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Abstract

We study two-dimensional foliations on four-manifolds and examine properties of their closed leaves.
After considering the general case of smooth foliations, we focus on foliations with symplectic leaves
and then on symplectic pairs. In both cases certain restrictions on the underlying distributions and
on the closed leaves of such foliations are derived.

We further study the geometry of characteristic classes of surface bundles with and without flat
structures. For general surface bundles we show that the MMM-class are hyperbolic in the sense
of Gromov and deduce certain restrictions on the topology of bundles under the assumption that
the base is a product or that the bundle is holomorphic. We further consider characteristic classes
of flat bundles, whose horizontal foliations have closed leaves and compute the abelianisation of
the diffeomorphism group of a compact surface with marked points. When the foliations have a
transverse symplectic structure, we show the non-triviality of certain derived characteristic classes
in leaf-wise cohomology. For bundles with boundary we show that there is a relationship between
the geometry of a flat structure and the topology of the boundary.

We also introduce the relation of symplectic cobordism amongst transverse knots. Specialising
to the case of symplectic concordance we produce an infinite family of knots that show that this
relation is not symmetric, in stark contrast to its smooth counterpart.

Zusammenfassung

Wir beschäftigen uns mit zwei-dimensionalen Blätterungen auf Viermanigfaltigkeiten und unter-
suchen die Eigenschaften ihrer abgeschlossenen Blätter. Nachdem wir den Fall von glatten Blätter-
ungen betrachtet haben, konzentrieren wir uns auf Blätterungen mit symplektischen Blättern und
anschließend auf symplektische Paare. Für diese beiden Fälle zeigen wir, dass die zugrundeliegen-
den Distributionen und abgeschlossenen Blätter solcher Blätterungen gewissen Beschränkungen
unterliegen.

Weiterhin untersuchen wir die Geometrie der charakteristischen Klassen von Flächenbündeln
mit und ohne flache Strukturen. Für allgemeine Flächenbündel zeigen wir, dass die MMM-Klassen
hyperbolisch im Sinne von Gromov sind. Unter der Annahme, dass die Basis ein Produkt oder
das Bündel holomorph ist, leiten wir außerdem gewisse Einschränkungen an die Topologie solcher
Bündel her. Des weiteren behandeln wir charakteristische Klassen flacher Bündel, deren horizon-
tale Blätterungen abgeschlossene Blätter besitzen und berechnen die Abelianisierung der Diffeo-
morphismengruppe einer kompakten Fläche mit markierten Punkten. Wenn die Blätterungen eine
transversale symplektische Struktur aufweisen, zeigen wir, dass gewisse sekundäre charakteristische
Klassen in der blattweisen Kohomologie nicht trivial sind. Für Bündel mit Rand leiten wir eine
Beziehung zwischen der Geometrie einer flachen Struktur und der Topologie des Randes her.

Schließlich führen wir die Relation des symplektischen Kobordismus für transversale Knoten
ein. Im Spezialfall der symplektischen Konkordanz zeigen wir mittels einer unendlichen Familie
von Knoten, dass diese Relation im Gegensatz zur glatten Konkordanz nicht symmetrisch ist.
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Chapter 1

Introduction

The motivating theme of this thesis is the study of 2-dimensional foliations on 4-manifolds.
In studying examples of such foliations the geometry of surface bundles consequently took
on a prominent role and hence the majority of results we present are in some way related to
surface bundles. Another recurring theme is that of 4-dimensional symplectic topology and
as such we also consider the topology of certain symplectic surfaces in the form of cobordisms
of transverse knots in contact manifolds.

1.1 Foliations and distributions on 4-manifolds

The question of whether a given manifold admits a foliation of a given dimension is a very
difficult one in general. An obvious necessary condition for the existence of a q-dimensional
foliation is the existence of a q-dimensional distribution. In dimensions 1 and 2 this is
in fact also sufficient. For dimension 1 this is obvious and in dimension 2 it follows from
Thurston’s h-principle, which says that on a manifold of dimension at least 4, any oriented
2-dimensional distribution is homotopic to an integrable one (cf. [Th2]). Thus the existence
of 2-dimensional foliations reduces to the problem of the existence of oriented 2-plane distri-
butions. An oriented 2-plane field is then a section of the Grassmanian bundle of 2-planes
and the existence of such sections is a homotopy problem that can be expressed in terms of
obstruction theory.

In the case of oriented 4-manifolds the existence of an oriented 2-dimensional distribution
is equivalent to a splitting of the tangent bundle as the Whitney sum of two oriented rank-2
subbundles ξ1, ξ2. As these bundles are oriented there is an almost complex structure on
TM so that both bundles are complex subbundles. Thus the Whitney sum formula yields
certain equations that the Chern classes of ξ1, ξ2 must satisfy. Since the Euler class of an
oriented rank-2 bundle is the same as its first Chern class, these equations may be written
as follows:

e(ξ1) ` e(ξ2) = c2(M) and e2(ξ1) + e2(ξ2) = c2
1(M).

Another necessary condition that these classes satisfy is that e(ξ1) + e(ξ2) reduce to the
second Stiefel-Whitney class w2(M) in mod 2 cohomology. The latter condition combined
with the above equations give what we shall call the distribution equations. It is an old result
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8 1. Introduction

of Hirzebruch and Hopf that the existence of a pair of cohomology classes e1, e2 that satisfy
the distribution equations implies the existence of a pair of complementary 2-plane fields
whose Euler classes are e1, e2 respectively (cf. [HH]). The path to this result suggests an
alternate form of the cohomological equations above that is particularly useful for performing
calculations (Proposition 2.2.4). Using these equations one can give precise conditions under
which a 4-manifold admits 2-plane distributions in terms of the Euler characteristic and
signature of the manifold (Theorem 2.2.8). So in particular the existence of foliations on
4-manifolds depends only on the homotopy type of the given manifold.

Given that 2-dimensional foliations are abundant on 4-manifolds as soon as certain weak
topological conditions are satisfied, it is natural to try to understand the geometry of these
foliations more closely. In particular, we investigate the closed leaves of such foliations. This
problem has been studied by Mitsumatsu and Vogt, whose approach is based on a stronger
form of the result of Thurston mentioned above. For what Thurston actually proved is what
is known as a relative h-principle. That is, if ξ is a distribution of 2-planes that is integrable
on a neighbourhood of a compact set K, then ξ is homotopic to an integrable distribution
that agrees with ξ on K.

Now if an embedded surface Σ can be realised as a leaf of a foliation on a 4-manifold
M , then the foliation defines a flat connection on the normal bundle νΣ of Σ via the Bott
construction. The classical Milnor-Wood inequality then implies that the Euler class of νΣ

satisfies |e(νΣ)| ≤ g(Σ)−1. This inequality is then an obvious necessary condition for a given
surface to be realisable as a leaf of a foliation. Using the relative h-principle Mitsumatsu
and Vogt showed that Σ can be made a leaf of a foliation if and only if its normal bundle
satisfies the Milnor-Wood inequality and there exist cohomology classes e1, e2 satisfying the
necessary cohomological conditions described above as well as the following equations:

e1([Σ]) = e(νΣ) = [Σ]2 and e2([Σ]) = 2− 2g(Σ).

By using the alternate form of the distribution equations, we will generate many examples
of distributions where one has great flexibility in solving the additional equations needed
to realise a given surface Σ as a leaf. These examples can then be used to answer certain
questions posed in [MV] (cf. Section 2.3).

In order to obtain stronger results on the geometry of leaves of foliations in view of
the h-principles at hand, one needs to consider more restricted classes of foliations. If one
considers foliations that are complex analytic, then a closed leaf must have trivial normal
bundle (Proposition 2.4.1). So complex foliations are too rigid to have interesting closed
leaves. Another interesting class of foliations are those that are symplectic, in the sense that
each leaf is symplectic with respect to some symplectic form. If a foliation is symplectic,
then there are no longer any local obstructions as in the case of complex analytic foliations.
There are however subtle restrictions on the Euler classes of the underlying distributions of
symplectic foliations that come from Seiberg-Witten Theory. In particular, if e1, e2 are the
Euler classes of the underlying distribution of the foliation and its orthogonal complement,
then either e1 + e2 or e1 − e2 is ±c1(K), where c1(K) is the canonical class associated to
the symplectic form. Moreover, if b+

2 (M) is at least two, then there are only finitely many
possibilities for c1(K) (Proposition 2.4.6).

A further special case of symplectic foliations are so-called symplectic pairs. We refer to
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the main text for a general definition, but in the case of 4-manifolds a symplectic pair is
equivalent to a pair of closed 2-forms ω1, ω2 such that

ω2
1 = ω2

2 = 0 and ω1 ∧ ω2 6= 0.

The kernel foliations of the forms ω1, ω2 are then symplectic foliations with respect to the
symplectic forms ω1±ω2. In the case of symplectic pairs the restrictions on the Euler classes
are even stronger. In particular, under the assumption that b±2 (M) > 1, the possibilities for
the Euler classes of both foliations are finite (Proposition 2.5.2). In the case of a product of
Riemann surfaces of genus greater than two, the possible canonical classes are known and
one can calculate that the Euler classes of the kernel distributions of a symplectic pair are
essentially unique (see Example 2.5.3). These results then give cohomological obstructions
for surfaces to be realisable as leaves of symplectic pairs.

There are also more subtle geometric restrictions on the way a leaf of a symplectic pair
can be embedded in a given 4-manifold. As noted above each leaf L of the kernel foliations
of a symplectic pair is symplectic with respect to both of the symplectic forms ω1±ω2. This
fact can be exploited to show that a piece of the leaf L cannot be locally isotopic to a piece
of a Milnor fibre, under certain assumptions either on the topology of the manifold or on the
homology class represented by L (Proposition 2.5.13).

1.2 Surface bundles and their characteristic classes

The topology of surface bundles is a rich and well-studied area of mathematics. By a classical
result of Earle and Eells, the classifying space of oriented surface bundles is an Eilenberg-
MacLane space BΓh = K(Γh, 1), whose fundamental group is the mapping class group of
Σh. The group Γh is defined as the group of orientation preserving diffeomorphisms of Σh

modulo isotopy. In this way a given surface bundle Σh → E → B is classified by its holonomy
representation π1(B)→ Γh, which induces the classifying map of E.

The cohomology of BΓh is important not only in the theory of surface bundles but also in
the theory of moduli spaces of Riemann surfaces, since the rational cohomologies of BΓh and
the moduli space of genus h Riemann surfaces Mh are isomorphic. There are a plethora of
non-trivial cohomology classes in H∗(BΓh) called Mumford-Miller-Morita (MMM) classes in
honour of their discoverers. To define these we let e(E) denote the vertical Euler class of the
oriented rank-2 vector bundle of vectors that are tangent to the fibres of E. The k-th MMM-
class is then defined as ek(E) = π!e

k+1(E), where π! denotes the transfer homomorphism
given by integration along the fibre. The geometry of these characteristic classes is very
interesting and we examine several aspects of this in this thesis.

Our main motivation for studying the MMM-classes is a conjecture due to Morita that the
classes ek are bounded in the sense of Gromov. We recall that a cohomology class is bounded
in the sense of Gromov if it has a representative singular cocycle that is bounded on singular
simplices. The vertical Euler class e is bounded (Proposition 3.1.7) and we give a new proof
of this result, which is originally due to Morita. Our proof uses the adjunction inequality
coming from Seiberg-Witten theory and is independent of Morita’s original argument. The
boundedness of e then implies that the self-intersection number of a section of a bundle over
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a 2-dimensional base is bounded in terms of the genus of the fibre and base. Mitsumatsu
and Vogt conjectured that a similar bound should exist for more general multisections. We
verify this conjecture in the case of pure sections (Proposition 3.1.10). However, we also
show that a stable version of the conjecture of Mitsumatsu and Vogt, which is technically
stronger than their original question, is in fact false (Corollary 3.1.15).

Returning to the question of Morita concerning the boundedness of the MMM-classes one
can use the boundedness of the vertical Euler class to see that if ek is non-trivial for a bundle,
whose base is a 2k-dimensional manifold, then the total space must have non-zero simplicial
volume. The condition that a manifold has non-vanishing simplicial volume is equivalent
to the fact that the Poincaré dual of the fundamental class is bounded as a cohomology
class in the above sense. If the non-vanishing of the simplicial volume of the total space of a
surface bundle implied that the base also had non-vanishing simplicial volume, then Morita’s
conjecture would follow. However, in full generality this does not hold with counterexamples
given by hyperbolic surfaces bundles over the circle. The fundamental group of the circle
is amenable and a general fact about the simplicial volume is that it vanishes for manifolds
with amenable fundamental group. The examples above are in fact the exception and this
leads us to show that the simplicial volume of a surface bundle over a base with amenable
fundamental group is trivial as soon as the dimension of B is greater than 1 (Theorem 3.2.2).
As a corollary of this theorem, we reprove a result of Morita that the MMM-classes vanish
on amenable groups (Theorem 3.2.3).

There is a weaker notion of boundedness for cohomology classes that is also due to
Gromov, namely hyperbolicity. For a compact manifold a cohomology class is hyperbolic if
the pullback of a de Rham representative to the universal cover has a C0-bounded primitive
with respect to the pullback metric. The hyperbolicity condition can be reexpressed in a
manner that does not involve metrics and can be generalised to arbitrary spaces (cf. Section
3.3). Although hyperbolicity is strictly weaker than boundedness, it does imply vanishing
on amenable subgroups and as further evidence for Morita’s conjecture, we prove that the
MMM-classes are hyperbolic (Theorem 3.3.8).

Another natural question concerning the MMM-classes is the following: given a base
manifold B, for which MMM-classes does there exist a surface bundle over B so that ek(E)
is non-trivial? This question can be rephrased as a question about the representability of cer-
tain homology classes in H∗(BΓh). We restrict our attention to the case where B = M1×M2

is a non-trivial product of two manifolds and show that ek vanishes for such manifolds if the
dimension of both of the factors is less than 2k (Theorem 3.2.5). As an application of the
results discussed above, we then deduce strong restrictions on the topology of bundles that
are holomorphic, in the sense that both base and total space are complex and the bundle
projection is holomorphic. In particular, we show that if the fundamental group of the base
of a holomorphic bundle is amenable, then the total space is virtually a product, and if the
base is a product of Riemann surfaces, then e2

1 must be trivial (Section 3.4).
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1.3 Flat surface bundles

An important special case of fibre bundles from the perspective of foliation theory are flat
bundles. Recall that a fibre bundle E over a manifold B is called flat if it admits a fo-
liation that is everywhere complementary to the fibres. An equivalent formulation of this
condition in the case of surface bundles is that the holonomy homomorphism π1(B) → Γh
lifts to the group of orientation preserving diffeomorphisms Diff+(Σh). In general, there
are cohomological restrictions to the existence of flat structures, since the Bott vanishing
theorem implies that the MMM-classes ek(E) vanish for flat bundles if k ≥ 3. However, in
low dimensions flatness is not as restrictive. If the dimension of the base is one, then rather
trivially the total space of any bundle admits a horizontal foliation, which may be thought
of as a horizontal flow. If B is a surface, then any bundle admits a horizontal foliation after
stabilisation by a result of Kotschick and Morita.

A closed leaf of the horizontal foliation of a flat bundle E intersects each fibre in a
finite number points. Thus the existence of such a closed leaf is equivalent to a reduction
of the holonomy group of E to group Diff+(Σh,k) that consists of orientation preserving
diffeomorphisms fixing k marked points. Characteristic classes of flat bundles with closed
leaves can then be considered as elements in the group cohomology ofDiff+(Σh,k) considered
as a discrete group. This cohomology is of course difficult to understand in general and
we content ourselves with the low dimensional cases. As such, we compute that the first
homology of Diff+

δ (Σh,k) is R+ × Z2 under the assumption that h is at least three and k
is at least two (Proposition 4.1.13). We also compute the abelianisation of the group of
compactly supported diffeomorphism on R2 fixing the origin. This result is originally due to
Fukui, although his proof seems to be incomplete (see Section 4.1.2).

For flat surface bundles one obtains a natural characteristic class by restricting the vertical
Euler class to a closed leaf. If the base is a surface, this corresponds to the self-intersection
number of the leaf and we show that there exist foliations for which these self-intersection
numbers are non-trivial (Proposition 4.1.5). Moreover, if we instead assume that a given
bundle admits a section that has self-intersection divisible by 2h−2, then this section can be
made a leaf of a horizontal foliation after stabilisation (Theorem 4.1.7). This result means
that obstructions to the existence of certain horizontal foliations given in [BCS] are not stable
in the sense that they disappear after one performs a certain number of stabilisations.

