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Abstract

In this work a new method for the detection of faint, both point–like and extended, as-
tronomical objects based on the integrated treatment of source and background signals is
described. This technique is applied to public data obtained by imaging methods of high–
energy observational astronomy in the X–ray spectral regime. These data are usually
employed to address current astrophysical problems, e.g. in the fields of stellar and galaxy
evolution and the large–scale structure of the universe. The typical problems encountered
during the analysis of these data are: spatially varying cosmic background, large variety
of source morphologies and intensities, data incompleteness, steep gradients in the data,
and few photon counts per pixel. These problems are addressed with the developed tech-
nique. Previous methods extensively employed for the analysis of these data are, e.g., the
sliding window and the wavelet based techniques. Both methods are known to suffer from:
describing large variations in the background, detection of faint and extended sources and
sources with complex morphologies. Large systematic errors in object photometry and loss
of faint sources may occur with these techniques.
The developed algorithm is based on Bayesian probability theory, which is a consistent
probabilistic tool to solve an inverse problem for a given state of information. The infor-
mation is given by a parameterized model for the background and prior information about
source intensity distributions quantified by probability distributions. For the background
estimation, the image data are not censored. The background rate is described by a two–
dimensional thin–plate spline function. The background model is given by the product
of the background rate and the exposure time which accounts for the variations of the
integration time. Therefore, the background as well as effects like vignetting, variations of
detector quantum efficiency and strong gradients in the exposure time are being handled
properly which results in improved detections with respect to previous methods. Source
probabilities are provided for individual pixels as well as for correlations of neighbour-
ing pixels in a multiresolution analysis. Consequently, the technique is able of detecting
point–like and extended sources and their complex morphologies. Furthermore, images of
different spectral bands can be combined probabilistically to further increase the resolution
in crowded regions. The developed method characterizes all detected sources in terms of
position, number of source counts, and shape including uncertainties.
The comparison with previous techniques shows that the developed method allows for an
improved determination of background and source parameters. The method is applied
to data obtained by the ROSAT and Chandra X–ray observatories whereas particularly
the detection of faint and extended sources is improved with respect to previous analyses.
This lead to the discovery of new galaxy clusters and quasars in the X–ray band which
are confirmed in the optical regime using additional observational data. The new tech-
nique developed in this work is particularly suited to the identification of objects featuring
extended emission like clusters of galaxies.



Zusammenfassung

In der vorliegenden Arbeit wird eine neue Methode zur Entdeckung lichtschwacher punktförmiger
sowohl als auch ausgedehnter Himmelsobjekte basierend auf einer integralen Behandlung des Sig-
nals und des Untergrundes vorgestellt. Das Verfahren wird auf öffentlich zugängliche Daten
angewandt, die mit bildgebenden Beobachtungsverfahren der Hochenergieastronomie im Rönt-
genspektralbereich gewonnen wurden, um aktuelle Fragen der Astrophysik, z.B. aus den Be-
reichen Stern- und Galaxienentwicklung sowie der großräumigen Struktur des Universums zu
beantworten. Die entwickelte Methode widmet sich den typischen Problemen, mit denen die Date-
nanalyse aufwartet, die da sind: das räumlich variable kosmische Hintergrundsignal, die vielfältige
Morphologie der Quellen und deren großer Intensitätsbereich, Datenunvollständigkeiten, starke
Gradienten sowie wenige Photonenzählimpulse pro Bildelement. Die beiden bisher weitgehend zur
Bilddatenanalyse eingesetzten Verfahren “Sliding-Window” und Wavelet-basierte Technik haben
sich als unzureichend erwiesen bei großer Hintergrundvariation und bei der Detektion schwacher
ausgedehnter Quellen und Quellen komplexer Morphologie. Bei diesen Verfahren sind große sys-
tematische Fehler in der Photometrie möglich und schwache Quellen können verpasst werden.

Der entwickelte Algorithmus basiert auf der Bayes’schen Theorie, die den wahrscheinlichkeits-
theoretisch konsistenten Rahmen bietet, um ein inverses Problem für einen gegebenen Infor-
mationszustand zu lösen. Dabei wird das Untergrundsignal durch ein parametrisiertes Mod-
ell beschrieben und die Prior -Informationen der Quellintensitäten werden in Form geeigneter
Wahrscheinlichkeitsverteilungen quantifiziert. Für die Bestimmung des Untergrundes werden die
Bilddaten nicht zensiert. Die Rate des Untergrundsignals wird durch zweidimensionale Spline-
funktionen beschrieben (sog. Thin-Plate Splines). Das Untergrundmodell ist das Produkt von
Untergrundsrate und Belichtungszeit, wobei letztere Variationen der effektiven Integrationszeit
im Bild berücksichtigt. Daher werden Effekte wie Vignettierung, Variationen der Detektorquan-
tenausbeute sowie große Gradienten in der Integrationszeit korrekt beschrieben, was im Vergleich
zu bisherigen Methoden zu deutlich verbesserten Detektionswahrscheinlichkeiten insbesondere
an den Bildrändern führt. Im Rahmen einer Multiskalenanalyse werden Quellenwahrschein-
lichkeiten sowohl für individuelle Bildelemente als auch für Korrelationen benachbarter Bildele-
mente ermittelt. Dadurch ermöglicht die Methode punktförmige und ausgedehnte Quellen sowie
deren komplexe Morphologien zu detektieren. Darüberhinaus können Aufnahmen verschiedener
Spektralbereiche mit Hilfe der Bayes’schen Wahrscheinlichkeitstheorie kombiniert werden, um
die Auflösung dicht benachbarter Quellen weiter zu verbessern. Alle erkannten Quellen werden
durch die entwickelte Methodik automatisch hinsichtlich Position, Anzahl der Quellenimpulse,
und Gestaltparametern einschließlich deren Unsicherheiten charakterisiert.

Der Vergleich mit bisherigen Techniken zeigt, dass die entwickelte Methode eine verbesserte
Bestimmung des Untergrundes als auch der Quellenparameter erlaubt. Die Methode wurde auf
Daten der Röntgensatelliten ROSAT und Chandra angewendet, wobei insbesondere die Detektions-
wahrscheinlichkeit lichtschwacher oder ausgedehnter Quellen im Vergleich bisheriger Analysen
verbessert werden konnte. Dadurch wurden neue Galaxienhaufen und Quasare im Röntgen-
band entdeckt, die durch Heranziehen zusätzlicher Beobachtungsdaten im sichtbaren Bereich des
Spektrums bestätigt werden konnten. Das hier entwickelte Verfahren eignet sich besonders für
die Identifizierung von Objekten mit ausgedehnter Emission wie z.B. Galaxienhaufen.



Summary

In this thesis, a new probabilistic technique for the joint estimation of background and
sources with the aim of detecting faint and/or extended celestial objects is developed. The
novel probabilistic technique is applicable to astronomical images at any wavelength of
the spectrum. This work exploits public imaging data from observations of high–energy
astrophysics in the X–ray spectral regime. These data are usually employed to address
current astrophysical problems, for instance in the fields of stellar evolution, evolution
of galaxies and the large–scale structure (LSS) of the universe. In this Summary, the
motivations for developing a new source detection method are addressed. The problems
encountered analysing X–ray data and the difficulties experienced by previous techniques
applied to these data are briefly reviewed. Successively, the technique and its capabilities
are outlined.

The problem Astronomical images, collected by ground– or space–based telescopes, are
frequently difficult to analyse because they consist of a diffuse background with superposed
celestial objects and corrupted by effects due to instrumental complexity. The data in
an image often show steep gradients due to instrumental structures, and are altered by
smearing effects, vignetting effects, charge–coupled device (CCD) failures and instrumental
calibrations. An astronomical image is often a combination of several individual pointings
and the effects due to steep gradients in the data are cumbersome. The background,
instead, is a composition of instrumental, particle and cosmic emissions. The cosmic
background is not necessarily spatially constant, especially in high–energy astrophysics.
Celestial objects are characterized by a large variety of (sometimes complex) morphologies
and apparent brightnesses. Sources can be superposed to both, smooth and highly, varying
background. Faint sources may be difficult to detect, because of background fluctuations in
the data. In high–energy astrophysics, few or no photon counts per pixel frequently occur.
Poisson statistics is required to analyse these data. Telescope time, i.e. the allocated time
to the observations of individual astronomical topics, is limited and hence valuable. It is
of great importance to make the best use of the data available.

The interpretation of observational data implies the solution of an inverse problem:
From the observational manifestation of some process, one wishes to deduce what factors
generated that process (Tikhonov, 1992). The data contained in astronomical images are
characterized by the pervasive presence of noise. Hence, the inverse problem of extracting
astrophysically interesting information from observed data is ill–posed, in the sense that
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the solution is not unique or it is not stable under perturbations on the data, i.e. small
changes in the observational data can entail very large changes in the solution being sought.
Ill–posed problems depend in a discontinuous way on the data. Consequently, small er-
rors (e.g., measurement errors, perturbations caused by noise) can create large deviations.
Therefore, solving ill–posed problems calls for a special approach to ensure that the solu-
tion is stable, unique and close to the exact solution of the inverse problem. The numerical
treatment of ill–posed inverse problems is a challenge. Often, ad hoc algorithms, as the
“regularized” solutions by Tikhonov, make use of constraints to provide for a stable and
unique solution (regularization). However, ad hoc algorithms may provide misleading solu-
tions especially as the solution approaches numerical instability (Jaynes, 1984). Instead of
using ad hoc algorithms, inference/decision theory methods are applied to solve ill–posed
problems. The work of Jaynes (1984) shows that probability theory is the only approach
allowing one to convert an ill–posed problem of deductive reasoning into a well–posed prob-
lem1 of inference. In this thesis, Bayesian statistics is applied, providing the principles of
inference required to solve ill–posed problems. An ill–posed problem which is addressed in
this thesis is the detection of faint, both point–like and extended, sources.

In the environment of X–ray astronomy, standard methods, such as the sliding window
and the wavelet based techniques, are employed for the detection of faint and/or extended
sources. The sliding window technique is beneficial for the detection of point–like objects
but has problems in detecting (mostly faint) extended sources. Wavelet based techniques
have the advantages to detect point–like and extended sources employing several resolu-
tions (or scales), but the result depends crucially on the wavelet base chosen and therefore
often favour the detection of circularly symmetric sources. Sliding window and wavelet
based techniques are known to suffer from: describing large variations in the background,
detection of faint and extended sources and sources with complex morphologies. Conse-
quently, large systematic errors in object photometry and loss of faint sources may occur
with these techniques. Furthermore, background fluctuations give rise to false positives
in source detection. In order to reduce the number of false positives, standard techniques
employ a detection level (thresholding), usually at 3−5 σ above the local background. All
sources below the detection level are disregarded. It results that extended objects, which
can be detected by eye, are not detected by standard techniques (Starck and Murtagh,
2006). A common practice for the detection of extended low surface brightness sources
is to analyse the data in sequential steps, see e.g. the works of Pierre et al. (2004) and
Giacconi et al. (2002b). Point–like sources are first detected with a standard algorithm
and then removed from the astronomical image. The regions of the image without sources
are filled with a simulated background. The resulting image, often rebinned to a larger
pixel size, is successively investigated with a standard algorithm to detect extended sources.
The detected extended sources suffers from biased results, because uncertainties of the ex-
perimental measurements are not properly propagated.

The problem arising for the interpretation of observational data has to consider all the

1Well–posed problems have the following properties: 1. A solution exists; 2. The solution is unique; 3.
The solution depends continuously on the data.
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information available in order to provide the most reliable answer for source detection and
characterization. An accurate estimation of the background, that accounts for gradual as
well as steep gradients in an image, is crucial for the detection of faint sources and for pro-
viding good estimates in object photometry. Background estimation and source detection,
including a large variety of morphologies shown by the celestial objects, is achievable in a
single algorithm.

The method A statistical tool to obtain unbiased results from incomplete or noisy data
is provided by Bayesian probability theory (BPT), which supplies a general and consis-
tent frame for logical inference. A suitable regularizing algorithm is developed with BPT
taking advantage of all available information over a parameter set, which is described by
a probability density over the corresponding parameter space. The solution of the inverse
problem combines all the available information (Tarantola, 1987). The available informa-
tion concern the background and the sources distributed in the image. The background is
assumed to be smoother than the source signal. Background and sources are assumed to
have positive values only. The properties of the source signal are described with a prob-
ability distribution. Several choices for the probability distribution of the source signal
are possible and studied. Furthermore, the solution of the inverse problem entails the
estimation of model parameters.

A probabilistic two–component mixture model is incorporated into the Bayesian tech-
nique. One component represents the background signal, the other component the source
plus background signals. The mixture model technique is used to jointly estimate the
background and to detect the sources. In this way, consistent uncertainties of background
and sources are provided.

The background rate is described by a two–dimensional spline function. The thin–
plate–spline (TPS) is selected to model the background rate, because the shape of the
interpolating spline surface suffices a minimum curvature condition. Nonetheless, the ap-
proach can be easily adapted to other smooth functions. For the background rate estima-
tion, the source signal is considered a nuisance parameter and it is integrated out following
the rules of BPT. The background model combines the use of the background rate and
the telescope’s exposure time. The resulting background model is sensitive to cosmic, in-
strumental and exposure time variations. The image data are not censored for background
estimation.

Each pixel of an astronomical image is characterized by a probability of source detection.
In order to detect faint objects, independent of their size, a multiresolution analysis is
employed within the developed Bayesian technique. It consists in analysing the probability
of source detection correlating neighbouring pixels. It allows to analyse statistically the
source structures at several resolutions. The resolution is related to the correlation length
(or scale) used to group neighbouring pixels. The correlation length increases at decreasing
resolutions and covers a large range of values. The outcome of the multiresolution analysis
is provided by source probability maps (SPMs) at several scales. Each SPM is an image
that enhances the detection of sources whose size is within the size of the used scale. Faint,
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both point–like and extended, sources are revealed at decreasing resolutions and complex
morphologies of celestial objects are detected.

The Bayesian algorithm gives the benefit of an additional technique intrinsic to BPT:
the multiband analysis. The multiband analysis provides a statistical combination of mul-
tiple data at different energy bands improving the detection of faint sources and sources
in crowded regions.

In a second step, all the detected sources are characterized automatically providing
source position, net counts, morphological parameters and their errors. No explicit back-
ground subtraction is used for source characterization.

Poisson statistics is used for the analysis of the data in the X–ray spectral regime. The
developed technique correctly handle Poisson statistics throughout the whole algorithm.
Different statistics are easily adapted.

The results The Bayesian technique, developed in this thesis, is capable of detecting
point–like and extended sources equally well and of describing variations in the background
according to the diffuse emission and to spatial exposure non–uniformities. Vignetting ef-
fects, failure of pixels, instrumental structures and exposure variations are properly treated
in the background model with the advantages to reduce greatly the number of false pos-
itives in source detection and to improve the photometric characterization especially for
faint, both point–like and extended, sources with respect to standard techniques.

The classification of pixels into two mixture components takes into account the detection
of sources without employing predefined morphologies.

The multiresolution analysis allows one to detect source features at different scales,
to separate celestial objects from underlying diffuse emissions and to separate close by
objects.

The multiband analysis provides improvements in the detection of faint sources and
objects in crowded regions, taking into account the spectral properties of the detected
sources.

The omnipresent problem of false positives in source detection due to background
fluctuations is addressed with a priori information employed to describe the source and
background signals and the level of detection probability selected for the identification
of sources. A 99% source probability threshold is mostly effective to strongly reduce the
number of false positives in source detection. Furthermore, the Bayesian probabilities of
source detection are compared to p–values. The comparison is pursued in order to show the
intrinsic difference in the nature of the two statistics. Consequently, the p–values cannot
be calibrated with Bayesian source probabilities.

Simulated data sets are used for performance assessment of the Bayesian technique.
The simulated data sets are characterized by several background intensities to cover differ-
ent cases one encounters in observational data. The effects of different prior information
incorporated into the algorithm are investigated. The results depend on the definition of
the models for background and sources. The selected spline allows for the estimation of
smooth backgrounds, which are consistent with the simulated ones. The prior information
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for the source signal distributions helps to sort data, which are marginally consistent with
the background model, in background and sources. Bright and faint sources are detected in
a multiresolution analysis, allowing also for the detection of substructures. The estimated
source parameters are consistent with the simulated ones. However, the uncertainties of
parameters for faint sources can be large due to propagation of the background uncertainty.
The results from the analysis of the simulated data sets with the probabilistic technique are
compared with the wavdetect algorithm (Freeman et al., 2002), a wavelet based tech-
nique. The developed technique improves on the detections of wavdetect especially in
the low count regime. The backgrounds estimated with wavdetect are not as smooth
as the ones obtained with the developed technique. The wavdetect backgrounds show
rings due to the Mexican Hat function employed to filter the images. The residuals on
source fluxes and positions obtained with the Bayesian technique are by a factor of 10
smaller than the ones from wavdetect. Furthermore, the Bayesian technique provides
less contaminated samples (as much as a factor of 5) than wavdetect.

The Bayesian method is applied to real data from two major X–ray missions: ROSAT
and Chandra satellites.

Analysing the ROSAT all–sky survey (RASS) data, the Bayesian technique improves
the background model, the detection of faint and/or extended sources and the estimates
of source parameters with respect to previous methods employed for the analysis of these
data, such as the Standard Analysis Software System (SASS) algorithm (based on the
sliding window technique for source detection and on the maximum likelihood approach
for source characterization).
The SASS background model is not stable on the whole field, meaning that e.g. the
background shows insignificant structures at the image boarders as well as the exposure
non–uniformities. The background model obtained with the Bayesian algorithm, instead,
is stable on the complete field even for gaps in the data where the satellite was switched
off.
The developed Bayesian method allows one to detect faint and/or extended objects, such
as clusters of galaxies and quasars, which could not be detected previously by the SASS
method because of their low surface brightness and/or extent. Some of these new findings
have a counterpart in other catalogues produced from deeper X–ray observations and/or
from the optical and near–infrared bands. In addition, for cases where the SASS method
detects faint extended objects, it may fail in providing the source extent: Sources may
look point–like while they are extended objects. Source parameters of celestial objects
embedded in a hot diffuse emission, like galactic supernova remnants (SNRs), are also
shown to be improved with the Bayesian technique.

The application to the Chandra Deep Field South (CDF–S) data demonstrates that the
Bayesian technique is suited for the analysis of images from new generation instruments.
The Bayesian algorithm is capable to cope with spatial exposure non–uniformities, large
background variations, CCD gaps and images superposed. Sources located at the image
edge are not distorted. The technique improves the detection of faint and extended sources
and the estimates of their structural parameters with respect to conventional techniques
employed for these tasks, such as wavdetect. The wavdetect technique, instead, intro-
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duces systematic errors in the estimates of source parameters (source counts and extent).
The BSS results are robust, allowing for the construction of reliable catalogues.
The novel Bayesian algorithm provides additional benefits. Complex or compact morpholo-
gies of faint extended sources are detected and identified as extended. A large range of
surface brightnesses is explored with the BSS algorithm. Sources nearby or along the line
of sight of diffuse emissions are separated with the multiresolution analysis developed with
the Bayesian algorithm.
New clusters of galaxies and a filament connecting two clusters are found in the CDF–S
region. Potential galaxy clusters and groups are detected, for which further work is needed
to confirm their nature. The BSS technique has the power to provide a large and homo-
geneous sample of clusters and groups of galaxies detected in sky surveys. Consequently,
the BSS technique is a suitable tool to address current astrophysical problems. Clusters
and groups of galaxies, detected in the X–ray part of the electromagnetic spectrum, are
important tools to evaluate cosmological models to describe the universe, to study the
LSS, to determine the amount of baryonic matter in the local universe. Furthermore, the
Bayesian technique allows for the analysis of the mass distribution within clusters or groups
of galaxies.



Chapter 1

Introduction

1.1 Motivation

Information extraction from astronomical images is fundamental to build astrometric and
photometric catalogues. In the age of new–technology telescopes and space–based missions,
catalogues are employed to support observing programs. As shown in Lasker et al. (2008),
catalogues have to provide deep (in limiting magnitude) data with multicolour and multi–
epoch information. The complex project of building precise astronomical catalogues is
of vital importance in astrophysical science. Analyses of astronomical catalogues allow
us to study physical properties of detected objects, to test models of structure formation
(as for clusters of galaxies), to explore stellar and galaxy evolution, to provide insight
for the origin of the Cosmos. For instance, the distribution of galaxies throughout the
universe is not uniform. Deep astronomical images show voids, filaments and clusters. The
distribution of these objects constrains cosmological theories, see e.g. Rosati et al. (2002b),
Brandt and Hasinger (2005) for more details.

Astronomical data are costly and therefore limited, corrupted by noise due to back-
ground fluctuations, affected by selection effects due to e.g. instrumentation, calibrations,
sampling design. The detection and characterization of faint sources require precise statis-
tical methods. In fact, statistical selection biases may arise because of data manipulation
and of overestimation of the statistical significance in the data leading to wrong conclu-
sions. Today, methods that move away from classical techniques, like Bayesian methods,
are widely used to address the problem of separating data components and analysing the
resulting signals (Starck et al., 2008).

Independent to the wavelength employed by an observatory, the astronomical data are a
composition of objects of interest superimposed on a relatively smooth signal, called back-
ground signal. Celestial objects exhibit a large variety of morphologies and apparent bright-
nesses. Astronomical images contain typically a large set of point–like sources (e.g. stars,
active galactic nuclei (AGNs) and quasars), some quasi point–like objects (e.g. faint galax-
ies, double stars), and some complex and diffuse structures (e.g. galaxies, nebulae, clusters
of galaxies, superclusters) (Starck and Murtagh, 2006).
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The background signal arises because of instrumental, particle and cosmic emissions. The
instrumental emission is due to dark current in photosensitive devices. In modern de-
tectors, like CCDs, the background arising from instrumental emissions represents only
few a percent of the total one. CCDs are the detectors of choice for most astronomi-
cal observations, because not only these detectors offer very low dark current for cooled
cameras, but also they provide high quantum efficiency and linear response. Commonly
CCD detectors have Poisson and/or Gaussian noise components: See Gilliland (1992),
Massey and Jacoby (1992), Berry and Burnell (2005) and Starck and Murtagh (2006) for
more details. More complex is the case with digitized photographic images, which show
additive Poisson and Gaussian noise components plus nonlinear distortions (Lasker et al.,
2008; Starck and Murtagh, 2006). Note that the quantum efficiency of detectors varies
over the field–of–view (fov). The particle background are due to galactic emissions. The
particles contributing to the background are, for instance, cosmic rays, interplanetary rays,
radiation belts around the Earth, solar activity. Calibrations of astronomical images re-
duce the corruption of the data due to particles. The cosmic emission is, instead, due to
galactic and extragalactic photons detected by the observatory (Snowden and Freyberg,
1993). The cosmic background represents the integrated emission of unresolved (point–
like) sources. For deep observations as in the X–ray spectral regime, the cosmic back-
ground is mostly due to the extragalactic background light, providing important informa-
tion about galaxy formation and the LSS of the universe, see e.g. Giacconi et al. (1962) and
Brandt and Hasinger (2005) for more details. The cosmic background is not necessarily
spatially constant, especially in the high–energy range of the electromagnetic spectrum.
Background estimation is essential for a proper interpretation of the data in image analysis.

The separation between background and sources is not a trivial task. Background esti-
mation is an omnipresent problem for source detection methods in astrophysics, especially
when the source signal is weak and difficult to discriminate against the background. More-
over, a reliable background model is required for the detection of extended sources1 and
of source features extending to the edge of the fov: See Snowden et al. (1994) for more
details. An inaccurate estimation of the background may produce large systematic errors
in object photometry and the loss of faint and/or extended objects (Starck and Murtagh,
2006).

The background–source separation task suffers additionally from the fact that the qual-
ity of astronomical images is corrupted by effects due to instrumental complexity. The
causes for quality degradation in astronomical images are the followings:

1. Space telescopes may dither during an observation as in the X–ray spectral regime
(energy range of 0.1 − 120 keV), producing a smearing effect;

2. The quality of astronomical images may be affected by the tracking system and the
telescope shake;

1An extended source differ from a point–like one, because its angular size is greater than the resolution
of the instrument used to observe it. Hence, an extended source is a resolved object.
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3. Space–based observatories are characterized by a compact geometry and mirror place-
ment in a folded optical system. The main disadvantage of such construction is
shown by an image that is brighter on axis and dimmer off axis (vignetting). The
vignetting is therefore a deterioration on the quality of the image going towards the
edge of the fov. It is a feature of folded telescope optics which cannot be avoided
(Berry and Burnell, 2005);

4. Astronomical images may exhibit instrumental structures, such as detector window
support structures as for Wolter type telescopes and gaps between adjacent CCDs;

5. Deep observations are commonly obtained by combining several individual exposures
to generate a final astronomical image. The background may vary significantly within
the field and steep gradients in the data are present.

These effects increase statistical (random) and systematic errors in the data.
The telescope’s exposure time (exposure map) provides important information for ad-

dressing some of the causes for quality degradation in astronomical images: effects 3 − 5.
Exposure maps contain information on how long a given pixel was exposed to the sky.
Exposure maps include factors such as vignetting, dead time (i.e. the time after each event
during which the system is not able to record another event if it happens), pile–up (conse-
quence of the sensor dead time), defective pixels (such as hot, stuck and dead pixels2). The
exposure map accounts for instrumental structures, such as detector ribs or CCD gaps. In-
strumental structures produce lack of data. The missing data must be handled consistently
for the background estimation to prevent undesired artificial effects. Moreover, the data,
produced by merging individual exposures, are characterized by large exposure variations.
Thus, celestial objects, especially extended ones, can be superposed to both, smooth and
highly varying background (Snowden et al., 1994). Hence, the background modelling has
to incorporate the knowledge provided by the observatory’s exposure time without com-
promising the statistical properties. If the exposure map is not supplied, steep gradients
in the data are not handled, which would yield many false positives in source detection
(Damiani et al., 1997) and poor estimates of source properties.

Furthermore, a source detection technique should be capable of detecting a large variety
of source morphologies.
Some source detection techniques need the point–spread function (PSF) for source detec-
tion (see e.g. Stewart 2006). The PSF describes the distribution of light in the focal plane of
a telescope after the light from a point source has passed through the optics of a telescope.
The PSF is a measure of how well the instrument focuses all of a source’s photons. Pow-
erful astronomical systems are characterized by optical systems with a narrow PSF. The
width of the PSF is important to distinguish close by objects, faint objects, discern details
on the surface of a celestial object, such as a planet, a moon or an asteroid. Nonetheless,

2 A hot pixel is a pixel which is saturated on long exposures. A stuck pixel is an extreme case of a hot
pixel. It has large charge leakage, regardless of the exposure time. A dead pixel is a pixel that reads zero
on all images taken. See (Gilliland, 1992) for more details.
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the PSF can be spatially varying along the fov, as in high–energy astrophysics. Often, the
PSF is not known precisely and some functional form of the PSF is used for background
estimation and source detection. Source detection methods employing a PSF or its func-
tional form are designed for the detection of point–like objects regardless of extended ones
(Starck and Pierre, 1998). Hence, a source detection algorithm capable of detecting a large
variety of source morphologies should be able to operate effectively without the knowledge
of the instrument characteristics.
Other techniques employ the PSF for source characterization (see e.g. Starck et al. 2000),
reducing systematic errors in the photometry. However, the photometric solution is not
only depending on the deconvolution of the detected source flux with a known PSF. The
photometric solution of detected sources depends on both, systematic and statistical, un-
certainties. Both kinds of uncertainties need to be accounted for background–source sep-
aration and properly distributed in the final solution. In this thesis, a detailed PSF is
not included neither in the source detection procedure nor in the source characterization
routine. The developed technique described in this thesis tackle the problem of reliably
detecting background as well as sources with their respective uncertainties. Nevertheless,
if the instrumental PSF is known precisely for the whole fov, then the developed technique
can take into account that information in a further step of source characterization within
the properties of a specific observational set–up.

For a reliable detection of celestial objects and for a proper propagation of errors in
background and source estimates, a source detection technique should be capable of jointly
estimating the background and detecting the sources.
Many techniques subtract an estimated background from the data, leading even to negative
count rate values of the signal of interest (see e.g. Śliwa et al. 2001). A joint background–
source separation is, instead, a necessary condition for preserving the statistics through-
out the whole algorithm and, therefore, for providing consistent uncertainties of back-
ground and sources. This is of major importance in astrophysics. In fact, modern astro-
nomical instruments, from optical (wavelength range ∼ 380 − 750 nm) to γ–ray (wave-
length < 10−2 nm) bands of the electromagnetic spectrum, can detect individual photons
(Starck et al., 2008). Thus, the data are discrete counts and Poisson statistics has to be
used. Noise dominates the signal especially at high frequencies of the electromagnetic
spectrum (Starck and Murtagh, 2006).

If all the above issues are addressed, any source detection technique improves the de-
tection of faint sources with respect to other methods. The detection of faint sources is
an hot topic in high–energy astrophysics (Burkert et al., 2008). Faint sources may provide
important information about the Cosmos. For instance, the detection of quasistellar ob-
jects (QSOs) allows one to improve the knowledge about the evolution of the early phase
of the universe (Burkert et al., 2008). However, the detection of faint, both point–like and
extended, sources is limited by the pervasive presence of background fluctuations in the
data. Often, source detection techniques estimate the noise in the data analysing an area
of the astronomical image that supposedly contains only background. Several approaches
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to estimate the standard deviation of Gaussian noise in an image have been developed. In
Bertin and Arnouts (1996), for instance, the noise is estimated employing a k− σ clipping
approach on meshes of the image. Once the variability of the data around the background
is known, a detection level at about 3− 5 σ above the background is chosen. Faint sources
with intensities below the detection level are lost.

Noise in the data corrupts background and source signals. Thus, source detection
techniques should be capable of including systematic and random errors in the analy-
sis of both background and sources. In addition, noise in the data can not be reliably
estimated (Starck and Murtagh, 2006). In order to improve the detection of faint celes-
tial objects, multiscale (Starck and Pierre, 1998) and multiband (see Collet and Murtagh,
2004; Murtagh et al., 2005; Laidler et al., 2007) approaches have to be employed.
The multiscale analysis allows one to detect sources and their substructures at multiple
scales. It facilitates the detection of faint objects close to the background signal and the
detection of complex morphologies of extended sources. Another motivation to employ a
multiscale approach to source detection, for instance, in the X–ray spectral regime, is due
to the presence of a spatially varying PSF.
The multiband analysis matches sources detected at different energy bands of the electro-
magnetic spectrum to improve the sensitivity of source detection. Modern CCD detectors
can measure not only the positions of incident photons but also their energies, as in the
X–ray spectral regime. Consequently, the same portion of the sky can be observed at
different energy bands by the same instrument. The information coming from different
energy bands can be combined, separating more efficiently nearby objects accounting for
their different spectra.

The data in astronomical images give rise to an inverse problem that is ill–posed.
The inverse problem is described as follows by Sivia (1990): “Having seeing the outcome
of several ’moves’ in a game, we want to infer the rules governing that game.” Inverse
problems are solvable when providing a reasoning (or inference) about the data, that are
corrupted by noise. The solution of an inverse problem is not unique and, hence, is ill–
posed. An ill–posed inverse problem requires the use of decision theory methods in order
to provide for a unique and stable solution.

The solution of an ill–posed inverse problem is given by inferring the values of model
parameters defined to describe completely the physical system arised by the data. The
values of the model parameters are inferred from the observed data. Lack of data and
experimental uncertainties may produce biased results. The most efficient way to solve
ill–posed inverse problems is to use the calculus of probability theory as introduced by
Bayes (Bayes, 1783): See Tarantola (1987) for more details. BPT allows for plausible rea-
soning and for unbiased results. With BPT the solution of an ill–posed inverse problem is
found making the best inference based on the experimental data and any available a priori
information, that are described using probability densities. The information entering the
models is combined to provide a unique and stable solution. BPT allows one to combine
optimally any information, because uncertainties are taken into account. In the light of
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new data, the solution can be revised (Sivia, 1990).

In this thesis, the detection of faint, both point–like and extended, sources is addressed
to data coming from astronomical images in the X–ray spectral regime. These images are
typically containing from 0.1 to a few photons per pixel (Starck and Pierre, 1998).

In Section 1.2, conventional methods extensively applied for the analysis of X–ray as-
tronomical images are introduced. Faint objects may be lost by these source detection
methods (see, e.g., Starck and Murtagh 2006, Valtchanov et al. 2001 for more details), be-
cause large variations in the background are not described. The detection of extended
sources, their complex morphologies and their substructures is demanding for these tech-
niques.

In recent years, for the detection of low surface brightness sources in deep astro-
nomical images and in surveys, alternative approaches have been used. In the works
of e.g. Giacconi et al. (2002b) and Pierre et al. (2004), the detection of extended sources is
achieved with the application of several techniques in sequential order. The employment of
several techniques in sequential order does not allow to properly account for uncertainties
in the data.

In Section 1.3, source detection methods employing BPT are introduced. These tech-
niques are advanced with respect to the conventional ones, because ill–posed inverse prob-
lems are tackled from the consideration of random and systematic uncertainties. An intro-
duction to the technique developed in this thesis is given.

In Section 1.4, an outline of the thesis structure is provided.

1.2 Conventional source detection methods

Conventional source detection methods employed in deep imaging surveys are: k − σ
clipping for background modelling, peak finding and thresholding for source detection,
adaptive aperture photometry with isophotal corrections for source characterization (see,
e.g., the software program SExtractor described in Bertin and Arnouts, 1996); sliding
window technique (Harnden et al., 1984; Gioia et al., 1990) and maximum likelihood (ML)
PSF fitting (see Hasinger et al. 1994 and Boese and Doebereiner 2001 for more details);
wavelet transformation (e.g. Slezak et al., 1990; Rosati et al., 1995; Damiani et al., 1997;
Starck and Pierre, 1998; Lazzati et al., 1999; Freeman et al., 2002). A review of these
techniques can be found in Valtchanov et al. (2001) and Becker et al. (2007).

The SExtractor software package is one of the most widely used source detection
procedures in astronomy. It has a simple interface and very fast execution. It provides
the morphology of any object through its list of pixels. It produces reliable aperture
photometry catalogues (Becker et al., 2007). The main pitfall of the SExtractor is
the low accuracy in the background model. Consequently, the SExtractor does not
show high sensitivity in detecting faint and extended sources. However, the SExtractor
software can be applied in X–ray regime on filtered images (Valtchanov et al., 2001).

The sliding window technique is a fast and robust source detection method. This tech-
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nique may fail while detecting extended sources, sources near the detection limit and nearby
sources (Valtchanov et al., 2001). This source detection method has been refined with more
elaborated techniques, such as matched filters (e.g. Vikhlinin et al., 1995; Stewart, 2006)
and recently the Cash method (Stewart, 2009). The Cash method is a ML technique. For
source detection, the method employs a Cash likelihood–ratio statistic, that is an extended
χ2 statistic for Poisson data (Cash, 1979). Both the matched filters and Cash methods
are at least by a factor of 1.2 more sensitive than the sliding–window technique (Stewart,
2009). Though, both methods are designed for the detection of point sources. The candi-
date sources are characterized in a further step using ML PSF fitting. The ML PSF fitting
procedure performs better than other conventional techniques for flux measurements of
point–like sources. However, accurate photometry is achieved if a well–determined PSF
model is used (Valtchanov et al., 2001). In Pierre et al. (2004), the ML profile fit on pho-
ton images is extended taking into account a spherically symmetric β–model (King profile,
see King, 1962; Cavaliere and Fusco-Femiano, 1978) convolved with the instrumental PSF
for improving the photometry of extended objects.

Wavelet transform (WT) techniques improve the detection of faint and extended sources
with respect to other conventional methods (see Starck and Pierre 1998 for more de-
tails). In fact, WT techniques are able to discriminate structures as a function of scale.
Within larger scales, faint and extended sources are detected. WTs are therefore valu-
able tools for the detection of both point–like and extended sources (Valtchanov et al.,
2001). Nonetheless, these techniques often favour the detection of circularly symmetric
sources (Valtchanov et al., 2001). In addition, artefacts may appear around the detected
structures in the reconstructed image, and the flux is not preserved (Starck and Pierre,
1998). In order to overcome these problems, some refinements have been applied to the
WT techniques. In Starck and Pierre (1998), for instance, a multiresolution support fil-
tering is employed to preserve the flux and the adjoint WT operator is used to suppress
artefacts which may appear around the objects. An advance on this method is provided in
Starck et al. (2000). A space–variant PSF is incorporated in their WT technique. Object
by object reconstruction is performed. For point sources the flux measurements are close
to that obtained by PSF fitting.

1.3 Advanced source detection methods

A self–consistent statistical approach for background estimation and source detection is
given by BPT, which provides a general and consistent frame for logical inference. The
results of BPT methods are probabilities, such as the probability that a detected photon is
emitted from some hot interstellar gas contributing to the background or emitted from some
well defined source. Estimates of parameters and their uncertainties can be derived from
the calculated probability distributions. BPT is based on the natural idea of probability
as ’degree of belief’ and on the rules of logic.

As James Clerk Maxwell (1831-1879) realized in 1850, the true logic is the calculus
of probabilities because in science we always have to deal with incomplete information
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(Jaynes, 2003). BPT provides a unique method of dealing with noisy or incomplete data
and uncertainties in models, and for combining information of various types in one coin-
cided algorithm. BPT provides an elegantly simple and rational approach for answering
any scientific question for a given state of information (Gregory, 2005). Moreover, the need
to extract as comprehensive information as possible from a given set of data is pressing
in any physical experiment where the data sets available can not be augmented at will.
Therefore, the available data should be exploited with every conceivable care and effort.
For these reasons, Bayesian data analysis is becoming an established tool in astrophysics
(Dose, 2003).

1.3.1 Source detection methods employing BPT

The achievement of Bayesian techniques on signal detections in astrophysics has already
been shown, for example, in the works of Gregory and Loredo (1992), Loredo (1995) and
Scargle (1998). In modern observational astrophysics, BPT techniques for image analysis
have been extensively applied, e.g., Hobson and McLachlan (2003), Carvalho et al. (2009),
Savage and Oliver (2007) and Strong (2003).
For the detection of discrete objects embedded in Gaussian noise (microwave regime),
Hobson and McLachlan (2003) utilizes a model–fitting methodology, where the shape of
the objects of interest is assumed a priori. Markov–chain Monte Carlo (MCMC) techniques
are used to explore the parameter space.
An advance to this work is provided by Carvalho et al. (2009). For speeding up the method
of Hobson and McLachlan (2003), Carvalho et al. (2009) proposes to use Gaussian approxi-
mation to the posterior probability density function (pdf) peak when performing a Bayesian
model selection for source detection.
The work of Savage and Oliver (2007) is developed within Gaussian statistics (infrared
data). At each pixel position in an image, their method estimates the probability of the
data being described by point source or empty sky under the assumptions that the back-
ground is uniform and the sources have circular shapes. The Bayesian information criterion
is used for the selection of the two models. Source parameters are estimated in a second
step employing Bayesian model selection.
In the work of Strong (2003), a technique for image analysis is developed within Poisson
statistics. The technique is instrument specific and is applied to γ–ray data. The first
objective of this technique is to reconstruct the intensity in each image pixel given a set
of data. The Maximum Entropy method is used for selecting from the data an image
between all the available ones from a multidimensional space. The dimension of the space
is proportional to the number of image pixels.

None of these techniques provides for a general formulation for the detection of faint,
both point–like and extended, sources in astronomical images coming from most of the
electromagnetic spectrum. In order to detect these faint sources, the requirements for
a new source detection method are the followings: (1) Background model on the whole
fov capable of describing large variations in the data; (2) Bayesian inference; (3) Mixture
models; (4) Multiresolution analysis; (5) Multiband analysis. In Section 1.3.2, the main
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properties of the technique developed in this thesis are highlighted.

1.3.2 The novel method with BPT

A new source detection method based on BPT combined with the mixture–model technique
is proposed. The algorithm allows one to estimate the background and its uncertainties
and to detect celestial sources jointly. The new approach deals directly with the statisti-
cal nature of the data. Each pixel in an astronomical image is probabilistically assessed
to contain background only or with additional source signal. The results are given by
probability distributions quantifying our state of knowledge. The developed Background–
Source separation (BSS) method encounters: background estimation, source detection and
characterization.

The background estimation incorporates the knowledge of the exposure map. The esti-
mation of the background and its uncertainties is performed on the full astronomical image
employing a two–dimensional spline. The spline models the background rate. The spline
amplitudes and the position of the spline supporting points provide flexibility in the back-
ground model. This procedure can describe both smooth and highly varying backgrounds.
Hence, no cut out of regions or employment of meshes are needed for the background esti-
mation. The BSS technique does not need a threshold level for separating the sources from
the background as conventional methods do. The threshold level is replaced by a measure
of probability. In conventional methods, the threshold level is described in terms of the
noise standard deviation, then translated into a probability. The classification assigned
to each pixel of an astronomical image with the BSS method allows one to detect sources
without employing any predefined morphology. Only, for parametric characterization of
the sources predefined source shapes are applied. The estimation of source parameters and
their uncertainties includes the estimated background into a forward model, where only
the statistics of the original data are taken into account. The BSS method provides simul-
taneously the advantages of a multiresolution analysis and a multiband detection. In order
to quantify the multiscale structure in the data, a multiresolution analysis is required (see
Kolaczyk and Dixon, 2000; Starck et al., 2000). In the BSS approach the multiresolution
analysis is incorporated in combination with the source detection and background estima-
tion technique with the aim to analyse statistically source structures at multiple scales.
When multiband images are available, the information contained in each image can be
statistically combined in order to extend the detection limit of the data (see Szalay et al.,
1999; Murtagh et al., 2005).

The capabilities of this method are best shown with the detections of faint sources in-
dependent of their shape and with the detections of sources embedded in a highly varying
background. The technique for the joint estimation of background and sources in dig-
ital images is applicable to digital images collected by a wide variety of sensors at any
wavelength.

The BSS technique is applied to images in the X–ray spectral regime. The X–ray en-
vironment is particularly suitable to the novel Bayesian approach for a number of reasons.
X–ray astronomy is characterized by small numbers of photon counts even for relatively
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long exposures and the observational data are rarely reproduced. The astronomical images
are affected by incomplete data due to telescope support structures, smearing effects caused
by dithering of the telescope, vignetting effects and instrumental calibrations. Astronom-
ical images provided by new generation instruments are usually a combination of several
individual CCD imaging pointings. The PSF is spatially varying and it is often not known
exactly on the full fov. The cosmic background is not necessarily spatially constant. X–ray
astronomy primarily involves the study of plasma with thermal temperatures in the range
of 106 to 108 K. Such plasma radiate the majority of their energy in the range of (0.1−10)
keV. Extended sources, like galaxy clusters and groups, with complex morphologies are
detected. The background estimation directly underneath a source, especially an extended
source, is a difficult task for source detection methods. In fact, there are few source detec-
tion algorithms developed so far for an automated search of faint and extended sources. A
large homogeneous sample of clusters of galaxies is needed for cosmological studies.

1.4 Outline of the thesis

This thesis is organized as follows:
In Chapter 2, basic aspects of BPT are briefly reviewed (Section 2.1). A detailed

description of the BSS algorithm is provided: In Section 2.2 the technique for the joint
estimation of background and sources is introduced; In Section 2.3 the BSS algorithm is
extended in order to obtain an automated method for source characterization.

In Chapter 3, an important issue related to false positives in source detection is ad-
dressed. A commonly used tool for signal significance testing with classical statistics is
discussed and compared to the source probabilities estimated with the BSS method.

In Chapter 4, the BSS technique is applied to simulated data. The data sets are meant
to test the limits and to show the potentials of the BSS method at varying background
values. Results for two different choices of prior pdfs of the source intensities are provided.

In Chapter 5, the standard techniques currently employed in the X–ray regime are
briefly reviewed, including those for sky surveys. Then, the BSS results on the three simu-
lated data sets are compared with the outcome from wavdetect algorithm (Freeman et al.,
2002).

In Chapters 6 and 7, the BSS method is tested on astronomical images coming from
the RASS data and on deep astronomical images of the CDF–S region, respectively. The
detection of new X–ray sources is shown and a sample of galaxy clusters and groups is
provided.

In Chapter 8, concluding remarks and outlook are given.



Chapter 2

The BSS technique

In this Chapter the novel method for the search and characterization of celestial sources in
digital astronomical images is described. The BSS algorithm is based on BPT combined
with the mixture–model technique. In Section 2.1, the basic aspects of BPT are reviewed.
The principles of the background–source separation technique are introduced in Section
2.2. The source characterization method is described in Section 2.3. The BSS algorithm
is published in Guglielmetti et al. (2009, 2005, 2004a,b,c).

2.1 Bayesian probability theory

In image processing, an automated system to reason, i.e. to take information about the
world and to reach conclusions, is required. The expert knowledge is used to design repre-
sentative models and to develop a simplified description of a complex process for reasoning.
BPT allows us to investigate probabilistic models. Probabilistic models are used to deal
with uncertainties in the data with a principled and definite method.

Bayesian analysis is named after Thomas Bayes (1702-1761). In his “An essay towards
solving a problem in the doctrine of chances” (Bayes, 1783) he applied this analysis for
a game of chance. In the late eighteenth and early nineteenth centuries, Pierre–Simon
Laplace (1749-1827) extensively developed the Bayesian approach to statistics (Laplace,
1812). Much of Laplace’s motivation in this development was the solution of problems
in celestial mechanics. It remained the dominant form of statistics until the early twenti-
eth century. Although fundamental work was still being done in astronomy and physics,
it remained out of fashion as late as the 1970s (Connors, 1997). Nowadays one sees
many applications, especially in image processing, as it allows to tackle problems that
are ill–posed and cumbersome for classical statistics (see Berger, 1997; Connors, 1997 for
more details). BPT allows one to infer an image given data constraints, prior knowledge,
and uncertain information. For more on the subject see, e.g., Jeffreys (1961); Bretthorst
(1988); Bernardo and Smith (1994); Gelman et al. (1995); Loredo (1995); Sivia (1996);
Dose (2003); Jaynes (2003); O’Hagan and Forster (2004); Gregory (2005).

BPT provides a framework for scientific reasoning and rules for processing any kind of
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incomplete information. The knowledge is always incomplete because of lack of data and
uncertainties in the data. The information available is given by the observed data set and
the expert knowledge about the physical system under investigation: priori information,
statistical models and supplementary information such as first–principle physics knowledge.
Each data set and parameters entering the models are subject to uncertainties which have to
be estimated and encoded in probability distributions. Within BPT the so–called statistical
and systematic uncertainties1 are not distinguished. Both kinds of uncertainties are treated
as a lack of knowledge.

The outcome of the BPT analysis is the pdf of the quantity of interest, which encodes
the knowledge to be drawn from the information available (a posteriori). Any uncertainty
of the physical system is accounted for and propagated in the posterior pdf. The posterior
pdf comprises the complete information which can be inferred from the data and the expert
knowledge. Values of model parameters and their uncertainties are directly computed from
the posterior pdf.

BPT is a statistical approach based on comparisons among alternative hypotheses (or
models). Probability densities are assigned to the full hypothesis space. The probability
of an hypothesis covers the full range of real values from 0 to 1. In classic statistic, the
probability of an hypothesis can only be 0 or 1, being an hypothesis only true or false.
In addition, in contrast to classical statistics, probabilities are assigned using the single
observed data set. Therefore, BPT does not need sample data drawn from a population
to assess the intrinsic uncertainty in the population.

BPT provides for additional benefits with respect to classical statistics. For instance,
when data from different experiments are available, BPT allows for an integrated data
analysis (IDA). Heterogeneous diagnostics are individually modelled and, successively, com-
bined probabilistically. The combination of heterogeneous diagnostics occurs accounting
for interdependencies between the data sets and for uncertainties of the measured data,
the calibration measurements and the physical model. Thus, the extraction of informa-
tion from sets of heterogeneous data is optimized and results are improved with respect to
previous techniques: Refer to Fischer and Dinklage (2004, 2007) for more details.

BPT is based on the sum and product rules of probability theory. Consequently, nui-
sance parameters are integrated out through marginalization. Uncertainties of nuisance
parameters are accounted in the posterior pdf. BPT allows for tackling problems such
as parameter estimation, uncertainty determination, model comparison with models of
varying complexity, and classification of data within a mixture of models.

2.1.1 Probability axioms

BPT rests on two rules of probability theory (see, e.g., Cox, 1946; Dose, 2003):
the sum rule

p(Hi|I) + p(Hi|I) = 1 (2.1)

1Systematic errors reflect, for instance, uncertainties in instrumental calibration.
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and the product rule

p(Hi, D|I) = p(Hi|I) · p(D|Hi, I) = p(D|I) · p(Hi|D, I). (2.2)

The hypotheses (models, values for parameters) Hi are formulated in the light of some
background information I. Equation (2.1) simply states that the probability that a par-
ticular hypothesis Hi is true plus the probability that the negation Hi of Hi is true add up
to one. Similarly, the product rule states that the joint probability for Hi and D, the data,
being true given the background information I may be expressed as the probability for Hi

being true conditional on I times the probability for D given that Hi is true (Dose et al.,
1998). Equation (2.2) shows that the decomposition can be achieved in two equivalent ways
because of the symmetry in the arguments (Hi, D) of p(Hi, D|I). The notation employed
is the one introduced by Jeffreys (1961).

In BPT the number of competing hypotheses has to be larger or equal to 2, since no
hypothesis is ever regarded true until there is no plausible alternative explanation of the
data. Another version of the sum rule can be derived from eqs (2.1) and (2.2):

p(H1 + H2|I) = p(H1|I) + p(H2|I) − p(H1, H2|I), (2.3)

this is called the extended sum rule. Equation (2.3) can contain several competing hy-
potheses. Dealing with mutually exclusive hypotheses (i.e. if one hypothesis is true then
all the other are false), the sum rule can be written as

p(
∑

i

Hi|I) =
∑

i

p(Hi|I) = 1.

This is the normalization rule (Dose et al., 1998).

2.1.2 Bayes’ theorem

Comparison of the two equivalent decompositions in eq. (2.2) yields Bayes’ theorem:

p(Hi|D, σ, I) =
p(D|Hi, σ, I) · p(Hi|I)

p(D|I)
, (2.4)

where the notation introduced by Jeffreys in eq. (2.2) is changed highlighting the errors,
σ, entering the experiment. The vertical bars in eq. (2.4) denote conditionality property,
based on either empirical or theoretical information.

Equation (2.4) relates the posterior pdf p(Hi|D, σ, I) to known quantities, namely, the
likelihood pdf p(D|Hi, σ, I) and the prior pdf p(Hi|I). p(D|I) is the prior predictive value
for D, called the evidence. The evidence is the global likelihood for the entire class of
hypotheses and is obtained by application of the sum and product rules:

p(D|I) =
∑

i

p(Hi, D|I) =
∑

i

p(Hi|I) · p(D|Hi, I). (2.5)
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Essentially, the evidence is the average likelihood for D, with the prior giving the averaging
weight. In this form, eq. (2.5) has the meaning of a normalization constant.

