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auswärtiger Gutachter: Prof. Dr. István Heckenberger

Tag des Rigorosums: 20. Mai 2011



Abstract

The categories of representations of finite dimensional quasi-Hopf algebras
[Dri90] and weak Hopf algebras [BNS99] are finite multi-tensor categories. In
this thesis I classify exact module categories, as defined by Etingof and Ostrik
[Ost03b, EO04], over those tensor categories. Closely associated with this clas-
sification is the question whether relative Hopf modules are projective or free
over comodule algebras.

For quasi-Hopf algebras I prove that for an H-simple H-comodule algebra
A, every finite dimensional quasi-Hopf bimodule in HMH

A is projective as an A-
module, and if A is a coideal subalgebra of H, then it is even free. In particular,
finite dimensional quasi-Hopf algebras are free over their coideal subalgebras.
This is a generalization of Skryabin’s results on the freeness and projectiv-
ity over comodule algebras in the Hopf algebra case [Skr07], and it contains
Schauenburg’s quasi-Hopf algebra freeness theorem [Sch04]. I deduce that a
module categoryM over a finite dimensional quasi-Hopf algebra is exact and in-
decomposable if and only if it is of the form AM for some H-simple H-comodule
algebra A. For this purpose I prove among other things a structure theorem
for quasi-Hopf bimodules over smash products and a bijective correspondence
between H-stable ideals of an H-module algebra R and the H-costable ideals
of R#H. The results on the exact module categories over quasi-Hopf algebras
have a direct application to H-comodule algebras and smash products: They
imply that H-simple H-comodule algebras are quasi-Frobenius and that, in the
case when H is semisimple, the smash product R#H of an H-simple H-module
algebra R by H is also a semisimple algebra.

For weak Hopf algebras it is not possible to generalize the Nichols-Zöller-
Freeness Theorem [NZ89] or Skryabin’s theorems [Skr07]: I construct an ex-
ample of a weak Hopf algebra which is not free over one of its weak Hopf sub-
algebras. However, Etingof and Ostrik [EO04] showed that surjective tensor
functors between finite multi-tensor categories map projective objects to pro-
jective ones. Considering the restriction functor HM → KM, where K ⊂ H

are weak Hopf algebras, this implies that weak Hopf algebras are projective over
weak Hopf subalgebras. I conjecture that for a quasi-Frobenius H-simple H-
comodule algebra A every weak Hopf module inMH

A is a projective A-module,
and I show that this holds for weak Hopf algebras which are free over their
base algebras. In this case, I classify the exact indecomposable module cate-
gories over H by quasi-Frobenius H-comodule algebras which are simple from
the right and have trivial coinvariants. My classification also gives a new and
more direct proof for the classification in the Hopf algebra case [AM07].





Zusammenfassung

Die Darstellungskategorien endlichdimensionaler Quasihopfalgebren [Dri90]
und schwacher Hopfalgebren [BNS99] sind endliche Multitensorkategorien. In
dieser Arbeit klassifiziere ich exakte Modulkategorien, definiert von Etingof
und Ostrik [Ost03b, EO04], über diesen Tensorkategorien. In engem Zusam-
menhang mit dieser Klassifikation steht die Frage, ob Hopfmoduln über H-
Comodulalgebren projektiv oder sogar frei sind.

Für Quasihopfalgebren beweise ich, dass für eine H-einfache H-Comodul-
algebra A jeder endlichdimensionale quasi-Hopfbimodul in HMH

A als A-Modul
projektiv ist, und wenn A eine Coidealunteralgebra von H ist, dann ist er sogar
frei. Insbesondere sind endlichdimensionale Qausihopfalgebren frei über ihren
Coidealunteralgebren. Dies ist eine Verallgemeinerung von Skryabins Resul-
taten zur Freiheit und Projektivität im Hopfalgebra-Fall [Skr07] und enthält den
Freiheitssatz für Quasihopfalgebren von Schauenburg [Sch04]. Hieraus folgere
ich, dass eine Modulkategorie M über einer endlichdimensionalen Hopfalgebra
H genau dann exakt und unzerlegbar ist, wenn sie von der Form AM ist, wobei
A eine H-einfache H-Comodulalgebra ist. Hierfür beweise ich zunächst einen
Struktursatz für Quasihopfbimoduln über Smashprodukten und eine bijektive
Korrespondenz zwischen den H-Idealen einer H-Modulalgebra R und den H-co-
stabilen Idealen von R#H. Die Betrachtung von exakten Modulkategorien hat
darüber hinaus direkte Anwendungen auf H-Comodulalgebren und Smashpro-
dukte. Die Resultate implizieren, dass H-einfache H-Comodulalgebren quasi-
frobenius sind, und dass im Fall wenn H halbeinfach ist auch das Smashprodukt
R#H, einer H-einfache H-Modulalgebra R über H, eine halbeinfache Algebra
ist.

Für schwache Hopfalgebren ist es dagegen nicht möglich die Freiheitssätze
von Nichols und Zöller [NZ89] oder Skryabin [Skr07] zu verallgemeinern: Ich
konstruiere ein Beispiel einer schwachen Hopfalgebra, die nicht frei ist über einer
ihrer schwachen Hopfunteralgebren. Jedoch konnten Etingof und Ostrik [EO04]
zeigen, dass surjektive Tensorfunktoren zwischen endlichen Multitensorkate-
gorien projektive Objekte auf projektive abbilden. Betrachtet man nun für
schwache Hopfalgebren K ⊂ H den Einschränkungsfunktor HM→ KM, dann
ist dies ein surjektiver Tensorfunktor und H ist somit ein projektiver K-Modul.
Ich vermute, dass für eine quasifrobenius H-einfache H-Comodulalgebra A

jeder schwache Hopfmodul in MH
A ein projektiver A-Modul ist, und beweise

dies für schwache Hopfalgebren, die frei sind über ihren Basisalgebren. In
diesem Fall klassifiziere ich exakte unzerlegbare Modulkategorien über H durch
H-Comodulalgebren, die quasifrobenius und H-einfach von rechts sind und
triviale Coinvarianten haben. Meine Klassifikation liefert auch einen neuen
und direkteren Beweis für die Klassifikation im Hopfalgebra-Fall [AM07].
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Introduction

Tensor categories can be seen as a categorification of algebras. The categori-
fication of the concept of a module over an algebra is then a module category
over a tensor category. The theory of tensor categories and module categories
over tensor categories has applications in different areas of mathematics and
theoretical physics, such as conformal field theory, subfactor theory, and rep-
resentations of (weak) Hopf algebras (see for example [FS03], [FS10], [Ost03b],
and references therein).

A finite tensor category in the sense of [EO04] is an abelian category C
that is equivalent to the category of representations of a finite dimensional
algebra, and which is monoidal, that is it has a tensor structure − ⊗ − :
C×C → C and a unit object subject to certain stability relations. This definition
includes the representations of finite groups, Lie algebras, and more generally
the representations of finite dimensional Hopf algebras.

The finite dimensional modules over a finite dimensional Hopf algebra form
a finite tensor category, where the tensor product is induced by the comulti-
plication through the diagonal structure on the tensor product over k, and the
unit object is the ground field k together with the counit. The reconstruction
theory for Hopf algebras [JS91, Sch92] shows that many tensor categories are
of this form, though not all of them.

In this work I discuss module categories over tensor categories which are
representation categories of generalizations of Hopf algebras, namely quasi-Hopf
algebras and weak Hopf algebras.

The representation categories of Hopf algebras are strict, that is associativity
and unit morphisms are trivial. When omitting the strictness, this leads to the
notion of quasi-Hopf algebras, which are non-coassociative generalizations of
Hopf algebras. A quasi-Hopf algebra H, as introduced by Drinfeld [Dri90], is
an algebra with a costructure ∆ that is coassociative only up to conjugation by
an invertible element φ ∈ H ⊗H ⊗H, that is for all h ∈ H:

φ(∆⊗ id)(∆(h)) = (id⊗∆)(∆(h))φ,

and the coassociator φ is defined in such a way that the category HM of left
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H-modules becomes a monoidal category with this associativity constraint. In
[Kas95] it is shown that quasi-Hopf algebras are exactly those algebras H with
maps ∆ : H → H ⊗ H and ε : H → k, whose representation categories have
a monoidal structure induced by ∆ and ε on the underlying category of vector
spaces.

Etingof and Ostrik have proven [EO04] that actually every finite tensor cat-
egory with integer Frobenius-Perron dimensions is equivalent to the representa-
tion category of a finite dimensional quasi-Hopf algebra. The Frobenius-Perron
dimensions are certain invariants for finite tensor categories which have non-
negative values on simple objects [EO04, ENO05]. For quasi-Hopf algebras, the
Frobenius-Perron dimensions coincide with the vector space dimension, whereas
they can differ in general.

Weak Hopf algebras generate examples of tensor categories with non-integer
Frobenius-Perron dimensions. They are algebras which have a coalgebra struc-
ture, where the comultiplication is multiplicative but not unit preserving and
dually the counit is not multiplicative. The notion of weak Hopf algebras was in-
troduced and axiomatized by Böhm, Nill, and Szlachányi [BNS99, Nil98, BS96].

As the comultiplication ∆ of a weak Hopf algebra H is not unit preserving,
the tensor product V ⊗W of two H-modules V and W does not have an H-
module structure induced by ∆, but the subspace

V <W := ∆(1)(V ⊗W )

is a left H-module. Also, the ground field k does not have an H-module struc-
ture since the counit ε is not multiplicative. However, weak Hopf algebras
contain the so-called base algebras Ht and Hs, which are separable subalgebras
of H and take on the function of the unit object. In this manner the category
of representations of a weak Hopf algebra is provided with a monoidal struc-
ture. The unit object of this tensor category is no longer necessarily simple
nor one dimensional and the vector space dimension of the tensor product of
two objects in the category is not equal to the product of the dimension. The
representation categories of weak quasi-Hopf algebras produce all finite tensor
categories [EO04]. Moreover, if C is a fusion category, that is a semisimple finite
tensor category, then C is equivalent as a tensor category to the representation
category of a semisimple weak Hopf algebra with commutative base [Ost03b].

A module category M over an abelian monoidal category C is an abelian
category together with a functor − ⊗M − : C × M → M, with certain as-
sociativity and unit constraints. If R is an algebra in the category C, then
the category CR of right R-modules in C is a module category over C. Ostrik
[Ost03b] classified semisimple module categories over semisimple monoidal cat-
egories and showed that these are all of the form CR. Later, Etingof and Ostrik
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[EO04] studied module categories in the non-semisimple case. Since there is
no chance to classify arbitrary module categories over tensor categories (e.g.
in the category of vector spaces, every finite dimensional algebra A gives rise
to a module category MA), they introduced the notion of exact module cate-
gories over tensor categories, which can be seen as the analogon of projective
modules over finite dimensional algebras. More precisely, a module category
M over a finite multi-tensor category C is said to be exact, if for every projec-
tive object P ∈ C and every object M ∈ M, P ⊗M M is a projective object
in M. This definition contains the semisimple case in the sense that module
categories over semisimple monoidal categories are exact if and only if they are
semisimple. Also, every tensor category, regarded as a module category over
itself, is exact. The name exact makes sense, as any additive module functor
from an exact module category over a tensor category C to another module
category over C is exact. The classification of exact module categories over a
finite tensor category C works in the same manner as in the semisimple case:
Every exact module category over C is a finite direct product of indecomposable
exact module categories and these are of the form CR for some algebra R in C
[EO04, EGNO10].

For some examples of finite tensor categories, there exist complete classi-
fications of module categories over them. Among others, module categories
over the representations of the Taft-Hopf algebra and over the representations
of kG and kG∗, where G is a finite group, were classified by Etingof and Os-
trik [Ost03b, Ost03a, EO04]. Mombelli was able to specify module categories
over the representation categories of pointed Hopf algebras [Mom08, Mom09].
Mombelli’s classifications are based on the general classification of module cat-
egories over finite dimensional Hopf algebras by Andruskiewitsch and Mombelli
[AM07], which states that these are always representation categories of H-
comodule algebras.

More precisely, when C is the representation category of a finite dimensional
Hopf algebra H, and A is an H-comodule algebra, then AM is a module cat-
egory over C where the tensor product is induced by the costructure of A. If
A is H-simple, then AM is indecomposable, and even exact. This is due to
Skryabin’s projectivity theorem [Skr07, Theorem 3.5], which states that for an
H-simple H-comodule algebra A, Hopf modules in H

AM (i.e. A-modules which
have a compatible H-comodule structure) are projective A-modules. If now M

is a right A module, then H ⊗M ∈ H
AM and therefore H ⊗M is projective in

AM. On the other hand, Etingof and Ostrik’s description of module categories
as modules over an algebra in the category implies that every exact indecom-
posable module category is equivalent to (HM)R, for some H-module algebra
R. The category (HM)R, in turn, can be shown to be equivalent as a module
category to AM, where A is the H-comodule algebra Rop#Hcop. Altogether,
Andruskiewitsch and Mombelli [AM07, Theorem 3.3] proved that, up to mod-
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ule category equivalence, actually any indecomposable exact module category
is of the form AM for an H-comodule algebra A which is simple in H

AM and
has trivial coinvariants.

Accordingly, one can see that the classification of module categories over
generalizations of Hopf algebras is strongly connected to the question, whether
Hopf modules over H-simple H-comodule algebras are projective as A-modules.

Ever since Nichols and Zöller had proven their famous Hopf algebra Freeness
Theorem [NZ89] about the freeness of relative Hopf modules and in particular of
the Hopf algebra itself over Hopf subalgebras, it was an open question whether
this also holds for coideal subalgebras. Masuoka [Mas92] confirmed this for
quasi-Frobenius coideal subalgebras. In 2004 Skryabin succeeded in generalizing
the Hopf algebra Freeness Theorem to arbitrary coideal subalgebras and thereby
gave an entirely new proof for the Nichols-Zöller Theorem. Skryabin proved
that for a weakly finite Hopf algebra H and a finite dimensional H-simple H-
comodule algebra A, for every object M ∈ MH

A there exists an integer n such
that a finite direct product of n copies of M is a free A-module. Moreover, if A
is a right coideal subalgebra of H, then it is H-simple and Frobenius and every
Hopf module M ∈ MH

A is a free A-module. In particular, weakly finite Hopf
algebras are free over their finite dimensional right coideal subalgebras.

Thus, the generalization of Skryabin’s results to quasi-Hopf algebras and
weak Hopf algebras is an important step for the classification of module cate-
gories over their representation categories.

The goal of this thesis is the classification of module categories over quasi-
Hopf algebras and weak Hopf algebras and the investigation of the freeness and
projectivity of quasi-Hopf modules and weak Hopf modules over H-comodule
algebras and in particular of quasi-Hopf algebras and weak Hopf algebras over
subalgebras.

———

The outline of the thesis is as follows:

In the first part, the notion of module categories over tensor categories is
introduced. I sketch a new proof to Andruskiewitsch’s and Mombelli’s classi-
fication of module categories over ordinary Hopf algebras. The proof will be
explicated in more detail for the more general case of weak Hopf algebras in
the last part.
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In Part II, I generalize Skryabin’s freeness and projectivity theorem to quasi-
Hopf algebras. These results are published in [Hen10]. It includes the quasi-
Hopf algebra freeness theorem by Schauenburg [Sch04].

The main difficulties for the generalization of Skryabin’s proof to the quasi-
Hopf algebra case arise from the fact that the notion of an ordinary Hopf-module
does not make sense, since H is not coassociative and H-comodules can not be
defined. However, due to the quasi -coassociativity of H it is possible to define
axioms for costructures of bimodules. Furthermore, the notion of a right coideal
subalgebra in the quasi-Hopf algebra case had to be clarified. Naturally, the
coideal subalgebra together with the costructure of H has to be an H-comodule
algebra. The question is, whether the coassociator belonging to the coideal
subalgebra should coincide with the coassociator of H. However, by looking at
simple examples one can see that this definition would be too restrictive.

In Theorem 5.1.5, Theorem 5.2.1, and Proposition 6.3.1 I will prove the
following:

Let H be a finite dimensional quasi-Hopf algebra and B a right H-comodule alge-
bra. If A is a finite dimensional H-simple H-comodule algebra, then every finite
dimensional object M ∈ BMH

A is a projective A-module. Moreover, A is quasi-
Frobenius.
If A is a right coideal subalgebra of H, then it is H-simple and every finite dimen-
sional object in BMH

A and in AMH
B is even a free A-module. In particular, H is

free as a right and left A-module. Moreover, A is a Frobenius algebra.

Based on these results, I classify module categories over the representation
category of a finite dimensional quasi-Hopf algebra by H-simple H-comodule
algebras (Theorem 6.2.4):

Let C be the category of representations of a finite dimensional quasi-Hopf algebra
H and M a module category over C. Then M is an indecomposable exact module
category if and only if there exists a finite dimensional H-simple H-comodule alge-
bra A such thatM is equivalent to the category of finite dimensional left A-modules
AMfd as module categories.

For this purpose, I first prove a structure theorem for smash products. Module
algebras over a quasi-Hopf algebra H are algebras in the category HM, and
therefore they are not coassociative. Nevertheless, for an H-module algebra R
it is possible to define a smash product algebra R#H, which is then an asso-
ciative H-comodule algebra [BPvO00, PvO07]. I prove a category equivalence
R(HM)R̃ ≈ R#HMH

R̃#H
, which also implies a bijective correspondence of H-

ideals of R and H-stable ideals of R#H. Beyond that, the results about module
categories over quasi-Hopf algebras have direct applications to H-comodule al-
gebras and smash products. More precisely, the results imply that H-comodule
algebras are quasi-Frobenius and that, whenever H is semisimple, also the
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smash product R#H of an H-simple H-module algebra R by H is semisim-
ple. This can not be shown directly as in the Hopf algebra case.

Part III of this thesis is devoted to the study of weak Hopf algebras and
module categories over them, as well as weak Hopf modules. Etingof and Ostrik
have shown [EO04, Theorem 2.5] that surjective tensor functors map projective
objects to projective ones. If now K ⊂ H is a weak Hopf subalgebra, then
the restriction functor HM→ KM is a surjective tensor functor and therefore
H is a projective K-module. It is not yet known whether this is also true for
coideal subalgebras of weak Hopf algebras.

I give an example of a Frobenius weak Hopf algebra which is not free over
a certain weak Hopf subalgebra. This example shows that a generalization
of the Nichols-Zöller Theorem to weak Hopf algebras is not possible. It also
shows that it is not possible to generalize Skryabin’s proof of the projectivity
of Hopf modules over H-simple H-comodule algebras. However, I show that it
holds for weak Hopf algebras which are free over their bases (Proposition 9.5.1):

Let H be a weak Hopf algebra which is a free right module over its base algebra Hs

and let A be a quasi-Frobenius H-simple H-comodule algebra. Then every finite
dimensional object in MH

A is a projective A-module.

I conjecture that this proposition holds for arbitrary weak Hopf algebras and I
classify module categories over all weak Hopf algebras for which the proposition
holds, so in particular for weak Hopf algebras which are free over their bases.
In Theorem 10.2.6 and Proposition 10.1.4 I show:

Let H be a weak Hopf algebra and C the finite tensor category of finite dimensional
left H-modules. Assume that for any finite dimensional quasi-Frobenius H-simple
left H-comodule algebra A, every finite dimensional object in H

AM or in HMA

is a projective left or right A-module, respectively. Let M be a module category
over C. Then M is exact and indecomposable if and only if there exists a finite
dimensional quasi-Frobenius left H-comodule algebra B, which is simple in HMB

and has trivial coinvariants, such that M≈ BMfd as C-module categories.
Moreover, if A and B are left H-comodule algebras, then equivalences of module
categories AMfd → BMfd over C are in bijective correspondence with equivariant
Morita contexts for A and B.

Here, a Morita context (A,M,Q,B, α, β) for H-comodule algebras A and B

is called equivariant if M is a weak Hopf bimodule in BMH
A . In this work it

will be shown that endomorphism rings of weak Hopf modules are H-comodule
algebras and that AM≈ BM as module categories over H, if and only if there
exists an equivariant Morita context for A and B. For ordinary Hopf algebras
this was shown in [AM07].

One main step for the classification of module categories over weak Hopf al-
gebras is the fact that weak Hopf modules over H-simple H-comodule algebras
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are generators. For this I will show that the trace ideal of a weak Hopf module
in M ∈ MH

A is an H-stable ideal. If now A is H-simple and quasi-Frobenius,
then the trace ideal of M is equal to A, because it is non-zero. This implies
that M is a generator for MA.

The appendix contains some definitions and facts from ring theory which
are needed for this work.
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Notations and Assumptions

Except for some indicated sections, k is assumed to be an algebraically closed
field with char(k) = 0. If not stated otherwise, all algebras are associative k-
algebras with unit. Tensor products, if unadorned, are over k.

If R and R′ are rings then the categories of left, right, or bimodules will be
denoted by RM, MR, or RMR′ , respectively. The superscript fd indicates the
full subcategory of finite dimensional objects. For example, if A is an algebra,
then AMfd is the category of finite dimensional left A-modules. We write M (n)

for a direct sum of n copies of M .

If C is a category and X is an object of C, we simply write X ∈ C. If Y is
another object of C we denote the class of morphisms by HomC(X,Y ). In the
case when the objects of C are modules over a ring R, we write HomR(M,N)
for M,N ∈ C. If two categories C and D are equivalent, we write C ≈ D.

By ideal we mean two-sided ideal, otherwise they will be called right or
left ideals. The set of maximal ideals of a ring R is denoted by MaxR , the
Jacobson radical of R is denoted by Jac(R). If M is a right R-module, then
soc(M) denotes the socle of M , i.e. the direct sum of the simple submodules
of M . If X and Y are ideals of a ring R, we write

XY :=

{∑
i

xiyi |xi ∈ X, yi ∈ Y

}
.

For costructures we use a simplified Sweedler Notation [Swe69, Section 1.2]
omitting the summation symbol, e.g. ∆(h) =: h(1) ⊗ h(2).

For an algebra A, Aop denotes the algebra with opposite multiplication, and
for a coalgebra C, Ccop denotes the coalgebra with opposite comultiplication.

As usual, N denotes the set of natural numbers without zero.





Part I

Module Categories





Chapter 1

Tensor Categories and Module

Categories

In this chapter the notion of module categories over finite (multi-) tensor cate-
gories are presented. For a detailed introduction to monoidal categories and ten-
sor categories the reader is referred to [EGNO10], [Riv72], [Kas95], or [Müg08];
note that in the latter, monoidal categories are called tensor categories. The
general definition of module categories over monoidal categories can be found
in [Ost03b].

1.1 Tensor Categories

Definition. [EO04, EGNO10] A finite multi-tensor category C is a finite
abelian k-linear rigid monoidal category, where the tensor product is bilinear.
Here, a monoidal category is a category C equipped with a bifunctor

−⊗C − : C × C → C,

which is called the tensor product, a unit object 1C , together with natural
isomorphisms a−,−,− : (− ⊗C −) ⊗C − → − ⊗C (− ⊗C −) (the associativity
constraint), and r : − ⊗C 1C → idC and l : 1C ⊗C − → idC (the right and left
unit constraints), all of which are subject to the usual pentagon and triangle
relations. A monoidal category is said to be rigid, if every object has a right
dual object and left dual object. An abelian category C is k-linear if the sets
of morphisms are vector spaces and the composition of morphisms is bilinear;
a k-linear abelian category is called finite if it has only finitely many simple
objects (up to isomorphism), every simple object has a projective cover, every
object is of finite length, and the morphism spaces are finite dimensional. This
is equivalent to C being the representation category of a finite dimensional
algebra.

A finite multi-tensor category C is called finite tensor category if
End(1C) ∼= k.
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Remark 1.1.1. The tensor product of a finite multi-tensor category is exact
in each factor [EGNO10, §1.13]. Moreover, the unit object is a direct sum of
non-isomorphic simple objects [EGNO10, §1.15]

It is a well-known fact that the representation category of a finite dimen-
sional Hopf algebra over a field k is a finite tensor category, where the underlying
tensor product is the tensor product over k. We will see later on that the rep-
resentation categories of quasi-Hopf algebras and weak Hopf algebras are finite
(multi-)tensor categories. However, for weak Hopf algebras, the tensor product
is no longer the tensor product over k. In particular, the vector space dimen-
sion of the tensor product of two objects in the category can differ from the
product of the dimensions. This leads to the introduction of a different concept
of dimension.

Lemma and Definition 1.1.2. [ENO05, EGNO10] Let C be a finite ten-
sor category. Let Gr(C) be the Grothendieck ring of C (see for example
[EGNO10, 1.16]). That is, as an additive group Gr(C) is the free abelian group
generated by the set V1, . . . , Vn of isomorphism classes of simple objects in C,
modulo short exact sequences. For X ∈ C, define [X] :=

∑
i niVi in Gr(C),

where ni is the multiplicity with which Vi occurs in the Jordan-Hölder com-
position series of X. Moreover, Gr(C) has a natural multiplication induced by
the tensor product: for i, j = 1, . . . , n, define ViVj := [Vi ⊗C Vj ] =

∑
kN

i
j,kVk.

The matrix (N i
j,k)1≤j,k≤n is called the multiplication matrix of Vi. For a sim-

ple object X ∈ C define the Frobenius-Perron dimension FPdim(X) as the
largest positive eigenvalue of the multiplication matrix of the isomorphism class
of X, which exists and is well-defined by the Frobenius-Perron Theorem (see for
example [EGNO10, 1.44]). Then FPdim : Gr(C) → C is the uniquely defined
character which has positive values on simple objects. Moreover, FPdim(X) is
an algebraic integer.

For Hopf algebras and quasi-Hopf algebras, the Frobenius-Perron dimen-
sions for the representation category coincide with the vector space dimensions.
On the other hand, tensor categories with integer Frobenius-Perron dimensions
are representation categories of quasi-Hopf algebras [EO04].

Definition. [EGNO10] Let C and D be finite multi-tensor categories. A quasi-
tensor functor is an exact faithful monoidal functor F : C → D with natural
isomorphisms ξ : F (X ⊗C Y ) → F (X) ⊗D F (Y ). If there is an additional
isomorphism ξ0 : F (1C)→ 1D, then F is called a tensor functor.

Remark 1.1.3. [EGNO10] Quasi-tensor functors preserve Frobenius-Perron di-
mensions.
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1.2 Module Categories over Finite Multi-Tensor

Categories

In this section, module categories over tensor categories will be introduced. For
more details see [Ost03b], [EGNO10] and [AM07].

Let C be a finite multi-tensor category.

Definition. [Ost03b, EGNO10] A (left) module category over C is an
abelian k-linear categoryM together with a bifunctor −⊗M− : C ×M→M,
which is assumed to be bilinear and exact in both variables. Moreover, there
are functorial associativity and unit isomorphisms

m : (−⊗C −)⊗M − → −⊗M (−⊗M −),

and ` : 1⊗M − → id,

which satisfy the pentagon and triangle relations:

(idX ⊗mY,Z,M ) ◦mX,Y⊗CZ,M ◦ (aX,Y,Z ⊗ idM ) = mX,Y,Z⊗MM ◦mX⊗CY,Z,M ,

(1.1)

(idX ⊗ `M ) ◦mX,1,M = (rX ⊗ idM ), (1.2)

for X,Y, Z ∈ C, M ∈ M. Here, 1 denotes the unit of C, a denotes the associa-
tivity, and r the left unit constraint of C.

Remark 1.2.1. The exactness in the second variable follows automatically from
the fact that C is a monoidal category with duality (cf. Lemma 8.1.5).

Examples 1.2.2. (1) C is a module category over itself.

(2) [Ost03b] Let R be an algebra in C, then the category CR of right R-
modules in C (see [Ost03b]) is a module category over C. More precisely, for
X ∈ C and a module M over R in C, the object X⊗CR M is X⊗CM in C where
the R-module structure is induced by the R-module structure µ of M , that is
it is given by id ⊗ µ. The associativity and unit constraints are the ones of C.
If X,Y ∈ C and M ∈ CR, then aX,Y,M : (X⊗C) ⊗C M → X ⊗C (Y ⊗C M) and
`M : 1⊗C M →M clearly are R-linear.

If C is the category of left H-modules, where H is a Hopf algebra, quasi-Hopf
algebra, or a weak Hopf algebra, then an algebra in C is exactly an H-module
algebra and CR is the category (HM)R of H-modules with a compatible R-
module structure (see Section 4.2 and Section 8.2).

(3) Later (Remark 2.0.2, Lemma 6.2.1 and Lemma 10.1.1) we will see that
if H is a Hopf algebra, quasi-Hopf algebra, or a weak Hopf algebra and A is a
left H-comodule algebra, then the category AM of left A-modules is a module
category over the category of representations of left H-modules. The structure
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of X ⊗AM M , where X is a left H-module and M is a left A-module, is the
diagonal structure. If A is H-simple then AM is exact (see next section) and
on the other hand every exact module category over HMfd is of this form.

Lemma and Definition 1.2.3. [Ost03b, AM07] A C-module functor be-
tween two C-module categoriesM andM′ is a functor F together with a natural
isomorphism

c : F (−⊗M −)→ −⊗M′ F (−),

such that for X,Y ∈ C and M ∈M the pentagon and triangle equation

(idX ⊗ cY,M ) ◦ cX,Y⊗MM ◦ F (mX,Y,M ) = m′X,Y,F (M) ◦ cX⊗Y,M , (1.3)

`′F (M) ◦ c1,M = F (`M ) (1.4)

are satisfied. If (F, c) :M→M′ and (G, d) :M′ →M′′ are C-module functors
then (GF, d ◦G(c)) :M→M′′ is a C-module functor.

A natural transformation of module functors (F, c), (G, d) : M →
M′, is a natural transformation η : F → G, such that for all X ∈ C and M ∈M

dX,M ◦ ηX⊗MM = (idX ⊗ ηM ) ◦ cX,M . (1.5)

Consequently, two C-module categories M and M′ are said to be equivalent
as C-module categories, if there exist mutually inverse C-module functors
(F, c) : M→M′ and (G, d) : M′ →M and natural isomorphisms α : GF →
idM and β : FG→ idM′ which satisfy

αX⊗MM = (idX ⊗ αM ) ◦ (dX,F (M) ◦G(cX,M )), (1.6)

βX⊗MM ′ = (idX ⊗ βM ′) ◦ (cX,G(M ′) ◦ F (dX,M ′)), (1.7)

for X ∈ C, M ∈ M, and M ′ ∈ M′. In this case (F, c) is called an equivalence
of C-module categories.
Note that clearly (idM, id) is a C-module functor.

