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1. SUMMARY 

Pur-alpha is a highly conserved, yet poorly understood, DNA- and RNA-binding protein. When 

bound to DNA, it activates transcription and functions as tumor suppressor, while cytoplasmic 

Pur-alpha was found in transported mRNP-particles that also contained e.g. Staufen and 

FMRP. In the neurodegenerative disease fragile-X associated tremor and ataxia syndrome 

(FXTAS) Pur-alpha is sequestered from its normal function by binding to (CGG)n repeats in the 

mutated Fmr1 mRNA, thereby contributing to the pathogenesis of the disease.  

This thesis presents a functional analysis of Drosophila melanogaster Pur-alpha using the 

well-studied RNA transport processes during oogenesis. The analysis of truncated and/or 

mutated GFP-fusion Pur-alpha protein variants revealed that Drosophila Pur-alpha is 

predominantly cytoplasmic at steady-state but accumulates in the nucleus when RNA binding 

or protein dimerization is impaired. Pur-alpha is enriched in the oocyte during early oogenesis 

and co-purifies with the known RNA transport components Me31B, Cup, Trailor Hitch and 

Exuperantia. The two polar cells at each tip of an egg chamber have particularly high Pur-

alpha levels. Flies carrying hypomorphic alleles of pur-alpha show a temperature-sensitive 

deficiency in egg production due to a follicle cell migration defect, consistent with the 

observed expression in polar cells, which are the main organizers of the follicular epithelium. 

In this newly described early oogenesis phenotype the follicle cells fail to ensheath the 

germline cyst after budding from the germarium and form a lump on one side of the egg 

chamber. Messenger RNAs, as well as predicted targets of miRNAs associated with Pur-alpha, 

are enriched for gene ontology terms of cell-cell junctions. Furthermore, the mRNAs coding 

for the planar cell polarity factor diego (dgo), disheveled (dsh), argonaute-2 (ago2), lerp and 

notch appear to be associated with Pur-alpha, suggesting molecular links to the cell migration 

defect in ovaries of the pur-alpha mutant flies. Many of the mRNAs bound by Pur-alpha share 

an opa like sequence motif consistent of r(CAG)n and r(CAA)n repeats, which can be found in 

many other developmentally regulated transcription units. In vitro studies could confirm this 

binding, suggesting a role of Pur-alpha in other triplet repeat expansion associated 

neurodegenerative diseases.  
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2. INTRODUCTION 

2.1  mRNA transport 

 

It is a well known fact that every single cell of a whole organism is equipped with the same 

genetic material, and that differentiation of precursor cells or stem cells into specialized cell types 

and tissues which are essential for the existence of the organism is dependent on exact regulation 

of gene and protein expression. This regulation is achieved on different levels. On the one hand 

transcription of genes is extensively regulated by different transcription factors and epigenetic 

mechanisms; on the other hand the product of transcription, the mRNA underlies many different 

regulations. Especially mRNA export from the nucleus, mRNA decay, mRNA halflife, mRNA 

stability, splicing and mRNA accessibility for translation can be regulated powerfully by different 

mechanisms. Furthermore, each transcriptional and posttranscriptional regulation stage can be 

modulated at different steps, e.g. gene transcription: transcriptional initiation and elongation can 

be regulated independently. These various regulatory mechanisms constitute a huge field which 

was and still is extensively worked on during the last years of research in molecular biology.  

An important and in the past underestimated mechanism (LECUYER et al. 2007) for spatial and 

temporal regulation of protein expression is mRNA transport (reviewed in (MARTIN and EPHRUSSI 

2009)). Proteins are synthesized at specific cellular compartments after their mRNAs were 

transported actively by molecular motors from the nucleus to the required site of translation. 

During this transport the mRNAs are silenced for translation which can be achieved by 

posttranscriptional regulation through microRNAs (KIEBLER and BASSELL 2006) or binding of 

translational repressors to the transported mRNA (NAKAMURA et al. 2001). The translational 

repression is released at the target site of the mRNA and its translation can take place. This allows 

cells with complex architecture, like neurons, to make independent decisions about the protein 

content at particular cellular regions, for example at dendrites (KINDLER et al. 2005). Spatial 

translation of mRNAs is also important for energetic reasons. This way, protein synthesis only 

occurs at sites where the protein is needed. 

Furthermore, through localized translation protein gradients can be established which are very 

important during development e.g. in Drosophila oogenesis or in neuronal cells (WANG et al. 

2010). 

The most intensively studied mRNA localization events are depicted in Figure 2-1 (taken from 

(MARTIN and EPHRUSSI 2009). Famous examples are the localization of ash1 mRNA in budding yeast 
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(Figure 2-1A), localization of the maternal determinants bicoid, oskar and nanos in the Drosophila 

embryo (Figure 2-1B) and VG1 mRNA in Xenopus oocytes (Figure 2-1C). Moreover, there are 

localized mRNAs in Fibroblasts and neuronal cells (Figure 2-1D-E). 

 

 

Figure 2-1:

 

 Classic examples of localized mRNAs 
(A) In budding yeast, the ASH1 mRNA localizes to the bud tip. (B) In Drosophila embryos, bicoid mRNA 
localizes to the anterior pole; oskar and nanos mRNAs to the posterior pole. (C) In Xenopus oocytes (stage 
IV), Vg1 mRNA localizes to the vegetal pole. (D) In chicken and mammalian fibroblasts, β-actin mRNA 
localizes to lamellipodia. (E) In developing, immature mammalian neurons, β-actin mRNA is present in distal 
growth cones and in mature, fully polarized pyramidal neurons, CamKIIα mRNA is present in distal 
dendrites. (F) In mammalian oligodendrocytes, myelin basic protein (MBP) mRNA localizes to myelinating 
processes that ensheath neuronal axons. (Picture and text taken from Martin & Ephrussi, 2009) 

2.2 Drosophila oogenesis 

 

Drosophila oogenesis is another important biological process where mRNA localization plays a 

major role. In detail, the localization of three RNAs namely oskar, bicoid and gurken leads to 

embryonic axis formation and ensures correct embryogenesis during Drosophila development. 

The translational regulation of the maternal determinants is coupled to their localization. 
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2.2.1 Process of oogenesis 

 

Every female fly has two ovaries, each composed of 14 - 16 ovarioles. Ovarioles are strings of six 

to seven egg chambers which are at sequentially different developmental stages (KING 1970). The 

egg chambers are separated by five to eight stalk cells. At the anterior tip of each ovariole a so 

called germarium is located. Germ line and somatic stem cells are present in the germarium and 

egg chambers bud from this structure. The egg chambers mature along the ovarioles until they 

are laid as mature eggs after 14 developmental stages. Top panel of figure 2-2 shows a schematic 

picture of a Drosophila ovariole (taken from (ROTH and LYNCH 2009)). 

 

 

Figure 2-2:

 

 Schematic picture from a Drosophila ovariole 
germarium at the anterior tip and budding egg chambers at different developmental stages (stage 2 to 
stage 10A) (top picture); germarium (left, bottom picture), stage 9 egg chamber (right, bottom picture) 
(figure taken from (ROTH and LYNCH 2009)) 

As shown in Figure 2-2 in the lower left picture the development of a Drosophila egg starts with 

an asymmetric cell division of the germ line stem cells at the anterior end of the germarium 

(reviewed in (BASTOCK and ST JOHNSTON 2008)). The mother cell closer to the stem cell niche stays a 

germ line stem cell and the produced daughter cell starts to differentiate. After four mitotic 

divisions with incomplete cytokinesis the daughter cell becomes a germline cyst consisting of 16 

cells which are interconnected by ring canals. One of the 16 cells will become the oocyte and the 

15 others assume the nurse cell fate in order to supply the oocyte with nutrients, proteins and 

RNA during the course of development. The two cells with four ring canals develop into pro- 

oocytes in the germline cyst (light blue color, figure 2-2, bottom left picture). Following during this 
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process, cell-fate markers and meiotic chromosome pairing markers become restricted to one of 

the pro-oocytes which then becomes the oocyte (dark blue color, figure 2-2, bottom left picture).   

The germline cyst is enveloped by somatic follicle cells (pink color, figure 2-2, bottom left picture) 

which derive from follicle stem cells in region 2b of the germarium; and finally a stage 1 egg 

chamber with the oocyte located at the posterior buds from the germarium. During the different 

stages of oogenesis the oocyte matures and gets bigger until the nurse cell are squeezed out and 

the mature egg is released at stage 14. 

The polarity of the egg chamber and the oocyte which later defines the body axes of the embryo 

is achieved by complex cell-cell signaling events between somatic and germ line cells. The major 

signaling pathways which are active during these developmental steps are the JAK/STAT and 

Notch signaling pathways. In the end all those signaling events lead to the formation of the 

anterior-posterior-body axis which is defined by oskar mRNA-localization at the posterior pole of 

the oocyte and by anterior localization of bicoid mRNA. The dorso-ventral body axis is defined by 

the position of the nucleus and gurken mRNA (scheme of a stage 9 egg chamber: figure 2-2, 

bottom right picture). 

 

2.2.2  Signaling by Drosophila follicle cells during oogenesis 

 

The follicular epithelium plays a crucial role during all signaling events (reviewed in (WU et al. 

2008)). The first patterning event is the differentiation of a pair of polar cells out of the follicle 

cells at the anterior of the stage 1 egg chamber (red nuclei in Figure 2-3). This differentiation is 

achieved by a Notch signal which is sent from the germ line cyst itself (RUOHOLA et al. 1991) 

(Figure 2-3 A, arrow 1). The polar cells become the main organizers of the follicular epithelium 

(GRAMMONT and IRVINE 2002) during oogenesis. They express the JAK/STAT-ligand Unpaired (Figure 

2-3 A, arrow 2) which induces the cells anterior to the polar cells to become stalk cells (light blue 

nuclei in Figure 3B) (ASSA-KUNIK et al. 2007; XI et al. 2003). Stalk formation itself induces the follicle 

cells anterior to the stalk cells which belong to the younger cyst in the ovariole to overexpress E-

cadherin (GODT and TEPASS 1998) (Figure 2-3 A, arrow 3). E-cadherin now initiates the positioning 

of the oocyte of the younger germ line cyst at the posterior site. This important step is referred to 

the first symmetry-breaking event during development. This germline cyst now buds from the 

germarium and starts a new cycle by inducing its anterior follicle cells to become polar cells 

(TORRES et al. 2003). By stage 5 a further Unpaired signal from the polar cells drives the 

surrounding follicle cells to become terminal follicle cells (black nuclei in figure 2-3). Then a 

signaling cascade between the oocyte, gurken mRNA and Grk protein which are both localized at 
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the posterior side at that time point and the posterior follicle cells induces repolarisation of the 

oocyte. This results in a reorganization of oocyte microtubules which then direct bicoid and oskar 

mRNA to their final destinations, where they at the end determine the anterior-posterior axis of 

the oocyte. This is followed by a movement of the nucleus and gurken mRNA to the anterior 

corner of the oocyte, where a Grk protein signal defines the other main body axis, dorso-ventral 

(Figure 2-3A, stage 7 egg chamber).  

A further important patterning event induced by the follicular epithelium especially by the polar 

cells is border cell formation. Polar cells recruit four to six adjacent follicle cells which become 

border cells (green nuclei, Figure 2-3B). At stage 9 of oogenesis these cells start to delaminate 

from the remaining epithelium, surround the polar cells and start migrating along with the polar 

cells posteriorly through the nurse cells until they reach the anterior tip of the oocyte. 

 

 

Figure 2-3:
A:   Polarization of the egg chamber 

 Signaling by Drosophila follicle cells 

The posterior egg chamber (right) induces polar follicle cell differentiation (dark green) by secreting Delta 
(arrow 1). These induce stalk cell differentiation by secreting Unpaired (arrow 2). This induces E-Cadherin 
upregulation (orange lines, arrow 3), which positions the oocyte of the neighbouring cyst. By stage 5 a 
second Unpaired signal from the polar follicle cells has induced their neighbours to become terminal follicle 
cells (dark orange). gurken RNA (yellow) and protein are present at the oocyte posterior. By stage 7 the 
posterior Gurken has induced the nearest terminal cells to become posterior follicle cells (light green). 
These induce oocyte repolarisation. The oocyte nucleus (dark blue) moves to an anterior lateral position 
(figure and text taken from (BASTOCK and ST JOHNSTON 2008)). 
B:   Schematic picture of stage 6 (left) and 10 (right) follicles  
Nuclei of follicle cells are color coded: oocyte (brown), nurse cells (light brown), central follicle cells (gray), 
polar cells (red), stalk cells (light blue), outer border cells (green), stretched cells (pink), centripetal cells 
(dark blue) and posterior terminal cells (black) (figure taken from (GRAMMONT and IRVINE 2002)). 
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2.3 Messenger ribonucleoprotein complexes 

 

To achieve transport of RNAs to distinct target sites of translation, the cell assembles mRNAs 

already during or shortly after their synthesis within messenger ribonucleoprotein (mRNP) 

complexes. mRNPs are not only mRNA transport granules, they rather serve as key modulators of 

post-transcriptional gene expression in cells (ANDERSON and KEDERSHA 2009). Among the proteins 

in the granules are e.g. RNA binding proteins, translation factors and proteins for mRNA 

modification and decay. The mRNAs which will be transported to their final translation site 

contain cis-acting elements or “zipcodes” which are recognized by trans-acting factors (JAMBHEKAR 

and DERISI 2007). These factors mediate the connection of the mRNPs which contain locally 

needed RNAs, to the cellular transport machinery e.g. to molecular motors like kinesin. Kanai and 

colleagues characterized a RNA transport granule from an adult mouse brain by purification of the 

complex via kinesin (KIF5) (KANAI et al. 2004). Among the 42 proteins identified they found the 

two transported mRNAs Arc and CaMKIIalpha. Using RNA-interference, the following factors were 

found to be essential for the localization of the CaMKII-alpha mRNA: Pur-alpha, hnRNP-U, 

polypyrimidine tract binding protein-associated splicing factor (PSR) and Staufen. Further, they 

identified fragile-X mental retardation protein (FMRP), and its two related proteins (FXR-1 and 

FXR-2), Pur-beta, DDX1/3, SYNCRIP, TLS, NonO, HSPC117, ALY, CGI-99 and EF-1 alpha as 

components of the transport granule. The proteins Pur-alpha and Staufen were identified as 

factors which were associated with kinesin linked RNA-transport in additional studies (ELVIRA et al. 

2006; OHASHI et al. 2002). 

 

2.4 Pur-alpha 

 

Pur-alpha is one of the main components in RNA transport granules as it was found in three 

independent studies (ELVIRA et al. 2006; KANAI et al. 2004; OHASHI et al. 2002). It is a highly 

conserved protein from bacteria to metazoans with only a two amino acid difference between 

human and mouse Pur-alpha (GALLIA et al. 2000; MA et al. 1994). It belongs to the PUR-protein 

family which consists also of Pur-beta and Pur-gamma (reviewed in (JOHNSON 2003)). The name of 

the protein family derives from the binding capacity of the proteins, which bind to purine rich 

nucleic acids. Pur-alpha binds to (GGN)n repeats, so called PUR sequence elements (BERGEMANN 

and JOHNSON 1992). Common structural features of the PUR-protein family are a flexible glycine 

rich N-terminus and a glutamate/glutamine rich C-terminus. The C-terminus also contains a 
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psycho motif (GALLIA et al. 2000; MA et al. 1994). The central regions are the most conserved parts 

of the proteins. Functionally, Pur-alpha has various cellular responsibilities. It is a ubiquitous 

protein expressed in many tissues and present as well in the nucleus of cells as in the cytoplasm. 

 

2.4.1 Structure of Drosophila Pur-alpha 

 

Graebsch and colleagues were able to solve the crystal structure of Drosophila melanogaster Pur-

alpha (GRAEBSCH et al. 2009). The central region of Pur-alpha can be separated into three repeats 

(PUR-repeats) (Figure 2-4A) and the crystal structure of repeat I and II was solved with a 

resolution of 2.1 angstroms (Figure 2-4B). Every PUR-repeat consists of a four-stranded anti-

parallel β-sheet followed by an α-helix at the C-terminus; the repeats are inter-connected by a 

linker region and together make up a PUR-domain. Analysis of all three repeats with SAXS and 

size-exclusion-chromatography revealed that a dimerization of two PUR I+II+III proteins occurs via 

repeat III which is folding into a PUR-domain together with repeat III of the second protein (Figure 

2-4C). 

 

Figure 2-4: Structural models of Drosophila Pur-alpha 
A: domain structure of the for structural studies used protein truncations  
B: crystal structure of PUR-repeat I (green) + II (blue) 
C: top: scheme of dimerization of two Pur-alpha proteins (light grey and dark grey); 
bottom: SAXS model of PUR-domains (blue: repeat I+II, cyan: repeat III+III)  
figures taken from (GRAEBSCH et al. 2009) 
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Functional analyses in this study (GRAEBSCH et al. 2009) revealed that full-length Pur-alpha protein 

binds to a CGG 12mer of single stranded (ss) RNA (Figure 2-5A), which represents the consensus  

sequence of the so called PUR-elements. Binding of one PUR-domain (Pur-alpha I+II) to the 12mer 

CGG ssRNA was less efficient but still reasonable (Figure 2-5B, left panel). If two point mutations 

R80A and R158A were introduced into the protein, the binding to the RNA was completely 

abolished (Figure 2-5B, right panel). The introduction of two other point mutations R65A and 

R142A resulted in slightly reduced binding capacity compared to the unchanged Pur-alpha I+II 

(Figure 2-5C, left panel). As an unspecific control for the experiments PolyA RNA was used (Figure 

2-5C, right panel). 

 

 

Figure 2-5: RNA binding of different Pur-alpha variants 
A: EMSA with full length Pur-alpha and CGG ssRNA (12mer);  
B: EMSA with Pur-alpha repeat I+II and to CGG ssRNA (12mer); Pur-alpha repeat I+II (R80A R158A) fails to 
bind to CGG ssRNA (12mer)  
C: EMSA with Pur-alpha repeat I+II (R80A R142A) and CGG ssRNA (12mer); PolyA RNA: control;  
figures modified after Graebsch et al., 2009 
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2.4.2 DNA bound functions of Pur-alpha 

 

In humans Pur-alpha was discovered by its binding to a DNA sequence upstream of the c-myc 

gene (BERGEMANN and JOHNSON 1992). There it binds to the purine-rich element (PUR) next to the 

center of chromosomal replication. The function of Pur-alpha in this case is not fully understood 

but it is proposed that Pur-alpha stimulates unwinding of the DNA, because it has helix-

destabilizing activity (DARBINIAN et al. 2001a). Furthermore, in eukaryotes, the PUR elements are 

conserved in origins of replication (ITOH et al. 1998), which argues for a role of Pur-alpha in 

replication initiation. Pur-alpha might be also involved in replication-dependent repair of DNA 

lesions, as Pur-alpha deficient cells showed an increased sensitivity for hydroxyurea (a DNA 

replication inhibitor) (WANG et al. 2007) and the anti-tumor drug cisplatin (KAMINSKI et al. 2008). 

In mouse brain extracts Pur-alpha was discovered through its binding capacity to DNA sequences 

in the promoter region of the myelin basic protein gene (HAAS et al. 1995). Pur-alpha works as a 

transcriptional activator for this gene (TRETIAKOVA et al. 1999), but Pur-alpha can also function as 

transcriptional repressor. At least 19 genes are known whose transcription might be regulated by 

Pur-alpha (WHITE et al. 2009). Among these target genes are tumor necrosis factor α (TNF-α) 

(DARBINIAN et al. 2001c), Bax (KIM et al. 2008), Somatostatin (SADAKATA et al. 2000) and 

transforming growth factor-α (TGF-α) (THATIKUNTA et al. 1997). Other negatively regulated genes 

are genes like α-actin (KNAPP et al. 2006), α-myosin (GUPTA et al. 2003) and amyloid-β protein 

precursor (DARBINIAN et al. 2008). The transcriptional activation capacity of Pur-alpha can also be 

hijacked by viruses like e.g. JC polyomavirus (CHEN and KHALILI 1995) and HIV-1 (KRACHMAROV et al. 

1996). Pur-alpha has negative effects on the transcription of its own gene by auto-regulation of 

the pur-alpha promoter (MURALIDHARAN et al. 2001). Additionally, Pur-alpha can control gene 

expression on translational level, as it was shown that it binds to the mRNA transcript of vascular 

smooth muscle α-actin gene to suppress its translation (KELM et al. 1999). 

 

2.4.3 Pur-alpha in cell cycle control and tumor suppression 

 

Many of the genes which are regulated by Pur-alpha are involved in cell proliferation and 

apoptosis like TNF-α, TGF-β, Bax and Somatostatin (see 2.4.2), one may thus consider Pur-alpha to 

have a function in cell cycle control. This is underlined by the interaction of Pur-alpha with cellular 

regulatory proteins like retinoblastoma tumor suppression protein (JOHNSON et al. 1995), E2F-1 

(DARBINIAN et al. 1999), Y-box binding protein (SAFAK et al. 1999), CyclinT1/Cdk9(DARBINIAN et al. 

2001c), Sp1 (TRETIAKOVA et al. 1999) and CyclinA/Cdk2 (LIU et al. 2005). During the cell cycle Pur-
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alpha level is oscillating with a peak at mitosis (ITOH et al. 1998). Furthermore, a tumor 

suppressive function of Pur-alpha was observed in several studies. In many transformed and 

tumor cells, e.g. glioblastoma cells, an overexpression of Pur-alpha suppresses growth (DARBINIAN 

et al. 2001b). Loss of Pur-alpha in prostate cancer leads to faster tumor progression (INOUE et al. 

