated Schiff base-like ligand with N2O2 binding sites and two axially 

coordinated azpy ligands bound through terminal pyridyl groups. Each azpy ligand bridges 

two iron(II) centres to form infinite 1D chains. 

Compound 1 crystallises at room temperature in the region of the IP with the orthorhombic 

space group P212121. The asymmetric unit contains two crystallographically distinct iron(II) 

centres, one can be assigned to iron(II) in the HS state (Fe1) and one to iron(II) in the LS-state 

(Fe2). The averaged metal-ligand distances around the inner coordination sphere of Fe1 (Fe1-

Neq: 2.09 Å, Fe1-Oeq: 2.01 Å, Fe1-Nax: 2.25 Å) indicate a distorted, axially elongated 

octahedral environment, typically for HS iron(II) of this ligand type.[15,16,17,] The averaged 

metal-ligand distances in the [FeN4O2] coordination core of Fe2 (Fe2-Neq: 1.90 Å, Fe2-Oeq: 

1.93 Å, Fe2-Nax: 1.99 Å) are about 10% shorter than those for the HS state, as discussed in the 

literature for iron(II) SCO complexes.[1] Especially, the pronounced reduction of the Fe-Nax 

distance (0.26 Å) in the direction of a more regular octahedral environment is indicative of LS 

iron(II). The O-Fe-O angle, the so-called bite of the ligand, is another characteristic tool to 

determine the spin state of the central iron(II) ion for this type of complex, as it changes from 

about 110° in the HS state to about 90° in the LS state.[16] The bite angle for Fe1 (112°) 

suggests that it is clearly in the HS state and that for Fe2 (88°) indicates that it is clearly in the 

LS state. 
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Analysis of the polymeric structure shows the formation of infinite one-dimensional chains 

with the base vector [1 0 1]. Along the chains, an alternating arrangement of HS and LS 

iron(II) centres is observed, which results in a mixed spin state with γHS ≈ 0.5, in agreement 

whit the magnetic measurements. The intrachain Fe1· · ·Fe2 separation distances alternate 

between 13.2 and 13.3 Å. The azpy bridging ligand is strongly distorted, as the plains, which 

are spanned by the pyridyl rings are twisted by about 37° and 53°, respectively, to each other. 

This leads overall to a straight-lined progression of the chains. In contrast to compound 1, 

coordination polymers with the closely related bridging ligands bpee and bpea (bpee = bis(4-

pyridyl)ethylene, bpea = bis(4-pyridyl)ethane) do not show distortions of the linker 

molecules, and, therefore, a stepped chain progression is observed.[13,16f] Upon cooling to 

130 K, the symmetry of the system is reduced to the monoclinic space group P21. This 

structural phase transition is one explanation for the observed hysteresis at the second step of 

the spin transition curve. It is also responsible for the decrease in quality of the data as the 

formation of domains is highly likely. The asymmetric unit contains four crystallographic 

distinct iron(II) centres (Figure 5). As can be seen from Table 3, the bite of the ligand of these 

iron(II) centres is in the range 85.5–92.8°, and, therefore, all iron(II) centres are definitively in 

the LS state. 

Table 2. Selected bond lengths [Å] and angles [degree] within the inner coordination sphere of HS (S = 2) and 
LS (S = 0) iron centres of 1 (200 K) and 1(2 tol) (173 K). 

compound S Fe-Neq Fe-Oeq Fe-Nax Oeq-Fe-Oeq Nax-Fe-Nax 

1 2 

(Fe1) 

2.090(3) 

2.083(3) 

2.016(3) 

2.006(3) 

2.214(3)  

2.283(3) 

112.4(1) 176.1(1) 

 0 

(Fe2) 

1.891(3) 

1.903(3) 

1.933(3) 

1.934(3) 

1.976(3)  

2.001(3)[a] 

87.6(1) 179.0(1)[a] 

1(2 tol) 2 2.046(5) 

2.051(5) 

1.991(4)  

1.989(4) 

2.209(5)[b]  

2.217(5) 

105.2(2) 177.1(2)[b] 

Symmetry codes: [a] −1 + x, y, −1 + z; [b] 1 + x, y, 1 + z. 
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Figure 4. ORTEP drawings of the asymmetric units; top: 1 (200 K), bottom: 1(2 tol) (173 K). Hydrogen atoms 
as well as both disordered half occupied toluene molecules of 1(2 tol) have been omitted for clarity. 
Displacement ellipsoids are shown with a 50% probability. 

Compound 1(2 tol) crystallises with the monoclinic space group P21/c. The asymmetric unit 

contains one crystallographic distinct iron(II) centre that is clearly in the HS state (Fe-Nax: 

2.21 Å, Oeq-Fe-Oeq: 105°). Together with the complex, uncoordinated solvent toluene was 

found to be intercalated within the asymmetric unit; one regular toluene molecule in addition 

to two disordered half occupied molecules. The composition of the crystals of 1(2 tol) 

significantly differs from the powder sample of 1(tol) used for the SQUID and Mössbauer 

measurements. For those studies, only one toluene molecule is observed according to 
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elemental analysis and DTG measurements. At 173 K, 1(tol) is in the LS state according to 

SQUID and Mössbauer measurements, while the results from X-ray structure analysis of 

1(2 tol) clearly indicate that the crystals are in the HS state at 173 K. Thus, the powder sample 

1(tol) and the crystals 1(2 tol) are clearly two different samples. An analysis of the polymeric 

structure of 1(2 tol) indicates the formation of infinite one-dimensional chains that propagate 

along the [1 0 1] direction. In contrast to that for compound 1, the azpy ligand is not distorted 

and a stepped chain progression is observed. The intrachain Fe· · ·Fe separation distance is 

13.4 Å and is similar to that of 1. 

 

 

 

Figure 5. Asymmetric unit of the LS structure motif of 1 (130 K) with the nonequivalent iron(II) centres 
numbered. Hydrogen atoms have been omitted for clarity. Displacement ellipsoids are shown with a 50% 
probability. 

Table 3. Bite of the ligand [°] of the 4 nonequivalent iron(II) LS centres of the low-temperature structure of 1. 

 Fe1 Fe2 Fe3 Fe4 

Oeq-Fe-Oeq 91.9 85.8 88.5 92.8 



9. Complete Two-Step Spin-Transition in a 1D Chain Iron(II) Complex with 110 K Wide 

Intermediate Plateau 

 

 

 

  
 166 
  

Intermolecular investigations: In order to find possible reasons for the wide step in the 

transition curve of 1, a detailed investigation of the intermolecular interactions and the 

molecule packing is necessary. As can be seen in Figure 6, compound 1 exhibits a layered 

structure. Within each layer, the chains are arranged in a parallel manner (Figure 6A). The 

shortest Fe· · ·Fe separation distance between adjacent chains is 12.5 Å (Fe1· · ·Fe2*) and no 

short contacts (contacts shorter than the sum of the van der Waals-radii minus 0.19 Å) can be 

found. From symmetry reasons it follows that altogether four layers A, B, C and D, can be 

observed in which the direction of the chains rotates by 90° relative to the previous layer (i.e. 

A: 0°; B: 90°; C: 180°; D: 270°) (Figure 4B, C), which results overall in a rectangular 

arrangement of the chains. As a consequence, the chains in layer A and C run perpendicular to 

the chains in layers B and D, whereas the chains of A and C, respectively B and D, proceed in 

an (anti-)parallel fashion. The shortest separation distance of two iron centres between layers 

of perpendicular chains is 8.51 Å (Fe1· · ·Fe2*). This is smaller than the shortest Fe· · ·Fe 

separation distance between (anti-)parallel chains (9.26 Å, Fe1· · ·Fe2*) and even much 

smaller than the shortest intrachain distance. This is, to the best of our knowledge, the first 

example of a 1D chain iron(II) SCO complex with a rectangular arrangement of the single 

chains. This allows a very dense molecule packing and an interlocking of the layers, what 

could be one reason for the broadness of the IP. 

In general, a HS to LS transition in 1D chain compounds involves a relocation of the ligands 

towards the smaller LS molecule. If the Fe· · ·Fe distances within the chain cannot follow the 

changes in Fe-L bonds because of restraining interactions, a stabilisation of a mixed HS/LS 

state can be observed.[13,18] We recently showed for 1D chain SCO complexes that a 

pronounced zigzag chain motif as well as a dense packing (intermolecular contacts shorter 

than the sum of the van der Waals radii) is responsible for restraining interactions between the 

chains and hence stabilise the mixed HS/LS state of a step.[13] In the case of compound 1, the 

rigid packing and cross-linking of the chains probably counteracts the structural changes 

expected for a SCO system in a way similar to that observed for the zigzag 1D chains. During 

the HS to LS transition, a shortening of the bond lengths of one iron centre results in an 

elongation of the bond length of the neighbouring iron centre. The latter is involved in the 

stabilisation of the HS state at this iron centre and thus has a lower transition temperature. In 

fact, a number of intermolecular non-classical hydrogen bonds of the type C-H· · ·O, which 

are listed in Table 4, can be found between the layers, which support this theory, as stabilised 
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Figure 6. Packing of the polymer chains of 1 in the crystal projected in the ac-plane. For a better illustration of 
the layered, planar structure and the rectangular arrangement of the chains, the unit cell content along the b axis 
is displayed layer-by-layer: 20% (A), 50% (B) and 70% (C) and 100% (D). 
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[HS· · ·LS] pairs are built between adjacent chains. The hydrogen bond involving oxygen 

atom O13 (Fe1, HS) and hydrogen atom H50 (Fe2, LS), directly links a HS and a LS centre of 

adjacent perpendicular chains. In the same way, intermolecular [HS· · ·LS] pairs are built 

between (anti-)parallel chains through the hydrogen bonds involving O25 (Fe2)/H41 (Fe1) 

and O15 (Fe1)/H53/54 (Fe2), respectively. 

Table 4. Bond lengths [Å] and angles [degree] of intermolecular interactions with d(D· · ·A) < R(D) + R(A) + 
0.50, d(H· · ·A) < R(H) + R(A) − 0.12 Å, D-H· · ·A > 100.0° of compound 1. 

compound D H A D-H H· · ·A D· · ·A D-H· · ·A 

1 C41 H41 O25[a] 0.95 2.49 3.119(5) 123 

 C50 H50 O13[b] 0.95 2.49 3.262(5) 139 

 C53 H53 O15[c] 0.95 2.36 3.015(5) 126 

 C54 H54 O15[c] 0.95 2.52 3.085(5) 118 

1(2 tol) C29 H29 O3[d] 0.95 2.56 3.204(8) 126 

Symmetry codes: [a] −x, ½ + y, ½ − z; [b] ½ − x, 1 − y, −½ + z; [c] 1 − x, −½ + y, ³⁄₂ − z; [d] −x, −y, 1 − z. 

To quantitatively describe the structural properties derived from X-ray structure analysis, we 

recently established the crystal contact index (CCI), which correlates the sum of 

intermolecular contacts with the strength of the cooperative effect.[14] The CCI scale proved to 

provide a good estimation to accompany the structural interpretation of spin transition 

properties.[11] All short intermolecular contacts (shorter than sum of van der Waals radii) are 

listed in Supplementary material. The corresponding CCI value of 2.0 for compound 1 

indicates a relatively high cooperativity (gradual SCO: < 1.5), which is in line with the strong 

restraining interactions observed as a result of the cross-linking of the chains and thus 

satisfactorily explains the wide IP. Because of the inferior structural data of the low-

temperature structure of 1, no far-reaching conclusions can be drawn with regard to the 

intermolecular short contacts. However, the structure motif of the molecule packing displayed 

in Figure 7 reveals a cross-linked arrangement of the chains as well. 
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Figure 7. Packing of the polymer chains of the low-temperature structure motif of 1, projected in the bc-plane. 
For clarity reasons only 50% of the unit cell content along the a axis is displayed. 

An excerpt of the molecule packing of 1(2 tol) is shown in Figure 8. In contrast to the packing 

of compound 1, all chains run in a parallel fashion. The chains are arranged such that, 

between the bulky equatorial ligands and the smaller axial ligand, tube-like solvent accessible 

void volumes, reminiscent of molecule organic frameworks (MOFs), occur along the a and c 

axis, in which the toluene molecules are intercalated (Figure 8). The shortest Fe· · ·Fe 

separation distance between adjacent chains is 9.36 Å, and therefore shorter than within the 

chain, but longer than that in 1. As consequence, the total number of short contacts between 

adjacent chains is smaller (Supplementary material) and only one non-classical hydrogen 

bond is observed, which involves the carbonyl oxygen atom O3 of the equatorial ligand and 

H29 at the pyridyl ring of the axial ligand. As expected, the CCI of compound 1(2 tol) is 

relatively low (0.4), indicative of very weak cooperativity.[11] Unfortunately, we were not able 

to get enough crystals of 1(2 tol) to do any magnetic measurements 
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Figure 8. Packing of the polymer chains of 1(2 tol) in the crystal projected in the bc-plane (left) and the ab-plane 
(right). The tube-like void volumes with intercalated toluene are highlighted for clarification. 

9.3 Discussion 

In order to reach an application for SCO compounds, a purposeful synthesis of such materials 

with defined properties is essential. Consequently, the question needs to be answered, why in 

the case of 1 and 2 such wide IPs are observed. The first suggestion from the X-ray structure 

analysis of 1 and the Mössbauer spectra would be that nonequivalent iron centres are 

responsible for the different transition temperatures. However, the Mössbauer parameters of 

1(tol) are very similar to that of 1, and here two nonequivalent iron centres are clearly visible, 

although, in the magnetic measurements, only a gradual one-step spin transition is observed. 

The fact that the magnetic behaviour of 1(tol) changes from gradual to steplike with the loss 

of toluene, similar to that seen in the χMT curve of 1, leads to the assumption that the structure 
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of 1(tol) has to be more related to 1 than to 1(2 tol). Thus, it is highly probable that the special 

cross-linked arrangement of the 1D chains of 1 is responsible for the 110-K wide IP. As a 

very similar SCO is observed for 2, a similar structure can be assumed that is probably related 

to the azpy ligand. 

Next to the reasons for steps in the transition curve, it is important to investigate and 

understand the influence of solvent-inclusions on the magnetic behaviour of SCO materials, 

as future applications as solvent-sensors are foreseeable. It is well known that solvent 

molecules intercalated into the crystal structure can either enhance or diminish cooperative 

effects and spin transition.[1] Networks of the stoichiometry [Fe(bpee)2(NCS)2]
[19] and 

[Fe(azpy)2(NCS)2]
[20] represented the first porous 2D grid metal-organic frameworks that 

exhibit a spin-state change triggered by host-guest chemistry, several further examples 

followed.[21] A similar dependence can be observed for the system described here: at room 

temperature, the solvent-free compound 1 is at the IP; if one toluene molecule is included, the 

complex is switched to the HS state (1(tol)). Similar effects were observed for related 1D 

chain SCO compounds of these Schiff base-like equatorial ligands.[13] It appears that solvent 

effects are much more pronounced for 1D chain materials than for mononuclear complexes of 

the same ligand type. Further going investigations with regard to the reversibility of those 

effects are in progress. 

9.4 Conclusion 

In this work, we presented the synthesis and characterisation of new SCO coordination 

polymers with up to a 110-K wide IP. The complexes were investigated by using T-dependent 

susceptibility measurements, Mössbauer spectroscopy and X-ray diffraction. The results show 

that a clear assignment of the reasons for such a wide intermediate plateau is difficult. 

Although in-equivalent iron centres are observed in the Mössbauer spectra and X-ray 

structures, their T-dependent behaviour indicates that this is not the only factor responsible for 

the plateau. The special cross-linked arrangement of the 1D chains of 1 also contributes to the 

spin transition behaviour. The results provide a unique insight into the formation of a two-step 

spin transition and nicely show the influence of solvent molecules on a SCO. 
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9.5 Experimental Section 

Magnetic measurements: Magnetic susceptibility data were collected with a Quantum 

Design MPMSR2 SQUID magnetometer under an applied field of 0.5 T over the temperature 

range 50 to 400 K in the settle mode. All samples were placed in gelatine capsules held within 

plastic straws. The data were corrected for the diamagnetic magnetisation of the ligands, 

which were estimated by using tabulated Pascal’s constants, and of the sample holder. 

Mössbauer spectroscopy: Mössbauer spectra have been recorded by using a conventional 

Mössbauer spectrometer operating in a sinusoidal velocity profile. The sample was placed in a 

bath cryostat (Cryo Industries of America Inc., Model 11CC). 

Differential thermogravimetry: The thermal behaviour was studied by using a Setaram TG-

92 equipped with a protected DTA-TG rod. The measurement was conducted under streaming 

Helium atmosphere at a scanning rate of 10 K min−1 by using 100 mL alumina crucibles. 

X-Ray crystallography: The intensity data of 1 and 1(tol) were collected on a Nonius Kappa 

CCD diffractometer by using graphite-monochromated MoKα radiation. The data were 

corrected for Lorentz and polarisation effects. The structure was solved by direct methods 

(SIR-97)[22] and refined by full-matrix least-square techniques against F0
2 (SHELXL-97).[23] 

The hydrogen atoms were included at calculated positions with fixed displacement 

parameters. All non-hydrogen atoms were refined anisotropically. ORTEP-III[24] was used for 

the structure representation, SCHAKAL-99[25] for the representation of the molecule packing. 

Cell parameters and refinement results are summarised in Supporting Information Table S1.  

Synthesis: If not described differently, all syntheses of the iron(II) complexes were carried 

out under argon by using Schlenk tube techniques. All solvents were purified as described in 

the literature[26] and distilled under argon. The syntheses of anhydrous iron(II) acetate,[27] 

ligand H2L1,[28] ligand H2L2[29] and the precursors [FeL1(MeOH)2]
[30] and [FeL2(MeOH)2]

[26] 

were published before. 4-Aminopyridine was purchased from Aldrich Chemical Co. and used 

as received. All complex syntheses were reproduced at least once. 

4,4′-Azopyridine (azpy): 4,4′-Azopyridine was prepared by oxidative coupling of 4-

aminopyridine and hypochlorite by using an adaption of Launay et al.
[31] A cold solution of 4-

aminopyridine (5.05 g, 53.7 mmol) in water (100 mL) was added dropwise to a 6.5% NaOCl 
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solution (300 mL). The mixture was stirred at 5 °C as an orange precipitate formed. After 

completion of the addition, the reaction mixture was stirred for another 15 min. The 

precipitate was filtered off and washed with cold water. The aqueous phase was extracted 

three times with diethyl ether. The combined organic phases were dried on MgSO4, and the 

solvent evaporated. The crude products were recrystallised from water to yield 4,4′-

azopyridine as orange needles (yield: 1.70 g, 34%). 1H NMR (270 MHz, CDCl3, 25 °C, 

TMS): δ = 8.9 (m, 4H, Ar-H), 7.7 ppm (m, 4H, Ar-H); MS (DEI-(+), 70 eV): m/z (%): 184 

(55) [M +], 78 (100) [C5H4N
+]; elemental analysis calcd (%) for C10H8N4 (184.20): C 65.21, H 

4.38, N 30.42; found: C 64.67, H 4.20, N 30.18. 

[FeL1(azpy)] (1): [FeL1(MeOH)2] (0.26 g, 0.51 mmol) and azpy (0.47 g, 2.57 mmol) were 

dissolved in ethanol (40 mL) and heated to reflux for 4 h. Compound 1 precipitated from the 

reaction mixture after 4 d at room temperature in the form of black crystals, which were 

filtered off, washed with ethanol and dried in vacuo (yield: 0.25 g, 78%). IR (KBr): ν�� = 1686 

(COO), 1566 (CO) cm−1; MS (DEI-(+), 70 eV): m/z (%): 442 (20) [FeL1+], 184 (48) [azpy+ ]; 

elemental analysis calcd (%) for C30H30FeN6O6 (626.44): C 57.52, H 4.83, N 13.42; found: C 

57.16, H 4.70, N 12.91. 

[FeL1(azpy)]�toluene (1(tol)): [FeL1(MeOH)2] (1.11 g, 2.19 mmol) and azpy (2.02 g, 

11.0 mmol) were dissolved in toluene (60 mL) and warmed to 80°C for 1 h. Compound 1(tol) 

was obtained after 1 d at room temperature in the form of a black microcrystalline precipitate, 

which was filtered off from the reaction mixture, washed with toluene and dried in vacuo. 

(yield: 1.41 g, 90%). IR (KBr): ν�� = 1685 (COO), 1566 (CO) cm−1; MS (DEI-(+), 70 eV): m/z 

(%): 442 (100) [FeL1+], 184 (25) [azpy+]; elemental analysis calcd (%) for 

C30H30FeN6O6×C7H8 (718.58): C 61.84, H 5.33, N 11.70; found: C 62.79, H 5.41, N 11.32. 

The mother liquor of 1(tol) was allowed to stand at 4 °C. After two months, black crystals 

with the composition 1(2 tol) had formed, which were of sufficient quality for crystal 

structure analysis.  

[FeL2(azpy)] (2): [FeL2(MeOH)2] (0.30 g, 0.63 mmol) and azpy (0.59 g, 3.20 mmol) were 

dissolved in methanol (20 mL) and heated to reflux for 1 h. After 16 h at 4 °C, 2 precipitated 

from the reaction mixture in the form of a black, microcrystalline solid, which was filtered 

off, washed with methanol and dried in vacuo (yield: 0.14 g, 37%). IR (KBr): ν�� = 1692 

(COO), 1567 (CO) cm−1; MS (DEI-(+), 70 eV): m/z (%): 414 (100) [FeL2+], 184 (35) [azpy+]; 
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elemental analysis calcd (%) for C28H26FeN6O6 (598.39): C 56.20, H 4.38, N 14.04; found: C 

55.81, H 4.41, N 13.99. 

