
Aspect-Oriented State Machines

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität München

zur Erlangung des Grades
Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt von
Gefei Zhang

München, November 2010

Erstgutachter Prof. Dr. Martin Wirsing

Zweitgutachter Prof. dr. Antonio Vallecillo

Tag des Rigorosums 30. November 2010

Abstract
UML state machines are a widely used language for modeling software behavior. They

are considered to be simple and intuitively comprehensible, and are hence one of the most
popular languages for modeling reactive components.

However, this seeming ease to use vanishes rapidly as soon as the complexity of the
system to model increases. In fact, even state machines modeling “almost trivial” behavior
may get rather hard to understand and error-prone. In particular, synchronization of parallel
regions and history-based features are often difficult to model in UML state machines.

We therefore propose High-Level Aspect (HILA), a new, aspect-oriented extension of
UML state machines, which can improve the modularity, thus the comprehensibility and
reusability of UML state machines considerably. Aspects are used to define additional or
alternative system behaviors at certain “interesting” points of time in the execution of the
state machine, and achieve a high degree of separation of concerns. The distinguishing
feature of HILA w.r.t. other approaches of aspect-oriented state machines is that HILA
aspects are defined on a high, i.e. semantic level as opposed to a low, i.e. syntactic level.
This semantic approach makes HILA aspects often simpler and better comprehensible than
aspects of syntactic approaches.

The contributions of this thesis include 1) the abstract and the concrete syntax of
HILA, 2) the weaving algorithms showing how the (additional or alternative) behaviors,
separately modeled in aspects, are composed with the base state machine, giving the com-
plete behavior of the system, 3) a formal semantics for HILA aspects to define how the
aspects are activated and (after the execution) left. We also discuss what conflicts between
HILA aspects are possible and how to detect them. The practical applicability of HILA is
shown in a case study of a crisis management system.

Zusammenfassung
UML-Zustandsmaschinen werden sehr oft verwendet, um das Verhalten von Software-

Systemen zu modellieren. Sie gelten als intuitiv verständlich, und sind eine der populärsten
Sprachen für die Modellierung reaktiver Komponenten.

Allerdings nimmt diese empfundene Einfachheit rapide ab, sobald die Komplexität des
zu modellierenden Systems zunimmt. Selbst Zustandsmaschinen, die ”fast-triviale“ Ver-
halten modellieren, können schwer verständlich und fehleranfällig werden. Insbesondere
Synchronisierung paralleler Regionen und history-basierte Features sind often nur schwer
mit UML-Zustandsmaschinen zu modellieren.

Als eine mögliche Lösung solcher Probleme präsentieren wir die Sprache High-Level
Aspect (HILA), eine neue, aspekt-orientierte Erweiterung von UML-Zustandsmaschinen,
welche die Modularität, die Lesbarkeit und die Wiederverwendbarkeit von UML-Zustands-
maschinen erheblich erhöht. Aspekte werden verwendet, um zusätzliche oder alterna-
tive Verhalten des Systems zu bestimmten ”interessanten“ Zeitpunkten in der Ausführung
der Zustandsmaschinen zu definieren. HILA hebt sich von anderen Ansätzen aspekt-
orientierter Zustandsmaschinen dadurch ab, dass HILA-Aspekte auf einer hochen, d. h.
semantischen Abstraktionsebene und die Aspekte anderer Ansätze auf einer niedrigen, d. h.
syntaktischen Abstraktionsebene definiert sind. Durch unseren semantischen Ansatz sind
HILA-Aspekte oft einfacher und besser verständlich als die von syntaktischen Ansätzen.

Zu den Beiträgen dieser Dissertation gehören 1) die abstrakte und die konkrete Sys-
tex von HILA, 2) die Weavings-Algorithmen, wodurch die in Aspekten separat mod-
ellierten (zustätzlichen oder alternativen) Verhalten mit der Basis-Maschine komponiert
werden und so das komplette Systemverhalten ergeben wird, 3) eine formale Semantik für
HILA-Aspekte, welche definiert, wie die Aspekte aktiviert und (nach deren Ausführung)
terminiert werden. Wir diskutieren auch, welche Konflikte zwischen HILA-Aspekten
möglich sind, und wie sie festgestellt werden können. Die praktische Anwendbarkeit un-
seres Ansatzes wird durch eine Fallstudie eines Crisis-Management-Systems validiert.

Mom and Dad

Acknowledgements. I am indebted to Prof. Dr. Martin Wirsing for giving
me the chance to conduct a PhD research within his uniquely excellent research
group (PST). I am very grateful for his patience and for always believing in me,
even more than I ever did. I learned very much from Prof. Wirsing, a great scientist,
and a wonderful, generous man.

I thank Prof. dr. Antonio Vallecillo for being my external referee and providing
valuable discussions related to this thesis.

I thank Matthias “Genius” Hölzl for the infinitely many hours of discussion and
many great ideas in designing and implementing HILA. I thank Alexander Knapp
for sharing his deep insight into state machines and his expertise of LATEX. I thank
all my PST colleagues for the very friendly atmosphere, which makes PST a great
place to work at. I thank the Deutsche Forschungsgemeinschaft (DFG) for partially
supporting this research within the project MAEWA.

I thank Bingbing for taking care of Emily on so many weekends. Last but not
least, I thank you, Emily, for brightening up my life with your sunshine.

Contents

Part 1. HiLA Ante Portas 1

Chapter 1. Introduction 3
1.1. UML State Machines: Nice but Not Nice Enough 4
1.2. Modularization 5
1.3. Aspect-Oriented Software Development 5
1.4. Dynamic vs. Static, Declarative vs. Imperative, High-level vs.

Low-level 6
1.5. Conflicts between Aspects 7
1.6. Goals 7
1.7. Organization of This Thesis 8

Chapter 2. UML State Machines 9
2.1. Syntax and Informal Semantics 9
2.2. Hard-to-Model Features 14
2.3. Feature Interference 16
2.4. Wanted: Better Separation of Concerns 17

Chapter 3. Static Aspects 19
3.1. Syntax and Informal Semantics 20
3.2. Metamodel 21
3.3. Weaving 21
3.4. Consistency Checking 22
3.5. Discussion 23

Part 2. HiLA des Ingénieurs 25

Chapter 4. HILA 27
4.1. HILA in a Nutshell 28
4.2. Examples 30
4.3. Abstract Syntax and Informal Semantics 35
4.4. Big Picture 43
4.5. Discussion 43

Chapter 5. Weaving 45
5.1. Main Idea 46
5.2. Prerequisites 47
5.3. Preprocessing 51
5.4. Weaving History Properties 60
5.5. Weaving Aspects 63
5.6. Postprocessing 69
5.7. Correctness 71

i

ii CONTENTS

5.8. Implementation 72
5.9. Discussion 77

Part 3. HiLA d’Ivoire 79

Chapter 6. Formal Semantics 81
6.1. Abstract Transition Systems 81
6.2. UML State Machines 82
6.3. History Properties 84
6.4. Structural Extension by �whilst�Aspects 85
6.5. Behavior Extension 86
6.6. Weaving and Semantics 90
6.7. Discussion 92

Chapter 7. Interaction of aspects 95
7.1. Change of State Reachability 97
7.2. Conflict Detection 99
7.3. Discussion 101

Part 4. HiLA du Monde 103

Chapter 8. Case Study 105
8.1. Overview and Static Structure 106
8.2. Modeling the Behavior of the CCCMS 109
8.3. Validation of the Model 117
8.4. Discussion 119

Chapter 9. Related Work 123
9.1. Event Condition Action Systems and Programming Languages 123
9.2. Modeling Languages Supporting Static Aspects 123
9.3. Modeling Languages Supporting Dynamic Aspects 124
9.4. Aspect Interference 125

Chapter 10. Conclusions and Future Work 127
10.1. Summary 127
10.2. Future Work 128

Appendix A. Remaining Use Cases of the CCCMS 129
A.1. Use Case 2: Capture Witness Report 129
A.2. Use Case 3: Assign Internal Resource 130
A.3. Use Case 4: Request External Resource 133
A.4. Use Case 5: Execute Mission 135
A.5. Use Case 6: Execute SuperObserver Mission 135
A.6. Use Case 7: Execute Rescue Mission 137
A.7. Use Case 8: Execute Helicopter Transport Mission 139
A.8. Use Case 9: Execute Remove Obstacle Mission 139

Bibliography 141

Index 147

Part 1

HiLA Ante Portas

CHAPTER 1

Introduction

Contents

1.1. UML State Machines: Nice but Not Nice Enough 4
1.2. Modularization 5
1.3. Aspect-Oriented Software Development 5
1.4. Dynamic vs. Static, Declarative vs. Imperative, High-level vs.

Low-level 6
1.5. Conflicts between Aspects 7
1.6. Goals 7
1.7. Organization of This Thesis 8

The Unified Modeling Language (UML, [57]) is the lingua franca in object-
oriented analysis and design. UML state machines are widely used to model dy-
namic behaviors of software systems. State machine models, however, often show
insufficient separation of concerns [19] due to missing language constructs for
structuring and modularization.

It has been proposed to apply techniques of Aspect-oriented Modeling (AOM)
to solve this problem. In AOM, different parts (for instance, different features) of
the system behavior are modeled in separate constructs called aspects and com-
posed together according to some predefined weaving algorithm. Usually, a base
model is used to define a common basis, which is usually the core functionality of
the system, for the aspects to be woven to. The aspects then define modifications
of the base model.

The prevalent proposals of aspect-oriented state machines view aspects as syn-
tactic, as opposed to semantic, modifications of the base model. That is, aspects are
actually model transformations to the base model. These aspects are called static
or transformation aspects.

Since model transformations (and hence transformation aspects) define in the
first instance syntactic modifications to the base model, the change of the semantics
to the base model is often hard to grasp: it often necessitates studying the weaving
result carefully to understand what the new, composed semantics is. Moreover,
conflict detection, i.e. if weaving two or more aspects (model transformations) in
different orders would lead to syntactically different result models, is available only
on the syntactic level. Detection of semantic conflicts, for instance, one aspect
being made effectless by another, is not directly supported.

To overcome these problems, we present High-Level Aspects (HILA), an aspect-
oriented UML extension for state machines. HILA aspects are semantic aspects,
that is, they define in the first instance modifications of the base model semantics

3

4 1. INTRODUCTION

rather than of its syntax; the semantics of an aspect is defined locally in the as-
pect rather than in the weaving result. Therefore modeling with HILA is more
declarative than it is with plain UML state machines or with static aspects.

The semantic nature of HILA aspects also give rise to several other benefits:
HILA facilitates a higher level separation of concerns: modeling and reasoning of
separate aspects is possible in a greater extend than in the case of using plain UML
state machines or transformation aspects; conflict detection is also more accurate.
Moreover, HILA is supported by Hugo/HILA, an extension of the UML trans-
lator and model checker Hugo/RT [45]. The seamless integration with Hugo/RT
facilitates easy model checking of HILA aspects.

In the following, we explain the motivation and goals of this thesis in more
detail.

1.1. UML State Machines: Nice but Not Nice Enough

UML state machines originated from Harel [32] and are nowadays a widely
used language for modeling software behavior. Their application areas include em-
bedded systems [51, 59], web applications [20, 46, 76], software product lines [73],
etc. In fact, they are even considered “the most popular language for modeling re-
active components” [23]. A large number of books, research papers on and tools
for state machines testify this popularity.

The reasons for this popularity seem to be clear: state machines are considered
easy to use, their syntax simple, and their semantics intuitively comprehensible.
In particular, using UML state machines to obtain a better understanding of the
system under modeling seems to be common wisdom: “To understand complex
classes better, particularly those that act in different manners depending on their
state, you should develop one or more UML 2 state machine diagrams” [5].

However, this seeming ease to use vanishes rapidly as soon as the complexity
of the system to model increases. In fact, even state machines modeling “almost
trivial” behavior may get rather hard to understand and error-prone. Maybe it is not
only coincidence that “whenever people write about state machines, the examples
are inevitably cruise controls or vending machines” [29], even for modestly sized
systems intelligible state machines are hard to find.

How can this situation arise? We believe the reason is that state machines are
too low level a language. They provide only case distinction and goto for con-
trol flow. More elaborate behavior, like history-based features or synchronization
of parallel regions, thus easily torpedos the brevity of state machines: elements
modeling one feature get scattered all over the machine, while single elements are
involved in multiple features.

Moreover, it is difficult to modularize state machines, the only structural ele-
ment being submachines. Different features of the system can hardly be modeled
separately and then combined together precisely. As a consequence, it is rarely
possible to “develop more UML state machine diagrams” to model complex be-
havior as proposed in [5]. Instead, a single machine has to define the complete
behavior of the object under modeling. Thus, although drawing “a state machine
diagram for a single class to show the lifetime behavior of a single object” [29] is
not a desirable development methodology, it is more often than not the only choice
to construct a UML state machine.

1.3. ASPECT-ORIENTED SOFTWARE DEVELOPMENT 5

1.2. Modularization

Modularization, however, is the quintessence of efficient software develop-
ment. Ideally, artefacts of a software system are organized in small, independent
units (modules), each specifying, designing, or implementing a part of the whole
system. There should be no interference between the modules for the software de-
veloper to take care of, the interaction of the modules should be defined precisely
and made transparent to the developer, the composition of the modules giving the
complete behavior of the system.

The effort to achieve better modularization has been a main line of Software
Engineering research. The best known example is supposedly the evolution of pro-
gramming paradigms from unstructured over structured and procedural to object-
oriented programming, with procedures, methods and classes modularizing algo-
rithms and data, hiding information and reducing interference as much as possible.

The advantages of a clean modularization are obvious: the achieved informa-
tion hiding allows us to realize and reason about different concerns of the system
locally, without having to take care about other modules, and thus reduces the
complexity of the system. Therefore, it makes a great contribution to enhance the
comprehensibility and maintainability of software systems, and reduction of their
error proneness.

Object-orientation is the most established modern software development para-
digm. As powerful as it is, object-orientation is considered insufficient with respect
to modularization in many systems, see [39]. In object-oriented systems, there are
still many so called “cross-cutting concerns”, which cannot be modeled or imple-
mented in one separate module, but only by several modules jointly (scattering).
Meanwhile, there may also be modules that are responsible for several concerns
(entangling).1 Both scattering and entangling make software maintenance and evo-
lution, even modeling or implementing in the first place, a hard job, since some
module, although involved in some concern, can be easily forgotten, or the one
part of a module, addressing one concern, may have unintended repercussions on
other parts addressing other concerns. The aforementioned difficulty of modeling
non-trivial behavior using UML state machines is actually a result of their insuffi-
cient modularity. Concrete examples will be given in Chap. 2.

1.3. Aspect-Oriented Software Development

One answer to the problem of insufficient separation of concerns in object-
oriented systems is Aspect-Oriented Software Development (AOSD), firstly intro-
duced in the form of Aspect-Oriented Programming (AOP, [40]).

A new programming language construct, aspect, was introduced by AOP. As-
pects are used to define additional or alternative behavior of the program at certain
“interesting” points of time (called join points) in the execution. Possible join
points are before or after method invocation, before or after constructor call, etc.
An aspect contains a pointcut and an advice. The advice defines the additional or
alternative behavior, the pointcut selects a subset of join points of a certain program
(called base program) to apply the advice. This way, an aspect defines a part of
the system behavior separately and non-intrusively, i.e. without modification of the

1For a more formal definition of entangling and scattering see [68].

6 1. INTRODUCTION

base program. The aspects, or, more precisely, their advices, are then woven to-
gether with the base program, the result of the weaving process finally realizes the
desired, complete behavior of the system. Since aspects provide a means to source
out features from the base program, they can help improve modularity, readabil-
ity, maintainability and the chance of correctness considerably. Success stories of
aspect-oriented programming can be found in [1].

In other software development phases, the idea of enhancing object-orientation
with aspects to separate concerns also enjoys great popularity. Aspect-orientation
has been applied in requirements analysis, design and implementation of software
development, for an overview see [27]. In particular, modeling languages may
benefit from aspect-orientation in the same way as programming languages do.
After all, models are nothing else than abstract programs.

1.4. Dynamic vs. Static, Declarative vs. Imperative, High-level vs. Low-level

In Aspect-Oriented Modeling, aspects can be classified as dynamic or static,
see [28]. Static aspects are defined as syntactic transformation of the base model.
Their semantics is structural and can (and can only) be specified as a function on a
set of model elements (the base model). Static aspects are therefore the right choice
to define structural modifications of the base model, or, if the base model contains
only structural information of the system under modeling, as do, for example, class
diagrams. For behavior modeling base models, such as state machines, using static
aspect to define behavior modification is often not a good idea, since the aspect per
se does not define any behavior, only the composition model (the weaving result),
in the form of a new set of model elements, defines a behavior. Therefore, the
semantics of the aspects can be only grasped after careful study of the weaving
result.

Dynamic aspects, on the contrary, are defined as modifications of the behavior
of the base model. Their semantics is defined on top of the semantics, as opposed
to syntax, of the base model. Therefore, a dynamic aspect has its own semantics,
which is a modification of the behavior defined in the base models. Modeling
and reasoning about behavior is therefore facilitated on the behavior level and thus
easier than it is in the case of static aspects.

In this sense, dynamic aspects are declarative, whilst static aspects are im-
perative. With dynamic aspects, the modeler simply defines the intention of the
modification to the base model’s behavior, the implementation details being hid-
den behind the weaving process. With static aspects, it must be modeled how to
realize the modification by adding model elements to or removing model elements
from the base model. Obviously the latter is in most cases much more cumbersome
than the former.

Note that static approaches are generally more powerful than dynamic aspects.
In fact, since dynamic aspects are also implemented by introduction of model ele-
ments to the base model or removal of model elements from the base model, every
dynamic aspect can also be “implemented” by static aspects. Oppositely, it is rather
easy to construct examples of static aspects that are difficult to be simulated by dy-
namic aspects, if it is possible at all. The real advantage of dynamic aspects is
not being more powerful, but rather being more “user-friendly”, since the modeler
no longer has to worry about the implementation details. In this sense, dynamic
aspects are high-level, static aspects are low-level aspects.

1.6. GOALS 7

1.5. Conflicts between Aspects

Obviously, only in simplest cases one aspect suffices for designing the system
behavior. Realistic systems often necessitate a large number of aspects. Their
interference, or rather conflicts, has always been a hot topic of the AOSD research.

In fact, aspects are deemed to be a two-edged weapon. The arguments of why
Aspect-Oriented Programming is considered harmful [16] or why its success para-
doxical [64] are also valid in the context of Aspect-Oriented Modeling. In partic-
ular, compared to classes and methods in object-oriented systems, the interaction
between aspects is much more subtle and often only implicitly defined. While
individual aspects may correctly realize single concerns in separation, their com-
position may not show the desired properties, since some aspect interferes with
others, see [2]. Therefore, it is very important in the design of aspect-oriented lan-
guages to minimize the interference between aspects, and to deliver mechanisms
for interference detection.

The optimal interference detection should mark all semantically interfering as-
pects, but none syntactically conflicting ones. Roughly spoken, aspects are seman-
tically interfering if weaving them in different orders yields different composition
models defining different behavioral semantics; aspects are syntactically conflict-
ing if weaving them in different orders yields syntactically different composition
models. Clearly, semantically interfering is stronger than syntactically conflicting;
if aspects are semantically interfering, they must be syntactically conflicting but
not vice versa.

However, “marking all semantically-conflicting aspects” is an undecidable prob-
lem. This task can only be achieved by simulating the complete system. More
practical are conservative approximations, which means automatic warnings are
given at each potential conflict, and it is a human expert that decides whether a po-
tential conflict is also an actual conflict. The most conservative approximation is to
give a warning at each syntactic conflict. Undoubtedly, improving the accuracy of
the conflict detection mechanism, establishing detection rules less yet sufficiently
conservative, is more than desirable.

1.6. Goals

The goal of this research is therefore to define an aspect-oriented extension
of UML state machines. Our language is called High-level Aspects (HILA). The
principle requirement for HILA is that it be a high level language, that is, HILA
aspects should be used to simply specify what is to be done by the system, without
the modeler having to define the details of how it should be done.

The other goals of this research are as follows

• In order to enable seamless integration of HILA and UML, HILA should
to be embedded into the UML by an abstract syntax defined as an exten-
sion of the UML metamodel.
• Detection of conflicts between aspects has always been an important topic

in the research of aspect-oriented software development. The weaving
algorithm of HILA should be designed in such a way that the potential
of conflicts between aspects is minimized. Moreover, mechanisms for
automatic detection of remaining conflicts should be given.

8 1. INTRODUCTION

• The semantics of HILA should be defined precisely as a structural oper-
ational semantics. Formal validation of its models should be enabled, so
that modeling mistakes, if any, could be uncovered as early as possible.
• Finally, weaving of HILA aspects should be automated by some tool

support.
The following chapters will show in detail how these goals are reached.

1.7. Organization of This Thesis

The rest of this thesis is organized as follows:
In the rest of Part 1, we
• briefly review the syntax and semantics of UML state machines, and show

why it is hard to model certain problems with them modularly (Chap. 2),
• give an introduction of the static approaches of aspect-oriented state ma-

chines, and show why they do not provide a satisfactory answer of the
modularity problems of the UML state machines (Chap. 3).

In Part 2, we
• define the abstract and concrete syntax and an informal semantics of

HILA, and show how it can be used to enhance the modularity of UML
state machines (Chap. 4),
• show the weaving algorithms of HILA aspects (Chap. 5).

In Part 3, we
• define a formal semantics of HILA aspects (Chap. 6),
• discuss potential conflicts between HILA aspects, and their detection

(Chap. 7).
Finally, in Part 4, we
• show how HILA is applied to a larger scale application to demonstrate

its practical applicability (Chap. 8),
• discuss related work (Chap. 9),
• and give some concluding remarks and an outline of some future work

(Chap.10).

CHAPTER 2

UML State Machines

Contents

2.1. Syntax and Informal Semantics 9
2.1.1. Syntax 10
2.1.2. Metamodel 11
2.1.3. Informal semantics 12
2.1.4. Execution model 13
2.2. Hard-to-Model Features 14
2.2.1. Synchronization 14
2.2.2. History-based Behavior 15
2.3. Feature Interference 16
2.4. Wanted: Better Separation of Concerns 17

UML state machines are a very popular language for modeling system behav-
iors, especially for reactive systems. They are deemed as simple and intuitive [29],
and are applied to software development in quite a few areas. However, the com-
plexity of UML state machine models may increase rapidly as soon as the sys-
tem under modeling gets complex. This is due to two inherent weaknesses of
UML state machines: 1) the language is very low-level, the only control flow con-
structs being case distinctions and gotos; 2) modularization is only insufficiently
supported, the only modularization construct being submachines. As a result, state
machines modeling non-trivial systems can get rather hard to read, hard to con-
struct, and prone to errors.

In the following, we study by means of a few examples the syntax and informal
semantics of UML state machines, as well as the weaknesses of the language.
To mitigate these weaknesses is the main motivation of this thesis and therefore
poses the requirements of the UML state machine extension that we envisage. The
requirements will be discussed at the end of this chapter.

Publication Notice. Part of this chapter was published in [82, 83].

2.1. Syntax and Informal Semantics

We use the sample state machine as given in Fig. 2.1b to review the syntax and
semantics of UML state machines according to the UML specification [57].

The state machine models a sentinel in a computer game. The sentinel has an
integer attribute p, which indicates his power between 0 and 100, 0 meaning that he
is dying. The main behavior of the sentinel is modeled in the state Running, where,
very briefly speaking, he may be Idle to tank his power, Patrolling through three
rooms, or Fighting. His power changes during fighting (not modeled explicitly in
this machine), an increase indicating a win, a decrease a loss. If the sentinel lost

9

10 2. UML STATE MACHINES

too much power and p is no longer positive, he dies. The class diagram is given in
Fig. 2.1a.

p: int
cr: int

defeat: int[]
oldp: int

Sentinel

«signal» go
«signal» finished

«signal» attack

(a) Class diagram

Patrolling
attack / defer

attack
[!inState(Room1)]

Fighting
entry /
 oldp = p;

go

inState(Fighting)]
[inState(Patrolling) ||

defeat(2) <= defeat(3)]
inState(Fighting)) &&
[(inState(Patrolling) ||

finished

defeat(3) <= defeat(2)]
inState(Fighting)) &&
[(inState(Patrolling) ||

finished

&& !inState(Fighting)]
|| inState(Fighting))
[(inState(Patrolling)
finished

finished Room3
finished / defer

Room2
finished / defer
entry / cr = 2 entry / cr = 3

[p > 0] / if (p < oldp) defeat(cr)++;

Room1
finished / defer
entry / cr = 1

Running

Idle
do /

p++;
while (p < 100)

[p <= 0]

quit quit

Init

Dying

(b) State machine

Figure 2.1: Example: Sentinel

The sentinel is supposed to exhibit some intelligence in the following features:
(1) The sentinel should not be Fighting while he is in Room1.
(2) Changing room is only allowed when the sentinel is Patrolling or Fighting.
(3) When leaving Room1, the sentinel is required to enter the room where it

has lost the fewest fights so far.
Moreover, it is designed so that the user can quit the game any time.

The details of how these features are modeled in Fig. 2.1b will be discussed
later on, but a brief glance makes clear that even a UML state machine modeling a
small number of rather simple features like these may get rather complex, hard to
understand, and thus invite mistakes.

2.1.1. Syntax. A UML state machine consists of regions which contain ver-
tices and transitions between vertices. The sentinel machine in Fig. 2.1b contains
one region. A vertex is either a state, in which the state machine may dwell, and
which may hierarchically contain its own regions; or a pseudo state used for build-
ing compound transitions. Transitions are triggered by events and describe, by
leaving and entering states, the possible state changes of the state machine. The
events are drawn from an event pool associated with the state machine.

2.1. SYNTAX AND INFORMAL SEMANTICS 11

A state is simple, if it contains no regions (such as Init, Idle, etc. in Fig. 2.1b); it
is composite, if it contains at least one region; a composite state is said to be orthog-
onal if it contains several regions, visually separated by dashed lines (Running). A
state may show an entry behavior (like in Fighting) and an exit behavior (not shown
in Fig. 2.1b), which are executed on activating and deactivating the state, respec-
tively; a state may also show a do activity (Idle) which is executed while the state
machine sojourns in this state. Transitions are triggered by events (attack, go, etc.),
may show guards (!inState[Room1] etc.), and specify actions to be executed when
a transition is fired (not shown). Completion transitions (such as the ones leaving
Fighting) are triggered by an implicit completion event emitted when a state com-
pletes all its internal activities. Events may be deferred (like in Patrolling and the
Room states), that is, put back into the event pool, if they are not to be handled
currently but only later on. Note that we write the deferring of completion events
as * / defer. By executing a transition, its source state is left and its target state
entered. An initial pseudo state, depicted as a filled circle, represents the starting
point for the execution of a region. A final state, depicted as a circle with a filled
circle inside, represents the completion of its containing region; if all regions of a
state machine are completed the state machine terminates.1

Some other model elements are not shown in this example: Junction pseudo
states, also depicted as filled circles, may be used for case distinctions. Transitions
to and from different regions of an orthogonal composite state can be synchro-
nized by fork and join pseudo states, presented as bars. Entry and exit points make
explicit the entry and the exit of composite states.

In this research, we do not consider shallow and deep history pseudostates and
choice pseudostates. They can be simulated by other model elements; and are
omitted in this thesis for simplicity.

2.1.2. Metamodel. The metamodel of UML state machines that we study in
this thesis is given in Fig. 2.2. There are some differences between this metamodel
and the one given in the UML Specification [57].

Vertex Transition

ConstraintClass

Trigger

BehaviorFinalState

State

StateMachine

Region
1
source

target

guard1
1

*
*

deferrable
Trigger

do
1
effect

exit
1

entry
1 1

Pseudostate
kind: PseudostateKind

1

1 top

*

subvertex1
container

junction
fork
join
initial

PseudostateKind
«enumeration»

*

Figure 2.2: Simplified metamodel of UML state machines

1The two paragraphs above are mainly taken from [44], with some minor modifications of the
text.

12 2. UML STATE MACHINES

• While according to [57, p. 527] there may be several regions in a state
machine, we assume that a state machine always has one region, which
we call top. Parallelism can be modeled in a orthogonal state, concurrent
regions on the top level are not necessary.
• We do not distinguish the different kinds of transitions. A distinction

would not have any effect on the discussion in the later chapters.
• We do not consider entry and exit vertices. They are only syntactic con-

structs, and can be easily eliminated from the state machine in a semantics
preserving way.
• We do not consider deep and shallow history vertices. These can be sim-

ulated by variables to store the last active state.
• We do not consider terminate or choice vertices. Including these vertices

would make our discussion in Chaps. 5 and 6 unnecessarily complex,
without producing any substantial scientific contribution. Choices can be
simulated by simple states.
• We removed the container association between Transition and Region.

The semantics of this association is not clearly defined in [57].
• We require that a state always have an entry, an exit and a do behavior,

which may be skip, having no effect on the environment.
• We require that a transition always have an effect, which may be skip, and

that a transition always have a guard, which may be true.
• We require that if there are transitions leading to a composite state S, then

each region of S must contain an initial vertex. Though this is actually
not required by [57], it is necessary since otherwise the semantics of S’s
activation would be undefined.
• As opposite to [57, p. 532], we allow final states to have entry and exit

behaviors. Since FinalState is a subclass of State, we think it more natural
to allow final states to have the properties that states have. However, we
stick to the requirements of [57, p. 532] that final states must not have
regions or outgoing transitions, since their semantics would be highly
dubious.

Apart from these minor differences, Fig. 2.2 defines the same metamodel as
defined by the UML Specification [57, p. 527].

2.1.3. Informal semantics. Aa state gets active when entered and inactive
when exited as a result of a (compound) transition. The set of currently active
states is called the active state configuration. When a state is active, so is its con-
taining state. The active state configuration is thus a tree starting from the states
in the top-level region down to the innermost active substates. The execution of a
state machine consists in changing its active state configuration in dependence of
the current active states and a current event dispatched from the event pool. We
call the change from one state configuration to another an execution step: First, a
maximally consistent set of prioritized, enabled compound transitions is chosen.
Transitions are combined into compound transitions by eliminating their linking
pseudo states; for junctions this means to combine the guards on a transition path
conjunctively, for forks and joins to form a fan-out and fan-in of transitions. A
compound transition is enabled if all of its source states are contained in the ac-
tive state configuration, its trigger is matched by the current event, and its guard
is true. Two enabled compound transitions are consistent if they do not share a

2.1. SYNTAX AND INFORMAL SEMANTICS 13

source state; an enabled compound transition takes priority over another enabled
compound transition if its source states are below the source states of the other
transition in the active state configuration. For each compound transition in the
set, its least common ancestor (LCA) is determined, i.e. the lowest composite state
containing all the compound transition’s source and target states. The compound
transition’s main source state, i.e. the direct substate of the LCA containing the
source states, is deactivated, the transition’s actions are executed, and its target
states are activated.2

EXAMPLE 2.1 (Run). A run of the sentinel state machine (Fig. 2.1b) may begin
as follows:

(1) When the state machine is started, state Init gets active.
(2) The transition leading to Running is fired, resulting in the deactivation

of Init and the activation of Running, which means that its two parallel
regions are executed in parallel. The first stop they make is at Room1 and
Idle. The active state configuration thus consists of three states: Running,
Room1 and Idle. Upon entering Room1, the variable cr is assigned the
value 1.

(3) In this configuration, the next event that can be handled is go. An event
finished would be deferred, since the OCL constraint inState(Patrolling)
|| inState(Fighting) is not satisfied, and therefore no transition leaving
Room1 is enabled. Any other event would be simply discarded since
no transition is enabled. Upon go, the sentinel starts patrolling, the active
state configuration now consists of Running, Room1, and Patrolling.

(4) In this configuration, the sentinel may go to another room. Since all three
elements of the array defeat have the value 0, and inState(Patrolling) is
true, both transitions leaving Room1 are enabled. Therefore, he may non-
deterministically choose to enter Room2 or Room3.

(5) Upon a quit event, state Running amongst its substates will be deactivated,
and Dying activated. The active state configuration will contain only Dy-
ing.

2.1.4. Execution model. The semantics above is very abstract. The UML
Specification [57] intentionally leaves much freedom for the actual implementa-
tion. In the following, we highlight some important assumptions of the execution
model of UML state machines our research is based on. This model is in accor-
dance to the semantics given in [44].

• It cannot be emphasized enough that state machines generally model par-
allel behaviors. If a stable state configuration contains a state in one re-
gion, then it also contains one from each of other regions of its container
state.
• In a stable state configuration, there is at most one active state in each

region. If a region contains an active state, it is referred to as an active
region.
• In general, a multitude of transitions are fired at each execution step: one

from each active region, unless the active state in a region does not react
to the current event.

2The paragraph above is mainly taken from [44], with some minor modifications of the text.

14 2. UML STATE MACHINES

• The enabled transitions are fired in pseudo parallel mode. The order of
the enabled transitions being fired is not predictable.
• Firing a transition is considered atomic, which means that the following

actions cannot be interrupted: 1) deactivating the source, 2) executing
the exit action of the source, 3) executing the effect of the transition, 4)
executing the entry action of the target, and 5) activating the target.
• Synchronization of parallel regions is based on messages: when two

states in two different regions are active, and there are transitions leav-
ing from each of them that are enabled by the current event, then these
two regions should make a step (pseudo) simultaneously.
• If the current event does not enable any transition, it is discarded, unless

it is declared as “deferrable”. In this case it is put back to the event pool,
and will be handled when it does enable some transition.

2.2. Hard-to-Model Features

UML state machines work fine as long as the only form of communication
among states is the activation of the subsequent state via a transition. More of-
ten than not, however, an active state has to know how often some other state has
already been active and/or if other states (in other regions) are also active. Unfor-
tunately, behavior that depends on such information can hardly be modeled modu-
larly in UML state machines. In the following, we illustrate by examples some of
the features that may make UML state machines all messed up.

2.2.1. Synchronization. Clearly, synchronization of parallel regions is a cross
region feature, which means that it breaks the most natural way of separation
of concerns by regions. Both simultaneous action execution in parallel regions
and mutual exclusion of states being simultaneously active necessitate pervasive
change of states and transitions modeling other features of the system. Moreover,
in case transitions cannot get active because of some synchronization rule, it is
often necessary to declare the trigger events to be deferrable since otherwise they
would be simply lost.

For example, consider the mutual exclusion requirement for our sentinel mod-
eled in Fig. 2.1b that he not get Fighting while he is in Room1. How is this simple
feature modeled there? Consider only the lower region for simplicity. It might be
obvious that the transition entering Fighting must be guarded by the OCL-constraint
!inState(Room1), but this is only the half of the truth: Patrolling still has to declare
the event attack to be deferrable, otherwise attack would be lost if Room1 and Pa-
trolling are both active, since the transition to Fighting is not enabled. The sentinel
would then stay in the state Patrolling until the next rest event is handled.

Another example is the feature of the sentinel that when leaving Room1 he
should always choose a room to enter where he has so far lost at the least. Modeling
this feature requires quite much of cross region thinking:

• In the upper region, every room must claim to be the current room by
assigning the variable cr the corresponding value.
• In the lower region, Fighting must contain an entry action to save the value

of p when the fight starts. Moreover, the transition from Fighting to Idle
first has to check if the last fight was lost (if (p< oldp)) and then to update
the array defeat which stores how often he has lost in which of the rooms.

2.2. HARD-TO-MODEL FEATURES 15

• Back in the upper region, this information is used to expand the guard of
every transition to ensure that it is only enabled when the sentinel has its
target the least frequently.

Obviously, it is not satisfactory that the model elements modeling such a simple
feature are scattered all over the state machine, and that the comprehension of the
model requires carefully studying the semantics of the assignments and the guards.

2.2.2. History-based Behavior. Since the UML state machine does not keep
track of the execution history, it is also difficult to model history-based behaviors,
no matter if cross region or not.

For example, consider Fig. 2.3a, which models an e-learning system, where
the user first logs in (Login), selects a level of difficulty (SelectLevel), and then
proceeds to answering questions of this level. The system tells him whether his
answer is right (Right) or not (Wrong). If it is right, the user may proceed to the
next question; if not, he may choose to try again, to see the key to the question
(ShowKey), or to proceed to the next question. Instead of answering the current
question, the user may also choose to go to another level.

Suppose the selection of a level l > 0 should be allowed only if the user has
already answered minRight questions of level l − 1 in a row, otherwise the system
should give an error message. We call this feature minRt. Figure 2.3b, which
is taken from a previous publication [83], shows how minRt might be modeled
in a standard UML state machine: a new attribute variable crir is introduced for
counting the length of the current stroke of correct answers (current right in a row),
it is incremented in state Right and reset to 0 once Wrong is active. An array r is
introduced to store the maximal length of crir at each level. Once the user gives a
wrong answer, the system has to check if this record should be updated using the
predefined function max to assign r[l] the greater value of the current value of r[l] and
crir. In order to know whether the user has selected in SelectLevel a different level
than the current one or just continues with the same level, another new variable
cl stores the current level each time SelectLevel is entered. The transition from
SelectLevel to ShowQuestion is split into two to handle the cases whether the level
selected by the user is selectable or not. Finally, the variable crir has to be reset to 0
when the user has successfully changed to another level. It is rather unsatisfactory
that the model elements such as crir involved in this one simple feature are scattered
all over the state machine, switching the feature on and off thus is difficult and
requires modifications all over the state machine. The state machine gets rather
hard to understand and maintain.

If this is not bad enough, this model is even wrong! Consider the following
scenario: the user answers minRight times correctly at level 0, and, without an-
swering any question wrong, proceeds to selecting level 1. Since in this case the
state Wrong does not get active, the state machine does not have a chance to up-
date the array r, and consequently, when a new level is selected in SelectLevel, the
transition to ShowQuestion compares the old value of r[l-1] that does not reflect the
latest lucky streak of the user to minRight, and may therefore falsely decide not to
allow him to proceed. This mistake was not discovered until we model checked
Fig. 2.3b using the tool Hugo/RT [45], six months after the publication of [83].
This mistake is corrected in Fig. 2.3c, where another feature is also modeled, see
below.

16 2. UML STATE MACHINES

Login
entry / l = inputLevel()

SelectLevel

setLevel

inputAnswer

again

[right]
Right

Wrong

[else]

next

key

ShowKey
next

newLevel

end

ShowQuestion

(a) Basic feature

Login ShowQuestion

ShowKey

do / crir ++

Right

ShowError

SelectLevel

end

inputAnswer [right]

[else]

next

next

newLevel

do / r[l] == max(r[l], crir);

Wrong

key

again

crir = 0

l = inputLevel()
entry / cl = l;

setLevel [l == 0 || r[l−1] >= minRight] / if (cl != l) crir = 0

setLevel [else]

(b) Modeling level selection restriction using standard UML (erroneously)

ShowQuestion

ShowKey

Login

ShowError

ShowErr

SelectLevel

setLevel [(l == 0 || r[l−1] >= minRight) && rt[l] < maxRight] / if (cl != l) crir = 0

end

/ r[l] = max(r[l], crir)

entry / cl = l;
l = inputLevel()

[right] Right

do / crir ++;

next

next

do / r[l] = max(r[l], crir);

Wrong

key

again

crir = 0

inputAnswer
newLevel

[else]

 / rt[l]++

setLevel [else]

[else][rt[l] >= maxRight]

(c) Modeling two additional features using standard UML

Figure 2.3: Example: an e-learning system

2.3. Feature Interference

Different features of a software system are seldom orthogonal, instead, they
may interact with each other, impairing or even canceling the effects of each other.
Therefore, for software systems with a multitude of features, quite a lot modeling
complexity is caused by conflicts between different features. This also applies to
state machines, where coordination of individual features may also get annoying
when building UML state machines. Conflict detection requires carefully studying

2.4. WANTED: BETTER SEPARATION OF CONCERNS 17

the model, the reconciliation accurate manipulation of the transition guards. More-
over, additional model elements become necessary to prevent events being lost if
one feature is overruled by another.

Back to our e-learning system (Fig. 2.3a), consider an additional feature, which
we call maxRt, with the intention of keeping it challenging: as soon as the user
has mastered a level l, which is assumed when the user has answered maxRight
question on this level correctly, he is no longer allowed to answer a question on the
level any more (and is forced to choose a more difficult level).

This feature is modeled in Fig. 2.3c. Yet another array rt (right) is used to
store the number of right answers given in each level. The transitions leading to
ShowQuestion must be extended by a guard to guarantee that the maximal number
of right answers has not been reached yet, otherwise the transition is stopped, and
an error message is shown. Note we reused the state ShowError for this error
message too, a distinction of too many or tow few right answers would just make
the model more complex.

