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Chapter 1 
 

 

Evaluating the concept of precipitation by volatile salts for protein 
stabilization during spray drying 

 

 

Abstract 

 

The aim of this study was to evaluate an alternative approach to stabilize proteins 

against adsorption to and unfolding at the air–liquid interface in spray drying. Instead of 

adding surfactants to the spray solution, the concept of protein precipitation by volatile salts 

before the spray drying process was realized. The volatility of the precipitating excipients was 

considered to be of high importance, because spray drying was also utilized to 

simultaneously remove the precipitant from the resulting protein powder. Specifically, 

ammonium carbamate showed appropriate qualities as precipitating agent: by applying 

elevated spray drying temperatures, ammonium carbamate could be removed completely 

from the spray-dried powders. Furthermore, ammonium carbamate had excellent 

precipitation efficiency for a monoclonal IgG1 antibody and recombinant human interleukin-11 

(rhIL-11). The protein precipitates were spray dried with a Mini Spray Dryer B-290 and 

protein stability assessed by HP-SEC, light obscuration, SDS-Page, and FTIR analysis. 

Regarding the IgG1, a beneficial effect on protein stability by the ammonium carbamate 

precipitation was not achieved as this protein has a low surface affinity and can be spray 

dried as surfactant-free formulation. However, the stability of spray-dried rhIL-11 was 

substantially improved by ammonium carbamate precipitation in comparison to a 

surfactant-free formulation. Therefore, for highly surface-active proteins like rhIL-11 the 

concept of precipitation by volatile salts before spray drying poses a valuable alternative to 

the addition of surfactant. 
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1 Introduction 

 

1.1 Surfactants in protein spray drying 

 

Implementation of spray drying for protein formulation purposes requires detailed 

knowledge of the stress factors associated with atomization and drying, as both processes 

may compromise protein stability to a considerable extend. Besides the negative influences 

of drying due to temperature increase and loss of the protective hydration shell, proteins may 

also suffer from the tremendous increase of the air–liquid interface due to atomization into 

fine aerosols 1. Many proteins exhibit a significant surface activity due to their amphiphilic 

structure and thus, are prone to adsorption to the air–liquid interface, where the unusual 

surface energy might cause protein unfolding and consequently aggregate formation 2. 

These protein aggregates often show reduced or no biological activity, potential for 

immunogenicity or other side effects, and their formation during processing and upon storage 

must be avoided 3. In order to prevent protein unfolding at air–liquid interfaces and 

subsequent aggregation, protein formulations are commonly fortified with surfactants as 

stabilizing excipients 4. Numerous examples for the protective action of surfactants exist in 

protein literature. For example, Mumenthaler et al. could effectively reduce surface-induced 

protein aggregation for recombinant human growth hormone by adding the surfactant 

polysorbate 20 to the spray solution 5. In a consecutive study, the direct correlation between 

the degree of aggregate formation, the surface area of the spray droplets, and the addition of 

surfactant could be established 6. Another study correlated the residual enzymatic activity of 

trypsin after spray drying to the amount of surfactant present in the spray solution 7. More 

recent research elucidated the mechanism of aggregation prevention by surfactants using 

electron spectroscopy for chemical analysis and atomic force microscopy: due to their innate 

surface activity, surfactants preferentially adsorb to the air–liquid interface, thus competing 

with protein molecules for the interfacial area and expelling them to the protected droplet 

core 8, 9. 

 

Their effectiveness at low concentrations and their relative low toxicities made 

polysorbates to widely utilized excipients in order to prevent protein surface adsorption and 

aggregation under various processing conditions, such as refolding, shaking or stirring 10, 

freeze thawing 11, freeze drying 12, spray drying, and reconstitution 13. Unfortunately, their use 

in protein preparations is also associated with potential adverse effects on protein stability, 

as surfactants with alkyl polyoxyethylene chains such as polysorbates are notorious for 

undergoing autoxidation with subsequent, chain-shortening degradation and formation of 
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residual peroxides 14. Such peroxides in turn have been demonstrated to cause oxidation of 

proteins, both in solution 15 and in solid state 16. The extent of oxidation of recombinant 

human granulocyte colony stimulating factor (rhGCSF) could be correlated to the amount of 

peroxides in the investigated formulations 17. Indeed, polysorbates increase the short-term 

process stability of most proteins against surface-induced damage, but sometimes 

compromise protein stability during long-term storage as reported for interleukin-2 18, 

pegylated GCSF 19 or rhIL-11 20. In addition, polysorbates could also affect the 

thermodynamic conformational stability of proteins due to a preferential binding to the 

unfolded state 13. Finally, polysorbates in protein formulations might modulate the immune 

response. A famous example represents a recombinant human erythropoietin formulation, 

where polysorbate 80 was reported to extract phenolic stopper leachables, which could 

function as immunogenic adjuvant 21 and furthermore, the formation of mixed micelles of 

polysorbate and protein was postulated, which might trigger immune reactions due to their 

virus-like structure 22. 

 

In view of the abovementioned downsides, the need for alternatives to surfactants, 

specifically polysorbates becomes clear. Human serum albumin (HSA) was initially used to 

stabilize proteins against surface induced aggregation. However, safety concerns about 

infectious agents in blood products (e.g. viruses, prions) made its application obsolete. 

Recombinant HSA could circumvent safety issues, but formation of unwanted degradation 

products due to the reaction of HSA cysteine residues with reactive protein sites still raises 

concerns 23. Serno et al. tested the use of hydroxypropyl-β-cyclodextrin (HPβCD) as 

alternative to nonionic surfactants to inhibit agitation-induced aggregation of therapeutic 

antibodies and postulated the surface competition between HPβCD and antibody molecules 

at the air–liquid interface as the dominating aggregation preventive effect rather than 

incorporation of hydrophobic protein residues 24. 

 

At this point, we suggest amorphous protein precipitation as alternative formulation 

strategy in order to stabilize therapeutic proteins against surface-induced stress during spray 

drying. The phenomenon of protein unfolding due to adsorption to the air–liquid interface 

preferably occurs when the protein molecules possess sufficient molecular mobility, as it is 

the case for protein molecules in solution. In contrast, protein molecules in a precipitated 

state exhibit a lower molecular mobility, as precipitation can be virtually regarded as 

controlled protein aggregation. In contrast to protein aggregates in the sense of irreversible 

assemblies of unfolded proteins 25, amorphous precipitates are known to contain mostly still 

native-like, active protein species 26. Therefore, amorphous protein precipitation could be 

utilized to restrict protein mobility, and thereby reduce the likeliness of protein unfolding and 
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aggregate formation at air–liquid interfaces. Consequently, the addition of surfactants to the 

protein formulation for stabilization against surface-related aggregate formation may become 

dispensable and the risk of disadvantageous instability effects or potentially effects on 

immune responses may be avoided 27. 

 

 

1.2 Introduction to amorphous protein precipitation 

 

Protein precipitation established as indispensable technique in the life science field, 

for example as the most commonly applied purification step during downstream processing 

in monoclonal antibody production 28. In the broadest sense, precipitation describes the 

reduction of protein solubility by alteration of solution conditions and the subsequent 

separation of the precipitated protein in a condensed, solid form via centrifugation or 

filtration 2. In protein solutions, precipitation conditions may be achieved by the addition of 

neutral salts, organic solvents, nonionic hydrophilic polymers, polyvalent metal ions or acids 

and bases to induce isoelectric point precipitation 29. The solubility of proteins is determined 

by protein structure, size, and charge, and by the various interactions (protein-protein, 

protein-water, protein-ion, and ion-water) resulting from the equilibrium between ionizable 

and hydrophobic groups on the protein surface 30. Furthermore, solution composition, 

temperature, ionic strength, and pH are crucial solvent factors influencing protein solubility. In 

general, the term solubility refers to the protein concentration at the equilibrium of a saturated 

solution. In a saturated protein solution, protein molecules in the solid phase coexist with 

protein molecules in solution, and a net increase of the solid phase is prevented by the 

counterbalancing dissolution. For protein precipitation to occur, the protein solution must be 

transformed to the supersaturated state exceeding the solubility limit of the protein. By 

exclusion of protein molecules from the solute, precipitation poses the thermodynamic driving 

force for the system to return to the equilibrium state 31. The reader is referred to literature for 

a more comprehensive essay on the thermodynamics of precipitation processes 32. 

 

Literature describes various techniques for inducing protein precipitation 33. One 

classical approach is the gradually increase of the saturation level of a salt, resulting in the 

‘salting-out’ of the protein. Since Hofmeister established a series for salt ions with regard to 

their precipitation effectiveness 34, the interactions between proteins and salt ions have been 

extensively investigated to acquire a more comprehensive understanding of the mechanisms 

behind salt-induced precipitation. Timasheff et al. explained the ‘salting-out’ of proteins by 

the preferential exclusion model 35. For salts with high charge density, so-called kosmotropes 

(e.g. ammonium sulfate) a ‘negative’ binding to the protein was measured, reflecting a higher 
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affinity of the protein for solvent than for salt molecules and leading to the exclusion of salt 

ions from the immediate vicinity of the protein. As preferential exclusion increases the 

surface free energy of the protein-solvent system and thereby constitutes a 

thermodynamically unfavorable process, the system is forced to reduce the area of 

protein-solvent interactions and is pushed towards protein self-association and finally protein 

precipitation 36. Besides the use of salts as precipitating agents, nonionic, hydrophilic 

polymers like polyethylene glycol are also applied for protein precipitation. The precipitating 

effect of polymers is based on the preferential exclusion due to steric hindrance between the 

differently sized solvent and polymer molecules. Around the protein molecules, a hydration 

shell is formed at the radius of closet approach between protein and polymer. This shell is 

impenetrable to the polymer, but penetrable to water molecules, leading to a preferential 

hydration of the protein molecules. If the polymer concentration increases, the protein is 

concentrated in the extrapolymeric space, protein-protein interactions increase and finally 

protein precipitation occurs 35. Isoelectric point (IEP) precipitation is based on the reduced 

solubility of proteins at IEP conditions (zero protein net charge), as the hydrophobic attractive 

forces dominate electrostatic repulsion, and lead to enhanced protein-protein interactions, 

causing protein agglomeration and precipitation. However, applicability and efficiency of this 

precipitation technique suffers from the limited pH range in which proteins are sufficiently 

stable, and the sometimes significant solubility of proteins even at their IEP 2. Protein 

precipitation by a water miscible organic solvent (e.g. ethanol, acetone, methanol) occurs 

due to two effects reducing protein solubility. On the one hand, the low dielectric constant of 

the solvent compared to water enhances electrostatic attractions and van der Waals forces 

between protein molecules. On the other hand, the organic solvent competes with the protein 

for the hydrating water molecules, leaving less for protein hydration and thus promoting 

precipitation 33. Particularly, precipitation by organic solvents and isoelectric point 

precipitation are often detrimental for protein stability because of irreversible protein 

denaturation or bioactivity reduction of the precipitated protein. However, precipitation as 

formulation technique must guarantee the stability of the precipitated protein as well as the 

biocompatibility of the precipitating agent or, in case of critical issues, the possibility must be 

given to replace the precipitant by another biocompatible nonsolvent 37. 
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1.3 Protein precipitation as formulation tool 

 

Precipitation usually leads to the formation of amorphous protein suspensions, which 

can be separated from the solvent by decanting, filtration, or sedimentation, and washed, 

dried, or resuspended in another nonsolvent. Apart from that, in situ protein precipitation was 

implemented in the development of various dosage forms (e.g. microparticles, implants). 

Thus, precipitation reveals new options for liquid and solid protein formulations. The 

straightforward approach of protein precipitation with subsequent redissolution of the 

separated precipitate in less volume buffer was evaluated for the development of stable, 

ready-to-use cetuximab formulations of > 100 mg/mL 32. Provided a subcutaneous 

administration of the protein, the precipitates themselves could serve as attractive alternative 

to highly concentrated liquid protein preparations as protein suspensions usually possess a 

lower viscosity. In addition, protein precipitates generally exhibit a slower protein dissolution, 

which can be utilized for a controlled release effect upon administration. Among the 

numerous literature examples related to this topic, the most prominent one is the alteration of 

insulin release after precipitation with zinc. By varying the proportions of amorphous and 

crystalline zinc-insulin, a sustained release profile could be achieved 38. Precipitation of 

recombinant human bone morphogenetic protein by potassium phosphate led to an aqueous 

suspension of protein microparticles intended for sustained delivery 39. Protein precipitation 

was also utilized to alter lysozyme release from in situ forming PLGA implants and 

microparticles, where lysozyme precipitation during manufacturing led to a reduction of the 

typical accelerated initial burst release 40. Release rates of recombinant human 

interferon α-2a from lipidic implants were observed to be constant for a prolonged time period 

due to the in situ protein precipitation by polyethylene glycol 41. 

 

 

1.4 The concept of precipitation by volatile excipients 

 

Except in the rare case of an approved, fully biocompatible precipitating excipient, 

post-precipitation treatment will be necessary to remove excess precipitant from the protein 

formulation, however, without dissolving the protein precipitate at the same time, which more 

or less resembles the squaring of a circle. Here, we postulate the use of volatile precipitating 

agents as an elegant solution to this problem. The volatility of precipitating agents would 

enable the post-precipitation removal of excess precipitant without the risk of redissolving the 

protein precipitate. A conversion of precipitants into a volatile gaseous form could be 

achieved for example by an adequate temperature increase (e.g. by spray drying) or 
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pressure decrease (e.g. by vacuum drying). In literature, carbon dioxide and various 

ammonium salts have been investigated as volatile precipitants. In food industry, pressurized 

carbon dioxide was used for the isoelectric point precipitation of casein 42 and soybean 

protein 43. Qi et al. analyzed the isoelectric point precipitation of bovine serum albumin by a 

carbon dioxide-water-ethanol system 44. Watanabe et al. applied ammonium carbonate and 

other combinations of ammonia and carbon dioxide for the precipitation of trypsin 45. After the 

subsequent vacuum- or freeze-drying step of the precipitates, the total activity recovery of 

trypsin was maximum 80%. 

 

The scope of this work was to evaluate protein precipitation by volatile excipients as 

adequate measure to stabilize proteins during the spray drying process against adsorption to 

and unfolding at the air–liquid interface. Simultaneously we utilize the spray drying process 

for the removal of excess precipitant. Therefore, numerous excipients were screened in a 

small-scale batch method for the following crucial qualities: 

 

 Quantitative protein precipitation 

 Volatility upon drying 

 Preservation of protein integrity 

 

 

A preferred excipient should enable quantitative protein precipitation. Otherwise, the 

fraction of protein molecules remaining in solution could still be subject to adsorption to the 

air–liquid interface and thereby compromise the aim of improving protein stability by 

precipitation. Furthermore, the precipitant should be volatile upon application of rather 

moderate temperature levels to prevent a loss of protein stability due to heat denaturation. 

Finally, protein stability must not be jeopardized by the chemical reactivity of the 

decomposing precipitant itself. The most promising candidates were evaluated for spray 

drying various protein precipitates as surfactant-free formulations. The gained spray-dried 

powders were investigated for protein stability. The absence of surfactants, particularly 

polysorbates, in spray-dried protein powders could be of interest in a broader perspective. 

For example, by avoiding the issue of detrimental protein oxidation due to presence of 

peroxides, pure protein powders with increased long-term storage stability could be 

produced. Furthermore, surfactant-free protein powders could also be beneficial as basis for 

the production of highly concentrated protein formulations.  
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2 Materials and Methods 

 

2.1 Materials 

 

Glycine (> 99%) and L-histidine (> 99%) were purchased from Sigma (Munich, 

Germany), polysorbate 80 and L-methionine (> 99%) from Merck (Darmstadt, Germany), and 

trehalose from Ferro Pfanstiehl (Cleveland, USA). Precipitant stock solutions (Table 1) were 

prepared by dissolving ammonium salts in MilliQ water to the following concentrations: 

 
Table 1 Precipitant stock solutions 
 

Salt Mr [g/mol] Purity Supplier Conc. [%(w/w)] 

Ammonium carbamate 78.07 puriss. Sigma 39.4 

Ammonium carbonate 157.13 puriss. Sigma 23.0 

Ammonium hydrogen carbonate 79.06 puriss. Sigma 16.7 

Ammonium acetate 77.08 puriss. Merck 59.2 

Ammonium formate 63.06 p.a. Merck 5.0 

Ammonium sulfate 132.14 p.a. Merck 28.4 
 
 

Bovine serum albumin (BSA), prepared by a modified Cohn cold ethanol fractionation 

method of bovine serum (Cohn fraction V) with a purity of minimum 96% was purchased as 

lyophilized powder from Sigma (Munich, Germany) and dissolved to 100 mg/mL in MilliQ 

water. A humanized monoclonal antibody of the IgG1 class was provided at approx. 

50 mg/mL in an aqueous buffer containing glycine and L-histidine. Recombinant human 

interleukin-11 was purchased from Wyeth (Andover, USA) as aqueous bulk solution 

containing 6 mM dibasic sodium phosphate, 4 mM monobasic sodium phosphate and 

300 mM glycine at pH 7.0 . All protein solutions were filtered through a 0.2 µm 

polyethersulfone sterile syringe filter (VWR, Darmstadt, Germany) before use. 
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2.2 Methods 

 

2.2.1 Protein precipitation 

 

For precipitant screening studies, a 1.0 mL batch scale method was applied using 

1.5 mL Eppendorf tubes as reaction vials (Safe-Lock Tubes, Eppendorf AG, Hamburg, 

Germany). Protein and precipitant were mixed by first presenting a specific amount of water 

in the reaction vial, then adding protein stock solution and finally pipetting precipitant stock 

solution to the protein solution. In the respective blank samples, either precipitant stock 

solution (= protein blank) or protein stock solution (= UV blank) was replaced by an equal 

amount of water. The protein / precipitant mixtures were homogenized by gentle manual 

agitation before incubation at 2 – 8 °C for 1, 3, 8 or 24 hours, respectively. After incubation, 

precipitation samples were centrifuged for 5 min at 6000*g. Blank samples were treated 

likewise. Precipitate and supernatant were separated by carefully removing the supernatant 

with a pipette. The protein concentration in the supernatant phase was determined 

photometrically at 280 nm using an Agilent 8453 UV-Vis spectrophotometer (Agilent, 

Waldbronn, Germany) and the precipitation efficiency (in %) calculated according to 

 

[ ] 100*% blank  protein
280

blank  protein
280

tsupernatan
280

UV
UVUVEff −

=  

 

For preparation of protein precipitates suitable for spray drying, protein precipitation was 

conducted in 50 mL Falcon tubes (Cellstar Tubes, Greiner Bio-One, Essen, Germany). The 

protein solutions were presented, the precipitant stock solutions added to the desired 

concentration, and the protein / precipitant mixtures carefully homogenized, incubated for 

1 hour at 2 – 8 °C and then spray dried without further processing. 

 

2.2.2 Redissolution and ultrafiltration of precipitates 

 

For further analysis of the precipitated protein, the precipitates were redissolved in 

1000 µL of the corresponding formulation buffer. Vivaspin 500 centrifugal concentrator units 

(Vivascience Ltd., Stonehouse, UK) with a 30 kDa MWCO polyethersulfone membrane and a 

maximum volume of 500 µL were used for ultrafiltration. The membrane was preconditioned 

by filtrating 0.1 N NaOH and two times MilliQ water before adding the redissolved protein. 

The protein solution was washed six times by addition of fresh formulation buffer and 
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subsequent centrifugation for 10 min at 5000*g. Finally, the concentrated protein solution 

(approx. 75 µL) was dissolved in 1000 µL formulation buffer for FTIR analysis. 

 

2.2.3 Transmission Fourier transform infrared spectroscopy (FTIR) 

 

FTIR spectroscopy was used to monitor the conformational stability of the precipitated 

proteins. Infrared spectra of the protein solutions were recorded by a Tensor 27 spectrometer 

(Bruker Optics, Ettlingen, Germany). The solutions were analyzed in transmission by 

application of the Confocheck AquaSpec cell. The temperature was kept constant at 20 °C. 

For each spectrum 120 scan interferograms from 4000 - 850 cm-1 were collected at single 

beam mode with 4 cm-1 resolution. Blank spectra were recorded with reference buffer in the 

cell under identical conditions. Collected interferograms were Fourier transformed and the 

corresponding blank spectrum was subtracted by the Protein Dynamics software Opus 6.5 

(Bruker Optics, Ettlingen, Germany). The amide I region of the spectra (1700 - 1600 cm-1) 

was vector normalized, processed via a 25-point Savitzky-Golay smoothing algorithm 46 and 

displayed as second derivative amide I spectrum. 

 

2.2.4 High performance size exclusion chromatography (HP-SEC) 

 

Protein samples were analyzed for soluble aggregates by HP-SEC using a HP 1100 

instrument (Agilent, Waldbronn, Germany) equipped with TSKgel® SWXL columns 

(300-7.8 mm) and guard column (Tosoh Bioscience, Tokyo, Japan). Samples were 

centrifuged prior to analysis in order to remove insoluble aggregates. Protein aggregates, 

monomer and fragments were detected photometrically at 280 nm (IgG1) or 225 nm 

(rhIL-11), respectively. Typical HP-SEC chromatograms are shown in Figure 1. The 

chromatograms were integrated manually using the HP ChemStation software 9.0 (Agilent, 

Waldbronn, Germany). Percentage of aggregates was calculated by comparing the area 

under the curve (AUC) of the aggregate peak to the total AUC. Of each sample, three 

chromatographic samples were prepared and analyzed. 

 

 HP-SEC of IgG1 

A TSKgel® G3000 SWXL column was applied for analysis of IgG1 aggregates. The 

running buffer was composed of 0.1 M disodium hydrogen phosphate dihydrate and 

0.1 M sodium sulfate and was adjusted with ortho-phosphoric acid 85% to pH 6.8 . 

The flow rate was set to 0.5 mL/min and the injection volume to 25 µL. 
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 HP-SEC of rhIL-11 
A TSKgel® G2000 SWXL column was applied for analysis of rhIL-11 aggregates. The 

running buffer was composed of 0.1 mM glycine, 500 mM sodium chloride and 50 mM 

morpholinoethane sulfonic acid (MES) at pH 6.0 . The flow rate was set to 

0.75 mL/min and the injection volume to 50 µL. The column was immersed in cold 

water to run the analysis at a constant temperature of 4 +/-1 °C. 

 

 

2.2.5 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-Page) 

 

Formation of aggregates was analyzed by SDS-Page under non-reducing conditions. 

Gel electrophoresis was carried out in a X-Cell II Mini electrophoresis chamber (Noves, San 

Diego, USA) with a Power Pac 200 power supply (BioRad, Munich, Germany) using 

NuPage® 7% Tris-Acetate gels (1.0 mm, 10 wells) and NuPage® Tris-Acetate SDS Running 

Buffer (all Invitrogen, Karlsruhe, Germany). The samples contained 0.1 mg/mL protein and 

50% Tris-Acetate SDS Sample Buffer. After heating to 95 °C for 20 min, 10 µL of each 

sample containing 1 µg protein were loaded per lane and focused. Separation was 

conducted at constant voltage for antibody formulations (150 V for approx. 45 min) or 

constant current for rhIL-11 formulations (80 mA for approx. 1.5 hours). A standard 

Coomassie staining protocol including a washing, fixing, staining, destaining and drying step 

was applied for the detection of the resulting protein bands. In order to analyze the molecular 

weight of the detected zones a Mark12™ Unstained Standard was used. 