Lemma and Definition 1.2.4. [Ost03b] A direct sum of two C-module cat-
egories is again a module category, where the tensor product as well as the
associativity and unit isomorphisms are coordinate wise. A C-module category
M is said to be indecomposable, if it is not equivalent to a direct sum of
non-zero module categories. If M is a finite module category over C, then M
is a finite direct sum of indecomposable module categories.

1.3 Exact Module Categories

Let C be a finite multi-tensor category.
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Definition. [EO04] A C-module category M is called exact, if it is finite and
for any projective object P ∈ C and any M ∈ M, P ⊗M M is a projective
object in M.

Remark 1.3.1. (2) If C is semisimple, then a module category over C is exact
if and only if it is semisimple, which can be seen by tensoring with the unit
object.

Definition. An abelian category is a Frobenius category if every projective
object is injective and vice versa.

Proposition 1.3.2. [EO04, Corollary 3.6] Exact module categories are Frobe-
nius categories.

In particular, if for an algebra A, AM is an exact module category over a
finite multi-tensor category, then A is quasi-Frobenius (see Appendix A.3.1).

Theorem 1.3.3. [EO04, Ost03b] If M is an exact module category over C and
M a generator for M in the sense of [EO04], that is for every N ∈ M there
exists an object X ∈ C such that HomM(X ⊗M M,N) 6= 0. Then End(M) is
an algebra in C and

Hom(M,−) :M→ CEnd(M)

is an equivalence of module categories.

Here, Hom(M,N) denotes the internal Hom (see for example [EGNO10,
2.10] or [Ost03b]), that is it is the representing object in C of the representable
functor HomM(−⊗MM,N); and End(M) := Hom(M,M).

Proof. [EGNO10, Theorem 2.11.6 and 2.11.5] (see also [AM07, Theorem 1.14
and Remark 1.15]).

Remark 1.3.4. [EO04, AM07]

(1) Every exact module category over C is a finite direct sum of exact inde-
composable module categories.

(2) If M in the theorem is indecomposable, then every non-zero object in M
is a generator.

(3) If M is as in (2) and M ∈ M is simple, then the theorem implies that
End(M) is a simple object in CEnd(M).

Corollary 1.3.5. Let M be an indecomposable exact module category over C.
There exists an algebra R in C, which is a simple object in CR and M≈ CR as
C-module categories.





Chapter 2

Module Categories over Hopf

Algebras

In this chapter we discuss indecomposable exact module categories over Hopf
algebras. We assume that the reader is familiar with the definitions of Hopf
algebras, comodules, Hopf modules, smash products, etc. For the definitions,
facts, and usual notations we refer to Montgomery’s book about Hopf algebras
[Mon93].

Let H be a finite dimensional Hopf algebra and let C be the finite tensor
category of finite dimensional left H-modules. Andruskiewitsch and Mombelli
[AM07] classified indecomposable exact module categories over C. In this chap-
ter a new and more direct proof for this classification will be sketched, which
does not use stabilizers. This new proof has the advantage that it can be gen-
eralized to module categories over weak Hopf algebras, which will be presented
in Chapter 10.

Theorem 2.0.1. [AM07, Proposition 1.24 and Theorem 3.3] If M is a module
category over C, then M is exact and indecomposable if and only if there exists
a left H-comodule algebra B which is a simple object in HMB and has trivial
coinvariants, such that M≈ BM as module categories over C. Moreover, if A
and B are H-comodule algebras then AM≈ BM as module categories over C
if and only if there exists an equivariant Morita context (A,M,Q,B, α, β), that
is (A,M,Q,B, α, β) is a Morita context for A and B and M ∈ AMH

B .

Remark 2.0.2. Recall that the category AM is a module category over C with
diagonal structure, that is for X ∈ C and M ∈ AM, X ⊗M ∈ AM via the
costructure of A.

Definition. Recall that a subspace Y of an H-comodule (X, δ) is called H-
costable if δ(Y ) ⊂ Y ⊗H. A nonzero H-comodule algebra is called H-simple
if it does not contain a proper nonzero H-costable ideal. Dually, an H-module
algebra is called H-simple if it does not contain a proper nonzero H-stable
ideal.
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Lemma 2.0.3. Let A be a finite dimensional H-simple H-comodule algebra.
Let M be a nonzero finite dimensional object in the category MH

A of relative
(H,A)-Hopf modules. Then M is a progenerator in MA (see Appendix A.1).

Proof. Since A is H-simple, Theorem 5.2.1 or [Skr07, Theorem 3.5] implies that
M is a projective right A-module. Moreover, A is quasi-Frobenius by [Skr07,
Theorem 4.2]. It remains to show that M is a generator in MA. For this it
suffices to show that the trace ideal TM of M is A (see Appendix A.2.1). We
have M ∈ (H∗M)A, where H∗ is the dual Hopf algebra of H, and (H∗M)A
is the category of A-modules which have an H-linear A-module structure. By
[SvO06, Lemma 1.3] TM is an H∗-stable ideal of A and therefore H-costable.
The H-simplicity of A implies that TM is either 0 or A. But TM 6= 0 since A is
quasi-Frobenius (see Appendix A.3.2).

Corollary 2.0.4. If A is an H-simple left H-comodule algebra, then AM is
an exact indecomposable module category over H.

Proof. If M ∈ AM then H ⊗M ∈ AM and therefore it is a projective A-
module by the opcop-version of Lemma 2.0.3. Hence, P ⊗M is projective for
every projective left H-module. AM is indecomposable since A is H-simple
[AM07, Proposition 1.18].

Proposition 2.0.5. [AM07, 1.19] If M is an indecomposable exact module
category over C, then there exists a left H-comodule algebra A, such that M≈
AM as C-module categories.

Remark 2.0.6. The proposition follows from Etingof and Ostrik’s classification
of exact module categories (Corollary 1.3.5). In fact, let R be the algebra in C
from 1.3.5, then R is an H-module algebra and M≈ CR = (HM)R as module
categories. Set A := Rop#Hcop, then A has the desired property which is shown
in [AM07, 1.19].

Moreover, we know from 1.3.5 that R is an H-simple H-module algebra,
hence Rop is an Hcop-simple Hcop-module algebra, and therefore Rop#Hcop is
an Hcop-simple right Hcop-comodule algebra [MS99, Lemma 1.3], that is an
H-simple left H-comodule algebra.

Proposition 2.0.7. Let R be a finite dimensional H-simple left H-module
algebra and set A = R#H. Then there exists an H-comodule algebra B and
M ∈ BMH

A , such that
M ⊗A − : AM→ BM

is an equivalence of categories, and moreover B is a simple object in MH
B and

the coinvariants BcoH are trivial, that is BcoH ∼= k.

Proof. Let V be a simple right R-module, then it is well known that M := V#H
is nonzero and simple inMH

A [MS99]. By the lemma above it is a progenerator
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in MA and with Morita Theory we obtain the desired category equivalence
for B := EndA(M) (see Appendix A.1.1). B is an H-comodule algebra and
M ∈ BMH

A , for example by [Lin03].
B = EndA(V#H) is a simple object in MH

B . This follows directly from
the fact that V is assumed to be a simple R-module and the equivalences of
categories:

MR ≈ MH
A ≈ MH

B

W 7→ W#H 7→ HomA(V#H,W#H),

where the first equivalence is the known one for Galois extensions (see for exam-
ple [MS99]) and the second equivalence is induced by the Morita equivalence
(see Proposition 8.5.5 for the proof of the more general case of weak Hopf
algebras). The coinvariants of B are trivial, since M is simple in MH

A and
BcoH = {f ∈ EndA(M) | f H-colinear} ∼= k, which is easy to check in the Hopf
algebra case. It is shown in 8.5.2 more generally for weak Hopf algebras.

Proof of Theorem 2.0.1. If B is a left H-comodule algebra which is simple in
HMB, then BMfd is an exact indecomposable module category by Corollary
2.0.4. On the other hand, if M is an exact indecomposable module category,
then we know from Proposition 2.0.5 and Remark 2.0.6 that M≈ Rop#HcopM
as module categories over C, for someH-simple leftH-module algebraR. There-
fore Proposition 2.0.7 renders an equivalence of categories

M ⊗(Rop#Hcop) − : (Rop#Hcop)M≈ BM

for some right Hcop-comodule algebra B, which is simple in MHcop

B and has
trivial coinvariants, and M is an object in BMHcop

(Rop#Hcop). It follows from
[AM07, Proposition 1.23 and 1.24] that this is actually an equivalence of module
categories over C.

The second part of the theorem is [AM07, Proposition 1.23, Proposition
1.24, and Theorem 1.25].
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Quasi-Hopf Algebras





Chapter 3

Quasi-Hopf Algebras and

Quasi-Hopf Bimodules

A quasi-Hopf algebra H is an associative algebra and a quasi-coassociative
coalgebra together with a quasi-antipode. The coalgebra structure ∆ is coas-
sociative up to conjugation by an invertible element φH ∈ H ⊗ H ⊗ H. The
coassociator φH gives rise to an isomorphism Φ : (U⊗V )⊗W ∼= U⊗(V ⊗W ) for
left H-Modules U, V and W and it is defined in such a way that the category
HM of left H-modules becomes a monoidal category with this associativity
constraint.

For quasi-Hopf algebras, the notion of an ordinary Hopf-module does not
make sense since H is not coassociative and H-comodules can not be defined.
However, due to the quasi-coassociativity of H it is possible to define axioms
for costructures of bimodules. The category HMH

H of quasi-Hopf H-bimodules
was introduced by Hausser and Nill [HN99b, Section 3]. They have proven a
structure Theorem for quasi-Hopf bimodules in HMH

H which generalizes Lar-
son’s and Sweedler’s structure Theorem for Hopf modules. Moreover, Hausser
and Nill have shown that every finite dimensional quasi-Hopf algebra is a Frobe-
nius algebra [HN99b, Theorem 4.3]. Bulacu and Caenepeel defined the category
HMH

A of two-sided (H,A)-quasi-Hopf modules [BC03b, Section 3.1], where A
is an H-comodule algebra as defined in [HN99a, Definition 7.1].

In this chapter it is not necessary to assume that k is algebraically closed.

3.1 Quasi-Hopf Algebras

Definition. [Dri90] A quasi-bialgebra is an algebra H together with algebra
morphisms ∆ : H → H ⊗ H and ε : H → k and an invertible element φH ∈
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H ⊗H ⊗H such that for all h ∈ H:

φH(∆⊗ id)(∆(h)) = (id⊗∆)(∆(h))φH , (3.1)

(ε⊗ id)(∆(h)) = (id⊗ ε)(∆(h)) = h, (3.2)

(1⊗ φH)(id⊗∆⊗ id)(φH)(φH ⊗ 1) = (id⊗ id⊗∆)(φH)(∆⊗ id⊗ id)(φH),
(3.3)

(id⊗ ε⊗ id)(φH) = 1⊗ 1. (3.4)

Notation. We use a simplified Sweedler Notation ∆(h) =: h(1) ⊗ h(2), but since
∆ is not coassociative we write

(∆⊗ id)(∆(h)) =: h(1,1) ⊗ h(1,2) ⊗ h(2)

and (id⊗∆)(∆(h)) =: h(1) ⊗ h(2,1) ⊗ h(2,2),

for every h ∈ H. Furthermore, we denote

φH =: φ(1)
H ⊗ φ

(2)
H ⊗ φ

(3)
H and φ−1

H =: φ(−1)
H ⊗ φ(−2)

H ⊗ φ(−3)
H ,

again omitting the summation symbol. When no confusion is possible, we just
write φ for φH .

Remark 3.1.1. Note that the identities (3.1) – (3.4) also imply

(ε⊗ id⊗ id)(φH) = (id⊗ id⊗ ε)(φH) = 1⊗ 1. (3.5)

We obtain this by applying id⊗ id⊗ ε⊗ ε respectively ε⊗ ε⊗ id⊗ id to (3.3).

Definition. A quasi-Hopf algebra is a quasi-bialgebra H together with a
quasi-antipode (S, α, β) where S is a bijective anti-algebra morphism of H,
α, β ∈ H, and for all h ∈ H the following holds:

S(h(1))αh(2) = ε(h)α and h(1)βS(h(2)) = ε(h)β, (3.6)

φ
(1)
H βS(φ(2)

H )αφ(3)
H = 1 and S(φ(−1)

H )αφ(−2)
H βS(φ(−3)

H ) = 1. (3.7)

Remarks 3.1.2. (1) Drinfeld has shown that either one of the identities in (3.7)
is redundant [Dri90, Proposition 1.3]. By applying ε to those identities we see
that ε(α) and ε(β) are invertible and therefore can be assumed to be 1. We
obtain (ε◦S)(h)ε(α) = ε(h)ε(α) for all h ∈ H by applying ε to the first identity
of (3.5). Hence, ε ◦ S = ε.

(2) If H is a quasi-Hopf algebra with coassociator φH and quasi-antipode
(S, α, β) then so are Hop, Hcop, and Hopcop with φHop = φ−1

H , φHcop = φ
(−3)
H ⊗

φ
(−2)
H ⊗ φ(−1)

H , φHopcop = φ
(3)
H ⊗ φ

(2)
H ⊗ φ

(1)
H and Sop = Scop = Sopcop −1 = S−1,

αop = βcop = S−1(β), βop = αcop = S−1(α), αopcop = β, βopcop = α.

(3) By some authors, the quasi-antipode S is not assumed to be bijective,
but Bulacu and Caenepeel [BC03a, Theorem 2.2] have shown that the bijectivity
of S is automatic whenever H is finite dimensional.
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(4) Quasi-Hopf algebras are not self-dual. The dual space H∗ = Homk(H, k)
of a finite dimensional quasi-Hopf algebra H is a so-called dual quasi-Hopf
algebra [BC03a], which is a coassociative coalgebra, and quasi-associative alge-
bra with the usual structure using the canonical pairing Homk(H, k)×H → k.

Proposition 3.1.3. If H is a quasi-Hopf algebra then the category C of left H-
modules is a rigid monoidal category [Dri90]. If H is finite dimensional, then
the category of finite dimensional left H-modules is a finite tensor category.

On the other hand, every finite tensor category with integer Frobenius-
Perron dimensions is equivalent to the representation category of a finite di-
mensional quasi-Hopf algebra [EO04, Proposition 2.6].

Lemma and Definition 3.1.4. [Dri90] A twist or gauge transformation
of a quasi-Hopf algebra (H,∆, φ) is an invertible element F ∈ H ⊗ H with
(ε⊗ id)(F ) = (id⊗ ε)(F ) = 1. It induces a new costructure on H by

∆F (h) := F∆(h)F−1

φF := (1⊗ F )(id⊗∆)(F )φH(∆⊗ id)(F−1)(F−1 ⊗ 1).

Then (H,∆F , φF ) is again a quasi-Hopf algebra [Dri90, §1] with SF = S and

αF = S(F (−1))αF (−2) and βF = F (1)βS(F (2)),

where F =: F (1) ⊗ F (2) and F−1 =: F (−1) ⊗ F (−2) omitting the summation
symbol. Recall that in general, ordinary Hopf algebras do not remain Hopf
algebras under a twist.

Proposition 3.1.5. [Dri90] If H ′ is obtained from the quasi-Hopf algebra H

by a twist, then the representation categories of H and H ′ are equivalent as
monoidal categories.

Remark 3.1.6. Unlike the antipode of a Hopf algebra, the antipode of a quasi-
Hopf algebra is not an anti-coalgebra morphism. However, Drinfeld [Dri90] has
found a twist transformation FS ∈ H ⊗H such that

FS∆(S(h))F−1
S = (S ⊗ S)(∆op(h)),

for all h ∈ H, where ∆op(h) = h(2) ⊗ h(1). Following Drinfeld, we can give an
explicit formula for FS and F−1

S . Let

γ := S(φ(−1)
H φ

(2)
H )αφ(−2)

H φ
(3)
H (1) ⊗ S(φ(1))αφ(−3)

H φ
(3)
H (2),

δ := φ
(1)
H φ

(−1)
H (1)βS(φ(−3)

H )⊗ φ(2)
H φ

(−1)
H (2)βS(φ(3)

H φ
(−2)
H ),

(3.8)

then FS = (S ⊗ S)(∆op(φ(−1)
H )) γ∆(φ(−2)

H βS(φ(−3))),

F−1
S = ∆(S(φ(−1)

H )αφ(−2)
H ) δ (S ⊗ S)(∆op(φ(−3))).
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Examples 3.1.7. In the context of a description of the connection between quan-
tum groups and rational conformal field theory, Dijkgraaf, Pasquier, and Roche
[DPR90] defined the important example of a non-trivial quasi-Hopf algebra
Dω(G). As a vector space the quasi-quantum group Dω(G) is the Drinfeld dou-
ble D(G) of a finite group G, with a multiplication and comultiplication which
are deformed by a normalized 3-cocycle ω. For a detailed definition see also
[Kas95, XV.5].

Etingof and Gelaki gave examples of quasi-Hopf algebras which are not
twist-equivalent to an ordinary Hopf algebra [EG04, Gel05, EG05]. They clas-
sified finite dimensional quasi-Hopf algebras with radical of codimension 2 and
more generally of prime codimension.

3.2 H-Comodule Algebras and Coideal Subalgebras

Definition. Let (H,φH) be a quasi-Hopf algebra. A right H-comodule al-
gebra is a unital algebra A together with an algebra morphism ρ : A→ A⊗H
and an invertible element φρ ∈ A⊗H ⊗H which satisfy

φρ(ρ⊗ id)(ρ(a)) = (id⊗∆)(ρ(a))φρ, (3.9)

(id⊗ ε)(ρ(a)) = a, (3.10)

(1A ⊗ φH)(id⊗∆⊗ id)(φρ)(φρ ⊗ 1H) = (id⊗ id⊗∆)(φρ)(ρ⊗ id⊗ id)(φρ),
(3.11)

(id⊗ ε⊗ id)(φρ) = (id⊗ id⊗ ε)(φρ) = 1A ⊗ 1H , (3.12)

for all a ∈ A.

Analogously, one may define left H-comodule algebras.

Notation. Similar as for quasi-Hopf algebras, we write ρ(a) =: a(0) ⊗ a(1) and

(ρ⊗ id)(ρ(a)) =: a(0,0) ⊗ a(0,1) ⊗ a(1),

(id⊗∆)(ρ(a)) =: a(0) ⊗ a(1,1) ⊗ a(1,2),

for all a ∈ A. Moreover, φρ =: φ(1)
ρ ⊗φ(2)

ρ ⊗φ(3)
ρ and φ−1

ρ =: φ(−1)
ρ ⊗φ(−2)

ρ ⊗φ(−3)
ρ .

Remarks 3.2.1. (1) Because of the generalized pentagon equation (3.11), φρ has
to be nontrivial whenever φH is nontrivial. On the other hand, φρ may be
nontrivial even if H is an ordinary Hopf algebra.
(2) If (A, ρ, φρ) is a right H-comodule algebra, then (Aop, ρ, φ−1

ρ ) is a right Hop-

comodule algebra and (A, ρcop, φ(−3)
ρ ⊗ φ(−2)

ρ ⊗ φ(−1)
ρ ) is a left Hcop-comodule

algebra.

Definition. LetH be a quasi-Hopf algebra. A subalgebraK ⊂ H together with
an invertible element φK ∈ K ⊗H ⊗H is called a right coideal subalgebra
of H, if ∆(K) ⊂ K ⊗H and (K,∆, φK) is a right H-comodule algebra.
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Remark 3.2.2. Let K be a subalgebra of a quasi-Hopf algebra H satisfying
∆(K) ⊂ K⊗H and φH , φ−1

H ∈ K⊗H⊗H then K is a right coideal subalgebra
of H. On the other hand it would be too restrictive to define coideal subalgebras
in such a way that the coassociator belonging to K coincides with the coasso-
ciator of H, which would imply φH ∈ K ⊗H ⊗H. For example, a reasonable
right coideal subalgebra of the tensor product H⊗H ′ of two quasi-Hopf algebras
would be K⊗k1H′ , where K is a right coideal subalgebra of H with coassociator
φH . The coassociator of K ⊗ k1H′ would be φ(1)

H ⊗ 1H′ ⊗φ
(2)
H ⊗ 1H′ ⊗φ

(3)
H ⊗ 1H′

and is therefore unequal to φH⊗H′ = φ
(1)
H ⊗φ

(1)
H′ ⊗φ

(2)
H ⊗φ

(2)
H′ ⊗φ

(3)
H ⊗φ

(3)
H′ unless

φH′ is trivial (cf. [Sch04] for considerations about quasi-Hopf subalgebras and
their coassociators).

3.3 Quasi-Hopf Bimodules

Definition. Let (H,φH) be a quasi-Hopf algebra and (A, ρ, φρ) and (B, ρ′, φρ′)
right H-comodule algebras. A right (H, B, A)-quasi-Hopf bimodule is a
(B,A)-bimodule M with a quasi-coaction δM : M →M⊗H, which is a (B,A)-
bimodule morphism (M ⊗H ∈ BMA via ρ′ and ρ) and which satisfies

φρ′(δM ⊗ idH)(δM (m)) = (idM ⊗∆)(δM (m))φρ, (3.13)

(id⊗ ε)(δM (m)) = m, (3.14)

for all m ∈ M . The (H,B,A)-quasi-Hopf bimodules together with (B,A)-
bimodule morphisms which are H-colinear form a category denoted by BMH

A .

For left H-comodule algebras we can define left quasi-Hopf bimodules in the
same way. The resulting category will then be denoted by H

BMA.

Notation. Again we write δM (m) =: m(0) ⊗m(1) and

(δM ⊗ id)(δM (m)) =: m(0,0) ⊗m(0,1) ⊗m(1),

(id⊗∆)(δM (m)) =: m(0) ⊗m(1,1) ⊗m(1,2),

for all m ∈M .

Remark 3.3.1. If H is regarded as a right H-comodule algebra via ∆, then
an (H,H,H)-quasi-Hopf bimodule is a usual quasi-Hopf H-bimodule defined
by Hausser and Nill [HN99b, Section 3]. Another special case is the category
HMH

A of (H,A)-quasi Hopf bimodules introduced by Bulacu and Caenepeel
[BC03b, Section 3.1].

Examples 3.3.2. (1) A right H-comodule algebra A is an object of AMH
A .

(2) Let M be a right A-module, then M.⊗ . H.∈ HMH
A , with

δM⊗H(m⊗ h) = mφ(1)
ρ ⊗ h(1)φ

(2)
ρ ⊗ h(2)φ

(3)
ρ , (3.15)
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for all m ∈ M , h ∈ H. The dots indicate the bimodule structure of M ⊗ H,
which means that it is given by g(m ⊗ h)a = ma(0) ⊗ gha(1) for all m ∈ M ,
a ∈ A, h, g ∈ H.
(3) If M is a left A-module, then ·M ⊗ ·H· ∈ AMH

H in the same way, that is
with a costructure given by

δM⊗H(m⊗ h) = φ(−1)
ρ m⊗ φ(−2)

ρ h(1) ⊗ φ(−3)
ρ h(2), (3.16)

for all m ∈M , h ∈ H.

3.4 Antipode Properties

Unless stated otherwise, in the following (H,∆, ε, φH , S, α, β) is a quasi-Hopf
algebra and (A, ρ, φρ) and (B, ρ′, φρ′) are right H-comodule algebras.

Lemma and Definition 3.4.1. [HN99a, Section 9] we define

pρ := φ(−1)
ρ ⊗ φ(−2)

ρ βS(φ(−3)
ρ ) and qρ := φ(1)

ρ ⊗ S−1(αφ(3)
ρ )φ(2)

ρ .

Since H can be regarded as a right H-comodule algebra via ∆, we can define
pR := p∆ and qR := q∆ and obtain

pR := φ
(−1)
H ⊗ φ(−2)

H βS(φ(−3)
H ) and qR := φ

(1)
H ⊗ S

−1(αφ(3)
H )φ(2)

H .

Hausser and Nill [HN99a, Lemma 9.1] have shown the following relations:

ρ(a(0))pρ(1⊗ S(a(1))) = pρ(a⊗ 1), (3.17)

(1⊗ S−1(a(1)))qρρ(a(0)) = (a⊗ 1)qρ, (3.18)

ρ(q(1)
ρ )pρ(1⊗ S(q(2)

ρ )) = 1A ⊗ 1H , (3.19)

(1⊗ S−1(p(2)
ρ ))qρρ(p(1)

ρ ) = 1A ⊗ 1H . (3.20)

Those relations are a generalization of the fact that for an ordinary Hopf
algebra H and a right H-comodule algebra A the following holds: a(0) ⊗
a(1)S(a(2)) = a ⊗ 1H for every a ∈ A. Similar we can get the analogon of
the antipode property for comodules:

Lemma 3.4.2. Let (M, δM ) ∈ BMH
A . Then

δM (m(0))pρ(1A ⊗ S(m(1))) = pρ′(m⊗ 1H), (3.21)

(1B ⊗ S−1(m(1)))qρ′δM (m(0)) = (m⊗ 1H)qρ, (3.22)

for every m ∈M .

Proof. Analogous to the proof of [HN99a, Lemma 9.1].
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3.5 Quasi-Hopf Bimodule Isomorphisms

If H is an ordinary Hopf algebra, A a right H-comodule algebra and M ∈ AMH

then we have a well known left A-linear and right H-linear isomorphism

.M ⊗H. ∼= .M⊗ . H.
m⊗ h 7→ m(0) ⊗m(1)h

m(0) ⊗ S(m(1))h←[ m⊗ h

The A- and H-structures are indicated by the dots. In the latter case, M ⊗H
has a diagonal left A-structure induced by the costructure of A whereas in the
first case H has a trivial left-H-module structure. We have a similar isomor-
phism for quasi-Hopf algebras.

In the following (H,∆, ε, φH , S, α, β) is a quasi-Hopf algebra and (A, ρ, φρ)
and (B, ρ′, φρ′) are right H-comodule algebras.

Lemma 3.5.1. Let M ∈ BMH
A with costructure δ, then

.M ⊗H.
ϕ−−→←−
ϕ′
.M⊗ . H. in BMH

m⊗ h 7→ m(0)p
(1)
ρ ⊗m(1)p

(2)
ρ h

q
(1)
ρ′ m(0) ⊗ S(q(2)

ρ′ m(1))h←[ m⊗ h,

where we write pρ =: p(1)
ρ ⊗p(2)

ρ and qρ′ =: q(1)
ρ′ ⊗q

(2)
ρ′ suppressing the summation

symbols.

Proof. Let m ∈M and h ∈ H, then

ϕ(ϕ′(m⊗ h)) = q
(1)
ρ′ (0)m(0,0)p

(1)
ρ ⊗ q

(1)
ρ′ (1)m(0,1)p

(2)
ρ S(q(2)

ρ′ m(1))h

= ρ′(q(1)
ρ′ )δ(m(0))pρ(1⊗ S(m(1))S(q(2)

ρ′ )h)

= ρ′(q(1)
ρ′ )pρ′(1⊗ S(q(2)

ρ′ ))(m⊗ h)

= m⊗ h,

where we first use equation (3.21) and then equation (3.19). In the same manner
we obtain

ϕ′(ϕ(m⊗ h)) = q
(1)
ρ′ m(0,0)p

(1)
ρ (0) ⊗ S(q(2)

ρ′ m(0,1)p
(1)
ρ (1))m(1)p

(2)
ρ h

= (id⊗ S)((1⊗ S−1(p(2)
ρ )S−1(m(1)))qρ′δ(m(0))ρ(p(1)

ρ )) (1⊗ h)

= (m⊗ 1) (id⊗ S)(1⊗ S−1(p(2)
ρ )qρρ(p(1)

ρ ) (1⊗ h)

= m⊗ h,

using (3.22) and (3.20). Obviously, ϕ is left B- and right H-linear.
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Corollary 3.5.2. The lemma implies further isomorphisms which we will need
later. Let again M ∈ BMH

A with costructure δ.

(i) Then . H ⊗M.∼= M.⊗ . H. as (H,A)-bimodules, where again the bi-
module structures are indicated by the dots. The isomorphism and its inverse
are given by

. H ⊗M.
θ−−→←−
θ−1

M.⊗ . H.

h⊗m 7→ q
(1)
ρ′ m(0) ⊗ hq

(2)
ρ′ m(1)

hS−1(m(1)p
(2)
ρ )⊗m(0)p

(1)
ρ ←[ m⊗ h,

This is in fact an (H,A)-bimodule isomorphism, since θ is an op-version of ϕ
from Lemma 3.5.1.

(ii) It follows that . H ⊗M.∈ HMH
A and . H ⊗M.∼= M.⊗ . H. in HMH

A .

In fact, we can define a costructure for . H ⊗M. by means of the (H,A)-linear
isomorphism θ and the costructure of M.⊗ . H. given in (3.15). That is, for all
m ∈M and h ∈ H we define

δH⊗M (h⊗m) :=(θ−1 ⊗ id)(δM⊗H(θ(h⊗m)).

(iii) Moreover, . H ⊗ M.⊗ . H.∼= . H ⊗ M.⊗H. in HMA⊗H , where
. H ⊗M.⊗ . H. and . H ⊗M.⊗H. have different bimodule structures indicated
by the dots, that is in the first case we have g(h⊗m⊗h′)(a⊗g′) = g(1)h⊗ma⊗
g(2)h

′g′ and in the latter case we have g(h⊗m⊗ h′)(a⊗ g′) = gh⊗ma⊗ h′g′,
for all m ∈ M , a ∈ A and g, g′, h, h′ ∈ H. This follows directly from Lemma
3.5.1 for M = H and more precisely the isomorphism and its inverse are given
by the maps

. H ⊗M. ⊗ . H.
ψ−−→←−
ψ−1

. H ⊗M. ⊗H.

h⊗m⊗ g 7→ q
(1)
R h(1) ⊗m⊗ S(q(2)

R h(2))g

h(1)p
(1)
R ⊗m⊗ h(2)p

(2)
R g ←[ h⊗m⊗ g.