We also study the closed leaves of flat bundles whose horizontal foliations admit transverse
symplectic structures. For codimension 2 foliations a transverse symplectic structure is
equivalent to the fact that the foliation can be defined as the kernel of a closed 2-form.
A transverse symplectic form on a flat surface bundle is then equivalent to a holonomy
invariant symplectic form on the fibres, which means that the holonomy map of the bundle
lies in the group Symp(Σh) of symplectomorphisms of Σh. Similarly, a flat symplectic bundle
with a closed leaf is equivalent to a holonomy representation in the group Symp(Σh,k) of
symplectomorphisms that fix k marked points. We again concentrate on the case where the
base of the bundle is a surface showing that there are indeed flat symplectic surface bundles
having closed leaves of non-zero self-intersection (Proposition 4.2.9). The most interesting
examples of such foliations occur as the horizontal foliations of symplectically flat sphere
bundles, for which any closed leaf with non-zero self-intersection number must be unique
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(Section 4.2.1). As a further consequence of Proposition 4.2.9 we deduce that there exist
symplectic pairs on 4-manifolds both of whose kernel foliations have leaves with non-zero
intersection numbers (Corollary 4.2.10).

1.4 Surface bundles and extended Hamiltonian groups

Given an arbitrary circle bundle it is a basic question to ask whether it bounds a surface
bundle. This question may be viewed as the fibred analogue of the bordism problem for closed
manifolds. If the circle bundle is assumed to be flat, then one can consider the problem of
extending the flat structure to the interior of such a fibred null-cobordism. If the fibre is
assumed to be a disc, then there is a dichotomy depending on whether one requires that the
foliation be symplectic or not. For in the smooth case, it is a simple matter to show that any
flat circle bundle over a surface admits a flat disc bundle filling after stabilisation. However,
in the symplectic case the Euler class provides an obstruction by a result of Tsuboi. In fact,
Tsuboi gives a formula for computing the Euler class of a flat circle bundle in terms of the
Calabi invariant of certain extensions of the boundary holonomy to the interior of a disc
(Theorem 5.2.1).

Tsuboi’s result can be reformulated in terms of the five-term exact sequence in group
cohomology. The advantage of this reformulation is that it can easily be generalised to the
case where the fibre of the filling is an arbitrary Riemann surface with one boundary com-
ponent. After suitably generalising the Calabi map we shall extend Tsuboi’s formula to the
extended Hamiltonian group of a Riemann surface with one boundary component (Theorem
5.2.10). Here the extended Hamiltonian group is a subgroup of the symplectomorphism
group which is defined as the kernel of a certain crossed homomorphism that is an extension
of the ordinary Flux homomorphism in symplectic geometry.

As a consequence we see that the Euler class gives a obstruction to filling a circle bundle
by a flat surface bundle with holonomy in the extended Hamiltonian group. We contrast
this result with the fact that any flat circle bundle can be filled by a flat symplectic bundle
after stabilisation (Theorem 5.1.4). As a final application of these methods we derive a
Tsuboi-type formula for the first MMM-class of a surface bundle with boundary (Corollary
5.3.3).

As previously mentioned, the Bott vanishing theorem implies that the MMM-classes ek
vanish on flat bundles if k is a least three. On the other hand, there exist flat bundles for
which the first MMM-class is non-trivial by a result of Kotschick and Morita. These bundles
can in fact be chosen to have symplectic holonomy. This led Kotschick and Morita to ask
whether the second MMM-class can be non-trivial for flat surfaces bundles or flat bundles
with symplectic holonomy. We shall answer this question under the assumption that the
holonomy group lies in the extended Hamiltonian group. For as in the case of a surface with
boundary one can also define an extended Flux homomorphism on Symp(Σh), whose kernel

is the extended Hamiltonian group H̃am(Σh). We show that the class e2 is trivial when

considered as an element in the group cohomology of H̃am(Σh) and that the powers ek1 are
also trivial if k ≥ 2 (Theorem 5.4.4).
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1.5 Characteristic classes of symplectic foliations

The Pontryagin classes of the normal bundle to a foliation F define characteristic classes,
which depend only on the homotopy class of the underlying distribution. If the foliation
has a transverse volume form ω, then for certain polynomials P in the Pontryagin classes
we show that there exist well-defined foliated cohomology classes γP such that P (Ω) =
ω∧ γP (Proposition 6.1.3). Similar factorisations for transversally symplectic foliations were
obtained in [KM3] via computations in the Gelfand-Fuks cohomology of formal Hamiltonian
vector fields. By working with Bott connections we obtain a more concrete construction that
is immediately applicable to foliations that are only transversally volume preserving.

Although one expects that the foliated cohomology classes γP discussed above contain
more information than the Pontryagian classes themselves, this is by no means immediate
from their definition alone. We consider this problem by starting with the first non-trivial
case. That is, we assume that we have a transversally symplectic codimension 2 foliation on
a 4-manifold. In this case the first Pontryagin class of the normal bundle to the foliation has
a factorisation p1(νF ) = ω ∧ γ.

In general, any foliated cohomology class yields a well-defined class in ordinary cohomol-
ogy when restricted to a leaf. We show that there exist symplectically foliated R2-bundles
that have closed leaves L, such that the restriction of γ to L is non-trivial. Moreover, we may
assume that such a bundle is topologically trivial (Theorem 6.3.7). We conclude that the
class γ contains information that is sensitive to the geometry of the foliation and not just its
homotopy class as a distribution. The examples that we obtain are of differentiability class
Ck for finite k and we unfortunately cannot obtain smooth examples using our methods.

1.6 Symplectic cobordism and transverse knots

In the general theory of knots (or links) in S3, or more generally in an arbitrary 3-manifold,
one usually considers knots up to isotopy. A less restrictive equivalence relation on the set
of knots is that of cobordism or concordance. Here two oriented links K0, K1 in S3 are
cobordant if there is a properly embedded, oriented surface Σ in S3 × [0, 1] such that the
intersection of Σ with S3 × {i} is Ki. Two knots are concordant if they are cobordant via
an annulus. The cobordism relation is trivial for the 3-sphere, since every knot bounds an
embedded surface and, hence, every knot is null-cobordant. The concordance relation is
however far from trivial and has been a subject of intense study amongst knot theorists for
many years.

We shall consider similar relations in the setting of contact topology. There are two
natural classes of knots that one studies in the presence of a contact structure. The first
are transverse knots that are everywhere transverse to the contact distribution and the
second are Legendrian which are everywhere tangent. The analogous notion of cobordism for
transverse knots is symplectic cobordism. Two transverse knots K0, K1 in a contact manifold
M will be symplectically cobordant if there is a properly embedded symplectic surface Σ in
the symplectisation (M × R, d(etλ)) whose negative/positive ends are K0 × (−∞,−R) and
K1 × (R,∞) respectively. As in the smooth case, two transverse knots are symplectically
concordant if they are cobordant via an annulus. This notion is the transverse analogue of
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Lagrangian cobordism/concordance as introduced by Chantraine.
For ordinary smooth cobordism every knot is null-bordant. However this is no longer true

for transverse knots in S3 with its standard contact structure. In fact, a link is symplectically
null-bordant if and only if it is quasipositive by a result of Boileau and Orevkov. Another
important property of null-bordisms for knots in S3 is that they minimise the genus for all
smooth slicing surfaces in the 4-ball (Theorem 7.2.3). In fact, if Σ is a symplectic cobordism
from K0 to K1, then one has the following equation for the slice genera of the knots

2− 2g(K1) = 2− 2g(K0) + χ(Σ).

This means that if K0 is symplectically cobordant to K1 by a cobordism with negative Euler
characteristic, then the opposite relation cannot hold. This implies an asymmetry in the
symplectic cobordism relation that is not present in the smooth setting.

We have seen that the slice genus obstructs symmetry for the symplectic cobordism
relation. Hence we consider the question of symmetry for symplectic concordance instead,
since two concordant knots necessarily have the same slice genus. However, this relation
also fails to be symmetric and we produce an infinite family of examples Kn that are not
symplectically concordant to the unknot K0, but which are symplectically null-concordant
meaning that there is a symplectic concordance from the unknot to Kn.
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Chapter 2

Distributions and leaves of foliations

We first review basic facts concerning 2-plane distributions on 4-manifolds. We then discuss
the consequences of the Milnor-Wood inequality on closed leaves of 2-dimensional foliations
and recall the cohomological criteria of Mitsumatsu and Vogt that give necessary and suffi-
cient conditions for the realisability of a surface as a leaf of a foliation. After showing that
there is a great deal of flexibility in satisfying these cohomological criteria, we give a series
of examples that answer two questions posed in [MV] concerning the topological properties
of closed leaves of foliations (cf. Examples 2.3.4 and 2.3.5). We next consider special classes
of foliations and their closed leaves, focusing mainly on symplectic foliations and symplectic
pairs. In particular, we derive restrictions on the local geometry of leaves of symplectic pairs.

2.1 Conventions

All manifolds are connected and smooth. We shall only consider oriented distributions,
which will always be smooth. Unless otherwise stated all (co)homology groups will be taken
to have integral coefficients.

2.2 The distribution equations on a 4-manifold

It is a basic question, whether a given manifold M admits a foliation. For 1-dimensional
foliations on compact manifolds, this is equivalent to the vanishing of the Euler characteristic.
In general, a necessary condition for M to admit a k-dimensional foliation is that it first
admits a k-dimensional distribution. For 2-dimensional foliations of codimension greater
than 1, this is also sufficient. In fact more is true and one has the following (relative)
h-principle which is due to Thurston.

Theorem 2.2.1 ([Th2], Cor. 3). Let M be an oriented manifold of dimension greater than
3 and let ξ be an oriented distribution of 2-planes. Then ξ is homotopic to a foliation. Fur-
thermore, if ξ is integrable in a neighbourhood of a compact set K ⊂M then this homotopy
may be taken relative to K.

We shall now explain how oriented distributions correspond to sections of certain 2-sphere
bundles over M , for a more detailed account we refer to [HH].

15
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We first consider the double covering

SO(4)
p // SO(3)+ × SO(3)−

SO(2)× SO(2)

OO

p // SO(2)× SO(2)

OO

that one obtains by considering the natural representation of SO(4) on Λ2, which then
gives induced representations on Λ2

±, the space or self-, resp. anti-self-dual 2-forms. The
subgroup SO(2) × SO(2) in SO(4) denotes the group of transformations that preserve the
decomposition R4 = R2⊕R2 and are orientation preserving on each factor. The image under
p of this subgroup fixes a 1-dimensional subspace in Λ2

+,Λ
2
− respectively that we may describe

explicitly. To this end we pick oriented bases {e1, e2} and {e3, e4} for the two R2-factors and
let {e1, e2} and {e3, e4} denote the corresponding dual bases. The invariant subspaces are
then given by the span of the following 2-forms:

ω = e1 ∧ e2 + e3 ∧ e4 ∈ Λ2
+

ω̄ = e1 ∧ e2 − e3 ∧ e4 ∈ Λ2
−.

We then identify the image of SO(2)×SO(2) with the set of factor-wise orientation preserving
transformations of

ω⊥ ⊕ ω̄⊥ ⊂ Λ2
+ ⊕ Λ2

−.

After choosing an explicit basis for ω⊥ and ω̄⊥ and identifying SO(2) = U(1) ⊂ C in the
usual fashion, one computes that the map

SO(2)× SO(2)
p→ SO(2)× SO(2),

is given by
(eiφ1 , eiφ2) 7→ (ei(φ1−φ2), ei(φ1+φ2)).

An oriented 2-plane distribution ξ is equivalent to a reduction of the structure group of TM
to SO(2) × SO(2) and under the correspondence above this in turn reduces the structure
group of Λ2

+(M) ⊕ Λ2
−(M) to SO(2) × SO(2). However, such a reduction is equivalent to

having a pair of sections in the product of unit sphere bundles S(Λ2
+(M))× S(Λ2

−(M)). We
shall denote such a pair of sections by (α+, α−).

Conversely, given such a pair of non-vanishing sections of unit length we obtain an ori-
ented distribution as the kernel of the following 2-form α = α+ − α−. For in terms of the
decomposition into self- and anti-self-dual parts we have

0 6= ||α+||2 = α+ ∧ α+ = −α− ∧ α− = ||α−||2

and this is equivalent to the fact α2 = 0, that is α is of constant rank and the kernel
distribution is well-defined. We also have an analogously defined form α⊥ for ξ⊥ and it is
not hard to see that α⊥ = α+ + α−. We then orient ξ = Ker(α) so that α⊥|ξ > 0. By
construction if we started with an oriented distribution ξ, then (α+, α−) = (ω, ω̄) and under
the above correspondence we obtain our original distribution again.
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Now a pair of non-vanishing sections (α+, α−) gives splittings

Λ2
±(M) = Rα± ⊕ L±,

and there is an explicit relationship between the Euler class of ξ and its complement ξ⊥ and
the Euler classes of L±. We shall denote the Euler classes of ξ, ξ⊥ by e1, e2 and those of L±
by K±. Our description of the map p on SO(2)× SO(2) yields that as SO(2)-bundles

ξ ⊗ ξ ∼= L+ ⊗ L−

ξ⊥ ⊗ ξ⊥ ∼= L−1
+ ⊗ L−,

and, hence,
2e1 = K+ +K−

2e2 = −K+ +K−.

Thus we see that the existence of a distribution is equivalent to the existence of sections of
certain associated bundles. The existence of sections of S2-bundles can be formulated purely
in cohomological terms and this is the content of the following theorem, which is attributed
to Massey in [DW].

Theorem 2.2.2 (Massey). A 2-sphere bundle over a compact, oriented 4-manifold
S2 → E →M admits a section if and only if there is a class γ ∈ H2(M) such that

γ ` γ = p1(E)

γ ≡ w2(M) mod 2.

Moreover, in this case the associated R3-bundle splits as E = R⊕ L where L is an oriented
rank-2 bundle with Euler class e(L) = γ.

In our case we can compute the first Pontryagin classes of S(Λ2
±(M)) in terms of the

characteristic classes of M . To this end we prove the following lemma, which is valid for any
oriented, rank four vector bundle.

Lemma 2.2.3. Let E →M be an oriented real vector bundle of rank four. And let Λ2
±(E) be

the associated bundles of self-, resp. anti-self-dual 2-forms. Then the following holds modulo
torsion:

p1(Λ2
±(E)) = ±2e(E) + p1(E).

Proof. We consider the map

SO(4)
p // SO(3)+ × SO(3)−

and let p± be the composition with the projections to each factor. We then have induced
maps on classifying spaces

BSO(4)
p±→ BSO(3)±.

We further let Λ2
± denote the bundles of self-, resp. anti-self-dual 2-forms associated to the

universal bundle ESO(4), which are then classified by the maps p±. Since H4(BSO(4)) is
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generated by p1 and the Euler class e modulo torsion, there are constants λ±, µ± ∈ Z so that
the following holds in H4(BSO(4))/Tor:

p1(Λ2
±) = p∗± p1(ESO(3)) = λ±e+ µ±p1.

Now let E = TM be the tangent bundle of a symplectic manifold (M,ω). Then for an
ω-compatible almost complex structure J , one has the following isomorphism of complex
bundles

Λ2
+(M)⊗ C ∼= K ⊕ K̄ ⊕ Cω,

where K denotes the canonical bundle given by the chosen almost complex structure (cf.
[DKr], Lemma 2.1.57). Thus applying the Whitney sum formula, we obtain the following
modulo 2-torsion

p1(Λ2
+(M)) = −c2(Λ2

+(M)⊗ C) = c1(K)2 = 2e(M) + p1(M).

Applying this calculation to the symplectic manifolds M1 = CP 2 and M2 = S2×S2, verifies
the formula for an arbitrary bundle E since the vectors (e(M1), p1(M1)) and (e(M2), p1(M2))
are linearly independent.

Finally, for an oriented manifold we note that Λ2
−(E) = Λ2

+(Ē), where Ē denotes E taken
with the opposite orientation. Hence, modulo 2-torsion

p1(Λ2
−(E)) = p1(Λ2

+(Ē)) = 2e(Ē) + p1(Ē) = −2e(E) + p1(E),

which completes the proof.

As a consequence of of Hirzebruch Signature Theorem, we obtain the following proposi-
tion in the case of 4-manifolds.

