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Abstract

We study two-dimensional foliations on four-manifolds and examine properties of their closed leaves.
After considering the general case of smooth foliations, we focus on foliations with symplectic leaves
and then on symplectic pairs. In both cases certain restrictions on the underlying distributions and
on the closed leaves of such foliations are derived.

We further study the geometry of characteristic classes of surface bundles with and without flat
structures. For general surface bundles we show that the MMM-class are hyperbolic in the sense
of Gromov and deduce certain restrictions on the topology of bundles under the assumption that
the base is a product or that the bundle is holomorphic. We further consider characteristic classes
of flat bundles, whose horizontal foliations have closed leaves and compute the abelianisation of
the diffeomorphism group of a compact surface with marked points. When the foliations have a
transverse symplectic structure, we show the non-triviality of certain derived characteristic classes
in leaf-wise cohomology. For bundles with boundary we show that there is a relationship between
the geometry of a flat structure and the topology of the boundary.

We also introduce the relation of symplectic cobordism amongst transverse knots. Specialising
to the case of symplectic concordance we produce an infinite family of knots that show that this
relation is not symmetric, in stark contrast to its smooth counterpart.

Zusammenfassung

Wir beschéftigen uns mit zwei-dimensionalen Blatterungen auf Viermanigfaltigkeiten und unter-
suchen die Eigenschaften ihrer abgeschlossenen Blatter. Nachdem wir den Fall von glatten Blatter-
ungen betrachtet haben, konzentrieren wir uns auf Blatterungen mit symplektischen Blattern und
anschlieend auf symplektische Paare. Fiir diese beiden Félle zeigen wir, dass die zugrundeliegen-
den Distributionen und abgeschlossenen Bléatter solcher Blatterungen gewissen Beschrankungen
unterliegen.

Weiterhin untersuchen wir die Geometrie der charakteristischen Klassen von Flachenbiindeln
mit und ohne flache Strukturen. Fiir allgemeine Flachenbiindel zeigen wir, dass die MMM-Klassen
hyperbolisch im Sinne von Gromov sind. Unter der Annahme, dass die Basis ein Produkt oder
das Biindel holomorph ist, leiten wir auflerdem gewisse Einschrankungen an die Topologie solcher
Biindel her. Des weiteren behandeln wir charakteristische Klassen flacher Biindel, deren horizon-
tale Blatterungen abgeschlossene Blatter besitzen und berechnen die Abelianisierung der Diffeo-
morphismengruppe einer kompakten Flache mit markierten Punkten. Wenn die Blatterungen eine
transversale symplektische Struktur aufweisen, zeigen wir, dass gewisse sekundére charakteristische
Klassen in der blattweisen Kohomologie nicht trivial sind. Fiir Biindel mit Rand leiten wir eine
Beziehung zwischen der Geometrie einer flachen Struktur und der Topologie des Randes her.

SchlieBlich fithren wir die Relation des symplektischen Kobordismus fiir transversale Knoten
ein. Im Spezialfall der symplektischen Konkordanz zeigen wir mittels einer unendlichen Familie
von Knoten, dass diese Relation im Gegensatz zur glatten Konkordanz nicht symmetrisch ist.
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Chapter 1

Introduction

The motivating theme of this thesis is the study of 2-dimensional foliations on 4-manifolds.
In studying examples of such foliations the geometry of surface bundles consequently took
on a prominent role and hence the majority of results we present are in some way related to
surface bundles. Another recurring theme is that of 4-dimensional symplectic topology and
as such we also consider the topology of certain symplectic surfaces in the form of cobordisms
of transverse knots in contact manifolds.

1.1 Foliations and distributions on 4-manifolds

The question of whether a given manifold admits a foliation of a given dimension is a very
difficult one in general. An obvious necessary condition for the existence of a ¢-dimensional
foliation is the existence of a g-dimensional distribution. In dimensions 1 and 2 this is
in fact also sufficient. For dimension 1 this is obvious and in dimension 2 it follows from
Thurston’s h-principle, which says that on a manifold of dimension at least 4, any oriented
2-dimensional distribution is homotopic to an integrable one (cf. [Th2]). Thus the existence
of 2-dimensional foliations reduces to the problem of the existence of oriented 2-plane distri-
butions. An oriented 2-plane field is then a section of the Grassmanian bundle of 2-planes
and the existence of such sections is a homotopy problem that can be expressed in terms of
obstruction theory.

In the case of oriented 4-manifolds the existence of an oriented 2-dimensional distribution
is equivalent to a splitting of the tangent bundle as the Whitney sum of two oriented rank-2
subbundles &7,&. As these bundles are oriented there is an almost complex structure on
TM so that both bundles are complex subbundles. Thus the Whitney sum formula yields
certain equations that the Chern classes of &1, & must satisfy. Since the Euler class of an
oriented rank-2 bundle is the same as its first Chern class, these equations may be written
as follows:

e(&1) v e(&) = (M) and €*(&) + €*(&) = f(M).

Another necessary condition that these classes satisfy is that e(&;) + e(&2) reduce to the
second Stiefel-Whitney class wq(M) in mod 2 cohomology. The latter condition combined
with the above equations give what we shall call the distribution equations. It is an old result
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8 1. Introduction

of Hirzebruch and Hopf that the existence of a pair of cohomology classes ey, es that satisfy
the distribution equations implies the existence of a pair of complementary 2-plane fields
whose Euler classes are eq, ey respectively (cf. [HH]). The path to this result suggests an
alternate form of the cohomological equations above that is particularly useful for performing
calculations (Proposition 2.2.4). Using these equations one can give precise conditions under
which a 4-manifold admits 2-plane distributions in terms of the Euler characteristic and
signature of the manifold (Theorem 2.2.8). So in particular the existence of foliations on
4-manifolds depends only on the homotopy type of the given manifold.

Given that 2-dimensional foliations are abundant on 4-manifolds as soon as certain weak
topological conditions are satisfied, it is natural to try to understand the geometry of these
foliations more closely. In particular, we investigate the closed leaves of such foliations. This
problem has been studied by Mitsumatsu and Vogt, whose approach is based on a stronger
form of the result of Thurston mentioned above. For what Thurston actually proved is what
is known as a relative h-principle. That is, if £ is a distribution of 2-planes that is integrable
on a neighbourhood of a compact set K, then £ is homotopic to an integrable distribution
that agrees with £ on K.

Now if an embedded surface ¥ can be realised as a leaf of a foliation on a 4-manifold
M, then the foliation defines a flat connection on the normal bundle vs of ¥ via the Bott
construction. The classical Milnor-Wood inequality then implies that the Euler class of vs
satisfies |e(vs)| < g(¥)—1. This inequality is then an obvious necessary condition for a given
surface to be realisable as a leaf of a foliation. Using the relative h-principle Mitsumatsu
and Vogt showed that ¥ can be made a leaf of a foliation if and only if its normal bundle
satisfies the Milnor-Wood inequality and there exist cohomology classes e, ey satisfying the
necessary cohomological conditions described above as well as the following equations:

er([X]) = e(vs) =[] and e([3]) = 2 — 29(%).

By using the alternate form of the distribution equations, we will generate many examples
of distributions where one has great flexibility in solving the additional equations needed
to realise a given surface X as a leaf. These examples can then be used to answer certain
questions posed in [MV] (cf. Section 2.3).

In order to obtain stronger results on the geometry of leaves of foliations in view of
the h-principles at hand, one needs to consider more restricted classes of foliations. If one
considers foliations that are complex analytic, then a closed leaf must have trivial normal
bundle (Proposition 2.4.1). So complex foliations are too rigid to have interesting closed
leaves. Another interesting class of foliations are those that are symplectic, in the sense that
each leaf is symplectic with respect to some symplectic form. If a foliation is symplectic,
then there are no longer any local obstructions as in the case of complex analytic foliations.
There are however subtle restrictions on the Euler classes of the underlying distributions of
symplectic foliations that come from Seiberg-Witten Theory. In particular, if e;, e; are the
Euler classes of the underlying distribution of the foliation and its orthogonal complement,
then either e; + ey or e; — ey is £¢1(K), where ¢1(K) is the canonical class associated to
the symplectic form. Moreover, if b5 (M) is at least two, then there are only finitely many
possibilities for ¢;(K) (Proposition 2.4.6).

A further special case of symplectic foliations are so-called symplectic pairs. We refer to
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the main text for a general definition, but in the case of 4-manifolds a symplectic pair is
equivalent to a pair of closed 2-forms wq,ws such that

wi =w; =0and w; Awy # 0.

The kernel foliations of the forms wy,ws are then symplectic foliations with respect to the
symplectic forms w; £ w,. In the case of symplectic pairs the restrictions on the Euler classes
are even stronger. In particular, under the assumption that by (M) > 1, the possibilities for
the Euler classes of both foliations are finite (Proposition 2.5.2). In the case of a product of
Riemann surfaces of genus greater than two, the possible canonical classes are known and
one can calculate that the Euler classes of the kernel distributions of a symplectic pair are
essentially unique (see Example 2.5.3). These results then give cohomological obstructions
for surfaces to be realisable as leaves of symplectic pairs.

