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1. INTRODUCTION 

1.1. A brief history of gene therapy 

In 1868, the nucleic acids were discovered by Friedrich Miesche. This material was 

called 'nuclein' since it was found in the nucleus of cells (Dahm, 2005). Since Watson 

and Crick described the structure of deoxyribonucleic acid (DNA) in 1953 (Watson 

and Crick, 1953b), the importance of the DNA within living cells has been undisputed. 

Watson and Crick also postulated that ―DNA is the carrier of a part of (if not all) the 

genetic specificity of the chromosomes and thus the gene itself‖ (Watson and Crick, 

1953a). In 1961, ribonucleic acid (RNA) was described to be responsible for the 

regulated translation of this information into structural and functional molecules.  

However, it was not until 1966 when the genetic code was deciphered. 

Nucleic acids carry the building plans of living systems. Given this distinguished role 

of nucleic acids, one can conclude that any cellular process may be influenced to 

some particular purpose by the introduction of nucleic acids into cells from outside. 

Already in 1966, the year when the genetic code had finally been deciphered, Tatum 

formulated the concepts of nucleic acid therapy: ―I would define genetic engineering 

as the alteration of existing genes in an individual. This could be accomplished by 

directed mutation or by the replacement of existing genes by others.‖ (Tatum, 1966) 

However, numerous scientific discoveries and technological breakthroughs were 

required until the first gene therapy treatment in human patients was technically 

feasible. This was in 1990 when Blaese and colleagues treated two children suffering 

from adenosine deaminase (ADA) deficiency applying an ex vivo gene therapy 

strategy with genetically engineered T lymphocytes (Blaese et al., 1995). In the 

meantime, more than 1400 gene therapy trials have been conducted worldwide, 

66.5% of which were in cancer indications 

(http://www.wiley.co.uk/genetherapy/clinical/). The most convincing therapeutic 

success but also disastrous outcomes were observed in the treatment of monogenic 

diseases. Hence, the development of the field has been compared to a roller-coaster 

ride by many authors, characterized by impending promise and grave setbacks 

(Dunbar and Larochelle, 2010), (Editorial, 2003).  

 

http://en.wikipedia.org/wiki/Nucleic_acid
http://en.wikipedia.org/wiki/Cell_nucleus
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Figure 1. Clinical targets for gene therapy (from: The journal of Gene Medicine (2010) 

http://www.wiley.co.uk/genetherapy/clinical/) 

 

This is for example highlighted by the clinical trial conducted by Fischer, Cavazzana-

Calvo and colleagues who treated children suffering from a severe combined 

immunodeficiency (SCID-X1) with genetically engineered hematopoietic stem and 

progenitor cells (Cavazzana-Calvo and Fischer, 2007; Cavazzana-Calvo et al., 

2005). This treatment yielded effective and life-saving immune reconstitution in 18 

out of 20 patients based on a strong selective advantage of the gene modified cells. 

While the positive therapeutic outcome was celebrated as a breakthrough for gene 

therapy, a serious set back subsequently became evident (Hacein-Bey-Abina et al., 

2003). Five of the 20 patients (four in France and one in England) developed a 

lympho-proliferative disease after proviral integration into proto-oncogenes (Staal et 

al., 2008). Similarly severe complications have been observed most recently with an 

ex vivo gene therapy of chronic granulomatous disease (CGD) (Stein et al., 2010). 

On a more positive note, in another clinical trial ten patients suffering from adenosine 

deaminase (ADA) deficiency, which is a fatal autosomal recessive form of severe 

combined immunodeficiency (SCID), were treated successfully in a similar manner 

without complications and demonstrated a safe and effective treatment in ADA 

deficiency (Aiuti et al., 2009). Adoptive transfer of antigen-specific T lymphocytes has 

recently shown clinical success in the treatment of viral infections and tumors (Walter 

et al., 1995), (Savoldo et al., 2000), (Yee et al., 2002), (Dudley et al., 2005). Different 

research groups have demonstrated that transfer of TCRαβ genes into T cells (e.g., 

genetic T cell retargeting) represents a feasible and attractive alternative to provide 
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tumor-specific immunity (Clay et al., 1999), (Willemsen et al., 2000), (Cooper et al., 

2000), (Orentas et al., 2001), (Schaft et al., 2003). Furthermore, gene-modified T 

cells have become as a promising tool as immunotherapy for multiple myeloma and 

acute myeloid leukemia. Strategies to enhance the efficacy of this treatment, such as 

the use of T cells engineered with improved and modified receptors (Cohen et al., 

2007), (Sebestyen et al., 2008), (Varela-Rohena et al., 2008) and/or the ex vivo 

treatment of T cells with common-ɣ cytokines (Kaneko et al., 2009) are currently 

scheduled for clinical testing. 

Promising gene-therapy approaches for the treatment of Leber‘s congenital 

amaurosis (LCA) using recombinant adeno-associated virus (AAV) carrying RPE65 

gene has been investigated by different research groups yielding positives results 

(Bainbridge et al., 2008), (Maguire et al., 2008).   

Forty-four years after concepts of gene therapy have been lined out for the first time, 

its merits begin to live up to expectations. However, two essential deficiencies limit a 

safe and widespread application of nucleic acid therapies, probably for many years to 

come. One is our incomplete knowledge of the complex biology that governs nucleic 

acid delivery into target cells, intracellular trafficking and the regulation of nucleic acid 

action inside cells. The other limitation, in part resulting from the first one, is the lack 

of efficient and safe technologies for the genetic manipulation of target cells using 

exogenous nucleic acids. Efficient, meaning that minimal effort yields the desired 

therapeutic outcome and minimal effort to be understood as a minimal consumption 

of materials, goods and manpower. Therapies need to be standardized and cost 

effective. 

To tackle these challenges, the principal task of this thesis was establishing a novel 

technology for the combined isolation and manipulation of target cells with nucleic 

acids in one integrated procedure. 

1.2. Gene and cell therapies, ex vivo and in vivo 

1.2.1. Ex vivo and in vivo nucleic acid (gene) therapy 

The two traditional classifications of gene therapy methods have been ex vivo and in 

vivo gene therapy (Felgner, 1997). The latter approach may appear more 

straightforward because the shuttles (―vectors‖) for nucleic acid delivery are directly 
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administered to the patient. However, depending on the target of therapeutic 

intervention and the route of administration, this approach can be technically more 

challenging than the ex vivo approach. 

 

 

Figure 2. Strategies for delivering therapeutic transgenes into patients (courtesy of PD Dr. Christian 

Plank) 

 

Vectors first need to find their target cells in order to deliver. This first and essential 

step is physically enforced by magnetic means using the integrated method of cell 

isolation and genetic modification described in this thesis. Already Tatum in 1966 

pointed out ―Hence, it can be suggested that the first successful genetic engineering 

will be done with the patient‘s own cells [….] grown in culture‖. And justly he adds 

later in his keynote address: ―The efficiency of this process and its potentialities may 

be considerably improved [.…] by increasing the effectiveness of DNA uptake and 

integration by recipient cells.‖ As mentioned above, the first gene therapies in man 

have involved the ex vivo approach and notably have involved stem cells. 

gene vector

genome

comprising

therapeutic gene

vectors
target cells

isolated

from patient

transduced

cells

gene vector

genome

comprising

therapeutic gene

vectors
target cells

isolated

from patient

transduced

cells



INTRODUCTION 5 

 

 

1.2.2. Cell therapies 

In the last years, cellular therapies involving stem cells have been used in several 

clinical trials. The transplantation of hematopoietic stem cells (HSC) from an HLA-

identical sibling donor is the treatment of choice for severe combined 

immunodeficiencies (SCID) and other types of primary immunodeficiencies with poor 

prognosis. Despite improvements in cell transplantation, patients continue to 

experience long-term complications after transplant (Neven et al., 2009), and the use 

of alternative donors is still associated with high morbidity and mortality (Antoine et 

al., 2003). Large-scale clinical use of MSC-based therapies still awaits strategies that 

maximize therapeutic benefit and safety, while at the same time minimize production 

and processing costs (Wagner et al., 2009).  

Cell therapies using ex vivo engineered cells is supposed to overcome some of these 

problems like for example, reduce the number of cells per dose or increase secretion 

of cytokines (Wagner et al., 2009). However, therapies with ex vivo engineered cells 

have not yet become widely practised. Conventional tools involving cellular genetic 

modification are neither efficient enough, nor affordable, nor simple to practice, 

require high vector doses and time. There is a need to develop new technologies that 

allow to obtain engineered cells in an efficient, simple and practicable way with 

minimum number of single working processes for cell manipulation (Goverdhana et 

al., 2005). This thesis has been dedicated to this task. 

Gene and cell therapies fields have been unified in the last years. An example of that 

is the renaming of the European Society of Gene Therapy to European Society of 

Gene & Cell Therapy and an analogous renaming of the American Society. Because 

the fields of gene and cell therapies evolve so successfully, integrated procedures for 

cell isolation and genetic modification of therapeutically relevant cells, such as HSC 

and MSC, are urgently needed. This was one of the tasks of this thesis. The novel 

technology described in this thesis was supposed to be a standardized method for 

separation and genetic manipulation of cells of interest, such as human cord blood 

hematopoietic stem cells (hCB-HSC), human umbilical cord mesenchymal stem cells 

(hUC- MSC) and human peripheral blood mononuclear cells (hPBMCs). The novel 

technology described here is supposed to reduce the number of cell manipulation 

steps and hence, the cost.  



INTRODUCTION 6 

 

 

1.3. Vectors and physical methods for nucleic acid delivery 

Nucleic acid delivery into cells, also known as transfection (in the case of non-viral 

vectors) or transduction (in the case of viral vectors), is in most cases used to 

achieve the overexpression of introduced genes, the on/off regulation of endogenous 

genes or gene repair. The ultimate aim of such modifications is to assign function to a 

nucleic acid sequence of interest or its expression product, or to produce therapeutic 

benefit in patients (known as gene therapy). The term vector is most often 

understood to comprise a nucleic acid sequence to be delivered and additional 

elements that help it to be delivered. In the case of non-viral vectors, these are 

synthesised to mimic essential viral functions for overcoming cellular barriers and to 

protect the nucleic acids from degradation during the delivery process (Plank et al., 

2005).  

Standard physicochemical methods used for cell transfection include chemical 

methods, such as cationic lipids and polymers, and physical methods, like 

electroporation and magnetic drug targeting (magnetofection) (Plank et al., 2000). 

1.3.1. Viral vectors 

Vectors derived from a variety of viruses with diverse properties have been used as 

gene transfer vehicles. The common characteristic of all viruses is their natural ability 

to deliver genetic material to cells, which is exploited in viral-vector design. This is 

mediated by proteins of the viral envelope that interact with cell surface receptors.  

However, important considerations, principally regarding biosafety issues, have 

arisen over time (Recillas-Targa et al., 2004), (Hawley, 2001). The main problems 

related to viral gene transfer are their pathogenicity, immunogenenicity, insertional 

mutagenesis (in case of retroviral vectors) and practical concerns (large-scale virus 

production) (Klein and Baum, 2004), (Baum et al., 2003). 

For gene therapy application, both DNA and RNA viruses are used. DNA viruses 

provide non-integrative means of transferring therapeutic genes. Adenovirus (Ads) 

can successfully infect a wide variety of cells including respiratory epithelial cells, 

myoblasts, macrophages, hepatocytes, and glial cells (Engelhardt et al., 1994), 

(Horellou et al., 1994), (Castel-Barthe et al., 1996). In 1986, Haj-Ahmad et al. (Haj-

Ahmad and Graham, 1986) reported that Ads can be used as efficient vehicles, or 

vectors, for carrying and delivering foreign genes into target cells in vitro. 
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Unfortunately, the in vivo use of these vectors has suffered from serious drawbacks 

including toxic or even lethal results (Smith et al., 1993), (Raper et al., 2003).   

Lentiviruses count among the most efficient gene vectors. HIV, SIV, and FIV are all 

examples of lentiviruses. An important feature of lentiviruses is its ability to 

permanently integrate into the mammalian cell genome and consequently, to 

enduringly modify their genetic character. Another feature is that lentiviruses can 

infect both non-dividing and dividing cells (Naldini et al., 1996). This characteristic 

distinguishes them, for example, from onco-retroviruses which can only infect dividing 

cells (Lewis and Emerman, 1994). One of the risks associated with using retroviruses 

and lentiviruses for gene therapy is the occurrence of insertional mutageneis 

(Cavazzana-Calvo and Fischer, 2007), (Hacein-Bey-Abina et al., 2003), (Hacein-Bey-

Abina et al., 2008). However, the lentivirus vector strategy was successfully applied 

to several types of non-dividing cell populations in vitro, ex vivo and in vivo. These 

included central nervous system neurons (Nanou and Azzouz, 2009), fetal cardiac 

myocytes (Rebolledo et al., 1998), cells from retina (Ikeda et al., 2009), (Miyoshi et 

al., 1997), skeletal muscles and liver (MacKenzie et al., 2002). Concerning biosafety 

of lentivirus, several generations of lentivirus have been developed in the last years 

(Naldini, 1998). The most advanced third generation self inactivating (SIN) packaging 

construct includes many design features that make it safe for gene therapy 

applications (Kappes and Wu, 2001). 

Since adenovirus and lentiviral vectors are promising vectors for gene/cell therapy, 

another task of this thesis was to validate the novel technology in the cells of interest 

(hCB-HSCs, hUC-MSCs and hPBMCs) using both adeno- and lentiviral vectors.  

1.3.2. Non-viral vectors 

The use of non-viral vectors for clinical applications has considerable advantages 

over viral vectors. Plasmid vectors usually have a low immunogenicity. Moreover, 

non-viral vectors are more cost-efficient, easier to scale-up and to quality-control. 

Non-viral vectors do not have host cell specificity except when equipped with special 

targeting moieties or nucleic acid sequences that make them active only in specific 

cell types. Transfection of resting cells using lipofection is usually quite inefficient and 

remains a challenge in the construction of non-viral systems (Brunner et al., 2002). 

On the other hand, Floch et al. have reported that the transfection efficiency in 

http://en.wikipedia.org/wiki/Human_immunodeficiency_virus
http://en.wikipedia.org/wiki/Simian_immunodeficiency_virus
http://en.wikipedia.org/wiki/Feline_immunodeficiency_virus
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CD34+ cells (which was one of the major target cell types in this thesis) using 

phosphonolipids is independent of whether these cells divide or not (Floch et al., 

1997).For polyfection the results are less clear (Pollard et al., 1998), (Godbey et al., 

1999) (Brunner et al., 2000). Plasmids have been used in basic research for 

transfecting cultured cells for a long time. Their use in gene therapy applications in 

vivo is more recent and is still limited by some disadvantages compared to viral 

vectors. With respect to the copy number of a nucleic acid per target cell required to 

genetically modify that target cell, non-viral vectors for gene delivery are orders of 

magnitude less efficient than most viral vectors (Kichler et al., 2001), (Singh et al., 

2008), (Pollard et al., 1998). Furthermore, plasmids usually are lost rapidly from 

highly proliferating cells since they lack mitotic stability (Nishikawa and Hashida, 

2002). Considerable improvements of non-viral vector systems have been achieved 

during the past years. These include improved and targeted cellular uptake by virtue 

of receptor ligands (Ward, 2000), (Blessing et al., 2001), (von Gersdorff et al., 2005), 

improved endosomal release and intracellular shuttling by virtue of exploiting 

chemical and biological triggers (Meyer et al., 2007), (de Bruin et al., 2008) and 

improved mitotic stability by virtue of certain nucleic acid sequences such as S/MARs 

(scaffold/matrix attachment regions)(Jenke et al., 2002), (Conese et al., 2004).  

Two kinds of non-viral vectors are broadly used for gene/cell therapy: lipoplexes and 

polyplexes. Cationic lipid transfection reagents are widely used for gene therapy, 

both in vivo and in vitro (Hoare et al., 2010), (Floch et al., 1997), (Zhu et al., 1993), 

(Liu et al., 1997). Hundreds of compounds are described in the literature and many of 

them are commercially available and confer good results with various cell types. 

Examples are Lipofectamine, Fugene or Dreamfect-Gold (used in this thesis and 

provided by OZ Biosciences, http://www.ozbiosciences.com/). The efficiency of 

lipoplexes in nucleic acid delivery is thought to rely on displacement reactions 

between negatively charged lipids of cellular membranes with the cationic lipids 

comprised in lipoplexes. It is believed that this triggers membrane fusion events 

(which can be further supported by fusogenic lipids such as DOPE) and ultimately 

leads to the intracellular release of nucleic acids compacted in a lipoplex (Xu and 

Szoka, 1996), (Zelphati and Szoka, 1996a), (Zelphati and Szoka, 1996b).  

The other major class of non-viral delivery systems is polyplexes. They consist of a 

polycation which compacts the nucleic acid to be delivered and, depending on the 
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construct, further functional modules for receptor targeting, endosomal release and 

nuclear transport. Among the many polycations which have been described as 

transfection reagents, the most commonly used is polyethylenimin (PEI). Its high 

efficiency in nucleic acid delivery relies on its chemical structure which entails 

buffering capacity at the acidic pH of endosomes. The endosomal escape of PEI was 

explained by the ―proton sponge hypothesis‖ (Boussif et al., 1995) which was 

experimentally confirmed by Sonawane et al. (Sonawane et al., 2003). Briefly, 

because the buffering capacity the endosomal proton pump (H+ ATPase) needs to 

pump way more protons into the endosome until the natural endosomal pH is 

reached. Because of H+/ Cl¯ charge coupling, endosomal Cl¯ entry is increased as 

well and consequently osmotic swelling and endosomal leakage/lysis is promoted. An 

additional mechanic destabilization may be provided through swelling of the 

internalized polymer itself due to electrostatic repulsion of its protonated amino 

groups. 

Due to the high gene transfer efficiency that can be achieved with PEI on the one 

hand and due to its major disadvantage, which is its high toxicity, on the other hand, 

many variations of its essential structural motif have been described in the literature. 

Prof. Wagner group was deeply engaged in this topic. For example, Boeckle et al. 

showed that covalent attachment of the membrane-active peptide all-(L)-melittin to 

polyethylenimine (PEI) polyplexes yielded an enhanced of gene transfer efficiency 

(Boeckle et al., 2005).  Zintchenko et al. reported that highly efficient siRNA carriers 

with low toxicity can be achieved by introducing simple modifications of branched PEI 

(Zintchenko et al., 2008). Furthermore, a novel purification method for PEI polyplexes 

based on electrophoresis has been developed (Fahrmeir et al., 2007). It has been 

shown that purified polyplexes can mediate in vitro gene transfer with high 

transfection efficiencies while demonstrating lower cellular toxicity (Fahrmeir et al., 

2007).  

Both lipoplexes and polyplexes, when applied intravenously in mice, lead to systemic 

gene delivery with a strong passive tropism for the lung. For both vector types, 

shielding and receptor targeting is used to achieve specificity for other organs and in 

particular for tumors (Ogris and Wagner, 2002), (Fella et al., 2008), (Hyndman et al., 

2004), (Conwell et al., 2008) 
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While lipoplexes and polyplexes have been used with great success for transfecting 

adherent cell lines in culture, their efficiency in suspension cells is often low. And in 

particular many primary cell types in culture, notably HSCs, are quite resistant to non-

viral gene delivery with lipoplexes and polyplexes. Hence, the suitability of these 

vector types for the genetic engineering of cells for therapeutic purposes has been 

limited so far. Therefore, researchers have developed physical methods of gene 

delivery which are either applied for naked nucleic acids or which are used to 

enhance the efficiency of lipoplexes and polyplexes. 

The method developed in this thesis exploits magnetofection which is a physical 

method to enhance nucleic acid delivery. 

1.3.3. Physical methods, Magnetofection 

Independent of vector type, vector contact with target cells is the primary event in, 

and a prerequisite for, a successful transfection/ transduction process. During the last 

20 years, an intense research in non-viral vectorology has yielded excellent tools for 

nucleic acid delivery. Physical methods such us particle bombardment, 

microinjection, electroporation and ultrasound have been used for gene delivery. 

From all these methods electroporation techniques have been applied in gene 

therapy. Electroporation has some advantages such as high transfection efficiency 

(Van Tendeloo et al., 2000), can be used in nearly all cell types and species 

(Nickoloff, 1995) and has been successfully applied in vivo (Andre et al., 2008), (Mir, 

2009). In contrast, the disadvantages of electroporation are high toxicity and non-

specific transport (Weaver, 1995). Hence, further improvements with respect to the 

efficiency/toxicity and specificity of nucleic acid delivery are required and can be 

achieved.  

Magnetofection is a physical method that uses magnetic forces to attract and 

concentrate the nucleic on the cell surface (Plank et al., 2003b), (Plank et al., 2003c). 

As diffusion is a slow process and many vector types are subject to time-dependent 

inactivation under cell culture conditions (as well as being toxic in very high 

concentrations), measures to overcome this limitation can greatly improve 

transfection/transduction efficiency (Plank et al., 2003a). The magnetofection method 

was designed to overcome the limitations in cell-binding, efficiency of nucleic acid 

uptake and low transfection efficiency. Magnetofection was inspired by the concept of 
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magnetic drug targeting. In 1963, Meyers described how they were able to 

accumulate small iron particles intravenously injected into the leg veins of dogs, 

using a large, externally applied horse shoe magnet (Meyers et al., 1963). Several 

research groups have independently developed magnetofection methods (Hughes et 

al., 2001), (Mah et al., 2002), (Pandori et al., 2002), (Chan et al., 2005), (Isalan et al., 

2005), and the generic term ‗magnetofection‘ is widely used in the scientific literature 

in the context described earlier. The term magnetofection was first introduced by Dr. 

Plank in the year 2000 (Plank et al., 2000) and has since become a widely used 

technical term in the literature. 

 

 

Figure 3. Scheme of a magnetofection. Magnetic vectors are added to the cells. Magnetic field 

is applied in order to attract and sediment the magnetic vector on the cell surface.   

 
Magnetofection has come out as a highly efficient method for genetic modification of 

numerous cell lines and primary cells in vitro and in vivo. Magnetofection use non-

viral and viral delivery vectors associated with magnetic nanoparticles combined with 

the application of a gradient magnetic field to concentrate vectors at the cell 

membrane (Huth et al., 2004) and to efficiently deliver them into the cells  (Scherer et 

al., 2002), (Plank et al., 2003a), (Xenariou et al., 2006), (Mykhaylyk et al., 2007a), 

(Lee et al., 2008). Enhancement of viral gene delivery to suspension cells using 

magnetofection with cationic chitosan-coated iron oxide nanoparticles has also been 

reported (Bhattarai et al., 2008). Advantages of the use of magnetofection for gene 

delivery are: 1) the diffusion limitation to delivery is overcome; 2) 
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transfection/transduction is synchronized and greatly accelerated; and 3) the vector 

dose requirement for efficient transfection/transduction is considerably reduced. 

These features together constitute a substantial improvement of 

transfection/transduction efficiency. The mechanism of vector uptake into cells is 

probably the same during magnetofection as for standard transfection/transduction 

methods (Huth et al., 2004); magnetic nanoparticles are co-internalized with vectors 

into cells. It is known that iron oxide-based magnetic nanoparticles are biodegradable 

over long periods in vivo when injected intravenously (Weissleder et al., 1989). 

Whether the biodegradability is dependent on the type of particle surface coating and 

whether cells in culture can mediate particle degradation is not known. 

Magnetofection is well established and widely used for in vitro applications, which 

include overexpressing a transduced/transfected gene using almost any vector type 

and for gene silencing (siRNA) (Plank et al., 2003c), (Dobson, 2006), (Mykhaylyk et 

al., 2008). In contrast, major improvements are still required to make the method 

efficient enough to be widely used in in vivo applications (Scherer et al., 2002). The 

development of new magnetic nanoparticles is, however, expected to lead to further 

improvements of the technique.  

1.4. Magnetic cell separation 

The first work using magnetic particles with surface markers against cell receptors 

was reported in 1978 by Kronick et al. (Kronick et al., 1978). Since this day, many 

different kits for the sample preparation, extraction, enrichment and analysis of entire 

cells based on surface receptors, and subcellular/molecular components such as 

proteins, mRNA, DNA are available. Magnetic cell separation or magnetically-

activated cell sorting (MACS) was developed by S. Miltenyi in the beginning of the 

90‘s (Miltenyi et al., 1990) and is the method of choice for isolating specific cell 

populations from tissue samples in laboratory and clinical practice, such as CD34+, 

CD4+, CD8+ or CD105+ cells (Prince et al., 2002). In this technology, 

superparamagnetic MicroBeads coupled with highly specific monoclonal antibodies 

are used to label the target cell populations magnetically. The labeled cells are 

retained on magnetic cell separation column (MACS separator) exposed to the 

magnetic field and thus separated from the non-labelled cells.  The CliniMACS® 

instrument is an automated cell selection device utilized for clinical applications, 

based on magnetic cell separation (MACS) technology. It enables large scale 
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magnetic cell selection in a closed and sterile system. Nearly every cell type, e.g. 

specific lymphocyte subpopulations, can be isolated via the Flexible Labeling System 

using a primary biotinylated antibody and CliniMACS® Anti-Biotin Reagent or 

CliniMACS® Anti-Biotin MicroBeads for magnetic cell separation on the CliniMACS®. 

The CliniMACS® System has received CE-approval for clinical use in Europe and 

many other countries for the selection of therapeutically relevant CD34+, CD133+ 

and CD14+ cells from human peripheral blood and bone marrow. In the United 

States CliniMACS® products for clinical use are available only under an approved 

Investigational Device Exemption (IDE).   

One of the important applications of magnetic cell separation is the selection of 

specific lymphocyte subsets with potential antileukemic activity. The therapeutic 

applications of immunomagnetic cell selection are based on antibodies that bind to 

cancer cell antigens such as CD10, CD19 or CD20 (Farag, 2002). 

Since magnetofection and magnetic cell separation rely on the use of magnetic 

nanoparticles and magnetic forces, it makes sense to combine the two independent 

technologies in one integrated technology. This has been the major objective of this 

thesis. 
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1.5. Objectives of this thesis 

The goal of this work is to provide a methodology that produces, in a single 

standardized techonology, genetic modification and cell isolation. We have named 

this novel procedure ―Magselectofection”. The approach is based on magnetic cell 

separation and magnetically-guided gene delivery (magnetofection). It was expected 

that magselectofection results in an enhanced target gene expression and 

minimization of the number of cell manipulations and time required. 

