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Summary 

Genetically modified plants for the use of transgene containment are a central 

concern. Nuclear gene flow is one of the most discussed topics in our days; therefore, 

plastid genetic engineering is a promising tool to reduce the risk of transgene flow, 

because in most angiosperm species plastids are inherited maternally. In addition, plastid 

transformation has the advantage that the site of gene insertion can be controlled, high 

rates of transgene expression and protein accumulation can be achieved and epigenetic 

effects are absent. In Arabidopsis pollen, plastids are inherited also maternally and not 

created de novo, but arise from pre-existing plastids by fission.  

The aim of this study was to assess the frequency of plastid transfer from atrazin-

resistant ElyF3BC4 Arabidopsis thaliana plants bearing a point mutation in the plastid 

psbA gene to male sterile N75 plants by spontaneous crossing under field conditions. Also 

the plastid transfer from atrazin-resistant, EMS-mutagenized M2ElyF3BC4 plants to wild-

type A. thaliana plants by manual crossings under green house conditions was estimated. 

It was found that plastid-encoded atrazin resistance could not be transmitted via pollen, 

neither by manual pollination among 65,000 hybrid seeds nor by spontaneous pollination 

among 2,444,465 hybrid seeds in A. thaliana.  Although various random nuclear mutations 

were screened for their potential to allow the transfer of paternal plastids into the egg-cells 

of the recipient plant, a corresponding mutant line could not be isolated. Explanation for 

this could be duplication or redundancy of nuclear genes mediating maternal inheritance 

and suppressing paternal leakage in Arabidopsis in such a way that the defect in one 

gene is compensated for by the function of its homologue. Therefore, a double mutant of 

two genes, atg4a and atg4b, which are involved in autophagy, were studied to test this 

hypothesis. However, the frequency of paternal plastid transfer was not increased. Taken 

together, in this study paternal leakage of Arabidopsis plastids could not be induced by 

mutations. 

To be able to follow plastid fate in developing pollen tubes, the colorless plastids in 

Arabidopsis pollen were visualized by the expression of a GFP fusion protein under the 

control of a pollen specific promoter. However, the affiliation of the GFP labeled plastids to 

either the vegetative or the generative cells was not clear. Placing particular emphasis on 

plastid behavior during specification of sperm cells in pollen of Arabidopsis might shed 

some light on this very strict process of maternal inheritance in the future work. 
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                                                                                                               Zusammenfassung 

Zusammenfassung 
 

Die biologische Sicherheit von transgenen Organismen ist ein zentrales Anliegen beim 

Arbeiten mit genetisch modifizierten Pflanzen. Nuklearer Genfluss ist eines der am 

meisten diskutierten Themen der heutigen Zeit; daher ist die genetische Manipulation 

des Plastidengenoms ein vielversprechendes Werkzeug, um die Gefahr der 

Ausbreitung transgener Pflanzen zu reduzieren, da bei den meisten Angiospermen die 

Vererbung der Plastiden auf maternalem Wege erfolgt. Darüber hinaus hat die 

Transformation von Plastiden den Vorteil, dass die Geninsertionstelle kontrolliert und 

ein hoher Grad an transgener Expression und Proteinakkumulation erreicht werden 

kann und keine epigenetischen Effekte vorhanden sind. Auch im Pollen von 

Arabidopsis werden Plastiden maternal vererbt. Sie werden nicht de novo synthetisiert, 

sondern entstehen durch die Teilung bereits existierender Plastiden. 

 

Das Ziel dieser Arbeit war es, die Häufigkeit der Plastidenvererbung von 

atrazinresistenten Pflanzen der Arabidopsis thaliana Linie ElyF3BC4, die eine 

Punktmutation im plastidären Gen psbA trägt, zur männlich sterilen Pflanzenlinie N75 

bei spontanen Kreuzungen unter Feldbedinungen zu bestimmen. Des Weiteren wurde 

der Plastidentransfer von atrazinresistenten, EMS mutagenisierten A.Thaliana Pflanze 

der Linie M2ElyF3BC4 zu Wildtyppflanzen durch manuelles Kreuzen im Gewächshaus 

untersucht. Weder in den durch manuelles Bestäuben entstandenen 65.000 Samen 

noch in den 2.4444.465 Samen aus den Feldversuchen konnte eine Übertragung der 

plastidencodierten Atrazinresistenz über den Pollen festgestellt werden. Obwohl eine 

große Anzahl von Pflanzen mit zufälligen Mutationen im Kern auf ihr Potenzial, 

paternale Plastiden in die Eizelle der bestäubten Pflanze übertragen zu können, 

überprüft wurden, konnte keine Linie mit entsprechender Mutation isoliert werden. 

Gründe hierfür könnten Duplikationen oder Redundanzen  kernkodierter Gene sein, die 

für die maternale Vererbung und die Unterdrückung der paternalen Vererbung in 

Arabidopsis verantwortlich sind. Ein möglicher Defekt könnte durch das entsprechende 

Homolog kompensiert werden. Um diese Hypothese zu testen, wurde eine 

Doppelmutante der Gene ATG4A und ATG4B untersucht, die eine entscheidende 

Rolle in der Autophagozytose spielen. Auch in dieses Doppelmutante war die 

Häufigkeit des paternalen Plastidentransfers nicht erhöht. Zusammenfassend lässt 

sich sagen, dass in dieser Arbeit paternale Vererbung von Plastiden in Arabidopsis 

durch Mutagenese nicht induziert oder verstärkt werden konnte. 
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III 
 

Um das Schicksal von Plastiden während der Pollenschlauchentwicklung 

verfolgen zu können, wurden die farblosen Plastiden im Pollen von Arabidopsis durch 

die Expression eines GFP-Fusionsproteins unter der Kontrolle eines 

pollenspezifischen Promotors sichbar gemacht. Unklar blieb jedoch die Zugehörigkeit 

der GFP-markierten Plastiden entweder zu den vegetativen oder generativen Zellen. 

Legt man zukünftig einen besonderen Schwerpunkt auf die Reifung und 

Differenzierung der Spermazellen im Pollen von Arabidopsis, so könnten wichtige 

Einblicke in diesen sehr strikten Prozess der maternalen Vererbung gewonnen 

werden. 



                                                                                                                                                                    Index 

Index 

Summary...........................................................................................................................I 

Zusammenfassung………………...............................………………………………..........II 

INDEX..............................................................................................................................IV 

ABBREVIATIONS...........................................................................................................VII 

1. INTRODUCTION……………………………………………..……………………………….1 

1.1 Arabidopsis as a Model Plant………………………………………………...…...1 

1.2 Pollen Plastids………………………………………………………..………….....1 

1.3 Origin of Plastid Inheritance……………………………………...………….........3 

1.4 Modes of Plastid Inheritance………………………………………..………….....5 

1.4.1 Biparental Inheritance………………………………………………......6 

1.4.2 Maternal Inheritance………………………………………………….....6 

1.4.3 Paternal Inheritance type and Paternal Leakage…………………….8 

1.5 Screening and Visualization of Plastids in Pollen…………………………..….10 

1.6 Autophagy and Plastid Inheritance………………………………………….......12 

1.7 Aim of the Thesis…………………………………………………………...……..14 

2. MATERIALS AND METHODS……………………………………………………...……..15 

2.1 Plant Materials…………………………………………………………..………...15 

2.2 Seeds Sterilization…………………………………………………...……………16 

2.3 Growth Conditions in Soil……………………………………..………………….16 

2.4 Growth Conditions on ms-plates……………………………...…………………16 

2.5 Spontaneous Out-crossing in Field……………………………...………………17 

2.6 Manual Crosses in Greenhouse…………………………………...…………….21 

2.7 Molecular Analysis…………………………………………...…………………...21 

2.7.1 DNA Extraction…………………………………………………………21 

2.7.2 PCR –RFLP Analysis of Plastid DNA………………………………..22 

IV 
 



                                                                                                                                                                    Index 

2.7.3 MS1 Sequencing……………………………………………………….23 

2.7.4 PCR Analysis of atg4aatg4b double mutant………………………...23 

2.7.5 Agarose Gel Electrophoresis ………………………………………24 

2.7.6 Enzymatic Manipulation……………………………………………….24 

2.7.7 DNA Constructs………………………………………………………...24 

2.7.8 Transformation of E.coli……………………………………………….26 

2.7.9 Plasmid Preparation……………………………………………………26 

2.7.10 Transformation of Agrobacterium…………………………………...26 

2.7.11 Agrobacterium-mediated transformation of A. thaliana…………..26 

2.8 Pollen Germination In vitro ………………………………………………….…...27 

2.9 Microscopy……………………………………………………………...…………27 

3. RESULTS…………………………………………………………………………………….29 

3.1 Optimization of Atrazin Concentration...……………………..……………….. 29 

3.2 Screening of Paternal Plastids in Arabidopsis Hybrids generated by    

      Spontaneous Out-crossing under Field Conditions…………………......…….31 

3.2.1 Arabidopsis Field Trials 2008 ………………………………………32 

3.2.1.1 Harvesting of Arabidopsis Seeds in Field  

             Trials 2008………………………….……………………….33 

3.2.1.2 Molecular analysis for psbA gene………………….……...35 

3.2.1.3 Molecular Analysis of Nuclear genes using  

             Nuclear Markers………………………………………..…...36 

3.2.1.4 Molecular analysis for MS1 gene 2008…………………...36 

3.2.1.5 Out-crossing Rate under Field Conditions………………..37 

3.2.2 Arabidopsis Field Trials 2009 ………………………………...........40 

3.2.2.1 Harvesting of Arabidopsis Seeds in the Field  

            Trial 2009…………………………………………………….40 

V 
 



                                                                                                                                                                    Index 

VI 
 

3.2.2.2 Molecular analysis for psbA gene………………………....41 

3.2.2.3 Molecular analysis for MS1 gene……………………….…42 

3.3 Screening of Paternal Plastids in Arabidopsis Hybrids generated by 

      Manual Crossing…………………...………………………………..……......…..43 

3.3.1 Molecular Analysis of psbA gene……………………………………..44 

3.4 Genetic Analysis of Plastid Inheritance through Autophagy  

       ATG4s Genes …………………………………………………..………………. 45 

3.5 Visualization of Pollen Plastids via GFP-Fusion………………………...……. 45 

4. DISCUSSION………………………...…………………………………………………….. 49 

4.1 Chloroplast Genetic Engineering………………………...……. …………….....51 

4.2 Nuclear Gene Flow from Gene-modified Plants to Non-gene  

      Modified Plants …………………………………………………….…..…………53 

4.3 Plastid Gene Flow from Gene-modified Plants to Non-gene  

       Modified Plants………………………..………………………………………….54 

4.4 Maternal Inheritance as Transgene Confinement Tool ………………….….54 

4.5 Mechanism of Plastid inheritance ……………………………………………....55 

4.6 Outlook …………………………………………………………….……………57 

 5. REFERENCES……………………………………………………………………..……….58 

ACKNOWLEDGEMENTS……...………………………………………………………........ 67 

CURRICULUM VITAE……………………………...………………………………….……...68 

EHRENWÖRTLICHE VERSICHERUNG........................................................................70 



                                                                                                                                                    Abbreviations 

Abbreviations 

 

A. thaliana                       Arabidopsis thaliana 

AGI                                  Arabidopsis Genome Initiative 

ATG                                 Autophagy genes 

bp                                    Base pair 

C. reinhardtii                    Chlamydomonas reinhardtii 

DNA                                 Deoxyribonucleic acid 

dsRED                             Red fluorescence protein from a Discosoma coral 

DAPI                                4'-6-diamidino-2-phenylindole 

GMO                                Genetically Modified Organism 

GC                                   Generative Cell 

PCR                                 Polymerase chain reaction 

PMI                                  Polen Mitosis I 

PMII                                 Polen Mitosis II 

ptDNA                             Plastid DNA 

PEG                                 Polyethylenglycol 

PFD                                 Photon flux density 

PS II                                Photosystem II 

PBPI                                Potential biparental plastid inheritance 

RFP                                 Red fluorescent protein 

RNA                                 Ribonucleic acid 

RFLP                               Restriction fragment length polymorphisms 

TAIR                                The Arabidopsis Information Resource 

T-DNA                             Transfer-DNA 

VC                                   Vegetative Cell 

VII 
 



                                                                                                                                                    Abbreviations 

VIII 
 

WT                                Wild type 

 

Units 

°C                                  Degree Celcius 

cm                                 Centimetre 

g                                    Gram 

h                                    Hour 

l                                     Litre 

μ                                    Micro 

M                                    Molar 

mA                                 Milliampere 

min                                 Minutes 

ml                                   Millilitre 

mM                                 Millimolar 

mol                                 Molar 

nm                                  Nanometre 

rpm                                 Rounds per minute 

s                                      Second 

V                                     Volt 

v                                     Volume 

w                                     Weight 



                                                                                                                                                       Introduction 

1. Introduction 

1.1 Arabidopsis as a Model Plant 

Arabidopsis thaliana is the first higher plant whose complete genome has been 

sequenced (AGI, 2000; Clauss and Koch, 2006). The genome size of Arabidopsis 

thaliana is 120 megabases and the genome is organized into five chromosomes and 

contains about 24,000 genes. Arabidopsis thaliana is a small simple angiosperm plant in 

the mustard family (Cruciferae or Brassicaceae) that has become the model system of 

choice for research in plant biology.  Arabidopsis thaliana distribute throughout Europe, 

Asia, and North America. The Columbia and Landsberg ecotypes (accessions) are the 

standards for genetic and molecular studies. The entire life cycle, including seed 

germination, formation of a rosette plant, bolting of the main stem, flowering, and 

maturation of the first seeds, is completed in 6 weeks. Flowers are composed of an outer 

whorl of four green sepals and inner whorls containing four white petals, six stamens 

bearing pollen, and a central gynoecium that forms the silique (Meinke et al., 1998).  

