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Second referee: Professor Dr. Wolfgang Lange

Examination date: 07.04.2011



Zusammenfassung

In dieser Arbeit konnte zum ersten Mal die Wechselwirkung zwischen Atomen
im Grundzustand eines Zwei-Niveau-Systems und dem quantisierten thermi-
schen Feld eines MW-Resonators untersucht werden.

Der Ein-Atom-Maser, oder Mikromaser, ist ein einzigartiges physikalisches
System für die Untersuchung von Quanten-Aspekten der Wechselwirkung von
Strahlung und Materie. Ein Zwei-Niveau-System von 85Rb Rydberg-Atomen
koppelt an ein einzelne Mode eines Mikrowellen Resonators mit einer hohen
Güte. Durch die großen Dipol-Matrix-Elemente der einzelnen Rydberg-Atome
und den supraleitenden Mikrowellenresonator mit einem Güte von 1010 kann
der Bereich der starken Kopplung erreicht werden und die kohärente Wechsel-
wirkung zwischen dem atomaren Zwei-Niveau-System und dem Resonatorfeld
ist dominant. Daher ist die Beobachtung von Rabi Oszillationen und die Pro-
duktion von nichtklassischen Feld Zuständen möglich was auch in dieser Arbeit
gezeigt werden konnte.

Bisherige Mikromaser Experimente zeigten einige Widersprüchlichkeiten
zwischen der theoretischen Vorhersage und den Messergebnissen. Insbeson-
dere bei tiefen Temperaturen war der beobachte Kontrast geringer als der the-
oretisch erwartete Kontrast. Eine mögliche Erklärung hierfür ist eine höhere
Temperatur des Resonatorfeldes. Indirekte Temperatur Messungen an den
Resonatorwänden sind durch externe Halbleiter-Temperatursensoren durchge-
führt worden. Allerdings konnte keine direkte Temperaturmessung des Felds
unterhalb 1K realisiert werden. Die experimentelle Realisierung von Rabi-
Oszillationen zwischen dem Grundzustand des Zwei-Niveau-Systems und den
quantisierten thermischen Resonatorfeld gibt eine direkte Messung der Feld-
statistik und die Resonatorfeld Temperatur kann extrahiert werden. In dieser
Arbeit werden zum ersten Mal Experimente mit den Rydberg Zustand 61D5/2

realisiert und kohärente Wechselwirkung wird gezeigt. Für eine hohe Zahl in
den Resonator injizierter Atome konnten erste Maserlinien in dieser Konfig-
uration beobachtet werden. Bei einer niedrigen Injektionsrate, werden Rabi-
Oszillationen mit hohem Kontrast beobachtet. Diese Messungen zeigen, dass
die Feldtemperatur etwas höher ist als die Temperatur der Resonatorwände.

Zur Präparation Atome in der Rydberg Zustand 61D5/2 wurde ein neues
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Laser-System entwickelt. Die Atome werden aus dem Grundzustand in den
Rydberg-Zustand mit einem zweistufigen Diodenlaser Kaskaden Aufbau bei
780 nm und 480 nm angeregt. Die Umsetzung dieses neuen Lasersystems führte
zur Entwicklung einer neuen Frequenzstabilisierungs Technik. Diese Arbeit
stellt eine neue Methode der Doppler-freien, rein optischen Spektroskopie von
Rb Rydberg-Zuständen in einer Gaszelle bei Raumtemperatur- vor. Diese neue
Methode wird dann in der Spektroskopie für verschiedene Anregungsschemata
verwendet. Die Anregung von Rydberg-Zuständen wird durch Beobachtung
der Absorption des 780 nm Diodenlasers auf den starkenRbD2-Linie gemessen,
in einem Schema, das Ähnlichkeiten zur Technik des Elektron-Schelving aufweist.
Laserspektroskopie von Rydberg-Übergängen wird gezeigt und damit werden
die verschiedenen Lasersysteme frequenzstabilisiert, die die Rydberg-Übergänge
in dem Mikromaser Experiment anregen. Es konnte die Qualität dieser Sta-
bilisierung mit einer Atomstrahl Vorrichtung und einem Flugzeit Experiment
gemessen werden. Durch die Verwendung unterschiedlicher Laser Polarisa-
tionen wird auch die Anregung eines einzelnen Rydberg Hyperfein Zustandes
demonstriert.



Abstract

This thesis reports experiments on the interaction between a two-level atomic
system and a single mode of the radiation field of a cavity. The interaction
between atoms prepared in the ground state of the two-level atomic system
and the quantized thermal cavity field is investigated for the first time in this
configuration.

The One-Atom Maser, or Micromaser, is a unique tool for the investigation
of quantum aspects of the interaction of radiation and matter. A two-level
atomic system of 85Rb Rydberg atoms is interacting with a microwave single
mode of a high Q cavity. The large dipole matrix-elements of single Rydberg
atoms and a superconducting microwave cavity with a Q-factor on the order
of 1010 achieve the strong coupling regime and coherent interaction between
the two-level Rydberg atomic system and the cavity field is dominant. The
observation of Rabi oscillations and the production of nonclassical field states
are, therefore, possible and will be shown in this work.

In the latest Micromaser experiments, the Rabi oscillations, so far mea-
sured, exhibit inconsistencies with the theoretical prediction, with a rather
low observed contrast. One possible explanation is attributed to higher field
temperature. Indirect temperature measurements of the cavity wall are per-
formed by means of external semi-conductors temperature sensors. However
no direct field temperature measurements below 1K have been realized yet.
The experimental realization of Rabi-oscillations between the ground state of
the two-level atomic system and the quantized thermal cavity field at the sin-
gle photon level gives a direct measurement of the field statistic and the cavity
field temperature can be extracted. In this work, experiments with the Ry-
dberg state, 61D5/2 are realized for the first time. The coherent interaction
is demonstrated for both a high atomic pumping leading to the measurement
of the first maserlines in this configuration, and a low atomic injection rate,
observing Rabi-oscillations with high contrast. These measurements show a
slightly higher field temperature than the cavity wall temperature.

To prepare atoms into the Rydberg state 61D5/2, a new laser system has
been developed. The atoms are excited from the ground state into the Rydberg
state with a two-step diode laser cascade setup at 780 nm and 480 nm. The
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implementation of this new laser system led to the development of a new
frequency locking scheme. This thesis presents a new method of Doppler-
free, purely optical spectroscopy of Rb Rydberg states in a room-temperature
gas cell. This new spectroscopy method is then used for different excitation
schemes. The excitation of Rydberg states is monitored by observing the
absorption of the 780 nm diode laser locked on the strong Rb D2 line, in a
scheme similar to electron shelving. Laser spectroscopy of Rydberg transition
is demonstrated and the frequency stabilization of the different laser systems
exciting the Rydberg states used in the Micromaser experiment is achieved. We
measure the performance of this stabilization with an atomic beam apparatus
and a time of flight experiment. Also, using different polarization schemes, the
excitation of a single Rydberg hyperfine state is demonstrated.
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Chapter 1

Introduction

The interaction between light and matter can be modeled theoretically by
considering matter as a collection of two-level atoms. A dipole transition
between two atomic levels then couples to a continuum of modes representing
external radiation field.

Spontaneous emission process, postulated by Einstein [1] resulting in the
exponential decay of the excited atomic state to a ground state is one of the
consequences of this coupling. A quantitative quantum description of spon-
taneous emission was developed by Weisskopf and Wigner in 1930 [2]. Based
on its quantum mechanical description, the environment is represented by a
thermal bath consisting of infinitely many oscillators. The coupling of atoms
to the thermal bath, which statistics is ruled by the Planck law, induces tran-
sitions between the excited state and ground atomic states. Therefore, the
Weisskopf-Wigner spontaneous emission theory represents an example of a ir-
reversible process of an open dissipative system.

The second consequence of this coupling is the virtual emission and reab-
sorption of photon by the atoms leading to the shift of the atomic transition
(Lamb shift). It was first observed by Lamb and Retherford while perform-
ing microwave spectroscopy experiments with hydrogen atoms [3]. Later on
the first theoretical treatment was achieved by Bethe [4]. Nowadays, accurate
measurements of the Lamb shift are used to test with very high accuracy the
quantum electrodynamic theory [5].

Both effects are also present, when the field of the environment is in its
quantum ground state, the vacuum state, meaning no photons are present.
The interaction between the atoms and the vacuum field can be explained
using the Heisenberg uncertainty relation introducing vacuum fluctuations.

However, the dynamics of the system changes when the two-level atoms are
coupled to a single mode of radiation. Coherent interaction between the atoms
and the field takes place and reversible processes are possible: the atom emits a
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2 CHAPTER 1. INTRODUCTION

photon in the radiation mode, and reabsorbs it. The frequency of this energy
exchange between the two sub-systems is given by the coupling constant g,
which is proportional to the dipole matrix element. The Jaynes-Cummings
Hamiltonian describes this interaction [6].

The starting point of cavity quantum electrodynamics (CQED) where the
realization of the coherent interaction between radiation and matter is investi-
gated, can be regarded to Purcell who has suggested one of its principle ideas
[7]. In the context of atomic physics, this principle means the spontaneous
emission rate and therefore the lifetime of an atomic state is not an intrin-
sic property of the atoms and can be modified when the atom is coupled to a
resonant electrical circuit.

Later on Casimir and Polder achieved a rigorous CQED calculation con-
sidering the force between an atom and a conductive plate [8]. The emission
probability of a photon by an atom at the frequency ω0 is ruled by Fermi’s
golden rule and is therefore proportional to the mode-volume of the radiation
field at ω0. In the presence of a conductive structure (hereafter we regard this
structure as a cavity), the structure of the free-space modes seen by the atom
is altered. If the cavity is resonant with the atoms, the spectral density at ω0

is higher than in the free-space case and therefore the spontaneous emission
rate is increased compared to the free-space one. In the non-resonant case,
no energy exchange occurs leading to an enhancement of the lifetime of the
excited atomic state.

The most famous applications of the weak coupling where the emission
rate is enhanced are the laser and the maser. Each individual atom of a lasing
medium couples to the cavity in the weak coupling regime, however, due to the
macroscopic number of atoms, stimulated emission occurs, realizing a coherent
radiation source.

The Strong Coupling Regime

In the case of the strong coupling regime, which is qualitatively different
from the weak coupling, reversible processes are present and the atomic popu-
lation oscillates. Strong coupling is achieved when the dipole coupling constant
g is larger than the spontaneous atomic decay rate κ and the cavity decay rate
γ. The condition g > κ leads to a coherent emission of the atom in a well
defined single mode and not in the environment. The emitted photon is then
trapped in the cavity mode for such a long time, i.e g > γ, that it can be
reabsorbed by the atom after a Rabi cycle (π/g). Unitary reversible processes
are realized. Periodic oscillation occurs and Rabi oscillations at the frequency
Ω =

√
n+ 1g are observed.

The progress achieved over the last decades both for the engineering of
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high-Q cavities as well as controlling single atoms has allowed physicists to
developed experimental systems where the strong coupling regime is realized
in two distinct frequency domains, the microwave and optical one.

Experiments with optical high finesse Fabry-Perrot cavities achieve the
realization of the strong coupling regime. The coherent interaction is demon-
strated by observing the vacuum Rabi-splitting between the eigenstate of the
atom-cavity coupled system [9].

In the recent years, cavity QED experiments based on artificial atoms have
been developed both in the microwave and optical regime. Circuit QED with
superconductor circuits in the microwave domain [10] or quantum dots struc-
tures in optical cavities [11] are some outstanding examples of the development
of the field.

In this thesis, the interaction between a single atom and a single mode of
a microwave cavity is investigated.

The One-Atom-Maser or Micromaser

The first break-through in the realization of strong coupling between the
light and matter was achieved with the development of high-Q cavities in the
microwave regime. Inspired by the traditional maser, the micromaser exper-
iment has been developed over the last decades at the Max Planck Institute
for Quantum Optics by the group of H. Walther [12]. Meanwhile the group of
S. Haroche in Paris developed a CQED experiment in the microwave regime
based on an open Fabry-Perrot cavity [13]. An advantage of the closed cavity
used in Garching is, that it covers the entire 4 π solid angle isolating completely
the atom from the environment.

In the micromaser, a stream of two-level atoms is injected into a super-
conducting cavity with a high quality factor. The injection rate is controlled
such that at most one atom at a time is present inside the cavity. The cav-
ity decay constant is made small by using a superconductive niobium cavity.
The microwave photon energy is smaller than the energy gap of the super-
conductive Nb, thus the photon absorption by the cavity wall is reduced. An
other advantage of microwave cavity over optical cavity is their mode struc-
ture. Wavelengths are on the order of cm in the former case and therefore the
cavity oscillations in the fundamental mode can be realized. It is then possible
to set the atom at the maximum of the field distribution. In the optical regime,
higher modes have to be used and therefore the coupling constant is strongly
dependent of the atom position in the cavity.

In contrast to the traditional maser, where a macroscopic molecular ensem-
ble interacts with the cavity field, the micromaser studies the radiation-matter
interaction at the single atom level. This implies that the atom-cavity coupling
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must be larger than the atomic spontaneous decay rate. The latter condition
has been fulfilled using highly excited atoms, Rydberg atoms. Their properties
make them ideal for the micromaser. The transition between two neighboring
Rydberg states is in the microwave domain. The dipole matrix element for the
transition between Rydberg levels scales with n2, where n is the main quantum
number, and is three orders of magnitude larger than for Zeeman or hyperfine
transitions. Consequently, a few photons are enough to saturate the transition
between neighboring levels. The spontaneous decay rate to the ground state
scales with n−3 and is therefore much smaller than the coupling constant g.
Finally, the atoms in the micromaser play a dual role as the measurement
of the cavity field is performed in an indirect manner, measuring the atomic
statistics. In the micromaser experiment, 85Rb atoms are used. The maser
excited state is the 63P3/2 state and the maser ground state the 61D5/2. The
transition frequency is 21.456 GHz, the coupling constant, g/2π ∼ 7 kHz. The
atomic decay rate γ/2π = 0.7 kHz and the cavity decay rate κ/2π ∼ 13 Hz.
The condition g >> κ, γ for the strong coupling is then fulfilled.

In the micromaser experiment realized in Garching, the strong coupling
regime is achieved and the coherent interaction between a single Rydberg atom
and a single mode of the microwave radiation of a high-Q superconductive Nb
closed cavity is examined. The atoms prepared in the excited state enter the
cavity and interact with the resonant field allowing the investigation of many
fundamental aspects in quantum optics. For a large atomic injection rate, the
combination of the coherent interaction when an atom is present in the cavity
and decay processes lead to a steady state of the field, analogous to a maser
[14]. The photon statistics of the micromaser then exhibits many interesting
effects including sub-Poissonian statistics. Photon number states can be gen-
erated [15] and bistability has been observed [16]. For a low atomic injection
rate, with less than one atom per cavity decay time, the realization of Rabi
oscillations between the nonclassical field of the cavity and the two-level Ryd-
berg atom is possible.

This Thesis

First Experiments with the Maser Rydberg Ground State 61D5/2

In the micromaser experiments at low temperature (below 1K), the Rabi
oscillations, so far measured, exhibit inconsistencies with the theoretical pre-
diction, with a rather low observed contrast. One possible explanation is
attributed to higher field temperature. The control of the thermal field is one
of the important challenges in the micromaser physics. The mean thermal
photon number plays a central role in the steady state properties of the cav-
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ity. Especially for the generation of photon number states, trapping states, or
for the study of stochastic processes where the noise is at the quantum level,
quantum stochastic resonances. The cavity is cooled using a dilution cryogenic
system reaching temperature below 1 K. However, heating due to outside ra-
diation from hotter surfaces present in the experimental apparatus could be
significant. One of the scopes of this work is to measure, for the first time, the
field temperature in a more accurate way using the micromaser ground state
atoms as temperature sensors. When no atoms are present, the cavity is in
thermal equilibrium and the field statistic is governed by the Planck law and
the photon distribution is described by the Bose-Einstein distribution. The
measurement of Rabi oscillations where a ground state atom interacts with
the quantized thermal field of the cavity then give information about the pho-
ton distribution and the temperature of the field can be extracted.

Development of a new Laser System and Demonstration of a new
Method of Purely Optical Spectroscopy of Rydberg Atoms

To perform thermal Rabi oscillation measurements, a new laser system had
to be developed to prepare the Rydberg atoms in the maser ground state. This
is achieved by two diode lasers at 780 nm and 480 nm. The implementation
of this new laser system led to the development of a new frequency locking
scheme for the laser promoting the atoms to the Rydberg states. So far, the
spectroscopic signal used for the frequency locking was acquired from exper-
iments performed on the atomic beam. Purely optical detection of Rydberg
states has been a difficult task for many years, mostly due to the small radial
part of the dipole matrix element between the atomic ground state and the
highly excited Rydberg states. On the other hand, weak atomic transition are
of particular interest as they offer the highest frequency resolution. Over the
last decades, frequency standard experiments developed the detection of weak
atomic transition in optical atomic clocks [17, 18] using the quantum amplifi-
cation of the electron-shelving technique introduced by Dehmelt [19]. One of
the results of this thesis is the demonstration of a new method of Doppler-free
purely optical spectroscopy of Rydberg atoms in a room-temperature gas cell
applying the quantum amplification of the electron shelving to Rydberg sys-
tems and its direct application in the micromaser experiment for a frequency
locking scheme [20, 21].

The development of this new excitation scheme and the injection of ground
state atoms inside the cavity opens the possibility for a range of new exper-
iments with new atomic states. Maser lines, where the cavity frequency is
tuned over resonance, are measured with ground state atoms for the first time.
And thermal Rabi oscillations are observed at the single-thermal-photon level.
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From the measured Rabi oscillations it can be deduced that the actual field
temperature is slightly higher than expected.

Numerical Support for Time Dependent Micromaser Experiments

Parallel to the realization of maser ground states atoms experiments, I
developed a theoretical and numerical support for the ongoing micromaser ex-
periments in Garching. The steady state of the micromaser can be solved an-
alytically. Nevertheless, there are no analytical solutions for time dependence
of the fields. The phase diffusion experiment investigates the time evolution
of the phase and amplitude of the maser field to determine the micromaser
linewidth. Hence, numerical solutions for decoherence processes in the micro-
maser are developed using the quantum trajectory treatment.

Chapters Organization

Chapter 2 presents an introduction to the theory of the micromaser. The
Jaynes-Cummings interaction is investigated and the case of Rabi oscillations
between a ground state and a thermal field is solved. The analytical treatment
of the micromaser in the steady state regime is also considered.

In the third chapter, the main experimental aspects for the realization of
the micromaser experiments are described. Rydberg atoms and their main
properties are discussed, as well as the latest improvement of the cryogenic
system for a better temperature control over a wild range.

Chapter 4 presents the main results obtained when ground states atoms
interact with the micromaser cavity at thermal equilibrium.

The new Doppler-free optical detection method, for the spectroscopy of
Rydberg states in a gas cell at room-temperature is demonstrated in the fifth
chapter.

Finally, Chapter 6 examines the numerical treatment of the micromaser
using the Quantum Trajectory Method. The cases of the phase diffusion and
quantum Ramsey interferences are presented



Chapter 2

Theory

In this chapter, the Jaynes-Cummings Hamiltonian, describing the coherent
interaction between a two-level system and a single mode of radiation field, is
introduced. The particular case of the interaction between the lower level and
the quantized thermal field of the cavity (experimentally investigated in Chap-
ter 4) is analytically solved. Finally, the micromaser steady state is calculated
when Rydberg atoms are injected into the cavity, both in the excited and the
ground maser state.

An article by Purcell [7] can be considered as the first proposal in the field
which is nowadays well-known as cavity quantum electrodynamics (CQED).
In this work it is enunciate that the spontaneous emission rate of an atomic
frequency transition, compared to the free space rate, can be enhanced by
coupling an atom to a resonant electric circuit. Later on Casimir and Polder
[8] presented a rigorous CQED calculation considering the force between an
atom and a conducting plane.

In presence of a conducting structure (hereafter we regard this structure
as a cavity), the free-space field modes distribution is modified and the cavity
can enhance the coupling of the atoms to some particular modes of the elec-
tromagnetic field. In this case the spontaneous decay rate of an excited atomic
state can be different from the free-space one. Demonstrations of the modified
radiation rates in the case of low-Q cavities have been done in the microwave
[22] and the visible [23] regime.

In the case of the interaction of an atom with a high-Q cavity, qualitatively
different from the low-Q cavity, reversible processes are present and the atomic
population oscillates. The discovery of high-Q microwave cavities in the early
80s [12, 13] allowed to study the fundamental case where a single two-level
atomic system interacts with a single mode of a cavity [24] which leads later
to the realization of the one-atom-maser or micromaser.

7



8 CHAPTER 2. THEORY

In this chapter the theoretical model of the micromaser is introduced. The
quantum nature of the steady state of the cavity field is shown and the par-
ticular case of the Rabi oscillations of ground state atoms in presence of a
thermal field at the quantum level is discussed.

2.1 Basics

The one-atom maser or micromaser is a unique tool which allows to study the
atom-field interaction in the particular case where a single two-level atomic
system interacts with a single mode of a quantized field.

velocity selective 

excitation of the upper

maser level

 state selective 

field ionization

?

MW-synthesizer
atomic beam

oven

    high Q cavity
(Q=10^9 to 10^10)

atomic 

beamRb-atoms

Figure 2.1: The One-Atom-Maser or micromaser experiment. The heart of
the experiment: a very high Q cavity is designed to isolate a single mode of
microwave radiation. A thermal Rydberg Rb atomic beam interacts with the
field in a coherent manner. The dilute atomic beam, ensuring that only one
atom at a time is interacting with the field, is produced from an oven and the
Rydberg states are produced by laser excitation before entering the cavity. The
field measurement is achieved in an indirect way while the atomic state after
the interaction is measured using a state-selective ionization detection scheme.
The atom-cavity interaction time is controlled using angular excitation of the
laser beam by means of Doppler selection.