In order to develop magselectofection technology, it was focussed on the following 

issues: 

Selection of magnetic vectors for magselectofection using 2D transfections 

(magnetofection) in Jurkat T cells. It is known that magnetofection is a highly 

efficient method for the genetic modification of cells. As magnetofection is a part of 

the magselectofection technology, it can be assumed that efficient magnetic vectors 

to transfect/transduce the cells using magnetofection will also be efficient in 

transfections/transductions using magselectofection.  

For this purpose, Jurkat T cells were selected as T lymphocyte model cell and used 

to select efficient magnetic lipoplexes by using a modified magnetofection protocol. 

NIH3T3 cells were selected for testing magnetic viral complexes by magnetofection. 

Establishing magselectofection. The principal idea behind magselectofection 

technology is to associate the magnetic vector with the cells into the LS separation 

column. Cell separation efficiency and cell recovery must not be impaired. 

Validation of magselectofection in therapeutically relevant cells and upscale to 

use with the CliniMACS instrument. This step is intended to provide proof of 

principle for future clinical applications. 
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2. MATERIALS AND METHODS 

2.1. Material 

2.1.1. Chemicals and reagents 

Polyethylenimin 25-kD branched (PEI), Pluronic F-127, 1,9-Nonanedithiol, fluorinated 

surfactant ZONYL FSA and methylthiazoyldiphenyl-tetrazolium (MTT), Trypan blue 

dye, propidium iodide (PI) and Alizarin red S were purchased from Sigma-Aldrich 

(St.Louis, USA). 

D-luciferin was obtained from Roche Diagnostics.  

Liposomal transfection reagent Dreamfect-gold (DF-Gold), SM4-31, Ecotransfect, 

PolyMag-41/1, CombiMag magnetic nanoparticles and 96-well magnetic plates was 

acquired from OZ Biosciences (Marseille, France). Lipofectamine 2000 transfection 

reagent and DNA-intercalating dye YOYO®-1 iodide (491/509) were purchased from 

Invitrogen (Carlsbad, USA).  

BioRAD protein assay reagent was purchased from Bio-Rad Laboratories (Hercules, 

USA). 

LS separation columns, MidiMACS® Cell Separator, Cytostim, human CD2, CD15 

CD45, CD34 and CD105 Microbeads and PE- CD4 human CD2-PE, CD4-PE, CD15-

PE, CD34-PE and CD45-PE antibodies were purchased from Miltenyi Biotec 

(Bergisch Gladbach, Germany).  Human CD3-PE, CD90-PE and CD105-PE 

antibodies were obtained from AbD serotec (United Kingdom).  

Sodium 125iodide in 40 mM NaOH with an activity of 2 mCi in 20µl was acquired from 

Hartmann Analytics, cat. no. I-RB-31 (Braunschweig, Germany). 

2.1.2. Cell culture reagents 

PBS-Dulbecco (1x w/o Ca2+, Mg2+ LE), Dulbecco‘s MEM (1x, w/o Ca2+, Mg2+, w 

3.7g/L NaHCO3 w 4.5 g/L D-Glc, w stable glu, LE, w/o Na-pyruvate), RPMI 1640 

medium (w 2.0g/L NaHCO3, w stable glu),Trypsin/EDTA solution, (0.5%/0.2% in PBS 

w/o Ca/Mg) Penicillin/Streptomycin (10.000 IE/10.000 μg/mL) and L-Glutamine (200 

mM) were purchased from Biochrom AG (Berlin, Germany). 

OptiMEM® medium was acquired from Invitrogen. 
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Fetal calf serum Sera Plus (FCS) was obtained from PAN-BIOTECH (Aidenbach, 

Germany) 

DMEM + GlutaMAXTM-I (1x, (+) 4.5g/L Glc, (+) Pyruvate) culture medium were 

purchased from Invitrogen (Carlsbad, USA).  

X-Vivo-10 cell culture medium was purchased from Lonza (Basel, Switzerland). 

2.1.3. Plasmids 

Luciferase reporter plasmid p55pCMV-IVS-luc+ containing firefly luciferase cDNA 

under the control of the cytomegalovirus (CMV) promoter, PlasmidFactory, Bielefeld, 

Germany, eGFP reporter plasmid containing enhanced green fluorescence protein 

(eGFP) under the control of the CMV promoter, transfer plasmidpL771-eGFP, gag-

pol plasmid pMD.GP, Rev plasmid pRSV-rev and Env plasmid pMD.G were 

expanded in E. coli and purified using the Qiagen plasmid purification kit (Hilden, 

Germany). pCMV-kk was kindly provided by Dr. Ian Johnston from Milteny Biotec. 

2.1.4. Chemical reagents and buffers 

10% Hydroxylamine hydrochloride (Sigma-Aldrich, St.Louis, USA) in water  

Ammonium acetate buffer for iron determination:  

Dissolve 25 g ammonium acetate (Sigma, St.Louis, USA) in 10 mL water, add 70 mL 

glacial acetic acid and adjust volume to 100 mL with water. 

0.1% Phenanthroline solution:  

Dissolve 100 mg 1,10-phenanthroline monohydrate (Sigma, Steinheim, Germany) in 

100 mL water, add 2 drops of concentrated hydrochloric acid (Fluka, Steinheim, 

Germany). If necessary, warm to obtain a clear solution. 

Iron stock solution:  

Dissolve 392.8 mg ammonium iron (II) sulfate hexahydrate (Sigma, Steinheim, 

Germany) in a mixture of 2 mL concentrated sulfuric acid and 10 mL water, add 

0.05N KMnO4 dropwise until pink color persists and adjust the volume to 100 mL with 

water. 

 

 



MATERIALS AND METHODS 17 

 

 

Standard iron solution (make fresh as required):  

Dilute iron stock solution from 25 to 1 with water just before calibration 

measurements. 

0.05N KMnO4 solution:  

Dissolve 0.790 g KMnO4 in 100 mL water.  

2 x HBS-buffer, pH 7.05: 

Mix 6.5 g HEPES with 8.0 g NaCl and dissolve in 10 mL Na2HPO4 stock (5.25 g in 

500mL ddH2O). Adjust pH to 7.0 with sodium hydroxide and volume to 50 mL with 

water 

2.2. Cell isolation and culture 

2.2.1. Isolation of the PBMC and CD34+ by Ficoll gradient 

To isolate Peripheral Blood Mononuclear Cells (PBMC), 35-50 mL of buffycoat or 

cord blood was transferred into a 50 mL Falcon tube and centrifuged 35 minutes at 

445 rcf without brake. The plasma phase (around 15 mL) was discarded and the 

leukocyte phase (white band) was transferred to a 50 mL Falcon tube prepared with 

16 mL Ficoll solution. The Falcon tube was filled up with PBS/ 2mM EDTA solution to 

50 mL. Afterwards, the tubes were centrifuged for 10 minutes at 1000 rcf without 

brake. Then, the PBMC phase (white phase) was pipetted into a new 50 mL Falcon 

tube and filled up to 50 mL with PBS/ 2mM EDTA solution. The Falcon tubes were 

centrifuged again for 15 minutes at 300 rcf with brake. The supernatant was 

discarded and washed with 50 mL PBS/EDTA buffer for 10 minutes at 200 rcf 

(thrombocytes whashing). Then, the supernatant was discarded and the cell pellet 

was resuspended in 10-20 mL PBS/EDTA buffer, cell number was counted using a 

Neubauer chamber (Optik Labor). 
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Figure 4. Separation of granulocytes from PBMC and basophils by Ficoll-Paque centrifugation. 
(Adapted from:  Munoz, N. M. & Leff, A. R. (2006) Nat Protoc. 1(6): 2613-20). 

 

2.2.2. Isolation of Wharton’s Jelly stem cells (hUC-MSC) 

Human mesenchymal stem cells of fetal origin (hUC-MSCs) were isolated from 

umbilical cord Wharton‘s jelly and kindly provided by Prof. Pojda (Department of 

Experimental Hematology and Cord Blood Bank M. Skolodowska-Curie Memoral 

Cancer Center, Warsaw, Poland). Fragments of umbilical cord were collected during 

Cesarean section delivery, transported in Penicillin/Streptomycin – supplemented 

buffered salt solution (PBS) at 4°C, and processed not later than 24 h following 

collection. Umbilical cords were cut into 2 cm - long fragments, rinsed with PBS 

supplemented with 15% fetal bovine serum (FBS, Invitrogen) and, after removing 

blood vessels, Wharton‘s jelly fragments were dissected, minced into 1-3 mm 

fragments, suspended in Dulbecco‘s Modified Eagle Medium (DMEM, Invitrogen) 

plus 20% FBS, and cultured in 25 cm2 flat-bottom vented culture flasks (Nunc) at 

37°C, 5% CO2 fully-humidified atmosphere. Every 7 d, ½ medium volume was gently 

aspirated from the culture flask, and replaced with identical volume of newly-prepared 

medium, pre-warmed up to 37°C. Plastic-adherent hUC-MSC expanded from 

Wharton‘s jelly fragments, until forming a monolayer in approximately 3 weeks. Flask 

contents were then trypsinized (0,05% Trypsin, Sigma-Aldrich), remaining tissue 

fragments removed, and cells re-planted into 25 cm2 flasks (Nunc) (1,5 x 105 cells per 

flask). From second passage, culture time until reaching the monolayer stage was 7-

10 d. Cells were growing without changing their characteristics (phenotype, surface 

markers, differentiation potential) until 12-17 passage, depending on the donor. Cells 
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from 2-5 passage were used for the further experiments. Cultivation without antibiotic 

was of importance to efficiently label the cells magnetically with CD105 magnetic 

MicroBeads for further separation and magnetofection at the LS Miltenyi separation 

column. When cultivated in the medium supplemented with 100 U/mL penicillin and 

100 µg/mL streptomycin the cells loosed the ability to bind CD105 magnetic 

MicroBeads efficiently and to be trapped in a separation column.  

2.2.3. Cell culture 

Jurkat T cells and K562 cells were obtained from DSMZ (Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH, cat no. ACC 282 and ACC 10, 

respectively) and maintained at 37°C and 5% CO2 in RPMI 1640 medium (Biochrom 

AG, Berlin, Germany) supplemented with 10% fetal calf serum (FCS), 2 mM D-

glutamine, 100 U/mL penicillin and 100 µg/mL streptomycin (further referred to as 

complete medium). Every 2-3 days, the cells with a density of 1-1.5 x 106 cells/mL 

were split at 1:2 ratio and used for transfection experiments until 13-15 passages 

after thawing. 

CMS5 (Methylcholanthrene-induced fibrosarcoma cells of BALB/c origin) and 293T 

human embryonic kidney (HEK) cells were obtained from DSMZ (ACC 10) and 

maintained at 37°C; 5% CO2 in DMEM high glucose medium containing 10% fetal 

calf serum, 2 mM D-glutamine, 100 U/mL penicillin and 100 µg/mL streptomycin. 

Cells were split 1:5-1:10 every 2-3 days until passage 15-20 after thawing. 

Blood samples were purchased from DRK Hagen and were kindly provided by 

Miltenyi Biotec. PBMC were isolated by Ficoll gradient procedure. PBMCs were 

grown in RPMI 1640 medium with 10% FCS. Cell density was adjusted to 5 x 106 

cells per mL per cm2. Cytostim from Mitenyi Biotec, a bi-specific antibody conjugate 

that crosslinks the TCR on T cells with MHC molecules on antigen presenting cells, 

was used to activate PBMC following the protocol described by Mitenyi Biotec. 

Human Umbilical Cord Mesenchymal Stem Cells (hUC-MSCs) from Wharton‘s Jelly 

surrounds were isolated from umbilical cord and kindly provided by Prof. Pojda (M. 

Sklodowska-Curie Memorial Cancer Center, Warsaw, Poland). Cells were maintained 

in 75 cm2 flasks at 37°C and 5% CO2 environment in DMEM medium (Glutamax II, 

Invitrogen Gibco®, Carlsbad, USA) containing 20% fetal calf serum (FCS) without 
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antibiotics. Every 5-7 days, cells were split at a density of 1.4×104/cm2 in 75 cm2 

flasks and cultured up to 80-90% confluence. 

Human Cord Blood Hematopoietic Stem Cells (hCB-HSCs) were isolated from 

umbilical cord blood by Ficoll gradient. Cells were maintained at 37°C and  5% CO2 

environment in X-Vivo-10 medium containing 10% fetal calf serum (FCS), 50 ng/mL 

Flt3 , 50 ng/mL TPO and 20 ng/mL SCF (complete X-Vivo-10 cell culture medium). 

2.3. Magnetic nanoparticles  

Magnetic nanoparticles were synthesized and characterized by Dr. Olga Mykhaylyk 

from the Experimental Oncology Department at the Klinikum rechts der Isar (Dr. 

Plank‘s group). 

2.3.1. Synthesis 

Core/shell-type iron oxide magnetic nanoparticles (MNPs) were synthesised by 

precipitating Fe(II)/Fe(III) hydroxide from an aqueous salt solution, followed by 

transformation into magnetite in an oxygen-free atmosphere with immediate 

spontaneous adsorption or condensation of the shell components, as described 

elsewhere (Mykhaylyk et al., 2007a), (Mykhaylyk et al., 2007a), (Mykhaylyk et al., 

2010). Particles with a surface coating consisting of the fluorinated surfactant ZONYL 

FSA (lithium 3-[2-(perfluoroalkyl)ethylthio] propionate) combined with 25-kDa 

branched polyethylenimine (PEI-25Br) will hereafter be referred to as PEI-Mag2. 

Those synthesised with a surface coating formulated of ZONYL FSA and 1,9-

nonandithiol will be further referred to as NDT-Mag1. The particles synthesised in the 

presence of ZONYL FSA and Pluronic F-127 will be referred to as PL-Mag1 particles. 

The particles further referred to as PalD1-Mag1 were synthesised as described 

elsewhere (Mykhaylyk et al., 2009b) using palmitoyl dextran (PalD1) as a shell 

component to stabilise the particles. PalD1 with an esterification level of 10 palmitoyl 

groups per 100 dextrans was synthesised from Dextran 10 (Amersham Biosciences) 

using a modification of Suzuki‘s procedure (Suzuki et al., 1977). The particles 

referred to as SO-Mag2 particles have a surface coating resulting from the 

condensation of tetraethyl orthosilicate and 3-

(trihydroxysilyl)propylmethylphosphonate at the surface followed by surface 

decoration of nanomaterial via spontaneous adsorption of  PEI-25Br (Mykhaylyk et al., 
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2010).  The aqueous MNP suspensions were sterilised using 60Co gamma-irradiation 

(Dosage 25 kGy) (Kowalski and Tallentire, 1999).  

2.3.2. Characterization of magnetic nanoparticles 

The mean hydrodynamic diameter and the zeta () potential of the MNP suspension 

in water were determined by PCS using a Malvern 3000 HS Zetasizer (UK). The 

mean magnetite crystallite size (_d_) was calculated from the broadening of the X-ray 

diffraction peaks using the Scherrer formula. The magnetization and hysteresis loop 

measurements were performed at 298 K using a vibrating sample magnetometer 

(Oxford Instruments Ltd.) in a ±1.0 T applied field. 

2.3.3. Determination of magnetic nanoparticle concentration in terms of dry 

weight and iron content 

The MNP concentration was determined in terms of the dry weight per unit volume, 

the iron content of the dry nanoparticles and the iron content in suspensions of the 

nanoparticle stock suspension in water, as described previously (Mykhaylyk et al., 

2007a), (Mykhaylyk et al., 2009b). To determine the magnetic nanoparticle 

concentration in suspension in terms of iron content, 20 μl aliquots of the magnetic 

nanoparticle suspension were taken and added to 200 μl of concentrated 

hydrochloric acid and 50 μl of water. Volume was adjusted to 5 mL with water after 

magnetic nanoparticles were completely dissolved.  20 μl of the solution were 

transfered to an Eppendorf tube and 20 μl of concentrated hydrochloric acid, 20 μl of 

10% hydroxylamine hydrochloride solution, 200 μl of ammonium acetate buffer, 80 μl 

of 1,10-phenanthroline solution, and 860 μl of water were added, well mixed and 

incubated for 20 min at room temperature. After that time, the optical density was 

measured at the maximum of the spectrum of iron (II)–1,10-phenantroline complex 

(510 nm) using the spectrophotometer (Beckman DU 640) and the blank was 

subtracted. Blank sample was prepared by mixing 20 μl of concentrated hydrochloric 

acid, 20 μl of hydroxylamine hydrochloride solution, 200 μl of ammonium acetate 

buffer, 80 μl of 1,10-phenanthroline solution, and 880 μl of water.  

To construct a calibration curve for determining the iron concentration, increasing 

amounts of iron standard solution were added to microcentrifuge tubes (e.g., 50, 70, 

90 up to 150 μl) and the volume was adjusted to 150 μl with water. 150 μl of water 
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instead of iron solution was used to prepare a blank sample. To each tube, 20 μl of 

concentrated hydrochloric acid, 20 μl of 10% hydroxylamine hydrochloride solution, 

200 μl of ammonium acetate buffer, 80 μl of 0.1% 1,10-phenanthroline solution, and 

730 μl of water was added and standed for 20 min. The absorbance was measured 

at 510 nm against the blank. The absorbances at 510 nm were plotted as a function 

of the iron concentration in the standard samples and linear regression as an 

approximation function to calculate the iron concentration in the magnetic 

nanoparticle samples was used. 

To determine the iron concentration per dry weight of magnetic nanoparticles, freeze-

dry protocol under high vacuum was performed as follows: transfer 1 mL aliquots of 

magnetic nanoparticle suspensions into pre-weighed glass vials, freeze the samples 

(at −80°C or in liquid nitrogen) and dry overnight under high vacuum using a 

lyophilizer. Weigh the vials again to calculate the dry weight. Add 1 mL of 

concentrated hydrochloric acid, wait until the magnetic nanoparticles are completely 

dissolved, and then transfer 20 μl of the resultant solution to a microcentrifuge tube 

and determine the iron content as described above. Calculate the iron concentration 

per dry weight of magnetic nanoparticles. 

2.4. Lentivirus production and titer estimation 

2.4.1. Packaging of lentivirus vectors 

For lentivirus production a modified protocol from Barry,SC et al. (Barry et al., 2001) 

was followed. Packaging of these viruses was performed by transient transfection of 

293 T cells. The day prior to transfection 2.5 x 106 cells were seeded in 10 cm 

dishes. Self inactivated (SIN) lentivirus vectors were generated by calcium phosphate 

contransfection of the transfer vector, HIV gag/pol packaging construct, a rev 

expression plasmid, and the VSV-G expression plasmid. Briefly, for each 10 cm dish 

10 µg of transfer vector (peGFP), 6.6 µg of pMDL (gag/pol) packaging plasmid, 5 µg 

of pRSV-REV, and 3 µg of pVSVG envelope were mixed. 30µl of the plasmid DNA 

mixture was resuspended in 409 µl ddH2O and 61 µl CaCl2 (2M). The DNA-CaCl2 

solution was added dropwise to 500 µl of HBS (2x; pH7.12) under vigorous bubbling 

with a pipette and once slightly turbid the solution was immediately added to the 

cells. All transfection proceeded for 16 h, with medium replacement from 10 mL to 4 
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mL after 16 h and virus collection 48 h later. Viral supernatants were filtered through 

0.45-µm pore size filter and stored at -80°C. 

2.4.2. Biological titer of the lentivirus 

Biological titer or number of infectious vector particles in a unit volume of vector 

preparation, called transducing units per mL (TU/mL), and an average number of TU 

per cell, called Multiplicity of Infection (MOI), are the parameters used to quantify 

dosage of the virus and optimize transduction experiments. Biological titer of the 

eGFP lentivirus was determined following a modified protocol of Barry et al. (Barry et 

al., 2001). CMS5 cells were infected in the presence of polybrene followed by 

fluorescence-activated sorting (FACS) analysis 3 days later. Briefly, 3.6 x 105 CMS5 

cells were seeded in 25 cm2 flasks in DMEM containing 10% FCS, 2 mM D-glutamine 

and 100U/mL penicillin and 100 µg/mL streptomycin the day before infection. At the 

day of infection culture medium was aspirated and serial dilutions of the lentivirus 

stock in a final volume of 1 mL each in DMEM containing 10% FCS, 2 mM D-

glutamine and 100U/mL penicillin and 100 µg/mL streptomycin and 8 µg/mL of 

polybrene were added to the cells in the flasks. Every 30 min the flasks were swirl 

gently. 2 h post-infection, 4 mL of culture medium was added to the cells and the 

flasks were incubated for further 72 h. Afterwards, the cells were trypsinized and after 

washing once with a FACS buffer (PBS supplemented with 1% FCS) fixed using the 

Cytofix solution and analysed for eGFP positive cells by flow cytometry.  

Biological titer (TU/mL) was calculated according to the following formula: TU/mL= (P 

x N x DF) / 100 x V, where P = % GFP+ cells, N = number of cells at time of 

transduction = 3.6 x 105, V = volume of dilution added to each flask = 1 mL and DF = 

dilution factor = 1 (undiluted), 10 (diluted 1/10), 100 (diluted 1/100), and so on. 

2.4.3. Physical titer of the lentivirus 

Physical titer of the lentivirus preparation (virus particles/mL) was determined using 

Quick TiterTM Lentivirus Quantitation Kit developed for detection and quantitation of 

the lentivirus associated HIV-1 p24 core protein only.  Lentivirus particle 

concentration in the stock was calculated from the data on lentivirus associated HIV-

1 p24 core protein concentration assuming that there are approximately 2000 
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molecules of p24 capsid protein per Lentiviral Particle (LVP) and at a molecule 

weight of 24kDa 1 ng p24 corresponds to 1.25 x 107 LVPs. 

2.5. Preparation and characterisation of transfection complexes  

2.5.1. Assembling of magnetic non-viral complexes for magnetofection  

For transfection experiments in 96-well plates, the magnetic transfection complexes 

were prepared by mixing 20 µL of a MNP suspension in water with 90 µg Fe mL-1 and 

40 µl of the enhancer. We then added 300 µl of the plasmid DNA solution at 12 µg 

DNA mL-1 in a serum- and supplement-free RPMI 1640 medium to the mixture of the 

particles and the enhancer. The enhancer was prepared by mixing 14.4 µl of the DF-

Gold (or Lipofectamin 2000) with 25.6 µl of water just prior to the transfection 

experiment. This resulted in 360 µl of the complex having a liposomal transfection-

reagent-to-nucleic-acid ratio of 4:1 (v/w) and an iron-to-plasmid ratio of 0.5:1 (w/w). 

To prepare the lipoplexes, 20 µL of the magnetic nanoparticle suspension was 

substituted with water.   To prepare the polyplexes, a solution of 10 mg/mL PEI-25Br 

was used as an enhancer, resulting in a complex nitrogen-to-phosphate ratio of 10:1. 

After mixing the components, the mixture was further incubated at RT for 20 min to 

allow self-assembling, then 2:1 dilutions with serum- and supplement-free RPMI 1640 

were performed, resulting in DNA concentrations of 500-62.5 ng plasmid/well after 

adding 50 µl of the prepared complexes to each well with cells seeded for 

transfection. DNA-polymer or DNA-lipid duplexes were used as reference complexes.  

2.5.2. Assembling of magnetic non-viral complexes for magselectofection 

To ensure the complete immobilization and homogenous distribution of the magnetic 

vector within the MACS separation column, we prepared magnetic 

transfection/transduction complexes for loading onto the LS column in a total volume 

of 400 μl which approximately corresponds to the dead volume of an LS column. To 

prepare magnetic lipoplexes for non-viral magselectofection, we used eGFP or 

luciferase plasmid DNA, DF-Gold lipid transfection reagent and in-house synthesized, 

core-shell type magnetic nanoparticles PEI-Mag2 and SO-Mag2. The particle stock 

concentration in terms of iron content was determined as described previously. For 

complex formation, we diluted 20 μg of plasmid DNA in a total volume of 100 μl RPMI 

without additives and mixed the solution well. In another tube, we diluted 20 μg 
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magnetic nanoparticles from a stock suspension to a total volume of 100 μl with 

deionized water. In a third tube, we mixed 80 μl of DF- Gold lipid transfection reagent 

with 20 μl of water. Then, we added 100 μl of the magnetic particle dilution to the 

second tube containing plasmid DNA and mixed the suspension well with a pipette. 

After this, we added 100 μl of the diluted DF-Gold from the third tube, mixed well with 

a pipette again, added 100 μl of RPMI 1640 media without additives, mixed again 

with a pipette and finally incubated the suspension at room temperature for 20 min to 

allow complex assembly. The resulting ratio of components in the complex 

(MNPs/DF-Gold/pDNA) is 1:4:1 (Fe w/v/w). 

2.5.3. Assembling of magnetic virus complexes for magnetofection and 

standard infection  

To prepare lentivirus magnetic complexes to be added to the cells, we mixed 29 µl 

virus stock containing 1.2x109 VP/mL with infectivity of 1.7x106 TU/mL and 0.5 µl of 

the SO-Mag2 particle suspension containing 1.4 µg Fe/µl in an Eppendorf tube, 

mixed well, incubated at RT for 20 min and added 170 µl of the DMEM-Glutamax 

media without additives. We performed 1-to-2 dilutions of the complexes with DMEM-

Glutamax media without additives. This resulted in MOI from 0.5 to 0.0625 and 

particle-to-VP ratio of 20 fg Fe/VP when 100 µl of the dilutions were added to the 

cells.  For standard infection, we substituted the particle stock with the medium and 

made dilutions in the same way as for magnetic complexes and added to each 100 µl 

of the virus dilution polybrene stock solution to receive final concentration of 8 µg 

polybrene/mL.   

To assemble adenovirus magnetic complexes with SO-Mag2 nanoparticles for 

magnetofection of 1.3x106 hUC-MSCs at MOI of 0.5, 1 or 2 pfu/cell and iron-to-virus 

particle ratio of 5 fg Fe/VP in 10 cm dish, we diluted adenovirus stock 1-to-10 

resulting in 2.5x108 pfu/mL and 1.59x1011 VP/mL. We sampled per 2.6, 5.2 or 10.4 µl 

of the diluted virus stock into three Eppendorf tubes and mixed with 1.43, 2.86 or 

5.72 µl of the SO-Mag2 particle stock (1.4 µg Fe/µl), respectively, diluted the mixture 

in each tube with an OptiMEM® to a final volume of 400 µl and incubated at room 

temperature for 20 min to allow complexes assembling. To prepare virus dilutions for 

standard infection, we substituted the particle stock with the medium.  Prior giving to 

the cells, we adjusted volume of the virus or magnetic virus complexes to 1.5 mL.  
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2.5.4. Assembling of magnetic virus complexes for magselectofection  

To formulate magnetic virus complexes for magselectofection of Jurkat T cells and 

hUC-MSCs we have used magnetic nanoparticles SO-Mag2 and the third generation 

self inactivated lentivirus vector LVpHIV-7SFeGFP (LV.eGFP) with a virus stock 

containing 1.2x109 VP/mL and biological titer of 1.7x106 TU/mL or adenoviral vector 

AdmCMVeGFPLuc (eGFP encoding adenovirus aliquots were kindly provided by Dr. 

