
Biclustering: Methods, Software and
Application

Sebastian Kaiser

München 2011

Biclustering: Methods, Software and
Application

Dissertation
zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften am Institut für Statistik
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

Vorgelegt von
Sebastian Kaiser
am 7. März 2011

in München

Erstgutachter: Prof. Dr. Friedrich Leisch, LMU München
Zweitgutachter: Prof. Dr. Luis A. M. Quintales, Universidad de Salamanca
Rigorosum: 12. Mai 2011

Research: the final frontier. These are
the voyages of a young research fellow.
His five-year mission: to explore
strange new methods, to seek out new
software and new applications, to
boldly go where no man has gone
before.

Based on Star Trek

Danksagung

Danken möchte ich:

... meinem Doktorvater Fritz Leisch für das Ermöglichen dieser Dissertation, für
die vielen Freiheiten über die letzten Jahre, für die zahlreichen Möglichkeiten, das
wissenschaftliche Leben kennen zu lernen und die immer offene Tür.

... den weiteren Gutachtern und Prüfern Luis Quintales, Helmut Küchenhoff, Chris-
tian Heumann und Volker Schmid für ihr Interesse und ihre Zeit.

... meinen Kollegen am Institut für Statistik für die angenehme Arbeitsatmosphäre
und das gute Klima, insbesondere Manuel Eugster, der mir das Arbeiten zum
Vergnügen hat werden lassen, und Carolin Strobl, die immer wieder für Abwech-
slung im Büro gesorgt hat.

... der Visualisierungsgruppe aus Salamanca, insbesondere Rodrigo Santamaria für
die großartige Zusammenarbeit am biclust Paket.

... der Arbeitsgruppe aus Hasselt und Martin Sill für die Zusammenarbeit an den
Bicluster Projekten.

... Sara Dolnicar und ihrer Arbeitsgruppe in Australien für den wunderschönen
Aufenthalt und die tolle Zusammenarbeit.

... meinen Eltern, meiner Schwester Anna, meiner Oma Helga und meiner restlichen
Familie für den Rückhalt und das schöne Leben.

... meiner Freundin Maria, möge es immer so perfekt bleiben wie es ist.

... Fabian Barth für die Mittagessen am Freitag und den Kontakt zur RSU - Suit
up!

Abstract

Over the past 10 years, biclustering has become popular not only in the field
of biological data analysis but also in other applications with high-dimensional
two way datasets. This technique clusters both rows and columns simulta-
neously, as opposed to clustering only rows or only columns. Biclustering
retrieves subgroups of objects that are similar in one subgroup of variables
and different in the remaining variables. This dissertation focuses on improv-
ing and advancing biclustering methods. Since most existing methods are
extremely sensitive to variations in parameters and data, we developed an en-
semble method to overcome these limitations. It is possible to retrieve more
stable and reliable bicluster in two ways: either by running algorithms with dif-
ferent parameter settings or by running them on sub- or bootstrap samples of
the data and combining the results. To this end, we designed a software pack-
age containing a collection of bicluster algorithms for different clustering tasks
and data scales, developed several new ways of visualizing bicluster solutions,
and adapted traditional cluster validation indices (e.g. Jaccard index) for val-
idating the bicluster framework. Finally, we applied biclustering to marketing
data. Well-established algorithms were adjusted to slightly different data sit-
uations, and a new method specially adapted to ordinal data was developed.
In order to test this method on artificial data, we generated correlated original
random values. This dissertation introduces two methods for generating such
values given a probability vector and a correlation structure.

All the methods outlined in this dissertation are freely available in the R pack-
ages biclust and orddata. Numerous examples in this work illustrate how to
use the methods and software.

Zusammenfassung

In den letzten 10 Jahren wurde das Biclustern vor allem auf dem Gebiet der
biologischen Datenanalyse, jedoch auch in allen Bereichen mit hochdimension-
alen Daten immer populärer. Unter Biclustering versteht man das simultane
Clustern von 2-Wege-Daten, um Teilmengen von Objekten zu finden, die sich
zu Teilmengen von Variablen ähnlich verhalten. Diese Arbeit beschäftigt sich
mit der Weiterentwicklung und Optimierung von Biclusterverfahren. Neben
der Entwicklung eines Softwarepaketes zur Berechnung, Aufarbeitung und
graphischen Darstellung von Bicluster Ergebnissen wurde eine Ensemble Meth-
ode für Bicluster Algorithmen entwickelt. Da die meisten Algorithmen sehr an-
fällig auf kleine Veränderungen der Startparameter sind, können so robustere
Ergebnisse erzielt werden. Die neue Methode schließt auch das Zusammen-
fügen von Bicluster Ergebnissen auf Subsample- und Bootstrap-Stichproben
mit ein. Zur Validierung der Ergebnisse wurden auch bestehende Maße des
traditionellen Clusterings (z.B. Jaccard Index) für das Biclustering adaptiert
und neue graphische Mittel für die Interpretation der Ergebnisse entwickelt.

Ein weiterer Teil der Arbeit beschäftigt sich mit der Anwendung von Bicluster
Algorithmen auf Daten aus dem Marketing Bereich. Dazu mussten bestehende
Algorithmen verändert und auch ein neuer Algorithmus speziell für ordinale
Daten entwickelt werden. Um das Testen dieser Methoden auf künstlichen
Daten zu ermöglichen, beinhaltet die Arbeit auch die Ausarbeitung eines Ver-
fahrens zur Ziehung ordinaler Zufallszahlen mit vorgegebenen Wahrschein-
lichkeiten und Korrelationsstruktur.

Die in der Arbeit vorgestellten Methoden stehen durch die beiden R Pakete
biclust und orddata allgemein zur Verfügung. Die Nutzbarkeit wird in der
Arbeit durch zahlreiche Beispiele aufgezeigt.

Contents

1. Introduction . 1

2. Biclustering . 4

2.1 Bicluster Types . 4

2.2 Bicluster Structures . 5

2.3 Jaccard Index . 6

2.4 Bicluster Algorithms . 7

2.4.1 Used Algorithms . 7

2.4.2 Other Algorithms . 10

3. Ensemble Method . 11

3.1 Ensemble Method . 11

3.1.1 Initialization Step . 12

3.1.2 Combination Step . 12

3.1.3 Result step . 14

3.2 Data Examples . 17

3.2.1 Artificial Data . 17

3.2.2 Real Data . 17

3.3 Conclusion . 27

4. Correlated Ordinal Data . 28

4.1 Introduction . 28

4.2 Generation of Correlated Binary Random Variates 29

4.3 Generation of Correlated Ordinal Random Variates 31

x Contents

4.3.1 The Binary Conversion Method 32

4.3.2 The Mean Mapping Method 35

4.4 Simulation and Comparison . 38

4.4.1 Performance . 38

4.4.2 Accuracy . 39

4.4.3 Comparison with Demirtas 40

4.5 Conclusions . 43

5. Software . 49

5.1 Package biclust . 49

5.1.1 Algorithms . 50

5.1.2 Ensemble Method . 56

5.1.3 Bicluster Extraction . 57

5.1.4 Bicluster Validation . 58

5.1.5 Bicluster Visualization 61

5.1.6 Little Helpers . 65

5.2 Illustrations . 69

5.2.1 Yeast Data . 69

5.2.2 Bootstrap Cross-Validation 73

5.3 Other Software . 75

5.3.1 R-Forge Packages . 75

5.3.2 R Packages . 75

5.3.3 Stand Alone Software . 76

5.4 Conclusion . 79

6. Application on Marketing Data 80

6.1 Introduction . 80

6.1.1 Biclustering on Marketing Data 82

6.2 When to Use Biclustering . 83

6.2.1 Automatic Variable Selection 83

Contents xi

6.2.2 Reproducibility . 84

6.2.3 Identification of Market Niches 84

6.3 Binary Data . 85

6.3.1 Data . 85

6.3.2 Results . 86

6.3.3 Comparison with Popular Segmentation Algorithms . . . 89

6.3.4 Shopping Basket Data 92

6.4 Ordinal Data . 92

6.5 Sports Data . 95

6.5.1 Biclustering MLB Data 96

6.5.2 Other Sport Data . 97

6.6 Conclusions . 98

7. Summary . 100

Appendix 103

A. biclust Reference Manual . 104

B. orddata Reference Manual . 150

C. Mathematical nomenclature . 156

Bibliography . 157

List of Figures

1.1 Biclustering finds objects and variables with a similar value A
and reports them as a bicluster (submatrix). 2

2.1 Examples of different bicluster types. 5

2.2 Example of different bicluster structures. 6

3.1 Heatmap results for ensemble method on artificial data. 18

3.2 Heatmap of ensemble results on yeast data. 19

3.3 Boxplot and Histogramm of similar bicluster in correlation results. 23

3.4 Boxplot and Histogramm of similar bicluster in Jaccard results. 24

3.5 Bicluster scores for Jaccard and correlation approach. 25

3.6 Score comparison of Jaccard and correlation approach. 26

4.1 Linear transformation functions. The m-factors to translate or-
dinal correlation specifications to binary correlations. 34

4.2 Thresholding the Normal Distribution 36

4.3 Runtime of binary and mean mapping method. 39

4.4 Comparing Sample Correlations 1 40

4.5 Comparing Sample Correlations 2 41

4.6 Comparing Sample Probabilities 41

4.7 Boxplot of frequency of 100 simulation runs with Correlation
matrix 1. Red circles show input probabilities. 42

4.8 Boxplot of correlations of 100 simulation runs. Red circles show
input correlations. 43

5.1 Boxplot of Jaccard index from 100 simulation runs. 58

5.2 Diagnostic Plot of Artificial Data 62

List of Figures xiii

5.3 Heatmap of artificial data (left) and reordered with plaid result
to identify the bicluster (right). 63

5.4 Parallel coordinates of columns(upper) and rows(lower) 64

5.5 Membership graph with (bottom) and without(top) bicorder

ordering. 66

5.6 Barchart Graph with (bottom) and without(top) bicorder Or-
dering. 67

5.7 Heatmap of first bicluster in CC, Xmotif and Plaid results and
a closer look at the plaid bicluster. 71

5.8 Parallel Coordinates of bicluster 1 of Plaid(left) and CC (right). 73

5.9 Boxplot of bootstrap cross-validation results for Jaccard index. . 74

5.10 BiclustGUI Input Windows: CC(above) and Plots(below) . . . 78

6.1 Biclustering finds objects and variables with a similar value 1
and reports them as a bicluster (submatrix). 85

6.2 Biclustering Plot for Vacation Activities 87

6.3 Comparison Results for Bootstrap Sampling 91

6.4 Biclustering of Ordinal Data using the Questord Algorithm . . . 93

6.5 Barchart Plot on Reward Question in the Australian Unpaid
Help Survey. 94

6.6 Heatmap of Quest and Xmotif results on ordinal data. 95

6.7 Bicluster Barchart of an Ordinal Quest Run on MLB Hitting
Statistics(2009). 96

6.8 Mosaicplot of Player Positions against Bicluster Membership. . . 97

List of Tables

3.1 The algorithm of the ensemble method 16

3.2 Table of mean values and standard deviations of the Jaccard
index using artificial data. 18

3.3 Table of mean values and standard deviations of the Jaccard
index using yeast data. 19

3.4 Used parameter settings for the ensemble method. 21

3.5 Percentage of Genes for given correlation thresholds. 22

4.1 Three example correlation matrices 42

4.2 Generation of multivariate binary random numbers via Leisch
et al. (1998) . 45

4.3 Generating multivariate ordinal random numbers via binary
conversion method . 47

4.4 Generation of multivariate ordinal random numbers via the
mean mapping method. 48

6.1 Table of mean values and standard deviations of the Rand index
using artificial data. 91

6.2 Table of Jaccard and Rand Index of Correlated Ordinal Data . . 95

1. Introduction

Assume we are given a typical rectangular data matrix, in which rows corre-
spond to objects and columns to variables. Examples from different application
areas include

microarray gene expression data: objects = genes, variables = conditions
or experiments

marketing data: objects = customers or consumers, variables = product fea-
tures

text mining: objects = documents, variables = words

We are now interested in finding homogenous groups of objects, such as co-
regulated genes or market segments. In all applications, it is reasonable to
assume that different groups may be defined by different variables. For exam-
ple, if we want to sell a car, we must take into consideration that one group of
customers will be mainly interested in price, consumption and safety features,
while another group will be interested in vehicle handling, horse power and
sportiness.

If the data matrix contains many variables but groups are defined by just a
few of them, standard partitioning cluster algorithms, such as k-means, often
lead to diffuse results, and it is impossible to make an accurate classification.
This is a well-known problem; the simultaneous clustering of objects and the
selection of variables for each cluster was first proposed by Hartigan (1972).
However, this method found no application for almost 30 years. Clustering
gene expression data brought biclustering back into focus because of the high
dimensionality of the data sets.

The seminal paper by Cheng and Church (2000) was followed by a wide range
of articles which proposed new algorithms (Getz et al., 2000; Lazzeroni and
Owen, 2002; Tanay et al., 2002; Ben-Dor et al., 2003; Murali and Kasif, 2003),
compared algorithms, (Madeira and Oliveira, 2004; Tanay et al., 2005; Prelic
et al., 2006), and presented software implementations (Barkow et al., 2006).

2 1. Introduction

A ∗ ∗ A ∗ A ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
A ∗ ∗ A ∗ A ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
A ∗ ∗ A ∗ A ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

⇒

A A A ∗ ∗ ∗ ∗
A A A ∗ ∗ ∗ ∗
A A A ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

Fig. 1.1: Biclustering finds objects and variables with a similar value A and
reports them as a bicluster (submatrix).

Newer developments show visualization (Santamaŕıa et al., 2008) and valida-
tion (Santamaŕıa et al., 2007) methods.

It is difficult to place biclustering in the cluster framework, since there are cer-
tain similarities as well as differnces. Kriegel et al. (2009) give an overview of
clustering high-dimensional data. They consider biclustering to be a pattern-
based clustering compared to other subspace- and correlation- cluster frame-
works. Mechelen et al. (2004) examine two-mode clustering methods in more
detail. They see biclustering as a two-mode clustering which allow cluster
overlap and does not cluster the whole dataset.

This dissertation focuses on improving and advancing bicluster methods.
Chapter 2 provides some theoretical background on biclustering and shows
the different types of bicluster and the different structures of bicluster result
sets. This chapter also includes an overview of popular bicluster algorithms.
Chapter 3 introduces our ensemble method for bicluster algorithms. Instead
of running an algorithm once, we combine multiple runs of one or more al-
gorithms and combine the results to retrieve more stable and reliable results.
The two methods described in Chapter 4 for drawing correlated ordinal val-
ues are necessary for testing bicluster algorithms which work on ordinal data.
This type of data is used in Chapter 6, in which we present the theoretical
background on two techniques, a binary and a mean mapping method. We
test the performance of these methods and provide some examples of how they
are used.

Our software package for calculating, validating and visualizing bicluster re-
sults is introduced in Chapter 5. We outline the theory of all methods used in
the package, provide some illustrative examples, and give an overview of other
available software. Chapter6 includes different applications of biclustering be-
yond the well-established microarray data analysis. We focus on marketing
data, in particular binary and ordinal questionnaires from tourism research,
but give also examples of sports data analysis. This chapter also contains some
remarks on the performance of biclustering as compared to traditional k-means

1. Introduction 3

and hierarchical clustering. The final Chapter summarizes the dissertation and
gives a brief outlook of future developments.

Parts of this dissertation have been presented at scientific conferences, sub-
mitted to journals, published as journal articles and/or published as freely
available software packages:

Chapter 3: Pfundstein (2010). Ensemble Methods for Plaid Bicluster
Algorithm. Bachelor Thesis, 2010.

Chapter 4: Kaiser, Träger, and Leisch (2011). Generating Correlated
Ordinal Random Values. Submitted, 2011.
Träger (2009). Generating Correlated Ordinal Random
Values. Diploma Thesis, 2009.

Chapter 5: Kaiser and Leisch (2008). A Toolbox for Bicluster Anal-
ysis in R. Compstat 2008—Proceedings in Computational
Statistics, 55(3), pages 201–208, 2008.
Sill, Kaiser, Benner, and Kopp-Schneider (2011). Robust
biclustering by sparse singular value decomposition incor-
porating stability selection. Bioinformatics, 2011.
Khamiakova, Kaiser, and Shkedy (2011). Goodness-to-Fit
and Diagnostic Tools Within the Differential Co-expression
and Biclusters Setting. Unpublished, 2011.

Chapter 6: Dolnicar, Kaiser, Lazarevski, and Leisch (2011). BICLUS-
TERING Overcoming data dimensionality problems in
market segmentation. Journal of Travel Research, 2011.

Appendix A: Kaiser, Santamaria, Sill, Theron, Quintales, and Leisch
(2011). biclust: BiCluster Algorithms. R package version
1.0. http://cran.r-project.org/package=biclust.

Appendix B: Kaiser and Leisch (2010). orddata: Generation of Arti-
ficial Ordinal and Binary Data. R package version 0.1.
https://r-forge.r-project.org/projects/orddata/.

2. Biclustering

As usual in cluster analysis, we start with an n×m data matrix A:

y1 . . . yi . . . ym
x1 a11 . . . ai1 . . . am1
...

...
. . .

...
. . .

...
xj a1j . . . aij . . . amj
...

...
. . .

...
. . .

...
xn a1n . . . ain . . . amn

with objects X, variables Y and entries aij. The goal of bicluster analysis is to
find subgroups AIJ of objects I = {i1, ..., ik}, k ≤ n, I ⊂ X which are as similar
as possible to each other on a subset of variables J = {j1, ..., jl}, l ≤ m, J ⊂ Y
and as different as possible to the remaining objects and variables. Bicluster
z is then defined as BCz = (Iz, Jz) = AIzJz .

A typical situation to calculate bicluster are a high dimensional dataset with
many variables, so that normal cluster algorithms lead to diffuse results due to
many uncorrelated variables. Also biclustering is useful if there is a assumed
connection of objects and some of the variables in the dataset, e.g. some
objects have ’similar’ patterns for a given set of variables.

2.1 Bicluster Types

Just as in traditional clustering, there are many possibilities for calculating
similarity within a bicluster, which is why so many different algorithms have
been published. Madeira and Oliveira (2004) identified four major groups of
structures inside the submatrices (examples are given in Figure 2.1):

1. Bicluster with constant values:

aij = µ

2. Bicluster with constant values on rows or columns :

(aij = µ+ αi or aij = µ ∗ αi) and (aij = µ+ βj or aij = µ ∗ βj)

2. Biclustering 5

3. Bicluster with coherent values:

aij = µ+ αi + βj or aij = µ ∗ αi ∗ βj

4. Bicluster with coherent evolutions.

aih ≤ air ≤ ait ≤ aid or ahj ≤ arj ≤ atj ≤ adj

constant values − overall

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

constant values − rows

1.0 1.0 1.0 1.0

2.0 2.0 2.0 2.0

3.0 3.0 3.0 3.0

4.0 4.0 4.0 4.0

constant values − columns

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

1.0 2.0 3.0 4.0

coherent values − additive

1.0 2.0 5.0 0.0

2.0 3.0 6.0 1.0

4.0 5.0 8.0 3.0

5.0 6.0 9.0 4.0

coherent values − multiplicative

1.0 2.0 0.5 1.5

2.0 4.0 1.0 3.0

4.0 8.0 2.0 6.0

3.0 6.0 1.5 4.5

coherent evolution − overall

S1 S1 S1 S1

S1 S1 S1 S1

S1 S1 S1 S1

S1 S1 S1 S1

coherent evolution − rows

S1 S1 S1 S1

S2 S2 S2 S2

S3 S3 S3 S3

S4 S4 S4 S4

coherent evolution − columns

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

Fig. 2.1: Examples of different bicluster types.

In the simplest case, the algorithm is able to find subsets of rows and columns
with constant values. Slightly enhanced methods can identify bicluster with
either constant values on the rows or constant values on the columns. Other
approaches look for coherent values on the columns or rows of the expression
matrix. This means, each column or row can be calculated by simply adding
or multiplying a constant. A further type aims to find bicluster with coherent
evolutions. In other words, the exact numeric value of the matrix elements
does not matter. Instead the algorithm searches for subsets of columns and
rows with coherent behaviors. It is obvious that this case is accompanied by a
loss of information, as the matrix has to be discretized since the exact numeric
values of the matrix does not matter.

2.2 Bicluster Structures

Madeira and Oliveira (2004) also differentiate bicluster sets according to their
relative structure. This structure describes how the observed bicluster can
potentially be arranged (Examples are given in Figure 2.2):

1. Single bicluster.

6 2. Biclustering

2. Exclusive row and column bicluster.

3. Exclusive-rows or exclusive-columns bicluster.

4. Non-overlapping non-exclusive bicluster.

5. Arbitrarily positioned overlapping bicluster.

The simplest way of structuring bicluster is to find the single largest bicluster
and to delete rows and columns from the data, allowing exclusive row and
column bicluster to be obtained. Exclusive row or column bicluster can be
obtained by deleting either row or columns. The true challenge indeed is to
detect overlapping or at least non-exclusive bicluster.

Fig. 2.2: Examples of the different bicluster structures. Note that rows and
columns of a single bicluster typically are not together in a block, but rather
have to be reordered in a simplified block structure. The figure above is based
on Madeira and Oliveira (2004).

2.3 Jaccard Index

The most important part for bicluster validation is the comparison of a found
bicluster to a well known orallready found bicluster. We use an adaption
of the Jaccard index (Jaccard, 1901) from ordinary clustering. To compare to
bicluster it calculates the fraction of row-column combinations in both bicluster
from all row-column combination in at least one bicluster:

2. Biclustering 7

jac(BCi, BCj) = jacij =
|BCi ∩BCj|
|BCi ∪BCj|

. (2.1)

For two bicluster this an easy task, but for two sets of bicluster this is more
complicated. We define the Jaccard index of two non-overlapping bicluster
result sets as

jac(Bicres1, Bicres2) =
1

g

g∑
i=1

t∑
j=1

(
|BCi(Bicres1) ∩BCj(Bicres2)|
|BCi(Bicres1) ∪BCj(Bicres2)|

), (2.2)

where g, t are the number of bicluster in bicluster result 1, 2.

If there is overlapping, the Jaccard index has to be corrected with the maximum
of the Jaccard index of the two result sets with themselves,

jacc(Bicres1, Bicres2) =
jac(Bicres1, Bicres2)

max(jac(Bicres1, Bicres1); jac(Bicres2, Bicres2))

Since max(jac(Bicres1, Bicres1); jac(Bicres2, Bicres2)) is 1 for non overlap-
ping, we always use the corrected Jaccard index in calculations.

2.4 Bicluster Algorithms

Nowadays there is an abundance of algorithms for finding all kinds of bicluster
structures. In the following we will outline the algorithms which will appear in
this work. We will provide a small introduction of the algorithms (in alphabetic
order) including our developments s4vd and Quest. A more detailed look at the
algorithms used in our software package together with a working description
is presented in Chapter 5. The latter section contains an incomplete listing of
other notable algorithms.

2.4.1 Used Algorithms

Bimax

The Bimax algorithm of Prelic et al. (2006) is a method for finding subgroups
of 1 values in a binary matrix. If only distinct values or intervals of the data
are interesting, and if it is possible to mark them with 1s in a binary matrix,
the Bimax algorithm finds subgroups containing only such values.

8 2. Biclustering

Prelic et al. (2006) used this method to compare different other algorithms to
a constant benchmark, but the method is also useful in many other application
fields where binary or quasi-binary data is used.

CC or δ -biclustering

The algorithm by Cheng and Church (2000) searches for bicluster with constant
values, rows or columns. Starting from an adjusted matrix, they define a score

H(I, J) =
1

‖I‖‖J‖
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2, (2.3)

where aiJ is the mean of row i,aIj is the mean of column j and aIJ is the overall
mean. They call a subgroup a bicluster if the score is below a level δ and above
an alpha-fraction of the score the whole data.

ISA

The iterative signature algorithm of Bergmann et al. (2003) for bicluster con-
tains very high or very low values. It starts with a random set of rows and
iterates between normalized rows and normalized columns to find the largest
subgroup of extreme values. Due to the normalization quantiles of the normal
distributions can be used to identify extreme values. In each iteration the
corresponding row or column vector is updated until changes no longer occur.

Plaid Models

The original plaid models for biclustering, defined by Lazzeroni and Owen
(2002), fit layers k to the model

aij = (µ0 + αi0 + βj0) +
K∑
k=1

(µk + αik + βjk)ρikκjk + εij (2.4)

using ordinary least squares (OLS), where µ, α, β represent mean, row and
column effects and ρ and κ identify if a row or column is member of the layer,
respectively. Turner et al. (2005) replaced the OLS with a binary least square
algorithm and obtained better results.

Quest

We developed the Quest algorithm, which contains three methods dealing with
different scale levels data, especially for biclustering questionnaire data. This

2. Biclustering 9

algorithm works like the Xmotifs algorithm if the answers are given on a nom-
inal scale. For the ordinal scale, the algorithm looks for similar answers in an
interval of a size set by a prespecified parameter. The interval contains d lower
and d higher values than the starting class of the chosen respondents. In a
continuous case, this interval is set by the quantile of a chosen distribution. It
uses all previously found values, to calculate the mean value and uses a given
parameter for the variance of this distribution. Since normal scores are used
in such data the normal distribution is commonly used in this cases.

Spectral Biclustering

The bicluster algorithm described by Kluger et al. (2003) uses a singular value
decomposition and the resulting eigenvalues and eigenvectors to retrieve bi-
cluster from the data. This leads to a checkerboard bicluster structure. The
algorithm is very sensitive to data variations and therefore needs a very careful
preprocessing which Kluger et al. (2003) included into their algorithm. The
number of bicluster is determined by a chosen upper border for the variance
within the bicluster.

sv4d

In Sill et al. (2011) we optimized the idea of biclustering via a sparse singular
value decomposition (Lee et al., 2010). A checkerboard bicluster structure is
found forcing the row and column singular vectors to be very sparse. Lee
et al. (2010) achieved this structure by interpreting the singular vectors as
regression coefficients. Our approach finds these sparse singular values using
stability selection methods, leading to more stable results which can also be
interpreted more easily.

Xmotifs

Bicluster with coherent evolutions are represented by the Xmotifs algorithm
of Murali and Kasif (2003). This algorithm searches for rows with constant
values over a set of columns. For gene expression data, they call the bicluster
“conserved genes expression motifs”, shortened to “Xmotifs”. For this appli-
cation it is crucial to find a good preprocessing method. This is because the
main purpose of the algorithm is to define a gene (row) state which is equal
in the chosen samples (columns). This is called a conserved gene (row). One
way of dealing with gene states is to simply discretize the data.

10 2. Biclustering

2.4.2 Other Algorithms

So many different algorithms are published today, that it is a difficult task
indeed to keep track of all developments. In order to give the reader an idea
of some of the new findings we will briefly list some additional methods. The
original block clustering from Hartigan (1972) finds blocks in the data with
minimal variance. The cMonkey framework of Reiss et al. (2006) models a
bicluster using a Markov Chain process. The Coupled Two Way Clustering
of Getz et al. (2000) combines single cluster algorithms in both dimension to
obtain a bicluster result. The Samba algorithm (Tanay et al., 2002) includes
a test method for significant results, while the order preserving sub matrix
method of Ben-Dor et al. (2003) tries to find subgroups with equal ordered
values. Sheng et al. (2003) use a Gibbs sampling to obtain the bicluster and Ji
et al. (2006) obtain hierarchical ordered bicluster from their algorithm. Newer
developments such as Hochreiter et al. (2010) use factor analysis to retrieve
distinct bicluster. For a more detailed overview, see Madeira and Oliveira
(2004).

3. Ensemble Method

As we stated above, bicluster outcomes vary in structure and type when dif-
ferent algorithms are used. Most of the algorithms we introduced are also very
sensitive to small parameter changes and/or minor changes in the data. Ad-
ditionally, some methods depend on the starting values and so lead to varying
results on repeating runs. Unlike traditional clustering, biclustering does not
deliver a perfect separation of the data, resulting in overlap in rows and/or
columns. Furthermore, not every row or column must appear in a bicluster.

When dealing with these properties one can clearly see that one run with one
bicluster algorithm may not lead to a stable result. This is especially true for
new data sets without prior knowledge in the structure. In order to avoid the
problem of parameter selection and to obtain more stable and reliable results,
we propose an ensemble method for biclustering. Differnet to Hanczar and
Nadif (2010) who only use one algorithm on different bootstrap samples, we
employ one or more algorithms several times using different parameter set-
tings and/or subsamples of the data. The resulting bicluster are combined
using a similarity measure (e.g. Jaccard index). The combined bicluster are
returned if they fulfill certain conditions, most of which are linked to the num-
ber of appearances in the various runs. Similar approaches exist for traditional
clustering (Wilkerson and Hayes, 2010).

In the first part of this chapter, we describe the theoretical background of the
ensemble method, including different possibilities for combining the results.
We will then provide some illustrative examples based on both artificial and
real data.

3.1 Ensemble Method

We propose an ensemble method in order to construct more stable and reli-
able bicluster. Even if a algorithm only allows single bicluster to be found,
our method is able to detect an overlapping structure using either different
parameter settings, sub-/bootstrap- samples, or both.

12 3. Ensemble Method

Ensemble methods use multiple runs of one or more algorithms on slightly
modified conditions, either parameter modifications, stochastic starting points,
or data sampling. This data must be combined using a weighting method in
order to retrieve a useful result. The most popular methods are bagging or
boosting (Bühlmann, 2010). The challenge of these methods is to define a
combining algorithm which leads to meaningful results.