The atoms are injected in the cavity at such a low rate that at most one



2.1. BASICS 9

atom at a time is present in the cavity. In the case of the micromaser we have
to deal with an open quantum system under further assumptions:

• Atom-field interaction involves only one mode of the field and a two-level
Rydberg atom with the ground maser level |g〉 as the 61D 5

2
state and

the excited maser level |e〉 the 63P 3
2

state of the 85Rb atom. Due to the
cavity geometry only one mode is near resonant.

• The atom-field interaction time τ is controlled via Doppler selection of
the velocity of the atoms in the excitation scheme.

• The coupling g of the atom to the field is much stronger than the cou-
pling between the atom or the cavity to the environment (γ and κ ): the
micromaser operates in the strong coupling regime.

• The atom-field interaction is a dipole-dipole coupling between a single
mode of a field and two well-known Rydberg states of the atoms.

In order to describe the dynamics of the mircomaser, the description of the
electromagnetic field of the cavity has to be outlined first. From the Maxwells
equations (in MKS unit) restricted to a charge-free (e.g. vacuum), isotropic
and homogenous media:

∇.E = 0 (2.1)

∇.H = 0 (2.2)

∇×H− ε0 Ė = 0 (2.3)

∇× E + µ0 Ḣ = 0 (2.4)

Consider the electric field E(r,t) and magnetic field H inside a volume V
bounded by a surface S of perfect conductivity. E and H can be decomposed
in terms of two sets of orthogonalized and normalized vector fields (modes) Ea

and Ha .
These sets Ea and Ha obey to the Slater relations [25] :

kaEa = ∇×Ha (2.5)

kaHa = ∇× Ea (2.6)
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From the wave equations (2.5) and (2.6), one recovers the Helmotz equations
for Ea and Ha :

∇2 Ea + k2
a Ea = 0 (2.7)

∇2 Ha + k2
a Ha = 0 (2.8)

By using the separation of variables, the total resonator fields, E(r, t) and
H(r, t), can then be decomposed as:

E(r, t) = −
∑
a

1
√
ε0
pa(t) Ea(r) (2.9)

H(r, t) =
∑
a

1
√
µ0

ωaqa(t) Ha(r) (2.10)

with ωa = ka/
√
µ0ε0. Using the Maxwell equations and the Slater relations

leads to the relations for pa and qa:

pa = q̇a

ω2
aqa = −ṗa (2.11)

In order to find a model for the quantization of a field in a cavity, we start
by writing down the total energy of the field inside the cavity. The Hamiltonian
of the system is:

H =
1

2

∫
v

µ0 H.H + ε0 E. E dv (2.12)

Replacing E(r, t) and H(r, t) by their expressions obtain in (2.9) and (2.10)
gives:

H =
∑
a

1

2
(p2
a + ω2

aq
2
a) (2.13)

From the relations between pa and qa (2.11) obtained from the Maxwell’ equa-
tions we see that pa and qa constitute a canonically conjugate pair and are
solutions of the Hamiltons equations of motion relating q̇a to pa and ṗa to qa.

The quantization of the electromagnetic field is then achieved by consider-
ing pa and qa as formally equivalent to the momentum and coordinate operator
of a quantum mechanical oscillator. They then obey to the commutator rela-
tions:

[pa, pb] = [qa, qb] = 0

[pa, qb] = i~δa,b (2.14)
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We introduce at this point the creation operator a†b and the annihilation
operator ab by:

a†b(t) =

(
1

2~ωb

) 1
2

[ωb qb(t) − i pb(t)] (2.15)

ab(t) =

(
1

2~ωb

) 1
2

[ωb qb(t) + i pb(t)] (2.16)

From (2.15) and (2.16) we find directly the commutator relations to be:

[aa, ab] = [a†a, a
†
b] = 0

[aa, a
†
b] = δa,b (2.17)

Replacing the operator p and q by the operator a and a† in (2.14), the Hamilton
operator of a quantum field reads:

Ĥ =
∑
b

~ωb(a†bab +
1

2
) (2.18)

2.2 The Jaynes-Cummings model

To describe the interaction between the atoms and the cavity field, we have to
use the well-known Jaynes-Cummings Hamiltonian[6]. It deals with the case
when a single mode of a quantized electromagnetic field couples to a two-level
system.

In the case of the micromaser experiment, the two-level system is formed
by the Rydberg atomic states where the ground maser level |g〉 is the 61D5/2

state and the excited maser level |e〉 the 63P3/2 state of the 85Rb atom.
The Hamiltonian HA of the atomic system can so be written as,

HA =
1

2
~ωA(σ†σ − σσ†) (2.19)

The energy gap between the two levels is ωA. The transition between the two
atomic states is described by the operators σ = |g〉〈e| and σ† = |e〉〈g|. These
operators satisfy the fermionic anticommutation relation:

[σ, σ†]+ = σσ† + σ†σ = 1 (2.20)

and the commutator reads:

[σ, σ†] = |e〉〈e| − |g〉〈g| = σz (2.21)
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This comes to a simple expression for the atom Hamiltonian:

HA =
1

2
~ωAσz (2.22)

In the same way one can rewrite the position operator ~r of the electron
to the nuclei in the |e〉 ,|g〉 basis. Under the assumption that the atom has
no permanent dipole moment and that the matrix element are real, we have
〈g|~r|e〉 = 〈e|~r|g〉 so,

~r = |g〉〈g|~r|e〉〈e|+ |e〉〈e|~r|g〉〈g|
= (σ + σ†)〈e|~r|g〉 (2.23)

As the atomic transition is only resonant for one mode of the cavity field,
the field Hamiltonian can be written as,

HF =
1

2
~ωF (a†a+

1

2
) (2.24)

The quantum electric field along the atomic beam axis reads:

~̂E(~x) =
E0√

2
(a† + a) sin(k · z) (2.25)

where we assume that the field has a linear polarization along the x-axis
and ~k ‖ ~z, with k = ωF

c
and ωF the cavity frequency .

Assuming that the wavelength of the field is large compared to the dimen-
sion of the Rydberg atoms, the interaction of the atom with the cavity field
can be described in a good approximation with the dipole approximation. The
interaction Hamiltonian HAF can then be written as:

HAF = −e~r. ~E(~r) (2.26)

With (2.23) and (2.25), HAF reads:

HAF = ~g(σ† + σ)(a† + a) (2.27)

Where g [26] is the coupling constant:

g = −e〈g|x|e〉
~

E0 sin(k · z) (2.28)

(2.27) has four different operators products which can be physically inter-
preted:

• aσ corresponds to a photon absorption with the atomic transition |e〉 →
|g〉, which corresponds to a loss of the total energy of the system.
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• aσ† corresponds to the stimulated absorption.

• a†σ corresponds to the stimulated emission.

• a†σ† corresponds to a photon emission with the atomic transition |g〉 →
|e〉, which corresponds to a gain of energy for the system.

Let us transform the atom-field Hamiltonian HAF in the Heisenberg represen-
tation.

HAF = ~g(ae−iωF t + a†eiωF t)(σ†e−iωAt + σeiωAt) (2.29)

HAF = ~g(aσe−i(ωF +ωA)t + a†σ†ei(ωF +ωA)t + a†σei(ωF−ωA)t + aσ†e−i(ωA−ωF )t)
(2.30)

If we integrate the Schrödinger equation in the Heisenberg representation
we get two oscillations terms:

1) a fast oscillation term ≈ 1
ωF +ωA

2) a slow oscillation term ≈ 1
ωF−ωA

As the slow term is dominant, we can neglected the fast one; this is called
the rotating wave approximation. The expression of the atom-field Hamilto-
nian is in this approximation:

HAF = ~g[aσ†e−i(ωF−ωA)t + a†σei(ωF−ωA)t] (2.31)

The neglected terms can lead to the Bloch-Zieget shift in the 2nd order of the
perturbation theory [27].

HAF describes the Jaynes-Cummings interaction by finite detuning:

∆ = ωF − ωA

from the field respect to the atomic transition.
The complete Hamiltonian of the system can then be written as:

HJC = HAF

= ~g(aσ†e−i∆t + a†σei∆t) (2.32)
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This is the Jaynes-Cummings Hamiltonian. The new quantum state of the
system is the tensor product between the field state and the atom state.

|i, n〉 = |i〉 ⊗ |n〉,where |i〉 ∈ {|g〉, |e〉} (2.33)

The Jaynes-Cummings model can then be briefly summarized as follows:

• It is a fully quantum model describing the interaction between a two-
level atomic system and the single mode of a quantized electromagnetic
field by the means of the Hamiltonian (2.32).

• It is based on two approximations, namely the dipole approximation and
the rotating-wave approximation.

Having now this Hamiltonian at our disposal we can start to look closer to
the evolution of an atom-field system. Starting with an initial state where the
atom is in his ground state |g〉 and the cavity in a number state |n+ 1〉:

Ψ(0) = |g, n+ 1〉 (2.34)

After a time τ , the wave function is:

Ψ(τ) = Cg,n+1(τ)|g, n+ 1〉+ Ce,n(τ)|e, n〉 (2.35)

with the Schrödinger equation thus,

Ψ̇(τ) = Ċe,n(τ)|e, n〉+ Ċg,n+1(τ)|g, n+ 1〉
= −ig(aσ†e−i∆τ + a†σei∆τ )(Ce,n(τ)|e, n〉+ Cg,n+1(τ)|g, n+ 1〉) (2.36)

if we projet on |g, n〉 and |e, n− 1〉 we get:

Ċe,n(τ) = −ig
√
n+ 1e−i∆τCg,n+1(τ) (2.37)

and,
Ċg,n+1(τ) = −ig

√
n+ 1ei∆τCe,n(τ) (2.38)

If there is no detuning (∆ = 0) of the cavity to the atomic transition, with the
initial condition, we get:

Cg,n+1(τ) = cos(g
√
n+ 1τ) (2.39)

and
Ce,n(τ) = −i sin(g

√
n+ 1τ) (2.40)
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We can write so the probabilities P|g,n〉 and P|e,n−1〉 to observe the states
|e, n〉 and |g, n+ 1〉,

P|g,n+1〉(τ) = |〈g, n+ 1||Ψ〉|2

= cos2(g
√
n+ 1τ) (2.41)

and,

P|e,n〉(τ) = |〈e, n||Ψ〉|2

= sin2(g
√
n+ 1τ) (2.42)

This describes the reversible emission of the atoms, this behavior is the
quantum mechanical version of the Rabi oscillations where a two-level atom
coupled to a single mode electromagnetic field cavity alternately absorbs pho-
ton(s) from the cavity mode and reemits them.

Figure 2.2 shows theoretical simulations for Rabi oscillations where the
atom is initially in his ground state |g〉 and the cavity in a well defined thermal
state:

ρth =
∑
n

〈n〉nth
(1 + 〈n〉th)n+1

|n〉〈n| (2.43)

Hence, the ground state atomic population oscillates as:

Pg =
∑
n=0

ρn,n cos2(
√
ngτ) (2.44)

For the calculations, the experimental parameters were chosen, like the
atom-field coupling constant g/2π = 7 kHz and the interaction time τ . The
experimental realization of such oscillations will be shown in Chapter 4.

The observation of the Rabi oscillations between the two atomic states
where the atoms are initially in their excited state |e〉 has been done experi-
mentally for an initial thermal state of the cavity [28] such as for number state
(n=0,1,2) inside the cavity [29][30]. The measurement of Rabi oscillation also
gives valuable information for a state reconstruction of the quantum field of
the cavity [31]

We can finally make the remark that the sates |e, n〉 and |g, n + 1〉 are
not the eigenvalues of the Hamiltonian. We introduce the so-called ”dressed
states” which are the eigenvalues of the Jaynes-Cummings Hamiltonian [32]:

|n, α〉 = cos θn|e, n〉 − sin θn|g, n+ 1〉 (2.45)

and,
|n, β〉 = sin θn|e, n〉+ cos θn|g, n+ 1〉 (2.46)
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Figure 2.2: Rabi oscillations between a quantized thermal field and ground state
atoms.

with the mixing angle

tan(2θn) =
2
√
n+ 1g

ωF − ωA
(2.47)

2.3 Micromaser Dynamics and Master Equa-

tion

In the previous section, the coherent interaction of a two-level atomic sys-
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Upper Maser State |e〉 63P3/2

Lower Maser State |g〉 61D5/2

Resonance frequency ωA

2π
= ωF

2π
21.456 GHz

Atom-Field coupling g/2π ≈ 7 kHz

Q-factor Q = ωF/γ = ωF τc 1.109...4.1010

Atomic decay κ/2π ≈ 0.2 kHz

Interaction time τ 35...120 µs

Temperature T 0.15...1.3 K

Table 2.1: Main Micromaser parameters

tem and the single mode of an electromagnetic field in a cavity is described by
the Jaynes-Cummings Hamiltonian (2.32).

The cavity is now also interacting with the environment which causes the
decay of the field. To describe this interaction, one assumes the coupling
between the single mode of the cavity and a thermal bath consisting of a
infinitely many oscillators of the environment.
The thermal bath is described by:

HB = ~
∑
k

ωkF (b†kbk +
1

2
) (2.48)

Using the same algebra as in section 2.2, the Hamiltonian describing the cou-
pling between the cavity and the environment reads:

W = ~
∑
k

gk(a
†
kbk + akb

†
k) (2.49)

In the micromaser, one has to deal with an open quantum system which can
be described as follows:

• One atom events: the standard experimental operation is when all atoms
are uncorrelated: they arrive at random time and there is at most only
one atom in the cavity at any time
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Cavity

HB

HAF

HF

W

Or

HA

Figure 2.3: One-Atom-Maser Principle. A single mode of a high Q cavity, HF ,
interacts with a two-level atomic system, HA. The atoms are injected inside
the cavity either in the excited state |e〉 or ground state |g〉. When an atom is
present in the cavity, the strong coupling regime is achieved and the coherent
interaction between the cavity and the atoms occurs, HAF . The measurement
of the cavity state is done by performing the detection of the atomic state
population leaving the cavity. When no atoms are present, the cavity couples
to the environment, HB, through the interaction W .

• Leakage of the cavity field: since the lifetime of the photon in the cavity
is much more larger (γ/2π ≈ 20 Hz ) than the interaction time when an
atom is present (35µs < τ < 100µs), we can neglect a dissipation of the
cavity during the interaction. Indeed, we assume that the cavity decays
only in the time interval between two atoms.

• Atom-field interaction: when an atom enter the cavity, the atom-field
system realizes the Jaynes-Cummings Model.

Under these assumptions, one can formulate an analytical model for the
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micromaser [14, 33]. Considering the micromaser dynamics as two separable
terms, namely a pumping process of the cavity field in presence of the atoms
and a relaxation process when no atoms are present the time evolution of the
field reads:

∂ρ

∂t
=

(
∂ρ

∂t

)
gain

+

(
∂ρ

∂t

)
loss

(2.50)

The decay of the cavity is modeled by the interaction W (2.49) coupling
the single mode of the cavity to an external thermal bath. This model has
a standard description and its evolution is given by the mean of the master
equation of a damped harmonic oscillator [34] :(

∂ρ

∂t

)
loss

= Lρ

= −1

2
γ(nth + 1)(a†aρ− 2aρa† + ρa†a) (2.51)

− 1

2
γnth(a

†aρ− 2aρa† + ρa†a)

where nth = (e
~ω

kBT )−1 is the mean thermal photon number. Here the evolution
operator L is called the Liouvillian operator.

The pump process is assimilated to the atom field interaction. Starting
from the Jaynes-Cummings Hamiltonian (2.32) the unitary evolution operator
U(τ) reads:

U(τ) = e−(i/~)HJCτ

= cos
(
gτ
√
a†a+ 1

)
|e〉〈e|+ cos

(
gτ
√
a†a+ 1

)
|g〉〈g|

− i
sin
(
gτ
√
a†a+ 1

)
√
a†a+ 1

a|e〉〈g| − i
sin
(
gτ
√
a†a
)

√
a†a

a†|g〉〈e| (2.52)

The change of the cavity per atom is given by:

δρ = ρ(to + τ)− ρ(t0) (2.53)

where ρ(t0 + τ) can be expressed as:

ρ(t0 + τ) = Tra{U †(τ)ρa+f (t0)U(τ)}
= Aρ+ Bρ (2.54)

with,

Aρ = Pe(t0) cos
(
gτ
√
a†a+ 1

)
ρ(t0) cos

(
gτ
√
a†a+ 1

)
+

Pe(t0)a†
sin
(
gτ
√
a†a+ 1

)
√
a†a+ 1

ρ(to)
sin
(
gτ
√
a†a+ 1

)
√
a†a+ 1

a (2.55)
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Bρ = Pg(t0) cos
(
gτ
√
a†a
)
ρ(t0) cos

(
gτ
√
a†a
)

+

Pg(t0)a
sin
(
gτ
√
a†a
)

√
a†a

ρ(to)
sin
(
gτ
√
a†a
)

√
a†a

a† (2.56)
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Figure 2.4: One-Atom-Maser Pumpcurve: the red line represents the mean
photon number of the cavity. Around the mean photon number, photon field
states with sub-Poissonian statistic are present. In particularly, bistability can
be observed for an interaction time τ = 57µs. The marked depth show the
presence of trapping state, Fock states, produced in the cavity

In order to get only the time evolution of the cavity field, we have traced
over the atomic state and Pe(t0) and Pg(t0) are the probabilities that the atom
enters either in the excited or ground state. Hence the overall change of the
cavity field due to the interaction with the atomic beam reads:

∆ρ = R∆t(ρ(t0 + τ)− ρ(t0)) (2.57)
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The gain term in the master equation can then be written as follows:(
∂ρ

∂t

)
gain

= R(A+ B − 1)ρ (2.58)

where R is the atomic beam rate - number of atoms per cavity decay time.
Substituting (2.49) and (2.56) in the master equation (2.48) leads to the general
micromaser master equation:

∂ρ

∂t
= R(A+ B − 1 + L)ρ (2.59)

This equation describes an open driven quantum system and can be solved
in the steady-state regime when the gains are equal to the losses, ∂ρ

∂t
= 0 . The

resulting equation leads to the following recursion:

ρnn =
nthγ + Ek

(nth + 1)γ + Gk
ρn−1 (2.60)

The steady-state solution ρssnn reads:

ρssnn = ρss00

n∏
k=1

nthγ + Ek
(nth + 1)γ + Gk

(2.61)

with the coefficients:

Ek =
Re

k
sin2(
√
kgτ) (2.62)

Gk =
Rg

k
sin2(
√
kgτ) (2.63)

and Ri is the rate at which the atoms are injected into the state |i〉(= |e〉 or
|g〉) per cavity decay time.

Equation (2.59) is the central result of the micromaser theory, describing
the steady-state of the maser field and the starting point of the studies of the
statistical properties of the field. In the case of a pumping where all atoms enter
the cavity in the excited state |e〉, as showed in figure (2.4), field states with
sub-Poissonian (super-Poissonian) statistics, also called ”nonclassical” states,
can be observed [35]. Particular states, such as bistable states or trapping
states, were experimentally observed [15, 16, 29].
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Chapter 3

Experimental Setup

In this chapter, the experimental setup of the micromaser is developed. The
generation of a controlled atomic beam and the high Q superconuctive cavity are
introduced. The most relevant properties of the 85Rb Rydberg atoms are stud-
ied. In particular the coupling constant is reevaluated and the Rydberg lifetime
of the maser ground state, 61D5/2 is recalculated using the latest theoretical
contribution. Improvements of the cryogenic system, leading to a continually
controlable cooling temperature from 1.3 K down to 150 mK, are explained.

The experimental realization of the theoretical Jaynes-Cummings model
where a single two-level atom couples to a single mode of the field of a cavity
is achieved with the micromaser experiment. The experimental idea of the
micromaser is based on the MASER realized by Townes and co-workers [36],
where an ammoniac molecular beam interacts with a low Q microwave cavity.
In order to achieve the strong coupling regime where the dynamics is dominated
by the coherent interaction between a two-level system and a single mode
of radiation, highly excited Rydberg atoms and a high Q superconducting
niobium cavity are used.

Cavities offering the longest lifetime are obtained in the microwave domain
at frequencies of several tens of gigahertz (GHz) for wavelength λ of the order of
the centimeter. Since the microwave photon energy is smaller than the energy
gap of certain superconductive materials, the photon absorption at the surface
is reduced. The resistivity of a superconductor vanishing at absolute zero
[37]. Long storage time of the microwave field on the order of few hundred
millisecond in the cavity can be achieved. The superconducting Nb cavity
used in the micromaser experiment has a cylindrical form and has two small
coupling holes along the atomic beam axis. The cavity is also designed to fulfill
the experiments requirements:

• Only one mode of the cavity is resonant with the atomic transition .

23
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• The decay rate of the cavity field for this mode has to be small enough
to achieve the strong coupling condition: γ << g (see Chapter 2).

The microwave transitions traditionally used in atomic physics (Zeeman
transitions or hyperfine transitions) are not adapted to the realization of the
strong coupling regime due to their very small coupling to an electromagnetic
field. Hence, highly excited atoms, Rydberg atoms, are used. Rydberg atoms
present many advantages:

• Rydberg-Rydberg atomic transitions, which are in the microwave region,
present a large dipole moment as the wave functions of two neighboring
states strongly overlap.