 

1.2 Pollen Plastids 

Arabidopsis thaliana pollen grains contain approximately 43 ± 15 plastids which 

are not visible under normal light microscope (unpigmented) because of the absence of 

chlorophyll. Plastids in Arabidopsis pollen are present in a variety of shapes while their 

size does not show large variations. The area of a single plastid was 1.90 ± 0.54 μm2  

(Tang et al. 2009). Proplastids are undifferentiated plastids in stem cells and are capable 

of giving rise to different plastid types and perform various cellular activities. 

Chloroplasts for photosynthesis are one plastid type in which thylakoid membranes are 
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organized. Other plastid types include, for example, amyloplasts for starch storage in 

roots, and chromoplasts for carotenoid in fruits (Sakamoto et al., 2008). Plastids are not 

created de novo, but arise from pre-existing plastids by fission (Aldridge et al., 2005). 

Very little is known about the division of plastids in reproductive organs including pollen 

grains.  

Plastid genome (plastome) is present at high copy numbers (up to thousands) 

per single cell in land plants (Bendich, 1987).These multiple copies  are packed together 

in large nucleoprotein bodies called nucleoids (Kuroiwa,1991). In spite of the small 

genome size of plastome which is typically in the range of 120 to 160 kb, in tobacco 

leaves 9% of the total DNA is chloroplast DNA (Tewari and Wildman, 1966). Very little is 

known about how plastid DNA (ptDNA) is distributed into daughter plastids upon plastid 

division. Plastid DNAs in higher plants do not normally undergo sexual recombination, 

even when they are inherited biparentally. This means that chloroplast fusion and 

genetic recombination does not occur in higher plants (Baldev et al., 1998).  

 

Transgene containment is a central concern in genetically modified (GM) crops, 

especially for those which outcross to wild relatives. However, plant cells contain 

genomes in the nucleus, mitochondria, and chloroplasts. Whereas nuclear genes are 

biparentally inherited, organelle genes are in general maternally inherited (Hagemann, 

2004). Therefore, engineering foreign genes in the chloroplast genome may provide 

containment from pollen transmission. 

 

In angiosperms, meiosis in the anthers yields four haploid unicellular 

microspores. Subsequently, pollen mitosis I (PMI) yields a larger vegetative cell and a 

smaller generative cell (GC). The GC undergoes pollen mitosis II (PM II), a symmetric 

2 
 



                                                                                                                                                       Introduction 

division that yields two sperm cells. When the male gametophyte (pollen grain) meets 

the papillae of a receptive stigma, a complex series of cell-cell signaling events will drive 

pollen tube growth toward the embryo sac (female gametophyte). Upon arrival, the 

pollen tube tip bursts, discharging the two sperm cells. To achieve double fertilization, 

each sperm cell fuses with an egg or a central cell to yield the zygote and primary 

endosperm cell, respectively (Boavida et al., 2005b). 

 

In Arabidopsis thaliana, PM II occurs before pollen separation (anthesis), so a 

tricellular mature pollen grain consists of one vegetative and two sperm cells which are 

later released from the anthers (Boavida et al., 2005a). The vegetative cell, which makes 

up the bulk of a mature pollen grain, contains plastids that accumulate starch (Van Aelst 

et al., 1993). At the initial stage of pollen formation from microspores, plastids are poorly 

differentiated, with an indistinguishable inner/outer membrane, in contrast to the double 

membrane structure of proplastids in the meristem (Robertson et al., 1995; Kuang and 

Musgrave, 1996). Plastid differentiation and division occur alongside pollen maturation. 

In mature pollen, the final plastid structure contains a double membrane structure with 

several starch grains and simple thylakoid structures (Kuang and Musgrave, 1996). 

Pollen grains exist in a homogenous developmental stage in anthers, whereas the shoot 

meristem contains cell layers where the cells contain plastids with various morphologies 

and nucleoid structures (Mascarenhas, 1989 ; Fujie et al., 1994 ). 

 

1.3 Origin of Plastid Inheritance 

 

Only 10 years after the establishment of the Mendelian laws of inheritance and 

before the discovery of hereditary factors of the plastids (plastid DNA), termed plastome, 

Baur and Correns in 1909 simultaneously discovered and described the occurrence of 
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non-Mendelian inheritance of leaf variegation in Pelargonium zonale and Mirabilis jalapa 

plants. Although the credit for the initial observations should be shared between Baur and 

Correns, their subsequent theoretical interpretations distinguish their contributions to the 

field.  

Reciprocal crosses between green and variegated plants of Pelargonium zonale  

produced F1 progeny showing various proportions of individuals with green, white and 

variegated leaves (Baur, 1909). The green and the white shoots of variegated plants 

differ in the genetic constitution of their plastids. One plastid type is green (normal, 

nonmutated, capable of becoming green during ontogenetic development); the other type 

is white (mutated, incapable of becoming green). The leaf colors of both parents were 

transmitted to the progeny with a bias toward the phenotype of the maternal parent. 

Although the ratio of transmission was essentially unequal, this phenomenon is termed 

biparental inheritance.  

The second example was represented by reciprocal crosses between green and 

variegated plants of Mirabilis jalapa (Correns, 1909). In this case, however, leaf color of 

the progeny always followed that of the female parent, indicating that the trait was 

inherited only from the maternal parent (maternal inheritance). Correns assumed the 

existence of two types of cytoplasms, a healthy cytoplasm and an ill one. When 

(indifferent) plastids are introduced into a healthy cytoplasm, they develop into normally 

green chloroplasts; however, when they are introduced into an ill cytoplasm, then they 

remain (or become) white or yellow. Thus, the cell nuclei of the whole plant would be 

uniform and healthy. While the labile state of the cytoplasm switches the plant either to 

healthy state or to ill state. 

Therefore, Baur alone deserves credit for the theory of plastid inheritance. Also 

Otto Renner supported Baur’s theory and reported in 1930s many observations, which 

established plastid inheritance as a widely accepted genetic theory (Hagemann, 2000).  

4 
 



                                                                                                                                                       Introduction 

 

1.4 Modes of Plastid Inheritance  

 

Non-Mendelian inheritance in animals usually is maternal, in contrast to the 

inheritance found in plants, which exhibits diversity. Plastids and their DNA can be 

inherited maternally, paternally or biparentally (Mogensen, 1996; Birky, 1995; 

Hagemann, 2004). In most species plastids are transmitted to the seed progeny by the 

maternal parent only. In the remaining species biparental inheritance appears to be the 

rule, although rare cases of paternal organelle inheritance are also known (Azhagiri and 

Maliga, 2007). In angiosperms,  about 20%  of species exhibit a strong tendancy for 

plastid transmission from both parent  lineages (Biparental) and the remaining 80% 

display maternal inheritance (Zhang and Sodmergen 2010). Only a single angiosperm 

species, the kiwi plant (Actinidia deliciosa), has been found to inherit its plastids 

paternally (Testolin and Cipriani, 1997).  

 

On the contrary, in gymnosperms paternal inheritance (or biparental inheritance 

with a strong predominance of paternal transmission) seems to be widespread (Szmidt 

et al., 1987; Neale et al., 1989; Mogensen, 1996), whereas Ephedra, Ginkgo, and the 

cycades most probably exhibit maternal inheritance of plastids (Mogensen, 1996). The 

sporophytic plant Pellia, a representative of the earliest land plants (Pacak and 

Szweykowska-Kulinska, 2003), a bryophyte (Natcheva and Cronberg, 2007) and two 

pteridophytes (Gastony and Yatskievych, 1992; Guillon and Raquin, 2000), all exhibit 

uniparental (maternal) plastid inheritance. In Chlamydomonas reinhardii, uniparental 

maternal inheritance is observed for the plastid genome (Kuroiwa et al., 1982; Nishimura 

et al., 1999).  
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At least in higher plants, plastid genomes do not normally undergo sexual 

recombination, even when they are inherited biparentally. This means that, except in 

very rare cases which may be considered accidents, chloroplast fusion and genetic 

recombination do not occur except in green alga Chlamydomonas reinhardtii (Medgyesy 

et al., 1985; Baldev et al., 1998).  

 

1.4.1 Biparental Inheritance 

Biparental inheritance does not exhibit an equal proportion of received plastids 

from the two parents. For instance, in Medicago, the paternal contribution is much 

greater and in Pelargonium, sperm and egg seem to make about equal plastid 

contributions to the zygote, whereas paternal plastids are even predominantly inherited 

in alfalfa (Hagemann, 2004). Biparental plastid inheritance correlates with (i) the 

distribution of microspore plastids between vegetative cell and generative cell during the 

first pollen mitosis, (ii) the regular presence of viable plastids in sperm cells and (iii) their 

entry into the zygote. 

 

1.4.2 Maternal Inheritance 

Maternal inheritance does not mean that plastid transmission from the male 

parent never occurs. The vast majority of angiosperms and at least some gymnosperms, 

bryophytes, ptridophytes and algae display a maternal mode of plastid inheritance. 

Electron microscopic investigations of plastid fate during male gametophyte 

6 
 



                                                                                                                                                       Introduction 

development distinguished four different subtypes of maternal inheritance according to 

the mechanism of paternal plastid elimination.  The Lycopersicon type, Solanum type, 

Triticum type and Chlamydomonas type of maternal inheritance are named after the first 

species discovered to realize the respective cytological mechanism (Hagemann, 2004). 

In Chlamydomonas reinhardtii, chloroplast DNA is transmitted maternally. During 

syngamy the maternal chloroplast fuses with the paternal chloroplast. Following 

syngamy, a zygotic maturation program leads to selective destruction of chloroplast DNA 

from the mt– mating type (male) parent, while the mt+ (female) chloroplast genomes 

survive (Nishimura et al., 1999). Degradation of the paternal chloroplast genomes by a 

specific endonuclease (Nishimura et al., 2002) is largely completed before fusion of the 

two parental chloroplasts occurs, thus resulting in uniparental inheritance of the maternal 

plastid DNA. Chloroplast DNA in mt+ (female) Chlamydomonas gametes is methylated 

by a DNA methyltransferase converting cytosine to 5- methylcytosine (Nishiyama et al., 

2002, 2004). In contrast, plastid DNA in higher plants is nowadays believed to be 

unmethylated at least in somatic tissues (Marano and Carrillo, 1991; Fojtová et al., 

2001), although some early reports had suggested that cytosine methylation can occur 

also in higher plant plastomes (Ngernprasirtsiri et al., 1988a, 1988b).  

In the Triticum type, during fertilization of the egg cell by one of the two sperm 

cells, the plastids are stripped off together with most of the cytoplasm and do not enter 

the zygote along with the sperm cell’s nucleus (Hagemann, 2004). In pea and at least 

some monocotyledonous species, both the generative cell and the sperm cells regularly 

contain plastids. These species do not transmit paternal plastids into the zygote due to 

degeneration of the cytoplasm surrounding the sperm cell nucleus (including plastids 

and mitochondria) shortly before the fertilization process. 
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In the Solanum type of maternal inheritance, plastids in the generative cells are 

selectively destructed whereas plastids in the vegetative cell remain intact during male 

gametophyte development in a number of angiosperm species. Consequently, the two 

sperm cells are free of plastids utilizing the plastid exclusion mechanism of the 

Lycopersicon type or utilizing the plastid degradation mechanism of the Solanum type. 

