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1.  Introduction 

1.1.  Human mesenchymal stem cells (hMSC) 

Human mesenchymal stem cells (hMSC) or mesenchymal stromal cells (MSC) are undiffer-

entiated multi-potent cells [1-3] which reside primarily in the bone marrow (BM) and have 

the multilineage potential. In the human body, they could be regarded as readily available res-

ervoirs of reparative cells able to mobilize, proliferate, and differentiate in to the appropriate 

cell type in response to specific signals [4-6]. Depending on the place of isolation or the group 

of people which isolates them, hMSC are known in literature also as marrow stromal cells, 

colony-forming unit fibroblasts (CFU-Fs), bone marrow stromal (stem) cells (BMSSCs), 

stromal precursor cells (SPCs), skeletal stem cells (SSCs) and multi-potent adult progenitor 

cells (MAPCs). 

1.1.1.  Definition and sources 

HMSC were firstly described by the group of Till [7] and Friedenstein [8] as a plastic-

adherent cells isolated from BM which possess a self-renewing potential and multipotent dif-

ferentiation capacity in vitro [9].  

The self-renewing potential depends highly on the cell division properties by which they can 

be classified as a symmetric or asymmetric type. Symmetrically dividing cells (cell lines or 

cancer cells) are characterized by geometric progression (one cell divides to two new daughter 

cells which divide and give four new cells). Asymmetric divisions often give rise to only one 

novel cell type in addition to a new copy of the mother cell. Such divisions are called self-

renewing and are characteristic for stem cells populations. Unfortunately, such cells have lim-

ited lifespan restricted by cell division capability, differentiation or apoptosis. HMSC are re-

stricted to maximum 44 weeks [10] or 50 population doublings [11] in culture. Moreover, 

self-renewing potential depends not only on the culture time but as well as on the cell density. 

Sekiya et al. [12] found that when propagated in lower density, hMSC could improve prolif-

eration capacity and preserve “stemness”.  

The ability of stem cells to differentiate into a limited number of cell types or closely related 

family cells is known as multipotency [13]. HMSC from BM aspirates have been shown to 

differentiate towards osteocytes, chondrocytes, adipocytes [2], muscle cells [14], endothelial 

[15] and tenogenic like cells [16] in vitro (Fig. 1). MSC from rat and human have also been 
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reported to differentiate into neurons [15,17]. However, endothelial and neuronal differentia-

tions are still contradictive.  

 

 
Fig.1. HMSC multilineage potential - ability of hMSC to differentiate to numbers of different end-terminal cells 

when maintain in proper culture conditions [4]. 

 

HMSC sources are constantly increasing. Now they can be isolated from various tissue such 

as adipose tissue, periostium, synovial membrane, skeletal muscle, dermis, pericytes, blood, 

trabecular bone, human umbilical cord, lung, dental pulp and periodontal ligament [18]. These 

cells still possess the general hMSC ability described by Friedenstein et al [8], but depending 

of the isolated tissue they posses some differences in term of predisposition of differentiation 

to the source-specific cells.  

1.1.2.  Criteria and markers 

Besides the fact that the knowledge and usage of hMSC have increased dramatically over the 

last decades, there are still a lot of questions waiting to be answered. The general problem in 

the field of regenerative medicine is the lack of a unique marker or group of markers allowing 

an easier and faster discrimination and isolation of the stem cells from the mixture of other 

cells in their locality. Since the field of MSC increases very rapidly the establishment of crite-

ria for defining and validating the MSC populations was needed. In 2005, the International 

Society for Cellular Therapy postulated the three minimal criteria for MSC. First, the cells 
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must be adherent to plastic, when maintained in culture. Second, MSC populations must be 

positive more than 95% for at least several antigens such as CD73 (5'-nucleotidase), CD90 

(Thy-1) and CD105 (endoglin). CD73 is a dimer of two identical subunits glycosylphosphati-

dylinositol anchored adhesion protein that catalyzes the dephosphorylation of extracellular 

purine and pyrimidine nucleotides and also mediates co-stimulatory signals in T cell activa-

tion. CD90 is glycophosphatidylinositol anchored conserved cell surface protein with a single 

V-like immunoglobulin domain used as a marker for a variety of stem cells. It participate in 

axon grow regulation, adhesion, migration and apoptosis. CD105 is a type I membrane glyco-

protein located on cell surfaces and is part of the TGF beta receptor complex. HMSC are 

found positive for some additional receptor, like STRO-1, CD146 (melanoma cell adhesion 

molecule), CD166 (activated leukocyte cell adhesion molecule), CD271 (low affinity nerve 

growth factor receptor) and SSEA-4 (thiosulfate sulfurtransferase) but the information about 

their expression is still quite contradictive. STRO-1 is an antibody created against unknown 

receptor, shown to identifies non-hematopoietic stromal cell in BM cell populations [19]. Bi-

anco’s group [20] showed that CD146 expression distinguishes BM-derived MSC from other 

osteogenic and non-osteogenic cell strains. CD166 was shown to be present on undifferenti-

ated MSC and to disappear following their differentiation to an osteogenic lineage [21,22]. 

CD271 was also used for the enrichment of MSC, particularly from BM [23]. SSEA-4 ex-

pressing BM cells appeared to represent a MSC population devoid of haematopoietic cells 

[24]. Additionally, these cells must lack the expression (≤ 2%) of haematopoietic antigens like 

CD34 (primitive hematopoietic progenitor), CD45 (protein tyrosine phosphatase receptor C) 

and markers for monocytes macrophages and B cells such as CD11b (integrin aM), CD14 

(monocyte differentiation antigen), CD19 (B-lymphocyte antigen), CD31 (platelet/endothelial 

cell adhesion molecule 1) and HLA-DR [2,25]. Finally, the cells must be able to differentiate 

at least to osteoblasts, adipocytes and chondroblasts under standard in vitro differentiating 

conditions [25]. 

1.1.3.  BM cell niche  

Cell types 

In the BM, hMSC share space with hematopoietic stem cells (HSC), osteoblasts, stromal 

cells, adipocytes, vascular elements and sympathetic nerve cells. All together, those cells and 

the extracellular matrixes (ECM) in which they are embedded form an environment, termed 

as “bone marrow cells niche” (fig. 2) [26,27].  
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Still, little is known about the cell crosstalk inside this niche. Recent studies showed that 

hMSC and osteoblasts can influence the fate of HSC by intracellular signals, cytokine and 

matrix production. These processes appear to be initiated by cell-to-cell adhesive interaction 

of HSC with special spindle-shaped N-cadherin+CD45– osteoblasts that line the bone surface 

[28]. These osteoblasts are characterized with increased expression of bone morphogenic pro-

tein receptor type IA (BMPRIA), parathyroid hormone (PTH) and PTH-related protein 

(PTHrP) receptor and their number was suggested to be the limiting factor to control the quan-

tity of HSC in BM [29]. Besides supporting the expansion of HSC, MSC can prevent apop-

tosis in T- and B-cell [30] and can inhibit dendritic cell differentiation by inducing cell cycle 

arrest [31]. 

 

 
Fig. 2. Bone marrow cell niche composed of cells and ECM adopted from [32].   

 

Another important factor in the BM niche, besides cell-to-cell contact, is the ECM complex 

produced by the stromal cells. Analysis of native BM and of cultured MSC has shown pres-

ence of collagens (I, III, IV, V, and VI), fibronectin, laminins, large molecular weight pro-

teoglycans (syndecan and perlecan), small leucine-rich proteoglycans (biglycan and decorin) 

and hyaluronan [33]. 
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ECM proteins 

Collagens 

The name “collagen” is used as a generic term for proteins forming a characteristic triple helix 

of three polypeptide chains. All members of the collagen family form these supramolecular 

structures in the ECM although their size, function and tissue distribution vary considerably. 

The collagen molecules consist of three alpha polypeptide chains (a-chains) each of which is 

coiled into a left-handed helix and the three chains are twisted around each other into a right-

handed super-helix forming a rod-like molecule. Each a-chain consists of three separate do-

mains – amino-terminal 7S, middle triple-helical and carboxy-terminal globular non-

collagenous (NC) 1 which participating in collagen assembling and functions. Each polypep-

tide chain has repetitive Gly-X-Y-sequences located in the middle triple-helical domain con-

taining proline and hydroxyproline residues in the X and Y position, respectively. Hy-

droxyproline makes up about 12% of the mass of a fibrillar collagen molecule and can be 

used as a general measure of the collagen content of a tissue. So far, 26 genetically distinct 

collagen types have been described [34,35].  

The different collagen types are characterized by considerable complexity and diversity in 

their structure, their assembly and their function. The most abundant type of collagens (about 

90% of the total collagen) is represented by the fibril-forming collagens.  

The type I collagen (ColI) triple helix is formed as a heterotrimer by two identical a1-chains 

and one a2-chain. ColI is the most abundant and best studied collagen comprising about 70% 

of the total collagen in the human body. It forms more than 90% of the organic mass of the 

bone and is the major collagen of skin, tendons, ligaments, cornea and many interstitial con-

nective tissues with the exception of very few tissues such as hyaline cartilage, brain and vit-

reous body. Its torsional stability and tensile strength leads to the stability and integrity of 

these tissues [36]. The triple helical fibers of ColI are mostly incorporated into composite con-

taining either type III collagen (in skin and reticular fibers) [37] or type V collagen (in bone, 

tendon, cornea) [38]. In most organs and notably in tendons and fascia, ColI provide tensile 

stiffness. In bone, it defines considerable biomechanical properties concerning load bearing, 

tensile strength and torsional stiffness. On the cellular level ColI function as an enhancer of 

cell adhesion, migration and differentiation [39]. Despite of the positive effect, mutations in 

the ColI gene are found to cause several disease such as osteogenesis imperfecta (OI), Ehlers-

Danlos syndrome (EDS) and Caffey’s diseases [40].  

Type III collagen is a homotrimer of three a1-chains and is widely distributed in ColI-

containing tissues with the exception of bone. It is the second most abundantly expressed col-
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lagen in the human organism. It is found in tissues exhibiting elastic properties such as the 

skin, blood vessels, internal organs such as lungs, liver and spleen, and often is associated 

with type I collagen [34]. This is the collagen of granulation tissue and is produced quickly by 

young fibroblasts before the ColI is synthesized [41]. Mutations in the collagen III gene lead 

to EDS [40]. 

Type IV collagen have more flexible triple helix assembly as a combination of 6 different a-

chains are combined into a meshwork that is restricted to basement membranes. The microfi-

brillar type IV collagen is highly disulfide cross-linked and contributes to a network of beaded 

filaments interwoven with other collagen fibrils. Collagen IV is an ECM component essential 

during the differentiation of neuronal cells [42]. Lack of collagen IV expression leads to Al-

port syndrome [40].  

Type V collagen is formed as heterotrimer of three different a-chains (a1, a2, a3). This colla-

gen forms heterofibrils with types I and III collagens, and contributes to the organic bone ma-

trix, corneal stroma and the interstitial matrix of muscles, liver, lungs, and placenta [36]. Col-

lagen V is highly expressed in developing and remodeling tissues and is believed to play an 

important role in processes such as tissue formation and wound healing. On cell level collagen 

V can affect fibroblast morphology, attachment, focal adhesion formation and actin organiza-

tion [43]. Lack of collagen V expression leads to EDS [40].  

 

 

Fibronectin 

Another ECM component is fibronectin (FN) - a dimer composed of two nearly identical sub-

units linked covalently near their C-termini by a pair of disulfide bonds. Each monomer con-

sists of three types of repeating units (termed FN repeats): type I, II and III. FN contains 12 

type I repeats, two type II repeats and 15-17 type III repeats, which account together for ap-

proximately 90% of the FN sequence (fig. 3) [44]. 

 

 

Fig. 3. FN monomer composition, adopted from [44].  
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FN contains two major heparin-binding domains that interact with heparan sulfate proteogly-

cans. The collagen-binding part of FN was found to be far more effective when it binds dena-

tured (gelatin) than native collagen which is related to clearance of collagenous materials 

rather then mediating cell adhesion to collagen [45]. FN also contains two fibrin-binding sites 

which are localized in the both end of the molecule. The interaction of FN with fibrin is 

thought to be important for cell adhesion or cell migration into fibrin clots [45]. 

FN mediates a wide variety of cellular interactions with the ECM and plays important roles in 

cell adhesion, migration, growth and differentiation. The major function of FN is binding cell 

surfaces through integrins but it also binds to a number of important molecules like heparin, 

collagen/gelatin and fibrin which additionally supports cell adhesion [45]. FN plays a crucial 

role in wound healing as it participates in the formation of the blood cloth. FN is expressed by 

multiple cell types and is indispensable in vertebrate development, as demonstrated by the 

early embryonic lethality of mice with targeted inactivation of the FN gene [46]. FN is impor-

tant for guiding cell attachment and migration during embryonic development. In mammalian 

development, the absence of FN leads to defects in mesodermal, neural tube and vascular de-

velopment. Similarly, the absence of a normal FN matrix in developing amphibians causes 

defects in mesodermal patterning and inhibits gastrulation.  

 

Laminins 

Laminins are also found in BM cell niche. Twelve different laminin heterotrimers have been 

identified so far in mammals. Laminin heterotrimers are quite large molecules, ranging from 

under a half of a million to nearly a million daltons in molecular mass. As the distinct laminin 

subunits have been identified and characterized, a common structural feature has been the 

tandem distribution of globular, rod-like and coiled-coil domains, the last serving to join the 

three required chains in register. So far, five a, three b and three g-chains have been described 

in mammals [47]. 

Members of the laminin family of glycoproteins are major constituents of basement mem-

brane (basal lamina) found in intimate contact with individual cells and cell layers [48]. 

Laminins critically contribute to cell attachment and differentiation, cell shape and movement, 

maintenance of tissue phenotype, and promotion of tissue survival [48]. Dysfunctional struc-

ture of laminin-2 cause congenital muscular dystrophy [49]. 
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Proteoglycans 

Proteoglicans (PGs) are a ubiquitous family of biomolecules that are composed of a core pro-

tein and one or more covalently attached sulfated glycosaminoglycan (GAG) chains. The 

GAGs are linear polymers of repeated disaccharide units of hexosamine and hexuronic acid, 

except for keratan sulfate in which hexuronic acid is replaced by galactose. The presence of 

either two hexosamine isomers, D-glucosamine or D-galactosamine divides the GAGs into 

two groups: glucosaminoglycans [heparin/heparan sulfate and keratan sulphate] and the galac-

tosaminoglycans [chondroitin/dermatan sulfate]. Hexuronic acid is also present as two 50 

epimers: D-glucuronic acid and L-iduronic acid. Hyaluronic acid is a non-sulfated, non-

attached to protein GAG composed of D-glucuronic acid and D-glucosamine. The degree and 

position of sulfate as well as the degree and position of 50 epimerisation are extremely vari-

able in sulfated GAG depending on the tissue, cellular and metabolic context, ensuring struc-

tural variability of these polysaccharides [50]. 

PGs have been found associated with intracellular compartments, the cell surface, ECM and 

basement membranes in almost all tissues in adults. The importance of the ECM in skeletal 

development has been overlooked until the development of improved extraction procedures 

and recombinant DNA technology. It is now well known that bone ECM is a dynamic net-

work of molecules secreted by cells. PGs together with collagens are the major constituents of 

the organic matrix of bone, constituting about 5–7% of the non-collagenous matrix compo-

nents [51]. GAGs form an important component of connective tissues as a component in the 

synovial fluid, cartilage and tendons. An inability to break down PGs is characteristic of a 

group of genetic disorders, called mucopolysaccharidoses which leads to the accumulation of 

PGs within cells causing variety of disease symptoms [52]. 

1.2.  Cell surface receptors 

Living cells, in order to maintain general biological processes, need to exchange information 

with the surrounding environment. This process is mediated by special surface molecules, 

termed receptors. Depending of the interactions they can be grouped as cell-to-cell or cell-

matrix receptors.  

1.2.1.  Cell-cell receptors 

HMSC are engaged in cell-cell contacts via several types of receptors which allowed them to 

exchange information or support HSC differentiation and by this to contribute functionally to 
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BM niche. Notch, a single-pass transmembrane receptor and their ligands have been shown to 

be expressed in hMSC by Oldershaw et al. [53]. The Notch signaling pathway is important 

for cell-cell communication, which involves gene regulation mechanisms that control multiple 

cell differentiation processes during embryonic and adult stage as in hMSC are reported only 

Notch 1, 2 and 3 receptors and their ligand Jagged 1. Moreover, Rangappa et al. [54] showed 

that hMSC expressed also gap junction proteins such as connexin 32, 40, 43 and 45 which di-

rectly connects the cytoplasm of two cells and allows various molecules and ions to pass 

freely between cells. Other types of cell-to-cell receptors are the members of the immu-

noglobulin super-family. Flow-cytometry analysis of hMSC determined the expression of 

ALCAM, ICAM-1 and -2, and VCAM-1 [55]. Among them VCAM-1 – integrin a4 binding 

between hMSC and T lymphocytes seems to be very critical for the hematopoietic develop-

ment as blocking integrin a4 by antibody impairs the T cell attachment to hMSC [56].  

1.2.2.  Cell-matrix receptors 

Despite of the cell-to-cell interactions, hMSC also mediate an adhesion to growth factors, 

chemokines and ECM by corresponding receptors to the binding matrix. 

 

Growth factors 

Grow factors are expressed in the matrix by number of different cells in response to the envi-

ronment. It is known that hMSC express various growth factor receptors as epidermal growth 

factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), fibroblast growth 

factor receptor 1 (bFGFR), insulin-like growth factor 1 receptor (IGFR), transforming growth 

factor beta receptor I and II (TGFβRI/ TGFβRII) which, with the exception of TGF-β recep-

tors (serine/threonine kinases), are belonging to the family of tyrosine kinase receptors.  

 

Chemokine receptors 

The chemokine receptors are classified as G-protein-coupled receptors that bind to CXC, CC, 

C or CX3C chemokines [57]. One characteristic feature of chemokines is that several 

chemokines bind to more than one receptor and the majority of chemokine receptors have 

multiple possible ligands. To date, hMSC are known to express CCR1, CCR2, CCR4, CCR6, 

CCR7, CCR9, CCR10, CXCR1, CXCR2, CXCR4, CXCR5, CXCR6 and CX3CR1 receptors 

as their expression is inconsistent maybe due to the heterogenic nature of the population. 

Nonetheless, some chemokines and chemo-attractants, for example CCL5 (RANTES), 

CCL22 (MDC), CXCL12 (also known as SDF-1) [58] and CXCR4 [59] have been demon-
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strated to be more persistently expressed. In addition, inflammatory cytokines such as TNFa 

are able to increase the sensitivity of hMSC to chemokines. 

 

Other matrix receptors 

The complex interactions of cells with ECM play crucial roles in mediating and regulating 

many processes, including cell adhesion, migration and signaling during morphogenesis, tis-

sue homeostasis, wound healing and tumorigenesis [60]. CD44 is an important non-integrin 

receptor that is involved in cell-matrix interactions and is responsible for binding to hyalu-

ronan. Zhu et al. [61] studied the role of CD44 – hyaluronan interactions for MSC migration. 

They have found that upon PDGF stimulation, the cells elevated CD44 expression and that 

their adhesion and migration on hyaluronan was indeed dependent on CD44, since it can be 

blocked by either CD44 antibody or small interfering RNA.  

The cell-surface receptors that mediate cell–matrix adhesion are primarily members of two 

gene families — the syndecans and the integrins. Intriguingly, nearly all ECM molecules con-

tain binding sites for both types of receptors and there is substantial evidence that a full cell-

adhesion response requires engagement of both receptor types. Syndecans and integrins are 

required for generating a physical link to the cytoskeleton, force transduction, spatial control 

of the assembly of the adhesion signaling complex and regulation of cytoskeletal dynamics. 

The syndecans are a four-member family of transmembrane cell surface PGs that bear 

heparan sulfate GAG chains. The syndecans are expressed on virtually all cell types through-

out development and adulthood. There are four members of the syndecan family in mammals 

of which three (syndecan-1, -2 and -3) have a restricted tissue distribution whereas the fourth 

(syndecan-4) is expressed ubiquitously. Their heparan sulfate chains endow these receptors 

with the ability to bind numerous "heparin" – binding growth factors, FN, vitronectin, 

laminins and the fibrillar collagens [62]. Thus, the syndecans can have roles in cell adhesion 

and signaling, possibly as co-receptors with integrins and other cell-cell adhesion molecules 

[63].  