Note that Bayes’ theorem and all other rules above discussed can apply to both discrete
and continuous parameters. Hence, all equations are modified accordingly. If more than
one (continuous) parameter is considered, multiple integrals are used. In the case of a
direct assignment of the prior density and the likelihood, the evidence is an uninteresting
normalization constant. Thus, the posterior pdf is simply proportional to the product of the
prior and the likelihood pdfs. Nonetheless, the evidence has two important applications:
first, marginalization, that is required for the parameterization of a problem; second, model
comparison. These applications are explained in the following Sections.

The posterior pdf in eq. (2.4) is the quantity to be inferred. It depends on the full data
set D, on the errors σ entering the experiment and on all relevant information concerning
the nature of the physical situation and knowledge of the experiment I. The likelihood pdf
represents the probability of finding the data D for given quantities of interest, uncertainties
σ and additional information I. It reveals the error statistics of the experiment. The prior
pdf represents physical constraints or additional information from other diagnostics.

The terms ‘posterior’ and ‘prior’ have a logical rather than temporal meaning. The
posterior and prior pdfs can be regarded as the knowledge ‘with’ and ‘without’ the new
data taken into account, respectively.

Bayes’ theorem constitutes a recipe of learning (inductive inference). The result of
the learning process implied by eq. (2.4) is the posterior distribution, that constitutes the
result of a Bayesian analysis (Dose, 2003). The theorem provides a formal rule for updating
knowledge in the light of new data or learning from observations. In BPT, probabilities
are not frequencies, although frequency arguments are often important for assigning priors
and frequency estimates can be derived from Bayesian probabilities (Fischer et al., 1997).

2.1.3 Marginalization rule

The marginalization rule, eq. (2.6), is a straightforward application of the sum rule (eq. 2.1)
of probability theory (see Bretthorst, 1988 for more details) and of a deconvolution in the
parameter variables.

In order to arrive at the pdf of any quantity x, marginalization of the multidimensional
pdf can be regarded as a projection of the complete pdf on to that quantity. Marginalization
is performed by integration over the quantity y one wants to get rid of:

p(x|D, σ, I, Hi) =

∫
p(x, y|D, σ, I, Hi)dy

∝
∫

p(D|x, y, I, σ, Hi) · p(x, y|I, Hi)dy

∝ p(x|I, Hi)

∫
p(D|x, y, I, σ, Hi) · p(y|I, Hi)dy. (2.6)

Equation (2.6) gives the marginal posterior pdf for x, p(x|D, σ, I, Hi), in terms of the
weighted average of the likelihood function, p(D|x, y, I, σ, Hi), weighted by p(y|I, Hi), the
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prior pdf for y (Gregory, 2005). Marginalization of a quantity y thus takes into account the
uncertainty of y which is quantified by the pdf p(y|I, Hi). The uncertainty of y propagates
into the pdf p(x|D, σ, I, Hi).

Marginalization provides a way to eliminate variables (nuisance parameters) which are
necessary to formulate the likelihood but otherwise uninteresting. Marginalization reduces
the dimensionality of the problem.

2.1.4 Parameter estimation

Parameter estimation is a standard problem in data analysis. For given measurements,
model parameters are estimated to explain at best the data (learning process). Commonly
the least-squares algorithm for estimating the parameters or the ML method to estimate
the parameters and their uncertainties have been used (Dose, 2003).

Bayesian analysis and the ML method analyse the problem of parameter estimation
in a probabilistic framework. BPT, as the ML method, provides estimate of parameters
and their uncertainties. The main difference between the Bayesian and the ML approaches
to parameter estimation is that BPT makes probability statements about the parameters,
while classic statistics can not. In fact, in classic statistics parameters are not allowed to
be random variables (O’Hagan, 2000).

In a ML estimation approach, the mode (or maximal value) of the likelihood func-
tion, i.e. a pdf associated with the data given some parameters, is computed. Often, the
Conjugate Gradient optimization technique is used for maximizing the likelihood. The ML
solution maximizes the probability of the data. However, only a point in parameter space is
found and no certainty is given for its uniqueness: A local maximum may be found instead
of a global one. The local curvature of the likelihood function at the ML solution is used to
construct error bars (confidence intervals). Hypothesis testing follows using a likelihood–
ratio statistics. The strengths of the ML estimation rely on its large–sample properties:
When the sample size is sufficiently large, then one can assume both normality of the test
statistics about its mean and that the likelihood–ratio tests follow χ2 distributions. These
nice features don’t necessarily hold for small samples (see, e.g., Kendall and Stuart, 1979;
Eadie et al., 1982; Loredo, 2004 for more details).

Bayes’ theorem, instead, combines initial knowledge about the distribution of the un-
known parameters entering the model with the likelihood pdf of the data given the pa-
rameters. The strengths of the Bayesian procedure in parameter estimation are due to the
employment of not only prior knowledge, but also marginalization (described in Section
2.1.3): See Loredo (2004) for more details. The Bayesian solution to parameter estimation
is the full posterior pdf of the parameters and not just a single point in the parameter
space. Hence, BPT allows one to obtain a predictive distribution of the parameters. The
values of the parameters and their uncertainties are derived from their joint posterior pdf.
Probability contours (credible regions) in the parameter space describe uncertainties of the
parameters. A credible region R of probability p is the region of highest posterior density
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containing a volume in parameter space p:
∫

R

dθ p(θ|D, I) = p, (2.7)

where θ is a set of parameters (Loredo and Lamb, 2002). Credible regions are more robust
than confidence intervals in classical statistics (Connors, 1997). In fact, with BPT there is
no need to employ sample data drawn from a population to derive statements about the
parameters.

BPT provides a valid approach to parameter estimation also for moderate and small
data sets. A peculiarity of the Bayesian approach to parameter estimation is shown by the
accuracy estimates of the parameters, which depends on the estimated noise. Everything
probability theory can not fit to the model is assigned to the noise. Large uncertainties
in model parameters are assigned when the noise is estimated to be large (see Bretthorst,
1988 for more details).

Note that a parameter contained within a model for the prior distribution for multiple
parameters, which are themselves directly included in a model describing the data, is called
hyperparameter.

Prior information

Physical situation always supports proper information (Fischer and Dose, 2002). Within
BPT, each relevant information entering the models is explicitly stated. Priors are neces-
sary to perform the ’probability inversion’ of eq. (2.4). Priors account for the geometry
of the hypothesis space, converting the likelihood from ’intensity’ to ’measure’ (Loredo,
2009). Prior information, encoded in probability distributions, helps to improve estimates
of parameters (Bretthorst, 1988).

In order to formulate a distribution given a certain state of a priori knowledge, the
principle of maximum information entropy is used (Dose, 2003). The maximum entropy
(MaxEnt) principle assigns probabilities to incomplete or uncertain information, allowing
one to maximize the uncertainty in the probability distribution (Gregory, 2005). With
the MaxEnt principle, constraint (or testable) information is combined with Shannon’s
entropy measure of the uncertainty of a probability distribution to arrive at a unique
probability distribution (Shannon, 1948; Jaynes, 1968, 2003). Maximizing entropy achieves
the probability distribution which is most conservative and noncommittal while agreeing
with the available information. One example is given when prior information is constrained
to a mean value. The distribution which has maximum entropy, subject to a given average
value, is an exponential function: be θ a parameter and θ̂ a point estimate (i.e. the only
knowledge about θ), then the MaxEnt distribution is

p(θ|θ̂, I) =
exp(−θ/λ)

Z(λ)
, (2.8)

where λ must be determined such that < θ >= θ̂ and Z(λ) is the partition function
(Jaynes, 1968). If the support range of θ is 0 ≤ θ < ∞, then eq. (2.8) is simplified with
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λ = θ̂ and Z(λ) = θ̂. On the same line of this example, the distribution with maximum
entropy is given by a Gaussian function, when prior knowledge is constrained to the mean
value and the variance of the distribution. Last, when no constraint is applied, then the
distribution with maximum entropy is a uniform distribution. Flat priors are the least
informative ones. A flat prior of a parameter gives the same probability to each model
parameter value within the range of the prior. See, e.g., Jaynes (1968, 2003); O’Hagan
(2000); Dose (2003); Gregory (2005) for more details.

The impact of the prior pdf on the posterior pdf can be tested employing differ-
ent choices of priors. When the choice of prior pdf does not change the posterior pdf
significantly, then the data (i.e. the likelihood function) contain significant information
(Kass and Wasserman, 1996).

2.1.5 Model comparison, classification

Model comparison or object classification is a complementary statistical task to parame-
ter estimation (Loredo and Lamb, 2002). Data interpretation is accomplished comparing
parametrized models. Essential for model comparison is the marginal likelihood (evidence,
prior predicted value) (Dose, 2003). Marginalization (integration) of the likelihood over
parameter space provides a measure for the credibility of a model for given data. Ratios
of marginal likelihoods (Bayes factors) are frequently used for comparing two models: See
Berger (1985); Kass and Raftery (1995) for a comprehensive description of Bayes factors.
In the literature other techniques for model comparison can be found, such as the Akaike
information criterion and the Bayesian information criterion (or Schwarz criterion). An
overview of these techniques is given in Kass and Raftery (1995). Bayes factors are the only
penalization criteria of model complexity that take into account the full variability of pa-
rameters (and their uncertainties) by integrating over parameter space (Fischer and Dose,
2002).

Be Hi and Hj two competing models, Bayes’ theorem (2.4) for model Hi can be written
as follows:

p(Hi|D, σ, I) =
p(D|Hi, σ, I) · p(Hi|I)

p(D|Hi, σ, I) · p(Hi|I) + p(D|Hj, σ, I) · p(Hj|I)
. (2.9)

The posterior pdf for the competing model is given by eq. (2.9), exchanging the subscripts
i and j.

The ratio between the two posterior pdfs of the competing models (odds ratio) can be
written as follows:

Oij =
p(Hi|I)

p(Hj|I)
· p(D|Hi, σ, I)

p(D|Hj, σ, I)
, (2.10)

from model Hi to model Hj. The first factor (the ratio of the priors) is called prior odds.
In most physical problems the prior odds is set to 1, since it is not known a priori which
is the most preferable model. The second factor is the Bayes factor:

p(D|Hi, σ, I)

p(D|Hj, σ, I)
=

∫
p(D|θ, Hi, σ, I) · p(θ|I, Hi)dθ∫
p(D|φ, Hj, σ, I) · p(φ|I, Hj)dφ

≡ Bij , (2.11)
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where model parameters (θ,φ) can be completely independent or one can include the other.
The Bayes factor is the ratio of marginal likelihoods of models Hi and Hj. The marginal
likelihood is called evidence, in the sense that the higher this number is, the higher the
evidence is that the data provide in favour of the model (Astone et al., 2003).

The problem with Bayes factors is the cumbersome multidimensional integral over pa-
rameter space to be calculated for the marginal likelihood. On the one hand, an exact
analytic evaluation of the integrals in eq. (2.11) is possible only for exponential family dis-
tributions with conjugate (or convenience) priors (Fischer and Dose, 2002; Gelman et al.,
2004), that represent a narrow class of models. On the other hand, the integrands in
eq. (2.11) are highly peaked around its maximum (Kass and Raftery, 1995). Numerical
methods, capable of finding the region where the integrand mass is accumulating, are:
asymptotic approximation (Laplace’s method and its variants); Monte Carlo integration
(e.g. adaptive Gaussian quadrature); MCMC techniques simulating from the posterior
(e.g. Metropolis–Hastings algorithm, Gibbs sampler, RJMCMC). A review of these tech-
niques can be found in Kass and Raftery (1995); Fischer and Dose (2002). In this thesis,
the sample size of the multidimensional integral is moderate. Therefore, the Laplace’s ap-
proximation is preferable with respect to other techniques. The Laplace’s approximation
is described in details in the next subsection.

An important aspect of model comparison with Bayes factors is that the rule known as
’Ockham’s Razor’, i.e. ”Prefer the simpler model unless the more complicated model gives a
significantly better fit” (Loredo, 1995), is automatically implemented. For example, when
employing the Laplace’s approximation, Bayes factors are estimated by approximation of
the marginal likelihood evaluated at the maximum values of the parameters multiplied by
a parameter volume factor (Ockham or simplicity factor) (Dose, 2003). The Ockham factor
is a quantification of the rule ’Ockham’s Razor’. The Ockham factor accounts for the ratio
between the volumes of the likelihoods around the maximum and the prior volumes. Model
Hi will be preferred over model Hj only if the likelihood increases sufficiently to overwhelm
the additional Ockham factor (see Jeffreys and Berger, 1992; Loredo et al., 1997 for more
details).

In classic statistics, ratios of maximum likelihoods are commonly used to compare
models. More complicated models have higher likelihoods than simpler ones. Since ’Ock-
ham’s Razor’ is not automatically incorporated in the likelihood ratio test (or Neyman–
Pearson lemma), a specified critical value is used to provide preference for simplicity
(Loredo and Lamb, 2002). Therefore, the specified critical value can be seen as a prior
information, that is not included into the analysis, but it is externally prefixed. In addi-
tion, the classic hypothesis test, in contrast to Bayes factors, can not take into account
model uncertainty. Model uncertainties are needed especially for comparing more than two
models or nested models. Model comparison in classic statistics can lead to very misleading
results (Kass and Raftery, 1995).
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Laplace’s approximation

The integrands in eq. (2.11) represent each the posterior pdf. For instance, at the denom-
inator the posterior pdf is P (θ|D, Hi, σ, I) and it represents all the information necessary
to decide how reasonable a solution θ is (Dose, 2003). The posterior pdf allows one to
determine many quantities of interest, such as the posterior mode, maxθ P (θ|D, Hi, σ, I),
resulting in the most probable solution, θ̂, the mean < θj >=

∫
θjP (θ|D, Hi, σ, I)dNθ, and

confidence intervals via the variance var(θl) =< θ2
l > − < θl >2.

For multivariate problems, the posterior pdf can be approximated with a Gaussian
distribution. This is a commonly used method for estimating parameters. It is termed
Laplace’s approximation (or evidence approximation) (O’Hagan, 2000).

The posterior pdf is assumed to have a single dominant interior mode, i.e. the mode
is not on the boundary of the allowed parameter space, with N parameters. The mode is
indicated with θ̂. In the vicinity of the mode, the product of the prior and the likelihood
pdfs can be approximated by a multivariate Gaussian (given by the second–order Taylor
expansion of the posterior pdf around the mode), such that:

p(θ|Hi, I) · p(D|θ, Hi, σ, I) ≈ p(θ̂|Hi, I) · p(D|θ̂, Hi, σ, I) · exp[−1

2
(θ − θ̂)TΨ(θ − θ̂)],(2.12)

where the Hessian (or Fisher information) matrix Ψ is the matrix of second derivatives
evaluated at the mode:

Ψ =
∂2 ln[p(θ|Hi, I) · p(D|θ, Hi, σ, I)]

∂2θ

∣∣∣∣
θ̂

.

Ψ is the covariance matrix. Its inverse is the model parameter covariance matrix, that
provides information about the uncertainties of the determined parameters. Specifically,
the Hessian matrix provides the full curvature of the posterior pdf within the Gaussian
approximation.

From eq. (2.12), the marginal likelihood (evidence) can be written as:

p(D|Hi, σ, I) ≈ p(θ̂|Hi, I) p(D|θ̂, Hi, σ, I) (2π)N/2 det−1/2Ψ. (2.13)

Marginal likelihoods are necessary to solve Bayes factors (2.11). Equation (2.13) shows
that the evidence is approximately equal to the posterior maximum times the volume of
the posterior pdf below the peak. This representation may fail when the posterior pdf
is skewed or highly non–Gaussian. For more on the subject, see refs. Kass et al. (1990);
Loredo (1999); O’Hagan and Forster (2004).

Note that eq. (2.12) is also used to do the integrals needed to eliminate nuisance param-
eters. The mode of the parameters can be estimated employing the maximum a posteriori
(MAP) solution to locate the mode.

Maximum a posteriori MAP is an estimate for the most probable parameter θ̂ found
maximizing the posterior distribution of the parameters θ:

θ̂ = max
θ

p(θ|Hi, I) · p(D|θ, Hi, σ, I). (2.14)



20 2. The BSS technique

The normalization factor is not considered, since only the maximum value is of interest.

2.1.6 Mixture model technique

Another important property of BPT is the capability of modelling the data by mixture
distributions in the parameter space (see Everitt and Hand, 1981; Neal, 1992; Sivia, 1997;
Dose, 2003; Gelman et al., 2004 and references therein).

Mixture models are often useful to describe complex statistical problems. Identification
of outlying observations, probabilistic classification, and clustering are some of the problems
which may naturally be modelled in mixture form. Mixture distributions are, therefore,
an appropriate tool for modelling processes whose output is thought to be generated by
several different underlying mechanisms, or to come from several different populations.

A mixture model is a probabilistic model described by the density (Bernardo and Girón,
1988):

p(D|λ, θ) =
k∑

j=1

λjp(D|θj), λj > 0,
k∑

j=1

λj = 1,

where λ = {λ1, · · · ,λk}, θ = {θ1, · · · , θk} and k denotes the number of mixands in the
mixture. Note that each θj ∈ θ is represented itself by a vector of parameters. In this model,
p(D|θj) describes the probabilistic mechanism of generating data D within population Pj,
which is completely identified by its corresponding parameters θj . For instance, in image
analysis the population Pj can be given by the data coming from background only or
from background plus source signal. λj denotes the probability that a random observation
comes from population Pj. The number of mixands depends on the physical problem one
intends to model. The functional form of all the terms in the mixture depends on the
physical models under investigation. For example, in image analysis two mixands can be
employed with the two terms in the mixture represented by a Poisson and a marginal
Poisson distributions, respectively.

The identification and characterization of these underlying ‘latent classes’ is of major
importance in this thesis. The mixture model technique is employed within BPT. The
Bayesian mixture model technique allows one to separate the source signal from an un-
derlying background signal. For this, the standard Bayesian approach to this problem is
followed. Hence, a prior distribution is defined over the parameter space of the mixture
model, that is combined with the observed data to give a posterior distribution over the
parameter space.

Several applications of mixture modelling in the framework of BPT can be found in the
literature, e.g., von der Linden et al. (1999, 1997); Fischer and Dose (2002); Fischer et al.
(2001, 2000). In particular, Fischer and Dose (2002) demonstrates the capability of the
Bayesian mixture model technique even with an unknown number of components for back-
ground separation from a measured spectrum. The present approach follows these previous
works.
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Figure 2.1: Flow chart illustrating the background estimation and source detection al-
gorithm. The two boxes in the upper row represent the input information. The output
information is provided by the boxes in the lower row.

2.2 The joint estimation of background and sources

The aim of the BSS method is the joint estimation of background and sources in two–
dimensional image data. The algorithm is characterized by: background estimation and
source detection; calculation of source probability maps in a multiresolution analysis. A
scheme of the BSS algorithm for source detection and background estimation is provided
in Fig. 2.1.

The input information of the developed algorithm is given by the experimental data,
i.e. the detected photon counts, and the telescope’s exposure time. Other input parameters
are listed in the upper right box of Fig. 2.1. They are considered as follows.

The background rate is assumed to be smooth, e.g. spatially slowly varying compared
to source dimensions. To account for smoothness the background rate is modelled with a
two–dimensional TPS (Section 2.2.2). The number and the positions of the pivots, i.e. the
spline’s supporting points, determine what data structures are assigned to be background.
All structures which cannot be described by the background model will be assigned to
be sources. The number of pivots required to model the background depends on the
characteristics of the background itself. Though the minimum number of pivots is four
(since the minimum expansion of the selected spline has four terms), their number increases
with increasing background variation.
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The co–existence of background and sources is described with a probabilistic two–
component mixture model (Section 2.2.1) where one component describes background
contribution only and the other component describes background plus source contribu-
tions. Each pixel is characterized by the probability of belonging to one of the two mixture
components. For the background estimation the photons contained in all pixels are con-
sidered including those containing additional source contributions. No data censoring by
cutting out source areas are employed.

For background estimation the source intensity is considered to be a nuisance parameter.
According to the rules of BPT, the source signal distribution is described probabilistically
in terms of a prior pdf. The prior pdf of the source signal is an approximation to the true
but unknown distribution of the source intensity in the field. Two prior pdfs of the source
signal have been studied: the exponential and the inverse–Gamma function.

The background and its uncertainties (Section 2.2.3) are estimated from its posterior
pdf. Therefore, for each pixel of an astronomical image an estimate of its background and
its uncertainties are provided.

Moreover, the Bayesian approach introduces few hyperparameters, that are fundamen-
tal for the estimation of the posterior pdfs for the background and the source intensities.
Specifically, in Section 2.2.4 the hyperparameters are shown to be estimated exclusively
from the data. Alternatively, hyperparameters can be chosen in advance.

The source probability is evaluated with the mixture model technique for pixels and
pixel cells2 in order to enhance the detection of faint or extended sources in a multiresolution
analysis. Pixels and pixel cells are treated identically within the Bayesian formalism. For
the correlation of neighbouring pixels, the following methods have been investigated: box
filter with a square, box filter with a circle, Gaussian weighting filter (see Section 2.2.1 for
more details).

The BSS technique is morphology free, i.e. there are no restrictions on the object size
and shape for being detected. An analysed digital astronomical image is converted into
the followings:

I) the background rate image, or ‘TPS map’, is an array specifying the estimated back-
ground rate at each image pixel for a given observation;

II) the background image, or ‘background map’, is an array specifying the estimated
background amplitude at each image pixel for a given observation. It is provided by
the TPS map multiplied with the telescope’s exposure time. The effect of exposure
variations are consistently included in the spline model;

III) the source probability images, or ‘SPMs’, display the probability that source counts
are present in pixels and pixel cells for a given observation in a multiresolution anal-
ysis.

2The image finest resolution limited by instrumental design is defined as pixel, while pixel cells are a
group of correlated neighbouring pixels.
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Movies are produced with the SPMs obtained at different resolutions. The moving im-
ages allow one to discern interactively the presence of faint extended sources in digital
astronomical images. The size of faint extended sources is correlated to the scale of the
resolution, used for their detection. SPMs coming from other energy bands can be com-
bined statistically to produce conclusive SPMs at different resolutions with the advantage
to provide probabilities for the detected sources from the combined energy bands (Section
2.2.5).

2.2.1 Two–component mixture model

The general idea of the described Bayesian model is that a digital astronomical image
consists of a smooth background with additive source signal, which can be characterized
by any shape, size and brightness. The background signal is the diffuse cosmic emission
added to the instrumental noise and particle background. The source signal is the response
of the imaging system to a celestial object. A surface b(x) describes the background in
addition to the source signal, where x = (x, y) corresponds to the position on the grid in
the image.
Therefore, given the observed data set D = {dij} ∈ N0, where dij is photon counts in pixel
(or pixel cell) {ij}, two complementary hypotheses arise:

{
Bij : dij = bij + εij
Bij : dij = bij + sij + εij.

Hypothesis Bij specifies that the data dij consists only of background counts bij spoiled
with noise εij, i.e. the (statistical) uncertainty associated with the measurement process.
Hypothesis Bij specifies the case where additional source intensity sij contributes to the
background. Additional assumptions are that no negative values for source and background
amplitudes are allowed and that the background is smoother than the source signal.

The smoothness of the background is achieved by modelling the background count rate
with a bivariate TPS where the supporting points are chosen sparsely to ensure that sources
cannot be fitted. The spline fits the background component whereas count enhancements
classify pixels and pixel cells with source contributions.

In the following, pixel cells are subsumed by pixels. Pixel cells are collections of pixels
where dij is the total photon count in cell {ij}. The photon counts of neighbouring pixels
are added up and the formed pixel cell is treated as a pixel. In principle, any cell shape
can be chosen. In practice, two methods have been developed when pixels have weight of
one within the cell (box filtering with cell shape of a square or of a circle) and one method
when pixels have different weights within the cell (Gaussian weighting). The box filter
with cells of squared shape consists of taking information of neighbouring pixels within
a box. The cell size is the box size. The box filter with cells of circular shape considers
pixels with a weight of one if inside the cell size, otherwise zero. Pixels have a weight of
one when the cell size touch them at least at the centre. This method allows the pixel
cells to have varying shapes. The Gaussian weighting method provides Gaussian weights
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Figure 2.2: Representation of pixel cells at several correlation lengths: box filtering with
cell shape of a square (A) and of a circle (B); Gaussian weighting (C).

around a centre: weights are given at decreasing values according to the distance from the
centre.
In Fig. 2.2, the developed methods for correlating the information of neighbouring pixels
are depicted. Four correlation lengths are used. Plot (A) shows the box filtering with cell
shape of a box. The employed correlation lengths have values of 0.5, 1.5, 2.5, 3.5 pixels, that
indicate the collections of 1, 9, 25, 49 pixels respectively. In plot (B), the box filtering with
the cell shape of a circle is represented with correlation lengths of 0.5, 1.0, 1.5, 2.0 pixels. In
this case, pixel cells with 1, 5, 9, 13 pixels are formed for each indicated correlation length.
Finally, plot (C) shows the Gaussian weighting method for the same correlation lengths
employed for plot (B). The grey shades indicate decreasing weights to pixel counts for
increasing correlation length.

As expressed in eq. (2.4), estimates of probabilities of the hypotheses (Bij and Bij) are
of major interest.

In this thesis, the problem arising with small number of photon counts in astronomical
images is addressed. Poisson statistics has to be used. The likelihood probabilities for the
two hypotheses within Poisson statistics are:

p(dij | Bij, bij) =
b
dij

ij

dij!
e−bij , (2.15)

p(dij | B ij, bij, sij) =
(bij + sij)dij

dij!
e−(bij+sij). (2.16)

This technique is easily adaptable to other likelihoods, for instance employing Gaussian
statistics as given in Fischer et al. (2001).
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The prior pdfs for the two complementary hypotheses are chosen to be p(Bij) = β and
p(Bij) = 1−β, independent of i and j. Specifically, the parameter β is the prior probability
that a pixel contains only background.

Since it is not known if a certain pixel (or pixel cell) contains purely background or
additional source signal, the likelihood for the mixture model is employed. The likeli-
hood for the mixture model effectively combines the probability distributions for the two
hypotheses, Bij and Bij:

p(D|b, s) =
∏

ij

{β
b
dij

ij

dij!
e−bij + (1 − β)

(bij + sij)dij

dij!
e−(bij+sij)}, (2.17)

where b = {bij}, s = {sij} and {ij} corresponds to the pixels of the complete field.
The probability of having source contribution in pixels and pixel cells is according to

Bayes’ theorem (details can be found in Fischer et al. 2001):

p(Bij | D) =
(1 − β) · p(dij | Bij, bij, sij)

β · p(dij | Bij, bij) + (1 − β) · p(dij | Bij, bij, sij)
≡ Psource. (2.18)

This equation enables the data contained in an astronomical image to be classified in two
groups: with and without source signal contribution. Specifically, eq. (2.18) provides the
probability of source detection.

Equation (2.18) is used in the multiresolution analysis. The SPM with the largest reso-
lution is characterized by the probability of uncorrelated pixels. At decreasing resolutions
a correlation length is defined. Starting from a value of 0.5 or 1, the correlation length
increases in steps of 0.5 or 1 pixel for decreasing resolution. The value of 1 is used only
for the box filtering with the cell shape of a box. The SPMs at decreasing resolutions are,
therefore, characterized by the information provided by background and photon counts in
pixel cells. Specifically, photon counts and background counts are given by a weighted inte-
gration over pixel cells. The integrated photon and background counts enter the likelihood
for the mixture model. Then, the source probability is estimated for each image pixel in
the multiresolution analysis. The multiresolution algorithm preserves Poisson statistics.

Source signal as a nuisance parameter

Following Fischer et al. (2000, 2001), the source signal in eq. (2.16) is a nuisance parameter,
which is removed by integrating it out (see eq. 2.6), resulting in the marginal likelihood:

p(dij|Bij, bij) =

∫ ∞

0

p(dij|Bij, bij, sij) · p(sij|Bij, bij)dsij. (2.19)

A nuisance parameter is a parameter which is important for the model (describing the
data), but it is not of interest at the moment. Following BPT, a prior pdf of the source
signal has to be chosen. The final result depends crucially on the prior pdf set on the source
signal. In fact, in addition to the choice of the TPS pivots, the prior pdf of the source
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Figure 2.3: Representation of selected prior pdfs of the source signal versus the photon
counts. The exponential prior pdf is drawn at two λ values (dashed lines). The inverse–
Gamma function prior pdf is plotted at two α values (continuous lines). On the ordinate,
γ indicates λ or α.

signal is crucial for background–source separation: All, that the prior pdf on the source
signal does not allow to describe as a source, is identified as background and vice versa.
Two approaches are described: the first method accounts for the knowledge of the mean
value of the source intensity over the complete field (exponential prior), the second ap-
proach interprets the source signal distribution according to a power–law (inverse–Gamma
function prior).

Exponential prior Following the works of Fischer and Dose (2002); Fischer et al. (2000,
2001), a prior pdf of the source signal has been selected such that is as weakly informative
as possible. The idea follows a practical argument on the difficulty of providing sensible
information. The prior pdf on the source intensity is described by an exponential distri-
bution,

p(sij | λ) =
e−

sij
λ

λ
. (2.20)

This is the most uninformative distribution according to the Maximum Entropy distribu-
tion for known mean value of the source intensity λ over the complete field (see eq. 2.8).
In Fig. 2.3, equation (2.20) is drawn for two values of the mean source intensity: λ = 1
count and λ = 10 counts. No bright sources are expected to appear in fields with λ ∼ 1.
In the case of values of λ * 1, bright and faint sources are represented in these fields.
The marginal Poisson likelihood for the hypothesis B ij has the form:

p(dij|Bij, bij,λ) =
e

bij
λ

λ(1 + 1
λ)

(dij+1)
·
Γ[(dij + 1), bij(1 + 1

λ)]

Γ(dij + 1)
, (2.21)

where Γ[a, x] =
∫ ∞

x e−tta−1dt (a > 0) is the incomplete–Gamma function and Γ[a] = Γ[a, 0]
is the Gamma function (see refs. Fischer et al. 2000, 2001 for more details).
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The behaviour of the Poisson and the marginal Poisson distributions is depicted with a
parameter study. For the parameter study three background amplitudes b are chosen: 0.1,
1 and 10 counts. In Fig. 2.4 the Poisson distribution, eq. (2.15), and the marginal Poisson
distribution, eq. (2.21), are drawn on a logarithmic scale. These plots are indicated with
(a), (b) and (c), respectively. The parameter λ, which describes the mean intensity in a
field, has values of: 1, 10 and 100 counts. The selected values for the background and
for the parameter λ are chosen such that a large variety of cases one encounters analysing
digital astronomical images are covered. For instance, b = 10 counts and λ = 1 count
(plot c) corresponds to a field when the source signal is much smaller than the background
signal. On the other side, b = 0.1 counts and λ = 100 counts (plot a) corresponds to a
field characterized by bright sources and small background amplitude.

The Poisson distribution is always larger than the marginal Poisson distribution for
photon counts lower or equal to the background intensity. Hence, hypothesis Bij is more
likely than the complementary hypothesis Bij. This situation changes when the photon
counts are larger than the background amplitude.

The decay length of the marginal Poisson distribution is determined by the expected
source intensity λ. The probability to detect pixels satisfying hypothesis Bij is sensitive to
the decay length of the marginal Poisson distribution and to the background amplitude,
that is recognizable in the distance between the Poisson and the marginal Poisson distri-
butions. Hence, the BSS method allows probabilities to be sensitive to the parameters
characterizing the analysed digital astronomical image.

Let us consider plot (b) in Fig. 2.4 for photon counts in the range (0 − 10). The
background amplitude has a value of 1 count. If the expected mean source intensity on
the complete field has a value of 1 count, i.e. λ = 1 count, 3 photon counts or more in
a pixel are classified as a source, because the marginal likelihood is much larger than the
likelihood. The probability of detecting a source increases with increasing counts in a
pixel. This is due to the increasing distance of the marginal Poisson likelihood from the
Poisson likelihood. If an analyst allows for many bright sources distributed in the field,
then the relative number of faint sources is reduced. In fact, when a mean source signal
100 times larger than the background is expected, then 5 photon counts or more in a pixel
are needed to identify the event due to the presence of a source. When λ = 100 counts,
5 photon counts in a pixel reveal a source probability lower than the one obtained when
λ = 1 count. This situation changes for 7 or more photon counts in a pixel.

Inverse–Gamma function prior Alternatively to the exponential prior, a power–law
distribution can be chosen to describe the prior knowledge on the source signal distribution.

One is tempted to claim that any physical situation contains sensible information for
a proper (normalizable) prior. The choice of the prior pdf is inspired by the cumulative
signal number counts distribution used often in astrophysics for describing the integral
flux distribution of cosmological sources, i.e. a power–law function (see Rosati et al. 2002b;
Brandt and Hasinger 2005 and references therein). The power law cannot be employed
as a prior pdf, because the power law is not normalized. A normalized inverse–Gamma
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function is instead used. It behaves at large counts as the power law, because it is described
by a power law with an exponential cutoff.

The prior pdf of the source signal, described by an inverse–Gamma function, is:

p(sij | α, a) = e
− a

sij · s−αij · aα−1

Γ(α−1) ; α > 1; a > 0; (2.22)

mean = a
α−2 ; α > 2;

variance = a2

(α−2)2(α−3) ; α > 3,

with slope α and cutoff parameter a. The location and the dispersion of the distribution
depend on the values of the two parameters α and a. When a has a small positive value,
the inverse–Gamma function is dominated by a power–law behaviour (see Appendix A,
Section A.1 for more details).

The parameter a gives rise to a cutoff of faint sources. This parameter has important
implications in the estimation of the background. If a is smaller than the background
amplitude, the BSS algorithm detects sources of the order of the background. If a is larger
than the background amplitude, the BSS algorithm assigns faint sources with intensities
lower than a to be background only. Note that the effect of a on the selection of background
and faint sources is valid also for structures, which are not due to sources but to background
fluctuations.

In Fig. 2.3, equation (2.23) is drawn for two values of the parameter α. For this example
the cutoff parameter a has a value of ∼ 0.1 count. The distributions peak around a. The
decay of each distribution depends on the value of α. When α is large, i.e. for values ≥ 2,
the distribution drops quickly to zero. Instead the distribution drops slowly to zero, when
α approaches 1. Hence, small values of α indicate bright sources distributed on the field.

The marginal Poisson likelihood for the hypothesis Bij is now described by:

p(dij|Bij, bij,α, a) =

=
2

Γ(α− 1)
· e−bij ·

dij∑

k=0

a
k+α−1

2 ·
b
dij−k
ij

Γ(k + 1)Γ(dij − k + 1)
Kk−α+1(2

√
a), (2.23)

where α > 1, a > 0 and Kk−α+1(2
√

a) is the Modified Bessel function of order k − α + 1.
The proof for eq. (2.23) can be found in Appendix A, Section A.2.

In order to avoid numerical problems with the Bessel function, the following upward
recurrence relation was derived:

K̃ν(z) ≡ K̃ν−2(z)

(k − 1)k
+

2(ν − 1)

z · k
K̃ν−1(z)

where K̃ν(z) := Kν(z)/Γ(k+1) and ν = k−α+1. Kν(z) is the Bessel function of complex
argument and it has the property: K−ν(z) = Kν(z).

Figures 2.4 (d)–(f) show the corresponding parameter study for the inverse–Gamma
function prior. The parameter α is chosen to be 1.3, 2.0 and 3.0 and the cutoff parameter
a ∼ 0.1 counts. The decay length of the marginal Poisson distribution, eq. (2.23), is now
given by the value of α. The decay length decreases with increasing α values.



30 2. The BSS technique

Figure 2.5: Likelihood pdfs for the mixture model using the exponential prior (dashed line)
and the inverse–Gamma function prior (continuous line). The Poisson and the marginal
Poisson likelihood pdfs are weighted with β and (1 − β), respectively.

The likelihood for the mixture model

The marginal Poisson likelihood pdf will be indicated with p(dij|Bij, bij, γ), where γ indicates
λ or α. In the case of the inverse–Gamma function prior pdf, the cutoff parameter a does not
appear since the value of this parameter is chosen such that the inverse–Gamma function
is dominated by a power–law behaviour.

The likelihood for the mixture model, as written in eq. (2.17), now reads:

p(D | b, γ, β) =
∏

ij

[β · p(dij | Bij, bij) + (1 − β) · p(dij | Bij, bij, γ)];

D = {dij}, b = {bij}. (2.24)

In Fig. 2.5 the effect of the likelihood for the mixture model on the data (semilog plot)
is shown. The likelihood pdf for the mixture model is drawn for each prior pdf of the
source signal employing the background value b and the prior pdf β. The value chosen
for the parameter β indicates that 99% of the pixels distributed in the astronomical image
are containing only background, which is frequently observed. The likelihood pdfs are
composed by a central peak plus a long tail. The central peak is primarily due to the
presence of the Poisson distribution. The long tail is caused by the marginal Poisson
distribution. The presence of the long tail is essential in order to reduce the influence of
the source signal for background estimation. The same technique was also used for outlier
detections, where outliers are downweighted employing a mixture likelihood, for estimating
the background contributions to measured spectra: For more details about the technique
refer to Fischer et al. (2000). In this thesis, the source signal is considered an outlier.
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Figure 2.6: Example of thin–plate spline, f(x − xl) = r2ln(r2) is drawn with one support
point centred at the Cartesian origin. The projection of f(x − xl) on the (x, y) plane is
placed below and its contour plot on top of the surface image.

2.2.2 Thin–plate spline

The TPS has been selected for modelling the structures arising in the background rate of
a digital astronomical image. It is a type of radial basis function (RBF).

The TPS is indicated with t(x), where x = (x, y) corresponds to the position on the
grid in the detector field. The shape of the interpolating TPS surface fulfills a minimum
curvature condition on infinite support.

More specifically, the TPS is a weighted sum of translations of radially symmetric basis
functions augmented by a linear term (see Meinguet, 1979; Wahba, 2006 for more details),
of the form

t(x) = E(x) +
Nr∑

l=1

λlf(x − xl), x ∈ R2.

E(x) = c0 + c1x + c2y is the added plane. Nr is the number of support points (also called
pivots, knots). The weight is characterized by λl. f(x− xl) is a basis function, a function
of real values depending on the distance between the grid points x and the support points
xl, such that |x − xl| > 0.
Given the pivots xk and the amplitude zk = z(xk), the TPS satisfies the interpolation
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conditions:

t(xk) = E(xk) +
Nr∑

l=1

λlf(xk − xl) = zk, k ∈ {1, . . . , Nk}, xk ∈ {xl},

and minimizes

‖t‖2 = I[f(x, y)] =

∫ ∫

R2

(f 2
xx + 2f 2

xy + f 2
yy)dxdy.

‖t‖2 is a measure of energy in the second derivatives of t. In other words, given a set of data
points, a weighted combination of TPSs centred about each pivot gives the interpolation
function that passes through the pivots exactly while minimizing the so–called ‘bending
energy’. The TPS satisfies the Euler–Lagrange equation and its solution has the form:
f(x − xl) . r2 ln(r2), where r2 = (x − xl)2 + (y − yl)2. This is a smooth function of two
variables defined via Euclidean space distance. In Fig. 2.6 an example of TPS with one
pivot is pictured.

For fitting the TPS to the pivots’ amplitudes, it is necessary to solve for the weights
and the plane’s coefficients so that it is possible to interpolate the local TPS’s amplitude:

tij = tij(Nr, {xl, zl, l = 1, . . . , Nr})

which is the background rate. bij will indicate the local background amplitude, i.e. the
multiplication of tij and the local value of the satellite’s exposure time (τ):

bij = tij × τij.

The TPS interpolant is defined by the coefficients, ck of the plane E(x) and the weights λl

of the basis functions. The solution for the TPS has been evaluated on an infinite support,
since no solutions exist on a finite support (Wahba, 2006), where the requirements for this
function to be fulfilled are:

1. t(x) is two times continuously differentiable,

2. t(x) takes a particular value zk at the point xk,

3. I[f(x, y)] is finite.

Given the interpolation values z = (z1, . . . , zNr), the weights λl and ck are searched so that
the TPS satisfies:

t(xl) = zl, l = 1, . . . , Nr

and in order to have a converging integral, the following conditions need to be satisfied:





∑Nr

l=1 λl = 0,∑Nr

l=1 λlxl = 0,∑Nr

l=1 λlyl = 0.
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This means that there are (Nr + 3) conditions on t(xl) = zl for estimating Nr λl weights
and the coefficients ck for the plane.

The coefficients of the TPS, λl, and the plane, ck, can be found by solving the linear
system, that may be written in matrix form as:

(
F Q
QT O

) (
λ
c

)
=

(
z
0

)
, (2.25)

where the matrix components are:
Fij = f(xi − xj),

z = (z1, . . . , zNr)
T ,

0 = (0, 0, 0)T ,

λ = (λ1, . . . ,λNr)
T ,

c = (c0, c1, c2)T .

Q =





1 x1 y1

1 x2 y2
...

...
...

1 xNr yNr




,

After having solved (λ, c)T , the TPS can be evaluated at any point. For more information
about splines, see Appendix B.

The pivots can be equally spaced or can be located in structures arising in the astro-
nomical image. Following the works of Fischer et al. (2000) and von Toussaint and Gori
(2007), the present work can be extended employing adaptive splines, i.e. allowing the
number of pivots and their positions to vary in accordance with the requirements of the
data.

2.2.3 Estimation of the background and its uncertainties

The posterior pdf of the background is, according to Bayes’ theorem, proportional to the
product of the mixture likelihood pdf, equation (2.24), and the prior pdf p(b), that is
chosen constant for positive values of b and null elsewhere. The maximum of the posterior
pdf with respect to b, b∗, gives an estimate of the background map which consists of the
TPS combined with the observatory’s exposure map. The estimation of the background
considers all pixels, i.e. on the complete field, because the source signal is tackled implicitly
as outlier. In Appendix C details about the minimization procedure employed for the
background model are given.

The posterior pdf for b is given by:

p(b | D) =

∫
p(b | D, z)p(z | D)dNrz =

∫
δ(b − b(z))

p(D | z)p(z)

p(D)
dNrz.

This integral is complicated due to the presence of the delta function. This is, however,
of minor importance since the expectation values of some functionals of b, say g(b), are of
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interest. Therefore:

E(g(b) | D) =

∫
g(b)p(b | D)db

=

∫
g(b(z))

p(D | z)p(z)

p(D)
dNrz

=

∫
g(b(z))p(D | z)p(z)dNrz∫

p(D | z)p(z)dNrz
. (2.26)

Assuming the maximum of p(D | z)p(z) is well determined, the Laplace approximation is
applied:

p(D | z)p(z) . p(D | z∗)p(z∗)exp{−1

2
∆zT H∆z}, (2.27)

that means the integrand function is approximated by a Gaussian at the maximum z∗ and
the volume under that Gaussian is computed. The covariance of the Gaussian is determined
by the Hessian matrix, as given by eq. (2.27), where ∆z = z−z∗ and Hij := −∂2ln[p(D|z)p(z)]

∂zi∂zj

is element {ij} of the Hessian matrix. This approximation is the second–order Taylor
expansion of a multivariate Gaussian around the optimized pivots amplitude’s values. For
more details see Section 2.1.5.
Then equation (2.26) becomes:

E(g(b) | D) =

∫
g(b(z))exp{−1

2∆zT H∆z}dNrz

(2π)
Nr
2 (detH)−

1
2

.

Therefore, the posterior mean of b is:

E(bij | D) =

√
detH

(2π)
Nr
2

∫
bij(z)exp{−1

2
∆zT H∆z}dNrz = TT

ijz
∗ =< bij >,

where bij(z) = TT
ij · z, and the variance is:

E(∆bij∆blk | D) =

=

√
detH

(2π)
Nr
2

∫
(bij(z)− < bij >) · (blk(z)− < blk >)exp{−1

2
∆zT H∆z}dNrz

=TT
ijH

−1Tlk. (2.28)

The 1σ error on the estimated background function is therefore calculated by the square
root of eq. (2.28).

2.2.4 Determining the hyperparameters

The two hyperparameters γ and β have so far been assumed to be fixed. However, these
parameters can be appropriately estimated from the data.
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Within the framework of BPT the hyperparameters (nuisance parameters) γ and β have
to be marginalized.

Alternatively, and not quite rigorous in the Bayesian sense, the hyperparameters can be
estimated from the marginal posterior pdf, where the background and source parameters
are integrated out,

max
β,γ

p(β, γ | D) → β∗, γ∗.

Hence, the estimate of the hyperparameters is the maximum of their joint posterior.
The basic idea is to use BPT to determine the hyperparameters explicitly, i.e. from the

data. This requires the posterior pdf of γ and β. Bayes’ theorem gives:

p(γ, β | D) =
p(D | γ, β)p(γ)p(β)

p(D)
. (2.29)

The prior pdfs of the hyperparameters are independent because the hyperparameters are
logically independent. These prior pdfs are chosen uninformative, because of lack of knowl-
edge on these parameters. The prior pdf for β is chosen to be constant in [0, 1]. Since
γ is a scale parameter, the appropriate prior distribution is Jeffrey’s prior: p(γ) ∼ 1/ γ.
Equation (2.29) can be written as follows:

p(γ, β | D) ∝ p(D | γ, β)p(γ) = p(γ)

∫
p(D | z, γ, β)p(z)dz. (2.30)

Assuming the maximum of p(D | z, γ, β)p(z) is well determined, the Laplace approximation
is applied

p(D | z, γ, β)p(z) . p(D | z∗, γ, β) · p(z∗)exp{−1

2
∆zT H∆z} (2.31)

where ∆z = z−z∗, z∗ corresponds to the maximum value of the integrand in eq. (2.30), and

Hij := −∂2ln[p(D|z,γ,β)p(z)]
∂zi∂zj

is element {ij} of the Hessian matrix. Considering dim(z) = Nr,

where Nr is the number of support points, eq. (2.30) can be written as follows:

p(γ, β | D) = p(γ)p(D | z∗, γ, β)p(z∗)
(2π)

Nr
2

(detH)
1
2

. (2.32)

p(z∗) is chosen to be constant. The last term corresponds to the volume of the posterior
pdf of γ and β for each γ, β estimates.

2.2.5 Probability of hypothesis B

In principle, the probability of detecting source signal in addition to the background should
be derived marginalizing over the background coefficients and the hyperparameters. Fol-
lowing the works of von der Linden et al. (1999) and Fischer et al. (2000), the multidi-
mensional integral, arising from the marginalization, can be approximated at the optimal
values found of the background coefficients and the hyperparameters.
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Equation (2.18) is approximated with:

p(Bij | dij) ≈
1

1 + β
1−β · p(dij|Bij,b∗ij)

p(dij|Bij,b∗ij,γ)

= Psource, (2.33)

where b∗ = {b∗ij} is the estimated background amplitude, as explained in Section 2.2.3.
SPMs are estimated employing this formula.

The BSS method does not need to incorporate the shape of the PSF. When the PSF
full width at half–maximum (FWHM) is smaller than the image pixel size, then one pixel
contains all the photons coming from a point–like source. Otherwise point–like sources are
detected on pixel cells as large as the PSF FWHM. Extended objects are detected in pixel
cells large enough that the source size is completely included. The pixel cell must be larger
than the PSF FWHM and it can exhibit any shape.

Equation (2.33) shows that the source probability strictly depends on the ratio between
the Poisson likelihood, p(dij | Bij, bij), and the marginal Poisson likelihood, p(dij | Bij, bij, γ)
(Bayes factors). Bayes factors offer a way of evaluating evidence in favour of competing
models.

Figure 2.7 shows the effect of the mixture model technique on the probability of having
source contribution in pixels and pixel cells for the exponential and the inverse–Gamma
function prior pdfs. For the parametric studies, the parameter β is chosen to be 0.5. This
non–committal value of β arises if each pixel (or pixel cell) is equally likely to contain
source signal contribution or background only. For photon counts of about the mean
background intensity, Psource is small. Psource increases with increasing photon counts due
to the presence of the long tail in the marginal likelihood. This allows efficient separation
of the source signal from the background.

In panels (a)–(c) of Fig. 2.7, the distribution function of Psource, the Poisson pdf (PD)
and the marginal Poisson pdf (MPD) are drawn using the exponential prior (see also
Figs 2.3 and 2.4). In the case of fields with bright sources (λ > 10 times the background
intensity), Psource is nearly zero for photon counts less or equal to the mean background
intensity. Psource increases rapidly with increasing photon counts. In the case of fields where
the mean source intensity is similar to the mean background intensity, pixels containing
photon counts close to the mean background intensity have probabilities about 50%. In
these cases, Psource increases slowly with increasing photon counts, because the two Poisson
distributions are similar. In the case of fields dominated by large background signal (λ <
mean background amplitude), Psource increases very slowly with increasing photon counts.
In this case, the decay of the marginal Poisson distribution follows closely the decay of the
Poisson distribution (e.g. for b = 10 counts and λ = 1 count).

In Fig. 2.7, panels (d)–(f), the distribution functions are shown using the inverse–
Gamma function prior (see also Figs 2.3 and 2.4). Again, the source probability depends
on the distance between the Poisson distribution and the marginal Poisson distribution.
For photon counts in the vicinity of the mean background intensity, the source probability
is small. This is due to the small distance between the Poisson and the marginal Poisson
distributions. The source probability curves increase with increasing photon counts. The
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Table 2.1: Interpretation of source probability values.

Psource <50% 50% 90% 99% 99.9%

Interpretation Background Indifferent Weak Strong Very
only strong

steepness of the slope depends on the parameter α (Fig. 2.3). The source probability curve
increases faster at decreasing α values, because small α values indicate bright sources
distributed in the field. In panels (e) and (f), Psource provides values close to 50% at low
numbers of photon counts. This effect addresses the cutoff parameter a. In fact, in these
plots the cutoff parameter a is smaller than the background amplitude. The situation is
different in the simulations with small background amplitude (panel d), where the source
probabilities decrease below 50% at low numbers of photon counts. In these simulations
the cutoff parameter a is chosen larger than the mean background amplitude. Faint sources
with intensities lower than a are described to be background.

The interpretations of the probability of having source contributions in pixels and
pixel cells are shown in Table 2.1. Source probabilities <50% indicates the detection of
background only. Psource is indifferent at values of 50%. In both cases, Psource might
contain sources but they cannot be distinguished from the background due to statistical
fluctuations. Source probability values * 50% indicate source detections. False sources
due to statistical fluctuations may occur especially for values <99%. For more details about
the interpretations provided in Table 2.1, see Jeffreys (1961); Kass and Raftery (1995).