• Long lifetime with respect to the ground state as the wave function is
strongly delocalized from the nucleus.

• Easily produced by laser field excitation.

• State-selective detection in DC-electric fields.

Figure 3.1 shows an overview of the experimental setup. The experiment is in
a vacuum environment. This is done by means of turbo-molecular pump and
a vacuum of the order of 5.10−7 mbar is achieved. For the realization of the
micromaser experiment:

• A very dilute and stable Rb atomic beam is produced from an oven.

• 85Rb atoms are prepared in the maser state |g〉 = 61D5/2 atomic state
and |e〉 = 63P3/2 atomic state by the mean of different laser excitation.

• A cryogenic environment is needed to work with a low thermal photon
number and operate the superconducting Nb cavity as high Q cavity in
order to achieve the strong coupling regime.
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Figure 3.1: Experimental Setup

The Rb atomic beam is produced by an atomic oven. The beam is highly
collimated by a collimator placed in front of the cavity. Moreover, due to its
small aperture, 0.3 mm, it plays a role of thermal shielding for the cavity.
Before entering in the cavity, the Rb atoms are prepared in the maser states
by the help of laser radiation. A small fraction of the atomic beam is used in
the auxiliary chamber for the laser frequency stabilization.

The TE121 mode is the single cavity mode resonant with the Rydberg mi-
crowave transition 63P3/2 ⇐⇒ 61D5/2. In order to achieve a very high
Q-factor, the apertures of the cavity are reduced to the minimum. Therefore,
it is impossible to perform a direct measurement of the cavity field, like for
a classical MASER. Especially as the experiment concerns very small fields
on the order of few quanta. Hence an indirect measurement of the cavity
field via measuring the state of the atom after the interaction with the cavity
field is used. This is done with the help of a state-selective field ionization
detection based on the design described in [38, 39]. Through this detection,
the information about the field statistics can be extracted [35]. However only
a partial tomography of the quantum state of the field is performed as the
atomic statistics only gives an information about the diagonal elements of the
field’s density matrix. A homodyne measurement can be done by mixing the
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quantum field of the one atom maser with an external coherent field and map
the phase information into the atomic statistics [40].

In the following sections, the description of the atomic beam production
will be explained. An introduction to Rydberg atoms and their more relevant
properties for the micromaser experiments will be discussed. Finally in the
two last sections, the high Q-factor cavity will be described and the cryogenic
system will be explained.

3.1 Atomic Beam

A scheme of the atomic oven is shown in figure 3.2. It consists of two stainless
steel cylinders separated by an insulating material providing a thermal isolation
between the two parts. The lower cylinder consists of a cartridge of rubidium
and is mounted from below. The cartridge can be individually heated up with
a resistance wire well above the Rb melting point at around 470K creating
a Rb buffer gas in the upper part. The independent control over the heating
temperature T1 in the section 1 allows to determine how muchRb is evaporated,
controlling the gas pressure in the oven and finally allows an independent
adjustment of the atomic density flux.

The second section consists of a chamber where the Rb buffer gas is trapped
before exiting through a nozzle, forming the atomic beam. Therefore the
nozzle design plays a major role in the determination of the atomic beam
properties. A longer nozzle with a small aperture will contribute to a better
collimated atomic beam with a small spacial divergence at the expense of the
atomic flux. Because of the long path from the oven to the cryostat, a nozzle
with a rather small diameter, 0.3 mm, and 3 mm is used in the experiment,
providing a good compromise between atomic flux and divergence, avoiding
contamination of the vacuum with diverging Rb atoms. The section 2, and the
nozzle in particular, is heated independently from the cartridge with a second
resistance wire, allowing a separate control over the velocity distribution of
the atoms forming the atomic beam. The velocity distribution of the atomic
beam is described by a modified Maxwell-Bolzmann distribution law [41, 42]:

P (v) ∝ PMB(v)dv =
1

2

( m
kT

)2

v3e−
mv2

2kT dv (3.1)

In the case of the micromaser experiment, the coupling constant g and the
cavity length l define the velocity range (at least 150 to 850 m/s) needed to
cover a full Rabi cycle (g∗ l/v ∈ [0, 2π]). The 85Rb atomic velocity distribution
dependence is shown in figure 3.3. Such a setup then provides a full control
over the atomic flux and the atomic velocity independently as the temperature
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Figure 3.2: Atomic oven design providing a high stable Rb atomic beam

T1 of the cartridge determines the atomic density and the temperature T2 of
the nozzle determines the velocity distribution.

The whole oven is surrounded by a water cooled copper shield, reducing
the thermal radiation and achieving a pre-collimation. A cooper shield cooled
down to liquid nitrogen is placed in front of the oven trapping the atoms far-
off the atomic beam axis and keeping a low vacuum by cryogenic pumping.
In the second chamber, the so-called ”auxiliary chamber” a small fraction of
atoms is used for spectroscopical purpose and frequency locking of the laser
system. The second cooper shield cooled down to 77 K is placed in the atomic
beam path, reducing furthermore the thermal radiation emitted from the oven,
pointing directly into the cavity.
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Figure 3.3: Velocity distribution for 85Rb atoms for different temperatures

The main experiment setup where the cavity is mounted and the final
collimation is achieved, is about 0.9 m away. The oven is mounted on a X-Y
translation plate for an easier fine tuning alignment with the cavity axis and
the atomic beam collimator placed in front of it.

The main collimation of the atomic beam is achieved in the cryostat. A
good collimation is important for two reasons. First, in order that all atoms
couple with the same strength with the cavity mode, a high spatial resolution
of the atomic beam path inside the cavity is required. Second, the atomic
velocity selection, determining the interaction time, is achieved by means of
Doppler selection, where the atoms interact with the laser radiation at a well
defined angle (see Chapter 4). Smaller angular dispersion will, therefore, lead
to a narrow velocity distribution. The dimension of the collimator placed just
in front of the cavity has the following dimension, 50 mm length and 0.3 mm
diameter offering a good compromise between the atomic flux and the angular
dispersion, giving an angular acceptance of 0.34 deg.

The collimator also plays the role of a thermal shield as it is mounted
on the same cold finger as the cavity and cooled down to several hundreds
of mK. The atomic beam collimator and the laser excitation region are both
made of Nb providing a uniform environment for the Rydberg atoms, avoiding
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contact potential with the resonator, with a stable zero magnetic field and at
a constant temperature.

3.2 Rydberg Atoms

Rydberg atoms are excited atomic systems where an electron has been pro-
moted to a level with large principal quantum number n. Their radiative
properties are very interesting for several reasons: first, the large electric dipole
matrix elements between neighboring levels - proportional to n2- are typically
three orders of magnitude larger than for atomic system in the ground state or
lower excited state. Then, the coupling to a radiation field is very strong. Sec-
ond, these atoms have very long spontaneous emission lifetimes, which means
that one can manipulate them for a long time without loss of the atomic co-
herences.

The first experiment on Rydberg atoms was done by the end of the 19th

century as Balmer measured in 1885 the hydrogen line and derived the Balmer-
formula. In 1890 Rydberg started to classify, by series, the spectral ray of
Alkali-atom in the form of S=sharp, P=principal, D=diffuse[43] leading to
the relation in energy:

νl = ν∞l −
RRyd

(n− δl)2
for l = S, P,D (3.2)

where ν∞l is the limit of the series, RRyd = 109721.6 cm−1 the Rydberg con-
stant and δl the quantum defect. From these relations one can derive the
energy difference between two energy states and then define the transition fre-
quency between these two states. The meaning of n became then clear with
the introduction of Bohr’s Hydrogen Model, as the principal quantum number
describing the orbit of the electron around the nucleus. The electron biding
energy W to the nucleus can be then written for the hydrogen atom as:

W = − e4me

32π2ε0~
1

n2
= −RRyd

n2
(3.3)

As the atom size also grows with n2, the large size of the Rydberg atoms
combined with the small transition probabilities lead to a very long lifetime
of the Rydberg states. Lifetimes up to 50 ms were measured [44]. There are
many different ways to produce Rydberg atoms. The most probable is the
recombination of ions. This occurs when ions collide with neutral particles
and exchange charges or by recombination of ions with electrons [45]. The
recombination process plays a major role in plasma physics. The disadvantage
of these methods are that the final Rydberg states can not be determined.
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Rydberg atoms can also be produced by means of laser radiation, which is
the technique used for this work. The use of a narrow laser transition allow to
populate only the target Rydberg states. Moreover coherent population can
be achieved [46].

In this work 85Rb atoms are used. They are alkali atoms and hydrogen-
like as only one electron is sitting in the outer shell. The difference between
hydrogen and hydrogen-like atoms is that the electron does not see only a
proton but a nucleus with an electron cloud forming a positive charge entity.
In this system, the energy levels of the outer electron are shifted compare to
the hydrogen atom. The energy shift can be calculated as we exchange the
main quantum number n by the effective quantum number n∗ :

n∗ = n− δn,j,l (3.4)

where δn,j,l is called the quantum defect [47]. The quantum defect can be
calculated by the Rydberg-Ritz formula:

δn,j,l = δ0 +
δ2

(n− δ0)2
+

δ4

(n− δ0)4
+

δ6

(n− δ0)6
+

δ8

(n− δ0)8
.... (3.5)

The δi coefficient are experimentally determined and were lately improved for
Rb atoms with absolute frequency measurements in an atomic beam [48]. The
energy level of the Rydberg states can then be recalculated:

W = −
R
′

Ryd

(n∗)2
= −

R
′

Ryd

(n− δn,j,l)2
(3.6)

with R′Ryd is the particular element Rydberg constant. In the case of 85Rb, it
values 109736.605 cm−1 [49].

In the following sub-section, the main properties of the Rydberg states used
for the micromaser will be briefly described.

Microwave Transitions between Rydberg Levels

The transition frequency between two neighboring Rydberg states scales
with the main quantum number n−3:

ωnl→n′l′ ∼
2RRyd

n3
(3.7)

For Rydberg transitions with n ≈ 50 . . . 65, the transitions are in the microwave
regime of the order of tens of GHz. In the micromaser, the Rydberg transition
63P3/2 ⇐⇒ 61D5/2 in 85Rb at 21.456 GHz is used.
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The matrix element µ for the dipole interaction between two Rydberg states
scales proportional to n2:

µ = 〈nl|er|n′l′〉 ∼ e ao n
2 (3.8)

Typical values for µ with n = 60 are three orders of magnitude larger than for
optical transitions and are much larger than microwave hyperfine or Zeeman
transitions used traditionally in atomic physics. The exact value of the dipole
matrix element can be determined with the help of a model presented in [50,
51, 52, 53]. For the maser Rydberg transition 63P3/2 ⇐⇒ 61D5/2:

µ

ea0

∼ 1355 (3.9)

The vacuum Rabi frequency Ω for the coupling of the two Rydberg level atom
system with the single mode of a cavity can then be calculated using the
relation:

~Ω = µE0 (3.10)

with E0 given by (2.25). In the case of the micromaser experiment, the vacuum
Rabi frequency is ∼ 7.2 kHz.

Rydberg Atoms Lifetime

One of the most important properties of the Rydberg atoms for their ap-
plication in the maser are their long lifetime. Namely, in order to realize a
coherent interaction, the Rydberg atomic states have to survive during the
whole experiment. This implies, that there is no decay into the atomic ground
state during the interaction with the cavity mode. Also, as no direct mea-
surement of the field can be achieved, the measurement of the atomic state
provides an indirect measurement of the cavity field. Therefore, a decay of
the atomic state would lead to a loss of information. The time of flight of the
Rydberg atoms from their production till their detection, is typically on the
order of few 100µs.

The lifetime of highly excited states can be very large. If only one decay
channel to a lower state exists, the lifetime τ of the excited state is then given
by the inverse of the Einstein An′,l′,n,l coefficient. In the case of Rydberg
states, more than one decay channel is available, and τ can be then calculated
by summing over all possibilities:

1

τ
=
∑
n,l

An′,l′,n.l (3.11)
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The lifetimes for Rubidium atoms S, P , and D states have been calculated
up to n = 80 [54] and experimentally determined until n = 45 [55]. A semi-
empirical formula is commonly used for the approximation of numerical results
on radiative lifetime τ [56]:

τ = τ ′(n∗)γ (3.12)

with n∗ the effective quantum number and τ ′, γ are state dependent coefficients.

State τ ′th(ns) γth τ ′exp(ns) γexp
S1/2 1.43 2.94 1.45± 0.03 3.02± 0.02
P1/2 2.4360 2.9989 2.80± 0.03 3.01± 0.03
P3/2 2.5341 3.0019
D3/2 1.0761 2.9898 2.10± 0.03 2.89± 0.02
D5/2 1.0687 2.9897

Table 3.1: Lifetime parameters for Rb Rydberg atoms calculated from [54] and
experimentally determined in [55]

However this formula is valid only for a temperature T = 0 as the blackbody
radiation (BBR) also has an impact on the Rydberg states lifetime, inducing
other transitions in new decay channels. For a given n, spontaneous transi-
tions occur predominantly to low excited states, while BBR populates mostly
neighboring levels with n

′
= n± 1. Hence, a correction to the actual lifetime

has to be done [49]:
1

τ
=

1

τ0

+
1

τBB
(3.13)

with,
1

τBB
=

4α3kBT

3~(n∗)2
(3.14)

where α is the fine structure constant. In the case of the micromaser experi-
ment, the Rydberg atoms evoluate in a cryogenic environment at a temperature
T ∼ 300 mK, so the black body corrections are negligible and the lifetime of
the exited and ground maser states are 557µs for the 63P3/2 state and 219µs
for the 61D5/2 state, respectively .

Rydberg Atoms Production by Laser Excitation

The micromaser experiment studies the interaction between a well-defined
two-level Rydberg atomic system and a single mode of a high Q microwave
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Figure 3.4: 85Rb Atomic scheme. The upper and lower maser states are the
63P3/2 and 61D5/2 states

cavity. Figure 3.4 shows a scheme of the atomic states used in the micromaser
experiment.

The state selective Rydberg excitations are performed by means of laser
radiation. This is done either in a one step excitation scheme to promote the
85Rb atoms from the ground state 5S1/2 into the upper maser state 63P3/2 or
in a two step excitation scheme into the lower maser state 61D5/2.

For the one step excitation to the upper maser state, an Argon-Ion (Ar+)
laser pumps a Rhodamine 6G dye laser at 594 nm. The dye laser is then
frequency doubled by a BBO crystal in a ring cavity to produced the necessary
UV light at 297 nm with an output power of about 40 mW. The use of dye
laser shows however some disadvantages:

• Low laser excitation rate with a one-step Rydberg excitation scheme.

• Laser beam pointing instability leads to intensity fluctuation in the fre-
quency doubling cavity, leading to instability of the excitation rate and
an unstable micromaser operation.

• The instability in the laser output power implies an external intensity
stabilization by an EOM. The maximum laser power after the EOM has
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to be on the order of one half of the output UV power in order to have
a constant laser power over many hours.

These disadvantages lead to the development of a new excitation scheme
performing a three-step excitation with diode lasers in the infrared region [30].
The application of this three-step excitation scheme for the spectroscopy of
Rydberg atoms in a room temperature gas cell will be discussed in more detail
in Chapter 5.

In order to promote ground state 85Rb atoms to the micromaser ground
state, 61D5/2, a two-step excitation scheme is used due to the atomic selection
rules: no direct transition from S to D states is possible. This is done by the
mean of two external cavity grating-stabilized diode laser systems. The first
stage excites the ground state 5S1/2, F = 3 to the 5P3/2, F = 4 state by a
diode laser at 780 nm. The laser is stabilized on the atomic transition by a
saturation absorption spectroscopy scheme in an external Rb gas cell.

The second diode laser at 960 nm is frequency doubled by a BBO crystal
in an external ring cavity at 480 nm and can be then stabilized by two different
means. The first one, which is also the traditional one, is done directly on the
atomic beam. In the auxiliary chamber, a cryogenic-vacuum system, a small
fraction of the atomic beam interacts with the two lasers and the number of
Rydberg atoms is counted via a field ionization detection. The second step
laser is then stabilized on the peak of the spectroscopic signal obtained on
the atomic beam. The stabilization is done using an adapted synchronous
demodulation (lock-in) technique. Error signals are processed by a computer
which also calculates the PID feedback signal to the laser. One advantage of
a digital treatment of the locking scheme is an easier change from one laser
system to the other depending on which experiment one want to realize (use
of the excited or ground atomic maser state).

The second method for the laser stabilization uses the Doppler-free spec-
troscopy signal of Rydberg atoms in a room temperature gas cell. The full
description of this new method is presented in Chapter 5.

Rydberg Atoms in an External Electrical Field

Due to the large separation between the nucleus and the out-bounding
electron, Rydberg atoms are highly sensitive to the interaction with an external
electrical field, e.g Stark Effect. The dependence representation of the electric
fields of the atomic states and, therefore, their excitation frequency, is known
as Stark map. Such Stark maps can be calculated and so the frequency offset
due to the perturbation of the external electrical field can be determined [58].
Using the strong sensitivity of the Rydberg states to an external electrical
field, one can tune the atomic frequency transition in a very controlled way,
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applying an external electric field at the laser excitation place. Such a scheme
is used to select the atoms velocity for the micromaser experiment and will be
discussed in more details in Chapter 4.

Increasing the electrical field leads to the ionization of the atom. This field
ionization will be used in order to perform a state selective detection of the
Rydberg states in the micromaser experiment.

State-Selective Detection in the One-Atom-Maser Experiment

The measurement of the cavity field is done in an indirect way through
the state selective measurement of the atoms emerging from the cavity with
a field-ionization [59]. The electrons produced from the ionization are then
detected in two separate channels with a single channel electron multiplier
(channeltron). The details of the electron detection setup have already been
described in earlier work [30, 38]

A channeltron operates on the same principle as a photon multiplier de-
tector. The electron hits the curved glass vacuum tube, creating an electron
avalanche and multiplying the incident charges along the tube, forming at the
output end a pulse of 107 - 108 electrons for a duration of ∼ 10ns. For the
best performance, the BURLE 7010M is mounted in the experimental setup.
It is a single channel electron multiplier in the form of a planar spiral with
a conic aperture of 10 mm diameter. The detection of a single electron is
done via the voltage measurement between the input of the channeltron which
is grounded and the output at a high positive charge (3 kV). At such volt-
ages, the minimum gain is around 5.107. The voltage pulse produced by the
electron avalanche has particular characteristics concerning its amplitude and
can therefore be electronically discriminated from the background noise by a
digital data acquisition and analysis. In order to operate the channeltron in
the pulse counting mode one has to determine the gain by scanning the input
voltage. In figure 3.5, the typical curve shows four regimes:

• At low gain the applied potential is not large enough to multiply the
cascade charges and no pulse are produced or the pulse amplitude is too
small to be detected.

• As the voltage applied is increased, the pulse amplitude produced from
the electrons cascades also increases. However not all events are recorded
as the pulse amplitudes differs from one event to the other and not all
are above threshold.

• Increasing the gain further leads to a plateau where all event are col-
lected. Increasing the voltage further raises the gain but the count rate
remains constant.
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• However, if the gain is to high ion feedback occurs do to the ionization
of the rest gas present on the glass walls causing additional noise. This
is an undesirable operation as a significant part of the detected signal is
not produced from the ionization products, but from the positive ions
and secondary electrons produced within the channeltron itself without
any correlations to the input.

Figure 3.5: Channeltron plateau measurement. Four regime are present. i) a
low gain regime where the pulse amplitude generated by the electron cascade
are not high enough to be detected. ii) an intermediate phase where a partial
detection is achieved. iii) the plateau regime where all events are detected. iv)
a saturated regime where undesirable electrons signals are present.

For stability reasons, the middle point of the plateau is used as operating
gain. If the input voltage changes during the maser operation, there are no
consequences on the detection efficiency as the count rate remains the same
even if the pulse amplitude slightly changes. From the measurement showed in
figure 3.5, the operating voltage is set at 3050 kV, corresponding to the middle
of this regime.

The channeltron temperature has to be considered with special care. At
room temperature, the electrical resistance of the channeltron is around 600
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MΩ. Due to the cooling at liquid He temperature, the resistance increases by
more than two orders of magnitude leading to a saturated operating regime.
The electron cannot be replenished on the timescale of the pulse transit. Hence,
the channeltron is heated at around 77 K by means of a special high resistivity
NiCr20AlSi wire (ISAOHM).

As previously mentioned, Rydberg atoms are highly sensitive to an external
electrical field, e.g Stark effect. Increasing the electrical field to several tens
of Volt per centimeter, one can reach the field strength where the outbound
electron is no more bound to the nucleus, leading to the ionization of the atom.
In the case of the Hydrogen atom, the Coulomb potential can be written as:

V = − e2

4πε0r
+ eEr (3.15)

In the absence of electron tunneling through the potential barrier, the saddle

point of the potential can be calculated as rmax = −
√

e
4πε0

1
E

and the potential

at this point reads:

V (rmax) = −2

√
Ee3

4πε0
(3.16)

As the binding energy is W = −RRyd

n2 , the ionization field reads:

E =
R2
Rydπε0

n4e3
(3.17)

In the case of hydrogen-like atom one just has to exchange n with the effective
quantum number n∗.

However, ionization processes can occur for a smaller field due to a tunnel
effect of the outbound electron through the barrier potential. Also the case of
pulsed ionization field is much more complicated, as different ionization chan-
nels have to be taken into consideration [49]. Therefore, for the micromaser
experiment, the ionization of the Rydberg atoms is performed in a static and
constant electrical field.