Figure 1 Exemplary HP-SEC chromatograms of IgG1 (A) and rhIL-11 (B)

A B 
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2.2.6 Spray drying with the Mini Spray Dryer B-290 

 

Spray drying was performed with a B-290 Mini Spray Dryer (Büchi Labortechnik AG, 

Flawil, Switzerland) consisting of heating system, nozzle, drying chamber, sensors for 

measuring inlet temperature (Tin) and outlet temperature (Tout), cyclone, collecting vessel, 

filter and aspirator. The aspirator was located behind the fine particle filter and aspirated the 

drying air by means of vacuum at an aspirator rate of 90% or 35 m3/h. For product separation 

a high performance cyclone was used in order to increase especially the yield of smaller 

particles. An electrically conductive layer of zirconium oxide on the inner wall of the cyclone 

prevented the product form electrostatic binding to the cyclone wall and minimized the 

product loss. A LT Mini dehumidifier (Deltatherm, Much, Germany) controlled the residual 

moisture of the system (approx. 25% r.h.). 

 

Spray solutions were atomized by a two fluid nozzle (tip Ø 0.7 mm, cap Ø 1.5 mm) or 

a three fluid nozzle (inner tip Ø 0.7 mm, outer tip Ø 2.0 mm, cap Ø 2.8 mm) using the 

in-house compressed air supply of 8 bars. The atomizing air volumetric flow rate was set to 

670 L/min for the two fluid nozzle or 1334 L/min for the three fluid nozzle. Flow rates were 

adopted to ensure comparable atomizing conditions for both nozzle types, resulting in 

comparable droplet and particle sizes. Cooling of the spray nozzles was ensured by 

circulation of cool water through the nozzle jacket. Spray solutions were pumped using the 

inbuilt peristaltic pump of the spray dryer or an external IPS 12 peristaltic pump (Sotax AG, 

Basel, Switzerland) at varying flow rates suitable to reach the desired outlet temperatures. 

Pump settings and the corresponding flow rates are shown in Figure 2. Product recovery 

from the collecting vessel was performed in controlled atmosphere (< 15% r.h., 20 °C) and 

samples were stored in glass vials in a dessicator (< 20% r.h., 20 °C). 
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Figure 2 Flow rate of the inbuilt spray  
               dryer pump (-- ■ --) and the  
               external pump (-- ● --) 



 13

2.2.7 Elementary analysis (CHN analysis) 

 

The amount of residual volatile precipitant in spray-dried powders was determined by 

elementary analysis. A vario EL instrument (Elementar, Hanau, Germany) equipped with a 

high temperature combustion unit and a dynamic gas component separation and detection 

was used to pyrolize 5.000 mg of spray-dried powder with oxygen at approximately 1200 °C 

in a helium atmosphere. Samples decomposed to carbon dioxide, nitrogen and water, which 

were separated by condensation and quantified by thermal conductivity to report the content 

of carbon, hydrogen, and nitrogen (CHN) in the sample (in %). 

 

2.2.8 Karl-Fischer analysis 

 

Residual moisture of the spray-dried powders was determined by Karl-Fischer 

titration with a titrator Aqua 40.00 (Analytik Jena AG, Jena, Germany) using a head space 

module oven to heat up approx. 10 mg powder to 80 °C. 

 

2.2.9 X-ray powder diffraction (XRD) 

 

The morphology of the spray-dried products was analyzed by X-ray powder diffraction 

on the X-ray diffractometer XRD 3000 TT (Seifert, Ahrensburg, Germany) using 

Cu-Kα-radiation (λ = 0.15418 nm, U = 40 kV, I = 30 mA). The samples were scanned from 5 

to 40 °2-Theta, with steps of 0.05 °2-Theta and duration of 2 s per step. 

 

2.2.10 Scanning electron microscopy (SEM) 

 

The particle morphology of the spray-dried powders was determined with a 

JSM-6500F JEOL scanning electron microscope (JEOL, Eching, Germany). For analysis, the 

samples were fixed on self-adhesive tapes on an aluminum stub and sputtered with carbon. 
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2.2.11 Nephelometry and optical density 

 

Turbidity of reconstituted, spray-dried powders was determined by nephelometry and 

optical density measurements. For nephelometry, the NEPHLA nephelometer (Hach Lange, 

Düsseldorf, Germany) was used as described in the European Pharmacopoeia method 

<2.2.1>. Briefly, the samples were measured by 90° light scattering at 860 nm and turbidity 

was reported as formazine nephelometric units (FNU). Optical density measurements were 

performed at 350 nm with an Agilent 8453 UV-Vis spectrophotometer (Agilent, Waldbronn, 

Germany). 

 

2.2.12 Subvisible particle analysis by light obscuration 

 

Concentration and size distribution of particles in reconstituted, spray-dried powders 

were determined by light obscuration using a SVSS C32 apparatus (PAMAS, Rutesheim, 

Germany). The system was flushed with particle free water until there were less than 100 

particles larger than 1 µm per 1 mL. Test measurements with particle free water were 

performed at the beginning and at the end of analysis. The average value of three 

measurements was calculated and correlated to a sample volume of 1 mL. After each 

measurement, the system was flushed with 5 mL of particle free water to exclude cross 

contamination. After this cleaning procedure, less than 100 particles larger than 1 µm per 

1 mL were detected. 

 

2.2.13 Statistical analysis 

 

An unpaired one-tailed t-test was performed to test the significance of difference. A 

P-value of 0.05 was defined as statistically significant. 
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3 Feasibility of protein precipitation by volatile ammonium salts 

 

3.1 Volatile ammonium salts 

 

By screening chemical databases, the following ammonium salts were identified as 

possible candidates for protein precipitation with subsequent precipitant removal by spray 

drying (Table 2). The requirements for suitable excipients comprise, besides the ability of 

quantitative protein precipitation, a comparatively low decomposition temperature, a low 

toxicity of the bulk material and the decomposition products, and a complete decomposition 

upon the temperature increase during spray drying. 

 

The overview lists ammonium salts according to their decomposition temperature. 

Ammonium carbamate has with 35 °C the lowest decomposition temperature followed by 

ammonium carbonate and ammonium hydrogen carbonate. Ammonium acetate 

decomposition requires a minimum of 90 °C, thereby reaching the limits of spray drying with 

the Mini Spray Dryer B-290. Based on experience, an inlet temperature of 190 °C would be 

necessary to gain an outlet temperature of 90 °C, which is yet insufficient to generate 

equivalent temperature conditions inside the aerosol droplets. For the same reason, 

ammonium formate seemed inappropriate for an elimination of precipitant by spray drying. 

Di-Ammonium oxalate and Tri-Ammonium citrate were both excluded from investigations as 

they show critical qualities: Di-Ammonium oxalate possesses with 9 mL/kg a rather low LD50 

value and its decomposition leads to the formation of carbon monoxide, whereas 

Tri-Ammonium citrate forms a critical anhydride component. 
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Table 2 Overview of ammonium salts with their corresponding physicochemical qualities according to the respective material safety datasheets 
 

Ammonium 
Salt 

Molecular 
Formula 

Decomp. 
Products 

Decomp. 
Temp. [°C] 

LD50 rat 
[mg/kg] oral 

Melting 
point [°C] 

pH  
[100 g/L] 

Water solubility 
[g/L] 20°C 

Vapor pressure 
[hPa] 20°C 

Ammonium 
carbamate H2NCOONH4 2 NH3, CO2 35 681-1470 152 10 790 82 

Ammonium 
carbonate 

NH4HCO3 + 
H2NCOONH4 
(1:1) 

H2O, 3 NH3,     
2 CO2 

58 1975 - 9.4 320 69 

Ammonium 
hydrogen 
carbonate 

NH4HCO3 H2O, NH3, CO2 60 1576 106 8 
(for 50 g/L) 220 67 

Ammonium 
acetate CH3COONH4 NH3, CH3COOH 90 632 

(intraperitoneal) 114 6.7-7.3 1489 n.a. 

Ammonium 
formate HCOONH4 H2O, NH3, CO 180 2250     

(mouse) 116 5.5-7.5 n.a. n.a. 

Di- 
Ammonium 
oxalate 

(NH4)2C2O4 NH3, CO2, CO > 70 9 mL/kg 70 6.4 45 n.a. 

Tri- 
Ammonium 
citrate 

(NH4)3C6H5O7 
H2O, NH3, CO2, 
methyl maleic 
anhydride 

185 
(melting point)

1090          
(methyl maleic 

anhydride) 
n.a. n.a. n.a. n.a. 
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3.2 Precipitation efficiency 

 

In the precipitation screening study, the following salts were evaluated for their 

efficiency to precipitate proteins: ammonium carbamate, ammonium hydrogen carbonate, 

ammonium carbonate, ammonium acetate, and ammonium formate. Ammonium sulfate was 

used for rhIL-11 as a default non-volatile precipitating agent. 

 

3.2.1 Precipitation of BSA 

 

BSA / precipitant mixtures were prepared containing either 2.5 mg/mL or 10.0 mg/mL 

BSA. While adding the precipitant stock solution to the protein solution, no instantaneous 

effect, like coagulation or turbidity increase, occurred. The reaction vials were then incubated 

for 24 hours at 2 – 8 °C. However, despite the prolonged reaction time, neither of the 

investigated volatile ammonium salts was found capable of precipitating BSA quantitatively. 

Figure 3 exemplifies BSA precipitation efficiency for ammonium carbamate. If BSA is present 

in the lower concentration of 2.5 mg/mL, ammonium carbamate is able to precipitate 10% of 

the initial protein at most. For the higher protein content of 10 mg/mL, the precipitation 

efficiency of ammonium carbamate is negligible, which can be explained by the relatively 

lower precipitating agent content compared to the amount of protein. All other investigated 

ammonium salts showed similar or less precipitation power (data not shown). Thus, it 

appears difficult to precipitate BSA under the conditions applied. Consequently, the 

precipitant screening studies were continued with IgG1. 

Figure 3 Precipitation efficiency [%] of ammonium carbamate for BSA at 2.5 mg/mL (-- ■ --) 
   and 10.0 mg/mL (-- ● --) 
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3.2.2 Precipitation of IgG1 

 

In analogy to BSA / precipitant mixtures, IgG1 was utilized in two concentrations for 

screening possible protein precipitants: 2.5 mg/mL and 10.0 mg/mL. Only ammonium 

carbamate induced an immediate protein precipitation, visible by the formation of an opaque 

precipitate in the reaction vial. Although ammonium acetate, ammonium hydrogen carbonate, 

ammonium carbonate, and ammonium formate were added at the highest possible 

concentration using stock solutions containing the salts at the respective maximum solubility, 

precipitation could not be observed. After incubation for 24 hours at 2 – 8 °C and subsequent 

centrifugation, only in case of the ammonium carbamate system a sediment could be 

separated. The visual impression was confirmed by spectroscopic determination of the 

protein content in the assumed supernatant (data not shown). Complete protein recovery in 

the supernatant of the ammonium acetate, ammonium hydrogen carbonate, ammonium 

carbonate, and ammonium formate system indicated full protein solubility. 

 

The successful IgG1 precipitation by ammonium carbamate was further investigated. 

In order to reduce absolute process times, the incubation of IgG1 / precipitant mixtures was 

reduced from 24 hours to 8, 3 and 1 hour, respectively and in addition, trehalose as a 

potential stabilizer was tested for the precipitated protein at 2.5 mg/mL. Figure 4A shows the 

precipitation efficiency of ammonium carbamate for a 2.5 mg/mL IgG1 solution at different 

incubation times. Increasing ammonium carbamate concentrations led to a more efficient 

protein precipitation. A reduction of the incubation time resulted in a reduced protein 

precipitation efficiency. In fact, precipitant concentration and incubation time were identified 

as the most important factors to achieve quantitative precipitation. A precipitation efficiency 

of more than 97% was defined as quantitative. Ammonium carbamate could be applied either 

at 26% for 24 hours or at 28% for 1 hour to achieve 97% efficiency. Figure 4B presents the 

precipitation study with IgG1 / trehalose / ammonium carbamate mixtures. The addition of 

trehalose to the protein solution before precipitation had no significant influence on protein 

precipitation efficiency. Therefore, addition of sugars to the protein formulation seemed 

uncritical with regard to complete protein precipitation. In Figure 4C, the precipitation 

efficiency of ammonium carbamate was analyzed for a 10 mg/mL IgG1 solution without 

addition of trehalose. Also at the higher protein content, the same ammonium carbamate 

concentrations were sufficient to precipitate IgG1 quantitatively, keeping protein solubility at 

the same low level. 
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Protein precipitation is known to occur more readily at pH conditions near the 

isoelectric point (IEP) of the protein, because of the lower electrostatic repulsion and 

consequently lower protein solubility once the protein does not carry any net charge. 

Typically, IgG1 molecules have an IEP of approx. 8.3 to 9.5 47. Therefore, the conditions of 

the ammonium carbamate system with its pH of 9.3 to 9.4 (measured at ammonium 

carbamate concentrations of 18.9 to 30.7%) assisted the quantitative IgG1 precipitation. All 

other applied ammonium salt solutions exhibited lower pH values (Table 2), and the salting-

out effect on proteins remained insignificant. The example of the ammonium carbonate 

system, which also provides a pH in the IEP region of the antibody without causing protein 

precipitation, clarifies that the high efficiency of ammonium carbamate must be ascribed to a 

considerable extent to the presence of the carbamate anion. 
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Figure 4 Precipitation efficiency [%] of ammonium 
carbamate for 
(A)   2.5 mg/mL IgG1 
(B)   2.5 mg/mL IgG1 / trehalose 
(C)   10.0 mg/mL IgG1  
after different incubation times: 
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3.2.3 Precipitation of rhIL-11 

 

In a next step, the approach of protein precipitation by ammonium carbamate was 

tested for rhIL-11, which in comparison to the IgG1 antibody can be viewed as a 

representative for lower molecular weight proteins. Due to its limited availability, rhIL-11 was 

not tested with other volatile precipitation agents. Instead, ammonium sulfate precipitation 

was conducted to compare the influence of volatile and non-volatile precipitants on protein 

stability. A 5.0 mg/mL rhIL-11 solution was precipitated quantitatively by 20% ammonium 

carbamate (Figure 5), which indicates a higher sensitivity of rhIL-11 towards salting-out 

compared to IgG1, where at least 26% ammonium carbamate were necessary for its 

quantitative precipitation. This higher susceptibility of rhIL-11 can be partly ascribed to its 

hydrophobic nature caused by the unusual amino acid composition of 23% leucine reducing 

protein solubility 48. Furthermore, its basic IEP in the range of 11.8 favors protein precipitation 

by ammonium carbamate. In addition, rhIL-11 was precipitated quantitatively by a 26.3% 

ammonium sulfate solution indicating a strong effect of the precipitants on the rhIL-11 

solubility. In comparison, quantitative precipitation of trypsin 45 and a monoclonal IgG1 

antibody 32 was only achieved in the presence of 50% ammonium sulfate.  
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3.3 Effect of precipitation with ammonium carbamate on protein stability 

 
Precipitation as alternative for protein stabilization during spray drying can only be 

successful if perturbations of protein stability can be ruled out. In order to exclude protein 

destabilization by ammonium carbamate precipitation, protein aggregation was analyzed by 

HP-SEC analysis and structural protein changes were investigated by FTIR analysis. 

 

3.3.1 Stability of IgG1 upon precipitation with ammonium carbamate 

 

IgG1 was precipitated with 28% ammonium carbamate, incubated and redissolved 

before HP-SEC analysis was conducted to evaluate the formation of soluble aggregates. As 

shown in Figure 6, a minor increase of aggregated protein species was observed. After one 

hour of precipitate incubation, the amount of aggregates was nearly doubled (0.35% instead 

of 0.19%). The slightly negative effect of precipitation conditions became more relevant with 

prolonged incubation of the IgG1 / ammonium carbamate mixture and after 24 hours, an 

amount of 0.63% aggregates could be observed. Overall, the formation of aggregates due to 

ammonium carbamate incubation was very moderate. 

 
 

FTIR spectra of redissolved, diafiltrated IgG1 precipitates were obtained to investigate 

the influence of ammonium carbamate on the protein secondary structure. The secondary 

structure of IgGs is dominated by β-sheet elements at the wavenumbers of 1614, 1639 and 

1690 cm-1 49. Structural changes of the protein conformation usually coincide with band shifts 

towards higher wavenumbers, band broadening and loss of intensity 50. In order to eliminate 
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Figure 6 Amount of soluble aggregates induced by ammonium carbamate precipitation 
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the interfering signals of residual ammonium in the redissolved IgG1 precipitates, samples 

were diafiltrated against formulation buffer prior to FTIR analysis. The obtained IgG1 

spectrum after precipitation, redissolution and ultrafiltration aligned well with the spectrum of 

IgG1 bulk solution (Figure 7A), suggesting that precipitation with ammonium carbamate did 

not cause alterations in protein secondary structure. The results depicted in Figure 7B 

support this finding, as increasing incubation times of the IgG1 precipitates did not influence 

the conformational stability of the protein. 

 
 

3.3.2 Stability of rhIL-11 upon precipitation with ammonium carbamate and sulfate 

 
The effect of precipitation by ammonium carbamate and ammonium sulfate on 

rhIL-11 stability was evaluated by HP-SEC analysis for soluble aggregates, by SDS-Page 

analysis for soluble, covalently linked aggregates and turbidity measurements of insoluble 

aggregates. SDS-Page was also performed to investigate the formation of rhIL-11 fragments, 

which is described to occur upon stress 51. The rhIL-11 precipitates were incubated for 

24 hours at 2 – 8 °C and redissolved before analysis. RhIL-11 bulk solution was incubated 

under the same conditions and analyzed as reference. 

 

The initial amount of soluble aggregates in the rhIL-11 bulk material was determined 

with 3.1% (Figure 8A). The incubation of the rhIL-11 bulk solution led to a slight, but 

insignificant (P > 0.05) reduction of soluble aggregates to 2.6%. Turbidity measurements 

indicated no formation of insoluble aggregates due to incubating the bulk solution for 

24 hours at 2 – 8 °C (Figure 8B). The precipitation of rhIL-11 with ammonium carbamate 
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Figure 7  (A) FTIR spectra of IgG1 standard solution (black) and redissolved, diafiltrated precipitate 
         (gray) 

                (B) FTIR spectra of redissolved, diafiltrated precipitates after 1, 3, 8 and 24 hours  
                      incubation time (top down) 
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increased the amount of soluble aggregates to 4.6%, whereas the precipitation with 

ammonium sulfate raised the soluble aggregate level to 3.6%. The turbidity increase in the 

ammonium sulfate sample was accompanied by a high standard deviation and therefore was 

determined as insignificant (P > 0.05). 

 
 

SDS-Page analysis also revealed that covalently linked or insoluble aggregates did 

not form (Figure 9). The apparent resistance of rhIL-11 against aggregation under 

precipitation conditions was regarded as advantageous for further processing of protein 

precipitates. However, the precipitation with ammonium salts induced the formation of 

rhIL-11 fragments as in both precipitate samples additional bands appeared at lower 

molecular weight. These bands can be ascribed to protein fragments of 13.8 kDa and 

5.2 kDa, which are main degradation products of rhIL-11 due to deamidation related peptide 

bond cleavage under stress conditions 51. 

 

Conclusively, quantitative rhIL-11 precipitation was achieved using ammonium 

carbamate and ammonium sulfate. Precipitation conditions did not lead to formation of 

protein aggregates. However, traces of protein fragments were detected indicating that the 

precipitation itself might be stressful for rhIL-11. 

 

 

Figure 8 Soluble aggregates (A) and insoluble aggregates (B) of rhIL-11 bulk solution and precipitates 
               with ammonium carbamate (ACA) and ammonium sulfate (AS)
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4 Evaluation of volatility upon spray drying 

 

The results of the previous section revealed that quantitative precipitation with the 

potentially volatile precipitating agent ammonium carbamate could be achieved for IgG1 and 

rhIL-11. Both proteins were sufficiently stable during the precipitation process. The next step 

was to demonstrate the quantitative removal of the precipitating agent based on its volatility 

in the spray drying process. Therefore, a placebo solution containing 10% (w/v) ammonium 

carbamate and 10% (w/v) mannitol was spray dried at different temperatures and different 

feed flow rates. The applied inlet temperature Tin ranged from 110 to 210 °C, corresponding 

to outlet temperatures Tout of 60 to 110 °C. The feed flow rate was set to 1.5 mL/min or 

3.0 mL/min, respectively. In order to evaluate the conditions at which ammonium carbamate 

would be completely removed by decomposition, CHN analysis of the spray-dried powders 

was conducted to detect residual ammonium. 

 

As shown in Figure 10, ammonium carbamate was readily decomposed by exposure 

to the hot drying air in the spray chamber and the initial amount of 50% ammonium 

carbamate was drastically diminished in the spray-dried powders. However, by applying 

rather mild drying conditions of 110 / 60 °C, approximately 2.8% ammonium carbamate could 

still be detected in the spray-dried powder. An increase of the spray drying inlet temperature 

Figure 9 SDS-Page gel of different rhIL-11 formulations: 
(M)  Standard protein marker 
(A)   Incubated ammonium sulfate precipitate 
(B)   Incubated ammonium carbamate precipitate 
(C)   Incubated bulk solution 
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was necessary to reduce the residual precipitant content further, and by spray drying at 

210 / 110 °C, ammonium carbamate was completely evaporated. Given that these high 

temperatures might be critical with regard to protein stability, a reduction of the feed flow rate 

was additionally investigated for its effect on precipitant decomposition. The feed flow rate 

was reduced from 3.0 mL/min to 1.5 mL/min. A temperature setting of 150 / 75 °C was not 

sufficient for a complete evaporation of ammonium carbamate. However, if the spray drying 

temperature was adjusted to 170 / 90 °C, CHN analysis revealed that ammonium carbamate 

was completely removed. 

 
 

The potential of eliminating the precipitant by means of spray drying was further 

challenged by increasing the initial ammonium carbamate content. A placebo solution 

containing 50% (w/v) ammonium carbamate and 10% (w/v) mannitol was spray dried at 

different temperatures and different feed flow rates (Figure 11). After spray drying, the 

collected powders were exposed to an additional vacuum drying step by incubation of the 

unclosed product vials at 0.05 hPa for 24 hours. CHN analysis of the spray-dried powders 

was performed immediately after spray drying and after the vacuum drying step. 

