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It’s just like flying a spaceship.
You push some buttons and see what happens.

Zapp Brannigan (FUTURAMA)

Have you tried turning it off and on again?

Roy Trenneman (The IT Crowd)





Abstract

The first determination of the strong coupling constantαs via the differential 2-jet-rate in pp
collisions at the LHC (at a center-of-mass-energy of 7 TeV) is presented. Data (

∫

L dt = 700 nb−1)
gathered by the ATLAS experiment are fitted by next-to-leading order (NLO) perturbative QCD
predictions from calculations with the program NLOJET++. As an observable, the jet-flip-parameter
from 3 to 2 reconstructed jets is investigated, using the infrared and collinear safekT jet algorithm in
the exclusive reconstruction mode. The jet-flip-parameters from real data are compared to simulated
data from Monte Carlo generators.
For the determination ofαs, real data have been corrected for the jet-energy-scale, whereas the
calculations from NLOJET++ have been corrected for the influence of hadronization effects as well
as the impact of the Underlying Event by applying bin-by-bincorrections. The fit between real data
and the calculations from NLOJET++ yields a value ofαs(MZ) = 0.120±0.001(stat.)±0.005(syst.),
which is in very good agreement with the current world average.





Zusammenfassung

In dieser Arbeit wird die erste Messung der starken Kopplungskonstantenαs mithilfe der differen-
tiellen 2-Jet-Rate bei pp Kollisionen am LHC (bei einer Schwerpunktsenergie von 7 TeV) vorgestellt.
An Daten (

∫

L dt = 700 nb−1) aus dem ATLAS Experiment werden dabei die Theorierechnungen in
nächst-führender Ordnung (NLO) in der Störungsrechnung der QCD aus dem Programm NLOJET++
angepasst. Als Observable wird der Jet-Flip-Parameter untersucht, der den̈Ubergang von 3 nach 2
rekonstruierten Jets beschreibt. Hierbei wird der infrarot- und kollinear-sicherekT Jet Algorithmus
im exklusiven Rekonstruktionsmodus verwendet. Die Jet-Flip-Parameter aus echten Daten werden
mit simulierten Daten aus Monte Carlo Generatoren verglichen.
Für die Bestimmung vonαs werden einerseits die echten Daten um den Einfluss der Jet-Energie-Skala
bereinigt und andererseits die Berechnungen aus NLOJET++ um den Einfluss der Hadronisierung
und des Underlying Events korrigiert, indem die Einträge Bin für Bin korrigiert werden. Durch
einen Fit zwischen echten Daten und den Berechnungen aus NLOJET++ ergibt sich ein Wert von
αs(MZ) = 0,120± 0,001(stat.)± 0,005(syst.), der sehr gut mit dem Weltmittelwert übereinstimmt.
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Chapter 1

Introduction

Since ancient times matter and its structure have been investigated by mankind. Beginning with
thought experiments of philosophers, the science led to thebiggest experiments on earth. Elementary
particle physics uses experiments with cosmic rays as well as huge particle accelerators, like the
Large Hadron Collider (LHC) at CERN1 near Geneva, Switzerland, to study the properties and
interactions of matter. The LHC (and with it the ATLAS2 experiment) started its operation in
September 2009. It has been designed to collide protons at a center-of-mass energy3 of

√
s= 14 TeV

(currently, the LHC is operating at
√

s = 7 TeV) with a final instantaneous luminosity of up to
L = 1034 cm−2s−1.
At such high energies, it is now possible to find (or exclude) predicted particles, which have not been
observed yet due to their very large mass. Nonetheless, before new particles can be discovered, and
thereby new theoretical models confirmed, a good understanding of the Standard Model (SM) at LHC
scale is crucial. All known elementary particles and interaction forces (excluding the gravitation) are
included in this powerful model: the electromagnetic, the weak and the strong interaction. The latter
describes the force between quarks and gluons and has a rangeof about 10−15 m. The interaction
force is conveyed by eight gluons, being discovered in 1979 via 3-jet-events at PETRA4 at DESY5.
The strength of the strong interaction is described by the strong coupling constantαs. By combining
many different measurements, the world average was set toαs(MZ) = 0.1184± 0.0007 with a Z
boson mass ofMZ = 91.1876± 0.00021 GeV (values are taken from [1]), which is about two orders
of magnitudes above the electromagnetic force.
When starting a new experiment, first of all the detector has to be understood and it has to be
shown that the experiment works well, reproduces the results from former colliders and is consistent
with the theoretical extrapolation to the high collision energies of the LHC. Sophisticated technical
innovations and improved analysis techniques make it possible to measure several properties of
particles and their couplings with an accuracy and precision that are second to none [2].
A basic quantity for testing the Standard Model and especially Quantum Chromo Dynamics (QCD)
is the strong coupling constantαs, describing the strength gluons couple to colored particles. Asαs

is not a constant - contrary to the misleading name - but varies with the transfer of momentaQ, it
opens the opportunity to compare its value with former experiments and, in addition, to determine it
in regions ofQ not yet investigated.
As a test of QCD, this thesis deals with the determination ofαs via the ratio of 3-jet-events to
2-jet-events. The jets are reconstructed using thekT jet algorithm in the exclusive mode, with the
algorithm being forced to find 3 jets in the final state. The differential 2-jet-rate is measured via the
jet-flip-values, describing the transition from 3 to 2 reconstructed jets.

1European Organization for Nuclear Research (french:ConseilEuropéen pour laRechercheNucléaire)
2A ToroidalLHC AparatuS
3Thenatural units(~ = 1 andc = 1) are used throughout this thesis.
4Positron-Elektron-Tandem-Ring-Anlage
5DeutschesElektronen-Synchrotron in Hamburg

1



2 Chapter 1 Introduction

The presented method has the advantage that it can be done with early data gathered by the ATLAS
detector.

This thesis is divided into 9 chapters. The theory chapter describes the SM, the QCD, the hadroniza-
tion process and the method used to determineαs as well as the parton distribution functions. Finally,
some background processes (such as the Underlying Event) are explained. In chapter 3, the LHC,
the ATLAS detector and the data & computing grid are introduced, followed by a chapter about jets
and jet algorithms. The analysis software used is presentedin chapter 5. Chapter 6 motivates why
the differential 2-jet-rate has been used to determineαs and presents the distributions from calcula-
tions with NLOJET++. Then, real data is analyzed after applying jet cleaning cuts. The differential
2-jet-rate is compared to the differential 3-jet-rate before comparing real data to simulation. In chap-
ter 7, the influence of the jet-energy-scale, hadronizationeffects and the UE are corrected for.αs is
then determined via fits to the differential 2-jet-rate distributions in chapter 8. Also some systematic
uncertainties are investigated. Finally, chapter 9 summarizes the results.



Chapter 2

Theory

This chapter (based on [2–6]) focuses on the theoretical background of this thesis. First of all,
the Standard Model (SM) of elementary particle physics is described, followed by an overview of
Quantum Chromo Dynamics (QCD). Furthermore, the hadronization of quarks and gluons into color-
neutral particles is introduced. Then, the method used to determineαs is shown. After describing
the structure of the proton, some background processes are explained with a focus on the Underlying
Event (UE).

2.1 Standard Model

The Standard Model of particle physics comprises the known elementary particles and the inter-
actions between them. It has passed (excluding the Higgs boson) all theoretical and experimental
tests to a level smaller than 0.1%. Richard Feynman1 already said that “the Standard Model is
working too well”.
According to the SM the whole matter consists of twelve fermions2 (see table 2.1): six quarks3

(up, down, strange, charm, bottom and top), which undergo the electroweak as well as the strong
interaction, six leptons (electron, muon, tau and respective neutrinos), being solely subject to the
electroweak interaction (because they don’t carry color-charge) and the according antiparticles4.
The fermions can be grouped in three generations, each with two leptons, two quarks and the
corresponding antiparticles.
Quarks never appear as free particles, but always as color-neutral hadrons. These composed particles
are either mesons, i.e. quark-antiquark-pairs, or baryons, consisting of three quarks, like the proton,
comprising two up-quarks and one down-quark.

The interactions between the particles are represented by field quanta, commonly known as gauge
bosons5, which carry the force. The Feynman diagrams of some fundamental fermion-boson
couplings in perturbation theory are shown in figure 2.1. Therange of these bosons is - agreeable
to the Heisenberg uncertainty principle - linked to their mass (see table 2.2) - except for the gluons,
which transmit the strong interaction.

1Richard Phillips Feynman (1918-1988) was an American physicist, who won the Nobel prize in physics in 1965 for
his contributions to Quantum Electro Dynamics (QED) [7].

2Fermions are spin-1
2-particles, obeying Pauli’s exclusion principle. In addition, they adhere to the Fermi-Dirac-

Statistics.
3The name quark has its origin in the bookFinnegans Wakeby James Joyce. The American physicist Murray Gell-Mann

(born 1929) liked the sentenceThree quarks for Muster Mark!so much that he adapted the name quark for these subatomic
particles (only three quarks were known at that time) [7].

4Antiparticles have the same masses as the according particles, but opposite electrical charge, color and third component
of the weak isospin [3].

5Bosons have a whole-number spin and obey to the Bose-Einstein-Statistics. They are not subject to Pauli’s exclusion
principle.

3



4 Chapter 2 Theory

Quarks

Generation Flavor Symbol Charge [e] Mass [GeV]

1 up u +2
3 0.00225± 0.00075

down d −1
3 0.005± 0.002

2 charm c +2
3 1.25± 0.09

strange s −1
3 0.095± 0.025

3 top t +2
3 174.2± 3.3

bottom b −1
3 4.2± 0.07

Leptons

Generation Name Symbol Charge [e] Mass [GeV]

1 electron e -1 511× 10−6

electron neutrino νe 0 < 2.2× 10−9

2 muon µ− -1 105.7× 10−3

muon neutrino νµ 0 < 170× 10−6

3 tau τ− -1 1.7777

tau neutrino ντ 0 < 15.5× 10−3

Table 2.1: The Fermions at a glance [1]. All stable matter forming our visible universe is composed by particles
of the first generation. Particles of the second and third generation (having higher masses) only have a short
lifetime.

In this way, the electromagnetic force (described by the QED) has an infinite range, because it
is conveyed by massless photons. Accordingly, the range of the weak interaction is rather small
(≪ 10−16 m), due to the large masses of theW± bosons6 of 80 GeV and theZ0 boson7 of 91 GeV
respectively. However, the range of the strong interactionis not infinite, although the eight gluons
representing this force are massless. This can be traced back to the fact that gluons interact among
each other (see section 2.2.1).
The forth fundamental force, gravity, is not part of the SM. The according particle, the graviton (with
spin 2), has not been observed yet. In comparison to the otherinteractions, the gravitational force is
almost negligible (in relation to the strong interaction ithas merely a magnitude of 10−38).
It is a great achievement of the Standard Model that electromagnetic and weak force could be joined
in a common theoretical framework - the electroweak theory.

EM Force Weak Force Strong Force

Strength 7.30× 10−3 ≈ 1
137 1.02× 10−5 ≈ 1

Range [m] ∞ ≪ 10−16 10−15 − 10−16

pertains to charged particles fermions quarks

conveyed by γ (photon) W±, Z0 (gauge bosons) g (gluon)

Mass [GeV] 0 ≈ 102 0

Table 2.2: The elementary forces and their mediating gauge bosons of the Standard Model [5]

6W± bosons couple to weak isospin doublets of left-handed fermions and - as they carry an electrical charge - also to
photons.

7TheZ0 boson acts on both left- and right-handed particles, but noton photons, as it is electrically neutral.
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Figure 2.1: Feynman diagrams exemplifying some of the fundamental fermion-boson couplings in perturbation
theory [5]

The reason for the masses of theW andZ bosons (discovered in 1983) is supposed to be described
by the Higgs mechanism, i.e. a spontaneous breaking of the electroweak gauge symmetry. In this
theory, (at least) one further scalar particle is needed: the Higgs boson (H), named after the Scottish
physicist Sir Peter W. Higgs. The Higgs boson of a symmetry breaking background field couples to
theW andZ bosons and provides them with an effective mass. For a further description of the Higgs
mechanism, see e.g. [8]. In this theory, the fermions get their masses by Yukawa-couplings to the
Higgs particle. The experimental proof of the Higgs boson isone of the main research goals of the
LHC8.

With the exception of the Higgs mechanism, the SM is based on the principle of gauge invariance,
i.e. the invariance of a gauge field under local phase transformations, e.g.Φ(x) → eiΘ(x)Φ(x).
The symmetry group of the SM is aU(1)Y ⊗ SU(2)L ⊗ SU(3)C gauge symmetry.SU(3)C (the C
represents the quantum number color) is the symmetry of the strong interaction andU(1)Y ⊗ SU(2)L

(the Y corresponds to the weak hypercharge, the L to the isospin) the symmetry of the electroweak
interaction. U(1)em as the symmetry of the electromagnetic interaction is a subgroup of the
electroweak interaction.

2.2 Quantum Chromo Dynamics

In order to understand the strong interaction, the QCD9 is needed, being formulated in 1973 [11]. In
this quantum field theory, the strong interaction between quarks and gluons is described by a new
charge, being based upon the electrical charge of QED.
This charge is called color10, because the three occurring charges have been assigned to the colors
red (r), green (g) and blue (b) (accordingly antired (¯r), antigreen ( ¯g) and antiblue (̄b) for antiparticles).

8The predecessor-experiment LEP (Large Electron-Positron Collider) could only determine a minimum mass of
114.4 GeV [9]. LEP ran from 1989-2000 at a collision energy ofup to 209 GeV [10].

9The name Quantum Chromo Dynamics comes from the Greek termchromos= color.
10The name color is just a matter of nomenclature in order to distinguish these quantum numbers and should not be

misapprehended as an indicator that quarks are literally colored.



6 Chapter 2 Theory

2.2.1 Color-charge

Quarks carry these color-charges11 in addition to their electrical charge. Therefore, each quark flavor
exists in three different colors.
In addition to the quarks also the eight gluons (m= 0 andJP = 1−) are color-charged (in contrast to
QED, where the photons are electrically neutral). In the case of the gauge bosons, this charge is a
combination of color and anticolor. Due to their color-charge, the gluons interact with themselves
(this is called self-interaction of gluons), besides theircoupling to quarks.
In accordance with theSU(3)C symmetry group, the 3⊗ 3̄ color combinations split into a color octet
and a color singlet. The latter

√

1
3
(rr̄ + gḡ+ bb̄) (2.1)

is invariant under rotations in the color space and hence color-neutral. Therefore only the octet states
couple to color-charged particles. These color-states are:

rḡ, rb̄,gb̄,gr̄ ,br̄ ,bḡ,

√

1
2
(rr̄ − gḡ),

√

1
6
(rr̄ + gḡ− 2bb̄) . (2.2)

In figure 2.2 the fundamental Feynman diagrams of the strong interaction (including the self-coupling
of the gluons) are shown.

Figure 2.2: Feynman diagrams of fundamental QCD interactions. From topleft to bottom right: gluon emis-
sion, gluon splitting up into a quark-antiquark-pair, gluon self-interaction of three and four gluons [6]

11Color-charges can be concluded experimentally by e.g. looking at the cross section ratioe
+e−→hadrons
e+e−→µ+µ− . The quantum

number color was required to preserve Pauli’s exclusion principle when discovering theΩ− particle (composed of three
strange-quarks), and accordingly the∆++ particle, consisting of three up-quarks.
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2.2.2 Strong Coupling Constantαs

The self-interaction of gluons is responsible for the variation of the interaction potential between
quarks (or colored particles in general), which grows with increasing distance along the lines of a
stretched spring.
The force that binds the particles together is described by the strong coupling constantαs. Analogous
to the finestructure constant of the QED, this force is definedas

αs =
g2

s

4π
, (2.3)

wheregs represents the color-charge.
As already announced,αs is not a real constant, because the value depends on the energy-scaleQ and
therefore on the distance of the color-charged particles toeach other (see figure 2.3).

Figure 2.3: Q-dependency of the strong coupling constantαs [6]

The running ofαs is explained by the vacuum polarization. In contrary to the naive picture, the
vacuum is not empty, but has a complex structure. Therefore it gets polarized in presence of a color-
charge and bare charges get shielded. Visible charges thus become energy- and distant-dependent.
On the one hand, this leads to theasymptotic freedomwhen distances are small (and consequently
transverse momenta transfersQ large):

lim
Q→∞

αs(Q) → 0 . (2.4)

Quarks can consequently move virtually free within small distances, because of the small attraction
forces. These regions can be handled by perturbation theory.
On the other hand, when going to large distances, the energy-density between particles becomes
larger until quark-antiquark-pairs and gluons are produced from the vacuum, comparable to a para-
magneticum for color-charges. This is energetically more favorable than enlarging the distance be-
tween the quarks.

lim
Q→ΛQCD

αs(Q) → ∞ , (2.5)

whereΛQCD is the only free parameter of QCD with a value of a few hundred MeV.
Colored particles can hence never appear individually, butonly as color-neutral hadrons. This fact
is calledconfinement. The confinement is outside the regime of perturbation theory calculations
applying Feynman diagrams [3,12].
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2.3 Hadronization

Partons (i.e. color-charged quarks and gluons) do not existas free-propagating particles, in contrary to
color-neutral hadrons. As perturbation theory cannot be used to calculate the involvement of partons
(which can originate from the vacuum) into hadrons12 because of the confinement, phenomenological
models have to be implemented.

Figure 2.4: Hadronization of color-charged partons into color-neutral hadrons [6]

• The model of independent hadronizationis the oldest model describing the hadronization
process. Here, every quark hadronizes for its own with randomly chosen quark-antiquark-pairs
of the vacuum. According to a probability function, the hadron gets a certain fraction of the
available energy and momentum.

• A preferable model is thecluster model. After the parton shower, all gluons split into q q̄- or
diquark-antidiquark-pairs. Neighboring quark-antiquark-pairs resulting from such a splitting
can build a color singlet cluster due to color-interaction (see figure 2.5). These clusters finally

12This process is calledhadronization and displayed in Figure 2.4. As a long-distance process, only small momenta
are transfered during the hadronization. This is why the flowof quantum numbers as well as the transfer of energy of the
hadrons have their origin mainly from parton-level [13]. This relation is calledlocal parton-hadron duality [14].
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decay into hadrons (see [13] for more details). The cluster model is used by the Monte Carlo
event generator HERWIG (see chapter 5.3).

Figure 2.5: Illustration of the cluster model [6]

• A widely used hadronization model, being also implemented in the Monte Carlo event
generator PYTHIA (see chapter 5.2.1), is the(Lund) string model. After the hard interaction,
the color field lines between the partons can be found in colordrift tubes. These tubes behave
like strings with a constant tensionk ≈ 1 GeV/fm. If the distance between the partons
increases, the potential energy rises until enough energy is gathered to build a hadron. Then,
the string breaks and forms aqq̄-pair. At this stage, the system consists of two color singlets.
If one of them has again enough energy available, the described process is repeated. When
emitting a gluon, the string is stretched over the gluon, appearing as a “bend” (with momentum
and energy) inside the string (see figure 2.6) [6,11,12,15].

Figure 2.6: Illustration of the string model [6], [16]
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2.4 Determination ofαs

In order to determineαs, processes are needed where gluons take part, as gluons couple with the
strengthαs to colored particles. In figure 2.7 (left) ane+e− collision with three jets13 in the final
state is shown. One of the jets has its origin in the emission of a gluon. The cross section is in this
case proportional toαs. At proton proton collisions this is slightly different, because a gluon can be
exchanged between two final state particles (see figure 2.7, right). As both particles couple with the
strengthαs to the gluon, the cross section is proportional toα2

s .

Figure 2.7: Left: e+e− collision where a real gluon is emitted in the final state. Thecross section is proportional
to αs. Right: ppcollision where a gluon is exchanged. The cross section is inthis case proportional toα2

s [2].

Due to their direct proportionality toαs, jet-rates provide a good possibility to determine the strong
coupling constant.
The exclusive 3-jet-rate

R3 =
σ3Jets

σ2Jets+ σ3Jets
(2.6)

is at leading order (LO) proportional toαs.
At next-to-leading order (NLO), the 3-jet-rate becomes

R3 = A+ B , (2.7)

where A stands for a LO term (being proportional toαs) and B for a term at NLO (being proportional
to α2

s ).

