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Zusammenfassung

Um Galaxien, Galaxienhaufen oder noch größere Strukturen im Universum zu simulieren,
benötigt man eine angemessene Behandlung der in diesen Fällen dominanten Kraft, der
Gravitation. Darüber hinaus ist im Hinblick auf eine korrekte Nachbildung auch kleine-
rer Details eine Simulation des in diesen Objekten vorhandenen Gases notwendig. Eine
Möglichkeit zur Simulation der Hydrodynamik bei astrophysikalischen Problemen bietet
das etablierte Lagrange’sche Verfahren “Smoothed Particle Hydrodynamics (SPH)”. Diese
Methode empfiehlt sich besonders wegen ihrer intrinsischen geometrischen Flexibilität und
ihrer Fähigkeit, die Auflösung mit der Dichte automatisch zu erhöhen. Damit ist SPH in
der Lage, Gas mit sehr großen Unterschieden in Geschwindigkeit und Dichte angemessen
zu simulieren. Neuere Untersuchungen zeigten aber, dass SPH in Situationen, in denen
große Dichtesprünge auftreten, ungenau wird. Hier kann es zu einem unterdrückten oder
unphysikalisch verlangsamtem Wachstum von hydrodynamischen Instabilitäten kommen.
Die Probleme von SPH mit diesen Instabilitäten können letztlich vor allem auf systema-
tisch bedingte Ungenauigkeiten in der Dichtebestimmung dieser Methode zurückgeführt
werden.

Um diese Probleme zu vermeiden, haben wir eine neue Methode enwickelt, um die
Hydrodynamik in astrophysikalischen Systemen zu simulieren. Dabei wird die Dichte der
Simulationsteilchen mit Hilfe eines zusätzlichen Gitters bestimmt. Dieses Gitter ist eine
Voronoi Pflasterung, die auf auf den Positionen der Simulationsteilchen basiert. Zur Erzeu-
gung des Voronoi Gitters verwenden wir eine angepasste Version der Triangulationsroutinen
aus dem AREPO Code. Die Pflasterung des Raumes wird dabei durch einen inkrementel-
len Algorithmus erzeugt, der zunächst das topologisch duale Delaunay-Gitter erstellt, aus
dem dann am Ende das Voronoi Gitter berechnet wird. Im Vergleich zu SPH erhöht der
Einsatz eines Voronoi Gitters die effektive Auflösung, da die Dichtebestimmung nur mit
Hilfe benachbarter Punkte erfolgt. Wichtiger ist jedoch, dass mit Hilfe dieses Prinzips
hydrodynamische Instabilitäten korrekt simuliert werden können.

Da unsere neue “Voronoi Particle Hydrodynamics” (VPH) genannte Methode genauso
wie SPH eine künstliche viskose Kraft benötigt, haben wir als erstes die Simulation von
Schockwellen getestet, um sicherzustellen, dass das Gas sich in den Schockwellen korrekt
aufheizt. Es zeigte sich, dass VPH Schockwellen ähnlich genau simulieren kann wie SPH.
Die Simulation von turbulenten Strömungen gelingt in VPH dagegen besser. Wir haben
daher VPH als vollwertige Alternative zu SPH in dem parallelen kosmologischen Code
GADGET-3 implementiert. Das erlaubt uns auch, alle vorhandenen Implementierungen



xii Zusammenfassung

zur Simulation zusätzlicher physikalischer Prozesse (z.B. Sternentstehung, Kühlung durch
Wärmestrahlung usw.) sofort weiter zu nutzen.

Situationen, in denen Scherströmungen entlang großer Dichtesprünge, hydrodynami-
sche Instabilitäten oder Turbulenz auftreten, sind besonders ungünstig für SPH, da es hier
zu großen Ungenauigkeiten kommen kann. Daher erwarten wir dort den größten Unter-
schied zu SPH. Eine Anwendung, in der genau solche Situationen zu erwarten sind, ist
der Einfall einer Galaxie in einen Galaxienhaufen. Dabei verliert die Galaxie aufgrund des
Staudrucks des anströmenden Galaxienhaufen-Gases mehr und mehr ihres eigenen Gases
an den Galaxienhaufen. Dieser Verlust an Gas hängt signifikant davon ab, wie gut die ver-
wendete Methode zur Simulation der Hydrodynamik die auftretenden Instabilitäten in der
Umströmung der Galaxie nachbilden kann. Da SPH aufgrund seiner Dichtebestimmung
und seiner vollständigen Unterdrückung von Mischungsprozessen auf der Skala einzelner
Gasteilchen diese Instabilitäten nicht korrekt simuliert, ermittelt SPH einen zu geringen
Verlust von Gas. Wir konnten dies mit Hilfe unserer Simulationen belegen, die außerdem
verdeutlichen, dass unsere neue VPH-Methode viel besser mit dem Gitter-basierten AREPO

Code übereinstimmt, welchen wir ebenfalls zu einem zusätzlichen Vergleich nutzten. Auch
die Eigenschaften des bereits an der Galaxie vorbeigeströmten Gases sind unterschiedlich.
So ist das von der Galaxie abgelöste Gas in den SPH Simulationen deutlich dichter und
kompakter, so dass es dadurch sogar effizienter neue Sterne bilden kann als das in VPH
Simulationen der Fall ist.

Wir haben unsere Resultate aus hoch aufgelösten Windtunnel-Rechnungen sowohl mit
Simulationen von Galaxien, die in einen komplett modellierten Galaxienhaufen fallen, als
auch mit kosmologischen Simulationen von sich bildenden Galaxienhaufen überprüft. In
all diesen Simulationen bestätigte sich, dass in SPH der Gasverlust der einfallenen Gala-
xien zu gering ist. Desweiteren ist der Gasverlust in den AREPO Simulationen stets am
höchsten, während VPH eine mittlere Stellung einnimmt. Wir führen die verbleibende, klei-
ne Diskrepanz zwischen VPH und dem Gitterverfahren in AREPO auf die unterschiedliche
Behandlung von Mischungsprozessen auf der Skala der Auflösungsgrenze zurück.

Wir konnten ingesamt zeigen, dass unsere neue VPH-Methode in Situationen mit
großem Dichtekontrast eine Verbesserung zu dem Lagrange’schen Verfahren SPH darstellt.
Auch wenn unsere Resultate keine vollständige Übereinstimmung mit dem Gitter-basierten
AREPO Code zeigen, stellen sie doch eine wichtige Annährung zwischen Teilchen- und
Gitter-basierten hydrodynamischen Verfahren dar. VPH empfiehlt sich vor allem als eine
gegenüber SPH verbesserte Methode zur Simulation von hydrodynamischen Prozesssen in
kosmologischen Problemen.
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Chapter 1

Introduction

Astronomy is one of the oldest scientific fields of humankind, and pondering about the origin
and fate of the Universe has always exerted a deep fascination on people. However, only
over the course of the last century, cosmology has been put on a firm scientific basis, made
possible by the discovery of general relativity and Hubble’s observation of the expansion
of the Universe. Since then, revolutionary progress in our understanding of the Universe
has been achieved, culminating in what is now called a standard cosmological model.

In this picture, the Universe starts out in a ‘Big Bang’, characterized by an early hot and
dense state. This is deduced both from the observation of an expanding Universe, and the
detection of the cosmic microwave background (CMB) radiation, which is the thermal relic
radiation of the hydrogen plasma that existed before the universe cooled enough to form
neutral hydrogen and leave this radiation field behind. Today, the radiation has cooled
down to just 2.73 K and forms a nearly perfect black body radiation spectrum. Indeed,
the regularity of the observed CMB radiation indicates that the Universe was not only
very hot but also spatially very homogeneous and smooth at the time of recombination.
Yet, modern observations with satellites such as WMAP have been able to detect tiny
fluctuations around the mean temperature of the CMB, showing that there have been,
after all, very small deviations around this high degree of homogeneity. These fluctuations
are interpreted to be the seeds of cosmic structure formation. However, it is still a subject
of intense research to understand how complex structures such as galaxies have grown out
of these initial fluctuations and produced the highly clustered state of today’s Universe.

One of the primary tools used to study this process are cosmological hydrodynamical
simulations. It will be the primary topic of this thesis to improve these methods by propos-
ing and validating novel hydrodynamical simulation techniques. Before we discuss this in
detail, we here briefly recall some of the most basic aspects of the standard cosmological
model and cosmic structure formation.
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1.1 The ΛCDM model

Currently, the most widely used theoretical framework for cosmology is the Lambda-Cold-
Dark-Matter model (ΛCDM). It proposes that the Universe is filled by dark energy and dark
matter besides the baryonic matter; in fact, today, the total energy density is dominated
by dark energy, and the total matter content by dark matter. The concept of dark energy
is introduced to support the measured accelerated expansion of the Universe, which can
only be understood if there is something that counteracts the attractive force of gravity.
Dark matter is postulated in order to account for a diverse set of observations where the
gravitational pull of the baryonic matter alone falls short of explaining the dynamics. This
is for example the case in the rotation curves of galaxies, in the motion of galaxies in
clusters of galaxies, or in systems that exhibit strong gravitational lensing.

The missing mass is believed to be in the form of a new elementary particle which
interacts only gravitationally with itself and ordinary baryonic matter. Hence this dark
matter behaves as a collision-less fluid. In the specific variant of cold dark matter (CDM)
models, the “cold” refers to the velocities of the particles at decoupling. If the particles
are massive enough, these velocities will be non-relativistic and quickly decay, such that
the thermal velocities of the dark matter particles at the beginning of structure formation
are unimportant. In this situation, structures grow “bottom-up” in a hierarchical fashion,
with small objects forming first and then building up every bigger structures later on.

The parameters of the ΛCDM model are now quite tightly constrained, especially by
the most recent 7-year data release of the WMAP-satellite (Jarosik et al. 2010), but also
by a host of other observations, for example the detection of baryon acoustic oscillations
(BAO) in the distribution of galaxies (SDSS and 2dFGRS, Percival et al. 2010; Cole et al.
2005, see also Figure 1.1), or observations of distant type-Ia supernovae. These supernovae
serve as “standard candles” and provide a relation between their magnitude and redshift
(Kowalski et al. 2008), allowing a measurement of the acceleration parameter. Within the
ΛCDM model, these combined observations lead to a universe where the dark energy (here
taken to be a cosmological constant) contributes 72.8% to the energy density, dark matter
accounts for 22.7%, and baryonic matter for 4.56% (likeliest parameters from Jarosik et al.
2010). Today’s expansion rate is described by a Hubble constant of 70.4 km s−1Mpc−1,
and looking backwards for 13.75 billion years would show the “Big Bang”, a state where
the energy density becomes so large that ordinary physics seizes to be applicable. It is
remarkable that despite the in principle unknown contents of dark matter and dark energy,
the ΛCDM model manages to yield a remarkably successful explanation of cosmic structure
formation.

1.2 Cosmic structure formation

The formation of structure in the universe can be traced back to small perturbations in the
matter density of the early universe, left behind by the Big Bang. The theory of inflation
conjectures that the origin of these fluctuation ultimately lies in quantum noise that has
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Figure 1.1: The distribution of galaxies in the Two Degree Field Galaxy Redshift
Survey (2dFGRS) (from Cole et al. 2005). Drawn is a fraction of the total of 141,402
galaxies in a slice that is 4 degrees thick.

been greatly amplified and stretched to macroscopic scales during an inflationary epoch in
the very earliest phase of the Big Bang. Once the inflation has stopped, the dark matter
particles have been created, and the fluctuations have entered the horizon, they can start
to grow due to gravitational instability.

Because the cold dark matter (CDM) has negligible inherent pressure, even small per-
turbations can grow and reach densities where they collapse non-linearly. First, small
objects composed of CDM form. They then subsequently accrete more mass and merge
into bigger objects. This hierarchical formation of structure is purely driven by gravity, as
the CDM particles do not interact via electromagnetic forces. In contrast, baryonic matter
also experiences hydrodynamic pressure forces, in addition to being coupled to radiation
and magnetic fields.

Initially, the growth of the perturbations can be followed by linear perturbation theory,
where the evolution of the density contrast δ = (ρ − ρ) /ρ is governed by

δ̈ + 2(ȧ/a)δ̇ +
(

c2
sk

2 − 4πGρ
)

δ = 0. (1.1)

Here cs is the sound speed (in case of gas), and k is the comoving wavelength of the
growing mode in an expanding universe with scale factor a. However, the linear theory
is only accurate for δ ≪ 1. Once structures exceed this limit, their growth accelerates.
Eventually, a perturbation decouples from the background expansion, it turns around and
collapses under its own gravity in the so-called non-linear regime of structure formation,
where the density contrast in the center of objects reaches δ ≃ 108 and more. Here linear
theory can not be applied any more, and it becomes extremely challenging to carry out
any analytical calculations. Moreover, on these small scales, the effects of gas physics
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become relevant, which are hard to describe anyway due to their often inherently non-
linear character. In order to tackle this problem, one needs to resort to direct numerical
simulations, which offer a flexible and powerful method to follow the evolution of structures
far into the non-linear regime.

1.3 Numerical simulations

The development of new telescopes and instruments has led to an explosive growth of
data gathered through observations. As a result, cosmological measurements have already
reached a high level of precision, and increasingly demand ever more accurate theoretical
predictions in order for a proper interpretation. In particular, of key importance is a
detailed understanding of cosmic structure growth, linking the observations of the high
redshift universe (including the initial conditions observed in the CMB) to observations of
the local Universe.

Unfortunately, as already pointed out, the growth of dark matter perturbations into non-
linear halos cannot be modelled analytically with precision. While statistical descriptions
of the clustering of matter in the non-linear regime can be constructed, as for example in
the Press-Schechter formalism (Press and Schechter 1974), these approaches ultimately rely
on a calibration through numerical simulations. Without the latter, one would have little
knowledge about the accuracy of such approximations. Also, the analytic fitting functions
are often quite limited in their information content. For example, Press and Schechter
(1974) methods do not provide spatial information about the halo distribution.

This emphasizes the importance of numerical simulations for the study of cosmic struc-
ture formation. And since the dark matter dominates the matter content (it accounts for
about ∼ 85% of the mass), it is primarily important to simulate the dark matter accurately.
The method of choice for this purpose are cosmological N-body simulations, which dis-
cretize the dark matter in terms of a set of simulation particles. These N-body simulations
follow purely self-gravitating collision-less systems based on methods first comprehensively
described by Hockney and Eastwood (1981). Over the years, cosmological N-body codes
have reached a high degree of accuracy. These methods are now quite well understood and
mature, allowing them to make significant contributions to the investigation of the ΛCDM
model and to elucidate its properties.

Among the most important findings established by collision-less N-body simulations
is the existence of a cosmic web, together with a quantitatively precise understanding
of the halo abundance as a function of mass, and the spatial distribution of the halos
at different times (Helly et al. 2003; Springel et al. 2005b). Importantly, the internal
structure of the halos themselves (Navarro et al. 2004; Gao et al. 2004), as well as their
content of substructures has been determined accurately. Interestingly, an approximately
universal shape of CDM halos has been established, which can be described by the NFW-
profile (Navarro et al. 1996), or by fits based on the Einasto profile (Einasto 1965). These
predictions for the mass distribution have also led to accurate predictions for strong and
weak gravitational lensing effects in the ΛCDM model.
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While the methods to simulate dark matter are comparatively well understood, imple-
mentations of additional physics, especially physics of the baryons are considerably less
mature. Generally speaking, they have not reached a similar level of precision yet, and
despite a variety of different approaches for tackling gas physics exists, all of these hydrody-
namical techniques are fraught with certain problems. This is not an issue on large scales,
where gravity is still the dominant force. However, at smaller scales, say at the centers of
halos where the actual galaxies form, the numerically very challenging physics of the gas
becomes important. Here one would like to combine an accurate treatment of the gravita-
tional interactions of the dark matter with an equally accurate treatment of the baryonic
matter, only then the coupled dynamical evolution can be followed reliably. A particular
challenge in this context is how a hydrodynamical method can be constructed that can
cope with the variety of involved geometries, and the large dynamic range in densities
occurring in cosmic structure formation. The traditional method of representing gas on a
regular Cartesian mesh is hopelessly inadequate because it can not adjust to the strong
clustering of matter. For this reason, particle based discretization schemes, which have
an intrinsic adaptivity, have become popular in astronomy. However, as we will see, the
methods presently in use have severe accuracy problems in certain situations. It remains
therefore an extremely important task to find novel and improved hydrodynamics schemes
for the use in cosmic structure formation, which is the goal of this thesis.

1.4 Thesis outline

In Chapter 2, we give a brief description of the numerical methods currently in use for
simulating hydrodynamics in cosmological simulations, and what challenges these meth-
ods face in terms of accuracy and systematic effects. We will also provide an introduction
to our new Voronoi particle hydrodynamics method that we propose in this thesis. A full
description of the detailed construction of this new approach and of its characteristics is
then given in Chapter 3. We turn to applications of our numerical techniques in Chap-
ter 4, which also includes a comprehensive set of comparisons with other hydrodynamical
techniques. Finally, in Chapter 5 we summarize the findings from these chapters, draw our
primary conclusions, and give an outlook on future work in this area.
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Chapter 2

Hydrodynamical simulation methods

The baryonic part of the Universe is the one that is most readily accessible by observations,
because the baryons are directly or indirectly responsible for almost all the electromagnetic
radiation we receive from space. It is hence important to include a proper description of the
hydrodynamical interactions of baryons in cosmological simulations to arrive at accurate
models of the Universe.

Initially, the baryons start out as homogeneously and smoothly distributed as the dark
matter, and on large scales they follow the dynamical evolution of the dark matter. How-
ever, the more the dark matter and the baryons cluster into collapsed objects, the more
pressure support builds up in the baryonic matter. This thermal pressure supports the gas
against further gravitational collapse, similar to the random motions that prevent the dark
matter from forming arbitrarily dense objects. However, unlike the dark matter, the gas
can give off its thermal energy by emitting cooling radiation. This ultimately allows the
gas to collapse much further, forming rotationally supported dense disks that can fragment
and eventually create stars. Although the physical laws governing the gas dynamics are
in principle well known, the non-linear behaviour of the relevant processes, in particular
shocks and gas turbulence, make the hydrodynamics during structure growth extremely
complex, such that many aspects are not yet understood in detail. Also, this complexity
makes it effectively impossible to treat the problem analytically in a realistic fashion.

For these reasons, there is a substantial demand for reliable numerical treatments of
the hydrodynamics during cosmic structure growth. It turns out that this is however sub-
stantially more complicated than the N-body method which is so successfully applied for
the dark matter. In fact, as we briefly review in this chapter, a number of very different
hydrodynamical methodologies are in use in cosmology, but they all have various short-
comings. For this reason we will propose a novel method in this thesis that we show to be
able to improve the accuracy of existing techniques, therefore representing an interesting
alternative to the established methods.
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2.1 The Euler equations

Before we present the leading techniques for simulating gas in cosmological situations, a
brief overview of the equations of hydrodynamics is in order. Because the cosmic gas is
extremely thin, its internal viscosity can be neglected to very good approximation, so that
it forms a truly ideal gas. Hence, the inviscid hydrodynamics of the cosmic gas can be
described by the Euler equations. In comoving variables, they can be written in their
Lagrangian form as:

Dtρ = − ρ~∇ · ~v, (2.1)

Dt~v = −
~∇P

ρ
, (2.2)

Dtu = − P ~∇ · ~v, (2.3)

where Dt = ∂
∂t

+ ~v · ~v is the convective derivative. This set of partial differential equations
is completed with an equation of state, which gives the pressure as a function of the other
thermodynamic variables. For an ideal gas this can be expressed as

P = A ργ . (2.4)

Here A is the specific entropy and γ is the adiabatic index. This formulation describes an
inviscid gas continuum perfectly, in the absence of shocks. If the latter occur, the entropy
A of gas elements can increase when kinetic energy is dissipated into heat.

Numerical hydrodynamics needs to seek discretizations for these formulae, for which a
variety of possibilities exist. Two approaches are mainly used. Either one samples the flow
of the gas in terms of constant mass elements that follow the gas motion, or one divides the
volume of interest into a grid of stationary finite volume elements. The former approach
is typically referred to as “Lagrangian”, the latter as “Eulerian”.

2.2 Eulerian methods

The traditional method to solve the Euler equations employs meshes of some kind, often
in a structured form such as Cartesian or polar grids. In the original formulation of this
technique, the mesh resolution has been taken to be uniform and constant, but modern
methods can also use adaptive mesh refinement (AMR) techniques to implement a resolu-
tion that is variable in space and time. There are many different schemes for advancing
the Euler equations forward in time on a mesh, but often the conservative character of
the equations is directly exploited by calculating the fluxes of conserved quantities (mass,
momentum and energy) across cell boundaries. This allows one to automatically fulfill the
conservation laws to machine precision, but makes a good estimate of the fluxes all the
more important.

For cosmological simulations, the most relevant disadvantage of Eulerian methods is
that their mesh is stationary and not automatically adjusts to the strong clumping of mat-
ter. While the latter can be overcome to some extent via AMR techniques, the fact that
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the mesh is defined in a fixed reference frame renders the results non-Galilean invariant
and causes problems for large fluid velocities, which are common in cosmological simu-
lations. Also, the mesh prefers certain directions (the principal coordinate axes), which
can introduce spurious artefacts (for example an alignment of disks with the coordinate
planes).

2.3 Lagrangian methods

Lagrangian methods take a different approach for discretizing the fluid. Instead of dividing
the volume into resolution elements, they try to partition the mass. The Lagrangian for
an inviscid continuum of gas is given by

L =

∫
(

~v2

2
− u

)

dm, (2.5)

where u describes the thermal energy per unit mass. This form of the Lagrangian is very
suggestive for a discretization in terms of elements of constant mass. Effectively, this means
that the discretization takes place in a moving frame of reference which is defined by the
flow of the gas. The resulting equations of motion for the mass elements can be then
be interpreted as discretized versions of the Euler equations (2.1), (2.2), and (2.3). The
most important conceptional advantage of Lagrangian approaches is that the adaptivity
of the method is intrinsic and automatic, in contrast to AMR, where one has to try to
approximate this through special refinement strategies.

Smoothed particle hydrodynamics (SPH) as introduced by Lucy (1977a) and Gingold
and Monaghan (1977) is the most widely used Lagrangian method in astronomy. Here the
Lagrangian evolution of the gas is computed by forces on “fluid particles”, and these forces
can be naturally interpreted in terms of pressure gradients. The gradients are estimated
by differences with respect to neighboring points, using adaptive kernel estimation tech-
niques. The direct derivation of SPH from the fluid Lagrangian (a discretization of Eq. 2.5)
ensures that momentum and energy are conserved accurately, while conservation of mass
is guaranteed by construction (since the particle number is constant). A central role in
SPH is played by the prescription to estimate the local gas density. In SPH, the densities
are obtained with the help of adaptive kernel estimation, which can also be thought of as
distributing the masses of particles with a spherically symmetric smoothing kernel. This
is a numerically very robust procedure, but it has some intrinsic disadvantages. To begin
with, there is no optimal shape of the smoothing kernel, and therefore the performance
of SPH depends on the choice of the shape of the kernel. A rather obvious disadvantage
is that the smoothing kernel reduces the effective resolution, depending on the radius of
the kernel. However, the biggest disadvantage of SPH is that discontinuous jumps in the
density field, which for example occur at shocks and contact discontinuities, cannot be
represented accurately. Instead they are smoothed over, causing artefacts on both sides of
the interface.
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Another important issue in SPH lies in the need for an artificial viscosity. Because the
inviscid formulation of SPH preserves the specific entropies of its particles by construction,
one must add special means to allow dissipation in regions where it is needed. This is
normally accomplished by imposing artificial friction forces that try to prevent particles
from interpenetrating, such that shocks can be “captured” in a physically meaningful way,
and post-shock oscillations are avoided. However, it is difficult to choose these viscous forces
in an optimum way, and one usually ends up with slightly viscous behaviour everywhere.
Several approaches exist that try to minimize this effect (see e.g. Dolag et al. 2005), but
in principle it would be preferable if one could completely avoid the need for an artificial
viscosity, similar to grid-based methods that use Riemann solvers.

2.4 Systematic differences in existing hydrodynami-

cal methods

Perhaps the most important difference between the Lagrangian SPH method and the Eu-
lerian techniques is that the latter allow for the mixing of entropy and other properties
on the resolution scale, whereas in the former such a mixing is completely suppressed at
the particle level. Since Eulerian methods simulate hydrodynamics by exchanging fluxes
between cells, the averaging (and hence the mixing) over the incoming fluxes from different
resolution elements is a central ingredient of the scheme. It is hence ultimately the mass
flux across cell boundaries that is responsible for the mixing. While in truly Lagrangian
schemes there should be no such mixing, it is questionable whether SPH is correct in pre-
venting it entirely, because in reality the neighbours of a given particle will change with
time, indicating that really a “remap” of the associated volume of the particle has taken
place. On the other hand, because Eulerian codes introduce mixing for any fluid motion,
even pure advection, they likely over-mix to a certain extent. How this different behaviour
affects the results of simulations, and which is ultimately the more accurate treatment, is
not really settled at this point.

In order to make progress on understanding these systematic differences, a number of
comparison projects have been undertaken where a variety of hydrodynamical codes was
applied to the same physical problem. In Figure 2.1, we reproduce an important result
by Agertz et al. (2007) which shows that SPH suppresses fluid instabilities in shear flows
across density discontinuities. This has been traced to spurious, unphysical forces that
act to artificially stabilize the interface of contact discontinuities. This spurious surface
tension damps or even prevents the development of fluid instabilities, such as Rayleigh-
Taylor and Kelvin-Helmholtz instabilities. As a consequence, SPH simulations can yield
unphysical results when such fluid instabilities are important. We note that in cosmological
simulations such density jumps arise naturally during the hierarchical growth of structure,
and they have also been observed directly as “cold fronts” in galaxy clusters. Another
important example is a galaxy falling into a cluster, where the correct treatment of fluid
instabilities is crucial to predict the interaction of the galaxy’s interstellar medium with
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Figure 2.1: Gas density slices through the centre of the cloud test of Agertz et al. (2007),
at times t = 0.25, 1.0, 1.75 and 2.5 tKH. From top to bottom, the two SPH-based codes
Gasoline, GADGET-2, and the three grid-based codes Enzo, FLASH, and ART-Hydro
are compared at equivalent resolutions. The grid-based simulations show a considerably
faster dissolving and a complete destruction of the cold dense blob, whereas in SPH a
residual part of the blob remains (figure taken from Agertz et al. 2007).
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Figure 2.2: Voronoi mesh geometry of a relaxed gas distribution simulation with VPH.
The region shows simulation particles that have identical mass, specific entropy and
volume, and are therefore in pressure equilibrium.

the more tenuous intracluster gas.