Proposition 2.2.4 (Characteristic equations 1). A closed, oriented 4-manifold M admits
an oriented 2-plane distribution if and only if there exists a pair K+, K− ∈ H2(M) such that:

〈K2
±, [M ]〉 = ±2χ(M) + 3σ(M) (2.1)

K± ≡ w2(M) mod 2.

Proof. This follows immediately from Lemma 2.2.3 and Theorem 2.2.2 and the fact that
〈p1(M), [M ]〉 = 3σ(M) by the Hirzebruch Signature Theorem.

It is clear that the first of these equations only depends on K+, K− considered as classes
in H2(M)/Tor. This holds for the second equation as well. For if K± are elements that
reduce modulo 2 to w2(M), then they are characteristic elements for the cup product pairing
on H2(M), that is

〈α2, [M ]〉 ≡ 〈α ` K±, [M ]〉 mod 2

for all α ∈ H2(M). Conversely, any characteristic element [K] ∈ H2(M)/Tor has a repre-
sentative K̄ ∈ H2(M), whose reduction modulo 2 is w2(M).



2.2. The distribution equations on a 4-manifold 19

Lemma 2.2.5. Let [K] ∈ H2(M)/Tor be a characteristic element for the intersection form
of an oriented 4-manifold M . Then the class [K] has a representative K̄ whose reduction
modulo 2 is w2(M).

Proof. We consider the commutative diagram

0 // Ext(H1(M),Z) //

��

H2(M,Z)

��

p // Hom(H2(M),Z) //

��

0

0 // Ext(H1(M),Z2) // H2(M,Z2)
p // Hom(H2(M),Z2) // 0.

If K is characteristic, then for all integral classes [S]

〈K, [S]〉 ≡ [S]2 mod 2

and hence p(K) reduced modulo 2 is the same as p(w2(M)). Moreover the left vertical arrow
is surjective and the image consists of the mod 2 reductions of torsion elements in H2(M).
So after adding some torsion we obtain a K̄ that is still characteristic and reduces to w2(M)
modulo 2.

With the help of Lemma 2.2.5 we may give an alternate form of the characteristic equa-
tions that will be very useful in conducting calculations below.

Proposition 2.2.6 (Characteristic equations 2). A closed, oriented 4-manifold M admits
an oriented 2-plane distribution if and only if there exists a pair of characteristic elements
for the intersection form K+, K− ∈ H2(M) such that:

〈K2
±, [M ]〉 = ±2χ(M) + 3σ(M). (2.2)

We may also express Proposition 2.2.4 above in terms of the Euler classes of the distribu-
tions ξ and ξ⊥. The correspondence between the classes e1, e2 and K+, K− is only valid up
to 2-torsion, however this is not a major problem and we obtain the following proposition.

Proposition 2.2.7 (Distribution equations). Let M be a 4-manifold and let Tor2 ⊂ H2(M)
be the subgroup of 2-torsion elements. There exist complementary 2-plane distributions ξ
and ξ⊥ on M with Euler classes e1, e2 ∈ H2(M)/Tor2 if and only if the following equations
hold:

〈e2
1 + e2

2, [M ]〉 = 3σ(M)

〈e1 ` e2, [M ]〉 = χ(M) (2.3)

e1 + e2 ≡ w2(M) mod 2.

Proof. For the necessity we choose an almost complex structure compatible with the splitting
TM ∼= ξ ⊕ ξ⊥. We set e1 = c1(ξ) and e2 = c1(ξ⊥). Then the Whitney sum formula yields

e2
1 + e2

2 = c2
1(M)− 2c2(M) = p1(M)

e1 ` e2 = c2(M) = e(M)

e1 + e2 = c1(M).
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Finally, we apply the Hirzebruch Signature Theorem and use the fact that c1(M) reduces to
w2(M) in mod 2 cohomology.

Conversely, if we have solutions e1, e2, then we set

K+ = e1 + e2, K− = e1 − e2.

These classes satisfy the hypotheses of Proposition 2.2.4 and hence we have distributions
ξ, ξ⊥, whose Euler classes e′1, e

′
2 satisfy:

2e′1 = K+ +K− = 2e1

2e′2 = −K+ +K− = 2e2,

and the classes ei and e′i agree modulo 2-torsion.

Using the distribution equations above one may give necessary and sufficient conditions
for the existence of distributions in terms the Euler characteristic and signature of M . In
particular, the existence of a smooth foliation only depends on the homotopy type of M .
The following result goes back to Atiyah and Saeki (cf. [Mats]).

Proposition 2.2.8 (Existence of distributions). Let M be an oriented 4-manifold with in-
definite intersection form, then M admits a distribution if and only if

σ(M) ≡ 0 mod 2 and χ(M) ≡ σ(M) mod 4.

Proof. By Proposition 2.2.6 it suffices to find characteristic elements K+, K− ∈ H2(M) for
the intersection form such that:

〈K2
±, [M ]〉 = ±2χ(M) + 3σ(M).

By the Theorem of van der Blij (see [MH], p. 24), if K is characteristic for the intersection
form, then the following holds:

〈K2, [M ]〉 ≡ σ(M) mod 8.

So a necessary condition for a solution of (2.2) is that

σ(M) ≡ ±2χ(M) + 3σ(M) mod 8

⇐⇒ 2χ(M) ≡ ±2σ(M) mod 8

⇐⇒ χ(M) ≡ ±σ(M) mod 4

⇐⇒ χ(M) ≡ σ(M) mod 4 and σ(M) ≡ 0 mod 2.

Next we claim that

Σ = {K2 | K is characteristic} = σ(M) + 8Z,

which means that if σ(M) ≡ ±2χ(M) + 3σ(M) mod 8, then this is sufficient for the exis-
tence of a solution of (2.2). We assumed that M has indefinite intersection form, thus by
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the Hasse-Minkowski classification of indefinite, integral quadratic forms we have to consider
two cases according to whether the intersection form that we denote by Q( , ) is even or odd.

Case 1 : Q( , ) is odd.

In this case H2(M,Z)/Tor has a basis e1, ...en so that for an element α =
∑
λiei we have

Q(α, α) =

b+2∑
i=1

λ2
i −

b+2 +b−2∑
j=b+2 +1

λ2
j

and an element K =
∑
λiei is characteristic if and only if λi ≡ 1 mod 2, for all 1 ≤ i ≤ n.

Then by noting that
(2m+ 1)2 − (2m− 1)2 = 8m,

and defining K by taking

λi =


2m+ 1, i = b+

2

2m− 1, i = b+
2 + 1

1 , otherwise

we see that
Q(K,K) = σ(M) + 8m,

thus proving the claim in the odd case, since m can be chosen arbitrarily.

Case 2 : Q( , ) is even.

In this case the Hasse-Minkowski classification implies thatQ ∼= kH⊕lE8 andK =
∑
λiei

is characteristic if and only if λi ≡ 0 mod 2 for all 1 ≤ i ≤ n. Hence K = (2x, 2y, 0, ..., 0) is
characteristic for Q and

K2 = 8xy.

Thus the set Σ defined above is in fact 8Z = σ(M) + 8Z.

Remark 2.2.9. If the intersection form Q of M is definite, say positive definite, then by
Donaldson’s Theorem it is diagonalisable. It then follows that there is an integral basis {ei}
such that

Q(

b2∑
i=1

λiei,

b2∑
i=1

λiei) =

b2∑
i=1

λ2
i

and we see that the set of squares of characteristic elements is

Σ = {n | n ≥ b2(M) and n ≡ σ mod 8}.

So in other words a manifold with a definite intersection form admits a distribution if and
only if it satisfies the hypotheses of Proposition 2.2.8 and

b2(M) ≤ ±2χ(M) + 3σ(M)

⇐⇒ −2b2(M) ≤ ±2χ(M) = ±2(2− 2b1(M) + b2(M))

⇐⇒ b1(M) ≤ 1 + b2(M) and 1 ≤ b1(M).
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Remark 2.2.10. We also note that if b+
2 (M), b−2 (M) > 1, then by the proof of Proposition

2.2.8 above there are infinitely many characteristic elements Ki that solve

〈K2
i , [M ]〉 = 2χ(M) + 3σ(M).

Hence, by taking any fixed class L that solves

〈L2, [M ]〉 = −2χ(M) + 3σ(M),

we obtain distributions with infinitely many distinct characteristic pairs (K+, L). Since these
pairs are invariant under homotopy we conclude that M has infinitely many non-homotopic
distributions.

2.3 The Milnor-Wood inequality and compact leaves

In this section we will recall the Milnor-Wood inequality for flat GL+(2,R)-bundles over
closed surfaces and discuss its consequences for the existence of foliations with closed leaves.
We shall then recall the homological criteria of Mitsumatsu and Vogt in [MV] for the existence
of a foliation having a given compact surface as a leaf. Then by using the characteristic
equations (cf. Proposition 2.2.6), we shall give examples that answer several questions posed
in [MV].

We shall first recall some generalities concerning obstruction classes for flat bundles. We
let G be any connected Lie group and consider a flat principal G-bundle E over a surface Σ.
By the classification of flat bundles, this corresponds to a homomorphism ρ : π1(Σ) → G,

which is unique up to conjugation by elements in G. We let G̃
p→ G denote the universal

cover of G and note that the fundamental group of G can be identified with a subgroup of
G̃ in a natural way. If ai, bi denote the standard generators of π1(Σ), we choose lifts αi, βi
of ρ(ai), ρ(bi) in G̃. It was shown by Milnor in [Mil] that the obstruction to the existence of
a global section, that we denote by c(E) ∈ H2(Σ, π1(G)), is given by

c(E) = −α1β1α
−1
1 β−1

1 ....αgβgα
−1
g β−1

g . (2.4)

In the case G = GL+(2,R), we have that π1(G) = Z and up to multiplication by a constant
c(E) is just the Euler class e(E). Another observation is that if G is abelian, then every flat
principal G-bundle over a surface admits a section and is hence trivial. For in this case the
universal cover is also an abelian Lie group and hence the right-hand side of equation (2.4)
is always trivial.

Proposition 2.3.1. If E → Σ is a flat principal G-bundle over a surface and G is abelian,
then E is a trivial bundle.

The Milnor-Wood inequality expresses a relationship between the Euler class of certain
flat bundles over closed surfaces and the genus of the base. This inequality is due to Milnor
in the case of GL+(2,R)-bundles and its generalisation to Homeo+(S1) is due to Wood. We
shall in fact only need Milnor’s original inequality in what follows, but in accordance with
standard usage we will refer to the following result as the Milnor-Wood inequality.
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Theorem 2.3.2 (Milnor-Wood inequality, [Mil]). A GL+(2,R)-bundle E → Σ over a surface
of genus g > 0 is flat if and only if

|e(Σ)| ≤ g(Σ)− 1.

The same holds for flat SL(2,R)-bundles.

In [MV] certain criteria were proven for the existence of 2-dimensional foliations with
closed leaves on a 4-manifold M . The basic observation is that the Milnor-Wood inequality
puts homological restrictions on which classes [Σ] ∈ H2(M) can occur as leaves of a foliation.
To begin with we note that if Σ is a leaf of some foliation F on M , then there is a connection
on the normal bundle ν(F) that is flat when restricted to leaves of the foliation. This is a
so-called Bott connection (cf. Definition 6.1.2 below). Thus, in particular, if Σ is a leaf of
some foliation then the normal bundle of Σ is a flat bundle and the Milnor-Wood inequality
implies that

|[Σ]2| ≤ g(Σ)− 1.

Conversely, there are sufficient conditions for a given embedded surface to be a leaf of some
foliation on a manifold M . These are given in the following theorem of Mitsumatsu and
Vogt.

Theorem 2.3.3 ([MV], Th. 4.4). If a compact surface Σ satisfies the Milnor-Wood inequal-
ity, then Σ can be realised as a leaf of a foliation F on M if and only if there are classes
e1, e2 that solve equations ( 2.3) and satisfy the following two additional equations:

〈e1, [Σ]〉 = χ(Σ), 〈e2, [Σ]〉 = [Σ]2. (2.5)

There are certain questions about the properties of surfaces that are leaves of foliations
that would suggest that the condition of being a leaf is in fact restrictive. The first is whether
a class σ ∈ H2(M) knows its foliated genus ([MV], Question 8.8), that is if Σ1,Σ2 are leaves
of foliations F1,F2 and [Σi] = σ in H2(M), then we must have χ(Σ1) = χ(Σ2). The following
examples provide a negative answer to this question.

Example 2.3.4 (The genus of leaves representing a fixed homology class). Suppose we have a
manifold M whose signature and Euler characteristic satisfy the congruences of Proposition
2.2.8 so that M admits distributions. Assume further that the intersection form on M is
odd and is of the form

Q ∼= 2〈1〉 ⊕ 2〈−1〉.

For example one can take

M = 2CP 2# 2CP 2
#S1 × S3.

We choose a basis v1, ...v4 of H2(M) so that the intersection form Q has the stipulated from.
One then has an explicit family of solutions to equation (2.2) given by setting
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K+ = (2t− s, 2y + 1, 2y − 1, 1)

K− = (2t+ s, 2z + 1, 2z − 1, 1).

Here the s, t ∈ Z are free parameters, s is odd and y, z are chosen so that equation (2.2) is
satisfied. These solutions then yield the following solutions to the distribution equations:

e1 = (2t, y + z + 1, y + z − 1, 1)

e2 = (s, z − y, z − y, 0).

We let [Σ] be a surface of minimal genus representing the class v1 so that [Σ]2 = 1. We
set s = 1 so that the second equation in (2.5) above is satisfied. Then as t was a free
parameter in the set of solutions, we may choose t so that the first equation in (2.5) is also
satisfied. Furthermore, we may glue in as many trivial handles as we like to obtain a Σ̃ that
is homologous to Σ and has arbitrarily large genus. In particular, we can assume that the
Milnor-Wood inequality is satisfied and we see that v1 has representatives of infinitely many
genera that can be made a leaf of a foliation. It is easy to see that this example generalises to
manifolds M with odd intersection form and b±2 (M) ≥ 2, one simply splits the intersection
form

Q ∼= 2〈1〉 ⊕ 2〈−1〉 ⊕Q

and augments the solutions for (K+, K−) given above by putting odd integers in the remain-
ing entries. In this more general case we may even assume that M is simply connected by
setting

M = kCP 2#lCP 2
,

where k and l are both odd and larger than 3.

Another question posed by Mitsumatsu and Vogt is whether the Euler class of a distri-
bution determines whether or not every leaf of a foliation with this Euler class will be genus
minimising or not. This is false as the following example shows, providing a negative answer
to Question 8.7 of [MV].

Example 2.3.5 (The Euler class does not determine whether the genera of leaves are minimal).
We let M = T 2×Σg and endow it with a product symplectic structure so that the two factors
are symplectic submanifolds. Then the homology class σ = [T 2× pt] + [pt×Σg] = T +S can
be represented by a symplectic surface Σ of genus g + 1 that one obtains by resolving the
intersection point of (T 2×pt)

⋃
(pt×Σg). Moreover, by the symplectic Thom conjecture this

surface is genus minimising (cf. Theorem 7.2.1) and the Milnor-Wood equality is satisfied if
g ≥ 3.

The intersection form on M is of the form:

Q ∼= (2g + 1)H

and we may take a hyperbolic basis {ei} for H2(M) with e1 = T , e2 = S. Since χ(M) =
σ(M) = 0 we have the following solutions of the characteristic equations above

K+ = (−2 + 2g, 0,−2 + 2g′, 0, ..., 0)
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K− = (2 + 2g, 0, 2 + 2g′, 0, ..., 0),

and the corresponding Euler classes are

e1 = (2g, 0, 2g′, 0, .., 0)

e2 = (2, 0, 2, 0, ..., 0).

Thus if we let Σ′ be a surface representing the class σ′ = (0, 0, 1, 1, 0, .., 0) of genus g′ + 1
and we take g′ large, then the Milnor-Wood inequality and equations (2.5) hold for both Σ
and Σ′. However, Σ is genus minimising and Σ′ is not. Hence the Euler class of a foliation
does not determine whether closed leaves of a foliation with the given Euler class is genus
minimising or not.

It is natural to ask whether any embedded surface can be made a leaf of a foliation. This
is not true in general, as was shown by Mitsumatsu and Vogt (cf. [MV], Cor. 7.2). For if L
is a leaf of a foliation on M = S2 × Σg, then there is a constant Bg such that

|[L]2| < Bg.