Martina Anton from the Experimental Oncology Department at the Klinikum rechts 

der Isar) with a virus stock containing 1.59x1012 VP/mL and infectivity of 2.5x109 

pfu/mL, both coding for eGFP.  

To assemble magnetic complexes of LV.eGFP lentivirus with SO-Mag2 

nanoparticles, referred to as SO-Mag2/LV.eGFP, for magselectofection of 1x106 

hUC-MSCs at MOI of 1 pfu/cell and iron-to-virus particle ratio of 10 fg Fe/VP using LS 

column, we calculated that total pfu to be applied was of 1x106 TU that with account 

for biological virus titer of 1.7x106 TU/mL corresponded to 588 µl of the virus stock. 

This volume with account for physical titer of 1.9x109 VP/mL contained 1.9x109 

VP/mL x 0.588 mL=7.06x108 VP. We further calculated that to ensure nanomaterial-

to-VP ratio of 10 fg Fe/VP,  SO-Mag2 nanomaterials suspension containing  7.1 µg 

Fe has to be associated we 588 µl of the virus preparation. 588 µl of the LV.eGFP 

stock was added to 5.1 µl of the particles suspension with concentration of 1.4 µg 

Fe/µl, mixed well with a pipette and incubated at room temperature for 20 min. This 

resulted in assembling of SO-Mag2/LV.eGFP complexes. To ensure complete 

immobilization and homogenous distribution of the magnetic vector at the MACS 

separation matrix, volume of the complex was further adjusted to 400 µl. The tube 

containing the complexes was fixed at the magnet at 24-well magnetic plate and the 

complexes were sedimented magnetically for 15-20 min. Afterwards, 193 µl 

excessive supernatant was removed to get a final volume of 400 µl. The tube was 

removed from the magnet and the complexes were resuspended to be loaded into 

the LS column positioned out from the MidiMACS magnet. 

To assemble adenovirus magnetic complexes with SO-Mag2 nanoparticles for 

magselectofection of 2.5x106 hUC-MSCs at MOI of 0.5, 1 or 2 pfu/cell and iron-to-

virus particle ratio of 5 fg Fe/VP using LS column, adenovirus stock was diluted 1-to-

10 resulting in 2.5x108 pfu/mL and 1.59x1011 VP/mL. The diluted virus stock was 

sampled per 5, 10 or 20 µl into three Eppendorf tubes and mixed with  2.75, 5.5 or 11 
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µl of the SO-Mag2 particle stock (1.4 µg Fe/µl), respectively.  The mixture was further 

diluted in each tube with OptiMEM® to a final volume of 400 µl and incubated at 

room temperature for 20 min to allow complexes assembling. 

To prepare virus magnetic complexes for modification of the column for 

magselectofection of another cell number, at different MOI or particle-to-VP ratio 

each time the volume of the virus stock, volume of the nanoparticle suspension was 

accordingly adjusted and finally the volume of the complex to be loaded into the LS 

column was adjusted to 400 µl. 

2.6. Characterization of magnetic vectors 

2.6.1. Size and zeta potential measurements 

For size and zeta potential measurements, DNA transfection complexes prepared as 

described in p. 2.5.1-2.5.4, were diluted to a volume of 2 mL with RPMI 1640 medium 

with or without additives. The mean hydrodynamic diameter of the complexes and the 

ξ-potential of the magnetic nanoparticles were determined by photon correlation 

spectroscopy using a Malvern Zetasizer 3000 (UK).  

2.6.2. Testing vector association and magnetic sedimentation in complexes 

with magnetic nanoparticles 

2.6.2.1. Non-viral vectors 

To evaluate plasmid association with magnetic nanoparticles in the presence of DF-

Gold as an enhancer, the stock suspension of MNPs was diluted in water to a 

concentration of 720 µg iron mL-1. Then, 20.2 µl of DF-Gold was mixed with 119.8 µl 

of water.  This resulted in an enhancer-to-nucleic-acid volume/weight ratio of 4:1. For 

DNA stock solutions, 12 µg mL-1 total DNA in an 125I-labelled DNA solution containing 

2 x 105 CPM mL-1 of 125I was resuspended in RPMI medium without supplements. 

Aliquots (10 µl) of a 2:1 dilution series of the MNPs were added to wells in a 96-well 

round bottom plate starting from the iron concentration in the stock suspension of 

MNPs. A 10-μl water sample was added to the reference well. Afterwards, 20 µl of 

enhancer solution was added to each well and thoroughly mixed. Finally, 150 µl of 

125I-labelled DNA was added to each well and mixed, followed by incubation for 15 

min to allow for complex formation. To sediment the magnetic transfection 
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complexes, the 96-well plate was placed on the 96-well magnetic plate (OZ 

Biosciences) for 30 min. Afterwards, 50 µl of the supernatant was carefully 

transferred along with the pipette tip into the scintillation vial. Radioactivity was 

measured in each vial using a gamma counter device. Magnetically sedimented 

nucleic acid associated with the magnetic nanoparticles was calculated as follows:  

Magnetically sedimented DNA (siRNA) (%) =[1-CPMsample/CPMref]x100, where CPMref 

is the radioactivity measured in the reference well. 

2.6.2.2. Viral vectors 

The appropriate ratios of magnetic particle and viral vector were found by serial 

titrations of tranducing units of lentivirus with magnetic particles followed by magnetic 

sedimentation of the complexes and determination of the lentiviral vector fraction 

remaining in the supernatants. Viral magnetic complexes were prepared by mixing 

150μL LVPs with 50μL MNP (corresponding to 40 fg Fe/LVP) at MOI 0.5, 1 and 2 

and at iron-to-lentivirus particles ratios of 40, 20, 10, 5, 2.5, 1.25 and 0.625 fg Fe/VP 

in wells of 96-round bottom plates. After 15 min of incubation, an Nd-Fe-B 96-well 

magnet was placed underneath each plate and the samples were exposed to the 

magnetic field for 30 min. Without removing the magnet, 150μL supernatant from 

each well was carefully sampled and analyzed for p24 HIV associated ELISA. In 

every well 50μL remained in order not to disturb the pellet containing LVP/MNP 

complexes. The ELISA provides information about the amount of p24 protein and 

thus the viral titer. If the LVPs form complexes with the MNPs they are magnetically 

attractable towards the magnet and within minutes magnetic viral complexes are 

sedimented. Hence, only free LVP can be detected via the HIV p24 ELISA and the 

magnetically sedimented LVPs directly correspond to the amount of LVPs associated 

with MNPs. In this manner, the percentage of LVP associated with MNPs and thus 

the ideal ratio for transfection of MNP to LVP could be identified. Results are 

compared to the reference one and thus, the viral titer of each sample is determined. 

2.7. Evaluation of magnetophoretic mobility  

The sedimentation stability and magnetic responsiveness of the magnetic 

transfection/transduction complexes and magnetically labelled cells were determined 

using a turbidity measurement both without magnetic field application and when 

subjected to inhomogeneous magnetic fields, respectively, as recently described 
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((Mykhaylyk et al., 2008) (Mykhaylyk et al., 2009b)). Briefly, a gradient field was 

generated by positioning two mutually attracting packs of four quadrangular 

neodymium-iron-boron permanent magnets symmetrically on each side of a cuvette 

holder and parallel to a light beam for optical density measurements. The magnetic 

field between the magnets was measured along a grid with a 1-mm step size and an 

average magnetic field of 213 mT, and a resulting field gradient of 4 mT was 

calculated for the measuring window. Aliquots (500 µL) of the magnetic lipoplexes or 

magnetically labelled cells (500.000 cells per 500µl medium) were transferred to the 

optical cuvettes, which were then placed into a spectrophotometer and exposed to 

the gradient magnetic field. The change in optical density or turbidity was then 

recorded at 360 nm. The clearance velocity under the influence of magnetic field 

gradient is related to the magnetophoretic mobilities of the objects, which in turn are 

proportional to their magnetic moments. Briefly, magnetic force that acts on a 

magnetic particle assemblies or magnetic lipoplexes or magnetic viral complexes 

comprising multiple magnetic particles in the presence of the magnetic field gradient 

B


  is given by BMFm


)(  . The total magnetic moment, M


, is the product of the 

effective magnetic moment, effm , of the MNP under the magnetic field, , and the 

total number, N , of magnetic particles associated with the magnetic lipoplexes or 

magnetic viral complexes  ( effmNM


 ). Above the saturation magnetization of the 

MNPs, which is achieved with fields exceeding 200 mT for magnetite, the magnetic 

force experienced by the magnetic dipole is a linear function of the field gradient. 

Magnetic lipoplexes or magnetic viral complexes must move in the direction of the 

maximum magnetic field and are subject to a hydrodynamic drag force that can be 

described by Stokes law as 


hd DF 3 , where   is the viscosity of the carrier 

liquid, Dh is an average hydrodynamic diameter of the objects, and 


 is the velocity. 

In a stationary regime, hydrodynamic drag force counterbalances the magnetic force. 

The average magnetic moment, M , can then be calculated from the magnetically 

induced velocity in a magnetic field gradient as described by Wilhelm et al. (Wilhelm 

et al., 2002). At an average magnetic field <B> of 213 mT, which we have used in our 

experimental setup, the magnetization of the nanoparticles according to the 

experimentally measured magnetization curve corresponds to 97% of the saturation 

value. Thus, the effective magnetic moment of each particle is Fe

partseff PMm )97.0( , 

B
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where sM  is the specific saturation magnetization per unit iron weight and Fe

partP  is the 

content of iron in one particle with a known core size. Thus, the number of particles 

associated with magnetic lipoplexes or magnetic viral complexes can be calculated 

from the magnetophoretic mobility, 


, estimated from the clearance curves as 

eff

h

mB

D
N




3
. An average velocity, z , under a magnetic field gradient was evaluated 

from the magnetic responsiveness curves as 1.0/ tLz  . Here L = 1 mm is the 

average path of the complexes‘ movement perpendicular to the measuring light beam 

symmetrically in both directions to the surface of the magnets arranged from both 

sides of the 4-mm-wide optical cuvette and 1.0t  is the time required for a 10-fold 

decrease in optical density. 

2.8. Non-heme iron determination 

2.8.1. Non-heme iron determination in cells 

To analyze the associated/internalized iron after the cells were associated with MNPs 

and thus magnetically labeled, approximately 200,000 cells were washed with PBS 

and then sedimented by centrifugtion in a Falcon tube (2 x 106 untreated cells were 

used as a reference for determination of basal non-heme iron level). Optionally, 105 

cells could be also used. The supernatant was discarded and 250 µl of an acid 

mixture containing 3M HCl and 0.6 M trichloracetic acid was added to the pellet. The 

probe was incubated overnight at 65 °C. Fifty microliter samples of the clear 

supernatant were sampled and analyzed for the iron content. Briefly, 20 µl of an 

hydroxylamine-hydrochloride solution, 100 µl of ammonium acetate buffer (25 g 

ammonium acetate and 70 mL glacial acetic acid adjust to a volume of 100 mL with 

de-ionized water), and 50 µl of a 0.2 % 1,10-phenantroline solution were added. The 

mixture was incubated for 10 min, after which time the optical density was measured 

at the maximum of iron(II)-1,10-phenantroline complex (510 nm) and the blank was 

subtracted. Calibration curve was measured as described in item 2.3.3 for iron 

determination in suspensions of MNPs. 
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2.8.2. Non-heme iron determination in tissue samples 

15-40 mg tissue samples were covered with 100-200 µl acid mixture (3M HCl and 0.6 

M trichloracetic acid) and incubated at 65°C during 24 h. Then, 20-50 µl of acid 

extract was used for non-heme iron determination with 1,10-phenanthroline as 

described for non heme iron determination in cells. Tissue samples from a non-

treated animal (control animal) were used as references for determination of the 

basal non-heme iron level. 

2.9. Transfection/transduction experiments of Jurkat T cells and hUC-
MSCs using magnetofection 

2.9.1. Standard magnetofection of suspension cells 

For magnetofection of the suspension-type Jurkat T cells (scheme shown in Figure 

5), 150 µl of the cell suspension in complete medium containing 20,000 cells was 

placed in the wells of a 96-well U-bottom plate. The plate was centrifuged at 1400 

rpm on a Heraeus Megafuge 2.0 for 5 min to sediment the cells. Then, 50 µl of the 

freshly prepared transfection complexes was carefully added to the cells in each well 

to avoid pellet dispersion, and the plate was immediately placed on a 96-well 

magnetic plate for 30 min, followed by incubation for 48 h at 37°C, 5% CO2, until 

gene expression analysis. Transfections were performed in triplicate wells. The data 

were represented as the mean ± standard deviation. 

2.9.2. Magnetofection combined with glycerol shock 

For magnetofection combined with a glycerol shock, after adding the magnetic 

transfection complexes, the cells were incubated at the magnet for 30 min, 150 µl of 

the supernatant was carefully removed, and 150 µl of the complete medium 

containing 1.2 M glycerol was added and the cells were incubated for 4 h. 

Afterwards, cells were centrifuged and 150 µl of the supernatant was carefully 

removed, and the cells were further cultivated until gene expression analysis. 

 



MATERIALS AND METHODS 32 

 

 

 

Figure 5. Scheme of a magnetofection of suspension type cells.  Suspended cells are filled into 

the wells of the 96-well plate and (1) the plate is centrifuged to sediment the cells at the well bottom 

followed by (2) adding transfection complexes to the wells, afterwards (3) the cell culture plate is 

exposed to gradient magnetic field at 96-well Magnetic plate for 30 min and (4) cells are further 

cultivated till gene expression analysis. 

2.9.3. Magnetofection using lentivirus and adenovirus vectors 

For lentivirus infection using magnetofection, hUC-MSCs were seeded at the 24-well 

plate at a density of 50,000 cells per well 24 h prior infection. On the day of infection, 

the medium was aspirated, the cells were washed with complete cell culture medium 

and the medium was removed. Then, magnetic virus complexes were added to the 

cells in a final volume of 100µl and the plate was placed on the 24-well magnetic 

plate for 20 min. Afterwards, we added 1 mL complete culture medium per well and 

incubated for 3 days till analysis of the percentage of eGFP expressing cells by 

FACS.  

For adenovirus infection by magnetofection, 1.3 x 106 hUC-MSC were seeded in a 10 

cm dish in 10 mL complete cell culture medium 24 h prior infection. On the next day, 

medium was aspirated and 1.5 mL of complexes magnetic virus complexes prepared 



MATERIALS AND METHODS 33 

 

 

in OptiMEM® medium was added to the cells. Dish was incubated under magnetic 

field at 37°C in 5% CO2 incubator for 20 min. Afterwards, magnetic plate was 

removed, the infection medium was aspirated, the cells were washed once with PBS, 

10 mL of complete culture medium was added to the cells and the cells were 

incubated for about 72 h till gene expression analysis by FACS.  

2.9.4. Standard infection protocols for lenti- and adenovirus 

For standard lentivirus infection, virus stock containing desired MOI was mixed with 8 

µg/mL polybrebene and added to the cells in a well of 24-well plate in a final volume 

of 1mL.  

Cells were incubated up to 72h post-magnetofection till gene expression analysis 

was done by FACS. 

For standard adenovirus infection, virus suspension was prepared in OptiMEM® 

medium in a final volume of 1.5 mL. Culture medium was aspirated from the dish and 

the virus suspension was added to the cells and incubated for 30 min at 37°C in 5% 

CO2 incubator. Afterwards, infection medium was aspirated and the cells were 

washed with PBS and 10 mL of complete culture medium was added to the cells in a 

10 cm dish. The cells were cultured until gene expression analysis (normally 48h 

post-magnetofection) by FACS. 

2.10. Modification of the Miltenyi LS separation column with magnetic 
complexes  

Two different protocols to modify LS columns with the magnetic complexes prior 

transfection were developed.  These protocols were called standard and freeze-

drying protocols. 

2.10.1. Standard protocol 

To modify the cell separation column with magnetic transfection/transduction 

complexes, complex suspension was added to the LS Miltenyi column in a volume, 

corresponding to the dead column volume. After distribution of the fluid within the 

column volume, the column was placed at the MidiMACS™ Separator magnet. The 

column loaded with the magnetic complex can be optionally incubated at the 

Separator for maximal 30 min at room temperature till cell loading. To ensure 
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maximal complex association with the cells and maximal transfection efficiency 

longer incubation time between complex loading and cell loading should be avoided. 

2.10.2. Freeze-drying protocol  

In this protocol, LS Miltenyi column modified with magnetic transfection/transduction 

complexes according to the standard protocol described in p. 2.10.1, was freezed in 

liquid nitrogen, placed into a vacuum camera of lyophylization device and then the 

surrounding pressure was reduced to allow the frozen water in the column to sublime 

directly from the solid phase to gas. After overnight freeze-drying, the column was 

storaged at room temperature until usage. 

2.11. Genetic modification of magnetically labelled cells by viral and non-
viral magselectofection 

2.11.1. Magnetic labeling of the cells before magselectofection  

Just before magselectofection in parallel to the assembling of the magnetic 

transfection/transduction complexes, the cell suspension was treated with specific 

magnetic Microbeads from Miltenyi® Biotec, to label target cells magnetically as is 

routinely performed for cell separation according to the modified protocol from 

Miltenyi® Biotec. CD45 MicroBeads were used to label Jurkat T cells and PBMCs, 

whereas CD105 and CD34 MicroBeads were used to label hUC-MSCs and hCB-

HSCs, respectively. Briefly, 10 µl of the specific MicroBeads suspension was added 

to cell suspension containing about 106 hCB-HSCs or 2.5 x 106 Jurkat or hUC-MSCs 

in 100 µl complete RPMI medium, and mixed with a pipette. The suspension was 

incubated for 15 min at 4 - 6°C and the cells were washed with complete cell culture 

medium by centrifugation at 1200 rpm for 3-5 min and resuspended in a total 2 mL of 

the complete RPMI medium. To notice is that the magnetic labelling should be 

performed just before magselectofection or cell sorting, as magnetization of the cell 

was lost gradually during incubation.  

2.11.2. Magselectofection general protocol 

When adopting the 2-column cell separation protocol for achieving increased purity of 

target cells, magnetically labeled cells or cell mixtures were first passed through an 

unmodified LS column according to the instructions of the manufacturer. This was 

http://en.wikipedia.org/wiki/Sublimation_(physics)
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applied for mixtures of Jurkat T and K562 cells or upon isolation of the CD34-positive 

HSC from the cord blood mononuclear cells (CBMC) Ficoll gradient fraction from the 

UC blood or for Sca-1+ mouse hematopoietic stem cells isolated from bone marrow. 

After the first positive selection, the cells were applied to vector-modified column. 

Using magselectofection to transfect/transduce cell monoculture of UC-MSCs or 

Jurkat T cells, the 1-column cell separation protocol was used (Figure 6).  

After vector loading, the modified LS columns remained positioned within the magnet. 

Cells suspended in 2 mL complete culture medium, were loaded and allowed to 

infiltrate into the column. When applying mixtures of cells, we washed the column 

using 3x3 mL of cell culture medium. The magnetically-labeled cells were retained in 

the column and the unlabeled cells passed through. We incubated the column within 

the magnet for 30 min at room temperature. Then, we removed the column from the 

MidiMACS magnet, placed it over a 15 mL test tube, loaded 2 mL of complete RPMI 

medium into the column reservoir and flushed the cells from the column by firmly 

pushing the plunger supplied with the column. Subsequently the cells were 

transferred to cell culture plates for further cultivation at 37°C in a humidified 

atmosphere containing 5% CO2 until evaluation of cell separation and/or gene 

transfer efficiency.  

Forty-eight hours after magselectofection with the non-viral and adenoviral vectors 

and seventy-two hours after infection with the lentiviral vectors, reporter eGFP or 

luciferase gene expression was evaluated by FACS analysis or using a luciferase 

assay. 

2.11.3. Analysis of the magnetic cell separation and gene transfer efficiency  

To clarify whether modification of the separation column altered the cell separation 

efficiency, we tested the purity of the selected cell population after separation with 

two unmodified LS columns against separation using an unmodified column and a 

vector-modified column (with viral or non-viral vectors) sequentially. Before the 

experiment, the CD2+/CD3+ status of the Jurkat T cells and the CD2-/CD3- status of 

the K562 cells was confirmed by FACS analysis. Vector-modified columns were 

prepared as described above with complexes comprising 20 μg plasmid DNA in 

magnetic DF-Gold formulation (DNA/DF-Gold/MNP = 1:4:1 (w/v/w)) or using SO-

Mag2/LV.eGFP complexes with 20 fg Fe/VP at various MOIs with respect to the 
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target cell (Jurkat) numbers. We labeled Jurkat T cells with CD2 MicroBeads from 

Miltenyi Biotec as described above for labeling with CD45 MicroBeads. The cells 

were washed with cell culture medium to eliminate unbound beads according to the 

standard labeling protocol from Miltenyi. We then prepared 1:1 mixtures of labeled 

Jurkat T cells and unlabeled K562 cells in RPMI. For the non-viral experiment, we 

subjected two portions comprising 2.5x106 cells of each species to a first round of 

selection on unmodified LS columns according to the instructions of the 

manufacturer. Retained cells were eluted by pressure enforced elution with 2 mL 

medium. Then one portion was passed through a second unmodified column, while 

the other portion was applied to a vector modified column as described above. For 

the lentiviral experiment, we proceeded in the same manner but applied cell mixtures 

comprising 5x105 cell of each species. Aliquots of the positively selected cells were 

treated with an anti-CD3-PE antibody (AbD Serotec, Düsseldorf, Germany) 

immediately after magselectofection and the purity of the CD2+/CD3+ cell population 

(Jurkat T cells) was determined by FACS analysis. The residual selected and non-

target cells were cultivated until evaluation of reporter gene expression by FACS 

analysis or luciferase assay at the time points. 

 

 

Figure 6. Schematic representation of the magselectofection. (a) modification of the LS Miltenyi 

separation column with transfection complexes prior-transfection, (b) loading of the cell mixture into 

the modified column and incubation for 30 min at the magnet, (c) elution of the retained cells from the 

column, (d) incubation in a plate for 48 h till gene expression analysis.   
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2.11.4. Magselectofection experiments using XS columns 

For upscale of magselectofection from LS columns to XS columns and CliniMACS, 

2.5x107 CD45 MicroBead-labelled Jurkat T cells were resuspended in 10mL of 

CliniMACS buffer containing 2% human AB serum and placed in a sample 

application bag. This was connected to the prototype CliniMACS tubing sets and the 

cells were separated using the CD34 Selection Program. Towards the end of the 

third cell wash step, the program was paused, the 3-way taps opened and magnetic 

transfection complexes containing 80 µg pCMV-kk or peGFP, 80 µg SO-Mag2 

magnetic beads and 320 µL DreamFect-Gold were added. After flushing an 

additional 8 mL buffer through the tubing, the 3-way taps were closed and the 

complexes incubated with the cells for 30 minutes at room temperature. At this point 

the program was resumed and the cells eluted and taken into culture. 

2.11.5. Lentiviral magselectofection versus standard infection of hCB-HSCs  

These experiments were carried out together with Prof. Wagemaker‘s group 

(Department of Hematology, Erasmus Medical Center, Rotterdam, The 

Netherlands).The third generation self-inactivating lentiviral vector backbone 

pRRL.PPT.eGFP.WPRE (LV.eGFP2) containing the spleen focus forming virus (SF) 

promoter was used (Prof. Wagemaker lab). The viral vector stock was concentrated 

by ultracentrifugation and contained 9x1012 p24 VP/mL with a biological titer of 

1.9x109 TU/mL (as determined by transducing HeLa cells with a serial dilution of the 

virus).  

For the separation, infection and magselectofection of CD34+ cells from cord blood 

(hCB-HSCs), 1.4 x108 CBMC cells that had been freshly isolated using a Ficoll 

gradient (as described above) were pooled with 5.7 x108 of freshly thawed CBMCs in 

a total volume of 2.1 mL of PBS solution containing 2 mM EDTA. To label the CD34+ 

hUC-HSCs magnetically, 400 μl of FcR Blocking Reagent (to avoid unspecific 

labeling of the cells via Fc receptors) and 400 μl CD34+ MicroBeads were added to 

the CBMC suspension. This was then mixed well and incubated at 4 - 6°C for 30 min. 

10 mL of PBS buffer containing 2 mM EDTA was added, the cells were centrifuged at 

300 x g for 10 min, the supernatant was aspirated and the cells were resuspended to 

a total volume of 1 mL in a serum free modified Dulbecco‘s medium as described 

(Guilbert and Iscove, 1976), (Merchav and Wagemaker, 1984). The resulting 7.1x108 
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CBMCs treated with CD34+ MicroBeads were loaded into the LS column positioned 

in a MidiMACS™ Separator magnet. The positively-selected hCB-HSCs were eluted 

in a volume of 2 mL of serum free modified Dulbecco‘s without growth factors. To 

increase the purity of the cell fraction, the resulting suspension of the positively-

selected cells can be optionally passed through a second LS column and be eluted in 

3 mL of the medium supplemented with 50 ng/mL Flt3, 100 ng/mL TPO and 100 

ng/mL SCF.  

For magselectofection, SO-Mag2/LV.eGFP2 magnetic complexes with SO-Mag2 

magnetic particles were formulated. 4.3 μl of the LV.eGFP2 stock were mixed with 

5.6 or 56 μl of a SO-Mag2 stock solution containing 14 μg Fe/μl and the volume was 

adjusted to 400 μl with RPMI medium without additives. This resulted in magnetic 

particle:VP ratios of 2 and 20 fg Fe/VP, respectively. Two LS columns were modified 

with the complexes and 150.000 pre-selected hUC-HSCs were loaded per modified 

LS column positioned at the MidiMACS™ Separator magnet. The column was 

incubated for 30 minutes. Then, the column was removed from the magnet and the 

cells were eluted with growth factor supplemented medium. The samples were 

transferred into individual wells of a 24-well plate and incubated for 2 days until the 

expression of eGFP was analyzed using FACS.  