1.2.3.  Integrins 

Integrins are matrix-responsive signaling receptors, comprised of non-covalently bound het-

erodimers. The a and b integrin subunits collaborate in "inside-out" signaling that leads to ac-

tivation of the receptor, classically defined as an increase in affinity for the ligand resulting 

from a change in the conformation of the integrin extracellular domain. However, integrins 

are also subject to "outside-in" signaling in which the ligand-bound receptor initiates intracel-
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lular signaling through association of the b subunit cytoplasmic domain with a myriad of in-

tracellular effectors including focal adhesion and Src family kinases, cytoskeletal components 

such as α-actinin and vinculin, and the Rho family of cytoskeletal regulatory G-proteins [63]. 

Integrins mediate cell-matrix and cell-to-cell adhesion and affect many cellular processes like 

cell attachment, spreading, motility, proliferation, differentiation and apoptosis. Mammals 

contain 18a and 8b integrin subunits that in combined manner can produce at least 24 differ-

ent heterodimers, each of which can bind to a specific repertoire of cell (surface), ECM or 

soluble protein ligands [18,64,65].  

Depending on their preferable matrix and cell specific expression, integrins can be classified 

as a FN- (RGD-), laminin- and collagen-binding, and leukocyte-specific receptors (Fig. 4). 

 

 
Fig. 4. Integrin family. Organization and grouping of the integrin subunits in mammalian cells based on their 

matrix affinity or cell specific expression [64]. 

 

However, the integrin grouping is a fictional taking in account that one integrin can success-

fully bind to more then one matrix molecules. A typical example for this is an integrin aV 

which can bind collagens, FN, vitronectin, thrombospondin, bone sialoprotein, osteopontin 

and cartilage oligometric matrix protein. There is as well a way to categorize integrin based 

on their major subunit. In this respect, integrins form the families of b1, aV, b2, b3 and b7.  

The b1-subunit group is the biggest containing 12 integrin combinations. This family is one of 

the most studied and seems to be the most important for cell survival and development. 

Knockout mice lacking integrin b1 die at embryonic day 5,5 due to defective endodermal 

morphogenesis and migration causing the blastocoele collapse [66,67]. The integrins belong-
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ing to b1 family have the ability to bind many ECM proteins, as within the family are pre-

sented the integrins known to have the higher affinity towards fibronectin -  a5b1 and a4b1; 

collagens - a1b1, a2b1, a10b1 and a11b1 or laminins - a3b1, a6b1 and a7b1. 

The next group containing 5 members is the one of aV-subunit. The knockout model shows 

placenta defects that cause about 80% of the generation to be lost. Placentas from these mice 

show defects, and the mice have abnormalities in central nervous system and gastrointestinal 

blood vessels. Cleft palate is also a frequent abnormality. The aV integrin subunit associates 

with b1, b3, b5, b6 and b8 integrin subunits.  

Last is the group of b2 or leukocytes-specific integrins acting as traffic signal molecules to 

regulate leukocyte extravagation from the bloodstream during inflammation and lymphocyte 

homing [68]. Lack of b2 causes severe defect in T cell proliferation [69]. Integrins formed 

from the b2 subunit interact majorly with the family of intercellular adhesion molecules 

(ICAMs) and FN matrix. 

1.2.3.1.  Focal adhesions and integrin signaling 

Adherent cells form specialized structures, termed focal adhesions or focal contacts, at sites of 

close contact between the plasma membrane and the underlying ECM where integrins, signal-

ing and cytoskeleton molecules co-localized. The signaling mechanisms of integrins involve a 

numbers of signals transduced bi-directionally through “outside-in” and “inside-out” path-

ways, as well by reciprocal crosstalk between integrins and other receptors regulating cell be-

havior [70]. 

 

Focal adhesion components 

Since 1992, the number of signaling proteins linked to integrin activation (by association in 

focal adhesions or the regulation of activity) expanded and now includes an overwhelming 

collection of molecules. These include enzymes such as the Src family kinases, Abl, 

Syk/ZAP, Csk, Ras, Raf, Mek, Erk, phosphatidylinositol-3-OH kinase (PI(3)K), PKC, Jnk, 

Cbl, Pyk2 (a homologue of FAK), protein kinase A, Etk, as well as adaptor proteins like Crk, 

Nck, Grb-2 and many others [71-74]. The mechanism by which these proteins are activated, 

how they couple with each other, and how their activation by integrins affects different cell 

functions are still under investigation. 

Recently, it was shown that plating fibroblasts on three-dimensional matrices results in the 

formation of novel focal adhesion structures that had not been detected when cells are grown 

on immobilized matrix proteins [75]. The differences between the two- and three-dimensional 
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structures were attributed to differences in the pliability and rigidity of the matrices under the 

two different conditions. These results, together with other studies using flexible matrices, in-

dicate that differences in mechanical tension can regulate cell adhesion complexes, cell shape, 

polarity and the expression of differentiated cell functions [71,76-78]. 

 

“Outside-in” signaling and focal adhesion organization 

The firmly binding of integrin receptors to the matrix leads to grouping of the receptors local-

ized nearby and to formation of an integrin cluster. Together by an actin polymerization, the 

cluster activates focal adhesion kinase (FAK). This results in auto-phosphorylation at a dock-

ing site for the recruitment of SH2-containing proteins such as Src, Fyn, PI(3)K or PLCγ [79-

81]. Src mediates phosphorylation at the other sites of FAK, creating additional SH2-domain 

binding sites [82]. Protein binding to the phosphorylated FAK-sites result in cascades of pro-

tein interactions that can transduce the signal throughout many downstream pathways, such as 

Ras/ Erk, PI(3)K/ Akt, and Crk/ Dock180/ Rac [83-85]. Current evidence suggests that multi-

ple pathways were utilized by integrins to activate specific signaling proteins. This was the 

best illustrated by the Erk-activation [86]. It is known that FAK can activate Erk mitogen-

activated protein kinase (MAPK) through the recruitment of Grb2 [87], Shc or Src [88].  

A significant breakthrough in the understanding of the focal adhesion comes with the discov-

ering of the guanine triphosphatases (GTPases) families, converting the guanine triphosphate 

to diphosphate and thus transporting an active phosphate. These molecules are involved in the 

induction of the actin polymerization and the formation of focal complexes, lamellipodia and 

filopodia [89,90]. Moreover, members of Rho family are found to directly participate in in-

tegrin signaling mechanism [91] and activation of these GTPases is now regarded as a critical 

event in integrin-mediated regulation of cell adhesion, cell spreading and cell motility [92].  

 

“Inside-out” signaling 

Information can also be directed from integrins to the ECM ligand-binding domain. This 

regulation is not dependent on the recruitment of receptors to the cell surface but rather on an 

increase in the binding activity of the receptor [93,94]. The cytoskeleton can also regulate in-

side-out signaling events. The activation of b2 integrins for example, involves changes in 

ECM through the integrin clustering [95,96]. These clustering is regulated by signaling en-

zymes like PI(3)K, PKCs and Ras or Rap GTPases [97,98], also adaptor proteins like SLAP 

130/Fyb [99,100] which are involved in the actin reorganization. In conclusion, changes in ac-
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tin cytoskeletal structures can effect the lateral movement of integrins and affect the ECM 

outside the cells [97,101,102]. 

1.2.3.2.  Importance of integrin signaling 

Integrin control of cell proliferation 

Since nearly a decade, investigators have attempted to define which steps in cell cycle pro-

gression are dependent on attachment to the ECM. It was demonstrated that there is not a sin-

gle “checkpoint” that monitors cell adhesion status, but rather there are multiple steps in cell 

cycle progression that require matrix attachment [103,104]. It was first shown that the induc-

tion of cyclin A production is blocked in suspended cells treated with growth factor [105]. 

Later, the activation of several cyclin-dependent kinases (Cdks) involved in G1 phase pro-

gression and S phase initiation, were found to be controlled through multiple integrin-

dependent events [106]. Integrins control these events through several mechanisms, including 

the enhancement of growth factor signals, the recruitment of proteins to mem-

brane/cytoskeletal complexes or the enhancement of nuclear translocation. Many of these 

regulatory events involve both transcriptional and post-transcriptional control. 

Although most of the studies infer that signals from integrins regulate proliferation in a dose-

dependent fashion, experiments addressing the relationship between the number of adhesive 

contacts and the regulation of signaling and cell behavior suggest a non-linear relationship 

and additional levels of control. Varying the extent of cell spreading, without changing the 

adhesive contact area of cells, was found to govern the proliferative capacity of cells and cell 

survival [107]. Erk activation by growth factors does not vary with spreading. However, cy-

clin D expression and downregulation of p27kip is defective in poorly-spread cells. These stud-

ies suggest that certain signaling events are regulated by cell shape and provide a molecular 

explanation for previous reports indicating that cell shape and surface area are critical deter-

minants for cell proliferation [108]. In addition, is also suggested that cell-shape sensors have 

an important function in regulation of signal transduction through the integrins. 

 

Integrin control of cell survival 

Studies from several groups showed that cell attachment is required for the survival of normal 

cells [109-111]. Complete loss of cell contact with the substratum (e.g., suspension culture) or 

adhesion to a nonspecific substratum such as poly-L-lysine (PLL) induces apoptosis of pri-

mary cells such as fibroblasts [109], endothelial cells [111,112] and epithelial cells [110,113]. 

Apoptosis that is induced by cell detachment has been referred to as “anoikis” the Greek word 
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for homelessness [114]. Integrins regulate cell survival through the inhibition of pro-apoptotic 

and increased expression of anti-apoptotic proteins of Bcl-2 family [115]. Conversely, de-

tachment from the ECM results in the activation of pro-apoptotic proteins, such as Bax [116], 

caspases [117,118] or the death ligands Fas and Trail [119], or inhibition of anti-apoptotic 

proteins. 

Recent studies of Bim and Bmf, two pro-apoptotic Bcl-2 family proteins that contain only 

BH3 domains, indicate that they may function as intracellular sensors of the cytoskeleton and 

the state of ECM attachment. These proteins are bound to isoforms of the dynein light chain 

which associates with either microtubules or microfilaments [120,121]. Detachment from the 

ECM or inhibition of actin polymerization results in the dissociation of Bmf from dynein light 

chain and its relocation to the mitochondria where it functions as a pro-apoptotic protein. Bim 

expression is induced by downregulation of Akt, so induction of Bim expression may also be 

involved in anoikis [122]. 

Cell death can also occur when a subset of integrins in a cell fail to bind their ECM ligands 

[110,112]. For example, expression of aVb3 or a5b1 can inhibit cell survival in cells attached 

to the matrix through other integrins [110,112]. The expression of aVb3 inhibits cell survival 

in cells attached to native collagen through integrin a2b1 [110]. As integrin aVb3 does not 

bind native collagen, these results indicate that the none-ligated integrin aVb3 induces cell 

death. In a similar manner, antibody inhibition of integrin a5b1 activity induces apoptosis of 

endothelial cells that are attached to vitronectin through aV- integrins [112]. In addition, ex-

pression of dominant negative integrins (e.g., Tac-b3, the IL-2 receptor fused with the integrin 

b3 subunit cytoplasmic tail) also inhibits survival by impairing normal integrin-mediated sur-

vival signaling [110]. Integrin ligation suppresses caspase 8 activation, while none-ligated in-

tegrins facilitate caspase 8 activation in a stress response and death receptor-independent 

manner [110,112]. Additional studies suggest that none-ligated integrins activate membrane-

associated protein kinase A (PKA), which itself can activate caspase 8 in endothelial cells 

[112]. Thus, in normal cells some integrins can promote cells survival when ligated and in-

duce apoptosis when none-ligated. 

The ability of integrins to protect cells from apoptosis is both, integrin- and cell-specific. For 

example, primary mammary epithelial cells treated with insulin are protected from cell death 

when plated on laminin, tenascin C or collagen IV, but not on ColI [123,124]. The protective 

effects of insulin are dependent on the ability of the integrin to promote activation of 

Akt/PKB through the insulin receptors. In CHO cells a5b1, aVb3 and a1b1 integrins protect 
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cells from anoikis, whereas aVb1 does not provide this protection [115]. Protection from 

death correlates with the ability of the integrin to induce Bcl-2 expression [125]. 

Lastly, recent studies indicate that none-ligated integrins can also induce cell death distinct 

from anoikis under certain conditions where other of the cell integrins are ligated [110].  

 

Integrin role in cell migration 

While integrin ligation to the ECM positively regulates migration, inhibiting integrins prevent 

cell migration. Although blocking integrin ligation can prevent cell attachment to the ECM 

and thus inhibit migration, recent studies show that antagonized integrins actively inhibit sig-

nal transduction leading to cell migration [126]. For example, the inhibition of integrin a5b1 

negatively regulates fibroblast, endothelial cell and tumour cell migration even when other in-

tegrin receptors for available matrix proteins are ligated. Antagonists of integrin a5b1 sup-

press cell migration on vitronectin but not cell attachment to vitronectin, indicating that these 

antagonists affect the migration machinery rather than integrin receptors for vitronectin [126]. 

In fact, a5b1 antagonists activate PKA which then inhibits cell migration by disrupting the 

formation of stress fibers [126]. Direct activation of PKA by forskolin or by overexpression 

of the catalytic active subunit of PKA also inhibits cell migration [111,126]. Thus, integrins 

regulate cell migration by making contact with the substratum and by promoting signal trans-

duction cascades that support migration. 

 

Integrin crosstalk with other receptors 

One of the most striking examples of receptor crosstalk is the integrin activation of growth 

factor receptors. EGFR, PDGFR, vascular endothelial growth factor receptor (VEGFR) and  

hepatocyte growth factor receptor (HGFR; Met) are all activated after the engagement of in-

tegrins [127,128]. Integrin-activated growth factor receptors are capable of amplifying in-

tegrin signals. Shc/Erk activation in several cell types is dependent on integrin-induced EGFR 

activation. Furthermore, adhesion-induced cell survival, mediated through PI(3)K, also re-

quires ECM activation of EGFR via integrins [127]. The ability of cell adhesion to activate 

the HGFR is crucial for tumour metastasis in a hepatocyte tumour model [129]. As discussed 

above, growth factors and other agonists can activate integrins through changes in integrin af-

finity and avidity. 

A second example is the receptor coordination. In this type of crosstalk, two or more receptors 

components contribute to the activation of an intracellular event. Coordination is observed be-

tween integrins and growth factors or integrins and syndecans. For example, signals from 
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syndecans can influence integrin-mediated focal adhesion to FN as this is done through PKC, 

Rho and syndesmos (a paxillin binding protein) [130].  

Third is a receptor pathway modulation. In this type of crosstalk, a signal from one receptor 

provides a costimulatory or inhibitory signal to another receptor pathway. There are numerous 

examples of such regulations related to Erk activation and cell cycle progression [103,104]. It 

has been shown that integrin signals are required for growth factor activation of Erk through-

out the MAPK-pathway. Although the initial signaling by Ras is integrin independent, its 

downstream targets - Raf or MEK required integrin adhesion [131]. 

Fourth, the modulation of receptor expression - this mechanism involves the induction or re-

pression of receptor expression by another receptor. Growth factor receptor enhancement of 

motility in several cell types results from the upregulation of integrin receptor expression 

[132]. Manipulations that lower either EGFR or b1 integrin expression in three-dimensional 

gels, but not in two-dimensional culture, were found to cause downregulation of the other re-

ceptor [75]. These results suggest that integrins and growth factors couple in distinct ways, 

depending on the context in which the cells are cultured. 

1.2.3.3.  In vivo functions of integrins 

Integrins have been implicated in many cellular functions through the in vitro studies. How-

ever, recent analyses of integrin mutants in worms, flies and mice have provided important in-

formation on integrin function in vivo. In Drosophila melanogaster and Caenorhabditis ele-

gans, integrin mutations cause defects in multiple developmental events, including the ex-

pected alterations in the attachment of cells within and between tissues [133]. The effects of 

integrins are mainly studied in knockout mouse models (tab. 1).  
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Tab. 1. Phenotype of  integrins knockout mice adopted from [134]. Abbreviations: V- viable; F- fertile; L- lethal; 

L+V/F- mutations that disrupt development but also allow survival in a fraction of mice; CNS- central nervous 

system; GI- gastrointestinal; and PMN- polymorphonuclear neutrophil.  
 

The disruption of b1 integrin, which is a subunit of at least 12 integrins, causes peri-

implantation lethality [135]. Analysis of chimaeric mice that lack b1 integrin in a subset of 

cells or tissues and mice lacking other a or b subunits, have identified more specific defects in 

many processes, including haematopoiesis, haemostasis, immune defenses and the migration 

of several cell types, neural organization, organ development, the formation and maintenance 

of vasculature, and the integrity of skeletal and cardiac muscle, skin, bone and cartilage [133]. 

It is difficult to establish whether processes regulated by integrins in vivo require intracellular 

signal transduction or merely extracellular adhesive functions; however, genetic ablation of 

integrin genes in mice (but not in flies) suggest a requirement for integrins in regulating pro-

liferation of certain cell populations, including keratinocytes, dermal fibroblasts, mammary 

and intestinal epithelial cells [134]. Cell survival defects have also been observed in some in-

tegrin-null mice [134]. 
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In humans, a lack of the platelet integrin aIIb3 or the b2 leukocyte integrin subunit result in 

diseases associated with bleeding and recurrent infections, respectively [136]. Mutations in 

the b4 subunit cause a severe skin blistering disease, epidermolysis bullosa, caused by defects 

in attachment to laminin.  

1.3.  Integrin expression in hMSC 

As a member of the cell population within the BM, hMSC express receptors for all presented 

ECM. Using fluorescence activated cell sorting (FACS) method in hMSC was detected the 

expression of a1, a2, a3, a5, a6, aV, b1, b3 and b4 integrin subunits [55]. Gronthos et al. [137] 

showed that hMSC bind to collagen I, III and IV predominantly with integrin a1b1 and a2b1, 

to laminin by a6b1, to FN through a5b1 and vitronectin by aVb3 as those data was obtained 

from analyzing the adhesion and cell growth in presence of blocking antibodies. Moreover, 

Salasznyk et al. [39] observed a tremendous effect of ColI and vitronectin on protein osteo-

genic differentiation, suggesting the importance of corresponding matrix integrins. 

 

The collagen binging integrins in hMSC 

Collagen-rich ECMs are not only critically important for the biomechanical properties of tis-

sues but are also intimately involved in cell adhesion and migration during growth, cell differ-

entiation, morphogenesis and wound healing. In humans, numerous diseases are caused by 

mutations in collagen genes and cell–collagen interactions are perturbed in many other patho-

logical situations [138]. 

In general, four b1 integrins (a1b1, a2b1, a10b1 and a11b1) are functioning as collagen recep-

tors. The most widely distributed collagen-binding integrins a1b1 (predominantly in mesen-

chymal cells) and a2b1 (predominantly in epithelial cells, as well as platelets) were detected 

also in hMSC [139]. The importance of these integrins was validated by investigation of the 

corresponding knockout mouse models. Interestingly, integrin a1- and a2-knockout mice de-

velop normally and are fertile [140]. However, more detailed studies within a1-deficient 

mouse have uncovered specific effect on fibroblast proliferation [141], tumour vascularisation 

[142] and renal injury [143]. Integrin a2-deficient mice had a mild defects in branching mor-

phogenesis of the mammary gland and in platelet adhesion to ColI [144,145]. More recently 

discovered integrin a10b1 and a11b1 integrins are localized in specific areas such as chondro-

cytes for a10b1 and mesenchymal cells for a11b1. An integrin a10-deficient mice show a car-

tilage growth plate defect [146]whereas integrin a11-deficient mice show pronounced tooth 
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defect, combine with reduced body length and deduced attachment , spreading and migration 

of embryonic fibroblasts on ColI [147]. It is worth to notice that individual ablation of other 

matrix-binding integrins such as integrin subunits a3–8 and aV results in more severe defects 

than loss of any single collagen-binding integrin [64]. Thus, it seems likely that there is func-

tional redundancy between the collagen-binding integrins. 

The collagen specificity of a1b1, a2b1, a10b1 and a11b1 integrins has been studied exten-

sively [148,149]. Two important discoveries have greatly aided structure–function studies of 

collagen-binding integrins. First, it was found that isolated I domains, which are relatively 

easy to crystallise for structural analysis, retain the specificity and high affinity to collagen 

[150,151]. Second, several groups have identified specific integrin-binding sequences within 

the triple-helical region of collagens. Using synthetic triple-helical peptides, Knight et al. 