However, in certain cases there are no such restrictions. In particular, the argument given
in Example 2.3.4 is in fact quite general and we record this in the following proposition.

Proposition 2.3.6. Let M be a manifold with b2
±(M) > 1 and let Σ be an embedded surface

of genus greater than 1 such that [Σ]2 = 1. Then Σ can be made a leaf of a foliation.
If in addition M is assumed to be symplectic, then any embedded surface with [Σ]2 = 1

can be made a leaf of a foliation.

Proof. Set v1 = [Σ]. Then, since [Σ]2 = 1, we have an orthogonal splitting

H2(M) ∼= 〈v1〉 ⊕ 〈v1〉⊥.

One then argues as in Example 2.3.4 to find appropriate solutions of equations (2.5), since
the Milnor-Wood inequality is satisfied by assumption.

If M is symplectic with canonical class c1(K) and b2
±(M) > 1, then the adjunction

inequality (cf. [GS]) implies that

[Σ]2 + |c1(K).[Σ]| ≤ 2g(Σ)− 2.

Hence g(Σ) is at least 2 and the Milnor-Wood inequality automatically holds. Thus the
previous argument applies and Σ can be made a leaf of a foliation.

2.4 Special classes of foliations and their closed leaves

We have seen that the condition of being a leaf of a 2-dimensional foliation on a 4-manifold
is in general not very restrictive. In view of this we will focus on more special varieties
of foliations. We shall start with the case of 1-dimensional complex foliations on complex
surfaces, in which case a closed leaf must in fact have self-intersection zero.
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Proposition 2.4.1. If Σ is a leaf of a 1-dimensional complex foliation F on a complex
surface, then [Σ]2 = 0.

Proof. We let TM denote the holomorphic tangent bundle of M and T F ⊂ TM the tangent
bundle to F . If Σ is a leaf of a foliation then a Bott connection (cf. Definition 6.1.2) will define
a flat C∗-linear connection on the normal bundle ν(Σ) of the leaf. Hence by Proposition 2.3.1
the bundle ν(Σ) must be trivial and [Σ]2 = 0.

In this way we see that there are strong local restrictions on closed leaves of complex
foliations. We shall next consider symplectic foliations and their closed leaves. Here a
symplectic foliation on a symplectic manifold (M,ω) is a foliation such that ω is positive
on all leaves. In contrast to the case of complex foliations, there are no longer any local
restrictions on the closed leaves of symplectic foliations as soon as the Milnor-Wood inequality
is satisfied.

Proposition 2.4.2. If Σ is a symplectic surface in a symplectic manifold (M,ω), then a
neighbourhood of Σ admits a symplectic foliation that has Σ as a leaf if and only if the
Milnor-Wood inequality holds.

Proof. By Theorem 2.3.2 the Milnor-Wood inequality holds precisely when a bundle over Σ
is flat as an SL(2,R)-bundle. Such a flat structure makes the surface a leaf of a foliation
of a regular neighbourhood ν(Σ) of Σ. Since the symplectic form is positive on the closed
leaf Σ, it is also positive on all leaves in a small neighbourhood and, hence, the foliation is
automatically symplectic on a sufficiently small neighbourhood of Σ.

Remark 2.4.3. We remark that the leaves of the foliation given in Proposition 2.4.2 can never
be complex if the bundle under consideration has non-trivial Euler class, as this would then
contradict Proposition 2.4.1. In particular, if J is an almost complex structure with respect
to which the leaves are almost complex, then we know that J cannot be integrable.

The condition of being symplectic however does put restrictions on the possible Euler
classes of the underlying distribution associated to a symplectic foliation. These restrictions
are then no longer of a local but of a global nature.

Proposition 2.4.4. Let (M,ω) be a symplectic 4-manifold, ξ a distribution of 2-planes that
is homotopic to a symplectic distribution and (K+, K−) the pair of characteristic elements
associated to ξ. Then K+ = ±c1(K), where K denotes the canonical bundle of an ω-
compatible almost complex structure.

Proof. We first take an ω-compatible almost complex structure and let gJ = ω( · , J ·) be the
associated metric on M . We have seen that an oriented 2-dimensional distribution ξ on a
4-manifold is equivalent to a pair of self-dual and anti-self-dual forms (α+, α−) of norm 1
so that ξ is the kernel of α = α+ − α−. The distribution ξ is symplectic with respect to
ω if and only if α ∧ ω 6= 0 at each point. By taking −ω if necessary we may assume that
α ∧ ω > 0. However, with respect to the metric gJ we have ω ∈ Ω2

+(M) and self-dual forms
pair trivially with anti-self-dual forms, so in fact α ∧ ω = α+ ∧ ω and the condition of being
symplectic only depends on the self-dual part of α.
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Moreover, if α+ ∧ ω > 0, then the line of self-dual 2-forms αt = (1 − t)α+ + tω satisfies
αt ∧ω > 0 at all times 0 ≤ t ≤ 1. Hence after a homotopy we may assume that the self-dual
part of the form defining a symplectic distribution is in fact ω. This means that the splitting
of the self-dual bundle that we obtain from such a distribution is given by

Λ2
+(M) = Rω ⊕ L.

We consider the image of L in the complexification

Λ2
+(M)⊗ C ∼= Cω ⊕K ⊕ K̄,

where K denotes the canonical bundle of the chosen ω-compatible almost complex structure
(cf. Lemma 2.2.3). Then, since the image of L is contained in K ⊕ K̄ and consists of real
forms, the projection to the canonical bundle K defines an isomorphism of real oriented
vector bundles after possibly changing the orientation on L. Thus we conclude that

K+ = e(L) = ±e(K) = ±c1(K)

in the pair of characteristic elements associated to ξ.

As an immediate corollary we see that there is an abundance of distributions that cannot
be homotoped to symplectic distributions on manifolds with large enough b±2 .

Corollary 2.4.5. Let M be a symplectic manifold that admits a distribution and assume
that b±2 (M) ≥ 2. Then there are infinitely many homotopy classes of 2-plane fields that are
not homotopic to symplectic distributions with respect to any symplectic form.

Proof. We let (K+, K−) denote the pair of characteristic elements associated to a given
distribution. Proposition 2.4.6 implies that a necessary condition for a distribution to be
homotopic to a symplectic distribution is that K+ is (up to sign) the canonical class of some
symplectic form on M . If b+

2 (M) ≥ 2, then by the results of Taubes on the Seiberg-Witten
invariants of symplectic manifolds (cf. [Tau]), the canonical class associated to a symplectic
form on M is a Seiberg-Witten basic class. Moreover, if b+

2 (M) ≥ 2, then the set of Seiberg-
Witten basic classes is finite (cf. [GS]). By Remark 2.2.10 above, the assumption that
b±2 (M) ≥ 2 means that there are infinitely many pairs (Ki, L) that can occur as solutions of
the equations in (2.2) above and we may assume that no Ki occurs as the canonical class of
any symplectic form on M . Thus the distributions associated to the pairs (Ki, L) cannot be
homotoped to become symplectic with respect to any symplectic form.

We shall now use Proposition 2.4.4 together with some symplectic geometry to derive
homological restrictions on the possible closed leaves of symplectic foliations that are much
stronger than those for arbitrary smooth foliations.

Proposition 2.4.6. Let Σ be a leaf of a symplectic foliation F and (K+, K−) the pair of
characteristic elements associated to F . Then K+ = ±c1(K) is the canonical class of an
ω-compatible almost complex structure and

|[Σ]2| ≤ c1(K).[Σ]. (2.6)
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Proof. That K+ = ±c1(K) follows from Proposition 2.4.4. By the adjunction formula for
symplectic surfaces

2g(Σ)− 2 = [Σ]2 + c1(K).[Σ].

Combining this with the Milnor-Wood inequality implies that

2|[Σ]2| ≤ [Σ]2 + c1(K).[Σ].

One then obtains the above inequality by considering the two cases [Σ]2 ≥ 0 and [Σ]2 < 0.

As a corollary we see that if the canonical class of a symplectic manifold is assumed to
be trivial, then any compact leaf of a symplectic foliation must be a torus. Examples of
manifolds with vanishing canonical class are given by S1-bundles over 3-manifolds Y , where
Y has the structure of a T 2-bundle over S1. For example M = T 4 has this property.

Corollary 2.4.7. Let (M,ω) be a symplectic manifold with trivial canonical class and let L
be a leaf of a symplectic foliation on M . Then χ(L) = [L]2 = 0.

Proof. By assumption c1(K) = 0. Thus Proposition 2.4.6 implies that |[L]2| ≤ c1(K).[L] = 0
and [L]2 = 0. Finally by the adjunction formula for symplectic surfaces we compute

−χ(L) = 2g(L)− 2 = [L]2 + c1(K).L = 0.

Remark 2.4.8. Inequality (2.6) also has the interesting consequence that if a class of non-zero
self-intersection can be represented by a symplectic surface that also satisfies the Milnor-
Wood inequality, then it cannot be very divisible. This is because the left hand side of

|[dΣ]2| ≤ c1(K).[dΣ],

grows quadratically whereas the right-hand side only grows linearly in d. Now Donaldson
proved that a sufficiently large multiple of an integral symplectic form can be represented
by a symplectic surface (cf. [Don]). This means that one has a natural source of symplectic
surfaces, however the classes in H2(M) that are represented by such surfaces will be highly
divisible and will in general not satisfy the Milnor-Wood inequality.

2.5 Symplectic pairs

A further interesting special case of symplectic foliations on 4-manifolds are symplectic pairs
(cf. [BK], [KM1]). We shall first give a general definition and then specialise to the case of
4-manifolds.

Definition 2.5.1 (Symplectic pairs). A symplectic pair consists of a pair of closed 2-forms
ω1, ω2 of constant and complementary ranks 2m, 2k respectively, such the form ω2 is sym-
plectic on the kernel foliation F1 = Ker(ωm1 ) and ω1 is symplectic on the kernel foliation
F2 = Ker(ωk2).
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In the case of a 4-manifold a symplectic pair may be thought of as a pair of closed 2-forms
ω1, ω2 satisfying the following conditions:

ω2
1 = 0 = ω2

2 and ω1 ∧ ω2 6= 0. (2.7)

The most natural examples of such pairs occur as the horizontal and vertical foliations of flat
surface bundles with symplectic holonomy. Other examples occur as S1-bundles over fibred
3-manifolds, as the natural symplectic form one constructs on such bundles comes from a
symplectic pair (cf. [FGM]). Manifolds that admit symplectic pairs are very special as in
particular the forms

ω = ω1 + ω2 , ω̄ = ω1 − ω2

are both symplectic, but define opposite orientations of M . So if b±2 (M) ≥ 2, then by
the results of Taubes (cf. [Tau]) M has non-vanishing Seiberg-Witten invariants in both
orientations. In particular, M contains no embedded spheres that represent non-torsion
elements in H2(M). We saw in Proposition 2.4.4 that the possible homotopy classes of
symplectic distributions are quite restricted. For a symplectic pair the restrictions on the
possible Euler classes are even stronger.

Proposition 2.5.2. Let M admit a symplectic pair and assume b±2 (M) ≥ 2. Then the Euler
classes of the kernel foliations F1,F2 satisfy:

2e(Fi) = Ki
1 +Ki

2,

where Ki
j are Seiberg-Witten basic classes of M in one orientation or the other. In particular,

there are only finitely many possible Euler classes.

Proof. We choose an ω-compatible almost complex structure that preserves the splitting
given by TM = F1⊕F2 and take the associated metric. Then with respect to this metric we
see that ω ∈ Ω2

+(M) and ω̄ ∈ Ω2
−(M). The distributions Fi are symplectic for both ω and

ω̄ and by Proposition 2.4.4 we conclude that K+ = ±c1(K) and K̄+ = ±c1(K̄), where the
bars denote the canonical bundle of an almost complex structure compatible with ω̄. Now
since Λ2

+(M̄) = Λ2
−(M), it follows that K̄+ = K−. If b+

2 (M) ≥ 2, then the first Chern class
of the canonical bundle of any symplectic form is a Seiberg-Witten basic class and the set
of Seiberg-Witten basic classes is finite (cf. [GS], [Tau]). By assumption b+

2 (M) ≥ 2 in both
orientations and, hence, the possibilities for K+ and K− are finite, which proves the second
part of the proposition.

In certain special cases where the Seiberg-Witten invariants are known, one can compute
solutions to equations (2.5) above, in order to understand what classes can be realised as
leaves of a foliation coming from a symplectic pair. We illustrate this by considering the
case of a product of Riemann surfaces in the following example.

Example 2.5.3. Let M = Σh×Σg be a product of Riemann surfaces of genus g, h ≥ 2. Then
since M and M̄ are minimal surfaces of general type and b±2 (M) ≥ 2 the only SW-basic
classes on M, M̄ are as follows (cf. [GS], p. 91):
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K+ = ±c1(K) = ±[(2g − 2)[Σh] + (2h− 2)[Σg]]

K̄+ = ±c1(K̄) = ±[(2g − 2)[Σh]− (2h− 2)[Σg]].

Thus the only possibilities for the Euler classes of a symplectic pair are those corresponding
to the natural symplectic pair given by the product structure:

e1 = ±(2h− 2)[Σg], e2 = ±(2g − 2)[Σh].

This puts restrictions on the possible closed leaves of such a symplectic pair. For example one
sees that a class La,b = a[Σh] + b[Σg] with a, b 6= 0 can satisfy the second equation (2.5) with
±e1,±e2 as above if and only if ±b(2g − 2) = 2ab and this holds if and only if a = ±(g − 1)
by our assumption that b 6= 0. One can further construct a symplectic representative Σa,b

for La,b by resolving the double points of a union of a disjoint copies of Σh and b disjoint
copies of Σg. We calculate

χ(Σa,b) = |a|(2− 2h) + |b|(2− 2g)− 2|ab|.

Plugging this into the first equation (2.5) we obtain

±|a|(2h− 2) = χ(Σa,b) = |a|(2− 2h) + |b|(2− 2g)− 2|ab|. (2.8)

Since |b|(2g− 2) = 2|ab|, we conclude that |b|(2− 2g) = 0, which contradicts the assumption
that both b and 2−2g are non-zero. Since everything is symmetric in h, g and a, b, the same
conclusion holds if we swap the roles of e1 and e2 above. It follows that the surfaces Σa,b can
never be made leaves of foliations that are homotopic to the kernel foliation of a symplectic
pair. Moreover, the surfaces are symplectic and, hence, genus minimising in their homology
class by the symplectic Thom conjecture (cf. Theorem 7.2.1). This means that equation
(2.8) cannot be solved for any representatives of the class La,b so that no representatives of
these classes can be made a leaf of the kernel foliation of a symplectic pair.

2.5.1 Topological constructions of symplectic pairs

There a several topological constructions that one can perform in the symplectic category.
The most useful of these is the Gompf sum, which also works for symplectic pairs in certain
cases. We first recall the definition of the Gompf sum of two 4-manifolds along a symplectic
surface.

Definition 2.5.4 (Gompf sum). Let (M1, ω1), (M2, ω2) be symplectic 4-manifolds and let
Σ1,Σ2 be embedded symplectic surfaces of the same genus in M1,M2 respectively. As-
sume that [Σ1]2 = −[Σ2]2. Then after choosing an identification of tubular neighbourhoods
ν(Σ1), ν(Σ2) of Σ1,Σ2 respectively, we can form the normal connected sum:

M1#Σ1=Σ2M2 =
(
M1 \ ν(Σ1)

) ⋃
∂ν(Σ1)=∂ν(Σ2)

(
M2 \ ν(Σ2)

)
.

This manifold is symplectic and is called the Gompf sum of M1 and M2.
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In order to obtain Gompf sums for symplectic pairs we will only allow sums along compact
leaves of the kernel foliations that have neighbourhoods of a very simple form.

Definition 2.5.5 (Projectable leaves). Let (M1, ω1, ω2) be a 4-manifold that carries a sym-
plectic pair. Let Σ be a closed leaf of one of the kernel foliations. We say that Σ is projectable
if there is an open neighbourhood U of Σ that is diffeomorphic to Σ ×D2 such that under
this identification

ω1 = π∗1ωΣ and ω2 = π∗2ωD2 ,

where πi are the projections onto the factors and ωΣ, ωD2 are area forms on Σ and D2

respectively.

It was noted by Bande and Kotschick that the Gompf sum is compatible with symplectic
pairs when one glues along projectable leaves.