Statistical combination of SPMs at different energy bands

An astronomical image is usually given in various energy bands. SPMs, obtained with
eq. (2.33), acquired at different energy bands can be combined statistically. The probability
of detecting source signal in addition to the background for the combined energy bands
{k} is:

p(Bij | dij)comb = 1 −
n∏

k=1

[1 − p(Bij | dij)k], (2.34)

where n corresponds to the effective energy band.

Equation (2.34) allows one to provide conclusive posterior pdfs for the detected sources
from combined energy bands. It results, as expected, that if an object is detected in
multiple bands, the resulting p(Bij | dij)comb is larger than the source probability obtained
analysing a single band. An application of this technique is shown in Chapter 6. This
analysis can be extended to study crowded fields or blends by investigating source colours.
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Figure 2.8: Flow chart illustrating the source characterization algorithm. The upper box
represents the input information. The generated catalogue is in FITS standard.
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2.3 Source characterization

Following the estimation of the background and the identification of sources, the sources
can be parametrized.
SPMs at different resolutions are investigated first. Sources are catalogued with the largest
source probability reached in one of the SPMs. Local regions are chosen around the detected
sources. The regions size is determined by the correlation length where the maximum of
the source probability is reached. A scheme of the source fitting routine is displayed in
Fig. 2.8.

Although any suitable source shape can be used, the detected sources are modelled by
a two–dimensional Gaussian. The data belonging to a source detection area ’k’ are given
by:

Dij = bij + Gij ∀{ij} ∈ {k}. (2.35)

Dij are the modelled photon counts in a pixel {ij} spoiled with the background counts bij.
Gij is the function which describes the photon counts distribution of the detected source:

Gij =
I

2πσxσy

√
1 − ρ2

· exp
{
− 1

2(1 − ρ2)

[(xij − xs

σx

)2

+
(yij − ys

σy

)2

+

− 2ρ
(xij − xs

σx

)(yij − ys

σy

)]}
,

where I is the intensity of the source, i.e. the net source counts, σx, σy and ρ provide the
source shape and xs, ys is the source pixel position on the image.

Position, intensity and source shape are provided maximizing the posterior pdf assum-
ing constant priors for all parameters:

p(xs, ys, I, σx, σy, ρ|b, d) ∝
∏

ij

D
dij

ij

dij!
exp{−Dij} ∀{ij} ∈ {k}, (2.36)

where dij are the photon counts detected on the image.
According to eqs (2.35) and (2.36) the source fitting is executed on the sources for given

background. This is reasonable since the uncertainty of the estimated background is small.
No explicit background subtraction from the photon counts is needed for estimating the
source parameters.

Source position and size are converted from detector space to sky space. Source fluxes
are provided straightforwardly.

The rms uncertainties of the source parameters are estimated from the Hessian matrix,
where Hij := −∂2 ln[p(D|ξ)p(ξ)]

∂ξi∂ξj
is element {ij} of the Hessian matrix and ξ indicates the

source parameters. The square root of the diagonal elements of the inverse of the Hessian
matrix provides the 1σ errors on the estimated parameters.

The output catalogue includes source positions, source counts, source count rates, back-
ground counts, source shapes and their errors. The source probability and the source
detection’s resolution are incorporated.
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Source characterization can be extended with Bayesian model selection. With the
Bayesian model selection technique, the most suitable model describing the photon count
profile of the detected sources can be found. The models to be employed are, for instance,
Gaussian profile, King profile (Cavaliere and Fusco-Femiano, 1978) (i.e. the density profile
of an isothermal sphere), de Vaucouleurs model, Hubble model. Such an extension to the
actual method would allow an improvement in the estimation of the shape parameters of
faint and/or extended sources.
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Chapter 3

Reliability of detections

Statistical significance tests are used to verify whether data are consistent with the pre-
dictions of a theoretical model. Several statistical hypothesis tests are available. In this
Chapter statistical hypothesis test with p–values is compared with the Bayesian solution
provided within the BSS algorithm. In Section 3.1, statistical hypothesis tests are reviewed
and an historical note on hypothesis testing is emphasized. In Section 3.2, the definition of
p–values is provided. In Section 3.3, the general view on how this problem can be tackled
with BPT is expressed. The commonly used measure of statistical significance with Poisson
p–values is introduced in Section 3.4. In Section 3.5, simulations are utilized for comparing
the Poisson p–values with the Bayesian probabilities. A summary of this Chapter is given
in Section 3.6.

3.1 Introduction

The detection of sources is often spoiled by statistical fluctuations, which produce false
detections of sources. The number of detected false sources depends on the method used
and on the setting of thresholds. Thresholds are employed for tuning the number of false
sources. Any chosen threshold will result in some astronomical sources being identified
as background (false negative) and some false sources, due to background fluctuations,
measured as real (false positives). Consequently, thresholds reduce the detectability of
sources with low surface brightness, that can be most interesting for assessing cosmological
theories.

Statistical hypothesis test can be described as follows. Data and models are tested
for overall differences using a statistical measure of discrepancy, e.g. employing χ2 for
uncorrelated data. If the discrepancy is large enough, then there are significant differences
beyond those accounted for by randomness in the data. A threshold is employed to put
a cutoff to the measure of discrepancy. Classically, a test is declared significant if the
discrepancy is larger than twice the standard error of the measurements (2σ approach),
that means a probability of 0.05 to declare significance erroneously (Miller et al., 2001).
Often, a 3 − 5σ cutoff is used (Miller et al., 2001; Starck and Murtagh, 2006), because of
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multiple hypothesis tests and of noisy data.
In image analysis one wants to decide whether pixels contains background photons only

or background plus source photons. The recurrent statistical problem to decide whether
data belong to astronomical sources can be addressed with statistical hypothesis tests.
Two competing hypothesis are used: the null hypothesis, H0, that the pixel contains
background photons only, and the alternative hypothesis, that a pixel contains source
photons in addition to the background ones. A critical threshold is commonly selected
to classify pixels into the two groups. The rule for classifying pixels using the data is an
example of a statistical hypothesis test. Mistakes can be made in the classification process
when data are insufficient to detect the discrepancy between the data and the model,
because of small number of counts or of large background fluctuations. Often, statistical
procedures for making a prediction about the number of false sources require only the
knowledge of H0: See Miller et al. (2001) for more details.

Several methods for making a prediction about the number of false sources are avail-
able, one is to use p–values from statistical significance tests (Linnemann, 2003). An
example of a popular technique employing p–values is the false discovery rate method of
Benjamini and Hochberg (1995). The false discovery rate technique is employed to find a
significant discovery from a small set of data (Ball and Brunner, 2009). A p–value cutoff
adapts to the data, since its value changes systematically as the source intensity changes
(Miller et al., 2001; Hopkins et al., 2002). P–values are used to a great extent in many
fields of science. Unfortunately, they are commonly misinterpreted. Researches on p–
values (see, e.g., Berger and Sellke, 1987) showed that p–values can be a highly misleading
measure of evidence.

3.1.1 Historical note on testing

Hypothesis testing with p-values was developed in the first half of the 20th century by
Ronald Fisher (1890-1962). In Fisher’s approach the researcher sets up H0. A sample
coming from a hypothetical infinite population with a known sampling distribution is used
to provide the predicted reference distribution. The probability of the data (observed
and more extreme one) given the truth of H0 supplies an amount of evidence required to
accept that an event is unlikely to have arisen by chance (Hubbard and Bayarri, 2003).
This probability defines the p–value. A typical justification that Fisher would give for his
procedure is that p–values can be viewed as an index of the ‘strength of evidence’ against
H0, with small p indicating an unlikely event and, hence, an unlikely hypothesis (Berger,
2003).

The method has been criticized by his contemporaries: Jerzy Neyman (1894-1981)
and Sir Harold Jeffreys (1891-1989) (see, e.g., Berger, 2003 and references therein for
more details). Both Neyman and Jeffreys were proposing different methods for hypothesis
testing. Each was quite critical of the other approaches.

Neyman was founding his believing in classic statistics as Fisher did. Neyman consid-
ered alternative hypotheses to H0 and introduced error probabilities: the Neyman–Pearson
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theory of hypothesis testing 1. Nonetheless, he recommended testing with fixed error proba-
bilities. Jeffreys, a pioneer in Bayesian inference, proposed the use of posterior probabilities
of hypotheses.

Neyman criticized p-values for violating the Frequentist Principle (i.e. in repeated actual
use of a statistical procedure the average actual error should not be greater than the
average reported error). Jeffreys criticized the logic of employing a ‘tail area’ rather than
a likelihood–based measure for hypothesis testing: “a hypothesis that may be true may be
rejected because it has not predicted observable results that have not occurred” (Jeffreys,
1961).

Note that in classic statistics, the argument of a probability is restricted to a ran-
dom variable. Since a hypothesis cannot be considered a random variable, the truth of
a hypothesis can only be inferred indirectly. In Bayesian inference, one can compute the
probabilities of two or more competing hypothesis directly for a given state of knowledge
(Gregory, 2005).

The three approaches can lead to very different results (Berger, 2003).

3.2 P -values

In hypothesis testing one is interested in making inferences about the truth of some hy-
pothesis H0, given a set of random variables X: X ∼ f(x), where f(x) is a continuous
density and x is the actual observed values. A statistic T (X) is chosen to investigate
compatibility of the model with the observed data x, with large values of T indicating less
compatibility (Sellke et al., 2001). The p–value is then defined as:

p = Pr(T (X) ≥ T (x)|H0).

The significance level of a test is the maximum allowed probability, assuming H0, that
the statistic would be observed. The p–value is compared to the significance level. If
the p–value is smaller than or equal to the significance level then H0 is rejected. The
significance level is an arbitrary number between 0 and 1, depending on the scientific field
one is working in. However, often a significance level of 0.05 is accepted. Berger and Sellke
(1987); Sellke et al. (2001) demonstrated that a significance level of 0.05 can indicate no
evidence against H0.

An extensive literature dealing with misinterpretations about p–values exists, see, for in-
stance, Berger and Sellke (1987); Berger and Delampady (1987); Berger and Berry (1988);
Delampady and Berger (1990); Loredo (1990, 1992); Kass and Raftery (1995); Sellke et al.
(2001); Hubbard and Bayarri (2003); Astone et al. (2003); Gregory (2005) and references
therein.

1The Neyman–Pearson hypothesis testing can be summarised in the following: Suppose one observes
data X ∼ f(x|θ), where θ are the parameters of the statistical model. H0 : θ = θ0 is tested versus some
alternative hypothesis H1 : θ = θ1. H0 is rejected if a test statistic T = t(X) ≥ c, where c is a critical
value. Type I (false positive) and type II (false negative) error probabilities are computed, with α = P0

(rejecting H0, when H0 is true) and β = P1 (fail to reject H0, when H0 is false).
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3.3 The Bayesian viewpoint

Since the state of knowledge is usually incomplete, a hypothesis can never be proven false
or true. One can only compute the probability of two or more competing hypotheses (or
models) on the basis of the only data available, see e.g. Gregory (2005).

The Bayesian approach to hypothesis testing is conceptually straightforward. Prior
probabilities are assigned to all unknown hypotheses. Probability theory is then used to
compute the posterior probabilities of the hypotheses given the observed data (Berger,
1997). This is in contrast to standard significance testing which does not provide such
interpretation. In fact, in the classic approach the truth of a hypothesis can only be
inferred indirectly.

Finally, it is important to underline that the observed data and parameters describing
the hypotheses are subject to uncertainties which have to be estimated and encoded in
probability distributions. With BPT there is no need to distinguish between statistical (or
random) and systematic uncertainties. Both kinds of uncertainties are treated as lack of
knowledge. For more on the subject see Fischer et al. (2003).

3.4 Significance testing with p–values

Several measures of statistical significance with p–values have been developed in astro-
physics. A critical comparison and discussion about methods for measuring the signifi-
cance of a particular observation can be found in Linnemann (2003). Following the work
of Linnemann (2003), the Poisson probability p–value is defined as:

pP = P (≥ d|b) =
∞∑

j=d

e−bbj

j!
. (3.1)

pP is the probability of finding d or more (random) events under a Poisson distribution
with an expected number of events given by b. Note that p–values are not probabilities
that H0, in this case the ’only background’ hypothesis, is true (Astone et al., 2003).

Linnemann (2003) remarks that Poisson probability p–value estimates lead to overes-
timates of the significance since the uncertainties on the background are ignored.

3.5 Comparing threshold settings for source reliabil-
ity

In order to restrain the rates of false source detections per field, a threshold on probabilities
is commonly set according to the goal of a specific research. For instance, Freeman et al.
(2002) have chosen an upper limit of 1 spurious detection per analysed Chandra field. This
value corresponds to a false–positive probability threshold of 10−7. The method developed
by Freeman et al. (2002) is a wavelet–based source detection algorithm (wavdetect).
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For the XMM–Newton serendipitous source catalogue, Watson et al. (2003) have chosen a
detection likelihood L = 10, corresponding to ≈ 4σ. L is given by −ln(1−P ), where P is the
probability of source detection obtained by a maximum likelihood method (Cruddace et al.,
1988). The selected likelihood threshold corresponds to the detection of < 1 spurious
source per field. In any systematic investigation to source detection, the threshold level is
a tradeoff between the detection power and false detections rate.

Comparison Following this idea, the Poisson probability p–value, equation (3.1), is com-
pared to the Bayesian source probability Psource, equation (2.33). Figures 3.1 and 3.2 com-
pare the two statistics. In Fig. 3.1, the prior distribution of the source signal is chosen
to be exponential, equation (2.20), where in Fig. 3.2, it is given by an inverse–Gamma
function, equation (2.23).
Specifically, each plot of Figs 3.1 and 3.2 illustrates a relation between pP (ordinate) and
the background probability obtained with BPT (abscissa). The squares on each plot indi-
cates the photon counts d chosen for calculating equation (3.1). The corresponding number
counts are indicated on some of the squares. On the abscissa, the background probability
is calculated as the complementary source probability provided by the Bayesian method
(1 − Psource). The value close to unity corresponds to a source probability, Psource, which
goes to zero, instead a value of 0.1 corresponds to 90% source probability and 0.01 to 99%
source probability.

In Figs 3.1 and 3.2, panels (a) − (c) show the relation between pP and (1− Psource) for
varying background amplitudes and source intensities. The plots are ordered with respect
to increasing source intensities. Panels (d)− (f) of Figs 3.1 and 3.2 display the same data
but with fixed background value and varying source intensities. The background values
increase from left to right.

Each plot shows a general tendency. For a given count number d, Psource and (1-pP )
increase with decreasing background intensity. However, Psource is more conservative. This
is due to the dependency of Psource not only on the mean background intensity but also on
the source intensity distribution. This dependency is expressed by the likelihood for the
mixture model equation (2.17), that plays a central role for the estimation of the source
probability equation (2.33).

An example of the different interpretations of source detection employing the two statis-
tics is provided in Table 3.1. This example is taken from Fig. 3.1, panels (a) and (c).
Illustrations A, B, C are derived from panel (a), while illustration D from panel (c). The
mean source intensity in a field (λ) is 10 (A, B, C) and 1000 (D) times larger than the
mean background intensity (b). Illustration A: For a mean background intensity of 0.1
count, 2 photon counts in a pixel are assigned with a Psource value of 0.97. Poisson statis-
tics provides the probability of detecting 1 photon count or less equal to 0.995, stating
that 5 over 103 pixels would show 2 or more photon counts due to Poisson random process.
Illustration B: For a mean background value of 1.0 count, 2 photon counts in a pixel are
characterized by a Psource value of 0.29. (1-pP ), instead, has a larger value of 0.74 and
26 over 102 pixels would show 2 or more photon counts due to background fluctuations.
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Table 3.1: Bayesian source probability (Psource) versus Poisson p–value (pP ).

b λ d Psource 1 − pP 1 − Psource pP

(counts) (counts) (counts)

A 0.1 1.0 2 0.97 0.995 0.03 0.005
B 1.0 10.0 2 0.29 0.74 0.71 0.26
C 10.0 100.0 2 0.01 0.0005 0.99 0.9995
D 1.0 1000.0 5 0.28 0.997 0.72 0.003

Note. This example shows the variation of Psource and pP for detecting d photon counts in a
pixel at three background levels. The mean source intensity distributed in the field is 10 and
1000 times larger than the background for illustrations from A to C and D, respectively.
Psource represents the source probability for detecting 2 (A, B, C) or 5 (D) photon counts in
a pixel according to the Bayesian technique. (1-pP ) is the classic cumulative distribution
function (cdf). It provides the probability for detecting 1 (A, B, C) or 4 (D) photon counts
or less in a pixel according to Poisson statistics, respectively. (1-Psource) is the background
probability estimated with the Bayesian method. pP provides the probability for detecting
2 (A, B, C) or 5 (D) photon counts or more in a pixel according to Poisson statistics.

Both, the Bayesian solution and the Poisson p–value classify 2 photon counts in a pixel
to belong to the background. However, the Bayesian solution is more conservative than
Poisson p–value. Illustration C: When b = 10 counts, both statistics classify 2 photon
counts in a pixel to belong to the background. Illustration D: For a mean background
intensity of 1.0 count, the Bayesian analysis classifies 5 photon counts in a pixel to belong
to the background (Psource = 0.28), because the source intensity distributed in the field
is 1000 times larger than the mean background intensity. Poisson statistics provides the
probability of detecting 4 photon counts or less equal to 0.997, stating that 3 over 103 pixels
would show 5 or more photon counts due to Poisson random process. In this illustration,
the two statistics provide contrasting results.

In Fig. 3.3, the dependency of Psource on the source intensity distributed on a field is
shown. Psource is drawn for a given number of photon counts in a pixel versus λ/b (panels
a − c) and versus α (panels d − f) for fixed background values. The prior β is fixed at
0.5. In the abscissas the parameters λ/b and α are plotted in order to feature from faint to
bright sources. The abscissas are drawn in logarithmic scale. For a given number of photon
counts, the value of Psource varies with the source intensities expected in the astronomical
image and with the background amplitude. Psource is drawn with different linestyles for
given number of photon counts.

Let us consider the plot in panel (a) of Fig. 3.3, where the background has a value of 0.1
count. For 2 photon counts, Psource reaches a maximum where the mean source intensity
in the field has values in the range (1 − 5) counts. In this part of the curve, 2 photon
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counts in a pixel are discriminated best from the background. Away from this range, the
source probability decreases. For small λ/b values, Psource approaches 0.5 because source
and background cannot be distinguished. For large λ/b values, Psource decreases since more
sources with large intensities are expected relative to small intensities. Therefore, a signal
with 2 counts is assigned to be background photons only.
(1 − pP ) is calculated for the same values of background and photon counts as for Psource.
The linestyles and colours used correspond to the one employed for Psource. (1 − pP ) is
constant, since it does not depend on the source intensities expected in the field. Its value
for 2 photon counts (that is 0.995 from Table 3.1) is larger than the maximum of Psource

(with a maximum value of 0.97 from Table 3.1). In general, (1 − pP ) is larger than Psource

for values of photon counts larger than the mean background intensity. If the values of the
photon counts are lower than or equal to the mean background intensity, (1− pP ) is lower
than the maximum of Psource: See, for instance, panel (c) of Fig. 3.3 for a value of 8 photon
counts.

Remarks on p–values versus BSS technique The comparison shows that it is not
possible to calibrate pP with Psource because of the intrinsic difference in the nature of the
two statistics.

Poisson p–values are used to interpret background and sources, without including un-
certainties on the background. P–values are one point estimate. Only, the null hypothesis
is required for classification purposes.

The Bayesian method, instead, gives information about background and sources and
their uncertainties. The BSS technique utilizes the full pdf for a predicted property, rather
than simply its single scalar value as with p–values. Therefore, much more information is
included in the BSS solution with respect to p–values. Threshold levels as p–values are not
used in the BSS algorithm. The separation between background and sources occurs with
probability distributions. The BSS technique has a built in statistical significance test,
where H0 and its alternative hypothesis are considered jointly in the likelihood for the
mixture model through Bayes factors. The BSS algorithm includes a wider interpretation
of background and sources with respect to Poisson p–values. The interpretation of the
background model is defined by its smoothness. The source signal distributed on an image
is encoded in probability distributions. Parameters describing the background model and
the source signal distributed in the astronomical image are estimated from the data. The
BSS technique is capable of classifying background and sources taking into account the
intensities distributed in an image. Therefore, the BSS technique can adaptively select
background and sources according to the properties of the analysed astronomical image.
Discrepancies from the data to the model are properly accounted for and false positives
in source detections are reduced. (The same effect is expected for false negatives, since
both false positives and negatives are treated identically in one unique algorithm.) Last,
with the BSS algorithm thresholds on source probability values can be set according to the
application one is investigating. Interpretations of source probability values are given in
Table 2.1. Such interpretations are used to reduce the number of false detections.
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Remarks on false positives detected with the BSS technique Comparing the
results shown in Figs 3.1 and 3.2, slightly different answers are arising for the two priors of
the source signal. When the exponential prior is employed, fields with large intensities are
less penalized by false positives caused by random Poisson noise than fields with source
signal very close to the background amplitude. When the inverse–Gamma function prior
is used, false positives’ detections depend on the cutoff parameter a. This is because the
cutoff parameter has an effect on faint sources. The same behaviour is expected on false
positives in source detection. The exponential prior, instead, does not exclude small source
intensities.

This result is not surprising, because the choice of the source signal prior pdf is crucial
for source detection. For a reliable analysis, the source signal prior pdf chosen has to be
as close as possible to the true one.

3.6 Summary

Fisher’s approach to hypothesis testing employs p–values to assess the ’strength of evidence’
against the null hypothesis. In Fisher’s approach the argument of a probability is restricted
to random variables and the truth of a probability can only be inferred indirectly. A
statistic is chosen to find compatibility between a model and the observed data. The p–
value expresses the probability of finding a result at least as extreme as the one obtained
with the observed data, assuming that the null hypothesis is true. The significance level
of a test is compared to the p–value with the result of rejecting or accepting H0.

BPT allows one to compute the probability of two or more competing hypotheses on the
basis of the only data available. Prior pdfs are assigned to all hypotheses. Bayes’ theorem,
eq. (2.4), is used to compute the posterior pdfs of the hypotheses given the observed data.
Furthermore, the uncertainties due to the data and parameters describing the hypotheses
are estimated and encoded in probability distributions.

The Poisson probability p–values are compared to the Bayesian source probability.
The comparison allows one to demonstrate the intrinsic difference in the nature of the two
statistics. In fact, the two statistics provide different interpretations to source detection.
Poisson p–values supply the Poisson probability of finding a certain number of photon
counts (or larger) given a background value. Poisson p–values account only for H0 and
only false positives in source detection are addressed.
The Bayesian technique, instead, gives the (source) probability for detecting a certain
number of photon counts given the information coming from the background, the source
intensities distributed on the field and their errors. Both false positives and negatives are
jointly addressed in the BSS technique. The number of false detections are drastically
reduced with respect to p–values.

Finally, the two prior pdfs of the source signal provide different answers for the number
of false positives in source detection. This is mainly due to the cutoff parameter in the
inverse–Gamma function, that has an effect on the detection of faint sources and conse-
quently also on false positives.
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Chapter 4

Source characterization from
simulated data

In this Chapter, artificial data are used for performance assessment of the BSS technique.
Three simulations are analysed using the exponential and the inverse–Gamma function
prior pdfs of the source signal. The data sets, described in Section 4.1, are meant to
test the capabilities of the BSS method at varying background values. The idea is to
cover different cases one encounters while surveying different sky regions or employing
instruments of new and old generations. In Section 4.2, the outcome of the analysis on the
three simulated data sets is reviewed. Last, a summary on the outcome of the analysis is
provided in Section 4.3.

4.1 Simulations set–up

Three sets of simulated fields composed of 100 sources modelled on a constant background
with added Poisson noise are generated. Groups of ten sources are characterized by the
same number of photon counts but with different sizes. A logarithmic increment in photon
counts per group is chosen ranging from 1 to 512. The shape of each source is characterized
by a two–dimensional circular Gaussian. The source extensions, given by the Gaussian
standard deviation, increase from 0.5 to 5.0 pixels in steps of 0.5. Sources are located
equidistantly on a grid of 500 × 500 pixels. Initially, the simulated sources are located
on the grid such that the source intensities increase on the abscissa, while the source
extensions increase on the ordinate. Subsequently, the 100 sources are randomly permuted
on the field. A background is added on each simulated field with values of 0.1, 1 and 10
counts respectively. A constant exposure is assumed. Note that by construction, a number
of sources have intensities comparable to or lower than the background amplitude in the
images. Consequently, not all sources can be recovered in every image.

In Fig. 4.1, the simulated data with small background are shown. Image (a) represents
the simulated data with added Poisson noise. The image indicated with (b) is the simulated
data without Poisson noise. It is placed for comparison: Sources close to or below the
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Figure 4.1: Panels (a) − (b): simulated data with small background (b = 0.1 count):
image with Poisson noise, image without Poisson noise, respectively. Panels (c) − (d):
results with exponential prior pdf: SPM with 3 pixels resolution and background map,
respectively. Panels (e) − (f): results with inverse–Gamma function prior pdf.
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Figure 4.2: Simulated data with intermediate background (b = 1 count). Each panel has
same explanation as given in Fig. 4.1.
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Figure 4.3: Simulated data with large background (b = 10 counts). Each panel has the
same explanation as given in Fig. 4.1.
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background amplitude become difficult or impossible to detect, even visually, when Poisson
noise is added. The simulated data sets (a) and (b) are scaled in the range (0− 3) photon
counts pixel−1 in order to enhance faint sources. The original scale of the simulated data
with Poisson noise is (0−317) photon counts pixel−1. The simulated data without Poisson
noise show counts pixel−1 in the range (0.1 − 326.0).

The images representing the other two data sets for b = 1 count (Fig. 4.2) and b = 10
counts (Fig. 4.3) are similar to the one shown in Fig. 4.1. In these data sets, the number
of sources to be separated from the background decreases with increasing background
intensity. In Figs 4.2 and 4.3, panels (a) − (b) are scaled in the range (0 − 5) and (0 −
40) photon counts pixel−1, respectively. The original scales for the simulated data with
intermediate and large backgrounds and added Poisson noise, panels (a), are (0−334) and
(0 − 365) photon counts pixel−1, respectively.

The cutoff parameter a is chosen to be 0.14 counts in the three simulated data sets.
This is to show the effect of a when the background is smaller or larger than a.

4.2 Results

4.2.1 Background estimation

For the background modelling, only four pivots located at the field’s corners are used. This
choice is driven by the presence of a constant background. An optimization routine is used
for maximizing the posterior pdf of having source contributions in pixels and pixel cells,
eq. (2.18). The solution of the optimization routine is the pivots amplitude’s estimates
from which the background is calculated.

The three set–ups are designed such that half of the 100 simulated sources are char-
acterized by ≤ 16 photon counts. Some of these simulated sources are too faint for being
detected. These sources may contribute to the background model.

In Fig. 4.1, the estimated background maps are displayed when employing the expo-
nential prior pdf (image d) and the inverse–Gamma function prior pdf (image f) for the
simulated data with small background.

The two images show that the background intensity decreases slightly from the centre
toward the upper left– and lower right–hand corners of about 5%, while toward the upper
right– and lower left–hand corners increases up to ∼ 20%. The same trend is seen also in
the estimated backgrounds with intermediate and large values (panels d and f in Figs 4.2
and 4.3), but with much smaller relative change. Evidently, the variations in the estimated
background amplitudes are not introduced by the prior over the signal. Furthermore,
these variations are not introduced by the selected pivots positions. If that were the case,
then the same magnitude is expected at each image corner. Instead, these variations are
an overall effect induced by the simulated sources. All simulated sources are randomly
permuted. In the upper left– and lower right–hand corners are located numerous faint
sources. In the lower left–hand corner many bright sources are clustered. The increment in
the background intensity is due to the statistical distribution of the sources. This explains
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why the same trend in background intensities is seen in all background models.
When employing the exponential prior pdf, the estimated background intensities are in

agreement with the simulated background amplitudes. In the case of the inverse–Gamma
function prior pdf, the estimated backgrounds are sensitive to the cutoff parameter a. When
a is set larger than the mean background (i.e. simulated data with small background), the
background is overestimated. The overestimated background is due to the presence of
source signal below the cutoff parameter. Hence, no source intensities below 0.14 counts
are allowed. It results that the estimated background is 40% larger than the simulated one.
For simulated data with intermediate background value, the cutoff parameter a is fixed to
a value lower than the simulated background. The background model is underestimated of
only ∼ 1% with respect to the simulated one. For simulated data with large background,
the cutoff parameter a is much lower than the simulated mean background value. The
estimated background is in agreement with the simulated one.

The background uncertainties are quite small compared with the background itself, on
the order of few a percent. This effect holds because the background is estimated on the
full field. However, the errors increase where the estimates deviate from the simulated
background. The absolute uncertainties increase from the centre to the images’ edge by a
factor of ∼ 4, independent to the prior pdf of the source signal used. In addition, when
applying the inverse–Gamma function prior pdf, the errors are larger than those found
using the exponential prior pdf. The absolute uncertainties on the estimated background
amplitudes with the inverse–Gamma function prior pdf are few a percent larger than
the ones obtained with the exponential prior pdf for the simulated data with small and
intermediate background values. The absolute uncertainties on the estimated background
intensities are, instead, very similar whether employing the exponential or the inverse–
Gamma function prior pdfs for the simulated data with large background. This effect is
due to the cutoff parameter.

4.2.2 Hyperparameter estimation

In Fig. 4.4 the contour plot in (λ, β) parameter space for the joint probability distribution is
shown for the hyperparameters evaluated from the simulated data with small background.
The contour levels indicate the credible regions, i.e. the locus of points of a constant
probability which surrounds a region containing a specified probability in the joint proba-
bility distribution. The values of the estimated hyperparameters are: β = (99.2 ± 0.03)%,
λ = (3.68±0.1) counts. The estimated β value provides the information that only 0.8% of
the pixels in the field contains sources. A similar answer is found with the other simulated
data. The β value increases slightly at increasing background amplitudes. In fact, the
number of pixels containing background only increases at increasing backgrounds. The λ
value, instead, provides the mean source intensity in the field. The estimated value of λ
increases with increasing background amplitudes because small intensities are assigned to
be background. Hence, more bright sources and less faint sources are found at increasing
backgrounds.

A test on the hyperparameter values is pursued with the simulated data set charac-
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Figure 4.4: Contour plot of the posterior pdf for the hyperparameters, p(λ, β|D), estimated
from the simulated field with small background (b = 0.1 count) using the exponential prior
pdf.

terized by small background. A value ≥ 2 photon counts per pixel is selected to indicate
source detection 1. The number of pixels with more than 1 counts are counted from the
simulated field, resulting in ∼ 3000 pixels with source signal in addition to the background.
The respective percentage of pixels with expected signal is 1.2%. The parameter β indi-
cates the number of pixels with background only, which has a value of 98.8% in this test.
A mean source intensity value of ∼ 3.5 counts is found. This quantity indicates the pa-
rameter λ. The values of each hyperparameter obtained within the test are close to the
estimated ones (5% and 0.4% difference for the λ and β values are found, respectively).
Realistic values of the estimated hyperparameters are found.

When employing the inverse–Gamma function prior pdf, the hyperparameter α is found
with the smaller value in the simulated data with small background. The largest value of α
is found in the simulated data with intermediate background. Large values of α indicates
that more faint sources and less bright sources are expected in the field (Fig. 2.3). These
results do not contradict our expectations on the hyperparameter estimates, since the cutoff
parameter selects the source signal distribution at the faint end.

The true source signal distribution differs from both, the exponential and the inverse–
Gamma functions. However, the employed models for the source signal distribution provide
a realistic situation. The employed models are robust.

4.2.3 The components of the mixture model

In Fig. 4.5, the Poisson and the marginal Poisson distributions multiplied with their prior
knowledge on the model are plotted over the normalized histogram of each simulated data
set. The likelihoods are drawn for the exponential and the inverse–Gamma function prior

1The choice for ≥ 2 counts is justified by the components of the mixture model, see subsection 4.2.3
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pdfs. The values of the estimated hyperparameters are shown in each image.
The exponential prior pdf is plotted over the histogram with a continuous line. The

inverse–Gamma function prior pdf, instead, is plotted with a dashed line. The simulated
data are neither distributed exponentially nor as an inverse–Gamma function. Hence, the
prior pdfs of the source signal are not expected to fit the data exactly.

The marginal Poisson distribution weighted with (1 − β) is drawn with a dash–dot
line when employing the exponential prior pdf and with long dashes line in the case of the
inverse–Gamma function prior pdf. The Poisson distribution (dotted line) is weighted with
β for the exponential and the inverse–Gamma function prior pdfs. The same line style is
used for the two Poisson distributions, because the two curves do not differ.

The intersection between the Poisson pdf and the marginal Poisson pdf indicates the
source detection sensitivity. When employing the exponential prior pdf in the simulated
data with small background (panel a), the exponential prior pdf enables the detection
of fainter sources than the inverse–Gamma function prior pdf. This is expected since the
cutoff parameter occurs at a value larger than the simulated mean background. Considering
the simulated data with intermediate background (panel b), the detection is more sensitive
to faint sources when employing the inverse–Gamma function prior pdf compared to the
exponential prior pdf. In fact, the cutoff parameter allows to describe as source signal part
of the simulated background amplitude. Note that the background is still modelled by
the data and the identification of sources occurs only when Psource is large (i.e., * 50%).
For the simulated data with large background (panel c), the same sensitivity in source
detection is expected when employing the two priors over the signal distribution.

4.2.4 Source probability maps

The box filter method with a circle is used in the three simulations for the multiresolution
analysis. Examples of SPMs are shown in Figs 4.1, 4.2 and 4.3 for the simulated data with
small, intermediate and large backgrounds, respectively. Images (c) and (e) are obtained
employing the exponential and the inverse–Gamma function prior pdfs, respectively. These
images represent the probability of having source contributions in pixel cells with a resolu-
tion of 1.5 pixels. At this resolution a pixel cell is composed by 9 pixels. A pixel cell with
a correlation radius of 1.5 pixels is drawn in the lower right–hand corner of image (c) in
Fig. 4.1. It is indicated with an arrow.

The sensitivity in source detection slightly varies with the prior pdf of the source signal
employed. In the case of the inverse–Gamma function, the cutoff parameter have important
implications, as already discussed throughout this Chapter. For instance, in Fig. 4.2, panel
(e), the source probability map does not contain pixels with 100% probability of detecting
background only. This is due to the cutoff parameter. In this simulated data set, the cutoff
parameter is selected such that part of the source signal is described at the background
amplitudes. Correspondingly, the background map in panel (f) of Fig. 4.2 is slightly
underestimated: The percentage of difference varies only in the range (0.3 − 2)%.

The multiresolution technique provides an analysis of source probabilities variation with
correlation length and of source features of the detected sources.
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The source probabilities variation allows one to analyse the source probability changes
at different correlation length (Fig. 4.6). Different behaviours are found for bright and faint
source detections. Panel (a) of Fig. 4.6 shows that the probabilities of bright sources do not
vary significantly at decreasing resolutions because of the source brightness relatively to the
small background value (b = 0.1 count). Faint sources, instead, are detected at decreasing
resolutions (panel b, Fig. 4.6). The source size (or extent) of faint sources is found within
the correlation length at which approximately the maximum of the source probability
is reached. For increasing correlation length, the source probability decreases, because
the difference between background and source signals is low. Last, source probabilities
variation may provide hints on sources close to the background amplitude, as shown in
panel (c), Fig. 4.6.

SPMs enable the analysis of source features. In Fig. 4.7, the photon count image and
the SPMs of a bright extended source are displayed. The source probabilities variation
for this source is shown in panel (a) of Fig. 4.6. This source is detected with the largest
source probability (∼ 1) at 2.5 pixels resolution. At this resolution the source is detected
as one unique object, as given by the simulation. This object, however, is simulated as
circular symmetric. Due to statistical fluctuations, source counts are grouped and the
simulated geometric symmetry is lost. At correlation lengths smaller than 2.5 pixels, the
BSS technique detects the data as they appear because of statistical fluctuations. At
correlation lengths larger than 2.5 pixels, one unique object and its substructures are
detected. In an astronomical observation, more information is needed to know if the
detection represents an individual object or an object with substructures. Secondly, the
maximum in source probability is reached at a correlation length that is smaller than the
source size. This is due to the source brightness relatively to the small background value
(b = 0.1 count). Within the range of resolutions studied, the source probability is constant
at correlation lengths larger than 2.5 pixels.

This example shows that the multiresolution technique combined with the BSS method
is particularly appropriate for the search of sources, independent to their morphologies.
Statistical fluctuations may corrupt the data, but the BSS technique still provides a robust
detection of these sources. This aspect of the technique is very important for real data
since the majority of extended sources are not spherically symmetric.

4.2.5 Comparison between estimated and simulated source pa-
rameters

Source parameters and their uncertainties are derived as described in Section 2.3. Sources
are catalogued when a probability larger than 50% is reached at least in one of the SPMs.
A value of Psource = 50% does not provide a clear detection of a source. The explanations
of the different threshold levels are supplied in Table 2.1. A threshold of 50% is chosen for
these simulated data sets in order to clarify the different interpretations.

The parameters of bright sources are precisely estimated. In Fig. 4.7, an example
of detection of a bright extended source employing SPMs in the multiresolution tech-
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Figure 4.7: The upper left–hand image is a zoom in of the photon count image (panel a,
Fig. 4.1) on a simulated source located at (x, y) = (360, 270). The width of the photon
count image is 65 pixels. The following images are SPMs at decreasing resolutions. The
correlation length of each SPM is written on the lower right–hand corner of each image in
pixel units.
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Figure 4.8: Panels (a)-(b): simulated data with small background (b = 0.1 count) with and
without Poisson noise, respectively, and scaled in the range (0-3) counts. The catalogue
obtained employing the exponential prior pdf (a) and the shapes of the region of the
simulated sources (b) are superposed.

nique is given. The true parameters of this source are: 128 photon counts, (σx,σy)=(5,5)
pixels, (x,y)=(360,270) in pixel units. The estimated parameters of this source are:
(129.79±23.70) net source counts, (σx,σy)=(4.92±0.67,4.96±0.71) pixels, (x,y)=(359.57±
0.92,269.29 ± 0.98) [pixel]. Instead, the effect of background fluctuations on faint source
estimates can be quite pronounced.

In Fig. 4.8, an example of the estimated source positions and shape on the simulated
data with small background is provided, using the exponential prior pdf. The errors on the
estimated parameters are not considered in this plot. Some of the detected faint sources
look uncentred and distorted. Four false positives in source detection are found. The
simulated data without Poisson noise with the simulated source shapes superimposed are
shown for comparison.

Table 4.1 reports the number of detected sources for each simulation. Different columns
are used for accounting true detections and false positives separately at different source
probabilities threshold values. The number of detected sources employing the inverse–
Gamma function prior pdf is larger with respect to the exponential prior pdf case only
when the cutoff parameter is set lower than the mean background amplitude.

In Fig. 4.9, the estimated source counts are related to the correlation length where the
maximum of Psource occurs (panels a and c) and their source probability (panels b and d)
for the simulated data with small background. These are log–linear plots. The results
using the exponential and the inverse–Gamma function prior pdfs are shown in panels (a)
and (b) and in panels (c) and (d), respectively. The asterisks indicate true sources, while
the squares show spurious detections.
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Figure 4.9: Results on simulated data with small background (b = 0.1 count) employing
the exponential prior pdf (panels a and b) and the inverse–Gamma function prior pdf
(panels c and d). Panels (a) and (c): correlation length in pixel units versus the net source
counts. Panels (b) and (d): source probability versus net source counts. Sources matched
with the simulated input catalogue are indicated with an asterisk. A square indicates false
positives in source detection.
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Table 4.1: Source detections on simulated data employing different prior pdfs of the source
signal.

Simulated Prior pdf ≥ 50% ≥ 90% ≥ 99% ≥ 99.9%
background True False True False True False True False

0.1
Epr 64 4 60 3 57 1 52 0
IGpr 57 7 54 1 52 0 49 0

1.0
Epr 41 6 41 3 39 0 38 0
IGpr 42 10 42 2 40 0 37 0

10.0
Epr 25 0 24 0 22 0 22 0
IGpr 26 2 26 2 26 2 26 2

Note. The background amplitudes of the simulated data are reported in counts pixel−1.
Epr and IGpr have same meaning as given in Fig. 4.5. The terms ’True’ and ’False’
provide the number of detected sources matched and not matched with the simulations,
respectively. The number of detected sources is listed when Psource is larger then 50%, 90%,
99% and 99.9%. See Table 2.1 for the meaning of these threshold values.

The plots on panels (a) and (c) show source detections at different correlation lengths,
that are resulting from the multiresolution analysis. In both plots, a line is drawn only
with the purpose to guide the eye. Left to the line – sources are not detected, because
very faint objects are not distinguished from the background amplitude. Right to the line
– sources are found. Very faint sources with few photon counts (≤ 10) are resolved by
small correlation lengths, indicating that these sources are detected when their sizes are
small (within 3 pixels). In the range (10 − 100) net source counts, sources are detected
at decreasing resolutions. The multiresolution analysis detects efficiently sources with
increasing sizes (and therefore with decreasing brightness) at increasing correlation lengths.
Bright sources do not require large correlation lengths for being detected. Plots on panels
(a) and (c) show that the multiresolution analysis is a robust and efficient technique for
the detection of faint and extended sources.

The plots in panels (b) and (d) of Fig. 4.9 provide evidence for source selections ac-
cording to their probabilities. Bright sources are all characterized by probabilities larger
than 99.9%. Faint point–like sources have probabilities larger than 97%. Faint extended
sources are represented by a wider range in source probability. These plots show that the
detection of faint sources may be spoiled by false positives in source detection, especially
for probabilities lower than 99%.

Note that the effect of the cutoff parameter a on source detection is visible in panels
(c) and (d). In this example, the value of a is chosen larger than the simulated background
amplitude. Hence, the inverse–Gamma function prior pdf does not allow to detect sources
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as faint as the exponential prior pdf.
In Fig. 4.10, the relation between the simulated and the estimated source parameters

is shown. Good estimates in source parameters are achieved. The estimated net source
counts errors and source size errors can be large for faint sources.

In Fig. 4.11 a summary on the analysis of all the detected sources employing the expo-
nential prior and the inverse–Gamma function prior pdfs on the three simulated data sets
is provided. Each plot in Fig. 4.11 is used to check the reliability of the BSS technique.
The plots in panels (a) and (c) show the difference between estimated and simulated net
source counts, normalized with the estimated errors (residuals), versus the source probabil-
ity of the merged data. Within these simulations, more than 85% of all detections occurred
with probability larger than 99%, when employing one or the other prior pdf of the source
intensities. The images in panels (b) and (d) are semilog plots of the residuals versus the
simulated net source counts of ∼ 99% true sources detected in the three simulations. When
employing the exponential prior pdf, the values of two sources, detected in the simulated
data with large background, are outside the selected y range. The estimated parameters
of these two sources, missing from panel (b), are corrupted by background fluctuations.
These two detections are included in the analysis of verification with existing algorithms
(Chapter 5). When using the inverse–Gamma function prior pdf, the values of two sources
are also found outside the selected y range. These two sources, missing from panel (d),
are detected on the simulated data with intermediate and large background values. Their
residuals values are about −15. The extreme values of these two sources are, as before,
due to background fluctuations, because the optimization routine found an optimum for all
sources. Comparing panels (b) and (d), the exponential prior pdf allows for the detection
of fainter sources since the simulated data with small background are processed employing
the inverse–Gamma function prior pdf with the cutoff parameter fixed to a larger value
with respect to the background amplitude. Hence, faint sources composed by less than 8
counts are not detected with the inverse-Gamma function prior pdf with the chosen cutoff
parameter.

The residuals are normally distributed, as expected. They are located symmetrically
around zero. At the faint end, the results are only limited by the small number of simulated
faint detectable sources. Faint and bright sources are equally well detected.

4.2.6 False positives

Until now, the detections that have counterparts with the simulated data have been dis-
cussed. The detection of false positives are now considered.

In Table 4.1 the number of detected false positives are listed for each simulation. At
50% probability threshold more false positives are found with the inverse–Gamma function
prior compared to the exponential one. At a 90% source probability threshold, the analyses
with the two prior pdfs provide similar results. True detections are strongly separated from
statistical fluctuations for source probability values larger than 99%. Source probability
values larger than 99.9% separate very strongly true detections from false positives.

When employing the inverse–Gamma function prior pdf, the number of false positives
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Figure 4.10: Relation between the simulated sources with small background (b = 0.1
count) and the measured sources as in output from the processing with the developed
method employing the exponential prior pdf. Panels (a) and (b) show the comparison of
the measured source positions with the simulated input positions on the x–axis and on
the y–axis. Panel (c) displays the relation of the measured source photon counts versus
the simulated intensities. A comparison of the estimated source extensions (i.e., source
size) σx and σy with the input source extensions are displayed in panels (d) and (e). The
errors estimated for the source parameters are superposed. The error bars on the estimated
values denote the 68% confidence limit of the corresponding posterior distribution. The
lower panel in each image shows the residuals.
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Figure 4.11: Merged information from three simulated data sets of the detected sources
employing the exponential prior pdf (panels a–b) and the inverse–Gamma function prior
pdf (panels c–d). Panels (a) and (c): difference between estimated and simulated net
source counts normalized by the errors on the estimated net source counts versus source
probability. Panels (b) and (d): difference between estimated and simulated net source
counts normalized by the errors on the estimated net source counts versus the simulated
counts.
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is sensitive to the cutoff parameter. Less false positives are found when a is set larger
than the background, because it reduces the number of detectable faint sources. It may
be worth noting that even when the cutoff parameter is set larger than the background, a
probability threshold ≥ 90% has to be considered (see Fig. 4.9 for more details).

False positives in source detections show large errors in their estimated parameters. The
source probability variations with respect to the correlation length of source detection and
the source features analyses in the multiresolution technique provide hints of ambiguous
detections. However, as all methods, the BSS approach is limited by statistics. Spurious
detections can never be ruled out completely.

4.2.7 Choice of the prior pdf of the source signal

The big difference between the two prior pdfs of the source signal follows on from one prior
pdf having one parameter and the other pdf having two.

The parameter λ, indicating the mean intensity in an astronomical image, introduced
with the exponential prior pdf is estimated from the data.

The parameter α, that is the shape parameter of the power–law, given by the inverse–
Gamma function prior pdf is also estimated from the data. Instead the cutoff parameter
a is selected to a small value such that the inverse–Gamma function prior pdf behaves as
a power–law. Astronomical images can be characterized by a small background. It results
that a can be chosen from a number of alternatives, ranging from values that are above
or below the background amplitude. The choice of a implies a selection on the detectable
sources: sources whose intensity is lower than a are not detected; sources close to the
background amplitude are detected when a is set below the background amplitude.

On real data much more prior information for the cutoff parameter is needed. The
inverse–Gamma function prior pdf can be employed if a mean value of the background
amplitude is already known from previous analyses.

The exponential prior pdf is preferable over the inverse-Gamma function prior pdf,
since no predefined values are incorporated. This is also supported by the results obtained
with the simulated data. However, the inverse-Gamma function prior pdf is a more suited
model to fit the data and it has potentials for improving the detections of faint objects.

One way to improve the knowledge acquired with the inverse-Gamma function prior
pdf is by the estimation of the cutoff parameter from the data. This change in the BSS
algorithm is not straightforward and MCMC algorithms have to be employed. This task
exceeds the scope of this thesis.

4.3 Summary

Simulated data are employed to assess the properties of the BSS technique. The estimated
background and source probabilities depend on the prior information chosen. A successful
separation of background and sources must depend on the criteria which define background.
Structures beyond the defined properties of the background model are, therefore, assigned
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to be sources. There is no sensible background-source separation without defining a model
for the object background. Additionally, prior information on source intensity distribu-
tions helps to sort data, which are marginally consistent with the background model, into
background or source. Therefore, prior knowledge on the background model as well as
on the source intensity distribution function is crucial for successful background-source
separation.

For the background model a two–dimensional TPS representation was chosen. It is
flexible enough to reconstruct any spatial structure in the background rate distribution.
The parameters are the number, position and amplitudes of the spline supporting points.
Any other background model capable to quantify structures which should be assigned to
background can be used as well.

For the prior distribution of the source intensities the exponential and the inverse–
Gamma function are used for illustrations. For both distributions the source probability
can be given analytically. The hyperparameters of both distributions can either be chosen
in advance to describe known source intensity properties or can be estimated from the
data. If they are estimated from the data simultaneously with the background parameters,
properties of the source intensity distribution can be derived, but at the expense of larger
estimation uncertainties. It is important to note that the performance of the BSS method
increases with the quality of prior information employed for the source intensity distribu-
tion. The prior distribution of the source intensities determines the general behaviour of
the sources in the fov and the hyperparameters are useful for fine–tuning.

The aim of detecting faint sources competes with the omnipresent detection of false
positives. The suppression of false positives depends both on the expedient choice of prior
information and on the level of detection probability accepted for source identification.
Compared to, e.g., p-values the BSS technique is rather conservative in estimating source
probabilities. Therefore, a probability threshold of 99% is mostly effective to suppress false
positives.

The estimated background rates are consistent with the simulated ones. Crowded
areas with regions of marginally detectable sources might increase the background rate
accordingly.

The SPMs at different correlation lengths are an important feature of the technique.
The multiresolution analysis allows one to detect fine structures of the sources.

The source parameters are well determined. Their residuals are normally distributed.
In Chapter 5 it will be shown that the BSS technique performs better than frequently used
techniques. Naturally, the estimation uncertainties of parameters for faint sources are large
due to the propagation of the background uncertainty.
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Chapter 5

Verification with existing algorithms

In this Chapter the source detection results from the developed Bayesian technique are
compared with other source detection methods. In Section 5.1, actual source detection
techniques implemented within the Poisson regime are reviewed. In Section 5.2, further
complications encountered by the available techniques applied to X–ray surveys are ad-
dressed. The BSS results on the three simulated data sets, described in Chapter 4, are
compared with the outcome from the wavdetect algorithm in Section 5.3. Finally, a
summary of this Chapter is provided in Section 5.4.

5.1 Standard techniques

The typical observations in high–energy astrophysics feature photon fluxes in the ranges
from 0.1 to a few photons per pixel. The detection and characterization of faint point–like
and extended sources is a challenging task. A large sample of faint sources, e.g. AGNs,
clusters or groups of galaxies and extragalactic SNRs, is required to improve the knowl-
edge about the evolution and the origin of the Cosmos. Nonetheless, source detection
algorithms in the Poisson regime suffer from the pervasive presence of (random) back-
ground fluctuations. Often, compromises for the treatment of the background estimation
are taken.