There are also more subtle geometric restrictions on the way a leaf of a symplectic pair
can be embedded in a given 4-manifold. As noted above each leaf L of the kernel foliations
of a symplectic pair is symplectic with respect to both of the symplectic forms w; + ws. This
fact can be exploited to show that a piece of the leaf L cannot be locally isotopic to a piece
of a Milnor fibre, under certain assumptions either on the topology of the manifold or on the
homology class represented by L (Proposition 2.5.13).

1.2 Swurface bundles and their characteristic classes

The topology of surface bundles is a rich and well-studied area of mathematics. By a classical
result of Earle and Eells, the classifying space of oriented surface bundles is an Eilenberg-
MacLane space BI'), = K(I'y,1), whose fundamental group is the mapping class group of
Y. The group I'y, is defined as the group of orientation preserving diffeomorphisms of >3
modulo isotopy. In this way a given surface bundle ¥, — E — B is classified by its holonomy
representation 7 (B) — I'y, which induces the classifying map of E.

The cohomology of BI'j, is important not only in the theory of surface bundles but also in
the theory of moduli spaces of Riemann surfaces, since the rational cohomologies of BI';, and
the moduli space of genus h Riemann surfaces M are isomorphic. There are a plethora of
non-trivial cohomology classes in H*(BI';) called Mumford-Miller-Morita (MMM) classes in
honour of their discoverers. To define these we let e(F) denote the vertical Euler class of the
oriented rank-2 vector bundle of vectors that are tangent to the fibres of E. The k-th MMM-
class is then defined as ex(E) = mef ™ (E), where m denotes the transfer homomorphism
given by integration along the fibre. The geometry of these characteristic classes is very
interesting and we examine several aspects of this in this thesis.

Our main motivation for studying the MMM-classes is a conjecture due to Morita that the
classes ey, are bounded in the sense of Gromov. We recall that a cohomology class is bounded
in the sense of Gromov if it has a representative singular cocycle that is bounded on singular
simplices. The vertical Euler class e is bounded (Proposition 3.1.7) and we give a new proof
of this result, which is originally due to Morita. Our proof uses the adjunction inequality
coming from Seiberg-Witten theory and is independent of Morita’s original argument. The
boundedness of e then implies that the self-intersection number of a section of a bundle over
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a 2-dimensional base is bounded in terms of the genus of the fibre and base. Mitsumatsu
and Vogt conjectured that a similar bound should exist for more general multisections. We
verify this conjecture in the case of pure sections (Proposition 3.1.10). However, we also
show that a stable version of the conjecture of Mitsumatsu and Vogt, which is technically
stronger than their original question, is in fact false (Corollary 3.1.15).

Returning to the question of Morita concerning the boundedness of the MMM-classes one
can use the boundedness of the vertical Euler class to see that if e is non-trivial for a bundle,
whose base is a 2k-dimensional manifold, then the total space must have non-zero simplicial
volume. The condition that a manifold has non-vanishing simplicial volume is equivalent
to the fact that the Poincaré dual of the fundamental class is bounded as a cohomology
class in the above sense. If the non-vanishing of the simplicial volume of the total space of a
surface bundle implied that the base also had non-vanishing simplicial volume, then Morita’s
conjecture would follow. However, in full generality this does not hold with counterexamples
given by hyperbolic surfaces bundles over the circle. The fundamental group of the circle
is amenable and a general fact about the simplicial volume is that it vanishes for manifolds
with amenable fundamental group. The examples above are in fact the exception and this
leads us to show that the simplicial volume of a surface bundle over a base with amenable
fundamental group is trivial as soon as the dimension of B is greater than 1 (Theorem 3.2.2).
As a corollary of this theorem, we reprove a result of Morita that the MMM-classes vanish
on amenable groups (Theorem 3.2.3).

There is a weaker notion of boundedness for cohomology classes that is also due to
Gromov, namely hyperbolicity. For a compact manifold a cohomology class is hyperbolic if
the pullback of a de Rham representative to the universal cover has a C°-bounded primitive
with respect to the pullback metric. The hyperbolicity condition can be reexpressed in a
manner that does not involve metrics and can be generalised to arbitrary spaces (cf. Section
3.3). Although hyperbolicity is strictly weaker than boundedness, it does imply vanishing
on amenable subgroups and as further evidence for Morita’s conjecture, we prove that the
MMM-classes are hyperbolic (Theorem 3.3.8).

Another natural question concerning the MMM-classes is the following: given a base
manifold B, for which MMM-classes does there exist a surface bundle over B so that ey (FE)
is non-trivial? This question can be rephrased as a question about the representability of cer-
tain homology classes in H,(BTI';,). We restrict our attention to the case where B = M; x M,
is a non-trivial product of two manifolds and show that e, vanishes for such manifolds if the
dimension of both of the factors is less than 2k (Theorem 3.2.5). As an application of the
results discussed above, we then deduce strong restrictions on the topology of bundles that
are holomorphic, in the sense that both base and total space are complex and the bundle
projection is holomorphic. In particular, we show that if the fundamental group of the base
of a holomorphic bundle is amenable, then the total space is virtually a product, and if the
base is a product of Riemann surfaces, then e? must be trivial (Section 3.4).
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1.3 Flat surface bundles

An important special case of fibre bundles from the perspective of foliation theory are flat
bundles. Recall that a fibre bundle E over a manifold B is called flat if it admits a fo-
liation that is everywhere complementary to the fibres. An equivalent formulation of this
condition in the case of surface bundles is that the holonomy homomorphism 7 (B) — T,
lifts to the group of orientation preserving diffeomorphisms Dif f*(3;). In general, there
are cohomological restrictions to the existence of flat structures, since the Bott vanishing
theorem implies that the MMM-classes e, (FE) vanish for flat bundles if £ > 3. However, in
low dimensions flatness is not as restrictive. If the dimension of the base is one, then rather
trivially the total space of any bundle admits a horizontal foliation, which may be thought
of as a horizontal flow. If B is a surface, then any bundle admits a horizontal foliation after
stabilisation by a result of Kotschick and Morita.

A closed leaf of the horizontal foliation of a flat bundle E intersects each fibre in a
finite number points. Thus the existence of such a closed leaf is equivalent to a reduction
of the holonomy group of E to group Dif f*(X,,) that consists of orientation preserving
diffeomorphisms fixing £ marked points. Characteristic classes of flat bundles with closed
leaves can then be considered as elements in the group cohomology of Dif f* (2, ;) considered
as a discrete group. This cohomology is of course difficult to understand in general and
we content ourselves with the low dimensional cases. As such, we compute that the first
homology of Dif fi (Xx) is RT x Zy under the assumption that h is at least three and k
is at least two (Proposition 4.1.13). We also compute the abelianisation of the group of
compactly supported diffeomorphism on R? fixing the origin. This result is originally due to
Fukui, although his proof seems to be incomplete (see Section 4.1.2).

For flat surface bundles one obtains a natural characteristic class by restricting the vertical
Euler class to a closed leaf. If the base is a surface, this corresponds to the self-intersection
number of the leaf and we show that there exist foliations for which these self-intersection
numbers are non-trivial (Proposition 4.1.5). Moreover, if we instead assume that a given
bundle admits a section that has self-intersection divisible by 2h — 2, then this section can be
made a leaf of a horizontal foliation after stabilisation (Theorem 4.1.7). This result means
that obstructions to the existence of certain horizontal foliations given in [BCS] are not stable
in the sense that they disappear after one performs a certain number of stabilisations.

We also study the closed leaves of flat bundles whose horizontal foliations admit transverse
symplectic structures. For codimension 2 foliations a transverse symplectic structure is
equivalent to the fact that the foliation can be defined as the kernel of a closed 2-form.
A transverse symplectic form on a flat surface bundle is then equivalent to a holonomy
invariant symplectic form on the fibres, which means that the holonomy map of the bundle
lies in the group Symp(X;) of symplectomorphisms of ¥;,. Similarly, a flat symplectic bundle
with a closed leaf is equivalent to a holonomy representation in the group Symp(¥j ) of
symplectomorphisms that fix £ marked points. We again concentrate on the case where the
base of the bundle is a surface showing that there are indeed flat symplectic surface bundles
having closed leaves of non-zero self-intersection (Proposition 4.2.9). The most interesting
examples of such foliations occur as the horizontal foliations of symplectically flat sphere
bundles, for which any closed leaf with non-zero self-intersection number must be unique
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(Section 4.2.1). As a further consequence of Proposition 4.2.9 we deduce that there exist
symplectic pairs on 4-manifolds both of whose kernel foliations have leaves with non-zero
intersection numbers (Corollary 4.2.10).