Figure 10 Composition of spray-dried 10% mannitol / 10% ammonium carbamate powder 
    determined by CHN analysis and Karl-Fischer measurements 
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Using the 50% ammonium carbamate containing solution, higher residual precipitant 

concentrations in the spray-dried powders were found compared to the 10% ammonium 

carbamate solution. Immediately after spray drying, 1.2% ammonium carbamate (instead of 

0.6%) were detected for spray drying temperatures of 170 / 80 °C, and 1.0% (instead of 

0.0%) for 170 / 90 °C. Obviously, the applied spray drying conditions were not adequate to 

decompose ammonium carbamate completely in the high concentration solution. Therefore, 

vacuum drying of the spray-dried powders was performed as an additional treatment step 

post spray drying. Thereby, the content of ammonium carbamate was reduced below the 

detection limit of CHN analysis. This additional process step ensures the complete removal 

of the volatile precipitant. 

 

In conclusion, the volatility of ammonium carbamate was distinct enough to remove 

the precipitating agent from placebo powders by spray drying. Therefore, further 

investigations covered the spray drying of ammonium carbamate protein precipitates. 
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Figure 11 Composition of spray-dried 10% mannitol / 50% ammonium carbamate powder 
    determined by CHN analysis and Karl-Fischer measurements
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5 Spray drying of protein precipitates 

 

After evaluation of the efficiency of ammonium carbamate to precipitate IgG1 and 

rhIL-11 and the successful application of spray drying for the removal of ammonium 

carbamate from placebo powders, the spray drying of protein precipitates was performed and 

the influence on protein stability was investigated. 

 

5.1 Spray drying of IgG1 precipitates 

 

Table 3 summarizes the IgG1 formulations prepared for evaluating the protein 

precipitate spray drying process. All samples contained 2.5 mg/mL IgG1 and 1.1 mg/mL 

trehalose in MilliQ water resulting in a protein / sugar ratio of 70:30. This very ratio had been 

identified as optimal to preserve antibody stability during spray drying 52. Spray drying 

conditions were comparable for all formulations: 

 Tin 170 - 172 °C 

 Tout 76 - 79 °C 

 Feed flow 1.5 mL / min 

After spray drying, the collected powders were exposed to a vacuum drying step by 

incubation of the unclosed product vials at 0.05 hPa for 24 hours. 

 
Table 3 IgG1 formulations for evaluating the spray drying of protein precipitates 
 

# Formulation Precipitant Additional parameters 

Mab_1a Solution - - 

Mab_1b Solution at pH 9.3 - Adjusted to pH 9.3 with 1N NaOH

Mab_2 Precipitate Ammonium carbamate - 

Mab_3 Solution Ammonium carbamate Below precipitation concentration

Mab_4 Precipitate Ammonium sulfate - 
 
 

Mab_1a constitutes a reference formulation, as the IgG1 / trehalose standard was 

spray dried as solution without any precipitant. With Mab_1a, influences of the spray drying 

process on the protein stability were investigated. For Mab_1b, the pH of the IgG1 / trehalose 

standard solution was adjusted with 1N NaOH to pH 9.3 . The pH shift reflected the pH 

conditions in the ammonium carbamate precipitate formulation to evaluate negative 

influences of a slightly alkaline environment on protein stability. Ammonium carbamate was 

used at a concentration of 28% (w/w) to precipitate IgG1 / trehalose and the precipitate was 
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spray dried as Mab_2. In addition, ammonium carbamate was applied at a far lower 

concentration (19%), which was not adequate to cause protein precipitation. Thereby, the 

effect of the presence of the precipitant was evaluated (Mab_3). Finally, ammonium sulfate 

as alternative, non-volatile protein precipitant was utilized to induce IgG1 precipitation 

(Mab_4). The investigation of ammonium sulfate as alternative precipitating agent served as 

proof of concept. In contrary to ammonium carbamate, ammonium sulfate is a default, widely 

applied protein precipitant and remains in the spray-dried product due to its non-volatility. By 

comparing both ammonium salts, a clearer statement should be possible whether the 

concept of precipitation before spray drying is beneficial with regard to protein stability. 

 

Spray-dried powders were analyzed for soluble aggregates by HP-SEC and insoluble 

aggregates by turbidity measurements (Table 4). IgG1 showed an excellent stability in the 

spray-dried product, if the protein solution was spray dried as standard formulation. If the pH 

of the solution was increased to 9.3, the amount of soluble aggregates increased slightly 

from 0.5% to 0.9% and the turbidity increased from 0.016 to 0.044 AU. This result indicated 

robustness of the antibody in an alkaline milieu. However, when spray drying Mab_2 

(IgG1 / ammonium carbamate precipitate), soluble aggregates and turbidity increased 

drastically to 10.0% and 0.276 AU, respectively. If the concentration of ammonium 

carbamate was kept below the precipitation limit (Mab_3), the negative effect was less 

pronounced, however with 3.1% soluble aggregates and 0.197 AU the formulation was 

worse than the standard IgG1 formulation. The reference formulation containing ammonium 

sulfate (Mab_4) was slightly less detrimental for the protein with regard to protein stability 

(2.4%, 0.090 AU), but the concept of stabilizing IgG1 by precipitation before spray drying 

failed. 

 
Table 4 Aggregate status of different IgG1 formulations as determined by HP-SEC 

and turbidity measurements 
 

# Formulation HP-SEC aggregates
[%] 

Turbidity / OD350nm 
[AU] 

Mab_1a Solution 0.5 ± 0.1 0.016 

Mab_1b Solution at pH 9.3 0.9 ± 0.1 0.044 

Mab_2 Precipitate 10.0 ± 0.2 0.276 

Mab_3 Solution 3.1 ± 0.5 0.197 

Mab_4 Precipitate 2.4 ± 0.2 0.090 
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Conclusively, IgG1 revealed severe instabilities in the formulations containing an 

ammonium salt, independently of the kind of salt (carbamate or sulfate) or the state of the 

protein (solution or precipitate). As IgG1 showed good protein stability when spray dried at 

pH 9.3, the alkaline milieu in the ammonium carbamate precipitate cannot be hold 

responsible for protein aggregation. Furthermore, the chemistry of the decomposing 

ammonium carbamate was considered as possible source for protein aggregation. The 

decomposition of the ammonium carbamate could have detrimental effects on protein 

stability due to formation of aggressive decomposition species (e.g. carbon dioxide, 

ammonia). In addition, dissolution of the protein precipitate might occur in the atomized spray 

solution, as ammonium carbamate is thermally decomposed at temperatures above its 

decomposition temperature (35 °C) and the precipitant concentration might fall below the 

concentration necessary for quantitative protein precipitation. Even if the precipitate was just 

partially dissolved, the stabilization of the protein cannot be guaranteed. By using ammonium 

sulfate, both issues, the possible effects of chemically reactive decomposition products and 

the dissolution of precipitate, were eliminated. However, the ammonium sulfate precipitate 

also showed decreased protein stability. 

 

Therefore, two possible conclusions could be drawn: 

 Either the concept of protein precipitation lacks the ability to stabilize the protein 

during the spray drying process. 

 Alternatively, IgG1 was an inappropriate model protein to determine the effect of 

precipitation on protein stability during spray drying, as the antibody is quite resistant 

towards surface induced aggregation. Its persistency is proven by the fact, that it was 

possible to formulate IgG1 as stable, surfactant-free powder using spray drying. 

 

 

5.2 Spray drying of rhIL-11 precipitates 

 

RhIL-11 was used as a second protein to evaluate the possibility to stabilize proteins 

during spray drying by precipitation with volatile salts. The rationale for the use of rhIL-11 

was the distinct surface binding activity of this protein, which makes rhIL-11 exceptionally 

prone to surface adsorption and consequently protein unfolding and aggregation 48. The 

higher sensitivity of rhIL-11 compared to IgG1 towards surface induced aggregation obligated 

the use of a surfactant in the spray drying formulation, entailing negative consequences like 

reduced long-term protein stability 16. The use of rhIL-11 should reveal if precipitation would 

be an effective method to prevent protein adsorption at the air–liquid interface and thereby 

protein aggregation during spray drying. 
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The following rhIL-11 formulations were prepared (Table 5). The standard formulation 

was adopted from Fitzner 20, who proved the possibility to prevent surface adsorption and 

consequently denaturation and aggregation of rhIL-11 by addition of 0.02% polysorbate 80 to 

the spray solution. The standard formulation without surfactant served as negative reference 

as protein aggregation at the air–liquid interface was caused deliberately. Ammonium 

carbamate was investigated as volatile precipitant and ammonium sulfate as reference 

precipitating agent. In all formulations, methionine acted as antioxidant, and glycine and 

trehalose as water-replacing stabilizers. 

 
Table 5 RhIL-11 formulations in 10mM phosphate buffer for evaluating the spray drying of protein 

precipitates 
 

 

 

 

Table 6 summarizes the analysis for protein aggregates in the reconstituted 

spray-dried powders. Spray drying the rhIL-11 standard formulation resulted in the formation 

of 5.4% soluble aggregates (initial rhIL-11 bulk solution: 3.1%) and a turbidity of 0.029 AU or 

5.8 FNU, respectively. However, if the standard formulation was spray dried without the 

addition of surfactant, a massive increase of soluble aggregates to 10.4% and higher 

turbidity were observed. This higher aggregate status of the surfactant-free formulation 

showed the innate surface activity of rhIL-11, which led to protein adsorption at the air–liquid 

interface and protein unfolding and aggregation. The results for the ammonium carbamate 

precipitate pointed in a different direction: 5.2% soluble aggregates and a turbidity of 

0.032 AU / 4.9 FNU were measured. Obviously, although the spray drying solution contained 

no surfactant, the aggregate status was comparable to the standard formulation. Thereby, 

protein precipitation was capable to prevent the adsorption of rhIL-11 at the surface of 

aerosol droplets and to reduce protein aggregation. The reference formulation with 

                         
                        Formulation 
Excipient 
 

Standard 
formulation 

Standard 
formulation 

without surfactant 

Ammonium 
carbamate 
precipitate 

Ammonium 
sulfate 

precipitate 

rhIL-11 [mg/mL] 5 5 5 5 

Methionine [mM] 10 10 10 10 

Trehalose / Glycine 15 / 85 15 / 85 15 / 85 15 / 85 

- Trehalose [mM] 40.84 40.84 40.84 40.84 

- Glycine [M] 1.057 1.057 1.057 1.057 

Polysorbate 80 [%] 0.02 - - - 

Ammonium carbamate [%] - - 26.3 - 

Ammonium sulfate [%] - - - 26.3 
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ammonium sulfate as precipitating agent contained even less soluble aggregates, however, 

a drastic increase of insoluble aggregates (0.287 AU, 127.4 FNU) was observed. 

 
Table 6 Analysis of spray-dried rhIL-11 powders after reconstitution 
 
                         
                      Formulation 
Analysis 
method 

Standard 
formulation 

Standard 
formulation 

without surfactant 

Ammonium 
carbamate 
precipitate 

Ammonium 
sulfate 

precipitate 

HP-SEC aggregates [%] 5.4 ± 0.5 10.4 ± 0.1 5.2 ± 0.1 3.2 ± 0.2 

OD350nm [AU] 0.029 ± 0.003 0.052 ± 0.002 0.032 ± 0.004 0.287 ± 0.009

Turbidity [FNU]   5.8 ± 0.5 37.7 ± 3.7 4.9 ± 1.1 127.4 ± 17.1 

 
 

The formation of larger rhIL-11 aggregates by ammonium sulfate was confirmed by 

particle analysis using light blockage. Figure 12 shows that the standard formulation and the 

ammonium carbamate precipitate contained similar numbers of particles. However, the 

standard formulation without surfactant showed an increased amount of smaller particles, 

whereas the ammonium sulfate precipitate formed higher numbers of particles in the 2 to 

50 µm range. The crystallization of ammonium sulfate during spray drying might account for 

the formation of protein aggregates. 

Figure 12 Subvisible particles of reconstituted rhIL-11 powders 
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Figure 13 also supports this distinct aggregate formation in the ammonium sulfate 

precipitate, as the reconstituted solution appeared explicitly opalescent compared to all other 

samples. 

 

 

 

Gel electrophoresis (Figure 14) revealed that all formulations, including the 

unprocessed bulk solution, contained small amounts of fragments. However, the spray-dried 

ammonium sulfate precipitate contained significantly more fragments, indicating the reduced 

protein stability due to peptide cleavage in this formulation. None of the analyzed samples 

contained covalent aggregates indicating that the subvisible particles formed originated from 

aggregated unfolded protein. 

 
Figure 13 Reconstituted spray-dried rhIL-11: 
                 (A) Standard formulation 
                 (B) Standard formulation without surfactant 
                 (C) Ammonium carbamate precipitate 
                 (D) Ammonium sulfate precipitate 

A B C D

Figure 14 SDS-Page gel of different rhIL-11 formulations after
          reconstitution: 

 (M)  Standard protein marker 
 (A)   Unprocessed bulk solution 
 (B)   Standard formulation 
 (C)   Standard formulation without surfactant 
 (D)   Ammonium carbamate precipitate 
 (E)   Ammonium sulfate precipitate 
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Figure 15 shows SEM pictures of the spray-dried rhIL-11 powders. The powder of 

rhIL-11 standard formulation consisted of spherical particles with a smooth surface and a 

broad particle size distribution. If the standard formulation was spray dried without surfactant, 

the powder particles appeared wrinkled with a rugged surface, which has previously been 

observed by Fitzner 20. Both precipitants caused the formation of coarse particles. 

 

 

Powder diffraction analysis of the spray-dried powders revealed distinct differences 

between the formulations containing non-precipitated rhIL-11 and the formulations containing 

protein precipitate (Figure 16). Both diffractograms of the standard formulation with (A) and 

without (B) surfactant indicated a partial crystalline state of the powder with the characteristic 

pattern of glycine in its β-modification, which is the least stable glycine modification according 

to literature 47. The pattern of the ammonium carbamate precipitate diffractogram (C) was 

assigned to γ-glycine according to literature references 48 49 as pattern agreement was found 

for 21.8, 25.3, 29.2, 29.7, 30.1, 35.9, 38.9 and 39.0 °2-Theta. The assignment of the peaks in 

A 
10µm 

B 
10µm 

C 
10µm 

D 

10µm 

Figure 15 SEM of spray-dried particles 
                 (A) Standard formulation 
                 (B) Standard formulation without surfactant 
                 (C) Ammonium carbamate precipitate 
                 (D) Ammonium sulfate precipitate 
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the ammonium carbamate precipitate to glycine was proved by spray drying and analysis of 

a reference formulation containing ammonium carbamate precipitate, but no glycine. The 

resulting powder (D) was completely amorphous and showed no indication of residual 

ammonium carbamate, as the respective ammonium carbamate peaks (E) did not appear. In 

the spray-dried ammonium sulfate precipitate (F), the peaks of ammonium sulfate (G) 

dominated the diffractogram and the powder showed complete crystallinity. This pronounced 

crystallinity might explain the higher aggregate status of rhIL-11, if spray dried as ammonium 

sulfate precipitate. Even if trehalose remained amorphous during spray drying, the 

crystallization of ammonium sulfate by itself could be detrimental for rhIL-11 stability. 

Furthermore, phase separation during drying might amplify the negative impact on protein 

stability. 
 

Figure 16 XRD diffractograms of spray-dried powders and references (ammonium carbamate, 
    ammonium sulfate) 
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6 Summary and Conclusions 

 

The hypothesis of stabilizing proteins by precipitation before spray drying and the 

thereby possible omission of surfactants was evaluated for an IgG1 and rhIL-11. Ammonium 

carbamate was chosen as preferred precipitating excipient, as it showed high precipitation 

efficiency for both proteins and was eliminable by spray drying and an additional vacuum 

drying step, rendering a precipitant removal step unnecessary. For IgG1, no beneficial effect 

of ammonium carbamate precipitation could be observed, as the minor surface affinity of this 

protein enables spray drying of a surfactant-free formulation. However, the stability of 

spray-dried rhIL-11 was immensely improved by ammonium carbamate precipitation in 

comparison to a surfactant-free formulation. Therefore, for highly surface-active proteins like 

rhIL-11 the concept of precipitation by a volatile salt before spray drying poses a valuable 

alternative to the addition of surfactant. 
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Chapter 2 
 
 

Evaluation of the Nano Spray Dryer B-90 for pharmaceutical 
applications 

 

 

Abstract 

 

The vibrating mesh spray technology implemented in the Nano Spray Dryer B-90 was 

evaluated for pharmaceutical applications by spray drying common pharmaceutical 

excipients (trehalose, mannitol) and model drugs (e.g. griseofulvin). Aerosol droplet size 

measurements investigated the influence of spray solution factors like viscosity, conductivity, 

and surface tension and the influence of the vibrating mesh aperture size on particle 

characteristics. Particle deposition on the spray nozzle was addressed by analyzing the 

influence of spray solute concentration and solvent on the process outcome. Submicron 

particles with 0.5 µm and 0.8 µm mean particle size were obtained at high yields for 50 mg 

powder amounts. 



 42

1 Introduction 

 

Sophisticated drug delivery approaches frequently demand the development and 

production of innovative micro- and nanoparticles 1. For example, controlled release via 

pulmonary drug delivery was attempted with microparticles containing therapeutic proteins 2 

and the nasal administration route was assessed by spray-dried IgG antibody 

microparticles 3. To keep pace with the fast growing requirements to particle characteristics 

and abilities, scientists constantly seek for new options to produce micro- and nanoparticles 

with specific features. Among the various techniques evaluated for particle engineering, 

spray drying is well-established and widely used in research, development and production. In 

general, spray drying offers one main advantage over other particle engineering techniques: 

particle size and density, both crucial features with regard to drug delivery, can be controlled 

in one single step 4. However, during the early stages of product development, only minute 

amounts (milligrams scale) of new active pharmaceutical ingredients are typically available 

for formulation design. Traditional spray dryers require at least 30 mL of liquid sample to start 

with. To overcome this challenge, the novel Nano Spray Dryer B-90 (Büchi Labortechnik AG, 

Flawil, Switzerland) was developed 5. The aim of this study was to evaluate it for its benefits 

as lab scale spray dryer in pharmaceutical formulation applications as it allows spray drying 

sample volumes as small as 1 mL. 

 

 

1.1 Characteristics of the Nano Spray Dryer B-90 

 

The Nano Spray Dryer B-90 (Figure 1) comprises three technological novelties 

concerning the spray drying process: a vibrating mesh spray technology was implemented to 

generate fine aerosol droplets, a laminar drying air flow in the spray chamber to provide 

instant drying of the aerosol at mild conditions, and an electrostatic particle collector to 

effectively separate finest particles from the drying air. The combination of the innovative 

atomization principle and the efficient product separation provides the opportunity to utilize 

spray drying for a whole variety of new applications. 
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In a traditional spray dryer the dispersion of the spray solution is achieved either by 

pressure (two fluid nozzle), centrifugal forces (rotary disk atomizer) or ultrasound agitation 

(ultrasonic nozzle) 6. The Nano Spray Dryer B-90 uses the vibrating mesh spray technology 

to generate the aerosol (Figure 1). A piezoelectric actuator causes the vibration of a thin, 

perforated stainless steel membrane with ultrasonic frequencies. The vibration of the 

membrane (spray mesh) causes a ‘micro pumping action’ 7 and the formation of droplets with 

very narrow size distribution. Spray meshes are available with 4.0 µm, 5.5 µm and 7.0 µm 

apertures. Instead of using a cyclone to collect the dry particles, the Nano Spray Dryer is 

equipped with an electrostatic particle collector consisting of a stainless steel cylinder 

(anode = particle collecting electrode) and a star-shaped counter electrode (cathode) inside 

the cylinder. During the spray process, high voltage is applied between the electrodes and 

spray-dried particles get electrically charged and deposited on the inner wall of the cylinder 

electrode. After completion of the spray drying process, the fine powder is conveniently 

collected using a particle scraper. This particle separation principle enables the collection of 

powder particles in the micron to submicron size range at high yields even for small sample 

quantities in the milligrams range 8. 

Figure 1 Nano Spray Dryer B-90 (left) and atomization by spray nozzle (right) 
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1.2 Evaluation procedure 

 

First of all, the ability of the new atomization technique to generate a fine aerosol was 

assessed by laser diffraction droplet size measurements. Spray drying experiments were 

conducted using the common formulation excipients mannitol and trehalose, together with 

the surfactant polysorbate 20 and buffer components like phosphate salts. Particle size and 

shape were analyzed to adequately control and fine tune the whole spray drying process. 

The influences of the spray rate, mesh size, drying air temperature and spray fluid 

characteristics were investigated. In addition, the minimal required drying temperature to gain 

a dry powder was determined to evaluate the technology for the future spray drying of heat 

sensitive compounds e.g. therapeutic proteins. This evaluation procedure should reveal the 

pros and cons of using the Nano Spray Dryer B-90 as lab scale formulation tool in 

comparison to already existing spray drying technologies and evaluate the suitability of the 

new spray drying device to produce submicron particles at high yields. 
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2 Materials and Methods 

 

2.1 Materials 

 

Griseofulvin (Welding, Frankfurt, Germany), benzocaine (Fagron, Barsbüttel, 

Germany), trehalose (Ferro Pfanstiehl, Cleveland, USA), disodium phosphate (VWR, 

Leuven, Belgium), polysorbate 20 and salicylic acid (both Merck, Darmstadt, Germany) were 

used to evaluate the Nano Spray Dryer B-90. Methanol, acetone and ethyl acetate were 

obtained from Sigma (Munich, Germany) in analytical grade. All sprayed solutions mentioned 

in the individual sections were prepared as % (w/w) solutions using either MilliQ water or the 

respective organic solvent. At least 10 mL of each solution was spray dried. 

 

 

2.2 Methods 

 

2.2.1 Spray drying with the Nano Spray Dryer B-90 

 

The Nano Spray Dryer B-90 was operated in open loop for aqueous solutions with in-

house pressurized air at a flow rate of 120 L/min. For organic solvent solutions the spray 

dryer was connected to the Inert Loop B-295 (Büchi Labortechnik AG, Flawil, Switzerland). 

Nitrogen gas was used at a flow rate of 120 L/min. The residual oxygen level in the system 

was controlled below 4%. Unless otherwise mentioned, the spray drying experiments were 

typically run at an inlet temperature Tin of 70 °C using a spray mesh with 4.0 µm aperture 

size. The yield was calculated from the actually obtained powder amount in relation to the 

solid content of the used spray solution. 
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2.2.2 Droplet size analysis 

 

Droplet sizes of aerosols generated by the various spray meshes were determined by 

laser diffraction using a Mastersizer X (Malvern, Herrenberg, Germany). The nozzle of the 

Nano Spray Dryer B-90 was operated outside the spray dryer and was installed 8 cm (y) 

vertically above the He-Ne laser beam and in 6 cm (x) distance to the lens (Figure 2). A 

plastic shield with a hole in the center for the laser beam protected the lens of the 

Mastersizer X from droplet deposition. Droplet size distribution was determined in triplicate 

and reported using d10, d50, d90 and span values [(d90 - d10) / d50]. 