2008; WANG et al. 2008). This leads to the assumption that Pur-alpha is an essential factor to 

suppress tumor formation and an important cell cycle regulator which can prevent cell cycle 

dysfunctions. 

 

2.4.4  RNA bound functions of Pur-alpha 

 

The role of Pur-alpha as a RNA binding protein is linked to the transport of mRNAs in neurons. 

Pur-alpha binds to BC1 RNA (KOBAYASHI et al. 2000). This RNA is a 152-nt long non coding (nc) RNA 

and controls activity dependent neuronal plasticity by targeting silenced mRNA in RNA transport 

granules to their final destinations (LIN et al. 2008; WANG et al. 2005). Both, Pur-alpha and its 

family member Pur-beta crosslink BC1 mRNA to microtubules (OHASHI et al. 2000). The mRNPs in 

dendrites are equipped with a kinesin motor and are suggested to transport polyribosomes along 

actin filaments and microtubules. Besides Pur-alpha, mammalian (m)-Staufen, Myosin Va and 

FMRP are protein components of the transport granules (OHASHI et al. 2002). A further study 

could also identify Pur-alpha in transport complexes in mouse brain together with m-Staufen and 

FMRP on BC-1 RNA, MAP2- and MAP1B-mRNA (JOHNSON et al. 2006).  

Pur-alpha also binds to the HIV-1 TAR element, which is a RNA element localized in HIV-1-

transcripts (CHEPENIK et al. 1998; KRACHMAROV et al. 1996). The transcriptional activating ability of 

Pur-alpha is hijacked by the virus to stimulate its own transcription. A recent study revealed that 

the HIV-TAR RNA element is processed by Dicer and consequently is a viral microRNA precursor 

(KLASE et al. 2007). Pur-alpha also binds to 7SL-RNA in mouse brain which is involved in 

developmental stage regulation of the myelin basic protein gene (TRETIAKOVA et al. 1998). 7SL-

RNA, BC-1 RNA and the HIV-TAR RNA are all noncoding RNAs which have an intrinsic stem loop 

structure. This might indicate a common sequence motif for the RNA binding of Pur-alpha. 

 



15 

2.4.5 Pur-alpha knockout mouse 

 

The analysis of homozygous Pur-alpha lacking (PURA-/-) mice revealed a crucial role for Pur-alpha 

in post natal brain development. The animals appear normal at birth, at two weeks of age the 

knockout (k.o.) mice develop neurological problems and die at an age of four weeks suffering 

from tremor and seizures (KHALILI et al. 2003). A detailed analysis of the brains showed that there 

were fewer cells in hippocampus, cerebellum and cortex and also cells that lack proliferation. 

Furthermore, significantly reduced numbers of synapses were observed (KHALILI et al. 2003). A 

combination of the important functions of Pur-alpha in RNA transport in neurons and the 

functions in regulation of gene expression might be the reason for this severe phenotype. The 

presence of the Pur-alpha ortholog Pur-beta might diminish the severity of the phenotype by 

adopting some of Pur-alpha´s functions.  

 

2.5 Triplet-repeat associated diseases 

 

Proper mRNP transport is extremely crucial for maintenance of cellular functions especially in 

cells with polar structures like neurons. Triplet repeat expansions  in non-coding regions of RNAs 

cause a number of human diseases like myotonic dystrophy, Huntington´s disease, 

spinocerebellar ataxia type 8 and fragile-X associated tremor and ataxia syndrome (FXTAS) (LI and 

BONINI 2010; ORR and ZOGHBI 2007). One supposed molecular mechanism for the development of 

these diseases is the sequestration of RNA binding proteins to the overrepresented repeats. Thus, 

the proteins cannot fulfill their normal cellular functions anymore. In case of a RNA-transport 

protein, binding to the repeats instead of binding to “zipcode”-sequences may impair transport of 

mRNAs to their destinations. 
 

2.6 Fragile-X associated tremor and ataxia syndrome (FXTAS) 
 

One of these triplet repeat associated diseases is the fragile-X associated tremor and ataxia 

syndrome (FXTAS). FXTAS is caused by (CGG)n-repeats in the 5’-untranslated region (UTR)  of the 

fragile X mental retardation1 (FMR1) gene. Normal FMR1 alleles contain up to 55 CGG-repeats, 

between 55 and 200 repeats a permutation is persisting, which is causing FXTAS. This permutation 

occurs in 1 of 1000 males with an onset of the disease in the 5th decade (O'DONNELL and WARREN 
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2002). The patients suffer from progressive action tremor with ataxia and general brain atrophy 

leading to cognitive decline and dementia (BERRY-KRAVIS et al. 2007). The full mutation of the 

FMR1 gene with over 200 CGG repeats causes the Fragile-X syndrome. The hallmarks of the FXTAS 

pathology are nuclear inclusions in neurons and astrocytes containing FMR1 mRNA and up to 20 

proteins including Pur-alpha (GRECO et al. 2006; GRECO et al. 2002).  

Pur-alpha is supposed to play a major role in the pathogenesis of FXTAS. Jin and colleagues used a 

Drosophila model for FXTAS to show that the expression of r(CGG)90 repeats is sufficient to cause 

a severe neurodegeneration (JIN et al. 2007). They propose that r(CGG)n-binding proteins like 

Drosophila Pur-alpha are sequestered from the normal functions through their binding to the 

permutation RNA. The binding of Pur-alpha to r(CGG)n RNA is direct and specific. Furthermore, 

overexpression of Pur-alpha can rescue the rough eye-phenotype in their fly FXTAS-model which 

was caused by the r(CGG)n mediated neurodegeneration. Thus, they proposed a model in which 

the loss of functional Pur-alpha protein impairs mRNA-transport in neurons and leads to neuronal 

cell death. 
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2.7 Aims of this thesis 
 

Taken all facts together, Pur-alpha is a highly conserved multifunctional protein with widespread 

roles in replication, transcription, cell cycle control and mRNA transport in neurons. It is therefore 

relevant for both, neurological diseases and cancer. All these functions are mediated by Pur-alpha 

as a on the one hand DNA- and RNA-binding protein and on the other hand by interaction with its 

multiple protein binding partners. Although much is already known about Pur-alpha, some 

important clues to reveal Pur-alpha´s whole implications in cellular functions are still missing.  

I therefore wanted to establish functional analysis of Pur-alpha in Drosophila melanogaster. The 

advantage of experiments in this model organism is that in the Drosophila genome only one Pur-

alpha gene exists, while in mammals there are potentially redundant paralogs like Pur-beta and 

Pur-gamma. Furthermore, Drosophila oogenesis is a well studied and easily accessible model 

system for the analysis of RNA transport, thus facilitating the analysis of Pur-alpha´s role as an 

RNA transport factor. 

As Pur-alpha can bind to hairpin-structures in non coding RNAs like BC-1 RNA (KOBAYASHI et al. 

2000) and 7SL-RNA (TRETIAKOVA et al. 1998), and to the viral microRNA precursor HIV-TAR RNA 

(CHEPENIK et al. 1998) I also analyzed a possible function of Pur-alpha in the biogenesis of small 

RNAs. A possible hint for the implication in these processes is the homology to the discovery of 

TAR-RNA binding protein (TRBP), which was also found by binding to the HIV-TAR RNA, and is now 

known as the cofactor of human Dicer (HAASE et al. 2005). 

The discovery of new Pur-alpha bound proteins and RNAs might shed light on the pathogenesis of 

FXTAS. The sequestration of Pur-alpha to the overrepresented (CGG)n-repeats seems to be 

sufficient for the development of the disease (JIN et al. 2007). It is therefore essential to identify 

the physiological binding partners of Pur-alpha, both proteins and mRNAs, as their de-regulation 

may be in part responsible for the pathology of the disease.  
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3. MATERIALS AND METHODS 

3.1 Materials 

3.1.1 Laboratory equipment: 

ABI PRISM 7000 qPCR cycler Applied Biosystems; Foster City, USA 

Agarose gel running chamber Carl Roth GmbH; Karlsruhe, Germany 

FACSCalibur flow cytometer Becton, Dickinson; Franklin Lakes, USA 

Flow buddy CO2-distributer Genesee Scientific; San Diego, USA 

Fly anesthetic pad and pistol Genesee Scientific; San Diego, USA 

INTAS UV Imaging System INTAS; Göttingen, Germany 

LAS 3000 mini Western Imager Fujifilm; Tokyo, Japan 

Leica MZ7 stereomicroscope Leica Microsystems; Wetzlar, Germany 

Leica TCS SP2 confocal microscope Leica Microsystems; Wetzlar, Germany 

PAGE-electrophoresis BioRad; Hercules, USA 

Poly-lysine coated microscope slides Carl Roth GmbH; Karlsruhe, Germany 

Power supply BioRad; Hercules, USA 

Semi-dry blotter BioRad BioRad; Hercules, USA 

SpectroLinker XL1500 UV Crosslinker Spectronics Corporation; Westbury, USA 

SterilGARD cell culture workbench The Baker Company; Sanford, USA 

Table top centrifuge (5417R and 5415R) Eppendorf AG; Hamburg, Germany 

Tank-blotting chamber BioRad; Hercules, USA 

Thermocycler Sensoquest Sensoquest; Göttingen, Germany 

Typhoon 9400 Variable Mode Imager GE Healthcare; Freiburg, Germany 
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3.1.2 Laboratory chemicals: 

Acrylamide 40% Carl Roth GmbH; Karlsruhe, Germany 

Agarose Biozym Biozym Scientific GmbH; Oldendorf, Germany 

Ampicillin Carl Roth GmbH; Karlsruhe, Germany 

Ammonium peroxodisulfate (APS) Roth GmbH; Karlsruhe, Germany 

Bacto Agar Becton, Dickinson; Franklin Lakes, USA 

Bradford Assay BioRad; Hercules, USA 

Bovine serum albumin (BSA) New England Biolabs; Ipswich, USA 

Chloroform Merck Biosciences GmbH; Schwalbach, 

Germany 

Complete® without EDTA (Protease-inhibitor) Roche Diagnostics; Mannheim, Germany 

Coomassie G250 Carl Roth GmbH; Karlsruhe, Germany 

Desoxyribonucleotides (dA/C/G/TTP) Sigma Aldrich; Taufkirchen, Germany 

Dimethyl sulfoxide (DMSO) Carl Roth GmbH; Karlsruhe, Germany 

Dithiothreitol (DTT) Carl Roth GmbH; Karlsruhe, Germany 

Ethanol (p.a.) Merck Biosciences GmbH; Schwalbach, 

Germany 

FACS Flow/Clean/Rinse  Becton, Dickinson; Franklin Lakes, USA 

Fetal bovine serum (FBS)  Thermo Fisher Scientific; Waltham, USA 

Formaldehyde Sigma Aldrich; Taufkirchen, Germany 

Formamide Sigma Aldrich; Taufkirchen, Germany 

Fugene® HD transfection reagent Roche Diagnostics GmbH; Mannheim, 
Germany 

H2O HPLC quality VWR; Ismaning, Germany 

Hepes Carl Roth GmbH; Karlsruhe, Germany 
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Isopropanol (p.a.) Merck Biosciences GmbH; Schwalbach, 
Germany 

Kanamycin Carl Roth GmbH; Karlsruhe, Germany 

Methanol (p.a.) Merck Biosciences GmbH; Schwalbach, 
Germany 

Normal goat serum (NGS) Dianova 

Powdered milk Rapilait Migros; Zürich, Switzerland 

Roti®Aqua Phenol/C/I Carl Roth GmbH; Karlsruhe, Germany 

Roti-liquid barrier marker Carl Roth GmbH; Karlsruhe, Germany 

Saponin Fluka BioCemika; Ulm, Germany 

Sodium dodecyl sulphate (SDS) Merck Biosciences GmbH; Schwalbach, 
Germany 

Sequagel Sequencing System National Diagnostics; Atlanta, USA 

Syber Safe/Gold  Invitrogen; Karlsruhe, Germany 

TEMED Carl Roth GmbH; Karlsruhe, Germany 

Triton X-100 Sigma Aldrich; Taufkirchen, Germany 

Trizol Invitrogen; Karlsruhe, Germany 

Tween 20 Carl Roth GmbH; Karlsruhe, Germany 

[γ 32P] ATP (SRP 501) 

10 mCi/ml; 6000 Ci/mmol; 250 μCi 

Hartmann Analytic; Braunschweig, Germany 

 

All other standard laboratory chemicals were purchased from the Gene Center in house supply. 

 

3.1.3 Enzymes: 

DNAse I, RNAse free Fermentas; St. Leon-Rot, Germany 

Polynucleotidekinase (PNK) with Buffer Fermentas; St. Leon-Rot, Germany 
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Proteinase K Fermentas; St. Leon-Rot, Germany 

T4-DNA Ligase New England Biolabs; Ipswich, USA 

Pfu DNA Polymerase Fermentas; St. Leon-Rot, Germany 

Phusion Hot Start DNA Polymerase Finnzymes 

Superscript II, Reverse Transcriptase Invitrogen; Karlsruhe, Germany 

T7-polymerase laboratory stock 

Taq DNA Polymerase laboratory stock 

Restriction enzymes  

BamHI , BglII , NotI , SpeI 

HinP1I , MspI, XbaI 

New England Biolabs; Ipswich, USA 

 

 

3.1.4 Other materials: 

DyNAmo Flash SYBR Green qPCR Kit Finnzymes 

miScript SYBR Green PCR Kit Qiagen; Hilden, Germany 

QIAGEN Gel extraction Kit Qiagen; Hilden, Germany 

QIAGEN PCR Purification Kit Qiagen; Hilden, Germany 

QIAGEN Plasmid Midi Kit Qiagen; Hilden, Germany 

QIAGEN Plasmid Mini Kit Qiagen; Hilden, Germany 

Sephadex spin column (G25) Roche Diagnostics GmbH; Mannheim, Germany 

Spin column (empty, for IP) MoBiTec; Göttingen, Germany 

SuperSignal West Dura Extended Duration Thermo Fisher Scientific; Waltham, USA 

Whatman 595 ½ Folded Filters Whatman GmbH; Dassel, Germany 
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Blotting paper Machery-Nagel; Düren, Germany 

α-Flag affinity agarose A2220 Sigma Aldrich; Taufkirchen, Germany 

 

3.1.5 Bacterial cells: 

E.coli XL2-blue CaCl2-competent cells Laboratory stock  

 

All E. coli strains were cultivated in LB-medium or in SOC-medium following transformation. 
Antibiotic containing agar plates were purchased from in-house supply. 

SOB-medium 

0.5% (w/v) yeast extract  

2% (w/v) Tryptone  

10 mM NaCl 

2.5 mM KCl 

10 mM MgCl2  

10 mM MgSO4  

pH 7  

 

SOC-medium 

SOB-medium 

20 mM Glucose 

 

LB-medium  1% (w/v) Tryptone  

0.5% (w/v) yeast extract  

1% (w/v) NaCl  

pH 7.2  

 

Antibiotics added to medium after autoclaving:  

100 μg/ml ampicillin (100 mg/ml stock)  

10 μg/ml kanamycin (10 mg/ml stock)  

25 μg/ml chloramphenicol (34 mg/ml stock) 
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3.1.6 Drosophila melanogaster cells: 

63N1 endo-siRNA reporter Hartig et al., 2009  

67-1D siRNA reporter;                       

two perfect binding sites for 

miR-277 in gfp 3´-UTR 

Förstemann et al., 2007 

ban-mi miRNA reporter;                    

four bulged binding sites for 

bantam in gfp 3´-UTR 

Laboratory stock 

S2 B2 parental cell line Invitrogen; Karlsruhe, Germany 

 

Cell culture medium and additives for Drosophila Schneider cells was purchased from Bio & Sell 

(Nürnberg, Germany) and supplemented with 10% heat-inactivated Fetal Bovine Serum (FBS; 

Thermo Fisher; Waltham, USA). 

 

3.1.7 Fly stocks: 

 

KG05743 P-element insertion, 

Dmel\P{SUPor-P}Pur-

αKG05743 

BL14276 Bloomington Stock center 

KG05177 P-element insertion, 

Dmel\P{SUPor-P}Pur-

αKG05177 

BL13876 Bloomington Stock center 

VDRC101363 pur-alpha RNAi VDRC101363 VDRC stock center, Vienna  

tj-GAL4   traffic-jam GAL4 driver  Kyoto 

Actin-GAL4 Actin5C-Gal4 driver  BL3954 Bloomington Stock center 
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Tubulin-GAL4 Tubulin GAL4 driver BL5138 Bloomington Stock center 

UAS-GFP UAS-GFP BL1521 Bloomington Stock center 

OrR wilde type stock  Bloomington Stock center 

w 1118 recessive white mutation BL6326 Bloomington Stock center 

 

 

3.1.8 Flyfood 

 

Standard fly food was obtained from in-house supply. 

5.8% corn meal  

5.5% molasses  

2.4% yeast extract 

 

Grape-juice plates for egg counting 

750 ml grape juice  

24 g agar  

10 g sucrose  

20 ml ethanol  

10ml acetic acid  

H2O (ad 1000 ml) 

 

3.1.9 Plasmids: 

pKF63 constitutive myc-GFP expression under 

ubiquitin-promotor control 

(FORSTEMANN et al. 2005) 

pUAST conditional expression under GAL4-

control 

(BRAND and PERRIMON 1993) 



25 

pAc5.1B-EGFP-DmDCP1 constitutive GFP-Dcp1 expression, 

main P-body component 

(EULALIO et al. 2007) 

pAc5.1B-lambdaN-HA-

DmGW182 

constitutive GFP-GW182 expression, 

main P-body component 

(BEHM-ANSMANT et al. 2006) 

pAc5.1B-EGFP-

DmStaufen 

Constitutive GFP-Staufen expression, 

main P-body component 

(EULALIO et al. 2007) 

pUC18 transfection control vector (YANISCH-PERRON et al. 1985) 

pBluescript subcloning vector (ALTING-MEES et al. 1992) 

 

 

3.1.10 Oligonucleotides: 

3.1.10.1 RNA-Interference: 

pur-alpha 5´UTR puralpha5pr_s CGTAATACGACTCACTATAGGGCAGGGGAATGTTGTACACCGGAC 

 puralpha5pr_as CGTAATACGACTCACTATAGGGCTCCACTTCCCAAATCGGACATTA 

pur-alpha 3´UTR puralpha3pr_s CGTAATACGACTCACTATAGGGACAACATACCGTGATTTACTAAGT 

 puralpha3pr_as CGTAATACGACTCACTATAGGGATATTGGGCTAAATGCTACAAAAT 

pur-alpha coding puralpha_cod_s CGTAATACGACTCACTATAGGGTGTTGCAAATATGGAGGGTTC 

 puralpha_cod_as CGTAATACGACTCACTATAGGGCTCCAAACTCTTCTAACAAATCTG 

GFP T7prom_GFP_ORF_fw CGTAATACGACTCACTATAGGATGGTGAGCAAGGGCGAGGAGCTG 

 T7prom_GFP_ORF_rv CGTAATACGACTCACTATAGGTTACTTGTACAGCTCGTCCATG 

T7-Promotor T7-Promotor CGTAATACGACTCACTATAGG 
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3.1.10.2 Molecular Cloning: 

Ubiquitin-promotor ubi_prom_sense GGTTTCTCAACAAAGTTGGCGTCG 

SV40-Poly A SV40polyA_rev GTGAATTCATACATTGATGAGTTTGGAC 

GFP in pBluescript BamHI-GFP-sense GAGGATCCATGGTGAGCAAGGGCGAGG 

 SpeI-GFP-as AGACTAGTCTTGTACAGCTCGTCCATGCCG 

Pur-α in pBluescript-
GFP Xba-pura-sense AGTCTAGAATGTCCGATTTGGGAAGTGGAGA 

 notI_pura_as GAGCGGCCGCTTATTTAAGACTATTTGAAGATGTAGGTAAGTTA 

FLAG-Pur-α in pKF63 Bam_flag_pura_s 
ACGGATCCTAAATCGAACAAAAAGCTTACAAAATGGATTATAAA
GATGATGATGATAAAGGCTCCGATTTGGGAAGTGGAGATG 

 as pur alpha not ATGCGGCCGATTATTTAAGACTATTTGAAGATGTAGGTAAG 

Pur-α-point mutations puraxba40s AATCTAGAGTCGAACAGGAATTGGCT 

 puraxba115s AATCTAGACCGGAAGATGGTAAACTT 

 Puranot105as TTATGCGGCCGCCTAAGAAGCGTAGTAATC 

 Puranot185as TGATGCGGCCGCCTAATCATTAGCTCCAAAC 

 Puranot255as TTATGCGGCCGCCTATTTTTTCATTTTCTCGCA 

 