Our ensemble approach consists of three steps. In the first step algorithms and
parameters must be chosen and it must be decided whether to use replication
or alternatively, a sub- or bootstrap-sampling. In the second step the retrieved
bicluster result is processed. The third and last step uses the combined biclus-
ter to form a bicluster result set.

3.1.1 Initialization Step

As stated above in our approach, one can choose which algorithms to use
in the ensemble method. One has to make a careful selection, since most
algorithms search for different outcome structures.One must at least examine
the combined results more closely, especially the proportion of bicluster from a
specific algorithm. The desired parameter setting must be determined for each
chosen algorithm. An expand grid from parameter intervals and a number of
equal steps within these intervals should be used. One should also examine
the parameter settings more carefully. It is usually recommended to do a
parameter tuning of the algorithm on a small part of the data in advance in
order to identify meaningful combinations. The number of repetitions should
be set for stochastic algorithms. For all algorithms, we propose a sub-sampling
of the data with around 80 percent of rows and columns to add some variation
and to correct for outliers.

3.1.2 Combination Step

After calculating all N bicluster sets using the settings of the initialization step,
the individual bicluster must be combined. One must first decide how many (n)
of the bicluster from each set to use (If it is possible to set a maximum number
in advance, this should be done in the initialization step). Each bicluster BCi

is compared to all other bicluster BCj using a similarity measure. We propose
two different similarity measures: Jaccards index and a correlations based
approach. Both methods need thresholds to determine whether the bicluster
are similar or not. As a result, an upper triangle matrix (similarity matrix)
is retrieved. Groups of bicluster are then formed using one of the following
algorithms.

3. Ensemble Method 13

Hierarchical Clustering

The obvious method for building groups of a similarity matrix is hierarchical
clustering. Hanczar and Nadif (2010) suggest a hierarchical clustering of the
similarity matrix using average linkage. Since the bicluster within a bicluster
group should all have a similarity larger than the threshold, we propose using
a complete linkage for the hierarchical approach. To obtain such groups, the
hierarchical tree is pruned at the set threshold.

Quality Clustering

Alternatively, we suggest using a quality clustering (Heyer et al., 1999) of
the similarity matrix. This is done by looking for the largest group with a
similarity measure over the given threshold. This group is then deleted from
the similarity matrix and the largest group in the remaining matrix is identified.
This process continues until the similarity matrix is empty.

Scharl and Leisch (2006) showed that the largest group does not always lead
to the best result. So instead the largest group, a random group is chosen
using the size of the groups as weights. This approach reduces the possibility
of combining two result bicluster into one group.

Similarity Measures

An important task in every segmentation or grouping is the selection of the
similarity measure. We suggest two different methods: a correlation based
approach and the Jaccard index.

Jaccard Index Approach The first method, which considers a bicluster as
a subset, is based on the Jaccard index described in section 2.3. Two bicluster
with one hundred percent similarity have got a Jaccard index of 1 and two
bicluster with no equal elements have a Jaccard index of 0. After computing
the Jaccard index for all bicluster combinations, the elements jacij of the
matrix JAC represent the Jaccard index between bicluster BCi and BCj and
can be compared with a threshold value tJAC . In other words, two bicluster
BCi and BCj are marked as similar when:

jacij ≥ tJAC (3.1)

In order to decide which bicluster are similar, one must consider an appropriate
threshold value. Since the correlation approach described in the next section
suggests a divergence in each dimension of about 5% - which is in fact equal to

14 3. Ensemble Method

a similarity in elements of around 0.95 ∗ 0.95 = 0.9025 ≈ 90% - the threshold
for this approach could be set to 0.9.

Correlation Approach As an alternative, we propose a new method based
on the correlation between the bicluster. More precisely, it focuses on the sep-
arate correlations between each pairwise row- and column-membership vector
combination of the bicluster.

In other words two correlation matrices RCor and CCor are computed. The
elements of these matrices (rCor

ij and cCor
ij) are correlation between the vectors

X(j) and X(i] and the vectors Y (j) and Y (i) respectively.

rCor
ij = cor(X(i), X(j)), cCor

ij = cor(Y (i), Y (j)) (3.2)

Y (z) (Y (z)) is a binary representation of the rows (columns) included in bicluster
BCz. SoX(z) (Y (z)) at position l if row (column) l is in biclusterBCz. Since the
vectors are binary, the correlation had to be calculated with the Φ-coefficient.
However, the Φ-coefficient is in fact equal to the Pearson correlation when
applied on two binary variables. Two bicluster should not only be marked
as similar with a match of a hundred percent (correlation of 1) but also with
a small variation in rows or columns. One must find the smallest value at
which bicluster should be marked as similar. An adequate divergence in each
dimension is, for example, 5%. Since correlation can not be equated with
percentage divergence, one must determine which correlation threshold leads
to the allowed tolerance desired. In most cases, the dimensions of the data
matrix are extremely different; therefore we suggest selecting threshold values
tR and tC for each dimension separately. Therefore two row or two column
vectors, i and j are marked as similar when:

rCor
ij ≥ tR (3.3)

cCor
ij ≥ tC (3.4)

3.1.3 Result step

A result set is generated from the groups of bicluster from the combination step.
First, the groups are ordered according to the number of bicluster within. The
higher the number of bicluster , the more support for the group, which leads
to more reliability. One can define this score as

Sh =
x

N
, (3.5)

3. Ensemble Method 15

where x is the number of bicluster in group h, N is the number of different
runs. Since each bicluster can only be found once per run, the score is defined
in the interval [0, 1].

Next the proportio of bicluster containing a row-column combination is calcu-
lated for each group. This proportion can be interpreted as the probability that
a row-column combination belongs to the resulting bicluster. All row-column
combinations with a probability higher than a given threshold (we propose a
threshold of 0.2) are reported as resulting bicluster.

The entire algorithm can be found in Table 3.1.

16 3. Ensemble Method

The algorithm of the ensemble method:

1. Choose bicluster algorithms and parameter settings.

2. Choose sub sampling, bootstrapping and/or number of
repetition.

3. Run algorithms with chosen parameters.

4. Store best n bicluster of all N bicluster sets as a list.

5. Calculate a similarity matrix from that list.

6. Perform a grouping method (e.g. Hierarchical clustering
or Quality Clustering).

7. Sort all groups by the number of single bicluster they
contain.

8. Form a bicluster from every group using

(a) Add up all bicluster in a matrix. Matrix contains
the number of bicluster a row column combination
is included in.

(b) A row column combination belongs to this bicluster
if the value in the matrix exceeds a fraction of the
group size.

and report as a bicluster result set.

Tab. 3.1: The algorithm of the ensemble method

3. Ensemble Method 17

3.2 Data Examples

To demonstrate the effects of the ensemble method, we calculated bicluster on
artificial and gene expression data. Since the Plaid algorithm uses stochastic
starting points and the results are very sensitive to parameter modifications,
we compared the results of our method with single runs.

3.2.1 Artificial Data

The artificial data is used to demonstrate the advantages of our method in
terms of overlapping and stability.

We hid up to 4 bicluster in a 1000× 500 data matrix. The background of the
matrix was standard normal distributed while the 50 × 50 bicluster followed
a normal distribution with mean value bcmi = 3 and variance bcvi = 0.1. A
heatmap of the data with the bicluster ordered in the upper right corner can
be found in figure 3.1.

Three of the bicluster had a 10 percent overlap. We then ran the original
Plaid algorithm and our ensemble method on n generated data sets. For the
combining method we used the hierarchical and quality clustering and the
Jaccard index as the similarity measure. In each run we used bootstrap-, sub-
and no sampling. To compare the results with the hidden bicluster again,
the Jaccard index was calculated between the outcome and the results. The
results of one run using no sampling scheme is shown in figure 3.1. One can
clearly see that the ensemble method found the hidden cluster structure while
the original algorithm had some problems due to the overlapping structure
of the bicluster. Off all the Over all sampling methods, the quality clustering
showed the best result, retrieving nearly all original bicluster. The hierarchical
cluster method was slightly worse and the original algorithm was the worst.
Table 3.2 shows the mean value and standard deviation of the Jaccard index
values of n = 100 runs. Comparing the sampling methods, the sub sampling
outperformed bootstrap samples and full data. This is not a surprise because
using full data makes it difficult to detect the overlapping structure.

3.2.2 Real Data

To demonstrate the behavior of the ensemble method on real data, we ran
the algorithm on two micro-array datasets. Since there was no true bicluster
structure in this data, we could only compare the stability of the results and
the properties of the resulting bicluster. We compare the outcomes of the
different algorithms on a small set of yeast data were time allowed multiple

18 3. Ensemble Method

Fig. 3.1: Heatmap of bicluster results of one artificial data set: original
data(top left), plaid (top right) and ensemble (hierarchical (bottom left) and
quality clustering (bottom right))

Original Ensemble Ensemble
Quality Clustering Hierarchical Clustering

Mean 0.5633 0.9212 0.8571
Standard Deviation 0.37 0.14 0.17

All Data 90% Subsampling Bootstrap
Mean 0.8217 0.9705 0.8751
Standard Deviation 0.15 0.08 0.18

Tab. 3.2: Table of mean values and standard deviations of the Jaccard index
using artificial data.

runs and show the results and differences of similarity measures on a large
TCGA data set.

3. Ensemble Method 19

Yeast Data

This micro-array dataset used in Prelic et al. (2006) to present their bicluster
technique is a sub sample of the Saccharomyces Cerevisiae organism (Yeast,
containing 419 genes on 70 conditions. We again calculated bicluster with
the original plaid algorithm and the ensemble method using both combining
methods and the Jaccard index as a similarity measure. To compare stability,
we ran the algorithm multiple times and compared the resulting bicluster sets
with each other using the Jaccard index once again.

Fig. 3.2: Heatmap of bicluster results using original plaid algorithm (left) and
the ensemble method with hierarchical (middle) and quality clustering (right)
on the yeast data.

The bicluster results of the ensemble method showed the features we expected
We found an overlapping structure and observed that the bicluster tend to be
larger (For a visualization of one run see Figure 3.2).

Original Ensemble Ensemble
Quality Clustering Hierarchical Clustering

Mean 0.2688 0.7135 0.6755
Standard Deviation 0.10 0.15 0.14

All Data 90% Subsampling Bootstrap
Mean 0.7199 0.6691 NA
Standard Deviation 0.163 0.129 NA

Tab. 3.3: Table of mean values and standard deviations of the Jaccard index
using yeast data.

The comparison of the runs also shows that the ensemble method is by far
more stable than the original algorithm. Here it appears better to apply the
algorithm on full data with a given number of repetitions rather than to use
subsamples. This could be an effect of the small overlapping of bicluster in
the result sets. Bootstrap samples do not actually work on real data, since the
proportion of data point (around 2/3 of the full data) is too small to obtain

20 3. Ensemble Method

similar results. Table 3.3 shows the mean and standard deviation of the results
compared within one method.

3. Ensemble Method 21

TCGA Data

To further demonstrate the effectiveness of our method, we additionally calcu-
lated bicluster on the TCGA data set (McLendon et al., 2008). All TCGA
data are available for the public at the Data Coordinating Center (DCC)
http://tcga-data.nci.nih.gov. The experiments were performed by the
Broad Institute at MIT and Harvard using the Affymetrix (a manufacturer
of DNA micro-arrays) micro-arrays in seven different institutes which are
located throughout the United States. However, the TCGA data set we
worked with had already been preprocessed by Nicholas D. Socci of the Com-
putational Group of Memorial Sloan-Kettering Cancer Center (MSKCC -
http://cbio.mskcc.org) in New York City.

The data consists of the RNA expression level of n = 12042 different hu-
man genes G = (G1, G2, ..., Gn) and m = 202 samples. The vector S =
(S1, S2, ..., Sm) represents the different types of brain cancer (type C with 50
samples, M with 63 samples, N with 33 samples and P with 56 samples).
The expression data was transformed with the natural logarithm, a common
procedure when working with RNA data.

We applied the ensemble method to the data using the whole dataset in every
run, varying only the row.- and col.release levels (from 0.51 up to 0.71
in steps of 0.02) and holding all other parameters constant (See Table 3.4 for
the parameter setting). Both release levels were set equal in each run. Each
model was computed 100 independent times. Altogether there were T = 6567
bicluster found.

Parameter value
cluster "b"

fit.model y ∼ m + a + b

background TRUE

shuffle 3

back.fit 0

max.layers 100

iter.startup 15

iter.layer 30

Tab. 3.4: Used parameter settings for the ensemble method.

To demonstrate the differences between the similarity measures, we applied
both measures to the 6567 bicluster.

22 3. Ensemble Method

Correlation Approach

First of all, one has to choose threshold values for the row- and column-
correlation matrices. Due to the extremely different row and column sizes of the
expression matrix, a different threshold should be chosen for each dimension.
Table 3.5 shows examples of different threshold values and their correspond-
ing allowed tolerance in rows and columns respectively. Obviously, since small
thresholds allow too much variation in large bicluster and large thresholds al-
low too little variation in small bicluster there is no perfect threshold for all
situations. Ideally threshold values should depend on the size of the expres-
sion matrix as well as on the size of the bicluster. However this topic requires
further study; for the moment it is necessary to find a balance between the
two extremes. As seen in Table 3.5, the row threshold was set to 0.95 and the
column threshold to 0.9 since those two values allow the proposed divergence in
each dimension of about 5%. That means that row vectors with a correlation
greater than 0.95 and column vectors with a correlation greater than 0.9 are
marked as similar. Thus, one is able to obtain the number of similar bicluster
for each of the 6567 obtained bicluster.

gene threshold
size 0.8 0.85 0.9 0.95

25 0.2 0.16 0.08 0.04
50 0.2 0.14 0.1 0.04
100 0.2 0.14 0.1 0.05
150 0.2 0.14 0.1 0.05
200 0.2 0.15 0.1 0.05
400 0.2 0.15 0.1 0.05

sample threshold
size 0.8 0.85 0.9 0.95

25 0.16 0.12 0.07 0.04
30 0.16 0.14 0.06 0.03
40 0.15 0.13 0.06 0.02
50 0.14 0.12 0.07 0.03
80 0.13 0.09 0.05 0.02
100 0.1 0.08 0.04 0.03

Tab. 3.5: The table shows the allowed approximate percentage tolerance in
genes, respectively samples depending on the correlation thresholds and biclus-
ter sizes. Due to the different row (length = 12042) and column (length = 202)
sizes of the expression matrix the bicluster sizes are also different in each di-
mension. Based on this values the row threshold was set to 0.95 and the column
threshold to 0.9, which allows an variation in each dimension of around 5%.

Using the quality clustering without sampling weights, we calculated the sim-
ilar bicluster (Shown in Figure 3.3). In fact, the majority of the bicluster was
found just once or several times. We set the support to the upper 25%-quantile
of similar bicluster. This allowed us to obtain a bicluster set of 58 remaining
bicluster groups which we consider to be the real underlying bicluster in the
data. The size of the bicluster varied in the gene dimension between 2 and
450 (median = 139; mean = 153.6) and in the sample dimension from 28 to

3. Ensemble Method 23

52 (median = 41; mean = 39.3). The bicluster were found between 25 and
94 times (median = 41; mean = 35.9). In total, 8909 genes were included in
any bicluster, 1026 of which were unique. This makes a unique-gene-rate (#
unique genes /# total genes) of 11.52%. Fifteen different genes were included
in 29 different bicluster. The distribution of the bicluster scores is shown in
Figure 3.5. The positive skewed distribution indicates once again, that there
are some bicluster which seem more reliable than the rest.These have a higher
score, because they were found more often.

●●●

●●●●

●

●

●

●●●●

●
●
●

●

●
●●●

●●

●●●●●●●●●●

●

●●●
●
●●

●
●●
●
●

●

●●●
●●
●●●

●
●
●

●

●

●●●

●
●●●●●●●●●●●●

●

●●●●
●
●

●

●

●

●

●
●●

●

●

●

●

●●

●

●●
●●

●●

●●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●●●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●●●
●

●

●●

●

●

●●

●

●
●

●
●●●●

●●●●●

●

●●

●

●●

●

●●

●

●●●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●●●

●

●

●

●

●●●●●●●●●●
●
●●
●
●●●
●

●●●
●
●●●●●●●●

●●

●●●●●
●●
●●●●●●●●●●●●●●
●
●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

0
20

40
60

80
10

0
12

0

S
im

ila
r

B
ic

lu
st

er
s

Similar Biclusters

F
re

qu
en

cy

0 20 40 60 80 100 120

0
10

00
20

00
30

00
40

00

Fig. 3.3: Number of bicluster marked as similar for each observed bicluster.
min = 0; 25%− quantile = 0; median = 3; mean = 13.74; 75%− quantile =
23; max = 124

Jaccard Index Approach

The threshold for the Jaccard Index was set to 0.9, as it allows nearly the
same divergence between two bicluster as with the correlation approach. Thus
bicluster with a Jaccard Index greater than 0.9 were marked as similar. The
quantity of similar bicluster within this threshold is shown in Figure 3.4. The
extremely positively skewed distribution again implies that some bicluster were
found more often.

Again, only the upper 25% − quantile of biclusters were kept, which leads to
63 remaining bicluster. The size of the bicluster varied in the gene dimen-
sion between 2 and 443 (median = 141; mean = 147.8) and in the sample
dimension from 28 to 52 (median = 41; mean = 40.4), which is in fact quite
similar to the results obtained from the correlation approach. The bicluster

24 3. Ensemble Method

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●●

●

●

●

●

●●●●

●●●●●

●

●●

●

●●

●

●●

●

●●●●●

●

●

●●

●

●●●

●

●●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●●

●
●

●

●

●●●●●●●●●●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●●

●●

●●●●●

●●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●

●●

●

●

●●●
●
●
●
●●●●●●
●●●●●●●●●●●●●●●
●
●
●●●●●●
●●●●●●
●
●●●●●●
●
●●●●●●
●
●
●
●●●
●●●●●●●●●●●
●
●●●●●●
●
●●●●
●
●●●●●
●●

0
20

40
60

80
10

0

S
im

ila
r

B
ic

lu
st

er
s

Similar Biclusters
F

re
qu

en
cy

0 20 40 60 80 100

0
10

00
20

00
30

00
40

00

Fig. 3.4: Number of bicluster marked as similar for each observed bicluster.
min = 0; 25%− quantile = 0; median = 2; mean = 11.14; 75%− quantile =
17; max = 99

were found between 19 and 89 times (median = 25; mean = 29.60). Fur-
thermore the unique-gene-rate mentioned in the last section is also nearly the
same (10.88%). The bicluster-score distribution can be found in Figure 3.5. A
comparison of the scores obtain with the two methods reveals a quite similar,
though shifted distribution.

Results in Comparison

Since both of the above described methods aim to obtain the best bicluster, it
is important to know whether they truly lead to the same results, that is to the
same bicluster. In order to determine the similarity between the two results,
the bicluster were again compared with the Jaccard Index and a threshold
value of 0.9.

In total 43 bicluster were found using each method. This makes for a similarity
of 68.25% with reference to the results obtained by the Jaccard index approach,
and a similarity of 74.14% with reference to the correlation approach results.
Bicluster which were not observed with both methods had an average score
of 0.021 (Jaccard Index approach), thus beneath the median (0.023) and the
mean (0.027) total score. In contrast, the average score of bicluster which
were obtained with each method is with 0.029 even above the 75%− quantile
(0.028) of the total score. In other words, our proposed score seems to provide
information regarding the quality and especially the reliability of bicluster.
Figure 3.6 shows a comparison of the two different score distributions, which

3. Ensemble Method 25

●

●

●

●

●

●

●

●

●

●

●

Correlation Approach Jaccard Index Approach

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

S
co

re

Fig. 3.5: Distribution of the bicluster scores. Correlation approach: min =
0.023; 25% − quantile = 0.025; median = 0.028; mean = 0.033; 75% −
quantile = 0.034; max = 0.085. Jaccard Index approach: min = 0.017;
25% − quantile = 0.020; median = 0.023; mean = 0.027; 75% − quantile =
0.028; max = 0.81.

indeed indicates that bicluster found with both methods have a higher score
than bicluster just found with one method.

Based on the significant overlap of the result it can be concluded, that both
methods appear to have marked the same bicluster as the best. Secondly
the score contains information about the quality of the bicluster in question.
However, these analysis do not allow us to draw a conclusion about which
method is more effective or powerful.

26 3. Ensemble Method

●

●

●

●

●

●

both methods one method

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

S
co

re

Fig. 3.6: Score of bicluster observed with only one method: min = 0.017;
25% − quantile = 0.018; median = 0.019; mean = 0.022; 75% − quantile =
0.021; max = 0.057. Observed with both methods: min = 0.017; 25% −
quantile = 0.021; median = 0.025; mean = 0.029; 75% − quantile = 0.030;
max = 0.81.

3. Ensemble Method 27

3.3 Conclusion

In this chapter, we proposed an ensemble method for bicluster analysis. This
method takes results from different bicluster algorithm runs with modified
parameters and/or a sub sampling of the data and combines the single bi-
cluster obtained from that run. To combine the results, one must define a
similarity measure. We proposed two similarity measures: Jaccard index and
row/column correlations. The combined result (groups of bicluster) were then
used to form a result set. Using this method,more stable results and otherwise
undetectable overlapping bicluster can be detected. These advantages were
demonstrated on simulated data. Additionally a real data example tested the
method on a high dimensional data sets. Therefore, this method - which is
applicable to every bicluster algorithm- allows one to obtain more stable and
reliable results. Furthermore, overlapping bicluster structures can be detected
even using algorithms which report only single bicluster.

4. Correlated Ordinal Data

A common method for testing a statistical model is the use of artificial data.
A desired set of properties will be embedded in the dataset and then fitted
models will be checked for the presence of these effects or how they behave
under different experimental conditions. The Quest algorithm presented in
Chapter 2 is able to find bicluster in ordinal data. For testing this method it
is esential to have a tool at hand which delivers correlated ordinal values.

4.1 Introduction

The generation of arbitrary multivariate normal random numbers is straight-
forward: draw values from the standard normal distribution, multiply with an
appropriate root of the desired covariance matrix, and add the mean. Other
distributions mostly call for more complicated solutions, because linear combi-
nations in most cases do not preserve the type of distribution. Sampling count
variables with a given correlation is described in Erhardt and Czado (2010).
For correlated binary data numerous methods have been proposed. For exam-
ple Leisch et al. (1998) convert the desired covariance matrix for the binary
data into a correlation matrix for normally distributed data. Therefrom nor-
mally distributed random numbers are drawn and binarised afterwards. For
ordinal values only few suggestions can be found. Gange (1995) uses an iter-
ative proportional fitting algorithm with pre specified probability structure of
the marginals and pairwise and higher associations. Because of these higher
order associations it becomes unpractical for large number of categories or vari-
ables. The method by Yu and Yuan (2004) works only for ordinal longitudinal
data and needs an underlying regression model. Even more restrictions like
independent and identical distribution among the variables are necessary for
the method of Biswas (2004). A more general solution can be found in Demir-
tas (2006). His method relies on simulated binary variates as an intermediate
step. Ordinal values are collapsed into binary ones, then corresponding binary
correlations are computed in a way that ensures that reconversion delivers the
original distribution properties. The first techniques (called binary conver-
sion) proposed in the following is similar to the Demirtas (2006) approach,

4. Correlated Ordinal Data 29

but has fewer restrictions on the kind of correlations used. Also an alternative
approach will be presented which outperforms the binary conversion in many
situations and is suitable in more situations.

In what follows we give an introduction to the generation of correlated mul-
tivariate binary variates following Leisch et al. (1998). In Section 3 two tech-
niques for generating multivariate ordinal variates are proposed. Section 4
shows some examples and compares the performanceces of the methods, and
in the end we will give some concluding remarks.

4.2 Generation of Correlated Binary

Random Variates

In this section we deal with variables which take only binary values, typically
encoded by {0, 1}, and denoted by A,B, . . . or A1, A2, . . ., respectively. Re-
alizations of these random variables will be denoted by corresponding lower
case letters. The distribution of a single variable A is fully determined by the
value pA := P(A = 1), which is also the expectation of A, i.e., EA = pA. The
variance is given by Var(A) = pA(1− pA).

Consider two binary random variables A and B which are not necessarily
independent. Then the joint distribution of A and B is fully determined by
pA, pB and either pAB, pA|B or pB|A where

pAB := P(A = 1, B = 1)

pA|B := P(A = 1|B = 1)

pB|A := P(B = 1|A = 1)

The remaining probabilities can easily be derived from Bayes Theorem.

This bivariate binary distribution can easily be generalized to the multivariate
case, where A = (A1, . . . , Ad)

′ ∈ {0, 1}d is a vector with (possibly dependent)
binary components. For a full description of an unrestricted distribution of A
we need 2d− 1 parameters, e.g., the probabilities of all 2d possible values of A
(the last probability is determined by the condition that the sum equals 1).

A computationally fast method for generating samples from a binary vector
A = (A1, . . . , Ad) is the following: Let X = (X1, . . . , Xd) be a d-dimensional
normally distributed vector with mean µ and covariance matrix Σ. Normally
distributed random variates can easily be transformed to binary values by
componentwise thresholding: ai = 1⇐⇒ xi > 0. Due to the construction

pAi
= P(Ai = 1) = P(Xi > 0)

30 4. Correlated Ordinal Data

and
pAiAj

= P(Ai = 1, Aj = 1) = P(Xi > 0, Xj > 0),

where P(Xi > 0) depends, for fixed variances, only on µi whereas P(Xi >
0, Xj > 0) depends on µi, µj and on the correlation between Xi and Xj.

Let Yi be a 1-dimensional normally distributed random variable with mean µi

and unit variance. Hence,

P(Yi > 0) = P((Yi − µi) > −µi) = P((Yi − µi) ≤ µi)

where the second equality holds, because (Yi−µi) is normally distributed with
zero mean. If we choose µi to be the pAi

-quantile of the standard normal distri-
bution and restrict all variances to 1, then P(Yi > 0) = pAi

. The mean vector
µ is determined by the desired marginal probabilities pAi

for the components
of A.

What is still missing is a relation between the covariance matrix Σb of the
binary variables and the covariance matrix Σ of the normal distribution. By
specifying a covariance matrix only pairwise relations between the components
of the d-dimensional sample can be specified. In the following we will restrict
ourself to the bivariate case for ease of notation.

The correlation coefficient rAB of two binary random variables A and B can
be written as

rAB =
pAB − pApB√

pA(1− pA)pB(1− pB)
(4.1)

such that
pAB = rAB

√
pA(1− pA)pB(1− pB) + pApB. (4.2)

If A and B are converted from two normal random variables X and Y as
described above, then pAB can be related to the normal distribution by

pAB = P(X > 0, Y > 0) = P(X̄ > −µX , Ȳ > −µY) = L(−µX ,−µY , ρ),

where X̄ := X − µX and Ȳ := Y − µY have a standard bivariate normal
distribution with correlation coefficient ρ = ρXY ; and

L(h, k, ρ) := P(X̄ ≥ h, Ȳ ≥ k) =

∫ ∞
h

∫ ∞
k

φ(x, y; ρ)dydx

with

φ(x, y; ρ) =
1

2π
√

1− ρ2
exp

(
−x

2 − 2ρxy + y2

2(1− ρ2)

)
being the density function of (X̄, Ȳ).

The values of L(h, k, ρ) are tabulated (see the references in Patel and Read,
1982, p. 293f) or can be obtained by numerical integration or Monte Carlo

4. Correlated Ordinal Data 31

simulation (Leisch et al., 2009). The complete algorithm is summarized in
Table 4.2.

Note that not every positive definite matrix is a valid covariance matrix for
binary data. So some conditions on the common probabilities and therefore on
the correlation matrix should be checked before the algorithm draws random
numbers. The conditions, besides 0 ≤ pAi

≤ 1, are

max(pAi
+ pAj

− 1, 0) ≤ pAiAj
≤ min(pAi

, pAj
) i 6= j

and

pAi
+ pAj

+ pAk
− pAiAj

− pAiAk
− pAjAk

≤ 1 , i 6= j, i 6= k, j 6= k.

These conditions are necessary but not sufficient for d ≤ 3.

4.3 Generation of Correlated Ordinal

Random Variates

Without loss of generality we want to generate ordinal variables A taking
integer values {1, 2, . . . , k}. The corresponding distribution is defined by prob-
ability vector

pA =

P(A = 1)
P(A = 2)

...
P(A = k)

 =

p1
p2
...
pk

 ,

for notational reasons we also need the distribution function

fA(a) =

p1 , a = 1
p2 , a = 2
... ,

...
pk , a = k

.

When generating random numbers for d ordinal variables A1, . . . , Ad the user
needs to specify the marginal probabilities pAi

, i = 1, . . . , d and a positive
semi-definite correlation matrix

C =

Cor(A1, A1) Cor(A1, A2) . . . Cor(A1, Ad)
Cor(A2, A1) Cor(A2, A2) . . . Cor(A2, Ad)

...
...

. . .
...

Cor(Ad, A1) Cor(Ad, A2) . . . Cor(Ad, Ad)

 .

32 4. Correlated Ordinal Data

Higher order interactions will not be taken into account. Note that because we
use {1, 2, . . . , k} as possible values, observed values correspond to ranks and
Pearson and Spearman correlation are identical (only the latter makes sense
for ordinal data in general).

In the case of binary random variates the region were two variables simultane-
ously equal one determines the correlation between them. There is a direct link
between their common probabilities and their correlation. With more than two
categories this region is not that clear cut. The correlation now rather depends
on other regions i.e. the common probabilities P(A = a,B = b) a = 1, ..., kA
b = 1, ..., kB as well. Considering this, two randomization methods that allow
specification of means and correlations will be presented in this section.