The next-to-leading order calculation has to deal with unresolved partons, resulting in collinear and
infrared divergences. The measurement of jet-rates is hence only possible in certain areas of the
phase-space (see figure 2.8).
This problem can be solved by using infrared and collinear safe observables, like thed23 flip-values

of the exclusivekT jet algorithm14.
Jet-rates as inclusive measurements depend strongly on details of the final state, like the hadroniza-
tion (see chapter 2.3), the parton density function (see chapter 2.5), the Underlying Event (see chapter
2.6.2) or the jet-energy-scale15 (see chapter 4.5.2). This leads to a huge systematic uncertainty.
Moreover, the entries of the jet-rates are correlated to each other. Therefore, the uncorrelated, differ-
ential jet-rates have been studied in this analysis. They have also the advantage that many uncertain-
ties almost cancel out.
In order to study the differential jet-rates, the jet multiplicity has been forced to 3 in this anlysis. The

13Jets are objects consisting of particles after the haronization, which are close together (depending on the jet algorithm
either geometrically or in momentum space). For more details on jets, see chapter 4.

14The valued23 describes the transition from 3 to 2 reconstructed jets (seechapter 4.3.2).
15The jet-energy-scale calibrates the energy measurement ofa calorimeter detector to the true energy of a particle jet (or

parton jet).
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Figure 2.8: Collinear and infrared divergences. Variables like thrust(T = max~nT

Σi |~pi ·~nT |
Σi |pi | ) (bottom) exclude

divergent areas in the phase-space.x stands for the fraction of the proton’s momentum [2].

cross section of 3-jet-events is in LO proportional toα3
s and toα4

s in NLO.
With R2 = 1− R3 − R4 the differential 2-jet-rate becomes (if the 4-jet-rate is neglected16)

D23 =
∆R2

∆d23
= − ∆R3

∆d23
=

∆A(d23)

∆d23
+

∆B(d23)

∆d23
=

1
N

× ∆N
∆d23

. (2.8)

It has been pointed out thatαs is not a constant, but changes its value depending onQ. Taking this
dependency into account, the above formula becomes

D23(Q) =
∆A(d23,Q)

∆d23
+

∆B(d23,Q)

∆d23
=

1
N(Q)

× ∆N(Q)

∆d23
, (2.9)

with ∆A(d23,Q)
∆d23

depending onα3
s (Q) and ∆B(d23,Q)

∆d23
depending onα4

s (Q).

To determine the strong coupling constant, the LO term∆A(d23,Q)
∆d23

and the NLO term∆B(d23,Q)
∆d23

are both

taken from calculations with NLOJET++ [17]. 1
N(Q) ×

∆N(Q)
∆d23

represents the real data. The real data
are such described by a LO and a NLO term, each having different αs dependencies. Applying fits
between real data and the calculated LO and NLO terms (provided by NLOJET++) then yieldαs.

16R4 has been neglected, as its NLO calculation is not implemented in the program NLOJET++ (see chapter 5.1) used for
the determination ofαs. The measurement has therefore been done in regions where the fraction of the 4-jet-rate is small
(see chapter 6.3.3).
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2.5 Parton Distribution Functions

As already mentioned, the proton is not an elementary particle. Besides the three valence quarks
(uud), being bound together via gluons, it contains sea quarks and gluons (see figure 2.9).

Figure 2.9: Buildup of a proton [18]

Sea quarks are virtual quark-antiquark-pairs, which effective quantum numbers are annihilated on
average. They appear at scattering processes because of their electrical charge [3].
The structure of the proton is described by structure functions (see figure 2.10).

Figure 2.10: Structure functions of a) a pointlike particle, b) a particle composed of three pointlike particles,
c) a particle consisting of three bound quarks and d) a protoncomposed of three valence quarks, sea quarks and
gluons [19].x stands for the fraction of the proton’s momentum.

Based on the longitudinal and transverse polarization the structure function

F2(x) = ∑
i

e2
i x fi(x) (2.10)

is discerned fromF1(x). The two functions follow the Callan-Cross relation 2xF1(x) = F2(x).
F2(x) describes the superposition of partonsi with chargeei and momentum fractionx [20].
The parton distribution function (PDF) fi(x) parametrizes the probability that thei-th parton
carries a fractionx of the original momentum - the rest is assigned to the proton residual (called beam
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remnant).
Therefore, when a collision takes place, two partons with the according fractions of momentumx1

andx2 perform a hard interaction (see figure 2.11) [21].

Figure 2.11: Illustration of the factorization of a proton-proton scattering. Left: Parton 1 with the momentum
fractionx1 and the PDFf (x1) interacts hard (σi j (αs)) with parton 2 (x2, f (x2)). Right: PDFs (here: CTEQ6)
for gluons, up-, down-andstrange-quarks atQ2 = 2 GeV versus the longitudinal momentum fractionx [6].

The right plot (using CTEQ617) shows that the gluons dominate in regions wherex is small, in contrast
to the up- and down-quarks: their fractions of the longitudinal momentum of the proton rise with
increasingx.
The PDFs can such be used to calculate the luminosity of the partons in hard collisions.αs (depending
onQ) influences the cross section of the hard scattering process[6].
For more details on PDFs see e.g. [23].

2.6 Background Processes

The complex structure of the protons (see chapter 2.5), the high luminosity of up toL =
1034 cm−2s−1 as well as the huge center of mass energy of up to

√
s = 14 TeV involve several

problems, being less important at former experiments.
In this chapter processes are described, which take place when bunches of particles collide. The main
focus is placed on background processes, overlaying a hard 2parton→ 2 partoncollision and there-
fore influencing its measurement. At hadron-hadron collisions those soft processes have the largest
cross section and are therefore quite important.

2.6.1 Minimum Bias

When two bunches of particles cross each other, the most likely interactions that appear are soft
and not hard 2parton → 2 parton collisions. Soft means that only a small amount of transverse
momentum is transferred. The perturbative Quantum Chromo Dynamic (see chapter 2.2) is very
successful at describing hard processes. Unfortunately itcannot be applied when energies become
small. Therefore, approximations and models are necessaryfor these soft interactions [24].
The total cross section predicted at

√
s= 7 TeV is as follows [25] (see figure 2.12):

σtot(114.6 mb) = σel(24.8 mb) + σsd(12.0 mb) + σdd(6.2 mb) + σhc(71.6 mb) . (2.11)

17CTEQ stands for theCoordinatedTheoretical-Experimental Project onQCD. Several different PDFs (which names
are composed of CTEQ and a certain number) have been developed by the CTEQ group [22].
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Figure 2.12: Components of the cross section. From left to right: elasticscattering, single diffraction, double
diffraction and hard core [26]

σel stands for the cross section of the elastic scattering,σsd for the single diffraction,σdd represents
the cross section of the double diffraction andσhc symbolizes the physically interesting part: the hard
core (HC) events. This last component contains soft as well as hard collisions (the hard scattering,
i.e. the hard component of the HC, is described in chapter 2.6.2).

The single diffraction can be imagined as the diffraction ofthe matter wave of one proton at the “disk”
of the other proton. The resulting hadrons do not have any color connections to the protons or to the
partons of the protons. If the described process is also truefor the second proton, it is called double
diffraction.
More interesting is the soft component of hard core events (see figure 2.13), being also calledMini-
mum Bias (MB).
At each bunch crossing the design luminosity of LHC will leadto an average of about 23 of these

Figure 2.13: Soft hard core component [26]

inelastic, soft events (at the Tevatron18 only 4 of these inelastic events appeared on an average). The
first run periods of LHC had to deal with a maximum average of 3.78 events per bunch crossing [28].
Only a small amount of transverse momentum is transferred atsoft events and the direction of the out-
going partons is just slightly different compared to the original hadrons. If a hard scattering process
appears at a bunch crossing, the outgoing particles are overlaid by those soft contributions coming
from interactions of protons not taking part in the hard scattering process.
It is common to define Minimum Bias as non-diffractive, inelastic interactions [29]. However, there
is no consistent definition. Finally, it depends on the used trigger19 what is considered to be MB in an
event [26].

2.6.2 Underlying Event

In order to find interesting and potentially new physics, processes are needed where large transverse
momenta are transferred. These events are called hard scattering (see figure 2.14).
Unfortunately, additional soft contributions - commonly known asUnderlying Event (see figure
2.15, right) - occur at a hard 2parton→ 2 partonscattering event (independently of the luminosity).

18The Tevatron is a proton-antiproton accelerator at the Fermilab near Chicago with a luminosity of about 2×
1032 cm−2s−1 and a center-of-mass energy of 1.96 TeV [27].

19A trigger is an event-filter. The trigger system of the ATLAS detector is described in chapter 3.2.6.
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Figure 2.14: Components of the hard scattering with initial (ISR) and final state radiation (FSR) as well as
contributions of the UE [26]

Figure 2.15: Components of the hard scattering, divided in the hard component (left) an the contributions of
the UE (right) [26]

The hard scattering consists of particles resulting from the hadronization (see chapter 2.3) of the
two outgoing partons. Initial state radiation (ISR) and final state radiation (FSR) (see figure 2.16),
i.e. the emission of gluons (or quarks) before or after a collision are commonly assigned to the hard
process (however, it should be mentioned that some authors allocate ISR to the UE, because they are
experimentally difficult to separate from UE). The energiesof the original protons are diminished
by the fraction of the ISR and therefore also the available energy for the hard scattering process is
reduced.

The term Underlying Event stands for everything except the hard scattering process. It contains
beam remnantsas well as particles resulting from soft or semi-softmultiple (parton) interactions
(MPI) (see figure 2.17) [26].

Beam remnants are all partons not actively taking part in thehard interaction. If e.g. a down-quark
scatters, the remaining up-quarks build (together with other particles) the beam remnant. As these
particles are color charged and the proton neutral, they arecolor connected with the hard interaction
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Figure 2.16: Initial (left) and final state radiation (right) [30]

Figure 2.17: Multiple parton interactions [26]

and they are therefore a part of the fragmentation system [21].
In addition there is the possibility that partons not participating in the hard scattering interact inelasti-
cally among each other or with partons of the hard scatteringproton. The interactions between several
partons inside one proton is called multiple parton interaction. MPIs are almost always soft, resulting
in particles with mostly small transverse momenta with respect to the beam direction.
The UE depends on the hard scattering, because it has the sameprimary vertex and it is in addition
energy, color and flavor correlated. It is also not equal to the Minimum Bias, although it has a similar
phenomenology (however, for some authors the MB is a pars prototo of the Underlying Event).
In a single event, it is not possible to palpably determine the origin of a particle. No matter which
observable is examined, it will always contain fractions ofthe hard scattering and of the Underlying
Event [31].

2.6.3 Pile-up

Minimum Bias and Underlying Event together are calledPile-up or Event-Pile-up (however, it is
also common to use the term synonymously for Minimum Bias).
Furthermore, the term Pile-up is used for theDetector-Pile-up, designating the overlay of several
events due to the slow read out speed. In the liquid argon (LAr) calorimeter of ATLAS (see chapter
3.2.4) the electronic pulse has a duration of about 600 ns. Atthe design performance of LHC,
a bunch crossing will appear every 25 ns. Hence, an interesting event is likely to be overlaid by
particles coming from another bunch crossing [32].



Chapter 3

LHC and ATLAS

This chapter is divided into three parts: the circular particle accelerator LHC, the ATLAS detector and
the data processing via the data & computing grid. In this collider experiment, protons scatter with
other protons, leading to a very high achievable center-of-mass energy. Protons have the advantage
that they do not suffer significantly from synchrotron radiation due to the mass dependency ofm−4

- in contrary to electrons, being used for the predecessor-experiment LEP. Consequently, the LHC
holds the world record for having the highest collision energies, although it has been run with only
half of its design center-of-mass energy of 14 TeV until now.
This chapter is based on [4–6,11] with the parameters mainlytaken from [33–35].

3.1 LHC

One of the largest physics experiment ever built on earth is the LargeHadronCollider (LHC) near
Geneva with a circumference of 27 km (see figure 3.1). This circular particle accelerator was built in
the existing tunnel of the precursor experiment LEP, 100 m under swiss and french territory. Before
the protons are injected into the two oppositely running vacuum pipes of the main accelerator, they are
brought to 450 GeV by various pre-accelerators, like PSB1, PS2 and SPS3. At LHC, the protons are
gathered in thin bunches of 1011 particles. They are finally accelerated to 3.5 TeV by runningseveral
times through the same accelerator cavities. Up to now, a maximum of 348 colliding bunches inside
LHC has been reached [28]. Superconducting bending magnetsare cooled to about 2 K by suprafluid
helium and guide the particles, which are accelerated almost to the speed of light until they collide
at a center-of-mass energy of 7 TeV (being upgraded to 14 TeV in 2014/15)4. The design luminosity
of LHC is L = 1034 cm−2s−1. The accelerator is optimized to have a bunch crossing every25 ns,
corresponding to a clock rate of 40 MHz.
In order to detect the particles after a collision took place, four independent detectors have been
installed at the intersection points: ATLAS (see chapter 3.2), CMS5, ALICE6 and LHCb7. ATLAS
and CMS are universal detectors and are therefore sensitiveto a broad range of physical phenomena.

1ProtonSynchrotronBooster
2ProtonSynchrotron
3SuperProtonSynchrotron
4Besides the collision between protons, also heavy Ions (Pb-Pb) are brought to collision at a center-of-mass energy of√

s= 5.52 TeV per nucleon pair. The luminosity is designed to reach up to 1027 cm−2s−1.
5CompactMuonSolenoid
6A L argeIonCollider Experiment
7LargeHadronCollider beauty experiment

17
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Figure 3.1: The LHC accelerator at CERN [36]

3.2 ATLAS

With a length of 43 m, a diameter of 25 m and a weight of about 7000 t, the ATLAS detector is the
largest detector at the LHC. The name ATLAS has formerly beenan acronym forA Toroidal LHC
AparatuS and is used nowadays as a proper name, referring to Atlas fromthe Greek mythology, who
was doomed by Zeus to carry the sky on his shoulders (see picture 3.2) [7].

Figure 3.2: Atlas sculpture in front of the Rockefeller Center in New York. A stylized drawing of this statue is
used as the logo for the ATLAS experiment [37].

The ATLAS detector is constructed in several layers, where each layer is sensitive to different
particles. In the middle, there is the inner track detector,being surrounded by a solenoid magnet.
Then follow the electromagnetic and the hadronic calorimeters and finally the muon system, being
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located inside a toroidal air core magnet. Table 3.1 shows which particles are typically detected in
which part of the detector.

ID EC HC MS

Electron x x

Muon x x x

Charged Hadron x x

Neutral Hadron x

Photon x

Neutrino

Table 3.1: Detection of particles in the inner detector (ID), the electromagnetic calorimeter (EC), the hadronic
calorimeter (HC) and the muon spectrometer (MS)

The subsystems are divided into a barrel and two end cap regions. Figure 3.3 illustrates the ATLAS
detector.

Figure 3.3: The ATLAS detector [38]

3.2.1 Coordinate System

In the right handed coordinate system of ATLAS (see figure 3.4), the z-axis runs along the beam
axis. The x-axis points from the collision point to the middle of the LHC accelerator ring, the y-axis
upwards.

The azimuthal angle Φ is measured perpendicularly to the beam axis, whereΦ = 0 is equal
to the positive x-axis.
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Figure 3.4: The coordinate system at ATLAS [39]

The polar angle θ is measured coming from the positive z-axis (tanθ = r
z, with r =

√

x2 + y2).
Instead of the polar angle thepseudorapidity is usually used, having the advantage that the differ-
ence of twoη-values is invariant under Lorentz boosts along the z-direction. The pseudorapidity is
defined as follows:

η = − ln(tan
θ
2
) . (3.1)

Another important value is thetransverse momentumpT , representing the projection of a particle’s
momentum to the plane perpendicular to the beam axis.

3.2.2 Magnet System

As the supraconducting magnet system does not detect any particles itself, but helps other detector
components with this duty, its description is set in front ofthe detector subsystems.
The magnet system consists of a central solenoid (CS) and three toroid magnets.

• Thecentral solenoid is 5.3 m long and has a radius of 1.2 m. It surrounds the inner detector
(see chapter 3.2.3) and generates a magnetic force of 2 T witha maximum of 2.6 T. In this
magnetic field, the tracks of charged particles are curved inthe xy-plane.

• Thetoroid magnetsgenerate the magnetic field for the muon spectrometer (see chapter 3.2.5).
The magnet system consists of eight supra conducting, toroidal air coils, being cooled to 4.5 K
by liquid helium. In the end caps two additional magnets are installed. Their fields are overlap-
ping the fields of the toroid magnets. The toroidal magnetic field has an average of 0.6 T.

From inside out the ATLAS detector consists of the followingsubsystems:
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3.2.3 Inner Detector

The inner detector with a length of 6.2 m and a diameter of 2.1 m is located around the
interaction point (see figure 3.5). In this part of the detector, the particle tracks, which are bend
by the adjacent solenoid magnets, are measured and the momenta of the charged particles determined.

Figure 3.5: The inner detector [38]

The inner detector also has a substructure and consists of three parts:

• 1500 cylindrical and 700 disk shaped semiconductor modulesbuild up thepixel detector.
Each pixel module has an area of 13.35 cm2 with 61,440 pixels. The silicon pixel counters are
arranged cylindrically in three layers around the beam axis. In addition, five slices are installed
on each end, so that almost the whole solid angle is covered. The pixel detector provides three
measuring points per particle track, being used to reconstruct the vertices. The resolution is
12 µm in theRΦ- and 66µm in the z-direction. The ability to measure short living particles
and the resolution of the impact parameter are mainly set by this part of the detector.

• The semiconductor tracker (SCT) is composed of eight layers of silicon strip detectors, al-
lowing precision measurements of up to eight additional points of the particle tracks in theRΦ-
(resolution: 16µm) and z-area (resolution: 580µm). The SCT contributes to the measurement
of the momenta, the impact parameter and the vertex positions. It covers an area of|η | < 2.5.

• Finally, the transition radiation tracker (TRT) completes the inner detector. The particle
tracks are measured like in drift chambers. The electrons are detected via additional transition
radiation in pipes, filled with xenon. In this way, additional 36 track points with a resolution of
0.170 mm for charged particle tracks withpT > 0.5 GeV at|η | < 2.5 are gathered. A good
separation of electrons from pions is therefore possible with the TRT.
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3.2.4 Calorimeter

The energies of the particles are measured in thecalorimeter via absorption (see figure 3.6). This part
of the detector has again a substructure, consisting of an electromagnetic and a hadronic calorimeter.
Both are sampling calorimeters, i.e. alternating slices ofenergy absorbing materials with high density,
and gaps, where the resulting particle showers are measured.

Figure 3.6: The calorimeter [38]

• In theelectromagnetic calorimeter(EM) the energy of mainly electromagnetically interacting
particles (above all electrons, positrons and photons) is absorbed. Muons and hadrons lose a
fraction of their energy, but are still able to reach other parts of the detector. After the interaction
with lead the resulting particle showers are detected in 2.1mm thick gaps, filled with liquid
argon (LAr). The resolution for electromagnetic showers is∆E/E = 10%/

√

E/GeV. The EM
calorimeter covers a region of 1.4 ≤ |η | ≤ 3.2 for the end cap and up to|η | = 1.475 for the
barrel region respectively.

• Strongly interacting particles, i.e. hadrons, are absorbed in thehadronic calorimeter (HC).
While lead absorbers and scintillator plates are used in thebarrel region (|η | ≤ 1.7) to detect
hadronic showers, copper and wolfram absorbers are utilized in the end caps (|η | ≤ 3.2) and
in forward direction as well as liquid argon as sampling material. The accuracy of the HC with
a value of∆E/E = 50%/

√

E/GeV is significantly lower than the accuracy of the EM.

3.2.5 Muon Spectrometer

Themuon spectrometeridentifies and measures muons. As their ionization is rathersmall they pass
the inner detector and the calorimeter almost undisturbed -in contrary to the other particles - and
can therefore clearly be identified (neutrinos on the contrary can only be indirectly detected with the
ATLAS detector).
Based on the magnetic deflection of the muon tracks by the toroid magnets, the momenta can be
estimated. The precision measurement of the track coordinates in the largest part of theη-region is
done bymonitored drift tubes (MDTs) . MDTs are made up of three cylindrical layers of drift tubes
(plus three at the end caps), being filled with a mixture of argon and carbon dioxide.
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At large values ofη and in the vicinity of the beam axis,cathode strip chambers (CSCs)are used.
These are multi-wire proportional chambers with a smaller fragmentation in order to deal with the
high particle fluxes.
To trigger on muons,resistive plate chambers (RPCs)are used in the central region andthin gap
chambers (TGCs)in the end caps. The end caps of the muon spectrometer are shown in figure 3.7.

Figure 3.7: End caps of the muon spectrometer [40]

3.2.6 Trigger

Due to the high collision-rate, the ATLAS detector accumulates one terabyte of data every second.
As it is not possible to store all of these data, the bunch crossing rate of 40 MHz has to be reduced
to an event-rate of about 200 Hz for permanent storage. In order to distinguish interesting from not
interesting (e.g. low energetic background) events, an efficient trigger system is needed.