[152,153] showed that the collagen motif - GFOGER is a high-affinity-binding site for a1b1 

and a2b1 integrin. The GFOGER sequence was also identified in another study which re-

ported also two additional a1b1 and a2b1 integrin-binding sites in collagen - GLOGER and 

GASGER [154]. Sweeney et al. [155] found that both GFOGER and GLOGER were recog-

nized by a1b1 and a2b1 integrin but only the former sequence appeared to be involved in 

a2b1 integrin-mediated endothelial tube formation. Finally, GFOGER is also a binding site 

for a11b1 integrin [156,157]. 

1.4.  Methods of studying gene function in human cells 

Primary hMSC have a limited lifespan. Moreover, these cells are slow dividing and have very 

low rate of DNA transfection and integration. Therefore, in order to study a gene function in 

this cell type, a new approach, allowing for a stable downregulation of the gene of interest, 

was needed. In the past decade, a new technique of gene regulation has emerged, termed RNA 

interference or RNAi. This technique utilizes a double-stranded RNA (dsRNA) which effec-

tively inhibits a specific gene expression by interfering with its complementary messenger 

RNA (mRNA). The RNAi response can be triggered by the introduction of short-interfering 

RNA (siRNA) strands into cells expressing a homologous gene target. The dsRNA fragments 

engage an endogenous complex of cellular proteins known as the RNA-induced silencing 

complex (RISC) which pairs with and then degrades the corresponding mRNA and thus 

blocks the protein translation. The discovery of this technique has re-awakened interest in nu-

cleic acid-based approaches for gene suppression for scientific and therapeutic purposes 

[158]. 
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1.4.1.  History of RNAi 

First evidence for the existence of RNAi control system was observed in late 1980s. The mo-

lecular mechanism remained unclear till late 1990s when the breakthrough articles of Fire et 

al. [159] and Reinhart et al. [160] were published.  They showed in Caenorhabditis elegans 

that RNAi is an evolutionary conserved gene-silencing mechanism related to a normal de-

fence against viruses and mobilisation of transposable genetic elements (transposons) [161] 

Subsequently, the phenomenon was demonstrated in worms, flies and vertebrates [162-164]. 

The initial experiments with RNAi in mammals were unsuccessful. The usage of long dsRNA 

(>30 nucleotide) sequences, as in the earlier studies with plants and worms, was found to in-

duce an interferon response resulting in a global inhibition of mRNA translation and cell 

death. This problem was overcome by Tuschl et al. who demonstrated that chemically synthe-

sized, shorter siRNA sequences could successfully and efficiently silence endogenous genes 

in mammalian cells [165,166]. Recently, a vector-based siRNA expression system was devel-

oped. It allows for stable and longer period of gene silencing [167,168]. For delivery were 

used virus-based vectors including adenovirus, adeno-associated virus (AAV), retrovirus and 

lentivirus systems [169,170].  

1.4.2.  Mechanism of RNA interference 

The mechanism of RNAi is a simple system of interacting complementary RNA sequences. 

The process starts with transcription of dsRNA in the nucleus, modification and complex 

formation with intracellular proteins, and ends with sequence-specific degradation of a target 

mRNA. The long dsRNA segments are first processed by an RNase III enzyme, termed Dicer, 

into small dsRNA duplexes of 21–23 nucleotides, termed siRNA. The siRNA duplex strands 

(synthetically or cell produced) are then shuttled into a multi-protein complex consisting of 

the RISC and the cleaving enzyme Argonaute 2 (Ago2). The RISC discards one strand leav-

ing a “processed” strand of siRNA incorporated into the protein complex. This single strand 

of siRNA serves as the guiding sequence for recognition of a target mRNA. When a comple-

mentary base pairing of a single-stranded guide siRNA interacts with the target mRNA, the 

RISC/Ago2 complex cleaves the target mRNA. This results in a post-transcriptional gene si-

lencing and gene translational blocking (fig. 5) [171]. In addition to post-transcriptional RNA 

silencing, components of the RNAi pathway are postulated to be involved in transcriptional 

gene silencing through RNA-dependent DNA methylation [172]. 
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Fig. 5. Overview of RNA interference (RNAi) mechanism - expression of dsRNA and formation of the RISC 

complex by ds- or siRNA inhibiting the protein production on mRNA level. 

 

Small interfering RNA (siRNA) 

This technology allows examination of the gene silencing in plants and animals within a short 

timeframe. Compare to the plants, it was found that dsRNAs bigger then 30 bp trigger the γ-

interferon (IFN) pathway in mammalians. Nevertheless, dsRNAs consisting of 21–23 bp, 

generated by chemical synthesis [166], enzymatic cleavage [173] or expression systems [174] 

were found to be optimal for gene silencing by mimicking Dicer products. Moreover, the 

siRNA duplexes have to be delivered into mammalian cells with transfection either by lipid-

based formulations [175], electroporation [176] or by linking to peptides [177] as the half-life 

of the molecule do not exceed 3 days.    

 

Short hairpin RNA (shRNA) 

In contrast to C. elegans, where RNAi effects are stable, long lasting and are passed onto the 

offspring [178], gene silencing by transfected siRNA duplexes in mammalian cells is tran-

sient. This is because mammalian cells lack the RNA-dependent RNA polymerases that am-

plify siRNAs in C. elegans. As a result, gene silencing is dependent on the number of siRNA 
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molecules transfected into the cells and the duplexes become progressively diluted as cells di-

vide. The persistence of siRNA activity in mammalian cells varies with the proliferative status 

of the cells, such that siRNA activity lasts for 3–7 days in proliferating cells, but can persist 

for 3 weeks or more in terminally differentiated cells, such as neurons [179]. To overcome 

this problem, vector-based systems for introduction and stable expression of siRNA in target 

cells have been developed [165]. These vectors contain RNA polymerase III promoters that 

either express sense and antisense strands from separate promoters (tandem type) or express 

short hairpin RNA (shRNA) that are cleaved by the Dicer to produce siRNA. Stably trans-

fected cell lines can be generated by selecting for a drug resistance marker expressed either by 

the vector or with a co-transfected plasmid. Such vector systems have been successfully used 

to obtain efficient and stable knockdown of target genes in mammalian cells [180]. The limi-

tations of using plasmid vectors in terms of efficiency and difficulty in transfecting primary 

cells [181] have resulted in developing retroviral [182], adenoviral [183] and lentiviral [184] 

vector systems for shRNA delivery. Viral vectors permit the efficient delivery and stable ex-

pression of shRNA constructs in a range of mammalian cells (including primary cells) and a 

variety of animal species. Retroviral vectors are based on Maloney-murine leukemia viruses 

as permit a stable introduction of shRNA  into the dividing cells genome as they have been al-

ready shown to successfully suppress a gene expression in stem cells [185]. Adenoviral vec-

tors based on adeno-associated viruses (AAV) can infect both, dividing and nondividing cells 

and they are successfully used for genes silencing in vitro and in vivo [186-188]. Lentiviral 

vectors are derived from human immunodeficiency virus (HIV-1) and can also infect both di-

viding and non-dividing postmitotic cells (e.g., neurons), and have been used to generate 

transgenic animals that display loss-of-function phenotypes and vector transmission to off-

spring [184,189].  

1.4.3.  Advantages and disadvantages of the RNAi technology 

In mammalian cells, induction of RNA silencing is usually achieved with the use of a shRNA 

system, since the short hairpins are considered too small to induce the interferon response. 

Short hairpin systems are also a method of choice for large-scale and long-term experiments 

because of stable expression of larger number of shRNAs and because of the advantage of an-

tibiotic selection which allows working with a homogeneous cell population. Unfortunately, 

the antisense molecules have been plagued by a lack of target specificity, poor binding to tar-

get mRNA and susceptibility to nuclease degradation. Despite modifications to the oligonu-
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cleotide molecules, the inefficient gene inhibition and a risk of unintended consequences, has 

largely sidelined this technology in the face of siRNA breakthrough [190].  

 

Off-targeting RISC complex 

As siRNAs have become more widely used, the basic structure of effective siRNAs has been 

defined, including the need for a 19-bp RNA duplex with a 2-nucleotide overhang on the 3′-

ends. It has also become clear that the effectiveness of siRNA silencing is sequence specific, 

hence, rules for siRNA design have been developed [180,191]. An siRNA duplex may target 

more than one mRNA molecule because of sequence homologies. It is now widely observed 

that most siRNAs can tolerate one mismatch to the mRNA target and at the same time retain 

good silencing capacity [192]. In some cases, siRNAs can tolerate several mismatches [193] 

or even tolerate mismatches while acting as a single-stranded antisense siRNA [194]. In addi-

tion, some domains of the siRNA sequence can tolerate more mismatches than others do 

[195]. Saxena et al. [193] also demonstrated tolerance for G/U wobble pairing between the 

RNA oligo and the target RNA. The efficiency with which a mismatched RISC can mediate 

transcript cleavage is probably significantly reduced as compared to when there is total com-

plementarity [196]. Moreover, microarray analysis has revealed that the expression of a none 

targeted transcript with more then 11 consecutive nucleotide matches with the siRNA se-

quence can be also downregulated [197]. These observations have led to concerns that any-

thing less than optimal RISC-transcript interactions could permit RNAi against an unintended 

target or an “off-target” interaction, which may limit the ability to interpret a specific func-

tional effect of RNAi. Currently, it is unclear to what extent off-target translational repression 

interactions occur as microarray analysis can only detect downstream changes in RNA levels 

after repression of protein translation. Nevertheless, studies of RNAi transgenic animals 

[184,198,199] suggest that off-target effects may be minimal on a whole organism basis and 

that in cell culture, minimizing the concentration of a particular RNAi effectors may reduce 

the likelihood of an off-target effect. 

 

Non-specific responses to dsRNA  

The use of a minimal amount and shorter sequences of the RNAi effectors reduce the possibil-

ity of nonspecific dsRNA responses exhibited by the most mammalian cells. Mammalian cells 

have a number of non-sequence specific responses triggered by dsRNA which form the viral 

host defense system and activate the programmed cells death. Key-effector proteins of these 

responses are the family of 2′–5′ oligoadenylate synthetase or AOS (fig. 6).  
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Fig. 6. Activation of cell defence IFN pathway by virus dsRNA (adopted from [200,201]). 

 

Yoneyama et al. [200] showed in two independent cell lines that a presence of dsRNA in the 

cells results in activation of immune response and induction of IFN type I genes, such as in-

terferon stimulated genes 20 and 56 (ISG20 and ISG56), through binding to retinoic acid in-

ducible gene I or RIG-I. Increased expression of interferon induced genes leads to an activa-

tion of OAS family members which thereon transmit the dsRNA signal and cause activation 

of the RNaseL enzyme resulting in total RNA degradation. On the basis of the few studies 

available, the degree of activation depends of the size and concentration of the dsRNA [202]. 

In addition to the IFN response, it has been reported that si/shRNA initiate immune activation 

in macrophages and dendritic cells through toll-like receptor 3 [203]. Currently, it is still un-

clear how often si/shRNA triggers such effects in cells and what conditions lead to such re-

sponse. Data addressing the degree to which siRNA and shRNA can interact with and activate 

non-RNAi-associated dsRNA binding proteins is still limited. However, the studies that have 

been performed so far suggest that a it needs to be paid attention to the transcription and intra-

cellular processing of shRNA so that the siRNA generated does not trigger nonspecific re-

sponses and that directly administered siRNA should consist of a high-quality, size-

homogenous population [204,205]. 

1.4.4.  Usefulness of RNAi technology 

Since RNAi is the latest technique widely used to down-regulate the mRNA level of any gene 

of interest, RNAi therapy is therefore speeding up on the determination of gene function re-

lated to certain clinical diseases [206]. To date, exciting impacts have been acquired by RNAi 

on many fields of human diseases, including cancers, virus infection, neuroscience and etc. 

[206]. Recent study of Owen et al. [207] showed that silencing of EWS/FLI protein by siRNA 

successfully inhibited propagation and restored its osteoblastic differentiation potential in Ew-

ing’s sarcoma cells. Another study by Lin et al. [208] found that knockdown of Runx2 mark-

edly attenuated osteoblast differentiation in cultured primary mouse osteoblasts by downregu-

lation of osteoblastic markers such as Col I, osteopontin, bone sialoprotein and osteocalcin 

gene expression, deceased alkaline phosphatase activity and reduced matrix mineralization 

which can be used as a potential tool to prevent or treat heterotopic ossification in humans. At 
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present, in vivo studies were also performed in collagen-induced arthritis rats which were 

transfected with NF-κB-specific siRNA by intraarticular injection which resulted in im-

provement of joint destruction [209]. All together, these studies provide sufficient information 

for the possible application of RNAi technique in the investigation of the physiological func-

tion of bone-related diseases; discover the new modulators and development of therapy of 

bone-related diseases. 
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2.  Aim and milestones of the thesis 

The main aim of this doctoral thesis is: 

Investigation of the basal integrin expression of hMSC and functional analysis of the role of a 

single collagen I-binding integrin receptor on hMSC behavior by knockdown studies in vitro. 

 

In order to accomplish the main aim, the following project milestones were defined: 

 

1.  Evaluate the matrix affinity of hMSC and characterize their integrin expression. 

 

2.  Establish a stabile knockdown for a1, a2 and a11 collagen I-binding integrins.  

 

3.  Investigate the effect of integrin knockdowns on cell attachment, spreading and migration. 

 

4.  Investigate the effect of integrin knockdowns on osteogenic differentiation.  

 

5.  Investigate the compensatory mechanism between collagen I-binding integrins. 

 

6.  Investigate the collagen I-binding integrins expression in human healthy and osteoporotic 

patients.  
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3.  Material and Methods 

3.1.  Human primary cells and cell lines  

HMSC (Cambrex – Lonza GmbH, Germany) 

HMSC were isolated form human BM. They have fibroblast-like cells morphology and are 

growing in a monolayer. These cells are tested for the positive expression of CD73, CD90 and 

CD105, and negative for CD14, CD34 and CD45 genes by FACS analysis. Cells were also 

differentiated towards osteogenic, adipogenic and chondrogenic lineages. In this work we use 

three different hMSC donors (tab. 2): 

 

Abbreviation Lot number Sex Age 

hMSC donor XI (hMSC XI) 1F2155 M 24 

hMSC donor XIII (hMSC XIII) 4F0591 M 32 

hMSC donor XV (hMSC XV) 6F3837 F 34 

Tab. 2. HMSC donors used for experiments. The cells were isolated from young donors.  

 

In our experiments we predominantly use hMSC XI. This donor was use in all types of ex-

periments as some of the critical experiments, such as cell differentiation, integrin downregu-

lation, cell adhesion, spreading and migration and cell apoptosis have been confirmed also 

with the other two donors.   

 

hOB (Cat.Nr.: C-12720, Promo cell, Germany) 

HOB cells were isolated from normal femoral bone tissue. They stain positive for osteocalcin 

and alkaline phosphatase. hOB are large mononuclear cells of mesenchymal origin and grow-

ing in monolayer. 

 

293FT cell line (Cat. Nr.: R700-07; Invitrogen, Germany) 

293FT cell line is derived from primary embryonal human kidney 293 cells transformed with 

human adenovirus type 5 DNA [210] and expresses the SV40 large T antigen. They have 

epithelial-like cell morphology and are growing in a monolayer. The 293FT cells are suitable 

host for generating lentivirus constructs. In addition, these cells have a neomycin resistance.  
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HeLa cell line (Cat. Nr.: ACC 57; DSMZ, Germany) 

HeLa cell line is established from epitheloid cervix carcinoma (adenocarcinoma) cells. The 

cell line has epithelial-like morphology and grows in a monolayer.  

3.2.  Culture conditions 

Cell culture dishes 

The dishes and flasks used for in vitro cells culture were purchased from Nunc (Nunc GmbH 

& Co KG, Geramny), BD Biosciences (BD Biosciences, Germany) and Sarstedt (Sarstedt, 

Germany). In this study were use T-25, T-75 and T-225 cell culture flasks; 6-well, 12-well, 

96-well and 10 cm culture dishes. 

 

Complete cell culture media 

HMSC and HeLa cells were cultured in aMEM-glutamax culture media (Invitrogen) supple-

mented with 10% fetal bovine serum (FBS) (Sigma, Germany) and 1% penicillin/ streptomy-

cin (Pen/Strep) antibiotic (PAA, Germany). 

For 293FT cell line was used D-MEM (high glucose) culture media (Invitrogen) supple-

mented with 10% FBS, 1%Pen/Strep, 0.1mM non essential amino acids (NEAA) (Invitrogen) 

and 1mM Sodium pyruvate (Sigma).   

For hOB cells was used Osteoblasts growth media (Promo cell, Germany). 

 

Cell culture conditions  

The human cell culture was performed according to the manufacturer’s recommendations. 

Cells were grown in monolayer in a cell culture incubator (Ser. Nr.: 39709355, Jouan, France) 

with constant conditions of 37°C and 5% CO2. 

HMSC were cultivated maximum until passage 10 and for the most of the experiments hMSC 

in passage 7-9 were used. Cell culture was maintained in low confluence (max 50-60%). The 

culture media was exchanged every third day. 

293FT cells were used for virus production and were cultured to maximum 20th passage. The 

confluence of the monolayer was approx 90-95%. The media was exchange every second day. 

HOB and HeLa cell line was maintained in approx. 80% confluence. Media was exchanged 

three times per week. 
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3.2.1.  Passaging and counting  

For splitting or transferring cells, the cultured monolayer was first washed with PBS (PAA). 

Then the cells were trypsinated by using 1x Trypsin/EDTA (PAA) for 5 min at 37°C/5%CO2. 

The detached cells were washed and resuspend in culture media. A small portion of the cell 

suspension was taken for cell counting. In an eppendorf tube 10 µl of the cell suspension and 

5 µl of trypan blue stain solution (Invitrogen) were mixed. The tripan blue staining was used 

for counterstaining of dead cells. The counting was performed in a Neubauer cell counting 

chamber (Brand, Germany). Cells in four outer quadrants were counted and the blue, death 

cells were excluded. The total number of cells was calculated by the formula:  

1000051
4

DCBAmlcells ××
+++

= ./  

where A-D are the counted cells in four quadrants and 1.5x is the dilution factor. After the 

counting, a define number of cells were re-plated or cryo-preserved. 

3.2.2.  Cryopreservation  

For cryo-preservation, a specific freezing media was prepared for each cell type. HMSC 

freezing media contained 70% normal culture media, 20% FBS and 10% Dimethylsulfoxid 

(DMSO) (Merck, Germany). HeLa and 293FT freezing media composition was 90% normal 

culture media supplemented with 10% DMSO. After cell tripsinization and counting, the cells 

were pelleted by centrifugation for 5min at 500 rpm. The supernatant was completely aspi-

rated and the cell pellet was resuspend in pre-cooled at 4°C freezing media. Next, the cell 

suspensions were aliquoted in pre-labeled cryovials which were then placed on dry ice and fi-

nally stored at -80°C freezer or liquid nitrogen. 

HOB cells were frozen in Cryo-SFM media (Promo cell) according to the manufacturer in-

structions. 

3.3.  ShRNA sequences 

Design 

The design of the shRNA oligonucleotides (oligos) was performed by using the Invitrogen’s 

BLOCK-iT RNAi Designer (tab. 3) against published gene molecules as sense and antisense 

sequence was separated with AACG loop. The designed oligos were then purchased from In-

vitrogen. 
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Gene  Accession number Sequence 

LacZ DNA oligo manufacturer 5’-GCTACAAATCAGCGATTT-3’ 

Integrin a1 (ITGA1) NM_181501 5’-GCTCCTCACTGTTGTTCTACG-3’ 

Integrin a2 (ITGA2) NM_002203 5’-GCAAACTTCAACAAGCATTCC-3’ 

Integrin a11 (ITGA11) NM_001004439 5’-GGATGTGTTCAAGAGTCAACT-3’ 

Tab. 3. ShRNA sequences against the LacZ, ITGA1, ITGA2 and ITGA11 genes designed against published 

molecules 
  

Assembling of the double-stranded Oligos (dsOligos) 

The assembling of the dsOligos was performed according to the Invitrogen’s instructions. 