Chapter 4

Coinvariants, Smash Products,

and Structure Theorems for

Quasi-Hopf Bimodules

If H is a Hopf algebra and R is a left H-module algebra, then the category of
right R-modulesMR is equivalent to the category of relative Hopf modules over
the smash product MH

R#H . The aim of this chapter is an analogous result for
quasi-Hopf algebras. Given that module algebras over quasi-Hopf algebras are
not associative, we can only consider modules over an algebra in the monoidal
category of H-modules. For H-module algebras R and R̃ we will prove a cat-
egory equivalence R(HM)R̃ ≈ R#HMH

R̃#H
. In particular, the H-ideals of an

H-module algebra R correspond to the H-costable ideals of R#H.

In this chapter it is not necessary to assume that k is algebraically closed.

4.1 Coinvariants and the Structure Theorem by

Hausser and Nill

If H is a usual Hopf algebra, the coinvariants M coH of an Hopf module M

are defined as M coH = {m ∈ M |m(0) ⊗ m(1) = m ⊗ 1}. Then M coH =
{m(0)S(m(1))|m ∈ M} and M coH is a left H-module with the adjoint action.
The Fundamental Theorem for Hopf modules states, that the category of vector
spaces is equivalent to the category of Hopf modules, where the equivalence is
given by vectk ≈ MH

H , V 7→ V ⊗H ·· with inverse functor ( )coH . In particular,
(V ⊗H)coH = V ⊗ 1.

In the following sections, H is a quasi-Hopf algebra and (M, δ) ∈ HMH
H .
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We would like to define coinvariants of M in such a way that we obtain an
analogon to the Fundamental Theorem, so in particular (·V ⊗ ·H·)coH = V ⊗ 1
for all V ∈ HM. As the costructure of an object in HMH

H is not coassociative,
the definition of the coinvariants in the above sense is not very useful. For
example, one can see that for V ∈ HM we have {x ∈ V ⊗H | δ(x) = x⊗ 1} =
{v ⊗ 1|v ∈ V and φ(−1)v ⊗ φ(−2) ⊗ φ(−3) = v ⊗ 1 ⊗ 1}. However, Hausser and
Nill [HN99b] defined a projection

E : M →M (4.1)

m 7→ q
(1)
R m(0)βS(q(2)

R m(1))

and showed that the elements of E(M) have a quasi-coinvariant property and
that E(M) is a left H-module with H-action defined by

h I m := E(hm), h ∈ H,m ∈M. (4.2)

More precisely Hausser and Nill proved the following properties for E and the
action I:

Lemma 4.1.1. [HN99b, Proposition 3.4 and Corollary 3.9] Let M ∈ HMH
H

and let E and I be as above. Then for all g, h ∈ H, m ∈ M the following
properties hold.

(i) h I E(m) = E(hm) = h I m,

(ii) gh I m = g I (h I m),

(iii) E(E(m)) = E(m),

(iv) E(mh) = E(m)ε(h),

(v) hE(m) = (h(1) I E(m))h(2),

(vi) E(m(0))m(1) = m,

(vii) E(E(m)(0))⊗ E(m)(1) = E(m)⊗ 1,

(viii) E(m)(0) ⊗ E(m)(1) = (φ(−1) I E(m))φ(−2) ⊗ φ(−3).

It follows that E(M) is a left H-module via I and

M coH := E(M) = {m ∈M |E(m(0))⊗m(1) = E(m)⊗ 1}

= {m ∈M |m(0) ⊗m(1) = (φ(−1) I m)φ(−2) ⊗ φ(−3)}.

In particular, for H regarded as a quasi-Hopf H-bimodule we have E(h) = ε(h)1
and E(φ(−1))φ(−2) ⊗ φ(−3) = 1⊗ 1 .

Using this definition of coinvariants, Hausser and Nill proved a structure
theorem for quasi-Hopf bimodules, which generalizes the Fundamental Theorem
for Hopf Modules:
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Theorem 4.1.2. [HN99b, Theorem 3.8 and Proposition 3.11] Let H be a quasi-
Hopf algebra and M ∈ HMH

H . Then there is an equivalence of monoidal cate-
gories

HMH
H ≈ HM
M 7→ E(M)

(f : M → N) 7→ (f |E(M) : E(M)→ E(N))

·V ⊗ ·H· ←[ V

(g ⊗ id : V ⊗H →W ⊗H)←[ (g : V →W ).

Remarks 4.1.3. (1) f |E(M) above is well-defined, since for an HMH
H -map f :

M → N and m ∈ M we have f(E(m)) = E(f(m)). For M ∈ HMH
H and

V ∈ HM the isomorphisms in HMH
H and HM are given by:

M ∼= ·E(M)⊗ ·H· V ∼= E( ·V ⊗ ·H·)
m 7→ E(m(0))⊗m(1) v 7→ v ⊗ 1

m · h←[ m⊗ h vε(h)←[ v ⊗ h.

In fact, E(V ⊗H) = V ⊗ 1H for all V ∈ HM.
(2) The monoidal structure of HM is the usual one. HMH

H is a monoidal cat-
egory with the tensor product over H and if (M, δM ), (N, δN ) are objects in
HMH

H then M ⊗H N ∈ HMH
H with δM⊗HN (m⊗ n) = (m(0) ⊗ n(0))⊗m(1)n(1).

4.2 H-Module Algebras and Modules in HM

Definition. [BPvO00] A left H-module R is called a left H-module algebra,
if it is an algebra in the monoidal category HM. That is R has a multiplication
with a unit 1R and

h · (rr′) = (h(1) · r)(h(2) · r′), (4.3)

h · 1R = ε(h)1R, (4.4)

r(r′r′′) = ((φ(−1) · r)(φ(−2) · r′))(φ(−3) · r′′). (4.5)

The quasi-Hopf algebra H itself is not an H-module algebra, but we can
define a new multiplication ◦ on H such that (H, ◦) becomes an H-module
algebra, which will be denoted by H◦. More generally, we have the following
definition.

Lemma and Definition 4.2.1. [BPvO00, Proposition 2.2] Let R be an algebra
and ϑ : H → R an algebra map. We can define a multiplication on R by

a ◦ b := ϑ(φ(1)) aϑ(S(φ(−1)φ(2))αφ(−2)φ
(3)
(1)) b ϑ(S(φ(−3)φ

(3)
(2)))

= ϑ(φ(1)φ
(−1)
(1) ) aϑ(S(φ(2)φ

(−1)
(2) )αφ(3)φ(−2)) b ϑ(S(φ(−3))), by (3.3)
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for all a, b ∈ R. Then R with this new multiplication is an H-module algebra,
where the H-module structure is given by the left adjoint action

h .ϑ a := ϑ(h(1)) aϑ(S(h(2))),

for h ∈ H, a ∈ R. This H-module algebra will be denoted by Rϑ, and H◦ is
just H idH .

AnH-module algebra is not associative and therefore it does not makes sense
to define modules over it. However, we may define modules in the category HM
of left H-modules.

Definition. Let R, R̃ be H-module algebras, then we can define the categories
R(HM), (HM)R, and R(HM)R̃ of right, left R-modules, and (R, R̃)-bimodules
in HM. That is, V ∈ R(HM)R̃ is a left H-module which has a left R-structure
and a right R̃-structure which satisfy

1R • v = v = v • 1R̃, (4.6)

h · (r • v) = (h(1) · r) • (h(2) · v) and h · (v • r̃) = (h(1) · v) • (h(2) · r̃), (4.7)

r • (r′ • v) = ((φ(−1) · r)(φ(−2) · r′)) • (φ(−3) · v), (4.8)

(v • r̃) • r̃′ = (φ(1) · v) • ((φ(2) · r̃)(φ(3) · r̃′)), (4.9)

(r • v) • r̃ = (φ(1) · r) • ((φ(2) · v) • (φ(3) · r̃)), (4.10)

for all h ∈ H, v ∈ V , r, r′ ∈ R, and r̃, r̃′ ∈ R̃.

4.3 Coinvariants for Relative Quasi-Hopf Bimodules

Let (A, ρ, φρ) and (B, ρ′, φρ′) be right H-comodule algebras and assume there
are H-comodule algebra maps

γ : H → A and γ′ : H → B.

In particular (γ⊗ id⊗ id)(φ) = φρ and (γ′⊗ id⊗ id)(φ) = φρ′ . Let M ∈ AMH
B ,

then M ∈ HMH
H via γ and γ′ and we can define the coinvariants of M by

means of Hausser and Nill’s projection

E : M →M, m 7→ γ(q(1))m(0)γ
′(βS(q(2)m(1))).

Here, q := qR from Section 3.4. E(M) is then a left H-module with the action
given by h I E(m) = E(h · E(m)) = E(h ·m).

In the same manner we may define the coinvariants AcoH := E(A) of the
H-comodule algebra A. We will see that AcoH is an H-module algebras with
the H-action I but with a new multiplication. This was already shown by
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[PvO07] with a different proof. Moreover, we will show that E(M) is an object
in the category AcoH (HM)BcoH of (AcoH , BcoH)-bimodules in HM. Finally we
will prove that in this case, the category AMH

B of relative quasi-Hopf bimodules
is equivalent to the category AcoH (HM)BcoH .

In the following let (A, ρ, φρ) and (B, ρ′, φρ′) be H-comodule algebras with
H-comodule algebra maps γ : H → A and γ′ : H → B and let M ∈ AMH

B .

Lemma 4.3.1. For all a, a′ ∈ A, b, b′ ∈ B, m ∈M and h ∈ H we have:

(i) E(mE(b)) = E(mb),

(ii) E(aE(m)) = E(am),

(iii) E(a(0)m) · γ′(a(1)) = a · E(m),

(iv) E(m(0) · b)γ′(m(1)) = mE(b),

(v) E(E(γ(φ(1))a)E(γ(φ(2))m)γ′(φ(3))b) = E(E(E(a)m)b),

(vi) E(E(γ(φ(1))a)E(γ(φ(2))a′)γ(φ(3))m) = E(E(E(a)a′)m),

(vii) E(E(γ(φ(1))m)E(γ′(φ(2))b)γ′(φ(3))b′) = E(E(E(m)b)b′),

(viii) E(1A) = 1A,

(ix) E(γ(h)) = ε(h)1A,

(x) E(γ(φ(−1)))γ(φ(−2))⊗ φ(−3) = 1A ⊗ 1.

Proof. (i) E(m · E(b)) = E(mγ′(q(1))b(0)γ
′(βS(q(2)b(1))))

= E(mγ′(q(1))b(0))ε(βS(q(2)b(1)) by 4.1.1 (iv)
= E(m · b).

(ii) analogous to (i).

(iii) E(a(0)m)γ′(a(1)) = γ(q(1))a(0,0)m(0)γ
′(βS(q(2)a(0,1)m(1))a(1))

= aγ(q(1))m(0)γ
′(βS(q(2)m(1))) by (3.18)

= a · E(m).

(iv) analogous to (iii) using (3.21).

(v) E(E(γ(φ(1))a)E(γ(φ(2))m)γ(φ(3))b)
= E(E(E(γ(φ(1))a)(0)E(γ(φ(2))m))γ′(E(γ(φ(1))a)(1))γ′(φ(3))b)

by (iii)
= E(E(E(γ(φ(−1)φ(1))a)γ(φ(−2))E(γ(φ(−2))m))γ′(φ(−3))γ′(φ(3))b)

by 4.1.1 (viii)
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= E(E(E(γ(φ(−1)φ(1))a)γ(φ(−2)φ(2))m)γ′(φ(−3)φ(3))b) by (ii)
= E(E(E(a)m)b).

(vi) and (vii) are analogous to (v).

(viii) E(1A) = γ(q(1)βS(q(2))) = γ(1) = 1A.

(ix) For all h ∈ H we have E(γ(h)) = E(1Aγ(h)) = E(1A)ε(h) = 1Aε(h) by
(viii) and 4.1.1 (iv).

(x) follows from (ix) and the axioms for the coassociator (3.5).

Proposition 4.3.2. AcoH = E(A) is an H-module algebra and M coH = E(M)
is an object in AcoH (HM)BcoH with a structure given by

a ∗ a′ := E(aa′)

a •m := E(am)

m • b := E(mb)

for all a, a′ ∈ E(A), b ∈ E(B), and m ∈ E(M), and the usual H-module
structure I.

Proof. Since A ∈ AMH
A , it suffices to show that the following holds for M ∈

AMH
B and for all a, a′ ∈ E(A), b, b′ ∈ E(B), m ∈ E(M) and h ∈ H.

(i) h I (a •m) = (h(1) I a) • (h(2) I m),
(ii) h I (m • b) = (h(1) I m) • (h(2) I b),
(iii) (a •m) • b = (φ(1) I a) • ((φ(2) I m) • (φ(3) I b)),
(iv) (a ∗ a′) •m = (φ(1) I a) • ((φ(2) I a′) • (φ(3) I m)),
(v) (m • b) • b′ = (φ(1) I m) • ((φ(2) I b) ∗ (φ(3) I b′)),
(vi) 1A •m = m = m • 1B.

Let a, a′ ∈ E(A), b, b′ ∈ E(B), m ∈ E(M) and h ∈ H, then

(h(1) I a) • (h(2) I m) = E((h(1) I a) · E(γ(h(2)) ·m))

= E((h(1) I a) · γ(h(2)) ·m)) by 4.3.1 (ii)

= E(γ(h) · am) by 4.1.1 (v)

= h I E(a ·m)

= h I (a •m)

and so (i) holds, (ii) is similar.
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(iii), (iv) and (v) hold by Lemma 4.3.1 (v), (vi), (vii), since

(a •m) • b = E(E(E(a) ·m) · b)
and

(φ(1) I a) • ((φ(2) I m) • (φ(3) I b)) = E(E(γ(φ(1))a)E(γ(φ(2)) ·m) · γ′(φ(3))b)

and similar for (iv) and (v).

4.4 A Structure Theorem for (H, A, B)-Quasi-Hopf

Bimodules

Let again (A, ρ, φρ) and (B, ρ′, φρ′) be H-comodule algebras, γ : H → A and
γ′ : H → B H-comodule algebra maps, and M ∈ AMH

B .

Hausser and Nill’s structure theorem for quasi-Hopf bimodules (Theorem
4.1.2) implies

Ψ : M
∼=→ ·M

coH ⊗ ·H· in HMH
H

m 7→ E(m(0))⊗m(1),

and in particular

ψ : A
∼=→ ·A

coH ⊗ ·H· in HMH
H

a 7→ E(a(0))⊗ a(1).

We would like to define a multiplication on AcoH⊗H and a bimodule struc-
ture on M coH⊗H, such that the above isomorphism ψ is an H-comodule algebra
morphism, and Ψ becomes a morphism in AMH

B . In particular, we would want

E(a(0)a
′
(0))⊗ a(1)a

′
(1) = (E(a(0))⊗ a(1))(E(a′(0))⊗ a

′
(1)),

for all a, a′ ∈ A. We have

E(a(0)a
′
(0))⊗ a(1)a

′
(1)

= E(E(a(0,0)γ(φ(−1)))γ(a(0,1)φ
(−2))a′(0))⊗ a(1)φ

(−3)a′(1) by 4.3.1 (iii), (x)

= E(E(γ(φ(−1))a(0))γ(φ(−2)a(1,1))a
′
(0))⊗ φ

(−3)a(1,2)a
′
(1)

= (φ(−1) I E(a(0))) ∗ (φ(−2)a(1,1) I a
′
(0))⊗ φ

(−3)a(1,2)a
′
(1). (4.11)
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In the same way:

E(a(0)m(0))⊗ a(1)m(1)

= (φ(−1) I E(a(0))) ∗ (φ(−2)a(1,1) I m(0))⊗ φ(−3)a(1,2)m(1) (4.12)

and

E(m(0)b(0))⊗m(1)b(1)

= (φ(−1) I E(m(0))) ∗ (φ(−2)m(1,1) I b(0))⊗ φ(−3)m(1,2)b(1), (4.13)

for a ∈ A, b ∈ B and m ∈ M . Hence, the desired isomorphism is obtained as
follows:

Lemma and Definition 4.4.1. By defining a multiplication on AcoH ⊗H via

(a⊗ h)(a′ ⊗ g) := (φ(−1) I a) ∗ (φ(−2)h(1) I a
′)⊗ φ(−3)h(2)g (4.14)

for all a, a′ ∈ AcoH , g, h ∈ H, AcoH ⊗H becomes an H-comodule algebra and
ψ from above is turned into an H-comodule algebra isomorphism, that is

A ∼= AcoH ⊗H, a 7→ E(a(0))⊗ a(1)

as H-comodule algebras.

Proof. ψ(1) = E(1A)⊗ 1 = 1A ⊗ 1 and for a ∈ A, h ∈ H

(1A ⊗ 1)(a⊗ h) = (φ(−1) I 1A) ∗ (φ(−2) I a)⊗ φ(−3)h) = (a⊗ h),

(a⊗ h)(1A ⊗ 1) = (φ(−1) I a) ∗ (φ(−2)h(1) I 1A)⊗ φ(−3)h(2)) = (a⊗ h),

by (4.4) and (3.4). Now, ψ is a multiplicative isomorphism by (4.11) and
therefore AcoH⊗H becomes an algebra isomorphic to A. Since ψ is a morphism
in HMH

H , it is even an H-comodule algebra morphism, where AcoH ⊗H is an
H-comodule algebra with the usual H-costructure ρAcoH⊗H given by

ρAcoH⊗H(a⊗ h) = φ(−1) I a⊗ φ(−2)h(1) ⊗ φ(−3)h(2).

The coassociator of AcoH ⊗H is (ψ ⊗ id⊗ id)(φρ) = (ψ ◦ γ ⊗ id⊗ id)(φ).

The algebra structure of AcoH ⊗ H is the smash product structure, which
we will define in detail in the next section. Therefore, 4.4.1 contains [PvO07,
Theorem 2.5].

Remark 4.4.2. Note that the map j : H → AcoH ⊗H, h 7→ 1A ⊗ h corresponds
to the H-comodule algebra map γ. In fact, for h ∈ H:

ψ(γ(h)) = E(γ(h)(0))⊗ γ(h)(1)

= E(γ(h(1)))⊗ h(2)

= 1Aε(h(1))⊗ h(2) by 4.3.1 (ix)

= 1A ⊗ h.
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Lemma and Definition 4.4.3. Let V ∈ AcoH (HM)BcoH , then we one can
define an (AcoH ⊗H,BcoH ⊗H)-bimodule structure on V ⊗H by

(a⊗ h)(v ⊗ g) := (φ(−1) I a) • (φ(−2)h(1) · v)⊗ φ(−3)h(2)g

and

(v ⊗ g)(b⊗ h) := (φ(−1) · v) • (φ(−2)g(1) I b)⊗ φ(−3)g(2)h

for all a ∈ AcoH , b ∈ BcoH , g, h ∈ H and v ∈ V . Via ψ from 4.4.1, V ⊗H is an
(A,B)-bimodule. With the usual costructure

δV⊗H(v ⊗ g) = φ(−1) · v ⊗ φ(−2)h(1) ⊗ φ(−3)h(2)

V ⊗ H becomes an object in AMH
B , and Ψ : M → M coH ⊗ H becomes an

isomorphism in AMH
B .

Proof. Let a, a′ ∈ AcoH , h, h′, g ∈ H and v ∈ V , then

(a⊗ h)((a′ ⊗ h′)(v ⊗ g))

= (φ̃(−1) I a) • (φ̃(−2)h(1) · ((φ(−1) I a′) • (φ(−2)h′(1) · v))

⊗ φ̃(−3)h(2)φ
(−3)h′(2)g

= (φ̃(−1) I a) • ((φ̃(−2)
(1) h(1,1)φ

(−1) I a′) • (φ̃(−2)
(2) h(1,2)φ

(−2)h′(1) · v))

⊗ φ̃(−3)h(2)φ
(−3)h′(2)g

= (φ̃(−1) I a) • ((φ̃(−2)
(1) φ(−1)h(1) I a

′) • (φ̃(−2)
(2) φ(−2)h(2,1)h

′
(1) · v))

⊗ φ̃(−3)φ(−3)h(2,2)h
′
(2)g

= (φ(1)φ̃
(−1)
(1) φ(−1) I a) • ((φ(2)φ̃

(−1)
(2) φ(−2)h(1) I a

′)

• (φ(3)φ̃(−2)φ
(−3)
(1) h(2,1)h

′
(1) · v))⊗ φ̃(−3)φ

(−3)
(2) h(2,2)h

′
(2)g

= (φ̃(−1) I ((φ(−1) I a) • (φ(−2)h(1) I a
′))) • (φ̃(−2)(φ(−3)h(2)h

′)(1) · v))

⊗ φ̃(−3)(φ(−3)h(2)h
′)(2)g

= ((a⊗ h)(a′ ⊗ h′))(v ⊗ g)
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by (3.1), (3.3) and (4.8). Moreover,

δV⊗H((a⊗ h)(v ⊗ g))

= δV⊗H((φ(−1) I a) • (φ(−2)h(1) · v)⊗ φ(−3)h(2)g)

= φ̃(−1) · ((φ(−1) I a) • (φ(−2)h(1) · v))

⊗ φ̃(−2)φ
(−3)
(1) h(2,1)g(1) ⊗ φ̃(−3)φ

(−3)
(2) h(2,2)g(2)

= ( ˜̃
φ(−1)φ̃(−1) I a) • ( ˜̃

φ(−2)φ̃
(−2)
(1) φ(−1)h(1) · v)

⊗ ˜̃
φ(−3)φ̃

(−2)
(2) φ(−2)h(2,1)g(1) ⊗ φ̃(−3)φ(−3)h(2,2)g(2)

= ( ˜̃
φ(−1)φ̃(−1) I a) • ( ˜̃

φ(−2)(φ̃(−2)h(1))(1)φ
(−1) · v)

⊗ ˜̃
φ(−3)(φ̃(−2)h(1))(2)φ

(−2)g(1) ⊗ φ̃(−3)h(2)φ
(−3)g(2)

= φ̃(−1) I a⊗ φ̃(−2)h(1) ⊗ φ̃(−3)h(2))(φ
(−1) · v ⊗ φ(−2)g(1) ⊗ φ(−3)g(3))

= ρAcoH⊗H(a⊗ h)δV⊗H(v ⊗ g),

by (3.3) and (3.1). The remaining equations follow analogously.

Theorem 4.4.4. Let (A, ρ, φρ) and (B, ρ′, φρ′) be right H-comodule algebras
and γ : H → A and γ′ : H → B H-comodule algebra maps. Let M ∈ AMH

B .
Then

AMH
B ≈ AcoH (HM)BcoH

M 7→M coH

f : M → N 7→ f |McoH : M coH → N coH

V ⊗H ←[ V

g ⊗ id : V ⊗H →W ⊗H ←[ g : V →W.

Proof. For M ∈ AMH
B we have M coH ∈ AcoH (HM)BcoH and M coH ⊗H ∼= M

in AMH
B by Lemma 4.4.3. Let f : M → N be a morphism in AMH

B , then
f |McoH is a well-defined morphism M coH → N coH in AcoH (HM)BcoH . In fact,
for all m ∈M

f(E(m)) = f(γ(q(1)) ·m(0) · γ′(βS(q(2)m(1))))

= γ(q(1)) · f(m)(0) · γ′(βS(q(2)f(m)(1)))) = E(f(m)),

and f |McoH is a morphism in AcoH (HM)BcoH , since for all h ∈ H, a ∈ E(A),
b ∈ E(B), m ∈ E(M)

f(h I m) = E(f(γ(h) ·m)) = E(γ(h) · f(m)) = h I f(m),

f(a •m) = E(f(a ·m)) = E(a · f(m)) = a • f(m),

f(m • b) = E(f(m · b)) = E(f(m) · b) = f(m) • b.
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For V ∈ AcoH (HM)BcoH we have V ⊗H ∈ AMH
B by 4.4.3 and (V ⊗H)coH =

V ⊗ 1H ∼= V , since for all v ∈ V and h ∈ H,

E(v ⊗ h) = ψ(γ(q(1)))(φ(−1) · v ⊗ φ(−2)h(1))ψ(γ′(βS(q(2)φ
(−3)h(2))))

= (1A ⊗ q(1))(φ(−1) · v ⊗ φ(−2)h(1))(1B ⊗ βS(q(2)φ
(−3)h(2)))

= (1A ⊗ q(1))(φ̃(−1)φ(−1) · v) • (φ̃(−2)φ
(−2)
(1) h(1,1) I 1B)

⊗ φ̃(−3)φ
(−2)
(2) h(1,2)βS(q(2)φ(−3)h(2))

= (1A ⊗ q(1))(φ(−1) · v ⊗ φ(−2)h(1)βS(q(2)φ(−3)h(2))

= q
(1)
(1)φ

(−1) · v ⊗ q(1)
(2)φ

(−2)βS(φ(−3))S(q(2))ε(h)

= q
(1)
(1)p

(1) · v ⊗ q(1)
(2)p

(2)S(q(2))ε(h)

= vε(h)⊗ 1,

by Remark 4.4.2, (4.4), (3.4), (3.6) and (3.20). Obviously, g ⊗ id : V ⊗ H →
W ⊗H is a well-defined morphism in AMH

B .

4.5 Smash Products for Quasi-Hopf Algebras

Lemma and Definition 4.5.1. [BPvO00, PvO07] Let R be a left H-module
algebra. The smash product of R by H is denoted by R#H. It is R ⊗H as
a vector space and the multiplication is defined by

(r#h)(r′#g) := (φ(−1) · r)(φ(−2)h(1) · r′)#φ(−3)h(2)g,

for all r, r′ ∈ R and g, h ∈ H. Then R#H is a right H-comodule algebra with
an H-costructure given by

ρR#H(r#h) = φ(−1) · r#φ(−2)h(1) ⊗ φ(−3)h(2),

for r ∈ R, h ∈ H.
The map j : H → R#H, h 7→ 1R#h is an H-comodule algebra map and

(R#H)coH = E(R#H) = R#1H is isomorphic to R as H-module algebras.
Moreover, i : R → (R#H)j , r 7→ p(1) · r ⊗ p(2) is an H-module algebra map,
where (R#H)j is defined as in 4.2.1, and p := pR from Section 3.4.

Bulacu, Panaite and van Oystaeyen [BPvO00] have shown that the smash
product for quasi-Hopf algebras satisfies a universal property as it does for
Hopf algebras. The smash product is defined as an algebra B, together with
an algebra morphism j : H → B and a k-linear map i : A → B such that i is
an H-module algebra map A→ Bj , where Bj is the H-module algebra defined
in 4.2.1. Moreover, B satisfies a universal property, that is for any algebra B′

with an algebra map v : H → B′ and an H-module algebra map u : A → B′j ,
there exists an algebra morphism w : B → B′ such that w ◦ j = v and w ◦ i = u.
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Remark 4.5.2. It can easily be seen that i is an H-comodule algebra map, for
if g, h ∈ H, then

(1R#g)(1R#h) = (φ(−1) · 1R)(φ(−2)g(1) · 1R)⊗ φ(−3)g(2)h

= (ε(φ(−1))1R)(ε(φ(−2)g(1))1R)⊗ φ(−3)g(2)h

= 1R#gh

and 1R#h(1) ⊗ h(2) = φ(−1) · 1R#φ(−1)h(1) ⊗ φ(−2)h(2).

For all r ∈ R, h ∈ H, we have

E(r#h) = E(r#1H)ε(h)

= (1R#q(1))(φ(−1) · r#φ(−2))(1R#βS(q(2)φ(−3)))ε(h)

= q
(1)
(1)φ

(−1) · r#q(1)
(2)φ

(−2)βS(φ(−3))S(q(2))ε(h)

= q
(1)
(1)p

(1) · r#q(1)
(2)p

(2)S(q(2))ε(h)

= (r#1H)ε(h),

where q := qR and p := pR from Section 3.4 and the last step holds by (3.19).
The H-module algebra structure of R#1 = (R#H)coH is exactly the one of

R. In fact,

(r#1H) ∗ (r′#1H) = E((φ(−1) · r)(φ(−2) · r′)#φ(−3))

= E(rr′#1H)

= rr′#1H
and h I (r#1H) = E((1R#h)(r#1H)

= E((φ(−1) · 1R)(φ(−2)h(1) · r)#φ(−3)h(2))

= E(h(1) · r#1H)ε(h(2))

= h · r#1H ,

for all r, r′ ∈ R, h ∈ H.

If R = AcoH for an H-comodule algebra A with H-comodule algebra map γ :
H → A, then the smash product structure is exactly the structure on AcoH⊗H
as defined in 4.4.1. Altogether, an H-comodule algebra A is isomorphic to a
smash product if and only if there exists an H-comodule algebra map γ : H →
A.

For an object V ∈ R(HM)R̃ one can therefore define an (R#H, R̃#H)-
bimodule structure on V ⊗H as in Definition 4.4.3, such that V ⊗H becomes
an object in R#HMH

R̃#H
.
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Lemma and Definition 4.5.3. Let R, R̃ be left H-module algebras and
let V ∈ R(HM)R̃. We denote by V #H the vector space V ⊗ H with an
(R#H, R̃#H)-bimodule structure defined by

(r#h) · (v#g) := (φ(−1) · r) • (φ(−2)h(1) · v)#φ(−3)h(2)g, (4.15)

(v#g) · (r̃#h) := (φ(−1) · v) • (φ(−2)g(1) · v)#φ(−3)g(2)h, (4.16)

for v ∈ V , r ∈ R, r̃ ∈ R̃, and g, h ∈ H. Moreover, V#H ∈ R#HMH
R̃#H

with a
H-costructure defined by

δV#H(v#h) = φ(−1)v#φ(−2)h(1) ⊗ φ(−3)h(2),

for v ∈ V and h ∈ H.

Remark 4.5.4. With this definition the following holds for V ∈ R(HM)R̃:

(V#H)coH = V#1H ∼= V.