Traditionally, source detection methods subtract an estimated background from the
data. The background is measured on an area around the presumed detected source or on
an area away from the sources, which is presumed to contain only background. Inappro-
priate subtraction can lead to artificial structures in the desired image. If too much is sub-
tracted, the data constraints cannot be fulfilled by a positive image (von der Linden et al.,
1997). Other side–effects of this technique are the loss of faint sources during background
subtraction and the statistics is not preserved. The subtraction of a background from
the photon count data produces a new data set that is not anymore Poisson distributed
(Skellam, 1946).

Often, a photon density distribution is used to estimate a cutoff value for describing a
global background (background thresholding) or a locally determined background is used
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in order to flag possibly significant density enhancements in the photon distribution (peak
finding).

An example of a source detection method employing the simple background threshold-
ing is given by the technique of Bertin and Arnouts (1996) in the SExtractor software
package. In the work of Bertin and Arnouts (1996), the whole image is subdivided into a
regular grid of background cells each, e.g., 200×200 pixels on the side, on which the back-
ground is estimated using k−σ clipping for each cell. The k−σ clipping is used to suppress
the influence from outliers (i.e. sources) from the background signal. The local background
histogram is clipped iteratively until convergence at ±3σ around its median. The mean of
the clipped histogram is used as a value for the local background in non–crowded fields,
otherwise the mode is employed. In a further step, a bicubic–spline is used to interpolate
from the background grid to the image pixels in order to estimate the local background.
Although a median filter is applied to suppress possible local overestimations due to bright
stars, the background is inevitably overestimated. The estimated background map is then
subtracted from the astronomical image. Faint sources are lost.

Other techniques (e.g., Gioia et al. 1990; Freeman et al. 2002) employ a locally deter-
mined background to flag possible sources. In a second step, count enhancements above
the local background are removed from the image. In a third step, the background is esti-
mated in the censored image. Consequently, the estimated background amplitude can be
too high, because of faint sources in the locally determined background. These techniques
are described in the next Sections.

Methods, that employ background thresholding and/or peak finding, show very low
sensitivity for variations in the background estimation. These methods do not properly
account for the detection of those very extended sources, whose characteristic size is several
times larger than the instrumental PSF and for which the background may vary signifi-
cantly. Moreover, an inadequate estimation of the background can lead to a large number
of false positives in source detection. Faint point–like objects may get lost.

A brief review on few conventional source detection methods for Poisson data, frequently
used for the search of faint point–like and extended sources, is given. A short outlook of
the following detection procedures is provided: sliding window technique and ML; WT
techniques; Voronoi tessellation and percolation (VTP) (Ebeling and Wiedenmann, 1993);
growth curve analysis (GCA) (Böhringer et al., 2000).

5.1.1 Sliding window technique and Maximum Likelihood

The sliding window technique (see, e.g., Harnden et al. 1984; Gioia et al. 1990) and the
ML (see, e.g., Cruddace et al. 1988; Hasinger et al. 1994; Boese and Doebereiner 2001)
procedures are the standard detection algorithm of the SASS processing for ROSAT data
(Voges et al., 1999). Both procedures address mainly the analysis of point sources. SASS
is also included in Chandra and XMM–Newton data analysis tools. In Chapter 6, some
applications of the BSS technique on ROSAT data and comparisons of SASS and BSS
outcomes are shown.

The sliding window technique searches locally for count enhancements relative to the
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intensity in a surrounding area defining the background intensity. The source signal is de-
rived from the pixel values inside the cell. In multiple steps the window width is changed
to allow for the detection of extended sources. But extended sources, blended sources in
crowded fields and sources near the detection limit may get lost (Voges et al., 1999). One
reason is due to the local estimation of the background in a small region around the sliding
window which may provide only poor signal-to-noise ratios. In a following step, circular
regions around the detected objects are removed from the image to form the so–called
‘cheese’ image. A coarser binning is applied to the ’cheese’ image (Boese and Doebereiner,
2001). The background count distribution is often modelled with two perpendicular unidi-
mensional cubic–splines from the resulting binned image. A consequence of the coarser bin-
ning is that no abrupt variations in the background are modelled (Boese and Doebereiner,
2001). Pitfalls due to the employed class of bivariate splines are that the background model
is not stable along the whole field and the background model shows steep slopes towards
the field edge: See Boese (2004), Fig. 4 and text related, for more details. The oscillatory
behaviour of the SASS background model produces regions with too large or too small
values (with respect to the true ones), leading to an increasing number of false positives
in source detection and problems in source photometry.

The original image is investigated once more with the sliding window technique em-
ploying the background map. A second source list is created and merged with the original
source list. These lists provide the input sources for the ML algorithm. The ML algo-
rithm computes the source properties like position, flux, angular extent and significance.
The ML technique works on the photon event data and the background map. The spa-
tial distribution of the observed photons is compared with the spatial distribution of the
theoretical PSF1. For each photon the probability to belong to source or background is cal-
culated. A likelihood that the instrumental PSF and a two–dimensional Gaussian source
distribution are matching is calculated. The parameters specifying source position in de-
tector coordinates, source counts, extent are varied until the likelihood is maximized. The
likelihood is defined as [−ln(1 − P )] where P is the probability of existence of the source
(Cruddace et al., 1988). A multi–PSF fit is also implemented to allow for deblending and
reconstructing the parameters for close by sources. A confidence level for each parameter is
used to reject sources with insufficient significance (Hasinger, 1985; Boese and Doebereiner,
2001). An advantage of the ML technique is the capability of taking into account the ar-
rival time, sky and detector positions and energy of each infalling photon on the detector.
The main pitfalls of the ML approach comprise: The optimum value found for the de-
tected sources is not unique (Boese and Doebereiner, 2001), so that a local maximum may
be observed instead of a global one; The background counts in addition to a source are
considered constant with respect to the optimized source parameters; Background sub-
traction is used leading in extreme cases to negative count rates (Voges et al., 1999); The
uncertainties entering the optimized source parameters are based on the normal distribu-

1 Note that for reason of computational speed, the photon space is binned and the best fit PSF density
in radially symmetric Gaussian form is taken as the PSF model for point sources (Boese and Doebereiner,
2001; Boese, 2004). For extended sources, a radial two–dimensional Gaussian function is fitted to the
photon distribution (Boese and Doebereiner, 2001).
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tion (Boese, 2004), leading to unreliable uncertainties especially for faint sources. Last, the
work of Boese (2004) shows that the ML technique provides reliable source positions for the
detected sources, but fluxes for faint point–like or extended sources are often overestimated.

In Chapter 1, Section 1.2, additional benefits, pitfalls and further developments of these
procedures are introduced.

5.1.2 Wavelet Transformation

Wavelet based methods have been extensively applied to astronomical image processing in
the last 10 years: See Rosati (1995) as one of the pioneering works on wavelet analysis.
The reasons for their success is based on their ability of detecting image structures at
all spatial scales and locations and on modelling the local background in addition to a
source in wavelet space (Starck and Murtagh, 2006). After providing a short presentation
of WT techniques, the wavdetect algorithm (Freeman et al., 2002), version 3.4, part of
the Chandra Interactive Analysis of Observations (CIAO) software package is reviewed.
This algorithm is employed in Section 5.3 for quality assessment of the BSS technique.

WT techniques convolve the input image with a wavelet function (e.g. Haar, Mexican
Hat, Morlet functions). The solutions are wavelet coefficients at different scale param-
eters. Object translations are included in the solution through a position parameter.
By varying the scale parameter, the original image is decomposed into wavelet images
(Starck and Pierre, 1998). WTs localize the image structures associated to the maxima
of the wavelet coefficients. Hence, sources are detected whose size is comparable to the
employed scale. Extended sources are detected at increasing scales of the WT.

In each wavelet image, the detection threshold at a given scale is estimated through
a statistical model to justify if a wavelet coefficient is significant, i.e. not due to back-
ground. The statistical significance of a coefficient is often determined by: employing a
histogram of the wavelet function (Starck and Pierre, 1998); through Monte Carlo simula-
tions (Damiani et al., 1997; Vikhlinin et al., 1998a; Freeman et al., 2002).
Photons, contributing to the calculation of the wavelet coefficients, are used to compute
histograms. Histograms are employed to derive threshold values. Threshold values are
compared to the wavelet coefficients. Wavelet coefficients are significant if their values are
larger than the estimated threshold values.
Monte Carlo techniques are commonly used on simulated images composed by a spatially
uniform background with Poisson noise and convolved with the wavelet coefficients. The
distribution of the local maxima in the convolved images is used to define the detection
threshold. Often, the threshold level is chosen between 3− 5σ (of a Gaussian distribution)
above the background level.

Note that WT techniques do not require an estimation of the background on the whole
image for source detection. The background in addition to a source is assumed to be
constant and is estimated locally in the negative annuli of the wavelet function. The
locally estimated background is biased when nearby sources are present. In addition,
the parameters of extended sources are not properly accounted for, when the background
amplitude is characterized by large variations.
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Following the selection of the significant wavelet coefficients at each scale, the maxima
of the wavelet coefficients are used to define the detected objects at each scale. Source char-
acteristics are extracted from the detected structures, including position, flux, positional
angle and deviation from sphericity.

In Chapter 1, Section 1.2, advantages, pitfalls and further developments of these tech-
niques are discussed.

The wavdetect algorithm is a powerful and flexible software package. It has been
developed for a generic detector. It is applicable to data with low background. The
algorithm includes satellite’s exposure variations. It estimates the local background count
amplitude in each image pixel and it provides a background map.

The wavdetect algorithm detects candidate source pixels by repeatedly convolving
the original image with a Mexican Hat function at different scales. This wavelet function
employed is the second derivative of the Gaussian function. The local background is
taken from the negative annulus of the wavelet function. The background estimate can be
biased when sources are located within the wavelet negative annulus producing rings. The
background model is improved with further iterations. Pixels identified with candidate
sources are removed from the image iteratively. When very few source candidates are
found or when an iteration–count limit is reached, this process stops. The background
is estimated on the new censored data set (input image with source pixels extracted).
The final background may still contain rings, that affect source characterization. In the
background map, problems can arise also near under exposed regions or at the field edge,
since the sharp gradient can be erroneously detected as a source.

The estimated background is used to set detection thresholds. These thresholds are then
applied to the wavelet images to identify the candidate sources. At each set of wavelet
scales, a list of candidate sources and the background image are provided. The background
image is corrected for exposure variations and for sensitivity variations of the instrument
at a local scale (flat–field). The background errors are also supplied.

In a second step the source lists are merged and cross–correlated. For each source, a cell
containing the majority of the source flux is computed. Within that cell, source properties
are computed.

5.1.3 Voronoi Tessellation and Percolation

The VTP procedure is a general method for the detection of non–Poissonian structures in
a distribution of points. The VTP technique, as described in Ebeling and Wiedenmann
(1993), is designed for the detection of faint and extended sources. The VTP proce-
dure is applied on X–ray data, especially on ROSAT data (see, e.g., Scharf et al. 1997;
Ebeling et al. 2000) and it is also included in the CIAO software package (see, e.g., Boschin
2002).

This technique works on unbinned data. No particular source geometry is assumed for
the detection process. Each photon defines the centre of a polygonal cell. Each polygonal
cell side is connected to the nearest neighbour photon. The photon cells form the Voronoi
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tessellation of the field. The surface brightness associated with the photon in the cell equals
the inverse of the product of cell area and local exposure (Scharf et al., 1997). A cutoff
for defining the global background is obtained by comparing the cumulative distribution
of the inverse areas of the resulting Voronoi cells with that expected for a random Poisson
distribution. A spatial Percolation algorithm is used to group individual cells with photons
exceeding the background density. Sources are identified and removed from the field in
order to revise the background estimate. A minimal number of photons required for true
sources is computed in order to reduce the number of false positives. The background
amplitude is then provided by the mean surface brightness calculated from all nonsource
photons.

Source positions are computed as the flux–weighted mean values of photons identi-
fied as belonging to one source. A preliminary width of the sources is also provided.
Source fluxes are provided with and without fitting a model profile to the detected emis-
sion (Ebeling et al., 1998). The source parameters are estimated employing two kinds of
source profiles: for extended emissions a β–model (Cavaliere and Fusco-Femiano, 1978),
for point–like sources a Dirac’s delta function (see Ebeling et al. 1998 for more details).
The source profiles are convolved with the instrumental PSF. The convolution process
provides the observed surface brightness distribution. Moreover, source count rates for
the detected objects are corrected to an arbitrary fraction of the total source flux. The
motivation for this correction is due to the presence of an X–ray background that always
limits the emission directly detectable (unobserved flux). The correction is performed in
the far wings of the source.

This method is particularly designed for the detection of extended sources in the Pois-
son regime. Sources with low surface brightness are found independently of their actual
shape. However, this procedure is characterized neither by a well–defined background
model nor by a multiresolution support. Although the estimated background accounts
for the telescope’s exposure, the background rate is obtained by iterations on a censored
image. Large variations in the background are not modelled. Fields with very high pho-
ton densities, like the RASS fields at high ecliptic latitude, can not be processed in one
go (Ebeling et al., 1998). Problems in the evaluation of source positions and intensities
may arise when studying fields of high source densities (Valtchanov et al., 2001). Since a
multiresolution analysis is missing within VTP, diffuse emissions with embedded point–like
sources are combined (Ebeling et al., 1998) and substructures of extended sources are not
detected (Starck and Pierre, 1998). The performance of the VTP technique is best only
for either small fields or low–event density regions.



5.1 Standard techniques 81

5.1.4 Growth Curve Analysis

The GCA (Böhringer et al., 2000) is a source characterization technique designed for the
flux and width estimation of X–ray clusters of galaxies. It is applied to RASS data,
processed by SASS and catalogued with a low source likelihood: L = 7, instead of L =
15 as for the Bright Source Catalogue (BSC) (Voges et al., 1999): See Böhringer et al.
(2001) for more details. The reanalysis of the source fluxes of extended objects has been
necessary because the flux of these sources is underestimated by the SASS algorithm
(Böhringer et al., 2001). The GCA method consists in measuring background–corrected
source counts as a function of an increasing circular aperture.

From the RASS data, fields with sizes of 1◦.5 × 1◦.5 in the sky are selected. The
positions of the fields are the X–ray positions provided by the ML technique incorporated
in the SASS algorithm. However, the ML approach is designed for the parameterization
of point–like sources. Source positions are, therefore, estimated once more employing a
moment method, i.e. a two–dimensional centre of mass of the photon distribution within
an aperture of (3 − 7.5) arcmin around the centre.

The background model given by the sliding window technique of the SASS algorithm
is not used. The background is, instead, calculated as follows. An average background
rate is derived from a ring area centred on the source, but away from the X–ray extended
emission. The inner and the outer ring radii (often with values of 20 and 41.3 arcmin,
respectively) are chosen large enough to cover the full field size. The ring area is divided
in twelve sectors. In each sector, the count rates are accounted and averaged for providing
the surface brightness (background). The background rate is corrected performing a k−σ
clipping on the twelve sectors of the ring, so that the median of the background count
rates is determined in an attempt of excluding discrete sources and statistical fluctuations.
For this reason, a sector is discarded if its surface brightness deviates from the average.
Detected sources still contaminated by nearby sources after the k−σ clipping are improved
employing a deblending algorithm.

The cumulative source count rate as a function of radius is calculated by integrating the
source counts (background corrected and weighted with the local exposure time) in concen-
tric rings. The results are count rate profiles that allow one to estimate the total observed
source count rate and to suggest the source extent (i.e., the size of the detected source). The
source width is improved employing a χ2 fit of a β–profile (Cavaliere and Fusco-Femiano,
1978) convolved with the instrumental PSF. Additionally, the estimated source profiles are
tested for deviation from the count rate profile expected for a point source. A Kolmogorov–
Smirnov test is used for this purpose. Furthermore, the GCA provides the following param-
eters: background subtracted source count rate and its Poisson error, a significance of the
source detection, source extent and spectral information. X–ray fluxes are corrected for
the missed flux outside the detection aperture by extrapolating to the cluster’s estimated
virial radius (Kocevski and Ebeling, 2006).

The GCA method ameliorates the results obtained with the sliding window technique
and the ML method and with the VTP technique (Böhringer et al., 2000). However,
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the GCA technique works only locally2 and does not account for large variations in the
background. The GCA technique shows more clearly than other methods that an accurate
estimation of the background is very important.

5.1.5 Summary of some standard techniques

Table 5.1 provides a summary of the strengths and the weaknesses of the detection tech-
niques supplying background estimation, source detection and characterization.

Methods Strengths Weaknesses

Sliding window Detection of point sources. Coarse background estimation due to box
filter and subtraction of sources,
Low sensitivity in detecting faint and nearby
sources,
Fine tuning of parameters for extended
sources,
Speed decreases at increasing number of cell
sizes and of detected sources.

and ML Best performance for parameter Extended sources may be divided into point
estimates of point sources, sources.
Each individual photon is taken
into account.

wavdetect Multi scale analysis for source Mexican Hat function is used as a filter for
detection, source detection,
Source characteristics are extracted Circularly symmetric sources are favoured
from detected structures, in source detection,
Closely spaced point sources are Detection threshold given by significant
separated, wavelet coefficients,
Extended sources are detected at Fluxes are often not preserved,
different scales, Problems at the field edge, with increasing
Local background is estimated in number of false positives,
wavelet space. Speed decreases at increasing number of

scales used.
VTP Morphology free method for source Coarse background estimation,

detection, Combines close by point sources,
Each individual photon is taken Combines diffuse emission with embedded
into account, point sources,
Find low surface brightness features, Applicable to small fields or low–event
Detected photons provide position, density regions,
flux, width. Speed decreases at increasing number of cells.

Table 5.1: Summary table listing strengths and weaknesses of standard source detection
methods discussed in Section 5.1. Note that the GCA technique is not listed, since it
provides only source characterization.

2The GCA method has so far been employed only in an interactive, supervised way.
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5.2 Application of standard techniques to sky surveys

X–ray sky surveys offer the possibility to study complete samples of, e.g., rare objects, such
as galaxy clusters, AGNs and QSOs, in order to quantify their properties (as luminosity,
temperature, space density) and to probe cosmological models (while connecting observed
quantities to model predictions). The ROSAT data and catalogues provided the starting
point to construct X–ray samples over wide areas of the sky. In the search of galaxy
clusters, the largest statistically homogeneous sample drawn from the RASS is given by
the works of Böhringer et al. (2000, 2004): the northern galaxy clusters (NORAS) and the
southern clusters (REFLEX) surveys. In these works, galaxy clusters are analysed with
the GCA algorithm, providing for an homogeneous sample in all its selection parameters,
especially in its coverage of the sky (Böhringer et al., 2001). Optical identifications and
spectroscopic observations followed on the X–ray identified galaxy clusters to provide for a
robust local (z ∼ 0.15) reference frame and to measure fundamental cosmological quantities
(see Böhringer et al. 2000, 2004; Guzzo et al. 2009 for more details). Several other surveys
employing ROSAT data have been published in the past years. Utilizing ROSAT pointed
observations, for instance, the ROSAT Deep Cluster Survey (RDCS) (Rosati et al., 1998)
and the 160 Square Degree Survey (Vikhlinin et al., 1998b) extended galaxy clusters studies
at higher redshifts (up to z ∼ 0.8). For a review of X–ray sky surveys employing ROSAT
data, see, e.g., Finoguenov et al. (2007); Guzzo et al. (2009).

With the advent of more powerful instruments, as the XMM–Newton satellite3, X–ray
sky surveys are carried out extending previous works in the search of evolution of the X–
ray luminosity function (XLF), as well as of the luminosity–temperature relation for galaxy
clusters emitting in X–ray. The XMM–Cosmological Evolution Survey (XMM–COSMOS)
(Hasinger et al., 2007) and the XMM–Large Scale Structure (XMM–LSS) (Pierre et al.,
2004) survey are performed on mosaic of images. Mosaic of images are difficult to handle.
In an automated search for X–ray extended sources, some of the standard techniques
previously described (Section 5.1) are combined for the analysis of a mosaic of images. The
sequential application of different techniques may provide inconsistent results. Previous
works (see Böhringer et al. 2001 for more details) have already shown that the sequential
application of, e.g., the SASS and the VTP techniques (Ebeling et al., 1998) produces an
inhomogeneous selection function and, therefore, biased results.

In Sections 5.2.1 and 5.2.2, a summary on the data analysis performed for the XMM–
COSMOS and the XMM–LSS surveys is given. In Section 5.2.3, an alternative way to
analyse a mosaic of images is described employing the BSS algorithm.

5.2.1 XMM–COSMOS

The XMM–COSMOS project employs WT on a mosaic of images (Finoguenov et al., 2007).
Each image composing the mosaic is background subtracted and exposure corrected.

3Due to its sensitivity (10 times better than ROSAT), large fov (∼ 30 arcmin) and good PSF (the
on–axis PSF is ∼ 6 arcsec FWHM), XMM–Newton is ideally suited for clusters LSS surveys.
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Firstly, the background is estimated on each single image before the mosaic is created.
The background is estimated employing templates for instrumental and sky backgrounds.
The measured background is then subtracted from the data. Problems arising from the
subtraction of a background from image data have been discussed in Section 5.1. Succes-
sively, the mosaic of ‘cleaned’ images is created and corrected for the mosaic of exposure
maps.

Clusters of galaxies are searched applying the WT method of Vikhlinin et al. (1998a)
on the resulting mosaic of ’cleaned’ and ’corrected’ images (later on, simply, images). The
search for clusters of galaxies on the mosaic of images proceeds in several steps. Initially,
the wavelet transformed image with a scale of 32 arcsec is used to derive a detection
threshold. An area of the detected source is selected above the detection threshold for
flux measurements. A list of cluster candidates is created and cleaned for contamination
from point–like sources comparing wavelet scales. The number of cluster candidates is still
overestimated, so that optical data are used for straining the final cluster sample. Finally,
the estimated flux of the detected clusters of galaxies is improved removing the contamina-
tion from point–like sources according to optical identifications. For the characterization
of these point–like sources the instrumental PSF information is taken into account. A
β–model (Jones and Forman, 1984, 1999) is used for the characterization of clusters of
galaxies emission.

5.2.2 XMM–LSS

The XMM–LSS pipeline (Pacaud et al., 2006) employs a mixed approach with the WT
technique of Starck and Pierre (1998) and the SExtractor software package, described
in Bertin and Arnouts (1996), for source detection and a ML method (Pacaud et al., 2006)
for source characterization.

For source detection the WT technique, based on the Multiscale Vision Model described
in Starck and Murtagh (2006), is used enabling the filtering of the image, i.e. the removal of
insignificant signal and the recovering of relevant structures. SExtractor is subsequently
applied on the filtered image to find the sources. The detection of sources is established
through sets of connected pixels above a certain threshold. Though, this scheme may fail
when the characteristic scale of variation of the background is approximately the scale of
the structures. This combined solution has the advantage of a fast and robust detection,
as in the standard method, while keeping the ability to detect faint objects, which is not
possible with SExtractor alone.

The third step consists in examining the likelihood of the detections and characterizing
their extent by a ML method. The ML profile fit is performed on (single and coadded)
photon images. In this step, the instrumental PSF variation with energy and off–axis
radius is considered, as well as other detector characteristics (vignetting, CCD gaps, local
instrument sensitivity). Two source models are used: an instrumental PSF model for
point–like sources, a spherically symmetric β-model (Cavaliere and Fusco-Femiano, 1978)
convolved with the instrumental PSF for extended sources.

Last, X–ray/optical overlays for every extended source candidate are employed for
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quality assessment of the detected extended sources. Each overlay is inspected by eye, since
instrumental artefacts could have been detected as extended features. A list of plausible
extended sources is given when obvious enhancements of galaxies are shown (only for
clusters at z ≤ 1). These clusters may be confirmed from spectroscopical data. Detected
extended objects with no significant optical counterpart are considered cluster candidates
at z > 1. These candidate clusters are searched on follow–up images in the near–infrared.
If confirmed, a spectroscopic follow–up is planned.

5.2.3 Analysis of mosaic of images with the BSS algorithm

In the search of extended sources in deep surveys, the analysis of a mosaic of images is
particularly difficult because of the increasing uncertainties of the source and background
signals towards the edge of the fov where individual images are superposed. Often, an
estimated background is subtracted from individual observations for successively merging
and analysing the images. The drawback of such technique is that substructures often arise
in the regions of superposed images due to residuals left over after background subtraction.
Large–scale residual variations in the background can be detected as spurious extended
sources.

A starting point for improving the analysis of mosaic of images could be given by
the BSS algorithm. An efficient way to handle mosaic of images is given by a statistical
combination of each individual image. In fact, each image of the mosaic can be analysed
individually with the BSS algorithm, creating SPMs with the multiresolution analysis.
Successively, each SPM can be statistically combined with the multiband technique (see
Section 2.2.5) for each resolution. Hence, the source signal contained in superposed regions
would increase in the same way as analysing the mosaic of images.

Another critical aspect of galaxy clusters detections in deep surveys is the contamination
of point–like sources on the line of sight of extended ones. The contamination of point–like
sources along the line of sight of galaxy clusters is straightforwardly handled with the BSS
technique due to the multiresolution analysis (examples are given in Chapter 7).

Last, the BSS source characterization algorithm (Section 2.3) can be easily adapted for
the analysis of clusters survey.

5.3 Verification

In the X–ray regime, the sliding window technique and the WT techniques are widely used.
However, the WT has been shown to perform better than the sliding window technique
for source detection: See Freeman et al. (2002) for more details. The WT improvement
in source detection with respect to the sliding window technique is inversely proportional
to the background amplitude (Freeman et al., 2002). The WT has also other favourable
aspects for being compared with the BSS method developed in this thesis: The WT allows
for the search of faint extended sources; The WT and the BSS methods are both based on
a multiresolution analysis.
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Table 5.2: Number of detected sources employing wavdetect on three simulated data
sets.

Simulated Simulated True False
background sources detections positives

0.1 100 56 4

1.0 100 37 1

10.0 100 23 1

Note. For the simulation set–up see Section 4.1. The results obtained with the BSS
technique can be found in Table 4.1.

Among all the available software employing WT, the wavdetect algorithm described
in Freeman et al. (2002), part of the freely available CIAO software package, is chosen.
Version 3.4 is used.

wavdetect is applied on the simulated data described in Chapter 4. The threshold
setting for the significance (‘sigthresh’) is chosen to be 4.0 × 10−6, in order to detect on
the average 1 spurious source per image. The ‘scale’ sizes are chosen with a logarithmic
increment from 2 to 64. Tests have been made changing the levels of these parameters,
assuring that the selected values provide a good performance: This problem is already
known in the literature, see e.g. Nandra et al. (2005).

In Fig. 5.1, the reconstructed source images and estimated backgrounds as in output
from wavdetect are displayed. The reconstructed source images are scaled as the photon
count images shown in Figs 4.1, 4.2 and 4.3, panels (a).

In Table 5.2, the number of detected sources per simulated field is reported, separating
the sources correlated with the simulated one (True detections) to the false positives in
source detection found employing the above mentioned threshold setting. The three simu-
lated data sets are distinguished by their mean background values (counts). The simulated
background values are reported in column Simulated background. These results are com-
pared with the ones obtained with the BSS algorithm when employing the exponential
prior pdf as shown in Table 4.1.

In Fig. 5.2 efficiency and contamination of the BSS technique, employing the expo-
nential prior, and the wavdetect algorithm are compared at fixed threshold levels. The
efficiency is defined by the ratio of the detected real sources and the simulated sources.
The contamination, instead, is defined by the ratio of the detected false positives and
the total number of detected sources. Each line in the plot connects three points. Each
point indicates the estimated values of contamination and efficiency at the three simulated
background values. The points at the right–hand, middle and left–hand locations of the
plot are obtained with the backgrounds of 0.1, 1.0 and 10 counts respectively. The BSS
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technique is more efficient (up to 3% when Psource = 0.99) and provides a less contaminated
sample (up to 5% when Psource = 0.99) than the wavdetect algorithm especially in the
simulated data with small background. Note that the absolute efficiency depends on the
selected values of the simulated fields.

The BSS technique finds all sources detected by wavdetect. In the simulated data
characterized by small background, the two algorithms find the same number of false pos-
itives. This occurs when a threshold level of 50% is chosen for Psource. The BSS algorithm
detects 8% more true detections than wavdetect. These sources are characterized by
counts in the range (4 − 8). Hence, the BSS technique performs better than wavdetect
in the low number counts regime. The number of detected true sources with the two tech-
niques on the data sets with intermediate and large background values is similar, though
the BSS technique provides for a less contaminated sample.

The explanation for these results is given analysing the background estimates (see panels
b, d, f in Fig. 5.1 for wavdetect and panels d in Figs 4.1, 4.2, 4.3 for the BSS algorithm).
The wavdetect estimates of background values are similar to the results obtained with
the BSS technique in the intermediate and high background data sets. Though, the back-
grounds provided by wavdetect show rings due to the Mexican Hat function employed as
a filter on the image data. In the simulated data with small background, the wavdetect
background model has on the average larger values than the ones estimated with the BSS
method. The plots in Fig. 5.3 support these conclusions (semilog plots). The image in
panel (a) provides the flux recovery of wavdetect detections versus the simulated fluxes.
wavdetect fluxes are underestimated for ∼ 20% of all detected sources. In addition,
wavdetect sensitivity for source detection is limited to 16 counts per source within these
simulated data sets. In Fig. 4.11, panel (b), the flux recovery of the BSS technique versus
the simulated fluxes is improved with respect to wavdetect. In fact, residuals of esti-
mated and simulated source counts are normally distributed and the sensitivity achieved by
the BSS method is of 4 counts. The plot in panel (b) of Fig. 5.3 displays a relation between
the sources detected by wavdetect (ordinate) and by BSS (abscissa), both matched with
the simulated data. Most of the wavdetect underestimated sources are coming from
the simulated data with small background. The BSS technique provides only two sources
underestimated and detected in the simulated data with large background. By chance,
the triangle located at (−8,−2) indicates the detection of two sources. Both sources where
simulated with 256 source counts and a circular extension of 4 pixels one, 5 pixels the other.
The estimated source positions are also improved with BSS (Fig. 5.4, semilog plots).

The residuals provided by the BSS technique are a factor of 10 smaller than the ones
from wavdetect. wavdetect estimates have many outliers. The BSS estimates are
normally distributed.

Though the comparison between the two detection methods is not yet carried out on real
data, these results are encouraging. The BSS method detects at least as many sources as
wavdetect. The simulations prove that the developed Bayesian technique ameliorates the
detections in the low count regime. The BSS estimated positions and counts are improved.
Finally, the BSS technique will refine wavdetect sensitivity on real data, because the
BSS technique is designed for modelling highly and slowly varying backgrounds taking into



88 5. Verification with existing algorithms

Figure 5.1: Analysis of simulated data with wavdetect. Panels (a), (c), (e): recon-
structed source images. Panels (b), (d), (f): estimated backgrounds. From up to down:
simulated data with small (b = 0.1 count) (a) − (b), intermediate (b = 1 count) (c) − (d)
and large (b = 10 counts) (e) − (f) backgrounds.
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Figure 5.2: Comparison between the BSS technique employing the exponential prior (’Epr’)
and the wavdetect algorithm on simulated data. The background b is indicated in counts
per pixel units.

account instrumental structures.

5.4 Summary

In high–energy astrophysics, several source detection algorithms have been developed. Each
technique tackles the ill–posed inverse problem in image analysis with different strategies.
It results that for deep sky surveys, standard techniques are employed in sequential order.
The employment of several techniques in sequential order does not allow the uncertainties
of the experimental measurements to propagate. The final result can be biased.

The results obtained from the simulated data with the BSS and the wavdetect
(Freeman et al., 2002) techniques are compared. The BSS technique improves the de-
tections of wavdetect especially in the low count regime.

In the low count regime, the BSS background model with the employment of the expo-
nential prior pdf of the source signal is closer to the true value and is on average 10% lower
than the one found with the wavelet technique. Note that even employing the inverse–
Gamma function prior pdf with the cutoff parameter larger than the background amplitude,
the BSS background model is still lower than the one found with wavdetect of ∼ 5%. In
the simulated data set with low background, sources with ≥ 4 counts are found with the
BSS technique. Although scale sizes are chosen from 2 to 64 (in logarithmic increment),
the wavelet based technique is sensitive only to sources with ≥ 16 counts. In order to
increase the sensitivity of wavdetect, the significance threshold can be decreased to val-
ues < 4.0 × 10−6. However, the efficiency and also the contamination of the wavdetect
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technique increase: many false positives arise at the field edge.
In the simulated data with intermediate and large backgrounds, the background models

obtained with the two techniques are similar in amplitude and they differ by less than
1%. However, the BSS background models are smoother than the ones estimated with
wavdetect. Therefore, the BSS background models reproduce a more realistic scenario
than wavdetect background models, since the simulated backgrounds are constant.

wavdetect fluxes are underestimated for 20% of the sources. Biases in flux estimation
with wavdetect are expected, because the background is not accurately estimated. The
BSS residuals on source fluxes and positions are normally distributed. The BSS residuals
are a factor of 10 smaller than the ones from wavdetect.

The BSS technique because of the reliable background estimation (that includes expo-
sure variations), the joint background–source separation, the multiresolution reconstruc-
tion, the multiband analysis and a Bayesian approach for source characterization has a
larger sensitivity than standard techniques. The search for clusters and groups of galaxies,
QSOs and AGNs in sky surveys can be improved employing the BSS method.
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Figure 5.3: Panel (a): normalized difference between wavdetect estimated source counts
versus simulated counts of all the detected sources in three simulated data sets. Panel (b):
comparison between the normalized differences of wavdetect source counts and simulated
counts, on the ordinate, and the normalized difference of BSS source counts and simulated
counts, on the abscissa. Sources detected from the simulated data with small background
are indicated with a diamond. A square is used to highlight sources detected in the data
set with intermediate background. The detected sources in the simulated data with large
background are indicated with a triangle. Dashed lines are drawn as a borderline of the
±3σ detection. The zero line is indicated with a continuous line style.
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Figure 5.4: Same explanation as for panel (b) in Fig. 5.3, but comparing the estimated
source positions: x–axis (panel a), y–axis (panel b).
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Chapter 6

Application to observational data:
ROSAT All-Sky Survey

In this Chapter, the BSS technique is applied to RASS data. In Section 6.1, the promi-
nent aspects of the ROSAT satellite, its all–sky survey data and published catalogues are
described. Other sky surveys and catalogues employed for the validation of the BSS detec-
tions are commented. In Section 6.2, the applications of the BSS technique to RASS data
are meant to show the capabilities of this novel technique on astronomical images with
large variations in the satellite’s exposure and/or in the cosmic background. A comparison
of the BSS method with the standard techniques employed for the analysis of the RASS
data is provided. Evidence for celestial sources not previously catalogued by any detection
technique in the X–ray regime is given. In Section 6.3, a summary is provided.

6.1 ROSAT PSPC Survey Mode data

The BSS algorithm is applied to a data sample measured by the Position Sensitive Pro-
portional Counter (PSPC) on board of ROSAT (Röntgensatellit) in survey mode.

ROSAT, an overview: ROSAT was lunched on June 1, 1990. ROSAT operated in a
circular Earth orbit with inclination of 53◦ and an altitude of 580 km. The orbit period
was of approximately 96 minutes. The main payload of ROSAT is the X–ray telescope,
formed by four concentric parabolic–hyperbolic mirror pairs (Wolter Type–I) with a focal
length of 2.4 m. It is designed for measurements of soft X–rays (0.1−2.4 keV). In its focus
were three X–ray detectors: two PSPCs and one High Resolution Imager (HRI).

The first six months of ROSAT operations were performed in scan mode, providing the
only all–sky survey realized using an imaging X–ray telescope. A pointing mode followed
the all–sky survey for a duration of 8.5 years. The telescope’s sensitivity was improved in
pointing mode compared to scan mode, because larger exposure time was dedicated for
observing selected X–ray sources. The accuracy of X–ray object coordinate determinations
was improved by a factor of 3 from scan mode to pointing mode (< 10 arcsec on axis). For
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pointing mode observations, both the PSPC and the HRI detectors were used. The all–sky
survey, instead, was performed employing only the PSPC. The PSPC detector has a very
low intrinsic background (particle background). The particle background contribution is
! 6% to the cosmic diffuse X–ray background (Snowden et al., 1994), leaving a residual
count rate of only 2 · 10−5 count s−1 arcmin−2 (Schmitt, 1991). The PSPC combined with
the wide telescope angle allows for the detection of extended sources, e.g., SNRs, clusters
or groups of galaxies and the diffuse X–ray background. ROSAT data, from both scan
and pointing mode, are publicly available1.

RASS data and catalogues RASS was performed surveying the sky in circles of 2◦ ×
360◦, whose planes were oriented almost perpendicularly to the solar direction. The strips
were merged to supply a unique map of the sky. The map of the sky was divided in
1378 fields each of 6.4◦ × 6.4◦, corresponding to 512 × 512 pixels (1 pixel= 45 arcsec).
Neighbouring fields were superposed by at least 0.23◦. Each RASS field is provided in three
energy bands: broad (0.1 − 2.4 keV), soft (0.1 − 0.4 keV) and hard (0.5 − 2.4 keV). The
satellite’s exposure time can vary between about 0.4 and 40 ks at the ecliptic equator and
poles, respectively. In addition, some parts of the sky are without observations due to the
satellite’s crossing of the auroral zones and of the South Atlantic Anomaly. Consequently,
the exposure over parts of the sky can be highly varying. It results that RASS data provide
a wide range of possibilities for testing the BSS algorithm.

RASS data were analysed previously by the SASS algorithm. The SASS procedure
combines the sliding window technique (Gioia et al., 1990) with the ML PSF fitting method
(Cruddace et al., 1988) for source detection and characterization, respectively: Refer to
Section 5.1.1 for more details about the SASS algorithm. SASS works well for point–like
sources, but this algorithm is less suited to extended, low surface brightness sources. Ex-
tended, low surface brightness sources can consequently be missed, leading to a significant
incompleteness in flux–limited cluster samples (Rosati et al., 2002b). For each detected
X–ray source, the SASS algorithm provides: detection likelihood, source positions, source
and local background count–rates, exposure time, hardness ratios (HR1, HR2), source
extent and corresponding likelihood. Source fluxes are provided in the broad (0.1 − 2.4
keV) energy band. Hardness ratios allow one to convert the source count rates in the broad
energy band to the soft (0.1−0.4 keV) and hard (0.5−2.4 keV) energy bands. Specifically,
the hardness ratio is defined as the normalized difference of counts in two energy bands:
HR1 = (B − A)/(B + A) and HR2 = (D − C)/(D + C). The four energy bands indicate
the following channels: (11−41) for A, (52−201) for B, (52−90) for C, (91−201) for D.
Bands A and B represent the soft and the hard energy bands, respectively. Bands C and
D together contain the same channels as the hard band B. Hence, HR2 is a hardness ratio
constructed in the hard region only. Note that HR1 and HR2 have been set to a null value
when the source counts have negative values. The SASS technique may provide negative
net counts for faint sources, because of background subtraction (Voges et al., 1999). This
problem is overcome with the BSS algorithm.

1http://www.mpe.mpg.de/xray/wave/rosat/catalogue/index.php
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SASS detections are listed in the RASS BSC (Voges et al., 1999) and Faint Source
Catalogue (FSC) (Voges et al., 2000). The RASS BSC and FSC are derivatives of further
analyses of the RASS data. The RASS–II processing, with respect to the previous version,
improved mainly the spline background model and the source centroid within the sliding
window technique, that provides the input list of detected sources for the ML method (see
Voges et al., 1999 for more details). Furthermore, a RASS–3 processing was provided. A
better screening and repair of attitude data resulted in a more homogeneous sky coverage
and " 5% more exposure.

The RASS BSC (FSC) list 18, 811 (105, 924) sources, characterized by: a detection
likelihood > 15 (≥ 7); number of source photons > 15 (≥ 6); and source count rates
≥ 0.05 count s−1 in the broad (0.1 − 2.4 keV) energy band. Although sources in BSC
represent the bright sample of all X–ray sources detected by SASS, each RASS field (in
three energy bands) was quality checked by detailed visual inspection in addition to the
automatic processing by SASS (Gruber et al., 1997; Voges et al., 1999). The quality check
was undertaken to guarantee a reliable source catalogue. During the visual inspection, false
positives in source detection were manually removed from the final catalogue. In fact, false
positives in source detection were visually identified in regions with steep gradients in the
data (e.g. field and strip edges, large extended emission regions like the Vela SNR and
the Cygnus Loop). About 16% of all SASS detections, that is about 17 detections per
field, were identified by eye as false positives (Voges et al., 1999). Furthermore, during the
visual inspection, nearby sources, sources with large positional errors, extended sources,
sources with complex emission structures and sources missed by SASS have been flagged
(Voges et al., 1999). Therefore, it is difficult to find new bright sources in the RASS data.

Other sky surveys and catalogues X–ray sources detected with the BSS algorithm,
but not cross–correlated with any entry in the RASS BSC and FSC, can be validated
with ROSAT data in pointing mode and with other sky surveys at the same and other
wavelengths of the electromagnetic spectrum.

In addition to the RASS BSC and FSC, catalogues from the ROSAT data collected
in pointing mode are available: ROSAT PSPC pointing (Voges et al., 1996), WGACAT
(White et al., 1994), ROSAT HRI catalogue (ROSAT Scientific Team, 2000), ROSAT vari-
able source (Voges and Boller, 1998). Both ROSAT PSPC pointing (Voges et al., 1996)
and WGACAT (White et al., 1994) are derived from PSPC observations. However, the
WGACAT does not use the SASS algorithm. The WGACAT was generated using an op-
timised sliding cell detection algorithm within the X–ray image analysis package XIMAGE
(Giommi et al., 1991). The source counts for WGACAT are calculated for the following
energy bands: low–band (A = 0.1 − 0.4 keV), mid–band (C = 0.4 − 0.9 keV), high–band
(D = 0.9 − 2.0 keV). The hardness ratios are defined as the ratio of counts in two differ-
ent energy bands. Specifically, the following ratios are provided: softness (SR ∼ A/C),
hardness (HR ∼ D/C), SRhard = C/D1, HRhard = D2/D1. D1 and D2 are indicating
the energy ranges (0.9 − 1.3) keV and (1.3 − 2.4) keV, respectively. From these spectral
properties the source count rates from one energy band can be converted to another energy
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band.
Images and catalogues from the XMM–Newton observatory (Jansen et al., 2001) are

also employed to compare detections obtained with the BSS algorithm analysing RASS
data. The XMM–Newton satellite works in the energy range of 0.1− 10 keV. The on–axis
PSF of this X–ray telescope has FWHM values of 5−7 arcsec. The XMM–Newton satellite
is, therefore, characterized by an improved resolution (at least 6 times better) with respect
to the ROSAT PSPC PSF.

Virtual Observatories Tools, such as EURO–VO Tools2, are employed for cross–cor-
relating the X–ray sources detected with the BSS algorithm. Note that currently there
are no other X–ray all–sky surveys besides RASS. Therefore, the amount of resources in
X–ray regime is limited and some of the newly discovered X–ray detections with the BSS
algorithm does not have counterparts in the above mentioned previous works. An analysis
of these sources is provided with data in the optical, near–infrared, radio and γ–ray parts
of the electromagnetic spectrum. Between all the available catalogues, the Sloan Digital
Sky Survey (SDSS) (Abazajian, 2009) has an important role. The SDSS (optical) data
reaches a much higher redshift than RASS (Schuecker et al., 2004). Thus, SDSS data can
be used to guide the BSS detections on RASS data.

6.2 Data analysis

This Section shows that precise statistical methods, as the BSS algorithm, are needed to
provide a complete catalogue and to reduce greatly the contamination from false positives
in source detection without compromising the detection of faint celestial objects. For this
purpose, three RASS fields are chosen. The field identifiers are RS930625n00, RS932209n00
and RS932518n00. Each field is characterized by one of the followings: spatial variations
of the background and of the telescope’s exposure time; low exposure time and low surface
brightness of detectable sources; sources embedded in diffuse cosmic emissions.

This Section is organized as follows. In Section 6.2.1, the background models are anal-
ysed and compared to the ones obtained with the SASS technique. In Section 6.2.2, the
BSS catalogues obtained analysing the three RASS fields are compared to the RASS cata-
logues. For this purpose the GAVO archive3 is employed. In Section 6.2.3, the robustness
of the BSS detections is addressed. The low contamination of false positives in source de-
tection obtained with the BSS technique is shown as illustration with SPMs derived from
one of the RASS fields. The BSS results obtained combining SPMs at different energy
bands are shown. The BSS algorithm capabilities on detecting sources independently of
their shape, sources at the field edge and sources superposed to a diffuse emission, are
demonstrated. In Section 6.2.4, the detections of X–ray sources which are not listed in the
RASS catalogues are used to demonstrate the superior sensitivity of the BSS technique.

2EURO–VO Tools allow one to access the world’s astronomical data (catalogues, images and spectra)
maximising the scientific utilisation of the rich astronomical on–line resources.

3The German Astrophysical Virtual Observatory (GAVO) is partner of the EURO–VO. It allows one
to query the whole ROSAT archive.
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6.2.1 Background analysis with BSS and SASS techniques

In this Section, the results obtained with the BSS technique analysing the three selected
RASS fields are shown with SPMs, TPS and background maps. The analysis of each
field is organized into separate sections, whose title addresses the field’s variations in the
background and/or in the satellite’s exposure time. Non–uniformities in background and
exposure maps are consistently taken into account with the BSS technique. The back-
ground models obtained with the BSS and the SASS techniques are compared. The BSS
background model is shown to be more stable than the one obtained with the SASS
technique. Last, further exploitations of the background model are commented.

Varying background and exposure map

The detection capabilities of the BSS approach on an image with exposure and cos-
mic background non–uniformities is represented with the analysis of the ROSAT field id
RS930625n00. This field is located at α = 17h49m5s, δ = +61◦52′30′′ (J2000), i.e. close to
the north ecliptic pole region. Due to the satellite scanning restriction that each observa-
tion passes through the Earth’s poles, this field is a natural one for testing large variations
in the exposure map. The count rate image of RS930625n00 in the broad energy band is
displayed in panel (a) of Fig. 6.14. The photon count rates range over 0 − 0.11 count s−1

pixel−1. The image is scaled in order to enhance the sources. The RS930625n00 field is
characterized by large variations of the satellite’s exposure ranging from 1.7 to 13.5 ks (see
Fig. 6.2, panel a).

The BSS results are shown in Figs 6.1 and 6.2 with a SPM (panel b, Fig. 6.1), the
TPS map (panels c, Figs 6.1, 6.2) and the background map (panel d, Fig. 6.1 and panel b,
Fig. 6.2).

In Fig. 6.1, panel (b), the SPM is obtained combining statistically the soft (0.1-0.4 keV)
and the hard (0.5-2.4 keV) energy bands. The displayed SPM is obtained employing the
exponential prior pdf. The counts of pixels are combined using the box filter method with
a circle. This image corresponds to a correlation length of 1.5 arcmin. The correlation
length used for this image corresponds to the width of the ROSAT instrumental PSF
(Boese, 2000). Sources are identified in terms of probabilities. The image is in linear scale.
Note the correspondence of the detected source positions with the count rate image (panel
a). Many faint sources are already enhanced at the displayed SPM.

In Figs 6.1 and 6.2, panel (c), the TPS map is modelled from the broad energy band
only. The TPS models the background rate. 25 support points are used and distributed
equidistantly. In Fig. 6.1, panel (c), the color bar has units of photon count s−1 pixel−1.
The image is in linear scale. The contours are superposed for enhancing the features
relative to the modelled background rate. In Fig. 6.2, panel (c), the cosmic background
variations are shown with a surface plot. The background rate is smooth and does not
depend on the large variations of the satellite’s exposure time values.

4In each displayed astronomical image, North is up and East is to the left–hand side.
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Figure 6.1: Analysis of the RASS field RS930625n00, ROSAT PSPC in survey mode.
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Figure 6.2: Panel (a): exposure map of the RASS field id RS930625n00 (Fig. 6.1). The
z–axis indicates the exposure time in ks pixel−1. Panels (b, d): estimated background am-
plitudes of RS930625n00 field in the broad energy band with the BSS and the SASS tech-
niques, respectively. The z–axes show the estimated background count pixel−1. Panels
(c, e): the background rates corresponding to panels (b) and (d), respectively. The z–axes
are in units of background count s−1 pixel−1.



100 6. Application to observational data: ROSAT All-Sky Survey

The corresponding background map estimated from the selected ROSAT field is dis-
played in panel (d) of Fig. 6.1. Its values are in the range 1.17−8.53 photon count pixel−1.
In order to enhance features in the background amplitude, the image is scaled and con-
tours are superposed. The background map shows the prominent variation due to the
heterogeneous satellite exposure time (see, also, panel b, Fig. 6.2).

The lower row of Fig. 6.1 shows the background rate (panel e) and the background
amplitude (panel f) as obtained analysing the broad energy band with the SASS algorithm.
Note that the SASS algorithm provides only the background amplitude. The background
rate is derived from the estimated SASS background amplitude normalized by the exposure
map and is compared to the BSS background rate. The SASS background rate image is
in the range 0.0005− 0.00097 photon count s−1 pixel−1. The background amplitude image
estimated by SASS has values in the range 1.11−8.27 photon count pixel−1. The image is
scaled as the one obtained from the BSS technique in panel (d). Contours are superposed
to enhance the variations in the background rate and amplitude.

In Figs 6.1 and 6.2, panels (c) are compared with panels (e). The background rate
values from the BSS and the SASS techniques are similar. However, the BSS background
rate (panels c) is smooth and stable along the whole field. Although main features are
recovered at the field centre, the SASS background rate shows ripples along the whole
field and an increasing instability towards the field edge. This oscillatory behaviour of the
SASS background model and its implications are discussed in Chapter 5, Section 5.1.1.

The variations in the BSS and the SASS backgrounds (Figs 6.1, panels d and f , 6.2,
panels b and d) are affected by the telescope’s exposure time. Although the BSS background
map is on average larger than the one estimated by the SASS algorithm, Section 6.2.2
shows that source count rates obtained with the two techniques and cross–correlated are in
agreement. Furthermore, the BSS technique allows for more flexibility in the background
model and the background at the field edge is more stable than the one provided by SASS.
Hence, celestial objects located especially toward the field edge are not lost during source
detection. In Section 6.2.4, two examples of newly discovered X–ray objects detected by
the BSS technique are shown: A QSO and a potential cluster of galaxies are detected
toward the field edge.

Smooth background and varying exposure map

The detection capabilities of the BSS technique on images showing strips with no exposure
are tested. The ROSAT field id RS932209n00 is analysed. This ROSAT field is located at
α = 3h31m, δ = −28◦07′08′′ (J2000). This area of the sky is known for having low Galactic
neutral hydrogen column density (Giacconi et al., 2001).