In the case of the two maser states, the strong dependence of the ioniza-
tion field in n is used to perform a state-selective ionization scheme applying
two different field strength along the atomic beam path. The ionizing fields
read respectively Eup = 20.4 V/cm for the upper maser state, n = 63 and
Edown = 23.2 V/cm for the lower maser state, n = 61. The ionization process
occurs in the so-called channeltron box which shields the experiment from the
statistical electric field used for the ionization or produced by the channel-
trons itself and the heating produced by the channeltrons due to their higher
working temperature (77 K). Based on the plate condensator principle, the
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Figure 3.6: Channeltron-box: state-selective field-ionization detection system.
An increasing field is created along the atomic beam path between a negative
charged plate and two positive charged grids. Atoms with different atomic states
are then ionized and detected in two different detection channels.

atoms are subjected to an adjustable electric field created between the neg-
ative charged electrode plate and the positive charged electrode grid. Using
intermediate grounded plates, the electrical field is tuned along the atomic
beam path due to the particular shape of these plates. In the region of the
second channeltron, a stronger field is created than in the region of the first
channeltron. In between, the electrical field remains constant to avoid the
miscounts in corresponding channeltron, achieving a better spatial separation.
The state-selective detection is achieved by collecting the ionizations products
of the two different atomic states in two different channeltrons.

Figure 3.6 shows a picture of the channeltron-box. As the atoms in the
upper maser state 63P3/2 are ionized by a smaller electrical field, they will
be ionized in the first detection channel. The lower maser state 61D5/2 will
be then ionized later along the atomic beam path at a higher electrical field
intensity in the second detection channel. Choosing the right potential applied
in the two ionizations areas, discrimination from one state to the other one is
achieved and the state selective detection where each atomic state is detected
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in a different channeltron is realized.
The calibration of the potential is done in the following way. First the

cavity is tuned out of resonance, to have a beam of atoms prepared in the
maser ground state 61D5/2. The electrode voltage is then scanned and the
signal of both channeltrons is monitored and recorded with a computer. The
measured signal is shown in figure 3.7.

Figure 3.7: Field-ionization signals for atoms in the upper-maser state and in
the ground-maser state. In the case of non-resonant cavity (a) and the cavity
tuned on resonance (b) are shown. The optimum ionized voltage lies at 158V

The same measurement is then done with the cavity tuned on resonance
with the atomic maser transition, producing atoms in both the 61D5/2 and
63P3/2 state. The signal recorded from the second channeltron do not vary
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corresponding to the maser ground state atoms ionized in the second detection
channel until the electrical field is high enough in the first channel to ionize the
maser ground state. However the signal collected from the first channeltron
varies from the non-resonant case to the resonant one. When no excited states
are produced (cavity off-resonance), the signal recorded in the first channeltron
corresponds to all ground states atoms ionized. Also, the curves recorded
from the two channeltrons do not overlap showing that practically no ground
states atoms are detected in the first channeltron and the second one at the
same voltage. When the cavity is on resonance, the curve of channeltron
1is shifted to a lower potential corresponding to the detection of atoms in
the excited maser state, reflecting the lower ionization potential of the 63P3/2

state. The slope of the curve also changes showing a step profile. The first
plateau corresponds to the detection of the excited states atoms while the
second plateau corresponds to the detection of all atoms without any state
selection.

The optimum value of the applied ionization voltage lies where in the first
channeltron the maximum of excited maser state are detected and at the same
time a minimal of maser ground state . Analogously for the second channeltron
where the maximal of ground states atoms are detected with a minimum of
excited states. The optimum values in this case lies at 158 V. This value is
higher than the theoretical one presented earlier. However one has to take
into consideration the particular design of the channeltron box, with the two
ground plates forming the field gradient and the distance of 2 cm between the
two charged electrodes.

For the laser stabilization a much simpler ionization set-up is used as no
state selective detection is needed. Placed in an auxiliary chamber, a small
part of the atomic beam interacts after collimation with the laser radiation
and is excited into the maser ground state 61D5/2. The atoms are then ionized
in an orthogonal static electrical field produced by a tilted negative-potential
ionization plate, producing an increasing field along the atomic beam path.
This allows to keep a narrow zone of the ionization region and put the atoms
in a linear electrical field ramp, avoiding the abrupt turn on of the ionization
field corresponding to a pulsed electrical field. The signal detected is then
digitally processed to lock the second step laser onto the maximum of the
spectroscopic signal.

In the excitation region, a small electrical field can also be produced with
two parallel condensator plates. Shifting the atomic frequency due to the Stark
effect. This precisely controlled laser frequency shifting is then used to per-
form a velocity selection of the atom and will be described in more details in
Chapter 4.
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3.3 Cavity

For the generation and storage of the quantum light field, a superconductive
cavity, developed and manufactured at the Max Planck for Quantum Optics,
is used [60].

1 20 3
cm

Figure 3.8: The high Q-factor superconductive niobium cavity used in the mi-
cromaser experiment

The microwave cavity has a cylindrical form with a length and a diameter
of about 25 mm. At the centers the presence of two holes with a 2 mm aperture
allows the atomic beam to enter and exit the cavity as also the injection of an
external microwave field.

Along the atomic beam axis, only the TE1np modes have a non vanishing
transversal electric field. In the case of the micromaser experiment, the Ryd-
berg atoms interact with the TE121 mode. The mode form corresponds to a
half period of a sine wave. Also, the polarization direction allows an external
coherent field injection via a simple microwave coupling through an external
waveguide. This is important, first for the cavity frequency and the Q-factor
measurements, and in the case of experiments requiring coherent states like the
study of the phase diffusion process. The resonance frequency of a cylindrical
cavity is given by [61]:

ω = c

√
x
′2
12

R2
+
π2

L2
(3.18)

where R and L are the radius and length of the cavity respectively and x
′
12 is

the 2-nd zero of the first derivative of the Bessel function J1.
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Finally, with the mode volume of the TE121 mode, V = 1.58.10−2πR2L,
the parameter E0 of equations (2.25) and (2.28) can be calculated to E0 =
1.1 10−3 V/m and so the atom-field coupling constant g in the Jaynes-Cummings
model can be evaluated (see equation 3.10 ). The distribution of the transverse
E-field in the cavity is shown in Figure 3.9.

Figure 3.9: The transverse electric field distribution of the TE121 mode in the
cavity

In the case of a perfect cylindrical cavity, the TE121 mode is doubly degen-
erate. The degeneracy is then lifted by a slight deformation from the circular
cross-section into an oval shape, determining the direction of polarization of
the field mode. The deformation is achieved as the cavity is mechanically
squeezed, shifting the two polarization components, vertical and orthogonal,
respectively to higher and lower frequency due to their dependence on the spa-
cial dimension. In this experiment, the vertical polarization mode is used.

High Quality Factor Superconductive Cavity

In order to achieve a long coherence time in the micromaser field, e.g long
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lifetime of the light field trapped inside the cavity, a high Q-factor is required.
This is achieved taking advantage of the superconductivity property of the
niobium, Nb. Hence, the cavity is made of 99.9 % pure Nb. At atmospheric
pressure, the critical temperature for superconductivity of Nb is 9.3 K [62]
leading to the reduction of the field dissipation, enhancing the Q-factor. Since
the unloaded electrical Q-factor of a vacuum superconducting cavity is given
by [63]:

Q−1
0 = RsΓ

−1 (3.19)

where Rs is the surface resistance and Γ−1 is the geometric factor of the mode,
low Rs leading to high Q-factor. The physical properties have been described
in detail in [64].

Also, a recipe for minimizing the surface resistance to several nΩ, combining
electron polishing, chemical etching and backing procedure at around 1800◦C
for 24H in a ultra high vacuum oven is presented there [65] [66][67].

The backing procedure relieves an important step to achieve the high Q-
factor, through the reduction of lattices irregularities and building 1-10 mm
single crystal domains. Therefore, reducing the light-element concentration,
homogenizing their distribution. At the same time, the thickness of the surface
oxide layer is reduced.

Finally the cavity properties, frequency and Q-factor, are tested at very
low temperature, reaching the superconductive temperature with the help of
a He-bath cryostat.

Frequency and Q-factor Measurement

The resonance frequency of the TE121 mode is 21.456 GHz. The tuning
of the cavity frequency is achieved via the elastic mechanical deformation of
the cavity cylinder. First, the resonance of the cavity is measured by the
injection of a microwave field (with Wandel Goltermann tracking generator
TG-23) into the cavity and analyzing the reflected signal, coming back through
a circulator with a spectrum analyzer (Wandel Goltermann SNA-33). Figure
3.11 shows the basic setup of the frequency measurement. Adjustment of the
cavity frequency is done in two steps. A first rough tuning in the range of 15
MHz is achieved by a mechanical screw driver. The cavity frequency is adjusted
by this mean slightly below the resonance frequency (typically down to 300
kHz). The fine frequency adjustment is then done by the piezoelectric drive
over a 1 MHz frequency range with 0.6 KHz steps (piezoelectric sensitivity:
600 Hz/V). Figure 3.10 shows the measured cavity frequency tuning range as
a function of the applied piezo voltage. The relative large tuning range of the
cavity allows the study of the complete tuning range of the micromaser in a
single mode configuration.



44 CHAPTER 3. EXPERIMENTAL SETUP

0 200 400 600 800
21455,8

21455,9

21456,0

21456,1

21456,2

21456,3

21456,4
C

a
vi

ty
 F

re
q

u
e

n
cy

 (
kH

z)

Piezzo Voltage U (V)

Figure 3.10: Cavity frequency dependence as scanning the applied the piezo
voltage. From the measurement the piezoelectric sensitivity is 600 Hz/V

The measurement of the cavity Q-factor is done by the mean of a hetero-
dyne scheme, since a direct measurement of the microwave field intensity inside
the cavity is rather complicated. The setup of the heterodyne measurement
is the same as the one used for the frequency measurement and is depicted in
figure 3.11. The only difference lies in the microwave generation. In the case
of the Q-factor measurement, two microwave signals generated from a synthe-
sizer (Systron Donner 1730B) which is periodically modulated between two
frequencies - one on resonance with the cavity, ω0 and the other one detuned
by 100 Hz, ω1, are send to the cavity. Inside the cavity, the resonant field is
stored and starts to decay exponentially at the frequency γ. After a certain
time t, corresponding to the synthesizer periodicity, the off-resonant field re-
flected by the cavity superimposes with the coupled out resonant field, creating
a beat note between the two fields propagating back through the rectangular
waveguide and microwave circulator to the detection microwave diode. The
electric field reads:

E(t) = E0e
−iω0t+φ0e−γt + E1e

−iω1t+φ1 (3.20)
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Figure 3.11: Frequency and Q-factor measurement setup.

Using a high pass filter, the strong reflected signal |E1|2 is filterd out and
the detected beat note signal is then proportional to:

|E(t)|2 ∝ 2E0E1cos[(ω0 − ω1)t+ φ0 − φ1]e−γt (3.21)

This shows that the beat signal decays with the same time constant as the
cavity decay time. Measuring the decay time of the beat signal amplitude
gives a direct measurement of the cavity photon lifetime, the cavity Q-factor:

Q = ω0τf =
ω0

γ
(3.22)

where τf is the cavity decay time.
Figure 3.12 shows a typical result of such a heterodyne measurement. Cor-

responding to a decay time of 73 ms, extracted from the fit, the cavity Q-factor
is Q = 4.9 109.
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Figure 3.12: Cavity Q-factor with a heterodyne measurement. Fram the fitted
red curve, the extracted energy time is 73 ms coinciding to a Q-factor value of
4.9 109.

3.4 Cryogenic Environment

The micromaser experiment has to be operated at very low temperature for
three reasons:

• The micromaser experiment investigates the coupling between a single
atom and a quantum state of light in cavity. In order to realize it, one
has to operate it at a field with very few thermal photons. This means
for microwave field to work at very low temperatures. Figure 3.13 shows
the mean thermal photon number nth dependence on the temperature.
Usually, for photon number state experiments such as trapping state or
Fock state Rabi oscillations a temperature below 0.5 K is required.

• Rydberg atoms are at the same time actors and messenger as we need
to detect them in order to reconstruct the field statistic from the atomic
statistic. As have been seen in the previous section, the decay to the
ground state also depends on the temperature and Rydberg atoms need
to evolve in a cold environment to achieve a long coherence time.
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• The micromaser operates in the so-called strong coupling regime, which
means that the decay constant of the cavity γ as to be smaller than the
coupling constant g. The superconductor surface resistance of the cavity
is inverse proportional to the temperature. Therefore in order to achieve
a high Q factor one has to cool down the Nb cavity to a temperature
below 0.7 K.

Figure 3.13: Temperature dependence for the mean thermal photon number at
21.456 GHz.

In order to reach such low temperatures a cryostat has to be used. Temper-
ature such as 77 K or 4 K are easily reached by the use of a liquid nitrogen or
liquid helium cryogenic system. These are bath cryostats and are the starting
point of all cryogenic systems. Their conception is pretty simple. A liquid He
vessel placed in a vacuum environment is surrounded from a liquid N vessel
in order to reduce the heat leak due to the hot wall of the vacuum apparatus.

3He Evaporation Cryostat

Evaporation cryostat are the simplest way to reach a temperature below 4
K. In order to reduce the temperature of liquid 4He, pumping the vapor above
the bath allows to reach temperatures down to 1.3 K without much effort.
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But it is not sufficient for our purpose. With a 3He evaporation cryostat it
is possible to reach lower temperature[68]. The use of 3He has two essential
advantages over 4He. First the higher vapor pressure allows temperatures as
low as 0.3 K. Secondly, 3He does not possess the problem created by creeping
superfluid film, which lead to an enhancement of the heat transport from the
warm part to the cold part.

A special designed Oxford 3He is used and has been described in details
in [30]. A nitrogen bath at 77 K and a 4He bath at 4 K surround a vac-
uum chamber. In the center of this chamber is placen the 3He pot (so called
cold-finger) on which the main part of the experimental set-up, cavity with
a microwave coupler, piezo system for cavity squeezing and the collimator, is
mounted. To pre-cool the system a 4He evaporation cryostat is used. The
so-called 1K pot is connected to the main 4He bath with the help of a narrow
tube ( about 1 mm diameter). A needle valve controls precisely the liquid
4He flow from the main bath. The 4He is mechanically pumped to reach a
temperature of 1.3K . The 1K pot then plays the role of a heat sink. At this
temperature, the 3He gas starts to condense in the 3He pot. Once all the 3He
is condensed, reaching a temperature around 0.9 K one can start to pump it.
The pumping is done via an absorption pump. In this case, the 3He that is
condensed inside the cold-finger is absorbed onto charcoal powder. While this
operation, this absorption pump is cooled down below 40K by anchoring it at
the 4He main bath. Because of the large surface area of the charcoal pump,
the 3He is pumped in a very efficient way. The reduction pressure allows to
reach a working temperature of 300 mK for a 12 hours cycling time. After the
3He is pumped and the cold-finger is empty the absorption pump is warming
up. Upon warming, the 3He is desorbed. The 3He gas is pumped back in the
dumps for storage or can be re-condensed for a new cooling cycle.

3He−4 He Dilution Cryostat

In the previous section, we discussed the cooling process of a liquid by
pumping the vapor above it. Using 3He, the lowest temperature that has been
achieved is 0.24 K [69], where in our system the end working temperature
is around 300 mK. In order to reach lower temperature, one has to use the
specific thermodynamical properties of dilute 3He −4 He mixture. The basic
idea of this method was first introduced by London in 1951 [70] .

The principle operation of a dilution refrigerator is based on the fact that a
phase separation in 3He−4He mixtures occurs at very low temperature. First,
because 4He atoms, due to their larger mass, have a lower zero-point energy,
the 3He atoms are more strongly bound to them than among each other.
Secondly, the 3He atoms obey to the Fermi statistics and thus their kinetic
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energy increases with their number density, which leads to the reduction of the
binding energy. Already at a 3He concentration of 6.5% in 4He, the binding
energy vanishes when T → 0 and no 3He can be dissolved in the 4He and a
phase separation occurs. A light, 3He rich phase and a heavy 4He phase are
produced. In the dilution cryostat performed in Garching, a 3He concentration
of around 25% is used. This is energetically more favorable for the two phases.

The heart of the dilution refrigerator is the so-called mixing chamber where
the transfer of 3He from the light phase into the dilute one occurs. As the 3He
atoms in the 3He rich phase have a lower entropy than the rest 3He atoms in
the heavy 4He phase, the transfer of 3He atoms from one phase to the other
leads to a cooling of the mixture. In analogy to evaporation of gases, one can
understand this process as an evaporation of 3He atoms into the quasi-vacuum
of the superfluid 4He. In order to use this cooling process in a continuous way
a new phase separation occurs where 3He atoms are extracted from the dilute
phase and re-inject in the 3He rich phase.

Figure 3.14 shows a scheme of the dilution cryostat used to perform the
micromaser experiment. The 3He−4He circuit is sitting in a vacuum chamber
immersed in a 4He bath. As for the 3He cryostat the 3He −4 He mixture is
condensed with the help of a so-called 1K pot. The cavity is directly mounted
on the mixing chamber which is the coldest part of the dilution cryostat. The
3He −4 He circuit consists essentially of the mixing chamber, the still and
a counter flow heat exchanger. This circuit has to realize a sufficiently high
circulation of 3He, while maintaining the heat load at the mixing chamber
as low as possible. The circulation of the 3He atoms is driven by pumping
the still. The still is heated at around 0.7 K so that at this point a phase
separation between the 3He atoms and the 4He atoms occurs. Due to their
higher vapor pressure, most of the 3He atoms are evaporated and pumped
out. After cleaning in nitrogen and liquid helium traps, the 3He atoms are re-
injected in the cooling circuit and again pre-cooled in the 1 K pot. After the 1
K pot, as the pressure is sufficiently high, 3He atoms condense before entering
the counterflow heat exchanger system. this consists in two different types
of heat exchangers. The first type, the so-called continuous heat exchanger is
composed of two tubes that are mounted in a such complicated way so that the
interface between the both is as large as possible to achieve a maximal thermal
contact. The second one, so called step heat exchanger, consists of several
chambers made from sintered silver in oder to increase the thermal contact
area. There, the phase separation occurs with the lighter 3He rich phase
forming the top layer. In the mixing chamber, 3He atoms are diffusing across
the phase boundary and are mixed to the quasi-stationary liquid 4He, where
adiabatic dilution causes the cooling. 3He atoms then diffuse back to the still
via the heat exchanger where they will be evaporated. The lowest temperature
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obtained with a dilution cryostat is 1.5 mK [71]. In the micromaser experiment
in Garching, the end working temperature is around 150 mK. This ”bad”
performance is due to the large mass that has to be cooled,e.g cavity, piezos
system, and the outside heating due to the laser radiations, electrical wires,
the close detection system at a 4 K temperature and the atomic oven. On the
other hand a large improvement is done as the end working temperature was
improved by adding a new shielding at 0.8 K and moreover, due to a better
control over the still temperature a continuous working temperature range
from 1.3K down to 150 mK is accessible which is one of the requirements for
measuring quantum stochastic resonances in the micromaser [72].
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Chapter 4

Experiments with Maser
Ground State Atoms

The first experiments with atoms in the maser ground state, the 61D5/2 Rydberg
state are presented. The magnetic field compensation using the Hanle effect is
realized for the first time in this configuration. Earth magnetic field avoids the
degeneracy of the mj components of the Rydberg states and therefore, needs
to be compensated at the mG level. The Stark effect of the Rydberg 61D5/2

state is investigated. The Stark effect is used in the micromaser experiment to
perform a velocity section of the atoms, controlling their interaction time with
the cavity field via the Doppler effect. Finally, the first maser experiments,
where ground state atoms interact with the quantized thermal field of the cav-
ity are performed. In particular, Rabi oscillations with a very high contrast are
observed, performing a direct measurement of the field temperature.

In Chapter two, the Jaynes-Cummings model describing the interaction
between a two-level system and a single radiation mode of a cavity has been
introduced. The realization of a very high-Q cavity with a long trapping time
of the radiation field, and the large dipole interaction between two Rydberg
states lead to the strong coupling regime where the coherent interaction is
dominant. Cavity QED experiments with Rydberg atoms offer therefore a
wide range of experimental conditions to study the light-matter interaction at
the quantum level with a single atom.

The one-atom-maser or micromaser is a system where a stream of atoms
interacts one by one with the cavity field. For a low atomic injection rate, with
less than one atom per cavity decay time, the realization of Rabi oscillations
between a nonclassical field and the two-level Rydberg system is possible. For
a larger atomic pumping, the combination of the coherent interaction and
decay processes leads to a steady-state of the field, analogous to a laser or a

53
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maser. Due to the strong coupling, the presence of only one atom in the cavity
is a sufficient condition to achieve stimulated emission. In the steady-state,
the generation of a non classical field with sub-Poissonian statistics is possible.
Finally, due to the long coherence time of the system, one atom can experience
the field in the cavity created through the interaction between the cavity and
the previous atoms opening a path towards atomic entanglement controlled by
the coherent interaction with the cavity field [73].

In the following sections, the magnetic field compensation will be explained.
This is necessary as the earth magnetic field affects the micromaser experiment
on two aspects: the magnetic sub-levels are no more degenerated and an exter-
nal field affects the the high Q factor of the cavity. Then, the velocity selection
of the atoms and the control of the interaction time will be developed. Finally,
the first experiments between ground states atoms and the quantized thermal
field of the cavity are presented. The experiments are performed, both for
large atomic pumping with the measurement of the so-called maser line and
for low atomic injection rate where informations about the actual field temper-
ature are extracted from the measurement of Rabi oscillations between ground
states atoms and the cavity field at thermal equilibrium.

