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Zusammenfassung

Induzierbare Genregulationsnetzwerke in Bakterien schalten auf einen Reiz aus der Umge-

bung hin die Transkription von Genen an. Die inhärente Stochastizität der Genexpression

führt zu einer Variabiliät von Zelle zu Zelle, welche Funktionen wie die Arbeitsteilung

zwischen genetisch identischen Zellen ermöglicht. Über den Einfluss der Stochastizität auf

den zeitlichen Ablauf der Proteinproduktion ist jedoch nur wenig bekannt. In dieser Arbeit

wurde die Zelle-zu-Zelle-Variabilität der Dynamik der Genexpression eines metabolischen

Systems untersucht sowie eines Systems, das zu einer Änderung der Morphologie der Bak-

terienkultur führt. Auf der Basis quantitativer Daten wurden mathematische Modelle

aufgestellt, die die Funktionsweise aufgrund der Netzwerkstruktur vorhersagbar machen.

Fluoreszierende Proteine dienen als Reporter um die Dynamik der Genexpression einzel-

ner Zellen mit Hilfe von quantitativer zeitaufgelöster Fluoreszenzmikroskopie zu messen.

Für diese Technik wurde ein Aufbau entwickelt, der die gleichzeitige Aufnahme einer

großen Anzahl von Einzelzellkurven ermöglicht. Zudem kann die Konzentration von Sig-

nalsubstanzen in der verwendeten Probenumgebung zeitlich variiert werden. Dies erlaubt

die Bestimmung der Maturationszeit des fluoreszierenden Proteins in einzelnen Bakterien.

Die Kenntnis dieser Größe war nötig um die Dynamik des Netzwerks von der des Reporters

zu unterscheiden. Für GFPmut3 wurde eine Maturationszeit von 6.5± 0.6 min bestimmt.

In Escherichia coli wird die Produktion von Proteinen für den Abbau und die Auf-

nahme des Zuckers Arabinose durch ein eigenes System gesteuert. In Abwesenheit des

Zuckers ist die Produktionsrate der Aufnahmeproteine klein, sie steigt aber stark an,

wenn die intrazelluläre Arabinosekonzentration einen Schwellwert übersteigt. Bei der Zu-

gabe von Arabinose zu Bakterien, die zuvor ohne diesen Zucker gewachsen waren, wurde

eine Variabilität von Zelle zu Zelle bezüglich des Einsetzens der Genexpression beobachtet.

Für diese Stochastizität im zeitlichen Ablauf wurde der Begriff ”heterogenes Zeitverhal-

ten” geprägt. Die Verteilung der Verzögerungszeiten zwischen der Zugabe des Induktors

und dem Beginn der Expression skaliert invers mit der externen Arabinosekonzentration

und wird durch ein einfaches stochastisches Model der Arabinoseaufnahme erklärt. Diese

Ergebnisse weisen darauf hin, dass das heterogene Zeitverhalten auf eine breite Verteilung

der Aufnahmeproteine zum Zeitpunkt der Arabinosezugabe zurückzuführen ist.

Das Netzwerk wurde genetisch manipuliert um weitere Hinweise auf diesen Zusammen-

hang zu erhalten. In der Mutante ist die Anzahl der Aufnahmeproteine pro Zelle ebenfalls

unterschiedlich, bleibt aber zeitlich konstant. Interessanterweise begann die Genexpression

in allen Zellen gleichzeitig, aber ihre Rate, die im nativen Netzwerk konstant war, sank

mit abnehmender Arabinosekonzentration. Ein Ratenmodel wurde aufgestellt, welches die



2 Zusammenfassung

Genexpressionsdynamiken der beiden Netzwerke sowie das Antwortverhalten auf aufeinan-

der folgende Arabinosepulse konsistent beschreibt. Die Dynamik des modifizierten Net-

zwerks kann nur erklärt werden, wenn das Ausströmen der Arabinose im Modell berück-

sichtigt wird. Die Berücksichtigung dieses Prozesses wurde durch die Beobachtung ve-

ranlasst, dass die Genexpression endet, sobald die Arabinose aus der Umgebung vorher

induzierter Zellen entfernt wird.

Da einige stochastische Effekte zu optimalen Wachstumsraten der Bakterienkulturen

führen oder Teilpopulationen vor seltenen schädlichen Effekten schützen, werden mögliche

Vorteile des heterogenen Zeitverhaltens diskutiert. Vermutlich treten solche Effekte auf,

wenn die Arabinosekonzentration zeitlichen Fluktuationen unterworfen ist.

Im PPU-System, welches die Bildung von Biofilmen in Pseudomonas putida steuert,

wird der Induktor von den Bakterien selbst produziert und kann durch die Membran dif-

fundieren. Es wurde untersucht, ob heterogene räumliche Verteilungen der Zellen oder der

Induktorkonzentration die Geneexpressionsdynamik beeinflussen. Wurde der Induktor von

außen zu einer Bakterienkultur hinzugefügt, die anschließend nicht verändert wurde, so-

dass die von den Zellen produzierten Induktoren sich ansammeln konnten. Die beobachtete

Dynamik stimmt gut mit einem Modell überein, welches eine gut gemischte Umgebung

voraussetzt. Unterschiede zwischen den Vorhersagen dieses Modells und den Daten bei

konstanter externer Konzentration deuten darauf hin, dass die Konzentration in den Zellen

größer ist als in der Umgebung. Ein Modell mit zwei räumlich getrennten Bereichen soll

entscheiden, welcher von mehreren vorgeschlagenen Mechanismen zur Induktoransamm-

lung führt.

Zwischen verschiedenen Kolonien und zwischen einzelnen Zellen innerhalb einer Kolonie

wurden erhebliche Variationen der Genexpression beobachtet. Diese werden vermutlich

durch die Kombination von stochastischer Genexpression und räumlicher Heterogenität der

Induktorkonzentration verursacht. Die Variabilität könnte zu der bereits beschriebenen

funktionalen Differenzierung von Zellen in Biofilmen beitragen.



Summary

Inducible gene regulatory networks in bacteria switch on the transcription of genes upon an

environmental stimulus. The inherent stochasticity of gene expression leads to cell-to-cell

variability that enables functions such as the division of labor between genetically identical

cells. However, little is known about the impact of stochasticity on the timing of protein

production. In this thesis the cell-to-cell variability of the dynamics of gene expression in a

metabolic system and a system which mediates a change in the morphology of the bacterial

culture was studied. Quantitative data were used to establish mathematical models which

allow predicting the functionality from the network structure.

Fluorescent proteins are used as reporters to measure single cell gene expression dy-

namics by quantitative time-lapse fluorescence microscopy. A setup for this technique

was established that allows for the simultaneous acquisition of a large number of single

cell traces. In addition, the sample environment enables temporal variations of signaling

molecule concentrations. It was thus possible to measure the maturation time of a fluores-

cent protein in single bacteria. This quantity is necessary to distinguish between network

and reporter dynamics. For GFPmut3 a maturation time of 6.5±0.6 min was determined.

In Escherichia coli the production of proteins for the degradation and the uptake of the

sugar arabinose is controlled by a specific system. In the absence of the sugar, the pro-

duction rate of the uptake proteins is small, but it increases strongly once the intracellular

arabinose concentration crosses a threshold level. When arabinose was added to bacteria

which had previously grown without this sugar, cell-to-cell variability was found for the

time at which gene expression starts. The phrase coined for this temporal stochastic effect

is heterogeneous timing. The distribution of the delay times between inducer addition

and expression onset scales inversely with the external arabinose concentration and can

be explained by a simple stochastic model of arabinose uptake. These results indicate

that heterogeneous timing is causally related to a broad distribution of arabinose uptake

proteins at the time of inducer addition.

The network was genetically modified in order to obtain further evidence for this re-

lationship. In the mutant, the number of uptake proteins varies between cells, too, but

remains constant over time. Interestingly, gene expression started simultaneously in all

cells, but the rate of gene expression, which was constant in the native network, became

smaller with decreasing inducer concentration. A rate equation model was developed,

which consistently explains the gene expression dynamics in both networks and also the

response to subsequent arabinose pulses. Importantly, the dynamics of the modified net-

work are only predicted correctly when arabinose efflux is considered in the model. The
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inclusion of this process was prompted by the observation that gene expression ceases

when arabinose is removed from previously induced cells.

As some stochastic effects lead to an optimal growth rate of bacterial cultures or protect

a fraction of a population from rare detrimental events, possible benefits resulting from

heterogeneous timing are discussed. Such effects will probably be observed when the

arabinose concentration varies over time.

In the PPU system, which controls biofilm formation in Pseudomonas putida, the in-

ducer is produced by the cells themselves and can diffuse through the membrane. It is

investigated whether heterogeneous spatial distributions of the cells or the inducer concen-

tration have an impact on the gene expression dynamics. Dynamics were measured when

the inducer was applied externally to a subsequently undisturbed sample, so that inducer

molecules released by the cells could accumulate. These data were in good agreement

with a model assuming a well-mixed environment. Differences between the predictions

of this model and data acquired when the external concentration was kept constant in-

dicated a higher inducer concentration within the cells than in the surrounding medium.

A two compartment model will be developed in order to analyze which of the proposed

mechanisms leads to accumulation.

Significant variations of gene expression between single colonies and between single cells

within colonies were found. Presumably, these result from a combination of stochasticity

in gene expression and spatially heterogeneous inducer concentrations. The variations

might contribute to the previously observed functional differentiation of cells in biofilms.



1 Introduction

The use of genetically modified microorganisms is a highly promising approach for appli-

cations such as the production of biofuels from waste biomass and the removal of envi-

ronmental contaminations. Many examples prove its technological potential: A classical

application of genetically manipulated bacteria is the production of insulin. More re-

cently, the cost of highly effective anti-malaria drugs could be reduced strongly by the use

of modified yeast cells [1].

However, in contrast to disciplines such as mechanical or electrical engineering there

is no framework which allows designing a microbe with a predefined functionality. In-

stead, a large number of trial and error steps are necessary that are tedious, costly and

time-consuming. Thus, the goal is to develop an engineering framework for genetic re-

programming [2]. A prerequisite for this effort is more knowledge about the fundamental

working principles of cells.

Systems biology [3] aims at unraveling these principles by establishing a holistic de-

scription of biological systems. To this end, the involved molecules and their interactions

as well as the response to perturbations are characterized quantitatively. These data are

used to establish mathematical models that facilitate predicting the behavior of a system

from its structure.

A very important cellular function is signal transduction whereby the cellular protein

content is changed upon an external stimulus. Single celled organisms are thus able to

adapt to environmental changes. To alter the protein content, the transcription rate of

certain genes is modified. These modifications are mediated by regulatory networks that

comprise several genes and proteins and their regulatory interactions. It has turned out

that these networks have a modular structure and that certain regulatory motifs recur

frequently [4]. An example of such a motif is positive feedback, i.e. the stimulation of

a gene by its own gene product, which also characterizes the networks analyzed in this

study. In many cases, positive feedback leads to the conversion of a graded input to a

binary signal, thus constituting a switch.

Even though this framework resembles man-made signaling tools at first glance, there is

an important additional influence: The response is subject to a high degree of stochasticity

as many of the relevant molecules are present in very low copy numbers per cell, leading

to significant cell-to-cell variations [5]. In some cases, genetically identical cells within one

population are in physiologically completely different states. For example, under certain

conditions a fraction of the cells express some genes at a high level, while other cells do

not express these genes at all. This behavior is called all-or-nothing gene expression and
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has been observed in two catabolic systems, the arabinose and lactose system [6] [7].

Many fundamental questions, such as the generation of noise, the transmittance of noise

through gene cascades or the stochastic switching into distinct states have been addressed

in recent years [5] [8]. This analysis has been facilitated by the discovery of fluorescent

proteins [9]. These can be used as reporters for gene expression since the gene encoding a

fluorescent protein can be put under the control of a transcriptional regulatory network.

As the fluorescence signal of each individual cell can be measured, the cell-to-cell variations

in gene expression can be analyzed. Furthermore, time-lapse fluorescence microscopy can

be used to study gene expression dynamics on the single cell level [10]: Ensembles of

bacteria are imaged in regular time intervals and fluorescence time series of individual

cells are determined by quantitative image analysis.

The shaping of gene networks by evolution, is another topic which is currently addressed

both experimentally and by using theoretical concepts such as cost-benefit and game

theory [11] [12]. Particularly, it is investigated under which environmental conditions a

certain network is optimal, meaning that it yields maximal fitness of the bacteria. In

this context it is suggested that phenotypic variability created by noise is optimal under

certain conditions [13].

In this thesis the response dynamics of bacterial regulatory networks are analyzed on

the single cell level. The investigated systems switch on the expression of certain genes

and share a positive feedback architecture. The general behavior of such a system as

well as the influence of noise on the distribution of cells between the off and on state are

characterized experimentally [14] [15], but the transition of single cells between the off and

on state has only been predicted theoretically [16]. Thus, the influence of noise on the

timing of the transition remains unclear. This information is necessary in order to establish

a framework that allows predicting the behavior of gene networks from their architecture.

This predictive power will in turn greatly facilitate the construction of artificial networks.

The thesis is organized as follows: An introduction to gene regulation, noise and further

basic concepts is given in chapter 2. Fundamental concepts, specific solutions developed in

this work and advanced considerations on quantitative time-lapse fluorescence microscopy

are presented in Chapter 3. Detailed experimental protocols can be found in Appendix B.

In the arabinose system the influence of gene expression noise on the time evolution of

the switching between the off and on state is analyzed (Chapter 5). To this end, expression

kinetics of the native system, as well as modified networks are measured. Heterogeneous

timing, a temporal stochastic effect, is observed. A stochastic model indicates that this

effect is due to a broad distribution of arabinose uptake proteins. A rate equation based

model is developed which consistently explains the gene expression dynamics measured

for different network architectures and different time courses of the inducer concentration.

Furthermore, it is analyzed whether cell-to-cell variations in the timing of the response are

beneficial under conditions where inducer availability is limited. GFP maturation has to
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be accounted for when modeling dynamic gene expression data. Therefore, the maturation

time was measured in single E.coli cells (Chapter 4).

In contrast to the arabinose system, which requires transport proteins to take up the

added sugar, the Pseudomonas putida PPU system is regulated by membrane diffusible

molecules, which are produced by the bacteria themselves. The PPU system is a model for

the formation of biofilms, which are layers of surface attached bacteria that are surrounded

by a protective matrix. It is tested whether gene expression dynamics are influenced by

inducer accumulation in the vicinity of the cells by comparing results (i) under undisturbed

conditions in which the molecules can accumulate and (ii) under fixed environmental

conditions achieved by a constant flow of medium. Furthermore, the stochastic variability

that arises while single cells grow into microcolonies is addressed.
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2 Basic concepts

2.1 Gene expression and transcriptional regulation

The production of a protein by a cell, which is called gene expression, comprises two steps:

The transcription of a gene into mRNA and its subsequent translation into a protein (see

Figure 2.1). Regulation of this process is possible at any stage. Thus, the protein content of

the cell can be adjusted, when bacteria are faced with variations in the environmental con-

ditions, like the increase in the concentration of a certain nutrient or the sudden presence

of an antibiotic. Here, we focus on transcriptional regulation in bacteria which was studied

    mRNA 
degradation

   protein 
maturation

DNA mRNA Protein
transcription translation

 Initiation of 
transcription

   protein 
degradation

promoter gene

transcription 
factor

RNA polymerase 

a

b

DNA

mRNA

c d

P P

Figure 2.1: Gene Regulation (a) The production of a protein from a gene com-
prises transcription and translation. In addition to the transcription and translation
rate the amount of protein present in a cell also depends on the processes indicated
by vertical arrows. (b) Transcription factors facilitate or prevent binding of the RNA
polymerase to the promoter. Once bound, the polymerase moves along the DNA and
copies the DNA into mRNA. Schematic of negative (c) and positive autoregulation
(d) of a protein P. In regulation schemes blunt ends indicate inhibition, while arrows
indicate activation.
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in this work. Genes are transcribed by the enzyme RNA polymerase, which initially binds

to the promoter, a site upstream of the gene on the DNA (initiation of transcription). This

association can be inhibited or facilitated by other proteins, so called transcription factors

(TF), which occupy specific binding sites on the DNA. Transcription factors thus influence

the overall rate at which mRNA molecules are produced, which is mainly determined by

the frequency of initiation events. TFs often have a signal-sensing-domain, such that they

can be activated or deactivated via ligand binding, phosphorilation or other modification.

For example, the protein AraC, which regulates the arabinose system, only stimulates gene

expression when bound to arabinose. In signal transduction mechanisms, the modification

of a TF which is already present allows for a very fast response.

2.2 Gene regulatory networks

Transcription factors are proteins which can themselves be transcriptionally regulated

and often they regulate more than one gene. Furthermore, there are additional regulatory

influences, for example by other proteins, which degrade activating compounds. The

entity of transcriptional regulatory interactions in one cell thus comprises a large network,

which is characterized by a high degree of modularity, robustness and the use of recurring

elements [4] [17] [18]. Two simple and frequently occurring modules are positive and

negative autoregulation. A positively autoregulated gene stimulates its own expression,

while a negatively autoregulated one inhibits its own expression (see Figure 2.1). Positive

autoregulation, which is the central element of the regulatory networks studied in this

thesis is known to increase fluctuations, resulting in significant variability of the protein

level. Furthermore, it is the simplest implementation of a switch, when it is combined

with a non-linear response function [19]: If a signal leads to the creation of a sufficient

number of proteins it is amplified, resulting in a large response. For small signals there is

no response at all.

2.3 Stochasticity in gene expression

The expression level of one protein can vary significantly between cells even though they

are genetically identical. These variations stem from stochasticity in gene expression [5]

[8] [20] [21]. The variability can be visualized using cells which express two different

fluorescent proteins (see Figure 2.2 a): The different levels of the two fluorophores result

in different colors of the cells when the two channels are overlayed.

Gene expression noise is generated by the interplay of bursting, time averaging and noise

propagation ([21], see figure 2.2 c):)

Most proteins are only present in few to 100 copies per cell [23]. These low numbers do

not arise from a continuous, low production of protein molecules. Instead, from time to

time a large number of proteins, a so called burst, is expressed.
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Figure 2.2: Noise in gene expression (a) Visualization of noise by the expres-
sion of two fluorescent proteins: The overly of the two fluorescence channels shows
that the expression level of the two fluorescent proteins differs between genetically
identical bacteria. (b) Schematic illustration of intrinsic and extrinsic noise: If only
extrinsic noise was present, the temporal fluctuations of the expression level of two
fluorescent proteins controlled by two copies of the same promoter would be correlated.
With intrinsic noise the variations become uncorrelated. (c) Random and transient
derepresssion of a promoter gives rise to mRNA bursts. Fluctuations in protein con-
centration are less sharp, as the mRNA bursts are smeared out by the lifetime of
proteins, which is typically longer than the time between bursts. (a and b are from
[22]. Reprinted with permission from AAAS. c is from [21]. Reprinted by permission
from Macmillian Publishers Ltd.)

The underlying reason is that bursts of mRNA molecules are produced [24] [25] due to

the transient and random derepression of the promoter. Each mRNA molecule is amplified

to many proteins as it is translated multiple times. As an example, consider a repressive

transcription factor (TF), which unbinds from the DNA when it is associated with a cer-

tain signaling molecule. Still, even in the absence of the signal there is a small probability

for the TF to fall off the DNA. Thus, occasionally mRNA molecules can be produced for a

short time. With increasing numbers of signaling molecules the probability for the TF to

unbind from the DNA and thus the frequency of derepression events increases, resulting in
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increasingly continuous mRNA production. Noise thus mainly originates from transcrip-

tion, while translation has only a minor influence. This was also shown in experiments, in

which noise was found to be larger with low transcription and high translation rate than

with high transcription and low translation rate [26]. The protein concentration at a given

time results from time averaging over several expression bursts as the lifetime of proteins

is usually longer than the time between bursts. Thus, the variability caused by mRNA

bursts is partially averaged out by the protein lifetime. Finally, there is propagation of

noise: The molecular machines responsible for gene expression, as well as the regulatory

molecules are proteins themselves. Thus, their variations give rise to variations in the

expression of other genes.

The overall stochasticity is frequently subsumed into two classes: Intrinsic noise, which

originates from the expression of a given gene and extrinsic noise, which subsumes cell to

cell variations in the numbers of eg. polymerases and other cellular components and affects

all genes in a cell [27] [22]. The two types can be analyzed experimentally by expressing

two different fluorescent proteins from two copies of one promoter [22] (See Figure 2.2 b).

Fluctuations of the two proteins due to extrinsic noise are correlated, while the intrinsic

fluctuations are independent.