The Lycopersicon type of maternal plastid inheritance involves plastid exclusion 

during the first pollen mitosis. The extremely asymmetric division of the microspore 

results in a vegetative cell that contains all plastids and a generative cell that is free of 

plastids. Consequently, both sperm cells lack plastids. It is generally assumed that 

plastid inheritance in the majority of angiosperm species follows the exclusion 

mechanism of the Lycopersicon type. Arabidopsis belongs to the Lycopersicon type 

(Hagemann, 2004). 

 

1.4.3 Paternal Inheritance type and Paternal Leakage 

Electron microscopic investigations confirmed the absence of plastids from egg 

cells and the presence of them in sperm cells in gymnosperm species displaying 

paternal plastid inheritance. Two distinct mechanisms can contribute to paternal 

inheritance: plastid exclusion by unequal organelle distribution during female 

gametophyte development and/or plastid degradation in the egg cell (Mogensen, 1996; 

Hagemann, 2004). 

Distinction between purely paternal inheritance and biparental inheritance has 

been difficult, because most studies on plastid inheritance in gymnosperms suffer from 

statistically reliable datasets. This is due to the lack of suitable phenotypic markers, 
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which limit the number of progeny seedlings that can be analyzed and makes it difficult 

to exclude maternal plastid transmission below a certain level (Hagemann, 2004). It 

seems reasonable to suspect that the rate of paternal leakage can be very different in 

species representing the different subtypes of maternal inheritance, but this remains to 

be established experimentally. 

In higher plants, confirmation of uniparental–maternal inheritance of plastids in 

reciprocal crosses was usually obtained by the study of a small number of plants up to 

about 100. However, when progeny size was significantly increased to include 1000–

2000000 plants, rare exceptions to maternal inheritance could be obtained. The 

examples include Antirrhinum majus (Diers, 1967), Petunia hybrida (Cornu and Dulieu, 

1988; Derepas and Dulieu, 1992), Nicotiana tabacum (Avni and Edelman, 1991; Horlow 

et al., 1990; Ruf et al., 2007; Svab and Maliga, 2007), and Setaria italic (Wang et al., 

2004). In addition, more extensive studies led to the realization that significant variability 

exists within a species with respect to the frequency of paternal plastid transmission. In 

Chlorophytum comosum, a species known to display biparental inheritance, paternal 

plastids are inherited at a rate of 2–8% (Pandey and Blaydes, 1957). In Petunia hybrida 

frequent (0.1–2%) transmission of paternal plastids could be readily detected in six out 

of 22 inbred lines (Cornu and Dulieu, 1988; Derepas and Dulieu, 1992). 

Reliable quantitative data came only from two genetic studys in Setaria italica 

and Arabidopsis thaliana. In foxtail millet, Setaria italica, crosses between male-sterile 

yellow- or green-leafed herbicide susceptible lines (as maternal parent) and a line with 

chloroplast-inherited atrazine resistance as pollen donor were employed (Wang et al., 

2004). Assaying more than 780,000 hybrid offspring for atrazine resistance as it would 

be caused by paternally transmitted plastid genomes, paternal leakage was detected at 

a frequency of 3x10-4. In Arabidopsis thaliana, crosses between the male sterile 
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spectinomycin susceptible line Ler-ms1-1 as maternal parent and chloroplast inherited 

spectinomycin resistant fertile mutant RLD-spec1 as pollen donor were performed 

(Azhagiri and Maliga, 2007). Only three spectinomycin-resistant calli were identified 

among 76 825 calli (3.9 x 10-5) selected on spectinomycin-containing ARMI callus 

induction medium. This observation extends previous reports to a cruciferous species 

suggesting that low-frequency paternal leakage of plastids via pollen may be universal in 

plants previously thought to exhibit strict maternal plastid inheritance.  

 

1.5 Screening and Visualizaion of Plastids in Pollen 

The study of organelle inheritance began with the use of phenotypic markers in 

genetic study and has recently been extended by molecular and cytological approaches. 

Because the disadvantages of one technique can often be overcome by the use of 

another, recent studies often combine several approaches. The markers employed in 

plastid inheritance studies were leaf pigment mutations,  that were readily apparent as 

variegated sectors (Cornu and Dulieu, 1988; Diers, 1967). Other plastome mutations 

including resistance to antibiotics selectable in culture (Avni and Edelman, 1991; Horlow 

et al., 1990; Medgyesy et al., 1986; Ruf et al., 2007; Svab and Maliga, 2007; Azhagiri 

and Maliga, 2007), herbicide resistance mutations that could be tested in the field (Wang 

et al., 2004) have been utilized as markers for studying plastid inheritance.  

The laborious and time-consuming genetic analyses required to find out the 

mechanism of plastid inheritance or to establish low level paternal leakage make it 

desirable to develop faster assays suitable to assess a species’ potential to occasionally 

transmit paternal plastids via pollen. Rapid screening method employs electron 
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microscopy and the use of DAPI 4'-6-diamidino-2-phenylindole. DAPI stains intensely 

plastid nucleoids which then can be readily detected by fluorescence microscopy. 

Absence of stainable plastid DNA from generative and sperm cells was taken as 

evidence for strictly maternal inheritance, whereas species with detectable ptDNA in 

generative and/or sperm cells were classified as potential biparental plastid inheritance 

(Nagata et al. 1999). 

The presence of plastid DNA in male gametic cells is a prerequisite for paternal 

transmission. This phenomenon is called potential biparental plastid inheritance (PBPI). 

Experimentally, all species exhibiting biparental plastid inheritance in genetic analyses 

show PBPI (Kuroiwa, 1991). Conversely, however, in very few cases, plants with PBPI 

may not be identified genetically as showing biparental plastid inheritance. This might be 

because PBPI is sometimes weak (Zhang and Sodmergen 2010) and paternal 

transmission cannot be easily traced when a very small proportion of male plastid DNA 

is contributed. Therefore, PBPI is a cellular indicator, and is possibly a more sensitive 

and accurate than genetic analysis for biparental plastid inheritance. Also, GFP-labeled 

plastids in Arabidopsis pollen are an effective method to directly detect plastids (Tang et 

al., 2009). 

Recently, molecular techniques have allowed restriction fragment length 

polymorphisms (RFLPs) to be used as specific markers for organelle DNA. This 

technique is based on the digestion of organelle DNA with restriction endonucleases, 

which reveals genotype-specific patterns when cleavage products are separated 

electrophoretically. Typically, total cellular DNA is extracted, and then organelle DNA is 

identified with isolation of specific gene for organelle using PCR (polymerase chain 

reaction) amplification of organelle DNA technique, followed by RFLP analysis of the 

amplification products permits an increased detection rate of parental organelle DNA. 
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Once distinct organelle DNA genotypes are recognized by mapping the restriction 

fragment patterns, they can be utilized to identify the parental origin of the organelle 

DNA in hybrid plants by comparing the patterns of each parent with those of the 

progeny. This approach has been used in studies of plastid DNA inheritance and 

evolution in Iris. Plastid transmission is very likely controlled by nuclear genes, but to 

date, not a single gene involved in plastid inheritance has been identified in higher plants 

(Azhagiri and Maliga, 2007). 

 

1.6 Autophagy and Plastid Inheritance 

Autophagy is generally defined as a lysosome-dependent mechanism of 

intracellular degradation that is used for the protein turnover of cytoplasm. Several forms 

of autophagy have been described, including macroautophagy and microautophagy (Xie 

and Klionsky, 2007). Both microautophagy and macroautophagy are functional in plants 

(Bassham et al., 2006). In plant microautophagy, the target material is directly engulfed 

by an invagination of the tonoplast.  

Macroautophagy (hereafter “autophagy”) in plants is a process that starts with 

the formation of cup-shaped membranes in the cytoplasm. After completion, 

autophagosomes have at least two destinations in plants. They may fuse with the 

tonoplast and be directly delivered to the lumen of the vacuole as seen in Arabidopsis. 

Alternatively, autophagosomes may first transform into lysosome-like acidic and lytic 

structures and, fusion with the central vacuole may occur as a secondary event 

(Toyooka et al., 2006; Inoue et al., 2006).  
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Macroautophagy occurs at basal levels in growing cells, allowing them to recycle 

long-lived proteins and organelles (Klionsky, 2005). The cargo is degraded into its 

building blocks (i.e., proteins to amino acids), helping the cell to economize its 

resources, eliminate old/damaged organelles, and survive nutrient and other types of 

stress (Mitou et al., 2009). 

In the model plant Arabidopsis thaliana, 25 orthologs of 12 yeast ATG genes 

were identified (Mitou et al., 2009). Some exist as a single copy (i.e., Atg3 and Atg5) and 

others as multiple copies (i.e., Atg1 and Atg8). Functional domains of these Arabidopsis 

proteins were well conserved during evolution, indicating preservation of basic 

autophagy mechanisms in plants. Indeed, complementation tests in ATG mutant yeast 

strains using some of the plant Atg proteins confirmed the preservation of their function 

(Ketelaar et al., 2004).  

The pollen of Arabidopsis is of the tri-cellular type, which means the generative 

cell divides again to form two sperm cells before pollen germination. In microspores 

during the formation of intine (inner cell wall), a large vacuole appeared which was made 

by fusion of pre-existing vacuoles and probably absorption of solutions. In the young 

pollen grain after the first mitosis, a large vacuole was divided into small vacuoles. After 

the second mitotic division, vacuoles with the similar appearance to those in the previous 

stage were no longer observed. The autolysis of mature pollen grains may contribute to 

the self pollination in Arabidopsis thaliana (Yamamoto et al., 2003). 
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1.7 Aim of the Thesis 

This study has three aims:  

 

1. To estimate the frequency of paternal leakage of plastids via pollen under field   

conditions in Arabidopsis thaliana.  

2. To search for mutant plants in Arabidopsis thaliana which show enhanced ability 

for plastid transmission via pollen. Therefore a genetic screening approach was 

established. 

3. To test if autophagy is involved in maternal inheritance of plastids in Arabidopsis 

thaliana.  
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2 Materials and Methods 

2.1 Plant Materials   

Ely accession was purchased from the Arabidopsis stock centre NASC (HTTP:// 

ARABIDOPSIS.INFO/). These seeds which were collected at the railway station of Ely 

(UK) in 1988 are atrazin-resistant mutant due to a mutation in the plastid psbA gene. 

The mutation is a nucleotide exchange in psbA gene encoding the D1 protein at position 

264 from AGT to GGT codon in the Arabidopsis ptDNA. Ely has Ler nuclear back-

ground. The ElyF3BC4 seeds were kindly provided by Prof. Koornneef (El-Lithy et al., 

2005). F3BC4 plants were obtained by crossing Ely (female parent) x Ler (male parent). 

Resulting F1 plants were crossed again with Ler as the male parents to get the 2nd back 

cross (BC). The same was done for two further generations until 4th BC plants were 

obtained. These plants were selfed two times to get F3 plants of the 4th BC (F3BC4). 

The aim was to obtain plants with Ler nuclear DNA and Ely cytoplasm.  

Mutagenization of ElyF3BC4 seeds via EMS (Ethanmethylsulfonate) 

mutagenesis to produce M1 seeds were purchased in USA at Lehle Seeds Company 

(HTTP://WWW.ARABIDOPSIS.COM/). The M1 seeds were germinated and selfed in the 

same company to produce M2ElyF3BC4 seeds. The M2ElyF3BC4 seeds have 

thousands random mutations showing high mutation frequency estimated by Mednik´s P 

value (P= 98/100). 

Purchased N75 seeds from NASC are nuclear male sterile mutant seeds  (ms1), 

which are characterized by the lack of viable pollen due to transition from G882 to A882 at 

exon2–intron2 junction in the MS1 gene that leads to a mis-spliced transcript (Wilson et 

al., 2001).  
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The double mutant atg4aatg4b is autophagy-deficient mutant, due to T-DNA 

insertion in ATG4a (at2g44140) and ATG4b (at3g59950). Seeds were kindly provided by 

Prof. Ohsumi (Yoshimoto et al., 2004).  

 

2.2 Seeds Sterilization 

Arabidopsis seeds were purified from non-seed particles by sieving. Surface 

sterilization of seeds was performed by gas sterilization under hood (5% Conc.HCl in 

Sodiumhypochloride 37%). The sterilization period depends on the quantity of seeds, but 

generally, it took from three hours in case of few seeds and five hors in case of abundant 

seeds.  