4.1 Magnetic Field Compensation

The earth magnetic field and the electronic components present in the ex-
perimental environment contribute to a non zero magnetic field in the exper-
imental region of the order of 350 mG. This residual magnetic field has to
be compensated due to its influence on the micromaser experiment. First,
in the presence of an external magnetic field, the magnetic sublevels of the
63P1/2 and 61D5/2 are no longer degenerate. The different Lande-factors of
the mj = +1/2 ↔ +1/2 and mj = −1/2 ↔ −1/2 transitions lead to a split-
ting of about 1.5 kHz/mG. Since the splitting should be smaller than the Rabi
frequency Ω/2π ≈ 7, 2 kHz, the magnetic field should be compensated at the
mG level [74].

Another reason for the compensation lies in the cavity properties itself.
Since the cavity is made from niobium, which is a superconductor of type
II, below the superconductive critical temperature (9.3 K), the magnetic field
fluxes freeze inside the material, increasing the high frequency resistance [75] of
the cavity walls. The Q-factor is then degraded [76], leading to the reduction
of the lifetime τcav of the field.

The all experimental setup is made of niobium which is a superconductor
of type II and the compensation can be done only once before cooling down to
liquid He temperature. Once the compensation is achieved and the cavity is
cooled down below the superconductive temperature of 9.3 K, the zero mag-
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netic field created around the experimental setup is frozen and kept as long as
the cavity temperature is kept below the critical temperature.

The magnetic field compensation (MFC) is achieved by three pairs of Hel-
motz coils mounted perpendicular to each other outside the cryostat. The
cavity is sitting in the center point. The current flowing through each pair
of the coils is controlled by high precision current supplies (Burster Digistant
6426). In a first step, a rough magnetic field compensation down to ∼ 30 mG
is achieved using a magnetometer (Magnetoscop type 1.068). The final precise
MFC is then performed using the atoms as magnetic sensor and observing the
precession of magnetically oriented atomic sample in a variable magnetic field
[77].

The principle of the traditional Hanle experiment is the following. In a first
step, the atomic sample is magnetically polarized as the magnetic moments
of all atoms are aligned along the same axis after the interaction with a first
laser. Then as the sample is put in a presence of an external magnetic field, the
magnetic moments of the atoms start to precess around non vanishing magnetic
field (Hanle effect). Recording the polarization of the sample’s fluorescence
shows the precession frequency dependence on the magnetic field.

Figure 4.1: Magnetic field compensation using the Hanle effect

A detailed explanation of the experimental implementation of the Hanle
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effect measurement in the micromaser is shown in figure 4.1. Atoms emerging
from the oven are in equally distributed quantum states over all mf magnetic
sub-levels. Using the hyperfine transition of the Rb D2 line at 780 nm:

52S1/2, F = 3↔ 52P3/2, F = 4 (4.1)

and applying a circular polarized laser light it is possible to optically pump
the atoms in a well-defined magnetic sub-level mf . Since only the transitions
of δmf = +1 are allowed, after several hundred of absorption and sponta-
neous emission cycles the atoms are prepared in the quantum ground state
52S1/2, F = 3,mf = 3 with well aligned magnetic moments.

Then, the atoms are placed in a static homogeneous magnetic field during
a certain time t, corresponding to the time of flight of the atoms from the first
laser excitation region where the optical pumping occurs to the second laser
excitation region where the atoms are exited into a well defined Rydberg state.

The magnetic moment of the atom precesses around the magnetic field,
thereby changing coherently the distribution of themf quantum number states.
The probability that the spin of the atom will be oriented in the initial direction
(mf = +3) after a time t is given by:

Pmf=+3(t) = 1− sin2(α) sin2(ωt) (4.2)

where α is the angle between the magnetic field and the laser beam, deter-
mining the quantization axis, and ω = gF

eB
2m

is the Larmor frequency and gF
the hyperfine structure Lande-factor (here 1/3). From equation 4.2, in the
special case where the laser and the magnetic field are aligned, no precession
occurs. The atoms magnetic moments and the magnetic field are collinear and
the atoms remains in the mf = +3 state. One can also note, if the interaction
is fully coherent, one cannot speak strictly of magnetic coherent control over
the magnetic level as only the mf = +3 state is well defined over the interac-
tion time as the distribution over the others mf states remains uncontrolled.
The mF states can only be distributed corresponding to the orientation of the
classical B field.

Finally, the atoms are excited to the 61D5/2 Rydberg state with a two-
steps laser excitation scheme. The polarizations of the two lasers (σ+, σ+) are
chosen so that in a zero magnetic field, the excitation rate over the ladder:

5S1/2, F = 3,mf = +3→ 5P3/2, F = 4,mf = +4→ 61D5/2, F = 5,mf = +5
(4.3)
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is the most efficient. The excitation probability depends on the mf quan-
tum number as each transition has a characteristic Clebsch-Gordan coefficient
depending on the oscillator strength. Therefore, in the case of a non-zero
magnetic field, the excitation probability will then depend on the resulting mf

distribution after the spin precession.
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Figure 4.2: Magnetic field compensation in the three directions

Since the spin precession is periodic and the mf = +3 time evolution is
given by equation 4.2 , the excitation rate to the Rydberg level for an atom
with a fixed interaction time, e.g fixed velocity, depends on the magnitude
of the magnetic field, showing an oscillation of the atomic count rate as the
magnitude of the magnetic field is scanned. And each maximum corresponds to
a complete rotation. In the experimental realization of the MFC, no velocity
selection is achieved and atoms with all velocity components contribute to
the measurement. Then, only at B = 0, the oscillation shows a pronounced
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maximum, since no rotation occurs and the magnetic moment remains aligned.
However, a symmetric oscillating pattern along one defined axis (x-axis

for example) is only achieved if the other field component (y- and z-axis) are
compensated to zero. An iterative method in all three direction is used to
perform the MFC. Concerning the particular case, when the magnetic field
and the laser are collinear, the zero-field point measurement is achieved by
applying a small off-set field (∼ 3 mG) in one of the other directions.

Figure 4.2 shows the experimental result of the magnetic field compensation
in the micromaser achieved with the detection of the 61D5/2 Rydberg state.
The right compensating magnetic field is determined from the maximum at
the symmetry center of the curve. And a magnetic field compensation with a
precision on the order of 1 mG is achieved.

MFC measurements have been developed since the very beginning of the
micromaser experiments. But the detection scheme using the micromaser
ground state, e.g 61D5/2 Rydberg state shows improvements in the fringe con-
trast, due to the Clebsch-Gordan coefficients of the 2nd step laser with σ+

polarization for the 5P3/2, F = 4 → 61D5/2, F = 5 transition, compared to
previous measurements [78, 79].

4.2 Stark Effect and Velocity Selection by Doppler

Effect

In chapter 2, the central equation determining the micromaser steady-state is
derived and reads:

ρssnn = ρss00

n∏
k=1

nthγ + Ek
(nth + 1)γ + Gk

(4.4)

with the Rabi dynamics contribution:

Ek =
Re

k
sin2(
√
kgτ) (4.5)

Gk =
Rg

k
sin2(
√
kgτ) (4.6)

The mean thermal field photon number nth is determined by the cavity
temperature, and the pumping rate is controlled by the laser excitation rate,
e.g laser field intensity. The third experimental parameter, the interaction
time is optically controlled via the Doppler effect and will be the subject of
this section.

Accurate control of the interaction time between atoms and field plays an
important role in the micromaser dynamics as it gives access to different quan-
tum features of the produced field such as sub-poissonian field, trapping states
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or bistability. In the case of the micromaser, since the cavity mode is ori-
ented along the atomic beam axis, the interaction time is equal to the transit
flight time of the atoms inside the cavity. The interaction time control has
been achieved by different technics over the different experiments, presenting
advantages and disadvantages. The first technique used was the mechanical
velocity selection by means of nine Fizeau wheels. The main advantage is the
very accurate selection with a interaction time spreading smaller than 4% [38].
On the other hand, the mechanical cut of the atomic beam strongly reduces
the atomic flux.

Doppler Velocity Selection

The optical velocity selection of the atoms is achieved using Doppler ef-
fect via the angular excitation of the atoms. This allows the selection of a
sub-velocity class among all velocities available in the thermal atomic beam.
The Doppler selection is achieved using the angular excitation of the Rydberg
atoms. The Rydberg excitation to the micromaser ground state, 61D5/2, is
achieved by means of a two-step excitation scheme. The first laser step, pro-
moting the 85Rb atoms to the 5P3/2, F = 4 state is doppler free and interacts
perpendicularly to the atomic beam. The Doppler selection is achieved as the
second step laser at 480 nm interacts with the atomic beam at the same point
as the first step but at an angle of 11◦. Due to the angular excitation, the
atoms see a Doppler shifted laser light, with the frequency:

ν ′ = νl
c+ v sin θ

c
= νl

(
1 +

v sin θ

c

)
(4.7)

where νl is the blue laser frequency, v the atoms velocity and θ the angle
between the atomic beam and the laser light field, as c is the speed of light.
It is therefore possible to select a certain velocity class of atoms by tuning the
laser frequency as:

v =
c∆ν

νl sin θ
(4.8)

where ν is the atomic transition, 5P3/2, F = 4→ 61D5/2, frequency and
∆ν = ν − νl. The accuracy of the velocity selection depends on several ex-
perimental parameters. The atomic divergence is reduced as the atomic beam
is collimated (see Chapter 3). Other parameters are the laser frequency and
laser linewidth. Compared to the one step excitation in the UV, the blue laser
frequency is around 1.6 time smaller (297 nm compared to 480 nm) leading
to an enhancement in the uncertainty of the same order. This increase in un-
certainty is however counterbalanced by a better linewidth of the blue laser
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system, leading to a typically interaction time spreading δt/t of the order of 3%.

Laser Frequency Shift using the Stark Effect

In the previous chapter, the high sensitivity (or polarisability) of the Ry-
dberg atoms due to an external electrical field E is explained and used for
the state-selective detection scheme. At very small fields on the order of sev-
eral hundreds of mV/cm, energy shifts of the order of hundreds of MHz are
observed. Using the atomic frequency shift due to the Stark effect, the laser
frequency can be tuned for atomic velocity selection. The quadratic Stark
effect is the dominating term and the energy change W is given by:

W = −~αE2 (4.9)

where α, the polarisability, is state dependent. The polarisibility for the mi-
cromaser excited state 63P3/2 has been experimentally determined as α =
1482 ± 33 MHz/( V

cm
)2 [80]. In some Rydberg states, measurements of the

Stark shifts and splittings at low electrical field strength show that the fa-
miliar second order expansion is no longer adequate and deviations from the
quadratic dependence are found [81, 82, 83]. The fourth-order Stark effect in-
vestigations shows good agreement in the case of Ca Rydberg D states , given
an interpretation of the hyperpolarisabilities previously observed [84]. In the
case of the micromaser ground state, 61D5/2, the fourth-order contributions
has to be taken into account. The energy change W is then given by:

W = −~αE2 − ~γE4 (4.10)

where γ is the hyperpolarisability.
The frequency locking of the Rydberg laser system (the U.V laser for the up-

per maser state, 63P3/2 and the blue laser for the maser ground state, 61D5/2)
is achieved in the so-called auxiliary chamber, shown in figure 4.3. A small
fraction of the atomic beam, highly collimated, interacts with the laser light in
presence of an external electric field created between two parallel condensator
plates. At the end the Rydberg atoms are detected using the same field-
ionization technique as described in Chapter 3. The laser is then locked on the
maximum of the spectroscopy signal using a traditional lock-in demodulation
technique. The frequency tuning is then controlled via the Stark voltage as
the spectral lines are shifted.

The second order shift is always to lower energy (redshift), as expected from
oscillator strength sum rules [85]. The Doppler shift can be either blueshifted
or redshifted depending on the relative angle θ between the light propagation
and the atomic beam axis. For too large electrical fields, a splitting between
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the JM and JM
′

sub-levels of the Rydberg states is observed, which is a
drawback for the laser frequency locking scheme as the spectroscopic signal
is broadened and the amplitude of the individual sub-levels decreases. An
excitation angle set to 11◦ allows a tuning of the transition resonance to the
required frequencies with moderate Stark voltage.

Stark voltage Plates

Atomic

Beam

Collimator

Ionization Plate

Channeltron

2-Steps Laser

Excitation

Figure 4.3: Auxiliary chamber setup for the frequency stabilization of the Ry-
dberg laser, using the Stark effect as frequency tunning

Time of Flight Measurement

The relation between the interaction time τint and the Stark voltage USt
can be written from equation 4.10 as:

τint = P1 +
P2

U2
St

+
P3

U4
St

(4.11)

where the P1,2,3 parameter dependent on details of the experimental setup and
are subject to changes from day to day operation, depending on not fully con-
trollable parameters like the small deviation of the excitation angle or electri-
cal stray fields in the Stark effect region due to Rb-deposition on the electrical
plates. Therefore a day to day calibration of the Stark voltage has to be done
using a time of flight measurement.

This can be done with a pulsed experiment where the time of flight of
the atoms from the laser excitation region to the detectors is measured. The
blue laser is mechanically chopped and a small part of the light is sent into a
photodiode triggering the experiment as a start signal for the clock as the atom
is excited into the Rydberg state. The clock is then stopped once an atom is
detected and the elapse time measured corresponds to the effective time of
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780 nm

480nm

Atomic Beam

P.D

Mechanical Chopper

Detector

Time of Flight

Computer

Figure 4.4: Time of flight experimental setup. The blue laser interacts with
the atomic beam at an 11◦ angle. A mechanical chopper is used, creating
µs light pulse. A photodiode linked to a computer records a fraction of the
pulse triggering the experiment. Rydberg atoms are then detected and the time
elapsed between the photodiode signal ad the detection click, measures their
time of flight.

flight of the atoms from the excitation region till the arrival in the detection
region. Figure 4.5 shows the histogram resulting from different measurements.

For the generation of the uniformly time spaced laser pulses, a mechanical
beam chopper is used. The pulsed length has to be on the same order as the
Doppler broadening due to the laser linewidth: δτl ∼ 5 µs. The separation
time between two pulses has also to be much larger than the mean time of
flight of the atoms which is of the order of several hundreds of µs. Therefore
the following values were chosen: the laser pulse width is set to 5 µs (FWHM)
and the separation between the pulses is 20 ms.

The width of the measured time of flight spectrum can be explained by
the Doppler equation and the finite laser linewidth combined to the thermal
velocity distribution inside the atomic beam. At a finite angle, the Doppler
shifts seen by the fastest atoms will be larger and the velocity distribution will
then correspond to a broader frequency distribution than for the slower one.
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Figure 4.5: Time-of-Flight Measurement with 61D5/2 Rydberg Atoms: the
different linewidth observed between fast and slow atoms is explained by the
Doppler equation. Fast atoms see a larger Doppler shift, and the velocity dis-
tribution is broadener than for slower atoms. The second peak observed in the
left spectrum at tint = 180 µs is explained by the presence of slower atoms
excited in the 61D3/2 state.

The distribution of arrival times is then expected to be broader for the slower
atoms:

δt =
x

v2

c

sin θ

δν

νl
(4.12)

The asymmetry observed in the spectrum is explained by the thermal
atomic velocity distribution. The laser linewidth is symmetric around the
central frequency, however it is not the case of the velocity distribution.

Also, in the spectrum of fast atoms, e.g large Doppler shift, a second ve-
locity component is observed at tint = 180 µs. This corresponds to slower
atoms excited in the 61D3/2 Rydberg state. However, the excitation of the
second fine structure component of the 61D state is not an issue for the cou-
pling of the atom to the cavity, as the frequency detuning, 51 MHz for the
61D3/2 → 63P3/2 transition, is much larger than the Rabi frequency. From the
time-of-flight measurement, the statistical contribution of 61D3/2 atoms to the
atomic detection can be extracted and used for the data analysis.

Finally, several such time of flight spectra at different Stark voltages are
taken for the calibration. The experimental results are shown in figure 4.6.
From the extracted fit parameters, a first evaluation of α = 782± 58 MHz/( V

cm
)2



64CHAPTER 4. EXPERIMENTSWITHMASERGROUND STATE ATOMS

0,76 0,78 0,80 0,82 0,84 0,86 0,88 0,90 0,92 0,94

-350

-300

-250

-200

-150

-100

-50

F
re
q
u
n
c
y
 S
h
if
t 
R
e
la
ti
v
e
 t
o
 6
1
D
5
/2
 (
M
H
z
)

Stark Voltage [V]

Figure 4.6: Stark effect frequency shift of the 61D5/2 Rydberg level in an ex-
ternal DC field.

and γ = 1970 ± 356 MHz/( V
cm

)4 is achieved.

4.3 Maser Line with Ground State Atoms

In order to setup the micromaser experiment and tune the cavity frequency
on resonance with the atomic Rydberg transition, the resonance curve of the
maser (so called ”Maser Line”) is measured. By changing the applied voltage
of the piezoelectric drive, the cavity is slowly quenched and tuned over the
resonance frequency. The evolution of the atoms-field coupling is then recorded
while monitoring the state-selective ionization signal in the two channeltrons.

The count rate in the two channeltrons corresponding to the two maser
states (excited state, 63P3/2 and ground state 61D5/2) starts to change in the
vicinity of the resonance frequency (21.456 GHz). Ground state atoms start to
exchange energy with the thermal cavity field in a coherent interaction through
Rabi oscillations.

The observation of maser lines, where excited atoms are injected into the
cavity, has a long record in experimental maser physics. The observation of
saturation broadening of the maser line demonstrated for the first time the
stimulated emission with at most one atom in the cavity [24] and a theoretical
description of the maser was published later [14]. However the description of
the maser line was their qualitative. Based on the steady-state equation, the
maser line features and dependence on the atomic pumping rate can be well
understood. The frequency scanning time-scale is much larger than the cavity
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dynamics, therefore one can assume that for each frequency the steady-state
of the cavity is reached. Replacing the Rabi oscillation contribution (4.5) and
(4.6) by the non-resonant term:

Ek =
Re

k

g2

Ω
sin2(
√
kΩτ) (4.13)

Gk =
Rg

k

g2

Ω
sin2(
√
kΩτ) (4.14)

where Ω2 = g2 + ∆2 is the effective Rabi frequency. The steady-state of the
field (4.4) can be calculated for any cavity frequency.

When all atomic velocities are present, the average over many oscillation
periods of the Rabi frequency is:

lim
T→∞

T/2∫
−T/2

sin2(
1

2
Ωτ)dτ =

1

2
(4.15)

In the case of ground state atoms pumping the cavity, the steady-state reads:

ρssnn = ρss00

n∏
k=1

2 Ω2 nthγ

2 Ω2 k (nth + 1) γ + g2Rg

(4.16)

This rather simplified approximation showed good agreement with the mea-
sured data in the case of excited atoms pumping the cavity giving access to
the overall detection efficiency of 45% [30]. In the limit of large detuning, no
interaction occurs and the cavity is in its thermal equilibrium. Also, for large
pumping parameter, the cavity is cooled down to the vacuum state.

A measured maser line where 61D5/2 ground state atoms are injected into
the cavity is shown in figure 4.7. The injection rate is 450 atoms/s (Rg ∼
13) and no velocity selection is performed. The cavity temperature is 1.3 K,
corresponding to a mean thermal photon number nth = 0.85. On resonance,
ground state atoms start to exchange energy with the cavity field leading to
the superposition of ground and excited state due to the Rabi dynamic. A
change in the count rate of the channeltrons corresponding to the two states is
then observable as the cavity is tuned close to resonance. A large asymmetry
for the red-detuned slope is observed. Such large deviations have already been
measured for large atomic fluxes of excited atoms [74] where this effect is
explained in terms of stray fields in the entrance holes of the cavity.

Performing the measurement of the maser line with velocity selected atoms
gives access to the Rabi dynamics of the system. Using the angular excitation,
Doppler selected atoms with a well defined velocity, i.e well defined interaction
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Figure 4.7: Resonance curve of the maser. 61D5/2 ground state atoms are
injected into the cavity and interact with the thermal field at 1.3 K. While the
frequency of the cavity is tuned over the resonance 63P3/2 excited atoms are
produced .

time τint, are injected into the cavity. The recorded spectra are shown in figure
4.8. On resonance, the different interaction times lead to a different inversion
which is a direct consequence of the Rabi dynamic between the Rydberg atoms
and the microwave field of the cavity and allow to test the cavity steady-state
ρssn,n.

From the measured maser line at a well-defined interaction time with ex-
cited maser states, thermal Rabi oscillation at high temperature (2.5 K) were
observed in previous experiments [28, 38]. Such measurement were possible
as the cavity Q-factor was only of the order of 108, and a higher atomic flux
could be used without a pumping effect on the cavity. Also, at higher atomic
flux, measurement of the micromaser pump curves were performed, recording
velocity selected maser lines [74].
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(a) 

(b) (c) 

Figure 4.8: Resonance curve of the maser with velocity selection. 61D5/2

ground state atoms are injected into the cavity and interact with the thermal
field at 1.3 K, (a) τint = 94µs, (b) τint = 60µs, (c) τint = 50µs.