3.1.10.3 Fly stock mapping: 

plac plac 1 GCTGCACCCAAGGCTCTGCTCCCACAAT 

 plac 4 CGTGACTGTGCGTTAGGTCCTGTTCATTGTT 

pry pry 1 TTAACCCTTAGCATGTCCGTGGGGTTTGAAT 

 pry 4 TCAACAATCATATCGCTGTCTCACTCA 

KG05177 KG05177 sense CGTGTTTGATCACTTAAAGCCGTC 

 KG05177 antisense CTGCCCCTTACAAATGACATCGAC 

KG05743 KG05743 sense TCTGCCGGATTCTACACGTACATAG 

 KG05743 antisense CCAAACTGCTTATAACGTTCTTGTACA 
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3.1.10.4 Quantitative PCR: 

bazooka baz_forw GGTCACATGTTCCGCTTTG 

 baz_rev TTCTCTCCAGAGCAGCCAAT 

 baz_fwd2 TACGAGACGGTTCAACAGCA 

 baz_rev2 GTCACAAACGGACCTCGACT 

torsolike tsl_s AAAGATGGGCGAGAAGGAA 

 tsl_as CTCGTGGTACCAGCTCTCCT 

 tsl_fwd2 CTGCTGAAACTGCACGGTAA 

 tsl_rev2 TGACTCTGCGGCATGTTAAG 

absent, small, or homeotic discs 1 ash1_forw CCGATTTGTTGACGACAGTG 

 ash1_rev TTTTCCTTGCCCTCATCATC 

pimet pimet_forw ACAATTCGAATCCTCCGAGA 

 pimet_rev GATCAGACCATTCCGATTCC 

Decapping protein 2 dcp2_forw AAATCCTGGGACAACAGCAG 

 dcp2_as CTGTGCATGTACTGGGCATC 

ftz transcription factor 1 ftz-f1_s TGATCGACTTCAAGCACCTG 

 ftz-f1_as CTCGAGGCACTTCTGGAATC 

Lim-Kinase Limk1_s AATGTGACCACAACGACCAA 

 Limk1_as GACTTGGCAGTGGCTTCAGT 

 limK__fwd2 TCACCGATCAGAAGCAGAAA 

 limK_rev2 TAGCAGCGCGTATTGAAATG 

scarecrow scro_s ACCCTTTAGCGTGACCGATA 

 scro_as CGTACGGATTCGCCATAGTT 

Cyclic-AMP resp. element BP A crebA_s AACCGTTTCCATCTCTGTGG 

 crebA_as CGTTTCTCCTCTTCCGTCAG 

lysosomal enzyme receptor protein lerp_s CTTCACACACGAGTCGCCTA 

 lerp_as TTCAAAATTCTGCTGCGTTG 



28 

ariadne ari-1_s TCGACATACTTTGCCAGTGC 

 ari-1_as AGAGCACCGCTTTTCACAAT 

short stop shot_s CTGAGCGACAACGAGGGTAG 

 shot_as TGTGATCGTCCGTGCTATCT 

dusky body dyb_s AGCAACTGGAGGGACTGATG 

 dyb_as GGATGTTGCTGCATCTGCT 

CG15745 CG15745_s AGGATCGCGATGAGGATGAT 

 CG15745_as CGCCTACCTTCTTGGATCG 

diego dgo_s CCCTTCGCCCACGTATAGTA 

 dgo_as GTGGAATCCTTCCCACGTAA 

 dgo_fwd2 TTTACGTGGGAAGGATTCCA 

 dgo_rev2 TTGGATGGAAGATTGGGATG 

CG4570 CG4570_s AAGCTGCATTCGTGAGTGTG 

 CG4570_as GGAGGTGTAGTGCGGATTGT 

notch N_fwd TCAGCAGGCCTTCTACCAGT 

 N_rev ATGGCCACCGGATATGTAAA 

Abl tyrosine kinase Abl_fwd CACAATTCGTGCGTGATCTT 

 Abl_rev ACCTGTTAAGCGCATTGGAG 

mushroom bodies tiny mbt_fwd CCGGAAGTGGATATCTGGTC 

 mbt_rev ATCCGGTCGAGGAAGGACT 

Focal Adhesion Kinase Fak56D_fwd GATTTGCTTCAAAACACAGGAA 

 Fak 56D_rev GTTCGTTTGTCGACCTGGTT 

innexin 2 inx2_fwd TGAGCATCATGTCGGGAATA 

 inx2_rev AGATGAGCGGATCGATGTTC 

dishevelled dsh_fwd GGCTATCAGCCGATCCAGTA 

 dsh_rev GCCGGATGATTTGTTAGAGC 

delta Dl_fwd TCGCAAAAGCAACTCAACAC 
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 Dl_rev AAGCTGCAGCCATTAGTTGG 

Integrin linked kinase Ilk_fwd CTATCAACCGGCTTGGATGT 

 Ilk_rev GGATCCTCGTTCATGCAGAT 

scab scb_fwd TGTCATCCTGACCGACTTGA 

 scb_rev TATCGCAGAGAGAAGCAGCA 

gapdh gapdh_s AATTTTTCGCCCGAGTTTTC 

 gapdh_as TGGACTCCACGATGTATTCG 

actin actin_s AAGTTGCTGCTCTGGTTGTCG 

 actin_as GCCACACGCAGCTCATTGTAG 

pur-alpha for_pura1 CGCTTCTCTAGGTCCACCAAAC 

 rev_pura1 CCACCTTCATGTGTCGCTCTTC 

rp49 rp49 A2 ATCGGTTACGGATCGAACA 

 rp49 B2 ACAATCTCCTTGCGCTTCTT 

argonaute-2 ago2 qPCR s TCAATGCCGATGATCGAATA 

 ago2 qPCR as GACGCAATGGTGACCTTCTT 

piwi Piwi1 s TGG AAC ATG GAA CTG GAC AA 

 Piwi1 as GGT CTC TGA AGT GCC TTT GC 

argonaute-3 Ago3_1 s ACA AGC TTA TGC GCG AGA TT 

 Ago3_1 as ACG CCC ACT TAT CTT GTT G 

aubergine Aub1 s GAT GCT ATT CGC GAC AGT GA 

 Aub1 as AAT GGC GTC GAT TGA AAG TC 

argonaute-1 AGO1qPCRs TGG GAC GAC AAT CAC TTT GA 

 AGO1qPCRas ATG ATA TCT GGC ACG GAA GG 

bicoid BCDqPCRs ATG AGC ACC GGA ATA AGA GC 

 BCDqPCRas CGT GCA TTG ATA TTG GTT CG 

oskar OSKqPCRs AAG AGA CGC CAC GAA ATG AC 

 OSKqPCRas TCC ATT CGG GCG AGA TAT AG 
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gurken GRKqPCRs TGC GTT AAC GAC TAC GAT GG 

 GRKqPCRas GTA GAG CGA CGA CAG CAT GA 

 

3.1.10.5 MicroRNA profiling: 

 

scrambled_bantam AGTGCTAGTATTTACAGCTATAT dme-miR-1003 TCTCACATTTACATATTCACAG 

dme-bantam TGAGATCATTTTGAAAGCTGATT dme-miR-1012 TTAGTCAAAGATTTTCCCCATAG 

dme-let-7 TGAGGTAGTAGGTTGTATAGT dme-miR-1017 GAAAGCTCTACCCAAACTCATCC 

dme-miR-1 TGGAATGTAAAGAAGTATGGAG 

scrambled_dm
e-miR-184 AGTAGCGAGATGACATGCGGAC 

dme-miR-1 TGGAATGTAAAGAAGTATGGAG dme-miR-11 CATCACAGTCTGAGTTCTTGC 

dme-miR-10 ACCCTGTAGATCCGAATTTGT dme-miR-12 TGAGTATTACATCAGGTACTGGT 

dme-miR-10* AAATTCGGTTCTAGTGTGGTT dme-miR-124 TAAGGCACGCGGTGAATGCCAAG 

dme-miR-1002 TTAAGTAGTGGATACAAAGGGCGA dme-miR-125 TCCCTGAGACCCTAACTTGTGA 

dme-miR-133 TTGGTCCCCTTCAACCAGCTGT dme-miR-252 CTAAGTACTAGTGCCGCAGGAG 

dme-miR-13a TATCACAGCCATTTTGATGAGT dme-miR-263a GTTAATGGCACTGGAAGAATTCAC 

dme-miR-13b TATCACAGCCATTTTGACGAGT dme-miR-274 TTTTGTGACCGACACTAACGGGT 

dme-miR-14 TCAGTCTTTTTCTCTCTCCTA dme-miR-275 TCAGGTACCTGAAGTAGCGCGCG 

dme-miR-184 TGGACGGAGAACTGATAAGGGC dme-miR-276* CAGCGAGGTATAGAGTTCCTACG 

dme-miR-184* CCTTATCATTCTCTCGCCCCG dme-miR-276a TAGGAACTTCATACCGTGCTCT 

dme-miR-193 TACTGGCCTACTAAGTCCCAAC dme-miR-276b TAGGAACTTAATACCGTGCTCT 

dme-miR-219 TGATTGTCCAAACGCAATTCTTG dme-miR-277 TAAATGCACTATCTGGTACGACA 

dme-miR-278 TCGGTGGGACTTTCGTCCGTTT dme-miR-286 TGACTAGACCGAACACTCGTGCT 

dme-miR-279 TGACTAGATCCACACTCATTAA dme-miR-289 TAAATATTTAAGTGGAGCCTGCG 

dme-miR-281 TGTCATGGAATTGCTCTCTTTGT dme-miR-2a TATCACAGCCAGCTTTGATGAGC 

dme-miR-282 AATCTAGCCTCTACTAGGCTTTG dme-miR-2b TATCACAGCCAGCTTTGAGGAGC 

dme-miR-284 TGAAGTCAGCAACTTGATTCCAG dme-miR-2c TATCACAGCCAGCTTTGATGGGC 
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dme-miR-285 TAGCACCATTCGAAATCAGTGC dme-miR-3 TCACTGGGCAAAGTGTGTCTCA 

dme-miR-305 ATTGTACTTCATCAGGTGCTCTG dme-miR-318 TCACTGGGCTTTGTTTATCTCA 

dme-miR-306 TCAGGTACTTAGTGACTCTCAA dme-miR-31a TGGCAAGATGTCGGCATAGCTGA 

dme-miR-306* GGGGGTCACTCTGTGCCTGTGC dme-miR-34 TGGCAGTGTGGTTAGCTGGTTGTG 

dme-miR-308 AATCACAGGATTATACTGTGAG dme-miR-375 TTTGTTCGTTTGGCTTAAGTTA 

dme-miR-309 GCACTGGGTAAAGTTTGTCCTA dme-miR-4 ATAAAGCTAGACAACCATTGA 

dme-miR-310 TATTGCACACTTCCCGGCCTTT dme-miR-5 AAAGGAACGATCGTTGTGATATG 

dme-miR-311 TATTGCACATTCACCGGCCTGA dme-miR-7 TGGAAGACTAGTGATTTTGTTGT 

dme-miR-312 TATTGCACTTGAGACGGCCTGA dme-miR-79 TAAAGCTAGATTACCAAAGCAT 

dme-miR-316 TGTCTTTTTCCGCTTACTGGCG dme-miR-8 TAATACTGTCAGGTAAAGATGTC 

dme-miR-317 TGAACACAGCTGGTGGTATCCAGT dme-miR-927 TTTAGAATTCCTACGCTTTACC 

dme-miR-92a CATTGCACTTGTCCCGGCCTAT dme-miR-981 TTCGTTGTCGACGAAACCTGCA 

dme-miR-92b AATTGCACTAGTCCCGGCCTGC dme-miR-984 TGAGGTAAATACGGTTGGAATTT 

dme-miR-932 TCAATTCCGTAGTGCATTGCAG dme-miR-986 TCTCGAATAGCGTTGTGACTGA 

dme-miR-956 TTTCGAGACCACTCTAATCCATT dme-miR-987 TAAAGTAAATAGTCTGGATTGATG 

dme-miR-958 TGAGATTCTTCTATTCTACTTT dme-miR-988 CCCCTTGTTGCAAACCTCACGC 

dme-miR-965 TAAGCGTATAGCTTTTCCCCTT dme-miR-989 TGTGATGTGACGTAGTGGAAC 

dme-miR-970 TCATAAGACACACGCGGCTAT dme-miR-992 AGTACACGTTTCTGGTACTAAG 

dme-miR-977 TGAGATATTCACGTTGTCTAA dme-miR-993 GAAGCTCGTCTCTACAGGTATCT 

dme-miR-980 TAGCTGCCTTGTGAAGGGCTTA dme-miR-994 CTAAGGAAATAGTAGCCGTGAT 

dme-miR-995 TAGCACCACATGATTCGGCTT dme-miR-999 TGTTAACTGTAAGACTGTGTCT 

dme-miR-996 TGACTAGATTTCATGCTCGTCT dme-miR-9a TCTTTGGTTATCTAGCTGTATGA 

dme_mdg1 AACAGAAACGCCAGCAACAGC  dme-miR-9b TCTTTGGTGATTTTAGCTGTATG 

dme-miR-998 TAGCACCATGAGATTCAGCTC dme-miR-9c TCTTTGGTATTCTAGCTGTAGA 

dme-CG4068_B TTGACTCCAACAAGTTCGCTC 

as_dme_2S-
rRNA CAACCCTCAACCATATGTAGT 

dme-tRNA-
CR32359 CGTGGGTTCGAATCCCACTTC dme-miR-998 TAGCACCATGAGATTCAGCTC 



32 

dme_RP49_A2 ATCGGTTACGGATCGAACA  dme-miR-999 TGTTAACTGTAAGACTGTGTCT 

dme_RP49_B2 ACAATCTCCTTGCGCTTCTT 

dme_snRNA_
U6 CAAAATCGTGAAGCGTTCCAC 

 

 

3.1.10.6 Northern Blotting 

2S-rRNA  2S-rRNA  RNA as probe TACAACCCTCAACCATATGTAGTCCAAGCA 

bantam 2´O-Me-bantam as probe AATCAGCTTTCAAAATGATCTCA 

miR-277 2´O-Me-miR-277 as probe TGTCGTACCAGATAGTGCATTTA 

miR-34 2´O-Me-miR-34 as probe CACACCCAGCTAACCACACTGCCA 

miR-317 2´O-Me-miR-317 as probe ACTTGTGTCGACCACCATAGGTCA 

 

3.1.10.7 Electrophoretic mobility shift assays (EMSA) 

r(CGG)4  Flourescein-conjugated CGG CGG CGG CGG 

r(CAG)4 Flourescein -conjugated CAG CAG CAG CAG 

r(CAG)3 (CAA) Flourescein -conjugated CAG CAG CAG CAA 

r(CAA)4 Flourescein -conjugated CAA CAA CAA CAA 

 

 

3.1.11 Antibodies: 

3.1.11.1 Primary antibodies: 

 

α-notch C458.2H and C17.9C6 1:200 
Immunofluorescence 

1:1000 Western Blotting 

DSHB 

α-FasIII 7G10 anti-FasciclinIII 1:200 
Immunofluorescence 

DSHB 
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α-eya eya10H6 1:200 
Immunofluorescence 

DSHB 

α-armadillo N2_7A1Armadillo 1:200 
Immunofluorescence 

DSHB 

α-hts hts_RC 1:200 
Immunofluorescence 

DSHB 

α-orb orb6H4 and 4H8 1:200 
Immunofluorescence 

DSHB 

α-Me31B α-Me31B 1:1000 Western Blotting Kind gift of A. Nakamura, 
RIKEN Center, Kobe, 
Japan 

α-Cup α-Cup 1:1000 Western Blotting Kind gift of A. Nakamura 

α-Tral α-Tral 1:1000 Western Blotting Kind gift of A. Nakamura 

α- β-tubulin β-tub E7 1:2000 Western Blotting DSHB 

α-Flag α-Flag M2 1:2000 Western Blotting Sigma, F1804 

α-GFP B-2; sc-9996 1:2000 Western Blotting Santa Cruz Biotechnology 

α-FMRP 5A11 and 5B6 1:1000 Western Blotting DSHB 

α-Ago1 1b8 1:1000 Western Blotting (OKAMURA et al. 2004) 

α-Ago2 rb α-Ago2  1:500 Western Blotting lab generated peptide 
antibody, Davids  

α-Pur-alpha 7H8 and 1E10 1:1000 Western Blotting     

1:3 Immunofluorescence 
(supernatant)  

gift of Elisabeth Kremmer, 
Helmholtz-Zentrum 
München, Germany 

 

 

3.1.11.2 Secondary antibodies: 

 

Goat α-mouse IgG (H+L) HRP-coupled 1:10 000 Pierce (Thermo Scientific)  

 

Goat α-rabbit IgG (H+L) HRP-coupled 1:50 000 Pierce (Thermo Scientific)  
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Cy3-coupeld α-rat IgG (H+L) 1:200 Molecular Probes, Invitrogen, 
Carlsbad / CA, USA 

Cy3-coupeld α-mouse IgG (H+L) 1:200 Molecular Probes, Invitrogen, 
Carlsbad / CA, USA 

Alexa-Fluor 488-coupeld α-mouse IgG (H+L) 1:200 Molecular Probes, Invitrogen, 
Carlsbad / CA, USA 

 

3.1.12 Commonly used buffers and stock solutions: 

 

Buffer A for fly DNA extraction   100 mM  Tris/HCl, pH 7.5  

100 mM  EDTA  

100 mM  NaCl  

       0.5%   SDS 

 

Church buffer      1% (w/v)  bovine serum albumine (BSA) 

     1 mM   EDTA 

0.5 M   phosphate buffer  

7% (w/v)  SDS  

pH 7.2  

 

Colloidal Coomassie staining solution  50 g/l   aluminum sulfate  

2% (v/v)  H3PO4 (conc.)  

10% (v/v)  ethanol  

0.5% (v/v)  Coomassie G250 stock 

  

DNA loading buffer (6x)   0.25% (w/v)  bromophenol blue  

0.25% (w/v)  xylene cyanol  

30% (w/v)  glycerol 
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Formamide loading dye (2x)    80% (w/v)  formamide  

10 mM   EDTA, pH 8  

1 mg/ml  xylene cyanol  

1 mg/ml  bromophenol blue 

Laemmli SDS loading buffer (2x)   100 mM  Tris/HCl, pH 6.8  

4% (w/v)  SDS  

20% (v/v)  glycerol  

0.2% (w/v)  bromophenol blue  

200 mM  DTT (freshly added) 

 

Lysis buffer for protein extraction   100 mM  KAc  

30 mM   HEPES 

2 mM   MgCl2  

1 mM   DTT  

1% (v/v)  Triton X-100  

2x  Complete® without EDTA (=protease 
inhibitor cocktail) 

 

PBS-T/TBS-T      PBS/TBS supplemented with 0.05% Tween-20  

 

SDS-running buffer (5x)    125 mM  Tris/HCl, pH 7.5  

1.25 M   glycine  

5%   SDS  

 

SSC (20x)      3 M   NaCl  

0.3 M   sodium citrate 

  

TAE (50x)      2 M   Tris-base  

5.71%   acetic acid (0,9 M) 

100 mM  EDTA  
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TBE (10x)      0.9 M   Tris base  

0.9 M   boric acid  

0.5 M   EDTA   (pH 8)  

 

 

TBS (10x)      50 mM   Tris  

150 mM  NaCl  

pH 7.4  

 

Western blotting stock (10x)    250 mM  Tris/HCl, pH 7.5  

1.92 M   glycine  

 

Western blotting buffer (1x)    10%   Western blotting stock (10x)  

20%   methanol 
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3.2  Methods 

3.2.1  Methods for molecular cloning 

The Pur-alpha sequence was PCR amplified from fly cDNA and N-terminal GFP-fusions of the 

described Pur-alpha-protein variants were cloned BamHI / NotI into the backbone of pKF63, 

resulting in constitutive expression under control of the ubiquitin promotor (FORSTEMANN et al. 

2007). The point mutations R80A, R158A and R226A were generated with overlap extension PCR 

as described in (GRAEBSCH et al. 2009).  

 

Standard PCR reaction mix and conditions: 

Standard reaction mixture: 

Template DNA   1 µl 

forward primer (10µM)  0,5 µl 

reverse primer (10µM)  0,5 µl 

10x Taq-buffer with (NH4)2SO4 5 µl 

25 mM MgCl2   4 µl 

Taq-polymerase  0,3 µl 

Pfu-Polymerase   0,2 µl 

H2O    add 50 µl (38,5 µl) 

For overlap extension PCR 5 µl DMSO was additionally added. 

 

Standard thermocycler protocol: 

5 minutes   95°C initial denaturation 

35 cycles:  1 minute   95°C denaturation 

    30 seconds   55°C annealing 

1 minute per kb product size  72°C extension 

5 minutes   72°C final extension 

storage at   4°C 
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After amplification the PCR-products were analyzed by separation on an agarose gel (0,5-2% 

according to expected product size), excised and purified with Qiagen Gel Extraction Kit followed 

by digestion with appropriate required restriction enzymes according to the manufacterer´s 

instructions. All further vector preparation, ligation, bacterial transformation and cloning steps 

were performed according to common laboratory practice described in (Sambrook and Russell, 

2001, “Molecular Cloning”, CSHL Press). 

The correctness of the sequences of the obtained plasmids was verified by sequencing (Eurofins 

MWG, Ebersberg, Germany) and for further analysis of the sequences ApE was used (a free online 

sequence analysis tool,  A plasmid Editor; http://biologylabs.utah.edu/jorgensen/wayned/ape/).  

The sequences of the oligonucleotides used for molecular cloning are listed in 3.1.10.2. 

 

 

3.2.2 Methods with Drosophila Schneider 2 cells 

Maintenance:  

Cells were cultured in Schneider´s Medium (Bio&Sell, Nürnberg, Germany) containing 10% heat 

inactivated fetal bovine serum (Thermo Fisher Scientific, Waltham, USA) in appropriate cell 

culture dishes (Sarstedt, Nümbrecht, Germany). Cells were split once to twice a week into fresh 

medium for up to 25 passages. 

 

3.2.2.1 RNA-Interference (RNAi) 

DsRNA for RNAi was generated using in vitro transcription (IVT) with T7-polymerase. Therefore, 

templates of the genes of interest were used in which T7-promotor sites were introduced by PCR 

and afterwards further amplified by PCR using T7-promotor primer (used oligonucleotides see 

3.1.10.1). 

The resulting PCR products were precipitated with ethanol and applied for over-night in-vitro 

transcription at 37°C. 