Briefly, the oligos were diluted to 200 µM in DNase/RNase free water and annealing reaction 

was performed. The reaction products were then diluted to final concentration of 5 nM dsOli-

gos and were checked on ethidium bromide gel. 

3.4.  Bacterial cloning 

3.4.1.  Bacterial strains 

For plasmid cloning and propagation we used:  

One Shot TOP10 Competent Cells (Cat.Nr.: C4040-03, Invitrogen) 

These cells are derivates from DH10B E. coli strain which provides high cloning efficiency 

and plasmid propagation. They are suitable for high-copy number plasmids amplification and 

are sensitive to temperature variations and mechanical disruption. 

One Shot Stbl3 Chemically Competent Cells (Cat.Nr.: C7373-03, Invitrogen) 

DH10B E. coli strain derivate, recommended for use with unstable inserts such as lentiviral 

DNA. They are also highly sensitive to temperature variations and mechanical disruption.  

3.4.2.  Bacterial culture media 

The LB (Luria-Bertani) bacterial cultivation media (10% trypton, 10% NaCl and 5% yeast ex-

tract) was adapted from Sambrook et al [211]. All components of the media were mixed, 

autoclaved and immediately used or preserved at 4°C.  

For preparation of hard selective media, 15% agar was added to the LB media. After heat ster-

ilization, the media was cooled to RT and depending on the plasmid resistance a selective an-
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tibiotics, ampicillin or kanamycin, were added. Media was then mixed by gentle shaking and 

poured into 10 cm bacterial petri dishes. The obtained LB-agar plates were stored at 4°C. 

3.4.3.  Plasmids 

BLOCK-iT U6 RNAi Entry Vector or pENTR/U6 (Cat.Nr.: C4945-00; Invitrogen) 

A PUC-based plasmid modified for expression of shRNA and containing a kanamycin resis-

tant gene for bacterial selection. The plasmid provides a rapid and efficient way for cloning of 

the desired shRNA sequences. The vector contains RNA Polymerase III (Pol III)-driven eu-

karyotic expression cassette (i.e. U6 RNAi cassette) which makes it very useful for earlier 

testing of the shRNA sequences in mammalian cells.  

 

pLenti4/BLOCK-iT-DEST or pLenti4-BlockIT (Cat.Nr.: C4925-00; Invitrogen) 

A PUC-based plasmid used for generation of replication-incompetent lentivirus for effective 

transduction of dividing and non-dividing mammalian cells. This plasmid contains also an 

ampicillin resistant gene for bacterial selection. The vector provides a stable and long-term 

expression of shRNA sequence into the host cells. It is used for production of pseudotyped vi-

rus which has a broadened host range. It include a multiple biosafety features such as psi 

packaging signal, Rev response and ΔU3 elements. The vector also contains zeocin as a resis-

tance marker for selection of the transduced mammalian cells.  

3.4.4.  Ligation and recombination reactions 

Ligation and recombination reactions were performed according to the manufacturer descrip-

tion.  Briefly, 20µl of the ligation reaction containing the dsOligos and linearized pENTR/U6 

vector was mixed and incubated for 2 hours at RT, followed by cooling of the reaction mix-

tures on ice. A 10nM of pENTR/U6-shRNA ligated plasmid was used for transformation of 

TOP10 competent bacterial cells. The transformation was performed by bacterial heat-shock 

for 30 second at 42°C and subsequent propagation at 37°C with 200rpm constant shaking for 

1 hour in 250µl Invitrogen’s S.O.C. media (LB media supplemented with 2.5mM KCl, 10nM 

MgCl2, 10nM MgSO4 and 20mM glucose). Next, the transformed cells were grown for 12 

hours at 37°C on kanamycin LB agar plates to obtain resistant bacterial clones.  

For the recombination reaction, a mixture of 100ng of pENTR/U6-shRNA and 50ng 

pLenti4/BlockIT-DEST with 2µl from LR Clonase II (Invitrogen) were incubated for 6 hours 

at RT. The reaction was stopped by addition of 1µl Proteinase K and incubation for 10 min at 
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37°C. Stbl3 competent cells were mixed with 3µl of the recombination reaction, heat-shocked 

and incubated at 37°C with 225rpm constant shaking for 1 hour in 250µl S.O.C. media. The 

cells were grown on ampicillin LB agar plates for 12 hours at 37°C to obtain resistant bacte-

rial clones. 

3.4.5.  Isolation of plasmid DNA (pDNA) 

TOP10 or Stbl3 clones were picked and expanded in 5ml LB media, supplemented with 

kanamycin or ampicillin, correspondingly. The bacterial culture was performed at 37°C with 

225rpm constant shaking for 12 hours. 

Plasmid DNA (pDNA) was isolated by using GenElute Plasmid Miniprep Kit (Cat.Nr.: 

PLN350-1KT, Sigma) and following the manufacturer’s instructions. Briefly, the cells were 

pelleted, resuspend and lysed for 5 min at RT. The lysis was stopped with the neutralization 

solution and cell debris was pelleted by centrifugation. The supernatant was loaded on previ-

ously equilibrated column and washed twice with washing buffer. The pDNA was eluted in 

elution buffer (5mM Tris-HCl buffer pH8.0) and measured spectrophotometrically in order to 

estimate the pDNA yield. The pDNA was digested with restriction enzymes and then se-

quenced for confirmation of the plasmid size, orientation and quality of the shRNA insert.  

From the correct shRNA clones, a bigger amount of pDNA was isolated by HiSpeed Plasmid 

Maxi Kit (Cat.Nr.: 12663, Qiagen) for the pENTR/U6-shRNA clones or EndoFree Plasmid 

Maxi Kit (Cat.Nr.: 12362, Qiagen) for pLenti4-BlockIT-U6-shRNA clones. The kits were 

used according to the manufacturer’s instructions. Briefly, the bacteria were pelleted and 

lysed, and then the cell debris was precipitate and filtrated. The bacterial lysate, after the fil-

tration, was loaded on a column, washed, eluted and the pDNA was precipitated with isopro-

panol and pelleted by centrifugation. The pDNA pellet was washed with 70% ethanol, air-

dried and resuspend in elution buffer (5mM Tris-HCl buffer pH8.0). The pDNA concentration 

was measured and the quality of pDNA and the shRNA insert was analyzed by digestion and 

sequencing.  

3.5.  Virus production  

For production of the viruses an established protocol based on the manufacturer’s recommen-

dations were used. Briefly, 1.2 x106cells 293FT cells were resuspend in Opti–MEM media 

(Invitrogen). Three plasmids pLP1, pLP2 and pLP/VSVG from ViraPower lentiviral packag-

ing mix (Cat.Nr.: K4975-00, Invitrogen) responsible for amplification and packaging of the 
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viral particles were mixed in ratio 3:1 with pLenti4-U6-shRNA plasmids in Opti-MEM media 

and Lipofectamine 2000 (Cat.Nr.: 11668-027, Invitrogen). The cells were resuspend in the 

media containing plasmids–Lipofectamine 2000 complex and incubated in cell culture incu-

bator at 37°C/5%CO2 for 6 hours. After that media was replaced with complete culture media 

and the cells were further cultured for 48 hours. Virus-containing media were harvested, fil-

tered though 0.22µm filter and stored, in aliquots, at -80°C. All viral material was produced in 

S2-laboratory and stored at Max-von-Pettenkofer-Institute, Virology Section, University of 

Munich leaded by Prof. Dr.med. Ulrich Koszinowski.   

 

Viral infection of HMSC 

HMSC media was half replaced with medium supplemented with 16 μg/ml polybrene (Sigma) 

and the cells were incubated in cell culture incubator for minimum of 30 min. Then, a virus-

containing media was added to the flask in ratio 1:1 and the cells were incubated for another 

24 hours at 37°C/5%CO2. After this period the media was exchanged with a fresh complete 

growth media. Cell selection started 48 hours after the infection as the media was replaced 

with selective medium containing 50 μg/ml zeocin (Cat.Nr.: R250-01, Invitrogen) for a period 

of 8 days [212]. Finally, the cells were tested for a presence of viral particles by using HIV-1 

p24 ELISA kit (Cat.Nr.: NEK050, PerkinElmer, USA). Only virus-free cells were transfer to 

S1-laboratory and used in the following experiments.  

3.6.  RNA and copy DNA (cDNA) preparation 

Total RNA isolation 

Isolation of total RNA was performed with Qiagen RNeasy Mini kit (Cat.Nr.: 74106, Qiagen, 

USA). Briefly, the cells were washed with PBS and scraped in presence of RLT buffer and 

1% ß-marcaptoethanol. The cell lysates were then filtrated through QIAshredder spin column 

mixed with 70% ethanol in ratio 1:1 and loaded on RNeasy spin columns. Contaminants from 

genomic DNA were digested with 10U of DNAse for 15 min at RT. Columns were washed 

twice with washing solution and dried by centrifugation at maximum speed. High-quality to-

tal RNA was eluted in RNase-free water and measured spectrophotometrically for evaluation 

of the RNA concentration and purity. 
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cDNA synthesis 

The cDNA synthesis was performed with Cloned AMV First-Strand cDNA Synthesis Kit 

(Cat.Nr.: 12328-040, Invitrogen) following the manufacturer’s protocol. Briefly, 1 µg of total 

RNA, random primers and 10mM dNTPs were heated for 5 min at 65°C. The denatured RNA 

was added to a mixture of PCR buffer, 15U of reverse transcriptase, 40U of RNAse inhibitor 

and 0.1M DTT and the mixture was incubated for 1 hour at 50°C. The newly synthesized 

cDNA was tested for expression of a “housekeeping” gene – GAPDH in order to evaluate the 

synthesis quality and to normalize different probes.  

3.7.  RT-PCR 

A specific amount of cDNA (determined by the expression of GAPDH) was added to a master 

mix containing PCR buffer, 1.5mM MgCl, 0.2mM dNTPs, 0.5µM Primers  and 1U Taq DNA 

polymerase (Cat.Nr.: 10342-020, Invitrogen). The tubes containing the PCR reactions were 

placed on MG Research PCR machine (BioRad, USA). Normally, the PCR programs had 30 

to 37 cycles of amplification as each cycle consisted of denaturation (94°C for 30 sec), an-

nealing (45-65°C for 30 sec) and elongation (72°C for 60 sec) steps. The annealing tempera-

tures of the primers varied according to their GC content (supplementary tab. 1). The ampli-

fied products were analyzed on 2% agarose gels and visualized by ethidium bromide. As a 

reference for the correct size of the amplified product a 100bp molecular weight standard (In-

vitrogen) was used. Pictures with different exposure times were taken by using a gel imaging 

system (Vilber Lourmat, Germany). 

3.8.  Light Cycler (LC)-PCR 

The LC-PCR kits for ITGA1, ITGA2, ITGA11 and GAPDH genes were all purchased from 

Search-LC GmbH (Germany). The LC-PCR procedure was performed as recommended by 

the manufacturer. For each PCR reaction 10µl of 1:10 diluted cDNA sample was used. The 

PCR reaction was performed on Light Cycler 1.5 instrument (Roche, Germany). Standard 

curve build from 3 standard dilutions was used to determine the amount of cDNA copies. The 

results of the LC-PCR were analyzed by using Light Cycler 1.3 software and the relative gene 

expression was calculated as a ratio to GAPDH. 
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3.9.  Cytochemistry 

Protein coating 

For coating of cell culture dishes and glass slides were used 20µg/ml rat tail collagen type I 

(Chemicon, USA), 10µg/ml of bovine FN, Cultrex PLL or mouse laminin I (R&D systems, 

USA). The coated dishes were incubated at 37°C for 40 min, blocked for 30 min with block-

ing solution consisting of 5% skim milk/PBS (Merck) or 3%BSA/PBS (Sigma) and washed 

three times with PBS. The coated dishes were used immediately or were stored for 3 to 5 days 

at 4°C. 

 

Cell plating and fixation 

HMSC (2x105) cells were plated on plastic or coated glass slides and were cultured in com-

plete media for minimum of 24 hours. After this the media was removed, cells were rinsed 

with PBS and fixed with 4% PFA (Merck) for 20 min at RT or with methanol (Merck) for 10 

min at -20°C. After the fixation the slides were washed with PBS, air-dried and immediately 

used or stored at -80°C.   

 

Cell staining 

The fixed cells were rehydrated in PBS (3x5 min at RT) and permeabilized with 0.2% Triton 

X-100/PBS for 15 min. Image enhancer solution (Invitrogen), which reduce the unspecific 

binding of secondary antibodies, was applied for 30 min. Blocking was perform with 3% 

BSA/PBS for 3 hours and it followed by addition of primary antibodies (supplementary tab. 

2) for 12 hours at 4°C. After PBS washing (3x5 min at RT), secondary antibodies were added 

for 1 hour at 37°C. F-actin staining was usually performed in parallel by using pre-labeled 

phalloidin in dilution of 1:13 (Invitrogen). Finally, the slides were washed with PBS (3x5 

min) and nuclear contrastaining was performed with a 4',6-diamidino-2-phenylindole (DAPI) 

in dilution of 1:10000 in H2O. Following a PBS washing (3x 5 min) the slides were mounted 

with Mowiol anti-fading media (6g glycerol, 2.4g Mowiol, 12ml 0,2M Tris-HCl pH8.5, 

0.024g DABCO and 6ml H2O). The stained slides were stored overnight (ON) at 4°C. Pic-

tures with different magnification were taken on Axioskope2 microscope (Carl Zeiss MicroI-

maging GmbH, Germany). 
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3.10.  Western blotting 

Protein extraction 

For protein extraction was used Urea extraction buffer composed of 8M Urea, 50mM Tris-

HCl pH8.0, 1mM EDTA and 1mM DTT. Cultured cells were lysed in the above buffer, mixed 

and centrifuged at 12 000 rpm and 4°C for 15 min in order to separate the cellular debris. The 

supernatant was aliquoted and stored at -80°C. The protein concentration was measured by 

using the bicinchoninic acid (BCA) protein assay kit (Cat.Nr.: 23225; Thermo scientific, 

USA) by ELISA. Briefly, the protein concentration was determined based on a chemical reac-

tion where BCA interact with the cuprous cations that are reduced by the proteins in an alka-

line media. As a result an intense purple-coloured reaction is observed and the intensity of the 

color correlates with the protein concentration. The protein amount was calculated using a 

standard curve that is build by serial BSA dilutions. The measurements are performed at 

450nm on microtitre-plate reader (Microtek Laborsysteme GmbH, Germany).  

An other method used for protein extraction was direct lysis in which the cells were lysed in 

1x Laemmli buffer consisting of 200mM Tris-HCl pH6.8, 40% glycerol, 10% SDS, 30% 2-

mercaptoethanol, 0.02% bromphenolblue and 0.2M DTT. After washing with cold PBS, cells 

were lysed in the above lysis buffer for 2 min at RT. Next, the cell lysis were homogenized by 

sonication, denatured by heating to 99°C for 5 min and centrifuge at 4°C/10000rpm for 10 

min. The protein lysates were aliquoted and immediately used or stored at -80°C.  

 

SDS-PAGE 

Urea isolated Protein extracts were mixed with 4x Laemmli buffer described above and were 

boiled for 5 min at 98°C. The protein mixtures were spined down and loaded on 8 or 15% 

acrylamide gels (Bio-rad, USA). The electrophoresis was performed in 1x running buffer 

formulated from 0.25M Tris-base pH8.3, 1% SDS and 1.92M glycine. For a molecular weight 

standard, Seeblue plus 2 protein marker (Invitrogen) was used. The electrophoresis was run at 

60mA for 1 gel or 100mA for 2 gels. The procedure continued with Coomasie staining or pro-

tein transfer to PVDF membrane.    

 

Coomasie staining 

The gel was first incubated in isopropanol fixation solution consisting of 10% acetic acid and 

25% isopropanol (Merck), and then in coomassie staining solution formulated from 7% acetic 

acid, 40% methanol (Merck) and 0.025% coomassie brilliant blue (Roth, Germany). In this 

solution the gel was boiled for 30 sec and gently shaken for 20 min at RT. Destaining solution 
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consisting of 7% acetic acid and 40% methanol was applied to the gel for 12 hours with gentle 

shaking. This staining was used to analyze the quality loading and transfer of the protein ex-

tracts. 

 

Protein transfer 

The protein transfer was performed by using the vertical “wet” transfer method. In brief, gel 

loaded with proteins was equilibrated for 15 to 20 min in 1x blotting solution containing 

250mM Tris-base and 1.92mM glycine. During this equilibration time, the PVDF membrane 

was incubated in methanol, rinsed in water and soaked in 1x blotting buffer. The Western blot 

setup was then assembled. The protein transfer was performed ON with 30V at 4°C. After the 

transfer, the membrane was stored ON at 4°C in a TBS-T20 washing solution consisting of 

1mM Tris-base pH7.4, 150mM NaCl and 0.05% Tween20 or was blocked with blocking solu-

tion. 

 

Protein immunodetection 

The membrane was incubated with blocking solution consisting of 5% skim milk/TBS-T20 

for 1 hour with gentle shaking. Then, primary antibody (supplementary tab. 2), diluted in the 

blocking solution, was applied with vigorous shaking ON at 4°C. The membrane was washed 

4x7 min with TBS-T20 washing solution and secondary antibody, diluted in the blocking so-

lution, was applied to the membrane for 1 hour with vigorous shaking. Finally, the membrane 

was again washed 4x7 min with TBS-T20 and proteins were visualized by using chemilumi-

nescent ECL solution (GE Healthcare, USA) and detection film (Lumi-film chemilumines-

cent, Roche) in developing instrument Scopix LR5200 (Agfa, Belgium).  

3.11.  Cell adhesion assay  

Cell adhesion assays were performed on protein pre-coated 96-well plates (Nunc), procedure 

described in 3.9. HMSC cells were plated in triplicates (3x103 cells/well) and incubated for 

various time periods (from 30 to 180 min) in cell culture incubator. Non-adherent cells were 

removed by washing with PBS. Cell adhesion was estimated by NPAG (4-Nitrophenyl 2-

acetamido-2-deoxy-β-D-glucopyranoside, Sigma)-protein staining which can be calorimetri-

cally measured. The adherent cells were incubating ON at 37°C with a substrate buffer con-

sisting of 7.5mM NPAG, 0.1M sodium citrate, pH5.0 and 0.5% Triton X-100. Prior meas-

urement, a stopping buffer (50mM glycine, pH10.4 and 5mM EDTA) was added to the wells 
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and then the optical density was measured at 405 nm on a microtitre-plate reader. The amount 

of adherent cells was finally calculated as a percentage of the maximum value cell reference 

(3x103 cells, directly lysed with the substrate buffer).  

3.12.  Proliferation assays 

Population doublings 

In order to calculate the population doubling (PD) and population doubling time (PDT) the 

following formulas were used respectively:  

PD = 3.33 × log10 (N/N0);  

PDT = D/PD,  

where N is the cell number at the end of the experiment, N0 is the cell number at the begin-

ning and D is the number of days (or hours) of the experimental period (from N0 to N).  

Growth curves were built by using cumulative population doublings which is a sum of indi-

vidual population doublings. 

 

Bromodeoxyuridine (BrdU) assay  

The Cell Proliferation ELISA, BrdU (colorimetric) (Roche) assay was performed according to 

the manufacturer’s description. Cells triplicates of 3x103 cells/well were plated and grown for 

12 hours on protein pre-coated 96-well dishes in cell culture incubator. Next, the culture me-

dia was replaced with 10μM BrdU-containing media and incubated for another 24 hours. The 

cells were then fixed, stained with anti-BrdU-POD antibody for 30 min, washed and incu-

bated in substrate solution for 30 min. Then, stopping solution was added and measurements 

were performed using 450 nm wavelength and reference filter of 620 nm on a microtitre-plate 

reader. 

3.13.  Time lapse experiments  

The time lapse system consist of automated inverted microscope Axiovert100, additionally 

modified with a isolation chamber, which allows maintaining of constant 37°C/5%CO2 with 

proper humidity conditions for a long period of time. Cells (2x104 cells/well) were plated on 

protein pre-coated 6-well dishes (Nunc). Cells spreading and migration were analyzed by se-

ries of consecutive pictures from initially defined cells areas. For spreading analysis the cells 

were imaged immediately after plating. The series of pictures were produced with speed of 20 
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frames per hour as for the analyses were used minimum three different cell areas containing 

20-30 cells. 

For migration analysis, the cells were incubated for 2 hours prior picturing. The series of pic-

tures were produced with speed of 4 frames per hour as for the analyses were used minimum 

three different cell areas with 20-30 cells. 