The ATLAS trigger is composed of three parts:

• The first reduction is done by the hardware triggerlevel one (LVL1), selecting events with the
help of signals from the calorimeter and the muon spectrometer. Its aim is to identify the bunch
crossing, where an interesting event took place and to markregions of interest(RoI), i.e. areas
in the detector, contributing interesting data to the event.
During the latency of 2.5µs all data is stored in pipeline storages: uninteresting events are
removed, and events passing the trigger criteria are storedin thereadout buffer (ROB). In this
way, the event-rate is reduced to 75 kHz.

• Then, every RoI is analyzed again. Based on selection algorithms implemented in software, the
level two (LVL2) trigger makes further reductions, having access to the full resolution of the
RoIs as well as the whole inner detector. After the LVL2 trigger, the event-rate is reduced to
1 kHz.
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• The final decision over an event is made by the (software based) event filter (EF) on a computer
cluster. The EF also classifies and saves the remaining data according to their event types. The
final acceptance rate of 200 Hz makes it possible to store the selected events permanently for
physics analysis. Those events are distributed to world wide computer farms (see chapter 3.3).

The figure 3.8 gives an overview of the trigger system.

Figure 3.8: The trigger system of ATLAS [41]

In this thesis, the triggers L1J15 and L1J30 have been applied, as only information from LVL1 has
been used to select events in the first run periods. These level one triggers consider jet elements,
which are towers of 0.2× 0.2 in theη × φ space of the electromagnetic and hadronic calorimeters. If
the transverse energy of the cluster has a local maximum within a region∆η × ∆φ = 0.4× 0.4 (see
figure 3.9) and|η jet| < 3.2, the jet is reconstructed at LVL1. It passes the trigger if the transverse
energy-deposition inside∆η × ∆φ = 0.8× 0.8 (4× 4 jet elements) is above a certain threshold (in
this case 15 GeV and 30 GeV respectively) [42].

Figure 3.9: The trigger tower of size 4× 4 jet elements (∆η × ∆φ = 0.8 × 0.8) inside the electromagnetic
and hadronic calorimeter. In grey the cluster transverse energy with a maximum inside a region of 2× 2 jet
elements (∆η × ∆φ = 0.4× 0.4) is illustrated [42].
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3.3 Data & Computing Grid

In order to cope with the design trigger rate of 200 Hz (relating to 1 PB of data per year), sophisticated
analysis software as well as a new, powerful computing infrastructure are needed. Therefore, the
data & computing grid was invented: a world wide network of computer clusters, where offline
reconstruction of observables of the recorded events and the user analyses are done. Computing
centers all over the world are connected in a hierarchicallyorder (see figure 3.10). Starting from
Tier-0 at CERN, the data is processed for the first time and distributed world wide to the adjacent
centers, the Tier-1, where the data processing is pursued, stored and distributed to the hierarchically
next centers. These are called Tier-2, which perform largerphysics analyses, Monte Carlo simulation
sample productions (see chapter 5) and also store selected data sets. Finally, the Tier-3 clusters are
used for smaller user analyses and test jobs.
The full datasets should solely be available at Tier-0, while the other Tier centers should only keep
fractions to distribute the load. Instead of downloading the datasets needed for a user analysis, the
procedural method is to send the analysis to the data on the data & computing grid, let it process there
and finally get the results back to the local computer [5].

Figure 3.10: The structure of the data & computing grid [5]
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Chapter 4

Jets

This thesis focuses on the determination ofαs via the differential 2-jet-rate. Therefore, jets are the
most important signature for these studies.
In this chapter, the production and reconstruction of jets is described. As there are several jet algo-
rithms, assigning particles to a jet in different ways, the most common clustering methods are shown.
These are the cone, thekT and the anti-kT algorithms.

4.1 Jet Production

Protons are not elementary particles, but have a substructure. As already mentioned in chapter 2.5,
they are composed of quarks and gluons. In an ideal case the collision of two protons leads to a high
energetic interaction between a parton of one proton with a parton of the other proton (in reality, there
can appear further interactions, see chapter 2.6.2). The two scattered partons appear at large angle
(respective to the beam axis) and emit gluons and quarks. These quarks and gluons radiate gluons
themselves, which decay into quark-antiquark-pairs - a parton shower is induced. The bunches of
these high energetic partons are called parton jets. These color-charged particles hadronize to color-
neutral particles - the particle jet is formed (see figure 4.1). After the hadronization, the jets consist
of stable and long-living particles, such as pions. The particles are absorbed in the calorimeter,
clustered to jets and assigned to the original parton. For the allocation of the particles and energy
depositions in the calorimeter, jet algorithms are necessary [2]. First of all, the cone algorithm will
be introduced, followed by thekT algorithm. Finally, the new standard of the ATLAS experiment, the
anti-kT algorithm, is presented.

4.2 Cone Algorithm

The cone algorithm has been the standard jet reconstructionalgorithm at former hadron collider
experiments like Tevatron. As it is still quite often used atLHC, it is described in this chapter.
However in the last few years it has been replaced more and more by the anti-kT algorithm (see
chapter 4.3.3).
The cone jet algorithm clusters particles inside a fixed conein azimuthal angleφ and pseudorapidity
η . The simplest version of the cone algorithm assigns particles to a jet, which are inside a certain
cone with radiusR=

√

∆η2 + ∆φ2 (typically 0.4 or 0.7) around a seed1 (where∆η and∆φ represent
the differences between theη and φ values between the seed and the investigated particles). Ifa
particle is inside the cone, the centroid of this new clusteris recalculated and a new jet axis is defined.
Particles outside the cone are not allocated to the jet. Thisleads to round jets (see figure 4.2, left).

1Seeds are particles or preclustered objects with a certain minimal transverse momentumpT (typically a few GeV).
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Figure 4.1: The formation of jets. At the beginning, the parton jet is build. The subsequent hadronization
leads to the particle jet. Finally, the jets are reconstructed in the calorimeter in accordance with their energy
depositions [43].

Figure 4.2: Left: Comparison between cone andkT jets [43]. Right: 2 cone jets overlap each other [43]

Due to the geometrical association, the algorithm has to deal with some difficulties. As the whole
detector has to be covered with cones, overlapping jets can appear (see figure 4.2, right). If a particle
is for example inside the cones of two jets, further iterations are necessary to assign the particle to
one of them. In addition, the cone algorithm is not infrared safe: If a gluon with low transverse
momentum is e.g. emitted between two jets, the two jets may beincorrectly merged to one, changing
the jet multiplicity in the final state (see figure 4.3).

Furthermore, the cone algorithm is not collinear safe. Collinear means that the angle between a
high energetic radiated gluon and the radiating parton is very small. This can also result in a wrong
jet multiplicity in the final state, as the cone algorithm cannot cover these areas in the phase-space.
Instead of assigning the high energetic gluon to the existing jet, the cone algorithm might find two
jets.
However, there are some improved cone algorithms like the seedless, the midpoint, or the SISCone
algorithm, solving some of these problems (see e.g. [44]).
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Figure 4.3: The two jets in the final state (left) are merged to one jet (right) because of the emission of a soft
gluon. Due to the lack of infrared safety, the jet multiplicity changes from 2 to 1. Soft gluon radiation is large
because of the infrared divergences of the cross section [6].

4.3 kT Algorithm

This chapter summarizes thekT algorithm described in [45] with a focus on the settings usedin this
analysis. ThekT algorithm has the advantage that there are no overlapping jets, as the jet size is
dynamic and therefore every particle is assigned to exactlyone jet. Hence, the jets are not round
anymore (see figure 4.2, left). Finally, thekT algorithm is collinear and infrared safe in each order of
perturbation theory [46] and has only a small dependency on hadronic corrections (see chapter 7.2).
Originally, there have been two different kinds of thekT algorithm: the inclusive and the exclusive
mode. The difference is the definition of the hard final state jet and the separation from the beam
remnants. In both cases the resolution variablesdkB (the distance in momentum-space between an
objectk and the beam jetB, i.e. proton rest) anddkl (the distance in momentum-space between an
objectk and an objectl ) are evaluated for all final state objectshk and pairshk andhl . The definition
of the resolution variables can be chosen among different angular definitions, influencing the behavior
of thekT algorithm in the soft and collinear limits.
In the angular scheme(typically used ine+e− annihilation analyses) the resolution variables are
defined as follows:

dkB = 2E2
k (1− cos(ΘkB)) and (4.1)

dkl = 2min(E2
k ,E

2
l )(1− cos(Θkl)) . (4.2)

Another definition is the∆R scheme:

dkB = p2
Tk and dkl = min(p2

Tk, p2
T l)× R2

kl with (4.3)

R2
kl = (ηk − ηl )

2 + (Φk − Φl )
2 . (4.4)

For hadron-hadron collisions this is the most common choiceand therefore used in this thesis. As
the distance between two objects in the transverse momentum-space2 is used, no seeds are needed
for the kT algorithm. Furthermore it considers the characteristic that the decay products have the
tendency of having similar momenta.

An alternative definition ofR2
kl is provided by theQCD emission scheme(see [45] for further details).

2The transverse momenta of the particles is in this case defined respective to the direction of the parton (represented by
the jet).



30 Chapter 4 Jets

Besides the jet resolution variables, the recombination schemes, i.e. how two objectshk andhl are
merged into a single object with 4-momentumpkl , can be controlled by the user:
TheE schememakes a simple 4-vector addition

pkl = pk + pl , (4.5)

resulting in massive final state jets. The E scheme is the default in FastJet (see chapter 5.1) and it has
been used in this thesis - except chapter 7.4, where theET schemehas been applied.
TheET scheme is defined via

ET,i j = ETi + ET j, (4.6)

ηi j =
ETiηi + ET jη j

ET,i j
and (4.7)

Φi j =
ETiΦi + ET jΦ j

ET,i j
. (4.8)

Although this scheme deals with massless as well as massive input objects, the combined output
objects are massless.
Other choices of the recombination scheme are thepT scheme, the p2

T schemeand theE2
T scheme

(see [45] for further information).

4.3.1 Inclusive Mode

When using the inclusive mode of thekT algorithm, the distance in momentum-space between
a particle and the beamdkB is scaled by the dimensionless parameterR2 (usually set to 1.0):
dk = dkB × R2. Due to this scaling, which defines the extent of the jets, theinclusivekT algorithm
behaves similarly to a cone algorithm. In the next step, the smallest distance among alldk anddkl is
found. On the one hand, ifdkl is smaller thandk, the objectshk andhl are merged to a new object
with momentumpkl .
On the other hand, if adk is smaller thandkl , the objectk is defined as a jet and therefore removed
from the list of objects to be merged. This procedure is repeated until all particles are assigned to
jets.
In contrary to the exclusive mode (see chapter 4.3.2) there is no cut-off parameter as a stopping
condition. The only parameter influencing the size and the number of jets isR. The low-pT scattering
fragments are therefore not strictly separated from the hard subprocess, meaning that parts of the
proton remnants are possibly included in the reconstructedjets. As a consequence, the inclusivekT

algorithm finds a large number of jets.

4.3.2 Exclusive Mode

In this analyis, thekT algorithm has been applied in the exclusive mode, as it provides flip-values
from n + 1 to n reconstructed jets. These flip-values have been used to investigate the differential
jet-rates.
With this algorithm the hard final state is explicitly separated from the soft beam remnants. The
stopping parameterdcut (with the dimension of energy squared) defines the hard scaleof the process:
Λ2

QCD ≪ dcut ≤ s, with s being the squared center-of-mass energy andΛQCD the only free parameter
of QCD with a value of a few hundred MeV.
The flow chart 4.4 visualizes the reconstruction procedure.

First of all, the algorithm searches for the smallest value among alldkl anddkB. This value is called
dmin. If dkB has the smallest value, the objectk is included to the beam jet (i.e. proton rest) and
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move to beam jet
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Figure 4.4: Flow chart: jet reconstruction with thekT algorithm in the exclusive mode

removed from the list. In the opposite case (dkl < dkB), the objectshk andhl are merged (analogously
to the inclusive mode) to a single object.
This merging process is repeated untildmin > dcut. Then, all remaining objects are classified as jets
and the algorithm stops. Hence thedcut parameter defines the maximal distance in momentum-space
between two particles. A small value ofdcut (dcut → Λ2

QCD) leads to many jets in the final state,
whereas for a large value (dcut → s) a small jet multiplicity is obtained [6,45]. (A stopping parameter
of 400 GeV2 e.g. corresponds approximately to a minimum jet momentum of20 GeV.)
Instead of setting adcut value, it is also possible to fix the jet multiplicity to a certain value and retrieve
the according value ofdmin. By choosing to stop the merging when 3 jets are reached, it ispossible to
get the flip-value, where the multiplicity drops from 3 to 2 jets (in the following calledd23) - which
has been used for this analysis (see figures 4.5).

4.3.3 Anti-kT Algorithm

The default algorithm used in ATHENA3 is the anti-kT algorithm. This algorithm is infrared and
collinear safe and in addition behaves like a perfect cone algorithm. The resolution variables are
defined along the lines of regularkT jets besides having negative exponents:

dkB = p−2
Tk and dkl = min(p−2

Tk, p−2
T l )× R2

kl with (4.9)

R2
kl = (ηk − ηl )

2 + (Φk − Φl )
2 . (4.10)

3ATHENA is a software framework for studies of the ATLAS experiment, see chapter 5.4.
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Figure 4.5: Event with 3 jets (left) and 2 jets (right) in the final state [47]. The leading jet is shown in green.
At the transition from 3 to 2 jets, the blue and the yellow jet are merged to one jet, having the highest transverse
momentum in this event. The valued23 describes the transition from 3- to 2-jet-events.

Due to this definition, this algorithm begins with high energetic particles and adds low energetic
objects at the end. This is the reason why the anti-kT algorithm cannot be used for this analysis,
because in this case the flip-values of the last clustering steps describe the apposition of soft particles
and are therefore not useful for the determination ofαs from gluon radiation at a high energy-scale.

4.4 Inputs to Jet Reconstruction

The above described jet algorithms can be applied on severalobjetcs, like particles. At collider exper-
iments, particles can only be measured indirectly, e.g. viatheir energy depositions in the calorimeter
cells. In order to combine the 180,000 calorimeter cells of ATLAS (see chapter 3.2) into discrete
objects as jet inputs, two generic approaches are available[48]:
On the one hand, there is thetower grid , a projective fixed 2-dimensional grid inη andφ (grid size:
η × φ = 0.1 × 0.1), which is filled with calorimeter cell energies calibrated at the electromagnetic
(em) scale.

Figure 4.6: Standard calorimeter tower input to jet finding [49]

Noise suppression is performed by using only cells, being selected by a special algorithm [50]. This
algorithm is commonly known as the 4-2-0 seed and neighbor noise suppression algorithm. It is
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based on a signal-to-noise ratio of seed cells and neighbors.

The topological clustering (topo-clusters) on the other hand yields 3-dimensional energy clusters.
The clusters group calorimeter cells into energy “blobs”, representing the energy depositions of
particles entering the calorimeter. The results are clusters with mutable numbers of cells. For noise
suppression, the 4-2-0 scheme is used.

Instead of considering the calorimeter information, jets can be build from other 4-momentum objects,
like truth particles 4 or tracks. The latter use the track information of the inner detector (see chapter
3.2.3). 3D track jets employ z-clustering in order to ensurethat all tracks are coming from the same
interaction [48].

4.5 Jet Correction

In order to get rid of detector effects, the calorimeter response and the jet energy have to be adjusted.
Finally, events have to be cleaned from jets with bad quality. The details are explained in the following
three subsections.

4.5.1 Correcting for Calorimeter Response

The calorimeter (see chapter 3.2.4) determines the energy of jets. However, the calorimeter has to
cope with non-linearity of response of the detector to the particles’ energy deposits. Therefore, the
calorimeter response has to be corrected to ensure proportionality between the energy of the particles
and the measured energy.
To calibrate the jets, two different approaches are used: a global and a local calibration. In theglobal
cell weighting (or H1-style) the correction is done from top to down: First, the jet algorithm runs
over uncalibrated (i.e. at em scale) calorimeter towers or topo-clusters to reconstruct the final state
objects as jets and MET5. Second, cell-by-cell weights are used, depending on the measured cell
energy-density and position. This results in jets calibrated to the hadronic scale.
A bottom-up approach is done by thelocal hadronic calibration. In this case, em calibrated
topo-clusters are used. In a first step, the calorimeter objects are fully reconstructed and the clusters
are calibrated by discriminating the electromagnetic and hadronic clusters. Then, jets and MET
are reconstructed from calibrated topo-clusters. The local hadronic calibration also results in jets
calibrated to the hadronic scale [51].
As already outlined, thekT algorithm in the exclusive mode is not the default in ATHENA and jets
reconstructed by this algorithm are therefore not stored inthe analysis objects. In order to apply this
algorithm, the user has to rerun the jet reconstruction, using local calibrated topo-clusters (LCTopo)
as input. It is not possible to rerun jets on global weighted clusters, as they depend on the jet
algorithm used. Thus, only LCTopo and truth particles (see below) have been used in this analysis.

4.5.2 Jet-Energy-Scale

The above correction of the calorimeter response ensures proportionality between the particle energy
and the energy measured in the calorimeter.
In addition, an absolute energy scale is needed, as not everyparticle created during the scattering

4Truth particles are all particles having their origin in a quark or gluon. No particles are lost in the reconstruction process
as calorimeter effects are neglected. Hence, the particlescreated by Monte Carlo generators are reconstructed without loss
of energy.

5MET stands for the missing transverse energy due to undetected particles.
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and hadronization process can be detected by the calorimeter, resulting in a diminished jet energy
measurement. This is caused e.g. by particles, crossing thecalorimeter without losing all of their
energy. Moreover, energy can also be lost in non-instrumented materials of the detector in front of
the calorimeter, like coils, cables, supports, etc.
These effects (as well as algorithm inefficiencies) are compensated byjet-energy-scalecorrections.
The jet-energy-scale is determined using simulation programs, but shall be derived from measured
data later. The software framework ATHENA (see chapter 5.4)can simulate detector effects for
Monte Carlo samples and reconstruct jets from calorimeter cells (like it is done with real data). Addi-
tionally, it is possible to build jets (from simulated data)with truth particles as inputs. Jets consisting
of such particles created by Monte Carlo generators and hitting the calorimeter are commonly known
as truth jets. The next step is to compare the reconstructed jet energy with the energy of the truth
jets in the accordingpT-bins in order to get the jet-energy-scale. Then, it is possible to rescale the
measured jet energy in accordance with the energy of the original quark or gluon.
The calibration of the jet-energy-scale in ATLAS is unfortunately only done for the anti-kT algo-
rithm6. In this analysis, a bin-by-bin correction has therefore been applied to correct the exclusivekT

jets for calorimeter effects (see chapter 7.1).

4.5.3 Jet Cleaning

The quality of jets [53] is divided into three groups: bad jets, ugly jets and good jets. If jets are not
associated to in-time real energy depositions in the calorimeters, they are calledbad jets. Possible
sources are e.g. hardware problems, LHC beam conditions as well as cosmic ray showers. To identify
such jets, there are a number of cuts available (see table 4.1).

Bad Jet Definition

EM coherent noise ( fEM >0.95 and|Q| > 0.8) or

HEC spike ( fHEC >0.8 andn90 ≤5) or

Cosmics - |t| > 50 ns

Beam background

Table 4.1: Definition of bad jets:fEM stands for the electromagnetic fraction,fHEC for the energy fraction in
the hadronic end cap calorimeter (HEC),Q for the jet quality (i.e. the fraction of LAr cells with a cellQ-factor
larger than 4,000, whereQ measures the difference between the measured and the predicted pulse shape that is
used to reconstruct the cell energy),t for the jet time, which is computed as the energy squared cells mean time
andn90 being the minimum number of cells containing at least 90% of the jet energy [53,54]. In chapter 6.3.2
some of these parameters are explained in more detail.

It should be mentioned that newer jet cleaning cuts have beendeveloped (see table 4.2). Unfortu-
nately, they have not been implemented in the ATHENA framework yet. This is the reason why the
older cuts from table 4.1 have been used for this analysis. These cuts are only slightly different from
the definition of the recent loose cleaning cuts.
With the loose definition, most of the fake jets and missing tails due to detector failures are removed
introducing a very small jet inefficiency of< 0.1%. The tight definition leads to very clean data
samples with an inefficiency of a few percent.