Like most features in realistic projects, including maxRt in the system poses
a number of questions. While the feature minRt already defines a restriction of
level selection, maxRt defines another. How do these two restrictions interact? Is
it possible that one of them allows the selection of a level and the other forbids it?
If yes, which one should overrule the other? Moreover, it might be obvious that
when only one of the restrictions is applied, every level is, independently of the
actual value of minRight or maxRight, somehow reachable, but is it still the case
when both of them are applied?

Why are such interactions hard to handle in UML state machines? First, given
an even rather simple state machine like Fig. 2.3c, the detection of such interactions
requires carefully examination of the machine. Second, even when conflicts have
been detected, their reconciliation it is not an easy job, since the “who-rules-whom”
decision has to be implemented by precisely arranging the “and”s and “or”s in the
guards of the transitions. In Fig. 2.3c, we decided to require that both restrictions
be satisfied for the user to select a new level. A biased prioritization of the two rules
would lead to a model that has slight differences in syntax and major differences
in semantics than Fig. 2.3c.

A third, perhaps the most annoying problem is the need of feature coordination,
which means a separation of concerns by features is, albeit very natural, hardly
possible, since the modeler has to pay much attention to the coordination of the
feature with each other or with the base machine. For example, modeling feature 1
(p. 10) in Fig. 2.1b hinders the sentinel from always being capable to react to
an event attack while he is Patrolling, and requires therefore to declare attack as
deferrable in Patrolling, since otherwise the event would be lost when the sentinel
is Patrolling but cannot get Fighting since he is in Room1. Having to change model
elements in the base machine, or those modeling other features (not shown in this
example), is obviously poisonous for separate modeling of different features.

2.4. Wanted: Better Separation of Concerns

The discussion above made clear that even supposedly simple features may be
hard to model in UML state machines, the models may therefore get hard to read,
and be, more often than might be expected, erroneous. Highly desirable would

18 2. UML STATE MACHINES

be therefore new language constructs which enable a better separation concerns,
which means

(1) different features are no more entangled, but modeled separately from
each other,

(2) model elements concerning one feature are not scattered all over the
model, but gathered in one place,

(3) coordination of features no longer needs to be modeled explicitly, but is
taken care of by a precisely predefined algorithm which composes the
features together,

(4) possible interferences between features are revealed automatically, prior-
ity of certain rules over others is defined explicitly as opposed to implicit
modeling, e.g. by combining transition guards with “and” or “or”.

As stated in Chap. 1, Aspect-Oriented Modeling is deemed to be a promising
paradigm for separation of concerns in software design. In the following, we will
study why the so called static aspects do not fully satisfy these requirements before
presenting our dynamic approach to solving the aforementioned problems of UML
state machines.

CHAPTER 3

Static Aspects

Contents

3.1. Syntax and Informal Semantics 20
3.2. Metamodel 21
3.3. Weaving 21
3.3.1. Graph Grammar 21
3.3.2. Rules implementing aspects 22
3.4. Consistency Checking 22
3.5. Discussion 23

The success of Aspect-Oriented Programming in enhancing the separation of
concerns in programs gave rise to aspect-oriented modeling approaches to achiev-
ing a better modularization of cross-cutting concerns in software design models. In
most prevalent approaches, a base model is used to specify the core functionality
of the system, and in aspects, separated from the base model, other parts of the
system behavior are modeled. The composition of the aspects and the base model
is achieved in a weaving process.

The aspects fall into two categories:

• Static (low-level) aspects define modifications of the syntax of the base
model. A static aspect defines a transformation of model elements of
the base model. Static aspects are therefore also called transformation
aspects.
• Dynamic (high-level) aspects define modifications of the semantics of the

base model. A dynamic aspect defines a transformation of the behavior
defined by the base model.

The state of the art approaches of aspect-oriented state machines are static in
the sense that in these approaches aspects are defined as syntactic modifications
of the base model. While these approaches provide valuable support for separate
modeling of parts of the system behavior, modeling non-trivial systems with these
approaches may still get cumbersome and error prone, since they do not increase
the degree of abstraction of the modeling language, and the modeler still has to
implement the system behavior in every detail.

While our work [79] was one of the first approaches of static aspects, the focus
of this thesis is on high-level, dynamic aspects. In this chapter, we first present
the definition of our static aspects, then we show how this language can be used in
Aspect-Oriented Modeling, and discuss why static aspects alone are not sufficient
for effective software development with state machines. The reasons why it is not
very satisfactory to model non-trivial systems with our static aspects also apply to
other static aspect approaches.

19

20 3. STATIC ASPECTS

3.1. Syntax and Informal Semantics

In HILA, the syntax of static aspects is a slight adaption of the one presented
in [79]. The syntax defined by other approaches that view aspects as model trans-
formations, such as [75], could also be used.

«transformation pointcut»

«aspect»
Name

«transformation advice»

ME*

M*

Figure 3.1: Transformation aspects

HILA’s static aspects are not only applicable to state machines, but rather to
any UML diagram (called the base model). A static aspect contains a �transfor-
mation pointcut� and a �transformation advice�, see Fig. 3.1. The transformation
pointcut contains a pattern. The pattern contains an arbitrary set of model elements
ME*, e.g. classes, vertices, or transitions, and can match a fragment of the base
model. We require that at most one fragment of the base machine can be matched.
That is, our static aspects, as opposed to other prevalent approaches, do not sup-
port quantification per se. This is less a restriction that it seems to be, since aspects
can be defined as UML templates, and quantification can be realized by multiple
instantiations.

The meaning of the aspect is that the fragment of the base machine that matches
ME* should be replaced by the model elements contained in the advice, M*. Note
that weaving is not recursive, but executed only once.

There are some special cases defined:

• If the (transformation) pointcut is empty, then the (transformation) advice
is added to the base model.
• Elements having the same name in the pointcut as in the advice refer to

the same elements.
• Internal variables have names that begin with a question mark.

A

«transformation pointcut»

«transformation advice»

«aspect»
IntroduceClass

(a) Introducing class A to the system

X A

AX

«transformation advice»

«transformation pointcut»

«aspect»
IntroduceAssociation

X: Class

(b) Introducing an association between X and A

Figure 3.2: Example: static aspects

3.3. WEAVING 21

EXAMPLE 3.1. Figure 3.2 shows two static aspects. In Fig. 3.2a the pointcut
is empty. The aspect therefore means that the advice, consisting of class A only,
should be added to the base model. In Fig. 3.2b an aspect template is defined: it
has a formal parameter X of the type UML Class, the pointcut matches the pair of
X and another class A, the advice introduces an association between them.

3.2. Metamodel

The metamodel of static aspects is very simple. A TransformationAspect con-
sists of a TransformationPointcut and a TransformationAdvice. All three metaclasses
are defined as subclasses of UML Package (see Fig. 3.3), thus being capable of
containing other UML elements.

Aspect
Transformation

Pointcut
Transformation

Advice
Transformation11

(UML)
Package

Figure 3.3: Metamodel: static aspects

3.3. Weaving

The graphical character and the “match-and-replace” semantics of static as-
pects suggest the use of graph transformation for implementation. We implement
our static aspects with the Attributed Graph Grammar System (AGG, [67]). Weav-
ing is realized by the following procedure:

(1) translate the base model and the aspects to a graph grammar system,
(2) use AGG to realize the transformations,
(3) translate the resulting graph back to UML.

The weaving of our approach [79] was prototypically implemented according
to this procedure in [72].

3.3.1. Graph Grammar. Graph grammars are used to define modifications
of graphs. A graph contains nodes and edges. A graph grammar consists in a set
of rules {ri | i ∈ N}. A rule r has a left hand side LHS(r), a right hand side
RHS(r), and an optional negative application conditions NAC(r), each of the three
components being a set of nodes and edges.

The semantics of a graph grammar is defined in terms of Category Theory [26]
and is beyond the scope of this thesis, the interested reader is referred to [24].
Informally, a rule r is applicable to a graph G iff. LHS(r) matches some fragment
F of G while the NAC(r), if any, does not match F . When r is applied, the matched
fragment is replaced by RHS(r). Applying a graph grammar to G means applying
all its rules to G: first the setR of applicable rules are determined, then one element
r ∈ R is selected non-deterministically and applied to G, yielding another graph
g′, which is used in the next iteration. These two steps are repeated until there is
no applicable rule any more.

22 3. STATIC ASPECTS

3.3.2. Rules implementing aspects. The implementation is straight forward.
We consider the base model as a graph, and construct for each aspect a rule r, with
the pointcut as LHS(r) and the advice as RHS(r). This way, the graph grammar
defines the model transformation semantics of the aspects.

Note that a static aspect in our approach is woven only once, while in graph
grammar systems in general and AGG in particular, a rule can be applied recur-
sively. Especially in aspects for introduction of model elements into the base model
(e.g. Fig. 3.2b), where the pointcut is a subset of the advice, we need to implement
some mechanism to stop avoid recursive, thus non-terminating, weaving of such
aspects.

To this end, for each aspect, if its pointcut is a subset of its advice, we weave
into the corresponding grammar rule a NAC, consisting of the same elements of the
RHS. The rule is only applicable when the graph does not match the NAC, i.e. the
RHS. At run time, after the (first) application of this rule, the resulting model will
contain the RHS, thus the NAC will prevent the rule from being executed again.

name = "C"

n : Class

name = "A"

n : Class

(a) LHS

: Property : Association : Property

name = "A"

n : Class

name = "C"

n : Class

ownedAttributeownedAttribute

(b) NAC

: Property : Association : Property

name = "A"

n : Class

name = "C"

n : Class

ownedAttributeownedAttribute

(c) RHS

Figure 3.4: Example: weaving of Fig. 3.2b, X bound to C

If the pointcut is not a subset of the advice, after one execution of the rule, the
fragment matching the pointcut will be replaced by one that does not, and the rule
will not be applicable to the resulting graph any more.

EXAMPLE 3.2 (Weaving of static aspects). Figure 3.4 shows how an instance
of the aspect IntroduceAssociation (Fig. 3.2b) is translated to a graph grammar
rule, where the formal parameter X was bound to a class C. The LHS (Fig. 3.4a)
contains the pointcut, the RHS (Fig. 3.4c) contains the advice. Since LHS ⊆ RHS,
a NAC = RHS is also generated to avoid recursion application of this rule.

3.4. Consistency Checking

Two or more aspects are conflicting if weaving them in different orders leads to
different result models. For example, the two aspects in Fig. 3.2 are conflicting if
the basis model does not contain a class A: first weaving Fig. 3.2a and then Fig. 3.2b
yields a model which contains class A, connected with associations from selected
classes (the actual parameters X in Fig. 3.2b is instantiated with). First weaving

3.5. DISCUSSION 23

Fig. 3.2b and then Fig. 3.2a, on the contrary, would yield a model in which class
A is contained in isolation, i.e. not connected to other classes. The reason is that
when weaving Fig. 3.2b first, there is still no class A in the base model, which
means the pointcut does not match any part of the model, hence there is nothing
to weave. Then, in the next step, weaving of Fig. 3.2a, class A is woven into the
model, without associations.

In graph grammar systems, consistency checking is also an important topic.
Given a graph G, two or more grammar rules are conflicting if applying them to G
in different orders leads to different result graphs. If in a graph grammar system
the rules are not conflicting, the system is called confluent.

Since we implement our static aspects by graph grammars, the question of
consistency between aspects amounts to the confluence of the graph grammar ,
which can be checked automatically by the tool of AGG. This technique is widely
used by static aspect approaches, see [38].

3.5. Discussion

Static aspects are a rather popular way for separation of concerns on the level
of software design, proposals presented so far include [2, 66, 75]. Compared with
these approaches, the pointcut language of our approach does not allow quantifi-
cation by pattern matching. Instead, we use UML templates to define aspect tem-
plates and source out quantification to the binding of the formal parameters. The
outsourcing makes the semantics of our static aspects easier to understand, without
reducing the expressive power of the language. Selection languages like JPDD [31]
can be easily used to select the model elements a formal parameter should be in-
stantiated with.

Static aspects are actually model transformations. Consistency checking via
automatic confluence checking of the underlying graph grammar system helps the
modeler design conflict free aspects [33, 74].

On the other hand, static aspects are low level constructs: they define only syn-
tactic modifications. The understanding of the weaving result’s semantics requires
carefully studying the result model; modeling using static aspects is as error-prone
as directly modifying the base model. This can be seen in the following example.

EXAMPLE 3.3 (Modeling the minRt feature of the e-learning example with
static aspects). Figure 3.5 shows a static aspect based implementation of the level
selection restriction minRt of our e-learning system, using Fig. 2.3a (p. 16) as the
base model. For separation of concerns, the required modifications of the base
model are defined in two aspects: MinRightGuard models mainly how to split the
transition from SelectLevel to ShowQuestion into two to handle the cases whether
the user may or may not change level. In particular, the guard of the transition in the
base model is stored in ?G in the pointcut and reused in the advice. An additional
state ShowError is introduced to give an error message. More complex is the aspect
Array, modeling how to introduce an array r and a variable crir to do the counting.
The value of crir is increased in Right, set to zero in Wrong, where the array r is
also updated to store the current maximal length of sequential right answers. Note
that the transition from SelectLevel to ShowQuestion, already modified once in
aspect MinRightGuard, needs modification again, i.e. its effect must be extended
by an action to set crir to zero if the user has chosen a new level (cl != l, cl is set
by an extension of the entry action of SelectLevel). Finally, the transition from

24 3. STATIC ASPECTS

ShowQuestion

ShowQuestion

ShowError

SelectLevel

setLevel[?G]

SelectLevel

setLevel [else]

«aspect»
MinRightGuard

«transformation pointcut»

«transformation advice»

setLevel [?G && l == 0 || r[l−1] >= minRight]

(a) Splitting the transition from SelectLevel to
ShowQuestion into two

do / r[l] == max(r[l], crir);

Wrong

crir = 0

ShowQuestion

ShowQuestion

WrongRight

entry / cl = l; ?Z

SelectLevel newLevel

/ r[l] = max(r[l], crir)

setLevel[?G] / ?A; if (cl != l) crir = 0

newLevel

setLevel[?G] / ?A

«aspect»
Array

«transformation pointcut»

«transformation advice»

SelectLevel

do / crir ++

Right

entry / ?Z

(b) Implementing the array to count the current num-
ber of right answers in a row

Figure 3.5: Example: static aspects modeling the minRt feature of the e-learning
system

ShowQuestion must also extend its action to set r[l], otherwise this modeling would
exhibit the same mistake as the one in Fig. 2.3b.

This example reveals some of the reasons why static aspects are sometimes
suboptimal

• Static aspects are less declarative than imperative. It is seldom possible
for the modeler to define what the desired semantics of the system is.
He often has to define in every little detail how to do it. In the above
example, instead of just saying “allow change to level l + 1 only when
minRight right answers in a row on level l”, we have to define in Fig. 3.5
how the elements of the base model should be modified.
• In the first place, it is the syntax that is modified by static aspects. The

modification of the semantics is not directly defined. For example, the
behavior of the result model of weaving Fig. 3.5 to Fig. 2.3a is everything
but intuitive.
• Since the modeler has to implement everything imperatively, modeling

with static aspects is also error-prone. In Fig. 3.5, it is the modeler who
has to pay attention not to forget to extend the effects of the transition
from ShowQuestion to SelectLevel. Otherwise this aspect would be just
as erroneous as Fig. 2.3b.

Therefore, static aspects do not provide a totally satisfactory answer to the
problems of the UML state machines discussed in Sect. 2.2. What we need is
an approach of high level, i.e. declarative, behavioral aspects. HILA is such an
approach, as will be shown in the following chapters.

Part 2

HiLA des Ingénieurs

CHAPTER 4

HILA

Contents

4.1. HILA in a Nutshell 28
4.1.1. Pointcut 29
4.1.2. Advice 30
4.1.3. History properties 30
4.2. Examples 30
4.2.1. Mutual Exclusion 31
4.2.2. Synchronization 32
4.2.3. Static aspects 32
4.2.4. History 33
4.2.5. Additional Events 34
4.3. Abstract Syntax and Informal Semantics 35
4.3.1. Aspect 35
4.3.2. Configuration Selector 35
4.3.3. Transition Selector 36
4.3.4. Transition pointcut 37
4.3.5. Configuration Pointcut 38
4.3.6. Advice 38
4.3.7. History properties 40
4.3.8. Priorities 42
4.4. Big Picture 43
4.5. Discussion 43

The discussion in Part 1 revealed two weaknesses of UML state machines:
the lack of modularization constructs and being low level. Static aspects (model
transformations) have been proposed to solve the first problem; indeed they do help
to source out parts of the overall model and to increase the degree of separation of
concerns.

On the other hand, model transformations are themselves low level instru-
ments: they transform only model elements, as opposed to the behavior of the
collection of model elements. Consequently, as shown in Sect. 3.5, the modeler
has to design every detail of the desired behavior, the semantics of the result model
can only be comprehended after carefully studying the weaving result, modeling
with static aspects is therefore as error-prone as modeling by modifying the base
model directly. Moreover, due to the syntactic character of static aspects, consis-
tency checking is only possible on the syntactic level. There may be false alarms
in situations where weaving aspects in different order would result in syntactically
different yet semantically equivalent models.

We therefore present our approach, High-Level Aspect (HILA). HILA is de-
fined as an aspect-oriented extension of the UML. The most distinguishing feature

27

28 4. HILA

Label 1

Label 2
AdvBody

Label 3

«whilst»
{trigger = ev}

State*
{Constraint}

Tgt*

«pointcut»

«advice»

«aspect»
Name

«before»
State*

Src*
«after»
State*

{Constraint}
{Constraint}

Par2
Par1

Figure 4.1: Concrete syntax of aspects

of HILA w.r.t. other proposals of aspect-oriented state machines is that HILA as-
pects have a run time semantics rather than being defined as pure syntactic trans-
formations. That is, rather than a syntactic modification, a HILA aspect defines
an alternative or additional behavior of the base machine, to be executed at some
“interesting” points of time in the execution of the base machine. HILA aspects
are therefore more declarative and more intuitively comprehensible than static as-
pects. The weaving algorithm of HILA exploits the concurrent nature of UML
state machines, and thus minimizes interactions between aspects.

In the following, we first give a general introduction to HILA, show modeling
examples, define the metamodel of HILA in the form of a conservative extension
of the UML metamodel, and then give an informal description of its semantics.

Publication Notice. Sections 4.1 and 4.2 are an extension of [82, 83].

4.1. HILA in a Nutshell

In HILA, an aspect contains a pointcut and an advice. The advice defines
an alternative or additional behavior, to be executed by the base machine at some
“interesting” points of time, the pointcut specifies the interesting points of time.
The set of all possible interesting points of time are called join points, a pointcut
defines a subset of the join points. We define the constellation of a state machine
to be the pair of its active state configuration and its environment, i.e. the valuation
of its variables. Given a set of states S and a proposition p over the environment of
a state machine SM, the current constellation is matched by the pair (S, p) iff. S is
a subset of SM’s current active state configuration, and its environment satisfies p.

Our join points are the points in time just before, just after, or whilst the state
machine being in a certain constellation. As will be explained in more detail later
on, these three types of points in time can be actually subsumed under the firing of
some transitions: the moment in which an advice should be executed can always be
comprehended as a moment of some transition being fired. In this sense, an aspect
is a graphical statement to interrupt the execution of certain transitions, “advise”
them by executing some additional behavior, and then resume the execution of the
base machine. The transitions advised by an aspect are specified, or selected, by
the pointcut, the additional behavior to execute is defined in the advice.

Summarizing, a HILA aspect can be considered as a graphical representation
of an event-condition-action rule: the pointcut defines the precondition to fire an

4.1. HILA IN A NUTSHELL 29

action, the advice defines the action to fire. The informal semantics of the aspect is
that whenever the precondition is satisfied, the action should be executed.

The concrete syntax of HILA aspects is shown in Fig. 4.1, the oblique identi-
fiers being place holders. As shown in this figure, an aspect consists of a �point-
cut� and an �advice� compartment. There are several variants of pointcut def-
inition, see Sect. 4.1.1. The advice is itself a state machine, its final states may
exhibit a label and a constraint. For example, the advice in Fig. 4.1 shows three
labels. Aspects are usually defined as UML templates with parameters to increase
reusability. The parameters are then bound by the designer of concrete aspects. In
Fig. 4.1 two parameters Par1 and Par2 are defined.

4.1.1. Pointcut. The pointcut of a HILA aspect may be either a “single con-
figuration pointcut” or a “between pointcut”.

Single configuration pointcuts. A “single configuration pointcut” maybe a
�before�, an �after�, or a �whilst� pointcut. In the concrete systax, the single
configuration pointcut is identified by one of these stereotypes, see Fig. 4.1.

The simplest form of single configuration pointcuts is that of �before� point-
cuts. In a �before� pointcut, only a set of states State* is given, the pointcut
specifies the join points just before any of the states in State* becomes active.

An �after� pointcut selects all transitions to be fired when the current con-
stellation of the base machine is matched by the pair (State*, Constraint). That
is, it selects all transitions leaving some state in State* provided that 1) the state
machine is in a state configuration containing all states in State* and 2) the envi-
ronment of the state machine satisfies Constraint. �before� and �after� pointcuts
select transitions that are already present in the base machine.

Note that in the case of �before� pointcuts we require only one of the states
becoming active, and do not specify a constraint. The reason is that the join points
for a �before� pointcut is used to select are in the future, and it is in general an
undecidable question which states (possibly in other regions of the state machine)
will be active and what values the state machine’s variables will have after a tran-
sition being fired (and in particular after the execution of its effect and the entry
behavior of the target state), and if their valuation will satisfy a certain constraint.

A �whilst� pointcut contains a set of states State*, a constraint Constraint
and a trigger ev. It specifies the join points that the current constellation of the
base machine is matched by the pair (State*, Constraint) and the current event
is ev. We require that ev be a new event, that is, in the base machine there be
no transition triggered by ev leaving any state contained in State*. Therefore, a
�whilst� pointcut actually introduces new transitions to the base machine: the
sources are the states contained in State*, the trigger is ev. The target of each
transition is the same state as the source.

Between pointcuts. The pointcut may also contain two sets of states, Src*,
enhanced by a constraint Constraint, and Tgt*, and a transition. In the concrete
syntax, a transition pointcut does not carry a stereotype, see Fig. 4.1. We also refer
to between pointcuts as “�between� pointcuts”.

Such a pointcut matches all transitions which are fired when the current con-
stellation is matched by the pair (Src*, Constraint) and the base machine is about
to enter a state contained in Tgt*. Intuitively, all transitions fired “between” two
state configurations matched by Src* and Tgt* are selected. For the same reason
as why �before� pointcuts do not have a constraint, Tgt* does not, either.

30 4. HILA

In the terms of event-condition-action rules, the aspect is a rule stating “when-
ever P holds, do A. The pointcut defines the precondition P . More concretely,

• a �before� pointcut is satisfied whenever a state (of the base machine)
contained in the pointcut is about to become active;
• an �after� pointcut is satisfied whenever a constellation of the base ma-

chine has just become inactive, in which all the states contained in the
configuration were active and the constraint was satisfied;
• a �whilst� pointcut is satisfied whenever a constellation of the base ma-

chine is active, in which all states contained in the configuration are active
and the constraint is satisfied, and the trigger is the current event.
• a �between� pointcut is satisfied whenever a constellation of the base

machine has just become inactive, in which all the states contained in
Src* were active and the constraint was satisfied, and a state contained in
Tgt* is about to become active.

4.1.2. Advice. The advice of an aspect defines the behavior to execute when
the precondition defined by the pointcut is satisfied. The advice is also a UML state
machine, except that the final states may have a label and a constraint. The aspect
is executed in the same way as a UML state machine is executed. When a final
state is reached, i.e., when the execution of the aspect is finished, the execution of
the base machine is resumed according to its label and constraint.

4.1.3. History properties. In order to address properties of the execution his-
tory, an aspect may contain history properties, defined in a�history� compartment,
see Fig. 4.2. A history property contains a name and a pattern consisting of sets of
states and constraints. The pattern is used to match contiguous subsequences of the
execution history. The value of the history property is the number of matches of the
pattern in the base machine’s execution history where the constraints are satisfied.
Figure 4.2 shows two history values, hs1 and hs2. The values of a history property
can be used in pointcuts and advices to define history-sensitive behavior.

«history»

hs2 = Pattern2

«history»
Name

hs1 = Pattern1

Par2
Par1

Figure 4.2: History properties

4.2. Examples

We give some examples of modeling with HILA, and describe the concrete
syntax and informal semantics of HILA in more detail.

Modeling a system behavior with HILA starts with a base model which is as
simple as possible. Figure 4.3b shows a very simple base machine for the sentinel
introduced in Sect. 2.2.2. It consists of two orthogonal regions, one describing the
location of the sentinel, the other his current action. Note this state machine is “un-
finished” in the sense that it only models the very basic behavior of the sentinel.

4.2. EXAMPLES 31

p: int

Sentinel

«signal» finished
«signal» go
«signal» attack

(a) Class diagram

Room3

Idle Patrolling Fighting Dying

Init

Room2

Room1

go attack [p <= 0]

[p > 0]

Running

finished

finished finishedfinished

(b) Base machine

Figure 4.3: Example: modeling the sentinel with aspects

By leaving out a lot of details of the sentinel’s behavior, it describes these funda-
mentals much more concisely than the state machine in Fig. 2.1b where the basic
behavior is intertwined with several extensions. Equipped with HILA, we are no
longer forced to pack the complete behavior into one single state machine. Instead,
we can (and we should) start with the simplest possible base machine. The class
diagram is given in Fig. 4.3a. Note since the base machine is very simple, the class
diagram can also get rid of the “unnecessary” properties cr, defeat and oldp that
were used in Fig. 2.1b. In other words, using HILA also helps us separate domain
information and properties that are needed for the implementation.

Ideally, the only form of communication among states in the base machine
should be, as is in this example, “the activation of the subsequent state via a tran-
sition” (p. 14). If modeling a behavior involves a multitude of model elements
(vertices, transitions, or even regions), then this behavior ought to be modeled as
individual aspects. This way, their modeling is kept at a dedicated place, without
tangling with base machine elements. It is this out sourcing that keeps the base
machine simple and easy to define.

In the following subsections we show how HiLA can be used to model more
complex behaviors modularly. As stated in Chap. 2, our sentinel is supposed to
show the following intelligent features (see p. 10):

(1) The sentinel should not be Fighting while he is in Room1.
(2) Changing room is only allowed when the sentinel is Patrolling or Fighting.
(3) When leaving Room1, the sentinel is required to enter the room where it

has lost the fewest fights so far.

Recall also that the user should be able to quit the game any time.

4.2.1. Mutual Exclusion. The first feature, which requires the sentinel not
to be Fighting while he is in Room1, is actually a special case of a more general

32 4. HILA

one, i.e. the prohibition of two states contained in different regions from being
simultaneously active.

0

A

B

«before»

«aspect»
MutexState

«pointcut»

«advice»

B: State
A: State

Figure 4.4: Aspect blocking every transition which would lead to an active state
configuration containing A or B

This can be achieved by aspects that constrain the interaction between different
regions, such as the very simple aspect MutexState given in Fig. 4.4. Its pointcut
specifies the join points just before A or B gets active. Its advice tells the base
machine not to finish this transition as long as finishing it would lead to a config-
uration that contains both A and B. (Label 0 means “suspend the transition until
proceeding would not result in a state configuration that is matched by the point-
cut”, see Sect. 4.3.6). Instantiating this template by binding A with Room1 and
binding B with Fighting thus models the feature that our sentinel must not become
Fighting while he is in Room1. The correctness of this template is verified by model
checking, see Sect. 5.8.3.

4.2.2. Synchronization. Synchronization of behaviors that are modeled in
concurrent regions is also realized by mutual exclusions. To model feature 2
(changing room is only allowed when the sentinel is Patrolling or Fighting) of the
sentinel, we need a slight variation of the MutexState aspect. Instead of inhibit-
ing simultaneous activation of two states, we need in this case to prevent certain
transitions from being fired. Figure 4.5 is a template for this purpose. It specifies
all transitions where a certain state (in the lower region) C is active both before
this transition is fired and after it. The join points specified are therefore those of
a room change happening (in the upper region) with C being active. The advice,
again, blocks the transition as long as C is active. Modeling feature 2 thus amounts
to instantiating this aspect by binding A and B to every pair of states in the upper
region of the base machine with A 6= B, and binding C to Idle.

4.2.3. Static aspects. HILA allows the use of static (low-level, transforma-
tion) aspects, distinguished by the keywords�transformation pointcut� and�trans-
formation advice�. The syntax and semantics of static aspects were described in
Chap. 3.

Restricting existing transitions in the base machine by imposing an additional
guard is currently not supported by HILA (but can be simulated by rather complex
HiLA constructs, though). On the contrary, it is rather simple to model such re-
strictions with transformation aspects, as shown in Fig. 4.6. The �transformation
pointcut�matches any substructure of the base machine consisting of state Source,

4.2. EXAMPLES 33

A

C

B

C

0

«pointcut»

«advice»

«aspect»
MutexTrans

C: State
B: State
A: State

Figure 4.5: Aspect blocking every transition that would lead to a state configuration
containing B or C, if the current active state configuration contains both A and C

Source Target

Source Target
?T[?G] / ?A

«transformation pointcut»

«transformation advice»

?T[?G && Guard] / ?A

«aspect»
IntroduceGuard

Guard: Boolean

Source: State
Target: State

Figure 4.6: Transformation aspect

state Target, and a boolean expression Guard. The trigger, guard, and action of each
matched transition is stored in the internal variables ?T, ?G and ?A, respectively.
The matched part is replaced by the pattern contained in the �transformation ad-
vice�. The result is that the guard of the selected transition is extended by an
additional proposition. To model feature 3, we need a combination of (an instance
of) Fig. 4.6 and a history property, see below.

4.2.4. History. Feature 3 is an example of history dependent features. HiLA’s
history properties allow us to model such features declaratively and highly modu-
larly.

S

N(S) =

«history»
StateIf

{If}

N: String
If: Constraint

Figure 4.7: History property StateIf counting how often state State has been active
with If valued true

In Fig. 4.7, a template StateIf of history properties is defined. It counts for
each state S how often it has been active, with the constraint If being satisfied. This
property is assigned the name N, which is a parameter of the template.

34 4. HILA

Template Base Binding
StateIf Fig. 4.3b N 7→a

If 7→p@pre > p@post
IntroduceGuard Fig. 4.3b Source 7→Room1

Target 7→r ∈ {Room2, Room3}
Guard 7→min(a(Succ(Source))) == a(Target)

Figure 4.8: Aspect instances modeling the feature that the sentinel always chooses
the room with the least lost fights so far

Feature 3 is then modeled by the combination of an instance of StateIf and an
instance of IntroduceGuard (Fig. 4.6), see Fig. 4.8. The instance of StateIf defines
a history property a which counts for each state how often a fight was lost (p@pre
> p@post) while the state was active.

The advice is introduced by the instance of IntroduceGuard, and makes use
of two predefined functions: min takes a set M and yields the minimum element
of M , Succ takes a state S and returns all successor states of S, i.e. all targets
of transitions starting in S. Therefore min(a(Succ(Room1))) yields the minimum
value of a for all successor states of Room1. The transition is thus only enabled
when there is no other target room in which the sentinel has lost fewer fights.

Note that even though the transformation itself is described by a low-level
aspect, the lucidity of this aspect depends to a large degree on the history property
which is a declarative high-level construct.

4.2.5. Additional Events. While �begin� and �after� aspects introduced
above specify join points of certain transitions being fired, �whilst� is used to
specify join points of certain state constellations being matched by a set of states
and a constraint, with a certain current event. In this sense, �whilst� defines addi-
tional reactions of the base machine to events to which originally no reactions were
defined. Intuitively, such an aspect introduces new transitions to the base machine
and advises them.

Whilst

«whilst»
{trigger = On}

«pointcut»

«advice»
/ Do

goto Goto

«aspect»
WhilstOnDoGoto

Goto: State

Whilst: State
On: Event
Do: Action

Figure 4.9: Aspect making each state contained in Whilst react to an additional
event On by executing the action Do and then going to Goto

Figure 4.9 defines such a template. Its pointcut specifies the join points of any
state configuration containing state Whilst being active and On being the current
event. The very simple advice first carries out the action Do and then instructs the

4.3. ABSTRACT SYNTAX AND INFORMAL SEMANTICS 35

base machine to goto state Goto. The feature of the sentinel game that the user
should be able to quit any time can thus be simply modeled by instantiating this
aspect by binding Whilst with Init and Running, On with event quit, Do with an
empty action, and Goto with state Dying. In this example no constraint is defined,
the default value true is used.

4.3. Abstract Syntax and Informal Semantics

The abstract syntax of our aspects is defined in a metamodel. Our metamodel
is a conservative extension of the UML metamodel [57], which means that new,
aspect-oriented concepts are defined as subclasses of UML metaclasses. Therefore
our metamodel is “profileable”, i.e. it can be mapped to a UML profile, and is thus
fully UML compliant.

4.3.1. Aspect. All HILA aspects in this thesis are instances of the metaclass
StateMachineAspect, which is a subclass of Aspect and, indirectly, UML Named-
Element. It has a Pointcut and an Advice, both of which are defined to be special
UML packages, since they are intended to contain other model elements. More
particularly, the pointcut of a state machine aspect is called a state machine point-
cut, and the advice of a state machine aspect is called a state machine advice (see
Fig. 4.10).

(UML)
NamedElement

(UML)
Package

StateMachine
Advice

StateMachine
Pointcut

(UML)
Package

PointcutAdvice
1 1Aspect

Aspect
StateMachine

priority: int = 0

Figure 4.10: Metamodel: aspect

CONSTRAINT 4.1. The advice of a state machine aspect must be a state ma-
chine advice, and its pointcut must be a state machine pointcut.

context StateMachineAspect
inv: advice.OCLIsKindOf(StateMachineAdvice) and

pointcut.OCLIsKindOf(StateMachinePointcut)

Each Aspect object, hence each StateMachineAspect object can be assigned an
integer priority. Its function will be explained in Sect. 4.3.8.

4.3.2. Configuration Selector. There are two auxiliary language constructs
that we will need to construct our pointcuts. In this subsection, we define config-
uration selectors. The other, transition selectors, are defined in Sect. 4.3.3. Both
selectors are subsumed under an abstract metaclass Selector, which is itself a sub-
class of UML Expression.

A configuration selector (see Fig. 4.11a) contains a set of states, and an optional
constraint. It is used to specify constellations of state machines. It is presented
as a rectangle with rounded corners, which contains states of the base machine,

36 4. HILA

(UML)
Expression

(UML)
StateConfiguration

Selector(UML)
Constraint

Selector

0..1 1..*

(a) Configuration selector

BetweenSelectorBeforeSelector AfterSelector

Configuration
Selector

1 1

Selector

TransitionSelector

1 tgtsrc 1

(b) Transition selector

Figure 4.11: Metamodel: selectors

separated by dashed lines. The constraint, if any, is given in curly braces. A con-
stellation of the base machine is said to be matched by a configuration selector iff.
all states contained in the selector are active and the constraint, if any, is satisfied.

CONSTRAINT 4.2. The states contained in a configuration selector must nei-
ther belong to the same region, nor contain each other.

context ConfigurationSelector
inv: state -> forAll(s1, s2 | s1 <> s2 implies

s1.container <> s2.container and
not s1.contains(s2) and
not s2.contains(s1))

where contains(b) is a boolean function for states. It returns b is (directly or
recursively) contained in the state:

context State
def: contains(b): Boolean =

if region -> size() = 0 then False
else region -> exists(subvertex ->

select(oclIsKindOf(State)) ->
exist(oclAsType(State).contains(b)))

4.3.3. Transition Selector. A transition selector is also a selector, as shown
in Fig. 4.11b. A transition selector may be either a before selector, a between se-
lector, or an after selector. A before selector contains one configuration descriptor,
and is represented by a stereotype �before� within the configuration descriptor. It
selects all the transitions of the base machine that would lead to a configuration
containing any state contained in the configuration descriptor. An after selector
also contains a configuration descriptor, and is represented by a stereotype �af-
ter� within the configuration descriptor. It selects all the transitions of the base
machine that should be fired when any state configuration matched by the con-
figuration descriptor has just become inactive. A between selector contains two
configuration selectors, called src and tgt, and is represented by an arrow from src
to tgt. It selects all the transitions of the base machine that should be fired when

4.3. ABSTRACT SYNTAX AND INFORMAL SEMANTICS 37

any state constellation matched by src has just been active and that would lead to
any state contained in tgt getting active.

Recall that in HILA, future valuations of environment variables are not consid-
ered in the pointcut (see Sect. 4.1.1). This is reflexed in the following constraints.

CONSTRAINT 4.3. The configuration selector of a before selector does not
contain a constraint.

context BeforeSelector
inv: config.constraint -> isEmpty()

CONSTRAINT 4.4. The target configuration selector of a between selector does
not contain a constraint.

context BetweenSelector
inv: tgt.constraint -> isEmpty()

Room3

Idle

«before»

(a) Before selector

Patrolling

X

Patrolling

Y

(b) Between selector

Figure 4.12: Example: transition selectors

EXAMPLE 4.5 (Before selector). The before transition selector (sterotype�be-
fore�) in Fig. 4.12a contains a configuration descriptor, which specifies all state
configurations that contain Room3 or Idle. The transition selector thus selects all
transitions leading to such configurations.

EXAMPLE 4.6 (Between selector). The between transition selector in Fig. 4.12b
contains two configuration descriptors. It selects all transitions that are fired in a
state configuration containing X and Patrolling, and would lead to a state configu-
ration which contains Y or Patrolling.

Pointcut

StateMachine

Transition

Pointcut

1 Transition

Selector

Pointcut

(a) Transition pointcut

Pointcut
StateMachine

Pointcut
Configuration Event

(UML)
Configuration

Selector
11

(b) Configuration pointcut

Figure 4.13: Metamodel: pointcuts

4.3.4. Transition pointcut. In accordance to the two kinds of selectors, there
are also two kinds of state machine pointcuts defined. In this subsection, we in-
troduce transition pointcut. The other kind, configuration pointcut, is described in
Sect. 4.3.5.

38 4. HILA

Fighting

«after»

«pointcut»

{p@pre > p@post && p@post > 0}

(a) Transition pointcut

X

«pointcut»

{trigger = quit}
«whilst»

(b) Configuration pointcut

Figure 4.14: Example: pointcut

A transition pointcut contains a transition selector, see Fig. 4.13a. It specifies
the points of time the transitions selected by its transition selector being fired, after
the effect, if any, is executed.

EXAMPLE 4.7 (Transition pointcut). The pointcut in Fig. 4.14a contains a tran-
sition selector and an OCL constraint. It specifies the points of time in the base
machine execution of any transition being fired just after any state configuration
containing Fighting, where the value of the (contextual) property p has decreased
while the Fighting was active (p@pre > p@post) but stays positive (p@post > 0).

4.3.5. Configuration Pointcut. A configuration pointcut contains a configu-
ration selector and a UML event (see Fig. 4.13b). It is distinguished by its config-
uration selector, presented by stereotype �whilst�, along with the event, presented
as tagged value trigger. A configuration pointcut cp specifies such join points that
the current constellation of the base machine is matched by the selector, i.e. the
active state configuration contains all the states of cp’s states, cp’s constraint, if
any, is satisfied, and cp’s event is the current event.

Intuitively, a configuration pointcut introduces new transitions to the base ma-
chine and selects the transitions.

EXAMPLE 4.8 (Configuration pointcut). Figure 4.14b shows a configuration
pointcut. It specifies the points of time in the base machine’s execution that quit is
the current event to handle while state X is active. Since no explicit constraint is
given, true is used.

4.3.6. Advice. A state machine aspect contains an advice, which is an advice
state machine, a special kind of UML state machine (see Fig. 4.15). The advice
may access to the properties of the base machine, and may have its own properties
as well. This state machine is executed at points of time specified by the pointcut.
The control flow returns to the base machine when the advice is finished, i.e. when
a final state is arrived. Intuitively, an advice can be perceived as an extension of the
transitions selected by the pointcut: the advised transition is interrupted, the advice
executed, and then the base machine is resumed.

The difference between an advice state machine and a standard UML state
machine is that in the former, final states contains a label, which is a set of states,
and a constraint. We call this kind of final states labeled final states, see Fig. 4.16.