Under certain conditions the variations are amplified, so that the cells are in entirely

different physiological states. For example, only a fraction of the population becomes

competent for DNA uptake in Bacillus subtilis [28] and in E.coli only a small fraction

of bacteria is in a dormant state, which is resistant to antibiotics [29]. At certain sugar

concentrations the genes of inducible catabolic networks are expressed at a high level,

while the rest of the cells do not express the system at all. This so-called all-or-nothing

gene expression [7] [6] will be discussed in detail in chapter 5.1, as it concerns the systems

investigated in this thesis. Note that there is an important difference between the all-or-

nothing behavior and the other effects: While in the other cases the cells differentiate into

distinct states by stochastic switching, external inducer is necessary for transition into the

highly expressing state.
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2.4 Noise: Use or nuisance?

As more and more stochastic effects were discovered the question arose whether noise

in gene expression is just an inevitable nuisance or useful for the cells [5] [21]. Even

though certain network architectures can reduce noise, it cannot be shut out completely

and theoretical work has shown that noise suppression by feedback systems has a lower

boundary [30]. Increasing the number of molecules generically reduces the effect of noise,

but the production of molecules is energetically costly. Still, proteins which fulfill essential

cellular tasks show significantly lower variability than proteins which are only occasionally

used [5].

For some cases the advantage conveyed to a bacterial population by stochastic differenti-

ation is already qualitatively obvious: A small fraction of the population is committed to a

costly task, or prepared to cope with rare or detrimental effects. This is best illustrated by

the example of persister cells, which have a strongly decreased growth rate, but can resist

antibiotics [29]. Quantitative considerations regarding the advantages of stochasticity can

be done in the framework of game theory. In its context, each molecular implementation of

a regulatory task including its noise characteristics is considered as a regulation strategy.

As the regulation strategies we find in cells have obviously been favored by evolution it

can be assumed that they are optimal under typical environmental conditions. To asses

the suitability of a regulation strategy its costs and benefits under different environmental

conditions are computed [11] [31]. To this end it is assumed that the quantity which is

optimized is the growth rate of the population.

Noise generated phenotypic variations within a population represent so-called ”mixed

strategies”, which combine pure strategies in a probabilistic manner. From game theory

it is known that in many cases these mixed strategies are optimal (eg [32]). For several

systems cost-benefit analysis revealed that stochastic gene expression effects are optimized

for certain kinds of environmental fluctuations: The analysis of a general model, capturing

the essential features of stochastic regulation mechanisms, showed that population hetero-

geneity leads to an increased population growth rate in a broad range of environmental

variations [12]. Spontaneous switching of a small fraction of a bacterial population to a

slow growing persistent state, which can resist antibiotic treatment pays off when antibiotic

stress is a rare event [33]. Yeast strains were engineered to stochastically switch between

two phenotypic states with different rates. Each state conferred a growth advantage un-

der a specific environmental composition. As predicted, slow switching was beneficial

in slowly fluctuating environments, while fast switching allowed for faster growth under

rapidly changing environmental conditions [13].

Thus is seems that noise is exploited for particular purposes, while it has been mini-

mized in instances where fluctuations impede functions by evolutionary network shaping.

Additional evidence in this direction comes from a study in which an artificial network was

created, which can generate dynamics similar to the natural network, but is nonetheless

functionally different due to significantly different noise characteristics [34].
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2.5 Modeling gene expression

Mathematical models quantitatively connect observed phenomena and their causes. They

enable us to predict the behavior of existing and new systems, which is a crucial precon-

dition for any engineering effort. A huge challenge when developing models of cellular

functionality is the complexity of living systems. For the treatment of gene expression

governed by regulatory networks several modeling approaches exist, which include various

degrees of molecular detail [35] [36]. Some of the models are able to grasp the inher-

ent stochasticity, while others are purely deterministic. Very detailed models explicitly

consider the biochemical details of all processes, such as binding reactions between tran-

scription factors and promoters. In contrast, the most abstract models describe a gene

regulatory network by interconnected objects which can only be in one of two states (either

off or on).

When choosing between these modeling approaches, the size of the network and the

question which is addressed need to be considered. For example, many molecular details

are included in models of small regulatory units, while larger pathways are frequently

described by more abstract models.

Usually, a direct quantitative coincidence of experimental data and modeling results is

desired. To this end reliable values of the rates governing the involved processes are crucial.

However, these are often lacking, as the rates are numerous and strongly dependent on

specific experimental conditions. Hopefully, this obstacle can be overcome in the near

future by advances in large scale screening technologies.

In this work, models are used to understand and describe the time evolution of gene

expression governed by inducible regulation networks. For this purpose, rate equations

and stochastic descriptions are employed.

Rate Equations

The time evolution of biochemical reactions is classically modeled by rate equations. Mean

particle numbers and reaction rates are used in these deterministic equations. Thus,

stochasticity is not considered and the mean trajectory of an ensemble of molecules is

computed. As a basic example from gene expression, we consider the expression of a

stable protein via transcription and translation: mRNA molecules R are produced at a

constant transcription rate ν from one DNA molecule, and actively degraded with rate λ

dR

dt
= ν − λ ·R (2.1)

Proteins P are translated at a constant rate µ

dP

dt
= µ ·R (2.2)
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In this simple case the time evolutions can be computed:

R(t) =
ν

λ
(1− a−λ·t) (2.3)

P (t) =
µ · ν
λ
· t+

µ · ν
λ2

e−λ·t (2.4)

However, as soon as regulatory processes are considered, the system becomes more com-

plex. In this work transcriptional regulation is at the center of interest, meaning that the

transcription rate ν is not constant, but depends on the intracellular concentration of tran-

scription factors which in turn change with time. This dependence, called gene regulation

function, can either be measured (see for example [37] [38] [39] [40]) or predicted, for exam-

ple from thermodynamic models of transcription factor binding [41]. Often, regulation is

mediated by the cooperative binding of several molecules of a transcription factor. These

mechanisms give rise to Hill-type regulation functions, where the dependence of ν on the

transcription factor concentration A can be approximated by

ν(A) = νmax ·
An

Kn + An
. (2.5)

Here, K is the ligand concentration at which transcription proceeds with half-maximal

rate and n > 1 gives the degree of cooperativity. This non-linear term has important

consequences for the dynamics of the regulation network: In combination with feedback

within the system it can give rise to complex characteristics such as multiple stable states

or oscillations [19] [42].

In many cases the equation system has no analytical solution. Still, steady state levels

can often be computed. The time evolution can be determined or even fitted to data by

numerical integration. Furthermore, stability or bifurcation analysis can reveal important

characteristics.

When formulating rate equations, one assumes that the reaction environment is well-

mixed and homogeneous. Still, natural system are often influenced by effects such as

compartmentalization or diffusion. To account for these aspects the equations can be

appended by additional terms. Compartments can also be treated by defining different

states, which indicate in which compartment a molecule is.

Modeling stochastic events

On a fundamental level, noise in gene expression and its effects can be addressed by

probability theory [43]. Using this methodology, the variability of mRNA and protein

levels and the shape of their distributions over a population can be determined. The origin

of noise and its propagation can be understood from fundamental statistical principles. In

this work, we find the signature of a statistically derived protein distribution in our data

(see Chapter 5.2.4 [44] [45]).

Rate equations are deterministic, but can be appended by noise terms, resulting in a
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heuristic description of stochastic processes. The resulting formulation is called Langevin

equation [46]. Another approach is the chemical master equation [46], which describes

the probability for the system to be in a discrete state by the sum of entry and exit

probabilities into and from this state. Apart from some very simple and small systems,

like the birth-death process of one species, the master-equations is to complicated to be

solved.

Usually, the Langevin and master equation are analyzed using Monte-Carlo methods.

Each run of a stochastic simulation yields one possible realization of the systems dynamics

under given initial conditions. Thus, one obtains an approximation of the probability

distribution of the outcome when the simulation is repeated many times. This distribution

can in turn be compared to experimental data, which is for example done in Chapter 5.2.4.

Even though computationally costly and time-consuming stochastic simulations are the

only feasible approach in many instances.

Commonly, the simulations employ an algorithm developed by D. Gillespie [47]. For a

reaction system with a given number of molecules of each species and given reaction rates

the next reaction and the time interval until this reaction happens are determined by a

random number generator. As the exact algorithm only accounts for mono- or bimolecular

reactions all binding event have to be included explicitly. The probability for a reaction

to be chosen linearly depends on the product of the number of molecules of the involved

species and the reaction rate.

As a simple example, we write down the reaction system used to simulate the number

of mRNA molecules for a simple case. Their production is controlled by a promoter P.

Transcription proceeds at a rate ν when a single molecule of a transcription factor TF is

bound to the promoter. TF · P denotes a promoter to which the transcription factor is

bound. mRNA is degraded at a rate λ.

TF + P
K←→ TF · P

TF · P ν−→ TF · P +mRNA

mRNA
λ−→ 0

The first line consists of two reactions, association and dissociation of promoter and

transcription factor. The actual reaction rates for the association kon and koff dissociation

of transcription factor-promoter binding are related to the affinity K as K =
koff

kon
. For the

choice of the association rate the diffusion-limited value, which is kon = 2nM−1min−1 for

a typical transcription factor in E.coli serves as a guideline [48].
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2.6 Fluorescent proteins as reporters for gene expression

Fluorescent probes for microscopic detection are characterized by strong absorption in

the ultraviolet and/or visible spectral range. In addition, the excited molecules relax

predominantly via radiative decay. The absorption and emission spectra show a mirror-

symmetry and the maximum of the emission spectrum is red-shifted compared to the

maximum of the absorption spectrum. The red-shift is a consequence of energy dissipation

via non-radiative relaxation processes. The fluorescent probes can thus be detected with

high sensitivity, as the excitation wavelength can be blocked in the detection light path.

In addition, they allow visualizing structures which cannot be resolved otherwise due

to low contrast or sizes below the optical resolution limit. Staining a sample with a

classical fluorescent probe can be challenging, particularly when targeting intracellular

substructures. In contrast, when using fluorescent proteins (FPs [9] [49]) cell components

with an attached fluorophore can be produced within cells. Originally, the green fluorescent

protein was discovered in the jellyfish Aequorea Victoria and its gene was isolated. It

turned out that this gene can be cloned and functional GFP can be expressed in many

kinds of cells and organisms. Their viability is usually not influenced by small amounts

of GFP, as it is non-toxic. Via genetic engineering the properties of GFP were optimized

and a large tool box of differently colored variants is now available. In addition, one can

chose between stable and unstable variants [50] and mutants exist for special applications,

for example pH sensitive ones [51].

In the majority of applications FPs are used to visualize cellular structures. FPs can

also be used as quantitative tools to measure gene expression levels. The fundamental

prerequisite for this application is the linearity of the fluorescent response, which is given

as long as there is no saturation of the excited states of the fluorescent molecules or

processes such as quenching due to a high density of fluorescent molecules.

For the analysis of gene expression the gene encoding a FP is controlled by the gene

regulatory element of interest. More precisely, this means that the FP gene is inserted

next to a promoter by cloning. GFP is much easier to detect based on its fluorescence

than reporters classically used to monitor gene expression, which often rely on enzymatic

properties. In contrast to most of the classical methods, GFP allows to follow the time

evolution of expression processes, as detection is fast and does not require fixation or

destruction of cells. Furthermore, signals from single cells can be measured easily.

When FPs are used to study gene expression photobleaching, FP maturation and the

high stability of most FPs have to be considered carefully in studies: Fluorescent molecules

are destroyed permanently after a number of excitation-deexcitation cycles (photobleach-

ing). Besides the fact that the molecule can no longer be detected, photobleaching can

be accompanied by the release of reactive compounds, which might cause problems in

biological applications. The fluorescence photobleaching of GFP is reported to be slow

in comparison to other fluorophores [52]. This property, however, differs also between

mutants and needs to be tested under the chosen experimental conditions. Directly upon
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protein translation GFP is not fluorescent. The protein and particularly the chromophore

has to undergo maturation, a series of chemical modifications, the slowest of them being

an oxidation step [9]. Thus, GFP cannot be produced in the absence of molecular oxygen.

The duration if the maturation process varies strongly between GFP variants and depends

on the temperature. For wild type GFP the maturation time was estimated to be 4 hours

for expression in bacteria at 22 ◦C [53]. For GFPmut1, GFPmut2 and GFPmut3 it is

reported that fluorescence can be detected already 8 min after induction of expression in

bacteria at 37 ◦C [54]. Another fast and efficiently maturing variant is Venus YFP (yellow

fluorescent protein) [55]. In experiments where GFP is used to monitor the time evolution

of gene expression this maturation imposes a natural limitation on the time resolution

and has to be taken into account when evaluating the data. Most FPs are highly stable.

Thus, their concentration is only decreased by dilution due to cell growth. While the rate

of gene expression and changes in this rate are faithfully reported by the FP, the accu-

mulation of the protein can preclude effects on longer time scales. For example, it was

shown that a protein distribution which was found to be homogeneous with a stable FP

appeared to be much more heterogeneous with a destabilized FP [56].

Fluorescence is detected with plate readers, flow cytometers or microscopes in FP based

studies of gene expression. Fluorescence plate readers monitor the fluorescence level of

a large number of parallel cultures, which are grown in wells of microtiter plates which

are incubated within the device. Thus, a large number of conditions can be investigated

in one experiment [39]. In a flow cytometer (FC) the distribution of fluorescence values

over a large population (≈ 5000 cells per second)is determined. Cell-to-cell variations can

thus be resolved. Finally, the time course of expression of single cells can be analyzed by

time-lapse fluorescence microscopy, which is discussed in detail in chapter 3. These data

contain temporal information which cannot be captured by FC. The drawback is the high

experimental effort necessary to obtain reasonable statistics (≈ 200 cells per day).

By pushing the limits of microscopy even further, FPs can be used to detect single

molecules in bacterial cells [57]. In addition to high sensitivity of the equipment and a

low level of background fluorescence, only molecules which move slowly or not at all can

be detected. This has for example been done for transcription factors [58], membrane

proteins [59] or molecules which have been anchored artificially to the cell membrane [60].
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microscopy

Circuit dynamics and stochastic effects of inducible regulation networks have been char-

acterized extensively on the single cell level by imaging or flow cytometry [14] [15]. Using

fluorescent proteins as reporters, these techniques reveal the distribution of gene expres-

sion levels over a population at one point in time. However, they do not allow following

the fate of an individual cell over time. Still, the analysis of single cell dynamics is crucial

to fully understand the functioning of regulatory networks and particularly the influence

of noise.

Single cell gene expression dynamics can be measured by combining time-lapse mi-

croscopy, quantitative image analysis and fluorescent proteins as reporters [10]. Among

many other examples, gene regulation functions have been resolved on the single cell level

[37] and the differentiation dynamics of the Bacillus subtilis competence circuit [61] [62]

have been studied in this way.

For a statistical analysis, a large number of single cell traces is necessary. Thus, the

parallel acquisition of many cells and automated data analysis is highly desirable. The first

experimental prerequisite is a fully automated fluorescence microscope which is equipped

with an environmental control system in order to keep the temperature constant in the

course of the experiment (Chapter 3.1). In addition, the bacteria need to be immobilized

on a surface and the direct sample environment must provide sufficient nutrients. In addi-

tion, the possibility to change the environmental conditions in the course of the experiment

is desirable (Chapter 3.2). Time-lapse movies are acquired by taking snapshots of a set of

bacteria in regular time intervals. Quantitative image analysis consists of the determina-

tion of location and size of a cell (segmentation) and of a fluorescence value for each cell

in each image. In addition each cell is tracked through the movie, in order to assemble

a fluorescence time trace (Chapter 3.3). Finally, it is discussed for which applications a

single-copy rather than a multi-copy fluorescent reporter is suited (Chapter 3.4). Detailed

experimental protocols can be found in Appendix B.
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3.1 Fluorescence microscopy

Fluorescent proteins (see Chapter 2.6) were used in this study to monitor gene expression

by fluorescence microscopy. The variant GFPmut3 was employed in the majority of the

experiments. Therefore, its excitation and emission spectra are shown in figure 3.1 a.

Figure 3.1 c illustrates the principle of fluorescence microscopy and depicts our experi-

mental setup: Illumination is provided by a lamp with an emission spectrum ranging from

ultraviolet to infrared. Specific excitation of the fluorophore is guaranteed by the emission

filter, which is a narrow band-pass. After passing through the emission filter the light is

directed through the objective onto the sample by a dichroic mirror. The emitted light is

collected by the objective and passes through the dichroic mirror and the emission filter,

which blocks the excitation wavelength.

We use a fully automated inverted microscope (Axiovert 200M, Zeiss, Oberkochen, Ger-

many) equipped with a motorized stage (Prior Scientific, Cambridge, UK). All devices

are controlled by Andor IQ software (Andor, Belfast, Northern Ireland). Fluorescence

illumination is provided by a xenon-mercury lamp, which is connected to the microscope

via a liquid light guide (X-cite120, EXFO, Quebec, Canada). Filters for detection of

GFP fluorescence are: excitation: transmission 450-490 nm; dichroic: transmission above

495nm; emission: transmission 500-550 nm (filter set 38HE, Zeiss, Oberkochen, Germany;

see figure 3.1 b). The microscope also allows for the acquisition of bright field images.

As the output of the fluorescence lamp can vary in the course of its life time Focalcheck

fluorescence microspheres (Invitrogen, Karlsruhe, Germany) are used to correct for output

variations. The temperature in the sample environment is maintained at 30◦C or 37◦C

using a custom built heating box.

Prolonged illumination can lead to bleaching of the fluorophores or other photodamage,

which can strongly decrease the growth rate. Therefore, we use a highly sensitive EMCCD

camera (iXon DV885, Andor, Belfast, Northern Ireland) for image acquisition. Typical

exposure times for fluorescence images are 0.1 s to 0.5 s. Fluorescence illumination is

shuttered and bright-field illumination switched off between exposures and an orange filter

is used in the bright field light path.

Either a 100x plan-neofluar (NA 1.3) or 40x plan-neofluar (NA 0.75) objective (both

Zeiss, Oberkochen, Germany) are used. With the 40x objective each field of view is larger,

such that a larger number of bacteria can be monitored. However, single cells in colonies

cannot be separated, such that only time traces of the fluorescence of entire colonies can

be determined. This analysis is feasible for the long time analysis of quorum sensing gene

expression. In all other experiments the 100x objective is used to determined single cell

time traces.
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Figure 3.1: Fluorescence microscopy (a) Excitation (blue) and emission spec-
trum (green) of GFPmut3 (adapted from [54]) (b) Transmission of the excitation (blue)
and emission (red) filter and the dichroic mirror (grey) used for detection of GFPmut3
in fluorescence microscopy (Filterset 38HE, Zeiss) (c) Fluorescence microscopy setup.
The light path of fluorescent image formation is shown (blue and green lines). Ex:
excitation filter, Di: Dichroic mirror, Em: Emission filter. The spectrum of the lamp
used to provide fluorescence illumination is shown in the subgraph.

3.2 Sample environment and flow system

For the determination of fluorescence values via image analysis it is necessary to immobi-

lize the bacteria on a surface. This guarantees that the entire cell is in focus and that the

time evolution of one cell and its offspring can be followed over time. At the same time,

adhesion may not interfere with cell growth. In many studies, gelated agarose is used

for immobilization (e.g. [37] [61]). However, following sample preparation the chemical

composition in the agarose gel cannot be changed. Microfluidic devices made from the

polymer PDMS by using a structured silicon waver as mold have been created to over-

come this limitation [63]. They also allow analyzing the influence of limited or structured

environments. However, it is a significant effort to manufacture and operate these devices.

In this study we established another sample environment, in which the environmental

conditions can be changed in the course of the experiment: We use commercially available

microscopy slides (µ-slideVI, Ibidi, Martinsried, see figure 3.2 a and b with several parallel,

millimeter sized channels. Their surface is coated with Poly-L-Lysin (PLL), as Escherichia

coli and Pseudomonas putida adhere to this coating. Still, their growth rate is not changed,

compared to liquid cultures. The channels allow for manual rinsing and can also be

combined with a flow system.
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Sample preparation starts with filling a channel with 30 to 50µl of the bacterial culture

and incubating it for 5-15 min at the appropriate growth temperature. Subsequently, the

channel is rinsed with medium to wash away non adherent cells and press the remaining

cells to the surface. Following this procedure the vast majority of bacteria adhere with

their long axis parallel to the surface. Induction is achieved by rinsing the sample with

medium containing the appropriate inducer concentration. See Appendix B for detailed

protocols.

We exploited the possibility to change the environmental conditions manually for the

analysis of the GFP maturation time, which required the addition of an antibiotic which

blocks translation. Furthermore, we applied inducer pulses, by flushing the channel with

medium containing the inducer and after some time with pure medium.

As soon as nutrients are depleted or waste products accumulate significantly, the medium

has to be exchanged. For example, E.coli cells can deplete a large amount of the sugar

arabinose in the channel within 30-40 min. In other experiments it was observed that cells

stop growing approximately 2 h after the experiment was started, probably due to nutrient

depletion. Even though the medium can be exchanged by manually rinsing the channel, it

is much more feasible to provide constant flow using a flow system. Constant flow provides

the additional advantage of removing detached bacteria and detached parts of cells are

pushed back to the surface. Furthermore, it can be used to keep the concentration of

certain substances constant, which are degraded or produced by the bacteria themselves.