 

2.3 Growth Conditions in Soil  

All Arabidopsis seeds were sown in pots with standard soil, followed by cold 

treatment (vernalization) for 2 d at 4 °C in dark to break dormancy and to synchronize 

germination. Then pots were moved to a temperature controlled greenhouse controlled, 

70-90 μE m-2 s-1 illuminations with a day-night cycle of 16 h/ 8 h for 2 weeks. Then plants 

were replanted in 54 wells tray with standard soil. Fertilization with “Osmocote Plus” 

(Scotts Deutschland GmbH, Nordon Germany) was performed according to 

manufacturer’s instructions. Then plants grown another 4-6 weeks in the same 

conditions till flowering, and seeds were harvested. 

 

2.4 Growth Conditions on ms-plates 

Gas-sterilized seeds were spread on a solid Murashige and Skoog (MS) medium 

under aseptic conditions. MS-medium contained salts, vitamins, 1% sucrose, 0.8% agar. 

Vernalization of sterilized seeds was at 4 °C for 2 days in dark to break dormancy and to 
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synchronize germination was performed. Afterwards seeds were grown on plates in 

growth chamber under 80 μEm-2s-1 illuminations with a day-night cycle of 16 h: 8 h. 

Screening of plants on 1x MS medium containing 10 µM atrazin was done, and 

resistance to atrazin was manifested as green seedlings. 

 

2.5 Spontaneous Out-crossing in Field 

The first field experiment was in 2008 and the second field experiment was in 

2009. The setup of the two field experiments was arranged in 3 different field areas: (46, 

2 m²; 15, 4 m²; 24, 6 m²) at Rostock University by the frame of Prof. Broer (Figure 1). 

Spontaneous out-crossings among different Arabidopsis accessions N75, Ely, Ler and 

Col-0 were measured. 

 

 

 

 

Figure 1. Map of Field Areas used in out‐crossing experiments. the location 
of field trials experiment measuring spontaneous paternal plastid inheritance 
in Arabidopsis. The circle enclosing field areas at Rostock University.  

   Trial 1:   6,00 m x 7,70 m = 46,2 m²,   Trial 2:     2,00 m x 7,70 m = 15,4 
m²  Trial 3:   6,00 m x 4,10 m = 24,6 m² 
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Col-0 (Recipient,
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Figure  2.  High  Pollen  Pressure  in  field  out‐crossing  experiment.  In  2008,  ElyF3BC4 
plant was the pollen donor and both N75 and Col‐0 was the pollen recipient. In 2009, 
ElyF3BC4  plant  was  the  pollen  donor  and  N75  was  the  pollen  recipient.  ElyF3BC4 
represented as green circles, N75 as red and Col‐0 as yellow. 

 

High pollen pressure was applied in the first trial of field experiment as illustrated 

in Figure 2. There were 6 parcels separated by 0.50 m and 1.00 m distances and each 

parcel consisted of 7 rows, each row has 60 plants. In the high-pollen-pressure 

experiment, there was only one row of pollen recipient plants in the middle (number 4) of 
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each parcel, surrounded by 6 rows (1, 2, 3, 5, 6 and 7) of pollen donor Ely plants. N75 

was the pollen recipient plant in parcels 1.1, 1.2 and 1.3, whereas Col-0 was the pollen 

recipient plant in parcels 1.4, 1.5 and 1.6. 

Arabidopsis Field Trial 2.

20 Plants/Line)ELy  (Donor plant, atrazin resistent)
N75 (Recipient  plant, male sterile)
Col-0 (Recipient plant, male fertile)

2,00 m

0,50 m 1,00 m 0,50 m 1,00 m 0,50 m

0,70 m0,70 m 0,70 m0,70 m 0,70 m0,70 m

7,70 m

N

Parcel 2.2 Parcel 2.3 Parcel 2.4 Parcel 2.5 Parcel 2.6Parcel 2.1

Reihe 1  2  3  4  5  6  7 1  2  3  4  5  6  7 1  2  3  4  5  6  7 1  2  3  4  5  6  7 1  2  3  4  5  6  71  2  3  4  5  6  7

 

 

 

Figure 3. Low Pollen Pressure  in field out‐crossing experiment. In 2008, ElyF3BC4 
plant was  the pollen donor  and both N75  and Col‐0 was  the pollen  recipient.  In 
2009,  ElyF3BC4  plant  was  the  pollen  donor  and  N75  was  the  pollen  recipient. 
ElyF3BC4 represented as green circles, N75 as red and Col‐0 as yellow. 

 

 

The low pollen pressure was applied in the second trial of field experiment as 

illustrated in Figure 3. There were 6 parcels separated by 0.50 m and 1.00 m distances 
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and each parcel consists of 7 rows, each row 20 plants. The pollen donor plants Ely (in 

rows 1,3,5 and 7) and pollen recipient N75 and Col-0 plants (in rows 2,4 an 6) were 

cultivated in an alternative way or in another words one row pollen donor plants sided by 

one row pollen recipient plant.  N75 was the pollen recipient plant in the first three 

parcels 2.1, 2.2 and 2.3, while Col-0 was the pollen recipient plant in the last three 

parcels 2.4, 2.5 and 2.6. 

 

 

Arabidopsis Field Trial 3.

60 Plants/Line)

6,00 m

N75 (Recipient plant, male sterile)
Ler  (Donor plant, atrazin sensitiv)

N

0,70 m

1,00 m1,00 m

0,70 m0,70 m

4,10 m

Parcel 3.1 Parcel 3.2 Parcel 3.3

Reihe 1  2  3  4  5  6  7 1  2  3  4  5  6  7 1  2  3  4  5  6  7

 
Figure 4. Control  in  field out‐crossing experiment.  In 2008 and 2009, 
Ler plant was the pollen donor N75 was the pollen recipient. N75 as red 
circles and Ler as blue.  
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The control field experiment in the third trial was designed as in Figure 4. It consists of 3 

parcels 3.1, 3.2 and 3.3 separated by 1.00 m distances among them, each parcel 

consists of 7 rows and each row has 60 plants. Ler plants were the pollen donor in rows 

(1, 2, 3, 5, 6 and 7) in all parcels surrounding the single pollen acceptor N75 plants in the 

middle row. 

 

2.6 Manual Crosses in Greenhouse 

It is convenient to do the manual pollination in the early morning, where shedding 

of pollens from anthers starts in the morning in most plants. Also, high humidity is a 

condition for getting successful crosses because high humidity is necessary for pollen 

germination. Anthers in pollen recipient Ler plants were emasculated from closed flowers 

by dissection under dissecting microscope using crossing forceps with narrow tips. First 

hand the inflorescence gently and hold the forceps by the second hand, so that the 

forceps is perpendicular to the pistil. Then, sepals, petals and stamens were removed 

from closed flowers of egg-donor Ler plants by cutting and not by pulling. Forceps tips 

are working like scissor when getting gentle pressure on them. Stigmas in emasculated 

flowers were pollinated manually by pollens from M2ElyF3BC4 flowers. Manual 

pollination happened, when gentle touch between stamens in opened flowers (pollen 

donor plants) and naked stigma in emasculated flower (pollen recipient plants) achieved. 

 

2.7 Molecular Analysis 

2.7.1 DNA Extraction 

Arabidopsis genomic DNA was isolated from plant leaves by homogenization in 

extraction buffer: 200 mM Tris-HCl (pH 8.0), 250 mM EDTA250 mM NaCl, 0.5 % SDS. 

The homogenate was incubated for 15 min at room temperature. After centrifuging for 5 
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min 16000 xg at 23 °C speed, an equal amount of cold isopropanol was added to 

precipitate the DNA by carefully inverting the tube several times. After 5 min, 16000 xg 

speed at 23 °C. The water–alcohol mixture was discarded and the pellet washed with 

70% cold ethanol. The pellet was left to dry and dissolved in water containing RNase A 

and incubated for 30 min at 37 °C. Thereafter it was stored at 4 °C.  

 

2.7.2 PCR –RFLP Analysis of Plastid DNA 

478 bp  plastid DNA sequence from the psbA gene flanking the mutation area at 

codon position 264 , was amplified from total genomic DNA isolated from fresh leaves by 

PCR (Polymerase Chain Reaction) using the primers  D1 forward 5‘-GGA ATC TCT 

GGT ACT TTC AAC TTT-3‘ and D1 reverse 5‘-GTT CAT GCA TAA CTT CCA TAC CAA 

-3‘‘. PCR was carried in a volume   20 µl  PCR reaction mixture containing 2.0 µl DNA, 

1.0 µl D1-Forward primer, 1.0 µl D1-Reverse primer, 2.0 µl 10x PCR-buffer, 2.0 µl 

dNTPs (2 mM), 1.2 µl MgCl2 (25 mM), 0.3 µl Taq-polymerase and 10.5 µl water. 

Amplification was carried out using a Bio-Rad Cycler Thermal Cycler (Bio-Rad,USA) with  

35 cycles of  30 s at 94 °C, 30 s at 55 °C, and 1 m at 72 °C . The PCR product were 

purified using QIAquick PCR Kit (Qiagen Inc., www.qiagen.com) before DNA digest and 

before sequencing. 

RFLP analysis was achieved by cleaving the PCR product of psbA gene by BstXI 

restriction enzymes. The recognition site for BstXI was flanking the mutated codon in the 

amplified sequence of psbA gene. 1x buffer and incubation at 37 °C for 1-2 hours were 

used for optimal reaction conditions. The restriction fragments were separated by 

electrophoresis. 
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2.7.3 MS1 Sequencing 

506 bp  nuclear DNA sequence from MS1 gene flanking the mutation area at 

base position 882 , was amplified from total genomic DNA isolated from fresh leaves by 

PCR using the primers  MS1- Forward 5‘-GAA CCT TGC AGG TTG GGG AAA TC -3‘ 

and MS1- Reverse 5‘-GCA GCA GCC TCA ACT CCA TTC -3‘‘. DNA sequencing of MS1 

gene was performed using the primers that were used for DNA amplification at the 

sequencing service at the LMU München (HTTP://WWW.GENETIK.BIOLOGIE.UNI-

MUENCHEN.DE/SEQUENCING). DNA samples were sequenced with the BigDye 

Terminator v3.1 Cycle Sequencing Kit and purified samples were analyzed on an ABI 

3730 48 capillary sequencer with 50 cm capillary length.  

 

2.7.4 PCR Analysis of atg4aatg4b double mutant 

 In homozygosity check for atg4aatg4b double mutant, 10 PCR reactions 

amplifying ATG4s from genomic DNA of double autophagy mutant atg4a4b were carried 

out using a Bio-Rad Cycler Thermal Cycler (Bio-Rad,USA) with  35 cycles of  30 s at 94 

°C, 30 s at 57 °C, and 2.30 m at 72 °C .  Homozygosity test for ATG4a gene, was 

performed by 5 PCR reactions using a combination of T-DNA specific primers (PGAP-1 

and PGAP-2) and ATG4a specific primers (ATG4a-Forward and ATG4a-

Reverse).Primer sequences were as following : PGAP-1: 5‘- CAT TTT ATA ATA ACG 

CTG CGG ACA TCT AC -3‘‘   , PGAP-2: 5‘-TTT CTC CAT ATT GAC CAT CAT ACT 

CAT TG-3‘‘  ,  ATG4a-Forward : 5‘- ATG AAG GCT TTA TGT GAT AGA TTT GTT C-3‘‘ 

and ATG4a-Reverse 5‘- TCA GAG CAT TTG CCA GTC ATC TTC AC-3‘‘. 

 

Another 5 PCR reactions for ATG4b gene, were done  by using a combination of 

T-DNA specific primers (PGAP-3 and PGAP-4) and ATG4b specific primers (ATG4b-

Forward and ATG4b-Reverse). Primer sequences were as following : PGAP-3: 5‘- TAG 
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ATC CGA AAC TAT CAG TG -3‘‘   , PGAP-4: 5‘-ATA ACG CTG CGG ACA TCT AC-3‘‘  ,  

ATG4b-Forward : 5‘- ACA GAC ATG TTG TAT TTG GTG CTT AAT GA-3‘‘ and ATG4b-

Reverse 5‘- GTC ACA CAA TGA AAA GAA TGG CTA GGA G-3‘‘. PCR products were 

analysed on 1% agarose gel by electrophoresis. 