The label is a set of states, and is represented in the concrete syntax as goto X ,
X being the states. The label and the constraint are used to specify how to re-
sume the execution of the base machine. When a final state with label goto X and
constraint C is reached, the execution of the advice is finished, the base machine

4.3. ABSTRACT SYNTAX AND INFORMAL SEMANTICS 39

(UML)
Package

Advice
StateMachine

(UML)
StateMachine

Advice

Advice
StateMachine

ownedElement}
{subsets

1

Figure 4.15: Metamodel: advice

Labeled
FinalState(UML)

Constraint
1..*0..1

State

(UML)
FinalState

(UML)

Figure 4.16: Metamodel: labeled final state

continues execution by activating the states contained in X , if C is satisfied. There
are two generic labels predefined: src and tgt represent the source and the target of
the advised transition, respectively. We require for each pair of of states contained
in a label that they neither belong to the same region nor contain each other:

CONSTRAINT 4.9. The states contained in a label must neither belong to the
same region, nor contain each other:

context LabeledFinalState
inv: state -> forAll(s1, s2 | s1 <> s2 implies

s1.container <> s2.container and
not s1.contains(s2) and
not s2.contains(s1))

In addition, two generic constraints, 1 and 0, are also defined. Their semantics
depends on the type of the pointcut. In a �before�, �after�, or �whilst� aspect,
1 is satisfied iff. activating the states contained in the label would result in a state
configuration that matches the pointcut, and 0 is satisfied iff. 1 is not satisfied. In
a transition aspect, the meaning of 1 and 0 is the same, except that instead of “the
pointcut”, it is now the tgt configuration of the pointcut to match.

Note that keyword 0 must not appear in an �after� or a �whilst� aspect. Since
the configuration specified by the pointcut has been already active, there is nothing
left to prevent from.

CONSTRAINT 4.10. All final states in an advice state machine are labeled final
states.

context AdviceStateMachine
inv: top.subvertex -> forAll (f |

f.oclIsKindOf(FinalState)
implies f.oclIsTypeOf(LabeledFinalState))

EXAMPLE 4.11. (Single exit) The advice in Fig. 4.17a does nothing but simply
tells the base machine to change its control flow by “going to” a state Quit, which

40 4. HILA

«advice»

goto Quit

(a) Single exit

ShowError

[else]

[(a(l−1)) > 0]
goto tgt

goto src

«advice»

(b) Multiple exits

Figure 4.17: Example: advice

(UML)
StateMachine

StateMachine
History

(UML)
Class

(UML)
Property

Property
History

Element
History

(UML)
Multiplicity

1..*

0..1

{subsets feature}
histories

11

*

Configuration
Selector

Element
(UML)

parameter

Figure 4.18: Metamodel: history

may or may not be the source or target of the advised transition. Since no explicit
constraint is given, the default one, true, is used.

EXAMPLE 4.12. (Multiple final states) As in regular state machines, an advice
may also have multiple final states. In Fig. 4.17b, the advice defines two possible
exits. If the value of the variable a(l-1) is greater than zero, then the base machine
should goto the target of the advised transition (final state labeled goto tgt), other-
wise some error message should be shown (ShowError), and the base machine go
back to the source of the advised transition (goto src). Again, no explicit constraint
is given, the default is true.

4.3.7. History properties. In order to model history-based behavior modu-
larly, a HILA aspect may contain a �history� compartment, in which history
properties are defined. A history property contains one or more history elements,
each of the history elements consisting of a configuration selector, a multiplicity.
Moreover, history properties is defined as an array, if a parameter is given. The
metamodel is given in Fig. 4.18.

CONSTRAINT 4.13. The parameter, if any, of a history property must not be a
history property itself.

context HistoryProperty
inv: not parameter.oclIsKindOf(HistoryProperty)

In the concrete syntax, each history element is represented by the configura-
tion selector and the multiplicity, given in a pair of brackets. If a parameter is
defined, it is specified by the keyword for, followed by the name of the parameter
and the domain of the parameter. The history elements are separated by a line.
The elements are used to match contiguous subsequences of the base machine’s

4.3. ABSTRACT SYNTAX AND INFORMAL SEMANTICS 41

execution history: a contiguous subsequence q of the execution history is matched
by a history element, consisting of a configuration selector s and a multiplicity m,
iff. q contains m state configurations that are matched by s. The value of a history
property is the number of matches.

A

B

C

[1]

[3]

«history»

abc =

Figure 4.19: Example: history property

EXAMPLE 4.14 (History property). Figure 4.19 defines a history property abc.
Its value is the number of the contiguous subsequences of the execution history that
contain one (multiplicity [1]) state configuration including both state A and state B,
as well as three ([3]) state configurations containing state C.

ShowError

Right
{l == lv}

Wrong
{l == lv}

«pointcut»

ShowQuestion

[else]

[a(l−1) > 0]
goto tgt

«advice»

goto src

SelectLevel
{l > 0}

a(lv) =

[minRight..*]

[0]

for (lv): [1..mxl]

«aspect»
RightInARow

«history»

(a) minRt

ShowQuestion

«before»

ShowError

Right
{l == lv}

for (lv): [1..mxl]
b(lv) =

goto src

goto tgt

«pointcut»

«advice»
[b(l) < maxRight]

[else]

MaxRight

«history»

«aspect»

(b) maxRt

Figure 4.20: Aspects for the elearning system (base machine: Fig. 2.3a)

To model the history-based features minRt and maxRt (p. 16) of the e-learning
system, we use Fig. 2.3a as the base machine—which is also very simple in the
sense that “the only form of communication among states is like in this example
the activation of the subsequent state via a transition”—and define in Fig. 4.20 two
aspects.1

1It is not a coincidence that we define two aspects to model two features!

42 4. HILA

EXAMPLE 4.15 (Aspect-oriented modeling of the minRt feature of the e-learn-
ing system). In Fig. 4.20a, the history property a is declared as an array of integers
(keyword for), and defines for each positive natural number (parameter lv, domain
[1..mxl], mxl being the highest possible level) if at this level (constraint {l == lv}), a
contiguous subsequence of the execution history can be found in which Right has
been at least minRight times active (multiplicity [minRight..*]) and Wrong has been
zero times active (multiplicity [0]).

The pointcut selects all transitions from SelectedLevel to ShowQuestion when
the current value of l is greater than zero. Actually, there is only one such transition
in the base machine. When it is advised, the advice checks if the value for the level
l − 1 stored in a is greater than 0. If yes, which means that the user did actually
answer at least minRight questions correctly in a row on level l − 1, the machine
should proceed as usual (label tgt), otherwise the advised transition is interrupted,
and its source (label src) ShowQuestion activated. This way, the feature minRt of
the e-learning system is modeled separately in an aspect. The modeling is declara-
tive, its algorithmic implementation will be realized automatically in the weaving
process. Therefore, the chance of the modeler making mistakes like in Fig. 2.3b is
minimized.

EXAMPLE 4.16 (Aspect-oriented modeling of the maxRt feature of the e-learn-
ing system). In Fig. 4.20b, the history property b defines an array of integers, stor-
ing for each parameter lv how often Right has been active on this level. Every time
when ShowQuestion is just about to become active, the advice is activated. If at
level l Right has not been active too often ([b(l) < maxRight]) yet, the transition
is allowed, otherwise an error is shown, and the source of the advised target is
activated again.

4.3.8. Priorities. As shown in Fig. 4.10, each state machine aspect may have
a priority, which is an integer. The priority is used to define resolution strategies
when a so called resumption conflict between aspects arises. In the e-learning ex-
ample, the two aspects we defined, minRt and maxRt, may be actually conflicting:
when the transition from SelectLevel to ShowQuestion is just about to be fired,
the preconditions of both aspects are satisfied: the base machine is about to change
from SelectLevel over to ShowQuestion, and ShowQuestion is just about to become
active. Therefore, both aspects are executed. A conflict is therefore possible since
the two aspects may define two different states to activate when the execution of
the aspects are finished. For instance, if for a given l it holds that a(l-1) > 0 but b(l)
< maxRight does not, then aspect RightInARow would allow the advised transition
to be finished (goto tgt) while MaxRight would not.

When aspects are assigned priorities, the one with the highest priority rules the
others. If no priority is given, the default value is the lowest possible priority, 0. If
several aspects have the same (highest) priority, they have equal right: different re-
sumption strategies indicated by different aspects would be considered as an error,
the state machine would enter an “error” state.

Therefore, equally prioritized aspects are combined in an “and” relation: only
when all of the aspects indicate the same resumption state, it is activated after the
aspects’ execution; if instead different resumption states are indicated, some error
state is activated to indicate the conflict. On the other hand, aspects with different
priorities are combined in an (asymmetric) “or” relation: as soon as the aspect with
the highest priority defines explicitly a resumption state, it is activated; if not (recall

4.5. DISCUSSION 43

labels are optional, see Sect. 4.3.6), the resumption strategies indicated by the next
highest prioritized aspects may be used.

EXAMPLE 4.17 (Equal priorities). In Fig. 4.20, no explicit priority is given,
both of the aspects are default-prioritized. Therefore, when both of them are exe-
cuted (just before the transition from SelectLevel to ShowQuestion is fired), their
resumption strategies have equal rights. At runtime, when the execution of the as-
pects is finished and the same resumption state is indicated by both of them, then
it is activated, otherwise the state machine would enter an error state.

ShowError

Right
{l == lv}

Wrong
{l == lv}

«pointcut»

ShowQuestion

[else]

[a(l−1) > 0]
goto tgt

«advice»

goto src

SelectLevel
{l > 0}

for (lv): [1..mxl]
a(lv) =

[minRight..*]

[0]

{priority = 10}
«aspect»

RightInARow

«history»

Figure 4.21: Example: priorities of aspects

EXAMPLE 4.18 (Different priorities). Suppose now aspect RightInARow was
assigned a priority 10 (tagged value priority), as shown in Fig. 4.21. When used
together with aspect MaxRight, this aspect is higher prioritized, since the implicit
(default) priority of MaxRight is lower than any explicit priority. Therefore, only
the resumption state of RightInARow is used at runtime, the resumption state of
MaxRight will not be consulted.

Note that entering an error state when resumption states are conflicting is not
necessarily the best choice for every software system. An extension of HILA to
allow the modeler to define another behavior to be executed in case of conflicting
resumption states is part of our future work.

4.4. Big Picture

Summarizing, Fig. 4.22 shows a big picture, containing the metaclasses intro-
duced in the proceeding subsections and their relationships.

4.5. Discussion

HILA is a powerful language. By powerful, we do not mean it is very expres-
sive. In fact, as stated earlier, each HILA aspect can also be “implemented” by a
static, transformation aspect. HILA is powerful, because it is high-level, i.e. HILA
aspects define directly modifications of the base machine’s behavior, as opposed to
indirectly via modifications of its syntax. This way, HILA aspects are more intu-
itive and less error-prone than static aspects.2 For example, in Fig. 2.3b, the history
property declaratively defines what should be counted: sequences containing only

2It is noteworthy that by separate modeling parts of the system behavior some overhead is
produced for the understanding of the system, since the modeler now has to take care of a multitude of

44 4. HILA

(UML)
Package

StateMachine
Advice

(UML)
NamedElement

Event
(UML)

(UML)
Package

Advice
StateMachine

(UML)
StateMachine

(UML)
Property

Selector
Transition

BeforeSelector

BetweenSelector

AfterSelector

Element
History

(UML)
Multiplicity

(UML)
Constraint

(UML)
State

(UML)
Expression

Selector

Labeled
FinalState

(UML)
FinalState

1
Advice

1
{subsets
ownedElement}

Aspect

Aspect
StateMachine

priority: int = 0
1

Pointcut

StateMachine
Pointcut

Pointcut
Transition

Pointcut
Configuration

1

1
config

History
StateMachine

{subsets feature}

Property
History
1..*

histories

parameter0..1

Selector
Configuration

config
1
tgt
1
1
src

config
1

1

* 0..1

1..* 1..*

0..1

config 1

Figure 4.22: Metamodel: the big picture

Right and no Wrong. The whole imperative modeling as is required when using
plain UML or static aspects is no longer necessary, the modeler does not even have
a chance to make the same mistake as in Fig. 2.3b.

Feature coordination is also simpler in HILA than is in the case of plain UML
or static aspects, since in HILA, it is not necessary for the modeler to design the
coordination explicitly, instead, coordination, as well as implementing the highly
declarative aspects of HILA, is to be taken care of by the automatic weaving pro-
cess, which is discussed in the following chapter.

aspects instead of only one single state machine. Moreover, although HILA defines high-level, easy-
to-understand constructs, the gotos may obscure the flow control. Another problem is interactions
between the aspects, see Chap. 7. However, we believe that overall, HILA can be considered helpful
for reducing the complexity of state machines.

CHAPTER 5

Weaving

Contents

5.1. Main Idea 46
5.2. Prerequisites 47
5.2.1. Abstract syntax 47
5.2.2. Action language 48
5.2.3. Translation language 48
5.2.4. Auxiliary functions 49
5.2.5. Derived properties 50
5.3. Preprocessing 51
5.3.1. Removing junctions 52
5.3.2. Removing target unstructured transitions 52
5.3.3. Removing fork vertices 54
5.3.4. Creating “before” section 56
5.3.5. Insert trace variables 57
5.3.6. Inserting Error States 58
5.3.7. Summary 58
5.4. Weaving History Properties 60
5.4.1. Structure of the NFA 60
5.4.2. Simulating the NFA 61
5.4.3. Counting 62
5.5. Weaving Aspects 63
5.5.1. aspect2Region 63
5.5.2. Weaving Configuration Aspects 67
5.5.3. Weaving Transition Aspects 67
5.6. Postprocessing 69
5.7. Correctness 71
5.8. Implementation 72
5.8.1. Hugo/RT 72
5.8.2. Weaving 72
5.8.3. Example 73
5.9. Discussion 77

Weaving is the process of composing the base machine with the aspects. The
weaving process modifies the base machine to include the behaviors modeled in the
aspects, so that they are executed as the points of time specified by the pointcuts.
It is the elaborate weaving process that implements the declarative HILA aspects
by means of the more imperative elements of plain UML state machines.

As described in Sect. 3.3, static (transformation) aspects are woven by encod-
ing the aspects in a graph grammar system. In this chapter, we present the weaving
algorithms of dynamic HILA aspects.

Publication Notice. Section 5.4.1 was first published in [83].

45

46 5. WEAVING

5.1. Main Idea

HILA’s aspects are woven by inserting the advice into transitions of the base
machine. Put very simply, we implement “�before� X” aspects by intercepting
every transition leading to X, activating the advice of the aspect, and then proceed-
ing to X; “�after� X” is implemented by inserting the advice into every transition
leaving X; and “�whilst� X” by introducing a (self) transition both leaving and en-
tering X, and then intercepting this transition. More details of how to determine the
transitions to intercept and how to intercept them will be given later on.

A B

(a) Base machine

X1

«pointcut»

«before»

«aspect»
A1

«advice»

B

goto T1

X2

«pointcut»

«after»

«aspect»
A2

«advice»

A

goto T2

{C2}

(b) Aspects

X2

B

T1

T2

Err

A

X1

[C2] / t2=true

[else]

Asp
entry / t1 = false; t2 = false; [!t1 && !t2]

[!t1 && t2]

[t1 && t2]
/ t1=true

[t1 && !t2]

(c) Result

Figure 5.1: Weaving: basic idea

A challenge to the weaving algorithm is posed by the so called “shared join
points”. That is, if one join point is selected by several pointcuts, there may arise
some conflict.

For instance, consider the base machine given in Fig. 5.1a and the two aspects
given in Fig. 5.1b. Whenever state B is just about to become active, aspect A1
activates state X1 and then instructs the base machine to go to T1. Whenever state
A has just got inactive, aspect A2 activates state X2 and then tells the base machine
to go to T2. Now what if state A has just become inactive and state B is just about
to become active, as is the case in Fig. 5.1a? How to ensure that both aspects are
executed? After the execution of the aspects, where should the base machine go to,
T1 or T2?

In HILA, our answer to this problem is to exploit the concurrent nature of
UML state machines, and weave aspects with shared pointcuts into different re-
gions of one orthogonal state, which we call Asp. Thus, the aspects are executed
simultaneously at runtime. A shared array T of boolean variables is also introduced
to Asp. We refer to the elements of T as resumption variables, since they indicate
how to resume the execution when the aspects are finished. The regions (the as-
pects) store in (elements of) T the states that should be activated after the execution
of the aspect. For each possible target t to go to there is a resumption variable
Tt ∈ T, initialized with false. Aspect a instructing the base machine to go to state
t is then implemented as an assignment Tt ← true. Note this is also the only as-
signment that can be applied to Tt. This way, race conditions w.r.t. assignments to
resumption variables are avoided, since for a given Tt, no matter how many such

5.2. PREREQUISITES 47

assignments are made, no matter in which order they are made, the overall result
is always Tt being set to true. After the execution of Asp, if more than one of the
resumption variables have the value true, then a conflict has been detected, and an
alarm is raised (state Err), otherwise, the transition corresponding to the target to
go to will be activated. If none of the resumption variables is true, the base ma-
chine simply resumes the advised transition, i.e. activates its target to continue the
execution.

The result of applying this idea to the above example is shown in Fig. 5.1c. The
resumption variables are called t1 and t2. If both of them are true after the execu-
tion of Asp, state Err is activated. Otherwise, the base machine resumes according
to the (only) variable that is actually true. If none of them is true, the default re-
sumption strategy is followed, and the target of the advised transition, in this case
state B, is activated. In the above example, however, this is not a real option, since
in this concrete example, when Asp is active, in the lower region t1 will always be
set to be true.

Note that activating state Err is the default, and not the only strategy for conflict
handling. In fact, HILA allows the modeler to define priorities of aspects (see
Sect. 4.3.8). We actually use the resumption strategy specified by the aspect with
the highest priority of all conflicting aspects (not shown here, see Sect. 5.6 for
details).

The actual implementation of the basic idea is shown in Algorithm 5.1: for
a base machine SM, a set of history properties H, sets of �whilst�, �before�,
�after� and transition aspectsW,B,A andM , we first preprocess SM to transform
it to a canonical form, then we weave theH,W,B,A andM in this order, and then
wrap up the weaving in a postprocessing step. Note SM is modified in each of these
steps.

Algorithm 5.1 Weaving

1: procedure WEAVING(SM,H,W,B,A,M)
2: PREPROCESSING(SM)
3: WEAVEHISTORYPROPERTIES(SM,H)
4: WEAVECONFIGURATIONASPECTS(SM,W)
5: WEAVETRANSITIONASPECTS(SM, B,A,M)
6: POSTPROCESSING(SM)
7: end procedure

In the following, we first give the prerequisites of our weaving, and then de-
scribe the steps of the above algorithm in more detail.

5.2. Prerequisites

5.2.1. Abstract syntax. The abstract syntax of UML state machines and HILA
aspects are defined by the metamodels in Fig. 2.2 and Fig. 4.22, respectively.

We refer to property p of object o as p(o). If the name of a property is not
explicitly given, we follow the common UML convention and use, independently
of the multiplicity, the lower-cased name of its class as the property name.

48 5. WEAVING

Algorithm 5.2 Deep clone of states and regions

1: function cloneVertex(v)
2: v′ ← clone(v)
3: if isState(v) then
4: for all r ∈ region(v) do
5: region(v′)← region(v′) ∪ {cloneRegion(r)}
6: end for
7: end if
8: if class(v) = labeledfinal then
9: label(v′)← clone(label(v))

10: end if
11: return v′
12: end function
13: function cloneRegion(r)
14: r′ ← new Region
15: for all v ∈ subvertex(r) do
16: subvertex(r′)← subvertex(r′) ∪ {cloneVertex(v)}
17: end for
18: return r′
19: end function

5.2.2. Action language. For the target platform of our weaving, UML state
machines, we assume an expression language Exp that includes at least boolean
expressions (like true, false, e1 ∧ e2, etc.) and integer arithmetics. We further
assume an action language Act based on Exp that at least includes a skip statement,
assignments (←), a case distinction (if. . . then . . . else), a for (and a while) construct,
and sequential concatenation of statements (·). Variables of this language may
be either boolean or integer. Exp and Act are used to describe the guards and
the effects of the transitions, as well as the entry, exit, and do activities of the
states. Furthermore, we assume a set of events Event which includes ∗ denoting a
completion event.

5.2.3. Translation language. The weaving algorithms are language indepen-
dent, i.e. they can be implemented in every object-oriented programming language
in which the following functions are implemented

• Class function: function class(o) returns for each object o its class in the
sense of common object-oriented programming.
• Constructors: for each concrete metaclass C in Fig. 2.2 the constructor

call new C returns a new instance of the class. After the constructor call,
the single properties of the new instance are initialized with ⊥, multiple
properties with ∅. There are two shortcuts defined:

– new Transition(r, g, e) returns a new Transition object T such that
trigger(T) = r, guard(T) = g, and effect(T) = e.

– new Transition(s, t, r, g, e), just as the three-parameter edition, ad-
ditionally such that source(T) = s and target(T) = t. After the con-
structor call, the properties incoming and outgoing of t and s, respec-
tively, are set correctly, i.e. T ∈ incoming(t) and T ∈ outgoing(s).

5.2. PREREQUISITES 49

• Clone functions: in addition to function clone(e), which returns a “shal-
low clone” of e as in object-oriented programming languages, we define
functions cloneVertex(v) and cloneRegion(r) to return a “deep clone”
of vertex v and region r, respectively (see Algorithm 5.2). We assume a
function clone−1(c) which returns the origin o of object c, if cwas created
as a clone of o. If c was not created as a clone, we write clone−1(c) = ⊥.
• Generators of action language elements: we assume the following func-

tions to generate elements of Act :
– newVar, every invocation of newVar() returns a fresh variable in

Exp.
– Function toUML(a), which represents the implementation of a se-

quential algorithm a, consisting of assignments, case distinctions, for
(or while) loops with boolean or integer variables or sets of booleans
or integers, in Act .

5.2.4. Auxiliary functions. For convenience, we also define some auxiliary
functions to be used in our weaving algorithms.

• For each vertex v we define
– isState(v) := class(v) ∈ {State, FinalState}
– isSimple(v) := isState(v) ∧#region(v) = 0
– isComposite(v) := isState(v) ∧#region(v) > 0
– isFinal(v) := class(v) = FinalState
– isJoin(v) := class(v) = PseudoState ∧ kind(v) = join
– isJunction(v) := class(v) = PseudoState ∧ kind(v) = junction
– isFork(v) := class(v) = PseudoState ∧ kind(v) = fork
– isInitial(v) := class(v) = PseudoState ∧ kind(v) = initial

• For each set S we write
– add(S, e) to mean S ← S ∪ {e},
– remove(S, e) to mean S ← S \ {e},
– remove(S,E) to mean S ← S \ E.

• For each region r we define subvertex+(r) to be the transitive closure of
subvertex(r) (see Fig. 2.2).
• For each state s, isComposite(s), we define

– subvertex(s) :=
⋃
r∈region(s) subvertex(r)

– subvertex∗(s) :=
⋃
r∈region(s) subvertex+(r)

– subvertex+(s) := subvertex∗(s) ∪ {s}.
• For each simple state s, we define subvertex∗(s) := {s}.
• For each region r we define initial(r) ∈ subvertex(r) to mean the (only

one) initial vertex. If there is no initial vertex contained in r, we write
initial(r) = ⊥. For a state machine SM, we write initial(r) to mean
initial(top(SM)).
• For a state machine SM, we define

V(SM) := subvertex+(top(SM))

S(SM) := {v ∈ V(SM) | isState(v)}
Ssimple(SM) := {s | s ∈ S(SM) ∧ isSimple(s)}
Scomp(SM) := S(SM) \ Ssimple(SM).

50 5. WEAVING

• For a state machine SM, we define
Jc(SM) := {v ∈ V(SM) | isJunction(v)}
Jn(SM) := {v ∈ V(SM) | isJoin(v)}
Fk(SM) := {v ∈ V(SM) | isFork(v)}

I(SM) := {v ∈ V(SM) | isInitial(v)}

T(SM) :=
⋃

v∈V(SM)

(incoming(v) ∪ outgoing(v)).

• For two vertices v, v′ ∈ V(SM), we define LCA(v, v′) to be the least
common ancestor of v and v′, i.e. LCA(v, v′) is the region r, such that (1)
(v, v′) ⊆ subvertex+(r), and (2) for each r′ 6= r, (v, v′) ⊆ subvertex+(r′)
implies subvertex+(r) ⊂ subvertex+(r′).
• For a state machine SM, we define removeTransition(SM, t) to remove

the transition t from SM. If we assume in our programming language
explicit garbage collection is not necessary (such as in the case of Java),
this can be simply implemented by removing t from the set of outgoing
transitions of t’s source and from the set of incoming transitions of t’s
target (see also Sect. 5.2.5), defined as remove(outgoing(source(t)), t);
remove(incoming(target(t)), t). We also define removeTransition(T)
to remove all transitions contained in T .
• For a state machine SM, we define removeVertex(SM, v) to remove the

vertex v from SM. If we assume in our programming language explicit
garbage collection is not necessary (such as in the case of Java), this can
be simply implemented by removing v from the region containing v, de-
fined as remove(subvertex(container(v)), v) (see also Sect. 5.2.5). We
further define removeVertex(V) to remove all vertices contained in V .
• For each region r, class C which is a subclass of Vertex, and a variable v,

we write v = insertVertex(r,C) for the combination of creating a new
object of class C and inserting it into region r, defined as v ← new C;
add(subvertex(r), v). The return value may also be omitted.
• For each region r, pseudostate kind k, and and a variable v, we write
v = insertVertex(r, k) for the combination of creating a pseudostate of
the kind k and inserting it into region r, defined as v ← new Pseudostate;
kind(v)← k; add(subvertex(r), v). The return value may also be omit-
ted.
• For vertices s, s′, trigger t, constraint g, and action a, we also refer to

new Transition(s, s′, t, g, a) as insertTransition(s, s′, t, g, a).
• In the UML, an initial vertex init has exactly one outgoing transition1.

We call this transition the initial transition. We refer to the initial tran-
sition of a region r as inTr(r), if r contains an initial vertex. For a state
machine SM we define inTr(SM) := inTr(top(SM)).

5.2.5. Derived properties. To make it easy to keep the state machine consis-
tent, we regard some properties defined in the metamodel as “derived”, i.e. their

1Actually, the UML Specification requires only that “an initial vertex can have at most one
outgoing transition” [57, p. 541]. Since an initial vertex without outgoing transitions would not
make any sense, we conclude that an initial vertex must have exactly one outgoing transition.

5.3. PREPROCESSING 51

values are derived from other properties, and cannot be assigned directly. The
properties and their derivation are given in the following:

• target and source of Transition. Given a state machine SM and a transition
t, target(t) is calculated as the (unique) vertex v ∈ V(SM) such that
t ∈ incoming(v), source(t) as the (unique) vertex v ∈ V(SM) such that
t ∈ outgoing(v).
• container of Vertex. Given a vertex v, its container(v) is calculated as

the (unique) region r ∈
⋃
s∈S(SM) region(s) such that v ∈ subvertex(r).

The uniqueness of the source and the target of a transition t is provided by
restriction of writing access of the vertices: throughout our algorithms, we avoid
setting their values by assignment, but use instead the functions setTarget(t, v)
and setSource(t, v), which are defined in the following, to set the target and source,
respectively, of t to vertex v.

procedure SETTARGET(t, v)
v′ ← target(t)
incoming(v′)← incoming(v′) \ {t}
incoming(v)← incoming(v) ∪ {t}

end procedure
procedure SETSOURCE(t, v)

v′ ← source(t)
outgoing(v′)← outgoing(v′) \ {t}
outgoing(v)← outgoing(v) ∪ {t}

end procedure
Similarly, we do not set the container property of a vertex directly, but indi-

rectly by modification of the set of subvertices contained in the container.

5.3. Preprocessing

Before weaving HiLA aspects into the base machine, we first need to prepro-
cess the latter. The purpose of preprocessing the base machine is to transform it
into a canonical form, and to make it as simple as possible to determine the appli-
cable aspects at a certain transition.

The preprocessing consists of six steps, as shown in Algorithm 5.3. Since
each of the steps is semantic preserving, the overall preprocessing is also semantic
preserving. In the following, the six transformation steps, as well as the semantic
preservation, are explained in more detail.

Algorithm 5.3 Preprocessing

1: procedure PREPROCESSING(SM)
2: REMOVEJUNCTIONS(SM)
3: REMOVETARGETUNSTRUCTUREDTRANSITIONS(SM)
4: REMOVEFORKVERTICES(SM)
5: CREATEBEFORESECTIONS(SM)
6: INSERTTRACEVARIABLES(SM)
7: INSERTERRORSTATES(SM)
8: end procedure

52 5. WEAVING

A

B

C

X

Y

ea [ga] / aa;

eb [gb] / ab;

ec [gc] / ac;

[gx] / ax;

[gy] / ay;

(a)

A X

B

C Y

ec [gc & gx] / ac; ax;

ec [gc & gy] / ac; ay;

eb [gb & gy] / ab; ay;

ea [ga & gy] / aa; ay;

ea [ga & gx] / aa; ax;

eb [gb & gx] / ab; ax;

(b)

Figure 5.2: Example: eliminating a junction vertex

5.3.1. Removing junctions. Junctions are “semantic-free”, they are used to
“chain together multiple transitions” [57, p. 542]. That is, a chain of multiple
transitions, connected by junctions, is semantically equivalent to a single transition.

In the first preprocessing step, we remove (almost, see below) all junctions in
the base machine SM by transforming each such transition chain to a semantically
equivalent single transition. This way we simplify the structure of the base ma-
chine by reducing the number of transitions contained in it. The purpose of this
preprocessing step is to simplify the determination the proceeding and the follow-
ing states of a given state by shortening the transition paths.

To this end, we simply merge the transitions connected by (almost) each junc-
tion. We replace each pair (t1, t2) of transitions where there exists a junction j such
that j = target(t1) = source(t2) by a transition t with source(t) = source(t1),
target(t) = target(t2), trigger(t) = trigger(t1), guard(t) = guard(t1)∧guard(t2),
and effect(t) = effect(t1) · effect(t2). Note that according to [57, p. 573] t2 must
not have a trigger.

EXAMPLE 5.1 (Removing junction vertices). In Fig. 5.2a three transitions lead
to the junction, two transitions leave it. This preprocessing step replaces them
transitions by six other transitions, as shown in Fig. 5.2b.

As stated above, we remove only almost every junction. The only junctions
that we do not remove are the followers of the initial vertices (in each region), if
they are junctions. The reason why they cannot be removed is simply that they are
necessary to model certain behaviors, e.g. when target unstructured transitions are
removed, see Sect. 5.3.2.

The algorithm is given in Algorithm 5.4. Note we require that in SM there
is no cycle consisting of such transitions whose source and target are both junc-
tions. That is, we require source(t1) 6= target(tk) for every {t1, t2, . . . , tk} ⊆
T(SM), k ∈ N such that isJunction(source(ti)) ∧ isJunction(target(ti)), 1 ≤
i ≤ k, and target(ti) = source(ti−1), 1 < i ≤ k.

After this step, the base machine contains no junctions any more, except the
targets of the initial transitions of the regions, if these targets are junctions.

5.3.2. Removing target unstructured transitions. A transition t is called
structured, if its source and target are direct subvertices of the same region, oth-
erwise its called unstructured, i.e. t is structured iff. LCA(source(t), target(t)) =
container(source(t)) = container(target(t)). We say t is target unstructured, if
LCA(source(t), target(t)) 6= container(target(t)), and t is source unstructured, if

5.3. PREPROCESSING 53

Algorithm 5.4 Remove junctions

1: procedure REMOVEJUNCTIONS(SM)
2: . precondition: there is no cycle consisting of only transitions whose

target and source are both junctions
3: for all j ∈ Jc(SM) do
4: if target(inTr(container(j))) 6= j then
5: T1 ← incoming(j)
6: T2 ← outgoing(j)
7: for all (t1, t2) ∈ T1 × T2 do
8: insertTransition(source(t1), target(t2), trigger(t1), guard(t1)∧

guard(t2), (effect(t1) · effect(t2)))
9: end for

10: remove(T(SM), (T1 ∪ T2))
11: remove(V(SM), j)
12: end if
13: end for
14: end procedure

LCA(source(t), target(t)) 6= container(source(t)). Obviously a transition can be
both target unstructured and source unstructured.

We remove in this step the target unstructured transitions in a given base ma-
chine SM. The purpose of this step is to uniform the activation of composite states.
In general, a composite state S can be activated in two (semantically equivalent)
ways:

(1) as the result of firing a (target structured) transition t leading to S. In
this case, there must be an initial vertex ir ∈ subvertex(r) for each r ∈
region(S), otherwise the state machine is not well-formed (see p. 12).
After t is fired, the initial transitions inTr(r) for each r ∈ region(S) are
fired,

(2) as the result of firing a (target unstructured) transition t′ leading to some
substate s of S. In this case, the execution of SM continues at s after the
firing of t′. Additionally, if S contains more than one regions, the regions
not containing s are started by firing their initial transitions.

This preprocessing step replaces the second form by the first one. The basic
idea is to replace the target of t′ by S, and, on the new transition, make variable
assignments to store the original target. When the initial transitions of S’s regions
are fired, the variables are used to distinguish the “right” state to activate.

EXAMPLE 5.2 (Removing target unstructured transitions). In Fig. 5.3a, the
transition from B to Y is target unstructured, since the least common ancestor of B
and Y is not the region containing Y. The result of applying this preprocessing step
to Fig. 5.3a is given in Fig. 5.3b: the problematic transition changes its target to C,
and hence becomes target structured. The transition now also contains an action,
which sets variable cY to true. When C is activated, its initial junction distinguishes
two cases in dependence of cY which is the next state to activate. When the state
machine is started, variable cY is initialized to be false (not shown in Fig. 5.3).
When C is left, cY is set back to false to ensure the correct execution next time C
gets active.

54 5. WEAVING

A

B

X Y

Z

C

[g] / a;

(a) Before preprocessing

Y

Z

XA

B

[! cY]

[g] / a; cY = true; [cY]

C
exit / cY = false;

(b) After preprocessing

Figure 5.3: Example: removing target unstructured transitions

The algorithm implementing this step is given in Algorithm 5.5. For each target
unstructured transition t, a unique boolean variable cnttarget(t) is created (in line 5),
which is initialized with false when the state machine is started (line 6). The effect
of t is extended by an assignment of a new variable which indicates target(t) in
variable cntr (line 7), and its target is set to be the container state cs of its original
target (line 9). The exit action of cs is extended (line 10) to ensure that cnttarget(t)

has the value false when cs is activated again.
If the region does not contain an initial vertex originally, one is inserted into

the region (lines 12–15). If the region does not contain an initial junction, one is
inserted (lines 20–24). From the initial junction to the target of the problematic
transition a new transition (which we call t′) is inserted to simulate t (lines 15,
22, and 31). Note all the existing transitions from the initial junction are extended
by an additional guard (line 29) which prevents them from being fired when t′ is
supposed to be fired.

After this step, every transition in the state machine is target structured, and
every region r contains an initial vertex. The target of the (exactly one) transition
leaving the initial vertex, which we notate as inTr(r), is always a junction. inTr(r)
is the only transition entering this junction. The fact that every transition is target
structured makes it easier to determine when �after� aspects should be executed,
see Sect. 5.5.3.

Note, however, that if the original state machine contains a fork pseudostate
f , according to the UML, all transitions outgoing f “must target states in different
regions of an orthogonal state” [57, p. 541]. This means that all these transitions are
target unstructured, and that after this step, these transitions will be leading to the
state containing their original targets. Obviously this breaks the above constraint
(see Fig. 5.4 for an example). This violation will be reconciled in the next step.

5.3.3. Removing fork vertices. Transitions outgoing fork vertices have been
modified while target unstructured transitions were modified (Sect. 5.3.2). The
purpose of removing all fork vertices now is to mitigate the aforementioned viola-
tion of the well-formedness constraint. According to the UML Specification [57,
p. 541] each fork vertex must have exactly one incoming transition. We remove
each fork vertex in the state machine and all the transitions leaving it (all of the
transitions lead to some substate of an orthogonal state), and replace the target of
its incoming transition by the orthogonal state. Effects, if any, of the outgoing
transitions are merged with those of the incoming transition. Recall that “a fork
segment must not have guards or triggers” [57, p. 573].

5.3. PREPROCESSING 55

Algorithm 5.5 Remove target unstructured transitions

1: procedure REMOVETARGETUNSTRUCTUREDTRANSITIONS(SM)
2: while ∃t ∈ T(SM) · [LCA(source(t), target(t)) 6= container(target(t))]

do
3: t′ ← target(t)
4: r ← container(t′)
5: cntt′ ← newVar
6: effect(inTr(SM))← effect(inTr(SM)) · toUML(cntt′ ← false)
7: effect(t)← (effect(t)) · toUML(cntt′ ← true) . new effect
8: cs ← state(r)
9: setTarget(t, cs) . new target

10: exit(cs)← exit(cs) · toUML(cntt′ ← false)
11: if initial(r) = ⊥ then
12: i← insertVertex(r, initial)
13: j ← insertVertex(r, junction) . junction not necessary, but still

add one, to keep the algorithm simple
14: insertTransition(i, j,⊥, true, skip)
15: insertTransition(j, t′,⊥, toUML(cntt′), skip)
16: else
17: i← initial(r)
18: it ← inTr(r)
19: if ¬isJunction(target(it)) then . new junction needed
20: j ← insertVertex(r, junction)
21: insertTransition(i, j,⊥, true, skip)
22: insertTransition(j, t′,⊥, toUML(cntt′), skip)
23: setSource(it , j)
24: guard(it)← guard(it) ∧ toUML(¬cntt′)
25: else
26: j ← target(it)
27: . make sure that the existing transitions won’t be fired when

the new transition is inserted
28: for all told ∈ T(SM) · [source(told) = j] do
29: guard(told)← guard(told) ∧ toUML(¬cntt′)
30: end for
31: insertTransition(j, target(t),⊥, toUML(cntt′), skip)
32: end if
33: end if
34: end while
35: end procedure

EXAMPLE 5.3 (Removing fork vertices). Figure 5.4a shows part of a state
machine, containing a fork vertex. Note the two transitions leaving the fork vertex
are both target unstructured. First, these transitions are transformed according to
the procedure described in Sect. 5.3.2 to be target-structured, the results is shown
in Fig. 5.4b, which is not (yet) well-formed w.r.t. [57]. Applying the procedure
described in this section, Fig. 5.4b is transformed to Fig. 5.4c, where the fork and
all its outgoing transitions are removed, and the incoming transition is extended by
the effects of the (now removed) outgoing transitions.

56 5. WEAVING

A

Y

X

C

(a) Original situation

A

X

Y

[cX]

[cY]

exit / cX = false; cY = false;
C

/ cX = true

/ cY = true

(b) Target unstructured transitions removed (not well-
formed w.r.t. [57]!)

X

Y

A

[cX]

[cY]

/ cY = true
/ cX = true

exit / cX = false; cY = false;
C

(c) Fork removed

Figure 5.4: Example: removing fork vertices

Algorithm 5.6 Remove fork vertices
1: procedure REMOVEFORKVERTICES(SM)
2: for all frk ∈ Fk(SM) do
3: t1 ← t ∈ T(SM), target(t) = frk . exactly one
4: t2 ← t ∈ T(SM), source(t) = frk . anyone
5: setTarget(t1, target(t2)) . update the target
6: effect(t1)← effect(t1) · (•source(t)=frk effect(t)) . update the effect
7: removeTransition(SM, {t | source(t) = frk)}
8: end for
9: removeVertex(SM,Fk(SM))

10: end procedure

The algorithm is given in Algorithm 5.6. The target of the incoming transition
is updated in line 5; its effect is updated in line 6, where we use a bullet (•) to refer
to the sequential concatenation of a set of actions in an arbitrary order. Since in
the case of removing forks the effects to concatenate are assignments of pair-wise
distinct variables, it does not matter in which order they are concatenated.

After this step, the state machine contains no fork vertices any more. The
violation of well-formedness caused by Sect. 5.3.2 is reconciled.

5.3.4. Creating “before” section. The purpose of creating a “before” section
before each state is to simplify the weaving of �before� aspects: for each state
(including final states) we unify all its incoming transitions, so that syntactically
there is only one transition leading to each state. This way �before� aspects only
need to be woven once, at one place.

To this end, we introduce for each state s a new junction jBefore(s) into the
region of s, redirect all incoming transitions of s to jBefore(s), and insert a new
transition from jBefore(s) to s. Due to the “semantic-freedom” [57, p. 542] of
junctions, this operation does not change the semantics of the original state ma-
chine.

5.3. PREPROCESSING 57

BA
a

b

c

(a) Original situation

A B
ca

b

(b) After inserting before sections

Figure 5.5: Example: creating “before” section

EXAMPLE 5.4 (Creating before sections). Three before sections are needed to
preprocess the state machine given in Fig. 5.5a: for the states A and B, and the final
state (final states are also states). The result of applying the preprocessing step
“Creating before sections” is given in Fig. 5.5b. Note the before sections of B and
the final state are in this example not really necessary, since in the original state ma-
chine there is only one transition leading to B resp. the final state. Our algorithm
does not check this situation, and simply creates for each state a before section.
Therefore, in the following preprocessing and weaving steps, there is always ex-
actly one transition leading to each state, and this transition always originates from
a junction vertex.