Supplementary material: The details for the analysis of the Mössbauer spectra and the least-

squares-fitted Mössbauer data, the analysis of short inter-molecular contacts of 1 and 1(2 tol), 

the first derivative of the χMT vs. T plot of 1(tol) and 2 and the crystallographic information 

files (CIF) of 1 and 1(2 tol) are available on the WWW under http://www.eurjic.org/ or from 

the author. 
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9.7 Supporting Information 

Table S1. Crystallographic data of iron(II) coordination polymers 1 and 1(2 tol). For the structure motif of 1LS 
only the crystal data are given. 

compound 1
HS-LS 

1
LS 

1(2 tol) 

formula C60Fe2H60N12O12 C120H121Fe4N24O24 C44H46FeN6O6 
Mr / g mol−1 1252.90 2506.81 810.72 
crystal system orthorhombic monoclinic monoclinic 
space group P212121 P21 P21/c 
a / Å 16.2024(4) 17.8442(7) 11.2681(4) 
b / Å 17.8809(4) 16.1027(7) 33.9573(11) 
c / Å 20.8774(5) 20.3955(8) 11.1503(4) 

α / ° 90.00 90.00 90.00 

β / ° 90.00 90.614(2) 106.2810(10) 

γ  / ° 90.00 90.00 90.00 

V / Å3 6048.5(2) 5860.1(4) 4095.4(2) 
Z 4 2 4 
ρ / g cm−3 1.376 1.421 1.315 
µ  / mm−1 0.551 0.569 0.424 
crystal size 0.35 × 0.25 × 0.20 0.23 × 0.13 × 0.07 0.19 × 0.07 × 0.05 
T / K 200(2) 130(2) 173(2) 
diffractometer KappaCCD KappaCCD KappaCCD 

λ (MoKα) / Å 0.71073 0.71073 0.71073 

θ-range / ° 3.18–25.34  3.26–23.50 
reflns. collected 38753  17933 
indep. reflns. (Rint) 11033 (0.0906)  5979 (0.1011) 
mean σ (I) / I 0.0800  0.1021 
reflns. with I ≥ 2σ (I) 8142  3509 
x, y (weighting scheme) 0.0368, 0.3874  0.1014, 3.3410 
parameters 783  481 
restraints 0  14 
R (F) (all data)[a] 0.0443 (0.0788)  0.0784 (0.1516) 
wR (F2)[b] 0.0948  0.2085 
GooF 1.022  1.059 
shift/errormax 0.001  0.000 
max., min. resd. dens. / e Å−3 0.309, −0.292  0.827, −0.491 

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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Abstract: A detailed investigation on the properties of the high-temperature and low-

temperature modifications of the iron(II) spin crossover complex [FeL1(Him)2] (1) and its 

isotopic deuterium-labelled analogue [FeL1(Dim)2] (1D), and the pair [FeL2(azpy)]� 

MeOH/[FeL2(azpy)]�CD3OD/[FeL2(azpy)] (2�MeOH/2�CD3OD/2), in which L1 and L2 are 

tetradentate N2O2
2−-coordinating Schiff base-like ligands, L1 = {diethyl (E,E)-2,2′-[1,2-

phenyl-bis(iminomethylidyne)]bis[3-oxobutanoate] (2-)-N,N′,O3,O3
′}, L2 = {2,2′-[1,2-phenyl-

bis(iminomethylidyne)]bis[1-phenylbutane-1,3-dione] (2-)-N,N′,O3,O3′}, Him = imidazole, 

and azpy = 4,4′-azopyridine, is presented. All complexes except 2 show a cooperative spin 

transition with hysteresis widths between approximately 5 K (1LT and 1LT
D), 70 K (1HT [9] and 

1
HT

D, both around room temperature) and 80 K (2�MeOH and 2�CD3OD). In all cases, an 
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influence of the H/D-exchange on the transition temperature and the hysteresis width is 

observed. For 1HT
, first-order reversal curves (FORCs) have been recorded, and a statistical 

analysis gives the interaction parameter J = 560 K, indicating strong intermolecular 

interactions. X-Ray structure analysis of the different samples (1HT [9] and 1HT
D: HS; 1LT and 

1
LT

D: LS; and 2�MeOH and 2�CD3OD: HS) gives a deeper insight into the molecular 

packing in the crystals and helps explain the increase of cooperative interactions during the 

spin transition. In all cases, one hydrogen bond involves an oxygen atom of the Schiff base 

like ligand that serves as a donor for the iron centre. The influence of this hydrogen bond on 

the ligand field strength of the iron centre is discussed and a new model is developed to 

explain the observed connection between hydrogen bonds and exceptionally wide hysteresis 

loops for the complexes presented in this work and other examples from literature. 

10.1 Introduction 

There is an on-going interest in the bistability of spin crossover (SCO) compounds[1] as the 

thermochromism associated with the spin transition (ST) makes them potentially useful for 

various applications, such as display and memory device units,[2] sensors[3] and cold channel 

control units in food and medical storage devices.[4] Recent research activities in this field 

explore the possibility of combining the SCO bistability with additional properties (e.g., 

liquid crystalline properties[5] and magnetic exchange interactions[6]) resulting in multi-

functional SCO materials,[7] or are focused on the rational design of nano-structured SCO 

materials and their chemical and physical properties.[8] Of the possible types of ST (gradual, 

abrupt, with hysteresis, stepwise, incomplete), much of the interest is focused on the 

bistability in highly cooperative systems (hysteresis or memory effect) as such compounds 

can exist in two different electronic states depending on the history of the system. In this 

regard, we recently characterised an iron(II) SCO complex with a 70 K wide thermal 

hysteresis loop around room temperature based on a 2D network of hydrogen bonds between 

the complex molecules (compound 1, [FeL1(HIm)2]).
[9] The possibility to influence the ST 

behaviour by hydrogen bonds has been already introduced in the literature. Several examples 

demonstrate an influence of the presence or absence of hydrogen bonds on both, the transition 

temperature[10,11,12,13] as well as on cooperative effects.[9,13,14,15] For some of the examples, an 

influence of the hydrogen bonds on the electron density of donor atoms and by this on the 
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ligand field strength is discussed.[10–13] To date, however, no consistent model for the 

explanation of the different effects is available. A detailed understanding of the interplay of 

hydrogen bonds and wide hysteresis loops is essential for a purposeful synthesis of SCO 

materials for potential applications. 

We decided to use two different approaches to more clearly investigate the effect of hydrogen 

bonds on the cooperative interactions and the transition temperature of our systems. From one 

side we are searching for more examples of complexes with wide hysteresis loops and 

hydrogen bonds. Here, we obtained a 1D chain iron(II) SCO complex with an 80-K wide 

hysteresis loop, probably also due to the presence of hydrogen bonds (compound 2�MeOH). 

For this complex, a second modification with a gradual SCO behaviour was obtained 

(compound 2). Additionally, we decided to investigate complexes 1 and 2�MeOH with all 

hydrogen atoms involved in the hydrogen-bond network substituted by deuterium. This 

information, together with data detailing a second modification of compound 1 with a 4 K 

wide hysteresis loop reported by Müller et al. [16] and the variety of other literature examples, 

build the foundation for a model to explain the different effects, which are presented in this 

work. 

In Scheme 1, the ligands used to modfiy 1 (H2L1 and HIm) and 2 (H2L2 and azpy) are given. 

 

 

 

Scheme 1. Schematic representation of the ligands used in this work. 
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10.2 Results 

Synthesis and general characterisation: The reaction of [FeL1(MeOH)2] with an excess of 

imidazole in methanol leads to two different modifications of the corresponding imidazole 

diadduct [FeL1(HIm)2] (1) as given in Scheme 2. Whereas for the modification with the 70 K 

wide thermal hysteresis around room temperature, an exact 1:2 ratio of FeL1/HIm is obtained 

as confirmed by X-ray structural and elemental analyses, for the second modification the 

exact composition is unclear. According to literature, the formula is [FeL1(HIm)x] with values 

of x between 1.8 and 2.2.[16] In both cases, a 4 K wide thermal hysteresis loop above room 

temperature is observed. Although the loss of cooperative interactions when going from the 

exact 1:2 ratio to a higher or lower imidazole content can be easily explained by the partial 

destruction of the hydrogen-bond network responsible for the cooperative interactions, it is 

puzzling that the same transition curve is obtained irrespective of the FeL1/HIm ratio. We 

therefore decided to have a deeper look into this mater before starting any experiments with 

deuterated imidazol. 

The results of different synthetic approaches are summarised in Scheme 2. For the 

modification resulting in the wide thermal hysteresis loop, a higher ratio of FeL1/HIm was 

necessary (1:50 instead of 1:30) and significantly less solvent was used (18 mL of MeOH 

instead of 67 mL per mmol iron complex). In contrast to literature results, however, the 

obtained precipitate of the second modification has exactly the same composition (FeL1/ 

HIm = 1:2) as the modification with wide thermal hysteresis loop. Differences were observed 

when different times were allowed for the precipitation to occur. The compound with the 

wide hysteresis loop precipitates from boiling solution (high temperature modification: 1HT), 

whereas the solution with the lower concentration is clear and the precipitate is obtained after 

standing for a period at room temperature (fine needles) or at 4 °C (powder, low temperature 

modification: 1LT). The magnetic properties of the powder and the fine crystalline sample of 

1
LT are identical. Another possibility to obtain 1

LT is to store the filtrate of the reaction 

mixture of 1HT at 4 °C. 
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Scheme 2. Synthetic approach towards the two different modifications of the complex [FeL1(HIm)2]. 

The powder sample of 2 can be obtained by the direct conversion of [FeL2(MeOH)2] and 

azopyridine in methanol. Single crystals of 2�MeOH and 2�CD3OD were obtained by slow 

diffusion techniques. A loss of the included methanol/[D4]-methanol can be observed when 

warming the crystals above room temperature, and 2 is obtained. To prevent the loss of the 

solvent, the crystals are stored at 4 °C. 
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Magnetic measurements: In Figure 1, the ST curves of 1HT and 1LT are compared with those 

obtained for the analogous complexes with [D4]-imidazole, 1HT
D and 1LT

D. For the complex 

1
LT

, slightly different transition temperatures are obtained compared with the results 

described by Müller et al.
[16] At room temperature, the χMT product is with 0.15 cm3 K mol−1 

in the region typical for an iron(II) complex in the low-spin (LS) state. Upon heating, the 

magnetic moment remains constant up to 328 K, after which an abrupt transition in the HS 

state takes place with a transition temperature (HS molar fraction; γHS = 0.5) of T½
↑ = 331 K. 

At 345 K, the χMT product is with 3.29 cm3 K mol−1 in the region typical for an iron(II) 

complex in the HS state. Upon cooling, the magnetic moment remains constant down to 

328 K. Below this temperature an abrupt transition in the LS state takes place with T½
↓ = 

326 K. Upon deuteriation, the transition temperature in the heating mode is shifted by 1 K to 

higher temperature, whereas the transition temperature in the cooling mode remains the same 

(T½
↑ = 332 K and T½

↓ = 326 K for 1LT
D). The width of the thermal hysteresis loop increases 

from 5 to 6 K. The measurements were reproduced twice (for all samples) to verify the 

observed trend. 

 

 

 

Figure 1. Thermal variation of the χMT product of the different modifications of 1 discussed in this work. Left: 
wide hysteresis of 1HT (squares) and 1HT

D (open circles) and right: small hysteresis of 1LT (squares) and 1LT
D 

(open circles). 
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The transition curves of 1HT and 1HT
D are very similar, and a pronounced difference is only 

obtained for the transition temperature in the heating mode that is with a value of 309 K in the 

deuteriated compound, 5 K lower than the original complex. In the cooling mode, the 

transition temperature is also shifted towards lower temperatures, but only by 1 K (243 

instead of 244 K). As a consequence, the width of the thermal hysteresis loop is reduced by 

4 K (from 70 to 66 K) upon H/D exchange. This significant change in the width of the 

hysteresis loop upon deuteration for both samples clearly demonstrates that the hydrogen-

bond network influences the hysteresis width in this complex. 

 

In Figure 2 the ST curves of 2·MeOH, 2·CD3OD and the solvent-free samples of 2 are 

displayed. The shape of the curve progression is very similar for the two solvated compounds. 

For the first cycle, the magnetic behaviour was measured in the 50–280 K temperature range. 

After heating to 300 K, significant changes in the ST behaviour were observed, resulting in a 

decrease in the hysteresis loop width and the overall completeness of the SCO. Measurements 

up to 400 K cause a complete loss of the solvent methanol/ [D4]-methanol and the ST is 

shifted to a higher temperature, its curve progression becoming gradual (2·MeOH: T½ = 

314 K; 2·CD3OD: T½ = 310 K). The same gradual curve progression is obtained for a 

separately prepared powder sample of 2.  

 

 

 

Figure 2. Left: thermal variation of the χMT product of the complexes 2·MeOH (squares) and 2·CD3OD (open 
circles). Comparison of the hysteresis loop of 2·MeOH and 2·CD3OD and the gradual spin transition after 
tempering to 400 K. Right: thermal variation of the χMT product of the complexes 2·CD3OD at the first cycle 
(cycles), second cycle (after heating to 300 K, open triangles) and after heating to 400 K (stars). 
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Thermogravimetric measurements of 2·MeOH and 2·CD3OD confirm the presumption that 

the loss of one methanol molecule has to be responsible for the different spin transition 

behaviour. At 280 K, the χMT product of 2·MeOH is with 3.41 cm3 K mol−1 in the typical 

range expected for an iron(II) HS centre, as for the χMT value of 2·CD3OD with 

3.32 cm3 K mol−1. Upon cooling, the χMT values of 2·MeOH remain approximately constant 

between 280 and 164 K. Over the range 164 to 130 K an abrupt ST takes place to a minimum 

value of 0.28 cm3 K mol−1, indicating that all the iron(II) sites are in the LS state. Below 

130 K, the χMT values remain approximately constant again. The T½ value of this SCO is 

153 K. The χMT values of 2·CD3OD remain approximately constant between 280 and 169 K, 

then over the range 169 to 125 K the χMT values rapidly decrease to a minimum value of 

0.32 cm3 K mol−1. Below 125 K, the χMT values remain approximately constant. The T½ value 

of this SCO is 152 K. For both compounds, thermal hysteresis is observed in the χMT values 

upon heating. Above 144 K, the χMT values of 2·MeOH increase gradually, then, above 

200 K, rapidly, to attain a maximum value of 3.65 cm3 K mol−1 at 265 K, indicative of HS 

iron(II). The T½ value of this step is 235 K. The χMT values of 2·CD3OD
 increase, first 

gradually above 140 K, then rapidly above 200 K, to a maximum value of 3.23 cm3 K mol−1 at 

260 K. The T½ value of this SCO is 231 K. This means a thermal hysteresis loop of 82 K for 

2·MeOH and 79 K for 2·CD3OD. The small step in the heating mode is probably an 

indication for a partial loss of the included methanol molecules. 

 

 

FORC analysis: To obtain a complete picture of the interaction distribution in 1HT
, a set of 

first order reversal curves (FORCs) have been recorded (Figure 3). For each reversal 

temperature, Ta = [THS, TLS] (THS and TLS are the temperature for which the system is saturated 

in the HS state and in the LS state, respectively), by steps of 0.5 K, the magnetisation is 

recorded for decreasing temperatures Tb spanning from Ta to TLS also in steps of 0.5 K. The 

full set of FORCs is then transformed into the so-called FORC distribution defined by 

Equation (1) by using the original algorithm developed by Pike.[17] 

ba

baHS
2

ba

),(
),(

TT

TTn
TT

∂∂

∂
−=ρ       (1) 
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Finally, the set of the variables is changed from Ta, Tb to “coercitivity” (c) and ‘bias” (b), as 

indicated in Equations (2) and (3). 

2
ba TT

c
−

= ,        (2) 

2
ba TT

b
+

= ,        (3) 

The “bias” parameter, which is related to the equilibrium temperature T½, roughly 

corresponds to the energy gap ∆ between the HS and LS states. The “coercitivity”, which is 

related to the hysteresis width, reflects the strength of intra-domain interactions, which is 

characterised by the J parameter.[18,19] J corresponds to an interaction parameter derived from 

a two-level Ising-like description of interacting SCO units (Figure 4). 

 

 

 

Figure 3. FORCs of the thermal hysteresis loop of 1HT recorded in the cooling mode. 

Further, we discuss the FORC data in terms of the standard deviations σ and of the 

dimensionless correlation parameter rb,c defined in Equation (4). 

rb,c )(σ)(σ/),cov( cbcb=       (4) 
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The main parameters obtained from statistical analysis of the FORC diagrams are collected in 

Table 1. 

The mean value of the interaction parameter, J = 560 K and an energy gap ∆ = 2439 K have 

been determined for 1HT
. This interaction parameter is much higher than that of the model 2D 

ST coordination polymer [Fe(btr)2(NCS)2]∙H2O (J = 235 K),[2] which presents a hysteresis 

width of 25 K,[20] free of any structural phase transition.[21] It is also higher than that of the 1D 

ST chain compound [Fe(NH2trz)3](NO3)2 (J = 496 K),[22] which present an hysteresis width of 

33 K and which is also free of structural phase transformation.[22] A strong correlation 

between statistical parameters is observed, which suggests that the intra-layer interaction 

strength within the 2D hydrogen-bond network[9] is higher than the inter-layer interaction one 

giving rise to anisotropy in the propagation of the interactions, that is along the 2D layer of 

1
HT

. This result agrees very well with earlier FORCs studies carried out on 1D ST systems 

that concluded on the nature of the correlation taking its origin from an anisotropy source 

induced, for instance, by interchain interactions[22] or by an external pressure.[23] The 

composition distribution suggested by Tanasa et al.
[19] in a diluted 2D ST system as the origin 

of the correlation can also be regarded as an anisotropy source. A comprehensive FORC study 

of 1HT and 1HT
D will be devoted to a future study. 

Table 1. Statistical analysis of the FORC distributions obtained on 1HT
. 

b
[a] c

[a] σ(b)  σ(c) rb,c J
[a] σ(J) �

[a] σ(�) rJ,� 

(K) (K) (K) (K) (K) (K) (K) (K) (K) (K) 

272.2 36.1 1.1 3.4 −0.31 560 20.3 2439 11.3 0.59 

[a] �Jcb ,,, represent the mean values of the parameters b, c, � and J, respectively.  
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Figure 4. Experimental FORC diagram derived from Figure 3, in: (a) coercivity-bias coordinates and (b) in J-� 
coordinates. Probability that a single domain is characterised by a given value is given by its shade (very low in 
the blue region and very high in the red region). 
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DSC measurements: 1
HT and 1HT

D were studied by differential scanning calorimetry (DSC) 

over the 200–345 K temperature range (Figure 5). The thermal profile of the two complexes is 

very similar. They both exhibit, on warming, an endothermic peak and on cooling, an 

exothermic peak, whose shape is characteristic of a first-order phase transition. The peaks are 

separated by a wide temperature domain, which is indicative for the presence of a hysteresis 

loop for both compounds, as detected in SQUID measurements (Figure 1). The transitions 

temperatures have been evaluated as Tmax
↑ = 321(4) K and Tmax

↓ = 247(4) K with ∆H = 

20(1) kJ mol−1 and ∆S = 72.5(1) J mol−1 K−1 for 1
HT

, and as Tmax
↑ = 315(1) K and Tmax

↓ = 

249(1) K for 1HT
D with ∆H = 16(1) kJ mol−1 and ∆S = 64.2(1) J mol−1 K−1. These transition 

temperatures agree rather well with those obtained by SQUID measurements, the hysteresis 

width being identical for 1
HT

D (66 K), whereas for 1
HT a value of 74.4 (K) was obtained, 

compared with 70 K by SQUID. The vibrational contribution to the entropy variation is 

evaluated as ∆Svib = 59.2(1) J mol−1 K−1 and ∆Svib = 31.9(1) J mol−1 K−1, for 1HT and 1HT
D 

respectively; the electronic contribution being equal to Rln5 = 13.4 J mol−1 K−1 for iron(II) 

SCO compounds.[1b] 

Compounds 1LT and 1LT
D were also studied by DSC over the range 300–355 K. They both 

display a reversible first-order phase transition with transition temperatures Tmax
↑ = 346 K and 

Tmax
↓ = 325 K with ∆H = 23(1) kJ mol−1 and ∆S = 68.7(1) J mol−1 K−1 for 1LT

, and Tmax
↑ = 

345 K and Tmax
↓ = 322 K for 1LT

D with ∆H = 20(1) kJ mol−1 and ∆S = 61.2(1) J mol−1 K−1. 

The unusual ST behaviour of 2·MeOH and 2·CD3OD was investigated by DSC at a scan rate 

of 10 K min−1 over the temperature range 120–300 K in warming and cooling modes 

(Figure 6). For 2·MeOH, a steep endothermic peak was observed on warming at Tmax
↑ = 

239 K and an exothermic peak was recorded at Tmax
↓ = 153 K, on cooling, thus revealing a 

hysteresis loop with a width of 86 K. This behaviour is characteristic of a first-order phase 

transition and can be related to the hysteretic ST tracked by SQUID measurements (Figure 2), 

with an excellent agreement regarding transition temperatures. 
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Figure 5. DSC profiles of 1HT, 1HT
D, 1LT and 1LT

D in the cooling (←) and warming (→) modes. 

The enthalpy and entropy variations of 2·MeOH have been evaluated as ∆H = 15(1) kJ mol−1 

and ∆S = 90.3(1) J mol−1 K−1. For 2·CD3OD, the transition temperatures were found as 

Tmax
↑ = 237 K and Tmax

↓ = 156 K with ∆H = 9(1) kJ mol−1 and ∆S = 76.3(1) J mol−1 K−1. The 

entropy variation for 2·MeOH is much larger than that of 2·CD3OD, and, most interestingly, 

higher than those reported for other 1D iron(II) coordination polymers.[4,22, 24] This high value 

calls for the presence of a structural phase transformation. Interestingly, a shoulder is detected 

on the endothermic peak of 2·MeOH at Tmax
↑ = 229 K, but absent on the exothermic peak 

associated with the spin transition. This signal is not an artefact as it was observed in several 

DSC experiments in cooling and warming modes. Most interestingly, an unusual increase of 

χMT was detected in the SQUID measurements recorded on warming over the same 

temperature range (Figure 2, left). 
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Figure 6. DSC profile of 2·MeOH and 2·CD3OD in the 120–300 K temperature range in the cooling (←) and 
warming (→) modes. 

Compound 2·MeOH was studied by DSC on warming from 120 to 345 K (Figure 7) enabling 

us to fully reproduce the two endothermic signals displayed in Figure 6, which thus confirm a 

step in the warming branch of the ST curve of this material. The sample was then warmed and 

studied above room temperature, allowing the detection of a steeper endothermic peak, 

reminiscent of both methanol release and spin-state change as confirmed by both SQUID 

measurements (Figure 2) and thermogravimetric analyses. 

 

 

Figure 7. DSC profile of 2·MeOH on warming over the temperature range 120–360 K. 

In Table 2, the transition temperatures obtained by SQUID and DSC measurements and the 

thermodynamic parameters of the ST complexes are summarised. In general, a very good 

agreement between the transition temperatures is obtained by the two different methods. 
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Differences (especially for 1
LT/1LT

D) can be explained by the difference in scan rates. A 

comparison of the obtained entropy values reveals, that upon deuteriation, a significant 

decrease of the entropy is observed for all samples. In contrast, the values of the HT and LT 

modifications of 1 are very similar. This indicates that the hydrogen bonds (ref. [9]; see X-ray 

structures) significantly influence the SCO properties of the compounds presented here. The 

entropy values are significantly higher than the values determined for two monomeric 

complexes of this type of Schiff base-like ligands with pyridine (37.8 kJ mol−1, abrupt ST 

with 2 K wide hysteresis) or N,N-dimethylaminopyridine (31.5 kJ mol−1, abrupt ST with 9 K 

wide hysteresis) as axial ligands in which no hydrogen-bond network is observed.[25] They 

are, however, with the exception of 2�MeOH, in the range reported for highly cooperative 1D 

coordination polymers.[4,22,24] All these parameters indicate that, for the complexes discussed 

in this work, the hydrogen bond network plays an important role for the spin transition and 

that most presumably the ST is associated with a structural phase transition. 

Table 2. Transition temperatures recorded by SQUID and DSC measurements. 

 T½
↑/K 

T½
↓/K ∆T/K ∆H/kJ mol−1 ∆S/J mol−1 K−1 

1
HT

 (SQUID) 314 244 70   

1
HT

 (DSC) 321 247 74 20(1) 72.5(1) 

1
HT

D (SQUID) 309 243 66   

1
HT

D (DSC) 315 249 66 16(1) 64.2(1) 

1
LT

 (SQUID) 331 326 5   

1
LT

 (DSC) 346 325 21 23(1) 68.7(1) 

1
LT

D (SQUID) 332 326 6   

1
LT

D (DSC) 345 322 23 20(1) 61.2(1) 

2�MeOH (SQUID) 235 153 82   

2�MeOH (DSC) 239 153 86 15(1) 90.3(1) 

2�CD3OD (SQUID) 231 152 79   

2�CD3OD (DSC) 237 156 81 9(1) 76.3(1) 

 



10. Influence of Hydrogen Bonding on the Hysteresis Width in Iron(II) Spin Crossover 

Complexes 

 

 

 

  
 196 
  

X-Ray structure analysis: Crystals suitable for X-ray structure analysis were obtained for 

1
LT

, 1HT
D, 1

LT
D, 2·MeOH and 2·CD3OD (the same samples as those used for the magnetic 

measurements in all cases). In the case of 1LT
D, only the cell parameters were determined. 

Selected bond lengths and angles as well as selected intermolecular distances are reported in 

Table 3 and Table 4. Full refinement details are given Supporting Information Table S1.1–2. 

For completeness, the data of 1
HT [9] are also given. ORTEP drawings illustrating the 

asymmetric units of the different modifications of 1 and 2 are given in Figure 8 and Figure 9. 

The molecule structures of 1LT and 1HT
D were determined at 200 K and 275 K, respectively. 