 

2.2.3 Conductivity measurements 

 

The conductivity of spray solutions was measured with an Orion Star™ Series Meter 

and a 2-Cell conductivity electrode 013016MD with a cell constant of 0.1 cm-1 and a 

recommended application range of 0.01-300 µS/cm. Calibration of the conductivity electrode 

was achieved using Orion Conductivity / TDS Standard solutions (all Thermo Electron 

Cooperation, Beverly, USA). 

 

2.2.4 Viscosity measurements 

 

The viscosity of spray solutions was determined in triplicate at 25 °C using an AMVn 

Automated Micro Viscosimeter (Anton Paar, Osfilden, Germany). 

 

Figure 2 Experimental setup for droplet size analysis with the Mastersizer X 
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2.2.5 Surface tension measurements 

 

The surface tension of spray solutions was determined at 25 °C using a K100 

tensiometer (Krüss, Hamburg, Germany) equipped with either the Krüss standard plate or 

the Krüss curved standard plate. The reported surface tensions are the average values of at 

least three measurements in the equilibrated state. 

 

2.2.6 Particle size analysis 

 

Spray-dried powders consisting of sugar or salt were analyzed by laser diffraction 

using a Partica LA-950 laser diffraction particle size analyzer (Horiba Ltd., Kyoto, Japan). 

Approximately 5 mg of the spray-dried powder was dispersed in Miglyol 812 using a UP50H 

Ultrasound Processor (Hielscher, Teltow, Germany) and analyzed in triplicate. Spray-dried 

drug powders were analyzed using a Helos H 2178 laser diffraction instrument in 

combination with a Rodos dry dispersing unit and a Vibri vibratory feeding unit (both 

Sympatec, Clausthal, Germany). The powder was fed with 60% intensity and dispersed at 

4.0 bars. The used R2 lens covered a sample size range from 0.45 - 87.5 µm. All samples 

were measured in triplicate. 

 

2.2.7 Karl-Fischer analysis 

 

Residual moisture of the spray-dried powders was determined by Karl-Fischer 

titration with a titrator Aqua 40.00 (Analytik Jena AG, Jena, Germany) using a head space 

module oven to heat up approx. 10 mg powder to 80 °C. 

 

2.2.8 Scanning electron microscopy (SEM) 

 

The particle morphology of the spray-dried powders was determined by a JEOL 

scanning electron microscope JSM-6500F (Jeol, Eching, Germany). The samples were fixed 

on self-adhesive tapes on an aluminum stub and sputtered with carbon. 
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3 Results and Discussion 

 

3.1 Droplet size analysis 

 

Traditional pneumatic air spray nozzles offer various possibilities to influence droplet 

sizes. Apart from the nozzle design, a reduction in droplet size is achieved by increasing the 

gas–liquid mass ratio (relative velocity) and by decreasing the viscosity of the spray 

solution 6. The spray formation in the Nano Spray Dryer B-90 is based on the vibrating mesh 

spray technology and operates without the use of pressurized air. The aperture size of the 

spray mesh is supposed to be one of the strongest factors influencing the droplet size, in 

addition to solution based parameters such as viscosity and surface tension. As the 

atomization principle of the vibrating mesh spray technology is not yet comprehensively 

investigated, the list of possible influences on droplet size might be amended by e.g. spray 

solution conductivity and other experimental parameters. 

In a first study, spray meshes with 4.0, 5.5 and 7.0 µm aperture sizes were tested by 

spraying MilliQ water directly into the beam of the laser diffraction instrument. The resulting 

aerosols contained droplets of 3.3 µm (d10) to 14.7 µm (d90) size depending on the apertures 

of the mesh (Figure 3). The mean droplet size (d50) ranged from 4.8 µm for the 4.0 µm mesh 

to 7.2 µm for the 7.0 µm mesh. A good correlation between the applied mesh size and the 

resulting droplet size was found. 
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Figure 3 Droplet sizes of MilliQ water sprayed with different spray mesh aperture sizes 
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These droplet sizes were compared with the traditional lab scale Mini Spray Dryer 

B-290 (Büchi Labortechnik AG, Flawil, Switzerland), which atomizes liquids by means of a 

two-fluid nozzle and pressurized gas. As already mentioned, the amount and relative velocity 

of the atomizing gas has a direct impact on the resulting droplet size. For example, Maltesen 

et al. used a nozzle gas flow rate of 670 L/h as centre level for their quality by design study 

on spray drying insulin with the Mini Spray Dryer B-290 and found an average droplet 

diameter of 15.9 µm 9. With applying the same gas flow rate to the Mini Spray Dryer B-290 

nozzle in our laboratory, water droplet sizes of approx. 5.0 µm (d10), 13.9 µm (d50) and 

29.5 µm (d90) were measured. In general, the Nano Spray Dryer B-90 produced smaller 

droplets compared to the Mini Spray Dryer B-290. The maximal droplet size of approx. 15 µm 

when using the Nano Spray Dryer B-90 might limit certain applications. On the other side, the 

aerosols from the Nano Spray Dryer B-90 showed a narrower size distribution (span values 

approx. 1.2) compared to the Mini Spray Dryer B-290 aerosols (span values approx. 1.8). 

Atomization by the vibrating mesh spray technology is well-known to produce droplets with 

small size variations, which is especially utilized in pulmonary drug delivery, where vibrating 

mesh nebulizers produce larger fractions of inhalable droplets compared to conventional jet 

or ultrasonic nebulizers 7. 

 

Pharmaceutical applications, such as inhalative drug delivery naturally ask for 

reproducible aerosol formation. A spray dryer has to fulfill the same requirements in order to 

establish a robust formulation process leading to particles of a defined size, if specific 

process parameters are applied. As the aperture size of the vibrating mesh mainly 

determines the droplet size, the consequences of a mesh replacement due to an excess of 

its wear lifespan were investigated. Three different spray meshes with the same aperture 

size (7.0 µm) were analyzed by droplet size measurements. The data show a good 

reproducibility of the droplet size within +/- 0.5 µm (Figure 4). 



 50

 

 
In addition, the viscosity and surface tension (Table 1) and droplet size (for a 4.0 µm 

spray mesh) of three different trehalose solutions (0.1, 1 and 10% concentrations) with and 

without the addition of polysorbate 20 (ratio sugar / surfactant 200:1) were analyzed. 

Polysorbate 20 is widely used as surfactant in spray drying 10. Mean droplet sizes of approx. 

5 µm were achieved independently of the sugar concentration or the addition of surfactant 

(Figure 5). Only the d90 values showed a slight increase in droplet size from 7.8 µm (without 

surfactant) to about 9.0 µm (with surfactant). This indicates that neither the total solid 

content, nor the viscosity or the surface tension of the spray solution greatly influence the 

droplet size formation with the vibrating mesh spray technology. 

 

 
Table 1 Viscosity and surface tension of trehalose and trehalose / polysorbate 20 spray solutions 
 

Spray solution Viscosity 
[mPa*s] 

Surface tension 
[mN/m] 

0.1% Trehalose 1.01 ± 0.01 71.66 ± 0.05 

1%    Trehalose 1.02 ± 0.01 72.12 ± 0.04 

10%  Trehalose 1.33 ± 0.02 69.42 ± 0.03 

0.1% Trehalose / PS20 1.01 ± 0.01 38.44 ± 0.06 

1%    Trehalose / PS20 1.02 ± 0.01 38.51 ± 0.03 

10%  Trehalose / PS20 1.33 ± 0.02 38.84 ± 0.06 
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Figure 4 Droplet sizes of MilliQ water sprayed with three different meshes of the same aperture size
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Ghazanfari et al. analyzed the influence of viscosity and surface tension on the 

aerosol properties with an Omron® MicroAir vibrating mesh nebulizer (Omron Healthcare, 

Kyoto, Japan) 11, which uses the same spray technology as the Nano Spray Dryer B-90. In 

their study, no clear influence was observed regarding the surface tension. However, an 

increased fluid viscosity decreased aerosol droplet size. These findings were based on more 

viscous solutions compared to the rather diluted trehalose spray solutions (Table 1) in our 

study and a comparable viscosity increase did not significantly change the droplet sizes. The 

spray generated by sugar / surfactant solutions appeared optically denser and stronger 

compared to pure sugar solutions. Moreover, the surfactant addition increased the 

throughput of spray solution through the apertures of the vibrating mesh (Figure 6). 

 

 

Figure 5 Droplet sizes of trehalose spray solutions with / without polysorbate 20 



 52

 
 

3.2 Evaluation of minimal spray drying temperature 

 

Spray drying is often the drying method of choice to prepare powders with specific 

features (e.g. size, morphology, density) in the chemical, pharmaceutical or food industry. On 

the other side there are various stresses acting on the product during spray drying, such as 

shear forces in the pump and the nozzle, adsorption at the enlarged air–liquid interface and 

heat impact. The influence of the drying temperature is considered to be a minor stress factor 

due to the temporary impact of heat on the droplets and particles. In fact, the droplets dry in 

a few milliseconds, and the overall residence time in the hot drying air is roughly in the range 

of a few seconds 6. Moreover, evaporation of moisture keeps the surface of the drying 

droplets cool and prevents the rise of product temperature above the level of the outlet gas 

temperature of the spray dryer 12. In order to reduce temperature induced stress on 

spray-dried products, lower inlet temperatures are preferred as long as the corresponding 

outlet temperatures are still high enough to obtain a powder with adequate moisture content, 

yield, flowability, particle size distribution, fine particle fraction, and other qualities 13. 
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Table 2 Yield and residual moisture (rM) of mannitol / polysorbate 20 and trehalose / polysorbate 20  
 spray dried with the 4.0 µm mesh at different inlet / outlet temperature conditions 

 
Mannitol / PS20 Trehalose / PS20 Inlet Temp. 

[°C] 
Outlet Temp. 

[°C] Yield [%] rM [%] Yield [%] rM [%] 

120 55 - 59 78 0.12 75 4.2 

100 50 - 54 75 0.37 59 2.6 

80 40 - 45 71 0.11 66 3.2 

70 37 - 41 70 0.28 64 2.0 

60 33 - 36 65 0.19 63 3.2 

50 28 - 32 67 0.29 50 5.0 
 

 
Table 2 summarizes the spray drying conditions of 1% mannitol and trehalose 

solutions with 0.05% polysorbate 20 to evaluate the minimal drying temperatures in the Nano 

Spray Dryer B-90. In general, both mannitol and trehalose were effectively spray dried at low 

outlet temperatures in a range of 28 - 59 °C. The residual moisture of mannitol powders was 

below 0.5%, independently of the inlet temperature, which corresponds well to literature 14. 

Trehalose powders with 2.0 to 5.0% residual moisture indicate an amorphous product. 

However, as demonstrated in literature 14 no clear dependency on the inlet temperature was 

found. The overall yields were slightly higher for mannitol (65 - 78%) compared to trehalose 

(50 - 75%). For comparison, Adler et al. found a massive yield reduction for trehalose to less 

than 30% with a traditional spray dryer at inlet / outlet temperatures below 140 / 85 °C. In 

contrary, the Nano Spray Dryer B-90 was capable of spray drying both excipients at much 

lower temperatures without relevant yield reductions. Thus, the Nano Spray Dryer B-90 

becomes a valuable device to formulate temperature sensitive excipients and drugs. 

 

 

3.3 Evaluation of product deposition at the spray nozzle 

 

Some spray drying experiments resulted in reduced product yields due to product 

depositions on the spray nozzle (Figure 7). The deposits occurred either extensively on the 

whole spray nozzle or were limited to the surroundings of the spray mesh. In both cases, the 

deposited powder was lost and the overall yield diminished. In addition, in some instances, 

the deposited powder became a heavy crust and burst off as product lumps contaminating 

the fine powder in the electrostatic particle collector. 
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Factors influencing the crust formation could be especially the used solvent, the 

spray-dried substance and the applied process parameters (Table 3). Among the factors 

related to the vibrating mesh spray technology, the drying air flow profile inside the spray 

dryer might be of significance. Although the drying air is laminar through the drying chamber, 

the spray nozzle works like a barrier in the gas flow and leads to the formation of local gas 

currents, which tend to entrain the spray 15. As a consequence, generated droplets flow back 

and deposit on the nozzle surface. Another reason for product deposits might be the 

electrostatic attraction of aerosol droplets towards the metallic surfaces of the spray nozzle. 

This effect might be further aggravated by temperature differences between the aerosol and 

the metallic nozzle surfaces. As user a certain influence on the outcome of a specific spray 

drying experiment can be exerted by changing process conditions, as well as substance and 

solvent related factors. 

 
 
Table 3 Possible influences on crust formation tendency during spray drying processes 
 

Technology related Process related Substance related Solvent related 

 Flow profile / entrainment 

 Electrostatic effects  

 Temperature differences 

 Spray pulse 

 

 Inlet temperature 

 Mesh size 

 Air flow rate 
 

 Solubility 

 Hygroscopicity 

 Stickiness 

 

 Surface tension 

 Viscosity 

 Conductivity 

 Permittivity 
 Boiling point 

 

Figure 7 Crust formations on the nozzle of the Nano Spray Dryer B-90 
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When working with traditional spray dryers, yield and success of a spray drying 

experiment are influenced by optimizing drying air inlet temperature, nozzle gas flow rate, 

liquid feed flow rate, and aspirator capacity. Traditional spray dryers offer a larger setting of 

the drying air inlet temperature (typically up to 220 °C). The nozzle gas flow rate exerts a 

direct influence on the particle size due to an increase in kinetic energy for the liquid 

atomization 9. The drying air inlet temperature in the Nano Spray Dryer B-90 can be adjusted 

between 60 - 120 °C. The high thermal efficiency of the process allows drying without 

damage of the product. Moreover, the smaller droplets evaporate quickly and require a lower 

drying temperature. The aperture size of the applied vibrating mesh is the critical parameter 

for particle size adjustment, which is equivalent to the spray gas flow in traditional 

pressurized air nozzles. The spray solution throughput in the Nano Spray Dryer B-90 is 

mainly determined by the aperture size of the applied mesh. In contrast, the liquid feed rate 

in traditional spray dryers is adjusted by the pump speed to obtain a certain outlet 

temperature and particle size 16, 17. The outlet gas temperature in the Nano Spray Dryer B-90 

is controlled by the drying air flow rate (80 - 120 L/min) and the spray intensity (0 - 100%). 

The electrostatic particle collector works at fixed conditions and can not be influenced by the 

spray dryer operator directly. The system controls optimal particle separation conditions. 

 

It is clearly recognized that the nozzle deposition is affected by the physicochemical 

nature of the spray-dried substance. Its maximal possible solute concentration limits the 

maximal achievable particle size and throughput. The substance hygroscopicity is inter alia 

responsible for the residual moisture content of the spray-dried powder. Some substances, 

like trehalose, have a highly sticky nature compared to noncohesive substances like salts 17. 

This might also lead to an increased sticking behavior of droplets to the nozzle. In addition, 

solvent physicochemical parameters, like surface tension, viscosity and conductivity, are 

considered to impact the crust formation. Some investigations regarding the influence of 

surface tension and viscosity on aerosol properties have been conducted 11. However, the 

processes during spray drying are more complex than during spraying into room air and the 

possibility remains that the additional drying factors provoke crustification of spray solutions. 

 

Various spray drying experiments were conducted in order to analyze the effects of 

surface tension, viscosity and conductivity of spray solutions on nozzle deposition and yield 

reduction. Table 4 compares the experimental results in sets of two. Each set of experiments 

was performed under identical spray drying conditions (mesh size, inlet temperature, drying 

air flow rate). For example, set 1 comprises two experiments of griseofulvin with identical 

spray drying parameters (70 °C Tin / 5.5 µm mesh size), but different organic solvents. 

Griseofulvin dissolved in methanol / acetone (ratio 80:20) led to satisfying spray drying 
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results with no crustification, whereas dissolution in pure acetone formed a heavy crust on 

the spray nozzle and the final powder product was contaminated by crusty lumps. For the 

sets 2 - 5, the choice of either solute concentration or solvent clearly led to differences in 

process quality and crust formation. 

 
 
Table 4 Sets of spray drying experiments for evaluation of crust formation 
 

Set No crustification Crustification 

1 0.44% Griseofulvin in methanol / acetone 0.15% Griseofulvin in acetone 

2 5%      Salicylic acid in acetone 5%      Salicylic acid in ethyl acetate 

3 1%      Benzocaine in ethanol 1%      Benzocaine in acetone 

4 1%      Salicylic acid in ethyl acetate 5%      Salicylic acid in ethyl acetate 

5 0.44% Griseofulvin in methanol / acetone  0.5%   Griseofulvin in ethyl acetate 
 

 

Figure 8 depicts the viscosity, surface tension and conductivity values of the 

respective spray solutions. No significant correlation between spray solution properties and 

crustification tendency could be established, neither for the experiments without crustification 

(circles), nor for the ones with crustification (squares). These findings indicate that virtually 

any substance can be spray dried successfully, as long as the right experimental setup 

(solvent, concentration, etc.) is used. 

Figure 8 Plot of viscosity, conductivity and surface tension of spray solutions 
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3.4 Preparation of submicron particles 

 

Finally, the possibility to use the Nano Spray Dryer B-90 for the preparation of 

particles in the submicron size range was investigated. Based on the droplet size analysis of 

the aerosol and the knowledge that the droplet size is dependent on the applied vibrating 

mesh, the smallest available mesh with an aperture size of 4.0 µm was applied. Mean droplet 

sizes of approx. 5 µm have been measured independently of the total solids concentration 

(Figure 5). However, due to mass balance a smaller solute concentration finally leads to 

smaller solid particles after drying. Therefore, solutions with 0.1% disodium phosphate or 

trehalose with addition of 0.005% polysorbate 20 were spray dried at 120 °C inlet 

temperature. Approx. 50 mL of each solution were spray dried to obtain a representative 

amount of powder for analysis (approx. 50 mg in this study). 

 
 

Figure 9 shows SEM photographs of spray-dried disodium phosphate with a mean 

particle size of 0.5 µm and spray-dried trehalose particles with a mean particle size of 

0.8 µm. It can be stated that the atomization device of the Nano Spray Dryer B-90 enables 

the production of particles with an average diameter below 1 µm. This ability raises 

expectations with regard to novel particle design possibilities in pharmaceutical applications 

using spray drying. A reduction in particle size offers various new options for the application 

of spray-dried particles. For example, achieving submicron particle sizes of poorly 

water-soluble drugs enhances their dissolution properties and therefore their bioavailability 

after oral administration 18. Even more unique is the electrostatic particle collector as a highly 

efficient particle separator. The yield for disodium phosphate reached 75% for 50 mg of 

Figure 9 SEM of spray-dried phosphate salt (A) and trehalose (B) particles
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powder. With 0.1% trehalose solution the yield was 49% due to stronger crust formation. The 

spray drying process became rather time-consuming due to the low solute concentration and 

the limited throughput through the spray mesh. The separation of particles in the submicron 

size range is known to be difficult with traditional spray dryer setups. Prinn et al. found for 

example that particles smaller 2 µm were unattainable using a standard cyclone 16. Even with 

a ‘high-performance’ cyclone capable of separating particles smaller 2 µm from the drying 

air 19, the median particle size could not be reduced below 1.4 µm 9. An electrostatic particle 

collector tremendously extends the size spectrum of separable particles 8. 
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4 Summary and Conclusions 

 

The vibrating mesh spray technology implemented in the new Nano Spray Dryer B-90 

produced aerosols with mean droplet sizes down to 4.8 µm (using the 4.0 µm mesh) with 

narrow size distribution (span values of approx. 1.2). Spray drying of highly diluted disodium 

phosphate and trehalose solutions (0.1%) containing surfactant enabled the production of 

submicron particles with 0.5 µm and 0.8 µm mean particle size, respectively, for 50 mg 

powder amounts. In order to ensure an effective separation and collection of those fine 

particles, the Nano Spray Dryer B-90 is equipped with an electrostatic particle collector and 

laminar drying gas regulation. The laminar drying gas allows gentle drying of heat sensitive 

products and prevents the deposition of the fine particles on the glass cylinder walls. 

Although, turbulent drying air is favorable with regard to mass and heat transfer in traditional 

spray dryers, a laminar flow is efficient enough in the new spray dryer to dry the fine aerosol 

immediately. The electrostatic particle collector eventually allows the collection of the 

particles in the submicron size range, which is commonly not achieved by traditional cyclone 

separators. However, formulation scientists have to be aware of the necessary process 

development time for optimal product formulation in order to avoid curst formation at the 

spray nozzle. Since the nozzle of the Nano Spray Dryer B-90 has not been designed to 

produce solid particles larger than 5 µm, it is suggested to design new vibrating meshes with 

> 7.0 µm aperture size to extent the application range for pharmaceuticals. The production of 

submicron particles was found feasible despite the elongated process time. 
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Chapter 3 
 

 

Spray drying a BCS class II drug with the Nano Spray Dryer B-90 

 

 

Abstract 

 

An increasing number of new chemical entities emerging from industry pipelines show 

low oral bioavailability. Development of micronized or solubilized formulations can improve 

the bioavailability by accelerating the drug dissolution rate. In this study, the Nano Spray 

Dryer B-90 was implemented for inert spray drying of organic solvent solutions of the model 

drug griseofulvin. Griseofulvin powders with medium particle sizes of 3.4 to 6.5 µm were 

produced and compared to the ‘gold standard’ micronized griseofulvin concerning particle 

properties with relevance for drug absorption. Particularly, drug dissolution and cell culture 

permeability of spray-dried griseofulvin were analyzed and correlated to drug particles size. 

Spray drying of griseofulvin yielded a comparably fast dissolving and permeable powder 

compared to micronized milled material. The addition of Lutrol F127 as solubilizing agent 

improved the wettability of griseofulvin to such an extent that the dissolution rate was even 

faster than for micronized material. 
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1 Introduction 

 

An increasing number of new chemical entities emerging from industry pipelines show 

low oral bioavailability 1. In fact, these drug candidates are highly permeable due to their 

innate lipophilicity, however, their aqueous dissolution is limited and determines the rate and 

degree of absorption after oral administration. Substances with poor water solubility and high 

permeability are categorized as class II drugs according to the biopharmaceutical 

classification system (BCS) 2. Their low solubility in the gastrointestinal tract challenges the 

formulation scientist, as oral drug application remains the preferred route of administration 

due to low production costs, good patient compliance, and convenience of use. Manifold 

strategies emerged to increase solubility and absorption of class II drugs, starting with their 

chemical modification into more water-soluble species like prodrugs and salts. However, 

prodrugs must be activated e.g. by enzymes and require an intact metabolic activity, and 

salts can undergo pH-dependent precipitation during the gastrointestinal passage losing their 

bioavailability 3. Another traditional approach to increase drug dissolution is the 

co-administration of lipophilic pharmaceuticals with a meal rich in fat. This significantly 

increased the oral bioavailability of several lipophilic drugs 4-7 and led to the development of 

more sophisticated formulation strategies, which are based on the following principles: 

 

 Dispersion 

 Micronization 

 Solubilization 

 

 

1.1 Dispersion 

 

Dispersion aims at facilitating drug absorption by presenting the drug in its dissolved 

and readily absorbable form or in its amorphous state. Microemulsions, self-(micro-) 

emulsifying drug delivery systems (SEDDS/SMEDDS), and solid dispersions are utilized for 

this purpose. Microemulsions are thermodynamically stable, isotropic mixtures of lipid, water, 

and surfactant, frequently in combination with a co-surfactant, and served as model for the 

development of SEDDS and SMEDDS, which use the concept of in situ drug (micro-) 

emulsification upon contact of the preparation with the gastrointestinal fluids in vivo 1. 