Algorithm 5.7 Create before sections
1: procedure CREATEBEFORESECTION(SM)
2: for all s ∈ S(SM) do . including final states
3: j ← insertVertex(container(s), junction)
4: for all t ∈ T(SM) · [target(t) = s] do
5: setTarget(t, j)
6: end for
7: insertTransition(j, s,⊥, true, skip)
8: end for
9: end procedure

The (rather simple) algorithm for this preprocessing step is given in Algo-
rithm 5.7. After this step, there is exactly one transition leading to each state s of
the state machine. This transition always originates from a junction vertex, which
we call jBefore(s). All �before� aspects should be woven to this transition. On
the other side, this transition is the only one leaving jBefore(s), its target is always
a state.

5.3.5. Insert trace variables. One of HiLA’s highlights is its support for cross-
region aspects and history-based aspects. As a preparation for weaving such as-
pects, we extend the entry and exit actions of SM’s states to make assignments to
indicate which states are currently active and which ones have just become inactive.

Tracing the currently active states is simple. We just define for each state s a
unique variable ins, and set ins to be true and false in the entry and exit action of
s, respectively. At runtime, the values of these variables indicate which states (in
different regions) are currently active.

Tracing the last active state is slightly more complex. We introduce for each
state s another variable ls, and set ls to be true in the exit action of s, indicating
that s “has just become inactive”. Furthermore, we also have to extend the exit

58 5. WEAVING

action of each state, that is directly reachable from s, by an action to set ls′ to be
false for each s′ such that s′ ∈ subvertex∗(s).

B

X
A

(a) Original situation

entry / inB = true;
exit / inB = false; lB = true;

B

entry / inA = true;
exit / inA = false; lA = true; lX = false;

A
entry / inX = true;
exit / inX = false; lX = true;
 lA = false; lB = false;

X

(b) After inserting trace variables

Figure 5.6: Example: inserting trace variables

EXAMPLE 5.5 (Inserting trace variables). The state machine given in Fig. 5.6a
is transformed by this step to Fig. 5.6b. At runtime, when B is entered, we have
inA = true and inB = true, and, if the last active state was X, also lX = true. When A
(and thus B) is left, X gets active, we have inX = true, lA = true and lB = true.

The algorithm for this step is shown in Algorithm 5.8. Note in lines 14–22
we exploit the fact that after the proceeding steps each transition outgoing a state
either leads to a junction, which is the source of the before section of another state,
or a join vertex, from which the only outgoing transition then leads to the source of
the before section of another state. The assignments of the in variables, indicating
“I am active”, are inserted in lines 10 and 11. The l variables, indicating the last
active states, are set in the loop from line 12 to 26.

5.3.6. Inserting Error States. When resumption conflicts are detected, the
state machine is supposed to enter an error state (see Sect. 5.1). In the current
version of HILA, we consider this error to be an internal error of the region con-
taining the aspect state, and insert for each region r a state Err(r) for the indication
of resumption conflicts having occurred “somewhere in r”.

The algorithm for inserting error states is straight forward. We first visit all
states that are originally contained in SM, add an error state to each of its regions,
and then insert an error state for the top region of SM, see Algorithm 5.9. The error
states are not yet connected to the rest of the state machine. This is only done in
the postprocessing step, see Sect. 5.6.

5.3.7. Summary. Overall, after the preprocessing steps, our state machines
show the following properties:

• For each state s that is not the error state of some region, i.e. s is an “orig-
inal” state contained in the base machine, there is exactly one transition
entering it. The source of this transition is always a junction, which we
call jBefore(s). There is exactly one transition leaving jBefore(s), which
always leads to s.

5.3. PREPROCESSING 59

Algorithm 5.8 Insert trace variables
1: procedure INSERTTRACEVARIABLES(SM)
2: for all s ∈ S(SM) do
3: ins ← newVar
4: ls ← newVar
5: effect(inTr(SM))← effect(inTr(SM)) · toUML(ins ← false)
6: effect(inTr(SM))← effect(inTr(SM)) · toUML(ls ← false)
7: end for
8: for all s ∈ S(SM) do
9: entry(s)← entry(s) · toUML(ins ← true)

10: exit(s)← exit(s) · toUML(in ← false)
11: exit(s)← exit(s) · toUML(ls ← true)
12: for all t ∈ outgoing(s) do
13: j ← target(t)
14: if isJunction(j) then . j = jBefore(s′) for some state s′

15: t′ ← t′′ such that source(t′′) = j . only one!
16: s′ ← target(t′)
17: else . invariant: j is a join vertex
18: t′ ← t′′ such that source(t′′) = j . only one!
19: j′ ← target(t′) . j′ = jBefore(s′) for some state s′

20: t′′ ← t′′′ such that source(t′′′) = j′ . only one!
21: s′ ← target(t′′)
22: end if
23: for all s0 · [s0 ∈ subvertex∗(s)] do
24: exit(s′)← exit(s′) · toUML(ls0 ← false)
25: end for
26: end for
27: end for
28: end procedure

Algorithm 5.9
1: procedure INSERTERRORSTATES(SM)
2: for all s ∈ S(SM) do
3: for all r ∈ region(s) do
4: Err(r)← insertVertex(r, state)
5: end for
6: end for
7: Err(top(SM))← insertVertex(top(SM)), state)
8: end procedure

• It holds that jBefore(s) and s are always in the same region, that is,
container(jBefore(s)) = container(s).
• All transitions are target structured. There may, however, exist source

unstructured transitions.
• For each transition t leaving a state, its target may be either a junction

(jBefore(s′), where s′ is also a state), or a join vertex.

60 5. WEAVING

• If a transition t is source unstructured, there exists exactly one state s such
that source(t) ∈ subvertex+(s) and LCA(s, target(t)) = container(s) =
container(target(t)). We write sourcestruct(t) := s.
• If a transition t is source structured, we write sourcestruct(t) := source(t).
• For each state s which is not the error state of some region, two boolean

variables are introduced: ins, indicating if s is currently active, and ls,
indicating if s has just become inactive.
• In each region r, there is an initial vertex initial(r). The (exactly one)

transition inTr(r) leaving initial(r) leads to a junction, which we refer
to as j i(r). The transition inTr(r) is the only transition entering j i(r).
Each transition leaving j i(r) leads to another junction j = jBefore(s),
where s is a state.
• Each junction is either j i(r) of some region r, or jBefore(s) for some

state s, but never both.
• In each region r, there is a state Err(r) which indicates that some resump-

tion conflict has just occurred in r. Error states are not yet connected to
other vertices. They will remain isolated, i.e. unconnected until the post-
processing step of the weaving, which is described in Sect. 5.6. For a
given state machine SM, we write Err(SM) to mean the set of all its error
states: Err(SM) := {Err(r) | r ∈ region(s) for some s ∈ S(SM)}.

As will be shown in the following sections, these properties play an important
role in our weaving algorithms.

5.4. Weaving History Properties

History properties are implemented by a non-deterministic finite automaton,
which performs one execution step once a “history relevant” state gets active. A
state s is history relevant w.r.t. a history property p if and only if s is contained in
the configuration selector of one of p’s history elements. Let state machine SM and
aspect A containing the set of history properties H = {h1, h2, . . . , hn} be given.
We write hrel(SM, hi) for the set of states that are relevant for keeping track of the
history of active state configurations in order to keep the history property hi up to
date. Obviously we have hrel(SM, hi) =

⋃
e∈elem(hi)

config(e), where elem(hi) is
the set of the history elements of a hi, and config(e) is the configuration descriptor
of a history element. Furthermore, we define hrel(SM,A) =

⋃
h∈H hrel(SM, h).

EXAMPLE 5.6 (History relevant states). Let SM be the state machine given in
Fig. 2.3a, and A be the aspect in Fig. 4.20a, then hrel(SM,A) is the set containing
the states Right and Wrong.

5.4.1. Structure of the NFA. We first define an NFA for a pair of a state
machine SM and a history property p, which we call NFA(SM, p). Given a state
machine SM, weaving a set of history properties P = {pi} (contained in a set of
aspects) to SM is performed by simulating all NFA(SM, pi) in the base machine.

We need some auxiliary functions in the construction of the NFA: if the multi-
plicity of an element e is of the form n1..n2 we call min(e) := n1 the minimal and
max(e) := n2 the maximal number of occurrences of that element. If the multi-
plicity of e is of the form n..∗ we define min(e) := max(e) := n. In this case we
define infinite?(e) = true, otherwise infinite?(e) = false.

5.4. WEAVING HISTORY PROPERTIES 61

To distinguish states of the finite automaton from states of the state machine
we refer to the former as hstates. Given a history property p, we number his history
elements from 0 to n and write ei for the history element with number i. We define
an hstate for each tuple (a0, . . . , an) with 0 ≤ ai ≤ max(ei) and refer to it as
hstate(ao, . . . , an).

The NFA is supposed to react to the events of the base machine activating
and deactivating a configuration as defined by one of the history elements of p,
and decide thus whether the current execution history is “accepted” by the pat-
tern. To this end, we insert a transition with label ei from each hstate of the
form hstate(a0, . . . , ai, . . . , an) to hstate(a0, . . . , ai + 1, . . . , an) if ai < max(ei),
a self-transition with label ei for hstates of the form hstate(a0, . . . , an) if ai =
max(ei) ∧ infinite?(e) = true, and a transition from hstate(a0, . . . , an) to the ori-
gin hstate(0, . . . , 0) if ai = max(ei)∧ infinite?(e) = false. Finally, we insert (non-
deterministic) transitions h0

s−→ h0 for all states s ∈ hrel(M,pi). This way, it is
ensured that the automaton keeps track of all sequences of states in its history. The
accepting states are all hstates hstate(a0, . . . , an) with min(ei) ≤ ai ≤ max(ei)
for all i with 0 ≤ i ≤ n.

(1,0) (2,0)(0,0)
RightRight

Wrong

Wrong

Right

Wrong

Right

Right, Wrong

Figure 5.7: Example: NFA for history property a defined in Fig. 4.20a

EXAMPLE 5.7 (NFA). Figure 5.7 shows the NFA for the history property a
defined in Fig. 4.20a.

5.4.2. Simulating the NFA. The NFA is not actually constructed by the weav-
ing. Instead, its behavior is simulated by the base machine. In fact, the base ma-
chine needs to simulate one such NFA for each history property.

Given a state machine SM and a set of history properties {p1, . . . , pn}, we refer
to the elements of elem(pi) as ei,j , 1 ≤ j ≤ #(elem(pi)) for 1 ≤ i ≤ n. For each
1 ≤ i0 ≤ n we define a set of boolean variables B = {bi0,i1,...,iK}, with K =
#(elem(pi0)) and 0 ≤ im ≤ max(ei0,im) for 1 ≤ m ≤ K. A variable bi0,i1,...,iK
is true iff. in the virtual NFA for the history property pi0 the hstate(i1, . . . , iK) is
active.

To implement the history property in a base machine SM, we extend the exit
behavior of each state s ∈ S(SM) by an action As. The function of As is to
check if there exists a history property pi and a history element of it, ei,j , such that
the complete configuration of ei,j is active while s is active. If this is the case,
and constraint(ei,j) is also satisfied, we simulate a step of the NFA when s is left
by first checking the variables in B to find the currently active hstates and then
updating the values of the B-variables according to the transitions now fired in the
NFA.

Determining if the configuration of a history element e is active is achieved by
testing if all states of config(e), that are different than s, are active.

62 5. WEAVING

5.4.3. Counting. Finally, counting the occurrences of such contiguous subse-
quences that are specified by a history property p is implemented by yet another ex-
tension of the exit actions to check if the NFA is in an accepting state (i.e. whether
the corresponding boolean variable is true), and, if so, to increase the history prop-
erty by one.

For weaving history properties, we define an index for each element of H,
and write H = {h1, . . . , hn}. We also define an index of each h ∈ H and note
elem(h) = {e1

h, . . . , e
kh
h }, where kh = #(elem(h)). Furthermore, the function idx

returns the index of a history property or a history element: we define idx(hx) :=
x, idx(exh) := x.

The overall algorithm weaving a set H of history properties to state machine
SM is shown in Algorithm. 5.10. For each history property h we use a variable vh
to store the variable of SM to represent h. Later on, for each e ∈ elem(h) and each
s ∈ config(e), the exit action of s is extended with an action to check if the NFA
should advance one step, and if yes, simulate the step.

This algorithm is given in Algorithm 5.11. First it is checked if all other states
contained in the current history element are active (line 2). If this is the case, an
execution step of the NFA is made: the currently active NFA states are stored in the
boolean variables named b, where bx,ix1 ,...,ixk

= true indicates that in the NFA for
history property hx, currently the NFA state labeled ix1 , . . . , ixk

is active. The NFA
states following this state are then activated according to Sect. 5.4.1. Since in our
NFA, the original state (0, . . . , 0) is always active, we set the variable representing
it to be true (line 14). Finally, it is tested if the NFA has entered an accepting state
(line 15), and, if so, the value of vh is increased by one.

If a history property is parameterized, we consider it as a set of a number of
history properties, distinguished by the value of the parameter. We repeat the above
procedure and define (and simulate) an NFA for each value from the domain of its

Algorithm 5.10 Weave history properties

1: procedure WEAVEHISTORYPROPERTIES(SM,H)
2: for all h ∈ H do
3: vh ← newVar
4: for all i1, i2, . . . , ik, k = #(elem(h)), and 0 ≤ im ≤ max(em), 1 ≤
m ≤ k do

5: bidx(h),i1,i2,...,ik ← newVar
6: add(property(SM), bidx(h),i1,i2,...,ik)
7: end for
8: end for
9: for all h ∈ H do

10: for all e ∈ elem(h) do
11: for all s ∈ config(e) do
12: exit(s)← exit(s) · toUML(oneStep(h, e, s)) . see

Algorithm 5.11
13: end for
14: end for
15: end for
16: end procedure

5.5. WEAVING ASPECTS 63

parameter. For example, the history property a in Fig. 4.20a is woven as a set of
NFAs, one for each lv.

Algorithm 5.11 Simulating One Step of the NFA

1: procedure ONESTEP(h, e, s)
2: if (

∧
s′∈config(e),s′ 6=s isActive(s′)) ∧ constraint(e) then . one step of the

NFA
3: for all bidx(h),i1,i2,...,ik , k = #(elem(h)) and 0 ≤ im ≤ max(emh) for

each m ∈ 1, . . . , k do
4: if bidx(h),i1,i2,...,ik then
5: if iidx(e) < max(e) then
6: bidx(h),i1,i2,...,(iidx(e)+1),...,ik ← true

7: bidx(h),i1,i2,...,ik ← false
8: else if ¬ infinite?(e) then . iidx(e) = max(e)
9: bidx(h),0,...,0 ← true

10: bidx(h),i1,i2,...,ik ← false
11: end if
12: end if
13: end for
14: bidx(h),0,...,0 ← true
15: if

∧
m∈1,...,#(elem(h)) min(emh) ≤ im ≤ max(emh) ∧ bidx(h),i1,i2,...,ik

then
16: vh ← vh + 1
17: end if
18: end if
19: end procedure

5.5. Weaving Aspects

In HILA, each aspect is woven into a region of an orthogonal state. In this sec-
tion, we first describe how this region is constructed, then we give the algorithms
introducing the states containing these regions to the base machine.

5.5.1. aspect2Region. The transformation of an aspect a to a region Ra(s)
to advise the transition entering state s is described in Algorithms 5.12–5.17. At
run time, when Ra(s) gets active, it first checks whether the precondition of a is
satisfied, and, if this is the case, executes advice (a). On every transition t where a
is applicable, an instance of Ra(target(t)) is created. Algorithm 5.12 shows how
an instance of Ra(s) is constructed, if a is applicable just before state s is about
to become active. The constructed region will be inserted into the “aspect state” to
splice the (exactly one, see Sect. 5.3.4) transition leading to s.

As shown in Algorithm 5.12, Ra(s) contains basically a clone of each (di-
rect or recursive) subvertex of advice(a) and the corresponding transitions (Algo-
rithm 5.13). Additionally, Ra(s) also contains a junction j (Algorithm 5.14) and
additional transitions around j: the initial transition t1 is modified to be leading to
j; t2 and t3(r) ensure that the advice is executed if the precondition of the aspect
is satisfied, and otherwise the advice is skipped. The value of t3(r) will also be
used in the next step, where assignments are inserted (in Algorithm 5.15) as effects

64 5. WEAVING

Algorithm 5.12 Region implementing an advice

1: function REGIONOFASPECT(SM, a, s)
2: r ← new Region
3: INSERTCLONES(a, r) . see Algorithm 5.13
4: INSERTJUNCTION(a, r, s) . see Algorithm 5.14
5: INSERTGOTOVARIABLES(SM, r) . see Algorithm 5.15
6: COLLECTGOTOVARIABLES(a, r, s) . see Algorithm 5.17
7: return r
8: end function

Algorithm 5.13 Insert clones of vertices and transitions
1: procedure INSERTCLONES(a, r)
2: for all v ∈ V(a) do
3: add(subvertex(r), cloneVertex(v))
4: end for
5: for all v ∈ subvertex+(r) do
6: o← clone−1(v) . o 6= ⊥
7: for all t ∈ outgoing(o) do
8: insertTransition(v, v′, trigger(t), guard(t), effect(t)), where

clone−1(v′) = target(t)
9: end for

10: end for
11: end procedure

Algorithm 5.14 Insert a junction to determine if the advice should be executed
1: procedure INSERTJUNCTION(a, r, s)
2: j ← insertVertex(r, Junction)
3: ta ← inTr(advice(a))
4: t1 ← inTr(r) . since a contains an initial vertex, so does r
5: setTarget(t1, j) . redirect inTr(r) to j
6: effect(t1)← skip
7: t2 ← insertTransition(j, v,⊥, toUML(presa), effect(ta)), where

clone−1(v) = target(ta) . proceed to advice only when precondition satisfied
8: f ← f ′ where f ′ ∈ subvertex(r) ∧ class(f ′) = labeledfinal . any one
9: t3(r)← insertTransition(j, f,⊥, toUML(¬presa), effect(ta)) . go to a

final state if precondition not satisfied
10: end procedure

of transitions leading to the final states of Ra(s) to set resumption variables (see
Sect. 5.1). Obviously, transition t3(r) should not set a resumption variable, since it
is only a bypass of the aspect. On the other hand, the effect of every other transi-
tion leading to a (labeled) final state in the region is extended by two assignments
(lines 12–14, see also Algorithm 5.16), setting the resumption variable to true,
and stores (in variable pr(s)) the priority of the aspect setting this resumption vari-
able. Note that according to the assignment in Algorithm 5.16, writing access to
gt(s) always set its value to true, this way, race conditions w.r.t. these variables are
avoided. Since we assume that the firing of a transition is atomic (see Sect. 2.1.4)

5.5. WEAVING ASPECTS 65

and in particular the execution of the effect cannot be interrupted, and the writing
access in lines 5.16, lines 3–5 only increases the value of pr(s), race conditions are
also avoided w.r.t. the priorities. If we do not assume the atomicity of transition
firing, a slightly more complex model would be necessary, using boolean variables
to indicate if a certain priority is set for a certain resumption state.

Algorithm 5.15 Insert goto variables
1: procedure INSERTGOTOVARIABLES(SM, r)
2: for all f ∈ subvertex(r) ∧ class(f) = labeledfinal do
3: s′ ← label(f) ∩ subvertex(container(s)) . at most one!
4: if s′ 6= ⊥ then
5: if gt(s′) /∈ property(SM) then
6: gt(s′)← newVar
7: end if
8: if pr(s′) /∈ property(SM) then
9: pr(s′)← newVar

10: end if
11: p← priority(a)
12: for all t ∈ incoming(f), t 6= t3(r) do
13: effect(t)← effect(t) · toUML(ASSIGNVARIABLE(s′, p)) .

see Algorithm 5.16
14: end for
15: end if
16: end for
17: end procedure

Algorithm 5.16 Assign goto and priority variables
1: procedure ASSIGNVARIABLE(s, p)
2: gt(s)← true
3: if pr(s) < p then
4: pr(s)← p
5: end if
6: end procedure

Algorithm 5.17 Collect goto variables
1: procedure COLLECTGOTOVARIABLES(a, r, s)
2: gtVars(r)← ∅
3: prVars(r)← ∅
4: for all f ∈ subvertex(r), class(f) = labeledfinal do
5: s′ ← label(f) ∩ subvertex(container(s)) . only one!
6: gtVars(r)← gtVars(r) ∪ {gt(s′)}
7: prVars(r)← prVars(r) ∪ {pr(s′)}
8: end for
9: end procedure

66 5. WEAVING

Since an advice may contain several (labeled) final states, and each of them
may contain a label to indicate a resumption state, there may be several resumption
strategies defined by the advice. Therefore a region r implementing an aspect may
also need several resumption variables, and for each a priority variable. These are
collected (Algorithm 5.17) in the set variables gtVars(r) and prVars(r). Later on,
the sets will be merged to determine all the resumption variables used in the aspect
state.

The value of function presa (see Algorithm 5.14) is true iff. the precondition
of aspect a is satisfied just before state s is entered. More formally, the function is
defined as follows:

presa =

true, if kind(a) = before ∧ s ∈ config(a)
true if kind(a) = whilst ∧ s ∈ config(a) ∧ [ls]

∧∀v ∈ config(a) · [lv ∨ inv]
∧constraint(pointcut(a))

true, if kind(a) = after

∧constraint(pointcut(a))
∧∃s′ ∈ pred(s) · [s′ ∈ config(a) ∧ ls′]
∧∀v ∈ config(a) · [lv ∨ inv]

true, if kind(a) = between

∧constraint(src(a)) ∧ s ∈ tgt(a)
∧∃s′ ∈ pred(s) · [s′ ∈ src(a) ∧ ls′]
∧∀v ∈ src(a) · [lv ∨ inv]

false, otherwise

The function pred(s) gives the set of all states “preceding” s. It is the union of
the substates of the sourcestruct of all transitions leading to jBefore(s), possibly via
a join vertex, and is defined as pred(s) :=

⋃
t∈to(s) subvertex∗(sourcestruct(t)),

where to(s) := {t | target(t) = jBefore(s)} ∪ {t | ∃t′ · [isJoin(target(t1)) ∧
source(t2) = target(t1) ∧ target(t2) = jBefore(s)]}.

Recall that a �before� aspect should be executed as soon as at least one of
the states contained in its config is about to be entered. On the other hand, in the
case of an �after� aspect a, it is necessary for presa to check 1) for any given state
s′ ∈ src(a), either s′ has just been left or it is still active and 2) at least one of these
states has just been left. The precondition of a �between� is simply a conjunction
of those of �before� and �after�.

It is worth noting that if necessary, the @pre values of variables are stored by
an entry action. That is, any construct of the form x@pre, x being a property of
the state machine, is considered as a variable xBefore, and we extend each state
contained in the configuration by an entry action xBefore = x. For example, in our
weaving, the constraint given in Fig. 4.14a is actually implemented by an entry
action pBefore = p of state Fighting and a “normal” constraint pBefore > p && p
>0 in the construction of presa. Note also that in the actual implementation, it is not
necessary to explicitly check if after the advised transition being fired some “right”
state is going to be active (i.e. whether s ∈ config(a) or s ∈ tgt(a) is satisfied),
since this is implicitly guaranteed, see Algorithms 5.18 and 5.19.

5.5. WEAVING ASPECTS 67

ShowError

[else]

/ t(1) = true;
 if (p(1) < 0) p(1) = 0

/ t(2) = true;

 if (p(2) < 0) p(2) = 0

[else]

[(inSelectLevel

|| lSelectLevel)
&& l > 0]

[a(l−1) > 0]

Figure 5.8: Example: region implementing aspect RightInARow (Fig. 4.20a)

EXAMPLE 5.8 (Region implementing aspect RightInARow (Fig. 4.20a)). Fig-
ure 5.8 shows the region implementing the advice of aspect RightInARow defined in
Fig. 4.20a. When the region (i.e. the containing state) gets active, it is first checked
if the value of l is greater than zero and if the state SelectLevel is active or has just
been inactive. If this condition is not satisfied, the rest of the region is not executed,
instead, a final state (it may be any one) is activated. On the other hand, if the pre-
condition holds, the behavior as specified by the advice is executed. In this case, a
variable, t(1) or t(2), depending on which final state actually terminates the region
execution, is set to true, indicating how the execution of the base machine should
be resumed, see Fig. 5.1c. Priority assignments are also implemented, although in
this case they are actually not necessary, since the aspect has the default priority of
0 which is also the lowest priority, and the premise of the if statements can never
be satisfied in this special case. Note we do not explicitly check if ShowQuestion
is about to be active, since this is implicitly guaranteed by weaving the aspects on
the “right” transition.

5.5.2. Weaving Configuration Aspects. Aspects with a �whilst� pointcut
are referred to as �whilst� aspects, or, since the pointcut contains a configura-
tion selector, configuration aspects. These aspects are woven first, before those
with transition pointcuts.

We call W applicable for a state s if s ∈ config(W). For a set W of whilst
aspects we write Ws := {p ∈ W | s ∈ config(p)}. Furthermore, for an event
e0, we define Ws,e0 := {p ∈ Ws | trigger(p) = e0}. Apparently it holds that
Ws =

⋃
e0·[∃x∈W such that trigger(x)=e0]Ws,e0 .

We weave �whilst� aspects by introducing additional elements to the base
machine, see Algorithm 5.18: for each state s and each event e0 such that Ws,e0 6=
∅, we introduce a composite state Aspect (line 7), with region(Aspect) = {Ra(s) |
a ∈Ws,e0} (line 10), where Ra(s) is the region implementing a, see Sect. 5.5.1.

State Aspect is connected to s by a pair of transitions: one (which we call
t) from s to Aspect, with trigger e, an guard true, and an empty effect (line 12);
another (which we call t′) from Aspect to jBefore(s), with no explicit trigger, guard
or effect (line 13). This way, when the base machine is in state s, all applicable
advices are executed simultaneously upon event e.

Note we define (in line 4) a variable Aspw(s) to store all Aspect states, im-
plementing the �whilst� aspects applicable to s. This variable will be used in the
postprocessing step (Sect. 5.6).

5.5.3. Weaving Transition Aspects. After the preprocessing step “insert be-
fore sections” (Sect. 5.3.4), each state in the base machine has only one incoming

68 5. WEAVING

Algorithm 5.18 Weaving configuration aspects

1: procedure WEAVINGCONFIGURATIONASPECTS(SM, W)
2: Sorig(SM)← S(SM) \ Err(SM) . store the “original” states of SM for

later use, see Algorithms 5.19 and 5.20.
3: for all s ∈ Sorig do
4: Aspw(s)← ∅
5: Ws,e0 ← {w ∈W | s ∈ config(w) ∧ e0 = trigger(w)}
6: for all e0,Ws,e0 6= ∅ do
7: Aspect← insertVertex(container(s), state)
8: add(Aspw(s),Aspect)
9: for all a ∈Ws,e0 do

10: add(region(Aspect), REGIONOFASPECT(SM, a, s)) . see
Algorithm 5.12

11: end for
12: insertTransition(s,Aspect, e0, true, skip)
13: insertTransition(Aspect, jBefore(s), ∗, true, skip)
14: end for
15: end for
16: end procedure

transition, whose source is always a junction. All �before�, �after� and �be-
tween� aspects are woven into an orthogonal state splicing this transition.

For each state s and a set of aspectsA, we find out all a ∈ A that are applicable
to s. Obviously, a �before� aspect b is applicable to s iff. s ∈ config(pointcut(b)).
An �after� aspect a is applicable to s iff. s is preceded by a state s′, and s′

is contained in config(pointcut(a)). A �between� aspect w is applicable to s
iff. s ∈ tgt(pointcut(w)) and s is preceded by a state s′, and s′ is contained in
src(pointcut(a)).

We then weave all transition aspects, that are applicable to the same state, into a
concurrent state Aspect, with a region for each aspect. This process is described in
Algorithm 5.19. For SM and given sets of �before� aspects B, �after� aspects A
and �between� aspects M , we first calculate the applicable aspects of s (lines 3–
6). If there is any applicable aspect, we create state Aspect, insert it into the same
region of s, connect it to jBefore(s) and s (lines 7–15), and then insert for each
applicable aspect a a regionRa(s) into Aspect (lines 14). Recall that we refer to the
source of the before section of a state s, which is always a junction (see Sect. 5.3.4),
as jBefore(s). That is, it holds that ∃1t · [jBefore(s) = source(t) ∧ target(t) = s].

Note that being applicable is only a necessary condition for aspect a to be
executed, but not a sufficient one. In the case of �after� and �between� aspects,
it still has to be checked if the complete configuration has just been active and if
the constraint, if any, of the pointcut is satisfied. These checks are done within the
region implementing the aspect, see Sect. 5.5.1.

The transition created in line 12 is still subject to postprocessing, where the
labels of the (labeled) final states of the aspects are implemented. Note also that
variable Aspt(s) (line 10) is used to return the orthogonal state implementing all
transition aspects applicable to s. This value will be used in the following section.
While there may be several such states implementing all �whilst� aspects for a

5.6. POSTPROCESSING 69

Algorithm 5.19 Weaving transition aspects

1: procedure WEAVINGTRANSITIONASPECTS(SM, B, A, M)
2: for all s ∈ Sorig(SM) do . consider only the states “originally” contained

in SM
3: Bs ← {b ∈ B | s ∈ config(b)}
4: As ← {a ∈ A | ∃s′ ∈ pred(s) · [s′ ∈ config(a)]}
5: Ms ← {m ∈ A | s ∈ tgt(m) ∧ ∃s′ ∈ pred(s) · [s′ ∈ src(m)]}
6: ALLs ← Bs ∪As ∪Ms

7: if ALLs 6= ∅ then
8: t← t′ ∈ T(SM), source(t′) = jBefore(s), target(t′) = s . exactly

one!
9: Aspect← insertVertex(region(s), state)

10: Aspt(s) = Aspect
11: setTarget(t,Aspect)
12: insertTransition(Aspect, s, ∗, true, skip) . guard still subject to

modification, see Algorithm 5.20
13: for all b ∈ ALLs do
14: add(region(Aspect), REGIONOFASPECT(SM, b, s)) . see

Algorithm 5.12
15: end for
16: end if
17: end for
18: end procedure

given state s (see Sect. 5.5.2), i.e. one for each trigger, all transition aspects of s
are included in a single state Aspt(s).

5.6. Postprocessing

The weaving process so far introduces the Aspect state where the advices of
applicable aspects are executed in parallel. The variables indicating the target of
gotos are also set. Still necessary are transitions that are activated in dependence
of these variables so that the gotos are actually done by the state machine.

This is done in Algorithm 5.20: for each (labeled) final state f of each aspect
state Aspect, first, the state out of the same region of Aspect contained by label(f)
is calculated and stored in variable g (line 8), this is the state to which a transition
from Aspect is needed. If the label does not contain a state of the region, then no
such state can be found (g = ⊥). In this case, the default resumption strategy is
followed, that is, the target of the advised transition is activated after the execution
of Aspect (line 10).

A resumption strategy of going to state s is implemented by a transition lead-
ing to jBefore(s) (line 15) to ensure that whenever s is about to become active all
�before� s aspects are executed, except when the aspect is implemented on the
“before” section of s. In this case, the �before� s aspects have already been ex-
ecuted, and their results are already considered in g, so we introduce a transition
that leads to s (line 13).

Function GT(Aspect) returns the target to go to: if no target is explicitly de-
fined by a region of Aspect, then ⊥ is returned, and Algorithm 5.20 interprets it

70 5. WEAVING

Algorithm 5.20 Postprocessing

1: procedure POSTPROCESSING(SM)
2: for all (s ∈ Sorig(SM) do . original states only
3: for all Aspect ∈ Aspw(s) ∪ {Aspt(s)} do
4: add(defer(Aspect), ∗) . declare the completion event as

“deferrable”
5: trDefault ← t ∈ T(SM) where source(t) = Aspect ∧ target(t) =
s or source(t) = Aspect ∧ target(t) = jBefore(s) . exactly one; this is the
default transition

6: guard(trDefault) ← toUML(
∧

GT(Aspect) 6=
s
⋃
r∈region(Aspect) gtVars(r)) ∧ guard(trDefault) . protect the

default transition from being affected by the ones which are introduced from
line 7 on.

7: for all f ∈
⋃
r∈region(Aspect) subvertex(r), where class(f) =

LabeledFinalState do
8: g ← label(f) ∩ subvertex(container(Aspect)) . at most one!
9: if g = ⊥ then

10: g ← s . default
11: end if
12: if g = s ∧ Aspect = Aspt(s) then
13: v ← g
14: else
15: v ← jBefore(g)
16: end if
17: t← t′ ∈ T(SM), source(t′) = Aspect, target(t′) = g . at

most one!
18: if t = ⊥ then
19: insertTransition(Aspect, v, ∗, constraint(f) ∧

toUML(GT(Aspect) = g), skip)
20: else
21: guard(t) ← guard(t) ∨ (constraint(f) ∧

toUML(GT(Aspect) = g))
22: end if
23: end for
24: WEAVECONFLICTHANDLING(Aspect)
25: end for
26: end for
27: end procedure

(in line 10) as the default target (the target of the advised transition); if exactly
one target is defined, then this is the target to go to after the execution of Aspect.
A conflict is determined if at least two disjunct targets are defined. In this case,
the current implementation raises an exception by indicating the base machine to
enter the Err state (Algorithm 5.21, line 3). Other conflict resolutions can be easily
realized by another implementation of Algorithm 5.21.

GT(Aspect) is defined as follows: if none of the resumption variables is true,
then ⊥ is returned; if on the highest priority level, exactly one resumption variable

5.7. CORRECTNESS 71

Algorithm 5.21 Weaving conflict handling

1: procedure WEAVECONFLICTHANDLING(Aspect)
2: r ← container(Aspect)
3: insertTransition(Aspect,Err(r), ∗,GT(Aspect) = err, skip)
4: end procedure

is true, then this variable is returned; otherwise, i.e. if at least two different resump-
tion variables on the highest priority level are true, then err is returned, indicating
the state machine to enter an exception state or to handle the exception.

GT(Aspect) =

⊥, if ¬∃s ∈
⋃
r∈region(Aspect) gtVars(r) · [gt(s)]

g, if gt(g), g ∈
⋃
r∈region(Aspect) gtVars(r),

and ∀s ∈
⋃
r∈region(Aspect) gtVars(r)

·[(s 6= g ∧ pr(s) ≥ pr(g)) =⇒ ¬gt(s)]
err, if ∃g1, g2 ∈

⋃
r∈region(Aspect) gtVars(r)

·[g1 6= g2 ∧ pr(g1) = pr(g2) ∧ gt(g1) ∧ gt(g2)∧
∀s ∈

⋃
r∈region(Aspect) gtVars(r)

·[pr(s) > pr(g) =⇒ ¬gt(s)]]

5.7. Correctness

Our weaving algorithms implement the informal semantics given in Sect. 4.3
correctly, we show this in the following theorem:

THEOREM 5.9 (Correctness of the weaving algorithms). Given a state machine
SM and a set A of aspects. Let the result of weaving the aspects contained in A
to SM be SMA. If SM and SMA are in the same constellation, that is, if the active
state configuration and the environment (the valuation of the variables) are the
same in both SM and SMA, then in the next execution step of SM some aspect a ∈
A is activated iff. in the next execution step of SMA some aspect state containing a
region implementing a is activated.

PROOF. We first prove that when an aspect a is activated by SM, then, in
SMA, an aspect state containing a region implementing a is also activated. If a is
a �whilst� aspect, its activation is the result of SM being in a certain constellation
(active state configuration and variable valuations) and handling a certain event.
According to Algorithm 5.18, there is a transition t′ in SMA that should be fired
in the same constellation upon the same event. Since t′ leads to an aspect state
containing (among others) an instance of a, this instance is activated in the next
step. If a is a transition aspect, then the activation of a can be only caused by a
change of the constellation of SM as a consequence of the firing of some transition
t ∈ T(SM). Let t’s corresponding transition in SMA be tA. Since SM and SMA

have the same constellation, tA is now fired in SMA. According to Algorithm 5.19,
tA leads to an aspect state Aspect, containing an instance of every aspect (in par-
ticular, a) that is applicable to t. Due to the same environment of SM and SMA,
the precondition of a is also satisfied in SMA. Therefore, the instance of a in SMA

is activated.

72 5. WEAVING

On the other hand, suppose an instance R of some aspect a is activated in
SMA. This means that a’s precondition is satisfied and that there is a transition
tA leading to some aspect state Aspect containing R is fired. Due to the same
environment of SM and SMA, the precondition is also satisfied in SM. Moreover, if
a is a �whilst� aspect, trigger(pointcut(a)) is the current event; if a is a transition
aspect, tA’s corresponding transition, t, should be fired in SM. In both cases, it
holds that a is activated. �

5.8. Implementation

Modeling with HILA and weaving of aspects were implemented prototypically
in the tool Hugo/HILA, an extension of the UML translator and model checker
Hugo/RT [45]. Aspects are given in an extension of the UTE format2 and woven
according to the algorithms described above. The weaving result is then output in
UTE again.

5.8.1. Hugo/RT. Hugo is a translator and model checker for UML 1.x [56]
state machines. It closes the gap between the state machine model, enhanced by the
temporal language specification of the properties to verify, and the model checkers
SPIN [36] and Uppaal [49]. Currently, Hugo/RT supports only UML 1.x.

Model. The input model, consisting of UML state machines, is specified in the
ArgoUML3 format .zargo, the MagicDraw4, or Hugo/RT’s (proprietary) textual for-
mat UTE. The state machines are then translated to kripke structures [13] that are
accepted by the aforementioned model checkers. Simply spoken, Hugo/RT breaks
down the hierarchical structure of UML state machines, calculates the (compound)
transitions to fire, and updates the variables according the the UML Specifica-
tion [56]. The translation details are beyond the scope of the thesis, the interested
reader is referred to [44].

Specification. For the specification of system properties, both linear tempo-
ral logic (LTL) and computation tree logic (CTL) [48] can be used. Note that
in Hugo/RT the operators G (always), F (eventually) and U (until) are defined on
UML states instead of states of the transition system. Hugo/RT translates property
specifications containing these operators transparently from the view of the user
into temporal logic formulae w.r.t. the underlying kripke structure.

Moreover, Hugo/RT also supports the OCL statement inState, returning if a
given state is active. This statement can currently only be used in a temporal logical
specification, but not in the state machine. We therefore still need the preprocessing
step “inserting trace variables” (Sect. 5.3.5) to make the states “know” which other
states are also active.

Note, however, that Hugo/RT does not support the deferment of completion
events. In Hugo/HILA we use “defer *” to defer completion events.

5.8.2. Weaving. We extended Hugo/RT by the functionality of reading HILA
aspects and weaving them to a base machine. In fact, we extended the UTE format
and its Hugo/RT parser to cover aspect definitions as well. Our extension also

2http://www.pst.ifi.lmu.de/projekte/hugo/#UTE
3http://www.argouml.org
4http://www.magicdraw.com/

http://www.pst.ifi.lmu.de/projekte/hugo/#UTE
http://www.argouml.org
http://www.magicdraw.com/

5.8. IMPLEMENTATION 73

allows the base machine to be given in UML 2.2.5 The weaving algorithms, as
presented above, are then applied to compose the aspects together with the base
machine. The result of the weaving is output in a text file, also in the UTE format,
containing elements of plain UML state machines only.

The implementation of the function toUML (p. 49) is straight forward, the re-
quired language elements of the expression language Exp and the action language
Act (see Sect. 5.2.2), except for for or while loops, can be directly translated into
UTE, see Table 5.1:

In Algorithms toUML
addition, subtraction +, -
boolean operations &&, ||, !

case distinction if . . . then . . . else

Table 5.1: Translation of the action language

Loops are not supported by UTE directly. We therefore implement loops by
“brute-force”: the weaver, instead of the weaving result, loops over all possible
values of the loop variables, in each iteration the content of the loop is generated
once, with the current value of the loop variable. This is possible because all the
loops included in the algorithms that should be implemented in UTE have the form
“for all s ∈ S”, where S is determinable by statical analysis and does not change
over the iterations.

Hugo/HILA weaves a set of aspects to a given base machine and outputs the
result in another state machine, written in Hugo/RT’s UTE format. The weaving
result can then be model checked. Examples are given in the following Sect. 5.8.3
and Sect. 8.3.

5.8.3. Example. Figure 5.9 defines on the left hand side a state machine in
UML 2.2, which contains a concurrent state X with two parallel regions. Each of
the both regions contains two simple states. On the right hand side, an aspect in
UTE format is shown. The aspect is actually an instance of the template given in
Fig. 4.4, A being instantiated with A2 and B with B2.

Weaving Result. The result of weaving the aspect to the base machine, both of
which are shown in Fig. 5.9 (in UML 1.x), is given in the following.