4.3.1 The Binary Conversion Method

Demirtas (2006) used a simple splitting rule to convert the ordinal variables
into binary variables. The lower half of the categories is represented by the
binary 0 and the upper half by binary 1. A simulation study is carried out
every time new random variables are drawn to identify the binary correlations.
In the following we show a closed form solution for a very similar algorithm.
The main idea is to draw binary random variables with the correct correlation
structure, and conditional on the outcome of the binary variable convert an
independent uniform random to an ordinal variable with the desired marginals
and correlations.

Let Ã :=
A− 1

k − 1
denote a linear transformation of A to new outcome values

0, 1
k
, . . . , k−1

k
. The expectation is given by

E(Ã) =
k∑

a=1

a− 1

k − 1
pa (4.3)

We also define a new binary variable Ab with distribution

f(Ab) :=

{
1− E(Ã) , Ab = 0

E(Ã) , Ab = 1

such that E(Ã) = E(Ab). In addition we get

E(ÃB̃) =

kÃ∑
a=1

kB̃∑
b=1

a− 1

kÃ − 1

b− 1

kB̃ − 1
P(Ã =

a− 1

kÃ − 1
, B̃ =

b− 1

kB̃ − 1
)

=

kA∑
a=1

kB∑
b=1

a− 1

kA − 1

b− 1

kB − 1
P(A = a,B = b)

= P(Ab = 1, Bb = 1) = E(AbBb)

4. Correlated Ordinal Data 33

and therefore

Cov(Ã, B̃) = E(ÃB̃)− E(Ã)E(B̃) = E(AbBb)− E(Ab)E(Bb)

= Cov(Ab, Bb). (4.4)

Using Var(Ab) = E(Ã)(1− E(Ã)) we get

Var(Ã) =
k∑

a=1

(
a− 1

k − 1
− E(Ã))2pa

and analogously for Var(B̃). Due to the linearity of the conversion Cor(Ã, B̃) =
Cor(A,B). The function that maps the desired correlation Cor(A,B) on the
binarised correlation Cor(Ab, Bb) is a straight line passing through the origin
and with slope m that depends only on the probability vectors pA and pB:

Cor(Ã, B̃) = Cor(A,B) = mCor(Ab, Bb) (4.5)

For four examples of probability vectors for two variables this is shown in
Figure 4.1.

Combining (4.5) and (4.4) gives

m−1 =
Cor(Ab, Bb)

Cor(Ã, B̃)
=

Cov(Ab, Bb)√
Var(Ab)Var(Bb)

Cov(Ã, B̃)√
Var(Ã)Var(B̃)

=

√
Var(Ã)Var(B̃)

Var(Ab)Var(Bb)

=
√
mAmB,

with mA = Var(Ã)/Var(Ab) and mB = Var(B̃)/Var(Bb).

Using

kA∑
a=1

(
a− 1

kA − 1
− E(Ã))2E(Ã) = E(Ã)(1− E(Ã)) +

kA∑
a=1

(
a− 1

kA − 1
)2E(Ã)− E(Ã)

=

kA∑
a=1

(
a− 1

kA − 1
)2E(Ã)− 2E(Ã)2 + E(Ã)2

= −E(Ã)2 +

kA∑
a=1

(
a− 1

kA − 1
)2E(Ã)

we get
Var(Ã) = Var(Ab) + E(Ã2)− E(Ab).

34 4. Correlated Ordinal Data

−1.0 −0.5 0.0 0.5 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Correlation binary

C
o

rr
e

la
tio

n
 o

rd
in

a
l

p_A=(1,2,3)/6
p_B=(7,6,5,4,3,2,1)/28

p_A=(1,4,2)/7
p_B=(2,2,3)/7

p_A=(1,4,8,100)/113
p_B=(5,10,1001)/1106

p_A=(1,2)/3
p_B=(4,4,5,4,5)/22

Fig. 4.1: Linear transformation functions. The m-factors to translate ordinal
correlation specifications to binary correlations.

The conditional distribution of A given Ab is

f(A|Ab) =

{
f(A|Ab = 0) =: f0(A)
f(A|Ab = 1) =: f1(A)

For Ab = 1 the conditional distribution f1(A) is simply

f1(A) =

a− 1

k − 1
pa

E(Ã)
=

(a− 1)pa∑k
l=2(l − 1)pl

,

4. Correlated Ordinal Data 35

for Ab = 0 we can use

P(Ab = 0) = 1− E(Ã)

= 1−
k∑

a=1

a− 1

k − 1
pa = 1− 1

k − 1
(E(A)− 1)

=
k − E(A)

k − 1
=

∑k
a=1 kpa −

∑k
a=1 apa

k − 1
=

=
k∑

a=1

k − a
k − 1

pa =
k−1∑
a=1

k − a
k − 1

pa,

to obtain

f0(A) =

k − a
k − 1

pa

1− E(Ã)
=

(k − a)pa∑k−1
l=1 (k − l)pl

.

The resulting cumulative distribution functions are therefore

F0(A) =

∑a
l=1

k − l
k − 1

pl

1− E(Ã)

and

F1(A) =

∑a
l=2

l − 1

k − 1
pl

E(Ã)
.

The final algorithm is to draw binary variables Ab with a certain correlation
structure. In addition we independently draw from the uniform distribution
U(0, 1) and use the inversion method with F1(A) and F0(A) to obtain ordinal
values. The binary variables Ab shift the distribution of A to the left or right
to get correlations, the particular choice of Ab guarantees that the overall
marginal probabilities are still correct. The whole algorithm is summarized in
Table 4.3

Figure 4.1 shows that not all correlations can be calculated because the bi-
nary correlations are restricted to [−1, 1]. Hence, the correlation range of the
algorithm is smaller than that of the method in Demirtas (2006). But while
they use simulation runs we have an analytical solution for the transformation
which leads to far shorter run times. Since range may be more important than
speed, the next section gives an alternative approach with broader range.

4.3.2 The Mean Mapping Method

Our mean mapping method to generate ordinal random numbers with a given
correlation structure generalizes the concepts of Leisch et al. (1998) from the

36 4. Correlated Ordinal Data

binary to the ordinal case. Let X again be a random variable with standard
normal distribution N(0, 1). To get an ordinal variable with cumulative distri-
bution F we cut X at the F (a)-quantiles q of the standard normal distribution:

P(A = a) = P(qFA(a−1) < X < qFA(a)) a = 1, . . . , kA X ∼ N(0, 1),(4.6)

Figure 4.2 shows an example for k = 4 categories.

−3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(
x)

N(0,1)

q_0.15

q_0.4

q_0.75

1 2 3 4

Fig. 4.2: Thresholding the normal distribution.
pA = (0.15 0.25 0.35 0.25)T ⇒ qA ≈ (−1.04 − 0.25 0.67 +∞)T

Let A and B be two ordinal variables obtained by cutting X and Y , respec-
tively. The joint probabilities can then be written as

P(A = a,B = b) (4.7)

= FAB(a, b)− FAB(a− 1, b)− FAB(a, b− 1) + FAB(a− 1, b− 1)

= ΦXY (qFA(a), qFB(b), ρXY)− ΦXY (qFA(a−1), qFB(b), ρXY) (4.8)

−ΦXY (qFA(a), qFB(b−1), ρXY) + ΦXY (qFA(a−1), qFB(b−1), ρXY)

with q being a quantile of the univariate standard normal distribution and
P(X < h, Y < k) = ΦXY (h, k, ρXY) the bivariate standard normal distribution
function with correlation coefficient ρXY . Equation (4.9) links probabilities
P(A = a,B = b) to ρXY . For the binary case P(A = 1, B = 1) = E(AB)
defines the whole distribution. Hence, the natural generalization for the ordinal

4. Correlated Ordinal Data 37

case would be to evaluate the relationsship between E(AB) and ρXY on a
regular grid and interpolate the results. For this we would need to specify the
complete joint distribution of FAB. By rearranging terms we can find a scalar
(called τ below) which only depends on the marginal distribution of A and B
and the desired correlation Cor(A,B).

The expectaion of AB is defined as

E(AB) =

kA∑
a=1

kB∑
b=1

ab P(A = a,B = b)

=

kA∑
a=1

kB∑
b=1

ab
(
FAB(a, b)− FAB(a− 1, b)

−FAB(a, b− 1) + FAB(a− 1, b− 1)
)

=

kA∑
a=1

kB∑
b=1

mabFAB(a, b). (4.9)

By simple algebra we get the multiplicities mab as

mab = ab− a(b+ 1)− (a+ 1)b+ (a+ 1)(b+ 1) = 1, a < kA b < kB
mab = a[b− (b+ 1)] = −a = −kA, a = kA b < kB
mab = b[a− (a+ 1)] = −b = −kB, a < kA b = kB
mab = ab = kAkB, a = kA b = kB

(4.10)
Combining Equations (4.9) and (4.10) gives

E(AB) =

kA−1∑
a=1

kB−1∑
b=1

FAB(a, b)− kB
kA−1∑
a=1

FA(a)

−kA
kB−1∑
b=1

FB(b) + kAkB.

We use the first term of this equation as proxy τ which will be linked to ρXY .
Rearranging terms in the usual definition of the correlation gives

τAB =

kA−1∑
a=1

kB−1∑
b=1

FAB(a, b)

= Cor(A,B)
√

Var(A)Var(B) + E(A)E(B)

−kAkB + kA

kB−1∑
b=1

FB(b) + kB

kA−1∑
a=1

FA(a),

which depends only on the marginal distribution of A and B and correlation
Cor(A,B). We now evaluate the relationship between ρXY and τAB on a regu-
lar grid and interpolate results. Inverting this relationsship gives the necassary

38 4. Correlated Ordinal Data

ρXY for given τAB. Drawing random numbers now amounts to drawing bivari-
ate normal variates with zero mean, unit variance and correlation ρXY . These
are then cut at quantiles defined by the marginal distributions of A and B,
respectively. Generalization to more than two ordinal variates is again straight-
forward. The complete algorithm for the mean mapping method can be found
in Table 4.4.

Feasible Correlation Matrices

Although wider ranges of correlations are possible within the mean mapping
method there are some restriction to the correlation matrix. First of all the
correlation range [−1; 1] is not possible for most of the probability vectors.
The maximal correlation is reached if all variables are ordered from the lowest
category to the highest. Beside that the normal correlations are most of the
time higher than the specified ordinal correlation, so if the correlations are to
high they get greater 1 in the normal conversion and are so not feasible.

4.4 Simulation and Comparison

For comparison of the two methods we generated random ordinal values from
both methods and compared the results with respect to runtime and precision.
As the restrictions on the correlation matrix are stronger for the binary con-
version method than for the mean mapping method, matrices are chosen which
are feasible for both methods. As dimensions d and number of categories k we
used 3, 6 and 9 in both cases. One million random values were drawn for each
algorithm with each of the 9 setups.

4.4.1 Performance

The runtime of the algorithms is depicted in Figure 4.3. It can be seen that the
runtime of the binary conversion method is very low even for the case with 9
variables and 9 categories. The runtime of the mean mapping method depends
on both, the numbers of categories and the number of variables.

4. Correlated Ordinal Data 39

Number of Variates

D
ur

at
io

n
in

 S
ec

on
ds

0

100

200

300

3 4 5 6 7 8 9

3 Categories
0

100

200

300

6 Categories
0

100

200

300

9 Categories

binary conversion
mean mapping

●

●

Fig. 4.3: Runtime of binary and mean mapping method.

4.4.2 Accuracy

Figures 4.4, 4.5 and 4.6 give information about how exact the methods generate
random numbers. For this purpose the following quantities were calculated:
Average absolute distance of correlation matrix entries:

µC =
1

q2

q∑
i=1

q∑
j=1

|C[i,j] − Ĉ[i,j]|

Maximum absolute distance of correlation matrix entries:

mC = max
i,j

(|C[i,j] − Ĉ[i,j]|)

Average absolute distance of probability vector entries:

µP =

q∑
i=1

kAi∑
ai=1

|P[i,ai] − P̂[i,ai]|

with Ĉ the empirical correlation matrix computed from the observed random
numbers and P̂ relative frequencies of the cases computed from the observed
random numbers.

40 4. Correlated Ordinal Data

Number of Variates

A
ve

ra
ge

 A
bs

ol
ut

 D
is

ta
nc

e

0.0005

0.0010

0.0015

3 4 5 6 7 8 9

●

●
●

●

●

●

3 Categories

0.0005

0.0010

0.0015

●

●

●

●

●

●

6 Categories

0.0005

0.0010

0.0015

● ●

●

●

●

●

9 Categories

binary conversion
mean mapping

●

●

Fig. 4.4: Average absolute differences of sample and input correlations.

Figure 4.4 shows that all values for µC do not exceed 0.003 with the largest
average distance being at µC = 0.002967 which is a good result. One can also
note that the mean mapping method is the numerically most stable. A similar
result is indicated by figure 4.5 which presents the mC values. Again both
methods are similar, but the mean mapping method is better.

Figure 4.6 shows that both methods have similar low values for µP , which had
to be expected because all methods use a categorization of the normal distribu-
tion which is analytically exact. One can also see that for more categories µP

does slightly shrink, which is what we can expect due to the increased number
of observations P̂[i,ai] that enter the formula. Summarizing the results, µC , mC

and µP show that both methods have sufficient precision for most practical
applications.

4.4.3 Comparison with Demirtas

In Demirtas (2006) different setups were use to show the flexibility of the
algorithm. In this section we show that the mean mapping approach can
cover all these setups and can also extend these setups to higher correlations.
Table 4.1 contains two examples of correlation matrices which were used by

4. Correlated Ordinal Data 41

Number of Variates

M
ax

im
um

 A
bs

ol
ut

 D
is

ta
nc

e

0.00

0.01

0.02

0.03

0.04

0.05

3 4 5 6 7 8 9

● ● ●
● ● ●

3 Categories
0.00

0.01

0.02

0.03

0.04

0.05

● ●

●

● ●

●

6 Categories
0.00

0.01

0.02

0.03

0.04

0.05

● ●
●

● ● ●

9 Categories

binary conversion
mean mapping

●

●

Fig. 4.5: Maximum absolute differences of sample and input correlations.

Number of Variates

A
ve

ra
ge

 A
bs

ol
ut

 D
iff

er
en

ce

0.0005

0.0010

0.0015

0.0020

0.0025

3 4 5 6 7 8 9

●
●

●

●

●

●

3 Categories

0.0005

0.0010

0.0015

0.0020

0.0025

●

●

●

●

●

●

6 Categories

0.0005

0.0010

0.0015

0.0020

0.0025

●

●

●

●

●

●

9 Categories

binary conversion
mean mapping

●

●

Fig. 4.6: Average absolute differences of sample and input probabilities.

42 4. Correlated Ordinal Data

Demirtas (2006) and a third matrix which is not feasible for his method. As
marginal probabilities we used

PA1 =

0.05
0.25
0.55
0.15

 , pA2 =

0.10
0.10
0.10
0.70

 , pA3 =

0.20
0.15
0.25
0.40

Cor Mat 1 Cor Mat 1 Cor Mat 3
A1 A2 A3 A1 A2 A3 A1 A2 A3

A1 1 0.4 0.3 1 0.5 0.25 1 0.7 0.7 A1
A2 0.4 1 0.4 0.5 1 0.5 0.7 1 0.7 A2
A3 0.3 0.4 1 0.25 0.5 1 0.7 0.7 1 A3

Tab. 4.1: Three example correlation matrices

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability A1

●

●

●

●

●

●

●

●●

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability A2

● ● ●

●

●

●

●

●

●

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Probability A3

●

●

●

●

Fig. 4.7: Boxplot of frequency of 100 simulation runs with Correlation matrix
1. Red circles show input probabilities.

Figure 4.7 shows the frequencies of 100 simulation runs were 100 random or-
dinal variates were drawn. The red circles represent the desired values, which
are close to the median of the observed values in each case. Figure 4.8 shows
the three values of the upper triangle of the observed correlation matrices with
the red circles again representing the desired correlation. It can be seen, that
the algorithm works quite good in all three scenarios.

4. Correlated Ordinal Data 43

●

●

●

●

●

A1A2 A1A3 A2A3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation Setup 1

●

●

●

●●
●
●

A1A2 A1A3 A2A3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation Setup 2

●

●

●

●●

●

A1A2 A1A3 A2A3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlation Setup 3

● ● ●

Fig. 4.8: Boxplot of correlations of 100 simulation runs. Red circles show
input correlations.

4.5 Conclusions

In this chapter we presented two new methods for generating ordinal values
with given correlation structure. The binary method is very fast but has
the disadvantage that the set of feasible correlation matrices is limited by
the algorithm. The mean mapping method overcomes this problem and is
as accurate as the binary solution at the price of longer runtime. With the
use of ordinal values in questionnaires it is essential for one of our simulation
studies to have a tool at hand which provides us such values. But the method
is not limited for our purpose and is also useful for testing of the growing
number of statistical methods working on samples of ordinal values. A freely
available open source implementation (ordata ,Kaiser and Leisch (2010) for
the statistical computing environment R (R Development Core Team, 2011) is
described in Appendix B.

44 4. Correlated Ordinal Data

Step Expression

1 Calculate the probabilities

ht1t2,t3 :=
∫∞
h

∫∞
k
φX1X2(gt2 , gt3 ,Σt1)dxdy

with (X1, X2) ∼ N(0,Σt1) and covariance matrix

Σt1 =

(
1 gt1
gt1 1

)

where gt1 =
t1
20

and t1 = −20,−19, . . . , 20,

gt2 =
t2
20

and t2 = 0, 1, . . . , 20 and

gt3 =
t3
20

and t3 = 0, 1, . . . , 20 receiving grid g1,2,3.

2 Fit a function fh|gt2 ,gt3 (h) : h→ gt1 to grid g1,2,3.

3 Set

h∗ = Cor(A1, A2)
√

Var(A1)Var(A2) + E(A1)E(A2)

and calculate the correlation coefficient

fh|gt2 ,gt3 (h∗) = Cor(X1, X2).

4 Repeat step 3 for all combinations (i, j) of variables, receiving

Cbin =

Cor(X1, X1) Cor(X1, X2) . . . Cor(X1, Xd)
Cor(X2, X1) Cor(X2, X2) . . . Cor(X2, Xd)

...
...

. . .
...

Cor(Xd, X1) Cor(Xd, X2) . . . Cor(Xd, Xd)

,

which is the multivariate normal correlation matrix.
5 Sample n times from the d-dimensional normal distribution with

covariance matrix Cbin and mean vector

µbin =

−qp(A1)

−qp(A2)
...

−qp(Ad)

receiving the n× d sample matrix Sbin.

6 Reconvert Sbin to the ordinal sample matrix S using

4. Correlated Ordinal Data 45

S[ei] =

{
1 , 0 ≤ Sbin

[ei]

0 , 0 > Sbin
[ei]

Tab. 4.2: Generation of multivariate binary random num-
bers via Leisch et al. (1998)

46 4. Correlated Ordinal Data

Step Statement

1 Calculate the weighted mean µ1 := E(Ab
1) =

∑k1
a=1

a− 1

k1 − 1
pa.

2 Calculate the binarised variance Var(Ab
1) = E(Ã)(1− E(Ã)).

3 Calculate the ordinal variance Var(Ã1) =
∑k1

a=1(
a− 1

k1 − 1
− E(Ã))2pa.

4 Calculate the slope m1 := Var(Ã1)/Var(Ab
1).

5 Do steps 1-4 for each of the d variables receiving

µb =

µ1

µ2

µ3
...
µd

 and m =

m1

m2

m3
...
md

.

6 Calculate the new binary correlation matrix via

Cor(Ab
i , A

b
j) =

{
Cor(Ai, Aj)/

√
mimj , i 6= j

1 , i = j
getting

Cb =

Cor(Ab

1, A
b
1) Cor(Ab

1, A
b
2) . . . Cor(Ab

1, A
b
d)

Cor(Ab
2, A

b
1) Cor(Ab

2, A
b
2) . . . Cor(Ab

2, A
b
d)

...
...

. . .
...

Cor(Ab
d, A

b
1) Cor(Ab

d, A
b
2) . . . Cor(Ab

d, A
b
d)

7 Sample n times from d-dimensional binary distribution with

correlation matrix of the binary distribution Cb and mean vector µb

getting the n× d binary sample matrix Sb

8 Draw from U(0, 1) md times receiving m× d matrix U .
9 Reconvert Sb for each variable with originally more than two

categories to the ordinal sample matrix S using the
samples from 7 and 8 and the assignment

S[ei] = k :

{
F0(k − 1) < U[ei] < F0(k) , if Sb

[ei] = 0

F1(k − 1) < U[ei] < F1(k) , if Sb
[ei] = 1

for k ∈ {1, 2, . . . , ki} with cumulative distribution functions

F0(A) =

∑a
l=1

k − l
k − 1

pl

1− E(Ã)
and

4. Correlated Ordinal Data 47

F1(A) =

∑a
l=2

l − 1

k − 1
pl

E(Ã)
.

for each entry S[ei] independently.
Tab. 4.3: Generating multivariate ordinal random num-
bers via binary conversion method

48 4. Correlated Ordinal Data

Step Expression

1 Calculate the probability

ht1,2 :=
∑k1−1

a1=1

∑k2−1
a2=1 ΦX1X2(qFA1

(a1), qFA2
(a2))

with (X1, X2) ∼ N(0,Σ1,2
t) and covariance matrix

Σ1,2
t =

(
1 gt
gt 1

)

where gt =
t

100
and t = −100, . . . , 100, receiving grid g1,2.

2 Fit a function f1,2(h) : h→ g to grid g1,2.
3 Set

h∗ = Cor(A1, A2)
√

Var(A1)Var(A2) + E(A1)E(A2)

−k1k2 + k1
∑k2−1

a2=1 FA2(a2) + k2
∑k1−1

a1=1 FA1(a1)

and calculate the correlation coefficient

f1,2(h
∗) = Cor(X1, X2).

4 Repeat steps 1-3 for all combinations (i, j) of variables, receiving

Ca =

Cor(X1, X1) Cor(X1, X2) . . . Cor(X1, Xd)
Cor(X2, X1) Cor(X2, X2) . . . Cor(X2, Xd)

...
...

. . .
...

Cor(Xd, X1) Cor(Xd, X2) . . . Cor(Xd, Xd)

,

which is the multivariate normal correlation matrix.
5 Sample n times from the d-dimensional normal distribution with

covariance matrix Ca and mean vector µa = 0 receiving
the n× d sample matrix Sa.

6 Reconvert Sa to the ordinal sample matrix S using

S[ei] = k : {FAi
(k − 1) < Φ(Sa

[ei]) < FAi
(k)}

for k ∈ {1, 2, . . . , ki} and Φ being the univariate standard normal
distribution function.
Tab. 4.4: Generation of multivariate ordinal random
numbers via the mean mapping method.

5. Software

The success of a method depends largely on the availability of software imple-
mentations. For biclustering there is a growing number of stand alone tools,
but there has been no integration in standard software so far. To change
this, we developed the R (R Development Core Team, 2011) package biclust,
which contains a comprehensive selection of algorithms, preprocessing, visu-
alization, and validation methods. Using the capabilities of R we can easily
visualize bicluster solutions using parallel coordinates and heatmaps, or evalu-
ate the stability of cluster solutions using the bootstrap. The newly developed
bicluster membership plot provides a graphical overview of the variables that
define each bicluster. The goal of this unified toolbox is to enable researchers
in diverse fields to test bicluster methods on their two-dimensional data and
to compare different approaches.

In the following section we describe the structure of the biclust package,
give a short introduction to the theoretical background of the algorithms, and
demonstrate the additional pre- and postprocessing methods on an artificial
data example. In Section 5.2 we give illustrative examples of how the package
is used on microarray data. Additionally, we provide an overview of other
existing R packages and stand alone software.

5.1 Package biclust

The package collects various approaches to biclustering into one bundle, by
providing the results as an entity of Class Biclust. This S4-class contains all
the information needed for postprocessing results. The class consists of five
slots Parameters, RowxNumber, NumberxCol, Number and info. The slot Pa-

rameters contains parameters and algorithm used, Number contains the num-
ber of bicluster found, and info shows additional results from the algorithms
as a list. The RowxNumber and NumberxCol slots represent the bicluster that
have been found. They are both logical matrices of dimension (rows of data ×
number of bicluster found) with a TRUE-value in RowxNumber[i,j] if row i
is in bicluster j. NumberxCol functions in the same way for the columns, but

50 5. Software

for computational reasons, the rows of the matrix in this slot represent the
number of bicluster and the columns represent the columns of data.

Objects of class Biclust-class are created using a uniform interface for all
bicluster methods by calls of form biclust(x,method=BiclustMethod,...).
This generic function needs the preprocessed data matrix x, a bicluster al-
gorithm represented as a Biclustmethod Class, and additional arguments (
...)as input. This structure allows us to easily include a new method in the
package which already contains algorithms representing all four major outcome
classes. As stated in Kaiser and Leisch (2008) and in Section 5.2 of this chapter
these algorithms deliver completely different result sets.

5.1.1 Algorithms

This section briefly describes the algorithms in the package and how they are
used. The algorithms are applied to a normal distributed artificial data set
containing a hidden bicluster:

> set.seed(1234)

> artdata <- matrix(rnorm(5000), 100, 50)

> x <- 1:100 %in% sample(1:100, 10)

> y <- 1:50 %in% sample(1:50, 10)

> artdata[x, y] <- rnorm(100, 3, 0.1)

The data is then compared to the expected result, an instance of Biclust-

Class containing the hidden bicluster.

> library(biclust)

> artres <- new("Biclust", Parameters = list(),

+ RowxNumber = as.matrix(x), NumberxCol = t(as.matrix(y)),

+ Number = 1, info = list())

CC

The CC method implements the algorithm by Cheng and Church (2000) and
searches for bicluster with constant values. As stated in Chapter 2 they define
a score

H(I, J) =
1

‖I‖‖J‖
∑

i∈I,j∈J

(aij − aiJ − aIj + aIJ)2, (5.1)

where aiJ is the mean of row i,aIj is the mean of column j and aIJ is the overall
mean. Cheng and Church (2000) consider a subgroup a bicluster if the score

5. Software 51

is below a delta level and above a alpha-fraction of the overall score. The
algorithm itself has three major steps:

1. Delete rows and columns with a score larger than alpha times the matrix
score.

2. Delete rows and columns with the largest scores.

3. Add Rows or Columns until delta level is reached.

These steps are repeated until a maximum number of bicluster is obtained or
until no more bicluster can be found.

> set.seed(1234)

> rescc <- biclust(artdata, method = BCCC(), alpha = 1.5,

+ delta = 0.3, number = 10)

Plaid

This method uses the plaid model of Lazzeroni and Owen (2002) and an adap-
tion of the original code from Turner et al. (2005), to represent bicluster with
constant rows or columns. The original algorithm was fitting layers k to the
model

Yij = (µ0 + αi0 + βj0) +
K∑
k=1

(µk + αik + βjk)ρikκjk + εij (5.2)

using ordinary least squares (OLS), where µ, α, β represent mean, row and
column effects and ρ and κ identify if a row or column belong to the layer.
Once the residuals are computed, bicluster are calculated as follows:

1. Update all parameters one after another iter.layer + iter.startup

times.

2. Calculate the sum of squares of the layer (LSS) using the resulting pa-
rameters.

3. Compare Result with random permutation and return bicluster if LSS is
higher.

The algorithm terminates when no new layer (bicluster) is found. In this
implementation, OLS is replaced with a binary least square algorithm.

> set.seed(1234)

> resplaid <- biclust(artdata, method = BCPlaid(), back.fit = 2,

+ shuffle = 3, fit.model = ~m + a + b, iter.startup = 5,

+ iter.layer = 30, verbose = F)

52 5. Software

Spectral

The bicluster algorithm described by Kluger et al. (2003) results in a
bicluster with coherent values. It includes several preprocessing steps,
such as normalization, independent scaling ("irrc"), bistochastization
("bistochastization") and log interactions ("log"). The following steps
are performed to find relevant submatrices:

1. Reorder the data matrix and choose a normalization method.

2. Compute a singular value decomposition to get eigenvalues and eigen-
vectors.

3. Depending on the chosen normalization methods, construct bicluster be-
ginning from the largest or second largest eigenvalue.

The quantity of bicluster depends on the number and value of the eigenval-
ues. The algorithm returns a checkerboard structure, from which bicluster
are reported if they full fill the minGenes, minCondition and withinVar

conditions.

> set.seed(1234)

> resspect <- biclust(artdata, method = BCSpectral(),

+ normalization = "irrc", numberOfEigenvalues = 2,

+ minr = 2, minc = 2, withinVar = 1)

Xmotifs

As described in Chapter 2 bicluster with coherent evolutions are represented
by the Xmotifs algorithm of Murali and Kasif (2003). Since it searches for
conserved gene states good preprocessing is crucial. One way to working with
gene states is to discretize the data (for example with function discretize()).
Once the data matrix represents the states, the algorithm chooses a random
column ns times and then performs these steps:

1. Choose an sd subset of columns nd times and collect all rows with equal
state in this subset, including the above column.

2. Collect all columns where these rows have the same state.

3. Return the bicluster if it has the most rows of all the bicluster found and
if it is also larger than an alpha fraction of the data.

5. Software 53

To collect more than one bicluster, one can rerun the calculation without the
rows and columns found or just return the smaller combinations found before.