Ugly jets relate to energy depositions in areas with non-accurate energy measurements, like the
transition region between the barrel and the end cap. If jetsare neither bad nor ugly, they are called
good jets. In this thesis, events with one or more bad jets have not beenanalyzed.

6The JES at ATLAS currently has an uncertainty of around 5% [52].
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Loose Tight

EM coherent noise ( fEM >0.95 and|Q| > 0.8) or ( fEM >0.90 and|Q| > 0.6) or

HEC spike ( fHEC >0.8 andn90 ≤5) or ( fHEC > 1− |Q|) or

( fHEC >0.5 and|Q| > 0.5) or ( fHEC >0.3 and|Q| > 0.3) or

Cosmics - |t| > 25 nsor

Beam background fEM <0.05 or fEM <0.10 or

( fmax>0.99 and|η | < 2) ( fmax>0.95 and|η | < 2)

Table 4.2:New definition of bad jets:fEM stands for the electromagnetic fraction,fmax for the maximum energy
fraction in one calorimeter layer,fHEC for the energy fraction in the hadronic end cap calorimeter (HEC), Q
for the jet quality,t for the jet time andn90 for the minimum number of cells containing at least 90% of thejet
energy [53].

In chapter 6.3.2 some jet cleaning variables are studied andthe cuts are applied to real data.
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Chapter 5

Analysis Software

The used programs are described in this chapter. First of all, the program NLOJET++ [17] is in-
troduced, allowing the calculation of parton production inleading and next-to-leading order. Unfor-
tunately, there is no hadronization model implemented in NLOJET++. Thus, hadronization effects
and the influence of the Underlying Event have been studied with the program PYTHIA [21]. HER-
WIG [55] has been used to study the systematic uncertainty ofthe hadronization. Finally, the software
framework ATHENA [56] is described. This program has been used to analyze fully simulated data
(using Monte Carlos generators1) as well as real data.

5.1 NLOJET++

The program NLOJET++ (version 4.1.3) [17] by Zoltan Nagy is anumerical integration program,
calculating cross sections (in units of nanobarn) for parton productions. For this analysis, the
program has been used to calculate proton proton collisions2 at a center-of-mass energy of 7 TeV.
NLOJET++ calculates the cross sections of the leading order(LO or born), the next-to-leading order
(NLO) contributions, or of both together (full), using the Catani-Seymour dipole subtraction method.
This method is modified to make the calculation computationally simpler [57].
The total cross section in NLO accuracy consists of the leading order cross section (i.e. the integration
over the fully exclusive born matrix element ofk final-state partons in the available phase-space) and
the NLO term:

σ = σLO + σNLO =

∫

k
dσB + σNLO . (5.1)

The NLO contribution is composed of the real correction, being the integral of the born matrix
element ofk + 1 final state partons, and the virtual correction. The latteris the integral of the
interference term between the one-loop amplitudes ofk final state partons and the born-level:

σNLO =
∫

k+1
dσR +

∫

k
dσV . (5.2)

Both terms are divergent. To cancel the singularities, various methods are known, all based on the
same idea of subtracting an auxiliary cross section from thereal corrections. This is done in a way
that dσA has the same singular behavior as dσR. dσA should be analytically integrable over the
one-parton subspaces, causing the soft and collinear divergences. Finally, it can be combined with
the virtual contribution to a finite correction. The NLO termcan then be written as [58]:

σNLO =
∫

k+1
[(dσR)ε=0 − (dσA)ε=0] +

∫

k
[dσV +

∫

1
dσA]ε=0 . (5.3)

1Monte Carlo generators apply stochastic methods and calculate physical processes and effects based on random num-
bers and statistical probabilities.

2NLOJET++ additionally contains matrix elements for proton-antiproton ore+e− collisions (among other processes).
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The Catani-Seymour dipole subtraction method is one possible implementation for the numerical
calculation of the NLO cross section.

For each randomly chosen element of the phase-spacedx1, dx2 the according cross sectiondσ is
calculated in NLOJET++, representing the weight of the integration over the whole phase-space [2].
The output of the calculation is saved as a binary file. The results are then normalized and the
statistical errors are calculated [59].
To cluster the final state partons according to the jet definition (in this case the exclusivekT

algorithm), the program FastJet3 is used.
When observing 2-parton-events (where no emission of an additional parton takes place) the cross
section of the LO (born) term is proportional toα2

s (see figure 5.1, left). 3-parton events are in
leading order proportional toα3

s (see figure 5.1, right).
The NLO term includes some corrections of the cross sections. For 2-parton-events where either
an emission of an additional parton or some virtual loop corrections appear, the cross section is
proportional toα3

s . Likewise the cross section of 3-parton-events is in NLOσ ∼ α4
s [2].

Figure 5.1: Left: LO process without the emission of an additional parton (the cross section is proportional to
α2

s ). Right: LO process with an emission of an additional parton(the cross section is proportional toα3
s ) [2]

The parton distribution function (see chapter 2.5) CTEQ66Mhas been used in this analysis.

As an example, the figure 5.2 shows thepT distribution of parton jets for 3-parton-events. Here, the
kT algorithm in the exclusive mode was forced to find exactly 3 jets with pT > 20 GeV and|η | ≤ 2.6.
108 events have been calculated, where NLOJET++ applies various iterations (like additional ISR or
FSR) for each event. The black curve (full) represents the sum of the leading order term (LO or born)
and the next-to-leading order term (NLO). In some bins full is not exactly LO+NLO, because for all
three curves different events have been calculated (a simultaneous calculation of the same event in
LO and NLO is not possible). The NLO term gives a correction ofabout 10%. In spite of the high
statistics of 108 events, the phase-space is not sampled often enough, because the NLO curve drops
down steeply (compared to the other curves). Furthermore, there are even some negative entries at
pT > 200 GeV.

5.2 PYTHIA and Underlying Event Models

The Monte Carlo event generator PYTHIA (version 6.4.24) [21] has been used to study the influence
of hadronization effects and the Underlying Event. First ofall, the program PYTHIA is shortly
described, including the simulated subprocesses. Then, some UE models of PYTHIA are presented.

3FastJet is a fast implementation of severalkT algorithms forppcollisions. It is partly based on tools and methods from
the computational geometry community as well as an originalimplementation of thee+e− algorithms. The jet implemen-
tations can be accessed via a plugin mechanism of the FastJetinterface [60].
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Figure 5.2: pT distribution inLO (born), NLO and full (LO+NLO)

5.2.1 PYTHIA

The Monte Carlo generator PYTHIA is commonly used to simulate hadronic processes. With the
help of random generators quantum mechanical fluctuations of the particle formations and decays
are simulated depending on calculated matrix elements. As aleading order generator, PYTHIA only
uses the matrix elements in first order of the perturbation theory of QCD for the simulation. The
hadronization of the generated partons is described by the string model (see chapter 2.3).
PYTHIA has implemented a set of different PDFs. In addition,it is possible to link external PDF
libraries to the program. In order to be consistent with NLOJET++, the PDF CTEQ66M has been ap-
plied using the PDF sets from the Les Houches Accord PDF Interface LHAPDF (version 5.8.4) [61].
The jet clustering is done via a C++ implementation of thekT clustering algorithm, described in [45],
as it can easily be included into PYTHIA. The implementationof the exclusivekT algorithm shows
small differences compared to FastJet, which handles the casedmin = dkB in an optimized way, but
hardly changes the results.
In this analysis, QCD events coming frompp collisions at a center-of-mass energy of

√
s = 7 TeV

have been studied (see table 5.1 for the chosen subprocesses4). For further information on the sub-
processes, see [21].

The parameter CKIN(3) defines the minimal transfer of transverse momentum of the colliding
particles via a cut-off in the phase-space. In table 5.1, thevalue of pTmin was set to 20 GeV. This
means that relatively low energetic 2→ 2 collisions are generated5.

The influence of the detector is not simulated in PYTHIA. Thismeans that all created particles are
detected and appear in an event. Particles very close to the beam or in regions with largeη are e.g.
not detected in real experiments due to the detector geometry. Nonetheless, PYTHIA offers plenty of
opportunities to study high energetic processes, like the influence of the UE.

4In bracket the number of the according subprocess (MSUB) is shown. It can be either on (1) or off (0).
5Additionally to these parameters, PYEDIT has been set to 1 inorder to get only stable final state particles.
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Parameter Subprocess

MSUB (11,1) f + f ′ → f + f ′(QCD)

MSUB (12,1) f + f̄ → f ′ + f̄ ′

MSUB (13,1) f + f̄ → g+ g

MSUB (28,1) f + g → f + g

MSUB (53,1) g+ g → f + f̄

MSUB (68,1) g+ g → g+ g

CKIN (3,20) pTmin at hard 2→ 2 scattering

Table 5.1: Subprocesses for the generation of the hard scattering process

5.2.2 Underlying Event Models

In order to simulate the Underlying Event, models are neededas perturbation theory cannot be
applied at this low energy range. Consequently, PYTHIA usesUE tunes, i.e. sets of parameters.
These UE models can be added to the simulation of the hard scattering process. The final state
particles (those from the UE as well as from the hard scattering) are then combined to jets.
Several of those UE tunes are available in PYTHIA. The according parameters have been tuned to
experimental data from predecessor experiments and extrapolated to the high center-of-mass energies
of LHC.
As none of the tunes describes the experimental data perfectly and nobody knows which tune
is the best approximation of the UE, three different, most recent tunes have been investigated in
this analysis:ATLAS MC09c [62], AMBT1 [63] (already including data gathered at LHC) and
PERUGIA10 [64].

These models use the newpT-ordered time-like final state parton shower (MSTP(81)=21). A descrip-
tion of the parameters can be found in [21]. A short explanation of some parameters and the default
values are shown in table 5.2.
The parameters of the UE tunes are chosen to describe the Underlying Event from CDF6 Run1 and
Run2 and D/O7 at Tevatron.
To study the Underlying Event at CDF, regions in theη-Φ-space have been analyzed, which are
sensitive to the UE (see figure 5.3). The direction of the leading calorimeter jet (jet#1) serves as a
reference of the azimuthal angle.∆Φ = Φ − Φ jet#1 stands for the relative angle between a charged
particle and the direction ofjet#1. Perpendicular to the plane of the hard scattering thetransverse
region(60o < |∆Φ| < 120o) is defined, which is sensitive to the UE.
To optimize the tunes, only charged particles withpT > 0.5 GeV inside|η | < 1 have been used. The
jet reconstruction has been done with a cone algorithm (see chapter 4.2) ofR= 0.7 (|η( jet#1)| < 2).
Two classes of events can be distinguished:

• Leading jet eventsare events with no further restrictions forjet#2 and jet#3.

• Back-to-back eventsare a special case of the first group, where two jets withpT > 15 GeV
appear, being almost back-to-back (|∆Φ| > 150o) with pT( jet#2)/pT ( jet#1) > 0.8. Here,
jet#1 lies in the “toward” region, whereasjet#2 is inside the “away” region.

The transverse regions are separated (according to the number of charged particles) into transMAX

6Collider Detector atFermilab
7D/O is a detector at Fermilab. The name comes from its location on the accelerator ring.
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Figure 5.3: Definition of the transverse region [26]

(i.e. region with the highest
ETsum= ∑

i

ET,i (5.4)

of the particles) and transMIN (i.e. region with the smallest particle ETsum), to separate the hard (ISR
and FSR) from the soft (beam remnant) component (see figure 5.4). The hard part can then be found
in the transMAX region and the soft part in the transMIN region [26,65,66].

Figure 5.4: Definition of transMax and transMin [26]

The model, where the UE is described by regions in theη-Φ-space, which are distant to the influence
of the leading jets, is called “swiss cheese model”, as the UEis cut out via round cone jets.
When using data from LHC, the “swiss cheese model” has also been used to describe the UE, with
the difference that the anti-kT algorithm has been applied.
To calibrate the UE models, the parameters from table 5.2 have been tuned to fit the UE data from
these regions. The modified parameters for the three UE models can be found in table 5.3.
The particular tunes are shortly described in the following:

• The parameters ofATLAS MC09c (adjusted by the ATLAS collaboration) employ thepT -
ordered parton shower with the MRST LO parton distribution functions. They are tuned to
describe charged particle multiplicity distributions in minimum bias events of proton-antiproton
collisions at 630 GeV and 1.8 TeV [62].

• AMBT1 was tuned by the ATLAS collaboration and uses the PDF MRST LO.The parameters
have been fit to ATLAS UE data and charged particle densities at 0.9 and 7 TeV. Additionally,
CDF Run1 UE analyses and ZpT-distributions, Run2 minimum bias and D/O Run2 dijet angular
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corrections have been used. The main tuning parameters are multiple parton interactions and
color reconnections [63].

• PERUGIA10 has been adjusted by Peter Skands [67]. To tune the soft QCD part, minimum
bias data from proton-antiproton collisions from Tevatronand CERN have been used. It is an
alternative to PERUGIA0 with more FSR off ISR, more beam remnant breakup and a higher
production of s s̄-quark-pairs [64].

In this analysis, PYTHIA has been used to study the UE, because the UE models describe the UE in
data better than HERWIG [55].

5.3 HERWIG

In order to study the systematic uncertainties due to hadronization effects (see chapter 8.2.5), the
Monte Carlo event generator HERWIG (version 6.510) [55] hasbeen used to simulate events at
parton and hadron level. The program is written in Fortran (anew version of HERWIG is also
available in C++, labelled HERWIG++).
HERWIG offers a broad range of physical processes, including lepton-lepton, lepton-hadron or
hadron-hadron scattering. The focus of the program is a detailed simulation of QCD parton showers.
These showers are branching processes. The branchings are ordered in an angle from a maximum to
a minimum value, which is determined by a cutoff [55].
HERWIG uses the cluster model to account for the hadronization (see chapter 2.3). In order to
simulate the Underlying Event, the program JIMMY [68] can belinked to HERWIG.
In this analysis, hard QCD processes have been simulated on parton as well as on hadron level, using
CTEQ66M from the external PDF set LHAPDF (version 5.8.4) [61].
The output is delivered in the HEP standard common block, labelled HEPEVT [55]. This data is
converted in order to be readable with PYTHIA, where the jet reconstruction is done, using a C++
implementation of thekT clustering algorithm [45].
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Parameter Default Description

MSTP 51 7 (CTEQ 5L) PDF set

MSTP 52 1 PDF set internal (=1) or pdflib (=2)

MSTP 3 2 QCD switch for choice ofΛQCD

PARP 62 1 GeV ISR IR cutoff

MSTP 64 2 ISR αs type

PARP 64 1 ISR renormalization scale prefactor

MSTP 67 2 ISR coherence option for 1st emission

PARP 67 4 ISR Q2
max factor

MSTP 68 3 ISR phase-space choice

MSTP 70 1 ISR regularization scheme

MSTP 72 1 ISR scheme for FSR off ISR

PARP 71 4 FSRQ2
max factor for non-s-channel processes

PARJ 81 0.29 GeV FSRΛQCD

PARJ 82 1 GeV FSR invariant mass cut-off

MSTP 33 0 inclusion ofK-factors

MSTP 81 1 UE model

PARP 82 2 GeV UE IR cutoff at reference energy scale

PARP 89 1800 GeV UE IR cutoff reference energy scale

PARP 90 0.16 power of energy-rescaling

MSTP 82 4 UE hadron transverse mass distribution

PARP 83 0.5 UE mass distribution parameter

PARP 84 0.4 UE mass distribution parameter

MSTP 88 1 beam remnant composite scheme

MSTP 89 1 beam remnant color connection scheme

PARP 79 2 beam remnant compositex enhancement

PARP 80 0.1 beam remnant breakup suppression

MSTP 91 1 beam remnant primordialkT distribution

PARP 91 2 GeV beam remnant primordialkT width< |kT | >
PARP 93 5 GeV beam remnant upper cut-off for primordialkT

MSTP 95 1 FS interaction color (re-)connection model

PARP 78 0.025 FS interaction color reconnection strength

PARP 77 0.0000 FS interaction color reco high-pT damping strength

Table 5.2: Default parameters in PYTHIA.kT is the transversal momenta evolution scale [21].
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Parameter ATLAS MC09c AMBT1 Perugia10

MSTP 51 20650 (MRST2007LO) 20650 (MRST2007LO) 7 (CTEQ 5L)

MSTP 52 2 2 1

MSTP 3 2 2 1

PARP 62 1.0000 1.0250 1.0000

MSTP 64 2 2 3

PARP 64 1.0000 1.0000 1.0000

MSTP 67 2 2 2

PARP 67 4.0000 4.0000 1.0000

MSTP 68 3 3 3

MSTP 70 0 0 2

MSTP 72 1 1 2

PARP 71 4.0000 4.0000 2.0000

PARJ 81 0.2900 0.2900 0.2600

PARJ 82 1.0000 1.0000 1.0000

MSTP 33 0 0 0

MSTP 81 21 21 21

PARP 82 2.3150 2.2920 2.0500

PARP 89 1800 1800 1800

PARP 90 0.2487 0.2500 0.2600

MSTP 82 4 4 5

PARP 83 0.8000 0.3560 1.5000

PARP 84 0.7000 0.6510 0.4

MSTP 88 1 1 0

MSTP 89 1 1 0

PARP 79 2.0000 2.0000 2.0000

PARP 80 0.1000 0.1000 0.1000

MSTP 91 1 1 1

PARP 91 2.0000 2.0000 2.0000

PARP 93 5.0000 10.0000 10.0000

MSTP 95 6 6 8

PARP 78 0.2240 0.5380 0.0350

PARP 77 0.0000 1.0160 1.0000

Table 5.3:Parameters of different UE tunes. In addition to these parameters, Perugia10 sets some specificΛQCD

values via MSTU(112)=4, PARU(112)=0.1920, PARP(1)=0.1920, PARP(61)=0.1920 and PARP(72)=0.2600.
Furthermore, some fragmentation parameters are set for allthree UE tunes [21].



5.4. ATHENA 45

5.4 ATHENA

ATHENA8 [56] is an implementation of a framework for high energy physics with the name
GAUDI [70]. It has been specified for the ATLAS experiment (originally, GAUDI has been
developed for LHCb). This object-oriented ATLAS software framework is designed to process and
reconstruct real data and to perform physics analyses.
Additionally, simulated data from Monte Carlo generators can also be processed. For this reason, the
geometry and the behavior of the ATLAS detector components are simulated as good as possible. To
simulate the detector responses and the impact of the detector material on the final state particles, the
program GEANT4 [71] is used.
Analyses with ATHENA can run on local machines as well as on the data & computing grid. For
the user analysis, a Python file (commonly known asjoboption) is needed to control and configure
ATHENA. This file is read by the application manager and allows the interactive modification of
diverse parameters. The joboption e.g. constitutes which triggers or jet algorithms are used when
running on data.
In this analysis, ATHENA has been used to analyze both real data and fully simulated data from
Monte Carlo generators. This simulation is done in several steps (see figure 5.5). First of all,
scattering events are simulated by MC generators like PYTHIA [21], HERWIG [55], Alpgen [72], or
MC@NLO [73]. The generated particles are stored in the HepMCformat and are then modified by
GEANT4. This package simulates the detector material as well as the magnetic field and furthermore
includes effects like multiple scattering, the loss of energy and photon conversion. Afterwards,
the expected detector responses (like pulses or drift times) are calculated based on the GEANT4
hits during the digitization. As the detector effects are included, the simulated data is at this state
comparable to real data. Instead of running the full simulation, digitization and reconstruction chain,
the program ATLFAST [74] can be used, approximating these steps by smearing the 4-vectors from
Monte Carlo generators according to the detector resolutions (taken from fully simulated events).
The computation time is in this way reduced by several ordersof magnitude [5]. (In this analysis,
only fully simulated data have been used.)
In the next step particle tracks and calorimeter clusters are reconstructed, yielding the four-momenta.
These are then stored as candidates for physics objects (e.g. electrons or jets) in ESDs9 and AODs10

(being derived from ESDs).

For typical user analyses, centrally produced ntuples are used. These are then analyzed with
programs like Root [75]. The ntuples are derived from AODs and contain only observables, which
are important for the specific physics channel that is investigated (each working group has its own
specific ntuples).
Unfortunately, at this state, it is not possible anymore to reconstruct jets with a certain (non-standard)
algorithm. Thus, this analysis runs directly on AOD files (and not on the ntuples of the Standard
Model working group), which can only be accessed within the ATHENA framework. As thekT

algorithm in the exclusive mode is not stored in the AODs, theclustering process has to be re-run
using local calibrated topo-clusters as an input (see chapter 4.4). The jet reconstruction is done by
the program FastJet11 using the jet reconstruction package [76] of ATHENA.
The output of the AOD analysis is then analyzed with Root.