1.4 Surface bundles and extended Hamiltonian groups

Given an arbitrary circle bundle it is a basic question to ask whether it bounds a surface
bundle. This question may be viewed as the fibred analogue of the bordism problem for closed
manifolds. If the circle bundle is assumed to be flat, then one can consider the problem of
extending the flat structure to the interior of such a fibred null-cobordism. If the fibre is
assumed to be a disc, then there is a dichotomy depending on whether one requires that the
foliation be symplectic or not. For in the smooth case, it is a simple matter to show that any
flat circle bundle over a surface admits a flat disc bundle filling after stabilisation. However,
in the symplectic case the Euler class provides an obstruction by a result of T'suboi. In fact,
Tsuboi gives a formula for computing the Euler class of a flat circle bundle in terms of the
Calabi invariant of certain extensions of the boundary holonomy to the interior of a disc
(Theorem 5.2.1).

Tsuboi’s result can be reformulated in terms of the five-term exact sequence in group
cohomology. The advantage of this reformulation is that it can easily be generalised to the
case where the fibre of the filling is an arbitrary Riemann surface with one boundary com-
ponent. After suitably generalising the Calabi map we shall extend Tsuboi’s formula to the
extended Hamiltonian group of a Riemann surface with one boundary component (Theorem
5.2.10). Here the extended Hamiltonian group is a subgroup of the symplectomorphism
group which is defined as the kernel of a certain crossed homomorphism that is an extension
of the ordinary Flux homomorphism in symplectic geometry.

As a consequence we see that the Euler class gives a obstruction to filling a circle bundle
by a flat surface bundle with holonomy in the extended Hamiltonian group. We contrast
this result with the fact that any flat circle bundle can be filled by a flat symplectic bundle
after stabilisation (Theorem 5.1.4). As a final application of these methods we derive a
Tsuboi-type formula for the first MMM-class of a surface bundle with boundary (Corollary
5.3.3).

As previously mentioned, the Bott vanishing theorem implies that the MMM-classes e;,
vanish on flat bundles if k is a least three. On the other hand, there exist flat bundles for
which the first MMM-class is non-trivial by a result of Kotschick and Morita. These bundles
can in fact be chosen to have symplectic holonomy. This led Kotschick and Morita to ask
whether the second MMM-class can be non-trivial for flat surfaces bundles or flat bundles
with symplectic holonomy. We shall answer this question under the assumption that the
holonomy group lies in the extended Hamiltonian group. For as in the case of a surface with
boundary one can also define an extended Flux homomorphism on Symp(%;,), whose kernel

is the extended Hamiltonian group ﬁgr/n(ﬁh). We show that the class e is trivial when

considered as an element in the group cohomology of %(Eh) and that the powers e} are

also trivial if £ > 2 (Theorem 5.4.4).
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1.5 Characteristic classes of symplectic foliations

The Pontryagin classes of the normal bundle to a foliation F define characteristic classes,
which depend only on the homotopy class of the underlying distribution. If the foliation
has a transverse volume form w, then for certain polynomials P in the Pontryagin classes
we show that there exist well-defined foliated cohomology classes vp such that P(Q) =
wAvyp (Proposition 6.1.3). Similar factorisations for transversally symplectic foliations were
obtained in [KM3] via computations in the Gelfand-Fuks cohomology of formal Hamiltonian
vector fields. By working with Bott connections we obtain a more concrete construction that
is immediately applicable to foliations that are only transversally volume preserving.

Although one expects that the foliated cohomology classes vp discussed above contain
more information than the Pontryagian classes themselves, this is by no means immediate
from their definition alone. We consider this problem by starting with the first non-trivial
case. That is, we assume that we have a transversally symplectic codimension 2 foliation on
a 4-manifold. In this case the first Pontryagin class of the normal bundle to the foliation has
a factorisation py(vr) = w A 7.

In general, any foliated cohomology class yields a well-defined class in ordinary cohomol-
ogy when restricted to a leaf. We show that there exist symplectically foliated R2-bundles
that have closed leaves L, such that the restriction of v to L is non-trivial. Moreover, we may
assume that such a bundle is topologically trivial (Theorem 6.3.7). We conclude that the
class v contains information that is sensitive to the geometry of the foliation and not just its
homotopy class as a distribution. The examples that we obtain are of differentiability class
C* for finite k and we unfortunately cannot obtain smooth examples using our methods.

1.6 Symplectic cobordism and transverse knots

In the general theory of knots (or links) in S3, or more generally in an arbitrary 3-manifold,
one usually considers knots up to isotopy. A less restrictive equivalence relation on the set
of knots is that of cobordism or concordance. Here two oriented links K, K; in S® are
cobordant if there is a properly embedded, oriented surface ¥ in S x [0,1] such that the
intersection of ¥ with S% x {i} is K;. Two knots are concordant if they are cobordant via
an annulus. The cobordism relation is trivial for the 3-sphere, since every knot bounds an
embedded surface and, hence, every knot is null-cobordant. The concordance relation is
however far from trivial and has been a subject of intense study amongst knot theorists for
many years.

We shall consider similar relations in the setting of contact topology. There are two
natural classes of knots that one studies in the presence of a contact structure. The first
are transverse knots that are everywhere transverse to the contact distribution and the
second are Legendrian which are everywhere tangent. The analogous notion of cobordism for
transverse knots is symplectic cobordism. Two transverse knots Ky, K; in a contact manifold
M will be symplectically cobordant if there is a properly embedded symplectic surface ¥ in
the symplectisation (M x R, d(e')\)) whose negative/positive ends are Ky x (—oo, —R) and
K; x (R, 00) respectively. As in the smooth case, two transverse knots are symplectically
concordant if they are cobordant via an annulus. This notion is the transverse analogue of
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Lagrangian cobordism/concordance as introduced by Chantraine.

For ordinary smooth cobordism every knot is null-bordant. However this is no longer true
for transverse knots in S? with its standard contact structure. In fact, a link is symplectically
null-bordant if and only if it is quasipositive by a result of Boileau and Orevkov. Another
important property of null-bordisms for knots in S® is that they minimise the genus for all
smooth slicing surfaces in the 4-ball (Theorem 7.2.3). In fact, if ¥ is a symplectic cobordism
from Ky to K1, then one has the following equation for the slice genera of the knots

2 = 29(Ky) = 2 — 29(Ko) + x(2).

This means that if K is symplectically cobordant to K by a cobordism with negative Euler
characteristic, then the opposite relation cannot hold. This implies an asymmetry in the
symplectic cobordism relation that is not present in the smooth setting.

We have seen that the slice genus obstructs symmetry for the symplectic cobordism
relation. Hence we consider the question of symmetry for symplectic concordance instead,
since two concordant knots necessarily have the same slice genus. However, this relation
also fails to be symmetric and we produce an infinite family of examples K, that are not
symplectically concordant to the unknot Ky, but which are symplectically null-concordant
meaning that there is a symplectic concordance from the unknot to K.
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Chapter 2

Distributions and leaves of foliations

We first review basic facts concerning 2-plane distributions on 4-manifolds. We then discuss
the consequences of the Milnor-Wood inequality on closed leaves of 2-dimensional foliations
and recall the cohomological criteria of Mitsumatsu and Vogt that give necessary and suffi-
cient conditions for the realisability of a surface as a leaf of a foliation. After showing that
there is a great deal of flexibility in satisfying these cohomological criteria, we give a series
of examples that answer two questions posed in [MV] concerning the topological properties
of closed leaves of foliations (cf. Examples 2.3.4 and 2.3.5). We next consider special classes
of foliations and their closed leaves, focusing mainly on symplectic foliations and symplectic
pairs. In particular, we derive restrictions on the local geometry of leaves of symplectic pairs.

2.1 Conventions

All manifolds are connected and smooth. We shall only consider oriented distributions,
which will always be smooth. Unless otherwise stated all (co)homology groups will be taken
to have integral coefficients.

2.2 The distribution equations on a 4-manifold

It is a basic question, whether a given manifold M admits a foliation. For 1-dimensional
foliations on compact manifolds, this is equivalent to the vanishing of the Euler characteristic.
In general, a necessary condition for M to admit a k-dimensional foliation is that it first
admits a k-dimensional distribution. For 2-dimensional foliations of codimension greater
than 1, this is also sufficient. In fact more is true and one has the following (relative)
h-principle which is due to Thurston.

Theorem 2.2.1 ([Th2], Cor. 3). Let M be an oriented manifold of dimension greater than
3 and let & be an oriented distribution of 2-planes. Then & is homotopic to a foliation. Fur-
thermore, if £ is integrable in a neighbourhood of a compact set K C M then this homotopy
may be taken relative to K.

We shall now explain how oriented distributions correspond to sections of certain 2-sphere
bundles over M, for a more detailed account we refer to [HH].