The molecule structures of 2·MeOH and 2·CD3OH could only be determined at 200 K and 

173 K, respectively, as the crystals crumbled at higher/lower temperatures due to the spin 

transition. For each of these materials, structural analysis revealed a distorted octahedral 

iron(II) environment consisting of the equatorially coordinating tetradentate Schiff base-like 

ligand and two axially coordinating ligands with a N-heterocycle. In the case of 1, the two 

monodentate axial imidazole/[D4]-imidazole ligands led to mononuclear complexes. In case 

of 2, each bidentate 4,4′-azopyridine ligand bridges two iron(II) centres and thus propagates to 

form extended 1D chains. 

The complexes 1HT [9] and 1HT
D crystallise with monoclinic symmetry. Both complexes are 

isostructural with the average bond length and angles of the inner coordination sphere around 

the iron centre in the region typically reported for HS iron(II) complexes of this ligand type 

(2.09 Å (Fe-Neq), 2.03 Å (Fe-Oeq), 2.22 Å (Fe-Nax) and 108° (Oeq-Fe-Oeq)).
[26,27] The 

complexes 1LT and 1LT
D crystallise with orthorhombic symmetry. For 1LT

, the average bond 

lengths and angles of the inner coordination sphere around the iron centre (1.88 Å (Fe-Neq), 

1.94 Å (Fe-Oeq), 2.00 Å (Fe-Nax) and 88° (Oeq-Fe-Oeq)) are in the region reported previously 

for similar LS iron(II) complexes—in full agreement with the results of the susceptibility 

measurements.[26,27] No values give an indication why such pronounced differences are 

observed between the ST values of the two modifications. A detailed analysis of the 

intermolecular interactions can provide an answer to this question. 
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Figure 8. ORTEP drawing of the asymmetric units of compounds 1LT at 200 K (left) and 1HT
D at 275 K (right). 

Hydrogen atoms have been omitted for clarity. Displacement ellipsoids are shown with a 50% probability. 

Table 3. Selected bond lengths [Å] and angles [°] of 1LT
, 1

HT [9], 1HT
D, 2�MeOH and 2�CD3OD within the first 

coordination sphere. 

compound Fe-Neq  Fe-Oeq  Fe-Nax  Oeq-Fe-Oeq  Nax-Fe-Nax  

1
LT 1.879(2) 

1.890(2) 

1.951(2) 

1.929(2) 

1.989(2) 

2.011(3) 

88.26(8) 178.9(1) 

1
HT [9] 2.086(3) 

2.079(4) 

2.048(3) 

2.010(3) 

2.196(4) 

2.241(3) 

108.0(1) 173.8(1) 

1
HT

D 2.096(2) 

2.092(2) 

2.052(2) 

2.013(2) 

2.195(3) 

2.242(2) 

108.22(8) 173.5(1) 

2�MeOH 2.093(3) 

2.092(3) 

2.011(2) 

2.020(2) 

2.271(3) 

2.245(3) 

109.70(8) 177.05(9) 

2�CD3OD 2.091(4) 

2.096(5) 

2.014(4) 

2.017(4) 

2.260(5) 

2.231(5) 

109.41(16) 176.99(19) 
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The complexes 2·MeOH and 2·CD3OD crystallise with triclinic symmetry and have one 

iron(II) centre in the asymmetric unit. The parallel 1D chains of both complexes propagate 

along the [ 211 ] direction and are stacked such that there is a solvent accessible void volume 

for one methanol/[D4]-methanol molecule per iron(II) centre. Both complexes are 

isostructural. The average bond lengths around the iron centre (2·MeOH: 2.09 Å (Fe-Neq), 

2.02 Å (Fe-Oeq), 2.26 Å (Fe-Nax); 2·CD3OD: 2.09 Å (Fe-Neq), 2.01 Å (Fe-Oeq), 2.25 Å (Fe-

Nax)) and the Oeq-Fe-Oeq angles (2·MeOH: 110° ; 2·CD3OD: 109°) are indicative of iron(II) 

in the HS state.[26,27] 

 

 

 

Figure 9. ORTEP drawing of the asymmetric units of compounds 2�MeOH (left) and 2�CD3OD (right). 
Hydrogen atoms have been omitted for clarity. Displacement ellipsoids are shown with a 50% probability. 
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Intermolecular investigations: In contrast to 1HT
,
 [9] the packing of the molecules of 1LT in 

the crystal (Figure 10) reveals three different hydrogen bonds between neighbouring 

molecules. The one involving the NH hydrogen atom (H6A) of the imidazole unit and the 

OCOEt oxygen atom (O6) of the equatorial ligand is comparable to that observed in the 1HT 

structure.[9] The second one involving the NH hydrogen atom (H5A) and the coordinated 

carbonyl oxygen atom (O1) of the equatorial ligand is significantly weaker than the second H-

bond in 1HT (A� � �D 2.95 Å instead of 2.83 Å in the 1HT modification).[9] This is probably due 

to the third hydrogen bond that also involves the NH hydrogen atom (H5A) and the 

coordinated carbonyl oxygen atom (O2) of the equatorial ligand. One could argue that those 

two hydrogen bonds are the reason for the higher transition temperature of 1LT
. Upon spin 

transition the equatorial ligand expands; this is reflected by an increase in the value of the O1-

Fe-O2 angle. This angle, however, is to some extend fixed by the bridging hydrogen bond and 

by this the LS state of the complex is stabilised compared to 1
HT

. The combination of the 

three hydrogen bonds leads to an infinite 3D network of linked molecules. Some additional 

weak contacts between the imidazole CH (H22) and the OCOEt oxygen atom (O4) and the 

hydrogen atom of the ethoxy group of the equatorial ligand (H16B) and the OCOEt oxygen 

atom (O6) are also involved in the hydrogen-bonding network. For 1HT
, three additional weak 

contacts were obtained; two of them involving the same donor atom, the total number of short 

contacts is the same for both modifications of 1. The details for all intermolecular contacts are 

given in Table 4. The first suggestion would be that the 3D hydrogen-bond network of 1LT 

should lead to wider hysteresis loops, quite contrary to the experimental results. This 

discrepancy can be explained by the significantly weaker hydrogen bonds between the N5 

hydrogen and O1/O2. Additionally, the stabilisation of the LS state due to this bridging 

hydrogen bond can account for the small hysteresis loop in 1LT
. 

The molecule packing of 2�MeOH and 2�CD3OD (Figure 11) reveals four hydrogen bonds 

between adjacent chains, which are identical when comparing the two modifications. Most 

obvious is the hydrogen bond formed between the hydroxy group of the methanol molecule 

and the carbonyl oxygen atom O3 of the equatorial ligand. Moreover, three non-classical 

hydrogen bonds of the type C-H� � �O are found. Two of which involve the carbonyl oxygen 

atoms O3 and O4 as H-acceptor and two CH groups of the pyridyl-rings of the axial ligand 

(C-H32, C-H35) act as H-donors. The third non-classical hydrogen bond involves carbonyl 

oxygen atom O1, which is also directly coordinated to the iron(II) centre and a proton of the 
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methyl group of the included methanol molecule. This weak hydrogen bond is similar to the 

hydrogen bonds observed in the different modifications of 1 that also include the oxygen atom 

O1 that is coordinated to the iron centre. As for 1, a H/D exchange leads to differences in the 

hysteresis width suggesting a similar mechanism in both cases. 

Table 4. Selected intermolecular distances [Å] of the three modifications 1HT (275 K), 1HT
D (275 K) and 1LT 

(200 K) and of the two modifications 2�MeOH and 2�CD3OD. For 1HT and 1HT
D an infinite 2D hydrogen bond 

network with the base vectors: [0 1 0] and [0 0 1], along the plane: (1 0 0) with additional weak contacts between 
the single planes is obtained. For the compound 1LT

 an infinite 3D hydrogen bond network with the base vectors: 
[1 0 0], [0 1 0], [0 0 1] is observed. 

compound D H A D-H H� � �A D� � �A D-H� � �A 

1
HT [9] N4 H4 O1[a] 0.86 2.00 2.832(5) 161 

 N6 H66 O5[b] 0.86 1.98 2.841(4) 176 

1
HT

D N5 D5 O1[a] 0.86 2.02 2.847(4) 162 

 N6 D6 O5[b] 0.86 1.99 2.846(3) 177 

1
LT

 N6 H6A O6[c] 0.88 2.01 2.832(3) 155 

 N5 H5A O1[d] 0.88 2.10 2.950(3) 162 

 N5 H5A O2[d] 0.88 2.39 2.945(3) 121 

 C22 H22 O4[e] 0.95 2.57 3.520(4) 178 

 C16 H16B O6[f] 0.99 2.56 3.508(4) 161 

2�MeOH O5 H5A O3 0.84 2.03 2.865(4) 174 

 C32 H32 O4[b] 0.95 2.57 3.415(5) 148 

 C35 H35 O3[g] 0.95 2.42 3.331(49 161 

 C39 H39B O1[h] 0.98 2.53 3.346(5) 141 

2�CD3OD O5 D5 O3 0.84 2.03 2.867(8) 171 

 C32 H32 O4[j] 0.95 2.57 3.416(9) 148 

 C35 H35 O3[i] 0.95 2.42 3.329(8) 161 

 C39 D39A O1[k] 0.98 2.50 3.344(8) 144 

Symmetry codes: [a] −x, ½ + y, −½ − z; [b] −x, −1 −y, −z; [c] 2 − x, ½ + y, ⁵⁄₂ − z; [d] ½ + x, ⁵⁄₂ − y, 2 − z; [e] 
2 − x, −½ + y, ⁵⁄₂ − z; [f] 1 + x, 1 + y, z; [g] −1 + x, y, z; [h] 1 − x, −y, −z; [i] 1 + x, y, z; [j] 1 − x, 2 − y, 2 − z; [k] 
−x, 1 − y, 2 − z. 
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Figure 10. Packing of compound 1
LT in the crystal at 200 K. Top: view along [1 0 0], bottom: view along 

[0 1 0]. Hydrogen bonds are shown as dashed lines. 

 

 

 

Figure 11. Packing of compound 2�MeOH in the crystal. View along [0 1 0]. Hydrogen bonds are shown as 
dashed lines. 
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10.3 Discussion 

Labelling experiments: For the different systems investigated in this work (1HT/1HT
D, 

1
LT/1LT

D and 2�MeOH/2�CD3OD) the H/D exchange influences the width of the thermal 

hysteresis loop, whereas the shape of the transition curve remains unchanged. In the case of 

1
HT/1HT

D and 2�MeOH/2�CD3OD, the width of the hysteresis loop is reduced upon 

deuteriation and the transition temperatures are shifted to lower temperatures, whereas for 

1
LT/1LT

D the transition temperature is shifted to higher temperatures and the hysteresis width 

is increased. A H/D isotope effect on T½ was already observed for the coordination polymer 

[Fe(pyridine)2][Ni(CN)4] by Kitazawa, Bousseksou and co-workers[28] (shift to lower 

temperatures) or for the mononuclear system [Fe(2-pic)3]Cl2·Sol (2-pic = 2-picolylamine, 

Sol = C2H5OD and CH3OD) (shift to higher temperatures) by Gütlich et al.
[29] As different 

electronic and vibrational factors contribute to the relative energies of the HS and the LS 

state, the direction of the H/D effect on T½ is difficult to predict. 

A possible explanation for the observed effects concerning the hysteresis loop width can be 

related to the higher N-D bond strength compared with the N-H bond [30] and consequently 

the hydrogen bond strength decreases upon H/D exchange [31] leading to weaker 

intermolecular interactions. This is in agreement with a comparison of the cell parameters of 

1
HT and 1HT

D, which reveals that for the deuteriated sample, all cell parameters are slightly 

larger; the most pronounced difference is found for the c axis with a value of 27.37 Å instead 

of 27.25 Å. As the 2D hydrogen-bond network runs along the b/c axis this agrees well with 

the weaker hydrogen-bonds in 1HT
D. The intermolecular hydrogen bonds in the deuteriated 

sample are slightly longer than in the previously reported complex. Nevertheless, the effect is 

negligible for the one involving the NH/D atom (H66/D6) of the imidazole unit and the 

OCOEt oxygen atom (O5) of the equatorial ligand. In contrast, the difference between the 

second hydrogen-bond between the NH/D atom (H4/D5) of the imidazole unit and the 

coordinated carbonyl oxygen atom (O1) of the equatorial ligand is more pronounced (A� � �D 

2.85 compared with 2.83 Å in the 1HT modification). For the second pair 2�MeOH/2�CD3OD, 

however, no such pronounced differences were observed, but the effect on the transition curve 

is similar, whereas for 1LT
/1

LT
D a different trend is observed. 

A comparison of 1
HT and 2�MeOH complicates the situation even more: Here strong 

differences in the hydrogen-bond network are observed, but the width of the hysteresis loop is 
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in the same order of magnitude. For 1
HT

, direct hydrogen bonds between the complex 

molecules are observed whereas for 2�MeOH it is highly likely that the interactions mediated 

over the solvent molecule methanol are responsible for the wide hysteresis loop. The 

MeOH/CD3OD exchange influences the width of the hysteresis loop and the loss of the 

methanol results in a gradual spin transition. In contrast, a comparison of 1HT and 1LT reveals 

a very similar hydrogen-bond network, but strong differences in the width of the hysteresis 

loop. 

The different degrees of cooperative interactions cannot be directly correlated with the 

number and strength of hydrogen bonds. Several examples suggested that this is possible for 

the number of short van der Waals contacts.[11] For this purpose, we suggested the 

introduction of a quantitative parameter, the crystal contact index (CCI) that is the sum of all 

short and weighted contacts.[32] We assumed that every short contact (shorter than the sum of 

the van der Waals radii) contributes to the interactions mediating the cooperative effect. 

Those that are very short contribute more to the cooperative effect than those that are longer. 

Although this concept works rather nicely for several complexes of the family discussed in 

this work and also for other ST complexes,[32] it fails as soon as hydrogen bonds are involved 

in the intermolecular interactions. The values obtained for 1HT (4.1), 1HT
D (4.0) and 1LT (4.2) 

are of the same order of magnitude, thus the hysteresis width does not correlate with the 

number of short contacts.[32] Moreover, the value of 2�MeOH (1.7) is significantly lower, 

despite the even larger hysteresis loop. Nevertheless, the importance of the hydrogen bonds in 

connection with the wide hysteresis loops cannot be put into question as it is underlined by 

the DSC results in which a significant decrease of the entropy is observed upon deuteriation 

for all complexes. The FORCs analysis of 1HT also indicates strong interactions within the 2D 

layer of hydrogen-bond-linked molecules as origin of the wide hysteresis loops. 

To obtain a better understanding of the influence of the hydrogen bonds on the hysteresis 

width, their influence on the ligand field strength was considered. 



10. Influence of Hydrogen Bonding on the Hysteresis Width in Iron(II) Spin Crossover 

Complexes 

 

 

 

  
 204 
  

Influence of H-bonding on the ligand field strength: The general idea that hydrogen bonds 

to atoms in close vicinity to the metal centre are responsible for variations in the crystal field 

was already suggested in 1978 for the iron(III) complex [Fe(saen)2]Cl�H2O.[10] The four amine 

hydrogen atoms of the saen ligand (saen = N-(2-aminoethyl)-salicylaldiminato, Scheme 3) are 

involved in four interactions, three with chloride ions and one with the water molecule. The 

complex is LS but becomes HS when dehydrated or in solution.[10] This observation was 

explained with a slight increase in electron density on the amine nitrogen due to the hydrogen 

bond, resulting in an enhanced crystal field experienced by the central metal ion.[10] A similar 

observation was made for a series of iron complexes of H2L3 (H2L3 = 2,6-bis(pyrazol-3-

yl)pyridine, Scheme 3) with varying counterions and water molecules of the general formula 

[Fe(H2L3)2](X)2�nH2O with X = BF4
−,[33] I−,[33c] SCN−,[12] SeCN−[12b] and CF3SO3

−.[13] An 

increasing amount of water of crystallisation resulted in the stabilisation of the LS state, for 

example, the crystals of the BF4
− salt with three water molecules of crystallisation are LS (no 

magnetic measurements), the powder sample with two water molecules of crystallisation 

shows a gradual ST with T½ ≈ 300 K, whereas the water-free powder sample shows an abrupt 

ST with T½
↓ = 170 K and T½

↑ = 180 K.[33] In the X-ray structures analyses, hydrogen bonds 

were observed between the uncoordinated NH of the pyrazole ring and water, as well as the 

counterions. The authors assume that the hydrogen-bonded water molecules stabilise the LS 

state by increasing the electron density at the imine nitrogen.[33] For two of the complexes 

[Fe(H2L3)2](SCN)2�2 H2O
[12] and [Fe(H2L3)2] (CF3SO3)2�H2O,[13] stepwise spin transitions 

with hysteresis loop were obtained. In both cases, the step does not occur at γHS = 0.5, as for 

the example 2�MeOH/CD3OD in this paper. In the case of the thiocyanate salt, after the first 

cycling, a second phase with a one-step ST was obtained. A disruption of the hydrogen-bond 

network associated with a reversible crystallographic change is assumed to be the origin of 

the unusual ST behaviour.[12] A structural phase transition and the associated modification of 

the hydrogen-bond network are discussed as being responsible for the step ST with hysteresis 

of the compound FeH4L4 (Scheme3).[15] Significant differences in the transition temperature 

of [FeH2L5(py)2]�py (Scheme 3) in the solid state (T½ > 350 K) and in solution (T½ ≈ 200 K, 

both gradual spin transitions) were also associated with the hydrogen-bond network observed 

in the X-ray structure.[11] Such observations are not limited to monomer complexes. For the 

1D chain material [Fe(NH2trz)3](NO3)2, the 33 K wide thermal hysteresis loop is associated 
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with a  network of hydrogen bonds,[22,34] and for the very similar [Fe(Htrz)2(trz)] (BF4), an 

extended network of hydrogen bonds had been singled out to be the origin of the 40 K large 

hysteresis above room temperature.[24,35] A detail X-ray structure analysis on the 2D network 

of [Fe(btr)2(NCS)2]⋅H2O reveals that the HS → LS transition reduces the O-H� � �N contacts 

between the water molecules and the free N atoms of the triazole ligand. Those changes and 

the rigid nature of the bridging ligand are made responsible for the observed highly 

cooperative SCO behaviour (25 K wide hysteresis).[20,21] 

 

 

 

Scheme 3. Schematic representation of ligands and complexes with potential for hydrogen bonding: Hsaen from 
ref. [10], H2L3 from ref. [12,13,34], FeH4L4 from ref. [13] and H4L5 from ref. [11]. 

All these examples demonstrate that i) hydrogen bonds significantly influence the ligand field 

strength if donor atoms or atoms in conjugated systems with donor atoms are involved and ii) 

changes in the hydrogen-bond network (often, but not necessarily, in line with a structural 

phase transition) result in changes in the ST behaviour. This information can now be used to 

suggest a new model for the explanation of the wide thermal hysteresis loops of the high-

temperature modification of 1 and 2�MeOH (as well as the different literature examples with 

hysteresis loops in which hydrogen bonding is observed): 

A ST is associated with changes in the bond length between the iron centre and the donor 

atoms. These changes most likely influence the strength of the hydrogen bond to the donor 

atom, e.g. in the case of 1HT between the NH of the imidazole ligand and O1 of the equatorial 

ligand. This change influences the overall ligand field strength of the complex. In our two 
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cases, upon cooling, this change results in a stabilisation of the LS state (corresponding to a 

shift of the LS potential wells to lower energies, see Scheme 4). As a consequence, ∆EHL 

increases and a higher transition temperature is observed in the heating mode. Wide thermal 

hysteresis loops should thus be observed if a large enough change in a hydrogen-bond 

network involving donor atoms or atoms in conjugated systems with donor atoms is observed. 

Those changes can be associated with reversible structural phase transitions. 

The second question to be addressed in this context is that of domain formation as the reason 

for hysteresis loops (the theory of Sorai and Seki).[36] The high interaction parameter J of 

560 K derived from FORC analysis indicates a pronounced intradomain interaction. A 

possible explanation to unify both concepts would be that one domain is formed by an 

assembly of molecules with the same ligand field strength or, if a structural phase transition 

takes place, of the same structural phase. This implies that both theories not only coexist but 

also support each other. Further investigations on the compounds presented in this work and 

on new examples are necessary to verify this concept. 

 

 

 

Scheme 4. Schematic representation of the HS and LS potential wells before spin transition (LS dark blue) and 
after spin transition (LS light blue). Upon spin transition, a change in the H-bond strength results in a different 
ligand field strength for the LS state and therefore a higher ∆EHL that leads to a higher transition temperature in 
the heating mode compared to the cooling mode. 
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10.4 Conclusion 

Spin transition molecular materials have a high potential as materials for various applications 

in display and data processing (memory device units, cold channel control units in food and 

medical storage devices). These potential applications desire a highly cooperative ST system 

with an approximate 100-K wide hysteresis loop.[2a] In this manuscript, we have introduced a 

new concept to explain the interplay of wide bistability domains and hydrogen bonds between 

the magnetic centres. This concept brings us one step closer to the application of SCO 

materials. 
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10.5 Experimental Section 

Magnetic measurements: Were performed on a Quantum-Design-MPMSR-XL-SQUID-

Magnetometer in the 50–400 K temperature range at 0.05 T in the settle mode. The data 

corrections were made by using tabulated Pascal’s constants. All measurements were 

reproduced twice. The FORC distribution is determined at each point by fitting a mixed 

second-order polynomial of the form [a1 + a2Ta + a3Tb + a4Ta
2 

+ a5Tb
2 

+ a6TaTb] to a local 

moving grid. When interpolation is done to obtain the distribution value, we also take into 

consideration the neighbouring interpolated point. In this case, the value of a6 provides the 

mixed second derivative of the fitted surface and it can be assigned to the centre of grid as a 

representation of the density of the FORC distribution ρ(Ta,Tb) at that point. The value of the 

magnetisation is interpolated in every measured point with that polynomial of second order. 

Differential scanning calorimetric measurements: Were carried out in a He(g) atmosphere 

by using a Perkin-Elmer DSC Pyris 1 instrument equipped with a cryostat and operating down 

to 98 K. An aluminium capsule was loaded with 10 to 30 mg of sample and hermetically 

sealed. The heating and cooling rates were fixed at 10 K min−1. Temperatures and enthalpies 

were calibrated over the temperature range of 298 to 400 K by using the solid-liquid 

transitions of pure Indium (99.99%)[37] and the crystal-crystal transitions of pure cyclopentane 

(≥ 99%)[38] over the range 120 to 298 K. The sample was maintained at room temperature or 

at the highest temperature for 5 min in order to allow the system to equilibrate, and was 

further warmed or cooled in the investigated region. The experiments were carried out four 

times to check the reproducibility. 

Crystal structure analysis: The intensity data of 1LT
, 1

HT
D and 2�MeOH were collected on 

an Oxford XCalibur diffractometer, the intensity data of 2�CD3OD were collected on a 

Nonius Kappa CCD diffractometer, both by using graphite-monochromated MoKα radiation. 

The data were corrected for Lorentz and polarisation effects. The structure was solved by 

direct methods (SIR-97[39]) and refined by full-matrix least-square techniques against F0
2 

(SHELXL-97[40]). The hydrogen atoms were included at calculated positions with fixed 

thermal displacement parameters. Cell parameters and refinement results are summarised in 
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Supporting Information Table S1.1–2. ORTEP-III was used for structure representation.[41] 

SCHAKAL-99 to illustrate molecule packings.[42] 

Crystallographic data for the structures reported in this paper have been deposited with the 

Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-723037 

(1HT
D), -723038 (1LT), -800952 (2�MeOH) and -800953 (2�CD3OD). These data can be 

obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the 

Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: 

(+44) 1223-336-033; or deposit@ccdc.cam.ac.uk). 