 

2.7.5 Agarose Gel Electrophoresis 

The restriction fragments were separated by electrophoresis. 1% agarose gel in 

1x TBE-buffer for large DNA fragments and 2% agarose gel in 1x TBE-buffer for small 

DNA fragments. Agarose gels were stained with ethidium bromide and visualized on UV 

light and photographed. 

 

2.7.6 Enzymatic Manipulation  

All enzymatic manipulations (ligation, restriction and dephosphorylation) were 

done according to the included manual instructions of the supplier.  

 

2.7.7 DNA Constructs 

2.7.7.1 STP9.GFP and STP9.TP.GFP Constructs 

STP9.GFP construct in pLEX7 plasmid was donated by Prof. Büttner 

(Schneidereit et al., 2003). STP9.GFP was cloned into EcoRI and HindIII sites of 

pGREEN II (http://www.pgreen.ac.uk/). For creating  the STP9.TP.GFP construct, a 300 

bp transit peptide fragment corresponding to the 5-end of At5g54800 open reading 

frame carrying NcoI site at both sides was amplified by PCR using primers pd2-F: 5‘--  

CCC GGG CCA TGG TTTT ATC GGT GAA GC  -3‘  and pd2-R 5‘- – CCG GCC ATG 

GGG TAA ATG CCG ATC TTC AAT TTC  -3‘. The PCR product was cut by NcoI and 

introduced into pLEX7 (STP9p_pEP) plasmid carrying GFP under the control of the Stp9 
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promotor using NcoI site. Afterwards, STP9.TP.GFP construct cloned into ECoRI and 

HindIII sites of pGREENII vector. 

 

2.7.7.2 STP9.RFP.AAP3 Construct 

The red fluorescent protein (RFP) from the reef coral Discosoma (dsRED) (Jach 

et al., 2001) was used as a reporter to label the plasma membrane in Arabidopsis polen. 

This was accomplished by a cloning strategy based on the GATEWAY Technology 

(Invitrogen) using the primersFor constructing  STP9.RFP.AAP3 (1592bp), 666 bp pollen 

promoter from At1g50310 (stp9) carrying TOPO site at 5‘-end  and NcoI site at  3‘-end 

was amplified by PCR using the primers stp9/topo-s 5‘-CAC CAG AGA ACG TAC GGT 

GTG TTC ATA A-3‘ and  stp9/NcoI-as 5‘-CCA TGG TAT TAT TTA TTC TTC ACT TAT 

TG-3‘ and cloned into an entry vector (pENTR TM /D-TOPO®) by TOPO cloning reaction. 

Afterwards 671 bp from RFP (pGj1425) carrying NcoI site at 5‘-end and EcoRI-NcoI site 

at 3‘-end was amplified by PCR using the primers RFP/NcoI-s 5‘-CCA TGG GGT CTT 

CCA AGA ATG TTA TC-3‘ and RFP/EcoRI/NcoI-as 5‘-CCA TGG GAA TTC AAG GAA 

CAG ATG GTG GCG-3‘ and introduced into pENTR TM /D-TOPO® vector at NcoI site. 

The third insert was 255 bp from AAP3 sequence which carrying EcoRI site at both end 

primes was amplified by PCR using the primers AAP3/EcoRI-s 5‘-GAA TTC GGG GGA 

GGC GGA GGG ATG GTT CAA AAC CAC CAA ACA GTT CTG G -3‘ and AAP3/EcoRI-

as  5‘-GAA TTC TAA GTG ACG GCA GAG AAG AGC AAC-3‘. The TOPO vector 

containing the construct STP9.RFP.AAP3 was amplified. Then stp9.rfp.aap3 fragment 

was subsequently subcloned into the distination vector pP001-VS-GW by LR Clonase II 

enzyme.  
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2.7.8 Transformation of E.coli 

GFP-construct and RFP-construct were used to transform DH5α competent 

E.coli bacterial cells by the heat shock method 90 seconds at 42 °C. Competent 

bacterial cells DH5α were prepared by cold 0.1M CaCl2 treatment. Transformed E.coli 

lines by GFP constructs were screened with kanamycin antibiotic, while Transformed 

E.coli lines by RFP constructs were screened with ampicillin antibiotic. 

 

2.7.9 Plasmid Preparation 

Plasmid preparations of GFP-construct and RFP-constructs were performed by 

QIAquick miniprep Kit according to the included manual instructions (Qiagen Inc., 

www.qiagen.com).  

 

2.7.10 Transformation of Agrobacterium 

STP9.GFP and STP9.TP.GFP constructs in pGREENII vector were transformed 

into electro-comptent Agrobacterium strain GV3101 with the help of pSOUP vector 

which was necessary for replication. Also, STP9.RFP.AAP3 Construct was transformed 

in the same electro-comptent Agrobacterium strain GV3101, but without pSOUP vector. 

Screening  was performed as mentioned above in (chapter 2.7.8) 

 

2.7.11 Agrobacterium-mediated transformation of A. thaliana 

GFP-construct and RFP-constructs were used to transform Col-0 Arabidopsis 

plants as described by Clough and Bent (1998). Flowering plants were dipped for 15 s in 

the appropriate Agrobacterium suspension containing 5% sucrose and the surfactant 

Silwet L-77 (0.0005%). After dipping, plants were transferred to the greenhouse and 

seeds were collected after approximately 3 weeks. In vitro selection for resistance either 

to kanamycin (GFP lines) or to BASTA herbicide (RFP lines) was carried out and the 
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transgenic plants were grown on soil under greenhouse controlled conditions (PDF: 70-

90 μEm-2s-1, 16h light: 8h dark cycles). The integration of the transgene in the genome 

of the resistant plants was confirmed by PCR, using the vector specific primer in 

combination with the gene specific one. 

 

2.8 Pollen Germination In vitro 

Fresh anthers from opened flowers in plants carrying GFP-fusion protein and 

RFP-fusion proteins besides anthers from WT Col-0 plants were used for pollen 

germination in vitro. The dehisced anthers of three randomly picked inflorescences were 

carefully dipped onto the surface of agar plates to transfer the pollen grains. The Basic 

Medium for in vitro pollen germination contained 5 mM MES (pH 5.8 adjusted with 

TRIS), 1mM KCl, 10 mM CaCl2, 0.8 mM MgSO4, 1.5 mM boric acid, 1% (w/v) agar (K+-

depleted agar), 16.6% (w/v) sucrose, 3.65% (w/v) sorbitol, and 10 µg ml -1 myo-inositol. 

The medium was prepared with double-distilled water and heated to 100 °C for 2 min. 

Each agar slide contained 0.5 ml medium forming a thin layer. Following pollen 

application, the slides were immediately transferred to a chamber at 25 °C with 100% 

relative humidity in the light 30 µ mol m-2 s -1. The germinated pollen grains were 

examined under a microscope after incubation for overnight.  

  

2.9 Microscopy 

Pollens from T2 generation were examined under an Axio Imager fluorescent 

microscope (Zeiss company) equipped with camera and software AxioVision. ApoTome 

from Carl Zeiss is generating optical sections by means of “structured illumination”. 

Fluorescence was excited with the X-Cite Series 120 fluorescence lamp (EXFO) and the 

sharp image information from the focal plane which is overlaid with blurred image 
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information from out-of-focus planes. Arabidopsis Pollen from wild type and transformed 

stp9.gfp, stp9.tp.gfp and stp9.tp.gfp.rfp.aap3 plants were spread on glass slide 

containing a water drop in the middle. Dic-filter was used for having pictures under 

normal illumination. While 38 HE GFP filter was used with GFP fusion and dsRED filter 

was used with RFP fusion. 
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3 Results 

Most molecular approaches with potential for controlling gene flow among crops 

and weeds have thus far focused on maternal inheritance, male sterility, and seed 

sterility (Daniell, 2002). Arabidopsis exhibits Lycopersicon type of plastid inheritance, 

and transmits its plastids maternally (Nagata et al., 1999). The maternal transmission of 

plastids in Arabidopsis is not absolute but there is some leakage of paternal plastids into 

subsequent generations via pollen exhibiting very low frequency 3.9 x 10-5, and this 

leakage performed under a bias of manual pollination and selection on callus induction 

medium (Azhagiri and Maliga, 2007).  

The study of organelle inheritance began with the use of phenotypic markers in 

genetic study like leaf pigment mutations that were readily apparent as variegated 

sectors (Cornu and Dulieu, 1988), plastome mutations including resistance to antibiotic 

selectable in culture (Avni and Edelman, 1991; Horlow et al., 1990; Ruf et al., 2007; 

Svab and Maliga, 2007; Azhagiri and Maliga, 2007), plastome mutations including 

resistance to herbicide that could be tested in the field (Wang et al., 2004). Plastid 

transmission is very likely controlled by nuclear genes (Azhagiri and Maliga, 2007), but 

to date, not a single gene involved in plastid inheritance has been identified in any higher 

plant. In other words, the molecular mechanism of plastid inheritance is still not clear. 

 

3.1 Optimization of Atrazin Concentration 

 

In order to set up a genetic screening approach, a selectable marker was 

chosen. In our case we chose atrazin resistance as a marker for plastid inheritance. 

Therefore the optimal dosage of atrazin application had to be determined. Preliminary 

experiment for optimizing the atrazin conditions required for genetic screening was 
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performed as following: Seeds from atrazin resistant plants (ElyF3BC4 & M2ElyF3BC4) 

besides seeds from atrazin sensitive wild type plants (Ler) were sterilized by gas 

sterilization and germinated on ms-plates containing different atrazin concentrations 0µm 

as a control, 5 µm, 10 µm, 25 µm and 50 µm atrazin. Plants containing atrazin-resistant 

plastid type had the ability to germinate on atrazin-containing ms medium  while the 

plants containing atrazin-sensitive plastid type could not germinate as shown in Figure 5. 

 

 

 

 
Figure 5. Three weeks old plants (Ler, ElyF3BC4 and M2ElyF3BC4) grown on ms‐
plates containing different atrazin concentrations (0, 5, 10, 25 and 50 µM).  

 

 

There was no obvious difference in phenotypic growth parameters between atrazin 

resistant seedlings (ElyF3BC4 & M2ElyF3BC4) and wild type atrazin sensitive Ler plants 
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on ms medium without atrazin. On the other hand, the germination of atrazin resistant 

seedlings (ElyF3BC4 & M2ElyF3BC4) and wild type atrazin sensitive Ler plants were 

greately affected by high atrazin concentration 50 µM. We found 10 µM concentration of 

atrazin and 3-4 weeks growth period as the best condition for screening plastid-inherited 

atrazin resistance in Arabidopsis plants. 

 

 

3.2 Screening of Paternal Plastids in Arabidopsis Hybrids generated by    

Spontaneous Out-crossing under Field Conditions 

                      

To quantify the bio-safety degree of paternal plastid inheritance, the frequency of 

paternal leakage of plastids via pollen under field conditions in Arabidopsis thaliana was 

estimated in out-crossing experiments (Figure 2) in collaboration with Rostock University 

Group (Prof. Broer) in 2008 and 2009.  In the out-crossing experiment, the pollen donor 

atrazin-resistant plant ElyF3BC4 (male fertile) was grown beside the pollen recipient 

atrazin-sensitive male sterile N75 and atrazin-sensitive, male fertile wild type Col-0. Male 

sterile N75 plant can receive air-dispersed pollens from neighbor flowers. Two genetic 

out-crossing experiments (Arabidopsis field trials 2008 & Arabidopsis field trials 2009) 

including high pollen pressure and low pollen pressure out-crossing were set up. The 

pollen donor and pollen recipient plant types in high pollen pressure experiment were the 

same plant types in low pollen pressure experiment. In high pollen pressure trial, one 

row pollen recipient either N75 or Col-0 plants in the middle of each parcel was 

surrounded by 6 rows of pollen donor ElyF3BC4 plants. While in the low pollen pressure 

trial, pollen recipient N75 or Col-0 plants were cultivated in an alternative way side by 

side, with pollen donor ElyF3BC4 plants (see chapter 2.5). 
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Cross

 

 

Figure 6. Out‐crossing experiment. A: Pollen donor plant. Plastids are equipped 
with a marker  (red);  in  this case atrazin  resistance. B: Recipient plant, wild  type 
line with unmodified plastids (green). C: Progeny of wild type line. A plastid (red) 
has been inherited via the pollen.  