15
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We first consider the double covering

SO(4) —2 SO(3)4 x SO(3)_

T T

S0(2) x SO(2) —— SO(2) x SO(2)

that one obtains by considering the natural representation of SO(4) on A?, which then
gives induced representations on A%, the space or self-, resp. anti-self-dual 2-forms. The
subgroup SO(2) x SO(2) in SO(4) denotes the group of transformations that preserve the
decomposition R* = R?@®R? and are orientation preserving on each factor. The image under
p of this subgroup fixes a 1-dimensional subspace in A%, A% respectively that we may describe
explicitly. To this end we pick oriented bases {e;, e2} and {es, e4} for the two R*-factors and
let {e',e?} and {e® e*} denote the corresponding dual bases. The invariant subspaces are

then given by the span of the following 2-forms:

c«):el/\eQ—l—e?’/\e‘lGA%r

o=c' Ne2 —e3Net € A2,
We then identify the image of SO(2)x.SO(2) with the set of factor-wise orientation preserving
transformations of

wr Gt C AL A,

After choosing an explicit basis for w® and @+ and identifying SO(2) = U(1) C C in the
usual fashion, one computes that the map

SO(2) x SO(2) & SO(2) x SO(2),

is given by
(ei¢17 ei¢2) — (ei(¢1_¢2), ei(¢1+¢>2)>_

An oriented 2-plane distribution £ is equivalent to a reduction of the structure group of 7'M
to SO(2) x SO(2) and under the correspondence above this in turn reduces the structure
group of A% (M) @® A% (M) to SO(2) x SO(2). However, such a reduction is equivalent to
having a pair of sections in the product of unit sphere bundles S(A%(M)) x S(A%(M)). We
shall denote such a pair of sections by (o, a_).

Conversely, given such a pair of non-vanishing sections of unit length we obtain an ori-
ented distribution as the kernel of the following 2-form o = oy — a_. For in terms of the
decomposition into self- and anti-self-dual parts we have

0# las]? = as Ay = —a- Aa_ = [Ja_|]?

and this is equivalent to the fact o = 0, that is « is of constant rank and the kernel
distribution is well-defined. We also have an analogously defined form o for £ and it is
not hard to see that a* = a, + a_. We then orient £ = Ker(a) so that a*|¢ > 0. By
construction if we started with an oriented distribution &, then (a4, a_) = (w,w) and under
the above correspondence we obtain our original distribution again.
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Now a pair of non-vanishing sections (a, «_) gives splittings
Ai(M) = Rai D Li:

and there is an explicit relationship between the Euler class of ¢ and its complement ¢+ and
the Euler classes of L. We shall denote the Euler classes of £, &4 by ey, es and those of L.
by K. Our description of the map p on SO(2) x SO(2) yields that as SO(2)-bundles

Q2L L.
£l®£LgL;1®L,,

and, hence,
261 - K+ + K,
262 = —K+ + K_.
Thus we see that the existence of a distribution is equivalent to the existence of sections of

certain associated bundles. The existence of sections of S2-bundles can be formulated purely
in cohomological terms and this is the content of the following theorem, which is attributed

to Massey in [DW].
Theorem 2.2.2 (Massey). A 2-sphere bundle over a compact, oriented 4-manifold
S? — E — M admits a section if and only if there is a class v € H*(M) such that
v~y =ni(E)
v = we(M) mod 2.

Moreover, in this case the associated R3-bundle splits as E = R @ L where L is an oriented
rank-2 bundle with Euler class e(L) = 7.

In our case we can compute the first Pontryagin classes of S(A%(M)) in terms of the
characteristic classes of M. To this end we prove the following lemma, which is valid for any
oriented, rank four vector bundle.

Lemma 2.2.3. Let E — M be an oriented real vector bundle of rank four. And let A%(FE) be
the associated bundles of self-, resp. anti-self-dual 2-forms. Then the following holds modulo
torsion:

pi(AL(E)) = £2e(E) + p1(E).

Proof. We consider the map
S0(4) —2= 5S0(3); x SO(3)_

and let p4 be the composition with the projections to each factor. We then have induced
maps on classifying spaces

BSO(4) 5 BSO(3)..

We further let A% denote the bundles of self-, resp. anti-self-dual 2-forms associated to the
universal bundle £SO(4), which are then classified by the maps p.. Since H*(BSO(4)) is
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generated by p; and the Euler class e modulo torsion, there are constants Ay, u4 € Z so that
the following holds in H*(BSO(4))/Tor:

pi(AL) = pipi(ESO(3)) = Ase + piepr.

Now let £ = TM be the tangent bundle of a symplectic manifold (M,w). Then for an
w-compatible almost complex structure J, one has the following isomorphism of complex
bundles

AN (M)eC2Kao Ko Cw,

where K denotes the canonical bundle given by the chosen almost complex structure (cf.
[DKr|, Lemma 2.1.57). Thus applying the Whitney sum formula, we obtain the following
modulo 2-torsion

Pr(AL(M)) = —ex(AL(M) ® C) = ¢, (K)* = 2¢e(M) + py(M).

Applying this calculation to the symplectic manifolds M; = CP? and M, = S? x S?, verifies
the formula for an arbitrary bundle F since the vectors (e(M), p1(M;)) and (e(Ms), p1(Ms))
are linearly independent.

Finally, for an oriented manifold we note that A2 (E) = A% (E), where E denotes E taken
with the opposite orientation. Hence, modulo 2-torsion

Pi(AZ(E)) = pi(AL(E)) = 2¢(E) + pi(E) = —2¢(E) + pi(E),
which completes the proof. O]

As a consequence of of Hirzebruch Signature Theorem, we obtain the following proposi-
tion in the case of 4-manifolds.

Proposition 2.2.4 (Characteristic equations 1). A closed, oriented 4-manifold M admits
an oriented 2-plane distribution if and only if there exists a pair K, K_ € H*(M) such that:

(K3, [M]) = £2x(M) + 30(M) (2.1)
Ky = wy (M) mod 2.

Proof. This follows immediately from Lemma 2.2.3 and Theorem 2.2.2 and the fact that
(p1 (M), [M]) = 30(M) by the Hirzebruch Signature Theorem. O

It is clear that the first of these equations only depends on K, K_ considered as classes
in H?(M)/Tor. This holds for the second equation as well. For if K. are elements that
reduce modulo 2 to wy(M), then they are characteristic elements for the cup product pairing
on H%(M), that is

(?,[M]) = (o~ K, [M]) mod 2

for all & € H?(M). Conversely, any characteristic element [K] € H?*(M)/Tor has a repre-
sentative K € H?(M), whose reduction modulo 2 is wsy(M).
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Lemma 2.2.5. Let [K] € H*(M)/Tor be a characteristic element for the intersection form
of an oriented 4-manifold M. Then the class [K| has a representative K whose reduction
modulo 2 is wa(M).

Proof. We consider the commutative diagram

0 — Ext(Hy (M), Z) — H?(M,Z) —— Hom(Hy(M),Z) — 0

| | |

0 —— Ext(H, (M), Zy) — H*(M, Zy) —— Hom(Hy(M), Zy) — 0.
If K is characteristic, then for all integral classes [S]
(K,[S]) = [S]* mod 2

and hence p(K') reduced modulo 2 is the same as p(wy(M)). Moreover the left vertical arrow
is surjective and the image consists of the mod 2 reductions of torsion elements in H?*(M).
So after adding some torsion we obtain a K that is still characteristic and reduces to wy (M)
modulo 2. O

With the help of Lemma 2.2.5 we may give an alternate form of the characteristic equa-
tions that will be very useful in conducting calculations below.

Proposition 2.2.6 (Characteristic equations 2). A closed, oriented 4-manifold M admits
an oriented 2-plane distribution if and only if there exists a pair of characteristic elements
for the intersection form K, K_ € H*(M) such that:

(K3, [M)) = £2x(M) + 30(M). (2.2)

We may also express Proposition 2.2.4 above in terms of the Euler classes of the distribu-
tions ¢ and &+. The correspondence between the classes e, e, and K, K_ is only valid up
to 2-torsion, however this is not a major problem and we obtain the following proposition.

Proposition 2.2.7 (Distribution equations). Let M be a 4-manifold and let Tory C H*(M)
be the subgroup of 2-torsion elements. There exist complementary 2-plane distributions &
and &+ on M with Euler classes e1,es € H?(M)/Tory if and only if the following equations
hold:
(et + €3, [M]) = 30(M)
(€1~ ez, [M]) = x(M) (2.3)
e1 + ea = wo(M) mod 2.

Proof. For the necessity we choose an almost complex structure compatible with the splitting
TM =& Weset e = ci(€) and ey = ¢ (€1). Then the Whitney sum formula yields

el + €5 = ¢{ (M) — 2co(M) = p1 (M)
e1~ eg = ca(M) =e(M)
e +eg = CI(M).
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Finally, we apply the Hirzebruch Signature Theorem and use the fact that ¢; (M) reduces to
wy (M) in mod 2 cohomology.
Conversely, if we have solutions ey, e, then we set

K, =e +e, K_=e —es.