Direct comparisons of Eulerian codes and SPH have also shown that the growth rates of
fluid instabilities are different (Agertz et al. 2007; Mitchell et al. 2009). Furthermore, these
simulation techniques disagree on the thermodynamic state predicted for the gas in rich
clusters of galaxies. If radiative losses are neglected, with SPH one finds a lower entropy
in the core compared with grid-based methods (Frenk et al. 1999; Mitchell et al. 2009).
The origin of this discrepancy is still unclear, however, one can speculate that it is likely
related to one or both of the main differences between Eulerian and SPH codes, which are
the different treatment of mixing and the unequal capabilities to follow fluid instabilities
(Agertz et al. 2007; Tasker et al. 2008; Wadsley et al. 2008a; Mitchell et al. 2009).

In this work, we will primarily focus on finding a way to improve the treatment of fluid
discontinuities in particle-based methods such as SPH. Because the problems to accurately
represent these interfaces appear to be also the root cause of SPH’s difficulty to model
fluid instabilities, one can hope that improving the former will also help with the latter
issue. A better density estimate than the one used in SPH may therefore help to greatly
reduce the systematic differences between the different hydrodynamical methods.
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Figure 2.3: Slices through density field reconstructions for a toy galaxy distribution
(adopted from Schaap 2007). Top row: The different components of the input galaxy dis-
tributions drawn as point distribution. Bottom three rows: Density field reconstructions
using triangular-shaped-clouds (TSC) binning on a Cartesian grid, SPH or the Delaunay
Tessellation Field Estimator (DTFE) method of Schaap (2007).
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2.5 Voronoi particle hydrodynamics

In this thesis, we propose the new Voronoi particle hydrodynamics (VPH) technique, which
is exactly trying to achieve such a fundamental improvement of SPH. It retains the La-
grangian nature of SPH, allowing it to follow advection perfectly and making the scheme
Galilean-invariant. Just like in SPH, the flow of gas is also discretized into moving points
which have a preassigned mass and a certain specific entropy. The point distribution follows
the gravitationally driven growth of structure, such that the point density and therefore
the resolution increases in regions that cluster strongly, yielding an automatic adaptivity.

All of these properties of VPH are the same as in SPH, but the main difference lies
in the choice of the volume discretization method and in the density estimation. Whereas
SPH uses a kernel estimation method to approximate the density field, VPH assigns to
each point the volume which is closer to it than to any other point of the distribution
(see Figure 2.2). This “Voronoi tessellation” is local as it only involves neighbouring
points. That makes it ideal for parallel computing since only the information of the next
neighbours in thin regions of overlap have to be synchronized between the computational
domains.

The Voronoi mesh is also tightly related to the Delaunay-triangulation, which forms
its topological dual. The Delaunay-tessellation is a unique construction where the circum-
spheres of each tetrahedron do not contain further points. This unique triangulation of
a point-set is dual to the Voronoi tessellation in the sense that each Delaunay edge con-
necting two points is the normal to the Voronoi face which separates the Voronoi cells of
these two points. The tessellation-based volume discretization ensures the best possible
resolution for a given set of points, as illustrated in Fig. 2.3 (adopted from Pelupessy et al.
2003). Because the Voronoi tessellation partitions the volume unambiguously, the sum of
the volumes associated with each particle really exactly adds up to the total volume, un-
like in SPH, where this volume sum can be significantly biased. Because we will define our
density estimate as the mass of a particle divided by the associated Voronoi volume, this
also means that the density field is represented more accurately. This comes on top of the
higher effective resolution of VPH compared to SPH, which originates in the locality of the
volume estimate and the absence of smoothing. VPH’s biggest strength lies in its capabil-
ity to sample and follow shocks, and more importantly density discontinuities, within two
resolution elements. Together with VPH’s ability to accommodate large dynamic ranges,
these characteristics make VPH an ideal scheme to study cosmological problems.

In this thesis, we will develop VPH as a new method and explore its properties in
detail. We expect that it will help to shed light on the origin of the differences that have
been found between mesh-based simulations and SPH when applied to the same initial
conditions, such as the prominent Santa Barbara cluster comparison project. We will
develop a new numerical for VPH that is seamlessly integrated into the existing SPH
code GADGET (Springel 2005a). This tight integration is especially ideal for comparisons
between VPH and SPH, because it guarantees that self-gravity is treated in exactly the
same way in both cases, as well as radiative cooling and sub-resolution treatments of star
formation and associated feedback.
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In our test applications we will make heavy use of this capability. In particular, we carry
out simulations that are sensitive to the suppression of fluid instabilities due to spurious
forces at the “surface” of a galaxy as it travels through the intragroup or intracluster
medium. This can strongly effect the stripping rate of gas out of galaxies, which is a very
important effect for the evolution of galaxies in dense environments.

2.6 Application prospects of VPH

Cosmological applications for VPH can be found everywhere where SPH has already been
successfully applied. Since they are both Lagrangian techniques, they offer similar advan-
tages, so that one has to weigh SPH’s robustness and simplicity against the higher spatial
resolution and numerical accuracy of VPH. If the system under study is significantly in-
fluenced by density discontinuities that lead to hydrodynamical instabilities, VPH should
however be the better choice. As it can be used as a kind of drop-in replacement for SPH,
it is also particularly simple to switch from SPH to VPH, since the treatment of extra
physics like cooling or feedback can be carried out in the same way.

We can also expect that employing VPH together with N-body approaches for the dark
matter will be an equally successful combination as SPH plus N-body, because the ability
to resolve vast density ranges remains. For example, an SPH simulation with dark matter
and gravity by Hernquist et al. (1996) was able to reproduce the general distribution of Ly-
α absorbers within the ΛCDM paradigm. Other simulations have been used to study the
Sunyaev-Zel’dovich effect (da Silva et al. 2000) arising in clusters of galaxies. Yet another
area where SPH-based simulations have played an important role is the investigation of
galaxy formation and evolution, including the detailed study of merging galaxies (see e.g.
Springel et al. 2005a). For all of these problems, VPH is readily applicable and promises
to yield more accurate simulation results.

Especially where encounters between galaxies or the interaction of a galaxy with the
intracluster medium play an important role, VPH’s more accurate treatment of fluid in-
stabilities should help to significantly improve theoretical predictions in galaxy formation
and evolution. VPH may even help to resolve some of the long-standing problems in our
understanding of galaxy formation. For example, according to the general picture, galaxy
formation starts when gas collapses to gaseous discs inside dark matter halos (see White
and Rees 1978). During the collapse, the gas carries its angular momentum with it. Al-
though this basic picture of galaxy formation is widely accepted, crucial aspects of it remain
debated, for example the question to what extent the gas flows in as cold streams with-
out ever being shocked, as opposed to gas cooling in a more or less spherically symmetric
fashion from a hot, shock-heated halo. Another disputed topic are the massive bulges that
are usually found in hydrodynamic simulations of galaxy formation, which could signify
both, missing physics or inaccurate numerical techniques. These issues therefore need to
be investigated not only by modifying the models for the included physics, but also by
testing and refining the hydrodynamical simulation methods, which brings us back to the
main goal of this thesis.
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Chapter 3

Particle hydrodynamics with

tessellation techniques

S. Hess and V. Springel, 2010, MNRAS, 406, 2289

Abstract
Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to
model fluids in astrophysical problems, thanks to its geometric flexibility and ability
to automatically adjust the spatial resolution to the clumping of matter. However, a
number of recent studies have emphasized inaccuracies of SPH in the treatment of
fluid instabilities. The origin of these numerical problems can be traced back to spu-
rious surface effects across contact discontinuities, and to SPH’s inherent prevention
of mixing at the particle level. We here investigate a new fluid particle model where
the density estimate is carried out with the help of an auxiliary mesh constructed as
the Voronoi tessellation of the simulation particles instead of an adaptive smoothing
kernel. This Voronoi-based approach improves the ability of the scheme to represent
sharp contact discontinuities. We show that this eliminates spurious surface tension
effects present in SPH and that play a role in suppressing certain fluid instabilities.
We find that the new ‘Voronoi Particle Hydrodynamics’ described here produces
comparable results than SPH in shocks, and better ones in turbulent regimes of pure
hydrodynamical simulations. We also discuss formulations of the artificial viscosity
needed in this scheme and how judiciously chosen correction forces can be derived in
order to maintain a high degree of particle order and hence a regular Voronoi mesh.
This is especially helpful in simulating self-gravitating fluids with existing gravity
solvers used for N-body simulations.

3.1 Introduction

Numerical simulations have become an important research tool in many areas of astro-
physics, in particular in cosmic structure formation and galaxy formation. This is in part
because the physical conditions involved cannot be reproduced in laboratories on Earth, so
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that simulations serve as a replacement for experiments. Perhaps more importantly, simu-
lations in principle allow a full modeling of all the involved physics. However, a significant
problem in practice is that that the equations one wants to solve first have to be numeri-
cally discretized in a suitable fashion. The accuracy of simulations depends strongly on the
properties of this discretization, and it hence remains an important task to find improved
numerical schemes for astrophysical applications.

In cosmic structure formation, matter is initially essentially uniformly distributed, but
clusters with time under the action of self-gravity to enormous density contrasts, producing
galaxies of vastly different sizes. Given the variety of involved geometries, densities and
velocities, it is clear that a Lagrangian method, where the mass of a resolution element
stays (roughly) constant, would be most convenient. This is because a Lagrangian method
automatically concentrates the resolution in regions where the galaxies form, and hence
focuses the numerical effort on the regions of interest. On the other hand, traditional mesh-
based approaches to hydrodynamics, so-called Eulerian methods, discretize the volume in
a set of cells and do not follow the clustering of matter, unless this is attempted with a
suitable adaptive mesh-refinement strategy.

The by far most widely used Lagrangian approach in structure formation is smoothed
particle hydrodynamics (SPH, as reviewed by Monaghan 1992, 2005; Rosswog 2009), a
technique that dates back to particle-based approaches first developed in astronomy more
than 30 years ago (Lucy 1977b; Larson 1978; Gingold and Monaghan 1977). In this method
the fluid is discretized in terms of particles of fixed mass, which are used to construct an
approximation to the Euler equations based on the adaptive kernel interpolation technique.
SPH can be very easily coupled to self-gravity, it is remarkably robust (e.g. negative den-
sities cannot arise), and the introduction of extra physics (e.g. feedback processes in the
context of star formation) is intuitive. All of these properties have made it very popular
for problems such as planet formation or galaxy mergers (e.g. Dolag et al. 2005; Robert-
son et al. 2004; Mihos and Hernquist 1996; Mayer et al. 2002), where spatially separated
regions of the simulation volume feature widely different densities.

However, recent studies have highlighted a number of differences in the results of SPH-
based calculations compared to more traditional grid-based Eulerian methods for hydro-
dynamics. For example, the two methods appear to disagree about the entropy produced
in the central region of a forming galaxy cluster under non-radiative conditions, as first
seen in the ‘Santa Barbara cluster comparison project’ (Frenk et al. 1999). It has been
suggested that this problem may be caused by a suppression of the Raleigh-Taylor fluid
instability in SPH (Mitchell et al. 2009) and the lack of mixing at the particle level (Tasker
et al. 2008; Wadsley et al. 2008b). Indeed, Agertz et al. (2007) have shown that SPH tends
to suppress Kelvin-Helmholtz fluid instabilities in shear flows across interfaces with sizable
density jumps. In such a situation, SPH’s density estimate leads to spurious forces at the
interface which produce an artificial ‘gap’ in the particle distribution and a surface tension
effect that ultimately produces errors in the hydrodynamical evolution. To what extent
these numerical artifacts negatively affect the global accuracy of simulations in practice
is unclear, and this can in any case be expected to be problem dependent. However, an
improvement of standard SPH that avoids these errors is obviously desirable.
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First proposals in this direction have recently been made. Price (2008) suggests to intro-
duce artificial heat conduction into SPH such that discontinuities in the temperature field
are smoothed out, in analogy to the ordinary artificial viscosity that effectively smoothes
out discontinuities in the velocity field occurring at shocks. This heat conduction produces
a soft instead of an abrupt transition of the specific entropy across a contact discontinu-
ity, which in turn helps to better represent the growth of Kelvin-Helmholtz instabilities at
such interfaces. More recently, Read et al. (2009) have modified an idea by Ritchie and
Thomas (2001) for a modified SPH density estimate that assumes that the local neighbours
have similar pressures, and which is designed to avoid the ‘pressure blip’ in the standard
approach at contact discontinuities. Together with a modified kernel shape and a drasti-
cally enlarged number of neighbours (by a factor of ∼ 10, implying a similar increase in
the computational cost), Read et al. (2009) obtained better growth of Kelvin-Helmholtz
instabilities across density jumps.

In this work we follow a different approach that eliminates the ordinary SPH kernel
altogether. Instead, we use the distribution of points with variable masses to construct
an auxiliary mesh, which is then used to derive local density estimates. If the particle
hydrodynamics is derived from a Lagrangian, it turns out that obtaining this density
estimate is already sufficient to uniquely determine the equations of motion. The use
of Delaunay tessellations to construct density fields from arbitrary point sets has been
discussed in the literature (Schaap 2007; Icke and van de Weygaert 1987; van de Weygaert
and Icke 1989; Pelupessy et al. 2003), but as we show in this chapter, its topological dual,
the Voronoi tessellation, is actually preferable for our hydrodynamical application. In
the Voronoi tessellation, to every particle a polyhedra is assigned which encompasses the
space closer to this particle than to any other. Based on these volumes associated with
each particle, local densities and hydrodynamical forces can be estimated, leading to an
interesting alternative to SPH. In particular, it is immediately clear that unlike SPH this
approach yields a consistent discretization not only of the mass but also of the volume,
which should help to yield an improved representation of contact discontinuities. We note
that a conceptionally similar approach to Voronoi based particle hydrodynamics was first
discussed by Serrano and Español (2001) in the context of a mesoscopic fluid particle model.
We here extend this idea to the treatment of the Euler equations in astrophysical systems.

We emphasize that the method we introduce in this study is radically different from
to the one implemented in the new AREPO code (Springel 2009). Whereas the latter is
also based on a (moving) Voronoi tessellation, it employs a finite volume scheme with a
Riemann solver to compute hydrodynamical fluxes across mesh boundaries. This involves
an explicit second-order reconstruction of the fluid throughout the volume, and allows for
changes of the mass contained in each cell even if the mesh is on average moving with the
flow. In contrast, we here derive a fluid particle model from a discretized Lagrangian in
which the masses of each element stay strictly constant, and in which the motion of the
particles is governed by pairwise pressure force exchanged between them. While AREPO

is conceptually close to the techniques used in Eulerian hydrodynamics, the method we
study here is conceptually close to SPH.

This chapter is structured as follows. In Section 3.2, we discuss how the equations of
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motion can be derived for the Lagrangian particle approach to hydrodynamics discussed
here. We will also present suitable formulations of artificial viscosity for our scheme. In
Section 3.3, we discuss the role of the regularity of Voronoi cells and means to improve
it. We briefly describe the implementation of our numerical scheme in a modified version
of the GADGET code in Section 3.4, and then turn in Section 3.5 to a description of
results for a suite of test problems with our new ‘Voronoi Particle Hydrodynamics’ (VPH)
scheme. These tests range from simple shock-tube problems, to fluid instabilities, and three-
dimensional stripping of gas in a supersonic flow. Finally, we summarize our conclusions
in Section 3.6. In two Appendices, we discuss gradient operators for Voronoi meshes and
give the derivation of correction forces that can be used to maintain very regular mesh
geometries, if desired.

3.2 Particle based hydrodynamics

We begin by introducing our methodology for a particle-based fluid dynamics based on
Voronoi tessellations. This method is close in spirit to SPH, but differs in important
aspects. Where appropriate, we discuss these differences in detail.

3.2.1 A Lagrangian approach for particle based fluid dynamics

We discretize the fluid in terms of N mass elements of mass mi. The discretized fluid
Lagrangian can then be adopted as

L =
∑

i

[

1

2
mi ~v2

i − mi ui(ρi, si)

]

(3.1)

This is simply the difference of the kinetic and thermal energy of the particles. The thermal
energy ui per unit mass depends both on the density ρi and the specific entropy si of the
particle. In this work, we aim to approximate inviscid ideal gases, hence the equation of
state (EOS) is that of a polytropic gas, where the pressure is Pi = siρ

γ, and the entropic
function si (or simply ‘entropy’ for short, since it depends only on the thermodynamic
entropy) labels the adiabat on which this gas element resides.

When the specific entropy si and the mass mi remain constant for a fluid element i, the
internal energy ui changes according to ∂u

∂ρ
= P

ρ2 . Using this result, we can readily write

down the Lagrangian equations of motion of (reversible) fluid dynamics:

mï~ri = −
N
∑

j

mj
∂uj

∂~ri

= −
N
∑

j

mj
∂uj

∂ρj

∂ρj

∂~ri

= −
N
∑

j

mj
Pj

ρ2
j

∂ρj

∂Vj

∂Vj

∂~ri
(3.2)
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We see that the primary input required for a more explicit form of the equations is a
density estimate based on the particle coordinates, or alternatively, an estimate of the
volume associated with a given particle.

SPH addresses this task with a kernel estimation technique to obtain the density, where
an adaptive spherically symmetric smoothing kernel is employed to calculate the density
based on the spatial distribution of an approximately fixed number of nearest neighbours.
The Lagrangian then uniquely determines the equations of motion that simultaneously con-
serve energy and entropy (Springel and Hernquist 2002). However, we note that SPH does
not achieve a consistent volume estimate, i.e. the sum of the effective volumes of the parti-
cles, Vi = mi/ρi, is not guaranteed to be equal to the total simulated volume. Furthermore,
the inherent smoothing operation in the density estimate is bound to be inaccurate at con-
tact discontinuities and phase interfaces, where the density may discontinuously jump by
a large factor. In the following, we therefore look for alternative ways to construct density
estimates which improve on these deficits.

3.2.2 Density estimates with tessellation techniques

One promising approach for more accurate density and specific volume estimates lies in
the use of an auxiliary mesh that is generated by the particle distribution. A mesh can
readily yield a partitioning of the volume such that the total volume is conserved, and also
allows multiple ways to ‘spread out’ the particle masses mi in a conservative fashion such
that an estimate of the density field is obtained.

There are two basic geometric constructions that suggest themselves as such mesh
candidates. These are the Delaunay (Dirichlet 1850) and the Voronoi tessellations (Voronoj
1908), which are in fact mathematically closely related, as we discuss below. In the Voronoi
tessellation, space is subdivided into non-overlapping polyhedra which each encompass the
volume which is closer to its corresponding point than to any other point. The surfaces
of these polyhedra are therefore the bisectors to the nearest neighbours. The Delaunay
tessellation on the other hand decomposes space into a set of tetrahedra (or triangles
in 2D), with vertices at the point coordinates. The defining property of the Delaunay
tessellation is that the circumcircles of the tetrahedra do not contain any of the points in
their interior. This property in fact makes this tessellation uniquely determined for points
in general position.

It turns out that these two tessellations are dual to each other; to each edge of the
Delaunay tessellation corresponds a face of the Voronoi tessellation, and the circumcircle
centres of the Delaunay tetrahedra are the vertices of the Voronoi faces. One implication
of this is that the Delaunay and Voronoi Tessellations can be easily transformed into each
other. In practice it is typically simpler to always construct the Delaunay tessellation, even
if one works with the Voronoi, because the former has more efficient and simpler algorithms
for construction.

Both tessellations can in principle be used to derive density estimates. Schaap and
van de Weygaert (2000) introduced the Delaunay Tessellation Field Estimator (DTFE)
technique, and Pelupessy et al. (2003) showed that it offers superior resolution compared to
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SPH-like density estimates for detecting cosmological large-scale structure (for a review see
van de Weygaert and Schaap 2009). In this approach, the total volume of the contiguous set
of Delaunay cells around a point is used to assign particle densities, and a full density field
can be constructed by linearly interpolating the densities inside each Delaunay tetrahedron.
As a possible application of this density estimate, Pelupessy et al. (2003) also suggested
its use in a particle-based hydrodynamic scheme. However, we caution that a rather
serious short-coming of the Delaunay tessellation in this context is that the tessellation
may occasionally change discontinuously as a function of the particle coordinates. This
happens whenever a particle moves over the circumcircle of one of the tetrahedra. An
infinitesimal particle motion can hence be sufficient to create finite changes in the volume
of its associated contiguous Delaunay cell (this is the union of all Delaunay tetrahedra of
which the given point is one of the vertices) of a particle. As a result, the thermal energy
of the point set is not a continuous function of the particle coordinates. This makes the
DTFE technique ill suited to be the basis of a hydrodynamical particle method.

On the other hand, the volumes of the Voronoi cells always depend continuously on
the particle coordinates, despite the fact that topological changes of the tessellation may
occur as a result of particle motion. This is because flips of edges in the Delaunay tessella-
tion happen precisely when the corresponding Voronoi faces have vanishing area. Another
advantage of the Voronoi tessellation is that it is always uniquely defined for any distri-
bution of the points, whereas for certain degenerate point sets (those where more than
four points lie on a common circumsphere), more than one valid Delaunay tessellation may
exist, which can then make Delaunay-derived density estimates non-unique. We remark
that the uniqueness of the Voronoi tessellation does not hold in reverse, i.e. a given Voronoi
tessellation can in general be produced by a number of different point distributions. This
has important consequences for the stability of the scheme, as we discuss later on in more
detail.

Based on the above, the Voronoi tessellation is a promising construction for a particle
fluid model, hence we adopt it in the following. In particular, we shall associate the volume
Vi of a Voronoi cell with its corresponding point, yielding a consistent decomposition of
the total simulated volume. The simplest possible density estimate is then simply given
by

ρi =
mi

Vi

(3.3)

which we shall use in this chapter. More involved higher-order density field reconstructions
could be considered as well, an idea we leave for future work.

Based on this density estimate, and given the specific entropies of each particle, the
local pressure and the thermal pressure per unit mass can be computed. Also, one may
define a gradient operator for the Voronoi mesh (see our discussion in Appendix A.1.1),
which could be used to estimate pressure gradients, and hence to yield discretizations of the
Euler equations. However, a better approach is to start from the discretized Lagrangian,
as this automatically gives equations of motion that satisfy the conservation laws. We shall
adopt this strategy in the following.
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Figure 3.1: Section of a Voronoi diagram for a set of points marked with asterisks. All
the triangles in the dual Delaunay tessellation that are shared by the point in the centre
are marked in blue. The vectors ~cij and ~eij needed to calculate the derivative of the
volume are also marked.

3.2.3 Equations of motion for Voronoi-based particle hydrody-

namics

Since the volumes of the Voronoi cells depend only on the configuration of the points, we
can readily obtain the equations of motion if we find the partial derivative of a cell volume
with respect to any of the particle coordinates. We here adopt the result of Serrano and
Español (2001), who showed that the relevant derivative is given by (see also De Fabritiis
et al. 2006)

∂Vj

∂~ri
= −Aij

(

~cij

Rij
+

~eij

2

)

for i 6= j (3.4)

where ∂
∂~ri

denotes the gradient operator with respect to ~ri. Here Rij is the distance between
two neighboring points, ~eij = (~rj − ~ri)/Rij denotes a unit vector from i to the neighbour
j, which is normal to the Voronoi face of area Aij between cells i and j. Formally, we
can define Aij for any pair of different particles, but if i and j are not neighbours in the
Voronoi tessellation (i.e. do not share a face), we set Aij ≡ 0, implying that in sums that
involve the factor Aij only the direct neighbours contribute. Note that equation (3.4) holds
only for j 6= i. But one can readily derive an expression for ∂Vi/∂~ri by invoking volume
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conservation. This yields
∂Vi

∂~ri

= −
∑

j 6=i

∂Vj

∂~ri

(3.5)

As sketched in Figure 3.1, the vector ~cij points from the midpoint between i and j to the
centroid of the face Aij , and is orthogonal to ~eij . The term involving ~eij/2 can be easily
understood geometrically from the change of the volumes of the pair of pyramids spanned
by the face between i and j and the two points. But if the center of the face is displaced
from the line connecting i and j, a second term involving ~cij appears that stems from the
turning of the face when the points are moved.

We are now in a position to write down the resulting equations of motion, based on
equations (3.2), (3.4) and (3.5). This first yields

∂ρj

∂~ri
=

mj

V 2
j

[

(1 − δij)Aij

(

~cij

Rij
+

~eij

2

)

−δij

∑

k 6=j

Ajk

(

~cjk

Rjk

+
~ejk

2

)]

, (3.6)

which then gives rise to the equations of motion in the form

mï~ri =
∑

j 6=i

Aij(Pi − Pj)

(

~cij

Rij
+

~eij

2

)

(3.7)

This is a rather intuitive result, as it shows that motions are generated by the pressure
differences that occur across faces of the tessellation. If the pressures are all equal, the
forces vanish exactly, unlike in ordinary SPH.