The data from the movies was extracted by using AxioVision LE software (Carl Zeiss Micro-

Imaging GmbH) and analyzed by using ImageJ program (http://rsb.info.nih.gov/ij/).  

3.14.  Osteogenic differentiation 

Osteogenic differentiation was performed as described in [213]. Briefly, cells were plated in 

6-well dishes with concentration of 3.5x103 cells/cm2. When the cell density reached ap-

proximately 80-90% confluence the media was changed to osteogenic media consisting of 

DMEM-high glucose media supplemented with 10%FBS, 1%Pen/Strep, 100nM Dexa-

methasone, 10mM Glycerol 2-phosphate and 50µM L-Ascorbic acid 2-phosphate (all Sigma) 

for 21 days. In the control wells, the cells were incubated in the standard culture media. The 

medium for all wells was exchanged twice per week. Phase-contrast pictures of stimulated 

and unstimulated cells were taken with different magnifications on Axiovert100 microscope 

using AxioCam ICc3 colour camera (Carl Zeiss MicroImaging GmbH). 

The osteogenic differentiation was evaluated by Alizarin red (AR) staining. AR red is an an-

thraquinone derivative which binds to calcium deposits and therefore is used to quantify the 

extent of matrix mineralization. After 21 days of osteogenic stimulation, stimulated and un-

stimulated cells were washed PBS, fixed with 4% formaldehyde and washed again with ex-

cessive amount of water. Then AR solution was added to the wells and it was gently rocked 

for 20 min. Dishes were washed with water (4x 5 min) and pictures with few different magni-

fications were taken on Axiovert100 microscope using AxioCam ICc3 colour camera. 

For quantification of the extent of osteogenic differentiation, AR staining was measured with 

Osteogenic Quantification kit (Cat.Nr.: ECM815; Chemicon, USA). AR was extracted from 

the ECM by scrapping with 10% acetic acid, followed by heating to 85°C for 10 min and cen-

trifugation for 15 min. Then, the supernatant was neutralized with 10% ammonium hydroxide 

and the absorption was measured at 405 nm on microtitre-plate reader. The amount of AR 

(µM) was calculated against a standard curve prepared from AR serial dilutions.  
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3.15.  Apoptosis analysis 

For apoptosis analysis, first, was evaluated the percentage of lost cells during a prolong culti-

vation period after the viral infection (death curve analysis). Cells (2x104) from each shRNA 

type were plated in 12-well dishes (Nunc). Pictures were taken daily for a period of 14 days 

on Axiovert100 microscope using the mosaic option provided by Axiovision 1.5 software 

(Carl Zeiss MicroImaging GmbH). Each of the mosaic pictures consisted of 4x4 picture 

frames which covered approximately 60% of each well. Data were extracted and analyzed by 

using ImageJ and Microsoft Excel (Microsoft, USA) programs. 

For determination of mitochondrial damage, a hallmark of apoptosis, was used JC-1 staining 

(Cat.Nr.: T3168, Invitrogen). JC-1 (5,5’,6,6’-tetrachloro-1,1’,3,3’ tetraethylbenzimidazolyl-

carbocyanine iodide) is a fluorescent cationic dye which exists as a monomer in the cytosol 

(green) and also accumulates as aggregates in the mitochondria which stains them red. There-

fore, non-apoptotic cells in which the mitochondria is intact have green stained cytoplasm and 

red stained mitochondria whereas the apoptotic cells which mitochondria are depolymerized 

and JC-1 leaks entirely in the cytoplasm have stained only green. Cells (2x103 cells/cm2), 10 

days after viral infection, were plated on pre-coated with ColI glass slides and cultured for 24 

hours in cell culture incubator. In parallel, a portion of hMSC (3x103 cells) were used as a 

negative and positive control as apoptosis was induced with 1µg/ml FAS antibody in serum 

free culture media. Afterwards, the cells were incubated with 3µg/ml JC-1 and 1µg/ml 

Hoechst 33342 (Invitrogen) diluted in complete cell culture media for 30 min at 

37°C/5%CO2, washed with PBS (3x 5 min) and pictured on Axiovert100 microscope using 

AxioCam MRm camera (Carl Zeiss MicroImaging GmbH).  

3.16.  Interferon stimulation 

For analysis of the interferon (IFN) pathway, was used RT-PCR for a number of genes known 

to be upregulated by the presence of dsRNA or virus infection (supplementary tab. 1). For 

positive control, we used hMSC cells stimulated with 2000U/ml IFN-beta (Cat.N.: CYT-

26766; Dainova, Germany) for 72 hours at 37°C/5%CO2 [214].   

3.17.  Microscopy 

The microscopes and cameras used in this thesis are purchased from Carl Zeiss MicroImaging 

GmbH, Germany. Axioskope2 microscope was used for taking immunofluorescent micropho-
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tographs. Pictures were taken with 40x, 63x and 100x objectives and using AxioCam MRm 

black-white camera (Ser. Nr.: 118051871). 

Axiovert100 was used for imaging of live and osteogenic differentiated cells, and for per-

forming time lapse experiments. We used objectives having 5x, 10x and 20x magnifications. 

For taking pictures was used AxioCam ICc3 colour camera (Ser. Nr.: 13-218537987). 

3.18.  Computer programs and web links 

In this doctoral thesis was used a number of specialized programs for processing and analyz-

ing the obtained data. The charts were created by using Microsoft office 2003 (Microsoft, 

USA) and SigmaPlot 8.0 (Systat Software, USA). Photomicrographs were processed with us-

ing AxioVision LE software (Carl Zeiss MicroImaging GmbH) and Adobe Photoshop CS2 

program (Adobe Systems Incorporated, USA). The time lapse evaluations and cell counting 

for the death curves analysis were performed by using ImageJ software. The figures were cre-

ated using Adobe Photoshop CS2 program (Adobe Systems Incorporated).   

We used the followed links: 

http://www.ncbi.nlm.nih.gov/sites/entrez/ - major source of publications. 

http://rnaidesigner.invitrogen.com/rnaiexpress/ - for design of the shRNA sequences. 

http://rsb.info.nih.gov/ij/ - ImageJ program  

3.19.  Statistics 

The statistical relevance was measured by using the Student t-test on SigmaPlot 8.0 (Systat 

Software). The ELISA enzymatic and colorimetric experiments, such as cell adhesion assay, 

BrdU cell proliferation and osteogenic quantification consisted of minimum 3 independent re-

peates, each performed in triplicates. The quantification of the ColI-binding integrin basal ex-

pression, integrin knockdown efficiency and integrin compensation by LC-PCR consisted of 

three hMSC donors as the runs were repeated at least three independent times. Spreading and 

migration experiment were repeated three times as in each experiments the samples were in 

triplicates. The figure bar charts represent mean and standard deviation of minimum three in-

dependent experiments.  
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4.  Results 

4.1.  Characterization of hMSC 

4.1.1.  Morphological appearance and growth capacity of hMSC 

In this doctoral thesis we used three different hMSC donors – hMSC IX, XIII and XV. All 

experiments were initially performed with hMSC XI (our “master” donor) as the most impor-

tant founding we reproduced with the other two hMSC XIII and XV donors. In order to be 

able to compare the obtained data from the all three hMSC donors, we briefly characterized 

them based on their morphological appearance and growth capacity. The hMSC donors dem-

onstrated a similar cell phenotypic appearance as all of them had the characteristical spindle-

shape cell morphology [215] (fig. 7A). Moreover, we also observed no difference in their 

growth capability and PDT (fig. 7B) as all of the hMSC donors had a PDT of approx. 55 

hours.  
 

 
Fig. 7. Morphological appearances and growth characteristic of hMSC donors. A) Phase contrast pictures of 

hMSC XI, XIII and XV when cultured on polystyrene; bar 100 µm. B) Cumulative PD and PDT. 



Results  48 

4.1.2.  HMSC affinity towards different ECM proteins 

In order to characterize the bone marrow derived hMSC, we first analyzed their ECM prefer-

ences by cell adhesion assay (fig. 8). For this purposes, we compared their adhesion capability 

to four different ECM proteins – ColI, FN, laminin I, PLL and plastic at four different time 

points. The initial hMSC adhesion to ColI, FN and laminin I was greater than on plastic. In 

comparison, hMSC exhibit very low adhesion affinity towards PLL as this fact was true 

throughout the all experiment. After 45 minutes, the cell adhesion to ColI and FN reached a 

plateau as 95±5% of the cells were attached. In comparison to them, hMSC attachment to 

laminin I, plastic and PLL continue to increase with time. At 60 min, the cells attached to 

laminin I and plastic reached approx. 90±5% whereas on PLL hMSC were able to adhere only 

with 77±2% from the initial cells. 
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Fig. 8. HMSC adhesions to different ECM proteins. A representative experiment consisting of triplicates.   

4.1.3.  Influence of different ECM proteins of hMSC proliferation capability 

Next, we analyzed the influence of the different ECM proteins on hMSC proliferation capa-

bility by BrdU assay (fig. 9). The highest cell proliferation rate was observed when hMSC 

where propagated on ColI protein, followed then by FN and laminin I while the lowest cell 

proliferation was detected on PLL surface. Importantly, hire we found that ColI protein pro-
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vides the best proliferation stimuli for hMSC, even though the cells propagation was limited 

only to 24 hour because of the BrdU toxicity effect.  
 

 
Fig. 9. HMSC proliferation on different ECM proteins measured by BrdU uptake for 24 hours. The chart consist 

of 3 independent experiments. 

4.1.4.  Integrin expression in hMSC 

Considering the ability of hMSC to attach to various ECM proteins, we next investigated the 

corresponding to this protein integrins expression. HMSC were screened for the expression of 

eight alpha (a1-a6, a11 and aV) and three beta (b1, b3 and b5) integrin subunits by RT-PCR 

(fig. 10). In addition, we compared the integrin expression of hMSC to human osteoblasts 

(hOB). All tested integrins subunits were expressed by hMSC; however their expression lev-

els were different. The only exception was the integrin a4 subunit which was found expressed 

only by hOB. This was not surprising taking in account the importance of this integrin recep-

tor for the OB and HSC interactions. Interestingly, among the all tested integrin subunits, a1 

and a11 had the highest expression levels in hMSC. Moreover, we found also an increased 

expression of integrin a2, a4, b3 and b5 in hOB in comparison to hMSC. 
 



Results  50 

 
Fig. 10. Integrin expression by hMSC and hOB. A representative experiment shows the mRNA expression level 

of 8 a- and 3 b-subunits.  

4.1.4.1.  Expression of ColI-binding integrin in hMSC 

Taken together, our analysis of ECM affinity and integrin expression profile suggested the 

ColI importance for hMSC behavior. Therefore, we performed a more detailed investigation 

of ColI-binding integrin expression (integrin a1, a2 and a11) in hMSC. The initial RT-PCR 

screening analysis showed that these integrins were differently expressed (fig. 11A). The fol-

lowing quantitative analysis performed by LC-PCR in the three different hMSC donors (fig. 

11B) confirmed the data observed by RT-PCR. This allowed us to grade the expression levels 

of ColI -binding integrin in hMSC as integrin a11 had the most abundantly expression, then 

followed by integrin a1 and the weakest was integrin a2.  

Next, we investigated the protein expression levels of integrin a2 and a11 in hMSC XI by WB 

analysis. The total protein input was normalized according to the b-actin WB. As expected, 

we detected a strong a11 integrin expression which was approx. 1.8 – fold higher than the ex-

pression of integrin a2 in hMSC (fig. 11C).  

To investigate the formation and localization of integrin a2 and a11 in the cells, we performed 

an immunofluorescence staining (fig. 11D). In hMSC stained for integrin a11, we detected 

strong focal adhesion formation, localized within the all cell body. However, when hMSC 

were stained for integrin a2, despite of the positive cell staining no visible clustering was de-

tected.  
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Fig. 11. ColI-binding integrin expressions in hMSC. A) RT-PCR, a representative experiment with hMSC XI; B) 

LC-PCR with three different donors; C) a representative WB experiment and D) immunofluorescence staining of 

a2 and a11 integrins (green) and nuclear counter-staining (blue) with hMSC XI. Bar 50µm.   

4.1.5.  Integrin expression changes upon osteogenic stimulation 

To investigate whether upon osteogenic differentiation the expression of ColI-binding in-

tegrins changes, the three different hMSC donors were stimulated for 21 days with osteoin-

ductive media.acording to Böcker et al., 2007 [213]. Then, the RT-PCR analysis and Alizarin 

Red (AR) staining were performed. The AR staining of two independent stimulation of hMSC 

XI and single stimulation of hMSC XIII and XV showed a consistently strong matrix calcifi-

cation in all donors (fig. 12A). In order to compare the differentiation potential of the different 

hMSC donors we performed a quantification of the AR staining using ELISA colorimetric as-
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say (fig. 12B). The results showed that all hMSC donors were able to osteogenically differen-

tiate but the extent of matrix mineralization was donor dependent as donor hMSC XIII differ-

entiated the most.  
 

 
Fig. 12. Osteogenic differentiation of hMSC XI, XIII and XV. A) A representative pictures of AR staining and 

B) a representative quantification. Bar 100µm. 

4.1.6.  Changes in integrin a1, a2 and a11 expression upon osteogenic stimulation  

The integrin expression of hMSC prior and post osteogenic differentiation was assessed by 

LC-PCR (fig. 13A-C) and WB (fig. 13D). The LC-PCR analysis showed upregulation of the 
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mRNA level of integrin a2 (fig. 13B) and a11 (fig. 13C) but no changes in integrin a1 (fig. 

13A). This data was confirmed also on protein level by WB analysis (fig. 13D). Both, integrin 

a2 and a11 were clearly upregulated upon OS stimulation with 2-fold for integrin a2 and 5-

folds for integrin a11 in the three hMSC donors in comparison to non-stimulated sample.  
 

 
Fig. 13. ColI-binding integrin expression change upon OS stimulation. Integrin a1 (A), a2 (B) and a11 (C) 

mRNA expression levels were analysed by LC-PCR in two independent differentiations of hMSC. (D) WB was 

reproduced twice with hMSC XI.  

 

In addition, we estimated the effect of integrin expression on the OS capacity. We found an 

interesting correlation between the matrix mineralization and the upregulation of integrin a2 
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(fig. 14) as more matrix mineralization was detected in the donor expressing higher levels of 

integrin a2.  
 

 
Fig. 14. Integrin a2 dependent matrix mineralization upon OS stimulation in two different hMSC donors.  

4.2.  Establishment of a stable knockdown system for ColI-binding integrins 

4.2.1.  Cloning of lentiviral constructs for expression of a1, a2 and a11 shRNA 

For the establishment of the stable integrin knockdown we used a lentiviral delivery system 

based on the shRNA technology. Target-specific shRNA pre-design sequences were cloned in 

pENTR/U6 plasmid by ligation reaction (fig. 15A). Next we verify the cloned shRNA by a 

digestion analysis as we cut out the inserted shRNA sequence from the plasmid backbone 

(fig. 15B). The clones with correct digestion profile were then sequenced for verification of 

the shRNA quality (fig. 15C). Finally, the plasmids which had the proper digestion pattern 

and correct DNA sequence were used for the next step of cloning – the transfer of the shRNA 

sequence into pLenti4-BlockIT plasmid. 
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Fig. 15. Cloning of shRNA in pENTR/U6 and its verification. A) Schematic presentation of shRNA and 

pENTR/U6 ligation procedure. B) Digestion analysis of clone plasmids by cutting out of shRNA inserts (123bp) 

with NdeI/XbaI restriction enzymes. C) Comparison of the reference sequence and the sequencing results of the 

obtained pENTR/U6-shRNA plasmids. 

 

For the transfer of the shRNA sequence into pLenti4-BlockIT plasmid we performed a clon-

ing reaction catalyzed by the LR Clonase enzyme. The reaction is based on the recombination 

of attL1 and 2 sites from pENTR/U6 plasmid with attR1 and 2 from pLenti4-BlockIT final 

destination vector. This results in the formation of pLenit4/U6-shRNA plasmid (fig. 16A). 

The desired plasmids were again selected based on their digestion pattern. For this purposes 

we performed three types of plasmid digestion: 1) we cut the insert with NdeI/XhoI restriction 

enzymes, 2) we cut part of the insert and the backbone with KpnI restriction enzyme and 3) 

we performed a plasmid linearization by a single cutting NdeI restriction enzyme (fig. 16B). 

Again, the properly digested plasmids were sequenced for validation of the not changed 

shRNA region (fig. 16C) and then used for a lentivirus production. 
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Fig. 16. Cloning of the shRNA in pLenti4-BlockIT final destination vector. A) Schematic presentation of clonase 

reaction between pENTR/U6-shRNA and pLenti4-BlockIT vector. B) pLenti4/U6-shRNA control digestions for 

insert out (251bp) with NdeI/XhoI, cutting inside the insert and the backbone (1364bp) with KpnI and plasmid 

linearization (6654bp) with NdeI restriction enzymes and C) Sequencing verification of the shRNA region. 

4.2.2.  Knockdown of integrins a1, a2 and a11 in hMSC 

HMSC were infected with integrin a1, a2 and a11 shRNA containing lentiviruses. Then RT-

PCR analysis was performed. We detected a clear downregulation of the targeted integrin 

mRNA as shown in a representative experiment performed with hMSC XI donor (fig. 17A). 

Next we assessed the overall knockdown efficiency by LC-PCR (fig. 17B). The observed in-

tegrin downregulation in the three hMSC donors was 96±4% for a1, 85±14% for a2 and 

95±4%for a11. 
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Fig. 17. Knockdown of integrin a1, a2 and a11 in hMSC. A) RT-PCR analysis of hMSC XI donor and B) LC-

PCR analysis of the three donors consist of all performed infection as the level of integrin a1, a2 and a11 mRNA 

left after knockdown was calculated as a percent of the control cells.  

 

Moreover, we confirmed the knockdown of integrin a2 and a11 also on protein level by WB 

as shown for hMSC XI (fig. 18). In all three hMSC donors transduced with a2 or a11 shRNA 

we observed a clear downregulation of in the production of corresponding integrins. In par-

ticular, integrin a2 protein was downregulation with 75% and for a11 with the amazing 96%. 

Interestingly, we observed an upregulation of the integrin production of the other two mem-

bers of the ColI-binding integrin family. When integrin a1 was knockdown, the levels of ex-

pression in a2 and a11 protein increased with 0.42- and 1.1-folds, respectfully. Additionally, 

when integrin a2 was knockdown we observed an upregulation of integrin a11 with 1.1-folds. 

However, no upregulation of integrin a2 was observed in response to a11 knockdown. 
 

 
Fig. 18. WB analysis for integrin a2 and a11 after knockdown of integrin a1, a2 or a11 in hMSC XI. A represen-

tative experiment from two independent repeats.  
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4.2.3.  Morphological and growth characterization of shRNA-transduced hMSC 

The hMSC transduced with four different shRNA were characterized by morphological ap-

pearance and growth capacity for a period of 30 days. No obvious differences concerning cell 

morphology was detected in the shRNA transduced hMSC, however during the cell culture 

after infection and selection we observed a constant cells lost within the a2 and a11 shRNA-

transduced cells populations. In contrast, the cell number of shRNA control and a1 shRNA 

hMSC continuously increased (fig. 19).  
 

 
Fig. 19. Morphological appearance and cell density of shRNA-transduced hMSC XI cells. Bar 100µm. 
 
In order to estimate the rate of the observed cell loss we performed a “death curve” analysis of 

hMSC XI (fig. 20) by counting the number of cells in 12-well plates during 14 days of period 

(fig. 20A). Two different areas of 1.1cm2 were used for the analysis of each shRNA-
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transduced hMSC. Next, we calculated in percentage the cumulative lost of cell between day 

0 and 14 day (fig. 20B). Thus, at day 14 shRNA control and a1 shRNA cell populations in-

creased with 55.8±16% or 76.3±42% correspondingly, whereas a2 and a11 shRNA cells re-

duced with 83.3±0.5% and 73.1±12.4%, respectively. 
 

 
Fig. 20. Growth analysis of shRNA-transduced hMSC XI. A) Cell counting experiment over 14 days culture pe-

riod. B) Estimation of the total amount of gained and lost cells at the end point of the growth analysis. 