SEDDS and SMEDDS have contributed to the improvement of oral bioavailability of several 

poorly water-soluble drugs, like halofantrine 8, simvastatin 9, and itraconazol 10. One of the 

best known examples for a successfully marketed SMEDDS is the Neoral® cyclosporine 
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formulation, which in contrast to the earlier Sandimmun® formulation improved drug 

dispersion and absorption, and reduced inter- and intrapatient variability of bioavailability 11. 

The concept of solid dispersions was initially introduced by Sekiguchi et al. 12, who used 

crystalline carriers like urea and mannitol to form eutectic, readily soluble mixtures with 

poorly soluble drugs. In general, solid dispersions can be defined as homogenous mixtures 

of one or more active ingredients in a pharmacologically inert matrix carrier in the solid 

state 13, and can be classified according to their structural variety (Table 1). 

 
Table 1 Classification of solid dispersions according to Forster 13 (A = amorphous, C = crystalline) 
 
Category Type Number of phases Physical state of phase(s) 

1 Eutectic mixture ≥ 2 C/C 

2 Solid solution 1 C 

3 Complex 1 A or C 

4 Glass solution 1 A 

5 Amorphous suspension 2 A/A or A/C 

 

 

To enhance oral drug bioavailability, solid dispersions with amorphous character were 

quickly considered more attractive, as they avoid the crystal lattice energy barrier to be 

overcome before dissolution 14. However, the sole implementation of polymeric carriers (e.g. 

PVP, PVA, HPMC, HPC, ethyl cellulose, and PEG) often resulted in heterogeneous mixtures 

due to the only partial miscibility of amorphous drug dissolved in the polymer carrier and non-

dissolved small microcrystalline drug particles. Thus, modern solid dispersions typically keep 

the drug in an amorphous state and prevent drug precipitation by implementing 

surface-active carriers like glyceryl behenate and polyoxylglycerides 15. Classical techniques 

to prepare solid dispersions comprise solvent evaporation and melt extrusion. Solvent 

evaporation by vacuum-, freeze-, or spray drying is considered as method of choice for 

amorphous polymers that either do not melt or degrade before melting. However, the need 

for a suitable solvent in large quantities and its cost, toxicological and environmental impact 

restricts the applicability of this approach. Instead, melt extrusion offers the advantage of a 

solvent-free, continuous, and scalable process, whose application at early drug development 

stages is on the other hand limited by the need for large quantities of drug material 13. 

Patterson et al. compared spray drying and melt extrusion for preparing glassy solutions of 

several poorly water-soluble drugs, and analyzed the influence of the preparation process on 

the product morphology and stability 16. Their results indicated that melt extrudates are more 

homogeneous. However, the manufacturing technique had minimal influence on the physical 

stability of the products and recrystallization processes of the amorphous drugs were 
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successfully inhibited by all glass solutions. In general, solid dispersions are more amenable 

to be developed into the preferred solid dosage form compared to the above mentioned 

semi-solid drug delivery approaches. Examples of marketed solid dispersion products are 

Grispeg® (griseofulvin/PEG), Cesamet® (nabilone/PVP), and Certican® (everolimus/HPMC). 

 

 

1.2 Micronization 

 

Another technology to solve the problem of low oral bioavailability is the micronization 

of drugs. Micronized formulations improve the bioavailability by accelerating the drug 

dissolution rate, which depends on the particle size and is, according to the Noyes–Whitney 

equation, directly proportional to the specific surface area. In addition, micronization below 

1 µm increases the saturation solubility of drugs, because their solubility increases 

exponentially as a function of particle size, as demonstrated by the Kelvin and the Ostwald–

Freundlich equations 17. Micronization technologies can be divided into downsizing 

(top-down) and up-building (bottom-up) approaches. The top-down approach, where the 

original drug crystals are disrupted by mechanical force, can be further divided into milling 

(e.g. jet milling, wet ball milling or cryogenic milling) and homogenization using high 

pressure 15. The combination of both techniques is also common as, for example, jet milling 

is used to obtain a drug ‘macro-’suspension, which is then further processed to a 

nanosuspension in a high pressure homogenizer. Such a homogenizer increases the 

dynamic fluid pressure and creates cavitation forces strong enough to break the drug 

microparticles into nanoparticles 17. However, the high-energy input also disrupts the crystal 

lattice and induces partial or total amorphization or polymorph conversion of drug particles. 

These disordered regions are thermodynamically unstable, and physical instability and 

chemical degradation during storage are to be expected 3. In order to avoid impairment of 

dissolution and bioavailability by recrystallization tendencies, transformation of suspensions 

into solid products is recommended using freeze- or spray drying 18. Bottom-up micronization 

initially starts from a drug solution, which is precipitated e.g. through a nozzle into an 

anti-solvent to form a colloidal suspension. Challenges of this method are 19 

 

 the necessity of a solvent that quantitatively dissolves the investigated drug, 

 the necessity of a drug anti-solvent that is miscible with the solvent and 

 the inhibition of crystal growth during the precipitation procedure by surfactant 

addition. 
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Recently, the use of supercritical technology to improve solubility gained increased 

attention. Supercritical fluids (SCF), like carbon dioxide, are used as solvents for drug 

substances, as anti-solvents for precipitation and as media for other fluid techniques. Several 

SCF methods evolved: precipitation with compressed anti-solvent, solution enhanced 

dispersion by SCF, supercritical anti-solvent processes, and aerosol solvent extraction 

systems 19. Advantages of the SCF technology lie in the omission of organic solvents and 

heating stress, however, the high machine expenditure must be named as possible 

drawback. 

 

 

1.3 Solubilization 

 

Solubilization constitutes a further attempt to increase saturation solubility and oral 

bioavailability of poorly soluble drugs. In principle, solubilization is defined as enhancement 

of solubility of a substance in a solvent by adding a third substance (solubilizer). Depending 

on the mechanism of solubilization, micellar solubilization, complexation, and co-solvency 

are distinguished 17. Micellar solubilization is achieved by addition of surfactants to a 

concentration exceeding their critical micelle concentration (CMC) and entrapping drugs 

inside the micelles. Even at a concentration below CMC, surfactants can improve the 

dissolution of lipophilic drugs by lowering the surface tension and increasing wettability. 

Surfactants are also frequently used to stabilize microemulsions and - suspensions. The 

complexation of lipophilic drugs can be non-specific (e.g. by addition of PEG) or specific (by 

use of cyclodextrins). The specific interaction of drugs with the cyclodextrin cavity leads to 

drug / cyclodextrin complexes, commonly known as inclusion complexes. Advantages of 

these inclusion complexes are their simple production method, their rapid and quantitative 

dissociation and their often lower toxicity compared to surfactants and co-solvents. However, 

the solubility enhancement for drugs with extremely poor solubility is often low and regulatory 

and quality control issues regarding the use of cyclodextrins still need to be addressed. 

Co-solvency describes the increase of drug solubility by addition of a water miscible solvent 

in which the drug has good solubility. Frequently used co-solvents comprise PEG, PVA, and 

PVP for solid formulations and ethanol, propylene glycol, glycerol, and DMSO for liquid 

formulations 20. 
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1.4 The scope of this study 

 

In this study, two formulation principles were investigated to improve dissolution 

properties of the model drug griseofulvin: (1) organic drug solutions were spray dried with the 

new Nano Spray Dryer B-90 to obtain micronized drug powder and (2) surfactant was added 

to the formulation to enhance particle wettability. Additional aims were the evaluation of the 

suitability of the Nano Spray Dryer B-90 for inert organic solvent spray drying processes and 

the development of a robust and efficient spray drying process for griseofulvin, exploiting the 

possibility to start from minute drug quantities. Micronized griseofulvin bulk material served 

as ‘yardstick’ throughout the in vitro dissolution and cell culture absorption experiments, and 

it was hypothesized that griseofulvin powder with equal qualities could be produced. 

 

The oral bioavailability of griseofulvin, a BCS class II drug with poor water solubility 

(approx. 0.001% at 37°C), has been subject of investigations since its first use in 1958 21. 

Atkinson et al. established the correlation of oral bioavailability and particle surface area for 

micronized griseofulvin powder of 1.6 to 10 µm particle size 22. Nuernberg et al. found 

increased drug dissolution rates and solubilities for spray-dried griseofulvin / methylcellulose 

formulations. However, high amount of excipient was necessary to obtain an amorphous, fast 

dissolving product 21. The same was observed for griseofulvin / cyclodextrin inclusion 

complexes with drug / excipient ratios of 1:1 to 1:2, where drug solubility increased accord to 

the cyclodextrin amount added 23. However, for the improved drug dissolution large quantities 

of solubilizing excipients were necessary. 
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2 Materials and Methods 

 

2.1 Materials 

 

Micronized griseofulvin EP5 bulk material was obtained from Welding (Frankfurt, 

Germany). Lutrol F127 (poloxamer 407) was supplied by BASF (Ludwigshafen, Germany). 

Dulbecco’s modified eagle’s medium (DMEM), fetal bovine serum (FBS), sodium pyruvate, 

0.25% trypsin with EDTA, minimum essential medium (MEM) containing non-essential amino 

acids, Pen-Strep (10,000 units Penicillin G and 10,000 µg Streptomycin sulfate per mL 

0.85% saline) and 100x vitamins for MEM were obtained from GIBCO Invitrogen (Carlsbad, 

California, USA). Lucifer yellow dilithium salt, HEPES, MES, lipoic acid, zinc sulfate, sodium 

bicarbonate, and Hank’s balanced salt solution (HBSS) were purchased from Sigma 

(St. Louis, Missouri, USA). Potassium phosphate dibasic anhydrous, acetic acid, 

triethanolamine, methanol and acetonitrile were supplied by Caledon (Georgetown, Ontario, 

Canada). 

 

 

2.2 Methods 

 

2.2.1 Spray drying with the Nano Spray Dryer B-90 

 

The Nano Spray Dryer B-90 was operated in short assembly as closed-cycle system 

in connection with an Inert Loop B-295 (Büchi Labortechnik, Flawil, Switzerland). Nitrogen 

gas as drying medium was used at a flow rate of 120 L/min. The residual oxygen level in the 

system was controlled below 4%. System-controlled carbon dioxide gas injections ensured 

efficiency of the electrostatic powder collection. The spray intensity was set to 100% and the 

inlet temperature Tin to 60 °C or 70 °C, depending on the solvent used. Different spray 

meshes were applied with aperture sizes of 4.0 µm, 5.5 µm or 7.0 µm, respectively. 

Griseofulvin was dissolved together with surfactant (optional) in acetone or 

methanol / acetone (ratio 80 : 20) and 25 - 70 g of various % (w/w) formulations were spray 

dried (overview of the formulations in Table 2). Process parameters, including inlet 

temperature and outlet temperature, spray head temperature, nitrogen / carbon dioxide flow 

rate, residual oxygen level, and spray intensity were recorded, and the spray-dried powder 

was manually collected after the process for yield determination and further analysis. 
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2.2.2 Spray drying with the Mini Spray Dryer B-290 

 

Griseofulvin formulations (Table 2) were spray dried with the Mini Spray Dryer B-290 

as closed-cycle system in connection with an Inert Loop B-295 (Büchi Labortechnik, Flawil, 

Switzerland) and a LT Mini dehumidifier (Deltatherm, Much, Germany). Approx. 70 g of 

various % (w/w) formulations were atomized by a two fluid nozzle (0.7 mm tip). A high 

performance cyclone was applied for powder collection. Nitrogen gas was used at a flow rate 

of 830 L/h. The aspirator rate was set to 35 m3/h, the feed flow rate to 3.85 mL/min, and the 

inlet temperature Tin to 70 °C, resulting in an outlet temperature Tout of 50 °C. 

 
Table 2 Overview of griseofulvin spray drying experiments (Met = methanol) 
 
Griseofulvin 
[% (w/w)] 

Lutrol F127 
[% (w/w)] 

Solvent 
 

Spray dryer 
 

Mesh 
[µm] 

Tin / Tout 
[°C] 

Yield 
[%] 

Particle size 
[µm] 

0.5 - Met/Acetone B-90 4.0 70/45 43.3 3.4 

0.5 - Met/Acetone B-90 5.5 70/43 52.5 4.9 

0.5 - Met/Acetone B-90 7.0 70/40 62.7 6.5 

1.5 - Acetone B-90 5.5 60/40 74.5 4.9 

0.44 - Acetone B-90 5.5 60/40 63.6 4.7 

0.15 - Acetone B-90 5.5 60/40 34.1 4.2 

0.5 - Met/Acetone B-90 4.0 70/45 40.0 3.6 

0.5 - Met/Acetone B-290 - 70/50 31.0 3.8 

0.5 0.05 Met/Acetone B-90 4.0 70/45 34.0 3.8 

0.5 0.05 Met/Acetone B-290 - 70/50 40.2 3.8 

0.5 0.0025 Met/Acetone B-90 4.0 70/45 44.7 3.6 

0.5 0.0025 Met/Acetone B-290 - 70/50 48.1 4.1 
 

 

2.2.3 Particle size analysis 

 

Spray-dried drug powders were analyzed using a Helos H 2178 laser diffraction 

instrument in combination with a Rodos dry dispersing unit and a Vibri vibratory feeding unit 

(both Sympatec, Clausthal, Germany). The powder was fed with 60% intensity and dispersed 

at 4.0 bars. The used R2 lens covered a sample size range from 0.45 - 87.5 µm. All samples 

were measured in triplicate and the mean diameter reported. 
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2.2.4 X-ray powder diffraction (XRD) 

 

The morphology of the spray-dried products was analyzed by X-ray powder diffraction 

(XRD) on the X-ray diffractometer XRD 3000 TT (Seifert, Ahrensburg, Germany) using 

Cu-Kα-radiation (λ = 0.15418 nm, U = 40 kV, I = 30 mA). Samples were scanned between 

5 - 40 °2-Theta, with steps of 0.05 °2-Theta and duration of 2 s per step. 

 

2.2.5 Scanning electron microscopy (SEM) 

 

The particle morphology of the spray-dried powders was determined with a 

JSM-6500F JEOL scanning electron microscope (JEOL, Eching, Germany). For analysis, the 

samples were fixed on self-adhesive tapes on an aluminum stub and sputtered with carbon. 

 

2.2.6 Dissolution studies 

 

Spray-dried griseofulvin powders and micronized griseofulvin material were tested for 

dissolution qualities based on the USP method <Griseofulvin Capsules> 24. Approx. 10 mg 

spray-dried powder was weight into size 1 gelatin hard capsules. Modified dissolution 

parameters were applied as follows: dissolution apparatus 1 (basket), 1000 mL dissolution 

medium (5.4 mg/mL sodium lauryl sulfate in water) of 37 +/- 0.5 °C, 100 rpm stirring speed, 

60 min dissolution time, sample withdrawal at 2, 5, 10, 15, 30, 45 and 60 min. Quantification 

of the dissolved amount of drug was carried out photometrically at 291 nm with an Agilent 

8453 spectrophotometer (Agilent, Waldbronn, Germany). All samples were analyzed in 

triplicate. 

 

2.2.7 Cell culture technique 

 

Caco-2 cells (ATTC, Rockville, Maryland, USA) were maintained at 37 °C in DMEM 

with 4.5 g/L glucose, 10% FBS, 1% non-essential amino acids (NEAA), 1% sodium pyruvate 

and HEPES buffer in an atmosphere of 5% CO2 and 95% relative humidity. The cells were 

seeded on non-coated inserts (polyester membrane, 0.4 µm pores, 4.7 cm2 growth area) in 

Costar Transwell® permeable cell culture plates (Corning, New York, USA) with 6 wells per 

plate at a density of 3*105 cells / insert. The medium was replaced every 48 hours for the first 
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6 days and every 24 hours thereafter. After approx. 18 - 21 days in culture, Caco-2 

monolayers were utilized. 

 

2.2.8 Transepithelial electrical resistance (TEER) measurement 

 

TEER of transwell inserts was measured using an EndOhm 24SNAP chamber 

connected to an EVOM system (both World Precision Instruments, Sarasota, Florida, USA) 

and after taking into account the growth area of the insert (4.7 cm2) reported as Ω * cm2. 

Before seeding Caco-2 cells, electrical resistance of the blank inserts together with buffer 

medium was measured. To calculate the TEER of the Caco-2 monolayer, the total electrical 

resistance of the seeded wells was corrected for the TEER value of the blank insert and 

buffer. TEER measurements were conducted before and after the drug transport study and 

loss of electrical resistance was calculated by the following equation: 
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afterbefore
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2.2.9 Drug transport study 

 

Various spray-dried griseofulvin powders were tested for their drug permeability 

through Caco-2 cell monolayers (Figure 1). Apical-to-basal permeability of griseofulvin was 

measured under pH gradient conditions (apical pH = 6.0, basal pH = 7.4) to better mimic 

intestinal transport in vivo. HBSS buffer was used as medium for drug transport studies 

(transport medium), after adjusting the pH to 6.0 with MES or to 7.4 with HEPES, 

respectively. Fresh well plates were used for drug transport studies. After filling the basal 

compartments with 2.6 mL HBSS buffer of pH 7.4, inserts with an integer cell monolayer 

(determined by TEER measurements) were placed into the well and 1.0 mL HBSS buffer of 

pH 6.0 was applied onto the apical side. After 15 min of incubation of both well sides with 

drug-free transport medium, approx. 1 - 2 mg griseofulvin powder (exactly weighed) was 

dispersed as powder into the apical compartment and 1.0 mL lucifer yellow buffer were 

added, resulting in an initial lucifer yellow concentration at the apical side of 50 µM. 

Thereafter, aliquots of 0.5 mL were taken from the basal side every 10 min for the first hour 

and every 15 min for the second hour. The volume of the basal solution was maintained 

constant by adding fresh transport medium. 
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Figure 1 Setup of cell culture plates containing Caco-2 cell monolayers before (top) and during the  

  drug transport study (bottom) 
 

 

2.2.10 Drug permeability determination 

 

The amount of griseofulvin and lucifer yellow in the aliquots from the basal side was 

determined chromatographically with fluorescence detection using a Shimadzu LC-600 pump 

(Shimadzu, Kyoto, Japan) with a Jasco 851 AS auto sampler and a Jasco FP 920 

fluorescence detector (Jasco, Easton, Maryland, USA). The injection volume was 10 µL and 

the flow rate was 0.9 mL/min. Griseofulvin was detected at 300 nm (excitation) and 418 nm 

(emission) in methanol / 0.5% acetic acid (ratio 61.5 : 38.5) and lucifer yellow at 485 nm 

(excitation) and 530 nm (emission) in 0.067 M potassium phosphate / acetonitrile / 

triethanolamine (ratio 75 : 25 : 0.02) as mobile phase on a Chromolith™ Performance 

RP-18e column (100 - 4.6 mm) (Merck, Darmstadt, Germany). The chromatograms were 

acquired using the Clarity™ data acquisition software (2.4.4.83; Data Apex, Prague, Czech 

Republic). Permeability of lucifer yellow was used as indicator for the integrity of Caco-2 cell 

monolayers and the apparent permeability coefficient Peff (cm/s) was calculated according to 

the following equation: 
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where dc/dt is the flux across the monolayer (µM/s), and is obtained from the plot of lucifer 

yellow concentration in the basal compartment vs. time, c0 is the initial lucifer yellow 

concentration in the apical compartment (µM), V is the volume of the basal compartment 

buffer (cm3) and A is the area of the monolayer in the transwell insert (cm2). As indication for 

a good monolayer, Peff should be below 2*10-7 cm/s. 

 

2.2.11 Statistical analysis 

 

Results were analyzed by one-way analysis of variance (ANOVA) to determine 

significant differences of permeability. The level of significance was set to P < 0.05. 
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3 Results and Discussion 

 
Development of a robust spray drying process started with the search for suitable 

solvents and spray drying conditions. Griseofulvin was dissolved in methanol, acetone, 

dichloromethane, and ethyl acetate, and spray dried with the Nano Spray Dryer B-90 at 

different inlet temperatures (Table 2; data for dichloromethane and ethyl acetate not shown). 

Only methanol and acetone, and combinations thereof, were found to give satisfactory spray 

drying results. Dichloromethane and ethyl acetate were discarded from further investigations 

as their application resulted in a pronounced product crustification with griseofulvin particles 

forming a crust on the spray dryer nozzle. Using methanol and acetone, the crust forming 

tendency was reduced or eliminated and product yields ranging from 30 to 70% were 

obtained. Some of the formulations were also spray dried with the Mini Spray Dryer B-290. 

The performance of both bench-top spray dryers was found to be equal in terms of product 

yields and process safety (Table 2). 

 

 

3.1 Influence of vibrating mesh aperture size 

 

The vibrating mesh of the Nano Spray Dryer nozzle is available in three different 

aperture sizes (4.0, 5.5 and 7.0 µm). To investigate the influence of aperture size on particle 

size, and thereby potentially on the dissolution and permeability of spray-dried powders, a 

formulation of 0.5% (w/w) griseofulvin in methanol / acetone was spray dried using all three 

mesh types (Table 2). As shown in Figure 2, the particle size of the spray-dried powders was 

positively correlated with the aperture size of the vibrating mesh. Application of the 4.0 µm 

mesh resulted in particles with a medium size of 3.4 µm, the 5.5 µm mesh in a medium size 

of 4.9 µm, and the 7.0 µm mesh in a medium size of 6.5 µm. 

Figure 2 Effect of aperture size on the particle size of spray-dried griseofulvin powders: 
   (A) 4.0 µm apertures, (B) 5.5 µm apertures, and (C) 7.0 µm apertures 
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In a second step, the spray-dried powders were analyzed for their dissolution rate 

(Figure 3) and permeability performance (Figure 4). The powder, which was obtained by 

spray drying with the 4.0 µm mesh, showed a higher dissolution. The effect can be explained 

by the following correlation: the smaller the apertures of the vibrating mesh, the smaller the 

spray-dried particles and the larger the specific surface area of the powder accessible for 

drug dissolution. Based on these results, the permeability of the powders might depend on 

the aperture size. Hence, the amount of permeated griseofulvin diffusing into the basal 

compartment of the transwell plates was monitored over time. Griseofulvin, which has been 

spray dried with the 4.0 µm mesh, showed the highest permeability. The spray drying 

experiments with the 5.0 and 7.0 µm mesh yielded materials, which both provided lower 

amounts of permeated griseofulvin. Conclusively, the aperture size of the vibrating mesh was 

found to be an important process parameter for reducing the particle size and enhancing the 

dissolution and permeability of a spray-dried drug powder, however, only to a small extent. 