These classes satisfy the hypotheses of Proposition 2.2.4 and hence we have distributions
¢, &1, whose Euler classes €}, e}, satisfy:

2¢) = K, + K_ =2¢
2eh, = =K, + K_ = 2e,
and the classes e; and e} agree modulo 2-torsion. ]

Using the distribution equations above one may give necessary and sufficient conditions
for the existence of distributions in terms the Euler characteristic and signature of M. In
particular, the existence of a smooth foliation only depends on the homotopy type of M.
The following result goes back to Atiyah and Saeki (cf. [Mats]).

Proposition 2.2.8 (Existence of distributions). Let M be an oriented 4-manifold with in-
definite intersection form, then M admits a distribution if and only iof

o(M) =0 mod 2 and x(M) = o(M) mod 4.

Proof. By Proposition 2.2.6 it suffices to find characteristic elements K, K € H?*(M) for
the intersection form such that:

(K%, [M)) = £2x(M) + 30(M).

By the Theorem of van der Blij (see [MH]|, p. 24), if K is characteristic for the intersection
form, then the following holds:

(K?, [M]) = (M) mod 8.

So a necessary condition for a solution of (2.2) is that

o(M) = £2x(M) + 30(M) mod 8
< 2x(M) = +20(M) mod 8
<— x(M) = +0(M) mod 4
< x(M)=0(M) mod 4 and o(M) = 0 mod 2.

Next we claim that
Y = {K? | K is characteristic} = o(M) + 8Z,

which means that if o(M) = £2x(M) + 30(M) mod 8, then this is sufficient for the exis-
tence of a solution of (2.2). We assumed that M has indefinite intersection form, thus by
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the Hasse-Minkowski classification of indefinite, integral quadratic forms we have to consider
two cases according to whether the intersection form that we denote by Q( , ) is even or odd.

Case 1: Q( , ) is odd.

In this case H?(M,Z)/Tor has a basis ey, ...¢,, so that for an element a = > \;e; we have

by by +by
2 2
Qlana) =) X — > X
i=1 j=b+1

and an element K = ) \;e; is characteristic if and only if \; = 1 mod 2, for all 1 <i < n.
Then by noting that
(2m +1)* — (2m — 1)* = 8m,

and defining K by taking

2m + 1,41 = by
A = 2m — 1,0 =by +1
1 , otherwise

we see that
Q(K,K) =o(M) + 8m,

thus proving the claim in the odd case, since m can be chosen arbitrarily.
Case 2: Q( , ) is even.

In this case the Hasse-Minkowski classification implies that Q = kH®IEg and K = ) \e;
is characteristic if and only if \; = 0 mod 2 for all 1 <i < n. Hence K = (2z,2y,0,...,0) is
characteristic for ) and

K? = 8zy.
Thus the set ¥ defined above is in fact 8Z = o (M) + 8Z. O

Remark 2.2.9. If the intersection form ) of M is definite, say positive definite, then by
Donaldson’s Theorem it is diagonalisable. It then follows that there is an integral basis {e;}

such that , , ,
Q(Z Ai€i, Z )\iei) = Z )\?
i=1 i=1 i=1

and we see that the set of squares of characteristic elements is
Y ={n|n>by(M)and n = o mod 8}.
So in other words a manifold with a definite intersection form admits a distribution if and
only if it satisfies the hypotheses of Proposition 2.2.8 and
ba(M) < £2y(M) + 30(M)
< —2by(M) < £2x(M) = £2(2 — 201 (M) + by (M))
— (M) <1+4+by(M)and 1 <b(M).
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Remark 2.2.10. We also note that if b5 (M), b, (M) > 1, then by the proof of Proposition
2.2.8 above there are infinitely many characteristic elements K; that solve

(K7, [M]) = 2x(M) + 30(M).
Hence, by taking any fixed class L that solves
<L2> [M]> = _ZX(M> + SU(M)a

we obtain distributions with infinitely many distinct characteristic pairs (K, L). Since these
pairs are invariant under homotopy we conclude that M has infinitely many non-homotopic
distributions.

2.3 The Milnor-Wood inequality and compact leaves

In this section we will recall the Milnor-Wood inequality for flat GL™ (2, R)-bundles over
closed surfaces and discuss its consequences for the existence of foliations with closed leaves.
We shall then recall the homological criteria of Mitsumatsu and Vogt in [MV] for the existence
of a foliation having a given compact surface as a leaf. Then by using the characteristic
equations (cf. Proposition 2.2.6), we shall give examples that answer several questions posed
in [MV].

We shall first recall some generalities concerning obstruction classes for flat bundles. We
let G be any connected Lie group and consider a flat principal G-bundle F over a surface X.
By the classification of flat bundles, this corresponds to a homomorphism p : (X)) — G,
which is unique up to conjugation by elements in G. We let G % G denote the universal
cover of G and note that the fundamental group of G can be identified with a subgroup of
G in a natural way. If a;,b; denote the standard generators of m1(3), we choose lifts o, 5;
of p(a;), p(b:) in G. It was shown by Milnor in [Mil] that the obstruction to the existence of
a global section, that we denote by c¢(F) € H*(X, 71 (G)), is given by

¢(E) = —anfBioy ' 81 LagBa, B, (2.4)

In the case G = GL*(2,R), we have that m(G) = Z and up to multiplication by a constant
c(E) is just the Euler class e(F). Another observation is that if G is abelian, then every flat
principal G-bundle over a surface admits a section and is hence trivial. For in this case the
universal cover is also an abelian Lie group and hence the right-hand side of equation (2.4)
is always trivial.

Proposition 2.3.1. If E — ¥ is a flat principal G-bundle over a surface and G is abelian,
then E is a trivial bundle.

The Milnor-Wood inequality expresses a relationship between the Euler class of certain
flat bundles over closed surfaces and the genus of the base. This inequality is due to Milnor
in the case of GL* (2, R)-bundles and its generalisation to Homeo™ (S') is due to Wood. We
shall in fact only need Milnor’s original inequality in what follows, but in accordance with
standard usage we will refer to the following result as the Milnor-Wood inequality.
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Theorem 2.3.2 (Milnor-Wood inequality, [Mil]). A GLT(2,R)-bundle E — X over a surface
of genus g > 0 is flat if and only if

le(B)] < g(¥) - L.
The same holds for flat SL(2,R)-bundles.

In [MV] certain criteria were proven for the existence of 2-dimensional foliations with
closed leaves on a 4-manifold M. The basic observation is that the Milnor-Wood inequality
puts homological restrictions on which classes [X] € Hy(M) can occur as leaves of a foliation.
To begin with we note that if X is a leaf of some foliation F on M, then there is a connection
on the normal bundle v(F) that is flat when restricted to leaves of the foliation. This is a
so-called Bott connection (cf. Definition 6.1.2 below). Thus, in particular, if ¥ is a leaf of
some foliation then the normal bundle of ¥ is a flat bundle and the Milnor-Wood inequality
implies that

=P < 9(®) - 1.

Conversely, there are sufficient conditions for a given embedded surface to be a leaf of some
foliation on a manifold M. These are given in the following theorem of Mitsumatsu and
Vogt.

Theorem 2.3.3 ([MV], Th. 4.4). If a compact surface ¥ satisfies the Milnor-Wood inequal-
ity, then X can be realised as a leaf of a foliation F on M if and only if there are classes
e1, es that solve equations (2.3) and satisfy the following two additional equations:

(e, [B)) = x(2),  {ex, [2]) =[], (2.5)

There are certain questions about the properties of surfaces that are leaves of foliations
that would suggest that the condition of being a leaf is in fact restrictive. The first is whether
a class 0 € Hy(M) knows its foliated genus ([MV], Question 8.8), that is if ¥, ¥y are leaves
of foliations Fi, F> and [¥;] = o in Hy(M ), then we must have x(2£;) = x(X2). The following
examples provide a negative answer to this question.

Ezample 2.3.4 (The genus of leaves representing a fixed homology class). Suppose we have a
manifold M whose signature and Euler characteristic satisfy the congruences of Proposition
2.2.8 so that M admits distributions. Assume further that the intersection form on M is
odd and is of the form

Q = 2(1) ®2(—1).
For example one can take
M = 2CP*# 2CP # S* x S5.

We choose a basis vy, ...vq of H*(M) so that the intersection form @Q has the stipulated from.
One then has an explicit family of solutions to equation (2.2) given by setting
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K. =(2t—s2y+12y—1,1)

K_=2t+s,22+1,22—-1,1).

Here the s,t € Z are free parameters, s is odd and y, z are chosen so that equation (2.2) is
satisfied. These solutions then yield the following solutions to the distribution equations:

er=2Ly+z+Ly+z—1,1)

ey = (s,z—y,z—1,0).

We let [X] be a surface of minimal genus representing the class v; so that [X]*> = 1. We
set s = 1 so that the second equation in (2.5) above is satisfied. Then as ¢t was a free
parameter in the set of solutions, we may choose ¢ so that the first equation in (2.5) is also
satisfied. Furthermore, we may glue in as many trivial handles as we like to obtain a 3 that
is homologous to ¥ and has arbitrarily large genus. In particular, we can assume that the
Milnor-Wood inequality is satisfied and we see that v; has representatives of infinitely many
genera that can be made a leaf of a foliation. It is easy to see that this example generalises to
manifolds M/ with odd intersection form and bi (M) > 2, one simply splits the intersection
form

Q=2l)d2(-1)®Q
and augments the solutions for (K, K_) given above by putting odd integers in the remain-
ing entries. In this more general case we may even assume that M is simply connected by
setting
M = kCP*4ICP”,
where k and [ are both odd and larger than 3.

