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Abstract

Classi�cation methods for longitudinal data bear the potential to identify classi�ers that

are superior to those based on cross-sectional data. Recently, the univariate longitudinal

quadratic discriminant analysis (longQDA) was proposed for such purposes. Its key idea

is to use marginal means and covariance matrices of linear mixed models as group-speci�c

plug-in estimators for the discriminant rule. This dissertation investigates some of the

unaddressed issues as model selection and several multivariate extensions. A complemen-

tary software implementation in R is presented which ful�lls state-of-the-art design and

user requirements. Longitudinal biomarker data from diagnostic studies that are assessed

for their potential to classify patients as therapy-resistant or not serve as motivating

applications.

First, we compare two model selection criteria for determining the most appropriate uni-

variate linear mixed model structure for each group and quantify the corresponding bias

of an incorrect decision. The �rst criterion selects the model structure that yields the

best classi�cation performance. The second selects the model with the minimal Bayesian

information criterion and performs better in our simulation study. The bias of an incorrect

decision turns out to be higher for longer data pro�les and more complex longitudinal mod-

els with random e�ects. Subsequently, we present multivariate extensions of longQDA.

Two multivariate mixed model classes with a parsimonious parametrization are proposed:

multivariate random e�ects models and covariance pattern models with a Kronecker pro-

duct structure. With a special set-up of the data, estimation algorithms implemented

for the univariate case are used for the �rst model class. The restricted maximum likeli-

hood estimation of Kronecker product models is accomplished by a numerical constraint

optimization algorithm.

Finally, we introduce the R package longQDA for executing quadratic discriminant analysis

with longitudinal data. Beyond the statistical methodology presented in this dissertation,

the entire process of data analysis up to the reporting of the results is supported. The

software implementation follows the modern object-orientated concept with S4 classes

and ful�lls conceptual requirements such as a user-friendly handling, a good run-time

performance and easy extensibility. The latter quality criterion is demonstrated for two

features: the functionalities for multivariate data settings and its use in simulation studies.





Zusammenfassung

Klassi�kationsmethoden für Longitudinaldaten bergen das Potenzial bessere Klassi�kato-

ren zu identi�zieren als es mit Querschnittsdaten möglich wäre. Die univariate longitu-

dinale quadratische Diskriminanzanalyse (longQDA) wurde kürzlich dafür vorgeschlagen.

Die Hauptidee ist, marginale Mittelwerte und Kovarianzmatrizen von linearen gemischten

Modellen als gruppen-spezi�sche Plug-in-Schätzer für die Diskriminanzregel zu verwen-

den. Diese Dissertation untersucht noch nicht bearbeitete Themen wie die Modellselekti-

on und verschiedene multivariate Erweiterungen. Sie stellt eine Software-Implementierung

in R vor, die moderne Design- und User-Anforderungen erfüllt. Als motivierende Anwen-

dungsbeispiele werden longitudinale Biomarkerdaten aus diagnostischen Studien verwen-

det. Es soll deren Potential bewertet werden, Patienten als therapieresistent oder nicht

resistent zu klassi�zieren.

Zuerst werden zwei Modellselektionskriterien verglichen, um die Struktur des linearen ge-

mischten Modells für jede Gruppe zu bestimmen und die entsprechende Verzerrung einer

inkorrekten Entscheidung zu quanti�zieren. Das erste Kriterium wählt die Modellstruk-

tur, die die beste Klassi�kations-Performance liefert. Das zweite wählt das Modell mit

dem minimalen Bayesschen Informationskriterium und erweist sich in einer Simulations-

studie als das bessere Kriterium. Die Verzerrung durch eine inkorrekte Entscheidung ist

für längere Datenpro�le und komplexere longitudinale Modelle mit zufälligen E�ekten

höher. Anschlieÿend werden multivariate Erweiterungen der longQDA vorgestellt. Zwei

multivariate Klassen der gemischten Modelle mit sparsamer Parametrisierung werden vor-

geschlagen: multivariate Modelle mit zufälligen E�ekten und Modelle mit einer Kronecker-

Produkt-Struktur in der Kovarianzmatrix. Mit einer speziellen Datensatzstruktur können

Schätzalgorithmen, die für den univariaten Fall entwickelt wurden, für die erstgenann-

te Modellklasse verwendet werden. Die restringierte Maximum-Likelihood-Schätzung der

Kronecker-Produkt-Modelle erfolgt mit einem numerischen Optimierungsalgorithmus un-

ter Nebenbedingungen.

Zuletzt wird das R-Paket longQDA für die quadratische Diskriminanzanalyse mit Longitu-

dinaldaten präsentiert. Über die statistische Methoden dieser Dissertation hinaus unter-

stützt es den gesamten Datenanalyse-Prozess bis hin zur Dokumentation der Ergebnisse.

Die Software-Implementierung beruht auf dem modernen objektorientierten Konzept von

S4 und überzeugt durch Benutzerfreundlichkeit, eine gute Laufzeit-Performanz und ein-

fache Erweiterungsmöglichkeiten. Das letztgenannte Qualitätskriterium wird anhand von

zwei Features dargestellt, der Funktionalität für multivariate Daten und dem Einsatz in

Simulationsstudien.
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1 Introduction

It appears to me a most excellent thing for the physician to cultivate Prognosis;

for by foreseeing and foretelling, in the presence of the sick, the present, the

past, and the future, [...], he will be the more readily believed to be acquainted

with the circumstances of the sick; so that men will have con�dence to intrust

themselves to such a physician. And he will manage the cure best who has

foreseen what is to happen from the present state of matters.

Hippokrates (300 B.C.)

Already in ancient times, correct patient prognoses were indicative for professional medical

work of high quality. The developments in the diagnostics �eld are nowadays so advanced

that we operate at a more microbiological level: Body liquids or genes are searched for

so called biomarkers to aid in diagnosis, prognosis or treatment issues. This is a typical

area for the statistical application of supervised learning algorithms such as discriminant

analysis. One aim is to determine the biomarker that discriminates best between patient

groups, another one is to predict the group membership for future patients: Once a model

has been �nalized and the discriminant function has been derived, how well can we predict

to which group a particular patient belongs?

In most applications in the literature (e.g. in Pepe, 2003; Zhou et al., 2002), biomarkers

are measured only once for each patient. This may be a feasible approach for the most

common case where the diagnosis of a patient is of interest. But if the e�ect of a therapy

or any other physical process or time-dependent response is of interest, we are faced

with a time-changing phenomenon. Then it is more appropriate to consider longitudinal

pro�les instead of using just one single measurement of a biomarker: We expect that

characteristics of a (disease) process are re�ected in turn in the pro�les of a predictive

biomarker. In fact, the de�nition of a biomarker implies repeated measurements over

time: "A biomarker is a molecule that indicates an alteration of the physiological state

of an individual in relation to health or disease state, drug treatment, toxins, and other

challenges of the environment. By this de�nition, a biomarker is not static, it is changing

over time." (Zolg and Langen, 2004). Research questions about change are of interest.

Consequently, time needs to be handled as a predictor and longitudinal data analysis is

the method of choice.
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Marshall and Barón (2000) and Tomasko et al. (1999) introduced the longitudinal

quadratic discriminant analysis (longQDA) for such purposes. It extends the Bayesian

classi�cation method quadratic discriminant analysis (QDA, McLachlan, 1992) in

that the group parameters for the discriminant rule are estimated by linear mixed

models (Verbeke and Molenberghs, 2000; Weiss, 2005). Also known as multilevel

models or hierarchical linear models, these models are especially adequate for longitudinal

data with their inherent time dependencies. For non-linear time structures which are

more probable for long biomarker pro�les, the estimation may be easily adapted (De la

Cruz-Mesia and Marshall, 2006).

The longitudinal data structure induces an issue that is irrelevant in discriminant analysis

for cross-sectional data: the selection of the most appropriate model for the biomarkers.

The high �exibility of linear mixed models allows for many model structures, especially

for the covariance structure. For the standard modelling setting where the sole aim is

the estimation of the linear mixed model and eventually the testing of hypotheses, Singer

and Willett (2003) stress the importance of the selection of the respective covariance

structure. This issue is even of higher importance for longQDA. The estimation of the

mean and of the covariance parameters are of equal interest as both are plugged in the

discriminant function. In the standard setting, however, when the estimation of the model

is the sole analysis goal, the focus is more on the mean structure than on the covariance

parameters which determine "only" the precision and consequently the signi�cance of the

statistical tests. Furthermore, there is an interest in the e�ects of an incorrect model

structure on the assessment of the biomarker performance. A comprehensive simulation

study was carried out to address these issues dependent on the length of the biomarker

pro�les. Model selection was either based on various performance measures, i.e. the �nal

results of longQDA, or on the Bayesian information criterion when estimating the mixed

models, independent of the discriminant analysis task. This issue is either not addressed

in the literature (Marshall and Barón, 2000; Brant et al., 2003) or was only based on the

minimal error rate (Tomasko et al., 1999; Wernecke et al., 2004).

A further topic of this dissertation is the extension to multivariate longQDA where mul-

tivariate mixed models yield group-speci�c sample estimators. Note that in this context,

univariate and multivariate always refers to the number of biomarkers, the outcomes of

the mixed models. Strictly speaking, so called univariate mixed models are multivariate in

the usual sense since a vector of repeated measurements is modelled, but all of the same

outcome. Multivariate mixed models are presented in the following which extend the uni-

variate mixed models which turned out to be appropriate for our biomarker settings. These

are mainly multivariate random coe�cients models with at least one random intercept.

Regarding alternative models, the suitability of multivariate covariance pattern models are
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elaborated. The appealing idea of these models is to parameterise the covariance matrix

parsimoniously as a Kronecker Product of the auto- and the cross-covariance. Both vari-

ants of multivariate mixed models are applied to data from a diagnostic biomarker study.

Simulated data serve as examples for achieving a superior performance by combining lon-

gitudinal biomarkers.

Beside the methodological development, statisticians are more and more faced with soft-

ware development. A wide-spread application of statistical methods is closely related to

the availability of comfortable state-of-the art software implementations. Therefore, our

R package called longQDA implements the longitudinal quadratic discriminant analysis with

Monte Carlo cross validation, all performance measures and full �exibility in model selec-

tion. The software implementation follows object-orientated programming paradigms and

ful�lls requirements as user friendliness and easy extensibility and supports the reporting

of analysis results. In a wider scope, it serves as an example for the implementation of a

statistical method in compliance with requirements of users with statistical knowledge.

To summarize, the main focus of this dissertation is primarily on the following points:

� extend the knowledge in model selection issues in univariate longQDA: assess the

performance not only by standard diagnostic measures such as the area under the

receiver operating characteristic (ROC) curve but also by the predictive Brier score

and contrast their usability in model selection with the Bayesian information crite-

rion (BIC)

� propose a multivariate longQDA based on multivariate random e�ects models or

covariance pattern models with a parsimonious Kronecker Product structure

� provide a software solution as an R package, which is comfortable to use and easy

to extend due to the S4 implementation

The structure of this thesis follows those topics. The next chapter introduces longitudi-

nal quadratic discriminant analysis to the reader and establishes the terminology in the

diagnostic context. Performance measures are discussed to assess the classi�cation po-

tential of biomarkers. One application data set with a univariate longitudinal biomarker

is presented and analysed by means of longQDA. Then the main topics given above are

elaborated in Chapter 3-5, respectively. Chapter 6 concludes with the summary and the

outlook.





2 Univariate Longitudinal QDA and

Performance Measures

This chapter covers the main subject of the dissertation. First and foremost, this is

the longitudinal QDA (longQDA). It extends the classic QDA for cross-sectional data in

that the plug-in estimators for the discriminant rule are the resulting marginal means and

covariances of modeling the longitudinal data by mixed models. Section 2.1 introduces

univariate longQDA and especially mixed models that are appropriate for longitudinal

biomarkers. In Section 2.2, several measures are presented to assess the predictive classi-

�cation performance of biomarkers. This includes performance measures as the area under

the receiver operating characteristic (ROC) curve which are most common in diagnostics

as well as the Brier score and its subcomponents which are currently recommended for

various statistical applications (Gneiting and Raftery, 2007; Gerds et al., 2008). Some

notes follow about Monte Carlo cross validation which is a procedure for robust estimation.

In Section 2.3, the univariate longQDA was applied to real data of HIV patients (taken

from May and DeGruttola, 2007). This serves as one example for commonly encountered

data in longitudinal diagnostic studies and illustrates the bene�t for classi�cation when

measuring one biomarker longitudinally, i.e. several times during the study.

2.1 Univariate Longitudinal QDA

As in a QDA setting for cross-sectional data, there are two patient groups k = 0; 1

de�ned by the Gold Standard (reference classi�cation) and the indicator function zi [1]
de�nes the membership of patient i to group k = 1 where i = 1; : : : ; n[1]. Thus, there are

N = n[0]+n[1] patients in the study. As all applications deal with biomarkers indicative for

therapy response, group 1 consists always of resistant patients and group 0 of non-resistant

patients. The key characteristic for longQDA is that biomarkers are not only measured

once, but several times during a longitudinal diagnostic study, leading to one biomarker

vector wi = (wi1; : : : ; wip)
T for patient i . Given group k , a p-variate conditionally normal

density f (wi j zi [1] = k) is assumed for the p-times repeatedly measured biomarker wi ,

i.e. wi j zi [1] = k � N(�i [k]; Vi [k]). To account for the repeated biomarker measurements,

an obvious approach is to estimate the mean �i [k] and the covariance matrix Vi [k] by a
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linear mixed model. Let w((n[k]�p)�1)
= (w1; : : : ;wn[k])

T be the (n[k] � p) � 1-dimensional

vector containing observations of i = 1; : : : ; n[k] patients with measurements taken at

j = 1; : : : ; p visits at time ti j for group k . To ease readability, the group index k indicating

that the biomarker density is de�ned conditionally on zi [1] = k 8i = 1; : : : ; n[k] is omitted

in all mixed models from now on. For patient i , a linear mixed model is de�ned for the

univariate response variable wi in each group as

wi(p�1) = Xi(p�u)�(u�1) + Zi(p�s)bi(s�1) + �i(p�1) (2.1)

where bi � N(000(s�1);D(s�s)); �i � N(000(p�1);Ri(p�p)). The parameters bi and �i are

independent and their covariance matrices are assumed to be positive de�nite. Further,

Xi is a (p�u) matrix of known covariates, modelling how the biomarker evolves over time

for subject i , and � is a u-dimensional vector of unknown population-speci�c regression

parameters.

The marginal normal distribution of wi has the mean �i = Xi� and the covariance matrix

Vi = ZiDZ
T
i +Ri . Combining the n[k] patient-speci�c regression models (Eq. (2.1)), the

model is given by

w = X� + Zb + � (2.2)

where the vectors w ; b; � and the matrix X are obtained from stacking the vectors wi ; bi ; �i

and the matrix Xi , respectively, underneath each other. The matrix Z is block-diagonal

with blocks of Zi on the main diagonal and zeros elsewhere. Due to the commonly

assumed independence between patients in mixed models, R is a covariance matrix with

a block-diagonal structure of n[k] sub-matrices Ri . This is consequently also true for V ,

hence w � N(X�; V ).

Biomarkers are measured at the beginning of the study and at pre-de�ned scheduled

visits thereafter. As individual visit times ti usually vary from that time schedule and

have di�erent time lags in between, mixed models that can incorporate non-equidistant

measurements need to be selected. The selection comprises random coe�cients models

that assume a random intercept for each patient (RI) or a random intercept and a linear

random slope (RIS) or extend the RI model by assuming a continuous AR(1) structure

for the residual matrix (RICAR1). Pure covariance pattern models were not considered,

the focus was on mixed model structures (MMS) that allow for variations at an individual

level, at least at baseline. The number of measurements is usually rarely larger than ten

and thus models with more complicated stochastic dependencies as proposed by Taylor

et al. (1994) or Munoz et al. (1992) were not considered.

For clarity, here are the parameters of the considered covariance structure in univariate

longQDA:
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RI: s = 1, i.e. Zi = (1; : : : ; 1)T ; D = d2
I
,

Ri = �2 I

RIS: s = 2, i.e. Zi =


1 ti1
...

...

1 tip

, D =

(
d2
I

dIS

dIS d2
S

)
,

Ri = �2 I

RICAR1: s = 1, i.e. Zi = (1; : : : ; 1)T ; D = d2
I
,

Ri = (rj j 0)i = �2[�(ti j�ti j 0)1(j 6= j 0) + 1(j = j 0)]

with 0 < � < 1 and j; j 0 = 1; : : : ; p.

The matrix I is the p-dimensional identity matrix, d2
I
resp. d2

S
is the variance of the random

intercept resp. of the linear slope and dIS is the covariance between the intercept and the

linear slope.

Note that the RIS model should always be parameterized to allow for a correlation between

the random intercepts and the random slopes as the correlation parameter changes due

to a time shift and thus should not be constrained (Weiss, 2005, p.260f.).

The aim in quadratic discriminant analysis is to �nd a quadratic discriminant function

m(wi) for the classi�cation of patients into groups de�ned by a Gold Standard. The

discriminant function m(wi) for longQDA is the same as for QDA, the log-ratio of

f (wi j zi [1] = 1) to f (wi j zi [1] = 0). Future patients are classi�ed according to the fol-

lowing discriminant rule: If m(wi) � � 0, where � 0 is a selected cut-o� value, then patient

i with biomarker measurements wi is assigned to group k = 1. If m(wi) < � 0, the patient

is assigned to group k = 0.

Now let �[1] be the prior probability that a patient belongs to the group with biomarker
density f (wi j zi [1] = 1) prior to observing wi , and set �[1] = 1 � �[0]. For normal distri-
butions, the optimal discriminant rule, in the sense of minimizing the expected probability
of misclassi�cation, is given by � 0 = log(�[0]=�[1]). This is also known as the Bayesian
decision rule (Johnson and Wichern, 2002). As the posterior probability is proportional to
the product of the likelihood and the prior probability (resp. equal to after multiplication
by the normalising constant), the classi�cation rule is based on the posterior probability
pi [1] with

pi [1] = P (ẑi [1] = 1jwi) =
exp

[
� 1

2(wi � �[1])
T V �1

i [1] (wi � �[1])
]
�
[
jVi [1]j

]
�

1
2

� �[1]

1∑
k=0

exp
[
� 1

2(wi � �[k])T V �1
i [k] (wi � �[k])

]
�
[
jVi [k]j

]
�

1
2

� �[k]

: (2.3)

The posterior probabilities p[1] = (p1[1]; : : : ; pn[1][1])
T constitute a univariate measure

which summarizes the predictive classi�cation information of the longitudinal biomarker
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pro�les. They form the basis for the overall assessment of the biomarker performance

which is covered in the next section.

To prevent an overoptimistic estimation of the biomarker performance, Monte Carlo cross

validation (MCCV) with sampling without replacement (Shao, 1993) is applied. The

principle of any cross validation procedure is to split the data repeatedly in two disjunct

samples called training and test set. The training set is used for estimation purposes

whereas the performance is then independently assessed with the test set. The repetition

of this procedure reduces any possible systematic bias due to a possibly non-representative

partitioning of the data by chance. The results are summarized over all repetitions. The

approach is termed Monte Carlo cross validation as the samples are taken randomly, with

a �xed number of repetitions (e.g. 50, independent of the size of the sample). Due to

the random drawing, it is assured that data of one patient are used for training as well as

for testing. For longitudinal data, all observations of one patient were sampled at once

to preserve the correlation structure (Goldstein, 2003). Thus, patients and not single

observations were sampled. The mixed model estimators for the discrimination rule were

evaluated in the training sets and the rule was applied to the samples in the test sets

yielding estimations for the performance measures. By the way, to preserve the group

proportions, it is important to split the data sample into the training and test set for

each group separately. Results are reported in terms of median estimates over all MCCV

samples, and the empirical 10 and 90 percentiles are used as non-parametric con�dence

intervals (for theoretical justi�cations see Efron and Tibshirani, 1993).

2.2 Classi�cation Performance Measures

To assess the performance of a biomarker to predict the group membership, we aim for

a small number of performance measures providing the most comprehensive summary.

For this purpose, measures that are either based on the receiver operating characteristic

(ROC) curve (Pepe, 2003; Zhou et al., 2002) or on the Brier score (see e.g. Gneiting

and Raftery, 2007) are presented in the following and contrasted with respect to their

properties.

First, the common classi�cation approach in diagnostics is elucidated. In the typical set-

ting, a medical test is expected to give either a positive or a negative test result. To ful�ll

this requirement of a binary test result, continuous test results need to be dichotomized so

that a test is said to be positive if the result exceeds or is equal to a selected threshold ��.

When biomarker data are assessed by classi�cation methods as longQDA which yield a

group-speci�c posterior probability for each patient, the probabilities for one group may

take over the role of the continuous test results. By de�nition, these are the probabilities
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for group k = 1 as the test positivity is generally de�ned for the group with larger test

results. In other words, �� is the parameter which determines at what value the posterior

probability is dichotomized to yield a binary prediction ẑi [k] corresponding to a positive

resp. negative test result.

Usually, medical tests are imperfect in that the test results resp. the posterior probabilities

of both groups overlap yielding misclassi�cations. This means that patients with false

positive test results have posterior probabilities that are larger than or equal to �� but are

members of group 0. Patients with false negative results are characterized by posterior

probabilities which are smaller than �� but are members of group 1. Therefore, the

group-speci�c probabilities that a patient is correctly classi�ed may serve as performance

measures.

The sensitivity is de�ned as P (pi [1] � ��j zi [1] = 1) and the speci�city as P (pi [1] <

��j zi [1] = 0). They are also denoted as true positive and true negative fraction. These

measures are estimated by the sample proportion of correctly classi�ed patients of all

patients in group 1 resp. group 0 according to the Gold Standard. This approach implies

a decision given a 0-1-loss function (Friedman et al., 2009, Section 2.4) weighting all

misclassi�cations equally by 1. Both measures assess the local (and not the global)

performance of a diagnostic test as they are threshold-speci�c. Varying �� on the scale

of the posterior probabilities yields all possible threshold-speci�c sensitivity and speci�city

pairs. A local performance criterion for a diagnostic test may be the maximisation of

sensitivity and speci�city. However, each measure can only be maximised at the expense

of the other if the densities of the posterior probabilities overlap. Decreasing the thresholds

�� increases the sensitivity. When the speci�city is favoured over the speci�city, �� should

be decreased. The ROC curve is a graph that displays this trade-o� (Figure 2.1).
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Figure 2.1: Histograms of simulated posterior probabilities for group 1 (left) and corre-

sponding ROC curve (right).
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The sensitivities are plotted on the y-axis as a function of the false positive fraction (1-

speci�city) over the entire range of possible thresholds. To assess the performance at

a global level, the most commonly used summary measure in diagnostic settings is the

area under the ROC curve (AUC). The AUC equals one for perfect classi�cation and

0:5 for biomarkers with no discriminatory power. The AUC corresponds to an average

performance over all possible decisions. This is a quite arti�cial construct with limited

expressiveness.

A further performance measure is the Brier score (BS) which will be considered in details.

In the two-group case, it is de�ned as

BS = 1�
1

N

N∑
i=1

(p̂i [1] � zi [1])
2:

The score measures the discrepancy between the observed real group membership and

the estimated posterior probability of the classi�cation method using a squared error loss

function. To ease the comparability of the performance measures, the BS is scaled as

such that a maximum score of 1 is indicative for the best classi�cation performance. It

reaches its minimum at 0 in the unlikely case that all patients are misclassi�ed with a

group-speci�c probability equal to zero. The BS equals one minus the Gold Standard's

variance �2z[1] for a constant prediction with a probability equal to the prior �[1]. This

provides a threshold of the BS and assesses a prediction based solely on the a priori

knowledge.

Ikeda et al. (2002) study the relationship between AUC and BS but could not identify

a linkage between the two. This is not surprising as there are di�erences regarding the

content. The AUC and the sensitivity and speci�city are performance measures that

indicate how e�ective the classi�cation rule is in assigning a patient to the correct group

and are therefore called accuracy measures by Hand (2001). The performance is only

evaluated in terms of correct and misclassi�ed patients without respect to the probability

with which the patient is classi�ed into a certain group. The BS, however, provides

information about the relative severities of misclassi�cations by placing di�erent weights

on misclassi�ed as well as on correctly classi�ed patients. This score overcomes the

shortcomings of the AUC which gives no indication of the degree of con�dence one

should place in a classi�cation. A distinction should be made, for example, between the

classi�cation of one patient with a high probability for one group, say 0:99, and another

one with a much lower probability near 0:5. In an assessment by the AUC, however, both

are treated the same.

A more detailed view based on the decompositions of the Brier score proposed by Sanders

(1963), Murphy (1973) and Yates (1982) illustrate that the BS enables a more com-

prehensive assessment of the biomarker performance. For Sanders' decomposition, the
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posterior probabilities for one group (here for k = 1) are categorized into say 5 cells

c = 1; : : : ; 5 (The number of cells depends on the desired precision and the size of the

patient sample.). The patients in cell c are de�ned by Jc := fi = 1; : : : ; Nj pi(1) 2 Mcg

with Mc = [ c�15 ; c5); c = 1; : : : ; 4 and M5 = [45 ; 1]. Thus, jJc j = nc and N =
∑5

c=1 nc .

With this discretisation of the posterior probabilities, the BS is partitioned as follows:

BS = 1�
1

N

5∑
c=1

∑
i2Jc

(p̂i [1] � zi [1])
2

= 1�
( 1
N

5∑
c=1

nc �z[1]c(1� �z[1]c) +
1

N

5∑
c=1

nc(�̂p[1]c � �z[1]c)
2
)

= 1� (BSD + BSC)

where �z[1]c is the proportion of nc patients who are members of group 1 de�ned by the

Gold Standard and �p[1]c is the corresponding expected proportion. The latter is estimated

by the mean posterior probability of cell c , averaged over nc patients. The measure

BSD assesses the discrimination performance and BSC the calibration performance (a.k.a.

precision). According to Gurney and Swensen (1995), calibration values indicate the ability

of the classi�cation rule to assign numeric probabilities, discrimination values indicate the

ability to distinguish outcomes (e.g. resistant vs. non-resistant patients). Murphy (1973)

partitions the discrimination component of Sanders further:

BSD = �z[1](1� �z[1])�
1

N

5∑
c=1

nc(�z[1]c � �z[1])
2

where �z[1] is the proportion of patients in group 1 in the sample. He proposes this

decomposition as the variance of the Gold Standard is determined "by nature" and does

not depend on the performance of the biomarker which should actually be assessed. The

second term is called Murphy's discrimination component BSDM
and is preferred over BSD.

