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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

Most of the economically important traits in dairy cattle are quantitative in 

nature, which means that they are affected by environmental factors and by 

large number of polygenes i.e., gene with small effects that in coordination with 

additional genes affects the same phenotypic trait, which will result in 

continuous distribution of the phenotypic expression (Georges et al. 1995).  

 

The recent development in molecular biotechnology and genomic resources for 

various species has made it possible to unravel the genetic architecture of 

quantitative traits by identifying chromosomal loci affecting these traits. These 

chromosomal regions are generally termed quantitative trait loci (Geldermann 

1975; Falconer & Mackay 1996). Quantitative trait loci (QTL) are natural genetic 

variations that exist in different populations which may be under natural and 

artificial selection. Several QTL accounting for genetically complex traits have 

been mapped in different dairy cattle populations with the assistance of genetic 

markers and application of daughter or granddaughter designs (Weller et al. 

1990).  

 

The first step in mapping QTL is usually a genome scan where the mapping 

population is genotyped for markers covering the whole genome or some 

selected chromosomes. In genome scans, QTL are typically mapped by linkage 

analysis (LA) methods. The mapping resolution achieved by this method is low 

because the distances between markers are relatively large and no more 

recombination events. Also, the confidence intervals for the most likely QTL 

positions are about 20cM. The development of both dense genetic maps 

(Barendse et al. 1997; Kappes et al. 1997; Ihara et al. 2004) associated with 

high-throughput genotyping techniques and new models for the analysis of data 

have improved fine-mapping techniques greatly.  

 

Recent advances in technology, such as high-density single-nucleotide 

polymorphism (SNP) genotyping, have increased the feasibility of quantitative 

trait loci (QTL) detection and fine mapping in outbred populations using 
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historical population wide linkage disequilibrium (LD). Recently, LD has 

received considerable attention as it may be exploited to more effectively map 

genes underlying both simple and complex traits. These LD mapping strategies 

have been developed and successfully applied for QTL fine mapping in farm 

animals including dairy cattle (Grisart et al. 2002; Meuwissen et al. 2002; Blott 

et al. 2003).  In dairy cattle combined linkage and LD analysis (LDL) has been 

used successfully to improve the QTL mapping resolution (Farnir et al. 2002; 

Meuwissen et al. 2002; Olsen et al. 2005; Olsen et al. 2007; Sahana et al. 

2008). 

 

Several QTL and candidates genes for milk production, reproduction, 

functional, and conformation traits have been described for several bovine 

chromosomes and most of these regions have been mapped in multiple 

studies (Bovenhuis & Schrooten 2002; Boichard et al. 2003; Viitala et al. 2003; 

Ashwell et al. 2004; Khatkar et al. 2004; Schrooten et al. 2004; Schnabel et al. 

2005; Daetwyler et al. 2008; Kolbehdari et al. 2009; Mei et al. 2009). The 

mapping of QTL affecting milk production traits was a main objective of several 

studies in different dairy cattle populations. These traits are of a complex 

nature and the QTL are therefore difficult to explain genetically. The mapping 

of trait related QTL may be a possibility to understand and to explain the 

physiological background of quantity and quality of milk synthesis in a better 

way.  

 

The purposes of this work were 

1. To map a QTL affecting the economically important milk production traits 

in the Fleckvieh dual purpose cattle breed on bovine chromosome 5 

(BTA5). 

2. To refine this QTL and detect candidate gene as possible. 
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

2.1. DNA-Markers 
 

Since the discovery of polymerase chain reaction (PCR) technology (Mullis & 

Faloona 1987; Mullis et al. 1994), it has been widely used in molecular biology 

for many applications of medical research, gene mapping, pedigree analysis, 

epidemiology, strain identification, introgressive hybridization and the study of 

genetic variation in natural populations (Griffin & Griffin 1994; Mullis et al. 1994). 

This, together with the discovery of a thermostable polymerase from Thermus 

aquaticus (Saiki et al. 1988), opened the way to automatisation of the process 

and the introduction of a simple, fast and flexible diagnostic tool for molecular 

biology. For the first time, any genomic region could be amplified and analysed 

in many individuals without the requirement for cloning or isolating large 

amounts of ultrapure genomic DNA. 

 
 

2.1.1. Microsatellites 

 

The first widespread markers to take full advantage of PCR technology were 

microsatellites (Litt & Luty 1989; Weber & May 1989). Microsatellites are DNA 

sequences that belong to a class of genomic sequence known as Variable 

Number of Tandem Repeat (VNTR) elements. Microsatellites are composed of 

short motifs of 1–6 nucleotides found tandemly repeated throughout the 

genomes of prokaryotic and eukaryotic organisms (Hancock 1999). They are 

also called Simple Sequence Repeats (SSR) (Tautz 1989) and Short Tandem 

Repeats (STRs) (Edwards et al. 1991). Microsatellites are highly polymorphic, 

co-dominant inheritance, abundant and distributed throughout the genomes. 

These properties have made microsatellites one of the most popular genetic 

markers for gene mapping, paternity testing and population genetics (Goldstein 

& Schlötterer 1999). Microsatellites are of relatively small size, and can, 

therefore, be easily amplified using PCR from DNA extracted from a variety of 

sources including blood, hair roots, skin or even faeces. Polymorphisms can be 

visualized on a sequencing gel, and the availability of automatic DNA 
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sequencers allows high-throughput analysis of a large number of samples 

(Goldstein & Schlötterer 1999; Jarne & Lagoda 1996). Microsatellites are often 

show tens of alleles at a locus that differ from each other in the numbers of the 

repeats. Mutation rate in microsatellites is on average high, ranging from 10-7 to 

10-3 mutations per locus per generation in eukaryotes (Primmer et al. 1996; 

Schug et al. 1997; Vigouroux et al. 2002). Microsatellites are thought to vary in 

length by a stepwise mechanism of gain and loss via two mechanisms, namely 

replication slippage and interchromosomal exchange (review by Ellegren 2004). 

The former involves mispairing of complementary bases at the location of a 

microsatellite, leading to the insertion or deletion of one or more repeat units. 

The second model of mutation consists of either recombination or unequal 

crossing over, each of which can lead to large-scale contractions and 

expansions in the repeat array (Richard & Paques 2000). Although they are 

widely spread through the genome, their evolutionary origin is still not clear and 

their biological role is unknown. 

 

2.1.2. Single Nucleotide Polymorphisms (SNPs) 

 

SNPs (pronounced as snip) are variations at single nucleotides of the DNA 

sequence in the region, say C, replaces one of the three nucleotides (T, G, A). 

Seq 1 ATT C AATCCA 

Seq 2 ATT T AATCCA 

SNPs occur throughout the genome. A locus is viewed as polymorphic when it 

exists in at least two variants and the allele frequency of the most common 

variant is <99% (Li & Grauer 1991). They are highly abundant and are present 

at one SNP in every 1000 bp in the human genome (International SNP Map 

Working Group 2001). 

 

Most SNPs are located in non-coding regions, and have no direct impact on the 

phenotype of an individual. However, some introduce mutations in expressed 

sequences or regions influencing gene expression (promoters, enhancers), and 

may induce changes in protein structure or regulation. These SNPs have the 

potential to detect functional genetic variation. SNPs are becoming preferred 

over other genetic markers because of their distribution and mode of 

occurrence, relatively low mutation rate as well as the ease and low cost of 

genotyping (Hinds et al. 2005; Snelling et al. 2005). SNP have been used for 
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the detection and localization of QTL for complex traits in many species (Daw et 

al. 2005). In cattle a 7.1 X sequence assembly has been produced with 

accompanying information on over 2.300.000 SNP genome wide (Bovine 

Genome Project: http://www.hgsc.bcm.tmc.edu/projects/bovine). From this data, 

a set of SNP markers spanning the whole bovine genome can be used in the 

large scale identification, validation and analysis of genotypic variation in cattle 

(Kolbehdari et al. 2009). 

 

2.2. Mapping of Quantitative Trait Loci (QTL) 

 

Genome research in farm animals differs in several respects from that in 

humans or experimental organisms. The identification of simple monogenic 

disease loci in farm animals is less important, because animals with inherited 

disorders (and their parents) tend to be eliminated from breeding. Most traits of 

interest, such as growth, milk production and meat quality, show continuous 

distribution of phenotypic values and have polygenic backgrounds.  

 

Advances in molecular and quantitative genetics allow the dissection of genetic 

variability underlying complex traits into discrete QTL effects. Classic 

quantitative genetic theory assumes that there are an infinite number of genes 

affecting a trait, each with a small effect. In practice, QTL are found with 

substantial, intermediate and small effects. The presence of a QTL is detected 

by mapping studies that show significant differences in phenotype between 

individuals receiving different QTL alleles (Andersson 2001). The rationale of 

QTL mapping in domestic animals is based not only on the biological interest to 

understand the complex genetic architecture of trait variation but also on 

applying genomic information to practical breeding schemes in order to 

enhance selection programs (Andersson 2001; Dekkers & Hospital 2002; 

Gibson 2003). In order to understand the molecular nature of quantitative trait 

variation several successful efforts to map loci that affect economically 

important, quantitative traits in dairy cattle have been reported (reviewed by 

Khatkar et al. 2004). The basic resources needed for QTL mapping are 

appropriate pedigrees of populations with samples of genomic DNA, records for 

the traits of interest, selection of molecular markers and statistical methods that 
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utilize the preceding information in order to identify QTL and to estimate their 

positions and effects (Viitala 2008). 

 

2.2.1. QTL Mapping Designs 

 

QTL have been identified both from experimental and existing populations. The 

most powerful way to map QTL is to use experimental crossings of inbred 

strains or lines that are genetically different for the traits of interest (Lynch & 

Walsh 1998). Experimental crosses have been implemented in pigs and poultry 

as mapping designs, but they are very rare in cattle. Apart from the fact that 

inbred lines are commonly not available, genome mapping in livestock faces 

additional challenges such as expenses of maintaining experimental 

populations, limited reproduction capacity and long generation intervals (de 

Koning et al. 2003). 

 

A more common mapping approach in dairy cattle is to exploit existing large 

paternal halfsib families, produced through the use of artificial insemination in 

breeding programs. Half-sib designs are beneficial because more animals can 

be obtained from the multiple mating, which will therefore lead to higher 

statistical power to detect QTL (Soller 1998). A further advantage of this 

approach lies in the possibility of using already recorded phenotypic values (de 

Koning et al. 2003). For detection of marker-QTL linkage in dairy cattle, the 

most common mapping designs in cattle are Daughter Design, Granddaughter 

Design and Complex Pedigree. 

 

2.2.1.1. Daughter Design 

 

In the daughter design (DD, Fig. 1), marker genotypes and trait values are 

assessed on daughters of heterozygous sire. Progenies are grouped according 

to a marker allele received from the heterozygous sire. If the marker is linked to 

QTL, the presence of alternative alleles at QTL will tend to make a phenotypic 

difference between two progeny groups. In a case where the sire is 

heterozygous for a marker but homozygous for QTL there will be no difference 

in quantitative trait value between the progeny groups (Weller et al. 1990). The 

daughter design is more useful in situations where phenotypic data collection is 

difficult and/or expensive. 
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M2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Diagram of the daughter design (Weller et al. 1990), M1 and M2, 
marker alleles from the sire, Mx. marker alleles from the dams; A1 and A2, QTL 
alleles from the sire; Ay, QTL alleles from the dams,         chromosomes from 
the sire           : chromosome from the dams. 
 

 

2.2.1.2. Granddaughter Design  

 

In the granddaughter design (GDD, Fig. 2), marker genotypes are determined 

for sons of heterozygous sires and trait values for the daughters of these sons. 

The heterozygous sire in the design is named “grandsire”, his sons are termed 

“sons” and daughters of the sons are termed “granddaughters”. The sons would 

form two subgroups per sire according to the received grandsire allele, while the 

trait value would be measured on granddaughters for each subgroup (Weller et 

al. 1990).  

In order to increase the mapping power in DD, it is preferable to have fewer 

sires with many daughters per sire. For the GDD the power increases with 

number of grandsires, sons per grandsire and daughters per son. In both cases, 

the magnitude of the QTL effect has the greatest effect on mapping power. 
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Figure 2 Diagram of the granddaughter design, M1 and M2, marker alleles from 
the grandsire, Mx. marker alleles from the granddams and dams; A1 and A2, 
QTL alleles from the grandsire; Ay, QTL alleles from the granddams and dams,                                            
:         chromosomes from the  sire,          :chromosome from the granddams 
and dams.  
 

 

 

In general, the advantage of GDD over DD is that fewer marker assays are 

needed for equivalent power, it may be easier to collect blood or semen 

samples from sons of sires, concentrated in AI centers, than from their 

daughters, scattered over many farms, also The genotyping costs will be higher 

in DD than GDD because there are fewer animals to genotype in GDD (Weller 

et al.1990).  
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There are a number of published QTL mapping studies in cattle using GDD 

(e.g. Coppieters et al. 1998; Olsen et al. 2002; Freyer et al. 2003; Schrooten et 

al. 2004; Kolbehdari et al. 2005; Georges 2007; Druet et al. 2008 etc.) or using 

DD (e.g. Lipkin et al. 1998, Mosig et al. 2001; Chen et al. 2006 etc.). 

 

2.2.1.3. Complex Pedigree Design 

 

A large complex pedigree can provide a powerful design for mapping complex 

traits; compared with a collection of independent nuclear families, a single 

pedigree may contain more linkage information and will provide greater 

opportunities for identifying genotyping mistakes. Large pedigrees from recently 

founded populations may be especially valuable, as the individuals who 

demonstrate a specific common characteristic are more likely to share common 

ancestry than those in admixed populations (Garner et al. 2001).  

 

QTL mapping in complex pedigrees is challenging, because the number of 

alleles segregating at the QTL are unknown, the marker phases may be 

unknown or partially known, the marker and QTL allele frequencies must be 

estimated from the data, inbreeding loops that can exist in pedigree and 

markers may be uninformative or not genotyped (George et al. 2000). The 

implication of QTL genotypes from marker genotypes is noticeably more 

complicated in complex pedigrees than simple half-sib designs, as marker 

alleles need to be tracked over many generations. This can lead to a large 

number of missing genotypes. Considerable effort has been invested in creating 

strategies to infer genotypes with missing marker information and complex 

pedigrees (e.g. Kerr & Kinghorn 1996; Heath 1997). Most strategies now use 

simulation- based methods, predominantly Markov Chain Monte Carlo (MCMC) 

approaches. A review of such methods is available in George et al. (2000). 

Statistical methods that can fully account for the complex relationships between 

individuals are expected to provide greater power to detect QTL (Almasy & 

Blangero 1998). Regression methods, Maximum-Likelihood methods and 

variance component methods have been proposed for the analysis of complex 

pedigrees (Hoeschele et al. 1997; George et al. 2000; Visscher 2003; Hayes et 

al. 2005). The variance component approach may be the most useful method of 

analysis due to its flexibility (George et al. 2000).  
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2.2.2. QTL Mapping Strategies 

 

There are two main approaches have been used to identify genes affecting 

traits of interest: candidate gene approach and genome scan approach based 

on linkage mapping with anonymous DNA markers (Haley 1999; Andersson 

2001). 

 

2.2.2.1. Candidate Gene Approach 

 

The candidate gene approach assumes that a gene involved in the physiology 

of the trait could harbour a mutation causing variation in that trait. The candidate 

gene approach ideally identifies the causative genes behind QTL, but more 

likely, it identifies markers that are close enough to the causative mutation that 

they are in linkage disequilibrium across the population (Dekkers 2004). The 

candidate gene approach has been applied to different genes in cattle. Lien et 

al. (1995) studied the casein gene in a granddaughter design and showed an 

association of casein haplotypes with yields of milk and milk protein. Lagziel et 

al. (1996) used a single strand conformation polymorphism method for detection 

of polymorphisms and definition of intragenic haplotypes in the bovine growth 

hormone gene in the Israeli Holstein cattle population. One haplotype was found 

to have a highly significant positive effect on milk protein percentage. Grisart et 

al. (2002) and Winter et al. (2002) reported the first positional cloning of a QTL 

in cattle that is associated with a significant increase in milk fat yield and a 

decrease in milk protein yield.  

 

The difficulty in using the candidate gene approach is there must be an 

understanding of the biological mechanism controlling the trait before being able 

to select the potential candidate gene (Kwon & Goate 2000). The physiology 

underlying a phenotypic trait is often complicated and specific mechanisms are 

sometimes unknown. There are two problems with the candidate gene 

approach; firstly, there are usually a large number of candidate genes affecting 

a trait, so many genes must be sequenced in several animals and many 

association studies carried out in a large sample of animals (the likelihood that 

the mutation may occur in non-coding DNA further increases the amount of 

sequencing required and the cost). Secondly, the causative mutation may lie in 
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a gene that would not have been regarded a priori as an obvious candidate for 

this particular trait. 

 

2.2.2.2. Genome Scan Approach 

 

An alternative is the genome scan approach, which does not require any prior 

knowledge of the underlying mechanism controlling the trait and is 

advantageous when the actual physiology of the trait is not yet clarified. In a 

genome scan, markers evenly spaced throughout the genome are selected and 

genotyped in a segregating population to detect an association between 

inheritance of the markers and expression of a phenotypic trait. The goal of the 

genome scan is to discover a region of the chromosome that has an effect on a 

phenotypic trait (Dekkers & Hospital 2002). This approach is powerful because 

even though the physiology is unknown, there is still the potential to detect a 

locus with a large effect on the trait of interest (Haley & Archibald 1998).Using 

statistical methods, QTL can then be identified and their position and effect 

estimated by associating marker data to phenotypic records. The precision of, in 

particular, estimates of QTL position that can be obtained from these 

approaches is, however, limited, and large population sizes are needed . A 

review of publications from the last decade demonstrates that a genome scan 

using anonymous markers has been used as the primary approach for QTL 

mapping in dairy cattle (Mosig et al. 2001; Bovenhuis & Schrooten 2002; 

Khatkar et al. 2004).  

 

The main weakness of a genome scan is that, after the analysis, the specific 

gene that controls the quantitative trait is still unknown; only a region of the 

chromosome affecting the trait can be found and it may take a long time to 

identify the causative gene (Streelman & Kocher 2000). Another disadvantage 

of the genome scan is the large number of markers required to cover the entire 

genome (Haley & Archibald 1998). Genotyping huge numbers of animals with 

many markers can be fairly time consuming and expensive. Although the 

candidate gene and the genome scan approach are often viewed as alternate 

approaches for identifying genes of interest, it is clear that they can be 

complementary, with a genome scan identifying  chromosomal regions that 

harbour potential QTL, followed by further investigation of genes known to be 

located in that region using the candidate gene approach. 
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2.3. Principles of Linkage Mapping 

 

Linkage equilibrium and linkage disequilibrium, are terms used for the chance of 

coinheritance of alleles at different loci. Alleles that are in random association 

are said to be in linkage equilibrium. The chance of finding one allele at one 

locus is then independent of finding another allele at another locus. Linkage is 

used in mapping of genes, a concept that has been used since the beginning of 

the 20th century through the work of Thomas Morgan. Toward the end of the 

same century, abundant genetic markers were developed, mainly as 

microsatellites, and these could be used for systematic scanning of the whole 

genome for gene mapping (Van der Werf et al. 2007).  