In fact, E(v#h) = (v#1H)ε(h) as above. The ((R#H)coH , (R̃#H)coH)-bi-
module structure of (V#H)coH in HM is exactly the (R,R′)-bimodule structure
of V , which can be proven analogously to the Remark 4.5.2.

Altogether, this leads to the structure theorem for smash products:

Corollary 4.5.5. Let R, R̃ be left H-module algebras. Applying Theorem 4.4.4
to the H-comodule algebras R#H and R̃#H with the H-comodule map i, in-
duces

R(HM)R̃ ≈ R#HMH
R̃#H

V 7→ V#H

f : V →W 7→ f ⊗ id : V#H →W#H

E(M)←[ M

g|E(M) : E(M)→ E(N)←[ g : M → N.

Remark 4.5.6. If R or R̃ are assumed to be trivial, the corollary implies

R(HM) ≈ R#HMH
H

and

(HM)R ≈ HMH
R#H .

4.6 H-Ideals and H-Costable Ideals

Definition. Let (A, ρ) be an H-comodule algebra. An ideal I ⊂ A is called
H-costable if ρ(I) ⊂ I ⊗H. A is called H-simple if A is nonzero and does
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not contain a nonzero, proper H-costable ideal.

Let R be an H-module algebra. We will call a subobject of R in R(HM)R
an H-ideal of R, and subobjects of R in R(HM) respectively (HM)R left
respectively right H-ideals of R. R will be called H-simple, if R is nonzero
and it is a simple object in R(HM)R.

Proposition 4.6.1. Let R be an H-module algebra. The H-ideals of R corre-
spond to the H-costable ideals of R#H as follows.

{H-ideals of R}
Φ−−→←−
Ψ
{H-costable ideals of R#H}

I 7−→ I#H

JcoH ←− [ J

are well-defined mutually inverse bijections. In particular R is H-simple if and
only if R#H is H-simple.

Proof. We identify R with (R#H)coH = R#1H (see Section 4.4). The claim
follows by 4.5.5.

In Chapter 6 we will apply this result to exact module categories over quasi-
Hopf algebras and obtain that these are exactly the modules over H-simple H-
comodule algebras. Moreover, we will be able to deduce that for a semisimple
quasi-Hopf algebra H and an H-simple H-module algebra R, also the smash
product R#H is semisimple.

4.7 Dual Quasi-Hopf Algebras and Quasi-Smash

Products

The dual H∗ of a quasi-Hopf algebra together with the convolution product
is not an associative algebra, but it is an algebra in the monoidal category
HMH of (H,H)-bimodules, where the bimodule structure of H∗ is given as
usual by (h ⇀ ϕ ↼ h′)(g) = ϕ(h′gh) for all g, h, h′ ∈ H and ϕ ∈ H∗ [HN99b].
Furthermore, it was mentioned in Remark 3.1.2 that H∗ is a dual quasi-Hopf
algebra as defined in [BN00, Definition 1.4]. In this section we will introduce the
smash product for dual quasi-Hopf algebras as defined by Bulacu and Caenepeel
[BC03b]. We will see that relative quasi-Hopf bimodules correspond to modules
over the smash product in the category of left H-modules. In Chapter 5 this
will be used to produce finitely generated subobjects of a relative quasi-Hopf
bimodule in HMH

A and to generalize a freeness result to non-finitely generated
objects in HMH

A .
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Remark 4.7.1. Let H be a finite dimensional quasi-Hopf algebra and B an H-
module algebra. Then the objects in (HM)B are exactly the right (H∗, B)-Hopf
modules defined in [BN00, Definition 2.4].

Lemma and Definition 4.7.2. [BC03b, Proposition 2.2] Let A be a right
H-comodule algebra. We define the quasi-smash product A#H∗ as A⊗H∗

as a k-space and with a multiplication given by

(a#ϕ)(b#ψ) = ab(0)φ
(−1)
ρ #(ϕ ↼ b(1)φ

(−2)
ρ ) ∗ (ψ ↼ φ(−3)

ρ ),

for all a, b ∈ A, ϕ,ψ ∈ H∗, where a#ϕ stands for a⊗ ϕ. Then A#H∗ is a left
H-module algebra, with unit 1A ⊗ ε and the H-action given by

h(a#ϕ) = a#(h ⇀ ϕ),

for all h ∈ H, a ∈ A and ϕ ∈ H∗. Moreover, the map

i : A→ A#H∗, a 7→ a#ε

is injective and multiplicative.

Proposition 4.7.3. [BC03b, Theorem 3.5] Let H be a finite dimensional quasi-
Hopf algebra and A a right H-comodule algebra. Then HMH

A
G→ (HM)A#H∗

is an equivalence of categories, where G is the identity on the objects and mor-
phisms. Furthermore, the A-module structures of M ∈ HMH

A and G(M) ∈
(HM)A#H∗ are the same, where G(M) is a right A-module via the map i.

Proof. Bulacu and Caenepeel have shown in [BC03b, Theorem 3.5] that G(M)
= M ∈ (HM)A#H∗ if M ∈ HMH

A and that G is an equivalence. The left
H-module structure � and the right A#H∗-action ≺ of M are given by

h � m := S2(h)m,

m ≺ (a#ϕ) := ϕ(S−1(S(U (1))F (2)
S m(1)a(1)p

(2)
ρ ))S(U (2))F (1)

S m(0)a(0)p
(1)
ρ ,

for all h ∈ H, ϕ ∈ H∗, a ∈ A, and m ∈ M . Here, FS is defined as in (3.8) and
U (1) ⊗ U (2) := F

(−1)
S S(q(2)

R )⊗ F (−1)
S S(q(1)

R ) omitting the summation symbol.
The claim that the A-module structures are the same follows easily from

the unit constraints (3.14) and (3.10) of M and A, the definitions of the coas-
sociator, and the fact that FS is a twist.





Chapter 5

Freeness and Projectivity over

Quasi-Hopf Comodule

Algebras

In 2004 Skryabin succeeded in generalizing the Hopf algebra Freeness Theorem
by Nichols and Zöller [NZ89] to coideal subalgebras and thereby gave an entirely
new proof for the Nichols-Zöller Theorem. Skryabin [Skr07] proved that for a
weakly finite Hopf algebra H and a semilocal H-simple H-comodule algebra
A, all relative Hopf modules in MH

A are projective A-modules, and A is a
Frobenius algebra. Moreover, if K is a right coideal subalgebra of H, then K is
H-simple and all (H,K)-Hopf modules even are free K-modules. In particular,
weakly finite Hopf algebras are free over their finite dimensional right coideal
subalgebras. In this chapter we generalize Skryabin’s freeness theorem to quasi-
Hopf algebras as introduced by Drinfeld [Dri90]. This result includes the quasi-
Hopf algebra freeness theorem by Schauenburg [Sch04].

More precisely, we prove that if H is a finite dimensional quasi-Hopf algebra
and K is a right coideal subalgebra of H, then every object in HMH

K and KMH
H

is a free K-module and K is a Frobenius algebra. This also holds for finite di-
mensional objects in BMH

K and KMH
B , where B is an arbitrary H-comodule

algebra. We can also conclude that relative quasi-Hopf bimodules over H-simple
H-comodule algebras are projective. The fact that H-simple H-comodule al-
gebras are quasi-Frobenius can not be shown directly as in Skryabin’s case.
However we will obtain this by results about module categories over quasi-Hopf
algebras in the next chapter.

In this chapter it is not necessary to assume that k is algebraically closed.
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5.1 Freeness over Right Coideal Subalgebras

In the following let H be a quasi-Hopf algebra.

Lemma 5.1.1. Let (A, ρ) and (B, ρ′) be right H-comodule algebras and let
M ∈ BMH

A be finitely generated as a right A-module. Let I be an ideal of A
which does not contain a nonzero H-costable ideal of A. Assume that the ring
A/I ⊗ H ⊗ Hop is weakly finite (see Appendix A.5). Moreover, assume that
there exists a generating system m1, . . . ,mn for M in MA such that its image
m1, . . . ,mn ∈ M/MI is an A/I-basis for M/MI. Then m1, . . . ,mn is an
A-basis for M .

Proof. We will show the following:

(a) J := ρ−1(I ⊗H) is an H-costable ideal of A contained in I, hence J = 0.

(b) The images of δH⊗M (1 ⊗ m1), . . . , δH⊗M (1 ⊗ mn) form a basis of
(. H ⊗M.⊗ . H. )/(. H ⊗M.⊗ . H. )(I ⊗H) in HM(A⊗H)/(I⊗H).

Assume that (a) and (b) are satisfied and let a1, . . . , an ∈ A with
∑

imiai = 0.
Then ∑

i

δH⊗M (1⊗mi)ρ(ai) =
∑
i

δH⊗M (1⊗miai)

= δH⊗M (1⊗ (
∑
i

miai))

= 0,

and (b) implies that ρ(ai) ⊂ I ⊗H for all i. By (a) it follows that ai ∈ J = 0.
Hence, m1, . . . ,mn form a basis of M in MA.

Proof of (a): J is an ideal of A since ρ is an algebra morphism. It is contained
in I since a = a(0)ε(a(1)) ∈ I for all a ∈ J . Finally, for all a ∈ J we have

(ρ⊗ id)(ρ(a)) = φ−1
ρ (id⊗∆)(ρ(a))φρ ∈ I ⊗H ⊗H,

since φρ ∈ A⊗H ⊗H. Hence ρ(J) ⊂ J ⊗H.

Proof of (b): By Lemma 3.4.2 we have

pR((1⊗m)⊗ 1) = δH⊗M ((1⊗m)(0))pρ(1⊗ S((1⊗m)(1)))

for every m ∈ M , since . H ⊗M.∈ HMH
A by Remark 3.5.2 (ii). Moreover,

pR((1 ⊗m) ⊗ 1) = p
(1)
R ⊗m ⊗ p

(2)
R = ψ−1(1 ⊗m ⊗ 1), where ψ is defined as in

Remark 3.5.2 (iii).Therefore

1⊗m⊗ 1 = ψ(δH⊗M ((1⊗m)(0))) pρ(1⊗ S((1⊗m)(1))),
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since ψ is right A⊗H-linear.
Obviously, 1 ⊗m1, . . . , 1 ⊗mn is a generating system of . H ⊗M., hence

for every x ∈ H ⊗ M there exist ai,j ∈ A, 1 ≤ i ≤ n, j ∈ S such that
x =

∑
i,j xj(1⊗mi)ai,j , where (xj)j∈S is a k-basis of H. Hence,

ψ(δH⊗M (x)) =
∑
i,j

xj ψ(δH⊗M (1⊗mi)) ρ(ai,j).

It follows that ψ(δH⊗M (1 ⊗ m1)), . . . , ψ(δH⊗M (1 ⊗ mn)) is a generating
system of . H⊗M.⊗H.∈ HMA⊗H as so is 1⊗m1⊗1, . . . , 1⊗mn⊗1. Since ψ
is an (H,A⊗H)-bimodule isomorphism, also δH⊗M (1⊗m1), . . . , δH⊗M (1⊗mn)
is a generating system of (. H ⊗M. )⊗ . H..

We have natural isomorphisms (A ⊗ H)/(I ⊗ H) ∼= A/I ⊗ H and
(H ⊗ M.⊗H. )/(H ⊗ M.⊗H. )(I ⊗ H) = (H ⊗ M.⊗H. )/(H ⊗ MI.⊗H. )
∼= H ⊗M/MI.⊗H., where the latter is right A/I ⊗H-linear. Hence,

(. H ⊗M.⊗ . H. )/(H ⊗M.⊗H. )(I ⊗H) ∼= . H ⊗M/MI.⊗H.

in HMA/I⊗H by Remark 3.5.2 (iii).
Clearly, 1 ⊗ m1 ⊗ 1, . . . , 1 ⊗ mn ⊗ 1 is a basis for . H ⊗ (M/MI).⊗H. in

HMA/I⊗H and the claim follows since A/I ⊗H ⊗Hop is assumed to be weakly
finite.

In the proof of the analogous result for Hopf algebras [Skr07, Lemma 3.1, 3.2
and 3.3], Skryabin could find a suitable basis for the one-sided A ⊗H-module
M ⊗H. Here, the more involved antipode property makes it necessary to work
with the two sided (H,A⊗H)-module H ⊗M ⊗H.

Definition. [Skr07] Let R be a semilocal ring (see Appendix A.5). For each
Q ∈ MaxR put

rQ(M) :=
length(M/MQ)
length(R/Q)

.

Note that rQ(M) is well-defined since R/Q is a simple Artinian ring.

Lemma 5.1.2. [Skr07, Lemma 2.4 and Proof of Lemma 3.4] Let R be a semilo-
cal ring and let M be a finitely generated right R-module.

(1) Assume there exists a maximal ideal P ∈ MaxR with rP (M) = n ∈ Z and
rP (M) ≥ rQ(M) for all Q ∈ MaxR. Then there exists a generating system
m1, . . . ,mn for M such that its image is a basis for M/MP in MR/P .

(2) Assume that a finite direct sum of copies of M is a free R-module. Then
M is a free R-module of rank n if and only if M/MQ is a free R/Q-module of
rank n for a maximal ideal Q ∈ MaxR.

Lemma 5.1.3. Let (A, ρ) and (B, ρ′) be right H-comodule algebras and assume
that A is semilocal. Let M ∈ BMH

A be finitely generated as a right A-module.
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Assume that there exists a maximal ideal P ⊂ A, which does not contain a
nonzero H-costable ideal of A, and satisfies rP (M) ≥ rQ(M) for all Q ∈ MaxA.
Assume furthermore that A/P⊗H⊗Hop is weakly finite. Then a suitable direct
sum M t of t ∈ N copies of M is a free right A-module. Moreover, M is a free
right A-module whenever rP (M) ∈ Z.

Proof. First, assume that rP (M) = n ∈ Z. Then, by the foregoing Lemma 5.1.2,
there exists a generating system m1, . . . ,mn of M , such that P and m1, . . . ,mn

satisfy the requirements of Lemma 5.1.1 and therefore m1, . . . ,mn is an A-basis
for M . If rP (M) /∈ Z then rP (M t) = t rP (M) ∈ Z for a suitable t ∈ N and the
claim follows by the first part of the proof.

Proposition 5.1.4. Let A be a semilocal right H-comodule algebra which con-
tains a minimal nonzero H-costable ideal that is finitely generated as a right
ideal. Moreover assume that A⊗H ⊗Hop is weakly finite. Then the following
properties of A are equivalent:

(i) A is H-simple,

(ii) none of the maximal ideals of A contains a nonzero H-costable ideal,

(iii) there exists an ideal P ∈ MaxA which contains no nonzero H-costable
ideals.

Proof. (i) ⇒ (ii) and (ii) ⇒ (iii) are trivial.

(ii) ⇒ (i) : Let I be a proper H-costable ideal of A, then there exists an
ideal Q ∈ MaxA with I ⊂ Q and therefore I = 0.

(iii) ⇒ (ii) : Let 0 6= I be a minimal H-costable ideal of A which is finitely
generated as a right A-module. Assume there exists a Q ∈ MaxA which does
contain a nonzero H-costable ideal J of A. Then IJ 6= 0 since P contains
neither I nor J as they are nonzero and H-costable. Hence, IJ = I by the
minimality of I. It follows that IQ = I that is rQ(I) = 0

We have I ∈ AMH
A and by assumption I is a finitely generated right A-

module. Therefore, we can apply Lemma 5.1.3 and get that It is a free right
A-module for a suitable t ∈ N.

Since I is nonzero, the rank of this free A-modules is also nonzero. This is
a contradiction to IQ = I, since AQ = Q ( A. Hence, none of the maximal
ideal of A contains a nonzero H-costable ideal of A.

Theorem 5.1.5. Let H be a finite dimensional quasi-Hopf algebra, B a right
H-comodule algebra, and K a right coideal subalgebra of H. Then

(i) K is H-simple;
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(ii) every finite dimensional object in BMH
K and every finite dimensional ob-

ject in KMH
B , is a free as a K-module. In particular, H is free as a right

and left K-module;

(iii) K is a Frobenius algebra.

Proof. (i) Let K+ := ker ε|K , then clearly K+ ∈ MaxK. Assume that K+

contains a nonzero H-costable ideal I of K, then HIH ∈ HMH
H where ∆ is the

quasi-coaction. Recall that H is a simple object in HMH
H . This is the case since

HM∼= HMH
H .M 7→ .M⊗ . H ·. is a category equivalence (see Theorem 4.1.2).

Therefore HIH = H, since I 6= 0 by assumption. But I ⊂ K+ and therefore
ε(HIH) = 0, which leads to a contradiction. Thus, K+ contains no nonzero
H-costable ideals of K and Proposition 5.1.4 implies that K is H-simple.
(ii) Let M ∈ BMH

K be finitely generated as a right K-module. By (i) one can
find a maximal ideal P ∈ MaxK which satisfies the requirements of Lemma
5.1.3. Hence, M t ∼= Kn for some t, n ∈ N, and therefore (M/MK+)t ∼=
(K/K+)n ∼= kn. Thus, n = t · dim(M/MK+) and the Krull-Schmidt-Theorem
implies M ∼= Kdim(M/MK+).
Now, let M ∈ KMH

B be finitely generated as a left K-module. Recall that
(Hop, φ−1

H ) is a quasi-Hopf algebra and (Bop, φ−1
ρ ) and (Kop, φ−1

K ) are right
Hop-comodule algebras and therefore Kop is a right coideal subalgebra of Hop.
Thus, (M, δM ) ∈ KMH

B if and only if (M, δM ) ∈ BopMHop

Kop and therefore M is
free as a right Kop-module.

By choosing B = H, we get that H itself is a free right and left K-module.

(iii) Finite dimensional quasi-Hopf algebras are Frobenius algebras by
[HN99b, Theorem 4.3] which implies that H ∼= H∗ as right K-modules. By
(ii), H is a free right and left K-module, that is H ∼= Kn as right and left
K-modules for some n ∈ N. Hence, Kn ∼= (Kn)∗ ∼= (K∗)n as right K-modules.
The Krull-Schmidt-Theorem implies that K ∼= K∗ as right K-modules.

Remarks 5.1.6. (1) By [Skr07, Proposition 2.2 (f)] A⊗H⊗Hop is weakly finite
whenever H is finite dimensional and A is weakly finite. In the case when A is
finite dimensional it would suffice that H ⊗Hop is weakly finite, however it is
not known which requirements are necessary for this to hold.
(2) Hence, A and H satisfy the requirements of Proposition 5.1.4 whenever H
is finite dimensional and A is semilocal, Noetherian and satisfies descending
chain condition on H-costable ideals. The requirements are also satisfied if A is
finite dimensional and H⊗Hop is weakly finite. Part (i) and (ii) of the theorem
would therefore also hold under this condition (for A = K). But in the case
when H is not finite dimensional, we would no longer have that H itself is a free
K-module since it is not finitely generated. The generalization of the theorem



54 5. Freeness and Projectivity over Comodule Algebras

to non-finitely generated quasi-Hopf bimodules, which is presented in Section
5.3, only works for finite dimensional quasi-Hopf algebras.
(3) Note also that we need the fact that H is a Frobenius algebra to show that
K is Frobenius. In the Hopf algebra case, Skryabin can show directly that
coideal subalgebras are Frobenius algebras. For that, he uses the fact that if M
is a Hopf module in AMH then its dual M∗ is an object ofMH

A [Skr07, Lemma
4.1 and Theorem 4.2] and we do not have an analogous result for quasi-Hopf
bimodules.
(4) The theorem induces Schauenburg’s quasi-Hopf algebra Freeness Theorem
[Sch04, Theorem 3.1 and Theorem 3.5], which is a generalization of the Nichols-
Zöller-Theorem for quasi-Hopf algebras. He has shown that whenever K is a
quasi-Hopf subalgebra of a finite dimensional quasi-Hopf algebra H then all
quasi-Hopf bimodules M ∈ KMH

K , which are finitely generated as a K-module,
are free K-modules. Additionally, Schauenburg has shown that if K ⊂ H is a
subalgebra which admits a quasi-Hopf algebra structure, then H is a free right
K-module. The subalgebras of H that admit quasi-Hopf algebra structures are
also right coideal subalgebras.

5.2 Projectivity over H-Comodule Algebras

Theorem 5.2.1. Let H be a finite dimensional quasi-Hopf algebra and let
(A, ρ, φρ) and (B, ρ′, φρ′) be right H-comodule algebras. If A is semilocal and
H-simple, then for every object M ∈ BMH

A , which is finitely generated as a
right A-module, there exists an integer t ∈ Z such that M (t) is a free A-module.
In particular, M is a projective A-module.

Proof. This follows from 5.1.3, where P ∈ MaxA is chosen to be with maximal
rank, that is rP (M) ≥ rQ(M) for all Q ∈ MaxA.

For Hopf algebras, Skryabin also shows that H-simple H-comodule algebras
are Frobenius [Skr07, Theorem 3.5]. We have mentioned in the last section
that in order to prove this, he uses the fact that if M is a Hopf module in
AMH then its dual M∗ is an object of MH

A . This does not work for quasi-
Hopf algebras. However, with the help of results about module categories over
quasi-Hopf algebras, we will be able to prove in the next chapter that H-simple
H-comodule algebras are quasi-Frobenius.

Corollary 5.2.2. If H is a finite dimensional quasi-Hopf algebra, A is a finite
dimensional H-simple H-comodule algebra, and M is a finite dimensional right
A-module, then M· ⊗ H· with the diagonal A-module structure, is a projective
A-module. In fact, M· ⊗ ·H· is an object in HMH

A by 3.3.2 and therefore the
theorem applies.
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The opcop version of the corollary implies that the category of left modules
over an H-simple left H-comodule algebra is an exact module category over H,
which will be discussed in the next chapter. We will see that actually every
exact module category is of this form.

As for Hopf algebras [Skr07, Proposition 5.4], one can deduce a dimension
formula for H-simple H-comodule algebras:

Proposition 5.2.3. Let H be a finite dimensional quasi-Hopf algebra and let A
be a finite dimensional H-simple H-comodule algebra. Let V be a simple right
A-module and W a finite dimensional right A-module. Set D = EndA(V ).
Then

dimkD dimk A | dimk V dimkW dimkH.

Proof. Let P ∈ MaxA such that V is isomorphic to the unique simple A/P -
module. Then every A/P -module is a direct sum of copies of V and A/P ∼= V (d)

for d = dimD V . Let M = W ⊗ H, then M/MP ∼= V (m) for some integer m
and therefore (M/MP )(d) ∼= V (dm) ∼= (A/P )(m), thus it is a free A/P -module
of rank m. Moreover M ∈ HMH

A and Lemma 5.2.1 together with Lemma 5.1.2
(2) implies that Md is a free A-module of rank m. Hence,

dimk Am = d dimkM = dimD V dimkW dimkH

⇒ dimkD dimk Am = dimk V dimkW dimkH.

5.3 Non-Finitely Generated Quasi-Hopf Bimodules

In the Hopf algebra case, the freeness of infinitely generated Hopf modules can
be deduced from the freeness of finitely generated Hopf modules [Skr07, The-
orem 3.5]. This is done by means of the Finiteness Theorem for comodules
[Mon93, 5.1.1], which uses the coassociativity and therefore can not be trans-
fered to quasi-Hopf algebras. However, we can extend the result of Theorem
5.1.5 (ii) in the case B = H to infinitely generated quasi-Hopf bimodules with
the help of the category equivalence HMH

A ≈ (HM)A#H∗ from Proposition
4.7.3, proven by Bulacu and Caenepeel [BC03b, Theorem 3.5].

Corollary 5.3.1. Let H be a finite dimensional quasi-Hopf algebra and K ⊂ H
a right coideal subalgebra. Then every object in both HMH

K and KMH
H is a free

K-module.

Proof. Let M ∈ HMH
K . By Theorem 5.1.5 we only have to consider the case

when M ∈ HMH
K is not finitely generated as a K-module. Let F be the set

of subobjects of M in (HM)K#H∗ . Then F is clearly a set of K-submodules
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of M . We can show that F satisfies the conditions of Lemma 5.3.2 below and
therefore M is a free K-module.

In fact, let N ∈ F and N ( M and let m ∈M\N , then

X := (H � m) ≺ K#H∗

is a finite dimensional (HM)K#H∗-subobject of M . Hence, N ′ := N + X is
an (HM)K#H∗-subobject of M which properly contains N and N ′/N ∼= X ∈
(HM)K#H∗ . By Proposition 4.7.3, N/N ′ is an object of HMH

K which is finitely
generated as a K-module. Hence, N ′/N is a free K-module by Theorem 5.1.5.

If M ∈ KMH
H , then M ∈ HopMHop

Kop as above, and M is a free left K-module
by the first part of the proof.

Lemma 5.3.2. [Skr07, Lemma 2.5] Let R be a semilocal ring and M a right
R-module which is not finitely generated. Assume there exists a set F of R-
submodules of M such that

• 0 ∈ F and the union of every chain of elements of F is in F ,

• for each N ∈ F with N ( M there exists an N ′ ∈ F with N ( N ′ and
N ′/N is a free R-module.

Then M is a free R-module.



Chapter 6

Module Categories over

Quasi-Hopf Algebras

We have seen that for a finite dimensional quasi-Hopf algebra H the category of
finite dimensional left H-modules is a finite tensor category and that any finite
tensor category with integer Frobenius-Perron dimensions is of this form. In
this chapter we will investigate the exact module categories over those tensor
categories.

We will show that a module category over a quasi-Hopf algebra H is exact
and indecomposable if and only if it is the representation category of a finite
dimensional H-simple left H-comodule algebra. This classification of module
categories over quasi-Hopf algebras also provides us with results on smash prod-
ucts and H-comodule algebras. It follows that H-simple H-comodule algebras
are quasi-Frobenius, and if H is semisimple, then they are also semisimple. In
particular, if R is an H-simple H-module algebra and H is semisimple, then
R#H is a semisimple algebra.

In this chapter let H be a finite dimensional quasi-Hopf algebra, and C :=
HMfd the finite tensor category of finite dimensional left H-modules.

6.1 Exact Module Categories over H

Etingof and Ostrik’s classification of exact module categories (Theorem 1.3.3
and Corollary 1.3.5) implies the following for module categories over C.

Lemma 6.1.1. If M is an indecomposable exact module category over C, then
there exists a finite dimensional right H-simple H-module algebra R, such that
M is equivalent to (HMfd)R as module categories over C.

Proof. An H-module algebra is exactly an algebra in the category C. Hence,
there exists an H-module algebra R which is simple in CR = (HMfd)R, such
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thatM≈ (HMfd)R as H-module categories. Moreover, R is finite dimensional,
as it is an object in C = HMfd.

Remark 6.1.2. For X ∈ C, M ∈ CR = (HMfd)R, the R-module structure of
X ⊗M is given by (x⊗m) · r = φ(1)x⊗ (φ(2)m)(φ(3)r), since the associativity
in C is induced by multiplication with φ as described in Chapter 3.

6.2 Indecomposable Exact Module Categories and

H-Simple H-Comodule Algebras

Lemma 6.2.1. For a finite dimensional left H-comodule algebra (A, λ, φλ),
AMfd is a module category over C with the diagonal structure via λ, that is
for X ∈ C and M ∈ AMfd, ·X ⊗ ·M is a left A-module with a(x ⊗ m) =
a(−1)x ⊗ a(0)m. The associativity m is induced by left multiplication with φλ
and the unit isomorphism ` is ε⊗ id.

Proof. The pentagon equation for module categories (1.3) follows from the left-
version of the pentagon equation (3.10) for the coassociator φλ. The triangle
equation (1.4) follows from the unit property (3.12) for φλ. The H-linearity of
m follows from the quasi-coassociativity of H-comodule algebras (3.9).

Proposition 6.2.2. Let (A, λ, φλ) be a finite dimensional H-simple left H-
comodule algebra. Then AMfd is an indecomposable exact module category
over C.

Proof. AMfd is an indecomposable module category by the lemma below, since
A is H-simple. The functor − ⊗M is exact for any finite dimensional left A-
module M . Hence, in order to prove that AMfd is exact, it suffices to show
that ·H ⊗ ·M is a projective left A-module for every M ∈ AMfd. This is the
opcop-version of Corollary 5.2.2.

Lemma 6.2.3. Let (A, λ, φλ) be a finite dimensional left H-comodule algebra,
then AMfd is an indecomposable module category if and only if A is an inde-
composable H-comodule algebra, that is if I and J are H-costable ideals of A
with A = J ⊕ I, then I = 0 or J = 0.

Proof. Analogous to [AM07, Proposition 1.18]

We see that H-simple H-comodule algebras produce examples of indecom-
posable exact module categories and these are in fact all indecomposable exact
module categories over C = HMfd.

Theorem 6.2.4. Let M be a module category over C, then M is an indecom-
posable exact module category if and only if there exists a finite dimensional
H-simple H-comodule algebra A such that M≈ AMfd as module categories.
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Proof. By Lemma 6.1.1 and Proposition 6.2.2, it remains to prove that for an
H-module algebra R, which is simple in (HMfd)R, there exists an H-simple
left H-comodule algebra A with AMfd ≈ (HMfd)R as module categories over
C. We can show that the equivalence holds for A := Rop#Hcop, which works as
in the Hopf algebra case [AM07, Proposition 1.19].

In fact, Rop is a left Hcop-module algebra, which is simple in (HMfd)R ≈
Rop(HcopMfd) and F : (HMfd)R ≈ Rop(HcopMfd) ≈ Rop#HcopMfd as abelian
categories by [BPvO00, Proposition 2.16]. The functor F is the identity on
objects and morphisms, and if M ∈ (HMfd)R then M ∈ Rop#HcopMfd with
(r#h) I m := (hm)r. As Rop#Hcop is a right Hcop-comodule algebra, it
is a left H-comodule algebra with opposite costructure given by λ(r#h) =
φ(1)h(1) ⊗ φ(3)r#φ(2)h(2).