A simple flow system (figure 3.2 c), consisting of a syringe pump and connective tubing

was already used in this work for the analysis of quorum sensing controlled gene expression.

Here, the system served to rinse away signaling molecules and thus keep their concentration

in the medium constant. The drawback of this system is that either the very beginning

of the induction process cannot be monitored or the induction time is not very precise:

Syringe and connected tubing are filled with medium containing the inducer. If the inducer

is added to the channel prior to flow system connection the beginning of the process is

missed. If the flow system is connected without previously adding inducer to the channel

the starting time is ill defined, as low amounts of the inducer can diffuse into the channel

before flow is started. As quorum sensing gene induction takes several hours, missing of

the first few minutes can be tolerated.

Future experiments will require the temporal variation of inducer concentrations and

monitoring of gene expression over many cell generations. To this end, the flow system will

be appended by a second syringe pump and valves in the connective tubing (figure 3.2 d).

Using this setup, the experiment can proceed under constant flow and the concentrations

can be changed automatically by switching between the two reservoirs.
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Figure 3.2: Flow channels and flow system (a) Commercially available mi-
croscopy slide with several millimeter sized channels (µ-slideVI, Ibidi). The bottom of
the slide is 76x26 mm. (b) Bacteria (green) adhere to the Poly-L-Lysin coated channel
surface and can be imaged. Medium can be exchanged by removing liquid from the
reservoirs and adding fresh medium or via a connected flow system. (c) Our flow sys-
tems employs a syringe pump which is connected to the flow channel containing the
sample via tubing. (d) In the future, the flow system will be extended by a second
syringe pump in order to automatically switch from one concentration of a certain
chemical to another one.

3.3 Image analysis of time-lapse movies

Bright field and fluorescence images of several fields in one sample were acquired regularly

(eg. every 5 min), resulting in time lapse movies. Example image series are shown in

figure 3.5 and 3.6. The evaluation of these movies includes the determination of fluores-

cence values for each cell in each image and the assembly of these values into time tracks

(figure 3.3). ImageJ1 is used for image analysis.

To measure the fluorescence value of a cell in one image an outline is determined on the

bright field image and transferred to the back-ground corrected fluorescence image (Fig-

ure 3.3 a). For each cell either the total fluorescence (the sum over all pixel values within

1Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,
http://rsb.info.nih.gov/ij/, 1997-2009
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the outline) or the mean fluorescence (total fluorescence divided by the pixel number) can

be determined. The total fluorescence corresponds to the number of fluorescent molecules

within a cell, while the mean fluorescence represents the concentration of fluorophores.

Background correction of the fluorescence images is done by subtracting the most fre-

quent pixel value from all pixel values in each image. This is feasible as the background

values lie within a small distribution and the number of background pixels is much larger

than the number of pixels belonging to cells. As bleaching was found to be negligible no

additional correction of the fluorescence values is necessary.

The simplest way to create the cell outline is thresholding of the bright field image, which

was used in initial experiments. However, the separation of cells which are close together,

particularly of daughter cells after division, is often not possible with this method.

The ImageJ PlugIn CellEvaluator [64], which was written and adapted to the specific

needs of this project by S. Youssef (LMU), automatically creates outlines, tracks cells and

measures the fluorescence and size of the cells. The creation of an outline starts wherever
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Figure 3.3: Illustration of image analysis (a) The bright field image (1) is used
to create a cell outline. A threshold is applied to the image (2) and the rim of the
cell marked (3). The outline is transferred to the fluorescence image (4) Note that,
based on thresholding, advanced methods are employed to separate adjacent cells in
automated image analysis. Scale bar size: 2µm. (b) Fluorescence time series are
assembled from the fluorescence values in single images by tracking cells through the
movie.
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a minimum number of pixels with values above a threshold are next to each other. Pixels

are added on each border of these pixels, until either another object or the threshold,

which indicates the background is met. For the separation of cells, the starting area for

each cell is determined from the previous image in which the cells were apart. A weight

matrix is used for image to image cell assignment (tracking), which includes among other

parameters the position and outline of the cell. If a new track is started for each daughter

cell after division, the program also displays a lineage tree, which includes a mother cell

and all its offspring. Inspection by eye and manual selection of cells for evaluation is

necessary, as a significant number of cells cannot be considered due to behavior such as

partial detachment from the surface or piling up.

The bacteria grow and eventually divide in the course of the experiment. One can either

start a new track for each daughter cell, or add the values of all daughter cells, eventually

resulting in a ”single colony” evaluation (figure 3.4).

In experiments with low magnification, cells within colonies cannot be separated, thus

that the single colony evaluation is the only option. In this case, the single colony evalu-
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Figure 3.4: Image and fluorescence time series of E.coli cells containing the
GFP gene under control of an arabinose inducible promoter which were induced with
0.2 % arabinose at t = 0 min. Fluorecence traces without and with continuation after
cell division are shown. Color of box corresponds to line in the graph. Time points
which correspond to images are denoted with black circles. Scale bar size: 2µm
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Figure 3.5: Time series of bright-field (left column) and fluorescence (right column)
images. At t = 0 min, 0.01 % arabinose was added to E.coli cells containing the GFP
gene under control of an arabinose inducible promoter. Scale bar size: 5µm
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Figure 3.6: Time series of bright-field (left column) and fluorescence (right column)
images (continued from 3.5). The contrast of the fluorescence images was changed after
t = 30 min for better visualization of the fluorescence increase. Scale bar size: 5µm
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ation is analogous to the single cell evaluation, with the one exception that an outline is

created around a colony, not a cell.

If single cell evaluation is possible it depends on the question in focus whether to continue

the track, or start new ones for daughter cells. For our analysis of timing in the arabinose

system it turned out after the first set of experiments that continuation of the track is

better suited, as the observed effects mainly depend on the initial state of the mother cell.

Still, the results obtained with the two possibilities are very similar: For most cells, the

effects of interest happen before the first division such that the curve is just continued

slightly longer by adding the daughter cells. The fraction of cells for which the effects take

place on a longer time scale (the experiments ends at the latest at the time of the second

cell division) just change the distributions of the resulting parameters slightly.

Unfortunately, there is no calibration standard available which allows for the conversion

of fluorescence signals to the number of fluorescent molecules. Thus, all fluorescence values

are given in arbitrary fluorescence units (FU).

Two very neat, but indirect and time-consuming approaches for the calibration of the

number of fluorophores are described in the literature: The partition of fluorophores be-

tween daughter cells was found to follow a binomial distribution. Thus, the relation that

the mean value equals the standard deviation can be used for calibration [65]. Using

an experimental setup with single-molecule resolution, a calibration curve can be gener-

ated by extrapolating the integrated fluorescence signal of a small, countable number of

fluorophores [59].
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3.4 Fluorescence signal and bacterial autofluorescence

The properties of fluorescent proteins and particularly the possibility to control the gene

by any promoter of interest are summarized in Chapter 2.6. Here, we discuss the two

ways in which a fluorescent reporter protein under control of a particular promoter can

be present in a cell: It can reside on a plasmid, which is a short, circular DNA strand,

or it can be incorporated on the bacterial chromosome. Plasmids are present in many

copies per cell (typically 10 to 100), which leads to strong fluorescence signals. They can

easily be engineered and introduced into bacteria. However, the increased copy number

of the promoter can severely influence the regulation mechanism under investigation, for

example by titration effects of transcription factor molecules [14]. This means that the

regulation of each of the many promoters is different from the regulation of only one single

promoter, as the number of transcription factors is too small. In addition, production of

fluorescent proteins at a high rate can be a significant burden for a cell.

Integration of a reporter on the chromosome is more tedious than the engineering of

a plasmid. The single copy of the reporter only gives rise to a small fluorescence signal,

which can, at least partially, be compensated for by enhancing signal amplification. Still,

in experiments with bacteria in which GFP was expressed from a single copy we found a
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Figure 3.7: Autofluorescence emission spectra of bacteria at different excita-
tion wavelength: Excitation at 470 nm corresponds to GFP (green), 505 nm to Venus
YFP (yellow) and 585 nm to mCherry (red). Emission spectra were corrected for dif-
ferent lamp intensities at the excitation wavelength. To illustrate the significance of
bacterial autofluorescence for each of the fluorescent proteins the transmission range
(shaded regions, green GFP, yellow YFP, red mCherry) of typical filters used for mi-
croscopy are shown. The integral below the emission curve in the range of the filter is
approximately 6 · 105 au (GFP), 4 · 104 au (YFP), 6 · 104 au (mCherry).
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significant background signal, resulting from autofluorescence from each cell. If possible,

it is desirable to circumvent the correction of this influence, as the autofluorescence differs

significantly from cell to cell. Compared to the large signals resulting from a multi-copy

reporter the autofluorescence is negligible. To check whether the autofluorescence level

would be lower when using another fluorescent protein, fluorescence spectra of an E.coli

strain containing no fluorescent reporter were recorded at wavelength corresponding to the

excitation of GFP (green FP, maximal Ex/Em of GFPmut3 at 501/511 nm), YFP (yellow

FP, Venus maximal Ex/Em at 515/528 nm) and mCherry (red FP, maximal Ex/Em at

587/610 nm). The spectra show that the autofluorescence has a significant level in the

emission range range of GFP while it can be neglected for Venus YFP and mCherry

(Figure 3.7). Thus, when a single copy reporter is necessary, it is advisable to use the latter

ones. As their spectra are sufficiently distinct, they can also be combined to simultaneously

monitor gene expression from two promoters. The most feasible and least disturbing way

of chromosomal integration is placing an additional copy of the promoter which controls

the fluorescent protein on the chromosome [10].

In this study, we use reporter plasmids as all regulatory interactions take place within iso-

lated systems, meaning that there is no significant influence of global regulatory molecules.

In all investigated cases, only one regulatory molecule is employed. To compensate for the

additional promoter copies each of them is accompanied by a copy of the regulator. For

the arabinose system we explicitly showed that our results are not different with a single

copy reporter (Chapter 5.2.5).

However, for future studies, which will for example address the crossregulation of two

systems, the use of a single copy reporter is necessary in order to conserve the native

behavior.



4 Determination of the GFP maturation

time on the single cell level

As discussed in Chapter 2.6, fluorescent proteins (FPs) have to undergo maturation. De-

pending on the FP variant, the duration of this process ranges from several minutes up to

several hours [9]. Thus, this time needs to be considered when GFP is used as a reporter

for gene expression dynamics. For our analysis on the single cell level, the average matura-

tion time is not sufficient, as we need to know whether there is a large cell-to-cell variation

associated with the maturation process. With our microfluidic setup, we can directly

probe this cell-to-cell variation experimentally, under the same conditions as in the induc-

tion experiments. We use the gfp reporter plasmid pBAD24/gfp in strain E.coli LMG194

to determine the maturation time of GFPmut3 [54], which is used in this study. On the

plasmid, GFP is controlled by an arabinose inducible promoter. First, we induce bacteria

with 0.2% arabinose and then inhibit protein synthesis in situ by flushing the channel with

the antibiotic chloramphenicol. The resulting fluorescence trajectories cease to increase

about 15 min after the addition of the antibiotic, see Fig. 4.1 a for a few representative

trajectories. The fluorescence increase after the addition of chloramphenicol, which blocks

translation, reflects the maturation dynamics of the remaining, non-fluorescent GFPs. A

similar approach has been used to determined single cell maturation times in yeast [66].

The distribution of time-constants τm of GFP maturation shown in Fig. 4.1 b was obtained

from exponential fits to the single-cell timeseries. We find an average maturation time of

τm = 6.5 min and a standard deviation of 0.6 min, i.e. a cell-to-cell variation of only about

10%.

Our finding of a relatively small cell-to-cell variation suggests that the maturation pro-

cess is largely independent of the internal state of the cell in E. coli. This appears plausible,

given that the oxidation reaction, which is rate limiting for the maturation process, does

not depend on intracellular components [9]. For comparison, considerably longer matura-

tion times of ∼ 40 minutes were found for YFP and CFP in yeast [66], but only a slightly

larger relative cell-to-cell variation (15− 20 %). Moreover, from in vitro measurements of

various YFP variants, oxidation timescales as low as 2-8 minutes were determined [55],

indicating that the rapid maturation time detected in our experiment is conceivable in

vivo.

These data have been published in [45].
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Figure 4.1: GFP maturation kinetics in single cells In (a) GFP expression was
induced with 0.2% arabinose at t=0 min and protein synthesis was inhibited by addi-
tion of 200 µg/ml chloramphenicol at t=30 min, as indicated by the arrow. Exponen-
tial fits to the fluorescent timeseries (solid lines) yield the maturation-time distribution
in (b). The statistics was obtained from 77 cells.



5 Timing and dynamics of gene

expression in the arabinose system

Sophisticated gene regulatory networks allow bacteria to optimize their proliferation in a

wide range of environmental conditions. Inducible catabolic networks, which are activated

when particular sugars become available, have been studied as model systems for a long

time as they are fairly simple, even though they fulfill a crucial task. Their decisive

regulation element is a positive feedback loop, in which expression of the sugar uptake

proteins is enhanced by the sugar which in turn increases the sugar concentration. Positive

feedback conveys the potential for multistability [19], which means that under certain

conditions multiple distinct phenotypes can exist in parallel. In several inducible catabolic

systems two states have been observed: One in which the genes are expressed at a high

level (on state), while in the other one the genes are not expressed at all (off state).

Here the dynamics of the switching from the off to the on state in the arabinose system

(Chapter 5.1) is resolved on the single cell level by time-lapse fluorescence microscopy. We

find that the time at which expression of the operon starts varies significantly between the

cells, a temporal stochastic effect which we denote as heterogeneous timing (Chapter 5.2).

Using a mathematical model we conclude that this effect is causally related to a broad

distribution of transporters at the time of arabinose addition. Subsequently, we analyze

a modified network architecture in which the expression of the arabinose transporters is

decoupled from arabinose (Chapter 5.3). From our model we expect to find heterogeneous

timing in this case. However, we instead find scaling of the gene expression rate, indicating

that the model is incomplete. As gene expression ceases rapidly in experiments in which

arabinose is removed at a defined time after induction we include arabinose efflux in the

model (Chapter 5.4). The extended model explains all experimental observations. Finally,

we address the question whether heterogeneous timing might confer an advantage at high

cell densities (Chapter 5.5).
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5.1 The arabinose utilization system

The arabinose system [67] enables E.coli bacteria to take up and degrade the sugar ara-

binose. It consists of genes encoding proteins for arabinose uptake (AraE, AraFGH) and

degradation (AraBAD), as well as the transcriptional regulator AraC (see fig 5.1). Each

of these is controlled by a separate promoter. The transcriptional regulator AraC is an

activator: When bound to arabinose it stimulates expression of the transporters AraE

and AraFGH and the catabolic proteins AraBAD. At the promoter PBAD AraC has an

additional effect: In the absence of arabinose, two AraC molecules bind upstream of the

promoter, thus creating a DNA loop which prevents gene expression. The expression of

AraC is negatively regulated by itself with and without arabinose, resulting in a stable

level of AraC molecules [68].

AraE, a proton symporter, is a low-affinity, high capacity transporter. In contrast,

AraFGH is a high-affinity, low capacity system, which needs phosphate bond energy, eg

from ATP hydrolysis for operation.

The system is also regulated by CRP (cyclic AMP receptor protein). This regulation

strongly decreases the sensitivity to arabinose when a more favorable carbon source, such

as glucose, is available. In this study the promoters are set to high sensitivity to arabinose

AraBAD
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AraC PBAD araBAD

PFGH araFGH

PE araE

AraEAraFGH

+
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Figure 5.1: Regulatory network of the native arabinose utilization system
[67] The system consists of proteins for arabinose uptake (AraE, AraFGH), arabinose
metabolism (AraBAD) and the regulator AraC, along with their genes and respective
promoters. When bound to arabinose AraC stimulates expression from the promoters
PBAD, PE and PFGH . In the absence of arabinose, AraC represses expression from
PBAD (not depicted). AraC negatively autoregulates itself in the absence and presence
of arabinose [68]. Arabinose degradation causes a negative feedback on the internal
arabinose level.
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by using a minimal medium with glycerol as carbon source.

PBAD promoter activity increases cubically with the intracellular arabinose concentra-

tion [69]. As the concentration usually increases fast, the cubic dependence mostly appears

as a step function. This means that the promoter activity switches from zero to the max-

imal possible value once a threshold concentration is reached. The detailed dependence

of PE and PFGH on internal arabinose concentration has not been determined, but seems

to be very similar to PBAD [68]. Arabinose exerts a positive feedback on itself, as the ex-

pression of the transporters AraE and AraFGH is stimulated by arabinose, which in turn

leads to increased arabinose uptake. This positive feedback loop, in combination with

the non-linear intracellular regulation function, is characteristic for inducible metabolic

networks and can give rise to multiple steady states. Indeed, both the arabinose system

and the lactose operon, which is the best studied metabolic system, show all-or-nothing

gene expression [7] [6] (illustrated in figure 5.2). This means that at certain sugar concen-

trations a fraction of a population expresses the operon at a high level (on state), while

the rest of the cells do not express the system at all (off state). In [6] the arabinose system

expression from the PBAD promoter was monitored, which is also done in this work.
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Figure 5.2: Schematic illustration of all-or-nothing gene expression (upper
row) Gene expression of single cells, which could be observed microscopically when us-
ing fluorescent markers (lower row) Corresponding distributions of the gene expression
level over a population of bacteria (left) At the time of inducer addition T0 expression
of a gene is off in all bacteria. The population distribution of the expression level is
centered around a very low value due to occasional expression of the gene. (right)
Several cell cycles after inducer addition some of the cells express the gene at a high
level (green), while the rest does not express it at all (white). The distribution of the
expression level over the population is thus bimodal.
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The notion of how this differentiation comes about is as follows [7] [6]: Once exposed

to the sugar, the bacteria accumulate it via the transporters which are present due to

basal gene expression. Basal gene expression is the production of proteins at a very low

rate in the absence of the inducer. Due to its stochastic nature the distribution of uptake

proteins over the population is very broad. At low external sugar concentrations, cells with

a large number of transporters can accumulate sufficient arabinose to cross the internal

threshold concentration. Subsequently, the positive feedback leads to the production of

a large number of transporters and the intracellular sugar concentration rises to a high

level. In contrast, in a cell with a low number of transporters the arabinose concentration

remains below the threshold as the sugar is diluted by cell growth. Thus, only a fraction

of the cells becomes induced .

From this mechanism we expect to observe cell-to-cell variations in the time at which

switching from off to on happens: Due to the broad distribution of uptake proteins, the

rate of arabinose accumulation and thus the time until the threshold is overcome differs

from cell to cell. This variation of timing has been found in a computational study of

autocatalytic expression systems [16]. Experimentally, the transition between the off and

on state has been characterized in detail by observing the time evolution of population

distributions [14] [15], but single cell time courses have not been measured.

Care has to be taken when the benefit of all-or-nothing gene expression in natural

settings is discussed: The all-or-nothing response was observed in strains incapable of

arabinose degradation for the arabinose system and for induction with non- metabolizable

inducers of the lac system. Induction with lactose results in transient bimodal distribu-

tions, but steady state distributions are always unimodal [14]. In addition, growth rate

differences which probably exist between uninduced and induced cells can influence the

distributions significantly.

Due to its tight repression, large induction fold-change and cheap inducer the PBAD
promoter is widely used for controlled gene expression in biotechnology [70]. However, for

many applications modulation of the gene expression level within each cell is desirable. The

arabinose system can be modified to yield homogeneous and regulatable gene expression

by constitutively expressing the AraE transport system [71] [72].
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5.2 Heterogeneous timing of single cell gene induction

Single cell gene expression dynamics following the addition of arabinose are measured

by quantitative time-lapse fluorescence microscopy. These data are analyzed in order to

understand the influence of stochasticity on the timing of gene expression. The theoretical

models presented in this chapter were developed by G. Fritz (LMU). The results are

published in [45]. Portions of [45] are reprinted with permission from Elsevier.