 

 

 

 

 

 

3.2.1 Arabidopsis Field Trials 2008 

 

In field trials 2008, N75 and Col-0 plants were the pollen recipient plants while 

ElyF3BC4 plants were the pollen donor plants in both the high-pollen-pressure 

experiment and the low-pollen-pressure experiment. Homozygous male sterile plants 

N75 could not produce pollen and subsequently no seeds after self-crossing, while 
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heterozygous N75 plants produced pollen. Self-pollination of heterozygous N75 resulted 

in 25% homozygous male sterile plant progeny, 50% heterozygous N75 plant progeny 

and 25% wild type plant progeny. Since both heterozygous N75 and wild type plants had 

the ability to produce pollen and seeds after self crossing, it was difficult to distinguish 

between them. For propagation of N75 plants, the cross N75 x Ler was done, then 

heterozygous plants were allowed to self. The whole seeds resulting from selfing hybrid 

N75 plants (F2 plants) were used as pollen recipient plants in the out-crossing 

experiment 2008. These F2 seeds collectively were used as mother plants without 

isolating the sterile N75 plants (homozygous N75) away from the fertile N75 plants 

(heterozygous N75).  

 

 

3.2.1.1 Harvesting of Arabidopsis Seeds in Field Trials 2008 

 

Seeds were harvested separately by the Broer group after ripening of siliques 

from all rows containing recipient plants N75 or Col-0 in high and low pollen pressure 

trials. By roughly counting of seeds, we found that 1 ml volume seeds had a number of 

about 100,000 (105) seeds. Seeds were sterilized by gas sterilization method and 

screened on ms-medium containing 10 µM atrazin.  

First we screened 1 ml seeds from each recipient (N75 and Col-0) plants in high-

pollen-pressure and low-pollen-pressure trials besides positive and negative controls as 

in Table 1. Because seed contamination was found in the high-pollen-pressure 

experiment especially in that containing N75 as pollen recipient plant, we screened only 

the seeds produced from the high pollen pressure trial N75 x ElyF3BC4 (Table 1). 

Although we encountered 193 green seedlings displaying atrazin resistance from 
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4.850.000 total seeds screened on atrazin medium showing corresponding to a 

frequency 3.9 x10-5. 

 

 Table 1. Number of seeds and candidates screened on 10 µM atrazin‐containing ms‐
plates in Arabidopsis trials 2008. 

Trials 
2008 

Crosses 
Parcels and 

Rows 
No. of seeds 

No. of 
Candidates 
(AtrazinR  
plants) 

Candidates 
frequency 

P1.1  R4  950,000  8 

P1.2  R4  1,350,000  5 
N75 x 

ElyF3BC4 

P1.3  R4  1,650,000  5 

0.4 x10-5 

P1.4  R4  100,000  57 

P1.5  R4  100,000  18 

High 
Pollen 
Pressure  

 
(Trial 1)  Col.o x 

ElyF3BC4 

P1.6  R4  100,000  35 

36 x10-5 

P2.1  R2  100,000  4 

P2.2  R2  100,000  28 
N75 x 

ElyF3BC4 

P2.3  R2  100,000  8 

13.3 x10-5 

P2.4  R2  100,000  11 

P2.5  R2  100,000  7 

Low 
Pollen 
Pressure  

 
(Trial 2)  Col.o x 

ElyF3BC4 

P2.6  R2  100,000  7 

8.3 x10-5 

P3.1  R4  many  0   
N75 x  
Ler  P3.2  R4  many  0   Negative  

Control 

Ler  P3.1  R1+7  many  0   

Positive 
Control 

ElyF3BC4  P1.1  R4 
many 

all 
 

Total  4.850.000  193  3.9 x10-5 
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3.2.1.2 Molecular analysis for psbA gene 

A molecular marker for the psbA gene from wild type Ler and ElyF3BC4 was 

developed through PCR-RFLP analysis of plastid-DNA. First, total cellular DNA was 

extracted, then ~ 478 bp of psbA gene containing the mutation site domain was 

amplified from ptDNA by PCR using D1 primers forward and reverse. After BstXI digest 

(Figure 7) of the amplification products, distinct organelle DNA genotypes were 

recognized by exhibiting different restriction fragment patterns. Two bands (265 and 213 

bp) were characteristic for the atrazin-resistant ElyF3BC4, while the band (478 bp) was 

found in atrazin-sensitive wild type. In the 193 candidates, only the ElyF3BC4 genotype 

could be detected although for hybrid plastids we would have expected a mixture of both 

genotypes.  

 

 
  DNA 
Marker  BA

500bp 

 

 Figure 7. BstXI digest pattern in ElyF3BC4 (A) , and wild type Ler (B) 
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3.2.1.3 Molecular Analysis of Nuclear genes using Nuclear Markers  

 

Nuclear genotyping in the candidates was performed by using the nuclear 

genetic markers NGA8 (chromosome 4) and F16j7TRB (chromosome 1) which 

distinguish between Col-0 back-ground and ElyF3BC4, which is essentially Ler. This 

assay was used to genotype the 135 candidates resulting from the cross Col-0 x 

ElyF3BC4 (Table 3). Polymorphism analyses for the 135 resistant plants were performed 

by PCR using the forward and reverse primers of genetic markers NGA8 and F16j7TRB 

respectively. In all 135 atrazin resistant plants only ElyF3BC4 polymorphism pattern was 

recognized, indicating that the candidates did not result from paternal leakage. 

 

3.2.1.4 Molecular analysis for MS1 gene 2008 

 

To discriminate hybrid nucleus of N75 and ElyF3BC4, the MS1 gene was used 

as molecular marker. The MS1 gene was amplified from ElyF3BC4and N75 and 

sequenced. The sequencing chromatogram for MS1 gene (Figure 4) showed a G base 

at position 882 in ElyF3BC4 nuclear genome while this G base was changed to A base 

in N75 nuclear genome. In an artificial hybrid genome (DNA of N75 and ElyF3BC4 

mixed) both G and A bases were detected at the same position 882. After sequencing 

the MS1 gene isolated from genomic DNA of 58 candidates, we could not encounter any 

true hybrid sequence in the sequencing chromatogram.  

36 
 



                                                                                                                                                                                  
                                                                                                                                                                Results 

Artificial mixture of 
N75 and ElyF3BC4

ElyF3BC4 N75

 

 
Figure 8. Sequencing chromatogram of flanking one base mutation of MS1 
gene in Ely (882 A), N75 (882 G) and hybrid N75/Ely (882 N). N means A+G  

 

 

3.2.1.5 Out-crossing Rate under Field Conditions  

 

To determine the out-crossing rate in the cross N75 x ElyF3BC4, 8 progeny 

plants were analyzed. In case of out-crossing, one expect the existence of both parental 

genotypes in the hybrid progeny while one genotype N75 or ElyF3BC4 was expected to 

exist after selfing. After spontaneous crossing, these 8 progeny plants were grown on 
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MS-medium without atrazin, to promote healthy growth. Afterwards DNA was extracted 

from 8 plants and subjected to MS1 sequencing. In these 8 plants only 4 plants were 

found to be hybrids (Table 2).  

Plants grow on MS‐
medium without Atrazin 

Ms1.1 sequence  Results 

1  agg  Ely F3BC4 

2  agg  Ely F3BC4 

3  agn  N75/ElyF3BC4 

4  agn  N75/Ely F3BC4 

5  agg  Ely F3BC4 

6  agn  N75/Ely F3BC4 

7  agn  N75/Ely F3BC4 

8  aga  N75 

 

 

 

Table 2. MS1 gene sequencing data quantifying outcrossing rate among male 
sterile  plants  (N75)  and  ElyF3BC4  plants  screened  on ms‐plates  free  from 
atrazin. In this case agg= ElyF3BC4 or Ler, aga  = N75 and agn= hybrid , n=g+a. 

To summarize the results from field trial 2008 (Table 2 and Table 3): about 50% 

of the seeds produced from the cross N75 x ElyF3BC4 resulted from out-crossing and 

the other 50% produced from self-crossing of N75 or ElyF3BC4 plants. Therefore, the 

frequency was modified from 3.9 x10-5 to 1.98 x10-5. After molecular analysis of plastid 

gene markers (in psbA gene) and nuclear markers (in MS1 gene and NGA8 & 

F16j7TRB), we found 193 atrazin-resistant candidates. All of them exhibited only 
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ElyF3BC4 genome back-ground in the plastid and nucleus representing seed 

contamination. 

Table 3. PCR‐RFLP analysis of Plastid DNA marker for psbA gene and nuclear markers 
NGA8, F16J7TRB besides marker in MS1 gene used to distinguish between false and 
true candidates in out‐crossing experiments 2008.

 

 

Trials 
2008 

Crosses 
Parcels and 

Rows 
PCR‐RFLP 
Analysis 

MS1 
Sequ 
encing 

NGA8 
 

F16J7 
TRB 
 

P1.1  R4  ElyF3BC4  ElyF3BC4  ‐‐‐‐‐  ‐‐‐‐‐ 

P1.2  R4  ElyF3BC4  ElyF3BC4  ‐‐‐‐‐  ‐‐‐‐‐ 
N75 x 

ElyF3BC4 

P1.3  R4  ElyF3BC4  ElyF3BC4  ‐‐‐‐‐  ‐‐‐‐‐ 

P1.4  R4  ElyF3BC4  ‐‐‐‐‐  ElyF3BC4  ElyF3BC4 

P1.5  R4  ElyF3BC4  ‐‐‐‐‐  ElyF3BC4  ElyF3BC4 

High 
Pollen 
Pressure 

 
(Trial 1)  Col.0 x 

ElyF3BC4 
P1.6  R4  ElyF3BC4  ‐‐‐‐‐  ElyF3BC4  ElyF3BC4 

P2.1  R2  ElyF3BC4  ElyF3BC4  ‐‐‐‐‐  ‐‐‐‐‐ 

P2.2  R2  ElyF3BC4  ElyF3BC4  ‐‐‐‐‐  ‐‐‐‐‐ 
N75 x 

ElyF3BC4 

P2.3  R2  ElyF3BC4  ElyF3BC4  ‐‐‐‐‐  ‐‐‐‐‐ 

P2.4  R2  ElyF3BC4  ‐‐‐‐‐  ElyF3BC4  ElyF3BC4 

P2.5  R2  ElyF3BC4  ‐‐‐‐‐  ElyF3BC4  ElyF3BC4 

Low 
Pollen 
Pressure 

 
(Trial 2)  Col.o x 

ElyF3BC4 
P2.6  R2  ElyF3BC4  ‐‐‐‐‐  ElyF3BC4  ElyF3BC4 

P3.1  R4  ‐‐‐‐‐  ‐‐‐‐‐  ‐‐‐‐‐  ‐‐‐‐‐ 
N75 x  Ler 

P3.2  R4  ‐‐‐‐‐  ‐‐‐‐‐  ‐‐‐‐‐  ‐‐‐‐‐ 

Negative 
Control 

 
(Trial 3) 

Ler  P3.1  R1+7  ler  ‐‐‐‐‐  ‐‐‐‐‐   

+ve 
Control 

ElyF3BC4  P1.1  R4  ElyF3BC4  ‐‐‐‐‐  ‐‐‐‐‐  ‐‐‐‐‐ 
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3.2.2 Arabidopsis Field Trials 2009 

 

A spontaneous out-crossing experiment, in which male sterile N75 plants were 

the pollen recipient and male fertile ElyF3BC4 plants were the pollen donor, was 

designed under field conditions in 2009. The set up of Arabidopsis field trials in 2009 

was essentially the same as the set up in Arabidopsis field trials in 2008, except for two 

changes: first Col-0 plants were excluded from cross breeding in low and high pollen 

pressure trials, second fertile plant lines and sterile plant lines from N75 were harvested 

separately. Exclusion of Col-0 plants from Arabidopsis field trials in 2009 enhanced the 

capacity to have hybrid plants, because Col-0 plants have a strong tendency towards 

self-pollination. Another advantage came from using only sterile lines from N75 plants as 

pollen recipient and exclusion of fertile lines. 

 

 

3.2.2.1 Harvesting of Arabidopsis Seeds in the Field Trial 2009 

 

Ripened seeds from recipient plants N75 in high and low pollen pressure trials 

were harvested, sterilized by gas sterilization method and then screened on 10 µM 

atrazin containing ms-medium. The number of screened seeds and number of 

candidates on atrazin medium are illustrated in Table 4.  

In general, we encountered 83 green candidate seedlings from 19.465 total 

seeds screened on atrazin medium (426 x10-5). 
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Table 4. Number of seeds and candidates screened on 10 µM atrazin‐containing ms‐
plates in Arabidopsis trials 2009. 