4.4 Rabi Oscillations with a Quantized Ther-

mal Field

As discussed in chapter 2, the interaction of a two-level atom with a single
mode of the cavity is described by the Jaynes-Cummings interaction. In this
model, an atom in presence of a resonant quantum field exchanges periodically
energy (Rabi oscillations) and its population oscillates in a coherent way. The
realization of high Q cavity where the cavity decay constant γ is much smaller
than the Rabi frequency allows the realization of this coherent atom-field in-
teraction. It is then possible to demonstrate the quantum nature of coherent
light with a collapse and revival of the Rabi oscillations observed using a spin
echo measurement scheme [87]. Vacuum Rabi oscillations where an excited
state atom |e〉 interacts with the vacuum field |0〉 of the cavity are also demon-
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strated [29][30] in the micromaser experiment. However, inconsistencies with
the theoretical prediction of the vacuum Rabi oscillations remain. One possible
explanation is attributed to higher field temperature. Until now, the cavity
temperature has been measured with a temperature sensor mounted on the
cold finger, giving the temperature of the cavity wall. In fact, the cavity field
could be hotter due to outside radiation from hotter surfaces like the atomic
oven or microwave waveguides which weakly couple into the cavity. Finally,
the mean thermal photon number nth is together with the interaction time τint
and the atomic rate R one of the free experimental parameter in the realiza-
tion of the micromaser and it is therefore important to measure it accurately.
To measure the cavity field temperature, 61D5/2 ground state atoms are used
as sensor.

At zero atomic flux, the cavity is in thermal equilibrium, and a blackbody
field is present. At 1.3 K, the average number of thermal photons is 〈n〉th =
0.85 and the cavity state reads:

ρth =
∑
n

〈n〉nth
(1 + 〈n〉th)n+1

|n〉〈n| (4.17)

and the photon distribution in a thermal field is described by the Bose-Einstein
distribution:

ρn,n = 〈n|ρ|n〉

=
〈n〉nth

(1 + 〈n〉th)n+1
(4.18)

When a ground state atom enters the cavity, interaction with the black-
body field starts, energy exchange occurs and the atomic population starts
to oscillate. The atom absorbs a photon and is excited in the upper maser
state. The photon can be reemitted and the atom returns into the ground
state. Since the unperturbed field temperature of the cavity should be mea-
sured, the average photon number should not be changed from one atom to
the other. The cavity reaches a thermal equilibrium on a timescale given by
its decay time γ = 13 Hz and an atomic injection rate R much smaller than γ
is chosen. In the experiment, R < 1Hz. This ensures that each atom entering
the cavity interacts with the field in thermal equilibrium and not a blackbody
field modified under the interaction with the previous atom.

The experimental setup for the measurement of Rabi oscillations is equiva-
lent to the one depicted in figure 4.4, used for the time-of-flight measurement.
The laser pulse width is set to 3 µs (FWHM) giving a limitation to the inter-
action time resolution. The time between two pulses is set to 100 ms which is
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larger than τf = 73ms the cavity decay time. Also, the laser intensity is chosen
so that less that one atom per pulse is excited into the Rydberg state. The
recorded signal is averaged over 1000 events. For each velocity component, the
atoms undergo different Rabi cycles. The probability to detect the atom in
the ground state is:

Pg =
∑
n=0

ρn,n cos2(
√
ngτ) (4.19)
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Figure 4.9: Experimental realization of Rabi oscillations between 61D5/2 maser
ground state and the blackbody radiation of the cavity. The temperature of the
cavity wall is 1.3K corresponding to 〈n〉th = 0.85 photon. The blue curve shows
the theoretical expectation for a Rabi oscillation at this field temperature. The
green and red curve show simulations at higher field temperature with 〈n〉th = 1
and 〈n〉th = 1.37, respectively.

Figure 4.9 shows the realization of Rabi oscillation between ground state
atoms and the thermal field of the cavity. The observed quantity is the so-
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called inversion giving a detection efficiency independent observation of the
dynamics:

Inv =
Pg − Pe
Pg + Pe

=
∑
n=0

ρn,n cos(2
√
ngτ) (4.20)

The resolution of the measured Rabi oscillations is comparable to the re-
sults achieved by Rempe et al. [28], where the observed dynamics at higher
temperature was extracted from maser-lines measurement.

The extracted coupling constant g/2π = 7.4±0.1 kHz, is in good agreement
with theoretically predicted values and with the previous measurement of ∼ 7
kHz [26, 29, 30].

The extracted average thermal photon number is 〈n〉th = 1.13± 0.14. The
cavity wall temperature measured by a sillicium diode temperature sensor, is
1.3 K and remained constant during the experiment. This corresponds to an
average photon number of 〈n〉th = 0.85. The blue curve represent the realiza-
tion of such oscillations. Mean photon numbers of 〈n〉th = 1 and 〈n〉th = 1.37
correspond to field temperatures of 1.47 K and 1.56 K respectively. Therefore,
it can be deduced, that the actual field temperature is slightly higher than the
cavity wall temperature. This has to be taken into account when analyzing
former Rabi oscillations measurements.



Chapter 5

Optical Spectroscopy of
Rydberg Atoms

In Chapter 4, the first cavity QED experiments with maser ground state atoms,
the Rydberg 61D5/2 state, are shown. To perform these experiments, a new
diode laser system has been developed leading to the demonstration of a new
purely optical spectroscopy method of Rydberg atoms in a room-temperature
gas-cell. This new method is based on an electron shelving scheme and is the
subject of this Chapter. The excitation of Rydberg states is monitored by ob-
serving the absorption of a laser locked on the strong D2 line. Applied to differ-
ent excitations schemes, this method demonstrates a wide range of applications
for Rydberg atoms experiments. In particular, stabilization of a frequency dou-
bled dye laser in the UV to one Rydberg transition is demonstrated.

Rydberg atoms with principal quantum numbers n >> 1 have exagger-
ated atomic properties. The micromaser experiment takes advantage of the
large dipole-dipole interactions that scales in n4 or the long radiative lifetimes
that scale in n3. In the last decade, Rydberg atoms start to play a major
role for quantum information processes [88]. Taking advantage of the Rydberg
atom properties, the implementation of quantum gates between neutral atom
qbits was proposed a decade ago [89]. However, until very recently, in the
most experiments the detection of the Rydberg atom was done in an indirect
destructive electronic scheme where Rydberg atoms are ionized first and the
ionizations products are detected electronically afterwards. This includes state
selective ionization in a static electrical field as the most common technique,
since it combines high detection efficiency and Rydberg states discrimination
(see chapter 3) [90]. Therefore, the development of a non-destructive detection
scheme of Rydberg atoms is of great interest.

71
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In this chapter, a new method of Doppler-free, purely optical detection of
laser excited Rb Rydberg atoms in a room-temperature gas cell is presented.
The Rydberg atoms are excited from the ground state by the laser systems used
in the micromaser experiment, either in a single-excitation step with UV light
at 297 nm or in a two or three-step diode laser cascade setup. The detection
is performed as the absorption of the 780 nm diode laser on the strong Rb
D2 line is monitored in a scheme similar to the electron shelving. In the first
part, the detection of weak transitions using the electron shelving technique
will be introduced. Results of the non-destructive Rydberg spectroscopy of Rb
atoms in a gas cell will be presented. Finally, the implementation of this new
method in the laser stabilization scheme for the micromaser experiment will
be explained.

5.1 Weak Transition Detection by Electron Shel-

ving

Purely optical detection of high lying atomic Rydberg states has been a dif-
ficult task for many years. This is mostly due to the small radial part of the
dipole matrix element between the atomic ground state and the highly excited
Rydberg states, leading to small absorption cross-sections and therefore poor
absorption or fluorescence signals. In early experiments on optical detection of
Rydberg transitions with Ba atoms, the fluorescence of absorptions lines has
been observed in continuous spectra of picosecond laser pulses [91][92]. How-
ever, the high temperatures of the glass cell needed to achieve a high atomic
density does not allow any sub-Doppler spectroscopy. Doppler-free fluores-
cence detection has been limited to low-lying Rydberg levels (n=7, 9 and 10)
with Cs atoms [93].

Weak atomic transition have to be detected as they offer the highest fre-
quency resolution. In atomic optical clocks experiments [17][94] or quan-
tum information experiments based on trapped ions [18] the detection of
weak atomic transitions is performed using the quantum amplification of the
electron-shelving technique introduced by Dehmelt [19]. Considering a three-
level atomic system in a V scheme. The transition |1〉 ↔ |2〉 is the so-called
strong transition with τ2 the atomic lifetime of the state |2〉, while the tran-
sition |1〉 ↔ |3〉 is the so-called weak transition with τ3 the atomic lifetime
of the state |3〉. The key of the detection scheme is the so-called quantum
amplification which occurs when the detected signal is not the absorption or
fluorescence caused by the transition itself but the fluorescence emitted on
the strong transition. In absence of the weak transition (for example when
the laser is off-resonant), the atom undergoes many absorption-emission cy-
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cles on the strong transition. In the case of a resonant laser, an excitation
on the weak transition hinders many absorption-emission cycles on the strong
transition. The atom is in the so-called dark state as the fluorescence signal
drops to zero. In single trapped ions experiments, the quantum amplification
is given by the ratio τ3

τ2
of the lifetimes of the two excited states and can reach

values of 106 or more. In a room-temperature gas cell, conditions are not so
clean and atom-atom collisions and interaction time limitations decrease the
amplification factor down to values of several hundreds.

The electron shelving technique is a rather simple detection technique tak-
ing advantage only of the different lifetime of two excited atomic states. Al-
though the dark-state nomination only comes from the absence of fluorescence
observed when the atom is excited along the weak transition. It is not related to
the interesting phenomenon in which a coherent superposition of atomic states
is responsible for coherent trapping or dark states. Such phenomena rely on the
control over the Rabi frequencies driving the three level atomic system. One
extension of it is the electromagnetically induced transparency (EIT) where
both the Rabi frequencies and the decay of the excited states play a role in the
transparency of the medium for the probe field. Doppler-free purely optical
detection of Rydberg states has been reported in a room-temperature cell [95]
and in an atomic beam apparatus [96] using EIT technique.

780 nm

480 nm

Rb
85

61D 
5/2

5P3/2

5S1/2

Figure 5.1: Atomic ladder scheme for the 2-steps excitation and detection of
85Rb, 61D5/2, Rydberg atoms

A first breakthrough in the optical detection of Rydberg atoms in room-
temperature glass cell was obtained in the C. Addams group where EIT in an
atomic ladder scheme was used to create an observable and spectrally narrow
signal from Rydberg transitions. However such detection scheme requires high
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power laser for the Rydberg transitions to fulfill the condition on the Rabi
frequencies. The method proposed here to implement a Doppler-free detection
is based on the electron shelving technique used in trapped ions system. A
first test experiment was achieved using the two-step excitation scheme for the
85Rb Rydberg state 61D5/2.

Doppler free detection of the micromaser ground state 61D5/2 in a
Rb gas cell

The atomic-level scheme is shown in figure 5.1. The 780 nm laser is fre-
quency stabilized to the center of a Rb hyperfine line using Doppler-free satura-
tion spectroscopy in an other setup. Only atoms with zero-velocity component
in the direction of the IR and the blue laser can therefore interact with both
laser simultaneously and a Doppler-free signal can be obtained.

780 nm

Doppler free

Stabilization to one

Component of the

5S 1/2  3P 3/2

Hyperfine manyfold 

PD

Lock-in

Detection

480 nm

To Atomic Beam

(Cryostat & Aux.Chamber)

Rb Gas Cell

Chopper

Grating

Figure 5.2: Schematic experimental setup for optical detection of Rb Rydberg
atoms in a room-temperature gas-cell

The main parts of the experimental setup are shown in figure 5.2. The 480
nm radiation is produced by frequency doubling the light from a external cavity
stabilized 960 nm diode laser leading to a maximum power of 40 mW. The
780 nm light is produced with a diode laser that is frequency stabilized to the
F = 3→ F = 4 hyperfine component of the 5S1/2 to 5P3/2 transitions by means
of Doppler-free saturation spectroscopy. Both beams are then collimated to a
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diameter of 1 mm and are linearly polarized. The IR is superimposed on the
blue light before the cell and separated with a grating after the cell. Scanning
the blue laser over the Rydberg transitions excites Rb atoms into the Rydberg
states and the reduced absorption of the IR beam through the cell can be
detected with the help of a photodiode. In order to increase the signal, a lock-in
amplified detection technique is performed while the blue light is mechanically
chopped.

Figure 5.3: Optical detection of the 85Rb Rydberg state 61D5/2 in a gas cell.
The absorption signal is compared to the spectroscopy signal observed with an
atomic beam experiment.

Figure 5.3 shows the excitation into the 85Rb 61D5/2 Rydberg state. The
spectroscopy is recorded at the same time both in a glass cell and with an
atomic beam experiment as reference, demonstrating the feasibility of a non-
destructive optical spectroscopy of Rydberg atoms in a room-temperature gas
cell based on a purely optical detection scheme.
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5.2 Non-Destructive Spectroscopy of Rydberg

Atoms

Once a proof of principle experiment is realized in a two-step excitation scheme,
the extension to other excitation schemes is discussed in this section. In addi-
tion, it is shown, how optical pumping can be used to excite only one single
hyperfine level in the Rydberg hyperfine manyfold. As these hyperfine states
are separated by just a few kHz, they are usually not resolved spectroscopically.

Optical Spectroscopy with a 297 nm UV Laser

(a) 

(b) 

Figure 5.4: (a) Level atomic V scheme for the excitation and detection of 85Rb,
63P3/2, Rydberg atoms; (b) schematic experimental setup for optical detection
of UV-Rydberg transitions in a room-temperature gas cell
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The atomic scheme and the main parts of the experimental setup are shown
in figure 5.4. The 297 nm radiation is produced by frequency doubling the
light from a rhodamine 6G dye laser (Coherent 899 ring laser) in a separate
enhancement cavity with a BBO crystal (LAS Wavetrain SC), leading to a
maximum power of 45 mW of UV radiation. The 780nm is produced and
locked as previously described. Both the IR and the UV beam are collimated
to a beam diameter of 1 mm and are linearly polarized. Before entering the
quartz glass cell, the IR light is split into two beams of equal intensity, and
after the cell their differential absorption is measured with a balanced detector
(Thorlabs PDB 150 A). One of the beam is superposed with the UV light
before entering the glass cell. After the cell the two beam are separated with
a mirror showing a high reflectivity coating for the UV radiation, meanwhile
having a high transmission for the IR. The UV light is then scanned cross the
Rydberg lines. The electron shelving based detection is then performed as the
reduced absorption of the IR beam superposed on the UV beam, due to the
Rydberg excitation, can be detected on the balance detector. To enable lock-in
amplified detection techniques, the UV light can be chopped using a electro-
optical-modulator (EOM, LINOS LM 13 P UV), or frequency modulation can
be applied to the dye laser control electronics board.

Figure 5.5 shows the excitation of the 85Rb 63P1/2, 63P3/2 fine structure
doublet. In figure 5.5 (a) the UV laser light is periodically interrupted with
a frequency of 6 kHz., the signal observed being the output voltage of the
lock-in amplifier observed in phase with the interruption signal. The observed
fractional change of the transmission of the two IR beams through the 10 cm
long glass cell is in the order of 10−4 confirming the quantum amplification
factor of 100 expected under such experimental conditions.

The frequency resolution is limited by the linewidth (δνD2) of the Rb D2
line. The natural linewidth δνD2,nat is 7 MHz. Assuming that the frequency of
the 780 nm IR laser is stabilized on the center of one transition, it will interact
with atoms in a velocity range v = 0±δv, where the Doppler shift correspond-
ing to δv has to be within the linewidth δνD2. As for the electron shelving
scheme both laser have to interact with the same atoms, Rydberg transitions
can only detected for atoms within the same velocity range. Therefore a min-
imum linewidth to be expected reads:

δνUV,min =
δνD2,natνUV

νIR
= 18MHz (5.1)

Different broadening mechanisms of Rydberg transitions were also examined
using a thermionic detector [97]. At room temperature, values below 10 MHz
were found, so that the velocity selection limited by the natural linewidth of
the D2 line is the dominant factor contributing to the observed linewidth.
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Figure 5.5: (a)Absorption signal with a chopped UV laser; (b) absorption error
signal with a frequency-modulated UV laser

In figure 5.5 (b), the UV light is frequency modulated at a frequency of
420 Hz and a modulation depth of 1 MHz. Applying the lock-in detection
results in a dispersive signal that can be used as an error signal for frequency
stabilization of the dye laser. The zero crossing can be determined with an un-
certainty better than 2 MHz for an averaging time of 300 ms. As the specified
short-term linewidth of the dye laser is 1 MHz at 594 nm, this error signal can
be used to compensate the frequency drift of the dye laser on the scale of its
short-term linewidth [20]. In the next section the application of this locking
scheme for the micromaser experiment will be explained in more detailed.

Spectroscopy of Rb Rydberg States with three Diode Lasers

The excitation of Rb Rydberg levels with a three-step diode laser system
has many advantages over a one-step UV laser setup. First, as mentioned in
chapter 3, diode lasers are easier to maintain and need less alignment work
in everyday operation. Second, higher excitation rates are obtained [30]. Fi-
nally, by controlling the polarizations of the three lasers, excitation of a single
hyperfine level out of the hyperfine manifold is possible. To excite the same
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(a) 

(b) 

Figure 5.6: (a) Level scheme for the excitation of Rb Rydberg states in a three
laser cascade setup; (b) Laser setup for optical spectroscopy of Rb Rydberg
atoms in a gas cell. The 780 and 776 nm lasers are frequency stabilized in
separate setups. These laser are counter propagating and their σ+, σ+ polar-
ization is realized by two λ/4 plates. The 1256 nm laser can be applied from
both sides.

63P3/2 state as with the UV laser, the dipole selection rules impose to use three
excitation steps.

The experimental setup is shown in figure 5.6 (b). All three lasers are
grating-stabilized diode lasers (Toptica DL 100) equipped with standard diode
laser control electronics (Toptica DCC 100, DTC 100, SC 100). The first
laser is resonant with the F = 3 → F = 4 hyperfine component of the D2
line in 85Rb, and the laser is frequency-stabilized using Doppler-free saturation
spectroscopy.

The second stage is resonant with the 5P3/2 → 5D5/2 transition at 775.8
nm. As the lifetime of the 5D5/2 is 10 times longer as that of the 5P3/2 level, its
spectroscopic detection in a gas cell is already more challenging. Many groups
use the 420 nm fluorescence emitted when the 6P levels, which are populated
from the 5D levels, decay back to the 5S ground state. Here, a different
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Figure 5.7: Level scheme of 85Rb including magnetics sublevels. If the popu-
lation of the magnetic sublevels in the 5S1/2 state is transfered to the mF = 3
sublevel by optical pumping with σ+ polarized light, σ+ polarized light in the
second stage can only excite the 5D5/2, F = 5, mF = 5 state.

approach is used, observing the transmission of the 780 nm laser through the
cell as the frequency of the 776 nm laser varies. Also here the different lifetimes
of the excited atomic levels give rise to a quantum amplification factor of 10,
so increasing the signal to noise ratio. Compared to the 420 nm fluorescence
detection, the 780 nm absorption detection gives comparable results in terms of
resolution and signal to noise ratio. Since no photomultipliers are required and
a simple analogue photodiode signal can be used for further signal processing in
the frequency stabilization, spectroscopy is performed with the second method.

Whereas the hyperfine splitting of the 5P3/2 level is easily resolved in
Doppler-free spectroscopy, the hyperfine splitting of the 5D5/2 is only of the
order of 10 MHz and therefore more difficult to resolve. In figure 5.8, two spec-
tra of the 5D5/2 line are compared. In the first spectrum, the two lasers have
a σ+ polarization, with the quantization axis chosen along the propagation
direction of the first stage. In this case, shown in figure 5.7, optical pumping
and selection rules ensure that only the mF = 5 sublevel of the 5D5/2, F = 5
level can be excited and the linewidth of the transition is below 10 MHz. The
second spectrum shows by using a linear polarization of the 780 nm laser: one
can excite all three hyperfine components of the same transition and three
peaks can be resolved in the spectrum. The measured data can be explained
by adding three Lorentzian lines with separation of 9.4 MHz and 18.4 MHz.
This corresponds to the value of the hyperfine splitting of the 5D5/2 line [98].
By using a σ+, σ+ setup, the frequency of the laser can be stabilized on the
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Figure 5.8: Spectroscopy of the 5D5/2 levels with two diode lasers. In the upper
plot, optical pumping with a σ+ polarized 780 nm laser ensures that only the
5D5/2, F = 5 level is excited. In red a Lorentzian line fitted to the measured
data is shown, the width of the fitted curve is 10.5 MHz. In the lower plot,
the polarization of the 780 nm laser is linear, so that no optical pumping to
the extremal mF occurs. As a consequence, all hyperfine sublevels of the 5D5/2

state can be resolved. In red a sum of three Lorentzian lines with frequency
separations according to the hyperfine splitting of the 5D5/2 level is shown. In
blue the individual Lorentzian lines contributing to this line are displayed

5P3/2, F = 4 → 5D5/2, F = 5 transition and excite the Rydberg states via a
well-defined path.

The two beams can be combined and separated by using two polarizing
beam splitters and two quarter wave plates as shown in figure 5.6 (b). The
quarter wave plates are aligned so that the first one transfers the linearly po-
larized light, which has been transmitted by a polarizing beam splitter, into
left-circularly polarized light, corresponding to σ+ polarization if the quanti-
zation axis is chosen along the propagation axis. The second quarter wave
plate, placed after the Rb glass cell, is oriented in the same way as the first
one, reflecting the 780 nm by the second polarized beam splitter. This sec-
ond quarter wave plate transforms the counter propagating 776 nm light into
right-circularly polarized light, corresponding to σ+ as the quantization axis
was chosen along the 780 nm laser. This scheme is used both for the frequency
stabilization of the 776 nm laser and for the Rydberg spectroscopy with three
diode lasers.
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After stabilization to the selected atomic transition, the 780 and 776 nm
laser are superposed with the 1256 nm laser and the lasers interact with Rb
atoms in a 15 cm room-temperature gas cell. To increase the excitation rate
into the Rydberg levels, all lasers are focused within the Rb cell with lenses
of focal length 30 cm. After the cell, the three beams are separated again by
polarization-and wavelength selective elements and only the absorption of the
780 nm laser is used for the signal analysis. To enable a lock-in detection,
the 1256 nm laser is mechanically chopped at a frequency of 1130 Hz. The
absorption of the 780 nm laser is detected in phase with the chopping frequency
and the demodulation time is set to 300 ms in each case. The motion of the
atoms limits the interaction time of individual atoms with the light fields to
timescales of 1 µs. This is much shorter than the periodicity of the chopping
process on the observed lineshape. The frequency scan of the 1256 nm laser is
calibrated by observing the transmission of a nearly plane-parallel Fabry-Perot
interferometer with a free spectral range of 287 MHz.