Then, together with the natural isomorphism c which is the identity, F is
furthermore an equivalence of module categories over C. We have to show that
for all X ∈ C, M ∈ (HMfd)R, cX,M : F(X ⊗M)→ X ⊗ F(M) is a morphism
of A-modules. For x ∈ X,m ∈M,h ∈ H, r ∈ R:

cX,M ((r#h) I (x⊗m))

= idX,M ((h(x⊗m)) · r)
= (h(1)x⊗ h(2)m) · r

= φ(1)h(1)x⊗ (φ(2)h(2)m)(φ(3)r) R-module structure of X ⊗M in C

= φ(1)h(1)x⊗ (φ(3)r#φ(2)h(2)) I m

= (r#h)(x⊗m) A-module structure of X ⊗M
= (r#h)cX,M (x⊗m).

Since Rop is a right H-simple left Hcop-module algebra and therefore H-
simple, Proposition 4.6.1 implies that A = Rop#Hcop is an Hcop-simple right
Hcop-comodule algebra, hence an H-simple left H-comodule algebra.

The classification in [AM07] for ordinary Hopf algebras is stronger: An-
druskiewitsch and Mombelli classify indecomposable exact module categories
by H-comodule algebras which are simple in HMA and have trivial coinvari-
ants. A transformation of this stronger classification to quasi-Hopf algebras is
not meaningful, as the coinvariants of an H-comodule algebra are in general
not defined, nor is the category HMA.

6.3 Applications to H-Comodule Algebras and

Smash Products

In the last chapter we discussed that Skryabin’s proof for the fact that H-simple
H-comodule algebras are quasi-Frobenius can not be transfered to the quasi-
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Hopf algebra case (for the definition of quasi-Frobenius rings see Appendix
A.3). However, we obtain this fact by means of the above result about module
categories over quasi-Hopf algebras:

Proposition 6.3.1. Let H be a finite dimensional quasi-Hopf algebra. If A is
a finite dimensional H-simple H-comodule algebra then A is quasi-Frobenius.
If H is moreover a semisimple quasi-Hopf algebra then A is also semisimple.

Proof. By the proposition above, AMfd is an exact module category, and there-
fore a Frobenius category by 1.3.2, and in particular A is quasi-Frobenius.

If H is semisimple then C is a semisimple tensor category. Hence, AMfd is
semisimple by 1.3.1 (2), as it is exact. In particular, A is a semisimple object
in AMfd and therefore a semisimple algebra.

Corollary 6.3.2. If H is a semisimple quasi-Hopf algebra and R a finite di-
mensional H-simple left H-module algebra, then R#H is semisimple.

Proof. R#H is an H-simple right H-module algebra and therefore an Hcop-
simple left Hcop-module algebra. The proposition implies that R#H is semisim-
ple.

For a semisimple Hopf algebra H, the semisimplicity of the smash product
of an H-simple H-module algebra by H can be deduced directly from Theorem
5.2.1 by means of the existence of a normalized integral. In fact, if V is a
left R#H-module, then M ∈ MH∗

R and therefore it is a projective A-module
and thus a projective R#H-module [CF86]. These arguments do not hold for
quasi-Hopf algebras.



Part III

Weak Hopf Algebras





Chapter 7

Weak Hopf Algebras and their

Representations

Weak Hopf algebras as introduced by Böhm, Nill, and Szlachányi [BNS99],
are generalized Hopf algebras, where the comultiplication is no longer unit
preserving and the counit is not multiplicative. However, comultiplication and
counit satisfy certain conditions, such that the category of representations of
a weak Hopf algebra is still monoidal. Moreover, weak Hopf algebras have an
antipode endowing this category with duality.

The category of representations of a (finite dimensional) weak Hopf algebra
is a finite multi-tensor category. On the other hand, every finite tensor category
is equivalent to the representation category of a weak quasi-Hopf algebra [EO04,
Proposition 2.7]; and if the category is semisimple, then it is equivalent to the
representation category of a semisimple weak Hopf algebra with commutative
base [Ost03b, Theorem 4.1].

7.1 Weak Hopf Algebras

Definition. A weak bialgebra is a finite dimensional non-zero unital algebra
H, which is a coalgebra with comultiplication ∆ and counit ε, satisfying the
following properties for f, g, h ∈ H:

∆(gh) = ∆(g)∆(h), (7.1)

1(1) ⊗ 1(2) ⊗ 1(3) = 1(1) ⊗ 1(2)1
′
(1) ⊗ 1′(2) = 1(1) ⊗ 1′(1)1(2) ⊗ 1′(2), (7.2)

and

ε(fgh) = ε(fg(1))ε(g(2)h) = ε(fg(2))ε(g(1)h). (7.3)
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H is called a weak Hopf algebra if there is an antipode S which is a k-linear
map and satisfies

h(1)S(h(2)) = ε(1(1)h)1(2), S(h(1))h(2) = 1(1)ε(h1(2)), (7.4)

S(h(1))h(2)S(h(3)) = S(h). (7.5)

Here and in the following we use a simplified Sweedler notation ∆(h) =: h(1) ⊗
h(2) again, omitting the summation symbols. To differentiate the different sum-
mation indices we write 1 and 1′ etc. for different copies of 1.

Remark 7.1.1. By some authors (e.g. [Nik02]) weak Hopf algebras are not
assumed to be finite dimensional. However, [BNS99] have pointed out, that
it makes sense to restrict the definition to the finite dimensional case, because
then the definition is self-dual, that is H∗ := Homk(H, k) is again a weak Hopf
algebra with the usual dual structure, that is

(ϕ ∗ ψ)(h) = ϕ(h(1))ψ(h(2)),

ϕ(1)(h)ϕ(2)(g) = ϕ(gh),

S(ϕ)(h) = ϕ(S(h)),

for ϕ,ψ ∈ H∗, g, h ∈ H. Moreover (H∗)∗ ∼= H. In particular, properties (7.2)
and (7.3) are dual to each other.

Here, we will also always work with finite dimensional weak Hopf algebras.

Definition. Define εs and εt, the source and target map of a weak Hopf
algebra H, as follows:

εt(h) := h(1)S(h(2)) = ε(1(1)h)1(2), (7.6)

εs(h) := S(h(1))h(2) = 1(1)ε(h1(2)), (7.7)

for all h ∈ H. Their images Ht := εt(H) and Hs := εs(H) are called the bases
or base algebras of H.

Lemma 7.1.2. [NV02, 2.2.2] Let H be a weak Hopf algebra. Then

εt ◦ εt = εt, εs ◦ εs = εs, (7.8)

and Ht and Hs are unital subalgebras of H with

∆(Ht) ∈ H ⊗Ht, ∆(Hs) ∈ Hs ⊗H, (7.9)

∆(1) ∈ Hs ⊗Ht. (7.10)

Moreover, Ht and Hs commute with each other.
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Lemma 7.1.3. [BNS99, 2.9 and 2.10] The antipode of a weak Hopf algebras is,
as in the Hopf algebra case, a unit preserving and counit preserving anti-algebra
and anti-coalgebra morphism; and it is bijective. Furthermore it satisfies:

εt ◦ S = εt ◦ εs = S ◦ εs and εs ◦ S = εs ◦ εt = S ◦ εt
(7.11)

analogously εt ◦ S−1 = S−1 ◦ εs and εs ◦ S−1 = S−1 ◦ εt.

The restrictions of S to Ht and Hs induce bijections:

S|Ht : Ht → Hs and S|Hs : Hs → Ht.

Lemma 7.1.4. [BNS99, Section 3.1] Let H be a weak Hopf algebra.
Hop is a weak Hopf algebra with antipode S−1, target map S−1 ◦ εs and source
map S−1 ◦ εt, (Hop)t = Ht, (Hop)s = Hs;
Hcop is a weak Hopf algebra with antipode S−1, target map S−1 ◦ εt and source
map S−1 ◦ εs, (Hcop)t = Hs, (Hcop)s = Ht;
Hopcop is a weak Hopf algebra with antipode S, target map εs and source map
εt, (Hopcop)t = Hs, (Hopcop)s = Ht.

In the following lemma, properties of weak Hopf algebras are gathered, that
will be used frequently in the following chapters. Their proofs are straight-
forward or can be found in [BNS99, (2.2a,b), (2.5a,b), (2.13a,b), (2.23a,b),
(2.24a,b), (2.30a-d), and Proposition 2.11] and [NV02, Proposition 2.2.1].

Lemma 7.1.5. Let (H,∆, ε, S) be a weak Hopf algebra, g, h ∈ H, x ∈ Hs,
y ∈ Ht.

h ∈ Ht ⇔ ∆(h) = 1(1)h⊗ 1(2), h ∈ Hs ⇔ ∆(h) = 1(1) ⊗ h1(2), (7.12)

εt(h) = ε(S(h)1(1))1(2), εs(h) = 1(1)ε(1(2)S(h)), (7.13)

εt(h) = S(1(1))ε(1(2)h), εs(h) = ε(h1(1))S(1(2)), (7.14)

ε(g εt(h)) = ε(gh), ε(εs(g)h) = ε(gh), (7.15)

εt(g εt(h)) = εt(gh), εs(εs(g)h) = εs(gh), (7.16)

εt(εt(g)h) = εt(g)εt(h), εs(gεs(h)) = εs(g)εs(h), (7.17)

gεt(h) = ε(g(1)h)g(2), εs(g)h = h(1)ε(gh(2)), (7.18)

εt(g)h = ε(εt(g)h(1))h(2), gεs(h) = g(1)ε(g(2)εs(h)), (7.19)

h(1) ⊗ εt(h(2)) = 1(1)h⊗ 1(2), εs(h(1))⊗ h(2) = 1(1) ⊗ h1(2), (7.20)

εt(h(1))⊗ h(2) = S(1(1))⊗ 1(2)h, h(1) ⊗ εs(h(2)) = h1(1) ⊗ S(1(2)), (7.21)

h(1)x⊗ h(2) = h(1) ⊗ h(2)S(x), h(1) ⊗ yh(2) = S(y)h(1) ⊗ h(2), (7.22)

1(1) ⊗ εt(h1(2)) = εs(1(1)h)⊗ 1(2), (7.23)

1(1) ⊗ 1′(1) ⊗ 1(2)1
′
(2) = 1(1) ⊗ εs(1(2))⊗ 1(3), (7.24)

1(1)1
′
(1) ⊗ 1(2) ⊗ 1′(2) = 1(1) ⊗ εt(1(2))⊗ 1(3). (7.25)
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Corollary 7.1.6. Hs and Ht are separable algebras, and in particular semisim-
ple, with separability elements 1(1) ⊗ S(1(2)) and S(1(1))⊗ 1(2), respectively.

Proof. Equations (7.22) imply in particular that for all x ∈ Hs and for all
y ∈ Ht

(x⊗ 1)(1(1) ⊗ S(1(2))) = (1(1) ⊗ S(1(2)))(1⊗ x),

(y ⊗ 1)(S(1(1))⊗ 1(2)) = (S(1(1))⊗ 1(2))(1⊗ y),

and S(1(1))1(2) = 1(1)S(1(2)) = 1.

Example 7.1.7. The easiest example of a weak Hopf algebra is the groupoid
algebra: Let G be a groupoid, that is a small category, in which every mor-
phism is invertible, and let X be the set of objects in G. The groupoid algebra
kG is generated by morphisms g ∈ G, where the product of two morphisms is
equal to their composition whenever it is defined, and it is zero otherwise. Co-
multiplication, counit and antipode are defined as for group algebra as follows:
∆(g) = g ⊗ g, ε(g) = 1, and S(g) = g−1. Then

εt(g) = gg−1 = idtarget(g) and εs(g) = g−1g = idsource(g),

which explains the name target and source map. Hence,

(kG)t = (kG)s = span{idx |x ∈ X}.

7.2 Representations of Weak Hopf Algebras and

their Reconstruction

Proposition 7.2.1. [NTV03, EGNO10] Let H be a weak Hopf algebra. The
category C of finite dimensional left H-modules is a finite multi-tensor category.
The tensor product is given by

V <W := 1(1)V ⊗ 1(2)W

for V,W ∈ C. The associativity is the identity. The unit object is Ht, with an
H-action given by

h ⇀ x := εt(hx)
(7.12)

= h(1)xS(h(2)), (7.26)
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together with natural isomorphisms given for V ∈ C by

lV : Ht < V → V l−1
V : V → Ht < V

1(1) · x⊗ 1(2)v 7→ xv v 7→ S(1(1))⊗ 1(2)v

and

rV : V <Ht → V r−1
V : V → V <Ht

1(1)v ⊗ 1(2)x 7→ S−1(x)v v 7→ 1(1)v ⊗ 1(2).

The right dual object of an object V ∈ C is the dual space V ∗ = Homk(V, k)
with an H-action given by (h · φ)(g) = φ(S(h)v). Evaluation and coevaluation
are given by

evV : V ∗ < V → Ht dbV : Ht → V < V ∗∑
i

φi ⊗ vi 7→
∑
i

φi(1(1)vi)1(2) x 7→
∑
j

1(1)xvj ⊗ 1(2) · φj ,

where {vj , φj}j are dual bases of V and V ∗.

Remarks 7.2.2. (1) It was shown in [NTV03] that C is a monoidal category with
duality.
(2) One can easily check, that the tensor product defined above is exact in
both variables. However, this also follows directly from (1), see for example
[EGNO10, 1.13].
(3) It can again be deduced from (1) and [EGNO10, 1.15] that the unit object
is semisimple and more precisely Ht

∼=
⊕

i Ui as H-modules, where the Ui′s are
pairwise non-isomorphic simple left H-modules. Vecsernyés [Vec03, Theorem
2.4] has shown directly that Ht and Hs are semisimple left respectively right
H-modules.
(4) Böhm, Nill, and Szlachányi [BNS99] have proven that weak Hopf algebras
are quasi-Frobenius by means of their structure theorem for weak Hopf mod-
ules. However, this can also be deduced directly from the fact that C is a finite
tensor category [EO04, Proposition 2.3].

If H is a weak Hopf algebra and M ∈ HM, then M is a left Ht- and
Hs-module. Since Ht and Hs commute and the restriction of S gives an iso-
morphism Ht

op ∼= Hs, M is an Ht-bimodule. This induces a tensor functor

baseH : HMfd → HtMHt .

On the other hand, if C is a multi-tensor category and F : C → AMfd
A a

tensor functor into the category of finite dimensional bimodules over a separable
algebra A, then one can reconstruct a weak Hopf algebra with base A, and C is
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equivalent as a tensor category to the category of representations of this weak
Hopf algebra.

As F = forgetF : C → vectk is an exact and faithful functor, there is an
equivalence of categories C ≈ HM for H = End(F ) the algebra of natural
transformations F → F [JS91]. Szlachányi has shown in [Szl00] that H has
a bialgebroid structure over A and C ≈ HM as monoidal categories and that
therefore H is a weak Hopf algebra with base A in the following way:

Theorem 7.2.3. [Szl00, JS91] Let C be a finite tensor category and A a finite
dimensional separable algebra with separability element

∑
i xi ⊗ yi ∈ A ⊗ Aop.

Let (F, ξ, ξ0) : C → AMfd
A be a tensor functor. Denote by F the functor

forgetF : C → vectk, then H := Endk(F ) = Nat(F , F ), the algebra of natural
transformations F → F , is a weak Hopf algebra with base A. The comultiplica-
tion is given by

∆ : H ∆→ H ⊗A H
Ξ→ H ⊗k H with

∆(η) = ξ ◦ η ◦ ξ−1

Ξ(η ⊗ η′) =
∑
i

ηxi ⊗ yiη′ :=
∑
i

s(xi) ◦ η ⊗ t(yi) ◦ η′,

where s : Aop → H and t : A → H are the algebra morphisms induced by the
A-bimodule structures of each F (X), X ∈ C. The counit is given by

ε : H → k, η 7→ trA(ξ0 ◦ η1 ◦ ξ−1
0 )

and the antipode is given by

S : H → H, η 7→ (ηX∗)∗.

Moreover, there is an equivalence of tensor categories

IF : C → HMfd, X 7→ (F (X), µX),

with µX : H ⊗F (X)→ F (X), η⊗x 7→ ηX(x) , such that the following diagram
commutes:

C
IF //

F &&NNNNNNNNNNNNN HMfd .

baseHvvmmmmmmmmmmmmmm

AMfd
A



Chapter 8

Weak Hopf Modules

In the following, let H be a (finite dimensional) weak Hopf algebra.

In this chapter, the notions of H-comodule algebras and weak Hopf modules
over them are introduced, which were defined by Böhm [Böh00]. The dual con-
cepts for H-comodule algebra and weak Hopf modules are H-module algebras
[Nik00] and the category (HM)R of modules over them in the category of H-
modules. A structure theorem for weak Doi-Hopf modules by Zhang and Zhu
[ZZ04] will be presented, which is a generalization of the structure theorem for
weak Hopf modules in [BNS99]. Properties of the weak smash product R#H
[Nik00] will be reviewed, from which a bijective correspondence of the H-stable
ideals of the H-module algebra R and the H-costable ideals of the H-comodule
algebra R#H can be deduced.

The structure theorem for weak Hopf modules implies that any object in
MH

H is a projective H-module. I expect that this is also true for H-simple
H-comodule algebras. For the case when H is free over its base algebra, this
will be proven in the next chapter .

Moreover, it will be shown that the trace ideals of weak Hopf modules are
H-costable ideals of the H-comodule algebra A and in the case when A is H-
simple and quasi-Frobenius one can deduce that nonzero weak Hopf modules
are generators for MA.

Finally, a Morita equivalence of weak Hopf module categories will be for-
mulated. It will be shown that for a weak Hopf module M ∈ MH

A , the endo-
morphism ring B := EndA(M) is an H-comodule algebra and the coinvariants
of B coincide with the H-linear morphisms, and in particular BcoH is trivial,
whenever M is simple in MH

A . Moreover, if M ∈ MH
A is a progenerator for

MA then a category equivalence MA ≈ MB induces a category equivalence
MH

A ≈MH
B .
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8.1 H-Comodule Algebras and Weak Relative Hopf

Modules

Definition. [Böh00] An algebra A, which is also a right H-comodule with
costructure ρ, is called a right H-comodule algebra if

ρ(ab) = ρ(a)ρ(b), (8.1)

ρ(1A) ∈ A⊗Ht. (8.2)

Lemma 8.1.1. Let A be an H-comodule algebra and a ∈ A. Then

1A(0) ⊗ 1(1)1
A
(1) ⊗ 1(2) = 1A(0) ⊗ 1A(1)1(1) ⊗ 1(2) = 1A(0) ⊗ 1A(1) ⊗ 1A(2); (8.3)

a(0) ⊗ εt(a(1)) = 1A(0)a⊗ 1A(1); (8.4)

1A(0)1
′A
(0) ⊗ 1A(1) ⊗ 1

′A
(1) = 1A(0) ⊗ εt(1

A
(1))⊗ 1A(2). (8.5)

Proof. (8.3): The first equation holds by (8.2) and since ∆(1) ∈ Hs ⊗Ht and
Ht and Hs commute. Hence

1A(0) ⊗ 1A(1) ⊗ 1A(2) = 1A(0) ⊗∆(1A(1)) = 1A(0) ⊗ 1(1)1
A
(1) ⊗ 1(2),

by (8.2) and (7.12).

(8.4): a(0) ⊗ εt(a(1)) = a(0) ⊗ ε(1(1)a(1))1(2) = 1A(0)a(0) ⊗ ε(1(1)1A(1)a(1))1(2)

= 1A(0)a(0)ε(1A(1)a(1))⊗ 1A(2) = 1A(0)a⊗ 1A(1),
by (8.1) and (8.3).

(8.5): follows from (8.4).

Remark 8.1.2. In the same way one may define a left H-comodule algebra
A to be an algebra which is a left H-comodule with costructure λ and satisfies:

λ(ab) = λ(a)λ(b), (8.6)

λ(1A) ∈ Hs ⊗A. (8.7)

Then the following equations are satisfied:

1(1) ⊗ 1(2)1
A
(−1) ⊗ 1A(0) = 1(1) ⊗ 1A(−1)1(2) ⊗ 1A(0) = 1A(−2) ⊗ 1A(−1) ⊗ 1A(0), (8.8)

εs(a(−1))⊗ a(0) = 1A(−1) ⊗ a1A(0), (8.9)

1
′A
(−1) ⊗ 1A(−1) ⊗ 1A(0)1

′A
(0) = 1A(−2) ⊗ εs(1

A
(−1))⊗ 1A(0), (8.10)

for a ∈ A.

Let now (A, ρ) be a right H-comodule algebra.

Definition. [Böh00] A weak (H, A)-Hopf module is a right H-comodule
M with costructure δ, which has a right A-module structure such that

δ(ma) = δ(m)ρ(a), (8.11)
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for m ∈ M , a ∈ A. The category of weak relative Hopf modules together with
H-colinear and A-linear morphism will be denoted by MH

A . In the same way
one may define the category AMH , and if A is a left H-comodule algebra, also
HMA and H

AM.

By considering H as a right H-comodule algebra in the usual way, the above
definition coincides with the definition of the category of weak right Hopf mod-
ules MH

H as defined in [BNS99].

Formulas (7.20) and (7.21) can be extended to elements in relative Hopf
modules:

Lemma 8.1.3. Let A be a right H-comodule algebra. If M ∈MH
A , then for all

m ∈M :

m(0) ⊗ εs(m(1)) = m1A(0) ⊗ S(1A(1)). (8.12)

If M ∈ AMH , then for all m ∈M :

m(0) ⊗ εt(m(1)) = 1A(0)m⊗ 1A(1). (8.13)

Let now A be a left H-comodule algebra. If M ∈ H
AM, then for all m ∈M :

εt(m(−1))⊗m(0) = S(1A(−1))⊗ 1A(0)m. (8.14)

If M ∈ HMA, then for all m ∈M :

εs(m(−1))⊗m(0) = 1A(−1) ⊗m1A(0). (8.15)

In particular, elements of right or left H-comodule algebras satisfy these
equations.

Proof. (8.12): Let M ∈MH
A and m ∈M . Then

m(0) ⊗ εs(m(1)) = m(0)1
A
(0) ⊗ 1(1)ε(m(1)1

A
(1)1(2))

= m(0)1
A
(0)ε(m(1)1

A
(1))⊗ 1(1)ε(1

A
(2)1(2))

= m1A(0) ⊗ εs(1
A
(1)) = m1A(0) ⊗ S(1A(1)),

by (7.3) and (7.8) since 1A(1) ⊗ 1A(2) ∈ A⊗Ht.

(8.13): Let M ∈ AMH and m ∈M . Then

m(0) ⊗ εt(m(1)) = 1A(0)m(0) ⊗ ε(1(1)1
A
(1)m(1))1(2)

= 1A(0)m(0)ε(1
A
(1)m(1))⊗ 1A(2) = 1A(0)m⊗ 1A(1),

by (8.3).

The other two equations are the opcop versions.
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Lemma and Definition 8.1.4. Let A be a right H-comodule algebra, M a
right A-module and X a right H-module. Write

M =A X := M1(0) ⊗X1(1).

Then M =AX is a right A-module with diagonal A-module structure. That is,
for all m ∈M , x ∈ X and a ∈ A:

(m1A(0) ⊗ x1A(1))a = m1A(0)a(0) ⊗ x1A(1)a(1) = ma(0) ⊗ xa(1).

In the same way M <AX is defined for a left A-module M and a left H-module
X. Moreover, M =A H ∈ MH

A and M <A H ∈ AMH where in both cases the
costructure is given by ∆.

Lemma 8.1.5. Let M , M̃ be right A-modules and X a finite dimensional right
H-module.

(i) HomA(M =A X, M̃) ∼= HomA(M,M̃ =A X∗), where X∗ = Homk(H, k)
is the left dual of X in the category of finite dimensional right H-modules,
that is it is a right H-module via (φ · h)(x) = φ(xS−1(h)).

(ii) −=A X is an exact functor for A-modules.

(iii) If M is a projective right A-module, then so is M =A X.

Proof. The opcop version of this is part of the result that AMfd is an HMfd-
module category whenever A is a left H-comodule algebra. This will be dis-
cussed in Chapter 10. It follows from the fact that every object X ∈ Mfd

H has
a right dual defined as in (i) with evaluation evX and coevaluation dbX ; and
then one has the usual isomorphism:

HomA(M =A X, M̃)
∼=→ HomA(M,M̃ =A X∗)

f 7→ (f ⊗ id) ◦ (id⊗ dbX)

(id⊗ evX) ◦ (g ⊗ id)←[ g

omitting the unit isomorphisms. Hence, −=AX∗ is left adjoint to −=AX, and
in the same way we obtain a right adjoint −=A ∗X, where ∗X is the right dual
of X. This implies (ii). Hence, for a projective module M , HomA(M =AX,−)
is an exact functor, and (iii) follows.

Lemma 8.1.6. Let A be a right H-comodule algebra and M ∈MH
A .

(i) M ∈ HsMH
A with left Hs-module structure given by x.m = m(0)ε(xm(1)).

(ii) H ⊗Hs M
∼= M =A H as right A-modules, where H ⊗Hs M is a right

A-module with (h⊗m)a = h⊗ma.
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Proof. (i) Let x, x′ ∈ Hs, m ∈M , and a ∈ A. Clearly, 1 . m = m and

x . (x′ . m) = m(0)ε(xm(1))ε(x
′m(2))

= m(0)ε(xεt(m(1)))ε(x
′m(2))) by (7.15)

= m(0)ε(xS(1(1)))ε(1(2)x
′m(1)) by (7.21) and Lemma 7.1.2

= m(0)ε(x1(1))ε(1(2)x
′m(1)) by (7.11) and (7.14)

= m(0)ε(xx
′m(1)) = (xx′) . m.

M is an (Hs, A)-bimodule, since

x . (ma) = m(0)a(0)ε(xm(1)a(1)) = m(0)a(0)ε(xm(1)εt(a(1))) by (7.11)

= m(0)aε(xm(1)) = (x ·m)a. by (8.13)

The H-comodule structure is compatible with this Hs-module structure. In
fact

δ(x . m) = m(0) ⊗m(1)ε(xm(2)) = m(0) ⊗ xm(1) by (7.18)

= m(0)ε(1(1)m(1))⊗ x1(2)m(2) = ∆(x)δ(m).

(ii) The isomorphism and its inverse is given by

·H ⊗Hs M·
∼= M· = ·H·

h⊗Hs m
ψ7→ m(0) ⊗ hm(1)∑

i

hiS
−1(mi(1))⊗Hs mi(0)

ϕ←[
∑
i

mi ⊗ hi.

In particular,

ϕ(m1A(0) ⊗ h1A(1)) = h1A(2)S
−1(1A(1))S

−1(m(1))⊗Hs m(0)1
A
(0)

= hS−1(εt(1A(1)))S
−1(m(1))⊗Hs m(0)1

A
(0)

= hS−1(m(1))⊗Hs m(0),

for h ∈ H, m ∈ M . Let x ∈ Hs and hi ∈ H, mi ∈ M for i ∈ I, such that∑
i∈I mi ⊗ hi ∈M =A H. ψ is well-defined, since

ψ(h⊗ x . m) = ψ(h⊗m(0)ε(xm(1)))

= m(0) ⊗ hm(1)ε(xm(2)) = m(0) ⊗ hxm(1), by (7.18).

Moreover

ϕ(ψ(h⊗m)) = hm(2)S
−1(m(1))⊗Hs m(0) = hS−1(εt(m(1)))⊗Hs m(0)

= hS−1(1(2))⊗Hs 1(1) •m = hS−1(1(2))1(1) ⊗Hs m = h⊗Hs m,
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by (8.14) and (7.10); and

ψ(ϕ(
∑
i

mi ⊗ hi)) =
∑
i

mi(0) ⊗ hiS−1(mi(2))mi(1)

=
∑
i

mi(0) ⊗ hiS−1(εs(mi(1)))

=
∑
i

mi1A(0) ⊗ hiS
−1(S(1A(1)))

=
∑
i

mi ⊗ hi, by (8.12).

8.2 Algebras and Modules in HM

The dual concept of H-comodule algebras and weak Hopf modules are H-
module algebras and modules over them, that have a compatible H-module
structure.

Definition. An algebra A, which is a left H-module, is a left H-module
algebra [Nik00] if for all a, b ∈ A, h ∈ H

h · (ab) = (h(1) · a)(h(2) · b), (8.16)

h · 1A = εt(h) · 1A. (8.17)

A left H-module has a compatible A-module structure if it is a left A-module
satisfying

h · (ma) = (h(1) ·m)(h(2) · a), (8.18)

for all m ∈ M , a ∈ A, h ∈ H. We denote the category of H-modules with
compatible A-module structures together with H-linear, A-linear morphisms
by (HM)A. In the same way we may define A(HM).

Remark 8.2.1. An H-module algebra is exactly an algebra in the category HM,
and (HM)A are the right A-modules in the category of left H-modules. These
are exactly the dual versions of H-comodule algebras and Hopf modules and
as for finite dimensional Hopf algebras, it is straightforward to check that A
is a right H-comodule algebra if and only if it is a left H∗-module algebra;
andMH

A ≈ (H∗M)A are equivalent categories. (Note that as always, H is finite
dimensional.) For instance, if A is a right H-comodule algebra, then it is a a left
H∗-module algebra with the usual H∗-module structure ϕ ⇀ a = a(0)ϕ(a(1)).
In fact,

ϕ ⇀ 1A
(8.2)
= 1A(0)ϕ(εt(1A(1))) = 1A(0)ε(1(1)1

A
(1))ϕ(1(2)) = (ε(1) ∗ ϕ)(1) ε(2) ⇀ 1A

and

ϕ ⇀ (ab)
(8.1)
= a(0)b(0)ϕ(a(1)b(1)) = (ϕ(1) ⇀ a)(ϕ(2) ⇀ b),
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for a, b ∈ A, ϕ ∈ H∗.

Lemma 8.2.2. Let A be an H-module algebra, then A is a right Ht-module via

a / y = S−1(y) · a = a(y · 1A). (8.19)

Proof. Since S−1 is an anti-algebra morphism, it suffices to show the second
equation. For all y ∈ Ht, a ∈ A:

S−1(y) · a = a(S−1(y) · 1A) = a(εt(S−1(y)) · 1A) = a(S(S−1(y)) · 1A),

by (7.12) and Lemma 7.1.3.