For a standard infection, 150.000 positively-selected cells were loaded on an 

unmodified LS column positioned at the MidiMACS™ Separator and were incubated 

for 30 min. The column was removed from the magnet and the cells were eluted with 

1 mL of growth factor supplemented medium into one well of a 24-well plate. 4.3 μl of 

the LV.eGFP2 virus stock were added, resulting in an MOI of 40 TU/cell, and the 

plate was incubated for 2 days until the expression of eGFP was analyzed using 

FACS. 
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2.11.6. Testing of immobilization of the magnetic complexes at the Miltenyi® 

column and association with cells upon magnetic field application  

2.11.6.1. Using non-viral complexes  

The magnetic transfection complexes were prepared as described above using 

radioactively labelled plasmid DNA (20 µg plasmid per column, 250.000 

CPM/column). Then, LS Miltenyi® columns were modified using the standard (―fresh‖) 

or freeze drying protocols as described above. Jurkat T cells were magnetically 

labeled as described above and loaded into the modified column placed at the 

MidiMACS™ magnet in 4 fractions of 0.5 mL. Unlabeled cells or non-magnetically 

labeled DNA passed through and fractions were collected in Eppendorf tubes, 

centrifuged at 1200 rcf for 5 min, and the radioactivity was measured in both pellets 

and supernatants. Column was incubated for 30 min at room temperature at the 

MidiMACS™ magnet to achieve gene delivery complex association with the cells.  

After that, the column was removed from the magnet and magnetically retained cells 

were flushed out by firmly applying the plunger supplied with the column using 8 

times 0.5 mL RPMI media culture media. The eluted fractions were collected in 

Eppendorf tubes, centrifuged at 1200 rcf for 5 min and the radioactivity was 

measured in parallel both in pellets and supernatants.  

2.11.6.2. Using viral complexes 

To analyse efficacy of magnetic lentivirus immobilization within the LS column upon 

magnetic field application, magnetic viral complexes were prepared as described 

above using in each case MOI of 0.5 and 1 and 20 fg Fe/LVP. Then, 

magselectofection was performed as explained above using 106 CD45 magnetically 

labelled Jurkat T cells. The elution volume received when the column was placed at 

the MidiMACS magnet was collected and frozen for further p24 HIV associated 

protein ELISA analysis. The percentage of LVPs immobilized within the LS column 

was calculated with account for the number of the applied LVPs and LVPs detected 

in elute.  
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2.11.7. Analysis of cell association and internalization efficiency of the non-

viral transfection complexes by flow cytometry 

To evaluate the percentage of the cells that associated with and internalized the 

complexes, we used a FACS method previously described by Ogris et al. (Ogris et 

al., 2000) with slight modifications. Briefly, 360 µl of the transfection complexes 

carrying the luciferase plasmid was prepared as described above, and 0.5 µl of the 

DNA-intercalating dye YOYO-1 (1 mM in DMSO; corresponding to one dye molecule 

per every 11 bp) was added, resulting in green fluorescence of the plasmid DNA. The 

magnetofection of the Jurkat T cells was performed as described.  Cell suspensions 

for FACS analysis were prepared as described above at 48 h post-transfection. 

FACS analysis was performed with fluorescence excitation using an argon laser with 

an excitation maximum of 488 nm, and analysis was performed using both a 530/30-

nm bandpass filter (green fluorescence from the cells associated with YOYO-1-

labelled transfection complexes) and a 575/26-nm bandpass filter for red 

fluorescence. A minimum of 5000 events per sample were analysed. The percentage 

of cells associated with transfection complexes was determined as the percentage of 

gated fluorescent events, using untreated cells as a reference. Additionally, the 

YOYO-1 fluorescence from the complexes that are associated with cells but are not 

internalized into cells was quenched by the cell-impermeable nucleic acid stain 

propidium iodide (PI). Briefly, 1 µl of PI stock solution was added to 1 mL of the cell 

suspension for FACS analysis (a final PI concentration of 1 µg/mL), followed by 

FACS with the 575/26-nm bandpass filter (red fluorescence of PI-positive cells). The 

cells exhibiting green fluorescence in the presence of PI were identified as those that 

have internalized the transfection complexes. Only living cells were taken into 

account, whereas the cells incorporating high levels of PI and showing a reduction in 

forward scattering as a measure of cell size were excluded from further analysis. 

2.11.8. Analysis of pDNA internalization using radioactively labeled pDNA 

pDNA labelled with 125I-isotope was used to evaluate the amount of DNA taken up by 

the cells. For this purpose, the magnetic transfection complexes were assembled 

using radioactively labelled DNA and applied for magselectofection. Cells were 

analyzed for internalized DNA at 0, 0.5, 3, 6, 24 and 48 h post-transfection. To 

remove the magnetic complexes associated with the cell membrane, cells were 
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treated with a solution containing heparin and DNase and washed with PBS. Then, 

cells were centrifuged and radioactivity was measured in both cell pellet and 

supernatants. 

2.12. Immunocharacterization of cells  

Jurkat T cells, K562 and hUC-MSC cells were characterized by FACS for several 

haematopoietic and non-hematopoietic markers such as CD2, CD3, CD34, CD45, 

CD90 and CD105, each one labelled with PE. Briefly, a single cell suspension (1 x 

106 cells each) of Jurkat T cells, K562 or hUC-MSCs were suspended in complete 

RPMI media and incubated with 5 µl of antibody at room temperature in the dark for 

30 min. After incubation time, cells were washed twice with FACS buffer at 1200 rpm 

for 5 min and resuspended in a final volume of 0.5 mL of FACS buffer. An isotype 

control was included in each experiment. Cell fluorescence was evaluated by FACS. 

2.13. Reporter gene expression analysis 

2.13.1. Luciferin & luciferase assay  

48 h after transfection, cell suspension from the 6-well plate was resuspended in a 15 

mL tube and centrifuged at 1200 rpm for 5 min, supernatant was discarded, the cells 

were washed with 1 mL PBS, and the cell pellets were resuspended in 200 µl of lysis 

buffer (0.1% Triton X-100 in 250 mM Tris pH 7.8) per tube and incubated for 10-15 

min at room temperature. The cell lysate (100 µl per well) was transferred to the wells 

of a black 96-well plate and mixed with 200 µl of luciferin buffer containing 35 mM D-

luciferin, 60 mM DTT, 10 mM magnesium sulphate, 1 mM ATP and 25 mM glycyl-

glycine-NaOH buffer, pH 7.8. Chemiluminescence was recorded using a TopCount 

instrument (Canberra Packard, Groningen, The Netherlands).  

2.13.2. eGFP expression analysis 

2.13.2.1. Fluorescence microscopy 

To quantify eGFP+ cells, fluorescence microscopy images were taken at 490/509 nm 

48h or 72h after non-viral or viral magselectofection, respectively. In some cases, to 

quantify percentage of eGFP+ cells more precisely,  digital analysis of the bright field 

and fluorescence images was performed by S.CO-lifescience Company (Garching, 
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Germany): total number of cells in the brightfield image were counted and compared 

to the number of eGFP+ cells counted in the fluorescence image.  

2.13.2.2. Analysis of transfection/transduction efficiency by fluorescence-

activated cell sorting (FACS) 

To evaluate the transfection efficiency, 48 h post-transfection the cells were washed 

twice with PBS supplemented with 1% FCS (further referred to as FACS buffer). For 

analysis of transduction efficiency, 72h post-transduction (if not other indicated) the 

cells were fixed using CytofixTM Fixation Buffer (Becton Dickinson), washed and 

resuspended in 0.5 mL of the FACS buffer for FACS analysis. FACS analysis was 

performed in FACS vantage (Becton Dickinson) with fluorescence excitation with a 

maximum at 488 nm using an argon laser. Cell fluorescence was registered using a 

530/30-nm bandpass filter (green fluorescence from the cells expressing eGFP).  A 

minimum of 20000 events per sample were analysed. The gated (viable) eGFP+ cells 

were evaluated as a dot displaying FL-1 (eGFP) on the X-axis and FL-2 on the Y-

axis. To correct the results for weak fluorescence of the enhancer and to avoid 

overestimating the percentage of eGFP-expressing cells post-transfection with 

magnetic lipoplexes,  untransfected cells and those transfected using magnetic 

triplexes of DF-Gold, luciferase plasmid and magnetic MNPs were used as the 

controls. Data were analyzed by using FlowJo software. 

2.14. Cell viability  

2.14.1. Trypan blue dye exclusion test 

The trypan blue dye exclusion test was used to determine the number of viable cells 

present in the cell supension. It is based on the principle that live cells possess intact 

cell membranes that exclude certain dyes, such as trypan blue, whereas dead cells 

do not. 48 h post-magselectofection procedure 100 µl of cell suspension was mixed 

with 100 µl of trypan blue solution and 10 µl of the mixture was loaded in a Neubauer 

chamber and then visually examined under microscope to determine whether cells 

have taken up or excluded the dye. Viable cells had a clear cytoplasm whereas 

nonviable cells presented blue cytoplasm. The results were expressed in percentage 

of living cells. 
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2.14.2. MTT assay 

The MTT assay, based on reduction of the MTT reagent into formazan by superoxide 

anions produced in the mitochondrial respiratory chain, was carried out to assess the 

cytotoxicity of the complexes. 48 h post-transfection the cells were washed once with 

PBS, the supernatant was discarded, and the cells were incubated for 2-3 h in 100 µl 

of 1 mg/mL MTT solution prepared in Hank‘s balanced salt solution with 5 mg/mL 

glucose. Afterwards, 100 µl solubilisation solution (10% Triton X-100 in 0.1 N HCL in 

anhydrous isopropanol) was added and incubated at 37°C with shaking overnight to 

dissolve the formazan. The optical density was measured at 590 nm. Untreated cells 

were used as a reference. 

2.15. Differentiation assay 

2.15.1. Colony-forming cell (CFC) 

CFC assays were performed just post-magselectofection in a well-defined 

methylcellulose-based culture media using MethoCult® reagent (StemCell 

technologies). The majority of CFCs consist of lineage-restricted colonies: erythroid 

restricted burst-forming units-erythroid (BFU-E), which are more immature than the 

colony-forming units erythroid (CFU-E); megakaryocyte-restricted CFU-Mk; colony-

forming units-granulocytes (CFU-G), colony-forming units-monocytes/macrophages 

(CFU-M); and colony forming units-granulocytes/macrophages (CFU-GM). The most 

immature (multipotent) CFC measurable contains granulocytes, erythrocytes, 

macrophages, and often megakaryocytes (CFU-GEMM) and is usually measured at 

day 12 after culture initiation. This CFC is also often called CFU-mixed, as it may not 

always contain megakaryocytes but does contain erythroid and 

granulocyte/macrophage cells. Just after magselectofection, 2x103 hCB-HSCs were 

seeded in a well from a 24-well plate with methylcellulose-based culture media and 

colonies were counted 6 days post-magselectofection for GM, BFU-E or mixed 

colonies.  

2.15.2. Osteogenesis  

To analyse whether the UC-MSCs have maintained the potential to differentiate into 

other cell types post-magselectofection procedure, the in vitro osteogenic assay 
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using hUC-MSCs was carried out. After transfection/transduction using 

magselectofection technology, the cells were seeded in a 6-well plate at a density of 

70.000-100.000 cells/well and incubated for 48 h in a complete DMEM cell culture 

medium without antibiotics. Afterwards, the medium was changed for osteogenic 

induction medium and the cells were incubated in this medium for the next 18 days in 

a humidified atmosphere at 37°C. The osteogenic medium contained low glucose 

DMEM (1g glucose/L) medium supplemented with 10% heat-inactivated FCS, 100 U 

mL-1 penicillin, 100 mg mL–1 streptomycin, 100μL of 1mM dexamethasone, 5 mL of 

10mM ascorbate-2-phosphate, 10 mL of 1M β-glycerol phosphate, sterile filtered 

through 0.22 μm filter.  The cells cultivated in a complete DMEM high glucose 

medium without antibiotics and without osteogenic induction components were used 

as a reference. After 18 days of osteogenic differentiation, the cells were stained with 

alizarin red for calcium depositions/mineralization, which are considered a functional 

in vitro endpoint reflecting advanced cell differentiation. Briefly, the medium was 

aspirated and cells were washed twice with PBS. After that, the cells were fixated 

using 1 mL 70% ice cold ethanol at RT for 5 min. Then, the cells were washed using 

incubation with 1 mL of H2O at RT for 5min. Afterwards, 500µl 2 % Alizarin Red 

solution (0.4g of Alizarin is dissolved in 20 mL ddH2O and the pH is adjusted to 4.3 - 

4.5 pH with ammonium hydroxide filtered through a Whatman-filter) were added and 

incubated at RT for 3 min. Then, wells were washed with 5x1 mL of H2O. Bright field 

images were taken immediately after staining. The principle of the alizarin red 

staining is that calcium forms an alizarin red S-calcium complex in a chelation 

process. The reaction is birefingent. 

2.16. In vivo biodistribution analysis of magselectofected hUC-MSCs and 
magnetic labeled hCB-HSCs 

hUC-MSCs (106 cells) and hCB-HSCs (106 cells) were transduced by 

magselectofection procedure using a MOI of 0.2. Then, the cells were magnetically 

labelled with SO-Mag2 nanoparticles at a dose of 50 pg Fe/cell of magnetic 

nanoparticles. Two days post-magselectofection hUC-MSCs were trypsinised and 

resuspended in 500 µl PBS. 5 x 105 hCB-HSCs were also resuspended in 500 µl 

PBS one day after labelling with MNPs. SCID mice were injected. For each cell type, 

5 x 105 cells suspended in 500 µl were injected via the lateral tail vein SCID mice 

were injected with 500µl of cells. After 24 h the mice were sacrificed by cervical 
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dislocation and the liver, spleen, lungs, kidney, muscle, heart and brain were 

removed. The entire harvested organs were weighed, transferred to a cryovial with 

tissue-freezing medium (Jung) and immersed in liquid nitrogen for fast freezing. The 

cryovials were storaged at -80°C until analysis. Frozen tissues were sectioned and 

histological sections were analysed under fluorescence microscope for biodistribution 

of eGFP expressing hUC-MSCs.  

Prussian blue staining of the histological section was done to identify and analyse the 

biodistribution of iron associated with magnetically labeled cells. For Prussian Blue 

staining (PB), histological sections were transferred to glass slides and fixed with 4% 

paraformaldehyde. Prussian blue cellular staining was performed by incubating the 

fixed cells in a mixture of 4% potassium ferrocyanide and 3.7% HCl for 30 minutes. 

Slides were washed in distilled water, 3 changes followed by counterstain with 

nuclear fast red for 5 minutes. Then, slides were rinse twice in distilled water and 

dehydrate through 95% and 2 changes of 100% alcohol, clear in xylene (2 changes, 

3 minutes each). Finally, slides were mounted with a coverslip with resinous 

mounting medium.  

2.17. Statistics  

All values are expressed as the mean ± standard deviation. 
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3. RESULTS 
In this chapter the characteristics of the magnetic particles and magnetic 

transfection/transduction complexes used are shown. The results of selection of 

magnetic vector for magselectofection using 2D transfections (magnetofection) in 

Jurkat T cells are illustrated in this chapter. The results of experiments which 

examined the binding of DNA to magnetic beads are presented. The results of the 

vector loading Miltenyi column strategy, association/internalization of magnetic 

complexes with/into the target cells, cell separation efficiency, cell recovery and 

transfection/transduction efffciency in the target cells after magselectofection are 

here described. The validation of magselectofection in therapeutically relevant cells 

and within other established technologies (magnetofection and standard lentivirus 

infection) is proven. A first pilot study of the applicability of magselectofection in vivo 

is presented.  

3.1. Magnetic nanoparticles used in this study and their characteristics 

Core-shell-type magnetic nanoparticles (MNPs) were selected for self-assembly with 

viral and non-viral vectors to be used for magnetofection in 2D-cell arrays and for 

magselectofection. Size, electrokinetic potential, saturation magnetization, iron 

content and surface composition was analysed in order to characterize the selected 

MNPs.  

Table 1 summarises some essential characteristics of the commercially available and 

synthesised magnetic nanoparticles that were used in this work. All particles are iron-

oxide-based core-shell nanoparticles. For our custom nanoparticles, data of phase 

composition based on X-ray diffraction patterns collected from the dry powder of 

MNPs (data not shown) suggest a magnetite composition of the core with a mean 

crystallite size in the range of 8-12 nm. Empirically, magnetite nanoparticles with a 

magnetite crystallite size of 9–11 nm were found to be superior to smaller particles 

for use as components of the magnetic transfection vectors for magnetofection. The 

saturation magnetization of our synthesised MNPs is lower than the saturation 

magnetization of bulk magnetite and typical for rather well-stabilised magnetite 

nanocrystals of this size. The iron content of the magnetic nanoparticles used during 

this work varies from 0.21 to 0.68 g iron per g dry weight.  The hydrodynamic 

diameter in aqueous suspension varied from 17 nm for PEI-Mag3, corresponding 
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mainly to individual particles, to 400 nm for aggregates of the SO-Mag2 

nanoparticles. The electrokinetic potential () is highly positive for the CombiMag, 

PolyMag, SO-Mag2 and PEI-Mag particles and negative for the PL-Mag2, NDT-Mag1 

and PalD1-Mag1 particles, as shown in Table 1, depending on the coating material 

used. The surface composition for selected nanoparticles (PEI-Mag2, NDT-Mag2 and 

PL-Mag1) was analysed by XPS spectra. The XPS data showed that both PEI and 

NDT assembled with the fluorosurfactant at the surface of the nanoparticles in the 

course of the synthesis. The resulting self-assembled mixed layers were stable and 

remain bound to the surface after extensive dialysis used to purify the particles. 

Surprisingly, the XPS spectra of the PL-Mag1 nanoparticles indicate that ~100% of 

the carbon atoms should be attributed to the fluorsurfactant, i.e., the Pluronic F-127 

was fully eliminated after dialysis. 
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Table 1. Characteristics of magnetic nanoparticles 

Magnetic 
nanoparticles 

Core composition 

 
 

Coating 

Mean 
magnetite 

crystallite size 
<d>(nm) 

Saturation 
magnetization of the 

core 
Ms (emu/g iron) 

Mean hydrodynamic 
diameter 
D (nm) 

Electrokinetic 
potential 

 ( mV ) 

Iron content 
(g Fe / g dry 

weight) 

CombiMag
#
 Iron oxide  No data No data 96 ± 1 + 57.2 ± 1.7 0.64 

PolyMag-41/1
#
 Iron oxide  No data No data 230 ± 2* + 59.4 ± 0.6 0.60 

ViroMag R/L
#
 Iron oxide  12 No data 542 ± 115* + 38.4 ± 1.6 0.47 

PEI-Mag2 magnetite 
25KDa branched 
Polyehylenimin 

9 
62 

28 ± 2 + 55.4 ± 1.6 0.56 

PEI-Mag3 magnetite Polyehylenimin 8 46 17 ± 4 + 53.4 ± 0.7  0.21 

PL-Mag2 magnetite Pluronic F127 10.6 99 101 ± 20* - 18.3 ± 1.6 0.47 

NDT-Mag1 magnetite 1-9 Nonanedithiol 11.6 74 43 ± 6 - 16.6 ± 2.0 0.68 

SO-Mag2 Magnetite 

condensation of 
tetraethyl 

orthosilicate and 3-
(trihydroxysilyl)pro
pylmethylphospho

nate 

11 

 
 

118 
427 ± 90* + 37.4 ± 1.6 0.50 

PalD1-Mag1 magnetite Palmitoyl dextran 8.5 63 55 ± 10 - 15.6 ± 1.6 0.53 

#
commercially available nanoparticles

; 
*assemblies of the particle
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3.2. Magnetic vectors and their characteristics 

Magnetic non-viral and viral vectors were assembled and characterized. The mean 

hydrodynamic diameter and the ξ-potential of the magnetic vectors were determined 

by photon correlation spectroscopy as described in Material and Methods. The 

binding efficiency, sedimentation stability and magnetophoretic mobility were 

analysed.  Sedimentation stability and magnetophoretic mobility were analysed using 

a turbidity measurement both without magnetic field application and when subjected 

to inhomogeneous magnetic fields, respectively, as recently described by Mykhaylyk 

et al. (Mykhaylyk et al., 2008) (Mykhaylyk et al., 2009a) and in Material and Methods. 

3.2.1. Efficient association of nucleic acids with magnetic particles after 

complex formation 

3.2.1.1. Non-viral magnetic lipoplexes  

To assess pDNA association with magnetic nanoparticles and magnetic 

sedimentation of the resulting magnetic lipoplexes, the complexes were prepared 

using 125I-labelled pDNA, DF-Gold and magnetic nanoparticles at iron-to-plasmid w/w 

ratios ranging from 0.125 to 10. After 30 min of incubation at the 96 magnetic plate, 

creating an average magnetic field of 70–250 mT and a field gradient of 50–130 T/m 

in the vicinity of the cells, the radioactivity was measured in the supernatant and the 

percentage of DNA associated and magnetically sedimented with magnetic 

nanoparticles was quantified as described in the Material and Methods. The data 

presented in Figure 7, for magnetic lipoplexes prepared for magnetofection, show 

that more than 90% of the DNA was magnetically sedimented when associated with 

each of the four selected nanoparticles in the presence of DF-Gold at iron-to-DNA 

w/w ratios higher than 0.2.  

In the case of magnetic lipoplexes prepared for magselectofection, 65%, 85% and 

100% of the DNA was magnetically sedimented when associated with each of the 

selected nanoparticles SO-Mag2, PEI-Mag2 and PEI-Mag3, respectively.  
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Figure 7. Magnetic sedimentation of nucleic acid associated with magnetic nanoparticles. The 

figure shows plasmid DNA associated and magnetically sedimented with magnetic nanoparticles after 

incubation at the magnetic plate for 20 min in the presence of DF-Gold lipid transfection reagent as an 

enhancer at a DF-Gold-to-pDNA v/w ratio of 4 and a starting pDNA concentration of 10 µg/ml plotted 

against nanoparticle concentrations in terms of iron-to-nucleic acid weight/weight ratios after complex 

formation. 

3.2.1.2. Viral magnetic complexes  

Experiments carried out together with Arzu Cengizeroglu, M.Sc. (Cengizeroglu, 

2008). We were interested to evaluate the binding effciciency between LVPs and 

MNPs using three different virus concentration at seven different serial dilutions of fg 

Fe magnetic nanoparticles per LVPs. For that purpose viral magnetic complexes 

were assembled and magnetically sedimentated as described in Material and 

Methods. The vector fraction remaining in the supernatants was determined using a 

p24-specific ELISA kit. Virus detected in the supernatant after 30 min magnetic 

sedimentation was defined as unbound.  

The results from the binding capacity assay indicated that up to 94% bound with 

MNPs. Moreover, the percentage of bound LVPs in complexes remains nearly 

constant throughout all fg Fe/LVP ratios and for every virus concentration used. 
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3.2.2. Characteristics of non-viral magnetic lipoplexes  

Table 2 summarizes data on the mean hydrodynamic diameters and electrokinetic 

potentials of the lipoplexes and magnetic lipoplexes prepared to be used for 

magnetofection. Data on the mean hydrodynamic diameters, electrokinetic potentials, 

magnetic moments, magnetophoretic mobilities and number of nanoparticles per 

complex for magnetic lipoplexes synthesized for magselectofection are summarized 

in Table 3. Most of the complexes had a positive net charge when suspended in 

medium without FCS. In contrast, the complexes possess a negative net charge 

when suspended in medium with serum. The results indicate that under transfection 

conditions, i.e. complete culture medium with 10% FCS, complexes are negatively 

charged and aggregated.  

Table 2. Characteristics of the lipoplexes and selected magnetic lipoplexes at iron-to-DNA w/w 

ratio of 0.5-to-1* 

Complex  

Luciferase plasmid  GFP plasmid  

Mean 
hydrodynamic 
diameter D (nm)  

-potential 
(mV)  

Mean 
hydrodynamic 
diameter D (nm)  

-potential 
(mV)  

DF-Gold /pDNA  742 ± 340  + 16.9 ± 4.7  693 ± 391  + 27.1 ± 1.3  

PL-Mag1/DF-
Gold/ pDNA  

1509 ± 715  - 2.5 ± 3.3  1807 ± 982  - 4.8 ± 2.7  

PEI-Mag2/DF-
Gold/ pDNA  

1616 ± 798  + 19.2 ± 3.0  790 ± 432  + 25.8 ± 0.9  

NDT-Mag1/         
DF-Gold/ pDNA  

1730 ± 879  + 16.5 ± 3.2  1953 ± 1104  + 21.3 ± 2.5  

PalD1-Mag1/DF-
Gold/pBLuc  

544 ± 11.5  + 28.4 ± 1.5  2462 ± 154  + 27.5 ± 3.5  

*in RPMI medium without additives 

We found major differences regarding the mean hydrodynamic diameters. The 

average size of the magnetic transfection complexes with both transfection lipids 

varied from about 450 nm to almost 3300 nm. The results show a tendency of 

complex aggregation when suspended in medium with serum resulting in an increase 

of the mean hydrodynamic diameter. Li et al. (Li et al., 2005) found size, and not 
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surface charge, to be a major determinant of the in vitro lipofection efficiency of a 

TFL-3 cationic lipid composed of lipid components in a pDNA/TFL-3 complex. We 

found that bigger complexes yielded higher transfection efficiency than smaller 

complexes using magselectofection (see page 78; Figure 25). 

  

Table 3. Characteristics of the magnetic transfection complexes for magselectofection 

 

Magnetophoretic mobility analysis was used in order to determine the magnetic 

moments and sedimentation velocities of the synthesized magnetic vectors. The time 

course of the turbidity of the magnetic lipoplexes PEI-Mag2/DF-Gold/pBluc, plotted in 

Figure 8, shows that 90% of the complexes are sedimented within 13.1 min in the 

applied magnetic field. The magnetic field was equal to the magnetic field generated 

from the 96 magnetic plate used for in vitro transfection experiments. The derived 

magnetophoretic mobilities of the complexes of 1.3 µm s-1 and the average 

hydrodynamic diameters of the complexes of 1616 nm allow one to estimate the 

average magnetic moment of the complexes and the number of magnetic 

nanoparticles associated with each complex, as shown in Figure 8.  
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Figure 8. Magnetophoretic mobility of selected magnetic lipoplexes. Time course of the 

normalised turbidity of the magnetic lipoplexes of PEI-Mag2/DF-Gold/pBluc (iron-to-plasmid ratio of 

0.5:1) upon application of a gradient magnetic field (average field and field gradient of 213 mT and 4 

Tm
-1

) and derived magnetic responsiveness  , average magnetic moment of the complex mTM 213  in 

the applied field and average number of magnetic nanoparticles n  associated with each complex, 

accounting for the effective magnetic moment of the core of the insulated particle effm , as described 

in the Materials and Methods. 