Figure 5.9: Level scheme of 85Rb including magnetic sublevels. By optical
pumping and dipole selection rules one particular hyperfine level of the 5D
and 63P levels can be selected. The angular part of the excitation probabilities
is also given, showing that a σ+, σ+, σ− scheme gives the highest excitation
probability

Figure 5.9 shows the three-step excitation path and includes the angular
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part of the relative excitation probabilities [99, 100]. It can be seen that by
optical pumping on the 780 nm transition to the mF = 3 substrate, one can
realize the excitation path with the highest excitation probability. In addition,
one can selectively address the 63P3/2, F = 4 hyperfine level of the Rydberg
state.

Figure 5.10: (a)-left, absorption signal from the 63P3/2 Rydberg state in a room-
temperature gas cell obtained with a three diode laser cascade setup. The 1256
nm laser is applied co-propagating with the 780 nm laser. (b)-right absorption
signal from the 63P3/2 Rydberg state in a room-temperature gas cell obtained
with a three diode laser cascade setup. The 1256 nm laser is applied counter
propagating with the 780 nm laser. In the lower plot the power of the 776 nm
laser is increased far above saturation. in this case an asymmetry in the line
can be observed which is due to the excitation of the same final state via a
different hyperfine sublevel of the intermediate 5D5/2 state

To achieve a compromise between frequency resolution and good signal
strength, the power of the first stage is chosen just below saturation intensity.
The power of the second stage and third stage are 2 and 5 mW, respectively.
After superposing the counter propagating 780 and 776 nm lasers with σ+

polarization one has the freedom to apply the 1256 nm laser from both sides.
Figure 5.10 (a) shows an excitation spectrum of the 63P3/2 level if the third
laser is applied co-propagating with the first one, while in figure 5.10 (b),
it is applied counter propagating with the second laser. In each case the
polarization of the 1256 nm laser has be tuned to σ− to avoid a dark state.
The two excitation geometries give rise to approximately the same signal-to-
noise ratio and also the frequency width of 20 MHz (FWHM) is similar in both
cases. In figure 5.10 (b), it can be seen that an increased power of the 776 nm
laser leads to an asymmetric line shape, which can be attributed to different
excitation paths via different hyperfine levels of the 5D5/2 state [21].



84 CHAPTER 5. OPTICAL SPECTROSCOPY OF RYDBERG ATOMS

In addition to the P levels, the Rydberg F levels can be reached with a
three-step excitation as well. Figure 5.11 shows a spectrum of the 60F state,
which is detuned 11.5 GHz below the 63P state. In this case linear polarization
has been chosen for all three lasers and all lasers are co-propagating.

Figure 5.11: Excitation signal from the 60FRydberg state in a room-
temperature gas cell obtained with a three diode laser cascade setup.

The quantum amplification effect, which has already been described above,
is also responsible for the observation of the Rydberg transitions in a three-step
excitation setup. As an excitation to the 5D state already hinders 10 absorp-
tion and emission cycles on the D2 line, the quantum amplification for the
three-step excitation is expected to be reduced by the same factor if compared
with the single-single step excitation in a V scheme. Nevertheless, the avail-
able interaction time in the cell of about 1 µs in a focused laser beam leaves
enough time for a quantum amplification effect of about 50, which explains
the good signal-to noise ratio in the observed spectra.

5.3 Applications to the Micromaser Experi-

ment

In the previous section the optical spectroscopy of Rydberg atoms in a gas
cell is demonstrated. This method presents also the advantage that Rydberg
transition in a gas cell are highly immune to linear and quadratic DC-Stark
shifts [95], giving these Rydberg lines an unexpectedly high frequency stability
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and this method can be used for frequency-stabilization of laser to Rydberg
transitions. This is due to a screening effect or electrostatic screening created
by the thin film layer of Rb atoms formed on the surface of the glass cell,
reducing the electrostatic field. Like the electric field of the nucleus is reduced
inside an atom due to the shielding effect, the electric field in the conducting
Rb film layer is further reduced by the cloud of conduction electrons. The
Rydberg atoms remain sensitive to AC-Stark effect, and electro-optic effect
such as Kerr effect have been recently observed [101].

The dispersion signal observed in figure 5.5 can be utilized as an error signal
to stabilize the frequency of the 297 nm laser to the 5S1/2 → 63P3/2 transition
in 85Rb used in the micromaser experiment. The demodulation time of the lock-
in amplifier is set to 300 ms, limiting the bandwidth of the servo loop below
10 Hz. The error signal is given to a proportional-integral-derivative (PID)
regulator (SRS SIM 960) that acts as an external-frequency control voltage for
the dye laser. The frequency stability of the laser can be tested by exciting
Rydberg atoms in an atomic beam apparatus where the atoms are detected
via state-selective ionization and performing a time of flight experiment. By
setting an angle of 11◦ between the laser and the atomic beam, the resonance
frequency of the atoms in the beam is Doppler shifted with respect to atoms
at rest. As the linewidth of the laser is much smaller than the Doppler width
of the thermal atomic beam, velocity selection of the excited Rydberg atoms is
made by tuning the laser frequency. The velocity spread of the excited atoms
is then a direct measure of the frequency stability of the exciting laser and can
be used to test the performance of the laser stabilization in the gas cell; the
Doppler width due to the angular divergence of the atomic beam is less than
1 MHz.

The typical velocity range of the thermal atomic beam is 200 m/s to 600m/s
leading to a Doppler shift at 297 nm in the range of 200 to 600 MHz which
corresponds to a Doppler shift in the IR at 780 nm in the range of 80 to 200
MHz. To lock the UV laser in the gas cell, the atoms have to be resonant with
both lasers and therefore have to see the same Doppler shift. One solution
would be to use an acousto-optic modulator (AOM) to shift the IR frequency.
However the large frequency shift required combined with the large spectral
bandwidth of the full velocity range would require the implementation of many
AOMs. An alternative and more elegant method to achieve locking of the UV
laser to Doppler-shifted frequencies, is to use a technique that is similar to
the well-known crossover resonances in Doppler-free saturation spectroscopy.
Using the hyperfine manyfold of the D2 line F = 3 → F = 2, 3, 4 transition
in 85Rb shown in figure 5.12, the IR laser is no longer stabilized to the F =
3 → F = 4 hyperfine component of the 5S1/2 → 5P3/2 transition but to
either the F = 3 → F = 3 component with detuning of 121.6 MHz or the
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Figure 5.12: Left; the hyperfine manyfold of the D2 transition line in 85Rb.
Right; (a) Doppler-shifted signal from an atomic beam under angular excita-
tion; (b)-(e) shifted dispersive signal from a gas cell with a 780 nm laser locked
to (b) F = 3 → F = 4 resonance, (c) F = 3 → F = 2, 4 crossoverline, (d)
F = 3→ F = 3 resonance, and (e) F = 3→ F = 2, 3 crossoverline

F = 3 → F = 2, 4 and F = 3 → F = 2, 3 crossoverlines with frequency
detuning of 92.5 MHz and 153.3 MHz, respectively. The F = 3 → F = 4 is
now resonant with atoms having a well-defined velocity and the UV Rydberg
transition is Doppler shifted by a frequency of:

∆νUV = ∆νIR
νUV
νIR

(5.2)

Figure 5.12 shows the Rydberg excitation signal in the gas cell for different
frequencies of the IR laser and, for comparison, the spectrum obtained from
an atomic beam under angular excitation. It is clearly seen that the Doppler
shifted dispersive signal can be used to lock the UV laser on a frequency that
allows velocity-selective excitation in an atomic beam. With these lines, one
single AOM can be enough to cover the Doppler shifts of the hole velocity
spectrum of the atomic beam.

By making short UV excitation pulses of 5 µs duration with a mechanical
chopper and detecting the atoms 10 cm behind the excitation region, a time-
of-flight spectrum can be recorded with the same method described in
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Figure 5.13: Time-of-flight spreding of Rydberg atoms after velocity selective
excitation in an atomic beam; (a) the IR laser is locked on the F = 3→ F =
2, 3 crossoverline with UV laser detuning of 402 MHz ; (b) the IR laser is
locked on the F = 3→ F = 3 resonance with UV laser detuning of 319 MHz

Chapter 4 to measure Rabi oscillations. Figure 5.13 shows the distribution of
arrival times for UV laser detuning of 402 MHz (left) and 319 MHz (right).
From the width of this distribution (6.5-8 µS), the laser frequency stays within
a frequency window of 2 MHz in the UV over recording times of several
hours. As this number coincides with the short-term frequency stability of
the frequency-doubled dye laser, the long-term frequency stabilization of the
laser on the level of its short-time linewidth is demonstrated. The results com-
pare also very well with the results obtained by stabilizing the laser frequency
to the signal obtained from state-selective ionization in an atomic beam, with
the advantage of a much simpler setup, involving no vacuum chamber and no
cryogenic cooling.
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Chapter 6

Quantum Trajectories

Parallel to the realization of cavity QED experiments with ground state atoms
and the development of a new spectroscopy method of Rydberg atoms in a gas
cell, a numerical and theoretical work supporting the ongoing experiments has
been achieved. The time dependence of the micromaser field can not be solved
analytically and therefore numerical treatment has to be performed. For the
study of the micromaser linewidth and the measurement of the phase diffu-
sion, a numerical simulation method has been developed using the Quantum
Trajectory Method. Finally, the realization of quantum Ramsey interferences
in a toroidal cavity developed for the realization of Quantum Non Demolition
(QND) measurements is theoretically demonstrated.

In Chapter 2, a general theoretical introduction about the one-atom maser
has be done and the steady-state of the micromaser field has been analytically
calculated. However, there are no analytical solutions for the time dependence
of the field density matrix ρ, except in the particular case of trapping states at
zero temperature. In order to go beyond the approximations of an analytical
treatment of the time evolution of the cavity field, one has to take recourse
to numerical methods. The micromaser is ideally suited for treatments by nu-
merical simulation (Monte Carlo) methods. The random arrival time of each
atom can be easily modeled, and the calculation of the field change due to
the passage of each atom is straightforward as the effect of the cavity decay
between the passage of two atoms can also be readily calculated [102][103].
By carrying out this procedure for a sequence of atoms during a time interval
(0, t), repeating it and averaging it, it is possible to reconstruct the time evo-
lution of the cavity field ρ(t) for a given ρ(0), or the time dependence of the
mean value of the cavity field variables [35]. Therefore there are many simi-
larities between the methods used to analyze the micromaser features and the
quantum trajectory method (QTM) used in quantum optics in the treatment

89
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of Markovian master equation [104][105][106]. Rather than solving the master
equation for a density operator itself, the method involves the construction of
an ensemble of states statistically equivalent to the density operator solution.
These states evolve stochastically by non-unitary operations for a certain time
interval interrupted at random by discontinuous changes of state, e.g ”Quan-
tum Jumps”. For example an atom entering the cavity in the upper state
undergoing a transition to the lower maser state as it emits a photon, or, in
the case of cavity decay as for the micromaser, the loss of a photon from the
cavity to the environment.

However the correspondence between the master equation and the ensemble
of trajectories is not unique as the kinds of quantum jump is not unique. If the
different ensembles that can be generated, all correspond to the same density
operator, they can represent the master equation. In the case each state of
the ensemble is pure and remains pure through the time evolution governed
by a non-linear stochastic Schrödinger equation, only N components from
the state vector are needed, compared to the N2 components of the density
operator showing an advantage for large N as a large number of simulations
are necessary to obtain statistically reliable averages.

Nevertheless QTM is more than a calculation tool and is connected to
quantum measurement theory. The master equation describes the irreversible
dynamics of a dissipative system coupled to a reservoir. In the case of the
micromaser, the atoms leaving the cavity can be understood as decay products
of the cavity. Therefore the detection of these atoms represents from a quantum
measurement perspective the acquisition of information by the observer, and
with each detection the cavity field will be projected into a new state, e.g
undergoing a quantum jump, conditioned on the detection results. An explicit
connection is established between a quantum trajectory and a macroscopic
record of detection and a quantum trajectory analysis of the master equation
can be built around the chosen detection scheme.

The essential elements of a quantum trajectory are explicitly built into the
micromaser by the presence of the atomic beam. The cavity field evolution,
e.g decay, is interrupted by a quantum jump due to the presence of an atom
at a random time, representing one unravelling of the micromaser dynamics.

In the following section, the quantum formalism applied to the micromaser
and its application for numerical simulations will be presented. The particular
case of phase diffusion in the micromaser and quantum Ramsey interferences
in a toroidal cavity will be discussed.
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6.1 QTM applied to the Micromaser

The quantum trajectory formalism will be outlined here in reference to the
master equation (2.57) introduced in Chapter 2. The Markovian master equa-
tion for Poissonian pumping can be written as:

∂ρ

∂t
= R(A− 1 + L)ρ (6.1)

with:

Aρ = cos(gτ
√
a†a+ 1)ρ(t0) cos(gτ

√
a†a+ 1)+

a†
sin(gτ

√
a†a+ 1)√

a†a+ 1
ρ(to)

sin(gτ
√
a†a+ 1)√

a†a+ 1
a (6.2)

Equation (6.1) can be re-expressed in terms of a set of operators Ci, i =
−1, 0, 1, 2 with:

C−1 =
√
γ(nth + 1)a (6.3)

which corresponds to the loss of a photon from the cavity field the the reservoir.
The operator

C1 =
√
Ra† sin(gτ

√
a†a+ 1)√

a†a+ 1
(6.4)

is associated with the gain of a photon to the cavity from an atom passing
through the cavity while,

C0 =
√
R cos(gτ

√
a†a+ 1) (6.5)

corresponds to an atom in the excited state passing through the cavity without
giving a photon.
Finally,

C2 =
√
γntha

† (6.6)

is associated to the gain of a photon from the reservoir.

With equation (2.49) expressing L and using:

Rρ =
1

2
(C†1C1 + C†0C0)ρ+

1

2
ρ(C†1C1 + C†0C0) (6.7)

one can rewrite equation (6.1) in the form:

∂ρ

∂t
=

2∑
i=−1

[CiρC
†
i −

1

2
(C†iCiρ+ ρC†iCi)] (6.8)



92 CHAPTER 6. QUANTUM TRAJECTORIES

The terms
CiρC

†
i = Jiρ (6.9)

can be associated with the system undergoing discrete jumps of type Ci as
ρ→ CiρC

†
i with for exemple a gain of one photon in the cavity if the jump is

of type J1 or a loss of one photon for a J−1 operation. The operators Ji can
then be linearly combined to form a new operator J :

J ρ =
∑
i

CiρC
†
i =

∑
i

Jiρ (6.10)

Now replacing L by L − J + J and using the identity:

e(A+ηB)t = eAt+
∞∑
n=1

ηn
∫ t

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1e
A(t−tn)BeA(tn−tn−1)B · · ·BeAt1

(6.11)
the solution for the time evolution of the cavity field reads:

ρ(t) = ρ(0)
c (t)P (0)(t) +

∞∑
n=1

∑
i1

· · ·
∑
in

∫ t

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1

× ρ(n)
c (t; i1, t1, · · · , in, tn) (6.12)

× P (n)(i1, t1, · · · , in, tn; [0, t])

with:

ρ(0)
c (t) =

e(L−J )t

Tr[e(L−J )tρ(0)]

P (0)(t) = Tr[e(L−J )tρ(0)] (6.13)

and

ρ(n)
c (t;i1, t1, · · · , in, tn)

=
e(L−J )(t−tn)Jine(L−J )(tn−tn−1)Jin−1 · · · Ji1e(L−J )(t1)ρ(0)

Tr[e(L−J )(t−tn)Jine(L−J )(tn−tn−1)Jin−1 · · · Ji1e(L−J )(t1)ρ(0)]
(6.14)

P (n)(i1, t1, · · · , in, tn; [0, t])

= Tr[e(L−J )(t−tn)Jine(L−J )(tn−tn−1)Jin−1 · · · Ji1e(L−J )(t1)ρ(0)]
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P (n) = 0, 1, 2, · · · , n can be interpreted as the probability that an event of
the type in occurs in the time interval [tn, tn + dtn], P (0) being the probability
that no events happens in the time interval [0, t], e.g no atoms passing through
the cavity during this time interval and no interaction between the cavity field
and the environment. ρ(n)c(t;i1,t1n,tn) can be interpreted as the conditioned state
of the cavity at the time t. The conditioning is on n jumps of type i1, · · · , in
induced by the jump operators Ji, i = −1, 0, 1, 2 at the times t1, . . . , tn, while
the system evolution is governed by the non-unitary operator e(L−J )t between
two jumps and given that the cavity is initially prepared in the state ρ(0).

The numerical implementation of the QTM is then realized by propagating
the conditioned state through infinitesimal time steps, asking at the end of
each step whether or not a jump has occurred and of which type it was [106].
However a more efficient procedure is particularly suited for the micromaser.
The principle is to evaluate after each jump, the time of occurrence of the next
jump. In other word, the conditioned state ρ(n)c(tn;i1,t1···in,tn) at the time tn will
propagate under the action of the non-unitary operators e(L−J )t until t = tn+1,
the time of the next jump. tn+1 can be generated numerically by evaluating
the probability that a jump of any kind occurs in the time interval [t(n), t(n+1)].
[105] shows that the probability can be evaluated in terms of a new random
variable r defined by:

r(t) = Tr[e(L−J )(t−tn)ρ(n)
c (t; i1, t1 · · · , in, tn)] (6.15)

where r can be shown to be uniformly distributed on [0, 1]. Therefore, it is
possible to simulate the time of the (n + 1)th jump by choosing a random
number rn+1 from the distribution [0, 1] and calculating the time tn+1 of the
next jump by the condition:

rn+1 = Tr[e(L−J )(tn+1−tn)ρ(n)
c (tn; i1, t1 · · · , in, tn)] (6.16)

The remaining steps in the simulation are standards: the probability that a
jump of type Ji occurs is given by:

Pi =
Tr[Jiρ

(n)
c (tn; i1, t1 · · · , in, tn)]

Tr[J ρ(n)
c (tn; i1, t1 · · · , in, tn)]

(6.17)

and then the new conditioned state reads:

ρ(n+1)
c (tn+1; i1, t1 · · · , in+1, tn+1) =

Jiρ
(n)
c (tn; i1, t1 · · · , in, tn)

Tr[J ρ(n)
c (tn; i1, t1 · · · , in, tn)]

(6.18)

This state is then propagated till the next jump in an iterative way, using
the procedure defined in (6.14) and (6.15) with new random number r and so
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until the trajectory completes the time of interest. Repeating the process with
the same initial state ρ(0) will generate a new trajectory. Averaging over all
trajectories allows the reconstruction of the state density operator ρ(t).

As previously mentioned, the operator J can be arbitrarly constructed
from a linear combination from the different jump operators Ji. One possible
choice would be to consider a jump of the cavity occurs only in the presence of
an atom and consider the interaction of the cavity field and the environment
as part of the evolution between two jumps. In this case:

J ρ = (J0 + J1)ρ

= cos(gτ
√
a†a+ 1)ρ cos(gτ

√
a†a+ 1)+ (6.19)

a†
sin(gτ

√
a†a+ 1)√

a†a+ 1
ρ

sin(gτ
√
a†a+ 1)√

a†a+ 1
a

From the simulation procedure (6.14)− (6.16) the time of the (n+ 1)th jump
is given by:

rn+1 = e−R(tn+1−tn) (6.20)

which is the arrival time of the next atoms arriving in the cavity. This is only
determined by the statistical properties of the atomic beam and not by the
dynamics of the system.

The simulation algorithm provided from this approach allows the simula-
tion of the time-dependent density operator ρ(t) of the cavity field. However
in this case the individual quantum trajectories will produce mixed states in
general, even if the cavity is in an initial pure state. Therefore, the problem can
be simplified if only pure state conditioned operators need to be considered.
If:

J = J−1 + J0 + J1 + J2 (6.21)

Then,

(L − J )ρ = −1

2
γ(nth + 1)(a†aρ+ ρa†a)− 1

2
γnth(a

†aρ+ ρa†a)−Rρ (6.22)

The operators Ji and (L − J ) have the properties of mapping pure states
into pure states, leading to a quantum trajectory simulation in term of stochas-
tically evolving pure states. In this case one can consider any change of the
cavity as a jump operation as the state of the cavity remains unchanged be-
tween two jumps.