5.2.1 Single cell induction kinetics

To study the induction kinetics of the arabinose system, we use an E. coli strain in which

araBAD and araC are deleted [70]. The chromosomal deletion of araBAD avoids the nega-

tive feedback of the internal arabinose catabolism. This feedback complicates the system,

but is irrelevant for our questions, which focus on the kinetics of the induction when

arabinose first becomes available externally. To monitor gene expression from the PBAD
promoter the bacterial strain is transformed with the reporter plasmid pBAD24-GFP, con-

taining the araC gene and the gene encoding the rapidly maturing GFP variant GFPmut3

[54] which is under the control of the PBAD promoter. The araC gene is supplied on the
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Figure 5.3: Regulatory network of the analyzed system The expression of the
arabinose transporters AraE and AraFGH is stimulated by the regulator AraC when
it is bound to arabinose. The permanent negative autoregulation of AraC, which
keeps the regulator concentration constant is omitted in this scheme. As indicated
by the light print, the degradation machinery AraBAD is deleted. As a reporter for
the expression of the arabinose system we used a plasmid-borne GFPmut3 under the
control of the PBAD promoter.
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plasmid to guarantee full functionality of the DNA loop required for repression of PBAD
in the absence of arabinose [67] and to provide the proper stoichiometry of transcription

factors and PBAD promoters. The plasmid pBAD24 has an average copy number compa-

rable to pUC [73], which is present in about 55 copies per cell [74]. The gene regulatory

circuit of our system is illustrated in Fig. 5.3.

To perform the time-lapse fluorescence microscopy, we introduce the bacteria into a

microfluidic chamber, where they attach to the Poly-L-Lysine coated chamber wall. At

t=0 min, we induce the bacteria with 0.2% (13.3 mM), 0.05% (3.33 mM), 0.02% (1.33 mM)

or 0.01% (0.66 mM) arabinose, and then record the time-evolution of GFP fluorescence in

single cells. Representative fluorescence trajectories for the highest (0.2%) and the lowest

(0.01%) arabinose concentration are shown in Fig. 5.4 a and b, respectively.

For all arabinose concentrations, the individual time-traces of each cell appear rather

smooth and deterministic, whereas there is a significant variation in the response from

cell to cell. We also observe a time lag between the addition of arabinose and the onset

of fluorescence. With decreasing arabinose concentration, the typical lag time becomes

longer, and its cell to cell variation becomes more pronounced.
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Figure 5.4: Example time traces Examples of single cell induction kinetics of the
arabinose utilization network. Cells were induced at t=0 min with 0.2% arabinose (a)
and 0.01% arabinose (b) (empty orange circles). The traces were analyzed up to the
first cell division, which results in different numbers of data points in the traces. Fits
of the deterministic gene expression function in Eq. 5.1 to the data are shown as green
lines. The image panels in (a) and (b) correspond to the fluorescence traces marked
with filled orange circles, respectively. The total fluorescence was determined as the
sum of pixel values within the white outlines. These were created via thresholding of
the respective bright field images.
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5.2.2 Deterministic gene expression function

With the sudden increase of the external arabinose concentration at t=0 min, a cascade of

biochemical processes is triggered, culminating in the fluorescent output signal measured in

our experiment. In order to narrow down the origin of the stochasticity in the observed lag

time, we need to analyze the individual steps in this cascade. For this analysis it is useful

to separate the system into two distinct modules, an uptake module and a GFP expression

module, as depicted in Fig. 5.5 a. The uptake module not only comprises arabinose import

(represented here by an effective uptake protein Upt that subsumes transport by AraE and

AraFGH, see Appendix A for details), but also includes the positive feedback of arabinose

on the uptake protein. The expression module turns the production of the output signal

on, when internal arabinose reaches the threshold level [69]. The delay time τD that is

required to reach this threshold is solely determined by the uptake module. In other words,

we assume that the transcription rate is switched from zero to a large value at the delay

time τD. The feasibility of this assumption is indicated by the following analysis, which

connects the data to the underlying biochemical processes.

The smooth shape of the time series suggests that the dynamics of individual cells

follows a rather deterministic fate, while the differences between the cells stem from cell-

to-cell variability of the reaction rates. Therefore, we set up a deterministic rate equation

model that follows the scheme depicted in Fig. 5.5 b. We assume that the transcription
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Figure 5.5: Functional system dissection and processes underlying the an-
alytical gene expression function (a) The arabinose system is dissected into an
arabinose uptake module (left) and a gene expression module (right). (b) The expres-
sion module comprises the depicted processes, which are modeled by rate equations.
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rate from the promoter PBAD is zero until the internal arabinose threshold for activation

of PBAD is reached at a time t = τD. Then, the promoter activity jumps to its maximal

value αx. The corresponding rate-equations for the total abundance of plasmids (P ), gfp

mRNA (X), immature GFP protein (Y ), and mature GFP protein (Z) per cell, are

∂tP = γP

∂tX = αxP − λxX
∂tY = αyX − τ−1

m Y

∂tZ = τ−1
m Y .

with the cell-doubling rate γ and the rate for transcription αx, translation αy, maturation

τ−1
m , and mRNA degradation λx. Note that the model does not include dilution due to cell

growth, since we measured the total fluorescence per cell in our experiments. Therefore

the number of plasmids (number of gene copies) increases exponentially in time, keeping

the number of genes per volume constant.

The time-evolution of the total number of fluorescent GFP molecules in a cell, Z(t), can

be computed by integration of the model equations and is given by

Z(τ) = αp

(
(γ + λx)e

−τ/τm

(γ + τ−1
m )(λx − τ−1

m )

+
τ−1
m e−λx τ

λx(τ−1
m − λx)

+
τ−1
m eγ τ

γ(γ + τ−1
m )

)
− Z0 , (5.1)

where τ = t − τD is the time after transcription is switched on, αp ≡ P0αxαy/(γ + λx)

is a lumped constant giving the protein synthesis rate in fluorescence units per minute

[FU/min], and Z0 is a constant determined by the initial conditions (P0 = 55 cell−1,

X0 = Y0 = Z0 = 0 cell−1).

τm 6.5 min GFP Maturation time
λx 0.116 min−1 mRNA degradation rate (corresponding half-life: 6 min)
γ 0.0139 min−1 growth rate (corresponding doubling time: 50 min)

Table 5.1: Fixed model parameters When fitting the analytical gene expression
function (equation 5.1) to the single cell traces these parameters are fixed to the given,
population averaged values as their cell-to-cell variations can be assumed to be small.
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5.2.3 Distribution of GFP expression rate and intrinsic delay time
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Figure 5.6: Histograms of the time delay for varying external arabinose con-
centrations, which were determined by fitting the analytical gene expression function
to the fluorescence time series. The arabinose concentration along with the mean and
standard deviation of the delay time are denoted in each panel. The experimental
results (green) are well fitted by the analytical delay time distribution (equation 5.3,
orange). The number of evaluated cells was: 101 (0.2 %), 76 (0.05 %), 90 (0.02 %), 71
(0.01 %).

A critical review of the literature indicates that the cell-to-cell variability of the mRNA

half life can be assumed to be small. Analysis of the growth rates in our experiments

and the separate analysis of the GFP maturation time on the single cell level (Chapter 4)

show that this also holds for the growth rate and GFP maturation rate. In contrast, the

protein synthesis rate is expected to vary significantly (see [45] for the detailed discussion).

We thus fix the growth rate, the mRNA degradation rate and the GFP maturation time

to their population averaged values when fitting the gene expression function to single

cell fluorescence traces (see table 5.1). Thus, we can determine the protein synthesis rate
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Figure 5.7: Cumulative distributions of the protein synthesis rate αp coin-
cide for all external arabinose concentrations when rescaled to their mean values 〈αp〉.
Rescaling excludes sample-to-sample variations of the mean. Importantly, 〈αp〉 is not
correlated with the inducer concentration.

αp and the time delay τD for each cell, which can be assumed to capture most of the

cell-to-cell variation within the expression module.

We fitted the time series of cells induced with various levels of arabinose (0.2%, 0.05%,

0.02%, and 0.01%). A few representative fitted curves for the highest and lowest concen-

tration are plotted in Fig. 5.4 as solid lines. The resulting histograms for the delay time

are shown in Fig. 5.6. For the lowest arabinose level (0.01%, upper panel) we find that

the delay times are distributed between 5 and 50 min with a mean and standard deviation

of 〈τD〉 = 23 min and στD = 10 min, respectively. In this case approximately 10% of the

bacteria do not show any fluorescence within our time window of 70 min. With increas-

ing arabinose concentration both the mean and the standard deviation of the delay time

distribution decrease gradually, until at the highest arabinose level (0.2%, lower panel) a

distribution with 〈τD〉 = 4.1 min and στD = 2.2 min is reached.

In contrast, we find that the distribution of protein synthesis rates αp does not vary

with the inducer concentration, which can be seen from the cumulative histograms which

coincide for all concentrations 5.7. Pairwise Kolmogorov-Smirnov tests indicate that the

samples are drawn from the same underlying distribution. Furthermore, a detailed corre-

lation analysis shows that the delay time and synthesis rate do not depend on each other

[45].

In summary, these results suggest that the uptake and the expression module are indeed

functionally separate. It is likely that the level of crosstalk between the modules increases

with decreasing arabinose concentration, indicated by a slight increase of the fluorescence

level prior to the strong increase. Note that our experimental approach with time-lapse

fluorescence microscopy was crucial for these results, which would have been impossible

to obtain with flow cytometry.
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5.2.4 Stochastic model for the uptake module

Using stochastic mathematical descriptions, we are now going to address the following

questions:

• How do the broad distributions of delay times and their shapes arise?

• How does the scaling of the delay time with the arabinose concentration arise?

A Monte-Carlo simulation of arabinose uptake and arabinose transporter expression

serves us to illustrate how cell-to-cell variations of the delay time arise. For details of the

simulation see [45]. Figs. 5.8 b and c show the simulated time-evolution of the level of

uptake proteins and the level of internal arabinose upon induction with 0.01% external

arabinose for a few representative simulation runs. These trajectories illustrate the mech-

anism leading to a broad distribution of delay times within our model: Internal arabinose

initially accumulates approximately linearly in time, and the accumulation accelerates

only after reaching the effective arabinose threshold of a0 ≈ 50µM for activation of the

araBAD and upt promoters, which is indicated by the black horizontal line in Fig. 5.8 c.

The time delay, τD, caused by the uptake module is the time required for the internal

arabinose concentration to reach this threshold level. The rate of arabinose import, given

by the slope in Fig. 5.8 c, is proportional to the number of uptake proteins n in Fig. 5.8 b.

If arabinose import is fast compared to the timescale of changes in the protein abundance,

the delay time is given by the simple relation τD = a0/(v0n), where the arabinose uptake

rate per uptake protein, v0, depends on the external arabinose concentration. Thus, the

distribution of uptake proteins in Fig. 5.8 a directly determines the distribution of im-

port rates, which in turn are inversely proportional to the delay times, resulting in the

distribution of delay times shown in Fig. 5.8 d.

In order to relate the experimentally observed shape of the distribution to the prediction

of the stochastic model, we will now derive an analytical expression for the delay time dis-

tribution. Before the addition of the inducer arabinose, expression of the uptake proteins

is a completely random, unregulated process. Following the work of Berg [44] and under

the assumptions stated in [45], we find a steady-state distribution P (n) for the number of

uptake proteins n of the form

P (n) ≈
(

1

1 + b

)µ ( b

1 + b

)n (
µ+ n− 1

n

)
, (5.2)

which is sometimes referred to as a ‘negative binomial’. Here, the ratio b = νp/λm of

the translation rate and the mRNA degradation rate corresponds to the typical number

of proteins produced from a single mRNA and is also known as the “burst size” [75].

The ratio µ = ν0
m/λp of the basal transcription rate and the protein dilution rate can

be interpreted as a dimensionless “burst frequency” (the number of bursts within the

lifetime of a protein). Both parameters determine the mean 〈n〉 = µb and the variance
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δn2 = 〈n〉(1 + b) of P (n). Fig. 5.8 a shows the steady-state distribution P (n) obtained

from our stochastic simulations of the uptake module (grey histogram) together with the

analytical expression (red line) in Eq. 5.2 for the same rate constants. The excellent

agreement suggests that the assumptions leading to Eq. 5.2 are all satisfied in the range

of analyzed arabinose concentrations. As it can be shown that extrinsic noise only leads

to rescaling of the parameter values [45] the following results, which are only based on

intrinsic noise, are valid for the general case with intrinsic and extrinsic noise.

To obtain an approximation for the delay time distribution, we assume that arabinose

uptake is rapid compared to the typical timescale of changes in the protein abundance.

In this adiabatic limit, the delay time is inversely proportional to the current protein

abundance in each cell, i.e. τD = τ0/n, where τ0 ≡ a0/v0 is the time for a single uptake

protein to accumulate arabinose to the threshold level a0. With this relation, the steady-

state uptake protein distribution (Eq. 5.2) leads to a delay time distribution of the form

Q(τD) ≈ τ0
τ 2
D

(
1

1 + b

)µ ( b

1 + b

)τ0/τD Γ(τ0/τD + µ)

Γ(τ0/τD + 1)Γ(µ)
, (5.3)

where Γ(x) is the Gamma function. In Fig. 5.8 d we compare this analytical prediction

(orange line) to the stochastic simulation (green bars). The small deviation stems from

the fact that the number of uptake proteins is not constant over the period of the time

delay1. The mean and variance of the delay time distribution can be approximated by

〈τD〉 ≈
τ0
〈n〉

(
1 +

δn2

〈n〉2

)
≈ τ0
µb

(
1 +

1

µ

)
,

δτ 2
D ≈ τ 2

0

〈n〉2
δn2

〈n〉2
≈
(
τ0
µb

)2
1

µ
, (5.4)

(see [45]). From these expressions it is clear that the model has two key parameters, which

together determine the mean and width of the delay time distribution: the time required

to reach the internal arabinose threshold by a single protein burst, τ0/b, and the burst

frequency µ.

Fits of the model to the experimental data by varying the two key parameters are in

good agreement with the experimental distributions (Figure 5.6). The discrepancy at

0.2 % is probably caused by the experimental procedure: The induction process takes

place at room temperature, which probably causes a slight increase of the response times.

Note that the two-parameter fit guarantees that the mean and standard deviation of the

experimental and theoretical distribution will match. However, the fact that the shapes

1Indeed, if the protein dynamics is much faster than the characteristic time of arabinose uptake (λ−1
p �

τD), every cell experiences simply the average abundance of uptake protein 〈n〉 and the delay time
distribution approaches a sharply peaked function around τD = τ0〈n〉−1. In our case, λ−1

p ≈ 70 min
is much larger than the average delay times, so that the assumption of a constant n is sufficiently
accurate.
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Figure 5.8: Simulation of the stochastic arabinose uptake process at 0.01 %
external arabinose. The simulated distribution of delay times (a, bars) is well ap-
proximated by the analytical prediction (a, red line, equation 5.2). Representative
time-courses of arabinose uptake proteins (b) and internal arabinose (c) are shown.
Once the internal threshold (c) is reached the positive feeback is activated, leading
to a strong increse in transporter number and arabinose. The delay time distribution
(d, bars) is obtained by measuring the time to reach the threshold. Despite a small
deviation it is well described by equation 5.3 (orange line). The analytical predictions
in (a) and (d) are shown for µ = 3.8, b = 30, and τ0 = 2100 min.
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of the distributions show excellent agreement is a nontrivial result, suggesting that the

discussed delay mechanism can indeed explain our observations.

Finally, we address the consistency of the parameter values. The estimated parameters

are functions of the external arabinose concentration: The timescale τ0/b of arabinose

accumulation in Figure 5.9 a decreases monotonically as a function of external arabinose

and saturates for large sugar abundances, whereas the burst frequency µ in Figure 5.9 b

is constant for all arabinose levels. This observation is consistent with the idea that the

underlying protein distribution, characterized by µ and b, is independent of the exter-

nally provided sugar concentration, and that the differences in timing can be explained by

shifts in the effective arabinose uptake velocity per uptake protein, v0: By assuming sim-

ple Michaelis-Menten saturation kinetics for v0, one expects that τ0 scales inversely with

the external arabinose concentration [aex], i.e. τ0 = a0/vmax (1 +Km/[aex]), where vmax
denotes the maximal uptake velocity per uptake protein and Km the Michaelis-Menten

constant. This behavior is indeed found in Fig. 5.9 a (inset) and with the resulting values

for vmax, Km and a typical value of b = 30 for the burst factor [75], all parameters are

compatible with the experimentally constrained ranges [45].
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Figure 5.9: Time scale of arabinose accumulation and burst frequency as a
function of external arabinose, were obtained from fits of the delay time distributions
in Fig. 5.6. The timescale of arabinose accumulation τ0/b (a) decreases monotonically
with the external arabinose concentration. The Lineweaver-Burk plot (inset) shows
the scaling with the inverse arabinose concentration. In contrast, the burst frequency
µ (b) is constant for all arabinose levels.
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5.2.5 Single copy reporter

It seems possible that the use of the multi-copy reporter plasmid has an impact on our

results. For example, stochastic effects could be obscured by the high expression level

and the averaging over many plasmids. Furthermore, the additional copies of the AraC

gene and the AraC binding sites might interfere with the regulation of the system. To

test whether the time delay characteristics are influenced by the use of the multi-copy

reporter, the GFPmut3 gene under control of the PBAD promoter was integrated in the

chromosome. An E.coli strain which is genetically similar to the previously used strain,

but has an intact copy of the araC gene was used. Single cell expression kinetics of

this strain (E. coli LKB194) were recorded at different arabinose concentrations. Prior

to induction the bacteria already have a significant fluorescence signal. This cellular

autofluorescence, which was negligible compared to the ≈ 50 times larger fluorescence

signal generated by the plasmid, needs to be corrected for. To this end, an individual
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Figure 5.10: Time delay distributions measured with a single copy reporter
(red), compared to the distributions measured with a multi-copy reporter at different
inducer concentrations. To facilitate comparison by eye the data are differently binned
than in figure 5.6.
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offset value, usually 90-95 % of the first acquired value, was subtracted from each single

cell trace. The consistent determination of the offset for all cells is challenging due to the

variations of the autofluorescence values between cells or for one cell prior to induction.

The extracted delay time is influenced by the correction, resulting in an increased error of

the determined parameters. In the case of the small delay times found for induction with

0.2 % arabinose, we find negative delay times due to this error.

The time delays are distributed similarly with single and multi copy reporter (Fig-

ure 5.10 a, indicating that, given the experimental accuracy, the results do not depend

on the copy number of the reporter. The distributions of the synthesis rate coincide for

all concentrations (Figure 5.10 b). As in the multi-copy case, the relative width of the

synthesis rate distribution is around 0.35. This level of variation was also found for the

protein expression rate from the phage lambda PR promoter and is probably caused by

cell-to-cell variations in global cellular components, like RNA polymerase. Thus, differ-

ences in the plasmid copy number between cells do not seem to increase the overall noise

significantly. Note that due to poor surface adhesion of this strain only a small number of

traces could be acquired (15 (0.2 %), 19 (0.05 %), 24 (0.02 %)).

5.2.6 Heterogeneous timing in a strain capable of arabinose

degradation

We have observed heterogeneous timing in a strain which is incapable of arabinose degra-

dation. Thus, the question remains whether this effect exists in native strains and is thus

generally relevant. To address this issue, we recorded single cell expression kinetics in

E.coli MG1655, in which the arabinose operon is native on the chromosome. To monitor

gene expression the strain was transformed with the previously used reporter plasmid.

MG1655 is the lab strain which is closest to the native E.coli, which means that it has

only few mutations on its chromosome.

When adding arabinose at t=0 min and subsequently leaving the system undisturbed,

as in the previous experiments, the fluorescence of single cells increases, but reaches a

plateau after 30 to 40 min. Most likely, this is caused by the depletion of arabinose, which

is taken up and degraded by the cells. When repeating the experiments under constant

flow of medium with the respective arabinose concentration the effect vanished.

Again, we observe heterogeneous timing with increasing delay times at decreasing arabi-

nose concentrations (see figure 5.11). For a given arabinose concentration the delay times

are significantly longer than in the strain without arabinose degradation. For example,

at 0.05% we find delay times of 8.5 ± 4.6 min without degradation and 23 ± 7.3 min. In

addition, with degradation the shortest delay times are observed at a higher concentra-

tion (without degradation: 4.1±2.2 min at 0.2%; with degradation 4.5±2.0 min at 0.5%).

Presumably, the differences are due to arabinose degradation by basally expressed degrada-

tion proteins, which slows down the initial increase of the internal arabinose concentration,

resulting in longer delay times.
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Figure 5.11: Time delay distributions measured in strain E.coli MG1655 fol-
lowing induction with 0.5 %, 0.2 % and 0.05 % arabinose. The arabinose network on
the chromosome of MG1655 is intact, meaning that this strain is able to degrade ara-
binose. The arabinose concentration along with the mean and standard deviation of
the delay time are denoted in each panel. For each experimental histogram (gree)
the corresponding analytical delay time distribution (Equation 5.3) is shown (orange).
The number of evaluated cells was: 58 (0.5 %), 38 (0.2 %), 59 (0.05 %).
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Even though the assumptions made when deriving the analytical delay time distribution

(Equation 5.3) might not hold when arabinose is degraded, we use this functionality to

test whether shape and scaling of the distribution is similar without and with arabinose

degradation. The shape of the distributions can still be approximated when the burst

frequency kept constant at µ = 3.8 and a typical burst size of b = 30 is chosen. This

constant burst frequency was determined in the experiments without degradation. As

expected a Michaelis-Menten scaling of τ0 = a0/vmax (1 +Km/[aex]) is found. τ0 again is

the time to overcome the threshold of a0 = 50µM by the action of a single uptake protein.