In the form of equation (3.7), it is not obvious whether the forces between a given pair
of particles are antisymmetric. However, noting the identity

∑

j 6=i Aij~eij = 0, which follows
from Gauss’ theorem, we can restore manifest antisymmetry in the equations of motion,
which is in general preferable for numerical reasons. To this end, we simply subtract
Pi

∑

j 6=i Aij~eij = 0 from (3.7), yielding our final equations of motion as

mi ~̈ri = (3.8)

−
∑

j 6=i

Aij

[

(Pi + Pj)
~eij

2
+ (Pj − Pi)

~cij

Rij

]

which is now pairwise antisymmetric. Note that whereas formally the sums appearing
in these equations are carried out over all particles, only the direct neighbours actually
contribute, and these are known from the tessellation. In fact, the list of interacting
particle pairs is exactly given by the list of edges of the underlying Delaunay tessellation,
or equivalently, by the list of faces of the Voronoi tessellation.

We further note that since the equations of motion have been derived from the La-
grangian given in equation (3.1), these equations conserve energy, momentum and entropy
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exactly. In the present form they are hence a description of the reversible, adiabatic parts of
a flow, but they do not yet contain any dissipation, which is however needed to treat shocks.
If no such dissipation is included, shocks will lead to unphysical ringing and oscillations in
the fluid.

3.2.4 Artificial viscosity

We follow the standard SPH approach (e.g. Gingold and Monaghan 1977; Balsara 1995)
and invoke an artificial dissipation in the form of an extra friction force that reduces the
kinetic energy and transforms it into heat. There is great freedom in the form of this
viscous force, but ideally it should only become active where it is really needed, i.e. in
shocks, and should be negligible away from shocks, such that inviscid behavior is ensured
there. The most widely used and tested formulation of the viscous acceleration in SPH
schemes is given by

(~avisc)i = −
∑

j

mjΠij
~∇iW ij , (3.9)

Πij =
f̄ij

ρ̄ij

(

−α µij c̄ij + β µ2
ij

)

, (3.10)

µij =
h̄ij ~vij · ~rij

r2
ij + ǫ h̄2

ij

, (3.11)

f̄ij =
fi + fj

2
(3.12)

fi =
|~∇ · ~v|i

|~∇ · ~v|i + |~∇× ~v|i + ǫ
(3.13)

provided that ~vik · ~rik < 0, i.e. the neighboring particles approach each other, otherwise
the viscous force that is mediated by the viscous tensor Πij is set to zero. In this notation,
qij represents the difference and q̄ij the average between the quantities q associated with
particles i and j. The parameter ǫ is a tiny value introduced to guard against numerical
divergences. The parameters α and β set the strength of the viscosity and are typically
set to of order ∼ 1. The factors fi measure the strength of the local velocity dispersion
relative to the local shear, and are introduced as so-called Balsara switch to reduce the
viscosity if the local flow is dominated by shear (Balsara 1995).

The above formulation of a viscous force can be adopted to the Voronoi scheme in a
number of ways. We first define the projected pairwise velocity as

wij =
~vij · ~rij

|~rij |
(3.14)

and make the replacement µij → wij. This is effectively yielding the ‘signal velocity’
form of the standard viscosity (Monaghan 1997). For simplicity, we shall also adopt the
common choice β = 2α. We next recognize that in SPH the viscous tensor is introduced
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into the equations of motion as if it was an extra pressure of the form Pvisc = 1
2
ρ2

ijΠij

(Springel 2005b). Using this analogy, and guiding ourselves by the form of the Voronoi-
based equations of motion (3.9), we can readily write down a parameterization of the
viscous force acting on a particle as

mi(~avisc)i = −
∑

j

Aijρ
2
ijΠij

~eij

2
(3.15)

Here we have only introduced a viscous force component parallel to the line connecting the
two particles, since we assume that the ‘viscous extra pressure’ is the same for a pair of
interacting particles, i.e. (Pvisc)i = (Pvisc)j . A more explicit form of the viscous acceleration
is given by the following expression:

(~avisc)i = α
∑

j

f̄ij

mi
ρ̄ijAij

(

wij c̄ij − 2w2
ij

) ~eij

2
(3.16)

Note that the viscous force is pairwise antisymmetric, and will only become active if two
particles approach each other. We also want to stress that artificial viscosity parame-
terizations different from that of equation (3.16) are of course possible. We here simply
adopt this form as a first best guess, based on the analogy with the widely tested SPH
formulation.

It is interesting to compare the artificial viscosity with the viscosity terms of the Navier
Stokes equation,

m
D~v

Dt
= −~∇P + η ∆~v + λ ~∇(~∇~v) (3.17)

Neglecting the shear viscosity η and approximating the gradient operator with its Voronoi
discretized form (see Appendix A), this becomes

(

λ ~∇(~∇~v)
)

i
≃ λ

1

Vi

∑

j

Aij
~eij

2
(~∇~v)j (3.18)

Additionally approximating

(∇~v)j ≈
~vij · ~rij

|~rij|
= wij (3.19)

yields a term like the one linear in w in equation (3.16), adding some further justification
to this form of the viscous force, which has the form of an artificial bulk viscosity.

In order to maintain energy conservation, heat must be produced at a rate dE/dt
that exactly balances the loss of kinetic energy due to the extra friction from the artificial
viscosity. We inject this energy symmetrically into the specific entropies of the two particles.
Defining the pairwise viscous forces as

(~fvisc)ij = −Aijρ
2
ijΠij

~eij

2
(3.20)
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the heating is given by
dui

dt
=

1

2

∑

j

(~fvisc)ij · ~vij (3.21)

With ui = siρ
γ−1
i /(γ − 1) this yields for the rate of entropy production

dsi

dt
=

γ − 1

2 ργ−1
i

∑

j

(~fvisc)ij · ~vij (3.22)

In this form, the equations still conserve total energy and momentum, while the change of
the total entropy is positive definite.

The artificial viscosity is necessary to capture shocks and to damp postshock oscillations
in the vicinity of shocks, but everywhere else in the fluid it can induce spurious dissipation
that distorts the physics of an inviscid gas. In order to reduce the influence of the viscosity
in regions away from shocks, the prefactor α that sets the strength of the viscosity can be
chosen adaptively (Morris 1997; Dolag et al. 2005). The idea of this dynamic viscosity is
that every particle gets an individual viscosity strength α which is evolved in time according
to the differential equation

dα

dt
= −α − α∗

τ
+ S (3.23)

Here α is decaying to a minimum α∗ on a timescale τ , and is increased by the source term
S. One possible choice for this source term is

S = f̄ij ζ ~∇ · ~v (3.24)

which we adopt in our implementation of a time-variable artificial viscosity, using the
discretized estimate of the divergence described in Appendix A. Here both the response
coefficient ζ and the timescale τ have to be calibrated empirically. When a shock arrives
in an unperturbed area, α is at its minimum and needs to jump very quickly to a higher
level in order to capture the shock and prevent post shock oscillations, whereas behind the
shock, the viscosity should quickly return to a low value. However, a too large value for ζ
may trigger high viscosity due to the often noisy estimates of the ~∇ · ~v term, and if τ is
too small, the viscosity may decay too quickly to capture the shock properly. Finally, the
minimum viscosity α∗ can be set to a non-zero value to improve particle order and thereby
reduce noise, at the cost of introducing some minimum viscosity.

3.2.5 Treatment of mixing

Hydrodynamic simulations are able to follow the advection of fluids only down to the
resolution scale. But especially Lagrangian schemes do not include mixing processes of
the fluid on sub-resolution scales. In Eulerian codes, such mixing is implicit whenever a
new averaged thermodynamic state for a cell is computed after fluxes of gas have entered
or left it. This mixing keeps the total energy fixed, but will in general raise the entropy
of the system. In the Lagrangian particle approach of SPH and in the Voronoi approach
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developed here, such mixing effects are, however, entirely suppressed. The specific entropies
of neighbouring particles stay constant, except when a shock is present. While this reliably
eliminates unwanted entropy production from advection errors, it also prevents the proper
subresolution production of entropy when small-scale fluid instabilities should mix the fluid
on the resolution scale and produce homogeneous thermodynamic properties.

We have therefore tried to model this subgrid mixing with a heuristic model which
conjectures that small-scale fluid instabilities, if present, equalize the local temperature
field by mixing. This will then smooth out sharp contact discontinuities and also tend to
equilibrate the specific entropies of the cells. Similar ideas have recently been discussed
by Price (2008), Wadsley et al. (2008b) and Shen et al. (2009) in the context of SPH,
but our approach differs in detail. In particular, we restrict the averaging to shearing
layers, and motivate the timescale for mixing directly with the growth timescale of the
Kelvin-Helmholtz instability on the resolution scale.

The linear theory growth timescale of a perturbation across a contact discontinuity
with densities ρi and ρj that exhibits a jump in the tangential velocity of size v

‖
ij (a shear

layer) is given by

tKH =
ρi + ρj

2 k v
‖
ij
√

ρiρj

(3.25)

Here k = 2π/L is the wavenumber of the Kelvin-Helmholtz mode. We shall assume that L
is of order the cell dimension, which is in turn of order the particle separation, i.e. we will
set L = Rij when a particle pair of separation Rij is considered. Similarly, the relevant
velocity jump is simply the velocity difference projected onto the face between two particles,
which is normal to their separation vector, hence

v
‖
ij = |~vij − (~vij · ~eij)~eij | (3.26)

We further assume that the fluid mixing on scales below the particle cells can be approx-
imately described as a diffusion process, operating with diffusion constant D = χL2/tKH,
where χ is a dimensional efficiency that controls the strength of the mixing (and which
needs to be determined empirically). We hence effectively model the mixing with heat
diffusion of the form ∂u/∂t = D∇2u.

Using the SPH discretization of thermal conduction as a guide (Jubelgas et al. 2004), we
can readily find a discretization of the heat diffusion for the Voronoi particle discretization.
We obtain

mi
dui

dt
= 2πχ

∑

j

Aij(1 − f̄ij)|v‖
ij|
√

ρiρj(uj − ui) (3.27)

Here we introduced a further factor (1− f̄ij) in a similar manner as in (3.13). This Balsara-
like factor is used to restrict the diffusion only to areas where the compression (as measured

by |~∇ · ~v|) is clearly negligible compared to the shear (as measured by |~∇× ~v|).
Note that this equation preserves the total thermal energy, and heat energy only flows

from hotter to colder particles. The corresponding rates of entropy change for each particle
can be obtained by multiplying with (γ−1)/ργ−1

i . While the specific entropy of individual
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particles may go down if they give up some of their heat energy, the total entropy of the
system increases due to this process, which can be interpreted as providing the necessary
mixing entropy.

One important difference of our parameterization of ‘artificial heat conduction’ to the
model of Price (2008) is that the mixing only occurs in shear flows, and that contact
discontinuities without shear are hence not affected.

We note that due to the parabolic character of the diffusion problem, it can be prob-
lematic to integrate equation (3.27) with an explicit time integration scheme, since the von
Neumann criterion imposes relatively small timestep limits.

∆t ≤ (∆x)2

D
≈ (∆x)

2πχ|v‖
ij|

(3.28)

where we estimated min
(

ρi+ρj

2
√

ρiρj

)

= 1 and assumed ∆x ≈ L. The CFL criterion is more

restrictive than this timestep as long as

|v‖
ij| ≪

1

2πχ
csound (3.29)

which is usually the case and hence not too restrictive. Indeed, so far we have not en-
countered problems with the explicit time integration scheme that is implemented for the
mixing at present. If needed, an implicit scheme with perfect stability could however be
easily adopted, like the one discussed in Petkova and Springel (2009).

3.3 Issues of cell regularity

A common feature of particle hydrodynamic schemes is their ability to automatically pro-
vide an adaptive resolution. As a result, dense regions are modelled with better accuracy
thanks to their smaller mean distance of particles. But besides the particle number den-
sity the regularity of the Voronoi cells is an important factor in determining the achieved
precision, as shown in Appendix A.1.3, where we give quantitative results for the accuracy
of our gradient estimates as a function of the shape distortions of cells. Highly irregular,
sliver-like Voronoi cells may also lead to very small, computationally costly timesteps, be-
cause the permissible timestep size is effectively proportional to the distance to the nearest
neighbour.

Connected to this problem is the issue of how to safely prevent inter-particle pene-
trations, which is required for a proper representation of the fluid with its single valued
velocity field. If two particle approach each other rapidly, it is possible that the particles
pass through each other unless this is prevented with a sufficiently strong artificial viscosity.
If the Voronoi mesh is very irregular and features a large number of close particle pairs, it
becomes more difficult to ensure this, simply because rather large viscous forces that act
over short timescales are required to prevent the small particle separations from becoming
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Figure 3.2: Two point distributions and their corresponding Voronoi tessellations. The
important point illustrated by this example is that different point distributions may have
identical Voronoi tessellations.

still smaller. These problems are significantly alleviated if the tessellation is relatively ‘reg-
ular’, i.e. if cells have a small aspect ratio, and if their generating points lie close to the
centroids of the corresponding cells.

Figure 3.2 illustrates another important feature of Voronoi meshes, which we may per-
haps call ‘mesh degeneracy’. In this example, the mesh for two different point distributions
is shown, but in both cases an identical Cartesian Voronoi mesh results, hence the density
and pressure estimates are both equal. In fact, one can continue to move the groups of
four points around the mesh vertices in a mirrored fashion arbitrarily close towards the
corners of the mesh, without changing the situation. If one now imagines adding some
random velocity field to the points when they are very close, it is clear that it will be much
harder to prevent an erroneous particle crossing in the case where the points are far from
the centres of their associated cells than in the case where they sit right at these centres.

One might argue that situations as shown in Figure 3.2 are artificial and hence do not af-
fect the simulation of flows where Voronoi diagrams are seldom that regular. But situations
occur where the volume is only slightly increased when particles approach. Also consider-
ing a finite timestep these particles’ resistance against a clumping or even interpenetration
is then uncomfortably weak.

If possible, it would therefore be desirable to formulate the dynamics such that the
mesh automatically maintains a certain degree of regularity. We note that this cannot be
expected to happen by itself for the density estimation scheme we implemented thus far.
This is again made clear by the example in Figure 3.2, where the pressure gradient vanishes
in both cases if the specific entropies and masses of all particles are the same. Below we
therefore consider two possible approaches to introduce small correction forces into the
dynamics with the goal to rearrange the points to achieve a more regular tessellation.
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3.3.1 Viscous forces that help to improve order

Experience with our new VPH scheme shows that especially in highly irregular, turbulent
flows and in situations with strong gravitational forces some cells can become quite irreg-
ular. In this context, we loosely define an irregular cell as one whose generating point is
substantially displaced from the centroid of the cell and/or whose aspect ratio is quite high,
i.e. a cell with a comparatively large ratio of surface area to volume. In this subsection
we consider a scheme where the artificial viscosity is modified such that it serves a second
purpose, namely to have the tendency to make cells ‘rounder’.

To this end we introduce the notion of a ‘partial pressure’ for each of the pyramids that
make up a Voronoi cell. These pyramids are spanned by the Voronoi faces and the defining
point of the cell, which acts as their apex. We define the ‘partial pressure’ of the pyramid
of cell i facing cell j in terms of its volume Vij = AijRij/6 (or Vij = AijRij/4 in 2D) and
by assigning a share mij = miAij/

∑

k Aik of the cell’s mass to the pyramid, i.e. its mass
fraction is taken to be proportional to its contribution to the total surface area of the cell.
This yields

Pij = siρ
γ
ij = si

(

6 mi

Rij

∑

k Aik

)γ

(3.30)

The idea is now to define an additional viscous force between a pair of particles arising
from the difference of this partial pressure to the full pressure of the cell. This will lead to
rearrangements of the points until the differences in the partial pressures of each pyramid to
that of the cell become small, which happens when the point is approximately equidistant
to all the faces of its cell, implying a regular cell shape.

We hence make the ansatz

(~forder)ij = −κAij(Pij − Pi + Pji − Pj)
~eij

2
(3.31)

for ‘ordering forces’ between a pair of particles, with the total force on particle i being
given by

mi(~aorder)i =
∑

j 6=i

(~forder)ij (3.32)

Here κ is a dimensionless parameter describing the strength of the effect. These forces are
antisymmetric, and in general can be both of repulsive and attractive nature. In order to
maintain total energy conservation, the work of these forces needs to be balanced in the
evolution of the entropies of the particles, similar to what is done for the ordinary artificial
viscosity. This yields an additional contribution to the entropy change of the form

dsi

dt
=

(γ − 1)

ργ−1
i

1

2

∑

j

(~forder)ij · ~vij (3.33)

Note that a small local decrease of the entropy sum can result in principle if order is
restored in the particle distribution, but this effect is small and has played no role in all
our tests. In refinements of the above scheme, it is also possible to make κ spatially and
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temporarily variable. For example, we have typically used this scheme in a combination
with a switch that only sets κ > 0 if there is a strong local compression, because that is
where cell shapes distort the most.

When discussing results, we will refer to this method as ‘partial pressure ordering’ or
PPO, whereas the method for improved cell regularity discussed in the next subsection will
be referred to as ‘shape correction forces’. If none of these additional schemes to regularize
cell shapes is employed, we simply refer to the method as the ‘plain Voronoi scheme’.

3.3.2 Imposing regularity through the fluid Lagrangian

If irregular cell shapes occur, we ideally would like that small adjustment forces appear
naturally that tend to make the mesh more regular again. These adjustment forces should
preserve the energy and momentum conservation of the scheme. This will automatically
be the case if they are derived from a suitably defined Lagrangian or Hamiltonian. We are
hence led to modify the fluid Lagrangian slightly to include factors that penalize highly
distorted cell shapes. The idea is that such distorted cells should raise the estimate of the
inner energy slightly, such that they become energetically disfavored.

We consider two ways to measure shape distortions of cells, which may either be used
individually, or combined. One is based on the displacement of a point from the centroid
of its associated cell. The idea here is that it is advantageous if a point stays close to the
center of a cell. In particular, as we will discuss in more detail in Section 3.5.3, it turns
out that the ordinary VPH scheme is not able to support waves in regular Cartesian grids
at the Nyquist frequency, a deficit that could be cured if there is always a (weak) restoring
force if a point is displaced from the centre of its Voronoi cell.

The other is to measure the shape directly, and to steer the particle motion such that
high aspect ratios are avoided. We construct a shape measure based on the second moment
of the cell, which we compare to a suitably defined cell radius. This measure will have a
minimum for ‘round cells’, while severe distortions from roundness (like highly elongated
cells) should trigger restoring forces.

Both of the above measures of cell regularity can be introduced into the fluid Lagrangian
by multiplying the thermal energy with correction factors that increase the energy slightly
if a point is displaced from the centroid, or if a cell is elongated. Specifically, we adopt as
Lagrangian

L =
∑

k

1

2
mk ~̇r2

k − (3.34)

∑

k

PkVk

γ − 1

[

1 + β0
(~rk − ~sk)

2

V
2/d
k

]

(3.35)

{

1 + β1

(

~w2
k

V
2/d
k

− β2

)}

Here ~rk is the coordinate of a point, Vk is the volume of its corresponding Voronoi cell, and
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~sk is the cell’s centroid. Pk is the ordinary pressure of the cell, where we set ρk = mk/Vk as
usual. The coefficients β0 and β1 are introduced to measure the strength of the correction
forces associated with offsets from cell centres, or with high aspect ratios, respectively. For
β0 = β1 = 0, the ordinary fluid Lagrangian of the VPH scheme is recovered.

We define the centroid of a cell as

~sk ≡ 〈~r〉k =
1

Vk

∫

~r χk(~r) d~r (3.36)

where χk is the characteristic function of cell k, i.e. χk(~r) = 1 if the point ~r lies in the cell
k, and χk(~r) = 0 otherwise. The shape of a cell is measured via the second moment

~w2
k ≡

〈

(~r − ~sk)
2
〉

k
=

1

Vk

∫

(~r − ~sk)
2χk(~r) d~r (3.37)

The factors in squared and curly brackets in the Lagrangian of equation (3.34) are the
adopted energy correction factors that raise the energy of distorted cells. Here d counts
the number of dimensions, i.e. d = 2 for 2D and d = 3 for 3D. The factor V

2/d
k is hence

proportional to the ‘radius’ Rk = V
1/d
k of a cell squared. β0 measures the strength of the

effect of displacements of points from the centroid of a cell, while β1 is the corresponding
factor for the aspect-ratio factor. The constant β2 is only introduced to prevent that even
round cells lead to a significant enhancement of the thermal energy. For perfectly round
cells, we expect in 2D approximately circles for which w2

k = V 2/d/(2π), hence we pick
β2 = 1/(2π). In 3D, we have spherical shapes instead and we pick β2 = 3/5(3/4π)2/3.

The equations of motion for the Lagrangian (3.34) can be derived in closed form for the
Voronoi mesh, but due to the length of the resulting expressions we give their derivation in
Appendix A.2. The advantage of using the Lagrangian to obtain the cell-shaping forces is
that the scheme then still accurately conserves total energy, momentum and entropy, while
at the same time remaining translational and rotationally invariant. Also, the correction
forces are ‘just right’ to achieve the desired regularity of the mesh, something that is
difficult to achieve with any heuristic scheme to derive such forces, like the one we tried in
the previous subsection.

In our results section, we show that this method is indeed capable of maintaining nicely
regular meshes in the sense described above. However, we also caution that the stronger
the extra forces are, the more unwanted features start to appear as well. First of all, the
extra forces may introduce subtle deviations from the dispersion relation of an ideal gas,
and may lead to spurious motions in situations with pressure equilibrium. The second,
probably more serious side effect of this method may occur when the cells cannot easily
relax to the desired regular cell structure, for example along a strong jump in density. In
this case a pressure anomaly may develop due to the cell-shaping forces, similar to what
is found in SPH across contact discontinuities. Still, we find that moderate values of β0

and β1 help to improve the accuracy of the VPH scheme without distorting the inviscid
dynamics of an ideal gas too much.
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3.4 Implementation

We have implemented the above hydrodynamical particle model into the cosmological
TreeSPH simulation code GADGET-3, an updated version of GADGET-2 (Springel 2005b;
Springel et al. 2001). This code is parallelized for distributed memory machines, and offers
high-performance solvers for self-gravity as well as individual and adaptive timestepping
for all particles. Our strategy in our modifications has been to implement Voronoi-based
particle hydrodynamics as an alternative to SPH within the GADGET-3 code. This is, in
particular, ideal for facilitating comparisons between SPH and our Voronoi-based scheme,
and it also allows us to readily use all the non-standard physics already implemented in
GADGET-3 (e.g. radiative cooling and star formation) for calculations with Voronoi-based
fluid particle dynamics.

The primary new code needed in GADGET-3 is an efficient mesh construction algorithm.
To this end we adapted and modified the parallel Delaunay triangulation engine from the
AREPO code (Springel 2009), and turned it into an optional module of the SPH code
GADGET-3. In brief, the tessellation code uses an incremental construction algorithm for
creating the Delaunay tessellation. Particles are inserted in turn into an already existing,
valid tessellation. To this end, in a first step the tetrahedron in which the new point falls
is located, and then it is split into several new tetrahedra, such that the inserted point
becomes part of the tetrahedralization. However, some of the new tetrahedra may then not
fulfill the empty-circumsphere property, i.e. the tessellation is not a Delaunay triangulation
any more. Delaunayhood is restored in a second step by local flip operations that replace
two adjacent tetrahedra with three tetrahedra, or vice versa, until all tetrahedra fulfill
again the empty-circumsphere property. At this point, the next particle can be inserted.
We have implemented the mesh construction both for 3D and 2D within the GADGET-3

code and parallelized it for distributed memory machines.

At the beginning, a large tetrahedron is constructed that encloses the full computa-
tional domain. The boundary conditions (always adopted as periodic at the moment) of
the rectangular computational domain as well as the boundaries arising from the domain
decomposition are treated with ‘ghost particles’. One technically difficult aspect is to
make the tessellation code completely robust even in the case of the existence of degen-
erate particle distributions, where more than 4 points lie on a common circumsphere (or
more than 3 points are on a common circumcircle). Detecting such a case robustly and
correctly in light of the finite precision of floating point arithmetic is a non-trivial problem.
However, the incremental insertion algorithm requires consistent and correct evaluations
of all geometric predicates, otherwise it will typically fail in situations with degeneracies
or near-degeneracies. We solve this problem by monitoring the floating point round-off in
geometric tests, and by resorting to exact arithmetic in case there is a risk that the result
of a geometric test may be modified by round-off error.
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3.5 Test results

In this section, we discuss a number of test problems carried out with our new hydrody-
namical particle method, focusing in particular on regimes where differences with respect
to SPH can be expected. An application of the method in full cosmological simulations of
galaxy formation will be presented in future work.

3.5.1 Surface tension

In standard entropy-conserving SPH with particles, there is a subtle surface tension effect
across contact discontinuities with a large jump in density. This can be understood as a
result of the desire of SPH to suppress mixing of the two phases, because this is energetically
unfavorable for fixed particle entropies. For the mixed state, approximately the same
average density would be estimated for each particle, which leads to a higher estimate of
the thermal energy, unless the thermodynamic entropies are averaged between the particles
as well, which is an irreversible process in which entropy is in fact produced if the total
energy stays constant.

To demonstrate the existence of the surface tension effect, we have prepared (in 2D for
simplicity) an overdense ellipse in a thin background medium, at pressure equilibrium. For
definiteness, the density of the ellipse was set to ρ2 = 4, that of the background medium
to ρ1 = 1, with a pressure of P = 2.5. 3854 equal mass particles in a periodic box of unit
length on a side were used to set up the experiment. The particles have been arranged on
a coarse Cartesian grid in which an ellipsoidal region was excised. This region has then be
filled with a finer Cartesian grid. The specific entropies of the two sets of particles were
initialized differently such that an equal pressure for the two phases results. No attempt
was made to somehow soften the transition between the two phases. Figure 3.3 shows the
initial configuration, as well as the particle distribution after a time t = 7, both for SPH
and for the Voronoi-based fluid particle approach.