 

When DNA markers are available, they can be used to determine if variation at 

the molecular level (allelic variation at marker loci along the linkage map) is 

linked to variation in the quantitative trait. If this is the case, then the marker is 

linked to, or on the same chromosome as, a quantitative trait locus which has 

allelic variants causing variation in the quantitative trait. The main 

disadvantages of this method are: first, we do not receive separate estimates of 

QTL location and QTL effect; second, we must discard individuals whose 

genotypes are missing at the marker; third, when the markers are widely 

spaced, the QTL may be quite far from all markers, and so the power for QTL 

detection will decrease (Broman 2001). A solution to both detect QTL and 

estimate effect and location simultaneously is to apply information about marker 

intervals in an approach called interval mapping (Lander & Botstein 1989). 

 

Interval mapping is the most popular approach for QTL mapping in experimental 

crosses. In interval mapping a genetic linkage map is used as the framework for 

testing the presence of QTL in fixed intervals between marker pairs whose 

position are known. The position that best explains the phenotypic difference 

between genotypic classes pinpoints the most likely QTL position. Compared to 

methods which consider only a single marker at a time, Interval mapping has 

several advantages: first, it provides a curve which indicates the evidence for 

QTL location; second, it allows for detection of QTLs to positions between 

markers; third, it provides improved estimates of QTL effects; fourth, and 
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perhaps most important, appropriately performed interval mapping makes 

proper allowance for incomplete marker genotype data.  

 

Linkage analysis is often used for the mapping of quantitative trait loci (QTL), 

where the inheritance of chromosomal regions within the data set is traced by 

markers (Hoeschele et al. 1997). The region whose inheritance explains most of 

the variance of the phenotypic records indicates the most likely position of the 

QTL. To position the QTL, linkage mapping uses only the recombinations that 

occurred within the data set, which typically contains two to three generations. 

With closely linked markers, there will be few recombinations between adjacent 

markers during these two to three generations and hence a dense marker map 

will provide little extra information about the position of the QTL, unless the 

number of individuals per generation is very large (Darvasi et al. 1993). 

 

In outbred populations only a proportion of individuals will be heterozygous for a 

given marker (or QTL) and the probability that an individual is heterozygous for 

both a marker and QTL can be small. Thus the information content varies from 

interval to interval causing biased QTL location estimates because these tend 

towards the most informative marker rather than the correct one (Haley et al. 

1994). One solution to overcome this problem is to use information from 

multiple markers simultaneously (Georges et al. 1995; Knott et al. 1996). In 

principle, if one marker of a marker pair is uninformative it can be replaced with 

another linked and informative marker. In dairy cattle the most commonly used 

QTL mapping methods are based on interval mapping with multiple marker 

information (Georges et al. 1995; Knott et al. 1996). In a half sib pedigree the 

conditional probability of an offspring inheriting the alternative alleles of a sire’s 

homologues is calculated in every position along the chromosome at fixed 

intervals. These probabilities are then used usually in maximum likelihood 

(Georges et al. 1995) or linear regression (Knott et al. 1996) methods to 

statistically test the presence of QTL under a null hypothesis of “no QTL”. QTL 

analysis in a half sib pedigree is nested within families because the linkage 

relationship between marker and QTL alleles can differ from one family to 

another (Haley & Andersson 1997). This means that the same marker allele can 

be linked to a QTL allele of positive effect in one family and to a QTL allele of 

negative effect in another family. If the analysis is carried out across all sires 
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instead of within families there is a risk that the segregation of QTL is masked 

by opposing linkage relationships between QTL and marker alleles in different 

families. 

 

The often used approach to derive significance thresholds for QTL mapping 

methods is the permutation test by Churchill & Doerge (1994) and Doerge & 

Churchill (1996). The permutation test can be used to create empirical 

distributions of the test statistics for the data under study under the null 

hypothesis of “no QTL”. The empirical distribution is obtained from a collection 

of simulated data sets that are created from the real data by randomly shuffling 

the phenotypes of the individuals. In a half sib design this is done within 

families. QTL linkage analyses are then performed with simulated data and the 

highest test statistics are stored and ranked. The resulting empirical distribution 

of the test statistics is then used to determine the chromosome-wise or 

experiment-wise significance level of the observed QTL signal.  

 

The statistical certainty of QTL position can be expressed as confidence 

intervals (CI). A bootstrap method can be applied to estimate the CI of QTL 

positions (Visscher et al. 1996). Here the real data from N individuals are used 

to create new data sets of N individuals (bootstrap samples) by sampling so that 

some individuals can be randomly represented multiple times. The process is 

repeated N times to create N bootstrap samples. Then the interval mapping is 

used to detect QTL from the bootstrap samples and estimates of the most likely 

QTL positions are ordered. The 95% CI is the chromosomal segment that 

comprises 95% of the observations around the empirical centre of the most 

likely positions of the bootstrapped samples.  

 

2.4. QTL Fine Mapping 

 

In cattle the confidence intervals for the most likely QTL positions are usually 

tens of centimorgans (Georges 2007), which are too large to efficiently 

implement technologies such as marker assisted selection, marker assisted 

introgression, positional cloning or positional candidate gene identification. Fine 

mapping will refine the size of QTL harbouring regions, which will open the way 

for more efficient implementations of above technologies and will allow 

proceeding with high levels of accuracy and precision. The main factor limiting 
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mapping resolution in linkage analysis is the frequency of observable 

recombination in the genotyped progeny. The mapping resolution can be 

improved by increasing the number of recombinations using larger families or 

advanced generations (Darvasi & Soller 1995). Thousands of offspring are 

required to reduce the QTL interval to such a level that positional cloning or 

gene identification is possible (Darvasi 1998). In outbred populations, the large 

number of progeny needed for fine mapping may be achievable but is time and 

cost intensive effort and therefore an alternative strategy is needed. One 

possibility is to use the recombination events that have occurred in the history of 

the population (e.g. Hästbacka et al. 1992). This is done by exploiting the 

population level LD between QTL and closely linked markers. 

 

2.4.1. Linkage Disequilibrium 

 

LD is also known as gametic phase disequilibrium, gametic disequilibrium, and 

allelic association. Simply stated, LD refers to the non-random association of 

alleles at different loci (Hedrick 2000). LD can be a result of migration, mutation, 

selection, small finite population size or other genetic events. LD can also be 

created in livestock populations; in an F2 QTL mapping experiment LD is 

created between marker and QTL alleles by crossing two inbred lines (Lander & 

Schork 1994; Hedrick 2000). Steady-state levels of LD are typically higher for 

tightly linked loci. 

 

The most commonly used LD measures are the multiallelic D’ (Lewontin, 1964), 

r2 (Hill & Robertson, 1968), and χ2 (Yamazaki 1977; Zhao et al. 2005). The D′ 

measure has been commonly used in LD studies. Using D′, extensive LD over 

long distances was observed in dairy cattle, sheep and pigs (Farnir et al. 2000; 

McRae et al. 2002; Tenesa et al. 2003; Nsengimana et al. 2004). However, it is 

known that LD measured by D′ tends to be inflated with small sample sizes 

and/or with low allele frequencies (Ardlie et al. 2002; Du et al. 2007). In addition, 

there is no clear interpretation for intermediate values of D′, because the 

magnitude of D′ strongly depends on sample size, especially for SNP with rare 

alleles (Ardlie et al. 2002; Du et al. 2007; Sargolzaei et al. 2008). The square of 

the correlation coefficient between markers, r2, is undisputed LD measure for 

diallelic markers like SNPs. The r2 preferred to detect markers that might 

correlate with the QTL of interest, because r2 quantifies the amount of 
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information about one locus provided by the other (Ardlie et al. 2002; McRae et 

al. 2002; Flint-Garcia et al. 2003; Zhao et al. 2005; Lipkin et al. 2009). Zhao et 

al. (2005; 2007) found that standardized χ2 (henceforth denoted χ2; Yamazaki 

1977) closely tracked the regression of the allelic state at a QTL on the allelic 

state at a multi-allelic marker and hence conveys the same information for multi-

allelic markers as r2 does for diallelic markers. 

The existence of LD implies there are small segments of chromosome in the 

current population which are descended from the same common ancestor. 

These identical by descent (IBD) chromosome segments will not only carry 

identical marker haplotypes, if there is a QTL somewhere within the 

chromosome segment; the IBD chromosome segments will also carry identical 

QTL alleles. Therefore if two animals carry chromosomes which are likely to be 

IBD at a point on the chromosome carrying a QTL, then their phenotypes will be 

correlated (Hayes et al. 2005) 

 

Meuwissen & Goddard (2000) postulated that a base population in linkage 

equilibrium undergoes a mutation at the QTL, creating a novel QTL-allele 

embedded in one specific marker haplotype. Due to recombinations in the 

following generations, the original haplotype will remain only for markers close 

to the QTL. Thus, in the current generations, these marker alleles will be in 

linkage disequilibrium with the QTL alleles. The LD can be detected by 

estimating the effects of the marker haplotypes on the quantitative trait. 

Haplotypes with identical marker alleles are expected to have a similar effect on 

the trait because the identical marker alleles imply that the chromosomal region 

is inherited in a manner that is IBD from an ancient common ancestor, and the 

haplotypes are therefore expected to carry the same QTL allele. 

Meuwissen & Goddard (2001) described a method to calculate the IBD matrix 

based on deterministic predictions which took into account the number of 

markers flanking the putative QTL position that are identical by state, the extent 

of LD in the population based on the expectation under finite population size, 

and the number of generations ago that the mutation is presumed to have 

occurred. 

 

The knowledge of the extent and the pattern of LD throughout the bovine 

genome plays an important role in gene mapping and genome-wide association 
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studies and is a fundamental tool for: exploring the degree of diversity among 

breeds of cattle, inferring the distribution of crossing-over, and identifying 

regions of genome that have been subject to selective sweep (Bohmanova et 

al. 2010). LD mapping has been used extensively to identify genes for 

monogenic diseases in humans (Peltonen 2000). Contrary to the situation in 

humans, extensive LD over a long range was observed in dairy cattle, sheep, 

and pigs (Farnir et al. 2000; McRae et al. 2002; Tenesa et al. 2003; 

Nsengimana et al. 2004; Harmegnies et al. 2006; Khatkar et al. 2006; Taberlet 

et al. 2008) because of limited effective population sizes. Above studies used D’ 

as a measure of LD between multi-allelic markers which overestimate true LD 

(Lipkin et al. 2009). Nevertheless, LD estimated by χ2 for multi-allelic marker 

and r2 for diallelic markers is clearly lower than this estimated by D’ (Lipkin et al. 

2009) but still higher in farm animals than in humans (Bovine HapMap 

Consortium 2009).  

 

Fine mapping of QTL exploiting LD was carried out and described in several 

studies (e.g. Riquet et al. 1999; Meuwissen & Goddard 2000; Meuwissen & 

Goddard 2001; Farnir et al. 2002; Meuwissen et al. 2002; Meuwissen & 

Goddard 2004). The occurrence of gametic-phase disequilibrium between 

nonsyntenic loci raises the concern about false positive result when using LD as 

the only means to locate genes underlying complex traits in these populations. 

So the preference should be given to the combined linkage and LD methods 

(Farnir et al. 2000).  

 

2.4.2. Combined Linkage Disequilibrium and Linkage (LDL) mapping 

 

Linkage analysis and linkage disequilibrium analysis are complementary 

methods. Farnir et al. (2002) and Meuwissen et al. (2002) describe for the first 

time the benefits from the use of combined LD and linkage mapping (LDL). The 

method of Meuwissen et al. (2002) allows simultaneous estimation of variance 

components associated with the marked QTL, with background genes, and 

with a residual or error variance due to environmental effects on the trait under 

study. This approach allows the utilization of recombinations occurring both 

within and outside the pedigreed and genotyped generations (i.e., linkage 

analysis and linkage disequilibrium analysis, respectively) and also accounts 

for unknown background genes. Additionally, by combining LD and linkage 
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analysis spurious long distance associations can be avoided because the 

linkage analysis information will not confirm such associations (Meuwissen et 

al. 2002; Meuwissen & Goddard 2004). In comparison with a classical linkage 

analysis, the method can make use of additional relationships within and 

between families, increasing the power of QTL detection. Furthermore, utilizing 

historical recombination events may result in a more accurate mapping of QTL, 

depending on marker density and the pattern of linkage disequilibrium in the 

population under study.  

 

The efficiency of combined linkage disequilibrium and linkage (LDL) method 

was tested by means of simulation studies (Lee & van der Werf, 2004, 2005, 

2006). Several authors were carried out and described combined LDL in fine 

mapping of QTL (Farnir et al. 2002; Meuwissen et al. 2002; Blott et al. 2003; 

Olsen et al. 2005; Schnabel et al. 2005; Gautier et al. 2006;  Awad et al. 2010). 

The efficiency of LDL mapping is demonstrated by the enormous reduction of 

the confidence interval of a mapped QTL. For example, Meuwissen et al. (2002) 

used this method to reduce the CI for a QTL affecting twinning rate on BTA5 to 

<1 cM. the CI for the milk QTL on BTA14 was reduced to 3 cM by this method 

(Farnir et al. 2002), and Olsen et al. (2005) using LDL mapping, reduced the 

confidence interval for a QTL, affecting milk production traits, from 7.5 cM to 

420 kb on BTA06 in Norwegian dairy cattle. Furthermore, they recently 

contributed to the characterization of a causal mutation in genes (Grisart et al. 

2002; 2004; Winter et al. 2002; Blott et al. 2003; Schnabel et al. 2005) 

 

2.5. Identification of Candidate Genes 

 

The high-resolution mapping will map QTL to intervals that contain several 

genes and numerous DNA sequence variants. One of the greatest challenges is 

to determine which gene(s) and nucleotide variants (quantitative trait 

nucleotide(s), QTN(s)) are causing the QTL effect (Mackay 2001a). Genes that 

lie within the CI of the QTL and that have physiological relevance to the trait of 

interest should be considered as primary candidates for the QTL. The criteria of 

gene candidates for QTL: 

•  The gene has a known physiological role in the phenotype of interest; 
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• The gene affects the trait in question based on studies of knock-outs,          

mutations or transgenic in other species; 

• The gene is preferentially expressed in organs related to the quantitative 

trait and 

• The gene is preferentially expressed during developmental stages 

related to the phenotype (Ron & Weller 2007). 

 

It is essential to find the relevant gene, however, this doesn’t give information 

about the molecular nature of the QTL and therefore the QTNs that are the 

actual cause of the observed effect in the trait phenotype need to be identified 

(Mackay 2001a). The difficulty is that each gene may include numerous DNA 

sequence variants, some of which are located in coding region and others in the 

flanking genomic regions (Glazier et al. 2002). Another complicating factor is 

that the QTN does not have to be locate in close proximity to the gene it 

influences, it might be tens of kilobases away in an intragenic region (Freking et 

al. 2002; Smit et al. 2003) or even in another, functionally unrelated gene  

(Higgs et al. 1990).  

 

There is no simple approach to facilitate the identification of functional 

candidates based on sequence information only because our knowledge about 

sequence characteristics, especially in regulatory regions, is poor. It has been 

speculated that the variation underlying complex traits is more often regulatory 

than coding e.g. (Mackay 2001b). Therefore the optimal strategy to search for 

causal QTN(s) is to consider each nucleotide variant as well as their 

combination in one or several genes (Glazier et al. 2002). One way to search 

for causal QTNs (or genes) is to systematically test the association of detected 

sequence polymorphisms and the phenotype of interest, preferably in different 

populations (Flint & Mott 2001). Association mapping can be used to 

systematically screen candidate loci in an interval defined by linkage mapping, 

or to evaluate associations at candidate loci even in the absence of linkage 

information. The simplest designs for evaluating association between markers 

at a candidate gene and a quantitative trait only require a sample of individuals 

from the population of interest, each of whom has been genotyped for the 

marker loci and evaluated for the trait phenotype (Mackay 2001a). In the case-

control design for dichotomous traits, such as disease susceptibility, the 
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population sample is stratified according to disease status, and LD between a 

marker and the trait is revealed by a significant difference in marker allele 

frequency between cases and controls (Cardon & Bell 2001). For continuously 

distributed traits, the population sample is stratified by marker genotype, and 

marker-trait LD is inferred if there is a significant difference in trait mean 

between marker genotype classes. Testing for trait associations of multiple 

markers again requires that an appropriate downward adjustment of the 

significance threshold be made. Permutation tests developed in the context of 

other single-marker genome scans are ideal in this regard (Churchill & Doerge 

1994; Doerge & Churchill 1996; Long et al. 1998; Lyman et al. 1999). 

 

A review of recent publications shows that many QTL have been mapped for 

traits of economic importance in dairy cattle (Khatkar et al. 2004; 

www.animalgenome.org). However, despite the large number of QTL studies in 

cattle and other species, little progress has been made on the identification of 

major genes affecting milk production and health traits in dairy cattle: 

identification of causal mutations of DGAT1 on BTA14 (Grisart et al. 2002; 

Winter et al. 2002; Kühn et al. 2004), GHR on BTA20 (Blott et al. 2003), ABCG2 

(Cohen-Zinder et al. 2005) or SPP1 (Osteopontin) gene (Cohen-Zinder et al. 

2004; Schnabel et al. 2005) on BTA6. 

 

One major limitation when choosing a candidate gene is the large number of 

provisional genes present in most QTL regions. Considering the current 

achievements QTN identification seems to be a challenging task. However, the 

ongoing increase of biological information and the rapid technological 

development of functional genomics might enable some of the limitations of 

QTN identification to be overcome in the future (Viitala 2008). 

 

2.6. Marker Assisted Selection (MAS), Gene Assisted Selection (GAS) and 

Genomic Selection (GS) 

 

The application of molecular genetic information has become an important issue 

in animal breeding. Breeding strategies for livestock that utilize molecular 

genetic information, genes or genomic regions, are broadly referred to as 

marker-assisted selection (MAS; reviewed by Dekkers & Hospital 2002; 

Dekkers 2004). Until recently, the use of molecular genetics in commercial 
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applications of marker-assisted selection (MAS) has focused on the use of 

individual genes or quantitative trait loci (QTL) linked to markers (Dekkers & 

Hospital 2002; Dekkers 2004). With the exception of a few genes with relatively 

large effects such as DGAT1 (Grisart et al. 2004), most candidate genes or QTL 

capture only a very small proportion of the total genetic variance. Recent 

empirical genome-wide association (GWAS) studies using a high-density SNP 

technology in humans (e.g. Burton et al. 2007; Weedon et al. 2008); mice 

(Valdar et al. 2006) and cattle (Cole et al 2009) suggest that complex traits are 

most likely affected by many genes with a small effect. 