 

Figure 9 shows that 90% of the complexes were sedimented within 20-40 sec in the 

applied magnetic field, which is similar to the magnetic field created within the 

MidiMACS magnet used for magselectofection experiments. The derived 

magnetophoretic mobilities of the complexes varied between 2.3-3.6 µm s-1 and the 

average hydrodynamic diameters of the complexes was around 300-2000 nm 

depending of the magnetic nanoparticle used. This allows one to estimate the 

average magnetic moments of the complexes and the number of magnetic 

nanoparticles associated with each complex, as shown in Table 3.  
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Figure 9. Magnetophoretic mobility of selected magnetic lipoplexes. Time course of the 

normalised turbidity of the magnetic lipoplexes (iron-to-plasmid ratio of 1:1) upon application of the 

gradient magnetic fields (average field and field gradient of 213 mT and 4 Tm
-1

). (A) Lipoplexes 

comprising DF-Gold as enhancer; (B) Lipoplexes comprising SM4-31 as enhancer. 

 

3.2.3. Characteristics of viral complexes used for transfection using 

magnetofection  

Data on the mean hydrodynamic diameters, electrokinetic potentials and 

magnetophoretic mobilities of viral complexes measured immediately after preparing 

the complex in DMEM medium with additives are given in Table 4. The average sizes 

of the viral complexes were between 340-400 nm for complexes comprising ViroMag 

nanoparticles and between 250-3100 nm the SO-Mag2/LV.eGFP complexes, 

indicating aggregation of these complexes. The complexes had negative net charges 

because they were prepared in medium with serum. 
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Table 4. Characteristics of the magnetic viral complexes for magselectofection 

Nanoparticle-to-VP ratio 

(fg Fe/VP) 

Mean hydrated 

diameter 

D (nm) 

Electrokinetic 
potential 

 ( mV ) 

Magnetophoretic 

Mobility# 

(μm/s) 

ViroMag R-L/LV.eGFP complexes 

10 340 ± 94 -8.1 ± 1.6 0.8 

20 396 ± 97 -10.2 ± 1.7 1.2 

SO-Mag2/LV.eGFP complexes 

10 2368 ± 407 (65%)* 

432 ± 58 (35%) 

-10.6 ± 2.0 23.5 

20 3090 ± 414 (53%)* 

247 ± 32 (47%) 

-10.1 ± 2.0 34.7 

*% intensity 

The time course of the turbidity of the magnetic viral complexes plotted in Figure 10 

shows that 90% of the complexes were sedimented within 20-50 sec for the SO-

Mag2/LV.eGFP complexes and the magnetic moment increases with higher amounts 

of fg Fe/LVP. We found complexes formed using SO-Mag2 MNPs are faster 

magnetically sedimented than complexes comprising the commercially available 

ViroMag R/L particles (OZ Biosciences), indicating that the magnetic moment of SO-

Mag2/LV.eGFP complexes is higher than that of ViroMag R/L/LV.eGFP complexes.  

An explanation could be that SO-Mag2/LV.eGFP complexes have a tendency to 

aggregate. 
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Figure 10. Magnetic responsiveness of the viral vectors. Time course of the normalized turbidity 

for the suspensions of the magnetic viral complexes SO-Mag2/LV.eGFP and ViroMag R/L / LV.eGFP 

prepared at 10 or 20 fg Fe/LVP and upon application of the inhomogeneous magnetic field (<B>=213 

mT and average gradient of the field of 4 T/m). 

 

Summarizing, the analysis of the magnetophoretic mobility of the magnetic viral and 

non-viral complexes is a simple experimental approach that could be useful for 

experimental estimations of the kinetics of magnetic sedimentation of magnetic 

vector. The results of magnetophoretic mobility indicate that the average magnetic 

moment of these magnetic lipoplexes and magnetic viral complexes was high enough 

to fully immobilize and associate the complexes in the column after 30 min of 

incubation at MidiMACS magnet (see page 69; figure 19). 

3.3. Selection of magnetic vectors for magselectofection (results from 
2D transfection) 

In order to find the most efficient magnetic vectors to be use for magselectofection, 

the transfection efficiencies of different magnetic vectors was analysed in Jurkat T 

cells using magnetofection in a 2D system. 
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3.3.1. Correction for the autofluorescence of the transfection reagent is needed 

for true percentage of eGFP-positive Jurkat T cells  

In this study, FACS analysis was used to quantify the percentage of Jurkat T cells 

expressing eGFP protein after transfection. The gated viable Jurkat T cells were 

evaluated as a dot plot displaying FL-1 (eGFP) on the X-axis (Figure 11 A). It is 

known that some lipid transfection reagents exhibit weak fluorescence that can be 

seen in both the green and red FACS channels. To correct the results for the weak 

fluorescence that cannot be attributed to fluorescence of eGFP, (I) untransfected 

cells, (II) cells transfected with duplexes of magnetic nanoparticles with luciferase 

plasmid or (III) with DF-Gold and (IV) those transfected with magnetic triplexes of the 

luciferase plasmid combined with DF-Gold and MNPs were used as references. 

Figure 11 A shows that neither the untransfected cells nor the cells transfected with 

duplexes of the luciferase plasmid with magnetic NDTMag1/pBluc nanoparticles gave 

rise to fluorescence in FL1. In contrast, a high percentage of the cells transfected 

with luciferase plasmid lipoplexes and magnetic lipoplexes exhibited weak 

fluorescence (histograms for DF-Gold/pBLuc and NDT-Mag1/DF-Gold/pBLuc 

complexes are shown in Figure 11 A) that could reasonably be attributed to 

fluorescence of the lipid. Of note, the percentage of cells showing this weak 

fluorescence was dependent on the type of MNPs used to formulate the complex. 

Thus, to quantify the ―true‖ percentage of eGFP-expressing cells, it is necessary to 

correct the percentage of FL1-positive cells for the weak fluorescence of the lipid, 

taking the cells transfected with analogous magnetic complexes formulated with the 

luciferase plasmid as a reference. Examples of the results are shown in Figure 11 B 

for non-magnetic and magnetic lipoplexes with PL-Mag1 and NDT-Mag1 

nanoparticles. Comparison with the data calculated using untransfected cells as a 

reference (compact symbols in Figure 11 B) unambiguously leads to an 

overestimation of the percentage of eGFP-expressing cells. 

All eGFP expression data given in this thesis were corrected for the autofluorescence 

of the applied lipid transfection reagent and thus represent the true percentages of 

eGFP-positive cells. 
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Figure 11. Quantification of eGFP
+
 Jurkat cells after (magneto)lipofection by flow cytometry. (A) 

Histogram plots of untransfected Jurkat cells (untx); cells transfected with duplexes of NDT-

Mag1/pBLuc or liposomal transfection reagent alone (DF-Gold) or lipoplexes of DF-Gold/peGFP, 

triplexes of NDT-Mag1/DF-Gold/pBLuc, PL-Mag1/DF-Gold//peGFP and NDT-Mag1/DF-Gold/peGFP 

for eGFP gene expression analysis. The DNA dose was 500 ng per 20000 cells. The percentage of 

the gated FL1-positive cells is shown on the histogram plots; (B) The percentage of the FL1-positive 

cells versus DNA dose, calculated using untransfected cells as a reference (compact symbols) and 

cells transfected with the corresponding luciferase plasmid triplexes as a reference (open symbols). 

 

3.3.2. Magnetic lipoplexes transfect Jurkat T cells more efficiently than 

magnetic polyplexes  

Polyplexes and lipoplexes comprising targeting molecules have previously been used 

to transfect Jurkat T cells (Guillem et al., 2002), (Uduehi et al., 2003), (Puls and 

Minchin, 1999). A maximum of 19% cells expressing the transgene was observed 
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using cell stimulation with phorbol 12-myristate 13-acetate (PMA) prior to 

transfection. We have searched for magnetic vectors to transfect Jurkat cells more 

efficiently without any stimulation of the cells. With this aim in mind, we compared the 

transfection efficiency of several complexes of the luciferase plasmid with branched 

polyethylenimin 25 kD at an N/P ratio of 10 (PEIBr/pBLuc), lipoplexes with 

Lipofectamine2000 (Lipofectamine2000/pBLuc) and DF-Gold (DF-Gold/pBLuc) and 

similar magnetic vectors associated with magnetic PEI-Mag2 nanoparticles at an 

iron-to-DNA ratio of 0.5:1 in Jurkat T cells. The results given in Figure 12 indicate that 

the lipoplexes formulated with DF-Gold showed significantly higher transfection 

efficiency in terms of the level of luciferase reporter expression, as compared to 

lipoplexes with Lipofectamine2000 and polyplexes with PEIBr and the magnetic 

complexes thereof. Magnetic lipoplexes of PEI-Mag2/DF-Gold/pBLuc were 

significantly more efficient than non-magnetic lipoplexes of DF-Gold/pBluc at the 

highest DNA concentration. For this reason, further screening of the magnetic 

particles and the formulation of magnetic vectors for Jurkat T cell magnetofection was 

performed with complexes consisting of DF-Gold as a lipid enhancer. 

 

Figure 12. Reporter gene expression in Jurkat T cells after lipo-, poly- and magnetofection 

using different enhancers. Jurkat T cells were transfected using  Luciferase plasmid lipoplexes with 

DF-Gold or Lipofectamine 2000 (enhancer-to-plasmid v/w ratio of 4), polyplexes with PEIBr  (at 

N/P=10) or with magnetic lipo- and polyplexes comprising PEI-Mag2 magnetic nanoparticles at iron-to 

DNA ratio of 0.5-to-1. 48 h post-transfection luciferase acticity was measured in cell lysate vs. applied 

plasmid doses.  
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3.3.3. Reporter gene expression in Jurkat T cells is increased by 

magnetofection without causing cell toxicity 

To find the most efficient formulations for transfecting Jurkat T cells, we have tested 

DF-Gold-plasmid duplexes and magnetic triplexes consisting of pDNA, DF-Gold and 

the magnetic nanoparticles NDT-Mag1, PL-Mag1, PalD1-Mag1 or PEI-Mag2 or 

commercially available CombiMag and PolyMag nanoparticles.  

 

Figure 13. Percentage of eGFP-positive cells, luciferase reporter expression and MTT-based 

toxicity data from Jurkat cells 48 h post-lipo- and magnetofection. Jurkat T cells were transfected 

with eGFP or luciferase plasmid lipoplexes of DF-Gold/pDNA or with magnetic lipoplexes prepared 

with the magnetic nanoparticles NDT-Mag1, PL-Mag1, PalD1-Mag1, PEI-Mag2 or commercially 

available CombiMag and PolyMag, as described in the Materials and Methods. The Figures show (top 

panels) the percentage of eGFP+ cells and luciferase expression (pg luciferase per 20000 cells) and 

(bottom panels) cell respiration activity versus applied plasmid concentration. 

 

All magnetic vectors were formulated at an iron-to-plasmid w/w ratio of 0.5, which 

was previously found to result in high transfection efficiency with minimum toxicity 

(Mykhaylyk et al., 2007a), (Mykhaylyk et al., 2007b). A DF-Gold-to-DNA v/w ratio of 
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4:1 was used, as recommended by the manufacturer, and was also found to be the 

optimal ratio in our own numerous experiments. 

All of the tested particles, except for PolyMag, increased the transfection efficiency in 

terms of the percentage of transfected cells, as compared to the DF-Gold lipoplexes 

(Figure 13). The vectors combined with the PalD1-Mag1, PEI-Mag2 and NDT-Mag1 

particles transfected up to 27% of the cells at the highest plasmid dosage of 500 ng 

per 20,000 cells, followed by the PL-Mag1 and CombiMag particles. Non-magnetic 

DF-Gold lipoplexes transfected up to 9% of the cells. The data given in Figure 13 

represent the true percentage of eGFP-positive Jurkat T cells after correction for the 

autofluorescence of the lipid discussed in more detail in paragraph 3.3.1. Figure 14 

shows bright-field and fluorescence microscopy images of the Jurkat T cells taken 48 

h post-lipofection and post-magnetofection with NDT-Nag1/DF-Gold/peGFP 

lipoplexes.  

 

Figure 14. Enhanced GFP (eGFP) reporter gene expression in Jurkat cells detected by 

microscopy. Jurkat cells were incubated for 30 min at the magnetic plate with lipoplexes of DF-

Gold/peGFP or magnetic lipoplexes of NDT-Mag1/DF-Gold/peGFP at a DNA concentration of 500 

ng/20,000 cells/well and observed 48 h post-transfection with a fluorescence microscope. The Figures 

show (A) bright field and (B) fluorescence images taken at 490/509 nm for eGFP+ cell green 

fluorescence. Images were obtained at an original magnification of 10X, scale bar = 200 µm. 
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In terms of luciferase reporter gene expression levels, the CombiMag nanoparticles 

demonstrated the highest and the PalD1 lipoplexes the lowest luciferase expression 

levels measured after 48 h (Figure 13).  Magnetofection using the optimal vector 

formulations resulted in a significant (3-4.5-fold) enhancement of luciferase 

transfection, as compared to lipofection at high (500 ng per 20,000 cells) and low 

(125 ng per 20,000 cells) plasmid doses, respectively.  

We also found that the cell passage number plays an important role in the 

transfectivity of Jurkat T cells. At a cell passage higher than 15, the transfection 

efficiency decreased considerably. The results shown in this work were obtained with 

cell passage numbers between 6 and 10. 

The results shown in Figure 15 reveal lentiviral magnetofection of NIH 3T3 fibroblasts 

(Experiments carried out together with Arzu Cengizeroglu, M.Sc. (Cengizeroglu, 

2008). 

 

Figure 15. Transduction efficiency in 3T3 NIH mouse fibroblasts by magnetofection in a 2D-cell 

array using the complexes with SO-Mag2, PEI-Mag2 and ViroMag R/L (OZ Biosciences) MNPs. 

eGFP-positive 48 h after transduction by magnetofection using LV.eGFP magnetic complexes with 

different magnetic nanoparticles at an MOI of 2 versus the nanoparticle:virus particle ratios applied to 

formulate the complex. 
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The results of the MTT assay shown in Figure 13 suggest that there was no 

additional toxicity associated with the particles, as compared to the non-magnetic 

lipoplexes, within the tested concentration range, except for the highly toxic PolyMag 

complexes. Triplexes containing the eGFP plasmid were less toxic than those with 

the pCMV-Luc plasmid. MTT assay of the selected SO-Mag2/LV.eGFP viral complex 

resulted in no toxicity neither in Jurkat T cells, hPBMCs nor hUC-MSCs (for more 

information, see Master thesis of Arzu Cengizeroglu (Cengizeroglu, 2008)). 

Summarizing, the magnetic lipoplexes with PEI-Mag2, NDT-Mag1 and PL-Mag1 

MNPs and magnetic viral complexes with SO-Mag2 MNPs resulted in a high 

percentage of cells transfected with the eGFP plasmid as well as high luciferase 

reporter gene expression without toxicity.  

3.3.4. Transfection efficiency of Jurkat T cells is not increased by combination 

of magnetofection with glycerol or DMSO shocks 

Some compounds that destabilise cell membranes, such as glycerol, have been 

reported to increase the transfection efficiency of ligand-coupled polyplexes in 

different cell lines as well as in some primary human fibroblasts under specific 

conditions (Zauner et al., 1996). We have tested whether treatment with 0.9 M 

glycerol for 4 h, resulting in a 100-fold increase in luciferase expression in H225 

human melanoma cells (Zauner et al., 1996), can further increase the magnetofection 

efficiency achieved in Jurkat T cells using magnetic lipoplexes comprising PEI-Mag2 

nanoparticles. The data given in Figure 16 demonstrate a dramatic (about 4.5-fold) 

decrease in the luciferase reporter expression post-magnetofection with PEI-Mag2 

lipoplexes with cationic lipid DF-Gold under glycerol shock. These data are in 

agreement with the findings of Zauner et al., who observed no positive effect of 

glycerol shock on the transfection efficiency with the lipid transfection reagent 

DOTAP or the cationic lipopolyamine Transfectam® (Zauner et al., 1996).  
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Figure 16. Effect of glycerol shock on luciferase gene expression in Jurkat T cells post-

magnetofection. Cells were transfected with PEI-Mag2/DF-Gold/pBLuc magnetic triplexes at different 

plasmid concentrations. After incubation with transfection complexes at a magnetic plate for 30 min, 

the cells were centrifuged, the medium was replaced with complete RPMI containing 0.9 M glycerol 

and incubated for 4 h, the cells were washed with PBS and further incubated in complete RPMI media 

for 48 h, and gene expression analysis was performed. 

 

In a study by Lopata et al. (Lopata et al., 1984), mouse L cells were first transfected 

with DEAE-dextran polyplexes of the reporter gene followed by a short, 2-min shock 

with 10% DMSO 4-20 h after transfection (Lopata et al., 1984). This treatment 

resulted in a 50-fold improvement of transgene expression. We have tested the effect 

of a 2-min shock with 0.5% DMSO on luciferase expression post-magnetofection with 

the magnetic PEI-Mag2 lipoplexes. The treatment resulted in high toxicity, and no 

luciferase expression was observed.  

3.3.5. Magnetic lipoplexes are better internalized in Jurkat T cells upon gradient 

magnetic field application, as compared to non-magnetic lipoplexes 

In order to examine the mechanisms behind the observed improvement in Jurkat T 

cell transfection using magnetofection, cell association and internalization into Jurkat 

T cells were quantified using the approach of Ogris et al. (Ogris et al., 2000) 

described in detail in Materials and Methods. Figure 17 A shows a superposition of 

the phase contrast, green fluorescence (490/509 nm) from the internalized 

complexes and red/yellow fluorescence (510/650 nm) from the complexes associated 

with the cell membrane. Almost 100% of the cells were associated with the 
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transfection complexes and few of them have also internalized pDNA 5 h after 

magnetofection. An example of the FACS data for NDT-Mag1/DF-

Gold/pBLuc/YOYO-1 magnetic lipoplexes is shown in Figure 17 B. The data given in 

Figure 17 C for two magnetic lipoplexes formulated with the NDT-Mag1 and PL-Mag1 

magnetic nanoparticles show that 100% of the Jurkat T cells were associated with 

both non-magnetic and magnetic lipoplexes. However, the magnetic lipoplexes were 

internalized into the cells 1.5-fold more efficiently, as compared to the non-magnetic 

lipoplexes. 

Thus, the observed improvement in transfection efficiency for magnetofection, as 

compared to lipofection of the Jurkat T cells, can be partially attributed, but not limited 

to, the increase in internalization of the selected magnetic lipoplexes under 

magnetofection conditions, as compared to non-magnetic lipoplexes.  
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Figure 17. Association/internalization of lipoplexes in Jurkat T cells characterised by microscopy and flow 

cytometry.  Jurkat T cells were transfected in a 96-well plate with luciferase plasmid complexes labelled with the cell-

impermeable intercalating nucleic acid stain YOYO-1 iodide. For vector internalization analysis, cells were additionally 

incubated with propidium iodide (PI) at a final concentration of 1 µg/ml to quench the complexes associated with the 

cells but not those internalized into cells (A) Five hours post-transfection with NDT-Mag1/DF-Gold/pBLuc/YOYO-1 

complexes, the cells were incubated with PI. The image shows a superposition of the phase contrast, green 

fluorescence from the internalized complexes measured at a wavelength of 490/509 nm and red and yellow fluorescence 

from the complexes associated with cell membranes measured at a wavelength of 510/650 nm. (B) Forty-eight hours 

post-transfection, the cells were washed with PBS and resuspended in 1% FCS in PBS. Cell association and 

internalization of complexes was analysed using a FACS Vantage microflow cytometer. The Figure shows density plots 

of untransfected Jurkat cells (untx), cells transfected with magnetic triplexes of NDT-Mag1/DF-Gold/pBLuc/YOYO-1 at a 

plasmid dose of 500 ng per well and those incubated with propidium iodide at a final PI concentration of 1 µg/ml to stain 

the complexes of NDT-Mag1/DF-Gold/pBLuc/YOYO-1/PI associated with the cells but not internalized. (C) Percentage 

of YOYO-1-positive Jurkat cells (Association) and of Jurkat cells that have internalized complexes (Internalization) for 

lipoplexes of Df-Gold/pBLuc/YOYO-1 and magnetic triplexes containing PL-Mag1 and NDT-Mag1 magnetic 

nanoparticles are plotted against the applied DNA concentration, respectively. 
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3.4. Establishing magselectofection 

Establishing the system described herein involved characterizing vector retention and 

elution, characterizing the association/internalization of the vector with target cells, 

analyzing of the cell separation efficiency with the Jurkat/K562 model mixture and the 

efficiency of gene delivery in Jurkat T cells or mixtures of Jurkat T and K562 

erythroleukemic cells or primary and stem cells. Finally optimization of vector loading 

onto columns and cell loading onto modified column was analyzed.   

3.4.1. Reversible immobilization of transfection complexes and association 

with the cells at the Miltenyi® column  

To test whether magnetic transfection complexes can be immobilized and  

associated with the cells after magselectofection, LS  Miltenyi® columns were 

prepared following the two protocols (standard or freeze-drying protocol) described in 

Material and methods using a radioactively 125I labelled plasmid. 

Miltenyi cell separation columns are filled with iron beads. We assumed that these 

might quench radiation and thus give rise to false results when quantifiying 

radioactive material immobilized on the column. In fact we obtained a linear 

calibration curve when measuring equal amounts of radiolabeled complexes in 

aqueous suspension in Eppendorf tubes versus those immobilized on the column. 

The quenching factor was 13.6 (Figure 18). 

Upon magnetoselectofection procedure, the cells to be separated and transfected 

were given to the magnetized modified column and incubated for 30 min to achieve 

association of the cells with magnetic vector. After that, the columns were removed 

from the magnetic field and the cells were eluted using so-called pressure enforced 

elution according to Miltenyi® protocol. 

The results show that the retention of vectors on the columns and their association 

with cells is dependent on the protocol followed to prepare the vector loaded LS 

separation columns. 
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Figure 18. Real 
125

I radioactivity immobilized at the column versus measured radioactivity.  

 

Figures 19 A and B show that when the column was placed at the MidiMACS magnet 

about 10% of plasmid was eluted for both, fresh (standard) and freeze-drying 

(lyophilized) columns. In parallel to this experiment, we measured the binding 

efficiency between DNA and magnetic particles and the results showed that 

approximately 90% of DNA was bound with the PEI-Mag2 magnetic particles (data 

shown in Figure 7 and paragraph 3.2.2) meaning that the eluted pDNA is non-

magnetically labelled pDNA. The amount of eluted plasmid was increased when the 

column was removed from the MidiMACS™ Separator and washed using pressure 

enforced procedure. Using freshly prepared columns (Figure 19 A), about 83% of the 

eluted plasmid was associated with the cells and 16.95% of the eluted plasmid was 

found in supernatants. The total plasmid recovery was 99.74% indicating that the 

immobilization of the complex in the column was reversible.  In contrast, using the 

lyophilised columns (Figure 19 B) only about a 10% of the plasmid was associated 

with the cells. Only 25% of the total applied plasmid was recovered from the column 

and a 75% of the plasmid remained on the column, indicating that the immobilization 

of the complex in the column was not reversible using the applied lyophilization 

procedure. Hence, protocols without lyophilisation appeared more appropriate for 

subsequent experiments. 
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Figure 19. Immobolization of magnetic transfection complexeson the Miltenyi column and 

association of the complexes with the target cells after the magselectofection procedure. A 

Magnetic transfection complex (PEI-Mag2/DF-Gold/125I-pBLuc) containing 20 µg plasmid labelled 

with 125I isotope was loaded to the column. The column was placed into the MidiMACS
TM

 Separator 

and Jurkat T-cells magnetically labelled with CD45 Microbeads were loaded onto the column in 4 

portions of 0.5 ml RPMI media each and free elution fractions were collected. After 30 minutes 

incubation the column was removed from the Separator and the retained cells were flush out by firmly 

applying the plunger supplied with the column using 8 portions of 0.5 ml RPMI media each (Pressure 

enforced elution fractions). The fractions were centrifuged and the radioactivity was measured in 

supernatants and in the pellets to recalculate the DNA fractions associated with the cells, unbound 

DNA in supernatants and the total DNA recovered from the column (Supernatant&Cells). (A) Columns 

were prepared following the Standard procedure; (B) Columns were prepared following the Freeze-

drying procedure. 

 

To explain why the magnetic transfection complexes and magnetically labeled cells 

are retained in the columns upon magnetic field application, the stability and 

magnetically induced velocity of both, magnetic transfection complexes and magnetic 

cells were measured. 
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Figure 20. Magnetic responiveness of magnetic viral vectors and Jurkat T-cells labeled with 

CD45 magnetic beads. Time course of the normalized turbidity for the suspensions of the magnetic 

viral complexes and magnetically labelled Jurkat T-cells with CD45 Microbeads upon application of the 

inhomogenouse magnetic field (<B>=213 mT and average gradient of the field of 4 T/m). 

 

We observed that magnetic lipoplexes and magnetic lentiviral complexes comprising 

in-house synthesized MNPs display higher magnetophoretic mobility than target cells 

labelled with Miltenyi microbeads (Figure 20). We also found that magnetic lentiviral 

complexes comprising the commercial MNPs have lower magnetophoretic mobility 

than the magnetically labeled cells. 

3.4.2. Efficient association and internalization of magnetic lipoplexes in Jurkat 

T cells after magselectofection  

In order to examine whether the complexes that have been associated with the cells 

can be also internalized, cell association and internalization into Jurkat T cells were 

quantified using the approach of Ogris et al. (Ogris et al., 2000), as described before. 

Figure 21 C shows a superposition of the phase contrast, green fluorescence from 

the internalized pDNA complexes measured at a wavelength of 490/509 nm and red 

and yellow fluorescence from the complexes associated with the cell membrane 

measured at a wavelength of 510/650 nm 5 h post-magselectofection. We can see 

that almost 100% of the cells were associated with the transfection complexes and 

that some of them have also internalized pDNA at this time point. An example of the 

FACS data for PEI-Mag2/DF-Gold/pBLuc/YOYO-1 magnetic lipoplexes is shown in 

Figure 21A. The data given in Figure 21 B show that 100% of the Jurkat T cells were 

associated with magnetic lipoplexes and approximately 15% of the cells have 
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internalized the transfection complexes just after 30 min incubation time at the 

MidiMACS separator. Time course experiments show that the percentage of the cells 

associated with the transfection complexes was maintained during the time, while the 

percentage of the cells that have internalized the transfection complexes was 

increased. Up to 50% of the cells had internalized the magnetic complexes by 48 h 

after magselectofection. The major fraction (40-45%) had been taken up within 6 h. 