Even though the pressures of the particles are formally equal for all particles in the
initial conditions, the ellipse transforms to a circle when SPH is used. In contrast, for the
VPH scheme, the same experiment maintains the initial shape of the ellipse, modulo some
small rearrangements of the points near the boundary, since the initial set-up was not in
perfect equilibrium (due to the fact that the point distributions of the two Cartesian grids
used to set up the two phases do not match seamlessly at the boundary). Clearly, the
numerical realization of the contact discontinuity in SPH gives rise to a spurious surface
tension, and this in turn will suppress Kelvin-Helmholtz instabilities below a certain critical
wavelength. The VPH approach does not have this problem and can in principle accurately
support a contact discontinuity at each face boundary between individual cells. It needs
to be stressed however that also in the Voronoi scheme no mixing of the entropies at the
particle level happens. If the particles of two phases were simply spatially mixed while
keeping their specific entropies constant, the resulting medium would not be at a single
temperature or density. We note that the effect is also present for a set-up with unequal
particle masses. In this case, the variationally derived entropy-conserving version of SPH
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Figure 3.3: Surface tension effect in SPH. The left column shows an overdense ellip-
soidal region shortly after it is set-up at t = 0 in pressure equilibrium within a thinner
background. When evolved with SPH, the ellipsoid slowly transforms into a sphere, as
shown by the state of the system after time t = 7 (top left). In contrast, the Voronoi
scheme can preserve the shape much better (bottom panels) and shows no sign of surface
tension effects.

will however lead to a change of the effective number of neighbours across the contact
discontinuity, because it keeps the mass in the kernel volume constant.
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3.5.2 Sod shock tube

The classic Sod shock tube tests examine the ability of a hydrodynamic scheme to repro-
duce the basic wave structure that appears in the Riemann problem, namely shock waves,
contact discontinuities and rarefaction waves. Also, comparison to the analytic solution
gives a useful quantitative benchmark for the accuracy of a scheme.

We consider gas that is initially at rest. In the left half-space, the pressure is P1 = 1.0
and the density is ρ1 = 1.0, whereas in the right half-space we adopt P2 = 0.1795 and
ρ2 = 0.25. The adiabatic index is set to γ = 1.4. The same sod shock parameters have
previously been used in a number of code tests (e.g. Hernquist and Katz 1989; Rasio and
Shapiro 1991; Wadsley et al. 2004; Springel 2005b). When the evolution begins, a shock
wave of Mach number M = 1.48 travels into the low-pressure region, and a rarefaction fan
moves into the high pressure region. In between, a moving contact discontinuity develops.

In our numerical test of this problem with the VPH scheme we use a 3D setup in a box
with dimensions (20, 1, 1), where the left and right halves are filled with particles arranged
on a Cartesian grid. Altogether 8370 particles with equal masses were used as initial
condition. The evolution was then carried out with our default settings for the artificial
viscosity until t = 3. In Fig. 3.4, we compare the numerical result to the analytical
solution at this time. Reassuringly, we find quite good agreement of the VPH scheme
with the analytical solution. In comparison to SPH, the rarefaction wave in the Voronoi
simulation shows a slight dip at the low density end, but not the hump at the high density
end that is typical of SPH. Another difference is that the contact discontinuity is sharper
and better preserved in the VPH approach. All of the described features appear to be
largely independent of how the points are distributed initially as long as the gas is relaxed
on both sides. In particular, the arrangement on a Cartesian grid does not lead to any
noticeable artifacts compared with simulations where the initial point distribution is less
ordered and has a glass-like configuration. However the results are somewhat less accurate
for irregular grids (see also A.1.3) when the plain Voronoi scheme is used.

We have also examined the influence of the extra forces that can be enabled to improve
the regularity of the mesh (see Sections 3.3.1 and 3.3.2). To this end we tested the effect
of the PPO scheme as well as the shape correction method with parameters up to β0 =
1.2, β1 = 0.1. When these ordering forces are invoked, the results for the sod-shock test
are in general not influenced much, but the particle noise around the analytical solution
is reduced. We also found that the extent of postshock oscillations for weaker artificial
viscosity settings tends to be reduced if these ordering methods are used.

3.5.3 Dispersion relations

Even though this may seem like a simple test, it is actually important to check how well
our new method can simulate small-amplitude1 acoustic waves, especially at low resolu-
tion when few points per wavelength are available. We are especially interested in how
accurately the expected dispersion relation is reproduced in this regime, i.e. whether such

1The amplitude needs to be small in order to prevent wave steepening.
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Figure 3.4: 3D Sod shock tube simulation at t = 3.0. We compare results from
our Voronoi particle scheme (blue crosses) and the SPH result with 32 neighbours (red
diamonds) with the analytical solution (solid lines) in terms of the density, pressure,
entropy profiles and internal energy.

waves propagate with the correct speed of sound. A secondary question is how strongly
such waves are damped by the artificial viscosity in the scheme.

To measure the dispersion relation, we set up small-amplitude standing waves in a
periodic box and measure their oscillation frequency. In Figure 3.5, we compare results for
SPH with our Voronoi-based fluid particle model, with and without shape correction forces,
as a function of wavenumber. The wavenumber is normalized to the Nyquist frequency of
the initial particle grid, such that k/kNyquist = 1 corresponds to the shortest wave that can
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Figure 3.5: Dependence of the numerical sound speed on wavenumber, expressed in
units of the Nyquist frequency of the underlying particle grid. For the standard VPH
scheme, waves at the Nyquist frequency are not propagated properly (hence no frequency
can be measured at k = kNy), but this is remedied by the shape correction forces. If they
are invoked, the resulting dispersion relation becomes more accurate than that of SPH
for all k.

be represented by the particles. In this standing wave, neighbouring particles oscillate 180
degrees out of phase ‘opposite’ to each other.

A first important result made clear by Figure 3.5 is that for the standard VPH scheme
the oscillation frequency for k/kNyquist = 1 drops to zero, or in other words, such waves
are not supported by the scheme at all. This is readily understood from the degeneracy
effect pointed out in Figure 3.2. If particles are set-up such that they ‘collide’ in a pairwise
fashion, then there is nothing in the reversible part of the dynamics of the VPH scheme
that can prevent an interparticle penetration, simply because the pressure gradient stays
zero in this case. However, this situation is exactly the one encountered if we prepare a
standing wave at the Nyquist frequency of an initially regular particle grid. The wave will
not oscillate since the pressure gradient will remain zero, and therefore particle crossings
would be inevitable (unless prevented by the artificial viscosity). This is potentially a
serious shortcoming of the VPH scheme in its standard form, as it means that it cannot
treat waves at around the Nyquist frequency properly.

However, the shape correction force due to β0 has exactly the right property to make
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these small waves oscillate again. In fact, we can calculate what value of β0 is required to
reproduce the dispersion relation at k/kNyquist = 1 exactly. For this value of β0 ≃ 5.5, we
however also get slightly too stiff behaviour of the fluid for somewhat longer wavelengths,
as shown by Figure 3.5. A value of around β0 ∼ 3 represents a good compromise, and in
particular yields a more accurate dispersion relation than SPH for all k. We also note that
for certain numbers of neighbours, the SPH result is inaccurate at all wavelength; here
the numerical soundspeed shows an offset relative to the expected sound speed, which is
presumably a result of a bias in the density estimate for the background density.

3.5.4 Density noise and regularity in a settled particle distribu-

tion

In this subsection we want to examine the level of noise present in a relaxed region of
gas of constant specific entropy, as it may arise somewhere within a larger, self-consistent
simulation. To mimic this situation, we start from a distribution of points arranged on a
Cartesian grid and impose a random Gaussian velocity field with dispersion 〈v2〉 = 0.05 c2

s

and zero mean. The idea is that these velocity fluctuations break the initial grid symmetry
and will then get damped away by the artificial viscosity, which is here set to a high
value to speed up the process of settling to a new pressure equilibrium. Since we want to
retain the initially equal values of the specific entropies per particle, we disable the entropy
source term for the viscosity in this experiment. Once the new equilibrium for an irregular
particle distribution is achieved, we can then examine the noise properties of this particle
representation of a constant density, constant pressure gas.

For SPH with N = 16 neighbours, we find that the particles settle into several do-
mains in which the points are quite regularly distributed, based on visual inspection. The
estimated density values ρi for the particles are not all equal though, instead they show
a distribution with rms-scatter equal to ∼ 1.4 %, and also a small bias relative to the
expected value equal to the mean density 〈ρ〉 = Nm/V of the full volume.

In contrast, the standard VPH approach creates a distribution in which the density
values are essentially single-valued, and are all very close to 〈ρ〉. This means that the cells
have all equal volume, and the residual pressure fluctuations, if any, are extremely small.
However, the geometry of the Voronoi tessellation is quite irregular and features numerous
cells with relatively large aspect ratios, or with points close to cell boundaries. This can
be seen in Figure 3.6, where we show a plot of the final mesh for a test case carried out in
2D.

It is now interesting to repeat the test for the case when shape correction forces accord-
ing to Section 3.3.2 are included. As desired, the final mesh becomes much more regular in
this case, as seen in the corresponding example included in Figure 3.6. However, even in
the final equilibrium state the correction forces do not necessarily completely vanish in this
case. Instead, they are compensated by small residual pressure (and hence also density)
fluctuations. This is demonstrated in the distribution functions of the density values for
the three cases we considered, which we give in Figure 3.7. Here the shape correction case
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Figure 3.6: Final mesh geometry in VPH in a 2D settling test, carried out without
(top) or with shape correction forces (bottom) based on β0 = 1.0 and β1 = 0.01.



42 3. Particle hydrodynamics with tessellation techniques

0.98 0.99 1.00 1.01 1.02

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Voronoi std

V PPO
V shape

SPH

Figure 3.7: Density distribution functions of the particles in a settling test for constant
entropy gas, carried out with different schemes. We compare SPH (red), ordinary VPH
(black), the PPO version of VPH (blue), and VPH with shape correction forces based on
β0 = 1.0 and β1 = 0.01 (in green). The distributions were measured at a time when the
initial kinetic energy had decayed to Ekin ≈ 0.001Ekin(t = 0).

yields a somewhat broader distribution, similar to SPH, but without showing a bias.

In Figure 3.8, we give a quantitative measure for the cell-regularity (here taken as the
distribution function of the normalized displacement of points from the centres of their
cells) of the final meshes in the Voronoi-based simulations. Even moderate values of the
coefficients β0 and β1 can drastically improve the regularity of the particle distribution
while introducing less noise in the density estimate than anyway present in SPH.

3.5.5 Point explosion

If energy is injected at a point into a cold gas at constant density, a spherical blast wave
will develop. The Taylor-Sedov solution provides an analytic solution for this self-similar
problem, which is a useful test involving very strong shocks. We have set-up this problem
in 3D, using unit background density (represented with a Cartesian mesh), γ = 5/3 and
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Figure 3.8: Cell-regularity of a noisy flow after relaxation. To characterize the regularity
of the cells, we simply consider the distribution of the distance of the points to their
cell’s centroids, in units of the 2D cell radius r =

√

V/π. The black histogram shows the
distribution for the ordinary Voronoi scheme, blue shows the PPO version, and green lines
give the result for the Voronoi with shape correction forces derived from the Lagrangian.
The distributions were measured at a time when the initial kinetic energy had decayed
to Ekin ≈ 0.001Ekin(t = 0).

vanishingly small initial specific entropy compared to the injected energy of E = 1. We
inject the energy into the centre of the domain at time t = 0. To avoid that the evolution is
strongly affected by the non-spherical geometry of the central Voronoi cell, we have spread
out the energy with a Gaussian kernel with a radius of about 4 mean particle spacings.

We note that this set-up can be especially sensitive to the problem of particle crossing
when a too low viscosity and individual timesteps are used. In the latter case, the local
Courant timestep of particles outside of the explosion is initially very big. When the
supersonic shock front arrives, such particles may then still live on a too large timestep, such
that they are effectively overtaken by the shock, creating severe artifacts in the evolution
of the shock front. We have addressed this in our test by imposing a low enough maximum
timestep for all particles, but more sophisticated schemes to set the timesteps, which
guarantee that it is reduced before the shock arrives, can of course be implemented in
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principal (see Saitoh and Makino 2009; Springel 2009).
In Figure 3.9, we show the radial density profile at t = 0.04 for different resolutions

corresponding to 2×32, 2×64 and 2×128 particles, and compare to the expected analytic
solution. The expected solution is captured reasonably well, with a similar quality as in
SPH codes, which is shown for comparison in the low-resolution case. The VPH result
converges nicely to the analytic solution as the resolution is increased. In particular, the
shock location is well reproduced, albeit with a small pre-shock increase of the density.
When shape correction forces are added as described in Section 3.3.2, only negligible differ-
ences in the overall quality of the result are found, but the scatter around the azimuthally
averaged solution is reduced. In Figure 3.10, we check the energy conservation in the blast
wave problem, both for the VPH and SPH simulations at the 323 resolution. The energy
error is negligibly small, as desired. The high-frequency oscillations in the total energy
of the SPH run stem from the small but finite jumps of the SPH smoothing lengths from
timestep to timestep, an effect that is absent in the VPH simulation.

3.5.6 Kelvin-Helmholtz instabilities

Kelvin-Helmholtz (KH) instabilities occur in regions of strong shear, which is especially
common at contact discontinuities between two fluid phases. An initially small transverse
perturbation along the interface becomes amplified and grows in linear theory according
to ∝ exp(t/tKH). After a few characteristic timescales

tKH =
ρ1 + ρ2

2 k v
√

ρ1ρ2
(3.38)

an initially wave-like perturbation becomes large and non-linear, developing the typical
KH-rolls. Here ρ1 and ρ2 are the densities of the two media, v is the velocity jump
parallel to their common interface, and k = 2π/λpert is the wavenumber of the perturbation
with wavelength λpert. For an ideal gas, all wavelengths are unstable, and the smallest
wavelengths grow fastest.

The KH instability is especially important for the development of turbulence, and
is thought to play a prominent role in stripping and mixing processes occurring during
galaxy formation. Recently, a number of studies have pointed out that standard SPH
has problems to correctly capture the KH instability when the initial conditions contain
sharp density gradients (Agertz et al. 2007; Price 2008). In certain cases, the instability
is suppressed completely and does simply not grow. This can in part be understood in
terms of the surface tension effect present in SPH, as described earlier, because surface
tension suppresses the growth of KH instabilities below a critical wavelength (Landau and
Lifshitz 1966). Furthermore, the asymmetric particle density at the interface causes a
rearrangement of the points in SPH, such that a ‘gap’ in the sampling appears that causes
relatively large errors in the pressure forces at the interface (Agertz et al. 2007).

It is therefore very interesting to test how well the VPH approach does in this respect.
Since VPH does not exhibit a surface tension effect, it offers the prospect of a better
treatment of the KH instability. In Figure 3.11, we show results for a KH test calculation,
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Figure 3.9: Sedov-Taylor point explosion problem, calculated in 3D with the basic VPH
scheme. From top to bottom, we compare the radial density profile at t = 0.04 with the
analytical solution (solid line), calculated with 323, 643, or 1283 particles, as labeled. In
the top panel, we also compare the VPH results (circles) with SPH (diamonds).
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Figure 3.10: Time evolution of the thermal and kinetic energies in the Sedov-Taylor
point explosion problem, simulated with SPH (black dashed line) and the Voronoi scheme
with shape correction forces (red solid line). The bottom panel compares the total energy
error in the two schemes.

carried out with different particle-based hydrodynamic schemes. Our two-dimensional
initial conditions consist of γ = 5/3 gas with density ρ1 = 2 in the stripe |y − 0.5| < 0.25,
moving to the right with velocity v1 = 0.5, and of gas with density ρ2 = 1 and velocity
v2 = −0.5 in the region |y − 0.5| ≥ 0.25. The pressure was initialized everywhere to
P = 2.5, and a periodic domain of unit length on a side was used. In total 261760 points
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Figure 3.11: Simulations of the KH-instability with different particle-based methods.
The left column shows the plain Voronoi scheme, the middle column Voronoi with PPO,
and the right column SPH. From top to bottom, we show maps of specific entropy, maps
of the pressure, the point distribution, and maps of the differential rotation ∇× ~v. The
maps show x = [0.18, 0.58], y = [0, 0.4] of the periodic simulation domain, while for clarity
the particle distribution is shown only for x = [0.28, 0.48], y = [0.1, 0.3].
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sample the gas distribution, with a mean spacing of 0.0023 for the low-density gas, and
0.0017 for the high density gas. Hence the two phases were represented with approximately
equal mass particles. Note that the initial discontinuity was imposed as a perfectly sharp
jump in these initial conditions, following previous studies of this problem. We remark
however that it is somewhat questionable whether such sharp jumps are not introducing
an inconsistency with the basic premises of SPH calculations, which can only represent
smoothed density fields. In order to seed an initial perturbation, we imposed a vertical
perturbation on the y-positions of the form

δy(x) = a0 sin(4πx/L), (3.39)

where L is the boxsize, and a0 = 0.006 is the amplitude of the initial perturbation.

The three columns of Figure 3.11 compare the results for the ordinary VPH scheme
(left), the VPH method with the additional ordering viscosity of the PPO scheme (middle),
and SPH (right), at time t = 1.2. From top to bottom, we show specific entropy maps,
pressure maps, the particle distribution, and vorticity maps. All maps were here generated
by linearly interpolating a Delaunay tessellation of the points, allowing to extend the points’
properties as read from the simulation files to continuous fields. In addition to the maps, we
show in Figure 3.12 the growth of the instability until time t = 1.2, quantified in terms of
the amplitude of the seeded velocity mode as measured in the Fourier-transformed vy-field.

We see right away that the VPH scheme captures the KH instability best. Its primary
KH billow has evolved furthest, and it triggered the growth of smaller-scale secondary
billows. In contrast, the SPH result shows only an anemic growth of the instability. In
the SPH pressure map a strong pressure anomaly is visible at the interface. This surface
effect effectively suppresses all small-scale KH-instabilities, and the two phases stay sepa-
rate because the associated surface tension suppresses a breaking up of the interface. As a
result, the instability cannot cascade down to smaller scales. The PPO scheme shown in
the middle column lies literally in the middle in this respect. The growth of the primary
KH mode is very similar to that found in the VPH scheme. However, the additional viscos-
ity introduced in this scheme to produce highly regular cells substantially attenuates the
growth of secondary small-scale KH instabilities. The same effect can be seen Figure 3.12
for the case with shape correction terms, whereas additional heat diffusion (according to
Section 3.2.5) does not affect the growth rate of the excited mode in this simulation. We
note however that the smaller growth depends on the strength of the additional ordering
forces that are invoked. The result shown here was calculated with κ = 1, which we con-
sider the maximum that one may ever want to use. For more reasonable smaller values,
intermediate results that are close to that of the plain VPH scheme are obtained.

Interestingly, the vorticity ∇×~v in the ordinary VPH scheme is clearly largest overall,
especially for the larger modes and in the central region of the primary KH billow. Here
the rotation is so fast that the pressure shows a noticeable depression, which counteracts
the centrifugal forces from the rotation with pressure gradients. Unfortunately, the ability
of the pure Voronoi simulation to sustain vortices comes at the expense of a larger particle
irregularity. As the enlargement with the particle distribution shows, the particles tend
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Figure 3.12: Growth rate of the KH-instability for the same initial conditions as in
Figure 3.11. We show the amplitude of the seeded mode in the velocity field, measured
by Fourier-transforming the vy field. We give results for standard VPH (green), for the
Voronoi scheme with additional shape correction forces and the prescription for mixing
discussed in Section 3.2.5 (dotted blue), and for SPH (red). The dashed black lines
indicate the slope expected for an exponential growth of the instability according to
linear theory.

to form Voronoi cells with quite high aspect ratios, reducing the accuracy of the gradient
estimates and requiring relatively large settings for the artificial viscosity to prevent inter-
particle penetrations. In contrast, the PPO variant of the Voronoi scheme produces highly
regular particle spacings, and in this respect resembles SPH. However, in this example
calculation with κ = 1, the scheme then develops effectively a much higher intrinsic shear
viscosity, which tends to transform the differential rotation into a rotation of numerous
ordered domains. The shear of these domains shows up in the differential vorticity maps
in a distribute fashion. Once the damping of the differential rotation gets too strong, the
primary vortex is affected as well, as seen in the reduction of the central pressure gradient
in the PPO scheme.

Finally, we test the shape correction forces discussed in Section 3.3.2, and our scheme
for the treatment of subresolution mixing introduced in Section 3.2.5 with the same initial
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Figure 3.13: KH-instability test simulated with the Voronoi scheme with additional
shape correction forces, based on the same initial conditions as in Figure 3.11 and again
at time t = 1.2. The maps show the entropy distribution without (top) and with (bot-
tom) additional heat diffusion terms to model subresolution mixing, as described in
Section 3.2.5.
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conditions. We show in Figure 3.13 the resulting entropy maps of two further calculations
of the KH instability test. In both panels, we show runs of the VPH scheme that make use
of the shape correction forces derived from the Lagrangian, with β0 = 1.2 and β1 = 0.1.
In the bottom panel, we have in addition activated the artificial heat conduction due to
local shear with χ = 0.25, which models mixing of the fluids at the scale of the resolution.
The two variants are qualitatively similar, but the artificial heat conduction has clearly
washed out the sharp discontinuity in the entropy at the fluid interface. This resembles
more closely the results of mesh-based finite-volume hydro codes. Compared to the results
of pure VPH in Figure 3.11, we see that the scheme with shape correction forces has also
an effectively enlarged viscosity, quite similar to the PPO approach. Overall, it is clear
that even without a subresolution mixing model the Voronoi based particle hydrodynamics
does significantly better in the KH test than standard SPH.

3.5.7 The ‘blob test’: mass loss of a gas cloud in a supersonic

wind

A challenging test problem for hydrodynamical codes has been proposed by Agertz et al.
(2007). The setup consists of an overdense spherical cloud in pressure equilibrium with
the surrounding hot medium. This background gas is given a large velocity, so that the
cloud feels it as a supersonic head wind. The test is motivated by astrophysical situations
such as the stripping of gas out of the halos of galaxies as they fall into larger systems.
It is a three-dimensional problem that involves many different non-linear hydrodynamical
phenomena, including shocks, Kelvin-Helmholtz instabilities, mixing, and the generation
of turbulence. Because of this complexity, an analytical solution for the problem is not
known. The general expectation is that the wind will compress the cloud, accelerate it,
and strip some of its gas by developing fluid instabilities as it streams past the cloud.

Interestingly, in the test calculations of Agertz et al. (2007), substantial differences
were found in the mass loss rates of the cloud when calculated with Eulerian mesh codes
and with SPH. Whereas the mesh codes led to an eventual complete destruction of the
cloud, the mass loss rate was in general smaller in SPH, such that some cloud material
still remained once the partially destroyed cloud was accelerated to the wind speed and
the mass loss stopped. Given these qualitatively different outcomes, it is interesting to test
how the VPH scheme performs on this problem.

We used the same initial conditions as employed by Agertz et al. (2007), in the version
with 106 particles. The setup consists of a periodic box with extension [0, 2000]×[0, 2000]×
[0, 8000] kpc. The background ‘wind’ gas has density ρwind = 4.74 × 10−34 g cm−3, temper-
ature Twind = 107 K, and a velocity vwind = (0, 0, 1000) km s−1. The cloud has a radius
Rcloud = 197 kpc, and is placed initially at ~rcloud = (1000, 1000, 1000) kpc. Its density is 10
times higher than the background, ρcloud = 10 ρwind, while at the same time being 10 times
colder, Tcloud = 106 K. This yields a sound speed of cwind = 371 km s−1 for the wind, and
an expected characteristic timescale of order τKH ≃ 2 Gyr for the development of large KH
instabilities in the shear-flow around the cloud.
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In Figure 3.14, we show the time evolution of density slices through the central plane
of the simulation box, calculated with our new Voronoi scheme. In agreement with both
grid-based and SPH codes, a bow shock is produced ahead of the cloud. The cloud gets
compressed and accelerated under the ram pressure of the wind, and the wind that streams
past the deformed and slowly accelerating cloud induces Kelvin-Helmholtz instabilities
at its surface which strip material and produce a turbulent wake. At the stagnation
point of the flow in front of the cloud, the pressure eventually breaks through along the
axis of symmetry. The resulting “smoke ring” is then still exposed to Kelvin-Helmholtz
induced turbulence while it is being accelerated to the velocity of the background stream.
Due to the periodic boundary conditions we note that the bow shock extends past the
domain boundary and then back inwards again from the other side, reaching the cloud at
about t ≈ 3 τKH. This leads to a recompression of the remainder of the cloud which can
temporarily raise the number of particles that are still counted as cloud members.

The mass loss as a function of time is displayed in Figure 3.15, for different particle-
based hydrodynamical schemes. We follow Agertz et al. (2007) and consider a particle
to be still part of the cloud when its density is still larger than ρ > 0.64 ρcloud, and
its temperature fulfills T < 0.9 Twind. We show results for four different calculations in
total. The standard VPH scheme is shown in blue. Interestingly, it leads to a complete
destruction of the cloud at time t ≈ 3 τKH, a result which is actually surprisingly close to
the high-resolution mesh-based calculations reported in Agertz et al. (2007). On the other
hand, the two SPH-based results (shown in red and black) calculated with the GADGET2

code do not result in a destruction of the cloud. Instead at time t = 5 τKH, still about half
the mass of the original cloud can be characterized as residual cloud material. This is even
slightly larger than what was reported by Agertz et al. (2007) for the GASOLINE code.
We have however found that the formulation and the strength of the artificial viscosity
can influence this result significantly. Also, we confirmed that integration of the entropy
as independent thermodynamic variable (which is the default in GADGET2) results in less
stripped material than when the thermal energy is integrated as done in GASOLINE. This is
however probably largely a result of the particular initial conditions used here; the contact
discontinuity in the ICs of Agertz et al. (2007), that we employ here, has been relaxed
using the traditional SPH formulation of GASOLINE, creating a pressure blip. When this
is then used to initialize the entropies integrated in GADGET2, a spurious entropy blip is
created that further amplifies the initial sampling ‘gap’.