ATHENA is constantly under development resulting in several available releases. In this thesis,
ATHENA release version 15.6.10.6 has been used [77].

8The ATHENA framework is written in C++ (with parts released in Fortran) and Python [69].
9EventSummaryData: reconstructed information, containing enough objects (like the original calorimeter clusters) to

redo the reconstruction. ESDs are used for calibration and optimization of jet reconstruction algorithms.
10AnalysisObjectDatas contain less information than ESDs. The focus of the stored data lies on physics objects (like

four-momenta or reconstruction quality). The reconstruction of jets with non-standard algorithms is still possible.
11The program FastJet has also been used for the jet reconstruction in NLOJET++.
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Figure 5.5: Monte Carlo simulation with the ATHENA framework (based on [5])



Chapter 6

Differential 2-Jet-Rate

In this chapter the differential 2-jet-rate is investigated. This observable has been used in this analysis
to determine the strong coupling constantαs. Starting with a short motivation, the differential 2-jet-
rate at LO and NLO is studied, using the program NLOJET++. In the next section, real data from
the ATLAS detector at the LHC are analyzed. For this reason the datasets used, run list and triggers
are presented and jet cleaning cuts are provided. Then, 3-jet-events and 4-jet-events are compared in
order to separate them. The real data are then compared to fully simulated data from PYTHIA as well
as to calculations from NLOJET++. Finally, simulations from PYTHIA at parton level are checked
against calculations from NLOJET++.

6.1 Motivation

There are several different ways to determine the strong coupling constant.αs is included into every
observable where jets are involved. These observables can be jet cross sections, ratios of jet cross
sections or the internal structure of jets. Inclusive single jet- and multi jet-events (see e.g. [78]) can
for example be used forαs studies. Event shapes (often measured via the variable thrust) are also
correlated toαs. In addition,αs can be determined from hadronicτ decays [79], from Z decays or
from lattice QCD.
The transition parameter from 3→2 jets from the Durham [80] jet algorithm has been used for the
αs determination in former collider experiments, especiallyat e+e− colliders. This flip-parameter
is equivalent to the measurement of the ratio of trijet to dijet events. In this way, the theoretical
uncertainties can be reduced as many of them cancel in the ratio.
The kT algorithm in the exclusive mode is based on the Durham jet algorithm and therefore also
allows to access the flip-values from 3→2 reconstructed jets (see chapter 4.3.2). These flip-valuesare
not very sensitive to the jet-energy-scale and hence allow the measurement ofαs at an early stage of
the experiment. Figure 6.1 shows the values ofαs, measured with different methods.

By combining many different measurements, the world average was set toαs(MZ) = 0.1184±0.0007
[81].

6.2 Studies with NLOJET++

The program NLOJET++ (see chapter 5.1) calculates parton production at leading and next-to-leading
order. The idea of theαs determination in this thesis is to perform a fit forαs of calculations from
NLOJET++ to real data. In order to get the differentαs dependencies, NLOJET++ has been used to
calculate 2-parton-events at NLO, 3-parton-events at LO aswell as NLO and 4-parton-events at LO.

47
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Figure 6.1: Summary of measurements ofαs(MZ). The vertical line and yellow band mark the final 2009
world average value ofαs(MZ) = 0.1184± 0.0007 determined from these measurements [81].

6.2.1 d23 Distributions of 2-Parton-Events

First of all, 108 events with 2 partons (pT > 20 GeV and|η | < 2.6) at a center-of-mass energy of
7 TeV have been calculated at NLO. A leading order distribution of d23 is obviously not available
when simulating 2-parton-events, because the flip-value from 3 to 2 is zero, as there are no events at
LO with more than 2 jets. In this case the full calculation is therefore identical with the calculation of
the NLO term. The figures 6.2 show the distribution ofd23 of 2-parton-events at NLO.
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Figure 6.2: d23 distribution of 2-parton-events a) logarithmical and b) non-logarithmical inNLO. Due to the
large statistics, the error bars are very small.

From 400 GeV2 on the distribution decreases smoothly to higher values ofd23. The jet clustering
algorithm (see chapter 4.3) and the cut on the jets’ transverse momenta cause a cut atd23 = 400 GeV2.
As a minimum transverse momentum of at least 20 GeV is demanded for all jets, the valuedkB = p2

Tk
of the exclusivekT algorithm is at least 400 GeV2. The valuesd23 < 400 GeV2 are hence all coming
from dkl = min(p2

Tk, p2
T l) × R2

kl, with an Rkl value smaller than 1. As FastJet handles this region
slightly differently than thekT jet implementation used for the simulations from PYTHIA, a cut
has been set atd23 = 400 GeV2 and events withd23 < 400 GeV2 have been ignored for theαs

determination. The peak at zero is due to virtual corrections at NLO where no additional parton in
the final state appears. The flip-value from 3 to 2 for these events with only 2 jets in the final state is
zero.
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In this distribution, many different values ofαs are included as there is no distinction between different
values ofQ. To account for theQ dependency ofαs, Q has been approximated by thepT of the leading
jet. The values ofd23 are allocated to intervals of the leading jetpT of the associated event1. Six
different pT intervals with a width of 20 GeV have been chosen, covering apT region from 20 GeV
up to 140 GeV (see figures 6.3).
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Figure 6.3: d23 distributions of 2-parton-events, separated inpT intervals of the leading jet inNLO calculation

The bin width amounts to 100 GeV2, 200 GeV2 and 300 GeV2 for figures a) to c), for figure d) and
for figures e) and f), respectively.
In consistence with the clustering algorithm (dkB = p2

Tk), the maximum values ofd23 relate top2
T of

the right boundary of the according interval (e.g. 1600 GeV2 for figure a) with apT interval from 20
to 40 GeV). In this extreme case, all jets have more or less thesame transverse momentum (e.g. in
figure a) the third jet, being crucial for the flip-value, musthave apT of around 40 GeV).
Higher transverse momenta therefore lead to higher values of d23.

1As the transverse momentum of the leading jet has been used toseparate thed23 distributions,p2
T of the leading jet has

been chosen for the hard scale.
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6.2.2 d23 Distributions of 3-Parton-Events

The same calculations have been done for 3-parton-events. Here, also the calculation at LO provides
a d23 distribution, as there are 3 jets in the final state and therefore flip-values from 3 to 2 jets
available. This distribution is almost identical to the NLOdistribution of 2-parton-events (see figures
6.4).
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Figure 6.4: d23 distribution ofborn (3-parton-events)andnlo (2-parton-events)a) logarithmical and b) non-
logarithmical. Due to the large statistics, the error bars are very small.

The real correction of the NLO term with 2 partons is commensurate with the integral over
the born matrix element of 3 jets in the final state [58]. The good match of the above curves
indicates very small virtual corrections in NLOJET++2. Some virtual terms of NLO from 2-parton-
events, compensating divergencies of the cross section, are noticeable for very small values ofd23 [2].

Figures 6.5 compare the full, the LO and the NLO calculation of the d23 distributions of 3-parton-
events. The large statistical fluctuations of the NLO distribution required the calculation of 3× 108

NLO events.

a)

]2 [GeV23d

0 2000 4000 6000 8000 10000

]2
 [n

b/
G

eV
23

/d
d

σd

-310

-210

-110

1

10
full

born

nlo

full

born

nlo

full

born

nlo

b)

]2 [GeV23d

0 500 1000 1500 2000 2500 3000 3500 4000

]2
 [n

b/
G

eV
23

/d
d

σd

0

5

10

15

20

25

30

35

full

born

nlo

full

born

nlo

full

born

nlo

Figure 6.5: d23 distribution of 3-parton-events a) logarithmical and b) non-logarithmical in full,LO andNLO
calculation

The NLO term increases the cross section by about 10%. The peak of the NLO distribution at
4100 GeV2 is due to a lack of statistics. As the error of this value is quite large, this bin has been
aligned to the curve when fitting the strong coupling constant (see chapter 8.1).
The calculation of the full theory, i.e. LO “plus” NLO, using108 events shows a negative entry
at 1100 GeV2. Negative entries should not appear, as LO “plus” NLO shouldin total result in

2The curves are still in good agreement when divided intopT intervals of the leading jet.
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positive entries. A reason could be that the phase-space is still not sampled often enough, or that the
transition between different regions in phase-space is notsmooth enough in NLOJET++. The author
of NLOJET++ has been notified about this, but could not provide a (better) explanation. As the full
distribution is not used for theαs fit, this is not crucial.

Thed23 distributions divided intopT intervals of the leading jet are shown in figures 6.6.
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Figure 6.6: d23 distributions of 3-parton-events in differentpT intervals in full,LO andNLO calculation. The
pT of the leading jet is inside the according interval.

The curves of the LO and NLO distributions are different (thed23 distributions at NLO are e.g.
flatter than the distributions at LO). This means that higherorders ofαs change the shapes of thed23

distributions. The flip-values are therefore sensitive forthe strong coupling constant. Thus, the shape
of the distributions can be used to determineαs.
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6.2.3 d23 Distributions of 4-Parton-Events

NLOJET++ calculates 4-parton-events just at LO. Therefore, in figures 6.7 only the LO distribution
of d23 is shown.
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Figure 6.7: d23 distribution for 4-parton-events a) logarithmical and b) non-logarithmical inLO calculation.
Due to the large statistics, the error bars are very small.

The curve is very smooth and shows no outliers. The cross section of this distribution amounts to
about 25% of the distribution for 3-parton-events at LO. Thed23 distribution is again divided into
intervals ofpT of the leading jet (see figures 6.8).
Thed23 distributions of the leading order calculations of 3- and 4-parton-events have been compared
to the distributions from Alpgen [72]. The results from NLOJET++ and Alpgen have been in good
agreement to each other.
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Figure 6.8: d23 distributions of 4-parton-events in differentpT intervals inLO calculation. ThepT of the
leading jet is inside the according interval.
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6.2.4 Comparison between BORN and FULL “minus” NLO

The d23 distributions of 3-parton-events have been further investigated. When simulating the born
term everything (e.g. internalαs, PDFs) is calculated at leading order, whereas these internal values
are calculated at next-to-leading order for the NLO calculation. To determine the influence of these
internal parameters it has been tested if the born term is consistent with the full calculation, where
the NLO term is subtracted. This comparison has neither beendone for 2-parton-events (as the NLO
term is in this case identical with full), nor for 4-parton-events (where the born term represents the
full calculation due to a missing NLO implementation in NLOJET++).
The figures 6.9 show the born distribution compared to full “minus” the NLO term.
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Figure 6.9: Comparison betweenbornand full “minus” nlo for 3-parton-events a) logarithmical and b) non-
logarithmical.

The distributions are also divided inpT intervals of the leading jet (see figures 6.10).
The curves are in good accordance and match within the statistical fluctuations. Thus, the internal
calculations at LO and NLO yield only small differences within statistical uncertainties.
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Figure 6.10: Comparison betweenbornand full “minus” nlo in differentpT intervals. ThepT of the leading
jet is inside the according interval.
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6.3 Real Data Analysis

This section presents the datasets used, the good run list and the triggers, which have been applied
to data. Then, some jet cleaning variables are studied and compared to the anti-kT jet algorithm.
Finally, thed23 distributions are compared to thed34 distributions, in order to separate 3-jet-events
from 4-jet-events.

6.3.1 Datasets

ATHENA has been used to analyze the datasets from run periodsA-F, shown in table 6.1.

Run Period Run Number # Events Dataset Name

A 152166-153200 2020106 data107TeV.periodA.physics

L1Calo.PhysCont.AOD.repro04v01

B 153565-155160 17438115 data107TeV.periodB.physics

L1Calo.PhysCont.AOD.repro04v01

C1-C2 155228-156682 14043136 data107TeV.periodC.physics

L1Calo.PhysCont.AOD.t0pro04v01

D1-D6 158041-159224 94578192 data107TeV.periodD.physics

L1Calo.PhysCont.AOD.t0pro04v01

E1-E7 160387-161948 45598178 data107TeV.periodE.physics

JetTauEtmiss.PhysCont.AOD.t0pro04v01

F1-F2 162347-162882 34937674 data107TeV.periodF.physics

JetTauEtmiss.PhysCont.AOD.t0pro04v01

Table 6.1: Datasets from run periods A-F used for this analysis. The numbers are taken from AMI [82].

These data have been gathered by ATLAS, starting data takingat a center-of-mass energy of 7 TeV
on March 30th 2010. The runs from periods G to I are not used in this analysis, as different triggers
are applied for these datasets. Figure 6.11 shows the total integrated (cumulative) luminosity (periods
A-I) versus day, being delivered by LHC (green) and recordedby ATLAS (yellow) at

√
s = 7 TeV

for all pp runs in 2010 [83].
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Figure 6.11: The total integrated luminosity versus day [83]
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A good run list has been applied to exclude events and luminosity blocks considered as bad (e.g. due
to not properly working detector components). For this analysis, the good run list
mergedgrl PeriodABCDEFGHI152166.206-167776.546SMjet nomuon7TeV noHLT A-F.xml
has been used. This is a combined list of several run periods at 7 TeV [84], provided by the Standard
Model group.
The good events have been processed on the data & computing grid (see chapter 3.3) and the results
further analyzed. Unfortunately, several events got lost due to problems with the data & computing
grid (e.g. ATHENA crashes because of refused connections),which could not be solved.
The jet triggers L1J15 and L1J30 have then been applied to the remaining events. Table 6.2shows
the official integrated luminosity for each run period for the two jet triggers.

Period (nb−1) L1 J15 L1 J30

A 0.38 0.38

B 8.1 8.1

C1 7.2 7.2

C2 1.3 1.3

D1 27.5 27.5

D2 32.9 32.9

D3 32.9 32.9

D4 79.5 79.5

D5 28.0 28.0

D6 97.1 97.1

E1 32.5 139.0

E2 91.8 92.5

E3 90.2 237.2

E4 1.7 88.7

E5 2.0 129.7

E6 1.8 153.9

E7 12.5 161.4

F1 3.2 400.2

F2 5.6 293.2

Sum 556.0 2010.6

Table 6.2: Integrated luminosity for each run period [84]

In table 6.3 the numbers of analyzed events before and after the triggers are presented. The trig-
ger L1 J15 is prescaled3 in run periods E and F, whereas only period F is prescaled for the trigger
L1 J30. Hence, in this analysis, mainly run periods A to E with the trigger L1J30 (with an integrated
luminosity4 of around 700 nb−1) have been analyzed.

3The prescale factors reduce the number of events examined bythe triggers.
4Due to the above reasons, the analyzed integrated luminosity is much smaller than the 1317.2 nb−1 from run periods A

to E in table 6.2.
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6.3.2 Jet Cleaning

Before jets can be further analyzed they have to be cleaned from detector effects. Hence, the jets have
to comply with certain conditions. As described in chapter 4.5.3, there are several cuts available,
deciding if a jet is bad, ugly or good.
However, these cuts have been optimized for the anti-kT jet algorithm (see chapter 4.3.3) and not for
the kT jet algorithm in the exclusive mode. Thus, some of these cut variables are studied for both
algorithms. It has to be mentioned that this comparison is just qualitatively possible, because both
algorithms have significant differences in their definitions. For this study, the datasets from period B
have been used exemplarily to reduce processing time while having sufficient statistics. No special
trigger has been demanded, meaning that all events firing anytrigger have been studied.
Figure 6.12 shows thepT distributions of the leading jets for the different jet algorithms (with a
minimum jetpT of 7 GeV). The differences of the distributions are expected. The anti-kT algorithm
with a radius of 0.4 (blue curve) finds more low energetic jetsand less high energetic jets than the
other algorithms. With a radius of 0.6 (black curve), more particles are assigned to a jet, leading to
higher jet momenta. Finally, thekT jet algorithm in the exclusive mode (red curve) finds more jets
with high pT . As the algorithm is forced to find 3 jets per event, it clusters more particles to a jet,
resulting in large jets with a highpT .
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Figure 6.12: pT distributions of the leading jets, being clustered by theexclusivekT and the anti-kT algorithm
(radius 0.6 andradius 0.4)

The comparison of the jet cleaning variables is done exemplarily for some important variables, like
fHEC, fEM and|t|:
First of all, fHEC is investigated. Sporadic noise bursts in the hadronic end cap calorimeter (HEC) are
the most common reason for mis-reconstructed jets. These noise bursts deposit most of their energy
in single calorimeter cells, often with some entries in the neighboring cells. For this reason they can
be excluded if a large fraction of the jet-energy is found in the HEC, accompanied by a low number
of cells, accounting for at least 90% of the jet-energy [54].These quantities are used to cut-off the
jets from noisy HEC clusters.

The distributions offHEC (see figure 6.13) have approximately the same shape. They start at negative
values and have a maximum at around 0. The entries in this areaare due to the energy resolution
of the HEC. Then, the curves decline to 1. With the cut-off value of fHEC > 0.8 (for the loose bad
jet definition) the anti-kT algorithms classify more jets as potentially bad than the exclusivekT jet
algorithm. This does, however, not mean that these jets are indeed bad. Sporadic noise bursts would
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Figure 6.13: fHEC distributions of jets clustered by theexclusivekT and the anti-kT algorithm (radius 0.6 and
radius 0.4)

be seen in the distributions as peaks. No boosts can be observed at fHEC < 0.8, meaning that all
algorithms are safe for this noise.

In addition to the HEC, also the electromagnetic calorimeter can be affected by noise bursts, which
are, however, not very frequent. Jets from these coherent noise bursts are characterized by a large
reconstructed energy in the electromagnetic calorimeter and a bad quality of the calorimeter recon-
struction. The quality is evaluated via the difference in the sampling of the measured pulse and a
reference pulse. The latter is used for the reconstruction of the cell energy [54]. Bad jets are tagged
if the fraction of the jet-energy from bad-quality calorimeter cells is above a certain value and the
fraction of reconstructed energy in the electromagnetic calorimeter in generalfEM >0.95 (for the
loose definition) orfEM >0.90 (for the tight definition) (see figure 6.14).
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Figure 6.14: fEM distributions of jets clustered by theexclusivekT and the anti-kT algorithm (radius 0.6 and
radius 0.4)

The distributions offEM have basically a similar shape: rising from negative valuesdue to the energy
resolution of the EM the curves reach a maximum at around 1, dropping down to about 1.5. The
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results from the anti-kT algorithm with radius 0.4 differs most from the other algorithms. Still, the
anti-kT algorithms with different cone sizes use the same jet cleaning cuts. Thus, the cuts are also fine
for the exclusivekT jets, where the agreement with anti-kT (radius 0.6) is better than the agreement
of the two anti-kT jets. As there are no peaks atfEM < 0.9, the algorithms are safe for noise bursts in
the EM with this cut-off value.
Another criterion for the jet classification is the out-of-time energy deposition in the calorimeter (see
figure 6.15), where the jet time is defined with respect to the event time. These energy depositions can
result from photons produced by cosmic ray muons. The energy-squared-weighted cell time should
be within two beam bunch crossings, otherwise the jets are classified as bad [54].
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Figure 6.15: Jet time distributions of jets clustered by theexclusivekT and the anti-kT algorithm (radius 0.6
andradius 0.4)

The shape of the jet time distributions for the exclusivekT and the anti-kT algorithms look quite
similar. A cut on this variable should therefore have similar results in all cases.

The above jet cleaning variables show a similar behavior forthe exclusivekT and the anti-kT jet
algorithms respectively. This is not surprising since the cleaning variables are mainly based on bad
calorimeter cells, which are more or less independent of theused jet algorithm. Due to the same
behavior, the jet cleaning cuts from the anti-kT algorithm have been used for this analysis and events
with one or more bad jets removed.
In addition to these jet cleaning cuts, all three jets have been required to havepT > 20 GeV and
|η | < 2.6. Only events fulfilling those criteria have been accepted and analyzed. Table 6.3 shows the
number of events for each run period, before and after the triggers, jet cleaning and further cuts.
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Period A B C D E F

# events(no trigger) 726599 1.116e+07 1.173e+07 2.728e+07 2.733e+07 2.737e+06

after jet cleaning 610174 8.586e+06 8.988e+06 2.451e+07 2.621e+07 2.663e+06

pT > 20 & |η | < 2.6 5803 132685 162256 1.573e+06 3.797e+06 501056

after L1 J15 6110 171915 213497 2.873e+06 4.726e+06 17220

after jet cleaning 5632 163025 203759 2.800e+06 4.609e+06 16865

pT > 20 & |η | < 2.6 1186 31921 40527 589356 973440 3691

after L1 J30 993 25326 31354 397366 2.289e+06 255830

after jet cleaning 774 22427 28702 388258 2.261e+06 253056

pT > 20 & |η | < 2.6 303 8828 11246 152952 901353 100932

Table 6.3: Number of events before and after the triggers and cuts
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6.3.3 Separation from 4-Jet-Events

The differential jet-rates depend ondcut. At smaller values ofdcut, the 4-jet-rate dominates, whereas
the fraction of the 3-jet-rate becomes more and more important with increasingdcut values.
In order to separate the 3-jet-rate from the 4-jet-rate, thedistributions ofd23 andd34 (i.e. the flip-value
from 4 to 3 jets) are compared in figures 6.16 - exemplarily forrun periods A-E (trigger L1J30)5.
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Figure 6.16:d23 andd34 distributions for run periods A-E (trigger L1J30). Due to the large statistics, the error
bars are very small from figure b) onwards.