Proposition 2.5.6 (Gompf sums for symplectic pairs, [BK]). Let (M1, ω1, ω2), (M2, η1, η2)
be 4-manifolds that admit symplectic pairs and assume that the kernel foliations F1 of ω1,
F2 of η1 have projectable, closed leaves Σ1,Σ2 of the same genus. Then the Gompf sum
M1#Σ1=Σ2M2 admits a symplectic pair.

Proof. We choose projectable neighbourhoods of U1 and U2 of Σ1,Σ2 respectively and iden-
tifications of Ui with Σ × D2. After rescaling ωi and ηi we may assume by Moser stability
that

ω1 = η1 = π∗1ωΣ and η2 = ω2 = π∗2dx ∧ dy.
Taking the normal connected sum coming from these identifications, we see that the forms
ωi and ηi glue together to give a symplectic pair on the Gompf sum M1#Σ1=Σ2M2.

As an application, we will use Proposition 2.5.6 in order to show that the examples of
Akhmedov given in [Akh] admit symplectic pairs. These examples are interesting as they
have the cohomology of S2×S2 and are not diffeomorphic to surface bundles. Such examples
were first found by Bande and Kotschick in [BK], where for example the Kuga surface is
shown to admit a symplectic pair, but as it is aspherical it cannot be diffeomorphic to a
surface bundle.

Example 2.5.7 (Akhmedov’s examples admit symplectic pairs). Let T 2 → M → S1 be a
torus bundle with orientation preserving monodromy φ. After choosing a symplectic form
ω on T 2 we may assume that φ preserves ω. Furthermore, we may assume that φ fixes a
neighbourhood of 0 ∈ T 2 = R2/Z2.

The product E = M × S1 has the structure of a torus bundle:

T 2 → E = M × S1 → S1 × S1.

We then define a symplectic pair on E by letting ω1 be the pullback of the vertical symplectic
form on M and by setting ω2 = p∗1dθ1∧p∗2dθ2, where pi are the projections to the two factors
of the base torus and dθi are the angular forms on the circle factors. Moreover, the leaf
S = (0× S1)× S1, which is also a section, is projectable as is a T 2-fibre F of the bundle E.

We then perform the Gompf sum with two copies of E along S and F to obtain a manifold
Y that admits a symplectic pair. We identify the tori via the description as a product of
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circles. We let Σ = F#S be the surface obtained as the connect sum of the other section and
a fibre and note that Σ is a projectable leaf of the symplectic pair on Y . We again perform
the Gompf sum by gluing two copies of Y along Σ. Let ai, bi be standard generators of the
fundamental group of Σ. We identify the two copies of Σ via a diffeomorphism ψ that sends
ai, bi to ai+1, bi+1 respectively, where the indices are to be interpreted mod 2.

According to [Akh] the resulting manifold Z is spin and has the cohomology of S2 ×
S2. The second cohomology H2(Z) has a basis P,Q represented by embedded, symplectic
surfaces of genus 2. Thus Z 6= S2×S2, since H2(S2×S2) has a basis of symplectic 2-spheres
P ′, Q′ and any diffeomorphism must take {P,Q} to {±P ′,±Q′}, which would contradict the
genus minimality of symplectic surfaces (cf. [OS]).

More generally, one may start with a 3-manifold that is fibred with fibre of genus g and
one whose fibre is the 2-torus. By performing a similar construction to that described above
one obtains examples that also admit symplectic pairs. These examples have the cohomology
of a connect sum #2g−1S

2 × S2 and, hence, have vanishing first homology (cf. [Akh]). So
again these examples cannot be diffeomorphic to surface bundles if one assumes g ≥ 2.

Another basic construction for symplectic manifolds is that of branched coverings.

Definition 2.5.8 (Branched coverings). A d-fold branched covering is a smooth map X̃
π→ X

with critical set Σ ⊂ X called the branch locus, such that the restriction X̃ \π−1(Σ)→ X \Σ
is a d-fold covering and for each x ∈ π−1(Σ) there are local charts U, V → R2

+ × C about
x, π(x) on which π is given by (p, z) 7→ (p, zdp), for some positive integer dp called the
branching index of π at p. A branched covering is called cyclic if it is a cyclic covering away
from the branching locus.

Remark 2.5.9. Away from the branching locus a branched covering is determined by a finite
index subgroup of π1(X \Σ). If ν is a regular neighbourhood of Σ and ν̃ its preimage in X̃,
then an S1-bundle structure on ∂ν induces one on ∂ν̃ and there is a unique way to fill this
in by a disc bundle.

We further note that our definition allows for the case of manifolds with boundary, in
which case we consider properly embedded branching loci.

In the case of cyclic branched coverings we have the following existence result (see [GS],
p. 239 ff).

Theorem 2.5.10. Let Σ ⊂ X be an embedded surface such that [Σ] = d[Σ′] in H2(X,Z).
Then there is a cyclic d-fold branched cover X̃

π→ X with branching locus Σ.

The branched covering construction can be performed in a symplectic manner if the
branching locus is assumed to be symplectic. For symplectic pairs the same holds if one
takes branching loci that consist of projectable leaves. The following proposition is a slight
variation of Proposition 10 in [Aur].

Proposition 2.5.11 (Branched coverings for symplectic pairs). Let (X,ω) be a symplectic
manifold and let Σ ⊂ X be an embedded symplectic surface. If X̃

π→ X is a covering branched
over Σ, then X̃ carries a symplectic form ω̃ which agrees with π∗ω outside a neighbourhood
of Σ.
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Furthermore, if (M1, ω1, ω2) is a 4-manifold with a symplectic pair and Σ is a union of
projectable leaves, then a branched cover M̃ → M with branching locus Σ also admits a
symplectic pair.

Proof. We will first define an exact 2-form τ on X̃ so that π∗ω∧ τ |Σ̃ > 0. To do this we take
a point x ∈ Σ̃ and choose coordinates so that π has the form

(z1, z2) 7→ (z1, z
d
2)

on some neighbourhood of x. After choosing some metric on X̃ we let ρx > 0 be such that
the polydisc B(2ρx) × B(2ρx) is contained in the coordinate patch chosen above. We let χ
be a bump function with support in B(2ρx) that is constant 1 on B(ρx). We next define

τx = d(χ(z1)χ(z2)x2dy2)

and extend by 0 to the rest of X̃. We let K = Ker π ⊂ TX̃|Σ̃ be oriented so that it
intersects T Σ̃ positively, then by definition τx is non-negative on K and is strictly positive
on B(ρx)×B(ρx). By compactness there are finitely many xi so that the form

τ =
∑

τxi

is strictly positive on K along Σ̃, that is π∗ω∧τ > 0 on Σ̃. We set ω̃ = π∗ω+ετ and compute

ω̃2 = π∗ω ∧ π∗ω + ε(π∗ω ∧ τ + ετ ∧ τ).

For small ρ we have that π∗ω ∧ τ > 0 on a tubular neighbourhood ν2ρ of Σ̃. Thus for all
sufficiently small ε the second term above is positive on ν2ρ. Moreover π∗ω ∧ π∗ω is non-
negative and is strictly positive away from the branching locus, thus by choosing ε small
enough we can ensure that ω̃ is non-degenerate on the rest of X̃.

If M has a symplectic pair and Σ is projectable, then Σ has trivial normal bundle. Thus
we may identify neighbourhoods of Σ and Σ̃ with Σ×D2 in such a way that is compatible with
the projections defining the symplectic pair on M and so that π has the form (p, z)→ (p, zd),
where z is a complex coordinate on the disc. We let π2 denote the second projection of this
product neighbourhood and set

ω̃1 = π∗ω1

ω̃2 = π∗ω2 + π∗2τ,

where τ is any non-negative form that is non-zero at the origin and has compact support in
D2. It is easy to check that this gives the desired symplectic pair on M̃ .

2.5.2 Geometry of leaves of symplectic pairs

In general the kernel foliations of a symplectic pair will be too complicated in a neighbour-
hood of a leaf to be able to define Gompf sums or branched coverings for arbitrary leaves of
symplectic pairs. However, if we perform Gompf sums along leaves of the kernel foliations
of a symplectic pair, or take branched covers then the manifolds we obtain will still admit
symplectic forms in both orientations, which is in itself restrictive as we have seen.
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Proposition 2.5.12. Let (M1, ω1, ω2), (M2, η1, η2) be 4-manifolds that admit symplectic pairs
and let Σ1

∼= Σ2 be leaves of the kernel foliations F1 of ω1, F2 of η2 respectively such that
[Σ1]2 = −[Σ2]2. Then the Gompf sum

X = M1#Σ1=Σ2M2

admits symplectic structures in both orientations. Similarly, any branched covering M̃
π→M1

branched over Σ1 also admits symplectic structures compatible with both orientations.

Proof. We form the Gompf sum first with respect to the symplectic forms

ω = ω1 + ω2

η = η1 + η2

to get a symplectic form on
X = M1#Σ1=Σ2M2.

We next take the sum with respect to the symplectic forms

ω̄ = −ω1 + ω2

η̄ = η1 − η2

to get a symplectic form on
X̄ = M̄1#Σ1=Σ2M̄2,

where the bar denotes the manifold X taken with the opposite orientation. Similarly, if M̃
π→

M1, is a branched covering branched along a leaf Σ1, then Proposition 2.5.11 applied to the
symplectic forms ω and ω̄ gives symplectic forms on M̃ that define opposite orientations.

As an application of Proposition 2.5.12 we will show that there are geometric restrictions
on the local structure of leaves of symplectic pairs. The examples we consider were first
utilised by Gompf in the context of constructing symplectically aspherical manifolds (cf.
[Gom]).

We shall need to recall the definition of Milnor fibres and review their basic properties.
Let p, q, r ∈ N be positive integers and ε ∈ C \ 0. Then the Milnor fibre M(p, q, r) is defined
as

M(p, q, r) = {(x, y, z) ∈ C3 | xp + yq + zr = ε}.

We let Mc(p, q, r) denote the intersection of M(p, q, r) with the unit ball in C3 and note that
the interior of this manifold is diffeomorphic to M(p, q, r).
We now list some basic properties of these Milnor fibres (see [Gom] and [GS], pp. 231-33):

1. If |ε| is sufficiently small, then Mc(p, q, r) is the unique cyclic p-fold branched covering
of B4 branched over

Σq,r = {(x, y) ∈ C2 | xq + yr = ε} ∩B4.

2. Mc(2, 2, d) for d ≥ 2 is diffeomorphic to a plumbing of d− 1 spheres of square −2.
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3. Mc(p, q, r) ⊂Mc(p
′, q′, r′) if p ≤ p′, q ≤ q′, r ≤ r′.

4. Mc(p, q, r) = Mc(σ(p), σ(q), σ(r)) for any permutation σ ∈ S3.

With these preliminaries we will see that a closed leaf of a symplectic pair cannot be locally
isotopic to a piece of the curves Σq,r defined above.

Proposition 2.5.13. Let (M,ω1, ω2) be a manifold with a symplectic pair and let Σ be a leaf
of one of the kernel foliations. If [Σ] = d[Σ′] is a divisible class in H2(M) for d > 2, then
the intersection Σc = Σ∩B4 with any embedded ball is not isotopic relative ∂B4 to the curve
Σq,r. In the case d = 2 the same conclusion holds except possibly in the case q = r = 2.

Proof. By Theorem 2.5.10 there exists a d-fold branched covering M̃ branched over Σ. Then
by Proposition 2.5.12 we know that M̃ is symplectic in both orientations, and hence cannot
contain any (−2)-spheres if b−2 (M̃) ≥ 2. However, if the piece Σc is isotopic to Σq,r then by
fact (1) above we know that

Mc(d, q, r) ⊂ M̃.

Furthermore, combining facts (2), (3) and (4) we deduce that

Mc(d, 2, 2) ⊂Mc(d, q, r) ⊂ M̃.

Since Mc(d, 2, 2) is a plumbing of d−1 spheres of self-intersection −2, we have a contradiction
if d > 2. If d = 2 then we have

Mc(2, q, r) ⊂ M̃

and the same argument holds unless q = r = 2.

Remark 2.5.14. We note that the condition that the leaf Σ represent a divisible class in
Proposition 2.5.12 is not always necessary. In particular, if M is a surface bundle, whose
base and fibre are of genus at least two, then after taking a suitable covering we may assume
that the pull-back of Σ is divisible by any given d (cf. [Mor1], Prop. 4.3). Since symplectic
pairs lift under covering maps and the relevant property of Σ is local, Proposition 2.5.12
holds for arbitrary leaves of symplectic pairs on surface bundles.

As a consequence of Proposition 2.5.13 and the previous remark, we note that any sym-
plectic surface that is obtained by resolving at least one double point in a surface bundle,
whose base and fibre are of genus at least two, can never be the leaf of a symplectic pair. A
similar conclusion was obtained in Example 2.5.3 for the product of two Riemann surfaces,
where the arguments were homological rather than geometric.





Chapter 3

Surface Bundles and their
characteristic classes

Morita has conjectured that the MMM-classes are bounded in the sense of Gromov. As
noted in [Mor4], a result of Gromov implies that the odd MMM-classes are bounded and
so it remains to show that the same holds for the even classes. The starting point for the
discussion of boundedness of the MMM-classes is the fact that the vertical Euler class is
bounded. We shall give a new proof of this fact using the adjunction inequality coming
from Seiberg-Witten theory. The vertical Euler class gives a characteristic class evk of surface
bundles with k-multisections, which is then also bounded. Motivated by a question posed by
Mitsumatsu and Vogt in [MV], we show that the norms of evk are not bounded independently
of k.

As evidence for his conjecture Morita showed that the MMM-classes vanish on amenable
groups. By a result of Ivanov amenable subgroups of the mapping class group are virtually
abelian and using this observation we give an elementary proof that the MMM-classes vanish
on amenable groups, which is independent of the proof in [Mor4]. As further evidence for
the boundedness conjecture we then use Morita’s original argument to show that the MMM-
classes are hyperbolic. The hyperbolicity condition is strictly weaker than boundedness, but
does imply vanishing on amenable subgroups.

3.1 Surface bundles and holonomy representations

We begin by recalling some generalities about surface bundles and their sections, which for
the most part can be found in [Mor1]. Let Γh = Diff+(Σh)/Diff0(Σh) denote the mapping
class group of an oriented Riemann surface Σh of genus h. By the classical result of Earle
and Eells the identity component Diff0(Σh) is contractible in the C∞-topology if h ≥ 2 (cf.
[EE]). Thus the classifying space BDiff+(Σh) is homotopy equivalent to BΓh, which is in
turn the Eilenberg-MacLane space K(Γh, 1).

In general, any bundle is determined up to bundle isomorphism by the homotopy class
of its classifying map and since BDiff+(Σh) is aspherical, a surface bundle Σh → E → B is

37
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determined up to bundle isomorphism by the conjugacy class of its holonomy representation:

ρ : π1(B)→ Γh.

The conjugation ambiguity is a result of the choice of base points. Conversely, any homo-
morphism ρ : π1(B) → Γh induces a map B → K(Γh, 1) = BΓh and thus defines a bundle
that has holonomy ρ.

A section of a bundle E is equivalent to a lift of the holonomy map of the bundle to Γh,1,
which denotes the mapping class group of Σh with one marked point. That is E admits a
section if and only if there is a lift ρ̄ so that the following diagram commutes

Γh,1

��
π1(B)

ρ //

ρ̄
;;w

w
w

w
Γh.

Similarly, a k-multisection is the same as a lift of the holonomy map to the mapping class
group with k marked points that we denote by Γh,k. Here we require only that the set of
k marked points be fixed as a set, rather than that each marked point itself be fixed by
elements of Γh,k.

From any bundle with a k-multisection one obtains in a natural way one with a section.
For if S ↪→ E is a multisection and if we denote by p the composition of this inclusion with
the projection to the base B, then the pullback bundle p∗E has a natural section S̃ induced
by S.

As in the case of surface bundles the classifying space of surface bundles with a section is
the Eilenberg-MacLane space BΓh,1 = K(Γh,1, 1), if h ≥ 2. Furthermore, there is a natural
exact sequence given by forgetting the marked point

1→ π1(Σh)→ Γh,1 → Γh → 1

and one may identify BΓh,1 with the the total space EΓh of the universal bundle over BΓh.
Similarly, the classifying space for bundles with a k-multisection is the Eilenberg-MacLane
space BΓh,k = K(Γh,k, 1) (cf. [Mor1]).