4.2.4.  RT-PCR analysis of genes associated with IFN pathway 

Since two of the integrin knockdown hMSC were dying out over time, we first investigated 

whether IFN pathway was activated in response to the virus infection or presence of dsRNA. 

We analyzed by RT-PCR the gene expression of OAS1 and 2, RIG-I and ISG56 in all 

shRNA-transduced hMSC as for a positive control was used IFN-beta induced hMSC (fig. 

21). In all three independent infections we detected a basal expression of the IFN-related 

genes in hMSC which varied between the genes and the infections. For example, OAS1 had 

the weakest and OAS2 the highest basal However, we observed no upregulation of the IFN-

related genes in comparison to the positive control.  
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Fig. 21. Analysis of genes related to the IFN pathway. Gene expression of OAS1 and 2, RIG-I, ISG56 was as-

sessed by RT-PCR in control and shRNA-transduced hMSC XI cells. 

4.2.5.  Adhesion, spreading and migration analysis of shRNA-transduced hMSC 

In order to investigate the reason for the observed cell death, which was not caused by IFN 

upregulation, the adhesion, spreading and migration capacity of the shRNA-transduced hMSC 

were next analyzed.  

First, we analyzed the shRNA-transduced hMSC adhesion on ColI (fig. 22). We observed a 

high initial adhesion of shRNA control and a1 shRNA cells with 64.6±5.5% and 51.7±6.4%, 

respectively. Furthermore, after 90 min all hMSC transduced with shRNA control were at-

tached (98.8±1.8%) whereas for a1 shRNA cells this process required 120 min (91.6±6.5%). 

In comparison, the a2 knockdown cells showed much slower adhesion on ColI as we detect an 

initial adhesion of 33.1±2.3% which was approx. half of the shRNA control or a1 shRNA 

cells attached. However, after 120 min 79.1±3.5% of the a2 shRNA hMSC were attached. In 

contrast to all other cell types, a11 shRNA cells had an extremely low initial adhesion of 

16.2±1.2% and throughout the whole experimental period not more than 30.1±3% of the 

knockdown hMSC attach to ColI.  
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Fig. 22. Analysis of shRNA-transduced hMSC cell adhesion to ColI matrix for a period of 120 min. This ex-

periment represents data from three different donors - hMSC XI, XIII and XV. 

 

 

Second, we analyzed the cell spreading time of the four different shRNA hMSC by time lapse 

experiments. Cell spreading was analyzed for a period of 80 min (fig. 23). The spreading time 

of shRNA control and a1 shRNA cells was similar and took 34.2±1.4 and 33.3±1.4 hours, re-

spectively. In comparison them, integrin a2 and a11 shRNA cells showed a delay in spreading 

which took twice longer as the spreading time of integrin a2 knockdown was 80.8±11.5 and 

for a11- 61.7±6.3 hours. 
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Fig. 23. Cell spreading of shRNA-transduced hMSC XI on ColI matrix. A) Representative images taken at 3 dif-

ferent time points. B) Quantification of the time for cell spreading hMSC XI and XIII. Bar 200µm.  

 

In order to observe the effect of decreased adhesion and longer time for cell spreading, we 

next performed a cell migration analysis. Two independent infections of donor hMSC XI and 

one of hMSC XV were used to determine migration distance and cell velocity (fig. 24). The 

average pathway which the shRNA control cells passed was 171.3±31.3µm with mean veloc-

ity of 11.4±2.1µm/h. Integrin a1 knockdown cells migrated to a bit longer distance of 

208.8±6.6µm with a mean velocity of 13.9±0.4µm/h. Integrin a2 and a11 knockdown cells 

showed similar migration pattern on ColI, as for a2 shRNA cells the migrated cell distance 

was 81.6±4.1µm with velocity of 5.4±0.2µm/h and for a11 shRNA cells the distance was 

73.5±11.7µm with the velocity of 4.9±0.8µm/h. 
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Fig. 24. Migration analysis of shRNA-transduced hMSC on ColI. Cell migration was evaluated by measurement 

of A) distance and B) velocity of two hMSC XI and one hMSC XV viral infections. 

4.2.6.   Investigation of apoptosis in integrin a2 and a11 shRNA-transduced hMSC 

Based on the observation that a2 and a11 shRNA hMSC cells are gradually lost during culti-

vation and that this is not caused by any IFN gene upregulation, we next investigated if these 

cells might be lost because of the cell apoptosis. For this purpose we performed an apoptosis 

assay which detects the changes in the mitochondrial membrane. JC-1 staining (fig. 25) in 

non-apoptotic cells aggregates at the mitochondria wall in the intact mitochondria as stains the 

mitochondria red. In apoptotic cells which exhibit a mitochondria leakage, JC-1 monomer re-

sides in the cytoplasm and stains the cells green. For prove of the principle, we included a 

positive control in which we induce apoptosis in hMSC by FAS antibody stimulation. The re-

sults from the performed JC-1 staining with to different hMSC donors demonstrated that 

shRNA control and a1 shRNA cells were not apoptotic as in these cells the intact mitochon-

dria were stained in red. In contrast, hMSC with integrin a2 or a11 knockdown exhibited a 

leakage in their mitochondria since the majority of the cells were stained only green. Thus it 

suggests that these cells undergo apoptosis. Similar to staining of integrin a2 and a11-

deficient cells, the apoptotic induced hMSC control demonstrated only green cytoplasm stain-

ing. 
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Fig. 25. A representative apoptosis analysis of cells from hMSC XI donor after knockdown of a1, a2 and a11 in-

tegrin. Positive control - hMSC treated with FAS antibody. Bar 100µm.   

4.2.7.  Osteogenic differentiation of shRNA-transduced hMSC 

To analyze whether the knockdown of ColI-binding integrins can influence also the good os-

teogenic potential of hMSC, the four different shRNA cells were osteogenically stimulated for 

21 days (fig. 26). The results manifested that both, shRNA control and a1 shRNA cells, were 

able to differentiate and mineralize the matrix. In contrast, integrin a2 and a11 knockdown 

cells did not manage to mineralize the matrix and the AR staining was negative. Moreover, 

during the differentiation process of three hMSC donors, we again detected a tremendous loss 

of cells with a2 and a11 knockdown and after 21 days in the osteogenic media, only very few 

cells were left. 
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Fig. 26. Osteogenic differentiation of shRNA-transduced hMSC. A representative experiment with hMSC XI. 

Bar 200µm. 

4.2.8.  Investigation of compensatory mechanism between the ColI-binding integrins 

The cell behavior of a1, a2 and a11 shRNA knockdown cells provoked us to investigate a 

possible compensatory mechanism in-between the ColI-binding integrins. Therefore, we ana-

lyzed in details the integrin mRNA changes of a1, a2 and a11 shRNA hMSC by LC-PCR (fig. 

27) and by WB (fig. 18). We compared the integrin expression levels in the three individual 

integrin knockdowns to the shRNA control cells. We found that when integrin a1 was lost, the 

expression levels of a2 and a11 mRNA increased with 1.7±0.1- and 3.7±0.5-folds respec-

tively. Similar changes occurred also when integrin a2 was diminished. This resulted in 

upregulation with 2.4±0.6- of integrin a1 and 2.1±0.5-folds of a11 integrins. Interestingly, 

lack of integrin a11 led only to increase of integrin a1 mRNA expression with1.7±0.1-folds. 

The data obtained on protein level by WB analysis also confirmed the described above in-

tegrin changes in a1, a2 and a11 shRNA-transduced hMSC. We detected an upregulation of 

a2 and a11 protein in a1 shRNA cells and a1 and a11 proteins in a2 shRNA cell, but no eleva-

tion of a2 protein was detected in a11 shRNA cells (fig. 18). 
 



Results  66 

 
Fig. 27. Cross-talk between ColI-binding integrins in shRNA-transduced hMSC assessed by LC-PCR. 

4.2.9.  Analysis of the expression levels of ColI-binding integrins in normal and osteo-

porotic hMSC 

Finally, we investigated the integrin a1, a2 and a11 expression in primary hMSC isolated 

from three healthy and three osteoporotic patients (the cells were kindly provided by Dr. 

Christian Prall). We want to test whether there might be changes in the expression levels of 

ColI-binding integrins due to this disease. The donors used for the experiments are summa-

rized in tab. 4. For osteoporotic were claimed to be cells isolated form patients having bone 

mineral density factor or T-value lower than -2.5 and as healthy - cells isolated from donors 

with T-value bigger than -1. 

  

 Donor Age T-value 

3 86 -1 

27 93 -0,5 Healthy 

29 68 -0,9 

32 81 -2,7 

35 85 -3,5 Osteoporotic

38 83 -3,2 

Tab. 4. HMSC donors used to compare a1, a2 and a11 integrin expression in healthy and osteoporotic conditions. 

 

Interestingly, we detected a striking 21.8-folds downregulation of integrin a2 expression in 

the osteoporotic hMSC (fig. 28). In addition, we observed also an elevated expression of in-
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tegrin a1 and a11 with 1.49- and 1.33-folds, respectively. These results correlated with our 

observation that a1 and a11 integrins upregulate in response to knockdown of a2 (fig. 27).  

 
 
Fig. 28. Integrin a1, a2 and a11 expression in primary hMSC. Three healthy and osteoporotic patients were 

tested. 
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5.  Discussion 

HMSC, with their regenerative potential, have been one of the major studying subjects in the 

last decades. Despite the numerous data collected, there are still a lot of open questions left. In 

this doctoral thesis we aimed to investigate the integrin expression of hMSC and to function-

ally analyze the effect of single collagen I-binding integrin knockdown on hMSC behavior in 

vitro. For these purposes were used three hMSC donors having a similar morphology and 

population doublings.         

 

HMSC adhesion and proliferation on different extracellular matrix proteins 

First, we investigated hMSC matrix preference by analyses of their cell attachment and prolif-

eration on different proteins. As a member of the BM stem niche, we speculated that hMSC 

can bind to all major proteins in BM - collagens, FN and laminins. Earlier, Salaszniyk et al. 

[39] investigated the hMSC adhesion toward different ECM proteins. The author reported a 

high binding affinity of hMSC towards ColI and IV, FN and Vitronectin. In our cell adhesion 

experiments, we observed an increased hMSC attachment to ColI, FN and laminin I proteins 

as the cell affinity was the greatest towards ColI and FN. Apparently, those two ECM proteins 

were reported to be strongly expressed in BM [216].  

The observed laminin I attachment of hMSC was delayed in comparison to ColI and FN. 

Similarly, Salaszniyk et al. [39] also reported a minimal hMSC attachment to laminin I after 

the first 30 min, while after 120 min all cells attached. The hMSC adhesion toward laminins 

was also investigated by Klees et al. [217], who showed distinct adhesion properties of differ-

ent laminins after 30 min. The authors reported that hMSC attachment towards laminin I was 

4-fold less effective than to laminin V. Additionally, the cell adhesion towards laminin V was 

similar as to the ColI, ColVI and FN proteins.  

In addition, in our adhesion experiments we used PLL as a control for an integrin-independent 

adhesion. It is known that PLL mediated the cell adhesion by the establishment of ionic bind-

ings between the cell membrane proteins and PLL surface. Our data showed that the hMSC 

attachment to PLL was always weaker in comparison to the natural substrates or polystyrene. 

Such lower effect on cell adhesion towards PLL was also reported earlier by Salaszniyk et al. 

[39]. In addition, the authors observed no changes in the phosphorylated form of focal adhe-

sion kinase (FAK). FAK is a key player in the formation of focal adhesion complexes and is a 

directly affected by cell integrins. Thus, this proved the PLL as a surface, promoting the in-

tegrin-independent adhesion and can be used as a good control of the unspecific cell adhesion. 
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In conclusion, hMSC affinity toward the two natural substrates - ColI and FN, widely ex-

pressed into the BM niche, was the strongest and a clear cell adhesion induction was ob-

served. 

Second, we analyzed the hMSC proliferation on ColI, FN, Laminin I, PLL and polystyrene. 

We observed that hMSC favored again the natural substrates - ColI and FN. However, some 

differences between our results and those published earlier are noteworthy. Our BrdU data 

showed an increased cell proliferation on ColI, FN and laminin I when compared to the plas-

tic control. The highest cell proliferation was detected on ColI, followed by FN and laminin I. 

In comparison, Gronthos et al. [137] showed also an enhancement of the cell proliferation by 

the natural proteins. With clonogenic analysis, performed in serum-depleted media authors 

showed that hMSC plated on laminin I protein had the higher amount of colony. Cells prolif-

erated then better on FN, Vitronectin and ColIV. At ColI and ColIII, hMSC produced ap-

proximately 80% of the colonies obtained in normal culture media. The reason for the differ-

ences observed by Gronthos et al. [137] and our results might be method used and the time 

period for analysis. We assessed the hMSC proliferation by a colorimetric assay, detecting the 

BrdU incorporation for 24 hour time period whereas Gronthos et al. applied a colony forming 

assay and maintained the cells in culture for 14 days.      

Alike to the cell adhesion, hMSC cultured on PLL showed a weaker proliferation in compari-

son to the polystyrene control. Similar adhesion was reported also by Lu et al. [218] and Se-

menov et al. [219] which observed an inhibition of hMSC proliferation on PLL surface. In 

fact, Lu et al. [218] showed that the proliferation inhibition is highly dependent on the PLL 

concentration and the presence of the serum in the media.  

In conclusion, we detected a positive effect of the natural substrates - ColI and FN for cell ad-

hesion and proliferation. The effect of the laminin I was also positive, but only for cell prolif-

eration whereas the cell adhesion was delayed.   

 

HMSC integrin expression 

Next, we investigated the expression of 8 alpha and 3 beta integrin subunits in hMSC and 

compared them to human OB. Both cell types showed a similar integrin expression pattern. 

The hOB expressed all of the tested integrins whereas in hMSC integrin a4 was not detected. 

Similar results was observed also by Kumar et al. [220] and Majumdar et al. [55] which 

showed by immunofluorescence and FACS analysis that integrin a4 was not presented on the 

surface of hMSC. The expression of integrin a4 in OB was linked to the interactions between 

OB, leukocytes and HSC in BM cell niche [221]. Moreover, it is known that integrin a4 binds 
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to VCAM receptor which was shown to be an essential for the initial capturing, rolling and 

firm attachment of the leukocytes to the OB [220].  

All of the other tested integrin subunits were expressed in both cell types but there were clear 

differences in their expression levels. We detected an abundant expression of integrin a1, a3, 

a5, a11 and all tested beta-subunits in both cell types. Similar results were reported also by 

other groups [55, 137, 217, 222]. Majumdar et al. [55] and Gronthos et al. [137] indentified 

the expression of the integrins a1, a2, a3, a5, a6, b1, aVb3 and aVb5 in hMSC by FACS ana-

lysis; Klees et al. [217] reported integrin a1, a2, a3, a6, aV, b1 and b4 by studying the effect 

of blocking antibodies and Chastain et al. [222] detected integrin a2, a3, a4, a5, a6, b1, b2, 

b3, b5 and b6 by RT-PCR. Although there are several contradictions regarding the integrin 

expression in hMSC, within the above articles, the expression of integrin a1, a2, a3, a5, a6, 

b1, b3 and b5 was proved.  

In conclusions, we found that hMSC expressed integrins a1, a2, a3, a5, a6, a11, aV, b1, b3 

and b5. Interestingly, hMSC did not expressed integrin a4, detected in OB cells. Also we ob-

served differences in the expression level between the tested integrins in hMSC.   

 

Expression of ColI-binding integrins in hMSC 

Among all tested alpha subunits, we found that integrin a1 and a11 had one of the highest ex-

pressions. This data correlate with the earlier observed highest hMSC affinity towards ColI. 

Therefore, we further analyzed the expression of integrins belonging to the group of ColI-

binding integrins. We found differences between the a1, a2 and a11 integrin basal expressions 

on mRNA and protein level. On mRNA, the expression of integrin a11 was the strongest, fol-

lowed by a1 and a2. The analysis on protein level confirmed the expression differences be-

tween integrin a2 and a11 observed on mRNA level. Integrin a11 was expressed twice more 

in comparison to the integrin a2. Moreover, this integrin formed distinguishable focal adhe-

sion complexes when the cells were cultured on ColI protein. Similar observation were re-

ported by Zhang et al. [223] who analyzed the ColI-binding integrins expression in mouse 

dermal fibroblast. The integrin a11 shown the higher levels of protein production, followed by 

a1 and a2. 

In conclusion, we observed a higher levels of expression of ColI-binding integrin in hMSC as 

integrin a11 was the strongest, followed by a1 and the weakest was a2. The highest expres-

sion of integrin a11 suggests that this integrin have a great importance for hMSC adhesion.  
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Integrin a2 and a11 expression change upon osteogenic (OS) differentiation 

The reported elevated expression of ColI upon OS differentiation [224,225] suggested that 

there might be a corresponding increase in the expression levels of the ColI-binding integrins 

in hMSC. Indeed, all three analyzed hMSC donors, which were proven to strongly differenti-

ate into osteoblasts lineage, were found to increase the integrin a2 and a11 mRNA and protein 

levels upon OS stimulation. An increased integrin a2 expression after OS differentiation was 

also reported by Meyers et al. [226]. By the use of Western blot analysis, the authors found an 

increase of the integrin a2 expression with 136±21% in stimulated compare to unstimulated 

hMSC after 7 days of differentiation. Moreover, the authors even proposed a model of in-

tegrin a2-dependent increase in Runx2 expression. Runx2, a key osteogenic transcription fac-

tor, was stimulated by the activation of MAPK which is a known downstream target of the in-

tegrins. Integrin a2 and a11 upregulation was reported also by Foster et al. [227] who as-

sessed the integrin changes in hMSC undergoing OS differentiation by quantitative proteomic 

analysis. The increase of integrin a2 and a11 protein levels was with 2.0±1.0 and 3.0±2.3-

folds, respectively in OS stimulated hMSC.  

In contrast to integrin a2 and a11, no expression change was observed for integrin a1 in 

hMSC upon OS differentiation. Interestingly, Rider et al. [228] reported that in hMSC sub-

population FACS sorted for increased integrin a1, had enhanced plasticity as these cells read-

ily underwent adipo-, osteo- and chondrocytes differentiation in vitro. Thus, we suggest that 

integrin a1 is important for hMSC stemness rather then their OS differentiation.  

Finally, when we correlated the integrin expression to the extent of matrix mineralization, we 

observed that the high integrin a2 and a11 levels, but not a1, correspond to the high minerali-

zation capability. Interestingly, we reported hire a strong linear correlation between the in-

creased integrin a2 expression and the amount of mineralize by hMSC matrix. This effect 

might be due to the increased ColI expression during the OS differentiation as reported earlier 

[224,225]. Similar effect was observed also for integrin aVb3 by Gordon et al. [229] who 

analyzed the influence of bone sialo protein (BSP) expression on MC3T3 differentiation. By 

overexpressing of BSP, the OS differentiation in MC3T3 increased. Moreover, this increase 

was strongly dependent on the integrin aVb3 level and on the activation of its downstream ef-

fectors belonging to the MAPK pathway.  

In conclusion, we found an increased expression of both integrins a2 and a11 in osteogenic 

differentiated hMSC, suggesting the higher importance of these two integrins for osteogene-

sis. 
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Establishment of integrin knockdown in hMSC 

The suggested, from our research and published literature, importance of ColI-binding in-

tegrins for hMSC behavior, urged to develop a stabile and reliable method for integrin down-

regulation and to perform loss-of-function cell studies. For this purpose, we selected a knock-

down technology mediated by short hairpin RNA (shRNA). Till now, the study of ColI-

binding integrins was based majorly on a data obtained by blocking antibodies or siRNA se-

quences. By using these approaches, the effect of integrin silencing was analyzed only for a 

short period of time - from few hours [230,231] up to 7 days [232]. Another disadvantage of 

both methods is the heterogeneity of the cell population since no selection was possible. 

Those two major disadvantages we overcome by the applying of lentiviral delivered shRNA 

into the cells. 

Knockout mouse models of a1 [140], a2 [144] and a11 [147] integrins did not showed a se-

vere phenotype changes in the animals. This suggested that the loss of single integrin was 

eventually compensated by the remaining ColI-binding integrins. The data obtained form 

knockout mice is informative, but the results can not be directly transmitted to human because 

of the genetical and phenotypical differences between both species. Therefore, in order to 

study the integrin importance for hMSC, we selected the virally delivered shRNA method. It 

allows us to establish a stable knockdown and to select a homogenous cell population based 

on the introduced antibiotic resistance. Thus, this method provides a suitable model system 

for studying of a gene loss in hMSC since the existing until now methods did not allow a sta-

bile and efficient gene downregulation. 