Another question posed by Mitsumatsu and Vogt is whether the Euler class of a distri-
bution determines whether or not every leaf of a foliation with this Euler class will be genus
minimising or not. This is false as the following example shows, providing a negative answer

to Question 8.7 of [MV].

Ezxample 2.3.5 (The Euler class does not determine whether the genera of leaves are minimal).
We let M = T?x 3, and endow it with a product symplectic structure so that the two factors
are symplectic submanifolds. Then the homology class o = [T? x pt] + [pt x ¥,] = T+ S can
be represented by a symplectic surface ¥ of genus g + 1 that one obtains by resolving the
intersection point of (7% x pt) | J(pt x 2,). Moreover, by the symplectic Thom conjecture this
surface is genus minimising (cf. Theorem 7.2.1) and the Milnor-Wood equality is satisfied if
g > 3.
The intersection form on M is of the form:

Q=29+ 1)H

and we may take a hyperbolic basis {e;} for H?*(M) with e; = T, eo = S. Since x(M) =
o(M) = 0 we have the following solutions of the characteristic equations above

K, =(-2+2¢,0,—-2+2¢,0,...,0)
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K_=(2+42¢,0,24 24,0, ...,0),

and the corresponding Euler classes are
e1 = (2¢,0,2¢,0, ..,0)

es = (2,0,2,0,...,0).

Thus if we let ¥’ be a surface representing the class ¢/ = (0,0,1,1,0,..,0) of genus ¢’ + 1
and we take ¢’ large, then the Milnor-Wood inequality and equations (2.5) hold for both %
and Y. However, ¥ is genus minimising and Y’ is not. Hence the Euler class of a foliation
does not determine whether closed leaves of a foliation with the given Euler class is genus
minimising or not.

It is natural to ask whether any embedded surface can be made a leaf of a foliation. This

is not true in general, as was shown by Mitsumatsu and Vogt (cf. [MV], Cor. 7.2). For if L
is a leaf of a foliation on M = S? x X/, then there is a constant B, such that

L] < By.

However, in certain cases there are no such restrictions. In particular, the argument given
in Example 2.3.4 is in fact quite general and we record this in the following proposition.

Proposition 2.3.6. Let M be a manifold with b3.(M) > 1 and let 3 be an embedded surface
of genus greater than 1 such that [X])?> = 1. Then ¥ can be made a leaf of a foliation.

If in addition M is assumed to be symplectic, then any embedded surface with [¥]? = 1
can be made a leaf of a foliation.

Proof. Set v; = [X]. Then, since [X]? = 1, we have an orthogonal splitting
H*(M) = (v1) & (vn)™

One then argues as in Example 2.3.4 to find appropriate solutions of equations (2.5), since
the Milnor-Wood inequality is satisfied by assumption.

If M is symplectic with canonical class ¢;(K) and b3 (M) > 1, then the adjunction
inequality (cf. [GS]) implies that

S + ler (K)-[2]] < 29(%) — 2.

Hence ¢(X) is at least 2 and the Milnor-Wood inequality automatically holds. Thus the
previous argument applies and ¥ can be made a leaf of a foliation. m

2.4 Special classes of foliations and their closed leaves

We have seen that the condition of being a leaf of a 2-dimensional foliation on a 4-manifold
is in general not very restrictive. In view of this we will focus on more special varieties
of foliations. We shall start with the case of 1-dimensional complex foliations on complex
surfaces, in which case a closed leaf must in fact have self-intersection zero.
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Proposition 2.4.1. If ¥ is a leaf of a 1-dimensional complex foliation F on a complex
surface, then [Z]? = 0.

Proof. We let 7 M denote the holomorphic tangent bundle of M and 7F C 7 M the tangent
bundle to F. If ¥ is a leaf of a foliation then a Bott connection (cf. Definition 6.1.2) will define

a flat C*-linear connection on the normal bundle v(X) of the leaf. Hence by Proposition 2.3.1
the bundle v(X) must be trivial and [X]* = 0. O

In this way we see that there are strong local restrictions on closed leaves of complex
foliations. We shall next consider symplectic foliations and their closed leaves. Here a
symplectic foliation on a symplectic manifold (M,w) is a foliation such that w is positive
on all leaves. In contrast to the case of complex foliations, there are no longer any local
restrictions on the closed leaves of symplectic foliations as soon as the Milnor-Wood inequality
is satisfied.

Proposition 2.4.2. If ¥ is a symplectic surface in a symplectic manifold (M,w), then a
netghbourhood of ¥ admits a symplectic foliation that has ¥ as a leaf if and only if the
Milnor- Wood inequality holds.

Proof. By Theorem 2.3.2 the Milnor-Wood inequality holds precisely when a bundle over X
is flat as an SL(2,R)-bundle. Such a flat structure makes the surface a leaf of a foliation
of a regular neighbourhood v(X) of X. Since the symplectic form is positive on the closed
leaf 32, it is also positive on all leaves in a small neighbourhood and, hence, the foliation is
automatically symplectic on a sufficiently small neighbourhood of . O

Remark 2.4.3. We remark that the leaves of the foliation given in Proposition 2.4.2 can never
be complex if the bundle under consideration has non-trivial Euler class, as this would then
contradict Proposition 2.4.1. In particular, if J is an almost complex structure with respect
to which the leaves are almost complex, then we know that J cannot be integrable.

The condition of being symplectic however does put restrictions on the possible Euler
classes of the underlying distribution associated to a symplectic foliation. These restrictions
are then no longer of a local but of a global nature.

Proposition 2.4.4. Let (M,w) be a symplectic 4-manifold, £ a distribution of 2-planes that
is homotopic to a symplectic distribution and (K, K_) the pair of characteristic elements
associated to £. Then K, = +ci(K), where K denotes the canonical bundle of an w-
compatible almost complex structure.

Proof. We first take an w-compatible almost complex structure and let g; = w(-,J-) be the
associated metric on M. We have seen that an oriented 2-dimensional distribution £ on a
4-manifold is equivalent to a pair of self-dual and anti-self-dual forms (ay,«_) of norm 1
so that £ is the kernel of @« = ay — a_. The distribution £ is symplectic with respect to
w if and only if & A w # 0 at each point. By taking —w if necessary we may assume that
o Aw > 0. However, with respect to the metric g; we have w € Q2 (M) and self-dual forms
pair trivially with anti-self-dual forms, so in fact @« Aw = a A w and the condition of being
symplectic only depends on the self-dual part of a.
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Moreover, if @y Aw > 0, then the line of self-dual 2-forms oy = (1 — t)ay + tw satisfies
a; Aw > 0 at all times 0 < ¢ < 1. Hence after a homotopy we may assume that the self-dual
part of the form defining a symplectic distribution is in fact w. This means that the splitting
of the self-dual bundle that we obtain from such a distribution is given by

A (M)=Rwa L.
We consider the image of L in the complexification
N (MeCCwd K e K,

where K denotes the canonical bundle of the chosen w-compatible almost complex structure
(cf. Lemma 2.2.3). Then, since the image of L is contained in K @ K and consists of real
forms, the projection to the canonical bundle K defines an isomorphism of real oriented
vector bundles after possibly changing the orientation on L. Thus we conclude that

K. =e(L)=%e(K) = +xc¢(K)
in the pair of characteristic elements associated to &. O]

As an immediate corollary we see that there is an abundance of distributions that cannot
be homotoped to symplectic distributions on manifolds with large enough b3 .

Corollary 2.4.5. Let M be a symplectic manifold that admits a distribution and assume
that by (M) > 2. Then there are infinitely many homotopy classes of 2-plane fields that are
not homotopic to symplectic distributions with respect to any symplectic form.

Proof. We let (K., K_) denote the pair of characteristic elements associated to a given
distribution. Proposition 2.4.6 implies that a necessary condition for a distribution to be
homotopic to a symplectic distribution is that K is (up to sign) the canonical class of some
symplectic form on M. If by (M) > 2, then by the results of Taubes on the Seiberg-Witten
invariants of symplectic manifolds (cf. [Tau]), the canonical class associated to a symplectic
form on M is a Seiberg-Witten basic class. Moreover, if b5 (M) > 2, then the set of Seiberg-
Witten basic classes is finite (cf. [GS]). By Remark 2.2.10 above, the assumption that
b (M) > 2 means that there are infinitely many pairs (K;, L) that can occur as solutions of
the equations in (2.2) above and we may assume that no K; occurs as the canonical class of
any symplectic form on M. Thus the distributions associated to the pairs (K;, L) cannot be
homotoped to become symplectic with respect to any symplectic form. O

We shall now use Proposition 2.4.4 together with some symplectic geometry to derive
homological restrictions on the possible closed leaves of symplectic foliations that are much
stronger than those for arbitrary smooth foliations.