General synthesis: All syntheses were carried out under argon by using Schlenk tube 

techniques. Methanol was purified and distilled under argon before use. [FeL1(MeOH)2] and 

[FeL2(MeOH)2] were prepared as described in literature[43] by using anhydrous 

iron(II) acetate as starting material.[44] Imidazole was purchased from Alfa Aesar, [D4]-

imidazole (98 atom %) [D1]-methanol (CH3OD, 99.5 atom %) and [D4]-methanol (HDO + 

D2O < 0.03%) were purchased from Aldrich and used as received. 

[FeL1(HIm)2] (1
LT

): A mixture of [FeL1(MeOH)2] (0.09 g, 0.18 mmol) and imidazole 

(0.30 g, 4.41 mmol) was dissolved in methanol (8.0 mL) and refluxed for 5 min. After 

cooling, the solution was allowed to stand for 3 d until a fine crystalline black precipitate was 

obtained, which was filtered off, washed with methanol (2 × 5 mL) and dried in vacuo (yield: 

0.05 g, 48%). IR (KBr): ν = 1702(s), 1575 cm−1 (s); elemental analysis calcd (%) for 

C26H30N6O6Fe: C 53.99, H 5.23, N 14.53; found: C 53.79, H 5.23, N 14.55.  

[FeL1(HIm)2] (1
HT

): A mixture of [FeL1(MeOH)2] (0.56 g, 1.11 mmol) and imidazole 

(3.80 g, 55.5 mmol) was dissolved in methanol (20 mL) and refluxed for 5 min. After cooling, 

the fine crystalline black precipitate was filtered off immediately, washed with methanol 

(2 × 5 mL) and dried in vacuo (yield: 0.43 g, 67%). IR (KBr): ν = 1703, 1672, 1620 cm−1 (s); 

MS (DEI-(+), 70 eV): m/z (%): 442 (64) [FeL1+], 68 (100) [HIm+]. elemental analysis calcd 

(%) for C26H30N6O6Fe: C 53.99, H 5.23, N 14.53; found: C 53.97, H 5.03, N 14.45. 

[FeL1([D4]-imidazole)2] (1
HT

D): The synthesis was carried out in a similar manner as 

described above. A mixture of [FeL1(MeOH)2] (0.13 g, 0.26 mmol) and [D4]-imidazole (0.93 

g, 12.8 mmol) was dissolved in [D1]-methanol (6.1 mL) and refluxed for 5 min. After cooling, 

the fine crystalline black precipitate was immediately filtered off to give 1HT
D (yield: 0.06 g, 
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38%). IR (KBr): ν = 1688(s), 1671(m), 1563 cm−1 (vs); MS (DEI(+), 70 eV): m/z (%): 442 

(80) [FeL1+], 72 (100) [C3D4N2
+]; elemental analysis calcd (%) for C26H22D8FeN6O6: C 

53.25, N 14.33; found: C 53.14, N 14.16. 

[FeL1([D4]-imidazole)2] (1
LT

D): The mother liquor from the synthesis of 1
HT

D was kept 

refrigerated at 4 °C. After two days 1
LT

D precipitated as fine black needles, which were 

filtered off and dried in vacuo (yield: 0.02 g, 13%). Unit cell (T = 200 K): orthorhombic P, a 

= 8.88, b = 11.76, c = 24.78, V = 2587.6; IR (KBr): ν = 1688(w), 1671(s), 1562 cm−1 (vs); MS 

(DEI-(+), 70 eV): m/z (%): 442 (49) [FeL1+], 72 (100) [C3D4N2
+]; elemental analysis calcd 

(%) for C26H22D8FeN6O6: C 53.25, N 14.33; found: C 52.97, N 15.34. 

4,4′-Azopyridine (azpy): 4,4′-Azopyridine was prepared by the oxidative coupling of 4-

aminopyridine and hypochlorite, using an adaptation of Launay et al.
[45] A cold solution of 4-

aminopyridine (5.05 g, 53.7 mmol) in water (100 mL) was added dropwise to a 6.5% NaOCl 

solution (300 mL). The mixture was stirred at 5 °C, during which time an orange precipitate 

formed. After completion of the addition the reaction mixture was stirred for another 15 min. 

The precipitate was filtered off and washed with cold water. The aqueous phase was extracted 

three times with diethyl ether. The combined organic phases were dried using MgSO4 and the 

solvent evaporated. The crude products were recrystallised in water yielding 4,4′-azopyridine 

as orange needles (yield: 1.70 g, 34%). 1H NMR (270 MHz, CDCl3, 25 °C, TMS) δ = 8.9 (m, 

4H, Ar-H), 7.7 ppm (m, 4H, Ar-H); MS (DEI-(+), 70 eV): m/z (%): 184 (55) [M +], 78 (100) 

[C5H4N
+]; elemental analysis calcd (%) for C10H8N4: C 65.21, H 4.38, N 30.42; found: C 

64.67, H 4.20, N 30.18. 

[FeL2(azpy)]�MeOH (2�MeOH): 2�MeOH was synthesised by a slow diffusion technique by 

using a Schlenk tube that is, to a certain height, separated into two chambers. Into one 

chamber [FeL2(MeOH)2] (0.09 g, 0.16 mmol) was placed and into the other chamber 4,4′-

azopyridine (0.03 g, 0.17 mmol) was placed. Methanol was carefully added to the point to 

allow slow diffusion at one point of contact. Within a couple of days, 2�MeOH was obtained 

as black crystals, which were of sufficient quality for X-ray analysis. After removing the 

solvent the product was dried in vacuo and kept refrigerated at 4 °C (yield: approximately 

0.10 g, 85%). IR (KBr): ν = 1627(s), 1554 cm−1 (vs); MS (DEI-(+), 70 eV): m/z (%): 506 (24) 

[FeL2+], 184 (73) [azpy+], 78 (100) [C5H4N
+]; DTG: up to 150 °C: −2.12% = loss of 1 

methanol (calc.: 4.4%; presumably part of the methanol was lost during the storage of the 
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sample); elemental analysis calcd (%) for C39H34FeN6O5: C 64.83, H 4.74, N 11.63; found: C 

65.03, H 4.70, N 11.81. 

[FeL2(azpy)]�CD3OD (2�CD3OD): 2�CD3OD was synthesised by slow diffusion just as 

2�MeOH. [FeL2(MeOH)2] (0.09 g, 0.16 mmol) and 4,4′-azopyridine (0.03 g, 0.17 mmol) 

were dissolved in [D4]-methanol. Within a couple of days, 2�CD3OD was obtained in form of 

black crystals, which were of sufficient quality for X-ray analysis. After removing the solvent 

the product was dried in vacuo and kept refrigerated at 4 °C (yield: approximately 0.10 g, 

85%). IR (KBr): ν = 1627(s), 1555 cm−1 (vs); MS (DEI-(+), 70 eV): m/z (%): 506 (10) 

[FeL2+], 184 (59) [azpy+], 78 (100) [C5H4N
+]; DTG: up to 150 °C: −3.7% = loss of 1 [D4]-

methanol (calc.: 4.9%); elemental analysis calcd (%) for C39H30D4FeN6O5: C 64.47, N 11.57; 

found: C 64.52, N 11.73. 

[FeL2(azpy)](2): [FeL2(MeOH)2] (0.12 g, 0.21 mmol) and 4,4′-azopyridine (0.31 g, 

1.66 mmol) were dissolved in methanol (15 mL) and refluxed for 1 h. The product 

precipitated from the boiling solution as black powder. After cooling to room temperature 2 

was filtered off, washed with methanol (5 mL) and dried in vacuo (0.09 g, 61%). IR (KBr): ν  

= 1627(m), 1556 cm−1 (vs); MS (DEI-(+), 70 eV): m/z (%): 506 (9) [FeL2+], 184 (43) [azpy+], 

78 (100) [C5H4N
+]; elemental analysis calcd (%) for C38H30FeN6O4: C 66.10, H 4.38, N 

12.17; found: C 65.34, H 4.73, N 12.12. 
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10.7 Supporting Information 

Table S1.1. Crystallographic data of compound 1LT
 and 1

HT
D. For comparison purpose, the data of 1HT [9] are 

given as well. 

compound 1
HT [9], [a] 1

HT
D 1

LT
 

formula C26H30FeN6O6 C26H24D6FeN6O6 C26H30FeN6O6 
Mr / g mol−1 578.41 584.45 578.41 
crystal system monoclinic monoclinic orthorhombic 
space group P21/c P21/c P212121 
a / Å 11.6280(12) 11.653(3) 8.8957(8) 
b / Å 9.3700(8) 9.375(3) 11.743(2) 
c / Å 27.245(2) 27.306(5) 24.832(9) 

α / ° 90.00 90.00 90.00 

β / ° 112.037(4) 112.136(15) 90.00 

γ  / ° 90.00 90.00 90.00 

V / Å3 2751.6(4) 2763.2(12) 2594.0(11) 
Z 4 4 4 
ρ / g cm−3 1.396 1.405 1.481 
µ  / mm−1 0.599 0.596 0.635 
crystal size 0.14 × 0.03 × 0.03 0.13 × 0.13 × 0.06 0.47 × 0.14 × 0.08 
T / K 275(2) 275(2) 200(2) 
diffractometer KappaCCD Oxford XCalibur Oxford XCalibur 

λ (MoKα) / Å 0.71073 0.71073 0.71073 

θ-range / ° 3.18–26.00 3.75–23.54 3.78–24.99 
reflns. collected 5295 30838 11093 
indep. reflns. (Rint) 3878 (0.0445) 4102 (0.0920) 4542 (0.0538) 
mean σ (I) / I 0.1100 0.1038 0.1061 
reflns. with I ≥ 2σ (I) 2537 2391 3174 
x, y (weighting scheme) 0.0444, 0 0.0241, 0 0.0211, 0 
parameters 356 356 356 
restraints 0 0 0 
R (F) (all data)[b] 0.0555 (0.0946) 0.0400 (0.0921) 0.0367 (0.0600) 
wR (F2)[c] 0.1470 0.0646 0.0632 
GooF 1.012 0.848 0.925 
shift/errormax 0.000 0.000 0.003 
max., min. resd. dens. / e Å−3 0.335, −0.435 0.319, −0.249 0.401, −0.348 

[a] For a better comparison of the different structures the data of the previously published complex 1HT (ref. [9]) were 
translated from P21/n to P21/c. [b] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [c] wR(F2) = [∑[w(Fo

2 − Fc
2)2]/∑w(Fo

2)2]½, w = 1/[σ2(Fo
2) + 

(aP)2 + bP], where P = [Fo
2 + 2(Fc

2)]/3.  
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Table S1.2. Crystallographic data of compound 2�MeOH and 2�CD3OD. 

compound 2�MeOH 2�CD3OD 

formula C39H34FeN6O5 C39H30D4FeN6O5 
Mr / g mol−1 722.57 726.60 
crystal system triclinic triclinic 

space group 1P  1P  
a / Å 11.747(7) 11.7410(6) 
b / Å 12.103(6) 12.1271(7) 
c / Å 13.852(9) 13.8360(8) 

α / ° 114.173(6) 114.181(3) 

β / ° 101.169(5) 101.169(3) 

γ  / ° 92.309(4) 92.240(4) 

V / Å3 1746.9(18) 1747.63(17) 
Z 2 2 
ρ / g cm−3 1.374 1.381 
µ  / mm−1 0.485 0.485 
crystal size 0.39 × 0.21 × 0.12 0.38 × 0.20 × 0.14 
T / K 200(2) 173(2) 
diffractometer Oxford XCalibur KappaCCD 

λ (MoKα) / Å 0.71073 0.71073 

θ-range / ° 4.13–28.82 3.25–25.30 
reflns. collected 20384 10482 
indep. reflns. (Rint) 20384 6269 (0.0379) 
mean σ (I) / I 0.1186 0.0580 
reflns. with I ≥ 2σ (I) 11225 4868 
x, y (weighting scheme) 0.0694, 0 0.0563, 7.5825 
parameters 465 463 
restraints 0 0 
R (F) (all data)[a] 0.0652 (0.1287) 0.0785 (0.1014) 
wR (F2)[b] 0.1540 0.2201 
GooF 0.924 1.173 
shift/errormax 0.000 0.000 
max., min. resd. dens. / e Å−3 0.740, −0.508 0.804, −0.533 

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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11.1 Introduction 

The spin crossover (SCO) phenomenon has been receiving an ongoing interest over 

decades,[1] as various applications in information technology[2] or as sensors[3] and cool 

channel control units in food and medical storage[4] can be envisioned. Especially octahedral 

iron(II) complexes, which exhibit magnetic and physical changes detectable over the 

transition between high-spin (HS: S = 2) and low-spin (LS: S = 0) and coordinative-bridged 

networks with the objective to enhance communication between the SCO sites[2,5] and to 

control the cooperative interactions,[6,7] have been part of distinctive investigations. Although 

there is no doubt that the SCO effect is propagated in the solid state by strong cooperative 

interactions transmitted through hydrogen bonding, π-stacking or van der Waals-interactions 

from one molecule to another,[1,7] many open questions still exist. The occurrence of thermal 

hysteresis loops and its width in SCO materials as well as the reason for stepped or 

incomplete spin transitions are not yet fully understood. Looking at 1D coordination 

polymers, we have recently found that the spin crossover behaviour is related to the rigidity of 

the linker molecule and the intermolecular interactions in such a way, that rigid linkers 

together with strong cooperativity transmitting interactions more often lead to thermal 

hysteresis. This was demonstrated for 4,4′-bipyridine linked SCO complexes[8] and similar 

observations were made for triply 1,2,4-triazole bridged iron(II) complexes.[9] In contrast to 
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this, flexible linkers with pronounced zigzag chain structures result more likely in stepped or 

incomplete SCO, depending on intermolecular restraining interactions.[10,11] Moreover, 

stepped spin transitions in 1D chains are often associated with at least two nonequivalent iron 

centres, as presented from Neville, Murray and co-workers[12] or random order-disorder 

effects of the HS/LS species.[13] 

One reason for the lack of knowledge concerning spin transition behaviour is still the 

deficiency of detailed structural information upon spin transition within one system, in order 

to get a deeper insight into the structural changes following the spin state change.  

In this paper the synthesis and characterisation of several 1D chain iron(II) compounds 

(Scheme 1) with the flexible bridging ligand bis(4-pyridylmethyl)sulfane (bpms) is presented. 

A complete overview is given in Table 1. The tetradentate Schiff base-like equatorial ligands 

used in this work are partly well established for the syntheses of a multitude of SCO materials 

(L1, L2)[8,10,14] or promising new derivatives (L3, L4)[11,15] of them. Through detailed 

magnetic (thermal), structural (insofar as possible) and thermodynamic (DSC) analyses of 

these compounds and comparisons with closely related materials, a relationship between 

differing intermolecular interactions and the resulting SCO behaviours is drawn. 

 

 

 

Scheme 1. General synthesis of the 1D octahedral iron(II) coordination polymers discussed in this work and the 
used abbreviations. 
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Table 1. Overview of the Compounds discussed in this work and the used abbreviations. 

Leq/solvent EtOH MeOH 

L1 [FeL1(bpms)] (1a) [FeL1(bpms)] (1b) 

L2 [FeL2(bpms)]·EtOH  

(2a·EtOH) 

[FeL2(bpms)]·MeOH  

(2b·MeOH) 

L3 [FeL3(bpms)] (3a) [FeL3(bpms)]·0.5 MeOH  

(3b·0.5 MeOH) 

L4 [FeL4(bpms)] (4a) [FeL4(bpms)] (4b) 

 

11.2 Results 

Magnetic measurements: Magnetic susceptibility measurements in a temperature range from 

300/350 K to 50 K were used to follow the iron(II) spin state change of all samples. The 

thermal dependence of the χMT product (with χM being the molar susceptibility and T the 

temperature) for all complexes is given in Figure 1. Comparing the transition curves of the 

compounds synthesised with ethanol as solvent, 1a and 3a show a complete and abrupt SCO, 

4a shows a complete but gradual spin transition behaviour and the SCO of 2a·EtOH is 

incomplete, with about three quarters remaining in the HS state. For 1a, 3a and 4a, small 

plateaus with HS fraction γHS ≈ 0.1 can be observed. The transition curves of the compounds 

using methanol as solvent are quite different from the ethanol samples, with exception of 

sample 4b, which shows the identically transition behaviour as 4a. Compound 1b shows an 

incomplete gradual SCO, 2b·MeOH is a pure HS complex and the SCO of 3b�0.5 MeOH is 

complete but also gradual. Thermal hysteresis was not observed for all samples. 
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Figure 1. Plots of the χMT product vs. T over the range 50–300 K (350 K) for the compounds discussed in this 
work and the solvent used for synthesis (filled squares: ethanol, open squares: methanol).   

Compound 1a and 1b attain maximum χMT values of 3.24 and 3.08 cm3 K mol−1 at 300 K and 

350 K, respectively, indicative of HS iron(II). Between 300 and 200 K, the χMT values of 1a 

remain approximately constant. Between 200 and 160 K, the χMT values decrease, rapidly 

then more gradually, to attain a minimum value of 0.22 cm3 K mol−1 (γHS = 0.07). The T½(1) 

value of this step is 175 K. Below 160 K, the χMT values further decrease to attain a minimum 

value of 0.04 cm3 K mol−1 at 120 K, indicative of iron(II) in the LS state. The T½(2) value of 

this little step is 157.5 K. Below 120 K, the χMT values remain approximately constant. The 

χMT values of 1b gradually decrease between 325 and 65 K to attain a minimum value of 

1.02 cm3 K mol−1 at 65 K, indicating that one third of the iron(II) sites are still HS. The T½ 

value of this SCO is 195 K.  

The χMT values for 2a·EtOH remain approximately constant at 3.20 cm3 K mol−1 between 300 

and 135 K, indicative of HS iron(II). Below 135 K, the χMT values gradually decrease to 

attain a minimum value of 2.40 cm3 K mol−1 at 60 K, indicating that approximately two thirds 
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of the iron(II) centres remain HS. The T½ value is 89 K. 2b·MeOH remains HS in the whole 

temperature range, with a χMT value of 3.30 cm3 K mol−1 at 300 K.  

The χMT values for 3a remain approximately constant at 3.30 cm3 K mol−1 above 250 K, 

indicative of iron(II) in the HS state. Over the range 250 to 210 K, the χMT values decrease, 

first rapidly then gradually, to attain a minimum of 0.43 cm3 K mol−1 at 210 K (γHS = 0.13). 

The T½(1) value of this step is 247 K. Below 210 K, the χMT values decrease, again first 

rapidly the gradually, to attain a minimum value of 0.08 cm3 K mol−1 at 175 K. The T½(2) 

value of this little step is 205.5 K. Below 175 K, the χMT values remain approximately 

constant. The χMT values for 3b�0.5 MeOH gradually decrease from a maximum of 

3.27 cm3 K mol−1 at 300 K to a minimum of 0.10 cm3 K mol−1 at 50 K. The T½ value of this 

SCO is 216 K.  

Compound 4a attains a maximum χMT value of 3.34 cm3 K mol−1 at 300 K. Below 300 K, the 

χMT values decrease slowly then, between 230 and 133 K, more rapidly then again gradually 

to a minimum value of 0.35 cm3 K mol−1 at 133 K (γHS = 0.11). The T½(1) value of this step is 

179 K. Below 133 K, the χMT values decrease, first rapidly then gradually to attain a 

minimum of 0.06 cm3 K mol−1 at 95 K. The T½(2) value of this little step is 125.5 K. Below 

135 K, the χMT values remain approximately constant. The thermal spin transition behaviour 

of compound 4b does not differ of that observed for 4a. 

 

X-Ray structures analysis: Crystals suitable for X-ray analysis of compound 1a and 4b were 

obtained by slow diffusion technique. The crystallographic data are summarised in Supporting 

Information Table S1. Figure 2 and Figure 3 display the asymmetric units of 1a and 4b, 

respectively. Selected bond lengths and angles around the inner coordination sphere of the 

iron centres are summarised in Table 2 and Table 3. The determination of the X-ray structure 

of 1a in the LS state was not possible, as the crystals crumble while cooling. For compound 

4b it was possible to determine the crystal structure in the HS (4b
HS) and LS state (4b

LS).   

Both complexes have in common that the iron(II) centres are located in an octahedral 

coordination sphere consisting of the equatorially coordinated tetradentate Schiff base-like 

ligand and the axially coordinated bis(monodentate) bridging ligand bpms, bound through 

terminal 4-pyridyl groups. Each bridging ligand “connects” two iron(II) centres, resulting in 

the formation of infinite 1D chains as given in Figure 4. Due to the “flexibility” of the axial 
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ligand with its sulfane bridge, the 1D chains of both compounds propagate in a zigzag-like 

manner.  

Compound 1a crystallises in the monoclinic space group P21/c, with four formula units in the 

unit cell. The observed bond lengths around the iron(II) centre of 1a are within the range 

reported for other octahedral iron(II) complexes of this ligand type in the HS state.[7,16] The 

average values are 2.08 Å (Fe-Neq), 2.01 Å (Fe-Oeq) and 2.27 Å (Fe-Nax). The observed O-Fe-

O angle, the so-called bite angle of the ligand, which is typically about 110° for HS iron(II) 

complexes of this ligand type and about 90° for LS iron(II), is with 107.3° clearly indicative 

of iron(II) in the HS state. Because of the considerably difference according to the spin state, 

the bite angle is a characteristic tool for the determination of the spin state. 

The parallel 1D chains of 1a propagate along the [2 0 1] direction and are stacked such that 

the unit cell contains no residual solvent accessible void volume. The intrachain Fe1� � �Fe1 

separation distance is with 10.02 Å relative short. This highlights the strong twisting of the 

axially bpms ligand (Figure 4) and the close-packed nature of the chains of 1a (Figure 6). Such 

a packing-motif was also found in the crystal structure of the closely related compound 

[FeL1(bppa)][10] (bppa = 1,3-bis(4-pyridyl)propane, Fe1� � �Fe1 = 10.01 Å), which undergoes 

an incomplete SCO that stops at an intermediate plateau of 50% HS-fraction. It could be 

deduced that such mixed HS/LS states are stabilised through restraining intermolecular 

interactions between the 1D chains, resulting from pronounced zigzag-motifs as well as a 

dense packing (strong network of intermolecular contacts shorter than the sum of the van der 

Waals-radii).[7a,10] For the 1D coordination polymer [FeL2(bipy)][8a] (bipy = 4,4′-bipyridine) 

with its linear chains due to the stiff bridging ligand bipy, an intrachain Fe1� � �Fe1 separation 

distance of 11.50 Å was observed. 
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Figure 2. ORTEP drawing of the asymmetric unit of 1a. Hydrogen atoms were omitted for clarity. Thermal 
ellipsoids are shown with a 50% probability. 

Table 2. Selected bond lengths [Å] and angles [degree] within the inner coordination sphere of the iron(II) 
coordination polymer 1a.  

 Fe-Neq Fe-Oeq Fe-Nax Oeq-Fe-Oeq Nax-Fe-Nax 

1a 2.083(2) 

2.083(2) 

1.994(2) 

2.016(2) 

2.242(3) 

2.296(3)[a] 

107.33(8) 179.19(9)[a] 

Symmetry code: [a] 1 + x, ½ − y, ½ + z.
 

Compound 4b
HS and 4b

LS crystallise with orthorhombic space group Pbca, with eight formula 

units in the unit cell. The average bond lengths within the first coordination sphere of the 

iron(II)centres in the HS-structure are 2.08 Å (Fe-Neq), 2.00 Å (Fe-Oeq) and 2.23 Å (Fe-Nax). 

The observed O-Fe-O angle is with 105.2° at the lower limit of the expected HS-values of this 

ligand type,[7,16] indicative of a beginning spin transition at slightly lower temperatures. Upon 

spin transition, a shortening of the bond lengths of about 10% is observed, as discussed for 

other iron(II) spin crossover complexes in literature.[1] The average bond lengths in the LS-

structure are with 1.92 Å (Fe-Neq), 1.95 Å (Fe-Oeq) and 2.01 Å (Fe-Nax) in the typical range. 