For a conditioned state |m〉 after the jump at a time tn, the waiting time
for the next jump can be evaluated from (6.14):

tn+1 − tn =
−R−1log(rn+1)

1 +R[(nth + 1)m+ nth(m+ 1)]
(6.23)
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while from (6.15) the probability that the next jump is of type i at tn+1 is
given by:

p−1 =
R(nth + 1)m

1 +R[(nth + 1)m+ nth(m+ 1)]
|m〉 → |m− 1〉 (6.24)

p0 =
cos2(g

√
m+ 1τ)

1 +R[(nth + 1)m+ nth(m+ 1)]
|m〉 → |m〉 (6.25)

p1 =
sin2(g

√
m+ 1τ)

1 +R[(nth + 1)m+ nth(m+ 1)]
|m〉 → |m+ 1〉 (6.26)

and

p2 =
Rnth(m+ 1)

1 +R[(nth + 1)m+ nth(m+ 1)]
|m〉 → |m+ 1〉 (6.27)

P 0 does not involve any change of the cavity field but has to be taken into
account as it represents the case of an atom in the upper maser state passing
trough the cavity without letting a photon inside. As the detection scheme
is based on the discrimination of the states of the atoms emerging from the
cavity, it is also important to take this operation in consideration as one wants
to connect the quantum trajectory formalism with the theory of continuous
measurement on an atomic beam [107].

Finally, as the cavity is initially in a thermal state at a finite temperature
T , the cavity density operator can be represented in the photon number basis
with its matrix element given by:

ρn,n(0) =
nnth

(1 + nth)n+1
(6.28)

The experimental conditions can therefore easily be implemented in the
simulation as one has access to all experimental free parameters (interaction
time, atomic pumping rate, and cavity temperature e.g initial thermal state of
the cavity).

However, given the large number of trajectories (over 100 000) required to
obtain significant results for the steady-state of the micromaser, it is undoubt-
edly the case that using numerical simulations does not provide any advantage
over a direct analytical treatment of the master equation. On the other hand
the intimate connection between Quantum Trajectory Measurements and con-
tinuous measurements also enables a different perspective on the application
of the method to the micromaser, for example in the context of testing ground
for the quantum theory of continuous feedback [108, 109] or in the study of
collective effects in the trapping state regime [110].
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6.2 Micromaser Linewidth and the Phase Dif-

fusion

One particular case where it is relevant to apply a quantum trajectory treat-
ment is for the study of the micromaser spectrum and the measure of the
micromaser linewidth D [111].

There exist various definitions of the spectrum [112, 113]. One is governed
by the decay of the expectation value of the electric field [114]:

〈E(t)〉 ∼
∞∑
n=0

(n+ 1)1/2ρn,n+1(t) (6.29)

Hence the micromaser spectrum study differs from the experiment on the pho-
ton statistics as it involves the off-diagonal elements of the cavity density
matrix ρn,n+1 rather than the diagonal elements used for the study of the
photon statistics and it requires their full time dependance rather than their
steady-states values.

The study of the micromaser spectrum requires therefore a time dependent
measurement of the off diagonal elements of the radiation density matrix.
Also it is shown that looking at the micromaser spectrum is analog to study
the micromaser linewidth. The measurement of the decay of the off-diagonal
elements of the field density matrix will then provide a direct measurement
of the micromaser linewidth. In 1991 Scully and co-workers demonstrated
analytically the relation between expectation value of the electrical field and
the linewidth D of the micromaser [111]:

〈E(t)〉 ∼ e−(D/2)t

∞∑
n=0

(n+ 1)1/2ρn,n+1(0) (6.30)

where D reads:

D = 4Nex sin2

(
gτ

4
√
〈n〉

)
+
γ(2nth + 1)

4〈n〉
(6.31)

In the limit of small interaction time or large mean photon number one recovers
the familiar Schawlow-Townes linewidth by expanding the sin function:

D =
α + γ(2nth + 1)

4〈n〉
(6.32)

with α = γ(N
1/2
ex gτ)2 = γθ2 and θ is defined as the pump parameter.

D presents also two novel features quite distinct from the familiar Schawlow-
Twones linewidth for a laser. First of all in the region of trapping states, sharp
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resonances are present. For large values of θ the linewidth D can even oscillate.
Figure 6.1 [111] shows the detailed behavior of the phase diffusion constant D
(solid line), as a function of the pump parameter θ for Nex = 50 atoms and
nth = 10−4. In order to show the strong dependence of D to the mean photon
number 〈n〉 the maser pump curve with a normalized photon number n/10 is
also plotted.
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Figure 6.1: Phase Diffusion Constant D

However in order to measure the phase diffusion factor D one faces two
issues due to the properties of the micromaser. The phase diffusion acts only
on the off-diagonal elements of the field density matrix. First, due to the
incoherent atomic pumping, as only upper state atoms are injected into the
cavity, no off-diagonal terms are produced. Secondly, as it is shown in Chapter
3, the measurement of the cavity field is done via the state selective detection
of the outgoing atoms. However, if this method is relevant to measure the
photon statistics, as the atomic and photon statistics are coherently linked to
the Jaynes-Cummings interaction, no information about the phase of the field
can be extracted from this measurement.
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In order to access to a phase measurement of the maser field, Scully and
co-worker proposed to realized a Ramsey type experiment [111]. Based on a
Ramsey type interferometer [41] with two additional low Q microwave cavities
C1 and C2, the experiment goes as follows:
In a first step a weak microwave field in C1 drives the atoms in a coherent
superposition |e〉 and |g〉. However, due to the very small probabilities of
the |g〉 states, no changes on the photon statistics are done compare to an
incoherent pumping. However, the atoms, so prepared, produce a phase state
of the maser field with non-zero off-diagonals elements ρn,n+1.
In the second step, the field in C1 is switched off and the maser field begins to
phase diffuse under the incoherent atomic pumping. As previously mentioned
the atoms exit the cavity in a superposition of |e〉 and |g〉. Interacting with
a second classical field with a well-defined phase in C2 allows to encode the
phase information about the maser cavity onto the atomic statistics. The
outgoing result is that the atomic probability to detect excited atoms Pe and
the off-diagonal elements ρn,m have the same diffusion constant D:

Pe =
1

2
+e−

1
2
Dt
∑
n

cos(α−β) cos(gτ
√
n+ e)×sin(gτ

√
n+ 1)ρn,n+1(0) (6.33)

where α and β are respectively the phase of C2 and the initial phase of the
micromaser.

However, the possible presence of electrical stray fields at the entrance
holes of the cavity [74] could have a negative effect with a random change
of the atomic phase state and therefore doesn’t make micromaser experiment
suitable for the realization of the Scully proposal. Also, the implementation
of two extras cavities will enhance the time of flight of the atoms, being com-
parable to their lifetime, introducing decoherences into the system. An other
method proposed by Casagrande et al.[115] using a quantum-state reconstruc-
tion proposed by Bodendorf et al.[40] is more suitable and also a very good
candidate for a treatment using quantum trajectories.

Using a coherent displacement in phase space by injecting a coherent field
into the micromaser cavity it is possible to encode the phase information onto
the photon statistics. Probing the displaced field by an excited atoms allows
a full reconstruction of non-classical cavity field states, providing informations
of their decoherence [116].

Starting from the cavity state ρ one wants to reconstruct, the application
of a displacement in phase space under the injection of a coherent state |α〉
reads:

D(α) = e(αa−α∗a†) (6.34)
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And the probability to detect an atom in the excited state is then [86]:

pe(α) =
∑
n

〈n|D(α)ρD†(α)|n〉 cos2(gτ
√
n+ 1) (6.35)

Figure 6.2 shows how the displacement operator acts on the photon statistics,
e.g ρn,n.

Figure 6.2: Field Displacement in Phase Space and Atomic Statistics: the
state selective detection of the Rydberg atoms gives only information over the
photon number statistics. As shown in the upper graph, two field states with
the same photon statistics but with different phase will lead to the same atomic
statistics. However, after a field displacement operated in the phase space, the
phase information is written on the photon statistics, and two displaced field
with different phase will then lead to two different atomic statistics.

The measurement of the phase diffusion is then done as follow:
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• At t = 0 a coherent state |α〉 is injected in the cavity.

• The phase of the maser field diffuses under the incoherent atomic pump-
ing to the micromaser steady-state ρss.

• The interaction time is chosen to fulfill the trapping states condition with
ntrap = α2 in order to exhibit the larger dependence.

• Operate at a time t a displacement of the phase diffused field and probe
it with an atom.

From the above steps it is straight forward to see the link with a quantum
trajectories treatment of the phase diffusion problem and its numerical imple-
mentation:
Starting from the initial state ρ(0) = |α〉〈α| one apply the algorithm describes
by the equation 6.23 - 6.27 for the desired evolution time t. Then at t, one
proceed to the displacement operation to extract the expected value for the
atomic detection:

Pe(α, t) = e−
1
2
Dtχ(α) + P ss

e (α) (6.36)

with:

χ(α) = 2
∑
n

∑
i

ρi,i+1(0)〈n|D(−α)|i〉〈i+ 1|D(α)|n〉 × cos2(gτ
√
n+ 1) (6.37)

Repeating the algorithm for many t gives a full dynamic of the phase dif-
fusion process. Figure 6.5 shows the numerical results using a quantum tra-
jectory treatment for the phase diffusion dynamics in the micromaser. The
Husini distribution function Q(α) is calculated and represented for different
time evolution. Starting from a well defined phase state for a coherent field at
t = 0, the phase of the micromaser field start to diffuse through an intermedi-
ate states, ending to a complete phase-loss information for a Fock state. The
parameter are |α〉 = 2, Nex = 50, τ = π

g
√

5
and γ = 2.15 Hz.

6.3 Ramsey Interferences in a Toroidal Cavity

In this section, the realization of Ramsey interferometry experiment between
a single atom and quantized fields is discussed. The method of using spa-
tially separated fields proposed by Ramsey [117] has found many application



6.3. RAMSEY INTERFERENCES IN A TOROIDAL CAVITY 101

a) At t = o  b) At t = 70 ms 

c) At t = 700 ms 

Figure 6.3: Time evolution of the Q-representation of the micromaser field.
Starting from a coherent state with a well defined phase, under the action of
the atoms pumping the cavity into a fock state, the phase starts to diffuse
ending in the undefined phase state of a Fock state.

in particular for high resolution work [118]. The existence of fringes in the
Ramsey technique has been interpreted as due to quantum interferences in the
transition amplitudes and is therefore a way of doing atomic interferometry.
Originally proposed as a technique in the microwave domain, it was then ex-
tended to the optical domain [119]. The field used in each Ramsey zone is
coherent with large amplitude which is not changed as it interacts with an
atom.

The realization of Cavity QED experiment at the quantum level between a
single atom and a quantized field of a high Q cavity offers now the possibility
to study the Ramsey interferometer with quantized field.
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A two-level atom interacts for a well defined time τ with each cavity sepa-
rate by a free evolution during the time of flight between the two cavities. As
for the micromaser the atoms is then detected after the interaction with the
second cavity. The two cavities have the same frequency ωF , as the two atomic
levels |e〉 and |g〉 have a frequency separation ωA. Using the Jaynes-Cummings
interaction outlined in Chapter 2, the interaction between the atom and the
cavity reads:

HAF = ~gi(a†σei∆t + aσ†e−i(∆)t) (6.38)

with the detuning ∆ = ωF − ωA, and gi are the atom-field coupling con-
stant for the ith cavity. The cavity fields are initially in an arbitrary state∑

n,mPn,m|n,m〉 and the atom is prepared in the excited state |e〉.
After the first interaction the wave function of the Atom-Field system reads:

ΨA−F (τ) =e−i∆τ
∑
n,m

Pn,m[cos(λn,1τ) +
i∆

λn,1
sin(λn,1τ)]|e, n,m〉

− iei∆τ
∑
n,m

Pn−1,m
g1

√
n+ 1

λn,1
sin(λn,1τ)|g, n,m〉 (6.39)

with λn,1 =
√

(∆
2

)2 + g2
1(n+ 1) the generalized Rabi frequency for the first

cavity.
The system undergoes in a free evolution for a time T as the atoms fly from
one cavity to the other one. During this time the Hamiltonian of the system
reads:

Hfree = ~ωFa†a+
1

2
~ωAσz (6.40)

The action of σz on the atomic component is:

σz|e〉 = |e〉;σz|g〉 = −|g〉 (6.41)

so that before entering again in the cavity the new state of the system is :

ΨA−F (τ + T ) = e−i
Hfree

~ TΨA−F (τ)

ΨA−F (τ + T ) =e−i∆τ
∑
n,m

e−iϕeTPn,m[cos(λn,1τ) +
i∆

λn,1
sin(λn,1τ)]|e, n,m〉

− iei∆τ
∑
n,m

e−iϕgTPn−1,m
g1

√
n+ 1

λn,1
sin(λn,1τ)|g, n,m〉 (6.42)

with ϕe = ωFn + ωA

2
and ϕg = ωF (n + 1)− ωA

2
. Before to go further, one can

remark that:
ϕg − ϕe = ∆ (6.43)
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Introducing the following function:
Ci(τ) = cos(λn,1τ) + i∆

λn,1
sin(λn,1τ)

and Si(τ) = −ig1
√
n+1

λn,1
sin(λn,1τ),

which describes the dynamics of a two-level atom interacting with a single
mode of a radiation field, the state of the system after the interaction in the
second cavity reads:

ΨA−F (2τ + T ) =
∑
n,m

Pn,mCn(τ)Cm(τ)e−i∆τ−iϕeT

+ Pn−1,m+1Sn+1(τ)Sm(τ)e−i∆(τ+T )−iϕgT |e, n,m〉∑
n,m

Pn−1,mS
∗
n−1(τ)C∗m−1(τ)e−i∆τ−iϕeT

+ Pn,m−1Cn(τ)S∗m−1(τ)e−i∆(τ+T )−iϕgT |g, n,m〉 (6.44)

The structure of the final state clearly shows that there are two paths for the
system to involve to its final state like the two arms of an interferometer. In
the case of an atom entering in the excited state |e〉 and emerging from the
second cavity in the ground state |g〉, the two path would be, i) no photon
emission in the first cavity but in the second only:
|e, n,m〉 → |e, n,m〉 → |g, n,m− 1〉
or ii) emission of a photon in the first cavity and no-absorption in the second
cavity:
|e, n,m〉 → |g, n− 1,m〉 → |e, n− 1,m〉
Tracing over the field gives the detection probability for an atom to be detected
in the ground state:

Pg =
∑
n,m

|Pn−1,mS
∗
n−1(τ)C∗m−1(τ) + Pn,m−1Cn(τ)S∗m−1(τ)e−i∆T |2 (6.45)

One can then show that if the fields in cavity 1 and 2 are coherent, with mean
photon number of n̄ and m̄ , one recovers the classical case whith:

Pg = |S∗n̄(τ)C∗m̄(τ) + Cn̄(τ)S∗m̄(τ)e−i∆T |2 (6.46)

If Ramsey interferences occur in the classical case when the two fields are
uncorrelated and of different strength, in the quantum case, however, the inter-
ference between the two path depends on the photon statistics of each cavity
field. In particular, in the case of two Fock states |N〉 and |M〉 in each cavity,
the two paths becomes independent as the two different field statistics lead
to two different realization probabilities. Therefore in the case of quantized
field, the condition on the quantum statistics of the two independent Ramsey
zone imply that the two cavities are either in a well-defined phase state, e.g
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coherent states, or the two cavities are entangled. An experiment with two
microwave cavities interacting with a single Rydberg atom has been realized
[120]. In the case of two coherent fields, Ramsey interferences were observed.
However, when the first cavity was not in a well-defined phase state, the inter-
ferences vanished. Also, in the case of very small coherent states, the quantum
treatment shows fringes with a smaller contrast than for the classical case [121].

Or

Free evolution

HAF

HFree

Figure 6.4: Torroidal cavity: the high Q cavity allows the realization of a
Ramsey interferometer with quantized field. The atom interact with the cavity
field a first time before leaving for the free-evolution region and reentering it.
Due to the long coherence time of the cavity and the long lifetime of the Rydberg
atoms, the atom-field system remains coupled during the all process, leading to
the realization of a quantum Ramsey interferometer.

In the Garching experiment, Ramsey interferences with quantized field are
investigated in the quantum beat experiment. In 1994 Braginski and Khalili
proposed the used of a toroidal microwave cavity for a quantum non-demolition
measurement (QND) [122, 123]. Figure 6.4 shows the design of the toroidal
cavity. The main particularity of this cavity is that the interaction takes place
twice with a free evolution of the system in-between. Due to the high Q of



6.3. RAMSEY INTERFERENCES IN A TOROIDAL CAVITY 105

the cavity, one assume that the field does not decay during the free evolution
and is therefore a suitable candidate to study Ramsey interferences with a
quantized field.

Assuming the cavity is in a Fock state |n〉, from (6.44) the final state of
the system reads:

ΨA−F (2τ + T ) = e−i2∆τ{e−iϕeT (cos(λnτ) + i
∆

2λn
sin(λnτ))2

e−iϕgT
g2(n+ 1)

λ2
n

sin2(λnτ)}|e, n〉 (6.47)

−iei2∆τ g
√
n+ 1

λn
sin(λnτ){e−iϕgT (cos(λnτ) + i

∆

2λn
sin(λnτ))

+e−iϕeT (cos(λnτ)− i ∆

2λn
sin(λnτ))}|g, n+ 1〉

In an other form:

ΨA−F (2τ + T ) = An(τ, T )|e, n〉+Bn(τ, T )|g, n+ 1〉 (6.48)

with:

An(τ, T ) = e−i2∆TC2
n(τ)e−iφeT + S2

n(τ)e−iφgT

Bn(τ, T ) = S∗n(τ)C∗n(τ)e−i∆τ−iϕeT + Cn(τ)S∗n(τ)e−i∆(τ+T )−iϕgT

and the probability for an atom to be detected in the ground state is:

Pg =
g2(n+ 1)

λ2
n

sin2(λnτ){2cos2(λnτ)[1 + cos(∆T )]

+
∆2

2λ2
n

sin2(λnτ)[1− cos(∆T )]

2∆

λn
cos(λnτ) sin(λnτ) sin(∆T )} (6.49)

From this, one can make some remark:
- first of all we see that in resonance, the toroidal cavity leads exactly to the
realization of the Jaynes-Cummings interaction in the micromaser, with an
interaction time of 2τ :

Pg = sin2(2g
√
n+ 1τ) (6.50)

- an other interesting feature is that when ∆T = 2π we recover also the
micromaser case for an interaction time of 2τ :

Pg =
g2(n+ 1)

λ2
n

sin2(2λnτ) (6.51)
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This feature is also in accord with the Ramsey interference with classical field.
The implementation of the QTM for the torroidal cavity is then straight

forward. From equation (6.48), the two jumps operator C1 and C0 can be
rewritten as:

C1 =

√
Ra†√

a†a+ 1
Bn(τ, T ) (6.52)

and
C0 =

√
RAn(τ, T ) (6.53)

The numerical simulation is then realized as outlined in the section 6.1.
Figure 6.5 shows the simulation for an initial thermal state with < nth >= 1.5,
R = 100, and τ = T/2 = 66 µs.
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Figure 6.5: Quantum Ramsey Interferences in a torroidal cavity



Outlook

In this thesis, the experimental results, where the ground state of a two-level
atomic system interacts with a single mode of a high Q cavity, are presented.
A new laser system to promote 85Rb atoms into the Rydberg maser ground
state 61D5/2 is developed and major improvements on the cryogenic system
are achieved.

With a better control of the still temperature in the dilution cryostat and
the addition of extra heat shielding around the experimental environment,
the end-temperature is improved by a factor of two at ∼ 150 mK. Moreover, a
continuous working temperature from 150 mK to 1.3 K is possible, opening the
path for the observation of quantum stochastic resonances in the micromaser.

The development of a new laser setup using a two-step diode laser system
opened the possibility of exciting maser ground states that have never be done
in this setup until now. We have also shown that purely optical spectroscopy of
Rb Rydberg states is possible in a room-temperature gas cell in three different
excitation schemes using the quantum amplification of the electron shelving.
The excitation of Rydberg states is monitored by observing the absorption of
the laser driving the strongest transition. The spectroscopy method developed
in this thesis can be used to detect Rydberg states with high frequency reso-
lution and can be therefore the basis for convenient stabilization setups for a
wide range of experiments. Especially, ultracold Rydberg gases are a promis-
ing candidate for realizing controlled quantum gates in atomic ensembles. Im-
provements in excitation and detection techniques and especially methods to
stabilize laser to specific Rydberg transitions are therefore important in many
experiments. Finally, the Rydberg transitions in a gas cell are highly immune
to a linear and quadratic DC Stark shift. If magnetic fields are shielded by
a µ-metal cover, the Rydberg lines in a cell are as stable as low-lying Rb lev-
els. The closely spaced Rydberg levels therefore form a dense comb of atomic
lines which offers interesting possibilities for frequency metrology and coherent
control applications.

Finally, experiments with ground states atoms have been performed for
the first time in the one-atom-maser. Measurements of the magnetic field
compensation have achieved a higher contrast and Stark effect experiments

107
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with high lying D state have been performed. The frequency shift of the
61D5/2 level in presence of small DC electrical field has been measured with
a time of flight experiment leading to an evaluation of the fourth-order Stark
effect for the 61D state in 85Rb.

The interaction between the maser ground state and the cavity field has
been investigated for both a low atomic injection rate and a high atomic pump-
ing leading to the measurement of the first maserlines in this configuration.
The first observation of Rabi oscillations, with a high contrast, where ground
state atoms interact with the quantized thermal field of the cavity, gives im-
portant informations about the actual field temperature.

Sending either excited state atoms or ground state atoms inside the cavity
opens the possibility for a wide range of new experiments. Among them, the
generation of more robust trapping states is possible by mixing excited and
ground states atoms in the atomic injection. Also pump-probe experiments
could be realized. Sending a sequence of excited atoms prepares the cavity in
a well defined quantum state. The generated field state can then be probed
with ground state atoms. At low injection rate with less than one ground
state atom per cavity decay time, the realization of Rabi oscillations with high
number Fock-state is possible. At higher injection rate, the quantum field
generated in the cavity can be used for atom-atom entanglement.
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