The success of MAS is influenced by the relationship between the markers and 

the genes of interest. Dekkers (2004) distinguished three kinds of relationship:  

1. Direct markers: The marker is located within the gene of interest (GAS). 

This is the most favourable situation for MAS since, by following 

inheritance of the marker alleles, inheritance of the QTL alleles is 

followed directly. On the other hand, these kinds of markers are the most 

uncommon and are thus the most difficult to detect because causality is 

difficult to prove and, as a result, a limited number of examples are 

available, except for single-gene traits (Andersson 2001). 

2. LD-markers: The marker is in linkage disequilibrium (LD) with functional 

mutation throughout the whole population. Population wide LD can be 

found when markers and genes of interest are physically very close to 

each other and/or when lines or breeds have been crossed in recent 

generations.  

3. LE-markers: The markers that are in population wide linkage equilibrium 

with functional mutation in outbred populations. The LE markers can be 

detected on a genome-wide basis by using breed crosses or analysis of 

large half-sib families within the breed. Many examples of successful 

applications of this methodology for detection of QTL regions are 

available in the literature (Andersson 2001).  

 

The three types of marker differ in their application in selection programs. Direct 

markers and, to a lesser extent, LD markers, allow for selection on genotype 

across the population because of the consistent association between genotype 

and phenotype, use of LE markers must allow for different linkage phases 

between markers and QTL from family to family. Thus, the ease and ability to 
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use markers in selection is opposite to their ease of detection and increases 

from direct markers to LD markers and LE markers. In what follows, selection 

on these three types of markers will be referred to as gene-assisted selection 

(GAS), LD markers-assisted selection (LD-MAS), and LE marker-assisted 

selection (LE-MAS) (Dekkers 2004).  

 

A new form of marker assisted selection called genomic selection (Meuwissen 

et al. 2001), which refers to selection decisions based on genomic breeding 

values (GEBV). The GEBV are calculated as the sum of the effects of dense 

genetic markers, or haplotypes of these markers, across the entire genome, 

thereby potentially capturing all the quantitative trait loci (QTL) that contribute to 

variation in a trait. The QTL effects, inferred from either haplotypes or individual 

single nucleotide polymorphism markers, are first estimated in a large reference 

population with phenotypic information. In subsequent generations, only marker 

information is required to calculate GEBV (Hayes et al. 2009). Simulation 

studies have shown that genomic selection can lead to high correlations 

between predicted and true breeding value over several generations without 

repeated phenotyping (Meuwissen et al. 2001; Habier et al. 2007). Therefore, 

genomic selection can result in lower costs and increased rates of genetic gain.  

 

In cattle, an assay for simultaneous genotyping of more than 50,000 SNP 

markers is commercially available from the beginning of 2008. This opens an 

opportunity for effective selection using dense markers through the whole 

genome (i.e., genomic selection). Genomic selection is based on breeding 

values that are directly estimated from genome-wide dense marker panels. 

Therefore, genetic evaluation can be performed as soon as DNA is obtained, 

which allows accurate selection in both genders early in life (Su et al. 2010). It is 

expected that by using genomic selection in dairy cattle breeding, the genetic 

progress would be doubled whereas the cost for proving bulls would be reduced 

by 92% (Schaeffer 2006). Currently there are tens of different research project 

evaluating capability and suitability for continuous use of genomic selection in 

cattle.
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Summary 
 

We analysed a QTL affecting milk yield (MY), milk protein yield (PY) and milk fat 

yield (FY) in the dual purpose cattle breed Fleckvieh on BTA5. Twenty six 

microsatellite markers covering 135 cM were selected to analyze nine half-sib 

families containing a total of 605 sons in a granddaughter design. Thereby we 

assigned two new markers to the public linkage map using CRI-MAP program. 

Phenotypic records were daughter yield deviations (DYD) originating from the 

routinely performed genetic evaluations of breeding animals. To determine the 

position of the QTL, three different approaches were applied: interval mapping 

(IM), linkage analysis by variance component analysis (LAVC) and combined 

linkage disequilibrium (LD) and linkage (LDL) analysis. All three methods 

mapped the QTL in the same marker interval (BM2830-ETH152) with the 

greatest test-statistic value at 118, 119.33 and 119.33 cM respectively. The 

positive QTL allele simultaneously increases DYD in the first lactation by 272 kg 

milk, 7.1 kg milk protein and 7.0 kg milk fat. Although the mapping accuracy and 

the significance of a QTL effect increased from IM over LAVC to LDL, the 

confidence interval was large (13, 20 and 24 cM for FY, MY and PY, 

respectively) for the positional cloning of the causal gene. The estimated 

averages of pair-wise marker LD with a distance < 5 cM was low (0.107) and 

reflects the large effective population size of the analysed Fleckvieh 

subpopulation. This low level of LD suggests a need for increase in marker 

density in following fine mapping steps.   

 

Key words: Cattle chromosome 5, linkage disequilibrium, milk production traits, 

QTL mapping 
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Introduction 
 

Milk production traits in dairy cattle are controlled by large numbers of 

quantitative trait loci (QTL) and environmental factors (Zhang et al. 1998). The 

presence of a QTL is detected by mapping studies, which show significant 

differences in phenotypes between individuals receiving different marker alleles 

in appropriately designed mapping populations (Andersson 2001). In dairy 

cattle, QTL mapping utilizes existing half-sib breeding populations, which are 

routinely produced by artificial insemination. To use the existing outbred half-sib 

data structure Weller et al. (1990) proposed the granddaughter design (GDD) to 

detect linkage between a single marker and a QTL. There are numerous studies 

detecting QTL in cattle using GDD. Many of these were recently reviewed in a 

meta-analysis performed by Khatkar et al. (2004). Mapped QTL can be 

accessed in the QTL databases 

(http://www.animalgenome.org/QTLdb/cattle.html, http://bovineqtl.tamu.edu/).  

 

Associations between marker polymorphism and trait variation can be assessed 

using single or multiple marker genotypes. The usual methods are based on 

regression to detect linkage between adjacent informative markers and QTL 

(Lander & Botstein 1989; Knott et al. 1996). The interval mapping (IM) approach 

applied to the most common mapping designs in cattle (GDD and DD) uses 

only linkage information and recognise only recombination events in the 

paternal gametes. Only a small number of such events are expected in a short 

chromosomal region, resulting in large confidence intervals for the QTL. 

Increasing the number of markers within the same IM design will only detect a 

small number of previously undetected recombination events, resulting in 

minimal increase in mapping resolution (Darvasi et al. 1993). In contrast, 

linkage disequilibrium (LD) mapping methods are based on historical 

recombination events between genetic markers (Riquet et al. 1999; Meuwissen 

& Goddard 2000). The classical linkage and LD analysis are complementary 

methods. Farnir et al. (2002) and Meuwissen et al. (2002) proposed that these 

two analyses should be applied simultaneously in one model. The method of 

Meuwissen et al. (2002) allows simultaneous estimation of variance 

components associated with the marked QTL, with background genes, and with 

a residual or error variance due to environmental effects on the trait under 
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study. In comparison with a classical regression analysis, the method can make 

use of additional relationships within and between families, increasing the 

power of QTL detection. Furthermore, utilizing historical recombination events 

may result in a more accurate mapping of QTL, depending on marker density 

and the pattern of linkage disequilibrium in the population under study. The 

simultaneous development of high-throughput genotyping and fine-mapping 

techniques has improved the development of dense marker and QTL maps 

(e.g. Ihara et al. 2004; Gautier et al. 2006). The efficiency of combined linkage 

disequilibrium and linkage (LDL) mapping is demonstrated by the enormous 

reduction of the confidence interval for location of a mapped QTL. For example, 

Olsen et al. (2005) using LDL mapping, reduced the confidence interval for a 

QTL, affecting milk production traits, from 7.5 cM to 420 kb on BTA06 in 

Norwegian dairy cattle.  

 

Bovine chromosome 5 (BTA5) has been shown to harbour QTL that influence 

milk production traits (e.g. Olsen et al. 2002; Bennewitz et al. 2003; Ashwell et 

al. 2004), reproduction (Kappes et al. 2000; Lien et al. 2000) and growth and 

carcass traits (e.g. Casas et al. 2000; Gutierrez-Gil et al. 2009). In an initial 

study in our laboratory (unpublished), ten markers and 14 GDD families of the 

Fleckvieh breed were used for QTL mapping on BTA5. Two QTL affecting milk 

production traits were identified, one at the proximal and the second at the distal 

regions of BTA5, respectively. The aim of the present study is to confirm and to 

refine map location of the distal BTA5 QTL. To achieve this, we designed a set 

of 18 microsatellite markers spanning the distal region of BTA5 and used this to 

map nine GDD families with respect to milk yield (MY), milk fat yield (FY), and 

milk protein yield (PY). 

 

Materials and methods 
 

Families, Phenotypic Data and DNA Samples 

 

Nine paternal half-sib families of the Fleckvieh dual purpose cattle breed were 

analysed in a GDD (Weller et al. 1990). The total number of sons in the study 

was 605, ranging from 42 to 140 sons per grandsire, with an average of 67 

sons. Genetic evaluations were routinely performed by a multiple lactation 

random regression test-day model for the joint Fleckvieh population in Germany 
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and Austria (Emmerling et al. 2002). For each of the sons, daughter-yield 

deviations (DYD) in the first, second and third lactations for milk yield (MY1; 

MY2; MY3), milk fat yield (FY1; FY2; FY3), and milk protein yield (PY1; PY2; 

PY3) were derived from the November 2008 routine genetic evaluations.  

 

In addition, we sampled all available male ancestors of GDD sires, some 

important maternal grandsires (MGS) of the sons, and two very important recent 

founders of the Fleckvieh population. The first is a pure bred Fleckvieh bull born 

in 1966 which was used intensively in artificial insemination over a long period. 

The pedigree of a sample of 500 bull-dams born from 1998 to 2001 (dams of 

the current bull generation) was traced back and this founder was detected in 

98% of pedigrees. The second, more recent founder is a 50% Red-Holstein 

(RH) bull used in the early 1980’s to improve the milk yield and udder quality of 

the Fleckvieh population. This founder was present in 60% of the above 

mentioned 500 bull-dam pedigrees. To trace the haplotypes of both founders, 

we sampled and genotyped both founders, six very important sons for each 

founder, the sire of the 50% RH founder (which was 100% RH), and 69 other 

ancestors connecting the nine GDD families with founders into a complex 

pedigree. Pedigree information was important, as systematic ancestry 

differences can cause spurious associations in mapping studies using LD 

information (e.g. Lander & Schork 1994). The possible influence of 50% RH bull 

in our results will be discussed later. 

 

Genomic DNA was prepared from semen using standard methods based on 

ethanol precipitation and from whole blood samples using the QIAamp Blood-

Kits (Qiagen) following the manufacturer’s protocol. 

 

Marker selection, genotyping and plausibility control 

 

This study includes ten evenly distributed markers (Set0, Table 1) genotyped in 

an earlier project for initial QTL mapping (unpublished results). Six of the ten 

markers were not genotyped in all nine GDD families. For confirmation and fine 

mapping of the QTL at the distal end of BTA5 18 evenly distributed 

microsatellite markers were added, covering the region from 40 cM to the end of 

the chromosome. For 26 of the 28 markers, relevant information was obtained 

from the MARC-ARS-USDA public database at http://www.marc.usda.gov 
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(Ihara et al. 2004). Primers were optimized (Program Primer3 v.0.4.0) according 

to the current available bovine genome sequence data and the appropriate 

fragment size in the multiplex marker set. The remaining two markers 

(LMU0501 and LMU0502) were newly designed. The quality of the new markers 

was tested by genotyping a small set of animals. The eighteen added markers 

were divided into two PCR multiplex sets (Table 1, Set1 and Set2) that were 

combined after PCR for electrophoresis and fragment analysis. PCR reactions 

were performed in a 15 µl final volume using Primus 96plus (MWG-Biotech) and 

PTC-100 (MJ Research). The fragment analysis of the resulting PCR products 

was performed on ABI377 Sequencers. Genotypes were assigned using 

GENESCAN and GENOTYPER (Applied Biosystems) software programs.  

 

We performed independent double genotyping of GDD families and ancestors. 

In case of questionable genotypes, the raw data were re-evaluated and if 

necessary all animals involved were genotyped again. As a further quality 

control, haplotypes derived by QTL EXPRESS (based on half-sib design) as well 

as CRI-MAP (based on the complex pedigree) were examined for double 

recombination within a relatively short chromosomal region (~20 cM). 

Genotypes presenting a double recombination signal were re-evaluated and if 

necessary genotyped again.  

 

Linkage map construction 

 

The relative positions of the 26 public markers were re-evaluated by the CRI-

MAP program (Green et al. 1990). In addition, a physical map was constructed 

according to the sequence data of all markers (Table 1), using the basic 

alignment search tool (BLAST) and the latest cattle genome sequence 

(http://genome.ucsc.edu/cgibin/hgGateway). The linkage and physical map 

were used as the framework for insertion of the two newly designed markers 

(LMU0501 and LMU0502) by CRI-MAP option build. The resulting final map 

(Table 1) was used for all following analyses.  

 

QTL mapping Analysis 

 

Linkage Analysis (LA) by classical regression interval mapping (IM) 

Linkage analysis was done by regression interval mapping (Knott et al. 1996) 

with the half-sib option of QTL EXPRESS program (Seaton et al. 2002, 
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http://qtl.cap.ed.ac.uk). One QTL model with an additive effect was fitted along 

BTA5 by regressing the phenotype (DYD) on the conditional probability of 

inheriting the sire’s alternative haplotype. An across-family analysis was 

conducted using all 9 GDD families. The regression coefficient was calculated 

at each cM along the BTA5 and the position with the maximum F-ratio was 

considered to be the most likely QTL location. Each family was individually 

analyzed by using QTL EXPRESS to determine the sire’s QTL segregation status 

for each trait. The families detected as segregating for the distal QTL by family-

wise analysis were used for an additional across-family analysis as described 

above, based on these families only. Chromosome-wise significance levels 

(Pchr) for the across-family and within family analyses were obtained by 

carrying out 10 000 permutations (Churchill & Doerge 1994). To determine the 

95% confidence interval (CI) for QTL position we generated and analyzed 10 

000 bootstrap replicates by QTL EXPRESS.  

 

Linkage Analysis by variance component approach (LAVC approach) 

 

Mixed linear model: The genetic model that is used in the LAVC approach is 

relatively general. A vector of phenotypic observations is modelled as a linear 

function of the effects of QTL, a polygenic term representing the sum of other 

unidentified genetic effects, fixed effects and residuals: 

eqZZuXy i

NQ
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β  

Where y is a vector of N=605 DYDs of the trait of interest, β is a vector of fixed 

effects, u is a vector of n random polygenic effects for each animal, NQ=n is the 

number of QTL effects, qi is a vector of n random effects due to the putative 

QTL at position i and e is a vector of residuals. Analyses of un-weighted DYD 

give results of high similarity with weighted and un-weighted EBV by LAVC and 

LDL. Using of weighted DYD in LAVC and LDL analysis show the convergence 

problems especially for FY. To omit additional figures and tables which finally 

led to the same conclusions we prefer to mention only results based on un-

weighted DYD here.  The random effects (u, qi and e) are assumed to be 

normally distributed with mean zero and variances A 2

uσ , Gi
2

iqσ  and R, 

respectively, where A is the numerator relationship matrix based on recorded 

pedigree, Gi is the additive genotype relationship matrix whose elements are 
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the identity by descent (IBD) probabilities at putative QTL position i conditional 

on marker information, and R is the covariance matrix among residual effects, 

assumed diagonal in this study (R=I 2

eσ ). X and Z are incidence matrices for the 

effects β and u and qi, respectively. We used the program LOKI version 2.4.5 

(http://www.stat.washington.edu/thompson/Genepi/Loki.shtml) to estimate IBD 

probabilities. The data set of 605 phenotyped and genotyped sons from nine 

GDD families interwoven into a complex pedigree by 78 genotyped and 828 not 

genotyped (mostly dams) ancestors (total of 1511 individuals) was included in a 

variance component (VC) analysis. To implement this, LOKI applies a Bayesian 

Markov Chain Monte Carlo (MCMC) algorithm (Heath 1997) and uses all 

linkage information in the known part of the complex pedigree to estimate IBD 

probabilities. An initial burn-in of 50 000 iterations was followed by 500 000 

iterations; with parameter estimates collected for each iteration. We set the total 

genome length to 2900 cM to fit unlinked QTL and to estimate IBD in the middle 

position p of each marker interval. Then the estimated IBD matrices (Gp) were 

used for VC analysis by the external program ASREML (Gilmour et al. 2000) as 

well as by average information REML (AIREML; Johnson & Thompson 1995) as 

implemented in the program LDL version 1.46 (Lee & Van der Werf 2006). 

AIREML uses the variance covariance matrix directly, which is more efficient 

and robust against dense structures and singular G-matrices than the approach 

based on Mixed Model Equation (Lee & Van der Werf 2006). Here, we used the 

mixed linear model described above to estimate variance components and 

likelihood (L) of a model containing a QTL as well as background genes at 

position p (Lp). The likelihood of a model without QTL (L0) was calculated on the 

basis of a model containing only background genes. The log-likelihood ratio was 

calculated as the double difference in logL between the models with and without 

a QTL, i.e., LRT=-2 (logL0-logLp). The LRT test statistic is distributed 

approximately as chi-square with 1 degree of freedom (Olsen et al. 2004). The 

marker bracket with the greatest LRT value was taken as the most likely QTL 

position. 

 

Combined linkage disequilibrium and linkage mapping 

 

The combined linkage disequilibrium and linkage (LDL) analysis is also a 

variance component approach, which uses the same data set and the same 
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mixed linear model as described for LAVC. Here, we used the program 

LDLRAMS version 1.76 (http://www-

personal.une.edu.au/~slee7/program/program.html) to estimate IBD 

probabilities by a random walk approach and meiosis sampler (Lee et al. 2005). 