Proposition 2.4.6. Let ¥ be a leaf of a symplectic foliation F and (K, K_) the pair of
characteristic elements associated to F. Then K, = +c¢1(K) is the canonical class of an
w-compatible almost complex structure and

)] < er(K).[Z]. (2.6)
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Proof. That K, = +¢;(K) follows from Proposition 2.4.4. By the adjunction formula for
symplectic surfaces
29(8) — 2 =[S + a1(K).[5].

Combining this with the Milnor-Wood inequality implies that
2|2 < [BF + ea(K).[2].
One then obtains the above inequality by considering the two cases [X]> > 0 and [X)? < 0. O

As a corollary we see that if the canonical class of a symplectic manifold is assumed to
be trivial, then any compact leaf of a symplectic foliation must be a torus. Examples of
manifolds with vanishing canonical class are given by S'-bundles over 3-manifolds Y, where
Y has the structure of a T2-bundle over S'. For example M = T* has this property.

Corollary 2.4.7. Let (M,w) be a symplectic manifold with trivial canonical class and let L
be a leaf of a symplectic foliation on M. Then x(L) = [L]* = 0.

Proof. By assumption ¢;(K) = 0. Thus Proposition 2.4.6 implies that |[L]?| < ¢;(K).[L] =0
and [L]? = 0. Finally by the adjunction formula for symplectic surfaces we compute

—x(L) =2g(L) =2 =[L]* + c1(K).L = 0. [

Remark 2.4.8. Inequality (2.6) also has the interesting consequence that if a class of non-zero
self-intersection can be represented by a symplectic surface that also satisfies the Milnor-
Wood inequality, then it cannot be very divisible. This is because the left hand side of

[d=]] < er(K).[d%],

grows quadratically whereas the right-hand side only grows linearly in d. Now Donaldson
proved that a sufficiently large multiple of an integral symplectic form can be represented
by a symplectic surface (cf. [Don]). This means that one has a natural source of symplectic
surfaces, however the classes in Hy(M) that are represented by such surfaces will be highly
divisible and will in general not satisfy the Milnor-Wood inequality.

2.5 Symplectic pairs

A further interesting special case of symplectic foliations on 4-manifolds are symplectic pairs
(cf. [BK], [KM1]). We shall first give a general definition and then specialise to the case of
4-manifolds.

Definition 2.5.1 (Symplectic pairs). A symplectic pair consists of a pair of closed 2-forms
w1, wy of constant and complementary ranks 2m, 2k respectively, such the form wy is sym-
plectic on the kernel foliation F; = Ker(wj") and w; is symplectic on the kernel foliation
Fy = Ker(wh).
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In the case of a 4-manifold a symplectic pair may be thought of as a pair of closed 2-forms
w1, ws satisfying the following conditions:

wi =0=wj and w; Awy # 0. (2.7)

The most natural examples of such pairs occur as the horizontal and vertical foliations of flat
surface bundles with symplectic holonomy. Other examples occur as S'-bundles over fibred
3-manifolds, as the natural symplectic form one constructs on such bundles comes from a
symplectic pair (cf. [FGM]). Manifolds that admit symplectic pairs are very special as in
particular the forms

Ww=w t+twr,wWw=w; — W

are both symplectic, but define opposite orientations of M. So if b3 (M) > 2, then by
the results of Taubes (cf. [Tau]) M has non-vanishing Seiberg-Witten invariants in both
orientations. In particular, M contains no embedded spheres that represent non-torsion
elements in Hy(M). We saw in Proposition 2.4.4 that the possible homotopy classes of
symplectic distributions are quite restricted. For a symplectic pair the restrictions on the
possible Euler classes are even stronger.

Proposition 2.5.2. Let M admit a symplectic pair and assume by (M) > 2. Then the Euler
classes of the kernel foliations Fi, Fo satisfy:

2¢(F;) = K + K&,

where Kj are Seiberg- Witten basic classes of M in one orientation or the other. In particular,
there are only finitely many possible Euler classes.

Proof. We choose an w-compatible almost complex structure that preserves the splitting
given by T'M = F, & F; and take the associated metric. Then with respect to this metric we
see that w € Q3 (M) and @ € Q% (M). The distributions F; are symplectic for both w and
& and by Proposition 2.4.4 we conclude that K, = +c;(K) and K, = 4c¢;(K), where the
bars denote the canonical bundle of an almost complex structure compatible with w. Now
since A2(M) = A%(M), it follows that K, = K_. If b (M) > 2, then the first Chern class
of the canonical bundle of any symplectic form is a Seiberg-Witten basic class and the set
of Seiberg-Witten basic classes is finite (cf. [GS], [Tau]). By assumption by (M) > 2 in both
orientations and, hence, the possibilities for K, and K_ are finite, which proves the second
part of the proposition. n

In certain special cases where the Seiberg-Witten invariants are known, one can compute
solutions to equations (2.5) above, in order to understand what classes can be realised as
leaves of a foliation coming from a symplectic pair. We illustrate this by considering the
case of a product of Riemann surfaces in the following example.

Ezample 2.5.3. Let M = X, X X, be a product of Riemann surfaces of genus g, h > 2. Then
since M and M are minimal surfaces of general type and by (M) > 2 the only SW-basic
classes on M, M are as follows (cf. [GS], p. 91):
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Ky = +c(K) = £[(29 — 2)[Zn] + (22 — 2)[%,]]

K. = *a(K) = £[(29 — 2)[S4] — (2h - 2)[Z]].

Thus the only possibilities for the Euler classes of a symplectic pair are those corresponding
to the natural symplectic pair given by the product structure:

e1 = £(2h — 2)[%,], e2 = £(2g — 2)[S).

This puts restrictions on the possible closed leaves of such a symplectic pair. For example one
sees that a class L, = a[X,] 4 b[E,] with a,b # 0 can satisfy the second equation (2.5) with
+ey, £ey as above if and only if £b(2g — 2) = 2ab and this holds if and only if a = £(g — 1)
by our assumption that b # 0. One can further construct a symplectic representative X,
for L,; by resolving the double points of a union of a disjoint copies of X;, and b disjoint
copies of ¥,. We calculate

X(Bap) = [al(2 = 2h) + [b|(2 — 29) — 2[ab].
Plugging this into the first equation (2.5) we obtain
£lal(2h = 2) = x(Zap) = [al(2 — 2h) + [b[(2 — 29) — 2|ab]. (2.8)

Since |b](2g — 2) = 2|ab|, we conclude that |b|(2 —2¢) = 0, which contradicts the assumption
that both b and 2 — 2g are non-zero. Since everything is symmetric in h, g and a, b, the same
conclusion holds if we swap the roles of e; and e, above. It follows that the surfaces ¥, can
never be made leaves of foliations that are homotopic to the kernel foliation of a symplectic
pair. Moreover, the surfaces are symplectic and, hence, genus minimising in their homology
class by the symplectic Thom conjecture (cf. Theorem 7.2.1). This means that equation
(2.8) cannot be solved for any representatives of the class L,; so that no representatives of
these classes can be made a leaf of the kernel foliation of a symplectic pair.

2.5.1 Topological constructions of symplectic pairs

There a several topological constructions that one can perform in the symplectic category.
The most useful of these is the Gompf sum, which also works for symplectic pairs in certain
cases. We first recall the definition of the Gompf sum of two 4-manifolds along a symplectic
surface.

Definition 2.5.4 (Gompf sum). Let (Mj,wi), (Ma,ws) be symplectic 4-manifolds and let
31,29 be embedded symplectic surfaces of the same genus in M;, My respectively. As-
sume that [3;]? = —[33]?. Then after choosing an identification of tubular neighbourhoods
v(31),v(Xs) of ¥y, X9 respectively, we can form the normal connected sum:

Mgt My = (Mi\v(z) U (Ma\v(m).
(1) =00(S2)

This manifold is symplectic and is called the Gompf sum of M; and M.
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In order to obtain Gompf sums for symplectic pairs we will only allow sums along compact
leaves of the kernel foliations that have neighbourhoods of a very simple form.

Definition 2.5.5 (Projectable leaves). Let (M;,ws,ws) be a 4-manifold that carries a sym-
plectic pair. Let X be a closed leaf of one of the kernel foliations. We say that X is projectable
if there is an open neighbourhood U of X that is diffeomorphic to ¥ x D? such that under
this identification

w) = mwy, and wy = Tywp2,

where 7; are the projections onto the factors and ws,wp2 are area forms on ¥ and D?
respectively.

It was noted by Bande and Kotschick that the Gompf sum is compatible with symplectic
pairs when one glues along projectable leaves.

Proposition 2.5.6 (Gompf sums for symplectic pairs, [BK]). Let (M, wy,ws), (Ma,n1,172)
be 4-manifolds that admit symplectic pairs and assume that the kernel foliations F, of wi,
Fa of m have projectable, closed leaves 31,39 of the same genus. Then the Gompf sum
Mi#s, =5, Ms admits a symplectic pair.