Its upper bound is the Gold Standard's variance �2z[1] , which is the �rst term of BSD.

It is especially important to take the calibration into account when decisions are made on

an individual basis, whether a clinician wants to know with which probability a patient is

classi�ed into one of the groups or whether classi�cation rules based on di�erent model

assumptions or biomarkers are compared by the statistician. In both cases, the posterior

probabilities should be interpretable in a frequentistic sense. Diamond (1992) points out

that the optimization of one component often goes at the expense of the other due to

di�erent implied scales of the measures: The discrimination supports a categorical pre-

dicted result (or one that can be at least discretized in two categories without much loss),

whereas the calibration is maximised at the expense of discrimination. Therefore good

calibration does not imply good discrimination, and vice versa. For example, a classi�ca-
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tion rule that predicts the membership to group 1 with a constant probability equal to

the group proportion �z[1], i.e. without adding any additional information to improve the

prediction, has a good calibration but a bad discrimination. One example for a rule with

perfect discrimination but poor calibration would be the following. Given group propor-

tions of 2:1, a rule predicts with uniformly distributed pi [1] 2 [0; 0:2] 8i 2 1; : : : n(0) and

pi [1] 2 [0:21; 1] 8i 2 1; : : : n(1), resulting in two separated probability densities. The BS

takes both performance aspects into account whereas the AUC is only a measure for the

discriminative power of a classi�er.

A related limitation of the AUC becomes obvious when considering the quality require-

ment for a classi�cation rule (also known as scoring rule) to be strictly proper (Gneiting

and Raftery, 2007; Hand, 1997). A strictly proper classi�cation rule is characterized by

attaining its maximum expected value given the posterior probability distribution if and

only if the true probabilities for the patient's group membership are used. The BS has

the desirable property to be a strictly proper rule but the AUC does not. The AUC ful�lls

only the weaker condition of non-strictly properness: The true probabilities may yield the

same performance as others, not necessarily a higher one. For example, the AUC also

reaches its maximum if all patients are classi�ed into the correct group, but with uncertain

posterior probabilities close to 0:5.

Another decomposition of the Brier Score (Yates, 1982) is based on the covariance de-

composition and does not require a discretisation of the posterior probabilities. It provides

performance measures which are more common in statistics. According to the well known

decomposition of the mean squared error MSE = variance+ bias2, the decomposition is

BS = 1�
(
�2z[1] + �

2
p[1]

� 2�z[1];p[1] + (�p[1] � �z[1])
2
)

= 1�
(
�z[1](1� �z[1]) + ��2p[1] + �

2
p[1];min � 2(�p[1j z[1]=1]

��p[1j z[1]=0])�z[1](1� �z[1]) + (�p[1] � �z[1])
2
)

where ��2p[1] = �2p[1]��
2
p[1];min is the "excess" variability with the conditional minimum vari-

ance �2p[1];min = (�p[1j z[1]=1] � �p[1j z[1]=0])
2�z[1](1� �z[1]), �p[1] is the estimated overall mean

posterior probability for group k = 1; �p[1j z[1]=1] and �p[1j z[1]=0] are, respectively, the mean

posterior probabilities for group k = 1 resp. k = 0 de�ned by the Gold Standard. Re-

garding the variance of the posterior probabilities, we should aim for a classi�cation rule

with a minimal variance �2p[1] . But the only way �
2
p[1]

reaches its minimum possible value

zero is when the posterior probabilities are the same for all patients and then the covari-

ance �z[1];p[1] is zero as well. Thus the proper objective to minimize �2p[1] is to condition

on the relationship between the Gold Standard and the biomarker �z[1];p[1] . The con-

ditional minimum prediction variance given �z[1];p[1] is �
2
p[1];min. The ratio between the

excess variation and the conditional minimum prediction variance QVar = ��2p[1]=�
2
p[1];min
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should be small and is inversely proportional to the 2-sample t-test for comparing the

group-speci�c predictions �p[1j z[1]=1] and �p[1j z[1]=0] (Spiegelhalter, 1986). Besides QVar,

the covariance �z[1];p[1] between the Gold Standard and the posterior probabilities serves

as performance measure. It is advisable to standardize this covariance to yield the point

biserial correlation �z[1];p[1] . Note the smaller range compared to correlation coe�cients

for two continuous variables. The range depends on �z[1], the limits are given in Grad-

stein (1986). The separation of the posterior probability distributions of the two groups

may be assessed by Di��p[1] = �p[1j z[1]=1] � �p[1j z[1]=0]. The bias (�p[1] � �z[1]) indexes a per-

formance characteristic labelled calibration-in-the-large, CalL, which re�ects the ability of

the biomarker to match mean posterior probabilities to the proportion of patients in group

k = 1 de�ned by the Gold Standard. It is interpreted as the "baseline knowledge" about

group membership.

All in all, the Brier score with its derived performance measures allows for a more profound

assessment of the biomarker performance than the ROC curve related measures by taking

the actual location and shape of the group-speci�c posterior probability distributions in

account in various ways. The AUC is reported as it is the most commonly used measure

in diagnostic medicine. Other authors (Spiegelhalter, 1986; Harrell, 2006) make similar

compromises regarding their choice of performance measures.

2.3 Application of Longitudinal QDA:

HIV Therapy Resistance Data

The application of longQDA is illustrated with data of one biomarker that is indicative

for HIV therapy resistance. The data were recently presented in the literature (May and

DeGruttola, 2007) and are freely available. The aim is to classify patients based on

their viral load either as resistant or non-resistant to speci�c HIV treatments (Nevirapine,

Delavirdine and Efavirenz) and thus to replace the need of phenotype or genotype data.

The group with the worse condition is denoted by k = 1, hence resistant patients are

members of group k = 1 and non-resistant patients of group k = 0. The presence of

resistance is assumed to be perfectly determined by the presence of the reported K103N

mutation of HIV (although this is possibly idealistic for a test assay based on phenotype

or genotype data). Using this Gold Standard, there are 292 patients with no resistance

and 64 who exhibited the mutation. The viral load is measured by the amount of HIV

RNA and up to 6 measurements (at baseline, after 2, 4, 8, 16 and 24 weeks) are avail-

able for each patient. The analysis was restricted to patients with complete data to

enable a fair comparison of the results between single visits with the same data base.

Biomarker data of 59 non-resistant and 26 resistant patients were considered. This im-

plies a non-informative drop-out and a missing at random mechanism which was assumed
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for simplicity. Otherwise, other methods need to be applied (Hogan et al., 2004; Thiébaut

et al., 2005).

For all QDA and longQDA analyses, 50-fold MCCV was applied and patients were ran-

domly allocated to the training or the test set according to a group-wise ratio of 2:1. The

priors were �xed to the group proportions of the entire dataset (not the one reduced to

the complete cases), assuming that these are good estimations for the "prevalence" of

therapy resistance. So �[1] was 0:18 and hence the lower bound for the BS 0:852, the

range of the biserial correlation [�0:683; 0:683].

The biomarker measurements were log10-transformed (labelled LBM1). The resulting

group-speci�c pro�les on this scale are depicted in Figure 2.4 below (ignore the colouring).

Pro�les of non-resistant patients decrease quadratically whereas those of the resistant

group have a rather unchanged, more linear shape from the third visit on. At baseline,

the non-resistant patients have a wider range of initial biomarker values but the variation

during the treatment is higher for the resistant ones. Besides, an atypical subgroup is

present in the non-resistant group whose pro�les do not decline over time and resemble

rather the pro�les of patients who were classi�ed as resistant by the Gold Standard.

A comparison of the biomarker levels at group level show that from the �fth visit on, the

ranges of the boxplots do not overlap at all (Figure 2.2(a)), indicating a good separation

between the groups. The variances of the viral load measurements are especially high

from the third visit on in both groups.
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Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6

LB
M

1

N = 59 N = 59 N = 59 N = 59 N = 59 N = 59
N = 26 N = 26 N = 26 N = 26 N = 26 N = 26(a) Boxplots are given for the scheduled

visit; for non-resistant patients in black, for

resistant patients in red.

Visit 1 2 3 4 5 6

1
. . . 0:59 0:50 0:42 0:27 0:26

2 0:55
. . . 0:66 0:50 0:46 0:38

3 0:57 0:45
. . . 0:85 0:74 0:71

4 0:35 0:36 0:73
. . . 0:88 0:85

5 0:33 0:42 0:67 0:83
. . . 0:95

6 0:22 0:36 0:56 0:79 0:92
. . .

(b) Autocorrelations for non-resistant patients are given in

the upper, for resistant patients in the lower triangle.

Figure 2.2: Boxplots and autocorrelations of log-transformed HIV RNA

The empirical autocorrelations were estimated for all patients with complete measure-

ments (Table 2.2(b)). Also for correlations of visits more than one lag apart, they are of

medium or large size, higher than 0:6 from the third visit on. At the �rst and second visit,
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this is only true for those with lag 1. Both groups have autocorrelations of similar size

but they are more or less higher in the non-resistant group (one exception: coe�cient of

�rst and �fth visit). As the time dependencies in the biomarker data are of considerable

size, they should be adequately taken into account by using mixed models to estimate the

group-speci�c parameters.

2.3.1 Biomarker Performance at Single Visits by QDA

Before applying longQDA, the data are further explored by examining the performance

of the biomarker at single visits. This provided insight into which visits contribute most

to the longitudinal performance. Except for the calibration performance, an improvement

in performance is observed over time (Table 2.1(a)). For the calibration it is vice versa,

the worst is achieved at visit 5 or 6. The performance of the 3rd visit is for most of the

measures as weak as at baseline and there are only small performance di�erences between

visit 5 and 6.

(a) Comparing QDA with single visits.

Visit AUC BS BS
[�]
C BSDM �z[1];p[1] ln(Q

[�]
Var

)

1 :55 [:43; :66] :79 [:77; :80] :003 [:001; :024] :01 [:00; :01] :09 [�:04; :25] 8 [7; 11]

2 :69 [:53; :78] :81 [:78; :82] :009 [:010; :028] :02 [:01; :05] :30 [ :07; :41] 5 [5; 7]

3 :61 [:51; :73] :79 [:76; :81] :007 [:001; :045] :01 [:00; :03] :14 [�:04; :39] 6 [5; 9]

4 :66 [:56; :78] :81 [:78; :82] :011 [:003; :039] :03 [:01; :05] :27 [ :10; :42] 5 [4; 7]

5 :71 [:60; :85] :83 [:78; :85] :030 [:007; :096] :08 [:05; :12] :41 [ :23; :59] 3 [3; 4]

6 :77 [:64; :87] :84 [:77; :86] :026 [:009; :102] :08 [:05; :13] :49 [ :27; :62] 3 [2; 3]

(b) Comparing longQDA with 3, 4, 5 and 6 visits.

# of Visits AUC BS BS
[�]
C BSDM �z[1];p[1] ln(Q

[�]
Var

)

3 :66 [:55; :77] :80 [:74; :83] :033 [:008; :091] :04 [:02; :07] :24 [:04; :43] 4 [4; 6]

4 :65 [:55; :74] :80 [:75; :83] :027 [:005; :072] :03 [:01; :06] :26 [:04; :42] 4 [3; 7]

5 :74 [:62; :84] :82 [:76; :86] :024 [:008; :080] :06 [:03; :09] :40 [:23; :57] 3 [2; 4]

6 :75 [:66; :85] :80 [:72; :86] :056 [:020; :135] :08 [:05; :12] :44 [:28; :60] 2 [1; 3]

Table 2.1: Selected performance measures comparing (long)QDA, given as median with

the 10th and 90th percentile. For all performance measures indicated by [�],

lower values are indicative for a better performance. For the others, it is

vice versa. The results of the bias for CalL are similar to those of BSC as

is the di�erence of the group-speci�c average posterior probabilities to the

discrimination measures. They are therefore omitted in the table.
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2.3.2 Longitudinal Biomarker Performance by longQDA

As the exploratory analysis showed how the initial biomarker levels vary across patients,

the mixed models were con�ned to those with at least a random intercept. Therefore,

RI, RIS and RICAR1 are considered as mixed model structures (MMS). For simplicity,

the same MMS is always applied for both groups. Time was included as a �xed and

random linear e�ect in the mixed model and an additional quadratic �xed time e�ect

for longQDA analyses involving at least four visits. When estimated the model without

the �xed quadratic time e�ect, a worse �t resulted. However, the performance of the

biomarker did not change remarkably. A restricted maximum likelihood (REML) approach

was used to estimate the group-speci�c covariance parameters. The longitudinal variant

of QDA was applied including either the �rst g = 3; 4; 5 or 6 visits.

The results of longQDA with regard to the number of measurements per patient were

assessed and the performance of the di�erent mixed model structures (MMS) were com-

pared. The MMS were selected based on the BIC (see (3.1) for the de�nition) which

turned out to be the better approach in our simulation study (presented in Chapter 3).

Including the �rst 3 visits, RI was selected as the best model, whereas the RIS model was

the favoured structure for data including 4, 5 or 6 visits. The estimated model parameters

of the RIS model based on the complete biomarker data are listed in Table 2.2.

�0 �1 �2 dI dS dIS �2

non-resistant patients 4.5 -13.2 18.7 0.46 8.15 0.32 0.32
resistant patients 4.3 -7.7 13.5 0.22 4.43 0.30 0.28

Table 2.2: Group-speci�c estimates based on RIS model for 6 visits

Mean group pro�les and biomarker pro�les simulated according to the resulting marginal

distribution are depicted in Figure 2.3. The simulated pro�les resemble the observed ones

depicted in Figure 2.4 (ignore colouring) quite well.

The classi�cation performance of the biomarker, dependent on the number of visits in-

cluded in longQDA, is shown in Table 2.1(b). Nearly all performance measures indicate an

increase in performance over time, especially for 5 and 6 measurements. This is consistent

with our �ndings from the analyses based on single visits where the �fth and sixth one

performed best. However, the calibration measures are worse when using longer biomarker

pro�les. In general, the biomarker performance with 5 or 6 measurements is as well only of

medium size. This may be due to the subgroup in the non-resistant group who have quite

�at pro�les similar to the resistant patients. According to their high predicted posterior

probabilities for being resistant, this subgroup was identi�ed by longQDA as being rather

resistant than non-resistant.
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Figure 2.3: Simulated biomarker pro�les based on the marginal mixed model parameters

for 6 visits (non-resistant patients in black on the left, resistant patients in

red on the right). The bold lines are the estimated means.

In Figure 2.4, the biomarker pro�les were coloured according to the results gained by

longQDA with 6 visits. Overall, the posterior probabilities match well with our previous

�ndings that therapy resistance is characterized by a rather �at pro�le and non-resistance

by a clear decrease in viral load over time. Patients in the resistant group are harder to

classify correctly due to their more heterogeneous pro�les.
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Figure 2.4: Individual observed biomarker pro�les coloured according to the predicted pos-

terior probabilities to be resistant, estimated by longQDA with all 6 visits

(non-resistant patients on the left, resistant patients on the right).

To put emphasis on the gain in performance by using longitudinal measurements, the in-

crease in classi�cation certainty over time is examined at last and the individual posterior
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probabilities for being resistant based on 1, 3, 4, 5 and all 6 visits are compared in Fig-

ure 2.5. Note that the probability at baseline was only included there as reference point

at which the patients were still untreated and should therefore not be used as a prediction

for therapy response. Using more and more repeated measurements and waiting some

time, the predictions improve: For the "real" non-resistants with a low probability for

being resistant, the posterior pro�les tend downwards. The resistants, in contrast, exhibit

increasing posterior pro�les over time, both re�ecting an increase in classi�cation cer-

tainty. The equivalent estimations of QDA using only the last cross-sectional biomarker

measurement (green dots) were included as reference. The posterior probabilities of QDA

tend to be more central for the non-resistant patients and lower for the resistant ones.

This involves also a lower separation of the probabilities' distributions.
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Figure 2.5: Increase in classi�cation certainty with increasing number of measurements

(non-resistant patients in black on the left, resistant patients in red on the

right). The green dots are the estimated posterior probabilities by QDA when

using only the data of the 1st, 3rd, 4th, 5th and 6th visit.



3 Model Selection in Longitudinal QDA

3.1 Introduction

In this chapter, the importance of selecting an appropriate mixed model structure is exam-

ined when estimating the group-speci�c parameters of the discriminant rule. The model

selection is an even more important issue in longQDA than in the case where the sole

interest is in the estimation of mixed models: In longQDA, all estimated parameters �nd

their way in the discriminant rule, none of them are nuisance parameters. For simplicity,

the issue is elaborated for univariate longQDA. It is assumed that the model selection

approach may be transferable to the multivariate case.

In Section 3.2, the e�ects of �tting various mixed models are exampli�ed with the HIV

therapy resistance data of Section 2.3. For real data, the true model structure is un-

known. However, in simulations, the true, underlying model structure can be �xed. The

detailled setup of the simulation study is described in Section 3.3. In the simulation, two

di�erent selection approaches are compared, one where the model was selected based on

having the highest performance measures, and another where the selection was based on

BIC (Subsection 3.4.1). Within the �rst approach, all performance measures introduced in

Section 2.2 are considered to �gure out whether some are more appropriate than others.

In Section 3.4.2, the importance of model selection is assessed for longQDA by quanti-

fying the bias of an incorrect model structure. The simulation results are summarized in

Section 3.4.3.

3.2 Motivation

To demonstrate the e�ects of di�erent model structures with a practical example and to

put emphasis on the model selection issue, the biomarker pro�les of the application data

set are modelled by RI, RIS, RICAR1 and QDA. Classic QDA ignores the time structure in

the data: The order of the visits as well as the actual individual visit times are not taken

into account and the covariance matrices are totally unstructured. The abbreviation

(M)MS in contrast to MMS refers in the following to model structures which do not

necessarily include only mixed models. The estimated performance measures for 5 visits
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are given in Table 3.1, the estimated posterior probabilities are displayed in Figure 3.1.

These results are quite di�erent and depend on the chosen (M)MS, especially at the

individual level. So there is a need for a reliable model selection criterion.

(M)MS AUC BS BS
[�]
C BSDM �z[1];p[1] ln(Q

[�]
Var

)

RI :74 [:63; :85] :80 [:70; :87] :075 [:020; :135] :08 [:05; :12] :50 [:32; :65] 1 [1; 2]

RIS :74 [:62; :84] :82 [:76; :86] :024 [:008; :080] :06 [:03; :09] :40 [:23; :57] 3 [2; 4]

RICAR1 :72 [:61; :86] :81 [:73; :87] :058 [:017; :135] :09 [:05; :12] :45 [:28; :60] 2 [2; 3]

QDA :68 [:57; :82] :79 [:73; :85] :039 [:015; :092] :05 [:02; :09] :33 [:28; :56] 3 [2; 4]

Table 3.1: Selected performance measures comparing (M)MS of longQDA. They are given

as median with 10th and 90th percentile.
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Figure 3.1: Di�erences between predicted posterior probabilities due to the (M)MS selec-

tion in longQDA (non-resistant patients in black on the left, resistant patients

in red on the right).

With real data, the "true", underlying model structure is not known. However in simula-

tion studies, this lack can be overcome and the following research questions are addressed:

� Which is the most appropriate approach for choosing the model structure in the

estimation step of longQDA?

� How important is the selection of the correct mixed model? How much performance

loss occurs by just applying QDA, ignoring the time structure? How large are the

e�ects of an incorrect structure on the results, at the global as well as at the

individual level?

For the �rst issue, two approaches are compared. An heuristic approach would be to �t

the longitudinal biomarker data by di�erent mixed models and to select that structure
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for the two groups which yielded the best classi�cation performance. This approach was

chosen by Tomasko et al. (1999) and Wernecke et al. (2004) based on the error rate.

Independent of the appropriateness of the approach to use a performance measure as

selection criterion, it is recommendable to refrain from the error rate as misclassi�cations

are treated equally for both groups (Pepe, 2003). Another approach would be to select

the model with the best �t according to the BIC in the estimation step of longQDA.

The use of the BIC to select the best covariance structure of various linear mixed models

is common practice and either favoured over AIC (Littell et al., 2000) or leads to the

same decisions (Gurka, 2006). Two things are noteworthy when using BIC under REML

estimation as we did. First, BIC comparisons are only allowed for models with the same

�xed e�ects (Weiss, 2005, p.18). This is the case for all our models. Second, there is

some controversy regarding the correct form of the BIC (Gurka, 2006; Greven, 2007).

There are concerns regarding the sample size (N � u in the penalizing term for REML

instead of N for ML in the case of u �xed e�ects) and the number of parameters (O for

REML or u+O for ML). Consequently, the computation of the BIC di�ers from software

to software. However, whenever only models with the same �xed e�ects are compared

within the same software, the absolute value of the BIC does not matter. We use the

BIC as implemented in the R packages nlme and lme4:

BIC = �2 � lREML + (u +O) � log(N � u); (3.1)

where lREML is the restricted log-likelihood and O is the number of unique parameters in

the covariance matrix Vi .

The advantage of the BIC approach is the separation of the model selection from the

actual goal of the analysis, the classi�cation. Further on, this decision is based on di�erent

data: The estimation step is performed on the training � and the classi�cation on the

test sets. The importance of choosing the correct mixed model and not applying QDA

is a second issue and assessed by the di�erences between the performance measures at a

global level and between the estimated posterior probabilities at an individual level.

3.3 Simulation Setup

As the �ndings might depend on the number of visits and the assumed model structure,

data with 3, 6 and 10 visits were simulated according to a RI, RIS or a RICAR1 struc-

ture. These "true" covariance structures are denoted by *, i.e. there are RI*, RIS* and

RICAR1*. The structures were again assumed to be the same in both patient groups.

The biomarker measurements were simulated according to the implied marginal densities

of the mixed models with the following parameters:
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RI* TTT

Non-resistant:

�[0] = (4:0;�4:4)T , D[0] = 0:79; �2[0] = 0:77

Resistant:

�[1] = (4:0;�1:5)T , D[1] = 0:55; �2[1] = 0:51

RIS* TTT

Non-resistant:

�[0] = (4:0;�4:4)T , D
0

[0] =

(
d2
I[0] �IS[0]

�IS[0] d
02
S[0] = d2

S[1]=d
2
I[1]

)
=(

0:39 0:35

0:35 17:1

)
;

�2[0] = 0:55

Resistant:

�[1] = (4:0;�1:4)T , D
0

[1] =

(
0:25 0:47

0:47 16:3

)
; �2[1] = 0:39

(Note the special notation of D
0

: It contains the variance of the intercept d2
I

as usual but the slope's variance standardized by the variance of the intercept

in the diagonal and the correlation �IS in the o�-diagonal. Thus the assumed

correlation between the random intercept and the random slope may directly

be read o� and compared to the variances on the same scale.)

RICAR1* TTT

Non-resistant:

�[0] = (4:2;�4:8)T , D[0] = 0:58; �2[0] = 1:24; �[0] = 0:0008

Resistant:

�[1] = (4:1;�1:6)T , D[1] = 0:47; �2[1] = 0:69; �[1] = 0:0001

These are the estimates of the HIV application data set when using 50-fold MCCV. The

data set comprised all complete cases with 6 visits.

The models under consideration for the simulated data were RI, RIS, RICAR1 and QDA.

The models were always �tted with the same structure for both groups. For the mixed

models, a linear �xed time e�ect as given by the true model was part of the model and

an unstructured mean pro�le was �tted for QDA as usual. The parameters of the "true"
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models are �xed by the simulation design and were not estimated. The classi�cation

rule, however, had to be evaluated in the test sets for the "true" as well as for the

examined models to assess the biomarker performance. The best performance is expected

for the MMS matching the underlying "true" model. Our approach provided the induced

deviations when estimating the mean vector and the covariance matrix with the correct

resp. the incorrect model structures.

To explore the e�ect of an incorrect model selection with increasing number of visits,

biomarker data measured at 10 visits were generated and the performance was assessed

using all visits as well as only the �rst 3 and the �rst 6 by deleting the subsequent visits.

The individual times of the visits were simulated according to the empirical ones of the

HIV data. The empirical study times between visits for patient i ; i = 1; : : : ; N were

approximated by the following distributions (after mapping them to [0; 1]):

�ti1;ti2 � 0:12 � N(�1 = 0:05; �21 = 0:001) + 0:76 � N(0:5; 0:05)

+0:12 � N(0:95; 0:001)

�ti2;ti3 � N(0:25; 0:006)

�ti3;ti4 � 0:7 � N(0:45; 0:004) + 0:3 � N(0:95; 0:004)

�ti4;ti5 � N(0:45; 0:004)

and �ti j ;ti(j+1)
� N(0:45; 0:0045) for visit number j = 5; : : : ; 9:

The last time di�erence (between the 5th and the 6th visit) served also for simulating the

individual visit times from visit 7 up to visit 10.

The resulting biomarker trajectories are depicted in Figure 3.2. The pro�les of the non-

resistant group decrease continuously over time whereas the median biomarker level of

the resistant group remain quite stable.

Taken together, this resulted in nine simulation scenarios given by the combination of

RI*, RIS* or RICAR1* with 3, 6 or 10 visits where the e�ect of choosing an RI, RIS,

RICAR1 or QDA structure was studied. A 50-fold MCCV was applied in the simulation

study and patients were randomized per group either to the training or the test set with a

ratio of 2:1. The prevalence was �xed to 0:18 for the resistant group as in the application

and the group sample size was tripled to get stable results in terms of sample sizes. As a

result, our simulation sample consists of 177 non-resistant and 78 resistant patients. The

results are based on 25 simulation repetitions and an increase to 50 repetitions yielded

just the same results up to small numerical di�erences.
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Figure 3.2: Simulated biomarker pro�les according to RIS* (top), RI* (middle) and

RICAR1* (bottom) with 10 individual visit times. The sample consists of

30 randomly selected non-resistant patients on the left and 30 randomly se-

lected resistant patients on the right.