  

Figure 21. Percentage of the Jurkat T cells that are associated with or have internalized DNA 

post magselectofection characterized by flow cytometry. Jurkat T cells were transfected using 

magselectofection procedure with PEI-Mag2/DF-Gold/pBLuc complexes labelled with the cell-

impermeable intercalating nucleic acid stain YOYO-1 iodide (DNA association). For vector 

internalization analysis, cells were additionally incubated with propidium iodide (PI) at a final 

concentration of 1 µg/ml to quench the complexes associated with the cells but not those internalized 

into cells (PEI-Mag2/DF-Gold/pBLuc/YOYO-1/PI). (A) Density plots of untransfected Jurkat T cells 

(untx) and cells transfected with the magnetic triplexes (PEI-Mag2/DF-Gold/pBLuc-YOYO-1). (B) 

Percentage of YOYO-1 positive Jurkat T cells (Association) and of Jurkat T cells have internalized 

complexes (Internalization) versus time post-magselectofection. (C) Superposition of phase contrast, 

green fluorescence from the internalized pDNA complexes measured at a wavelength of 490/509 and 

red and yellow fluorescence from the complexes associated with cell membrane measured at a 

wavelength of 510/650 nm 24 hours after magselectofection with PEI-Mag2/DF-Gold/pBLuc-YOYO-1 

complexes and after staining with PI.   
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3.4.3. Modification of the LS column yields gene delivery specific to the target 

cell population without compromising the cell separation efficiency  

Magnetic cell separation efficiency can be influenced by a number of variables such 

as the quality of the cell preparation and the frequency of the target cell population in 

the sample. To increase the purity of target cells, especially in the case of cells 

present at low frequencies such as hematopoietic stem cells, the magnetically 

isolated fraction can be further enriched by passing the cells over a second 

separation column. Therefore we first decided to assess the effectiveness of 

magselectofection in a model system using a 2 column separation strategy. For this 

purpose we labeled magnetically CD2+/CD3+ Jurkat T cells using CD2 MicroBeads 

and mixed the magnetically labeled cells with non-magnetically labeled CD2-/CD3- 

K562 cells. We separated the cells using one unmodified LS column, and carried out 

magselectofection of the positively-selected cells using the second LS column, which 

was modified either with magnetic lipoplexes SO-Mag2/DF-Gold/pDNA or with 

magnetic lentiviral complexes SO-Mag2/LV.eGFP. As a reference procedure, we 

used the standard two column magnetic cell separation protocol from Miltenyi by 

passing the cells through two unmodified LS columns (MACS). We analyzed the 

purity of the positively-selected cells (CD2+/CD3+) using CD3-PE Ab treatment. We 

expected that the magnetically-retained cells would be close to 100% CD3+ (i.e., 

Jurkat T cells) and that the cells that were not retained in the column would be 100% 

CD3- (i.e., K562 cells). FACS analysis showed that 97±1.7% and 96±0.4% of the 

CD3+ Jurkat T cells were positively selected after standard MACS (Figure 22 A) and 

non-viral magselectofection (Figure 22 B), respectively. A similarly high separation 

efficiency of CD3+ Jurkat T cells was observed after viral magselectofection (see 

Figures 23 A and B). The results clearly suggest that the cell separation efficiency 

was not disturbed by modification of the Miltenyi LS column with the non-viral or 

viral magnetic complexes.  
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Figure 22. Cell separation efficiency and specific transfection of the Jurkat T-cell using non-

viral magselectofection. A mixture of the 2.5 x 10
6
 Jurkat T cells and 2.5 x 10

6
 K562 cells was 

treated with CD2 microbeads and passed (A) sequentially through two LS columns (MACS procedure) 

or (B) through one LS column followed by magselectofection at the second LS column modified with 

PEI-Mag2/DF-Gold/pBLuc magnetic lipoplexes. CD2- cell fraction in effluent (K562 cells) and the 

CD2+ cells positively selected at the column (Jurkat T cells) were treated with CD3-PE antibody and 

analyzed for percentage of the CD3-PE positive cells by FACS analysis. (C) Luciferase expression in 

effluent (CD3-/CD2- cells) and in cell fraction magnetically selected with CD2 beads (CD3+/CD2+ 

cells).  

We also analyzed the specificity of magselectofection for the target cell population 

(Jurkat T cells) in a mixture with non-labeled K562 cells. Forty-eight hours post-

magselectofection, a high level of luciferase expression was found in the positively-

selected cell fraction of the target Jurkat T cells. This compared to negligible 

luciferase expression in the eluate containing the non-target K562 cells (Figure 22C). 

Magselectofection of Jurkat T cells with magnetic lipoplexes of the plasmid coding for 

eGFP resulted in 25.5 ± 3.9 % eGFP+ cells measured by FACS. After lentiviral 

magselectofection, we detected up to 50% eGFP positive cells in the positively-
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selected fraction (Jurkat T cells) compared to a very low percentage (0.2%) of the 

transduced cells in the eluate containing predominantly non-target K562 cells (Figure 

23D). The data clearly demonstrate that gene delivery using both the viral and non-

viral magselectofection procedures is specific for the target cell line.  

 

 

Figure 23. Cell separation efficiency and specific transfection of the Jurkat T-cell using viral 

magselectofection. A mixture of the 10
6
 Jurkat T cells and 10

6
 K562 cells was treated with CD2 

microbeads and passed (A) sequentially through two LS columns (MACS procedure) and (B) through 

one LS column followed by magselectofection at the second LS column modified with SO-Mag6-

5/LV.eGFP magnetic lentivirus complexes. The CD2
-
 cell fraction in effluent (K562 cells) and the CD2

+
 

cells positively selected at the column (Jurkat T cells) were treated with CD3-PE antibody and 

analyzed for percentage of the CD3-PE positive cells by FACS analysis. (C) bright field and 

fluorescence (490/509 nm) microscopy of the Jurkat T cells at  day 3 post-magselectofection using 

with SO-Mag2/LV.eGFP magnetic lentivirus complexes at different MOI. (D) eGFP positive cells at 

different time points post-magselectofection transduced using MOI of 0.5 (left graph) or at different 

MOI 3 days post-magselectofection (right graph). 

3.4.4. Optimal parameters for the magselectofection procedure yielding the 

highest transfection efficiency 

A series of experiments were performed in order to optimize the efficiency of the 

magselectofection procedure. Target gene expression 48 h after magselectofection 
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of Jurkat T cells was determined depending on the applied plasmid DNA dosage, the 

number of cells applied per LS column and the time of the column exposure at the 

MidiMACS magnet (Figures 24 A-C). We found that at cell loading of 107 cells per 

column, a complex loading equivalent to 20 µg plasmid per LS column resulted in 

high luciferase expression and viability of transfected cells (Figure 24 A). We have 

learned that incubation of the magnetically labelled cells at the modified column at 

the magnet for 30-60 min was enough to achieve maximum cell association with 

transfection complexes and gene expression, while a further increase of the 

incubation time until 90 min resulted in a more than two-fold decrease in reporter 

gene expression (Figure 24 B). We loaded 2.5x106 or 5x106 cells per LS column and 

tested magselectofection efficiency for the case we applied the cells to the modified 

column (Complex first) or for the case the cells were loaded to the column positioned 

at the MidiMACS magnet followed by loading the magnetic transfection complex 

(Cells first). We discovered that for both cell densities, the modification of the column 

prior to cell loading results in higher transfection efficiency. Hence, this sequence of 

magselectofection was adopted (Figure 24 D). We also found that the optimal cell 

density that yielded the highest luciferase activity was 2.5 x 106 Jurkat T cells per 

column (Figures 24 C and D). Transfection efficiency was higher using the standard 

protocol for column preparation than using the freeze-drying protocol (Figure 24 E). 

The explanation for this result is that the association efficiency of transfection 

complexes with the cells is higher using the standard protocol for column preparation 

(see Figure 19).  

Hence, the standard protocol for column modification loading first the complexes 

comprising 20 µg plasmid and then between 1-2.5 x 106 cells and 30 min incubation 

time at the magnet turned out most appropriate for subsequent experiments. 



RESULTS 76 

 

 

 

Figure 24. Optimization of magselectofection procedure in Jurkat T cells. (A) Luciferase 

expression (open squares) and cell viability evaluated using Trypan-blue based test (blue circles) 

versus plasmid DNA dosage per column at cell loading of 107 cells per column. (B) Luciferase 

expression versus column exposure time at the MidiMACS magnet at DNA dosage of 20 µg and cell 

loading of 2.5x10
6
 cells per column. (C) Relative Luciferase expression versus cell loading per column 

at DNA dosage of 20 µg per column using as a reference value the expression at 2.5x10
6
 cells per 

column. (D) percentage of the eGFP positive cells post-magselectofection at 2.5x10
6
 and 5x10

6
 cells 

per column loaded into the column modified with magnetic transfection complexes (Complex first) or 

cell loaded to the column followed by loading the magnetic transfection complexes to the column 

(Cells first). (E) Luciferase expression at 2.5x10
6
 and 4 x10

6
 cells loaded to the column modified with 

magnetic transfection complexes just prior magselectofection (Standard) or column modified with 

magnetic transfection complexes and lyophilized as described in Materials and Methods. Gene 

expression analysis was performed 48 h post-magselectofection. Magnetic transfection complexes 

PEI-Mag2/DF-Gold/pBLuc ((A-C,E) ) and (D) SO-Mag2/DF-Gold/pBLuc were prepared at iron-to-DNA 

(wt/wt) ratio of 1-to-1 and DF-Gold-to-DNA (v/wt) ratio of 4-to-1. 
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3.4.5. Magselectofection results in high transfection efficiency in Jurkat T cells.  

For screening magnetic vector compositions, magnetic lipoplexes were prepared with 

the commercial reagents Dreamfect-gold, SM4-31 and Ecotransfect. A magnetic 

polyplex was prepared with PEI-transferrin. All magnetic vectors were formulated at 

an iron-to-plasmid w/w ratio of 1. A lipid v/w ratio of 4:1 was used as recommended 

by the manufacturer. 

Transfection with magnetic complexes comprising PEI-transferrin or Ecotransfect 

resulted in no genetically modified Jurkat T cells. 

FACS analysis was used to quantify the percentage of Jurkat T cells expressing 

eGFP protein. A correction for the background of the lipidic transfection reagent was 

carried out as described in paragraph 3.3.1 (see also Figure 11). Up to 30% of 

positive transfected Jurkat T cells (Figure 25 A) were obtained upon transfection with 

complexes comprising SO-Mag2/DF-Gold/eGFP.  

In terms of luciferase gene expression, the highest transfection efficiency was 

achieved with SO-Mag2/DF-Gold/eGFP or SO-Mag2/SM4-31/eGFP magnetic 

complexes (Figure 25 B). Therefore, we decided that SO-Mag2/DF-Gold/eGFP or 

SO-Mag2/SM4-31/eGFP transfection complexes will be used for the further 

transfection experiments. 

We evaluated the uptake of magnetic complexes into cells in order to determine 

whether uptake alone accounts for transfection efficiency. Uptake was quantified 

using radioactive labelled DNA. Data showed in Figure 25 C indicates that no 

significant differences in uptake were found for the three tested magnetic complexes 

(PEI-Mag2/DF-Gold/eGFP, PEI-Mag3/DF-Gold/eGFP and SO-Mag2/DF-Gold/eGFP). 

Hence, uptake alone does not account for the observed differences. 
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Figure 25. Reporter gene expression and kinetics of DNA internalization in Jurkat T cells post-

magselectofection. Jurkat cells were transfected with magnetic triplexes comprising magnetic 

nanoparticles PEI-Mag2, PEI-Mag3 or SO-Mag2 and DF-Gold or SM4-31 lipids as enhancers and 

pBLuc. The Figures show (A)  percentage of GFP+ Jurkat T cells according to microscopy analysis 

and  (B) luciferase expression (pg luciferase/column/2*10
6
 cells) 48 h post magselectofection and (C) 

kinetics of DNA internalization post-magselectofection with selected magnetic complexes. 
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3.5. Magselectofection of therapeutically relevant cells 

Once the magselectofection procedure was established in Jurkat T cells we were 

interested to validate the technology in cells with therapeutically relevant U-MSCs, 

hCB-HSCs and PBMCs. 

3.5.1. Human umbilical cord mesenchymal stem cells (hUC-MSCs) 

Magselectofection of hUC-MSCs was performed using SO-Mag2/DF-Gold/peGFP 

magnetic lipoplexes and the percentage of hUC-MSCs expressing eGFP was 

analyzed by FACS at 3-18 days post-magselectofection. Figure 26 A indicate that 

about 30% of the cells expressed the eGFP reporter 3-7 days after non-viral 

magselectofection (see also Figure 26 B). This was followed by a decrease in the 

percentage of the eGFP-positive cells to 9% and 6% at days 11 and 18, respectively. 

We also tested the potential of the transfected hUC-MSCs to differentiate into 

osteoblasts when cultured in osteogenic differentiation media. Alizarin red staining 

performed 20 days post-magselectofection and after 18 days (see Figure 26 C) 

indicate that the stimulated cells differentiated into osteoblasts. Furthermore, the 

differentiation capacity of both the stimulated magselectofected cells and the 

stimulated untreated cells (Untx) was comparable (Figure 26 C, right and left images, 

respectively). 
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Figure 26. eGFP reporter gene expression and differentiation potential of hUC-MSCs post non-

viral magselectofection. 2.5 x 10
6
 hUC-MSCs were labelled using CD105 microbeads and 

transfected with magnetic lipoplexes SO-Mag2/DF-Gold/eGFP. 2 days post-magselectofection the 

cells were stimulated using an osteogenic medium and 18 days post-stimulation the cells were 

analysed using alizarin red staining. (a) FACS data on the percentage of the eGFP positive cells at 

different time points post-magselectofection. (b) Bright field and fluorescence (490/509 nm) 

microscopy images of hUC-MSCs 7 days post-magselectofection; bar=500 µm. (c) Microscopy images 

of the untreated (untx) stimulated hUC-MSCs and non-stimulated and stimulated hUC-MSCs 20 days 

post-magselectofection; bar=200 µm. 

 

Additionally, the results indicated that approximately 100%, 75-80% and 60% of 

magselectofected hUC-MSCs were expressing the stem cell marker CD105 at 3, 7 

and 15 days post magselectofection, respectively (Table 5).  
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Table 5. FACS data on eGFP+ CD105+ hUC-MSCs. 

Days post-
magselectofection 

eGFP + hUC-MSC 

 

CD105+ hUC-MSCs 

 

 Mean SD Mean SD 

3 26,3 0,4 99,4 0,2 

7 28,8 1,5 71,7 1,2 

15 7,6 0,7 57,3 5,9 

 

Figure 27. eGFP reporter gene expression and differentiation potential of hUC-MSCs post viral 
magselectofection. 10

6
 hUC-MSCs were labelled using CD105 microbeads and transduced with viral 

magnetic complexes SO-Mag2/LV.eGFP. 2 days post-magselectofection the cells were stimulated 
using an osteogenic medium and 18 days post-stimulation cells were analysed using alizarin red 
staining. (a) Fluorescence microscopy (490/509 nm) images of hUC-MSCs 7 days post-
magselectofection with different MOI at 20 fg Fe/LVP. (b) FACS data on the percentage of eGFP 
positive hUC-MSCs: (left graph) versus time post-transduction at different iron-to-lentivirus particles 
ratio in terms of fg Fe/VP with MOI of 1 and (right graph) versus MOI using the ratio of 20 fg Fe/VP. 

 



RESULTS 82 

 

 

We transduced the hUC-MSCs by magselectofection using complexes of lentiviral 

particles with magnetic SO-Mag2 nanoparticles at low MOIs and at different magnetic 

particle:virus particle ratios. The FACS results and microscopy data shown in Figure 

27 reveal up to 100% of eGFP-positive hUC-MSCs 7 days post-magselectofection at 

MOIs of 0.5 to 2 TU/cell using the complexes formulated at 20 fg Fe/VP. We found 

that maximum transduction efficiency was achieved using the complexes formulated 

at 10 and 20 fg Fe/VP (Figure 27 B). Follow-up testing during the 21 days after 

magselectofection showed that the high percentage of eGFP-positive cells was 

maintained.  

The differentiation of the cells into osteocytes was undisturbed (See Figure 28), as 

for non-viral magselectofection, and was comparable to stimulated untreated cells 

(Figure 26 C, Untx). 

 

 

Figure 28.  Differentiation potential of hUC-MSCs post viral magselectofection.  Bright field 

microscopy images of magselectofected stimulated (differetiated) (up) and non-stimulated (down) 

hUC-MSCs 20 days post-magselectofection with different MOI at 20 fg Fe/LVP. Bar=200 µm. 
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3.5.2. Human cord blood hematopoietic stem cells (hCB-HSCs) 

Cells were isolated and cultured in Dulbecco‘s medium supplemented with 50 ng/mL 

Flt3, 100 ng/mL TPO and 100 ng/mL SCF for 48 h prior magselectofection. Then, 

magselectofection was carried out using transfection complexes comprising SO-

Mag5-6/Df-Gold/peGFP. Fluorescence microscopy (Figure 29 A) shows that hCB-

HSCs were transfected at low percentage. FACS analysis showed that approximately 

1% of the hCB-HSCs expressed the eGFP reporter gene 48 h post-

magselectofection.  

 

Figure 29. Quantification of eGFP positive and differentiation potential of hCB-HSCs post viral 

magselectofection. 10
6
 hCB-HSCs were labelled using CD34 microbeads and transfected with viral 

magnetic complexes SO-Mag6-5/DF-Gold/eGFP. Just post-magselectofection, 2x10
3
 hCB-HSCs were 

seeded in a well from a 24-well plate with methylcellulose-based culture media and colonies were 

counted 6 days post-magselectofection. (a) fluorescence microscopy of transfected hCB-HSCs at 24h 

days post-magselectofection; (b) brightfield and fluorescence field (490/509 nm) microscopy images 

magselectofected differentiated hCB-HSCs at 6 days post-magselectofection. Scale bar equals 100 

µm. 

 

Colony-forming cell (CFC) assays were performed just post-magselectofection in a 

well-defined methylcellulose-based culture medium. Figure 29 B shows that the CB-

HSCs were differentiated into CFU-GM, BFU-E and CFU-GEMM 6 days post-

magselectofection, but the colonies did not express the reporter gene (eGFP). There 

are two possible explanations for this result: 1) the eGFP positive transfected cells 
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are losing the potential to differentiate into cell progenitors; 2) the genetic 

modification is not stable and the expression of the eGFP is lost. This is indeed the 

case, as was observed with magselectofected hCB-HSCs that were not subjected to 

the CFC assay. 

Efficient gene delivery to hUC-HSCs and Sca-1+ Lin- mouse cells was achieved 

using lentiviral magselectofection, and the differentiation potential of the transduced 

cells was undisturbed. We treated the CBMC Ficoll gradient fraction from human UC 

blood with CD34+ MicroBeads, passed the cells through two LS columns and 

collected positively-selected human umbilical cord blood HSCs. We further 

transduced the collected cells by magselectofection. We also performed a standard 

infection of the cells as a reference procedure. 

The cells were not stimulated (cultivated) before magselectofection or standard 

infection procedures. Forty-eight hours post-magselectofection, we observed 

approximately 22% and 6.5 % of eGFP+ hCB-HSCs with complexes formulated at 2 

and 20 fg Fe/VP, respectively (see the microscopy data and FACS shown in Figures 

30 a and c). No eGFP+ hCB-HSCs were found post-standard infection carried out at 

the low cell density of 1.5 x 105 cells/ml.  

We found that magselectofection of the Sca-1+ Lin- mouse cells at an MOI of 3 and 

complexes formulated at optimal MNP-to-VP ratio of 2 fg Fe/LVP resulted in a 45% 

transduction rate (Figures 30 d and e) 6 days post-magselectofection. 
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Figure 30. Transduction efficiency of hCB-HSCs and Sca-1+ Lin- mouse cells, and the 

differentiation potential of the hCB-HSCs after lentiviral magselectofection. hCB-HSCs were 

transduced  at low cell density of 1.5 x 10
5 

cells/ml without cell stimulation before magselectofection. 

(a) Fluorescence (490/509 nm) and bright field microscopy images of the hCB-HSCs taken on day 3 

after magselectofection with the magnetic complexes formulated at 2 fg Fe/VP. (b) (top) Overlay of the 

bright field and fluorescence (490/509 nm) microscopy images and (bottom) the bright field 

microscopy image of hCB-HSCs differentiated using a colony-forming assay taken 6 days after 

magselectofection with the magnetic complexes formulated at 20 fg Fe/VP. The bars represent 100 

µm. (c) Histogram plots of the untreated hCB-HSCs (untx), cells transduced using the standard 

infection protocol or viral magselectofection with the complexes formulated at 2 or 20 fg Fe/VP. Sca-

1+ Lin- mouse cells were transduced at a cell density of 5 x 10
6 

cells/ml without cell stimulation before 

magselectofection. (d) Magselectofection efficiency of the Sca-1+ Lin- mouse cells versus MNP-to-VP 

ratio. (e) Histogram plots of the untreated Sca-1+ Lin- mouse cells (untx), cells transduced using the 

standard infection protocol or viral magselectofection with the complexes formulated at 2 fg Fe/VP or 

―Gold standard‖ infection (overnight incubation with non-magnetic lentivirus). 

The results of the colony-forming assay for hUC-HSCs six days after 

magselectofection (shown in Figure 30 b) suggest that the cells were differentiated 

into multiple lineages and that the colonies expressed the reporter gene (i.e., eGFP). 

This indicates that the genetically-modified cells did not lose the capacity to 

differentiate into multiple lineages. 
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Moreover, we also found that the purity and recovery of the Sca-1+ selected cells 

after magselectofection were equal to those obtained after the standard MACS 

procedure (see Figure 31). 

 

Figure 31. Purity of Sca-1+ cell fraction after MACS and Magselectofection procedures. 
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3.5.3. Human peripheral blood mononuclear cells (hPBMCs) 

hPBMCs were isolated by Ficoll gradient and stimulated with Cytostim reagent 24h 

prior magselectofection. Then, magselectofection was performed using transfection 

complexes comprising peGFP/SO-Mag5-6/Df-Gold. The cells were re-stimulated just 

post-magselectofection using 5 µl of the Cytostim solution. In Figure 22, the reporter 

gene expression in hPBMC analysed 24 h post-magselectofection by fluorescence 

microscopy and by FACS is plotted. The results show that aproximately 15 % of the 

PBMC were transfected (Figure 32 A). The transfection efficiency was DNA dose-

dependent (Figure 32 B). In contrast to Jurkat T cells or hUC-MSCs where 20 µg 

DNA/column was found as optimal doses, we found that 5 µg/column is yielding 

highest transfection efficiency (Figure 32 B). This indicates that it is necessary to find 

the optimal DNA dosage for every cell type.  

 

Figure 32. Quantification of eGFP positive hPBMC post-magselectofection by flow cytometry 

and by microscopy. hPBMC were incubated for 30 min on the column with magnetic triplexes SO-

Mag 2/DF-Gold/pBLuc at DNA dosage of 1-20µg DNA per column and  analized 48 h post-

magselectofection. (A) Histogram plots of untransfected hPBMC cells (untx) and cells post-

magselectofection. (B) Percentage of eGFP-expressing hPBMCs versus DNA dosage. (C)Bright field 

(left) and fluorescence microscopy images (right) taken at 490/509 nm for eGFP+ cells green 

fluorescence for hPBMC, scale bar equals 100 µm.  
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Tranductions of hPBMCs were carried out using lentiviral complexes comprising SO-

Mag MNPs. hPBMCs were labelled using CD45 microbeads. Figure 33 A shows that 

the hPBMCs were positively infected in the whole tested MOI range of virus. Serial 

titrations from MOI of 2 to 0.5 pfu/cell were performed in order to analyse the 

infection efficiency in hPBMCs using magselectofection procedure. FACS results 

(Figure 33 B) revealed that up to 20% of eGFP positive hPMBCs were found 3 days 

post-magselectofection at MOI of 2 pfu/cell and the percentage of eGFP+ cells was 

maintained during more than 7 days. Moreover, FACS results (Figure 33 C) show 

that CD4+ cells were expressing the reporter gene (eGFP). 

 

 

Figure 33. Quantification of eGFP positive hPBMC post- viral magselectofection by flow 

cytometry and by microscopy. 2.5 x 10
6
 hPBMCs were labelled using CD45 microbeads and 

transduced with viral magnetic complexes SO-Mag2/LV.eGFP. Cells were stimulated just post-

magselectofecton using the Cytostim reagent. (a) Bright field and Fluorescence microscopies (490/509 

nm) images of hPBMCs 5 days post-magselectofection with different MOI at 20 fg Fe/LVP. (B) FACS 

data on the percentage of eGFP positive hPBMCs versus MOI using the ratio of 20 fg Fe/VP.(C) 

FACS data on the percentage of eGFP positive CD4+ or CD15+ cells. 

 

The results suggest that higher MOI (pfu/cell) is needed to increase the number of 

positive infected cells. We suggest that FACS analysis should be done 7 days and 
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not 5 days post-magselectofection, as was found to be the optimal time point for 

FACS analysis in hUC-MSCs (see Figure 27). 

3.5.4. Magselectofection in hUC-MSCs results in higher transduction efficiency 

compared to magnetofection and standard infection. 

hUC-MSCs were infected at low MOIs using lenti- and adenoviral vectors by 

magselectofection, magnetofection and standard infection procedures.  

 

Figure 34. Efficiency of the transduction of the hUC-MSCs using standard infection, 

magnetofection and magselectofection procedures with lenti- and adenoviral vectors coding 

for eGFP. Fluorescence microscopy images of the transduced cells (at the top, bar=200 µm) and 

FACS data on the percentage of eGFP positive cells transduced at different MOI at day 3 post-

transduction (at the bottom). Magnetic viral complexes were formulated at nanoparticle-to-virus 

particle ratio of 5 and 20 fg Fe/VP for adeno- and lentivirus complexes, respectively. 

FACS analysis and microscopy of the infected cells 3 days post-infection (Figure 34) 

shows that magselectofection resulted in a significant increase in the percentage of 

eGFP+ cells compared to magnetofection and standard infection. At MOI of 0.25 

pfu/cell, the infection efficiency was improved about 7 and 25-fold using lentiviral 

magselectofection compared to magnetofection and standard infection, respectively 

(data shown in Figure 34, left panel). At an MOI of 0.5 pfu/cell, the infection efficiency 



RESULTS 90 

 

 

was improved by approximately 3- and 17-fold when using adenoviral vectors 

compared to magnetofection and standard infection, respectively (Figure 34, right 

panel). 