Commonly, the gene silencing achieved by shRNA is greater then 50% and highly depends 

on the type of transduced cells. Cell lines are known to be more easily transducible than pri-

mary cells and therefore the downregulation efficiency is higher. Using our integrin knock-

down system, we obtained more then 80% silencing of the targeted genes. This result was 

first assessed on mRNA level by LC-PCR. Additionally, Western blotting analyses of integrin 

a2 and a11 shRNA-transduced hMSC showed nearly a complete loss of the targeted protein. 

Since hMSC were infected with viruses containing dsRNA, we introduced a control-hMSC 

population transduced with shRNA against non-human gene. This bacterial gene is responsi-

ble for the synthesis of b-galactosidase enzyme which catalyzes the hydrolysis of b-

galactosides to its monosaccharides. Such shRNA control cells are commonly used and they 

are essential for the evaluation of the effects of the virus infection and the presence of the 

dsRNA into the cells. Importantly, our shRNA control-transduced hMSC showed similar cell 



Discussion  73 

behavior and growth characteristics as the non-transduced hMSC and therefore, we used them 

as a control group throughout the whole study.    

In conclusion, we established a knockdown system for each ColI-binding integrin which 

showed approximately 80% knockdown efficiency in all tested hMSC donors.  

 

Lack of integrin a2 and a11 led to cell loss 

After the establishment and validation of a1, a2 and a11 knockdown in hMSC, we analyzed in 

details the hMSC behavior. Our first impression was that a2 and a11 shRNA cells were de-

creasing in number during the cultivation. Moreover, by counting the cell number during 14 

days, we observed a tremendous effect of a2 and a11 shRNA on hMSC survival - more then 

80% of the cell population was lost, whereas the number of transduced with shRNA control 

and a1 shRNA hMSC constantly increased. Similar impact of integrin a2 on the cell survival 

was observed also by Kozlova et al. [233] and Rezgui et al. [234] who used blocking antibod-

ies and detected clear induction of cell death in different human carcinoma cells due to the in-

hibition of integrin a2.  

Interestingly, the phenotypes of single knockout mouse models for integrin a2 and a11 were 

described as vital and fertile. Nevertheless, these animals exhibited few minor defects. For 

example, the integrin a2 knockout mouse model showed a deficient adhesion of platelets to 

ColI [144]. The integrin a11 knockout mouse had reduced body size, exhibited higher mortal-

ity and showed pronounced periodontal ligament defects [147]. Interestingly, the a11 mutant 

mice remained smaller even when they were fed with a soft food, indicating that the growth 

defect exists independently to the reported tooth phenotype. Therefore, more detailed cellular 

studies, engaging MSC and OB, are required to completely evaluate the phenotype of the sin-

gle integrin knockouts. Furthermore, a generation of double or triple knockouts mouse strains 

can provide additional information about the role and the importance of the ColI-binding in-

tegrins in vivo.  

In conclusion, knockdown of integrin a2 and a11 in hMSC led to a cell loss whereas the in-

tegrin a1 and shRNA control hMSC remained vital and proliferative. 

 

Cell death in a2 and a11 shRNA-transduced hMSC is not caused by IFN pathway induc-

tion. 

Regarding the application of siRNA technology, several drawbacks have been recognized 

such as off-target effects [202,235] and possible activation of a subset of genes in response to 

the viral infection or dsRNA, leading to cell death [236]. The problem with si/shRNA off-
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targeting is that it can lead to misinterpretation of the observed results due to non-specific 

gene silencing. In addition, viral infection as well as cell transduction with dsRNA can acti-

vate the cellular self-defense mechanism as viral RNA and dsRNA molecules can be recog-

nized and bind to RIG-I receptor. RIG-I is localized in the cytoplasm and can trigger the IFN 

pathway (e.g. ISG56) and thus, cell death can be induced. The induction of the IFN pathway 

can be assessed by investigating the expression of downstream factors such as OAS1 and 

OAS2 which activate RNaseL and inhibit cell proliferation. In order to investigate whether 

our cells were dying because of IFN pathway activation, we analyzed the expression levels of 

OAS1 [237,238], OAS2 [239], RIG-I [240] and ISG56 [238,241] genes. Our results, based on 

a three independent infections, clearly demonstrated that the presence of shRNA in the cells 

did not upregulate any of the tested genes, even though slight fluctuations were detected. As a 

positive control in this experiment, we introduced hMSC treated with IFN-beta [242]. The 

applied 2000U/ml IFN-beta concentration was shown to be in the physiological range in the 

study of human amniotic membrane cells [243].  

Our data conclusively showed that the observed cell loss in hMSC transduced with integrin a2 

or a11 shRNA was not caused by induction of the any IFN pathway. 

 

Integrin a2 and a11 influence hMSC adhesion, spreading and migration 

Next, we analyzed the adhesion, spreading and migration of the control and integrin knock-

down hMSC on ColI. Studies using mouse fibroblast lacking integrin a2 [223] or a11 [147] 

reported an interesting change of the cell attachment to ColI. Zhang et al. [223] showed that 

a2-deficient dermal fibroblasts had 33% reduction of ColI attachment, whereas there was no 

difference when same cells attached to other proteins, such as ColIV, laminin 1 and 5. More-

over, these cells showed markedly reduced cell attachment to different ColI concentrations in 

short term experiments in comparison to the wild-type cells. The critical effect of the a2 in-

tegrin for adhesion to ColI was also observed in a2-defective keratinocytes [244] and os-

teoblasts [245]. The keratinocytes showed that absence of integrin a2 led to an inefficient cell 

adhesion on ColI even after 1 hour. In a11-deficient skin fibroblasts, the integrin loss caused 

even stronger reduction of the cell attachment which was only 20% of the cell input. Addi-

tionally, Popova et al. [147] observed a significant impact of integrin a11 on cell proliferation 

since approximately 60% of the mouse embryonic fibroblasts were arrested in G0/G1 phase 

when compared to the wild-type cells. Our data obtained from the cell adhesion experiments 

was in line with the knockout studies. We observed a clear delay of the hMSC attachment to 

ColI upon the knockdown of a2 and a11. In particular for a2-deficent cells this delay was de-
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tected only for a short term and then the cells were able to attach to 80%. In case of integrin 

a11 knockdown, we observed a severe reduction of the hMSC attachment as not more then 

30% of the cells was able to adhere to ColI. In contrast, a1-deficient and shRNA control 

hMSC showed similar tendency in the attachment to ColI. Nevertheless, a slight reduction of 

the adhesion of a1 shRNA cells in comparison to the control cells was observed. Similarly, 

Zhang et al. [223] also detected a slight influence of integrin a1 on mouse fibroblast adhesion 

when cells were blocked with antibody.  

Our spreading analysis similar to the adhesion assay also showed distinguishable differences 

between shRNA control, integrin a2 and a11 knockdown hMSC as the knockdown of integrin 

a1 seems to not influence hMSC behavior on ColI. In comparison to shRNA control and in-

tegrin a1 knockdown, a2- and a11-deficient hMSC required double time for spreading. Inter-

estingly, the integrin a2 knockdown showed the higher spreading delay despite of the fact that 

those cells were able to attach to ColI. Moreover, integrin a11-deficent hMSC displayed a bet-

ter spreading capacity than integrin a2 knockdown, even that those cells demonstrated a very 

low attachment on ColI. The opposing results observed in integrin a2- and a11-knockdown 

cells adhesion and spreading suggested the different importance of those integrins for the 

hMSC. We can propose that integrin a2 and a11 participate differently in the adhesion and 

spreading mechanisms as integrin a11 is important for the initial cell adhesion and formation 

of the focal contacts, while integrin a2 is more important for the cell spreading and formation 

of later focal complexes in hMSC on ColI. Moreover, because of the deficient cells adhesion 

and spreading, we can suggest that knockdown of integrin a11 leads to incompetence of 

hMSC to bind to ColI which in resulted in reduction of hMSC number. Similar result were 

observed by Disatnik et al. [246] who showed the inability of integrin a5-deficient myoblasts 

to attach and spread on FN and to activate FAK. In this study, upregulation of integrin a4 was 

shown to compensate the missing integrin a5 and to recover the cell spreading and survival. 

Fibroblasts obtained form integrin a2 knockout mice, showed no difference in skin wound 

closure when compared to the wild-type in vivo [144, 223]. In contrast, Grenache et al. [244] 

using a scratch assay, reported that the migration of a2-deficient keratinocytes on ColI was 

significantly impaired, as 40% of the scratch remained open. Regarding the a11-dificient cell 

migration, Popova et al. [247] demonstrate that these cells were able to migrate faster then the 

wild-type. Moreover, analysis of embryonic fibroblast which lack integrin a11 revealed not 

only increased migration capability on ColI, but also on collagen II, III and V [247]. The ob-

served differences between in vivo and in vitro studies can be explained by the difference in 

the used cell types. Chen et al. and Zhang et al. [144,223] investigate the influence of integrin 
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a11 on the cell behavior in dermal a2-deficient fibroblast, whereas Grenache et al. [244] used 

a2-knockout keratinocytes and Popova et al. [247] used a11-knockout embryonic fibroblasts. 

Moreover, the techniques used in these studies to analyze cell migration were different. Chen 

et al. [144] used animal wound healing, whereas Grenache et al. [244] and Popova et al. 

[247] assessed the cell migration by scratch assay or transwell migration. Our migration 

analysis revealed comparable migration pattern of shRNA control and a1 shRNA cells as both 

cell lines migrated to a distance of 200µm. Similar to the cell spreading data, the groups of in-

tegrin a2- and a11-deficient hMSC exhibited reduced migration compare to the control cells. 

Nevertheless, both cell lines exhibited similar migration as cells migrated to only 75µm for 15 

hours.  

In conclusion, the delay of cell attachment, spreading and reduced migration on ColI upon in-

tegrin a2- and a11-knockdown demonstrated the importance of these two integrins for hMSC 

behavior. Moreover, integrin a2 and a11 seem to participate differently in the cell adhesion 

and spreading, but equally into the cell migration mechanism. Therefore, the abnormal adhe-

sion, spreading and migration might be an additional factor to the observed cells loss. 

 

Integrin a2 and a11 knockdowns lead to mitochondrial leakage  

The knockdown of integrin b1 in blastocyst cells was shown to trigger apoptosis due to in-

adequate or inappropriate cell–matrix interactions [248-250]. The classical pathway of apop-

tosis in cells is trough the activation of the “death” receptors such as Fas or TNFR which lead 

to initiation of an apoptosis-induced signaling, processed via caspase pathway and finishes 

with cells death. Another type of apoptosis occurs when integrin receptors were missing. This 

process is known as anoikis and was described by Fisher and Screaton [251]. It involves acti-

vation of the pro-apoptotic Bcl-2 proteins localized on the surface of the mitochondria. When 

activated, those proteins participate in the formation of pores on the mitochondrial membrane 

resulting in release of the cytochrom C in cytoplasm. Subsequently, cytochrom C participates 

in formation of caspase-activation complex which activates number of caspases and results in 

cell death.  

In order to investigate whether the observed cell loss is due to initiation of apoptosis, we next 

performed apoptosis-related analyses of shRNA-transduced hMSC based on JC-1 staining. 

This dye is used to evaluate the integrity of mitochondrial membrane. When we compared the 

four different shRNA-transduced hMSC, we observed mitochondrial leakages only in integrin 

a2- and a11-deficient hMSC. To prove that the observed effects were caused by initiation of 

apoptosis, we introduced a positive control by activation of caspase pathway with FAS anti-
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body [252,253]. Upon activation with FAS antibody, mitochondrial leakage, similar to the ob-

served in a2 and a11 knockdowns was detected. 

In summary, the loss of a2 and a11 integrin in hMSC led not only to disturbance in the cell 

adhesion, spreading and migration, but also resulted in the formation of mitochondrial mem-

brane pores which triggered apoptosis.  

 

Integrin knockdown effect on osteogenic differentiation 

Schneider et al. [245] reported a dose dependent inhibition of matrix mineralization in mouse 

osteoblasts treated with different concentrations of integrin a2 blocking antibody. Similar ef-

fect was observed also by Xiao et al. [254] who blocked integrin a2 in mouse MSC. In com-

parison to these studies, which were based on blocking antibodies, we analyzed the matrix 

mineralization capability of stably transduced with shRNA hMSC. As expected, the shRNA 

control and a1-deficient cells were able to differentiate. The osteogenic capability was as-

sessed by an Alizarin red staining which visualized the mineralized matrix. In the case of in-

tegrin a2 and a11 knockdown, we observed again the constant cell loss during the stimulation 

process. Furthermore, no differentiation was observed in the remaining cells. However, it re-

mains unclear if of integrin a2 and a11 have a direct effect on OS or the lack of OS is due to 

the lower cell number in result to the apoptosis induction. 

In conclusion, lack of integrin a2 and a11 led to impair of osteogenic differentiation which 

can be a direct effect of integrin downregulation or a consequence of the ongoing apoptosis. 

 

HMSC ColI-binding integrin compensation 

The absence of severe abnormality within integrin a2 and a11 knockout mice suggested even-

tual compensatory mechanism between these integrins. As mentioned earlier, Tiger et al. 

[148] and Zhang et al. [223] studied the effect of integrin a2 and a11 on ColI attachment in 

mouse myoblasts and fibroblasts. Tiger et al. [148] investigated the integrin cross-talk in 

mouse myoblastic lineage C2C12 lacking the expression of the integrins a1 and a11. These 

cells are known to have a reduced adhesion and migration capacity on ColI. By overexpres-

sion of integrin a2 or a11, the cell attachment towards ColI improved as integrin a11 had a 

stronger effect than a2. Moreover, transduction with either integrin a2 or a11 strongly en-

hanced the ability of the myoblasts to contract ColI gels. Zhang et al. [223] investigated also 

the compensatory effects of integrins a1 and a11 for the ColI cell adhesion in a2-deficient 

mouse skin fibroblasts. The authors found that when blocked with integrin a1 antibody, the 

cell adhesion of mouse fibroblasts to ColIV was completely inhibited as the presence of in-
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tegrin a2 and a11 was not sufficient to substitute the missing a1 integrin. Differently to in-

tegrin a1 blocking, knockdown of a2 integrin was successfully substituted by integrin a1 and 

a11.  

We investigated the compensatory cross-talk between the ColI-binding integrins in absence of 

a single a1, a2 or a11 integrin in hMSC. The loss of integrin a1 led to an increased expression 

of integrin a2 and a11, and loss of integrin a2 stimulated the expression of integrin a1 and 

a11. Interestingly, knockdown of integrin a11 led to a slight increase only in integrin a1 ex-

pression. These findings are summarized in tab. 5.  

 

Cell type Integrin a1 Integrin a2 Integrin a11 

a1 shRNA na ++ ++ 

a2 shRNA ++ na ++ 

a11 shRNA + - na 

Tab. 5. Changes of integrin expression upon single ColI-binding integrin knockdown. Abbreviations: (++) 

strong, and (+) slight gene upregulation; (-) no changes in gene expression. 

 

Here, we demonstrated that the missing of a1 or a2 ColI-binding integrin led to an increased 

expression of the other two members of the family. However, this finding was not true for in-

tegrin a11. An enhanced expression of integrins a2 and a11 was also reported in a1-deficient 

mouse mioblasts or skin fibroblasts by Tiger et al. [148] and Zhang et al. [223]. Interestingly, 

they showed that integrin a1 had a higher binding affinity towards ColIV rather than ColI. 

The cells lacking integrin a1 were unable to bind ColIV while the upregulation of integrin a2 

and a11 expression increased the cell attachment towards ColI.  

In our study, the integrin a2 knockdown upregulated integrin a1 and a11 and the cells were 

still able to attach to ColI, despite of the observed delay. Similarly, Zhang et al. [223] also 

demonstrate that blocking of integrin a2 in mouse skin fibroblasts did not strongly influence 

the cell adhesion towards ColI. Additionally, this observation was confirmed also in the a2 

knockout cells. The loss of the most abundantly expressed in hMSC integrin a11 led to in-

crease only in the expression of integrin a1, while the level of integrin a2 remained un-

changed. This fact can explained why the a11-deficent cells had a minimal cell attachment 

towards ColI and the adhesion never exceeded more then 30%. Thus, the upregulation of in-

tegrin a1 and the basal expression of integrin a2 did not substitute the missing integrin a11 

and therefore, the hMSC adhesion towards ColI was impaired. Knockdown of integrin a1 led 

to an upregulation of a2 and a11 expression which ensured the cell attachment to ColI. These 
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cells showed similar spreading, migration and differentiation capacity as the control hMSC. It 

remains still to be tested the cell behavior on ColIV.  

Loss of integrin a2 resulted in reduction of cell adhesion, spreading and migration of hMSC 

and furthermore, initiated apoptosis despite of the compensatory upregulation of both integrin 

a1 and a11. This effect can be explained with the difference in the signaling pathways mas-

tered by integrin a2 and a11 [148]. Integrin a2 signaling pathway is partially known. It had 

been shown a direct influence of integrin a2 on the activation of MAPK. Also integrin a2 de-

pendent activation of ERK1/2 had been shown to be important for the cell survival [255]. In 

comparison to integrin a2, nothing is known about the integrin a11 signaling pathway. Never-

theless, it is known that TGF-beta has a positive effect on integrin a11 expression [256]. The 

loss of integrin a11 in hMSC led to impaired cell adhesion, spreading and migration of hMSC 

on ColI. Additionally, the absence of integrin a11 was not efficiently substituted by the in-

tegrin a1 and a2 and we observed an induction of apoptosis.  

 

HMSC derived from osteoporotic patients have downregulated integrin a2 expression 

The fact that integrin a2 inhibit osteogenesis in mouse MSC in vitro [254] and the recent dis-

covery of integrins are involved in some bone-related diseases, such as osteoarthritis [257] 

and osteoporosis [258], provoked an investigation of the ColI-binding integrin expression in 

hMSC, isolated form healthy and osteoporosis suffering patients. As reported by Kanis et al. 

[259], osteoporosis is a disease characterized by reduction of the bone mineral density, alter-

ing of the bone microarchitecture and expression changes of non-collagenous proteins. We 

speculated that there might be differences in the ColI-binding integrin expression due to the 

osteoporosis. We found, that in comparison to healthy hMSC, in osteoporotic cells the expres-

sion of integrin a2 was inhibited. Interestingly, there was also a slight upregulation of integrin 

a11 expression which was in line with our in vitro results. These conclusions were drawn 

from analysis of three patients per group. Nevertheless, more healthy and osteoporosis patient 

donors need to be further analyzed.  

In conclusion, we observed an inhibition of integrin a2 and increase integrin a11 mRNA ex-

pression in osteoporotic hMSC. Interestingly, this observation was in line with the results ob-

tained by our integrin a2 knockdown model in hMSC. However, further experiments are re-

quired for understanding of the importance of the integrin a2 in osteoporosis.  



Discussion  80 

6.  Conclusions 

1. HMSC showed a pronounced affinity towards collagen I and fibronectin, since these two 

proteins enhanced hMSC adhesion and proliferation.  

 

2. HMSC expressed integrins a1, a2, a3, a5, a6, a11, aV, b1, b3 and b5 subunits but not in-

tegrin a4 subunit. 

 

3. Among the collagen I-binding integrins, a11 was the most expressed in hMSC, followed by 

integrin a1 and then a2.  

 

4. Upon osteogenic differentiation, integrin a2 and a11 were significantly upregulated. 

 

5. A stable and very efficient knockdown of integrin a1, a2 and a11 by lentiviral delivery of 

shRNA was successfully established in hMSC.   

 

6. The genetically modified hMSC showed no IFN-related gene upregulation in response to 

the viral infection or presence of dsRNA.   

 

7. Integrin a2 and a11-deficient hMSC showed reduction in cell adhesion, spreading and mi-

gration on collagen I, whereas integrin a1-deficient cells were similar to control hMSC. 

 

8. Integrin a2- and a11-deficient hMSC, but not a1-knockdown cells, reduced in number dur-

ing cultivation and showed mitochondrial leakage suggesting activation of apoptosis. 

 

9. Upon osteogenic stimulation, integrin a2 and a11-deficient hMSC further reduced in num-

ber and failed to mineralize the matrix. 