1 behaviour {
2 states {
3 initial INIT;
4 concurrent X {
5 entry in_X = true;
6 exit last_X = true; in_X = false;
7 rv_0 = false; rv_1 = false;
8 composite a {
9 simple A1{

10 entry in_X_a_A1 = true;

5The differences of UML 2.2 [57] state machines and UML 1.x [56] state machines are only
syntactic. We only had to define a wrapper to translate the UML 2.2 syntax to UML 1.x syntax.

74 5. WEAVING

statemachine M1 {
states {

initial INIT;
fork FORK;
state X {

region a {
state A1{}
state A2{}

}
region b {

state B1{}
state B2{}

}
}

}
transitions {

INIT -> FORK{}
FORK -> X.a.A1{}
FORK -> X.b.B1{}
X.a.A1 -> X.a.A2 {}
X.a.A2 -> X.a.A1 {}
X.b.B1 -> X.b.B2 {}
X.b.B2 -> X.b.B1 {}

}
}

aspect BeforeAspect {
before config {

state X.a.A2;
state X.b.B2;

}
advice {

states {
initial AI;
labeledfinal AaF {

goto 0
}

}
transitions {

AI -> AaF{}
}

}
}

Figure 5.9: Example: weaving of a mutual exclusion aspect

11 exit last_X_a_A2 = false;
12 last_X_a_A1 = true;
13 in_X_a_A1 = false;
14 }
15 simple A2{
16 entry in_X_a_A2 = true;
17 exit last_X_a_A1 = false;
18 last_X_a_A2 = true;
19 in_X_a_A2 = false;
20 }
21 initial init;
22 junction _init_junction;
23 junction jBefore_A1;
24 junction jBefore_A2;
25 composite aspect_A2 {
26 defer *;
27 entry goto_X_a_A2 = false; pr_X_a_A2 = 0;
28 initial AI;
29 final AaF;

5.8. IMPLEMENTATION 75

30 junction jAI;
31 }
32 }
33 composite b {
34 simple B1{
35 entry in_X_b_B1 = true;
36 exit last_X_b_B2 = false;
37 last_X_b_B1 = true;
38 in_X_b_B1 = false;
39 }
40 simple B2{
41 entry in_X_b_B2 = true;
42 exit last_X_b_B1 = false;
43 last_X_b_B2 = true;
44 in_X_b_B2 = false;
45 }
46 initial init;
47 junction _init_junction;
48 junction jBefore_B1;
49 junction jBefore_B2;
50 composite aspect_B2 {
51 defer *;
52 entry goto_X_b_B2 = false; pr_X_b_B2 = 0;
53 initial AI;
54 final AaF;
55 junction jAI;
56 }
57 }
58 }
59 junction jBefore_X;
60 }
61 transitions {
62 INIT -> jBefore_X {
63 effect rv_0 = true; rv_1 = true;}
64 jBefore_X -> X {}
65

66 X.a.init -> X.a._init_junction {}
67 X.a._init_junction -> X.a.jBefore_A1 {
68 guard rv_0;}
69 X.a._init_junction -> X.a.jBefore_A1 {
70 guard !rv_0;}
71 X.a.jBefore_A1 -> X.a.A1 {}
72 X.a.A1 -> X.a.jBefore_A2 {}
73

74 X.a.jBefore_A2 -> X.a.aspect_A2 {}
75

76 X.a.aspect_A2.AI -> X.a.aspect_A2.jAI {}
77 X.a.aspect_A2.jAI -> X.a.aspect_A2.AaF {

76 5. WEAVING

78 effect goto_X_a_A2 = true;
79 if (pr_X_a_A2 < 0) pr_X_a_A2=0;}
80 X.a.aspect_A2.jAI -> X.a.aspect_A2.AaF {
81 guard false;}
82 X.a.aspect_A2 -> X.a.A2 {
83 guard in_X_b_B2 != true && goto_X_a_A2;}
84 X.a.aspect_A2 -> X.a.A2 {
85 guard !goto_X_a_A2;}
86

87 X.a.A2 -> X.a.jBefore_A1 {}
88

89 X.b.init -> X.b._init_junction {}
90 X.b._init_junction -> X.b.jBefore_B1 {
91 guard rv_1;}
92 X.b._init_junction -> X.b.jBefore_B1 {
93 guard !rv_1;}
94 X.b.jBefore_B1 -> X.b.B1 {}
95 X.b.B1 -> X.b.jBefore_B2 {}
96

97 X.b.jBefore_B2 -> X.b.aspect_B2 {}
98

99 X.b.aspect_B2.AI -> X.b.aspect_B2.jAI {}
100 X.b.aspect_B2.jAI -> X.b.aspect_B2.AaF {
101 effect goto_X_b_B2 = true;
102 if (pr_X_b_B2 < 0) pr_X_b_B2=0;}
103 X.b.aspect_B2.jAI -> X.b.aspect_B2.AaF {
104 guard false;}
105 X.b.aspect_B2 -> X.b.B2 {
106 guard in_X_a_A2 != true && goto_X_b_B2;}
107 X.b.aspect_B2 -> X.b.B2 {
108 guard !goto_X_b_B2;}
109

110 X.b.B2 -> X.b.jBefore_B1 {}
111 }
112 }

Hugo/HILA also automatically generates statements of Hugo/RT for the ini-
tialization of the trace variables:

signature {
attr in_X: boolean = false;
attr last_X: boolean = false;
attr in_X_a_A1: boolean = false;
attr last_X_a_A1: boolean = false;
attr in_X_a_A2: boolean = false;
attr last_X_a_A2: boolean = false;
attr in_X_b_B1: boolean = false;
attr last_X_b_B1: boolean = false;
attr in_X_b_B2: boolean = false;

5.9. DISCUSSION 77

attr last_X_b_B2: boolean = false;
attr goto_X_a_A2: boolean = false;
attr goto_X_b_B2: boolean = false;
attr rv_0: boolean = false;
attr rv_1: boolean = false;
attr pr_X_a_A2: int = 0;
attr pr_X_b_B2: int = 0;

}

Validation. The weaving result can be model checked by Hugo/HILA. In fact,
the mutual exclusion of A2 and B2 is actually delivered by the aspect, i.e. the
property F (inState(X.a.A2) and inState(X.b.B2)) is falsified by
Hugo/RT. On the other hand, (A2|B2) is the only state configuration excluded
by the aspect. For example, the configuration (A2|B1) is still reachable, i.e. the
property F (inState(X.a.A2) and inState(X.b.B1)) is verified.

5.9. Discussion

Our weaving algorithms implement the informal semantics of HILA aspects
presented in Chap. 4. The basic idea is to find out which aspects should be executed
just before a certain state gets activated, and to weave these aspects into orthogonal
regions of an aspect state spliced into the (exactly one) transition leading to that
state. This way, all the aspects are executed in parallel, and the risk of inconsistency
caused by shared joinpoints is minimized. Conflicts of resumption strategies are
detected at runtime. Moreover, aspects can also be assigned priorities to eliminate
resumption conflicts.

The “remaining risk” of conflicts is handled by a conflict handler generated
by Algorithmus 5.21. Currently, the state machine enters a “local” error state in
the region where the conflict is determined. An alternative would be a “global”
error state for the whole state machine. Although this way we need only one error
state and the weaving result is more clean, our solution as described above local-
izes the exception and allows the other parts, where no exception occurred, can be
executed as usual. In any case, separating the generation of the conflict handler (in
Algorithm 5.21) makes it possible to implement other conflict handling strategies
easily.

In the algorithms presented above, statements “goto s” are actually imple-
mented as transitions leading to the junction jBefore(s) except when s is the target
of the advised transition and the resumption strategy is set by a transition aspect.
This guarantees that before s becoming active, it is always checked if the precon-
dition of any other aspect would be satisfied when s got active. Therefore, �be-
fore� aspects are violation resistant in the sense that, as long as its constraint is
valuated true, an aspect �before� S will really be executed every time S is about
to get active, no matter what other aspects are also defined for the base machine.

On the contrary, �after� aspects are not violation resistant, since there are
situations that after configuration S has just been active, an �after� S aspect is
not executed even if its constraint is satisfied, since S was left as the result of the
execution of some �whilst� S aspect.

Theoretically, both �before� and �after� aspects may be implemented in both
ways: violation resistant or not. However, in the case of �before� aspects, we

78 5. WEAVING

deem the violation resistant implementation to be the only desirable one. In con-
current systems, mutual exclusion is one of the most common and most important
features. We therefore need a language construct which allows us to elegantly
specify mutual exclusion, indepedently from other features that may or may not be
modeled in aspects. On the other hand, the current implementation of �after� as-
pects is not the only choice. A violation resistant implementation may also make
sense. The realization is straight forward. It is only necessary to extend Algo-
rithm 5.18 and insert the �after� aspects into Aspw(s).

Obviously �whilst� aspects are violation resistant, i.e. they are always exe-
cuted whenever the specified configuration is active, the specified trigger is the
current event, and the constraint is satisfied. The reason is that the joinpoints
of �whilst� aspects are disjunct to those of �before� and �after� aspects, and
�whilst� aspects catching the same joinpoints (same configuration, same trigger)
are woven into parallel regions and executed in parallel.

As stated in Sect. 4.1, HILA aspects can be regarded as event action rules:
an aspect is a statement in the form of “when proposition P is satisfied, then do
action A”. In this sense, the violation resistance of �before� and �whilst� aspects
as discussed above guarantees that whenever P is satisfied A is always executed.
However, it is still possible for P to be made unsatisfiable by other aspects. After
presenting the formal semantics of HILA aspects in the next chapter, where, in
particular, the violation resistance of �before� and �whilst� aspects is discussed
on a more formal basis, we discuss in Chap. 7 under which circumstances the
precondition P may be made unsatisfiable.

Part 3

HiLA d’Ivoire

CHAPTER 6

Formal Semantics

Contents

6.1. Abstract Transition Systems 81
6.2. UML State Machines 82
6.3. History Properties 84
6.4. Structural Extension by �whilst�Aspects 85
6.5. Behavior Extension 86
6.5.1. Pointcut 86
6.5.2. Aspect Instance 86
6.5.3. Advice 88
6.6. Weaving and Semantics 90
6.7. Discussion 92

We present a formal semantics of executing state machines with history proper-
ties and aspects in the style of structural operational rules, with reflective execution
of aspects. In order to simplify the semantic rules and to concentrate on history
properties and aspects, we do not include a detailed semantical discussion on the
run-to-completion semantics of UML state machines, but rather rely on an abstract
transition selection function which ensures that, in accordance with the UML spec-
ification [57], a maximal consistent, prioritized, conflict-free set of transitions in a
state machine for executing an event is chosen (for possible semantical choices see,
e.g. [71, 44]). The concurrency of the state machine is semantically represented by
sets of transitions operating concurrently on a set of states for a single execution
step.

6.1. Abstract Transition Systems

We use transition systems to model state machines. In our transition systems, it
is not specified concretely how to determine which transitions should be fired. This
is modeled by an abstract “transition selection” function: given a configuration
of a transition system, a function θ delivers the transitions to fire. In this sense,
our transition systems are abstract. Only a concrete θ will make such a transition
system concrete and executable.

For modeling our abstract transition systems, we assume a set of events E
which comprises an empty event ∗; a language of propositions P , from which in
particular guards are drawn, and which has the boolean constants true and false and
a negation operator¬; and a language of actions A which includes a skip-operation
ε and shows a sequential composition operator ;. A transition system is executed
in an environment from a domain N which contains abstract representations of
the valuation of contextual attributes and of an event pool for the transition system.
For η ∈ N , e ∈ E and g ∈ P , we write η |= e[g] to mean that e is the current

81

82 6. FORMAL SEMANTICS

event in the environment η and the proposition g evaluates to true. For η, η′ ∈ N ,
e ∈ E and a ∈ A , we write η, η′ |= e/a to mean that e is the current event in
environment η and that η evolves to η′ by consuming e and executing a.

A transition system M is given by a set S(M) of states, a set T (M) of tran-
sitions, an initial state iM ∈ S(M) and a set FM ⊆ S(M) of final states. A
transition t ∈ T (M) is given by a source state σt ∈ S(M), a triggering event
et ∈ E , a guarding proposition gt ∈P , an effect action at ∈ A , and a target state
σ′t ∈ S(M).

For set S of states and set T of transitions we define σT := {σt | t ∈ T} and
σ′T := {σ′t | t ∈ T}. We also define σ′(S, T) := (S \σT)∪σ′T andR∗(T) := T ∪
{t | σt ∈ σ′T ∧ et = ∗}, and writeR+

∗ (T) to mean the transitive closure ofR∗(T).
Moreover, we defineR∗(S) := (S \ σT) ∪ σ′T , where T = {t | σt ∈ S ∧ et = ∗},
and writeR+

∗ (S) to mean the transitive closure ofR∗(S).
We write A(T) for the possible sequential compositions of the actions of the

transitions in T , i.e. A(T) = {at1 ; . . . ; atn | {t1, . . . , tn} = T}. Each transition
system is equipped with a transition selection function

θM : ℘(SM)×N × E → ℘(TM)

such that θM (S, η, e) represents the active transition set for executing the event
e in environment η starting in the state configuration S. We require that if T =
θM (S, η, e) then for all t ∈ T : (i) σt ∈ S; (ii) et = e; (iii) η |= e[gt].

With these preliminaries, the execution of a state machine M can be captured
by the rule

〈(M,η), (M,η′)〉 |= S
e:T−−→ S′,(mch)

if T = R+
∗ (θM (S, η, e)), a ∈ A(T), η, η′ |= e/a and S′ = R+

∗ (σ′(S, T)).

stating that the transition system M starting in environment η with states S ⊆
S(M) being active moves, by firing a suitable set of transitions T from T(M) for
some event e, to environment η′ and state configuration S′ consuming event e and
executing the action awhich is an interleaving of all actions executed by transitions
in T . T includes all transitions that are selected by θ and all their “following”
transitions with empty event ∗.

6.2. UML State Machines

UML state machines are also represented by abstract transition systems, where
we assume that the concrete implementation of θ returns, as required by the UML
Specification [57], the maximal consistent, prioritized, conflict free set of transi-
tions, without specifying the θ implementation concretely. In the following, we
describe how a state machine SM is represented by such a transition system.

We assume that our UML state machines have been normalized in our prepro-
cessing process (Sect. 5.3), but without before sections or trace variables inserted.
In particular, such a state machine SM contains the following pseudostates:

• an initial vertex in each region,
• the junctions following the initial vertices (see Sect. 5.3.2),
• join vertices in the original state machine (join vertices are not handled

by the preprocessing).
The corresponding transition system TSSM shares the sets of events, proposi-

tions and the action language with SM. In the following, we show the construction

6.2. UML STATE MACHINES 83

of the sets of states and transitions of TSSM. The basic idea, put very simply, is
to represent SM’s simple states and initial vertices1 by states of TSSM, and to in-
clude in TSSM also “transit states” to represent the entrance and exits of composite
states. For each composite state s there is a state representing s being entered, and
for each pair (s, t) of a composite state s and a transition t leaving s there is a state
representing s being left as a result of t being fired.

More precisely, S(TSSM) is the smallest set that satisfies the following:
(a) For each x ∈ I(SM) ∪ S(SM) there is a unique state sx ∈ S(TSSM). We

require sx 6= sy if x 6= y, and write s−1(sx) := x.
(b) For each transition t with s ∈ Scomp(SM) where s := sourcestruct(t),

there is a state ss,t ∈ S(TSSM). We further define Ss to be the set of all
states matching ss, , i.e. Ss := {ss,t | sourcestruct(t) = s}.

T (TSSM) is the smallest set which satisfies the following:
(1) For each source structured transition t such that source(t) ∈ I(SM) ∪

Ssimple(SM) and target(t) ∈ S(SM) there is a transition tt ∈ T (TSSM)
with σtt = ssource(t), σ′tt

= starget(t), ett = trigger(t), gtt = guard(t),
and att = effect(t).

(2) For each source structured transition t with s ∈ Scomp(SM), where s :=
sourcestruct(t) = source(t), there is a transition ts,t ∈ T (TSSM) with
σts,t = ss,t, ets,t = trigger(t), gts,t = guard(t), ats,t = effect(t) and
σ′ts,t

= x, where x := starget(t).
(3) For each source unstructured transition t with s ∈ Scomp(SM), where

s := sourcestruct(t) 6= source(t), there is a transition ts,t ∈ T (TSSM)
with σts,t = ss,t, ets,t = ∗, gts,t = true, ats,t = skip and σ′ts,t

= x, where
x := starget(t) if isState(target(t)) and x := starget(t′) if isJoin(target(t))
and t′ ∈ T(SM) ∧ source(t′) = target(t).

(4) For each pair (s, i) where the following holds: s ∈ Scomp(SM), i ∈
I(SM), and state(container(i)) = s, there is a transition ts,i with σts,i =
ss, σ′ts,i

= si, ets,i = ∗, gts,i = true, and ats,i = skip.
(5) For each pair (s, t) where it holds sourcestruct(t) ∈ Scomp(SM) and s ∈

Ssimple(SM)∩ subvertex+(sourcestruct(t)), there is a transition ts,t where
σts,t = ss, σ′ts,t

= ssourcestruct(t),t, ets,t = trigger(t), guard ats,t =
guard(t) and ats,t = effect(t).

(6) For each pair (t1, t2) with target(t1) = source(t2), isJunction(j), j :=
target(t1), and j = inTr(r) for some region r, there is a transition t ∈
T (TSSM), with σt = ssource(t1), σ′t = starget(t2), et = ∗, gt = guard(t2),
and at = effect(t2).

The behavior of state machine SM is then specified by the rule (mch) withM =
TSSM. Note in the representation of UML state machines the transition selection
function θ remains unspecified. We just require that θ respect the regions of SM
and that the transitions selected by θ represent a maximal consistent, prioritized,
conflict-free set of transitions of SM.

EXAMPLE 6.1 (Representation of UML state machines as transition systems).
Figure 6.1a shows a UML state machine. For illustration purposes, each of the

1Junction and join vertices are ignored, the transitions entering and leaving junctions or joins
are connected. See rules 3 and 6 of the construction of T (TSSM).

84 6. FORMAL SEMANTICS

A

X

Y

[else]

[p] ab

I JC

IX

B

IY
F

bf

ba

(a) UML state machine
B2A

F

[p]

I

ab

IY

IXA

[else]

X

Y
B

bf

bf
ba

*

*
B2F

*

*

*

ba

*

(b) Semantics as a transition system

Figure 6.1: Example: UML state machine as transition system

initial and junction vertices was given a name and notated beneath the vertex. Its
semantics as a transition system is given in Fig. 6.1b. Note that

• the junction JC is not represented in the transition system,
• the non-simple state B is not represented directly, but indirectly as fol-

lows:
– state B (in Fig. 6.1a) is active iff. at least one of the states X and Y in

Fig. 6.1b is active,
– entering the UML state B (in Fig. 6.1a) is represented explicitly by

an “entrance state” (B) in Fig. 6.1b,
– exiting the UML state B (in Fig. 6.1a) is represented by several “exit

states”, one for each transition leaving B. In Fig. 6.1b, state B2F
represents B being left as the result of the transition to the final state
F being triggered by an event bf, and state B2A represents B being
left as the result of the transition to state A being triggered by an
event ba,

– in Fig. 6.1b, the states B, IX, IY are only “transit” states: as soon as
they get active, the outgoing *-transitions are activated.

6.3. History Properties

A history state machine (M,H) consists of a state machine M and a sequence
of pairs of (ci, eni), where ci is a state configuration and eni is the environment,
i.e. the valuation of all (non-history) properties of M at the moment where ci is the
current active state configuration. When M is executed, H is updated after each
execution step. Semantically, this can be described as

〈(M,η), (M,η′)〉 |= S
e:T−−→ S′

〈(M,H, η), (M,H ′, η′)〉 |= S
e:T−−→ S′

(hist)

where H ′ = H · (S′, η′)
Determining the value of a history property p thus amounts to using pattern

matching p on H according to the multiplicity constraints of p. Adding a history
property to a state machine does not, in itself, enable any new behavior for the
augmented state machine, since rule (hist) does not permit exploitation of the stored
history. The reason for introducing history properties is that we can then use them
in aspects to modify the behavior of the base state machine.

6.4. STRUCTURAL EXTENSION BY �WHILST� ASPECTS 85

Note that by virtue of the rules, history state machines can be viewed as basic
state machines. Thus, for applying aspects to state machines, we need not differ-
entiate between basic state machines and history state machines.

6.4. Structural Extension by �whilst� Aspects

Semantically, �whilst� aspects define a syntactical extension of the base ma-
chine as well as modifications of its dynamic behavior. In this section, we describe
the syntactical extension defined by �whilst�. Put very simply, a �whilst� aspect
w extends the base machine by a transition, which reacts to trigger(w), for each
state contained in config(w). The dynamic semantics of �whilst� aspects will be
handled together with other dynamic HILA aspects in the following Sect. 6.5.

Given a transition system TSSM, representing a UML state machine SM, the
application of a �whilst� aspect w to TSSM, notated by TSwSM, is a transition sys-
tem with S(TSwSM) = S(TSSM) ∪ S′ and T (TSwSM) = T (TSSM) ∪ TwSM where S′

and TwSM are the smallest sets which satisfy the following:

• For each s ∈ config(w) ∧ isSimple(s), there is a transition ts ∈ TwSM
such that σts = σ′ts

= ss, et = trigger(w), gts = constraint(w), and
ats = skip.
• For each s ∈ config(w)∧ isComposite(s), there is a state ws,w ∈ S′, and

a transition ts,w ∈ TwSM such that σts,w = ws,w, σ′ts,w
= ss, ets,w = ∗,

gts,w = true, ats,w = skip. We further define Ws to be the set of all states
matching ws, , i.e. Ws := {ws,t | source(t) = s}.
• For each s ∈ config(w) ∧ isComposite(s), let S be the set of all sim-

ple states (directly or recursively) contained in s, i.e. S := {s′ | s′ ∈
subvertex+(s) ∧ isSimple(s′)}, there is for each s′ ∈ S a transition
ts′,w ∈ TwSM with σts′,w = ss′ , σ′ts′,w

= ws,w, ets′,w = trigger(w),
gts′,w = constraint(w), and ats′,w = skip.

Given two �whilst� aspects w1 and w2, we notate the result of first extending
TSSM by w1 and then by w2 as TSw1,w2

SM , and the result of first extending TSSM by
w2 and then by w1 as TSw2,w1

SM . Obviously it holds that TSw1,w2

SM = TSw2,w1

SM . Given
a set W of �whilst� aspects, we write TSWSM to refer to the result of extending
TSSM by all aspects contained in W in an arbitrary order.

B

«whilst»
{trigger = b}

C

«advice»

«pointcut»

«aspect»
WB

(a) Whilst aspect

F

B2A

b

BW

[p]

I

ab

IY

IXA X

Y
B

bf

bf

bab

[else]

ba

*

*

*
B2F

*

*

*

*

(b) Extended transition system

Figure 6.2: Example: structural extension by �whilst� aspects

86 6. FORMAL SEMANTICS

EXAMPLE 6.2 (Structural extension by�whilst� aspects). Figure 6.2a contains
a �whilst� aspect WB. It defines, besides a behavior extension as will be described
below, a structural extension of the base machine. When WB is applied to the base
machine SM given in Fig. 6.1a (i.e. the transition system shown in Fig. 6.1b), the
transition system is extended to Fig. 6.2b, where new transitions with trigger b
leaving X and Y and leading to state BW, as well as a transition from BW to B,
are introduced. Note the advice is not woven into the transition system. In HILA,
advices are not understood as syntactical modifications.

6.5. Behavior Extension

To define the semantics of aspects we extend the rule (mch) to operate on a
pair consisting of a transition system and a set of (concrete) aspect instances which
we will proceed to define.

6.5.1. Pointcut. The pointcut of an aspect determines on which transitions
of the base machine the aspect may be executed. On these transitions it must be
checked at runtime whether the advice of the aspect should be executed or not.

Given a base machine SM (and its transition system TSSM) and an aspect a, the
semantics of pointcut(a) is a set PCa of transitions. We first define some auxiliary
functions:

• For a set of states X ⊆ S(SM),
Simple(X) := {s ∈ X | isSimple(s)},
• For a set of states X ⊆ S(SM),

Mbefore(X) :=
⋃
s∈X ss.

• For a state s ∈ S(SM),
mtr

out(s) :=
⋃
s∈subvertex∗(s′) Ss′ .

• For a state s ∈ S(SM),
mwh

out(s) :=
⋃
s∈subvertex∗(s′) Ws′ .

• For a set of states X ⊆ S(SM),
Tbefore(X) := {t ∈ T (TSSM) | σ′t ∈ Mbefore(X)}.
• For a set of states X ⊆ S(SM),

Tafter(X) :=
{t ∈ T (TSSM) | (σt ∈

⋃
s∈Simple(X){ss} ∧ σ′t /∈

⋃
s∈Simple(X)m

tr
out(s))

∨ σt ∈
⋃
s∈X m

tr
out(s)}.

• For a set of states X ⊆ S(SM),
Twhilst(X) :=
{t ∈ T (TSSM) | (σt ∈

⋃
s∈Simple(X){ss} ∧ σ′t /∈

⋃
s∈Simple(X)m

wh
out(s))

∨ σt ∈
⋃
s∈X m

wh
out(s)}.

PCa is a set of transitions, defined as follows:

PCa :=

Tbefore(config(a)), kind(a) = before

Tafter(config(a)), kind(a) = after

Tbefore(tgt(a)) ∩ Tafter(src(a)), kind(a) = between

Twhilst(config(a)), kind(a) = whilst

6.5.2. Aspect Instance. Let A be the set of all aspects. Several instances of
an aspect may be active simultaneously; to avoid confusing these instances we
rename the states of each aspect before activating it. Therefore, we assume an

6.5. BEHAVIOR EXTENSION 87

infinite set of states, S, and an infinite set of variables V . We assume the two
sets are disjoint from all other states and variables, and that each invocation of the
operations new(S) and new(V) returns a fresh element of S and V , respectively.
For an aspect a ∈ A we write aS for the state machine obtained by replacing each
state in TSadvice(a) with a fresh state, new(S), and all transitions in TSadvice(a) with
equivalent transitions between the new states.

Given a state machine SM (and its transition system representation TSSM),
a state z ∈ S(TSSM) and an aspect a, we define c(z, a) to be an instantiation
of aspect a guarding state z, which is a pair c(z, a) := (v,T), where v ∈ V
and T is a transition system representing a state machine. We also refer to the
first projection of c(z, a) as sf (c(z, a)). The name of v and the structure of T
are defined by the constructor newc(z, a) := (new(V), subst(TSaS , z)), where
TSaS is the transition system representation of aS , and subst(TSaS , z) is the state
machine obtained by extending the effect of each transition entering a final state by
an assignment of sf (c(z, a)). That is, we define Rc(z) ⊆ S(TSSM) to be the set of
(transition system) states representing the (UML) states in the same region of the
state represented by z: Rc(z) := {ss | s ∈ S(SM) ∧ region(s) = region(s−1(z)}.
Then subst(TSaS , z) is defined as subst(TSaS , z) := aS [at/at · sf (c(z, a)) ←
Mbefore(label(s−1(σ′t))) ∩ Rc(z)] for each transition t such that isFinal(s−1(σ′t)).
Since in a label, there is at most one state in each region (constraint 4.3.6), the set
Mbefore(label(s−1(σ′t)))∩Rc(z) contains at most one element. This element is then
assigned to sf (c(z, a)). If the set is empty, we say sf (c(z, a)) = ε.

Furthermore, we define z(c(z, a)) := z, ap(c(z, a)) := a, S(c(z, a)) :=
S(subst(aS , z)). We also define ic(z,a) to be the instantiation of the initial state
of the advice of a, and Fc(z,a) to be the set of the instances of the final states of the
advice of a.

For a given set C of aspect instances, we refer to the subset of C includ-
ing all transition aspects guarding state z as transC,z := {c ∈ C | z(c) = z ∧
kind(ap(c)) ∈ {before, after, between}}, and the subset containing all configura-
tion aspects guarding z as whilstC,z := {c ∈ C | z(c) = z∧kind(ap(c)) = whilst}.
For a given event ev , we define whilstevC,z := {w ∈ whilstC,z | trigger(w) = ev}.
Obviously, it holds whilstC,z =

⋃
ev whilstevC,z and whilstev1

C,z 6= whilstev2
C,z for each

pair of ev1 6= ev2. We also call each transC,z and each whilstevC,z an aspect group.
We write ctnr(z) to mean container(s−1(z)) and define for any set of aspect

instances Γz such that ∀γ ∈ Γz · [z(γ) = z]

sf (Γz) :=

z if (∀γ ∈ Γz) · [sf (γ) = ε],
s if (∃γ ∈ Γz) · [sf (γ) = s]∧

(∀γ′ ∈ Γz, priority(ap(γ′)) > priority(ap(γ))·
[sf (γ′) = ε])∧

(∀c′ ∈ Γz, priority(ap(γ′)) = priority(ap(γ))·
[sf (γ′) = s ∨ sf (γ′) = ε]]),

Err(ctnr(z)) otherwise.

For each such Γ, if #(Γ) = n, we also refer to the elements of Γ as c1
Γ, . . . , c

n
Γ.

88 6. FORMAL SEMANTICS

6.5.3. Advice. With the above preparations, we are now in the position to
define the semantics of how the advices are executed, and, after their termination,
how the base machine execution is resumed.

In general, an advised state machine is executed with a set of aspect instances.
Given a state machine SM, a finite set A = {A1, . . . , Ak} of HILA aspects, where
W ⊆ A maximal with ∀w ∈ W · [kind(w) = whilst], we define M to be the
transition system representing SM, structurally enhanced by the �whilst� aspects:
M := TSWSM.

The execution of the advised state machine then amounts to the execution of
M with a set of aspect instances, as specified by

〈(M,C, η), (M,C ′, η′)〉 |= S
e:T−−→ S′(asp)

where M is the state machine, C is the set of the currently active aspect instances,
and η is the environment. T , the transitions to fire, is defined as

T := (Tinner \ Trem) ∪ Tadd ∪ Tres

The transitions contained in the Tinner are “inner” transitions within the base
machine or one of the aspects. That is, no transition contained in this component
leaves one state in the base machine and leads to one in an aspect or vice versa. Its
first component Tbase is the set of base machine transitions that would be fired if no
aspect were applied to the base machine. The second is the union of all transitions
being fired in the aspects (i.e. their advices).

Tinner := Tbase ∪
(⋃

c∈C
θc(S ∩ S(c), η, e)

)
, Tbase := θM (S ∩ S(M), η, e)

Trem is a subset of Tbase , containing the transitions that are advised by the
aspects and therefore not fired

Trem := {t | t ∈ Tbase ∧ A(t, S, η) 6= ∅}

where

A(t, S, η) := {a | t ∈ PCa ∧ compl(S, a) ∧ η |= constraint(a)}

The proposition compl(S, a) is used to check whether all the states contained
in the configuration of the pointcut are (or have just been) active. It is defined as
follows

compl(S, a) =

true kind(a) = before

S ⊇ config(a) kind(a) = after

S ⊇ src(a) kind(a) = between

S ⊇ config(a) kind(a) = whilst

Tadd contains all transitions activating an aspect (instance), defined as

Tadd =
⋃

t∈Trem

{σt
e:ε−→ ic | c ∈ CA(t)}

6.5. BEHAVIOR EXTENSION 89

where CA(t) is the set of aspect instances generated by the advices applicable
on transition t:

CA(t) = {newc(σ′t, a) | a ∈ A(t, S, η)}

Cadd , the set of all generated aspect instances that should be executed now, is
then the union of all CA:

Cadd =
⋃

t∈Trem

CA(t)

We define E ⊆ S(TSSM) to be the maximal set of states such that for each
e ∈ E, it holds that for each 1 ≤ i ≤ #(transC,e) there is an f ie such that f ie ∈
Fci

transC,e
∩ S, which means that for every e ∈ E, all aspects contained in transC,e

are finished. We further define G ⊆ S(TSSM)× E to be the maximal set of state-
event-pairs such that for each g = (z, e) ∈ G, and for each 1 ≤ i ≤ #(whilsteC,z)
there is an f iz,e such that f iz,e ∈ Fci

whilste
C,z

∩ S, which means that for every pair

(z, e) ∈ G, all aspects contained in whilsteC,z are finished.
The set of the transitions from these aspects back to the base machine (or to

the initial state of some other aspect’s advice) is defined as Tres := TE ∪ TG,
where TE :=

⋃
z∈E,1≤i≤#(transC,z){f iz

∗:ε−→ t | t ∈ ρ(transC,z)} and TG :=⋃
(z,e)∈G,1≤i≤#(whilste

C,z){f iz,e
∗:ε−→ t | t ∈ τ(whilsteC,z)}. The functions ρ(transC,z)

and τ(whilsteC,z) are defined as follows:

ρ(transC,z) :=

{sf (transC,z)}, sf (transC,z) ∈ {z,Err}
{sf (transC,z)}, sf (transC,z) /∈ {z,Err}∧

6 ∃a · [kind(a) = before∧
sf (transC,z) ∈ Mbefore(config(a))]

{ic | c ∈ B}, sf (transC,z) /∈ {z,Err}∧
B := {a | kind(a) = before∧

sf (transC,z) ∈ Mbefore(config(a))} 6= ∅

τ(whilsteC,z) :=

{sf (whilsteC,z)}, sf (whilsteC,z) = Err

{sf (whilsteC,z)}, sf (whilsteC,z) 6= Err∧
6 ∃a · [kind(a) = before∧

sf (whilsteC,z) ∈ Mbefore(config(a))]
{ic | c ∈ B}, sf (whilsteC,z) = Err

B := {a | kind(a) = before∧
sf (whilsteC,z) ∈ Mbefore(config(a))} 6= ∅

We define CE =
⋃
z∈E transC,z , CG =

⋃
(z,e)∈G whilsteC,z and calculate C ′,

η′ and S′ as follows:

90 6. FORMAL SEMANTICS

C ′ = (C ∪ Cadd) \ (CE ∪ CG)

η, η′ |= e/a, a ∈ A(T),

S′ = (S \ (σT)) ∪ σ′T .
Since CE and CG are subsets of C, it holds that Cadd ∩CE = Cadd ∩CG = ∅.

6.6. Weaving and Semantics

We show that the result of our weaving process (see Chap. 5) is a state machine
that exhibits the semantics defined in this chapter. To this end, we first show that the
formal semantics does describe the behavior of a state machine which is enhanced
by a set of aspects.

Given a state machine SM and an aspect a, the advice of a will be executed in
the next step iff. in SM’s transition system, TSSM, an instance of a is activated in
the next execution step. More precisely, we prove the following theorem

THEOREM 6.3 (Equivalence between state machine with aspects and transi-
tion system). Given a state machine SM, a set A of aspects. Assume SM has
been preprocessed, but without the before sections inserted. Let the semantical
representation of SM (and the aspects) be TSSM and the current active state con-
figuration of TSSM be S. Assume SM and TSSM have the same environment, i.e.
the variables have the same values, and the same active state configuration, i.e.
S = {sx | x ∈ Ssimple(SM), x is active}. Then an aspect a is activated by SM iff.
its instance is activated by TSSM.

PROOF. We first prove that when an aspect a is activated by SM, then an in-
stance of a is also activated in TSSM, that is, in the execution step, as specified by
the rule (asp), see p. 88, the set C ′ \ C contains an instance of a.

Consider the following cases:
(1) kind(a) = before. In this case, a getting active means that a transition

t ∈ T(SM) is activated where target(t) = s for some s ∈ config(a),
which means that
• ∃q ∈ T (TSSM) such that σ′q = ss, eq = trigger(t), and gq =

guard(t).
Therefore it holds that q ∈ PCa ∧ a ∈ A(q, S, η).

(2) kind(a) = after, in this case, a getting active means that S ⊇ config(a),
and a transition t′ ∈ T(SM) is activated where target(t′) = s for some
s ∈ S(SM), and source(t′) ∈ S(SM) ∨ isJoin(source(t′)) (in the first
case we define t := t′, in the second case we define t to be any r such
that target(r) = source(t′)). In both cases we define x := source(t).
• If x ∈ config(a) and t is source structured, then ∃q ∈ T (TSSM)

such that σ′q = ss, eq = trigger(t), gq = guard(t), and σq = sx (if
isSimple(x)) or σq = sx,t (if isComposite(x)),
• if x ∈ config(a) and t is source unstructured, then ∃q ∈ T (TSSM)

such that σq = tsourcestruct(t),t, σ
′
q = ss, eq = trigger(t), and gq =

guard(t),
• if x /∈ config(a), then ∃y ∈ config(a) ∩ subvertex∗(sourcestruct(t)).

Since x 6= y, t must be source unstructured. Therefore ∃q1, q ∈
T (TSSM) such that σq = ssourcestruct(t),t, σ

′
q = ss, trigger(q) = ∗,

6.6. WEAVING AND SEMANTICS 91

gq = ⊥; σ′q1 = σq, trigger(q1) = trigger(t), guard(q1) = guard(t),
and σq1 = z for any z ∈ subvertex∗(y) ∩ Ssimple(SM).

Therefore it holds that q ∈ PCa ∧ a ∈ A(q, S, η).
(3) kind(a) = between, in this case, a getting active means that S ⊇ src(a),

and a transition t′ ∈ T(SM) is activated where target(t′) = s for some
s ∈ tgt(a), and source(t′) ∈ S(SM)∨ isJoin(source(t′)) (in the first case
we define t := t′, in the second case we define t to be any r such that
target(r) = source(t′)). In both cases we define x := source(t).
• If x ∈ src(a) and t is source structured, then ∃q ∈ T (TSSM) such

that σ′q = ss, eq = trigger(t), gq = guard(t), and σq = sx (if
isSimple(x)) or σq = sx,t (if isComposite(x)),
• if x ∈ src(a) and t is source unstructured, then ∃q ∈ T (TSSM)

such that σq = tsourcestruct(t),t, σ
′
q = ss, eq = trigger(t), and gq =

guard(t),
• if x /∈ src(a), then ∃y ∈ config(a) ∩ subvertex∗(sourcestruct(t)).

Since x 6= y, t must be source unstructured. Therefore ∃q1, q ∈
T (TSSM) such that σq = ssourcestruct(t),t, σ

′
q = ss, trigger(q) = ∗,

gq = ⊥; σ′q1 = σq, trigger(q1) = trigger(t), guard(q1) = guard(t),
and σq1 = z for any z ∈ subvertex∗(y) ∩ Ssimple(SM).

Therefore it holds that q ∈ PCa ∧ a ∈ A(q, S, η).
(4) kind(a) = whilst, in this case, a getting active means that S ⊇ config(a)

and trigger(a) is the current event. For any x ∈ config(a), it holds
• either ∃q ∈ T (TSSM) such that σq = sx, σ′q = ss, eq = trigger(a),

and gq = constraint(a) (when x is a simple state),
• or ∃q1, q ∈ T (TSSM) such that σq1 = sz for any z ∈ subvertex∗(x),
σ′q1 = σq = wx,a, σ′q = sx, trigger(q1) = trigger(a), trigger(q) = ∗,
gq1 = constraint(a) and gq = ⊥ (when x is a composite state).

Therefore it holds that q ∈ PCa ∧ a ∈ A(q, S, η).

Since in all four cases, we have q ∈ PCa and therefore q ∈ Trem , the set Cadd

contains a new instance of a, i.e. Cadd \ C contains a new instance of a. Since
Cadd ∩ CE = ∅, it holds that C ′ also contains this instance.

On the other hand, supposeC ′ contains a new instance ι of a, ι is also contained
in Cadd , i.e. ι = newc(σ′q, a) for some q ∈ T (TSSM)). Since q ∈ Trem , it holds
that q ∈ PCa.

Therefore, the precondition of a is satisfied, a is activated by SM. �

Now we are in the position to show that the weaving result does exhibit the
semantics defined in the chapter.

THEOREM 6.4 (Equivalence between weaving result and transition system).
Given a state machine SM and a set A of aspects. Let the weaving result be SA,
and the semantical representation be TSSM. An aspect is activated in SA iff. an
instance of this aspect is activated in TSSM.

PROOF. According to Theorem 5.9, SA is equivalent to the combination of SM
and A. According to Theorem 6.3 TSSM is also equivalent to the combination of
SM and A. Therefore, SA is equivalent to TSSM. �

92 6. FORMAL SEMANTICS

6.7. Discussion

As stated before, we did not specify in our semantics the details of how to
determine which transitions are selected to be fired in an execution step of UML
state machines, but applied the abstract function θ. Thanks to this abstraction we
can better focus the description of the semantics on how the aspects are entered
and left. The advices of the aspects, as independent units, are executed in the same
way as a UML state machine.