The more pronounced bond-shortening of the axial ligand, which connects the iron centres in 

the 1D chain, is in agreement with previous findings on mononuclear analogues.[16] The 
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observed value of the O-Fe-O angle is with 90.6° clearly indicative of LS iron(II). Together 

with the bond-shortening, the cell volume shrinks from 8055.4(6) to 7675.7(6) Å3, comparing 

the HS- with the LS-structure. Considering the additional contribution of the thermal cell 

contraction, the observed change of the cell volume (�V/V = 4.7%, �V = 47.5 Å3/Fe) is in the 

range expected for an iron(II) SCO complex (sole contribution of the SCO: �V/V = 3.8–6%; 

�V = 25–35 Å3/Fe)[1] with no indications of strong cooperative effects. 

 

 

 

Figure 3. ORTEP drawing of the asymmetric unit of 4b
HS

 at 250 K (left) and 4b
LS at 125 K (right). Hydrogen 

atoms were omitted for clarity. Thermal ellipsoids are shown with a 50% probability. 

Table 3. Selected bond lengths [Å] and angles [degree] within the inner coordination sphere of the iron(II) 
coordination polymers 4b

HS and 4b
LS.  

 Fe-Neq Fe-Oeq Fe-Nax Oeq-Fe-Oeq Nax-Fe-Nax 

4b
HS 2.082(2) 

2.076(2) 

1.997(1) 

2.007(1) 

2.230(2) 

2.236(2)[b] 

105.16(5) 177.65(6)[b] 

4b
LS 1.917(2) 

1.913(2) 

1.942(1) 

1.954(1) 

2.012(2) 

2.023(1)[b] 

90.56(5) 176.81(6)[b] 

Symmetry code: [b] x, ½ − y, −½ + z.
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The parallel 1D chains of 4b
HS and 4b

LS propagate along the [0 0 1] direction. They are 

stacked such that there is a total potential solvent accessible void volume of 621.6 and 

466.5 Å3, respectively, which is hypothetically enough space for small molecules like toluene. 

As can be seen from the molecule packing in Figure 5, the porosity results from the 

arrangement of the chains such that the iron centres together with the equatorial ligands and 

the axial ligands alternately form layers perpendicular to the [0 0 1] direction. In contrast to 

1a, the axial bridging ligand is not twisted. In line with this finding are the observed intra-

chain Fe1� � �Fe1 separation distances of 12.89 and 12.69 Å for 4b
HS and 4b

LS, respectively, 

which attests to a straight-lined structure of the axial ligand. 

 

 

Figure 4. Top: excerpt of the 1D chain of compound 1a in the crystal. Zigzag motif due to twisted bridging 
ligand. Bottom: excerpt of the zigzag 1D chain of compound 4b in the crystal (shown at the example of 4b

LS). 
Hydrogen atoms were omitted for clarity. 
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Intermolecular interactions: The investigation of intermolecular interactions is of great 

significance for an understanding of the magnetic properties. In Table 4 and Table 5 short 

intermolecular contacts of the complexes discussed in this work are summarised. In Figure 5 

and Figure 6 excerpt of the molecule packing of the complexes are shown.  

Due to the close packing of 1a, numerous short interchain contacts in form of non-classical 

hydrogen bonds can be found (Figure 5). The strongest interactions can be observed between 

the hydrogen atoms H26 and H32, belonging to the same axial ligand and the carbonyl 

oxygen atoms O5 and O3, located at different equatorial ligands of adjacent chains, overall 

building up a 3D network of short contacts. Moreover the sulphur atom acts as acceptor of 

hydrogen atom H13B of the methyl group of the equatorial ligand. 

In comparison to 1a, the HS-structure of compound [FeL1(bppa)][10] provides a higher 

number of intermolecular interactions. A structure analysis at the intermediate plateau 

revealed that the relocation of the bridging ligands towards the smaller LS iron(II) centre, 

which is in general involved by a HS-LS transition,[7a,17] could not follow the Fe-L bond 

decrease. Quite the contrary, every second Fe� � �Fe distance along a chain was even increased. 

Unfortunately a more profound discussion concerning the different spin transition behaviour 

of both samples is not possible, as the LS-structure of 1a is not available.  

 

 

 

Figure 5. Molecule packing of compound 1a in the crystal view along [1 0 0]. Intermolecular interactions less 
than the sum of the van der Waals Radii are depicted in dashed bonds. Hydrogen atoms which do not participate 
in short contacts have been omitted for clarity. 
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Table 4.  Analysis of short intermolecular contacts [Å] less than the sum of the van der Waals Radii, 
d(I· · ·J) < R(I) + R(J), of 1a.  

I J d(I· · ·J) R(I) + R(J) � 

H26 O5[a] 2.45 2.72 −0.27 

H32 O3[b] 2.54 2.72 −0.18 

H20C C14[a] 2.76 2.90 −0.14 

H13B S1[c] 2.94 3.00 −0.06 

H7 C25[a] 2.86 2.90 −0.04 

H14A H20[a] 2.37 2.40 −0.03 

Symmetry codes: [a] x, ½ − y, ½ + z; [b] 2 − x, −y, 1 − z; [c] 2 − x, ½ + y, ½ − z. 

The interchain contacts of 4b
HS are less numerous compared to 1a and overall only a 2D 

network of interactions can be observed, which is spread through the layers build up of 

equatorial ligands. This is probably the reason for the more gradual SCO of compound 4b. 

Two non-classical hydrogen bonds, involving the iron-coordinating oxygen atoms O1 and O2 

of the equatorial ligand and the hydrogen atoms H37A and H37B of a secondary CH2 group 

located at the axial ligand of an adjacent chain, can be seen as structure-bearing, as they 

obviously define the straight-lined arrangement of the chains (Figure 6). Moreover, carbonyl 

oxygen O5 acts as acceptor for hydrogen H40 belonging to a CH group of a pyridyl ring. 

When going from 4b
HS

 to the LS-structure 4b
LS, the number of short intermolecular contacts 

increases, as expected, but the additionally found contacts, besides the interactions already 

characterised at 4b
HS, only facilitate the 2D network mentioned above.  

The closely related compound [FeL4(bppa)]�0.5 MeOH[11] we recently investigated, provides 

a very similarly structure motif: this compound undergoes an incomplete spin transition that 

rests at an intermediate plateau at 50% HS-fraction and shows a 5 K wide thermal hysteresis 

loop. Other than 4b, a 3D network of intermolecular contacts could be observed already for 

the HS-structure of [FeL4(bppa)]�0.5 MeOH,[11] which increases the total communication of 

elastic interactions. Of course the half-occupied methanol molecule plays an important role 

considering this. The stabilisation of the mixed HS/LS state through the whole low-

temperature range was mainly explained by π-stacking of the 1,2-disubstituted benzene-rings 

of the equatorial ligand of two adjacent chains and the upcoming restraining interaction for 
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the ligand relocation. This effect is significantly weaker for 4b
HS than for the HS-structure of 

[FeL4(bppa)]�0.5 MeOH (C� � �C = 3.55 relative to 3.43 Å). 

 

 

 

Figure 6: Left: illustration of structure-bearing interchain contacts of 4b
HS. Right: molecule packing of 

compound 4b
LS in the crystal at 125 K, view along [0 1 0]. Intermolecular interactions less than the sum of the 

van der Waals Radii (dashed bonds) can be only observed within layers formed by equatorial ligands. Hydrogen 
atoms which do not participate in short contacts have been omitted for clarity. Porous structure created by 
straight-lined arrangement of the 1D chains. 
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Table 5. Analysis of short intermolecular contacts [Å] less than the sum of the van der Waals Radii, 
d(I· · ·J) < R(I) + R(J), of 4b

HS and 4b
LS.  

 I J d(I· · ·J) R(I) + R(J) � 

H37B O1[a] 2.58 2.72 −0.14 

H37A O2[a] 2.60 2.72 −0.12 

4b
HS 

H40 O5[b] 2.60 2.72 −0.12 

4b
LS

 H40 O5[b] 2.51 2.72 −0.21 

 H37A O2[a] 2.55 2.72 −0.17 

 H37B O1[a] 2.56 2.72 −0.16 

 H37A C26[a] 2.80 2.90 −0.10 
 H41 O3[d] 2.63 2.72 −0.09 
 H36A C20[a] 2.84 2.90 −0.06 
 H37B C19[a] 2.85 2.90 −0.05 
 H17A C8[e] 2.85 2.90 −0.05 
 H23 O3[f] 2.67 2.72 −0.05 
 H21 C27[b] 2.87 2.90 −0.03 

Symmetry codes: [a] −x, −½ + y, ½ − z; [b] −½ + x, y, ½ − z; [c] ½ + x, ½ − y, −z; [d] ½ + x, y, ½ − z; [e] ½ + x, 

½ − y, −z; [f] −½ − x, ½ + y, z. 

Crystal contact index: We recently established a correlation between the cooperative effects 

of some monomeric, dimeric and 1D polymeric coordination SCO compounds and their 

structural properties derived from X-ray structure analysis, the so-called crystal contact index 

(CCI).[11] Up to small hysteresis loops this correlation is in agreement with the model of 

elastic interactions mediating the structural rearrangements during the cooperative spin 

transition in the solid phase. It provides a good estimation to accompany the structural 

interpretation of spin transition properties. The CCI of compound 1a is with 0.31 relatively 

small, indicating that low cooperativity can be expected what is in line with results of the 

magnetic measurement, as thermal hysteresis was not observed. For compound 4b
HS the CCI 

value is with 0.14 even lower, which is in line with the presumption that the 2D network of 

intermolecular contacts is responsible for the more gradual SCO behaviour in contrast to 

abrupt spin transition of compound 1a. Upon cooling the CCI value increases to 0.36 (4b
LS), 

indicating that the number of short contacts has increased. In comparison with the observed 
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CCI of 2.0 for compound [FeL4(bppa)]�0.5 MeOH[11], the difference seems enormous, but 

one has to keep in mind that the half-occupied methanol molecule participates in numerous 

strong interactions. A modulation of the CCI, which not considers interactions of the solvent 

molecule, resulted in a value of 0.5, which is not this long way off and highlights how huge 

the influence of solvent molecules can be. 

11.3 Conclusion 

The combination of four different tetradentate equatorial ligands LX (with X = 1–4), bpms as 

bridging ligand and methanol or ethanol as solvent led to a series of 1D chain iron(II) 

compounds of the general formula [FeLX(bpms)]�solvent, whose synthesis and 

characterisation is described in this paper. The magnetic measurements exhibit complete spin 

transitions and unusual intermediate plateaus at γHS
 
≈ 0.1 for compounds 1a, 3a and 4a/4b. 

One the one side, the results from crystal structure analysis of 1a and 4b
HS/4b

LS are consistent 

with the outcomes of magnetic measurements, as the interchain contacts of 4b
HS are less 

numerous relative to 1a and thus the ST of 1a is steeper. This is reflected by the lower CCI 

value of 4b
HS (0.14 relative to 0.31), which indicates weaker cooperative effects within the 

crystal. On the other side, X-ray analysis reveals pronounced zigzag structures for the chains 

of both compounds, however, the recently developed concept that zigzag structures in 

combination with several interchain contacts result in stepwise spins transitions,[10] cannot be 

given as an explanation for the unusual stepped ST without a doubt. So far, this phenomenon 

was only observed in combination with the bpms ligand and thus some ligand-specific effects 

are very likely. To clarify this, further examples and investigations are necessary.  



11. Unusual Stepped Spin Transitions at Iron(II) Coordination Polymers with zigzag-

Structure 

 

 

 

  
 235 
  

11.4 Experimental Section 

Magnetic measurements: Magnetic susceptibility data were collected by using a Quantum 

Design MPMSR-2 SQUID magnetometer under an applied field of 0.5 T over the temperature 

range 50–300 K and 50–350 K for 1b. The samples were placed in gelatine capsules held 

within a plastic straw. The data were corrected for the diamagnetic magnetisation of the 

ligands by using tabulated Pascal’s constants, and of the sample holder. 

X-Ray crystallography: The intensity data of 1a and 4b were collected on an Oxford 

XCalibur diffractometer by using graphite-monochromated MoKα radiation. The data were 

corrected for Lorentz and polarisation effects. The structure was solved by direct methods 

(SIR-97)[18] and refined by full-matrix least-square techniques against F0
2 (SHELXL-97[19]). 

The hydrogen atoms were included at calculated positions with fixed displacement 

parameters. ORTEP-III was used for structure representation,[20] SCHAKAL-99 to illustrate 

molecule packings.[21] The crystallographic data are summarised in Supporting Information 

Table S1. 

Synthesis: All syntheses were carried out under argon by using Schlenk tube techniques. All 

solvents were purified as described in literature and distilled under argon.[22] The syntheses of 

the methanol containing complexes [FeLX(MeOH)2] (with X = 1,[23] 2,[23] 3,[15b] 4,[24] 

Scheme 1) and anhydrous iron(II) acetate[25] as starting material are described in literature. 4-

(Chloromethyl)pyridine hydrochloride was purchased from Fluka and sodium sulfide hydrate 

(65%) was purchased from Acros Organics. Both were used as received. 

Bis(4-pyridylmethyl)sulfane (bpms): To a solution of 4-(chloromethyl)pyridine hydro-

chloride (4.00 g, 24.4 mmol) and sodium hydroxide (0.98 g, 24.4 mmol) in water (45 mL) 

was slowly added a solution of sodium sulfide hydrate (1.46 g, 12.2 mmol) in water (30 mL). 

The resulting dark red mixture was heated to 80 °C for 2 h and then stirred at room 

temperature for 24 h. Afterwards the reaction mixture was extracted several times with diethyl 

ether and the combined organic phases were dried over MgSO4. Removal of solvent left the 

product as a red oily residue which was solidified at −26 °C (yield: 1.61 g, 61%). 1H NMR 

(400 MHz, CDCl3, 25 °C, TMS): δ = 8.57–8.60 (m, 4H, Ar-NCH), 7.28–7.31 (m, 4H, Ar-

CH), 3.59 ppm (s, 4H; CH2); MS (DEI-(+), 70 eV): m/z (%): 216 (84) [M +], 124 (45) 
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[C6H6NS+], 93 (100) [C6H6N
+], 65 (31) [C5H5

+]; elemental analysis calcd (%) for C12H12N2S 

(216.30): C 66.63, H 5.59, N 12.95; found: C 66.72, H 5.81, N 13.05.  

[FeL1(bpms)] (1a): A solution of [FeL1(MeOH)2] (0.43 g, 0.85 mmol) and bpms (0.92 g, 

4.25 mmol) in ethanol (50 mL) was heated to reflux for 4 h. After cooling to room 

temperature, black crystals of 1a formed within 24 h which were filtered off, washed with 

ethanol (2 × 5 mL) and dried in vacuo (yield 0.42 g, 75%). IR (KBr): ν�� = 1676(vs) (COO), 

1564(vs) cm−1 (CO); MS (DEI-(+), 70 eV): m/z (%): 443 (32) [FeL1+ + H], 442 (100) 

[FeL1+], 397 (28), 354 (30), 309 (28), 216 (15) [bpms+]; MS (ESI): m/z (%): 874 (9) [M+ + 

bpms], 658 (23) [M +], 442 (15) [FeL1+], 217 (100) [bpms+ + H]; elemental analysis calcd (%) 

for C32H34FeN4O6S (658.55): C 58.36, H 5.20, N 8.51; found: C 58.35, H 5.25, N 8.50. 

Crystals of 1a were obtained by slow diffusion between a solution of [FeL1(MeOH)2] (0.18 g, 

0.35 mmol) in ethanol (15 mL) and a solution of bpms (0.08 g, 0.39 mmol) in ethanol 

(15 mL). After two weeks 1a was obtained as black crystals.  

[FeL1(bpms)] (1b): A solution of [FeL1(MeOH)2] (0.42 g, 0.83 mmol) and bpms (1.55 g, 

6.94 mmol) in methanol (30 mL) was heated to reflux for 1 h. After cooling to room 

temperature, 1b precipitated as black fine crystalline solid within 24 h, which were filtered 

off, washed with methanol (2 × 5 mL) and dried in vacuo (yield 0.27 g, 49%). Elemental 

analysis calcd (%) for C32H34FeN4O6S (658.55): C 58.36, H 5.20, N 8.51; found: C 58.26, H 

5.29, N 8.50.   

[FeL2(bpms)]·EtOH (2a·EtOH): A solution of [FeL2(MeOH)2] (0.33 g, 0.86 mmol) and 

bpms (0.93 g, 4.32 mmol) in ethanol (50 mL) was heated to reflux for 4 h. After cooling to 

room temperature, black crystals of 2a·EtOH formed within 24 h, which were filtered off, 

washed with ethanol (2 × 5 mL) and dried in vacuo (yield 0.20 g, 36%). IR (KBr): 

ν�� = 1636(vs) (CO), 1559(vs)  cm−1 (CO); MS (DEI-(+), 70 eV): m/z (%): 382 (99) [FeL2+], 

367 (41), 340 (23), 354 (30), 216 (49) [bpms+], 93 (100); MS (ESI): m/z (%):814 (5) [M + + 

bpms], 581 (10) [M +], 382 (40) [FeL2+], 217 (100) [bpms+ + H]; elemental analysis calcd (%) 

for C32H36FeN4O5S (644.56): C 59.63, H 5.63, N 8.69; found: C 59.53, H 5.34, N 8.97. 

[FeL2(bpms)]·MeOH (2b·MeOH): A solution of [FeL2(MeOH)2] (0.28 g, 0.63 mmol) and 

bpms (0.68 g, 3.14 mmol) in methanol (17 mL) was heated to reflux for 1 h. After cooling to 

room temperature, 2b·MeOH precipitated immediately as black powder which was filtered 
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off, washed with methanol (2 × 5 mL) and dried in vacuo (yield 0.21 g, 53%). Elemental 

analysis calcd (%) for C31H34FeN4O5S (630.54): C 60.20, H 5.05, N 9.36; found: C 58.89, H 

5.21, N 8.95. 

[FeL3(bpms)] (3a): A solution of [FeL3(MeOH)2] (0.24 g, 0.50 mmol) and bpms (0.54 g, 

2.51 mmol) in ethanol (30 mL) was heated to reflux for 4 h. After cooling to room 

temperature, a fine crystalline black precipitate of 3a was formed immediately which was 

filtered off, washed with ethanol (2 × 5 mL) and dried in vacuo (yield 0.20 g, 63%). IR (KBr): 

ν�� = 1680(vs) (CO), 1566(vs) cm−1 (CO); MS (DEI-(+), 70 eV): m/z (%): 414 (100) [FeL4+], 

383 (17), 340 (23), 309 (22), 216 (83) [bpms+], 93 (85); elemental analysis calcd (%) for 

C30H30FeN4O6S (630.49): C 57.15, H 4.80, N 8.89; found: C 57.04, H 4.86, N 8.86. 

[FeL3(bpms)]�0.5 MeOH (3b�0.5 MeOH): A solution of [FeL3(MeOH)2] (0.20 g, 

0.61 mmol) and bpms (0.65 g, 3.00 mmol) in methanol (20 mL) was heated to reflux for 1 h. 

After cooling to room temperature, 3b�0.5 MeOH precipitated immediately as black fine 

crystalline solid which was filtered off, washed with methanol (2 × 5 mL) and dried in vacuo 

(yield 0.25 g, 66%). Elemental analysis calcd (%) for C30.5H32FeN4O6.5S (646.52): C 56.66, H 

4.99, N 8.67; found: C 56.13, H 4.81, N 8.71. 

[FeL4(bpms)] (4a): A solution of [FeL4(MeOH)2] (0.19 g, 0.30 mmol) and bpms (0.33 g, 

1.51 mmol) in ethanol (30 mL) was heated to reflux for 4 h. After cooling to room 

temperature, a fine crystalline black precipitate of 4a was formed immediately which was 

filtered off, washed with ethanol (2 × 5 mL) and dried in vacuo (yield 0.18 g, 77%). IR (KBr): 

ν�� = 1678(s) (CO), 1554(s)  cm−1 (CO); MS (DEI-(+), 70 eV): m/z (%): 566 (100) [FeL3+], 521 

(17), 369 (16), 216 (33) [bpms+], 93 (41); elemental analysis calcd (%) for C42H38FeN4O6S 

(782.68): C 64.45, H 4.89, N 7.16; found: C 64.19, H 5.00, N 7.17. 

[FeL4(bpms)] (4b): A solution of [FeL4(MeOH)2] (0.13 g, 0.21 mmol) and bpms (0.24 g, 

1.00 mmol) in methanol (20 mL) was heated to reflux for 1 h. After cooling to room 

temperature, 4b precipitated immediately as black powder which was filtered off, washed 

with methanol (2 × 5 mL) and dried in vacuo (yield 0.15 g, 90%). Elemental analysis calcd 

(%) for C42H38FeN4O6S (782.68): C 64.45, H 4.89, N 7.16; found: C 63.91, H 4.85, N 7.08. 

Crystals of 4b were obtained by slow diffusion between a solution of [FeL4(MeOH)2] (0.07 g, 

0.11 mmol) in methanol (15 mL) and a solution of bpms (0.13 g, 0.60 mmol) in methanol 

(15 mL). After one week 4b was obtained as black crystals.  
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11.6 Supporting Information 

Table S1. Crystallographic data of the iron(II) complexes discussed in this work. 

compound 1a
 4b

HS  4b
LS 

formula C32H34FeN4O6S C42H38FeN4O6S C42H38FeN4O6S 
Mr / g mol−1 658.54 782.67 782.67 
crystal system monoclinic orthorhombic orthorhombic 
space group P21/c Pbca Pbca 
a / Å 12.164(7) 19.2017(5) 18.8103(9) 
b / Å 19.0805(11) 16.2729(8) 16.0825(7) 
c / Å 16.115(7) 25.7799(15) 25.3728(13) 

α / ° 90.00 90 90 

β / ° 125.95(3) 90 90 

γ  / ° 90.00 90 90 

V / Å3 3028(2) 8055.4(6) 7675.7(6) 
Z 4 8 8 
ρ / g cm−3 1.445 1.291 1.355 
µ  / mm−1 0.619 0.477 0.501 
crystal size 0.49 × 0.44 × 0.41 0.30 × 0.26 × 0.23 0.46 × 0.36 × 0.27 
T / K 225(2) 250(2) 125(2) 
diffractometer Oxford XCalibur Oxford XCalibur Oxford XCalibur 

λ (MoKα) / Å 0.71073 0.71073 0.71073 

θ-range / ° 3.78–26.31 4.24–26.27 4.22–26.27 
reflns. collected 57671 32198 21310 
indep. reflns. (Rint) 6157 (0.0604) 8144 (0.0376) 7753 (0.0292) 
mean σ (I) / I 0.0292 0.0625 0.0537 
reflns. with I ≥ 2σ (I) 4539 4323 4851 
x, y (weighting scheme) 0.0492, 2.0115 0.0408, 0 0.0394, 0 
parameters 401 489 489 
restraints 0 0 0 
R (F) (all data)[a] 0.0363 (0.0571) 0.0346 (0.0815) 0.0324 (0.0625) 
wR (F2)[b] 0.1097 0.0815 0.0771 
GooF 1.064 0.823 0.878 
shift/errormax 0.000 0.000 0.001 
max., min. resd. dens. / e Å−3 0.458, −0.435 0.388, −0.255 0.407, −0.341 

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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12.1 Introduction 

The spin crossover (SCO) phenomenon has been receiving an ongoing interest over 

decades,[1] as various applications in information technology[2] or as sensors[3] and cool 

channel control units in food and medical storage[4] can be envisioned. To meet the 

requirements, in the recent past much of the focus of interest in SCO research has directed 

onto the bistability of highly cooperative systems (hysteresis, memory effect), as such 

materials can exist in two different electronic states, depending on the history of the system. 