> set.seed(1234)

> artdata.xmotif <- discretize(artdata, nof = 14)

> resxmotif <- biclust(artdata.xmotif, method = BCXmotifs(),

+ ns = 150, nd = 150, sd = 3, alpha = 0.1, number = 50)

Bimax

Alongside the algorithms representing all four outcome classes, the package
also includes the Bimax algorithm of Prelic et al. (2006) using their original
and fast C Code. As described in Chapter 2 the algorithm searches in a binary
matrix. A data matrix can be transformed into a binary matrix using for
example the binarize() function. The idea behind the Bimax algorithm is to
partition binary data into three submatrices, one of which contains only 0s and
therefore can be discarded. The algorithm is then recursively applied to the
remaining two submatrices U and V; the recursion ends if the current matrix
represents a bicluster, that is, contains only 1s. In order to avoid overlaps, the
next bicluster is found starting the basic algorithm on data excluding the rows
of the already found bicluster. The algorithm works as follows:

1. Divide the data matrix in two column sets CU and CV by drawing a
random row with at least a prespecified minimum of 1s, CU are then
columns where this row is 1, CV the others.

2. Divide the rows: RU are those rows that contain only 0s in column set
CV, RV are those rows that contain only 0s in columns set CU, the
remaining rows are called RUV.

3. Report matrices U [rows = RU + RUV, columns = CU] and V [RUV +
RV, ALL] and delete matrix W [RU, CV].

4. Repeat Steps 1 to 3 on submatrices U and V until minimum size is
reached and report matrices containing only 1s. If U and V do not share
any rows and columns, the two matrices can be processed independently
from each other. However, if U and V have a set of rows in common,
special care is necessary to only generate those bicluster in V that share
at least one common column with CV. See Prelic et al. (2006) for more
details.

The original C Code, invoked by

54 5. Software

> set.seed(1234)

> artdata.bimax <- binarize(artdata, threshold = 2)

> resbi <- biclust(artdata.bimax, method = BCBimax(), minr = 2,

+ minc = 2, number = 50)

finds all possible one exclusive matrices without ordering. This leads to too
many bicluster and the interesting large bicluster are often mist. We use
this algorithm in our modified repeated Bimax method to obtain the largest
bicluster. The repeated Bimax works as follows:

1. Run the ordinary Bimax and throw away all bicluster if a bigger bicluster
is found.

2. Stop if no bigger bicluster is found or a maximum column (macc) number
is reached

3. Store the found matrix as a bicluster. Delete the rows in this bicluster
from the data and start over.

4. Repeat steps 1 to 3 until no new bicluster is found.

The repeated Bimax is calculated using

> resrepbi <- biclust(artdata.bimax, method = BCrepBimax(),

+ minr = 2, minc = 2, number = 50, maxc=50)

Quest

Although all of these algorithms are developed for gene or microarray data,
the package is not limited to this application. Another possible application is
questionnaire data, which is frequently used in social science. Questionnaires
are used to classify respondents based on the answers they give. It therefore
makes sense not to use the whole questionnaire, but rather groups of questions
in which the respondents give similar answers. For example, as shown in
Chapter 6, by using the Bimax algorithm, one is able to find subgroups of
tourists doing the same activities during their holidays.

We developed the Quest algorithm, which contains three methods for working
with different scale levels, especially for biclustering this type of questionnaire
data. Quest functions like the Xmotifs algorithm if the answers are given
on a nominal scale (BCQuest) except that the rows (respondents) of the bi-
cluster found are eliminated from the ongoing calculations. For the ordinal
scale, the algorithm (BCQuestord) looks for similar answers in an interval set

5. Software 55

by a prespecified parameter d. The interval contains d lower and d higher
classes than the starting class of the chosen respondents. In a continuous case
(BCQuestmet), this interval is set by the quantile (quant) of a normal distri-
bution with variance vari.

The algorithms works similar to the Xmotifs algorithm:

1. Choose a random row xr ns times

2. Choose an sd subset Jsd of columns nd times and collect all rows i with

Quest: aij = arj

Questord: aij ∈ [arj − d; arj + d]

Questmed: aij ∈ [arj − vari ∗ z1−quant; arj + vari ∗ z1−quant]

for all j ∈ Jsd in Ifound

3. Collect all columns j with

Quest: aij = arj

Questord: aij ∈ [arj − d; arj + d]

Questmed: aij ∈ [arj − vari ∗ z1−quant; arj + vari ∗ z1−quant]

for all already found rows i in Jfound.

4. Save the largest subgroup (Ifound, Jfound) as a bicluster if it is larger than
an alpha fraction of the data.

5. Delete rows Ifound from the data and repeat Steps 1 - 4 until the maxi-
mum number is reached or no more bicluster is found.

Results are calculated calling

> biclust(x, method = BCQuest(), ns = 10, nd = 10, sd = 5,

+ alpha = 0.05, number = 100)

> biclust(x, method = BCQuestord(), d = 1, ns = 10, nd = 10,

+ sd = 5, alpha = 0.05, number = 100)

> biclust(x, method = BCQuestmet(), quant = 0.25, vari = 1,

+ ns = 10, nd = 10, sd = 5, alpha = 0.05, number = 100)

56 5. Software

5.1.2 Ensemble Method

The package also implements of the ensemble method described in Chapter 3.
The ensemble method is applied using the ensemble function

> resensemble <- ensemble(x, confs = plaid.grid(),

+ rep = 20, maxNum = 5, similar = jaccard2, thr = 0.8,

+ simthr = 0.7, subs = c(1, 1), bootstrap = FALSE,

+ support = 0, combine = qt, ...)

with the parameters

x: Data Matrix

confs: Matrix containing parameter sets

rep: Number of repetitions for each parameter set

maxNum: Maximum number of bicluster taken from each run

similar: Function to produce a similarity matrix of bicluster

thr: Threshold for similarity

simthr: Proportion of row column combinations in bicluster

subs: Vector of proportion of rows and columns for sub-sampling. Default
c(1,1) means no sub-sampling.

bootstrap: If TRUE, bootstrap sampling is used

support: Proportion of the runs, which must contain the bicluster in order
to have enough support to report it (between 0 and 1)

combine: Function to combine the single bicluster

...: Arguments passed to the combine function.

An important element of this method is the confs parameter. If one
chooses to use the plaid model with varying parameter settings, the func-
tion plaid.grid() takes the committed parameters (vectors) of the BCPlaid
functions and expands a parameter grid containing all possible combinations.
The package contains grid functions for all the algorithms in the package, e.g.
grid.cc() for the BCCC method, and other methods from different R pack-
ages.

At present,the package contains three combining methods:

5. Software 57

hcl Hierarchical clustering (We suggest complete linkage)

qt Quality clustering by choosing the biggest cluster

sqt Quality clustering sampling proportional to size

and two similarity measures:

jaccard2 Jaccard index

correl Correlation approach

5.1.3 Bicluster Extraction

In addition to the usual print method, which shows the number of bicluster
found and the first five bicluster dimensions,

> print(rescc)

An object of class Biclust

call:

biclust(x = artdata, method = BCCC(), alpha = 1.5,

delta = 0.3, number = 10)

Number of Clusters found: 10

First 5 Cluster sizes:

BC 1 BC 2 BC 3 BC 4 BC 5

Number of Rows: 18 14 12 12 10

Number of Columns: 14 15 15 12 12

and a summary() method listing all bicluster dimensions, the software package
includes several other methods for working with the bicluster.

We can extract the bicluster using bicluster(x, BicRes, number). This
function returns a list containing all bicluster specified in number. The default
setting is 1:BicRes@Number, which returns all bicluster found. Each part of
this list contains a data matrix with the entries from data x included in the
bicluster.

If one is only interested in the row and column indices, biclusternum-

ber(BicRes, number) delivers these as a similar list.

58 5. Software

5.1.4 Bicluster Validation

Jaccard Index

Some additional methods deal with validating the results. The Jaccard index
defined in section 2.3 compares two bicluster results Bicres1 and Bicres2 by
calling jaccardind(Bicres1, Bicres2).

It it useful to compare the calculated results between each other or with the
true allocation as illustrated in the artificial data example:

> result <- c(jaccardind(artres, resplaid), jaccardind(artres,

+ resxmotif), jaccardind(artres, rescc), jaccardind(artres,

+ resspect), jaccardind(artres, resbi))

> names(result) <- c("BCPlaid", "BCXmotifs", "BCCC",

+ "BCSpectral", "BCBimax")

> result

BCPlaid BCXmotifs BCCC BCSpectral BCBimax

1.000000000 0.015000000 0.002531646 0.800000000 0.158241757

> boxplot(as.data.frame(result), ylab = "Jaccard")

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

BCPlaid BCXmotifs BCCC BCSpectral BCBimax

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ja
cc

ar
d

Fig. 5.1: Boxplot of Jaccard index from 100 simulation runs.

5. Software 59

Figure 5.1 shows the same calculation as boxplots of 100 simulation runs and
there are no major changes to the one run result. The Plaid, Spectral and
Bimax methods were able to identify the hidden bicluster, though the latter
two produce some errors, while Xmotifs and CC did not find the bicluster.
The problem of the latter two algorithms was the high likelihood to find some
constant row and column subgroups or subgroups in the same discrete state in
the noise.

Variance Measure

In addition to methods for comparing two results the package also contains
constance and coherence measures for single bicluster. Building on the work of
Madeira and Oliveira (2004) for classifying bicluster, the function constant-

Variance returns the corresponding variance of rows as the average of the sum
of Euclidean distances between all rows of the bicluster x:

1

nrow(x) ∗ (nrow(x)− 1)

nrow(x)∑
i=1

nrow(x)∑
j=1

 1

ncol(x)

ncol(x)∑
k=1

(x[i, k]− x[j, k])2

dimension == ’col’ does the same for columns using t(x) and dimension ==

’both’ return the weighted mean of row and column calculation. additive-

Variance, multiplicativeVariance and signVariance do the same calcu-
lation after an additive, a multiplicative or a sign transformation is applied to
the bicluster.

> constantVariance(artdata, resplaid, 1, dimension = "both")

[1] 0.2352616

> additiveVariance(artdata, resplaid, 1, dimension = "both")

[1] 0.3099963

> multiplicativeVariance(artdata, resplaid, 1,

+ dimension = "both")

[1] 0.1031517

> signVariance(artdata, resplaid, 1, dimension = "both")

[1] 2.133500

60 5. Software

Goodness of Fit

A second idea of validating single bicluster is to fit a model to the bicluster and
compare it with the same model on the remaining data. The package contains
two different approaches dealing with a linear model

aij = µ+ αi + βj + εij

suggested by Kostka and Spang (2004). Chia and Karuturi (2010) fit this model
on the rows within the bicluster with the columns (1) within the bicluster and
(2) outside the bicluster. Using this estimates they propose two scores to
validate the bicluster type:

Tw(BCz) =
1

kz

∑
i∈Iz

(āi.)
2
w −

Ew(BCz)

lzw

Bw(BCz) =
1

lzw

∑
j∈Jzw

(ā.j)
2
w −

Ew(BCz)

kz
,

where

Ew(BCz) =
1

kz ∗ lzw

∑
i∈Iz ,jinJzw

(aij − āi. − ā.j + ā..)
2,

and w =1,2 (1 denotes the columns within the bicluster z and 2 outside). Chia
and Karuturi (2010) distinguish three major types of bicluster: (1) T type,
which has strong row effect (constant columns), (2) B type, which has strong
column effect (constant rows) and (3) µ type (constant values), which has both
strong column and row effect. For the estimation of effect strength and ranking
of bicluster they proposed to use the SB score:

SB = log(
max(T1 + a;B1 + a)

max(T2 + a;B2 + a)
),

where a is a small constant to avoid high values if T2 and B2 are very small.
A higher SB score indicates better separation between columns within and
outside the bicluster. Last they define a score

TS = log(
Tm + a

Bm + a
),

where m = 1 if SB > 0 and m = 2, if SB < 0. By defining a threshold for
this score it is possible to classify a bicluster as T or B Type automatically.

5. Software 61

In the package this scores are calculated using the ChiaKaruturi() function
which takes the data, the bicluster result, and the number of the bicluster of
interest as input.

> resChia <- ChiaKaruturi(artdata, bicResult = resplaid,

+ number = 1)

> resChia

Tscore1 Bscore1 Tscore2 Bscore2 SBscore TSscore

1 9.016207 9.01664 0.01258911 0.09101706 4.492646 -4.796266e-05

In Khamiakova et al. (2011) the F-Statistics inside and outside the bicluster
are compared. First the F- Statistics (Frow and Fcol) for the row

aij = µ+ αi + εij

and column

aij = µ+ βj + εij

model are calculated. Then a given number of bootstrap or sub samples of
columns outside the bicluster are drawn. On each sample again both F-
Statistics were calculated. To see if a row or column effect is visible in the
bicluster the percentage of F- Statistics higher than the F-Statistic in the bi-
cluster are reported as row or column bootstrap p-value. If this value is smaller
than a given threshold a row or column effect is visible. The bootstrap p-values
together with the F-Statistics of the bicluster are calculated using

> Bootstrap <- diagnoseColRow(artdata, bicResult = resplaid,

+ number = 1, nResamplings = 999, replace = TRUE)

> diagnosticPlot(bootstrapOutput = Bootstrap)

The diagnosticPlot() function plots a histogram of the F-Statistic of the
samples with the value within the bicluster marked as green line. An example
of the plot is given in Figure 5.2.

5.1.5 Bicluster Visualization

For the most part, results are still validated by analyzing graphical represen-
tations. Our package includes popular techniques for bicluster visualization.

62 5. Software

row scores

F(A)

D
en

si
ty

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

column scores

F(B)

D
en

si
ty

0.0 1.0 2.0 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 5.2: Diagnostic plot for artificial data: Since the bicluster is constant
over rows and columns no row or column effect is visible.

5. Software 63

Heatmap

Standard visualization for gene expression data is a heatmap. This heatmap
can be plotted using drawHeatmap() without a bicluster result. Given a biclus-
ter result, the rows and columns are rearranged so that the bicluster is shown
in the upper right corner. For a closer look at the bicluster, the parameter
local shows a heatmap containing only the rows and columns of the biclus-
ter. Figure 5.3 illustrates how the heatmap rearranges the artificial dataset to
represent the hidden bicluster.

> drawHeatmap(x = artdata)

> drawHeatmap(x = artdata, bicResult = resplaid, number = 1,

+ local = F)

Fig. 5.3: Heatmap of artificial data (left) and reordered with plaid result to
identify the bicluster (right).

Simple rearrangement is not enough to show multiple bicluster in one heatmap
(especially when they are overlapping). For this purpose a second heatmap
function

> heatmapBC(x, bicResult, number = 1:4, local = FALSE, ...)

is included in the package. It uses image()to draw the heatmap and is able
to plot all bicluster given in number in one heatmap. Examples are given in
Figure 3.1 in Chapter 3.

Parallel Coordinates

Secondly the package uses parallel coordinates to visualize the bicluster result.
Since the newest biclustering developments for biclustering originate from gene

64 5. Software

expression data, this plot of results is state-of-the-art. Compared to tradi-
tional parallel coordinates plots, both dimensions are equally important. One
can either plot both dimensions in one graph, calling plotBoth=TRUE, or one
can choose between columns (plotcol=TRUE) or rows to represent the lines.
In order to compare the values within the bicluster with those outside, com-
pare=TRUE shows the outside values as gray lines. For additional information
The command info=TRUE adds a title with additional information (number of
bicluster, rows and columns).Figure 5.4 shows the parallel coordinates of rows
and columns in the Plaid result of the artificial data.

> parallelCoordinates(x = artdata, bicResult = resplaid,

+ number = 1, plotBoth = TRUE, plotcol = TRUE,

+ compare = TRUE, info = F, bothlab = c("Rows", "Cols"),

+ ylab = "Value", col = 2, las = 2)

Rows

V
al

ue

R
ow

 8

R
ow

 1
8

R
ow

 2
1

R
ow

 2
7

R
ow

 2
8

R
ow

 3
7

R
ow

 4
3

R
ow

 4
8

R
ow

 6
3

R
ow

 9
4

−3

−2

−1

0

1

2

3

Cols

V
al

ue

C
ol

 2

C
ol

 1
4

C
ol

 2
5

C
ol

 3
1

C
ol

 3
4

C
ol

 3
5

C
ol

 4
0

C
ol

 4
1

C
ol

 4
4

C
ol

 5
0

−3

−2

−1

0

1

2

3

Fig. 5.4: Parallel coordinates of columns(upper) and rows(lower)

Membership Plot

If the number of columns (e.g. in questionnaires or preselected conditions in
a microarray experiment) is lower than 50, the bicluster results can be pre-
sented in a membership plot (biclustmember). This plot is meant to compare
the bicluster to each other or to a normal cluster result. Each bicluster is

5. Software 65

represented as a bar of stacked rectangles, where each rectangle represents a
column in the data set. If the column is not include in the specific bicluster, the
rectangle is plain white. If a bicluster contains a variable, the corresponding
rectangle is filled with a color, which represents the mean value of this variable
for all the objects within the bicluster. Depending on the variable mid, the
rectangle contains the global mean value for this variable in the middle (mid
= TRUE) or on the right half (mid = FALSE). If the membership plot is called
on a cluster result (clustmember) there are no white rectangles. The default
color code is diverge_hcl(101, h = c(0, 130)) which is red for the mini-
mal value, gray for values around the median, and green for maximal values.
It is possible to set ones’ own color palettes in the color argument. The which
argument allows the variables to be ordered. The ordering can be the result
of a hierarchical clustering or the outcome of bicorder.

The plot is invoked by

> biclustmember(bicResult, x, mid = TRUE, cl_label = "",

+ which = NA, main = "Bicluster Unsorted", xlab = "Cluster",

+ color = diverge_hcl(101, h = c(0, 130)), ...)

Figure 5.5 shows an example.

Bicluster Barchart

Alternative to the membership plot a classic barchart can be used to visualize
such a bicluster result. Only variables within the bicluster were represented
by a bar, and the mean value outside the bicluster is shown as a red dot. The
corresponding function in the package is

> biclustbarchart(x, bicRes, which = NULL, ...)

An example is shown in Figure 5.6

5.1.6 Little Helpers

The many different approaches to biclustering have led to the development of a
large number of small helper functions. For example, we can use the following
call to order the bicluster for some of the visualizations above:

> bicorder(bicResult, cols = TRUE, rev = FALSE)

66 5. Software

 1 2 3
Var. 1
Var. 2
Var. 3
Var. 4
Var. 5
Var. 6
Var. 7
Var. 8
Var. 9

Var. 10
Var. 11
Var. 12
Var. 13
Var. 14
Var. 15
Var. 16
Var. 17
Var. 18
Var. 19
Var. 20
Var. 21
Var. 22
Var. 23
Var. 24
Var. 25
Var. 26
Var. 27
Var. 28
Var. 29
Var. 30

Var. 1
Var. 2
Var. 3
Var. 4
Var. 5
Var. 6
Var. 7
Var. 8
Var. 9
Var. 10
Var. 11
Var. 12
Var. 13
Var. 14
Var. 15
Var. 16
Var. 17
Var. 18
Var. 19
Var. 20
Var. 21
Var. 22
Var. 23
Var. 24
Var. 25
Var. 26
Var. 27
Var. 28
Var. 29
Var. 30

Bicluster Unsorted

Cluster
 1 2 3

Var. 1
Var. 2
Var. 3
Var. 4
Var. 5
Var. 6
Var. 7
Var. 8
Var. 9

Var. 10
Var. 11
Var. 12
Var. 13
Var. 14
Var. 15
Var. 16
Var. 17
Var. 18
Var. 19
Var. 20
Var. 21
Var. 22
Var. 23
Var. 24
Var. 25
Var. 26
Var. 27
Var. 28
Var. 29
Var. 30

Var. 1
Var. 2
Var. 3
Var. 4
Var. 5
Var. 6
Var. 7
Var. 8
Var. 9
Var. 10
Var. 11
Var. 12
Var. 13
Var. 14
Var. 15
Var. 16
Var. 17
Var. 18
Var. 19
Var. 20
Var. 21
Var. 22
Var. 23
Var. 24
Var. 25
Var. 26
Var. 27
Var. 28
Var. 29
Var. 30

Cluster Unsorted

Cluster

 1 2 3
Var. 30
Var. 28
Var. 27
Var. 24
Var. 23
Var. 21
Var. 19
Var. 16
Var. 13
Var. 12
Var. 11

Var. 8
Var. 6
Var. 2
Var. 1

Var. 17
Var. 15
Var. 14
Var. 10

Var. 3
Var. 29
Var. 25
Var. 20

Var. 5
Var. 4

Var. 26
Var. 22
Var. 18

Var. 9
Var. 7

Var. 30
Var. 28
Var. 27
Var. 24
Var. 23
Var. 21
Var. 19
Var. 16
Var. 13
Var. 12
Var. 11
Var. 8
Var. 6
Var. 2
Var. 1
Var. 17
Var. 15
Var. 14
Var. 10
Var. 3
Var. 29
Var. 25
Var. 20
Var. 5
Var. 4
Var. 26
Var. 22
Var. 18
Var. 9
Var. 7

Bicluster Sorted

Cluster
 1 2 3

Var. 30
Var. 28
Var. 27
Var. 24
Var. 23
Var. 21
Var. 19
Var. 16
Var. 13
Var. 12
Var. 11

Var. 8
Var. 6
Var. 2
Var. 1

Var. 17
Var. 15
Var. 14
Var. 10

Var. 3
Var. 29
Var. 25
Var. 20

Var. 5
Var. 4

Var. 26
Var. 22
Var. 18

Var. 9
Var. 7

Var. 30
Var. 28
Var. 27
Var. 24
Var. 23
Var. 21
Var. 19
Var. 16
Var. 13
Var. 12
Var. 11
Var. 8
Var. 6
Var. 2
Var. 1
Var. 17
Var. 15
Var. 14
Var. 10
Var. 3
Var. 29
Var. 25
Var. 20
Var. 5
Var. 4
Var. 26
Var. 22
Var. 18
Var. 9
Var. 7

Cluster Sorted

Cluster

Fig. 5.5: Membership graph with (bottom) and without(top) bicorder or-
dering. Bicluster results are on the left, and k-mean results on the right side.

Here the columns are ordered according to their appearance in a bicluster
(Using cols = FALSE the rows can be ordered). The result is a vector in
which column numbers from the first bicluster are listed first and columns
which do not appear in any bicluster are last (using rev = TRUE the order can
be reversed). Ordering is quite simple if there is no overlapping in the data,
but a more sophisticated approach is needed for overlapping. For example
columns which appear in a subsequent bicluster must be arranged at the end
of the first bicluster and at the top of the second bicluster.

Furthermore bicluster results are still cluster results, so traditional cluster post-
processing works as well. The package includes small helper files which trans-
form the bicluster result so that it can be used in many other application or R
functions. The call

> writeBiclusterResults(fileName, bicResult, bicName, geneNames,

+ arrayNames, append = FALSE, delimiter = " ")

will write all bicluster in bicResult to the file filename using geneNames for
the row names and arrayNames for the column names. To convert the bicluster
into a normal cluster result,

5. Software 67

Bicluster Unsorted

Var. 30
Var. 29
Var. 28
Var. 27
Var. 26
Var. 25
Var. 24
Var. 23
Var. 22
Var. 21
Var. 20
Var. 19
Var. 18
Var. 17
Var. 16
Var. 15
Var. 14
Var. 13
Var. 12
Var. 11
Var. 10

Var. 9
Var. 8
Var. 7
Var. 6
Var. 5
Var. 4
Var. 3
Var. 2
Var. 1

−2 0 2 4 6

●

●

●

●

●

A

−2 0 2 4 6

●

●

●

●

●

B

−2 0 2 4 6

●

●

●

●

●

C

Population mean: ● Segmentwise means: in bicluster
outside bicluster

Bicluster Sorted

Var. 7
Var. 9

Var. 18
Var. 22
Var. 26

Var. 4
Var. 5

Var. 20
Var. 25
Var. 29

Var. 3
Var. 10
Var. 14
Var. 15
Var. 17

Var. 1
Var. 2
Var. 6
Var. 8

Var. 11
Var. 12
Var. 13
Var. 16
Var. 19
Var. 21
Var. 23
Var. 24
Var. 27
Var. 28
Var. 30

−2 0 2 4 6

●

●

●

●

●

A

−2 0 2 4 6

●

●

●

●

●

B

−2 0 2 4 6

●

●

●

●

●

C

Population mean: ● Segmentwise means: in bicluster
outside bicluster

Fig. 5.6: Barchart Graph with (bottom) and without(top) bicorder Order-
ing.

68 5. Software

> writeclust(bicResult, row = TRUE)

will return a normal cluster result for rows (for column set row=FALSE), with
non-clustered rows sorted to Cluster 0. The number of validation, visualization
and helper functions in the package is constantly growing in order to keep up
with all major advances in bicluster analysis.

5. Software 69

5.2 Illustrations

To illustrate the functionality of the package, the following section shows how
to calculate bicluster on the BicatYeast dataset, which is included in the pack-
age. In several examples this dataset shows how the bicluster can be validated
and how the visualization methods are applied. Also, a cross-validation study
shows the reliability of the single algorithms.

5.2.1 Yeast Data

Prelic et al. (2006) use this microarray dataset to present their bicluster tech-
nique. This is a subsample of the Saccharomyces Cerevisiae organism (Yeast)
and contains 419 genes on 70 conditions. After loading the data,

> library(biclust)

> data(BicatYeast)

we had to preprocess using binarized or discretized data.

> xmotifdata <- discretize(BicatYeast, nof = 10, quant = TRUE)

> bimaxdata <- binarize(abs(BicatYeast), threshold = 2)

After calculating all the different bicluster results

> Bicatresplaid <- biclust(x = BicatYeast, method = BCPlaid(),

+ back.fit = 2, shuffle = 3, fit.model = ~m + a + b,

+ iter.startup = 5, iter.layer = 30, verbose = F)

> Bicatresxmotif <- biclust(x = xmotifdata, method = BCXmotifs(),

+ ns = 200, nd = 200, sd = 4, alpha = 0.05, number = 50)

> Bicatrescc <- biclust(x = BicatYeast, method = BCCC(),

+ delta = 0.01, number = 50)

> Bicatresspect <- biclust(x = BicatYeast, method = BCSpectral(),

+ withinVar = 4)

> Bicatresbi <- biclust(x = bimaxdata, method = BCBimax(),

+ minr = 5, minc = 5, number = 50)

we found that the results contained different bicluster with different numbers
of rows and columns. For example, the result of the BCXmotifs algorithm

> Bicatresxmotif

70 5. Software

An object of class Biclust

call:

biclust(x = xmotifdata, method = BCXmotifs(), ns = 200,

nd = 200, sd = 4, alpha = 0.05, number = 50)

Number of Clusters found: 38

First 5 Cluster sizes:

BC 1 BC 2 BC 3 BC 4 BC 5

Number of Rows: 23 15 14 20 10

Number of Columns: 5 6 5 5 5

found more cluster with equal numbers of columns, while the BCPlaid result

> Bicatresplaid

An object of class Biclust

call:

biclust(x = BicatYeast, method = BCPlaid(), back.fit = 2,

shuffle = 3, fit.model = ~m + a + b,

iter.startup = 5, iter.layer = 30, verbose = F)

Number of Clusters found: 7

First 5 Cluster sizes:

BC 1 BC 2 BC 3 BC 4 BC 5

Number of Rows: 23 28 26 24 3

Number of Columns: 12 5 7 3 3

contained fewer bicluster in various column sizes. A first validation can be done
by simply comparing the Jaccard index of all 5 results. The matrix jacresult

contains the result of comparing each algorithm to all other algorithm calling
jaccardind(). This matrix is filled, calling

> jacresult[1, 2] <- jaccardind(Bicatresplaid, Bicatresxmotif)

on all possible combinations.

> jacresult

5. Software 71

Alogrithmus

Alogrithmus BCPlaid BCXmotifs BCCC BCSpectral BCBimax

BCPlaid 1.0000000 0.0128998 0.0044838 0.0069520 0.0000000

BCXmotifs 0.0128998 1.0000000 0.0321175 0.0042682 0.0060214

BCCC 0.0044838 0.0321175 1.0000000 0.0116795 0.0000000

BCSpectral 0.0069520 0.0042682 0.0116795 1.0000000 0.0000000

BCBimax 0.0000000 0.0060214 0.0000000 0.0000000 1.0000000

Bicluster 1 (size 23 x 12)

di
ur

na
l_

04
h.

C
E

L

di
ur

na
l_

08
h.

C
E

L

di
ur

na
l_

12
h.

C
E

L

di
ur

na
l_

16
h.

C
E

L

di
ur

na
l_

20
h.

C
E

L

ce
ll_

cy
cl

e_
ap

h_
6h

ce
ll_

cy
cl

e_
ap

h_
8h

ce
ll_

cy
cl

e_
ap

h_
10

h

ce
ll_

cy
cl

e_
ap

h_
12

h

ce
ll_

cy
cl

e_
ap

h_
14

h

ce
ll_

cy
cl

e_
ap

h_
16

h

ce
ll_

cy
cl

e_
ap

h_
19

h

247474_at
263549_at
252011_at
254250_at
254746_at
259773_at
255822_at
260221_at
252965_at

259790_s_at
257506_at
259783_at
259787_at
261772_at
249645_at
247055_at
250366_at
262970_at
258757_at
266222_at
250801_at
266965_at
262883_at

Fig. 5.7: Heatmap of first bicluster in CC, Xmotif and Plaid results and a
closer look at the plaid bicluster.

As mentioned above, the algorithms search for completely different submatrix
structures, so it is not surprising that the Jaccard index of different Bicluster-
Result is close to zero. This indicates that the bicluster found are completely
different to each other. Concentrating on one structure (e.g constant biclus-

72 5. Software

ter), we can perform a second validation by calculating the constantVariance
measure. If we perform

> varresult <- constantVariance(x = BicatYeast,

+ resultSet = Bicatrescc, number = 1)

for the first bicluster in each result, we obtain

> varresult

BCPlaid BCXmotifs BCCC BCSpectral BCBimax

1.06805 0.59070 0.58055 1.68799 2.44496

on all 5 result sets. The calculations show the expected result, since CC
searches for constant bicluster and Xmotifs contains genes in the same state.