Lemma 8.2.3. Let A be an H-module algebra and V ∈MA.

(i) V ∈ HsM via x . v := v(S(x) · 1A) = v(x · 1A); and if V ∈ (HM)A then
this Hs-structure coincides with the structure induced by the H-module
structure.

(ii) H ⊗Hs V ∈ (HM)A with an A-module structure given by (h⊗Hs v) • a =
h(1)⊗Hs v(S(h(2)) ·a) and the H-action is given by g(h⊗Hs v) = gh⊗Hs v.

(iii) If V ∈ (HM)A, then H ⊗Hs V → V, h⊗Hs v 7→ h · v is right A-linear.

(iv) If V ∈ (HM)A, then H < V := ∆(1)(H ⊗ V ) ∈ (HM)A, where the action
of A is the A-action on V , and the H-action is diagonal.

(v) HomHs(H,V ) ∈ (HM)A, where the H-module structure is given by
(h · ζ)(g) = ζ(gh), for g, h ∈ H and ζ ∈ HomHs(H,V ) and the right
A-module is defined by (ζ • a)(h) = ζ(h(1))(h(2) · a).

Proof. Let x, x′ ∈ Hs, y ∈ Ht g, h ∈ H, v ∈ V , ζ ∈ HomHs(H,V ).

(i) v(x · 1A) = v(εt(x) · 1A) = v(S(x) · 1A) by Lemma 7.1.2; and

xx′ . v = v(S(x′)S(x) · 1A) = v(1(1)S(x′) · 1A)(1(2)S(x) · 1A)

= (v(S(x′) · 1A))(S(x) · 1A) = x . (x′ . v).

If V ∈ (HM)A, then x · v = (1(1) · v)(1(2)x · 1A) = v(x · 1A) by (7.12).

(ii) The A-module structure is well-defined since

(hx⊗Hs v) • a = h(1) ⊗Hs v(S(x)S(h(2)) · a)

= h(1) ⊗Hs v(S(x) · 1A)(S(h(2)) · a) by Lemma 7.1.2

= h(1)(x . v)(S(h(2)) · a) = (h⊗Hs x . v)a;
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(h⊗Hs v) • 1A = h(1) ⊗Hs v(εt(S(h(2))) · 1A)

= h(1) ⊗Hs v(S(εs(h(2))) · 1A) by Lemma 7.1.2

= h1(1) ⊗Hs v(S2(1(2)) · 1A) by (7.21)

= h1(1) ⊗Hs S(1(2)) . v

= h1(1)S(1(2))⊗Hs v = h⊗Hs v;

((h⊗Hs v) • a) • b) = h(1) ⊗Hs v(S(h(3)) · a)(S(h(2)) · b)
= h(1) ⊗Hs v(S(h(2)) · (ab)) = (h⊗Hs v) • (ab).

The A-module structure is compatible with the H-module structure since

g · ((h⊗Hs v) • a) = gh(1) ⊗Hs v(S(h(2)) · a)

= g(1)h(1) ⊗Hs v(S(h(2))S(g(2))g(3) · a) by (7.21)

= (g(1)h⊗Hs v) • (g(2) · a).

(iii) The map is right A-linear, since

(h⊗Hs v)a = h(1) ⊗Hs v(S(h(2)) · a) 7→(h(1) · v)(h(2)S(h(3)) · a)
(7.20)

= (1(1)h · v)(1(2) · a) = (h · v)a.

(iv) The A-module structure is well-defined since

(1(1)h⊗ 1(2) · v)a = 1(1)h⊗ (1(2) · v)a = 1(1)h⊗ (1′(1)1(2) · v)(1′(2)a)

= 1(1)h⊗ 1(2) · (va) ∈ H < V.

The A-module structure is compatible with the H-module structure since

g · ((1(1)h⊗ 1(2) · v)a) = g(1)h⊗ g(2) · (va) = g(1)h⊗ (g(2) · v)(g(3) · a)

= (g(1) · (1(1)h⊗ 1(2) · v))(g(2) · a).

(v) The A-module structure is well-defined since

(ζ • a)(xh)
(7.12)

= ζ(h(1))(xh(2) · a)
(7.12)

= ζ(h(1))(h(2) · a)(x · 1A)

= x . (ζ(h(1))(h(2) · a)) = x . ((ζ • a)(h));

(ζ • 1A)(h) = ζ(h(1))(εt(h(2)) · 1A)
(7.20)

= ζ(1(1)h)(1(2) · 1A)
ζHs-linear

= (1(1) . ζ(h))(1(2) · 1A) = ζ(h)(1(1) · 1A)(1(2) · 1A) = ζ(h);

((ζ • a) • b)(h) = ζ(h(1))(h(2) · a)(h(3) · b) = (ζ • ab)(h).

The A-module structure is compatible with the H-module structure since

(h · (ζ • a))(g) = (ζ • a)(gh) = ζ(g(1)h(1))(g(2)h(2) · a)

= ((h(1) · ζ)(g(1)))(g(2) · (h(2)a)) = ((h(1) · ζ) • (h(2) · a))(g).
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Lemma 8.2.4. If V ∈ (HM)A, then H ⊗Hs V
∼= H < V· as objects in (HM)A.

Proof. The isomorphism is given by

H ⊗Hs V
∼=−→ H < V·

h⊗ v ψ7→ h(1) ⊗ h(2) · v∑
i

hi(1) ⊗ S(hi(2)) · vi
ϕ←[

∑
i

hi ⊗ vi,

In particular,

ϕ(1(1)h⊗ 1(2) · v) = 1(1)h(1) ⊗Hs S(1(2)h(2))1(3) · v
= 1(1)h(1) ⊗Hs S(h(2))εs(1(2)) · v
= 1(1)h(1) ⊗Hs S(h(2))S(1(2)) · v = h(1) ⊗ S(h(2)) · v,

for v ∈ V , h ∈ H, by Lemma 7.1.2. Let x ∈ Hs and hi ∈ H, vi ∈ V for all i ∈ I
such that

∑
i hi ⊗ vi ∈ H < V . Then ψ is well-defined, since ψ(hx ⊗Hs v) =

h(1) ⊗ h(2)xv by (7.12). It is right A-linear since

ψ((h⊗Hs v) • a) = ψ(h(1) ⊗Hs v(S(h(2)) · a))

= h(1) ⊗ h(2) · (v(S(h(3))) · a))

= h(1) ⊗ (h(2) · v)(h(3)S(h(4)) · a)

= h(1) ⊗ (1(1)h(2) · v)(1(2) · a) by (7.20)

= h(1) ⊗ (h(2) · v)a = ψ(h⊗Hs v)a.

Obviously, ψ is left H-linear. Finally,

ϕ(ψ(h⊗Hs v)) = h(1) ⊗ S(h(2))h(3) · v
(7.21)

= h(1)1(1) ⊗Hs S(1(2)) · v
= h(1)1(1)S(1(2))⊗Hs v = h⊗ v;

ψ(ϕ(
∑
i

hi ⊗ vi)) =
∑
i

hi(1) ⊗ hi(2)S(hi(3)) · vi

(7.20)
=

∑
1(1)hi ⊗ 1(2) · vi =

∑
i

hi ⊗ vi.

Lemma 8.2.5. Let V,W ∈MA.

(i) HomA(V,HomHs(H,W )) ∼= HomA(H ⊗Hs V,W ).

(ii) If V is an injective A-module, then so is HomHs(H,V ).

Proof. (i) The isomorphism is given by

HomA(V,HomHs(H,W ))
∼=−→ HomA(H ⊗Hs V,W )

f 7→ f̃ h⊗Hs v 7→ f(v)(h)

g̃ v 7→ (h 7→ g(h⊗Hs v))←[ g
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Let f ∈ HomA(V,HomHs(H,W )) and g ∈ HomA(H ⊗Hs V,W ), then
˜̃
f(v)(h) = f(v)(h) and ˜̃g(h ⊗Hs v) = g(h ⊗Hs v). Moreover, f̃ is well-defined,
since

f̃(h⊗Hs (x . v)) = f(x . v)(h) = f(v(x · 1A))(h)

= (f(v) • (x · 1A))(h) = (f(v)(h(1)))(h(2)x · 1A)

= (f(v)(h(1)x(1)))(εt(h(2)x(2)) · 1A) by (7.12)

= (f(v)(1(1)hx))(1(2) · 1A) by (7.20)

= (1(1) . f(v)(hx))(1(2) · 1A)

= (f(v)(hx))(1(1) · 1A)(1(2) · 1A)

= f(v)(hx) = f̃(hx⊗Hs v),

and

f̃((h⊗Hs v) • a) = f̃(h(1) ⊗Hs v(S(h(2)) · a)) = f(v(S(h(2)) · a))(h(1))

= (f(v) • (S(h(2)) · a))(h(1)) = (f(v)(h(1)))(h(2)S(h(3)) · a)

= (f(v)(1(1)h))(1(2) · a) by (7.20)

= (1(1) . f(v)(h))(1(2) · a) = (f(v)(h))(1(1) · 1A)(1(2) · a)

= (f(v)(h))a = f̃(h⊗Hs v)a;

and g̃ is well-defined since

g̃(v)(xh) = g(xh⊗Hs v) = g(x · (h⊗Hs v))

= g((1(1) · (h⊗Hs v)) • (1(2)x · 1A)) by Lemma 8.2.3 and (7.12)

= g(h⊗Hs v)) • (x · 1A) = x • (g̃(v)(h)),

and

(g̃(v) • a)(h) = g̃(v)(h(1))(h(2) · a) = g(h(1) ⊗Hs v)(h(2) · a)

= g((h(1) ⊗Hs v) • (h(2) · a)) = g(h(1) ⊗Hs v(S(h(2))h(3) · a))

= g(h1(1) ⊗Hs v(S(1(2)) · a)) by (7.21)

= g(h⊗Hs v(S(1(2)) · a)(S(1(1)) · 1A))

= g(h⊗ va) = g̃(va)(h),

for v ∈ V , a ∈ A , h ∈ H, x ∈ Hs.

(ii) HomA(H ⊗Hs −, V ) is exact since V is injective and since Hs is semisimple
and hence H⊗Hs− is exact. Hence, HomA(−,HomHs(H,V )) is exact by (i).



8.3 Weak Hopf Modules Are Generators 79

8.3 Weak Hopf Modules over H-Simple H-Co-

module Algebras Are Generators

The aim of this section is to prove that trace ideals of relative weak Hopf
modules are H-costable ideals. Therewith, one can deduce that nonzero relative
weak Hopf modules over an H-simple quasi-Frobenius H-comodule algebra A
are generators, as their trace ideals have to be equal to A. We will prove the
dual version of this.

8.3.1 H-stable and H-costable subspaces

Let C be a right H-comodule with costructure δ. A subspace X of C is said to
be H-costable if δ(X) ⊂ X ⊗H. Dually, a subspace X of an H-module V is
said to be H-stable if for all x ∈ X and h ∈ H, h · x ∈ X.

An H-(co)module algebra A is called H-simple if A 6= 0 and A does not
contain proper nonzero H-(co)stable ideals. A 6= 0 is called H-simple from
the right or left if it does not contain proper nonzero H-(co)stable right or
left ideals, respectively.

8.3.2 Trace Ideals of Weak Hopf Modules

In the following, if M is a module over an algebra A, then TM denotes the trace
ideal of M in A (see Appendix A.2 for the definition).

Proposition 8.3.1. Let A be a left H-module algebra and M ∈ (HM)A, then
TM is an H-stable ideal of A.

Proof. Let f ∈ HomA(M,A), then f is left Hs-linear. In fact,

f(x ·m)
(7.12), (8.18)

= f(m(x · 1A)) = f(m)(x · 1A)
(7.12), (8.16)

= x · f(m).

For every h ∈ H we may define an A-linear morphism

Φh : M −→ H <M·
φ−→∼= H ⊗Hs M

id⊗Hsf−→ H ⊗Hs A→ A

m 7→ 1(1)h⊗ 1(2) ·m g ⊗Hs a 7→ g · a

where the isomorphism φ is the one from Lemma 8.2.4, and the last morphisms
is A-linear by Lemma 8.2.3 (iii).

Let now g ∈ H and m ∈ M , then there exist hi ∈ H and mi ∈ M with
φ(

∑
i 1(1)hi ⊗ 1(2) · mi) = g ⊗Hs m, where φ is the isomorphism H < M

∼=→
H ⊗Hs M . And then

g · f(m) =
∑
i

Φhi
(mi) ∈

∑
f∈HomA(M,A)

f(M).
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Corollary 8.3.2. Let A be an H-simple left H-module algebra which is right
Kasch and let 0 6= M ∈ (HM)A be a finite dimensional object. Then M is a
generator for MA

For the definition of right Kasch rings see Appendix A.3.

Proof. TM 6= 0 because A is right Kasch (see A.3.2). Hence, TM = A by the
foregoing lemma since A is H-simple. This implies the claim (see A.2.1).

Corollary 8.3.3. If A is a finite dimensional H-simple left H-module algebra
which is right Kasch, then A is quasi-Frobenius.

Proof. Let V be a nonzero finite dimensional injective right A-module. By
Lemma 8.2.5, M := HomHs(H,V ) is an injective A-module and M ∈ (HM)A.
M is nonzero, since Hs is an Hs-direct summand of H. As A is right Kasch, M
is a generator inMA by 8.3.2. Hence, for some n there is a surjection M (n) � A

which splits, that is A is a direct summand of the injective A-module M (n), and
therefore right self-injective.

The dual versions of these results are:

Proposition 8.3.4. Let A be a right H-comodule algebra and M ∈MH
A finite

dimensional.

(i) TM is an H-costable ideal of A.

(ii) If A is H-simple and right Kasch and M 6= 0, then M is a generator for
MA.

(iii) If A is finite dimensional, H-simple and right Kasch, then it is quasi-
Frobenius.

8.4 A Structure Theorem for Weak Hopf Modules

and Smash Products

8.4.1 Invariants and Coinvariants

Definition. Let A be a right H-comodule algebra and M ∈MH
A or M ∈ AMH

with costructure δ. We define the set of coinvariants of M as

M coH := {m ∈M | δ(m) ∈M ⊗Ht}. (8.20)

If A is a left H-comodule algebra and M ∈ HMA or M ∈ H
AM with costructure

δ, we define the set of coinvariants of M as

coHM := {m ∈M | δ(m) ∈ Hs ⊗M}. (8.21)
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Lemma 8.4.1. Let A be a right H-comodule algebra. If M ∈MH
A , then

M coH = {m ∈M |m(0) ⊗m(1) = m1A(0) ⊗ 1A(1)}.

If M ∈ AMH , then

M coH = {m ∈M |m(0) ⊗m(1) = 1A(0)m⊗ 1A(1)}.

Let now A be a left H-comodule algebra. If M ∈ HMA, then

coHM = {m ∈M |m(−1) ⊗m(0) = 1A(−1) ⊗m1A(0)}.

If M ∈ H
AM, then

coHM = {m ∈M |m(−1) ⊗m(0) = 1A(−1) ⊗ 1A(0)m}.

Proof. The first equation is [ZZ04, Lemma 2.1], the second and third follow
from Lemma 8.1.3, and the last equation is the opcop version of [ZZ04, Lemma
2.1].

Corollary 8.4.2. If A is an H-comodule algebra, the following holds for a
coinvariant element a ∈ AcoH :

ρ(a) = 1A(0)a⊗ 1A(1) = a1A(0) ⊗ 1A(1).

Example 8.4.3. Let M be a right A-module. Then

(M =A H)coH = {m1A(0) ⊗ 1A(1) |m ∈M}.

In fact, if
∑

imi ⊗ hi ∈ (M =A H)coH , then∑
i

mi ⊗ hi(1) ⊗ hi(2) =
∑
i

mi1A(0) ⊗ hi1
A
(1) ⊗ 1A(2).

By applying id⊗ ε⊗ id we obtain∑
i

mi ⊗ hi =
∑
i

mi1A(0) ⊗ ε(hi1
A
(1))1

A
(2)

(7.15)
=

∑
i

mi1A(0) ⊗ ε(hiεt(1
A
(1)))1

A
(2)

(8.5)
=

∑
i

mi1A(0)1
A
(0)

′ ⊗ ε(hi1A(1))1
A
(1)

′
=

∑
i

miε(hi)1A(0) ⊗ 1A(1).

In the special case when A = H is the weak Hopf module algebra itself then,
as for Hopf algebras, there exists a projection E : M →M coH :

Lemma and Definition 8.4.4. Let M ∈MH
H and define

E : M →M

m 7→ m(0)S(m(1)).

Then E(M) = M coH and E(m) = m for all m ∈M coH .
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Proof. E(M) ⊂ M coH is shown in the proof of [ZZ04, Theorem 2.2]. If m ∈
M coH , then E(m) = m1(1)S(1(2)) = m by Lemma 8.4.1.

The dual version of the coinvariants of a weak Hopf module are the invariants
of objects in (HM)A:

Lemma and Definition 8.4.5. Let A be a left H-module algebra and M ∈
(HM)A. The invariants of M are defined as

MH := {m ∈M |h ·m = εt(h) ·m ∀h ∈ H}. (8.22)

Then M coH = MH∗ . In fact,

{m ∈M |ϕ ⇀ m = εt(ϕ) ⇀m∀ϕ ∈ H∗ }
={m ∈M |m(0)ϕ(m(1)) = m(0)ε(1(1)m(1))ϕ(1(2)) ∀ϕ ∈ H∗ }
={m ∈M |m(0) ⊗m(1) = m(0) ⊗ εt(m(1)) }.

8.4.2 A Structure Theorem

The structure theorem for Hopf modules over ordinary Hopf algebras states a
category equivalence between vector spaces and Hopf modules. It implies in
particular that every Hopf module over a Hopf algebra H is a free H-module.
For weak Hopf modules, the freeness has to be replaced by projectivity. Böhm,
Nill, and Szlachányi [BNS99, Theorem 3.9] proved a structure Theorem for
weak Hopf modules inMH

H which was generalized by Zhang and Zhu [ZZ04] to
H-comodule algebras A which allow an H-comodule algebra map γ : H → A.
In this case, M ∈MH

A implies M ∈MH
H via γ.

Theorem 8.4.6. [ZZ04, Theorem 2.2 ] Let A be a right H-comodule algebra
and γ : H → A an H-comodule algebra map. Let M ∈MH

A . Then

M coH ⊗AcoH A ∼= M in MH
A

m⊗ a 7→ ma

m(0)γ(S(m(1)))⊗m(2) ←[ m.

Here, the H-comodule structure and the the A-module structure of M coH⊗AcoHA

are those of A.

Corollary 8.4.7. If M ∈ MH
H , then M is a projective right H-module and it

is a free right H-module if M coH is a free right Ht-module.

Proof. By the theorem, M ∼= M coH ⊗HcoH H where HcoH = Ht is a semisimple
algebra and therefore M coH is a direct summand of a free Ht-module. Hence,
M ∼= M coH ⊗Ht H is a direct summand of a free H-module.
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Lemma 8.4.8. Let A and γ be as in the theorem. Let V be a right AcoH-module,
then V ⊗AcoH A ∈MH

A and

V ∼= (V ⊗AcoH A)coH v 7→ v ⊗ 1A.

Proof. Let EA and E be the map from 8.4.4 for A and V ⊗AcoH A regarded as
objects in MH

H via γ, respectively. We know E(V ⊗AcoH A) = (V ⊗AcoH A)coH

and EA(A) = AcoH and we have E(V ⊗AcoH A) = V ⊗AcoH 1A. In fact, if v ∈ V
and a ∈ A, then

E(v ⊗AcoH a) = v ⊗AcoH a(0)γ(S(a(1)))

= v ⊗AcoH EA(a) = vEA(a)⊗AcoH 1A.

Hence, together with this lemma the theorem above implies a category
equivalence between the category of right AcoH -modules and the categoryMH

A :

Theorem 8.4.9. Let A be a right H-comodule algebra and γ : H → A an
H-comodule algebra map. Then

MAcoH ≈ MH
A

V 7→ V ⊗AcoH A

M coH ←[ M .

8.4.3 Weak Smash Products

As for ordinary Hopf algebras, a special case of H-comodule algebras which
allow an H-comodule algebra map γ : H → A, are smash products (in fact,
such algebras are always smash products, see [Zha10]), and thus the structure
theorem can be applied to smash products.

Lemma and Definition 8.4.10. [Nik00] Let R be a right H-module algebra,
then the smash product R#H is R ⊗Ht H as a vector space where R is a
right Ht-module as in 8.2.2. R#H is an H-comodule algebra with unit 1R#1
and with multiplication and costructure given by

(r#h)(s#g) = r(h(1) · s)#h(2)g, (8.23)

ρ(r#h) = r#h(1) ⊗ h(2), (8.24)

for r, r′ ∈ R, h, h′ ∈ H. The map H → R#H, h 7→ 1R#h is an H-comodule
algebra map. R → R#H, r 7→ r#1 is an algebra inclusion and (R#H)coH =
R#1 ∼= R.

In the following we will associate elements of R#1 with elements of R and
elements of 1#H will be associated to elements of H, and we will write rh for
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r#h and then hr = (h(1) · r)h(2).

Let A := R#H, and V ∈ MR, then V#H := V ⊗R A is an object in MH
A ,

where the module and comodule structure are the one of A. Again we write
(vr)h for v ⊗R r#h = vr ⊗R 1R#h. Then

E(vh) = vh(1)S(h(2)) = vεt(h) = v(1R / εt(h)) ∈ V,

for all v ∈ V and h ∈ H, where / is the Ht-action on R as defined in (8.19); and
therefore (V#H)coH = E(V#H) ∼= V . With the structure theorem for weak
Hopf modules 8.4.6 we obtain the following:

Corollary 8.4.11. If R is a left H-module algebra and A := R#H, then

MR ≈ MH
R#H

V 7→ V#H

M coH ← [ M

are quasi-inverse equivalences, where

M ∼= M coH#H in MH
R#H

m 7→ E(m(0))m(1)

ma←[ m⊗R a.

As for Hopf algebras [MS99] one can use this equivalence to show that the
H-stable ideals of R correspond to the H-costable ideals of A := R#H and in
particular, R is H-simple if and only if A is H-simple.

Proposition 8.4.12. Let R be an H-module algebra and A := R#H, then

{H-stable ideals of R}
Φ−−→←−
Ψ
{H-costable ideals of A}

I 7−→ I#H

JcoH ←− [ J

are well-defined mutually inverse bijections.

Proof. If I is an H-stable ideal of R, then it is straightforward to check that
I#H is an H-costable ideal of R#H, since if r or r′ ∈ I, then (rh)(r′h′) =
(r(h(1) · r′))h(2)h

′ ∈ I#H. On the other hand, let J be an H-costable ideal
of A. It is clear that JcoH = J ∩ (R#H)coH = J ∩ R is an ideal of R. It is
H-stable since for r ∈ J ∩R = JcoH and h ∈ H one has h · r ∈ R and:

h · r = (h(1) · r)(εt(h(2)) · 1R)

= (h(1) · r) / εt(h(2))

= (h(1) · r)εt(h(2))

= (h(1) · r)h(2)S(h(3)) = h(1)(rS(h(2))) ∈ J,
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where / is the right Ht-action on R as defined in (8.19). Hence, h · r ∈ J ∩R =
JcoH . Finally, (I#H)coH = I and JcoH#H = (JcoH#1)(1R#H) ⊂ J , and the
Proposition 8.4.11 implies

JcoH#H ∼= J ∈MH
A .

Lemma 8.4.13. Let R be a right H-module algebra. Then Rop is a right Hcop-
module algebra and (HM)R ≈ Rop#HcopM. The functor is the identity on
objects and morphisms, where the action of Rop#Hcop on M ∈ (HM)R is given
by (r#h) I m = (h ·m)r, for all r ∈ R, h ∈ H and m ∈M .

Proof. Recall that the target map of Hcop is S−1 ◦ εt. We have that h · 1R =
εt(h) · 1R = εt(S−1(εt(h))) · 1R = S−1(εt(h)) · 1R, hence Rop is in fact an Hcop-
module algebra.

Let M ∈ (HM)R. The Rop#Hcop-module structure is well-defined, for if
x ∈ (Hcop)t = Hs, r ∈ R, h ∈ H, m ∈M , then

(r#xh) I m
(7.12)

= (1(1)xh ·m)(1(2) · r)
(7.22)

= (1(1)h ·m)(1(2)S(x) · r) = ((r / x)#h) I m,

because the right Hs-module structure of R is given by r/x = S(x)·r. Moreover,
for h′ ∈ H and r′ ∈ R:

(r#h) I ((r′#h′) I m) = (h · ((h′ ·m)r))r = (h(1)h
′ ·m)(h(2) · r′)r

= ((h(2)r
′)r#h(1)h

′) I m = ((r#h)(r′#h)) I m.

8.5 Morita Theory for H-Comodule Algebras and

Weak Hopf Modules

In this section it will be proven that if M is a weak Hopf module in MH
A , then

B := EndA(M) is an H-comodule algebra and M ∈ BMH
A . Moreover, if M is

a progenerator for MA then the Morita equivalence MA ≈ MB also induces
an equivalence of the categories of relative weak Hopf modules MH

A ≈MH
B .

8.5.1 Endomorphism Rings of Weak Hopf Modules

The endomorphism ring of a relative weak Hopf module is an H-comodule
algebra. Moreover, its coinvariants are exactly the A-module maps which are
also H-colinear. Here, we prove the dual version.

Lemma 8.5.1. Let A be a left H-module algebra and M ∈ (HM)A.
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(i) B := EndA(M) is a left H-module algebra with an H-module structure
given by

(h • f)(m) := h(1)f(S(h(2)) ·m) (8.25)

for f ∈ B, h ∈ H, m ∈M .

(ii) The invariants BH of B are exactly the H-linear morphisms in EndA(M),
denoted by HEndA(M). In particular, BH ∼= k if M is simple in (HM)A.

(iii) EndA(AA) ∼= A as H-module algebras, and in particular, AH ∼= k if A is
simple in (HM)A.

(iv) Q := HomA(M,A) ∈ (HM)B.

(v) M ∈ B(HM)A and Q ∈ A(HM)B.

Proof. (i) Let f ∈ EndA(M) and h ∈ H, then h • f ∈ EndA(M) since for all
m ∈M and a ∈ A:

(h • f)(ma) = h(1) · f(S(h(2)) · (ma)) 7.1.3= h(1) · (f(S(h(3)) ·m))(S(h(2)) · a)

= (h(1) · f(S(h(4)) ·m))(h(2)S(h(3)) · a)
(7.20)

= (1(1)h(1) · f(S(h(2)) ·m))(1(2) · a) = ((h • f)(m))a.

This is a well-defined H-module structure, since

(1 • f)(m) = 1(1) · f(S(1(2)) ·m)
7.1.2 and (7.12)

= 1(1) · f(m(S(1(2)) · 1A))

= 1(1) · (f(m))(S(1(2)) · 1A)) = (1(1) · f(m))(εt(1(2)) · 1A))

= (1(1) · f(m))(1(2) · 1A) = f(m),

(h • (h′ • f))(m) = h(1)(h
′ • f)(S(h(2)) ·m)

= h(1)h
′
(1) · f(S(h′(2))S(h(2)) ·m) = (hh′ • f)(m).

for f ∈ EndA(M), h, h′ ∈ H, m ∈ M . This H-module structure is compatible
with the algebra structure since for another f ′ ∈ EndA(M):

(h(1) • f) ◦ (h(2) • f ′)(m) = h(1)f(S(h(2))h(3) · f ′(S(h(4)) ·m))
(7.20)

= h(1)f(1(1) · f ′(S(h(2)1(2)) ·m))

= h(1)f((1 • f ′)(S(h(2)) ·m)) = (h • (f ◦ f ′))(m)

and (h • id)(m) = h(1)S(h(2))m = (εt(h) • id)(m).

(ii) Let f ∈ HEndA(M), then

(h • f)(m) = h(1)S(h(2)) · f(m) = εt(h) · (1 • f)(m)

= 1(1)εt(h) · f(S(1(2)) ·m)
(7.12)

= (εt(h) • f)(m)
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for all h ∈ H and m ∈ M , that is f ∈ (EndA(M))H . If on the other hand
f ∈ (EndA(M))H , then

h · f(m) = h · (1 • f)(m) = h1(1) · f(S(1(2)) ·m)

= h(1) · f(S(h(2))h(3) ·m) = (h(1) • f)(h(2) ·m) by (7.12)

= (εt(h(1)) • f)(h(2) ·m) = (S(1(1)) • f)(1(2)h ·m) by (7.21)

= (εt(1(1)) • f)(1(2)h ·m) = (1(1) • f)(1(2)h ·m) by Lemma 7.1.2

= 1(1) · f(S(1(2))1(3)h ·m) = 1(1) · f(S(1(2))h ·m) by Lemma 7.1.2

= (1 • f)(h ·m) = f(h ·m),

for all h ∈ H, m ∈M , hence f is H-linear.

(iii) The algebra isomorphism

ϕ : A→ EndA(AA)

a 7→ (b 7→ ab)

is an H-module algebra morphism, since for h ∈ H and a, b ∈ A:

(h • ϕ(a))(b) = h(1) · (a(S(h(2)) · b)) = (h(1) · a)(h(2)S(h(3)) · b)
(7.20)

= (1(1)h · a)(1(2) · b) = (h · a)b = (ϕ(h · a))(b).

(iv) Clearly, Q := HomA(M,A) is a right EndA(M)-module via composition.
It is an H-module via

(h • g)(m) = h(1) · g(S(h(2)) ·m) (8.26)

for g ∈ HomA(M,A). The proof works analogous to (iii). And also similar to
(iii) we get that the structures are compatible.

(v) M is an (EndA(M), A)-bimodule via fm = f(m). The structure is com-
patible with the H-module structure since if f ∈ EndA(M), h ∈ H, m ∈ M ,
then

(h(1) • f)(h(2) ·m) = h(1) · f(S(h(2))h(3) ·m)
(7.21)

= h1(1) · f(S(1(2)) ·m)

= h · (1 • f)(m) = h · f(m) = h · fm.