 

Figure 3 Dissolution profiles of griseofulvin powders spray dried with different vibrating meshes: 
   4.0 µm (-- ■ --), 5.5 µm (-- ● --), and 7.0 µm (-- ▼ --) 
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3.2 Influence of total solid content 

 

In addition, the influence of total solid content of the spray solution on the griseofulvin 

particle size, dissolution rate, and permeability was investigated. Literature describes a 

moderate reduction of particle size associated with a decrease in total solid content, as the 

latter contributes only in the cube root to the overall particle size 25. Three different solutions 

containing 1.5% griseofulvin, 0.44%, and 0.15% were spray dried with the 5.5 µm mesh 

(Table 2) and the resulting powders compared (Figure 5). Medium particle sizes were 

determined as 4.9 µm, 4.7 µm and 4.2 µm, respectively, resembling just a weak correlation 

of total solid content and particle size, particularly compared to the already determined strong 

influence of the vibrating mesh aperture size on particle size. 

Figure 5 Effect of increasing total solid content on the particle size of spray-dried powders:  
   (A) 0.15%, (B) 0.44%, and (C) 1.5% griseofulvin in the spray solution 
 

0 20 40 60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

0.6
Pe

rm
ea

te
d 

gr
is

eo
fu

lv
in

 [%
]

Permeation time [min]

Figure 4 Permeability of griseofulvin powders spray dried with different vibrating meshes:  
   4.0 µm (-- ■ --), 5.5 µm (-- ● --), and 7.0 µm (-- ▼ --) 
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Consequently, the influence of the total solid content on the dissolution rate was 

found to be marginal. If any, the improvement of drug dissolution by reduction of drug 

concentration in the spray solution was weak (Figure 6). The permeability of the respective 

powders showed the same tendency. The spray solution with only 0.15% total solid content 

produced a powder with slightly higher permeability than the spray solutions with 0.44% or 

1.5% total solid content (Figure 7). 

 

Figure 6 Dissolution profiles of griseofulvin powders from differently concentrated spray solutions:
   0.15% (-- ■ --), 0.44% (-- ● --), and 1.5% total solid content (-- ▼ --) 
 

Figure 7 Permeability of griseofulvin powders from differently concentrated spray solutions: 
   0.15% (-- ■ --), 0.44% (-- ● --), and 1.5% total solid content (-- ▼ --) 
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3.3 Influence of formulation technique 

 

Furthermore, the influence of different formulation techniques on particle properties 

was analyzed using micronized and spray-dried griseofulvin powders. Griseofulvin was spray 

dried with the Nano Spray Dryer B-90 and the Mini Spray Dryer B-290, and both powders 

were compared to griseofulvin bulk material, which has been produced by micronization. 

Medium particle sizes and powder appearance were found to be comparable between the 

different formulation techniques: 4.1 µm for micronized griseofulvin, 3.6 µm for material spray 

dried with the Nano Spray Dryer B-90, and 3.8 µm for material spray dried with the Mini 

Spray Dryer B-290 (Figure 8). 

Figure 8 Different formulation techniques: (A) micronized griseofulvin, (B) Nano Spray Dryer B-90 
   product, and (C) Mini Spray Dryer B-290 product 
 
 

The micronized bulk material showed excellent dissolution properties (Figure 9). 

Spray-dried material from the Nano Spray Dryer B-90 also dissolved rapidly, whereas the 

Mini Spray Dryer B-290 produced powder with a lower dissolution rate. As the particle size of 

these powders and the particle size distribution were similar, differences in dissolution 

behavior occurred most probably due to variances in surface structure and porosity of the 

materials. The micronized material had a very rugged particle structure with manifold 

curvatures, which are a consequence of the harsh production conditions and pose an ideal 

contact surface for the dissolution medium. The spray-dried powders, in particular the 

powder from the Mini Spray Dryer B-290, showed a smoother particle surface, which resulted 

in a lower drug dissolution rate. 
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Figure 9 Dissolution rates of differently formulated griseofulvin powders: micronization (-- ■ --), 
  spray drying with the Nano Spray Dryer B-90 (-- ● --), and the Mini Spray Dryer B-290 
  (-- ▼ --) 
 

 
The dissolution rates were partially reflected by the permeability study, as the 

micronized and the Nano Spray Dryer material showed better permeability than the Mini 

Spray Dryer material. Permeability of griseofulvin spray dried with the Nano Spray Dryer 

B-90 even appeared superior compared to micronized material, however, given the standard 

deviation only insignificantly. 

Figure 10 Permeability profiles of micronized griseofulvin (-- ■ --), griseofulvin spray dried with 
    the Nano Spray Dryer B-90 (-- ● --), and with the Mini Spray Dryer B-290 (-- ▼ --) 
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3.4 Influence of surfactant addition 

 

To improve the dissolution and permeability of griseofulvin, Lutrol F127 was added as 

solubilizing and wetting excipient to the griseofulvin formulation. Spray solutions of 0.5% 

griseofulvin containing 0.05% or 0.0025% Lutrol F127, resulting in a griseofulvin / Lutrol F127 

ratio of 10 : 1 or 200 : 1, respectively, were spray dried with the Nano Spray Dryer B-90 and 

the Mini Spray Dryer B-290 (Table 2). Particle size analysis revealed no significant difference 

between the formulations: griseofulvin / Lutrol F127 (10 : 1) had a particle size of 3.8 µm, 

independently from the spray dryer used, and griseofulvin / Lutrol F127 (200 : 1) had a 

particle size of 3.6 µm if spray dried with the Nano Spray Dryer B-90 and 4.1 µm if spray 

dried with the Mini Spray Dryer B-290. Particle sizes were comparable to formulations 

without surfactant. As shown in Figure 11, the Nano Spray Dryer B-90 materials (A, B) seem 

to consist of discrete particles, whereas the Mini Spray Dryer B-290 materials (C, D) appear 

slightly coalescent. 

Figure 11 Griseofulvin powders spray dried with the Nano Spray Dryer B-90 (A, B) and the Mini Spray 
    Dryer B-290 (C, D) containing 0.05% (A, C) and 0.0025% Lutrol F127 (B, D) 
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Figure 12 compares the dissolution properties of griseofulvin / Lutrol F127 powders 

spray dried with the Nano Spray Dryer B-90 to micronized griseofulvin. The addition of 

Lutrol F127 in the lower ratio (200 : 1) did not increase the dissolution rate. However, when 

adding a higher amount of Lutrol F127 (10 : 1), the spray-dried powder dissolved more 

rapidly in the first half hour of the dissolution experiment compared to all other powders, 

including spray-dried pure griseofulvin and micronized griseofulvin. As the overall amount of 

dissolved griseofulvin after 60 min was just marginally higher, Lutrol F127 primarily increased 

the dissolution rate and not the total amount of dissolved drug. Therefore, an increase of 

powder wettability due to large amounts of surfactant is assumed responsible for these 

effects. 

Figure 12 Dissolution profiles of griseofulvin spray dried with the Nano Spray Dryer B-90 containing 
    0.05% (-- ■ --), 0.0025% (-- ● --), and 0.0% Lutrol F127 (-- ▼ --) compared to micronized 
    material (--  --) 
 

 

Regarding the corresponding permeability profiles (Figure 13), a similar situation was 

observed. The addition of high amounts of Lutrol F127 resulted in increased drug 

permeability, whereas low amounts of Lutrol F127 did not lead to a permeability increase. 

Conclusively, adding Lutrol F127 as wetting agent increased griseofulvin dissolution and 

permeability. However, rather high amounts were necessary in order to obtain a significant 

improvement. 
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Figure 13 Permeability profiles of griseofulvin spray dried with the Nano Spray Dryer B-90 containing 
    0.05% (-- ■ --), 0.0025% (-- ● --), and 0.0% Lutrol F127 (-- ▼ --) compared to micronized  
    material (--  --) 
 

 

Comparable experiments were conducted with the powders obtained using the Mini 

Spray Dryer B-290 (Figure 14). Only the griseofulvin powder containing high amounts of 

Lutrol F127 showed a dissolution rate equal to micronized griseofulvin. Pure griseofulvin and 

griseofulvin / Lutrol F127 200 : 1 were not able to dissolve as rapidly, most probably due to 

the absence of a wetting agent and the coalescence of powder particles, respectively. The 

permeability profiles of the respective powders show a superiority of the 

griseofulvin / Lutrol F127 mixture and the micronized material over the spray-dried pure 

griseofulvin (Figure 15). 

0 20 40 60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rm

ea
te

d 
gr

is
eo

fu
lv

in
 [%

]

Permeation time [min]



 

 84

 

Figure 14 Dissolution profiles of griseofulvin spray dried with the Mini Spray Dryer B-290 containing 
    0.05% (-- ■ --), 0.0025% (-- ● --), and 0.0% Lutrol F127 (-- ▼ --) compared to micronized  
    material (--  --) 

 

Figure 15 Permeability profiles of griseofulvin spray dried with the Mini Spray Dryer B-290 containing 
    0.0025% (-- ● --) and 0.0% Lutrol F127 (-- ▼ --) compared to micronized material (--  --) 
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XRD diffractograms were recorded to evaluate the crystallinity of spray-dried, 

surfactant containing powders (Figure 16). Micronized griseofulvin and Lutrol F127 were 

analyzed as references. All samples exhibited a crystalline pattern, independently of 

surfactant addition or production technique. The amorphous phase of griseofulvin is known to 

crystallize easily, even at room temperature 26, and the absence of amorphous drug was 

therefore not surprising, although spray drying often results in the formation of amorphous 

material. Therefore, the improved dissolution rate of surfactant containing powders was not 

due to a partially amorphous state, but due to enhanced powder wettability and potentially 

meso- or nanoporosity resulting from leached Lutrol F127 that had phase separated. 

Figure 16 X-ray diffraction patterns of micronized griseofulvin, Lutrol F127, griseofulvin spray dried 
    with the Nano Spray Dryer B-90 (A) or the Mini Spray Dryer B-290 (B) and 
    griseofulvin / 0.05% Lutrol F127 spray dried with the Nano Spray Dryer B-90 (C) or the Mini 
    Spray Dryer B-290 (D) 

 

 

3.5 Integrity of Caco-2 monolayers 

 

Caco-2 cell monolayers were checked for their integrity by measuring TEER values of 

each transwell before and after the drug transport study and by determining the permeability 

of the fluorescent dye lucifer yellow. The mean TEER determined before the drug transport 

study was 440 +/- 100 Ω * cm2 and varied across experiments within the range of 324 to 

832 Ω * cm2. Both values are in good accordance with literature 27. The monolayers 

experienced an average TEER reduction of 28 +/- 12% during the time of the drug transport 

study (approx. three hours). The electrical resistance of a monolayer is supposed to 
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resemble the epithelial permeability and the state of the tight junctions of the cell model. 

Therefore, a TEER decrease reflects an opening of tight junctions in the monolayer, which 

can occur due to the application of particles as described by Moyes 27. The influence of 

Lutrol F127 on cell integrity was studied by separately applying Lutrol F127 to monolayers in 

triplicate. The average TEER loss caused by Lutrol F127 was determined as 24 +/- 7%. 

Therefore, a negative effect of the surfactant on cell integrity could be eliminated. No 

transwell was excluded from analysis because of its TEER loss. Lucifer yellow was used as 

an internal marker for cell integrity and was applied to the apical compartment of each 

transwell. An intact cell monolayer is indicated by an apparent permeability coefficient 

Peff < 2*10-7 cm/s, which was met by all investigated transwells. 

 

3.6 Absolute griseofulvin permeability 

 

The total amount of permeated griseofulvin was less than 1% of the applied dose, 

independently of the powder formulation. Kataoka et al. also found the permeated amount of 

griseofulvin (percentage of dose) to lie between 0.4 and 0.9% after a permeation time of two 

hours in a Caco-2 cell model 28. Although this absolute permeability appears to be rather low, 

one has to consider the highly lipophilic nature of griseofulvin. After absorption at the apical 

side of the Caco-2 cell monolayer, the drug is presumably incorporated into lipophilic parts of 

the Caco-2 cells (e.g. cell membranes). The subsequent drug release at the basal side of the 

monolayer is therefore rather limited. Furthermore, the analysis time of two hours is shorter 

compared to the time window available for drug absorption in vivo. Wong et al. observed the 

griseofulvin plasma concentration in rats over 24 hours and found the time point of maximal 

drug plasma concentration to lie between three to four hours, depending on the kind of 

applied griseofulvin powder formulation 29. 
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4 Summary and Conclusions 

 

For the first time the Nano Spray Dryer B-90 was implemented for inert spray drying 

of organic solvent solutions. A safe and robust spray drying process for the model drug 

griseofulvin was established by evaluating various organic solvents for their suitability as 

spray solution solvents. Acetone and methanol / acetone combinations gave the best spray 

performance without pronounced crust forming tendency. Griseofulvin powders with medium 

particle sizes of 3.4 to 6.5 µm were produced and compared to the ‘gold standard’ 

micronized griseofulvin concerning particle properties with relevance for drug absorption. 

Particularly, drug dissolution and cell culture permeability of spray-dried griseofulvin were 

analyzed and correlated to drug particles size. Spray drying of griseofulvin yielded a 

comparably fast dissolving and permeable powder compared to micronized milled material. 

The addition of Lutrol F127 as solubilizing agent improved the wettability of griseofulvin to 

such an extent that the dissolution rate was even faster than for micronized material. The 

advantages of spray drying over other micronization techniques were exploited, as for 

example, spray drying induces less mechanical stress on the drug substance compared to 

milling procedures, resulting in an enhanced physical and chemical stability of the product. 

Furthermore, the influence of the hot drying air in the spray dryer is comparable to the 

thermal stress imposed by melt extrusion processes. However, spray dryers usually have a 

lower consumption of drugs and excipients than extruders, which is most important at a lab 

scale development stage. When producing griseofulvin melt granulates, approx. 10 g drug 

was needed for each formulation 30, whereas the Nano Spray Dryer B-90 can conveniently 

be evaluated with drug quantities in the mg scale. 
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Chapter 4 
 

 

Protein spray drying with the Nano Spray Dryer B-90 – evaluation of 
the stress factors and the methods of stabilization 

 
 

Abstract 

 

This study evaluated the process related stress factors, which could influence protein 

stability during spray drying with the Nano Spray Dryer B-90. As the nozzle design of this 

novel spray dryer is essentially different, special attention was given to the effect of spray 

solution atomization on protein stability. As possible stresses the influence of temperature 

(inlet / outlet, spray head, spray mesh), spray intensity, air–liquid interfaces, prolonged spray 

drying times, and cavitation were identified. Spray drying was performed at various 

experimental setups using a monoclonal IgG1 antibody and L-Lactic dehydrogenase (LDH), 

and protein stability of spray solutions and reconstituted powders was assessed by an 

enzymatic activity assay, HP-SEC, turbidity, and light obscuration. In general, the Nano 

Spray Dryer B-90 enabled to gain protein powder at high yields from small sample quantities. 

The IgG1 antibody very well preserved its stability throughout the spray drying process. 

Instead, the more delicate LDH suffered from pronounced aggregate formation and thermal 

inactivation due to contact with the vibrating spray mesh. The mesh heats up to elevated 

temperatures during the spray drying process depending on the applied drying temperature, 

which therefore must be regarded as critical when spray drying sensitive proteins with the 

Nano Spray Dryer B-90. 
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1 Introduction 

 

1.1 Stress factors during spray drying 

 

While freeze drying is by far the most popular drying method for protein solutions in 

the pharmaceutical industry, spray drying has been successfully employed as alternative to 

ameliorate protein storage stability 1. The choice of drying method is mainly determined by 

the intended route of administration of protein formulations. Pulmonary application is 

commonly the decisive factor to opt for spray drying, as this process yields fine and flowable 

powders while providing setup parameters for targeted adjustment of particle size 2. The 

challenge of protein spray drying is to avert a negative impact of the multiple process related 

stress factors on protein stability by finding suitable formulation compositions and process 

conditions. Amongst the main causes for chemical and physical protein instabilities, the 

influence of the following process parameters must be emphasized: 

 

 Temperature 

 Air–liquid interfaces 

 Dehydration 

 

 

Temperature 
 

Most proteins undergo reversible or irreversible thermal denaturation when exposed 

to high temperatures and lose biological activity or solubility. However, negative influences of 

high inlet air temperatures during spray drying are attenuated by the self-cooling effect of 

droplets due to solvent evaporation, which prevents a temperature increase of the droplet 

surface above the wet bulb temperature. Furthermore, the development of high solid 

concentrations inside the drying droplet increases viscosity and decelerates protein 

unfolding, and the protein denaturation temperature (Tm) increases with decreasing water 

content. Finally, thermal protein denaturation during spray drying not only depends on the 

temperature level, but also on the time of exposure of the proteins to the hot drying air 1. As 

the exposure time of drying droplets to the elevated temperature ranges in the millisecond 

scale, thermal denaturation during spray drying is often regarded as negligible. 
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Air–liquid interfaces 
 

The atomization of the protein solution during spray drying negatively affects the 

stability of most proteins due to the tremendous expansion of the air–liquid interface. As 

amphiphilic and surface-active polyelectrolytes, proteins can adsorb to surfaces and 

interfaces, which leads to the orientation of hydrophobic amino acid residues towards the 

nonaqueous environment and in the end to protein unfolding. Unfolded proteins are prone to 

aggregation triggered by hydrophobic interaction. The extend of protein surface adsorption 

depends on the number and the distribution of hydrophobic amino acids on the protein 

surface and the rigidity or flexibility of the protein in solution. In order to prevent protein 

adsorption and aggregation at the air–liquid interface, surfactants are commonly added to the 

spray solution 3. Their preventive action is mainly ascribed to the displacement of protein 

molecules from the air–liquid interface 4. In addition, their binding to the hydrophobic sites of 

protein molecules avoids intermolecular protein interactions and aggregation 1. 

 

Dehydration 
 

In course of the drying process, the protein molecules are deprived of the 

surrounding, protective water and are thermodynamically destabilized by losing their 

hydrogen bonding to water molecules. Therefore, small molecule stabilizers like sugars or 

polyols are commonly incorporated as ‘water substitutes’ in protein spray drying formulations, 

as they are capable of replacing the hydrogen bonding existing in an aqueous environment. 

Thus, protein stabilization is achieved by maintaining the free energy of unfolding high and 

the protein molecules remain in their native conformation. Apart from this water substitution 

action, saccharide or poylol protectants can form glassy solid matrices during the drying 

process, which mechanically immobilize the protein molecules and provide enough kinetic 

stabilization against protein unfolding 5. Thereby, conformational stabilization is 

accomplished independently of the free energy of unfolding. Regardless of the mechanism 

leading to protein stabilization, a key requirement for all protective excipients is to remain in 

the same amorphous phase together with the protein during dehydration, thus avoiding 

phase separation and crystallization. 
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1.2 Protein spray drying with the Nano Spray Dryer B-90 

 

Although the elevated temperatures applied in a spray dryer are usually seen as 

minor stress factor, proteins might suffer from thermal denaturation if they are rather 

thermosensitive. Adler et al. found a reduced process stability for LDH, when spray drying 

with a Büchi Mini Spray Dryer B-190 was performed at Tin / Tout settings of 150 / 95 °C 

instead of 90 / 60 °C, and ascribed the protein inactivation to thermal stress 6. The Nano 

Spray Dryer B-90 (Büchi Labortechnik AG, Flawil, Switzerland) could represent a valuable 

option for spray drying proteins like LDH, which are prone to temperature induced 

inactivation. Due to its ability to generate small droplets, drying temperatures in the lower 

range are sufficient to gain a dry powder 7. Furthermore, the drying air or gas that is fed into 

the drying chamber is characterized by a very low residual humidity of less than 8%, which 

ensures a high drying efficiency even at low Tin settings. The evaluation of the Nano Spray 

Dryer B-90 for spray drying pharmaceutical proteins was performed using IgG1 and LDH. The 

former represents a rather robust class of proteins, which shows good process stability 

during spray drying 8, 9, whereas the latter poses a greater challenge for the formulation 

scientist due to its sensitivity towards elevated temperatures and interfaces 10. 

 

Properties of the Nano Spray Dryer B-90 critical to protein stability 
 

Challenges to protein stability, like temperature, interfaces, and dehydration are 

inherent in spray drying processes and are therefore expected to also become relevant when 

spray drying with the Nano Spray Dryer B-90. However, further influences potentially 

compromising protein stability must be considered, which arise from the design and 

functional principle of the Nano Spray Dryer B-90. In particular, the configuration of the spray 

dryer nozzle (Figure 1) could possibly be an origin of protein stress. 
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Figure 1 Setup of the Nano Spray Dryer B-90 nozzle with bulk solution vessel and peristaltic pump 
 

 

In contrast to the pressurized air nozzles typically implemented in conventional spray 

dryers, the Nano Spray Dryer B-90 nozzle atomizes spray solutions based on the vibrating 

mesh spray technology. From the bulk vessel, the spray solution is delivered to the nozzle 

via a peristaltic pump. The solution volume, which can be atomized, depends on the aperture 

size of the applied vibrating mesh. Even for the largest apertures of 7.0 µm, the spraying rate 

is much lower than the pumping rate. Consequently, spray solution returns into the bulk 

solution vessel. This circulation of spray solution is also mandatory for an efficient and 

continuous atomization, as otherwise the push–pull action of the mesh would lead to the 

accumulation of an air or drying gas bubble on top of the spray mesh, impeding close contact 

of solution and mesh and ultimately ceasing the spray (Figure 2). 

 

Spray mesh

Liquid column
Piezoelectric 

actuator

Push Pull
High-frequent 

vibration

Figure 2 Push–pull operating mode of the vibrating mesh (adopted from Büchi Labortechnik AG) 
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This nozzle setup implicates several factors that have the potential to provoke protein 

denaturation: 

 

 Surfaces (silicon / PEEK tubes) 
Protein adsorption to surfaces is a ubiquitous phenomenon and depends on multiple 

protein and surface related characteristics. Usually, the formulation of the protein 

solution is adopted in terms of surfactant addition, pH, and ionic strength, in order to 

prevent extensive protein adsorption. In this study, LDH was employed as a model 

protein with high affinity to surfaces, and its adsorption to the spray nozzle tubes was 

studied in absence and presence of surfactant. 

 

 Additional air–liquid interface 

Entrainment of air or drying medium into the bulk spray solution occurs due to the 

push–pull action of the mesh. This generates an additional air–liquid interface even 

before the atomization of the spray solution occurs. In order to moderate negative 

effects on protein stability, surfactant was added to the spray solution. 