The ideas of crystal engineering can be easily associated with the aims of spin crossover 

research, as they have a great deal in common concerning fundamental concepts and 

strategies. Desiraju defined crystal engineering as “the understanding of intermolecular 

interactions in the context of crystal packing and in the utilisation of such understanding in 

the design and new solids with desired physical and chemical properties”.[5] The desired 

properties include chemical reactivity as well as optical, magnetic or electronic properties, 

only to mention some examples.[6] All these physical properties are affected upon the spin 

transition as well. The starting point for the investigation of coordination polymers as a 

branch of crystal engineering was set in the late 1980s by studies about interpenetrating 

frameworks at scaffolding-like materials.[7] Nowadays, the two most commonly used 

strategies in crystal engineering are based on coordination complexation and hydrogen 
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bonding.[6] We recently reported of compound [FeL3a(HIm)2] (HIm = imidazole) with its 

70 K wide thermal hysteresis loop due to a 3D hydrogen bond network.[8] It is our aim to 

combine attributes of crystal engineering with the syntheses of our SCO complexes to get 

beyond the classical trial-and-error lead-finding. With a crystal engineering-like approach we 

try to systematically improve the spin transition behaviour of our compounds by the means of 

cooperative effects via the interplay of coordination bonding, hydrogen bonding and network 

design.  

With the example of complex [FeL3b(1-meim)2] (1-meim = 1-methylimidazole),[9] which 

exhibits a 2 K hysteresis loop, we could demonstrate that the transition from monomeric 

ligand systems to dimeric systems leads to an improvement in cooperativity in this case, as 

compound [Fe2L2b(1-meim)4]�1-meim shows a 21 K wide hysteresis loop.[9] The next step, 

the implementation of covalent linker molecules between the metal centres of monomer 

complexes, especially of that kind which lead to 1D coordination polymers, yielded to a 

various amount of compounds exhibiting thermal hysteresis loops up to 30 K, as the 

conditions for intermolecular interactions are improved on this way.[10,11] With introduction of 

the bridging ligand N-(4-pyridyl)isonicotinamide (pina) to 1D systems, which seems to be 

highly suitable for hydrogen bonding due to its peptide bond, we managed to support our 

theory by intensifying the formation of intermolecular interactions: as a result, we obtained 

the 1D chain compound [FeL3b(pina)]�x MeOH that shows up to 90 K wide hysteresis loop 

around room temperature. Further possibilities to create better conditions for hydrogen 

bonding are given through specific variations at the equatorially ligand system: through the 

introduction of two hydroxy groups at the phenyl ring as realised at the ligand system 

H2L1,[12] we obtained a series of new 1D chain compounds of which some exhibit hysteresis. 

The successful transition from mononuclear to dinuclear systems and one-dimensional 

coordination polymers motivated the connection of dinuclear systems with suitable bidentate 

bridging ligands in order to get dimeric coordination polymers and thus further optimise the 

intermolecular interactions. With compound [Fe2L2a(bpee)]�1.5 tol exhibiting a ladder-like 

1D structure and a 34 K wide hysteresis loop we are able to show for the first time that this 

strategy can be expanded this far. 
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Scheme 1. Axial and equatorial ligands used in this work for the syntheses of mono- and dinuclear iron(II) 
coordination polymers. 
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12.2 Results 

Synthesis of the complexes: The axial and equatorial ligands used in this work for the 

syntheses of mono- and dinuclear iron(II) coordination polymers are depicted in Scheme 1. 

All compounds were obtained in a two-pot reaction. In a first step, the mononuclear iron 

complexes [FeL1a/b(MeOH)2] and [FeL3a/b(MeOH)2], respectively, or the dinuclear iron 

complexes [Fe2L2a/b(MeOH)4] were prepared by converting anhydrous iron(II) acetate with 

the corresponding equatorial ligand H2L1a/b, H4L2a/b or H2L3a/b in methanol as solvent. In a 

second step, these “precursors” were converted with the bidentate axial ligand bipy, bpea, 

bpee or pina. Overviews of the synthesised compounds ordered by the particular equatorial 

ligand systems are given in Table 1, 5 and 7.  

For the syntheses using [FeL1a(MeOH)2] as precursor, toluene (tol) was also used as a 

solvent, besides methanol. Compared to related 1D iron(II) compounds, in conjunction with 

the H2L1 ligand quite often complexes that additionally contain uncoordinated molecules of 

the axial ligand were obtained, in line with the results from elemental analysis. The synthesis 

of [FeL1a(bpee)] in methanol as solvent was not successful, as well as syntheses of 

[FeL1a/b(bppa)]. For the complex syntheses using [Fe2L2a(MeOH)4] as precursor, toluene 

and dimethylformamide (DMF) were used as solvent; DMF and acetonitrile (ACN) for the 

complex syntheses with [Fe2L2b(MeOH)4], respectively. All attempts to synthesise the 

compounds [Fe2L2b(bpee)2] and [Fe2L2b(bppa)2] from suspensions of [Fe2L2b(MeOH)4] 

with bpee and bppa in DMF, ACN or MeOH were unsuccessful and only fragmentary 

coordinated products were obtained. In conjunction with the H4L2 ligand system quite often 

compounds with additional solvent molecules were obtained, as the results from elemental 

analysis show. The precursor [FeL3a(MeOH)2]/[FeL3b(MeOH)2] were only converted with 

the axial ligand pina, as all other thinkable compounds were published before. 

All compounds were characterised by elemental analysis, IR and mass spectroscopy as well as 

T-dependent magnetic susceptibility measurement and X-ray crystallography if possible.  
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12.2.1 The Ligand System H2L1 

Table 1. Overview of the compounds with the H2L1 ligand system discussed in this work and the used 
abbreviations. 

Lax solvent L1a L1b 

bipy MeOH [FeL1a(bipy)]�MeOH  

(1�MeOH) 

[FeL1b(bipy)]�(0.5 bipy)(MeOH)  

(4�(0.5 bipy)(MeOH)) 

 toluene [FeL1a(bipy)] (1) / 

bpea MeOH [FeL1a(bpea)]�0.3 bpea 

(2�0.3 bpea) 

[FeL1b(bpea)]�0.5 bpea  

(5�0.5 bpea) 

 toluene [FeL1a(bpea)]�(0.5 bpea)(0.5 tol) 

(2�(0.5 bpea)(0.5 tol)) 

/ 

bpee MeOH / [FeL1b(bpee)�(bpee) 

(MeOH) (6�(bpee)(MeOH)) 

 toluene [FeL1a(bpee)]�(0.7 bpee)(0.7 tol) 

(3�(0.7 bpee)(0.7 tol)) 

/ 

 

 

Magnetic measurements of the compounds with ligand system H2L1: Characteristic 

values of the thermal dependence of the χMT product (with χM being the molar susceptibility 

and T the temperature) for all iron(II) compounds of this ligand-type are given in Table 2. 

With exception of 4�(0.5 bipy)(MeOH) and 6�(bpee)(MeOH), the room temperature χMT 

values of these compounds are in the range of 3.13–3.55 cm3 K mol−1 and therefore typical 

for iron(II) complexes in the high-spin (HS) state. For compound 4�(0.5 bipy)(MeOH), the 

room temperature χMT value is 2.03 cm3 K mol−1, indicative of a mixed HS/LS state. For 

compound 6�(bpee)(MeOH), the room temperature moment is with 0.39 cm3 K mol−1 

indicative of low-spin (LS) iron(II), but upon heating to 400 K, the moment increases to reach 

a maximum HS χMT value of 3.05 cm3 K mol−1.  

Upon cooling (starting from the pure HS state), various types of spin transitions can be 

observed. For compound 1 and 2�0.3 bpea a gradual but incomplete SCO is observed with a 
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remaining HS fraction of γHS = 0.35 and 0.48 at 50 K, respectively, indicative of a mixed 

HS/LS state. Compound 4�(0.5 bipy)(MeOH) stays in a mixed HS/LS state in the range 50–

320 K, then, above 320 K, the χMT values increase to attain a maximum value of 

3.41 cm3 K mol−1 at 400 K. For compound 2�(0.5 bpea)(0.5 tol) an abrupt spin transition is 

observed. The χMT values remain approximately constant at 3.50 cm3 K mol−1 between 300 

and 240 K. Between 240 and 180 K, the χMT values decrease rapidly then, below 180 K, 

gradually to attain a minimum χMT value of 0.31 cm3 K mol−1 at 50 K, indicative of iron(II) in 

the LS state. The T½ value of this ST is 204 K. In Figure 1, the χMT products vs. T of the 

compounds which exhibit a hysteresis loop are plotted. 

 

 

 

Figure 1. Plots of the χMT product vs. T for the compounds 1�MeOH, 3�(0.7 bpee)(0.7 tol), 5�0.5 bpea and 
6�(bpee)(MeOH). 
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For 1�MeOH, between 300 and 155 K, the χMT values remain approximately constant above 

3.0 cm3 K mol−1, then, below 155 K, the χMT values rapidly decrease to attain a value of 0.50 

cm3 K mol−1 at 130 K. Upon further cooling, the χMT values slightly decrease to attain a 

minimum value of 0.26 cm3 K mol−1 at 50 K. The T½
↓
 value is 146 K. Upon heating a rapid 

increase of the χMT values can be observed between 136 and 161 K, resulting in a 6 K broad 

hysteresis loop. The T½
↑
 value is 152 K. Compound 3�(0.7 bpee)(0.7 tol) shows a gradual spin 

transition between 200 and 95 K in the cooling mode and a minimum χMT value of 

1.13 cm3 K mol−1  at 50 K (γHS = 0.32). The T½
↓ value of this SCO is 144 K. In the heating 

mode, the χMT values remain approximately constant up to 115 K. Between 115 and 160 K 

the χMT values increase more rapidly than the values in the cooling mode. Between 160 and 

200 K, the χMT values of both modes are identical and the transition curves proceed with the 

same slope. The T½
↑
 value is 157 K. The maximum width of the hysteresis loop is 24 K at 

1.80 cm3 K mol−1. The magnetic measurement of compound 5�0.5 bpea reveals a very gradual 

SCO in the cooling mode, too, with a remaining γHS value of 0.55 at 50 K and a T½
↓
 value of 

139 K. Upon heating, the χMT values gradually increase up to 2.30 cm3 K mol−1 at 135 K, 

followed by a decrease to a minimum χMT value of 2.24 cm3 K mol−1 at 140 K. Above 140 K, 

the χMT values increase gradually again, until both transition curves meet at 210 K. The T½
↑
 

value of this SCO is 179 K. The resulting oval hysteresis loop exhibits a maximum width of 

43 K. Compound 6�(bpee)(MeOH) undergoes a spin transition above room temperature. In the 

temperature range of 50–300 K, the χMT values slightly increase from a χMT value of 

0.22 cm3 K mol−1 to 0.51 cm3 K mol−1, indicative of iron(II) in the LS state. Upon heating 

above 300 K, the χMT values increase, gradually then more rapidly, to attain a maximum 

value of 3.35 cm3 K mol−1 at 400 K, indicative of iron(II) in HS state. The T½
↑
 value of this 

SCO is 372 K. In the cooling mode, the χMT values decrease, first gradually then, below 

365 K, rapidly then again gradually, to attain the LS state again. The T½
↓

 value of this spin 

transition is 344 K, resulting in a 28 K wide hysteresis loop. 
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Table 2. Overview of the SCO behaviour, characteristic χMT values [cm3 K mol−1], the HS residues (γHS) at 50 K 
and the T½ values [K] of the 1D coordination polymers with H2L1. 

compound SCO χMT 

(50 K) 

χMT 

(300 K) 

γHS T½ 

 

1�MeOH abrupt, 6 K hysteresis  0.26 3.46 / ↓ 146, 

↑ 152  

1 gradual, incomplete 1.19 3.44 0.35 180 

2�0.3 bpea gradual, incomplete 1.71 3.55 0.48 210 

2�(0.5 bpea)(0.5 tol) abrupt, complete 0.31 3.50 / 204  

3�(0.7 bpee)(0.7 tol) gradual, hysteresis, 

incomplete 

1.13 3.51 0.32 ↓ 144, 

↑ 157  

4�(0.5 bipy)(MeOH) gradual, incomplete 1.59 3.42[a] 0.47 350 

5�0.5 bpea gradual, incomplete, 

hysteresis 

1.73 3.13 0.55 ↓ 139, 

↑ 179  

6�(bpee)(MeOH) abrupt,  

28 K hysteresis 

0.22 3.34[a] / ↓ 344, 

↑ 372  

[a] χMT value at 400 K. 
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X-Ray structure analysis of the compounds with ligand system H2L1: From the syntheses 

with the monomeric ligands H2L1a and H2L1b, crystals suitable for X-ray analysis were 

obtained for compounds 1�3 MeOH and 4�(0.5 bipy)(2 MeOH). These crystal structures 

describe the first examples with those kinds of equatorial ligands and therefore are especially 

interesting. However, for both compounds, it was not possible to do further analyses as they 

lose some methanol while drying and become compounds 1�MeOH and 4�(0.5 bipy)(MeOH). 

The crystallographic data and refinement details are summarised in Supporting Information 

Table S1.1. Selected bond lengths and angles within the first coordination sphere of the iron 

centres are summarised in Table 3. ORTEP drawings of the asymmetric units of the 

compounds are given in Figure 2.  

The iron(II) centre of 1�3 MeOH is located in an octahedral coordination sphere, consisting of 

the equatorially coordinated tetradentate Schiff base-like ligand L1a2− and the axially 

coordinated bridging ligand bipy, bound through terminal 4-pyridyl groups. Each bridging 

ligand “connects” two iron(II) centres, resulting in the formation of infinite 1D chains. An 

excerpt of the molecule packing is shown in Figure 3. Due to the “rigidity” of the axial ligand, 

the crystal structure reveals parallel linear 1D chains which propagate along the [1 0 0] 

direction. 

Compound 1�3 MeOH crystallises with the monoclinic space group P21/c, with four formula 

units in the unit cell. The observed bond lengths around the iron(II) centre of the complex are 

within the range reported for other octahedral iron(II) complexes of this ligand type in the LS 

state.[8–11,13] The average values are 1.89 Å (Fe-Neq), 1.94 Å (Fe-Oeq) and 2.00 Å (Fe-Nax). The 

observed O-Fe-O angle, the so-called bite angle of the ligand, which is typically about 110° 

for HS iron(II) complexes of this ligand type and about 90° for LS iron(II), is with 88.5° 

clearly indicative of iron(II) in the LS state.  

An analysis of polymeric structures reveals an infinite one-dimensional chain with the base 

vector: [1 0 0]. 
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Figure 2. ORTEP drawing of the asymmetric units of 1�3 MeOH and 4�(0.5 bipy)(2 MeOH). Hydrogen atoms 
were omitted for clarity, as well as the half bipy molecule for 4�(0.5 bipy)(2 MeOH). Thermal ellipsoids are 
shown with a 50% probability. 

 

Table 3. Selected bond lengths [Å] and angles [degree] within the inner coordination sphere of the 1D iron(II) 
coordination polymers with the ligand system H2L1. 

compound Fe-Neq Fe-Oeq Fe-Nax Oeq-Fe-Oeq Nax-Fe-Nax 

1�3 MeOH 1.893(2) 

1.891(2) 

1.941(2) 

1.936(2) 

2.004(3)  

1.995(3)[a] 

88.47(8) 178.75(10)[a] 

4�(0.5 bipy) 

(2 MeOH) 

1.902(4) 

1.906(4) 

1.944(4) 

1.942(4) 

1.989(5) 

2.002(5)[b] 

86.92(16) 177.17(17)[b] 

Symmetry codes: [a] −1 + x, y, z; [b] 1 + x, y, z. 
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The asymmetric unit additionally contains 3 methanol molecules, bound through hydrogen 

bonds to the complex: methanol 1 (C31-O31) bonds to the iron-coordinating oxygen atoms 

O1 and O2, which act as acceptors, whereas the methanol hydroxy group O31-H31 is the 

donor group. Moreover, oxygen atom O31 is the acceptor of the donor hydroxy group O33-

H33, belonging to methanol 3 (C33-O33). This solvent molecule builds a further hydrogen 

bond to one of the hydroxy groups of the equatorial ligand O7-H7, which is the donor group, 

whereas methanol oxygen O33 is the acceptor. Methanol 2 (C32-O32) also participates in two 

hydrogen bonds: on the one side, O32 is the acceptor and bonds to the second hydroxy group 

of the equatorial ligand, namely O8-H8; on the other side, the methanol hydroxy group O32-

H32 is the donor group and bonds to acceptor carbonyl oxygen atom O6, which is part of a 

ethoxy carbonyl group of the equatorial ligand. Moreover two hydrogen bonds of the kind C-

H� � �O (non-classical hydrogen bond) can be found involving the carbonyl oxygen atoms O4 

and O6 of both ethoxy carbonyl side groups and two CH groups of bipy pyridine rings of 

adjacent chains. In Table 4 a summary of the intermolecular hydrogen bonds is given. An 

analysis of intermolecular polymeric hydrogen bond structures reveals, that methanol 1 forms 

an infinite 1D chain with base vector [2 1 1] and methanol 3 is part of an infinite 2D network 

in the plane (1 0 2 ) with base vectors [0 1 0] and [2 0 1].   

Compound 4�(0.5 bipy)(2 MeOH) crystallises with the triclinic space group 1P , with two 

formula units in the unit cell. The observed bond lengths around the iron(II) centre of the 

complex are also within the range of iron(II) in the LS state. The average values are 1.90 Å 

(Fe-Neq), 1.94 Å (Fe-Oeq) and 1.99 Å (Fe-Nax). The observed O-Fe-O angle is with 86.9° 

indicative of LS iron(II) as well.[8–11,13] 

The asymmetric unit of 4�(0.5 bipy)(2 MeOH) additionally contains half of a bipy molecule 

and two methanol molecules, of which one is disordered. These molecules are all part of 

hydrogen bonds. The nitrogen atom N30 of the bipy molecule bonds to hydroxy group O5-H5 

located at the phenyl ring of the equatorial ligand. Methanol 1 (C40-O40) participates in two 

hydrogen bonds: on the one side, the hydroxy group O40-H40A acts as a donor group and is 

bound to the acceptor O4, a carbonyl oxygen part of a acetyl side group of the equatorial 

ligand; on the other side O40 is the hydrogen bond acceptor and bonds the hydroxy group 

O50A/B-H50A/E of disordered methanol 2 (C50A/B-O50A/B). In addition, an intermolecular 

hydrogen bond can be observed between the second hydroxy group at the phenyl ring of the 
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equatorial ligand, O6-H6, and carbonyl oxygen O3, located at an acetyl side group of an 

adjacent equatorial ligand. An analysis of intermolecular polymeric hydrogen bond structures 

reveals that an infinite one-dimensional chain with the base vector: [0 1 0] exists, formed 

between adjacent equatorial ligands and not involving the intercalated molecules. 

 

 

 

Figure 3. Excerpts of the molecule packing of 1�3 MeOH along the a (top left) and b axis (top right) and of 
4�(0.5 bipy)(2 MeOH) along the a (bottom left) and b axis (bottom right). 
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Table 4. Summary of the intermolecular hydrogen bonds of compounds 1�3 MeOH and 4�(0.5 bipy)(2 MeOH) 
with d(D� � �A) < R(D) + R(A) + 0.50, d(H� � �A) < R(H) + R(A) − 0.12 Å, D-H� � �A > 100.0°. 

compound D H A D-H H� � �A D� � �A D-H� � �A 

1�3 MeOH O7 H7 O33 0.84 1.85 2.687(3) 178 

 O8 H8 O32 0.84 1.89 2.655(3) 151 

 O31 H31 O1 0.84 2.25 2.945(3) 140 

 O31 H31 O2 0.84 2.34 3.091(3) 148 

 O32 H32 O6[a] 0.84 2.08 2.889(3) 162 

 O33 H33 O31[b] 0.84 1.89 2.728(3) 171 

 C21 H21 O4[c] 0.95 2.35 3.198(3) 148 

 C30 H30 O6[d] 0.95 2.38 3.255(3) 152 

O5 H5 N30[e] 0.84 2.05 2.797(7) 147 4�(0.5 bipy) 

(2 MeOH) O6 H6 O3[f] 0.84 1.81 2.647(6) 172 

 O40 H40 O4 0.84 1.90 2.727(8) 169 

 O50A H50A O40 0.84 2.12 2.951(9) 171 

 O50B H50E O40 0.84 2.11 2.951(9) 175 

 C22 H22 O40[g] 0.95 2.59 3.153(9) 118 

 C50A H50D O50A[h] 0.95 1.81 2.733(9) 156 

Symmetry codes: [a] 1 − x, −y, −z; [b] 2 − x, −½ + y, ½ − z; [c] x, ½ − y, −½ + z; [d] 1 + x, ½ − y, ½ + z; [e] x, y, 
1 + z; [f] x, −1 + y, z; [g] −x, −y, 1 − z; [h] −x, −1 − y, −z. 
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12.2.2 The Ligand System H4L2 

Table 5. Overview of the synthsised compounds with the H4L2 ligand system and the used abbreviations. 

Lax solvent L2a L2b 

bpee toluene [Fe2L2a(bpee)2]�1.5 tol (7�1.5 tol) / 

 DMF [Fe2L2a(bpee)2]�1.5 DMF (7�1.5 DMF) / 

bipy toluene [Fe2L2a(bipy)2]�tol (8�tol) / 

 DMF [Fe2L2a(bipy)2] (8) [Fe2L2b(bipy)2]�1.5 DMF  

(11�1.5 DMF) 

 ACN / [Fe2L2b(bipy)2]�1.5 ACN  

(11�1.5 ACN) 

bpea toluene [Fe2L2a(bpea)2]�2 tol (9�2 tol) / 

 DMF [Fe2L2a(bpea)2]�2 DMF (9�DMF) [Fe2L2b(bpea)2]�2 DMF  

(12�2 DMF) 

 ACN / [Fe2L2b(bpea)2]�1.5 ACN  

(12�1.5 ACN) 

bppa toluene [Fe2L2a(bppa)2]�2.5 tol (10�2.5 tol) / 

 DMF [Fe2L2a(bppa)2]�2.5 DMF (10�2.5 DMF) / 

 

 

Magnetic measurements of the compounds with ligand system H4L2: Characteristic 

values of the thermal dependence of the χMT product for all dinuclear iron(II) compounds are 

given in Table 6. The room temperature χMT values of these compounds are in the range of 

5.60–7.10 cm3 K mol−1 and therefore typical for dinuclear iron(II) complexes in the high-spin 

(HS) state.[9] With exception of compounds 8 and 8�tol, which are HS complexes in the whole 

temperature range investigated, all compounds show spin transition. The SCO of compounds 

7�1.5 DMF, 10�2.5 DMF, 11�1.5 DMF and 11�1.5 ACN is gradual and incomplete, with γHS > 

0.50, indicating that over 50% of the iron centres are still in the HS state at 50 K. Compounds 

10�2.5 tol and 12�1.5 ACN also show an gradual and incomplete SCO, but with γHS values of 
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0.28 and 0.39, respectively, the remaining HS fraction is only about one-third. In Figure 4, the 

χMT product vs. T of the compounds 7�1.5 tol, 9�2 tol, 10�2.5 tol and 12�2 DMF are plotted. 

 

 

 

Figure 4. Plots of the χMT product vs. T for the compounds 7�1.5 tol, 9�2 tol, 10�2.5 tol and 12�2 DMF. 