The d34 distributions decline steeper than thed23 distributions. For small values ofdcut (which is
either the flip-value from 4 to 3 jets or the flip-value from 3 to2 jets),d34 is dominant, whereasd23

has more entries at higherdcut values.
In order to separate the unwanted fraction ofd34 from thed23 distributions (in this analysis, only 3-
jet-events are investigated), the integrals (starting from different values ofdcut) of these distributions

5Period F (trigger L1J30) is prescaled and therefore not included into the plots.
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are compared. Thus, the ratio between the integrals is calculated:

R(dcut) =

∫

d23
∫

d34
, (6.1)

where
∫

di j stands for
∫ ∞

dcut

dσ
ddi j

ddi j .
The ratios are shown in figures 6.17.
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Figure 6.17:Ratio of
∫

d23 to
∫

d34

At higher values ofdcut for every d34 value a correspondingd23 value can be found. Therefore
A0 can be defined asA0 =

∫

d23 −
∫

d34. The errors are then calculated (with∆A0 =
√

A0 and
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∆
∫

d34 =
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∆
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(6.2)

The blue line atR = 4 in figures 6.17 indicates an impurity of 20%, i.e.
∫

d34 represents a fraction
of 1

5 to the total distribution. Consequently,
∫

d23 has a fraction of45. The ratio
∫

d23:
∫

d34 of 4
5 : 1

5
is fulfilled if the division of

∫

d23 by
∫

d34 (which is done in the above figures) yields a value of 4.
Accordingly, the red line atR= 7 stands for an impurity of 12.5% (with a ratio

∫

d23:
∫

d34 of 7
8 : 1

8).
With rising values ofR, the impurity (and therefore the systematic error) decreases - at the expense of
statistics. The intersections of the lines with theRdistribution yield the accordingdcut value (see table
8.1 in chapter 8.1). The regions smaller than thesedcut values have been excluded when performing
the αs fit, as the fraction ofd34 is too large in this area. The influence of the different impurities is
studied in chapter 8.2.2.

6.4 Comparison to Simulations

In this chapter, real data (from run periods A-E) are compared to simulations. First of all, thed23

distributions from real data are compared to fully simulated PYTHIA dijet samples. Then, real data
are checked against the calculation from NLOJET++. Finally, the simulation from PYTHIA at parton
level is compared to the results of NLOJET++.

6.4.1 Comparison between Data and PYTHIA

The standard QCD samples, i.e. fully simulated PYTHIA dijetsamples (see table 6.4), are studied in
this chapter.
The samples have been processed on the data & computing grid (see chapter 3.3) with ATHENA,
running the exclusivekT jet algorithm (N=3) on truth particles as well as on LCTopo clusters6. As the
application of the jet triggers L1J15 and L1J30 would decrease the number of events (especially in
the smallerpT intervals of the leading jet) to unusable small statistics,no special jet trigger has been
used. Therefore, when comparing the samples to real data, nospecial jet trigger requirement has been
applied to the real data in order to assure comparability.
Before the merging of the samples, they have been scaled according to their different cross sections
and number of events.
Events with bad jets have been excluded and jets withpT > 20 GeV and|η | < 2.6 required for both
simulation and real data. A further cut has been set on thed23 value and events withd23 < 400 GeV2

have been neglected. In this area, the fraction ofd34 is too high. Moreover, the cut has been set to
have the same conditions as for the calculations with NLOJET++ (see chapter 6.2.1).
The normalizedd23 distributions are shown in figures 6.18.
In red, thed23 distribution of the truth jets is shown, whereas the green curve already takes detector
effects into account7. Hence, the green and the black curve, representing real data, should be in good
agreement. This is true for figures c) to f) - especially in theinterestingpT interval 80-100 GeV where
the mass of the Z boson is located. However, when going to smaller energies, see e.g. figure a) and b),
the curves are quite different. The data are not described very well by reconstructed simulation (which
is not completely understood). When low energetic dijet events are forced by the jet algorithm to find

6Some failed jobs reduced the number of events of dataset 105009 to 1294186 and of dataset 105011 to 1288081.
7The green and the red curve are used in chapter 7.1 to estimatea correction for the jet-energy-scale.
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Dataset pT [GeV] σ [nb] # Events Dataset Name

105009 8-17 9752970 1399184 mc09 7TeV.105009.J0pythia jetjet.merge.

AOD.e468s766s767r1303 r1306

105010 17-35 673020 1395383 mc09 7TeV.105010.J0pythia jetjet.merge.

AOD.e468s766s767r1303 r1306

105011 35-70 41194.7 1398078 mc09 7TeV.105011.J0pythia jetjet.merge.

AOD.e468s766s767r1303 r1306

105012 70-140 2193.25 1397430 mc09 7TeV.105012.J0pythia jetjet.merge.

AOD.e468s766s767r1303 r1306

105013 140-280 87.8487 1397401 mc09 7TeV.105013.J0pythia jetjet.merge.

AOD.e468s766s767r1303 r1306

105014 280-560 2.32856 1391612 mc09 7TeV.105014.J0pythia jetjet.merge.

AOD.e468s766s767r1303 r1306

105015 560-1120 0.0338461 1347654 mc09 7TeV.105015.J0pythia jetjet.merge.

AOD.e468s766s767r1303 r1306

Table 6.4: PYTHIA dijet samples. The numbers are taken from AMI [82].

3 jets, the last step of the clustering routine is redeemed, resulting in a low transverse momentum of
the 3rd jet (which leads to a small value ofd23). This jet is more likely to have only a smaller energy
than the 3rd jets of events with originally more than 2 jets. All different types of jet events can be
found in real data, resulting in higher energetic 3rd jets and therefore higher values ofd23 compared
to the PYTHIA dijet samples. This circumstance carries moreweight at lower than at higher energies.
At higher energies, also the 3rd jets from original dijet events have a highpT . Thus, in events with
high momentum transfers, the curves match well.
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Figure 6.18: d23 distributions from data (periods A-E) and from simulation with PYTHIA with andwithout
detector simulation. Due to the large statistics, the errorbars are very small.
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6.4.2 Comparison between Data and NLOJET++

To determineαs, the full calculation of NLOJET++ is split into LO and NLO terms, having different
dependencies on the strong coupling constant. These terms are then compared to real data.
Therefore, in figures 6.19 the full calculation of NLOJET++ (of 3-parton-events) is compared to
real data (run periods A-E). The same cuts as in chapter 6.4.1have been used for both distributions
(as the calculation of NLOJET++ has only been done on parton level without detector simulation,
no jet cleaning cuts have been applied for NLOJET++). No special trigger has been used in both cases.
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Figure 6.19:d23 distributions from data (periods A-E) and from simulation with NLOJET++ (full)

The curves match quite well from figure d) onwards, but are different in figures a) to c) for several
reasons. The jet-energy-scale has e.g. not been corrected for the real data. In addition, no hadroniza-
tion or Underlying Event effects had been taken into accountfor the NLOJET++ simulation (these
corrections are all done in chapter 7). These effects - aboveall the UE (see chapter 7.3) - lead to
quite large deviations in regions whereQ is small. With increasingQ, the impact of the UE declines.
Hence, the curves are in good agreement at higher values ofQ.
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6.4.3 Comparison between PYTHIA and NLOJET++

In order to correct the calculation of NLOJET++ for hadronization effects and the influence of the Un-
derlying Event, the calculations from NLOJET++ are corrected bin-by-bin. This is done in chapters
7.2 and 7.3. The correction factor for the hadronization is determined with PYTHIA (on generator
level) by dividing hard scattering processes at hadron level by the hard scattering at parton level. The
UE correction is also done with PYTHIA by dividing the hard scattering with UE by hard scattering
without UE, both on hadron level.
Before the correction factors are evaluated, the parton levels of PYTHIA and NLOJET++ (born, 3-
parton-events) are compared (see figures 6.20). 100,000 events have been simulated with PYTHIA8.
Table 6.5 shows the CKIN(3) values (i.e. the minimal transfer of transverse momentum of the collid-
ing particles via a cut-off in the phase-space), which have been set for the differentpT intervals of the
leading jet. The values are chosen by subtracting twice the jet-energy-scale correction of about 5%
from the left interval border.

pT Interval CKIN(3) value [GeV]

20-40 GeV 18

40-60 GeV 36

60-80 GeV 54

80-100 GeV 72

100-120 GeV 90

120-140 GeV 108

Table 6.5: CKIN(3) values used for the accordingpT intervals of the leading jet

The distributions show some differences: the red curve is flatter than the black curve. Thus, PYTHIA
finds more events with high values ofd23 than NLOJET++ does. The differences can be explained
by the different simulation parameters (PYTHIA uses e.g. the parameter CKIN(3), which can not
be set in NLOJET++). Moreover, Pythia is leading order complemented by a leading logarithmic
parton shower. A perfect agreement of PYTHIA and NLOJET++ ishence not expected. Although
well matching curves would of course be favorable, PYTHIA can still be used to correct NLOJET++
for hadronization and UE effects. In this way, migration effects from one bin to the adjacent bin are
compensated. Therefore, relative corrections in the according bins can be applied to NLOJET++.

8All stable and long lived particles have been considered, but excluding neutrinos.
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Figure 6.20: d23 distributions from NLOJET++ (born, 3-parton-events) andPYTHIA. The pT of the leading
jet is inside the according interval.
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Chapter 7

Corrections

Beforeαs is determined, some corrections are made to cope with the jet-energy-scale of real data and
the missing hadronization and Underlying Event (UE) effects of NLOJET++. In order to compare real
data to the calculations from NLOJET++, these adjustments are applied using bin-by-bin corrections.
Moreover, a correction method is presented to directly correct data for the influence of the UE.

7.1 Jet-Energy-Scale

As already mentioned, the jet-energy-scale and the according uncertainty is measured in ATLAS
only for the anti-kT jet algorithm. The correction of detector effects has been done in this analysis
for the exclusivekT jet algorithm accordingly by comparing thed23 distributions of PYTHIA dijet
samples, running the jet clustering on LCTopo clusters and on truth particles (see figures 6.18 in
chapter 6.4.1).

In order to get correction factors, thed23 distributions of truth jets have been divided by thed23

distributions of reconstructed (i.e. LCTopo) jets:

H i
JES(d23) =

di
23,truth

di
23,reco

. (7.1)

The correction factors in the accordingpT intervals can be found in figures 7.1.

To take the JES into account, the data have been multiplied bythe correction factors:

d23,data(JES corrected) = H i
JES(d23)× d23,data . (7.2)

At higher values ofd23 the statistics get too low resulting in a fluctuation of the entries. Thus, no cor-
rection to data has been applied in figure c) for d23 > 5500 GeV2, in figure d) for d23 > 8000 GeV2,
in figure e) for d23 > 10000 GeV2 and in figure f) for d23 > 12000 GeV2.

The result can be seen in figures 7.2 where thed23 distributions from periods A to E are shown before
and after the correction of the JES.

The corrections are small in figures a) and b). However, in these two figures the mismatch of thed23

distributions between data and PYTHIA is quite large (see chapter 6.4.1). Moreover, the correction
due to the shift of the energy-scale has potentially larger effects due to bin migrations between the
pT intervals of the leading jet, especially from the intervalpT < 20 GeV. Therefore, events with a
leading jet’s transverse momentum of less than 60 GeV are handled with care.
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Figure 7.1: Correction factors for the JES

7.2 Hadronization

As already stated, NLOJET++ has unfortunately no hadronization model implemented and therefore
calculates only at the parton level. In order to compare the results of NLOJET++ with real data, the
influence of the hadronization has to be taken into account. The factorization of long- and short-
distance physics are the reason why hadronization corrections to infrared safe observables can be
estimated by running event generators at parton and hadron level [78]:

H i
hadr(d23) =

di
23,hadr

di
23,part

. (7.3)

In this study the program PYTHIA has been used to investigatehadronization effects on the differen-
tial 2-jet-rate, because with PYTHIA it is possible to simulate both the parton level and the hadron
level. In order to calculate the systematic uncertainty dueto the hadronization, also HERWIG has
been used to simulate events on parton as well as on hadron level (see chapter 8.2.5).
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Figure 7.2: d23 distributions from periods A to E before andafter the correction of the JES. ThepT of the
leading jet is inside the according interval. Due to the large statistics, the error bars are very small.

The figures 7.3 show thed23 distributions before and after the hadronization in different pT intervals
of the leading jet.
At smaller regions ofpT larger discrepancies would be expected due to the1

Q dependency of the
hadronization [12]. However, the curves in figure a) match quite well because of the large bin width
(in relation to the maximumd23 values). For high energetic jets hadrons are clustered around the
direction of the partons. Hence, the difference between parton and hadron level and therefore the
according corrections are not large for high energetic jets[2].
The difference between hadron and parton level is rather small in all examined pT intervals of
the leading jet. This means that thekT algorithm in the exclusive mode is almost independent of
hadronization effects, because of its infrared safeness.
Dividing the hadron by the parton distribution yields the correction factorsH i

hadr(d23) (see figures
7.4).
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Figure 7.3: d23 distributionsbeforeand after hadronization. ThepT of the leading jet is inside the according
interval.

When performing theαs-fit (see chapter 8.1), the entries in the according bins are corrected by these
factors:

d23,NLOJET++(hadr) = H i
hadr(d23)× d23,NLOJET++ . (7.4)

Due to low statistics at highd23 values, the correction factors have been set to unity in figure b) for
d23 > 2000 GeV2, in figure c) for d23 > 2800 GeV2, in figure d) for d23 > 5500 GeV2, in figure e)
for d23 > 8100 GeV2 and in figure f) for d23 > 10800 GeV2.



7.2. Hadronization 75

a)

]2 [GeV23d

400 600 800 1000 1200 1400

co
rr

ec
tio

n 
fa

ct
or

0.5

1

1.5

2

2.5

3

3.5

: 20-40 GeV
T

p

b)

]2 [GeV23d

500 1000 1500 2000 2500 3000

co
rr

ec
tio

n 
fa

ct
or

0.5

1

1.5

2

2.5

3

3.5

: 40-60 GeV
T

p

c)

]2 [GeV23d

1000 2000 3000 4000 5000

co
rr

ec
tio

n 
fa

ct
or

0.5

1

1.5

2

2.5

3

3.5

: 60-80 GeV
T

p

d)

]2 [GeV23d

1000 2000 3000 4000 5000 6000 7000 8000

co
rr

ec
tio

n 
fa

ct
or

0.5

1

1.5

2

2.5

3

3.5

: 80-100 GeV
T

p

e)

]2 [GeV23d

2000 4000 6000 8000 10000 12000

co
rr

ec
tio

n 
fa

ct
or

0.5

1

1.5

2

2.5

3

3.5

: 100-120 GeV
T

p

f)

]2 [GeV23d

2000 4000 6000 8000 10000 12000 14000 16000

co
rr

ec
tio

n 
fa

ct
or

0.5

1

1.5

2

2.5

3

3.5

: 120-140 GeV
T

p

Figure 7.4: Hadronization correction. The black line represents a fit tothe correction factors. The fit-values
are shown in table 7.1.

pT interval Fit-value Error

20-40 GeV 0.995 0.004

40-60 GeV 0.990 0.001

60-80 GeV 0.984 0.001

80-100 GeV 0.981 0.001

100-120 GeV 0.980 0.001

120-140 GeV 0.971 0.001

Table 7.1: Fit-values to the hadronization correction
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7.3 Underlying Event

This chapter deals with the influence of the Underlying Event(UE) on the differential 2-jet-rate. As
there is no UE model available describing the UE in a perfect way, three different UE models have
been studied and compared to the hard scattering process without UE.
The program PYTHIA (on generator level) has been used to study the UE, applying the same CKIN(3)
values (see chapter 5.2.1) as described in table 6.5.
Thed23 distributions from hard scattering events without UE (labelled “hard”) and with AMBT1 (la-
belled “hard+AMBT1”), PERUGIA10 (labelled “hard+PERUGIA10”) and ATLAS MC09c (labelled
“hard+ATLAS MC09c”) are displayed in figures 7.5.
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Figure 7.5: d23 distributions for “hard”,“hard+AMBT1”, “hard+PERUGIA10”and“hard+ATLAS MC09c”.
The pT of the leading jet is inside the according interval.

The influence of the UE is quite large at small values of CKIN(3) and decreases with higher momen-
tum transfers. By dividing the hard scattering process withUE by “hard” at hadron level, correction
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factorsH i
UE(d23) are obtained:

H i
UE(d23) =

di
23,UE

di
23,hadr

. (7.5)

These correction factors are shown exemplarily for tune AMBT1 in figures 7.6.
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Figure 7.6: Underlying Event correction using tune AMBT1. The black line represents a fit to the correction
factors. The fit-values are shown in table 7.2.

According to
d23,NLOJET++(UE) = H i

UE(d23)× d23,NLOJET++(hadr) , (7.6)

the calculations from NLOJET++ are corrected bin-by-bin tocope with the influence of the UE.
Due to statistical fluctuations, no corrections apply, if the values ofd23 are larger than a certain size.
These values are shown in table 7.3 for the different UE tunes.
This bin-by-bin correction has been used in this thesis to account for the UE.
In addition, a correction method has been developed to directly correct data for the influence of the
UE. This method is presented in the following chapter, exemplarily for the UE tune AMBT1.
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pT interval Fit-value Error

20-40 GeV 0.96 0.03

40-60 GeV 0.96 0.01

60-80 GeV 0.97 0.01

80-100 GeV 0.98 0.01

100-120 GeV 0.98 0.01

120-140 GeV 0.98 0.01

Table 7.2: Fit-values to the UE correction

pT interval AMBT1 PERUGIA10 ATLAS MC09

20-40 GeV 2000 2000 2000

40-60 GeV 2300 2200 2200

60-80 GeV 2900 3000 3300

80-100 GeV 5400 6200 5400

100-120 GeV 7900 7900 7900

120-140 GeV 8900 8900 8900

Table 7.3: Values ofd23 in GeV2 up to whichd23 is corrected
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7.4 Low-pT Method

This section describes a correction method ofkT jet energies for the Underlying Event. This “low-pT

method” is based on [4], where the transverse momenta of jetsand their constituents have been
corrected for the contribution of the UE using thekT algorithm in the exclusive mode. It is still
under development and has only been tested so far on generator level using PYTHIA. Therefore, the
immediate correction of real data for the impact of the UE is not possible yet. That is why the above
bin-by-bin correction is used to consider the UE for theαs determination.
Nonetheless, as the “low-pT method” is very promising, it has been tested in this analysis on
generator level for recent UE tunes. Additionally, the method has been applied to correctd23 values.

The kT jet algorithm in the exclusive mode absorbs every particle it finds like a vacuum cleaner -
no matter if the particle is coming from the UE or the hard scattering process. In this way, it is not
possible to separate the unwanted UE particles e.g. geometrically, as it is done with cone or anti-kT

algorithms. For these jet algorithms clustering particlesinside a fixed area in azimuthal angleϕ and
pseudorapidityη UE contributions are usually corrected by simply subtracting the average energy
expected from particles of the UE measured in regions of the detector away from the hard scattering.
The energy distribution is in that case obtained from regions away from the hard jet, like at 90◦ in ϕ
and/or oppositeη (see chapter 5.2.2). ThekT algorithm in the exclusive mode neither reconstructs
jets of fixed area nor regular shape. For this jet algorithm a similar subtraction method has been
preconceived for heavy ion collisions [85]. It is not possible to easily apply this method to proton
proton collisions as the environment of particles from softscatters is less dense.
The “low-pT method” is inspired by measurements showing that the perturbative description can
be extended to much lower scales than usually expected (see e.g. [12]). Moreover, experimental
observations at HERA showed that the pertubative DGLAP evolution equations [86] effectually
describe the PDF at very small values ofQ (below 1 GeV2) andxB j [87,88].
Regarding a smooth transition between the perturbative description and non-perturbative effects,
perturbation theory calculations approximatively describe parton parton collisions at essentially
non-perturbative low scales. Thus, jets may be used to approximate non-perturbative contributions of
the UE.
The “low-pT method” therefore describes the UE by “low-pT jets”. These are the jets with the lowest
transverse momentum in an event1. In this analysis, as the algorithm is forced to find exactly 3jets
in the final state, the low-pT jet (comprising many particles from the UE) is identical with the 3rd jet
in an event.
To verify this, the constituents of the 3rd jets from “hard+AMBT1” have been compared to particles
from the UE. The simulation of solely UE (without the hard scattering process) is not possible
in PTYHIA as the UE is intrinsically related to a hard scattering process (e.g. via color flow).
Hence, the UE particles have been approximated by statistically subtracting the jet constituents from
“hard” of the constituents from “hard+AMBT1” (in the following called “AMBT1”). The remaining
particles represent indeed the UE simulated in PYTHIA. Thishas been tested by tracing the particles
back to their origin.
As can be seen in figures 7.7, particles from “low-pT jets” and from the UE (“AMBT1”) have a
very similar transverse momentum spectrum. This means thatthe “low-pT jets” have the same
composition as the UE and are therefore useful to approximate the contribution of UE particles.