 

 

 

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=correctness&trestr=0x8001�
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IVT-Mix: 

10 μl T7-template DNA 
10 μl 10x T7-buffer 
0.5 μl 1 M DTT 
5 μl 100 mM ATP 
5 μl 100 mM CTP 
5 μl 100 mM UTP 
8 μl 100 mM GTP 
2 μl T7-polymerase 
ad 100 μl H2O (54,5 µl) 

1 μl of DNAseI was added per reaction and incubated for 30 minutes at 37 °C.  The precipitate of 

magnesium pyrophosphate which formed during the reaction was pelleted and the dsRNA was 

precipitated from the supernatant with 1x volume of isopropanol and washed twice with 70% 

ethanol. The pellet was air-dried and re-dissolved in 100 μl of RNAse free H2O. The sample was 

heated to 95°C for 5 minutes and slowly cooled down to room temperature. Concentration of 

dsRNA was estimated from an agarose gel in comparison to a DNA Ladder Mix (Fermentas; St. 

Leon-Rot, Germany). 

To induce a knock down of a gene of interest cells were seeded at 0,5*106 cells/ml and 1 µg of the 

corresponding dsRNA was added to the medium. After incubation with the dsRNA for 5 days the 

resulting GFP fluorescence of the reporter cell lines was determined in a Becton Dickinson 

FACSCalibur flow cytometer. For this analysis 100 µl of cells were added to 200 µl of FACS flow. 

For each sample 10 000 cells were measured. Analysis of fluorescence intensity was carried out 

with CellQuest software (Becton Dickinson; Franklin Lakes, USA). All measurements were 

performed in triplicates to calculate mean and standard deviations. GFP-negative reporter cells 

were excluded from the analysis and the mean fluorescence value for each sample was 

determined.  

 

3.2.2.2 Transfection of plasmid DNA 

Transfection was carried out as described in (SHAH and FORSTEMANN 2008).  

50-300 ng DNA of the relevant plasmid was transfected per 24-well cell-culture dish using 4 µl 

Fugene Transfection reagent (Roche Diagnistics; Mannheim , Germany) and cells were harvested 

after 48 hours after transfection to perform further experiments. 
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3.2.2.3   Analysis of Schneider cells by fluorescence microscopy  

Transfected cells were harvested and once washed with Schneider´s Medium without FBS. Then 

100 µl of cell suspension was allowed to settle down within a Roti-Liquid Barrier marker (Carl Roth 

GmbH; Karlsruhe, Germany) painted circle on a Poly-lysine coated microscope slide (Carl Roth 

GmbH; Karlsruhe, Germany) for 30 minutes in a humid chamber. Cells were fixed for 15 minutes 

with 4% formaldehyde and washed three times for 5 minutes in PBS + 0,2% Triton X-100 (PBT), 

then blocked for 1 hour with PBT containing 5% normal goat serum (NGS) in the humid chamber. 

Primary antibodies were added in blocking solution and incubated overnight at 4°C. Cells on the 

slides were washed three times with PBT, secondary antibodies were diluted in PBT and incubated 

2-6 hours at room temperature, followed by three 5 minute washing steps with PBT. DNA was 

stained with DAPI (final concentration 0,5μg/ml) for 5 minutes at RT. Cells were washed with PBT, 

mounted with DABCO glycerol mounting medium (Ono et al., 2001) and examined with a Leica 

TCS SP2 confocal microscope (Leica Microsystems, Wetzlar, Germany) . 

The used primary and secondary antibodies and the applied dilutions can be found in 3.1.11 and 
3.1.12. 

 

 

 

3.2.3   Methods with flies 

3.2.3.1  Maintenance and handling 

The fly stocks were maintained on standard agar food at 25°C or 30°C (restrictive temperature). 

The alleles pur-alphaKG05177 and pur-alphaKG05743 were obtainedd from the Bloomington Stock 

Center. The plasmids GFP-Pur-alpha full-length, GFP-Pur-alpha repeat I+II, GFP-Pur-alpha repeat 

I+II R80A R158A, GFP-Pur-alpha full-length R80A R158A, GFP-Pur-alpha full-length R80A R158A 

R226A and GFP-Pur-alpha R65A R142A were generated as described in 3.2.1 and injected into 

w1118 embryos (Rainbow Transgenic Flies, Newbury Park / Ca, USA), transgenic lines were 

established after two generations of back-crossing to w1118. 
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3.2.3.2  Egg laying experiments 

Virgin females (OregonR, pur-alphaKG05177, pur-alphaKG05743, trans-heterozygous animals or rescue 

lines) were collected over 24 hours and then mated 96 hours at 30°C with wild type (OregonR) 

males. 15 female flies were kept on grape juice agar (750 ml grape juice, 24 g agar, 10 g sucrose, 

20 ml ethanol, 10ml acetic acid, H2O ad 1000 ml) for 16 hours at 30°C. Subsequently, the 

deposited eggs were counted under a stereomicroscope. 

 

3.2.3.3  Rescue experiments 

For the rescue experiments flies were crossed as depicted in the crossing scheme in the results 

part of this study (Figure 4-18). 

 

3.2.3.4  Analysis of ovaries by fluorescence microscopy 

Ovaries were dissected in FACS-Flow (Becton Dickinson, Franklin Lakes / NJ, USA), fixed for 15 

minutes with 4% formaldehyde and washed three times for 10 minutes in PBS + 0,2% Triton X-100 

(PBT) then blocked for 1-4 hours with PBT containing 5% normal goat serum (NGS). Primary 

antibodies were added in blocking solution and incubated overnight at 4°C. Ovaries were washed 

three times with PBT, secondary antibodies were diluted in PBT and incubated 2-24 hours at 4°C, 

followed by three 10 minute washing steps with PBT. DNA was stained with DAPI (final 

concentration 0,5μg/ml) for 5 minutes at RT. Ovaries were washed with PBT three times, 

mounted with DABCO glycerol mounting medium (ONO et al. 2001) and examined with a Leica TCS 

SP2 confocal microscope (Leica Microsystems, Wetzlar, Germany) . 

The used primary and secondary antibodies and the applied dilutions can be found in 3.1.11 and 

3.1.12. 
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3.2.4   Protein analysis 

3.2.4.1  Protein extraction 

 

Ovaries were dissected, washed once in PBS (Invitrogen) and the cells lysed with a 

microcentrifuge tube fitting pestle in lysis buffer (100mM KoAc ph7,4, 30 mM HEPES ph 7,4, 2 mM 

MgCl2, 1 mM DTT, 1% Triton X-100, 2x Preotease-Inhibitoren (Roche Diagnostics GmbH; 

Mannheim, Germany) (HARTIG et al. 2009) and frozen in liquid nitrogen. Samples were thawed on 

ice and cell debris was pelleted in a refrigerated microcentrifuge (Eppendorf; Hamburg, Germany) 

at 16 400 rpm. To reduce the lipid content, ovary extracts were passed through a Sephadex G-10 

spin-column placed in a microcentrifuge tube.   

Cells were harvested (2,500 x g, 10 min) and washed with PBS. The pellet was resuspended in lysis 

buffer and frozen in liquid nitrogen. Samples were thawed on ice and centrifuged at 4°C in a 

micro-centrifuge at 16,400 rpm (Eppendorf; Hamburg, Germany).  

Protein concentrations were determined by Bradford assay (BioRad; Hercules, USA). 

 

 

3.2.4.2  Co-immunoprecipitation 

 

For immunoprecipitation 0,5-2 μg total protein were incubated with 30 μl of pre-washed GFP-trap 

A beads (Chromotek, Martinsried, Germany) or FLAG-M2 Agarose (Sigma) for 60 minutes at 4°C, 

then the unbound fraction and beads were separated by spin colums (MoBiTec; Göttingen, 

Germany). The beads were washed five times with 600 µl lysis buffer containing 1% Triton as 

described (HARTIG et al. 2009). The bound proteins were eluted by heating the samples to 95 °C 

with 20 µl 1x Laemmli buffer diluted with lysis buffer. 

 

3.2.4.3   Western-Blotting 

Western-Blotting was performed as previously described in (FORSTEMANN et al. 2007). Briefly, 

proteins were separated using 8-15 % polyacrylamide gels for 90 minutes at 150 V in a BioRad 

electrophoresis tank. Proteins were transferred to a polyvinylidenfluoride (PVDF; Milipore; 

Billerica, USA) membrane by tank blotting (300 mA for 60 minutes). Afterwards the membrane 

was blocked in 5% milk for at least 30 minutes at room temperature. Incubation with primary 

antibodies was carried out over night at 4°C in a 50 ml Falcon tube using 2,5 ml antibody dilution 

in 1x PBS/TBS-solution with 0,05% Tween. The used antibodies and dilutions employed are listed 



43 

in 3.1.11. For rabbit antibodies PBS-T (0.05% Tween) was used during all following washing steps, 

for mouse antibodies TBS-T (0.05% Tween) was employed. After primary antibody binding the 

membrane was washed three times 10 minutes in buffer and incubated with appropriate 

secondary antibody for 4 h at room temperature. After the washing steps, Enhanced 

Chemiluminescence (ECL) substrate (Thermo Fisher Scientific; Waltham, USA) was applied and the 

resulting signal was measured in an LAS3000 mini Western Imager System (Fujifilm; Tokyo, Japan). 

If necessary, Western blots were stripped with 10 ml of Restore Stripping Solution (Thermo Fisher 

Scientific; Waltham, USA) for 15 minutes at 37°C and 15 minutes at room temperature, washed 

with buffer and blocked with 5% milkfor second primary antibody incubation. 

 

3.2.4.4  Mass spectrometry 

The bound fractions after co-immunoprecipitation were analyzed either by Western blotting 

(3.2.4.3) or separated on a 4-20% polyacrylamide gradient gel (Pierce Thermo Fisher, Rockford / 

IL, USA) and slices corresponding to a size range of ~30kDa-size were cut out (Chapter 4.4, Figure 

4-27). Protein identification was performed by LC-MS/MS (ZfP München). 

 

 

3.2.4.5  Electrophoretic mobility shift assay (EMSA) 

Recombinant protein Pur-alpha I+II and Pur-alpha I+II+III (a kind gift from Janine Weber, Niessing 

Group, Helmholtz-Zentrum, München) was diluted in binding buffer ( 20 mM Tris ph 7,4, 100 mM 

KAc, 3,5 mM MgCl2, 0,1% BSA, 0,01% Tween) in serial dilutions (0, 250, 500, 750, 1000, 1500, 

2000, 3000, 5000, 7500 nM) and incubated for 30 minutes with 100 nM Fluorescein-conjugated 

RNA-Oligo (see 3.1.10.7) protected from light at room temperature. Reaction mixtures were 

loaded onto 4% 0,5x TBE polyacrylamide gels in 1x native loading dye (2x loading dye: 10% 

Glycerin, 2 µg/ml BSA, 2 mM DTT, 0,2 µg/ml Salmon Sperm DNA (SSD)) and analyzed after 

electrophoresis (180 V, 20 minutes) with Typhoon 9400 Variable Mode Imager (GE Healthcare; 

Freiburg, Germany) (excitation 488 nm, emission 520 nm). The bound to total ratio was 

determined using ImageJ (http://rsbweb.nih.gov/iJ/). Binding curves were fitted using OriginPro 

8.1G with the Dose Response (Logistic) fitting function.  

y = A2 + (A1-A2)/(1 + (x/x0)^p)  
A1 initial value (left horizontal asymptote)  
A2 final value (right horizontal asymptote)  
x0 center (point of inflection)  
p power (similar to dx, but can be loosely described as the parameter that affects the slope of the area 
about the inflection point) 

http://rsbweb.nih.gov/iJ/�
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3.2.5  RNA analysis 
 
3.2.5.1  RNA isolation 

RNA was extracted using TRizol (Invitrogen; Carlsbad / CA, USA) from cells, whole ovary extracts 

or the GFPtrap beads after immunoprecipitation according to the manufacturer´s instructions and 

quantified using spectrophotometry. 

 

3.2.5.2  Northern Blotting 

1-5 µg of RNA were separated on a 20% Sequagel Acrylamid-Urea Gel (National Diagnostics; 

Atlanta/USA) at 200 V for 1-2 hours. RNA transfer was perfomed on a Nylon membrane (Roche 

Diagnostics; Mannheim, Germany) by semi dry blotting for 30 minutes at 20 V. Crosslinking of the 

RNA to the membrane was achieved by radiation with UV-light. Membranes were pre-hybridised 

in Church buffer (1% (w/v) bovine serum albumine, 1 mM EDTA, 0.5 M phosphate buffer , 7% 

(w/v) SDS, pH 7.2)  for at least 2 hours in an oven under constant rotation. The probes were 

labeled with [γ-32P] ATP using PNK (Fermentas). Hybridization with labeled as-probes was 

performed overnight in 5 ml Church buffer. Membranes were washed three times for 20 minutes 

with 2x SSC 0,1% SDS and exposed on Phosphoimager Screens (FujiFilm; Tokio, Japan). Stripping 

of the membrane was achieved by dipping it into boiling 1% SDS solution and incubating it for 5 

minutes in the solution. After a second pre-hybridization the membrane was reused for 

hybridization with further probes. 

 

3.2.5.3  Quantitative RT-PCR 

The messenger RNA content of the co-immunoprecipates was analyzed with qRT-PCR on an ABI 

Prism 7000 sequence detection system (Applied Biosystems Life Technologies, Carlsbad / CA, 

USA). Reverse transcription was performed with Superscript II reverse transcriptase (Invitrogen, 

Carlsbad /CA, USA) primed with oligo(dT) (New England Biolabs; Ipswich, USA).  

The microRNA content of bound and input fractions was analyzed using the miScript system 

(Qiagen, Hilden, Germany). The obtained bound mRNA after CoIP and 10% of the corresponding 

input RNA was reverse transcribed according to the miScript protocol. 
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Reaction mix for reverse transcription: 

10 μl   RNA  
4 μl  miScript RT buffer (5x)  
5 μl  H2O  
1 μl  miScript enzyme mix 
 

All samples were incubated at 37°C for 60 min and then inactivated at 95°C for 5 min. 30 µl of 

water was added to the samples. 

The qPCR reaction mix for a 96 well plate was: 

 
500 µl  2x Sybr-Green Mastermix (Dynamo Flash, Finnzymes) 
20 µl  cDNA 
20 µl  ROX 
360 µl H2O 
 
9 µl of the mastermix solution was aliquoted in each well of a 96 well plate using an 8-canal 

pipette. 1 µl of premixed 10 µM sense and antisense oligonucleotide (sequences in 3.1.10.4) was 

added and the samples cycled on an ABI Prism 7000 sequence detection system using the 

following PCR-program: 

 

3 minutes  95°C  initial denaturation 

40 cycles: 1 minute  95°C  denaturation 

30 seconds  55°C  annealing 

30 seconds 72°C  extension 

The primer sequences for mRNA and miRNA amplification can be found in chapter 3.1.10.4 and 

3.1.10.5. Expression was quantified with the 2-(ΔΔCt) method (LIVAK and SCHMITTGEN 2001) and the 

percentage of recovery after CoIP was determined by comparing input with bound. 

 

3.2.5.4  microArray 

Total RNA was prepared from ovary extracts as well as GFP co-immpunoprecipitates of GFP-Pur-

alpha (full-length) or myc-GFP expressing flies. The RNA was spectrophotometrically quantified 

and 100 ng were analyzed with Affymetrix Drosophila genome 2.0 arrays (Affymetrix, Santa Clara 

/ CA, USA).  One array hybridization was performed for each input and immunoprecipitated RNA 

sample (four arrays total). Normalization and data analysis was performed with R! / Bioconductor 

(Björn Schwalb and Achim Tresch, Gene Center; Munich, Germany). 
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4. RESULTS 

4.1 Pur-alpha has no impact on small RNA biogenesis pathways 

The binding of Pur-alpha to the HIV-TAR RNA as well as its co-localization and genetic interaction 

with Ago1 and FMRP, motivated us to search for a role of Pur-alpha in the microRNA biogenesis 

pathway using cell culture experiments. At first, experiments were carried out to see if a knock 

down of the Pur-alpha mRNA is possible in Drosophila Schneider 2 cells.  To achieve the knock 

down three different double stranded (ds) RNA constructs, which were homologous to the Pur-

alpha sequence either in the 3´UTR, the 5´UTR or the coding region of the gene, were used. Using 

a RNAi trigger outside of the open reading frame (ORF) of pur-alpha would alleviate further 

experiments, e.g. rescue experiments in which a mutated or different ORF construct is analyzed 

after knock down of the endogenous Pur-alpha protein. Knock down with the unspecific vector 

RNA served as a control. Figure 4-1 shows pur-alpha mRNA expression after 5 day dsRNA 

treatment normalized to the control. All three constructs were able to knock down pur-alpha 

mRNA. The 5´UTR fragment showed the strongest effect, a 20-fold decrease of pur-alpha mRNA 

level to 5%. 

 

Figure 4- 1:

 

 Pur-alpha expression in Drosophila Schneider cells after RNAi treatment  
0,5*106 Drosophila Schneider cells were treated with 1 µg of dsRNA as indicated above for 5 days, pur-
alpha expression was analyzed with qRT-PCR, bar chart displays to the control dsVec normalized pur-alpha 
expression. 
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To assess the question whether Pur-alpha plays a critical role in small RNA biogenesis or their 

function, reporter cell lines expressing GFP under smallRNA control were used. Thereby an 

increased or decreased GFP-reporter fluorescence after pur-alpha knock down would reflect the 

functionality of the different pathways and reveal a potential influence of Pur-alpha. 

In Figure 4-2 the mean GFP-fluorescence of Schneider cells after a five day treatment with 

corresponding dsRNA normalized to the control knock down with vector dsRNA measured by flow 

cytometry is depicted. Figure 4-2A shows the response of a siRNA reporter (67-1D) with two 

perfect matching sites for miR-277 in the 3´UTR of gfp.  Knock down of Argonaute-2 (Ago2) results 

in an increased GFP-fluorescence, which can be explained by the fact that Ago2 is a major 

component of the RISC (RNA induced silencing complex) which mediates siRNA function. Knock 

down of GFP itself leads to 55% decrease in fluorescence (Figure 4-2A). No significant decreased 

or increased fluorescence could be observed, when any of the three dsRNAs against pur-alpha 

mRNA was used. Thus, Pur-alpha seems to be not participating in siRNA mediated gene 

regulation. 

Similar results were observed for the cell line 63N-1 (Figure 4-2B), which served as suitable 

reporter for the endo-si RNA pathway (Hartig et al., 2009). Control knock-downs with either 

dsGFP or dsAgo2, the corresponding effector protein, yielded the expected fluorescence levels 

whereas dsRNA treatment with pur-alpha complementary sequence showed no effects. The 

analysis of microRNA reporter systems also showed no influence of the knock down of pur-alpha 

on reporter fluorescence (data not shown). 

Altogether, Pur-alpha has no direct effect on small RNA function. 
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Figure 4- 2:

 

 GFP-fluorescence of reporter cell-lines after dsRNA treatment  
Reporter cell-lines were treated with 1 µg of the appropriate dsRNA as depicted at the x-axis for five days, 
the resulting GFP-fluorescence was analyzed by FACS, the bar-charts display to the control (dsVec) 
normalized mean GFP-fluorescence; the red line at 1 indicates no change 
A: siRNA reporter 67-1D with two perfect match microRNA-277 sites 
B: endo-siRNA reporter 63N-1  
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4.2  Localization of Pur-alpha 

4.2.1  Drosophila Schneider 2 cells 

4.2.1.1  Pur-alpha bodies are no P-bodies 

P-bodies are cytoplasmic foci of mRNA storage and decay. To find out whether Pur-alpha is 

localized in P-bodies and might have an internal function in mRNA turnover, immunostainings of 

Drosophila Schneider cells were prepared and analyzed using confocal microscopy.  

 

Figure 4- 3:

 

 Immunostainings of P-body components and endogenous Pur-alpha in Drosophila 
Schneider cells 
Schneider cells were fixed, permeabilized, stained with affinity purified α-Pur-alpha antibody and TOTO3; 
and visualized by confocal microscopy; green: P-body components (DCP1, Staufen, and GW182) as depicted 
in left panels; red: endogenous Pur-alpha, secondary antibody Cy3-conjugated α-rabbit; blue: TOTO3 
stained DNA 

GFP-DCP1

GFP-Staufen

GFP-GW182

Pur-α

Pur-α

Pur-α merge

merge

merge
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Three different GFP-fusion constructs of well known P-body components were transiently 

transfected into S2 cells and endogenous Pur-alpha was stained using a polyclonal rabbit 

antibody. This antibody was generated against a C-terminal peptide of the Pur-alpha protein.  The 

upper panel in Figure 4-3 shows in green color GFP-marked decapping enzyme 1 (DCP1), the 

middle panel GFP-Staufen and the lower panel GFP-GW182. Regarding the localization of the 

green foci which represent P-bodies and the red Pur-alpha particles no co-staining can be 

observed. Yellow spots in the merged pictures right would indicate a co-localization, respectively. 