In Fig. 6.3, panel (a), the soft (0.1−0.4 keV) band image is shown. The image accounts
for photon count pixel−1 in the range 0 − 9. The image is scaled to enhance sources. The
satellite’s exposure map is located in panel (c). The color bar has units of second pixel−1.
Contours are placed in order to enhance the areas with different values.

The results from the analysis of this ROSAT field with the BSS technique are repre-
sented with a SPM (panel b), the background map (panel d) and the TPS map (panel f)
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Figure 6.3: Analysis of the RASS field RS932209n00, ROSAT PSPC in survey mode.
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Figure 6.4: Panel (a): exposure map of the RASS field id RS932209n00 (Fig. 6.3). The
z–axis indicates the exposure time in s pixel−1. Panel (b): estimated background amplitude
with the BSS technique of RS932209n00 field in the soft energy band. The z–axis shows
the estimated background count pixel−1.

in the same energy band of the photon count image in panel (a). The inverse–Gamma
function prior pdf is used for source detection and background estimation.

In panel (b), this SPM is obtained with a correlation length of 270 arcsec (data resolution
is 45 arcsec). The box filter method with a circle is employed.

In panel (d), the background map estimated with the BSS technique is shown. 16 pivots
equidistantly distributed over the field are employed. The background amplitude ranges
from 0 to 0.318 photon count pixel−1. The background is estimated with a null value where
no satellite’s exposure information is provided. The area with an estimated null value is
delineated by the contours close to white. No celestial sources can be found where the
background amplitude is null. Note the agreement with the contour lines delineating null
exposure and background values in panels (c) and (d), respectively .

In Fig. 6.4, the surface images of the exposure map (panel a) and of the background
map estimated with the BSS technique (panel b) are provided. The estimated background
map is similar to the exposure map because the distribution of the background is almost
flat. The background rate, estimated with the BSS technique, is displayed in panel (f) of
Fig. 6.3. The image is in linear scale. The color bar has units of count s−1 pixel−1. Note
that the background rate varies only by a factor of 2 from the minimum to the maximum
estimated values (in the previous example the background rate varied by a factor of 7, see
panel f in Fig. 6.1). The contours next to black delimit a region with more than 3.5 photon
count s−1 pixel−1. The contours are drawn to underline the background rate variations.
The background rate estimated with the BSS technique is smooth. Furthermore, the BSS
background rate does not provide a null value where there is no satellite’s exposure. In
fact, the background rate is estimated with a spline model, which interpolates across holes
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and gaps.
The background amplitude estimated by the SASS algorithm is shown in panel (e)

of Fig. 6.3. The background value ranges over 0.001 − 0.468 photon count pixel−1. The
SASS background map does not provide null values where the satellite was switched off.
The strip with no exposure has a constant value of 0.001 photon count pixel−1. A line
is drawn on the image delimiting the area with minimum value. The line emphasizes the
decreased agreement with the one in panel (c) with respect to the concordance of lines in
panels (c, d). The contour levels, already used in panel (d), are also drawn (except for the
contour with minimum value).

The comparison of panels (d) with (e) shows that the SASS background is not as
smooth as the one estimated with the BSS algorithm. The SASS background shows large
structures where the exposure map has small values. These structures are emphasized by
the superposed contours.

The BSS technique provides an improved background model compared to the SASS
algorithm. The outcome of the well–defined BSS background model is viewable with the
detections of sources employing SPMs: Panel (b) shows few detected sources, as expected
comparing panels (a, b). In Section 6.2.2, the BSS source positions and fluxes are compared
to the ones obtained with the SASS algorithm. In Section 6.2.3, the outcome of the
multiresolution analysis is commented. The intensity of false–positives in source detection
are shown to be contained. In Section 6.2.4, the discovery of a cluster of galaxies in this
ROSAT field is shown.

Smooth exposure map and varying background

The ROSAT field id RS932518n00 in the hard (0.5− 2.4 keV) energy band is employed to
show the capabilities of the BSS technique on data with large background variations. This
field is characterized by a complex structure of hot gas caused primarily by the emissions of
two galactic X–ray sources: (1) Vela supernova remnant (SNR) located at α = 8h35m20.6s,
δ = −45◦10′35′′ (J2000); (2) SNR RXJ0852.0 − 4622 located at α = 8h52m, δ = −46◦22′

(J2000) (Aschenbach et al., 1995; Aschenbach, 1998).
In Fig. 6.5, panel (a), the photon count image of RS932518n00 field in the hard energy

band is displayed. The image shows values in the range 0−136 photon count pixel−1. It is
scaled to enhance the X–ray emissions. The satellite’s exposure map is displayed in panel
(e). The exposure map shows variations in the range 0.5 − 0.8 ks.

The analysis of RS932518n00 in the hard energy band with the BSS algorithm is shown
in panels (b), (c), (d) and (f). For background estimation and source detection the expo-
nential prior pdf is employed.

In panels (b)–(d), three SPMs are displayed. The correlation length used for their
realization is written on each image. The Gaussian weighting method is employed. Point–
like sources superposed to a diffuse emission are detected at small correlation lengths (see
panel b). Faint sources, such as diffuse emissions and filaments, are revealed at increasing
correlation length.

In panel (f) the estimated background amplitude is displayed. The color bar is in units
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Figure 6.5: Analysis of the RASS field RS932518n00, ROSAT PSPC in Survey Mode.
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Figure 6.6: Panel (a): exposure map of the RASS field id RS932518n00 (Fig. 6.5). The
z–axis indicates the exposure time in s pixel−1. Panels (b) and (c): estimated background
amplitudes of RS932518n00 field in the hard energy band with the BSS technique (panel
b) and the SASS method (panel c). The z–axes show the estimated background count
pixel−1.
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of photon count pixel−1. The background map is estimated using 36 pivots equidistantly
spaced along the field. The heterogeneous background is recovered.

In Fig. 6.6, two–dimensional representations of the exposure (panel a) and the back-
ground (panels b − c) maps are displayed. Panels (a) and (b) are already depicted in
Fig. 6.5, panels (e) and (f), respectively. In panel (b), i.e. the surface plot of the estimated
background amplitude obtained with the BSS technique, one can clearly spot: a foreground
peak, i.e. the diffuse emission caused by the Vela–Junior SNR (RXJ0852.0−4622); a cen-
tral emission, i.e. the (ring shape) shock front caused by the Vela SNR; and a background
emission caused by another SNR, Puppis A. In panel (c) the background map estimated
with the SASS algorithm is provided for comparison. The SASS estimated background
values are in the range 0.001 − 0.55 background count pixel−1. The SASS background
values are a factor of 10 lower than the BSS estimated background. Furthermore, the
diffuse emissions caused by the SNRs are not present in the SASS background model.

In Section 6.2.2, the detected sources are cross–correlated with the RASS catalogues.
Source positions and fluxes are compared. In Section 6.2.3, the BSS detections of point–
like sources on top of the diffuse emissions are discussed. No point–like sources on top of
the diffuse emissions are found from the RASS FSC and BSC with the exception given by
the Vela pulsar, associated with the Vela SNR. The Vela pulsar fluxes and shapes obtained
with the BSS and the SASS techniques are compared. The Vela pulsar flux obtained
with the BSS algorithm is confirmed by XMM–Newton observations. The XMM–Newton
satellite provides higher resolution images than ROSAT. XMM–Newton images are also
used to strengthen the BSS capabilities in recovering extended sources observed by the
ROSAT PSPC. In Section 6.2.4, the discovery of a potential QSO in this ROSAT field is
shown.

Flexibility of background estimation on pivots

A careful estimation of the background is crucial for a proper assessment of source prop-
erties and for revealing sources that other techniques overlook. In this Section, the BSS
background model is shown to be superior to frequently used techniques. In the next Sec-
tions, improvements in estimated source parameters and detections of new celestial objects
are demonstrated.

The BSS background model depends on the number, position and amplitude of the
pivots. However, only the amplitudes are estimated from the data. The number of pivots
are selected according to the structures in the background. More (or less) pivots are needed
if structures (or no structures) are present in the background. In principle, the pivots can
be aligned on a grid or located in regions with large background variations. In practice,
the pivots are automatically chosen equally spaced.

Note that the BSS technique can be improved employing adaptive splines for the back-
ground estimation. The parametric model can be extended allowing the data to select the
number and location of the pivots. See Section 2.2.2 for more details.

In Fig. 6.7, four background rate models of the field id RS932518n00 in the hard energy
band are shown at increasing number of support points. Different results of the TPS maps
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Figure 6.7: TPS maps of the field id RS932518n00 in the hard (0.5−2.4 keV) energy band.
Panels (a)–(d): results employing 4, 16, 25 and 36 pivots, respectively.
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are obtained with different number of pivots. The background rate model is close to a
tilted plane with counts ranging 0 − 10 if 4 pivots are used (panel a). The spline becomes
more flexible at increasing number of pivots employed (panels b-d). Note that also the
range of the estimated background count per pixel increases to 0−25 at increasing number
of pivots. The estimated background rates are compared to the photon count image in
panel (a) of Fig. 6.5. The TPS estimated with 36 pivots, panel (d), provides the most
reasonable background model.

The number of pivots influences the selection of what is source or background. On the
one hand, a low number of pivots assigns more structures to be detected as source. On
the other hand, a large number of pivots provides for more structures to be described as
background. Therefore, the BSS technique allows the user to choose what is source or
background tuning the number of pivots.

Comment on the background model

The extragalactic X–ray background (above 1 keV) is known to be largely due to accre-
tion onto supermassive black holes, integrated over cosmic time (Hasinger et al., 2002).
Diagnostic of the population permeating the X–ray background emission is currently
ongoing: See Brandt and Hasinger (2005) for a review and Gupta and Galeazzi (2009);
Draper and Ballantyne (2009) for some recent studies. In the γ–ray energy band of the
electromagnetic spectrum, instead, the origin of the diffuse background radiation is unclear
(Rasera et al., 2006; Dar, 2007; Inoue et al., 2008; Ajello et al., 2009).

The work of Snowden et al. (1994), applied to ROSAT PSPC pointed observations, pro-
poses to separate the noncosmic background in several components, mainly: High energy
charged particles penetrating the detector; Thomson and fluorescent scattering of solar X–
rays in Earth’s atmosphere; Short–term enhancements, i.e. low energy charged particles in-
teracting with the atmosphere or telescope, like auroral X–rays; Long–term enhancements
due to charged particles. Only the first two components of the noncosmic background are
modelled, while the last two are often reduced through calibrations. Snowden et al. (1994)
suggests to separate the different modelled components by subtraction from the estimated
background.

The BSS background model is suited for investigating the nature of the cosmic back-
ground. An advance to the technique proposed by Snowden et al. (1994) can be given
extending the BSS algorithm. When models of noncosmic and Galactic background radi-
ation are known, the BSS technique is flexible enough to allow for a proper separation of
each background radiation component. In fact, background components can be explicitly
stated in the model for the background (i.e. in the background hypothesis). The mixture
model technique is employed to separate each background component. No background
subtraction is explicitly needed.

Note that the RASS data are survey mode observations. No models for the noncosmic
background are available. Furthermore, the proposed extension to the BSS technique
promotes a more sophisticated algorithm, that is instrument specific and not required for
this thesis.
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6.2.2 Catalogue comparisons

A quality assessment of the BSS source detection and characterization procedure is per-
formed by catalogue comparisons. Specifically, the RASS catalogues and the BSS detec-
tions obtained analysing the three sample fields shown in Section 6.2.1 are compared. The
results obtained from the analyses of these three fields are kept separated, because of their
different variations in the background and exposure map. Sources listed in the BSS and
RASS catalogues are cross–correlated. Sources from the BSS catalogue are matched with
the RASS ones taking into account their angular distance. A searching radius of 1 arcmin
is considered. In the ROSAT field id RS930625n00, a typical RASS field with background
and exposure variations, the number of matched sources amount to 200. The number
of matched sources in the other two fields, that are characterized by two extreme condi-
tions of short exposure time one (RS932209n00) and large background variations the other
(RS932518n00), is reduced to 12 and 6, respectively. Furthermore, in the field with the
Vela SNR, i.e. RS932518n00, only sources listed in the RASS BSC are found and none of
them are located on top of the SNRs shock fronts, except for the Vela pulsar itself. Sources
located in the same line of sight of the diffuse emissions are analysed in Section 6.2.3.

In Figs 6.8, 6.9, 6.10 and 6.11, the BSS and the SASS results are examined with
respect to source position, source count rates and source extent (i.e., the estimated size of
the detected sources), source extent as a function of fluxes, probability of source detection
in relation to the identification of extended sources. In the upper plots of Figs 6.8 and 6.9,
a line is drawn to indicate equal values. The lower plots (residuals) display a zero line.
Error bars from both techniques are placed only for the plots comparing source positions
and fluxes. Error bars for source extent is placed only for the BSS algorithm, since no
error bar for source extent is given in the RASS catalogues. Note that random errors
provided by SASS are calculated based on the normal distribution and the 1σ standard
deviations (i.e. at the 68.3% significance level) are provided for source parameters (Boese,
2004). Although in the SASS algorithm a deviation from the standard error is introduced
to correct from the utilized normal to the proper Poisson distributions, the errors for source
parameters of faint objects are not properly described: See Boese (2004) for more details.

In Fig. 6.8, source positions obtained with both techniques are in agreement. The BSS
technique is capable to provide source positions as good as the ML technique, even if the
BSS technique does not account so far for the instrumental PSF. Note the large error bars
for some sources provided by the BSS algorithm. Large errors are assigned by the BSS
algorithm to faint sources nearby background fluctuations due to Poisson statistics or to
close by sources. Large error bars are not found in panels (c, d), that are characterized
only by bright sources in uncrowded fields.

In Fig. 6.9, panels (a, b, c) show the comparison of estimated source fluxes as obtained
by the BSS and the SASS techniques. The source count rates from the two techniques are
similar, with few exceptions (e.g., the Vela pulsar in panel c). The residuals are normal
distributed.
In panel (a), the fluxes for bright sources (> 0.15 count s−1) obtained by the two techniques
are in agreement within the estimated errors. The inset in panel (a) shows BSS versus
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Figure 6.8: Comparison of BSS versus SASS results on source positions in celestial coordi-
nate system (J2000): right ascension and declination on the left– and right–hand columns,
respectively. Upper, middle and lower rows represent the results analysing the RASS field
ids RS930625n00, RS932209n00 and RS932518n00, respectively.
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Figure 6.9: As for Fig 6.8, but source fluxes and extent at 1σ detection are compared on
the left– and right–hand columns, respectively. See text for more details.
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SASS source count rates for sources with < 0.12 count s−1 and the likelihood of source
extent > 5 as given by SASS. The selected sources are investigated with the BSS technique
and only the extended sources are kept (are excluded 0.4% of all sources with likelihood
of source extent > 5). The BSS algorithm provides larger fluxes than the SASS technique
at increasing count rates (for > 0.06 and < 0.12 count s−1) for these extended sources.
At increasing count rates, the ML algorithm may provide only poor fluxes for extended
sources because the background in addition to a source is assumed to be constant and the
background is not well–defined due to the employed class of bivariate spline (Boese, 2004).
The BSS technique provides fluxes of faint extended sources (for ! 0.06 count s−1) similar
and lower than the ones provided by SASS. Fluxes of faint sources and related errors are
known to be overestimated by the ML algorithm (Boese, 2004).
In panel (b), large errors in source fluxes are provided by both techniques. The represented
field is characterized by few photon counts and large exposure variations.
In panel (c), fluxes of sources located in the field with the Vela SNR are compared. Source
count rates from the two techniques are similar only for sources located outside the shock
front caused by the two SNRs. Note the detection at 0− 2.7 count s−1. This object is the
Vela pulsar (Vela SNR). The SASS technique provides a null value for the flux of the Vela
pulsar. In addition, the object characterized by the SASS and the BSS techniques with
0.12 and 0.25 count s−1, respectively, is an extended source (in the plot indicated with ’Ext
src’). This object is known as Vela fragment A. Source parameters of the Vela pulsar and
the Vela fragment A are commented further in Section 6.2.3.

In Fig. 6.9, panels (d, e, f) relate the RASS extent with the BSS extent of the detected
sources. The SASS source extent is defined as the excess above the width of the instru-
mental PSF given in arcsec units. The SASS source extent is derived assuming: The
instrumental PSF and the source surface brightness are two–dimensional Gaussian func-
tions and independent of photon energy; The background is uniform (Voges et al., 1999).
A null value for the source extent is given when sources are point–like. For all the other
sources, the SASS algorithm provides source extent at 1σ detection. The BSS technique,
instead, gives the source extent (in arcsec units) resulting from the fitting of the multi-
variate Gaussian on source profiles. As shown in Section 6.2.3, the extent provided by the
BSS algorithm is similar to the one obtained at 3σ detection above the local background
in classic statistics. In each plot, the BSS extent is approximated to a 1σ detection. Al-
though faint and bright sources and extended sources according to the BSS and the SASS
techniques are highlighted, the discrepancy between the extent values provided by the
two techniques is large. Based on the analysis of simulated data with the BSS algorithm
(Chapter 4), it is not possible to infer the lack of correlation. The choice of approximating
the BSS source extent to a 1σ detection in order to make the BSS extent closer to the
one obtained with the SASS algorithm can be not appropriate. Although, the range of the
BSS extent values are exceeding by a factor of 1.5 the range of the SASS extent values.
Furthermore, in panel (f), all sources are assigned to be point–like by the SASS algorithm,
that is known to be untrue as seen in panel (c).

In Fig. 6.10, the source extent versus the source count rates are plotted for the BSS
(panel a, log–log scale) and the SASS (panel b, semi–log scale) algorithms separately. The
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Figure 6.10: Panels (a) and (b) provide source extent as a function of source count rates
according to the BSS and the SASS algorithms, respectively.
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Figure 6.11: Panels (a): probability of source detection versus correlation length as in
output from the BSS technique. Panel (b): source detection likelihood versus likelihood of
source extent as given by the SASS algorithm.
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extent is taken as given by the catalogues. In both plots, the majority of the sources
are found with fluxes of about 0.01 count s−1. The range of extent values with the BSS
technique is larger than the one obtained with the SASS algorithm. The BSS algorithm
detects several extended features in the field with the Vela SNRs. Note that so far the BSS
algorithm does not set the lower limit of the source extent to be the PSF width.

In Fig. 6.11, panel (a) shows the source probability versus the correlation length of
source detection as given by the BSS technique. Sources detected at large correlation
lengths (i.e. several times the width of the instrumental ROSAT PSPC PSF, which is
! 2 arcmin, see Boese 2000) are characterized by a low surface brightness and extended
features. Faint point–like sources are detected at correlation lengths few times larger
than the width of the instrumental PSF. Note the scale range on the y–axis (0.5 − 1.0).
As explained in Chapter 2, sources are strongly separated by false positives in source
detection when Psource > 0.99. Panel (b) depicts the source detection likelihood versus the
likelihood of source extent, that can be used to identify extended sources, as given by the
SASS algorithm. Panel (b) provides a more clear representation of point–like and extended
sources than panel (a). Point–like and extended sources within the BSS formalism have
been discussed in Chapter 2, Sections 2.2.5 and 2.3. A probability for a source to be
extended can be implemented within the Bayesian formalism. Bayesian model comparison
can be used to examine the detected source profiles with the exact instrumental PSF.
Although a ROSAT survey PSF is available (Boese, 2000), simulated RASS fields are
lacking (Boese, 2004). The development of this task can be part of a future project.

6.2.3 Robustness of the BSS technique

In this Section, details on some topics are given to strengthen the improvements obtained
with the BSS technique with respect to the SASS algorithm. The considered topics are:
The contamination from background fluctuations in source detection; Source extent given
by the BSS technique compared to the one with classic statistics; The detections of sources
affected by background fluctuations and of sources in the same line of sight of the diffuse
emissions; The detections of extended sources and compared to images with higher reso-
lution than ROSAT. For the discussion of these topics, fluxes of the detected sources are
calculated and optical observations are used.

X–ray fluxes: WebPIMMS5 (Mukai, 1993), version 3.9, is used to convert the source
count rate in one band to flux in the same band. WebPIMMS accounts for the instru-
mental response function. This physical parameter is derived for the detected sources as
follows. First, the value of the interstellar hydrogen column density as measured at 21 cm
for the estimated source positions is obtained following the works of Dickey and Lockman
(1990) and Kalberla et al. (2005). The observed flux is then determined by calculating the
conversion factor from count rate to flux employing a power–law source spectrum with a

5WebPIMMS is set up as a WWW interface to the command–line version of PIMMS (Portable
Interactive Multi–Mission Simulator). The latter is a program available at NASA − GSFC.
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photon index Γ = 2 (Szokoly et al., 2004), where the photon spectrum is proportional to
E−Γ (Henry et al., 2006), for QSOs and AGNs or a Raymond–Smith-type spectrum model
(Raymond and Smith, 1977) for clusters or groups of galaxies (Böhringer et al., 2000) and
SNRs (Aschenbach, 1998), redshift of zero (Böhringer et al., 2000) if using a power–law
otherwise the redshift and a fraction of global metal abundance (of solar value) whose
numbers are given later in the text if using a Raymond–Smith model, and the galactic
absorption according to the measured 21 cm value. No intrinsic absorption is assumed.

Optical observations Optical images are used to verify the efficiency of the BSS tech-
nique on the detected objects. The detected X–ray sources are analysed employing the op-
tical R and I bands images of the Second STScI Digitized Sky Survey (DSS) (Lasker et al.,
2008). Between the available DSS images, the Palomar Observatory Sky Survey of second
generation (POSS–II) are chosen for the improved resolution with respect to the ones of
first generation. POSS–II fields (XP and XI plates) are sufficiently deep (Boschin, 2002)
for most of the analysed celestial sources.

Contours of the surface brightness of the X–ray detected objects are superposed to the
optical images. Following the work of Rosati (1995), contours are calculated convolving the
RASS X–ray photon data image with a Gaussian kernel of given smoothing scale (σg). The
mean background value in addition to a detected source is used. The standard deviation of a
Poisson distribution with mean background value (σb) is changed in the standard deviation
of the smoothed Gaussian image (σ), such that σ = σb/(2

√
πσg): See Rosati (1995) for

more details. Therefore, the contours supply an approximation of the distribution of the
X–ray background in the smoothed image, given by a normal distribution with standard
deviation σ and mean background value provided by the BSS algorithm. Contours of the
surface brightness of the X–ray detected objects are calculated for n · σ values above the
local X–ray background. This method provides for an additional proof of and independent
from the detections given by the BSS algorithm, shown through SPMs.

Contained contamination

The capabilities of the BSS technique in providing reliable detections is shown analysing
the ROSAT field id RS932209n00 in the soft (0.1 − 0.4 keV) energy band: See Fig. 6.3
and Section 6.2.1 for more details. The characteristics of this field, i.e. few source counts
and a strip with no exposure, are known to be challenging to conventional source detection
methods. In fact, the SASS technique is known to detect false positives on strip edges.
Obvious false positives, detected by SASS, have been manually removed (Gruber et al.,
1997; Voges et al., 1999).

In Fig. 6.12, panel (a) provides the density of the photon counts in the RASS field id
RS932209n00 (y–axis in log scale). The field is characterized by 93% of the pixels with
a null value and few detected sources. The background is small (∼ 0.2 count pixel−1).
Due to Poisson statistics (see Chapter 3), the number of false positives in source detection
can be large. Panel (b) shows the densities of pixels with probability of source detection
in bins of 0.01 for several correlation length values (y–axis in log scale). Most of the
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Figure 6.12: Panel (a): histogram of RASS field id RS932209n00 in the soft (0.1 − 0.4
keV) energy band. Panel (b): histogram of several SPMs at 6 correlation lengths, obtained
analysing the field in panel (a).

pixels are assigned with a source probability ≤ 0.1, i.e. the detected background. The
densities of pixels increase for values ≥ 0.99, indicating the detected sources. All values
of Psource = (0.1 − 0.99) show fluctuations in the data. Less than 0.02% of the pixels
may show false positives in source detection. Comparing the BSS catalogue for this field
with catalogues at the same and other wavelengths, no clear evidence of false positives in
source detection is found. All sources detected with the BSS algorithm are found with
counterparts at the same (but deeper) or other wavelengths. More details on the detected
sources in this RASS field are given in the following Sections.

BSS source extent in terms of classic statistics

The detections of a source from the RASS field id RS932209n00 (see Section 6.2.1) with
the BSS and the SASS techniques are compared.

The X–ray source catalogued as 1RXSJ031938.2-250325 in the FSC (Voges et al., 2000)
is considered as illustration. This object is also listed in the two–degree-field Galaxy
Redshift Survey (2dFGRS) (Colless et al., 2001) as 2dFGRS TGS111Z214 from the optical
part of the electromagnetic spectrum. It is a galaxy at redshift z = 0.086. No counterparts
with other X–ray catalogues have been found employing the VizieR (Ochsenbein et al.,
2000), a database of astronomical catalogues. This source is located at α = 3h19m38.6s,
δ = −25◦03′43.12′′ (J2000). The reported position is given from the BSS technique. This
source is located towards the field edge: Upper left–hand corner of panel (a), Fig. 6.3.

In Table 6.1, the source parameters for 1RXSJ031938.2-250325 obtained by the BSS
and the SASS techniques are summarized. The column Sctr indicates source count rates
estimated in the broad (0.1 − 2.4 keV) energy band. The shape parameters are indicated
with the source extent as given by SASS or with σx, σy, θ as given by the BSS technique.
The parameters σx, σy are the FWHMs (in arcsec units) derived from a multivariate



6.2 Data analysis 117

Figure 6.13: POSS–II I plate with overlaid ROSAT contours corresponding to 3, 5, 7 and
9 σ above the local background. In the image centre, 2dFGRS TGS111Z214, a close by
galaxy, is indicated with an arrow. This object is listed in the FSC (Voges et al., 2000)
and reported in Table 6.1. See text for more details.

Table 6.1: Comparison of source parameters for 1RXSJ031938.2-250325 as listed in the
FSC (Voges et al., 2000) and the BSS technique in the broad (0.1− 2.4 keV) energy band.
This object is detected in the RASS field id RS932209n00.

Technique Sctr ExpTime Source extent Likelihood

(count s−1) (s) (arcsec) -ln(1-P)

SASS 0.0683±0.028 145 0.0 12
σx σy θ Psource

(arcsec) (arcsec) (deg)

BSS 0.114±0.039 151.3 233.4±48.5 158.2±26.9 -90 0.999995

Note. The SASS algorithm provides the Likelihood, that is related to the probability of
source detection (P ) obtained from classic statistics. The BSS technique provides Psource,
i.e. the probability of source detection. See text for more details.
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Gaussian profile fitted on the photon count distribution of the detected source. θ is the
rotation angle in degrees from the positive right ascension axis to the positive declination.
ExpT ime indicates the observational exposure time. The last column provides a measure
of certainty for the object being real according to the two techniques. The value of P ,
calculated from the Likelihood, is similar to Psource. However, as already shown in Chapter
3, the BSS technique is more conservative than procedures based on classic statistics, which
is the case for the SASS method. Therefore, the probability of source detection given by
the BSS technique is larger than the one provided by the SASS algorithm. In Table 6.1, the
SASS technique provides a null value for the source extent, since this galaxy is classified
as point–like. When SASS detects sources as extended, the source extent is given at 1σ
detection. The BSS technique, instead, detects this object with the maximum in source
probability at 3.75 arcmin, indicating the detection of a faint diffuse source. In Fig. 6.13,
the DSS optical image centred on this galaxy is shown. The contours of the ROSAT broad
band image are reported. The contours confirm the extent provided by the BSS technique.
In fact, the ROSAT contours at 3 σ above the local background corresponds to the BSS
reported source extents and positional angle.

The difference in the estimated fluxes for this galaxy by the BSS and the SASS tech-
niques is commented. The BSS technique provides the source count rates and the back-
ground count rates (not shown in Table 6.1) larger by a factor of 1.7 and 1.3, respectively,
than the SASS technique. The BSS technique allows the investigation of the core and the
tails of the source distribution, detecting until 3σ as above explained. Therefore, the BSS
algorithm naturally increases the count rates of sources presenting extended features with
respect to SASS.

BSS faint source detections and their errors

Fig. 6.14 shows the detections obtained with the BSS technique in a portion of the sky
with faint point–like and extended sources. Each image is centred at α = 18h6m15s,
δ = +59◦38′26′′ (J2000). The upper left–hand image is a zoom in the ROSAT photon
count image of the field id RS930625n00 in the hard (0.5 − 2.4 keV) energy band. The
photon counts in this field are in the range 0 − 80. The image here displayed is scaled in
the range 0− 10 photon counts with the purpose to enhance the sources. A 10 arcmin bar
is displayed to indicate the image size. The last image depicts the estimated background
with the BSS technique. The background is almost constant (∼ 0.64 count) in this portion
of the sky. SPMs are displayed at several correlation lengths. Ellipses are superposed to
indicate the extent of the objects detected with the BSS technique. Ellipses are drawn at
the correlation length of source detection. Region shapes with an ellipse are indicated from
A to F . Crosses, numbered from 1 to 5, are superposed to indicate the SASS detections,
listed in the FSC (Voges et al., 2000).

Extended sources In this portion of the sky, the BSS technique detects an extended
source. It is indicated with the letter E, located not far away from the bar indicating 4.5
arcmin resolution. At this resolution, the maximum in source probability is reached. This
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Figure 6.14: The upper left–hand image is a zoom in the RASS field id RS930625n00
in the hard (0.5 − 2.4 keV) energy band. The image is centred at α = 18h6m15s, δ =
+59◦38′26′′ (J2000). The following images are results with the BSS technique. Seven SPMs
at decreasing resolutions are displayed. The correlation length of each SPM is written in
the lower right–hand corner of each image. The lower right–hand image is the estimated
background amplitude.

Table 6.2: Positions and count rates for four point–like sources shown in Fig. 6.14, as given
by two catalogues: BSS and FSC (Voges et al., 2000). The BSS and FSC source count
rates are estimated from the broad (0.1 − 2.4 keV) energy band.

Catalogue Seq R.A. Dec. Sctr
(deg) (deg) (count s−1)

BSS

A 271.84385 59.7105 0.01485 ± 0.00304
B 271.85464 59.6201 0.01157 ± 0.03502
C 271.95508 59.5811 0.00281 ± 0.00784
D 271.84983 59.5326 0.00604 ± 0.00250

RASS source name

FSC

1 271.84872 59.7049 0.01575 ± 0.00285 1RXSJ180723.7+594217
2 271.84375 59.6089 0.01188 ± 0.00248 1RXSJ180722.5+593632
3 271.96667 59.5776 0.00835 ± 0.00231 1RXSJ180752.0+593439
4 271.87543 59.5303 0.00958 ± 0.00252 1RXSJ180730.1+593149
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extended source is a candidate for a cluster or group of galaxies. This extended object is
further commented in Section 6.2.4, Fig. 6.19. The EURO–VO Tools are used to search
for counterparts. Only, few near–infrared (Jarrett et al., 2000) and radio (Rengelink et al.,
1997) galaxies (six in total) are found in the surrounding region. However, redshift infor-
mation is missing and no conclusive results can be drawn.

It is interesting to note that the extended source indicated with E in Fig. 6.14 merges
with another extended feature. This secondary extended feature is indicated with F in
the SPM at 2.25 arcmin. The BSS technique detects this object with a probability of
only 69%. All the other objects are detected with Psource ≥ 0.99. The merging of the two
extended features does not provide an indication that the two objects are part of a unique
celestial source. Source F has a counterpart in the FSC (Voges et al., 2000). This object
is indicated with a cross, number 5. The FSC id for this object is: 1RXSJ180634.2 +
594421. The FSC lists this source with a source detection likelihood of L = 9 and source
extent of null value (indicating the detection of a point–like source). No counterparts of
1RXSJ180634.2+594421 are found employing the EURO–VO Tools at other wavelengths.

Point–like sources Four point–like sources are neighbouring the two extended features
on the left–hand side: See, e.g., the SPM at 1.5 arcmin. These objects have been detected
both by the BSS and SASS algorithms. The detections with the BSS technique are
indicated with the letters A −D in the SPM at 1.5 arcmin resolution. The source extents
obtained with the BSS technique are superposed. The detections acquired with the SASS
technique are indicated with the numbers 1 − 4 in the SPM at 2.25 arcmin resolution.
Crosses indicate the source positions as given by the FSC (Voges et al., 2000). In Table
6.2 the source positions and count rates are shown. Following the scheme of the FSC, Table
6.2 shows count rates in the broad energy band. A column is added for the FSC to indicate
the source identifier. The results, within the estimated uncertainties, are similar with the
two techniques. However, the errors for sources B and C are much larger. This is due to
source enhancements close by the two sources B and C. The faint source enhancements
may be due to Poisson statistics or to real faint sources in the neighbourhood. The origin
of these faint enhancements are not distinguished by the BSS technique. The BSS errors
are informative.

Detections on top of diffuse emissions

The BSS method combined with the multiresolution analysis allows one to identify the
detection of point–like sources on top of a diffuse emission and of extended X–ray features,
such as the SNR RXJ0852.0 − 4622 and the Vela D (or Pencil Nebula) located at α =
9h0.2m, δ = −45◦57′ (J2000). Furthermore, Vela D has been detected partially superposed
to another diffuse emission, known as Vela D′ (see Fig. 6.5, panels a− d, for more details).
Aschenbach et al. (1995) already identified Vela fragments D and D′ as two superposed
objects. The BSS algorithm detects Vela D and D′ at different resolutions. Vela D is
detected with the maximum in source probability when pixels are not correlated, due to
its brightness. Vela D′ is detected at a correlation length of 3.75 arcmin. The source
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fitting routine characterizes Vela D′ as an extended source located 17 arcmin far from Vela
D centre. The BSS algorithm detects about 50 objects analysing this ROSAT field.

In Table 6.3, part of this catalogue is provided. Columns R.A., Dec., Sctr, σx, σy

and θ are the estimated positions (right ascension and declination), source count rates
and source parameters in output from the BSS technique. Each object listed is detected
with a probability larger than 0.999. Source sequences (1), (3), (4) and (8) are revealed
with uncorrelated pixels. Instead, the remaining objects are detected at larger correlation
lengths.

The objects indicated with Seq (1) and (2) are the Vela pulsar and the diffuse emission
provided by the central core of Vela–Junior SNR, respectively. The Vela pulsar, located
near the centre of the remnant, originated from a massive progenitor star that exploded
about 104 yr ago (Miyata et al., 2001). The Vela–Junior, instead, is considerably younger
(∼ 680 yr as the most probable value, Aschenbach et al. 1999). Seq (3) and (4) are two
objects located towards the north–west corner of image (a) in Fig. 6.5. Seq (3) and (4) are
located along the line of sight of the hot diffuse emission caused by the Vela SNR. Objects
(3) and (4) are low mass X–ray binaries, catalogued as INTREF 361 and INTREF 359
(Ebisawa et al., 2003), respectively, in the γ–ray part of the electromagnetic spectrum.
The remaining objects are outside the shock front caused by the two SNRs. Object (5)
is a dwarf nova (CU Velorum, Downes et al., 1997). Objects (6), (7) and (8) are further
commented in the following Sections.

In Table 6.4, the column indicated with Matched id corresponds to an id given by
catalogues created analysing ROSAT data and whose position coincides within the posi-
tional errors with the one obtained with the BSS algorithm. The searching radius is 1
arcmin. During this selection, priority is given to identifiers provided by the RASS cat-
alogues (Voges et al., 1999, 2000), when available. No celestial objects are found in the
FSC. Sources listed in the BSC are indicated with a cross. The sources detected by SASS
in ROSAT HRI data sets are indicated with a b flat. The Matched id names contain the
following word forms: RX indicates ROSAT X–ray, S stands for Survey data sets and H ,
instead, for HRI pointed observations. Catalogue identifiers highlighted with an asterisk
are coming from a point source catalogue, the WGACAT (White et al., 1994), generated
from all ROSAT PSPC pointed observations. These observations are deeper than the ones
coming from the RASS. The remaining columns are providing the energy band employed
for the catalogued source count rate (Sctr) and the source count rate in two bands. The
source fluxes in the hard (0.5 − 2.4 keV) energy band are derived from the source count
rates in the broad (0.1 − 2.4 keV) energy band employing the spectral properties given
by the referred catalogues. A horizontal bar is placed when relevant information is not
available from the relative catalogue. Note that RASS catalogues do not have any entry
for point–like objects on top of the diffuse emissions, i.e. sources Seq (1), (3) and (4).

The count rates provided for source Seq (5) by the BSS technique, the BSC (Voges et al.,
1999) and the WGACAT (White et al., 1994) coincide within the errors: see values in bold
font in Tables 6.3 and 6.4. Source (5) is located in a region with spatially constant back-
ground. Note that source (5), see Fig 6.15, is a dwarf nova, a subclass of cataclysmic
variables with non–magnetic white dwarfs. The hot corona around the white dwarf can
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Table 6.3: BSS sample catalogue from the analysis of RS932518n00 field in the hard
(0.5 − 2.4 keV) energy band

Seq R.A. Dec. Sctr σx σy θ
(J2000) (J2000) (count s−1) (arcmin) (arcmin) (deg)

(1) 08h35m20.4s −45◦10′36.38′′ 2.7196±0.0743(∗) 3.4±0.1 3.4±0.1 90.0±0.2
(2) 08h51m39.60s −46◦13′40.78′′ 1.0326±0.1010 11.6±1.4 7.3±0.6 -78.4±0.1
(3) 08h37m24.62s −42◦53′55.75′′ 0.6198±0.0483 3.1±0.3 2.2±0.2 -49.3±0.2
(4) 08h35m55.85s −43◦11′11.28′′ 0.7084±0.0523 3.0±0.3 2.7±0.2 -90.0±0.7
(5) 08h58m30.67s −41◦48′09.86′′ 0.1069±0.0154 3.7±0.5 2.8±0.4 47.9±0.3
(6) 08h57m44.81s −41◦51′51.51′′ 0.251±0.0037 6.4±0.6 5.6±0.6 74.3±0.5
(7) 08h57m35.64s −41◦56′17.39′′ 0.0378±0.0115 3.7±1.3 2.7±0.7 -24.5±0.8
(8) 08h56m48.86s −47◦34′33.10′′ 0.1204±0.0156 2.9±0.4 2.4±0.4 -90.0±0.5

Note: (1) Vela pulsar, (2) core of Vela–Jr. SNR, (3) and (4) X–ray binaries, (5) Dwarf
Nova, (6) Vela fragment A, (7) 2XMM J085736.6-415549, (8) GSC2.3 S66I031249.
(∗) BSS technique: FX([0.5-2.0]keV)=(3.176 ± 0.009) ×10−11 erg s−1 cm−2;
XMM-Newton Survey Science Centre (2008): FX([0.5-2.0]keV)=(3.285±0.004)×10−11 erg
s−1 cm−2.

Table 6.4: Cross–correlation of public catalogues with the BSS sample catalogue shown in
Table 6.3

Seq Matched id Energy band Sctr (0.1 − 2.4 keV) Sctr (0.5 − 2.4 keV)(‡)

(keV) (count s−1) (count s−1)

(1) 1RXS J083520.6-451035(†) — — —
1RXH J083520.5-451036 0.1-2.4 1.18±0.0086()) —

(2) RX J0852.0-4622 — — —
(3) 1WGA J0837.3-4253 0.24-2.0 0.0507±0.0066(∗) 0.0323±0.0043
(4) 1WGA J0835.9-4311 0.24-2.0 0.3890±0.0160(∗) 0.3605±0.0148
(5) 1RXS J085832.5-414745 0.1-2.4 0.1829±0.0208(†) 0.1088±0.0114

1WGA J0858.5-4147 0.24-2.0 0.124±0.0041(∗) 0.0882±0.0038
(6) 1RXS J085748.6-415101 0.1-2.4 0.141±0.0182(†) 0.1206±0.0156
(7) — — — —
(8) — — — —

Note: (†) Voges et al. (1999); (1) ROSAT Scientific Team (2000); (∗) White et al. (1994);
(‡) source count rate derived from the hardness ratios.
EURO–VO software tools are used for this work.
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reach temperature of 106 − 107 K (van der Woerd, 1987). A diffuse emission around this
object is detected with the BSS algorithm. Source (5) is detected at a correlation length
of 2.25 arcmin (about the size of the ROSAT PSPC PSF). The estimated source extents
are larger than the width of the ROSAT PSPC PSF.

The BSS count rates for point–like sources in the line of sight with the hot diffuse
emission, i.e. sources (1), (3) and (4), are larger than the ones given by the other catalogues
by a factor of 2− 10. In order to assess the capabilities of the BSS technique in estimating
the fluxes of point–like sources on large background variations, the Vela pulsar is taken as
example due to the recent observations of this object by the XMM–Newton satellite. In
Table 6.3, the fluxes for the Vela pulsar are reported from the BSS technique and from
the XMM-Newton Survey Science Centre (2008) catalogue. For the conversion from count
rate to flux an NH = 3.87 × 1020 cm−2 (Dickey and Lockman, 1990), a Raymond–Smith
spectral model with T = 5 keV, a solar abundance ratio of 0.4 (Aschenbach, 1998) are used.
Note that XMM-Newton Survey Science Centre (2008) catalogue reports the flux values
in the (0.5− 1.0 keV) and (1.0− 2.0 keV), separately. The total flux in the (0.5− 2.0 keV)
is only approximatively the sum of each reported value. The BSS flux for the Vela pulsar
on RASS data is close to the result obtained by the XMM–Newton satellite, characterized
by higher resolution than ROSAT. The difference between the BSS result and the one
provided by the XMM–Newton satellite is about 3%, that is well within the 5% expected
divergence. Therefore, the BSS technique provides improved fluxes with respect to the
reported values from ROSAT PSPC and HRI (see Table 6.4, source Seq 1) when applying
standard techniques.

Identification of extended sources at low resolution

In Fig. 6.15, three panels covering the same sky view are shown. In these panels sources
(5), (6) and (7), from Tables 6.3 and 6.4, are represented. Panel (a) depicts the POSS–II
R plate with superposed ROSAT contours for sources (5) and (6) (left– and right–hand
peaks, respectively) and for source (7) (a faint emission below source 6). Panel (b) is the
SPM from the BSS technique corresponding to panel (a). The SPM is obtained analysing
the hard (0.5 − 2.4 keV) energy band. The three represented objects are brighter in the
hard (0.5−2.4 keV) than in the soft (0.1−0.4 keV) energy bands. In panel (c), the X–ray
sky view from XMM–Newton satellite is depicted. The X–ray image shows the dwarf nova
CU Velorum, i.e. source (5) in panel (b), and Vela fragment A, i.e. source (6) in panel (b).
The detection of source (5) is commented in the previous Section.

Vela fragment A is a boomerang–like structure located outside the main shell of the
SNR (Miyata et al., 2001). Two components of Vela fragment A have been identified: a
head, i.e. source (6), and a fainter extended tail (south–west direction) (Aschenbach, 1998;
Miyata et al., 2001). In the area where the tail of Vela fragment A is distributed, source
(7) has been detected.

The BSS technique detects source (6) at a correlation length of 2.25 arcmin, indicating
the detection of a low surface brightness source. Table 6.3 provides the parameters for
source (6). This source is characterized by an extent larger than the width of the ROSAT
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Figure 6.15: Panel (a): POSS–II R plate with superposed ROSAT contours corresponding
to 3, 5, 7, 10, 15, 20, 25 and 30 σ above the local background for sources indicated with
Seq (5), (6) and (7) in Table 6.3. Panel (b): SPM obtained with a correlation length of
2.25 arcmin. Detected sources are annotated with their sequence number. Source (5) is CU
Velorum, a dwarf nova. Source (6) indicates Vela fragment A. Source (7) is matched with
2XMM J085736.6-415549. Panel (c): SPM contours on X–ray image from XMM–Newton
observation. Panels (a), (b) and (c) cover the same sky view. No counterparts in FSC
(Voges et al., 2000) and BSC (Voges et al., 1999) catalogues are found for source (7).
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PSPC PSF. The FSC (Voges et al., 2000), instead, reports a null extent for this object,
indicating the detection of a point–like source. Even in condition of lower resolution with
ROSAT than with the XMM–Newton satellite, the BSS algorithm is capable to detect the
extended feature of Vela fragment A and to properly classify it.

Source (7) is cross–correlated with 2XMM J085736.6-415549 (Watson et al., 2008).
This source is detected at a correlation length of 2.6 arcmin, indicating the detection
of a low surface brightness object. However, the estimated fluxes from the BSS technique
and the one listed in Watson et al. (2008) do not correspond. The BSS technique provides
a significantly larger flux than Watson et al. (2008). The unmatched fluxes is explainable
by the lower resolution of ROSAT with respect to XMM–Newton satellite and by the emis-
sion of the tail of Vela fragment A, incrementing the flux of source (7). In this extreme
case of faint diffuse emission (FX =3.0×10−12 erg s−1 cm−2, Aschenbach 1998) with a faint
point–like source (FX([1.0−2.0]keV) =(5.7±2.3)×10−16 erg s−1 cm−2, Watson et al. 2008),
the BSS technique fails in properly distinguishing the two emissions. The faint point–like
source, cross–correlated with 2XMM J085736.6-415549, is not properly distinguished by
the diffuse emission of the tail of Vela fragment A.

6.2.4 Discovery of new celestial objects

Examples of discovered X–ray sources is reported: two point–like and two extended
sources. For these sources, approximate values of their physical parameters are provided:
energy fluxes and luminosities in cgs units. For clusters or groups of galaxies, physical
parameters are reported only when their redshift is known from previous analyses. The
knowledge about the X–ray luminosity of clusters is important since it is strictly connected
to their mass. For clusters or groups of galaxies, a value of their mean surface brightness is
given. The mean surface brightness is essential for interpreting cosmological observations
(Peacock, 1999). WebPIMMS is used to convert estimated count rates to fluxes: See
Section 6.2.3 for more details.

X–ray fluxes: This physical parameter is derived for the newly discovered sources as
already described in Section 6.2.3.

X–ray luminosities: The X–ray luminosity for the detected celestial object is pro-
vided only when knowing their redshift. A ΛCDM cosmological model for a flat universe
is assumed with the parameters Ωm = 0.3 (matter density) and ΩΛ = 0.7 (vacuum en-
ergy density or cosmological constant), and the Hubble constant H0 = 70 km s−1 Mpc−1

(Spergel et al., 2003). For the values of the X–ray luminosities, the K correction is taken
in consideration by converting the observed count rate into the unobserved flux in the
rest–frame and computing the luminosity thereof (see Hogg et al. 2002 for more details).

Mean surface brightness: An approximate value of the mean surface brightness of
clusters or groups of galaxies is computed. The mean surface brightness is calculated



126 6. Application to observational data: ROSAT All-Sky Survey

Figure 6.16: Discovery of a close by QSO with the BSS algorithm and confirmed with
the SDSS. Panels (a) and (b) are centred on the QSO sky coordinates, given by the BSS
technique, and cover the same fov of 5 arcmin at the side. See text for more details.

as the ratio between the flux and the elliptical area of FWHM radii in units of erg s−1

cm−2 arcmin−2. The utilized definition of mean surface brightness follows the one given by
Giacconi et al. (2002b). In Giacconi et al. (2002b), the mean surface brightness is inversely
proportional to a circular area. An elliptical area given by the FWHM values corresponding
to the source extents provided by the BSS algorithm is, instead, used to supply a value of
the source area (Peacock, 1999), that is more appropriate than a circular one for clusters
with complex morphologies.

Optical observations: In order to verify the efficiency of the BSS technique on the
newly discovered objects, optical images are studied. The procedure is the same as carried
out in Section 6.2.3. In this way, close by galaxies, low redshift X–ray clusters or groups
of galaxies, and QSOs are identified in the optical images.

Point–like sources

Discovery of a QSO A Seyfert 1 Galaxy (Abazajian, 2003) is detected with the BSS
algorithm analysing the RASS field id RS930625n00 in the hard (0.5 − 2.4 keV) energy
band (see Fig. 6.1 for the broad band image). This QSO is located at α = 17h24m57.9s,
δ = +64◦24′16′′ (J2000): Position given by the BSS algorithm. Although the observation
time for this object with the ROSAT satellite is large (39.14 ks), no counterparts have been
found in the RASS BSC (Voges et al., 1999) and FSC (Voges et al., 2000). A QSO is found
in the SDSS, whose position coincides within the positional errors from the SDSS and the
BSS algorithm. The SDSS object, matched with the BSS detection, is catalogued as SDSS
J172459.31+642424.0 (Abazajian, 2004; Hao et al., 2005; Vanden Berk et al., 2006). The
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Figure 6.17: Detection of a potential AGN with the BSS algorithm. Panels (a) and (b) are
centred on the discovered X–ray source in sky coordinates. Each panel covers a fov of 15
arcmin at the side. See text for more details.

redshift of this close by QSO is z = 0.139 (Fan et al., 2001).
In Fig. 6.16, panels (a) and (b) are centred on the newly discovered X–ray object. Both

panels show the same sky view. Panels (a) and (b) are an SPM from the analysed X–ray
data and an optical image, respectively. Panel (a) is a zoom in the SPM obtained analysing
the RASS RS930625n00 field in the hard (0.5− 2.4 keV) energy band. The depicted SPM
is obtained at a correlation length of 2.25 arcmin, that supplies the maximum in source
probability. Black indicates Psource = 0.999. Panel (b) is the POSS–II R plate smoothed
with a Gaussian kernel of 2. An arrow with an ’O’ indicates the optical position of SDSS
J172459.31+642424.0. RASS X–ray contours in the hard (0.5− 2.4 keV) energy band are
superposed to the optical image. The contours correspond to 3, 4, 4.5 and 5σ above the
local X–ray background. The 5σ contour is indicated with an arrow and an ’X’ to point
the X–ray source position.

No BSS detections are found in the soft energy band. This object is located close to
the north–west corner of the field id RS930625n00 (∼ 45 arcmin). In this region the SASS
background intensity is 7% lower than the BSS background estimate.

In Table 6.5, the source count rates, flux and luminosity in the hard (0.5 − 2.4 keV)
energy band are provided for this source (see source 1). For the conversion from count rate
to flux, the value of the interstellar hydrogen column density as measured at 21 cm for the
estimated QSO position is: NH = 1.90 × 1020 cm−2 (Kalberla et al., 2005).

The reported luminosity is typical for Seyfert 1 galaxies (see Schwope et al., 2000;
Henry et al., 2006; Hasinger, 2002; Brandt and Hasinger, 2005).