The bundle of vectors that are tangent to the fibres of the projection EΓh → BΓh is an
oriented rank-2 vector bundle. The Euler class of this bundle defines a cohomology class
e ∈ H2(EΓh) = H2(BΓh,1), which we will call the vertical Euler class. Alternately, one can
define e as the Euler class associated to the central extension

1→ Z→ Γ1
h → Γh,1 → 1,

where Γ1
h = Diff c(Σ1

h)/Diff
c
0(Σ1

h) denotes the mapping class group of a once punctured,
genus h surface. Here the right most map is given by collapsing the boundary to a point and
the kernel is generated by a Dehn twist along a curve parallel to the boundary. Under the
identification of EΓh with the classifying space BΓh,1 of bundles with a section S, the class
e corresponds to the characteristic class given by restricting the vertical Euler class to S.
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Furthermore, if the base of the bundle is a surface, this is just the self-intersection number
of the section.

We shall now give examples of surface bundles over surfaces with sections of non-zero
self-intersection, showing in particular that the class e ∈ H2(EΓh) = H2(Γh,1) is non-trivial.
This can be done in several ways and we choose to show that there are sections of non-zero
self-intersection in bundles that are a priori trivial. The following is a generalisation of
Example 8.13 in [MV].

Example 3.1.1 (Multisections in E = Σh × Σg). Let g, h ≥ 2 and let Σ = Σ2. We then

choose a surjective homomorphism π1(Σ)→ Zg−1×Zh−1. Denote by Σ̃ the normal covering
space associated to this homomorphism. Let G1 = Zg−1 × 0 and G2 = 0× Zh−1 be the two

factors of G = Zg−1 × Zh−1. By construction G1 and G2 act freely on Σ̃ and we thus obtain

coverings Σ̃
πi→ Σ̃/Gi. We define a map

Σ̃
π1×π2→ (Σ̃/G1)× (Σ̃/G2) = Σh × Σg.

First of all we claim that the map p = π1× π2 is an embedding. For the preimage of a point
p(x) = (π1(x), π2(x)) is the intersection of the orbits

G1.x ∩G2.x = (G1 ∩G2).x = e.x = x.

Moreover, the map p is transverse to the fibres Σh, so that the image of p defines a multi-
section S of E. Next if TF denotes the vertical bundle of E, then the self-intersection of S
is given by

|[S]2| = |e(TF )([S])| = |(2− 2h)[Σg].[S]| = |(2− 2h).(g − 1)| 6= 0.

By taking pullbacks we see that for every h there exist bundles with sections [S] so that
[S]2 6= 0, so in particular we deduce that the characteristic class e is non-trivial for all h ≥ 2.

The sections in Example 3.1.1 have the property that |[S]2| = |χ(S)|. In fact for fixed
genus this self-intersection number is maximal as the following proposition shows.

Proposition 3.1.2. Let S be a section of a surface bundle Σh → E → Σg with h ≥ 2, then
|[S]2| ≤ max {0, 2g − 2}.

Proof. We first consider the case g ≥ 2. Since the genus of the fibre is greater than 1, we may
apply the Thurston construction to obtain a symplectic form on E with respect to which S
is symplectic and [S]2 ≥ 0. Because the genus of fibre and base are positive, the bundle E
is aspherical and it follows from Proposition 1 of [Kot1] that

|σ(E)| ≤ χ(E).

This gives a lower bound for b+
2 (E) and b−2 (E), since

2min{b+
2 (E), b−2 (E)} = b2(E)− |σ(E)|

and
b2(E)− |σ(E)| = χ(E)− 2 + 2b1(E)− |σ(E)| ≥ 2b1(E)− 2 ≥ 6.
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Thus in either orientation b+
2 (E) ≥ 3 and by applying the adjunction inequality (cf. [GS])

we conclude that
|[S]2| ≤ |[S]2|+ |K.[S]| ≤ 2g(S)− 2.

If g < 2 then as both S2 and T 2 have self maps of arbitrary degree we may assume after
taking coverings that |[S]2| is large, say |[S]2| > 3 or that |[S]2| = 0 in which case the
inequality is trivially true. In the former case we take the pullback bundle under a degree
1 collapsing map from a genus 2 surface Σ2 to Σg. The resulting bundle has a section S ′ of
self-intersection

|[S ′]2| > 3 > 2g(Σ2)− 2,

which yields a contradiction.

We contrast the bound given by Proposition 3.1.2 with that given by the Milnor-Wood
inequality which provides a better bound for the self-intersection number. In particular, we
see that the sections we obtained in Example 3.1.1 above, cannot be realised as a leaf of a
foliation as they do not satisfy the Milnor-Wood inequality.

3.1.1 Boundedness of the vertical Euler class

As a consequence of Proposition 3.1.2 we will prove that the class e ∈ H2(Γh,1) is bounded
in the sense of Gromov (cf. [Gro]). This fact is originally due to Morita, whose proof uses
the boundedness of the Euler class in Homeo+(S1) as proved by Wood (cf. [Mor4]). On the
other hand our proof relies on the adjunction inequality in the spirit of [Kot1]. Before giving
the proof we recall the definition of the Gromov-Thurston (semi-)norm.

Definition 3.1.3 (Gromov-Thurston norm). Let X be any topological space and let α ∈
H2(X,Z). Define the minimal genus gmin(α) of α to be the minimal g so that α is repre-
sentable as the image of the fundamental class under a map Σg → X modulo torsion. We
define the Gromov-Thurston norm to be

||α||GT = lim
n→∞

2gmin(nα)− 2

n
.

Gromov has also defined another norm on real homology. This is the so-called l1-norm
and is defined as follows.

Definition 3.1.4 (l1-norm). Let c =
∑

i λiσi be a chain in Ck(X,R). We define the l1-norm
of c to be

||c||1 =
∑
i

|λi|.

For a class α ∈ Hk(X,R) we define

||α||1 = inf { ||z||1 | α = [z]}.

In degree 2 the Gromov-Thurston norm agrees with the l1-norm || · ||1 up to a constant.
We record this in the following lemma, a proof of which is given in [BG].
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Lemma 3.1.5. Let α ∈ H2(X,Z). Then the following equality holds

||α||1 = 2||α||GT .

If in addition the group H2(X,Z) is finitely generated, we may extend || · ||GT to a semi-
norm on H2(X,R) and the equality of Lemma 3.1.5 holds for this extension. We shall denote
this extension again by || · ||GT .

Lemma 3.1.6. Let H2(X,Z) be finitely generated. Then there is a unique extension of ||·||GT
to H2(X,R), for which || · ||1 = 2|| · ||GT .

Proof. One first extends || · ||GT to H2(X,Q) by linearity, so that || · ||1 = 2|| · ||GT holds
on rational classes. Since H2(X,Q) is finite dimensional, the convex function || · ||GT is
continuous with respect to the ordinary l1-norm. Hence as || · ||GT is continuous on the dense
subset of rational points it has a unique continuous extension to H2(X,R). By continuity
this function will also satisfy the properties of a (semi-)norm and the equality ||·||1 = 2||·||GT
still holds.

By considering the natural pairing between homology and cohomology, one obtains a
norm on cohomology that is dual to the l1-norm. This norm agrees with the l∞-norm on
cohomology as introduced by Gromov (cf. [Gro]). We then say that a cohomology class is
bounded, if it is bounded with respect to the l∞-norm. We may now prove the boundedness
of the vertical Euler class.

Proposition 3.1.7 (Morita). Let h ≥ 2, then the vertical Euler class e ∈ H2(Γh,1) is bounded
and ||e||∞ = 1

2
.

Proof. For any natural number n suppose that nα ∈ H2(Γh,1) can be represented as the image
of the fundamental class under a map Σnα → BΓh,1 and assume that Σnα is genus minimising.
This in turn corresponds to a surface bundle with a section Snα and by Proposition 3.1.2 we
have that

n |e(α)| = |e(nα)| = |[Snα]2| ≤ 2g(Σnα)− 2 = 2gmin(nα)− 2 (3.1)

and thus

|e(α)| ≤ lim
n→∞

2gmin(nα)− 2

n
= ||α||GT .

Hence for integral classes α ∈ H2(X,Z) Lemma 3.1.5 yields

|e(α)|
||α||1

≤ 1

2
.

Now since the group Γh,1 is finitely presented (cf. [Iva1], Theorem 4.3 D), it follows that
H2(Γh,1) is finitely generated. Thus we may extend the Gromov-Thurston norm to real
cohomology by Lemma 3.1.6 and

sup
α 6=0

|e(α)|
||α||1

≤ 1

2
.

It follows that e is a bounded class with ||e||∞ ≤ 1
2
. We will show that this bound is sharp.
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Let h ≥ 2 and let S be the diagonal section of Σh×Σh. This section has self-intersection
2− 2h and we denote the corresponding class α ∈ H2(Γh,1). By taking coverings we obtain
sections Snα so that

|[Snα]2| = |e(nα)| = n(2h− 2) = 2g(Snα)− 2.

Thus it follows that inequality (3.1) is an equality for this α and hence

||e||∞ = sup
α 6=0

|e(α)|
||α||1

≥ 1

2
.

Combining this with our previous estimate gives the result.

One may also give another proof of the boundedness of e using results on stable commu-
tator lengths of Dehn twists as proven in [EK]. We recall that the commutator length cG(g)
of an element g in a group G is defined as the smallest natural number so that g can be
written as a product of cG(g) commutators. The stable commutator length is then defined
as

||g||com = lim
n→∞

cG(gn)

n
.

An important property of the stable commutator length is that it is homogeneous in the
sense that for any integer k the following holds

||gk||com = |k| ||g||com .

The relationship between commutator lengths and the l∞-norms of elements in the group
cohomology H2(G) is given in the following lemma.

Lemma 3.1.8. Let φ be an element in H2(G), which corresponds to a central Z-extension

1→ Z→ Ĝ→ G→ 1.

Further, let ∆ denote a generator of the kernel. Then the boundedness of φ implies that the
stable commutator length of ∆ is positive. If, in addition, H2(G) is finitely generated, then
the converse also holds and

||φ||∞ ≤
1

4||∆||com
.

Proof. Let α ∈ H2(G) be represented by a map Σα → K(G, 1), which in turn determines a

representation π1(Σα)
ρ→ G. We let ai, bi be the standard generators of π1(Σα) and choose

lifts αi, βi of ρ(ai), ρ(bi) in Ĝ. Then φ(α) is the value of m such that the following holds

gα∏
i=1

[αi, βi] = ∆m .

Conversely, any elements αi, βi in Ĝ that satisfy the above commutator equation define an
element α ∈ H2(G) that can be represented by a surface of genus gα with φ(α) = m.
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Now suppose by way of contradiction that φ is bounded and ||∆||com = 0. Thus, for any
ε > 0 some power ∆m can be written as a product of at most mε commutators. We let α
be the element in H2(G) defined by such a factorisation, which can then be represented by
a surface of genus gα ≤ mε. This implies that ||α||GT ≤ 2mε and applying Lemma 3.1.5 we
conclude that

|φ(α)|
||α||1

≥ ε−1.

Since ε was arbitrary it follows that φ is unbounded and this contradiction proves the first
part of the lemma.

Conversely, for any α ∈ H2(G) and any natural number n the class nα can be represented
by a surface of genus gmin(nα). As explained above this implies that ∆nk can be written as
a product of gmin(nα) commutators, where k = φ(α), and hence

gmin(nα) ≥ ||∆nk||com = nk||∆||com = |φ(nα)| ||∆||com.

Thus, we conclude that

|φ(α)| ≤ gmin(nα)

n||∆||com
.

By taking limits and applying Lemma 3.1.5 we obtain

||∆||com |φ(α)| ≤ lim
n→∞

gmin(nα)

n
=

1

2
lim
n→∞

2gmin(nα)− 2

n
=

1

2
||α||GT =

1

4
||α||1

so that for integral classes
|φ(α)|
||α||1

≤ 1

4||∆||com
.

It follows immediately that the same inequality holds for all elements in H2(G,Q). Since
H2(G) is finitely generated, both φ(α) and ||α||1 are continuous (cf. Lemma 3.1.6) and hence

||φ||∞ = sup
α 6=0

|φ(α)|
||α||1

≤ 1

4||∆||com
,

proving the second part of the lemma.

In order to deduce the boundedness of e from Lemma 3.1.8 we consider its defining central
Z-extension

1→ Z→ Γ1
h → Γh,1 → 1.

The kernel of this extension is generated by a Dehn twist φC around a curve that is parallel
to C = ∂Σ1

h. Now the group Γ1
h embeds into Γh+1 and the image of φC is a Dehn twist

around a homotopically non-trivial, separating curve in Σg+1. By [EK] there is a positive
lower bound on the stable commutator length of φC considered as an element in Γh+1 and
hence the same holds in Γ1

h. Since H2(Γh,1) is finitely generated Lemma 3.1.8 implies that
e is bounded. However, we cannot compute the exact norm of e in this manner, since the
lower bound on ||φC ||com given in [EK] is smaller than 1

2
.
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3.1.2 Bounds on self-intersection numbers of multisections

The self-intersection of a k-multisection in a surface bundle gives a characteristic class evk ∈
H2(Γh,k). Mitsumatsu and Vogt have posed the question of whether there is a universal
bound on the self-intersection numbers of such multisections depending only on the genera
g and h of the base and fibre respectively (cf. [MV], Problem 8.11). That is if there exists a
constant C(h, g) so that

sup
k∈N
|evk(E)| ≤ C(h, g) <∞,

where the supremum is taken over all bundles with a k-multisection for fixed h and g.
An initial observation is that the classes evk are bounded and that there is an obvious

upper bound for ||evk||∞.

Proposition 3.1.9. Let h ≥ 2, then the classes evk ∈ H2(Γh,k) are bounded and ||evk||∞ ≤ k
2
.

Proof. Since Γh,k is finitely presented (cf. [Iva1], Theorem 4.3 D) we may apply the first part
of the proof of Proposition 3.1.7 mutatis mutandis to conclude that

||evk||∞ ≤
k

2
.

If one considers only multisections that are pure in the sense that the multisection in
question consists of k disjoint sections, then one obtains a universal bound C(h, g). A bun-
dle that has a pure k-multisection is given by a holonomy map π1(Σg)→ PΓh,k, where the P
means that the holonomy maps fix the marked points pointwise, then it follows from Propo-
sition 3.1.2 that for fixed g and h the self-intersection number of any pure k-multisection is
bounded.

Proposition 3.1.10. Let Cpure denote the class of all bundles with a pure multisection and
let g and h be the genus of the base and fibre of E respectively with h ≥ 2. Then the following
holds

sup
k∈N,E∈Cpure

|evk(E)| ≤ (2g − 2)(4gh+ 2).

Proof. First note that the number of sections that can have non-zero self-intersection is
bounded by b2(E) ≤ 4gh + 2 and this does not depend on k. By Proposition 3.1.2 each
section has self-intersection at most 2g− 2. Thus if the holonomy of a bundle is in PΓh,k we
conclude that

sup
k∈N,E∈Cpure

|evk(E)| ≤ (2g − 2)(4gh+ 2).

Unfortunately the bound obtained in Proposition 3.1.10 grows quadratically in g and
thus gives no bound on the norms ||evk||∞, which would in particular yield an affirmative
answer to the question posed at the beginning of this section. For given any bundle with a
k-multisection and holonomy map π1(Σg)

ρ→ Γh,k there is a finite cover Σḡ
τ→ Σg of degree

N = k! and a lift ρ̄ so that the following diagram commutes

PΓh,k // Γh,k

π1(Σḡ)
τ //

ρ̄

OO

π1(Σg).

ρ

OO
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Then if E, Ē denote the bundles associated to ρ, ρ̄ respectively, we have

|Nevk(E)| = |evk(Ē)| ≤ (2ḡ − 2)(4ḡh+ 2) = N(2g − 2)(4(N(g − 1) + 1)h+ 2).

Thus, the bound we obtain on evk(E) in this way depends on N which in turn grows with k.
Instead of asking for a bound on the self-intersection numbers of multisections in surface

bundles of fixed Euler characteristic one may ask for a universal bound on the norms ||evk||∞
that is independent of k, as opposed to the bound given by Proposition 3.1.9, which grows
linearly with k. This question may in turn be viewed as a stable version of the original
question of Mitsumatsu-Vogt. Of course, it is strictly stronger than their original question
and is in fact false. In order to show this we will translate the problem into a statement
about the vertical Euler class of a certain stable group.

To this end we consider the sequence of inclusions of mapping class groups given by adding
an annulus with one marked point to a genus h surface with one boundary component and
n marked points:

...→ Γ1
h,n−1 → Γ1

h,n → Γ1
h,n+1 → ...