The LDLRAMS as well as the program LDL version 1.46 (http://www-

personal.une.edu.au/~slee7/program/program.html) also performs VC analysis 

by AIREML (Johnson & Thompson 1995). The differences between LAVC 

accomplished by LOKI and LDL analysis by LDLRAMS are in the method by 

which the IBD probabilities are estimated and used: LOKI uses locus Gibbs 

sampling (i.e. the genotypes for markers and QTL’s are simultaneously updated 

for all individuals, one locus conditional on all other loci, although only one locus 

at a time) whereas LDLRAMS combines meiosis Gibbs sampling and random 

walk in estimating IBD. This combined method could remedy the reducibility 

problems in the meiosis Gibbs sampler. Due to more comprehensive coverage 

of the sampling space it contributes to more accurate estimates and enhances 

the probability to climb the global maxima. Furthermore, LOKI uses linkage 

information whereas LDLRAMS combines LD and linkage information. To 

estimate LD-based IBD probabilities we assumed the mutation age and past 

effective population size was 100, initial homozygosity at each marker in the 

base population was set to 0.35 and allele frequencies were estimated by allele 

counting within the complex pedigree. We counted both alleles at genotyped 

unrelated individuals (based on the partly known pedigree) and only the 

maternal allele of descendents not having genotyped maternal grandsires 

(MGS). The same complex pedigree of 1511 individuals described above was 

analysed by LOKI and LDLRAMS. For LDL analysis by the program LDLRAMS we 

used an initial burn-in of 500 iterations followed by 5000 iterations, with 

parameter estimates collected at each five iterations. Two independent 

sampling procedures (i.e. two LDLRAMS runs with different random number 

seed) ensured convergence at a global maximum. The appropriate variance 

components and LRT along BTA5 were estimated by AIREML (Johnson & 

Thompson 1995; Lee & Van der Werf 2006). The program LDL uses IBD 

matrices estimated by external programs. The confidence interval (CI) for the 

QTL position was determined as 1-LOD support interval. In theory, the 1-LOD 

support interval approximately corresponds to a 97% CI, because 1 LOD is 
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equivalent to a LRT statistic of 4.605 (2×ln (10)), which corresponds to an 

asymptotic χ2 P-value of 0.032 (Mangin et al. 1994, see also Visscher & 

Goddard 2004). 1-LOD drop-off support interval was constructed as interval 

surrounding the QTL peak where the LRT exceeds LRTmax - 2 × ln (10), where 

LRTmax is the maximum LRT-value for the tested QTL. 

 

Estimation of linkage disequilibrium  

 

Most of the livestock studies based on microsatellite data used Hedrick’s multi-

allelic D’ value (Hedrick 1987) as the measure of LD, while Zhao et al. (2005) 

found that the standardized χ2 (Yamazaki 1977; henceforth denoted χ2’) is the 

best predictor of useable LD of multi-allelic markers with QTL. Consequently, in 

according with Lipkin et al. (2009) we used both of these measures to evaluate 

LD in our population. To estimate both D’ and χ2’ we considered only maternal 

haplotypes of the sons. To avoid effects of population structure on estimated LD 

values we excluded 38 haplotypes originating from common dams and 104 

haplotype presumably originating from common maternal grand sires. At the 

end, 477 independent maternal haplotypes were considered for estimation of 

the level of LD in the mapping population.  

 

Results 
 

Genotypes and Linkage map construction 
 

Genotypes for 28 microsatellite markers were available to build the BTA5 

genetic map. During plausibility control of the genotype and haplotype data two 

markers (BM6026 and BMS610) genotyped in the initial mapping study, showed 

extensive double recombinations with markers included by this project (18 

added markers). To reduce possible mapping errors we decided to exclude 

these two most proximal markers from all subsequent analyses. Using the build 

option of the CRI-MAP program we re-estimated marker distances and order. 

The resulting linkage map based on our data was consistent with the position of 

the markers in the USDA linkage map and the physical map (see Table 1). Two 

new markers developed in this study (LMU0501 and LMU0502) are highly 

informative for linkage analysis and have 16 and 17 alleles, respectively. The 

relative positions of these two markers (Table 1) were confirmed by linkage 
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analysis (CRI-MAP) and physical position according to the current available 

information on bovine genome sequence data (Baylor release Btau_4.0, 

http://genome.ucsc.edu/cgi-bin/hgGateway).  

 

Linkage analysis by interval mapping using GDD 

 

Initial interval mapping on BTA5 was conducted by QTL EXPRESS using nine 

GDD families genotyped at 26 markers and using DYD as phenotypes. The 

across-family analysis did not confirm the QTL detected by the initial mapping 

study (unpublished results) and showed a flat F-statistic profile with a nominal 

F-value between 1 and 2 (Fig. 1A). The results of the permutation test across all 

families indicated the null hypothesis (QTL not present) as correct.  

 

The analysis of individual GDD families, however, indicated three families 

segregating for a QTL affecting MY1, PY1 and FY1 at the distal region of BTA5. 

Figure 1B illustrates these results for MY1. The across-family analyses 

including only the three families with the putative QTL at the same distal 

position and affecting the same set of traits, revealed a significant QTL effect 

(P=0.03) at 118 cM (Fig. 1C). The least square estimators of the QTL allele 

substitution effects on the DYDs for the three segregating sire families were 272 

kg milk, 7.0 kg milk fat and 7.1 kg milk protein in the first lactation. It should be 

noted that these effects are likely to be overestimated as they were obtained 

from preselected material, and the detection power of our GDD is limited 

(Georges et al. 1995). Despite evident grouping of bootstrap estimates around 

the position of 118 cM (two third within 5 cM) the bootstrapping analysis 

estimated a very broad 95% confidence interval of QTL position from 36 to 133 

cM for MY1 (see Fig. 1C).  

 

Linkage analysis by variance component (LAVC) approach in a complex 

pedigree  

 

In many cases, the complex pedigree with 1511 animals (683 genotyped) 

allowed tracing the paternal haplotype without interruption along five 

generations. Very few dams were genotyped, so that for most of the dams’ 

haplotypes had to be inferred for IBD estimation. The LDL analysis derives the 

most probable haplotypes for dams that were not genotyped, and uses these for 

IBD estimation. In contrast, for dams that were not genotyped, LAVC as 
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implemented by the LOKI program considers expected IBD-values based on 

additive genetic relationship, i.e. 0.5. In practice, this enabled the LAVC 

relatively good use of linkage information comprised in maternal haplotypes 

only when the MGS were genotyped. For each of 25 marker brackets, G 

matrices were generated by LOKI and variance components estimated with each 

G, using ASREML and AIREML as implemented in the programs ASREML and 

LDL, respectively.  

 

The patterns of the LRT values indicated the presence of a QTL affecting MY, 

PY and FY in the first lactation at the distal region of BTA5. The LRT reached a 

maximum value of 4.42 within marker bracket BM2830-ETH152 at the relative 

position of 119.33 cM (Fig. 2). This LRT value corresponded to P=0.035 and 

was significant for MY1. The LRT curve showed a possible second QTL at the 

middle part of the chromosome from 65-75 cM affecting MY1, PY1 and FY1 

(Fig. 2) corresponding to a significant P value of 0.045 for FY1 (LRT=4.01, at 

position 73.31 cM). Despite numerous independent estimates of IBD matrices 

by LOKI the variance component estimation by ASREML did not converge for 

FY1. The AIREML converged for all three traits, consequently the presented 

LRT curves (Fig. 2) and variance components were estimated by AIREML in 

both LAVC and combined LDL analyses. Table 2 shows the estimates of 

variance components for all three traits by LAVC and LDL. For the most 

significant trait (MY1), we obtained estimates of the following components of 

variance for a QTL assumed located at 119.33 cM: QTL variance, 2

qσ = 12948 

kg; polygenic variance, 2

uσ =221753 kg; and phenotypic variance, 2

yσ = 251793 

kg. 2

qσ  and 2

uσ  sum to additive-genetic variance 2

Aσ  = 234701 kg. Note that 

above components based on DYD pre-corrected for most important 

environmental factors. The estimation of breeding values in the Fleckvieh 

population assumed 2

Aσ  = 260437 kg. Therefore our relatively small mapping 

population underestimated 2

Aσ  only by about 9.9%. According to our estimates 

of 2

qσ  and 2

Aσ  from the linkage analysis, the QTL mapped in this study 

explained 5.5% of 2

Aσ . 
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Combined Linkage Disequilibrium and Linkage Analysis (LDL)  

 

The estimation of IBD probabilities in a complex pedigree of 1511 individuals 

with 55% missing data (i.e. 55% not genotyped animals) by MCMC as 

implemented in LDLRAMS program needs an enormous computing effort. 

Therefore, with our available computing power, we were only able to perform an 

analysis with 5500 MCMC iterations. To ensure the convergence at global 

maximum, we used two MCMC runs with the same parameters but with 

different random number seeds. The LDL analysis mapped a QTL affecting 

MY1 and PY1 at the same position (119.33 cM; Fig. 3) as LAVC (119.33 cM; 

Fig. 2) and nearly at the similar position estimated by IM in the GDD mapping 

(118 cM; Fig. 1C). The LRT rejected the null hypothesis (no QTL) in favour of 

the alternative hypothesis at level P=0.002 for MY1 (Fig. 3). Additionally, LDL 

analysis mapped a significant QTL effect (P=0.006) for FY1, with nearly 

identical LRT-value at 114.67 cM and 119.33 cM. In general, the LRT curve for 

all three traits was significantly sharper when using the LDL method compared 

to the results of the IM and LAVC approach, respectively. The 97% confidence 

interval was still large and covered the chromosomal segment from 113-133 cM 

for MY1, 109-133 for PY1 and 110-123 for FY1. For the most significant trait 

MY1 (Table 2), we estimated at position 119.33 cM a QTL variance, 2

qσ = 48037 

kg; polygenic variance, 2

uσ = 203652 kg; and phenotypic variance, 2

yσ = 269059 

kg. Consequently, the estimated additive-genetic variance 2

Aσ  is 251689 kg. 

Again, 2

Aσ  was underestimated but only by 3.4%. According to our estimates of 

2

qσ  and 2

Aσ  from the LDL analysis, the putative QTL mapped in this study 

explained 19.1% of the 2

Aσ . The LDL analyses did not confirm the possible 

second QTL at the middle part of the chromosome (65-75 cM) which was 

mapped by LAVC (Fig. 2). On the other hand, at the beginning of the 

investigated chromosomal segment (36.27 cM) the LDL analysis pointed to a 

putative QTL affecting FY1 (P=0.007) with indications for effects on PY1 and 

MY1 also mapped at this position.  

The analyses of all three traits in the second and the third lactation with IM, 

LAVC and LDL show non-significant test-statistic with mostly parallel course to 

the appropriate curve in the first lactation (data not shown).  
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The Level of the LD in the dual purpose Cattle Breed Fleckvieh 

 

Figure 4 shows the distribution of LD between microsatellite markers according 

to LD statistic D' or χ2’. Average LD values were given for marker pairs sorted in 

5-cM bins (0–50 cM) and for separation distances > 50 cM (Table 3). At the <5 

cM separation distance, the mean D' was 0.336 and the corresponding χ2’ 

values were 0.107. For the separation distance > 50 cM, mean values for D' 

and for χ2’ were 0.168 and 0.029, respectively. D' and χ2’ values rapidly 

decreased to 0.18 and 0.035 for separation distances of >20 cM, and then 

reached a respective plateau slightly below 0.17 and 0.03 for greater separation 

distances.  

 

Discussion 
 

Numerous studies reported segregation of QTL affecting milk production traits 

on BTA5 (e.g. Olsen et al. 2002; Bennewitz et al. 2003; Khatkar et al. 2004), 

some of these studies mapped two QTL affecting milk yield, milk protein yield 

and milk fat yield on this chromosome, one at the proximal and another at the 

distal region of the chromosome. The present study confirmed a QTL affecting 

first lactation milk yield, milk protein yield and milk fat yield at the distal region of 

BTA5.  

 

Comparison of different mapping methods; IM, LAVC and LDL, mapped this 

QTL at the same marker interval (BM2830-ETH152) and nearly at the same 

position: 118.00, 119.33 and 119.33 cM, respectively. As expected on the basis 

of theoretical considerations (Lee & Van der Werf, 2005) and experimental 

results (Meuwissen et al. 2002; Olsen et al. 2005), the shape of the curve is 

significantly sharper with the LDL method compared to IM and LAVC, and the 

peak obtained by the LDL method was higher and narrower than that of the 

LAVC approach. The test statistics used for IM, LAVC and LDL are not directly 

comparable, but the null hypothesis was rejected with higher probability as 

more information was used. In particular, IM analysis across nine families was 

not able to detect a QTL segregating in a set of nine GDD families, while 

connecting the same nine families by numerator relationship matrix (LAVC 

approach) did result in significant effects of mapped QTL. However, the shape 
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of test statistics estimated by IM based on all nine GDD families (Fig. 1A) was 

nearly comparable with that obtained by the LAVC approach (Fig. 2): both 

approaches showed a peak for FY1 at the middle region of the chromosome 

and another peak for MY1 and PY1 at the distal region of the chromosome. The 

crucial difference was in the significance of the results: the LAVC approach 

estimated significant QTL effects for FY1 at 73.3 cM and for MY1 and PY1 at 

119.33 cM whereas IM based on these nine families showed a fairly flat non-

significant test statistic along the chromosome. However, analysis of the 

individual GDD families indicated three families segregating for a QTL affecting 

milk production traits in the distal region of BTA5. This is a rather unusual result 

because experience shows that even a single significant family is usually 

sufficient to render a multi-family GDD analysis significant. Be that as it may, IM 

analysis of these selected families did reveal a substantial QTL effect in each of 

them, but since these families were selected, a formal significance threshold 

could not be easily determined. However, these families mapped the “detected” 

QTL to the same general location as the LAVC analysis indicating that they 

were indeed segregating for this QTL, and provided estimates of QTL effects 

which could not be obtained from the overall LAVC or LDL analyses.  

 

As shown in Figure 3, LDL indicated a possible QTL affecting FY1 at position 

36.27 cM. The most proximal marker in the region (AGLA293) with relative 

position at 32.25 cM stems from the initial mapping study (Set 0 in Table 1) and 

was genotyped in only five GDD families. In addition, our marker map shows 

the largest distance between this and the next most proximal marker at this 

region (8.04 cM, Table 1). Considering this, and the necessity to reach high 

marker informativity at the ends of the chromosomal segments under 

investigation (Krebs et al. 2007), we were not confident about this putative QTL 

and therefore did not follow up this result. 

 

As mentioned in the introduction section, there is some introgression of Red-

Holstein (RH) genes into Fleckvieh population. We sampled and genotyped a 

50% RH bull and six of his sons with the largest impact on the current Fleckvieh 

population as well as his 100% RH sire. This enabled us to clearly trace RH 

haplotypes derived from this 50% RH bull in our mapping population. In the total 

of 605 sons phenotyped, 37 sons (~6%) inherited the RH haplotype for the 
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distal half of BTA5. Of these, 27 were part of GDD family nine (Fig. 1B) and we 

were able to undoubtedly trace this haplotype over family sires to the 100% RH 

bull. The IM in outbred half-sib design is thoroughly capable of mapping QTL 

allele originating from different subpopulations (Lander & Botstein 1989; Knott 

et al 1996). As clearly shown in Figure 1B, Family 9 is not even indicative for 

the QTL affecting MY1 at the distal half of the BTA5. The same is true for FY1 

and PY1 (data not shown). Therefore, we concluded that the introgression of 

the RH genes into the Fleckvieh population did not contribute to our mapping 

results for the three traits at the distal region of BTA5.  

 

Linkage disequilibrium in the Fleckvieh population: The results of the present 

study confirm and enlarge results previously reported from our laboratory 

comparing LD in the Fleckvieh population with LD in Israel and Italian Holstein 

and in Italian-German-Austrian Brown Swiss cattle (Lipkin et al. 2009). In 

particular, the average D’ value for all marker pairs with a distance < 5 cM 

(0.34) was very close to that estimated in the Lipkin et al. 2009 study (0.35), 

and is considerably less than estimated for the Holstein breed (Farnir et al. 

2000; Vallejo et al. 2003; Tenesa et al. 2003; Lipkin et al. 2009). This is 

consistent with results revealing Fleckvieh as the breed with the highest genetic 

diversity among seven Alpine and three North-western European cattle breeds 

(unpublished results I. Medugorac), confirming a large effective population size 

(Sölkner et al. 1998). Large effective population size would be expected to 

result in a lower level of LD in comparison to breeds, such as the Holstein, with 

much smaller effective population size.  

 

It is well known for diallelic markers, that estimates of D′ are strongly inflated in 

small samples, even for SNPs with common alleles, but especially for SNPs 

with rare alleles (e.g. Shifman et al. 2003). This tendency is undoubtedly 

exacerbated for microsatellite markers because of the general presence of one 

or more alleles at low frequency. Our data (Fig. 4), as well as similar 

comparative results for D' and χ2’ reported for sheep (Meadows et al. 2008) and 

previously found by us for cattle (Lipkin et al. 2009) confirmed this tendency. As 

shown by Zhao et al. (2005), R2=χ2’ for LD between a multi-allelic marker and a 

biallelic QTL, and R2=χ2’=r2 when both loci are biallelic, where R2 is coefficient 

of determination of the regression of QTL allele Q on alleles (Ai) at a single 
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marker. Therefore we used D' to compare the level of LD with other populations 

but χ2’ to estimate the actual level of useable LD in the mapping population. In 

this study, we estimated χ2’=0.107 for all marker pairs with a distance <5 cM in 

Fleckvieh. This corresponds to the value found in our previous study of this 

population (Lipkin et al. 2009) and is less than half than estimated for the Italian 

and Israel Holstein cattle population (Lipkin et al. 2009) at the same marker 

distance. The χ2’ values dropped off rapidly with increasing separation distance, 

and were very low (<0.045) for separation distances > 10 cM. Therefore, our 

results indicate the absence of a useful long-range intra-chromosomal LD in the 

Fleckvieh population and suggest the presence of only moderate LD at the < 5 

cM range. In the present study, only 15% of marker pairs at this separation 

distance showed LD at a level >0.2 which would be useful for fine-mapping 

applications. For comparison, the fraction of marker pairs with χ2’ >0.2 at the < 

5 cM separation distance in Fleckvieh, Israel and Italian Holstein is at 10%, 44% 

and 67% respectively (Lipkin et al. 2009). For LDL mapping LD between 

markers and QTL alleles is of primary interest. At the distal part of BTA5 we 

used markers with an average distance of 4.6 cM and estimated IBD at the mid 

point of each interval. Therefore, the maximum distance between the closest 

markers and the QTL is 2.3 cM, and average distance between the closest 

marker and the QTL is 1.15 cM, which could provide higher levels of LD useful 

for fine-mapping, than the LD between markers estimated above.  

 

Conclusion 
 

By successive mapping steps we concluded that the distal part of BTA5 

harbours a QTL affecting first lactation milk yield, milk protein yield and milk fat 

yield. The mapping accuracy and the significance of a QTL effect increased 

from IM over LAVC to LDL. However, the confidence interval was large for the 

positional candidate gene approach. The relatively low level of LD in the 

Fleckvieh breed suggests a need for a denser marker map to achieve fine LDL 

mapping of QTL in this population. Therefore, we conclude that an additional 

marker set of 12 to 16 markers covering BTA5 from cM 107 to 133 should be 

genotyped in the same families. These new genotypes should lead to finer 

mapping and promising positional candidate genes. It should be noted, 
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however, that the values obtained for χ2’ at the <5 cM separation distance were 

based on microsatellite markers. Thus, although much less than those given by 

D', they are still considerably greater than those reported in cattle for biallelic 

SNP markers at this separation distance, using the comparable r2 measure 

(McKay et al. 2007; Khatkar et al. 2008). Consequently, the new markers added 

to this region for high resolution mapping should preferably be microsatellite 

markers, to the possible extent.  
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Table 1 All markers used on BTA5 with marker name, relative position on the USDA map (cM), physical position (bp), forward and 
reverse primers sequences and marker set description (set: Set0 previous Project; Set1 this project multiplex 1; Set2 project multiplex 
2). 