To evaluate whether the plaid result represents bicluster in an acceptable con-
stant state, we can plot a heatmap (drawHeatmap and compare it to the
heatmap of a constant bicluster. Figure 5.7 shows the heatmap of the first
bicluster in the CC, the Xmotif, and the Plaid result produced by

> drawHeatmap(x = BicatYeast, bicResult, number = 1, local = F)

In the lower right corner, a heatmap of the first bicluster in the Plaid result is
pictured without the remaining data. This is done by setting local = TRUE.
Here it is possible to identify the genes and conditions by name, since they are
drawn as labels.

The parallelCoordinates plot, shows the expression level of a gene over all
conditions or vice versa. Figure 5.8 clearly shows that the Plaid result identifies
gene condition combinations with an expression level lower than 0, especially in
the zoomed version(compare = FALSE) in the lower row. The result also shows
much more variance than the CC result. The graphs are generated using

> parallelCoordinates(x = BicatYeast, bicResult, number = 1,

+ info = TRUE, compare = TRUE, col = 1)

on the Plaid and CC results.

5. Software 73

Rows

V
al

ue

247474_at 259773_at 257506_at 247055_at 250801_at

−
4

−
2

0
2

4

Bicluster 1
(rows= 23 ; columns= 12)

Rows

V
al

ue

248683_at 263497_at 263495_at 255943_at 257057_at

−
4

−
2

0
2

4
6

Bicluster 1
(rows= 30 ; columns= 21)

Rows

V
al

ue

247474_at 259773_at 257506_at 247055_at 250801_at

0
1

2
3

Bicluster 1
(rows= 23 ; columns= 12)

Rows

V
al

ue

248683_at 263497_at 263495_at 255943_at 257057_at

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

Bicluster 1
(rows= 30 ; columns= 21)

Fig. 5.8: Parallel Coordinates of bicluster 1 of Plaid(left) and CC (right).

5.2.2 Bootstrap Cross-Validation

In order to evaluate, the reliability of the calculations, a pseudo cross-validation
was run. Fifty bootstrap samples were taken from the real data:

> bootsample[[1]] <- BicatYeast[sample(1:419, 419,

+ replace = TRUE), sample(1:70, 70, replace = TRUE)]

The bicluster were calculated with all 5 algorithms and the result was compared
with the result of the corresponding algorithm on the whole dataset using the
Jaccard index. So once again, 1 is a perfect match with the complete dataset,
and 0 is a perfect mismatch.

Figure 5.9 shows the result of the 50 bootstrap samples as boxplots. The CC
method nearly always found the primary combination because the score from

74 5. Software

●

●
●
●

BCPlaid BCXmotifs BCCC BCSpectral BCBimax

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ja
cc

ar
d

Fig. 5.9: Boxplot of bootstrap cross-validation results for Jaccard index.

these combinations does only slightly change if rows or columns were removed.
The Bimax method also found the same bicluster as applied to the whole
dataset. Removing ones from a matrix with ones has no real influence on the
result. In the Plaid and Xmotifs algorithms changing the rows and columns
led to a dislocation in the result set, having equal rows cause the algorithms
to drop other rows previously included in the bicluster.

5. Software 75

5.3 Other Software

In addition to our biclust package there are several other R packages and
stand alone softwares associated with biclustering. In cooperation with other
working groups, we have two unpublished packages hosted on R-Forge. Below,
we will give a short overview of (a) our R-Forge projects, (b) other available
R packages and (c) stand alone software associated with bicluster analysis.

5.3.1 R-Forge Packages

We are currently working on two bicluster software packages, one with a group
at the DKFZ in Heidelberg and on one with a group in Hasselt, Belgium.
These packages are available on R-Forge (http://r-forge.r-project.org/,
Theußl and Zeileis (2009)).

sv4d

The sv4d package (Sill and Kaiser, 2011) implements our sv4d algorithm (Sill
et al., 2011) and the biclustering by means of sparse singular value decompo-
sition by (Lee et al., 2010). The package also includes an alternative heatmap
plot for overlapping bicluster.

BiclustGUI

The BiclustGUI package (Pramana and Kaiser, 2010) contains an R Com-
mander (Fox, 2010) Plug-In for bicluster analysis. It enables R Commander
users to calculate and analyze bicluster. We implemented almost all functions
of the biclust package and some of the R packages mentioned below (isa2
and fabia).

Figure 5.10 shows the input windows for the CC calculation and the bicluster
plots. This package enables inexperienced R users to run bicluster calculations.

5.3.2 R Packages

The number of R packages is growing and with it the number of packages on
CRAN (R Development Core Team, 2011) that are associated with bicluster
algorithms or results. Graphical user interfaces like rattle (Williams, 2009),
use the functionality of our package to retrieve some bicluster results. Moreover
there are packages which support a specific algorithm. These are listed below.

76 5. Software

ISA

The Iterative Signature Algorithm of Bergmann et al. (2003) is used in three
R packages. The isa2 package (Csardi, 2009) includes the main implementa-
tion of the algorithm, the eisa package (Csardi, 2010) optimizes the algorithm
for data from the bioconductor project (Gentleman et al., 2004) and the Ex-

pressionView package provides useful visualization for bicluster results. All
of these packages include an interface to the biclust package. The results of
isa2 and eisa can be converted to a BiclusterResult object, after which all
the functions of the biclust package can be used. A BiclusterResult object
can be read into the ExpressionViewer. These techniques are thus available
for the results of the algorithms in our package.

Fabia

The fabia package implements the Fabia algorithm of Hochreiter et al. (2010).
It is available on bioconductor (Gentleman et al., 2004) and includes some
additional visualization tools. Those plots are especially useful if a bicluster
algorithm is based on a singular value decomposition. The fabia package also
contains example datasets used by the authors to compare different bicluster
algorithms. An interface for using our biclust package is also available, in
this package.

cMonkey

The cMonkey package (Reiss, 2011) implements the idea of Reiss et al. (2006).
It also contains some validation datasets and comes with a detailed description
and support website. The package includes the usual plot and output methods
but does not yet include an interface to our package.

5.3.3 Stand Alone Software

Outside the R environment, there are hundreds of tools which deal with either
bicluster calculation or bicluster validation. We will mention two of those pro-
grams: one calculates bicluster using 5 different algorithms and one visualizes
bicluster results.

BicAT

The Bicluster Analysis Tool (BicAT, Barkow et al. (2006) is a Java-based
graphical user interface for calculating, analyzing, and visualizing bicluster

5. Software 77

results. It includes the algorithms Bimax (Prelic et al., 2006), CC (Cheng
and Church, 2000), xMotifs (Murali and Kasif, 2003), ISA (Bergmann et al.,
2003), and OPSM (Ben-Dor et al., 2003). It also includes heatmap and parallel
coordinate plots and some summary statistics and output functions.

BicOverlapper

The BicOverlapper (Santamaŕıa et al., 2008) tool is also Java-based. It is a
framework for supporting the visual analysis of gene expression by means of
biclustering (Santamaŕıa et al., 2008). It includes the traditional plots such as
heatmap and parallel coordinates as well as the possibility to visualize different
sets of bicluster simultaneously. BicOverlapper has is an interface to R so that
it is possible to draw results obtained with R.

78 5. Software

Fig. 5.10: BiclustGUI Input Windows: CC(above) and Plots(below)

5. Software 79

5.4 Conclusion

This chapter demonstrated how to use the R package biclust, a toolbox for bi-
cluster analysis. The package contains a continually growing number of biclus-
ter algorithms, validation and visualization methods, and other helpful tools
for bicluster analysis. Wes demonstrated that the algorithms in the package
lead to completely different results, and in a simulation studies we applied
the algorithms and other functions of the package to typical data situations.
Moreover, we provided an additional yeast data example and gave an overview
of other R packages and stand alone software.

6. Application on Marketing Data

Since biclustering overcomes problems of ordinary clustering on high dimen-
sional two-way data it is not only useful in biological data analysis but also
in any other field providing such data. In this chapter we use biclustering for
market segmentation in tourism research. In this filed a lot of data is pro-
duced using questionnaires with binary or ordinal outcomes. We also focus
on the evaluation of the performance of the biclustering algorithm comparing
the Bimax algorithm to k-means and hierarchical clustering and the ordinal
Quest algorithm on artificial data produced by the algorithms presented in
Chapter 4. Additionally examples from shopping basket analysis and sports
data are given.

6.1 Introduction

Market segmentation ’is essential for marketing success: the most successful
firms drive their businesses based on segmentation’ (Lilien and Rangaswamy,
2002). It enables tourism businesses and destinations to identify groups of
tourists who share common characteristics and therefore make it possible to
develop a tailored marketing mix to most successfully attract such subgroups
of the market. Focusing on subgroups increases the chances of success within
the subgroup thus improving overall survival and success chances for businesses
and destinations in a highly competitive global marketplace.

The potential of market segmentation has been identified a long time ago
((Claycamp and Massy, 1968; Smith, 1956) and both tourism industry and
tourism researchers continuously aim to gain more market insight to a wide
range of markets through segmentation (according to Zins (2008) eight percent
of publications in the Journal of Travel Research are segmentation studies) as
well as to improve segmentation methods to be less prone to error and mis-
interpretation. One of the typical methodological challenges faced by tourism
segmentation data analysts is that a large amount of information (responses
to many survey questions) is available from tourists, but the sample sizes are
typically too low given the number of variables used to conduct segmentation
analysis (Formann, 1984). This is methodologically problematic because all

6. Application on Marketing Data 81

methods used to construct or identify segments (Dolnicar and Leisch, 2010)
explore the data space looking for groups of respondents who are close to each
other. If the data space is huge (e.g. 30-dimensional if 30 survey questions
are used as the segmentation basis) and only a small number of respondents
are populating this space (e.g. 400), there is simply not enough data to find
a pattern reliably, resulting in a random splitting of respondents rather then
the construction of managerially useful segments which can be reproduced and
therefore used as a firm basis of strategy development. See also Hastie et al.
(2003) for a recent discussion of the ’curse of dimensionality’.

Empirical evidence that this dimensionality problem is very serious in tourism
market segmentation is provided by a review of segmentation studies (Dol-
nicar, 2002) which concludes that, for the 47 a posteriori segmentation studies
reviewed, the variable numbers ranged from 3 to 56. At the same time the
sample sizes ranged from 46 to 7996 with a median of only 461 respondents.
Note that the median sample size of 461 permits the use of only 8 variables
(Formann, 1984), less than the vast majority of tourism segmentation studies
use.

The optimal solution to this problem is to either collect large samples that
allow segmentation with a large number of variables or to conduct a series of
pre-tests and include only the subset of most managerially relevant and non-
redundant survey questions into the questionnaire (reducing the number of
variables in the segmentation task).

Often this is not possible because, for instance, surveys are instruments de-
signed by tourism industry representatives and the segmentation data analyst
does not have the opportunity to make changes to the questionnaire. In such
cases the traditional solution for the problem of large numbers of variables was
to conduct so-called ’factor-cluster analysis’ (Dolnicar and Grün, 2008), where
the raw data is first factor analyzed and the factor scores of the resulting factors
are used to compute the segmentation solution. This approach has the major
disadvantage of solving one methodological problem by introducing a number
of new ones: (1) the resulting segmentation solution is no longer located in the
space of the original variables, but in the space of factors and can thus only
be interpreted at an abstract factor level, (2) with typical percentages of vari-
ance explained of between 50 and 60%, almost half of the information that has
been collected from tourists is effectively discarded before even commencing
the segmentation task, (3) factor-cluster analysis has been shown to perform
worse in all data situations, except in cases where the data follows exactly the
factor model used with respect to revealing the correct segment membership
of cases (Dolnicar and Grün, 2008), and (4) it assumes, that the factor model
is the same in all segments.

82 6. Application on Marketing Data

This leaves the segmentation data analyst, who is confronted with a given
data set with many variables (survey questions) and few cases (tourists), in
the situation of having no clean statistical solution for the problem.

In this chapter we use biclustering on tourism data. In so doing, it is not
necessary to eliminate variables before clustering or condensing information
by means of factor analysis. The problem biclustering solves on biological
data is similar to the high data dimensionality problem discussed above in the
context of tourism segmentation: large numbers of genes for a small number of
conditions. It therefore seems worthwhile to investigate whether biclustering
can be used as a method to address the problem of high data dimensionality
in data-driven segmentation of tourists.

Please note that throughout this chapter we understand the term market seg-
mentation to mean ’dividing a market into smaller groups of buyers with dis-
tinct needs, characteristics or behaviors who might require separate products
or marketing mixes’ Kotler and Armstrong (2006).

6.1.1 Biclustering on Marketing Data

The starting point is a data matrix resulting from a consumer survey where
the rows correspond to respondents/tourists and the columns to survey ques-
tions.The aim of biclustering here is to find segments of respondents who an-
swered groups of questions as similar as possible to each other, and as different
as possible to other respondents.

As stated above, not all questions are used for the segmentation. Instead, a
subgroup of questions is identified for each segment. This subgroup of questions
is selected because members of the segment responded to them in a similar
way. Given the right data structure all bicluster algorithm can be adapted for
application on market data. Because of the different types and structures of
the outcome, it is crucial to choose the correct algorithm for the data structure
and problem at hand.

For example, when tourists are asked which activities they engaged in during
a vacation, responses are typically recorded in a binary format. It is therefore
important that the algorithm chosen can deal with binary data. Furthermore,
it is only interesting to define segments as engaging in the same activities. It
is not a relevant characteristic of a segment if members have not engaged in
the same vacation activities. Therefore, an algorithm needs to be chosen in
this case where only positive responses are taken into consideration for the
computations.

Significant differences between segments with respect to sociodemographic and
other background variables that have not been used to form the groups can be

6. Application on Marketing Data 83

tested in the same way as they are for any clustering algorithm; biclustering
does not require any specific procedures.

6.2 When to Use Biclustering

If the data analyst does not face a data dimensionality problem and results from
standard techniques yield good solutions, there is no need to use biclustering.
If, however, the number of variables that need to be included is too large given
the sample size, or standard techniques yield diffuse results, biclustering offers
a methodologically clean and managerially attractive solution for the following
reasons:

6.2.1 Automatic Variable Selection

Biclustering can analyze data sets with a large number of variables because
it searches for subgroups in respondents and questions and finds parts of the
data where respondents display similar answer patterns across questions.

While there are no formal rules for how many variables per respondent can
reasonably be grouped with exploratory clustering algorithms, the recommen-
dation for parametric models, more specifically for latent class analysis, is to
use at least 2k cases (k = number of variables), preferably 5*2k of respon-
dents for binary data sets (Formann, 1984). This requirement would further
increase if ordinal data were to be used. For the median sample size as re-
ported in the review of segmentation studies by Dolnicar (2002) this would
mean that no more than 6 variables could be included in the segmentation
base. Similar rules of thumb apply for other clustering procedures, with exact
numbers depending on how many parameters are to be estimated per cluster
(Everitt et al., 2009; Hastie et al., 2003).

Traditional clustering algorithms weigh each piece of information equally, so
responses to all survey questions are viewed as equally important in construct-
ing a segmentation solution. However, this may not actually be desirable.
The assumption underlying the factor-cluster approach, for example, is that
not all survey questions are equally important and that they therefore can
be condensed into factors that load on different numbers of underlying survey
questions. Also, if thorough pretesting of questionnaires is not undertaken, it
is very likely that some survey questions will have been included that are not
actually critical to the construction of segments.

Biclustering solves this problem without data transformation. By using ques-
tions with respect to which a substantial part of the sample gave similar re-

84 6. Application on Marketing Data

sponses, invalid items are automatically ignored because they never demon-
strate such systematic patterns. This feature of biclustering is of immense
value to data analysts because they can feel confident that the inclusion of
weaker, less informative items do not bias the entire segmentation results and
because they do not need to rely on data preprocessing using variable selection
methods before segmenting the data.

6.2.2 Reproducibility

One of the main problems with most traditional partitioning clustering algo-
rithms as well as parametric procedures frequently used to segment markets,
such as latent class analysis and finite mixture models, is that repeated com-
putations typically lead to different groupings of respondents. This is due to
the fact that consumer data are typically not well structured (Dolnicar and
Leisch, 2010) and that many popular algorithms contain random components,
most importantly, random selection of starting points. Biclustering results are
reproducible such that every repeated computation leads to the same result.
Reproducibility provides users of segmentation solutions with the confidence
that the segments they choose to target really exist and are not merely the re-
sult of a certain starting solution of the algorithm. Note that one of the most
popular characteristics of hierarchical clustering is its deterministic nature;
however, hierarchical clustering becomes quickly unfeasible for larger data sets
(e.g., dendrograms with more than 1,000 leaves are basically unreadable).

6.2.3 Identification of Market Niches

Many empirical data sets that form the basis for market segmentation are not
well structured; they do not contain density clusters. Therefore, clustering al-
gorithms do not identify naturally occurring groups of consumers, but instead
construct them. Many clustering algorithms have a known tendency to group
units into certain patterns (e.g., single-linkage hierarchical clustering produces
chain structures, and k-means clustering tends to produce spherical groups of
roughly equal size). As a consequence, it is often difficult to identify small
market niches. Biclustering enables the identification of niches because the
algorithm inherently looks for identical patterns among subgroups of respon-
dents related to subgroups of questions. Niches are identified when groups with
high numbers of matches are identified. A high number of matches is a strict
grouping criterion, thus extracting a group with few members a market niche.
A less strict criterion (fewer required matches) would lead to the identification
of a larger sub-market that is less distinct.

6. Application on Marketing Data 85

1 ∗ ∗ 1 ∗ 1 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ 1 ∗ 1 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ 1 ∗ 1 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

⇒

1 1 1 ∗ ∗ ∗ ∗
1 1 1 ∗ ∗ ∗ ∗
1 1 1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

Fig. 6.1: Biclustering finds objects and variables with a similar value 1 and
reports them as a bicluster (submatrix).

6.3 Binary Data

The Bimax algorithm (Prelic et al., 2006) is suitable for the example of seg-
menting tourists based on their vacation behavior: it searches for submatrices
in a binary matrix where all entries in the identified row and column combi-
nation are one (Figure 6.1). As the original algorithm described in Chapter 5
leads to overlapping submatrices (meaning that a respondent could be assigned
to multiple segments), we use the repeated Bimax algorithm, to prohibit over-
lapping of cluster memberships (but permitting overlapping is also possible, if
preferred). Normally the algorithm takes a minimum segment size, but this
minimum segment size does not have to be set. It is up to the researchers
to decide whether or not to use it and how large the smallest segment size
should be. For our example, we decided that a segment containing less than
5% of the population is unlikely to comply with the substantiality criterion
that Philip et al. (2001) endorse for market segments, prescribing a minimum
size for a segment to be worth targeting. The selection of the smallest segment
size is comparable to the decision of how many segments to choose when using
conventional partitioning and hierarchical clustering algorithms: it requires an
assessment on the side of the data analyst.

6.3.1 Data

The data set used for this illustration is a tourism survey of adult Australians
which was conducted using a permission based internet panel. Panel members
were offered an incentive for completion of surveys, shown to be effective in
increasing response rate (Couper, 2000; Deutskens et al., 2004). Participants
were asked questions about their general travel behavior, their travel behavior
on their last Australian vacation, benefits they perceive of undertaking travel,
and image perceptions of their ideal tourism destination. Information was also

86 6. Application on Marketing Data

collected about the participants age, gender, annual household income, marital
status, education level, occupation, family structure, and media consumption.

The variables used are activities that tourists engaged in during their vaca-
tion. This example is chosen for two reasons: (1) vacation activity segments
are highly managerially relevant because they enable destinations or tourism
providers to develop tourism products and packages to suit market segments
with different activity patterns, and (2) data about vacation activities is an
example of a situation where one is usually confronted with a very high num-
ber of variables that cannot be reduced without unacceptable loss of infor-
mation. In the present data set 1,003 respondents were asked to state for 44
vacation activities whether they engaged in them during their last vacation.
Note that according to Formann (1984), 44 binary variables would require
87,960,930,222,080 respondents to be surveyed in order to be able to run la-
tent class analysis to identify or construct market segments.

6.3.2 Results

Biclustering results are shown in Figure 6.2 where each resulting market seg-
ment is represented by one column and each survey question (vacation activity)
by one row. Black fields indicate vacation activities that all segment members
have in common. The middle square of those black fields represents the mean
value for this vacation activity among all respondents, ranging from 0 (white)
to 1 (black) on a greyscale. The lighter the grey, the lower the level of engage-
ment for the entire sample in a particular vacation activity, making agreement
among segment members in those variables particularly interesting.

As can be seen, 11 clusters complied with the criterion of containing at least
50 respondents. This restriction can be abandoned, leading to a larger number
of segments being identified. This was not done in this analysis because the 11
market segments captured 77% of the total sample. The 11 resulting segments
are characterized by distinct patterns of activities. Note that, as opposed to
traditional algorithms, all members of a cluster engage in all the activities that
are highlighted in the chart. This makes the segments resulting from biclus-
tering much more distinct, but has the disadvantage of being more restrictive,
thus leading to segments of smaller size.

Before individual segments are interpreted it should be noted that some of
the segments depicted in Figure 6.2 could also have been included in other
segments but have been separated out because they have a number of addi-
tional vacation behaviors in common. For example, all members of Segment 1
(74 respondents, 7% of the sample) engage in 11 vacation activities: relaxing,
eating in reasonably priced eateries, shopping, sightseeing, visiting industrial
attractions (such as wineries, breweries, mines, etc.), going to markets, scenic

6. Application on Marketing Data 87

 1 2 3 4 5 6 7 8 9 10 11

Bushwalk
Beach
Farm

Whale
Gardens
Camping

Swimming
Skiing
Tennis
Riding

Cycling
Hiking

Exercising
Golf

Fishing
ScubaDiving

Surfing
FourWhieel
Adventure

WaterSport
Theatre

Monuments
Cultural

Festivals
Museum

ThemePark
CharterBoat

Spa
ScenicWalks

Markets
GuidedTours

Industrial
wildlife

childrenAtt
Sightseeing

Friends
Pubs
BBQ

Shopping
Eating

EatingHigh
Movies
Casino

Relaxing
SportEvent

Bushwalk
Beach
Farm
Whale
Gardens
Camping
Swimming
Skiing
Tennis
Riding
Cycling
Hiking
Exercising
Golf
Fishing
ScubaDiving
Surfing
FourWhieel
Adventure
WaterSport
Theatre
Monuments
Cultural
Festivals
Museum
ThemePark
CharterBoat
Spa
ScenicWalks
Markets
GuidedTours
Industrial
wildlife
childrenAtt
Sightseeing
Friends
Pubs
BBQ
Shopping
Eating
EatingHigh
Movies
Casino
Relaxing
SportEvent

Segment

Fig. 6.2: Biclustering Plot for Vacation Activities

walks, visiting museums and monuments, botanic and public gardens, and the
countryside/farms. The most characteristic vacation activities for this segment
(as highlighted by the lighter grey middle section of the black bar in Figure
6.2) are visiting industrial attractions, museums, and monuments, because rel-
atively few respondents in the total sample engage in those activities (30%,
34%, and 42%). Theoretically, Segment 1 could have been merged with Seg-
ment 11 (51 respondents, 5% of the sample), which only has three vacation
activities in common (eating in reasonably priced eateries, shopping, and going
to markets) to produce a larger segment containing members of both groups.
This is deliberately not done because the much more distinct Segment 1 en-
ables more targeted marketing opportunities than the more general Segment
11.

Segment 2 members (59 respondents, 6% of the sample) relax, eat in reasonably
priced restaurants, shop, go sightseeing, and go to markets and on scenic walks.
But they also eat in upmarket restaurants, go to pubs, go swimming, and

88 6. Application on Marketing Data

enjoy the beach. This latter group of variables differentiates them clearly from
Segment 1. Segment 3 (55 respondents, 6% of the sample) is characterized
in addition to the activities they share with one of the other two segments
by going on picnics and BBQs, and visiting friends and relatives. Segments 7
(91 respondents, 9% of the sample), 9 (103 respondents, 10% of the sample),
and 11 (51 respondents, 5% of the sample) are relatively generic segments,
each of which could be merged with Segment 1, 2, or 3 if a larger segment
is needed with fewer common vacation activities. For example, members of
Segment 10 (80 respondents, 8% of the sample) only have three activities in
common: relaxing, sightseeing, and going on scenic walks. Segment 4 (50
respondents, 5% of the sample) could be merged with Segment 1. It engaged
in the same activities, except for not visiting public and botanic gardens and
the countryside/farms. Segment 5 (75 respondents, 8% of the sample) could be
merged with Segment 2. These members, as opposed to Segment 2 members,
do not eat in upmarket restaurants and they do not go to pubs and markets.
Segment 6 (79 respondents, 8% of the sample) is different from Segment 3 in
that members of this segment do not go on picnics and BBQs, scenic walks,
and to the beach. Segment 9 members have three activities in common: they
all like to eat out in reasonably priced restaurants, they like to shop, and
they visit friends and relatives. Finally, Segment 8 (51 respondents, 5% of the
sample) members all relax, eat in reasonably priced eateries, go sightseeing, to
the beach, and swim.

The segments identified by the biclustering algorithm also show external valid-
ity: they differ significantly in a number of sociodemographic and behavioral
variables that were not used to construct the segments. For example, segments
differ in the number of domestic holidays (including weekend getaways) they
take per year (ANOVA p-value = 0.004). Members of Segment 2 go on the most
(6.5) domestic holidays per year, closely followed by members of Segments 1
(5.8) and 10 (5.7). The fewest domestic holidays are taken by Segments 4 (3.9)
and 6 (3.7). A similar pattern holds for overseas vacations (ANOVA p-value
< 0.0001), with Segment 2 vacationing overseas most frequently, 1.4 times a
year on average.

With respect to the number of days spent on the last domestic vacation, differ-
ences between segments are also highly significant (ANOVA p-value < 0.0001).
Members of Segment 3 tend to stay longest (10.8 days on average), followed
by members of Segments 2 (9.7 days) and 9 (8.4 days). Segments with partic-
ularly short average stays on their last domestic holiday include Segments 10
(5.9 days) and 11 (5.8 days).

Further, significant differences exist with respect to a number of dimensions
related to travel behavior: information sources used for vacation planning, in
particular tour operators (Fisher’s exact test p value < 0.0001), travel agents
(Fisher’s exact test p-value = 0.006), ads in newspapers/journals (Fisher’s ex-

6. Application on Marketing Data 89

act test p-value < 0.0001), travel guides (Fisher’s exact test p-value = 0.023),
radio ads (Fisher’ s exact test p-value = 0.031), TV ads (Fisher’s exact test p-
value < 0.0001), and slide nights (Fisher’s exact test p-value = 0.002), whether
members of various segments take their vacations on weekends or during the
week (Fisher’s exact test p-value = 0.001), with or without their partner
(Fisher’s exact test p-value = 0.005), with or without an organized group
(Fisher’s exact test p-value = 0.01), whether their last domestic vacation was
a packaged tour (Fisher’s exact test p-value < 0.0001), whether they rented a
car (Fisher’s exact test p-value < 0.0001), and how many people were part of
the travel party on their last domestic vacation (ANOVA p-value = 0.031).

Additional significant differences were revealed with respect to sociodemo-
graphics and media behavior: age (Fisher’s exact test p-value = 0.012), level
of education (Fisher’s exact test p-value = 0.031), frequency of reading the
newspaper (Fisher’s exact test p-value = 0.004), and frequency of listening to
the radio (Fisher’s exact test p-value = 0.002).

6.3.3 Comparison with Popular Segmentation
Algorithms

The aim of this section is to compare the Bimax algorithm with the two very
popular algorithms in tourism segmentation: k-means clustering and Ward’s
clustering. A few introductory remarks are needed before this comparison is
undertaken. Clustering data always leads to a result. It also leads to a result
when wrong methodological decisions are made, for example, an unsuitable
distance measure is used or too many variables are used given the size of the
sample. Comparisons of algorithms based on final results (e.g., resulting seg-
ment profiles and descriptions) can therefore only be made if the resulting
solutions from all algorithms are valid. To be valid, the following condition
must be met: (1) no methodological violations must have occurred (e.g., us-
ing too many variables given a small sample size) and (2) results must be
reproducible or reliable.

First we compared stability of three algorithms (Bimax, k-means, and Ward’s
clustering) on bootstrap samples. Then, in a second step, we produced artificial
binary data with a variable percentage of ones and try to find hidden bicluster
with the three methods. K-means and Ward’s clustering were chosen because
they have been identified as the most frequently used algorithms in tourism
segmentation studies (Dolnicar, 2002).

To measure stability, we use the Adjusted Rand Index (Lawrence and Arabie,
1985). The Rand Index (Rand, 1971) takes values between 0 and 1 and is
computed as A/(A + D), where A is the number of all pairs of data points which
are either put into the same cluster by both partitions or put into different

90 6. Application on Marketing Data

clusters by both partitions. D is the number of all pairs of data points that
are put into one cluster in one partition, but into different clusters by the
other partition. This raw index is usually adjusted for unequal cluster sizes
and agreement by chance (Lawrence and Arabie, 1985). A value of one of the
adjusted indices indicates identical partitions, zero agreement due to chance.