3.4 Simulation Results

Note for the interpretation of our �ndings in the following that the results of RI*, RIS*

and RICAR1* should not be compared: The simulated data led to di�erent performance,

e.g. due to the higher variability and its increase over time in any RIS model compared

to RI and RICAR1 structures. With 6 visits, for example, RI* yielded a Brier score of

0:866 [0:841; 0:891], RIS* of 0:827 [0:808; 0:845] and RICAR1* of 0:851 [0:827; 0:868]

(given as median with 10th and 90th percentile over all MCCV samples). When biomarker

pro�les were simulated according to RI* or RICAR1*, the performance measures improved

remarkably over time - especially for RI* - due to less variation between the pro�les over

time. This yielded a very good performance for 10 measurements. In general, the e�ect
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of assuming a wrong (M)MS is less an issue in the case of well separated groups. Then,

it is more unlikely that patients are misclassi�ed just due to biased and therefore possibly

more similar model parameter estimates between the groups.

Expected convergence problems occurred for RI* when �tting models with too complex

structures like RIS and RICAR1. For RIS, this was only the case for some of the MCCV

samples, whereas for RICAR1 no convergence was achieved at all. Hence the consid-

ered incorrect model structures are con�ned to RIS and QDA for RI*. For RIS*, the

simulation scenario with 3 visits was excluded from the assessment for model selection

as the longitudinal structure of the simulated RIS* models, represented by the random

linear slopes, could not be captured based on 3 measurements. This was re�ected by the

estimated mixed model parameters of RIS, which di�ered clearly from the true ones of

RIS* resp. by the estimated performance measures of RIS, which did not match up with

those of RIS*. There were also convergence problems: In about a fourth of the compar-

isons, the RICAR1 models did not converge for at least one of the groups. For all other

simulation scenarios, the MMS matching to the one underlying the simulated biomarker

data achieved the same performance as the corresponding MMS*. This con�rmed that

the estimation of the mixed model parameters went well, without any critical information

loss with regard to the classi�cation.

3.4.1 Criterion for Model Selection: Highest Performance Measure or BIC?

First, a heuristic approach was applied, selecting the model which yielded the best perfor-

mance measure. As it was unclear which performance measure is the most suitable for this

purpose, we assessed as well whether all performance measures presented in Section 2.2

support the correct model selection. The results for 10 visits are displayed in Table 3.2.

For RI* with 10 visits, the classi�cation performance was very good, resulting in small

di�erences between the (M)MS. For this scenario, all examined performance measures

did not uniquely point to the correct model: RI and RIS achieved the same results as

RI*, only the measures of QDA correctly indicated a worse performance. Using the �rst 6

visits, where the classi�cation is worse than for 10 visits, yielded the same indistinguishable

results. For three visits, the performance measures of all (M)MS were practically the same

and therefore of no use for model selection purposes.

For RIS* with 10 biomarker measurements, the performance was uniquely best for the RIS

model according to AUC, BS, BSC , BSDM
and the correlation �z[1];p[1] . The calibration

component CalL was not helpful in that the QDA structure gave similar small values as

the RIS model. Absolutely inadequate as selection criteria were the performance measures

Di��p[1] = �p[1][z[1]=1] � �p[1][z[1]=0] and QVar: They indicated that RI and RICAR1 are the

correct covariance structures instead of RIS. The same applies to RIS* with 6 visits. The
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other performance measures such as AUC etc. , which were adequate in the case of 10

visits, exhibited another problem: The measures of all (M)MS were so similar in size that

there is no single best one.

For RICAR1* with 10 biomarker measurements, AUC, BS, BSDM
and the cor-

relation �z[1];p[1] indicated correctly the highest performance for RICAR1. For 6

measurements, this was only the case for AUC and �z[1];p[1] . Inadequate as selection

criteria are Di��p[1] for 6 and 10 visits and QVar for 6 visits suggesting RI as best model

as well as CalL for 10 visits with QDA as best one. No unique optimal model due to

similar performance may be selected based on BSC , QVar and CalL for 6 and 10 visits,

and additionally by BSDM
for 6 visits. For biomarker pro�les of length 3, all performance

measures exhibited this problem of too similar sizes.

What about the BIC? There is strong evidence for the approach of selecting the model

with the minimal BIC to work. For all assumed MMS* with 10 visits, the model with the

same covariance structure as MMS* yielded the minimal BIC in all simulation repetitions,

all MCCV samples and both patient groups. For RI*, RIS* and RICAR1* with 6 visits and

for RI* with 3 visits, the selection was also successful in nearly all comparisons between the

�tted MMS. For RICAR1* with 3 visits, the BIC of RICAR1 was at least in the majority

(44%) of all comparisons the minimal one.

3.4.2 Global and Individual E�ects of an Incorrect (M)MS

The e�ects of an incorrect (M)MS are assessed at the global as well as at the individual

level. The global level is assessed in terms of the performance measures. All of them are

based on the predicted posterior probability for each patient to be resistant to the therapy.

The individual level is directly assessed by these posterior probabilities. This is obviously

a stricter assessment than at the global level but it gives a more detailed picture about

the implications at the patient level.

For biomarker pro�les of length 3, no e�ects of using various model structures were

observed for RI*, RIS* or RICAR1*, neither at the global nor at the individual level.

Thus the assessment was restricted to 6 and 10 visits. At the global level, considerable

di�erences between the performance measures were only observed for 10 visits under

RIS* (Table 3.2, second block). Incorrect model structures are characterized by worse

median performance measures but also by high variances over all MCCV samples. For the

BS, for example, the maximum deviation was observed for RI where the median score was

0:07 smaller and the con�dence interval did not overlap with that of RIS*. The smallest

median AUC resulted with QDA, it is 0:79 instead of 0:87. For 10 visits under RI* or

RICAR1*, the groups are so well separated that an incorrect estimation of the model

parameters was not an issue.
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(a) Non-resistant patients

Figure 3.3: Pro�les of individual predicted posterior probabilities comparing the (M)MS
RI, RIS, RICAR1 and QDA. The true MMS was RI* in the �rst row, RIS* in
the second and RICAR1* in the third row. The pro�les were based on data
from 6 visits in the left column of each sub�gure and on data from 10 visits
in the right column.
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(b) Resistant patients
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For 6 visits under RI*, RIS* or RICAR1*, the di�erences in the discrimination rule induced

by the (M)MS were probably too small to have an e�ect on the performance measures.

Further on, the e�ects were assessed at the individual level. In Figure 3.4(a), the median

posterior probabilities of all MCCV samples that were predicted for one therapy-resistant

patient under each assumed model are represented by circles on one line. The �rst mark

of each line gives the posterior probability estimated by the model with the true covariance

structure.

The deviations from this benchmark were much more pronounced for the resistant than for

the non-resistant group (cf. Figure 3.4(a) and 3.3(a)). For RI* and 6 visits, QDA tended

to predict lower posterior probabilities to be resistant, which are at most 0:1 smaller in

size. For 10 visits, the very good classi�cation performance of RI* did not lead to any

di�erences between the (M)MS. Under RIS*, the highest deviations occured especially for

RI and and also for RICAR1. They were of unacceptable size for therapy-resistant patients

with 6 resp. 10 biomarker measurements: The probabilities of the RI models were about

0:4 resp. 0:5 higher than predicted under RIS, and those of the RICAR1 models deviated

about 0:4 for both pro�le lengths. For both groups, RI and RICAR1 overestimated the

probabilities to be part of the same group as according to the Gold Standard. QDA

overestimated these probabilities for the non-resistant patients but underestimated them

for the resistant ones. But this was di�erent for 6 visits where the incorrect structure QDA

resulted hardly in any bias. Spuriously high predicted probabilities to be resistant to the

therapy, like e.g. under RI and RICAR1, implied a falsely low uncertainty in classi�cation

whereas spuriously low probabilities, like e.g. for QDA with 10 visits, re�ected a falsely

high uncertainty. Both are undesirable e�ects. Assuming an RICAR1* structure, the

implications for the patients were at most critical when �tting RI models. The posterior

probabilities of the resistants were incorrectly higher � similar in size as under RIS*.

High deviations for single patients were due to unstable estimation, they disappeared by

increasing the number of simulation repetitions.

3.4.3 Summary

As the simulations showed, an incorrect model structure had at �rst e�ects at the

individual level resulting in incorrectly low or high uncertainty in classi�cation. The

QDA structure was always one of the incorrect models which was identi�ed in the

simulations. There was no e�ect when the group separation in the scenario was very

good. E�ects at the global level were only observed for the most complex structure

RIS* with longer pro�les of length 10. This means that the selection of the correct

structure was especially important for models that assumed a time-variant longitudinal

data structure and the deviations in the results enlarged with increasing length of the
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pro�les. Therefore, it is important to have an objective model selection criterion. The

BIC approach was found to perform much better than the performance measures. The

decision for a speci�c model structure should not be based on the model with the best

performance measure as they were too similar in size for most scenarios (especially

those with 3 and 6 visits). Additionally, if they di�ered, only few of them as AUC,

BS and �z[1];p[1] were able to select the correct model. These �ndings suggest to use

the BIC as model selection criterion as already done in the application in Section 2.3.

At the beginning of this section, the in�uence of the assumed model structure on the

estimations were shown for the HIV therapy resistance data. The direction of the bias

was similar in the simulation study (cf. Figure 3.1 on the right with the left plot in the

middle of Figure 3.4(a) for resistant patients and Figure 3.1 on the left with the left plot

in the middle of Figure 3.3(a) for non-resistant patients.).

In the multivariate case when the performance of biomarker combinations are assessed,

the model selection process is even more important. The selection of an incorrect model

structure does not only result in a wrong assessment of a biomarker combination but also

in�uences the search for the best biomarker combination. Possible multivariate extensions

for the longitudinal QDA are the topic of the next chapter.

Remark

This chapter is based on Kohlmann, M., Held, L., Grunert, V.P. (2009). Classi�cation of

Therapy Resistance Based on Longitudinal Biomarker Pro�les. Biometrical Journal 51,

610 � 626.





4 Multivariate Extensions of Longitudinal

QDA for Biomarker Combinations

4.1 Introduction

In Chapter 2, statistical methods were proposed to assess the diagnostic value of single

longitudinal biomarkers. In this chapter, longQDA is extended to the multivariate case

to assess biomarker combinations. This opens up further opportunities: In addition to

the potential to improve the classi�er by using repeated measurements like in univariate

longQDA, the combination of biomarkers may also yield to a better performance.

Multivariate longitudinal data are sometimes referred to as doubly multivariate

data (Timm, 2002) as they exhibit two multivariate features, one is the longitudinal

nature, the repeated measurements over time, the other the set of variables, the

biomarkers. From a diagnostic point of view, the two features complement one another

well. The longitudinal measurements contain information about the development of

disease processes whereas biomarkers may be qualitatively selected to cover various

aspects of the disease. The biomarkers are, for example, characteristic for the

in�ammation process or for the degradation process triggered by the disease. Combining

biomarkers in one diagnostic test is advantageous for the patient as only one blood

sample is required to determine the level of several biomarkers. Moreover, with the

technical development of multi-test diagnostic platforms about the same amount of

blood serum is required for the measurement of one biomarker as for the simultaneous

measurement of a biomarker panel.

So statistical models need to be established to allow the assessment of a biomarker panel

with longitudinal pro�les. For multivariate longQDA, the key point is the estimation of

the multivariate group-speci�c means and covariance matrices. Multivariate linear mixed

models are considered for the plug-in estimation and three di�erent classes of model

structures are examined. One is characterized by the independence assumption for the

biomarkers (Section 4.2.1), the other two are appropriate for correlated biomarkers: multi-

variate random e�ects models (Section 4.2.2) and multivariate covariance pattern models

(Section 4.2.3). Having established appropriate models, the subsequent proceeding is the
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same as in the univariate case. For model selection, we rely on the simulation results show-

ing the appropriateness of the BIC and use it as selection criteria for multivariate models,

too. In Section 4.3, the established multivariate longQDA is applied to biomarker data

which are examined for their ability to predict drug resistance for patients with rheuma-

toid arthritis (RA). The chapter ends with exemplary simulated data settings where the

classi�cation performance of biomarker panels exceeds the performance of their single

components (Section 4.4).

4.2 Multivariate Linear Mixed Models

We have measurements wi =
(
w

[1]T
i ; : : : ;w

[q]T
i

)T
of ` = 1; : : : ; q biomarkers, collected

at ti j ; j = 1; : : : ; p time points from i = 1; : : : ; n[k] patients in each patient group k = 0; 1.

In applications from medical diagnostics, all biomarker levels are usually determined from

the same blood sample taken at one time. So for each patient, the time points are identical

for all biomarkers. As above, the subscripts k = 0; 1 indicating that the estimation is

performed group-wise are omitted in the following.

The multivariate mixed model is de�ned as

wi(pq�1) = Xi(pq�uq)�(uq�1) + Zi(pq�sq)bi(sq�1) + �i(pq�1)

where

bi � N(000(sq�1);D(sq�sq))

�i � N(000(pq�1);Ri(pq�pq)):

Due to the fact that all measurements are determined from one blood sample, the matrix

Zi (and also the time-related columns of Xi) consists of q submatrices on the diagonal

and each submatrix equals the design matrix of the univariate model (see p. 6 for the

de�nition).

So the biomarker measurements of one patient are distributed as

wi � N(�i = Xi�; Vi = ZT
i DZi +Ri):

The n[K] patient-speci�c regression models are then combined as described for the uni-

variate case in Eq. (2.2).

The models can also be expressed exclusively in terms of matrices. Then the response

matrix has q columns: Wi =
(
w

[1]T
i ; : : : ;w

[q]T
i

)
. The matrices of �xed and random
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e�ects as well as the residuals' error matrix have q columns as well. The matrices Xi ;Zi ;D

and Ri are the same as in the vector notation. This implies, however, a less �exible

structure, requiring for all biomarkers the same dimension of �xed and random e�ects.

The multivariate modeling for biomarker pro�les is of higher complexity compared to the

univariate one due to the increased number of covariance parameters in Vi , in particu-

lar due to the correlations. Aside from the autocorrelations between the measurements

of one biomarker being referred to as the within correlation of the biomarkers, the be-

tween correlation of the biomarkers need to be considered. These correlations between

the biomarkers (cross-correlations) are time-dependent, too. We distinguish two forms:

one between the biomarkers measured at the same time point and the other between

measurements of (distinct) biomarkers measured at di�erent time points. The latter is

a particular feature for multivariate longitudinal data, the �rst is well-known from the

analysis of cross-sectional multivariate data.

Suppose q = 2 biomarkers were measured at p = 3 time points. The corresponding

covariance matrix Vi is

Vi(6�6) =

(
A B

C E

)
=



v
[1]2
11 v

[1]
21 v

[1]
31 v

[1;2]
11 v

[1;2]
21 v

[1;2]
31

v
[1]
21 v

[1]2
22 v

[1]
32 v

[1;2]
12 v

[1;2]
22 v

[1;2]
32

v
[1]
31 v

[1]
32 v

[1]2
33 v

[1;2]
13 v

[1;2]
23 v

[1;2]
33

v
[1;2]
11 v

[1;2]
12 v

[1;2]
13 v

[2]2
11 v

[2]
21 v

[2]
31

v
[1;2]
21 v

[1;2]
22 v

[1;2]
23 v

[2]
21 v

[2]2
22 v

[2]
32

v
[1;2]
31 v

[1;2]
32 v

[1;2]
33 v

[2]
31 v

[2]
32 v

[2]2
33


; (4.1)

where the unique parameters to be estimated are printed in blue. On the block-diagonal

are the covariance matrices of each biomarker, namely A and E. They contain the

variances on the diagonal and the symmetric autocovariances on the o�-diagonal. The

o�-diagonal matrices B and C are the covariance matrices containing the within-time

cross-correlations on their diagonal and the between-time cross-correlations on their o�-

diagonal. The diagonals of B and C are equal and the lower triangular matrix of C equals

the upper triangular matrix of B. Note that the matrices B and C are not symmetric,

caused by the asymmetric property of the between-time cross-correlations. In other words,

biomarker w [1]
i measured at time point ti j is di�erently related to biomarker w

[2]
i measured

at time ti j 0 than biomarker w
[1]
i measured at time ti j 0 is related to biomarker w

[2]
i measured

at time ti j .

Due to the large number of parameters, parsimonious multivariate extensions of mixed

models are needed that are e�ective when the number of observations is not large enough

to estimate an unstructured covariance matrix. Furthermore, the possible problem of

instability resulting from overparameterising the covariance matrix may be circumvented

if a useful representation of the underlying correlation structures is found.
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There is the usual distinction between random e�ects models and covariance pattern

models. For the �rst, the random e�ects bi are assumed to capture most of the variation

within the patient and between the biomarkers and a simple covariance structure as Ri =

���(q�q) 
 I(p�p) is assumed for the residuals where ��� is an unstructured matrix. In a

pure covariance pattern model, there are no random e�ects bi . The dependencies in the

data are modeled by a more complex structure for Ri than in the random e�ects model

and thus Vi = Ri . Parsimonious multivariate random e�ects models as well as covariance

pattern models are presented in the following.

But �rst, the di�erences between those two model classes are depicted with respect to

the auto- and cross-correlations. In Figure 4.1, one arrow represents one correlation

parameter, assuming that no restrictions are placed on the models.

Figure 4.1: Correlation scheme of bivariate mixed models. On the top: covariance pat-
tern model, on the bottom: random e�ects model. Blue arrows symbolize
autocorrelations, green arrows within-time cross-correlations and red arrows
between-time cross-correlations.

The implications of the change from the univariate to the multivariate model are clear:

The number of correlations increase as the blue ones are extended by the red and green
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types. The random e�ects models (below) induce a more parsimonious structure than the

covariance pattern models (above). The di�erence between the number of parameters in-

creases with q and is thus more pronounced in the multivariate case. It will be investigated

in Subsection 4.2.3 that strict assumptions are required for covariance pattern models to

ensure a reasonable relation between the number of parameters and the sample size and

hence to enable the estimability of the models. The following presentation is restricted

to the bivariate case considering q = 2 biomarkers without loss of generality. Models

for q > 2 biomarkers require an extended approach and are therefore shortly discussed in

Chapter 6.

4.2.1 Models with Uncorrelated Random E�ects

The independence assumption of the biomarkers leads us back to the univariate case, only

the blue arrows of both schemes in Figure 4.1 are modelled. Whether the autocorrelations

of the biomarkers for longQDA are modelled only by random e�ects (RIind or RISind)

or additionally by time-dependent residuals (RICAR1ind), the approach is the same: It is

su�cient to model each biomarker separately and then the results are combined as follows

to assess the combined biomarker performance. Treating the q = 2 biomarkers w [1];w [2]

as independent, the mean and the covariance matrices are estimated separately as the

joint density can be factorized as

P (k = Kjw [1];w [2]) / �[K] � f (w
[1]j k = K) � f (w [2]j k = K)

for group K.

It follows with Equation (2.3) that the corresponding posterior probability p[1;2]
i [K]

based

on 2 biomarkers is

p
[1;2]
i [K]

=
exp

[
� 1

2

2∑̀
=1

(
(w

[`]
i
��

[`]

[K]
)T (V

[`]

[K]
)�1 (w

[`]
i
��

[`]

[K]
)

)]
�

[
2∏

`=1

jV
[`]

[K]
j

]
�
1
2

��[K]

1∑
k=0

exp

[
� 1

2

2∑̀
=1

(
(w

[`]
i
��

[`]

[k]
)T (V

[`]

[k]
)�1 (w

[`]
i
��

[`]

[k]
)

)]
�

[
2∏

`=1

jV
[`]

[k]
j

]
�
1
2

��[k]

=
1

�[K]

2∏
`=1

p
[`]
i [K]
: (4.2)

That is, the results of the univariate mixed models as given by Equation (4.2) are used in

that the posterior probabilities of the univariate RI, RIS, RICAR1 model are combined to

yield the posterior probabilities of the biomarker pair.

The implied marginal covariance matrix Vi of Equation (4.1) has only non-zero entries in

the matrices on the block diagonal, all entries in the o�-diagonal are assumed to be zero,
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including the cross-correlations:

Vi(6�6) =



v
[1]2
11 v

[1]
21 v

[1]
31 0 0 0

v
[1]
21 v

[1]2
22 v

[1]
32 0 0 0

v
[1]
31 v

[1]
32 v

[1]2
33 0 0 0

0 0 0 v
[2]2
11 v

[2]
21 v

[2]
31

0 0 0 v
[2]
21 v

[2]2
22 v

[2]
32

0 0 0 v
[2]
31 v

[2]
32 v

[2]2
33


:

The selection of the assumed univariate mixed model structure is guided by the model

with the smallest BIC as examined in Chapter 3. There is a high �exibility with regard to

the model structure as it can even di�er across biomarkers. This is especially favourable

for q > 2.

4.2.2 Models with Correlated Random E�ects

The models presented in this section are direct extensions of the univariate mixed models

with an RI or RIS structure (Chapter 2, p. 6) and denoted as RIcorr resp. RIScorr. They

are increasingly common in medical applications (Mickey et al., 1994; Shah et al., 1997;

Chakraborty et al., 2003; Beckett et al., 2004). The random e�ects are now assumed to

be correlated, resulting in the following covariance matrices D. For the RIcorr model, the

covariance matrix of the random intercepts is

D =

(
d
[1]2
I

d
[1;2]
II

d
[1;2]
II

d
[2]2
I

)
:

For the RIScorr model, the (4� 4)-covariance matrix D of the random e�ects is

D =


d
[1]2
I

d
[1]
IS

d
[1;2]
II

d
[2;1]
IS

d
[1]
IS

d
[1]2
S

d
[1;2]
IS

d
[1;2]
SS

d
[1;2]
II

d
[1;2]
IS

d
[2]2
I

d
[2]
IS

d
[2;1]
IS

d
[1;2]
SS

d
[2]
IS

d
[2]2
S

 :

The covariances d [1;2]
II

and d [1;2]
SS

of the random e�ects allow for the possibility that the

average levels of the intercepts resp. the slopes are correlated. Models with constraints

between the biomarkers, i.e. where the random intercepts are correlated and the random

slopes are not or vice versa, have not been considered.

For the residuals, a simple covariance structure as Ri = ���(q�q)
 I(p�p) is assumed where

��� is an unstructured matrix. The covariance parameter �[1;2] contains the correlation

between the residuals of two biomarkers measured at the same point in time. For the
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validity of this model, both biomarker measurements need to be recorded simultaneously.

We assume � also in the application later on � that conditional on the random e�ects the

error components are uncorrelated, thus �[1;2] = 0 and Ri = diag(�[1]2; �[2]2)
 I. This is

a reasonable assumption for q biomarkers which come from di�erent test assays and was

also suggested in the literature (Shah et al., 1997).

Assuming p = 3 measurements at (ti1; ti2; ti3), the overall covariance matrix Vi of the

RIScorr model is

Vi = ZiDZ
T
i +Ri

=



1 ti1 0 0

1 ti2 0 0

1 ti3 0 0

0 0 1 ti1

0 0 1 ti2

0 0 1 ti3


�D �


1 1 1 0 0 0

ti1 ti2 ti3 0 0 0

0 0 0 1 1 1

0 0 0 ti1 ti2 ti3



+



�[1]2 0 0 �[1;2] 0 0

0 �[1]2 0 0 �[1;2] 0

0 0 �[1]2 0 0 �[1;2]

�[1;2] 0 0 �[2]2 0 0

0 �[1;2] 0 0 �[2]2 0

0 0 �[1;2] 0 0 �[2]2


:

The single entries in Vi have a complex structure, e.g. the (1; 1)-entry is d [1]2
I

+ d
[2]2
I

+

2ti1

(
d
[1]
IS

+ d
[2]
IS

+ d
[1;2]
II

+ d
[1;2]
IS

+ d
[2;1]
IS

)
+ t2i1

(
d
[1]2
S

+ 2d
[1;2]
SS

+ d
[2]2
S

)
+ �[1]2.

A special case of the multivariate random e�ects models is the latent variable approach. If

the random e�ects are perfectly correlated, that is if b[1]i = g b
[2]
i , where g is a constant,

then this model is equivalent to assuming a common latent variable with a multivariate

normal distribution (see e.g. Gueorguieva (2001)).

Statistical software for �tting linear mixed models (R packages nlme,lmer, SAS proc

mixed) are not designed for multivariate mixed models but can be used with a customized

set-up of the dataset (see Subsection 5.3.1 for details). Mickey et al. (1994) and Shah

et al. (1997) use the EM algorithm for estimation, treating the random e�ects as missing

data, Schafer and Yucel (2002) follow the same approach but extend the algorithm to cope

with "real" missing data. For a discussion of the RIScorr model including interpretation

guidance and pitfalls confer Fieuws and Verbeke (2004).
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4.2.3 Covariance Pattern Models with Kronecker Product Structure

Covariance pattern models are mixed models with no random e�ects but a residual covari-

ance matrix with a complex time-dependent structure. As described above, multivariate

covariance patterns need parsimonious structures to avoid that maximally pq(pq+1)
2 dis-

tinct parameters of the covariance matrix need to be estimated. As far as we know, the

only multivariate extension that has been proposed (among others by Galecki, 1994), is

the product covariance model. Its name is due to the speci�c assumption that the covari-

ance matrix Vi is factorised as a Kronecker product and it is referred to in the following as

the model with the Kronecker product structure (KPS). The matrix is separated into the

matrix ��� describing the variance of and the covariance of the biomarkers independently

from time and into 			 containing the within-covariance which is assumed to be the same

for all biomarkers.

For q = 2 and p = 3, without any constraints on 			, the covariance matrix is

Vi = ��� 
 			 =

(
�[1]2 �[1;2]

�[1;2] �[2]2

)



  2
11  12  13

 21  2
22  23

 31  32  2
33



=



�[1]2 2
11 �[1]2 12 �[1]2 13 �[1;2] 2

11 �[1;2] 12 �[1;2] 13

�[1]2 21 �[1]2 2
22 �[1]2 23 �[1;2] 21 �[1;2] 2

22 �[1;2] 23

�[1]2 31 �[1]2 32 �[1]2 2
33 �[1;2] 31 �[1;2] 32 �[1;2] 2

33

�[1;2] 2
11 �[1;2] 12 �[1;2] 13 �[2] 2

11 �[2]2 12 �[2]2 13

�[1;2] 21 �[1;2] 2
22 �[1;2] 23 �[2]2 21 �[2]2 2

22 �[2]2 23

�[1;2] 31 �[1;2] 32 �[1;2] 2
33 �[2]2 31 �[2]2 32 �[2]2 2

33



In the top schema of Figure 4.1, p. 36, the blue arrows (representing the autocorrelations)

are captured by the covariance pattern of			 in this model. The variances of the biomarkers

are the entry-wise product of the diagonal entries of ��� and 			. The green arrows are the

product of the between-biomarker covariance and the within-biomarker variances. The

red arrows representing the cross-correlations are the autocorrelations scaled (through

multiplication) by the between-biomarker correlation.