As opposed to static aspects (see Chap. 3), HILA aspects are dynamic, i.e.
they are defined as modification of the execution of the base machine when certain
(runtime) conditions are satisfied. Due to the dynamic characteristics, the advices
of HILA aspects are also represented in the formal semantics as independent units.
Apart from being executed when certain conditions, as defined by the pointcuts,
are satisfied at runtime of the transition system, these units are independent of the
base machine.

Since the plain UML state machine does not support this kind of independent
units, HILA aspects, including both pointcuts and advices, are implemented as
a part of an overall state machine, when they are woven together with the base
machine (see Chap. 5). Despite this difference, we could prove the equivalence
between the weaving result and the semantical representation.

This equivalence is actually intuitive, since the weaving result and the transi-
tion system exhibit many similarities:

• In the weaving result, all transition aspects guarding state z are woven
into parallel regions of an orthogonal state, which is spliced into the (only
one) transition leading to z. At runtime, these aspects are activated and
executed in parallel. In the transition system, these aspects are repre-
sented by aspect instances contained in an aspect group, and are activated
and executed in parallel.
• In the weaving result, all configuration aspects with the same trigger and

guarding the same state are woven into parallel regions of an orthogonal
state. At runtime, these aspects are also activated and executed in parallel.
In the transition system, these aspects are represented by aspect instances
contained in an aspect group, and are activated and executed in parallel.
• In the weaving result, the execution of (instances of) aspects in the or-

thogonal state is only finished when the execution of each of the aspects
is finished and each aspect has set a (possibly default) resumption strat-
egy. In the transition system, first the aspect instances in the aspect group
are finished. Only when all of them are finished, the instances become
eligible to be removed from the set of current active aspect instances.
• In the weaving result, a resumption strategy goto s, which is set by tran-

sition aspects, s being a (non-error) state, is implemented as a transition
leading to s if s is the target of the advised transition, or otherwise, as a
transition to the junction jBefore(s). That is, when an aspect a1 guarding
s′ is finished, if the resumption strategy is goto s 6= s′, and activating s
would satisfy the precondition of another, �before� aspect a2 (s is con-
tained in config(a2), and the constraint of the pointcut of a2 is satisfied),
then a2 would be executed first, concurrently with other aspects whose
preconditions are also satisfied. In the transition system, this is also the
result of the function ρ, see page 89.

6.7. DISCUSSION 93

• In the weaving result, a resumption strategy goto s, which is set by config-
uration aspects, s being a (non-error) state, is implemented as a transition
leading to jBefore(s), even if s is the target of the advised transition. That
is, when an aspect a1 guarding s′ is finished, if the resumption strategy is
goto s, and activating s would satisfy the precondition of another, �be-
fore� aspect a2 (s is contained in config(a2), and the constraint of the
pointcut of a2 is satisfied), then a2 would be executed first, concurrently
with other aspects whose preconditions are also satisfied. In the transition
system, this is also the result of the function τ , see page 89.
• In the weaving result, when a �whilst� S aspect is executed, an �after� S

aspect would not be executed. In the transition system, this is reflected by
the fact that in the calculation Trem , only transitions contained in the base
machine are considered, see page 88. Neither in the weaving result nor in
the transition system is it guaranteed that an �after� S aspect is executed
whenever S gets inactive, since a �whilst� S aspect might circumvent
the �after� aspect.
• In the weaving result, if aspects (actually, regions implementing aspect)

contained in the same orthogonal aspect state indicate different resump-
tion strategies, the base machine enters an exception state Error. In the
transition system, this is reflected by the calculation of sf (Γ) (page 87),
ρ(transC,z), and ρ(whilsteC,z) (page 89).

CHAPTER 7

Interaction of aspects

Contents

7.1. Change of State Reachability 97
7.1.1. Reachability in UML state machines 97
7.1.2. Reachability reduction by aspects 97
7.1.3. Reachability enhancement 98
7.2. Conflict Detection 99
7.2.1. Resumption conflicts 99
7.2.2. Rule violation conflicts 99
7.2.3. Reachability conflict 100
7.3. Discussion 101

The previous chapters showed how HILA provides valuable help to achieve a
clean separation of concerns by modeling parts of the system behavior in aspects,
which are developed separately from the base machine and separately from each
other.

However, the aspects may still have some interactions with each other. For
example, since different aspects, which are applicable to the same transition, are
woven as concurrent regions and executed in parallel, race conditions can always
arise when assignments of shared variables are done. Such race conditions, how-
ever, are not investigated in the research of this thesis, since their detection is not
statically decidable. Moreover, it may be argued that shared variables in different
aspects are often a hint of unclean separation of concerns, and that in a more logical
design shared variables between aspects are not necessary.

In the following, we assume that for a given base machine, its HILA aspects
do not share variables with each other and do not change the values of variables
they share with the base machine. Moreover, we assume that the sets of events that
the aspects react to are pair-wise disjunct, and that an aspect does not send events
that others react to.

Under these circumstances there is no race conditions between HILA aspects
w.r.t. variable assignments. However, since aspects may change the control flow of
the base machine, there may still exist interference between aspects w.r.t. the con-
trol flow of the complete system behavior. HILA aspects may show interference
of the following types:

• Two aspects that are executed in parallel (in different regions of the or-
thogonal Aspect state) may specify different states to activate after the
execution of the advices. We call this kind of conflicts resumption con-
flicts.

95

96 7. INTERACTION OF ASPECTS

• An �after� aspect stating “whenever a constellation of the base machine
has just become inactive, where all the states contained in the config-
uration were active and the constraint was satisfied” defined by an �af-
ter� aspect may be violated, since the execution of a �whilst� aspect may
have caused this situation, but according to our weaving algorithms and
the formal semantics, the �after� aspect is not executed, see Chaps. 5
and 6. We call this kind of conflicts rule violation conflicts.
• An aspect may be correct if applied as the only aspect to the base ma-

chine, but, if it is applied together with other aspects, may never be exe-
cuted since the other aspects make it impossible for its precondition to be
ever satisfied. We call this kind of conflicts reachability conflicts.

X Y BA

(a) Base machine

A

«after»

«pointcut»

«advice»

goto X

«aspect»
AA

(b) After A

B

«before»

«pointcut»

«advice»

goto Y

«aspect»
BB

(c) Before B

A

C

«pointcut»

«advice»

«aspect»
WA

«whilst»
{trigger = ab}

goto A

(d) Whilst A

Y

«after»

«pointcut»

«advice»

goto X

«aspect»
AY

(e) After Y

Figure 7.1: Conflicts between HILA Aspects

EXAMPLE 7.1 (Conflicts). Consider the base machine given in Fig. 7.1a and
its aspects shown in Fig. 7.1b–Fig. 7.1e. While the behavior defined in the aspects,
if applied in isolation, is rather simple, there exist subtle interferences between the
aspects when several of them are applied.

• When aspects AA and BB are applied, then there arises a resumption con-
flict whenever state A is left. In this situation, the preconditions of both of
the aspects are satisfied: A has just been active, and the base machine is
just about to enter B. The execution of the two advices in parallel results
in conflicting resumption strategies: aspect AA requires to activate state
X, and aspect BB requires to activate state Y.
• When aspects WA and AA are applied, then there arises a rule violation

conflict whenever state A is active and event ab is the current event. In
this situation, WA is executed, state C of the advice is activated. Although
it is also true that “state A has just been active”, aspect AA is, according
to our weaving and the formal semantics, not executed.
• When aspects AY and AA or BB are applied, then there arises a reacha-

bility conflict. Every time after Y has been active, AY is executed and
instructs the base machine to go to X. Therefore, state A and B will no
longer get a chance to be active, and consequently, aspects AA or BB no
longer be executed.

7.1. CHANGE OF STATE REACHABILITY 97

The first two kinds of conflicts have been discussed in Chaps. 5 and 6. In the
following, we study reachability conflicts in more detail, and then give some guide
lines of how to detect (all three kinds of) conflicts between HILA aspects.

7.1. Change of State Reachability

Reachability is often a very important property of states in state-based models
like UML state machines of transition systems. We define

• A state configuration c of a UML state machine SM is reachable from
configuration c′ iff. there is a possible execution of SM in which first c′,
and then c gets active at least once. A state configuration c of a UML
state machine SM is reachable iff. there is a possible execution of SM in
which c is active at least once.
• A state s of a UML state machine SM is reachable from state s′ iff. there

is a possible execution of SM in which first s′, and then s gets active at
least once. A state s of a UML state machine SM is reachable iff. there
is a possible execution of SM in which first s gets active at least once.
• A HILA aspect a is reachable w.r.t. a UML state machine SM and a set

of aspects A 3 a iff. there is a possible execution of the weaving result
of SM and all aspects of A, in which the advice of a is executed at least
once.

Obviously, aspects have repercussions on the reachability of the base ma-
chine’s states. The goto statements of the advices can make both states that are
originally reachable in the base machine now unreachable and states that are orig-
inally unreachable (under some circumstances) now reachable. In the following,
we examine these two possibilities in more detail.

7.1.1. Reachability in UML state machines. For a given UML state machine
SM, we recall some obvious facts about the reachability of SM’s states.

• if a state s is unreachable, then for each state configuration S, s ∈ S
implies S is unreachable;
• for a state s, if each state s′ ∈ P(s) is unreachable, so is s, where P(s) is

the set of all predecessor states of s. In particular, if a state s′ is unreach-
able, then for each state s = target(t), t ∈ outgoing(s′), P(s) = {s′}
implies s is unreachable;
• if a state configuration S is unreachable, then for each state configuration
S′, S ⊆ S′ implies S′ is unreachable;

Albeit very simple, these facts will be important for the discussion in the rest
of this chapter.

7.1.2. Reachability reduction by aspects. Some aspects make certain states
or state configurations of the base machine unreachable.

�before�. The strongest form of reachability reduction is achieved by �be-
fore� aspects. Let X be a state configuration. If an aspect with pointcut �be-
fore�X does not allow X to be activated after the execution, then X will never be
active when the weaving result is executed.

The reachability reduction caused by aspects with pointcut �before� X is
“strong” in the sense that if any other aspect a specifies goto X as its resumption
strategy, this is implemented as “goto the junction before X” (see Sect. 5.6). When

98 7. INTERACTION OF ASPECTS

a is finished, X is not activated directly, but it is first checked if any aspect pro-
hibits the activation of X . Therefore, a reduction of reachability by a �before� as-
pect cannot be overridden by any other aspect (by reachability enhancement, see
Sect. 7.1.3).

EXAMPLE 7.2 (Reachability reduction by �before� aspects). When aspect BB
(Fig. 7.1c) is applied to the base machine (Fig. 7.1a), then state B is effectively pre-
vented from ever getting active, no matter which resumption strategies are defined
in other aspects.

�between� and �after�. Just like �before� aspects, �between� and �af-
ter� aspects may also restrain reachability of states from the base machine, al-
though it is rather hard even to make a single state unreachable.

In a system consisting of a base machine and a set of aspects, if some state or
state configuration is made unreachable by �between� and �after� aspects only,
then the unreachability may be overridden due to the effect of reachability enhance-
ment when an additional aspect is applied.

EXAMPLE 7.3 (Reachability reduction by �after� aspects). When aspect AY
(Fig. 7.1e) is applied to the base machine (Fig. 7.1a), every time just after Y being
active, X, instead of A, gets activated. Since the transition from Y to A is the only
way for A to get active, aspect AY actually makes state A unreachable. Note, how-
ever, this reachability reduction is “weak” in the sense that it may be overridden by
another aspect. An example is given below.

�whilst�. Since �whilst� aspects do not disable any existing transition from
the base machine, they obviously do not reduce reachability.

7.1.3. Reachability enhancement. An aspect can also make states of the base
machine “more reachable”, since goto statements introduce new transitions. More
concretely, an aspect may make a state s reachable from the source of the advised
transition, if there is a goto s in the advice and, as discussed above, s is not prohib-
ited by any aspect with a pointcut of �before� s.

A

«pointcut»

«advice»

«aspect»
WAX

«whilst»
{trigger = ax}

goto X

Figure 7.2: Example: reachability enhancement

EXAMPLE 7.4 (Reachability enhancement). In the base machine (Fig. 7.1a),
state X is unreachable from A. Applying aspect WAX (Fig. 7.2) to the base machine
would make X reachable again: when state A is active, and the current event is ax,
then X gets active.

7.2. CONFLICT DETECTION 99

7.2. Conflict Detection

7.2.1. Resumption conflicts. As shown in Chap. 5, HILA’s weaving is de-
signed in such a way that conflicts are detected at runtime. At runtime, if two
aspects do define different targets to go to after their execution, then, by default,
an Err state is activated, indicating the system is in an error status. Moreover,
the HILA modeler may define a priority between aspects, indicating which aspect
should rule the other in case of conflicts.

Since in general, it is not possible to statically determine which labeled final
states are executed (and therefore which labels are used as resumption strategy),
simulation is the most effective way to detect such conflicts. Test cases or model
checking may be very useful to discover resumption conflicts. Formal methods to
guarantee conflict freedom of systems with infinitely many configurations would
be an interesting piece of future work.

Some simple rules, however, may be used to reduce the number of needed test
cases. They are listed in the following, with a brief explanation for each:

• Resumption conflicts are only possible at those joinpoints where several
aspects are applicable (no shared joinpoint, no resumption conflict).
• Resumption conflicts are only possible between aspects with the same

priority (otherwise the resumption strategy with the highest priority sim-
ply wins).
• Resumption conflicts are only possible between aspects with different

labels (no difference, no conflict).
• Resumption conflicts are only possible when the shared joinpoint can be

matched by a constellation of the base machine.
• A resumption conflict occurs when different resumption strategies are ac-

tually set (by different aspects) .

While the first three conditions can be checked by static analysis, checking the
last two conditions generally requires execution of the complete system (generated
by the weaving process).

EXAMPLE 7.5 (Detection of resumption conflicts). Of the aspects Fig. 7.1b
through Fig. 7.1e with respect to the base machine (Fig. 7.1a), only Fig. 7.1b and
Fig. 7.1c have shared joinpoints. Since the two aspects are assigned the same pri-
ority (both have the default priority, which is defined to be 0), they have to be
examined in more detail. Since the aspects, when executed in parallel, may ac-
tually specify different resumption strategies (X and Y). The aspects are therefore
candidates for resumption conflict and subject to further examination. Since in this
case the advices of the aspects are very simple, it can be easily seen that they actu-
ally cause a resumption conflict. In general, conflict detection requires validation
by simulation such as testing or model checking.

7.2.2. Rule violation conflicts. Rule violation conflicts are conflicts that al-
though the precondition of some �after� aspect is satisfied, the advice is not exe-
cuted.

• Rule violation conflicts are only possible between a �whilst� and an
�after� aspect.
• Rule violation conflicts between �whilst� aspect w and �after� aspect
a are only possible when W ⊆ A where W := config(pointcut(w))

100 7. INTERACTION OF ASPECTS

and A := config(pointcut(a)) (only when w is executed a rule violation
conflict can occur).
• Given �whilst� aspect w and �after� aspect a, if W ⊆ A where W :=

config(pointcut(w)) and A := config(pointcut(a)), then a rule violation
conflict occurs when w is executed.

The first two conditions can be checked by static analysis. Checking the last
one generally requires execution of the complete system.

EXAMPLE 7.6 (Detection of violation conflicts). Considering the aspects AA
(Fig. 7.1b) and WA (Fig. 7.1d), we have W = A = {A}. The first two conditions
are satisfied. When the state A is active, and ab is the current event, WA is executed,
the state machine enters a (new) state C. That is, although A has just been left, the
aspect with “�after� A” is not executed.

7.2.3. Reachability conflict. An aspect is made unreachable by others when
its precondition is made unsatisfiable, in particular, when the state configuration
of the pointcut is made unreachable. However, checking if a state configuration
is disallowed by an aspect is not an easy task. In general, an advice may contain
several final states, each with a label. It is not possible to decide by statical analysis
which of the final states will terminate the execution of the advice (or even if the
advice will terminate).

To investigate the problem of reachability conflict detection, we first define the
following simple, sufficient conditions which ensure that for a given aspect a and
a given state configuration X , when the execution of a is finished, then the active
state configuration is different than X;

• either X is explicitly disallowed by the keyword 0 (see Sect. 4.3.6), the
execution of a (actually, its advice) is terminated by a final state with a
label 0 and X is the configuration specified in the pointcut (or the target
configuration, if a is a �between� aspect),
• or all the final states of a have labels that are to be activated by resump-

tion, and for each L of these labels it holds ∃r ∈
⋃
s∈S(SM) region(s) ·

[l, x 6= ∅∧ l 6= x] where l = L∩subvertex(r) and x = X∩subvertex(r).
That is, if any region contains a state s ∈ X and in this region another
state s′ 6= s is specified for the state machine to go to, then X can not
be active after the execution of a (after the execution s′ will be active,
and s, which is in the same region, cannot be active, therefore X cannot
be active). Note that according to constraint 4.3.6 a label may contain at
most one state in a region

We then induce unreachability of state configurations from the unreachability
of states:

• If an aspectB has a pointcut �before� s, where s is a state, and disallows
the base machine to activate s after its execution (by satisfying one of the
two conditions above), then every state configuration S 3 s is also made
unreachable.
• If an aspect B has a pointcut �before� S, where S is a state configura-

tion, and disallows the base machine to activate S after its execution (by
satisfying one of the two conditions above), then every state configuration
S′ ⊇ S is made unreachable.

7.3. DISCUSSION 101

For detecting reachability conflicts, static analysis is of more help than in the
case of resumption conflicts. More concretely, using the rules given above, we can
summarize the following rules:

• If an aspect B has a pointcut �before� S, which makes configuration
S unreachable, then B makes all aspects with �after� S, �whilst� S or
�between� S and S′ strictly unreachable, i.e. these aspects will never be
executed.
• Assume there exists an aspect b with �before� x, which makes state x

unreachable. Let state X = {x1, . . . , xn}, xi 6= x, to be all states that are
only from x reachable, i.e. in each execution of the state machine where
x′ ∈ X is active at least once, x has been active before x′. Then aspects
containing these states are made unreachable by b. However, reachability
can be reconstituted since x1, . . . , xn may be made reachable again if
other aspects are introduced later.
• For a state s, if for each p ∈ P(s), there exists an aspect with a pointcut

“�between� p and s” or “�after� p”, the advice does not allow s to be
activated (see above), and there is no other aspect with a goto label to
instruct the base machine to enter s, then s is made unreachable.

Note that in the last rule it is necessary to check if “there is no other aspect with
a goto label to instruct the base machine to enter s” since, as opposed to the case of
�before�, for aspects with a pointcut �between� x or �after� y (x, y ∈ P(s)) are
not executed when s is to be activated as a result of the resumption from another
aspect.

EXAMPLE 7.7 (Detection of reachability conflicts). In the base machine shown
in Fig. 7.1a, the only possibility for state A to get active is to be activated by the
transition from Y to A. Therefore, states A and B are made unreachable by aspect
AY. These two states may be made reachable again if other aspects (with a resump-
tion strategy of goto A or goto B) are applied.

7.3. Discussion

Aspect interference is an intrinsic problem of aspect-oriented approaches to
software development. Race conditions are a very common problem in parallel
systems, which, in general, cannot be checked without running the system. For this
reason we had to concentrate on systems that are free of shared variables. Even in
this context, the following questions have to be answered, before an approach can
be helpful in practice:

(1) When multiple aspects are applicable, how to ensure that all of them are
executed? In which order are they executed?

(2) Is it possible that an aspect works fine in isolation, but does not when
used together with other aspects?

This chapter gave HILA’s answers to these questions. We weave aspects that
are simultaneously applicable into concurrent regions and (all of them) are exe-
cuted in parallel. When the absence of shared variables and of common signals is
also assumed, the only possible interference between such aspects is that of differ-
ent resumption targets. HILA’s weaving makes it possible to raise an alarm in case
such conflicts occurred; it is also possible for the modeler to prioritize aspects to
resolve resumption conflicts.

102 7. INTERACTION OF ASPECTS

To the second question above, we examined conditions under which the effect
of one aspect may be overridden by others, or aspects may be made unreachable
by others. The simple static analysis rules given above may be used to warn the
modeler that conflicts are detected.

Aspects being made unreachable by others is a semantical conflict that does
not amount to confluence of a system of syntactical rewriting. Detection of such
conflicts is not directly supported by static aspect approaches.

Part 4

HiLA du Monde

CHAPTER 8

Case Study

Contents

8.1. Overview and Static Structure 106
8.2. Modeling the Behavior of the CCCMS 109
8.2.1. Modeling the Main Success Scenario of Use Case 1 109
8.2.2. Modeling the Extensions of Use Case 1 112
8.2.3. Modeling Use Case 10 114
8.3. Validation of the Model 117
8.4. Discussion 119
8.4.1. The HiLA Approach to Modeling 119
8.4.2. The HILA Language 121

The practical applicability of HILA was validated by modeling a car crash
crisis management system (CCCMS), which is defined in [43].

The development of the static design model is rather traditional, and takes into
account both the analysis model and the requirements of the dynamic models. In
modeling the dynamic behavior of CCCMS, we follow a simple methodology of
first deriving a base state machine from the main success scenario of the use case
and then modeling the extensions with HILA aspects. This way, we achieve a clean
separation of extensions (more generally: concerns) as separate aspects operating
on a single base state machine. As long as the behavior of the interaction can be
expressed using high-level aspects, this separation of concerns is possible, even
when the different concerns interact with each other.

The systematic transition between analysis and behavioral design offers sev-
eral advantages: it provides a concrete method to derive a system design (with
state machines) from use cases; the resulting state machines are easy to under-
stand since they correspond directly to requirements; and the approach provides
excellent traceability from requirements to behavioral model and vice versa, which
simplifies the validation that all requirements are addressed by the design and sim-
plifies subsequent changes to system requirements. The HILA language thus not
only reduces the complexity of the dynamic models, but also makes it possible to
systematically generate the state machine models from use cases and to achieve a
high traceability between requirements and design models, which generally is not
easy when working with plain UML state machine. Our methodology is a sim-
ilar technique to the one described by Jacobson’s rendering of use case slices as
aspects [37].

While the part of CCCMS we modeled may be considered smaller than most
real applications, it is complex enough to demonstrate the advantages that HiLA
models and the HiLA approach offer over traditional UML-based approaches to
behavioral modeling.

105

106 8. CASE STUDY

In this chapter, we first give an overview of our CCCMS modeling, show its
static structure, and demonstrate how Use Cases 1 and 10 are modeled in HILA.
Then we show how model checking can be used to validate our models. The mod-
eling of the other use cases is given in Appendix A. Finally, we make a critical
evaluation of HILA against the background of modeling the CCCMS.

Publication Notice. The main content of this chapter is a reprint of [35]. Only
some diagrams have been modified due to new definition of some HILA elements
since the publication of [35].

8.1. Overview and Static Structure

The overall flow of events in resolving a car crash crisis is described in Use
Case 1 “Resolve Crisis” (and its included use cases): Upon a crisis, a coordina-
tor first gathers crisis information; the CCCMS recommends missions based on
this information and the coordinator selects missions accordingly. For each mis-
sion internal and external resources are selected, and these resources execute their
mission. When execution has finished, the coordinator closes the crisis.

In our model we directly represent this main course of actions by handling the
different phases of a car crash crisis resolution in a chain of separate objects which
reflect the respective states of the CCCMS. A crisis is reported to an instance of
class System which just represents the phase of waiting for an incident. A Sys-
tem then creates a Crisis. In this Crisis the coordinator gathers the necessary crisis
information: the witness reports and other crisis details. From this information a
Crisis creates an Adviser which supervises the remainder of the crisis resolution.
An Adviser recommends appropriate missions to the coordinator, accepts a selec-
tion of these missions, creates Mission objects, allocates the necessary resources to
each Mission, delegates mission execution to the resources, and collects changes to
the mission.

This division of labor has two driving factors: On the one hand, we take the
stance that each use case has a primary interaction object; this accounts in particular
for moving from System, the primary interaction object for the overall use case 1
“Resolve Crisis” to Crisis that handles the included use case 2 “Capture Witness
Report”. On the other hand, inside use cases several tasks have to be done in
parallel, where the necessary degree of concurrency is not known up-front. This
concurrency justifies, e.g. the creation of several Mission objects which all have to
be executed in parallel.

A domain model of the CCCMS can thus be derived from the use case descrip-
tions using rather conventional techniques (see, e.g. [12, 62]) obeying both the use
case structuring and the required parallelism. The overall static structure, enriching
the domain model by particular associations between the entities and operations as
well as receptions for these entities again follows straightforwardly from an anal-
ysis of the requirements;1 in both cases it is mainly enough to concentrate on the
primary (success) scenarios. We therefore forego a detailed account of the design
steps of the static structure but merely show the resulting class diagrams in Fig. 8.1,
Fig. 8.2, and Fig. 8.3.

1As customary we do not make class constructors explicit.

8.1. OVERVIEW AND STATIC STRUCTURE 107

1

findInfo(wi: Set<WitnessInfo>): Set<WitnessInfo>

PhoneCompany

request(md: MissionDescription, t: Type, sender: Request): void

ERS

CrisisType
«enumeration»

Location

CrisisInfo
0..* 1
cInfo

Checklist
cl
0..1

WitnessInfo
0..*
wInfo

1

validateInfo(wi: Set<WitnessInfo>): void
createChecklist(): Checklist
createAdviser(Set<WitnessInfo>): Adviser
addCrisisInfo(ci: CrisisInfo): void
setEmergencyLevel(): void
«signal» wInfoFinished()
«signal» witnessInfo(wi: WitnessInfo)

«signal» locationAndType(loc: Location, t: CrisisType)

«signal» cInfoFinished()

«signal» phoneInfoOK()

«signal» crisisInfo(ci: CrisisInfo)

«signal» phoneInfo(pi: Set<WitnessInfo>)

addWitnessInfo(wi: WitnessInfo): void

getAvailableResources(): Set<Resource>

System

«signal» crisis()

createCrisis(): void

1

getCoordinator(): Coordinator
getPhoneCompany(): PhoneCompany

active: Boolean = false
emergencyLevel: Integer

Crisis1 0..*
type

createVideoFeed(loc: Location): VideoFeed

SurveillanceSystem

1

1

0..*

VideoFeed

0..*

pInfo: Set<WitnessInfo>

0..1

rcvRecommendations(recs: Set<MissionDescription>): void
rcvChecklist(cl: Checklist): void

newInfo(ci: CrisisInfo): void

«signal» operating(m: Mission)
«signal» inExecution(m: Mission)
«signal» waiting(m: Mission)
«signal» finished(m: Mission)

Coordinator

Figure 8.1: Class diagram: around System

Expertise
«enumeration»

intlRequest 0..*
Type

«enumeration»

Mission

Change

Crisis
0..*1

Report
0..1

finalReport

External

1..*
1..*
1

1
resource

extlRequest 0..*

1

1
md0..*0..* md

Resource
description: MissionDescription
change(c: Change): void
generateReport(): Report

0..*

1

selected 0..* recommendations

1

request(md: MissionDescription, sender: Assignment): void

MissionDescription
1

md

Employee

Adviser
missions: Set<Mission>

getRecommendations(): Set<MissionDescription>
createMission(md: MissionDescription): void

getResource(): Set<Resource>
close(): void

«signal» change(c: Change)
«signal» newInfo(info: Info)

«signal» selectMissions(md: Set<MissionDescription>)

«signal» report(r: Report)
«signal» arrival(r: Resource)
«signal» departure(r: Resource)

0..*

resource0..1

0..1
«signal» accept(r: Resource)
select(): Employee
exp: Expertise
md: MissionDescription

Assignment

0..1

Request
md: MissionDescription
t: Type
«signal» accept(r: Resource)

Figure 8.2: Class diagram: around Adviser

108 8. CASE STUDY

e
x
e

c
u

te
()

:
v
o

id
fi
n

d
H

o
s
p

it
a

l(
iI
n

fo
:

In
ju

ry
In

fo
):

 H
o

s
p

it
a

l
«

s
ig

n
a

l»
 l
e

a
v
in

g
C

ri
s
is

S
it
e

()
«

s
ig

n
a

l»
 v

ic
ti
m

D
ro

p
p

e
d

O
ff

()
«

s
ig

n
a

l»
 c

o
m

p
le

te
d

()
«

s
ig

n
a

l»
 i
n

ju
ry

In
fo

(i
In

fo
:

In
ju

ry
In

fo
)

R
e

s
c
u

e
M

is
s
io

n

s
e

a
rc

h
H

is
to

ry
(v

id
:

S
tr

in
g

):
 v

o
id

H
o

s
p

it
a

lR
e

s
o

u
rc

e
S

y
s
te

m

H
o

s
p

it
a

l
C

ri
s
is

In
fo

c
re

a
te

T
a

s
k
(t

d
:

T
a

s
k
D

e
s
c
ri
p

ti
o

n
):

 v
o

id

c
u

rr
e

n
tT

a
s
k
:

T
a

s
k
D

e
s
c
ri
p

ti
o

n
e

x
e

c
u

te
()

:
v
o

id
g

e
n

e
ra

te
C

h
e

c
k
lis

t(
):

 C
h

e
c
k
lis

t
g

e
n

e
ra

te
T

a
s
k
s
()

:
S

e
t<

T
a

s
k
D

e
s
c
ri
p

ti
o

n
>

«
s
ig

n
a

l»
 c

ri
s
is

In
fo

(i
n

fo
:

C
ri
s
is

In
fo

)
«

s
ig

n
a

l»
 t

a
s
k
(t

:
T

a
s
k
D

e
s
c
ri
p

ti
o

n
)

«
s
ig

n
a

l»
 i
n

fo
(t

i:
 T

a
s
k
In

fo
)

«
s
ig

n
a

l»
 t

a
s
k
C

re
a

te
d

()
«

s
ig

n
a

l»
 t

a
s
k
S

u
c
c
e

e
d

e
d

()
«

s
ig

n
a

l»
 s

o
L

e
ft

()

S
u

p
e

rO
b

s
e

rv
e

rM
is

s
io

n

T
a

s
k

T
a

s
k
In

fo
T

a
s
k
D

e
s
c
ri
p

ti
o

n

ta
s
k
s

0
..

*

E
m

p
lo

y
e

e
E

m
p

lo
y
e

e

c
re

a
te

A
s
s
ig

n
m

e
n

t(
m

d
:

M
is

s
io

n
D

e
s
c
ri
p

ti
o

n
,

e
:

E
x
p

e
rt

is
e

):
 A

s
s
ig

n
m

e
n

t
c
re

a
te

R
e

q
u

e
s
t(

m
d

:
M

is
s
io

n
D

e
s
c
ri
p

ti
o

n
,

t:
 T

y
p

e
):

 R
e

q
u

e
s
t

e
x
e

c
u

te
()

:
v
o

id

re
s
o

u
rc

e
S

u
ff

ic
ie

n
t(

):
 b

o
o

le
a

n
«

s
ig

n
a

l»
 a

rr
iv

a
l(
r:

 R
e

s
o

u
rc

e
)

«
s
ig

n
a

l»
 d

e
p

a
rt

u
re

(r
:

R
e

s
o

u
rc

e
)

M
is

s
io

n
D

e
s
c
ri
p

ti
o

n

C
h

e
c
k
lis

t

R
e

p
o

rt

M
is

s
io

n
In

fo

H
e

lic
o

p
te

rT
ra

n
s
p

o
rt

M
is

s
io

n

to
H

o
s
p

it
a

l(
h

p
t:

 H
o

s
p

it
a

l)
:

v
o

id

fa
w 1

h
rs

1
..

*

In
ju

ry
In

fo
v
id

:
S

tr
in

g
iI
n

fo

h
p

t
V

ic
ti
m

H
is

to
ry

v
id

:
S

tr
in

g

1
..

*
c
In

fo
0

..
1

F
ir
s
tA

id
W

o
rk

e
r

re
q

u
e

s
tI

n
fo

(i
n

fo
:

C
ri
s
is

In
fo

)
«

s
ig

n
a

l»
 t

a
s
k
C

re
a

te
d

()
«

s
ig

n
a

l»
 t

a
s
k
S

u
c
c
e

e
d

e
d

()
«

s
ig

n
a

l»
 r

c
v
T

a
s
k
s
(t

:
S

e
t<

T
a

s
k
D

e
s
c
ri
p

ti
o

n
>

)
«

s
ig

n
a

l»
 r

c
v
C

h
e

c
k
lis

t(
c
l:
 C

h
e

c
k
lis

t)

S
u

p
e

rO
b

s
e

rv
e

r
1 s
o

a
s
s
ig

n
m

e
n

ts
:

S
e

t<
A

s
s
ig

n
m

e
n

t>
re

q
u

e
s
ts

:
S

e
t<

R
e

q
u

e
s
t>

re
s
o

u
rc

e
s
:

S
e

t<
R

e
s
o

u
rc

e
>

M
is

s
io

n

m
d

1 c
l

R
e

m
o

v
e

O
b

s
ta

c
le

M
is

s
io

n

Figure 8.3: Class diagram: around Mission

8.2. MODELING THE BEHAVIOR OF THE CCCMS 109

C

«transformation advice»

«transformation pointcut»

IntroduceOperation
«aspect»

Op

C

C
Op

(a) Extend class C with operation
Op

C

«transformation advice»

«transformation pointcut»

IntroduceProperty
«aspect»

C
Prop

C
Prop

(b) Extend class C with property
Prop

C

«transformation pointcut»

IntroduceClass
«aspect»

«transformation advice»

C

(c) Introduce class C to the sys-
tem

Whilst

WhilstOnGoto
«pointcut»

«aspect»

«advice»

«whilst»
{trigger = On}

goto Goto

Whilst
On
Goto

(d) When state Whilst is ac-
tive, if On is the current
event, go to state Goto

Before

«pointcut»

«aspect»
BeforeIfDoGoto

«before»

«advice»
goto Goto[If] / Do

[else]

Goto

Before
If
Do

(e) Before activating state Be-
fore, if condition If is true, exe-
cute the action Do and go to state
Goto, otherwise, do nothing

Whilst

«whilst»
{trigger = On}

«pointcut»

«advice»
/ Do

goto Goto

«aspect»
WhilstOnDoGoto

Goto

Whilst
On
Do

(f) When state Whilst is active, if
the current event is On, execute
the action Do, and go to state Goto

Figure 8.4: Aspect templates used in the CCCMS case study

8.2. Modeling the Behavior of the CCCMS

In the following we describe in detail how we modeled two use cases of the
CCCMS. In the modeling, both static and dynamic aspects are used, the former
for extending the static structure of the system, the latter to model the use case
extensions. A considerable part of the aspects we used are instantiations of the
simple aspect templates given in Fig. 8.4.

8.2.1. Modeling the Main Success Scenario of Use Case 1. The main suc-
cess scenario of use case 1 “Resolve Crisis” is modeled in the following, where we
first cite the textual description of each step from [43] and then show how the step
is modeled.

The starting point of a crisis management process is System; its behavior is
modeled in Fig. 8.5: a System is idle until it receives a crisis notification (event
crisis), upon which it creates a Crisis. The crisis then assumes the responsibility to
manage the crisis by being the primary point of interaction with Coordinator, while
the system is ready for other crisis notifications. It is the transition from System to
Crisis where the handling of “Resolve Crisis” really starts.
1. Coordinator captures witness report (UC 2).

We do not detail the behavior of use case 2 “Capture Witness Report” here, which is
handled by Crisis; see Appendix A.1. In particular, after successful termination of
this step the information of Crisis will be up to date and an Adviser being attached

110 8. CASE STUDY

Idle

crisis / createCrisis()

Figure 8.5: Class System: base machine

to the Crisis for handling the remaining steps for crisis resolution will have taken
over.
2. System recommends to Coordinator the missions that are to be executed based

on the current information about the crisis and resources.
3. Coordinator selects one or more missions recommended by the system.

For these steps it is the Adviser who represents the System. The Adviser, see

WaitFor
Changes

Report
Received

do / recommendations =
 getRecommendations(System.getAvailableResources()))

GenerateRecommendations

 missions.add(createMission(md))
do / ForEach md In selected

CreateMissions

selectMissions(ml)
/ selected = ml

newInfo(info)

/ ForEach r In getResources()

change(c)

/ System.getCoordinator().
r.change(c) newInfo(info)

close

/ finalReport = r
report(r)

 rcvRecommendations(recommendations)

SendRecommendations
do / System.getCoordinator().

Figure 8.6: Class Adviser: base machine

Fig. 8.6, generates a set of recommendations (in state GenerateRecommendations
where we omit the details of how getRecommendations proceeds) and passes the
recommendations on to the Coordinator (in state SendRecommendations). An
event selectMissions causes the Adviser to store the descriptions of the selected
missions in selected. In CreateMissions it creates a new Mission for the descrip-
tion of each selected mission, and adds it to the set missions. (We abstract from the
detail of how to decide whether a “super observer mission”, a “rescue mission”, a
“helicopter transport mission”, or a “remove obstacle mission” should be created
for a given mission description, but hide this in the operation createMission.)

The base state machine for Mission is shown in Fig. 8.7. The next steps from 4
to 11 are executed for each mission in parallel:

8.2. MODELING THE BEHAVIOR OF THE CCCMS 111

do / ForEach r in md.intlRequest
 assignments.add(createAssignment(md, r))

CreateAssignments

do / ForEach r in md.extlRequest
 requests.add(createRequest(md, r))

CreateRequests

/ System.getCoordinator().
 finished(this)

finished

Listening

arrival(res) / resources.add(res)

departure(res) / resources.remove(res)

entry / execute();

Execute

«create»
init(mdes: MissionDescription)
/ md = mdes

arrival(res) / resource.add(res)

entry / System.getCoordinator().inExecution(this);
InExecution

Figure 8.7: Class Mission

4. For each internal resource required by a selected mission, System assigns an
internal resource (UC 3).

5. For each external resource required by a selected mission, System requests an
external resource (UC 4).

Each Mission creates first Assignment objects (in state CreateAssignments) and
then Request objects (in state CreateRequests) to allocate internal and external
resources, respectively.

6. Resource notifies System of arrival at mission location.
7. Resource executes the mission (UC 5).
8. Resource notifies System of departure from mission location.

Upon arrival of a resource, the Mission starts execution (InExecution). The details
of how a Mission executes (asynchronously calling its abstract method execute)
depends on the type of Mission; see Appendices A.5 and A.6. Meanwhile, the
mission also keeps track of the arrived and departed resources: in state Listening
it waits for the resources to report their arrivals and departures, and updates its
attribute resources accordingly. We suppose some resource sends (according to its
mission description) to the Mission a finished signal to stop its execution when the
mission is accomplished.

9. In parallel to steps 6–8, Coordinator receives updates on the mission status from
System.

Each Mission continuously informs the coordinator when it is in execution or fin-
ished. Note that the missions are now the representatives of the overall CCCMS,
i.e., the System.

10. In parallel to steps 6–8, System informs Resource of relevant changes to mis-
sion/crisis information.

112 8. CASE STUDY

This part of informational action is done by the Adviser (see Fig. 8.6). After creat-
ing the missions, the adviser gets ready for change notifications (WaitForChanges),
and simply passes received change information on to the resources.
11. Resource submits the final mission report to System.
If the Adviser receives a final report (by the event report), it stops waiting for change
notifications, and waits for the coordinator to close this crisis resolution session.
(We assume here that there is exactly one such final report, although there may be
many resources.)
12. In parallel to steps 4–8, Coordinator receives new information about the crisis

from System.
When the Adviser receives any new information (by newInfo), it passes the infor-
mation on to the coordinator.
13. Coordinator closes the file for the crisis resolution.
After receiving the final report, the adviser waits for the coordinator to close the
file (in state ReportReceived), and then terminates (final state).

8.2.2. Modeling the Extensions of Use Case 1. Now we model extensions
of use case 1 “Resolve Crisis” by HiLA aspects. Several times we not only have to
extend the behavioral part of the CCCMS, but also have to extend first the underly-
ing static structure. As for the main success scenario, we start with a citation of the
extension from the use case description [43] and then describe the model. In fact,
most of the extensions require only rather simple aspects and we will make ample
use of instantiations of the templates given in Fig. 8.4 as well as for static struc-
tures. We mainly use a tabular format for presenting these instantiations succinctly;
in these tables x 7→ y stands for �bind� x -> y.
1a. Coordinator is not logged in.

1a.1. Coordinator authenticates with System (UC 10).
1a.2. Use case continues with step 1.

Idle

«before»

Op −> validateCoordinator()

: Login
[coordinator == null]

[else]

«aspect»
CoordinatorLogin

«advice»

«pointcut»

Figure 8.8: UC 1, extension 1a: ensuring that the Coordinator is logged in.