No Marker ID cM bp Forward primer Reverse primer Set 

1 BM6026 6.05 7023092-7023270 GCAACTAAGACCCAACCAAC ACTGATGTGCTCAGGTATGACG Set0 

2 BMS610 12.02 13167579-13167698 TTTCACTGTCATCTCCCTAGCA ATGTATTCATGCACACCACACA Set0 

3 AGLA293 32.25 26701514-26702173 GAAACTCAACCCAAGACAACTCAAG GACACTAGTAGATTTGAAACCCA Set0 

4 DIK4759 40.29 30345678-30346337 CTGAAGTTGGACCTGCCATT GGCAGAGCCAGAACTACACC Set2 

5 BMS1898 44.48 33042590-33043249 TCCACCGTGTGACATCACTT GAAGCAGGTCTCCACTCAGG Set1 

6 CSSM34 45.51 33862045-33862704 GAAACAAAGAATCAGGCCATAA TGATCAATGGGTAAGTGAACAAA Set0 

7 DIK4782 50.52 40849000-40849659 GCATCTGAGAGCCTCTTTGG TCCTGGGTGTATAGGGCATC Set1 

8 BL37 52.09 45122278-45122937 GCAATCCCACTCTCCAGGTG CATTCATGTTGCTGTAAATGGC Set0 

9 RM084 56.63 51937288-51937947 TAGGAACTGATGGCCCTTTG GGCAGAGTTCGTGACTGGAG Set1 

10 DIK2732 63.92 55833522-55834181 GGGGAACTTTAATGGGAGGA GCTTGGCAATCCATAGAGGA Set1 

11 LMU0501 65.00 57808736-57809395 CATGTTGGTAATGAATGGGCTA TAATCAACGGCATCATCAGG Set1 

12 BMS490 66.21 57285385-57286044 CCATTTTGGTAAATGGCTCAA TTTGGAAGCTTAAGGGAAACTT Set2 

13 ETH10 71.76 60836415-60836774 GTTCAGGACTGGCCCTGCTAACA CCTCCAGCCCACTTTCTCTTCTC Set0 

14 DIK5248 74.86 66083848-66084507 TGGATAGAGCCTTGGAATGG TTCCAATGATGCAGGTCAAA Set2 

15 BMS1216 78.21 76369042-76369701 TTCCATCCAAGCTACCCAAC CTTGAATCCGCATGCTTGAC Set1 

16 TEXAN15 80.96 78557768-78558407 CGCAAACAGTCAGAGACCAC CAGCAGTTCCTGGATGAGAA Set0 

17 DIK4356 82.88 80778499-80779158 TGTCCCATCATATCCCATCTC TTGCAAACACAGAACTGAAAGAA Set1 

18 DIK545 85.53 88255774-88256433 AAAGTTTGCAAGGGGCTTTT GGTTAGGATTGGGAGGGAAT Set1 

19 BMS1248 90.85 Unknown GTAATGTAGCCTTTTGTGCCG TCACCAACATGAGATAGTGTGC Set0 

20 LMU0502 95.00 98418609-98419268 TGGAAGAATATGCAGGTAACTCT GTCGCTCTTTGTGGCTTCAC Set1 

21 DIK2336 99.79 101071987-101072659 ATGTGGAATGTAGGGCAAGG TCCCTCACCTTTCGAACAAA Set1 

22 BM315 103.17 104045839-104046013 TGGTTTAGCAGAGAGCACATG GCTCCTAGCCCTGCACAC Set0 

23 DIK1135 (a 108.22 10181475-10181838 GTCTGCCATCTAGCCAAAAA GTTTTTCAGTGGGCATTTGG Set1 

24 ETH2 112.43 112903664-112904283 ATTTGCCCTGCTAGCTTTGA AAGACTCTGGGCTTCAAAAGG Set1 

25 BM2830 116.91 115261807-115262486 AATGGGCGTATAAACACAGATG TGAGTCCTGTCACCATCAGC Set0 

26 ETH152 121.75 Unknown GTTCTCAGGCTTCAGCTTCG TGATCAGAGGGCACCTGTCT Set1 

27 URB060 127.55 122472467-122473126 TTGTCATTTCTGGACTCCACTG CAGGTCCAACCCTGTTTAGC Set1 

28 MNB71 133.09 unknown CATCTAAGGCAGAGCCAACC TTCTTGGTGCCTCTCTCTCC Set1 
(a The whole genome sequence map DIK1135 at the beginning of chromosome but our linkage analysis confirm the USDA position. 
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Table 2 The estimates of the variance components at the most likely QTL 
position (119.33 cM) using linkage analysis by variance components (LAVC) 
and combined linkage disequilibrium and linkage analysis (LDL). The estimates 

of QTL variance ( 2

qσ ),Polygenic variance ( 2

uσ ), phenotypic variance ( 2

yσ ), 

additive-genetic variance ( 2

Aσ ), 2

Aσ  used for breeding values estimation ( 2

Aσ  

BV), % of additive-genetic variance explained by QTL (% of 2

Aσ ) for all three 

traits: milk yield (MY1) milk fat yield (FY1) and milk protein yield (PY1) in the 
first lactation. 
 

LAVC  LDL Variance 

components MY1 FY1 PY1  MY1  FY1  PY1 

2

qσ  12948 kg 14 kg 10 kg  48037 kg 59 kg 30 kg 

2

uσ  221753 kg 233 kg 179 kg  203652 kg 197 kg 169 kg 

2

yσ  251793 kg 312 kg 217 kg  269059 kg 331 kg 227 kg 

2

Aσ  234701 kg 247 kg 189 kg  251689 kg 256 kg 199 kg 

2

Aσ  BV 260437 kg 358 kg 201 kg  260437 kg 358 kg 201 kg 

2

Aσ / 2

Aσ  BV 0.90   0.69   0.94    0.97   0.72   0.99 

% of 2

Aσ   5.52   5.77   5.24    19.09   22.98   15.31 
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Table 3 Mean LD values estimated as D’ and χ2’ for marker pairs sorted in 5-cM 
bins (0–50 cM) and for separation distances (Dist) > 50 cM.  
 

 

cM D’ χ2’ 

<5 0.336 0.107 

5< Dist <10 0.245 0.059 

10< Dist <15 0.224 0.045 

15< Dist <20 0.195 0.044 

20< Dist <25 0.178 0.036 

25< Dist <30 0.178 0.036 

30< Dist <35 0.194 0,035 

35< Dist <40 0.172 0.034 

40< Dist <45 0.193 0.028 

45< Dist <50 0.203 0.043 

Dist >50 0.168 0.029 
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Figure 1 Interval mapping analysis by half-sib option of QTL EXPRESS using 
grand daughter design (GDD) and DYD as phenotype. Solid triangles on the X-
axis represent positions of markers used for analysis. (A) Interval mapping 
across all 9 GDD families. (B) Family-wise analysis for MY1, the F-statistic of 
three families (F1, F2 and F3) indicative for QTL at the distal part of BTA5 and 
Family 9 which has a distal haplotype from 50% RH are highlighted. (C) Interval 
mapping across 3 GDD families, F-statistic curve for MY1, PY1 and FY1 and 
Bootstrap samples for MY1 (divided by 1000 to fit scale).  
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Figure 2 Linkage analyses by variance component approach (LAVC) for MY1, 
PY1 and FY1 using complex pedigree as implemented in LOKI, DYD as 
phenotype and variance components estimated by AIREML as implemented in 
program LDL. Solid triangles on the X-axis represent positions of markers used 
for analysis 
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Figure 3 Combined Linkage Disequilibrium and Linkage (LDL) analysis by 
variance component approach using complex pedigree, DYD as phenotype and 
AIREML as implemented in LDLRAMS and LDL program. Solid triangles on the 
X-axis represent positions of markers used for analysis 
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Figure 4 Distribution of D’ (dots) and χ2’ (triangles) values observed between 
marker pairs of BTA5 as a function of genetic distance in centiMorgan (cM). The 

curves correspond to trends of D’ and χ2’ values 
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Abstract  

 

Background 

In a previous study in the Fleckvieh dual purpose cattle breed, we mapped a 

quantitative trait locus (QTL) affecting milk yield (MY1), milk protein yield (PY1) 

and milk fat yield (FY1) during first lactation to the distal part of bovine 

chromosome 5 (BTA5) but the confidence interval was too large for positional 

cloning of the causal gene. Our objective here was to refine the position of this 

QTL and to define the candidate region for high-throughput sequencing.  

 

Material and methods 

For genotyping, 12 new microsatellite and 240 SNP markers covering the most 

likely QTL region on BTA5 were added. New Fleckvieh families were also 

genotyped in order to increase the number of recombination events around the 

putative QTL. Based on haplotype analysis performed in this complex pedigree, 

families segregating for the low frequency allele of this QTL (minor allele) were 

selected. Single- and multiple-QTL analyses using combined linkage and 

linkage disequilibrium methods were performed. 

 

Results 

Single Nucleotide Polymorphism (SNP) haplotype analysis on representative 

family sires and their ancestors revealed that the haplotype carrying the minor 

QTL allele is rare and most probably originates from a unique ancestor in the 

mapping population. Analyses of different subsets of families, created according 

to the result of haplotype analysis and availability of SNP and microsatellite 

data, refined previously detected QTL affecting MY1 and PY1 to a region 

ranging from 117.962 Mb to 119.018 Mb (1.056 Mb) on BTA5 However, the 

possibility of a second QTL affecting only PY1 at 122.115 Mb was not ruled out.  

 

Conclusion 

This study demonstrates that targeting families segregating for a less frequent 

QTL allele is a useful method that improves mapping resolution of the QTL due 

to the division of the mapping population according to haplotype analysis and 
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the increased frequency of minor allele in the families. Consequently, we 

succeeded in refining the region containing the previously detected QTL to 1 Mb 

on BTA5. This candidate region contains 27 genes with unknown or partially 

known function(s) and is small enough for high-throughput sequencing, which 

will allow future detailed analyses of candidate genes..  
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Background 

Recent developments in molecular biology and statistical methodologies for 

quantitative trait loci (QTL) mapping have made it possible to identify the 

genetic factors affecting economically important traits. Such developments have 

the potential to significantly increase the rate of genetic improvement of 

livestock species through marker-assisted selection of specific loci, genome-

wide selection, gene introgression and positional cloning [1]. However, after an 

initial exaggerated enthusiasm, animal geneticists like their colleagues in 

human genetics e.g. [2] have faced somewhat unexpected challenges.  

 

The first step in QTL mapping usually involves a complete or partial genome 

scan where the mapping population is genotyped for markers covering the 

entire genome or some selected chromosomes respectively The QTLs are then 

mapped using linkage analysis (LA) methods. The resolution of this mapping 

approach is low because relatively few new recombination events are 

generated in the single generation separating parents and progeny. Typically, 

the size of confidence intervals for the most likely QTL positions ranges 

between 20 and 40 cM. 

 

Fine-mapping approaches have been developed to reduce these confidence 

intervals e.g. [3-5], leading in some instances to the identification of the 

underlying causal mutation [6-9]. These approaches are mostly based on the 

addition of new families, new markers and the use of statistical methods 

combining linkage-disequilibrium and linkage (LDL) analysis. In general, the 

marker density is increased by adding a few tens of new markers (microsatellite 

markers or SNP) identified within the QTL region or candidate genes.  

 

At present, high-throughput SNP analysis provides the opportunity to genotype 

many animals for hundreds or even thousands of SNP per bovine chromosome 

[10-12]. Thus, the limiting factors in QTL fine-mapping studies have now 

switched partly from marker density to applied methods and designs. Use of 

linkage-disequilibrium (LD) information increases the precision of the QTL 

mapping because it exploits the entire number of recombinations accumulated 

since the original mutation generating the new QTL allele occurred [13].  
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The degree of LD in livestock populations has attracted much attention because 

it provides useful information regarding the possibility of fine-mapping QTL and 

the potential to use marker-assisted selection. In cattle, previous reports using a 

low density of microsatellite map (10 cM interval on average) and Hedrick’s 

normalized measure of LD [14] D’ have shown that LD extends over several 

tens of centimorgans [10,15,16]. However, an exceedingly low long-range and 

non-syntenic LD has been estimated [17] when evaluated by the standardized 

chi-square measure of LD, which is related to the predictive ability of LD. 

Nevertheless, the extent of LD in cattle [18] is greater than in humans [19] but 

smaller than in dog [20].  

 

Combined linkage disequilibrium and linkage (LDL) analysis [3] makes it 

possible to exploit recombinations occurring both within and outside the 

pedigree and genotyped population. It also gives a clearer signal for QTL 

positions compared with LA or LD mapping alone [3]. Additionally, the LDL 

approach reduces the risk of false-positive QTL identification caused by 

accidental marker-phenotype associations when LA and LD are used separately 

and it also increases the power and resolution of QTL mapping by combining all 

available information [21].  

 

In dairy cattle, several studies have reported the presence of one or more QTL 

affecting milk production traits on BTA5 e.g. [22-25], but the results differ among 

studies with respect to the number of QTL detected, their positions, and the 

extent to which the milk traits are affected by the QTL. 

 

The present study aimed to refine the previously detected QTL affecting milk 

yield (MY1), milk protein yield (PY1) and milk fat yield (FY1) during first lactation 

in the distal part of BTA5 in the Fleckvieh dual-purpose cattle breed [24] and to 

define the candidate region for high-throughput sequencing. To achieve this, we 

sampled additional families carrying the low frequency allele of the putative QTL 

(minor QTL allele) and genotyped additional markers covering the most likely 

QTL region on BTA5. These new families were identified by combining results 

from QTL-mapping based on microsatellites and haplotype analyses based on 

SNP in a complex pedigree. Single- and multiple-QTL analyses based on the 

LDL method were performed in different sample-sets in order to allocate the 
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minor QTL allele to specific families and to use the increased frequency of the 

minor QTL allele for refined mapping.  

 

Materials and Methods 
 

Animals and phenotype 

In this study, we analysed the same nine granddaughter (GD) families used in 

our previous study [24], in which we identified three GD families (G01, G02 and 

G03) as heterozygous for a QTL located in the distal region of BTA5. The 

grandsires of these three GD families are designated as G01, G02 and G03, 

respectively. Grandsires G01 and G02 are half-sibs and have inherited the 

same haplotype in the distal region of BTA5 from their common ancestor A0 

[24]. By target sampling (see haplotyping section below), we introduced two 

additional GD families, family G10 with 85 sons and family G11 with 47 sons. 

Grandsire G10 (grandsire of family G10), was connected through his dam to A0. 

Grandsire G11, (grandsire of family G11), is a son of grandsire G02. In addition, 

we identified all available, progeny-tested maternal grandsons of grandsires 

G01, G02, G10 and G11 to add more, possibly recombinant, A0 haplotypes into 

the mapping population. In this way, we created three maternal grandsire 

(MGS) families, M02 with 21 grandsons, M10 with 32 grandsons and M11 with 

33 grandsons, descendants of grandsires G02, G10 ad G11, respectively. 

Samples of maternal grandsons were not available for grandsire G01. Thus, the 

analysis included 11 GD families: G01 to G11 and three MGS families (M02, 

M10 and M11). Figure 1 shows the relationships of all families included in this 

study. In some cases, mapping analyses were carried out on 173 additional 

animals available from other projects that are not descended from ancestor A0. 

Estimated breeding values (EBV) of the Fleckvieh bulls for milk production traits 

MY1, PY1, and FY1, (along with their reliability values) were obtained from the 

2009 joint Austria-Germany genetic evaluation of the Fleckvieh population [26]. 

  

 

DNA preparation and microsatellite marker selection and genotyping 

 

Genomic DNA was prepared from semen using standard methods and from 

whole blood samples with QIAamp Blood-Kits (Qiagen), according to the 

manufacturer’s protocol. 
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Twelve evenly distributed microsatellite markers were added to the 28 

microsatellite markers used in the previous study [24]. Twenty-one of these 40 

microsatellite markers covered the most likely region containing the QTL in the 

distal part of BTA5 (Table 1) and were used in the present study. Previously 

analysed animals were genotyped only for the new markers, but the five new 

families (G10, G11, M02, M10 and M11) were genotyped for all marker sets 

[24]. For 11 of the 12 markers, relevant information was obtained from the 

MARC-ARS-USDA public database at http://www.marc.usda.gov [27]. The new 

marker LMU0505 was obtained by targeted search for dinucleotide repeats in 

genomic regions with a low marker density. The unique sequences flanking the 

newly identified dinucleotide repeats were tested for informativity by genotyping 

a small set of animals first. Primers for the 12 new microsatellite markers were 

optimized using Primer3 (v.0.4.0) according to the bovine genome sequence 

data current available (i.e. Baylor release Btau_4.0, http://genome.ucsc.edu/cgi-

bin/hgGateway) and the appropriate fragment size in the currently designed 

marker set. The 12 new markers were divided into two PCR multiplex sets 

(Table 1) that were combined again after PCR for electrophoresis and fragment 

analysis. The fragment analysis of the PCR products was performed on ABI377 

and ABI Prism 310 sequencers. Genotypes were assigned using GENESCAN 

and GENOTYPER (Applied Biosystems) software programs. We performed 

double genotyping of all families and ancestors using two independent runs. For 

ambiguous genotypes, the raw data were re-evaluated and animals were re-

genotyped if necessary. 

 

SNP selection, genotyping and haplotyping 

 

SNP genotyping was carried out by Tierzuchtforschung e. V. München using 

the commercial Illumina Bovine SNP50 Bead chip featuring 54.001 SNPs 

(http://www.illumina.com/; Illumina, San Diego) that span the bovine genome, 

excluding Y-chromosome (BTAY). The genotype calling was performed with the 

GenCall application, as implemented in Illumina Bead chip Genotyping analysis 

software. This application computes a Gencall score for each locus, which 

evaluates the quality of genotypes. We included only animals with confirmed 

paternity and with a call rate above 0.98. Furthermore, we only used markers 

with a call rate above 0.90. We excluded all markers producing more than 1% 
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paternity problems in pairs with confirmed paternity, and also excluded all 

markers that were non-informative in the Fleckvieh population or with an 

unknown chromosomal position. This yielded 43.806 informative SNPs 

available for the whole-genome analysis in the Fleckvieh population. Two 

hundred and forty of these informative SNPs covered the region most likely 

containing the QTL in the distal part of BTA5 and were used in the present 

study. 