Trials 
2009 

Crosses 
Parcels and 

Rows 
No. of seeds 

No. of 
Candidates 
(AtrazinR  
plants) 

Candidate 
frequency 

P1.1  R4  850  4 

P1.2  R4  1700  13 

P1.3  R4  1000  6 

P1.4  R4  1600  8 

High 
Pollen 
Pressure 

 
(Trial 1) 

N75 x 
ElyF3BC4 

P1.5  R4  450  5 

642 x10‐5 

P2.1  R2  1700  3 

P2.3  R2  2600  15 

P2.4  R2  3900  9 

P2.5  R2  1715  2 

Low Pollen 
Pressure 

 
(Trial 2) 

N75 x Ely 

P2.6  R2  3950  18 

338 x10‐5 

P3.1  R4  many  0   
Negative 
Control 

N75 x  Ler 
P3.2  R4  many  0   

Positive 
Control 

Ely  P1.1  R4  many  all   

Total  19.465  83  426 x10‐5 

 

3.2.2.2 Molecular analysis for psbA gene  

 

PCR-RFLP analysis of the psbA gene in 83 candidates was performed.  In these 

83 candidates (Table 5) only the ElyF3BC4 genotype could be detected.  
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3.2.2.3 Molecular analysis for MS1 gene  

True instances of paternal leakage should result in hybrid nucleus containing 

hybrid alleles of the MS1 gene. The sequencing chromatogram for MS1 gene showed a 

G base at position 882 in all 83 candidates.  

 

 

Trials 
2009 

Crosses 
Parcels and 

Rows 
PCR‐RFLP 
analysis 

MS1 
Sequencing 

P1.1  R4  ElyF3BC4  ElyF3BC4 

P1.2  R4  ElyF3BC4  ElyF3BC4 

P1.3  R4  ElyF3BC4  ElyF3BC4 

P1.4  R4  ElyF3BC4  ElyF3BC4 

High Pollen 
Pressure 

 
(Trial 1) 

N75 x ElyF3BC4 

P1.5  R4  ElyF3BC4  ElyF3BC4 

P2.1  R2  ElyF3BC4  ElyF3BC4 

P2.2  R2  ElyF3BC4  ElyF3BC4 

P2.3  R2  ElyF3BC4  ElyF3BC4 

P2.4  R2  ElyF3BC4  ElyF3BC4 

P2.5  R2  ElyF3BC4  ElyF3BC4 

Low Pollen 
Pressure 

 
(Trial 2) 

N75 x ElyF3BC4 

P2.6  R2  ElyF3BC4  ElyF3BC4 

P3.1  R4  Wt  ‐‐‐‐‐ 
Negative Control  N75 x  Ler 

P3.2  R4  Wt  ‐‐‐‐‐ 

Positive Control  ElyF3BC4  P1.1  R4  ElyF3BC4  ‐‐‐‐‐ 

Table 5. PCR‐RFLP analysis of Plastid DNA marker  in psbA gene and sequencing of 
nuclear marker in MS1 gene used to distinguish between N75 and ElyF3BC4 in out‐
crossing experiment 2009. 
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We did not encounter any hybrid sequence in the sequencing chromatogram. Therefore, 

83 candidates that recognized on atrazin medium and showed ElyF3BC4 DNA 

background in plastid by PCR-RFLP analysis of psbA gene represent seed 

contamination. 

 

3.3 Screening of Paternal Plastids in Arabidopsis Hybrids generated by manual     

      Crossing 

 

To search for a mutant plant exhibiting enhanced ability for plastid transmission 

via pollen, manual pollination of Ler with M2ElyF3BC4 pollen was performed.  

 

 

A  B

 

 

 

 

Figure 9. Two candidates 13.45 (A) and 19.2 (B) screened on ms‐medium containing 10 µM 
atrazin  after manual  pollination  of  Ler  stigma  by M2ElyF3BC4  pollen  under  green  house 
conditions. 

In green house, pollens from M2ElyF3BC4 flowers were transferred manually by special 

crossing forceps to stigma of Ler gynoecium. Average number of seeds in ripened 
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siliques produced from each cross is 30 hybrid seeds. From 2178 successful crosses 

performed in the green house we obtained nearly 65,000 hybrid seeds. Hybrid seeds 

were collected separately and carefully to avoid seed contamination, then purified from 

non-seed materials. Afterwards they were sterilized by HCl gas under a hood. The 

hybrid seeds were selected on ms-medium containing 10 µM atrazin. After 3 weeks on 

ms + atrazin medium, we found two candidates 13.45 and 19.2 (Figure 9) corresponding 

to a frequency (3 x 10-5). 

 

3.3.1 Molecular Analysis of psbA gene 

 

Molecular analysis of psbA gene in manual out-crossing experiment was 

achieved by PCR-RFLP analysis of psbA gene in plastid DNA. Two candidates were 

analyzed by the same method mentioned in natural out-cossing experiments (chapter 

3.2.1.2 and chapter 3.2.2.2). The first candidate 13.45 showed no atrazin resistant PCR-

RFLP pattern, while the second one 19.2 showed atrazin resistant RFLP pattern 

candidates. But we could not prove the hybrid nucleus existence in this candidate, 

because M2ElyF3BC4 and Ler have the same nuclear back-ground. We aimed to 

reproduce this phenotype from the respective M2ElyF3BC4 line (19.2). 54 progeny of 

this line were sown out and the crossing repeated as mentioned above. About 1600 

seeds were screened on ms-medium containing 10 µM atrazin. In none of these seeds 

an atrazin resistant plant survived. This implies that the original survival of progeny 

seeds on atrazin medium might not be caused by paternal leakage. 
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3.4 Genetic Analysis of Plastid Inheritance through Autophagy ATG4s Genes  

Following the hypothesis that plastids might be degraded in generative or sperm 

cells in Arabidopsis pollen under the control of autophagy genes, genetic analysis 

experiment were designed to test if the nuclear autophagy ATG4s (ATG4a and 4b) 

genes are involved in maternal inheritance of plastids in Arabidopsis. Double mutant 

atg4a4b-1 plants are defective in autophagy and there were no autophagic bodies in the 

vacuoles of atg4a4b-1 plants (Yoshimoto et al., 2004).  

Therefore, we generated a mutant that combines the defect in the autophagy 

genes ATG4a4b present in (atg4a4b-1 plant) and the plastid marker in psbA gene 

present in ElyF3BC4. To this end we performed the cross ElyF3BC4 X atg4a4b-1, in 

which atg4a4b-1 mutant was the pollen donor. Homozygous ElyF3BC4-atg4a4b plants 

were obtained by transferring the pollens from double autophagy mutant atg4a4b-1 to 

ElyF3BC4 stigma. All F1 seeds grown normally on atrazin medium, 8 Hybrid plants were 

selected by PCR using the following primers atg4a-s, atg4a-as, atg4b-s, atg4b-as, pgap-

1 and pgap-3. Afterwards the F2 generation was produced by self-pollination, 6 plants 

from 48 in F2 plants were homozygous for atg4a4b-1.  

To test if ElyF3BC4-atg4a4b-1 plants were able to transfer their plastids via 

pollen, 5 wild type Ler plants (5 flowers per each) were pollinated   by 5 different mutant 

ElyF3BC4-atg4a4b-1 plants manually. Nearly 750 F1 seeds were sterilized and 

screened on atrazin medium, but we did not encounter any resistant plant. 

3.5 Visualization of Pollen Plastids via GFP-Fusion 

 

Plastids in Arabidopsis pollen are not visible under the normal light microscope, 

because of the absence of chlorophyll (Tang et al., 2009). To visualize plastids in pollen 
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grains, a STP9.GFP construct for labeling pollen cytoplasm and STP9.TP.GFP construct 

for labeling pollen plastids were created. First, cytoplasm in pollen was visualized by 

expression of green fluorescence protein GFP from the nuclear genome in pollen 

cytoplasm under the control of pollen promoter from STP9 gene. In order to guide GFP  

 

 

BA 

WT 

C  D

Stp9.gfp 

 

 
Figure 10. Fluorescent  images of  the pollen Stp9.gfp. Light microscopic  image of a 
wild  type  pollen  grain  under  Dic  filter  (A)  and  under  GFP  filter  (B).  tp.gfp 
transformed pollens under Dic filter (C) and under GFP filter (D). 

 

to the plastids a transit peptide encoded by the first 300 bp from GPT1 gene, was fused 

at the N-terminus. 10 Arabidopsis Col-0 plants for each construct were transformed with 

the STP9.GFP and STP9.TP.GFP constructs using the floral dipping technique. After 

transformation seeds were harvested from transformed lines separately. Then 
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thousands of T1 seeds were sterilized and screened on ms-medium containing 

kanamycin antibiotic. After selection, 15 transgenic plants (kanamycin resistant lines) 

from each construct were confirmed by PCR. The transgenic lines were grown on soil 

and selfed afterwards. The whole T2 seeds from one line were screened by the same 

way. 5 opened flowers from each construct were used for fluorescence microscopy. 

Fluorescence microscopy of pollens prepared from wild type Col-0, stp9.gfp plants and 

stp9.tp.gfp plants (Figure 10 & 11) showed that GFP signals in the whole pollen 

cytoplasm of stp9.gfp plants while GFP signals precisely arising from pollen plastids of 

stp9.tp.gfp plants.  
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WT 
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Figure 11. Fluorescent  images of the pollen Stp9.tp.gfp. Light microscopic  image of a wild 
type  pollen  grain  under  Dic  filter  (A)  and  under  GFP  filter  (B).  stp9.tp.gfp  transformed 
pollens under Dic filter (D) and under GFP filter (E).Germinated pollens under GFP filter  in 
wild type (C) and stp9.tp.gfp (F). 

 

 

47 
 



                                                                                                                                                                                  
                                                                                                                                                                Results 

48 
 

To differentiate between plastids existing in vegetative and generative cells in 

Arabidopsis, the STP9.RFP.AAP3 construct was created. In this construct, the reporter 

gene RFP was expressed under control of the pollen promoter STP9. AAP3 is a plasma 

membrane transporter that is also present on internal membranes along the trafficking 

pathway (Okumoto et al., 2004). Using the floral dipping method, 10 Arabidopsis 

stp9.tp.gfp and 10 Col-0 plants were transformed with the STP9.RFP.AAP3 construct. 

T1 seeds were sterilized and screened on ms-medium containing BASTA herbicide. 

After selection 15 transgenic plants (BASTA resistant lines) from each construct, they 

were confirmed by PCR. The transgenic lines were grown on soil and selfed afterwards. 

The whole T2 seeds from one line were screened on soil by BASTA spray. 5 opened 

flowers from stp9.tp.gfp.rfp.aap3 and stp9.rfp.aap3 transgenic plant were used for 

fluorescence microscopy. Fluorescence microscopy of pollens prepared from 

stp9.rfp.aap3 and stp9.tp.gfp.rfp.aap3 plants showed very weak RFP signal. In 

conclusion, colorless plastids in Arabidopsis pollen were visualized by the expressed 

GFP protein under the control of pollen promoter but the specification of plastids in 

vegetative and generative cells has to be improved. 
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4. Discussion 

 

The aim of this study was to assess the frequency of plastid transfer from atrazin-

resistant ElyF3BC4 Arabidopsis thaliana plants bearing a point mutation in the plastid 

psbA gene to male sterile N75 plants by spontaneous crossing under field conditions. 

Also the plastid transfer from atrazin-resistant, EMS-mutagenized M2ElyF3BC4 plants to 

wild type A. thaliana plants by manual crossings under green house conditions was 

estimated. It was found that plastid-encoded atrazin resistance could not be transmitted 

via pollen, neither by manual pollination among 65,000 hybrid seeds nor by spontaneous 

pollination among 2,444,465 hybrid seeds in A. thaliana.   

In a study by Maliga and coworkers, a rare exception to maternal inheritance was 

observed as leakage of paternal plastids at low 3.9 X10-5 frequency to the next 

generation through pollen in Arabidopsis (Azhagiri and Maliga, 2007). This low 

frequency of paternal plastid transmission involved probably very few ptDNA copies, and 

could only be detected due to the screening procedure because sensitive tissue culture 

selection was employed to test for spectinomycin resistance encoded in the paternal 

ptDNA.  