Bootstrap Samples

In this first comparison we draw 200 bootstrap samples (rows of the data are
resampled with replacement) of the original data and compared the outcomes
with the result on the original, unsampled data. Note that the 200 boot-
strap samples are different and therefore identical segmentation results cannot
emerge from the 200 repeated computations, as they would if the same original
data set would be used to compute 200 repeated computations. Note also that
throughout this manuscript we refer to stability in the sense of stability over
repeated computation on the original or bootstrapped samples, we do not refer
to stability of segments over time. Because no natural clusters (Dolnicar and
Leisch, 2010) exist in the empirical data under study we constructed 12 clusters
using both k-means and Ward’s clusters. This number is comparable to the
11 clusters emerging from the bicluster analysis plus the ungrouped cases. All
computations were made using R package flexclust. K-means was repeated
10 times to avoid local optima.

Figure 6.3 shows the results of the bootstrap sampled computations. Bimax
significantly outperforms both k-means and Ward’s clustering. The average
values of the Rand index were 0.53 for biclustering, 0.42 for k-means, and 0.37
for Ward’s clustering.

From this first comparison, it can be concluded that biclustering outperforms
the two most popular segmentation algorithms, k-means, and Ward’s cluster-
ing, with respect to its ability to produce reproducible segmentation solutions
on our example dataset.

Artificial Data

To illustrate that our findings are no exception of the dataset used and uni-
versally valid, we performed a simulation study to measure the stability on
artificial data. We hid 4 bicluster (submatrices containing only ones) of vary-
ing size in a 1000× 50 binary matrix. We varied the percentage of one values
in the noise from 30% to 40%. Note, 50% and more does not make sense, since
ones should mark the values of interest. We again calculated all three algo-
rithms on the data and compared the results to the true cluster result derived

6. Application on Marketing Data 91

●

●

●

●●●

●

●

●

●●

●●

●●

●

●

Bi−Clustering K−Means−Clustering Ward−Clustering

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Rand Index of Bootstrapsamples compared to Original

Clustering Method

A
dj

. R
an

d
In

de
x

Fig. 6.3: Comparison Results for Bootstrap Sampling

from the hidden bicluster. The mean and standard deviations of the Rand
index values of 1000 runs are shown in Table 6.1.

Again the Bimax algorithm outperforms the other methods by far. Very low
Rand index values of k-mean and Ward’s clustering appear when two or more
of the hidden bicluster are very small and contain only 5% or 10% of the rows.
Whenever 80% or more of the data rows were used in the hidden bicluster the
k-means solution was better than the Ward clustering solution and only slightly
worser than the Bimax result. A look on bootstrap runs on the artificial data
show a similar picture as in the example above. Bimax results are by fare more
stable than results from k-means and Ward’s clustering.

Overall Bimax K-means Ward
Mean 0.999 0.818 0.798
Standard Deviation 0.001 0.147 0.065

Large Cluster Bimax K-means Ward
Mean 0.999 0.956 0.852
Standard Deviation 0.001 0.015 0.024

Tab. 6.1: Table of mean values and standard deviations of the Rand index
using artificial data.

92 6. Application on Marketing Data

The results of this simulation study show, that the results of our first compar-
ison can be generalized. On binary datasets where subgroups of ones are the
reason for segmentation, biclustering outperforms k-means and Ward’s clus-
tering by means of stability and subgroup detection.

6.3.4 Shopping Basket Data

Another possible application for a binary bicluster algorithm is the segmenta-
tion of shopping basket data. We use the ’ZUMA subset’ of the GFK Nürnberg
household panel data (Papastefanou, 2001). The data consists of 470825 shop-
ping baskets of 40000 households. The data is a binary coded with one if one
of the 65 product categories was bought and 0 if not. The data was analyzed
before, for example in Leisch and Grün (2006). Applying the repeated Bi-
max algorithm to this kind of data does not result in a good segmentation.
The problem is that the largest bicluster has always the minimum column size
allowed. This is due to too many rows compared to only 65 columns. But
instead of using it as a segmentation tool one can use it to preselect associa-
tion rules. Using the Bimax algorithm one is able to detected the x product
categories bought together the most. For example the five products bought to-
gether the most are milk, cream cheese, quark, yogurt and hard cheese so only
dairy goods. This product have been bought together 3183 times from 1169
(nearly 3 %) different households. The 10 most bought together products were
Milk, coffee, tea, beer, beverage without gas, cream cheese, coffee cream quark,
yogurt and hard cheese so only dairy goods and drinks. This combination was
bought 67 times from 17 different households. The calculation of this most
bought products is no easy task. There are 8.259.888 possible combination
of 5 products and 179.013.799.328 for 10 products. So evaluating all diffrent
combination would take to long an biclustering is a good assistance for such
tasks.

6.4 Ordinal Data

A more challenging task is clustering ordinal data. Since the distance between
items is not interpretable, our ordinal Quest approach works without a dis-
tance measure. As stated in Chapter 2 and Chapter 5 the algorithm delivers
bicluster of respondents and questions. A respondent belongs to a bicluster if
he answered a question within an interval of categories.

For example in Figure 6.4 this interval consists of 3 adjacent categories (ABC).
In this section we will first give a data example of ordinal data in a question-
naire before we present a small simulation study on the performance of the
ordinal Quest algorithm using the method of Chapter 4.

6. Application on Marketing Data 93

A ∗ ∗ F ∗ B ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
A ∗ ∗ G ∗ C ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
A ∗ ∗ F ∗ A ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

⇒

A F B ∗ ∗ ∗ ∗
A G C ∗ ∗ ∗ ∗
A F A ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

Fig. 6.4: Biclustering of Ordinal Data using the Questord Algorithm

Ordinal Data Example

For an empirical illustration we again use a survey of adult Australians from
2006. This time they were asked about their attitude toward unpaid help.
Answers to 150 questions about their experience with unpaid help from 1300
respondents were collected. We concentrate on a block of 12 questions. They
had to answer on a seven point scale from ’Do not believe’ (0) to ’Strongly
believe’(6) if giving unpaid help to an organization would enbale them to give
something back to society, to socialize and meet new people, to learn new skills,
and so on.

Figure 6.5 shows the barchart of the ordinal Quest result. A typical answer
pattern can be seen in Cluster A. The respondents in this cluster always took
the highest category ’Strongly believe’. Another finding is that the lowest
category was not included in any of the bicluster (there was no 0 answer in
any of the questions), but the second lowest answer is chosen on all questions
in Cluster D and I. Although the algorithm is able to find bicluster if different
answers on different questions only Cluster C and E show such a variation.
Noe that each cluster only contains about 5 - 8% of the data, so only 55 % of
the data is clustered.

Artificial Data

Again we want to test the performance of biclustering on ordinal data. In
Chapter 4 we introduced a method for this purpose. With this tool we are
able to determine the probabilities of the categories as well as the correlation
structure. To test the algorithm we generated multiple datasets (Size 1000 ×
100) of uncorrelated equal distributed ordinal values with 6 categories. We
hid 4 bicluster in this data with different category possibilities and correlation.
We used a constant correlation within a bicluster using either 0.85 or 0.95,
and various different probability vectors for the categories. Additionally we
sometimes added a constant bicluster to the data. Since there is no other

94 6. Application on Marketing Data

BxElearnskills
BxEimproveenv

BxEfeelvalued
BxEhelpethnic

BxEperspective
BxEassistorg

BxEmindoff
BxEhelpthose
BxEsocialise

BxEenjoy
BxEgiveback

BxEsupportcause

●

●

●

●

●

●

●

●

●

●

●

●

A

1 2 3 4 5 6

●

●

●

●

●

●

B

●

●

●

●

C

1 2 3 4 5 6

●

●

●

●

●

D

BxElearnskills
BxEimproveenv

BxEfeelvalued
BxEhelpethnic

BxEperspective
BxEassistorg

BxEmindoff
BxEhelpthose
BxEsocialise

BxEenjoy
BxEgiveback

BxEsupportcause

●

●

●

E

●

●

●

F

●

●

●

●

G

●

●

●

H

BxElearnskills
BxEimproveenv

BxEfeelvalued
BxEhelpethnic

BxEperspective
BxEassistorg

BxEmindoff
BxEhelpthose
BxEsocialise

BxEenjoy
BxEgiveback

BxEsupportcause

1 2 3 4 5 6

●

●

●

I

●

●

●

J

Population mean: ●Segmentwise means: in bicluster
outside bicluster

Fig. 6.5: Barchart Plot on Reward Question in the Australian Unpaid Help
Survey.

bicluster algorithm defined on ordinal data so far we used the Xmotif algorithm
(nominal Quest leads to the same result) to compare the results.

Table 6.2 shows the result of the Jaccard and the Rand Index of both methods
compared to the hidden bicluster structure in 100 runs. The low values of
the Jaccard index are as expected, since the correlation structure inside the
bicluster leads to a dropping of columns. The segmentation itself measured
with the Rand index is better which indicates that the rows of the bicluster are
found. The Xmotif algorithms with looks for constant answers to one question
performs better than the ordinal Quest algorithm. Also the Jaccard index is
higher for the Xmotif algorithm. The problem of the Quest algorithm can
be seen in Figure 6.6. The constant bicluster (yellow) is not perfectly found
and mixed up with noise values. Also too few questions were added to each
bicluster. One reason for this weak performance are the parameters used to
find the bicluster. Xmotif and Quest were started with the same number of
starting tries and the ordinal algorithms seems to need by far more tries.

6. Application on Marketing Data 95

Rand Rand Jaccard Jaccard
Quest Xmotif Quest Xmotif

Mean 0.60 0.87 0.30 0.37
Standard Deviation 0.02 0.14 0.07 0.09

Tab. 6.2: Table of mean values and standard deviations of the Jaccard and
the Rand index using correlated ordinal data.

Fig. 6.6: Heatmap of bicluster results using the hidden cluster structure(left),
the Xmotif algorithm (right), and the ordinal Quest algorithm (middle).

From this simulation study can be concluded that the ordinal Quest algorithm
is not able to find correlation structures in the data. It only searches for
loose answer patterns and is not able to detect correlated answers. Even a
method which searches for constant answer patterns (Xmotifs) performs better
on this data. But to find a sub-correlation- structure in such kind of data other
algorithms are necessary.

6.5 Sports Data

Major sport events play an important role in our society and the analysis of
sports data is becoming even more popular. Traditionally baseball is the most
analyzed sport, this activity even has its own society (Society for American
Baseball Research (SABR)) and publication organs (The Baseball Research
Journal (BRJ), The National Pastime). Most of the data used for the cal-
culations are two-way-datasets consisting of a large number of performance
statistics for players or teams. Since a baseball team has a large number of
players and since at least 40 different statistics are collected during each game
or season, biclustering is a good method for clustering or segmenting this data.
In this section we give an example how such an bicluster analysis can be con-
ducted for baseball statistics and how biclustering can be easily transfered to
other sports.

96 6. Application on Marketing Data

6.5.1 Biclustering MLB Data

We used the official statistics of the Mayor League Baseball (MLB, http:

\\www.mlb.com) from the 2009 season to illustrate the results of biclustering
on baseball data. During a season the league collects about 60 performance
measures from every active players (about 40 per team) on each of the 27
teams. Our analysis concentrated on the 28 hitting stats officially collected.
We removed all Pitchers and players without a plate appearance in that year.
The resulting data set then included 631 players and 28 performance stats.
The goal of a bicluster algorithm here was to find homogeneous players over a
chosen set of performance statistics report this group together with the selected
statistics. Since the stats are measured on different scales, it was important to
do preprocess and scale the data. We used the Quest and Xmotif algorithms
on the data to find patterns of similar performance, so we needed a discrete
representation. To do so, we ranked every single statistic and recoded the data
with 1 (lowest 10 per cent of the players) to 10 (highest 10 percent of the
players).

OPS
GO.AO

SB.
AVG
SLG
OBP

AO
GO

XBH
NP

TPA
GDP
IBB

HBP
SH
SF
CS
SB
SO
BB
TB

RBI
HR

X3B
X2B

H
R

AB

●

●
●

●

●

A

2 4 6 8 10

●
●

●

B

●

●

●
●

●
●
●
●

●

C

OPS
GO.AO

SB.
AVG
SLG
OBP

AO
GO

XBH
NP

TPA
GDP
IBB

HBP
SH
SF
CS
SB
SO
BB
TB

RBI
HR

X3B
X2B

H
R

AB

2 4 6 8 10

●
●

●

●

●
●

D

●

●

●

E

Population mean: ●Segmentwise means: in bicluster
outside bicluster

Fig. 6.7: Bicluster Barchart of an Ordinal Quest Run on MLB Hitting Statis-
tics(2009).

Figure 6.7 shows the barchart resulting from an ordinal Quest algorithm run.
Most of the time, players are grouped together when they have either low

6. Application on Marketing Data 97

or high values on the selected statistics. The comparison of the bicluster on
the position of players inside (Figure 6.8) show the expected results. For
example First Baseman and Designated Hitter are overrepresented in the third
bicluster. These positions were reserved for ”Power Hitter” responsible for the
run production. For this reason bicluster 3 shows high values in the so-called
power statistics (Runs, Home Runs, RBI and OBP). Catchers, in contrast,
are underrepresented in the fourth bicluster, which shows high values in At
Bats and Plate Appearances. This is obvious because the catchers job is very
demanding and leads to fewer games played.

S
ta

nd
ar

di
ze

d
R

es
id

ua
ls

:
<

−
4

−
4:

−
2

−
2:

0
0:

2
2:

4
>

4

Position

B
ic

lu
st

er

1B 2B 3B C DH OF SS

0
1

2
3

4
5

Fig. 6.8: Mosaicplot of Player Positions against Bicluster Membership.

6.5.2 Other Sport Data

In other ball sports, there is a trend of collecting team and player data and
condensing it into meaningful statistics. Even in soccer, considered the most
unpredictable of the popular ball games, the analysis of collected data is at-
tracting more and more attention. At the moment, team-based analysis is
the major focus in published work. For example Eugster et al. (2010) ana-
lyzed the second leg home field advantage in the UEFA Champions league).
However, businesses have started to collect more individual player statistics,

98 6. Application on Marketing Data

paving the way for complex data analysis such as biclustering in sports other
than baseball.

6.6 Conclusions

The aim of this chapter was to introduce biclustering for market segmenta-
tion analysis. The biclustering algorithm overcomes limitations of traditional
clustering algorithms as well as parametric grouping algorithms. Specifically,
it can deal with data containing relatively few respondents but many items
per respondent, it undertakes variable selection simultaneously with grouping,
it enables the identification of market niches, and its results are reproducible.
The disadvantage of biclustering in the context of market segmentation is that
the segments are defined in a very restrictive way (because it is expected that
all segment members agree on all the variables that are characteristic for the
segment). As a consequence, segments resulting from biclustering are very
distinct, but small. This can be overcome by weakening the restriction that
all members comply and permitting a small number of disagreements between
segment members.

As shown in the empirical illustration, where 11 market segments were ex-
tracted from a survey data set based on common patterns of vacation activities,
biclustering is particularly useful for market segmentation problems where the
number of variables cannot be reduced. In the case of the empirical illustration
presented, the variables were vacation activities. Although it is theoretically
possible to merge sightseeing, visiting monuments, going to the theater, and
going to museums and industrial attractions, a segmentation analysis based
on such overarching variables would not provide the detail tourism destina-
tions and tourism attractions need to identify their potential customers and
develop customized vacation activity packages of communication messages for
them. For instance, a tourism package aimed toward attracting tourists from
Segment 1 would emphasize the cultural aspects of the destination, including
any distinct industrial attractions, museums, and monuments. Package tours
may be appealing to this segment if they include these types of attractions.
A marketing mix highlighting a relaxing beach holiday, with the luxury of be-
ing able to eat at upmarket restaurants and frequent a pub would appeal to
Segment 2. Segment 3, for instance, appears to value a more laid-back ap-
proach to eating, and prefers to partake in picnics and barbecues and gather
with friends and relatives. An advertising campaign featuring nature reserves,
and vacation spots near the beach with barbecue facilities would appeal to
this segment’s preference for outdoor dining. A comparison of each segment’s
distinct properties highlights the improvement in the marketing mix strategy
when customizing based on a specific segment’s activity preferences.

6. Application on Marketing Data 99

Moreover this chapter contains a comparison of the Bimax algorithm with
traditional cluster algorithm k-means and Ward hierarchical clustering. Cal-
culations on the tourism dataset and some generated artificial binary data
show that Bimax outperform the two other by means of stability and segment
detection.

Furthermore another application for binary bicluster algorithms, shopping bas-
ket data was introduced. Here biclustering is not used as a segmentation tool,
but for retrieving useful information. In a second part of the chapter the use
of biclustering on ordinal questionnaire data was demonstrated and features of
the algorithms were tested on artificial data using the data generation method
described in Chapter 4.

The last section of the chapter showed an example of applying bicluster on
sports, especially baseball, data. The usage of biclustering was demonstrated
and a outlook on future development in sports data analysis was given.

7. Summary

As high-dimensional data becomes increasingly available, suitable analysis
methods are gaining in importance. Biclustering is one method specially de-
signed to avoid the problems of traditional clustering with this type of data.
By simultaneously clustering rows and columns, the size of the data matrix
does not matter, and nuisance rows or columns are automatically eliminated.

This dissertation addressed methods, software, and applications of bicluster-
ing. Chapter 2 provided a theoretical background on biclustering and gave an
overview of important algorithms. Since most of these algorithms are very sen-
sitive to parameter changes or have random starting values, we developed an
ensemble method, which we described in Chapter 3. By combining the results
of multiple runs with one or more algorithms, we showed that it is possible to
obtain more stable and reliable results. Another advantage of this method is
that it can also detect an overlapping structure of bicluster. The multiple runs
can be performed on the entire data set, a subsample, or a bootstrap sample.
We suggested two combination methods, hierarchical and improved quality
clustering, as well as two similarity measures. The simulation study showed
that the improved quality approach, combined with sub sampling, obtains to
the best results.

In order to test the performance of the Quest algorithm for ordinal data in
Chapter 6, we introduced two methods for drawing ordinal random values
with a given correlation structure. These methods perform a transformation
of correlated multivariate normal distributed values to obtain the asked cor-
relation structure. This transformation is based on a binary conversion in the
first method and on the common means in the second. We also demonstrated
how the methods work in brief examples. The binary method is faster, but
has considerably more restrictions to the correlation matrix. The methods are
available to the public through our R package orddata

The remaining chapters of this dissertation dealt with our software package
biclust and with the application of biclustering to marketing data. In these
sections, we demonstrated all the functions of the package and explained the
theoretical background. We also included new visualization techniques such as
the memberplot and the overlapping heatmap. These chapters also introduced

7. Summary 101

the newly developed algorithm Quest, which is applied to nominal, ordinal or
metric data.

Chapter 6 showed how to use the package and the algorithm, and we calculated
bicluster on various tourism questionnaires. We demonstrated the advantages
of biclustering on this data and also showed that the Bimax method is superior
to both k-means and hierarchical clustering on binary data.

Although many algorithms have already been developed for biclustering, we
can expect to see the emergence of even more methods in the near future.
These methods will address the special tasks of the various application fields.
The next step for bicluster analysis will therefore be the development of a
general validation framework.

Appendix

A. biclust Reference Manual

BCBimax The Bimax Bicluster algorithm

Description

Performs Bimax Biclustering based on the framework by Prelic et. al.(2006). It
searches for submatrices of ones in a logical matrix. Uses the original C code of
the authors.

Usage

S4 method for signature 'matrix,BCBimax':
biclust(x, method=BCBimax(), minr=2, minc=2, number=100)

S4 method for signature 'matrix,BCrepBimax':
biclust(x, method=BCrepBimax(), minr=2, minc=2, number=100,

maxc=12)

Arguments

x A logical matrix which represents the data.

method Here BCBimax, to perform Bimax algorithm

minr Minimum row size of resulting bicluster.

minc Minimum column size of resulting bicluster.

number Number of Bicluster to be found.

maxc Maximum column size of resulting bicluster.

Value

Returns an object of class Biclust.

BCCC 105

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

References

Prelic, A.; Bleuler, S.; Zimmermann, P.; Wil, A.; Buhlmann, P.; Gruissem, W.;
Hennig, L.; Thiele, L. & Zitzler, E. A Systematic Comparison and Evaluation
of Biclustering Methods for Gene Expression Data Bioinformatics, Oxford Univ
Press, 2006, 22, 1122-1129

See Also

biclust, Biclust

Examples

test <- matrix(rnorm(5000), 100, 50)

test[11:20,11:20] <- rnorm(100, 3, 0.1)

loma <- binarize(test,2)

res <- biclust(x=loma, method=BCBimax(), minr=4, minc=4, number=10)

res

BCCC The CC Bicluster algorithm

Description

Performs CC Biclustering based on the framework by Cheng and Church (2000).
Searches for submatrices with a score lower than a specific treshold in a stan-
dardized data matrix.

Usage

S4 method for signature 'matrix,BCCC':
biclust(x, method=BCCC(), delta = 1.0, alpha=1.5, number=100)

106 BCCC

Arguments

x Data matrix.

method Here BCCC, to perform CC algorithm

delta Maximum of accepted score.

alpha Scaling factor.

number Number of bicluster to be found.

Value

Returns an object of class Biclust.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

References

Cheng, Y. & Church, G.M. Biclustering of Expression Data Proceedings of the
Eighth International Conference on Intelligent Systems for Molecular Biology,
2000, 1, 93-103

See Also

biclust, Biclust

Examples

test <- matrix(rbinom(400, 50, 0.4), 20, 20)

res <- biclust(test, method=BCCC(), delta=1.5, alpha=1, number=10)

res

BCPlaid 107

BCPlaid The Plaid Model Bicluster algorithm

Description

Performs Plaid Model Biclustering as described in Turner et al., 2003. This is
an improvement of original ’Plaid Models for Gene Expression Data’ (Lazzeroni
and Owen, 2002). This algorithm models data matrices to a sum of layers, the
model is fitted to data through minimization of error.

Usage

S4 method for signature 'matrix,BCPlaid':
biclust(x, method=BCPlaid(), cluster="b", fit.model = y ~ m + a + b,

background = TRUE, background.layer = NA, background.df = 1,

row.release = 0.7, col.release = 0.7, shuffle = 3,

back.fit = 0, max.layers = 20, iter.startup = 5,

iter.layer = 10, verbose = TRUE)

Arguments

x The data matrix where biclusters have to be found

method Here BCPlaid, to perform Plaid algorithm

cluster ’r’, ’c’ or ’b’, to cluster rows, columns or both (default ’b’)

fit.model Model (formula) to fit each layer. Usually, a linear model is used,
that stimates three parameters: m (constant for all elements in
the bicluster), a(contant for all rows in the bicluster) and b
(constant for all columns). Thus, default is: y ˜ m + a + b.

background If ’TRUE’ the method will consider that a background layer
(constant for all rows and columns) is present in the data matrix.

background.layer

If background=’TRUE’ a own background layer (Matrix with
dimension of x) can be specified.

background.df

Degrees of Freedom of backround layer if background.layer is
specified.

shuffle Before a layer is added, it’s statistical significance is compared
against a number of layers obtained by random defined by this
parameter. Default is 3, higher numbers could affect time per-
formance.

108 BCPlaid

iter.startup Number of iterations to find starting values

iter.layer Number of iterations to find each layer

back.fit After a layer is added, additional iterations can be done to refine
the fitting of the layer (default set to 0)

row.release Scalar in [0,1](with interval recommended [0.5-0.7]) used as
threshold to prune rows in the layers depending on row homo-
geneity

col.release As above, with columns

max.layers Maximum number of layer to include in the model

verbose If ’TRUE’ prints extra information on progress.

Value

Returns an Biclust object.

Author(s)

Adaptation of original code from Heather Turner from Rodrigo Santamaria
(<rodri@usal.es>) and Sebastian Kaiser.

References

Heather Turner et al, ”Improved biclustering of microarray data demonstrated
through systematic performance tests”,Computational Statistics and Data Anal-
ysis, 2003, vol. 48, pages 235-254.

Lazzeroni and Owen, ”Plaid Models for Gene Expression Data”, Standford Uni-
versity, 2002.

Examples

#Random matrix with embedded bicluster

test <- matrix(rnorm(5000),100,50)

test[11:20,11:20] <- rnorm(100,3,0.3)

res<-biclust(test, method=BCPlaid())

res

#microarray matrix

data(BicatYeast)

res<-biclust(BicatYeast, method=BCPlaid(), verbose=FALSE)

res

BCQuest 109

BCQuest The Questmotif Bicluster algorithm

Description

Performs Questmotif Biclustering a Bicluster algorithm for questionairs based on
the framework by Murali and Kasif (2003). Searches subgroups of questionairs
with same or similar answer to some questions.

Usage

S4 method for signature 'matrix,BCQuest':
biclust(x, method=BCQuest(), ns=10, nd=10, sd=5, alpha=0.05,

number=100)

S4 method for signature 'matrix,BCQuestord':
biclust(x, method=BCQuestord(), d=1, ns=10, nd=10, sd=5,

alpha=0.05, number=100)

S4 method for signature 'matrix,BCQuestmet':
biclust(x, method=BCQuestmet(), quant=0.25, vari=1, ns=10, nd=10,

sd=5, alpha=0.05, number=100)

Arguments

x Data Matrix.

method Here BCQuest, to perform Questmotif algorithm

ns Number of questions choosen.

nd Number of repetitions.

sd Sample size in repetitions.

alpha Scaling factor for column result.

number Number of bicluster to be found.

d Half margin of intervall question values should be in (Intervall
is mean-d,mean+d).

quant Which quantile to use on metric data

vari Which varianz to use for metric data

Value

Returns an object of class Biclust.

110 BCSpectral

Extends

Class "BiclustMethod", directly.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

References

Murali, T. & Kasif, S. Extracting Conserved Gene Expression Motifs from Gene
Expression Data Pacific Symposium on Biocomputing, sullivan.bu.edu, 2003, 8,
77-88

See Also

biclust, Biclust

BCSpectral The Spectral Bicluster algorithm

Description

Performs Spectral Biclustering as described in Kluger et al., 2003. Spectral
biclustering supposes that normalized microarray data matrices have a checker-
board structure that can be discovered by the use of svd decomposition in eigen-
vectors, applied to genes (rows) and conditions (columns).

Usage

S4 method for signature 'matrix,BCSpectral':
biclust(x, method = BCSpectral(), normalization = "log",

numberOfEigenvalues = 3, minr = 2, minc = 2, withinVar = 1)

BCSpectral 111

Arguments

x The data matrix where biclusters are to be found

method Here BCSpectral, to perform Spectral algorithm

normalization

Normalization method to apply to mat. Three methods are al-
lowed as described by Kluger et al.: ”log” (Logarithmic normal-
ization), ”irrc” (Independent Rescaling of Rows and Columns)
and ”bistochastization”. If ”log” normalization is used, be sure
you can apply logarithm to elements in data matrix, if there are
values under 1, it automatically will sum to each element in mat
(1+abs(min(mat))) Default is ”log”, as recommended by Kluger
et al.

numberOfEigenvalues

the number of eigenValues considered to find biclusters. Each
row (gene) eigenVector will be combined with all column (con-
dition) eigenVectors for the first numberOfEigenValues eigen-
values. Note that a high number could increase dramatically
time performance. Usually, only the very first eigenvectors are
used. With ”irrc” and ”bistochastization” methods, first eigen-
value contains background (irrelevant) information, so it is ig-
nored.

minr minimum number of rows that biclusters must have. The algo-
rithm will not consider smaller biclusters.

minc minimum number of columns that biclusters must have. The
algorithm will not consider smaller biclusters.

withinVar maximum within variation allowed. Since spectral biclustering
outputs a checkerboard structure despite of relevance of individ-
ual cells, a filtering of only relevant cells is necessary by means
of this within variation threshold.

Value

Returns an object of class Biclust.

Author(s)

Rodrigo Santamaria <rodri@usal.es>

References

Kluger et al., ”Spectral Biclustering of Microarray Data: Coclustering Genes and
Conditions”, Genome Research, 2003, vol. 13, pages 703-716

112 BCXmotifs

Examples

#Random matrix with embedded bicluster

test <- matrix(rnorm(5000),100,50)

test[11:20,11:20] <- rnorm(100,10,0.1)

res1 <- biclust(test, method=BCSpectral(),

numberOfEigenvalues = 1)

res1

BCXmotifs The Xmotifs Bicluster algorithm

Description

Performs XMotifs Biclustering based on the framework by Murali and Kasif
(2003). Searches for a submatrix where each row as a similar motif through all
columns. The Algorihm needs a discret matrix to perform.

Usage

S4 method for signature 'matrix,BCXmotifs':
biclust(x, method = BCXmotifs(), ns = 10, nd = 10, sd = 5,

alpha = 0.05, number = 100)

Arguments

x Data Matrix.

method Here BCXmotifs, to perform Xmotifs algorithm

ns Number of rows choosen.

nd Number of repetitions.

sd Sample size in repetitions.

alpha Scaling factor for column result.

number Number of bicluster to be found.

Value

Returns an object of class Biclust.

BicatYeast 113

Extends

Class "BiclustMethod", directly.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

References

Murali, T. & Kasif, S. Extracting Conserved Gene Expression Motifs from Gene
Expression Data Pacific Symposium on Biocomputing, sullivan.bu.edu, 2003, 8,
77-88

See Also

biclust, Biclust

Examples

data(BicatYeast)

x<-discretize(BicatYeast)

res <- biclust(x, method = BCXmotifs(), ns = 20, nd = 20, sd = 5,

alpha = 0.01, number = 10)

res

BicatYeast BicAT Yeast

Description

Microarray data matrix for 80 experiments with Saccharomyces Cerevisiae or-
ganism extracted from BicAT example data set.