Template Base Binding
IntroduceOperation Fig. 8.1 C 7→ System

Op 7→ validateCoordinator(u: String, i: String): void

Table 8.1: UC 1, extension 1a: Introducing a new operation to class System

8.2. MODELING THE BEHAVIOR OF THE CCCMS 113

When the coordinator is not logged in Use Case 10 has to be executed. We there-
fore add dynamic aspect CoordinatorLogin (see Fig. 8.8) and its static counterpart
(see Tab. 8.1): Before the Idle state of System becomes active, the system checks
whether the coordinator is not logged in (coordinator == null). If this is the case
the Login sub-state machine is triggered and use case 10 “Authenticate User” (see
Sect. 8.2.3) steps in.

4a. Internal resource is not available after step 4.
4a.1. System requests an external resource instead (i.e., use continues in par-

allel with step 5).

We have to expect a signal assignmentFailed in state Listening of class Mission
(see Fig. 8.7) and to create a new request for an external resource on reception of
this signal. We assume that for each kind of expertise there is a type of external
resources as substitution, and call this type the externalType of the expertise. The
necessary extensions can be completely covered by instantiating our templates, see
Tab. 8.2.

Template Base Binding
IntroduceOperation Fig. 8.3 C 7→ Mission

Op 7→�signal� assignmentFailed
IntroduceOperation Fig. 8.3 C 7→ Mission

Op 7→ createRequest(t: Type)
IntroduceProperty Fig. 8.3 C 7→ Mission

Prop 7→ externalType: Type[1]

WhilstOnDoGoto Fig. 8.7 Whilst 7→ Listening
On 7→ assignmentFailed
Do 7→ createRequest(exp.externalType)
Goto 7→ Listening

Table 8.2: UC 1, extension 4a: Template instantiations

5a. External resource is not available after step 5.
5a.1. Use continues in parallel with step 2.

The fact that an external resource is unavailable is determined by the extensions
of UC 4 “Request External Resource”, where two exceptional responses of the
external resource are introduced: partial approval or denial, see Appendix A.3.2.
We define an instance of aspect WhilstOnDoGoto for (the state machine of) the
main success scenario of UC 4, which is given in Fig. A.2b, to inform the Mission
and the System that the resource is unavailable (event denial), as well as to ask
the Crisis object to create another Adviser instance for the use case to “continue in
parallel with step 2”. The new adviser will have the knowledge of the unavailable
resource and will recommend different missions to the coordinator than the current
one did, details are hidden in the static operation System.getAvailableResources.

6a. System determines that the crisis location is unreachable by standard trans-
portation means, but reachable by helicopter.
6a.1. System informs the Coordinator about the problem.
6a.2. Coordinator instructs System to execute a helicopter transport mission

(UC 9).
6a.3. Use case continues with step 6.

114 8. CASE STUDY

Template Base Binding
IntroduceOperation Fig. 8.3 C 7→ Mission

Op 7→�signal� resourceUnavailable
IntroduceOperation Fig. 8.1 C 7→ System

Op 7→�signal� missionFailed(m: Mission)

WhilstOnDoGoto Fig. A.2b Whilst 7→WaitForAcceptance
On 7→ denial
Do 7→ mission.resourceUnavailable;

System.missionFailed(mission); md.adviser.crisis.createAdviser()

Table 8.3: UC 1, extension 5a: Template instantiations

We introduce two additional transitions to Fig. 8.7 by instantiating WhilstOnDo-
Goto twice: one instance passes on the request to the coordinator (System.getCoor-
dinator().needHelicopter()) that the resource is requiring a helicopter (helicopterRe-
quired) when the mission is waiting for the resources to arrive at the mission loca-
tion (state WaitForArrival). The other reacts to the coordinator’s instruction startHe-
licopterMission and creates a new instance of HelicopterCall to start the helicopter
transport mission.

hmd: MissionDescription
createHelicopterMissionDescription(rs: Set<Resource>): MissionDescription
createMission(md: MissionDescription): Mission

HelicopterCall

(a) Class diagram

 createMission(hmd)

«create» init (rs)
/ hmd = createHelicopterMissionDescription(rs);

(b) State machine

Figure 8.9: Class HelicopterCall

The class HelicopterCall is modeled in Fig. 8.9. A HelicopterCall objects creates
a mission description, in which a helicopter transport mission to transport a set of
resources to a certain location is described, and creates a mission according to this
description. The necessary signals and properties are introduced in Tab. 8.4.

All the remaining extensions of UC 1 follow the same patterns. We summarize
the necessary instantiations in Table 8.5. In particular, the fact that a resource is
“unable to contact System” (in extensions 6b and 8a) is not explicitly modeled, we
simply model the consequence of this fact, i.e., that “SuperObserver notifies Sys-
tem”. The use case continuing “in parallel with step 2” is modeled by asking the
Crisis object to create a new Adviser. If parallelism is not required (like in exten-
sion 7b), we simply go to state RecommendMissions to generate new missions to
recommend to the coordinator.

8.2.3. Modeling Use Case 10. The main success scenario of this Use Case 10
according to [43] reads as follows:
1. System prompts CMSEmployee for login id and password.
2. CMSEmployee enters login id and password into System.
3. System validates the login information.

8.2. MODELING THE BEHAVIOR OF THE CCCMS 115

Template Base Binding
IntroduceOperation Fig. 8.1 C 7→ Coordinator

Op 7→�signal� needHelicopter(r: Resource)
IntroduceOperation Fig. 8.3 C 7→ Mission

Op 7→�signal� helicopterRequired(r: Resource)
IntroduceOperation Fig. 8.3 C 7→ Mission

Op 7→�signal� startHelicopterMission(r: Set〈Resource〉)
IntroduceClass Fig. 8.3 C 7→ HelicopterCall (Fig. 8.9)
WhilstOnDoGoto Fig. 8.7 Whilst 7→WaitForArrival

On 7→ helicopterRequired(r)
Do 7→ System.getCoordinator().needHelicopter(r)
Goto 7→WaitForArrival

WhilstOnDoGoto Fig. 8.7 Whilst 7→WaitForArrival
On 7→ startHelicopterMission(r: Set〈Resource〉)
Do 7→ createHelicopterCall(r)
Goto 7→WaitForArrival

Table 8.4: UC 1, extension 6a: Template instantiations

Prompt
okValidate

do / Op

Login

/ u = userid; p = pwd
input(userid, pwd)

Op

Figure 8.10: Base sub-state machine for Login

This use case is modeled in see Fig. 8.10. Since the use case is used twice (in
use cases 1 and 3) the login procedure is rendered as a sub-state machine that takes
the validation procedure as template parameter. The class System contains recep-
tions for entering the user id and password and for accepting a successful login
attempt. The behavior of System is a direct reflection of the use case description:
first the user is prompted to input his credentials (state Prompt), which are then
validated (Validate). If the credentials are correct, a signal ok is created by the val-
idation mechanism (not modeled here), upon which the use ends in success. The
parameter Op is supposed to be instantiated with an appropriate validation method
which sends a signal ok when the validation the credentials are correct.

The first extension is specified as follows:

2a. CMSEmployee cancels the authentication process. Use case ends in failure.

failure(): void
«signal» cancel

System

«transformation advice»

«transformation pointcut»

CancelLogin
«aspect»

System

(a) Static aspect

«pointcut»

«advice»
/ failure

goto Final

«aspect»
WhilstOnDoGoto

«whilst»
{trigger = cancel}

*

(b) Dynamic aspect

Figure 8.11: Aspects for extension 2a of Use Case 10

116 8. CASE STUDY

Ext. Template Base Binding
6b IntroduceOperation Fig. 8.2 C 7→ c, c ∈ {Assignment, Request}

Op 7→�signal� soNotifyArrival(r: Resource)
WhilstOnDoGoto Fig. 8.7 Whilst 7→WaitForArrival

On 7→ soNotifyArrival(r)
Do 7→ arrived.add(r)
Goto 7→ OneArrived

6c IntroduceOperation Fig. 8.2 C 7→ Resource
Op 7→�signal� updateRequired()

WhilstOnDoGoto Fig. 8.7 Whilst 7→WaitForArrival
On 7→ after t time
Do 7→ resource.updateRequired()
Goto 7→WaitForArrival

7a IntroduceOperation Fig. 8.2 C 7→ Adviser
Op 7→�signal� moreMissionsRequired

WhilstOnDoGoto Fig. 8.6 Whilst 7→WaitForChanges
On 7→ moreMissionsRequired
Do 7→ crisis.createAdviser()
Goto 7→WaitForChanges

7b IntroduceOperation Fig. 8.2 C 7→ Adviser
Op 7→ missionFailed(m: Mission)

WhilstOnGoto Fig. 8.6 Whilst 7→WaitForChanges
On 7→ missionFailed(m)
Goto 7→ RecommendMissions

8a IntroduceOperation Fig. 8.2 C 7→ c, c ∈ Assignment, Request}
Op 7→�signal� soNotifyDeparture(r: Resource)

WhilstOnDoGoto Fig. 8.7 Whilst 7→WaitForDeparture
On 7→ soNotifyDeparture(r)
Do 7→ left.add(r)
Goto 7→ OneLeft

8b IntroduceOperation Fig. 8.2 C 7→ c, c ∈ {Assignment, Request}
Op 7→�signal� delayReasonRequired

WhilstOnDoGoto Fig. 8.7 Whilst 7→WaitForDeparture
On 7→ after t time
Do 7→ resource.delayReasonRequired()
Goto 7→WaitForDeparture

9a, 12a IntroduceOperation Fig. 8.2 C 7→ Adviser
Op 7→�signal� changeRequired

WhilstOnDoGoto Fig. 8.6 Whilst 7→WaitForChanges
On 7→ changeRequired
Do 7→ crisis.createAdviser
Goto 7→ Final

11a WhilstOnGoto Fig. 8.6 Whilst 7→WaitForChanges
On 7→ after t time
Goto 7→ Final

Table 8.5: UC 1: extensions

As is the general strategy in our modeling approach this extension is represented by
aspects; in this case a combination of one static and one dynamic aspect, as shown
in Fig. 8.11. The pointcut of the dynamic aspect in Fig. 8.11b matches �whilst� the
base state machine is in any (*) state configuration and the event cancel occurs; it
advises the base state machine to execute the �advice�: perform failure as an effect
and go to the Final state of the base machine. The static aspect in Fig. 8.11a adds the
reception cancel and the operation failure (and also the implementation of failure)
to System.

The second and last extension of use case 10 is handling failed authentication
attempts:

3a. System fails to authenticate the CMSEmployee.
3a.1. Use case continues at step 1.

8.3. VALIDATION OF THE MODEL 117

3a.1a. CMSEmployee performed three consecutive failed attempts.
3a.1a.1. Use case ends in failure.

Modeling such behavior requires the ability to track the execution history of the
state machine. This is what the history properties of HILA are designed for.

«aspect»
: WhilstOnGoto

Whilst −> Validate
On −> fail
Goto −> Prompt

(a) Aspect fail

Validate [3]

[0]

ThreeFails
«aspect»

«history»
«aspect»

: BeforeIfDoGoto

f3 =

Goto −> Final
Do −> failure()
If −> f3 >= 1
Before −> Prompt

(b) Aspect 3fail

Figure 8.12: Dynamic aspects for extension 3a of Use Case 10

The dynamic aspect in Fig. 8.12a uses the template notation: a failed authen-
tication attempt leads back to state Prompt. The dynamic aspect in Fig. 8.12b is
additionally equipped with a �history� property. The history variable f3 stores the
number of such subsequences in the execution history in which state Validate was
active three (multiplicity [3]) times without the final state being active (multiplic-
ity [0]). The history variable f3 is used in the enclosed aspect template instance
to ensure that after three consecutive failed authentication attempts (f3 >= 1) the
machine terminates.

8.3. Validation of the Model

Since result of weaving HILA aspects with the base machine is another plain
UML state machine, it is possible to validate HILA aspects by formally prove the
correctness of the weaving result, be it theorem proving (like PVS [7] or KIV [10])
or model checking (like UMC [30] or Hugo/RT [45]). Section 5.8.3 contains an ex-
ample of model checking the result of mutual exclusion aspects. We now validate
the result of weaving the HILA aspects of the (simplified) Use Case 10 “Authenti-
cate User”, see Sect. 8.2.3 by model checking.

According to our method, we start out with the base state machine in Fig. 8.10,
ignoring the operation Op and just concentrating on the basic login steps of the
main success scenario: prompting for user id/password, accepting an input, and
validating it; only a successful validation resulting in an ok signal is reflected in this
model (in the following we ignore how the input provided by the user is stored).
The use case extensions, represented by the aspects in Figs. 8.11 and 8.12, require
the possibility of canceling the login procedure and the handling of a failing val-
idation. In particular, it has to be possible to attempt to login at least, but also at
most, three times unsuccessfully. Thus the (woven) state machine should exhibit
the following property, stated in linear temporal logic (LTL):

F (inState(Prompt) and F (not inState(Prompt) and
F (inState(Prompt) and F (not inState(Prompt) and
F (inState(Prompt))))))

The temporal modality F is to be read as “eventually” or “it is the case in the fu-
ture”; thus it should be possible that the state machine first goes to state Prompt,

118 8. CASE STUDY

then to some other state, then to Prompt again, then to some other state, and fi-
nally to Prompt again. Note that the property only refers to states in the base state
machine. Obviously, the desired behavior is not possible in the original base state
machine in Fig. 8.10, and this is also confirmed by Hugo/RT: Hugo/RT translates
the state machine and the assertion into the input language of a back-end model
checker, in this case SPIN. SPIN then verifies that there is no possible run of the
state machine with the prescribed sequence of being in Prompt and being not in
Prompt.

Prompt
input(userid, pwd)

cancel / failure()

cancel / failure()

Validate

fail

ok

Figure 8.13: Weaving result for sub-machine login from Fig. 8.10 and the aspects
in Fig. 8.11b, Fig. 8.12a (unnecessary jBefore junctions removed)

The result of weaving in the aspects in Fig. 8.11b and Fig. 8.12a is shown in
Fig. 8.13. Canceling a login process and the failing of a login attempt are repre-
sented rather straightforwardly by additional transitions (triggered by cancel and
fail). In this resulting state machine the property stated above is possible, as con-
firmed by Hugo/RT and SPIN; the following property, however, stating the possi-
bility to try to login four times, is also satisfied:
F (inState(Prompt) and F (not inState(Prompt) and
F (inState(Prompt) and F (not inState(Prompt) and
F (inState(Prompt) and F (not inState(Prompt) and
F (inState(Prompt))))))))

By employing a history property, the aspect in Fig. 8.12b ensures that at most
three failing attempts in a row can be made. The weaving result is shown in

Prompt

Err

[else] / gF = true;

[f3 > 0] / gP = true;

AspState
entry / gP = false; gF = false;
defer / *

[!gF]

[gP && gF]

[!gP && gF]

fail

ok

cancel / failure()

cancel / failure()

input(userid, pwd)

 if (a3)

 if (a2)

 f3++;}
 if (a1)

 if (a0)

Validate
exit /

 {a3 = false; a3 = true;}

 {a2 = false; a3 = true;

 {a1 = false; a2 = true;}

 {a1 = true;}

exit / a3 = false;

 a1 = false;
 a0 = true;

 a2 = false;

Figure 8.14: Weaving result for sub-machine login from Fig. 8.10 and Figs. 8.11b
and 8.12 (unnecessary jBefore junctions removed)

Fig. 8.14.2 Note a0 is initialized with 0 (not shown in the diagram). Now Hugo/RT

2For simplicity, we removed the jBefore junctions and priority handling. There is only one
aspect involved in AspState.

8.4. DISCUSSION 119

(and SPIN) confirm that it is possible to have three unsuccessful attempts to login,
but no more attempts are then possible.

It is in general not only useful to check that certain properties are indeed en-
forced by applying aspects, but also, conversely, that certain properties are being
preserved. A simple example for preservation of properties is that the base state
machine can terminate:

F (inState(Final))

Hugo/RT and SPIN verify that this property also holds for the woven state machine
(in fact this could also be checked by inspection; however, here more is true: all
executions of the woven state machine inevitably lead to the Final state).

As demonstrated for the authentication use case, we can currently only check
the result of the weaving process; it would be desirable to compositionally validate
the base state machine and the aspects in a dynamic fashion, without having to
take into account the weaving result which can be rather complex and sometimes
slightly unintuitive.

8.4. Discussion

In the following, we will evaluate how well the HILA approach to modeling
worked for the CCCMS case study, which language features of HILA we used in
the modeling task, and how well they addressed the issues presented by the domain.

8.4.1. The HiLA Approach to Modeling. Overall, we were pleasantly sur-
prised how well our simple approach of modeling the main success scenario in a
base machine and the extensions withaspects worked for the CCCMS case study,
in particular since the use cases were developed without special consideration for,
and most likely even without knowledge of, HILA. In general, each base state ma-
chine corresponds to a single use case and each use case extension is modeled by
one or more aspects; each aspect belongs to a single use case, and the behavior of
most use case extensions could be modeled with high-level aspects. This affords
excellent correspondences between requirements and design, albeit at a certain in-
crease in the number of interacting model elements. In practical applications less
strict adherence to this method might be advisable since it can reduce the composi-
tion complexity. Tool support for interactively switching on and off aspect weaving
would be very helpful.

Many structural patterns repeatedly appear in different use case extensions of
the CCCMS case study, e.g. “while waiting in some state S, if event e happens,
do something not foreseen in the base use case.” Since HILA provides a highly
expressive template language for defining aspects, most of the extensions can be
concisely summarized in tabular form, see Tables 8.1–8.5. We employ a regu-
lar naming scheme for templates and reuse these templates in most of our HILA
models. With some experience it becomes therefore easy to see which behavioral
modifications are required by the listed extensions. In effect, we use the template
language of HILA for tailoring aspects to different contexts and base state ma-
chines, and thereby achieve a high degree of aspect reuse.

While modeling the CCCMS we sometimes had to deviate from the simple,
systematic approach described in the previous paragraph. These deviations were
necessary to accommodate the unbounded parallelism that is present throughout

120 8. CASE STUDY

the case study: state machines themselves can only provide a statically fixed num-
ber of parallel regions, the dynamic “spawning” of new parallel regions cannot be
represented in the state machine formalism. Therefore we have to model dynam-
ically created concurrent regions as concurrent objects; each object corresponds
to one parallel “thread” of execution, the behavior of the thread is given by the
object’s state machine.

This pattern for managing unbounded parallelism is the reason why the active
part of the system is represented by different objects over time and, consequently,
some base use cases are modeled by several state machines. For example, the single
System instance creates a new instance of Crisis for every crisis report received by
the system, the state machines of the concurrently executing Crisis instances are
then responsible for handling all simultaneously active crises.

A similar situation can be observed in use case extensions. Except for a cer-
tain pattern of extensions for UC 1, each extension is described by a set of aspects
that can be modeled without modification to the base state machine and without
knowledge of other extensions. However, the case is not so simple for extensions
5a.1, 7a.1, 7b.1, 9a.1 and 12a.1 of UC 1: step 2 of the base use case (“system
recommends missions to coordinator”) is specified as a straightforward, serial part
of the main work flow and would therefore be modeled as part of the base state
machine. In contrast to the sequential behavior of the base use case, the extensions
specify “use case continues in parallel with step 2” and thereby lead to unbounded
parallelism in the base state machine. We therefore have to model the recommen-
dation, selection and change monitoring of missions in a new class Adviser and
start a concurrent Adviser instance every time new missions have to be created.

We point out one other potential pitfall that did not arise in the CCCMS sce-
nario: some modeling shortcuts, such as replacing several linearly connected states
with a single default transition, are not applicable when working with the proposed
HILA approach. For example, in UC 2, step 2a.3 (“system validates information
received from the phone company”), which is represented by the transition from
Validate to OK in Fig. 8.10, it is tempting not to use an explicit event phoneInfoOK
and a transition into the subsequent state OK but to model success by a comple-
tion transition from Validate to the join (as we are focusing on the main success
scenario). However, indulging this temptation greatly complicates the aspect that
introduces the additional possibility that the phone company does not match the
witness info, as required by extension 5a.

The success of an approach that relates behavioral design models as closely
to use cases as HILA depends heavily on the quality of the requirements analysis.
The CCCMS illustrates that it is not necessary to develop requirements models in
a specialized manner in order to profit from the abstraction mechanisms provided
by the HiLA language: for large parts of the CCCMS the relation between HiLA
models and requirements is immediately apparent, and even the necessary devia-
tions from a “pure” approach exhibit a large degree of regularity and are easy to
understand; the application of these patterns to other use cases is straightforward.
Nevertheless, the correspondence between requirements and design models could
have been further improved by writing use cases in a way that takes into account
the limitations that state machines place on parallelism, i.e., by separating all situ-
ations exhibiting unrestricted parallelism into separate use cases.

8.4. DISCUSSION 121

Another issue that arises when going from an informal description, such as use
cases, to an executable formalism like state machines is that there may be impreci-
sions or possibilities for misunderstandings in the informal text. The CCCMS case
study was for the most part free from such imprecisions, which shows the care that
went into its creation. Nevertheless there were a few isolated examples, where the
descriptions of different use cases do not seem to match exactly, e.g. UC 1, exten-
sion 5a is triggered when an external “resource is not available after step 5.” UC 4,
which is referenced by step 5, may either end “in success,” “in degraded success,”
or “in failure.” It is, however, not made clear whether any of these conditions is the
same as a resource not being available, and if so, how “degraded success” should
be handled in UC 1.

8.4.2. The HILA Language. The requirements of the CCCMS could be sat-
isfied with relatively basic language features of HiLA: we used a number of high-
level aspects and aspect templates for state machines, as well as some low-level
aspects either to introduce new classes or to add operations and properties to exist-
ing classes.

This case study shows the value of HILA’s ability to efficiently cope with sce-
narios that require more sophisticated handling of execution history, see Sect. 8.2.3.

The HILA language allows modelers to easily define templates that represent
commonly used aspects for their scenarios. This can be seen in this case study:
roughly 80% of the aspects needed to model the use case extensions of the CCCMS
can be expressed as instantiations of a small number of aspect templates. This
expressivity of the modeling language is not without risks: it is tempting to overuse
templates which can quickly lead to inscrutable models, in which (parameterized)
aspects no longer correspond to single requirements, and where changes to a single
aspect template may have unforeseen consequences throughout the model.

Certain aspects, e.g. aspects that need to introduce new guards into existing
transitions, can only be modeled by graph transformations of state machine mod-
els. No such example is necessary for the CCCMS, but had we modeled UC 2
as described above (in Sect. 8.4.1 on p. 120) such an introduction would have
been necessary. Applying several graph transformations to a base state machine
raises concerns about the confluence of the transformations and therefore the well-
formedness of the final result [75]. This is a problem that our approach shares
with all other approaches that make use of graph transformations. However, as can
be seen in this case study, we can model many scenarios without resorting to this
mechanism. Note that we use static aspects for class diagrams, but only to intro-
duce new classes, methods or properties. In these cases confluence is normally not
problematic and well-formedness of the result easily checked.

When only high-level aspects are applied to state machines, the problem be-
comes much less pressing: in most cases the concurrent execution of advices re-
duces the number of spurious conflicts between aspects; in particular there are no
conflicts when several mutually independent aspects are applied to the same transi-
tion. Cases where several aspects interfere in HiLA generally represent a real con-
flict between different behaviors that has to be resolved by the modeler. Moreover,
conflicting modifications of control flow by several concurrently active aspects can
faithfully be detected at run time and a conservative static approximation can point
out all potential conflicts of this kind at design time. Still, there are interactions

122 8. CASE STUDY

which we currently do not detect reliably, e.g. consumption of an event that is de-
ferred by the base state machine or another aspect. While these situations appear
much less frequently than (spurious) interactions between graph transformations it
is our intention to improve the HiLA tools to detect and warn about this last class
of indeterministic behavior.

The HILA language is amenable to testing and verification. Templates allow
us to test the behavior of aspects by applying them to simple base state machines,
and by applying compositions of several aspects simultaneously. Moreover, since
HiLA is integrated with the Hugo/RT model translation tools for state machines, it
is straightforward to apply model-checking techniques to HiLA models, and there-
fore to validate models against behavioral specifications. Currently this is only
possible after weaving and therefore non-compositional. Independent verification
of individual aspects remains a challenge and is a subject for future research.

CHAPTER 9

Related Work

Contents

9.1. Event Condition Action Systems and Programming
Languages 123

9.2. Modeling Languages Supporting Static Aspects 123
9.3. Modeling Languages Supporting Dynamic Aspects 124
9.4. Aspect Interference 125

Aspect-oriented Software Development has been a very active research topic
for more than a dozen years. HILA is related to a large number of publications.

Publication Notice. The main content of this chapter has been published in [35].
The discussion about ECA systems is new.

9.1. Event Condition Action Systems and Programming Languages

The idea of defining rules in the form of “when X happens do Y” is not young.
In fact, HILA can also be viewed as a special form of the well-known Event Con-
dition Action paradigm (ECA). Since HILA is defined to be an extension of UML
state machines, the implementation of HILA aspects has to take into account many
of the subtlenesses of the UML state machine semantics, see Chap. 5.

In prevalent ECA systems like Drools [9] the X is often only dependent of an
event and a condition and not, as opposed to HILA, any system state. Conse-
quently, ECA rules are usually applied in systems where the current state is irrele-
vant for the determination of the action to execute, such as information systems, see
e.g. [58, 60]. In comparison, HILA is defined to enhance the modularity of UML
state machine models, which are usually used to model state-based behaviors.

Languages constructs, whose semantics was defined using run time informa-
tion, are also available since the very beginning of main stream aspect-oriented pro-
gramming, see e.g. cflow of AspectJ [39]. More expressive constructs are designed
in other languages like JAsCo [69, 70] Object Teams [34] and Arachne [22], all
of which support the definition of (parts) of execution traces as pointcuts. HILA’s
history properties are actually reminiscent of the stateful or trace-based aspects in
these languages. An overview of dynamic aspect-oriented programming languages
can be found in [28].

9.2. Modeling Languages Supporting Static Aspects

As stated before, in most aspect-oriented modeling approaches aspects are un-
derstood as model transformations: an aspect defines some modification of the el-
ements of the base model. In [61, 66], primitive directives of model modifications
are defined. A static aspect can be viewed as a combination of such directives.

123

124 9. RELATED WORK

Theme/UML [14] is one of the best known static approaches. It models differ-
ent features in different models (called themes) and uses UML templates to define
common behavior of several themes. Like in HILA, Theme/UML does not include
a pointcut language, reusability is achieved by defining templates. Theme/UML
does not provide a method of conflict detection, but simply proposes to have an
expert to supervise the aspects and to resolve conflicts if necessary.

Other approaches, e.g. [66, 75, 79] or, applying the idea of aspect-orientation
for requirements engineering, [6], include a selection language for pointcut defini-
tion. The advice is reused when the pointcut, a pattern, is matched by several parts
of the base model and the advice (the transformation of the base model) is woven
everywhere the pointcut is matched. The semantics of aspects in these approaches
is defined using graph transformation [24], the approaches are also implemented as
graph transformation, see [53, 72, 74]. Detection of (syntactical) conflicts between
transformations (i.e. aspects) then amounts to confluence checking in the graph
transformation system. Detection of semantical conflicts does not seem directly
supported. A case study of applying static aspects to the development of software
product lines is given in [38].

While static aspects are helpful for separating the system behavior in several
parts, they do not provide decisive aid for reducing the complexity of software de-
sign models, since model transformations are low-level instruments, and the mod-
eler using static aspects (which are in actually model transformations) still has to
define the system behavior in every detail. For an example, see Sect. 3.5.

On the other side, static aspects are generally more expressive than high-level
approaches including HILA can be, since the weaving of every high-level aspect
can also be formulated as static aspects. As shown in Chap. 8, HILA is often used
in combination with static aspects, which, e.g., extends the static structure of the
base model.

9.3. Modeling Languages Supporting Dynamic Aspects

The pointcut language JPDD [31] facilitates the definition of trace-based point-
cuts. In comparison, HILA also allows the modeler to define synchronization re-
lated pointcuts. Moreover, an elaborate weaving algorithm is necessary in HILA
to implement the advices of the aspects.

Altisen et al. [4, 63] propose aspects for Mealy automata. Pointcuts are also
defined as automata. In comparison, the implementation of HILA’s history prop-
erties using automata is transparent to the modeler, which means the modeling of
history-based behaviors is more declarative hence easier. Moreover, since HILA
is defined as an extension of UML state machines, the weaving algorithm of our
approach is also much more elaborate, mainly due to the richer language constructs
of the UML. Because of the wider acceptance of the UML, HILA is supposed to
be more tightly connected to common practice.

Considering UML state machines, Mahoney et al. [50] propose to combine
several state machines into one orthogonal composite state and to relate, by textual
notations, triggering events in different regions so that related transitions can be
fired jointly. This approach can be used to modularize the synchronization of state
machines, although having to declare all events of the wrapping state machine to be
executed before triggering transitions in the base state machine may lead to quite

9.4. ASPECT INTERFERENCE 125

complicated annotations. Modeling of history-based features is not covered by this
approach.

State-based aspects in reactive systems are also supported by the Motorola
WEAVR tool [17, 18, 84]. Their aspects can be applied to the modeling approach
Telelogic TAU1, which supports flat, “transition-centric” state machines. In com-
parison, our approach is also applicable to UML state machines, where in general
concurrent threads are contained, and concerns such as thread synchronization in-
crease the difficulty of correct and modular modeling. We believe that the aspect
language presented in this paper, and the verification tools available because of its
integration into Hugo/RT, provide valuable help to address these problems.

To the author’s knowledge, techniques for conflict detection and resolution are
not provided by these approaches.

9.4. Aspect Interference

Aspect interference is an intrinsic problem of aspect-oriented techniques. It
has been addressed in a large amount of publications, at least for aspect-oriented
programming languages (for an overview, see [2, 47]).

Techniques interference detection proposed so far include detecting shared
fields addressed by read and write operations [65], a formal foundation of AOP
languages using the logical approach Conditional Program Transformations [47],
and graph transformations [2]. These approaches focus on sequential program-
ming languages. In comparison, our approaches exploits the concurrency of state
machines and weaves aspects into parallel regions to mitigate the problem of join
points being changed or made unreachable by other aspects. Notations of prece-
dence declaration in order to resolve conflicts are proposed in, e.g. [42, 55, 61, 84].

Weaving into parallel constructs is also proposed in [21], where an approach
to concurrent event-based AOP (CEAOP) is defined. Concurrent aspects can be
translated into Finite Sequential Processes and checked with the LTSA model-
checker. Many similarities exist between CEAOP and the work presented in this
paper; however the two approaches take complementary viewpoints in the sense
that our work is primarily concerned with a state-based view of AOP that allows,
e.g., the definition of mutual exclusion in state machines, whereas the CEAOP is
mostly concerned with aspects over event sequences. CEAOP provides operators
to combine aspects, e.g., by executing different aspects in sequence or in parallel;
our approach is more restricted since our aspects are always executed in parallel.
Furthermore, pointcuts in CEAOP are actually similar to sequences of pointcuts
according to the usual definition, and pieces of advice are executed at different
points of this sequence. This makes it easy to define stateful aspects. While our
history mechanism can also be used to define these kinds of aspects, the definition
has to be given in several parts and is more cumbersome than in CEAOP. On the
other hand, the history mechanism in our approach can take into account values of
context variables which significantly increases the expressive power; it seems that
this possibility does currently not exist in CEAOP.

Considering modeling languages, since static aspects are implemented by graph
transformation [11], syntactical conflicts between aspects amount to inconfluence
of the underlying rewriting system that can be detected automatically by graph

1http://www.telelogic.com/products/tau/index.cfm

http://www.telelogic.com/products/tau/index.cfm

126 9. RELATED WORK

transformation tools like Attributed Graph Grammar (AGG)2 [75]. However, de-
tection of other kinds of interference, such as conflicting resumption strategies, is
not directly supported.

2http://tfs.cs.tu-berlin.de/agg/

http://tfs.cs.tu-berlin.de/agg/

CHAPTER 10

Conclusions and Future Work

Contents

10.1. Summary 127
10.2. Future Work 128

We conclude this thesis by giving some summarizing remarks on HILA and
sketch some future work.

10.1. Summary

We have presented our approach to aspect-oriented modeling using the High-
level Aspects (HILA), an aspect-oriented extension of UML state machines [57].
The most distinguishing feature of HILA’s modeling language is its high abstrac-
tion level. That is, HILA aspects do have a dynamic semantics, whereas in other
prevalent approaches of aspect-oriented state machines the aspects are defined as
syntactical modification of elements of of the base model. The semantics of HILA
is given in a structural operational manner, and implemented in the weaving algo-
rithms.

The high abstraction level considerably simplifies the complexity of the mod-
els. With HILA, the modeler only needs to define what is supposed to be done
by an aspect instead of having to design in every detail how to do it. We showed
examples of how simple it is to model history-based features and synchronization
of parallel systems in HILA, which is generally not an easy task using plain UML
state machines or using static aspects.

The high degree of separation of concerns of HILA models enables the use
of an interesting design method in which the alignment of use cases (including
extensions) and design models (base machines and aspects) is very clear. This way
we achieve a high traceability between requirements and design artefacts.

HILA is supported tool Hugo/HILA, which reads textual definition of the
base machine and HILA aspects, and accomplishes weaving according to the algo-
rithms described in this thesis. Model checking HILA aspects, also performed by
Hugo/HILA, helps detect modeling mistakes at an early stage of the development
process. Reusability of HILA aspects is greatly enhanced by defining templates to
model recurring situations. Our experiences made in modeling the CCCMS case
study give rise to the assumption that the Pareto Principle is also valid here, i.e.
when modeling a real system, about 80% of the necessary HILA aspects can be
defined as instantiations of simple aspect templates.

Apart from the CCCMS case study, HILA has been applied to model adaptive
systems [80].

127

128 10. CONCLUSIONS AND FUTURE WORK

10.2. Future Work

The results of this thesis can be extended in several directions.
It is not surprising that a high-level language like HILA does not exhibit an as

high expressive power as low level, i.e. transformational aspect-oriented languages
do. We plan to extend HILA to cover behaviors that are currently hard to model.
For example, synchronization of parallel regions is currently implemented by wait-
ing passively until firing the advised transition would no longer break any desired
mutual exclusion. Language constructs indicating another implementation strat-
egy, e.g. actively instructing the base machine to get out of the other,, problematic
states may be also useful, see [81]. Another desirable language feature would be
the synchronization between concurrent objects (see [35] for an example) or to al-
low the modeler to distinguish between applying advice at the start of the transition
execution, i.e., before the effect of the transition takes place, or at the end of the
transition (after its effect). Similarly, more complex annotations than goto can be
defined for final states. However these extensions potentially complicate the weav-
ing process and the semantics of aspects; since we have not yet found it necessary
to use them in practical applications, we have refrained from adding them to the
language.

We defined a structural operational semantics of HILA. It provides a basis to
implement the weaving algorithms. Interesting are also other formal semantics,
with which we could reason about HILA aspects more directly. In particular, we
are currently developing an algebraic semantics of HILA using the framework
Maude [15].

In the software development process, HILA is used in the phase of analysis
and design. It follows pretty well aspect-oriented requirements engineering as-
pects, such as AoURN [54], and may provide a starting point for aspect-oriented
implementation using approaches like RAM [41]. Integrating HILA with other
aspect-oriented software development approaches is also part of our future work,
see [3]. Note, however, that the HILA methodology of mapping main success
scenarios to base machines and use case extensions to aspects does not require
aspect-oriented requirements descriptions. Moreover, this mapping may be even
valuable to derive an aspect-oriented design from conventional, object-oriented re-
quirement artefacts. We therefore plan to extend the techniques described in [77]
to generate base machines and aspects from use cases in the syntax of Restricted
Use Case Modeling (RUCM, [78]) automatically.

The idea of high-level aspects is not only applicable to state machines. We also
plan to define high-level aspects for activity diagrams and interaction diagrams of
the UML.

APPENDIX A

Remaining Use Cases of the CCCMS

Contents

A.1. Use Case 2: Capture Witness Report 129
A.1.1. Main success scenario 130
A.1.2. Extensions 130
A.2. Use Case 3: Assign Internal Resource 130
A.2.1. Main success scenario 132
A.2.2. Extensions 132
A.3. Use Case 4: Request External Resource 133
A.3.1. Main success scenario 135
A.3.2. Extensions 135
A.4. Use Case 5: Execute Mission 135
A.5. Use Case 6: Execute SuperObserver Mission 135
A.5.1. Main success scenario 136
A.5.2. Extensions 136
A.6. Use Case 7: Execute Rescue Mission 137
A.6.1. Main success scenario 138
A.6.2. Extensions 138
A.7. Use Case 8: Execute Helicopter Transport Mission 139
A.8. Use Case 9: Execute Remove Obstacle Mission 139

For each of the other use cases of the CCCMS, we first cite its textual descrip-
tion given in [43], then we give its modeling with HILA.

Publication Notice. This appendix was first published in [35].

A.1. Use Case 2: Capture Witness Report

Description in [43]:

Main Success Scenario:
Coordinator requests Witness to provide his identification.

1. Coordinator provides witness information to System as reported by the witness.
2. Coordinator informs System of location and type of crisis as reported by the

witness.
In parallel to steps 2–4:

2a.1 System contacts PhoneCompany to verify witness information.
2a.2 PhoneCompany sends address/phone information to System.
2a.3 System validates information received from the PhoneCompany.

3. System provides Coordinator with a crisis-focused checklist.
4. Coordinator provides crisis information to System as reported by the witness.

129

130 A. REMAINING USE CASES OF THE CCCMS

5. System assigns an initial emergency level to the crisis and sets the crisis status
to active.
Use case ends in success.

Extensions:
1a,2a. The call is disconnected. The base use case terminates.
In parallel to steps 3-4, if the crisis location is covered by camera surveillance:

3a.1. System requests video feed from SurveillanceSystem.
3a.2. SurveillanceSystem starts sending video feed to System.
3a.3. System starts displaying video feed for Coordinator.

4a. The call is disconnected.
4a.1 Use case continues at step 5 without crisis information.

5a. PhoneCompany information does not match information received from
Witness.
5a.1 The base use case is terminated.

5b. Camera vision of the location is perfect, but Coordinator cannot confirm
the situation that the witness describes or the Coordinator determines
that the witness is calling in a fake crisis.
5b.1 The base use case is terminated.

A.1.1. Main success scenario. Modeled in Fig. A.1. The phone information
of the witness as found by the phone company is stored in pInfo. It is then com-
pared with witnessInfo (hidden in the operation validateInfo). State Validate is only
left when validateInfo determines that the phone information is OK (event phone-
InfoOK). The transitions to the join vertex and then to AssignLevel are only enabled
when both OK and CrisisInfoReceived are active.

A.1.2. Extensions. The extensions of use case 2 are modeled by instantiat-
ing the aspect templates given in Fig. 8.4. The bindings are given in Table A.1.
We model that “Coordinator cannot confirm the situation” by an additional signal
deny. Moreover, we point out that multiple instances of IntroduceOperation are de-
fined to extend class Crisis by signal disconnect (1a, 2a, 4a). The reason is that we
propose to model the extensions separately from each other, and while modeling
one extension we therefore assume no knowledge of other extensions. Accord-
ing to our definition of transformation aspects (see [79]), only one instance of the
signal is actually introduced to the class.

A.2. Use Case 3: Assign Internal Resource

Description in [43]:
Main Success Scenario:
System selects an appropriate CMSEmployee based on the mission type, the emer-
gency level, location and requested expertise. In very urgent cases, steps 1 and 2
can be performed for several CMSEmployees concurrently, until one of the con-
tacted employees accepts the mis- sion.
1. System sends CMSEmployee mission information.
2. CMSEmployee informs System that he accepts the mission.

Use case ends in success.
Extensions:
1a. CMSEmployee is not logged in.