The Michaelis constant is similar to the one without degradation, but vmax is significantly

smaller. Together with the observation that the coincidence between the predicted curve

and the data is worse compared to the data without degradation this indicates that the

model needs to be modified to account for arabinose degradation.
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5.3 Variation of the uptake protein expression

In the previous chapter we concluded that the distribution of delay times over a popula-

tion is determined by a broad distribution of transport proteins at the time of induction

(Figure 5.12). In this understanding, an individual cell accumulates arabinose via the

n uptake proteins which are present at the time of arabinose addition until the internal

binding threshold a0 is reached. At this point, denoted as delay time τD, expression from

the arabinose promoters starts with maximal rate. The delay time τD is thus given by

τD =
a0

v0 · n
=

a0

vmax · n
(1 +

Km

Aext
). (5.5)

v0, the uptake velocity of each transporter shows a Michaelis-Menten type dependence

on the external arabinose concentration Aext, with maximal velocity vmax and Michaelis-

Menten constant Km. Based on this finding we expect to find similar time delay charac-

teristics with an initially given transporter distribution, which is not arabinose dependent.

This situation can be created by replacing the promoter which usually controls transporter

production with another promoter. The positive feedback loop, which is a decisive char-

acteristic of the network, is disrupted in this manner. An important prerequisite is that

the number of transporters is similar to the native case. However, there are only very few

promoters for which the number of expressed proteins can be predicted precisely. We chose

to use the promoter PLAC, which natively controls gene expression in the lactose operon:

It was shown that its basal expression level is very low [59] and the expression from PLAC

can be increased by inducer addition. As the delay time is determined by the transporter

number n and the external arabinose concentration Aext, the expected differences in n will

only change the scaling with Aext.

# uptake proteinsTime Delay
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Figure 5.12: Schematic illustration of the connection between time delay
and uptake protein distributions We assume that the initial distribution of uptake
proteins (red) gives rise to the delay time distribution (green). Due to the positive
feedback of arabinose on the uptake proteins in the native system the distribution is
shifted to higher values at a later time (blue), which supposedly does not influence
the delay distribution. Note that the delay distributions, but not the uptake protein
distributions, have been measured.



52 5. Timing and dynamics of gene expression in the arabinose system

5.3.1 Single cell induction kinetics

The induction kinetics of the strain in which the production of the low affinity high-

capacity transporter AraE is controlled independent of arabinose by the lac promoter PLAC

were recorded for several arabinose concentrations (Figure 5.14). The basal expression level

of PLAC was used. For comparison, kinetics were recorded for a strain in which the native

promoter pE controls expression of AraE (Figure 5.14). The regulation networks for these

strains are shown in Figure 5.13. As the transport characteristics of strains with only

AraE and both AraE and AraFGH are very similar (see Appendix A) AraE was put under

arabinose independent control and AraFGH was deleted. AraFGH is also deleted in the

control strain with native AraE control.

We find that the arabinose concentration has to be decreased stronger with PLAC con-

trolled than with PE controlled AraE expression to change the expression kinetics. In

addition, already a qualitative comparison of the single cell traces shows that the dynam-

ics of the two strains differ significantly. For a quantitative comparison the delay time and

the protein synthesis rate are determined from each single cell trace by fitting the analyt-

ical gene expression function Eq. 5.1 derived in chapter 5.2.2. All remaining parameters

are fixed to the previously discussed values. Note again that the central assumption in

the derivation of this function is a step like increase of the transcription rate from zero to

its maximal value at the delay time τD.
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Figure 5.14: Single cell induction kinetics Representative single cell induction
kinetics of cells with native (left) and arabinose independent (right) transporter pro-
duction at different arabinose concentrations. The analytical gene expression function
(green) is fitted to the data points (yellow dots). As the 0.001 % arabinose data cannot
be fitted by this function data points are connected. To facilitate comparison the re-
gions over which the traces are distributed are shaded. In contrast to prior evaluations,
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This approach now seems more feasible, as we previously found that the number of
uptake proteins at the time of arabinose addition is deceisive for the entire dynamics.
Still, the effect of the change in the evaluation procedure on the results is only minor.
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For the native control strain we find increasing delay times with decreasing arabinose

concentration and similar synthesis rates for all arabinose concentrations (Figures 5.16

and 5.15), which was also observed with both transport systems (see chapter 5.2). For

induction with 0.01% and 0.05% the mean values of the delay time coincide with the

previously measured ones within experimental errors. Only the mean delay time for 0.2%

is significantly shorter. This is probably due to a change in the experimental procedure:

While we induced the bacteria prior to putting the sample on the microscope previously,

inducer is now added when the sample is already on the microscope. This minimizes the

time the sample remains at room temperature instead of 37◦C. These very short times

in combination with the simplifications underlying the evaluation function can result in

negative values for few cells.

For PLAC controlled AraE expression we find very small delay times at all concen-

trations and the synthesis rate decreases with decreasing arabinose concentration (Fig-

ures 5.16 and 5.15). Thus, neither the expected increase of delay time with decreasing

arabinose concentration, nor the constant synthesis rates are found. The maximal syn-

thesis rate for PLAC controlled AraE expression is significantly smaller than in the native

strain. The shape of the traces at 0.001 % arabinose cannot be fitted with the analytical

gene expression function.
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concentration along with mean and standard deviations of the values are denoted in
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Qualitatively the same behavior, fast gene expression onset in all experiments and de-

creasing synthesis rates with decreasing arabinose concentration, have also been observed

in an E.coli strain in which the expression of AraE was controlled by Pcp18, another ara-

binose independent promoter (see traces in Appendix A). As transcription from Pcp18

proceeds at a larger rate than the basal transcription from PLAC, the number of trans-

port proteins is higher. Thus, decrease of the synthesis rate takes place at arabinose

concentrations below 10−3 %.
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5.3.2 Differences between native and arabinose independent uptake

protein expression

The observation that changes in the gene expression dynamics occur for lower external

arabinose concentrations with PLAC controlled than with PE controlled AraE expression

suggests that native control leads to smaller numbers of transport proteins. At a given

arabinose concentration this would lead to a faster onset, as this transporter number

determines the initial dynamics. When comparing the single cell curves for 0.01% induction

we indeed find an earlier increase with PLAC controlled AraE expression. However, when

the stochastic simulations, which reproduce the delay characteristics of the native case

are modified accordingly (no feedback, rate of transporter production increased within the

reasonable regime) we still find delayed induction and no decrease of the synthesis rate.

Moreover, the shapes of the induction kinetics differ significantly between the two

strains: Following a slow and gradual increase in both cases the slope increases strongly

in the native case, while there is a steady increase for arabinose independent transporter

expression. The strong increase indicates the fast switching of the transcription rate from

zero to a high value. Its absence in the mutant strain indicates that the fast off-on switch-

ing is caused by the positive feedback, which leads to fast increase of the number of

transporters, in the native case.

As the single cell kinetics for arabinose independent transporter expression are well fit

by the expression function one might assume that the transcription rate increases rather

step like than gradual. However, the significantly smaller synthesis rate at 0.2 % compared

to the native case and the impossiblity to fit the traces at 0.001 % likely indicate that this

approximation is worse than in the native case.

If we still consider a step like increase the small delay times in combination with the

Aext dependent synthesis rate indicate that the transcription rate is switched from zero to

an Aext dependent value shortly after induction.

Figure 5.17 a illustrates the influence of the external arabinose concentration on the

time evolution of the transcription rate based on the assumption of a step like increase.

The time evolution is thus only characterized by the time of switching (delay time) and

the final value. While in the native case the delay time varies at a constant transcription

rate, the transcription rate varies and the delay time is constant.

The following consideration gives us a hint on the modifications of our model, which are

obviously necessary. The dependence of the transcription rate ν on the internal arabinose

concentration A is called the gene regulation function. For the promoter PBAD, which

controls GFP expression it is known to increase cubically with the arabinose concentration

and can thus be approximated by

ν = νmax ∗ A3

K3
A + A3

, (5.6)

where KA = 50µM [69]. As the internal arabinose concentration will likely become very
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large in the native case due to the strong increase in the number of arabinose transporters

the constant transcription rate found can be assumed to be νmax. The variation of the

transcription rates in the arabinose independent case, indicates intracellular arabinose

concentrations between approximately 20µM and 100µM (see Figure 5.17 b).
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5.4 A quantitative model of the arabinose system

Mathematical modeling is a powerful tool as it leads to quantitative understanding of

biological networks and endows the researcher with predictive power for future experi-

ments (see chapter 2.4). Unexpected features, like stochastic switching, can be treated

in a rigorous manner and questions of evolution and optimization (cost-benefit), which

are experimentally hard to grasp, can be addressed. In addition, discrepancies between a

model and experimental results can indicate that the well-established picture of a process

is incomplete. Based on our experimental findings and the well-known biochemical details

of the arabinose system we set up a detailed model which reproduces the observed time

delay characteristics observed in the arabinose system. However, we found that a mutant

system, with inducer independent transporter production, does not show time delay be-

havior, which contradicts the predictions of this model. This indicates that the model is

incomplete. In addition, it remains to be tested whether the model describes the behavior

for times significantly longer than the delay period.

5.4.1 Deterministic rate equations

During the analysis of the single cell induction kinetics in the native arabinose system

without degradation, mathematical modeling was employed for two purposes: First, a

deterministic description of the processes involved in GFP expression yielded an analytical

solution which was used to extract parameters from the data. Second, the notion that up

to the delay time arabinose is accumulated via initially present arabinose transporters was
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Figure 5.18: Processes, species and rates included in the model
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strengthened by the derivation of an analytical description of the delay time distributions

which fits the data very well. In addition, stochastic simulations of basal transporter

expression and initial arabinose uptake also yielded the predicted shape of the delay time

distributions. The details of this stochastic simulations can be found in [45].

To describe the entire process of gene induction and GFP expression we employ de-

terministic rate equations. This is feasible as we have found that the processes which

are mainly subject to stochasticity are the basal production of uptake proteins and the

transcription of the GFP gene. Stochasticity can thus be grasped by varying the initial

number of uptake proteins and the GFP transcription rate. The processes, species and

rates which are included in the model are depicted in Figure 5.18.

The first set of equations 5.7 describes parameter dependencies on the external or in-

ternal arabinose concentration. The promoter activity of PBAD was found to increase

cubically with the internal arabinose concentration [69] and is thus described by a Hill-

function with a Hill coefficient of three. Note that KA = 50µM, the intracellular arabinose

concentration at which transcription proceeds at half-maximal rate appears as threshold

(previously denoted a0), upon which transcription is switched on, in many instances: Due

to the positive feedback of arabinose on the transport proteins the intracellular arabinose

concentration usually increases very fast once a0 is reached. Thus, the transcription rate

seems to switch from zero to the maximal possible value νgfp,max. The detailed promoter

activity as a function of internal arabinose is not known for PE and PFGH , which regulate

expression of the transport proteins. Comparison of arabinose uptake in wild type strains

with araE and araFGH deletion strains revealed that the two transporters do not operate

independently [76]. Instead, arabinose transport was best described by a single Michaelis-

Menten function (see Appendix A for details). As they display a high similarity to PBAD
[68] we model transcriptional regulation of the uptake proteins by introducing a heuristic

promoter PUPT , that has the same characteristics as PBAD, but lacks the repression in

the absence of arabinose. This means that the transcription from PUPT has a basal rate

ν0
m, while the basal rate is zero for PBAD. The arabinose uptake velocity Vupt of a single

transporter shows a Michaelis-Menten type dependence on the external arabinose concen-

tration Aext. The concentration of AraC molecules changes little over time [68] and is thus

omitted in the model. Binding of arabinose to AraC and of the AraC-arabinose complex

to the promoter is neither included, as these processes can be assumed to be much faster

than the explicitly considered reactions.

Vupt = Vmax ·
Aext

Kupt + Aext

νupt = νupt,b + (νupt,max − νupt,b) · A3

K3
A + A3

νgfp = νgfp,max ·
A3

K3
A + A3

. (5.7)
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The second set of equations 5.8 captures the time evolution of the involved species. The

internal arabinose concentration A changes by arabinose uptake and arabinose efflux which

will be discussed in the next chapter 5.4.2. The mRNAs for uptake proteins (Rupt) and

GFP (Rgfp) are created by transcription and chemically degraded. The translation rates

are chosen according to a burst factor of 30 [75]. It is reasonable to assume that the uptake

proteins (UPT) are directly functional after translation while for GFP the maturation step

from immature GFP (igfp) to fluorescent GFP has to be taken into account explicitly (see

Chapter 4). The number of GFP molecules has to be converted to the fluorescent signal Fl

by a scaling factor SFl. The model includes replication terms for the genes and no dilution

of molecules as the fluorescence signal is integrated at each time point for a growing cell.

∂tA = Vupt · Upt− Fext

∂tRupt = νupt · eγt − λupt ·Rupt

∂tUpt = µupt ·Rupt

∂tRgfp = νgfp · eγt − λgfp ·Rgfp

∂tigfp = µgfp ·Rgfp − τm−1 · igfp

∂tGFP = τm
−1 · igfp

∂tFl = SFl · ∂tGFP. (5.8)

The solution of the model defined by Equations 5.7 and 5.8 crucially depends on the

parameter values and on the initial conditions (see Table 5.2). Several of these are known

from the literature or were measured directly and can thus be fixed. The GFP transcrip-

tion rate, which subsumes the plasmid copy number and the initial number of uptake

proteins remain free fit parameters as they vary strongly from cell to cell. For the de-

pendence of the uptake velocity per transporter on the external arabinose concentration

(see equation 5.7) a Michaelis-Menten constant on the order of 50µM has been reported

[76]. However, with such a small value there would be no variations in uptake velocity in

the range of arabinose concentrations for which we observe significant differences. Thus,

under the experimental conditions used here the value must be significantly larger. As

we do not know this value we do not consider the dependence on the external arabinose

concentration explicitly, but instead use the uptake velocity as a variable. For a reasonable

set of parameters the maximal uptake velocity lies in the constrained range of 200 - 2000

arabinose molecules/transporter/min [45].

An even more realistic description of the processes considered here and their inherent

stochasticity could be achieved by a detailed stochastic simulation. However, entire sim-

ulated time traces cannot be compared quantitatively to experimental ones, due to the

large number of possible realizations. It is only possible to compare the distributions

of quantities which can be extracted from each trace, like the time delay. However, a

stochastic simulation will be used to check the plausibility of the rate model with a given
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set of parameters by considering the distributions of the time delay and the initial number

of uptake proteins. The simulation includes all processes captured by the rate equations

and is performed analogous to [45]. Upon arabinose addition all species are allowed to

accumulate as this is inherent in the experimental data evaluation.

5.4.2 Arabinose efflux

In the model used and discussed in chapter 5.2 and 5.3 only the accumulation of arabinose

via import was considered. Even though there is no active arabinose degradation in the

strains we use, it is likely that there is another factor: It is known that sugars are exported

[77] [78] [79] and there is evidence for a relatively large arabinose export rate [80]. One of

the exporters of arabinose is a major facilitator pump encoded by the ydeA gene [81]. At

the first glance the export of sugars seems to be a waste. However, the accumulation of

very high internal sugar concentrations is detrimental for the cells due to the associated

osmotic pressure [82].

To address this issue experimentally, cells are induced and arabinose is taken away from

the extracellular environment after a defined time. If the efflux caused a significant de-

crease in the intracellular arabinose concentration this would lead to a decrease of the gfp

expression rate and could ultimately stop gfp expression altogether. Figure 5.19 shows

single cell traces of bacteria which were exposed to 0.08 % arabinose at t = 0 min. Ara-

binose was taken away at t = 20 min by rinsing the sample with arabinose free medium.

The strain is unable to degrade arabinose and has only the AraE transport system under

native control (see figure 5.13). These data clearly show that there is significant efflux,

as fluorescence increase ceases approximately 15 min after arabinose removal. As this is

much shorter than one cell cycle (≈ 50 min) it cannot be explained by dilution.

The data show that arabinose efflux needs to be accounted for in the model. As Novotny

and Englesberg [80] found that arabinose export is a first order reaction we set

∂tA = VUpt · Upt− k0 · A. (5.9)

If the number of uptake proteins is constant, which is the case prior to induction in

native strains and generally in strains with plac controlled transporter expression, this

leads to a steady state level of the internal arabinose concentration of

Astst =
VUpt · Upt

k0

. (5.10)

The efflux rate k0 determines how fast this steady state is approached. The existence

of a constant intracellular arabinose concentration was suggested by the data with PLAC

controlled transporter expression (Chapter 5.3.2).
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To show that this model reproduces the system behavior correctly we start by fitting

the deterministic rate equations to the switch-off kinetics shown in Figure 5.19.

Several of the parameters can be fixed (see Table 5.2). The remaining free parameters

are the uptake velocity Vupt, the efflux rate k0, the GFP transcription rate νgfp and the

initial number of uptake proteins upt0.

As Vupt is determined by the extracellular arabinose concentration via Michaelis-Menten

kinetics no significant cell-to-cell variations of this parameter are expected and it is re-

quired to be equal for all cells. Vupt is thus fixed consecutively to different values within

the constrained range, while k0, upt0 and νgfp are fit parameters. The GFP transcription

rate adopts values on the order of 5 to 10 mRNA min−1, which is in accordance with the

values calculated from the mRNA levels in [68]. For each cell the value does not change

significantly with the remaining parameters. Vupt and k0 should fulfill two conditions, in

order to be plausible: The combination of Vupt and k0 should lead to delay times compara-

ble to values found for this strain (compare Chapter 5.3.1) when simulated stochastically

and the initial number of uptake proteins should conform with the distributions result-

ing from a realistic basal expression rate. The resulting efflux rates for Vupt = 1000 ara

molecules/transporter/min was k0 = 4.37 ± 0.53min−1. Even though the quality of the

fits is slightly better for even larger efflux rates, k0 = 4.4min−1 is chosen in order to keep

the Vupt associated with maximal expression (corresponding to delay times between 2 and
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Figure 5.19: Gene expression ceases when arabinose is added and removed
after a short time Experimental single cell expression traces (blue symbols) of bac-
teria which were exposed to a concentration of 0.08% arabinose between 0 min and
20 min. The used strain contains natively controlled AraE, but no AraFGH and is
incapable of arbainose degradation. Data were fitted (red lines) with a model that
contains arabinose efflux as a first order process. Note that the growth rate was
0.0092min−1 in this experiment. This might explain the general trend that the off-
kinetics, which is basically determined by GFP maturation, is not fitted very well.
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4 minutes) in the constrained range. This efflux rate is feasible as k0 = 5.2min−1 was

found in [80]. A significantly smaller value of k0 = 0.14min−1 found in [81] was deter-

mined in a strain lacking AraC, with a very small arabinose concentration and at 25◦C

and is thus not comparable. The mRNA levels measured in [68], the promoter fold change

of 150 (for pE and pFGH) [83] and the doubling rate measured in our experiments lead

to a basal expression rate of 0.03min−1. The initial numbers resulting from the fit range

from ≈ 90 to 210 cell−1 which rather conforms with a basal expression rate of 0.05min−1.

The necessity of this adjustment might result from our specific experimental conditions.

In addition, the determination of the basal rate, being a very small quantity, is generally

error prone.