Usage

data(BicatYeast)

114 Biclust-class

Format

Data structure with information about the expression levels of 419 probesets
over 70 conditions Row names follow Affymetrix probeset notation

Source

BicAT datasets at http://www.tik.ee.ethz.ch/sop/bicat/

Biclust-class The Biclust Class

Description

Biclust is the class structure for results of a bicluster algorithm. It contains all
information needed for further processing. The show Method gives the Name of
the Algorithm used and the first Bicluster found. The summary Method gives
sizes of all bicluster found.

Objects from the Class

Objects can be created by performing a bicluster algorithm via the biclust()

function.

Slots

Objects of class Biclust have the following slots:

Parameters: Saves input Parameters in a list

RowxNumber: Logical Matrix which contains 1 in [i,j] if Row i is in Bicluster j

NumberxCol: Logical Matrix which contains 1 in [i,j] if Col j is in Bicluster i

Number: Number of Bicluster

info: Additional Outputs from the different bicluster algorithms

Details

RowxNumber and NumberxCol are named after the arrangement of the data they
contain. The column results are transposed in order to ensure a easy processing.

BiclustMethod-class 115

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

biclust, BiclustMethod-class

BiclustMethod-class

The BiclustMethod Virtual Class

Description

BiclustMethod is the virtual class structure for algorithms provided in the pack-
age. In order to use the biclust() function a algorithm has to have a class
inherit from here.

Algorithms

Currently 6 classes inherit from BiclustMethod: BCCC, BCXmotifs, BCPlaid,
BCSpectral, BCBimax, BCQuest

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

biclust, Biclust-class, BCCC, BCXmotifs, BCPlaid, BCSpectral, BCBimax,
BCQuest, BiclustMethod-class

116 biclust

biclust The biclust Method

Description

The function biclust is the main function of the package. It calculates the
bicluster in a data matrix using the algorithm specified in the method-argument.
Currently the package contains 5 different methods for the use in biclust. For
each algorithm see the class help files for further details. For some algorithms
preproccessing is necessary, e.g. BCBimax only runs with a logical matrix.

Usage

S4 method for signature 'matrix,BiclustMethod':
biclust(x,method,...)

S4 method for signature 'matrix,character':
biclust(x,method,...)

Arguments

x Data matrix.

method An object of class "BiclustMethod" or a character string with
the name of a "BiclustMethod"-class.

... Additional Parameters of the "BiclustMethod"

Value

Returns an object of class Biclust.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

Biclust-class, BCCC, BCXmotifs, BCPlaid, BCSpectral, BCBimax, BCQuest,
BiclustMethod-class

biclustbarchart 117

Examples

test <- matrix(rbinom(400, 50, 0.4), 20, 20)

res <- biclust(test, method=BCCC(), delta=1.5, alpha=1, number=10)

biclustbarchart Bicluster Barchart

Description

Draws a barchart for a Bicluster result representing the columns

Usage

biclustbarchart(x, Bicres, which=NULL, ...)

Arguments

x The data matrix

Bicres BiclustResult object with a bicluster result set. If this value is
set to NULL, the data matrix is drawn as a heatmap, without
any reordering. Default NULL.

which If specified gives the ploting order of the columns from bottom
to top

... Additional plot options passed to barchart

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

bubbleplot for simultaneous representation of biclusters,
parallelCoordinates for single representation of biclusters as lines of
gene or condition profiles, drawHeatmap for Heatmap representation of
biclusters and biclustmember for a membership graph.

118 bicluster

Examples

set.seed(1)

x=matrix(rnorm(900),30,30)

x[1:5,1:5]=rnorm(25,3,0.3)

x[11:15,11:15]=rnorm(25,-3,0.3)

x[21:25,21:25]=rnorm(25,6,0.3)

colnames(x)<-paste("Var.",1:30)

bics <- biclust(x,BCPlaid(), back.fit = 2, shuffle = 3,

fit.model = ~m + a + b, iter.startup = 5, iter.layer = 30,

verbose = TRUE)

biclustbarchart(x,bics, col="#A3E0D8")

ord<-bicorder(bics, cols=TRUE, rev=TRUE)

biclustbarchart(x,bics,which=ord)

bicluster Extract Bilcuster

Description

Function to extract the bicluster or the row and column numbers from a given
bicluster result

Usage

bicluster(x, BicRes, number= 1:BicRes@Number)

biclusternumber(BicRes, number= 1:BicRes@Number)

Arguments

x The data matrix

BicRes BiclustResult object

number Which bicluster to be extracted

Value

Returns a list containing all extracted bicluster

bimax.grid 119

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

writeclust,writeBiclusterResults

Examples

s2=matrix(rnorm(400),20,20)

s2[12:16,12:16]=rnorm(25,3,0.3)

set.seed(1)

bics <- biclust(s2,BCPlaid(), back.fit = 2, shuffle = 3,

fit.model = ~m + a + b, iter.startup = 5,

iter.layer = 30, verbose = TRUE)

bicluster(s2, bics)

biclusternumber(bics)

bimax.grid Parameter Grid for BCBimax Biclustering

Description

Generates a list containing parameter settings for the ensemble algorithm.

Usage

bimax.grid(method = "BCBimax", minr = c(10, 11), minc = c(10, 11),

number = 10)

Arguments

method Here BCBimax, to perform Bimax algorithm

minr Minimum row size of resulting bicluster.

minc Minimum column size of resulting bicluster.

number Number of Bicluster to be found.

120 binarize

Value

A list containing parameter settings

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

ensemble, BCBimax

Examples

bimax.grid()

binarize Binarize

Description

Methods to convert a real matrix to a binary matrix.

Usage

binarize(x, threshold=NA)

binarizeByPercentage(x,percentage, error=0.2, gap=0.1)

densityOnes(x)

Arguments

x The data matrix to be binarized.

threshold Threshold used to binarize. Values over threshold will be set to
1, the rest to 0. If threshold is NA, median is used as threshold.
Default NA.

percentage Percentage of ones against zeros desired in the binary matrix.

error Percentage of ones against zeros in the final matrix will be in
[percentage-error, percentage+error]. Default 0.2

gap Value used for incremental search of threshold. Default 0.1

bubbleplot 121

Details

The binarize function returns a matrix binarized by input threshold, or by the
median if no threshold is given.

The binarizeByPercentage function returns a matrix binarize by input per-
centage, given as desired density of ones against zeros.

The densityOnes function returns the percentage of ones against zeros in a
logical matrix

Author(s)

Rodrigo Santamaria <rodri@usal.es> and Sebastian Kaiser

Examples

data(BicatYeast)

m1=binarize(BicatYeast)

m2=binarize(BicatYeast, 0.2)

m3=binarizeByPercentage(BicatYeast, 5)

densityOnes(m3)

densityOnes(m2)

densityOnes(m1)

drawHeatmap(BicatYeast)

drawHeatmap(m1)

drawHeatmap(m2)

drawHeatmap(m3)

bubbleplot Bubbleplot

Description

Draws a bubble plot where each bicluster is represented as a circle (bubble).
Color represents the bicluster set to which bicluster pertains (up to three biclus-
ter sets can be represented simultaneously). Brightness representes the bicluster
homogeneity (darker, less homogeneous). Size represents the size of the biclus-
ter, as (number of genes)x(number of conditions). Location is a 2D-projection
of gene and condition profiles.

122 bubbleplot

Usage

bubbleplot(x, bicResult1, bicResult2 = NULL, bicResult3 = NULL,

projection = "mean", showLabels = FALSE)

Arguments

x The data matrix from which biclusters were identified.

bicResult1 BiclustResult object with a bicluster result set whose biclusters
will be drawn in green.

bicResult2 BiclustResult object with an optional second bicluster result set.
Will be drawn in red (default NULL)

bicResult3 BiclustResult object with an optional third bicluster result set.
Will be drawn in blue (default NULL)

projection Projection algorithm used to position bubbles. Allowed projec-
tions are ’mean’, ’isomds’ and ’cmdscale’ (default ’mean’). See
details section for a broader explanation.

showLabels If ’TRUE’, puts a label over each bubble that tells the number
within the corresponding bicluster result (default ’FALSE’).

Details

Position of circles depend on a 2D projection of the multidimensional point
formed by rows and columns present in the bicluster. For example, if we have a
3x3 matrix to analyze and we find a bicluster with rows 1 and 3 and columns 2
and 3, the corresponding multidimensional point will be p=(1,0,1,0,1,1). For this
example, ’mean’ projection will map the bicluster with the point x=(1+3)/2=2
and y=(2+3)/2=2,5. Other projections will take the point p and project it
following the corresponding algorithms (see the corresponding help pages for
details)

Note

Bubbleplot 2D-projection, as any multidimensional scaling, loses information,
trying to take the main relationships and trends of n-dimensional data. Thus,
locations and intersections between bubbles-biclusters are only an estimate of its
similarity. This visualization should be used just as a help to understand overall
behavior of biclustering methods, detect trends and outliers, etc.

Author(s)

Rodrigo Santamaria <rodri@usal.es>

ChiaKaruturi 123

See Also

drawHeatmap for single representation of biclusters inside data matrix,
parallelCoordinates for single representation of biclusters as lines of gene
or condition profiles, cmdscale, isomds for multidimensional scaling and plot

for other point representations.

Examples

#Simplified yeast microarray data

Not run:

data(BicatYeast)

set.seed(1)

bics1 <- biclust(BicatYeast,BCPlaid(), back.fit = 2,

shuffle = 3, fit.model = ~m + a + b,

row.release = 0.7, col.release = 0.7,

verbose = FALSE, max.layers = 10,

iter.startup = 5, iter.layer = 30)

bubbleplot(BicatYeast,bics1, showLabels=TRUE)

loma=binarize(BicatYeast,2)

bics2=biclust(loma,BCBimax(), minr=4, minc=4, number=10)

bubbleplot(BicatYeast,bics1,bics2)

End(Not run)

ChiaKaruturi Chia and Karuturi Function

Description

Function computing scores as described in the paper of Chia and Karuturi (2010)

Usage

ChiaKaruturi(x, bicResult, number)

Arguments

x Data Matrix

bicResult Biclust object from biclust package

number Number of bicluster in the output for computing the scores

124 ChiaKaruturi

Details

The function computes row (T) and column (B) effects for a chosen bicluster.
The scores for columns within bicluster have index 1, the scores for columns
outside the bicluster have index 2. Ranking score is SB, stratification score is
TS.

Value

Data.Frame with 6 slots: T, B scores for within and outside bicluster, SB and
TS scores

Author(s)

Tatsiana Khamiakova <tatsiana.khamiakova@uhasselt.be> and Sebastian
Kaiser

References

Chia, B. K. H. and Karuturi, R. K. M. (2010) Differential co-expression frame-
work to quantify goodness of biclusters and compare biclustering algorithms.
Algorithms for Molecular Biology, 5, 23.

See Also

diagnosticPlot, computeObservedFstat, diagnoseColRow

Examples

#---simulate dataset with 1 bicluster ---#

xmat<-matrix(rnorm(20*50,0,0.25),50,50) # background noise only

rowSize <- 20 #number of rows in a bicluster

colSize <- 10 #number of columns in a bicluster

a1<-rnorm(rowSize,1,0.1) #sample row effect from N(0,0.1)

#adding a coherent values bicluster:

b1<-rnorm((colSize),2,0.25) #sample column effect from N(0,0.05)

mu<-0.01 #constant value signal

for (i in 1 : rowSize){

for(j in 1: (colSize)){

xmat[i,j] <- xmat[i,j] + mu + a1[i] + b1[j]

}

}

#--obtain a bicluster by running an algorithm---#

plaidmab <- biclust(x=xmat, method=BCPlaid(), cluster="b",

biclustmember 125

fit.model = y ~ m + a+ b, background = TRUE,

row.release = 0.6, col.release = 0.7,

shuffle = 50, back.fit = 5, max.layers = 1,

iter.startup = 100, iter.layer = 100)

#Get Chia and Karuturi scores:

ChiaKaruturi(x=xmat, bicResult = plaidmab, number = 1)

biclustmember Bicluster Membership Graph

Description

Draws a membership graph cluster x columns

Usage

biclustmember(bicResult, x, mid = T, cl_label = "", which = NA,

main = "BiCluster Membership Graph", xlab = "Cluster",

color = diverge_hcl(101, h = c(0, 130)), ...)

clustmember(res, x, mid = T, cl_label = "", which = NA,

main = "Cluster Membership Graph", xlab="Cluster",

color = diverge_hcl(101, h = c(0, 130)), ...)

bicorder(bicResult, cols=TRUE, rev=FALSE)

Arguments

x The data matrix

bicResult BiclustResult object with a bicluster result set.

res Cluster Result (is converted into a kcca object)

mid If TRUE, shows the value of the remaining objects inside the
cluster value, else shows both aside each other.

cl_label Ticks of x-axis

which If specified gives the ploting order of the columns from bottom
to top

main Gives the title of the plot

xlab Label of x-axis

126 coherence

color Range of colors for the plot

... Additional plot options or if neccessary option for as.kcca

cols If TRUE orders the column by appearance in the bicluster, else
orders the rows.

rev If TRUE reverses the order

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

bubbleplot for simultaneous representation of biclusters,
parallelCoordinates for single representation of biclusters as lines of
gene or condition profiles, drawHeatmap for Heatmap representation of
biclusters and biclustbarchart for a barchart.

Examples

set.seed(1)

x=matrix(rnorm(900),30,30)

x[1:5,1:5]=rnorm(25,3,0.3)

x[11:15,11:15]=rnorm(25,-3,0.3)

x[21:25,21:25]=rnorm(25,6,0.3)

colnames(x)<-paste("Var.",1:30)

bics <- biclust(x,BCPlaid(), back.fit = 2, shuffle = 3,

fit.model = ~m + a + b, iter.startup = 5,

iter.layer = 30, verbose = TRUE)

biclustmember(bics,x)

ord<-bicorder(bics, cols=TRUE, rev=TRUE)

biclustmember(bics,x,which=ord)

coherence Coherence measures

Description

Different prelilminary measures of how much constant or (additive, multiplica-
tive, sign) coherent a bicluster is, following Madeira and Oliveira classification
of biclusters.

coherence 127

Usage

constantVariance(x, resultSet, number, dimension="both")

additiveVariance(x, resultSet, number, dimension="both")

multiplicativeVariance(x, resultSet, number, dimension="both")

signVariance(x, resultSet, number, dimension="both")

Arguments

x The data matrix from which biclusters were identified

resultSet BiclustResult object with a bicluster result set where is the bi-
cluster to measure

number Number of the bicluster withing the result set

dimension ”both” for determining overall variance, ”row” for gene variance
and ”col” for column variance. Default ”both”

Details

Returns the corresponding variance of genes or conditions as the average of the
sum of euclidean distances between all rows and/or columns of the bicluster. For
additive, multiplicative and sign variance first a transformation of the bicluster is
done, so variance is computed on a matrix that reflects difference, rest or change
of sign between rows, columns or both.

The lower the value returned, the more constant or coherent the bicluster is. If
the value returned is 0, the bicluster is ideally constant or coherent. Usually, a
value above 1-1.5 is enough to determine the bicluster is not constant or coherent.

Note

There are preliminary measures for coherence. Since transformations are differ-
ent, measures are not normalized and comparison between, for example, additive
and multiplicative variance is not meaningful. Only comparisons between differ-
ent measures of the same kind of variance are reliable by now.

Author(s)

Rodrigo Santamaria <rodri@usal.es>

Examples

#Simplified yeast microarray data

data(BicatYeast)

128 computeObservedFstat

set.seed(1)

bics1 <- biclust(BicatYeast,BCPlaid(), back.fit = 2,

shuffle = 3, fit.model = ~m + a + b,

row.release = 0.7, col.release = 0.7,

verbose = FALSE, max.layers = 10,

iter.startup = 5, iter.layer = 30)

constantVariance(BicatYeast, bics1,1,"row")

constantVariance(BicatYeast, bics1,1,"col")

constantVariance(BicatYeast, bics1,1,"both")

additiveVariance(BicatYeast, bics1,1,"both")

multiplicativeVariance(BicatYeast, bics1,1,"both")

signVariance(BicatYeast, bics1,1,"both")

computeObservedFstat

Diagnostic F Statistic Calculation

Description

Functions for obtaining F statistics within bicluster and the significance levels.
The main effects considered are row, column and interaction effect.

Usage

computeObservedFstat(x, bicResult, number)

Arguments

x Data Matrix

bicResult Biclust object from biclust package

number Number of bicluster in the output for computing observed statis-
tics

Details

F-statistics are calculated from the two-way ANOVA mode with row anc column
effect. The full model with interaction is undentifiable, thus, Tukey’s test for
non-additivity is used to detect an interaction within a bicluster. p-values are
obtained from assymptotic F distributions.

computeObservedFstat 129

Value

Data frame with three rows (”Row Effect”, ”Column Effect”, ”Tukey test”) and
2 columns for corresponding statistics (Fstat) and their p-values (PValue). 2

Author(s)

Tatsiana Khamiakova <tatsiana.khamiakova@uhasselt.be> and Sebastian
Kaiser

See Also

ChiaKaruturi, diagnoseColRow

Examples

#---simulate dataset with 1 bicluster ---#

xmat<-matrix(rnorm(20*50,0,0.25),50,50) # background noise only

rowSize <- 20 #number of rows in a bicluster

colSize <- 10 #number of columns in a bicluster

a1<-rnorm(rowSize,1,0.1) #sample row effect from N(0,0.1)

#adding a coherent values bicluster:

b1<-rnorm((colSize),2,0.25) #sample column effect from N(0,0.05)

mu<-0.01 #constant value signal

for (i in 1 : rowSize){

for(j in 1: (colSize)){

xmat[i,j] <- xmat[i,j] + mu + a1[i] + b1[j]

}

}

#--obtain a bicluster by running an algorithm---#

plaidmab <- biclust(x = xmat, method = BCPlaid(), cluster = "b",

fit.model = y ~ m + a+ b, background = TRUE,

row.release = 0.6, col.release = 0.7,

shuffle = 50, back.fit = 5, max.layers = 1,

iter.startup = 100, iter.layer = 100)

#Calculate statistics and their p-values to infer about

#the structure within bicluster:

Structure <- computeObservedFstat(x=xmat, bicResult = plaidmab,

number = 1)

130 diagnoseColRow

diagnoseColRow Bootstrap Procedure for Bicluster Diagnostics

Description

Calculate the signifiance of the discovered patter in the data based on the boot-
strapping procedure.

Usage

diagnoseColRow(x, bicResult, number, nResamplings, replace = TRUE)

Arguments

x data matrix, which biclust function was applied to

bicResult object of class biclust, containing result of a biclustering algo-
rithm

number number of bicluster from the output for the diagnostics

nResamplings number of bootstrap replicates

replace logical flag for bootstrap (TRUE), or sampling without replace-
ment (FALSE)

Details

The function computes observed F statistics for row and column effect based on
two-way ANOVA model. Bootstrap procedure is used to evaluate the significance
of discovered bicluster. Based on nResamplings replicates, the disribution of F
statistics for row and column effects are obtained. The p-value is computed as

P (A) =
#
{
F ∗(A)b > F (A)obs

}
nResamplings + 1

Low p-values denote non-random selection of columns for a given bicluster. Large
p-values show that in other columns for a given set of genes in the bicluster
structure is similar. Hence, bicluster columns were just randomly picked by an
algorithm for a set of co-regulated genes.

diagnoseColRow 131

Value

bootstrapFstats

matrix with two columns, containing values of bootstrap F-
statistics. The first column corresponds to row, the second col-
umn corresponds to column.

observedFstatRow

observed F-statistics for the row effect
observedFstatCol

observed F-statistics for the column effect
bootstrapPvalueRow

bootstrap p value for row effect

bootstrapPvalueCol

bootstrap p value for column effect

Author(s)

Tatsiana Khamiakova <tatsiana.khamiakova@uhasselt.be> and Sebastian
Kaiser

See Also

diagnosticPlot, computeObservedFstat, ChiaKaruturi

Examples

#---simulate dataset with 1 bicluster ---#

xmat<-matrix(rnorm(20*50,0,0.25),50,50) # background noise only

rowSize <- 20 #number of rows in a bicluster

colSize <- 10 #number of columns in a bicluster

a1<-rnorm(rowSize,1,0.1) #sample row effect from N(0,0.1)

#adding a coherent values bicluster:

b1<-rnorm((colSize),2,0.25) #sample column effect from N(0,0.05)

mu<-0.01 #constant value signal

for (i in 1 : rowSize){

for(j in 1: (colSize)){

xmat[i,j] <- xmat[i,j] + mu + a1[i] + b1[j]

}

}

#--obtain a bicluster by running an algorithm---#

plaidmab <- biclust(x = xmat, method = BCPlaid(), cluster = "b",

fit.model = y ~ m + a+ b, background = TRUE,

row.release = 0.6, col.release = 0.7,

shuffle = 50, back.fit = 5, max.layers = 1,

iter.startup = 100, iter.layer = 100)

132 diagnosticPlot

#Run boosotrap procedure:

Bootstrap <- diagnoseColRow(x=xmat, bicResult = plaidmab,

number = 1, nResamplings = 999, replace = TRUE)

#plotting distribution of bootstrap replicates

diagnosticPlot(bootstrapOutput = Bootstrap)

diagnosticPlot Diagnostic F Statistics Visualization

Description

Plots distributions of bootstrap replicates of F-statistics for row and column
effect and highlights the observed statistics

Usage

diagnosticPlot(bootstrapOutput)

Arguments

bootstrapOutput

output of diagnoseColRow function, containing bootstrap repli-
cates and observed F-statistics

Value

No value is returned. The plot is constructed in a current device.

Author(s)

Tatsiana Kahamiakova <tatsiana.khamiakova@uhasselt.be> and Sebastian
Kaiser

See Also

diagnoseColRow, computeObservedFstat

discretize 133

Examples

#---simulate dataset with 1 bicluster ---#

xmat<-matrix(rnorm(20*50,0,0.25),50,50) # background noise only

rowSize <- 20 #number of rows in a bicluster

colSize <- 10 #number of columns in a bicluster

a1<-rnorm(rowSize,1,0.1) #sample row effect from N(0,0.1)

#adding a coherent values bicluster:

b1<-rnorm((colSize),2,0.25) #sample column effect from N(0,0.05)

mu<-0.01 #constant value signal

for (i in 1 : rowSize){

for(j in 1: (colSize)){

xmat[i,j] <- xmat[i,j] + mu + a1[i] + b1[j]

}

}

#--obtain a bicluster by running an algorithm---#

plaidmab <- biclust(x = xmat, method = BCPlaid(), cluster = "b",

fit.model = y ~ m + a+ b, background = TRUE,

row.release = 0.6, col.release = 0.7,

shuffle = 50, back.fit = 5, max.layers = 1,

iter.startup = 100, iter.layer = 100)

#Run bootsrap procedure:

Bootstrap <- diagnoseColRow(x=xmat, bicResult = plaidmab,

number = 1, nResamplings = 999, replace = TRUE)

plotting distribution of bootstrap replicates

diagnosticPlot(bootstrapOutput = Bootstrap)

discretize Create a discret matrix

Description

Some biclusteralgorithms need a discret matrix to perform well. This function
delivers a discret matrix with either a given number of levels of equally spaced
intervals from minimum to maximum, or levels of same size using the quantiles.

Usage

discretize(x,nof=10,quant=FALSE)

134 drawHeatmap

Arguments

x The data matrix from which should be dicretized

nof Number of levels

quant If TRUE using the quantiles, else using equally spaced levels

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

Examples

#Discretize yeast microarray data

data(BicatYeast)

discretize(BicatYeast[1:10,1:10])

drawHeatmap Draw Heatmap

Description

Draws a microarray data matrix as a heatmap, with rows and colums reordered
so the rows and columns of the input bicluster will be at top-left of the matrix.

Usage

drawHeatmap(x, bicResult = NULL, number = NA, local = TRUE,

beamercolor = FALSE, paleta, ...)

drawHeatmap2(x, bicResult = NULL, number = NA, plotAll = FALSE)

Arguments

x The data matrix where the bicluster is to be drawn.

bicResult BiclustResult object with a bicluster result set. If this value is
set to NULL, the data matrix is drawn as a heatmap, without
any reordering. Default NULL.

drawHeatmap 135

number Bicluster to be drawn from the result set ’bicResult’. If bicRe-
sult is set to NULL, this value is ignored. Default NA

local If TRUE, only rows and columns of the bicluster were drawn.

plotAll If TRUE, all Bicluster of result set ’bicResult’ were drawn.

beamercolor If TRUE, palete colors are used.

paleta Colors

... Additional plot options

Details

’plotAll’ only works if there is a exclusive rows and column Result!

Author(s)

Rodrigo Santamaria <rodri@usal.es>, Sebastian Kaiser

See Also

bubbleplot for simultaneous representation of biclusters and
parallelCoordinates for single representation of biclusters as lines of
gene or condition profiles.

Examples

#Random 100x50 matrix with a single, up-regulated 10x10 bicluster

s2=matrix(rnorm(5000),100,50)

s2[11:20,11:20]=rnorm(100,3,0.3)

set.seed(1)

bics <- biclust(s2,BCPlaid(), back.fit = 2, shuffle = 3,

fit.model = ~m + a + b, iter.startup = 5,

iter.layer = 30, verbose = TRUE)

drawHeatmap(s2,bics,1)

136 ensemble

EisenYeast Eisen Yeast

Description

Microarray data matrix for 80 experiments with Saccharomyces Cerevisiae or-
ganism by Eisen Lab.

Usage

data(EisenYeast)

Format

Data frame with information about the expression levels of 6221 genes over 80
conditions. Missing values have been imputed unsin k-nearest neighbor averaging
implemented in impute.knn() from library ’impute’ (using default k=10). Gene
names follow ORF (Open Reading Format) notation.

Source

Eisen Lab at http://rana.lbl.gov/EisenData.htm

ensemble Ensemble Methods for Bicluster Algorithms

Description

Calculates an ensemble of biclusters from different parameter setting of possible
different bicluster algorithms.

Usage

ensemble(x, confs, rep = 1, maxNum = 5, similar = jaccard2,

thr = 0.8, simthr =0.7, subs = c(1, 1),

bootstrap = FALSE, support = 0, combine=firstcome, ...)

ensemble 137

Arguments

x Data Matrix

confs Matrix containing parameter sets

rep Number of repetitions for each parameter set

maxNum Maximum number of biclusters taken from each run

similar Function to produce a similarity matrix of bicluster

thr Threshold for similarity

simthr Proportion of row column combinations in bicluster

subs Vector of proportion of rows and columns for subsampling. De-
fault c(1,1) means no subsampling.

bootstrap Should bootstrap sampling be used (logical: re-
place=bootstrap).

support Wich proportion of the runs must contain the bicluster to have
enough support to report it (between 0 and 1).

combine Function to combine the single bicluster only firstcome and hcl
for hierarchical clustering are possible at the moment.

... Arguments past to the combine function.

Details

Two different kinds (or both combined) of ensebmbling is possible. Ensemble of
repeated runs or ensemble of runs on subsamples.

Value

Return an object of class Biclust

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

Biclust-class, plaid.grid, bimax.grid

138 heatmapBC

Examples

data(BicatYeast)

ensemble.plaid <- ensemble(BicatYeast, plaid.grid()[1:5], rep = 1,

maxNum = 2, thr = 0.5, subs = c(1,1))

ensemble.plaid

x <- binarize(BicatYeast)

ensemble.bimax <- ensemble(x, bimax.grid(), rep = 10, maxNum = 2,

thr = 0.5, subs = c(0.8,0.8))

ensemble.bimax

heatmapBC Overlapping Heatmap

Description

Other than drawHeatmap this function plots all or a chosen number of bicluster
in one plot even if they were overlapping.

Usage

heatmapBC(x, bicResult, number = 0, local = FALSE, order = FALSE,

axes = FALSE, outside = FALSE,

zlim = c(min(x), max(x)), ...)

Arguments

x The data matrix where the bicluster is to be drawn.

bicResult BiclustResult object with a bicluster result set.

number Number of bicluster to be drawn from the result set ’bicResult’.
If the default 0 is chosen all bicluster of the bicResult are drawn.

local If TRUE, only rows and columns of the bicluster were drawn.

order If TRUE, rows and columns are ordered by there values.

axes Argument passed to image()

outside Boxes were drawn for overlapping

zlim Argument passed to image()

... Additional plot options

isoverlapp 139

Details

Overlap plotting only works for two neighbor bicluster defined by the order in
the number slot.

Author(s)

Sebastian Kaiser

See Also

drawHeatmap,parallelCoordinates

Examples

set.seed(1234)

data(BicatYeast)

resplaid <- biclust(BicatYeast, BCPlaid(), verbose = FALSE)

heatmapBC(x = BicatYeast, bicResult = resplaid)

isoverlapp Is Bicresult overlapping?

Description

Checks if Biclusterresult includes overlapping rows or columns

Usage

isoverlapp(bicResult)

Arguments

bicResult Result of biclust function

Value

Overlapping Is there overlapping
Max.bicluster.Rows

Maximal number of bicluster a single row is in
Max.bicluster.Cols

Maximal number of bicluster a single col is in

140 jaccardind

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

drawHeatmap

jaccardind Jaccardind

Description

An adaption of the Jaccard Index for clustering is calculated.

Usage

jaccardind(bicres1,bicres2)

jaccard2(Rows, Cols)

Arguments

bicres1 A object of class Biclust

bicres2 A object of class Biclust

Rows Matrix containing rows of biclusters

Cols Matrix containing cols of biclusters

Details

The function calculates the percentage of datapoints in the same bicluster struc-
ture from all datapoints at least included in one bicluster.