Compound 9�DMF shows a triangular thermally induced hysteresis loop besides a gradual and 

incomplete spin transition. In the cooling mode, the χMT values remain approximately 

constant at 7.00 cm3 K mol−1 between 300 and 200 K. Below 200 K, the χMT values decrease 

rapidly down to 170 K, then gradually to attain a minimum value of 3.86 cm3 K mol−1 at 

50 K. The T½ value of this SCO is 180 K. Upon heating the χMT values increase gradually 

between 50 and 214 K to the initial value, building the triangular hysteresis loop which has a 

maximum width of 13 K at 6.18 cm3 K mol−1. Compound 9�2 tol shows a similar SCO 

behaviour, but the transition temperature is moved to lower temperatures. This can be seen by 

comparing the T½ value, which is 115 K for 9�2 tol. A triangular hysteresis loop can be 
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observed as well, but its maximum width is with 10 K at 5.88 cm3 K mol−1 a bit smaller. The 

χMT values of compound 12�2 DMF decrease gradually between 300 and 50 K down to γHS = 

0.19. The T½
↓ value of this SCO is 185 K. In the heating mode the χMT values increase 

slightly smoother so that the T½
↑
 value is reached at 191 K, resulting in a small 6 K hysteresis 

loop. The most interesting spin transition is provided by compound 7�1.5 tol. The χMT values 

decrease gradually between 300 and 235 K. Between 235 and 185 K, the χMT values decrease 

rapidly to attain a minimum value of 0.85 cm3 K mol−1. Below 185 K, the χMT values remain 

approximately constant down to 50 K. The T½
↓ value of this SCO is 205 K. Upon heating, the 

χMT values are identical between 50 and 185 K. Above 185 K, the χMT values increase, 

gradually then rapidly then again gradually to attain the maximum value of 5.90 cm3 K mol−1 

at 300 K. The T½
↑ value is 239 K, resulting in a 34 K wide hysteresis loop.  

Table 6. Overview of the SCO behaviour, characteristic χMT values [cm3 K mol−1] at 50 K and 300 K the HS 
residues (γHS) at 50 K and the T½ values [K] of the coordination polymers with H4L2. 

compound SCO χMT (50 K) χMT (300 K) γHS  T½ 

7�1.5 tol abrupt, 34 K hysteresis 0.55 5.90 0.09 ↓ 205, 

↑ 239 

7�1.5 DMF gradual, incomplete 3.19 6.29 0.51 196 

8�tol HS / 6.20 / / 

8 HS / 7.10 / / 

9�2 tol gradual, hysteresis, incomplete 4.21 6.49 0.64 115  

9�DMF gradual, hysteresis, incomplete 3.86 7.00 0.55 180 

10�2.5 tol gradual, incomplete 1.54 5.60 0.28 188 

10�2.5 DMF gradual, incomplete 3.60 6.00 0.60 171 

11�1.5 DMF gradual, incomplete 4.06 6.57 0.61 123 

11�1.5 ACN gradual, incomplete 3.08 6.00 0.51 164 

12�2 DMF gradual, hysteresis, incomplete 1.24 6.44 0.19 ↓185, 

↑191  

12�1.5 ACN gradual, incomplete 2.45 6.23 0.39 175 
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X-Ray structure analysis of the compounds with ligand system H4L2: Great efforts were 

done to get crystals of sufficient quality for X-ray analysis from the syntheses with the 

dinuclear ligands H4L2a and H4L2b, but this turned out to be very difficult as all compounds 

are hardly soluble in any solvent. In fact, we only succeeded in the crystallisation of 

compound 9�x MeOH by applying a slow diffusion technique, but the quality of the 

orthorhombic crystals was inferior so we can only speak of a structure motif. The crystal data 

are summarised in Supporting Information Table S1.1. This is also the reason why the number 

of solvent molecules intercalated in the crystal structure is not clear. Nonetheless, this motif 

describes the first structural example of a dinuclear coordination polymer with SCO 

behaviour and gives an answer to the up to date unknown question, if a two-dimensional sheet 

structure (staggered arrangement of the dinuclear ligands) or a one-dimensional chain 

structure (ladder-like, stacked arrangement) is preferred.  

All iron centres are crystallographically equal and clearly in the HS state.[8–11,13] The average 

bond lengths within the inner coordination sphere are 2.10 Å (Fe-Neq), 2.03 Å (Fe-Oeq) and 

2.28 Å (Fe-Nax) and the observed O-Fe-O angle is 113°. As can be seen from Figure 5, 

infinite one-dimensional ladder-like chains are formed, with the base vector [1 0 0]. Within 

the ladders, the backbones of the dinuclear ligands (the “rungs of the ladders”) are not 

perpendicular to the axial ligands. The molecule packing displayed in Figure 6 reveals that the 

chains form parallel layers in the ab-plane. 

 

 

 

Figure 5. Excerpt of the infinite one-dimensional ladder-like chain structure of compound 9�x MeOH. 
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Figure 6. Excerpts of the molecule packing of 9�x MeOH in the ac- (left) and bc-plane (right). The formation of 
layers in the ab-plane is indicated. 

12.2.3 The Ligand System H2L3 

Table 7. Overview of the synthesised compounds with the H2L3 ligand system and the used abbreviations. 

Lax L3a L3b 

pina [FeL3a(pina)] (13) [FeL3b(pina)]�0.5 MeOH (14�0.5 MeOH) 

 [FeL3a(pina)]�0.5 MeOH (13�0.5 

MeOH) 

[FeL3b(pina)]�x MeOH (14�x MeOH) 

 

 

Magnetic measurements of the compounds with ligand system H2L3: Characteristic 

values of the thermal dependence of the χMT product for the mononuclear iron(II) 

coordination polymers are given in Table 8. The maximum χMT values of these compounds at 

300 and 350 K, respectively, are in the range of 3.33–3.64 cm3 K mol−1 and therefore typical 

for iron(II) complexes in the high-spin (HS) state. The powder sample 13, the crystalline 

sample 13�0.5 MeOH as well as the microcrystalline sample of 14�0.5 MeOH are pure HS 

compounds in the whole temperature range investigated. An interesting SCO behaviour, with 
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wide thermal hysteresis loops, was observed for compounds 14�x MeOH and 14�2 MeOH, as 

can be seen in Figure 7. The exact composition of compound 14�x MeOH is not clear, as the 

results from elemental analysis are ambiguous and no further analysis was possible due to the 

small amount of product. The overall measurement consists of two loops within the 

temperature ranges 350 to 150 K (loop 1) and 400 to 150 K (loop 2). Starting with loop 1, in 

the temperature range 350 to 270 K, the χMT values are approximately constant at 

3.49 cm3 K mol−1, indicative of iron(II) in the HS state. Between 270 and 194 K, the χMT 

values rapidly decrease to attain a minimum of 0.83 cm3 K mol−1. Below 194 K, the χMT 

values are approximately constant again. The T½
↓ value of this step is 240 K. With γHS = 0.2, 

there is still a significant HS fraction left over. Upon heating, an increase of the χMT values is 

not observed below 319 K. Between 319 and 336 K, the χMT values rapidly increase and 

become identical with the values of the cooling-mode above 336 K. The T½
↑ value of this step 

is 328 K, resulting in an enormous 88 K wide hysteresis loop. The magnetic measurement of 

loop 2 starts at 400 K. The shape of the hysteresis loop is the same as for loop 1, but the 

observed T½ values are shifted 15 K in average to lower temperatures (T½
↓: 224 K, T½

↑: 316 

K). It can only be assumed that the loss of solvent is responsible for this finding.  

The results of the magnetic measurement of compound 14�2 MeOH are quite different 

compared to 14�x MeOH. The overall measurement consists of three loops within the 

temperature ranges 350 to 200 K (loop 1), 400 to 150 K (loop 2) and 350 to 50 K (loop 3). 

Looking at loop 1, a complete spin transition from the HS to the LS state (see Table 4) with a 

decrease of theχMT values between 309 and 214 K can be observed in the cooling mode, 

whereas a rapid increase can be observed between 265 an 335 K in the heating mode. The T½ 

values are 272 (down) and 306 K (up), resulting in a 34 K wide hysteresis loop. The shape of 

the hysteresis of loop 2 is similar compared to that of loop 1. However, the transition 

temperatures are significantly shifted to lower temperatures (loop 2: T½
↓: 245 K, T½

↑: 296 K) 

and the hysteresis width increases from 34 to 51 K. This behaviour could be associated with 

the loss of solvent molecules, as the measurement temperature was raised to 400 K in the 

meantime, but loop 3 reveals that something more is going on. Although solvent effects can 

be excluded, the transition temperatures are shifted downwards again (loop 2: T½
↓: 236 K, 

T½
↑: 281 K) and a shrinking of the hysteresis width is observed to 45 K.     
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Much of the SCO behaviour of compounds 14�x MeOH and 14�2 MeOH is still not fully 

understood but it can be said that solvent effects play an important, but not the only role for 

the wide hysteresis loops of these materials. 

 

 

 

Figure 7. Plots of the χMT product vs. T for the compounds 14�x MeOH (left) and 14�2 MeOH (right). 

Table 8. Overview of the SCO behaviour, characteristic χMT values [cm3 K mol−1], the HS residue (γHS) at 150 K 
and the T½ values [K] of the 1D coordination polymers with H2L3 and pina. 

compound sample 

character 

SCO χMT 

(150 K) 

χMT 

(300 K) 

γHS T½  

13 powder HS / 3.33 / / 

13�0.5 MeOH crystal HS / 3.19 / / 

14�0.5 MeOH powder HS / 3.30 / / 

crystal 0.76 3.49[a] 0.2 ↓ 240, ↑ 328[b] 
14�x MeOH 

 

hysteresis, 88 K[b],  

92 K[c]     ↓ 224, ↑ 316[c] 

crystal 0.2 3.64[a] / ↓ 272, ↑ 306[b] 

    ↓ 245, ↑ 296[c] 

14�2 MeOH 

 

complete, hysteresis  

34 K[b], 51 K[c],  

45 K[d]    ↓ 236, ↑ 281[d] 

[a] χMT value at 350 K; [b] magnetic measurement: loop 1; [c] loop 2; [d] loop 3.  
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X-Ray structure analysis of the compounds with ligand system H2L3: From the syntheses 

with the axial bridging ligand pina, crystals were obtained of compounds [FeL3a(pina)]�0.5 

MeOH (13�0.5 MeOH) and [FeL3b(pina)]�2 MeOH (14�2 MeOH). These crystal structures 

describe the first examples with those kinds of axial ligands and therefore are especially 

interesting. The crystallographic data and refinement details are summarised in Supporting 

Information Table S1.2. Selected bond lengths and angles within the first coordination sphere 

of the iron centres are summarised in Table 9. ORTEP drawings of the asymmetric units of 

the compounds are given in Figure 8.  

Compound 13�0.5 MeOH crystallises with the monoclinic space group P21/c. The observed 

bond lengths around the iron(II) centre of the complex are within the range reported for other 

octahedral iron(II) complexes of this ligand type in the HS state.[8–11,13] The average values are 

2.01 Å (Fe-Neq), 2.05 Å (Fe-Oeq) and 2.25 Å (Fe-Nax). The observed O-Fe-O angle is with 

112.0° clearly indicative of iron(II) in the HS state. An analysis of polymeric structures 

reveals an infinite one-dimensional chain with the base vector: [0 1 0]. 

The asymmetric unit additionally contains a disordered half occupied methanol molecule, 

which is bound through van der Waals interactions to the complex. Moreover, a disorder was 

found for the bridging ligand pina, too, mainly concerning the asymmetric peptide bond. At 

both disordered structures the carbonyl bond points into the same direction.  

Looking at the molecule packing, an interesting arrangement of chains can be found, as 

displayed in Figure 9. Two adjacent chains, which run in the opposite direction, form pairs of 

molecules and are held tightly together by intermolecular hydrogen bonds between the NH 

group of the peptide bond and oxygen atom O2, which is also coordinated to the iron(II) 

centre. All intermolecular contacts are listed in Table 10. The average interchain distances of 

3.5 Å is relative short. This is possible because the flat open chain sites of the equatorial 

ligands within the chain-pairs point to each other, whereas the bulky backbones point 

outwards and interact with the backbones of other chain-pairs.   
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Figure 8. ORTEP drawing of the asymmetric units of 13�0.5 MeOH (right) and 14�2 MeOH (left). Hydrogen 
atoms were omitted for clarity, as well as the disorders of the pina ligands. Thermal ellipsoids are shown with a 
50% probability. 

Table 9. Selected bond lengths [Å] and angles [degree] within the inner coordination sphere of the 1D iron(II) 
coordination polymers with the bridging ligand pina.  

compound Fe-Neq Fe-Oeq Fe-Nax Oeq-Fe-Oeq Nax-Fe-Nax 

2.105(3) 2.026(2) 2.245(3) 111.96(9) 173.99(11) 13�0.5 MeOH 

2.108(3) 2.070(2) 2.248(3)   

1.904(3) 1.940(2) 2.026(13)[a] 

1.93(3)[b] 

88.89(10) 174.4(3)[a],[c] 
14�2 MeOH 

1.898(3) 1.947(2) 2.008(11)[a] 

2.05(3)[b],[c] 

 172.6(8)[b],[c] 

[a] related to N3A; [b] related to N3B; symmetry code: [c] 1 + x, y, z. 

Compound 14�2 MeOH crystallises with the monoclinic space group P21/c. The observed 

bond lengths around the iron(II) centre of the complex (Table 9) are within the range reported 

for other octahedral iron(II) complexes of this ligand type in the LS state.[8–11,13] The average 

values are 1.90 Å (Fe-Neq), 1.94 Å (Fe-Oeq) and 2.01 Å (Fe-Nax). The observed O-Fe-O angle 

is with 88.9° clearly indicative of iron(II) in the LS state. An analysis of polymeric structures 

reveals an infinite one-dimensional chain with the base vector: [1 0 0]. The pina ligand is 
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disordered in the same way as observed for 13�0.5 MeOH, with the carbonyl groups of the 

disordered peptide bonds pointing in the same direction. 

The asymmetric unit additionally contains two methanol molecules, each bound through 

hydrogen bonds to the peptide bond (Table 10). In one case, the hydroxy group of methanol is 

the donor group (O7-H7A) and the carbonyl oxygen of the peptide bond the acceptor (O5). In 

the other case, methanol is the acceptor (O6) of the N-H group of the peptide bond (N5-H5). 

This solvent molecule moreover participates in a second hydrogen bond between its hydroxy 

group (O6-H6A) and the carbonyl group (O3) of an adjacent equatorial ligand and, thus, is 

part of an infinite one-dimensional hydrogen bond chain (base vector: [0 0 1]) (Figure 9). 

Table 10. Summary of the intermolecular hydrogen bonds of compounds 13�0.5 MeOH and 14�2 MeOH with 
d(D� � �A) < R(D) + R(A) + 0.50, d(H� � �A) < R(H) + R(A) − 0.12 Å, D-H� � �A > 100.0°. 

compound D H A D-H H� � �A D� � �A D-H� � �A 

13�0.5 MeOH N5A H5A O2[a] 0.88 2.20 2.941(6) 141 

 C13A H13A O7A[a] 0.98 2.43 3.397(7) 168 

14�2 MeOH N5A H5A O6 0.88 2.19 3.008(6) 155 

 N5B H5B O6 0.88 2.16 2.893(13) 141 

 O7 H7A O5A 0.84 2.09 2.887(7) 159 

 O7 H7A O5B 0.84 1.94 2.771(13) 169 

 O6 H6A O3[b] 0.84 2.04 2.865(4) 169 

 C18 H18A O7[c] 0.98 2.58 3.458(7) 149 

C18 H18C O6[d] 0.98 2.59 3.327(5) 132  

C20A H20A O3[c] 0.95 2.50 3.217(10) 132 

Symmetry codes: [a] −x, −½ + y, ½ − z; [b] x, −½ − y, ½ + z; [c] −x, ½ + y, −½ − z; [d] x, −½ − y, −½ + z. 
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Figure 9. Excerpts of the molecule packing of 13�0.5 MeOH in the ac- (top left ) and ab-plane (top right) and of 
14�2 MeOH in the bc- (bottom left) and ac-plane (bottom right). 
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12.3 Discussion 

The crystal engineering concept: Figure 10 displays that, with the principles of coordination 

bonding through the application of covalent linkers, the cooperative interactions during the 

spin transition can be systematically increased in a crystal engineering-like approach. Starting 

with monomeric compounds like [FeL3b(py)2] (py = pyridine)[14] or [FeL3b(1-meim)2] (1-

meim = 1-methylimidazole)[9] (Figure 10), 2 K wide hysteresis loops are observed due to two-

dimensional networks of weak van der Waals interactions. In the case of 1-meim, the 

transition from a mono- to a dinuclear complex [Fe2L2b(1-meim)4]�1-meim leads to an 

improvement of the cooperative effects, as this compound shows a 21 K wide hysteresis loop 

due to a three-dimensional network of short intermolecular contacts.[9]  

The implementation of covalent linker molecules, finally leading to the formation of 1D 

coordination polymers, yields to compounds with nearly 30 K wide hysteresis loops, as the 

conditions for intermolecular interactions are improved on this way.[11] For compound 

[FeL3b(bipy)] (Figure 10), for example, a multitude of short contacts between the chains are 

found to be responsible for its 18 K wide hysteresis loop,[10] for compounds [FeL3a(bpea)]� 

(MeOH) (hysteresis 27 K)[11] and 6�(bpee)(MeOH) (hysteresis: 28 K) in addition to that, the 

cooperativity is further improved by hydrogen bond networks. Compound 6�(bpee)(MeOH) is 

a perfect example that specific variations at the equatorially ligand system, e.g. the 

introduction of hydroxy groups, can intensify the formation of intermolecular interactions. It 

is not yet clear if compound 14·x MeOH falls into this category, too. We recently showed in 

our group that unusual wide hysteresis loops are not solely caused by hydrogen bond 

networks, but direct influences of hydrogen bonds on the ligand field strength at the central 

ion.[15]  

The combination of both linker-strategies finally leads to the connection of dimeric 

complexes with covalent bridging ligands in order to get dinuclear coordination polymers and 

thus further improve the cooperativity. The results show that this strategy absolutely works, as 

the ladder-like 1D double-strand compound 7�1.5 tol exhibits a 34 K wide hysteresis loop. 

This finding makes it worth to thoroughly investigate any possibilities for extending and 

improving this strategy of target-orientated optimisation of intermolecular interactions 

following the concepts of crystal engineering.  
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Figure 10. Transition from mononuclear to polynuclear systems. Schematic representation of the synthesis 
strategy to systematically increase the cooperativity of the iron(II) SCO compounds by increasing their covalent 
character in a crystal engineering-like approach. 
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12.4 Conclusion 

With the crystal structures of compounds 1�3 MeOH and 4�(0.5 bipy)(2 MeOH), as well as the 

structure motif of 7�1.5 tol, we have got a first view to the “inner life” of these particular 

complex systems that gives some useful hints for an understanding of the intermolecular 

interactions. Talking of the H2L1 ligand system, we now know for sure that the hydroxy 

groups take part in hydrogen bonds either to solvent molecules (e.g. 1�3 MeOH) or, as 

expected, to adjacent complex molecules (e.g. 4�(0.5 bipy)(2 MeOH)) and build up hydrogen 

bond networks. Moreover, we have got the confirmation that uncoordinated ligand molecules 

may intercalate in the crystal lattice as predicted form elemental analysis. Talking about the 

dinuclear coordination polymers, we now know that a one-dimensional ladder-like structure 

with stacked arrangement of the dinuclear ligands is preferred for this type of complexes in 

comparison to a two-dimensional sheet structure with staggered arrangement. 
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12.5 Experimental Section 

Magnetic measurements: Magnetic susceptibility data were collected by using a Quantum 

Design MPMSR-2 SQUID magnetometer under an applied field of 0.5 T over the temperature 

range 2 to 400 K in the settle mode. The samples were placed in gelatine capsules held within 

a plastic straw. The data were corrected for the diamagnetic magnetisation of the ligands by 

using tabulated Pascal’s constants and of the sample holder. 

X-Ray structure determination: The intensity data were collected on an Oxford XCalibur 

diffractometer (1�3 MeOH, 14�2 MeOH) or a Nonius Kappa CCD diffractometer (4�(0.5 bipy) 

(2 MeOH), 9�x MeOH, 13�0.5 MeOH) by using graphite-monochromated MoKα radiation. 

The data were corrected for Lorentz and polarisation effects. The structures were solved by 

direct methods (SIR-97)[16] and refined by full-matrix least-square techniques against 

Fo
2 − Fc

2 (SHELXL-97).[17] All hydrogen atoms were calculated in idealised positions with 

fixed displacement parameters. ORTEP-III[18] was used for the structure representation, 

SCHAKAL-99[19] to illustrate molecule packings. The crystallographic data are summarised 

in Supporting Information Table S1.1 and S1.2. The quality of the data of 9�x MeOH is 

inferior. The remaining residue densities cannot be assigned to any solvent molecules. The 

highest symmetrical orthorhombic space group suggested (Ibam) is not stable upon 

refinement. We will therefore only be publishing the conformation of the molecule and the 

crystal data. 

Synthesis: All syntheses of the iron(II) complexes were carried out under argon by using 

Schlenk tube techniques. All solvents were purified as described in literature and distilled 

under argon.[20] The syntheses of anhydrous iron(II) acetate,[21] the ligands H2L1,[12] H4L2a,[22] 

H4L2b,[23] H2L3[24] and the precursors [FeL1(MeOH)2]
[12] and [FeL3(MeOH)2]

[25] were 

published before. The pina ligand was synthesised in two steps: firstly, isonicotinoylchloride 

hydrochloride was synthesised.[26a] The second step was the conversion to N-(4-

pyridyl)isonicotinamide.[26b]  

N-(4-Pyridyl)isonicotinamide (pina): Thionylchloride (60 mL) was added carefully to a 

stirred mixture of isonicotinic acid (24.6 g, 0.2 mol) and dimethylformamide (1 mL). After 30 

min. all of the acid had gone into solution. Excess thionylchloride was removed in vacuo and 
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diethyl ether (200 mL) was stirred into the residue. The crude product was filtered, washed 

with diethyl ether and dried in vacuo. Without further purification the isonicotinic acid in 

form of the chloride hydrochloride was reacted with 4-aminopyridine (18.8 g, 0.2 mmol) in 

pyridine (400 mL) at ambient temperature for five days. The product separated with pyridine 

hydrochlorid. After filtration the solid was suspended in water (1.5 L) to give a colourless 

material. The product was dissolved in ethanol (300 mL) and 5% sodium bicarbonate solution 

(200 mL), and on addition of water (1.5 L), gave a colourless flocculent product which was 

recrystallised from water (approximately 300 mL) (yield: 22.8 g, 57%). 1H NMR (400 MHz, 

CDCl3, 25 °C, TMS): δ = 8.8 (m, 2H, CO-Ar-H), 8.6 (m, 2H, N-Ar-H), 8.0 (s, 1H, NH), 7.7 

(m, 2H, CO-Ar-H), 7.6 ppm (m, 2H, N-Ar-H); elemental analysis calcd (%) for C11H9N3O 

(199.21): C 66.3, H 4.6, N 21.1; found: C 65.9, H 4.6, N 21.0. 

[FeL1a(bipy)]�MeOH (1�MeOH): A solution of [FeL1a(MeOH)2] (0.22 g, 0.46 mmol) and 

bipy (0.36 g, 2.31 mmol) in methanol (25 mL) was heated to reflux for 1 h. After cooling to 

room temperature, the brown precipitate was filtered off, washed with methanol (2 × 5 mL) 

and dried in vacuo (yield 0.26 g, 89%). IR (KBr): ν�� = 1683(s) (COO), 1572(s) cm−1 (CO); MS 

(FAB-(+), 70 eV): m/z (%): 474 (23) [FeL1a+], 157 (24) [bipy+ + H], 154 (100); elemental 

analysis calcd (%) for C31H34FeN4O9 (662.47): C 56.2, H 5.2, N 8.5; found: C 55.8, H 4.8, N 

8.8. 

[FeL1a(bipy)]�3 MeOH (1�3 MeOH): Crystals of sufficient quality for X-ray analysis were 

obtained by applying a slow diffusion technique using a Schlenk tube which is, to a certain 

height, separated into two chambers by a dividing wall. Into one chamber [FeL1a(MeOH)2] 

(0.09 g, 0.17 mmol) was placed, into the other chamber bipy (0.13 g, 0.84 mmol). Solvent 

methanol was carefully filled up just as high to allow slow diffusion at one point of contact 

above the dividing wall. Within a couple of days 1�3 MeOH was obtained as black thin 

needles. 