Discovery of an X–ray point–like source In the RASS field id RS932518n00 (Fig. 6.5)
a new X–ray source is detected with the BSS technique. The estimated source parame-
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ters are listed in Table 6.3, source (8). This source does not have a counterpart in any
catalogue employing X–ray data. A counterpart is found in the optical and near infrared
wavelengths of the electromagnetic spectrum employing the VizieR (Ochsenbein et al.,
2000). The matched object coincides within the positional errors provided by the BSS al-
gorithm. It is 6 arcsec far from the BSS position. The matched counterpart is catalogued as:
GSC2.3 S66I031249 (Lasker et al., 2008), USNO-B1.0 0424-0200132 (Monet et al., 2003),
NOMAD1 0424–0202502 (Zacharias et al., 2005), DENIS J085648.2–473437 (The, 2005),
2MASS 08564829–4734375 (Cutri et al., 2003). This object is brightest in the near infrared
band. It is characterized by a magnitude of 15.27±0.15 in the J band, i.e. 1.25µm, as given
by the DENIS database (The, 2005). Additionally this object is classified as a non–star
(Lasker et al., 2008) with no extended features (Cutri et al., 2003). It is not associated
with known solar system objects (Cutri et al., 2003). Note that the BSS algorithm classi-
fies this object as point–like. The RASS data, as analysed by the BSS algorithm, provide
for this object a prominent X–ray emission only in the hard (0.5 − 2.4 keV) and broad
(0.1 − 2.4 keV) bands.

In Fig. 6.17, panel (a) provides a zoom in the SPM, obtained with uncorrelated pixels,
analysing the hard (0.5− 2.4 keV) energy band of the RASS field id RS932518n00. Pixels
enhancement shows source detection: Black, dark and light grey, white indicate Psource ∼
1,≤ 0.6, 0.16 and 0.035, respectively. The maximum probability of source detection occurs
at the depicted correlation length. Panel (b) is the POSS–II R plate, centred on the
newly discovered X–ray object. The ROSAT X–ray contours in the (0.5 − 2.4) keV are
superposed. Each contour corresponds to 3, 5, 7, 10, 20 and 25 σ above the local X–ray
background. The innermost contour level is centred on this faint point–like object. The
flux for this object (see source 2) is listed in Table 6.5. The X–ray flux of this point–like
object is calculated in the hard (0.5 − 2.4 keV) energy band accounting for a value of
NH = 7.35 × 1021 cm−2 (Kalberla et al., 2005), the interstellar hydrogen column density
as measured at 21 cm for the position of this object. No X–ray luminosity is provided,
since no redshift is known. The work of Suchkov et al. (2006) suggests that this point–like
object is a close by AGN at a redshift ≤ 0.5. However, more studies are needed to discover
the true nature of this celestial X–ray source.

Extended sources

The total flux detected from a cluster is usually corrected because part of the flux in the
faint outer regions is lost in the background. The loss of flux occurs for various reasons,
mainly: Large–scale variations of the background are not properly accounted for; The
function used to fit the object does not properly describe the outer part of the object (see,
e.g., the work of Reiprich and Böhringer 2002). In this thesis, the photometric bias is not
accounted for. On the one hand, the BSS technique provides a well–defined background
model. The background model accounts for large variations both in the cosmic background
and in the exposure map. On the other hand, an improved parameterization for the
extended sources can be added. Extended sources, in the same way as point–like sources,
are fitted with a multi–variate Gaussian distribution. This assumption is not always true for
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Figure 6.18: Discovery of a close by cluster of galaxies and confirmed with optical sky
surveys (Abell et al., 1989). Panels (a) and (b) are centred on the cluster of galaxies sky
coordinates, given by the BSS technique. Each image cover a fov of 8 arcmin at the side.
See text for more details.

clusters or groups of galaxies. The characterization of a cluster or group of galaxies surface
brightness distribution can be improved with a β–model (Cavaliere and Fusco-Femiano,
1978): See Chapters 2 and 7 for more details. Though this is an important step for
providing conclusive values on parameters of clusters or groups of galaxies, this task is
beyond the scope of this thesis.

Discovery of a cluster of galaxies In the RASS field id RS932209n00, a cluster of
galaxies has been detected for the first time in the X–ray band of the electromagnetic
spectrum with the BSS technique. This cluster of galaxies is located at α = 3h20m1.4s,
δ = −27◦01′39.17′′ (J2000), as provided by the BSS algorithm. This object is a rich cluster
of galaxies and known as ACO S 340 (Abell et al., 1989) from observations in the optical
band of the electromagnetic spectrum. This cluster of galaxies is located at z = 0.068
(De Propris et al., 2002).

In Fig. 6.18, panels (a) and (b) show the same fov (8 arcmin at the side). Each image
is centred on the detected cluster of galaxies. Panels (a) and (b) are an SPM from the BSS
algorithm analysing the X–ray RASS image in the broad (0.1− 2.4 keV) energy band and
an optical image, respectively. In panel (a), the SPM is obtained at a correlation length of
90 arcsec. At this resolution, the maximum in source probability is reached. Black, grey
and white colours indicate Psource = 0.968, 0.338 and ≤ 0.003, respectively. The black and
grey squares cover a large portion of the sky, since each square represents the RASS pixel
resolution (45 arcsec). Furthermore, the detection is difficult since the observation time for
this cluster of galaxies is very low (1.8 ks). Therefore, in the hard (0.5 − 2.4 keV) energy
band the source probability of this object is slightly lower than the value found in the broad



130 6. Application to observational data: ROSAT All-Sky Survey

Figure 6.19: Detection of a potential cluster of galaxies with the BSS technique, but no
counterparts with other catalogues have been found so far. Panels (a) and (b) are centred
on the BSS position given for this object in the hard (0.5 − 2.4 keV) energy band. Each
image cover a fov of 12 arcmin at the side. See text for more details.

band. In panel (b), the POSS–II I plate with superposed X–ray contours corresponding to
2, 3 and 4 σ above the local X–ray background is depicted. Panel (b) provides evidence that
the extended source detected with the BSS technique in the ROSAT broad (0.1− 2.4 keV)
energy band is a cluster of galaxies with the central region dominated by three galaxies.
Although the depicted SPM in panel (a) seems poor, the BSS source fitting routine finds
the following source shapes: σx = (85.74 ± 28.72) arcsec, σy = (65.21 ± 29.01) arcsec,
ρ = (0.004 ± 0.459). Note the large errors due to the small number of photons available.
However, the estimated source shapes are in agreement with the contours reported in panel
(b) at 4σ.

In Table 6.5, the flux, luminosity and surface brightness are reported for this cluster of
galaxies (see source 3). The flux of this cluster of galaxies is calculated employing a galactic
neutral hydrogen for the estimated position of NH = 1.36 × 1020 cm−2 (Kalberla et al.,
2005). The flux is obtained employing a thermal spectrum and a temperature of ∼ 5
keV (Raymond–Smith model) (Böhringer et al., 2000), a metal abundance of 0.2 of the
solar value (Böhringer et al., 2000), a redshift of z = 0.068, and an interstellar absorption
according to the value of the galactic neutral hydrogen. This value is by a factor of 10
lower than the RASS flux limit (∼ 3 × 10−12 erg s−1 cm−2, see Guzzo et al., 2009) in
the REFLEX survey (Böhringer et al., 2001) for galaxies clusters and groups. The mean
surface brightness for this object is by a factor of 10 larger than the faintest extended
sources detected by the ROSAT satellite.

This cluster of galaxies is located in the RASS field id RS930625n00 at 2.7◦ off–axis
from the centre. The location and the low X–ray brightness (due to low exposure time) of
this object are the causes for being missed by the SASS technique.
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Detection of an extended source A potential cluster or group of galaxies is detected
with the BSS technique analysing the RASS field id RS930625n00 in the hard (0.5 − 2.4
keV) energy band (see Fig. 6.1). This detection can not be observed in the soft (0.1 − 0.4
keV) energy band. The detected X–ray emitting object is located at α = 18h06m5s,
δ = +59◦35′39′′ (J2000). No counterparts are found in the RASS catalogues, although this
object is observed for a high exposure time (36.5 ks).

Fig. 6.19, panel (a), is centred on the potential cluster of galaxies and displays a zoom
in the SPM with correlation length of 4.5 arcmin estimated in the hard (0.5 − 2.4 keV)
energy band of the RASS field id RS930625n00. At this resolution, the maximum in
source detection is reached: black and white indicate Psource = 0.99989 and Psource ≤ 0.003,
respectively. The correlation length, at which this object is detected, provides evidence for
the detection of an extended source. Panel (b) shows the optical sky view of panel (a): the
POSS–II I plate smoothed with a Gaussian kernel of 2. X–ray contours are superposed to
the optical image. Contours are obtained from the RASS photon count data in the hard
(0.5 − 2.4 keV) energy band. Contours delineate the values of the detected object surface
brightness at 2, 3, 4 and 5σ above the local X–ray background. The detected source
appears as a cluster or group of galaxies. This detected object is bright, with 70 net source
counts. The extent of this object has an estimated value of 5 arcmin. The SASS algorithm
missed this extended celestial source, because of a too small box size used to slid across the
image in the search of positive fluctuations with respect to the background signal measured
outside the box. See Section 5.1.1 for more details about the sliding–window technique.

In Table 6.5, count rates, flux and surface brightness for this object are provided (see
source 4). Note that the celestial object is distant (z " 0.5, private communications with
Prof.Dr. Hans Böhringer), because the POSS–II image does not provide a clear evidence
of a cluster or group of galaxies in Fig. 6.19. The flux is calculated from the source count
rate in the hard band to the observed flux in the same band for a source with a thermal
spectrum and a temperature of ∼ 5 keV (Raymond–Smith model) (Böhringer et al., 2000),
a metal abundance of 0.2 of the solar value (Böhringer et al., 2000), and an interstellar
absorption according to the value of the galactic neutral hydrogen of NH = 2.92×1020 cm−2

(Kalberla et al., 2005). A test is executed considering a redshift range of 0 − 1. The flux
obtained with a redshift of almost zero is only by a factor of 1.04 larger than the one derived
with a redshift of one. The flux, reported in Table 6.5, is calculated assuming z = 0.5.
The estimated flux is comparable to the ones given by Henry et al. (2006) for clusters or
groups of galaxies with redshifts in the range 0.03−0.58. The estimated flux is by a factor
of 10 lower than the RASS flux limit (∼ 3 × 10−12 erg s−1 cm−2, see Böhringer et al.,
2000) for cluster detections. The X–ray luminosity is not provided because it depends
strongly on the redshift, which is not known. The mean surface brightness for this object
is reported. The mean surface brightness value is on the order of the faintest extended
sources discovered by ROSAT (Giacconi et al., 2002b).

Further studies, such as spectroscopic observations, are needed for a proper classification
of this object.
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6.3 Summary

The BSS technique is applied to ROSAT PSPC data in survey mode. Three RASS fields are
chosen with different characteristics: large variations in the satellite’s exposure and back-
ground; large variations in the satellite’s exposure and small variations in the background;
small variations in the exposure and large background variations.

The results obtained with the BSS technique are compared to the ones from the SASS
method.

A background map for the complete field size (512×512 pixels = 6.4◦×6.4◦ in the sky)
is inferred simultaneously with probability maps for having source intensity in addition to
the background intensity in a multiresolution analysis.

Background (rate and amplitude) maps and SPMs are produced for the three ROSAT
energy bands (broad: 0.1− 2.5 keV, soft: 0.1− 0.4 keV, hard: 0.5− 2.4 keV). Background
maps obtained with the BSS technique are well–defined on the complete field even in
extreme cases when the data are missing because the satellite was switched off or when hot
diffuse emissions dominate the astronomical image. The flexibility of the BSS technique
for background estimation is shown. The number of the spline’s supporting points are
important for addressing properly the variation in the background.

The background maps from the SASS algorithm, instead, show inconsistencies with the
data towards edges (of the field or of a strip with no exposure) and where large background
variations occur.

SPMs produced for the soft (0.1 − 0.4 keV) and hard (0.5 − 2.4 keV) energy bands
are combined probabilistically. The source detections obtained from the combined source
maps are compared with the broad (0.1− 2.4 keV) energy band. The probability of source
detection with the combined energy bands is improved with respect to the broad energy
band alone. The detected sources are cross–correlated with existing catalogues. The
BSS technique allows for improving completeness of the catalogue while decreasing the
contamination from statistical fluctuations.

The BSS source positions are as good as the ones provided from the ML technique, that
accounts for the source surface brightness convolved with the instrumental PSF. The BSS
count rates of the detected sources and matched with the ROSAT FSC (Voges et al., 2000)
and BSC (Voges et al., 1999) are similar to the ones obtained with the SASS algorithm
only in regions characterized by low background variations. In regions with highly varying
background, the BSS results are on the average larger. The source count rate increases by
a factor of 2 − 10 with respect to the SASS estimates. Furthermore, the BSS algorithm
provides improved source parameters with respect to the SASS technique. The most
interesting example of improvement in source parameters with the BSS technique is given
by the Vela pulsar: see Tables 6.3 and 6.4. In fact, recent XMM–Newton observations of the
Vela pulsar validates the flux value for this source estimated with the BSS technique. This
example shows that an automated estimation of source parameters for sources embedded in
a hot diffuse emission is awkward for standard techniques, like SASS. The BSS algorithm
is able to overcome these problems.

Furthermore, the BSS algorithm overcomes the classical problem with SASS of faint
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sources estimated with negative counts (Voges et al., 1999). In addition, the BSS algorithm
allows for the detection of the tails of the source profiles (until 3 − 4 σ above the local
background).

The BSS technique allows us to reveal new sources not listed in the RASS FSC
(Voges et al., 2000) and BSC (Voges et al., 1999). Some of these sources have been found
with counterparts in the WGACAT, that is a catalogue obtained from deeper ROSAT
PSPC data in pointing mode (White et al., 1994); the SDSS catalogue (a deep optical
survey) (Abazajian, 2004); the XMM–Newton catalogue (X–ray) (Watson et al., 2008)
and the 2dFGRS in the optical band (Colless et al., 2001; De Propris et al., 2002). The
Bayesian method allows, therefore, to detect faint and extended objects, like QSOs and
groups of galaxies, which could not be detected previously by SASS. The newly discov-
ered X–ray objects are characterized by fluxes up to 10 times lower than the RASS source
detection limit (∼ 3× 10−12 erg s−1 cm−2) as given by the works of Böhringer et al. (2000,
2004). The BSS technique provides a more complete sample when analysing astronomical
images with respect to the SASS algorithm. No counterparts with other catalogues have
been found for some of the discovered X–ray sources. These sources are potential clusters
or groups of galaxies and AGNs. Further studies are required to verify the true nature of
these X–ray sources.



Chapter 7

Application to observational data:
Chandra Deep Field South

In this Chapter, results obtained with the BSS technique applied to one of the deepest
astronomical images and the most well studied part of the sky across a wide range of
photon energies is provided. The studied field is the CDF–S. In Section 7.1, an overview of
the Chandra X–ray observatory, a discussion of the CDF–S data and of the major X–ray
catalogues in the CDF–S region are given. In Section 7.2, the CDF–S data are used for
showing the capabilities of the BSS technique in improving source detection with respect to
previous methods and in detecting sources of any shape and of a wide range of brightness
values. The detection of clusters and groups of galaxies and of sources superposed with an
extended one are considered. Last, a summary of this Chapter is provided in Section 7.3.

7.1 The CDF–S region

The CDF–S represents one of the deepest X–ray surveys to date (Giacconi et al., 2001,
2002b; Rosati et al., 2002a), improving by a factor of ∼ 20 the deepest ROSAT survey
(Giacconi et al., 2002b). Deep surveys allow one to study the nature of celestial objects,
that could not be studied otherwise, for instance the evolution of the AGN population
(space density and properties such as obscuration). The nominal aimpoint of the CDF–S
region is αJ2000.0 = 03h32m28s.0, δJ2000.0 = −27◦48′30′′ (Giacconi et al., 2002b). The field
was selected for a deep X–ray survey due to its high Galactic latitude, low Galactic neutral
hydrogen column density (NH = 8.8×1019 cm−2, Stark et al. 1992) and lack of bright stars:
See Rosati et al. (2002a) for more details. The energy range of the CDF–S data sets varies
between 0.5 − 7.0 keV.

The Chandra X–ray telescope’s angular resolution and the CDF–S sensitivity are ideal
for the discovery and study of clusters of galaxies with complex morphologies. In addition,
the CDF–S data are characterized by a very small background (i.e., the background counts
follow Poisson distributions) and large exposure variations, and by images from several
pointings superposed and with CCD gaps. Hence, the CDF–S data are particularly suited
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for using the BSS algorithm. The optimal energy band to detect the emission from extended
sources is between 0.5 − 2.0 keV (Boschin, 2002).

The Chandra X–ray observatory (CXO) The Chandra satellite (Weisskopf et al.,
2000) was named after the late astrophysicist Subrahmanyan Chandrasekhar. CXO pro-
vides for sub–arcsecond imaging, spectrometric imaging and high–resolution dispersive
spectroscopy over the X–ray part of the electromagnetic spectrum in the energy range
of 0.1 − 10 keV. CXO’s capability for high–resolution imaging allows for the studies of
structures of extended sources, including SNR, astrophysical jets, hot gas in galaxies and
clusters of galaxies (Weisskopf et al., 2000).

CXO was launched on July 23, 1999 and propelled into an elliptical orbit around the
Earth with apogee and perigee values of 133×103 and 16×103 km, respectively. The time
to complete an orbit is 63.5 hours, allowing for a high observing efficiency (uninterrupted
observations lasting more than 2 days are possible). The observatory has three major mod-
ules: the X–ray telescope, the science instruments and the spacecraft (see Weisskopf et al.
2000 for more details). The telescope optical system has a Wolter–1 design with four
paraboloid and hyperboloid pairs of nested mirrors with 10 m focal length. CXO provides
high–resolution imaging with an instrumental PSF of 0.5 arcsec (FWHM) on axis. CXO
has two focal plane instruments: the High–Resolution Camera and the Advanced CCD
Imaging Spectrometer (ACIS). Each of these instruments has two detectors, that operate
in photon counting mode and have low internal background. The appropriate instruments
are placed at the focus of the telescope with a slide mechanism.

For the observation of the CDF–S region, the ACIS instrument is used. ACIS is com-
posed of ten CCDs (each of 1024 × 1024 pixels) designed for source detection and spec-
troscopy (Lehmer et al., 2005). The CCDs are distributed in a 2 × 2 array (ACIS–I) and
a 1 × 6 array (ACIS–S). All four ACIS–I chips and the ACIS–S3 chip were used for the
CDF–S observations. The telescope aimpoint was centred on the ACIS–I3 chip for each
exposure.

CDF–S data The public released data of the CDF–S is a combination of several indi-
vidual Chandra ACIS–I imaging pointings. Each pointing covers a field of about 0.08 deg2.
Due to different roll angles of individual pointings, the final image covers a total of 0.109
deg2. Three images are extracted from the CDF–S data: the soft image (0.5 − 2.0 keV),
the hard image (2.0 − 7.0 keV), and the total image corresponding to the soft and hard
energy bands together.

Two allocated sets of observations were executed: See Giacconi et al. (2002b); Luo et al.
(2008). The first survey (Giacconi et al., 2002b) was performed from October 1999 until
December 2000 with a total of 11 individual pointings and a total exposure time of 0.94
Ms. The image is binned in 1600× 1650 pixels, which gives an image scale of 0.982 arcsec
pixel−1. A second survey (Luo et al., 2008) was performed in 2007 September–November
adding 12 pointings to the previous observations and bringing the total exposure time to
1.911 Ms. These additional data were part of an effort to create still deeper X–ray surveys.
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Figure 7.1: CDF–S 2Ms photon count image in the soft (0.5− 2.0 keV) energy band. The
colorbar has units of count pixel−1. The original scale of this image is in the range (0−959)
count pixel−1.
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Figure 7.2: Exposure map of the CDF–S 2Ms in the soft (0.5 − 2.0 keV) energy band
(Fig. 7.1). The colorbar has units of Ms pixel−1.
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Figure 7.3: SPM at 3 arcsec resolution of the CDF–S 2Ms in the soft (0.5−2.0 keV) energy
band as given by the BSS technique. The grey scales are linear. The colorbar indicates
source probabilities per pixel. The image can be compared to Fig. 7.1.
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Figure 7.4: Estimated background intensity of the CDF–S 2Ms in the soft (0.5− 2.0 keV)
energy band as given by the BSS technique. The grey scales are linear. The colorbar gives
background count pixel−1. The background map takes into account the variation in the
exposure map, shown in Fig. 7.2.
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The new survey was performed with all observations in Very Faint mode to increase the
sensitivity of faint source detections (Luo et al., 2008). Note that most of the observations
in the first set (Giacconi et al., 2002b) were taken in Faint mode. The image data given
by Luo et al. (2008) are provided in an array of 3280 × 3160 pixels (i.e., 0.492 arcsec
pixel−1). From now on the surveys given by Giacconi et al. (2002b) and Luo et al. (2008)
are indicated as CDF–S 1Ms and CDF–S 2Ms, respectively.

In Figs 7.1 and 7.2, the CDF–S 2Ms image and exposure map are shown in the soft
(0.5 − 2.0 keV) energy band, respectively. The maximum exposure time is 1.884 Ms but
varies across the detector(s), with a minimum of 0.15 s at the edge of the field where there
is only single exposure due to rotation of the fov. Effective area and spatial resolution of
the telescope vary inversely with the off–axis angle (Giacconi et al., 2002b).

The CDF–S catalogues The CDF–S 1Ms X–ray source catalogue and the details of the
detection process are described in Giacconi et al. (2002a,b) and references therein. In the
works of Giacconi et al. (2002a,b), modified versions of SExtractor (Bertin and Arnouts,
1996) and wavdetect algorithms (Freeman et al., 2002) are used. SExtractor is uti-
lized for source detection and characterization of point–like sources. Due to the small
background amplitude detected in the CDF–S (∼ 0−1 count pixel−1), SExtractor fails
in providing a reliable background map. Therefore, in each energy band the background
amplitude is computed externally removing from the data sources down to a very low
threshold (Tozzi et al., 2001). A local background is estimated in an annular ring around
the detected sources and its value is used to model the background in addition to the
removed sources. Last, the background map is obtained smoothing the resulting image.
wavdetect is employed in two steps for the detection of point–like and extended sources.
For the detection of point–like sources, wavdetect is applied with a false–positive prob-
ability threshold of 1 × 10−6 (i.e., ∼ 1 false positive per field) and wavelet scales with
values from 1 to 8 pixels in steps of

√
2. The detections obtained with SExtractor

and wavdetect algorithms are compared and joined in the resulting CDF–S catalogue
(Giacconi et al., 2002b). Very extended low surface brightness sources may be missed by
these standard detection algorithms (Giacconi et al., 2002b). To search for very diffuse
sources a complementary approach is adopted. wavdetect is ran with a small character-
istic scale to preferentially select point–like sources. These objects are removed from the
(soft) image by replacing the source region with a simulated background. The resulting
image is rebinned to a larger pixel size (4′′) and the wavdetect algorithm is used to
search for extended sources: See Giacconi et al. (2002b) for more details. The flux limit in
source detection achieved in the CDF–S 1Ms at the aimpoint for the soft (0.5 − 2.0 keV)
energy band is 5.5 × 10−17 erg s−1 cm−2.

The CDF–S 2Ms X–ray point source catalogue is published in Luo et al. (2008, 2009).
Sources are detected utilizing the wavdetect algorithm (Freeman et al., 2002), only. The
false–positive probability threshold is chosen with a value of 1×10−6, providing a number of
false positives in source detection ≤ 3 per field in the three energy bands (Luo et al., 2008).
A “

√
2 sequence” of wavelet scales from 1 to 16 pixels is used to search for sources. Although
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the large range of wavelet scales utilized, the wavdetect algorithm fails in detecting
faint and extended sources. Therefore, only lists of point–like sources are provided. The
resulting source lists for each field in the three energy bands are merged to construct
the main catalogue. Furthermore, the wavdetect source positions are improved in two
steps. Firstly, matched–filter positions are used. The matched–filter position is the position
provided correlating sources in the full–band image with the instrumental PSF weighted
by the number of detected counts. The matched–filter technique accounts for the complex
PSF at large off–axis angles, where the X–ray source position is not always located at the
peak of the X–ray emission. The matched–filter positions are generated with a software for
visualizing and analysing X–ray astronomical data, known as Tools for ACIS Real–time
Analysis1. This tool requires a visual inspection of each source. Secondly, the absolute X–
ray source positions are refined by matching the X–ray detected sources to optical sources.
The comparison of X–ray and optical sources permit the derivation of an empirical relation
for the positional uncertainties of the X–ray sources as a function of the off–axis angle.

Note that the CDF–S is one of the best studied fields in the sky. The CDF–S region
has been target of other space– and ground–based observatories. The deep imaging data
and spectroscopic follow up of the CDF–S region are gathered in the Great Observatories
Origins Deep Survey (GOODS) (Dickinson et al., 2003). GOODS provides the deepest
data across the electromagnetic spectrum, allowing the exploration of the distant universe.
Furthermore, the CDF–S survey was extended (E–CDF–S) (Lehmer et al., 2005). Four
contiguous 250 ks Chandra observations covering an approximately square region of total
solid angle ≈ 0.3 deg2 have been added. The CDF–S data covers only 35% of the E–CDF–S
survey. The E–CDF–S data are utilized in the works of Luo et al. (2008, 2009) to improve
sensitivity in the outer regions of the CDF–S. In the soft (0.5− 2.0 keV) energy band, the
CDF–S 2Ms data provides for a flux limit of 1.9 × 10−17 erg s−1 cm−2, that is ∼ 3 times
deeper than the one achieved with the CDF–S 1Ms data in the same band.

7.2 Performance of the BSS algorithm on the CDF–S
region

In this Section, the BSS technique is tested on the CDF–S 1Ms and 2Ms data. Firstly,
the statistical detection of sources and the background model are considered. Successively,
the detections of sources at the field edge are shown. The well–defined background model
allows for reliable detections also at the field edge where steep gradients in the data occurs.
Furthermore, a test is run on real sources for four samples extracted from the CDF–
S 2Ms data set. The BSS technique is shown to be a robust method for background
estimation, source detection and parameterization. In addition, the BSS technique is shown
to outperform previous techniques for the detection of low surface brightness sources, as
clusters or groups of galaxies. Therefore, astrophysical implications of these rare objects
are commented. Examples of clusters and groups of galaxies detections are shown.

1http://www.astro.psu.edu/xray/docs/TARA/TARA users guide/
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BKG

9’’6’’3’’

EXP
1’

Figure 7.5: Example of source detection at the edge of the fov and with superposed ob-
servations in the CDF–S 1Ms data. Each image is centred at αJ2000.0 = 03h32m07s.0,
δJ2000.0 = −27◦39′32′′ and has ∼ 6′ width and ∼ 4.5′ height. See text for more details.

7.2.1 Products of the BSS technique

The capabilities of the BSS technique, in separating the background from the celestial
sources on images of a new generation instrument, are tested on the CDF–S data in the
soft (0.5−2.0 keV) energy band. For background–source separation, both prior pdfs of the
source signal are examined. In Figs 7.3 and 7.4, products of the BSS technique analysing
the CDF–S 2Ms data are shown: an SPM and the background map, respectively. These
results are found employing the exponential prior pdf of the source signal.

The displayed SPM (Fig. 7.3) is obtained with a correlation length of 3 arcsec. At
this resolution, a searching radius of 3 pixels (with a pixel scale of 0.5 arcsec pixel−1) is
used for correlating neighbouring pixels. The Gaussian weighting method is employed. No
contaminations due to CCD gaps or to the steep change in the exposure time map are
shown in any SPM. Part of the extended features of some known clusters of galaxies are
starting to appear at this resolution, e.g. at αJ2000.0 = 03h32m09s.0, δJ2000.0 = −27◦42′43′′.

In Fig. 7.4 the estimated background amplitude is shown. The number of pivots em-
ployed for the background rate estimation amounts to 25. The pivots are chosen equally
spaced. The background map is strongly dominated by the satellite’s exposure time.

7.2.2 Field edge detection

The detection capabilities of the Bayesian approach at the field edge is shown in Fig. 7.5.
Six co–centred images are covering the same fov. The upper left–hand image is a zoom in
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the CDF–S 1Ms data, smoothed with a Gaussian kernel of 3 arcsec in order to increase
details in the data. The satellite’s exposure is located next, indicated with “EXP”. In the
exposure map image, black and white correspond to 590 and 0 ks pixel−1, respectively. The
estimated background image (“BKG”) is placed for comparison: black and white stand for
0.22 and 0 background count pixel−1, respectively. In the lower row three SPMs with
decreasing resolution (black labels) are showing source detections. No artifacts are found
neither in the background map nor in the SPMs. The detections depicted in the SPMs are
very similar to the smoothed CDF–S 1Ms data. The multiresolution analysis allows one
to detect sources at different scales. Regions of catalogued sources are superposed to the
SPM located below the CDF–S 1Ms smoothed image. The regions indicate source position
and extents at 1σ detection.

7.2.3 Comparison on real sources

An analysis is performed to test the sensitivity and the internal consistency of the BSS
algorithm when detecting sources on real fields from pointed observations. The main
advantages of testing real data with respect to simulated ones (as shown in Chapter 4)
resides on the fact that real data are characterized by a complex background, a complex
PSF dependence across the field, source confusion and a wide range of source properties.
These characteristics intrinsic to real observations are not easily elaborated within artificial
data. Therefore, four independent realization of the same observed data set are created.
No artificial sources are added in the data.

A set of four images are extracted from the CDF–S 2Ms soft (0.5 − 2.0 keV) energy
band. The four fields are shown with the photon count data and the exposure maps in
Figs 7.6 and 7.7, respectively. Each image is characterized by the same fov of the CDF–S
region and by 500 ks exposure, reducing the sensitivity by a factor of 4 compared to the
full CDF–S 2Ms. Due to rotation of the telescope during the surveys, the four fields are
covering the same fov only in the central region (within ∼ 10 arcmin from the aimpoint).
From now on, these four CDF–S fields are indicated with numbers 1 − 4 CDF–S 500ks.
Furthermore, the following blind test is performed: the analysis of the four CDF–S 500ks
fields with the BSS algorithm is compared to the one obtained with the wavdetect
technique (Freeman et al., 2002).

The BSS algorithm is applied on the four fields. The exponential prior pdf of the source
signal is chosen and 25 pivots equally spaced are used for the background rate estimation.
Scales in the range values 0.5−13 arcsec are used in the multiresolution analysis. Moreover,
a threshold value of Psource ≥ 0.9 is chosen to separate false–positives in source detection
from true sources. A test verifies the number of detected sources when a threshold value
of Psource ≥ 0.5 is selected. For such low threshold value, the number of detected sources
increases only up to 2% in these sets of data.

For the analysis of the four CDF–S 500ks fields with the wavdetect technique, the
software CIAO, version 4.1.2, is used. The false–positive threshold setting (’sigthresh’) is
chosen to be 10−6, in order to detect ≈ 1 false positive per field. The ’scale’ sizes chosen are
only 2 and 4. Following the work of Luo et al. (2008), the number of scales are increased
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Figure 7.6: Each panel shows the four CDF–S 500ks photon count data in the soft (0.5−2.0
keV) energy band and smoothed with a Gaussian kernel of 3′′. Each image is enhanced in
the range values 0−1 photon count pixel−1. The original images have values in the ranges:
0 − 638, 0 − 769, 0 − 646, 0 − 657 photon count pixel−1 for fields 1 − 4 in panels (a)-(d),
respectively.
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Figure 7.7: As for Fig. 7.6, but showing the corresponding exposure maps. The colorbars
have units of ks pixel−1.
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Table 7.1: Test on CDF–S region in the soft (0.5 − 2.0 keV) energy band.

Field Max photon count <photon> <background> Detected Flux limit
(count pixel−1) (count pixel−1) (count pixel−1) sources erg s−1 cm−2

×10−17

1 638 0.122 0.106 208(194∗) 7.3(8.5∗)
2 769 0.117 0.099 192(182∗) 7.3(9.4∗)
3 646 0.110 0.097 154(159∗) 6.9(10.∗)
4 657 0.111 0.097 155(160∗) 7.8(10.∗)

Note. Characteristics of each CDF–S 500ks field (1− 4). Average photon and background
counts per pixel calculated within 10 arcmin far from the aimpoint. Number of detected
sources and flux limit obtained with the BSS algorithm are listed for each field. In brackets
(∗): number of detected sources and flux limit in the soft (0.5−2.0 keV) energy band from
the wavdetect algorithm. See text for more details.

to 16, allowing for the detection of more point–like sources but also of extended ones. The
wavdetect algorithm applied with scales 2− 16 detects 2− 10% more sources than with
scales 2 − 4. The value 10% of additional detected sources is found in the field 3, that is
characterized by the lowest mean source intensity compared to the other three fields. In
addition, the wavdetect algorithm is known to not properly detect the size of extended
sources (private communications with Dr. Paolo Tozzi). Therefore, the standard wavelet
scale values of 2 − 4 are preferred above the scale values 2 − 16.

In Table 7.1, field properties are reported. Specifically, Table 7.1 reports for each field
the maximum number of photon counts, the average intensity and background calculated
within 10 arcmin from the aimpoint and the number of detected sources on the full fov.
The average background and the number of detected sources are given from the analysis
with the BSS algorithm of the four CDF–S 500ks fields. In addition, the number of sources
detected by the wavdetect technique are listed in brackets. The flux limit2 reached by the
two techniques in the four CDF–S 500ks fields is reported. Energy fluxes are extrapolated
from the observed count rate assuming a conversion factor cf = (4.6 ± 0.1) × 10−12 erg
cm−2 from count rate to flux in units of erg s−1 cm−2 (Giacconi et al., 2002b; Rosati et al.,
2002a). This conversion factor is calculated assuming a power–law source spectrum with
a photon index Γ = 1.4, absorbed by a Galactic column densities of 8.8 × 1019 cm−2 (see
Rosati et al. 2002a for more details). The flux limit values are commented at the end of
this Section. Note that the number of detected sources decreases with decreasing mean
intensity in the field, as expected. This statement is true for both algorithms employed in
the source detection. Contrariwise, when wavelet scale values 2 − 16 are chosen with the
wavdetect algorithm, an increasing number of detected sources is found from field 4 to

2Note that with the term ’flux limit’ is here intended as the flux of the weakest detected source, instead
of being quoted for a certain completeness.
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3.

BSS analysis of the four CDF–S 500ks fields

In Fig. 7.8, the internal consistency of the BSS algorithm analysing the four data sets is
reported. In panels (a − d), the four CDF-S 500ks fields are arranged in pairs. Fields 1
and 3 are compared to fields 2 and 4, respectively. The radius used for cross–correlating
the catalogues is of 2 arcsec.

From panel (a) to (d), source positions (right ascension and declination), fluxes and
extent (i.e. the estimated size of the detected sources) are taken into account. In each
panel, two plots are given. In the upper plots, a line of equal values is drawn. Error bars
are superposed at ±1σ. Vertical error bars indicate the uncertainties on the parameters
relative to fields 2 (black) and 3 (red). Horizontal error bars provide the measured error
for the parameters on the other fields. The lower plots provide the residuals, i.e., the
difference between the estimated values for each paired field. In panels (a− b) and (c− d)
the residuals are the absolute difference and the relative error, respectively. Specifically,
when A and B indicate the estimated parameter values for each paired field and σA and σB

the errors on the parameters A and B, the absolute difference is given by A − B and the
relative error is (A − B)/

√
σ2

A + σ2
B. The zero and the ±1 arcsec lines (panels a − b) and

±3σ lines (panels c−d) are superposed with continuous and dashed linestyles, respectively.
Insets are added in panels (a − d) on the lower right–hand corner. In each of these insets,
the histogram plot of the residuals is drawn. The histograms show that the residuals are
normally distributed. In addition, in panel (c) a zoom into the data in the range value
[0, 500] net counts is shown in the upper left–hand corner.

In panels (a − b), the estimated positions are consistent within each data set with a
precision of ∼ 1 pixel (with 1 pixel ∼ 1 arcsec in the sky). Note that also when utilizing
relative errors (this result is not shown), the residuals on the estimated positions are within
the ±1σ lines. Meaning that the centre of mass of detected sources is well defined also in
extreme conditions of poor signal-to-noise ratio.

A larger scatter is found for the estimated fluxes (i.e., net counts) and extents (in
terms of FWHM and units of arcsec) for each paired field, see panels (c − d). The range
of residuals extends to ±3σ. Poisson fluctuations in the background and contaminations
by other sources in the field can increase the uncertainties estimated for the background
model and, consequently, also the uncertainties estimated for the source flux and extent
measurements. Therefore, the dispersion given by the residuals in panels (c− d) is further
investigated.

The estimated source flux and extent uncertainties versus the corresponding flux and
extent are plotted in panels (e − f), respectively, in logarithmic scales.

In panel (e), a black line is drawn to indicate the Poisson errors for given number
of source counts, independent of the background value. The reported BSS flux errors
for each CDF-S 500ks field are close to the Poisson error line with bright sources less
affected by the background estimate. This result is expected since the uncertainties on
the estimated source fluxes account for the propagation of errors due to background and
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Figure 7.8: Comparison of the four CDF–S 500ks catalogues analysed with the BSS al-
gorithm (see also Table 7.1). Panels (a − d): comparison of right ascension, declination,
fluxes and size, respectively. 1σ errors are superposed. Panels (e− f): source flux and size
compared to error and relative error, respectively.
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source signals (i.e., σ2 = σ2
S + σ2

B, where σS, σB and σ indicate uncertainties on source
signal, background and propagated error on detected source, respectively). Furthermore,
a small number of data (8%) deviates from this trend. The scattering occurs for values
of counts below fluxes of ≈ 100 counts and for net counts error larger than ≈ 6 counts.
These sources have been visually inspected. Large errors in source counts are found for
both point–like and extended sources. The causes for the large errors with point–like
sources are: 1. Faint point–like source partially superposed to a bright point–like source;
2. Faint point–like source located at the edge of the fov; 3. Faint point–like source with
nearby count enhancements of undetectable sources. Case 3 is verified with the CDF–S
2Ms data and the photometry of those sources can not be improved further when taking
into account each CDF–S 500ks field individually. The large errors indicate in this case a
natural fluctuation. Cases 1 and 2, instead, show that the knowledge of the instrumental
PSF at varying off–axis angles included in the source fitting routine can improve the
photometry especially of these sources. As already commented previously, the BSS source
characterization routine can be adapted to specific instruments. Last, extended sources
are affected by natural fluctuations in the data more than point–like sources. This is due
to the larger area covered by extended sources with respect to point–like ones. Moreover,
extended sources are currently parametrized with a multi–variate Gaussian. As already
discussed, extended low surface brightness source parameters can be improved employing a
β–model (Cavaliere and Fusco-Femiano, 1978). This task is not part of the current thesis.

In panel (f), the relative errors are considered. All data show extent errors lower than
the extent parameter. A small group of data (2%) is characterized by an extent < 1
arcsec, i.e. the image pixel resolution. The relative error of this small group of data is
much larger than with the rest of the sample. The sources belonging to this small group
are visually inspected. These sources are faint point–like sources located within 5 arcmin
from the aimpoint. These sources are also listed in the CDF–S 1Ms and the CDF–S 2Ms
catalogues.

Selection of extended sources The results of the multiresolution analysis are a good
indicator for separating point–like from extended sources for two reasons. First, SPMs
provide for a visual identification of extended sources. Second, in an automated identifi-
cation of extended sources, these objects are distinguished from point–like sources by the
correlation length of source detection and the width of the instrumental PSF.

In Chapter 6, the RASS data were analysed. The width of the ROSAT RASS PSF is
constant on the full fov (Boese, 2000) and it is easily accounted for on the full image for
the separation of point–like and extended sources.

In pointed observations, as for the CDF–S region, the instrumental Chandra PSF de-
grades going towards the edge of the fov. In an automated search for extended sources
associated with hot halos of galaxies, groups and clusters, the method described in Rosati
(1995); Giacconi et al. (2002b) for the selection of the extended sources is well–known in
astronomy. Therefore, this method is used.

The separation of extended and point–like sources occurs comparing the measured
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Figure 7.9: Selection of extended sources in the FWHM versus off–axis angle plane for
each CDF–S 500ks data. Panels (a − d) show the complete catalogues for Field 1 − 4,
respectively. Line curves are models and best fits of the PSF dependent. See text for more
details.
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FWHM of the detected sources with a local PSF width. The instrumental PSF model
at varying off–axis angle is obtained empirically from each CDF–S 500ks catalogue (fields
1 − 4) analysed by the BSS technique. The best fit of the PSF FWHM as a function of
the off–axis angle is obtained as follows. The measured source extents, in terms of FWHM
and in units of arcsec, are separated in four different off–axis angle bins (0′ − 3′, 3′ − 6′,
6′−9′, 9′−12′). Histograms of the data in each bin are created and a Gaussian distribution
is fitted to the histogram. A k − σ clipping procedure is applied to reject sources with
significantly large extent. By iterating, a subset of data in each bin is created that contains
only sources with extent < kσs, where σs is the standard deviation of the subset and k
is chosen equal to 3. A polynomial fit to the mean values of the subset data in each bin
defines the best fit of the PSF FWHM as a function of the off–axis angle. The mean
and the standard deviation values of the subset data in each bin are used to create the
confidence limits of 95 − 99.8%. The 3σ upper limit defines the cutoff line for extended
sources.

In Fig. 7.9, four plots are given for each analysed CDF–S 500ks field. In the upper pan-
els, the FWHM versus the off–axis angle plane is drawn for all detected sources. For each
source the error bars (1σ) on the estimated sizes are drawn. The solid line is the parabolic
best fit to the Chandra PSF as described above. Dashed and dot–dashed lines are the 3σ
and 2σ limits of the PSF FWHM distribution. Sources which are likely to be extended are
plotted as filled circles above the 3σ limit. The catalogue identification number is reported
for each potential extended source. Known clusters or groups of galaxies are highlighted by
filled circles. Note that in the upper panels, the dotted line (PSF model) is the best fit of
the Chandra PSF FWHM in the soft (0.5− 2.0 keV) energy band as provided in the work
of Giacconi et al. (2002b). The difference of the two PSF models is mainly due to different
techniques employed for the data analysis and for the number of data points used. The
work of Giacconi et al. 2002b employed a larger sample (346 sources). In fact, two deep
fields in the Chandra Archive additional to the CDF–S 1Ms are used for the PSF fit. The
lower panels show the distribution of the FWHM residuals (absolute difference in units of
arcsec) for the CDF–S 500ks sources. The 3σ and 2σ limits of the FWHM distribution
are plotted with the same linestyles used in the upper plots. The histograms of the resid-
uals (not shown) are composed by a distribution close to normal plus a right–sided long
tail. The normal distributions are characterized by mean of ∼ 0 and variance of 3 and 1.5
arcsec in the fields 1 − 3 and 4, respectively. The one–sided tail indicates the presence of
outliers, i.e. mainly sources whose surface brightness deviates from the one of a point–like
source. Most, but not all, of the known clusters or groups of galaxies exceed the 3σ limit.
This classification technique may fail primarily because the k − σ procedure assumes an
unjustified Gaussian distribution of the data, the results depend on the choice of the bins
size and the source extent error is not taken into account in the classification process. The
SPMs reveal, instead, that all known clusters or groups of galaxies are characterized by
extended emissions.

Furthermore, the uncertainties on the source extent and the 3σ limit are now accounted
for estimating the deviation of the source extents from the empirical PSF fit. Specifically,
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Figure 7.10: χ2 distribution of source extent compared to the empirical instrumental PSF
fit versus off–axis angle. See also Fig. 7.9 and text for more details.
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a χ2 distribution is considered, that is given by: (X − Y )2/(W 2 + Z2), where X, Y , W
and Z are the source size, the PSF fit, the estimated error on the source size and the 3σ
limit, respectively.

In Fig. 7.10, the results of the χ2 distributions on the four fields are shown. In each
plot, small values of χ2 indicate that the estimated extent values agree with the one of
point–like sources. Alternatively, sources associated with large values of χ2 deviate from
the empirical Chandra PSF fit and, therefore, one often assumes that large values of χ2

indicates the detection of extended sources. In the four panels, all sources above the 3σ
limit (results shown in Fig. 7.9) are highlighted. In addition, all known clusters or groups
of galaxies listed in Giacconi et al. (2002a) (red labels) are highlighted with red circles
independent to the 3σ limit. Most of the known clusters or groups of galaxies are above
the selected threshold. However, in panels (b) and (d), a known compact group of galaxies
(XID 566 in Giacconi et al. 2002a) is characterized by small values of χ2. In the same way,
XID 594 (Giacconi et al., 2002a) in panel (d). Blue circles indicate potential clusters or
groups of galaxies not listed in Giacconi et al. (2002a). In panel (a), the source ID 185
is catalogued as galaxy in cluster of galaxy by Moy et al. (2003). The work of Moy et al.
(2003) provides an H–band survey of the CDF–S region. In panel (b), a blue circle in-
dicates a new cluster of galaxies, that is confirmed by the BSS algorithm analysing the
CDF–S 1Ms and 2Ms. AGNs are highlighted with green circles. Brown, orange and violet
circles indicate sources of unknown nature, stars and nearby sources, respectively. Note
that when the BSS multiband analysis is applied, detections affected by source confusion
are improved. Additionally, field 4 CDF–S 500ks provides the most biased sample. This
is due to the assumption that the data are normally distributed in each bin for the k − σ
procedure. This assumption is highly violated in this case. In Fig. 7.11, the sampled data
for field 4 CDF–S 500ks are shown with histograms and a superposed Gaussian distribution
fitted to each histogram.

Last, a probability of a source to be extended is desired for a proper source classification.
Often, an extent likelihood is provided and used in classic statistics. The extent likelihood
is a statistical statement determining whether the extent of a source is significant: See for
instance the ML procedure (Cruddace et al., 1988). In classic statistics, when only the
PSF fit model is taken into account, it will never be possible to provide a probability for a
source to be extended. At best, it is possible to provide the likelihood that the source devi-
ates from a point–like source. For instance, the p–value can be calculated using the χ2 fit.
H0 is set such that the PSF fit describes the width of point–like sources at varying off–axis
angle and any deviation from the PSF fit is due to randomness in the data. Therefore, the
χ2 p–value (commonly known with the term χ2 probability) provides the probability3 that
a function which does genuinely describe a set of N data points would give a value of χ2

as large, or larger, than the one already estimated. The χ2 probability requires a certain
number of user selected parameters. The χ2 probability is calculated as follows. A cutoff

3In classic statistical inference, the probability p(A) is the long–run relative frequency with which A
occurs in identical repeats of an experiment (Gregory, 2005).
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Figure 7.11: Example of normality condition for the k − σ procedure in Field 4 of the
CDF–S 500ks. Each histogram show the frequency of the source extent values, in terms
of FWHM and in units of arcsec, divided in four groups. Each group collects data at
different off–axis angles (in units of arcmin). The data in each group is fitted with a
normal distribution.
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Figure 7.12: χ2 p–value for an object to deviate from point–like versus off–axis angle. See
also Figs 7.9 and text for more details.
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value V in the χ2 distribution with 4 degrees of freedom is used to specify a probability of
occurrence or success. The number of degrees is chosen to be 4 because all the data are
used to create the PSF fit and one additional data in each bin is utilized. The probability
of occurrence or success is set to 0.95, due to the classically accepted significance level of
0.05. In Fig. 7.12, the χ2 probability calculated for each detected source in each of the
four fields is shown. Note that the properties of p-values have been already commented
in Chapter 3. In other works, as for the 2XMM catalogue pipeline4, an extent likelihood
is calculated comparing the best fitting point–like source model with the best fitting ex-
tended source model. Also in this case, the probability that the extent detection is due to
randomness in the data is calculated.

The technique proposed by Rosati (1995); Giacconi et al. (2002b) can be extended
on two directions. First, sources are characterized by two sizes (i.e., major and minor
axes). The two sizes can be exploited and compared to the instrumental PSF. Second, a
probability of a source to be extended can be provided. In order to accomplish this goal,
a new algorithm can be developed within the BPT formalism.

Survey selection function and source number counts In this test, there is no ex-
plicit interest in the nature of the detected sources, since this result is published in the
works of Rosati et al. (2002a); Luo et al. (2008). However, the sensitivity of source detec-
tion can vary significantly across the survey area. On the one hand, bright sources can be
detected over the entire solid angle of the survey. On the other hand, the effective area
for the detection of faint sources decreases towards the edge of the fov. Therefore, the
survey selection function and the source number counts are computed employing the BSS
catalogues obtained analysing the four CDF–S 500ks images.
The following conditions are taken into account: (1) The four CDF–S 500ks fields are
part of the same sky region; (2) Each CDF–S 500ks image is observed with the ACIS–I
instruments onboard of the Chandra satellite. Although it is known that about 70% of the
sources in the CDF–S region are characterized by X–ray variability (Paolillo et al., 2004),
the CDF–S 500ks data can be used to learn about the consistency of the developed method
to obtain the same results in terms of the sky coverage and the source number counts. The
sky coverage, or survey selection function, describes the sensitivity and the coverage of a
survey. The sky coverage allows one to compute the source number counts. The source
number counts (or logN–logS distribution) provides information about the completeness
and the reliability of a survey. The sky coverage and the source number counts depends
on the algorithm employed for source detection (Rosati et al., 2002a). Therefore, the sky
coverage and the source number counts can be used as diagnostic tools for the BSS tech-
nique. Last, it is known that the logN–logS distribution for point–like sources differs from
the one for extended sources: See Rosati et al. (1995) for more details. In this test, the
source number counts for point–like sources is taken into account and compared to the
ones published for the CDF-S 1Ms and 2Ms catalogues (Giacconi et al., 2002b; Luo et al.,

4http://xmmssc-www.star.le.ac.uk/Catalogue/2XMM/SSC-AIP-TN-003.ps
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Figure 7.13: Sensitivity analysis of the BSS algorithm analysing the four CDF–S 500ks
images: Panels (a), (b) and (c) provide the sky coverage (area covered vs. flux limit), the
raw number counts and the logN -logS distributions, respectively.
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Figure 7.14: Relative frequency of detected sources in flux units of erg s−1 cm−2: Panels
(a, b), all sources detected with a source probability (Psource) greater than and equal to 0.9
and 0.5, respectively. The abscissas are in logarithmic scale. See text for more details.

2008). To ensure compatibility of the absolute flux scale when comparing with previously
published results the conversion factor to turn source count rate into observed flux in the
soft (0.5− 2.0 keV) energy band has been bootstrapped using the soft flux reported in the
catalogue of Giacconi et al. (2002b). Requiring high signal–to–noise and non–variability,
the relatively bright (fX = 4 ·10−14 erg s−1 cm−2) source labelled XID 63 in Giacconi et al.
(2002b) has been identified as the best flux calibrator in the field because its measured
signal remains constant within ±3% amongst the different epochs of observation defined
by the four CDF–S 500ks data sets. In this way a flux calibration accurate to about 3%
and consistent with previous measurements has been established. The corresponding flux
conversion factor for the 0.5− 2 keV energy band is 5.7 × 10−12 erg cm−2 from count rate
to flux in units of erg s−1 cm−2. The sky coverage and the source number counts are
calculated on the full fov.