Value

jaccardind calculates the Jaccard index jaccard2 returns a similarity matrix
containing the Jaccard index between all biclusters (upper triangle matrix)

parallelCoordinates 141

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

Examples

Not run:

data(BicatYeast)

res1<-biclust(BicatYeast, method=BCPlaid(), back.fit = 2,

shuffle = 3, fit.model = ~m + a + b,iter.startup = 5,

iter.layer = 30, verbose = TRUE)

res2<-biclust(BicatYeast, method=BCCC())

jaccardind(res1,res2)

End(Not run)

parallelCoordinates

Parallel Coordinates

Description

Represents expression levels through gene and/or condition profiles in a bicluster
as lines.

Usage

parallelCoordinates(x, bicResult, number, plotBoth = FALSE,

plotcol = TRUE, compare = TRUE, info = F,

bothlab = c("Rows", "Columns"), order = FALSE,

order2 = 0, ylab = "Value" , col=1, ...)

Arguments

x The data matrix of the bicluster to be drawn

bicResult BiclustResult object with a bicluster result set

number Bicluster to be drawn from the result set ’bicResult’

plotBoth If ’TRUE’, Parallel Coordinates of rows (Genes) and columns
(Conditions) were drawn one below the other.

142 parallelCoordinates

plotcol If ’TRUE’, columns profiles are drawn, so each line represents
one of the columns in the bicluster. Otherwise, row profiles are
drawn. Default ’TRUE’

compare If ’TRUE’, values of the complete data matrix are considered
and drawn as shaded lines. Default ’TRUE’

info If ’TRUE’, a prepared Title is drawn

bothlab Names of the x Axis if PlotBoth

order Rows and/or Columns are in increasing order.

order2 Which ordering.

ylab ylab

col col

... Plot Parameters

Author(s)

Rodrigo Santamaria, Martin Sill and Sebastian Kaiser
<sebastian.kaiser@stat.uni-muenchen.de>

See Also

drawHeatmap for alternative representation of biclusters and bubbleplot for
simultaneous representation of biclusters.

Examples

#Random 100x50 matrix with a single, up-regulated 10x10 bicluster

s2=matrix(rnorm(5000),100,50)

s2[11:20,11:20]=rnorm(100,3,0.3)

set.seed(1)

bics <- biclust(s2,BCPlaid(), back.fit = 2, shuffle = 3,

fit.model = ~m + a + b, iter.startup = 5,

iter.layer = 30, verbose = TRUE)

parallelCoordinates(x = s2,bicResult = bics,number = 1,

plotBoth = TRUE, plotcol = TRUE, compare = TRUE,

info = TRUE, bothlab=c("Genes Bicluster 1",

"Conditions Bicluster 1"), order =TRUE)

parallelCoordinates(x = s2, bicResult = bics, number = 1,

plotBoth = FALSE, plotcol = TRUE, compare = FALSE,

info = TRUE)

plaid.grid 143

plaid.grid Parameter Grid for BCPlaid Biclustering

Description

Generates a list containing parameter settings for the ensemble algorithm.

Usage

plaid.grid(method = "BCPlaid", cluster = "b",

fit.model = y ~ m + a + b, background = TRUE,

background.layer = NA, background.df = 1,

row.release = c(0.5, 0.6, 0.7),

col.release = c(0.5, 0.6, 0.7), shuffle = 3,

back.fit = 0, max.layers = 20, iter.startup = 5,

iter.layer = 10, verbose = FALSE)

Arguments

method Here BCPlaid, to perform Plaid algorithm

cluster ’r’, ’c’ or ’b’, to cluster rows, columns or both (default ’b’)

fit.model Model (formula) to fit each layer. Usually, a linear model is used,
that stimates three parameters: m (constant for all elements in
the bicluster), a(contant for all rows in the bicluster) and b
(constant for all columns). Thus, default is: y ˜ m + a + b.

background If ’TRUE’ the method will consider that a background layer
(constant for all rows and columns) is present in the data matrix.

background.layer

If background=’TRUE’ a own background layer (Matrix with
dimension of x) can be specified.

background.df

Degrees of Freedom of backround layer if background.layer is
specified.

shuffle Before a layer is added, it’s statistical significance is compared
against a number of layers obtained by random defined by this
parameter. Default is 3, higher numbers could affect time per-
formance.

iter.startup Number of iterations to find starting values

iter.layer Number of iterations to find each layer

144 plotclust

back.fit After a layer is added, additional iterations can be done to refine
the fitting of the layer (default set to 0)

row.release Scalar in [0,1](with interval recommended [0.5-0.7]) used as
threshold to prune rows in the layers depending on row homo-
geneity

col.release As above, with columns

max.layers Maximum number of layer to include in the model

verbose If ’TRUE’ prints extra information on progress.

Value

A list containing parameter settings

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

ensemble, BCPlaid

Examples

plaid.grid()

plotclust Barplot of Bicluster

Description

Draws a graph to compare the values inside the diffrent biclusters with the values
outside the bicluster

Usage

plotclust(res, x, bicluster = TRUE, legende = FALSE, noC = 5,

wyld = 3, Titel = "Plotclust", ...)

predictBimax 145

Arguments

x The data matrix

res BiclustResult object if bicluster=TRUE else a normal kcca ob-
ject.

bicluster If TRUE,res is treated as a BiclustResult object

legende Draws a legend.

noC Number of Clusters drawn

wyld Gives the distance between plot and axis.

Titel Gives the title of the plot.

... Additional plot options

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

bubbleplot for simultaneous representation of biclusters.
parallelCoordinatesfor single representation of biclusters as lines of gene or
condition profiles. drawHeatmapfor Heatmap representation of biclusters.

Examples

s2=matrix(rnorm(400),20,20)

s2[12:16,12:16]=rnorm(25,3,0.3)

set.seed(1)

bics <- biclust(s2, BCPlaid(), back.fit = 2, shuffle = 3,

fit.model = ~m + a + b, iter.startup = 5,

iter.layer = 30, verbose = TRUE)

plotclust(bics,s2)

predictBimax Predict from a BCrepBimax Result

Description

Predicts cluster membership for new data rows given a BCrepBimax Result

146 SyntrenEcoli

Usage

predictBimax(BCrepBimax, x)

Arguments

BCrepBimax Result of biclust function with method BCrepBimax

x The data matrix which clustermembership should be predicted

Value

Returns a vector with clustermembership of data x of class.

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

See Also

BCrepBimax

SyntrenEcoli SynTReN E. coli

Description

Synthetic microarray data matrix generated by Syntren for 20 experiments using
200 genes from Transcription Regulatory Network of Shen-Orr et al. (2002).

Usage

data(SyntrenEcoli)

Format

Data structure with information about the expression levels of 200 genes over
20 conditions. Conditions are named as C1... C20

writeBiclusterResults 147

Source

SynTReN software can be downloaded at
http://homes.esat.kuleuven.be/˜kmarchal/SynTReN/index.html

References

Shen-Orr et al., ”Network motifs in the transcriptional regulation network of
Escherichia coli”, Nature Genetics 2002, volume 31, pages 64-68.

Tim Van den Bulcke et al., ”SynTReN: a generator of synthetic gene expression
data for design and analysis of structure learning algorithms”, BMC Bioinfor-
matics, 2006, volume 7, number 43.

writeBiclusterResults

writeBiclusterResults

Description

Write bicluster results to a file

Usage

writeBiclusterResults(fileName, bicResult, bicName, geneNames,

arrayNames, append=FALSE, delimiter=" ")

Arguments

fileName Path to the file were biclusters are written.

bicResult Biclusters results as a Biclust class.

bicName Brief description for the biclustering algorithm used.

geneNames Array of strings with gene (row) names in the analyzed data
matrix

arrayNames Array of strings with condition (column) names in the analyzed
data matrix

append If true, adds the bicluster results to previous information in the
text file, if it exists. Default false.

delimiter delimiter string between gene and condition names. Default ” ”.

148 writeclust

Author(s)

Rodrigo Santamaria <rodri@usal.es>

Examples

data(BicatYeast)

res <- biclust(BicatYeast, method = BCCC(), delta = 1.5, alpha = 1,

number=10)

writeBiclusterResults("results.txt", res, "CC with delta 1.5",

dimnames(BicatYeast)[1][[1]],

dimnames(BicatYeast)[2][[1]])

writeclust Write a Bicluster as a Cluster Result

Description

Draws a graph to compare the values inside the diffrent biclusters with the values
outside the bicluster

Usage

writeclust(Biclusterresult,row=TRUE,noC=10)

Arguments

Biclusterresult

BiclustResult object

row If TRUE, cluster of rows were written.

noC Number of Clusters written

Author(s)

Sebastian Kaiser <sebastian.kaiser@stat.uni-muenchen.de>

writeclust 149

Examples

s2=matrix(rnorm(400),20,20)

s2[12:16,12:16]=rnorm(25,3,0.3)

set.seed(1)

bics <- biclust(s2, BCPlaid(), back.fit = 2, shuffle = 3,

fit.model = ~m + a + b, iter.startup = 5,

iter.layer = 30, verbose = TRUE)

writeclust(bics)

B. orddata Reference Manual

We provide an implementation of all the methods used in Chapter 4 as add
on package orddata (Kaiser and Leisch, 2010) for R (R Development Core
Team, 2011). It extends package bindata (Leisch et al., 2009) which contains
the method of Leisch et al. (1998) for drawing correlated binary data, and will
eventually replace it. In this appendix we give a small manual how to use the
package performing one of the simulation study in Chapter 4.

The package can be downloaded from R-Forge and loaded into R using

> install.packages("orddata", repos = "http://R-Forge.R-project.org")

> library("ordata")

The main function of the package is rmvord(), which returns n observations
with given marginal probabilities probs and correlation structure Cor using the
mean mapping algorithm. probs is a list of probabilities for the variables where
length of list equals number of variables and the length of the probabilities
equals the number of items. The probs list for the example in section 4.4.3
looks like this

> probs1 <- list(c(5, 25, 55, 15)/100, c(10, 10, 10, 70)/100,

+ c(20, 15, 25, 40)/100)

The first correlation matrix of Table 4.1 can be specified by

> Cor1 <- matrix(c(1, 0.4, 0.3, 0.4, 1, 0.4, 0.3, 0.4,

+ 1), 3, 3)

To draw n =100 observation one then has to call

> rmvord(n = 100, probs = probs1, Cor = Cor1)

If a faster production of correlated ordinal values is needed and the restrictions
to the correlation matrix do not apply the function

> rmvord_b(n = 100, probs = probs1, Cor = Cor1)

does the same using the faster binary conversion method. For further details
and examples, please see the package reference manual:

minmax.ordcorr 151

minmax.ordcorr Minimum and Maximum of Possible Correlations

Description

This program minmax.ordcorr checks the first condition of the feasibility of a
correlation matrix of ordinal random numbers. A mean vector (as list) needs to
be specified. It returns yes/no if also a correlation matrix was given and in either
case the Min-Max Correlation Matrix, which has the minimum correlation in the
lower triangular matrix and the maximum correlation in the upper triangular
matrix.

Usage

minmax.ordcorr(probs, Cor = 0, n = 1e+06, showX = FALSE)

Arguments

probs List of probabilities for the variables, length of probability equals
number of items, length of list equals number of variables

Cor Correlation matrix

n Number of Observations

showX If TRUE resulting correlation matrix is shown

Value

It returns yes/no if also a correlation matrix was given and in either case the
Min-Max Correlation Matrix, which has the minimum correlation in the lower
triangular matrix and the maximum correlation in the upper triangular matrix.

Author(s)

Dominik Traeger and Sebastian Kaiser

References

Sebastian Kaiser, Dominik Traeger and Friedrich Leisch (2011). Generating
correlated ordinal data.

152 rmvord

See Also

check.ordcorr

Examples

minmax.ordcorr(list(c(1,1,1,1)/4,c(1,1,1,1)/4), cbind(c(0.5, 0.4),

c(0.4, 0.8)), n = 1000, showX = TRUE)

rmvord Multivariate Ordinal Random Variates

Description

Creates correlated multivariate ordinal random variables by thresholding a nor-
mal distribution.

Usage

rmvord(n = 1, probs, Cor, showCor_norm = TRUE)

Arguments

n Number of Observations

probs List of probabilities for the variables, length of probability equals
number of items, length of list equals number of variables

Cor Correlation matrix

showCor_norm If TRUE analytical correlation matrix is printed.

Details

This function implements the mean mapping method described in Kaiser et al.,
2010.

Value

Returns n ordinal observations with given marginal probabilities probs and cor-
relation structure Cor.

rmvord b 153

Author(s)

Sebastian Kaiser and Dominik Traeger

References

Sebastian Kaiser, Dominik Traeger and Friedrich Leisch (2011). Generating
correlated ordinal data.

See Also

rmvord_b,rmvord_mc

Examples

rmvord(n = 20, probs = list(c(1,1,1,1)/4,c(1,1,1,1)/4),

Cor = cbind(c(1, 0.4), c(0.4, 1)))

rmvord_b Multivariate Ordinal Random Variates via Binary Con-
version

Description

Creates correlated multivariate ordinal random variables by converting them into
binary variables.

Usage

rmvord_b(n = 1, probs, Cor, showCor_b = FALSE)

Arguments

n Number of Observations

probs List of probabilities for the variables, length of probability equals
number of items, length of list equals number of variables

Cor Correlation matrix

showCor_b If TRUE binary correlation matrix is printed.

154 rmvord mc

Details

Binary conversion is used to transform the correlation matrix. For Details see
Kaiser et al., 2011.

Value

Returns n observations with given marginal probabilities probs and correlation
structure Cor.

Author(s)

Sebastian Kaiser and Dominik Traeger

References

Sebastian Kaiser, Dominik Traeger and Friedrich Leisch (2011). Generating
correlated ordinal data.

See Also

rmvord,rmvord_mc

Examples

rmvord_b(n = 20, probs = list(c(1,1,1,1)/4,c(1,1,1,1)/4),

Cor = cbind(c(1, 0.4), c(0.4, 1)))

rmvord_mc Multivariate Ordinal Random Variates by Monte Carlo
Simulation

Description

Creates correlated multivariate ordinal random variables by a Monte Carlo sim-
ulation.

Usage

rmvord_mc(n = 1, probs, Cor)

rmvord mc 155

Arguments

n Number of Observations

probs List of probabilities for the variables, length of probability equals
number of items, length of list equals number of variables

Cor Correlation matrix

Details

Ordinal values are produced by shifting the variables until correlation structure
is reached.

Value

Returns n observations with given marginal probabilities probs and correlation
structure Cor.

Author(s)

Dominik Traeger and Sebastian Kaiser

See Also

rmvord_b,rmvord

Examples

rmvord_mc(n = 20, probs = list(c(1,1,1,1)/4,c(1,1,1,1)/4),

Cor = cbind(c(1, 0.4), c(0.4, 1)))

C. Mathematical nomenclature

For describing bicluster analysis we use the following notation:

A Data matrix
aij Value of A (row i, column j)
aiJ Mean value of row i
aIj Mean value of column j
aIJ Overall mean
X Objects or data rows
Y Variables or data columns
n Number of objects
m Number of Variables
I = {i1, ..., ik}, I ⊂ X Subset of objects
J = {j1, ..., jl}, J ⊂ Y Subset of variables
BCz = (Iz, Jz) Bicluster z
Bicresh = {BC1(Bicresh), ..., BCg(Bicresh)} Bicluster result set
jac Jaccard Index

Bibliography

Barkow, S., S. Bleuler, A. Prelic, P. Zimmermann, and E. Zitzler (2006). Bicat:
a biclustering analysis toolbox. Bioinformatics 22, 1282–1283.

Ben-Dor, A., B. Chor, R. Karp, and Z. Yakhini (2003). Discovering local
structure in gene expression data: The order-preserving submatrix problem.
Journal of Computational Biology 10, 373–384.

Bergmann, S., J. Ihmels, and N. Barkai (2003). Iterative signature algorithm
for the analysis of large-scale gene expression data. Physical Review E E 67
031902, 1–18.

Biswas, A. (2004, October). Generating correlated ordinal categorical random
samples. Statistics & Probability Letters 70 (1), 25–35.

Bühlmann, P. (2010). Handbook of Computational Statistics: Concepts and
Methods, 2nd Edition, Chapter Bagging, boosting and ensemble methods.
Springer.

Cheng, Y. and G. M. Church (2000). Biclustering of expression data. Pro-
ceedings of the Eighth International Conference on Intelligent Systems for
Molecular Biology 1, 93–103.

Chia, B. and R. K. M. Karuturi (2010). Differential co-expression framework
to quantify goodness of biclusters and compare biclustering algorithms. Al-
gorithms for Molecular Biology 5 (1), 23.

Claycamp, H. J. and W. F. Massy (1968). A theory of market segmentation.
Journal of Marketing Research 5 (4), pp. 388–394.

Couper, M. P. (2000). Web surveys: A review of issues and approaches. Public
Opinion Quarterly 64 (4), 464–94.

Csardi, G. (2009). isa2: The Iterative Signature Algorithm. R package version
0.2.1.

Csardi, G. (2010). eisa: Expression data analysis via the Iterative Signature
Algorithm. R package version 1.2.0.

158 Bibliography

Demirtas, H. (2006). A method for multivariate ordinal data generation given
marginal distributions and correlations. Journal of Statistical Computation
and Simulation 76(11), 1017–1025.

Deutskens, E., K. D. Ruyter, M. Wetzels, and P. Oosterveld (2004). Response
rate and response quality of internet-based surveys: An experimental study.
Marketing Letters 15, 21–36.

Dolnicar, S. (2002). A review of data-driven market segmentation in tourism.
Journal of Travel and Tourism Marketing 12 (1), 1 – 22.

Dolnicar, S. and B. Grün (2008). Challenging ’factor - cluster segmentation’.
Journal of Travel Research 47 (1), 63–71.

Dolnicar, S., S. Kaiser, K. Lazarevski, and F. Leisch (2011). Biclustering
overcoming data dimensionality problems in market segmentation. Journal
of Travel Research.

Dolnicar, S. and F. Leisch (2010). Evaluation of structure and reproducibility
of cluster solutions using the bootstrap. Marketing Letters 21, 83–101.

Erhardt, V. and C. Czado (2010). Sampling Count Variables with specified
Pearson Correlation - a Comparison between a naive and a C-vine Sampling
Approach. World Scientific Publishing Company.

Eugster, M. J. A., J. Gertheiss, and S. Kaiser (2010). Having the second leg at
home – advantage in the UEFA Champions League knockout phase? Journal
of Quantitative Analysis in Sports . Accepted for publication on 2010-11-23.

Everitt, B. S., S. Landau, and M. Leese (2009). Cluster Analysis. London:
Wiley.

Formann, A. K. (1984). Die Latent-Class-Analyse: Einf̈ı¿½hrung in die Theorie
und Anwendung. Weinheim: Beltz.

Fox, J. (2010). Rcmdr: R Commander. R package version 1.6-0.

Gange, S. J. (1995). Generating multivariate categorical variates using the
iterative proportional fitting algorithm. The American Statistician 49 (2),
134–138.

Gentleman, R. C., V. J. Carey, D. M. Bates, et al. (2004). Bioconductor:
Open software development for computational biology and bioinformatics.
Genome Biology 5, R80.

Getz, G., E. Levine, and E. Domany (2000). Coupled two-way clustering
analysis of gene microarray data. Proceedings of the National Academy of
Sciences of the United States of America 97 (22), 12079–12084.

Bibliography 159

Hanczar, B. and M. Nadif (2010). Bagging for biclustering: Application to
microarray data. In J. Balc̈ı¿½zar, F. Bonchi, A. Gionis, and M. Sebag
(Eds.), Machine Learning and Knowledge Discovery in Databases, Volume
6321 of Lecture Notes in Computer Science, pp. 490–505. Springer Berlin /
Heidelberg.

Hartigan, J. A. (1972). Direct clustering of a data matrix. Journal of the
American Statistical Association 67 (337), 123–129.

Hastie, T., R. Tibshirani, and J. H. Friedman (2003, July). The Elements of
Statistical Learning (Corrected ed.). Springer.

Heyer, L. J., S. Kruglyak, and S. Yooseph (1999). Exploring Expression Data:
Identification and Analysis of Coexpressed Genes. Genome Research 9 (11),
1106–1115.

Hochreiter, S., U. Bodenhofer, M. Heusel, A. Mayr, A. Mitterecker,
A. Kasim, T. Khamiakova, S. V. Sanden, D. Lin, W. Talloen, L. Bijnens,
H. W. H. G”ohlmann, Z. Shkedy, and D.-A. Clevert (2010). Fabia: Fac-
tor analysis for bicluster acquisition. Bioinformatics 26 (12), 1520–1527.
doi:10.1093/bioinformatics/btq227.

Jaccard, P. (1901). Distribution de la flore alpine dans le bassin des dranses et
dans quelques règions voisines. Bulletin de la Sociate Vaudoise des Sciences
Naturelles 37, 241–272.

Ji, L., K. W.-L. Mock, and K.-L. Tan (2006). Quick hierarchical biclustering
on microarray gene expression data. Proceedings of the 6th IEEE Symposium
on Bioinformatics and Bioengineering 1, 110–120.

Kaiser, S. and F. Leisch (2008). A toolbox for bicluster analysis in R. In
P. Brito (Ed.), Compstat 2008—Proceedings in Computational Statistics,
pp. 201–208. Physica Verlag, Heidelberg, Germany.

Kaiser, S. and F. Leisch (2010). orddata: Generation of Artificial Ordinal and
Binary Data. R package version 0.1.

Kaiser, S., R. Santamaria, M. Sill, R. Theron, L. Quintales, and F. Leisch
(2011). biclust: BiCluster Algorithms. R package version 1.0.

Kaiser, S., D. Träger, and F. Leisch (2011). Generating correlated ordinal
random values. Submitted.

Khamiakova, T., S. Kaiser, and Z. Shkedy (2011). Goodness-to-fit and diag-
nostic tools within the differential co-expression and biclusters setting.

160 Bibliography

Kluger, Y., R. Basri, J. T. Chang, and M. Gerstein (2003). Spectral biclus-
tering of microarray data: Coclustering genes and conditions. Genome Re-
search 13, 703–716.

Kostka, D. and R. Spang (2004). Finding disease specific alterations in the
co-expression of genes. Bioinformatics 20 (Suppl 1), i194–i199.

Kotler, P. and G. Armstrong (2006). Principles of marketing (11th edition
ed.). Upper Saddle River: Prentice Hall.

Kriegel, H.-P., P. Kröger, and A. Zimek (2009, March). Clustering high-
dimensional data: A survey on subspace clustering, pattern-based clustering,
and correlation clustering. ACM Trans. Knowl. Discov. Data 3, 1:1–1:58.

Lawrence, H. and P. Arabie (1985). Comparing partitions. Journal of Classi-
fication 2 (1), 193–21.

Lazzeroni, L. and A. Owen (2002). Plaid models for gene expression data.
Statistica Sinica 12, 61–86.

Lee, M., H. Shen, J. Z. Huang, and J. S. Marron (2010, Feb). Biclustering via
sparse singular value decomposition. Biometrics .

Leisch, F. and B. Grün (2006). Extending standard cluster algorithms to
allow for group constraints. In A. Rizzi and M. Vichi (Eds.), Compstat
2006 – Proceedings in Computational Statistics, pp. 885–892. Physica Verlag,
Heidelberg, Germany.

Leisch, F., A. Weingessel, and K. Hornik (1998). On the generation of corre-
lated artificial binary data. Technical Report 13, SFB Adaptive Information
Systems and Modelling in Economics and Management Science, Wirtschaft-
suniversität Wien, Augasse 2-6, A-1090 Wien, Austria.

Leisch, F., A. Weingessel, and K. Hornik (2009). bindata: Generation of Arti-
ficial Binary Data. R package version 0.9-17.

Lilien, G. and A. Rangaswamy (2002). Marketing Engineering (2nd Edition
ed.). Upper Saddle River: Pearson Education.

Madeira, S. C. and A. L. Oliveira (2004). Biclustering algorithms for biolog-
ical data analysis: A survey. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 1 (1), 24–45.

McLendon, R., A. Friedman, D. Bigner, E. Van Meir, D. Brat, G. Mas-
trogianakis, J. Olson, T. Mikkelsen, N. Lehmann, K. Aldape, W. Yung,
O. Bogler, J. Weinstein, S. VandenBerg, M. Berger, and Prados (2008).
Comprehensive genomic characterization defines human glioblastoma genes
and core pathways. Nature 455, 1061–1068.

Bibliography 161

Mechelen, I. V., H.-H. Bock, and P. D. Boeck (2004). Two-mode clustering
methods: a structured overview. StatisticalMethods in Medical Research 13,
363–394.

Murali, T. and S. Kasif (2003). Extracting conserved gene expression motifs
from gene expression data. Pacific Symposium on Biocomputing 8, 77–88.

Papastefanou, G. (2001). The zuma scientific use file of the gfk consumerscan
household panel 1995. In G. Papastefanou, P. Schmidt, A. Börsch-Supan,
H. Lüdtke, and U. Oltersdorf (Eds.), Social and Economic Analyses with
Consumer Panel Data, pp. 206–212. ZUMA Mannheim.

Patel, J. K. and C. B. Read (1982). Handbook of the Normal Distribution,
Volume 40 of Statistics: Textbooks and Monographs. New York and Basel:
Marcel Dekker, Inc.

Pfundstein, G. (2010). Ensemble methods for plaid bicluster algorithm. Bach-
elor Thesis, Institut für Statistik, LMU München.

Philip, K., S. Adam, L. Brown, and G. Armstrong (2001). Principles of mar-
keting. Frenchs Forest: Pearson Education Australia.

Pramana, S. and S. Kaiser (2010). BiclustGUI: R commander Plug In for
bicluster analysis. R package version 1.0.1.

Prelic, A., S. Bleuler, P. Zimmermann, A. Wil, P. Bühlmann, W. Gruissem,
L. Hennig, L. Thiele, and E. Zitzler (2006). A systematic comparison and
evaluation of biclustering methods for gene expression data. Bioinformat-
ics 22 (9), 1122–1129.

R Development Core Team (2011). R: A Language and Environment for Statis-
tical Computing. Vienna, Austria: R Foundation for Statistical Computing.
ISBN 3-900051-07-0.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering meth-
ods. Journal of the American Statistical Association 66 (336), 846–850.

Reiss, D., N. Baliga, and R. Bonneau (2006). Integrated biclustering of het-
erogeneous genome-wide datasets for the inference of global regulatory net-
works. BMC Bioinformatics 7 (1), 280.

Reiss, D. J. (2011). cMonkey: Intgrated Biclustering Algorithm. R package
version 4.8.0.

Santamaŕıa, R., L. Quintales, and R. Therón (2007). Methods to bicluster vali-
dation and comparison in microarray data. In H. Yin, P. Tino, E. Corchado,
W. Byrne, and X. Yao (Eds.), Intelligent Data Engineering and Automated

162 Bibliography

Learning - IDEAL 2007, Volume 4881 of Lecture Notes in Computer Science,
pp. 780–789. Springer Berlin / Heidelberg.

Santamaŕıa, R., R. Therón, and L. Quintales (2008, May). Bicoverlapper: A
tool for bicluster visualization. Bioinformatics 24 (9), 1212–1213.

Santamaŕıa, R., R. Therón, and L. Quintales (2008). A visual analytics ap-
proach for understanding biclustering results from microarray data. BMC
Bioinformatics 9 (247).

Scharl, T. and F. Leisch (2006). The stochastic qt–clust algorithm: Evaluation
of stability and variance on time–course microarray data. In A. Rizzi and
M. Vichi (Eds.), Compstat 2006—Proceedings in Computational Statistics,
pp. 1015–1022. Physica Verlag, Heidelberg, Germany.

Sheng, Q., Y. Moreau, and B. D. Moor (2003). Biclustering microarray data
by Gibbs sampling. Bioinformatics 19.

Sill, M. and S. Kaiser (2011). s4vd: Biclustering via sparse singular value
decomposition incorporating stability selection. R package version 1.0/r42.

Sill, M., S. Kaiser, A. Benner, and A. Kopp-Schneider (2011). Robust bicluster-
ing by sparse singular value decomposition incorporating stability selection.
Bioinformatics .

Smith, W. R. (1956). Product differentiation and market segmentation as
alternative marketing strategies. The Journal of Marketing 21 (1), pp. 3–8.

Tanay, A., R. Sharan, and R. Shamir (2002). Discovering statistically signifi-
cant biclusters in gene expression data. Bioinformatics 18 (1), 136–144.

Tanay, A., R. Sharan, and R. Shamir (2005). Biclustering Algorithms: A
Survey. In Handbook of Computational Molecular Biology / CRC Computer
and Information Science Series.

Theußl, S. and A. Zeileis (2009, May). Collaborative Software Development
Using R-Forge. The R Journal 1 (1), 9–14.

Träger, D. (2009). Generation of correlated ordinal random numbers. Diploma
Thesis, Institut für Statistik, LMU München.

Turner, H., T. Bailey, and W. Krzanowski (2005). Improved biclustering of
microarray data demonstrated through systematic performance tests. Com-
putational Statistics and Data Analysis 48, 235–254.

Wilkerson, M. D. and D. N. Hayes (2010). Consensusclusterplus: a class dis-
covery tool with confidence assessments and item tracking. Bioinformat-
ics 26 (12), 1572–1573.

Bibliography 163

Williams, G. J. (2009, December). Rattle: A data mining gui for r. The R
Journal 1 (2), 45–55.

Yu, K. F. and W. Yuan (2004). Regression models for unbalanced longitudinal
ordinal data: computer software and a simulation study. Computer Methods
and Programs in Biomedicine 75 (3), 195 – 200.

Zins, A. H. (2008). Change Management in Tourism: From Old to New,
Chapter Market Segmentation in tourism: A critical review of 20 years, pp.
289 – 301. Erich Schmidt, Verlag.