 

10. Loss of integrin a1 and a2 led to an upregulation of the other two remaining ColI-binding 

integrins, whereas upon knockdown of integrin a11 hMSC upregulated only integrin a1.  

 

11. Preliminary investigation showed a tremendous downregulation of integrin a2 in hMSC 

derived from patients suffering of osteoporosis. 
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In conclusion, our results strongly suggested that both integrins a2b1 and a11b1 mediate an 

indispensible signaling for hMSC survival. Once these receptors were ablated from cell sur-

face, hMSC reduced their cell spreading, adhesion, migration and survival rates. Our integrin 

knockdown models can be used for a further investigations and understanding of the integrins 

a2b1 and a11b1 importance and signaling in hMSC and hOB since we observed a strong 

downregulation of integrin a2 expression in osteoporosis. 
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7.  Summary 

Introduction: Human mesenchymal stem cells (hMSC) are easily obtainable from bone mar-

row and possess the ability to differentiate into osteoblasts. Therefore, they have been sug-

gested as a suitable source for bone regeneration. HMSC are equipped with a variety of in-

tegrins that mediate essential cell-matrix interactions. Collagen I represent approximately 

90% of the bone protein content. Cell attachment to collagen I is mediated by three members 

of the integrin receptor family named a1b1, a2b1 and a11b1 integrins. The main aim of this 

doctoral thesis was to investigate the basal expression of those integrins in hMSC and to func-

tionally analyze the knockdown effect of a single collagen I-binding integrin on hMSC behav-

ior in vitro. 

Materials and methods: HMSC were cultured on collagen I-coated surface. A lentiviral trans-

fer of a1-, a2- and a11-specific shRNA was applied for downregulation of the corresponding 

integrin mRNA. Quantitative PCR and western blot analysis were used to assess the basal ex-

pression, knockdown efficiency and integrin compensation. Colorimetric adhesion assay was 

used for estimation of the extent of cells attachment. HMSC spreading and migration was ob-

served by time lapse experiments. JC-1 staining was used for investigation of the initiation of 

apoptosis.  

Results: Quantitative PCR were used to assess the basal expression of collagen I-binding in-

tegrins in three hMSC donors. We found that these integrins are differently expressed as in-

tegrin a11 had the highest and integrin a2 the lowest expression. Next, we applied lentiviral 

delivery of target-specific short hairpin RNA (shRNA) in order to knockdown each of the col-

lagen I-binding integrins and compared them to the hMSC transduced with a sequence against 

a non-human gene abbreviated as shRNA control. We achieved significant downregulation (> 

80%) of the collagen I-binding integrin mRNA and protein. Subsequently to the transduction, 

we did not noticed pronounce morphological cell changes, however, a clear decrease of a2- 

and a11-knockdown hMSC numbers was observed during cultivation. Using a quantitative 

adhesion assay, we estimated that 120 min after plating only 30% of integrin a11-deficent 

cells were able to attach to collagen I. In contrast, at the same time point, 70% of integrin a2-

knockdown hMSC were attached while integrin a1- and shRNA control hMSC have already 

reached 100% cell adhesion. Furthermore, a time lapse-based investigation showed that in-

tegrin a1- and shRNA control hMSC need approximately 35 min to fully spread on collagen I. 

In contrast, integrin a2- and a11-knockdown hMSC took approximately double more time for 

spreading in comparison to shRNA control hMSC. Additionally, we analyzed the migration 
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capability of the four different hMSC lines. The average path which integrin a1- and shRNA 

control hMSC passed was approximately 170 µm with mean speed of 11.5 µm/h. In parallel 

integrin a2 and a11-deficient hMSC migrated to a distance of approximately 70 µm with a ve-

locity of 5 µm/h. Since it was observed a lost of a2- and a11-deficient hMSC, next we per-

formed JC-1 staining that visualizes mitochondrial leakage, a hallmark of apoptosis. The ma-

jority of integrin a2- and a11-knockdown hMSC exhibited mitochondrial leakage whereas in-

tegrin a1- and shRNA control hMSC showed intact mitochondria. Finally, we used quantita-

tive PCR to investigate whether there were compensatory effects between the three integrin 

receptors. We detect that knockdown of integrin a1 led to upregulation of a2 and a11. Simi-

larly, when integrin a2 was downregulated, integrin a1 and a11 expression increased. Interest-

ingly, knockdown of integrin a11 caused only a slight increase in integrin a1 but not in a2 ex-

pression. We also observed that upon osteogenic stimulation, integrin a2 and a11-deficient 

hMSC further reduced in number and did not mineralize the matrix even on a single cell level. 

Moreover, our preliminary investigation in hMSC-derived from osteoporosis suffering pa-

tients showed a tremendous downregulation of integrin a2. 

Conclusions: Our results strongly suggested that integrins a2b1 and a11b1 mediate an indis-

pensible signaling for hMSC. Once these receptors were ablated from cell surface, hMSC re-

duced their spreading, adhesion, migration and survival rates. Our integrin knockdown mod-

els can be used for further investigations and understanding of the integrins a2b1 and a11b1 

importance and signaling in hMSC and hOB since we observed a strong downregulation of 

integrin a2 expression in osteoporosis. 
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Zusammenfassung 
 

Einleitung: Human mesenchymale Stammzellen (hMSC) können auf einfache Weise aus dem 

Knochenmark gewonnen werden und haben die Fähigkeit, sich in Osteoblasten zu 

differenzieren. Daher scheinen sie eine geeignete Quelle für die Regeneration von Knochen 

zu sein. HMSC enthalten eine Vielzahl an Integrinen, die essenzielle Zell-Matrix 

Wechselwirkungen vermitteln. Kollagen I macht ungefähr 90% des Proteingehalts im 

Knochen aus. Die Anhaftung der Zelle an Kollagen I wird durch drei Mitglieder der Integrin 

Rezeptor Familie, den Integrinen a1b1, a2b1 und a11b1, vermittelt. Das Ziel dieser 

Doktorarbeit war, die basale Expression dieser Inetgrine in hMSC zu untersuchen sowie eine 

funktionelle Analyse des Knockdown Effektes eines einzelnen Kollagen I-bindenden 

Integrins auf das hMSC Verhalten in vitro durchzuführen.  

Material und Methoden: HMSC wurden auf Kollagen I beschichteten Oberflächen kultiviert. 

Mittels lentiviralen Gentransfers mit a1-, a2- und a11- spezifischer shRNA (short hairpin 

RNA) wurde für die entsprechende Integrin mRNA herunterreguliert. Quantitative PCR und 

Westernblot dienten dazu, die basale Expression, die Knockdown Effizienz und 

kompensatorische Effekte zu erfassen. Durch den Einsatz eines kolorimetrischen 

Adhäsionsassays wurde das Ausmaß der Zelladhäsion ermittelt. Die Ausbreitung und 

Migration der hMSC wurde durch Zeitraffermikroskopie beobachtet. Eine JC-1 Färbung 

wurde zur Untersuchung des Apoptoseverhaltens verwendet. 

Ergebnisse: Mittels quantitativer PCR wurde die basale Expression von Kollagen I-bindenden 

Integrinen von drei hMSC Spendern ermittelt. Wir haben herausgefunden, dass diese 

Integrine in unterschiedlichem Maß exprimiert werden. Integrin a11 zeigte die stärkste und 

Integrin a2 die schwächste Expression. Um einen Knockdown in den jeweiligen Kollagen I 

bindenden Integrinen zu erreichen, wurde ein lentiviraler Transfer mit shRNA durchgeführt. 

Als Kontrolle dienten hMSC, welche mit einer Sequenz gegen ein nicht humanes Gen 

transduziert wurden, welche als shRNA Kontrolle abgekürzt wurde. Wir erzielten eine 

signifikaten Herunterregulierung (> 80%) der Integrin-mRNA und -Proteine. In Folge der 

Transduktion konnten wir keine ausgeprägten morphologischen Veränderungen feststellen, 

jedoch stellten wir während der Kultivierung einen eindeutigen Rückgang der Zellzahl von 

a2- und a11-Knockdown hMSC fest. Im quantitativen Adhäsionsassay zeigte sich, dass 120 

Minuten nach dem Ausplattieren nur 30% der a11-defizienten Zellen fähig waren, an eine mit 

Kollagen I beschichteten Oberfläche zu adhärieren. Dagegen waren nach der gleichen 

Zeitspanne 70% der a2-Knockdown hMSC an Kollagen I und bereits 100% der a1- 
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Knockdown und shRNA Kontroll hMSC adhärent. Des weiteren stellte sich bei einer 

Zeitraffermikroskopie heraus, dass a1-Knockdown und shRNA Kontroll hMSC ungefähr 35 

Minuten benötigten, um sich auf Kollagen I völlig auszubreiten. Dagegen brauchten a2- und 

a11-Knockdown hMSC ungefähr die doppelte Zeit zum Ausbreiten. Zusätzlich untersuchten 

wir die Migrationsfähigkeit der Zellen. Die durchschnittliche Strecke, die a1- und shRNA 

Kontroll hMSC zurücklegten, betrug ca. 170 µm mit einer mittleren Geschwindigkeit von 

11.5 µm/h, während a2 and a11-defiziente hMSC ca. 70 µm weit wanderten mit einer 

Geschwindigkeit von 5 µm/h. Da ein Verlust an a2- and a11-defizienten hMSC zu 

verzeichnen war, führten wir zunächst eine JC-1 Färbung durch, mittels derer 

mitochondrische Schäden als Kennzeichen von Apoptose sichtbar gemacht werden können. 

Die Mehrzahl der a2- and a11-Knockdown hMSC wiesen mitochondrische Schäden auf, 

während a1- und shRNA Kontroll hMSC intakte Mitochondrien hatten. Zuletzt untersuchten 

wir mögliche kompensatorische Effekte zwischen den drei Rezeptoren mittels quantitativer 

PCR. Wir konnten feststellten, dass der Knockdown des a1 Integrins zu einer 

Hochregulierung von a2 and a11 führte. Ein ähnliches Ergebnis zeigte sich bei der 

Herunterregulierung von Integrin a2, die eine erhöhte Expression der a1 and a11 Integrine 

hervorrief. Interessanterweise bewirkte der Knockdown des a11 Integrins einen leichten 

Anstieg der a1 aber nicht der a2 Integrin Expression. Wir haben zudem festgestellt, dass sich 

die Zellzahl der Intergrin a2 und a11-defiziente hMSC nach osteogener Stimulierung weiter 

reduzierte und die Matrix auch auf Einzelzellebene nicht mineralisiert war. Außerdem zeigte 

unsere vorausgegange Untersuchung mit hMSC von Osteoporosepatienten eine enorme 

Herunterregulierung von Integrin a2. 

Zusammenfassung: Unsere Ergebnisse deuten daraufhin, dass a2b1 und a11b1 Integrine 

unentbehrliche Signale in hMSC vermitteln. Sobald den Zellen diese Rezeptoren fehlten, 

wurden die Ausbreitung, die Adhäsion, die Migration und die Überlebensraten reduziert. 

Insbesondere durch unsere Feststellung der Herunterregulierung der Intergin a2 Expression in 

Osteoporosepatienten, können unsere Intergin Kockdown Modelle in weiterführenden 

Untersuchungen eingesetzt werden, um das Verständnis über die a2b1 und a11b1 Integrin 

Signalwege in hMSC und hOB auszudehnen. 
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Appendix 

Supplementary table 1. Nucleotide sequence of the used in the study PCR primer pairs.  

Genes Primer pairs 
Product 

size, bp 

Annealing 

temp, °C 
Reference 

Integrins 

F ACATCAGCCAAGTCAATGTTTCG 
a1 

R AGCATTAACAGCAACAATCCGG 
241 51 [260] 

F GCTGCTGTGCATTAGATATTAG 
a2 

R CTGTAACTTCTGGTGAAATCCT 
217 48 [260] 

F ATCTTGAGAGCCACAGTCA 
a3 

R CTGGGTCCTTCTTTCTAGTTC 
201 52 [260] 

F AATGGATGAGACTTCAGCACT 
a4 

R CTCTTCTGTTTTCTTCTTGTAGG 
278 48 [260] 

F ACTAGGAAATCCATTCACAGTTC 
a5 

R GCATAGTTAGTGTTCTTTGTTGG 
201 52 [260] 

F CTTGGAGAAGATGGGTTTATT 
a6 

R GAATACAGATAGGGGAGGAAA 
213 48 [260] 

F TGGGCGCACCCATGTACTTC 
a11 

R ATGGCTCCTGCGTGGTTGTC 
223 55 

Self de-

signed 

F GGAGCACATTTAGTTGAGGTAT 
aV 

R ACTGTTGCTAGGTGGTAAAACT 
274 46 [260] 

F ATGAATGAAATGAGGAGGATTACTTCG 
b1 

R AAAACACCAGCAGCCGTGTAAC 
322 52 [260] 

F CTGCTGTAGACATTTGCTATGA 
b3 

R GCCAAGAGGTAGAAGGTAAATA 
211 52 [260] 

F CTGTGGACTGATGTTTCCTT 
b5 

R GTATGCTGGTTTTACAGACTCC 
407 54 [260] 

Interferon-related genes 

F GCTGGAAGCCTGTCAAAGAG 
OAS1 

R GAGCTCCAGGGCATACTGAG 
388 55 [261] 

F CAGGAAGTTGTGGAGCTAGG 
OAS2 

R AAGGGAAGAATGGATGTGAG 
170 49 [262] 

F TCCTTTATGAGTATGTGGGCA 
RIG-I 

R TCGGGCACAGAATATCTTTG 
461 50 [263] 

F GCCATTTTCTTTGCTTCCCCTA 
ISG56 

R TGCCCTTTTGTAGCCTCCTTG 
330 53 [264] 

House-keeping gene 

F CAACTACATGGTTTACATGTTC 
GAPDH 

R GCCGTGGCTCCACGAC 
181 50 [265] 

* F- forward, R- reverse 
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Supplementary table 2. Antibodies used in the study. 
Name  Manufacturer Host Application Dilutions 

Primary antibodies 

Anti-human alpha 2 BD Bioscience Mouse WB and ICH 1: 200 

Anti-human alpha 11 R&D systems Rat WB 1: 200 

Anti-human alpha 11 Prof. D.Gullberg Rabbit ICH 1: 200 

Secondary antibodies 

Anti-mouse HRP Rockland Rabbit WB 1: 4000 

Anti- mouse AF488 Invitrogen Donkey ICH 1: 1000 

Anti-rat HRP Santa Cruz Goat WB 1: 10000 

Anti-rabbit AF488 Invitrogen Goat ICH 1: 500 

* WB – Western blotting, ICH - immunohistochemistry 
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List of abbreviations 

 
293FT cells Human embryonal kidney cell line (HEK) 

a1 shRNA cell HMSC transduced with shRNA sequence against integrin a1 

a2 shRNA cell HMSC transduced with shRNA sequence against integrin a2 

a11 shRNA cell HMSC transduced with shRNA sequence against integrin a11 

AAV Adeno-associated virus 

Abl Abelson murine leukemia viral oncogene 

Ago2 Argonaute 2 enzyme 

AR Alizarin red solution 

Bax Bcl-2-associated X protein 

BCA Bicinchoninic acid 

Bcl-2 family Pro- or anti-apoptotic genes 

bFGFR Basic fibroblast growth factor receptor 1 

Bim/ Bmf Bcl2 modifying factor 

BM Bone marrow 

BMPRIA Bone morphogenic protein receptor type IA 

BrdU Bromodeoxyuridine 

Cbl gene Casitas B-lineage lymphoma gene 

CCL Chemokine (C-C motif) ligand 

CCR Chemokine (C-C motif) receptor 

CD105 Endoglin, homodimeric transmembrane protein 

CD11b Integrin alpha M (ITGAM) 

CD14 Monocyte differentiation antigen 

CD146 Melanoma cell adhesion molecule (MCAM) 

CD166 Activated leucocyte cell adhesion molecule (ALCAM) 

CD19 B-lymphocyte antigen 

CD271 Low affinity nerve growth factor receptor (LNGFR) 

CD31 Platelet/endothelial cell adhesion molecule (PECAM-1) 

CD34 Primitive hematopoietic progenitor monomeric cell surface antigen 

CD44 Hyaluronan receptor 

CD45 Protein tyrosine phosphatase, receptor type, C (PTPRC) 

CD73 5'-nucleotidase (endonuclease) 

CD90 Thy-1 cell surface antigen 

ColI Collagen type I 

Cdks Cyclin-dependent kinases 

Crk, Nck and Grb-2 Adapter protein binds to several tyrosine-phosphorylated proteins 

CXC, CC, C or CX3C Chemokines 
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CXCR CXC chemokine receptors 

DAPI 4,6-diamidino-2-phenylindole 

DMEM Dulbeco's minimal esential media 

DMSO Dimethylsulfoxid 

DNA Deoxyribonucleic acid 

dNTP Deoxyribonucleotide triphosphate 

dsRNA dsOligos Double-stranded RNA oligonucleotides 

DTT Dithiothreitol 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 

EGFR Epidermal growth factor receptor 

ELISA Enzyme linked immunosorbent assay 

Erk Extracellular signal-regulated kinases 

Etk Tyrosine kinase 

FACS Fluorescence activated cell sorting 

FAK Focal adhesion kinase 

Fas Death receptor (CD95) 

FBS Fetal bovine serum 

FN Fibronectin 

GAG Glycosaminoglycan 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GFOGER / GASGER Collagen binding motifs 

HeLa Human cervix carcinoma cell 

HGFR Hepatocyte growth factor receptor 

HIV Human immunodeficiency virus 

HLA-DR Cell surface receptor, MHC class II 

HMSC Human mesenchymal stem cells 

Hoechst 33342 Nuclear staining dye 

HOB Human osteoblasts 

HSC Hematopoietic stem cells 

ICAM-1 or -2 Inter-Cellular Adhesion Molecule 1 or 2 

IGFR Insulin growth factors receptor 

JC-1 5,5,6,6-tetrachloro-1,1,3,3 tetraethyl benzimidazolyl carbocyanine iodide 

Jnk c-Jun N-terminal kinases 

LB media Luria-Bertani bacterial cultivation media 

LC-PCR Light cycler polymerase chain reaction 

MAPK Mitogen-activated protein kinase 

Mek Mitogen-activated protein kinase kinase 

mRNA Messenger RNA 

MSC Mesenchymal stromal cells or mesenchymal stem cells 

NEAA Non essential amino acids 
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NPAG P-nitrophenyl N-acetyl-β-d-glucosaminide 

Oligos Oligonucleotides 

Opti-MEM Modified eagle’s minimum essential media 

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate buffered saline 

PDGF Platelet-derived growth factor 

PDGFR Platelet-derived growth factor receptor 

pDNA Plasmid DNA 

Pen/Strep Penicillin / Streptomycin mix 

PI(3)K Phosphoinositide 3-kinases 

PKA Membrane-associated protein kinase A 

PKC Protein kinase C 

PLCγ Phosphoinositide phospholipase C gama 

PLL Poly-L-lysine 

PTH Parathyroid hormone 

PTHrP Parathyroid hormone -related protein 

PUC Plasmid cloning vector 

PVDF Polyvinylidene Fluoride 

Pyk2 Protein tyrosine kinase 2 

Ras/ Raf GTPases, function in signal transduction as GTP/GDP-regulated switches 

RGD motif Arginine -Glycine –Asparagine motif 

Rho, Rac and Cdc42 GTPases of the Rho-subfamily 

RISC RNA-induced silencing complex 

RNA Ribonucleic acid 

RNAi RNA interference 

RNase Ribonucleic acid nuclease 

RT Room temperature 

RT-PCR Reverse transcriptase polymerase chain reaction 

S.O.C. media Bacterial culture media 

SDF-1 Stromal cell-derived factor-1 

SDS Sodium dodecyl sulfate 

shRNA Short hairpin RNA 

siRNA Short-interfering RNA 

Src family kinases Proto-oncogenic tyrosine kinases 

SSEA-4 Thiosulfate sulfurtransferase 

Stbl3 Competent E. coli strain 

STRO-1 Stem cell surface marker 

Syk Spleen tyrosine kinase 

TGFβRI / RII TGF beta receptors 

TOP10 Competent E. coli strain 

U6 promoter Constitutively expressed Polymerase III promoter 
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VCAM-1 Vascular cell adhesion molecule 1 (CD106) 

VEGFR Vascular endothelial growth factor receptor 

aMEM Eagle’s minimum essential medium 
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