As both matrices, ��� and			, are symmetric, the covariance matrix of the second biomarker,

denoted as submatrix E in Equation (4.1), is proportional to the covariance matrix of the

�rst biomarker. The product-covariance model sets

E = �1A =
�[2]2

�[1]2
A

with the scale variance parameter �1. For the cross-covariance matrix B = C, there is
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also a proportional relationship in that

C = �2			 = �[1;2]			

with the scale cross-covariance parameter �2. Weiss (2005) notes that in the product

covariance model, the within-time cross-correlations always have higher absolute values

than the between-time cross-correlations which is a reasonable assumption. This becomes

obvious when comparing the within-time cross-correlation

corr(w [`]
i j ; w

[`0]
i j ) =

�[1;2] 2
11

�
[1]�[2] 2

11

=
�[1;2]

�[1]�[2]

with the between-time cross-correlation

corr(w [`]
i j ; w

[`0]
i j 0

) =
�[1;2] 12

�[1] 11�[2] 22
=

 12

 11 22
� corr(w [`]

i j ; w
[`0]
i j )

and realizing that the �rst term of the last equation is a correlation and therefore less

than one in absolute value. A further implied assumption is the symmetry of the cross-

correlations.

For univariate covariance pattern models, common covariance structures include com-

pound symmetry (CS), autoregressive (AR), banded, Toeplitz, unstructured (UN) and

others (Verbeke and Molenberghs, 2000). In the bivariate, an unstructured covariance

pattern is assumed for ��� and for 			 either compound symmetry (CS), an continuous au-

toregressive process of order 1 (CAR1) or an unstructured (UN) pattern. These structures

are denoted as UN
 CS, UN
 CAR1 and UN
 UN.

Caution is advised when implementing the Kronecker product structure as some indeter-

mination may result (Galecki, 1994): The non-identi�ability arises from the fact that if

��� 
 			 is the overall covariance matrix, then there exists a continuum of other pairs of

covariance matrices, e.g. c � ��� and 			=c (c > 0), which results in the same Kronecker

product. The covariance matrix 			 is then rescaled to yield  11 = 1, assuring the identi-

�ability of the matrices ��� and 			. The remaining entries of the overall covariance matrix

may then be interpreted as ratios on the scale of  11. Further on, the covariance matrix 			

equals the correlation matrix for homogeneous variance structures like CS and CAR1.

Together with this constraint, the covariance matrix 			 is as follows for the three consid-

ered model structures:

� CS:

The constraint implies that �2 = 1�  2 and therefore

			 = �2I +  2J = (1�  2)I +  2J



42 4.2 Multivariate Linear Mixed Models

where I is the p-dimensional identity matrix and J a p-dimensional matrix of 1's.

For p = 3 for example, it is

 1  2  2

 2 1  2

 2  2 1

 :
� CAR1:

The constraint implies that �2 = 1 and therefore

			 =
[
�2 �  jti j�ti(j+h)j

]
=
[
 jti j�ti(j+h)j

]
with  2 [0; 1].

The time points j and j + h are h lags apart for the hth superdiagonal and h = 0 for

the diagonal of the matrix. Thus, the matrix will be di�erent for each individual i if

the individual times between biomarker measurements vary from patient to patient.

� UN:

The constraint implies that �21 = 1. This is the only condition which is placed on

the covariance matrix 			 in the unstructured case.

For p = 3 for example, 			 =

 1  12�2  13�3

 12�2 �22  23�2�3

 13�3  23�2�3 �23

 :

The number of parameters in the covariance matrix to be estimated are q(q+1)
2 + 1 for

UN
 CS and UN
 CAR1 and q(q+1)
2 +

p(p+1)
2 � 1 for UN
 UN.

For the proposed model structures, the time component, the distinctive feature of lon-

gitudinal data compared to cross-sectional ones, is only partially taken into account: for

CS and UN by the order of the biomarker measurements, for CAR1 by the time distance

between the measurements. The �rst models assume equidistant visits and modifying the

time scale has no e�ect whatsoever on the estimated model parameters. This is a general

limitation of covariance pattern models.

In the univariate case, the marginal representation of a mixed model with a random

intercept equals that of a covariance pattern model with a compound symmetry struc-

ture (Verbeke and Molenberghs, 2000). Due to the strong assumptions underlying a

covariance pattern model with a KPS, the equivalence between the multivariate RI model

(with uncorrelated residual variances as above) and the UN 
 CS structure is only valid

under the following three assumptions:

�2 = 2

�[1]2 =
�[1]2

2

�[2]2 =
�[2]2

2
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Estimation

The computational bene�ts of the Kronecker product structure become evident when

considering the model estimation. But at �rst, a general outline of the estimation is given.

The full log-likelihood function lML is based on the marginal model w � N(X�; V (�))

where � = (�o); o = 1; : : : ; O is a vector containing the distinct covariance parameters to

be estimated. Maximising the likelihood (omitting constant terms)

lML(w j�; �) = �
1

2
log jV (�)j �

1

2
(w �X�)TV (�)�1(w �X�) (4.3)

with respect to � for �xed � yields

�̂(�) = (XTV (�)�1X)�1XTV (�)�1w : (4.4)

As it is a well-known result (Verbeke and Molenberghs, 2000) that a full maximum like-

lihood approach provides biased estimates for the covariance parameters �, a restricted

maximum likelihood (REML) approach (Patterson and Thompson, 1971) is preferred.

REML corrects for the loss of degrees of freedom when estimating � and therefore pro-

duces less biased variance parameters than ML. There are several derivations available

for mixed models (Patterson and Thompson, 1971; Harville, 1977; Verbyla, 1990). The

conditional derivation given by Verbyla (1990) is presented in the following.

Let the matrix M = [M1;M2]
T be a non-singular matrix where M1 and M2 are pq � uq

and pq � (pq � uq) matrices respectively. The submatrices are chosen to satisfy the

following conditions

MT
1 X = I(uq�uq) and MT

2 X = 000:

Transforming w by these matrices, the new partitioned response vector is(
MT

1 w

MT
2 w

)
=

(
w1

w2

)
� N

[(
�

000

)
; �2

(
MT

1 V M1 MT
1 V M2

MT
2 V M1 MT

2 V M2

)]

and consequently, the distribution of w2 is independent on �. The joint likelihood of w1

and w2 can be factorized into the conditional and the marginal likelihood as

LREML(�; �;w1;w2) = LREML(�; �;w1jw2) � L
REML(�;w2): (4.5)

The log-likelihood of the conditional distribution of w1jw2 omitting constant terms is

lREML(�; �;w1jw2) =
1

2

(
log jXTV �1Xj � �T1X

TV �1X�1

)
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where �1 = w1���w
�
2 with w�

2 =MT
111 V M222(((M

T
222 V M222)))

�1
w222. This conditional likelihood

is independent from the choice of M, it only depends on X. The score vector for � is

sREML(�) = XTV �1X�111;

yielding the same estimate for �̂ as under ML (Eq. (4.4)). The log-likelihood of the

marginal distribution of w2 is the likelihood of observing the sample residuals (not the

sample data) and, ignoring constants, can be rewritten as

lREML(�;w2) = �
1

2

(
log jV j+ log jXTV �1Xj+ �̂TV �1�̂

)
= �

1

2

(
log jV j+ log jXTV �1Xj+ wTPw

)
(4.6)

where �̂ = w ���X�̂ and P = V �1 ��� V �1X(((XTV �1X)))
�1
XTV �1.

The score vector sREML(�) = (sREML(�1); : : : ; s
REML(�O))

T contains the entries

sREML(�o) = �
1

2
tr
(
P
@Vi
@�o

)
+

1

2
wTP

@Vi
@�o

Pw : (4.7)

for o = 1; : : : ; O. A detailed derivation of the REML results is found in Taylor (2005).

In the multivariate setting, the estimation can be a computionally intensive estimation as

Vi of size pq � pq needs to be di�erentiated and inverted (cf. Equations (4.4)�(4.7)).

Due to the assumed Kronecker product structure, however, it is not and involves only the

less dimensional di�erentiation and inversion of ���q�q and 			p�p. Here, � = (�; ) and

contains all distinct covariance parameters of ��� resp. 			. We have

@Vi
@�o

=

 @���
@�o


			 if �o 2 �

���
 @			
@�o

if �o 2  

and

V �1
i = (���
			)�1 = ����1 
			�1:

When assuming a covariance structure such as CS or CAR1 for			, the estimation formulae

are even more simpli�ed. The resulting partial derivatives and the inverse for those two

structures are

� CS:

@			

@ 
= �2 I + 2 J

			�1 =
1

(1�  2)
I �

 2

(1�  2)(1 + (p � 1) 2)
J
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� CAR1:

@			

@ 
=
[
jti j � ti(j+h)j �  

(jti j�ti(j+h)j�1)
]

			�1 =
1

1�  2jti j�ti(j 0+1)j
� diag(1; 1; : : : ; 1; 0) +

1

1�  2jti j�ti(j 0�1)j
� diag(0; 1; : : : ; 1; 1)

�
 jti j�ti j 0 j

1�  2jti j�ti j 0 j
J�

where J� is a tridiagonal matrix with zeros on the diagonal and ones on the �rst

super- and the �rst subdiagonal.

As can be seen in Equation (4.5), the estimation of � which is based on the second fac-

tor does not depend on �. Therefore, the selected approach for the REML estimation

was to �rst get an estimate for � by numeric constrained optimization according to Equa-

tions (4.6) and (4.7) and second, to compute �̂ according to Equation (4.4). The numeric

constrained optimization was done by the R function optim based on the L-BFGS-B algo-

rithm (see Kohlmann (2005) and the references therein). Besides the likelihood function

and the gradient function, start values and constraints for the parameters were given.

The partial derivatives under UN
UN were derived by the R package Ryacas (Goedman

et al., 2008).

Other alternatives for the numerical computation would have been a Fisher-Scoring al-

gorithm as presented by O'Brien and Fitzmaurice (2005).The L-BFGS-B algorithm was

opted for as no information matrix needs to be computed. For the simpler case where the

mean is assumed to be unstructured and estimated by the average value over w , the esti-

mation of � does not longer depend on �. Dutilleul (1999) proposes a �ip-�op algorithm,

estimating � by iterating between the estimation of ��� for �xed 			 and vice versa. Further,

a likelihood ratio test was derived to test whether the covariance matrix is separable with

a KPS (Lu and Zimmerman, 2005; Mitchell et al., 2006; Roy and Khattree, 2003). The

�ip-�op algorithm is faster than a Fisher-Scoring algorithm (for comparisons see Lu and

Zimmerman, 2005) and even faster, non-iterative methods have recently been proposed

by Werner et al. (2008).

4.3 Application of Multivariate longQDA: RA Therapy

Resistance Data

The application data set for multivariate longQDA is again about therapy resistance, but

this time with respect to a drug for patients su�ering from rheumatoid arthritis. Seven

biomarkers (coded as BM1 up to BM7) were repeatedly measured throughout the study,

�rst at the beginning of the study, then 1, 4 and 6 months thereafter. The drug was
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administered at the beginning of the study (after the blood sample was taken) and two

weeks later. A patient was de�ned as non-resistant according to an improvement after

6 months based on the ACR50 criteria (Felson et al., 1993) involving criteria such as

the status of the joints, disease activity and pain intensity. This de�nition is the Gold

Standard, the reference classi�cation. The study population under treatment comprises

55 non-resistant and 110 resistant patients with complete data of all 4 visits.

The biomarker pro�les were transformed to better meet the normality assumptions of

longQDA, biomarker 1 to 6 by ln(x + 10), biomarker 7 by the variance-stabilizing arcsine

transformation suitable for proportions. The individual pro�les as well as their group-wise

summary are displayed in Figure 4.2. Biomarker 1 to 4 exhibit a downwards pattern over

time for both groups whereas for biomarker 5 to 7, there are only few dynamics over time.

The heterogeneity is especially peculiar for biomarker 2. At visit 1, the measurements had

not been a�ected by the drug yet. Given that there is no selection bias present regarding

the individual medication history, the classi�cation at this point in time assesses what

could be termed 'predisposition' for being resistant. Except for biomarker 5, the non-

resistant patients had higher initial biomarker levels than the resistant ones and the group

di�erence in relation to the variance was highest for biomarker 4. During the treatment,

all biomarker pro�les except that of biomarker 1 decreased more for non-resistant patients

over time.

The autocorrelations (squares on the diagonal of Figure 4.3(a) and 4.3(b)) were high,

similar in both groups and higher than the cross-correlations (squares on the o�-diagonal).

For none of the biomarkers, a pattern that cross-correlations at the same time points dif-

fered structurely from those at di�erent time points was observed. The cross-correlations

indicated two conceptual groupings of biomarkers: biomarker 6 and 7 with relations to

1, and biomarker 2 to 5. Between biomarkers of those groups, the cross-correlations

were negligible in size. There was a slight tendency for resistant patients to have higher

correlated biomarkers. This was in accordance with the smaller decrease of the pro�les

over time.

The model selection for the estimation of the group-speci�c mean and covariance was

based on the minimal BIC as exposed in Chapter 3. For the univariate assessment, RI,

RIS and RICAR1 structures were �tted and for the bivariate, the structures presented in

Section 4.2.1-4.2.3: RIind, RISind, RICAR1ind, RIcorr, RIScorr, UN
CS, UN
CAR1 and

UN
UN. A �xed intercept and a �xed linear slope (with study time measured in months)

were always part of the mixed model. In each group, the model structure that was selected

in the majority of the 50 MCCV loops was determined. If the selected structure di�ered

between non-resistant and resistant patients, the results of the structure with the highest

overlap between the groups were reported. This is analogous to the approach applied

previously.
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Figure 4.2: Individual pro�les of biomarker indicative for RA therapy resistance (in black
non-resistant, in red resistant patients)
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Figure 4.3: Auto- and cross-correlations of transformed biomarkers

For 3 as well as for 4 visits, RIS was selected for BM1 (3 visits: in 88% of the MCCV

loops for non-resistant, in 100% for resistant patients; 4 visits: 94%, 100%), RI for the

BM2, 4-7 (3 visits: 92% and more, 65% and more; 4 visits: 65% and more, 65% and

more). There were two discrepancies with di�ering model structures: The RIS structure

was selected in 86% and RI only in 14% for BM4 in the resistant group with 3 visits and

also in 52% RIS versus 34% RI for BM2 in the non-resistant group with 4 visits. For

BM3, RI was selected in most of the MCCV loops with 3 visits (98%, 50%), but RICAR1

with 4 visits (46%, 62%).

In the bivariate longQDA, RISind was chosen for all pairs with BM1, RIind for pairs with

BM5, BM6 or BM7 (except RIcorr for BM3 with BM5 and BM5 with BM6 for 4 visits)

and RIcorr for the pairs BM2 with BM3 or BM4, BM3 with BM4 and BM6 with BM7

for 3 and 4 visits. For 3 visits, the model selection was not always consistent for both

groups in that RIind was rather appropriate for the non-resistant patients. This matches

with the simulation results of Section 3.4 that a correct selection of the model structure

is more di�cult for shorter biomarker pro�les. The selection of the MMS for the other

biomarker combinations was unambiguous with more than 50% frequency in both groups.

The distinction between a MMS with or without cross-correlations matches with the

empirical cross-correlations illustrated in Figure 4.3. The RIcorr structure was selected

for models with empirical cross-correlations of more than 0.25. Unsurprisingly, RIScorr

did not converge in all of the MCCV samples for the biomarker pairs with low empirical

cross-correlations. Sometimes there were convergence problems with UN
UN which is

in�exible due to the combination of the maximum degrees of freedom for the estimation
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of the autocorrelations and the minimal proportionality structure between the biomarkers.

None of the Kronecker product structures was selected as the most appropriate one in

this application.

As an example, the di�erences of the �xed mean pro�les and the covariance parame-

ters between the empirical and those of the di�erent MMS are illustrated in Figure 4.4

resp. Figures 4.5 and 4.6 for the biomarker pair BM3 and BM4.
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Figure 4.4: Empirical and estimated �xed mean pro�les of BM3 and BM4

The estimated linear mean pro�le was the same for all model structures except that of

UN
UN and matched well with the empirical equivalent in both groups. The mismatch

of the empirical pro�les to the estimated pro�les for UN
UN was a �rst evidence for the

inappropriateness of this covariance structure. It was more pronounced for BM4 than for
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BM3 where it even led to a falsely high di�erence between the pro�les of the two patient

groups.

The empirical autocorrelation parameters of the non-resistant patient group were high for

BM3 and higher between visit 1 and 2 and visit 3 and 4, and decreased slightly for BM4

with an increasing time di�erence between the visits (Figure 4.5). The cross-correlations

were low and smallest between BM3 at visit 1 and 2 and BM4 at visit 3 and 4.
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Figure 4.5: Empirical and estimated auto- and cross-correlations of BM3 and BM4 with

variance parameters printed on the diagonal, non-resistant patients

The biomarker measurements of the resistant group (Figure 4.6) exhibited high time-

independent autocorrelations for BM3 and BM4, the cross-correlations at the same visit

were of similar size as the autocorrelations but smaller for di�erent visits.
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Figure 4.6: Empirical and estimated auto- and cross-correlations of BM3 and BM4 with

variance parameters printed on the diagonal, resistant patients

The illustrations of the Kronecker product structures in the second row show the special

proportionality assumption of BM3 to BM4 resp. to the covariance between them: The

patterns of the estimates are the same. This simplifying assumption yielded mainly to

underestimation within both groups. Especially for UN
CS, the pattern of the empirical

correlations were lost. All KPS structure estimates show lower di�erences between the

group parameters than there were in the data. The RIcorr structure is more parsimonious

than RIScorr but captured the most important patterns in the correlations. However,

RIScorr outperformed the other MMS regarding the replication of the empirical correlation

pattern. The autocorrelation parameters of RIind were similar to the one of RIcorr. But

this was not the case for RISind and RIScorr, the estimation of cross-correlations in the

latter resulted also in a more precise estimation of the autocorrelations. The estimated

RICAR1ind parameters were very similar to those of RIind but the empirical ones did also

not exhibit a AR(1) pattern.
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This ranking of the structures based on the correlations applies to the variance parameters

as well. The models without cross-correlations did not have so highly overestimated

variances as the Kronecker product structures. Moreover, unrealistic model structure

simpli�cations carried the danger to decrease or increase the empirically observed group

di�erences and thus the classi�cation performance. The BIC selected RIind in 82%, RIcorr

in 10% and RICAR1ind in 8% of the 50 MCCV samples for the non-resistant group and

RIcorr in 100% for the resistant group. Compared to the visual ranking, the BIC takes

the �t and the number of parameters of the models into account, penalising models with

too many parameters.

In the following, the univariate longitudinal classi�cation performance of the biomarkers

for the �rst 3 and 4 visits is presented in comparison to the cross-sectional one of QDA at

visit 1. At the �rst visit, biomarker 1 and 4 had the best cross-sectional performance with

an median AUC of 0:62, a BS of 0:785 and a correlation with the Gold Standard of 0:2

(see Table 4.1 for the corresponding con�dence intervals and Figure 4.7, �rst row of the

cubes). (The prior probabilities were estimated by the group proportions in all analyses,

i.e. � = (1=3; 2=3). This yielded [�0:77; 0:77] as limits of the biserial correlation. The

reference limit of the Brier Score is 0:778.)

Perf. Measure Biomarker Visit 1 (QDA) 4 visits (longQDA)

AUC BM 1 0.63 [0.53;0.67]

BM 4 0.62 [0.54;0.71] 0.67 [0.58;0.76]

BM 4,5 0.65 [0.57;0.76]

BS BM 1 0.785 [0.766;0.789]

BM 4 0.786 [0.769;0.794] 0.792 [0.755;0.812]

BM 4,5 0.786 [0.756;0.806]

�z[1];p[1]
BM 1 0.20 [0.03;0.26]

BM 4 0.19 [0.07;0.29] 0.27 [0.11;0.42]

BM 4,5 0.22 [0.09;0.39]

Table 4.1: Performance measures of biomarkers indicative for RA therapy response. They

are given as median with 10th and 90th percentile of 50-fold MCCV results.

The group-wise distributions of the estimated posterior probabilities were hardly separated

(Figure 4.8(a) and (b)). When using 3 or 4 visits with longQDA, BM2, BM3, BM4 and

BM6 gained in performance, BM1, BM5 and BM7 lost. Only BM4 achieved a clearly

higher performance than the cross-sectional reference (median AUC: 0:67, BS 0:792,

correlation 0:27).
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Figure 4.7: Univariate performance of biomarkers, displaying the dependence on the num-

ber of visits included in the assessment. The reference grid marks the best

cross-sectional performance of BM4, the cube of the BS has a second one at

the reference limit of 0:778.
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Also at the individual posterior probability level (Figure 4.8(c)), an improvement was

observed. But the biomarker was still of minor quality for predicting therapy resistance.

The group-wise estimated mixed model parameters for the non-resistants were �[0] =

(3:92;�0:176); d2[0]I = 0:25; �2[0] = 0:26 and �[1] = (3:71;�0:088); d2[1]I = 0:30; �2[1] =

0:28 for the resistants. In both groups, the total residual variance was twice as high as

the variance of the random intercept, yielding an intraclass correlation of about one third.

Figure 4.8: Histograms of posterior probabilities for resistant (red) and non-resistant pa-

tients (gray). (a) BM1, QDA with data of visit 1; (b) BM4, QDA with data

of visit 1; (c) BM 4, longQDA with data of 4 visits; (d) BM4 and BM5, QDA

with data of visit 1; (e) BM4 and BM5, longQDA with data of 4 visits.

In the following, the performance of biomarker pairs is considered. The best ones were

achieved by combinations with the best univariate biomarker BM4 (Figure 4.9). At the

�rst visit, the pair of BM4 and BM5 achieved a slightly better performance with QDA

with a median AUC of 0:65, a BS of 0:786 and a correlation of 0:22 than BM4 as a

single marker (Table 4.1 and Figure 4.8(d) vs. (b)). But it was still worse than the uni-

variate longitudinal performance of BM4. This remained also the best performance when

combining biomarkers over time with longQDA (Figure 4.9 and Figure 4.8(e) vs. (c)).



4. Multivariate Extensions of Longitudinal QDA for Biomarker Combinations 55
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Figure 4.9: Bivariate performance of biomarkers, displaying the dependence on the number

of visits included in the assessment. The lower reference grid marks the best

cross-sectional performance of the pair BM4,BM5, the higher one the best

longitudinal one of BM4.
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4.4 Improvement by Multivariate Modelling: Some Examples

For the application data, there was no additional gain in performance by combining

biomarkers. Therefore, exemplary scenarios where such an improvement has been achieved

are presented in the following. For this purpose, bivariate biomarker data were simulated

according to a random coe�cients model with RIcorr structure (denoted as RIcorr*).

This is the simplest bivariate model in that only one additional parameter needs to be

estimated comparing the bivariate model with the two univariate models. It is the cor-

relation �[1;2]
II

between the random intercepts of each biomarker. The univariate, i.e. the

biomarker-speci�c parameters were assumed to be the same. Thus, both biomarkers yield

the same univariate classi�cation performance and a potential gain is only triggered by

the bivariate modelling. As above, the residuals between the variables were assumed to

be independent.

There were 4 simulation scenarios and their parameters are given in Table 4.2. In scenario 1

to 3, the parameters di�ered only with regard to �[1;2]
[k]II

. The di�erence of the group-

speci�c correlations of the random intercepts was smallest for scenario 1 with 0.2 (�[1;2]
[0]II

=

0:8; �
[1;2]
[1]II

= 0:6). The di�erence was increased to 0.6 for scenario 2 (�[1;2]
[1]II

= 0:2) and

further to 1.6 for scenario 3 (�[1;2]
[1]II

= �0:8). The fourth scenario exhibits a data setting

where the correlations di�ered as slightly as in scenario 1 but the �xed slopes as well

as the residual variances di�ered in addition by 0.1 each (�[0]1 = �0:05; �[1]1=0:05 and

�2[0] = 0:3; �2[1] = 0:2).

Parameter Scenario Group 0 Group 1

�0 1,2,3,4 -3.70 -3.70

�1 1,2,3 - 0.05 - 0.05

4 -0.05 -0.05

dI 1,2,3,4 - 0.15 - 0.15

�
[1;2]
II

1,4 -0.80 -0.60

2 -0.80 -0.20

3 -0.80 -0.80

�2 1,2,3 -0.20 -0.20

4 -0.30 -0.20

Table 4.2: Group-speci�c parameter settings of simulated RIcorr* models

Biomarker data with 4 visits measured at baseline, 1, 4, and 6 months thereafter were

simulated. The population comprised twice the sample sizes of the application data, 110

non-resistant and 220 resistant patients. We applied 50-fold MCCV and did 25 simulation
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repetitions. For each simulation scenario, two classi�cation performances were evaluated

to illustrate the potential gain: the univariate performance by a random coe�cient model

including the measurements of one biomarker and the corresponding bivariate performance

including both biomarkers.

The histograms of the estimated posterior probabilities for group 1 are shown in Fig-

ure 4.10 and the resulting performance measures AUC, BS and �z[1];p[1] are listed in Ta-

ble 4.3 for each simulation scenario. The limits of the latter two are the same as for the

application data. Note that the univariate results of scenario 2 and 3 were the same as

for scenario 1 and were therefore omitted.

Figure 4.10: Histograms of posterior probabilities for resistant (red) and non-resistant

patients (gray), simulated bivariate biomarker data. (a) Sc. 1, RI; (b) Sc. 1,

RIcorr; (c) Sc. 2, RIcorr (d) Sc. 3, RIcorr; (e) Sc. 4, RI; (f) Sc. 4, RIcorr.