The A-module structure on HomA(M,A) is given by (ag)(m) = ag(m). This
structure clearly interchanges with the EndA(M)-module structure. It is com-
patible with the H-module structure since if g ∈ HomA(M,A), h ∈ H, m ∈M ,
and a ∈ A, then

((h(1) · a)(h(2) • g))(m) = (h(1) · a)(h(2) · g(S(h(3)) ·m))

= h(1) · (ag(S(h(2)) ·m)) = (h • (ag))(m).
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Corollary 8.5.2. The dual version of the proposition implies for a right H-
comodule algebra A and M ∈MH

A :

(i) B := EndA(M) is a right H-comodule algebra with an H-comodule struc-
ture defined by f(0)(m)⊗ f(1) = f(m(0))(0) ⊗ f(m(0))(1)S(m(1)).

(ii) The coinvariants BcoH of B are exactly the H-colinear morphisms in
EndA(M), denoted by EndHA (M). In particular, BcoH ∼= k if M is a
simple object in MH

A .

(iii) EndA(AA) ∼= A as H-comodule algebras, and in particular, AcoH ∼= k if
A is simple in MH

A .

(iv) Q := HomA(M,A) ∈ MH
B .

(v) M ∈ BMH
A and Q ∈ AMH

B .

Remark 8.5.3. The fact that the coinvariants of A coincide with EndHA (A) was
already shown in [Zha10, Proposition 2.5]. More precisely, it is shown that for
M ∈MH

A

HomH
A (A,M)→M coH , f 7→ f(1A)

is an isomorphism of vector spaces with inverse m 7→ (a 7→ ma), and it is mul-
tiplicative in the case when M = A.

8.5.2 Morita Equivalence for Weak Hopf Modules

Morita theory (see Appendix A.1) states that a progenerator in M ∈ MA in-
duces an equivalence of categories HomA(M,−) : AM → BM, where B :=
EndA(M). If now A is an H-comodule algebra and M ∈MH

A , then this equiva-
lence can be restricted to an equivalence of the categories of weak Hopf modules
MH

A ≈MH
B . Again, we prove the dual version.

Proposition 8.5.4. Let A be a right H-module algebra and M ∈ (HM)A.
Assume furthermore that M is a progenerator in MA. Let B and Q be defined
as in Lemma 8.5.1. Then

HomA(M,−) : (HM)A → (HM)B,

HomB(Q,−) : (HM)B → (HM)A

are well-defined mutually inverse functors.

Proof. We know from Morita theory that the functors HomA(M,−) and
HomB(Q,−) are well-defined mutually inverse functors AM↔ BM. We have
to show that the restrictions to (HM)A and (HM)B are well-defined.
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Let N ∈ (HM)A, then HomA(M,N) ∈ (HM)B with an H-module structure
given by

(h • f)(m) = h(1) · f(S(h(2)) ·m).

The B-module structure is as usual the composition of homomorphisms. The
proof is analogous to Lemma 8.5.1 (iv). If ϕ : N → N ′ is a morphism in
(HM)A, then HomA(M,ϕ) is also H-linear.

On the other hand, if N ∈ (HM)B, then HomB(Q,N) is an A-module via
((fa)(q)) = f(aq) as usual, where (aq)(m) = aq(m) as in Lemma 8.5.1. It is an
H-module via

(h • f)(q) = h(1) · f(S(h(2)) • q),

where Q ∈ (HM)B with (h • q)(m) = h(1) · q(S(h(2)) ·m) as in Lemma 8.5.1.
The structures are compatible:

(h(1) • f)(h(2) · a)(q) = (h(1) • f)((h(2) · a)q)

= h(1) · f((S(h(3))h(4) · a)(S(h(2)) • q))
= h(1) · f((S(1(2)) · a)(S(h(2)1(1)) • q) by (7.21)

= h(1) · f(a(S(h(2)) • q)) = (h • (fa))(q),

for h ∈ H, n ∈ N , m ∈ M , and q ∈ Q = HomA(M,A). And again, if
ϕ : N → N ′ is an (HM)B-morphism, then HomB(M,ϕ) is also H-linear.

If N ∈ (HM)A, then

N ∼= HomB(Q,HomA(M,N)) in (HM)A
n 7→ Fn, where Fn(q)(m) = nq(m).

This is an isomorphism of A-modules by Morita theory. It is H-linear since

((h • Fn)(q))(m) = (h(1) • (Fn(S(h(2)) • q))(m)

= h(1) · ((Fn(S(h(3)) • q))(S(h(2)) ·m))

= h(1) · (n(S(h(4)) · q(S2(h(3))S(h(2)) ·m)))

= (h(1) · n)(h(2)S(1(2)h(3)) · q(S2(1(1)) ·m)) by (7.21)

= (1(1)h · n)(1(2)(S(1) • q)(m)) by (7.20)

= (h · n)q(m) = (Fh·n(q))(m),

for h ∈ H, n ∈ N , m ∈ M , and q ∈ Q = HomA(M,A). Finally if N ∈ (HM)B
then

N ∼= HomA(M,HomB(Q,N)) in (HM)B
n 7→ Fn, where Fn(m)(q) = n(mq).

As usual, mq ∈ B with (mq)(m̃) = m(q(m̃)).
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By Morita, this is an isomorphism of B-modules; and it is H-linear for if
h ∈ H, n ∈ N , m, m̃ ∈M , and q ∈ Q = HomA(M,A) then

((h • Fn)(m))(q) = (h(1) • Fn(S(h(2)) ·m))(q)

= h(1) · ((Fn(S(h(3)) ·m))(S(h(2)) • q))
= h(1)(n((S(h(3)) ·m)(S(h(2)) • q)))
= h(1) · (n(S(h(2)) • (mq))) by (∗) below

= (h(1) · n)(h(2)S(h(3)) • (mq))

= (1(1)h · n)(1(2)(mq)) by (7.20)

= (Fh·n(m))(q),

where (∗) holds since

(h • (mq))(m̃) = h(1)(mq(S(h(2)) · m̃))

= (h(1) ·m)(h(2) · q(S(h(3)) · m̃))

= (h(1) ·m)((h(2) • q)(m̃))

= ((h(1) ·m)(h(2) • q))(m̃).

Corollary 8.5.5. Let A be a right H-comodule algebra and M ∈MH
A . Assume

furthermore that M is a progenerator for MA. Let B and Q be defined as in
Lemma 8.5.2. Then

HomA(M,−) : MH
A → MH

B ,

HomB(Q,−) : MH
B → MH

A

are well-defined mutually inverse functors.



Chapter 9

Projectivity and Freeness over

H-Comodule Algebras

Etingof and Ostrik have proven that surjective tensor functors map projective
objects to projective ones [EO04, Theorem 2.5] and this implies in particu-
lar that weak Hopf algebras are projective over their weak Hopf subalgebras.
However, one can not expect a weak Hopf algebra version of the Hopf algebra
Freeness Theorem by Nichols and Zöller [NZ89] or even of Skryabin’s freeness
theorem for coideal subalgebras [Skr07]. In this chapter an example of a Frobe-
nius weak Hopf algebra will be constructed, which has a non-Frobenius weak
Hopf subalgebra over which it is not free.

We will see that weak Hopf algebras, which are free over their bases, are
Frobenius. And in this case weak Hopf modules over quasi-Frobenius H-simple
H-comodule algebras are projective. This is a weak Hopf algebra version of
[Skr07, Theorem 3.5]. For an ordinary Hopf algebra H Skryabin has proven
that if M is a Hopf module over an H-simple H-comodule algebra A, then
there exists a natural number n such that a direct sum of n copies of M is a
free A-module. It will not be possible to generalize Skryabin’s proof to arbitrary
weak Hopf algebras, since my example of a weak Hopf algebra which is not free
over a certain weak Hopf subalgebra, is also a counter example for Skryabin’s
stronger result. Nevertheless, I conjecture that for any weak Hopf algebra H,
weak Hopf modules over quasi-Frobenius H-simple H-comodule algebras are
projective. In the next chapter module categories over weak Hopf algebras that
satisfy this conjecture will be classified.

As mentioned before, Skryabin has also shown that, in the Hopf algebra
case, coideal subalgebras are a special case of quasi-Frobenius H-simple H-
comodule algebras. For weak Hopf algebras this is not true in general. The
easiest example would be to consider the weak Hopf algebra itself, which is not
H-simple in many cases. Moreover, Skryabin could prove in [Skr07, Theorem
4.2] that in fact all finite dimensional H-simple H-comodule algebras are quasi-
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Frobenius (actually even Frobenius). It is not known whether this is also true
for weak Hopf algebras.

9.1 H-Costable Ideals in Weak Hopf Algebras

Proposition 9.1.1. Let H be a weak Hopf algebra. Then the following prop-
erties are equivalent:

(1) H is H-simple in the sense that is it does not contain a nonzero proper
H-costable ideal;

(2) Ht is a simple object in HM, where the H-module structure of Ht is given
by h ⇀ x = εt(hx) as in Propostion 7.2.1.

Proof. Vecsernyés [Vec03, Theorem 2.4] has shown that Ht
∼=

⊕
α∈A Htα as

left H-modules, where A is the set of primitive orthogonal idempotents of Ht ∩
Center(H). Moreover, Htα is a simple H-module for each α ∈ A.

If Ht is not a simple H-module, than there exist α 6= β ∈ A. Then J := Hα

is a nonzero H-costable ideal in H by (7.12), since α ∈ Ht ∩Center(H). It is a
proper ideal, as β /∈ J .

On the other hand, assume now that Ht is a simple H-module and let J
be a nonzero H-costable ideal in H. Then J is an MH

H -subobject of H, and in
particular J ∼= JcoH⊗HtH by the structure theorem for weak Hopf modules (see
Theorem 8.4.6 or [BNS99, Theorem 3.9]). However, JcoH = J ∩HcoH = J ∩Ht

and it is an H-submodule of Ht. In fact, if x ∈ J ∩ Ht and h ∈ H, then
h ⇀ x = εt(hx) = h(1)xS(h(2)) ∈ J (see Proposition 7.2.1). Thus, the simplicity
of Ht yields JcoH = Ht, and therefore J = H.

9.2 Frobenius Weak Hopf Algebras and Freeness

over the Bases

Unlike Hopf algebras, weak Hopf algebras are not Frobenius in general [IK09].
However, they are quasi-Frobenius (see Appendix A.3 for the definition), which
was shown by Böhm, Nill, and Szlachányi [BNS99, Theorem 3.11]. They also
gave necessary and sufficient conditions for weak Hopf algebras to be Frobenius:

Theorem 9.2.1. [BNS99, Theorem 3.16] Define the space of right integrals in
H by

IR(H) := {r ∈ H | rh = rεs(h) ∀h ∈ H}.

Then the following conditions are equivalent:

(i) H is a Frobenius algebra;

(ii) dimk IR(H) = dimkHt;
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(iii) There exist non-degenerate integrals in H;

(iv) H∗ is a Frobenius algebra.

Proposition 9.2.2. Let H be a weak Hopf algebra. If H is a free right Hs- or
Ht-module, then H is a Frobenius algebra.

Proof. Assume that H is a free right Hs-module. Then dimkH
∗ = dimkH =

rankHsH dimkHs and H∗ ∼= H ⊗Hs IR(H∗) ∼= IR(H∗)(rankHsH) as vector
spaces by the opcop version of [BNS99, Theorem 3.9]. Hence, dimkH

∗ =
dimk IR(H∗) rankHsH. This implies dimk IR(H∗) = dimkHs = dimkH

∗
t

[BNS99, Lemma 2.6] and from the theorem follows that H is Frobenius.
The case when H is a free right Ht-module is the cop-version.

Remark 9.2.3. The converse of the lemma does not hold. Nikshych and Vain-
erman gave an example of a semisimple (so in particular Frobenius) weak Hopf
algebra which is not a free Ht- or Hs-module [NV00, Example 7.3]. This is also
an example of a weak Hopf algebra, which has an H-comodule algebra over
which it is not free.

Iovanov and Kadison [IK09] gave a different condition for a weak Hopf
algebra to be Frobenius:

Proposition 9.2.4. [IK09, Theorem 2.2] Let H be a weak Hopf algebra and Ht

its base algebra. Assume that all simple Ht-modules have the same dimension,
then H is a Frobenius algebra.

Furthermore, Iovanov and Kadison have constructed a weak Hopf algebra
which is not a Frobenius algebra:

Example 9.2.5. [IK09] Let B be the Taft Hopf algebra k < g, x | gp = 1, xp =
0, xg = λgx >, where p is prime and λ is a primitive p-th root of unity, g is
a group-like element, and x is skew-primitive with ∆(x) = g ⊗ x + x ⊗ 1 and
S(x) = −g−1x. The Jacobson radical JB is Bx, as it is obviously a nilpotent
ideal, and so the simple right B-modules are the one-dimensional modules V0 :=
kε, V1, . . . , Vp−1, where for all i and vi ∈ Vi:

g · vi = λivi, x · vi = 0.

Denote by D the Hopf algebra k < g | gp = 1 >. Let B denote the finite tensor
category of finite dimensional left B-modules. Let A = Md0(k)× . . .×Mdp−1(k)
be a separable algebra, denote by S0, . . . Sp−1 the corresponding non-isomorphic
simple right A-modules with dimk Si = di. Let Ŝi := Homk(Si, k) with the
usual left A-module structure. Then the Ŝi⊗Sj , 0 ≤ i, j ≤ p− 1 are the simple
objects in AMA. Define a functor F : B → AMA into the monoidal category
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of A-bimodules

F : B F1−→ Mfd
D

F2−→ DMfd
D

F3−→ AMfd
A

F1(BV ) = DV

F2(Vk) =
p−1⊕
j=0

V ∗j ⊗ Vk+j

F3(V ∗i ⊗ Vj) = Ŝi ⊗ Sj .

Here, the tensor structure of the categories of bimodules is given by the tensor
product over the algebra, whereas the tensor structure of the categories of
modules over a Hopf algebra is the tensor product over k with diagonal structure
and V ∗ indicates the right dual in that category.

Proposition 9.2.6. [IK09, Proposition 2.5] F above is a tensor functor and the
reconstructed weak Hopf algebra K := Endk(F ) is not Frobenius unless di = dj
for all i and j.

Note that the functor F2 is defined slightly different then in [IK09], because
otherwise F would not map V0 to A (the unit object of AMA). In fact, if F2 is
defined as in [IK09], then dim(F (V0)) =

∑
i didp−i 6= dim(A) =

∑
i d

2
i .

However the proof works analogously and the arguments to show that F2 is a
tensor functor are the same. We only have to check that if for all k:

∑
j djdk+j =

dimk(F (Vk)) = dimk(F (soc(PB(Vk)))) = dim(F (Vk+1)) =
∑

j djdk+1+j , then
all the di’s are equal (see proof of Proposition 9.4.2 below). This is in fact
true, since in particular

∑
j d

2
j =

∑
j djdk+j for all k and the Cauchy-Schwarz

inequality implies that di = dj for all i and j.

9.3 Projectivity over Weak Hopf Subalgebras

Definition. [NV02, Section 2.1] A morphism of weak Hopf algebras H
and H ′ is an algebra and coalgebra map α : H → H ′ with S′ ◦ α = α ◦ S. A
subalgebra K ⊂ H is a weak Hopf subalgebra if the inclusion map is a weak
Hopf algebra morphism. In particular, Kt = Ht and Ks = Hs.

Definition. [EO04] Let C and D be multi-tensor categories and F : C → D a
tensor functor. F is called surjective if all objects of B are sub-quotients of
images of objects of C.

Theorem 9.3.1. [EO04, Theorem 2.5 and Section 3] Let C and D be multi-
tensor categories and F : C → D a surjective tensor functor. Then F maps
projective objects to projective ones.
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Lemma 9.3.2. Let K ⊂ H be a weak Hopf subalgebra. Then the functor

restr. : HMfd → KMfd, HV 7→ KV

is a surjective tensor functor.

Proof. If V is a left K-module, then KV ∼= K ⊗K V as left K-modules, and
this is a quotient of K ⊗ V , which in turn is a K-submodule of H ⊗ V .

Theorem 9.3.3. If H is a weak Hopf algebra and K a weak Hopf subalgebra
of H, then H is a projective right and left K-module.

Proof. Theorem 9.3.1 implies that the functor restr. from the lemma maps pro-
jective objects to projective ones.

9.4 Freeness over Weak Hopf Subalgebras — a Coun-

terexample

Suppose the Nichols-Zöller Theorem would hold for weak Hopf algebras. Then
for a weak Hopf subalgebra K ⊂ H there would exist an n ∈ N with H ∼= K(n)

as left and right K-modules. If now H is Frobenius, then so would be K,
because then (K∗)(n) ∼= H∗ ∼= H ∼= K(n) as right K-modules. In this section
we will construct a Frobenius weak Hopf algebra H, which has a non-Frobenius
weak Hopf subalgebra K, and therefore H can not be a free right and left
K-module. In our example, K is the reconstructed weak Hopf algebra from
Proposition 9.2.6.

Lemma 9.4.1. Let C and B be finite tensor categories and G : C → B a
surjective tensor functor which satisfies

(*) G(V ⊗W ) = G(V )⊗G(W ), G(1C) = 1B, G(V ∗) = G(V )∗,

for all V,W ∈ C. Let A be a separable algebra and F : B → AMfd
A a tensor

functor. Let K := Endk(F ) and H := Endk(FG) be the reconstructed weak
Hopf algebras as in Theorem 7.2.3. Then K is a weak Hopf subalgebra of H
with K ↪→ H, η 7→ η̃, where η̃X = ηG(X). Moreover, the following diagram
commutes:

C
IFG //

G
��<

<<
<<

<<
< HMfd

restr.
ttjjjjjjjjjjjjjjjjjj

baseH

qq

B
IF //

F ""EE
EE

EE
EE

E KMfd

baseKyyttttttttt

AMA.
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Proof. The map K ↪→ H is an inclusion since G is surjective. Clearly, it
is an algebra morphism. Moreover, ∆H(η̃) = ∆K(η), εH(η̃) = εK(η), and
SH(η̃) = SK(η) because of (*); hence it is a weak Hopf algebra morphism.

For the commutativity of the diagram, we only have to check that the upper
quadrangle commutes. In fact, the lower and the outer triangle commute by re-
construction theory (Theorem 7.2.3), and obviously also the right triangle com-
mutes. The quadrangle commutes since restr.(FG(V ), µV ) = (F (G(V )), µG(V ))
for all V ∈ C, and therefore restr. IFG = IF G.

Proposition 9.4.2. Let B be as in Proposition 9.2.6 and let C be the Hopf
algebra k < g, x, y | gp = 1, xp = yp = 0, xg = λgx, yg = λ−1gy, xy = λyx >,
where the Hopf algebra structure of g and x is as for B and also y is (g, 1)-
skew-primitive. Hence B ⊂ C is a Hopf subalgebra. Denote by C and B the
finite tensor categories of finite dimensional left C-modules and B-modules,
respectively. Let the algebra A, the di’s, and the tensor functor F : B → AMfd

A

be defined as in Proposition 9.2.6, and denote by G the restriction functor
restr. : C → B. Let H := Endk(FG) and K := Endk(F ) be the reconstructed
weak Hopf algebras with base A. Then

(i) H is a Frobenius algebra;

(ii) If there exist i and j ∈ {0, . . . , p− 1} with di 6= dj, then for every m ∈ N,
H(m) is not a free left K-module.

Proof. G is a surjective tensor functor by 9.3.2 and it satisfies (*). Therefore
K is a weak Hopf subalgebra of H and the diagram from above commutes.

The Jacobson radical JC of C is Cx + Cy (as it is nilpotent). Denote by
V0, . . . , Vp−1 the simple C or B modules (as in 9.2.6) with x · vi = y · vi = 0 and
g · vi = λivi for all i, and vi ∈ Vi. Note that Vi ⊗ Vj ∼= Vi+j . Denote by PC(Vi)
and PB(Vi) the corresponding projective covers in C and B, respectively. By
[IK09, Example 2.4] we know that for all i

soc(PB(Vi)) ∼= Vi+1,

where Vp = V0. In contrast, C is symmetric (see Appendix A.4) by [Lor97, 2.5
and 4.2], since C is unimodular with left and right integral

∑p−1
i=0 g

ixp−1yp−1

and S2 is inner. Hence, for all i

soc(PC(Vi)) ∼= Vi.

To see that H is Frobenius, we have to check that for all principle indecompos-
able modules P of H, dim(P/Jac(H)P ) = dim(soc(P )) (see Appendix A.4.1).
The diagram in Lemma 9.4.1 implies that this is true since for all i = 0, . . . , p−1
dim(FG(soc(PC(Vi))) = dim(F (Vi)) = dim(F (PC(Vi)/JCPC(Vi)).
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In [Lor97, 4.2] and [IK09, Example 2.4] it was shown that

PC(V0) = k < c(r,s)|0 ≤ r, s ≤ p− 1 >, where c(r,s) =
p−1∑
i=0

xrysgi;

and ∀r : PB(Vr) = k < b(0)
r , b(1)

r , . . . , b(p−1)
r >, where b(s)r :=

p−1∑
i=0

λi(s−r)gixs.

Moreover, the Jacobson radicals JC and JB are Hopf ideals and therefore

PC(Vi) ∼= PC(V0 ⊗ Vi) ∼= PC(V0)⊗ Vi and PB(Vi) ∼= PB(V0)⊗ Vi

for all i (see for example [Lor97, 3.3]). Hence G(PC(V0)) ∼=
⊕p−1

j=0 PB(Vj), since

x · c(s,r) = c(s+1,r), g · c(s,r) = λs−rc(s,r) and on the other hand x · b(s)r = b
(s+1)
r ,

g · b(s)r = λs−rb
(s)
r . This yields

G(PC(Vi)) ∼= G(PC(V0)⊗Vi) ∼= G(PC(V0))⊗Vi ∼=
p−1⊕
j=0

PB(Vj)⊗Vi ∼=
p−1⊕
j=0

PB(Vj)

for all i.

Suppose that H(m) is a free left K-module for some m ∈ N, that is
H(m) ∼= K(n) as K-modules for some n. Then

p−1⊕
i=0

restr.(IFG(PC(Vi)))(mni) ∼= restr.(HH(m)) ∼= KK
(n) ∼=

p−1⊕
i=0

IF (PB(Vi))(nni),

where ni = dim(IF (Vi)) = dim(F (Vi)) =
∑p−1

j=0 djdi+j and indices are modulo
p. The foregoing observation and the commutativity of the diagram in Lemma
9.4.1 imply

p−1⊕
i=0

restr.(IFG(PC(Vi)))(mni) ∼=
p−1⊕
i=0

(IFG(PC(Vi)))(mni)

∼=
p−1⊕
i=0

(IF (PB(Vi)))(
P

j mnj).

Hence if H(m) is a free K module of rank n then
∑

jmnj = nni for all i and
therefore n0, . . . np−1 are pairwise equal. In particular,

∑
i d

2
i =

∑
i didi+j for

all j; and by Cauchy-Schwarz di = dj for all i and j.

Remark 9.4.3. In this example, H is a weak Hopf module in MH
K and K is a

quasi-Frobenius H-simple H-comodule algebra. In fact, Ht = Kt is a simple
object in KMfd, since it is the unit object, and the unit object in B is simple.
By Lemma 9.1.1, K is K-simple as a K-comodule algebra, and therefore also
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H-simple as an H-comodule algebra. K is quasi-Frobenius, because weak Hopf
algebras are quasi-Frobenius by [BNS99, Theorem 3.11]. Hence, as I have al-
ready mentioned in the introduction of this chapter, for arbitrary weak Hopf
algebras [Skr07, Theorem 3.5] is not true in general, and therefore in particular
its proof can not be transferred to weak Hopf algebras. However, for the case
when H is free as a right Hs-module, we can prove that if A is a finite dimen-
sional H-simple H-comodule algebra and M ∈MH

A , then a finite direct sum of
copies of M is a free A-module. This will be done in the next section with a
different proof then that of [BNS99, Theorem 3.11].

9.5 Projectivity of Weak Hopf Modules over Quasi-

Frobenius H-Simple H-Comodule Algebras

Proposition 9.5.1. Let H be a weak Hopf algebra which is free as a right
Hs-module. Let A be a finite dimensional H-simple right H-comodule algebra
which is quasi-Frobenius. Then every finite dimensional object M ∈ MH

A is a
projective A-module.

The proof of the proposition uses the same idea as the proof of the Nichols-
Zöller-Theorem for Hopf algebras.

Proof. Let t be the rank of H as an Hs-module. Let 0 6= M ∈MH
A . It is known

from 8.3.2 that M is a generator forMA and so in particular M is faithful. It is
a well known fact that since A is quasi-Frobenius there exists an integer r such
that M (r) ∼= F ⊕E, where F is a free A-module of rank n 6= 0 and and E is not
faithful, [CR62, §59] (analogous to [NZ89, Proposition 4]). The isomorphisms
in Lemma 8.1.6 and the exactness of V =A − for a right A-module V , and of
−=A H (see 8.1.5 and proof of 10.1.1) imply

M (r) =A H︸ ︷︷ ︸ ∼= (H ⊗Hs M·)
(r) ∼= M (tr) ∼= F (t) ⊕ E(t)

‖ o︷ ︸︸ ︷
F =A H︸ ︷︷ ︸ ⊕ E =A H

‖ o

(A=A H)(n) ∼= (H ⊗Hs A·)
(n) ∼= F (t)

which implies that E =A H ∼= E(t) by the Krull-Schmidt theorem. However,
if E 6= 0, then 0 6= E =A H ∈ MH

A is again a generator for MA by Corollary
8.3.2, which is a contradiction to the fact that E is not faithful. Hence, E = 0
and M (r) is a free A-module.
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Remark 9.5.2. In the proposition it suffices to assume that A is right Kasch, be-
cause finite dimensional H-simple H-comodule algebras which are right Kasch
(see Appendix A.3) are quasi-Frobenius by Corollary 8.3.3.

Corollary 9.5.3. Let H be a weak Hopf algebra which is a free left Hs-module
and let A be a finite dimensional quasi-Frobenius H-simple right H-comodule
algebra. Let M be a nonzero finite dimensional object in MH

A , then M is a
progenerator for MA.

Proof. M is a projective right A-module by the theorem. It is a generator by
Corollary 8.3.2.

Conjecture 9.5.4. Let H be a weak Hopf algebra and let A be a finite dimen-
sional H-simple right H-comodule algebra which is quasi-Frobenius. Then every
finite dimensional object M ∈MH

A is a projective A-module.

In the following chapter, exact module categories over weak Hopf algebras
that satisfy this conjecture, will be classified. Hence, if the conjecture could be
confirmed, then a full classification of exact module categories over any weak
Hopf algebra could be achieved by means of the results in Theorem 10.2.6,
in the sense that Andruskiewitsch and Mombelli’s classification for the Hopf
algebra case [AM07] could be generalized to arbitrary weak Hopf algebras.





Chapter 10

Module Categories over Weak

Hopf Algebras

As we have seen in Chapter 7, the category C of finite dimensional left modules
over a weak Hopf algebra H is a finite multi-tensor category. Thus, it makes
sense to define module categories over C and in this case we will refer to those
as module categories over the weak Hopf algebra H.

In the following let H be a (finite dimensional) weak Hopf algebra, and C :=
HMfd the finite multi-tensor category of finite dimensional left H-modules.

10.1 Module Categories Induced by H-Comodule

Algebras

In this section we will see that H-comodule algebras induce module categories
over H, and we will investigate under which condition two such module cate-
gories are equivalent.

Lemma 10.1.1. For a finite dimensional left H-comodule algebra A, AMfd is
a module category over C with the diagonal structure. That is, as in Lemma
8.1.4, if X ∈ C and M ∈ AMfd, then X <AM is a left A-module via

a(
∑
i

xi ⊗mi) =
∑
i

a(−1)xi ⊗ a(0)mi,

for a ∈ A,
∑

i xi ⊗mi ∈ X <AM . The associativity m is the identity and the
unit isomorphism is given by

`M : Ht <AM →M,
∑
i

yi ⊗mi 7→
∑
i

miε(yi).
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Proof. For a finite dimensional left A-module M the functor −<AM is exact.
In fact, if X ∈ C, then X <AM is a subspace of X ⊗M . Let now

0→ X
f→ Y

g→ Z → 0

be a short exact sequence in C. Consider the sequence

0→ X <AM
f⊗id|

X<AM−−−−−−−−−→ Y <AM
g⊗id|

Y <AM−−−−−−−−→ Z <AM → 0

in AMfd. Then ker(f ⊗ id|X<AM ) ⊂ ker f ⊗ id = 0, and (g ⊗ id|Y<AM ) ◦ (f ⊗
id|X<AM ) = gf ⊗ id|X<AM = 0. Moreover, if

∑
i yi ⊗ mi =: y ∈ ker(g ⊗

id|Y<AM ) ⊂ ker(g ⊗ id), then there exist
∑

j xj ⊗ mj =: x ∈ X ⊗ M with
(f ⊗ id)(x) = y, and therefore (f ⊗ id)(

∑
j 1A(−1)xj ⊗ 1A(0)mj) =

∑
j 1A(−1)f(xj)⊗

1A(0)mj =
∑

i 1A(−1)yi1
A
(0)⊗mi = y. With a similar argument, one can show that

g ⊗ id|Y<AM is surjective.