 

We performed SNP genotyping in two stages. First, 75 animals i.e. the 

grandsires of the nine initial GD families and their ancestors, and also a number 

of potential GD-family sires and their ancestors, were genotyped with the SNP 

chip [24] and their haplotypes were reconstructed with the BEAGLE program [28]. 

These 75 animals constitute a complex pedigree (Figure 1) in which it is 

possible to trace the segregating haplotypes five generations back to some 

important ancestors of the Fleckvieh population, born in the 1960’s and 1970’s. 

This pedigree represents almost all of the important bull lines originating from a 

wide range of dams. Considering this, and the fact that a large proportion of the 

included bulls and dams are unrelated (no common grand-parents), these 75 

animals provide a good representation of the haplotype diversity in the breeding 

Fleckvieh population. Second, the new families (G10, G11, M02, M10 and M11) 

containing the target haplotype segment of ancestor A0 were genotyped with 

microsatellite markers and with the genome-wide SNP chip. These animals and 

173 additional Fleckvieh animals not closely related to ancestor A0 (but 

genotyped with the SNP chip in other projects running in our laboratory) were 

also haplotyped using the BEAGLE program. 

 

Linkage map construction 

 

The relative positions of microsatellite markers were re-evaluated by the CRI-

MAP program [29]. A physical map was constructed according to the sequence 

data of all the markers (Table 1), using the basic alignment search tool (BLAST) 

and the latest cattle genome sequence 

(http://genome.ucsc.edu/cgibin/hgGateway). Our genetic data was used to 

resolve cases where more than one marker order was obtained from published 

linkage and physical maps. When our genetic data supported a marker order 

different from that of the public linkage map but in accordance to the physical 
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map, we modified the relative position (cM) of the markers along with the 

corresponding sequence. The linkage and physical maps were used as a 

framework to insert the newly designed marker (LMU0505) with the build option 

of the CRI-MAP program. The resulting final map (Table 1) was used for all the 

following analyses.  

 

QTL fine mapping 

 

LDL mapping by microsatellite markers 

 

Joint linkage disequilibrium and linkage (LDL) analysis is a variance component 

approach. We applied a mixed linear model and variance component estimation 

as described previously [24]. Thereby we used the Markov chain Monte Carlo 

(MCMC) to estimate IBD probabilities in general complex pedigrees [30-32]. To 

estimate LD-based IBD probabilities we assumed the number of generation 

since the base population (mutation age) and the past effective population size 

to be 100, and the initial homozygosity at each microsatellite marker in the base 

population was set to 0.35. In addition, the program LDLRAMS version 1.76 [30-

32] exploits allele frequencies in the population. To calculate an unbiased 

estimation of allele frequencies in the Fleckvieh population, we performed allele 

counting within the complex pedigree. We counted both alleles at all genotyped 

founder individuals and only the maternal allele of descendents in the pedigree. 

Two complex pedigrees consisting of 2089 (MSPED2089) and 1038 

(MSPED1038) animals, respectively, were analysed by LDLRAMS. The 

MSPED2089 pedigree included nine GD families from the previous study (G01 to 

G09), two additional GD families (G10 and G11), three maternal grandsire 

families (M02, M10 and M11), some highly related animals and some important 

ancestors (paternal and maternal grandsires of phenotyped sons and of family 

sires). The MSPED1038 pedigree included two GD families (G01 and G02) 

founded to be segregating for QTL in the previous study, two additional GD 

(G10 and G11) families and three MGS families (M02, M10 and M11) sampled 

according to the results of the haplotype analysis. For both LDL analyses, as 

implemented in the MCMC approach of the program LDLRAMS, we used an 

initial burn-in of 500 iterations followed by 2500 iterations, with parameter 

estimates collected for each iteration. To avoid entrapment in a local maximum, 
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we performed two independent sampling procedures (i.e. two LDLRAMS runs 

with different random number seeds).  

 

LDL mapping by SNP 

 

Here we used three complex pedigrees for LDL mapping by SNP. The first 

pedigree, SNPPED723, was based on all progeny-tested Fleckvieh animals 

genotyped with the SNP chip, and consisted of 325 genotyped and phenotyped 

sons, and 16 genotyped and 382 non genotyped ancestors. The second 

pedigree, SNPPED421, was based on progeny-tested animals that could be 

traced back to ancestor A0, and consisted of 175 genotyped and phenotyped 

sons, eight genotyped and 238 non genotyped ancestors. The third pedigree, 

SNPPED308, was based on animals not related to ancestor A0 according to the 

known pedigree, and consisted of 144 genotyped and phenotyped animals, 12 

genotyped and 152 non genotyped ancestors. These pedigrees were analysed 

with LDLRAMS using a dense map of 240 SNPs covering the region from 

112.650 to 124.780 Mb on BTA5, i.e. a region larger than the 97% confidence 

interval as determined by 1-LOD support interval [24]. Due to computing 

constraints the total marker set was divided into five overlapping sets of 80 

SNPs each. Since IBD estimates are most accurate in the middle of an 

investigated marker set, we present log-likelihood ratio (LRT) values only for the 

internal 40 marker intervals within these windows (that is, excluding the most 

proximal and most distal 20 markers). We used the model described above, 

setting the initial homozygosity at each SNP in the base population to 0.75 and 

using an initial burn-in of 500 iterations followed by 2500 iterations. The 

parameter estimates were collected after each iteration. Two independent 

MCMC sampling procedures (i.e. two LDLRAMS runs with different random 

number seeds) indicated convergence to a global maximum.  

 

Multiple-QTL analysis using linkage disequilibrium and linkage (LDL) 

analysis method  

 
 

We used the analysis method of Olsen et al. [33], i.e. the same model as for 

single-QTL analysis, but included a random QTL effect in another specified 

marker bracket. That is, bracket that showed a highest LRT in the single-QTL 

analysis was included as a random effect in the QTL model in turn, and the 
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analysis was repeated. These analyses searched for an additional QTL, given 

that the QTL in the bracket is accounted for, and is similar to the fitting of 

cofactors [34]. 

 

Estimation of model parameters and test statistics 

 

The variance components and the logarithm of the likelihood (L) of a model 

containing a QTL as well as residual polygenic effects at position p (logLp) were 

estimated by AIREML [32,35], which is an integral part of the LDLRAMS and LDL 

programs. The likelihood of a model without QTL effect (logL0) was calculated 

on the basis of a polygenic model. The log-likelihood ratio (LRT) was calculated 

as double difference in logL between models with and without a QTL, i.e. LRT = 

-2 (logL0-logLp). The LRT test statistic is distributed approximately as chi-square 

with 1 degree of freedom [36]. The confidence interval (CI) for the QTL position 

was determined as 1-LOD support interval which was constructed as the 

interval surrounding the QTL peak where the LRT exceeds LRTmax - 2 × ln (10), 

where LRTmax is the maximum LRT-value for the tested QTL [37]. 

 

Results 
 

Genotypes and linkage map construction 

Genotypes for 40 microsatellite markers were available to build the BTA5 

genetic map. In most LDL analyses, only the 21 most distal markers (Table 1) 

covering the 97% confidence interval were considered. When we controlled if 

the genotype and haplotype data were plausible, the distal marker (MNB71) 

which was genotyped in the previous projects [24], showed extensive double 

recombinations with the 12 markers added in the present project. To reduce 

possible mapping errors, we excluded this marker from all subsequent 

analyses. Using the build option of the CRI-MAP program we re-estimated the 

marker distances and order. In addition to mapping results based on own data 

we also considered the physical map results (bp position along BTA5 Baylor 

release Btau_4.0) to separate markers that were at the same position on the 

USDA linkage map and to confirm the orders of the markers on BTA5 that we 

used.  
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The following changes with respect to the public USDA linkage map were 

made: (i) according to the physical map results and confirmed by applying the 

build option of the CRI-MAP program to our own data, the positions of markers 

BM49 and BM733 are inverted (Table 1); (ii) markers DIK2035 and DIK5277 are 

both at the same position (120.85 cM) on the USDA linkage map but, according 

to our genotypes and the physical map results, they are separated, placing 

DIK2035 (120.38 cM) upstream of DIK5277 (120.82 cM); (iii) the new marker 

developed in this study (LMU0505) is highly informative for linkage analysis and 

its relative position between DIK5106 and ETH152 was estimated by applying 

the build option of the CRI-MAP program. The positions of both flanking markers 

DIK5106 and ETH152 also changed (Table 1).  

 

Haplotype analysis in a complex pedigree 

Using the algorithm implemented into the program BEAGLE, we haplotyped the 

75 animals of the complex pedigree in Figure 1 with 1976 SNP markers on 

BTA5 that are informative in the Fleckvieh population. Thus reconstructed 

haplotypes were used to identify families segregating for QTL detected in the 

initial study [24]. As already shown by the microsatellite analysis, the grandsires 

of families G01 and G02 which are heterozygous at the QTL, inherited the same 

haplotype in the distal region of BTA5 from their ancestor A0 (Figure 1). This 

was confirmed by the haplotypes reconstructed with the 240 SNP. This 

haplotype of ancestor A0 is named “haplotype 1” or (A0H1) and the alternative 

haplotype of A0 “haplotype 2” or (A0H2). Family G03, previously declared as 

heterozygous for the target QTL [24] but not here, has inherited haplotypes not 

related to A0H1 (Figure 1). All animals with haplotype A0H1 can be traced back to 

A0. Two of these, grandsires G10 and G11 are paternal and maternal 

grandsons of A0 and are very important Fleckvieh bull sires. We have collected 

samples of all available progeny-tested sons of these two grandsires and all 

available progeny-tested maternal grandsons of grandsires G01, G02, G10 and 

G11 to add more recombinant A0 haplotypes into the mapping population. In a 

total of 485 animals were genotyped by the SNP chip and haplotyped for BTA5. 

By calculating the independent haplotypes in the complex pedigrees and 

considering the traceability of all A0H1 haplotypes to A0, we estimated a very 

low frequency (<0.005) of A0H1 in the Fleckvieh population. Consequently, 
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throughout the rest of this paper the less frequent putative QTL allele 

embedded in this less frequent haplotype is referred to as the minor QTL allele.  

 

Combined linkage disequilibrium and linkage analysis  

Thirty-seven microsatellite markers and the complex pedigree MSPED2089 were 

used for initial LDL mapping analyses. As shown in Figure 2, we observed a 

highly significant QTL effect (LRT = 20 to 22, i.e. P = 0.0000077 to 0.0000027) 

but because of the presence of two or three peaks we were not able to improve 

the mapping accuracy.  

According to previous results [24] and to results obtained in the first part of this 

study, we have assumed that only one QTL has been introduced by haplotype 

A0H1 into the mapping population. Therefore, we performed a second LDL 

analysis using the 21 most distal markers, and limited to GD and MGS families 

descending from A0 and known to carry A0H1, i.e. pedigree MSPED1038 (Figure 

3). Unlike the analysis of pedigree MSPED2089, Figure 3 illustrates a single 

rather broad peak between positions 119.005 cM and 120.166 cM. However, 

this highly significant QTL (P = 0.000062 to 0.000021) is still mapped with a low 

accuracy, i.e. 1-LOD drop-off support intervals are 4.7 cM for FY1, 10.4 cM for 

PY1 and 11.5 cM for MY1.  

 

Since the confidence interval achieved by LDL analyses using pedigree 

MSPED1038 was still too large for a positional candidate gene approach, we 

analysed pedigree SNPPED723 using the LDL approach. The results were 

similar to those obtained with microsatellite markers and pedigree MSPED2089, 

namely, multiple peaks suggesting multiple QTL or no QTL (Figure 4).  

 

To resolve this dilemma, we divided pedigree SNPPED723 into pedigree 

SNPPED421 consisting of all progeny-tested animals descending from ancestor 

A0, and pedigree SNPPED308 consisting of the remaining progeny-tested 

animals. The LDL analyses of SNPPED308 pedigree showed a moderately flat 

non significant test statistic along the investigated chromosomal segment 

(Figure 5). Only LRT values for FY1 reached an indicative level of 3.99 

(P=0.046). Conversely, it was possible to map a QTL with pedigree SNPPED421 

whose minor allele is most probably originating from ancestor A0 (Figure 6). 

There were two distinct peaks, one with LRT values over 17 (P < 0.000037) for 
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both MY1 and PY1 in a region of 0.5 Mb (from 118.107 to 118.606 Mb) and one 

with a very high LRT value for only PY1 (LRT = 20.72, P = 0.0000053) at 

position 122.115 Mb. Considering 1-LOD drop-off support intervals, the 97% 

confidence intervals were located between 117.962 Mb and 119.018 Mb (i.e. 

1.056 Mb) for the QTL affecting MY1 and PY1 and between 121.800 Mb and 

122.200 Mb (i.e. 0.400 Mb) for the QTL affecting only PY1. There were two 

additional peaks with LRT values over 15 in regions around the positions 

115.650 and 116.300 Mb but they were not included in the 97% confidence 

interval for PY1 and were not supported by the highly correlated MY1 trait.  

 

The two identified peaks (located between 118.107 Mb and 118.606 Mb and at 

122.115 Mb, respectively) may be due to either the presence of more than one 

QTL or to the presence of one QTL with carryover effects to another region. 

Thus, a multiple-QTL analysis was performed. The two-QTL analyses using 

pedigree SNPPED421 for MY1 and PY1 fitting a QTL at position 118.202 

revealed a single QTL affecting MY1 at this location only and an additional QTL 

affecting PY1 at position 122.115 Mb (P = 0.019). However, two-QTL analyses 

accounting for the QTL at position 122.115 Mb did not rule out a possible 

second QTL affecting PY1 at position 118.202 Mb (P = 0.019).  

 

DISCUSSION 
 

The aim of this study was to refine the position of a previously mapped QTL by 

increasing the marker density in the region, by target sampling of additional 

families and by adapting fine mapping methods. According to our previous 

results [24] and to results from the initial part of this study, we hypothesized the 

presence of a minor QTL allele with a strong effect but at a very low frequency 

in the Fleckvieh dual-purpose cattle breed. In such a situation, a random 

sampling of additional families for confirmation and fine-mapping purposes can 

result in an increased frequency of the common QTL allele in the mapping 

design. Thus, the capacity to differentiate between genetic background noise 

and initially targeted QTL will be decreased. The reduced accuracy of QTL 

position estimates when using all genotyped animals (pedigrees MSPED2089 or 

SNPPED723) compared to a subset of animals (pedigrees MSPED1038 or 

SNPPED421) is counterintuitive to the general notion that the use of more 
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information should result in better estimates. To further explore this unexpected 

result, we have investigated several possible explanations, including the effects 

of the haplotype distribution and the possibility of additional QTL. To study the 

haplotype distribution in the Fleckvieh population, 485 animals were genotyped 

with the Illumina 50K SNP chip. Of these, a subset of 144 animals was not 

progeny tested and was not relevant for QTL mapping but very informative to 

study haplotype distribution. In particular, considering the putative QTL affecting 

MY1 and PY1 located within the 97% CI (between 117.962 Mb and 119.018 

Mb), a haplotype of 25 markers (A0H1) covering this region was detected in 89 

of 485 animals. This haplotype A0H1, most probably carrying the minor QTL 

allele, could be traced back to the ancestor A0 in all 89 cases (Figure 1). The 

alternative haplotype A0H2, most probably carrying the common QTL allele, was 

found in 13 cases but it was traced back to the ancestor A0 only in three. A 

perfect LD between the minor QTL allele and A0H1 (and only A0H1) would result 

in a relatively low allele frequency (0.137) of the derived QTL allele in 

phenotyped animals of pedigree SNPPED723 and in a frequency about double 

(0.254) in pedigree SNPPED421. The mapping results did reflect this difference 

too. In contrast, consider the six markers located within the 97% CI (between 

121.800 Mb and 122.200 Mb) of the putative QTL region affecting only PY1. 

Ancestor A0 is homozygous for a very long segment of this region i.e. from 

positions 118.266 Mb to 123.347 Mb (three SNP telomeric to the main peak of 

QTL affecting MY1 and PY1). This segment of 5.080 Mb includes 109 

informative markers in the Fleckvieh population. Comparison of mapping results 

from pedigrees SNPPED723 (Figure 4), SNPPED421 (Figure 6), and SNPPED308 

(Figure 5) revealed a highly significant QTL allele affecting PY1 only when the 

pedigree included families segregating for haplotype A0H1 (see comparison 

between Figures 4 and 6). Excluding these families yielded LRT values below 

3.99 (P > 0.045) for all three milk yield traits and for the complete investigated 

region (Figure 5, between 113.500 Mb and 123.700 Mb). We therefore used the 

linkage information in the SNPPED421 pedigree (A0H1 always traceable to A0), 

to map a QTL affecting both MY1 and PY1 in a 97% CI of 1 Mb.  

 

Haplotype and LDL analyses by microsatellite designs (Figures 2 and 3) and 

SNP designs (Figures 4 and 6) clearly suggest that the minor QTL allele 

associated with the putative QTL around the physical position 118.00 Mb (97% 
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CI between 117.962 Mb to 119.018 Mb) has been introduced by ancestor A0 

into the mapping population. The explanation of the second possible QTL that 

maps to the physical position 122.115 Mb and affects only PY1 is different. 

First, this QTL should also be associated with ancestor A0 haplotypes, i.e. 

absence of effect in the smaller SNPPED308 pedigree (Figure 5). Second, both 

ancestor haplotypes at the physical position 122.115 Mb are most probably 

identical by descent (i.e. homozygous for a 5.080 Mb segment with 109 

informative SNP). Therefore, ancestor A0 is most probably homozygous for the 

putative QTL at this position too. Third, this part of the haplotype is not unique 

to A0, but also segregates in other families, i.e. there is LD information for 

mapping, too. The relatively sharp LRT peak at position 122.115 Mb and 

homozygosity of A0 suggest an essential contribution of LD to this mapping 

result. Fourth, analyses with the two-QTL model did not rule out the possibility 

of a second QTL affecting PY1 within the candidate region on BTA5. And finally, 

despite the overall presence of haplotypes with a high IBD to ancestor 

haplotypes around position 122.115 Mb, the complete absence of this peak in 

SNPPED308 pedigree can be explained by either a novel mutation in ancestor 

A0 or by the incapacity of the method and design used here to map it in a 

relatively small pedigree like SNPPED308. more reasonable explanation may be 

the lower statistical power of the pedigree SNPPED308 possible local 

inconsistencies in the map order (which was based on map release Btau_4.0), 

the presence of a strong QTL at position 118.000 Mb with carryover effects to 

other regions, or a combination of all these explanations.  

 

The LDL analysis using SNP and pedigree SNPPED723 indicate several peaks 

affecting MY1 and PY1 in the region investigated here. In principle, these 

results (Figure 4) are comparable to the fine-mapping results reported on BTA3 

by Druet et al. [38]. In this study, the authors also first carried out mapping by 

linkage analysis and finally ended up with LDL analyses and multiple LRT 

peaks. We used larger overlapping marker windows (80 SNP) than Druet et al. 