As a final plausibility check the distribution of delay times was determined in a stochas-

tic simulation with this parameter set. Even though the assumptions underlying the

analytical derivation of the delay time distribution (Equation 5.2) are no longer fulfilled

the function serves as a heuristic tool for comparison. Figure 5.20 shows that the delay

distribution is still well approximated by this function with the parameters found pre-

viously. Approximately 15 % of the cells in the simulation, namely those with very few

transporters, did not reach the threshold level. This might indicate that, for very low

initial numbers, the simulation fails to reproduce the experiment exactly.
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Figure 5.20: Delay time distribution resulting from a stochastic sim-
ulation (blue) with the relevant free parameters chosen as Vupt = 800 ara
molecules/transporter/min, k0 = 4.4min−1 and νupt,b = 0.05min−1 following the
discussion in the main text. The distribution is well approximated by the analytically
derived one (red, Chapter 5.2.4) with m = 3.8, b = 30 and τ0 = 900. The delay
was determined as the time at which the internal arabinose concentration crosses the
threshold of a0 = 50µM . Approximately 15 % of the cells in the simulation did not
reach this threshold.
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fixed parameters
KA 50µM intracellular arabinose concentration

for half-maximal transcription rate [69]
γ 0.0139min−1 growth rate (corresponds to a doubling time of 50min)

measured
νupt,b 0.03min−1 basal transporter transcription rate

results from νupt,max with a fold-change of 150 [83]
νupt,max 4.16min−1 maximal transporter transcription rate

derived from mRNA levels in [68]
λupt 0.347min−1 transporter mRNA degradation rate

mRNA half-life 2min [68]
λgfp 0.116min−1 GFP mRNA degradation rate

mRNA half-life 6min [84] [85]
µupt 10.4min−1 transporter translation rate

chosen to yield a typical burst factor of 30 [75]
µgfp 3.5min−1 GFP translation rate

chosen to yield a typical burst factor of 30 [75]
τm 6.5 min GFP maturation time

measured (chapter 4)
SFl 50 Fluorescence conversion factor

arbitrary
free parameters
Vupt arabinose uptake velocity

constrained to
200-2000 arabinose molecules/transporter/min[45]

νgfp,max maximal GFP transcription rate
includes plasmid copy number

k0 arabinose efflux rate
see discussion in Chapter 5.4.2

initial values
A 0 internal arabinose
Rupt

νupt,b

λupt
uptake proteins mRNA

upt variable uptake proteins
Rgfp 0 GFP mRNA
igfp 0 immature GFP
GFP 0 fluorescent GFP
Fl 0 Fluorescence

Table 5.2: Model Parameters and initial values Prior to arabinose addition
internal arabinose and all GFP species are not present. The initial value of the mRNA
for the uptake proteins results from its basal expression rate, which can in contrast be
assumed to be zero for GFP expression. The number of uptake proteins is the quantity
which distinguishes the cells.
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5.4.3 Comparison of modeling results and induction kinetics with

native and arabinose independent transporter expression

Now we show that the expression kinetics of a strain in which transporter expression is

arabinose independent, along with the data of the according native control strain, can

be explained by the model which includes arabinose efflux (see chapter 5.3). Delay times

increase with decreasing arabinose concentration and the protein synthesis rates is constant

at all concentrations in the native control strain. In contrast, we find very short delay times

and a decrease of the protein synthesis rate with decreasing concentration for arabinose

independent transporter expression.

Direct fitting of the deterministic equations to the single cell expression kinetics is not

feasible, as there are too many unconstrained parameters, which compensate each other.

Instead we show that the model qualitatively reproduces the characteristics of the fluores-

cence traces of the strains with native and PLAC controlled transporter expression. For the

latter case the uptake protein transcription rate is kept constant. Representative traces

for different initial numbers of transporters and different uptake velocities are shown in

Figure 5.21. The key characteristics, delayed induction for decreasing uptake velocity and

similar production rates (slopes) for all velocities in the native case, in contrast to fast in-

crease for all uptake velocities with decreasing production rates for arabinose independent

transporter expression are reproduced by the model.

5.4.4 Comparison of modeling results and the expression dynamics

following arabinose pulses

As a first step towards more complex temporal variations of the environmental conditions

bacteria which are incapable of arabinose degradation were exposed to two subsequent

pulses of 0.05% arabinose. Resulting traces along with the according modelling result are

shown in Figure 5.22. In this case the fluorescence signal was integrated over the entire

microcolony resulting from one mother cell. Following the first arabinose addition it takes

the characteristic delay time for this concentration until gene expression starts. Subsequent

arabinose removal leads to the ceasing of GFP expression, similar to the observation in

Figure 5.19. The response to the second arabinose addition is significantly faster than the

first one. This is due to an increased number of uptake proteins, which were produced

during the first pulse. This can be seen as a memory effect, which increases sensitivity to

arabinose. Due to the high rate of induced uptake protein expression and the stability of

the proteins, which are only degraded by dilution this memory effect is expected to persist

for several cell cycles. The data are predicted very well by the model.
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Figure 5.21: Modeling results for native and arabinose independent trans-
porter expression The solution to equations 5.7 and 5.8 are shown for different
numbers of initial uptake proteins Upt0 at various arabinose uptake velocities Vupt

(given in arabinose molecules/transporter/min). To reproduce arabinose independent
transporter production the arabinose dependence of the transporter transcription rate
in equation 5.7 is omitted. Upt0 equals 80, 110, 150 in the native case and 180,
220, 300 in the arabinose independent case, representing the transporter distributions
at the time of arabinose addition for native and PLAC controlled expression. Differ-
ent numbers were used as our experimental results indicate that the initial number
of transporters is higher with PLAC controlled than native expression. However, the
numbers of uptake proteins do not influence the qualitative behavior, but only the
exact scaling with Vupt. Variations of the transcription rate, which only represent an
additional degree of variation, were omitted for this plot.
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Figure 5.22: Single colony response to arabinose pulses The response of single
bacterial cells, which grow into colonies over time, to subsequent pulses of 0.05 % (a)
arabinose were recorded (b). The traces are qualitatively well predicted by the rate
equation model. (c). The absolut fluorescence value in the model is determined by
an arbitrary scaling factor. In addition, this factor is specific for each cell as it also
captures differences in the protein production rate.
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5.4.5 Scope of the model and future experiments

A mathematical model which describes the response dynamics of the arabinose system was

developed. It is based on the known biochemistry of the arabinose system and includes

an additional efflux term. With one set of parameters the model consistently explains all

experimental observations, which were made for different network architectures and for

different types of the arabinose stimulus. These observations are:

• The qualitative scaling of the time delay distributions with the arabinose concen-

tration and their shape as well as the constant protein synthesis rate for native

expression of the arabinose transporters.

• The decreasing protein synthesis rate without time delay for arabinose independent

expression of the transporters.

• The increase and subsequent ceasing of GFP expression when arabinose is added

and removed after a short time.

• The expression kinetics following two subsequent arabinose pulses.

In the first part of our study we derived and analytical gene expression function which

is based on the assumption of a step like switching of the transcription rate from off to

on once an intracellular arabinose threshold is reached. The full model, which in contrast

includes the exact dependence of the transcription rate on the intracellular arabinose

concentration, illustrates why the step like approximation is valid for the native arabinose

system: Initially, arabinose is accumulated via the basally expressed transporters. Once

the intracellular arabinose concentration comes into the range in which transcription is

modulated the number of transporters increases strongly due to the positive feedback.

Thus, the intracellular arabinose concentration increases above the range in which the

transcription rate is modulated very fast, resulting in the apparent switching upon a

threshold concentration.

Future experiments will address the question whether arabinose export is best described

by a simple first order process. It seems likely that at least a correction is necessary, as at

high intracellular arabinose concentration the arabinose transporters presumably function

as exporters. This functionality is included in models of the lactose system [86] [87]. For

this system, the rates and affinities for import and export are chosen equally, resulting

in equal external and internal sugar concentrations. However, for the arabinose system it

is known that the intracellular arabinose concentration becomes significantly higher than

the external concentration [80].

We will monitor the response to arabinose addition and subsequent removal in the strain

with native and arabinose independent transporter production. The concentration and the

duration of the pulses will be varied. One characteristic feature predicted by the first order

efflux for the case with arabinose independent transporter production is that the switch

off kinetics do not depend on the duration of the arabinose pulse, as the intracellular
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arabinose reaches a steady state level determined by the uptake velocity, the number of

uptake proteins and the efflux rate. Furthermore, complementary experiments, such as

biochemical transport studies or the determination of the number of uptake proteins in

individual cells [59] might be necessary to show the exact efflux mechanism and determine

the biochemical rates directly.

These future challenges for the model will help to deepen the knowledge of the processes

involved in gene induction of the arabinose network, thus contributing to the understanding

of the working principles of cells.
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5.5 Cell density dependent gene expression

An important question regarding stochastic effects in gene expression is whether they

are side effects of certain network architectures or whether they confer an advantage.

Considering the cost and benefit [31] of the arabinose uptake and degradation machinery,

we suggest that heterogeneous timing is beneficial when arabinose is only available for

a limited time due to consumption by the bacteria (see figure 5.23 for an illustration).

When a given amount of arabinose is added to differently dense populations of bacteria,

this carbon source will be depleted faster at higher cell densities. The production of the

arabinose degradation machinery is initially an energetical burden for each cell. This

investment of energy does only pay off if the cell can consume a sufficient amount of

arabinose subsequently. The probability for a cell to switch the arabinose operon on at

a given point in time depends on the external arabinose concentration. At a high cell

density, the depletion of arabinose due to the cells which have already started to consume

arabinose decreases the external concentration and thus the probability that further cells

switch the arabinose operon on. In this way, cells are prevented from switching on, which

are unlikely to overcome the energy invested by producing the degradation machinery due

to the total depletion of arabinose.

5.5.1 Distributions of single cell fluorescence

To test this hypothesis experimentally, we prepared cultures containing E.coli MG1655

at different cells densities and induced these with the same amount of arabinose. E.coli

MG1655 is able to degrade arabinose and was transformed with the reporter plasmid

pBAD24-gfp, in order to have a fluorescence readout for the expression of the arabinose

system. At defined times after induction, samples were taken from the cultures and the

distribution of single cell fluorescence values was determined with a flow cytometer. In our

experiments, arabinose is not the only carbon source: To guarantee growth at a basal rate,

glycerol or succinate are supplied as carbon source, which is usually done when studying

gene expression of inducible networks. Furthermore, an additional burden is imposed on

the bacteria by the expression of GFP, which is present on a plasmid with ≈ 50 copies per

cell. Remarkably, growth rates measured in liquid cultures without and with arabinose

were the same within the experimental accuracy.

We expect that in a culture with higher cell density a larger fraction of the bacteria is

in the non fluorescent state than in a culture with lower cell density (see figure 5.23 d).

In contrast, we observe the opposite, namely that the fraction of fluorescent cells is larger

at higher cell densities (Figure 5.24). Remarkably, this property already becomes obvious

45 min after induction.

We performed several tests in order to rule out experimental artefacts and to find the

cause of the observed effect. Due to the initially used experimental protocol, the growth

rate differed between the samples with different cell densities, but a control in which
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Figure 5.23: Proposed beneficial effect of heterogeneous timing at high cell
densities The same amount (x Mol) of arabinose is added to two bacterial cultures
with different densities N1 > N2 (a). Soon, a fraction of the population (those with the
largest numbers of uptake proteins) switches the arabinose system on and consumes
arabinose. Thus, the larger absolute number of consuming bacteria in the culture with
higher density results in a faster decrease of the arabinose concentration in the medium
(b). The probability to switch the system on decreases concomitantly as it depends
on the arabinose concentration (c). As a result, the fraction of bacteria which are on,
detected in the experiments as bacteria with a high fluorescence level, is expected to
be larger in the culture with lower cell density at a time T1 after induction (d).

the growth rates did not differ yielded qualitatively identical results. The effect did not

either vanish, when glycerol, the carbon source used to guarantee growth at a basal rate

was exchanged by succinate. The observed behavior reminds of quorum sensing (QS)

mechanisms, where cell density controls gene expression (See introduction in chapter 6).

QS is mediated by small molecules, so called autoinducers, which each cell produces and

which can pass the cell membrane. The autoinducer concentration thus depends on the cell

density. Once a sufficient concentration is reached the autoinducers stimulate or inhibit

the expression of certain genes. When recording the density dependent gene expression

in E.coli DH5alpha, which does not produce a common type of autoinducers [88] the

observations were similar to the prior experiments, indicating that they are not caused by

quorum sensing via these autoinducers.

To test whether some compound, which is excreted by the cells and accumulates in the

medium, is the effector, we performed the following test: High density cultures2 (0D600

2The density of bacterial cultures is usually determined by measuring their optical density at 600nm
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Figure 5.24: Density dependent gene expression Cultures of different initial
cell densities (OD600 = 0.1, 0.01, 0.001) were induced at t=0 min with 0.02 % (left)
or 0.002 % (right) arabinose. Distributions of fluorescence values were recorded with
a flow cytometer at different times after induction (see legend).

= 0.1) were grown as in the initial experiments. 90 min and 270 min after induction the

supernatant was collected by centrifugation and filter-sterilized. In a second experiment,

low density cultures (0D600 = 0.001) were grown in fresh medium supplemented with

10 % of the collected supernatant. Using a larger fraction of supernatant would nega-

tively influence the growth rate due to the accumulated waste products. The population

distributions of parallel cultures without supernatant or the two different collected super-

natants show differences which indicate that the response is slowest in the culture with

pure medium (see Figure 5.25). Thus, the density dependent effect seems to be mediated

by some compound which accumulates in the medium.
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Figure 5.25: Density dependent gene expression with conditioned medium
Low density cultures (initial OD600 = 0.001) were either grown in pure medium
or medium supplemented with 10 % supernatant of high density cultures 90 min or
270 min after induction. The population distributions of fluorescence values 180 min
after induction with 0.02 % or 0.002 % are shown.

5.5.2 Causes of density dependence

Our hypothesis was that one possible beneficial effect of the heterogeneous timing would

manifest itself in a larger fraction of cells which express the arabinose system at a high

level at lower cell densities. The exact opposite, larger fractions of cells which express the

arabinose system at a high level at higher cell densities, was found in the experiments.

We tested whether glycerol, the carbon source used to maintain basal growth, or autoin-

ducer mediated quorum sensing gives rise to this effect, but did not find an influence.

Experiments in which low density cultures were supplemented with medium from high

density cultures indicate that the mediator is a small compound which accumulates in the

medium. This might be a molecule such as acetate, which is a byproduct of metabolism

and is excreted into the medium [89].

Even though we do not know how the effect is mediated, we can use our mathematical

model to speculate about the species or rate which might be affected. For switching

to occur earlier, the internal arabinose concentration A has to rise faster. As the time

evolution of A is given by

∂tA = Vupt · Upt− k0 · A (5.11)

we see that the number of transporters Upt, the transport velocity Vupt, or the efflux rate

k0 must be varied to change the dynamics of the internal arabinose concentration. The

initial number of transporters, which is responsible for arabinose uptake prior to induction,

could be varied by changing the basal transporter expression rate. As arabinose promoters

are known to be regulated by cAMP (cyclic-Adenosine-Monophosphate) via CRP (cyclic

AMP receptor protein) [67] involvement of this mechanism seems possible. Usually, it

prevents the expression from the arabinose promoters if a more favorable carbon source
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than arabinose is available. Still, due to the fact that the production of cAMP and CRP are

both intricately regulated, the level of one of these could be affected. The uptake velocity

of AraE, which is a proton symporter, could be influenced when released compounds

change the pH value of the medium. Finally, as we do not know the exact mechanism of

arabinose efflux it is hard to judge whether and how this parameter might be influenced

by different cell densities.

Another possibility is that the effect is mediated indirectly, via differences in the growth

rate: Even though growth rate was measured and found to be identical there might still

be variations: Determination of the growth rate at low culture densities has a relatively

large error due to instrumental resolution. In addition, it seems possible that growth rate

variations take place on time scales below the resolution of our measurement. Recent

studies indicate that the initial cell density has an impact on the growth rate [90], but this

subject has not been analyzed in detail. As it is known that there are global regulatory

effects, which are due to the growth rate it is likely that one of the quantities discussed

above might be influenced [91].

Finally, a benefit of the fast reaction at high cell densities is conceivable when consid-

ering that in natural habitats usually several species of bacteria coexist. If the sensing

mechanism only indicates a high cell density, irrespective of the cell type, the faster up-

take of sugar at higher cell densities is the best way to maximize the proliferation of the

genotype of an individual cells.
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5.6 Conclusions

In this chapter we showed that the arabinose system, which displays stochastic all-or-

nothing gene expression also shows heterogeneity in the timing of gene expression onset.

The delay time before onset is mainly determined by the number of arabinose uptake

proteins a cell has at the time of induction: Arabinose is accumulated by these transporters

until the intracellular threshold for induction is reached.

Mathematical modeling was crucial in order to understand how the experimental obser-

vations arise from the underlying biochemical network. Particularly, discrepancies between

experimental observations and the predictions of an initial model, which represented the

well-established view of the arabinose system, could be resolved by including arabinose

efflux: Experimentally, we found this process to be so fast that it significantly influences

the dynamics.

In contrast to the native network, for which the transcription rate switches from zero

to the same value for all inducer concentrations, the transcription rate varies with the

external arabinose concentration when the positive feedback of arabinose on the transport

proteins is deleted. It has been reported previously [71] [72], that the binary response can

be converted to a graded one by this modification. For this network architecture, we find

that transcription starts directly upon induction, while delayed induction is expected from

previous simulations [16]. To see how the discrepancy in timing arises we first need to

note that the transcription rate is only modulated within a narrow range of intracellular

arabinose concentrations. Below this range, the transcription rate has a low basal rate,

while above this range transcription constantly proceeds at the maximally possible value.

In the native system, the intracellular arabinose concentration increases fast and strongly,

meaning the range in which modulation happens is crossed rapidly. Thus, we observe

switching from low to maximal transcription. In contrast, without positive feedback a

steady state concentration on the order of the Michaelis-Menten constant is rapidly es-

tablished due to the combination of arabinose export with arabinose influx through the

constant number of transporters.

The heterogeneity in timing was characterized for a range of arabinose concentrations

which eventually lead to induction of all cells of a population. For the highest used ara-

binose concentrations induction is so fast that the number of transporters is constant

between inducer addition and gene expression onset. For smaller arabinose concentrations

the average number of transporters in the period between inducer addition and gene ex-

pression onset determines the delay time. For even lower concentrations arabinose uptake

via the average number of uptake proteins does not lead to induction. Instead, induction is

only possible directly upon a burst of transporter expression. This regime and the molec-

ular details of transient derepression which causes the bursts have been characterized in

detail for the lactose system [59].

Mechanisms by which bacteria adapt to changes in the environment have been classified

into those which are based on sensing and others which use population diversity generated
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by stochastic switching [92]. In this sense, the behavior of the arabinose system can be

considered as a mixed strategy, which uses elements of both classes. A broad distribution

of arabinose transport proteins is created by stochastic gene expression. Once arabinose

becomes available, this results in temporal variability in the sensing response. In this way

the bacteria can profit from a fast response which is associated with sensing as well as

from population heterogeneity. In addition, the number of molecules which are necessary

to render the response possible is very low, meaning that only little energy needs to be

invested constantly.

Future research on the arabinose system will address the question how and under which

conditions bacteria benefit from the observed heterogeneity. From a cost-benefit argument

we assumed that heterogeneous timing is beneficial when the sugar is depleted due to

consumption by the cells, which should lead to differences in the distribution of cells

between off and on state at different cell densities. However, our experiments indicate

that there is an adversary regulatory effect, so that the exact opposite of our expectation

was observed. Thus, we will analyze both a possible beneficial effect at temporally limited

arabinose concentrations and the density dependent gene regulation in future experiments.

Theoretical work [12] also indicates that stochastic gene expression is optimal under certain

kinds of environmental fluctuations. For a synthetic model system this has also been shown

experimentally [13]. As we can use our experimental setup to monitor bacteria while the

arabinose concentration is varied temporally, we will analyze whether the fitness, i.e. the

growth rate, is larger for specific types of fluctuations, e.g. pulses of a certain duration.

Furthermore, we will check whether heterogeneous timing is also found in other inducible

systems. Actually, this is to be expected, as many of them share the positive feedback

architecture. If so, it is worthwhile to revisit the phenomenon of diauxic growth on the

single cell level: Already in the 1950´s Monod observed that bacterial cultures which

where supplied with two sugars did not consume them at once, but one after the other

[93]. In these experiments usually one of the sugars was glucose, the best carbon source.

The glucose degradation machinery is constantly present. The other sugars had inducible

degradation machineries. Thus, the question remains how single cells respond to two

sugars with inducible systems: Does each cell only switch on one of the systems, which

is suggested by theoretical work [94]? Is there a strong hierarchy which always leads to

the preferred consumption of one sugar or are there conditions under which a fraction of

the cells specialize on one sugar, while the remainder choses the other one? The latter

could be explained by the combination of the early onset of one of the systems due to

heterogeneous timing and the subsequent inhibition of the other system. If there is indeed

a stochastic decision between two systems, this mutual switch will be a valuable tool for

the construction of artificial gene circuits.
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6 Dynamics of AHL mediated quorum

sensing

In nature, many bacterial species grow attached to surfaces. This situation is significantly

different from the one in standard laboratory experiments, where bacteria grow in liq-

uid medium which is constantly shaken. The spatial localization is bound to affect the

dynamics of quorum sensing (QS) regulated gene expression: This very common form of

cell-cell communication is mediated by signaling molecules which are excreted by the cells.

The diffusive transport of these molecules between spatially localized bacteria influences

the timing of gene expression. Furthermore, it is likely that spatial concentration gradi-

ents arise by reaction-diffusion mechanisms due to the constant production of signaling

molecules by the surface bound cells.

Biofilms can either be symbiotic, for instance on plant roots, but they can also cause

severe diseases, for example when the lung surface is colonized by pathogenic bacteria.

Biofilm formation is a QS regulated phenomenon of surface attached bacteria. In a biofilm

[95] [96], layers of surface bound bacteria are surrounded by a matrix of extracellular

polymeric substances (EPS) which holds the cells together and protects them. In addition,

chemicals might accumulate in the biofilm. Cells in a biofilm usually behave significantly

different from dispersed cells in liquid medium. In particular, a biofilm has traits of

multicellular organisms [97]. The bacteria exhibit different gene expression patterns [98],

which can be seen as a division of work. As the bacteria in the film are genetically identical

the differentiation is either stochastic or due to different conditions in different regions of

the film.