Obviously, the pentagon property is satisfied. It remains to check the prop-
erties of the unit morphism `. For M ∈ AMfd, `M is A-linear since∑

i

a(0)miε(a(−1) ⇀ yi) =
∑
i

a(0)miε(a(−1)yi)

=
∑
i

a(0)1
A
(0)miε(a(−1)1

A
(−1))(1

A
(−2)yi)

=
∑
i

a1A(0)miε(1A(−1)yi) by (7.3)

= a(
∑
i

1A(0)miε(1A(−1) ⇀ yi))

= a(
∑
i

miε(yi))

for
∑

i yi ⊗mi ∈ Ht <AM , where Ht is the unit object of C with H-action ⇀

(see Proposition 7.2.1). We also have to show that ` satisfies (1.2), that is for
X ∈ C and M ∈ AMfd: idX ⊗ `M = rX ⊗ idM , where rX is the right unit
constraint of C as in Proposition 7.2.1. In fact for x ∈ X, y ∈ Ht and m ∈M :

(rX ⊗ idM )(1A(−2)x⊗ 1A(−1) ⇀ y ⊗ 1A(0)m)

= S−1(εt(1A(−1)y))1A(−2)x⊗ 1A(0)m

= S−1(εt(1A(−1)))1
A
(−2)S

−1(y)x⊗ 1A(0)m by 7.1.2 and (7.22)

= εs(S−1(1A(−1))1
A
(−2))S

−1(y)x⊗ 1A(0)m by 7.1.2, (8.7), (7.16), (7.17)

= 1A(−1)S
−1(y)x⊗ 1A(0)m by 7.1.2 and (8.7)

= 1A(−2)S
−1(y)x⊗ 1A(0)mε(1

A
(−1))

= 1A(−2)x⊗ 1A(0)mε(1
A
(−1)y) by (7.22)

= (idX ⊗ `M )(1A(−2)x⊗ 1A(−1) ⇀ y ⊗ 1A(0)m).
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10.1.1 Morita Contexts for Module Categories over H Arising

from H-Comodule Algebras

In the following sections we want to formulate a Morita equivalence for H-
comodule algebras in the sense that we can decide under which conditions a
Morita context (A,M,Q,B, α, β) for AMfd ≈ BMfd, where A and B are H-
comodule algebras, induces a C-module category equivalence. As it turns out,
this is the case whenever M is a weak Hopf module. We have seen in Chapter
8 that in this case the Morita equivalence also induces an equivalence of the
categories of relative weak Hopf modules over A and B. The Hopf algebra
version of the following results were proven in [AM07, Proposition 1.23 and
1.24].

Lemma 10.1.2. Let A and B be finite dimensional left H-comodule algebras
and M a finite dimensional object H

BMA, then M ⊗A − : AMfd → BMfd is
a C-module functor, together with the natural isomorphism

cM : M ⊗A (−<A −)→ −<B (M ⊗A −),

which is defined by

cMX,V : M ⊗A (X <A V )→ X <B (M ⊗A V ) (10.1)

m⊗A (1A(−1)x⊗ 1A(0)v) 7→ m(−1)1
A
(−1)x⊗m(0) ⊗A 1A(0)v

= m(−1)x⊗m(0) ⊗A v,

for X ∈ C, V ∈ AMfd.

Proof. The inverse of cMX,V is given by

1B(−1)x⊗ 1B(0)m⊗A v 7→ 1B(0)m(0) ⊗A (1A(−1)S
−1(1B(−1)m(−1))1

B
(−2)x⊗ 1A(0)v)

= 1B(0)m(0) ⊗A (1A(−1)S
−1(m(−1))S

−1(εs(1B(−1)))x⊗ 1A(0)v)
(8.7)
= m(0) ⊗A (1A(−1)S

−1(m(−1))x⊗ 1A(0)v). (10.2)

These maps are actually mutually inverse, since for all m ∈ M , x ∈ X and
v ∈ V :

m(0)⊗A(1A(−1)S
−1(m(−1))m(−2)x⊗ 1A(0)v)

= m(0) ⊗A (1A(−1)S
−1(εs(m(−1)))x⊗ 1A(0)v)

= m1
′A
(0) ⊗A (1A(−1)S

−1(1
′A
(−1))x⊗ 1A(0)v) by (8.15)

= m⊗A (1
′A
(−1)S

−1(1
′A
(−2))x⊗ 1

′A
(0)v by (8.1)

= m⊗A (1A(−1)x⊗ 1A(0)v),

and

m(−1)S
−1(m(−2))x⊗m(0) ⊗A v

= S−1(εt(m(−1)))x⊗m(0) ⊗A v
= 1B(−1)x⊗ 1B(0)m⊗A v. by (8.14)
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They are well-defined, since for a ∈ A

cMX,V (ma⊗A (1A(−1)x⊗ 1A(0)v))

= m(−1)a(−1)x⊗m(0)a(0) ⊗A v
= m(−1)a(−1)x⊗m(0) ⊗A a(0)v

= cMX,V (m⊗A (a(−1)x⊗ a(0)v))

and

(cMX,V )−1(1B(−1)x⊗ 1B(0)ma⊗A v)

= m(0)a(0) ⊗A (1A(−1)S
−1(m(−1)a(−1))x⊗ 1A(0)v)

= m(0) ⊗A (a(−1)S
−1(a(−2))S

−1(m(−1))x⊗ a(0)v)

= m(0) ⊗A (1A(−1)S
−1(m(−1))x⊗ 1A(0)av) by (8.14)

= (cMX,V )−1(1B(−1)x⊗ 1B(0)m⊗A av).

Obviously, cMX,V is a B-module morphism. It remains to shown that cM satisfies
(1.3) and (1.4), that is for V ∈ AMfd, X,X ′ ∈ C we have to check that
(idX ⊗ cMX′,V ) ◦ (cM

X,X′<AV
) = cMX<X′,V and `M⊗V ◦ cMHt,V

= idM ⊗ `V . This
holds, for if x ∈ X, x′ ∈ X ′, y ∈ Ht, m ∈M and v ∈ V then

(idX ⊗ cMX′,V ) ◦ (cMX,X′<AV )(m⊗A (1A(−2)x⊗ 1A(−1)x
′ ⊗ 1A(0)v))

= m(−2)x⊗m(−1)x
′ ⊗m(0) ⊗A v

= m(−1)(1(1)x⊗ 1(2)x
′)⊗m(0) ⊗A v

= cMX<X′,V (m⊗A (1A(−2)x⊗ 1A(−1)x
′ ⊗ 1A(0)v))

and

`M⊗V (cMHt,V (m⊗A (1A(−1) ⇀ y ⊗ 1A(0)v)))

= m(0) ⊗A vε(εt(m(−1)y)) by (7.26)

= m(0)1
A
(0) ⊗A vε(m(−1)1

A
(−1))ε(1

A
(−2)y) by (7.3)

= m⊗A 1A(0)vε(1
A
(−1)y)

= (idM ⊗ `V )(m⊗ 1A(−1) · y ⊗ 1A(0)v).

Proposition 10.1.3. Let A be a left H-comodule algebra, and M ∈ HMA. As-
sume furthermore that M is a progenerator in MA and let B := EndA(M) and
Q := HomA(M,A). Then (M ⊗A −, cM ) : AMfd → BMfd and
(Q ⊗B −, cQ) : BMfd → AMfd are quasi inverse C-module category equiv-
alences, where cM and cQ are defined as in the lemma above. The natural
isomorphisms α : Q⊗B M ⊗A − → id

AM and β : M ⊗A Q⊗B − → id
BM are



10.1 Module Categories Induced by H-Comodule Algebras 105

given by

αV : Q⊗B M ⊗A V
∼=→ V

q ⊗B m⊗A v 7→ q(m)v

and

βW : M ⊗A Q⊗B W
∼=→W

m⊗A q ⊗B w 7→ (mq)w,

where mq ∈ B with (mq)(m′) := mq(m′).

Proof. B is a left H-comodule algebra and M ∈ H
BMA and Q ∈ H

AMB by
the cop-version of Corollary 8.5.2. By the lemma above, (M ⊗A −, cM ) and
(Q⊗B−, cQ) are C-module functors. They are mutually inverse category equiv-
alences and α and β are well-defined natural isomorphisms, by Morita theory.
It remains to show that α and β satisfy (1.6) and (1.7), that is for X ∈ C,
V ∈ AMfd and W ∈ BMfd the following equations should hold:

αX<AV = (idX ⊗ αV )(cQX,M⊗AV
◦ (idQ ⊗ cMX,V ))

and βX<BW = (idX ⊗ βW )(cMX,Q⊗BW
◦ (idM ⊗ cQX,W )).

If m ∈M , q ∈ Q, x ∈ X, v ∈ V , and w ∈W , then

(idX ⊗ αV )(cQX,M⊗AV
◦ (idQ ⊗ cMX,V ))(q ⊗B m⊗A (1A(−1)x⊗ 1A(0)v))

= q(−1)m(−1)x⊗ q(0)(m(0))v

= q(m)(−1)x⊗ q(m)(0)v (*)

= αX<AV (q ⊗B m⊗A (1A(−1)x⊗ 1A(0)v)),

and

(idX ⊗ βW )(cMX,Q⊗AW
◦ (idM ⊗ cQX,W ))(m⊗A q ⊗Q (1B(−1)x⊗ 1B(0)w))

= m(−1)q(−1)x⊗ (m(0)q(0))w

= (mq)(−1)x⊗ (mq)(0)w (**)

= βX<BW (m⊗A q ⊗Q (1B(−1)x⊗ 1B(0)w)),

Here (*) is the dual version of

(h(1) • q)(h(2) ·m)
(8.26)

= h(1) · q(S(h(2))h(3) ·m)
(7.21)

= h1(1) · q(S(1(2)) ·m)
(8.26)

= h · q(m),

and (**) is the dual version of

(h(1) ·m)(h(2) • q)(m̃)
(8.26)

= (h(1) ·m)(h(2) · q(S(h(3)) · m̃))
(8.18)

= h(1) · ((mq)(S(h(2)) · m̃)
(8.25)

= (h • (mq))(m̃).
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where A and therefore also B are now H-module algebras and M ∈ B(HM)A
and Q ∈ A(HM)B (see 8.5.1); and h ∈ H, q ∈ Q and m, m̃ ∈M .

Definition. As in [AM07] a Morita context (A,M,Q,B, α, β) (see Appendix
A.1) for H-comodule algebras A and B will be called an equivariant Morita
context if M ∈ H

BMA.

Proposition 10.1.4. Let A and B be left H-comodule algebras. Equivalences
of module categories AMfd → BMfd over C are in bijective correspondence
with equivariant Morita contexts for A and B.

Proof. If (A,M,B,Q, α, β) is an equivariant Morita context for A and B, then
(M ⊗A −, cM ) : AMfd → BMfd is an equivalence of module categories over
C by the foregoing proposition.

Conversely, let (F, c) : AMfd → BMfd be an equivalence of C-module
categories. With Morita theory we obtain a Morita context (A,M,Q,B, α, β)
for A and B. We will show that M ∈ H

BMA. Define a costructure on M by

δM : M → H <A (M ⊗A A) ∼= H <AM, m 7→ cH,A(m⊗A 1A(−1) ⊗ 1A(0)).

Let X ∈ C and V ∈M. For x ∈ X and v ∈ V define morphisms f(x) : H → X,
h 7→ hx in C and gv : A→ V , a 7→ av inM. As c is a natural isomorphism the
following diagram is commutative:

M ⊗A (H <A A)
cH,A //

(F (−<A−))(f(x), g(v))

��

H <B (M ⊗A A)

(−<BF (−))(f(x), g(v))

��
M ⊗A (X <A V )

cX,V // X <B (M ⊗A V ) .

With the definition of δM this implies

cX,V (m⊗ 1A(−1)x⊗ 1A(0)v) = m(−1)x⊗m(0) ⊗A v, (10.3)

for all m ∈ M . Hence, if we can shown that δM is a weak Hopf bimodule
structure for M , then c equals cM defined in (10.1). On the other hand, if M
is a weak Hopf bimodule in H

BMA, then for m ∈M :

cMH,A(m⊗ 1A(−1) ⊗ 1A(0)) = m(−1) ⊗m(0)

and we would have the desired bijective correspondence. Thus it remains to
show that δM is actually a comodule structure for M and that it is (B,A)-
bilinear. Let m ∈M , then (∆⊗ id)(δM (m)) because

(∆⊗ id)(cH,A(m⊗ 1A(−1) ⊗ 1A(0)))

= cH<H,A(m⊗ 1A(−2) ⊗ 1A(−1) ⊗ 1A(0)) by the diagram below

= (id⊗ cH,A)(cH,H⊗A(m⊗ 1A(−1) ⊗ 1A(0)(1
′A
(−1) ⊗ 1′A(0))) by (1.3) and (8.6)

= (id⊗ cH,A)(δM (m)⊗ 1A(−1) ⊗ 1A(0)) by (10.3).
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The following diagram commutes by the naturality of c:

M ⊗A (H <A A)
cH,A //

(F (−<AA))(∆)

=id⊗∆⊗id ��

H <B (M ⊗A A)

(−<BF (A))(∆)

=∆⊗id⊗id��
M ⊗A (H <H <A A)

cH<H,A // H <H <B (M ⊗A A) .

In the same way the diagram

M ⊗A (H <A A)
cH,A //

(F (−<AA))(εt)

=id⊗εt⊗id ��

H <B (M ⊗A A)

(−<BF (A))(εt)

=εt⊗id⊗id��
M ⊗A (Ht <A A)

cHt,A // Ht <B (M ⊗A A) .

commutes and therefore

(ε⊗ id)(cH,A(m⊗ 1A(−1) ⊗ 1A(0)))

= `M (εt ⊗ id)(cH,A(m⊗ 1A(−1) ⊗ 1A(0)))

= `M (cHt,A(id⊗ εt ⊗ id)(m⊗ 1A(−1) ⊗ 1A(0)))

= (id⊗ `M )((id⊗ εt ⊗ id)(m⊗ 1A(−1) ⊗ 1A(0))) by (1.4)

= m⊗ 1A(0)ε(1
A
(−1)) = m⊗ 1A,

for every m ∈ M , which implies (ε ⊗ id) ◦ δM = idM . Finally, δM is A-linear
and B-linear because

cH,A(bm⊗ 1A(−1) ⊗ 1A(0)) = cH,A(b(m⊗ 1A(−1) ⊗ 1A(0))) = b cH,A(m⊗ 1A(−1) ⊗ 1A(0)),

since c is B-linear; and

cH,A(ma⊗ 1A(−1) ⊗ 1A(0)) = cH,A(m⊗ a(−1) ⊗ a(0)))

= m(−1)a(−1) ⊗m(0) ⊗ a(0) by (10.3)

= cH,A(m⊗ 1A(−1) ⊗ 1A(0)))a

for m ∈M , a ∈ A and b ∈ B.

10.1.2 Module Categories Induced by Smash-Products

Proposition 10.1.5. Let R be a finite dimensional left H-module algebra and
set A = R#H. Assume that there exists a simple right R-module V such that
M := V#H is a progenerator in MA. Then for B := EndA(M) we obtain an
equivalence of Hcop-module categories

M ⊗A − : AMfd → BMfd,

and moreover B is a simple object in MH
B and BcoH ∼= k.
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Proof. With Morita theory we obtain an equivalence of categories

M ⊗A − : AM→ BM.

By Proposition 10.1.3, it follows that this is actually an equivalence of Hcop-
module categories, since M ∈ BMH

A ; and B is an H-comodule algebra with
trivial coinvariants by Proposition 8.5.2.

It remains to show that B = EndA(M) is a simple object in MH
B . This

follows directly by the fact that V is assumed to be a simple R-module and the
equivalences of categories (Lemma 8.5.5 and Proposition 8.4.12):

MR ≈ MH
A ≈ MH

B

W 7→ W#H 7→ HomA(V#H,W#H).

Remark 10.1.6. Assume that in the proposition H is a free right Hs-module
and R is a simple H-module algebra and moreover A := R#H is quasi-
Frobenius. Then for every simple right R-module V , M := V#H ∈ MH

A is
a progenerator by Corollary 9.5.3.

10.2 Indecomposable Exact Module Categories over

Weak Hopf Algebras

In this section, indecomposable exact module categories over weak Hopf alge-
bras, that satisfy Conjecture 9.5.4, will be classified. This is a generalization
of [AM07, Theorem 3.3]. However, a new proof for this result is given, which
does not use the notion of stabilizers. The Hopf algebra version of this proof is
presented in Chapter 2.

Let again H be a (finite dimensional) weak Hopf algebra and C the finite
multi-tensor category of finite dimensional left H-modules.

10.2.1 Etingof and Ostrik’s Classification of Exact Module Cat-

egories in the Weak Hopf algebra Case

Algebras in the category C are exactly the finite dimensionalH-module algebras.
Hence for a finite dimensional H-module algebra R, the category (HM)R is a
C-module category, where the R-module structure for the tensor product X<M
of a left H-module X and M ∈ (HM)R is given by

(1(1)x⊗ 1(2) ·m) • r = 1(1)x⊗ (1(2) ·m)r

= 1(1)x⊗ (1′(1)1(2) ·m)(1′(2) · r) = 1(1)x⊗ 1(2) · (mr)
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for a ∈ A, m ∈M and x ∈ X.

Proposition 1.3.5 implies the following:

Lemma 10.2.1. Every indecomposable exact module category over H is equiv-
alent to (HMfd)R for some H-module algebra R, which is a finite dimensional
and H-simple.

Proof. By 1.3.5 M ≈ CR = (HMfd)R as C-module categories, where R is an
H-module algebra which is simple in CR, that is R is right H-simple and in
particular it is H-simple. R is finite dimensional, as it is an object in C =
HMfd.

Proposition 10.2.2. If M is an indecomposable exact module category over
H, then there exists a finite dimensional quasi-Frobenius H-simple H-comodule
algebra A such that M≈ AMfd as module categories.

Proof. In view of the lemma, it suffices to prove that for a finite dimensional
H-simple left H-module algebra R, there exists a finite dimensional H-simple
left H-comodule algebra A with AMfd ≈ (HMfd)R as C-module categories.
We can show that the desired equivalence holds for A := Rop#Hcop, which
works as in the Hopf algebra case [AM07, Proposition 1.19].

In fact, Rop is a left Hcop-module algebra and

F : (HMfd)R ≈ Rop#HcopMfd

as abelian categories by Lemma 8.4.13. Since A := Rop#Hcop is a right Hcop-
comodule algebra, it is a left H-comodule algebra with opposite costructure
given by λ(r#h) = h(1) ⊗ r#h(2).

Then, F is an equivalence of C-module categories together with the natural
isomorphism c which is the identity. It suffices to show that for all X ∈ C,
M ∈ (HMfd)R, cX,M : F (X<M)→ X<A F (M) is a morphism of A-modules.
For x ∈ X,m ∈M,h ∈ H, r ∈ R:

cX,M ((r#h) I (1(1)x⊗ 1(2) ·m))

= idX,M ((h(1(1)x⊗ 1(2)ṁ)) • r)
= (h(1)x⊗ h(2) ·m) • r
= h(1)x⊗ (h(2) ·m)r R-module structure of X <AM in C
= h(1)x⊗ (r#h(2)) I m

= (r#h)(1(1)x⊗ 1(2) ·m) A-module structure of X <AM

= (r#h)cX,M (1(1)x⊗ 1(2) ·m).

R is a left H-module algebra which is simple in (HMfd)R, therefore Rop is
an Hcop-simple left Hcop-module algebra, and Proposition 8.4.12 implies that
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A = Rop#Hcop is an Hcop-simple right Hcop-comodule algebra, hence an H-
simple left H-comodule algebra. Finally, A is quasi-Frobenius by Remark 1.3.1
since AMfd is exact.

10.2.2 Classification of Exact Module Categories by H-

Comodule Algebras

Let H be a weak Hopf algebra and A an H-simple left H-comodule algebra.
In the last chapter a conjecture was formulated (Conjecture 9.5.4) which states
that every finite dimensional object M ∈ MH

A is a projective right A-module,
in particular the opcop version of this would imply that every object of the
form H <A V , where V is a finite dimensional left A-module, is a projective
left A-module. This is satisfied under certain conditions, and in these cases a
classification of module categories over H is possible.

Lemma 10.2.3. Let H be a (finite dimensional) weak Hopf algebra, and A a
finite dimensional H-simple left H-comodule algebra. Assume that one of the
following properties is satisfied:

(i) H is a free left Ht-module;

(ii) H is semisimple and pseudo-unitary [Nik04], that is the categorical
dimension of C = HMfd equals its Frobenius-Perron dimension.

Then every finite dimensional object M ∈ H
AM is a projective left A-module.

Proof. (i) is the opcop-version of 9.5.1.
(ii) If H is semisimple and pseudo-unitary, then so is its dual H∗ [Nik04, Propo-
sition 3.1.5 and Corollary 5.2.6]. A is an H∗-module algebra. By [Nik04, The-
orem 6.1.3], Jac(A) is an H∗-stable ideal and therefore an H-costable ideal.
Since A is H-simple, this implies Jac(A) = 0 and therefore A is a semisimple
algebra.

Proposition 10.2.4. Assume that H is a (finite dimensional) weak Hopf al-
gebra and A is a finite dimensional H-simple H-comodule algebra, such that
for every finite dimensional left A-module V , H<A V is a projective A-module.
Then AMfd is an indecomposable exact module category over H.

Proof. AMfd is an indecomposable module category by the lemma below, since
A is H-simple. Let V be a right A-module, then − <A V is an exact functor
by 10.1.1. Therefore, if P is a projective object in C, then P <A V is a direct
sum of summands of H <A V , and the claim follows by the assumption about
objects of this form.
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Lemma 10.2.5. Let H be a (finite dimensional) weak Hopf algebra and let A be
a finite dimensional left H-comodule algebra, then AMfd is an indecomposable
module category if and only if A is an indecomposable H-comodule algebra, that
is if I and J are H-costable ideals of A with A = J ⊕ I, then I = 0 or J = 0.

Proof. Analogous to [AM07, Proposition 1.18]

Thus, in the above cases from Lemma 10.2.3, quasi-Frobenius H-simple
H-comodule algebras produce examples of indecomposable exact module cate-
gories over H. These are in fact all the indecomposable exact module categories
over H, as we will see in the next theorem.

Theorem 10.2.6. Let H be a (finite dimensional) weak Hopf algebra and as-
sume that for any finite dimensional quasi-Frobenius H-simple left H-comodule
algebra A, every finite dimensional object in H

AM or in HMA is a projective
left or right A-module, respectively. Let M be a module category over H, then
M is exact and indecomposable, if and only if there exists a finite dimensional
quasi-Frobenius left H-comodule algebra B, which is simple in HMB and has
trivial coinvariants, such that M≈ BMfd as C-module categories.

Proof. Let R and A := Rop#Hcop be as in the proof of 10.2.2. Every finite
dimensional nonzero object inMHcop

A is a projective right A-module and there-
fore a progenerator by Proposition 8.3.4. Hence Proposition 10.1.5 gives us
an equivalence of H-module categories AMfd → BMfd, where B is a finite
dimensional right Hcop-simple right Hcop-comodule algebra with trivial coin-
variants, hence it is a right H-simple left H-comodule algebra. Again, B is
quasi-Frobenius by Remark 1.3.1.

On the other hand, if B is a left H-comodule algebra which is simple in
BMH , then BMfd is an exact indecomposable module category over H by
Proposition 10.2.4, since all finite dimensional objects in H

BM are projective
B-modules by the assumption about H.

Corollary 10.2.7. Let H be a (finite dimensional) weak Hopf algebra which
is free over its bases, that is it is free as a left and right Ht-module. Let M
be a module category over H, then M is exact and indecomposable, if and only
if there exists a finite dimensional quasi-Frobenius left H-comodule algebra B,
which is simple in MH

B and has trivial coinvariants, such that M≈ BMfd as
C-module categories.

Proof. By Lemma 10.2.3 (i) and its op version the requirements of the theorem
are satisfied.

Corollary 10.2.8. Let H be a (finite dimensional) weak Hopf algebra which is
semisimple and pseudo unitary. LetM be a module category over H, thenM is
semisimple and indecomposable, if and only if there exists a finite dimensional
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semisimple left H-comodule algebra B, which is simple in MH
B and has trivial

coinvariants, such that M≈ BMfd as C-module categories.

Proof. Recall that a module category over a semisimple tensor category is exact
if and only if it is semisimple (Remark 1.3.1). We can apply the theorem since
an H-simple H-comodule algebra is semisimple by [Nik04] (see proof of Lemma
10.2.3 (ii)).

Based on Conjecture 9.5.4 the theorem leads to the following:

Conjecture 10.2.9. Let H be a (finite dimensional) weak Hopf algebra and let
M be a module category over H. M is exact and indecomposable, if and only
if there exists a finite dimensional quasi-Frobenius left H-comodule algebra B,
which is simple in HMB and has trivial coinvariants, such that M ≈ BMfd

as C-module categories.
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Appendix A

Some Ring Theoretic Facts

In this chapter we recall some ring theoretic definitions and facts. For more
details and proofs the reader is referred to [Lam98, §1 , §15, §16, and §18].

A.1 Morita Equivalence

Let R be a ring. A generator (for MR) is a right R-module M such that for
every V ∈ MR, V is an epimorphic image of some direct sum M (n). If M is
moreover finitely generated projective, it is called a progenerator (for MR).

Let M ∈MR. Set S := EndR(M) and Q := HomR(M,R), then M ∈ SMR

and Q ∈ RMS , where the left R-action of Q is given by (rq)(m) = rq(m)
and the right S-action is defined by (qs)(m) = q(s(m)). We may define an
(R,R)-bimodule morphism

α : Q⊗S M → R, q ⊗m 7→ q(m),

and an (S, S)-bimodule morphism

β : M ⊗R Q→ S, m⊗ q 7→ mq,

where (mq)(m̃) := mq(m̃). We call (R,M,Q, S, α, β) the Morita context for
M ∈MR.

Theorem A.1.1. Let M be a progenerator for MR, then α and β are isomor-
phisms and

−⊗R Q :MR →MS and −⊗SM :MS →MR

M ⊗R − : RM→ SM and Q⊗S − : SMS → RM

are mutually inverse category equivalences, respectively. Moreover

−⊗R Q ∼= HomR(MR,−) and −⊗SM ∼= HomS(QS ,−)

M ⊗R − ∼= HomR(RM,−) and Q⊗S − ∼= HomS(SQ,−).
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A.2 Trace Ideals

Let M be a right module over a ring R.

TM :=
∑

f∈HomR(M,R)

f(M)

is called the trace ideal of M in R.

Proposition A.2.1. The following properties for a right R-module M are
equivalent:

(i) M is a generator;

(ii) R is a direct summand of M (n) for some n ∈ N;

(iii) TM = R.

A.3 Quasi-Frobenius and Kasch Rings

A ring R is said to be quasi-Frobenius if it is right self-injective and right
Noetherian or, equivalently, if it is left self injective and left Noetherian. R is
called right Kasch, if every simple right R-module can be embedded into R.

Proposition A.3.1. The following properties for a ring R are equivalent:

(i) R is quasi-Frobenius;

(ii) R is right Kasch and every principle indecomposable has a simple socle;

(iii) A right R-module is projective if and only if it is injective.

Here, the socle of a module M is the direct sum of simple submodules of M
and will be denoted by soc(M).

Remark A.3.2. Let R be right Kasch and 0 6= M ∈Mfd
R , then HomR(M,R) 6=

0, and in particular TM 6= 0.

A.4 Frobenius and Symmetric Algebras

Let R be a finite dimensional algebra and let R∗ := Homk(R, k), which has a
natural structure of an (R,R)-bimodule. Then R is a Frobenius algebra if
R∗ ∼= R as right (or equivalently left) R-modules. R is said to be symmetric
if R∗ ∼= R as (R,R)-bimodules.

Clearly, if R is Frobenius then it is self-injective and therefore also quasi-
Frobenius. We know, that for quasi-Frobenius algebras, the socles of principle
indecomposable modules are simple. For Frobenius and symmetric algebras we
have additional conditions for these socles. We have the following equivalences
for a finite dimensional algebra R:
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Proposition A.4.1. (1) R is Frobenius if and only if it is quasi-Frobenius and

dim(P/Jac(R)P ) = dim(soc(P ))

for every principle indecomposable module P .

(2) R is symmetric if and only if it is quasi-Frobenius and

P/Jac(R)P ∼= soc(P )

for every principle indecomposable module P .

A.5 Semilocal and Weakly Finite Rings

A ring R is called semilocal if R/Jac(R) is a semisimple ring, where Jac(R)
denotes the Jacobson radical of R. The set MaxR of maximal ideals of a semilo-
cal ring R is finite and Jac(R) =

⋂
P∈MaxR P .

A ring R is called weakly finite if for every n ∈ N and every pair of n×n-
matrices X,Y ∈ Mn(R), XY = 1 implies Y X = 1.

Proposition A.5.1. Let R be a ring. If R is either

• commutative,

• semilocal, or

• Noetherian

then R is weakly finite. In particular, finite dimensional algebras are weakly
finite.

Proposition A.5.2. The following properties of a ring R are equivalent:

(i) R is weakly finite;

(ii) if M is a finitely generated free R-module of rank n, then every generating
system for M consisting of n elements is a basis.
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theory and C∗-structure. J. Algebra, 221:385–438, 1999.
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[NZ89] W.D. Nichols and M.B. Zöller. A Hopf algebra freeness theorem.
Amer. J. Math. , 111:381–385, 1989.

[Ost03a] V. Ostrik. Module categories over the Drinfeld double of a finite
group. Int. Math. Res. Not., 27:1507–1520, 2003.



122 Bibliography

[Ost03b] V. Ostrik. Module categories, weak Hopf algebras and modular
invariants. Transform. Groups, 8:177–206, 2003.

[PvO07] F. Panaite and F. van Oystaeyen. A structure theorem for quasi-
Hopf comodule algebras. Proc. Amer. Math. Soc., 135:1669–1677,
2007.

[Riv72] N. Saavedra Rivano. Catégories Tannakiennes. Lecture Notes in
Mathematics 265. Springer, 1972.

[Sch92] P. Schauenburg. Tannaka duality for arbitrary Hopf algebras. Al-
gebra Berichte, 66, Verlag Reinhard Fischer, München, 1992.

[Sch04] P. Schauenburg. A quasi-Hopf algebra freeness theorem.
Proc. Amer. Math. Soc., 132:965–972, 2004.

[Skr07] S. Skryabin. Projectivity and freeness over comodule algebras.
Trans. Amer. Math. Soc., 359:2597–2623, 2007.

[SvO06] S. Skryabin and F. van Oystaeyen. The Goldie Theorem for H -
semiprime algebras. J. Algebra, 305:292–320, 2006.

[Swe69] M.E. Sweedler. Hopf Algebras. Benjamin, 1969.
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