 

 High frequency vibration of the spray mesh 
The spray mesh vibrates at resonance frequency in the ultrasonic range, which 

cannot be influenced by the spray dryer operator. The ‘spray intensity’ corresponds to 

the time, in which the vibration of the spray mesh is activated, and can be set by the 

operator in a range from 0 – 100%. Lower spray intensities result on the one hand in 

a reduced throughput of spray solution per time, but on the other hand in a slower 

and less heating of the vibrating mesh. The first effect might aggravate protein 

instabilities due to elongated process times, whereas the latter might be beneficial 

regarding thermosensitive proteins. 

 

 Elevated temperature of the spray mesh 
Due to its position inside the drying tower, the spray nozzle heats up leading to a 

steady temperature increase of the spray solution. Furthermore, the activity of the 

piezoelectric actuator causes continuous heating of the spray mesh, which is limited 

to a maximum value of 6 °C above Tin. However, the spray solution gets into contact 

with the hot metallic mesh and has to pass through it during atomization. Cooling of 

the solution vessel was applied as default measure against extensive spray solution 

heating, and low inlet temperatures were used in order to reduce the overall heating. 

The thermosensitivity of LDH was determined by Tm measurements and the 

temperature of the vibrating mesh was measured by an external temperature probe. 
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 Elongated atomization process times 
Due to the low throughput of spray solution, e.g. 10 mL per hour for the small 

vibrating mesh with 4.0 µm apertures at 100% spray intensity, the overall time to 

achieve a dry protein powder increases compared to a standard spray drying 

process. This process time can be further extended if a reduced spray intensity is 

chosen. Consequently, the liquid protein formulation must be sufficiently stable 

throughout the complete spray drying process. Therefore, LDH stability in spray 

solutions was determined in short term storage experiments. 

 

 Cavitation 
The cavitation phenomenon was also considered as possible cause for protein 

instability upon atomization with the Nano Spray Dryer B-90. Transient (or inertial) 

cavitation describes the creation, subsequent expansion and implosive collapse of 

gas bubbles in fluids 11. One reason for the formation of cavities is the impact of high 

kinetic energy on fluids due to hydrodynamic or acoustic agitation, because this 

energy impact generates regions with a local pressure below the vapour pressure of 

the liquid. As the spray mesh of the Nano Spray Dryer B-90 vibrates with ultrasonic 

frequency (~ 60 kHz), the spray solution might encounter cavitation stress. During the 

collapse of cavities, reaction zones of high temperature and pressure (‘hot spots’) are 

formed 11 and the generation of free radicals due to the thermal decomposition of 

water molecules is postulated 12. Free radicals (e.g. hydroxyl radicals, hydrogen 

atoms) could react with protein molecules and compromise protein stability to a 

considerable extent 13. To quantify the extend of radical formation in spray solutions, 

chemical dosimetry with potassium iodide was conducted as standard analysis 

method 14. 
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2 Materials and Methods 

 

2.1 Materials 

 

2.1.1 Excipients 

 

Sodium phosphate monobasic anhydrous, sodium pyruvate, β-nicotinamide adenine 

dinucleotide (β-NADH), potassium iodide and bovine serum albumin (BSA) were obtained 

from Sigma (Munich, Germany), trehalose from Ferro Pfanstiehl (Cleveland, Ohio, USA), 

polysorbate 20 and 80 from Merck (Darmstadt, Germany). MilliQ water was used for dialysis 

and preparation of excipient solutions. 

 

2.1.2 Proteins 

 

 Monoclonal IgG1 antibody (IgG1) 

A humanized monoclonal antibody of the IgG1 class was provided at approx. 

50 mg/mL in an aqueous buffer containing glycine and histidine. The IgG1 stock 

solution was filtered through a 0.2 µm polyethersulfone sterile syringe filter (VWR, 

Darmstadt, Germany) before use. 

 

 L-Lactic dehydrogenase (LDH) 

L-Lactic dehydrogenase Type II from rabbit muscle was purchased as aqueous 

crystalline suspension in 3.2 M ammonium sulfate at pH 6.0 containing 10.9 mg/mL or 

1150 units/mg protein (Sigma, Munich, Germany). This suspension was dialyzed 

against 100 mM phosphate buffer to pH 7.5 immediately before use. Dialysis was 

performed for 3 hours at 4 °C using a cellulose membrane with 14 kDa MWCO (Roth, 

Karlsruhe, Germany). 
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2.2 Methods 

 

2.2.1 Preparation of spray solutions 

 

Spray solutions were prepared from protein and excipient stock solutions and filtered 

before spray drying using 0.22 µm PTFE sterile syringe filters (VWR, Darmstadt, Germany). 

IgG1 spray solutions contained 2.5% (w/w) IgG1 / trehalose (ratio 70 : 30) either with or 

without 0.02% polysorbate 20. LDH spray solutions contained 5% (w/w) LDH / trehalose 

(0.2 : 99.8) either with or without 0.1% polysorbate 80. 

 

2.2.2 Spray drying experiments 

 

The Nano Spray Dryer B-90 (Büchi Labortechnik AG, Flawil, Switzerland) was used in 

tall configuration and open cycle mode with compressed air from in-house supply (≤ 8% r.h.). 

The drying air flow rate was set to 115 L/min, the inlet temperature to 20 - 120 °C, and the 

spray intensity to 25% or 100%. Vibrating meshes with 4.0 µm and 7.0 µm apertures were 

applied for spray drying approx. 10 mL of each spray solution. After finishing the spray drying 

process, collection of the spray-dried powders was carried out in controlled humidity and 

samples were stored in a desiccator (< 20% r.h.) at room temperature until further analysis. 

 

2.2.3 Circulation experiments 

 

The influence of the circulation of the spray solution on protein stability was evaluated 

by pumping spray solution for 60 min through the spray nozzle. Heating and spraying were 

not activated. After 30 and 60 min, samples were taken and analyzed. 

 

2.2.4 Temperature measurements 

 

The actual temperature of the vibrating mesh was measured by placing a temperature 

probe directly on the surface of the mesh (Figure 3). Spray processes with water at various 

temperature and spray intensity settings were conducted and the temperatures determined 

immediately after dismounting the spray dryer nozzle from the drying chamber. 
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2.2.5 Quantification of protein content 

 

Spray-dried powders were reconstituted to the concentration of the initial protein 

spray solution with water in glass vials under gentle agitation. IgG1 concentration of bulk 

solution, spray solutions, and reconstitutes was determined photometrically at 280 nm using 

an Agilent 8453 UV-Vis spectrophotometer (Agilent, Waldbronn, Germany). 

The LDH concentration of dialysates, spray solutions, and reconstitutes was 

determined by a Micro BCA™ protein assay (Thermo Scientific, Rockford, Illinois, USA). In a 

micro well plate 150 µL protein sample, adequately diluted with buffer, and 150 µL assay 

reagent were mixed and incubated for 2 hours at 37 °C. The absorbance at 562 nm was 

measured on a plate reader (FluoStar Omega, BMG Labtech, Offenburg, Germany). 

 

2.2.6 LDH activity assay 

 

The enzymatic activity of LDH was determined using the assay provided by Sigma 

(Munich, Germany). This activity assay utilizes the reaction of pyruvate and β-NADH to 

L-lactate and β-NAD. The reduction of β-NADH is monitored by the decrease of absorption at 

340 nm. A mixture of 0.1 mL sodium pyruvate (69 mM) and 2.8 mL β-NADH (0.13 mM) was 

equilibrated for at least 30 min to 37 °C in disposable plastic cuvettes using a water bath. 

Evaporation of solution was prevented by parafilm coverage of the cuvettes. Protein samples 

were diluted to a final LDH concentration of approx. 0.25 - 0.75 units/mL with a 1.0% (w/v) 

BSA solution. 0.1 mL LDH sample was added to the sodium pyruvate / β-NADH mixture and 

the decrease of absorption at 340 nm was recorded over 4 min using an Agilent 8453 UV-Vis 

spectrophotometer (Agilent, Waldbronn, Germany). The linear slope a was determined by 

regression and the activity was calculated using the following equation: 

Figure 3 Dismounted spray dryer nozzle: (A) view of PEEK tubes and spray head, (B) detail of piezo 
  crystals and thermocouples, and (C) external temperature probe placed on the spray mesh 

A B C
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where VT and VE are the total volume of the assay and the volume of enzyme used, 6.22 the 

millimolar extinction coefficient of β-NADH at 340 nm and df the dilution factor. 

 

2.2.7 Subvisible particle analysis by light obscuration 

 

Concentration and size distribution of subvisible particles in spray solutions and 

reconstitutes were determined by light obscuration using a SVSS C32 apparatus (Pamas, 

Rutesheim, Germany). The system was flushed with particle free water until there were less 

than 100 particles larger than 1 µm per 1 mL. Test measurements with particle free water 

were performed at the beginning and at the end of analysis. After each measurement, the 

system was flushed with 5 mL of particle free water to exclude cross contamination. 

 

2.2.8 Turbidity 

 

Optical density measurements were performed at 350 nm with an Agilent 8453 

UV-Vis spectrophotometer (Agilent, Waldbronn, Germany). 

 

2.2.9 Microcalorimetry 

 

The differential scanning calorimetry (DSC) thermograms of LDH dialysate and LDH 

spray solutions were acquired using a VP-DSC differential scanning calorimeter (MicroCal, 

Northampton, USA) and the midpoint of the unfolding transition peak Tm was calculated. The 

thermograms were obtained in triplicate after subtraction of the corresponding buffer scan by 

heating 1 mg/mL LDH solutions from 20 to 90 °C at a scan rate of 10 °C/h. 

 

2.2.10 High performance size exclusion chromatography (HP-SEC) 

 

IgG1 samples were analyzed for soluble aggregates by HP-SEC using a HP 1100 

instrument (Agilent, Waldbronn, Germany) equipped with a TSKgel® G3000 SWXL column 

(300-7.8 mm) and guard column (Tosoh Bioscience, Tokyo, Japan). The running buffer was 

composed of 100 mM disodium hydrogen phosphate dihydrate and 100 mM sodium sulfate 
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and was adjusted with ortho-phosphoric acid 85% to pH 6.8 . The flow rate was set to 

0.5 mL/min and the injection volume to 25 µL. Samples were centrifuged prior to analysis in 

order to remove insoluble aggregates. Protein aggregates, monomer and fragments were 

detected photometrically at 280 nm. The chromatograms were integrated manually using the 

HP ChemStation software 9.0 (Agilent, Waldbronn, Germany). Percentage of aggregates 

was calculated by comparing the area under the curve (AUC) of the aggregate peak to the 

total AUC. Of each sample, three chromatographic samples were prepared and analyzed. 

 

2.2.11 Scanning electron microscopy (SEM) 

 

The particle morphology of the spray-dried powders was determined with a 

JSM-6500F JEOL scanning electron microscope (JEOL, Eching, Germany). For analysis, the 

samples were fixed on self-adhesive tapes on an aluminum stub and sputtered with carbon. 

 

2.2.12 Chemical dosimetry 

 

Chemical dosimetry with potassium iodide was used to quantify the formation of free 

radicals due to cavitation. Free radicals oxidize iodide to iodine and due to the equilibrium of 
−− ↔+ 32 III , their presence can be quantified by an increase of −

3I . The concentration of −
3I  

was measured photometrically at 355 nm in microwell plates using a FluoStar Omega plate 

reader (BMG Labtech, Offenburg, Germany) at several time points (0, 4, 30, 60 and 90 min). 

15 mL of a 0.1 mol/L aqueous potassium iodide solution were subjected to either 

 

 Storage at 2 – 8 °C to quantify unspecific oxidation, 

 

 Circulation in the spray nozzle without activation of spraying or heating, 

 

 Spray drying with the Nano Spray Dryer B-90 (Tin 120 °C, vibrating mesh aperture 

size 4.0 µm, 100% spray intensity) or 

 

 Sonication using a SONOPULS UW2200 ultrasonic homogenizer with a MS73 probe 

(both Bandelin, Berlin, Germany) at 40% power and 60% cycle intensity. The tip of 

the probe was immersed into the potassium iodide solution, which was cooled in an 

ice-water bath to account for the thermal heating upon sonication. 
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3 Results and Discussion 

 

The Nano Spray Dryer B-90 was found feasible of spray drying protein solutions 

without any crust formation tendencies. This phenomenon has been found previously for 

some saccharide based spray solutions without protein 7. Its nozzle stayed clear of any 

powder depositions independently of the kind of protein and surfactant addition, respectively. 

This excellent spray dryer performance is reflected in the consistently high yields of protein 

spray drying processes (Table 1). 

 

3.1 Stability of IgG1 during spray drying 

 

An IgG1 antibody spray solution, consisting of 2.5% (w/w) IgG1 / trehalose (70 : 30), 

was further varied by addition of 0.02% polysorbate 20. Trehalose was added to the 

formulation as common stabilizer in protein spray drying. The improvement of protein stability 

in the presence of trehalose can be ascribed on the one hand, to the ‘vitrification’ of protein 

molecules in the amorphous state 15 and on the other hand, to the ‘water substitution’ effect 

replacing hydrogen bonds between protein and water molecules 16. Furthermore, the high 

glass transition temperature (Tg) of amorphous trehalose is particularly favorable with regard 

to the storage stability of protein formulations 6. Spray drying antibodies with traditional spray 

dryers had proven good protein stability for drying temperatures of 130 / 75 °C (Tin / Tout), 

even without surfactant addition 8. Therefore, the evaluation of the Nano Spray Dryer B-90 

was started by applying drying temperatures close to the established settings. Table 1 

summarizes the spray drying parameters and the analytical results for the spray-dried protein 

powders after reconstitution. In HP-SEC analysis, only IgG1 dimers were detected at 

unchanged AUC. 

 
Table 1 Overview of process parameters and results of IgG1 spray drying experiments 

 Ab_#:   antibody solution without surfactant 
 AbPS_#:  antibody solution containing 0.02% polysorbate 20 

 

# Mesh size 
[µm] 

Intensity 
[%] 

Tin / Tout 
[°C] 

Tspray head 
[°C] 

Yield 
[%] 

Aggregates 
[%] 

OD350nm 
[AU] 

Ab_1 4.0 100 120 / 50 126 69 0.85 0.262 

Ab_2 4.0 100 90 / 33 97 82 1.15 0.115 

AbPS_1 4.0 100 120 / 50 100 83 1.16 0.217 

AbPS_2 4.0 100 90 / 36 97 77 0.49 0.075 

AbPS_3 5.5 100 90 / 33 97 86 0.39 0.071 

AbPS_4 7.0 25 90 / 30 76 73 0.39 0.053 
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Spray drying the antibody standard formulation Ab_1 at Tin / Tout of 120 / 50 °C 

resulted in numerous soluble and insoluble aggregates compared to the unprocessed spray 

solution (initial values: 0.39% and 0.036 AU). The lower temperature setting of 90 / 33 °C 

also induced aggregate formation, but the increase in insoluble aggregates was less 

pronounced at this lower Tin / Tout setting (Ab_2). The formulation, which contained 

polysorbate 20, showed comparable results at 120 / 50 °C (AbPS_1). However, when spray 

drying was performed at 90 / 36 °C (AbPS_2), protein stability was better preserved 

compared to the surfactant free formulation. To evaluate the influence of the vibrating mesh 

aperture size on process performance and protein stability, the surfactant containing solution 

was also spray dried with the 5.5 and 7.0 µm mesh (AbPS_3 and AbPS_4). Both processes 

showed high yields without crustification and yielded material with good protein stability. The 

best results were obtained with the 7.0 µm mesh. When applying this mesh, the spray 

solution throughput increased to such an extent, that the spray intensity had to be reduced to 

prevent solution deposition on the drying chamber walls. The lower spray intensity slowed 

down the heating of the spray head, which reached only 76 °C instead of 97 °C at the end of 

the spray drying procedure. The spray head temperature is determined by the inlet 

temperature, the spray intensity, and the process duration and can be regarded as indicator 

for the actual temperature of the vibrating mesh. Therefore, it is hypothesized that the 

application of the lower drying temperatures (90 / 30 °C) and / or the lower spray intensity 

(25%) might have been beneficial with regard to protein stability, as the heating of the spray 

mesh and the thermal stress exerted on the IgG1 were reduced. The spray-dried particles 

had a perfectly spherical appearance with a smooth surface and the particle size showed a 

strong correlation to the aperture size of the vibrating mesh (Figure 4). 

Figure 4 SEM of spray-dried IgG1 / trehalose / 0.02% polysorbate 20 particles by different mesh sizes: 
   (A) 4.0 µm (AbPS_2), (B) 5.5 µm (AbPS_3), and (C) 7.0 µm (AbPS_4) 
 

 
Thus, the IgG1 antibody could be successfully spray dried with the Nano Spray Dryer 

B-90 at high yields. The spray drying induced only marginal aggregate formation, which 

appears to be related to the vibrating mesh temperature. 
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3.2 Stability of LDH in spray solutions 

 

In order to further evaluate the influence of temperature on protein stability during 

spray drying with the new spray dryer, LDH was chosen as a very temperature sensitive 

model protein. Elkordy et al. described the thermal sensitivity of LDH and showed that high 

temperatures of 125 / 66 °C (Tin / Tout) perturbed secondary and tertiary protein structures, 

which resulted in a loss of enzyme activity 17. Comparing the Nano Spray Dryer B-90 to 

conventional spray dryers, a lower throughput of spray solution per time becomes evident 

and proteins in the spray solution might be exposed to destabilizing factors for a longer 

period of time. Therefore, LDH spray solutions with trehalose and polysorbate 80 were 

prepared and stored for 90 min at 4 °C. The enzyme activity and particle content were 

determined at 30 min intervals. Trehalose was added as carrier material to the LDH spray 

solution, because as described above, its stabilizing effects are well known and widely 

utilized in protein drying techniques. In the present study, LDH substantially preserved its 

activity over 90 min in the presence of trehalose (Figure 5), providing a broad time window 

for lengthy spray drying processes. Formation of protein aggregates was not observed during 

this time, as the number of particles remained in the range of water considered as particle 

free (Figure 6). Turbidity was below 0.005 AU for all formulations indicating essentially the 

absence of nm-size aggregates. 
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Figure 5 Enzyme activity of LDH in solution during storage at 4 °C
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In a next step, LDH stability was tested in a trehalose solution containing 

polysorbate 80. The rationale for adding surfactant to the spray solution was to avoid protein 

adsorption at air–liquid interfaces during spray drying. As aforementioned, its protective 

mechanism is based on the competition for interfaces between surfactant and protein 

molecules 6. Under the combined influence of trehalose and polysorbate 80, LDH activity 

also remained on a high level during the 90 min storage time (Figure 5). No formation of 

subvisible particles or large aggregates was observed (Figure 6). 

 
 

In addition to the analysis of the enzyme activity and the particle content, the melting 

temperature (Tm) of LDH in both formulations was assessed (Figure 7). The DSC 

thermograms of LDH showed a single endothermic peak with a maximum at approx. 56 °C. 

Visual inspection of the samples after analysis showed that precipitates had formed due to 

protein aggregation. Tm of the enzyme was determined with 56.2 +/- 0.3 °C in the dialysis 

buffer, 56.0 +/- 0.4 °C in the LDH / trehalose formulation and 56.4 +/- 0.6 °C in the 

LDH / trehalose / PS80 formulation. Thus, no significant effect of trehalose or polysorbate 80 

on Tm was detected. LDH unfolding started at about 49 °C in the dialysis buffer and in the 

LDH / trehalose / PS80 formulation and at about 53 °C in the LDH / trehalose formulation, 

indicating the thermal sensitivity of the enzyme. Conclusively, LDH showed sufficient storage 

stability at 4 °C for 90 min and was regarded appropriate for evaluating the Nano Spray 

Dryer B-90 due to its pronounced temperature sensitivity. 
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Figure 7 Representative DSC thermograms of LDH dialysate, LDH / trehalose and 

  LDH / trehalose / PS80 spray solutions 
 
 

3.3 Stability of LDH during circulation of spray solutions 

 

Circulation of the spray solution is mandatory when spray drying with the Nano Spray 

Dryer B-90, as it ensures the constant and steady spray of the vibrating mesh nozzle. It 

might have a negative influence on protein stability, as for example, the PEEK and silicon 

tubes of the nozzle present surfaces, which could provoke protein adsorption. In addition, the 

agitation of the spray solution by the peristaltic pump might impose stress on proteins. 

Furthermore, when the spray solution passes the vibrating mesh, it is partially enriched with 

drying medium (in this case compressed air, although a nitrogen / carbon dioxide mix is also 

possible), which flows through the apertures of the vibrating mesh due to the overpressure in 

the drying chamber. Consequently, air or gas bubbles are formed in the bulk spray solution, 

which are pumped back into the storage vessel together with the spray solution. To minimize 

the influence of these air bubbles, it is recommended to position the outlet tube into the 

storage vessel in a way that its orifice is not submerged. Particularly, when surfactant 

containing solutions were spray dried this simple expedient avoided an excessive foam 

formation in the storage vessel, which occurred in case the end of the tube was submerged. 

 

The influence of circulation on protein stability was analyzed by pumping the spray 

solution for 60 min through the spray nozzle system. The spraying mechanism of the nozzle 

was not activated. After 30 and 60 min, samples were taken and analyzed for enzymatic 

activity and particle content. The LDH / trehalose formulation showed an immense reduction 
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to 53.8% of the initial enzyme activity after 60 min, whereas the LDH / trehalose / PS80 

formulation retained its initial activity (98.5% after 60 min) (Figure 8). The loss of enzyme 

activity in the surfactant free formulation was accompanied by the formation of aggregates. 

Light obscuration data showed an increase in subvisible particles for both formulations 

(Figure 9). However, in the surfactant free formulation this increase was much more 

pronounced. The turbidity measurements emphasized the protective action of surfactant, as 

the LDH / trehalose formulation reached 0.384 AU after 60 min circulation time, in contrary to 

0.059 AU for the LDH / trehalose / PS80 formulation, both starting from 0.010 AU and 

0.004 AU, respectively. Obviously, LDH is not sufficiently stabilized by addition of trehalose 

alone against the stresses occurring during circulation of the spray solution. Therefore, the 

conclusion was drawn that the surfaces in the spray dryer nozzle and the interactions of 

proteins with these surfaces must be regarded as critical for protein stability. 

Figure 8 Reduction of enzyme activity during circulation of LDH / trehalose with and without 
   polysorbate 80 
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3.4 Temperature measurements on the spray mesh 

 

The design of the Nano Spray Dryer B-90 implicates that the spray nozzle is 

positioned inside the drying chamber and is therefore inevitably exposed to the warm drying 

air. Nozzle cooling by a cooling liquid or peltier element is not yet available. Furthermore, the 

piezoelectric actuator causing ultrasonic vibrations of the aperture plate leads to a 

continuous heating of the spray mesh. A temperature sensor inside the spray nozzle records 

the local temperature in close proximity to the actuator, the so called spray head temperature 

(Figure 3). In order to protect the piezocrystals from heat induced damage, the sensor limits 

the actuator heating to approx. 6 °C above the applied inlet temperature of the drying air. The 

inlet temperature is measured below the heater block at the top of the drying chamber and 

can be set to a maximum of 120 °C, which allows heating of the actuator up to 126 °C. Of 

course, the actual temperature of the spray solution is far lower, as the solution is shielded 

by PEEK tubes and the surrounding air cushion. A critical step during the spray drying 

process is the contact of the spray solution with the vibrating mesh, which has taken up heat 

from the drying air and the spray nozzle. The recordings of the spray head temperature 

sensor can at most be indicative of the temperature, which the spray solution encounters 

upon contact with the spray mesh. Therefore, the actual temperature of the vibrating mesh 

was measured separately by placing a temperature probe directly on the surface of the 
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Figure 9 Subvisible particles (columns) and turbidity (symbols) of LDH / trehalose 
   solution with and without polysorbate 80 during circulation
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vibrating mesh. For these measurements, water was used as spray solution and the spray 

drying process was interrupted for a short period to dismount the spray nozzle from the 

drying chamber. 