When strong shape correction forces are introduced into the VPH formalism, we find
an intermediate result between plain VPH and SPH. In this case, a small 10% remnant of
the cloud remains at time t = 5 τKH. This is consistent with our earlier findings for the
KH instabilities. While standard SPH can be expected to suppress the KH-instabilities
significantly at the cloud interface, it tends to underestimate the rate of stripping. Our
new VPH method does not show this problem, but if viscous forces are introduced that
guarantee very regular mean particle separations, some small-scale suppression of fluid
instabilities can be reintroduced.

We finally note that the use of a time variable viscosity as presently implemented in
our code has not changed the mass-loss curves significantly. The reason is that the relevant
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particle viscosities are pushed to a large value as they pass through the bow shock, and
stay at large values in the complicated flow around the cloud surface. Only at late times
the mass loss tends to become faster as a result of the effectively lower viscosity.

3.5.8 Gravitational collapse of a gas sphere

Finally, we consider a three-dimensional problem with self-gravity, the so-called ‘Evrard-
collapse’ (Evrard 1988). It consists of an initially cold gas cloud, with a spherically symmet-
ric density profile of ρ(r) ∝ 1/r. The total mass, outer radius and gravitational constant
are all set to unity, M = R = G = 1, and the initial thermal energy per unit mass is set
to u = 0.05. In this configuration the sphere is significantly underpressurized. It hence
collapses essentially in free-fall, until it bounces back at the centre, with a strong shock
running through the infalling material. The sphere then settles into a new virial equilib-
rium. As this problem involves large conversions of potential gravitational energy into
kinetic energy and thermal energy (and back), as well as strong shocks, it is a challenging
and useful test for hydrodynamic codes that are applied to structure formation problems.
For this reason, it has been widely used as a test for a number of SPH codes (e.g. Evrard
1988; Hernquist and Katz 1989; Steinmetz and Mueller 1993; Dave et al. 1997; Springel
et al. 2001; Wadsley et al. 2004; Springel 2005b).

For our test we create a realization of the sphere by stretching a Cartesian grid appropri-
ately, such that the desired initial density profile is obtained. Because the Voronoi scheme
needs to tessellate a well-defined total volume, we cannot impose vacuum boundaries in
the same way as in SPH. Instead, we embed the sphere in a box and use a background grid
of particles with a rapidly falling density profile outside of the sphere, such that the total
mass in the background can still be ignored in the evolution of the system. We calculate
the gravity with the same tree algorithm used in the GADGET2 code, simply using the
N-body approach with the masses and positions of the VPH particles. It turns out however
that particles sometimes tend to pair up under their pairwise gravitational forces in the
plain VPH scheme. This is related to the same defect discussed in the context of Figure 3.2.
If two particles are very close to a Voronoi wall, they can be moved still closer together
without increasing the hydrodynamic pressure force, so that a residual gravitational attrac-
tion (if not damped out by the gravitational softening) can move the particles very close
together, with problematic consequences for the stability and accuracy of the scheme. A
time-dependent gravitational softening (Price and Monaghan 2007), where the softening is
somehow tied to the size of the cell associated with a particle, may ease the problem, but
is unlikely to cure it completely. However, the shape correction forces we introduced in
Section 3.3.2 can nicely solve this problem. This effect is illustrated in Figure 3.16, where
we show the central mesh geometry for a two-dimensional version of the Evrard collapse
problem. In the following we consider therefore a calculation of the 3D Evrard collapse
with our usual choice of β0 = 1.2 and β1 = 0.1.

In Figure 3.17, we show radial profiles of gas density, radial velocity and entropy for the
Evrard collapse at time t = 0.8, calculated with 24464 particles inside the initial sphere.
We compare the VPH result (shown by blue circles) to results obtained with SPH (red
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Figure 3.14: Time evolution of the density for a gas cloud in a supersonic wind. From
top to bottom, we show density maps normalized to the initial wind density at times
t = 0.75 τKH, t = 1.5 τKH, and t = 2.25 τKH in the central plane of the simulation box.
Here the standard Voronoi scheme with 106 particles was used.
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Figure 3.15: Mass loss of a gas cloud in a supersonic wind (the ‘blob test’), simulated
with 106 particles and different hydrodynamical schemes. We show the remaining mass
associated with the cloud (particles that fulfill ρ > 0.64ρcloud and T < 0.9Twind) as a func-
tion of time (in units of τKH) for different hydrodynamical schemes. The different colors
refer to the SPH codes GADGET2 (black), modified GADGET2 with an GASOLINE-
like integration scheme (red), standard VPH (green), VPH with dynamic viscosity (see
Equation 3.23 (light blue) and VPH with heat diffusion according to Section 3.2.5 (dark
blue)

diamonds), and compare these to results of a 1D high-resolution PPM calculation of the
problem (solid black line) provided to us by Steinmetz and Mueller (1993). We find that
the collapse is essentially equally well described with VPH as with SPH, with a slight
advantage for VPH, which more accurately resolves the central density and captures the
shock more sharply. However, these differences lie well in the range of changes one obtains
for different viscosity prescriptions, and therefore do not seem to be particularly significant.
We also note that the extra viscous forces needed to maintain a regular particle distribution
in VPH do not introduce any unphysical features in the solution. In particular, the radial
profile of the specific entropy shows no signs of extra cooling or heating.
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Figure 3.16: Cell regularity without (bottom) and with cell regularization forces (top)
in a simulation of a sphere of gas collapsing under self-gravity (Evrard collapse problem).
In the bottom panel, the group of points clusters together close to the origin under their
mutual gravitational attraction, producing a quite irregular mesh there. This effect is
prevented when additional shape correction forces are invoked, as shown in the top panel.
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Figure 3.17: Evrard collapse at time t = 0.8 simulated with SPH (red diamonds) and
the Voronoi scheme with shape correction forces (blue circles). The black line shows
the results of a 1D high-resolution PPM calculation of the problem provided to us by
Steinmetz and Mueller (1993). From top to bottom, we show radially averaged profiles
of gas density, radial gas velocity, specific entropy, and internal energy.
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Figure 3.18: Energy evolution for the “Evrard collapse” simulated with SPH (black
dashed line) and the Voronoi scheme with shape correction forces (red solid line). The
small fluctuations in the total energy arise primarily as a result of the finite accuracy of
the tree code used to calculate self-gravity, and are of similar magnitude for both cases.

3.6 Conclusions

We have discussed a new fluid particle model where the density is estimated with the Voro-
noi tessellation generated by the particle positions. Unlike in SPH, there is an auxiliary
mesh, which adds complexity to the scheme. However, the use of this fully adaptive mesh
offers a number of advantages. It offers higher resolution for a given number of particles,
since fluid features are not inherently smoothed as in SPH. In fact, the tessellation tech-
niques are probably close to an optimum exploitation of the density information contained
in the particle distribution (Pelupessy et al. 2003). When even higher resolution is needed
the method could be extended by an adaptive particle refinement or splitting technique,
for example similar as suggested in (Springel 2009).

As a result, contact discontinuities can be resolved with one cell, and surface tension
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effects present in standard SPH across contacts with large density jumps are eliminated.
This has further implications for the growth rate of fluid instabilities in inviscid gases.
Furthermore, the free parameters in the density estimate of SPH, involving both the number
of neighbours as well as the kernel shape, are eliminated, which can be viewed as a good
thing since the optimum values for them are not known, and incorrect choices can invoke
the well-known clumping instability in SPH.

One somewhat problematic aspect of Voronoi-based particle hydrodynamics is that the
noise in the scheme is quite sensitive to the level of mesh regularity. Flows with a lot
of shear can readily develop Voronoi meshes with points that lie close to the surfaces of
their Voronoi cells. In this case the noise in the gradient estimates increases, and, more
importantly, it becomes difficult to safely prevent particle interpenetration, since closeness
to a wall of the tessellation always implies that there is a second point on the other side of
the wall which is also close, i.e. in other words, that a close particle pair is present.

Higher order density estimates might solve this problem, but they would have to be
introduced already into the Lagrangian, leading to much more complicated equations of
motion that may be intractable. We therefore explored two different approaches for keeping
the mesh relatively regular. One is simply based on trying to formulate additional artificial
viscosity terms such that the viscosity tries to make cells ‘rounder’. Whereas this shows
some success, it does not succeed in all situations, particularly in strong shear flows where
the artificial viscosity needs to be very low. A more radical approach also explored is to
add correction terms to the underlying fluid Lagrangian with the aim to penalize strong
deviations from regular mesh geometries. Our goal was to impose small, non-dissipative
correction forces that maintain a proper mesh geometry. Thanks to the Lagrangian for-
mulation, the required form of the correction forces to retain fully conservative behaviour
can readily be derived, and the fluid motion under these forces shows the desired proper-
ties. However, if the correction terms are too large, one risks deviations from the proper
hydrodynamic solution. Further experimentation will be required to identify the optimum
setting of these parameters.

The Voronoi-based fluid particle approach can be relatively seamlessly integrated into
an existing SPH code, provided a tessellation engine can be added in an appropriate fash-
ion. Other aspects of the physics (in particular self-gravity, an additional collisionless
component, radiative cooling, star formation, and feedback processes) can be treated in
essentially identical ways as in SPH. This makes it possible to readily apply Voronoi parti-
cle hydrodynamics to problems of interest in cosmological structure formation. In general,
our first results suggest that VPH is superior to SPH, albeit at much increased complexity.
However, it is at present still unclear whether it is competitive with finite volume hydro-
dynamics carried out on a similarly constructed Voronoi mesh, as realized in the AREPO

code (Springel 2009). To elucidate this point further, we are in the process of carrying out
galaxy collision simulations as well as cosmological structure formation simulations with
our new technique and will report the results in forthcoming work.
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Chapter 4

Gas stripping and mixing in galaxy

clusters

S. Hess and V. Springel, 2011, MNRAS, to be submitted

Abstract
The ambient hot intrahalo gas in clusters of galaxies is constantly fed and stirred
by infalling galaxies, a process that can be studied in detail with cosmological hy-
drodynamical simulations. However, different numerical methods yield discrepant
predictions for some of the crucial hydrodynamical processes, leading for example
to different entropy profiles in clusters of galaxies. In particular, the widely used
Lagrangian smoothed particle hydrodynamics (SPH) scheme is suspected to strongly
damp fluid instabilities and turbulence, which are both crucial to establish the ther-
modynamic structure of clusters. In this study, we test to which extent our recently
developed Voronoi particle hydrodynamics (VPH) scheme yields different results for
the stripping of gas out of infalling galaxies, and for the bulk gas properties of cluster.
We consider both the evolution of isolated galaxy models that are exposed to a cluster
wind or are dropped into cluster models, as well as non-radiative cosmological simu-
lations of cluster formation. We also compare our particle-based method with results
obtained with a fundamentally different discretization approach as implemented in
the moving-mesh code AREPO. We find that VPH leads to noticeably faster strip-
ping of gas out of galaxies than SPH, and to elevated core entropies. Both of these
findings are qualitatively in better agreement with the mesh-code than with SPH,
confirming that VPH is an attractive alternative to SPH, even though it exhibits a
comparable level of particle noise.

4.1 Introduction

In the hierarchical structure formation model, interactions or mergers of galaxies with
other galaxies are common processes, and depending on the environment, a diverse set of
physical processes can become important. For example, when a galaxy falls into a cluster
of galaxies, gravity may also affect its integrity through gravitational tidal forces. The
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closer the galaxy gets to the cluster the more it is exposed to the hot intra-cluster medium
(ICM). This is experienced as a headwind by the galaxy that compresses its own gas, and
may lead to the formation of a bow shock in front of the galaxy if it supersonically plows
through the ICM.

Whereas the gas at the front of the galaxy is primarily compressed by ram pressure in
this situation, the sides are exposed to strong shear flows which may trigger fluid insta-
bilities, leading to stripping and mixing of the gas with the ICM. This in turn crucially
determines how rapidly star formation is turned off in an infalling galaxy, and how met-
als are mixed into the group or cluster ICM. The hydrodynamical intercation processes
between galaxies and groups/clusters may thus influence important observational effects,
such as the density morphology relation, or the existence of a tight red cluster galaxy
sequence. However, modeling these processes reliably is a considerable challenge, as di-
rect hydrodynamic simulations of the relevant processes are very difficult due to the large
dynamic range, and the uncertainties associated with the modeling of star formation and
feedback processes. Furthermore, it is not clear whether the hydrodynamical techniques
presently in use are strongly affected by systematic errors in this regime. Indeed, previous
studies of galaxy-cluster interactions with different numerical schemes disagreed strongly
about how fast a galaxy loses its gas to the cluster. For example, a grid-based simulation
of Quilis et al. (2000) predicted a much higher stripping rate than SPH-based work by
Abadi et al. (1999).

In this paper, we concentrate on the numerical aspects of the stripping of a galaxy’s
gas as it interacts with the ICM. Agertz et al. (2007) has recently shown that the popu-
lar smoothed particle hydrodynamics (SPH) technique has problems to properly account
for fluid instabilities, prompting significant concerns about a possible unphysical suppres-
sion of stripping processes. In a recent study (Heß and Springel 2010) we have therefore
proposed a new ‘Voronoi particle hydrodynamics’ (VPH) method that improves on the
widely used SPH technique (Lucy 1977b; Gingold and Monaghan 1977; Larson 1978) in
several respects. By employing a Voronoi tessellation for the local density estimate, a
consistent decomposition of the simulation volume is achieved, contact discontinuities can
be resolved much more sharply, and a ‘surface tension’ effect across them is avoided. Our
preliminary tests of VPH based on the ‘blob-test’ of Agertz et al. (2007) already suggested
that stripping is more efficient in VPH compared with SPH. Here we shall investigate this
in more detail using more realistic set-ups that mimic galaxy evolution processes. In addi-
tion to the two particle-based Lagrangian schemes for hydrodynamics, SPH and VPH, we
will also carry out comparison simulations with the moving-mesh code AREPO (Springel
2010a). Whereas AREPO uses a Voronoi tessellation as well, this code employs an entirely
different methodology for fluid dynamics, based on a finite volume Godunov scheme that
calculates hydrodynamical fluxes with a Riemann solver across mesh boundaries. The com-
parison of this diverse set of three numerical methods is useful to understand and quantify
the systematic uncertainties of the different methods.

Another interesting aspect besides the stripping is the generation of turbulence by
galaxies infalling into clusters. Numerical simulations (Dolag et al. 2005; Vazza et al. 2006;
Iapichino and Niemeyer 2008; Dolag et al. 2009) indicate that turbulence can be generated
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in the wake of an infalling galaxy. This interesting phenomenon may play an important
role in determining the dynamics of the cluster gas and could in principle be detected
through X-ray observations of the broadening of sharp metal lines (Sunyaev et al. 2003).
We will hence briefly investigate the degree to which VPH improves on SPH’s ability to
represent fluid turbulence in the context of galaxy-ICM interactions.

In our tests simulations, we ideally want to investigate as realistic conditions as possible,
including a full treatment of gravity and dark matter, as well as star formation and cooling.
This in principle calls for simulations in which a well-resolved galaxy model is dropped into
an equally well represented cluster of galaxies. Because the substantial computational cost
of such a set-up severely limits the resolution that can be achieved, we base part of our
study on a number of more idealized simulations, for example by placing galaxy models
into a ‘wind tunnel’ that mimics the impinging flow of gas onto a galaxy in orbit in a cluster.
Finally, we also carry out cosmological simulations of the formation of the ‘Santa Barbara
cluster’ (Frenk et al. 1999), primarily to study how well VPH performs in non-radiative
cosmological simulations of cluster formation compared to the other techniques. Already
in past studies, the Santa Barbara cluster comparison project has led to important insights
into how numerical effects impact the thermodynamic structure of simulated clusters, and
for this test problem, there is already a considerable body of results in the literature.

This chapter is structured as follows. In Section 4.2, we introduce the numerical meth-
ods we will use in our numerical comparison study. In Section 4.3, we check how well the
different numerical schemes represent the evolution of an isolated galaxy, and whether there
are already significant differences at this level. We then consider in Section 4.4 wind-tunnel
experiments in which we expose the isolated galaxy models to a supersonic wind, allowing
a detailed examination of the stripping process. In Section 4.5, we follow up on these ex-
periments by studying the behaviour of a galaxy model that falls into an isolated spherical
cluster, comparing the VPH results with those obtained with SPH and AREPO. Finally, in
Section 4.6, we investigate the performance of VPH in cosmological simulations of cluster
formation, using re-simulations of rich clusters identified in the Millennium Simulation as
well as the Santa Barbara cluster initial conditions. We summarize our conclusions in
Section 4.7.

4.2 Methodology

We begin by introducing the different codes and computational methods we use in this
study. In the interests of brevity, we shall only describe the most important characteristics
of the codes; full details can be found elsewhere (Springel 2005a; Heß and Springel 2010;
Springel 2010a).

4.2.1 Smoothed particle hydrodynamics

Smoothed particle hydrodynamics (SPH) is a particle based approach to fluid dynamics
that has seen widespread use in astronomy since it was first introduced more than three
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decades ago (Lucy 1977b; Gingold and Monaghan 1977). SPH discretizes the mass of the
fluid in terms of particles, whose dynamics is governed by a fluid Lagrangian of the form

L =
∑

i

[

1

2
mi ~v

2
i − mi ui(ρi, si)

]

. (4.1)

Here ui describes the thermal energy per unit mass, which for an ideal gas depends only on
density ρi and specific entropy si. An adaptive, spherically symmetric smoothing kernel is
employed to estimate the density based on the spatial distribution of an approximately fixed
number of nearest neighbours. The Lagrangian in Eq. (4.1) then uniquely determines the
equations of motion in a form that simultaneously conserves energy and entropy (Springel
and Hernquist 2002; Price and Monaghan 2007; Springel 2010b). However, an artificial
viscosity needs to be added to allow for dissipative shock capturing and to produce a
damping of postshock oscillations.

Among the primary advantages of SPH are its very good conservation properties, the
manifest Galilean invariance at the discretized level of the equations, and the absence of
preferred spatial directions. However, it has recently become clear that contact discontinu-
ities, in particular, are challenging for the method. For example, they are associated with
a spurious surface tension effect in SPH (Springel 2010b), and fluid instabilities such as
the Kelvin-Helmholtz instability are suppressed across them (Agertz et al. 2007).

4.2.2 Voronoi particle hydrodynamics

Because of the accuracy problems of SPH in certain situations, we have recently developed
another particle-based hydrodynamic method that differs from SPH in important ways,
while still sharing a number of similarities. In this ‘Voronoi Particle Hydrodynamics’ (VPH)
method (Heß and Springel 2010), the fluid is also discretized in terms of mass elements
mi, and the same fluid Lagrangian as in Eq. (4.1) is used. However, the kernel estimation
technique of SPH is replaced by a very different approach to calculate the gas density. This
is done by constructing a Voronoi tessellation for the point set, in which to each of the
particles the volume of all the space which is closer to this point than to any other point
is assigned. The density can then be obtained as the particle mass divided by the volume
of the associated Voronoi cell. We note that such a tessellation technique allows a close
to optimum exploitation of the density information contained in the particle distribution
(Pelupessy et al. 2003), and in particular, very sharp discontinuities can be resolved over
the distance of a single cell.

With the density computed, and given specified entropies si for every particle, we
can use the ideal gas Lagrangian to derive unique equations of motion for VPH. The key
quantity that is needed in doing this is the derivative of the particle volume with respect
to the coordinates of the surrounding particles, but thanks to the mathematical properties
of the Voronoi tessellation, the corresponding geometric factors can be computed relatively
easily (Serrano and Español 2001; Heß and Springel 2010) and have a clear geometric
meaning. For example, the primary force between two VPH particles is their pressure
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difference times the area of their common tessellation face. Because the dynamics in VPH
is derived from the Lagrangian given in Eqn. (4.1), energy, momentum and entropy are
conserved exactly, just like in SPH. However, there is no surface tension effect, and the
VPH particle volumina add up to the total simulated volume exactly, something that is
not the case in SPH in general. One can hence hope that VPH provides an interesting
improvement over SPH. Indeed, in Heß and Springel (2010) we have shown that this is
the case for several test problems, such as the growth of Kelvin-Helmholtz instabilities
at contact discontinuities with a large density jump. It is one of the primary goals of
this chapter to see whether these improvements are also relevant in cosmological structure
formation problems.

In VPH, we need to rely on an artificial viscosity to treat shocks, similarly to SPH.
We here follow the standard SPH approach by Gingold and Monaghan (1977) and Balsara
(1995) in introducing an extra friction force that reduces the kinetic energy and transforms
it into heat in regions of rapid compression. In addition, in VPH we can also add some weak,
non-dissipative “shape forces” that are designed to maintain a reasonably regular mesh
geometry, which tends to improve the overall accuracy of the VPH dynamics. As discussed
extensively in Heß and Springel (2010), there are different possibilities to introduce such
extra forces. We derive them by adding extra terms to the Lagrangian which penalize
highly distorted mesh cells. However, the optimum choice for the strength of these terms
is unfortunately not (yet) clear. For this reason, we have typically carried out all our tests
with several different settings for the strength of the artificial viscosity and the shape forces,
finding in most cases that our results are quite insensitive to the detailed choices over a
broad range of parameter settings.

Both the SPH and VPH simulations we study here have have been carried out with
GADGET-3, an improved version of the publicly available cosmological code GADGET-

2 (last described in Springel 2005a). The code is parallelized for distributed memory
machines and uses a hierarchical tree algorithm for calculation the self-gravity of the gas.
A collisionless stellar or dark matter component can be optionally included as well.

4.2.3 Hydrodynamical moving-mesh code

Finally, the third numerical technique for hydrodynamics we examine is implemented in
the moving-mesh code AREPO (Springel 2010a). It uses an entirely different approach in
which the volume is discretized. The hydrodynamical equations are solved in terms of a
Godunov scheme where at each mesh interface a Riemann problem is calculated and the
resulting fluxes are used for an exchange of conserved fluid quantities between the cells.
For higher spatial accuracy, this is combined with a piece-wise linear reconstruction of the
gas distribution and a second-order time integration scheme, yielding overall second-order
integration accuracy in smooth parts of the flow.

The particular mesh used by AREPO is given by the Voronoi tessellation of a set of
mesh-generating points. The use of this particular type of mesh allows the method to be
formulated such that the mesh can move along with the gas, continuously adjusting its
topology to the fluid motion. The method exploits the property of a Voronoi tessellation



66 4. Gas stripping and mixing in galaxy clusters

that the mesh changes continuously when the generating points are moved, without show-
ing problematic mesh-tangling effects. If the points are moved with the local flow velocity
(which is the standard way to operate the code), the method then has a similar Lagrangian
character as SPH/VPH. However, unlike in SPH and VPH, the masses of AREPO’s res-
olution elements (the cells) are not required to remain strictly constant. In fact, if the
mesh-generating points are arranged on a static Eulerian grid, then AREPO is equivalent
to the MUSCL-Hancock scheme, a popular method for second-order Eulerian gas dynamics
on structured grids. AREPO should hence be viewed as being closely related to ordinary
Eulerian mesh-based hydrodynamics, except that its ability to move the mesh along with
the flow considerably reduces advection errors.

4.3 Isolated galaxies and their evolution

Before we analyze the interaction of individual galaxies within a cluster environment, we
here study galaxy models in isolation to see how well the different numerical schemes treat
them and whether our initial conditions are sufficiently stable. This is also intended to
identify possible subtle systematic differences between the numerical schemes that may
be difficult to detect in more complicated set-ups. We hence try to use identical initial
conditions for the three codes as far as possible such that differences introduced by the
startup procedure are minimized. We point out however that even for identical particle
positions, masses, and temperatures, there can be variations in density (and hence specific
entropy since we start with a prescribed temperature) directly after the start of a simulation,
as a result of the different density estimation methods. We are in fact especially interested
in the question whether these small differences have any bearing on the further evolution
of isolated galaxy models.

To set-up compound galaxies in isolation, we construct dark matter halo models and
stellar disks in dynamical equilibrium through an approximate solution of the the Jeans
equations (Hernquist 1993; Springel and White 1999; Springel et al. 2005a). The primary
assumption made is that the local velocity dispersion can be approximated reasonably
well with a triaxial Gaussian. For the models considered here, a dark matter halo with
a Hernquist profile is used, but alternatively a truncated NFW profile could be used as
well, with no difference to our results. The baryonic matter is represented with a central
stellar bulge, an exponential stellar disk, and an exponential gaseous disk. In a variant of
this method, we shall later on also construct models of isolated galaxy clusters by adding
a gaseous halo component and omitting the bulge and disk.

For definiteness, we have chosen a virial velocity of V200 = 207 km s−1, yielding a total
mass of Mtotal = V 3

200/(10 GH0) = 2.1 × 1012 M⊙ for the system, of which a fraction
Mdisk/Mtotal = 0.041 is assumed to be in the disk, a fraction Mbulge/Mtotal = 0.01367 of the
mass is in the bulge and the rest is distributed in a halo with a concentration of c = 9.0
and a spin parameter of λ = 0.033. Since we want to concentrate on the gas dynamics,
we make the disk very gas-rich by giving it a gas fraction of 50%. We include radiative
cooling (for a primordial composition), and model star formation and supernova feedback
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with a simple multi-phase model for the ISM (Springel and Hernquist 2003).
In our default resolution, the gas in the disk is represented by 20000 particles, and an

equal number of collisionless particles is used for the stellar disk. The bulge is represented
by 10000 particles, and the dark matter halo by 30000 heavier particles that are given a
larger gravitational softening length. Additionally, we introduce in the VPH simulation a
few hundred gas particles with a distance of at least 600 kpc to prevent that the Voronoi
cells at the surface of the isolated gas distribution become extremely large and cause
technical problems in our mesh construction algorithm, which requires cells to be smaller
than half the size of the box in which the VPH calculation is carried out. For the latter
we use a periodic box with a sidelength of 1 Mpc.