A.2. USE CASE 3: ASSIGN INTERNAL RESOURCE 131

O
K

C
ri
s
is

In
fo

R
e
c
e
iv

e
d

d
o
 /
 c

l
=

 c
re

a
te

C
h
e
c
k
lis

t(
)

C
re

a
te

C
h
e
c
k
lis

t

C
o
lle

c
tI
n
fo

/
a
d
d
W

it
n
e
s
s
In

fo
(w

i)
w

it
n
e
s
s
In

fo
(w

i)

w
In

fo
F

in
is

h
e
d

W
a
it
F

o
r

C
ri
s
is

In
fo

C
o
lle

c
tC

ri
s
is

In
fo

C
o
n
ta

c
tP

h
o
n
e
C

o
m

p
a
n
y

 f
in

d
In

fo
(w

In
fo

)
d
o
 /
 S

y
s
te

m
.g

e
tP

h
o
n
e
C

o
m

p
a
n
y
()

.
V

a
lid

a
te

d
o
 /
 v

a
lid

a
te

In
fo

(p
In

fo
)

p
h
o
n
e
In

fo
O

K

lo
c
a
ti
o
n
A

n
d
T

y
p
e
(l
o
c
,
t)

/
S

y
s
te

m
.g

e
tC

o
o
rd

in
a
to

r(
).

rc
v
C

h
e
c
k
lis

t(
c
l)

c
In

fo
F

in
is

h
e
d

p
h
o
n
e
In

fo
(i
n
fo

)

d
o
 /
 a

c
ti
v
e
 =

 t
ru

e
;

 s

e
tE

m
e
rg

e
n
c
y
L
e
v
e
l(
)

A
s
s
ig

n
L
e
v
e
l

d
o
 /
 c

re
a
te

A
d
v
is

e
r(

)
C

re
a
te

A
d
v
is

e
r

c
ri
s
is

In
fo

(i
n
fo

)
/
a
d
d
C

ri
s
is

In
fo

(i
n
fo

)

c
ri
s
is

In
fo

(i
n
fo

)
/
a
d
d
C

ri
s
is

In
fo

(i
n
fo

)

W
a
it
F

o
r

L
o
c
a
ti
o
n
A

n
d
T

y
p
e

G
a
th

e
rI

n
fo

/
p
In

fo
 =

 i
n
fo

/
lo

c
a
ti
o
n
 =

 l
o
c
;
ty

p
e
 =

 t

Figure A.1: UC 2: Capture Witness Report (Class Crisis: base machine)

1a.1 System requests the CMSEmployee to login.
1a.2 CMSEmployee authenticates with System (UC 10).
1a.3 Use case continues at step 1.

1b. CMSEmployee is unavailable or unresponsive.
1b.1 System selects the next appropriate CMSEmployee.

132 A. REMAINING USE CASES OF THE CCCMS

Ext. Template Base Binding
1a, 2a IntroduceOperation Fig. 8.1 C 7→ Crisis

Op 7→�signal� disconnect
WhilstOnGoto Fig. A.1 Whilst 7→ s, s ∈ {CollectInfo, WaitForLocationAndType}

On 7→ disconnect
Goto 7→ Final

3a IntroduceOperation Fig. 8.1 C 7→ SurveillanceSystem
Op 7→�static� covers(loc: Location): Boolean

IntroduceOperation Fig. 8.1 C 7→ Coordinator
Op 7→ rcvVideoFeed(vf: VideoFeed): void

AfterIfDo Fig. A.1 After 7→ CreateChecklist
If 7→ SurveillanceSystem.covers(location)
Do 7→ System.getCoordinator.rcvVideoFeed(

SurveillanceSystem.createVideoFeed(location))
4a IntroduceOperation Fig. 8.1 C 7→ Crisis

Op 7→�signal� disconnect
WhilstOnGoto Fig. A.1 Whilst 7→ CollectCrisisInfo

On 7→ disconnect
Goto 7→ CrisisInfoReceived

5a IntroduceOperation Fig. 8.1 C 7→ Crisis
Op 7→�signal� phoneInfoWrong

WhilstOnGoto Fig. A.1 Whilst 7→ Validate
On 7→ phoneInfoWrong
Goto 7→ Final

5b IntroduceOperation Fig. 8.1 C 7→ Crisis
Op 7→�signal� s, s ∈ {fake, deny}

WhilstOnGoto Fig. A.1 Whilst 7→ GatherInfo
On 7→ s, s ∈ {fake, deny}
Goto 7→ Final

Table A.1: Modeling of extensions of UC 2

1b.2 Use case continues at step 1.
1b.1a No other CMSEmployee is available. Use case ends in failure.

2a. CMSEmployee informs System that he cannot accept the mission.
2a.1 System selects the next appropriate CMSEmployee.
2a.2 Use case continues at step 1.

2a.2a No other CMSEmployee is available. Use case ends in failure.

A.2.1. Main success scenario. Modeled in Fig. A.2a. We assume that all
“internal resources” are employees. The Assignment object passes on the mission
description it received from the adviser for its own creation to the most appropriate
employee (selected in SelectEmployee), as well as a reference of itself (this), for
the employee to send an acceptance notification (accept).

A.2.2. Extensions. The feature “in very urgent cases, steps 1 and 2 can be
performed for several CMSEmployees concurrently, until one of the contacted em-
ployees accepts the mission” is not formulated as an extension in [43]. However,
we consider this an exceptional feature and decided to model it in a separate aspect.

This feature is modeled by first introducing the class Selector (by instantiating
the aspect IntroduceClass), which is modeled in Fig. A.3a and A.3b, and then
using the aspect Urgent (Fig. A.3c) to alternate the “normal” behavior specified in
the main success scenario. If the emergency level is greater than 10, which we
assume is the threshold for the crisis to be “very urgent”, then, instead of selecting
the most appropriate employee (�before� SelectEmployee), a Selector object is
created for each employee with the desired expertise (exp.employees). Each of

A.3. USE CASE 4: REQUEST EXTERNAL RESOURCE 133

WaitFor
Acceptance

/ resource.request(des, this)

«create» init(description, expertise)
/ md = description; exp = expertise

do / resource := select(exp)

accept(resource)

SelectEmployee

(a) Class Assignment: base machine

WaitFor
Acceptance

 resource = ERS.request(md, t, this);

accept(resource)

/ md = description; t = type;
«create» init(description, type)

(b) Class Request: base machine

Figure A.2: Classes for resource allocation

these selectors then sends in parallel a request to “its” employee. As soon as any
employee intl accepts the request (accept), it is assigned the mission (resource =
intl), and the base machine terminates (goto Final).

a: Assignment
m: MissionDescriptor
e: Employee

Selector

(a) Class Selector, class diagram

«create» init(md, e, a)
/ e.request(md, a)

(b) Class Selector, state machine

«before»

Employee
Select

 createSelector(md, e, this)
do / ForEach e in exp.employees

CreateSelector accept(intl)
/ resource = intl

goto Final

«pointcut»

«aspect»
Urgent

«advice»

[!(md.adviser.crisis.emergencyLevel > 10)]

[else]

(c) Class Assignment: aspect Urgent (UC 3 Ext. 00)

Figure A.3: Modeling of UC 3, Ext. 00

Extension 1a is modeled by the aspect in Fig. A.4. Again, we instantiate the
template Login given in Fig. 8.10 on page 115. The needed operations are intro-
duced by instantiations of aspect templates as given in Table A.2. The extensions
1b and 2a are modeled by instantiating the template given in Fig. A.5 with T -> t,
t ∈ {reject, after t time}, and the extension of the static structure are also given in
Table A.2.

A.3. Use Case 4: Request External Resource

Description in [43]:
Main Success Scenario:
1. System sends mission request to ERS, along with mission-specific information.

134 A. REMAINING USE CASES OF THE CCCMS

: Login

Op −> validateEmployee()

«pointcut»

«aspect»
EmployeeLogin

SelectEmployee

«after»

«advice»

{!resource.isLoggedIn()}

Figure A.4: UC 3, extension 1a

Ext. Template Base Binding
1a IntroduceProperty Fig. 8.2 C 7→ Assignment

Prop 7→ u: String
IntroduceProperty Fig. 8.2 C 7→ Assignment

Prop 7→ p: String
IntroduceOperation Fig. 8.2 C 7→ Assignment

Op 7→�signal� input(u: String, i: String)
IntroduceOperation Fig. 8.2 C 7→ Assignment

Op 7→ validateEmployee(u: String, i: String): void
IntroduceOperation Fig. 8.2 C 7→ Employee

Op 7→ isLoggedIn(): Boolean
1b, 2a IntroduceProperty Fig. 8.2 C 7→ Assignment

Prop 7→ failure: Boolean = false
IntroduceOperation Fig. 8.2 C 7→ Assignment

Op 7→ otherEMSEmployeeAvailable(): Boolean
IntroduceOperation Fig. 8.2 C 7→ Assignment

Op 7→�signal� reject

Table A.2: Introducing static elements for modeling UC 3

WaitFor
Acceptance

«whilst»
{trigger = T}

«pointcut»

«advice»

goto Final

goto SelectEmployee

«aspect»
AssignmentFailed

[otherCMSEmplyeeAvailable()]

[else] / failure = true

T

Figure A.5: UC 3, ext. 1b, 2a: bind T -> t, t ∈ {reject, timeout}

2. ERS informs System that request can be processed. Use case ends in success.
Extensions:
2a. ERS notifies System that it partially approves request for resources. Use case

ends in degraded success.
2b. ERS notifies System that it cannot service the request. Use case ends in failure.

A.5. USE CASE 6: EXECUTE SUPEROBSERVER MISSION 135

A.3.1. Main success scenario. Modeled in Fig. A.2b. The Request object
passes the mission description, the desired type of external resource, as well as a
reference (this), to the ExternalRequestSystem (ERS), and waits for some resource
to accept.

A.3.2. Extensions. Again, the extensions are modeled with instances of as-
pect templates (Fig. 8.4) with bindings defined in Table A.3. Exit codes are intro-
duced to indicate different results of this use case; two WhilstOnDoGoto aspects set
the right exit code upon the corresponding response from the resource.

Ext. Template Base Binding
2a, 2b IntroduceClass Fig. 8.2 C 7→ ExitCode = success (Fig. A.6)

IntroduceProperty Fig. 8.2 C 7→ Request
Prop 7→ exitCode: ExitCode

IntroduceOperation Fig. 8.2 C 7→ Assignment
Op 7→ s, s ∈ {�signal� partialApproval,�signal� denial }

WhilstOnDoGoto Fig. A.2b Whilst 7→WaitForAcceptance
On 7→ partialApproval
Do 7→ exitCode = degradedApproval
Goto 7→ Final

WhilstOnDoGoto Fig. A.2b Whilst 7→WaitForAcceptance
On 7→ denial
Do 7→ exitCode = failure
Goto 7→ Final

Table A.3: Aspect instantiations modeling UC 4

success
degradedSuccess
failure

«enumeration»
ExitCode

Figure A.6: Class ExitCode

A.4. Use Case 5: Execute Mission

Not modeled, for this is an abstract use case.

A.5. Use Case 6: Execute SuperObserver Mission

Description in [43]:
Main success scenario:
SuperObserver is at the crisis location.
1. System sends a crisis-specific checklist to SuperObserver.
2. SuperObserver feeds System with crisis information.
3. System suggests crisis-specific missions to SuperObserver.
Steps 4–8 is repeated as many times as needed.
4. SuperObserver notifies System of the type of mission he wants to create.
5. System sends a mission-specific information request to SuperObserver.
6. SuperObserver sends mission-specific information1 to System.
7. System acknowledges the mission creation to SuperObserver.

136 A. REMAINING USE CASES OF THE CCCMS

8. System informs SuperObserver that mission was completed successfully.
9. SuperObserver judges that his presence is no longer needed at the crisis loca-

tion.
Use case ends in success.

Extensions:

7a. Mission cannot be created and replacement missions are possible.
7a.1 System suggests replacement missions to SuperObserver.
7a.2 Use case continues with step 4.

7b. Mission cannot be created and no replacement missions are possible.
7b.1 System suggests notifying the NationalCrisisCenter.
7b.2 Use case continues with step 4.

8a. Mission failed.
8a.1 System informs SuperObserver and Coordinator about mission failure.
8a.2 Use case continues with step 4.

A.5.1. Main success scenario. Modeled in Fig. A.7. In the use case descrip-
tion [43] SuperObserver is supposed to select missions to execute. Since the term
Mission is already in use, we assume that it is (sub-)tasks that should be suggested
to and then selected by SuperObserver for execution.

Task
Completed

 so.rcvCheckList(cl)
do / cl = getChecklist()

SendChecklist

do / task = createTask()
CreateTask

WaitFor
Feedback

crisisInfo(info)
/ cInfo = info

GenerateTasks
do / tasks = generateTasks()

/ so.rcvTasks(tasks)

/ currentTask = t
task(t)

soLeft

info

taskCreated / so.taskCreated()

success / so.taskSucceeded()

task(t)
/ currentTask = t

WaitFor
Notification

do / so.requestInfo(currentTask)
RequestInfo

Figure A.7: SuperObserverMission.execute: base machine

A.5.2. Extensions. Extensions 7a and 7b are modeled in Fig. A.8 with intro-
duction of static elements as defined in Table A.4. Extension 8a is modeled by the
instantiations only, also given in Table A.4.

A.6. USE CASE 7: EXECUTE RESCUE MISSION 137

Create
Task

«pointcut»

«advice»

«aspect»

{trigger = creationFailed}
«whilst»

[replacementPossible()]

[else]

do / tasks = replace()
 so.rcvTasks(tasks);

SuggestNationalCrisisCenter

GenerateReplacement

do / so.suggestNCC

goto
WaitForNotification

Figure A.8: Aspect for UC 6, extensions 7a/b

Ext. Template Base Binding
7a, 7b IntroduceOperation Fig. 8.3 C 7→ SuperObserverMission

Op 7→�signal� creationFailed()
IntroduceOperation Fig. 8.3 C 7→ SuperObserverMission

Op 7→ replacementPossible(): Boolean
IntroduceOperation Fig. 8.3 C 7→ SuperObserverMission

Op 7→ replace(): Set<TaskDescription>
IntroduceOperation Fig. 8.3 C 7→ SuperObserver

Op 7→�signal� suggestNCC
8a IntroduceOperation Fig. 8.3 C 7→ SuperObserverMission

Op 7→�signal� taskFailed(t: Task)
IntroduceOperation Fig. 8.3 C 7→ SuperObserver

Op 7→�signal� taskFailed(t: Task)
IntroduceOperation Fig. 8.1 C 7→ Coordinator

Op 7→�signal� taskFailed(t: Task)

WhilstOnDoGoto Fig. A.7 Whilst 7→WaitForFeedback
On 7→ taskFailed(task)
Do 7→ so.taskFailed(task); System.getCoordinator.taskFailed(task)
Goto 7→ TaskCompleted

Table A.4: UC 6, aspects to introduce static elements used by the aspects

A.6. Use Case 7: Execute Rescue Mission

Description in [43]:
Main Success Scenario: FirstAidWorker is at the crisis location.
1. FirstAidWorker transmits injury information of victim to System.
Steps 2 and 3 are optional.
2. FirstAidWorker determines victim’s identity and communicates it to System.
3. System requests victim’s medical history information from all connected Hospi-

talResourceSystems.
FirstAidWorker administers first aid procedures to victim.
4. System instructs FirstAidWorker to bring the victim to the most appropriate hos-

pital.
5. FirstAidWorker notifies System that he is leaving the crisis site.
6. FirstAidWorker notifies System that he has dropped off the victim at the hospital.
7. FirstAidWorker informs System that he has completed his mission.

Use case ends in success.

138 A. REMAINING USE CASES OF THE CCCMS

Extensions:
4a. HospitalResourceSystem transmits victim’s medical history information to Sys-

tem.
4a.1 System notifies FirstAidWorker of medical history of the victim relevant

to his injury.
4a.2 Use case continues at step 4.

A.6.1. Main success scenario. Modeled in Fig. A.9. The “optional” steps
that FirstAidWorker determines victim’s identity upon which the system requests
the victim’s medical history information from all connected HospitalResourceSys-
tems are modeled by the iInfo.vid != null branch after WaitForInjuryInfo, where vid
stands for victim ID.

WaitFor
Departure

WaitFor
DropOff

WaitFor
Completion

WaitFor
InjuryInfo

injuryInfo(iInfo)

[iInfo.vid == null]

/ faw.toHospital(hpt)

leavingCrisisSite

victimDroppedOff()

completed()

FindBestHospital
do / hpt = findHospital(iInfo)

[iInfo.vid != null]
/ ForEach h In hrs
 h.getHistory(iInfo.vid)

Figure A.9: RescueMission.execute: base machine

A.6.2. Extensions. The (only) extension is modeled by the instantiations of
aspect templates as described in Table A.5.

Template Base Binding
IntroduceOperation Fig. 8.3 C 7→ FirstAidWorker

Op 7→ victimHistory(his: History)
IntroduceOperation Fig. 8.3 C 7→ RescueMission

Op 7→�signal� victimHistory(his: History)

WhilstOnDoGoto Fig. A.9 Whilst 7→ FindBestHospital
On 7→ victimHistory(his)
Do 7→ faw.victimHistory(his)
Goto 7→ FindBestHospital

Table A.5: Use Case 7, extension 4a

A.8. USE CASE 9: EXECUTE REMOVE OBSTACLE MISSION 139

A.7. Use Case 8: Execute Helicopter Transport Mission

Not modeled, since its scenarios are not described in the case study.

A.8. Use Case 9: Execute Remove Obstacle Mission

Not modeled, since its scenarios are not described in the case study.

Bibliography

[1] http://www.aosd.net.
[2] Mehmet Aksit, Arend Rensink, and Tom Staijen. A Graph-Transformation-Based Simulation

Approach for Analysing Aspect Interference on Shared Join Points. In Proc. 8th Int. Conf.
Aspect-Oriented Software Development (AOSD’09), pages 39–50, 2009.

[3] Mauricio Alférez, Nuno Amálio, Selim Ciraci, Franck Fleurey, Robert France, Jörg Kienzle,
Jacques Klein, Max Kramer, Sebastien Mosser, Gunter Mussbacher, Ella Roubtsova, and Gefei
Zhang. Aspect-Oriented Model Development at Different Levels of Abstraction. 2011. Submit-
ted.

[4] Karine Altisen, Florence Maraninchi, and David Stauch. Aspect-Oriented Programming for
Reactive Systems: Larissa, a Proposal in the Synchronous Framework. Sci. Comp. Prog.,
63(3):297–320, 2006.

[5] Scott W. Ambler. Introduction to UML 2 State Machine Diagrams. http://www.
agilemodeling.com/artifacts/stateMachineDiagram.htm. 2008-11-03.

[6] João Araújo, Jon Whittle, and Dae-Kyoo Kim. Modeling and Composing Scenario-Based Re-
quirements with Aspects. In Proc. 12th IEEE Int. Conf. Requirements Engineering (RE’04),
pages 58–67. IEEE, 2004.

[7] Tamarah Arons, Jozef Hooman, Hillel Kugler, Amir Pnueli, and Mark van der Zwaag. Deduc-
tive Verification of UML Models in TLPVS. In Baar et al. [8], pages 335–349.

[8] Thomas Baar, Alfred Strohmeier, Ana M. D. Moreira, and Stephen J. Mellor, editors. Proc.
7th Int. Conf. Unified Modeling Language (UML’04), volume 3273 of Lect. Notes Comp. Sci.
Springer, 2004.

[9] Michl Bali. Drools: Jboss Rules 5.0 Developer’s Guide. Packt Publishing, 2009.
[10] Michael Balser, Simon Bäumler, Alexander Knapp, Wolfgang Reif, and Andreas Thums. In-

teractive Verification of UML State Machines. In Jim Davies, Wolfram Schulte, and Michael
Barnett, editors, Proc. 6th Int. Conf. Formal Methods and Software Engineering (ICFEM’04),
volume 3308 of Lect. Notes Comp. Sci., pages 434–448. Springer, 2004.

[11] Luciano Baresi and Reiko Heckel. Tutorial Introduction to Graph Transformation: A Software
Engineering Perspective. In Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kreowski, and Grze-
gorz Rozenberg, editors, Proc. 1st Int. Conf. Graph Transformation, volume 2505 of Lect. Notes
Comp. Sci., pages 402–429. Springer, 2002.

[12] Michael Blaha and James Rumbaugh. Object-Oriented Modeling and Design with UML. Pren-
tice Hall, 2nd edition, 2004.

[13] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press, 2000.
[14] Siobhán Clarke and Elisa Baniassad. Aspect-Oriented Analysis and Design: the Theme Ap-

proach. Addison-Wesley, 2005.
[15] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet, José

Meseguer, and Carolyn L. Talcott. All About Maude: A High-Performance Logical Frame-
work, How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lect.
Notes Comp. Sci. Springer, 2007.

[16] Constantinos Constantinides, Therapon Skotiniotis, and Maximilian Störzer. AOP Considered
Harmful. In Eur. Interactive Wsh. Aspects in Software (EWAS’04), 2004.

[17] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Joinpoint Inference from Behavioral
Specification to Implementation. In Erik Ernst, editor, Proc. 21st Eur. Conf. Oriented Program-
ming (ECOOP’07), volume 4609 of Lect. Notes Comp. Sci., pages 476–500. Springer, 2007.

[18] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Stateful Aspects: The Case for
Aspect-Oriented Modeling. In 10th Int. Wsh. Aspect-Oriented Modeling (AOM’07), Vancou-
ver, 2007.

141

http://www.aosd.net
http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm
http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm

142 BIBLIOGRAPHY

[19] Edsger W. Dijkstra. On the Role of Scientific Thought, 1974. Online accessible under http:
//www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF, 2009-12-04.

[20] Peter Dolog. Engineering Adaptive Web Applications. PhD thesis, Universität Hannover, 2006.
[21] Rémi Douence, Didier Le Botlan, Jacques Noyé, and Mario Südholt. Concurrent Aspects. In

Proc. 5st Int. Conf. Generative Programming and Component Engineering (GPCE’06), pages
79–88. ACM, 2006.

[22] Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud, Marc Ségura-
Devillechaise, and Mario Südholt. An Expressive Aspect Language for System Applications
with Arachne. In Mezini and Tarr [52], pages 27–38.

[23] Doron Drusinsky. Modeling and Verification Using UML Statecharts. Elsevier, 2006.
[24] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals of Alge-

braic Graph Transformation. Springer, 2006.
[25] Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil, editors. Proc. 10th Model

Driven Engineering Languages and Systems (MoDELS’07), volume 4735 of Lect. Notes Comp.
Sci. Springer, 2007.

[26] José Fiadeiro. Categories for Software Engineering. Springer, 2004.
[27] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Aksit, editors. Aspect-Oriented

Software Development. Addison-Wesley, 2004.
[28] Robert E. Filman, Michael Haupt, and Robert Hirschfeld, editors. Proc. 2nd Dynamic Aspects

Wsh. (DAW’05). Technical Report 05.01. Research Institute for Advanced Computer Science,
2005.

[29] Martin Fowler. UML Distilled. Addison-Wesley, 3rd edition, 2003.
[30] Stefania Gnesi. Formal Specification and Verification of Complex Systems. In Proc. 8th Int.

Wsh. Formal Methods for Industrial Critical Systems (FMICS’03), volume 80 of Electr. Notes
Theor. Comput. Sci., 2003.

[31] Stefan Hanenberg, Dominik Stein, and Rainer Unland. From Aspect-Oriented Design to
Aspect-Oriented Programs: Tool-Supported Translation of JPDDs into Code. In Brian M. Barry
and Oege de Moor, editors, Proc. 6th Int. Conf. Aspect-Oriented Software Development, pages
49–62. ACM, 2007.

[32] David Harel. Statecharts: A Visual Formulation for Complex Systems. Sci. Comput. Program.,
8(3):231–274, 1987.

[33] Florian Heidenreich and Henrik Lochmann. Using Graph-Rewriting for Model Weaving in the
Context of Aspect-Oriented Product Line Engineering. In Proc. 1st Int. Wsh. Aspect-Oriented
Product Line Engineering (AOPLE’06), 2006.

[34] Stephan Herrmann. Object Teams: Improving Modularity for Crosscutting Collaborations. In
Mehmet Aksit, Mira Mezini, and Rainer Unland, editors, Rev. Papers Int. Conf. NetObjectDays
(NODe’02), volume 2591 of Lect. Notes Comp. Sci., pages 248–264. Springer, 2003.

[35] Matthias Hölzl, Alexander Knapp, and Gefei Zhang. Modeling the Car Crash Crisis Manage-
ment System with HiLA. Trans. Aspect-Oriented Software Development (TAOSD), 7:234–271,
2010.

[36] Gerard J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, 2003.

[37] Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development with Use Cases.
Addison-Wesley, 2005.

[38] Praveen K. Jayaraman, Jon Whittle, Ahmed M. Elkhodary, and Hassan Gomaa. Model Com-
position in Product Lines and Feature Interaction Detection Using Critical Pair Analysis. In
Engels et al. [25], pages 151–165.

[39] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Gris-
wold. An Overview of AspectJ. In Jørgen Lindskov Knudsen, editor, Proc. 15th Eur. Conf.
Object-Oriented Programming (ECOOP’01), volume 2072 of Lect. Notes Comp. Sci., pages
327–353, 2001.

[40] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-Oriented Programming. In Mehmet Akşit and Satoshi Mat-
suoka, editors, Proc. 11th Eur. Conf. Object-Oriented Programming (ECOOP’97), volume 1241
of Lect. Notes Comp. Sci., pages 220–242. Springer, 1997.

http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF
http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF

BIBLIOGRAPHY 143

[41] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. Aspect-Oriented Multi-View Modeling. In
Proc. 8th Int. Conf. Aspect-Oriented Software Development (AOSD’09), pages 87–98. ACM,
2009.

[42] Jörg Kienzle and Samuel Gélineau. AO Challenge — Implementing the ACID Properties for
Transactional Objects. In Robert E. Filman, editor, Proc. 5th Int. Conf. Aspect-Oriented Soft-
ware Development (AOSD’06), pages 202–213. ACM, 2006.

[43] Jörg Kienzle, Nicolas Guelfi, and Sadaf Mustafiz. Crisis Management Systems: A Case Study
for Aspect-Oriented Modeling. Trans. Aspect-Oriented Software Development (TAOSD), 7:1–
22, 2010.

[44] Alexander Knapp. Semantics of UML State Machines. Technical Report 0408, Institut für In-
formatik, Ludwig-Maximilians-Universität München, 2004.

[45] Alexander Knapp, Stephan Merz, and Christopher Rauh. Model Checking Timed UML State
Machines and Collaborations. In Werner Damm and Ernst Rüdiger Olderog, editors, Proc. 7th

Int. Symp. Formal Techniques in Real-Time and Fault Tolerant Systems, volume 2469 of Lect.
Notes Comp. Sci., pages 395–416. Springer, 2002.

[46] Alexander Knapp and Gefei Zhang. Model Transformations for Integrating and Validating Web
Application Models. In Heinrich C. Mayr and Ruth Breu, editors, Proc. Modellierung 2006
(MOD’06), volume P-82 of Lect. Notes Informatics, pages 115–128. Gesellschaft für Infor-
matik, 2006.

[47] Günter Kniesel. Detection and Resolution of Weaving Interactions. Trans. Aspect-Oriented
Software Development (TAOSD), 5:135–186, 2009.

[48] Fred Kröger and Stefan Merz. Temporal Logic and State Systems. Texts in Theoretical Com-
puter Science. Springer, 2008.

[49] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. J. Software
Tools for Technology Transfer (STTT), 1(1–2):134–152, 1997.

[50] Mark Mahoney, Atef Bader, Tzilla Elrad, and Omar Aldawud. Using Aspects to Abstract and
Modularize Statecharts. In Proc. 5th Int. Wsh. Aspect-Oriented Modeling, Lisboa, 2004.

[51] Peter Marwedel. Embedded System Design. Springer, 2005.
[52] Mira Mezini and Peri L. Tarr, editors. Proc. 4th Int. Conf. Aspect-Oriented Software Develop-

ment (AOSD’05). ACM Press, 2005.
[53] Brice Morin, Jacques Klein, Olivier Barais, and Jean-Marc Jézéquel. A Generic Weaver for

Supporting Product Lines. In Proc. 13th Int. Wsh. Software Architectures and Mobility (EA’08),
pages 11–18. ACM, 2008.

[54] Gunter Mussbacher and Daniel Amyot. Extending the User Requirements Notation with
Aspect-oriented Concepts. In Rick Reed, Attila Bilgic, and Reinhard Gotzhein, editors, Proc.
14th Int. SDL Forum (SDL’09), volume 5719 of Lect. Notes Comp. Sci., pages 115–132.
Springer, 2009.

[55] István Nagy, Lodewijk Bergmans, and Mehmet Aksit. Composing Aspects at Shared Join
Points. In Robert Hirschfeld, Ryszard Kowalczyk, Andreas Polze, and Mathias Weske, edi-
tors, Proc. Net.ObjectDays (NODe’05), volume P-69 of Lect. Notes Informatics, pages 19–38.
Gesellschaft für Informatik, 2005.

[56] Object Management Group. Unified Modeling Language Specification, Version 1.5. Specifica-
tion, OMG, 2003. http://www.omg.org/cgi-bin/doc?formal/03-03-01.

[57] Object Management Group. OMG Unified Modeling Language (OMG UML), Superstructure,
Version 2.2. OMG Available Specification, OMG, 2009. http://www.omg.org/spec/
UML/2.2/Superstructure.

[58] Alexandra Poulovassilis, George Papamarkos, and Peter T. Wood. Event-Condition-Action
Rule Languages for the Semantic Web. In Torsten Grust, Hagen Höpfner, Arantza Illarra-
mendi, Stefan Jablonski, Marco Mesiti, Sascha Müller, Paula-Lavinia Patranjan, Kai-Uwe Sat-
tler, Myra Spiliopoulou, and Jef Wijsen, editors, Rev. Sel. Papers Wsh. EDBT’06, volume 4254
of Lect. Notes Comp. Sci., pages 855–864. Springer, 2006.

[59] Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxleden. Synthesizing Safe State Ma-
chines from Esterel. In Proc. ACM SIGPLAN/SIGBED Conf. Language, Compilers, and Tool
Support for Embedded Systems (LCTES’06), pages 113–124. ACM, 2006.

[60] Ying Qiao, Kang Zhong, Hongan Wang, and Xiang Li. Developing Event-Condition-Action
Rules in Real-Time Active Database. In Yookun Cho, Roger L. Wainwright, Hisham Haddad,
Sung Y. Shin, and Yong Wan Koo, editors, SAC, pages 511–516. ACM, 2007.

http://www.omg.org/cgi-bin/doc?formal/03-03-01
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.omg.org/spec/UML/2.2/Superstructure

144 BIBLIOGRAPHY

[61] Rughu Reddy, Sudipto Ghosh, Robert B. France, Greg Straw, James M. Bieman, N. McEachen,
Eunjee Song, and Geri Georg. Directives for Composing Aspect-Oriented Design Class Mod-
els. In Awais Rashid and Mehmet Aksit, editors, Trans. Aspect-Oriented Software Development
I, volume 3880 of Lect. Notes Comp. Sci., pages 75–105. Springer, 2006.

[62] Ian Sommerville. Software Engineering. Addison-Wesley, 8th edition, 2007.
[63] David Stauch. Modifying Contracts with Larissa Aspects. Electr. Notes Theor. Comput. Sci.,

203(4):125–140, 2008.
[64] Friedrich Steimann. The Paradoxical Success of Aspect-Oriented Programming. In Peri L. Tarr

and William R. Cook, editors, Proc. 21st ACM SIGPLAN Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’06), pages 481–497. ACM, 2006.

[65] Maximilian Störzer, Florian Forster, and Robin Sterr. Detecting Precedence-Related Advice
Interference. In Proc. 21st IEEE/ACM Int. Conf. Automated Software Engineering (ASE’06),
pages 317–322. IEEE, 2006.

[66] Greg Straw, Geri Georg, Eunjee Song, Sudipto Ghosh, Robert France, and James M. Bieman.
Model Composition Directives. In Baar et al. [8], pages 84–97.

[67] Gabriele Taentzer. AGG: A Graph Transformaton Environment for Modeling and Validation of
Software. In John L. Pfaltz, Manfred Nagl, and Boris Böhlen, editors, Rev. Sel. Papers 2nd Int.
Wsh. Applications of Graph Transformations with Industrial Relevance (AGTIVE’03), volume
3062 of Lect. Notes Comp. Sci., pages 446–453. Springer, 2004.

[68] Klaas van den Berg, José Marı́a Conejero, and Juan Hernández. Analysis of Crosscutting in
Early Software Development Phases Based on Traceability. Trans. Aspect-Oriented Software
Development (TAOSD), 3:73–104, 2007.

[69] Wim Vanderperren, Davy Suvée, Marı́a Agustina Cibrán, and Bruno De Fraine. Stateful As-
pects in JAsCo. In Thomas Gschwind, Uwe Aßmann, and Oscar Nierstrasz, editors, Proc. 4th

Int. Wsh. Software Composition (SC’05), volume 3628 of Lect. Notes Comp. Sci., pages 167–
181. Springer, 2005.

[70] Wim Vanderperren, Davy Suvée, Bart Verheecke, Marı́a Agustina Cibrán, and Viviane Jonck-
ers. Adaptive Programming in JAsCo. In Mezini and Tarr [52], pages 75–86.

[71] Michael von der Beeck. Formalization of UML-Statecharts. In Martin Gogolla and Cris Ko-
bryn, editors, Proc. 4th Int. Conf. Unified Modeling Language (UML’01), volume 2185 of Lect.
Notes Comp. Sci., pages 406–421. Springer, 2001.

[72] Susanne Wagner. Entwicklung Eines Modellierungswerkzeugs für Aspekt-orientierte
Klassendiagramme. Project thesis, Ludwig-Maximilians-Universität München, 2006. In Ger-
man.

[73] Stephan Weißleder, Dehla Sokenou, and Bernd-Holger Schlingloff. Reusing State Machines
for Automatic Test Generation in Product Lines. In Proc. 1st Int. Wsh. Model-based Testing in
Practice (MoTiP’08), 2008.

[74] Jon Whittle, Praveen K. Jayaraman, Ahmed M. Elkhodary, Ana Moreira, and João Araújo.
MATA: A Unified Approach for Composing UML Aspect Models Based on Graph Transfor-
mation. Trans. Aspect-Oriented Software Development (TAOSD), 6:191–237, 2009.

[75] Jon Whittle, Ana Moreira, João Araújo, Praveen K. Jayaraman, Ahmed M. Elkhodary, and
Rasheed Rabbi. An Expressive Aspect Composition Language for UML State Diagrams. In
Engels et al. [25], pages 514–528.

[76] Marco Winckler and Philippe A. Palanque. StateWebCharts: A Formal Description Technique
Dedicated to Navigation Modelling of Web Applications. In Joaquim A. Jorge, Nuno Jardim
Nunes, and João Falcão e Cunha, editors, Proc. 10th Int. Wsh. Design Specification and Ver-
ification of Interactive Systems (DS-VIS’03), volume 2844 of Lect. Notes Comp. Sci., pages
61–76. Springer, 2003.

[77] Tao Yue. Automatically Deriving a UML Analysis Model from a Use Case Model. PhD thesis,
Carleton University, 2009.

[78] Tao Yue, Lionel C. Briand, and Yvan Labiche. A Use Case Modeling Approach to Facilitate
the Transition Towards Analysis Models: Concepts and Empirical Evaluation. Technical Report
SCE-09-05, Carleton University, 2009.

[79] Gefei Zhang. Towards Aspect-Oriented Class Diagrams. In Proc. 12th Asia-Pacific Software
Engineering Conf. (APSEC’05), pages 763–768. IEEE, 2005.

BIBLIOGRAPHY 145

[80] Gefei Zhang. Aspect-Oriented Modeling of Adaptive Web Applications with HiLA. In Gabriele
Kotsis, David Taniar, Eric Pardede, and Ismail Khalil, editors, Proc. 7th Int. Conf. Advances in
Mobile Computing & Multimedia (MoMM’09), pages 331–335. ACM, 2009.

[81] Gefei Zhang. Aspect-Oriented UI Modeling with State Machines. In Jan Van den Bergh, Stefan
Sauer, Kai Breiner, Heinrich Hußmann, Gerrit Meixner, and Andreas Pleuß, editors, Proc. 5th

Int. Wsh. Model-Driven Development of Advanced User Interfaces, pages 45–48. CEUR, 2010.
[82] Gefei Zhang and Matthias Hölzl. HiLA: High-Level Aspects for UML-State Machines. In Proc.

14th Wsh. Aspect-Oriented Modeling (AOM@MoDELS’09), 2009.
[83] Gefei Zhang, Matthias Hölzl, and Alexander Knapp. Enhancing UML State Machines with

Aspects. In Gregor Engels, Bill Opdyke, Douglas C. Schmidt, and Frank Weil, editors, Proc.
10th Int. Conf. Model Driven Engineering Languages and Systems (MoDELS’07), volume 4735
of Lect. Notes. Comp. Sci., pages 529–543. Springer, 2007.

[84] Jing Zhang, Thomas Cottenier, Aswin van den Berg, and Jeff Gray. Aspect Composition in
the Motorola Aspect-Oriented Modeling Weaver. Journal of Object Technology, 6(7):89–108,
2007.

Index

Act , 48
advice, 5, 20, 30, 38, 87
�after�, 29, 68, 77
Aspw(s),Aspt(s), 67
aspect, 3, 5, 63
aspect group, 87, 92
aspect instance, 86
aspect state, 63, 93

�before�, 29, 68
“before” section, 56, 68, 77
�between�, 29, 68

clone, clone−1, 49
composite state, 11, 50, 83
compound transition, 12
configuration aspect, 67
configuration pointcut, 38
configuration selector, 35
consistency checking, 23, 77, 95
CTL, 72

defer, 11, 70
dynamic aspect, 6

Err, 47, 58
e-learning, 15
error state, 43, 58
Exp, 48

graph grammar, 21

history property, 30, 33, 40, 60, 84
Hugo/HILA, 72

ins, 57

jBefore, 56
join point, 5

ls, 57
LCA(v, v′), 50
low level, 19
LTL, 72

model checking, 77, 117
mutual exclusion, 31, 73

pointcut, 5, 20, 29, 86
pres

a, 66
precondition, 66
priority, 42, 66

ρ, 89, 93
resumption, 47, 66, 93

s, s−1, ss,t, 83
S, 50
sourcestruct(t), 60
semantics, 12, 81, 90
sentinel, 9, 14, 30
simple state, 11, 83
SPIN, 72, 117
state configuration, 12
static aspect, 6, 23, 32
structured transition, 52
subvertex, 49
synchronization, 32

τ , 89, 93
T, 50
toUML, 49, 73
tracing currently active state, 57
tracing last active state, 57
transition aspect, 68
transition pointcut, 38
transition selector, 36

UML State Machine, 4, 82
Uppaal, 72
UTE, 72

V, 50

Ws, 85
weaving, 3, 21, 45, 72, 90
�whilst�, 29, 34, 67, 78, 85

147

	Part 1. HiLA Ante Portas
	Chapter 1. Introduction
	1.1. UML State Machines: Nice but Not Nice Enough
	1.2. Modularization
	1.3. Aspect-Oriented Software Development
	1.4. Dynamic vs. Static, Declarative vs. Imperative, High-level vs. Low-level
	1.5. Conflicts between Aspects
	1.6. Goals
	1.7. Organization of This Thesis

	Chapter 2. UML State Machines
	2.1. Syntax and Informal Semantics
	2.2. Hard-to-Model Features
	2.3. Feature Interference
	2.4. Wanted: Better Separation of Concerns

	Chapter 3. Static Aspects
	3.1. Syntax and Informal Semantics
	3.2. Metamodel
	3.3. Weaving
	3.4. Consistency Checking
	3.5. Discussion

	Part 2. HiLA des Ingénieurs
	Chapter 4. HiLA
	4.1. HiLA in a Nutshell
	4.2. Examples
	4.3. Abstract Syntax and Informal Semantics
	4.4. Big Picture
	4.5. Discussion

	Chapter 5. Weaving
	5.1. Main Idea
	5.2. Prerequisites
	5.3. Preprocessing
	5.4. Weaving History Properties
	5.5. Weaving Aspects
	5.6. Postprocessing
	5.7. Correctness
	5.8. Implementation
	5.9. Discussion

	Part 3. HiLA d'Ivoire
	Chapter 6. Formal Semantics
	6.1. Abstract Transition Systems
	6.2. UML State Machines
	6.3. History Properties
	6.4. Structural Extension by «whilst» Aspects
	6.5. Behavior Extension
	6.6. Weaving and Semantics
	6.7. Discussion

	Chapter 7. Interaction of aspects
	7.1. Change of State Reachability
	7.2. Conflict Detection
	7.3. Discussion

	Part 4. HiLA du Monde
	Chapter 8. Case Study
	8.1. Overview and Static Structure
	8.2. Modeling the Behavior of the CCCMS
	8.3. Validation of the Model
	8.4. Discussion

	Chapter 9. Related Work
	9.1. Event Condition Action Systems and Programming Languages
	9.2. Modeling Languages Supporting Static Aspects
	9.3. Modeling Languages Supporting Dynamic Aspects
	9.4. Aspect Interference

	Chapter 10. Conclusions and Future Work
	10.1. Summary
	10.2. Future Work

	Appendix A. Remaining Use Cases of the CCCMS
	A.1. Use Case 2: Capture Witness Report
	A.2. Use Case 3: Assign Internal Resource
	A.3. Use Case 4: Request External Resource
	A.4. Use Case 5: Execute Mission
	A.5. Use Case 6: Execute SuperObserver Mission
	A.6. Use Case 7: Execute Rescue Mission
	A.7. Use Case 8: Execute Helicopter Transport Mission
	A.8. Use Case 9: Execute Remove Obstacle Mission

	Bibliography
	Index