 

Drying air inlet temperatures of 20 °C resulted in the maximal tolerated spray head 

temperature of 26 °C, independently of the applied spray intensity (Table 2).The temperature 

of the spray mesh also reached 26 °C. The same phenomenon was observed for a Tin of 

30 °C, where spray head and spray mesh reached 36 °C, independently of the applied spray 

intensity. At a higher Tin of 60 °C, the spray intensity had a substantial influence on the 

heating of spray head and spray mesh. A reduction of spray intensity from 100% to 25% led 

to a drop by 17 °C in spray head temperature and by 13 °C in spray mesh temperature. This 

effect was even more pronounced with the higher inlet temperatures of 90 and 120 °C. A 

reduction of spray intensity can be considered as valuable step to prevent the heating of the 

vibrating mesh and the spray head at higher drying temperatures. Furthermore, these 

temperature measurements revealed the necessity to monitor the spray mesh temperature, 

as it can reach temperatures, which are highly critical for thermosensitive proteins. 

Temperatures as high as 80 °C might be tolerated by some protein species for a short 

period, however, as the spray solution is circulated in the spray nozzle, protein molecules 

may encounter these high temperatures multiple times. A drying air inlet temperature of 

60 °C was also used for a spray drying experiment applying the 7.0 µm spray mesh. 

However, the corresponding spray head and mesh temperatures gave no clear indication for 

an influence of the mesh size on resulting temperature conditions in the spray nozzle. 

 
Table 2 Applied inlet temperatures and spray intensities and measured spray head  
  and spray mesh temperatures (*application of the 7.0 µm mesh) 
 

Inlet temperature 
[°C] 

Spray intensity
[%] 

Spray head 
temperature 

[°C] 

Spray mesh 
temperature 

[°C] 

20 25 26 25 

20 100 26 26 

30 25 36 31 

30 100 36 30 

60 25 49 40 

60 100 66 53 

90 25 60 50 

90 100 96 69 

120 25 75 59 

120 100 126 80 

60* 25 48 37 
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3.5 Spray drying LDH with the Nano Spray Dryer B-90 

 

The evaluation of the Nano Spray Dryer B-90 for spray drying the temperature 

sensitive protein LDH was started using the following parameters: 

 
 Inlet temperature: 60 °C 

 Spray intensity: 100% 

 Mesh size:  4.0 µm apertures 

 Formulation:  LDH / trehalose (0.2 : 99.8) + 0.1% polysorbate 80 

 
 

By experience with the Nano Spray Dryer B-90, an inlet temperature of 60 °C was 

expected to result in a spray drying process with sufficient thermal efficiency to gain a dry 

product. Yet, 60 °C were also considered as the maximal feasible inlet temperature given the 

thermal sensitivity of LDH, and were expected to pose a challenge for protein stability. 

Conditions should also allow for a reducing of spray head and mesh temperature by 

decreasing the spray intensity at the expense of longer process times. The spray mesh with 

the smallest apertures was chosen to minimize the protein particle size. The spray solution 

vessel was cooled in an ice water bath, and the temperature of bulk spray solutions was 

determined as 16 +/- 1 °C at the end of experiment. Immediately after spray drying, the 

enzyme activity and the particle content were determined in the residual bulk spray solution 

and in the spray-dried powder after reconstitution. 

 
Table 3 Spray drying experiments with LDH / trehalose / PS80 
 

Spray solution  Reconst. powder 
# Tin / Tout 

[°C] 
Tspray head 

[°C] 
Spray 

intensity 
[%] 

Mesh
[µm] 

Yield
[%] Activity 

[%] 
Turbidity 

[AU]  Activity 
[%] 

Turbidity 
[AU] 

1 60 / 34 66 100 4.0 76 66.1 0.021  27.3 0.008 

2 60 / 35 50 25 4.0 61 92.2 0.019  27.9 0.013 

3 60 / 32 52 25 7.0 64 88.0 0.026  28.3 0.010 

4 30 / 25 36 25 4.0 65 98.9 0.016  73.5 0.008 

5 30 / 26 36 100 4.0 69 101.5 0.016  80.3 0.009 

6 20 / 19 26 25 4.0 66 100.2 0.007  83.4 0.005 
 

 

The default spray drying parameters resulted in a rigorous reduction of enzyme 

activity in the spray solution to 66.1% (Table 3 / #1). The activity assay of the reconstituted 

spray-dried powder confirmed the loss, as only 27.3% of the initial enzyme activity could be 

found. As anticipated, the selected process parameters were too harsh on protein stability. 
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From the conducted temperature measurements on the vibrating mesh (Table 2), heating of 

the vibrating mesh to approx. 53 °C can be assumed. LDH most probably suffered from 

thermal denaturation upon contact with the hot vibrating mesh. As the spray mesh 

temperature definitely was in the range of the Tm of LDH, the formation of denatured and 

inactive protein must have occurred. The enzymatic activity of the reconstituted spray-dried 

powder was far below the residual spray solution activity. This can be explained by increased 

thermal stress for the protein upon actually passing through the apertures of the hot vibrating 

mesh and during the drying of warmed droplets in the 60 °C Tin air stream. Light obscuration 

measurements indicated an increase of subvisible particles by one order of magnitude in the 

residual spray solution and in the spray-dried powder compared to the starting solution 

(Figure 11; for start see Figure 9), whereas turbidity measurements revealed just a marginal 

formation of large aggregates. 

 

In order to reduce temperature stress, LDH was spray dried at a reduced spray 

intensity of 25% (Table 3 / #2). The recorded spray head temperature reached 50 °C instead 

of 66 °C, which presumably reduced the spray mesh temperature to approx. 40 °C. The 

lower spray head and mesh temperatures had no beneficial effect on the formation of 

subvisible particles, but resulted in a better preservation of enzyme activity of 92.2% in the 

bulk spray solution. However, the enzyme activity of the reconstituted powder was 

maintained only to 27.9%, which virtually represents no improvement compared to the 100% 

spray intensity process. The reduction of spray intensity was obviously insufficient to prevent 

the thermal stress for the enzyme. However, the higher residual activity in the spray solution 

indicates that at least the reduction in head and mesh temperature helped to keep the non-

sprayed bulk material better intact. Nevertheless, the generated aerosol droplets still 

experienced the high temperature upon passing the hot vibrating mesh. They reached the 

drying chamber with higher droplet temperatures and droplet drying occurred under 

increased temperature with detrimental effects for protein stability. Literature positively 

correlates an increased drying air inlet temperature with a higher droplet drying rate and 

droplet surface temperature 18. Typically, spray drying in the standard Mini Spray Dryer 

B-290 is performed with a cooled nozzle 19. Spray drying processes in the novel Nano Spray 

Dryer B-90 cannot yet revert to this option. The influence of an initially increased spray 

solution temperature on the droplet drying rate and surface temperature under constant inlet 

air conditions has not been described in literature. 
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The experimental setting was further modified by implementing the 7.0 µm mesh 

(Table 3 / #3), which showed no influence on temperature conditions in the spray nozzle. 

Although, the 7.0 µm mesh produced larger aerosol droplets and consequently larger 

particles (Figure 10 A and B), the enzyme activity of the spray-dried powder (28.3%) 

remained unchanged. A beneficial influence of the reduced air–liquid interface due to the 

generation of larger droplets was obliterated by the presence of 0.1% polysorbate 80 in the 

spray solution. 

 

The Nano Spray Dryer B-90 provides the opportunity to apply rather low spray drying 

temperatures, as small droplets with a narrow size distribution can be generated and 

efficiently dried. Therefore, an inlet temperature of 30 °C was chosen in a next evaluation 

step (Table 3 / #4 and #5), resulting in an outlet temperature of 25 °C. Despite this low outlet 

temperature, the yields of the spray drying processes were 65 to 69% and comparable to the 

60 / 35 °C Tin / Tout experiments. The vibrating mesh with the 4.0 µm apertures was tested at 

25% and 100% spray intensity. Although, lower spray intensities usually reduce the heating 

of the spray nozzle, both experiments showed spray head temperatures of 36 °C. This 

temperature was probably necessary for an effective vibration of the spray mesh at 25% 

spray intensity. It can be assumed that the vibrating mesh reached a temperature of 30 °C 

during the spray drying process, which allowed for a reduced formation of subvisible particles 

and a better preservation of enzyme activity. The activity of LDH in the residual bulk spray 

solution was entirely preserved (98.8% and 101.5%, respectively), and the reconstituted 

powders showed a higher enzymatic activity: 73.5% of the initial activity at 25% spray 

intensity and 80.3% at 100% spray intensity. A further reduction of inlet temperature to 20°C 

with a corresponding spray head temperature of only 26°C was even more beneficial and 

preserved the enzyme activity in the spray-dried powder to 83.4% (Table 3 / #6). Even at 

these low inlet air temperatures, the aerosol was dried sufficiently to form spherical particles 

with a smooth surface (Figure 10 C), and the powder could be collected with 66% yield. 

Figure 10 SEM of spray-dried LDH / trehalose / PS80 particles with Tin / mesh size settings of  
     (A) 60 °C / 4.0 µm, (B) 60 °C / 7.0 µm, and (C) 20 °C / 4.0 µm 
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Figure 11 Number of subvisible particles per mL (filled > 1µm; diagonal > 10µm; longitudinal > 25µm): 

(A) Bulk spray solutions of experiments #1 – 3 
(B) Reconstituted powders of experiments #1 – 3 
(C) Bulk spray solutions of experiments #4 – 6 
(D) Reconstituted powders of experiment #4 – 6 

 

 

3.6 Cavitation – critical for protein spray drying with the Nano Spray Dryer B-90? 

 

In order to complete the study of influences on protein stability during spray drying 

with the Nano Spray Dryer B-90, the occurrence of cavitation was investigated. The spray 

mesh of the Nano Spray Dryer B-90 vibrates with ultrasonic frequency, which could lead to 

cavitation. Specifically, the development of free radicals due to thermal decomposition of 

water in the spray solution was analyzed by chemical dosimetry using potassium iodide. As 

shown in Figure 12, formation of free radicals in the potassium iodide solution could not be 

observed upon simple circulation through the system including the spray nozzle. The 

absorbance over time was comparable to the potassium iodide solution, which was subjected 

to storage and served as blank. Furthermore, no relevant free radicals were detected in the 

bulk solution upon spray drying of the potassium iodide solution. In contrast, the sonication 

with the ultrasonic homogenizer as positive control led to a continuous rise in absorbance by 

approx. 0.005 AU/min, which indicates oxidative processes and is in good accordance with 

literature 20. 
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Figure 12 Concentration of −
3I in the potassium iodide solution upon various process steps 

 
 

Conclusively, the atomization process in the Nano Spray Dryer B-90 nozzle did not 

provoke the formation of free radicals, which is beneficial with regard to the chemical stability 

of proteins in the spray solution. 
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4 Summary and Conclusions 

 
The Nano Spray Dryer B-90 was evaluated for protein spray drying using an IgG1 

antibody and the enzyme LDH. The focus of the study lay on the influence of process 

parameters and spray dryer features on protein stability. Instead of conducting traditional 

formulation development by testing various stabilizers at different concentrations, standard 

formulations were applied with proven ability to yield stable powders upon spray drying with 

conventional spray dryers. In addition to the stress factors already known from traditional 

spray drying processes, the influence of the nozzle design on protein stability was 

investigated. Special attention was paid to the heating of the spray solution due to contact 

with the vibrating mesh. 

 

In general, the Nano Spray Dryer B-90 was feasible of spray drying all protein 

solutions at comparatively high yields as no crust formation on the spray dryer nozzle 

occurred. The rather robust IgG1 showed good process stability, however, addition of 

surfactant was necessary in order to prevent the formation of protein aggregates. The more 

sensitive LDH was also stabilized with surfactant addition against adsorption to air–liquid 

interfaces and surfaces. However, it lost enzymatic activity even upon spray drying at Tin as 

low as 60 °C. The temperature increase of the vibrating mesh was monitored and identified 

as most critical factor, because the spray solution is exposed to the spray mesh multiple 

times and has to pass its apertures for atomization. 

 

In comparison to spray drying LDH with a conventional spray dryer, the observed loss 

of enzyme activity in the Nano Spray Dryer B-90 was more pronounced. Adler et al. spray 

dried 0.3% LDH as trehalose / 0.1% polysorbate 80 formulation at Tin / Tout of 150 / 95 °C. 

The activity recovery of the reconstituted powder immediately after spray drying was 

determined with approx. 92% 6. The nozzle design of a conventional spray dryer seems to be 

more appropriate if delicate proteins are processed, as it ensures a fast atomization at 

moderate temperatures. The spray mesh of the Nano Spray Dryer B-90 vibrates with 

ultrasonic frequency, which could lead to cavitation. The formation of free radicals was not 

observed and cavitation as stress factor for protein stability seems to be negligible. 
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Chapter 5 
 

 

Summary of the thesis 

 

 

The objective of the present thesis was to tread new paths in pharmaceutical spray 

drying. Compared to other drying techniques in formulation development, spray drying offers 

the advantage of a comprehensive particle design depending on the intended application of 

the powder. Moreover, spray drying is characterized by short process times and moderate 

acquisition costs for lab scale equipment. In Chapter 1, the application of spray drying for the 

production of stable protein powders was evaluated. As a matter of principle, spray drying 

challenges protein stability. The atomization of the spray solution leads to a tremendous 

increase of the air–liquid interface, at which proteins with inherent surface affinity tend to 

adsorb. Adsorption is often followed by protein unfolding and subsequently aggregation, 

which are seen as critical with respect to safety and efficacy. The default measure to prevent 

protein adsorption in the first place constitutes the addition of a surfactant to the spray 

solution. Surfactant molecules are known to compete with protein molecules for the 

interfacial space. However, the use of surfactants, especially polysorbates, may be 

associated with a reduced long-term protein stability due to enhanced protein oxidation by 

residual peroxides. Instead of adding surfactant to the spray solution, the concept of protein 

precipitation before spray drying was investigated as alternative approach to stabilize 

proteins against interface related stress. Protein precipitation by ‘salting-out’ was conducted 

for a monoclonal IgG1 antibody and recombinant human interleukin-11 (rhIL-11) using volatile 

ammonium salts. The volatility of the precipitating salts was considered to be of high 

importance, as their elimination from the final protein formulation was to be accomplished at 

the increased temperature during spray drying. Specifically, ammonium carbamate showed 

appropriate qualities as precipitating agent: by applying elevated spray drying temperatures, 

the salt was completely removed from the spray-dried powders. Furthermore, excellent 

precipitation efficiency was realized for both proteins tested. Regarding the IgG1, a beneficial 

effect on protein stability by ammonium carbamate precipitation was not achieved, as this 

protein shows a low surface affinity and can be spray dried as surfactant-free formulation. 

However, the stability of spray-dried rhIL-11 was substantially improved by ammonium 

carbamate precipitation in comparison to a surfactant-free formulation. Precipitation as 

controlled protein association prevented the adsorption of rhIL-11 at the droplet surface. 
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These studies proved that proteins with high surface affinity can benefit from the concept of 

precipitation by volatile salts before spray drying as valuable alternative to the addition of a 

surfactant. 

 

The focus in Chapter 2 lay on the evaluation of the novel Nano Spray Dryer B-90 for 

pharmaceutical purposes. Büchi Labortechnik AG provided a prototype of the spray dryer for 

alpha- and beta-testing and our experiences and results were incorporated into the design 

and development of the spray dryer ready for market. Compared to a conventional spray 

dryer, the Nano Spray Dryer B-90 comprises two technological novelties: firstly, the spray 

solution is atomized by the piezoelectric driven vibrations of a spray mesh containing 

hundreds of micron sized apertures. Secondly, the spray-dried powder is separated from the 

drying air current via an electrostatic particle collector. Both features are crucial with regard 

to sophisticated particle design and powder formulation. The small apertures of the vibrating 

mesh enabled the production of small aerosol droplets with narrow size distribution, resulting 

in particles with a mean size of less than 1 µm. The electrostatic particle collector allowed the 

quantitative yield of these submicron particles. This study also showed that the droplet size is 

defined by the aperture size of the applied vibrating mesh, whereas the total solid content, 

the viscosity and the surface tension of the spray solution exert no significant influence on 

the droplet size. In addition, the occurrence of powder depositions on the spray nozzle was 

investigated, because this crustification phenomenon led to yield reductions and product 

loss. No correlation of the crustification to the spray solution parameters viscosity, surface 

tension or conductivity could be established. Powder depositions were avoided by varying 

the solute concentration or the solvent. Conclusively, the Nano Spray Dryer was assessed as 

valuable tool for producing micron to submicron sized particles starting from small sample 

quantities. 

 

The spray drying experiments described in Chapter 3 aimed at the improvement of 

the oral bioavailability of griseofulvin as a model BCS class II drug. Common approaches to 

increase drug bioavailability include drug dispersion, micronization and solubilization. Spray 

drying with the Nano Spray Dryer B-90 was conducted to produce micronized powder 

particles and also to incorporate a wetting agent for better solubilization. Furthermore, the 

inert spray drying of organic solvent solutions was tested. A safe and robust spray drying 

process for griseofulvin was established by evaluating various organic solvents. Acetone and 

methanol / acetone combinations gave the best spray performance without pronounced 

crustification. Griseofulvin powders with medium particle sizes of 3.4 to 6.5 µm were 

produced and compared to the ‘gold standard’ micronized griseofulvin concerning particle 

properties with relevance for drug absorption. Particularly, drug dissolution and cell culture 
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permeability of spray-dried griseofulvin were analyzed and correlated to drug particles size. 

Spray drying of griseofulvin yielded powder comparable to micronized milled material with 

respect to dissolution and permeability. The addition of Lutrol F127 as wetting agent 

improved the solubilization of griseofulvin to such an extent that the dissolution rate was 

even faster than for micronized material. 

 

In Chapter 4, the Nano Spray Dryer B-90 was applied for spray drying a monoclonal 

IgG1 antibody and L-lactic dehydrogenase (LDH) as two relevant model proteins. The 

possibility to process minute sample quantities makes the Nano Spray Dryer B-90 highly 

attractive for the drying of expensive compounds like pharmaceutical proteins. A simple 

transfer of the correlations between conventional spray drying process parameters and 

protein stability was not justified as the design of the Nano Spray Dryer B-90 comprises 

several novel features. Therefore, special attention was paid to the influence of the spray 

dryer nozzle on protein stability. In general, the Nano Spray Dryer B-90 enabled to spray dry 

both proteins at high yields without crustification tendencies. The rather robust IgG1 showed 

good process stability and formation of protein aggregates was avoided by addition of 

surfactant. The rather sensitive LDH could also be stabilized by surfactants against 

adsorption to air–liquid interfaces and surfaces in the spray dryer nozzle. However, its 

enzymatic activity significantly decreased upon spray drying with the Nano Spray Dryer B-90 

and the formation of protein aggregates was observed. The vibrating mesh was identified as 

considerable stress factor for protein stability. As the spray nozzle is exposed to the elevated 

drying temperatures and the vibration activity of the mesh also produces heat, the spray 

mesh heats up continuously during a spray drying process and can reach critical 

temperatures with regard to protein stability. In the course of a spray drying process, the 

spray solution contacts the mesh multiple times and has to pass through the apertures upon 

atomization. These effects are detrimental for exceptionally temperature sensitive proteins 

like LDH. In this study, spray drying at lower Tin was identified as measure to minimize the 

spray mesh heating. A reduction in spray intensity also enabled to limit the spray mesh 

heating, however was accompanied by prolonged process times. Drying temperatures of 

30 / 25 °C (Tin / Tout) were sufficient to yield dry and stable protein material at satisfying yields 

(approx. 70%) and preserved 80% of the initial LDH activity. In conclusion, the evaluation of 

the Nano Spray Dryer B-90 for protein spray drying revealed the crucial differences of this 

new device compared to conventional spray dryers and identified the challenges in 

developing a stable protein powder. 
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List of Abbreviations 

 

ACA ammonium carbamate 
AS ammonium sulfate 
AU absorbance unit 
AUC area under the curve 
avd after vacuum drying 
BCS biopharmaceutical classification system 
β-NADH β-nicotine amide adenine dinucleotide 
BSA bovine serum albumin 
CHN elementary analysis for carbon, hydrogen and nitrogen 
CMC critical micelle concentration 
Decomp. decomposition 
DMEM Dulbecco’s modified eagle’s medium 
DMSO dimethyl sulfoxide 
DSC differential scanning calorimetry 
EDTA ethylendiaminetetraacetic acid 
FBS fetal bovine serum 
FNU formazine nephelometric units 
FTIR Fourier transformed infrared spectroscopy 
GCSF granulocyte colony stimulating factor 
HBSS Hank’s balanced salt solution 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HPC hydroxypropyl cellulose 
HPMC hydroxypropyl methyl cellulose 
HP-SEC high performance size exclusion chromatography 
HPβCD hydroxypropyl-beta-cyclodextrin 
HSA human serum albumin 
IEP isoelectric point 
IgG1 immunoglobulin G1 
LD50 lethal dose 50% 
LDH L-lactic dehydrogenase 
Mab monoclonal antibody 
MEM minimum essential medium 
MES 2-(N-morpholino)ethanesulfonic acid 
Mr molecular weight 
MWCO molecular weight cut off 
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n.a. not available 
NEAA non-essential amino acid 
OD optical density 
PEEK polyether ether ketone 
PEG polyethylene glycol 
PLGA poly(lactic-co-glycolic acid) 
PS polysorbate 
PTFE polytetrafluoroethylene 
PVA polyvinyl alcohol 
PVP polyvinyl pyrrolidone 
r.h. residual humidity 
rhGCSF recombinant human granulocyte colony stimulating factor 
rhIL-11 recombinant human interleukin-11 
rM residual moisture 
SCF supercritical fluid 
SDS sodium dodecyl sulfate 
SEDDS self-emulsifying drug delivery system 
SEM scanning electron microscopy 
SMEDDS self-micro-emulsifying drug delivery system 
TEER transepithelial electrical resistance 
Tg glass transition temperature 
Tin / Tout spray drying inlet / outlet temperature 
Tm melting temperature 
USP United States Pharmacopoeia 
XRD X-ray powder diffraction 
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