For the AREPO simulations, we first map the given SPH gas density field to an adap-
tively created Cartesian mesh. The latter is composed of the set of leave cells of the Barnes
and Hut (1986) oct-tree corresponding to the spatial distribution of SPH particles, with
the additional requirement that the tree is refined everywhere at least to a background grid
with a spacing of 62.5 kpc. We then distribute the SPH gas particles with their adaptive
kernels onto the grid, in a conservative fashion. For this procedure we use Nngb = 256
neighbours. The resulting density field is used as the initial mesh for our moving-mesh
calculation. This procedure ensures that the initial mesh geometry is unaffected by the
Poisson noise inherent in the original particle set, and that the outside vacuum region
around the galaxy is still covered by at least a coarse mesh. At the same time, the created
mesh-based density field faithfully represents the SPH density field.

4.3.1 Gas density maps and structure of the disk

As we have discussed above, identical particle positions and masses do not imply equal
densities in our different codes. To illustrate this further, we consider in Figure 4.2 each
method’s estimate of the initial density profile in the z-direction, perpendicular to the
disc. The plotted curves represent averages of the densities estimated for the individual
particles/cells as a function of distance from the disk plane. We see that there is a sub-
stantial positive bias in the density estimate of SPH when a comparatively low number of
neighbours of Nngb = 33 is used. We note that this number has often been employed in
3D simulations in practice, both to maximize the resolution and computational efficiency
for a given number of particles, and to avoid particle clumping.

In Figure 4.1, we show face-on maps of the galaxy’s gas density distribution in a thin
slice through the disc, after a brief period of evolution of t = 0.13 Gyr. It is not surprising
that the overall morphology is extremely similar as the gravity from the DM halo and
the stellar disk are the primary driving force of the disc dynamics. However, upon close
inspection, one can identify the higher effective resolution of VPH that produces crispier
but noisier looking features compared with the more blurry appearance of the SPH result,
as a result of SPH’s larger smoothing. The gas distribution of the mesh-based AREPO looks
a bit sharper and less noisy than both particle based schemes, but it should be noted that
due to the transformation to grid-based initial conditions there are slightly more resolution
elements in this case, which will tend to reduce noise.
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Figure 4.1: Projected gas density maps at t = 0.13Gyr of an isolated galaxy model
simulated with SPH (bottom), VPH (middle) and AREPO (top). Each map measures
20 kpc on a side, and is based on a three dimensional Delaunay-based interpolation which
has been smoothed in the z-direction.
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Figure 4.2: Vertical structure of an isolated galaxy model, initialized with different
simulation methods. We here show the average (mass-weighted) density estimates of
the particles/cells within 5 disk scale lengths. The black lines correspond to SPH with
64 (solid) or 33 (dashed) smoothing neighbours, respectively. The blue line is for VPH,
while the red line is for AREPO.

Overall, however, the gas distribution is reassuringly similar. In Figure 4.3, we show
maps of the projected stellar mass density in the disks, checking that this is also the case for
the collisionless mass components. In fact, here an excellent agreement is found, confirming
that the gravitational dynamics of collisionless particles is followed with equal quality in all
three codes, as expected. This verifies that differences in the evolution of our galaxy models
are expected to arise only from the different treatment of the hydrodynamics, and not from
differences in the way the collisionless dynamics of stars and dark matter is followed.

It is also interesting to check how the vertical structure of the gaseous disk changes
after some time as elapsed. In Figure 4.4, we show the density and pressure profiles for
the same regions as displayed in Figure 4.1, but this time at time t = 0.03 Gyr. We see
that the SPH result produces comparatively wide wings in the z-profile, while VPH and
AREPO tend to avoid this flaring effect. Also, there are some mild differences in the peak
density reached in the midplane of the disk, which tends to be highest in AREPO, and
lowest in SPH. In general, however, all three methods are clearly able to retain the initial
structure of the galaxy model to a similar degree, yielding only very minor differences after
some time.
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Figure 4.3: Projected mass density of newly formed stars (omitting stars that have been
initialized in the stellar disk) in a galaxy model evolved to time t = 0.13Gyr with three
different numerical schemes, AREPO, VPH, and SPH, from top to bottom, respectively.
The maps measure 30 kpc on a side.
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Figure 4.4: Vertical profiles of density and pressure in an evolved (t = 0.03Gyr) model
of an isolated galaxy, simulated with either SPH (black), VPH (blue) or AREPO (red).
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4.3.2 Star formation rate evolution

Despite the good agreement between the different methods noted above, some interesting
discrepancies are revealed when looking in detail at the time evolution of the star formation
rate, as shown in Figure 4.5. Here SPH shows a star formation rate that is about ∼ 10
per cent higher than that of VPH and AREPO, and this difference persists with time.
We think this is probably caused by two effects. First, SPH shows a somewhat higher
density estimate in regions above and below the disk (see Figure 4.2), and this ‘flaring’
effect due to the stronger smoothing inherent in this scheme leads to a somewhat larger
volume-integrated star formation rate. Second, there is also a bias in the average SPH
density estimates for the set of all particle coordinates, because for these positions one
always includes a particle at zero lag in the kernel sums. This tends to lead to a spurious
increase of the SPH density estimates above the expected mass-weighted mean. For the
same reason, the sum of the individual SPH volume estimates, Vi = mi/ρi, will typically
not add up to the total simulated volume, instead yielding a slightly larger value. In any
case, it is reassuring that VPH and AREPO produce very similar star formation rates
as a function of time, except for a brief period after start-up, where AREPO exhibits a
downward fluctuation in the star formation rate. The exact nature of this minor relaxation
effect is unclear at the moment.

4.4 Galaxy in a wind tunnel

Simulating the interaction of a galaxy with the sparse intra-cluster gas of a galaxy cluster at
high-resolution is computationally challenging, especially with the particle-based methods
SPH and VPH, which do not easily lend themselves to adaptive refinement techniques. In
fact, they basically require particles of equal or very similar mass to work well. Hence,
if one simply wants to let a galaxy model fall into a massive cluster, the latter needs to
be represented with very high particle number (because it is so massive), such that one
ends up spending only a tiny fraction of the computational effort onto the galaxy and the
surrounding gas, where the actual interaction takes place. A further complication is that
some of the stripped gas mass may be distributed over a large region across the cluster,
corroborating the need to simultaneously account for the whole cluster at high resolution.

We will nevertheless consider such simulations later on in Section 4.5, but here we
first investigate an alternative, more idealized set-up, which makes it much easier to reach
an adequate resolution. In this approach, we effectively put a galaxy model into a ‘wind
tunnel’, i.e. a rectangular box in which we let gas stream onto the galaxy with prescribed
density, velocity and temperature, matched to what we expect during a cluster passage.
The much smaller volume that needs to be simulated around the galaxy in this situation
drastically lowers the computational expense, and even more importantly, the simplification
brought about by such a controlled set-up makes it much easier to distinguish between
different numerical effects.
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Figure 4.5: Time evolution of the star formation rate of an isolated galaxy model,
simulated with SPH (black), VPH (blue), and AREPO (red).

4.4.1 Initial conditions

For definiteness, we put our model galaxy into a rectangular box of side-length 80 kpc. At
one side of the box, gas is constantly injected, which we realize in the case of SPH and
VPH by creating new particles in a suitable fashion, mimicking an infinitely extended grid
of particles that moves into the simulation domain. On the opposite side of the box, we
effectively implement outflow boundary conditions by removing particles once they start
moving out the box. Since we here focus on supersonic winds, the removal of particles
at the outflow side does not lead to the propagation of perturbations upstream to the
inflowing gas. In the case of the AREPO code, the inflow and outflow regions are realized
in an equivalent, yet technically different fashion. We here use the on-the-fly refinement
and derefinement features of the AREPO code to produce new mesh-generating points in
the inflow region, and to remove them near the outflow side. The net result is identical
to the SPH and VPH cases, i.e. the galaxy at the centre of the box is hit by a wind of
particles/cells with prescribed density and velocity. This impinging wind has the same gas
mass resolution as our target galaxy model.

For all faces of the box that form the enclosing sides of our wind tunnel, we adopt peri-
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Figure 4.6: Projected gas density maps of a galaxy (seen edge-on) that experiences
a supersonic wind from below. The different panels show the logarithm of the density
field at different times, from T = 0.04Gyr (bottom row), T = 0.35Gyr (middle row) to
T = 0.65Gyr (top row), and for different numerical techniques, AREPO (left column),
VPH (middle column) and SPH (right column). All maps are generated with the same
adaptive smoothing algorithm and have an extension of 30 kpc × 45 kpc.
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odic boundary conditions for the gas as far as the hydrodynamics is concerned. However,
periodic boundary conditions are not imposed for self-gravity, which we fully include (note
that our galaxy is held together by gravity). Since the mass of the gas in the wind is quite
small, most of it is unbound to the galaxy, and our restricted treatment of self-gravity to
the region of the box is still a good approximation. We note that a number of similar wind
tunnel experiments have previously carried out (Agertz et al. 2007; Iapichino and Niemeyer
2008), but without a treatment of self gravity. Note that while our setup is not capable
of accounting for the tidal forces that arise when an extended galaxy travels through the
gravitational potential of a cluster, these forces can be expected to be subdominant com-
pared to the hydrodynamical forces in the outer parts of a cluster, which is the region we
are most interested in. However, gravitational forces between dark matter, stars and gas
inside the galaxy are very important, and our approach is the first that allows a detailed
study of the response of the gravitationally coupled disk-halo system to the ram-pressure of
the impinging wind. In particular, this allows a realistic measurement of the acceleration
of the whole galaxy due to the ram-pressure force exerted by the wind.

In our default set-up, we have chosen a constant density of ρ = 1.90 × 1027 g cm−3 and
a velocity of v = 3000 km s−1 for the wind, letting it flow onto the galaxy in a face-on
orientation. A density and velocity of this magnitude would be typical close to apocentre
for a galaxy that has fallen into a large cluster. Of course, in reality the strength of the
wind will be a function of the orbital phase and of parameters such as cluster size and
angular momentum of the galaxy orbit. Changing these values should however not change
our results at a qualitative level. For the galaxy model studied in our simulations, we have
adopted structural properties identical to those described in Section 4.3. We place the
galaxy suddenly into the supersonic wind, refraining from any attempt to impose a more
gradual start-up in which the wind would somehow be slowly turned on.

4.4.2 Stripping

Hydrodynamically, the galaxy represents an obstacle in the supersonic wind, causing a
bow shock in the upstream region ahead of the galaxy. Inside the bow shock and ahead
of the front side of the galaxy, the compressed wind is slowed down and exerts significant
ram-pressure onto the galaxy (Gunn and Gott 1972), whereas around the sides, a region
of strong shear flow is produced as the wind streams around the galaxy. In this region, the
formation of Kelvin-Helmholtz instabilities is expected, which accelerate the stripping of
gas from the galaxy’s disk and mix it with the downstream flow. Agertz et al. (2007) has
previously investigated the simpler case of a spherical, non-selfgravitating gaseous obstacle,
and found substantial discrepancies between different hydrodynamical methods for the rate
of gas stripping and the time until eventual complete disruption of the obstacle. Here,
we are particularly interested to see whether such differences also occur between SPH,
VPH and AREPO, when the more realistic disk-wind setup we are investigating here is
considered.

Let us first compare the galaxy’s gaseous mass loss as a function of time. We consider
a gas particle (or cell) to be part of the ISM of the galaxy when it is sufficiently dense and
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cold. Specifically, we require the conditions

ρ > 2000 ρwind and T < 0.5 Twind (4.2)

to be met, where ρwind and Twind are the density and temperature of the wind. Furthermore,
we impose an additional condition on the maximum allowed separation r of a particle from
the centre-of-mass of all gas that fulfills the criterion of Eq. (4.2). Only for

r < 8 kpc (4.3)

the gas particle is considered to be part of the ISM of the primary galaxy. This condition
is introduced in order to discard cold clumps of gas that have been stripped out of the
galaxy but have still stayed cold and dense.

Indeed, it turns out that this secondary criterion is quite important in our SPH simu-
lations, where the galactic disk tends to shed dense clumps under the action of the ram
pressure. These fragments can still fulfill Eqn. (4.2) despite being stripped, but as they
separate from the main galaxy, they eventually violate Eqn. (4.3) and are then counted as
stripped gas.

This behaviour can clearly be seen in Figure 4.6, which shows projected gas density
maps of the galaxy in an edge-on orientation, with time evolving from bottom to top. While
the morphology of the stripping process looks similar at early times, significant differences
develop over time. Both of the particle-based methods loose small clumps of gas and
exhibit string-like features of quite dense gas. This effect is particularly strong in SPH.
In contrast, the AREPO disk stays comparatively coherent, with all of the stripped gas
moving to lower densities quickly. Hence there remains no dense debris in the downstream
flow. At the latest time shown in the figure (top row), the residual gas disks of AREPO

and VPH are visually significantly smaller than in SPH, suggesting that more gas has been
stripped.

This impression is born out by a quantitative measurement of the gas mass that is still
in the ISM phase of the galaxy model. Figure 4.7 shows the ratio of the remaining ISM
gas mass to the initial mass a function of time, comparing wind tunnel simulations carried
out with the three different numerical techniques. Clearly, the mass loss in SPH is smallest
overall, with a tendency for about 10% of the initial mass remaining after 1 Gyr, whereas
at this time the ISM of the VPH and AREPO runs is almost stripped completely.

It is interesting to note that the stripped dense gas in the SPH simulation, and to a lesser
extent in the VPH run, can continue to form stars at some level. This is particularly evident
in Figure 4.8, which shows maps of the projected star formation rate density in an edge-on
projected, at time t = 0.34 Gyr. This highlights that in the case of the SPH simulations
the stripped gas clumps are not only very concentrated, they also continue to form stars
at a quite high rate. This phenomenon is still present in VPH, albeit at a much weaker
level. In contrast, AREPO does not show such a behaviour. In SPH, there are at least two
effects that can help to explain the enhanced star formation in the stripped clumps. First,
it is known that spurious surface tension forces in SPH exist that will slightly compress
the gas of the clumps and keep them coherent. Second, there is the issue of a potential
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Figure 4.7: Loss of star-forming ISM gas as a function of time due to stripping through a
supersonic wind. The gas remaining in the ISM of the galaxy is here measured according
to the criteria of Eq. (4.2) and Eq. (4.3). The three solid lines show the measurements
for our simulations with SPH, VPH and AREPO, as labelled. We find that the stripping
is quite similar in VPH and AREPO, but significantly less efficient in SPH.

artificial suppression of gas mixing in the turbulent wake behind the galaxy. Both SPH
and VPH, by construction, prevent that the low entropy gas of the ICM is mixed at the
particle level with the high entropy gas of the impacting wind. This imposed Lagrangian
behaviour ignores any small-scale mixing processes that could happen on scales below
the spatial resolution limit. In contrast, the mesh-based approach of AREPO implicitely
allows for such processes. Here, the mixing manifests itself in terms of mass exchanges
between the cells, giving rise to a much more diffuse wake behind the galaxy (left column
in Figure 4.6) where no gas remains that is still dense enough to support star formation.
In the mesh-based approach, one may have in fact an opposite problem compared to the
particle schemes. Here the need to advect the fluid over mesh interfaces can easily lead
to excessive numerical mixing. However, the moving-mesh technique of AREPO should
reduce such errors significantly compared to more traditional Eulerian methods.

Another interesting view on the different behaviour with respect to stripping is provided
by Figure 4.9, which shows the time evolution of the sum of the star forming gas mass
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Figure 4.8: Maps of the projected star formation rate density in a galaxy model (seen
edge-on) that encounters an IGM wind in the upwards direction. We show results at
T = 0.34Gyr for our wind tunnel experiments, carried out with AREPO (left), VPH
(middle) and SPH (right). Each panel extends over 36 kpc × 48 kpc.

(which is just the total gas mass above the star formation threshold) plus the stellar mass
formed since the beginning of the simulation. Interestingly, this quantity is nearly constant
in time in the case of SPH, showing that essentially none of the initially dense and star
forming gas is dragged to low enough density to stop star formation. This is consistent
with our earlier findings, but also makes it quantitatively evident that essentially no mixing
of this low entropy gas with higher entropy material occurs. In contrast, the sum of star
forming gas mass plus stellar mass declines significantly in AREPO, by more than a factor
of 2 over the timescale of 1 Gyr that is shown here. The results for VPH are intermediate,
showing some evidence for gas moving to higher entropy during the stripping process and
thus reducing the amount of total gas available for star formation. We will investigate the
entropy distribution more in Section 4.4.4.

Interestingly, the different stripping rates also lead to different accelerations of the
whole galaxies, because they experience different ram pressure forces as a result of the
different areas of the remaining gas disks. Since the gas in the disk is gravitationally
coupled to the stellar disk and the dark matter halo, it is important to note that the wind
not only strips the gas component of the galaxy, instead it accelerates the whole galaxy.
In Figure 4.10, we show maps of the projected stellar densities of the stellar disk in SPH
and VPH at an identical time, corresponding to T = 0.35 Gyr. Clearly, the whole SPH
galaxy has been pushed more into the downstream direction, demonstrating that it has
experienced a higher effective ram pressure, as a consequence of the reduced stripping rate
of its disk. In real galaxy clusters, this will in turn lead to a larger dynamical friction force
and a somewhat faster decay of the orbit of the galaxy. An additional effect is that in the
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Figure 4.9: Time evolution of the sum of the mass of star-forming gas and the mass of
all stars formed since the beginning of the simulations of a galaxy exposed to an impinging
IGM wind in a wind tunnel. We show results for different simulation techniques, including
an SPH-based simulation (black solid), VPH (blue solid), and AREPO (red).
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Figure 4.10: Stellar density maps of model galaxies (seen edge on) exposed to a super-
sonic IGM wind, at T = 0.35Gyr. The two panels show results for SPH (left) and VPH
(right), respectively. Interestingly, the SPH galaxy is accelerated more strongly in the
downstream direction, as a result of a larger effective ram pressure force due to slower
stripping of its gaseous disk. The SPH simulation also shows signatures of the wind
imprinted onto the morphology of the stellar disk, a behaviour that is not seen in VPH
or AREPO. The two maps show the same spatial region of the wind tunnel and have an
extension of 30 kpc × 45 kpc.

SPH case we see small features emanating in the downstream direction from the stellar
disk. Figure 4.10 shows two small humps in the stellar disk, as well as a faint stellar blob
at some distance further downstream. These are in fact stars of the original stellar disk
that were gravitationally pulled out of the disk by dense gas. Both effects are absent in
the equivalent VPH and AREPO calculations, showing again how much more (artificial)
‘coherence’ the dense gas phase shows in the SPH case, where comparative massive gas
clumps are removed from the disk that stay coherent afterwards.

4.4.3 Dependence on resoution and artificial viscosity

In order to examine the quantitative robustness of our wind tunnel results with respect
to numerical resolution, we repeated our simulations with SPH, VPH and AREPO using
both a lower and a higher resolution than in our default runs discussed thus far, where
the galaxy is resolved with 80000 gas particles in the initial gas disk. With respect to this
intermediate resolution, our low resolution simulations have 4 times fewer particles in each
component, whereas the high resolution runs have 4 times mores particles.

In Figure 4.11, we show a resolution study for the gas stripping out of the ISM as a
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Figure 4.11: Resolution study of the mass loss of a galaxy in a wind tunnel. The left
panel measures the gas remaining in the ISM (defined through Eq. 4.2) as a function
of time, for simulations carried out with VPH, SPH, and AREPO, as labelled. In each
case, three resolutions are shown, corresponding to 20000 gas particles (low resolution,
dotted), 80000 gas particles (intermediate resolution, dashed), and 320000 particles (high
resolution, solid) in the initial galaxy model. The panel on the right compares the sum
of the remaining star forming gas plus the newly formed stellar mass as a function of
time in VPH and SPH, using the same simulation set. Here a quite good convergence
can be observed for the different particle-based techniques, but SPH is offset relative to
VPH and has a significantly smaller amount of stripped gas.



82 4. Gas stripping and mixing in galaxy clusters

function of time, and for the sum of remaining star forming gas and newly formed stellar
mass. We find that the general trends remain very similar at all three resolution levels.
That is, gas is stripped the fastest in AREPO, and slowest in SPH, with VPH taking on
an intermediate role. Interestingly, in the two particle codes, the stripping proceeds more
slowly when the resolution is poorer, whereas in AREPO the opposite trend is observed, the
stripping tends to accelerate slightly for better resolution. We hence find that the results
become more similar for better resolution. In particular, in the high resolution case, VPH
is in fact very close to AREPO. When the sum of the star forming gas mass and the newly
formed stars is considered, we see that this quantity is very robust for SPH and VPH as
a function of resolution. This also means that the offset between VPH and SPH at late
times is a manifestation of a systematic numerical difference between the two methods.

Both SPH and VPH rely on an artificial viscosity to capture shock waves and to damp
out small scale numerical noise. The choice of the artificial viscosity parameterization
and the associated strength of the viscous forces are crucial for the overall robustness and
accuracy of the scheme. Using a large viscosity leads to more robust shock capturing,
but on the other hand it may produce substantial viscous effects in regions where the gas
really ought to flow without dissipation. In particular, a too high viscosity may suppress the
growth of fluid instabilities that are important in gas stripping processes. We have therefore
checked how our wind tunnel results for VPH depend on the viscosity setting. To this end
we have reduced the viscosity parameter from our default value of α = 1 (high viscosity) to
α = 0.5 (intermediate) and α = 0.25 (low artificial viscosity). In Figure 4.12, we compare
the corresponding results for the stripping as a function of time in our low-resolution wind
tunnel set-up. We see that for reduced viscosity, the gas is actually stripped a bit faster in
VPH than for the high viscosity setting. This is consistent with our expectation that the
numerical viscosity will tend to damp small-scale fluid instabilities and turbulence, which
as a side effect reduces the stripping rate.

Another numerical nuisance parameter in VPH lies in the strength of the shape cor-
rection forces that can be introduced into the technique in order to regularize the mesh
and encourage a quasi-regular particle distribution. As explained in Heß and Springel
(2010), this is accomplished by adding a small term to the Lagrangian that penalizes large
aspect-ratio distortions of cells and large offsets between the generating point of a cell
and its center-of-mass. While not strictly necessary for VPH to work, we have found the
technique to be considerably less noisy in certain conditions when such weak shape correc-
tion forces are used. In our standard implementation, their strength is controlled by two
dimensionless parameters β0 = 0.2 and β1 = 0.01 (see Heß and Springel 2010,for the exact
definition of these parameters). In Figure 4.13, we have included two additional lines that
show our results when instead stronger correction forces described by β0 = 0.6, β1 = 0.03
or even β0 = 1.8, β1 = 0.09 are invoked. In both cases, this has only a very weak influence
on the results, as desired.
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Figure 4.12: Dependence of the wind tunnel stripping efficiency in VPH (blue lines)
and SPH (black lines) on the artificial viscosity. We show the loss of star-forming gas
mass (defined as in Eq. 4.2) of our default galaxy model as a function of time, for high
artificial viscosity α = 1 (solid lines), for intermediate strength α = 0.5 (dotted lines)
and for low artificial viscosity α = 0.25 (dashed lines).

4.4.4 Structure of the wake

As an extension of our analysis of the dependence of the VPH results on the artificial
viscosity, we here study in more detail the structure of the wake behind the galaxy, at
a fixed time of T = 0.35 Gyr. We also consider a variant of VPH where an additional
‘mixing’ of the specific entropies is introduced in case a strong local shear flow is detected,
as described in Heß and Springel (2010). We shall in particular look at the temperature
field and the properties of the velocity field in the wake behind the disk.

First, in Figure 4.14 we show a simple profile of the density and entropy structure
along the z-direction, through the centre of the galaxy and along the symmetry axis of the
problem. We see that all the simulations produce a qualitatively similar structure, where
density and entropy in front of the galaxy rise towards the front edge of the galaxy’s ISM,
which features a very strong contact discontinuity at which both quantities jump by large
factors. Interestingly, in the wake behind the galaxy, there are some noteworthy differences
between the simulations. Here the SPH run shows a much reduced entropy relative to all
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Figure 4.13: Dependence of the stripping efficiency in VPH on the strength of mesh
shape correction forces, which consist of small, non-dissipative forces that tend to steer
mesh cells towards a ‘rounder’ shape in case they have become highly asymmetric. We
show the loss of star-forming gas mass (defined as in Eq. 4.2) of our default galaxy
model as a function of time, for our standard choice of β0 = 0.2, β1 = 0.01 (solid line)
for parameterizing the shape correction forces. We also show results for two different
settings, for β0 = 0.6, β1 = 0.03 (dashed line) and for the somewhat extreme choice of
β0 = 1.8, β1 = 0.09 (dotted line), respectively.
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Figure 4.14: Profiles of gas density (top panel) and specific entropy (bottom panel) at
t = 0.04Gyr along the z-direction in our wind tunnel simulations, for simulations carried
out with VPH, SPH, and AREPO. The individual lines shows the averaged gas quantities
in a cylinder of radius 10 kpc around the z-axis. The dashed blue line is a variant of our
default VPH run where an additional mixing term of the specific entropies was included.
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Figure 4.15: Logarithmic temperature maps of a galaxy (seen edge-on) that encounters
a tenuous high velocity wind. The maps have an extension of 30 kpc × 45 kpc and show
the temperature in a slice through the mid-plane of our wind tunnel simulations, at time
T = 0.35Gyr. The two panels on top, and the one in the lower left, show simulations
carried out with different variants of VPH. Our standard setting for the artificial viscosity
is shown in the top left, a run with reduced artificial viscosity in the top right, and a run
with an additional mixing term for the specific entropies in regions of strong shear flow
in the bottom left. For comparison, the bottom right displays the results for AREPO.
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Figure 4.16: Average rms velocity amplitude as a function of scale in the transverse
velocity field in two regions of our wind tunnel, upstream before the galaxy (lower set of
lines) and downstream in the wake of the galaxy (upper set of lines). We show results
obtained for VPH, SPH, and AREPO, as labelled. The dotted line indicates as slope
of −1.
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the other simulations, which agree quite well. However, in the density structure of the
wake, SPH manages to agree quite well with the other results, but here it is the AREPO

simulation that shows a somewhat larger difference, featuring a smaller gas density in the
first ∼ 15 kpc of the downstream flow behind the disk. The ‘mixing’ variant of VPH results
in essentially identical results in these measurements compared to ordinary VPH. We only
see a slightly smoother entropy distribution of the wake, whereas the the general trend
remains.