1Particles from the UE may lead to the reconstruction of an additional (third) jet not related to a highly energetic gluon
radiation.
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Figure 7.7: Particles’pT of theUE (simulated with different values of CKIN(3)) and of thelow-pT jets(from
CKIN(3,18) in all figures). Due to the large statistics, the error bars are very small.
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The comparison between “low-pT jets” and UE has been done for many different UE tunes (see [4]).
The good match of the different tunes indicates that the method is model independent.
Particles from the UE can be found in every jet (and not only inthe 3rd jet), i.e. also in jets with high
pT . As the perturbative cross section of the UE compared to the “low-pT jets” is in this area of the
phase-space significantly higher, the constituents of the “low-pT jets” have been scaled up in order to
have the same particle content in regions of small transverse momenta. The scaling factorss f have
values from 1.13 to 1.18.

It has to be mentioned that the “low-pT jets” have been taken from the simulation of CKIN(3,18)2 in
all pT intervals of the leading jet. If going to higher values of CKIN(3), the momentum transfer gets
too high and consequently the jet constituents (also in the 3rd jet) too energetic. The “low-pT jets” are
then too energetic to describe the UE properly (at high energies, the 3rd jet is very likely to originate
from highly energetic gluon radiation). As an example, “AMBT1” with CKIN(3,108) is described by
the “low-pT jet” (also from CKIN(3,108)) in figure 7.8.
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Figure 7.8: Particles’pT of theUE and of thelow-pT jets(from CKIN(3,108)). Due to the large statistics, the
error bars are very small.

The match between the curves is not satisfying, as the “low-pT jets” from CKIN(3,108) contain too
many particles with a highpT .
However, the “low-pT jets” from CKIN(3,18) describe the UE particles in allpT intervals of the
leading jet quite well. Thus, it is now possible to approximate the hard scattering without UE by
subtracting the constituents from the scaled “low-pT jets” from hard events with UE. By dividing
“hard+AMBT1”– (s f×low-pT jets) by “hard+AMBT1”, weighting factors are derived:

w =
′′hard+ AMBT1′′ − (s f × low−pT jets)

′′hard+ AMBT1′′ , (7.7)

with s f being the scaling factor.
With this statistically created probability distribution, it is possible to correct single events for UE
contributions. For that purpose, thepT of the jet constituents are weighted by the probability not to
come from the UE. As can be seen in figure 7.9 (exemplarily for CKIN(3,18)) the probability for a
particle to come from the UE is quite high for smallpT , whereas it diminishes for high values ofpT .
A polynomial of the fifth order has been fitted to that curve. For each particle a weighting factor can
be calculated by inserting the particle’s momentum into theequation

weight= a0 + a1 × pT + a2 × (pT)
2 + a3 × (pT)

3 + a4 × (pT)
4 + a5 × (pT)

5 . (7.8)

The prefactors of the fits are shown in table 7.4 for the different pT intervals of the leading jets.
Particles withpT < 30 GeV are weighted by this function. At about 30 GeV the statistical fluctua-

2CKIN(3,pT ) stands for CKIN(3)=pT .
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Figure 7.9: Weighting factors to correct for the UE

tions become very high. Moreover, the probability for a particle with more than 30 GeV is almost
1 to come from the hard scattering event and not from the UE. Hence, the weight is set to 1 in this area.

As a closure test, figures 7.10 show that thepT distribution of the corrected (i.e. weighted) jet con-
stituents from “hard+AMBT1” (labelled “hard+ AMBT1cor”) is in good agreement with the curve
from hard without UE (as a comparison, also the uncorrected jet constituents from “hard+AMBT1”
have been included).
Thus the correction using a weight function obtained from the low-pT jets’ particles allows to correct
any significant bias in the jet-energy due to contributions from UE particles.
This method can also be used to correct thed23 values. For this reason, the flip-values have been
calculated “by hand”, using

dkB = p2
Tk and dkl = min(p2

Tk, p2
T l)× R2

kl , (7.9)

with the jet momentap2
Tk and p2

Tl being the sum of the corrected (i.e. weighted)pT of the jet con-
stituents and

R2
kl = (ηk − ηl )

2 + (Φk − Φl )
2 . (7.10)

Rkl is not corrected in this case and is therefore identical withthe original value, as it is assumed that
the jet direction is not changed significantly by the UE.
The correctedd23 distributions (“hard+ AMBT1cor”) are shown together with the uncorrected distri-
bution in figures 7.11. The hard scattering without UE is alsoincluded into the plot.
The correctedd23 distributions match quite well with “hard”, meaning that the low-pT method can
also be used to correct the flip-values for the contribution of the UE - especially at lower values of
pT of the leading jet. As the influence of the UE on thed23 distributions is small at higher values of
CKIN(3), the “low-pT method” shows no improvement in figures e) and f).
For a better illustration, the distribution of “hard+ AMBT1cor” is divided by “hard” in figures 7.12.
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pT [GeV] a0 in 10−1 a1 in 10−2 a2 in 10−3 a3 in 10−4 a4 in 10−6 a5 in 10−8

20-40 6.37± 1.91 5.59± 1.68 -3.95± 1.19 1.34± 0.40 -2.02± 0.61 1.02± 0.31

40-60 6.58± 3.03 8.40± 4.04 -8.35± 1.88 4.00± 0.62 -9.13± 1.86 7.96± 4.03

60-80 6.73± 3.01 8.83± 3.96 -9.23± 1.82 4.55± 0.60 -10.5± 1.75 9.28± 3.75

80-100 6.79± 3.05 9.20± 4.12 -10.1± 1.95 5.15± 0.65 -12.4± 1.97 11.2± 4.33

100-120 6.69± 3.38 10.8± 5.62 -13.8± 3.26 8.43± 1.35 -24.4± 5.00 26.8± 13.5

120-140 6.81± 3.25 10.3± 4.99 -12.7± 2.68 7.33± 1.02 -19.9± 3.51 20.5± 8.76

Table 7.4: Prefactors of the UE correction function
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Figure 7.10: pT distributions of the jet constituentsbeforeandafterthe correction compared to hard without
UE. The black curve can hardly be seen because of the perfect match with the blue curve. Due to the large
statistics, the error bars are very small.
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Figure 7.11: d23 distributionsbeforeandafterthe correction compared to hard without UE

pT interval Fit-value Error

20-40 GeV 0.98 0.03

40-60 GeV 0.97 0.01

60-80 GeV 0.98 0.01

80-100 GeV 0.98 0.01

100-120 GeV 0.97 0.01

120-140 GeV 0.96 0.01

Table 7.5: Fit-values to the ratio ofd23 distributions of “hard+ AMBT1cor” to hard only
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Figure 7.12: Ratio ofd23 distributions of “hard+ AMBT1cor” to hard only. The black line represents a fit to
the correction factors. The fit-values are shown in table 7.5.
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Chapter 8

αs-Fit and Systematic Uncertainties

In this chapter,αs is determined at LO and NLO by fitting the calculations from NLOJET++ to
data. Then, some systematic uncertainties are studied. Last but not least,αs with its statistical and
systematic uncertainties is presented and compared to the current world average.

8.1 αs-Fit

αs is determined by fitting the LO and NLO terms from NLOJET++ to data. In NLOJET++ the
calculation of events is done separately for 2-parton-, 3-parton- and 4-parton-events. The leading
order term of 2-parton-events is in the following called born2, the next-to-leading order term nlo2.
Accordingly, born3 and nlo3 stand for the leading and next-to-leading order term of 3-parton-events
and born4 for the leading order term of 4-parton-events.
The total cross section is calculated in NLOJET++ via

σtot = σborn2 + σnlo2 . (8.1)

In this analysis, all events have been forced to a jet multiplicity of 3 in the final state. Events with bad
jets have been excluded and jets withpT > 20 GeV and|η | < 2.6 have been required. Moreover, a
cut has been set atd23 ≥ 400 GeV2 in order to separate most of the 4-jet-events and to be safe from
jet algorithm effects.
The total cross section for the studied 3-jet-events becomes

σtot3(Q) =
∫ ∞

400 GeV2

(

dσborn2(Q)

dd23
+

dσnlo2(Q)

dd23

)

dd23 = σnlo2(Q) , (8.2)

as dσborn2(Q)
dd23

does not contribute to 3-jet-events.Q is approximated by thepT of the leading jet.
Before the fit ofαs is done, the distributions ofd23 are normalized to one.
Therefore, real data are normalized by dividing∆N(Q)

∆d23
by the number of entries withd23 ≥ 400 GeV2

in the accordingpT interval of the leading jet (pT,lJ).

Accordingly,
∆born3(d23,Q)

∆d23
=

1
σtot3(Q)

× dσborn3(Q)

dd23
(8.3)

and

∆born4(d23,Q)

∆d23
=

1
σtot3(Q)

× dσborn4(Q)

dd23
, (8.4)

whereσtot3(Q) is treated as a constant value. As the events are forced to 3 jets in the final state,
σtot3(Q) always has the same number of entries, no matter if there havein fact been 3 jets, 4 jets or
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even more jets in an event.
Therefore,αs has been determined via the shape of thed23 distributions. The sensitivity ofαs on
the shape of these distributions has been verified by changing the curve of real data: different shapes
yielded different values ofαs.
For theχ2-fit the αs dependency has been made explicit fordσborn3(Q)

dd23
and dσborn4(Q)

dd23
:

dσborn3(Q)

dd23
=

dσborn3(Q)

dd23
× αs(Q)3

αs,int.(LO)(Q)3 (8.5)

and

dσborn4(Q)

dd23
=

dσborn4(Q)

dd23
× αs(Q)4

αs,int.(LO)(Q)4 . (8.6)

The internal values ofαs cannot directly be accessed in NLOJET++ as they depend onQ. At LO, the
running ofαs,int.(LO) is determined via [17]

αs,int.(LO) =
1

b0 × t
× 2π with b0 = 11− 2

3
× nf and t = ln(Q/Λ) . (8.7)

The number of active light flavorsnf is 5 in this analysis.Λ has a value of 0.2262 GeV [81]. ForQ
the center of thepT intervals of the leading jets have been chosen.

In NLO the above formula becomes [17]

αs,int.(NLO) = αs,int.(LO) × [1− b1

b0
×

αs,int.(LO)

2π
× ln(2× t)] with b1 = 51− 19

3
× nf . (8.8)

Table 8.1 shows the resulting values ofαs,int. at LO and NLO in the accordingpT intervals.

pT Interval αs,int.(LO) αs,int.(NLO) d23 (I ≤ 20%) in GeV2 d23 (I ≤ 12.5%) in GeV2

20-40 GeV 0.167681 0.141954 400 600

40-60 GeV 0.151814 0.129806 600 900

60-80 GeV 0.142907 0.122910 700 1200

80-100 GeV 0.136907 0.118231 900 1500

100-120 GeV 0.132467 0.114750 1200 1900

120-140 GeV 0.128984 0.112009 1400 2300

Table 8.1: Internal values ofαs at LO and NLO as well asd23 values with an impurity (of 4-jet-events) of 20%
and 12.5%

8.1.1 LO αs

In this section,αs is determined at leading order. For this reason, aχ2-fit has been applied:

χ2 =
∞

∑
d23(I)

[

(

1
N(Q)

× ∆N(Q)

∆d23
− ∆born3(d23,Q)

∆d23
× αs(Q)3

αs,int.(LO)(Q)3

)

/

σData,stat.

]2

, (8.9)



8.1.αs-Fit 89

with d23(I) representing the value ofd23 where the impurity (I ) due to 4-jet-events is at most 20%
and 12.5% respectively (see chapter 6.3.3). The according values are shown in table 8.1.

As the statistical errors from NLOJET++ are very small, onlythe statistical errors from data
(σData,stat.), i.e. the square root of the numbers of entries in a bin divided by the number of analyzed
events in the accordingpT,lJ interval, have been taken into account.

In figure 8.1 the running ofαs depending onpT,lJ at LO is shown for the jet triggers L1J15 and
L1 J30 with an impurity of 4-jet-events of 20%. Data have been adjusted for the jet-energy-scale (see
chapter 7.1) and the calculations from NLOJET++ have been corrected for hadronization effects (see
chapter 7.2) and the influence of the Underlying Event (see chapter 7.3).
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Figure 8.1: Running ofαs at LO usingtrigger L1 J15 (run periods A-D)and trigger L1J30 (run periods A-E)

In this figure, only the statistical errors (∆αstat.
s ) are shown (the systematic uncertainties are studied

in chapter 8.2).
For both triggers solely un-prescaled run periods have beenanalyzed. Therefore, run periods A-D
have been used for trigger L1J15 and run periods A-E for trigger L1J30, resulting in larger statis-
tical errors when using trigger L1J15. However, at thepT,lJ interval between 20 GeV and 40 GeV
the statistical error ofαs using trigger L1J30 is larger: Due to the minimumpT of 30 GeV several
events are lost in this bin, resulting in less statistics. Apart from the first bin, the values ofαs agree
within the statistical fluctuations.
The values ofαs at LO using trigger L1J30 are shown together with the statistical errors and system-
atic uncertainties in table 8.7 (see chapter 8.3).

8.1.2 NLO αs

The value ofαs is in the following determined at next-to-leading order.
As shown in chapter 6.2.2, nlo2 is almost identical with born3, besides smaller differences due to
virtual corrections at very small values ofd23. Besides these virtual corrections, the calculation in
NLOJET++ is the same for nlon and bornn+1 (with n being the number of partons).
In this analysis, only values of at leastd23 ≥ 400 GeV2 have been studied. In this region, the virtual
corrections are insignificant. Therefore, in order to avoiddouble counting, only born3 (which already
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includes nlo2) and born4 (which already includes nlo3) have been considered for theαs-fit.

The formula of theχ2-fit at NLO becomes:

χ2 =
∞

∑
d23(I)

[(

1
N(Q)

× ∆N(Q)

∆d23
−
(

∆born3(d23,Q)

∆d23
× αs(Q)3

αs,int.(LO)(Q)3

)

−
(

∆born4(d23,Q)

∆d23
× αs(Q)4

αs,int.(LO)(Q)4

)

)/

σData,stat.

]2

.

(8.10)

The same cuts and corrections have been applied as in chapter8.1.1. The results of the NLO deter-
mination ofαs using the jet triggers L1J15 and L1J30 are shown in figure 8.2.
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Figure 8.2: Running ofαs at NLO usingtrigger L1 J15 (run periods A-D)and trigger L1J30 (run periods
A-E)

αs determined with data satisfying the L1J15 trigger condition has again larger statistical errors than
data from trigger L1J30, due to the missing run period E for trigger L1J151.
The values ofαs applying different triggers agree within the statistical fluctuations. As the statistics
are higher for trigger L1J30, only this trigger has been used in the following to studysystematic
uncertainties.
αs at NLO using trigger L1J30 is presented with its statistical and systematic uncertainty in table 8.8
(see chapter 8.3).

1The lager statistical error of L1J30 in the first bin is due to the trigger criterion, demandinga minimumpT of 30 GeV.
Therefore, several events not passing the trigger are lost.
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8.2 Systematic Uncertainties

In this chapter, some systematic uncertainties are studied. First of all, the uncertainty of the jet-energy-
scale is determined. Then, the impurity due to 4-jet-eventsis studied, followed by an investigation
of the renormalization scale and the PDF uncertainty, comparing different PDF sets. The subsequent
section describes the uncertainty of the hadronization, comparing the results from PYTHIA and HER-
WIG. Afterwards, the uncertainty of the Underlying Event ismeasured by comparing different UE
models.

8.2.1 JES Uncertainty

In chapter 7.1 the jet-energy-scale has been corrected to compensate detector effects. For the anti-kT

algorithm the JES currently has an uncertainty of around 5% [52]. A conservative approach is
therefore to take this uncertainty twice to estimate the JESuncertainty of thekT jet algorithm in
the exclusive mode. The correction factors for the JES have such been increased by 10%. As this
systematic uncertainty is considered to be symmetric [89],a decrease of the JES of 10% has also
been studied.

Figures 8.3 show theαs distribution within a variation of the JES at LO and NLO.
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Figure 8.3: JES uncertainty ofαs at LO (left) and NLO (right). The correction for the JES has been varied by
10%.

The JES uncertainty in the first two bins is potentially larger as shown in the figures, because of bin
migrations frompT,lJ < 20 GeV due to the shift of the energy-scale (see chapter 7.1).
The values of the JES uncertainty (∆αsys.

s (JES)) are shown in table 8.2. This uncertainty has a
maximum of around 3.8%.

The correction factors

H i
JES(d23) =

di
23,truth

di
23,reco

(8.11)

from chapter 7.1 have in addition statistical errors, whichcontribute as systematic uncertainties to the
αs determination. To study this uncertainty, the statisticalerrors ofH i

JES(d23) have been quadratically
added to the statistical errors of measured data (σData,stat.). αs has then been fitted by varying the JES
correction according to the total statistical errors (σstat.).
The results are shown in figures 8.4.
In order to evaluate the systematic uncertainty due to the statistical errors of the JES
(∆αsys.

s (JES, stat.)), the statistical errors ofαs (due to data) have to be subtracted quadratically to
avoid double counting of the statistical errors of data:

∆αsys.
s (JES, stat.) =

√

[∆αstat.
s (JES+ Data)]2 − [∆αstat.

s ]2 . (8.12)
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Figure 8.4: Statistical uncertainty of JES and data at LO (left) and NLO (right). The correction for the JES has
been varied by the total statistical errors (σstat.).

The values of∆αsys.
s (JES, stat.) are presented in table 8.2.

When summarizing all systematic uncertainties in tables 8.7 and 8.8 (see chapter 8.3) always the
largest value of the according uncertainty has been taken.
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LO

pT Interval αs ∆αsys.
s (JES) ∆αsys.

s (JES) ∆αsys.
s (JES, stat.) ∆αsys.

s (JES, stat.)

[JES -10%] [JES +10%] [-σstat.] [+σstat.]

20-40 GeV 0.160 0.006 0.005 0.002 <0.001

40-60 GeV 0.159 0.005 0.005 0.002 0.002

60-80 GeV 0.145 0.005 0.004 <0.001 <0.001

80-100 GeV 0.143 0.005 0.004 <0.001 <0.001

100-120 GeV 0.141 0.005 0.005 <0.001 <0.001

120-140 GeV 0.140 0.005 0.005 <0.001 <0.001

NLO

pT Interval αs ∆αsys.
s (JES) ∆αsys.

s (JES) ∆αsys.
s (JES, stat.) ∆αsys.

s (JES, stat.)

[JES -10%] [JES +10%] [-σstat.] [+σstat.]

20-40 GeV 0.158 0.006 0.005 0.002 <0.001

40-60 GeV 0.148 0.004 0.005 0.002 0.002

60-80 GeV 0.128 0.004 0.004 <0.001 <0.001

80-100 GeV 0.120 0.004 0.003 <0.001 <0.001

100-120 GeV 0.115 0.004 0.003 <0.001 <0.001

120-140 GeV 0.111 0.003 0.003 <0.001 <0.001

Table 8.2: Systematic uncertainty ofαs due to the JES. The JES correction has been changed by±10%.
In addition, the uncertainty∆αsys.

s (JES, stat.) is presented, which has been determined by varying the JES
correction by±σstat. (i.e. the total statistical error) and quadratically subtracting the statistical error ofαs from
the resultingαs uncertainty.
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8.2.2 Impurity due to 4-Jet-Events

In chapter 6.3.3 the impurity of the 3-jet-rate due to 4-jet-events has been studied and cut values of
d23 have been determined for impurities (ofd34) of 20% and 12.5%. These cut values are shown in
table 8.1.
In figures 8.5αs is shown for the different impurities.
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Figure 8.5: αs at LO (left) and NLO (right), determined with an impurity dueto 4-jet-events of20%and 12.5%

For large values ofpT,lJ the curves agree within the statistical fluctuations, whereas the impact of 4-
jet-events become important at small values ofpT,lJ . With a smaller impurity due to 4-jet-events (i.e.
higher cut values ond23), the statistics decrease. Thus, the statistical errors are larger for an impurity
of 12.5% than for an impurity of 20%. Therefore, always an impurity of 20% has been studied in the
following.
As a systematic uncertainty of the impurity due to 4-jet-events, the difference of the two distributions
has been taken. The uncertainty is quite large in first bin with 18.1% at LO and 13.3% at NLO and
decreases to less than 1% for high values ofpT,lJ . The according uncertainties (∆αsys.

s (4 jet)) are
shown in tables 8.7 and 8.8 (see chapter 8.3).