Scenario MMS AUC BS �z[1];p[1]

1 RI :50 [:42; :57] :776 [:767; :782] :00 [�:13; :13]

1 RIcorr :52 [:44; :60] :773 [:760; :785] :03 [�:11; :17]

2 RIcorr :59 [:51; :68] :782 [:767; :798] :16 [�:03; :30]

3 RIcorr :79 [:73; :84] :835 [:812; :853] :50 [�:41; :58]

4 RI :81 [:75; :87] :844 [:818; :867] :55 [�:44; :64]

4 RIcorr :87 [:82; :92] :873 [:848; :897] :66 [�:56; :73]

Table 4.3: Selected performance measures demonstrating the bene�t of multivariate mod-

elling. They are given as median with 10th and 90th percentile.

Comparing the univariate performance of scenario 1 with the corresponding bivariate per-

formance ((a) vs. (b)), a performance of very minor quality was achieved in both cases. A
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di�erence between the correlation parameters of 0.2 was not su�cient for an improvement

and a di�erence of 0.6 as in scenario 2 was only slightly better ((a) vs. (c)). Scenario 3

exhibited an extreme improvement by bivariate modelling ((a) vs. (d)). A di�erence of

1.6 yielded an AUC of 0:79 [0:73; 0:84] vs. 0:5 [0:42; 0:57], a BS of 0:835 [0:812; 0:853]

vs. 0:776 [0:767; 0:782] and also a clearly higher biserial correlation of 0:50 [0:41; 0:58]

vs. 0:00 [�0:13; 0:13].

But a very high di�erence is not the only possible scenario to yield an improvement by

bivariate modeling. Another possible parameter setting is illustrated by scenario 4. The

di�erence between the correlation parameters was with 0.2 as small as in scenario 1 but

two further parameters di�ered slightly between the groups. This yielded quite a good

univariate classi�cation performance but it was also further improved by combining the

biomarkers ((e) vs. (f)).



5 Software Implementation:

The R package longQDA

For a wide-spread application of statistical methods, an implementation in a state-of-the-

art software environment like R (Ihaka and Gentleman, 1996; R Development Core Team,

2008) is indispensable nowadays. The package longQDA provides the necessary general

framework for executing quadratic discriminant analysis with longitudinal data. All

univariate and multivariate models presented in Chapter 2 to 4 have been implemented. It

comprises about 3500 e�ective lines of code (determined by LineStats, Fridman (2005))

and is available on request from the Biostatistics Department of Roche Diagnostics

GmbH, Penzberg.

In the next section, an application of longQDA is shown for the HIV therapy resistance data

set. The results of these analyses have already been presented in Chapter 2. The package

longQDA contains these data as an exemplary data set with a univariate biomarker. The

implementation of the software follows the object-orientated concept of S4 classes (Cham-

bers, 1998, 2006), which is provided by the R package methods. This conceptual approach

determined the software design and is presented in the subsequent section. One of the

main advantages of object-oriented programming (OOP) is easy extensibility and this is

demonstrated for two features of the software, the multivariate version of longQDA and

the generation and analysis of simulated data with the option to use parallel computing.

Further possible extensions may be, for example, mixed models with a mixture density

for the random e�ects. Appendix B complements this section by help �les of the most

important functions in longQDA.

5.1 Application: Analyzing Univariate Biomarker Data with

longQDA

The package longQDA provides functionality for the entire data analysis process, from the

descriptive and explorative analysis of longitudinal data up to the comparison of results,

e.g. when contrasting longQDA with di�erent model assumptions or longQDA to QDA.
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In the following, the main functionality of longQDA is demonstrated with the data set

called AIDS2, which contains one biomarker that is indicative for a patient's response

to HIV therapy. The following exemplary features of the analysis steps are presented:

describing and exploring longitudinal data, de�ning subanalyses, performing those sub-

analyses by QDA or univariate longQDA, comparing analysis results and, last but not

least, documenting the results.

The documentation is facilitated by a sequential report generation during the entire data

analysis process. In every analysis step, the output may be redirected into a report and a

preview with the results of these analyses may be displayed. At any time during the analysis

process, further additional plots or comments may be added to the report. Having �nished

the analysis, the user generates a report �le (in tex or pdf format) which documents the

analyses and contains all the output: plots, tables and comments.

5.1.1 Report Setup

Prior to the actual data analysis, it is recommended to set up the report. The constructor

function Report instantiates a report. In the subsequent stages of the analysis, the report

object is �lled with the names of the output �les and the generated output �les are saved

to the location speci�ed in the argument folder.

> rep1 <- Report(folder = "C:/AIDS2/")

An instance of class Report is a list with four entries, one for the exploratory analysis,

one for the analysis setup, one for the longQDA analyses and one for the comparison of

results (for more details, refer to B):

> str(rep1)

Formal class 'Report' [package "longQDA"] with 2 slots

..@ .Data :List of 4

.. ..$ :Formal class 'NamedList' [package "longQDA"] with 2 slots

.. .. .. ..@ .Data : list()

.. .. .. ..@ myname: chr "Exploratory Analysis"

.. ..$ :Formal class 'NamedList' [package "longQDA"] with 2 slots

.. .. .. ..@ .Data : list()

.. .. .. ..@ myname: chr "Analysis Setup"

.. ..$ :Formal class 'NamedList' [package "longQDA"] with 2 slots

.. .. .. ..@ .Data : list()

.. .. .. ..@ myname: chr "Analysis"

.. ..$ :Formal class 'NamedList' [package "longQDA"] with 2 slots
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.. .. .. ..@ .Data : list()

.. .. .. ..@ myname: chr "Comparisons"

..@ folder: chr "C:/AIDS2/"

5.1.2 Data Import and Creation of the LongData Object

After the report object has been created, the data set 'AIDS2' is imported. As it is
contained in the package, it is easily loaded by

> data(AIDS2)

Otherwise, data can be imported to R in the usual way.

A short description of the data set is obtained by calling ?AIDS2 to display the corre-

sponding help entry. Here is a short overview of the data set:

> head(AIDS2)

PATID TIMEDAY VISIT CENSOR BM1 SDURN GROUP GROUPVAR

1 1 0 1 1 20161 0.00000000 1 non-resistant

2 1 14 2 1 9699 0.03835616 1 non-resistant

3 1 29 3 1 442 0.07945205 1 non-resistant

4 1 42 4 1 310 0.11506849 1 non-resistant

5 2 0 1 1 172748 0.00000000 1 non-resistant

6 2 8 2 1 40921 0.02191781 1 non-resistant

> str(AIDS2)

'data.frame': 1506 obs. of 8 variables:

$ PATID : int 1 1 1 1 2 2 2 2 2 2 ...

$ TIMEDAY : int 0 14 29 42 0 8 37 64 99 162 ...

$ VISIT : int 1 2 3 4 1 2 3 4 5 6 ...

$ CENSOR : int 1 1 1 1 1 1 1 1 1 3 ...

$ BM1 : int 20161 9699 442 310 172748 40921 290 188 49 8 ...

$ SDURN : num 0.0000 0.0384 0.0795 0.1151 0.0000 ...

$ GROUP : int 1 1 1 1 1 1 1 1 1 1 ...

$ GROUPVAR: Factor w/ 2 levels "non-resistant",..: 1 1 1 1 1 1 1 1 1 1 ...

The variables of the data set are PATID, the patient identi�cation number, TIMEDAY

and SDURN, the study time in days resp. years, VISIT, the number of the visit ranging

from 1 to 6, CENSOR, information about the censoring, BM1, the measurements of the

biomarker HIV RNA, and GROUP and GROUPVAR, the information about the group mem-

bership according to the Gold Standard formatted as an integer resp. a factor variable.

Then the raw data set needs to be formatted according to the implemented standard-
ized longitudinal data structure. For this purpose, the user speci�es the name(s) of the
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biomarker(s) and of other important variables like the study time. The scheduled visit
times and the coding of the groups need to be provided, too. The constructor function
LongData formats the raw data set to comply with the package-speci�c longitudinal data
structure and stores important metainformation about the data which is repeatedly needed
in the subsequent analysis steps.

> d <- LongData(rawdata=AIDS2, name=dsname, markerlabels="BM1",

+ scheduledtimes=c(0, 2, 4, 8, 16, 24)/52,

+ groups=c("non-resistant" = 1, resistant = 2),

+ timename="SDURN")

The implemented standardized structure for longitudinal data is as follows:

> str(d)

Formal class 'LongData' [package "longQDA"] with 17 slots

..@ id2rows : int [1:356, 1:6] 1 5 11 13 16 22 28 31 33 38 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:356] "1" "2" "3" "4" ...

.. .. ..$ : chr [1:6] "1" "2" "3" "4" ...

..@ visitindex : int 3

..@ timeindex : int 6

..@ markerlabels : Named chr "BM1"

.. ..- attr(*, "names")= chr "BM1"

..@ markerindices : int 5

..@ scheduledtimes : num [1:6] 0.0000 0.0385 0.0769 0.1538 0.3077 ...

..@ rawdata :'data.frame': 1506 obs. of 8 variables:

.. ..$ PATID : int [1:1506] 1 1 1 1 2 2 2 2 2 2 ...

.. ..$ TIMEDAY : int [1:1506] 0 14 29 42 0 8 37 64 99 162 ...

.. ..$ VISIT : int [1:1506] 1 2 3 4 1 2 3 4 5 6 ...

.. ..$ CENSOR : int [1:1506] 1 1 1 1 1 1 1 1 1 3 ...

.. ..$ BM1 : int [1:1506] 20161 9699 442 310 172748 40921 290 188 49 8 ...

.. ..$ SDURN : num [1:1506] 0.0000 0.0384 0.0795 0.1151 0.0000 ...

.. ..$ GROUP : int [1:1506] 1 1 1 1 1 1 1 1 1 1 ...

.. ..$ GROUPVAR: Factor w/ 2 levels "non-resistant",..: 1 1 1 1 1 1 1 1 1 ...

..@ name : chr "AIDS2"

..@ groupindex : int 7

..@ grouplabels : chr [1:2] "non-resistant" "resistant"

..@ groupcodes : num [1:2] 1 2

..@ groupcolors : chr [1:2] "black" "red"

..@ groupsymbols : num [1:2] 1 2

..@ grouppriors : num [1:2] 0.820 0.180

..@ fixedgrouppriors : logi FALSE

..@ idindex : int 1

..@ markertransformfn: chr(0)

Besides the data set with coded biomarker names (BM1, BM2,...) in the slot rawdata,

the original biomarker names are stored in the slot markerlabels with the coded
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names as names of the vector. (For this data set, the biomarker was already coded

so there is no di�erence between the coded and the original biomarker name.) The

slot markertransformfn is still empty, but later on, the function names used for the

biomarker transformation are stored there, it is e.g "log10". The slot scheduledtimes

contains the scheduled visit times from which the individual visit times usually di�er. The

metainformation of the data set comprises in addition the column numbers of the data

set containing important variables such as the patient identi�cation number (idindex),

the group (groupindex), the study time and the visits (timeindex and visitindex)

and that of the biomarker (markerindices). This allows a fast access to repeatedly

requested information by various methods. The same applies to the slot id2rows which

contains the row numbers of the data set for each patient at each visit. The other slots

contain information about the groups de�ned by the Gold Standard. These are the prior

probability for each group (grouppriors), the labels (grouplabels), the symbols to

mark the group membership in plots (groupsymbols) and the numerical codes used in

the dataset (groupcodes). The user can choose either to use estimated group priors

according to the group proportions in the training sets or user-speci�ed, �xed group

priors in the analyses. The default is the �rst and the choice of the user is saved in the

slot fixedgrouppriors. If �xed group priors should be used, they can be provided in

the argument priors of LongData.

5.1.3 Exploratory and Descriptive Data Analysis

The �rst step of the analysis is to explore and describe the longitudinal data. By calling

plotLongMarkers, plots of the biomarker pro�les for the non-resistant and the resistant

patients are created (Figure 5.1).

> par(mfrow = c(1, 2)) # determines arrangement of plots

> plotLongMarkers(d)

Some patients have incomplete biomarker pro�les due to missing visits or missing biomarker mea-

surements. These are the shorter or intermittent lines in the �gure.

Next, completeCases is used to exclude all patients with less than 6 visits or missing biomarker

measurements. The biomarker is then transformed by the log10 function to ease the comparison

of the pro�les between the two groups.

> d <- completeCases(d)

Records of 271 patients deleted due to incompleteness of the first

6 visits. Records of 0 patients deleted due to incomplete biomarker

measurements.
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> d <- transform(d, list(log10 = log10))

This yields a LongData object containing the reduced data set and the transformed

biomarker.
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Figure 5.1: Empirical biomarker pro�les in each group, produced by plotLongMarkers.

Next, the median pro�le and its variance are explored by boxplotLongMarkers,

the variation of the individual visit times around the scheduled ones are illustrated

by scatterVisitTimes and the autocorrelations within each group are estimated

by autoCorr. The user has two options here: Either the functions are separately

executed (with the advantage to control all parameters individually) or standardized

output is created by calling createReportFiles. In the latter case, the four functions

are executed with prede�ned parameter settings, the output �les are saved and the

location of the output �les are automatically added in the Report object, updating the

object rep1.

This is achieved by

> rep1 <- createReportFiles(d, report = rep1)

The Report object's current structure is the following:

> str(rep1)

Formal class 'Report' [package "longQDA"] with 2 slots

..@ .Data :List of 4
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.. ..$ :Formal class 'NamedList' [package "longQDA"] with 2 slots

.. .. .. ..@ .Data :List of 1

.. .. .. .. ..$ :Formal class 'NamedList' [package "longQDA"] with 2 slots

.. .. .. .. .. .. ..@ .Data :List of 6

.. .. .. .. .. .. .. ..$ : chr "C:/AIDS2/AIDS2(completecases_6v)plotLongMarkers.pdf"

.. .. .. .. .. .. .. ..$ : chr "C:/AIDS2/AIDS2(completecases_6v)boxplotLongMarkers.pdf"

.. .. .. .. .. .. .. ..$ : chr "C:/AIDS2/AIDS2(completecases_6v)scatterVisitTimes.pdf"

.. .. .. .. .. .. .. ..$ : chr "C:/AIDS2/AIDS2(completecases_6v)statsVisitTimes.tex"

.. .. .. .. .. .. .. ..$ : chr "C:/AIDS2/AIDS2(completecases_6v)autoCorr.tex"

.. .. .. .. .. .. .. ..$ : chr "C:/AIDS2/AIDS2(completecases_6v)autoCorrPlots.pdf"

.. .. .. .. .. .. ..@ myname: chr "AIDS2(complete cases,6v)"

.. .. .. ..@ myname: chr "Exploratory Analysis"

.. ..$ :Formal class 'NamedList' [package "longQDA"] with 2 slots

.. .. .. ..@ .Data : list()

.. .. .. ..@ myname: chr "Analysis Setup"

.. ..$ :Formal class 'NamedList' [package "longQDA"] with 2 slots

.. .. .. ..@ .Data : list()

.. .. .. ..@ myname: chr "Analysis"

.. ..$ :Formal class 'NamedList' [package "longQDA"] with 2 slots

.. .. .. ..@ .Data : list()

.. .. .. ..@ myname: chr "Comparisons"

..@ folder: chr "C:/AIDS2/"

In most cases, it is the best to combine both options. Suppose additional plots of the

biomarker pro�les are needed, in this case with transparent lines according to an alpha

transparency level of 0:3. The �rst option may be used for this purpose by calling the

function manually. This yields Figure 5.2.

> par(mfrow = c(1, 2))

> plotLongMarkers(d, linealpha = 0.3)

At every time during the analysis, plots which are displayed in the current graphics device
may be included in the report. For this plot, it is achieved by

rep1 <- save2Report(rep1, section="expl",

subsection="AIDS2 (complete cases)",

name="PlotTrajTransparency",

text="Here are the biomarker trajectories

with a transparency value of $0.3$.")

The plot as well as the comment given by the argument text are added to the subsection

'AIDS2 (complete cases)'1 in the report section for the exploratory analysis for which the

results are saved in the rep1 list entry expl.
1The subsection to which the output is added need to exist already when using save2Report.
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Figure 5.2: Empirical transformed biomarker pro�les in each group with transparent lines,

produced by plotLongMarkers.

This optional inclusion of any plot in the report may also be used for further explorative

analyses when plots have been produced by R functions implemented in other packages or

written by the user.

5.1.4 Analysis Setup

We move on to set up the discriminant analyses using the constructor function

AnalysisSetup. We specify to use 10-fold MCCV with training sets containing twice as

many patients as the test sets. The sub-analyses to be performed are speci�ed in the

argument paths as lists with a speci�c structure.

> ana.setup <- AnalysisSetup(d, nMCsamples=10, ratiotrain=2/3,

+ paths=list(list(isLongitudinal=FALSE,

+ isMarkerComb=FALSE,

+ whichVisits=1,

+ isSingleVisit=TRUE),

+ list(isLongitudinal=TRUE,

+ isMarkerComb=FALSE,

+ whichVisits=(1:ncol(d@id2rows)),

+ modelparams=list(covstr="RIS",

+ timestr="quadratic"))))
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In the example above, the biomarker performance of the �rst as well as that of all 6 visits

are of interest. So two analysis paths were de�ned: Path 1 contains the settings for

evaluating the performance at baseline (1st visit) by QDA, path 2 describes the settings

for longQDA with linear mixed models including random intercepts and random linear

slopes (RIS), and up to quadratic �xed time e�ects.

One analysis path represents one sub-analysis and all analysis paths together form an

analysis tree. E.g. for a data set with 2 biomarkers (denoted as BM1 and BM2) which were

measured at 3 visits, a tree of maximal size is given in Figure 5.3. The paths are described

by the boolean variable isLongitudinal to indicate whether the longitudinal structure

of the data should be accounted for (i.e. choosing QDA or longQDA), by isMarkerComb

to decide for a univariate or multivariate biomarker assessment and by isSingleVisit

to indicate whether QDA should be executed with single cross-sectional or longitudinal

data handling them as multivariate cross-sectional data. The other parameters of the list

entries in paths determine the visits to be included in the sub-analysis and, if applicable,

the covariance structure and the order of the �xed e�ect of the time variable for the

mixed models in univariate longQDA.

Figure 5.3: Analysis tree illustrating the setup of univariate analysis paths. Multivariate

paths where isMarkerComb = TRUE are omitted. Created with yEd Graph

Editor (yWorks, 2008).
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The MCCV samples are then generated by calling AnalysisSetup and the analysis tree

is fully described. These analysis settings are saved to the report by

> rep1 <- createReportFiles(ana.setup, report = rep1)

To facilitate reproducible research, the analysis setup should be saved as a R object, e.g. to
the report folder, by

> saveRobject(ana.setup, reportfolder=rep1@folder,

name="AnaSetup_longQDA6visitslin")

This enables the user to reload these analysis settings by calling loadRobject and to

reproduce all analysis results at a later point in time. This functionality is also helpful

when the user needs to add further analysis paths. This way, a full comparability of the

results is ensured as the analysis is executed with exactly the same data set, same MCCV

samples and same performance measures parameters but di�erent (long)QDA settings.

The old settings are reloaded by loadRobject and only the paths are updated when

calling updateAnalysisSetup to yield the new analysis setup. All (long)QDA settings

that are speci�ed in the argument paths of the constructor function AnalysisSetup may

be changed in the same-named argument of updateAnalysisSetup.

5.1.5 Analysis of all Analysis Paths

The method analyze is called to start the analysis which comprises the estimation of the
mean vector and the covariance matrix for each group (by mixed models for longitudinal
data, by the empirical analogues for QDA), the prediction of the posterior probabilities
based on the quadratic discriminant rule and the evaluation of the performance measures
for each analysis path.

> full.tree <- analyze(ana.setup)

Path 1

fit of QDA .........

Path 2

fit of RIS .........

The structure of the tree, containing all analysis results, has 4 hierarchical levels. The
�rst one comprises the analysis paths, the second the visits, the third the biomarker
(combinations) and the forth level a list with entries for each MCCV sample. The structure
of the second path of full.tree is shown below:
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> full.tree[[2]]

$`Visit(s) 1;2;3;4;5;6`

$`Visit(s) 1;2;3;4;5;6`$`Markers BM1`

$`Visit(s) 1;2;3;4;5;6`$`Markers BM1`$`CV 1`

[...]

It is organized so that the results of each MCCV sample are contained in the leaf nodes

of the tree. One leaf node comprises a list with estimations of each part of analyze

described above and are saved in the list entries model, predict and performance:

> str(full.tree[[2]][[1]][[1]][[1]])

List of 3

$ model :Formal class 'RisModel' [package "longQDA"] with 5 slots

.. ..@ mean :List of 2

.. .. ..$ group1: Named num [1:3] 4.48 -13.08 18.92

.. .. .. ..- attr(*, "names")= chr [1:3] "(Intercept)" "SDURN" "I(SDURN^2)"

.. .. ..$ group2: Named num [1:3] 4.40 -8.46 14.01

.. .. .. ..- attr(*, "names")= chr [1:3] "(Intercept)" "SDURN" "I(SDURN^2)"

.. ..@ cov :List of 2

.. .. ..$ group1:List of 2

.. .. .. ..$ D: Named num [1:3] 0.558 7.378 0.447

.. .. .. .. ..- attr(*, "names")= chr [1:3] "DInt" "DSlope" "D_IS"

.. .. .. ..$ R: Named num 0.321

.. .. .. .. ..- attr(*, "names")= chr "sigQuad"

.. .. ..$ group2:List of 2

.. .. .. ..$ D: Named num [1:3] 0.343 6.279 0.477

.. .. .. .. ..- attr(*, "names")= chr [1:3] "DInt" "DSlope" "D_IS"

.. .. .. ..$ R: Named num 0.288

.. .. .. .. ..- attr(*, "names")= chr "sigQuad"

.. ..@ BIC :List of 2

.. .. ..$ group1: Named num 602

.. .. .. ..- attr(*, "names")= chr "CV1"

.. .. ..$ group2: Named num 262

.. .. .. ..- attr(*, "names")= chr "CV1"

.. ..@ modelparams:List of 2

.. .. ..$ covstr : chr "RIS"

.. .. ..$ timestr: chr "quadratic"

.. ..@ reshapefn : chr "minimize"

$ predict :List of 3

..$ class : Factor w/ 2 levels "1","2": 1 1 2 1 2 2 1 2 1 1 ...

..$ posterior : num [1:27, 1:2] 0.864 0.962 0.357 0.818 0.377 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:27] "5" "88" "102" "104" ...

.. .. ..$ : chr [1:2] "1" "2"

..$ posteriorMV: num [1:27, 1:2] 0.004356 0.000370 0.000214 0.003271 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:27] "5" "88" "102" "104" ...
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.. .. ..$ : chr [1:2] "1" "2"

$ performance:Formal class 'PerformanceMeasures' [package "longQDA"]

with 13 slots

.. ..@ auc : num 0.865

.. ..@ roc :Formal class 'performance' [package "ROCR"]

with 6 slots

.. .. .. ..@ x.name : chr "False positive rate"

.. .. .. ..@ y.name : chr "True positive rate"

.. .. .. ..@ alpha.name : chr "Cutoff"

.. .. .. ..@ x.values :List of 1

.. .. .. .. ..$ : num [1:101] 0 0 0 0 0 0 0 0 0 0 ...

.. .. .. ..@ y.values :List of 1

.. .. .. .. ..$ : num [1:101] 0 0 0 0 0 0 0 0 0 0 ...

.. .. .. ..@ alpha.values:List of 1

.. .. .. .. ..$ : num [1:101] 1.00 0.99 0.98 0.97 0.96 ...

.. ..@ bs : num 0.87

.. ..@ bsC : num 0.0237

.. ..@ bsD : num 0.100

.. ..@ bsDM : num 0.112

.. ..@ diffpig : num 0.332

.. ..@ pig2quer : num 0.559

.. ..@ corGSBM : num 0.618

.. ..@ deltaSigmaPostProb: num 0.196

.. ..@ sigmaMinPostProb : num 0.0234

.. ..@ ratioVarPostProb : num 8.4

.. ..@ calLarge : num 0.000395

Especially in the case of long computation times, it is recommended to save this object as

the analysis settings before by saveRobject. This enables the user to analyze the results

further, also in another R session later on.

> saveRobject(full.tree, reportfolder=rep1@folder,

+ name="fullTree_longQDA6visitslin")

The user is probably not interested in the results of a single MCCV loop but in the

summarized results of all MCCV samples. Therefore the method mccvSummary returns a

result tree where the leaf nodes contain summaries in form of matrices, lists etc. E.g. for

the second path, the result looks as follows:

> sum.tree <- mccvSummary(full.tree, ana.setup)

> str(sum.tree[[2]], 6)

List of 1

$ Visit(s) 1;2;3;4;5;6:List of 1

..$ Markers BM1:Formal class 'MccvSummary' [package "longQDA"] with 5 slots

.. .. ..@ modelEstimates:List of 2

.. .. .. ..$ group1:List of 3

.. .. .. .. ..$ estimates : num [1:10, 1:7] 4.48 4.56 4.52 4.42 4.52 ...
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.. .. .. .. .. ..- attr(*, "dimnames")=List of 2

.. .. .. .. ..$ BIC : Named num [1:10] 602 597 590 606 605 ...

.. .. .. .. .. ..- attr(*, "names")= chr [1:10] "CV1" "CV2" "CV3" "CV4" ...

.. .. .. .. ..$ modelparams:List of 2

.. .. .. ..$ group2:List of 3

.. .. .. .. ..$ estimates : num [1:10, 1:7] 4.40 4.29 4.39 4.38 4.32 ...

.. .. .. .. .. ..- attr(*, "dimnames")=List of 2

.. .. .. .. ..$ BIC : Named num [1:10] 262 238 250 261 251 ...

.. .. .. .. .. ..- attr(*, "names")= chr [1:10] "CV1" "CV2" "CV3" "CV4" ...

.. .. .. .. ..$ modelparams:List of 2

.. .. ..@ roccv :Formal class 'performance' [package "ROCR"] with 6 slots

.. .. .. .. ..@ x.name : chr "False positive rate"

.. .. .. .. ..@ y.name : chr "True positive rate"

.. .. .. .. ..@ alpha.name : chr "Cutoff"

.. .. .. .. ..@ x.values :List of 10

.. .. .. .. ..@ y.values :List of 10

.. .. .. .. ..@ alpha.values:List of 10

.. .. ..@ pmmatrix : num [1:10, 1:12] 0.865 0.569 0.612 0.763 0.789 ...