The injective limit of this sequence will be denoted by Γ1
h,∞ and the vertical Euler classes on

Γ1
h,n defines a vertical Euler class ev∞ in H2(Γ1

h,∞).

Lemma 3.1.11. Suppose that the norms ||evn||∞ are bounded independently of n. Then the
class ev∞ is bounded.

Proof. We let C = supn ||evn||∞. This also serves as a universal bound on the associated
classes on Γ1

h,n and hence for any homology class α ∈ H2(Γ1
h,∞) one has

|ev∞(α)| = |evn(αn)| ≤ ||evn||∞ ||αn||1
≤ C||αn||1,

where αn is any class in H2(Γ1
h,n) which projects to α in the limit. By choosing the αn

appropriately we may assume that ||α||1 = lim
n→∞

||αn||1. Thus after applying limits to the

inequality above we conclude that |ev∞(α)| ≤ C||α||1 and hence that ev∞ is a bounded class.

In order to show that the class ev∞ is not bounded, it will be important to have an explicit
description of the classes evn on the level of group cohomology. To this end we let Σn,1

h be a
surface with n+1 boundary components and we choose identifications hk : S1 → ∂Σn,1

h of the
k-th boundary component with the circle for 1 ≤ k ≤ n. We let Homeo+(Σn,1

h ) denote the
group of all orientation preserving homeomorphisms of Σn+1

h that fix the (n+1)-st boundary
component pointwise and let σ denote the natural map Homeo+(Σn,1

h ) → Sn given by the

action on the boundary components. We next consider the subgroup ̂Homeo+(Σn,1
h ) of

Homeo+(Σn,1
h ) defined by taking those elements φ that have the additional property that

φ ◦ hk = hσ(k) for all 1 ≤ k ≤ n. The group of components of ̂Homeo+(Σn,1
h ) will be denoted

Γ̂1
h,n. This group fits into the following exact sequence, where the second map is given by

coning off the boundary components and the kernel is generated by Dehn twists around
parallels of the boundary components:

1→ Zn → Γ̂1
h,n → Γ1

h,n → 1.
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Moreover, the conjugation action of Γ1
h,n on Zn is given by the natural action of the symmetric

group. Thus, this extension gives an element êvn in cohomology with twisted coefficients
H2(Γ1

h,n,Zn), where the action is given via the natural map to Sn. The map Zn → Z sending
each basis vector to 1 is Sn-equivariant and induces a map to ordinary cohomology and the

image of êvn is evn ∈ H2(Γ1
h,n,Z). The associated central Z-extension will be denoted by Γ

1

h,n.

Moreover, the groups Γ̂1
h,n give the following commuting diagram of inclusions

1

��

1

��

1

��
... // Zn−1 //

��

Zn //

��

Zn+1 //

��

...

... // Γ̂1
h,n−1

//

��

Γ̂1
h,n

//

��

Γ̂1
h,n+1

//

��

...

... // Γ1
h,n−1

//

��

Γ1
h,n

//

��

Γ1
h,n+1

//

��

...

1 1 1

Thus, by considering the injective limits of the groups Γ̂1
h,n, we obtain a group Γ̂1

h,∞ that fits
into the following short exact sequence

1→ Z∞ → Γ̂1
h,∞ → Γ1

h,∞ → 1.

This extension corresponds to an element êv∞ ∈ H2(Γ1
h,∞,Z∞), which denotes the cohomology

group taken with twisted Z∞-coefficients. As above, there is an S∞-equivariant map Z∞ → Z
sending each basis vector to 1 that induces a map to ordinary cohomology and the image of
êv∞ is the class ev∞ defined above. The class ev∞ then determines a central Z-extension

1→ Z→ Γ
1

h,∞ → Γ1
h,∞ → 1.

Furthermore, the group Γ
1

h,∞ fits into the following exact sequence

1→ K → Γ̂1
h,∞ → Γ

1

h,∞ → 1,

where K is the kernel of the map Z∞ → Z.
The group Γ̂1

h,∞ may also be interpreted as the mapping class group of a certain non-

compact surface with infinitely many boundary components. More precisely, we let Σ∞,1h

be a genus h surface having an infinite end with infinitely many open discs removed. We
identify the k-th boundary component of Σ∞,1h with S1 via a map hk. Furthermore, we
let Homeoc(Σ

∞,1
h ) denote the group of compactly supported homeomorphisms of Σ∞,1h and

we let σ denote the natural map Homeoc(Σ
∞,1
h ) → S∞ given by the induced action on the

boundary components. We define Ĥomeoc(Σ
∞,1
h ) to be the group of compactly supported
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homeomorphisms such that φ ◦ hk = hσ(k). Then Γ̂1
h,∞ is the group of components of the

group Ĥomeoc(Σ
∞,1
h ).

There is a relationship between the boundedness of cohomology classes and stable com-
mutator lengths (cf. Lemma 3.1.8). In order to prove that the class ev∞ is unbounded,
we shall also need to exploit the relationship between stable commutator lengths and quasi-
homomorphisms. We recall that a real valued map φ on a group G is a quasi-homomorphism
if the following supremum is finite

D(φ) = sup |φ(gh)− φ(g)− φ(h)|.

The number D(φ) is called the defect of φ. A quasi-homomorphism is homogeneous if

φ(gn) = nφ(g) for all integers n. For a group G we will let Q̃H(G) denote the group of
homogeneous quasi-homomorphisms. With this notation we have the following fundamental
result of Bavard.

Theorem 3.1.12 ([Bav]). For any element g in a group G the following holds

||g||com = sup | φ(g)

2D(φ)
| ,

where the supremum is taken over all φ ∈ Q̃H(G) and D(φ) is the defect of φ.

We shall also need the fact that any homogeneous quasi-homomorphisms on Γ̂1
0,∞ is in

fact a homomorphism. For any n ∈ N ∪ {∞} the group Γ̂1
0,n = B̂n is referred to as the

extended braid group since it fits into the following extension

1→ Zn → Γ̂1
0,n → Γ1

0,n = Bn → 1,

where Bn denotes the ordinary braid group on n-strands. Kotschick has proven that the
only homogeneous quasi-homomorphisms on B∞ are homomorphisms and the proof of the
following proposition is almost identical to that of Theorem 3.5 in [Kot3].

Proposition 3.1.13. Any homogeneous quasi-homomorphism on the group B̂∞ is a homo-
morphism.

Proof. By considering disjoint embeddings Σn,1
0 ↪→ Σ∞,10 one obtains infinitely many embed-

dings
B̂n ↪→ B̂∞

that are conjugate in B̂∞ and such that any two elements that lie in distinct embeddings
commute in B̂∞. Thus, by Proposition 2.2 in [Kot3] any homogeneous quasi-homomorphism
φ on B̂∞ restricts to a homomorphism on B̂n. Furthermore, any element in B̂∞ lies in some
B̂n and, hence, φ is in fact a homomorphism on the whole group B̂∞.

With these preliminaries we are ready to prove that the class ev∞ is not bounded.

Theorem 3.1.14. The class ev∞ ∈ H2(Γ̂1
h,∞) is unbounded.
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Proof. We consider the central Z-extension associated to ev∞

1→ Z→ Γ
1

h,∞ → Γ1
h,∞ → 1,

whose kernel is generated by some ∆. By Lemma 3.1.8, if ev∞ is bounded, then the stable
commutator length of ∆ is positive. Hence, in order to show that the class ev∞ is unbounded,
it will suffice to show that the stable commutator length of ∆ is zero.

The element ∆ is the image of a Dehn twist around a boundary parallel curve in Σ∞,1h

under the map Γ̂1
h,∞ → Γ

1

h,∞. More generally, let γk be a simple closed curve in Σ∞,1h

that bounds k boundary components and let ∆k be a Dehn twist about γk. The stable
commutator length of ∆k depends only on k, since any two curves γk and γ′k are conjugate by

a homeomorphism in Ĥomeoc(Σ
∞,1
h ) and, hence, the corresponding Dehn twists are conjugate

in Γ̂1
h,∞. In this notation ∆ is the image of ∆1 under the map Γ̂1

h,∞ → Γ
1

h,∞ and it follows
that

||∆||com ≤ ||∆1||com.
So it will be sufficient to show that ||∆1||com = 0.

We assume to the contrary that the stable commutator length of ∆1 is positive. We let
D4 ↪→ Σ∞,1h be a disc with four smaller discs removed, the boundaries of which are mapped
to boundary components of Σ∞,1h . This inclusion gives a map of the compactly supported

mapping class group of D4 into Γ̂1
h,∞. We let C1, .., C4 be the interior boundary components

of D4. We also let ∆(i1, .., im) denote the Dehn twist around an embedded closed curve
containing Ci1 , .., Cim . Then the following lantern relation holds in the compactly supported
mapping class group of D4 and, thus, also in Γ̂1

h,∞:

∆(12)∆(23)∆(13) = ∆(1)∆(2)∆(3)∆(123).

We let φ be a homogeneous quasi-homomorphism on Γ̂1
h,∞. An inclusion Σ∞,10 ↪→ Σ∞,1h

induces an embedding B̂∞ ↪→ Γ̂1
h,∞ and by Proposition 3.1.13 any homogeneous quasi-

homomorphism restricts to a homomorphism on B̂∞. In particular, φ is a homomorphism on
the normal subgroup generated by the ∆k. Then since a homogeneous quasi-homomorphism
is constant on conjugacy classes the lantern relation implies that

φ(∆3) = 3φ(∆2)− 3φ(∆1).

Similarly one has
∆(123)∆(234)∆(34) = ∆(12)∆(3)∆(4)∆(1234)

and by the same reasoning as above it follows that

φ(∆4) = 6φ(∆2)− 8φ(∆1).

Furthermore, the embedding Σ∞,1h → Σ∞,1h given by attaching a k-punctured disc to each

boundary component induces a map on Γ̂1
h,∞ that sends a Dehn twist around a boundary

component to a Dehn twist about some γk and, hence,

||∆k||com ≤ ||∆1||com. (3.2)
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By Theorem 3.1.12 and the assumption that ||∆1||com is positive, we may choose a homoge-
neous quasi-homomorphism φ such that

φ(∆1)

2D(φ)
≥ 15

16
||∆1||com > 0.

Since the stable commutator length of ∆2 is bounded from above by the stable commutator
length of ∆1, by applying Theorem 3.1.12 once more we deduce that

||∆1||com ≥
φ(∆1)

2D(φ)
≥ 15

16
||∆1||com ≥

15

16

φ(∆2)

2D(φ)
. (3.3)

Using inequalities (3.2) and (3.3) we then compute

||∆1||com ≥ ||∆4||com ≥ |
φ(∆4)

2D(φ)
|

= |6φ(∆2)

2D(φ)
− 8

φ(∆1)

2D(φ)
|

= |
(

2
φ(∆1)

2D(φ)
− 6

16

φ(∆2)

2D(φ)

)
+ 6
(φ(∆1)

2D(φ)
− 15

16

φ(∆2)

2D(φ)

)
|

≥ 2
φ(∆1)

2D(φ)
− 6

16

φ(∆2)

2D(φ)

≥ 24

16
||∆1||com > ||∆1||com,

which yields a contradiction.

As an immediate consequence of Lemma 3.1.11 we have the following corollary.

Corollary 3.1.15. The sequence ||evn||∞ is unbounded.

In fact by Proposition 3.1.9 we know that this sequence can grow at most linearly with n.
It would be interesting to know the precise growth rate of the sequence ||evn||∞, in particular
whether it is linear or not.

3.2 MMM-classes vanish on amenable groups

There is a family of characteristic classes of oriented surface bundles that can be defined using
the vertical Euler class. These are the so-called Mumford-Miller-Morita (MMM) classes. The
k-th MMM-class is defined as ek = π!e

k+1, where e is the vertical Euler class of an oriented
surface bundle and π! denotes integration along the fibre.

It was conjectured by Morita in [Mor4] that all the MMM-classes ek ∈ H∗(Γh) are
bounded in the sense of Gromov. It is known that ek is bounded for k odd ([Mor4], Remark
7.2) so it remains to deal with the case where k is even. A necessary condition that ek is
bounded is that it vanishes on amenable groups and as evidence for his conjecture Morita
showed that all the ek do indeed have this property ([Mor4], Theorem 7.1). We shall give
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an alternate proof of this result which arises by considering the simplicial volume of surface
bundles over bases with amenable fundamental groups. In particular, if Σh → E → B is a
surface bundle over a base manifold with amenable fundamental group, we will show that
the simplicial volume of the total space vanishes, unless the base is S1. The latter condition
is necessary, as Thurston’s Hyperbolisation Theorem implies that any mapping torus with
pseudo-Anosov monodromy is hyperbolic and hence has non-vanishing simplicial volume.

The main tool we shall need is the theory of reduction systems for subgroups of the
mapping class group (see [BLM], [Iva2]). It will be convenient to use slightly different
notation in this section. Namely, we consider a compact, orientable surface Σ with possibly
non-empty boundary and define

MCG(Σ) = PDiff+(Σ)/Diff0(Σ).

Here PDiff+(Σ) is the group of orientation preserving diffeomorphisms of Σ that do not
permute boundary components and Diff0(Σ) denotes those diffeomorphisms that are iso-
topic to the identity where the isotopy need not fix the boundary. We will also want to
consider the group of diffeomorphisms that fix the boundary up to isotopy which we denote
by

MCG(Σ, ∂Σ) = PDiff+(Σ, ∂Σ)/Diff0(Σ, ∂Σ).

A subgroup G ⊂ MCG(Σ) is called reducible if there exists a homotopically non-trivial,
embedded 1-dimensional submanifold C ⊂ Σ which is componentwise fixed by every element
in G up to isotopy. If Σ has boundary we require that no component of C is isotopic into
the boundary. Such a submanifold is called a reduction system for G. If no such C exists,
then we say that G is irreducible.

Next we consider a reducible subgroup G ⊂ MCG(Σ). This then gives a map of G to
MCG(Σ\C) since the identity component of the group of diffeomorphisms Diff0(Σ, C) that
preserve the components of C is contractible (see [Iva1], [Iva2]). We let MCG(Σ, C) denote
the subgroup of the mapping class group that fixes each component of C up to isotopy.
If we let Qi denote the closure of the components of Σ \ C, then there is a natural map
MCG(Σ, C) →

∏
iMCG(Qi), whose kernel is the abelian group generated by Dehn twists

along the components of C. An important fact is that after taking a finite index subgroup
G′ ⊂ G, there is always a so-called maximal reduction system Cmax so that the image of G′

in each MCG(Qi) is irreducible or trivial ([Iva2], Cor. 7.18).
Moreover, any irreducible subgroup either contains a free group on two generators or is

virtually cyclic ([Iva2], Cor. 8.6 and Th. 8.9). Thus if G is amenable it contains no free groups
on two generators and hence the image Hi of G′ in MCG(Qi) is virtually cyclic. After taking
finite index subgroups one may assume that each Hi is either infinite cyclic, or trivial. The
analogous result for solvable groups is older and goes back to Birman-Lubotzky-McCarthy
in [BLM].

We summarise this discussion in the following theorem.

Theorem 3.2.1 ([Iva2]). Let Σ be any compact surface and let G ⊂MCG(Σ) be amenable.
Then G is virtually abelian. Moreover, there exists a finite index subgroup G′ ⊂ G and a
reduction system C so that the images of G′ in MCG(Qi) are infinite cyclic or trivial.

We are now able to state and prove the following theorem.
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Theorem 3.2.2. Let Σ→ E → B be a surface bundle over a closed manifold of dimension
dim(B) ≥ 2. If π1(B) is amenable, then the simplicial volume ||E|| vanishes.

Proof. Since the vanishing of the simplicial volume is unchanged under finite covers, we may
assume that the image of the holonomy map of E is free abelian by Theorem 3.2.1. That is
E is obtained as the pullback of some bundle E ′ over a torus TN and we have the following
commuting diagram:

E
f̄ //

π

��

E ′

π′

��
B

f // TN .

Since the kernel of the induced map π1(E)→ π1(E ′) is amenable, Gromov’s Mapping The-
orem implies that ||[E]||1 = ||f∗[E]||1 (cf. [Gro], p. 40). Moreover, by applying the transfer
homomorphism in homology to the above diagram we have

Hn+2(E)
f̄∗ // Hn+2(E ′)

Hn(B)
f∗ //

π!

OO

Hn(TN).