To further analyze the appearance of the Pur-alpha bodies in S2-cells different GFP-fusion 

proteins variants were generated and transiently transfected. The design of the different protein 

variants was structure-guided after (GRAEBSCH et al. 2009) and the GFP-fusion constructs were 

expressed in cell culture under the control of the constitutively active ubiquitin-promotor. Hence, 

a visible difference in localization would display the consequence of direct protein transport or 

localization and not of different expression patterns. Figure 4-4 shows the resulting Pur-alpha 

localizations in Schneider cells. The expression of Pur-alpha PUR repeat I and II with two point 

mutations R80A and R158A (Figure 4-4B), which lead to a monomeric Pur-alpha protein with 

decreased RNA binding capacity results in an enriched localization in the nucleus and a diffuse 

spreading in the cytoplasm compared to wild-type full length Pur-alpha (Figure 4-4A). Figure 4-4C 

shows a construct with the same point mutations like in 4-4B in the context of the full-length 

protein. This protein variant still has the possibility to form hetero-dimeric protein complexes with 

the endogenous Pur-alpha protein (Figure 4-5). Regarding the localization of this construct there 

is some diffuse spreading in the cytoplasm compared to wilde type (Figure 4-4A) but no 

enrichment in the nucleus. Figure 4-4D displays a protein version where in the full length context 

the according Arginine residue in the third PUR-repeat is also mutated into Alanin. The diffuse 

spreading in the cytoplasm gets more severe, but compared to figure 4-4B the nuclear enrichment 

is missing. Taken together, the correct wild-type-like localization of Pur-alpha in Schneider cells is 

dependent on the ability of the protein to dimerize and to bind to RNA.  
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Figure 4-4:

 

 Confocal microscopy of GFP-fusion Pur-alpha constructs in Drosophila Schneider cells 
Schneider cells were transfected with the different GFP-constructs, fixed, permeabilized, stained with DAPI, 
and visualized by confocal microscopy. 
A: wt full length GFP-Pur-alpha                                 B: GFP-Pur-alpha Repeat I+II (Aa40 to 185) R80A R158A  
C: fl GFP-Pur-alpha R80A R158A                                D: fl GFP-Pur-alpha R80A R158A R226A                                                   
green: GFP fluorescence, blue: DAPI stained DNA 

Given that the point mutation in the PUR-repeat III would abolish RNA-binding and the capacity to 

protein-dimerization, the localization pattern of Pur-alpha R80A R158A R226A (Figure 4-4D) 

should look like Pur-alpha R80A R158A (Figure 4-4B). This was not the case and therefore the 

dimerization capacity of the triple mutant was investigated in a cell culture co-

immunoprecipitation (CoIP) assay using transiently transfected GFP-tagged and FLAG-tagged Pur- 

alpha. From cell extracts GFP-trap-CoIP was performed and followed by Western Blot analysis 

using α-FLAG antibody to detect the potential GFP/FLAG-protein complexes (Figure 4-5). If the 

GFP PUR-IIIPUR-IIPUR-I GFP PUR-IIPUR-IX X
A B

GFP PUR-IIIPUR-IIPUR-I XX GFP PUR-IIIPUR-IIPUR-I XX X
C D
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third PUR-repeat is missing the dimerization capacity of the protein is almost completely lost 

(Figure 4-5; lane 2). The presence of mutation R226A in the third repeat has no effect on protein 

dimerization compared to wild type protein (Figure 4-5; lane 4 compared to lane 1). As a 

functional control the bottom panel shows a GFP-Western-Blot of the same membrane. 

 

Figure 4- 5:

 

 Western-Blot analysis of bound fractions after GFP-trap CoIP from Schneider cell 
extracts 
Schneider cells were transiently transfected with FLAG-Pur-alpha and the according GFP-fused constructs 
named above; GFP-trap CoIP was performed and the bound fractions analyzed using SDS-PAGE and 
Western Blot using α -FLAG M2 (upper panel); to confirm the CoIP blot was stripped and reprobed with α -
GFP (bottom panel) 

4.2.1.2  Pur-alpha is associated with FMRP, Ago1 and Ago2 in Schneider cells 

The identification of other cellular proteins which are also co-localized with Pur-alpha in Pur-alpha 

granules in Schneider cells might shed light on the physiological functions of these particles. In 

order to determine further proteins in the granules co-immunoprecipitation experiments were 

carried out and the Pur-alpha associated proteins were identified via Western Blot.  Therefore a 

FLAG-tagged version of Pur-alpha was cloned, transiently transfected and Pur-alpha associated 

proteins were pulled down using a FLAG-resin. Figure 4-6 shows that FLAG-Pur-alpha is associated 

with Argonaute-1 and FMRP in Drosophila, but not with Tubulin, which serves as a control for the 

assay. This is in agreement with what is known for rat Pur-alpha, and indicates that Drosophila 

Pur-alpha is also a component of mRNPs. 

GFPGFP
-Pur-a

lpha

α-GFP

α-FLAG

GFP
-Pur-a

lpha Aa40 to
185 R80A R158A

GFP
-Pur-a

lpha
R80A R158A R226A



53 

 

 

Figure 4- 6:

 

 Western-Blot analysis  after FLAG-CoIP from Schneider cell extracts 
Schneider cells were transiently transfected with FLAG-Pur-alpha (lane 4-5) or used not transfected as 
control (lane 1-3); from cell-extracts FLAG-CoIP was performed, the resulting fractions were analysed with 
SDS-PAGE and Western Blot using  α -Ago1 (upper panel), α  -FMRP (middle panel) and α -Tubulin (bottom 
panel) 

To determine whether there is also an interaction between Pur-alpha and Argonaute-2 a different 

cell-culture assay was utilized. GFP-fusions of different Pur-alpha versions were transiently 

transfected either into untreated Schneider cells or into Schneider cells stably expressing FLAG-

tagged Ago-2. Then GFP-trap co-immunoprecipitation was performed. Figure 4-7 shows that GFP-

Pur-alpha is interacting with both FLAG-tagged Ago-2 and endogenous Ago-2 (Figure 4-7; lane 3 

and 7). The interaction seems to be RNA independent as the truncated Pur-alpha mutant R80A 

R158A, which can not bind to RNA anymore, is still bound to Ago-2 (Figure 4-7; lane 5 and 9). The 

FLAG-Western blot serves as a control for the Ago2-stable cell line and reflects the interaction of 

FLAG-tagged Ago2 with Pur-alpha. The truncated Pur-alpha mutant R80A R158A also shows some 

unspecific binding to Tubulin (Figure 4-7; lane 5 and 9), which initially served as a control in this 

experiment. The association with Tubulin was actually true, as the coomassie-stained gel after 

transfer showed comparable “clean” bound fractions for all used Pur-alpha versions (data not 

shown). Anti-GFP-Western Blot confirms the immunoprecipitation of the different GFP-fused Pur-

alpha constructs. 
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Figure 4- 7:

 

 Western-Blot analysis after GFP-trap- CoIP from Schneider cell extracts 
Stably FLAG-Ago2 expressing or untreated Schneider cells were transiently transfected with different GFP-
fusion constructs as indicated at the top; from cell-extracts GFP-trap-CoIP was performed, the resulting 
fractions were analysed with SDS-PAGE and Western Blot using α -Ago2 (upper panel), α -Flag (second 
panel), α -Tubulin (third panel) and as a control with α -GFP (bottom panel) 

To analyze whether the truncations and mutations which affected the localization of Pur-alpha in 

Schneider cells also showed an effect on the protein interaction partners, further CoIP 

experiments were carried out. Western Blot analysis revealed PUR-repeat I and II are sufficient for 

the association with FMRP and Ago1 (Figure 4-8A, lane 5). If the two point mutations are present, 

which abolish RNA-binding, the binding is completely gone (Figure 4-8A, lane 6). Hence, the 

association between Pur-alpha and FMRP and Ago1 is RNA-mediated. If the two point mutations 

are in full-length background there is no difference visible (Figure 4-8A, lane 7). Two different 

point mutations R65A R142A which also affect the RNA-binding capacity of the protein, but to a 

lesser extent do not affect the association of Pur-alpha with FMRP and Ago1. Figure 4-8 B 

compares the expression levels of the different transiently transfected GFP-fusion constructs. The 

lower expression of GFP-Pur-alpha (Figure 4-8B, lane 2) might explain the weaker Ago1 signal 

after CoIP (Figure 4-8A, lane 4, α -Ago1). 
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Figure 4- 8:

 

 Western-Blot analysis after GFP-trap-CoIP from Schneider cell extracts 
A: Schneider cells were transiently transfected with different GFP-fusion constructs as indicated at the top; 
from cell-extracts GFP-trap-CoIP was performed, the resulting fractions were analysed with SDS-PAGE and 
Western Blot using α -FMRP (upper panel) and α -Ago1 1b8 (lower panel) 
B: Comparison of the expression levels of the different GFP-fusion constructs using α -GFP 
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4.2.2  Localisation of Pur-alpha during Drosophila oogenesis 

 

As Pur-alpha is associated with RNA transport in neurons of mammals we used Drosophila 

oogenesis as an easily accessible system to study RNA transport in flies. To localize and visualize 

Pur-alpha during oogenesis two monoclonal rat antibodies against recombinant Pur-alpha protein 

(amino acids 40-255) were generated suitable for staining of wild type ovaries for confocal 

fluorescence microscope analysis (Elisabeth Kremmer, Helmholtz-Zentrum, München). Figure 4-9 

shows an approximately stage 6 egg chamber stained with the Pur-alpha antibody and DAPI, to 

visualize the nuclei of the cells. A detailed examination revealed that the cells at the anterior and 

posterior tip of each egg chamber showed particularly strong Pur-alpha expression (Figure 4-9, 

white arrowheads in left picture). Staining within the cytoplasm was not uniform. The protein was 

distributed over many small particles or aggregates. In early egg chambers, Pur-alpha was equally 

abundant in follicle cells and nurse cells, but accumulated in the developing oocyte. This indicates 

that Pur-alpha is transported, likely as a part of RNP granules.   

 

 

Figure 4- 9

 

: Endogenous Pur-alpha in Drosophila egg chamber (approximately stage 6)  
confocal microscopy of a Drosophila egg chamber; red: endogenous Pur-alpha; blue: DAPI stained DNA, 
nuclei of the cells; white arrowheads: anterior and posterior cells with high Pur-alpha expression 

 
 

 

 

 

 

Pur-alpha DAPI merge
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4.2.2.1  Pur-alpha is enriched in the polar cells of the follicular epithelium 

 

To investigate the obvious enrichment of Pur-alpha within the cells at both tips of the egg 

chamber in detail further fluorescent immunostainings were performed. The Pur-alpha enriched 

cells could be stained with α-FasciclinIII antibodies (FasIII) in Figure 4-10. FasIII is a homophilic 

adhesion molecule, which is expressed on a subset of neurons in the developing central nervous 

system (SNOW et al. 1989) and also strongly in the polar cells of the follicular epithelium (RUOHOLA 

et al. 1991). 

 

 
 
Figure 4- 10:

 

 Endogenous Pur-alpha and FasciclinIII in Drosophila egg chamber (approximately 
stage 6-7)  
confocal microscopy of a Drosophila egg chamber; red: endogenous Pur-alpha; green FasciclinIII; blue: DAPI 
stained DNA, nuclei of the cells 

 

The enrichment of Pur-alpha in FasIII-positive cells was also recapitulated by the GFP-Pur-alpha 

fusion construct driven by the constitutively active ubiquitin promotor (Figure 4-11B), arguing that 

post-transcriptional regulation independent of the native mRNA 5’- and 3’-untranslated regions is 

responsible for this enrichment. Furthermore, these cells showed a negative staining for the 

transcription factor Eyes absent (eya) (Figure 4-11A). Eya is a DNA binding protein phosphatase 

and its expression is repressed in the polar cells by hedgehog signaling (BAI and MONTELL 2002). 

Based on their position, their negative staining for Eya and their positive staining for FasIII, Pur-

alpha enriched cells at the extremities of the egg chamber could be identified as the polar cells. 

These cells play a crucial role in separation of subsequent egg chambers, migration and 

organization of the follicular epithelium and establishment of the anterior-posterior axis within 

the oocyte. 

Pur-alpha Fasciclin III merge
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Figure 4- 11:

 

 GFP-Pur-alpha enrichment in polar cells  
confocal microscopy of Drosophila egg chambers (approximately stage 6); green: GFP-Pur-alpha; blue: DAPI 
A: red: eya (eyes absent)  
B: red: FasciclinIII 

 

 
 

Figure 4- 12:

 
 

 Enrichment of Pur-alpha in migrated follicle cells 
Confocal microscopy of Drosophila egg chambers (approximately stage 10);  
merged picture: green: GFP-Pur-alpha; blue: DAPI stained DNA, red: FasciclinIII stained polar cells 

The observed enrichment of GFP- Pur-alpha in the polar cells was also visible after their migration 

through the nurse cells at stages 10 and later (figure 4-12).  
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4.2.2.2 RNA-binding and dimerization are required for correct transport of GFP-
Pur-alpha during oogenesis 

 

To analyze structural and functional requirements for Pur-alpha localization and transport during 

Drosophila oogenesis, we generated transgenic flies carrying the same GFP-Pur-alpha constructs 

as used in cell culture experiments. The expression of a cDNA-based, full-length GFP-Pur-alpha 

protein recapitulated the localization of endogenous Pur-alpha, indicating that the 3’- and 5’-

untranslated regions of the endogenous pur-alpha mRNA are dispensable for correct Pur-alpha 

protein localization and enrichment during oogenesis (comparison of Pur-alpha localization in 

Figure 4-9 with 4-13A). 

A truncation of the C-terminal pur-repeat (PUR III), leading to monomeric Pur-alpha PUR I+II 

which  retains the ability to bind nucleic acids (GRAEBSCH et al. 2009) was less efficiently 

transported into the oocyte (Figure 4-13B, upper left panel) compared to the wild type full-length 

protein (Figure 4-13A).  A similar reduction of transport (Figure 4-13B, lower left panel) could be 

detected after introduction of two point mutations (R80A, R158A) in PUR-repeat I and II of the full 

length protein. A combination of both, monomeric Pur-alpha and impaired nucleic acid binding 

was no longer transported into the oocyte (Figure 4-13B, upper right panel). Furthermore, the 

predominantly cytoplasmic localization of Pur-alpha was lost. The transgene with the 

corresponding point mutation in the third PUR-repeat (GFP-Pur-alpha R80A R158A R226A) 

showed almost no transport into the oocyte, and a moderate nuclear abundance (Figure 4-13B, 

lower right panel). The third PUR-repeat is less well conserved as the first two repeats. 

Nonetheless it may be capable of binding nucleic acids and providing a possible dimer interface 

(see also Schneider cell experiment, Figure 4-5). This led to hetero-dimerization with endogenous 

Pur-alpha and hence diminished correct localization of the transgenic protein.  
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Figure 4- 13:

 

 Transport of different GFP-Pur-alpha constructs during oogenesis 
Confocal microscopy of  Drosophila ovarioles, green: GFP-Pur-alpha constructs 
A: full-length wild type GFP-Pur-alpha 
B: top left: PUR-repeat I+II (Aa 40-185)                                 top right: PUR-repeat I+II (Aa 40-185) R80A R158A 
     bottom left: fl GFP-Pur-alpha R80A R158A                 bottom right: : fl GFP-Pur-alpha R80A R158A R226A 

 

In summary, these results support the notion that Pur-alpha participates in nucleo-cytoplasmic 

shuttling and oocyte directed transport. For both, nuclear export and cytoplasmic transport RNA-

binding seems to be crucial. Also dimerization contributes to the efficiency of these processes. 

GFP PUR-IIIPUR-IIPUR-I XX XGFP PUR-IIIPUR-IIPUR-I XX

GFP PUR-IIIPUR-IIPUR-I

GFP PUR-IIPUR-I GFP PUR-IIPUR-IX X
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4.3 Defects in oogenesis in Pur-alpha hypomorphic alleles 
 

To analyze Pur-alpha function in adult flies two available P-element insertion lines that affect the 

Pur-alpha locus on the fourth chromosome were examined. The line pur-alphaKG05177
 carries an 

insertion in the promotor-region whereas line pur-alphaKG05743
 carries an insertion within the first 

intron of the pur-alpha gene (Figure 4-14A). The effects of the P-element insertions on the protein 

amounts in whole fly extracts were analyzed via Western Blot using the rat monoclonal anti-Pur-

alpha antibody (Figure 4-14B). Residual Pur-alpha expression was detectable in both alleles. The 

insertion line pur-alphaKG05743 showed a stronger reduction than the line pur-alphaKG05177 (Figure 4-

14B). 

 

 

Figure 4- 14:

 

 Pur-alpha hypomorphic alleles 
A: Scheme of pur-alpha locus on chromosome IV; red arrow heads: P-Element  insertion sites ; pur-αKG05177 : 
promoter region; pur-αKG05743: first intron 
B: Western Blot of whole fly extracts : rat monoclonal α -Pur-alpha, Pur-alpha 31 kDa; GFP-Pur-alpha          
57 kDa; Bottom panel: coomassie staining of the SDS-Gel after transfer as loading control 
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The localization pattern of Pur-alpha during oogenesis is not affected by reduced amounts of Pur-

alpha protein in the insertion lines (Figure 4-15). Regarding Figure 4-15 the fact has to be 

considered that microscope’s photo-multipliers were modulated to obtain pictures with 

comparable intensities in order to visualize the localization of endogenous Pur-alpha. Using 

comparable photo-multiplier settings the intensity of Pur-alpha staining was reflecting the results 

of the Western Blot analysis as depicted above (Figure 4-14B) (data not shown). 

 

 
 
Figure 4- 15:

 

 Endogenous Pur-alpha in Drosophila ovarioles  
Confocal microscopy of Drosophila ovarioles of wildtype and hypomorphic allele-flies kept under normal 
conditions; red: endogenous Pur-alpha; blue: TOTO3 stained DNA, nuclei of the cells 

Furthermore it could be observed, that pur-alpha mutant ovarioles were in a wild type shape if 

the female flies were kept at standard conditions before ovary dissection. 

 

 

4.3.1 Decreased egg laying in Pur-alpha hypomorphic alleles 

 

Both alleles pur-alphaKG05177 and pur-alphaKG05743
 are homozygous viable and fertile at 25°C 

standard conditions. However, when placed at 30°C for 96 hours, Pur-alpha mutant females laid 

fewer eggs than their wild-type counterparts. This was true for both homozygous hypomorphic 

alleles as well as for trans-heterozygous mutants (Figure 4-16). Heterozygous animals of both 

alleles showed a wild type like egg-laying phenotype. 

 

OregonR Pur-alpha KG05177Pur-alpha KG05743
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Figure 4- 16:

 

 Quantification of egg laying of pur-alpha mutant and wild type flies 
Flies were kept for 4 days at 30°C after hatching; number of eggs laid on grape juice agar per 15 flies after 
16 hours was determined. Bar chart displays mean egg-numbers after three experiments, error bars 
indicate the standard deviations, p-values < 0,01 are depicted with asterisks 

4.3.2 Malformation of follicular epithelium in Pur-alpha hypomorphic 
alleles 
 

To determine the cause for the reduced egg production wild type and mutant ovaries were 

examined in detail after four days at 30°C by staining the nuclear DNA with DAPI, followed by 

confocal microscopy. In wild type ovarioles, egg chambers are surrounded by a monolayer of 

follicle cells when they emerge from the germarium (Figure 4-17, left panel). In this experimental 

setting the large, polyploid nurse cell nuclei could be easily distinguished from the much smaller 

nuclei of the follicle cells which surround them.  Until stage 9 of oogenesis the follicle cells 

surround the nurse cells and the oocyte, then at stage 10 the border and polar cells start to 

migrate through the nurse cells to enclose the anterior side of the oocyte. This process depends 

on many signaling and differentiation events involving the polar cells. The right panel in Figure 4-

17 shows that the follicle cells of a pur-alphaKG05743
 ovariole after four days at 30°C  could not 

migrate properly and failed to encircle the nurse cells and the oocyte during early oogenesis (until 

approximately stage 8). Rather, they seemed to form a lump of cells on one side of the egg 

chamber (white arrows, Figure 4-17B). 
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Figure 4- 17:

 

 DAPI staining of OregonR and pur-alphaKG05743 ovarioles after four days at 30°C 
Flies were kept for 4 days at 30°C after hatching; the ovaries were dissected, fixed, permeabilized, stained 
with DAPI and visualized by confocal microscopy;  
A: wild-type (OregonR) ovariole 
B: pur-alphaKG05743 ovariole; white arrows: lump of follicle cells 

 

 

 

 

 Ovarioles Stage 10 egg chambers Percentage (%) 

Wild type (OregonR) 104 63 61 

pur-alphaKG05743 43 0 0 

pur-αKG05177 97 21 22 

pur-αKG05177/ pur-αKG05743 169 30 18 

 
Table 4-1:

 

 Stage 10 egg chambers after four days at 30°C 
Flies were kept for 4 days at 30°C after hatching; the ovaries were dissected, fixed, permeabilized, stained 
with DAPI and visualized by confocal microscopy; the number of stage 10 containing egg chambers was 
counted 

 

 

 

 

 

OregonR pur-alpha
KG05743A B
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In the weaker P-element insertion allele pur-αKG05177, where more protein was still remaining 

(Western Blot, Figure 4-14 B) the early follicle cell migration phenotype or the formation of follicle 

cell lumps could not be observed after keeping the flies at 30 °C. But also a reduced egg laying 

was measured (Figure 4-16). To find out the reason why also the pur-αKG05177 flies laid fewer eggs 

staged 10 egg chambers were counted after four days at 30°C (Table 4-1). In 63 out of 104 wild-

type ovarioles a stage 10 egg chamber could be observed. Homozygous the pur-αKG05177 ovaries 

had 22% stage ten egg chambers (n=97, stage 10: 21) and 18% of trans-heterozygous pur-αKG05177/ 

pur-αKG05743 ovarioles contained stage 10 egg chambers (n=169, stage 10: 30). In the strong allele 

pur-αKG05743 no stage 10 egg chambers could be identified after keeping the flies at the restrictive 

conditions. 