.. .. .. ..- attr(*, "dimnames")=List of 2

.. .. .. .. ..$ : chr [1:10] "CV 1" "CV 2" "CV 3" "CV 4" ...

.. .. .. .. ..$ : chr [1:12] "auc" "bs" "bsC" "bsD" ...

.. .. ..@ posterior2 :'data.frame': 85 obs. of 11 variables:

.. .. .. ..$ group: int [1:85] 1 1 1 1 1 1 1 2 1 1 ...

.. .. .. ..$ 1 : num [1:85] NA 0.136 NA NA NA ...

.. .. .. ..$ 2 : num [1:85] NA 0.0444 NA NA 0.3387 ...

.. .. .. ..$ 3 : num [1:85] NA NA NA NA NA ...

.. .. .. ..$ 4 : num [1:85] NA 0.104 NA NA 0.296 ...

.. .. .. ..$ 5 : num [1:85] NA 0.119 0.212 NA 0.354 ...

.. .. .. ..$ 6 : num [1:85] NA NA NA NA NA ...

.. .. .. ..$ 7 : num [1:85] NA NA NA NA 0.206 ...

.. .. .. ..$ 8 : num [1:85] NA NA 0.174 NA NA ...

.. .. .. ..$ 9 : num [1:85] NA NA NA 0.0798 NA ...

.. .. .. ..$ 10 : num [1:85] NA NA NA NA NA NA NA NA NA NA ...

.. .. ..@ analysisPath: chr "Path 2_Visit(s) 1;2;3;4;5;6_Markers BM1"

Based on this summary, default output �les for each path are generated by calling
createReportFiles. This output includes the group-speci�c estimated model parame-
ters, a table with quantiles of the performance measures, ROC curves, histograms of the
performance measures of all MCCV samples, a back-to-back histogram of the predicted
posterior probabilities and a calibration curve for every analysis path.

> rep1 <- createReportFiles(sum.tree, ana.setup, report = rep1,

+ ROCaveragefn = "mean")

By default, all output of this section is summarized in a temporary pdf �le. This preview,

named 'myReport.pdf', can be found in the report folder. As above, it is also possi-

ble to individualize the output by calling the internal output methods separately. Vide

the documentation (?createReportFiles) for all methods which are provided for this

purpose.
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Comments can be added to the report to a section resp. subsection. Further on, comments
can be saved together with a single plot as shown above. Below, the �rst option is
demonstrated by adding a comment to the longQDA subanalysis (path 2):

> rep1 <- save2Report(rep1, section = "analysis", subsection = 2,

+ text = "longQDA includes 6 biomarker measurements per patient.")

5.1.6 Comparison of Analysis Paths

At the end of the exemplary data analysis, the results of all subanalyses are compared.
The subanalyses are selected by their leaf numbers which are returned by

> showLeafs(sum.tree)

Path 1

Visit(s) 1

Markers BM1 => 1

Path 2

Visit(s) 1;2;3;4;5;6

Markers BM1 => 2

As there are only 2 subanalyses, both of them are selected. A name for the comparison
as well as names for the analyses described by the analysis paths need to be provided.

> leafs6 <- selectResultLeafs(sum.tree, leafnumbers=(1:2),

+ compname="Baseline vs. all 6 visits",

+ pathnames=c("QDA, Baseline", "RIS, 6 vis."))

In addition, output �les are generated by createReportFiles giving 2 plots with 2 ROC
curves for our example. One ROC curve is coloured according to the changing threshold of
the posterior probability, the other according to the path-speci�c colour (alterable by the
argument ROCcolors) and contains the legend for the ROC curves as well. In addition,
boxplots of the performance measures are plotted. A table with the frequencies of the
covariance structures (RI, RIS and RICAR1) which achieved the minimal BIC makes no
sense in this example, so freqMinBIC=FALSE is set.

> rep1 <- createReportFiles(leafs6, ana.setup, rep1,

+ ROCcolors=c("firebrick3","midnightblue"),

+ legendtext=c("RIS, BM1", "QDA, BM1"),

+ boxcolors=c("firebrick3", "midnightblue"),

+ freqMinBIC=FALSE)
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5.1.7 Report Generation

Finally, a report �le is created (standard name is 'myreport.tex') where all output plots and

tables stored in the report object rep1 are included. The report is structured in sections

and subsections as de�ned by the list structures in rep1. A name for the data set on

which the analysis was based and details about the author of the report are provided.

Then createReport generates a report �le in tex format which is stored in the subfolder

'Report'. The full path of this �le is returned by this method.

> createReport(rep1, dataname=ana.setup@data@name,

+ author="Mareike Kohlmann \\\\ DXRQB2 \\\\ Roche Diagnostics GmbH")

[1] "C:/AIDS2/Report/myReport.tex"

If necessary, the report can then be edited manually by adding comments or plots, re-

arranging or deleting output �les etc. A tex compiler such as pd�atex is necessary to

compile the tex �le to pdf. The resulting report �le for this exemplary analysis is included

as Appendix A.

5.2 Software Design

The software for performing longQDA was implemented to provide a software solution

for the statistical evaluation of longitudinal biomarkers in clinical studies at Roche Diag-

nostics. The conceptual requirements are therefore a data-independent implementation

with a user-friendly handling, easy extensibility and a good run-time performance. A fur-

ther requirement is to support a comfortable reporting of the analysis results. With this

implementation, the user may apply univariate longQDA, multivariate longQDA and mul-

tivariate QDA to real as well as to simulated data. All classi�cation analyses are based on

the resampling method Monte Carlo cross validation to ensure a reliable estimation for

small sample sizes as well.

To meet all these needs, an object-oriented design was chosen which is facilitated by

the S4 system in R. This system provides functionality that allows OOP with classes and

methods within the functional R language. The idea of OOP is a close mapping from the

reality to the programming in a modular fashion. A class, the main component of this

concept, de�nes a new data type comprising a speci�c set of attributes called slots. E.g.

for a class Data, slots may be the name of the data set, the column number of the patient

identi�cation number etc. Objects are generated as instances of a class. Computations on

these objects consist of invoking methods on them. A method is speci�cally de�ned for one

class and therefore objects are part of the method's arguments and are frequently returned
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as well. Exemplary methods are show or plot which determine the class-individual printing

resp. plotting. Methods need to be declared as generic functions in R. Via this mechanism,

S4 is compatible with the functional requirements of R.

Further, classes may be related to each other by class hierarchies, i.e. classes inherit

class properties of the base class and are extended by speci�c properties. In longQDA, for

example, the classes LongData for longitudinal data and XsecData for cross-sectional data

are derived classes of the base class Data. Both are designed for objects which include

a named data set and, for example, a column for the patient identi�cation number, but

LongData has its own attribute id2rows which is a matrix matching the row numbers

to each patient's observations. Objects of class XsecData do not need this attribute as

there is always only one row per patient in cross-sectional data.

Classes can be abstract, i.e. the class cannot be instantiated. The opposite is a concrete

class. Abstract classes are designed as base class and the speci�c functionality is then

implemented in the derived classes. The class hierarchy supports the extensibility as other

data structures can be easily incorporated. A user-friendly handling, an easy maintenance

and a fast debugging are further advantages of OOP due to the sparse representation

of complex relations. For example, methods are invoked on objects corresponding to the

classes of the method's arguments. Thus, if-statements in methods are avoided to direct

the proper, class-speci�c execution.

The user-friendly handling is furthermore enhanced by an intuitive guidance following

the typical process of a statistical analysis: �rst the explorative and descriptive analy-

sis of the longitudinal data, followed by the evaluation and comparison of the biomarker

performance under various model assumptions by longQDA. Up to a basic level, these

tasks can be performed with the knowledge of only few central methods which are

LongData, AnalysisSetup, analyze, MccvSummary, selectResultLeafs, Report and

createReportFiles. The corresponding documentation is given in Appendix B, the rela-

tions between the functions and a more detailed description follow in the next subsection

which is 5.2.1.

Throughout the entire analysis, a template for the report can be created continuously.

At some points, namely for the descriptive and exploratory analysis and for the

comparison of the models, the user can select either the prede�ned default analysis or

the customized analysis or can even combine both options. The �rst is accomplished

by createReportFiles, the latter by using directly the methods included in

createReportFiles, these are ,for example, plotLongMarkers, boxplotLongMarkers,

scatterVisitTimes, autoCorr and optionally self-written functions or methods to

explore the longitudinal data. A combination of both options is used in Section 5.1

where plotLongMarkers has been used with another transparency value in addition to

the default output. The report can be complemented by comments or any plot during
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the analysis. The output format is a tex �le which can be compiled to pdf, allowing an

easy editing of the template by adding text or rearranging parts after the completion of

the data analysis.

5.2.1 Software Architecture Overview

In the following, the presentation of the software architecture of longQDA is restricted

to the components that are needed for the analysis of real, univariate biomarker data

sets. The other components are described in Section 5.3 where the extensibility for the

evaluation of multivariate biomarker panels as well as for the analysis of simulated data

are demonstrated.

Since 1997, uni�ed modelling language (UML) has been the standard approach for a

structured object-oriented software development (Born et al., 2004). One of the key

diagrams of UML is the class diagram depicting the class structure with its relationships.

At the moment, R does not support the creation of class diagrams from the code (back-

ward engineering), but there are plans to incorporate such a functionality in the future,

called Ruml (R Foundation for Statistical Computing, 2008). First steps towards back-

ward engineering are done by the package classGraph (Maechler and Gentleman, 2008).

A class diagram includes usually the classes with their attributes and methods as well as

the relationships between the classes. For the sake of a condensed presentation, the class-

speci�c attributes and methods are omitted in the class diagram for longQDA (Figure 5.4).

They are described exemplarily in the next subsection. Two sorts of class relationships

are visualized: Every arrow joins the derived class with its base class (e.g. LongData and

XsecData inherit from Data), a line labelled with its description symbolises an undirected

relationship (the method toXsec converts an instance of class LongData to an instance

of class XsecData with a cross-sectional data structure, for example). Note that only the

most important relations are included. Abstract classes are printed in italics.

The software architecture re�ects the steps of a typical statistical analysis and is hence

quite general and could be easily adopted for other software implementations: There are

classes for data objects (on the top right of Figure 5.4), for the analysis setup (in the

middle on the top), classes involved in the discriminant analyses (down right), classes

containing the raw or summarized results of the analyses (on the left) and the Report

class de�ning a standardized output (down left). We continue by presenting the class

diagram, following that order as far as possible, and start with the initial step, the data

import. In the upper right corner, all classes for structural data mapping are shown. They

have already been partly described above to explain possible class relationships. The user

operates only on objects of class LongData which are created from the user-provided raw

data sets and which are used to set up the analysis by AnalysisSetup. Objects of class
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XsecData are used only internally for tasks that require a cross-section data structure,

e.g. for performing QDA or creating plots (in autoCorr, for example).

Figure 5.4: UML class diagram of the R package longQDA, omitting attributes and meth-

ods. Created with Enterprise Architect (SparksSystems, 2008)

Objects of class AnalysisSetup specify all subanalyses that should be performed, includ-

ing information about the MCCV design and global precision parameters. Based on the

paths attribute of AnalysisSetup describing the subanalyses, AnalysisPath objects are

internally set up. These objects determine the instantiation of objects of class QdaAlgo

(for QDA) or LongDaUnivAlgo (for the univariate longQDA) during the execution of

the method analyze. Besides the determination of the required data structure for the

algorithms, the statistical analyses are performed as follows when calling analyze.

The evaluation of the biomarker performance is split up into three steps: the estimation

of the group-speci�c parameters for the quadratic discriminant rule with the training data

sets, the prediction of the posterior probabilities by (long)QDA with the test sets and

at last, the evaluation of the performance measures. The �rst step is accomplished by

the method fit, de�ned for the classes determining the algorithms for the discriminant

analysis. In the case of longQDA, for example, objects of class RiAlgo, RisAlgo or

Ricar1Algo de�ne the estimation of the means and the covariance matrices by mixed

models. For QDA, the functionality of the R package MASS (Venables et al., 2008) is
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used. For the univariate longQDA with an RI or RIS structure, the estimation is done by

lme4 (Bates et al., 2008) whereas nlme (Pinheiro et al., 2008) is used for the RICAR1

structure2. For the second step, the evaluation of the discriminant rule, predict2 is

called. The method is de�ned for objects of class LongDaUnivModel and returns a list

containing the estimated posterior probabilities amongst others. The classes RiModel,

RisModel and Ricar1Model are derived classes of LongDaUnivModel which is in turn,

as QdaModel, a derived class of LongDaModel. The same structure underlies the classes

describing the corresponding algorithms. The third step involves the calculation of the

performance measures by the constructor PerformanceMeasures. It uses the returned

list of predict2 as input and returns an object of class PerformanceMeasures. The

returned values of those three methods are stored in an instance of class ResultTree

which is created within analyze.

These results are not yet summarized, they contain the results for each MCCV sam-

ple. The method mccvSummary accomplishes this task by modifying the object of class

ResultTree to consist of objects of class MccvSummary. To constrain the results for com-

parison, the method selectResultLeafs returns a smaller version of class ResultList.

It is recommended to create an instance of class Report at the beginning of a data analysis

session. At the end of the analysis, the main parts of the report comprise the output

which was generated by the method createReportFiles (for objects of class LongData,

AnalysisSetup, MccvSummary or ResultList) or by the method save2Report for more

individualized output.

5.2.2 Description of Central Classes and Methods

The architecture of longQDA at the class level comprises the classes with its attributes

and methods. As already explained, they are usually part of the UML class diagram. In

R however, this issue is not realised graphically but at least textually by the documentation

of the classes in the help �les. For S4 classes, the attributes of a class are stored in so

called slots of an object. The slots as well as the methods are documented for each class.

As an example, the help �le for the class MccvSummary is included here. Except the method

show, all methods are documented separately. The method createReportFiles is given

and serves furthermore as an example for the sparse but �exible OOP approach. It is

not only de�ned for objects of class MccvSummary but also for objects of class LongData,

AnalysisSetup and ResultList. For further class and method descriptions, the reader

is referred to the help �les in Appendix B.

2According to the author of lme4, this package is superior to nlme with regards to its execution time

and stability. But as models with an RICAR1 structure are only available in nlme, both packages had

to be used in longQDA.
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MccvSummary-class Class 'MccvSummary' with Summarized Analysis Results of

all MCCV samples

Description

All important analysis results are summarized over all MCCV loops allowing to produce
graphical as well as numerical summaries of the results by the provided methods.

Objects from the Class

Objects are created by calls of the form MccvSummary(nMCsamples, pmnames,

cvnames, roctemp, id2group), but these objects are only created internally.
Therefore the arguments are not documented here.

Slots

modelEstimates: Object of class 'list', the length equals to the number of groups.
Each list entry contains

estimates: Object of class 'matrix' containing the model parameters esti-
mated by MCCV. Each row correspondes to one MCCV sample (with names
"CV 1", "CV 2", . . . ), each column to one of the model parameters. The
model parameters have names and their number di�ers, depending on the
estimated model.

BIC: Object of class 'numeric' containing the BICs of all MCCV samples (with
names "CV 1", "CV 2", . . . ).

modelparams: Object of class 'list' containing the following mixed model
parameters

covstr: Object of class 'character' giving the covariance structure. Can
be either "RI" (random intercept), "RIS" (random intercept and linear
slope) or "RICAR1" (random intercept and continuous AR(1) residual
structure) for univariate longQDA.

timestr: Object of class 'character' giving the maximum order for the
�xed e�ect(s) of the time variable. Terms of lower order are automati-
cally included. Can either be "linear" or "quadratic".

roccv: Object of class 'performance-class' in package ROCR. The slots x.values,
y.values and alpha.values are lists, each of length nMCsamples; v. the
documentation of ROCR for details.

pmmatrix: Object of class 'matrix' containing all MCCV estimates of twelve per-
formance measures. Each row corresponds to one MCCV loop (with names "CV
1", "CV 2", . . . ), each column to one of the performance measures (with names
"auc", "bs", . . . ).
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posterior2: Object of class 'data.frame'. Each row corresponds to one patient.
The �rst column contains the numeric group according to the Gold Standard, the
second the predicted posterior probabilities for the latter speci�ed group when
creating the LongData object of the �rst MCCV loop, the third the predicted
posterior probability of the second MCCV loop and so on. The names of the
rows equal to the patient identi�cation numbers, the �rst column has the name
group, the others the number of the MCCV loop.

analysisPath: Object of class 'character' containing the name of the analysis
path. It is a concatenation of the path number, the involved visits and the
biomarker(s) and will be used for �le names of plots and tables, for example.

Methods

createReportFiles: signature(object = 'MccvSummary'): createReportFiles

plotROC: signature(summary = 'MccvSummary':): plotROC

pmHist: signature(summary = 'MccvSummary'): pmHist

pmQuantiles: signature(summary = 'MccvSummary'): pmQuantiles

post2CalCurve: signature(summary = 'MccvSummary'): post2CalCurve

post2Hist: signature(summary = 'MccvSummary'): post2Hist

show: signature(object = 'MccvSummary'): de�ned as str(object, 3).

summaryModelEstimates: signature(summary = 'MccvSummary'):
summaryModelEstimates

Author(s)

Mareike Kohlmann hlongQDA@web.dei

Examples

showClass("MccvSummary")

data(AIDS2)

d <- LongData(AIDS2, "AIDS2", c("BM1"), c(0,2,4,8,16,24)/52,

c('non-resistant'=1, 'resistant'=2), timename="SDURN")

d2 <- completeCases(d, visits=6)

asetup <- AnalysisSetup(d2, nMCsamples=5, ratiotrain=2/3,

paths=list(

list(isLongitudinal=TRUE, isMarkerComb=FALSE,

whichVisits=(1:ncol(d2@id2rows)),

modelparams=list(covstr="RI",

timestr="quadratic"))))

tree <- analyze(asetup)

summary.tree <- mccvSummary(tree, asetup)
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node.leaf <- summary.tree[[1]][[1]][[1]]

class(node.leaf)

str(node.leaf,4)

createReportFiles-method

Creates Pre-Con�gured Output Files for the Report

Description

At any stage of the analysis, pre-con�gured output �les can be created and saved
for a later inclusion into the report. This method calls various other methods for
creating graphical and/or numerical output and serves as default output. If modi�ed
or additional output is desired, the user has the possibility to call those inner methods
separately and to add their graphical output to the report by save2Report. There is
also an option enabling the user to preview the corresponding part of the report with
the generated output �les.

The following output generating methods are called within createReportFiles():

For objects of class 'LongData': plotLongMarkers,boxplotLongMarkers,
scatterVisitTimes, autoCorr.

For objects of class 'AnalysisSetup': str.

For objects of class 'ResultTree': createReportFiles for each leaf of class
'MccvSummary'.

For objects of class 'MccvSummary': summaryModelEstimates, pmQuantiles,
plotROC, pmHist, post2Hist, post2CalCurve.

For objects of class 'ResultList': plotROC, compPerfMeasures, freqMinBIC,
compPostProbs, compModelEstimates.

The execution of some of the methods can be controlled by the user, e.g. by setting
plotpmHist=FALSE for objects of class 'MccvSummary' or 'ResultTree'. Some
methods are automatically only executed for simulated data, e.g. compPostProbs for
objects of class 'ResultList'.

Usage

For objects of class 'LongData':

createReportFiles(object, analysis=object, report,

includeVisitTimes=TRUE, compile=TRUE)

For objects of class 'AnalysisSetup':

createReportFiles(object, analysis=object, report, compile=TRUE)
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For objects of class 'MccvSummary':

createReportFiles(object, analysis, report, MEaveragefn="mean",

MErounddigits=3, ROCaveragefn="mean", plotpmHist=TRUE,

pmrange=NULL,

PMrounddigits=c(2,3,3,2,2,2,2,2,2,3,0,3,0),

pmnames=c("$\mbox{AUC}$","$\mbox{BS}$", "$\mbox{BS}_C$",

"$\mbox{BS}_D$", "$\mbox{BS}_{D_M}$",

"$\bar{pp}_{(2)[z_{(2)}=1]}-\bar{pp}_{(2)[z_{(2)}=0]}$",

"$\bar{pp}_{(2)[z_{(2)}=1]}$", "$\rho_{{z_{(2)}},pp_{(2)}}$",

"$\Delta\sigma^2_{pp_{(2)}}$","$\sigma^2_{pp_{(2)},min}$",

"$\Delta\sigma^2_{pp_{(2)}}/\sigma^2_{pp_{(2)},min}$",

"$\mbox{Cal}_L$","$\mbox{Sensitivity}$"), onlyROCaverage=FALSE)

For objects of class 'ResultTree':

createReportFiles(object, analysis, report, MEaveragefn="mean",

MErounddigits=3, ROCaveragefn="mean", plotpmHist=TRUE,

pmrange=NULL,

PMrounddigits=c(2,3,3,2,2,2,2,2,2,3,0,3,0),

pmnames=c("$\mbox{AUC}$","$\mbox{BS}$", "$\mbox{BS}_C$",

"$\mbox{BS}_D$", "$\mbox{BS}_{D_M}$",

"$\bar{pp}_{(2)[z_{(2)}=1]}-\bar{pp}_{(2)[z_{(2)}=0]}$",

"$\bar{pp}_{(2)[z_{(2)}=1]}$", "$\rho_{{z_{(2)}},pp_{(2)}}$",

"$\Delta\sigma^2_{pp_{(2)}}$","$\sigma^2_{pp_{(2)},min}$",

"$\Delta\sigma^2_{pp_{(2)}}/\sigma^2_{pp_{(2)},min}$",

"$\mbox{Cal}_L$","$\mbox{Sensitivity}$"), onlyROCaverage=FALSE,

compile=TRUE)

For objects of class 'ResultList':

createReportFiles(object, analysis, report, ROCaveragefn="mean",

ROCcolors, legendtext, boxcolors, PMlabels=NULL, xTickLabels=NULL,

freqMinBIC=TRUE, existStarModel=FALSE, PPaveragefn="mean",

PPlinealpha=1, PPyliml=c(0,1), PPylimb=c(-60,100), MEbiaslimits=list(),

PProunddigits=0, compile=TRUE)

For objects of class 'SimulationSetup':

createReportFiles(object, analysis=object, report, compile=TRUE)

For objects of class 'SimulationResult':

createReportFiles(object, analysis=object@analysisSetups[[1]],

report, ROCaveragefn="mean", plotpmHist=FALSE, compile=FALSE,...)

Arguments

object = 'LongData': Contains the data set and corresponding metainformation.

object = 'AnalysisSetup': Contains metainformation about the analysis.

object = 'MccvSummary': Contains the summary of results over all MCCV samples.

object = 'ResultTree': Contains all analysis results based on real data.

object = 'ResultList': Contains user-selected analysis results.
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object = 'SimulationSetup': Contains metainformation about the simulation.

object = 'SimulationResult': Contains all analysis results based on simulated
data.

analysis: Default: object for 'LongData' (actually not necessary - just included
for compatibility) and 'AnalysisSetup'. Object of class 'AnalysisSetup'

containing metainformation about the analysis.

report: Object of class 'Report' to which the output �les are added.

compile: Default: TRUE; exeption: FALSE for objects of class SimulationResult.
If TRUE, the corresponding part of the report is generated as a preview �le in
the folder "Report" with name "myreport.pdf". This option does not exist for
objects of class 'MccvSummary'.

Additionally for objects of class 'LongData':

includeVisitTimes: Default: TRUE. If FALSE, scatterVisitTimes is not executed.

Additionally for objects of class 'MccvSummary' or 'ResultTree':

MEaveragefn: Default: "mean". Character vector giving the function for summariz-
ing the model estimates of all MCCV samples.

MErounddigits: Default: 3. Numerical number of decimal places to which the model
estimates are rounded.

ROCaveragefn: Default: "mean". Character vector giving the function for summa-
rizing the ROC curves of all MCCV samples.

plotpmHist: Default: TRUE. If FALSE, pmHist is not executed.

pmrange: Default: NULL. Matrix containing the ranges for the histograms of the
performance measures. Each column has two rows and contains the range of
one measure. If it is not provided by the user (default), the ranges of the
performance measures present in the data are taken.

PMrounddigits: Default: c(2,3,3,2,2,2,2,2,2,3,0,3,0). Numeric vector of
decimal places to which the performance measures are rounded.

pmnames: Default: c("$\mbox{AUC}$","$\mbox{BS}$", "$\mbox{BS}_C$",

"$\mbox{BS}_D$", "$\mbox{BS}_{D_M}$",

"$\bar{pp}_{(2)[z_{(2)}=1]}-\bar{pp}_{(2)[z_{(2)}=0]}$",

"$\bar{pp}_{(2)[z_{(2)}=1]}$", "$\rho_{{z_{(2)}},pp_{(2)}}$",

"$\Delta\sigma^2_{pp_{(2)}}$","$\sigma^2_{pp_{(2)},min}$",

"$\Delta\sigma^2_{pp_{(2)}}/\sigma^2_{pp_{(2)},min}$",

"$\mbox{Cal}_L$","$\mbox{Sensitivity}$").
Names of the performance measures, used for labelling the columns of the
output table and need to be formatted as LaTeX code.

onlyROCaverage: Default: FALSE. If TRUE, only the ROC curve based on the sum-
mary of all MCCV samples is plotted. Otherwise, an additional plot with an ROC
curve for every MCCV sample is generated.

Additionally for objects of class 'ResultList':
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ROCaveragefn: Default: "mean". Character vector giving the function for summa-
rizing the ROC curves of all MCCV samples.

ROCcolors: v. colors in plotROC.

legendtext: v. legendtext in plotROC.

boxcolors: v. boxcolors in compPerfMeasures.

PMlabels: Default: NULL. Character vector containing the labels of the performance
measures, used in compPerfMeasures.

freqMinBIC: Default: TRUE. Should freqMinBIC be executed or not?

existStarModel: Default: FALSE. If TRUE, the data analysis is based on simulated
data, compPostProbs and compModelEstimates are executed to assess the bias.

PPaveragefn: Default: "mean". v. averagefn in compPostProbs.