Proof. We choose projectable neighbourhoods of U; and U, of ¥, 35 respectively and iden-
tifications of U; with ¥ x D?. After rescaling w; and 1, we may assume by Moser stability
that

wp = = mwy and 1y = wy = mydxr A dy.

Taking the normal connected sum coming from these identifications, we see that the forms
w; and 7; glue together to give a symplectic pair on the Gompf sum M;#x, -5, Mo. ]

As an application, we will use Proposition 2.5.6 in order to show that the examples of
Akhmedov given in [Akh] admit symplectic pairs. These examples are interesting as they
have the cohomology of S? x S? and are not diffeomorphic to surface bundles. Such examples
were first found by Bande and Kotschick in [BK], where for example the Kuga surface is
shown to admit a symplectic pair, but as it is aspherical it cannot be diffeomorphic to a
surface bundle.

Example 2.5.7 (Akhmedov’s examples admit symplectic pairs). Let T2 — M — S! be a
torus bundle with orientation preserving monodromy ¢. After choosing a symplectic form
w on T? we may assume that ¢ preserves w. Furthermore, we may assume that ¢ fixes a
neighbourhood of 0 € T? = R?/Z2.

The product E = M x S! has the structure of a torus bundle:

T> 5 E=Mx S'" — S' x S,

We then define a symplectic pair on E by letting w; be the pullback of the vertical symplectic
form on M and by setting wy = pjdf; A p5df,, where p; are the projections to the two factors
of the base torus and df; are the angular forms on the circle factors. Moreover, the leaf
S = (0 x S') x St which is also a section, is projectable as is a T?-fibre F of the bundle F.

We then perform the Gompf sum with two copies of F along S and F' to obtain a manifold
Y that admits a symplectic pair. We identify the tori via the description as a product of
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circles. We let X = F'#S5 be the surface obtained as the connect sum of the other section and
a fibre and note that ¥ is a projectable leaf of the symplectic pair on Y. We again perform
the Gompf sum by gluing two copies of Y along ». Let a;,b; be standard generators of the
fundamental group of 3. We identify the two copies of ¥ via a diffeomorphism v that sends
a;, b; to a;y1,bi11 respectively, where the indices are to be interpreted mod 2.

According to [Akh] the resulting manifold Z is spin and has the cohomology of S? x
S%. The second cohomology H?(Z) has a basis P, Q represented by embedded, symplectic
surfaces of genus 2. Thus Z # 5% x 52, since H?(S? x S?) has a basis of symplectic 2-spheres
P’ Q" and any diffeomorphism must take { P, Q} to {£P’, £Q’}, which would contradict the
genus minimality of symplectic surfaces (cf. [OS]).

More generally, one may start with a 3-manifold that is fibred with fibre of genus g and
one whose fibre is the 2-torus. By performing a similar construction to that described above
one obtains examples that also admit symplectic pairs. These examples have the cohomology
of a connect sum #,, 15% x S? and, hence, have vanishing first homology (cf. [Akh]). So
again these examples cannot be diffeomorphic to surface bundles if one assumes g > 2.

Another basic construction for symplectic manifolds is that of branched coverings.

Definition 2.5.8 (Branched coverings). A d-fold branched covering is a smooth map X = X
with critical set ¥ C X called the branch locus, such that the restriction X \ 7~ 1(2) — X\ 2
is a d-fold covering and for each x € 7~ () there are local charts U,V — R2Z x C about
z,m(z) on which 7 is given by (p,z) — (p,2%), for some positive integer d, called the
branching index of w at p. A branched covering is called cyclic if it is a cyclic covering away
from the branching locus.

Remark 2.5.9. Away from the branching locus a branched covering is determined by a finite
index subgroup of 71(X \ ¥). If v is a regular neighbourhood of ¥ and 7 its preimage in X,
then an S'-bundle structure on dv induces one on 97 and there is a unique way to fill this
in by a disc bundle.

We further note that our definition allows for the case of manifolds with boundary, in
which case we consider properly embedded branching loci.

In the case of cyclic branched coverings we have the following existence result (see [GS],
p. 239 ff).

Theorem 2.5.10. Let ¥ C X be an embedded surface such that [X] = d[¥'] in Hy(X,Z).
Then there is a cyclic d-fold branched cover X = X with branching locus ¥.

The branched covering construction can be performed in a symplectic manner if the
branching locus is assumed to be symplectic. For symplectic pairs the same holds if one
takes branching loci that consist of projectable leaves. The following proposition is a slight
variation of Proposition 10 in [Aur].

Proposition 2.5.11 (Branched coverings for symplectic pairs). Let (X,w) be a symplectic

manifold and let ¥ C X be an embedded symplectic surface. If X 5 X is a covering branched

over X, then X carries a symplectic form © which agrees with m*w outside a neighbourhood
of .
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Furthermore, if (M, w1, ws) is a 4-manifold with a symplectic pair and ¥ is a union of
projectable leaves, then a branched cover M — M with branching locus 3 also admits a
symplectic pair.

Proof. We will first define an exact 2-form 7 on X so that m*w A 7|5, > 0. To do this we take
a point x € ¥ and choose coordinates so that 7 has the form

(21,22) = (zl,zg)

on some neighbourhood of z. After choosing some metric on X we let p, > 0 be such that
the polydisc B(2p,) x B(2p,) is contained in the coordinate patch chosen above. We let x
be a bump function with support in B(2p,) that is constant 1 on B(p,). We next define

7o = d(Xx(21)x(22)72dy2)

and extend by 0 to the rest of X. Welet K = Ker 7 C TX|s be oriented so that it
intersects T'X positively, then by definition 7, is non-negative on K and is strictly positive
on B(p,) x B(pz). By compactness there are finitely many z; so that the form

T = E Ta;

is strictly positive on K along %, that is m*w A7 > 0 on X. We set @ = m*w+er and compute
P =muATWr (T WAT+eT AT).

For small p we have that 7*w A 7 > 0 on a tubular neighbourhood v,, of 3. Thus for all
sufficiently small € the second term above is positive on 1v,,. Moreover m*w A 7w is non-
negative and is strictly positive away from the branching locus, thus by choosing e small
enough we can ensure that @ is non-degenerate on the rest of X.

If M has a symplectic pair and X is projectable, then > has trivial normal bundle. Thus
we may identify neighbourhoods of ¥ and ¥ with ¥ x D? in such a way that is compatible with
the projections defining the symplectic pair on M and so that 7 has the form (p, z) — (p, 2%),
where z is a complex coordinate on the disc. We let w5 denote the second projection of this
product neighbourhood and set

(:}1 = 7r*w1

Wy = Trwy + 5T,

where 7 is any non-negative form that is non-zero at the origin and has compact support in
D2. Tt is easy to check that this gives the desired symplectic pair on M. O]

2.5.2 Geometry of leaves of symplectic pairs

In general the kernel foliations of a symplectic pair will be too complicated in a neighbour-
hood of a leaf to be able to define Gompf sums or branched coverings for arbitrary leaves of
symplectic pairs. However, if we perform Gompf sums along leaves of the kernel foliations
of a symplectic pair, or take branched covers then the manifolds we obtain will still admit
symplectic forms in both orientations, which is in itself restrictive as we have seen.
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Proposition 2.5.12. Let (M, wy,ws), (M, m1,m2) be 4-manifolds that admit symplectic pairs
and let ¥y = X9 be leaves of the kernel foliations Fy of wi, Fo of no respectively such that
(1) = —[32)?. Then the Gompf sum

X = Mi#s,=s, M

admits symplectic structures in both orientations. Similarly, any branched covering M = M,
branched over ¥y also admits symplectic structures compatible with both orientations.

Proof. We form the Gompf sum first with respect to the symplectic forms

W= wi + ws

1N ="mn 412

to get a symplectic form on
X = Mi#s,=5, M.

We next take the sum with respect to the symplectic forms

W= —Wwi + wo
n="m—1n

to get a symplectic form on ) ) )
X = M1#21222M27

where the bar denotes the manifold X taken with the opposite orientation. Similarly, if M5
M, is a branched covering branched along a leaf X1, then Proposition 2.5.11 applied to the
symplectic forms w and @ gives symplectic forms on M that define opposite orientations. []

As an application of Proposition 2.5.12 we will show that there are geometric restrictions
on the local structure of leaves of symplectic pairs. The examples we consider were first
utilised by Gompf in the context of constructing symplectically aspherical manifolds (cf.
[Gom]).

We shall need to recall the definition of Milnor fibres and review their basic properties.
Let p, g, € N be positive integers and € € C\ 0. Then the Milnor fibre M(p, ¢, r) is defined
as

M(p,q,7) = {(z,y,2) € C* | 2P + y? + 2" = €}.

We let M.(p,q,r) denote the intersection of M (p, ¢, r) with the unit ball in C3 and note that
the interior of thi