 

To make sure that the phenotype of reduced egg-laying and the malformation of the ovarioles 

was really due to the P-element insertions in the pur-alpha gene and not caused by any unknown 

background mutations we tried to rescue the phenotype by giving back transgenic GFP-Pur-alpha 

fusion constructs. Therefore flies were crossed to obtain new fly stocks which express different 

GFP-fusion constructs in the background of the homozygous pur-αKG05743 allele. As there are hardly 

any functional markers available for genetics on the fourth chromosome, fly crossing was carried 

out without marker and the obtained new lines were checked via a PCR-assay for their correct 

phenotype (Figure 4-18). PCR primers were designed that the presence or absence of a PCR 

product specifically distinguished between presence and absence of the P-element insertion in 

the pur-alpha gene. 
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Figure 4- 18

 

: Fly crossing scheme for rescue experiment 
Flies were crossed according to their genotypes for 2nd/3rd and 4th chromosome as depicted in the scheme; 
red color in F1 indicates the progeny which was used from the previous for the next crossing step;  to obtain 
for the P-element homozygous flies the flies of the F2 generation were crossed individually; the presence of 
the GFP-pur-alpha transgene in the F3 generation was verified with a fluorescence stereomicroscope; it was 
further analyzed via PCR, whether the P-element insertion was homozygous 

The newly generated rescue fly stocks were kept at 30°C for four days after hatching to induce the 

earlier observed egg laying defect. Their ovaries were dissected, fixed and stained with DAPI to 

visualize the resulting morphology (Figure 4-19). Only the flies carrying the full-length GFP-Pur-

alpha construct were able to produce correctly shaped ovarioles (Figure 4-19 A). The lower panel 

in Figure 4-19 A shows out crossed homozygous pur-αKG05743 ovaries which were negative for the 

GFP-Pur-alpha full length protein which had also malformed ovarioles. This served as a control for 

the functionality of the rescue experiment and to exclude other background genetic defects.  The 

GFP-Pur-alpha construct repeat I+II R80A R158A that lacks the ability to bind to RNA was not able 

to rescue the phenotype (Figure 4-19 B). GFP alone, used as control, could also not revert the 

malformation of the ovarioles in pur-αKG05743 flies (Figure 4-19 C). 
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Figure 4- 19

 

: DAPI staining and GFP fluorescence of rescue fly stocks 
Fly stocks were generated according to crossing scheme in Figure 18; flies were kept for 4 days at 30°C after 
hatching; the ovaries were dissected, fixed, permeabilized, stained with DAPI and GFP and DAPI 
fluorescence visualized by confocal microscopy;  
A: GFP-Pur-alpha in mutant background; lower panel:outcrossed homozygous pur-alphaKG05743 ovariole;  
B: GFP-Pur-alpha I+II R80A R158A in mutant background;  
C: GFP in mutant background 

We further asked whether the decreased egg laying could also be rescued by giving back the 

transgenic expressed GFP-Pur-alpha versions. To test this, the same egg-laying experiment as in 

Figure 4-16 was performed and eggs were counted after keeping the flies for four days at 30°C. 

Neither the GFP-only control (Figure 4-20, first bar) nor the mutated and truncated GFP-Pur-alpha 

I+II R80A R158A protein (Figure 4-20, third bar) could rescue the phenotype. An increased wild 

type like egg laying could only be observed by giving back the wild type full length protein (Figure 

4-20, second bar). As a control out crossed homozygous pur-αKG05743 flies were also used in this 

experimental setup (Figure 4-20, bar 4). The better egg laying performance of these lines 

compared to the initial pur-αKG05743 line (Figure 4-16) can be interpreted by the “refreshed” 

genome of the flies which came from the out crossing procedure. 

 

Figure 4- 20: Quantification of egg laying of pur-alpha mutant and rescue flies  
Flies were kept for 4 days at 30°C after hatching; number of eggs laid on grape juice agar per 15 flies after 
16 hours was determined. Bar chart displays mean egg-numbers after three experiments, genotypes are 
indicated below the bars respectively; error bars indicate the standard deviations 
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4.3.3 Knock-down of Pur-alpha in follicle cells 
 

Another possibility to check whether the observed pur-alpha phenotype results from the 

decreased amounts of Pur-alpha protein due to the insertion of the transposable elements is 

RNA-interference (RNAi). By the use of tissue-specific GAL4-driver lines which are crossed with 

flies expressing small hairpin RNAs under the control of UAS-sites, a tissue specific knock down of 

a gene of interest can be achieved (mechanism, see Figure 4-21). 

 

 

Figure 4-21:
The generic GAL4/UAS system is used to drive the expression of a hairpin RNA (hpRNAs). These double-
stranded RNAs are processed by Dicer into siRNAs which direct sequence-specific degradation of the target 
mRNA (picture and text taken from http://stockcenter.vdrc.at/control/rnailibrary) 

 Transgenic RNAi in Drosophila 

 

To accomplish a knock down of pur-alpha in follicle cells the VDRC line 101363 was used and 

driven by a traffic-jam GAL4 driver line (OLIVIERI et al. 2010). The expression pattern in follicle cells 

via the traffic jam GAL4 construct was checked using UAS-GFP expressing flies (data not shown) 

and the knock down of Pur-alpha was visualized by an immunofluorescent staining of endogenous 

Pur-alpha in knock down and wild type ovaries (Figure 4-22). The follicular epithelium which 

surrounds the egg chamber shows a weaker red staining (Figure 4-22, right picture) compared to 

wild type (Figure 4-22, left picture). This staining also served as a further specificity control for the 

generated rat anti-Pur-alpha antibody. 
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Figure 4-22:

 

 Knock down of Pur-alpha in follicle cells  
Ovaries from wild type and Pur-alpha knock down flies (traffic jam (tj) GAL4; VDRC101363) were dissected, 
fixed, permeabilized, stained with rat α-Pur-alpha antibody and α-rat-Cy3 conjugated secondary antibody 
and visualized by confocal microscopy 

 

Figure 4-23:

 

 Quantification of egg laying of pur-alpha knock down and control flies  
Flies were kept for 4 days at 30°C after hatching; number of eggs laid on grape juice agar per 15 flies after 
16 hours was determined. Bar chart displays mean egg-numbers after two or three experiments, error bars 
indicate the standard deviations, crossing of the UAS-line and the GAL4-driver-line with w1118 and OrR flies 
served as controls 

The egg laying experiment with the knock down flies couldn´t show the same phenotype which 

was observed with the P-element insertion flies. The number of laid eggs was not significantly 

affected by the knock down of Pur-alpha in the follicle cells (Figure 4-23).  
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However, the appearance of the laid eggs and embryos from the Pur-alpha knock down flies was 

different compared to the control and wild type flies. The embryos looked loose and perforated. 

To analyze whether this observation had an effect on the outcome of the progeny, the hatching of 

larvae from these embryos was monitored. 80% of control flies were able to hatch (103 out of 

129), but only 33% (45 out of 135) of the Pur-alpha knock down larvae (Table 4-2). Compared to 

the severe egg laying phenotype of pur-αKG05743 flies (Figure 4-16) the effect of reduced amounts 

of pur-alpha protein in follicle cells seemed to be less dramatic but still measurable. 

 

 embryos hatched larvae percentage (%) 

Control (w1118  x  Pur-α-RNAi) 129 103 80 

Pur- α knock down  

(tj-GAL4  x Pur-α-RNAi) 

135 45 33 

 
Table 4-2:

 

 Hatching of larvae 
Embryos were collected approximately 8 hours after egg laying and placed on a standard grape juice plate 
and incubated for 24 hours at standard conditions, hatched larvae were counted 

 

4.3.4  Morphological analysis of main ovary components in pur- 
alpha KG05743  flies 

4.3.4.1  Oocyte and polar cell determination  

 

Not only the polar cells showed an accumulation of Pur-alpha, but also the oocyte itself is 

enriched with Pur-alpha protein (see Figure 4-9). To test whether the reduced Pur-alpha levels 

lead to defects in oocyte specification in the ovarioles of pur-alphaKG05743 flies, an antibody staining 

against the RNA binding protein Orb was used. The cytoplasmic poly-A binding protein Orb is 

strongly enriched in early oocytes and required for the establishment of polarity (CHRISTERSON and 

MCKEARIN 1994; LANTZ et al. 1994), thus allowing the identification of the oocyte. The anti orb 

staining was performed after pur-alphaKG05743
 mutant females were kept 4 days at 30°C, the same 

experimental setup as used for the egg laying-experiment earlier in this study. Figure 4-24 shows 

that in general one oocyte was present per developing egg chamber, which indicates that oocyte 

specification was not fundamentally disturbed. However, in infrequent cases it was difficult to 

distinguish individual egg chambers because they were incompletely separated by the follicle 

cells, a phenotype sometimes referred to as extra oocyte specification. 
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Figure 4-24:

 

 Orb and DAPI staining of pur-alpha
KG05743 

ovarioles  
Flies were kept for 4 days at 30°C after hatching; the ovaries were dissected, fixed, permeabilized, stained 
with α−orb as primary antibody and α-mouse Cy3 conjugated secondary antibody and DAPI; and visualized 
by confocal microscopy; red: orb; blue: DAPI-stained DNA; white arrows: lump of follicle cells 

 

The other cell type where a strong Pur-alpha enrichment could be observed was the polar follicle 

cells (Figure 4-11). In pur-alphaKG05743 flies the correct migration of the follicle cells is disturbed. 

This migration is dependent on the organizer function of the polar cells (BECCARI et al. 2002). To 

reveal whether there are no polar cells determined or all follicle cells have polar cell character in 

the Pur-alpha mutants, their ovaries were stained with FasciclinIII antibody (RUOHOLA et al. 1991) 

after keeping them at the restrictive temperature (Figure 4-25). 

Despite the lump formation of the follicle cells in pur-alphaKG05743 ovaries there were always two 

pairs of polar follicle cells determined. The polar cells could be identified by their strong 

FasciclinIII staining (Figure 4-25). In contrast to wild type (OregonR, top panel) the polar cell pairs 

in pur-alphaKG05743 ovaries did not lie at the anterior and posterior pole of the egg chamber, they 

were rather randomly distributed in the bunch of follicle cells. 

 

 

α-orb DAPI merge
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Figure 4-25:

 

 FasciclinIII and DAPI staining of OregonR and pur-alpha
KG05743 

ovarioles  
Flies were kept for 4 days at 30°C after hatching; the ovaries were dissected, fixed, permeabilized, stained 
with α−fasciclinIII as primary antibody and α-mouse Cy3 conjugated secondary antibody and DAPI; and 
visualized by confocal microscopy; red: FasciclinIII; blue: DAPI-stained DNA 

 

4.3.4.2  Adherens junctions and ring canals 

 

To answer the question whether other main structural features of the ovarioles were affected by 

the pur-alphaKG05743
 hypomorphic allele, more immunostainings were carried out. The protein 

armadillo, which is the Drosophila homolog to vertebrate beta-catenin, is a main component of 

the adherens junction protein complex. Adherens junctions mediate cell-cell-adhesion and 

organization of cells into epithelia (COX et al. 1996; PEIFER et al. 1993). The malformation of the 

follicle epithelium in pur-alpha KG05743
 ovaries might be due to a dysfunction of adherens junctions. 

Therefore an immunostaining using α-armadillo antibody was performed after keeping the flies at 
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the restrictive conditions (Figure 4-26, top panel). Armadillo is generally localized polarized at the 

inner side of the follicle cells which is the connection surface side to the nurse cells. This was true 

for wild type egg chambers (Figure 4-26, left picture) as well as for pur-alpha KG05743
 mutant egg 

chambers (Figure 4-26, right picture). Hence, the polarized pattern of Armadillo seemed to be not 

interrupted by the defects in follicle epithelium caused by the P-Element insertion in the pur-

alpha gene.  

In Drosophila egg chambers the nurse cells and the oocyte are connected by cytoplasmic bridges 

called ring canals. Through these canals the nurse cells transfer maternal components like 

proteins, mRNAs, ribosomes and mitochondria into the developing oocyte. There are 15 ring 

canals in each egg chamber, which can be visualized by staining with an antibody against hu-li tai 

shao (hts). Hts is a structural protein required for ring canal formation (ROBINSON et al. 1994). The 

lower panel of Figure 4-26 shows hts-stained wild type (left picture) and Pur-alpha mutant 

ovarioles (right picture). The number and structure of ring canals appeared similar in the mutant 

ovarioles compared to wild type. A precise quantification is challenging due to the grossly 

perturbed morphology of pur-alpha mutant ovaries. 

 

 

Figure 4-26:

pur-alphaKG05743OregonR

hts
DAPI

armadillo
DAPI

 Armadillo, hts and DAPI staining of OregonR and pur-alphaKG05743 ovarioles  
Flies were kept for 4 days at 30°C after hatching; the ovaries were dissected, fixed, permeabilized, stained 
with anti either α-armadillo or α-hts as primary antibody and α-mouse Cy3 conjugated secondary antibody 
and DAPI; and visualized by confocal microscopy; red: top panel: armadillo, bottom panel: hts; blue: DAPI-
stained DNA 
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4.4 Pur-alpha associated proteins 

 

In order to investigate the underlying molecular mechanism for the follicle cell phenotype of the 

pur-alpha hypomorphic alleles we analyzed Pur-alpha associated proteins from Drosophila ovary 

extracts. Co-immunprecipitation from GFP-Pur-alpha transgenic ovaries was performed using 

GFP-trap® affinity-beads. As a control and to distinguish between specific and unspecific 

interaction partners, ovaries expressing GFP only were used. The purified GFP-containing protein 

complex fractions were separated on a SDS-PAGE gradient gel. The gel was cut in a size 

distribution visualized by the white lines in Figure 4-27 and the slices were separately analyzed 

using LC-MS/MS to identify the binding partners. 

 

 
 

Figure 4-27:

 

 Mass-Spectrometry of Pur-alpha associated proteins in ovary extracts 
Ovaries from GFP and GFP-Pur-alpha expressing flies were dissected, ovary extracts were prepared in lysis 
buffer and co-immunoprecipitation was performed from 2 mg ovary extract using GFP-trap A beads; the 
bound fractions were loaded on a precise protein gradient gel (20-4%) and stained with colloidal coomassie, 
Gel pieces were sliced as depicted above with white lines and analyzed using LC-MS/MS. Green arrows 
show the primarily pulled down proteins GFP (left side) and GFP-fused Pur-alpha (right side). 
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Table 4-3 shows the proteins which were specifically found in the Pur-alpha bound fraction and 

their abundance over a threshold of 20 % sequence coverage of the peptides regarding the whole 

protein sequence. In this list Me31B, Growl, Cup, Exuperantia, Trailer hitch and Ypsilon Schachtel 

were proteins specifically associated with Pur-alpha which are already known to be part of 

transported mRNPs during Drosophila oogenesis. 

 

 

Protein Number of peptides Sequence coverage 
Pur-alpha 20 67% 
Me31B 28 63% 
Growl 19 42% 
Cup 32 41% 
Exuperantia 16 35% 
Trailer hitch 24 34% 
Stress-sensitive B 9 27% 
PABP 13 25% 
Hsc4 15 25% 
Dj-1beta 4 25% 
Hsp26 4 24% 
Ypsilon Schachtel 6 23% 

 

Table 4-3:

 

 Mass-spectrometry of Pur-alpha associated proteins 
 Table shows mass spec results after CoIP, left column: name of associated protein, middle column: number 
of measured peptides, right column: sequence coverage of peptide sequence in relation to protein 
sequence, cut off was 20% sequence coverage, bold: proteins known to be associated with transported 
RNPs during Drosophila oogenesis 

 

 

To validate the results of the mass spectrometry analysis the GFP affinity purification was 

repeated, followed by Western Blotting. This approach also allowed us to examine the 

interactions established by the mutated or truncated GFP-Pur-alpha variants described earlier. 
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Figure 4-28:

 

 Verification of mass-spec results with Western Blotting 
Ovaries from GFP and different GFP-Pur-alpha variants expressing flies (depicted above) were dissected, 
ovary extracts were prepared in lysis buffer and Co-Immunoprecipitation was performed from ovary 
extracts using GFP-trap A beads; 10 %-SDS-gel was loaded with the resulting fractions as depicted above; 
Western Blot analysis was performed using α-Cup, α-Tral and α-Me31B- antibody; bottom panel shows α-
GFP Western Blot for comparison of pull down efficiency of the  differently expressed GFP-fused-constructs 

The association of full length GFP-Pur-alpha with Cup, Trailer hitch (Tral) and Me31B was nicely 

reproduced via Western Blot (Figure 4-28, lane 3) with available antibodies. For monomeric GFP-

Pur-alpha repeat I and II the same association behaviour was visible (Figure 4-28, lane 4) 

indicating that dimerization was not required for this association.   If the RNA binding capacity of 

Pur-alpha repeat I and II was impaired by the introduction of the two point mutations R80A and 

R158A the association with Cup and Me31B was completely abolished (Figure 4-28, lane 5). This 

leads to the assumption that these interactions are RNA-mediated. The association with Tral was 

diminished but not completely prevented. Thus, the interaction seemed to be at least partly 

direct. If the point mutations were introduced in full length background of the protein the 

association with the three tested factors was also diminished but still reasonable. The 
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dimerization of transgenic mutated GFP-Pur-alpha with the natural endogenous Pur-alpha via the 

third Pur-repeat is a possible reason for the observed association. The same was true for the two 

point mutations R65A R142A which impair the nucleic acid binding capacity of Pur-alpha to a 

lesser extent (Figure 4-28, lane 6). Taken together, these results suggested that the association of 

Pur-alpha with mRNP transport components is likely mediated through mRNAs bound by Pur-

alpha. As a control GFP-only ovary extract was used in the initial mass spectrometry analysis 

(Figure 4-28, lane 7). The control anti-GFP-Western blot (Figure 4-28, bottom panel) shows that 

the GFP-fusion proteins could all be successfully immunoprecipitated. 

 

 

4.5  Pur-alpha associated RNAs 

4.5.1  Pur-alpha associated messengerRNAs  

4.5.1.1  microArray and GO-Analysis 

 

To get global information of Pur-alpha associated mRNAs a microarray analysis was carried out. 

Therefore GFP-trap co-immunoprecipitation was performed from GFP-Pur-alpha expressing ovary 

extracts as well as from flies expressing only GFP as a control. Bound and Input RNA was prepared 

and 100 ng were analyzed with Affymetrix Drosophila genome 2.0 arrays. Four arrays were 

performed, one array hybridization for each input and immunoprecipitated RNA sample. For 

normalization and data analysis R! / Bioconductor was applied. A broad range of transcripts (6340 

in total) were detectable in the immunoprecipitate as well as in the control. Although total RNA 

recovery was higher with GFP-Pur-alpha than with GFP alone, it was not possible to distinguish a 

small subgroup of genes with a particularly high recovery in the GFP-Pur-alpha 

immunoprecipitate. To identify groups of functionally related factors all detected mRNAs were 

ranked according to their GFP-Pur-alpha vs. control ratio, and then a gene ontology (GO) analysis 

was performed. We employed GOrilla (EDEN et al. 2009), a software tool that allows searching for 

GO-term categories enriched at the top of a ranked list relative to the total list of detected genes 

(5300 genes were employed in the analysis). As a control, the mRNAs isolated from the protein 

extracts used as input in the Immunoprecipitation were also analyzed and ranked according to 

their GFP-Pur-alpha vs. control expression ratio, followed by gene ontology analysis. In order to 

get insights into Pur-alpha´s role in specific localizations of proteins and mRNA transport, the 

GOrilla analysis was applied concentrating on cellular component terms. As shown in table 4-4, 
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GO-terms involving cell junctions (anchoring junction, cell junction, adherens junction) were 

significantly enriched in the ranked list after co-immunoprecipitation but not in the list ranked for 

the input ratio (Table 4-5). 

 

Description 
(GO-term) 

P-value 
Bound 

P-value 
Input 

Number of 
genes 

anchoring junction 9.43E-6 -  19 
cell junction 2.33E-5 -  25 
plasma membrane part 2.34E-5 1.02E-4  46 
apical part of cell 2.84E-5 -  9 
axon 2.84E-5 -  9 
adherens junction 2.87E-5 -  18 
chromatin 6.49E-5 -  22 
plasma membrane 7.45E-5 -  53 
cell projection 1.1E-4 6.45E-4  16 
 
Table 4-4:
 

 List according to Bound ratio 

Description 
(GO-term) 

P-value 
Input 

P-value 
Bound 

Number of 
genes 

external encapsulating 
structure  

3.41E-19 -  12 

chorion  1.11E-15 -  10 
membrane  9.09E-10 -  142 
integral to membrane  1.03E-08 -  92 
intrinsic to membrane  2.59E-08 -  94 
plasma membrane  1.55E-06 -  61 
vitelline envelope  5.04E-06 -  3 
extracellular region  1.83E-05 -  17 
membrane part  7.17E-05 -  134 
plasma membrane part  1.02E-04 2.34E-5  45 
 

Table 4-5:

 

 List according to Input ratio 
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4.5.1.2  Analysis of Pur-alpha associated mRNAs with qRT-PCR 

 

To verify and analyze the results of the microarray data in more detail qRT-PCR experiments were 

carried out. We therefore repeated the immunoprecipitation procedure and analyzed the bound 

as well as the input mRNA by qRT-PCR for a set of candidate genes taken from the top of the 

microarray list together with several other genes with a known function during oogenesis and 

GAPDH, actin 5C and rp49 as controls. Through comparison of the ct-values of input and bound 

fractions the ratio of bound to input for GFP-Pur-alpha and for the GFP only control could be 

determined. Generally, the recovery was higher in GFP-Pur-alpha immunoprecipitates compared 

with GFP only, confirming that the GFP-Pur-alpha fusion protein retained its RNA binding capacity. 

Figure 4-29 and 4-30 show the results of three independent co-immunoprecipitation experiments 

ordered by the recovery-rate, respectively. Argonaute-2 (Ago2), diego (dgo), lerp, notch (N), 

CG4570 and disheveled (dsh) mRNA were significantly associated with Pur-alpha. The binding of 

mRNAs to the GFP only control is shown in figure 4-30. 