PPlinealpha: Default: 1. v. linealpha in compPostProbs.

PPyliml: Default: c(0,1). v. yliml in compPostProbs.

PPylimb: Default: c(-60,100). v. ylimb in compPostProbs.

MEbiaslimits: Default: list(). v. boxlimits in compModelEstimates.

PProunddigits: Default: 0. v. rounddigits in compPostProbs.

Value

Object of class 'Report'. The list entries contain the names and the location of the
output �les.

Author(s)

Mareike Kohlmann hlongQDA@web.dei

Examples

### Example for object of class "LongData"

myreport <- Report(folder=getwd())

data(AIDS2)

d <- LongData(AIDS2, "AIDS2", c("BM1"), c(0,2,4,8,16,24)/52,

c('non-resistant'=1, 'resistant'=2), timename="SDURN")

# compile=TRUE does not work in Rcheck

myreport <- createReportFiles(object=d, report=myreport, compile=FALSE)
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5.3 Examples for Extending longQDA

Extensibility is an important quality aspect in software development. The package

longQDA already contains two extensions to the basis functionality for analyzing

univariate biomarker data. One is the incorporation of multivariate mixed models

to evaluate biomarker panels, the other is the generation and analysis of simulated

univariate biomarker pro�les. Both serve as examples to demonstrate how fast longQDA

is extended by few additional classes and how easy the user can cope with the minor

visible changes implied.

5.3.1 Multivariate longQDA

So far, an implementation has been described for analyzing univariate models. To demon-

strate the extensibility, we illustrate in the following how multivariate models are included.

The presentation is restricted to multivariate mixed models with correlated random e�ects

as de�ned in Subsection 4.2.2 as the models with uncorrelated random e�ects (presented

in Section 4.2.1) as well as the Kronecker Product models (Subsection 4.2.3) are anal-

ogously implemented in longQDA. In general, to extend the software by a new model, a

class for the model containing the group-speci�c estimates and a class for the algorithm

containing the necessary information for the estimation of the models need to be de�ned.

For the present example, this is accomplished by the classes LongDaMvModel and

RcMvAlgo. These classes as well as all other necessary changes, which will be described

in the following, were added to the UML class diagram of Figure 5.4 and marked

in blue (see Figure 5.5). The class RcMvAlgo has the newly de�ned base class

LongDaMvAlgo to cover also the other algorithms for the multivariate models. This is in

turn a derived class of the already existing LongDaAlgo.

For the multivariate mixed models with correlated e�ects, models with and without random

slopes are distinguished, so there are the following classes derived from LongDaMvModel:

RiCorrModel with correlated random intercepts, RisCorrModel with correlated random

intercepts and slopes3. The class LongDaMvModel is derived from LongDaModel like

QdaModel and LongDaUnivModel.

The estimation of the models with the correlated random e�ects is carried out by the

function lme of the R package nlme with its �exible options to specify the random ef-

fects. The function requires a data structure implemented in an additional class, called

LongMvData, which is derived from Data. Objects of this class are internally created by

3There are actually additional derived classes which are RIuModel and RIuSuModel. As they are im-

plemented for models with uncorrelated random e�ects (Section 4.2.1), further details are omitted

here.
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the method toLongMv which is part of the class LongData. The data structure comprises

a blown-up data set in that there is

� one biomarker vector (called response) where the observations of the single

biomarker variables are stacked blockwise

� one dummy variable for each marker indicating which observation of response is

from which marker (called marker1, marker2, ...) to model the random inter-

cepts

� one time variable for each marker (called time1, time2, ...) containing the

study time if the observation of response is from that marker and otherwise zero

to model the random slopes.

The multivariate outcome variables are structured in the same way as if only a univariate

variable was analyzed and a set of dummy codes are created to "�ag" the outcomes

accordingly. This recast has been proposed several times, for R users (Lockwood et al.,

2003; Doran and Lockwood, 2006) as well as for SAS users (Thiébaut et al., 2002;

Hamlett et al., 2003). For a mixed model with correlated random intercepts and slopes

with two biomarkers (speci�ed as covstr="RISFull") in longQDA), the R syntax is

lme(response~-1 + marker1 + marker2 + time1 + time2,

random=~-1 + marker1 + marker2 + time1 + time2|patid,

data=mydataset, method="REML")

and yields an object of class RisCorrModel.

Objects of class RiCorrModel can be obtained by modifying the random statements as

follows

random=~-1+marker1+marker2|patid

Biomarker-speci�c residual errors are speci�ed by setting

weights=varIdent(form=~1|marker2)

in the lme statement.

By extending the method analyze to select the new RcMvAlgo if requested by the user,

all necessary changes are done. At the user-level, the multivariate mixed model is cho-

sen by setting isMarkerComb=TRUE, giving the number of biomarkers to be combined in

markerCombLength and the correlation structure in the list of the model parameters in

covstr. The available correlation structures are "RIc" and "RISFull" 4.
4There are additional correlation structures implemented in longQDA as a RisCorrModel, these are

"RIcSu", "RIuSc" and "RIcSc". It is not recommended to �t models with these correlation structures

as the random intercepts and slopes within the biomarker are uncorrelated (cf. Chapter 2, p. 7 for a

discussion of this issue). The necessary extensions to �t all possible correlated intercepts and slopes

combinations are not available in R due to the restriction that correlation structures for each biomarker

can only be combined by pdBlocked in nlme which is used internally in the package longQDA.
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Figure 5.5: Extended UML class diagram of the R package longQDA, omitting attributes

and methods. The necessary extensions for the multivariate longQDA are

marked in blue, those for the simulated data in red.
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To update a previously de�ned analysis setup (called oldSetup) by a bivariate mixed
model with correlated random intercepts, the user calls

ana.setup1 <- updateAnalysisSetup(oldSetup,

paths=list(list(isLongitudinal=TRUE, isMarkerComb=TRUE,

markerCombLength=2,

whichVisits=(1:ncol(data@id2rows)),

modelparams=list(covstr="RIc",

timestr="quadratic"))))

5.3.2 Generation and Analysis of Simulated Data

The second example, which shows how easy the functionality of longQDA is extended,

comprises all necessary changes to perform the simulation study of Chapter 3. This

applies to the following two tasks which need to be performed: the generation of the

data and their analysis. As both of them are repeatedly executed, the software design is

extended to be also compatible with parallel computing. All additionally de�ned classes

and the new associations are marked in red in Figure 5.5.

The generated data are based on given model parameters for a speci�ed covariance struc-

ture as well as on distributions for the individual visit times and they need to comply

with the structure of a real data set. For this purpose, the class SimulationSetup has

been designed. Within the constructor function SimulationSetup, data sets of class

LongData are simulated by the method generateData which takes as input:

� a model of class RiModel, RisModel or Ricar1Model, set up by the user by means

of the constructor methods RiStarModel, RisStarModel or Ricar1StarModel

� the distribution functions of the individual visit times (speci�ed in simRandomVisits

in the example below)

� and further parameters as the number of visits (nvisits) or the number of patients

in each group (ngroups).

The number of simulated data sets corresponds to the number of speci�ed simulation

repetitions (simreps). In addition, the paths of the analysis tree to be included in the

simulation are speci�ed in the argument paths of SimulationSetup, analogously to the

AnalysisSetup for real data.

Here is one example for an exemplary setup of a simulation scenario:

# definition of the RIS* model

risStar <- RisStarModel(group1=list(beta=c(4.0,-4.5),

DCovstar=matrix(c(0.40, 0.39, 0.39, 16.1),

ncol=2, byrow=FALSE),



5. Software Implementation: The R package longQDA 89

R=c(sigQuad=0.56)),

group2=list(beta=c(4.0,-1.4),

DCovstar=matrix(c(0.23, 0.46, 0.46, 15.8),

ncol=2, byrow=FALSE),

R=c(sigQuad=0.39)), timestr="linear")

# functions needed for the generation of individual visit times

rmixnorm <- function (nsample, object){

mu <- object$mu

sd <- sqrt(object$sig2)

nj <- rmultinom(n = 1, size = nsample, prob = object$w)

return(sample(unlist(sapply(seq(along = nj), function(j) rnorm(nj[j],

mean = mu[j], sd = sd[j])))))

}

rmixnorm.v1 <- function(n){

return(rmixnorm(nsample=n, object=list(mu=c(0.05,0.5,0.95),

sig2=c(0.001,0.05,0.001),

w=c(0.12,0.76,0.12))))

}

# [some function definitions are omitted here...]

rnorm.v5 <- function(n){

return(rnorm(n, 0.45, sqrt(0.0045)))

}

# generation of individual visit times

simRandomVisits <- list(list(fn=rmixnorm.v1,range=c(0.02,0.05)),

list(fn=rnorm.v2, range=c(0.02, 0.08)),

list(fn=rmixnorm.v3, range=c(0.04, 0.12)),

list(fn=rnorm.v4, range=c(0.10, 0.22)),

list(fn=rnorm.v5, range=c(0.12, 0.19)),

list(fn=rnorm.v5, range=c(0.12, 0.19)),

list(fn=rnorm.v5, range=c(0.12, 0.19)),

list(fn=rnorm.v5, range=c(0.12, 0.19)),

list(fn=rnorm.v5, range=c(0.12, 0.19)))

# definition of analysis paths

testpaths <- list(list(isLongitudinal=TRUE, isMarkerComb=FALSE,

whichVisits=(1:6),

modelparams=list(covstr="RI", timestr="linear")),

list(isLongitudinal=TRUE, isMarkerComb=FALSE,

whichVisits=(1:6),

modelparams=list(covstr="RIS", timestr="linear")),

list(isLongitudinal=TRUE, isMarkerComb=FALSE,

whichVisits=(1:6),

modelparams=list(covstr="RICAR1", timestr="linear")),

list(isLongitudinal=FALSE, isMarkerComb=FALSE,

whichVisits=(1:6),

isSingleVisit=FALSE))
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# definition of all simulation settings

sim.setup <- SimulationSetup(starModel=risStar, simreps=25, paths=testpaths,

nvisits=10, ngroups=2*c(95, 37),

grouplabels=c("non-resistant", "resistant"),

priors=c(292, 64)/356,

randomVisits=simRandomVisits,

fixVisits=NULL, nMCsamples=50, ratiotrain=2/3,

stepcut=0.01, bmtransform="log10")

The analysis of simulated data according to the speci�ed paths is carried out as for real

data by means of fit, predict2 and PerformanceMeasures within a MCCV design by

the already de�ned method analyze (cf. p. 76). However, for the ...StarModel, the

�rst step (the estimation of the group-speci�c group parameters) is skipped as the model

was fully speci�ed by the user and does not need to be �tted. The other two steps are

executed to estimate the biomarker performance, which is achieved by the ...StarModel,

as this serves as direct benchmark for the �tted models. This is accomplished by the newly

created method analyzeStarModel.

The user does not need to care about this distinction as just the method analyze, which

has been adapted for objects of class SimulationSetup, is called to perform the analysis.

The returned object full.simtree is of class SimulationResult and contains a list

of objects of class AnalysisSetup and a list of objects of ResultTree, each of length

simreps. Then the results are summarized over the MCCV samples by the method

mccvSummary and afterwards over all simulation repetitions by simSummary:

full.simtree <- analyze(sim.setup)

mccv.sumsimtree <- mccvSummary(full.simtree, sim.setup)

sim.sumsimtree <- simSummary(mccv.sumsimtree)

The results of the subanalyses can be compared in the same way as for the analysis of

real data by selectResultLeafs and createReportFiles. For this purpose, the output

function createReportFiles has been adapted to the simulation setting, thus featuring

options to assess the introduced bias when assuming an incorrect model structure.

Finally, the computation times are an issue. Suppose we go for 28 simulation repetitions,

50-fold MCCV, 4 model structures to be compared, biomarker pro�les of length 6 and

have 2 patient groups in a simulation. This results in 25 � 50 � 5 � 2=12500 models for one

...StarModel and all computations took 56 minutes on a PC with an Intel Xeon X5450

3 GHz processor and 3 GB RAM. As the data analyses of simulation repetitions are inde-

pendent, the computing performance may be enhanced by deploying multiple processors

in parallel. In this example, one mother process spawns 7 parallel child processes which
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�nished in 11 minutes. This implementation is based on the R package Rmpi which is

one of the highly recommended packages by Schmidberger et al. (2009). The neces-

sary con�guration steps are described in the vignette "Parallel Computing in longQDA by

Rmpi" of longQDA. The user-handling is easy. The required setup for the parallel comput-

ing is performed by the method parInit, followed by invoking the equivalent method of

analyze for parallel computing which is parAnalyze. The parallel session is terminated

by using parFinalize. Here is the syntax for an example with seven child processes:

parInit(nslaves=7, name="logOfSlave")

full.simtree <- parAnalyze(sim.setup)

parFinalize()

Remark

Some ideas for the software design originated from a cooperation between Roche Diagnos-

tics and Manuel J. A. Eugster and Friedrich Leisch of the Ludwig-Maximilians-University,

Munich.





6 Conclusion

6.1 Summary

Discriminant analysis is a widely used statistical method for classi�cation purposes. The

extension for longitudinal data, proposed by Marshall and Barón (2000) and Tomasko

et al. (1999), is achieved by plugging the marginal estimates of linear mixed models into

the discriminant rule. This approach expands the search space for the best classi�ca-

tion performance by a further dimension. Not only uni- or multivariate cross-sectional

measurements may yield the highest performance, also a single or multiple longitudinal

data pro�les come into consideration. This moves the focus to modelling issues as model

selection and the need for parsimonious parametrization that are less relevant issues for

cross-sectional data. Besides those two research aims, an additional goal was a software

implementation in R that ful�lls quality criteria as user friendliness, fast extensibility and

time e�ciency. All those issues of the dissertation were motivated by and adopted to

biomarker data from medical diagnostics. The proposed methods were applied to clas-

sify patients as resistant or non-resistant to a given therapy based on their longitudinal

biomarker measurements.

First, the longitudinal quadratic discriminant analysis (longQDA), a classi�cation method

for longitudinal data, was reviewed. It is a two-step approach in that the longitudinal mea-

surements are modelled by linear mixed models to yield empirical means and covariances

for both classes. These estimations are then plugged into the discriminant rule known

from quadratic discriminant analysis for cross-sectional data. To avoid an underestima-

tion of the classi�cation performance, Monte Carlo cross validation (MCCV) was used,

performing the �rst step of longQDA on the training data and the second on the test

data. For a summarized assessment of the classi�cation performance, commonly used

performance measures in diagnostic medicine as the area under the ROC curve (AUC)

were complemented by the Brier score (BS) with its various decompositions to overcome

their shortcomings to evaluate only the discrimination. The BS and its decompositions

allow a more profound evaluation as they take the probability into account with which a

person is classi�ed and are not based on the less informative discretised membership to

one of the classes. The application of the methodology to univariate biomarker data (RNA
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pro�les) from patients that are and are not resistant to HIV therapy revealed an increased

performance by a longitudinal instead of a cross-sectional design.

The high �exibility of linear mixed models induced the research question for an appropriate

model selection criteria in longQDA, especially for not well separated classes. Compared

to analysis goals where the mean parameters of the mixed model are of main interest, in

longQDA, both, the mean and the covariance parameters are important for the discrimi-

nant rule. In Chapter 3, this issue was investigated by comparing two di�erent selection

criteria in a simulation study: One strategy was to choose the mixed model which had

yielded the best classi�cation performance, also considering by which performance mea-

sure the classi�cation was assessed. The alternative strategy was to choose the mixed

model with the smallest Bayesian information criterion (BIC). We examined linear mixed

models with only a random intercept as true model, one with a random intercept and a

random slope and one with a random intercept and a continuous AR(1) process for the

residuals. All three structures and QDA were �tted and the length of the longitudinal

pro�les varied between 3 and 10. The simulation results showed that the BIC performed

much better than the performance measures, selecting the correct mixed model structures

in the broad majority of the MCCV loops. For most of the scenarios, especially those

with shorter biomarker pro�les, the performance measures were very similar providing no

broad selection basis. Additionally, if they di�ered, only few of them as AUC, BS and the

biserial correlation were able to select the correct model. As expected, the choice of the

correct model structure becomes more and more important for models with more than

about 5 visits and/or those that assume a time-variant longitudinal data structure. Then

the misspeci�cation e�ects do not only occur at the individual in form of incorrectly low

or high classi�cation uncertainty but also at the global assessment level in the form of

underestimated performance measures.

In Chapter 4, the multivariate extension of longQDA was proposed. The challenge con-

sisted in �nding parsimonious multivariate mixed models. The subsequent proceeding of

longQDA was the same as for the univariate case. The presentation was restricted to

the bivariate case with two biomarkers. In the following section containing the outlook,

it will become clear why this is an advisable starting point for any multivariate longQDA.

Besides a fast ad-hoc solution for independent biomarkers, two multivariate mixed model

classes were proposed in this dissertation. These are multivariate random e�ects models

and covariance pattern models with a Kronecker product structure that may cope with

cross-sectional correlations as well as the additional time-dependent cross-correlations in

multivariate longitudinal data. Provided the data set is transformed appropriately, the

estimation of the random e�ects models may be carried out with statistical software

written for the univariate case. For the estimation of covariance pattern models, a nu-

merical constraint optimization without the need of computer-intensive calculations for
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the information matrices was proposed. Not computing the information matrices and

the parsimonious parametrization of Kronecker product models led to computational ad-

vantages. In the application to a diagnostic study with seven longitudinal biomarkers,

assessed for resistance to one rheumatoid arthritis medication, the multivariate random

coe�cients models were preferred to the Kronecker product models according to the BIC.

A gain in classi�cation performance by pairs of biomarker pro�les could not be achieved,

a single longitudinal biomarker was the best option. However, exemplary simulated data

settings were included to illustrate various potential gains through the combination of

longitudinal biomarkers.

For a wide-spread application of statistical methods, an implementation in a state-of-the-

art software environment like R is indispensable nowadays. The R package longQDA was

therefore developed. Its application and implementation were presented in Chapter 5. The

package provides a general framework for executing quadratic discriminant analysis with

longitudinal data, including univariate, multivariate longQDA and multivariate QDA, with

real as well as with simulated data. All models for longitudinal biomarker data that are

proposed in this dissertation are implemented. Based on the resampling method Monte

Carlo cross validation, the estimation of the group-speci�c parameters is performed with

the training datasets and the evaluation of the classi�cation performance with the test

datasets. The software solution was created to be used for clinical biomarker studies

with a longitudinal design at Roche Diagnostics. Therefore, conceptual requirements

as a data-independent implementation with a user-friendly handling, easy extensibility,

a good run-time performance and a comfortable reporting determined the design. The

implementation of the software follows the modern object-orientated concept with S4

classes and comprises functionality for the entire data analysis process, from the descriptive

and explorative analysis of longitudinal data up to the comparison of results under di�erent

model structures and data settings. Due to the broad generality, the key ideas may also

serve as a source for the implementation of other statistical methods in R. The usefulness

of the object-oriented approach in terms of fast extensibility was exemplarily demonstrated

for the multivariate version of longQDA and for the generation and analysis of simulated

data. For the latter, a short computational time was achieved by using parallel computing.

6.2 Outlook

Our presented approach for evaluating biomarker panels is not restricted to the bivariate

case. Our results indicate that for biomarker variables re�ecting complex biological pro-

cesses, the restrictive proportionality property of Kronecker product structures is often

too simplistic. When increasing the dimension of a biomarker panel, these strong implied

assumptions get more and more implausible to hold. Therefore multivariate random ef-
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fects models should be favored. Fieuws and Verbeke (2006) and Fieuws et al. (2007)

propose an approach for q > 2 which extends directly the bivariate modelling presented

above. As computational problems occur more frequently when increasing the dimension

of the joint covariance matrix of the random e�ects, their approach consists of �tting

all possible bivariate models and joining them afterwards by pseudo-likelihood arguments.

Biomarker-speci�c parameters are estimated in more than one model and are therefore

averaged. Pair-speci�c parameters as for example the covariance between two random

e�ects are estimated in exactly one model and thus there is no need for averaging those

parameters. Standard errors are obtained via a speci�cally constructed covariance matrix.

The matrix contains entries of the pairwise information matrices, each weighted by the

resulting coe�cients from the averaging step.

There is a further point to consider with a longitudinal multivariate assessment. An

optimization of the performance with respect to p, the number of measurements over

time, has di�erent implications than an optimization with respect to q, the dimension

of the biomarker panel. Increasing q yields a much higher dimensional problem than an

increase in p. In the �rst mentioned univariate case, the dimension increases from p to p+1

but it increases directly from p �q to p �(q+1) in the multivariate case. That is, combining

longitudinal biomarkers is associated with a more challenging density estimation. Due to

this rapid increase in dimension, the disadvantageous curse of dimensionality may become

a serious problem. This is because the volume of a space increases exponentially by a

linear increase in dimension, yielding mostly empty spaces. This leads to less precise

plug-in estimators or even non-estimability. Van Ness (1976) �nds in a comparison of

several classi�cation methods for cross-sectional data that QDA is especially sensitive to

this phenomenon.

An alternative approach to longQDA might be based on functional data analysis. James

and Hastie (2001) �t B-splines to univariate longitudinal biomarker data and plug the

resulting mean and covariance functions into the standard discriminant rule. Multivariate

measurements might be modelled by multivariate B-splines as Brown et al. (2005) did

with biomarker data of the same HIV therapy resistance study that we used. As long

as the groups are not very well separated, the classi�cation performance might depend

on the appropriateness of the group-speci�c models. Therefore, it is advisable to check

in each application the sensitivity of the performance with respect to various modelling

approaches.

Müller (2005) proposes functional principal component analysis as a dimension reduction

technique for longitudinal data prior to the classi�cation. The resulting functional principal

component scores, derived from all patients, are then used as explanatory variables in a

functional binary regression with the group membership as dependent variable. However,
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applying PCA prior to classi�cation is not regarded as the best approach. The principal

components represent the highest within-group variation whereas the discrimination aims

at the highest between-group variation. This does not necessarily lead in the same direc-

tion (Jolli�e, 2002). These functional data approaches might be further investigated and

contrasted with longQDA in the future.





A Report for Dataset AIDS2

In Section 5.1, we illustrated the use of the R package longQDA for the therapy resistance

data of HIV patients (The data served also as application dataset for the univariate

longQDA in Chapter 2.). Here, we include the automatically generated report of our

exemplary analysis1. It serves as a quick overview of all the results and was not

designed with the intention to be as beautifully formatted as a �nal report. It

contains all the results gathered throughout the analysis and may be a starting point

when preparing a report of the results. The LaTeX format enables easy editing.

1The original format is one-sided.



Results of dataset AIDS2demo

(complete cases)

Mareike Kohlmann
DXRQB2

Roche Diagnostics GmbH

11th June 2008

1 Exploratory Analysis

1.1 AIDS2demo (complete cases)
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ID

Summary of visit times for each visit:

$‘1‘

non-resistant resistant

Min. 0 0

1st Qu. 0 0

Median 0 0

Mean 0 0

3rd Qu. 0 0

Max. 0 0

$‘2‘

non-resistant resistant

Min. 0.01918 0.01918

1st Qu. 0.02603 0.03288

Median 0.03836 0.03836

Mean 0.03812 0.03793

3rd Qu. 0.04932 0.04384

Max. 0.05479 0.05479

$‘3‘

non-resistant resistant

Min. 0.05753 0.06027

1st Qu. 0.07123 0.07397

Median 0.07945 0.07808

Mean 0.08033 0.07777

3rd Qu. 0.09315 0.08219

Max. 0.10680 0.09589

$‘4‘

non-resistant resistant

Min. 0.1151 0.1151

1st Qu. 0.1575 0.1562

Median 0.1699 0.1603

Mean 0.1665 0.1615

3rd Qu. 0.1726 0.1726

Max. 0.1890 0.1863

$‘5‘

non-resistant resistant

Min. 0.2712 0.2685

1st Qu. 0.3096 0.3103

Median 0.3260 0.3178

Mean 0.3199 0.3158

3rd Qu. 0.3288 0.3253

Max. 0.3425 0.3397

6

$‘6‘

non-resistant resistant

Min. 0.4384 0.4384

1st Qu. 0.4630 0.4630

Median 0.4767 0.4685

Mean 0.4736 0.4712

3rd Qu. 0.4836 0.4795

Max. 0.4959 0.4959

Variance of visit times for each visit:

$‘1‘

non-resistant resistant

0 0

$‘2‘

non-resistant resistant

0.0001522672 0.0001006972

$‘3‘

non-resistant resistant

0.0001670600 0.0000937223

$‘4‘

non-resistant resistant

0.0001843052 0.0002903244

$‘5‘

non-resistant resistant

0.0002323249 0.0002483364

$‘6‘

non-resistant resistant

0.0002196071 0.0001705386

7

VISIT 1 VISIT 2 VISIT 3 VISIT 4 VISIT 5 VISIT 6

1.00 0.59 0.50 0.42 0.27 0.26
0.59 1.00 0.66 0.50 0.46 0.38
0.50 0.66 1.00 0.85 0.74 0.71
0.42 0.50 0.85 1.00 0.88 0.85
0.27 0.46 0.74 0.88 1.00 0.95
0.26 0.38 0.71 0.85 0.95 1.00

VISIT 1 VISIT 2 VISIT 3 VISIT 4 VISIT 5 VISIT 6

1.00 0.55 0.57 0.35 0.33 0.22
0.55 1.00 0.45 0.36 0.42 0.36
0.57 0.45 1.00 0.73 0.67 0.56
0.35 0.36 0.73 1.00 0.83 0.79
0.33 0.42 0.67 0.83 1.00 0.92
0.22 0.36 0.56 0.79 0.92 1.00

8
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2 Analysis Setup

Formal class ’AnalysisSetup’ [package "longQDA"] with 4 slots

..@ data :Formal class ’LongData’ [package "longQDA"] with 17 slots

.. .. ..@ id2rows : int [1:85, 1:6] 1 7 13 19 25 31 37 43 49 55 ...

.. .. .. ..- attr(*, "dimnames")=List of 2

.. .. .. .. ..$ : chr [1:85] "2" "5" "6" "26" ...

.. .. .. .. ..$ : chr [1:6] "1" "2" "3" "4" ...