In Figure 4.15, we show the temperature field in the wake region of the disk, at time
T = 0.35 Gyr. We compare three different treatments of VPH, where either the artificial
viscosity is varied, or additional entropy mixing terms are enabled. We also include the
result of a corresponding calculation with AREPO. One can see that the reduced viscosity
variant of VPH leads to a slight reduction of dense gas in the disk and the downstream
part of the flow, indicating that the stripping is somewhat accelerated. On the other hand,
the bow shock in front of the galaxy shows marginally more irregularity, suggesting that
the shock-capturing is not as good with reduced viscosity and probably associated with
larger post shock oscillations. The mixing variant of VPH produces a somewhat smoother
downstream flow, as expected. Overall, the differences between the different VPH variants
are quite small, and in any case, they are much smaller than the difference with respect to
the AREPO result. The latter shows a more pronounced bow shock, no cool clumps in the
downstream flow, and an overall less noisy appearance.

Finally, we investigate the structure of the velocity field in the wake. We are especially
interested in the degree of random (‘turbulent’) gas motions produced by the galaxy in
the downstream wind. To quantify the strength of these motions, we only consider the
transverse velocity field perpendicular to the z-direction and measure the root-mean-square
amplitude of Fourier modes of the velocity field in two different regions of our wind tunnel.
We consider both a downstream region (z ∈ [10, 30] kpc), and a region in front of the galaxy
(z ∈ [−30,−10] kpc) where the impinging wind is still essentially laminar. In Figure 4.16,
we show our measurements for simulations carried out with VPH, SPH, and AREPO. As
expected, in the region in front of the galaxy, the transverse velocity field is very quiet, and
VPH and SPH agree very well. Here AREPO lies slightly higher as a result of the different
approach to create the incoming mesh, which is in this case based on cell-splitting and
subsequent regularization of the mesh. This procedure introduces a small level of noise in
the incoming wind, whereas in SPH and VPH a perfectly quiet Cartesian grid of points is
moving into the wind tunnel. More interesting is however the result for the downstream
flow behind the galaxy. Here the typical turbulent velocity in the transverse direction lies
two orders of magnitude higher than in the upstream region of the wind. Remarkably, the
result for VPH matches that for AREPO nearly perfectly, suggesting that the statistical
properties of the transverse velocity fields in the two simulations are very close. In contrast,
SPH shows an elevated strength of transverse motions, which probably is a signature of a
larger level of noise in the SPH run.
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4.5 Stripping of a galaxy during cluster infall

In order to complement our wind-tunnel experiments carried out in the previous section
with more realistic setups, we here want to conduct a few simulations where galaxy models
are infalling into live models of galaxy clusters. This approach includes a full treatment
of gravity as well as a modeling of cooling and star formation. In particular, it accounts
correctly for the tidal effects of a galaxy traveling within the cluster potential. The latter
inevitably changes the structure of the galaxy, most prominently by reducing its dark
matter mass through tidal truncation, which in turn changes the conditions under which
the hydrodynamical processes occur.

Besides looking at the stripping of the gas, we will also compare how the star formation
rates in the infalling galaxy declines in our different simulations, since we expect that
different numerical ram pressure will strongly affect this quantity (e.g. Kronberger et al.
2008; Kapferer et al. 2009). We note that a number of recent studies both with grid-based
codes (Roediger and Brüggen 2007; Iapichino and Niemeyer 2008) and SPH codes (Jáchym
et al. 2007; McCarthy et al. 2008) have begun to investigate this question in detail. Our
focus here will be much more limited though and only be concerned with a comparison of
our new VPH scheme relative to SPH and AREPO.

4.5.1 Setup of galaxy-cluster interaction simulations

For definiteness, we consider a parabolic encounter of a 1012 M⊙ disk galaxy with a small
M200 = 5 × 1013 M⊙ galaxy cluster. The galaxy is constructed as a compound system as
described in Section 4.3 but with fewer particles than in our earlier simulations. This was
necessary to reduce the computational cost to an acceptable level, given that in this setup
we need to represent the much larger cluster with the same mass resolution as the galaxy
in order to avoid numerical problems in SPH. The latter does not work very accurately if
particles of very different masses interact. In our default set-up, we have therefore chosen
4000 gas particles for the ISM of the infalling galaxy, and 106 gas particles of identical
mass for the IGM of the galaxy cluster.

For the cluster, we adopted a gas-fraction of 17% and a NFW concentration of c = 2.0.
The trajectory of the encounter starts at a distance of 700 kpc, just outside of the virial
radius, and follows a parabolic orbit where the minimal distance of the two objects would
be 50 kpc if they were point masses. Compared to the orbital plane the galaxy’s disk is
tilted by θ = 30◦ and φ = 30◦ (see Duc et al. 2000,for a sketch of the orbital geometry).
We note that we can draw general conclusions from a single choice of inclination angles
since they have no significant effect on the gas stripping (Roediger and Brüggen 2006).

4.5.2 Properties of the head wind

In Figure 4.17, we show the properties of the wind encountered by the infalling galaxy as
a function of time. In order to define whether a gas particle or cell still belongs to the
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Figure 4.17: Properties of the ‘headwind’ encountered by the infalling galaxy. The
velocity difference is calculated between the center-of-mass of the galaxy (defined accord-
ing to Eqn. 4.4) and the environment, which is taken as a sector of a spherical shell
with an opening angle of 30 deg in the direction of the velocity vector and at a distance
of [45, 99] kpc with respect to the galaxy centre. All simulations have been conducted
with cooling and star formation. In each panel, we show results for simulations with
VPH (blue), SPH (black), and AREPO (red), comparing from top left to bottom right
the relative velocity, density, pressure and temperature of the wind encountered by the
galaxy as a function of time.
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Figure 4.18: Visual comparison of the spatial distribution of lost gas particles (large
blue dots) from the ISM of an infalling galaxy simulated with VPH (top row) and SPH
(bottom row) at t = 0.3Gyr (left column), t = 0.6Gyr (middle column) and t = 0.9Gyr
(right column) and. The green curve traces out the orbit of the galaxy through the
cluster up to the time of each individual panel, as labelled. The gas particles of the
target cluster’s IGM are shown as yellow dots.
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galaxy we have used the criterion

ρ > 4 × 10−26 g cm−3 and T < 106 K. (4.4)

Furthermore, we additionally impose the condition that the separation r of particles from
the centre-of-mass of the remaining gravitationally bound DM of the galaxy is less than
20 kpc. We note that with this definition the galaxy can in principle also accrete new gas
from the cluster that cools onto the ISM and helps to feed star formation. We include
results for VPH, SPH and AREPO in Figure 4.17, and as the comparison shows, there is
generally very good agreement between the three different simulation techniques. All three
show a strong rise of density and pressure as the galaxy approaches and passes pericentre,
while the temperature is roughly constant, reflecting the nearly isothermal conditions in
the cluster gas. There are no significant deviations in the orbit of the galaxy between the
different methods, hence any difference in the evolution of the galaxies can only arise from
differences in the hydrodynamical treatment of the interaction of galaxy and cluster gas.

4.5.3 Gas stripping and star formation truncation

In Figure 4.18, we show a visual comparison of the gas stripping in the VPH and SPH
simulations, where it is readily apparent that the gas mass loss proceeds much slower in
SPH than in VPH. This is confirmed by quantitative measurements shown in Figure 4.19,
which include results for the gas stripping in three different simulations of the encounter
of a galaxy with the cluster ICM. Interestingly, VPH looses gas here even somewhat faster
than AREPO, but both methods yield a substantially faster loss of gas than SPH. While
at time ∼ 1 Gyr the VPH simulation has lost all of the gas, the galaxy in SPH still retains
half of it.

This substantial difference is corroborated by the behaviour of the star formation rate
in the galaxies, shown in Figure 4.20. Here SPH shows the slowest decline overall, while
both VPH and AREPO lead to a rapid termination of star formation, which implies a quick
reddening of the galaxies. It is a well known problem in galaxy formation to understand
the colours of cluster galaxies in detail. Semi-analytic models of galaxy formation have
commonly predicted a rather quick truncation of star formation upon cluster infall, yielding
cluster populations that are actually too red (e.g. Weinmann et al. 2006). It can be
expected, due to the fast stripping, that our VPH and AREPO simulations suffer from the
same problem, and even SPH may be in tension. This likely indicates that the stripping
efficiencies in these simulations are in general too large, probably because the ISM is still
underresolved and appears as a homogenous dense phase instead of being resolved into a
true multi-phase medium. The latter would make the medium more porous, allowing very
dense clouds of gas to resist the ICM wind for a longer time and to stay in the infalling
galaxy.
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Figure 4.19: Gas mass as a function of time still bound to a galaxy that is infalling into
a galaxy cluster. We include simulation results for SPH (black),VPH (red) and AREPO
(blue).

4.6 Cosmological cluster simulations

We now turn to results for fully cosmological simulations of cluster formation. We first
carry out a comparison of the gas content of satellite systems in ‘zoom’ simulations of
the formation of rich galaxy clusters, carried out with VPH, SPH and AREPO. We here
primarily want to check whether the differences we have observed in the stripping of dense
ISM gas out of galaxies in our earlier more idealized simulations manifest themselves also
in non-radiative simulations, where the density contrast is much smaller. Second, we study
the well known Santa Barbara cluster of Frenk et al. (1999) in order to investigate whether
VPH produces a higher entropy in the cluster centre compared to SPH, which would then
make it closer to the results of mesh codes that have been applied to this problem. We
also use this cluster in order to assess the numerical convergence of VPH for the properties
of the intracluster gas.
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Figure 4.20: The star forming rate within a distance of 20kpc from the galaxy centre
as a function of time. We include simulation results for SPH (black),VPH (blue) and
AREPO (red).

4.6.1 Gas stripping in non-radiative zoom simulations of galaxy

clusters

In order to simulate the formation of rich galaxy clusters in the ΛCDM cosmology, we ex-
tract a massive halo from the Millenium Simulation (Springel et al. 2005c), and resimulate
this cluster with the addition of gas. To this end we trace the particles that make up the
cluster back to the original initial conditions at z = 127, thereby finding the Lagrangian
region out of which the cluster formed. This region is then populated both with dark
matter and gas particles, which are pertubed with the original displacement field. We can
also increase the resolution compared to that in the original simulation if desired, in which
case additional small-scale fluctuation power is added in the region between the old and
new Nyquist frequencies. Further away from the region that holds the cluster material
and its immediate surroundings, the resolution is reduced by combining particles into pro-
gressively heavier ’boundary’ particles. In this way, the resolution gradually declines with
distance from the cluster while the gravitational tidal field that influences its formation
is still accurately determined. With this standard ‘zoom’ technique, the computational
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cost is concentrated in the small region of interest, allowing high resolution simulations of
individual objects in comparably short time.

For definiteness, we have picked a cluster of virial mass M200 = 1.8×1015 M⊙, which we
resimulate with a baryon fraction Ωb = 0.045. The other cosmological parameters are the
same as in in the original Millennium Simulation and are given by Ωm = 0.25, ΩΛ = 0.75,
σ8 = 0.9, h = 0.73, and n = 1. We have initialized the resimulations at z = 127 and
evolved them with VPH and SPH to the present epoch, treating the gas as a non-radiative
mix of hydrogen and helium.

We identify halos in the simulations by applying the FOF algorithm to the high-
resolution dark matter particles. Each gas particle is assigned to the group in which
its closest dark matter particle lies. We then apply the SUBFIND algorithm to the particle
groups found this way in order to decompose them into gravitationally bound (sub)groups.
Using the IDs attached to each particle we can track individual halos/subhalos as a func-
tion of time, and, in particular, study how the gas content of subhalos declines as a halo
falls into the cluster. In order to reduce numerical noise in our simulation comparison, we
however restrict our substructure selection to a sample where more than 60% of the DM
particles can be found in every studied simulation run.

As an example, we show in Figure 4.21 the evolution of the gas fraction of two different
substructures as a function of their distance to the cluster centre (the corresponding times
are indicated by the redshift labels on the upper axis), comparing results for VPH and SPH
simulations. For both substructures, we find good agreement in the early infall phase, for
distances larger than about ∼ 3 Rvir. At smaller separations, the influence of the cluster is
however very noticeable already, and the substructures loose gas quickly. However, in both
of these examples, we clearly identify a considerably larger gas loss in the VPH run than
in SPH at the last time when we can still find the substructures before they are disrupted.
This is consistent with our earlier findings for the stripping of the dense ISM gas.

In Figure 4.22, we now consider all of the substructures around the cluster at the
final time, and simply compare the gas mass fraction in substructures as a function of
clustercentric radius. Even though the results are a bit noisy, we find a clear statistical
trend of a smaller gas mass fracion in the VPH run relative to SPH, especially in the
region ∼ 1 − 3 Rvir, where the gas fraction declines rapidly. Interestingly, a simulation
with AREPO for the same cluster initial conditions shows a yet smaller gas fraction still
bound to the infalling dark matter halos. We hence conclude that even at the level of
non-radiative simulations, there are already significant differences in the stripping of gas
out of infalling substructure, which also implies that the mixing of gas in massive halos
can be expected be substantially different.

4.6.2 The Santa Barbara Cluster

The ‘Santa Barbara cluster comparison project’ of Frenk et al. (1999) analyzed the results
of a large number of different cosmological hydrodynamical codes for the formation of a rich
cluster of galaxies with non-radiative gas. The comparison involved both SPH codes and
hydrodynamical mesh codes, and focussed, in particular, on the resulting thermodynamic
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Figure 4.21: Gas fraction as a function of distance to the cluster center for two represen-
tative (sub)halos that fall into the cluster. We show results for a substructure with 4.5k
DM-particles (top panel) and 1.8k DM-particles (bottom) panel, comparing results for
SPH (black), VPH (blue) and AREPO (red). We find a clear difference in the stripping
process. In the SPH simulation, the substructure keeps a higher gas content until it is
disrupted.
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Figure 4.22: Gas fraction of substructures as a function of their distance to the cluster
center. We compare results for SPH (black with green shade), VPH (blue) and AREPO
(red with orange shadow), including only subhalos more massive than M > 3 · 1011 M⊙
to exclude poorly resolved small structures. The shaded areas indicate one standard
deviation from counting statistics.

properties of the intracluster gas. An important result that emerged from the study was
that the different methods systematically disagree in the amount of entropy predicted for
the central regions of the cluster, with the mesh-based approaches yielding consistently
higher central entropy and correspondingly lower density than the SPH codes.

The Santa Barbara (SB) cluster has become a standard test problem for cosmological
hydrodynamic codes, with results reported in numerous studies. Recently, some studies
have suggested that the difference seen between the various techniques is primarily associ-
ated with differences in the treatment of mixing (Mitchell et al. 2009), which is suppressed
in SPH by construction, and this may artificially lower the central entropy. Specifically, it
has been suggested that this problem may be related to a suppression of Raleigh-Taylor
fluid instability in SPH. If the difference is caused by the lack mixing at the particle level
as pointed out by Tasker et al. (2008); Wadsley et al. (2008b) the VPH results should agree
with SPH.

In the spirit of the original project (Frenk et al. 1999), we here rerun the SB cluster
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Figure 4.23: Comparison to the cosmological “Santa Barbara Cluster Comparison
project“. Radial profiles of (from top left to bottom right): Gas-density, Dark matter
density, cumulative gas-fraction, gas-temperature, specific entropy a nd xray luminosity.
All properties have been obtained by massweighted arithmetic mean values within loga-
rithmic spaced bins. Shown VPH simulation with resolutions with gas particle numbers
of 323 (black), 643 (red), 1283 (blue) and 2563 (green).
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Figure 4.24: Comparison to the cosmological “Santa Barbara Cluster Comparison
project“. Radial profiles of (from top left to bottom right): Gas-density, Dark matter
density, cumulative gas-fraction, gas-temperature, specific entropy a nd xray luminosity.
All properties have been obtained by massweighted arithmetic mean values within log-
arithmic spaced bins. Shown are SPH (black), AREPO (red), VPH (blue solid) and a
variant of VPH with mixing scheme (blue dashed).
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with the different hydrodynamical methods studied so far in this paper. We are especially
interested in the question whether VPH differs in its predictions for the central cluster
region compared with SPH, which may be expected due to the different stripping efficiencies
of these techniques. We use the same initial conditions that have been used in the original
SB cluster comparison project, where an Einstein-de-Sitter cosmological model with mean
density Ωm = 1, Hubble constant H0 = 50 kms−1Mpc−1, and baryon fraction of Ωb = 0.1
was used. The initial conditions were constructed as a constrained realization where a rich
cluster corresponding to a 3σ peak was imposed to form in the centre of a cubic box with
a sidelength of 64 Mpc, in an otherwise random realization.

We first simulate the SB cluster at a variety of different resolutions using VPH, ranging
from 2 × 323 to 2 × 2563 particles, in order to see how well the method converges for
the primary cluster properties. In Figure 4.23, we show the results of this convergence
test, in terms of radial profiles for gas density, dark matter density, enclosed gas fraction,
temperature, entropy, and specific X-ray emissivity. We find that the convergence is in
general very good for the outer profiles and the dark matter properties. Only in the very
centre some interesting differences can be observed. For the most part they can be simply
understood as an imprint of the varying spatial and mass resolution across the sequence,
where shortly before the resolution limit is reached the lower resolution runs peel away from
the converged result seen in the higher res simulations. This is for example the case for
the entropy and gas density profiles. It is clear however that VPH predicts the formation
of an entropy core region, which is qualitatively different from the falling entropy profiles
that are typically observed with SPH all the way to the centre of halos.

It is therefore interesting to compare the VPH results directly to the other methods. We
do this at the fixed resolution of 2× 1283 in Figure 4.24. Besides VPH, SPH and AREPO,
we here also include results for our ‘artificial mixing’ variant of VPH, which may yield
interesting differences if the origin of the discrepancy between SPH and mesh techniques
is indeed caused by a mixing effect. Interestingly, our results for the entropy profile of
VPH lie intermediate between SPH and the mesh-code AREPO. The mixing variant of
VPH leads to an additional increase in the central entropy, but this is a small effect overall
and subdominant compared to the difference present between SPH and VPH. Although
we can not be sure that our mixing scheme solves the problem of mixing on a sub-particle
level entirely, Figure 4.24 shows that especially the entropy towards the core is indeed
elevated when an artificial mixing is included. The quantitative strength of this effect
depends however somewhat on the parameters adopted to describe the mixing, and the
optimum choice for them is uncertain at this point. We note however that already ordinary
VPH shows significant differences to SPH, and is qualitatively closer to the mesh-based
result, as it also develops a clear entropy core. This suggests that the different treatment of
stripping and of contact discontinuities in VPH is an important improvements that directly
influences the thermodynamic structure of the central cluster gas.
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4.7 Discussion

In this study, we have carried out a systematic comparison of the properties of our new
Voronoi particle hydrodynamics (VPH) method with respect to SPH and mesh-based hy-
drodynamics. We have focussed on stripping processes in galaxies and halos upon infall
into galaxy clusters. Here, it is expected that the outer parts of gaseous disks are quickly
removed due to ram pressure stripping (Gunn and Gott 1972), but the subsequent more
gradual gas loss sensitively depends on the ability of hydrodynamical codes to capture
fluid instabilities occurring in shear flows around the galaxies. The recent findings that
SPH appears to exhibit severe inaccuracies in this regime has prompted us to develop the
alternative VPH method (Heß and Springel 2010). In the present paper, we study how this
new technique compares with traditional SPH and the new moving-mesh code AREPO.

To this end, we first compared results for isolated compound galaxy models, both in
isolation and in wind tunnels where they were exposed to a supersonic head wind. This
set-up allowed relatively high-resolution simulations of the wind-ISM interaction. Our
simulations have revealed substantial differences in the rate at which dense ISM gas is
stripped, and in the appearance of this gas in the downstream part of the flow. SPH
showed a much lower stripping rate than both VPH and the mesh-code AREPO. Also, we
could show that essentially none of the ISM gas could ever be lifted in SPH to lower density.
Instead, if gas was stripped, it stayed in coherent dense blobs, where even star formation
could continue. As a result, the SPH galaxy also experienced the largest displacement due
to the ram pressure of the impinging wind. AREPO, in contrast, showed a rapid loss of
gas out of the disk, which was furthermore efficiently mixed with other gas, so that lower
densities were reached quickly by the stripped gas and star formation was stopped. VPH
exhibited a behaviour intermediate between SPH and AREPO. While almost as much gas
was stripped in VPH as in AREPO, the mixing of this gas with the incoming wind was
clearly much less efficient.

We followed up these simulations with numerical experiments where we dropped galaxy
models in real live cluster models. Even though here the resolution was substantially lower,
we obtained results in good qualitative agreement with our wind tunnel runs. Likewise, in
non-radiative cosmological simulations of galaxy cluster formation, we followed individual
subhalos as they fell into the forming cluster, finding again that the gas content of satellite
systems declined most slowly in SPH, while the stripping in VPH and especially in AREPO

proceeded noticeably faster.
Finally, we considered simulations of the Santa Barbara cluster, which has become an

important test problem for evaluating cosmological hydrodynamical codes. Here the VPH
runs show clearly an elevated entropy compared to SPH, and their central temperature
structure is much closer to being isothermal. These profiles are in fact quite close to
the results of the mesh-based code AREPO, and if an additional artificial mixing term is
invoked, they become even more similar. Also here, VPH takes on an intermediate role
between SPH and AREPO.

Unfortunately, it is not readily possible to decide which of the numerical techniques we
studied yields the correct answer. However, it can be demonstrated that SPH incorrectly
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suppresses fluid instabilities and stripping in certain situations (Agertz et al. 2007; Springel
2010b), whereas VPH can be shown to do better in this respect (Heß and Springel 2010).
This circumstantial evidence strongly suggests that VPH should also yield more accurate
results in the cosmological context. In this study we have shown that VPH indeed gives
results that come quite close to the mesh-based code AREPO. This is encouraging, and
perhaps this means that we are on the way to soon reach an agreement between particle-
based and mesh-based hydrodynamics in cosmology.



Chapter 5

Conclusions

Even though galaxies, clusters of galaxies and the still bigger structures of the cosmic web
are dominated by gravity, understanding their luminous properties in detail requires simu-
lations that include a proper description of hydrodynamical processes, especially when one
wants to model the small-scale structures contained in these objects. Although there are
several well-established methods to simulate the hydrodynamical processes during cosmic
structure growth, the very fact that there are so many different techniques already indi-
cates that there is no single method at this point that clearly outperforms all the competing
methods. Instead, each of the methods suffers from certain disadvantages. For example,
while the Lagrangian nature of SPH makes it in principle ideal for galaxy formation (and
for this reason it has been widely used), it has recently been found that SPH yields phys-
ically unreliable results at sharp jumps in gas density, and the origin of this shortcoming
can be traced back to the basic density estimate of SPH.

In this work, we have introduced a new approach to simulate hydrodynamics, which
we call ‘Voronoi particle hydrodynamics’ (VPH). VPH is also a Lagrangian method, but
its density estimate is based on a Voronoi tessellation instead of on adaptive kernel inter-
polation. The Voronoi tessellation is defined directly by the particle positions and yields
an unambiguous volume information for each point, which can be readily converted into
an estimate of the density field. The fully adaptive mesh created by the Voronoi tessella-
tion offers higher spatial resolution for a given number of particles when compared to the
kernel-based density estimation method used in SPH. In fact, the tessellation technique
provides a close to optimum density estimate for a given point distribution (Pelupessy
et al. 2003). In particular, contact discontinuities can be resolved on the scale of one cell
and with a correct computation of the forces on the particles directly at the discontinuity.
This is a rather important advantage compared to SPH, whose density estimate leads to
spurious forces across density jumps. VPH can therefore eliminate the artificial surface
tension effects that play a crucial role in SPH’s unphysical suppression of the growth of
fluid instabilities.

These advantages of VPH have to be weighted against some disadvantages and potential
problems in the new Voronoi-based particle hydrodynamics scheme. Probably the most
important one of them is the noise inherent in the scheme. While this noise is in general
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of comparable size as in SPH (which is in fact quite noisy compared to Eulerian methods),
the noise in VPH turns out to be sensitive to the degree of regularity of the Voronoi mesh.
Flows that exhibit considerable amounts of shear tend to develop Voronoi meshes with a
large number of points that lie close to the surfaces of their corresponding Voronoi cells.
For these cells, the accuracy of the gradient estimates decreases substantially, introducing
unwanted noise into the evolution of the system. In addition, it becomes more difficult to
safely prevent particle interpenetration in this situation, simply because being close to a
cell boundary also implies that the distance to the next neighbour on the other side of the
cell face is very small.

One way to avoid such close particle pairs is to introduce additional artificial viscosity
terms that try to counteract the formation of highly elongated cells, and the occurrence
of points close to a cell boundary. However, we found that this approach can be insuffi-
cient in situations where strong shear flows are present, because here the artificial viscosity
forces should be as small as possible. We have therefore developed a more radical approach
in which conservative correction terms are added to the fluid Lagrangian right from the
beginning. These terms are chosen to penalize strong deviations from regular mesh ge-
ometries, and to exert weak non-dissipative forces on the points in order to maintain a
reasonably regular mesh. Indeed, we have found that the fluid motion under these forces
shows the desired properties. Provided one is careful to not make these forces too large,
otherwise measurable deviations from the correct hydrodynamic behaviour are introduced,
manifesting themselves for example in scale-dependent distortions of the sound speed.

If one is careful to not make these forces too large, otherwise measurable deviations from
the correct hydrodynamic behaviour are introduced, manifesting themselves for example
in scale-dependent distortions of the sound speed.