 

Figure 4-29:
Bar chart depicts results from three individual qRT-PCR experiments with GFP-trap beads from GFP-Pur-
alpha ovary extract, association with actin 5C mRNA serves as threshold (red line); red stars indicate p-
values determined with student´s t-test, significant p-values are depicted with red asterisks 

 mRNA recovery after Co-IP of GFP-Pur-alpha ovaries 
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Figure 4-30:
Bar chart depicts results from three individual qRT-PCR experiments with GFP-trap beads from GFP ovary 
extract, red line indicates threshold (association with actin 5C mRNA) 

 mRNA recovery after Co-IP of GFP-only (control) ovaries 

 

 

4.5.1.3  Pur-alpha binds to sequences similar to the opa sequence 

 

It is known that Pur-alpha binds to purine rich sequences so called PUR-elements in DNA and to 

CGG repeats in the Fmr1 mRNA. To analyze whether there is also a common sequence motif 

within the identified mRNAs from Drosophila ovary extracts, a sequence alignment was 

performed. Figure 5-1 (chapter 5.5) shows the sequence alignment with the opa sequence 

depicted on top. This sequence motif was identified within the notch mRNA sequence and 

consists predominantly of the triplets CAG (red, Figure 5-1) and CAA (green, Figure 5-1). It can be 

found in many other developmentally regulated transcripts (WHARTON et al. 1985). The 

predominantely with Pur-alpha associated mRNAs ago2, dsh, bazooka (baz) and ftz-f1 share opa-

like sequences. 
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4.5.1.4  Recombinant Pur-alpha binds to (CAG)4  and (CAG)3CAA RNA in vitro 

To verify the binding capacity of Pur-alpha in vitro electrophoretic mobility shift assays (EMSAs) 

were performed. Therefore Fluorescein-labeled 12mer RNA oligos with (CGG)4 as a positive 

control, (CAG)4, (CAG)3CAA and (CAA)4 were used and titrated with increasing amounts of either 

recombinant Pur-alpha PUR-repeat I+II or Pur-alpha PUR-repeat I+II+III. Figure 4-31 shows the 

EMSA of (CAG)4 with Pur-alpha PUR-repeat I+II+III. The ratio between bound and total RNA oligo 

was determined and the resulting binding curves fitted with the Dose Response (Logistic) fitting 

function (Figure 4-32). The half maximal effective concentration (EC50) values displayed in Table 

4-6 specify the µM binding constant of each protein variant to the RNA oligos, respectively. The 

binding constants of the full-length protein to the three RNAs (CGG)4,  (CAG)4  and (CAG)3CAA 

range between 1,2 and 1,6 µM, with the highest affinity to (CAG)3CAA RNA. The truncated 

protein, which consists of a single PUR-domain (Pur-alpha I+II) shows the highest binding affinity 

(0,7 µM) to (CGG)4  RNA, but also binds to (CAG)4 and (CAG)3CAA RNA. These results could verify 

the earlier in the microarray and the qRT-PCR observed results. 

 

 

 

Figure 4-31:

 

 Pur-alpha binds to (CAG)4 RNA 
EMSA with recombinant Pur-alpha I+II+III and Flourescein-labeled (CAG)4 RNA; c((CAG)4)=100 nM, protein 
was titrated as depicted above the lanes 
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Figure 4-32
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: Binding curves of recombinant Pur-alpha  
A: Binding curves of recombinant Pur-alpha I+II to (CGG)4  (blue), (CAG)4 (dark red), (CAG)3CAA (green) and 
(CAA)4 (violet) RNA 12mer 
B: Binding curves of recombinant Pur-alpha I+II+III to (CGG)4  (blue), (CAG)4  (dark red), (CAG)3CAA (green) 
and (CAA)4 (violet) RNA 12mer 
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                        recombinant protein 

RNA oligo Pur-alpha I+II 
 

Pur-alpha I+II+III 
 

r(CGG)4 0,68 µM 1,43 µM 
r(CAG)4 1,81 µM 1,56 µM 

r(CAG)3CAA 1,97 µM 1,15 µM 
r(CAA)4 not determined 2,22 µM 

 

Table 4-6:

 

 EC50 values/binding constants of recombinant Pur-alpha to RNA oligos 

 

4.5.2   Pur-alpha associated microRNAs 

4.5.2.1  Pur-alpha associated microRNAs from FLAG-Pur-alpha transfected 

Schneider cells 

 

If Pur-alpha is associated with mRNP particles, then microRNAs should also be found in Pur-alpha 

immunoprecipitates. As easily accessible first experimental setting co-immunoprecipitations from 

Schneider cells transfected with FLAG-tagged Pur-alpha were performed. The pulled down RNAs 

were purified with TRizol and then the small RNA content was analyzed regarding the four 

microRNAs miR-277, bantam, miR-34 and miR-317 via Northern Blotting (Figure 4-33). As control 

probe the ribosomal 2S-RNA was used (Figure 4-33, bottom panel). The Argonaute-1 IP (Figure 4-

33, lane 3) served as a control for the functionality of the assay; all four tested microRNAs were 

associated with the RISC component Ago1. The IP of the FLAG-tagged (Figure 4-33, lane 4) as well 

as of the endogenous (Figure 4-33, lane 5) Pur-alpha resulted in purification of all four tested 

microRNAs. And the endogenous Pur-alpha also seemed to be associated with the ribosomal S2-

RNA (Figure 4-33, lane 5, bottom panel). This was not surprising as there might also be ribosomes 

associated with mRNPs. As the fact was known from earlier experiments during this thesis that 

Pur-alpha interacts with Ago1 in Schneider cells (Figure 4-6) the pulled down microRNAs might be 

associated with the co-purified Ago1 protein. Thus, Pur-alpha is associated likely in an indirect 

manner with several microRNAs in cell culture. 
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Figure 4-33:

 

 Analysis of Pur-alpha associated microRNAs in cell-culture 
Drosophila Schneider cells were transfected with FLAG-Pur-alpha, after three days cells were harvested and 
CoIP using α−rabbit-IgG, α-Ago1 1b8, α−FLAG and polyclonal rb α-Pur-alpha antibody from cell extracts 
was performed. RNA from bound fractions was purified with TRIZOL and Northern Blot analysis was 
performed using as-RNA probes against mir-277, bantam, miR-34 and mi-317; 2S-rRna served as a control. 

4.5.2.2  Pur-alpha associated microRNAs from GFP-Pur-alpha transgenic ovary-extracts 

 

After the cell culture experiments revealed that Pur-alpha complexes contain microRNAs, the Pur-

alpha associated microRNAs from Drosophila ovary extracts were analyzed in a more global 

fashion. Therefore a compendium of 80 microRNAs was tested. These microRNAs were compiled 

based on deep sequencing data from various life stages covering the development of Drosophila 

from embryo to adult fly (ModEncode Consortium). Together, the analyzed microRNAs cover at 

least 95% of the microRNA-matching reads for any of the life stages examined.  

Again GFP associated complexes were purified from ovaries from GFP-Pur-alpha- and GFP-only-

expressing flies using GFP-trap® affinity-beads. The RNA content from the obtained complexes 

was purified with Trizol, reverse transcribed and analyzed with qRT-PCR using the miScript 

system. From the cDNA the levels of the 80 microRNAs were determined. Figure 4-34 shows a 

heatmap of the measured levels of the microRNAs of two independent experiments (A and B). 

Comparing the microRNA levels of the GFP-Pur-alpha extracts to the miRNAs recovered after 
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immunoprecipitation of GFP-Pur-alpha, especially miR-252, miR-133 and miR-124 were enriched 

(Figure 4-34). This is indicated by the green color in the two input fractions (Input A and B) which 

represents a low abundance compared to the red color in the two bound fractions (Bound A and 

B) which represents a high abundance (Figure 4-34, top three lanes). Other microRNAs like e.g. 

mir-306, miR-278 and miR-282 were depleted from the bound fractions in the two experiments; 

indicated by the color changes from red in the input fractions to green in the bound fractions. 

Control-co-immunoprecipitations from extracts harboring only GFP contained much lower levels 

of microRNAs which are indicated by the bright green colors (Figure 4-34, ´Bound control´-

column).  

Consequently, this change in the relative abundance of certain microRNAs between the input 

fractions and Pur-alpha-co-immunoprecipitated fractions is indicating that not all mRNP particles 

are equally associated with GFP-Pur-alpha. 

 

 
 

Figure 4-34:
Two independent CoIP-experiments A and B were performed, microRNA levels were determined with qRT-
PCR using the Qiagen miScript-System; red color: abundant RNAs; green color: rare RNAs 

 Heatmap of Pur-alpha associated microRNAs in Drosophila ovary extracts 
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To verify the results from the global microRNA analysis of Pur-alpha ovary precipitates, qRT-PCR 

experiments were carried out, analyzing especially the Pur-alpha associated or depleted 

microRNAs again using the miScript system. The result is depicted by the bar chart in Figure 4-35 

and confirmed the earlier observed results, namely that miR-252, miR-133 and miR-124 were 

preferentially associated with Pur-alpha; and mir-282, miR-278 and miR-306 were not. 

 

 

 

 
Figure 4-35

Single microRNA levels were measured with qRT-PCR using the Qiagen miScript-System, and recovery after 
CoIP was determined using the 2-∆∆Ct-method, dark grey bars indicate the pulled down microRNAs from 
GFP-only ovary extracts, light grey bars the GFP-Pur-alpha pulled down microRNAs  

: miScript qRT-PCR after CoIP of GFP from GFP-/GFP-Pur-alpha expressing ovary 
extracts 

 

4.5.2.3 GO-term analysis of top three enriched or depleted microRNA predicted targets 

 

In certain cases, miRNAs co-regulate genes that function within a common theme. Therefore 

another analysis of the cellular component GO-terms was performed, this time asking for 

enrichment among the predicted targets of the top 3 enriched or depleted miRNAs. To avoid 

introducing a bias by the origin of the material, the 5300 mRNAs, which had been earlier detected 

in the microarray experiments from ovary extracts, were used as control population. Again, the 

GO-terms for cell junction and membrane localization were clearly overrepresented among the 
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predicted targets of miR-252 and miR-124, which were found preferentially associated with GFP-

Pur-alpha (Table 4-7). This finding is consistent with the results of the GO-term analysis for the 

mRNAs (Table 4-4). For miR-133 there are no predicted targets. 

Taken together, this data suggests that Pur-alpha is associated with a variety of mRNAs and 

microRNAs but appears to preferentially bind transcripts coding for cell-cell junction components. 

 

miR-252  
GO-term 

 
P-value  

integral to membrane  1.03E-14 
intrinsic to membrane  - 
membrane part  - 
plasma membrane  - 
membrane  3.45E-5 
plasma membrane part  1.83E-4 
extracellular region part  4.4E-4 
myosin complex  - 
endocytic vesicle  - 
integral to plasma membrane   
 

miR-124 
GO-term 

 
P-value  

plasma membrane part  2.56E-5 
focal adhesion  3.34E-5 
cell-substrate adherens 
junction  

7.03E-5 

cell-substrate junction  9.7E-5 
membrane part  3.67E-4 
cell junction  4.41E-4 
 
Table 4-7:

  

 GO-term analysis of predicted miRNA targets of miR-252 and miR-124 
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5. DISCUSSION 

 

In Drosophila, the division of a germ line stem cell is the beginning of a program that turns a 

cystoblast into a mature egg containing nutrients, pattern information and an egg shell for 

mechanical protection. This production requires a precisely defined and coordinated interaction 

between the germ line descendents and the somatic follicle cells that surround them.  

During this thesis the nucleic acid binding protein Pur-alpha was identified as a novel player in this 

process. It was shown that its function is essential for the first encapsulation of a germ line cyst 

and furthermore, for the migration of the border cells prior to stage 10. Pur-alpha is part of mRNP 

complexes. The transported mRNAs are enriched for cell junction and adhesion molecules, likely 

associated with miRNAs repressing their translation. Transport of these mRNAs to their 

appropriate location within the cell may be required for cell migration and/or recognition of the 

neighboring cells at the destination. 

 

 

5.1 Pur-alpha´s structure to function relation 

 

The Drosophila Pur-alpha protein consists of three so called PUR-repeats. Structurally the first two 

repeats form a whirly like fold, which makes up an autonomous nucleic acid binding domain, the 

PUR-domain (GRAEBSCH et al. 2009). A homo-dimerization of the protein is achieved via the third 

PUR-repeat, which itself forms a PUR-domain together with another third PUR-repeat from a 

second Pur-alpha protein. The in vivo studies during this thesis could show that Pur-alpha is 

transported early into the developing oocyte during Drosophila oogenesis. The generation of 

transgenic flies with different GFP-fused truncated and mutated Pur-alpha protein versions 

helped to reveal the requirements for correct localization of different modified mutated or 

truncated proteins. The analysis of GFP-Pur-alpha R80A R158A transgenic ovaries showed that 

RNA binding and dimerization of the protein are crucial for optimal transport into the oocyte 

(Chapter 4.2.2). The recruitment of more than one RNA binding domain onto a cargo mRNA is a 

common strategy among RNA transport factors, likely to increase affinity, specificity or the chance 

for the cargo to remain bound throughout the entire transport time (VALVERDE et al. 2008). 

Introduction of the point mutation R229A in the third Pur-repeat leads to diminished but not 

completely abolished transport (Chapter 4.2.2.2; Figure 4-13) of the full-length protein with 

mutations in every PUR-repeat (GFP-Pur-alpha R80A R158A R229A). The residual transport can be 

explained by the possible dimerization of a transgenic protein with an endogenous wild type 
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protein which can still bind to RNA and is therefore transported correctly. The dimerization 

capacity of triple mutant Pur-alpha protein was shown in the Co-IP experiment from Drosophila 

Schneider cells extract with GFP- and FLAG-tagged Pur-alpha (Chapter 4.2.1.1; Figure 4-5). A 

further observation from cell-culture experiments (Chapter 4.2.2.1) as well as from in vivo studies 

of transport during oogenesis (Chapter 4.2.2.2) was that mutant Pur-alpha with diminished 

nucleic acid binding started to accumulate in the nucleus of Schneider cells or nurse cells. This 

might be an indication that under normal circumstances, Pur-alpha shuttles between nucleus and 

cytoplasm considering the assembly of Pur-alpha containing mRNPs at least in part in the nucleus. 

Stable binding to RNA is required for efficient nuclear export of Pur-alpha and its potential cargo. 

The accumulation of Pur-alpha in the nucleus was also observed during neurodegeneration in 

FXTAS, where nuclear inclusions in neurons and astrocytes containing the mutation carrying FMR1 

mRNA and Pur-alpha bound to this wrong RNA were observed (JIN et al. 2007). The export from 

the nucleus appeared to be independent from Exportin 1 (CRM1) and Importin-alpha 3 (D-Cas). 

This was analyzed in cell culture experiments using LeptomycinB (FASKEN et al. 2000) and RNA-

interference against D-Cas (TEKOTTE et al. 2002) (data not shown). 

Analogous shuttling between nucleus and cytoplasm has been described for Cup (ZAPPAVIGNA et al. 

2004), one of the Pur-alpha protein interaction partners which was identified in this thesis in 

chapter 4.4. RNA binding of Pur-alpha is also required for the association of Pur-alpha with its 

protein interaction partners. The interaction of Pur-alpha from ovary extracts with Cup, Trailor 

hitch and Me31b was abolished if RNA binding was impaired (Chapter 4.4; Figure 4-28) and the 

same was true for cell-culture experiments where the interaction with Ago1, FMRP and partly 

Ago2 was prevented (Chapter 4.2.1.2, Figure 4-7 and 4-8), if the two point mutations R80A and 

R158A where present in Pur-alpha PUR-repeat I+II.  

 

 
5.2 Identified Pur-alpha associated proteins 

 

The most abundant Pur-alpha associated protein found by mass spectrometry analysis in 

Drosophila ovary extracts in this study was Me31B. Altogether, 28 peptides derived from Me31B 

were found, which covered 63 % of the protein sequence (Chapter 4.4; Table 4-3). Me31B is a 

DEAD-box-helicase protein and involved in the formation of cytoplasmic mRNP complexes 

together with Exuperantia  (Exu) and oocyte-localizing RNAs (NAKAMURA et al. 2001). If Me31B is 

lost during early oogenesis, translation of the associated mRNAs oskar and BicD starts before they 

reach their final destinations. Me31B was also found in Staufen- and FMRP containing RNPs in 

Drosophila neurons (BARBEE et al. 2006), where it was shown to act together with Trailor hitch 
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(Tral) in FMRP-driven, Argonaute protein dependent translational repression. The proteins Exu 

(SCHUPBACH and WIESCHAUS 1986) and Tral (WILHELM et al. 2005) were also found in Pur-alpha 

immunoprecipitates with 16 peptides for Exu and 24 peptides for Tral, corresponding to 35% and 

24% sequences coverage, respectively (Chapter 4.4; Table 4-3). Exu is known to be a main sponge 

body component in Drosophila oogenesis. These structures are intracellular compartments for the 

assembly and transport of maternal products involved in RNA localization (WILSCH-BRAUNINGER et 

al. 1997). Taken together, the association of Pur-alpha with these proteins and their known 

functions, allowed us to conclude that Pur-alpha is part of transported mRNPs during oogenesis. 

The translational silencing during transport appears to be at least in part achieved by microRNAs. 

These findings fit nicely together with the observed microRNA content in Pur-alpha co-

immunoprecipitates (Chapter 4.5.2). 

Another Pur-alpha associated protein identified is Cup (32 peptides and 41 % sequence coverage; 

Chapter 4.4; Table 3).  Together with Nanos, Cup functions in the maintenance of germ-line stem 

cells during oogenesis (VERROTTI and WHARTON 2000). Through its interaction with the translation 

initiation factor eIF4E Cup controls the translation of oskar, gurken and nanos mRNA (CLOUSE et al. 

2008; NAKAMURA et al. 2004; WILHELM et al. 2003). On the protein level Cup is associated with the 

mRNA binding protein Staufen and the adaptor protein Miranda, which is indicating a function for 

Cup mediated translational repression during mRNA transport (PICCIONI et al. 2009). The observed 

association between Cup and Pur-alpha argues for a further role of Pur-alpha in transport of 

translationally silenced mRNAs during oogenesis. Interestingly, the abundant transport protein 

Staufen (reviewed in (ROEGIERS and JAN 2000)) was not found among the Pur-alpha associated 

proteins in this study. Therefore, Pur-alpha mediated transport might be independent of the 

Staufen dependent transport machinery.  

Cup mutant flies lay eggs with incompletely closed egg shells (SCHUPBACH and WIESCHAUS 1991). For 

the proper production of the egg shell the differentiation of follicle cells, correct follicle cell 

migration and many complex protein modification and trafficking events are necessary (reviewed 

in (WARING 2000)). If Pur-alpha is knocked down in the follicle cells of the ovary with a UAS-RNAi 

line against Pur-alpha and a traffic jam-GAL4 driver line (Chapter 4.3.3), the eggs appear flask and 

perforated and the hatching of the larvae is decreased to 33 % (Chapter 4.3.3, Table 4-2). The 

knock down did not produce the same severe phenotype which was observed in pur-alpha KG05743
 

mutant ovaries, probably due to the remaining Pur-alpha level in the germline cells.  However, the 

observed phenotype suggests a functional interaction between Cup and Pur-alpha mutant flies, 

which must be confirmed and further analyzed in future genetic experiments. 

It is known that in mouse brain extracts, Pur-alpha associates with the Fragile-X mental 

retardation protein (FMRP) (JOHNSON et al. 2006; OHASHI et al. 2002). This association was 
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confirmed during this thesis with Drosophila Pur-alpha and the homologous dFMR1 protein in 

Schneider cells (Chapter 4.2.1.2; Figure 4-6). The dFMR1-interacting protein Ago2 also co-purifies 

with Pur-alpha (Chapter 4.2.1.2; Figure 4-7) (JIN et al. 2004). Both fmr1 and ago2 mutant flies 

show a multiple oocyte phenotype at low penetrance (PEPPER et al. 2009). This phenotype could 

also be present in some of the pur-alpha KG05743 ovaries. Since the Pur-alpha protein forms a 

complex with Ago2 and the ago2 mRNA was found associated with Pur-alpha, it is not possible to 

distinguish whether this may be connected to the follicle cell migration defect because the Ago2-

Pur-alpha protein complex is missing, or because the corresponding mRNAs are no longer 

properly localized in pur-alpha mutants. 

 

 

5.3 Pur-alpha mutant flies display a new early follicle cell phenotype 

 

In mutant flies carrying the allele pur-alpha KG05743
  the follicle cells fail to surround the germline 

cyst, which is budding from the germarium at stage 1 during early Drosophila oogenesis. The 

initial encapsulation of the germline cyst is achieved by mesenchymal to epithelial transition of 

precursor follicle cells (MARGOLIS and SPRADLING 1995). In the following differential adhesion of 

these follicle cells to their neighboring cells drives the encapsulation of the germline cyst (for a 

review see (STEINBERG 2007)). The reduced amount of Pur-alpha protein seems to interfere with 

these up to now not very well studied early differentiation events, indicating a crucial role for Pur-

alpha in mesenchymal to epithelial transition or differential adhesion. 