The previously studied arabinose system, as well as the analyzed QS system use a

positive feedback architecture to switch the gene expression rate from a very low to a high

value upon an external stimulus. While arabinose requires active transport proteins to

cross the cell membrane, the QS signaling molecules enter and exit the cell by diffusion.

Our experimental setup allows for the analysis of gene expression dynamics in surface

attached bacterial cultures. We use this framework to study the very early stage of biofilm

formation in which single cells grow into microcolonies. Essential QS dependent changes

might already occur at this stage. Particularly, we analyze whether QS regulated gene

expression is influenced by spatial concentration heterogeneities and whether cell-to-cell

variability occurs.
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6.1 Introduction to quorum sensing

Quorum sensing (QS) [99] is a form of cell-cell communication which has been found in a

large number of bacterial species. Besides being a wide-spread regulation mechanism it is

of particular importance as it plays a fundamental role in many severe infectious diseases.

QS is mediated by small molecules, so called autoinducers, which are constantly pro-

duced in low amounts by the bacteria. These molecules enter or exit cells by diffusion

through the cell membrane. Due to the constant production and the increase of the cell

number by growth, signaling molecules accumulate. Once the autoinducer concentration

is sufficiently large they bind to regulator molecules. In turn, these activated regulators

change the expression of QS regulated genes, usually from low to high expression rates

(Figure 6.1). In most QS networks, the production of the autoinducer synthase is also

stimulated, resulting in even more autoinducers. Thus, positive feedback regulation is

employed (see figure 6.2 for the illustration of a typical QS system).

Functionality and purpose of QS in natural ecosystems are still debated: As the term

quorum sensing indicates it was originally assumed that QS serves as an indicator of a

critical density of bacteria above which certain collective behaviors, such as the produc-

tion of a protective extracellular matrix, are feasible [100]. However, when bacteria grow

sparsely and inhomogeneously distributed on surfaces, which is often the case under nat-

ural conditions, the autoinducer concentration rather depends on the spatial distribution

of the cells. In addition, their concentration is strongly influenced by the consistence of

the surrounding environment, which influences autoinducer diffusion. Thus, it is likely

that quorum sensing is used to probe a combination of cell density, spatial cell distribu-

tion and environmental mass transfer properties [101]. This hypothesis, also denoted as

efficiency sensing, is supported by experiments, which use artificial QS sender and receiver

cells arranged in a well defined spatial pattern [102]. Further evidence comes from an

experiment in which it was shown that maximal distance between sparse bacteria which

can still communicate (”calling distance”) varies between different parts of a plant root

[103].

Our goal is to address the predictions of the efficiency sensing hypothesis in a systematic

way using a natural QS system. To this end, we measure QS regulated gene expression

dynamics in a small channel, which allows changing the autoinducer concentrations via

a flow system. In the future, we will employ microstructured sample environments with

compartments of different sizes to probe the influence of spatial limitations. In addition,

patterns of adhesive coating on the surface will reveal the effect of the distance between

the bacteria.

6.2 Gene expression dynamics

In the following we resolve the quorum sensing mediated induction dynamics of growing

microcolonies of the biofilm forming bacterium Pseudomonas putida IsoF. This strain
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Figure 6.1: Schematic illustration of quorum sensing (a) Autoinducers are
produced at a basal rate and accumulate in the medium. (b) Once the induction
threshold is reached expression of QS regulated genes is stimulated. Due to the positive
feedback, the production rate of autoinducers increases as well.

contains only one quorum sensing system, called Ppu system. We analyze the response

dynamics when autoinducers are added to the culture. To find out whether these dynamics

are influenced by spatial heterogeneities occurring due to the autoinducer accumulation

we use two different experimental conditions: First, the environment is left undisturbed,

so that autoinducers can accumulate. Second, the concentration is kept constant by a

steady flow of medium.

6.2.1 Experimental system

The Pseudomonas putida PPU system consists of the regulatory activator PpuR, the

autoinducer synthase PpuI and the structural gene PpuA, which is involved in biofilm

formation [104] [105]. Figure 6.2 schematically depicts the quorum sensing and reporter

system of the P. putida strain used in this study. The autoinducer of the PPU system

is a N-acyl-homoserine lactone (AHL). When the AHL concentration is sufficiently large,

the autoinducer AHL binds to the activator PpuR. The PpuR+AHL complex activates

expression of the AHL synthase PpuI, thus constituting a positive feedback loop which

results in increased AHL production. AHL molecules diffuse through the bacterial mem-

brane, thereby mediating the signal to neighboring cells. A fluorescent reporter (GFPasv

[50]) under the control of PlasB on a RP4 type plasmid is used as reporter for the AHL

concentration [103]. Similar to the regulation in the PPU system, AHL binds to the reg-

ulator LasR when the AHL concentration is sufficiently large. The LasR+AHL complex

activates gene expression from PlasB.
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Figure 6.2: Regulatory network of the PPU System and Las-based reporter
The PPU system consists of the regulator PpuR, the AHL synthase PpuI and the
structural gene PpuA (not depicted), along with their genes and respective promoters
[104] [105]. When bound to AHL, PpuR stimulates the expression of PpuI. GFP under
control of the promoter PLasB from the Pseudomonas aeruginosa Las system is used
as a reporter for QS controlled gene expression [103]. When bound to AHL, LasR
stimulates the PLasB controlled GFP-expression. The reporter construct, which also
includes the gene for the regulator LasR, is plasmid-borne.

6.2.2 Fluorescence decrease

Following overnight growth, the bacteria are highly fluorescent. We monitored the fluores-

cence decrease of individual cells in fresh medium (Figure 6.3) since bacteria are required

to be in a well-defined, non-fluorescent off-state before the switch-on of the quorum sensing

system can be measured. Cultures were diluted to different percentages of the cell density

of the overnight culture, incubated for one hour and bacteria were subsequently trans-

ferred to microfluidic channels. The time course of the population average of the mean

fluorescence of single cells was measured. The initial fluorescence level was higher in the

previously less diluted cultures (Figure 6.3 b). Therefore, we conclude that the QS-system

was still active after the dilution into liquid medium from the overnight culture. When

normalized by the initial fluorescence value the curves of all samples collapse onto one uni-

versal curve which decreases exponentially with a rate of 1.16±0.02h−1 (Figure 6.3 c). The

identical rate of decrease indicates that the AHL production was reduced to basal level in

all cases by the additional dilution effectuated by transferring the cells to the microfluidic
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Figure 6.3: Single cell fluorescence decreases exponentially upon dilution to a
low cell density in fresh medium. Bacteria were inoculated from an overnight culture,
incubated for one hour, seeded into a microfluidic channel and rinsed. The first time at
which the bacteria were imaged is defined as t = 0h. (a) A representative image series
shows the fluorescence decrease of growing cells (length of one cell is approximately
3µm). Some daughter cells disappear from the images as they detach from the surface
after cell division. (b) Dependence of the 〈Mean fluorescence〉, which is the population
averaged mean fluorescence of single cells on the initial cell density. The initial cell
density was adjusted to different percentages of d0, the density of the overnight culture,
by dilution. (c) Time evolution of the 〈Mean fluorescence〉. The results from the
cultures which were adjusted to different densities collapse onto a single exponentially
decaying curve when they are normalized to the initial fluorescence level. (Inset) The
distributions of single cell fluorescence values over the population at different time
points are well fitted by Gaussian functions. Their width decreases with time.
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chamber. The GFP level is reduced by two processes: Dilution by cell division (doubling

time 51min) and biochemical degradation of GFPasv (half-life 110min). Together, these

two processes are expected to give rise to decay rate of 1
51min

+ 1
110min

= 1.2h−1 which is

in excellent agreement with the experimental value. The single cell fluorescence values fall

onto a Gaussian distribution at all times which indicates homogeneous QS gene expression

in the well-mixed batch pre-culture. Over time, the width of the distributions decreases,

while the relative width remains constant (Figure 6.3 c). Following these results we pre-

pare the off-state for the induction experiments by three cycles of dilution and growth (see

Appendix B).

6.2.3 Induction with external AHL

In order to artificially induce QS regulation, we use 3-OxoC10 AHL (N-(3-Oxodecanoyl)-L-

homoserine lactone), the cognate AHL of the PPU system [105]. In our experimental setup,

in which the bacteria are immobilized on the Poly-L-Lysin coated surface of microfluidic

channels we can either apply a constant medium flow, or leave the system undisturbed.

Constant flow is provided by a pumping system, which can be connected to the channels.

When investigating the undisturbed situation without flow, mineral oil is used to prevent

evaporation of the medium. In this case, the AHLs which are produced by the bacteria

can accumulate in the medium and contribute to induction. In contrast, under medium

flow, the AHL concentration is constantly kept at the externally provided value. Leaving

the environment undisturbed probably resembles the conditions in natural habitats more

closely than continuous exchange of medium by a constant flow. However, due to the

limited size of the flow chamber the provided nutrients might soon be depleted. Within

our observation time of approximately 8 h bacteria grow continuously at similar rates both

with and without flow, indicating that nutrient supply is still sufficient. The flow rate of

2 ml/h is so small that it does not give rise to shear stress on the cells.

For each external AHL concentration flow and non-flow condition are measured in a par-

allel set-up of two channels on a single microfluidic slide. The attached single cells grow

into microcolonies over time (Figure 6.4 a). For each colony a trace of the mean fluores-

cence values (fluorescence per pixel) is extracted from the image series (See figure 6.4 b-d).

The colony outline is determined by thresholding of bright-field images. As it is a priori

not known whether there is cell-to-cell variability in QS regulated gene expression we an-

alyze entire colonies. Thus, a lower magnification can be used and better statistics can

be obtained. Evaluation of single cells is not possible, but visible inspection allows to de-

cide whether variations are so pronounced that experiments shall be repeated with higher

resolution. We only consider colonies from cells which are present in the beginning of the

experiment and divide at least two times.

For the one-time addition (non-flow situation) of 0nM, 10nM and 100nM AHL the

resulting single colony traces, along with their mean value, are shown in figure 6.4 b-d. At

100nM there is an approximately linear fluorescence increase starting at AHL addition. At
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Figure 6.4: Single colony expression kinetics for induction with different exter-
nal AHL concentrations (0nM, 10nM and 100nM) without flow (a) Image time series
of a representative colony at 100nM AHL. The outline of the colony, determined from
the bright-field image, is marked in white. Scale bar: 10µm (b)-(d) Time-traces of the
mean fluorescence of individual colonies are shown in grey, the black line represents
their average.

10nM the fluorescence increase starts slowly and accelerates with time. At 0nM there is

no detectable increase in fluorescence up to approximately 5h, when a sudden and strong

increase starts. At all concentrations there are significant colony-to-colony variations in

timing and absolute values. It is observed that for all three AHL concentrations the cells

eventually detach from the surface. Since a quantitative and continuous representation of

single colony fluorescence fails at this point, evaluation of experiments ends after 6 to 7
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hours.

Figure 6.5 b shows the mean value of the expression profiles (symbols) resulting when the

respective AHL concentrations are applied under constant flow (2 ml/h). For 100 nM AHL

and 10 nM AHL the dynamics are similar to the non flow situation. Fluorescence increase

is initially slightly slower, but speeds up over time. When 0nM AHL are applied via flow

no fluorescence can be detected during the time of the experiment. It is remarkable, that

in contrast to the experiments without flow bacteria do not detach from the surface with

flow at any AHL concentration. Instead, bacteria grow into a dense layer.

6.2.4 Comparison of the data and a rate equation model

In [105] a rate equation model was developed which explains the expression of autoinducers

of the PPU system in batch cultures. AHL is produced at a small basal rate all the

time. Once the AHL concentration exceeds a threshold concentration Kppu, the AHL

production rate increases strongly due to a positive feedback loop. The time evolution of

the concentration of AHL in the medium can be described by

∂tAHL = (α + β · AHLn

Kppu
n + AHLn

) ·N − γ · AHL (6.1)

Due to bacterial growth, the concentration of bacteria evolves as N(t) = N0 · er·t, where

r is the growth rate. The basal and induced expression rates, α and β, as well as the

exponent n of the Hill function and the AHL degradation rate γ were determined by

fitting experimental data sets. The parameter values are summarized in table 6.1.

To test whether this model is also able to explain our experimental observations we

need an additional equation describing the GFP production which is controlled by the

Plas promoter. From the negligible fluorescence values at 0 nM AHL with flow we conclude

that a basal production of GFP can be neglected. As the Las system is similar to the PPU

system and also activated via a positive feedback mechanism, we employ a Hill-function

n with the same coefficient which was found for the PPU system. However, the induction

basal AHL production rate α 2.3 · 10−10 nmolcell−1h−1

induced AHL production rate β 2.3 · 10−9 nmolcell−1h−1

Hill exponent n 2.5
Ppu Induction threshold Kppu 70 nM
AHL degradation rate γ 0.005545h−1

Las Induction threshold Klas 30 nM
GFP degradation rate k 0.378h−1

Initial concentration of bacteria N0 4.3 · 109 l−1

Growth rate r 0.44h−1

Table 6.1: Parameter values for AHL production and GFP expression. α, β, n,
Kppu, γ from [105], Klas adjusted from [103], k from [50], N0, r measured.
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threshold Klas has a different value, which is reporter in the literature [103]. As we do

not measure numbers of GFP molecules, but the fluorescence signal, the transcription rate

βGFP has an arbitrary value, which includes the conversion of the number of GFP molecules

to a fluorescence signal. The used GFP variant, GFPasv, is not stable, so degradation at a

rate k is included. GFPasv is similar to GFPmut3 for which we determined the maturation

time. As it is small, compared to the time-scales we investigate here, GFP maturation

is omitted. The time evolution of the fluorescence per cell in arbitrary units, Fl, is thus

described by

∂tFl = βGFP ·
AHLn

Klas
n + AHLn

− k · AHL (6.2)

N0, the initial concentration of bacteria, is estimated from the number of bacteria at-

tached to the surface and the flow chamber volume. The growth rate r is also determined

from the experiments. Both quantities are equal for all experiments within the resolution

of the estimates (see table 6.1 for parameter values). To compare model and data we

use these values and adjust the scaling between the number of GFP molecules and the

fluorescence signal appropriately. When we shift KLas from 20nM [103] to 30nM, which is

reasonable, as the exact value is strain dependent [106] the data without flow are quite well

approximated. However, for the data with flow there are large discrepancies, particularly

at 10 nM and 100 nM AHL.

The data recorded at 100 nM increase rather linearly, both without and with flow. The

model, however, predicts a sigmoidal increase. Presently, there is no explanation for this
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Figure 6.5: Experimental and predicted gene expression dynamics Experi-
mental population averages of the mean fluorescence of single colonies acquired without
and with flow at different external AHL concentrations are depicted by markers. Cor-
responding predictions by the rate equation model (Equation 6.1 and 6.2) are shown
as solid lines.



88 6. Dynamics of AHL mediated quorum sensing

discrepancy.

A challenge which remains to be solved is the determination of the initial bacterial con-

centration N0 and the growth rate r: These parameters strongly influence the theoretically

determined dynamics, but could only be estimated roughly.

The curve measured at 10 nM with flow lies above the model prediction and shows an

upward kink similar to the observation for 10 nM AHL without flow. This observation

indicates that the AHL concentration is higher within the cells than in the medium flow.

Possibly, the increase of the concentration arises by one of the following three mechanisms:

First, the intracellular AHL concentration might be larger due to the combination of AHL

production and diffusion of AHL through the cell membrane. Second, the AHL concen-

tration might be larger in the vicinity of the cells and thus also within the cells due to the

combination of AHL production and excretion by the cells and the diffusion of AHL in the

medium. Third, accumulation could be caused by the production of extracellular matrix

proteins which inhibit diffusion of the AHLs. To distinguish between these possibilities

models will be established which consider two compartments with different AHL concen-

tration: An internal one, which includes the AHL producing bacteria and an external

one, which comprises the cell free surrounding. The rate of AHL exchanged between the

two compartments determines the degree of accumulation. If AHL accumulates within

the cells, the inner compartment is each individual cell, so that the cell-membrane is the

exchange barrier. If AHLs accumulate in the vicinity, the inner compartment is a small

volume which includes one colony.

6.2.5 Colony-to-Colony and Cell-to-Cell variability

It is known that within biofilms genetically identical cells differentiate to fulfill specific

functions. These specialized cells are not distributed equally within the biofilm, but pref-

erentially occupy certain regions, e.g. close to the edge [98]. As we are interested in the

timing of biofilm formation it is interesting whether variability already arises at the early

stage we are investigating.

As noted above, we find significant variations between the fluorescence time courses of

individual colonies (Figure 6.4 b-d). The colony to colony variability is similar without

and with flow. We assume that these variations are to a large extent caused by differences

in the size and composition of the initially seeded cells and by extrinsic noise. The colony to

colony variation is once more illustrated by the distribution of single colony fluorescence

values (Fig. 6.6 b). Variability is much more pronounced at 10 nM AHL and 100 nM

AHL, indicating that it is increased by the positive feedback architecture of the regulatory

network. It remains unclear why at 10 nM AHL and 100 nM AHL a fraction of the cells

do not become fluorescent at all.

There is also heterogeneity between cells within each colony. Within colonies the fluo-

rescence decreases in most cases from one center towards the rim (Fig 6.4 a, 6.6 a). This

indicates a larger AHL concentration near the center of the colonies. To address these
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variations in detail, experiments with higher optical resolution will be performed, so that

fluorescence values of single cells within colonies can be determined.

A reaction-diffusion model will be used to finally understand the entire spatio-temporal

gene expression pattern. This model will also show to which extent the heterogeneous

gene expression is due to spatial heterogeneities of the AHL concentration and to which

extent it is caused by stochasticity in gene expression.
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Figure 6.6: Intra and inter colony heterogeneity (a) Bright field and fluores-
cence image of a sample after 7h of growth with 100nM external AHLs under constant
flow. Colonies of similar size show different fluorescence levels. The overlay picture
of a single colony shows that the brightness of the cells decreases from the middle to
the edges of a colony. (b) Distribution of the mean fluorescence of colonies at 100nM
AHL after 7h of growth under constant flow.
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6.3 Discussion

We analyzed the dynamics of quorum sensing regulated gene expression, while leaving the

environment either undisturbed or keeping concentrations constant by a continuous flow of

medium. Kinetics recorded in the undisturbed environment are very similar to predictions

of a rate equation model which was developed to describe gene expression in mixed liquid

cultures. In contrast, particularly the data set for one concentration close to the induction

threshold recorded under constant flow deviates strongly from predictions by the same

model. This effect indicates that the autoinducer concentration is higher in the cells than

in the medium flow. Thus we assume that the autoinducer accumulate either within or in

the vicinity of the cells.

Strong variations in gene expression are found, both between colonies and between cells

within colonies. Inter colony variations are probably caused by stochasticity in gene ex-

pression and differences in the cells which initiate the colonies. In contrast, the decrease of

single cell fluorescence from the center towards the rim of colonies seems to originate from

spatially heterogeneous autoinducer distributions. It is conceivable that the concentration

of accumulated autoinducers is largest near the center of the colony.

In order to evaluate the cause of the apparently higher intracellular autoinducer con-

centration a two-compartment model will be developed. Furthermore, experiments with

a higher optical resolution will allow quantifying the fluorescence levels of single cells

within colonies. A stochastic reaction-diffusion model will account for both the origins of

heterogeneity and the accumulation of AHL molecules.

Finally, we will experimentally address the influence of spatial limitations and the dis-

tance between cells on QS regulated gene expression. To this end, the sample environment

will be refined: By using microfabricated chambers, differently sized compartments will be

generated. From the gene expression dynamics of the same number of bacteria in different

volumes we can draw conclusions on the impact of diffusion or accumulation in the vicinity

of the bacteria. In addition, we will generated surfaces with regular, adhesive patterns, so

that the cells are spaced by well-defined distances. Thus, it will be possible to measure

the calling distance [103], meaning a maximal distance over which cells or cell aggregates

can communicate.

The combination of a detailed quantitative knowledge of the early stage of biofilm for-

mation with long time studies of the evolution of biofilms will help to understand the

mechanisms controlling biofilm development. Particularly, we hope to understand the

initiation of the process by which the cells differentiate into different subpopulations.
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In this work the gene expression dynamics of regulatory networks which respond to external

stimuli by switching on the expression of certain genes were studied. In order to understand

the fundamental relations between the network architecture and the resulting dynamics

idealized conditions were used: On the one hand, the response to simple step functions of

the inducer concentration was analyzed. On the other hand, when studying the arabinose

system, the genes for arabinose degradation were deleted to avoid changes in the sugar

concentration. Thus, a temporal stochastic effect was revealed and a model could be

established that consistently explains gene expression dynamics produced by the native

and a modified network.