In our study, the herbicide atrazin, a photosystem II inhibitor was used as a 

selection material. It blocks the electron transport chain in chloroplast, resulting in the 

generation of active oxygen species. Atrazin also reduces the leaf pigment levels, 

especially chlorophyll a and decreases photosynthetic performance (Ivanov, 2005). In 

unpublished work from Sabine Jarzombski and Anja Schneider, the selection procedures 

on callus induction medium did not work, because photosynthetic psbA gene might be 

repressed or down regulated with other photosynthetic genes, when high sugar (5%) 
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content was used. Therefore, the amount of down regulated photosynthetic proteins 

including D1 protein might not be sufficient to perform the atrazin screening. On the 

other hand, 5 % sucrose was necessary to sustain the callus growth. In our work, atrazin 

selection of seedlings on ms medium might be not sensitive enough because if only a 

few paternal plastids were transferred to the hybrid progeny, it could be that 

photosynthetic products of the mutated atrazin-resistant are not sufficient for plant 

survive. Also the oxidation of proteins and lipids by active oxygen species besides the 

maternal inheritance are another factors playing a role in the observed zero frequency in 

this study. In our study, the frequency of zero of plastid transfer that we encountered 

may be because rare ptDNA copies might have remained below the detection limit. It 

was found that PCR-RFLP analysis could not detect the ElyF3BC4 genome background 

below 10% in a synthetic mixture of ElyF3BC4 and Ler DNA (unpublished work from 

Sabine Jarzombski and Anja Schneider).   

Zero frequency gene flow from plastids is the rule in species exhibiting strict 

maternal inheritance and the low frequency gene flow from plastids is an exception to 

this rule. This zero frequency may be due to unknown genetic paternal control 

mechanism excluding plastids from pollen and genetic maternal control mechanism 

excluding paternal plastids during zygote or embryo formation. Therefore, the low 

frequency gene flow from plastids might be due to the relaxation in these two genetic 

(paternal and maternal control) mechanisms.  

 

Our finding that various random nuclear mutations by EMS could not create a 

mutant able to transfer its paternal plastids into egg-cell of recipient plant might be 

explained by duplication or redundancy of nuclear genes in Arabidopsis. Thus a defect in 

one gene is compensated by the function of its homologue. In Arabidopsis about 1/6 of 
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the genes are segmentally duplicated, therefore redundancy can be observed frequently. 

To test this idea, nuclear defective in autophagy ATG4a and ATG4b genes of double 

mutant atg4a4b-1 plant were employed as pollen donor plant. Autophagy has a relation 

with degradation of paternal plastids, where the temporary occurrence of small 

autophagic vacuoles inside the generative cell seems to be common in those species 

where plastid inheritance is maternal. The generative cell cytoplasm recognizes plastids, 

and eliminates them by means of autophagic vacuoles (Pacini et al., 1992). To the end, 

it was observed that also in the autophagy atg4a4b-1 mutant no paternal plastid transfer 

occurred. 

 

In conclusion, maternal inheritance of plastids in Arabidopsis minimizes the 

escape of plastid transgenes and fortifies the prevention of gene flow through pollen in 

plants having modified plastids.  

 

4.1 Chloroplast Genetic Engineering 

Plastid transformation in Arabidopsis is feasible but inefficient due to unknown 

reasons. Arabidopsis recorded 1% plastid transformation, but none of the plants 

regenerated from the transformed lines were fertile (Sikdar et al., 1998). Therefore, a 

natural herbicide resistant mutant ElyF3BC4, bearing a point mutation in the plastid psbA 

gene, was used by us to follow the plastid transmission through pollen from generation to 

generation in this study. On the other hand, tobacco remains the most amenable species 

to chloroplast genetic engineering to date. Also, plastid transformation has been achieved 

successfully in crops such as maize, tomato, cotton, potato, rice and sugar beets. 
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Chloroplast genetic engineering is a strategy consisting of inserting a transgene 

into the chloroplast genome of a plant instead of its nuclear genome.  A single plastid 

gene is represented up to 10 000 times within a photosynthetically active cell. Plastid 

transformation has some advantages compared to nuclear transformation, including 

control of the site of gene insertion (by homologous recombination), high rates of 

transgene expression and protein accumulation and absence of epigenetic effects. 

Foreign proteins have been shown to accumulate to a level as high as 46% of the total 

leaf soluble protein (De Cosa et al., 2001), and the accumulation of transcripts is 169 

times higher in chloroplasts than in plants after nuclear transformation (Lee et al., 2003).  

 

Chloroplast genetic engineering technology is a promising tool providing less 

expensive drugs and vaccines by molecular pharming. Molecular pharming is the 

production of a wide range of products such as vaccine antigens, pharmaceutical proteins 

and industrial proteins, in economical way superior to bacterial cultivation or animal cell 

cultures, because plants do not require industrial bioreactors to produce a high mass 

harvest. Since the therapeutic compound is produced and stored in plant tissue, it might 

be possible to apply these compounds simply by eating the plant without isolating the 

desired pharmaceutical. Another aspect of chloroplast engineering is to improve 

agricultural traits such as herbicide and pathogen resistance, resistance to drought, salt 

tolerance and phyto-remediation (Řepková, 2010). 

For the delivery of the recombinant DNA plasmid into plastids, either particle 

bombardment-mediated transformation (gene gun) or polyethylene glycol (PEG) 

treatment of leaf protoplast in the presence of plasmid DNA were used (Golds et al., 

1993). In homologous recombination, the flanking sequences guide the recombinant 
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DNA into a specific place on the chloroplast genome by binding to corresponding parts 

on the genome. The protoplasts are then grown on a plate containing an antibiotic, as 

selectable marker. These surviving cells are then exposed to regenerative factors that 

induce shoots and grow into full plants that express the desired protein (Sikdar, 2002). 

Any undesired sequences integrated by chance into the nuclear genome are easily 

removed by backcrossing the transgenic plants with an untransformed plants used as 

pollen parent.  

 

4.2 Nuclear Gene Flow from Gene-modified Plants to Non-gene Modified Plants  

Additionally, nuclear transformation of plants is not very efficient because there is 

only one nucleus per cell and, at most, a few copies of the recombinant gene, producing 

relatively low levels of protein. Transforming the nuclear DNA plants is one of the most 

discussed topics in our days (the GMO discussion = genetically modified organisms). 

If recombinant genes were to be disseminated through pollen and integrated into 

other plants, invasive species and widespread ecological damage could result. For 

example, nuclear transgenes seemed to escape to from gene modified (GM) plants to 

non-gene modified plants in Europe a few years ago when non-GM products with 0.9% 

contamination of GM products were marketed without labeling. Gene flow in nuclear 

transformed plants can be high if these GM seeds germinate, grow, flower at the same 

time, and be close enough in space to allow for the transfer of pollen, there is a risk that 

interbreeding with a sexually compatible weedy species could produce a fertile hybrid 

(Daniell, 2007). 
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Nuclear transformation might be harmful to the plant itself because the 

transgenes are integrated into the plant’s nucleus at random positions.  

 

4.3 Plastid Gene Flow from Gene-modified Plants to Non-gene Modified Plants  

Chloroplasts are an ideal place to accumulate proteins or their biosynthetic 

products that may be harmful in the cytoplasm, such as cholera toxin B subunit, trehalose 

or xylanase (Bogorad, 2000).  

Plastid transformation method ensures that the recombinant transgenes are 

contained within the chloroplast and their effects can be more easily controlled. Plastid 

genes will not spread to other plants because they are not passed into the sperm cells of 

plant pollen, so plastids cannot be spread by pollination. In conclusion, plastid 

transformation technique is environmentally friendly. 

 

4.4 Maternal Inheritance as Transgene Confinement Tool 

A recent report from the European Environment Agency (Copenhagen, Denmark) 

recommends chloroplast genetic engineering as a gene-containment approach 

(Eastham and Sweet, 2002). This recommendation was based on the results of gene 

flow studies and biosafty measurements. The transgene escape from transplastomic 

crops is rare and poses a negligible risk if plants are genetically engineered via the 

chloroplast genome. Other researchers prefer to reduce the risk of plastid gene flow to 

zero for a subset of applications (Daniell, 2002; Lee and Natesan, 2006). To have zero 

plastid gene flow, most molecular approaches with potential for controlling gene flow 
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among crops and weeds have thus far focused on maternal inheritance and male sterility 

(Daniell, 2002). As in this study, it is difficult to control nuclear gene flow, but plastid 

gene flow at least in Arabidopsis recorded a very low 3.9 x 10-5 frequency (Azhagiri and 

Maliga, 2007) or zero frequency in this study. 

It needs more experiments to compare the transgene containment level in field 

through spontaneous pollination and the transgene containment level in greenhouse 

through manual pollination.  

 

4.5 Mechanism of Plastid inheritance  

 

Very little is known about how plastid DNA (ptDNA) is distributed into daughter 

plastids upon plastid division. Plastid DNAs in higher plants do not normally undergo 

sexual recombination, even when they are inherited biparentally. This means that, 

chloroplast fusion and genetic recombination does not occur in higher plants (Baldev et 

al. 1998).  

 

Diversity in the mode of organelle inheritance within families (Hansen et al., 

2007; Havey et al., 1998) and in the frequency of paternal exceptions within species 

(Derepas and Dulieu, 1992), suggest that plastid transmission is very likely controlled by 

nuclear genes (Azhagiri and Maliga, 2007), but to date, not a single gene involved in 

plastid inheritance has been identified in any higher plant.  

 

From the contribution ratio of paternal and maternal plastids in plants which 

transmit their plastids biparentally or maternally, there are gradients of these plastid 

contribution ratios even in plants showing the same type of plastid inheritance. It is 
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suggested that organelle inheritance is a quantitative trait. For example, although 

Medicago and Pelargonium are transmitting their plastids by the same way (maternaly), 

but the paternal plastid contribution in Medicago plant is much greater than the paternal 

plastid contribution in Pelargonium. Also in Chlorophytum comosum, a species known to 

display biparental inheritance, paternal plastids are inherited at a rate of 2–8% (Pandey 

and Blaydes 1957).  So possession of biparental inheritance does not mean an equal 

proportion of plastids are received from the two parents. Nor does maternal inheritance 

mean that plastid transmission from the male parent never occurs. For instance, in 

Nicotiana tabacum, a representative of species with maternal inheritance, the frequency 

of paternal plastid transmission was reported in the range from 10-4 to 10-5 (Ruf et al., 

2007; Svab and Maliga, 2007) up to 2.5% of the seed progeny (Avni and Edelman, 

1991).  

However, it is clear that plastids are excluded from the male gametic cells of 

angiosperms displaying maternal plastid inheritance (Hagemann and Schroeder 1989). 

Therefore, a common cytological tag for maternal inheritance is that the generative or 

sperm cells are free from plastids, and accordingly lack plastid DNA.  Although the 

cytological investigations for classification of plastid inheritance are based on DAPI 

staining, DAPI signals do not represent the quantity of DNAs. They tend to show the 

physiological state in which ptDNA is condensed with associating proteins. Likewise, the 

absence of DAPI signals does not mean that organelle DNAs are completely missing, as 

evidenced by several exceptional species showing biparental inheritance. Nevertheless, 

it should be noted that the ptDNA signals detected by DAPI are missing even in the 

vegetative cells which are unlike the sperm cells and do not contribute to fertilization 

(Corriveau, 1991).  
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This study aimed to follow the behavior of plastids in vegetative and generative 

or sperm cells by direct visualization. GFP-labelled plastids in Arabidopsis pollen is 

effective method for direct observation of plastids. The GFP-fusion protein, however, is a 

nuclear localized protein but controlled by a pollen-specific promoter. An N-terminally 

fused transit peptide directs the GFP to plastids. Fluorescence microscopy of stp9.tp.gfp 

pollens showed a strong signals arising from plastids, but could not distinguish between 

plastid localized in vegetative cells and plastids localized in generative or sperm cells. 

This non–defined localization comes from invisible plasma membrane especially the 

membrane enclosing the generative or sperm cells. Since there are no specific dyes for 

plasma membrane, we tried to label the plasma membrane by using a RFP-Fusion 

protein. It turned out that the dsRFP signals were very weak. For detection these signals 

could be so weak because the expressed proteins may be unstable or rapidly degraded.  

4.6 Outlook  

In the present study, the plastid inheritance was followed by using herbicide 

marker which may not be ideal or not sensitive enough to carry out such study. A more 

sensitive screening system might be more successful. For example, investigation of 

plastid inheritance could be achieved by using GFP marker in stp9.tp.gfp mutant as 

selectable marker, if the expression of GFP gene is limited to pollen. This line could be 

mutagenized via EMS mutagenesis. These mutant plants could then be used as pollen 

donor to fertilize wild-type egg-cells.  After fertilization the fertilized egg-cells could be 

screened for GFP labeled plastids.    
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