We have seamlessly integrated the Voronoi particle hydrodynamics scheme into the
cosmological simulation code GADGET-3, where it can be used as a direct replacement
for SPH if desired. This in particular means that VPH is fully parallelized for distributed
memory systems, and can in principle already be used for extremely large simulations. Also,
other aspects of the physics (in particular self-gravity, radiative cooling, star formation
or feedback processes) that are implemented in GADGET-3 can be reused in essentially
identical fashion in VPH. This makes it possible to right away apply Voronoi particle
hydrodynamics to current problems in cosmological structure formation.

In our subsequent first applications of VPH, we have systematically compared the
properties of our new scheme with respect to SPH and mesh-based hydrodynamics. We
focused on stripping processes in galaxies and halos when they first fall into galaxy clusters,
because there we expect significantly different behaviour of these hydrodynamical methods.
A galaxy that enters the virialized region of a cluster experiences a head wind composed of
intra-cluster gas. This wind builds up ram pressure in front of the galaxy. At the outskirts
of the gaseous disk, where the gas is only weakly bound and the gravitational restoring
forces are small, gas is quickly removed by ram pressure stripping (Gunn and Gott 1972).
After this initial phase with intense stripping, a more gradual loss of gas sets in which
is sensitive to the details of the flow around the galaxy. In particular, the loss of gas at
the edges of the gaseous disk depends on the capability of the hydrodynamical method
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at a given resolution to simulate fluid instabilities in the shear flows around the ‘galaxy
obstacle’. Especially for SPH, severe doubts have arisen (Agertz et al. 2007) whether
its dampening of fluid instabilities leads to wrong estimates of the stripping rate. Since
we have implemented VPH and SPH in the same code, we have been in the situation
to test for differences between SPH and VPH that have their origin only in the different
hydrodynamical treatment, because we can otherwise guarantee the same treatment for
self-gravity, star formation and cooling. In addition, in order to compare the results of
VPH also to a mesh-based method, we have extended our comparisons to also include the
new moving-mesh code AREPO.

First, we compared the behaviour of isolated compound galaxy models and found that
the different techniques agree on the general evolution of the galaxy when no external
influence is present. Then we put these compound galaxy models into a wind tunnel and
exposed them to a supersonic wind representing the hot intra-cluster medium (ICM) of
an infalling galaxy. This particular setup allowed relatively high-resolution simulations.
Indeed, in our simulations we have discovered significant differences between the codes in
the stripping rate of the ISM, and in the properties of the stripped gas. SPH showed the
lowest rate of gas-stripping, whereas both VPH and AREPO agreed better with each other
when the resolution was high. The remaining difference between the particle-based VPH
code and the mesh-based method appears to arise from the complete lack of mixing in
VPH at the particle scale, a property that it also shares with SPH. This influences the
density of the stripped gas, which remains higher in VPH and SPH compared to AREPO.
This in turn favours continued star formation in the stripped gas in the particle codes,
something that does not happen in AREPO, where the gas is diluted much more quickly
and star formation shuts down in everywhere in the stripped gas.

Furthermore, in SPH the high density contrast between the ISM and the wind leads to
spurious forces which effectively act as an additional surface tension that tries to minimize
the “surface area” of the phase boundary. This behaviour suppresses fluid instabilities
which should arise as an important part of the stripping process. Hence these spurious
forces reduce the stripping rate, in addition to forming small ‘droplets’ out of gas that
manages to be stripped. Overall, this leads to a higher level of star formation in the
stripped gas in SPH compared to VPH. Another consequence of the fact that more gas
remains in the galaxy for a longer time in SPH is that the galaxy then experiences a
higher effective ram pressure force. This implies a higher acceleration of the galaxy in SPH
compared with VPH and AREPO simulations. This in turn should lead to a faster decay
of the orbit of a galaxy as it falls into a galaxy cluster, and hence to a modification of the
merger timescale.

To check whether our findings also hold in more realistic setups where the gravita-
tional tidal field of a galaxy cluster potential is self-consistently included, we dropped our
compound galaxy models into a full three-dimensional cluster model. Here the resolution
in the galaxy itself had to be lowered substantially in order to have an equal resolution
for the large cluster and the infalling galaxy. Nevertheless, our results were in very good
qualitative agreement with our findings from the more idealized wind tunnel runs. Again,
SPH predicted the lowest gas stripping rate, AREPO the highest, with VPH taking on an
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intermediate role.
We have also examined the performance of VPH in fully cosmological simulations of

structure formation. To this end we first considered simulations of the formation of galaxy
clusters in zoom simulations where we in particular followed individual subhalos as they fell
into the forming cluster. Here again we found that our results for the stripping efficiency of
gas agreed with our earlier findings. The fraction of gas in an infalling substructure again
declined faster in VPH simulations as in SPH, actually even a bit faster in some objects
than in AREPO simulations.

Finally, we turned to simulations of the Santa Barbara cluster (Frenk et al. 1999),
which has become an important test problem for evaluating cosmological hydrodynamical
codes. It has been used to compare many different hydrodynamic simulation methods in
the past, and is therefore a good test to compare VPH with previous results that have been
published for this problem. Interestingly, we have found that the VPH runs show a small
core with an elevated entropy compared to SPH, making the radial structure overall closer
to that found with the mesh-based code AREPO. If we add an artificial mixing mechanism
that averages the thermal energies of nearby cells in the presence of strong shear, the core
in VPH becomes even closer to the AREPO results.

In this thesis, we have confirmed that the peculiarities of SPH can lead to substantial
differences in cosmological simulations, especially when fluid instabilities occur. Our new
Voronoi particle hydrodynamics (VPH) scheme does not suffer from some of SPH’s short-
comings, because it uses a different density estimate. VPH performs better in simulating
fluid instabilities, and our tests showed that the results obtained in VPH simulations are
closer to mesh-based methods. However, there remain still residual differences. We suspect
that a key to resolving these differences would be to reliably and correctly account for mix-
ing at the resolution scale, both in Lagrangian and mesh-based methods. Currently both
Lagrangian and mesh-based approaches cannot claim to treat mixing in the physically cor-
rect fashion, however, and further investigations are needed to understand what the correct
answer for this really is. Nevertheless, we have shown that VPH is a worthwhile improve-
ment compared to the popular SPH method. It retains all of its principle advantages, offers
an improved spatial resolution for the same number of resolution elements, and avoids the
spurious suppression of fluid instabilities across large density jumps. These characteristics
make it a very attractive tool for future high-resolution cosmological simulations.



Appendix A

Voronoi mesh operators and shape

control

A.1 Differential operators on Voronoi meshes

In this Appendix, we collect some useful formulae for discretized versions of differential
operators on Voronoi meshes, such as the gradient or the divergence, and we test the
accuracy of the gradient estimate as a function of the regularity of the Voronoi mesh.

A.1.1 Gradient

The cell averaged gradient of any quantity φ can be estimated via Gauss’ theorem. One
can use Gauss’ theorem on a product of a constant vector times a scalar field and arrives
at:

1

V

∫

V

~∇φ dV =
1

V

∫

∂V

φ d~S, (A.1)

which can be used as one way to derive an estimate of the local gradient by approximating
the value of φ on the surface of a cell with the arithmetic mean between the cell and its
neighbours. However, one can also circumvent the problem of finding a proper value for φ
on the surface by using a different starting point. We now use Gauss’ theorem on (~1 ·~r) ~∇φ,
where ~1 is the unit vector. This yields:

∫

V

~∇φdV =

∫

∂V

~r(~∇φ · d~S) −
∫

V

~r∆φdV (A.2)

With the help of Rij = |~rj − ~ri| as the distance between points i and j, and ~r⊥ as ~r
projected onto the plane of the face Aij (for definition see Figure 3.1 and Fig A.1), ~r
becomes ~r = ~r⊥ + (~ri − ~rj)/2 + ~ri, and then the right hand side can be discretized for the
Voronoi mesh as follows:
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Figure A.1: Sketch of a Voronoi diagram to illustrate the integration variables

∫

∂V

~r(~∇φ · d~S) (A.3)

=
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j 6=i

∫

Aij

~r(~∇φ · d~S) −
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~r∆φdV (A.4)
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2
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∆φdV −
∫

Vi

~r∆φdV(A.6)

=
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Rij
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−
∫

Vi

(~r − ~ri) ∆φdV (A.7)

(A.8)

The second term vanishes for linear scalar fields. It is therefore only a second order correc-
tion that becomes negligible for sufficiently smooth fields if the points lie near the centroids
of their cells so that

∫

V
(~r − ~ri) dV .

Now we use ~Rij · ~∇φ = (φj − φi), so that we obtain for the gradient estimate
(

~∇φ
)

i
at

point i

(

~∇φ
)

i
=

1

Vi

∑

j 6=i

(φj − φi)Aij

(
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2
~eij +

~cij

Rij

)

(A.9)

=
1

Vi

∑

j 6=i

Aij

[

(φj − φi)
~cij

Rij

+ (φj + φi)
~eij

2

]

. (A.10)
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We note that application of this gradient estimate to the Euler momentum equation in the
form

mï~ri = −Vi
~∇Pi (A.11)

yields

mï~ri = −
∑

j 6=i

Aij

[

(Pj − Pi)
~cij

Rij
+ (Pj + Pi)

~eij

2

]

(A.12)

which is consistent with the expression derived directly from the Lagrangian.

A.1.2 Divergence and curl

To estimate the divergence and curl of the velocity which we need for the viscosity calcu-
lation of Section 3.2.4 we use the same reasoning as in A.2.

∫

Vi

(~r∇ (∇~v) + ∇~v) dV =

∫

∂V

~r(∇~v · d~S). (A.13)

Provided that 1
Vi

∫

Vi
∇× (∇× ~v) vanishes for a linear field we define our estimator for the

divergence operator as

(∇ · ~v)i = − 1

Vi

∑

j 6=i

Aij

[

(~vj − ~vi) ·
(

1

2
~eij +

~cij

Rij

)]

. (A.14)

Similarly, the curl estimator can be defined in the form

(∇× ~B)i = − 1

Vi

∑

j 6=i

Aij

[

( ~Bj − ~Bi) ×
(

1

2
~eij +

~cij

Rij

)]

, (A.15)

where ~B denotes some vector field. Again applying Gauss’ theorem to ∇φ the Laplacian
of a scalar function φ can be computed as

∫

V

∆φ dV =
∑

j 6=i

∫

Aij

(~∇φ · d~S) ≃
∑

j 6=i

Aij
φj − φi

Rij

. (A.16)

A.1.3 Accuracy of the gradient

To test the accuracy of the numerical gradient estimate, we assume a quadratic model
function φ(~r) with constant gradient and Hesse matrix, of the form

φ(~r) = φ0 + ~A~r +
1

2
~rT ~B~r. (A.17)

For definiteness, we set ~B = b~I , where ~I is the identity matrix. We then populate a box of
unit length on a side with a set of points, and evaluate the function φ(~r) at the coordinates
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Figure A.2: Median relative error in the gradient estimate obtained either with our
default formula (left) or with the simpler Green-Gauss estimate where the ~cij terms are
omitted (right). We show results for three different types of point sets, a Poisson sample
(black), a regularized distribution where each Voronoi cell has equal volume (red), and a
regularized distribution where in addition the cells are quite ‘round’ and regular (blue).
The accuracy is measured as function of the strength of a second order variation in the
underlying field.
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of each of the points. After constructing the Voronoi tessellation for the point set, we then
estimate the local gradient for each cell based on

(∇φ)i =
1

Vi

∑

j

(φj − φi) Aij

(

1

2
~eij +

~cij

Rij

)

, (A.18)

and alternatively also based on a simpler version of this formula where the terms pro-
portional to ~cij are omitted, which corresponds to the simplest version of a Green-Gauss
gradient estimate. We use three different point distributions with 4096 points in a box of
size unity. First we use a (i) random Poisson point distribution, a (ii) relaxed point distri-
bution obtained from the VPH scheme where each cell has the same volume (obtained from
the top of Figure 3.6), and (iii) a distribution relaxed with PPO (obtained from the bottom
of Figure 3.6) where in addition very round cells were produced in which the majority of
the points lies close to the geometric centres of the cells. In all three cases we compare the
magnitude of the estimated gradient vector to the magnitude of ~A, and we plot the median
of the relative error as a function of b/| ~A|. To exclude boundary effects, only cells whose
neighbours do not overlap with the box boundary are considered in the measurement.

In Figure A.2, we show the results. The panel on the left gives our adopted gradient
estimate, while the panel on the right is for the simpler version of the Green-Gauss gradient
estimate. Interestingly, for b = 0, the error vanishes exactly, independent of the regularity
of the Voronoi mesh. However, once the second order term starts to influence the measure-
ment, i.e. for large values if b/| ~A|, the more regular meshes clearly yield a lower error, as
expected. In all cases, the gradient estimate that includes the ~cij term is superior to the
simple Green-Gauss gradient estimate. In particular, only when it is included, a vanishing
error for a linearly varying field is obtained.

A.2 Controlling the shape of cells

As outlined in Section 3.3.2, we modify the fluid Lagrangian slightly to include factors that
penalize highly distorted cell shapes. If such shapes occur, we want small adjustment forces
to appear that tend to make the mesh more regular again. These adjustment forces need
to preserve energy and momentum conservation of the scheme, which will automatically
be the case if they are derived from a suitably defined Lagrangian or Hamiltonian. In this
Appendix, we derive the equations of motion for the Lagrangian

L =
∑

k

1

2
mk̇~r

2
k −

∑

k

PkVk

γ − 1

[

1 + β0
(~rk − ~sk)

2

V
2/d
k

]{

1 + β1

(

~w2
k

V
2/d
k

− β2

)}

, (A.19)

where the factor in square brackets disfavours displacements of points from the geometric
centres of their cells, and the factor in curly brackets disfavours cells with large aspect
ratios.

We define the centroid of a cell as

~sk ≡ 〈~r〉k =
1

Vk

∫

~r χk(~r) d~r, (A.20)
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where χk is the characteristic function of cell k. The shape of a cell is measured via the
second moment

~w2
k ≡

〈

(~r − ~sk)
2
〉

k
=

1

Vk

∫

(~r − ~sk)
2χk(~r) d~r. (A.21)

Here d counts the number of dimensions, i.e. d = 2 for 2D and d = 3 for 3D. The factor
V

2/d
k is hence proportional to the ‘radius’ Rk = V

1/d
k of a cell squared. β0 measures the

strength of the effect of displacements of points from the centroid of a cell, while β1 is
the corresponding factor for the aspect-ratio factor. The constant β2 is only introduced
to prevent that even round cells lead to a significant enhancement of the thermal energy.
For perfectly round cells, we expect in 2D roughly circles for which w2

k = V 2/d/(2π),
hence we pick β2 = 1/(2π). In 3D, we have approximately spheres instead and we pick
β2 = 3/5(3/4π)2/3.

Note that this Lagrangian is only a function of the point coordinates for given entropies,
so the equations of motion for conservative dynamics are perfectly well defined, even though
they lead to more lengthy expressions than in the standard case. We first obtain the
following Lagrangian equation of motion:

mï~ri =
∂L

∂~ri

= −
∑

k

1

γ − 1

(

∂

∂~ri

PkVk

)

[ ]{}

(A.22)

−
∑

k

PkVk

γ − 1

{}

β0
∂

∂~ri

(~rk − ~sk)
2

V
2/d
k

(A.23)

−
∑

k

PkVk

γ − 1

[ ]

β1
∂

∂~ri

w2
k

V
2/d
k

, (A.24)

where the empty square and curly brackets are notational short-cuts for the corresponding
terms in the original Lagrangian. We note that we can use the identity

∂

∂~ri
PkVk = (1 − γ)Pk

∂Vk

∂~ri
. (A.25)

We also note that in the second and third terms of equation (A.24) we encounter partial
derivatives of Vk, which we can combine with the first term into a more compact form.
This allows us to write the equation of motion in the form

mï~ri =
∑

k

P ⋆
k

∂Vk

∂~ri
−
∑

k

Qk
∂

∂~ri
(~rk − ~sk)

2 −
∑

k

Lk
∂

∂~ri
w2

k (A.26)

where we have defined

P ⋆
k ≡ Pk

(

[]{}

+
2

d

β0

γ − 1

(~rk − ~sk)
2

V
2/d
k

{}

+
2

d

β1

γ − 1

w2
k

V
2/d
k

[ ]

)

(A.27)

and introduced the quantities

Qk ≡ β0

γ − 1
PkV

1−2/d
k

{}

, (A.28)
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Lk ≡ β1

γ − 1
PkV

1−2/d
k

[ ]

. (A.29)

We already know an explicit expression for ∂Vk/∂~ri, but we still need to derive such a thing
for the derivatives of (~rk −~sk)

2 and w2
k. Let us first deal with the term involving Qk in the

equations of motion, i.e.

(

mï~ri

)

Q
= −

∑

k

Qk
∂

∂~ri
(~rk − ~sk)

2 = −2
∑

k

Qk

(

∂(~rk − ~sk)

∂~ri

)T

(~rk − ~sk). (A.30)

Here the exponent T stands for the transpose, and the notation ∂~a

∂~b
is the Jacobian matrix

with elements
(

∂~a

∂~b

)

lm
= ∂al

∂bm
. Based on the definition of ~sk in terms of the characteristic

function we find

∂

∂~ri
(~rk − ~sk) = δki1 − 1

Vk
(~rk − ~sk)

(

∂Vk

∂~ri

)T

+
1

Vk

∫

d~r (~rk − ~r)

(

∂χk

∂~ri

)T

. (A.31)

For the derivative of the characteristic function we can use a result from Serrano and
Español (2001) and write

∂χk

∂~ri

=
∑

j

δki
χkχj

σ2
(~r − ~rk) −

χkχi

σ2
(~r − ~ri), (A.32)

which is based on approximating the characteristic function with

χk(~r) =
exp

[

− (~r−~rk)2

2σ2

]

∑

j exp
[

− (~r−~rj)2

2σ2

] , (A.33)

which becomes exact in the limit σ → 0. Putting these results into equation (A.30) one
gets

(

mï~ri

)

Q
= −2Qi(~ri − ~si) + 2

∑

k

Qk

Vk
(~rk − ~sk)

2∂Vk

∂~ri
(A.34)

−2
∑

j

Qi

Vi

∫

d~r
χiχj

σ2
(~r − ~ri)(~ri − ~r)T (~ri − ~si)

+2
∑

k

Qk

Vk

∫

d~r
χiχk

σ2
(~r − ~ri)(~rk − ~r)T (~rk − ~sk). (A.35)

We can now identify the area of a face between two cells as

Aij = Rij

∫

d~r
χiχj

σ2
, (A.36)
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and the centroid of the face as

~sij =
Rij

Aij

∫

d~r
χiχj

σ2
~r. (A.37)

Furthermore, we define a second-order tensor of the face relative its centroid as

~Tij =
Rij

Aij

∫

d~r
χiχj

σ2
(~r − ~sij)(~r − ~sij)

T . (A.38)

With these definitions, we can rewrite equation (A.35) as

(

mï~ri

)

Q
= − 2Qi(~ri − ~si) (A.39)

+ 2
∑

k

Qk

Vk
(~rk − ~sk)

2 ∂Vk

∂~ri
(A.40)

+ 2
∑

j 6=i

Aii

Rij

{

~Tij(~ei − ~ej) + [(~sij − ~ri)~ei − (~sij − ~rj)~ej ] (~sij − ~ri)
}

,

where we introduced the further short-cut

~ei ≡
Qi

Vi

(~ri − ~si). (A.41)

We note that the second term in this equation can be absorbed in yet a further redefinition
of P ⋆

k , which we will exploit later on. We next consider the term in the full equation of
motion that involves the Lk factor. This is given by

(

mï~ri

)

L
(A.42)

= −
∑

k

Lk
∂w2

k

∂~ri
= −

∑

k
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−w2
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∂Vk

∂~ri
+

1
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∫

d~r
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T (~r − ~sk)
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(A.43)

=
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k

Lkw
2
k

Vk

∂Vk

∂~ri
(A.44)

−
∑
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Vi
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χiχj

σ2
(~r − ~ri)(~r − ~si)

T (~r − ~si) +
∑

j

Lj

Vj
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σ2
(~r − ~ri)(~r − ~sj)

T (~r − ~sj).

We now define a further moment for each cell face, namely the vector-valued quantity

~gij ≡
Rij

Aij

∫

d~r
χiχj

σ2
(~r − ~sij)

2 (~r − ~sij). (A.45)

Note that ~gij always vanishes in 2D but can be non-zero in 3D. With this definition, we
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can rewrite equation (A.43) as
(

mï~ri

)

L
(A.46)

=
∑

k

Lkw
2
k

Vk

∂Vk

∂~ri
(A.47)

+
∑

j 6=i

Aij

Rij

{(
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Vj
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)

~gij + 2~Tij(~fj − ~fi)

}

(A.48)

+
Aij

Rij

{[

(~fj(~sij − ~sj) − ~fi(~sij − ~si)) + Tr(~Tij)

(

Lj

Vj
− Li

Vi

)]

(~sij − ~ri),

}

where we have defined the short-cut

~fi ≡
Li

Vi
(~sij − ~si). (A.49)

Again, the first term involving ∂Vk/∂~ri can be absorbed into a redefinition of P ⋆
k . Putting

everything together, the complete equation of motion can then be written as

mï~ri (A.50)

=
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, (A.51)

where we have defined

P ⋆⋆
k = P ⋆

k +
Lkw

2
k

Vk
+

2Qk(~rk − ~sk)
2

Vk
. (A.52)

While a bit lengthy, this can be straightforwardly calculated for the VPH scheme. Never-
theless, we want to add a brief note on how to compute the Tensors Tij , which is done as
part of the mesh construction. We have

〈

(~r − ~s)2
〉

k
=
〈

(~r − ~r0)
2
〉

k
− (~r0 − ~s)2 (A.53)

for any reference point ~r0. Suppose we have a triangle in 2D given by (~r0, ~r1, ~r2), then the
moment can be obtained as

〈

(~r − ~r0)
2
〉

k
=

1

6

[

(~r1 − ~r0)(~r1 − ~r0)
T + (~r1 − ~r0)(~r2 − ~r0)

T + (~r2 − ~r0)(~r2 − ~r0)
T
]

. (A.54)

Similar relations hold for 3D and can be exploited for an efficient calculation of the tensors
~Tij and the vectors ~gij.
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Appendix B

More stripping results for the VPH

code

B.1 Wind tunnel simulations

B.1.1 Stripped clumps

To further elucidate the nature of the stripped gas, in Figure B.1 we show the evolution
of the star forming mass that is spatially close to the galaxy centre and therefore fulfills
Eq. (4.3), compared to the total star forming gas as defined by Eq. (4.2). The figure
shows that especially in SPH clumps of the ISM that are stripped nevertheless continue to
form stars, and therefore fulfill Eq. (4.2) but not Eq. (4.3). Hence the curve representing
Eq. (4.3) is substantially below the curve representing all star forming gas. Both curves
merge after a time ≈ 0.5 Gyr when the clumps exit the simulation domain of the wind
tunnel. Note that VPH shows significantly less stripped gas that still forms stars, whereas
in AREPO such gas is almost completely absent.

B.1.2 Statistical analysis of resolution elements

In Figure B.2, we compare the simulation methods with respect to where the resolution
elements are to be found as a function of density. The plot reveals that SPH tends to
concentrate its resolution elements in the galaxy centre, whereas the transition region
between the galaxy and the wind is least well resolved. AREPO on the other hand has
most of its resolution elements in this transition area. VPH lies in between these two codes.

B.1.3 Variable wind properties

In Chapter 4, we have only investigated the influence of a constant wind with a constant
mass loading. However, we may also try to arrive at a more realistic temporal behaviour
of the wind, say by varying the velocity of the headwind and its density. This can, for
example, be done in terms of the time dependent properties of Section 4.5 (Figure 4.17),
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Figure B.1: Loss of star-forming ISM gas as a function of time due to stripping through
a supersonic wind. The gas remaining in the ISM of the galaxy is here measured according
to the criteria of Eq. (4.2) (solid lines), and with both Eq. (4.2) and Eq. (4.3). Shown
are the simulations with SPH, VPH and AREPO, as labelled. We find that the stripping
is quite similar in VPH and AREPO, but significantly less efficient in SPH.

measured directly in a full hydrodynamic simulation. In this specific example we find in
agreement with Gunn and Gott (1972) that a reduced wind density at early times leads
to a slower stripping of the gas (top panel in Figure B.3), hence the gas remains longer in
the main galaxy and forms more stars (bottom panel in Figure B.3). Therefore, the sum
of the mass of star-forming gas and the mass of the newly formed stars (bottom panel in
Figure B.3 ) stays at a higher level. This can also be seen in the corresponding plot of the
simulation of Section 4.5, which is depicted in Figure B.4. Here the sum of star-forming
gas and the mass of the newly formed stars also stays at a nearly constant level.
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Figure B.2: A statistical analysis of the distribution of resolution elements over density,
for simulations of a galaxy exposed to a supersonic wind at t = 0.04Gyr, carried out with
three different numerical techniques. This demonstrates that the resolution elements are
distributed differently depending on the method (solid lines, as labelled). The blue
dotted line is a variant of VPH which used an artificial mixing scheme. Please note that
due to the variable mass of the resolution elements in AREPO, the AREPO curve (red)
represents the number of resolution elements per bin times the average mass of all gas
particles.
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Figure B.3: A galaxy in a wind tunnel experiencing a static flow of wind compared to
a more realistic simulation with varying velocity (dashed blue in top panel) and varying
wind density (dashed blue in bottom panel). Both simulations are AREPO-based. Shown
is the sum of the mass of the remaining star forming gas plus the newly formed stellar
mass as a function of time.
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Figure B.4: Sum of the mass of star-forming gas and formed stars for an infalling
galaxy within a distance of 20 kpc from the galaxy centre as a function of time. We
include simulation results for SPH (black), VPH (blue) and AREPO (red).
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