3.6. Upscale from LS to XS and CliniMACS is possible  

These experiments were carried out together with Dr. Ian Johnston from Miltenyi 

Biotec. 

The first step was to ensure that Magselectofection of Jurkat T cells can be efficiently 

upscaled to the large XS separation columns. To reduce reliance on the expression 

of the intracellular fluorescent protein, EGFP, transfections with a second expression 

system were established. For gene therapy, on goal is to express the IL-2 receptor 

common gamma chain (CD132) in stem cells of SCID patients, therefore we chose a 

molecule that is also expressed at the cell surface: the mouse H-2Kk MHCI molecule. 

2.5x107 Jurkat T cells were labelled with CD45 MicroBeads. Again, the order of 

complex loading was tested and transfection within the XS column was compared to 

a parallel transfection using the same magnetic transfection complexes, in LS 

columns containing 2.5x106 immobilized Jurkat T cells. 

As shown above, application of the magnetic transfection complex prior to cell 

loading in LS columns resulted in higher transfection efficiencies (Figures 35 A and 

D; 19.8% GFP+ cells) than adding the complex after the Jurkat T cells application 

(Figure 35 A; 9.5% GFP+ cells). This was also true using the murine 

histocompatibility antigen H-2Kk (Figures 35 A and C). Following Magselectofection 

in Jurkat T cells H-2Kk was similarly expressed to EGFP (Figure 35). An added 

advantage of the use of the H-2Kk system is that antibody conjugates can be used to 

stain the expressed molecule that are conjugated to different fluorescent dyes. This 

flexibility is especially relevant when working with SM4-31 and DreamFect Gold lipids 

which tend to show strong yellow and green background fluorescent signals. While 

the high transfection efficiencies seen in LS columns were not achieved in XS 

columns (Figure 35 E), no performance differences could be seen when alternative 

column loading protocols were used (Figure 35 A). It should be noted that while the 

cell number to be transfected in the XS columns has been increased by a factor 10, 

the amount of transfection complex has only been increased by a factor of 4 while the 

total column volume is in fact 18 times larger. These variables should be further 

investigated to see whether additional performance increases in XS columns are 
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possible. The current partial reagent upscale was chosen mainly to limit reagent 

consumption. 

 

 

Figure 35. Transfection of Jurkat cells can be successfully upscaled to XS columns. Jurkat T 

cells were labelled with CD45 MicroBeads and 2.5x106 (LS) or 2.5x107 (XS) cells were added to a 

MACS separation column before (E) or after (B–D) loading the column with magnetic transfection 

complex. The transfection complex for XS columns consisted of 80 µg pmaxGFP, 80 µg S35 magnetic 

beads and 320 µL DreamFect Gold. For LS columns, the complex consisted of 20 µg pmaxGFP or 

pCMV.Kk plasmid, 20 µg S35 magnetic beads and 80 µL DreamFect Gold. After rinsing the columns 

with 0.5 mL (LS) or 3 mL (XS) RPMI, the cells were incubated for 30 minutes at room temperature. 

The cells were then eluted and cultivated for 48 hours. Transfected cells were stained with anti-H-2Kk-

APC (C-E) or IgG2a-APC isotype control conjugate (B) and analysed using a MACSQuant flow 

cytometer. nd: not detectable 

 

As XS columns are the columns used in the CliniMACS device, we were interested to 

know whether the Magselectofection procedure can be applied using CliniMACS. 

Separation of cells on the CliniMACS® plus instrument requires automated cell 

processing steps to be carried out in a closed system of tubes and bags (CliniMACS 
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Tubing set, Figure 36 A). To optimise the Magselectofection process, it is essential 

that the transfection complex can be administered to the separation column 

independently of the labelled cells – this was not possible in the earlier feasibility 

studies carried out with HEK-CD4 cells. To this end, Mitenyi Biotec generated a 

tubing set modification (Figure 36 B) which enables the transfection complex to be 

applied to the separation column via syringe and the column flow-through to be 

collected in a second syringe. During normal operation, the flow of buffers within the 

CliniMACS Tubing Set is directed by computer-operated valves. To add a new 

function to the tubing set, 3-way taps were welded to the tubing set above and below 

the separation column (Figure 36 C). After completion of the cell sorting process, the 

process can be paused, the taps opened and the transfection complex applied 

(Figure 36 D). The taps are then closed and the cells incubated on the column for 30 

minutes before resumption of the separation program and elution of the cells (This 

work was performed with the collaboration partner Miltenyi Biotec). 

 

Figure 36. CliniMACS Tubing Sets for Magselectofection: prototype 1. (A) Standard CliniMACS 

Tubing Set. (B, C) CliniMACS Tubing Set modified with 3-way tap to allow in-process application of 

magnetic transfection complex. (D) Application of pmaxGFP, S35 magnetic particle, DreamFect Gold 

transfection complexes to 2.5x10
7
 CD45 MicroBead-immobilized Jurkat T cells. 

 

The transfection efficiencies seen in the CliniMACS (Figure 37) were similar but 

significantly lower than those seen using XS columns. No significant differences in 
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transfection efficiencies could be seen using either of the prototype tubing sets or 

when using RPMI or PEB to generate the magnetic transfection complexes. The only 

protocol difference between the XS column process and the CliniMACS process is 

that a wash step occurs before the elution of the Magselectofected cells. If this wash 

step is too rigorous, it could account for the reduction in transfection efficiencies. This 

factor could be eliminated by suitable changes to the CliniMACS software. 

 

 

Figure 37. Magselectofection of Jurkat cells in prototype CliniMACS Tubing Sets. Jurkat T cells 

were labelled with CD45 MicroBeads. 2.5x10
6
 labelled cells were added to an LS separation column, 

and washed with 0.5 mL PEB before loading the column with magnetic transfection complex. For 

CliniMACS separations, 2.5x10
7
 cells were applied to a cell application bag, connected to the tubing 

set and separated using the CD34 Separation Program. During the third wash step, the separation 

was paused and the column was loaded with magnetic transfection complex. The transfection complex 

for CliniMACS columns consisted of 80 µg pmaxGFP or pCMV-Kk, 80 µg S35 magnetic beads and 

320 µL DreamFect Gold. For LS columns, the complex consisted of 20 µg pmaxGFP or pCMV.KK 

plasmid, 20 µg S35 magnetic beads and 80 µL DreamFect Gold. After rinsing the columns with 0.5 mL 

(LS); 0 mL (Prototype 1) or 8 mL (Prototype 2) PBS/EDTA/BSA or RPMI, the cells were incubated for 

30 minutes at room temperature. The cells were then eluted from the LS columns manually and from 

the CliniMACS Tubing Sets by resuming the separation program. The eluted cells were cultivated for 

48 hours. Transfected cells were stained with anti-H-2Kk-APC (C, D), or IgG2a-APC isotype control 

conjugate (B) and analysed using a MACSQuant flow cytometer. Jurkat cells transfected with pCMV-

Kk in CliniMACS Prototype Tubing Set 2 (B, D) or LS column (C) with the transfection complex 

prepared in RPMI. nd: not detectable. 
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3.7. Preliminary study of the in vivo biodistribution of the hUC-MSCs 
and hCB-HSCs: first pilot study 

3.7.1. Biodistribution of the magnetically labeled hUC-MSCs after 

magselectofection  

hUC-MSCs were magnetically labelled using 50 pg Fe/cell of the SO-Mag2 magnetic 

nanoparticle 24 h prior magselectofection. For this purpose, the MNPs were added to 

the cells. Then, the cells were incubated for 20 min under magnetic field (96 well 

magnetic plate). Afterwards, the magnetic plate was removed and the cells were 

cultivated for 24 h. Viral magselectofection of hUC-MSCs was carried out as 

described above using a MOI of 0.2 pfu/cell and 20 fg Fe/LVP. Microscopy and FACS 

analysis revealed that SO-Mag2 magnetically labelled hUC-MSCs were more 

efficiently transduced than the non-magnetically labelled with SO-Mag2 (39.2% vs 

19.1 %, respectively) (Figure 38). The non-magnetically labelled cells with SO-Mag2 

nanoparticles were injected into mice 72 h post-magselectofection and 24 h post 

injection animals were sacrificed. The entire harvested organs were weighed, 

transferred to a cryovial with freeze tissue liquid and immersed in liquid nitrogen to 

allow fast freezing. Then, cryovials were stored at -80°C until analysis. These tissues 

were used for determination of iron content and histological examination. 

Non-heme iron determination was carried out as described in material and methods. 

Non-heme iron was calculated from the total iron content in each tissue, from which 

the endogenous iron content for the respective tissue from control animals (saline 

injected) was subtracted. 
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Figure 38. eGFP reporter gene expression in hUC-MSCs after viral magselectofection of the 

cells magnetically labelled with CD105 MicroBeads or with SO-Mag2 MNPs prior to 

magselectofection. 10
6
 hUC-MSCs per LS Column were magnetically labelled just before 

magselectofection with CD105 MicroBeads or 24 h prior to magselectofection with SO-Mag2 magnetic 

nanoparticles at a dose of 50 pg Fe/cell and transduced at MOI of 0.2 pfu/cell with viral magnetic 

complexes SO-Mag2/LV.eGFP formulated at MNPs-to-VP ratio of 20 fg Fe/VP using the 

magselectofection procedure. The cells were analysed for eGFP expression 2 days post-

magselectofection. (a) Bright field and fluorescence microscopy (490/509 nm) images of hUC-MSCs 

labelled with CD105 MicroBeads prior to magselectofection. Bar=200 µm. (b) FACS data on the 

percentage of eGFP positive hUC-MSCs for the cells labelled prior to magselectofection with CD105 

Microbeads (left graph) or with SO-Mag2 MNPs (right graph).  

 Table 6. Exogenic iron (µg/g trissue) biodistribution 

M5: control mice 
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In table 6 the biodistribution of exogenic iron is summarized.  Changes in iron levels 

varied from tissue to tissue. The highest exogenic iron levels were found in the right 

lung followed by spleen and kidney. No exogenic iron was found in the liver and other 

analysed organs. The results from exogenic iron analysis correlated with the 

histological results of Prussian blue staining (Figure 39). 

 

 

Figure 39. Bright field microscopy images of the lung, spleen, kidney and liver tissue sections 

of the mice r after Prussian Blue staining for non-heme iron, bar= 100 µm. 

 

From the exogenic iron results and taken into account that the injected cells 

contained on average 28.3 pg Fe/cell we were able to calculate the amount of hUC-

MSCs per organ. In Figure 40 the cell biodistribution is represented. We can observe 

that hUC-MSCs were primarily found in lung and spleen and very few in kidneys. The 

result correlates with the histological results (Figure 41). 
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Figure 40. Biodistribution of hUC-MSCs in mouse tissues. Evaluation of the cell distribution in 

mice tissues derived from the data on the exogenic iron concentration in tissues with account for the 

iron content in the cells of 28.3 pg Fe/cell. 

 

 

Figure 41. Microscopy images of the tissue sections of the mice after i.v. injection of the hUC-

MSCs transduced using magselectofection technology, bar= 100 µm.   
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3.7.2. Biodistribution of hCB-HSCs post- magnetic cell labeling 

hCB-HSCs were magnetically labelled with SO-Mag2 magnetic nanoparticles using 

50pg Fe/cell. Microscopy revealed that hCB-HSCs were magnetically labelled (Figure 

42). Cells were injected into mice 24 h post-labeling. 24 h post injection animals were 

sacrificed. The entire harvested organs were weighed, transferred to a cryovial with 

freeze tissue liquid and immersed in liquid nitrogen to allow fast freezing. Then, 

cryovials were stored at -80°C until analysis. These tissues were used for 

determination of iron content and histological examination. 

 

Figure 42. Bright field microscopy image of magnetically labelled hCB-HSCs using 50pg Fe/cell 

of the SO-Mag2 magnetic nanoparticle. 

 

Non-heme iron determination was carried out as described in material and methods. 

Non-heme iron was calculated from the total iron content in each tissue, from which 

the endogenous iron content for the respective tissue from control animals (saline 

injected) was subtracted.   

In Table 7, the biodistribution of exogenic iron is summarized.  Changes in iron levels 

varied from tissue to tissue. The highest exogenic iron levels were found in the right 

lung followed by kidney. No exogenic iron was found in liver or other analysed 

organs. The results from exogenic iron analysis correlated with the histological 

results of Prussian blue staining (Figure 43). 
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Table 7. Exogenic iron (µg/g trissue) biodistribution 

M10: control mice 

 

 

Figure 43. Bright field microscopy images of the lung, spleen, kidney and liver tissue sections 

of the mice r after Prussian Blue staining for non-heme iron, bar= 100 µm. 

 

From the exogenic iron results and taken into account that the injected cells 

contained on average 15.1 pg Fe/cell we were able to calculate the amount of hCB-

HSCs per organ. In Figure 44 the cell biodistribution is represented. We can observe 

that hCB-HSCs were primarily found in lung and kidney and very few in the other 

organs. 

. 
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Figure 44. Biodistribution of the hCB-HSCs in mice tissues derived from tissue analysis for 

exogenic non-heme iron. Evaluation of the cell distribution in mice tissues derived from the data on 

the exogenic iron concentration in tissues with account for the iron content in the cells of 15.1 pg 

Fe/cell. 
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4. DISCUSSION 
In recent years, cellular engineering using viral and non-viral technologies has 

emerged as a potential tool for the treatment of various diseases (Aiuti et al., 2009),   

(Cavazzana-Calvo and Fischer, 2007), (Williams, 2008). Given this tremendous 

potential, an obvious question lies in why these therapies with ex vivo engineered 

cells have not become widely practiced state-of-the-art treatments. The answer is 

that the full potential of cellular engineering can only be realized if efficient, safe, 

affordable and standardized technologies for cell manipulation are available. No 

single technology known today fulfills all of these requirements. The current 

technologies for cellular engineering with viral vectors have proven potential for 

clinical therapy but are faced with labor-intensive, time-consuming and inefficient 

processing, resulting in high production costs. The advantage of the high transfection 

rates achieved with electroporation or nucleofection for non-viral nucleic acid delivery 

is counteracted by the discontinuous working process and the unavailability of closed 

devices. Given these challenges, there is a need to investigate and develop new 

technologies that allow the production of engineered cells in an efficient, simple and 

practical way (Goverdhana et al., 2005). This is indeed the focus of this thesis. 

Here, we have established a new method to separate and genetically modify target 

cell populations in a single procedure using magnetic cell separation columns. We 

demonstrate that this new approach works efficiently for both viral and non-viral 

vectors, allowing a high transfection/transduction efficiency in several cell lines and 

primary hematopoietic and mesenchymal stem cells from the umbilical cord. We 

show that the performance of cell sorting and cell recovery are not affected by 

magselectofection and that the function, viability and differentiation potential of the 

cells are not impaired. 

4.1. The role of magnetic nanoparticles and enhancers in gene delivery 
efficiency 

As a parameter of genetic modification efficiency, the percentage of transgene-

expressing cells is of primary importance. The steady-state intracellular concentration 

of the reporter protein does not have to be high, but ideally would be adjustable to a 

threshold that allows the desired effect, as, for example, in the case of the alpha 

subunit of the interleukin-2 receptor (CD25) (Ellery and Nicholls, 2002).  Magnetic 

lipoplexes formulated with Df-Gold lipid and SO-Mag2 nanoparticles have shown the 
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highest percentage of eGFP-expressing cells using magselectofection compared to 

other magnetic lipoplexes (see Figure 25 A). In contrast, relatively low efficiency was 

obtained using magnetic lipoplexes formulated using SO-Mag2 with SM4-31 as the 

lipid (see Figure 25 A). However, SO-Mag2/SM4-31 magnetic lipoplexes yielded 

higher transfection efficiency in terms of luciferase expression (see Figure 25 B). 

Commercially available CombiMag nanoparticles are another useful example. The 

complexes formulated with these particles ensure the highest luciferase expression 

levels but a relatively low percentage of transfected cells when compared to other 

―leaders‖ (see Figure 13). From this point of view, we speculate that it is 

advantageous to have a spectrum of magnetic nanoparticles and lipids available for 

formulating magnetic vectors and hence for flexibly regulating the level of transgene 

expression post-magnetofection/magselectofection. 

4.2. Development of magnetic vectors 

The first essential steps for efficient magselectofection are the generation of 

nanomagnetic vector formulations and magnetically-labeled cells. We have 

determined that magnetic lipoplexes with Dreamfect-Gold and suitable MNPs at 

iron:DNA (w/w) ratios of 0.5 and 1 with non-viral vectors yield high magnetofection 

and magselectofection efficiency, respectively. For magnetic viral vectors, it is 

essential to formulate the compositions in terms of iron weight per physical virus 

particle, and not per infectious virus particle, taking into account that both infectious 

and non-infectious virus particles associate with appropriate MNPs. Therefore, once 

a suitable ratio that allows quantitative virus particle binding has been identified, this 

ratio can be applied to any other virus preparation even without knowing its biological 

titer. We speculate that it is advantageous to have a spectrum of magnetic 

nanoparticles available for formulating viral and non-viral magnetic vectors.  In our 

study, we have used in-house synthesized magnetic nanoparticles (Mykhaylyk et al., 

2007a; Mykhaylyk et al., 2010), but magselectofection can be carried out by anyone 

with commercially available magnetofection reagents ((see Figure 15; (Hofmann et 

al., 2009; Kadota et al., 2005)). The complexes synthesized in this study present 

binding efficiencies between nucleic acid and magnetic nanoparticles comparable to 

other published studies (Mykhaylyk et al., 2007a), (Mykhaylyk et al., 2009b), 

(Mykhaylyk et al., 2010). Although several research groups have used 

magnetofection for viral infection (Bhattarai et al., 2008), (Sacha et al., 2007), no data 
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can be found about the binding efficiency between a virus and magnetic 

nanoparticles. We have demonstrated that more than 94% of the virus can be bound 

with magnetic nanoparticles (Cengizeroglu, 2008). 

Efficient magnetic lipoplexes used for magnetofection and magselectofection were 

relatively large (from about 500 nm to 3 µm) compared to non-magnetic lipoplexes 

(about 700 nm), with surface charges ranging from slightly negative to slightly 

positive (about +25 eV) when measured in the absence of serum (see Tables 2 and 

3). Thus, we can say that the net charge of the complex does not affect their 

internalization or the final gene expression level. An interesting result was obtained 

when the size and the electrokinetic potential of the magnetic lipoplexes were 

measured under conditions mimicking our transfection experiments (in the presence 

of 10% FCS; Table 3). Size was greatly increased for all complexes, indicating that in 

the presence of FCS, the magnetic complexes tend to aggregate. The complexes 

show negative charges (about -10 eV). According to magnetophoretic mobility 

measurements, 30,000-40,000 up to 400,000 MNPs were associated with the lipid 

component and plasmid in a complex, resulting in an average magnetic moment at 

the saturation magnetization of about (4-5)x10-15 to (1-2)x10-13 Am2, depending on 

whether the magnetic complexes were prepared for magnetofection or for 

magselectofection. Ogris et al. (Ogris et al., 1998) reported that aggregated DNA/Tf-

PEI complexes with an average size greater than 500 nm resulted in more efficient 

gene transfer than did smaller particles. Ross et al. (Ross and Hui, 1999) provided 

evidence that the size of the DOTAP/DOPE lipoplexes was the major determinant of 

the internalization and transfection efficiency and found the largest complexes (of 2.2 

µm) to be the most efficient in Chinese hamster ovary (CHO) cells. Li et al. (Li et al., 

2005) found size, and not surface charge, to be a major determinant of the in vitro 

lipofection efficiency of a TFL-3 cationic lipid composed of lipid components in a 

pDNA/TFL-3 complex. We observe a direct relationship between the size of the 

complex and transfection efficiency, but complexes as large as 2 µm can deliver 

genes very efficiently. Nevertheless, complexes with an average hydrodynamic 

diameter of about 200-400 nm can also be very efficient, like those formulated with 

the PEI-Mag3 nanoparticles. These results indicate that the size and charge of the 

magnetic vectors tested here were not of critical importance for gene delivery to cells. 

Apparently, fine differences in the composition of the surface layer of the particles 

cause more significant differences in the efficiency of the derived magnetic 
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lipoplexes, as observed for the NDT-Mag1, PEI-Mag2, PEI-Mag3, SO-Mag2, PalD1-

Mag1 and PL-Mag1 particles. 

4.3. Establishment of the magselectofection procedure 

4.3.1. Modification of LS Miltenyi’s columns with magnetic vectors 

Magselectofection turned out to be an extraordinarily simple procedure after we had 

established a method of quantitative and reversible magnetic vector retention on 

commercially available MACS cell separation columns that enabled more than 80% 

association between vectors and magnetically–labeled target cells (see Figure 19). 

We demonstrate here that immobilization of the complexes on the column is 

reversible, depending on the column preparation procedure. For a standard column 

preparation, the complexes are reversibly bound to the column, which enables further 

efficient association with magnetically labeled cells. In contrast, irreversible binding of 

the complexes to the column was observed using a freeze-drying procedure for 

column preparation, resulting in a low recovery of DNA after elution and low DNA cell 

association (see Figure 19). This gives an explanation for the low transfection 

efficiency observed when magselectofection was performed using the lyophilized 

column (see Figure 24 E). The irreversible binding of the complexes to the column 

can be explained by the high magnetization of the complexes due to their overnight 

exposure to a magnetic field. Therefore, the standard column preparation procedure 

was selected for further experiments. 

The essential parameters in magnetic cell sorting are cell recovery, purity of target 

cells, viability and biological functionality. Magselectofection meets all of these 

parameters and also provides efficient transfection/transduction of the target cells. 

To obtain maximum target cell purity, protocols for magnetic cell sorting recommend 

two steps of magnetic selection. Nevertheless, when establishing magselectofection 

with the Jurkat/K562 model system, we were interested in determining whether or not 

a one-column system would work. We found that while transfection efficiency was 

high, the resulting target cell purity was better when using the two column procedure, 

although cell retention, separation efficiency and recovery were not affected 

compared to the unmodified column. However, the one-column procedure turned out 

to be an excellent method when working with cell lines or already purified cells. For 

an integrated protocol with a cell mixture, the two-column format turned out to be 
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optimal. Cells are sorted on the first column and then brought in contact with 

transfection/transduction complexes on a second column. In this case, the cell 

separation efficiency was as high as when using the cell separation-only protocol of 

the manufacturer (ca. 95%, Figures 22 and 23), and cell recovery was quantitative. 

This was not only true for the model Jurkat/K562 mixture, but also for Sca-1+ mouse 

hematopoietic stem cells isolated from the bone marrow of C57BL/6 mice (see Figure 

31). Importantly, the selectivity of the transfection/transduction process for the target 

cell population was excellent (Figures 22 and 23).  

Recently, a novel stem cell Tag-Less sorting method has been published (Roda et 

al., 2009). The advantage of magselectofection over other cell separation/sorting 

technologies is that when using magselectofection, the cells are separated and 

genetically modified in one integrated step.  

4.3.2. Genetic modification of different cell types using magnetofection and 

magselectofection procedures 

The data for the percentage of eGFP-expressing cells reported in this work are 

calculated from FACS data using the corresponding magnetic and non-magnetic 

lipoplexes, with luciferase plasmid as a reference to account for the weak 

fluorescence of the enhancer. The subtraction of this background gives a ―true‖ 

percentage of eGFP-expressing cells. The results calculated in this way were in 

agreement with time-consuming quantification of combined bright and fluorescent 

microscopy images (see Figure 11). It is known that various cationic lipids frequently 

exhibit a white to orange color fluorescence when added to cells (personal 

communication at the website http://www.bio.net/bionet/hypermail/methds-

reagnts/1998-August/069931.html), but this problem is rarely discussed and 

apparently often neglected, thus leading to overestimation of the achieved 

transfection efficiency. 

4.3.2.1. Jurkat T cells 

The highest reported efficiency for the transfection of Jurkat T cells with non-viral 

vectors is 19% (Uduehi et al., 2003), which was achieved using triplexes of integrin-

binding peptide, Lipofectin and pDNA for cells stimulated with 1 ng/mL of phorbol 12-

myristate 13-acetate (PMA) during or after transfection. This stimulation increased 

http://www.bio.net/bionet/hypermail/methds-reagnts/1998-August/069931.html
http://www.bio.net/bionet/hypermail/methds-reagnts/1998-August/069931.html
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the transgene expression for luciferase plasmid complexes 3- to 5-fold. Guillem et al. 

(Guillem et al., 2002) achieved 9.7±1.2% eGFP-positive Jurkat T cells after 

transfection with anti-CD3 immunopolyplexes. The vector was formulated using a 

streptavidin-polyethyleneimine conjugate associated with biotin-labeled CD3 

antibodies associated with the eGFP plasmid, N/P=10. Additional treatment of cells 4 

h post-transfection with the ―Booster #1‖ lipid transfection reagent resulted in 15% 

eGFP-positive cells. Puls et al. (Puls and Minchin, 1999) found that anti-CD4 

antibody-polylysine-DNA complexes selectively and efficiently transfect Jurkat T 

cells. The luciferase expression in Jurkat T cells was enhanced 3-fold by treatment 

with 100 ng/mL PMA upon transfection with luciferase plasmid immunopolyplexes. 

The authors claimed that 95% of the post-transfection Jurkat T cells were eGFP-

positive using eGFP plasmid immunopolyplexes combined with PMA treatment, 

according to confocal microscopy eGFP fluorescence images. Supporting 

quantitative FACS data on the percentage of eGFP-positive cells were not provided 

in the article, making it difficult to unambiguously estimate the transfection efficiency 

of Jurkat T cells achieved with this approach. 

The first experiment in this work was to analyze whether Jurkat T cells, chosen in this 

work as a model of suspension cells, can be genetically modified using the 

magnetofection procedure. For this purpose, we compared the ability of PEI-25Br 

polyplexes, Lipofectamine 2000 and DF-Gold lipoplexes and those combined with the 

PEI-Mag2 nanoparticles to transfect Jurkat T cells. The resulting low transfection 

efficiency of both the magnetic and non-magnetic vectors of polyethylenimin and 

Lipofectamine 2000 could be attributed to the membrane damage and apoptosis in 

Jurkat T cells reported by Moghimi et al. (Moghimi et al., 2005) for 

polyethyleneimines and to the toxicity of Lipofectamine 2000 lipoplexes (Nguyen et 

al., 2007). In contrast, DF-Gold lipoplexes efficiently transfected Jurkat T cells using 

magnetofection.  