In the future, we will continue our research on gene expression dynamics under natural

conditions. In typical habitats, sugars are usually not constantly available, but rather

appear in bursts. Furthermore, the sugar concentration is depleted by the bacteria. The

necessity to change the inducer concentration over time has already been considered in the

design of our experimental setup. This functionality was exploited in an experiment where

we successfully recorded the response to inducer pulses (see chapter 5.4.4). Additional

a b

Figure 7.1: Microfluiudic devices (a) GFP expressing bacterial cells (green)
in a microfluidic maze. The dark lines are chamber boundaries. The device was
used to probe the influence of topology on bacterial social interactions (From [107]).
(b) Illustration of a microfluidic device in which up to 96 bacterial cultures can be
monitored in parallel. Images of each channel are acquired using a scanning stage
which automatically moves the objective across the device (From [108]. Reprinted
with permission from AAAS.)



92 7. Outlook

experiments of this type will provide insights into memory effects in inducible systems.

Our experimental approach could be extended by using custom made microfluidic de-

vices [63]. These are usually manufactured from a transparent polymer that is shaped by

using a structured silicon waver as mold and bonded to a glass slide which enables micro-

scopic imaging. Using an appropriate mold it is possible to generate geometrically defined

environments (see figure 7.1 a) such as compartments of different sizes. These can be used,

for example, for more detailed studies on the influence of spatial limitations on quorum

sensing regulation [109]. Furthermore, data acquisition can be highly parallelized in mi-

crofluidic devices, since one device can contain up 100 identical microchannels. Data can

be acquired automatically using a microscope equipped with a scanning stage which moves

the device across the device. The channels are independent, so that different mutants and

environmental conditions can be studied at the same time. Using this methodology, the

noise characteristics of more than 1000 genes of E.coli were quantified recently [108] (see

figure 7.1 b).

The regulatory networks we find in bacteria have been shaped by evolution. It is thus

assumed that the combination of the network architecture and the parameter values is the

optimal solution of a cost-benefit problem, resulting in a maximized growth rate. For a

metabolic system such as the lactose or arabinose network, the cost is a decrease of the

growth rate due to the production of the sugar uptake and degradation machinery. The

benefit is the growth rate increase due to the energy which is released by the degradation of

the specific sugar. Obviously, the benefit depends on the availability of the sugar, whereas

there is at least a small, permanent cost for the maintenance of a low number of sugar

transporters. The optimality of the protein output level of the lactose operon has been

addressed by measuring cost and benefit at different lactose concentrations [11]. It turns

out that there is an optimal protein expression level for each concentration. Experiments

in which the cells are constantly exposed to this concentration for many generations reveal

that the network evolves towards this optimum.

Presumably, not only the protein expression level, but also the response dynamics and

the cell-to-cell variability have undergone optimization. To understand their shaping tem-

poral variations of inducer concentrations need to be considered when cost and benefit are

determined. For example, it has been shown that responses with significant differences

between the cells are beneficial under temporally varying conditions [12] [13]. Thus, we

assume that the heterogeneous timing we found in the arabinose system might be ben-

eficial when the arabinose concentration varies. We will first address this hypothesis by

theoretically comparing the influence of different types of fluctuations in the concentra-

tion, such as different durations of arabinose pulses, on the growth rate. Subsequently, we

will compare population growth for conditions which are predicted to yield low and high

benefit using our experimental setup in which we can vary the arabinose concentration

temporally.

Finally, the entire functionality of a network, including expression levels, dynamics

and noise characteristics, will be considered as a regulation strategy and addressed by
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evolutionary game theory. In this context, not only the short term cost and benefit are

considered, but also the evolutionary stability of a strategy. For example, a strategy with

low cost and high benefit under normal conditions is probably not the optimal one when

it is associated with a large probability that many cells die in a rare event. In general, it

is conceivable that strategies with a high level of cell-to-cell variability are favored: These

situations can be considered as mixed strategies, which have been shown to be optimal in

many cases [32].

This combination of theoretical and experimental investigations will yield deeper in-

sights into gene network shaping by evolutionary forces. In addition, natural principles

for the optimal design of gene networks under different environmental conditions can be

transferred when designing synthetic circuits for applications such as biofuel or drug pro-

duction.
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A Arabinose uptake

Arabinose uptake via AraE and AraFGH

In [76] the functionalitity of the arabinose transport systems AraE and AraFGH was

analyzed. It turned out that the dependence of the utpake velocity Vupt on the exter-

nal arabinose concentration Aext of strains with bot AraE and AraFGH follows a simple

Michaelis-Menten function:

Vupt = Vmax ·
Aext

Kupt + Aext

(A.1)

Here, Kupt is the Michaelis-Menten constant and Vmax the maximal uptake velocity

(given per dry cell mass). This finding is unexpected, as strains with either of the systems

also exhibit a Michaelis-Menten type dependence. Thus, one would except that the mutant

with both systems is characterized by the sum of the single systems. The nature of this

interaction remains unknown. The parameters for comparable strains, which are able

of arabinose degradation, with only AraE, only AraFGH or both systems are given in

table ??.

The uptake characteristics of the strain with AraE and AraFGH and of a strain with

only AraE are very similar (see illustration of the parameter values in figure A.1). Thus

AraE is used, when it is desired to use only one transport system in order to change its

expression level. The constraint of the uptake velocity per protein to 200-2000 arabinose

molecules/transporter/min was determined from the values of Vupt and is valid for strains

with both AraE and AraFGH and only AraE.

transport system(s) strain Kupt [µM ] Vupt [nmolmin−1mg−1]
AraE + AraFGH RS1wt 82.3 13.9
AraE KD2 168 17.7
AraFGH RS1E-thi 4.1 7.6

Table A.1: Transport characteristics of strains containing AraE or AraFGH or
both systems. From [76].
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Figure A.1: Arabinose uptake chracteristics of AraE and AraFGH

Gene expression dynamics in a strain with constitutive

uptake protein expression

Figure A.2 shows gene expression dynamics of a strain in which the promoter Pcp18 con-

trols AraE expression (strain Ara#3). AraFGH is deleted in this strain. Gene expression

starts rapidly at all inducer concentrations and the protein synthesis rate decreases with

decreasing arabinose concentration.
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Figure A.2: Representative single cell induction kinetics at different arabinose
concentrations. Transporter production is controlled by the constitutive promoter
Pcp18. The analytical gene expression function (green) is fitted to the data points
(yellow dots). As the 2 · 10−5 % arabinose data cannot be fitted by this function data
points are connected. To facilitate comparison the regions over which the traces are
distributed are shaded.
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B Experimental details

Measurement of the GFP maturation time

In strain E.coli LMG194 containing the reporter plasmid pBAD24/GFP, translation was

blocked by the addition of 200µg/ml chloramphenicol, 30 min after the induction of

gfp-expression with 0.2% arabinose. Fluorescence images were acquired every 3 to 5 min

before and after inhibition. As this measurement was more sensitive the illumination

was reduced and the EM Gain of the camera was used. Photobleaching could thus be

neglected. Cellular fluorescence was determined by summing all pixel values above the

background level for each bacterium. This method is qualitatively equal to the use of cell

outlines, but can only be applied if the range of fluorescence values is limited and bacteria

do not grow strongly. The resulting maturation time courses were fitted by an exponential

function.

Analysis of the arabinose system

Reporter plasmid The reporter plasmid pBAD24/GFP ([45], see figure B.1) was created

in the lab of Prof. K.Jung (LMU microbiology) based on plasmid pBAD24 [70]. The

plasmid contains the gene for GFPmut3 [54] under control of the promoter pBAD and the

gene encoding AraC under native control. The origin of replication pBR322ori controls

the copy number while the bla gene confers resistance to ampicillin.

Time lapse experiments Bacteria were inoculated in M63 minimal medium from single

colonies grown on LB agar plates and grown overnight (37◦C, shaking at 300rpm). M63

minimal medium containing 0.2 % or 0.5 % glycerol as carbon source was used in all ex-

periments. Overnight cultures were diluted 1:50 in prewarmed M63 medium and grown

for 2 h (37◦C, shaking at 300rpm; data in Chapter 5.2) or diluted 1:400 and grown for

4h (remaining data). 30 to 50µ l of an E.coli culture (OD ≈ 0.1-0.2) are incubated for

≈ 5min in a flow channel at 37 ◦C. Some strains adhere to chambers pre-coated with PLL,

while for other strains channels are coated with PLL on the day of the experiment (50µl

PLL, Biochrom AG, Berlin, 0.1mg/ml, incubate for 1 to 3 hours, rinse with water and

medium). Following incubation, samples are rinsed three times with pre-warmed medium

to wash away non adherent cells and improve adhesion of the cells remaining at the surface.

Subsequently, the sample is either directly induced with medium containing the desired

arabinose concentration (rinse 3 times) or transferred to the microscope and induced on
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stage after the acquisition of initial frames. In the case of arabinose pulses, the sample

is rinsed with arabinose-free medium (≈ 500µl) on stage. Bright-field and fluorescence

images were acquired every 5 min with illumination times 0f 0.1 to 0.5 s.

Density dependent gene expression E coli MG1655/pBAD24-gfp was grown overnight

in M63 medium. The overnight culture was diluted 1:100 into 15ml of fresh medium and

grown for 4h. This culture was centrifuged and the pellet resuspended in fresh M63. For

the inoculation of the OD 0.1 two or three rounds of centrifugation were necessary to obtain

a sufficiently high density. The OD 0.01 and 0.001 cultures were inoculated from the same

stock, which had been centrifuged one time. As several rounds of centrifugation resulted

in different growth rates for differently dense cultures the samples were only centrifuged

once in later experiments. The centrifuged stocks were diluted to the desired ODs into

25ml of prewarmed, fresh M63 medium, containing the desired concentration of arabinose

at t = 0min. M63 medium always contained 0.5% glycerol as carbon source and ampicillin.

Cultures were grown at 37◦C and shaking at 300rpm throughout the experiment.

Every 45min samples were taken. At these times bulk fluorescence and OD were mea-

sured in a fluorescence plate reader. 10% Glycerol was added to the samples for flow cy-

tometer analysis which were frozen in liquid nitrogen and subsequently stored at −80◦C.

For flow cytometer measurements the samples were thawed on ice, centrifuged and resus-

pended in PBS buffer.
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Figure B.1: Reporter plasmid pBAD24/GFP
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Analysis of the PPU system

Reporter plasmid A RP4 type reporter plasmid (see figure B.2), containing the gene en-

coding GFPasv [50] under control of the promoter plasB was created in the lab of Prof. L.

Eberl (Zürich). The plasmid also contains the gene encoding the transcriptional activator

LasR and a gene which provides resistance to kanamycin.

Preparation of OFF state Bacteria were inoculated from single colonies grown on LB-

agar plates and grown overnight (30◦C, shaking at 300rpm) in LB-medium. LB-medium

was inoculated 1:100 with the overnight culture. This culture was incubated 3,5h (30◦C,

300rpm). This step was repeated once. Then the culture was diluted again 1:100 in fresh

pre-warmed LB-medium and incubated at 30◦C (shaking with 300rpm) until OD600 =

0.4. The culture was distributed in a 1:1 mixture with glycerol (50%, sterile) in cryovials,

vortexed and stored immediately at −80◦C.To revive the cells, a cryovial was centrifuged

at 3500rpm for 5 minutes, resuspended in FAB-medium [110] and incubated for 1h at 30◦C

with agitation (300rpm). FAB-medium contained 1mM sodium citrate as C-source.

Preparation for microscopy To prepare the cells for microscopy they were applied to

channels of a poly-L-lysine-coated microfluidic chamber (µ-slide VI, Ibidi, Martinsried,

Germany). The slide was then incubated at 30◦C for 15 minutes and rinsed with FAB

medium subsequently. When indicated, 10nM or 100nM N-(3-oxodecanoyl)-L-homoserine

lactone (Sigma-Aldrich Chemie GmbH, Munich, Germany) was added. For each AHL

concentration non-flow and flow conditions were measured in parallel in two microfluidic

channels. Under flow, the channel was rinsed with 2ml/h of the FAB-medium containing

the chosen AHL-concentration by a syringe pump (model infusion, TSEsystems, Bad Hom-

burg, Germany). In the absence of flow, 150µl of FAB-medium containing the particular

AHL-concentration were applied to the channel. To prevent evaporation, the reservoirs

were sealed with mineral oil.

Fluorescence decrease Cultures were inoculated with different amounts (dilution factors

1:10, 1:20, 1:50, 1:100) from an overnight culture. After one hour of incubation the cells

were seeded into microfluidic channels and rinsed with fresh medium. The mean fluores-

Figure B.2: Las reporter plasmid
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cence of single cells was measured every 20min for 6h, by summing the intensity of all

pixels belonging to a cell and dividing it by the number of pixels.

Time-lapse microscopy Bright-field and fluorescence images of several fields in one sam-

ple were acquired every 20 minutes, acquisition times of 0.5 seconds The temperature in

the sample environment was maintained at 30◦C. Fluorescence decrease was analyzed at

100x magnification, while a 40x objective was used for all other experiments. The outline

of single cells or single colonies was determined by thresholding the respective bright-field

images. In the background-corrected fluorescence image, the sum over all pixel values

within the outline (total fluorescence) was determined and divided by the number of pix-

els within the outline. This mean fluorescence value corresponds to the concentration of

GFP molecules, given in arbitrary fluorescence units. For the analysis of fluorescence de-

crease single cells were analysed, which means that cells were regarded as separate objects

after division. For fluorescence onset experiments the mean fluorescence of entire single

colonies, originating from one ”mother” cell, was determined.

Data fitting and simulations

Igor Pro 4.0 (WaveMetrics, Lake Oswego, OR) and Matlab (REF) were used to fit mathe-

matical models to time series data. BioSys, a simulation tool developed by P. Hillenbrand

(Group of Prof. U.Gerland, LMU) ws used for stochastic simulations.
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Bacterial strains

Escherichia coli strains

LMG194 no arabinose degradation [70]

LKB194 chromosomal integration of PBAD-gfp, no arabinose degradation

(based on E.coli MC4100 (E. coli Genetic Resources at Yale

CGSC, The Coli Genetic Stock Center)

created in the lab of Prof. K. Jung, LMU)

MG1655 native arabinose system, thus capable of arabinose degradation

laboratory strain with minimal genetic manipulation

JW1889-3 no AraFGH, native control of AraE

JW1889-5 no AraFGH, AraE expression controlled by plac (from E.coli MG1655)

(JW1899-3,-5 are based on JW1889-1 (E. coli Genetic Resources

at Yale CGSC, The Coli Genetic Stock Center)

created in the lab of Prof. K. Jung, LMU)

Ara#3 AraE expression controlled by Pcp18 promoter, no arabinose degradation

(obtained from Prof.T.Hwas lab, UCSD)

Pseudomonas putida strain

IsoF [104]

M63 Medium

For 1000 ml H2O

KH2PO4 13,6 g

(NH4)2SO4 2 g

FeSO4 x 7H2O 0.5 mg (1.8µl from 1 M stock)

adjust pH to 7.0 with KOH

autoclave

add:

1 ml MgSO4 xH2O from 1 M stock (sterile)

1 µg
ml

Thiamin from stock (1 mg
ml

) (sterile)

0.2 % Caseinhydrolysat from 10 % stock (sterile)

0.2 % Glycerol (sterile) as carbon source



104 B. Experimental details



Bibliography

[1] D. Ro, E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman, J. M. Ndungu,

K. A. Ho, R. A. Eachus, T. S. Ham, J. Kirby, M. C. Y. Chang, S. T. Withers,

Y. Shiba, R. Sarpong, and J. D. Keasling. Production of the antimalarial drug

precursor artemisinic acid in engineered yeast. Nature, 440(7086):940–943, 2006.

[2] D. Endy. Foundations for engineering biology. Nature, 438(7067):449–453, 2005.

[3] H. Kitano. Systems biology: a brief overview. Science, 295(5560):1662–1664, 2002.

[4] U. Alon. Biological networks: the tinkerer as an engineer. Science, 301(5641):1866–

1867, 2003.

[5] A. Raj and A. van Oudenaarden. Nature, nurture, or chance: stochastic gene ex-

pression and its consequences. Cell, 135(2):216–226, 2008.

[6] D. A. Siegele and J. C. Hu. Gene expression from plasmids containing the arabad pro-

moter at subsaturating inducer concentrations represents mixed populations. Proc

Natl Acad Sci U S A, 94(15):8168–8172, 1997.

[7] A. Novick and M. Weiner. Enzyme induction as an all-or-none phenomenon. Proc

Natl Acad Sci U S A, 43(7):553–566, 1957.

[8] C. J. Davidson and M. G. Surette. Individuality in bacteria. Annu Rev Genet,

42:253–268, 2008.

[9] R. Y. Tsien. The green fluorescent protein. Annu Rev Biochem, 67:509–544, 1998.

[10] J. C. W. Locke and M. B. Elowitz. Using movies to analyse gene circuit dynamics

in single cells. Nat Rev Microbiol, 7(5):383–392, 2009.

[11] E. Dekel and U. Alon. Optimality and evolutionary tuning of the expression level

of a protein. Nature, 436(7050):588–592, 2005.

[12] M. Thattai and A. van Oudenaarden. Stochastic gene expression in fluctuating

environments. Genetics, 167(1):523–530, 2004.

[13] M. Acar, J. T. Mettetal, and A. van Oudenaarden. Stochastic switching as a survival

strategy in fluctuating environments. Nat Genet, 40(4):471–475, 2008.



106 Bibliography

[14] E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman, and A. Van Oudenaar-

den. Multistability in the lactose utilization network of escherichia coli. Nature,

427(6976):737–740, 2004.

[15] J. T. Mettetal, D. Muzzey, J. M. Pedraza, E. M. Ozbudak, and A. van Oudenaarden.

Predicting stochastic gene expression dynamics in single cells. Proc Natl Acad Sci

U S A, 103(19):7304–7309, 2006.

[16] T. A. Carrier and J. D. Keasling. Investigating autocatalytic gene expression systems

through mechanistic modeling. J Theor Biol, 201(1):25–36, 1999.

[17] D. M. Wolf and A. P. Arkin. Motifs, modules and games in bacteria. Curr Opin

Microbiol, 6(2):125–134, 2003.

[18] U. Alon. Network motifs: theory and experimental approaches. Nat Rev Genet,

8(6):450–461, 2007.

[19] J. E. Ferrell. Self-perpetuating states in signal transduction: positive feedback,

double-negative feedback and bistability. Curr Opin Cell Biol, 14(2):140–148, 2002.

[20] M. Kaern, T. C. Elston, W. J. Blake, and J. J. Collins. Stochasticity in gene

expression: from theories to phenotypes. Nat Rev Genet, 6(6):451–464, 2005.

[21] A. Eldar and M. B. Elowitz. Functional roles for noise in genetic circuits. Nature,

467(7312):167–173, 2010.

[22] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain. Stochastic gene expression

in a single cell. Science, 297(5584):1183–1186, 2002.

[23] P. Guptasarma. Does replication-induced transcription regulate synthesis of the

myriad low copy number proteins of escherichia coli? Bioessays, 17(11):987–997,

1995.

[24] H. H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. Proc Natl

Acad Sci U S A, 94(3):814–819, 1997.

[25] I. Golding, J. Paulsson, S. M. Zawilski, and E. C. Cox. Real-time kinetics of gene

activity in individual bacteria. Cell, 123(6):1025–1036, 2005.

[26] E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. van Oudenaarden.

Regulation of noise in the expression of a single gene. Nat Genet, 31(1):69–73, 2002.

[27] P. S. Swain, M. B. Elowitz, and E. D. Siggia. Intrinsic and extrinsic contributions

to stochasticity in gene expression. Proc Natl Acad Sci U S A, 99(20):12795–12800,

2002.



Bibliography 107

[28] M. Leisner, K. Stingl, E. Frey, and B. Maier. Stochastic switching to competence.

Curr Opin Microbiol, 11(6):553–559, 2008.

[29] N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik, and S. Leibler. Bacterial persistence

as a phenotypic switch. Science, 305(5690):1622–1625, 2004.

[30] I. Lestas, G. Vinnicombe, and J. Paulsson. Fundamental limits on the suppression

of molecular fluctuations. Nature, 467(7312):174–178, 2010.

[31] T. Kalisky, E. Dekel, and U. Alon. Cost-benefit theory and optimal design of gene

regulation functions. Phys Biol, 4(4):229–245, 2007.

[32] M. Nowak. Evolutionary Dynamics: Exploring the equations of life. Harvard Uni-

versity Press, 2006.

[33] E. Kussell, R. Kishony, N. Q. Balaban, and S. Leibler. Bacterial persistence: a

model of survival in changing environments. Genetics, 169(4):1807–1814, 2005.

[34] T. Cagatay, M. Turcotte, M. B. Elowitz, J. Garcia-Ojalvo, and G. M. Süel.
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