[38]. By dividing the data set according to the results of linkage and haplotype 

analyses, most of the multiple peaks were explained as genetic background 

noise in a larger family set. The multiple peak profile could be explained by the 

heterogeneous LD structure within the QTL region or by the use of LD in the 

model when there is no LD information at all [38]. This might be increased by 
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possible local inconsistencies in the map order, which was based on the draft 

assembly or on comparative map information. Moreover, the method and the 

data structure may not make it possible to discard some regions even though 

they do not harbour the QTL [38].  

 

To check for a possible effects of the data structure on the reported mapping 

results we tested regression of EBV on genetic distance from ancestor A0 for all 

carriers of haplotype 1 (A0H1). The apparent lack of this regression suggests 

that we are looking at a real QTL effect, and not an artifact of pedigree-tracking. 

 

Searching the region between 117.900 and 119.100 Mb for candidate genes 

revealed 27 genes, 13 of which had no known function. Based on current 

biological information, genes with partly known function could only be indirectly 

related to milk yield traits. 

 

Conclusions  

In the present study, we have performed a haplotype-assisted extension of the 

mapping design and thus increased the allele frequency of the minor QTL allele 

in mapping families. Alternative analyses with family subsets resulted in a 

substantial reduction of the genetic background noise and an increased 

frequency of the minor QTL allele. Using these subsets, we succeeded in 

refining the map position of the previously detected QTL for milk production 

traits on BTA5 to a 1 Mb interval. In spite of implementing a two-QTL analysis, 

the possibility of a second QTL affecting only PY1 could not be ruled out. All in 

all, the results of both this study and the previous study by Awad et al. [24] 

support the presence of a QTL affecting both, MY1 and PY1 that close to the 

centromeric part of the long homozygous region (~5 Mb) in ancestor A0. 

Therefore, positional cloning and high-throughput sequencing of the candidate 

region located between 117.900 Mb and 119.100 Mb should now be considered 

but should also not neglect the second possible QTL around position 122.115 

Mb.  
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Table 1 Microsatellite markers used for QTL mapping. marker name, relative position (cM), physical position (bp), forward 
and reverse primer sequences and marker set (set: Set0 & Set1 as in previous study; Set3 & Set4 multiplex 1&2 in this study ) 
 
No Marker ID cM bp Forward primer Reverse primer Remarks 

1 LMU0502 95.00 98418609-98419268 TGGAAGAATATGCAGGTAACTCT GTCGCTCTTTGTGGCTTCAC Set1 

2 DIK2336 99.79 101071987-101072659 ATGTGGAATGTAGGGCAAGG TCCCTCACCTTTCGAACAAA Set1 

3 BM315 103.17 104045839-104046013 TGGTTTAGCAGAGAGCACATG GCTCCTAGCCCTGCACAC Set0 
4 DIK4843 107.02 107077504-107078179 CATGCAAGCTTTCAAGAATGA TGCAGAGATAAGCCGAGGAC Set4 
5 DIK1135  108.22 10181410-10182069 GTCTGCCATCTAGCCAAAAA GTTTTTCAGTGGGCATTTGG Set1 

6 DIK5238 110.97 111864734-111865363 TGGAACCAGTGAAGTTTAGGG GAAATGCCCACTGAAGCTCT Set3 
7 ETH2 112.43 112903902-112909263 ATTTGCCCTGCTAGCTTTGA AAGACTCTGGGCTTCAAAAGG Set1 
8 DIK2122 114.68 113216193-113216706 CAACAAACTGTGCGTTGTGA ACTCAGCAGTTGCCCTCAGT Set3 

9 BM2830 116.91 115262054-115262075 AATGGGCGTATAAACACAGATG TGAGTCCTGTCACCATCAGC Set0 
10 BM49 118.06 116205343-116205972 CACCATATTTGCCAGGATCA GCGGGATCTCACTAAACCAG Set3 
11 BM733 119.95 117125799-117126005 CTGGAGTCTCCTCCGTTGAG AGAGAGGGCCCTTGTGAGAT Set4 

12 DIK2035 120.85 119370626-119371127 CAGTCAATGCAGGAAAAGCA GCTGCTAGAGGGAGACAGGA Set3 
13 DIK5277 121.53 120099447-120100247 ACCCAAACTTAGCGTGGATG GTCTCCAAGGCTGCTCACTC Set3 
14 DIK5106 121.47 118461214-118461602 GCATGTGTGCAGAAGAAGGA TGTTCAGTGGTTCCCTGTGA Set3 

15 LMU0505 123.64 121423920-121424520 TGCAAGGAGAAGCGGTAGAT TGCACACTTACCCCATGTTC Set3 
16 ETH152 124.95 Unknown GTTCTCAGGCTTCAGCTTCG TGATCAGAGGGCACCTGTCT Set1 
17 URB060 127.55 122472602-122473177 TTGTCATTTCTGGACTCCACTG CAGGTCCAACCCTGTTTAGC Set1 

18 DIK5212 129.17 123262266-123262905 GGCTGGAACAGTGACTCTGG GGACCCAGATTTCAATGGAG Set3 
19 DIK5247 129.80 123619504-123619855 GGGTCTGTAGGGAGAAGCTG GCTTTCGAGAAGCATCCACT Set3 
20 MNB71 133.09 Unknown CATCTAAGGCAGAGCCAACC TTCTTGGTGCCTCTCTCTCC Set1 

21 NOR44 133.98 125340968-125341598 ACCCACCCGTACACATTCAA GGGGAGGAGATGGACTGTTC Set3 
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Figure 1 - Familial relationships considered in this study and segregation 

of most important haplotypes 

A complex pedigree of 38 sires (squares) of GD families (G), ten sires of 

daughter design (DD) families, three maternal grandsire (M) families and 26 

sampled and genotyped relevant ancestors; the pedigree has been simplified by 

showing only ancestors who made it possible to trace haplotypes from family-

sires to the most important ancestors (A0, A1, A2); furthermore, to reduce the 

complexity of the figure, ancestor A1 is represented more than one; 

correspondingly, letters and numbers within squares of family-sires represent 

the internal family ID; non- genotyped individuals are represented by smaller 

circles (females) and squares (males) marked with a diagonal line; the 

estimated haplotype of 25 markers (A0H1) comprising a derived QTL allele 

affecting MY1 and PY1 with 97% CI between 117.962 Mb and 119.018 Mb is 

graphically presented by yellow bars above the individual’s symbol; five other 

most frequent haplotypes are represented by five different coloured bars; 

introgression of Red-Holstein genes into the mapping populations is 

represented by ancestor A2 and the corresponding haplotype presented by a 

red bar; to reduce the complexity of the figure, 77 low frequency haplotypes are 

omitted; the allelic composition of the respective haplotypes is presented within 

the figure; the pedigree MSPED2089 is a subset of the total material which can 

be constructed by keeping the families marked by a grey circle around squares 

and associated ancestors; pedigrees MSPED1038 and SNPPED421 are subsets 

of MSPED2089 which can be constructed by removing appropriate families as 

described in material and methods; the pedigree SNPPED308 consists of GD 

family G36 and animals across the entire mapping population but not 

descending from A0; the pedigree SNPPED723 is a sum of pedigrees  

SNPPED308 and SNPPED421 
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Figure 2 LDL analysis by variance component approach using 
microsatellites in a complex pedigree of 2089 animals 
Joint linkage disequilibrium and linkage (LDL) analysis for three milk yield traits; 
Milk Yield (MY1), Milk Protein Yield (PY1) and Milk Fat Yield (FY1) during first 
lactation using thirty-seven microsatellites, a complex pedigree of 2089 animals, 
EBV as phenotype and AIREML as implemented in LDLRAMS and LDL program. 
Chromosome length in centiMorgan (cM) on the X-axis, log-likelihood ratio test 
(LRT) values on the Y-axis. Solid triangles on the X-axis represent positions of 
markers included in the analysis.  
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Figure 3 LDL analysis by variance component approach using 
microsatellites in a complex pedigree of 1038 animals 
Joint linkage disequilibrium and linkage (LDL) analysis for three milk yield traits; 
Milk Yield (MY1), Milk Protein Yield (PY1) and Milk Fat Yield (FY1) during first 
lactation using twenty-one microsatellites covered the most likely region 
containing the QTL in the distal part of bovine chromosome 5 (BTA5), a 
complex pedigree of 1038 animals, EBV as phenotype and AIREML as 
implemented in LDLRAMS and LDL program. Chromosome length in 
centiMorgan (cM) on the X-axis, log-likelihood ratio test (LRT) values on the Y-
axis. Solid triangles on the X-axis represent positions of markers included in the 
analysis 
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Figure 4 - LDL analysis by variance component approach using SNP in a 
complex pedigree of 723 animals  
Joint linkage disequilibrium and linkage (LDL) analysis for three milk yield traits; 
Milk Yield (MY1), Milk Protein Yield (PY1) and Milk Fat Yield (FY1) during first 
lactation using Two hundred and forty SNPs covering the most likely region 
containing the QTL in the distal part of bovine chromosome 5 (BTA5), a 
complex pedigree of 723 animals, EBV as phenotype and AIREML as 
implemented in LDLRAMS and LDL program. Chromosome length in Megabase 
(Mb) on the X-axis, log-likelihood ratio test (LRT) values on the Y-axis. 
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Figure 5 - LDL analysis by variance component approach using SNP in a 
complex pedigree of 308 animals 
Joint linkage disequilibrium and linkage (LDL) analysis for three milk yield traits; 
Milk Yield (MY1), Milk Protein Yield (PY1) and Milk Fat Yield (FY1) during first 
lactation using Two hundred and forty SNPs covering the most likely region 
containing the QTL in the distal part of bovine chromosome 5 (BTA5), a 
complex pedigree of 308 animals, EBV as phenotype and AIREML as 
implemented in LDLRAMS and LDL program. Chromosome length in Megabase 
(Mb) on the X-axis, log-likelihood ratio test (LRT) values on the Y-axis. 
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Figure 6 - LDL analysis by variance component approach using SNP in a 
complex pedigree of 421 animals 
Joint linkage disequilibrium and linkage (LDL) analysis for three milk yield traits; 
Milk Yield (MY1), Milk Protein Yield (PY1) and Milk Fat Yield (FY1) during first 
lactation using Two hundred and forty SNPs covering the most likely region 
containing the QTL in the distal part of bovine chromosome 5 (BTA5), a 
complex pedigree of 421 animals, EBV as phenotype and AIREML as 
implemented in LDLRAMS and LDL program. Chromosome length in Megabase 
(Mb) on the X-axis, log-likelihood ratio test (LRT) values on the Y-axis. The long 
homozygous region (~5 Mb) in ancestor A0 was showed (A0 Homo) 
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CHAPTER 5 

 

GENERAL DISCUSSION AND CONCLUSION 

 

One of the primary goals of modern genetics is to understand the genetic basis 

of complex traits. What are the genes and alleles that contribute to the trait of 

interest, and how do they interact with each other and with environmental 

factors to produce phenotypes? The availability of genetic linkage maps mainly 

composed of highly polymorphic microsatellite markers allows the genetic 

dissection of complex traits into QTL. Identification of QTL is a first step towards 

the identification of the genes involved in the regulation of a quantitative trait. 

However, even if the actual genes are not known it is possible to enhance the 

selection efficiency by use of genetic markers that are closely linked to a QTL of 

interest.  

 

Several QTL for milk production traits have been identified on all autosomes of 

the bovine genome. Khatkar et al. (2004), in a meta-analysis, considered 55 

studies in dairy cattle populations and provided an overview of QTL reported in 

literature. Some of these QTL were repeatedly detected and mapped in 

numerous studies (e.g. Boichard et al. 2003; Ashwell et al. 2004; Schnabel et 

al. 2005; Chen et al. 2006; Daetwyler et al. 2008; Kolbehdari et al. 2009; Mei et 

al. 2009). The results of previous QTL studies differ somewhat with respect to 

the number of QTL detected on a chromosome, their positions, and the extent to 

which the milk production traits are affected (Khatkar et al. 2004).  

 

The first objective of this study was to map QTL for milk production traits in the 

dual purpose Fleckvieh cattle breed on BTA5. In view of that, twenty-eight 

evenly distributed microsatellite markers covering bovine chromosome 5 were 

selected to genotype nine paternal half-sib families constructed in a 

granddaughter design. Three different mapping methods: interval mapping (IM), 

linkage analysis by variance component analysis (LAVC) and combined linkage 

disequilibrium (LD) and linkage (LDL) mapping method were used for analysis.  

By successive mapping steps we illustrated that the distal part of chromosome 

five harbour a QTL affecting MY, PY and FY in the first lactation. Different 
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mapping methods –IM, LA by VC approach and LDL– mapped this QTL with 

highest test-statistic value to almost the same marker interval (BM2830-

ETH152) and nearly at the same position: 118, 119.33 and 119.33 cM 

respectively. This results is in coordination with a number of studies which 

mapped QTL for milk production traits at the distal part of BTA5 e.g. Olsen et al. 

(2002) reported a QTL affecting fat yield at a position 115 cM from the 

centromere. De Koning et al. (2001) mapped a QTL for milk yield at 107 cM in 

the Finnish Ayrshire population. Using the same population, Viitala et al. (2003) 

detected another QTL for milk yield at 98 cM. A QTL for milk yield was also 

reported at position 109 cM by Bennewitz et al. (2003). Rodriguez-Zas et al. 

(2002) reported that a QTL affecting protein yield was located at position 91 cM. 

The three applied methods show differences in the shape and in the peak of 

test statistic curve, the shape of the curve is significantly sharper by LA-VC than 

by IM and more sharper by LDL than by the LA-VC approach, and the peak 

obtained by the LDL method was higher and narrower than that of the LAVC 

approach. The test statistics used for IM and VC-LA as well as for LDL 

approach are not directly comparable, but we reject the null hypothesis with 

higher probability as we use more information.  

 

The improved accuracy of QTL position estimates when using additional 

information on relationships (from IM to VC-LA) or additional information on 

relationships and historical recombination events (from IM over VC-LA to LDL) 

is plausible to the general notion that use of more information should result in 

better estimates. In our case, this general notion does not apply for across-

family interval mapping, where analysis across nine families was not able to 

detect QTL segregating in subset of families. On the other hand, connecting the 

same nine families by numerator relationship matrix (LA-VC approach) did 

result in significant effects of mapped QTL. However, the shape of test statistics 

estimated by IM based on all nine GDD families (Fig. 1a) was nearly 

comparable with that obtained by the LAVC approach (Fig. 2): both approaches 

showed a peak for FY1 at the middle region of the chromosome and another 

peak for MY1 and PY1 at the distal region of the chromosome 5. The crucial 

difference was in the significance of the results: the LAVC approach estimated 

significant QTL effects for FY1 at 73.3 cM and for MY1 and PY1 at 119.33 cM 
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whereas IM based on these nine families showed a fairly flat non-significant test 

statistic along the chromosome.  

 

Few studies have reported on a comparison of data analyzed with the different 

methods (de Koning et al. 2003; Nagamine et al. 2004; Grapes et al. 2004; 

Kolbehdari et al. 2005). The regression and variance component method have 

similar power in a simple pedigree structure. In complex pedigrees, the variance 

component method is thought to achieve greater power to detect QTL. 

Furthermore, the variance component method uses potential information from 

segregation on the maternal side (Nagamine et al. 2004). Other advantages of 

the VC method are simultaneous estimation of (none) genetic effects, less 

sensitivity for small family sizes or less informative markers, or both (Kolbehdari 

et al. 2005). Also, the VC method provides estimates of the effect of each 

haplotype, which links up with breeding value estimation. According to the 

theoretical expectations (e.g. Lee & Van der Werf 2005) and practical 

observation (Meuwissen et al. 2002; Olsen et al. 2005) the LDL mapping 

compared to the LA mapping as performed by LOKI should give not only sharper 

mapping but also higher LRT value at the most probable QTL position. This is 

the case in our study, although increase of test-statistic value and mapping 

accuracy depend on present level of LD in the mapping population and marker 

density. 

 

Comparison of allelic richness (El Mousadik & Petit 1996) and other diversity 

parameters among seven Alpine and three north-west European cattle breeds 

reveal Fleckvieh as breed with highest genetic variability (Medugorac et al. 

2009). The highest allelic richness among compared breeds reflects a large 

effective population size of Fleckvieh (Sölkner et al. 1998, Pirchner 2002). 

According to large effective population size we expect lower level of LD 

comparing to one-purpose breeds like Holstein-Friesian cattle that have smaller 

effective population sizes. Indeed, here estimate average LD, as measured by 

Hedrick’s multi-allelic D’ value (Hedrick 1987), for all marker pairs with distance 

< 5 cM amounts to 0.336. This is close to that estimated in the study of Lipkin et 

al. (2009) (0.35), and is considerably less then estimated for dairy breed 

Holstein-Friesian (0.50 in Farnir et al. 2000 and Vallejo et al. 2003; 0.45 in 
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Tenesa et al. 2003;) or Japanese beef cattle breeds (0.55 and 0.45 in Odani et 

al. 2006).  

However, it is difficult to compare the level and extent of LD obtained in different 

studies because the estimates of LD strongly depends on various factors such 

as: history and structure of the studied population (evolutionary forces that 

affected the population), sample size, marker type (microsatellites or SNPs), 

density and distribution of markers, type of method used for haplotype 

reconstruction, strictness of SNP filtering (threshold of minor allele frequencies 

and Hardy-Weinberg equilibrium), use of maternal haplotypes only or both 

maternal and paternal haplotypes (Bohmanova et al. 2010). Each of these 

factors can affect the estimates of LD. For example, with the D′ measure, a high 

level of LD extending over more than 10 cM has been reported (e.g., Farnir et 

al., 2000; Khatkar et al., 2006; Odani et al., 2006), but this measure can be 

inflated at large distances, for SNP with low allele frequencies, and by small 

sample sizes (Zhao et al. 2005; Du et al. 2007; Zhao et al. 2007). This tendency 

is undoubtedly exacerbated for microsatellite markers because of the general 

presence of one or more alleles at low frequency. The rare alleles and not 

observed haplotypes inflated D' but not χ2’ (Heifetz et al. 2005; Thévenon et al. 

2007). Therefore we use D' value only to compare level of LD with other 

populations but χ2’ to estimate actual level of useable LD in mapping 

population. Here we estimated 10.7% LD for separation distance <5 cM in 

Fleckvieh. This is only the half of appropriate estimates for Italian and Israel 

Holstein cattle population (Lipkin et al. 2009). The χ2’ values dropped off rapidly 

with increasing separation distance, and were very low (<0.045) for separation 

distances > 10 cM.  

 

Therefore, our results suggest the presence of only moderate LD at the < 5 cM 

range. The values obtained for χ2’ at this separation distance are still 

considerably greater than those reported at this separation distance in cattle for 

diallelic SNP markers, using the comparable r2 measure (Mckay et al. 2007; 

Khatkar et al. 2008; Sargolzaei et al. 2008).  