Commercial CombiMag, PolyMag and several domestic magnetic nanoparticles 

(either positively or negatively charged), which were associated with DNA in the 

presence of DF-Gold at a DF-Gold-to-plasmid v/w ratio of 4 and iron-to-DNA w/w 

ratio of 0.5, were tested for transfection efficiency upon magnetofection. Selected 

magnetic DF-Gold lipoplexes prepared at an iron-to-plasmid w/w ratio of 0.5 using 

NDT-Mag1, PEI-Mag1 and PalD1-Mag1 nanoparticles increased the transfection 
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efficiency considerably compared to lipofection without causing cell toxicity. At 

applied eGFP plasmid doses of 250-500 ng per 20,000 cells, up to 28% and 9% of 

the cells expressed eGFP post-magnetofection and post-lipofection, respectively. 

These results clearly show that the magnetofection procedure is a more efficient 

method for transfecting Jurkat T cells than other conventional transfection methods. 

Lipoplexes formulated with our synthesized nanoparticles resulted in at least a 2-fold-

higher percentage of eGFP-positive Jurkat T cells compared to lipoplexes formulated 

with commercially available CombiMag or PolyMag (see Figure 13). 

In order to increase the transfection efficiency in Jurkat T cells, the magnetofection 

procedure was combined with some compounds that destabilize cell membranes, 

such as glycerol and DMSO. Glycerol has been reported to increase the transfection 

efficiency of ligand-coupled polyplexes in different cell lines as well as in some 

primary human fibroblasts under specific conditions (Zauner et al., 1996). In another 

study, mouse L cells were first transfected with DEAE-dextran polyplexes of the 

reporter gene, followed by a short, 2-min shock with 10% DMSO 4-20 h after 

transfection (Lopata et al., 1984). This treatment resulted in a 50-fold improvement of 

transgene expression. Neither glycerol nor DMSO augmented gene transfer by 

magnetofection in Jurkat T cells and resulted in high toxicity. These data are in 

agreement with the findings of Zauner et al. (Zauner et al., 1996)., who observed no 

positive effect from a glycerol shock on transfection efficiency when using the lipid 

transfection reagent DOTAP, the cationic lipopolyamine Transfectam® (Zauner et al., 

1996).  

Once we demonstrated that the magnetofection procedure can be applied for genetic 

modification of Jurkat T cells, the transfection efficiency of the novel 

magselectofection procedure was evaluated. Transfection efficiency using the 

magselectofection and magnetofection procedures was comparable in terms of the 

percentage of transfected cells. In contrast, large differences in transfection efficiency 

can be seen in terms of protein expression (see Figure 25). The magnetic field of the 

MidiMACS magnet in the vicinity of the cells could be higher than those at the 

magnetic plate during the standard magnetofection procedure. The difference in the 

magnetic field gradient could explain why more copy numbers of pDNA are delivered 

into the cells using magselectofection and why those cells produce higher amounts of 

protein. 
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At this point, a proof-of-principle of the magselectofection procedure was 

demonstrated. 

4.3.2.2. Primary and stem cells 

Having established a magselectofection method yielding high target cell purity and 

cell recovery, as well as high efficiency and specificity of transfection/transduction 

with a model mixture of cell lines, its utility with primary cells remained to be proven. 

We chose to study human mesenchymal and hematopoietic stem cells from the 

umbilical cord, because these cells are relevant in ongoing and future clinical 

applications of genetically engineered cell therapies (Cartier and Aubourg, 2008), 

(Song et al., 2010), (Bordignon, 2006), (Cavazzana-Calvo and Fischer, 2007). 

Magselectofection of hUC-MSCs with non-viral magnetic complexes, at a low vector 

dose of 8 pg plasmid/cell, resulted in  more than 85% cell viability and yielded 29% of 

the cells expressing the eGFP reporter gene 3 to 7 days post-magselectofection (see 

Figures 26 A and B). This compares favorably with standard transfections, as 

reported by Yang et al. (Yang et al., 2009), who obtained 27% transfected cells with 

40 pg DNA/cell. Among the non-viral methods, only electroporation (nucleofection) 

was reported to be superior in terms of transfection efficiency; however, it was at the 

expense of cell viability (Aslan et al., 2006). Hence, magselectofection and 

nucleofection yield approximately the same number (about 25%) of viable genetically 

modified hUC-MSC from an original cell number. The transient transgene expression 

in hUC-MSCs observed in our experiments is in agreement with the literature (Aslan 

et al., 2006), (Papapetrou et al., 2005). The reason for the transient gene expression 

may be due to the fact that common plasmids are unable to replicate in mammalian 

cells and are usually rapidly lost from cells during cell division (Papapetrou et al., 

2005). Stable non-viral gene delivery can be achieved using a Streptomyces 

bacteriophage-derived φC31 integrase. It has been recently shown that the φC31 

integrase system could have potential for the treatment of lung diseases (Aneja et al., 

2007). Unfortunately, this system did not work with hematopoietic cells (Maucksch et 

al., 2008). 

It has been reported that using electroporation, around 16 and 5% of PBMC and 

HSCs were positively transfected with 1.3 pg DNA/cell, respectively, with low toxicity 

(< 5%)  (Van Tendeloo et al., 2000). We present that an increase in the DNA dose, 

up to 8 pg DNA/cells, does not increase the transfection efficiency.  
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High efficiency was also observed for viral magselectofection of hUC-MSC (Figure 

27) and hUC-HSCs (Figure 30), which, as expected, yielded higher percentages of 

genetically modified cells than the non-viral counterpart. Importantly, lentiviral 

magselectofection performed with hUC-HSCs at a low cell density resulted in 21% 

eGFP-positive cells, while the standard infection failed under these conditions 

(Figures 30 a and c). This is relevant because a low cell number and density of hUC-

HSCs reflects a situation with clinical isolates. Lentiviral magselectofection also 

yielded excellent results with Sca-1+ Lin- mouse cells, which are used in Il2rg-/- 

mouse models (Orschell-Traycoff et al., 2000). Here, MOIs of only 3 during 

magselectofection yielded 35% to 50% transduced cells (Figures 30 d and e) 

compared to only 9.5% with an MOI of 5 to 8 using a standard transduction protocol 

for Lin- bone marrow cells, as reported previously (Cai et al., 2008). 

Under optimized transduction conditions, viral magselectofection of hUC-MSCs at an 

MOI as low as 0.5 pfu/cell (as determined using CMS5 cells and a standard 

polybrene infection) resulted in 60-100% transduced cells, depending on the donor 

(Figure 27). Reporter gene expression upon lentiviral magselectofection in hUC-

MSCs was stably maintained for one month for most of the donors, whereas for some 

of the donors a gradual decrease in the transgene expression was observed (Figure 

27 B, left graph). Significant inter-donor variations in the transduction efficiency and 

in the persistence of transgene expression for hUC-MSCs have previously been 

reported (Kyriakou et al., 2006), (Pannell et al., 2000). A similarly high transduction 

efficiency to that obtained with lentiviral magselectofection of hUC-MSCs was 

reported earlier, but only for infection at a high MOI of 20 (Koponen et al., 2007). The 

cell viability upon adenoviral or lentiviral magselectofection was high (> 85% living 

cells). The apparently paradoxical result of achieving 100% transduction for hUC-

MSCs at 0.5 MOI clearly demonstrates that the infectivity of the virus is determined 

by both the concentration of infectious particles in the preparation and the 

internalization efficiency of the particles. This suggests that the measured virus titers 

are highly dependent on the method of virus titration. Magnetofection and 

magselectofection lead to rapid contact between the target cells and the applied 

vector dose ((Furlani and Ng, 2008) and Figure 19) and also lead to improved vector 

uptake ((Mykhaylyk et al., 2010) and figures 17 and 21). With standard protocols, 

transfection/transduction kinetics and efficiency are dominated by diffusion (Luo and 

Saltzman, 2000). Hence, protocols that do not promote vector-target cell contact will 



DISCUSSION 110 

 

 

necessarily lead to an underestimation of biological vector titers. We propose that 

magselectofection or magnetofection can be used as a tool to estimate the biological 

virus titers more realistically. 

Importantly, as shown in Figures 26 and 28, the differentiation potential of hUC-

MSCs into an osteogenic lineage was not impaired by the magselectofection 

procedure. Our results are in accordance with those obtained by Kalajzic et al. 

(Kalajzic et al., 2001), who demonstrated that VSV-G pseudotypes retroviral vectors 

are suitable for introducing genes into osteoprogenitor cells without affecting 

osteoprogenitor lineage progression. The same result was observed with hCB-HSCs 

(see Figure 30). This is important, especially considering that cellular engineering 

with stem cells has the potential to be used to cure diseases like SCID or used for 

bone or myocardial regeneration. 

Our findings suggest that magselectofection yields superior results to many other 

transfection/transduction procedures (see Figure 34), and it is broadly applicable with 

non-viral and viral vectors. It is already known that the application of a gradient 

magnetic field to different cell lines can deliver a high concentration of transfection 

vectors at the cell membrane (Huth et al., 2004), (Mykhaylyk et al., 2009b), 

(Mykhaylyk et al., 2010). Enhancement of viral gene delivery to suspension cells 

using magnetofection with cationic chitosan-coated iron oxide nanoparticles has also 

been reported (Bhattarai et al., 2008). This could explain why magselectofection and 

magnetofection are more efficient than standard infection procedures. Interestingly, 

adenoviral magselectofection outperformed the same procedure carried out in a 2-

dimensional format (magnetofection) (see Figure 34). This may be due to the 

stronger magnetic forces prevailing in a high gradient field magnetic separation 

column, and also to the high concentration of ―reactants‖ (vectors and cells) under 

magselectofection conditions. 

4.4. Internalization of the magnetic complexes 

Our results imply that the magnetic nanoparticles not only play a ―vehicle‖ role, by 

enhancing internalization and increasing the intracellular concentration of the 

plasmid, but can also stimulate endosomal escape, modulate further turnover of the 

complexes, stabilize the plasmid and ultimately increase the transfection efficiency. 

This statement is supported by the fact that magnetofection results in a 1.5-fold 
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increase in the percentage of cells that have internalized the complexes, but leads to 

a 3- to 4.5-fold enhancement in transgene expression levels, depending on the type 

of particles used to formulate the complexes. Up to 50 and 60% of the Jurkat T cells 

had internalized the magnetic complexes 48 h post-magselectofection or 

magnetofection, respectively, and up to 45% of the cells internalized the non-

magnetic lipoplexes (see Figure 17 and 21). In addition, up to 28-30% and 9% of the 

Jurkat T cells express the eGFP reporter gene post-

magnetofection/magselectofection and post-lipofection, respectively. Moreover, in our 

results one can see that magnetic complexes formulated with SO-Mag2, PEI-Mag2 

and PEI-Mag 3 magnetic nanoparticles are equally internalized into Jurkat T cells 

(see Figure 25). However, transfection efficiency is different for each one. Indeed, 

slight differences in the surface composition of the particles lead to differences in the 

percentage of reporter-expressing cells and the level of transgene expression (Figure 

13 and 25). Sauer et al. (Sauer et al., 2009) reported that the increase in transfection 

efficiency using magnetofection is suggested to be caused by an increased amount 

of complexes bound to the cell surface, because magnetofection does not seem to 

influence the internalization mechanics, and magnetofection does not seem to induce 

efficient endosomal release. Pradhan et al. (Pradhan et al., 2010) recently showed 

that no enhancing effect from folate receptor targeting was observed in FACS 

analysis of uptake in both KB and Hela cells, unless the uptake was supported by 

magnetic targeting. In this work, it is shown that when biologic and magnetic targeting 

were combined, the enhancement of uptake was synergistic, being about 8-fold in KB 

and 42-fold in HeLa cells. Other authors have recently reported (Kim et al., 2008), 

(Yang et al., 2008) that the uptake can be enhanced due to the combined effects of 

receptor targeting and a magnetic field on the cellular uptake of folate-targeted 

multifunctional compositions comprising magnetic nanoparticles and doxorubicin. 

Internalization experiments for magnetic virus complexes were not performed. 

Nevertheless, the difference in transduction efficiency observed using standard 

infection, magnetofection and the magselectofection procedure is indicative of an 

unequal internalization efficiency or internalization pathway of the virus particles.  A 

magnetic field can deliver a high concentration of transfection vectors at the cell 

membrane, and this can explain why magselectofection and magnetofection are 

more efficient than the standard infection procedure. The high magnetic field gradient 

of the MidiMACS magnet used for magselectofection can lead a higher concentration 
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of magnetic complexes to the cells than is achieved using magnetofection, which 

leads to higher internalization of virus particles.  

4.5. Critical parameters in optimizing magselectofection 

The data in Figure 24 D show that the addition of the magnetic complex before the 

cells were loaded on the column gave the best transfection results. A white-powder 

was observed in the surround of the beginning of the column after a 30-minute 

incubation time at the MidiMACS magnet when the cells were added to the column 

before the complex. This powder corresponds to the dried complex. An explanation 

for this phenomenon could be that the column is blocked when the cells are added. 

Then, when the magnetic complex solution is applied, it cannot diffuse through the 

column. Hence, the cells are not in contact with the magnetic complexes. We also 

observed that increasing the number of target cells used for transfection in the LS 

columns resulted in a reduction in transfection efficiency, possibly due to the fact that 

the DNA becomes limited. If the number of cells is increased, the amount of vector 

also has to be increased. However, our results imply that higher amounts of DNA 

improved transfection efficiencies, although a high level of toxicity was detected (> 

30%) (Figure 24 A). Thus, there is a need to find a balance between transfection 

efficiency and toxicity.  

In this work, a 30-min incubation time on the column was found to be enough to 

achieve successful transfection efficiency. Longer incubation times at the MidiMACS 

magnet not only did not increase the transfection efficiency, but actually decreased it. 

It is possible that long incubation times on the column become toxic for the cells.  

Scaling up from an LS to an XS column and CliniMACS device is possible (see 

Figures 35 and 37). It should be noted that while the cell number to be transfected in 

the XS columns has been increased by a factor 10, the amount of transfection 

complex has only been increased by a factor of 4, while the total column volume is in 

fact 18 times larger. These variables should be further investigated to see whether 

additional performance increases in XS columns are possible. The current partial 

reagent upscale was chosen mainly to limit the reagent consumption. XS columns 

are chosen for magnetic cell separation using the CliniMACS device. Further 

modification of the CliniMACS device will allow rapid and efficient genetic 

modification of the target cell line directly at the separation column. The only protocol 
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difference between the XS column process and the CliniMACS process is that a 

wash step occurs before the elution of the magselectofected cells. If this wash step is 

too rigorous, it could account for the reduction in transfection efficiencies. This factor 

could be eliminated by suitable changes to the CliniMACS software. 

4.6. Other applications of magselectofection  

Magselectofection is not only a promising integrated procedure for combined 

magnetic cell separation and genetic modification, but also a versatile and highly 

efficient tool for transfecting/transducing cell lines and primary monocell cultures. For 

this purpose, magnetic cell labeling of the entire cell population can also be carried 

out in a non-specific manner, as described previously (Wilhelm and Gazeau, 2008) 

(Mykhaylyk et al., 2009b). For example, labeling of hUC-MSCs with SO-Mag2 

nanoparticles before magselectofection resulted in a two-fold increase in the 

percentage of transduced cells compared to magselectofection of the same cells 

labeled with CD105 MicroBeads (see Figure 38), presumably due to the limited 

availability of the target CD105 cell surface molecule. The increase in transfection 

efficiency observed after magnetically labeling the cells may be due to the fact that 

the magnetic moment of the labeled cells in the applied magnetic field increases the 

local gradient of the field in the vicinity of the cell. In this way, it may exert enough 

force on the neighboring magnetic vectors to magnetize them and, as a result, be 

attracted to the cell surface (the so-called avalanche effect). This phenomena was 

utilized in another context (Avilés et al., 2009) to improve the targeting of magnetic 

drugs using insertable or implantable ferromagnetic elements, such as wires, 

needles, catheters, or stents, to increase the magnetic force locally by increasing the 

gradient of the field close to the cell. As a consequence of this effect, the magnetic 

vectors are not only sedimented at the cell surface when they are incubated in 

magnetic field gradients, but they are also further extracted from the surroundings 

when the field is removed. This leads to the appearance of an ―exhausted area‖ in 

the vicinity of the cell surface.  

We demonstrate that the magselectofection procedure allows us to magnetically label 

and genetically modify hUC-MSCs. Cells manipulated in this manner can be used for 

a variety of purposes, such as magnetic positioning and magnetically-enforced 

engraftment in target tissues, which is potentially useful in delivering cell-based 

therapies (Wilhelm et al., 2007), (Mykhaylyk et al., 2009b), (Hofmann et al., 2009). 
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Mykhaylyk et al. (Mykhaylyk et al., 2009b) showed that the magnetic responsiveness 

of H441 cells loaded with NDT-Mag1 MNPs (20-38 pg Fe/cell) was sufficient to 

engraft these magnetically-labeled cells onto the luminal surface of a 3D cell culture 

system (tube). Moreover, cell loading of 38 pg Fe/cell of NDT-Mag1 MNPs resulted in 

high transverse relaxivities r2
*, thus allowing the MRI detection of cell concentrations 

that were equivalent to (or higher than) 1.2 µg Fe/mL.  

A critical factor for determining the therapeutic efficacy is whether transplanted cells 

can home into the injured site. Therefore, it is crucial to monitor stem cell behavior in 

real time in live tissues. Recently, Cao et al. (Cao et al., 2009) have established a 

novel 7T micromagnetic resonance imaging (7T micro-MR) system specifically 

designed for small animals that enables imaging with high contrast and excellent 

spatiotemporal resolution up to micrometers in size. In this way, rat bone marrow 

mesenchymal cells (BMSCs) were isolated and cultured, subsequently dual-labeled 

with magnetic SPIO nanoparticle and fluorescent DiI dye in vitro, and transplanted 

into recipient animals in a posterior homing study. In another study (Loebinger et al., 

2009), MSCs were labeled in vitro with superparamagnetic iron oxide nanoparticles 

and  injected into the lateral tail vein of mice at day 35 after cancer models had been 

initiated. Then, MRI to track the MSCs to lung metastases in vivo was performed. 

This work demonstrated that labeling of MSCs with iron oxide nanoparticles has the 

potential to show MSC integration into human tumors, allowing early-phase clinical 

studies examining MSC homing in patients with metastatic tumors (Loebinger et al., 

2009). These studies show how MRI allows dynamic monitoring of magnetically-

labeled stem cells following transplantation and provides a feasible method to 

evaluate biological behaviors of transplanted cells during cell-based therapy. 

Moreover, targeted technologies may become an important adjuvant to the use of 

ionizing radiation and chemotherapeutic agents, opening up a variety of possibilities 

for the future of cancer treatment.   

We demonstrated that non-heme iron analysis is a powerful tool to study cell 

biodistribution (Tables 6 and 7; Figures 40 and 44). The histological analysis by 

fluorescence microscopy (Figure 41) revealed that the percentage of positively 

infected cells is enough to find them in lungs, followed by spleen, kidney and liver. 

We found that hUC-MSCs were loaded with 28.3 pg Fe/cell. From our studies 
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(Mykhaylyk et al., 2009a), we can conclude that we will be able to monitor hUC-MScs 

by MR imaging. 

4.7. Conclusions 

During this work, a novel non-viral and viral technology for ex vivo gene therapy has 

been established. Magselectofection is a versatile integrated procedure of cell sorting 

and genetic modification. Highly efficient magnetic vectors have been designed and 

selected. The comprehensive characterization of nanoparticles with controlled 

surface properties provided here can be used for the further development of new 

magnetic nanoparticles and vectors containing particles for the genetic modification 

of cells that are difficult to transfect. Further development may include a search for 

new MNPs and modification of particles with affine molecules to formulate magnetic 

vectors. 

During this work, a vector loading column procedure which allows magnetic vector 

immobilization on Miltenyi columns and association with/internalization into target 

cells has been developed. With a minimal number of ex vivo handling steps, and with 

low vector consumption, magselectofection yields high target cell purity and recovery 

of target cells with excellent cell viability and biological functionality. Moreover, we 

demonstrate that genetic modification using magselectofection is specific to the 

target cells. Using viral and non-viral magselectofection, a high efficiency in genetic 

modification of hUC-MSCs, hCB-HSCs and hPBMCs can be achieved. Furthermore, 

the differentiation potential of the genetically modified stem cells is not impaired.  

Magselectofection is not only a promising integrated procedure for combined 

magnetic cell separation and genetic modification but is also a versatile and highly 

efficient tool for transfecting/transducing cell line populations and primary monocell 

cultures.  

We demonstrate that the magselectofection procedure allows us to label cells 

magnetically. Cells manipulated in this manner can be used for a variety of purposes, 

such as magnetic positioning and magnetically enforced engraftment in target 

tissues, which is potentially useful in delivering cell-based therapies. Moreover, we 

expect that the behavior of magnetically-labeled cells after magselectofection can be 

monitored (by MRI) in real time in live tissues. 



DISCUSSION 116 

 

 

As magnetic cell sorting is already implemented in an automated manner and 

approved for some clinical applications, we envision that magselectofection can 

become an affordable and standardized tool for future cell therapies involving 

genetically engineered cells. 
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5. SUMMARY 
Research applications and cell therapies involving genetically modified cells require 

reliable, standardized and cost-effective methods for cell manipulation. The goal of 

this work is to provide a novel methodology that produces, in a single standardized 

techonology, genetic modification and cell isolation. We have named this novel 

procedure ―Magselectofection”. The approach is based on magnetic cell separation 

and magnetically-guided gene delivery (magnetofection). Optimized gene vectors 

associated with novel magnetic nanoparticles were formulated to transfect/transduce 

target cells while they are passaged and separated through a high gradient magnetic 

field cell separation column. Magnetofection of the Jurkat T cells using selected 

vector formulations resulted in a significant (up to 4.5-fold) enhancement in both 

luciferase reporter gene expression and the percentage of cells expressing eGFP, as 

compared to lipofection. A procedure for vector loading on LS Miltenyi columns was 

developed that enables up to 100% retention for both non-viral and viral magnetic 

complexes. We demonstrate, using a model cell mixture of K562 and Jurkat T cells, 

that the integrated method is highly efficient and specific for the target cell population. 

This was not only true for the model Jurkat/K562 mixture, but also for Sca-1+ mouse 

hematopoietic stem cells. With human umbilical cord mesenchymal stem cells (hUC-

MSCs), we achieve up to 30% transfected cells with non-viral vector doses as low as 

8 pg plasmid DNA per cell and up to 100% transduced cells with a multiplicity of 

infection of 0.5 TU/cell using lentivirus. Similarly, we obtain 22% eGFP-positive 

human cord blood hematopoietic stem cells (hCB-HSCs) upon lentiviral 

magselectofection compared to 0.15% eGFP-positive cells post-standard infection. 

We achieve up to 50% transduced Sca-1+ mouse stem cells at a lentiviral MOI of 1-3. 

Up to 5-15% and 20% genetic modified PBMC were found using non-viral and viral 

magselectofection, respectively. After genetic modification using magselectofection 

differentiation potential of hCB-HSCs and hUC-MSCs was maintained. 

Magselectofection requires a minimal number of manipulation steps and results in 

efficient and specific gene delivery to target cells. This minimizes the necessary 

vector material while maintaining the cellular differentiation potential of modified stem 

cells. Magselectofection may become a useful tool for nucleic acid therapy 

approaches involving ex-vivo genetically modified cells. 
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6.  ABBREVIATIONS 

 
AAV   adeno-associated virus 

ADA   adenosine desaminase 

Ads    Adenovirus 

ATCC   American Type Culture Collection 

BSA   bovine serum albumin 

CBMC  cord blood mononuclear cell 

CFC   colony forming cell 

CGD   chronic granulomatous disease 

CMV   cytomegalovirus 

DF-Gold  Dreamfect-Gold 

DNA   Deoxyribonucleic acid 

DMEM  Dulbecco‘s Minimum Essential Medium 

DMSO  dimethyl sulfoxide 

DSMZ  Deutsche Sammlung von Mikroorganismen und Zellkulturen 

DRK   Deutsches Rotes Kreuz 

E. coli  Escherichia coli 

EDTA  ethylene diamine tetraacetic acid 

e.g.   for example (abbr.of latin exempli gratia) 

eGFP   enhanced Green Fluorescent Protein 

ELISA  Enzyme-Linked ImmunoSorbent Assay 

env   „envelope― gene encoding for viral core glycoproteins 

FACS  Fluorescence Activated Cell Sorter 

FBS   fetal bovine serum 

FCS   fetal calf serum 

fg   femtogramm 

FITC   fluorescein isothiocyanate 

FIV   feline immunodeficiency virus 

Flt3   FMS-like tyrosine kinase 3 

FSA   fluorinated surfactant 

gag   „group-specific antigen― gene encoding for core structural proteins 

GFP   Green Fluorescent Protein 

HBS   HEPES Buffered Saline 
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HEK   Human embryonic kidney cells 

HEPES  N-2-hydroxyethylpiperazine-Ní-2-ethanesulfonic acid 

HIV   human immunodeficiency virus 

hPBMCs  human peripheral blood mononuclear cells 

HLA   Human leukocyte antigen 

HSC   hematopoietic stem cells 

hCB-HSCs  human cord blood haematopoietic stem cells 

hUC-MSCs  human umbilical cord mesenchymal stem cells 

kDa   kilo Dalton 

LCA   Leber‘s congenital amaurosis 

LV   lentiviral vector 

LVP   lentiviral particle 

MACS®  magnetic cell seperation 

MOI   multiplicity of infection 

MNP   magnetic nanoparticle 

MSC   mesenchymal stem cell 

mRNA  messenger ribonucleic acid 

MRI   magnetic resonance imaging 

MTT   methylthiazoyldiphenyl-tetrazolium 

mV   millivolt 

PBS   Phosphate Buffered Saline 

PE   phycoerythrin 

PEI   polyethylenimine 

PEIBr    branched polyethylenimine 

pfu   plaque forming unit 

PI   propidium iodide 

pol   „polymerase― gene encoding for viral polymerase 

rcf   relative centrifugal force 

Rev   regulator of expression of virion proteins 

RNA   Ribonucleic acid 

rpm   rounds per minute 

RPMI   Roswell Park Memorial Institute 

RT   room temperature 

SCF   Stem cell factor 
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SCID-X1  X-linked severe combined immune deficiency 

SDS   sodium dodecyl sulfate 

SIN   self inactivating 

siRNA   small interfering ribonucleic acid 

SIV   Simian immunodeficiency viruses 

S/MARs  scaffold/matrix attachment regions 

SV40   Simian Virus 40 

T   Tesla 

TCR    T-cell receptors 

TPO   Thrombopoietin 

TU   transducing units 

untx   untreated (negative control) 

VP   virus particle 

VSV-G  envelope glycoprotein G from Vesicular stomatitis virus 

w/v   percentage solution 
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