[FeL1a(bipy)] (1): A suspension of [FeL1a(MeOH)2] (0.18 g, 0.31 mmol) and bipy (0.48 g, 

3.07 mmol) in toluene (20 mL) was heated to reflux for 2 h. After cooling to room 

temperature, the dark brown precipitate was filtered off, washed with diethyl ether (2 × 5 mL) 

and dried in vacuo (yield 0.09 g, 46%). Elemental analysis calcd (%) for C30H30FeN4O8 

(630.43): C 57.2, H 4.8, N 8.9; found: C 56.8, H 4.8, N 8.8. 
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[FeL1a(bpea)]�0.3 bpea (2�0.3 bpea): A solution of [FeL1a(MeOH)2] (0.21 g, 0.44 mmol) 

and bpea (0.41 g, 2.20 mmol) in methanol (25 mL) was heated to reflux for 1 h. After cooling 

to room temperature, the black precipitate was filtered off, washed with methanol (2 × 5 mL) 

and dried in vacuo (yield 0.21 g, 73%). IR (KBr): ν�� = 1682(vs) (COO), 1571(s) cm−1 (CO); 

MS (FAB-(+), 70 eV): m/z (%): 474 (40) [FeL1a+], 185 (100) [bpea+ + H]; elemental analysis 

calcd (%) for C36H38FeN4.7O8 (719.89): C 60.1 H 5.3, N 9.1; found: C 59.9, H 5.4, N 9.2. 

[FeL1a(bpea)]�(0.5 bpea)(0.5 tol) (2�(0.5 bpea)(0.5 tol)): In toluene (20 mL) a suspension of 

[FeL1a(MeOH)2] (0.17 g, 0.30 mmol) and bpea (0.55 g, 2.98 mmol) was heated to reflux for 

2 h. After cooling to room temperature, the dark green precipitate was filtered off, washed 

with diethyl ether (2 × 5 mL) and dried in vacuo (yield 0.11 g, 46%). Elemental analysis calcd 

(%) for C41.5H44FeN5O8 (796.67): C 62.6, H 5.6, N 8.8; found: C 62.7, H 5.8, N 8.6. 

[FeL1a(bpee)]�(0.7 bpee)(0.7 tol) (3�(0.7 bpee)(0.7 tol)): In toluene (20 mL) a solution of 

[FeL1a(MeOH)2] (0.18 g, 0.31 mmol) and bpee (0.57 g, 3.15 mmol) was heated to reflux for 

2 h. The formation of a violet precipitate was observed in the boiling heat. After cooling and 

filtration, the precipitate was washed with diethyl ether (2 × 5 mL) and dried in vacuo (yield 

0.09 g, 35%). IR (KBr): ν�� = 1687(s) (COO), 1572(vs) cm−1 (CO); MS (FAB-(+), 70 eV): m/z 

(%): 474 (12) [FeL1a+], 183 (60) [bpee+ + H] 154 (100); elemental analysis calcd (%) for 

C44.7H44FeN5.3O8 (839.37): C 63.9 H 5.3, N 8.9; found: C 63.9, H 5.3, N 8.9. 

[FeL1b(bipy)]�(0.5 bipy)(MeOH) (4�(0.5 bipy)(MeOH)): A solution of [FeL1b(MeOH)2] 

(0.25 g, 0.56 mmol) and bipy (0.44 g, 2.80 mmol) in methanol (40 mL) was heated to reflux 

for 3 h. The black crystals that precipitated within 2 days were filtered off, washed with 

methanol (2 × 5 mL) and dried in vacuo (yield 0.23 g, 71%). IR (KBr): ν�� = 1634(s) (CO), 

1559(s) cm−1 (CO); MS (FAB-(+), 70 eV): m/z (%): 414 (3) [FeL1b+], 157 (24) [bipy+ + H], 

154 (100); elemental analysis calcd (%) for C34H34FeN4O7 (680.51): C 59.9 H 5.2, N 10.3; 

found: C 59.4, H 5.1, N 10.3. 

Crystals with the composition [FeL1b(bipy)]�(0.5 bipy)(2 MeOH) (4�(0.5 bipy)(2 MeOH)), 

suitable for X-ray analysis, were obtained out of the mother liquor.  

[FeL1b(bpea)]�0.5 bpea (5�0.5 bpea): A solution of [FeL1b(MeOH)2] (0.32 g, 0.72 mmol) 

and bpea (0.66 g, 3.59 mmol) in methanol (30 mL) was heated to reflux for 3 h. After cooling 

to room temperature, the black precipitate was filtered off, washed with methanol (2 × 5 mL) 

and dried in vacuo (yield 0.30 g, 60%). IR (KBr): ν�� = 1636(s) (CO), 1561(s) cm−1 (CO); MS 
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(FAB-(+), 70 eV): m/z (%): 414 (1) [FeL1b+], 185 (100) [bpea+ + H]; elemental analysis calcd 

(%) for C36H36FeN5O6 (690.55): C 62.6 H 5.3, N 10.1; found: C 62.3, H 5.4, N 10.2. 

[FeL1b(bpee)]�(bpee)(MeOH) (6�(bpee)(MeOH)): A solution of [FeL1b(MeOH)2] (0.30 g, 

0.67 mmol) and bpee (0.61 g, 3.36 mmol) in methanol (30 mL) was heated to reflux for 3 h. 

After cooling to room temperature, the black precipitate was filtered off, washed with 

methanol (2 × 5 mL) and dried in vacuo (yield 0.28 g, 57%). IR (KBr): ν�� = 1636(s) (CO), 

1561(s) cm−1 (CO); MS (FAB-(+), 70 eV): m/z (%): 414 (1) [FeL1b+], 185 (100) [bpea+ + H]; 

elemental analysis calcd (%) for C43H42FeN6O7 (810.67): C 63.7 H 5.2, N 10.4; found: C 

63.4, H 5.2, N 10.3. 

[Fe2L2a(MeOH)4]: A solution of iron(II) acetate (2.60 g, 14.8 mmol) and H4L2a (4.00 g, 

6.30 mmol) in methanol (200 mL) was heated to reflux for 4 h. After 24 h at 4°C, the light 

brown precipitate was filtered off, washed with methanol (2 × 5 mL) and dried in vacuo (yield 

4.52 g, 76%). Elemental analysis calcd (%) for C38H54Fe2N4O16 (934.54): C 48.9 H 5.8, N 

6.0; found: C 49.3, H 5.2, N 6.4. 

[Fe2L2b(MeOH)4]: A solution of iron(II) acetate (1.96 g, 11.3 mmol) and H4L2b (2.40 g, 

4.18 mmol) in methanol (200 mL) was heated to reflux for 4 h. After 24 h at 4°C, the dark 

brown precipitate was filtered off, washed with methanol (2 × 5 mL) and dried in vacuo (yield 

1.85 g, 54%). Elemental analysis calcd (%) for C34H46Fe2N4O12 (818.44): C 50.1 H 5.7, N 

6.6; found: C 49.4, H 5.8, N 6.6. 

[Fe2L2a(bpee)2]�1.5 tol (7�1.5 tol): A suspension of [Fe2L2a(MeOH)4] (0.27 g, 0.29 mmol) 

and bpee (0.79 g, 4.33 mmol) in toluene (30 mL) was heated to reflux for 1 h. After cooling to 

room temperature, the green precipitate was filtered off, was washed with toluene (2 × 5 mL) 

and dried in vacuo (yield 0.27 g, 80%). IR (KBr): ν�� = 1688(s) (COO), 1572(s) cm−1 (CO); MS 

(FAB-(+), 70 eV): m/z (%): 806 (13) [FeL2a+], 183 (50) [bpee+ + H]; 154 (100), 136 (71); 

elemental analysis calcd (%) for C68.5H70Fe2N8O12 (1309.03): C 62.8, H 5.4, N 8.6; found: C 

62.6, H 5.5, N 8.1. 

[Fe2L2a(bpee)2]�1.5 DMF (7�1.5 DMF): A solution of [Fe2L2a(MeOH)4] (0.11 g, 

0.18 mmol) and bpee (0.43 g, 2.35 mmol) in DMF (15 mL) was heated to reflux for 4 h. After 

cooling to room temperature, the dark green precipitate was filtered off, washed with diethyl 
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ether (2 × 5 mL) and dried in vacuo (yield 0.08 g, 60%). Elemental analysis calcd (%) for 

C62.5H68.5Fe2N9.5O13.5 (1280.46): C 58.6, H 5.4, N 10.4; found: C 58.3, H 5.4, N 10.1. 

[Fe2L2a(bipy)2]�tol (8�tol): A suspension of [Fe2L2a(MeOH)4] (0.22 g, 0.24 mmol) and bipy 

(0.55 g, 3.53 mmol) in toluene (30 mL) was heated to reflux for 1 h. After cooling to room 

temperature, the brown precipitate was filtered off, washed with toluene (2 × 5 mL) and dried 

in vacuo (yield 0.19 g, 71%). IR (KBr): ν�� = 1690(s) (COO), 1573(s) cm−1 (CO); MS (FAB-

(+), 70 eV): m/z (%): 806 (2) [FeL2a+], 157 (9) [bipy+ + H]; 154 (100), 136 (68); elemental 

analysis calcd (%) for C61H62Fe2N8O12 (1210.88): C 60.5, H 5.2, N 9.3; found: C 60.7, H 5.2, 

N 9.4. 

[Fe2L2a(bipy)2] (8): A solution of [Fe2L2a(MeOH)4] (0.10 g, 0.11 mmol) and bipy (0.33 g, 

3.53 mmol) in DMF (15 mL) was heated to reflux for 4 h. After cooling to room temperature, 

the brown precipitate was filtered off, washed with diethyl ether (2 × 5 mL) and dried in 

vacuo (yield 0.08 g, 72%). Elemental analysis calcd (%) for C54H54Fe2N8O12 (1118.26): C 

58.0, H 4.9, N 10.0; found: C 58.0, H 4.9, N 10.1. 

[Fe2L2a(bpea)2]�2 tol (9�2 tol): A suspension of [Fe2L2a(MeOH)4] (0.27 g, 0.29 mmol) and 

bpea (1.06 g, 5.78 mmol) in toluene (25 mL) was heated to reflux for 1 h. After cooling to 

room temperature, the yellow ochre precipitate was filtered off, washed with toluene 

(2 × 5 mL) and dried in vacuo (yield 0.36 g, 91%). IR (KBr): ν�� = 1690(s) (COO), 

1574(s) cm−1 (CO); MS (FAB-(+), 70 eV): m/z (%): 806 (14) [FeL2a+], 185 (9) [bpea+ + H]; 

154 (100), 136 (70); elemental analysis calcd (%) for C72H78Fe2N8O12 (1359.13): C 63.6, H 

5.8, N 8.2; found: C 62.9, H 5.7, N 8.1. 

[Fe2L2a(bpea)2]�x MeOH (9�x MeOH): Brown crystals of the composition 9�x MeOH were 

obtained by slow diffusion techniques of [Fe2L2a(MeOH)4] (0.10 g, 0.12 mmol) and bpea 

(0.44 g, 2.39 mmol) in methanol solution after three weeks.  

[Fe2L2a(bpea)2]�DMF (9�DMF): A solution of [Fe2L2a(MeOH)4] (0.10 g, 0.11 mmol) and 

bpea (0.39 g, 2.14 mmol) in DMF (15 mL) was heated to reflux for 4 h. After cooling to room 

temperature, the fine crystalline precipitate was filtered off, washed with diethyl ether 

(2 × 5 mL) and dried in vacuo (yield 0.11 g, 88%). Elemental analysis calcd (%) for 

C61H65Fe2N9O13 (1247.94): C 58.7, H 5.6, N 10.1; found: C 58.8, H 5.5, N 10.0. 
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[Fe2L2a(bppa)2]�2.5 tol (10�2.5 tol): A solution of [Fe2L2a(MeOH)4] (0.22 g, 0.24 mmol) 

and bppa (0.70 g, 3.53 mmol) in toluene (30 mL) was heated to reflux for 1 h. The formation 

of a brown precipitate was observed in the boiling heat. After cooling and filtration, the 

precipitate was washed with toluene (2 × 5 mL) and dried in vacuo (yield 0.10 g, 29%). IR 

(KBr): ν�� = 1689(s) (COO), 1571(s) cm−1 (CO); MS (FAB-(+), 70 eV): m/z (%): 806 (14) 

[FeL2a+], 199 (100) [bpea+ + H]; elemental analysis calcd (%) for C77.5H86Fe2N8O12 

(1433.25): C 65.0, H 6.1, N 7.8; found: C 65.2, H 6.1, N 7.8. 

[Fe2L2a(bppa)2]�2.5 DMF (10�2.5 DMF): A solution of [Fe2L2a(MeOH)4] (0.11 g, 

0.18 mmol) and bppa (0.47 g, 2.35 mmol) in DMF (15 mL) was heated to reflux for 1 h. After 

cooling to room temperature, the black microcrystalline precipitate was filtered off, washed 

with diethyl ether (2 × 5 mL) and dried in vacuo (yield 0.09 g, 59%) . Elemental analysis 

calcd (%) for C67.5H83.5Fe2N10.5O14.5 (1385.63): C 58.5, H 6.1, N 10.6; found: C 58.3, H 6.0, N 

10.6. 

[Fe2L2b(bipy)2]�1.5 DMF: A suspension of [Fe2L2b(MeOH)4] (0.14 g, 0.17 mmol) and bipy 

(0.53 g, 3.44 mmol) in DMF (20 mL) was heated to reflux for 3 h. The formation of a light 

brown precipitate was observed in the boiling heat. After cooling and filtration, the precipitate 

was washed with diethyl ether (2 × 5 mL) and dried in vacuo (yield 0.07 g, 36%). IR (KBr): 

ν�� = 1640(s) (CO), 1563(s) cm−1 (CO); MS (FAB-(+), 70 eV): m/z (%): 686 (10) [FeL2b+], 157 

(35) [bipy+ + H], 154 (100), 136 (68); elemental analysis calcd (%) for C56H60Fe2N10O10 

(1144.82): C 58.7, H 5.3, N 12.2; found: C 58.3, H 5.3, N 11.9. 

[Fe2L2b(bipy)2]�1.5 ACN (11�1.5 ACN): A suspension of [Fe2L2b(MeOH)4] (0.35 g, 

0.61 mmol) and bipy (1.42 g, 9.08 mmol) in ACN (30 mL) was heated to reflux for 4 h. After 

cooling to room temperature, the black solid was filtered off, washed with diethyl ether 

(2 × 5 mL) and dried in vacuo (yield 0.29 g, 43%). Elemental analysis calcd (%) for 

C56H51.5Fe2N9.5O8 (1097.3): C 61.3, H 4.7, N 12.1; found: C 61.0, H 4.8, N 12.0. 

[Fe2L2b(bpea)2]�2 DMF: A suspension of [Fe2L2b(MeOH)4] (0.19 g, 0.23 mmol) and bpea 

(0.86 g, 4.66 mmol) in DMF (20 mL) was heated to reflux for 3 h. After cooling to room 

temperature, the yellow ochre precipitate was filtered off, washed with diethyl ether 

(2 × 5 mL) and dried in vacuo (yield 0.09 g, 33%). IR (KBr): ν�� = 1641(s) (CO), 1564(s) cm−1 

(CO); MS (FAB-(+), 70 eV): m/z (%): 686 (2) [FeL2b+], 185 (19) [bpea+ + H], 154 (100), 136 
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(65); elemental analysis calcd (%) for C60H68Fe2N10O10 (1200.93): C 60.0, H 5.7, N 11.7; 

found: C 58.5, H 5.8, N 11.5. 

[Fe2L2b(bpea)2]�1.5 ACN (12�1.5 ACN): A suspension of [Fe2L2b(MeOH)4] (0.24 g, 

0.42 mmol) and bpea (1.15 g, 6.23 mmol) in ACN (30 mL) was heated to reflux for 4 h. After 

cooling to room temperature, the black solid was filtered off, washed with diethyl ether 

(2 × 5 mL) and dried in vacuo (yield 0.37 g, 79%). Elemental analysis calcd (%) for 

C57H58.5Fe2N9.5O8 (1116.3): C 61.4, H 5.3, N 11.9; found: C 62.1, H 5.4, N 11.9. 

[FeL3a(pina)] (13): A solution of [FeL3a(MeOH)2 (0.55 g, 1.09 mmol) and pina (1.08 g, 

5.43 mmol) in methanol (45 mL) was heated to reflux for 1 h. The formation of a dark violet 

precipitate was observed in the boiling heat. After cooling and filtration, the precipitate was 

washed with methanol (2 × 5 mL) and dried in vacuo (yield: 0.51 g, 74%). IR (KBr): 

ν�� = 3232(w) (NH), 1688(s) (COO), 1569(s) cm−1 (CO); MS (DEI-(+), 70 eV): m/z (%): 442 

(100) [FeL3a+], 199 (48) [pina+], 106 (43); elemental analysis calcd (%) for C31H31FeN5O7 

(641.45): C 58.0, H 4.9, N 10.9; found: C 57.7, H 4.9, N 10.8. 

[FeL3a(pina)]�0.5 MeOH (13�0.5 MeOH): Violet crystals of sufficient quality for X-ray 

analysis were obtained by slow diffusion techniques of [FeL3a(MeOH)2 (0.12 g, 0.23 mmol) 

and pina (0.23 g, 1.18 mmol) in methanol solution after two weeks. Elemental analysis calcd 

(%) for C31.5H33FeN5O7.5 (657.48): C 57.5, H 5.1, N 10.7; found: C 57.6, H 4.9, N 10.8. 

[FeL3b(pina)] (14�0.5 MeOH): A solution of [FeL3b(MeOH)2 (0.35 g, 0.78 mmol) and pina 

(0.78 g, 3.92 mmol) in methanol (30 mL) was heated to reflux for 1 h. The formation of a 

precipitate was observed in the boiling heat. After cooling and filtration 14�0.5 MeOH was 

obtained as dark violet microcrystalline solid that was washed with methanol (2 × 5 mL) and 

dried in vacuo (yield: 0.35 g, 77%). IR (KBr): ν�� = 3229(w) (NH), 1687(m) (CO), 1647(s) 

(CO), 1560(vs) cm−1 (CO); MS (DEI-(+), 70 eV): m/z (%): 382 (70) [FeL3b+], 199 (97) 

[pina+], 106 (100); elemental analysis calcd (%) for C29.5H29FeN5O5.5 (597.15): C 59.3, H 4.7, 

N 11.4; found: C 59.3, H 4.9, N 11.7. 

[FeL3b(pina)]�x MeOH (14�x MeOH): Amorphous black crystals of the composition 

14�x MeOH were obtained by slow diffusion techniques of [FeL3b(MeOH)2 (0.11 g, 

0.25 mmol) and pina (0.24 g, 1.23 mmol) in methanol solution after two weeks. Elemental 
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analysis calcd (%) for C30H31FeN5O6 (613.44): C 58.7, H 5.1, N 11.4; found: C 58.5, H 4.9, N 

11.7. 

[FeL3b(pina)]�2 MeOH (14�2 MeOH): Violet crystals of sufficient quality for X-ray 

analysis were obtained by slow diffusion techniques of [FeL3b(MeOH)2 (0.12 g, 0.27 mmol) 

and pina (0.27 g, 1.34 mmol) in methanol solution after one week. Elemental analysis calcd 

(%) for C31H35FeN5O7 (645.49): C 57.7, H 5.5, N 10.9; found: C 57.4, H 5.0, N 10.8. 
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12.7 Supporting Information 

Table S1.1. Crystallographic data of 1�3 MeOH and 4�(0.5 bipy)(MeOH). For the structure motive of 9�x MeOH 
only the crystal date are given.. 

compound 1�3 MeOH 4�(0.5 bipy) (2 MeOH) 9�x MeOH 

formula C33H42FeN4O11 C35H38FeN5O8  
Mr / g mol−1 726.56 712.55  
crystal system monoclinic triclinic orthorhombic 

space group P21/c 1P   

a / Å 11.1275(18) 11.1228(9) 13.7279(9) 
b / Å 16.408(2) 11.8129(9) 19.5972(13) 
c / Å 21.317(3) 13.3170(9) 25.8758(13) 

α / ° 90 102.269(5) 90 

β / ° 115.206(11) 103.440(4) 90 

γ  / ° 90 95.947(4) 90 

V / Å3 3521.5(9) 1641.3(2) 6961.3(7) 
Z 4 2  
ρ / g cm−3 1.370 1.442 1.203 
µ  / mm−1 0.492 0.521 0.481 
crystal size 0.23 × 0.07 × 0.03 0.19 × 0.07 × 0.04 0.14 × 0.07 × 0.05 
T / K 173(3) 173(2) 293(2) 
diffractometer Oxford XCalibur KappaCCD KappaCCD 

λ (MoKα) / Å 0.71073 0.71073 0.71073 

θ-range / ° 4.22–26.14 3.24–25.19  
reflns. collected 12551 10103  
indep. reflns. (Rint) 5806 (0.0487) 5799 (0.072)  
mean σ (I) / I 0.1784 0.0993  
reflns. with I ≥ 2σ (I) 2722 3892  
x, y (weighting scheme) 0.0082, 0 0.0558, 4.6271  
parameters 448 474  
restraints 0 31  
R (F) (all data)[a] 0.0411 (0.1101) 0.0699 (0.1140)  
wR (F2)[b] 0.0518 0.1853  
GooF 0.690 1.064  
shift/errormax 0.001 0.000  
max., min. resd. dens. / e Å−3 0.42, −0.38 0.60, −0.73  

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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Table S1.2. Crystallographic data of [FeL3a(pina)]�0.5 MeOH (13�0.5 MeOH) and [FeL3b(pina)]�2 MeOH (14�2 
MeOH). 

compound 13�0.5 MeOH 14�2 MeOH 

formula C31.44H32.76FeN5O7.44 C31H35FeN5O7 
Mr / g mol−1 655.55 645.49 
crystal system monoclinic monoclinic 
space group P21/c P21/c 
a / Å 12.4271(2) 13.3304(11) 
b / Å 13.7853(2) 12.9564(11) 
c / Å 20.6941(3) 21.5188(15) 

α / ° 90 90 

β / ° 117.3780(10) 127.769(5) 

γ  / ° 90 90 

V / Å3 3148.05(8) 2937.9(4) 
Z 4 4 
ρ / g cm−3 1.383 1.459 
µ  / mm−1 0.535 0.571 
crystal size 0.21 × 0.19 × 0.17 0.32 × 0.19 × 0.11 
T / K 200(2) 173(2) 
diffractometer KappaCCD Oxford XCalibur 

λ (MoKα) / Å 0.71073 0.71073 

θ-range / ° 3.32–25.35 4.19–25.38 
reflns. collected 20881 11924 
indep. reflns. (Rint) 5747 (0.0249) 5286 (0.0391) 
mean σ (I) / I 0.0200 0.0837 
reflns. with I ≥ 2σ (I) 5008 3309 
x, y (weighting scheme) 0.0202, 6.4748 0.0690, 0 
parameters 405 391 
restraints 0 24 
R (F) (all data)[a] 0.0541 (0.0614) 0.0516 (0.0924) 
wR (F2)[b] 0.1232 0.1316 
GooF 1.171 0.960 
shift/errormax 0.000 0.000 
max., min. resd. dens. / e Å−3 0.450, −0.400 1.104, −0.582 

[a] R(F) = ∑||Fo| − |Fc||/∑|Fo|. [b] wR(F2) = [∑[w(Fo
2 − Fc

2)2]/∑w(Fo
2)2]½, w = 1/[σ2(Fo

2) + (aP)2 + bP], where P 
= [Fo

2 + 2(Fc
2)]/3. 
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