The sky coverage, Ω(S), is the survey solid angle within which the flux limit S is reached.
The flux limit map is usually constructed to take into account PSF variations, vignetting
effects and the background variations. The background maps from the BSS technique,
obtained analysing the four CDF–S 500ks images, are used. Therefore, vignetting effects
and background variations are already accounted for in the coverage. The PSF fit, i.e.
the FWHM as a function of the off–axis angle (θ), is obtained empirically with a k − σ
technique. For a description of the technique, see previous paragraph. The polynomial fits
obtained for each CDF–S 500ks field are used.

The sky coverage is studied employing the following steps. Considering each pixel of
an astronomical image, a map containing the flux limit (flux limit map) is computed. The
flux limit map is based essentially on a threshold value for the background, the exposure
map and the PSF variation along the fov. The threshold value for the background is
chosen with a value of 3σ, because this value corresponds approximately to the limit
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in sensitivity of the BSS technique. A PSF area is considered, in which the number of
background photons on the PSF area follows Poisson statistics. From the flux limit map,
the cumulative distribution with respect to the flux is obtained.

In Fig. 7.13, panel (a), the sky coverage for each of the four CDF–S 500ks fields is
drawn. The sky coverage for each analysed field is highlighted with different colors: black,
red, blue and green correspond to fields 1, 2, 3, 4, respectively. The same pattern is kept
in panels (b, c).

The flux limit of each survey can be derived where the curve changes in concavity.
The vertical lines indicate, instead, the flux limit obtained by the faintest detected source
listed in each BSS catalogue as given in Table 7.1. The flux limit given by the catalogues
coincides with the one provided by the sky coverage. The four CDF–S 500ks fields are very
similar in terms of depth. For flux values larger than 10−15 erg s−1 cm−2, the four fields
are characterized by different effective area. A dispersion of > 20% is shown, which is due
to the different geometric area of each field (see Fig. 7.6). The different geometric area
arises because of the different roll angles in the observations and, consequently, of different
exposure times.

In the literature, often sources with fluxes below the flux limit map are found. For
instance, in the work of Luo et al. (2008), 14 sources are found in the soft (0.5 − 2.0 keV)
energy band that have fluxes below the flux limit map. Luo et al. (2008) attributes the
presence of these sources to the fact that detected sources are not filtered out with the flux
limit map. In this work, the BSS background model is used for the calculation of the flux
limit map. A different result is expected with respect to the one of, e.g., Luo et al. (2008).
In Fig. 7.14, histograms are used to compare the flux densities of the detected sources
at two source probability (Psource) thresholds with respect to the flux limit. Sources with
fluxes lower than the flux limit are counted. The labels N1, 2, 3, 4 indicates the number
of detected sources with fluxes fainter than the one given by the vertical bar (i.e. the flux
limit). Only in the field 2 of the CDF–S 500ks data, one source with Psource < 0.9 is found.
The flux of this source is only 1% lower than the flux limit given by the vertical bar. This
is another benefit of the BSS technique when studying survey data analysis with respect
to previous algorithms employed for background estimation and source detection.

In panel (b) of Fig. 7.13, the cumulative distributions of the number of sources are
shown for each field. The plot indicates the raw number count function. This function
depends on the instrument and the observed field. The details of the raw number count
function is determined by the technique employed for source detection. In fact, each curve
provides the number of sources detected in each field. The raw number count function is
similar for the four fields.

The distributions in panels (a, b) of Fig. 7.13 are used to derive the cumulative distri-
bution of number of sources corrected for the sky coverage, shown in panel (c) of the same
figure. Panel (c) provides the number of sources per square degree of sky, N(> S), versus
the minimum detectable flux S (erg s−1 cm−2). Hence, panel (c) shows the real density
of sources. The logN–logS distribution allows one to set constrains on the cosmological
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evolution of the surveyed population.
In panels (b, c) of Fig. 7.13, the cutoff at low fluxes arises because the surveys are

flux limited and a cut is set as a detection limit. At large fluxes, the limit is due to the
geometrical area. The flux limits shown in panels (b, c) are similar to the ones shown in
panel (a). Uncertainties (1σ) are superposed to the cumulative distributions in panel (c)
following Poisson statistics. The errors are, therefore, given by 1/

√
N , where N is the

source number counts per square degrees, that is e.g., on 100 sources observed, an error of
10% is added for not having detected expected sources.

The four CDF–S 500ks images show very similar sensitivity. Nonetheless, at low fluxes
(S < 10−16 erg s−1 cm−2) the logN–logS distributions increase rapidly. This steep incre-
ment is due to sources with net counts ≤ 15. Faint fluxes of detected sources are character-
ized by larger errors than the ones encountered with bright sources. Consequently, in panel
(c) one would expect increasing errors in the source number counts deg−2 at decreasing
fluxes. This effect is due to systematics, that are not accounted for by Poisson statistics
alone. An additional systematic error enters in the logN–logS distribution from the sky
coverage. It is another cause for the steepening in the data, due to the fact that the num-
ber of detected sources is corrected for the survey area. Therefore, the flux limit and the
survey area at a given flux limit is underestimated with the consequent overcorrection of
the four logN–logS distributions derived from the analysis of the CDF–S 500ks data. The
uncertainty from these systematic errors to report in the analysis is not easily quantifiable.
In classic statistics, the quantification of systematic errors occurs employing supplemen-
tary analyses, e.g. simulations. In Bayesian statistics, the quantification of systematic
errors occurs employing the rules of probability theory. Considering the many advantages
that BPT provides with respect to classic statistics (listed or described through the whole
thesis), a new method for estimating the source number counts while taking into account
systematic and random errors can be developed: More information is given below and in
Chapter 8.

Furthermore, the logN–logS distributions published in Giacconi et al. (2002b) and
Luo et al. (2008) are plotted with dot–dashed (orange) and dashed (dark grey) linestyles
in panel (c) for comparison. The logN–logS distributions obtained with the four CDF–S
500ks images are in agreement with the ones published for the CDF–S 1Ms and 2Ms data.
The source number counts distribution employing all the data sets available (Luo et al.,
2008) is deeper than the ones derived with the four CDF–S 500ks data sets and the one
published in Giacconi et al. (2002b). In the work of Luo et al. (2008), the cumulative num-
ber counts deviation from the CDF–S 1Ms data to the CDF–S 2Ms data is justified by the
different selection of the count–rate–to–flux conversion factor used in these two surveys
and by sky–to–sky variations. Note that also in the work of Luo et al. (2008), a steepness
in the data is found for fluxes below 10−16 erg s−1 cm−2 even if effects of incompleteness
and selection bias are quantified through Monte Carlo simulations. Since measurement er-
rors distort the shape of a distribution of source observables (scatter distortion) (Jeffreys,
1938; Loredo, 2004), it is very important that any claimed evolutionary effect has to be
properly quantified. In order to properly quantify the shape of the distribution, a new
method for survey data analysis can be developed within the BPT framework. The new
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technique has to incorporate in one unique algorithm the survey selection function and
the cumulative source number counts, including selection effects and measurements errors.
The application and further studies of the proposed technique is not part of this thesis.

Wavdetect analysis of the four CDF–S 500ks fields

The four wavdetect catalogues are analysed as executed with the BSS algorithm in the
previous paragraph. The results are shown in Fig. 7.15. The description of the plots
follows the one given for Fig. 7.8. Nonetheless, the 1σ error (or Gaussian level) associated
with the estimated source parameters is now describing the confidence limit reported at
a 68.3% confidence level. Note that the plot on the estimated source extent does not
report errors. Errors on source extent are not listed in the wavdetect catalogues even if
source extent errors are estimated by the wavdetect algorithm. Therefore, the absolute
difference between the estimated source extents are considered when comparing the four
wavdetect catalogues.

Panels (a−b) of Fig. 7.15 show that the accuracy of the wavdetect source positions is
∼ 1 arcsec. However, the scatter between the absolute difference of the estimated positions
in each pair of field is by a factor of 3 larger than the one found with the BSS algorithm
(compare to Fig. 7.8).

In panel (c), the values on the estimated net source counts are similar within each field.
The relative errors on the estimated net source counts for each paired field show a larger
scatter than the one given by the BSS technique.

In panel (d), the estimated source extent provided by the wavdetect catalogue is
shown at 3σ. The wavdetect source extent is given, as for the BSS algorithm, by a multi–
variate Gaussian parameterization of the detected sources. Different to the BSS technique,
the parameterization is computed from a wavelet transform analysis of the counts in a
region of source detection. In the mean, the extent values reported by the two techniques
are similar, although the range of values provided by wavdetect is larger than the one
obtained with the BSS algorithm. The residuals report the absolute difference between
the estimated values. A scatter of 10 arcsec is found. Meaning that objects detected in
one field may be found with an extent parameter value differing by 10 arcsec in the other
field. Moreover, a systematic error inserted by the wavdetect technique is found in
the estimate of the extent parameter. This systematic effect is not found with the BSS
algorithm (see Fig. 7.8, panel d).

In panel (e), the estimated source net counts and their errors are considered. On the
plot, the Poisson and Gehrels’ error lines are drawn. The Gehrels’ error line provides
an approximate expression for the error on the source net counts. The Gehrels’error is
defined as 1 +

√
N + 0.75, where N indicates the source net counts (Gehrels, 1986). The

work of Gehrels (1986) provides the upper confidence level equivalent to 1σ Gaussian error
with small number statistics. In wavdetect technique, the errors are calculated with
both methods. In panel (e), the errors on the net counts are well fitted by the Gehrels’
error line for net source counts > 50 counts. For fainter sources, the Poisson and Gehrels’
error lines are the lower and upper limits of the net counts errors. The same trend is
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Figure 7.15: As Fig. 7.8, but employing the wavdetect algorithm. No errors on the
source extent are reported in the wavdetect catalogues.
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found in the simulated data analysed with the wavdetect algorithm in Chapter 5. The
deviation from the Poisson error line may be due because background counts are taken into
account. Hence, another bias (systematic error) is found when employing the wavdetect
algorithm.

Comparing BSS and wavdetect catalogues

In Fig. 7.16, the catalogues obtained with the BSS and the wavdetect techniques are
compared. In panels (a− c), the residuals are the difference in values weighted by the sum
of their squared variances. In panels (a − b) the estimated source positions are compared.
Agreement in source position with the two techniques is achieved. Panel (c) relates the
detected net source counts with the wavdetect technique versus the ones obtained with
the BSS algorithm. Often larger values for the net counts are found with the BSS algorithm.
As shown in Chapter 5, the BSS background model allows for improved source counts with
respect to the wavdetect algorithm. In panel (d), the probability of source detection
given by the BSS technique is compared to the BSS estimated source fluxes in units of
count ks−1. The same relation is shown in panel (e), but for the wavdetect algorithm. In
panels (d−e), the abscissas are in logarithmic scales. The wavdetect algorithm provides
the source significance instead of the probability of source detection as the BSS technique
does. The source significance of a detection, provided by wavdetect, is the ratio of the
net source counts and the Gehrels’error of the sum of the estimated background counts in
each pixel of the source detection region. Therefore, the source significance increases at
increasing source count rates. The description of a “source significance” is very different
from the BSS technique. As already discussed in Chapters 2 and 3, the BSS algorithm
provides a probability of source detection that is intrinsically connected with the mean
intensity distributed in the field, the detected source counts and the background counts
in addition to the detected source. Therefore, large values of source probability can be
given to faint point–like sources: See, for instance, Table 3.1. Faint objects are often
missed with the wavdetect technique. An example is given by a source detected in field
1 CDF–S 500ks with Psource = 0.95. This object is listed in the CDF–S 1Ms catalogue
(source XID 516 in Giacconi et al. 2002a), that is an AGN–I at z = 0.667. This AGN
is detected by the BSS algorithm with net counts lower by a factor of 2 than the ones
provided in Giacconi et al. (2002a). This AGN is not listed in the catalogue provided by
wavdetect. The wavdetect source significance for faint objects results less reliable
than the one obtained with the BSS technique.

In Table 7.2, the number of sources detected in one field but not another of the CDF–
S 500ks data are summarized for the two algorithms separately. Only sources within 10
arcmin from the average aimpoint are considered, due to the different geometries of the
four fields. Therefore, sources located at the edges of the four fields are excluded from the
comparison. Looking at the reported numbers, the wavdetect algorithm seems to behave
better than the BSS method (due to smaller numbers) especially when comparing fields 1−2
with fields 3 − 4. However, nondetected sources are faint objects whose brightness varies
not only because of background fluctuations but also for X–ray variability (Paolillo et al.,
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Figure 7.16: Comparison between BSS and wavdetect algorithms. Panels (a − c), as
given in Figs 7.8 and 7.15. Panels (d − e) significance of source detection versus fluxes
according to the two techniques.
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Table 7.2: Sources detected in one field of the CDF–S 500ks data but not another, according
to the BSS and wavdetect techniques separately. Only sources within 10 arcmin from
the aimpoint are considered.

NONDETECTION NONDETECTION
Field 1 2 3 4 Field 1 2 3 4

BSS

1 · · · 44 63 67

wavdetect

1 · · · 40 59 58
2 36 · · · 60 60 2 30 · · · 48 49
3 20 25 · · · 21 3 27 25 · · · 23
4 26 27 19 · · · 4 27 27 22 · · ·

Note: e.g., there are 44 sources detected in field 1 with the BSS technique that are not
detected in field 2 with the same algorithm.

Table 7.3: Sources detected in each field of the CDF–S 500ks data with one technique but
not the other (BSS vs. wavdetect).

NONDETECTION
Field BSS WAVDETECT

1 20 7
2 24 12
3 4 10
4 8 11

Note: e.g., there are 20 sources detected in field 1 with the BSS technique that are not
detected with the wavdetect algorithm.

2004). 70% of the sources in the CDF–S region are characterized by X–ray variability.
The observations of fields 1 − 2 are taken in the time range of 1.2 year, while images of
fields 3 − 4 are taken ∼ 7 years later than fields 1 − 2 and within 3 consecutive months of
observations. In fact, the number of nondetected sources increases when comparing fields
1 − 2 with fields 3 − 4. No conclusive statement can be given on this respect.

In Table 7.3, the number of sources detected with one algorithm and nondetected with
the other algorithm are listed for each analysed field. These detections are faint sources.
In order to exclude the presence of false positives in source detection, previous researches
on the CDF–S region are considered. For both algorithms, almost all sources are found
in the CDF–S 1Ms and the CDF–S 2Ms catalogues. A small number of sources (< 1%)
has no counterpart with these two major X–ray catalogues on the CDF–S region. These
sources are further investigated employing supplementary optical, near infrared and X–ray
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catalogues, suggesting that these objects are likely true X–ray sources. The wavdetect
technique detects 3 sources (two galaxies and one object of unknown nature) listed in
the works of Groenewegen et al. (2002) (optical and near infrared bands), Grogin et al.
(2003) (optial band), Grazian et al. (2006) (near infrared band). The wavdetect po-
sitions of these sources are ∼ 2.2 arcsec far from the positions given by the listed cata-
logues. The BSS algorithm detects 4 sources (one star, one object of unknown nature,
two galaxies), whose counterparts are found within 1 arcsec far from the positions given
by Groenewegen et al. (2002) (star in the optical and near infrared part of the electro-
magnetic spectrum), Grogin et al. (2003) (object of unknown nature in the optical band),
Alexander et al. (2003) (X–ray galaxy), Moy et al. (2003) (galaxy, H–band study).

The BSS algorithm outperforms the wavdetect technique in detecting extended ob-
jects. The four known clusters and groups of galaxies listed in the CDF–S 1Ms catalogue
(Giacconi et al., 2002a) (XID 527, 566, 594, 645) are detected by the BSS algorithm. Prob-
lems are found with the wavdetect algorithm in detecting these sources. More is reported
about some of these objects in Section 7.2.4.
A cluster of galaxy close to a point–like source, XID 527, is detected by the BSS algorithm
in the fields 1 − 2 CDF–S 500ks. The wavdetect algorithm detects this object only in
the field 2 CDF–S 500ks, but with distorted extent and much larger than the one found
with the CDF–S 1Ms data.
XID 566 is a compact cluster of galaxy with emission similar to point–like objects. In the
1− 2− 4 CDF–S 500ks fields, the BSS and the wavdetect techniques detect this object.
Only the BSS algorithm identifies this object as extended. In the 3 CDF–S 500ks field the
BSS and the wavdetect algorithms do not detect this object.
A bright cluster of galaxies, XID 594, is composed by a cD galaxy and a diffuse emission.
The BSS algorithm detects the cD galaxy and the diffuse emission of the cluster of galaxies
in the four CDF–S 500ks data. Substructures, that can be due to background fluctuations
in the data, are additionally detected. The wavdetect algorithm detects the cD galaxy,
but the detection is often misplaced and with larger extent than the one given with the
CDF–S 1Ms data.
A very low surface brightness object, XID 645, is detected by the BSS algorithm as ex-
tended source in the fields 1 − 2 CDF–S 500ks. Substructures are also detected by the
BSS algorithm. In field 2 CDF–S 500ks, the BSS algorithm detects another extended fea-
ture not listed in the work of Giacconi et al. (2002b), but confirmed by the BSS algorithm
analysing the CDF–S 1Ms and 2Ms and by photometric data. No detections of this object
occurred with the wavdetect algorithm in the four CDF–S 500ks fields.

Last, the flux limit reached in each four CDF–S 500ks fields by the two techniques is
considered. In order to give an estimate of the sensitivity reached in each field by the
two techniques, the minimum source count rate (in units of count s−1) is converted to flux
(in units of erg s−1 cm−2). Following the work of Giacconi et al. (2002b), the conversion
factor cf is used: See Section 7.2.3 for more details. In Table 7.1 the estimated flux
limits are reported. The CDF–S 2Ms catalogue (Luo et al., 2008) is by a factor of 3 more
sensitive than the CDF–S 1Ms catalogue (Giacconi et al., 2002b). The BSS algorithm on
the four CDF–S 500ks fields provide flux limits that are 4 and 1.3 times less sensitive than
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the CDF–S 2Ms and 1Ms catalogues, respectively. The wavdetect technique on the
four CDF–S 500ks fields is 5 and 1.7 times less sensitive than the CDF–S 2Ms and 1Ms
catalogues, respectively. The BSS technique improves, therefore, the sensitivity reached
by the wavdetect algorithm.

Summary

The CDF–S region was observed during two surveys. The first and the second surveys
lasted from October 1999 until December 2000 and from September 2007 until November
2007, respectively. The total exposure time is of 2 Ms. Official catalogues in the X–ray
regime of the CDF–S region are given by the works of Giacconi et al. (2002b); Luo et al.
(2008).

The CDF–S 2Ms data in the soft (0.5 − 2.0 keV) energy band are separated in four
images of 500 ks exposure time each in order to test the capabilities of the BSS algorithm
on pointed observations. Additionally, the results obtained with the BSS algorithm are
compared to the ones given by the wavdetect technique.

The BSS algorithm provides a robust technique. The BSS estimates in source param-
eters are internally consistent. No systematic errors are found within the BSS results.
The residual errors are within 1σ and 3σ for estimated parameters in source positions and
source counts (and extent), respectively. However, large errors in source counts are found
for 8% of all detected sources. Large errors in source counts are found for: 1. faint sources
partially superposed to bright sources; 2. faint sources embedded in large background fluc-
tuations, 3. extended sources. Further developments of the BSS technique are proposed
to improve the estimates of these sources. The proposed developments are not part of this
thesis.

The catalogued sources, extracted with the BSS algorithm from each CDF–S 500ks
image, are also explored in source classification (i.e., an automated technique to classify
point–like and extended sources) and in survey data analysis. Standard techniques in the
X–ray regime are employed, whose result is depending on an empirical PSF fit. The PSF
fit is executed on each field with a k − σ procedure.

For the separation of point–like and extended sources, the classification technique de-
scribed in Rosati et al. (1995); Giacconi et al. (2002b) is used.
All scientific applications require an automated machine capable to provide a list of clus-
ters or groups of galaxies or at least sources associated with hot halos from the analysis of
an astronomical image. In the works of Rosati et al. (1995); Giacconi et al. (2002b), the
distance of the detected source FWHM from the local PSF fit is taken into account. This
technique succeeds in classifying clusters or groups of galaxies as extended sources, only for
those clusters or groups of galaxies whose extent is several times larger then the local PSF
size. Compact groups of galaxies, as the Cimatti’s (XID 566), are not properly classified.
In addition, the sample of potentially extended sources is contaminated by AGNs, stars,
close by galaxies and sources affected by source confusion. The pitfalls of this technique
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reside mainly in the assumption of a Gaussian distribution for binned data. The bin size
depends on the user choice and the source extent measurement error is not taken into
account for the binning process.
The residual errors of the distance from the source FWHM and the local PSF fit are addi-
tionally calculated taking into account the FWHM error and the 3σ limit of the PSF fit.
A classical χ2–fit is performed. The χ2 statistic is employed because it is widely used in
many fields of science as goodness of fit. However, the technique of Rosati et al. (1995);
Giacconi et al. (2002b) is not improved with a χ2–fit and no statistical result is given.
Ideally, an astrophysicist aims to a probability of an object to be extended. Classic statistics
is further explored to obtain a χ2 p–value. Additionally user selected values for acquiring
the final result of the χ2–fit are needed. The result of this procedure provides a number
that tells us how much the celestial object deviates from a point–like source due to ran-
domness in the data. BPT has, instead, the potentials for providing the probability of an
object to be extended. Further studies are proposed as future work.

Current procedures for the survey data analysis are tested. The sky coverage and the
source number counts from the analysed CDF–S 500ks fields with the BSS algorithm are
studied. The BSS technique is capable to obtain the same results of the sky coverage and
the source number counts from the four analysed fields. The results are in agreement to the
ones obtained with the CDF–S 1Ms and 2Ms data, published in Giacconi et al. (2002b);
Luo et al. (2008).
The background model provided by the BSS algorithm is shown to be superior to the
ones given by previous methods. The BSS background model is used for the calculation
of the flux limit map. However, an empirical PSF fit and a user selected threshold for
the background level are also accounted in the flux limit map. Both, the PSF fit and
the selected threshold level, may introduce a bias on the final result of the logN–logS
distribution. In addition, the logN–logS distribution is calculated without accounting for
the source flux error. Consequently, the shape of the distribution is distorted especially
for very faint fluxes. A new technique within the BPT framework for survey data analysis
could improve the logN–logS distribution: See Chapter 8 for more details.

The wavdetect technique is tested for internal consistency as performed with the
BSS algorithm. The BSS algorithm is capable to supply an improved internal consistency
with respect to the wavdetect technique. The wavdetect residuals errors on source
positions are found 30% larger than the ones with the BSS algorithm. Wavdetect does
not provide the uncertainty measurement on the source extent. The range of the wavde-
tect source extent values are by a factor of 3 larger than the ones provided by the BSS
algorithm. Systematic errors are found in the estimate of the source extent and counts.

The comparison of the BSS and the wavdetect catalogues shows that the BSS algo-
rithm improves in the source count estimates. In addition the Bayesian Psource provides for
more reliable results than the wavdetect source significance.

Sources detected with one and not the other algorithm for each field are analysed. In
this specific case, the BSS algorithm detects by a factor of 1.4 fainter sources than the
wavdetect technique. Nonetheless, faint sources are not detected with one or the other
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algorithm, because of background fluctuations and of the selected threshold levels (i.e.,
’sigthresh’ and Psource values with the wavdetect and the BSS algorithms5, respectively).
99.6% and 99.4% of all sources detected with the wavdetect and the BSS algorithms,
respectively, are found in the CDF–S 1Ms and 2Ms catalogues. The remaining sources are
found in additional surveys: optical, near infrared and supplementary X–ray catalogues.
For these remaining sources, the distance from the positions given by the additional surveys
and the BSS source positions is within 1 pixel (i.e., 1 arcsec). Instead, the distance from
the positions given by the additional surveys and the wavdetect source positions is of 2.2
pixels. Furthermore, the efficiency in source detection with the BSS algorithm is improved
with respect to the wavdetect technique only for fields 1 − 2 CDF–S 500ks, that are
characterized by larger mean source signal in the field: Take into account that 1% of the
X–ray sources in wavdetect catalogues of the CDF–S 500ks fields are considered true
sources, although counterparts at other wavelengths are ∼ 2.2 arcsec far from the X–ray
position. Note that the BSS technique on the CDF–S 500ks fields is exactly 4 times less
sensitive than the CDF–S 2Ms, as expected. The wavdetect technique is by a factor of
1.3 less sensitive than the BSS algorithm on the four fields.

Last, the BSS algorithm outperforms the wavdetect technique for the detection of
extended sources. Extended sources are detected by the BSS algorithm also at low signal–
to–noise ratio. Structures of these clusters or groups of galaxies are detected at multiple
scales. Substructures detected with extended sources might be due to background fluctua-
tions in the data. Those substructures could increase the contamination with false–positives
in source detection. Compact groups of galaxies are identified by the multiresolution anal-
ysis as extended objects. Last, an extended source not listed in the CDF–S 1Ms catalogue
(Giacconi et al., 2002b), is found. This extended source is confirmed by the BSS algorithm,
analysing the CDF–S 1Ms and 2Ms data, and by photometric data.

7.2.4 Clusters and groups of galaxies

Combining the BSS technique with the presently most sensitive X–ray data from the Chan-
dra Observatory, morphologies and physical properties of clusters and groups of galaxies
also in the distant universe can be analysed (Maughan et al., 2003). The motivations for
surveying a population of these rare massive objects reside mainly in evaluating cosmolog-
ical models to describe the universe, to study LSSs, to determine the amount of baryonic
matter in the local universe and to measure the mass distribution within these systems
(Böhringer et al., 2010). In order to achieve these goals, a large sample of clusters and
groups of galaxies is needed.

In the followings, an introduction to clusters and groups of galaxies is given. The intro-
duction includes a brief decription of hot topics related to the study of these systems. Last,
the BSS detection of a sample of galaxy clusters and groups with different characteristics
(e.g., compact or complex morphologies and filaments connecting two galaxy clusters) is

5Note that the Psource threshold value is selected at the end of the analysis, while ’sigthresh’ is an input
parameter for the wavdetect algorithm.
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shown.

Introduction

Clusters and groups of galaxies arise from the rare highest peaks of the primordial density
perturbations in the hierarchical clustering scenario for the formation of cosmic structures
(Big Bang cosmology6): See, e.g., Rosati et al. (2002b) and references therein. In the
early universe, initial density perturbations grow under gravity and eventually form the
massive structures visible today. Firstly, less massive systems are forming. Secondly, larger
systems of galaxies, groups, and clusters of galaxies are formed through a combination of
merging of the less dense surrounding regions (Maughan et al., 2003). Fluctuations (or
perturbations) in the primordial density field evolved into a complex structure of sheets
and filaments with clusters of galaxies at the intersections of the filamentary structures
(Werner et al., 2008). Properties of clusters and groups of galaxies are sensitive to the
nature of such fluctuations (Boschin, 2003). Voids and filaments (also known as cosmic
web) have been revealed through galaxy surveys in the optical part of the electromagnetic
spectrum: See, e.g., Croom et al. 2000. Detection of these filaments in the X–ray regime
is difficult and few works revealed a reliable detection of these systems (e.g., Werner et al.
2008; Zappacosta et al. 2010). Detection of filaments in the X–ray regime is important for
improving our understanding on the baryonic dark matter. Unambiguous tracers for the
search of filaments in the X–ray regime are clusters and groups of galaxies: More details
are dedicated on the subject in a following paragraph.

Galaxies, the hot thin gas that fills the space between the galaxies and the dark matter
are gravitationally bound in the common gravitational potential of the cluster. Therefore
the hot diffuse X–ray emission is the direct manifestation of the existence of a potential
well within which the hot gas and the dark matter are in dynamical equilibrium. The thin
hot gas permeating the cluster gravitational potential well is fully ionized and emits via
thermal bremsstrahlung in the X–ray band. Since the galaxy cluster mass function (as
a function of redshift) is predicted by theoretical models for cosmic structure formation
(Rosati et al., 2002b), X–ray studies of clusters and groups of galaxies are fundamental for
assessing cosmological models. The cluster mass is never directly observable. However, the
temperature and the density of the hot intergalactic medium are directly related to the
cluster mass. Temperature and density of the hot intergalactic medium can be measured
from the X–ray emission. The temperature of the hot thin gas is related to the depth
of the potential well and its distribution is related to the dynamical state of the system
(Böhringer et al., 2010). Typically, clusters of galaxies are characterized by temperatures of
several 107 K for cluster mass of 1014−1015 M& and X–ray luminosities of LX ∼ 1043−1045

6Between others, the work of Spergel et al. (2003) provided strong observational evidence that the
ΛCDM model is a good approximation to reality: the universe is flat and its dynamics is dominated by
73% of dark energy (expressed by the cosmological costant Λ, representing an accelerating force) and
by 27% of matter. All matter in the universe is composed by 22% of nonbaryonic dark matter (exotic,
unknown particles) and by 5% of baryonic matter (p, n). Less than 1% of the baryonic matter is visible
(e.g., stars, nebulae) and the remaining fraction is baryonic dark matter (Fukugita and Peebles, 2004).
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erg s−1. Hence, clusters and groups of galaxies are among the most luminous objects in
the sky. Their luminosity does not show variabilities. Clusters and groups of galaxies are
observationally accessible also at large cosmological distances due to their luminosity.

A quantitative analysis of the abundance of clusters and groups of galaxies as a function
of redshift, z, allows one to constrain cosmological parameters and to test the models of
structure formation. In fact, the large scale distribution of galaxy clusters and groups
and their number density depend on the geometry of the universe and hence on the dark
energy. The dark energy gives rise to the acceleration of the cosmic expansion, but its
nature is so far unknown. X–ray observations of galaxy clusters and groups are essential
for improving our knowledge about the rate of expansion of the universe and the amplitude
of the primordial fluctuations that originated the whole structure of the universe.

The BSS technique is an efficient method for the search of clusters and groups of
galaxies over a wide range of redshifts. The BSS algorithm allows one also for the detection
of filaments along the line–of–sight between clusters or groups of galaxies. However, the
estimation of the mass of these systems and a method to compute the survey volume, within
which clusters or groups are found, require further studies within the BPT formalism.

Space density of X–ray galaxy clusters and groups A quantitative analysis of the
abundance of clusters and groups of galaxies as a function of z allows one to constrain
cosmological parameters and to test the models of structure formation.

In Section 7.2.3 of this Chapter, the survey selection function is described and applied
to the CDF–S 500ks data only for point–like sources, where the flux limit is expressed with
a function known as sky coverage. The sky coverage is the effective area covered by the
survey as a function of flux. This function is measured because exposure time, background
and PSF are not uniform across the fov of X–ray telescopes.

The survey selection function for clusters or groups of galaxies follows mainly the one
of point–like sources, but the sky coverage function depends also on the surface brightness
of galaxy clusters and groups and on selection bias. Clusters or groups with low surface
brightness can often be missed when their signal–to–noise ratio is below the detection
threshold (as for many conventional methods discussed in Chapter 5, in particular for the
sliding window technique). Consequently, especially at high redshifts7 the decrement in
source brightness gives rise to an incomplete cluster sample at the faintest flux levels. A
diagnostic procedure is usually employed for assessing the survey flux limit above which
the sample is truly flux–limited and free of surface brightness effects (usually this is taken
a factor 2 − 3 higher than the minimum detectable flux in given survey) (Rosati et al.,
2002b). Concerning the selection bias, the sample of detected clusters can be contam-
inated by clusters hosting X–ray bright AGN or by unrelated point sources projected
along the line of sight of diffuse cluster emission. The effect of bright AGNs is found in
less than 5% of the cases. The effect of objects along the line of sight is significant for

7The z limit for detecting X–ray clusters is today at z ∼ 1.6 (see, e.g., Rosati et al. 2009; Tanaka et al.
2010), utilizing multi–wavelength studies.
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up to 50% flux contamination in some cases: See Rosati et al. (2002b) for more details.
As a result, the sky coverage becomes increasingly inaccurate at very faint detection limits.

The surveyed population as a function of flux (logN–logS distribution) for extended
sources can be used to measure actual physical quantities, e.g. the surface density of galaxy
clusters. Hence, the logN–logS distribution allows one to set constrains on the cosmolog-
ical evolution of clusters or groups of galaxies. Note that since the sky coverage becomes
increasingly inaccurate at very faint detection limits, the faint end of the cumulative dis-
tribution of number counts is very uncertain.

Following the determination of the logN–logS distribution, the luminosity function of
X–ray galaxy clusters and groups can be estimated when z is known. The XLF allows one
to investigate properties (e.g., mass, temperature), space–density and evolution of galaxy
clusters and groups.

The cluster XLF is commonly modelled with a Schechter function, that takes into
account the faint end slope, the characteristic luminosity, the space–density of clusters
brighter than a minimum luminosity value: See Rosati et al. (2002b) and references therein
for more details. Using the detected clusters sample in the survey, often a binned repre-
sentation of the XLF is obtained by adding the contribution to the space density of each
cluster in a given luminosity bin and a total search volume. The volume of the survey
sky coverage depends on the survey sky coverage as a function of flux, on the luminosity
distance as a function of z, and on the Hubble constant as a function of z.

Statistical significance of claimed evolutionary effects is not properly quantified when
selection bias and measurement errors are not accounted. For improving the recovery of
the information contained in any flux–limited cluster sample, new methods have been de-
veloped. For instance, the work of Rosati et al. (2000) demonstrated that when the XLF
is analysed from an unbinned data distribution with a ML approach, the XLF is consistent
with models predicting no evolution only for faintest fluxes.

In Fig. 7.17, the logN–logS distribution obtained merging the information from several
surveys is shown, as provided by Rosati et al. (2002b). At bright fluxes, the slope is close
to the Euclidean value of −1.5, as expected for a homogeneous distribution of objects.
At faint fluxes, the slope flattens to almost −1. As explained in Rosati et al. (2002b),
the slope is mainly determined by the faint–to–moderate part of the XLF. The slope is
insensitive to the abundance of the most luminous, rare massive systems. The observed
counts are consistent with no–evolution predictions. It indicates that a significant fraction
of the cluster population does not evolve with z. At the faint end, the Chandra Deep
Fields North (labelled with “CDFN”) and South (labelled with “CDFS”) data have ex-
tended to very faint fluxes the number counts. Serendipitous surveys with Chandra and
XMM–Newton satellites are filling the gap between these measurements and the ROSAT
surveys. Measurements from ROSAT surveys are all the data points plotted at values of
S > 10−14 erg cm−2 s−1. The ROSAT satellite provided the sample necessary to compute
the space density of clusters in the local universe and its evolution. Further studies on the
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Figure 7.17: The cluster cumulative number counts as a function of X–ray flux (logN–logS)
as measured from different surveys. This plot appeared in Rosati et al. (2002b).

sample supplied the evidence that the majority of the cluster population has not evolved
significantly since z ∼ 1. The Chandra satellite supplied the first view of the gas distribu-
tion in clusters at z > 1. X–ray studies of clusters and groups of galaxies are in agreement
with hierarchical models of cosmic structure formation in a flat low–density universe with
the density parameter Ωm ∼ 0.3 and dominated by cold dark matter (Rosati et al., 2002b).

Detection algorithms designed to examine a broad range of cluster parameters (X–ray
flux, surface brightness, morphology) and to deal with source confusion at faint fluxes
are particularly required for the search of clusters and groups of galaxies at several z
(Rosati et al., 2002b). The BSS technique, that is particularly sensitive in detecting faint
sources and in separating sources superposed to a diffuse emission, may help to increase
the sample of very distant clusters and to reduce selection bias due to contamination of
sources located along the line of sight of galaxy clusters and groups. Due to the currently
small sample available, the evolution of clusters and groups of galaxies at high z is not yet
well understood. A Bayesian technique for the estimation of the logN–logS distribution
can be developed in order to take into account measurement uncertainties of source fluxes,
sky coverage, and selection effects when making inference about the population of X–ray
galaxy clusters and groups. Note that the sky coverage for cluster surveys is different from
the one obtained for point–like sources (Rosati, 1995). Instead of accounting for the PSF
variation, a median for the extent of clusters or groups of galaxies is often considered. This
information can be properly accounted for the proposed clusters analysis.
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Mass distribution in galaxy clusters The morphology of the X–ray emission of
clusters or groups of galaxies can provide important insight into the nature of the hot
gas. Usually, bright clusters have regular morphologies and show an (optical) luminous
elliptical galaxy located near the dynamical centre of the cluster (Ebeling et al., 1994;
Mulchaey et al., 1996; Mulchaey and Zabludoff, 1998). Irregular morphologies are often
found at lower luminosities and the hot emission is distributed around several (optical)
galaxies (Diaferio et al., 2008). Irregular morphologies of an X–ray emission may indicate
strong galaxy interactions. The physics of the hot intracluster gas is not well understood.
No physical models are currently predicting the density and temperature distribution of
the gas and the interplay between heating and cooling mechanisms (Rosati et al., 2002b).

Statistical measures of substructures observed in X–ray images have been developed:
See Böhringer et al. (2010) and references therein. Studies of substructures allows one to
characterize the cluster or group of galaxies mass and the dynamical state of the system
and, thereof, to create a ranking order of these systems. The most recent work on the
subject, given by Böhringer et al. (2010), is based on a statistically representative bright
and homogeneous sample of closeby clusters of galaxies, allowing for a reliable analysis.

The BSS technique is capable of providing a large sample of clusters and groups of
galaxies and their substructures, allowing for a refinement of these studies. Further devel-
opments of the BSS algorithm within the BPT formalism would yield to an extension of
the work of Böhringer et al. (2010) when the sample is small and/or composed by faint
clusters or groups of galaxies.

The missing baryons in the local universe An open question in cosmology is the
problem of the missing baryons in the local (z < 1) universe (Lieu and Bonamente, 2009).
The problem manifests itself as a deficit in the mass budget. Observationally, the total
baryonic content in stars, galaxies and clusters of galaxies is only about half of the amount
required by the Big Bang nucleosynthesis models or from measurements of the cosmic mi-
crowave background. Cosmological hydrodynamical simulations predict that virialized ha-
los (e.g., galaxies, groups and clusters of galaxies) are connected by a warm–hot intergalac-
tic medium (WHIM). The WHIM is characterized by a low density (nb = 10−6−10−4 cm−3)
and warm–hot (T = 105 − 107 K) intergalactic gas (Werner et al., 2008; Zappacosta et al.,
2010) and by a filamentary shape. The filamentary shape originates in the kinematics of
collapsing structural overdensities in the universe (as described in the Zeldovich pancake
scenario, Zeldovich 1978). Filaments are predicted to contain about 50% of all baryons
in the local universe (Zappacosta et al., 2010). Thus, filaments are the best candidates to
host baryons missing in the local universe, but seen at high redshifts (Fukugita and Peebles,
2004).

The detections of the WHIM in the X–ray regime is difficult due to the low surface
brightness, the low density and the low temperature of the intergalactic gas. Nonetheless,
the temperature of the WHIM increases up to 107 K when close to clusters or groups of
galaxies. Hence, the WHIM is detectable in the soft (< 1 KeV) X–ray regime only in
the neighbourhood of clusters or groups of galaxies. X–ray images, extracted in the soft
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energy band, may reveal the WHIM as a bridge between clusters or groups of galaxies
(Werner et al., 2008). Up to date, a small sample of filaments between clusters or groups
of galaxies have been discovered (see, e.g., Werner et al. 2008). Evidence of WHIMs in the
LSSs is given by the works of, e.g., Zappacosta et al. (2010); D’Elia et al. (2008) employing
primarily X–ray spectroscopy. The detection of a large sample of these filaments is needed
in order to improve our understanding of the missing baryons in the local universe.

Detection of clusters and groups of galaxies

The detections of three clusters and one group of galaxies with the BSS technique are shown
with the aim of demonstrating the superior capabilities of the BSS technique with respect
to previous methods for properly detecting and classifying galaxy clusters/groups also in
extreme cases of very low signal–to–noise ratio or contaminated by galaxies located nearby
or superposed. The selected clusters and group of galaxies are located at high redshifts
and contribute to two LSSs of the universe discovered in this region at redshifts 0.679 and
0.735 (Gilli et al., 2003). The selected clusters and group of galaxies are characterized by
different properties in the mass distribution: complex morphology; complex morphology
contaminated by two galaxies along the line of sight; cD galaxy not at the centre of the
X–ray potential well and contaminated by nearby galaxies; very low and compact surface
brightness distribution. Therefore, a large range of surface brightnesses are explored with
the BSS algorithm. The selected clusters and group of galaxies are listed in the work of
Giacconi et al. (2002a), except for one object. All extended sources listed in Giacconi et al.
(2002a) are not characterized by an automated procedure. In fact, as shown in previous
Sections, the wavdetect algorithm is not capable to provide a reliable source extent for
low surface brightness sources. A comparison of the detection of these clusters and the
group with the BSS algorithm and the ones listed in Giacconi et al. (2002a) is given.

In Fig. 7.18, the two LSSs are schematically outlined. In panel (a), the plotted points
indicate the αJ2000,δJ2000 positions (degree units) of galaxies from all spectroscopic red-
shifts publicly available in the CDF–S region: Cristiani et al. (2000); Croom et al. (2001);
Bunker et al. (2003); Dickinson et al. (2004); Stanway et al. (2004b,a); Strolger (2004);
Szokoly et al. (2004); van der Wel et al. (2004); Doherty et al. (2005); Le Fèvre et al. (2005);
Mignoli et al. (2005); Ravikumar et al. (2007); Vanzella et al. (2008); Popesso et al. (2009);
Balestra et al. (2010). These spectroscopic campaigns are gathered in the ESO–GOODS
website8. The red and blue filled circles highlight the galaxies located at the two redshifts
bins contributing to the discovered LSSs. Four black crosses indicate the positions of the
analysed sample. As shown in panel (b), the frequency distribution of the detected galaxies
has two predominant peaks centred at the two redshifts contributing to the two LSSs. In
panel (a), the structure at z = 0.735 shows a filament crossing the image and characterized
by one knot at the centre of the image. At this position, a group of galaxies is located.
The X–ray emission of this group of galaxies has a very compact structure. A cluster of
galaxies, located most North in the image, is characterized by the same redshift as the

8http://www.eso.org/sci/activities/projects/goods/MasterSpectroscopy.html



7.2 Performance of the BSS algorithm on the CDF–S region 177

Figure 7.18: Panel (a): Sources with spectroscopic redshifts in the CDF–S region. Points,
red and blue filled circles indicate all data, data with z ∼ 0.679 and z ∼ 0.735, respectively.
Panel (b): histogram of data in panel (a) in the redshift range [0.5− 0.8]. The two highest
peaks indicate the density of galaxies in the two LSSs, located at redshifts 0.679 and 0.735.

previous one and lies on the same filament structure as the cluster located at the image
centre. This cluster, located most North, is contaminated by neighbouring galaxies that
are characterized by different redshifts. The other LSS at z = 0.679 does not show any
knot. The clusters of galaxies analysed at this redshift are located in the centre-right–hand
side of the image. The morphology of these two clusters is complex. Hence, these clusters
are dynamically young and in a phase of formation.

The fluxes and the luminosities in the soft (0.5 − 2.0 keV) energy band are computed
for these extended sources. The same scheme described in Sections 6.2.3 and 6.2.4 is fol-
lowed. Specifically, galaxy clusters and groups are assumed to exhibit a thermal Raymond–
Smith spectrum (Raymond and Smith, 1977) with the temperature kT = (1.0 − 1.7)
keV (Lehmer et al., 2005; Giacconi et al., 2002b) and solar abundance ratio of 0.2 − 0.3
(Mushotzky, 1996; Giacconi et al., 2002b). Note that the instrumental response function
is encoded in WebPIMMS. However, the quantum efficiency of ACIS CCDs varies with
time and for each observation (Virani et al., 2006). Hence, only approximate values of
fluxes and consequently of luminosities are provided.

The mean surface brightness is computed for the selected sample of clusters and group
of galaxies. The computation of the mean surface brightness is explained in Section 6.2.4.

Color composite images combining optical imaging are used to give evidence of the BSS
detection of the selected clusters and group of galaxies (Figs 7.20, 7.23 and 7.25). Compos-
ite images in optical band are used to enhance the contrast of (red) group galaxies against
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the background (blue) galaxy distribution (Rosati et al., 2002b). Specifically, optical data
from the Wide Field Imager (WFI) at the MPG/ESO 2.2m–telescope on La Silla, Chile,
are used in Figs 7.20, 7.23 and 7.25 (panel a). Each image is obtained combining B, R
and I filters. Panel (b) of Fig. 7.25, shows instead an image from the advanced camera for
surveys (ACS) on board of the Hubble Space Telescope, combining b, v, i, z filters. The
comoving size in units of parsec is provided in square bracket. The comoving size is calcu-
lated as a function of the given angular scale, known redshift, H0 = 70 km s−1 Mpc−1 and
the cosmological parameters Ωm = 0.3 and ΩΛ = 0.7 (Spergel et al., 2003). Contours from
SPMs, obtained analysing the CDF–S 2Ms data with the BSS algorithm, are superposed to
the color composite images to unequivocally prove the detection of a real, gravitationally
bound cluster or group. In each image, square and diamond symbols provide the position
and the value of spectroscopic (see Fig. 7.18 and related text for the full list of references)
and photometric (Wolf et al., 2004, 2008) redshifts measurements, respectively. Green and
magenta symbols highlight member galaxies of groups and clusters. In white are drawn
X–ray detections which are not members of the cluster and group of galaxies.

The BSS technique shows to be a powerful and unbiased tool suited for the search of
galaxy clusters and groups in sky surveys.

Clusters of galaxies with complex morphology In Fig. 7.19, the detection with the
BSS algorithm of two extended low surface brightness sources employing images with differ-
ent depth is shown. Each image is centred at: αJ2000.0 = 03h31m50s, δJ2000.0 = −27◦49′13′′.

In panel (A), a cutout of the smoothed CDF–S 1Ms photon count image is placed for
comparison with the corresponding exposure map, background map and SPMs estimated
with the BSS algorithm employing the exponential prior pdf. A bar of one minute of arc
length is placed in the smoothed image as indication of the image scale. In the exposure
and background maps, dark and light grey indicate a range over 170−600 ks and 0.06−0.21
count pixel−1, respectively. The SPMs at three resolutions (black labels) are displayed.

In panel (B), the upper left–hand image is part of the CDF–S 2Ms data, characterized
by the same pixel scale of ∼ 1 arcsec as the CDF–S 1Ms data in panel (A). In panels
A − B, the SPMs show how the morphologies of the two clusters are detected at different
resolutions and that the BSS algorithm consistently detects these clusters also if the signal–
to–noise ratio is low (i.e., in panel A). At increasing exposure time (i.e., in panel B), more
sources are detected as well as more structures of the two clusters of galaxies.

The cluster of galaxies located most South is listed as XID 645 in Giacconi et al. (2001).
This cluster is detected with the largest source probability at a resolution of 15 arcsec with
the BSS algorithm when analysing the CDF–S 1Ms data. In panel (A), at 15 arcsec reso-
lution two regions are drawn. The regions indicate the location of object XID 645 (more
details about these regions are given in the following lines). An increment in cluster fea-
tures is evident at decreasing resolutions. The hot X–ray emission of the cluster is clearly
detected. At the largest displayed correlation length, the hot medium is connected by a fil-
ament with the other extended feature located to the North of XID 645. The new cluster of
galaxies is indicated with an arrow. Note that the filament is resolved by the BSS technique
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Figure 7.19: Panel (A): Example of detection with the BSS algorithm of two clusters of
galaxies linked by a filament. The clusters of galaxies are XID 645 (Giacconi et al., 2001),
located most South, and a newly discovered, located most North, respectively. The plot in
the upper left–hand side is a zoom in the CDF–S 1Ms image (Fig. 7.1), smoothed with a
Gaussian kernel of 3′′ (soft energy band: 0.5− 2.0 keV). The corresponding exposure map
and the estimated background map are indicated with ’EXP’ and ’BKG’, respectively. The
images in the lower row are SPMs at decreasing resolutions (black labels). All images are
co–centred, covering a fov of ∼ 3′ width and ∼ 2′ height.
Panel (B): As plot A, but analysing with the BSS algorithm the CDF–S 2Ms data (pixel
resolution as CDF-S 1Ms in plot A: 1 arcsec pixel−1).
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analysing the CDF–S 1Ms and the CDF–S 2Ms data sets (panels A − B). The filament
was not visible during the analysis of the four CDF–S 500ks images with the BSS algorithm.

The parameters for the cluster of galaxies located at the position of XID 645 as in
output from the BSS algorithm employing the exponential prior pdf are listed in Table
7.5. The values from the exponential prior pdf are highlighted with an asterisk symbol at
the end of the row. Source parameters of the detected cluster as in output from the BSS
technique are superposed in the SPM at 15 arcsec resolution (panel A) with a continuous
line.

In the CDF–S catalogue (Giacconi et al., 2002a), the modified version of SExtractor
did not detect this object. The wavdetect algorithm detects partially this cluster of
galaxies: catalogued as CXO CDFS J033150.0-274941. The parameters for this object as
given by Giacconi et al. (2002a) are listed in Table 7.6. An asterisk is used to highlight these
values. The parameters for this extended object are improved when employing a modified
version of the wavdetect algorithm (see Section 7.1). As reported in Giacconi et al.
(2002b), XID 645 has parameters listed in Table 7.6 and highlighted with a bflat symbol.
No extent parameter for this object is reported.

The net source counts for XID 645 estimated with the BSS technique (employing the
exponential prior pdf) and the modified wavdetect algorithm are similar. The source
extent parameters, given by the BSS technique, take into account only the brightest region
of the detected cluster of galaxies. The multiresolution analysis, with the BSS algorithm
when employing the exponential prior pdf, shows us that the hot gas extends in a larger
region than the one given from the estimated parameters. Therefore, the detection of
XID 645 is further investigated employing the inverse–Gamma function prior pdf with the
cutoff parameter selected to a value of 0.01 count. The value of the selected cutoff param-
eter is at least by a factor of 10 smaller than the average background. The substructures
arising in the multiresolution analysis are fully detected. The resulting parameters for
this cluster of galaxies are listed in Table 7.5 and are highlighted with a bflat symbol.
In Fig. 7.19, panel (A), the SPM at 15 arcsec resolution provides a region drawn with a
dotted line. It indicates the position and shape parameters for XID 645 employing the
inverse–Gamma function prior pdf. The BSS technique with the inverse–Gamma function
prior pdf provides estimates in source parameters suitable to the extended feature resolved
in the multiresolution analysis. The resolved feature is confirmed not only by the analysis
of the CDF–S 2Ms data with the BSS algorithm (when employing the exponential prior
pdf) but also by, e.g., the work of Szokoly et al. (2004). In fact, two galaxies are found
with spectroscopic redshift of z = 0.679 ± 0.005 in the following locations (see crosses on
SPM at 15 arcsec resolution): (A) αJ2000.0 = 03h31m49.79s, δJ2000.0 = −27◦49′40.0′′; (B)
αJ2000.0 = 03h31m51.66s, δJ2000.0 = −27◦49′30.7′′. The galaxy located in (A) is included in
both regions drawn in Fig. 7.19, while the galaxy in position (B) is only included in the
region obtained with the inverse–Gamma function prior pdf, i.e. it is located within the
region with dotted lines but outside the region with a continuous line. The two prior pdfs
are known to have different sensitivity. The inverse–Gamma function prior pdf improves,
in this case, the parameterization of this object than the exponential prior pdf.
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In Fig. 7.20, the color composite image from WFI telescope, that includes XID 645,
is shown. All spectroscopic data with redshifts similar to the one of the known cluster of
galaxies are indicated with a green square.