Relatively low level of LD in Fleckvieh suggest a need for more dense marker 

map for fine mapping of QTL in this population. The confidence interval as 

determined by 1-LOD support interval was large (13, 20 and 24 cM for FY, MY 

and PY respectively) for the positional candidate gene approach. Consequently, 
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the second objective was to refine the position of a previously detected QTL on 

BTA5.  To achieve this, we increased the marker density at the most likely QTL 

region by adding twelve new microsatellite markers to the map used in previous 

study (Awad et al. 2010) as well 240 SNPs corresponded to a region larger than 

1-LOD support interval, selection of new animals according to haplotype 

analyses in the complex pedigree. Single and multiple QTL analysis using 

combined linkage and linkage disequilibrium mapping method were used to 

analyse the data.  

 

Due to substantial improvement of the material and methods, we were able to 

refine QTL position considerably. We analysed different subset of families 

according to haplotype analysis and availability of SNP and microsatellite data. 

The reduced accuracy of QTL position estimates when using all genotyped 

animals (MSPED2089 or SNPPED723) compared to a subset of animals 

(MSPED1038 or SNPPED421) is counterintuitive to the general notion that use of 

more information should result in better estimates. To explore this unexpected 

result further, we investigated several possible explanations; including the 

effects of the haplotype distribution and the possibility of additional QTLs. A 

total of 485 animals were genotyped with SNP-chip and are used for study of 

haplotype distribution in Fleckvieh population. The haplotype of 25 markers 

(H0P) comprising a derived QTL allele affecting MY1 and PY1 with 97% CI 

(117.962 to 119.018) is in all 89 cases traceable back to the founder F0 (Fig. 1). 

The alternative founder haplotype is in only 3 of 13 cases traceable back to the 

founder F0. Considering the possible QTL affecting only PY1 at position 122Mb 

there are six markers covering 97% CI (121.8 to 122.2Mb). The founder F0 is 

homozygous in this six markers and large surrounding region from 118.266 –

123.347Mb. This segment of 5.080Mb includes 109 informative markers in 

Fleckvieh. Prediction of identity by descent probabilities (IBD) from marker-

haplotypes according to Meuwissen and Goddard (2001) suggest IBD>0.999 for 

both haplotypes in this homozygous segment in founder F0. 

 

A highly significant QTL allele affecting PY1 was detected only if families 

segregating for founder haplotypes included in analysis. Excluding these 

families produce the LRT values below 3.99 (P>0.045) for all three milk yield 

traits and for the complete investigated region (Fig. 5, 113.5-123.7 Mb). This 
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and LDLA analyses by microsatellite designs (Fig. 2 & 3) clearly suggest, 

derived QTL allele is introduced by founder F0 in to used mapping population. 

Haplotype analyse show very seldom haplotype associated with derived QTL 

around physical position 118.00Mb. Taking together, there is no LD information 

for mapping of this derived QTL in SNPPED723 and SNPPED421 designs. 

Therefore, using virtually only linkage information in SNPPED421 design we 

mapped a QTL affecting both MY1 and PY1 in a 97% CI of 1 Mb. The 

explanation of possible second QTL affecting only PY1 and mapping to the 

physical position 122.115 Mb is different. First, also this QTL is associated with 

founder haplotype. Second, both founder haplotypes at this position are most 

probably (P>0.999) identical by descent and therefore founder is most probably 

homozygous for QTL alleles at this position too. Third, this part of the haplotype 

is not unique for founder but segregate also in other families, i.e. there is LD 

information for mapping too. The relatively sharp LRT peak at position 122.115 

Mb and Homozygosity of F0 suggests essential contribution of LD to this 

mapping. Fourth, two-QTL analyse ruled not out the possibility of two QTL 

affecting PY1 within candidate region on BTA5. 

 

LDLA analysis using SNPs in a complex pedigree of 2089 animals indicated 

several peaks affecting MY1 and PY1 in our investigated region on BTA5 (Fig. 

4). These results are comparable with fine-mapping results on BTA03 

presented by Druet et al. (2008), where they mapped QTL for female fertility to 

a small set of narrow peaks on BTA3 by genotyping 17 Holstein half-sib families 

for a set of 437 SNPs, linkage analysis and LDLA were performed. The multiple 

peak profile would be explained by the heterogeneous LD structure within the 

QTL region or by use of LD in the model where there is no LD information at all. 

This might be increased by possible local inconsistencies in the map order, 

which was based on draft assembly or on comparative map information. 

Moreover, the method and the data structure might not allow the discarding of 

some regions even though they do not harbour the QTL (Druet et al. 2008). This 

study demonstrates way of target sampling of families segregating for derived 

QTL allele. Furthermore, the results of this study illustrates substantially 

improve in mapping resolution by preselecting of families and reduction of the 

noise in the test-statistic curve by dividing the mapping population according to 

haplotype analyses. 
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In the search for candidate gene in the region from117.9 to 119.1Mb, there are 

totally 27 genes. Thirteen of those encoding for proteins with unknown function. 

Genes with known function in this region (with descriptions taken out of Online 

Mendelian Inheritance in Man (OMIM) database) include for example: 

• TAB1 (Tak-Binding Protein 1): found in both yeast and mammalian 

cells, TAB1 activated the kinase activity of TAK1 by direct interaction, 

may be an important signalling intermediate between TGFB receptors 

and TAK1. 

• MGAT3: It is involved in the regulation of the biosynthesis and 

biological function of glycoprotein oligosaccharides. Catalyzes the 

addition of N-acetylglucosamine in beta 1-4 linkage to the beta-linked 

mannose of the trimannosyl core of N-linked sugar chains. It is one of 

the most important enzymes involved in the regulation of the 

biosynthesis of glycoprotein oligosaccharides. 

• ATF4 (Activating Transcription Factor 4): transcription activator 

activity, protein dimerization activity, sequence-specific DNA binding. 

• RPS19BP1 (Ribosomal Protein S19 Binding Protein 1): Direct 

regulator of SIRT1. Enhances SIRT1-mediated deacetylation of 

p53/TP53, thereby participating in inhibition of p53/TP53-mediated 

transcriptional activity. 

• GRAP2 (Growth Factor Receptor-Bound Protein 2): is a divergent 

member of the GRB2/Sem5/Drk family and suggested that it is an 

adaptor-like protein involved in leukocyte-specific protein-tyrosine 

kinase signalling. 

• CACNA1I (Voltage-dependent T-type calcium channel subunit alpha-

1I): calcium ion transport, signal transduction, transmembrane 

transport. 

• TNRC6B (Trinucleotide Repeat-Containing Gene 6B): Plays a role in 

RNA-mediated gene silencing by both micro-RNAs (miRNAs) and 

short interfering RNAs (siRNAs). Required for miRNA-dependent 

translational repression and siRNA-dependent endonucleolytic 

cleavage of complementary mRNAs by argonaute family proteins. 
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• SGSM3 (small G protein signaling modulator 3): acts in cooperation 

with merlin to enhance suppression of cell growth, regulation of Rab 

GTPase activity, regulation of Rab protein signal transduction. 

• RUTBC3 (RUN and TBC1 domain-containing protein 3): similar to 

SGSM3. 

• MKL1 (Megakaryoblastic leukemia 1 protein): Transcriptional 

coactivator of serum response factor (SRF) with the potential to 

modulate SRF target genes. Suppresses TNF-induced cell death by 

inhibiting activation of caspases; its transcriptional activity is 

indispensable for the antiapoptotic function. It may up-regulate 

antiapoptotic molecules, which in turn inhibit caspase activation. 

• MAP3K7IP1 (Mitogen-activated protein kinase kinase kinase 7 

interacting protein 1): similar to TAB1. 

Also, the possible second QTL affecting only PY1 and mapping to 122.115 Mb 

(from 121.8 to 122.2 Mb) includes about five genes (LDOC1L, PRR5, 

LOC553158, ARHGAP8 and PHF2). None of them could be associated with 

milk protein in dairy cattle. Therefore we will prefer positional cloning and high-

throughput sequencing in the candidate regions. 

 

CONCLUSION 

The first aim of this study was to map quantitative trait loci (QTL) affecting traits 

that are important to the milk producers and dairy industry. These are the milk 

production traits that directly affect the income of the dairy farmer and are also 

important for the dairies, the functional health and fertility traits that affect the 

income through effects on the milk quality and costs of production in general. By 

applying different mapping methods we showed that the distal part of BTA5 

harbours a QTL affecting first lactation milk yield, milk protein yield and milk fat 

yield in the dual purpose Fleckvieh cattle breed. The confidence interval of this 

QTL was large for positional candidate gene approach. So, the second aim was 

to refine the position of previously detected QTL. By increasing material and 

improving methods, we refined the position of QTL and reduce the confidence 

interval to 1Mb. Several genes with unknown function may be identified in our 

candidate region but this region is small enough for high-throughput sequencing 

and future detailed analyses of candidate genes. 
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CHAPTER 6 

 

GENERAL SUMMARY 

 

Mapping of Quantitative Trait Loci for Milk Yield Traits on Bovine 

Chromosome 5 in the Fleckvieh Cattle 

The aim of this thesis was to map quantitative trait loci (QTLs) affecting milk 

yield traits on bovine chromosome 5 (BTA5) in the Fleckvieh dual purpose cattle 

breed. These QTLs are of high interest in dairy and dual purpose cattle breeds 

because of their high economic weight in selection index. Segregation between 

a genetic marker and a locus affecting quantitative trait is the basis for success 

in mapping of QTLs.  

 

Twenty eight microsatellite markers with a coverage of 135 cM on BTA5 were 

selected and nine half-sib families containing a total of 607 sons in a 

granddaughter design (GDD) were analysed for mapping QTLs affecting Milk 

Yield (MY1), Milk Protein Yield (PY1) and Milk Fat Yield (FY1) during first 

lactation in the dual purpose cattle breed Fleckvieh. Phenotypic records were 

daughter yield deviations for these traits and corresponding reliabilities 

originated from the routinely performed genetic evaluations of breeding animals. 

The build option of the CRI-MAP program was applied to our genotype and 

pedigree date to find the marker order. As quality control of data, the 

constructed linkage map was compared to the published linkage map at USDA 

and to physical map of the bovine genome (Genome sequence Btau 4.0) and to 

separate markers that were at the same linkage position but with different 

physical position. Three different QTL mapping approaches were implemented: 

interval mapping (IM), variance component linkage analysis (LA-VC) and 

combined linkage disequilibrium and linkage analysis (LDL).  

 

The QTL analysis across nine half-sib families using one-QTL model interval 

mapping found that there might be two QTL affecting the three yield traits (MY1, 

PY1 and FY1), one QTL near the middle part of BTA5 and the other QTL at the 

distal part of chromosome. We confirmed a QTL at the distal part of BTA5 with 
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both variance component approaches (LA-VC and LDL), which mapped a QTL 

affecting MY1, PY1 and FY1 in the same direction and located it to the same 

marker interval (BM2830-ETH152) which has the highest test-statistic value at 

119.33 cM. The estimated average LD for marker pairs with distance < 5 cM 

was low (0.107) and reflected the large effective population size of the 

Fleckvieh breed. The relatively low level of LD in Fleckvieh suggests a need for 

a denser marker map for fine mapping of QTL in this population. Consequently, 

the achieved confidence interval was too large for the positional candidate gene 

approach.  

 

Therefore, we increased the marker density at the most likely QTL position by 

adding twelve new microsatellite markers to the map used in previous study as 

well as 240 SNPs corresponding to candidate region larger than the 97% 

confidence interval. Furthermore we added some new animals to get more 

recombination events around the candidate region. Families in which the 

derived QTL allele segregated were selected according to haplotype analyses 

of 41 GDD family sires and their available ancestors. These animals comprise 

one complex pedigree in which the segregating haplotypes can trace along five 

generations back to some important founders of the Fleckvieh population. 

Single and multiple QTL analysis using combined linkage and linkage 

disequilibrium method were performed. Analysis of different subset of families 

according to haplotype analysis and availability of SNP and microsatellite data, 

succeeded in refining the map position of the previously detected QTL for milk 

yield traits on BTA5. Considering the 97% confidence interval, we mapped a 

QTL affecting MY and PY to a region of only 1.056 mega base (Mb), i.e. from 

physical position 117.962 Mb to 119.018 Mb on BTA5. Additionally, there were 

some indications of a second QTL affecting only PY at physical position 122.0 

Mb. According to haplotype analyses of most important family sires and 

founders, this second QTL at position 122.115 Mb is less plausible. We 

identified several genes in our candidate region from 117.962 to 119.018 Mb 

but these are either with unknown function or with known function which can be 

only indirectly related to milk yield traits. Therefore, we suggest and initiated 

positional cloning and high-throughput sequencing in candidate region from 

117.9 to 119.1Mb.  
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CHAPTER 7 

 

ZUSAMMENFASSUNG 

 

QTL-Kartierung für Milchleistungsmerkmale im Deutschen Fleckvieh auf 

dem Rinderchromosom 5 

 

Ziel dieser Studie war es, „Quantitative Trait Loci“ (QTLs) mit Effekt auf drei 

Milchleistungsmerkmale auf dem Rinderchromosom 5 (BTA5) der 

Zweinutzungsrasse Deutsches Fleckvieh (DFV) zu kartieren. Diese QTLs sind 

aufgrund ihres hohen ökonomischen Gewichts in dem Selektionsindex bei 

Milch- und Doppelnutzungsrassen von sehr hohem Interesse. Dabei ist die 

Erkennung einer Ko-Segregation von Marker- und QTL-Allele, die das Merkmal 

von Interesse beeinflussen, die Basis für eine erfolgreiche QTL-Kartierung. 

 

Es wurden 28 Mikrosattelitenmarker, welche 135 cM des BTA5 abdecken, 

ausgewählt und in 607 Söhnen aus neun Halbgeschwisterfamilien 

(Granddaughter Design (GDD) Familien) genotypisiert. Dieses GDD wurde zur 

Kartierung von QTL mit Effekt auf die Milchleistungsmerkmale: Milchmenge 

(MY), Milchproteinmenge (PY) und Milchfettmenge (FY) im Doppelnutzungsrind 

DFV verwendet. Dabei wurden Leistungsabweichungen der Töchter, stammend 

aus quartalsmäßiger Zuchtwertschätzung, als Phänotypen verwendet. Die build 

Option des Programmes CRI-MAP wurde zur Anordnung von Markern 

basierend auf deren Genotypen und Abstammungsdaten verwendet. Die auf 

diese Weise entstandene Markerkarte wurde zur Qualitätskontrolle mit 

veröffentlichten USDA Kopplungskarten sowie mit der physikalischen Karte des 

Rindergenoms (genomische Sequenz Btau 4.0) verglichen und bei Bedarf 

(gleiche Kopplungs- aber verschiedene physikalische Position zweier 

enggekoppelter Marker) angepasst. Es wurden drei verschiedene QTL-

Kartierungsansätze angewendet: Intervallkartierung (IM), Kartierung mit Hilfe 

einer Varianzkomponenten-Analyse (LA-VC) und eine kombinierte 

Kopplungsungleichgewicht- (LD) und Kopplungsanalyse (LDL). 
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Die Intervallkartierung in neun GDD Familien zeigte, dass zwei QTLs einen 

Einfluss auf die drei Milchleistungsmerkmale (MY, PY und FY) haben könnten.  

Einer befindet sich im mittleren Teil, der andere im distalen Bereich des BTA5. 

Durch die beiden Varianzkomponentenansätze (LA-VC and LDL) konnte der 

QTL auf dem distalen Teil von BTA5 bestätigt werden. Dieser QTL zeigte für 

alle drei Leistungsmerkmale gleichgerichtete Effekte und kartierte im selben 

Markerintervall (BM2830-ETH152) mit höchstem statistischem Wert bei Position 

119.33 cM. Alle Markerpaare mit einer Distanz kleiner 5 cM zeigten einen 

geringen durchschnittlichen LD-Wert (0,107) und reflektieren damit eine große 

effektive Populationsgröße in der Rasse Fleckvieh. Der relativ niedrige LD-Wert 

macht deutlich, dass für eine QTL-Feinkartierung in der Rasse DFV eine 

dichtere Markerkarte nötig ist. Deswegen ist die erzielte Auflösung, in dieser 

ersten Kartierungsphase, nicht hoch genug für ein erfolgversprechendes 

positionelles Klonen und weiterführende Analysen der möglichen 

Kandidatengene.  

 

Deshalb wurde die Markerdichte in der Kandidatenregion erhöht. Es wurden 

zwölf neue Mikrosattelitenmarker und 240 SNPs zu der Karte, die in der 

vorangegangenen Kartierung verwendet wurde, hinzugefügt. Diese 252 neuen 

Marker decken eine Region ab, die mehr als 97% des Vertrauensintervalls 

umfasst. Außerdem wurden einige neue Tiere hinzugefügt, um mehr 

Rekombinationsereignisse zu beobachten. Dieses zusätzliche Tiermaterial 

wurde anhand einer Haplotypenanalyse von 41 GDD Familienväter und deren 

34 verfügbaren Vorfahren ausgewählt. Anhand der SNP-Haplotypen in diesen 

75 Tieren wurde es möglich QTL-Assozierte Haplotypen zu bestimmen und 

gezielt GDD-Familien für weiterführenden Analysen auszuwählen und für die 

oben genannten 252 Marker zu genotypisieren. Es wurden 1-QTL und 2-QTL 

Analysen unter Verwendung der LDL Methode durchgeführt. Die Analysen der 

verschiedenen Subgruppen in den Familien gemäß der Haplotypenanalyse und 

der Verfügbarkeit von SNP- und Mikrosattelitendaten konnten schließlich die 

Position des zuvor entdeckten QTLs im distalen Bereich des BTA5 genauer 

eingrenzen. Unter Berücksichtigung des 97%-igen Vertrauensintervalls konnten 

wir einen QTL mit Effekt auf MY und PY in einer relativ kleinen Region von 

1.056 Megabase (Mb) kartieren. Diese Region befindet sich auf BTA5 mit der 
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physikalischen Position von 117.962 MB bis 119.018 MB. Zusätzlich wurde ein 

Hinweis auf einen zweiten QTL, der lediglich PY beeinflusst, bei der  

 

physikalischen Position 122.0 MM gefunden. Dieser zweite QTL konnte nicht 

durch eine Analyse mit der QTL segregierenden Haplotypen in GDD-Familien 

und wichtige Gründertieren bestätigt werden. In unserer Kandidatenregion 

befinden sich mehrere Gene, bei einigen davon ist jedoch die Funktion bisher 

unbekannt, bei anderen mit bekannter Funktion konnte keine direkte 

funktionelle Verbindung mit Milchleistungsmerkmalen hergestellt werden. 

Deswegen wurde ein positionelles Klonen und eine 

Hochdurchsatzsequenzierung in der Kandidatenregion von 117.9 bis 119.1 Mb 

auf BTA5 empfohlen und eingeleitet. 
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