.. .. ..@ visitindex : int 3

.. .. ..@ timeindex : int 6

.. .. ..@ markerlabels : Named chr "BM1 (log10)"

.. .. .. ..- attr(*, "names")= chr "BM1"

.. .. ..@ markerindices : int 5

.. .. ..@ scheduledtimes : num [1:6] 0.0000 0.0385 0.0769 0.1538 0.3077 ...

.. .. ..@ rawdata :’data.frame’: 510 obs. of 8 variables:

.. .. .. ..$ PATID : int [1:510] 2 2 2 2 2 2 5 5 5 5 ...

.. .. .. ..$ TIMEDAY : int [1:510] 0 8 37 64 99 162 0 13 26 69 ...

.. .. .. ..$ VISIT : int [1:510] 1 2 3 4 5 6 1 2 3 4 ...

.. .. .. ..$ CENSOR : int [1:510] 1 1 1 1 1 3 1 1 1 1 ...

.. .. .. ..$ BM1 : num [1:510] 5.24 4.61 2.46 2.27 1.69 ...

.. .. .. ..$ SDURN : num [1:510] 0.0000 0.0219 0.1014 0.1753 0.2712 ...

.. .. .. ..$ GROUP : int [1:510] 1 1 1 1 1 1 1 1 1 1 ...

.. .. .. ..$ GROUPVAR: Factor w/ 2 levels "non-resistant",..: 1 1 1 1 1 1 1 1 1 1 ...

.. .. ..@ name : chr "AIDS2demo (complete cases)"

.. .. ..@ groupindex : int 7

.. .. ..@ grouplabels : chr [1:2] "non-resistant" "resistant"

.. .. ..@ groupcodes : num [1:2] 1 2

.. .. ..@ groupcolors : chr [1:2] "black" "red"

.. .. ..@ groupsymbols : num [1:2] 1 2

.. .. ..@ grouppriors : num [1:2] 0.694 0.306

.. .. ..@ fixedgrouppriors : logi FALSE

.. .. ..@ idindex : int 1

.. .. ..@ markertransformfn: chr "log10"

..@ MCsamples :List of 10

.. ..$ :List of 2

.. .. ..$ train: int [1:58] 2 5 6 33 35 52 57 68 72 88 ...

.. .. ..$ test : int [1:27] 26 27 37 46 60 66 67 74 78 102 ...

.. ..$ :List of 2

.. .. ..$ train: int [1:58] 6 26 27 33 35 37 46 52 57 60 ...

.. .. ..$ test : int [1:27] 2 5 66 88 104 115 123 126 139 141 ...

.. ..$ :List of 2

.. .. ..$ train: int [1:58] 5 6 27 33 37 46 52 57 60 66 ...

.. .. ..$ test : int [1:27] 2 26 35 72 74 88 104 139 141 143 ...

.. ..$ :List of 2

.. .. ..$ train: int [1:58] 2 5 6 26 27 35 60 66 67 72 ...

.. .. ..$ test : int [1:27] 33 37 46 52 57 68 74 123 130 131 ...
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.. ..$ :List of 2

.. .. ..$ train: int [1:58] 2 5 6 26 27 33 35 37 52 57 ...

.. .. ..$ test : int [1:27] 46 72 74 115 120 139 162 164 170 179 ...

.. ..$ :List of 2

.. .. ..$ train: int [1:58] 2 6 26 27 33 37 52 57 60 66 ...

.. .. ..$ test : int [1:27] 5 35 46 88 104 112 131 143 162 187 ...

.. ..$ :List of 2

.. .. ..$ train: int [1:58] 2 5 26 27 33 35 37 52 57 66 ...

.. .. ..$ test : int [1:27] 6 46 60 67 68 74 78 88 104 115 ...

.. ..$ :List of 2

.. .. ..$ train: int [1:58] 2 5 6 26 27 33 37 52 60 66 ...

.. .. ..$ test : int [1:27] 35 46 57 68 78 102 112 153 164 168 ...

.. ..$ :List of 2

.. .. ..$ train: int [1:58] 2 6 26 27 33 35 46 52 57 60 ...

.. .. ..$ test : int [1:27] 5 37 72 78 104 112 126 162 186 189 ...

.. ..$ :List of 2

.. .. ..$ train: int [1:58] 2 5 6 26 27 35 37 46 57 60 ...

.. .. ..$ test : int [1:27] 33 52 66 74 78 88 120 131 139 143 ...

..@ paths :List of 2

.. ..$ :Formal class ’AnalysisPath’ [package "longQDA"] with 4 slots

.. .. .. ..@ whichVisitsModel:List of 1

.. .. .. .. ..$ : num 1

.. .. .. ..@ modelfn :Formal class ’QdaAlgo’ [package "longQDA"] with 1 slots

.. .. .. .. .. ..@ reshapefn: chr "toXsec"

.. .. .. ..@ modelparams : list()

.. .. .. ..@ biomarker :List of 1

.. .. .. .. ..$ : chr "BM1"

.. ..$ :Formal class ’AnalysisPath’ [package "longQDA"] with 4 slots

.. .. .. ..@ whichVisitsModel:List of 1

.. .. .. .. ..$ : int [1:6] 1 2 3 4 5 6

.. .. .. ..@ modelfn :Formal class ’RisAlgo’ [package "longQDA"] with 1 slots

.. .. .. .. .. ..@ reshapefn: chr "minimize"

.. .. .. ..@ modelparams :List of 2

.. .. .. .. ..$ covstr : chr "RIS"

.. .. .. .. ..$ timestr: chr "quadratic"

.. .. .. ..@ biomarker :List of 1

.. .. .. .. ..$ : chr "BM1"

..@ performanceMeasuresParams:List of 1

.. ..$ stepcut: num 0.01

11

3 Analysis

3.1 Path 1 Visit(s) 1 Markers BM1

$group1

mu1 V11

4.702 0.479

$group2

mu1 V11

4.518 0.324
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3.2 Path 2 Visit(s) 1;2;3;4;5;6 Markers BM1

$group1

(Intercept) SDURN I(SDURN^2) DInt DSlope D_IS

4.438 -13.172 18.863 0.479 8.286 0.315

sigQuad

0.314

$group2

(Intercept) SDURN I(SDURN^2) DInt DSlope D_IS

4.270 -7.908 13.557 0.290 5.109 0.203

sigQuad

0.263
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longQDA includes 6 biomarker measurements per patient.
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4 Comparisons

4.1 Baseline vs. all 6 visits
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Baseline vs. all 6 visits

1−specificity for non−resistant (mean)
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Baseline vs. all 6 visits

1−specificity for non−resistant (mean)
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B Selected Help Files of the R Package

longQDA

As supplementary material to Chapter 5, the documentation for the most important

functions are included in the form of help �les. The following selection comprises those

functions that are needed to perform a "standard" longQDA, containing the output

as prede�ned in createReportFiles. Beside the class MccvSummary and the method

createReportFiles of which the help �les were included in Subsection 5.2.2, the

classes Report, LongData, AnalysisSetup and the methods analyze, mccvSummary

and selectResultLeafs are required.

Report-class Class 'Report' Contains Paths of Output Files

Description

An object of class 'Report' contains a list with elements called "Exploratory Analysis",
"Analysis Setup", "Analysis" and "Comparisons" as well as the path of the report
folder where all output �les are stored. Every list entry contains the paths of the
output �les which have been generated in the corresponding part of the analysis.
Graphics are saved in pdf format, tables and text in tex format.

Objects from the Class

Objects are created by calls of the form Report(folder).

folder: Object of class 'character'. Path of the folder where all analysis output
is saved which is later included in the report. If the folder does not exist yet, it
is automatically created. If the folder exists, its content is updated.

Slots

.Data: Object of class 'list' which contains the �le names of the plots and tables
to be part of the report, structured by the following list elements:
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expl: Output for report section "Exploratory Analysis" - further subsections
possible.

anasetup: Output for report section "Analysis Setup".

analysis: Output for report section "Analysis" - further subsections possible.

comp: Output for report section "Comparisons" - further subsections possible.

(All subsections are created within createReportFiles with the result that the
corresponding list entries above may contain again lists (as documented above).)

folder: Object of class 'character': Path of the report folder where analysis out-
put to be included is saved.

Extends

Class 'list', from data part. Class 'vector', by class 'list', distance 2.

Methods

createReport signature(report = 'Report'): createReport

save2Report signature(report = 'Report'): save2Report

Author(s)

Mareike Kohlmann hlongQDA@web.dei

See Also

save2Report to add plots or text (comments) to the report, createReportFiles
to generate pre-de�ned output for one analysis step and createReport to create the
report in tex (and pdf) format.

Examples

showClass("Report")

myreport <- Report(folder=getwd())
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LongData-class Class 'LongData' containing longitudinal data and metain-

formation

Description

Contains the longitudinally structured data set as well as metainformation (e.g. group-
speci�c colors and column indices of marker variables). For each subject, the data set
contains so many rows as there are individual repeated measurements.

Objects from the Class

Objects are created by calls of the form LongData(rawdata, name, markerlabels,

scheduledtimes, groups, priors, visitname, timename, groupname,

groupcolors, groupsymbols, idname).

rawdata: Object of class 'data.frame'. Raw data set in longitudinal structure, read
in beforehand by read.table, for example.

name: Object of class 'character'. Name of the data set, used i.a. as name of the
folder where for the output of the analysis is stored. As it will also be displayed
in the header of the report �le in tex format, the character string should *not*
contain '_'.

markerlabels: Object of class 'character'. Names of the columns in rawdata

containing the biomarker variables.

scheduledtimes: Object of class 'numeric'. Vector containing scheduled times of
the visits.

groups: Object of class 'numeric'. Vector with levels of group variable. The group
labels need to be provided as names of the vector.

priors: Object of class 'numeric'. Default: c(0,0). Prior probabilities for group
membership. If they are not speci�ed by the user (default), they are estimated
by the group proportions present in the data. Otherwise, they are not estimated
and taken as �xed throughout the analysis.

visitname: Object of class 'character'. Default: "VISIT". Name of the variable
in the data set containing the consecutively numbered visits.

timename: Object of class 'character'. Default: "TIME". Name of the variable
in the data set containing the continuous study time (i.e. the actual time since
baseline).

groupname: Object of class 'character'. Default: "GROUP". Name of the variable
in the dataset containing the numerically coded group membership according to
the Gold Standard.



112

groupcolors: Object of class 'character'. Default: c("black", "red").
Colours that are used for plots to distinguish the two groups by color.

groupsymbols: Object of class 'numeric'. Default: c(1,2). Symbol numbers for
plotting points to distinguish between the two groups. For possible values, refer
to pch in the section "Details" of points.

idname: Object of class 'character'. Default: "PATID". Name of the variable in
the data set containing the unique numerical subject identi�ers.

Slots

id2rows: Object of class 'matrix' containing the row numbers of the data set for
each subject and each visit. The names of the rows are the identi�cation numbers
of the subjects, the names of the columns are the visit numbers.

visitindex: Object of class 'numeric'. Column of the data set containing the
visits (see also visitname above).

timeindex: Object of class 'numeric'. Column of the data set containing the study
time (see also timename above).

markerlabels: Object of class 'character'. Vector containing the names of the
marker labels provided by the user. The names of the vector are the new stan-
dardized names of the markers in the data set which are "BM1", "BM2",...

markerindices: Object of class 'numeric'. Vector containing the columns of the
data set containing the marker variables.

scheduledtimes: Object of class 'numeric'. Vector containing the scheduled times
of the visits as provided by the user.

rawdata: Object of class 'data.frame'. Data set provided by the user in a standard-
ized structure, e.g. coded names of the biomarker variables (see markerlabels).

name: Object of class 'character'. Name of the data set provided by the user.

groupindex: Object of class 'numeric'. Column of the data set containing the
coded group membership (see also groupname above).

grouplabels: Object of class 'character'. Labels of the two groups, provided by
the user.

groupcodes: Object of class 'numeric'. Coded levels of the two groups, provided
by the user.

groupcolors: Object of class 'character'. V. groupcolors above.

groupsymbols: Object of class 'numeric'. V. groupsymbols above.

grouppriors: Object of class 'numeric'. V. priors above.

fixedgrouppriors: Object of class 'logical'. If TRUE, prior probabilities for each
were provided by the user and are therefore treated as �xed. If FALSE, the priors
are estimated by the group proportions in the data set and re-estimated whenever
necessary (e.g. in completeCases).
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idindex: Object of class 'numeric'. Column of the data set containing the unique
subject identi�cation numbers (see also idname above).

markertransformfn: Object of class 'character'. Names of the functions used for
marker transformation, only �lled after execution of transform for real data.

Extends

Class 'Data', directly.

Methods

autoCorr: signature(data = 'LongData'): autoCorr

boxplotLongMarkers: signature(data = 'LongData'): boxplotLongMarkers

completeCases: signature(data = 'LongData'): completeCases

createReportFiles: signature(object = 'LongData'): createReportFiles

fit: signature(algo = 'QdaAlgo', data = 'LongData'): fit,QdaAlgo,
LongData-method

fit: signature(algo = 'RiAlgo', data = 'LongData'): fit,RiAlgo,
LongData-method

fit: signature(algo = 'RisAlgo', data = 'LongData'): fit,RisAlgo,
LongData-method

fit: signature(algo = 'Ricar1Algo', data = 'LongData'): fit,Ricar1Algo,
LongData-method

minimize: signature(data = 'LongData'): minimize

plotLongMarkers: signature(data = 'LongData'): plotLongMarkers

predict2: signature(model = 'QdaModel', data = 'LongData'):

predict2,QdaModel,LongData-method

predict2: signature(model = 'LongDaUnivModel', data = 'LongData'):

predict2,LongDaUnivModel,LongData-method

scatterVisitTimes: signature(data = 'LongData'): scatterVisitTimes

selectIds: signature(data = 'LongData', ids = 'vector'): selectIds

selectVisitsMarkers: signature(data = 'LongData', visits = 'vector',

markers = 'vector'): selectVisitsMarkers

toLongmv: signature(data = 'LongData'): toLongMv

toXsec: signature(data = 'LongData'): toXsec

transform: signature(_data = 'LongData'): transform

updateColIndices: signature(data = 'LongData'): updateColIndices

updateId2Rows: signature(data = 'LongData'): updateId2Rows
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Author(s)

Mareike Kohlmann hlongQDA@web.dei

Examples

showClass("LongData")

data(AIDS2)

d <- LongData(AIDS2, "AIDS2", c("BM1"), c(0,2,4,8,16,24)/52,

c('non-resistant'=1, 'resistant'=2), timename="SDURN")

AnalysisSetup-class

Class 'AnalysisSetup' Containing the Analysis Settings

Description

All analysis settings are contained therein to enable logging and reproducibility. In
details, these are the data together with its metainformation, the Monte Carlo cross-
validation (MCCV) samples, the analysis paths containing details about sub-analyses
to be performed and the global precision parameters for evaluating the performance
measures. To compare results of various analyses, it is recommended to use the same
setup settings (the same data set, same MCCV samples and same performance mea-
sures parameters), di�ering only with regard to the analysis paths de�ning the models.
This is accomplished by saving the analysis setup of one analysis and updating it for
the other one by updateAnalysisSetup.

Objects from the Class

Objects are created by calls of the form
AnalysisSetup(data, nMCsamples, ratiotrain, paths, stepcut).

data: Object of class 'LongData'. Data set and corresponding metainformation.

nMCsamples: Object of class 'numeric'. Number of Monte Carlo crossvalidation
samples to be used for the analysis.

ratiotrain: Object of class 'numeric'. Subjects are randomized blockwise (i.e.
with all their repeated measurements) to the training set with a probability of
ratiotrain within each group. This sampling yields a ratio of the size of the
training to that of the test set equal to ratiotrain and is performed without
replacement.
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paths: Object of class 'list'. The list should contain the following knot selection
criteria to build up the analysis tree describing the sub-analyses to be performed.
For an illustration with 2 biomarkers and 3 visits see the vignette "longQDA-
Analysis".

isLongitudinal: Object of class 'logical'. If TRUE, longitudinal data struc-
ture is accounted for in the analysis, i.e. longQDA is used.

isMarkerComb: Object of class 'logical'. If TRUE, biomarkers are analyzed in
combinations.

markerCombLength: Object of class 'numeric' determining how many
markers are combined; only needed for multivariate (long)QDA, i.e. when
isMarkerComb=TRUE.

isSingleVisit: Object of class 'logical'. If TRUE, data of single visits are
used; only needed for classic QDA.

whichVisits: Object of class 'numeric' giving the vector of visits which are
included in the analysis. For longQDA, this vector should always have 1 as
�rst entry and should be a consecutive sequence.

modelparams: Object of class 'list' containing the following mixed
model parameters and need to be therefore only provided by the user if
isLongitudinal=TRUE.

covstr: Object of class 'character' giving the covariance structure. Can
be either "RI" (random intercept), "RIS" (random intercept and linear
slope) or "RICAR1" (random intercept and continuous AR(1) residual
structure) for univariate longQDA.

timestr: Object of class 'character' giving the maximum order for the
�xed e�ect(s) of the time variable. Terms of lower order are automati-
cally included. Can either be "linear" or "quadratic".

stepcut: Object of class 'numeric'. Default: 0.01. Precision parameter for gen-
erating the ROC curve. It gives the step length for moving the cut-o� along
the range of the predicted posterior probabilities. Lower values than the default
gives higher precision and vice versa.

Slots

data: Object of class 'LongData'. Data set and corresponding metainformation
as provided by the user. It is not modi�ed, only saved to support reproducible
research.

MCsamples: Object of class 'list' having length nMCsamples and containing for
each MC sample a list with 2 entries:

train: Object of class 'numeric' containing the unique identi�cation numbers
of subjects sampled to the training set by MCCV.

test: Object of class 'numeric' containing the unique identi�cation numbers
of subjects sampled to the test set by MCCV.
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paths: Object of class 'list' containing the analysis paths of class
'AnalysisPath'. See there for details and their structure.

performanceMeasuresParams: Object of class 'list' containing the named preci-
sion parameter stepcut. (Note: The list structure was set up to allow further
extension with additional parameters in the future.)

Methods

analyze: signature(analysis = 'AnalysisSetup'): analyze

createReportFiles: signature(object = 'AnalysisSetup'):
createReportFiles

updateAnalysisSetup: signature(setup = 'AnalysisSetup'):
updateAnalysisSetup

Author(s)

Mareike Kohlmann hlongQDA@web.dei

See Also

'AnalysisPath'

Examples

showClass("AnalysisSetup")

data(AIDS2)

d <- LongData(AIDS2, "AIDS2", c("BM1"), c(0,2,4,8,16,24)/52,

c('non-resistant'=1, 'resistant'=2), timename="SDURN")

d2 <- completeCases(d, visits=6)

asetup <- AnalysisSetup(d2, nMCsamples=5, ratiotrain=2/3,

paths=list(list(isLongitudinal=FALSE, isMarkerComb=FALSE,

isSingleVisit=TRUE,

whichVisits=(1:ncol(d2@id2rows))),

list(isLongitudinal=TRUE, isMarkerComb=FALSE,

whichVisits=(1:ncol(d2@id2rows)),

modelparams=list(covstr="RI",

timestr="quadratic"))))
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analyze-method Performs All (long)QDA Analyses and Evaluates Classi�ca-

tion Performance

Description

Every analysis comprises the following sequential steps: Data set preparation, group-
wise model �tting by the appropriate algorithm on the training set, computation of
the marginal estimators of the mean vector and the covariance matrix to predict the
posterior probabilities by the quadratic discriminant rule on the test set and graphical
and numerical evaluation of the performance measures. This is done repeatedly using
each of the MCCV samples, each visit and each biomarker selection of the analysis
paths de�ned by the user in the analysis resp. simulation setup.

For simulated data, this procedure is repeated for each of the simreps generated data
sets. To speed up the analyses, parallel computing can be used. See parAnalyze for
details.

Usage

For objects of class 'AnalysisSetup' or 'SimulationSetup':

analyze(analysis)

Arguments

analysis = 'AnalysisSetup': Object de�ning all analyses to be performed with
real data.

analysis = 'SimulationSetup': Object de�ning all analyses to be performed with
simulated data.

Value

Object of class 'ResultTree' for real data resp. of class 'SimulationResult' for
simulated data.

Author(s)

Mareike Kohlmann hlongQDA@web.dei

See Also

'AnalysisSetup', 'ResultTree','SimulationSetup', 'SimulationResult'
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Examples

### Using real data:

data(AIDS2)

d <- LongData(AIDS2, "AIDS2", c("BM1"), c(0,2,4,8,16,24)/52,

c('non-resistant'=1, 'resistant'=2), timename="SDURN")

d2 <- completeCases(d, visits=6)

asetup <- AnalysisSetup(d2, nMCsamples=5, ratiotrain=2/3,

paths=list(

list(isLongitudinal=TRUE, isMarkerComb=FALSE,

whichVisits=(1:ncol(d2@id2rows)),

modelparams=list(covstr="RI",

timestr="quadratic"))))

full.tree <- analyze(asetup)

str(full.tree, 8)

### Using simulated data (without making use of parallel computing):

risStar <- RisStarModel(group1=list(beta=c(4.0,-4.5),

DCovstar=matrix(c(0.40, 0.39, 0.39, 16.1),

ncol=2, byrow=FALSE),

R=c(sigQuad=0.56)),

group2=list(beta=c(4.0,-1.4),

DCovstar=matrix(c(0.23, 0.46, 0.46, 15.8),

ncol=2, byrow=FALSE),

R=c(sigQuad=0.39)),

timestr="linear")

testpaths <- list(list(isLongitudinal=TRUE, isMarkerComb=FALSE,

whichVisits=(1:6),

modelparams=list(covstr="RIS", timestr="linear")))

sim.setup <- SimulationSetup(starModel=risStar, simreps=2, paths=testpaths,

nvisits=6, ngroups=2*c(95, 37),

grouplabels=c("non-resistant", "resistant"),

priors=c(292, 64)/356, randomVisits=NULL,

fixVisits=c(0,2,4,8,16,24)/52,

nMCsamples=5, ratiotrain=2/3, stepcut=0.01,

bmtransform="log10")

full.simtree <- analyze(sim.setup)

mccvSummary-method Summarizes Analysis Results over MCCV samples

Description

The lowest level of the analysis tree, consisting of one node for each MCCV sample,
is summarized as one leaf node.
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Usage

For objects of class 'ResultTree' or 'SimulationResult':

mccvSummary(tree, analysis)

Arguments

tree = 'ResultTree': Tree with analysis results based on real data. The leaf nodes
with the results of the MCCV samples are summarized.

tree = 'SimulationResult': Tree with analysis results based on simulated data.
The leaf nodes with the results of the MCCV samples are summarized.

analysis: Object of class 'AnalysisSetup' containing metainformation about the
data. It is needed for a correctly structured summary of the analysis tree.

Value

Object of class 'ResultTree' with leaf nodes of class 'MccvSummary'.

Author(s)

Mareike Kohlmann hlongQDA@web.dei

Examples

### Example 1 with real data (results of class 'ResultTree')

data(AIDS2)

d <- LongData(AIDS2, "AIDS2", c("BM1"), c(0,2,4,8,16,24)/52,

c('non-resistant'=1, 'resistant'=2), timename="SDURN")

d2 <- completeCases(d, visits=6)

asetup <- AnalysisSetup(d2, nMCsamples=5, ratiotrain=2/3,

paths=list(

list(isLongitudinal=FALSE, isMarkerComb=FALSE,

isSingleVisit=TRUE,

whichVisits=(1:ncol(d2@id2rows))),

list(isLongitudinal=TRUE, isMarkerComb=FALSE,

whichVisits=(1:ncol(d2@id2rows)),

modelparams=list(covstr="RI",

timestr="quadratic"))))

tree <- analyze(asetup)

sum.tree <- mccvSummary(tree, asetup)
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selectResultLeafs-method

Selects Analysis Results of Speci�ed Node Leafs

Description

Selects some or all of the analysis results speci�ed by the user for comparison. In
addition, the complex hierarchical structure of the result tree is removed and a �at list
is returned instead. For an easy identi�cation of the selected paths, it is recommended
to provide path names.

Usage

For objects of class 'ResultTree' or 'SimulationResult':

selectResultLeafs(tree, leafnumbers=NULL, compname=paste("leafnumbers:",

ifelse(is.null(leafnumbers), "all", paste(leafnumbers,

collapse="-"))), pathnames=NULL)

Arguments

tree = 'ResultTree': A tree containing all results of the analysis based on real
data in the leaf nodes.

tree = 'SimulationResult': A tree containing all results of the analysis based on
simulated data in the leaf nodes.

leafnumbers: Default: NULL. Vector with numbers of leaf nodes to be selected,
can be displayed by showLeafs. If no leafnumbers are speci�ed (default), all
leafnumbers are selected.

compname: Default: paste("leafnumbers:", ifelse(is.null(leafnumbers),

"all", paste(leafnumbers, collapse="-"))). Name of the comparison,
used as name for the returned result list.

pathnames: Default: NULL. Names of the corresponding analysis paths of the selected
leaf nodes, used as list names of the returned result list.

Note

The result tree must have the structure as returned by mccvSummary. Otherwise, an
error message is generated and the execution of the function is stopped.

Value

Object of class 'ResultList' containing only the analysis results of selected leafs.
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Author(s)

Mareike Kohlmann hlongQDA@web.dei

Examples

data(AIDS2)

d <- LongData(AIDS2, "AIDS2", c("BM1"), c(0,2,4,8,16,24)/52,

c('non-resistant'=1, 'resistant'=2), timename="SDURN")

d2 <- completeCases(d, visits=6)

asetup <- AnalysisSetup(d2, nMCsamples=5, ratiotrain=2/3,

paths=list(

list(isLongitudinal=FALSE, isMarkerComb=FALSE,

isSingleVisit=TRUE,

whichVisits=(1:ncol(d2@id2rows))),

list(isLongitudinal=TRUE, isMarkerComb=FALSE,

whichVisits=(1:ncol(d2@id2rows)),

modelparams=list(covstr="RI",

timestr="quadratic"))))

tree <- analyze(asetup)

summary.tree <- mccvSummary(tree, asetup)

leafs6 <- selectResultLeafs(summary.tree, leafnumbers=c(1,7),

compname="Baseline vs. all 6 visits",

pathnames=c("QDA, Baseline", "RI, 6 vis."))
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