Female flies carrying the weaker allele Pur-alpha KG05177  have more Pur-alpha protein left than the 

flies with the pur-alpha KG05743  allele (Chapter 4.3; Figure 4-14). They have reduced numbers of 

stage 10 egg chambers in their ovarioles (Chapter 4.3.2; Table 4-1), a defect that occurs later 

during oogenesis. For the correct establishment of a stage 10 egg chamber centripetal migration 

of the follicle cells is necessary at stage 10 B of oogenesis. The centripetally migrating follicle cells 

form the later operculum and ventral collar of the eggshell. For centripetal migration events 

Decapentaplegic (Dpp) and Notch signaling is crucial (DOBENS et al. 2005; DOBENS et al. 2000). If 

the Pur-alpha level is decreased due to the P-element insertion in the pur-alpha KG05177 allele, the 

centripetal migration is impaired. This argues for an important function of Pur-alpha in either Dpp 

or Notch signaling. 

Another observed phenotype in flies with Pur-alpha knock down in follicle cells displays 

perforated and loose embryos with reduced hatching of larvae (Chapter 4.3.3, Table 4-2), which 

might be due to a leaky egg shell and defects during egg shell development. In germline cells with 

wild type levels of Pur-alpha, the migration events of the follicle cells which are necessary for the 
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first encapsulation or centripetal migration remain unaffected. Hence, signaling events between 

somatic follicle cells and germline cells are crucial for these migration steps, which require a 

certain amount of Pur-alpha protein to be completely functional. 

Taken together, the severity and the time point of manifestation of the different observed 

phenotypes seem to correlate with the residual Pur-alpha protein levels and affected cell types. 

Although the occurrence of the phenotypic defects is different for the two P-element insertions 

and the Pur-alpha knock down, all defects are linked to follicle cell functions. Consequently, Pur-

alpha plays a central role in correct follicle cell function and their associated responsibilities 

during the course of development. 

Other well known follicle cell phenotypes are compound follicles, which have two or more 

germline cysts in one egg chamber. For example, mutations in hedgehog (hh) signaling cause 

defects in cyst encapsulation with two cysts in one egg chamber (FORBES et al. 1996). The JAK-

STAT signaling pathway also plays important roles in the development of a correct follicular 

epithelium. If Domeless, which functions upstream of the Unpaired signal, is mutated early in 

oogenesis egg chambers show incomplete encapsulation or fusion and if the onset of  the 

mutation is later border cell migration is impaired (GHIGLIONE et al. 2002). Similar phenotypes 

were observed in toucan mutants (GRAMMONT et al. 1997), and in brainiac and egghead flies, 

which also have epithelial discontinuities, e.g. multilayered egg chambers or compound egg 

chambers (GOODE et al. 1996a; GOODE et al. 1996b; GOODE et al. 1992).  

The notch signaling pathway is also a main organizer of correct follicle cell development during 

Drosophila oogenesis. Changes in notch level induce stalk abnormalities and later defects in axis 

formation of the oocyte (LARKIN et al. 1996; RUOHOLA et al. 1991). Correct function of fringe, which 

modulates the ability of the Notch receptor to be activated by its ligands, is especially important 

for the determination of the polar cells, which are the main organizers in the follicular epithelium 

(GRAMMONT and IRVINE 2001; GRAMMONT and IRVINE 2002). The protein Cut, a genetic interactor of 

Notch also affects the fate of the follicular cells and if mutated leads to egg chambers containing 

fewer than 15 nurse cells with incorrect and incomplete encapsulation by follicle cells (JACKSON 

and BLOCHLINGER 1997). 

A comparison of all known follicle cell phenotypes with egg chambers from flies carrying the pur-

alpha KG05743 allele shows that the appearance of follicle cell lumps at one side of the egg chamber 

is a new and up to now not described very early phenotype during Drosophila oogenesis caused 

by decreased levels of Pur-alpha protein. 
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5.4 Cell fates appear unchanged in pur-alpha mutant ovaries 

 

Migration defects might be caused by problems within the migrating cells or because the target 

cells are no longer recognizable for the migrating cells. Cell fate changes along the migration path 

or at the final destination site may lead to changes in the specific set of cell-surface molecules and 

receptor ligands, with the result that the migrating cells get lost or do not start migrating at all. A 

series of well defined signaling events ensures that position-dependent differentiation events 

occur at the appropriate times as the egg chamber matures. Specifically, the germ line induces 

Notch signaling in the prepolar cells via expression of the ligand Delta on its surface. Together 

with the expression of Fringe on neighboring follicle cells, this induces polar cell fate and 

expression of the ligand Unpaired, activating the JAK/STAT pathway in the adjacent cells and 

differentiating those into stalk cells (Chapter 2.2.2) (ASSA-KUNIK et al. 2007; GRAMMONT and IRVINE 

2001; GRAMMONT and IRVINE 2002; LOPEZ-SCHIER and ST JOHNSTON 2001). 

The observed migration defect in pur-alpha KG05177 and pur-alpha KG05743 flies could be explained if 

polar cells or the oocyte are no longer specified correctly. But interestingly this does not appear to 

be the case. One single oocyte per egg chamber is specified, the oocyte-nurse cell ratio remains 

normal and the nurse cells are undergoing polyploidization as in wild type (Chapter 4.3.4.1; Figure 

4-24). The specification of two pairs of polar cells is also not affected in the malformed egg 

chambers. The Fasciclin-III positive polar cell pairs even seem to be lying at opposite sides instead 

of along the anterior posterior axis of the egg chamber (Chapter 4.3.4.1; Figure 4-25). There may 

nonetheless be changes in the fate of other cells indirectly affecting patterning and migration. In 

addition, due to the highly disorganized ovariole structure in pur-alpha KG05743 mutants it cannot 

be assessed whether the observed specification of oocyte and polar cells occurs at the correct 

time points during Drosophila oogenesis. 

The maintenance of adherens junctions is also a crucial process during oogenesis and for correct 

development of the follicular epithelium (ROPER and BROWN 2003; TANENTZAPF et al. 2000). 

Armadillo, which is the Drosophila homolog to vertebrate beta-catenin, is a main component of 

the adherens junction protein complex (COX et al. 1996; PEIFER et al. 1993). The level of armadillo 

protein and the polarized localization at the apical surface of the follicle cells remains unaffected 

in pur-alpha KG05743 mutants indicating correct assembly of adherens junctions in Pur-alpha 

mutants (Chapter 4.3.4.2, Figure 4-26). 
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5.5 Pur-alpha´s RNA cargoes 

 

The developing Drosophila oocyte has been intensively studied as a model system for the 

localization of mRNAs. The majority of maternally provided mRNAs shows a specific localization 

pattern in the embryo (LECUYER et al. 2007) and Pur-alpha may be required to transport at least a 

portion of these maternal transcripts. Since the earlier defect in the follicle cells in pur-alpha 

mutants halts oocyte maturation, the localization of e.g. oskar or bicoid mRNA could not be 

assessed directly, but is unaffected in flies kept at non restrictive temperature (data not shown). 

However, eggs laid by mutant mothers kept at the restrictive temperature develop normally when 

placed back at 25°C (data not shown); indicating that any defect imposed at the restrictive 

temperature is reversible. 

In the Drosophila ovary, Pur-alpha is expressed in both, the follicle cells and the germline cells, 

and it is reasonable to assume that the Pur-alpha containing complexes may differ in their 

detailed composition between those two lineages with respect to the associated proteins and 

mRNAs. Furthermore, the co-immunoprecipitation experiments in this thesis likely captured all 

mRNAs contained in entire Pur-alpha mRNPs, not all of which are necessarily bound by Pur-alpha 

directly. Finally, Pur-alpha is a RNA binding protein and it might be possible that some of the 

detected RNAs are bound to Pur-alpha only after cell lysis. To deal with this problem an in vivo 

cross linking step of the whole ovaries before cell lysis would help and also allow more extensive 

washing steps after the co-immunoprecipitation to get rid of unspecific binders. The prepared 

ovary extracts are most likely predominated by the germ-line form of Pur-alpha complexes, simply 

because the mature eggs contribute the greatest part. The identification of Cup and Me31B as 

prominent protein interaction partners emphasizes this fact because both proteins are expressed 

only in the germ line cells (KEYES and SPRADLING 1997; NAKAMURA et al. 2001). 

Even though the phenotype is most evident in follicle cells, it is difficult to directly identify the 

mRNAs bound to Pur-alpha in follicle cells, which are required for proper follicle cell migration, 

due to the small fraction of follicle cells compared to germline cells in ovary extracts used for the 

co- immunoprecipitations. Nonetheless, the mRNAs coding for notch (N), ago-2, disheveled (dsh), 

diego (dgo) and lerp, which are significantly associated with Pur-alpha, were identified in the co-

immunoprecipitation assay in this study (Chapter 4.5.1, Figure 4-29). Diego regulates the frizzled 

pathway of planar cell polarity signaling by binding to dsh (JENNY and MLODZIK 2006). Dsh, in turn, 

functions in the ovary as part of the DWnt4/Fz-2 signaling cascade. This system controls the 

mobility of somatic apical cells while they surround the germarium (COHEN et al. 2002), an event 

that occurs even earlier than the strongest phenotype which was observed in pur-alpha KG05743 

flies.  



96 

Regarding the sequences of Pur-alpha associated mRNAs it is interesting to note that the notch 

mRNA contains a common sequence motif called opa-sequence. The opa-sequence element is a 

93 bp repeated sequence consisting predominantly of the triplets CAG and CAA and can be found 

in many other developmentally regulated transcription units (WHARTON et al. 1985). Our 

electrophoretic mobility shift assays (Chapter 4.5.1, Figure 4-32) could confirm the binding of Pur-

alpha to a (CAG)4 12mer RNA and to (CAG)3CAA RNA in vitro, while binding to a (CAA)4 12mer RNA 

could not be observed. The mRNAs of notch, ago2, dsh, bazooka (baz) and ftz-f1 which were 

found to be associated with Pur-alpha also contain CAG rich sequences (Figure 5-1). 

 

 
 
Figure 5-1:

 

 putative RNA-binding sites of Pur-alpha 
Comparison of sequences of Pur-alpha associated mRNAs; green: CAA; red: CAG 

This argues for a new RNA binding motif of Pur-alpha in addition to the already known binding to 

the known CGG repeat RNA motif. In contrast to these results, Jin and colleagues found in their in 

vitro studies with fly brain lysates that CAG repeat RNA is not bound by Pur-alpha (JIN et al. 2007). 

In detail, they could not compete the binding of Pur-alpha to rCGG repeat RNA with a 100 fold 

excess of rCAG repeat RNA (Figure 5-2). This might be due to differences in affinity if rCGG RNA is 

bound by Pur-alpha of whole fly brain lysate stronger than by purified recombinant Pur-alpha. 

Another explanation might be that another unknown factor within the undefined lysates is either 

interfering with the binding of Pur-alpha to r(CAG)n or promotes binding to r(CGG)n. 
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Q Q Q P H Q Q Q Q Q S S R Q Q P S T S

Ago2

...AAGCTACAGCAGCAACAGCAGCAGCATCAGCAGCAGCAACAACAACAGCAGCAGCAGCACCAGCAACAGCAACAACAACAGCAGCAGCAGGTGCAGCCTGTCCAGCTGGCGCAG
K L Q Q Q Q Q Q H Q Q Q Q Q Q Q Q Q Q H Q Q Q Q Q Q Q Q Q Q V Q P V Q L A Q

CAGCAACAGCAGCAGGTGCTCCATCAC...
Q Q Q Q Q V L H H

dsh

...CACCACCAGCAGCAGCAGCAACAACAGCAACAGCAGCAGCAACATCAGCAGCAGCAGCAAGAACACTACCAGCAGCAACAGCAACAGAATATCGCCAAC...
H H Q Q Q Q Q Q Q Q Q Q Q Q H Q Q Q Q Q E H Y Q Q Q Q Q Q N I A N

...AACAGCAGCAACAACGCGGCCAGCGGTAGCAACAACAACAGCGCCAGCGGCAACAACACCAGCAGCAGCAGCAACAACAACAACAACAATAACAACGACAATGAT...
N S S N N A A S G S N N N S A S G N N T S S S S N N N N N N N N D N D

f t-f1

...TCGCCGCAGCTGCAGCAGCAGCAACAGCAGCAGTTGCAGCAACATCAGCAGCAACAACAGATACCAACCG...
S P Q L Q Q Q Q Q Q Q L Q Q H Q Q Q Q Q I P T

...CTGCAGCAACATCAGCAGCAGCAACTCCAGCAGCAGCAGCCC...
L Q Q H Q Q Q Q L Q Q Q Q P

baz

...GCGCAGCAGCAACAGCAGCAGCAACTGGAGATGACCCAACAGCAGCAGCAACAACAGCAACAACAGCAGCAGCAACAGCAACAGGAT...
A Q Q Q Q Q Q Q L E M T Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q D

opa
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Figure 5-2:
Lane 1: rCGG probe only; lane 2: rCGGprobe with fly brain lysates; lanes 3–5: rCGG probe and fly brain 
lysates in the presence of 100-fold unlabeled triplet repeat RNA, as indicated (molar ratio) (figure taken 
from Jin et al., 2007) 

 Gel-shift competition assay with fly brain lysates 

 
 

The global analysis of Pur-alpha associated mRNAs with GOrilla revealed that mRNAs with GO-

terms involving cell-cell junctions (anchoring junction, cell junction and adherens junction) are 

enriched in GFP-Pur-alpha co-immunoprecipitates (Chapter 4.5.1; Table 4-4). Considering the 

follicle cell phenotype of pur-alpha mutant flies these cellular functions fit nicely to the role of 

Pur-alpha in the establishment of a correctly formed follicular epithelium. 

Taken together the findings support the notion that during Drosophila oogenesis, Pur-alpha 

mediates the mRNA transport that is required for cellular recognition and orientation in a three-

dimensional cellular context by localizing mRNAs of cell-cell junction factors and the multiple 

bound mRNAs may be synergistically responsible for the observed mutant phenotype. 

 

The main part of the small RNA content in the germline is piRNAs. These RNAs protect the 

germline from selfish mobile genetic elements to ensure a correct transfer of the genetic material 

to the progeny (for a review see (KHURANA and THEURKAUF 2010)). But there are also a few studies 

of microRNA function in the Drosophila ovary. Iovino and colleagues revealed that miR-184 has 

important functions during oogenesis and early embryogenesis, and if its function is impaired the 

whole egg production is defective (IOVINO et al. 2009). Self-renewal of the germline stem cells also 

requires microRNA function (PARK et al. 2007). Furthermore, Reich and colleagues observed that 

transgenes with synthetic sites of miR-317 undergo microRNA-machinery mediated  repression in 

the ovary (REICH et al. 2009).  

During this study Pur-alpha associated microRNAs were identified; with miR-252, miR-133 and 

miR-124 as “top 3” bound microRNAs (Chapter 4.5.2; Figure 4-34). A GO-analysis of the predicted 

targets of these microRNAs revealed that GO-terms for cell-cell junction and membrane 
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localization were clearly overrepresented (Chapter 4.5.2.3; Table 4-7). This observation correlates 

with the functional terms of Pur-alpha associated mRNAs (Chapter 4.5.1.1; Table 4-4). Altogether, 

this suggests a role for Pur-alpha in transport of translationally silenced mRNAs of cell-cell-

junction and localization factors during Drosophila oogenesis.  

  

 

5.6 Implication of Pur-alpha for metastasis and neurodegeneration 

  

Border cells undergo an epithelial to mesenchymal transition before they start migrating through 

the nurse cells during oogenesis. This is closely related to the transition from a solid primary 

tumor to migrating and metastasis forming cancer cells. Compared to tumor cells which form 

metastases, border cells never loose their apical-basal polarity during the process of migration. 

Human Pur-alpha was described as a tumor suppressor (chapter 2.4.3) due to its role in 

transcriptional regulation and to its associated protein binding partners (DARBINIAN et al. 2001b; 

LEZON-GEYDA et al. 2001; WANG et al. 2008). This thesis describes that Drosophila Pur-alpha is an 

important player in cell migration considering a new aspect of how Pur alpha might be implicated 

in cancer and the formation of metastases. 

 

Sequestration of Pur-alpha into nuclear inclusion in neurons and astrocytes by binding to 

overrepresented r(CGG)n repeat RNA is one of the molecular mechanisms responsible for the 

development of FXTAS  in a Drosophila disease model (JIN et al. 2007). There are many 

neurodegeneration diseases which derive from toxic RNA transcripts with expanded triplet 

repeats (for a review see (TODD and PAULSON 2010)). 

This study identified that Pur-alpha binds as well as to CGG repeat RNA to CAG repeat RNA 

(Chapter 4.5.1.4; Figure 4-32). The triplet repeat expansion disorder spinocerebellar ataxia type 3, 

also known as Machado-Joseph Disease (TEIVE 2009), is a consequence of a triplet repeat 

expansion of r(CAG)n in the ataxin 3 gene (LI et al. 2008). Also the overrepresentation of CAG 

repeats in the antisense transcripts of a non coding gene ATXN8, which is responsible for the 

development of spinocerebellar ataxia type 8 (SCA8), seems to be a reason for the disease 

(MOSELEY et al. 2006). Binding of Pur-alpha to the overrepresented r(CAG)n repeats might be a 

new aspect for the molecular mechanism underlying these diseases.  
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5.7 Conclusion 

 

This study revealed Drosophila melanogaster as a very versatile model organism to study the 

multiple functions of the protein Pur-alpha in vivo. New functions for Pur-alpha during oogenesis 

were identified which include the ensheathment of the developing egg chamber during early 

oogenesis, the migration of border cells to overcome stage 10 of oogenesis and a further function 

during the development of a proper egg shell. All the observed Pur-alpha phenotypes suggest a 

crucial role for Pur-alpha in the somatic follicle cells of the Drosophila ovary.  

Furthermore, an early yet undescribed oogenesis phenotype was discovered, namely a formation 

of a lump of follicle cells at one side of the egg chambers. 

Pur-alpha associated mRNAs could be identified, which in common share CGG and CAG repeat 

rich sequences, which are similar to the opa-sequence and can be related to the GO term cell 

junction. 

The functions of Pur-alpha during follicle cell migration might help to obtain further insights into 

metastasis formation in cancer. The new RNA binding motif of Pur-alpha might help to 

understand the molecular mechanisms of triplet repeat expansion RNA associated diseases like 

FXTAS and spinocerebellar ataxia in more detail. 
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6. APPENDIX 

 

6.1 Abbreviations 

 

63N1    endo-siRNA cell culture reporter cell line  

67-1D   siRNA cell culture reporter cell line 

A     Alanine, Adenine 

Aa   Amino acid 

Ago   Argonaute protein  

Amp   Ampicillin  

APS    Ammonium peroxodisulfate  

ATP    Adenosine triphosphate  

bp    Base pair(s)  

BSA   Bovine serum albumine  

C    Cytosine 

cDNA    complementary DNA  

Co-IP    co-immunoprecipitation  

CT-value   cycle of threshold value in qPCR  

d    day(s) 

Da    Dalton 

dm, D. melanogaster  Drosophila melanogaster  

DMSO    Dimethyl sulfoxide  

DNA    Desoxy-ribonucleic acid  

dNTP    Desoxy-nucleotide-tri-phosphate  

DPP   Decapentaplegic 

ds    double-stranded  

DTT    Dithiothreitol 

EC50   half maximal effective concentration 

ECL    Enhanced Chemiluminescence  

E. coli    Escherichia coli  

EGFP    Enhanced Green Fluorescent protein  

EMSA    electrophoretic mobility shift assay 

endo-    endogenous  
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exo-    exogenous  

Eya   eyes absent 

FACS    Fluorescence Activated Cell Sorting  

FBS    Fetal Bovine Serum  

fl   full length 

FMRP    Fragile Mental Retardation Protein  

for    forward 

G    Guanine 

g    gram, standard acceleration 

GFP    Green Fluorescent Protein 

GO   gene ontology  

h    hour(s)  

hh   hedgehog 

HEPES    (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HRP   Horseradish Peroxidase  

hts   hu-li tai shao 

Hygro    Hygromycin  

IgG   immunoglobulin protein G  

inp.   input  

IP   immunoprecipitation  

IPTG    Isopropyl-β-D-thiogalactopyranosid  

k    kilo 

Kana    Kanamycin 

k.d.   knock down 

KIF    Kinesin superfamily protein  

k.o.    knock-out  

MCS    Multiple Cloning Site 

mg   milligram  

min    minute 

miR    micro RNA  

ml    milliliter  

mRNA    messenger RNA 

mRNP   messenger ribonucleoprotein 

nc   non coding  

Neo    Neomycin  
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ng    nanogram  

nt    nucleotide(s)  

NTP    nucleotide-tri-phosphate  

ORF    open reading frame 

OrR    Oregon R fly wild type strain  

p.a.    pro analysis  

PAGE    Polyacrylamide Gel Electrophoresis  

PCR    Polymerase Chain Reaction  

piRNA    Piwi-interacting RNA  

Poly-A    poly-adenylation  

PVDF    Polyvinylidenfluoride  

qPCR    quantitative Polymerase Chain Reaction  

R    Arginine 

rb    rabbit  

rel    relative 

rev    reverse  

RNA    ribonucleic acid  

RNAi    RNA interference  

RNP    ribonucleoprotein particle 

rpm    runs per minute 

rRNA    ribosomal RNA  

RT    reverse transcription or real-time  

S2 cell    Schneider-2 cell  

SAXS    small angle X-ray scattering 

SDS    sodium docecyl sulfate 

siRNA    small interfering RNA  

SOB    Super Optimal Broth  

ss    single stranded 

SSC    sodium chloride/sodium citrate  

SV40    Simian Virus 40  

T    thymine  

TRIS    Tris(hydroxymethyl)-aminomethane 

TRBP    TAR RNA binding protein  

tub    tubulin  

U    uracil  
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UAS    yeast Upstream Activating Sequence  

UTR    untranslated region  

V    Volt  

Δ    deletion  

α    anti  

°C    degrees Celsius  

μ    micro 
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