The new cluster of galaxy, indicated with an arrow in Fig. 7.19, is located at αJ2000.0 =
03h31m49.996s, δJ2000.0 = −27◦48′40.62′′. This cluster is not listed in Giacconi et al.
(2002a); Luo et al. (2008). For the estimated source parameters provided by the BSS
technique when employing the exponential prior pdf, see Table 7.5. This object is in-
dicated with “new”. In Fig. 7.20, the X–ray emission of the new cluster of galaxies is
corrupted by the presence of two foreground galaxies located at z = 0.179 and z = 0.416,
respectively. The extra emission of those galaxies is detected by the BSS algorithm in the
CDF–S 1Ms and 2Ms data sets: See in Fig. 7.19, the SPM at 8 arcsec correlation length.
Three galaxies are found with photometric redshift of z = 0.64 ± 0.02 (Wolf et al., 2004,
2008). The combination of the X–ray detection shown with the SPM contours and the
identified red galaxies unequivocally proves a real, gravitationally bound cluster. The X–
ray intrinsic luminosity of this new cluster of galaxies is calculated considering the known
photometric z. The resolution for which the source detection occurs indicates that this
object is fainter than XID 645. This is supported by the estimated luminosities. In fact,
this extended source is ∼ 4 times less luminous than XID 645.
Furthermore, in Fig. 7.21, the very recent observation of the CDF–S region with Chandra
4 Ms observing time is shown and zoomed on the two clusters. The 4 Ms data set confirms
the presence of the second cluster of galaxies. The BSS technique is capable to clearly
detect the fainter galaxy cluster already employing the CDF–S 1Ms data set. This is due
to the unique capability of the BSS algorithm of providing a high contrast between back-
ground and sources. Note that the contours of XID645 follow closely the X–ray emission
given by the new observed data set.

The two clusters of galaxies are separated by ∼ 0.5 arcmin on the sky, which corresponds
to a projected distance of 195.1 ± 2.5 kpc. An observational evidence of X–ray emission
from the WHIM connecting the two clusters is provided. Due to the lower precision of the
photometric redshifts than the spectroscopic ones (by at least a factor of 10), a precise
determination of the physical separation along the line of sight is not feasible. In Table
7.4, morphological parameters, X–ray flux and luminosity of this filament are provided
analysing the image and taking into account the two z avaliable separately. Nevertheless,
the observational evidence of the X–ray emission from the filament connecting the two
clusters of galaxies need further assessments employing spectral data. Spectral data allows
one to estimate the temperature of the gas associated with the filament and, consequently,
the density, the entropy and the total mass of the gas in the filament (Werner et al., 2008).
The determination of the mass of the WHIM is essential for improving our understanding
on the “missing baryons” in the universe. Furthermore, properties of the gas can be
compared for consistency with simulations of the densest and hottest parts of the WHIM
(Werner et al., 2008).
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Figure 7.20: Color composite image combining B, R and I optical filters (WFI telescope)
of the X–ray diffuse emission shown in Fig. 7.19. X–ray contours of the SPM at 20 arcsec
resolution, analysing the CDF–S 2Ms data with a pixel scale of ∼ 0.5 arcsec, are overlaid.
Squared regions are public and Silverman et al. (in preparation) spectroscopic redshifts at
0.676 ! z ! 0.683. Diamonds indicate photometric redshifts from Wolf et al. (2004, 2008).
The photometric redshifts confirm that the newly revealed extended source is a cluster of
galaxies located at z = 0.64 ± 0.02. A filament is visible connecting the two clusters of
galaxies. The existence of the filament is not confirmed yet by data in addition to the
X–ray ones. The image covers ∼ 2 arcmin length on the side [∼ 800 kpc]. See text for
more details.
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Figure 7.21: CDF–S 4Ms photon count image in the soft (0.5 − 2.0 keV) energy band,
covering the same fov of Fig. 7.20. The image is scaled to 0− 1 count pixel−1 (the original
data range is 0 − 3901 count pixel−1) and smoothed with a Gaussian kernel of 9”. The
superposed contours are given by the BSS technique, analysing the CDF–S 2Ms data as
reported in Fig. 7.20.
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Table 7.4: Filament characteristics (size, FX, LX and surface brightness) extracted from
the soft (0.5 − 2.0 keV) energy band image of the CDF–S 2Ms data at the photometric
(z = 0.64) and spectroscopic (z = 0.682) redshifts available. See also Fig. 7.19 and text
for more details.

z length width FX LX SB
(Kpc) (Kpc) (erg/s/cm2) (erg/s) (erg/s/cm2/arcmin2)

×10−15 ×1044 ×10−13

0.64 165 82 1.4 ± 0.1 2.44 ± 0.17 1.39 ± 0.09

0.682 170 85 1.4 ± 0.1 2.85 ± 0.2 1.39 ± 0.09

Note: Length and width are the projected distances on the sky. The reported unabsorbed
flux (FX) is calculated assuming a Raymond–Smith spectrum (Raymond and Smith,
1977) with the temperature kT = 0.9 keV (Werner et al., 2008).

Cluster of galaxies contaminated by nearby galaxies The BSS technique is tested
on an area of the CDF–S region where a cluster of galaxies (XID 594, Giacconi et al. 2001)
exhibits a cD galaxy (Fig. 7.22). In the case of XID 594, the cD galaxy is not located at the
centre of the cluster. Additionally, more galaxies are surrounding the cluster of galaxies.
The detection of this cluster of galaxies with the BSS algorithm on the CDF–S 2Ms data is
very similar to the one obtained analysing the CDF–S 1Ms data. The CDF–S 1Ms results
are displayed in Fig. 7.22.

All images in Fig. 7.22 are co–centred and have the same size. The upper left–hand
image is the CDF–S 1Ms photon count data smoothed with a Gaussian kernel of 3 arcsec.
A bar of 0.5 arcmin length is placed to indicate the image scale. Following the CDF–S
smoothed image, five SPMs are located. Their resolution is indicated in the lower right–
hand corner. The output from the BSS catalogue is superposed to the SPM where the
source detection occurred. Evidently, these sources reach a maximum in source probability
at different resolutions emphasizing distinct detections.

In Fig. 7.23, a color composite optical image with superposed the X–ray contours from
the SPM at 20 arcsec obtained with the BSS algorithm analysing the CDF–S 2Ms data
(∼ 0.5 arcsec pixel−1) is shown. Known spectroscopic (see Fig. 7.18 and related text for the
full list of references) and photometric (Wolf et al., 2004, 2008) redshifts are highlighted
for the galaxies member of the LSS at z = 0.735 ± 0.003 (3σ).

In Table 7.7, the estimated source parameters are reported for the sources listed in
Fig. 7.22 as in output from the BSS technique. Note that source 6 is the merging of
sources 3 and 5. The net source counts for source 6 as in output from the BSS technique
results to be the sum of the net source counts estimated for sources 3 and 5. The fluxes for
sources 1 − 4 are calculated employing a conversion factor cf , explained in Section 7.2.3.
The fluxes for sources 5 − 6 are instead calculated as explained in Section 7.1.
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Figure 7.22: Example of detection with the BSS algorithm of a cluster of galaxies (XID
594, Giacconi et al., 2001) in a crowded region. The upper–left hand image is a zoom in
the CDF–S 1Ms photon count data, smoothed with a Gaussian kernel of 3′′. The following
images are SPMs at several correlation lengths (black labels). Each image is centred at
αJ2000.0 = 03h32m09s.4, δJ2000.0 = −27◦42′38.5′′. The images cover a fov of 1.6′ × 1.3′. The
BSS catalogue is superposed to the SPM where sources are detected with the largest source
probability. See text for more details.
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Figure 7.23: Same explanation as for Fig. 7.20, but centred on XID 594 (Giacconi et al.,
2002b) (see also Fig. 7.22). Optical sources that are members of the cluster of galaxies are
characterized by redshifts of 0.732 ! z ! 0.738. The image covers 1.5 arcmin length on
the side [638 kpc]. See text for more details.
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In Table 7.8, the output from the CDF–S catalogue (Giacconi et al., 2002a) is provided
for comparison with Table 7.7. Source 5 is not listed in this table, because this object is
a substructure of source 6, i.e. XID 594. Source 3 instead is listed. In fact, the cD galaxy
is detected by their standard algorithms. Source 6 is instead detected by the modified
version of wavdetect. Note that the net source counts of the listed objects in the two
tables are comparable within the errors. However, the FWHM provided for XID 594 by
Giacconi et al. (2002a) is by a factor of two lower than the one provided by the BSS
algorithm. The luminosity of XID 594 is reported with a value of 4 × 1042h−2

50 erg s−1 by
Giacconi et al. (2002b). This value is similar to the one estimated with the BSS technique.

Very low and compact surface brightness distribution of a group of galaxies
The capabilities of the BSS algorithm is now tested on one of the faintest and more com-
pact group of galaxies so far detected in the CDF–S region: XID 566 (Giacconi et al.,
2001). This known group of galaxies is confirmed by the K20 survey (Cimatti et al., 2002;
Mignoli et al., 2005). The K20 survey is an optical and near–infrared spectroscopic survey
down to K < 20 using ESO Very Large Telescopes and instruments: See Cimatti et al.
(2002) for more details.

In Fig. 7.24, the upper left–hand image is a zoom in the CDF–S 1Ms count image
smoothed with a Gaussian kernel of 3 arcsec. Smoothing is essential in this image in order
to allow an easy visual identification of the Cimatti’s cluster. The original image shows
pixels with values in the range 0 − 6 count in this region. The followings two images are
the corresponding observatory’s exposure map and the estimated background map with
the BSS algorithm. In these two images, dark and light grey indicate values in the range
416−644 ks and 0.15−0.23 count pixel−1, respectively. Six SPMs at decreasing resolutions
(black labels) are provided. The displayed background map and SPMs are results of the
BSS technique employing the exponential prior pdf. For the correlation of neighbouring
pixels, the box filter method with a circle is utilized. The analysis of the CDF–S 2Ms data
with the BSS algorithm is not shown. The results with the CDF–S 2Ms data are similar
to the ones obtained with the CDF–S 1Ms data.

XID 566 is located at the image centre. Note two point–like objects close to the group
of galaxies. These point–like objects are not detected any longer at resolutions lower than
5 arcsec. These objects are a Seyfert 2 galaxy (CXOCDFS J033220.6-274733) at z = 0.670
(Giacconi et al., 2002a; Luo et al., 2008) and a source known in the infrared part of the
electromagnetic spectrum (CDF:[SGC2001] 263; Saracco et al., 2001), located towards the
lower left– and upper right–hand corners of the image, respectively. CDF:[SGC2001] 263
is detected with the BSS algorithm both in the CDF–S 1Ms and in the CDF–S 2Ms data
sets. Source CDF:[SGC2001] 263 is for the first time catalogued as X–ray source. In the
multiresolution analysis, the central source (i.e., the Cimatti’s cluster) shows the typical
features of an extended low surface brightness object. Its source probability reaches a peak
(in this case at 5 arcsec resolution) and then decreases at large correlation lengths. Source
features increase until 15 arcsec resolution. The parameters for this object as in output from
the BSS technique are reported in Table 7.5. The region shapes (without uncertainties)
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are drawn in the SPM of source detection with the largest source probability.
The source parameters reported by Giacconi et al. (2002b) for XID 566 (or CXO CDFS

J033218.1-274719) are given in Table 7.6. The estimated net counts and FWHM are similar
to the ones provided by the BSS technique.

Fig. 7.25 provides two color composite images obtained with optical observations. Each
image is centred on the BSS position provided for XID 566. The image widths are given
in arcminute sizes: 2.5 and 0.5 arcmin for the images in panels (A) and (B), respectively.
The contours of the SPM at 15 arcsec resolution are used to highlight the detected X–ray
emission. The core of the group of galaxies is dominated by red, early–type galaxies. Green
squares are placed to indicate the positions of galaxies at the same redshift of the group
centre. Galaxies at redshift z = (0.735 ± 0.003) are found out to ∼ 1 arcmin far from the
central X–ray emission. Note in panel (A), the SPM contours highlight also the Seyfert 2
galaxy (towards the lower left–hand corner) already commented in Fig. 7.24 and related
text.

In contrast to the cluster of galaxies XID 645 with the most extended surface brightness
distribution, XID 566 is one of the most compact extended object in the CDF–S region.
Nonetheless, the surface brightness of XID 645 is at least by a factor of 10 larger than
the one of XID 566. The Chandra Observatory allows one to study low mass clusters or
groups of galaxies and reveals complex morphologies of the hot gas between the galaxies.
The BSS technique provides for the investigation of the wide range of physical parameters
and the characteristics of the surveyed population with the Chandra satellite.
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Figure 7.24: Example of detection with the BSS algorithm of a compact group of galaxies
(XID 566; Giacconi et al., 2001). The sequence of images follows the same explanation
given for Fig. 7.19, panel (A). Each image is centred at αJ2000.0 = 03h32m18.02s, δJ2000.0 =
−27◦47′19.46′′. The images cover a fov of 1.5′ × 1′. A region is superposed to the SPM at
5 arcsec resolution. The region’s shape indicates position and source extents of the group
of galaxies as in output from the BSS catalogue. The group of galaxies is detected with
the largest source probability at 5 arcsec resolution.
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Figure 7.25: Panel (A): Same explanation as for Fig. 7.20, but centred on XID 566
(Giacconi et al., 2002b) (also shown in Fig. 7.24). This compact group of galaxies is char-
acterized by optical galaxies at redshifts of 0.732 ! z ! 0.738. The image covers 2.5 arcmin
length on the side [1 Mpc]. Panel (B): Detailed ACS image of the central part of panel
(A). The image covers 0.5 arcmin length on the side [126 kpc]. See text for more details.
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7.3 Summary

The BSS algorithm is applied to the CDF–S data sets. The CDF–S region was surveyed
by CXO with 23 pointed observations. All combined observations reach an exposure time
of 2 Ms and cover a sky area of ∼ 0.109 deg2. CCD gaps and the edge of the fov produce
large background variations. The high resolution and the sensitivity of the Chandra Obser-
vatory allows for the detection of faint surface brightness sources. Some of the low surface
brightness sources show complex morphologies. The CDF–S region has been previously
studied in the X–ray regime by Giacconi et al. (2002b); Luo et al. (2008); Alexander et al.
(2003), and by several other surveys (mostly, optical, near–infrared and infrared parts of
the electromagnetic spectrum). Therefore, the CDF–S data provide a test case for assess-
ing the capabilities of the BSS technique on pointed observations.

The BSS technique analysed the CDF–S 1Ms, CDF–S 2Ms and four CDF–S images of
500 ks each. The four CDF–S 500ks data sets have been extensively analysed. The BSS
algorithm is fully exploited. A large range of correlation lengths are used.

The BSS background models of the CDF–S data sets are assessed on the image without
data censoring. Each background model is well–defined on the whole fov and is strongly
dominated by the satellite’s exposure time. No contaminations due to CCD gaps or to
the steep change in the exposure time map are shown in any background map or SPM.
The dynamic searching technique of the multiresolution analysis provides for the detection
of a wide range of source fluxes. SPMs at several correlation lengths clearly reveal the
detections of point–like or extended sources and their morphologies.

The BSS analysis of the four CDF–S 500ks images is compared to the one with the
wavdetect technique. The wavdetect technique is commonly used for image analysis
of CXO data sets. The wavdetect technique is run with very conservative values of both
scales and significance threshold, in order to provide for a clean sample.

In contrast to the wavdetect algorithm, the BSS technique gives the following ben-
efits: 1. well–defined background model; 2. no systematic errors on estimates of source
parameters; 3. the residual errors are 30% smaller than the ones found with the wavde-
tect technique especially for source positions and extent; 4. errors on extent parameters
are reported; 5. source counts are improved. This is supported also by simulated data:
See Chapter 5 for more details; 6. detection of 40% more faint sources than the ones found
with the wavdetect technique for the test run on real data; 7. detection of clusters and
groups of galaxies. No false–positives in source detection are found for both techniques.

The detection of clusters or groups of galaxies is an hot topic in astrophysics. The
importance of detecting clusters or groups of galaxies in the X–ray regime on a large
sample and their morphologies is explained. The BSS technique is shown to outperforms
the currently used techniques for the detection of these rare massive objects.

A wide range of fluxes for clusters or groups of galaxies are investigated with the BSS
technique analysing the CDF–S data. The BSS technique is capable to detect clusters and
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groups of galaxies with complex morphologies (as XID 645, Giacconi et al. 2002b), with
a cD galaxy not located at the centre of the cluster of galaxies and with contaminations
from close by galaxies (as XID 594, Giacconi et al. 2002b), with compact morphology (as
XID 566, Giacconi et al. 2002b). The BSS technique detects also a filament connecting
XID 645 to a secondary cluster of galaxies. Previous to this analysis, the second cluster of
galaxy and the filament were unknown.

Moreover, the BSS algorithm is tested applying two prior pdfs of the source signal. The
inverse–Gamma function prior pdf improves the detection of complex morphologies and
their substructures, as for XID 645, with respect to the exponential prior pdf. Previous
analyses in the X–ray regime did not detect these morphologies and their substructures.
Spectroscopic studies (e.g., Szokoly et al. 2004) support the conclusion that the detected
substructures are part of the same X–ray emission.

The BSS technique is a suitable tool for the analysis of data coming from a new gen-
eration instruments. So far, the BSS algorithm provides information of source properties,
such as position and fluxes. From these observables, one wants to investigate the nature
of the surveyed population. The space density of a surveyed population, e.g. clusters or
groups of galaxies, as a function of flux (logN–logS) is needed to set constraints on the
cosmological evolution.

Classic techniques are employed to study the sky coverage and the logN–logS distri-
butions from the BSS catalogued data of the CDF–S 500ks images only for point–like
sources. The resulting logN–logS distributions are similar to the ones obtained by pre-
vious analyses on the CDF–S 1Ms and CDF–S 2Ms data. However, selection effects and
measurements errors are not accounted into the analysis. Consequently, the distributions
of the source number counts are distorted especially at the faintest fluxes. A forward tech-
nique is proposed in survey data analysis for accurately accounting the uncertainties in
source parameters and selection distortion: See Chapter 8. The proposed technique, for
deriving the source number counts per deg2, is applicable for both point–like or extended
sources. This proposed technique and the entire catalogue of clusters or groups of galaxies
can be part of a future project.



Chapter 8

Concluding remarks & Outlook

In this Chapter, comments drawn from the main results obtained in this thesis are given
in Section 8.1 and an outlook is provided based on the given work in Section 8.2.

8.1 Concluding remarks

A general, powerful and flexible Bayesian technique for background and source separation
is developed. The technique is general since it is applicable to astronomical images coming
from any count detector. The aim of providing more reliable results, with respect to
previous techniques, for faint and/or extended sources is achieved and makes for a powerful
algorithm. The technique is flexible, because it can easily be extended to other statistics
(e.g., Gaussian statistics) and astronomical problems in image analysis (e.g., data cubes of
spectral analysis).

Employing BPT, an algorithm is created to obtain, under appropriate assumptions, the
optimal solution of the ill–posed inverse problem encountered in image analysis. The BSS
algorithm tackles the problem of source detection straightforwardly. In contrast to previous
source detection methods, the BSS technique does not censor the data for background
estimation and source detection. Hence, the BSS algorithm does not need thresholding to
reduce the number of expected spurious detections (as the wavdetect algorithm) and a
punctured image (as the sliding window technique) for the background estimation. The
BSS algorithm is capable to cope with steep gradients in the data. For the detection of
point–like and extended sources, images are not analysed in sequential steps. The BSS
technique detects point–like and extended sources on the original image data, providing a
proper propagation of uncertainties of the experimental measurements.

The BSS background model is more reliable than the ones obtained with standard
methods both for survey data and for pointed observations. Due to the fine background
model, the developed Bayesian method is expected to handle consistently the hetero-
geneities present in astronomical images composed by a mosaic of images.

Point–like and extended sources are detected independent to their morphology and the
kind of background. The applications to simulated and real data have shown that the BSS
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technique improves the detection of sources and their structural parameters, especially the
ones with low surface brightness, with respect to standard techniques. New X–ray sources
have been discovered.

The BSS algorithm can be applied to large data volumes, e.g. surveys from X–ray
missions. The BSS technique is not restricted to the objects detected in this thesis (such
as quasars, galaxy clusters and groups, galactic SNRs, cataclysmic variables), but also
to the study of other faint celestial objects in galactic and extragalactic astronomy. In
galactic astronomy, the BSS algorithm can be employed, e.g., for the study of compact
stars (such as neutron stars and pulsars); stars (e.g. brown dwarfs); binary stars containing
a white dwarf, neutron star or black hole; objects embedded in diffuse emissions (like
pulsars) and their emissions; open clusters proper motion even when the celestial objects are
embedded in nebulosity. In extragalactic astronomy, the BSS technique can be utilized for
the investigation of AGNs, SNRs and for the identification of sources presenting extended
surface brightness (like clusters or groups of galaxies) in sky surveys. Furthermore, the
multiband analysis developed within the BSS technique allows one to investigate several
celestial objects (such as AGNs) whose nature becomes obvious when studied at different
wavelengths.

The BSS technique is particularly appropriate for the analysis of images of a new gen-
eration instruments. This is of major importance today, because “The development of new
observation options goes hand in hand with attempts to answer fundamental astrophysical
questions” (Burkert et al., 2008), such as the formation of the universe and the distribution
of the matter in the universe.

8.2 Outlook

Survey data analysis Previous works for survey data analysis in the X–ray part of the
electromagnetic spectrum show to not properly account for measurement errors of source
fluxes and for selection bias. The logN–logS distribution for the surveyed population (e.g.,
clusters or groups of galaxies, AGNs) is often derived empirically, as shown in Chapter
7. The points drawn in the logN–logS distribution are estimates that are characterized
by uncertainties, but the uncertainties of source fluxes are not accounted into the analysis
(Fig. 7.13). Usually, the logN–logS distribution shows a cutoff at low and large fluxes.
The cutoff at low fluxes arises because surveys are flux limited and a cut is set as a
detection limit. A threshold is set at the bright end in order to avoid contaminations by
stars. Particular attention is given to the faint end, where sometimes the curve bends
before the cut, providing ambiguous results. Furthermore, the distance of the detected
objects (from spectral observations) can be used with the source count distribution as
a function of the flux to study the luminosity function of the surveyed population with
respect to their distance and to analyse the spatial distribution of the surveyed population.
Nonetheless, the XLF is often derived only for sources characterized by more then 30 net
counts. An accurate analysis of survey data is crucial to maximize the scientific return
from the extensive resources devoted to surveys: See, e.g., the work of Loredo (2004).
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Source number counts for different populations of X–ray sources can be studied em-
ploying BPT. Following the work of Loredo (2007), a Bayesian technique for the estimation
of the logN–logS distribution can be developed in order to take into account, in one unique
algorithm, measurement uncertainties of source fluxes, sky coverage, and selection effects
when making inference about the entire population or different sub–populations of X–ray
sources.

Physics governing the evolutionary processes of clusters and groups of galax-
ies The BSS technique demonstrated to be a suitable tool to detect galaxy clusters and
groups also in cases of strongly varying background and for a wide range of source surface
brightnesses, revealing complex or compact morphologies. In Chapter 7, future researches
applicable surveying a large sample of clusters and groups of galaxies are described.

- Study of the gas distribution within clusters, that is related to the dynamical state
of the system. Morphological studies of these rare objects contribute to our under-
standing in the nature of the hot gas;

- Analysis of filaments connecting clusters allows one to improve our knowledge on the
amount of baryonic matter in the local universe;

- The space density of galaxy clusters and groups at different redshifts can be de-
termined. In fact, a quantitative analysis of the abundance of clusters and groups
of galaxies as a function of z allows one to constrain cosmological parameters and
to test the models of structure formation. In addition, the red–sequence technique
(Rosati et al., 2009) can be used to identify galaxy clusters and groups in order to
confirm the X–ray detection.

The reader is addressed to Chapter 7 for more details.

Background modelling The BSS algorithm improves the background model with re-
spect to standard techniques employed for X–ray surveys (see Chapters 5, 6 and 7). So
far, the background is modelled with a two–dimensional spline function with the number
of spline’s supporting points chosen equally spaced or selected in specific regions of the
analysed image. The flexibility of the Bayesian technique allows for further developments.
The background model can be extended employing adaptive supporting points: The num-
ber of spline’s supporting points and positions are free parameters and are automatically
adapted by the data to the astronomical image. This study would improve automatism for
the background model, especially, for survey missions, e.g. the forthcoming all–sky survey
with the eROSITA (extended Röntgen Survey with an Imaging Telescope Array) satellite
(Predehl et al., 2006).

Crowded fields The application to real data demonstrated that the BSS technique
is capable to separate close by objects, faint sources close to bright sources, and sources
superposed to a diffuse emission. Source confusion in crowded fields may still be a problem.
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In the frame of BPT, following the work of Fischer and Dose (2002), the two–component
mixture model can be extended to a variable number of components. Special problems
such as the analysis of crowded fields (e.g., in rich clusters or the Galactic center) could
be solved.

Source fitting routine The BSS algorithm is capable to detect point–like and extended
sources equally well. Estimates in source parameters are improved with respect to standard
techniques (see Chapters 5, 6 and 7). The technique for source characterization (Section
2.3) can be extended employing Bayesian model selection. With the Bayesian model selec-
tion analysis, the most suitable model describing the photon count profile of the detected
sources can be found. The models to be employed are, for instance, instrumental point
spread function (PSF) model, Gaussian profile, King profile, de Vaucouleurs model and
Hubble model. The proposed extension to the existing method would allow an improve-
ment in the estimation of the shape parameters and their uncertainties for faint or extended
sources.

Probability of a source to be extended As shown in Chapter 7, standard techniques
employed so far for providing evidence for an object to be extended are not accounting for
the source full dimensionality. With BPT, a probability of a source to be extended can
be provided comparing volumes of the detected source with the one of the instrumental
PSF. This challenging task is linked to the previous proposal since uncertainties of source
parameters are crucial for estimating a probability of a source to be extended.

Extension to other statistics The BSS technique can be applied to other wavelengths
(Section 2.2.1). The statistic suited for the description of a new data set has to be incor-
porated in the models.

The BSS technique can be extended,e.g., to Gaussian statistics. If Gaussian statistics
is included, the BSS technique can be applied for a large variety of science projects also
in extreme cases when faint objects are difficult to discriminate against the background.
For instance, the proper motion of open clusters can be studied also when the stars are
embedded in molecular clouds. The investigation of open cluster systems gives important
insight in the Galaxy dynamics. Another application is the search of the central star in
galactic planetary nebulae. Some central stars are not located properly at the centre of
the nebulosity, sometime the nebulosity is too bright and the central star is identified with
large errors in parameter estimates (Kerber et al., 2003). The BSS technique, extended
to Gaussian statistic, would allow a proper census of galactic planetary nebulae and their
’central’ star.



Appendix A

Inverse–Gamma distribution

In the following appendix, supplementary material concerning the inverse–Gamma function
prior pdf, introduced in Chapter 2, is given. In Section A.1, the inverse–Gamma function is
compared to the power–law distribution. In Section A.2, the calculations for the marginal
Poisson distribution for source detection are shown when employing the inverse–Gamma
function prior pdf.

A.1 Relation between inverse–Gamma and power–law
distributions

The inverse–Gamma distribution is a continuous probability distribution described by a
positive variable and two parameters. It derives from the Gamma distribution with the
variable described by its reciprocal.

The Gamma distribution is defined as:

p(x|α, θ) =
xα−1exp(−x/θ)

θαΓ(α)
, for x > 0, α > 0, θ > 0. (A.1)

α and θ are the shape and the scale parameters, respectively. Note that the gamma function
is defined as Γ(n) =

∫ ∞
0 un−1exp(−u)du for n > 0. The gamma function is used to derive

the gamma distribution. The denominator in eq. (A.1) is the normalization factor obtained
integrating over the numerator.

The inverse–Gamma function is derived from eq. (A.1), replacing x = 1/y and β = 1/θ:

p(y|α, β) = y−α−1exp(−β/y)
βα

Γ(α)
, for y > 0, α > 0, β > 0. (A.2)

β, the scale parameter, is also known as rate parameter.
The inverse–Gamma distribution is of interest since it allows the prior of the source

signal to be described by a power–law. However, the inverse–Gamma function has two
components: a power–law distribution and an exponential function. Figure A.1 shows
that only small values of β allows the inverse–Gamma function to behave as a power–law
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Figure A.1: Panel (a): power–law and exponential components of the inverse–Gamma
function, eq. (A.2). Panel (b): inverse–Gamma function distribution with N indicating the
normalization factor. Panels (a) and (b) contain the same parameter values.

distribution. In panel (a), the power–law and the exponential components of the inverse–
Gamma function are drawn separately. The power–law and exponential components are
plotted with values of α = 1.5 and β = 0.01, 0.1, 1. In panel (b), the inverse–Gamma
function behaves as the power–law only for values of β < 1.

Note that the inverse–Gamma function distribution, as defined in eq. (2.23), derives
from eq. (A.2): α is replaced by α − 1 and y indicates the number of counts per pixel. In
addition, the inverse–Gamma distribution is not defined for values of y = 0. Hence, the
prior pdf of the source signal attributes to the background all pixels presenting no counts.

A.2 Derivation of the marginal Poisson likelihood

The marginal Poisson likelihood, as given by eq. (2.23), is the mathematical solution of
eq. (2.19):

p(dij|Bij, bij,α, a) =

∫ ∞

0

(bij + sij)dij

dij!
exp(−bij − sij)s

−α
ij exp

(
− a

sij

) aα−1

Γ(α − 1)
ds. (A.3)

The mathematical solution to the integral is obtained employing the binomial expansion
of (bij + sij)dij =

∑dij

k=0
dij!

k!(dij−k)!b
dij−k
ij sk

ij. Equation (A.3) is written as follow:

p(dij|Bij, bij,α, a) =
aα−1

Γ(α − 1)

∫ ∞

0

dij∑

k=0

b
dij−k
ij sk

ij

k!(dij − k)!
exp(−bij − sij)s

−α
ij exp

(
− a

sij

)
ds

=
aα−1

Γ(α − 1)

dij∑

k=0

b
dij−k
ij exp(−bij)

k!(dij − k)!

∫ ∞

0

sk−α
ij exp

(
− sij −

a

sij

)
ds. (A.4)
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The Bessel function of imaginary argument, Kν(z), defines
∫ ∞

0 xν−1exp
(
− β

x − γx
)
dx =

2(βγ )ν/2Kν(2
√
βγ), with R β > 0 and R γ > 0. Hence, eq. (A.4) can be written as follow:

p(dij|Bij, bij,α, a) =
aα−1

Γ(α − 1)

dij∑

k=0

b
dij−k
ij exp(−bij)

Γ(k + 1)Γ(dij − k + 1)
2a

k−α+1
2 Kk−α+1(2

√
a)

=
2

Γ(α− 1)
exp(−bij)

dij∑

k=0

a
k+α−1

2
b
dij−k
ij

Γ(k + 1)Γ(dij − k + 1)
Kk−α+1(2

√
a). (A.5)

Equation (A.5) provides the marginal Poisson likelihood as reported in eq. (2.23).
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Appendix B

The spline model

In this appendix, spline functions are explained and details about the TPS are given.

B.1 Introduction

Splines are a broad class of functions used in diverse domains of numerical analysis, such
as interpolation, data smoothing, numerical solution of differential and integral equations.
In this thesis, splines are used as an interpolant of the background over scattered data in
image analysis. Between the available spline functions, the RBF is chosen.

Historically, in the works of Schoenberg (1964b,a) (Wahba, 1990) is shown that a smooth
function of degree k > 0, f (k)(x), can be found with k − 1 continuous derivatives and k-th
derivative square integrable, to minimize

∫ b

a

[f (k)(x)]2dx, (B.1)

subject to f(xi) = fi with i = 1, 2, . . . , j indicating the pivots. Provided j ≥ k, this min-
imizer is the unique natural polynomial spline satisfying the conditions of continuity and
differentiability, given that the function goes through the supporting points. Schoenberg
called this object a spline, due to its resemblance (when k = 2) to the mechanical spline
used by draftsmen. The mechanical spline is a thin strip used to draw curves. Weights
were placed on the strip to force it to go through given points. The free portion of the strip
would assume a position in space that minimizes the (two–dimensional) bending energy.
With k = 2, the quantity (B.1) is the (one–dimensional) curvature.

Commonly, the term spline is related to the restricted setting of one–dimensional poly-
nomial splines (piece–wise polynomial functions). The piece–wise polynomials are often
cubic functions (e.g., B–splines) defined on a finite interval [a, b] and satisfing f (j)(a) =
f (j)(b) = 0, with j = k, . . . , 2k − 1: See,e.g., Dierckx (1995) for more details.

A natural generalization of univariate polynomial splines to the multivariate settings
are given by RBFs. The RBF is particularly suited to model data in more than one
dimension. The main advantages of the RBF are: The high accuracy to the approximated
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target function; The support points are not necessarily restricted on a mesh. Last, RBFs
are popular for interpolating scattered data as the associated system of linear equations is
guaranteed to be invertible under very mild conditions on the locations of the data points
(Carr, 2003). An RBF is, in general, a function of the form:

s(x) =
N∑

j=1

λjΦ(|x − xj|),

where x is a point in d space dimensions and the basis function Φ is a real valued function
on [0,∞), usually unbounded and of non–compact support, defined on a vector space of
functions f(x). The λj are called weights and the xj are the centres of the RBF. The centres
are scattered data points (pivots). The values of the RBF depends on the distance from
the pivots.

Among the possible choices on Φ(r) for fitting smooth functions of two variables, Φ(r)
is represented by a TPS: Φ(r) = r2lnr or Φ̃(r) = r2lnr2. The theoretical foundations for
the TPS were laid by the works of Duchon (1975, 1976, 1977) and Meinguet (1979).

A low order polynomial is added to s(x) and some mild extra conditions (
∑N

j=1 λj = 0,
∑N

j=1 λjx = 0,
∑N

j=1 λjy = 0) are applied in order to guarantee the unique existence of the
interpolants.

In Section B.2, it is demonstrated that if f(x) is the smoothest of all possible inter-
polating curves (i.e., it minimizes the integral of the square of the second derivatives),
than also s(x) is the smoothest of all possible interpolating curves. This demonstration is
carried out in the simplest case of employing a 3rd order polynomial.

In Section B.3, the Laplace equation is used to demonstrate that the conditions for the
minimum are satisfied for a two–dimensional function if the 2nd order derivatives exist and
are continuous. In this Section it is also demonstrated that the TPS is a solution of the
Euler–Lagrange equation, also when adding a plane to the TPS.

In Section B.4, the interpolation problem using a TPS is shown to be valid only taking
into account three extra conditions.

The demonstrations are following private communications with Prof.Dr. Dr.h.c. Volker
Dose.

B.2 Interpolation in one dimension space

Be f(x) a real–valued function defined on a finite interval [a, b]. The global curvature of
f(x) is defined as:

c1 =

∫ b

a

|f ′′|2dx. (B.2)

The minimum of the global curvature is searched to identify the smoothest of all possible
interpolating curves (Lagrange problem). The functional Φ = (f ′′)2 has to be minimized
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over a set of admissible functions f (i.e., c1 =
∫ b

a Φ(f(x), f ′(x))dx), and with fixed boundary
conditions (f(a) = fa, f(b) = fb). In order to minimize f(x) a small deviation δf(x) is
considered in standard calculus. The condition for the minimum to be satisfied is:

δc1 =

∫ b

a

[Φ(f + δf, f ′ + δf ′) − Φ(f, f ′)]dx = 0. (B.3)

The integrand in eq. (B.3) can be expanded, resulting:

∫ b

a

[
∂Φ

∂f
δf +

∂Φ

∂f ′ δf
′]dx = 0. (B.4)

Integrating by parts, eq. (B.4) becomes:

δc1 =

∫ b

a

[
∂Φ

∂f
− ∂

∂x
(
∂Φ

∂f ′ )]δf(x)dx = 0, (B.5)

that is satisfied only if:
∂Φ

∂f
− ∂

∂x
(
∂Φ

∂f ′ ) = 0. (B.6)

Expression (B.6) is the Euler–Lagrange equation, well–known in classical mechanics.

The function f(x) can be represented with a 3rd order polynomial. Employing f(x), it is
possible to demonstrate that the minimum property is conserved if the spline function s(x):
1) is a piece–wise 3rd order polynomial; 2) is two times continuosly differentiable; 3) takes a

particular value yi at the point xi if are satisfied the auxiliary conditions:
∫ b

a |f ′′−s′′|2dx ≥ 0

and
∫ b

a |f ′′|2dx ≥
∫ b

a |s′′|2dx.
Considering the following:

∫ b

a

|f ′′ − s′′|2dx =

∫ b

a

(|f ′′|2 − |s′′|2)dx − 2

∫ b

a

(f ′′ − s′′)s′′dx, (B.7)

the proof is given when demonstrating that the last term in eq. (B.7) assumes a null value:

∫ b

a

(f ′′ − s′′)s′′dx =
N−1∑

i=0

∫ xi+1

xi

(f ′′ − s′′)s′′dx, (B.8)

integrating by parts:

∫ b

a

(f ′′ − s′′)s′′dx = [f ′(b) − s′(b)]s′′(b) − [f ′(a) − s′(a)]s′′(a) = 0. (B.9)

Equation (B.9) is null only if the following conditions are satisfied: s′′(b) = s′′(a) = 0
or f ′(a) = s′(a) or f ′(b) = s′(b) Q.E.D. Hence, s(x) satisfies also the condition for the
minimum.
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B.3 Interpolation in two dimensions

The global curvature of a real–valued function f(x, y) is defined as:

c2 =

∫ ∫
(f 2

xx + 2f 2
xy + f 2

yy)dxdy.

The aim is to determine the minimum of c2, i.e. the minimum of all possible global curva-
tures. Therefore, the smoothest of all possible interpolating curves is searched:

c2 =

∫ +∞

−∞

∫ +∞

−∞
(f 2

xx + 2f 2
xy + f 2

yy)dxdy ≥ 0 ≡ minf . (B.10)

No analytic solutions are known on a finite support for this integral.
Φ = f 2

xx + 2f 2
xy + f 2

yy is defined as the penalty functional, function of which one wants to
measure the minimum. The Euler–Lagrange equation is used as derived for higher–order
derivatives:

δΦ

δf
=

∂Φ

∂f
−

∑

i

∂

∂xi

∂Φ

∂fxi

+
∑

i,k

∂2

∂xi∂xk

∂2Φ

∂fxi∂fxk

. (B.11)

In particular δΦ
δf = 0 has to be satisfied in order to have the minimum of Φ. From eq. (B.11),

where ∂Φ
∂f = 0 and ∂Φ

∂fxi
= 0, it follows:

δΦ

δf
=

∑

i,k

∂2

∂xi∂xk
(2fxx + 4fxy + 2fyy) = 2

∂2

∂x2
fxx + 4

∂2

∂x∂y
fxy + 2

∂2

∂y2
fyy. (B.12)

In order to demonstrate that δΦ
δf = 0 in equation (B.12), the Laplace’s equation is consid-

ered:

2f = ∇2f = 2{∂
2f

∂x2
+

∂2f

∂y2
} = 0,

this is the differential equation from which the required function can be obtained: 2f =
∂2

∂x2 fxx + 2 ∂2

∂x∂yfxy + ∂2

∂y2 fyy = 0 Q.E.D.
Therefore f(x, y) is an analytic function and solution of Laplace’s equation with the con-
ditions that the second derivatives exist and are continuous.
From eq. (B.10), a minimum can be obtained if all terms under the integral vanish:

∂2

∂x2
fxx + 2

∂2

∂x∂y
fxy +

∂2

∂y2
fyy = 0 → absolute minimum.

If a plane E(x, y) = αx+βy+γ is added to the functional Φ, the Euler–Lagrange equation
is still satisfied: f(x, y) → f(x, y) + E(x, y).

Now it is possible to show that f(x, y) = r2ln(r2), where r is the distance of radially
symmetric basis, is a solution of the Euler–Lagrange equation.
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The Laplace’s equation can be rewritten in polar coordinates (2 = 1
r
∂
∂rr

∂
∂r ):

2f =
1

r

∂

∂r
r
∂

∂r
[r2ln(r)] = 4ln(r) + 4,

22f = 4
1

r

∂

∂r
r
∂

∂r
[ln(r) + 1] = 0 ∀ r 4= 0.

If r → 0, instead, a value ε → 0 is considered:

∫
22f(r)dA =

∫ ε

0

22f rdr

∫ 2π

0

dϕ = 8π,

without dependency on ε. Q.E.D.

B.4 Interpolation using TPSs

The interpolating function over scattered data has been chosen to be:

s(x) = E(x) +
N∑

l=1

alf(x − xl),

where x = (x, y). E(x) is the added plane.
∑N

l=1 alf(x − xl) is the sum of basis functions
centred on the pivots positions (xi).
The requirements necessary for succeeding in the interpolation are:

- the function s(x) goes through the support points: s(xi) = zi,

- c2 =
∫ ∫

(f 2
xx + 2f 2

xy + f 2
yy)dxdy ≡ minf .

The function f(x, y) is defined as:

f(x, y) = {(x − xi)
2 + (y − yi)

2} · ln{(x − xi)
2 + (y − yi)

2} = R2
i · lnR2

i

and f = r2lnr, or f̃ = r2lnr2, is identified. The conditions to impose to f(x, y) are now
investigated in order to satisfy the condition of a finite integral. Therefore the partial
derivatives are solved:

• 1
2fxy = 2 (x−xi)(y−yi)

R2
i

,

• 1
2fxx = lnR2

i + 2 (x−xi)2

R2
i

+ 1,

• 1
2fyy = lnR2

i + 2 (y−yi)2

R2
i

+ 1.
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The partial derivatives for s(x) are following:

1

2
sxx =

N∑

i=1

aifxx =
N∑

i=1

ai[lnR2
i + 2

(x − xi)2

R2
i

+ 1], (B.13)

1

2
syy =

N∑

i=1

aifyy =
N∑

i=1

ai[lnR2
i + 2

(y − yi)2

R2
i

+ 1], (B.14)

1

2
sxy =

N∑

i=1

aifxy =
N∑

i=1

ai
2(x − xi)(y − yi)

R2
i

. (B.15)

In order to have a converging integral, some necessary (but not sufficient) conditions
are introduced. First, in order to have s(x) finite, the “1” in eqs (B.13), (B.14) has to
vanish. Therefore the following condition has to be satisfied:

N∑

i=1

ai = 0 (B.16)

which reduce the number of pivots. Eq. (B.13) can be written as follow:

1

2
sxx =

N∑

i=1

ai[lnR2
i +

2

R2
i

r2

r2
(x − xi)

2 − lnr2]

where r2 = x2 + y2 and
∑N

i=1 ailnr2 = 0. The fractional term can be written as:

R2
i

r2
= 1 +

x2
i + y2

i

r2
− 2

r2
(xxi + yyi)

where r is finite. The case when r goes to ∞ is investigated too. One can define:

R2
i

r2
= 1 +∆i,

where ∆i = x2
i +y2

i
r2 − 2

r2 (xxi + yyi) is a small term. These definitions are used to calculate:

1

2
sxx =

N∑

i=1

ai[lnR2
i +

2

r2

r2

R2
i

(x − xi)
2 − lnr2] =

N∑

i=1

ai[ln(1 +∆i) +
2

r2
(1 −∆i)(x − xi)

2].

Developing the calculations and using the first necessary but not sufficient condition,
eq. (B.16), one obtains:

1

2
sxx =

1

r2

N∑

i=1

ai[3x
2
i − 6xxi − 2yyi + y2

i ].
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In order to have the integral converging, two more conditions have to be introduced:

N∑

i=1

aixi = 0,

N∑

i=1

aiyi = 0.

So that sxx = 0, where sxx = 2
∑N

i=1 aifxx. Therefore the conditions of existence for the
interpolation function on the pivots are:






∑N
i=1 ai = 0,∑N
i=1 aixi = 0,∑N
i=1 aiyi = 0.

Note the asymptotic behavior of the TPS when pixels positions coincide with the pivots
positions.
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Appendix C

Minimization procedure for the
background model

In this appendix, details about the minimization procedure employed for the background
model are given.

C.1 Introduction

In order to determine the optimal form and characteristics of the background model that
corresponds most closely to the one arising from the data, a procedure designed for min-
imizing a smooth nonlinear function is employed. Therefore, the negative value of the
logarithm of the posterior pdf of the background (see Section 2.2.3 for more details) is
sought, which is the objective function of the optimization routine. Constraint functions
are used. The objective function and the constraint functions are smooth, i.e. at least
twice-continuously differentiable. The objective function is a single measure of goodness,
which depends on the parameters entering the model. The constraint functions are evalu-
ated at the support points positions. For a pixel position (i, j), the constraint function is
given by the TPS amplitude:

bij = {
Np∑

k=1

λkr
2log(r2) + c0 + c1xij + c2yij}× Eij. (C.1)

r represents the distance between the pixel position {ij} and the k–th pivot. Eij is the
telescope’s exposure time at the pixel position {ij}. The role of the constraint function is
to ensure a positive background.

For maximum reliability of the employed procedure, all partial derivatives of the ob-
jective function and of the nonlinear constraints function are provided. In the following
paragraphs, the partial derivatives for the objective function are given for each prior pdf
of the source signal employed.
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Partial derivatives for objective function: inverse–Gamma function prior case.
Considering the case of selecting the inverse–Gamma function prior pdf, the likelihood for
the mixture model can be written as follow:

p(D|b, β,α) =
∏

ij

{
β

b
dij

ij

dij!
e−bij +2(1−β)

e−bij

Γ(α − 1)

dij∑

k=0

a
α+k−1

2 b
dij−k
ij

Γ(dij − k + 1)

Kk−α+1(2
√

a)

Γ(k + 1)

}
. (C.2)

The objective function F is a function of the transformed variables: F = F (s1, . . . , sNP).
The scaled pivots amplitudes are a function of the original variables: sp = sp(zp), with
p = 1, . . . , Np.
Therefore the individual objective gradients are given by:

∂F

∂sp
=

1

SF

∂F

∂zp
, (C.3)

where SF is the scaling factor used to obtain the transformed variables from the original
ones.
Because the background amplitudes are a function of the support points, the gradient on
the right hand side of eq. (C.3) can be written as follows:

∂F

∂zp
=

∑

µν

∂F

∂bµν

∂bµν

∂zp
. (C.4)

After computing the two partial derivatives in eq. (C.4), the solution to equation (C.3) is:

∂F

∂sp
=

1

SF

∑

µν

(
− 1

fµν

){ βe−bµν

Γ(dµν + 1)
bdµν
µν

(dµν

bµν
− 1

)

+
2(1 − β)

Γ(α− 1)
e−bµν

dµν∑

k=0

a
α+k−1

2

Γ(dµν − k + 1)

kk−α+1(2
√

a)

Γ(k + 1)
b(dµν−k)
µν

(dµν − k

bµν
− 1

)}

×Eµν

{ NP∑

j=1

[(xµν − xj)
2 + (yµν − yj)

2] · log[(xµν − xj)
2 + (yµν − yj)

2]

×mj,p + mNP+1,p + xµνmNP+2,p + yµνmNP+3,p

}
, (C.5)

exploited over the complete field. fµν is explained in equation (C.2). The matrix compo-
nents mk,p, with k, p = 1, . . . , NP+3, are the elements of the inverse of the matrix M:

M =

(
F Q
QT 0

)
;

for more explanations of the matrix M and its components see eq. (2.25) in Section 2.2.2.
The Jacobian elements of the nonlinear constraint function are given by ∂bµν/∂zp, whose
solution is written in the last two lines of eq. (C.5).
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Partial derivatives for objective function: exponential prior case. The likelihood
for the mixture model employing the exponential prior pdf is given by:

p(D|b, β,λ) =
∏

ij

{
β

b
dij

ij

dij!
e−bij +

(1 − β)ebij/λ

λ(1 + 1
λ)(dij+1)

·
Γ[(dij + 1), bij(1 + 1

λ)]

Γ(dij + 1)

}
. (C.6)

Employing eq. (C.6), the solution to equation (C.3) is the following:

∂F

∂sp
=

1

SF

∑

µν

(
− 1

fµν

) 1

Γ(dµν + 1)

{
βe−bµνbdµν

µν

(dµν

bµν
− 1

)

+
(1 − β)

λ

[ebµν/λΓ[(dµν + 1), bµν(1 + 1
λ)]

λ(1 + 1
λ)

dµν+1
− bdµν

µν e−bµν

]}

×Eµν

{ NP∑

k=1

[(xµν − xk)
2 + (yµν − yk)

2] · log[(xµν − xk)
2 + (yµν − yk)

2]

×mk,p + mNP+1,p + mNP+2,pxµν + mNP+3,pyµν

}
. (C.7)

The same explanations given for equation (C.5) are valid for equation (C.7).
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sources.. In H. U. Zimmermann, J. Trümper, & H. Yorke (Ed.). ‘Roentgenstrahlung from
the Universe’. pp. 637–640.

von der Linden, W., V. Dose and R. Fischer (1997). How to separate the signal from
the background. In Sears, M. and Nedeljkovic, V. and Pendock, N. E. and Sibisi, S.
(Ed.). ‘Maximum Entropy and Bayesian Methods’. NMB Printers, Port Elizabeth, South
Africa. pp. 146–153.

von der Linden, W., V. Dose, J. Padayachee and V. Prozesky (1999). ‘Signal and back-
ground separation’. Phys. Rev. E 59, 6527–6534.

von Toussaint, U. and S. Gori (2007). Deconvolution using thin-plate splines. In ‘Bayesian
Inference and Maximum Entropy Methods in Science and Engineering’. Vol. 954 of Amer-
ican Institute of Physics Conference Series. pp. 212–220.



236 BIBLIOGRAPHY

Wahba, G. (1990). Spline Models for Observational Data. Society for Industrial and Applied
Mathematics, Pennsylvania.

Wahba, G. (2006). Spline Models for Observational Data. Society for Industrial and Applied
Mathematics(SIAM), Philadelphia, PA(US).
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