8.2.3 Renormalization Scale Uncertainty

The value ofαs depends on the energy. In order to handle singularities of Feynman diagrams, a
renormalization scale is needed in theory (for more detailssee e.g. [90]). The calculations with
NLOJET++ have been done at a renormalization scale factor (RSF) of 1. To study the theoretical
uncertainty of the renormalization scale, the calculations have also been done at renormalization
scale factors of 0.5 and 2.0, respectively.
αs has then been determined for the different values (see figures 8.6).
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Figure 8.6: αs at LO (left) and NLO (right), determined for different renormalization scale factors (RSF)
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Table 8.3 shows the according uncertainties.

LO NLO
pT Interval ∆αsys.

s (RS) ∆αsys.
s (RS) ∆αsys.

s (RS) ∆αsys.
s (RS)

[RSF=0.5] [RSF=2.0] [RSF=0.5] [RSF=2.0]

20-40 GeV 0.001 0.001 0.001 0.001

40-60 GeV <0.001 <0.001 <0.001 0.001

60-80 GeV <0.001 <0.001 0.001 0.001

80-100 GeV <0.001 <0.001 0.001 0.001

100-120 GeV <0.001 <0.001 0.001 0.001

120-140 GeV <0.001 <0.001 0.001 0.001

Table 8.3: Systematic uncertainty ofαs due to the renormalization scale. Scale factors of 0.5 and 2.0 have
been studied.

The uncertainty due to different factors of the renormalization scale is always smaller than 1%.
The maximum value of the theoretical uncertainty due to the renormalization scale has been included
as a systematic uncertainty (∆αsys.

s (RS)) into tables 8.7 and 8.8 (see chapter 8.3).

8.2.4 PDF Uncertainty

The PDF CTEQ66M has been used in this analysis to calculate the cross sections with NLOJET++ at
LO and NLO. The influence of different PDF sets has been studied with PYTHIA on parton level, as
the simulation with PYTHIA is much faster than with NLOJET++.
Figures 8.7 compared23 distributions to each other using various different PDF sets.
The NLO PDF CTEQ66M has been chosen, as it is the default PDF set in NLOJET++ and also
provides corrections for an additional virtual parton. It has been compared to CTEQ5L [22], which
is the standard PDF set in PYTHIA, providing a LO PDF. This is the oldest of the compared PDF
sets. A next-to-leading-log-approximation (NLLA) is provided by CTEQ5M1. Hence, corrections of
higher orders to a dominant term are considered. However, the NLLA does not provide high accuracy
of the higher order terms [2]. The LO CTEQ6L with a NLOαs has also been compared. Finally, the
newest PDF set MSTW2008 is also included into the figure.
Thed23 distributions show just small differences due to the different PDF sets.
As αs has been determined in this analysis, the systematic uncertainty of the PDF is measured by
using CTEQ66M for different values ofαs.
Figures 8.8 compare thed23 distributions simulated with CTEQ66M with a PDFαs of 0.117, 0.118
and 0.119. The range corresponds to one standard deviation about the world average.
To determine the systematic uncertainty, the calculationsfrom NLOJET++ have been corrected for
the different PDFαs values. The results of theαs-fits are shown in figures 8.9.
The PDF uncertainty is not very large with a maximum of around1.9% at LO and 1.4% at NLO. Its
values are shown for CTEQ66M with a PDFαs of 0.117 and 0.119 in table 8.4.
In tables 8.7 and 8.8 (see chapter 8.3) the largest values of the presented PDF uncertainties
(∆αsys.

s (PDF)) have been taken.
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Figure 8.7: Influence of different PDFs on thed23 distribution. ThepT of the leading jet is inside the according
interval.

LO NLO
pT Interval ∆αsys.

s (PDF) ∆αsys.
s (PDF) ∆αsys.

s (PDF) ∆αsys.
s (PDF)

[PDF αs = 0.017] [PDF αs = 0.019] [PDF αs = 0.017] [PDF αs = 0.019]

20-40 GeV 0.001 0.001 <0.001 0.001

40-60 GeV 0.002 0.003 0.002 0.002

60-80 GeV 0.001 <0.001 <0.001 <0.001

80-100 GeV 0.001 <0.001 0.001 <0.001

100-120 GeV 0.001 <0.001 0.001 <0.001

120-140 GeV 0.001 0.001 <0.001 <0.001

Table 8.4: Systematic uncertainty ofαs due to PDF, using CTEQ66M with a PDFαs of 0.117 and 0.119
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Figure 8.8: d23 distributions, comparing CTEQ66M with different values ofαs. The pT of the leading jet is
inside the according interval.
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Figure 8.9: Systematic uncertainty ofαs at LO (left) and NLO (right) due to different PDF sets. CTEQ66M
has been used withαs = 0.117, αs = 0.118 andαs = 0.119.
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8.2.5 Hadronization Uncertainty

In order to take the hadronization into account, PYTHIA has been used to simulate events on parton
and on hadron level. Thed23 distributions of the hadron and parton level simulations have been
divided to get correction factors (see chapter 7.2). The calculations of NLOJET++ have then been
corrected bin-by-bin before being used in theαs-fit.
For systematic studies, the program HERWIG has been used, asit also allows the simulation on parton
as well as on hadron level and additionally uses a different hadronization model (see chapter 2.3).
The correction factors from PYTHIA are compared to HERWIG infigure 8.10.
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Figure 8.10: Hadronization correction factors from PYTHIA andHERWIG. Thefit to the correction factors
from HERWIGyields a value of 1.001± 0.007.

As the impact of the hadronization is large at small values ofpT of the leading jet and decreases with
higher energies, only thepT interval from 20 GeV to 40 GeV has been investigated.

The fit to the correction factors from HERWIG yields 1.001± 0.007, whereas the fit to the correction
factors from PYTHIA gave a value of 0.995± 0.004 (see table 7.1 in chapter 7.2).
Dividing 1.001 by 0.995 yields a factor of 1.006. As a conservative approach, this was rounded to
1.01 andαs determined after scaling the NLOJET++ calculations by thisfactor. αs at LO and NLO
considering the hadronization uncertainties is displayedin figures 8.11.
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Figure 8.11:Hadronization uncertainty at LO (left) and NLO (right)

The hadronization uncertainty (∆αsys.
s (hadr.)), which is always smaller than 1%, is displayed in table

8.5.
The systematic uncertainty due to the statistical errors ofthe correction factors (see chapter 7.2)

H i
hadr(d23) =

di
23,hadr

di
23,part

(8.13)
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have also been studied.
Theαs distributions accounting for the statistical errors ofH i

hadr(d23) (in the following calledσhadr.)
are presented in figures 8.12.
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Figure 8.12: Systematic uncertainty due to statistical errors of the hadronization correction at LO (left) and
NLO (right)

The uncertainties are quite large in the first bin (around 3%)and have then values of around 1%. The
values of the systematic uncertainties ofαs due to the statistical fluctuations of the correction factors
(∆αsys.

s (hadr., stat.)) are shown in table 8.5.

LO

pT Interval αs ∆αsys.
s (hadr.) ∆αsys.

s (hadr., stat.) [-σhadr.] ∆αsys.
s (hadr., stat.) [+σhadr.]

20-40 GeV 0.160 0.001 0.005 0.004

40-60 GeV 0.159 <0.001 0.001 0.001

60-80 GeV 0.145 0.001 0.001 0.001

80-100 GeV 0.143 0.001 0.001 0.001

100-120 GeV 0.141 <0.001 0.002 0.001

120-140 GeV 0.140 <0.001 0.001 0.001

NLO

pT Interval αs ∆αsys.
s (hadr.) ∆αsys.

s (hadr., stat.) [-σhadr.] ∆αsys.
s (hadr., stat.) [+σhadr.]

20-40 GeV 0.158 0.001 0.004 0.005

40-60 GeV 0.148 <0.001 0.001 0.001

60-80 GeV 0.128 0.001 0.001 0.001

80-100 GeV 0.120 <0.001 0.001 0.001

100-120 GeV 0.115 0.001 0.001 0.001

120-140 GeV 0.111 <0.001 0.001 <0.001

Table 8.5: Systematic uncertainty due to the hadronization and due to the statistical errors of the hadronization
correction

Always the largest value of the presented hadronization uncertainties has been included into tables
8.7 and 8.8 in chapter 8.3.
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8.2.6 Underlying Event Uncertainty

The systematic uncertainty of the Underlying Event (UE) hasbeen determined by correcting the
theory predictions from NLOJET++ for the impact of the UE, using different UE models (see chapter
7.3). The UE has been simulated with PYTHIA, applying the UE tunes AMBT1, PERUGIA10 and
ATLAS MC09c (see chapter 5.2.2).
The distribution ofαs at LO and NLO where the effects of each UE model considered have been
absorbed in the NLOJET++ prediction is shown in figures 8.13.
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Figure 8.13: Underlying Event uncertainty at LO (left) and NLO (right)

The distributions show only small differences of around 1%.The values of the UE uncertainty are
shown in table 8.6.

LO NLO
pT Interval PERUGIA10 ATLAS MC09 PERUGIA10 ATLAS MC09

20-40 GeV 0.001 0.001 0.001 0.001

40-60 GeV 0.001 0.001 0.001 0.001

60-80 GeV <0.001 <0.001 <0.001 <0.001

80-100 GeV 0.001 0.001 0.001 <0.001

100-120 GeV 0.001 <0.001 0.001 <0.001

120-140 GeV 0.002 0.001 0.001 <0.001

Table 8.6: Systematic uncertainty ofαs due to the UE, using the UE models PERUGIA10 and ATLAS MC09

For the total systematic uncertainty (see tables 8.7 and 8.8in the next chapter), the largest uncertainty
of the UE tunes (∆αsys.

s (UE)) has been chosen.

The same events have been simulated as for the hadronizationcorrections. Therefore, the statistical
error of the UE correction has already been considered in theabove chapter.
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8.3 Final Results

In this section, the final results are presented and comparedto the world average.
The above sections determined various systematic uncertainties. A summary also including the sta-
tistical uncertainties is given in table 8.7 at LO and in table 8.8 at NLO.

LO

pT,lJ Interval αs ∆αstat.
s ∆αsys.

s (JES) ∆αsys.
s (JES, stat.) ∆αsys.

s (4 jet) ∆αsys.
s (RS)

20-40 GeV 0.160 0.002 0.006 0.002 0.029 0.001

40-60 GeV 0.159 0.001 0.005 0.002 0.018 <0.001

60-80 GeV 0.145 0.001 0.005 <0.001 0.005 <0.001

80-100 GeV 0.143 0.001 0.005 <0.001 0.002 <0.001

100-120 GeV 0.141 0.001 0.005 <0.001 <0.001 <0.001

120-140 GeV 0.140 0.001 0.005 <0.001 0.001 <0.001

pT,lJ Interval ∆αsys.
s (PDF) ∆αsys.

s (hadr.) ∆αsys.
s (hadr., stat.) ∆αsys.

s (UE) ∆αsys.
s (total)

20-40 GeV 0.001 0.001 0.005 0.001 0.030

40-60 GeV 0.003 <0.001 0.001 0.001 0.019

60-80 GeV 0.001 0.001 0.001 <0.001 0.007

80-100 GeV 0.001 0.001 0.001 0.001 0.006

100-120 GeV 0.001 <0.001 0.002 0.001 0.006

120-140 GeV 0.001 <0.001 0.001 0.002 0.006

Table 8.7: Statistical (∆αstat.
s ) and systematic uncertainties ofαs at LO. The uncertainty of the JES

(∆αsys.
s (JES)), the systematic uncertainty due to the statistical errorsof the JES (∆αsys.

s (JES, stat.)), the un-
certainty due to 4-jet-events (∆αsys.

s (4 jet)), the uncertainty of the renormalization scale (∆αsys.
s (RS)), the un-

certainty of the PDF (∆αsys.
s (PDF)), the uncertainty of the hadronization (∆αsys.

s (hadr.)), the systematic uncer-
tainty due to the statistical errors of the hadronization correction (∆αsys.

s (hadr., stat.)) and the uncertainty of
the UE (∆αsys.

s (UE)) have been added to the total systematic uncertainty (∆αsys.
s (total)), where values<0.001

have been handled as 0.001. In this table, always the largestuncertainty has been included.

In the first two pT,lJ intervals, bin-migration effects frompT,lJ < 20 GeV have potentially larger
effects on the estimation of the systematic uncertainties.These effects are insignificant at higherpT

intervals.

αs at NLO has been compared to the theory curve defined at the value of the world average of
αs(MZ) = 0.1184± 0.0007 (see figure 8.14).

In green, the total systematic uncertainty is shown. The data points are in good agreement with the
theory curve - especially in the regionpT,lJ > 60 GeV.
At the mass of the Z boson,αs has been determined toαs(MZ) = 0.120±0.001(stat.)±0.005(syst.),
which is in good agreement with the current world average.
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NLO

pT,lJ Interval αs ∆αstat.
s ∆αsys.

s (JES) ∆αsys.
s (JES, stat.) ∆αsys.

s (4 jet) ∆αsys.
s (RS)

20-40 GeV 0.158 0.002 0.006 0.002 0.021 0.001

40-60 GeV 0.148 0.001 0.005 0.002 0.011 0.001

60-80 GeV 0.128 0.001 0.004 <0.001 0.001 0.001

80-100 GeV 0.120 0.001 0.004 <0.001 0.002 0.001

100-120 GeV 0.115 0.001 0.004 <0.001 0.001 0.001

120-140 GeV 0.111 0.001 0.003 <0.001 <0.001 0.001

pT,lJ Interval ∆αsys.
s (PDF) ∆αsys.

s (hadr.) ∆αsys.
s (hadr., stat.) ∆αsys.

s (UE) ∆αsys.
s (total)

20-40 GeV 0.001 0.001 0.005 0.001 0.023

40-60 GeV 0.002 <0.001 0.001 0.001 0.013

60-80 GeV <0.001 0.001 0.001 <0.001 0.005

80-100 GeV 0.001 <0.001 0.001 0.001 0.005

100-120 GeV 0.001 0.001 0.001 0.001 0.005

120-140 GeV <0.001 <0.001 0.001 0.001 0.004

Table 8.8: Statistical (∆αstat.
s ) and systematic uncertainties ofαs at NLO. The uncertainty of the JES

(∆αsys.
s (JES)), the systematic uncertainty due to the statistical errorsof the JES (∆αsys.

s (JES, stat.)), the un-
certainty due to 4-jet-events (∆αsys.

s (4 jet)), the uncertainty of the renormalization scale (∆αsys.
s (RS)), the un-

certainty of the PDF (∆αsys.
s (PDF)), the uncertainty of the hadronization (∆αsys.

s (hadr.)), the systematic uncer-
tainty due to the statistical errors of the hadronization correction (∆αsys.

s (hadr., stat.)) and the uncertainty of
the UE (∆αsys.

s (UE)) have been added to the total systematic uncertainty (∆αsys.
s (total)), where values<0.001

have been handled as 0.001. In this table, always the largestuncertainty has been included.
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Figure 8.14: αs compared totheory curvedefined at the value of the world average ofαs(MZ) = 0.1184±
0.0007. In green, the total systematic uncertainty ofαs is shown.
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Summary

The ATLAS detector at LHC started to record data from pp collisions at a center-of-mass-energy of
7 TeV on March 30th 2010. When starting a new experiment, firstof all the detector has to be un-
derstood and it has to be shown that the experiment works well, reproduces the results from former
colliders and is consistent with the theoretical extrapolation to the high collision energies of the LHC.
As a test of QCD, this thesis has determined the strong coupling constantαs via the ratio of 3-jet-
events to 2-jet-events with an integrated luminosity of 700nb−1. As the entries of jet-rates are corre-
lated to each other, it is preferable to analyze differential jet-rates instead. The differential 2-jet-rate
is measured via the jet-flip-values (d23), describing the transition from 3 to 2 reconstructed jets.
The transition parameter from 3 to 2 jets from the Durham jet algorithm has already been used for the
αs determination in former collider experiments, especiallyat e+e− colliders. This flip-parameter is
equivalent to the measurement of the ratio of trijet to dijetevents. In this way, the theoretical uncer-
tainties can be reduced as many of them almost cancel out.
Analogously, in this analysis, thekT algorithm in the exclusive reconstruction mode has been used
for theαs determination. It is based on the Durham jet algorithm and therefore also allows access to
the flip-values from 3 to 2 reconstructed jets, with the algorithm being forced to find 3 jets in the final
state. These flip-values are not very sensitive to the jet-energy-scale and hence allowed the measure-
ment ofαs at an early stage of the experiment.
Unfortunately, thekT algorithm in the exclusive mode is not the standard algorithm used for the AT-
LAS experiment. The default - the anti-kT jet algorithm - cannot be used for this analysis: due to
the reversed reconstruction scheme, soft particles are assigned to the jet in the last merging steps,
resulting in unusable flip-values. ThekT algorithm in the exclusive mode, on the contrary, merges
highly energetic objects at the last reconstruction steps.Therefore, the flip-values really describe the
transition from 3 to 2 hard jets. In order to have access to jets reconstructed with this jet algorithm,
the program ATHENA 15.6.10.6 has been used to re-run this algorithm on real data. After applying a
good run list and a jet trigger, the data from run periods A to Ehave been cleaned from bad jets. To
separate 3-jet-events from 4-jet-events, the impurity dueto 4-jet-events has been calculated.
The real data has been compared to fully simulated dijet samples, generated by the Monte Carlo gen-
erator PYTHIA and also to calculations from the numerical integration program NLOJET++ (version
4.1.3). Data and simulations have shown a good agreement at the mass of the Z boson.
To cope with the influence of the jet-energy-scale (JES), a bin-by-bin correction has been applied.
The correction factors have been obtained using PYTHIA, comparing jets from simulations with and
without detector effects. As this method is not as precise asthe measurement done for the anti-kT

jet algorithm with an already quite small JES uncertainty, aconservative estimate of 10% uncertainty
has been considered for systematic studies of the JES.
αs has then been determined by fitting thed23 distributions from real data to next-to-leading order
(NLO) perturbative QCD predictions from calculations using the program NLOJET++. As NLO-
JET++ only calculates cross sections for parton productions, the influence of the hadronization has
been adjusted bin-by-bin. The correction factors have beenobtained via simulations using PYTHIA
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(version 6.4.24), comparing simulations on hadron and parton level. In order to measure the un-
certainty of the hadronization, HERWIG (version 6.510) hasbeen used as a comparison, as it has a
different hadronization model implemented.
To take the influence of the Underlying Event (UE) into account, correction factors have been de-
termined using PYTHIA, running hard scattering processes with and without the UE, using the UE
tune AMBT1, which already includes ATLAS data. The calculations from NLOJET++ have then
been adjusted bin-by-bin for the impact of the UE. For systematic studies, also the UE tunes ATLAS
MC09c and PERUGIA10 have been studied.
Additionally, a method has been presented for correcting the influence of the UE directly on data. In
this method, the transverse momenta of jets and their constituents are adjusted for the contribution of
the UE using jets with a very small transverse momentum. It has been shown that this method can
also be used to correct thed23 flip-values for the influence of the UE.
The fit from data to the calculations from NLOJET++ yielded a value of αs(MZ) = 0.120 ±
0.001(stat.)±0.005(syst.) at NLO, being in good agreement with the current world average. System-
atic uncertainties due to the jet-energy-scale (±0.004), the statistical uncertainty of the JES correc-
tion (±0.001), the impurity due to 4-jet-events (±0.002), the uncertainty of the renormalization scale
(±0.001), the PDF (±0.001), the hadronization (±0.001), the statistical uncertainty of the hadroniza-
tion correction (±0.001) and the uncertainty of the Underlying Event (±0.001) have been studied.
As this method reproduces the results from former collider experements, this method can also be used
to determineαs in energy regimes not yet investigated.
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