(π′)!

OO

Since every class in H∗(T
N) can be represented as a sum of tori, the class f∗([B]) can be

represented as a sum of tori. The commutativity of the above diagram implies that the class
f̄∗[E] is representable by a sum of the fundamental classes of several Σ-bundles over tori of
dimension n = dim(B). Thus it suffices to prove the theorem under the assumption that
the base B is a torus of dimension n ≥ 2 and from now on we shall assume this.

We let Cmax be a maximal reduction system for the holonomy of E which gives fibrewise
embedded S1-bundles ξi ⊂ E for each component of Cmax. These S1-bundles are π1-injective
and have amenable fundamental group. Thus Gromov’s Cutting-off Theorem (cf. [Gro], p.
58) implies

||E|| = ||E \
⋃
i

ξi||.

Since the holonomy group of each component Qi of Σ \ Cmax is either infinite cyclic or
trivial, we see that each component of E \

⋃
i ξi is diffeomorphic to Mi × T n−1, where Mi

is a mapping torus with fibre Int(Qi). The manifold Mi × T n−1 admits proper self-maps of
arbitrary degree, since n ≥ 2. Hence the simplicial volume is either zero or infinite. As E is
closed we know that ||E|| <∞ and we conclude that

||E|| = ||E \
⋃
i

ξi|| =
∑
i

||Mi × T n−1|| = 0.

As a consequence of Theorem 3.2.2 and the boundedness of the vertical Euler class (cf.
Proposition 3.1.7) we will show that all MMM-classes vanish on amenable subgroups of
Γh = MCG(Σh).

Theorem 3.2.3 (Morita, [Mor4]). The images of the MMM-classes in H∗(G,Q) are trivial
for amenable G ⊂ Γh.
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Proof. After taking a finite index subgroup we may assume that G = ZN is free abelian.
This subgroup corresponds to a surface bundle Σh → E → TN over the N -torus. Moreover,
by Proposition 3.1.7 the vertical Euler class is bounded with ||e||∞ = 1

2
and thus ek+1 ∈

H2k+2(Γh,1) is bounded with

||ek+1||∞ ≤ (
1

2
)k+1.

The group H2k(T
N) has a basis consisting of (embedded) tori Tj ↪→ TN and the theorem

will follow if we show that ek is trivial on each Tj.
We let Ej denote the restriction of E to Tj and compute

|〈ek(E), [Tj]〉| = |〈π!e
k+1, [Tj]〉|

= |〈ek+1, π![Tj]〉|
= |〈ek+1, [Ej]〉|

≤ ||ek+1||∞ ||Ej|| ≤ (
1

2
)k+1||Ej||.

Since the dimension of the torus Tj is 2k, Theorem 3.2.2 implies that ||Ej|| = 0 and the
result follows.

Motivated by [KL] we will next investigate which classes in H∗(Γh) can be represented as
the image of the fundamental class of a non-trivial product N = M1×M2 of closed manifolds.
In particular, we will show that if m = max {dim(M1), dim(M2)}, then ek([N ]) = 0 for all
k > m

2
. This means that ek vanishes for any bundle over a non-trivial product N of dimension

dim(N) = 2k. We begin by proving the following lemma.

Lemma 3.2.4. Let Σ be a closed, connected surface and let C be a disjoint collection of
embedded circles on Σ. We let Qj be the components of Σ \ C and let Qj be the closed
surface obtained from Qj by identifying each boundary component to a point. We further let
ρ̄j be the natural map MCG(Σ, C)→MCG(Qj) and ēk the k-th MMM-class on MCG(Qj).
Then the k-th MMM-class on MCG(Σ, C) satisfies

ek =
n∑
j=1

ρ̄∗j ēk.

Proof. For simplicity let Gj = MCG(Qj) and GC = MCG(Σ, C). We also let Gj =
MCG(Qj) be the mapping class group Qj.

By definition, the universal bundle over BGC has a natural decomposition

E =
n⋃
j=1

Ej,

where Ej is a bundle with fibre Qj. Moreover, the vertical bundle is trivial over ∂Ej with a
trivialisation given by taking vectors tangent to the boundary. We let ξC denote the union
of the S1-bundles corresponding to ∂Ej. Then the vertical vector bundle on E descends to
a bundle on the quotient space E∗ = E/ξC . Similarly the vertical bundle on Ej descends to
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E∗j = Ej/∂Ej and we note that E∗ =
∨n
j=1E

∗
j . Since E∗ is a wedge sum and the Euler class

is natural under pullbacks, we compute

ek+1(E) =
n∑
j=1

ek+1(E∗j ). (3.4)

We let Ej denote the bundle obtained from Ej by fibrewise identifying each boundary com-

ponent of Qj to a point and we let BGC
ρ̄j→ BGj be the classifying map of this bundle. In this

way we obtain the following commuting diagram, where each vertical arrow is a fibration:

E∗j

E

π

��

;;xxxxxxxxxx
// E

��

OO

Ej

��

oo //

ccFFFFFFFFFF

EGj

��
BGC

Id // BGC BGC

ρ̄j //Idoo BGj.

Using the naturality of the transfer map we conclude that π!(e
k+1(E∗j )) = ρ̄∗j ēk and the

lemma follows by equation (3.4).

This leads us to the following theorem, whose proof is similar to that of Proposition 3.8
in [KL].

Theorem 3.2.5. Let Σ → E → B be a surface bundle over a base B = M1 ×M2 that is a
non-trivial product. If m = max {dim(M1), dim(M2)}, then ek(E) = 0 for all k > m

2
.

Proof. We let Gi = π1(Mi) and G = G1 ×G2
ρ→ MCG(Σ) denote the holonomy map of E.

If the image of G lies in the kernel of the map Φ3 given by the composition

MCG(Σ)→ Aut(H1(Σ,Z))→ Aut(H1(Σ,Z3)),

then the existence of a maximal reduction system is guaranteed by ([Iva2], Cor. 7.18), since
the kernel of this map consists of pure elements of MCG(Σ). Thus after taking finite index
subgroups of the Gi we may assume that this is the case and without loss of generality we
have a maximal reduction system Cmax so that the images of G

ρi→ MCG(Qi) are trivial
or irreducible. If ρi(G) is non-trivial it must contain a pseudo-Anosov element φ = ρi(a, b).
Since the subgroup generated by α = ρi(a, e) and β = ρi(e, b) is irreducible, abelian and
consists of elements in the kernel of the map Φ3, it must be infinite cyclic and is generated
by a pseudo-Anosov element ψ ([Iva2], Cor. 7.14 and Cor. 8.6). In particular, α and β are
pseudo-Anosov.

Without loss of generality we assume that the α defined above is non-trivial. Then since
the subgroup G2 commutes with (a, e) we conclude that ρi(G2) lies in the centraliser of α.
However, the centraliser of a pseudo-Anosov element is infinite cyclic and is generated by
a pseudo-Anosov element ([Iva2], Lemma 8.13). Hence ρi(G2) is also cyclic with a pseudo-
Anosov generator or it is trivial. If it is non-trivial then the fact that G1 commutes with G2
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implies via the same argument that the image ρi(G) is also cyclic. Thus we conclude that

either ρi(Gj) is trivial, in which case ρi factors through one of the projections G
πj→ Gj, or

that the image ρi(G) is cyclic (or trivial).
We let Σ1 denote the subsurface of Σ on which ρ(G1) is non-trivial but ρ(G2) is trivial.

Similarly, we let Σ2 be the subsurface where ρ(G2) is non-trivial but ρ(G1) is trivial. We
finally let Σ3 be the subsurface on which the holonomy is cyclic. We let ρ̄j denote the induced
maps to MCG(Σj) and by applying Lemma 3.2.4 we conclude that

ek =
3∑
j=1

ρ̄∗j ēk.

The first two summands vanish for dimension reasons if k > m
2

and since the image of ρ̄3 is
abelian the third vanishes by Theorem 3.2.3.

We contrast the above result with those of Morita in [Mor1]. In particular, Morita showed
that for sufficiently large genus any MMM-class is detected by an iterated surface bundle
given by what is now called the Morita m-construction. Repeated application of Theorem
3.2.5 implies that the only MMM-classes that are possibly non-trivial over a base that is a
product of surfaces are of the form ek1. Moreover, it can be shown that these classes can
be detected by products of Riemann surfaces if the genus of the fibre satisfies g ≥ 3k. In
fact, the proof of Theorem 3.2.5 means that this bound is sharp for such bundles, since e1 is
trivial for bundles with fibre of genus g ≤ 2 (cf. [KM1]).

3.3 MMM-classes are hyperbolic

As previously mentioned Morita has conjectured that the MMM-classes ek have representa-
tives that are bounded in the sense of Gromov. In particular, he showed that ek vanishes
on amenable groups (cf. Theorem 3.2.3). There is a weaker notion than that of bounded-
ness, so-called hyperbolicity. We will extend Morita’s original argument to show that the
MMM-classes are hyperbolic.

We shall first recall the definition of hyperbolicity for simplicial complexes following
[BrK]. To this end we need to consider metrics and differential forms on simplicial complexes.
Recall that a metric on a simplicial complex is given by a metric gσ on each simplex σ so
that when τ ⊂ σ is a face, one has gσ|τ = gτ . Similarly, a differential form is a collection
of forms on each simplex compatible with restriction to faces. One can then define the
exterior derivative on each simplex and the resulting cohomology is isomorphic to ordinary
cohomology for simplicial complexes (cf. [Swa], [Whit]).

Theorem 3.3.1 (Simplicial de Rham Theorem). Let X be a simplicial complex. Then there

is a natural isomorphism Hk
dR(X)

Ψ→ Hk
∆(X,R) from de Rham cohomology to simplicial

cohomology given by integration over chains.

The de Rham isomorphism Ψ has a natural inverse on the chain level. This is defined as
follows: let σ be an oriented simplex of X and let µi denote the baracentric coordinate map
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defined by the the i-th vertex vi of σ. That is for a simplex τ of X we define µi|τ to be zero
if vi is not a vertex of τ , otherwise we let µi|τ (p) be the coefficient of vi given by writing p
as a convex combination of the vertices of τ . The functions µi are well-defined elements in
Ω0(X). Then for any oriented cosimplex σ ∈ Ck

∆(X,R) we define

Φσ = k!
k∑
i=0

(−1)iµidµ0 ∧ ... ∧ d̂µi ∧ ...dµk.

This is a so-called elementary k-form and has support in the the set st(σ). For an arbitrary
simplicial cochain c that we think of as a sum

∑
λσσ we set

Φ(c) =
∑

λσΦσ

and this map is the desired inverse of Ψ (cf. [Whit], p. 229 ff).
Recall that a k-form α ∈ Ωk(M) on a manifold is bounded if

||α||g = sup
x∈M
|αx(e1, ...ek)| <∞,

where e1, ..., ek is any k-tuple of orthonormal vectors in TxM . For a simplicial complex a
form is bounded if there is a universal bound over all simplices.

For a simplicial cochain c ∈ Ck
∆(X,R) one also has a notion of boundedness. Indeed, one

has the L∞-norm
||c|| = sup

σ
|c(σ)|,

where the supremum is taken over all k-simplices σ of X. If this number is finite then c
is said to be bounded. Moreover, the set of bounded simplicial cochains is a subcomplex
of C∗∆(X,R) that we denote by Ĉ∗∆(X,R). Under certain fairly natural assumptions the de
Rham isomorphism and its inverse preserve boundedness:

Proposition 3.3.2. Let X be a simplicial complex and let g be a metric so that for all

k-simplices V ol(σ, g) ≤ Ck. Then the map Ωk(X)
Φ→ Ck

∆(X,R) given by integration over
chains preserves boundedness.

Conversely, assume that the star of each simplex of X contains a bounded number of
k-simplices for some universal constant Sk and that g is a metric on X so that the 1-forms
dµi given by baracentric coordinates are uniformly bounded. Then the inverse of the de Rham
isomorphism preserves boundedness.

In particular, if X
p→ Y is a (simplicial) covering map and Y is finite, then X endowed

with the pullback metric satisfies the hypotheses above.

Proof. We let Ψ denote the de Rham isomorphism, given by integration over chains. For the
first statement note that for any k-form ω and any k-simplex σ

|Ψ(ω)(σ)| = |
∫
σ

ω| ≤ V ol(σ, g)||ω||g ≤ Ck||ω||g

and hence Ψ(ω) is a bounded simplicial cochain.
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Conversely, let c be a bounded simplicial cochain that we write as c =
∑
λσσ. Then

Φ(c) =
∑

λσΦσ

and the λσ are bounded by definition. Moreover, the Φσ are elementary k-forms and as the
forms dµi are uniformly bounded the same holds for Φσ. Moreover, every point p ∈ X lies in
the interior of a unique simplex τp and Φσ(p) is necessarily zero unless σ lies in st(τp). Thus
Φσ(p) is non-zero for at most Sk simplices and it follows that Φ(c) is uniformly bounded.

Finally, if X
p→ Y is a covering of a finite complex and gX = p∗g is the pullback metric on

X, then the volumes of simplices are the same as their images in Y and these are uniformly
bounded by the assumption that Y is finite. The same holds for the 1-forms dµi, since these
are locally pullbacks of the corresponding forms on Y . Moreover, the star of each simplex
in X contains at most Sk simplices, where Sk denotes the number k-simplices in Y and this
is finite by assumption, thus proving the final claim.

We now consider a finite simplicial complex X with a metric g and let g̃ denote the
pullback metric on the universal cover X̃

p→ X. With this notation we have the following
definition of hyperbolicity of cohomology classes on finite complexes.

Definition 3.3.3. A class α ∈ Hk(X,R) is called hyperbolic if there exists a de Rham
representative η ∈ Ωk(X) of α, so that the p∗η has a bounded primitive with respect to the
metric g̃.

By Proposition 3.3.2 this is equivalent to the statement that the simplicial cochain
p∗Ψ(η) = Ψ(π∗η) ∈ Ĉ∗∆(X̃,R) is exact as a bounded simplicial cochain. Hence it is clear that
the definition is independent of the metric and the chosen representative η. Furthermore,
since any continuous map can be approximated by a simplicial map, hyperbolicity is natural
under maps between finite complexes.

More generally, if Y is any topological space, then we make the following definition.

Definition 3.3.4. Let Y be a topological space. A class α ∈ Hk(Y,R) is hyperbolic if f ∗α

is hyperbolic for every continuous map X
f→ Y of a finite complex X to Y .

As in the case of bounded classes, all hyperbolic classes are trivial if π1(X) is amenable.
For 2-dimensional classes this fact was proved by Kȩdra (cf. [Kȩd]) and in full generality it
is due to Brunnbauer and Kotschick, whose proof uses certain isoperimetric inequalities (cf.
[BrK]). One can however give a more direct proof that follows Gromov’s original argument
in the bounded case.

Theorem 3.3.5. Let X be a finite simplicial complex with amenable fundamental group.
Then all hyperbolic classes are trivial.

Proof. We let X̃
p→ X denote the universal cover and let G = π1(X). Then G acts on X̃

by (simplicial) deck transformations that we denote by Tg. Now assume that α ∈ Hk(X,R)
is a hyperbolic class. By Proposition 3.3.2 this means that for any simplicial representative
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a of α the cochain p∗a ∈ Ĉ∗∆(X̃,R) is exact. We let b ∈ Ĉk−1
∆ (X̃,R) be a primitive. Then

since G is amenable there is an averaging operator on bounded singular chains

Ck
b (X̃,R)

A→ Ck
G(X̃,R)

that maps an arbitrary bounded cochain to a G-equivariant one. This map is defined as
follows: let µ : L∞(G)→ R be a left-invariant mean, which exists since G is amenable. Let
c ∈ Ck

b (X̃,R) and let σ be any k-simplex, we define a function φc,σ : G→ R by

φc,σ(g) = c((Tg−1)∗ σ).

We then set

A(c)(σ) = µ(φc,σ).

Since µ was left invariant A(c) is a G-equivariant cochain on X̃, that is A(c) = p∗c′ for a
unique cochain in Ck(X,R). One also checks that A is a chain map. Finally, as the deck
transformations are simplicial A induces a well-defined map on bounded simplicial cochains.
If we let b′ ∈ C∆(X,R) be such that A(b) = p∗b′ we compute

p∗δb′ = δp∗b′ = δA(b) = A(p∗a) = p∗a.

Thus δb′ = a since p∗ is injective and the class α ∈ Hk(X,R) is trivial.

In order to show that the MMM-classes are hyperbolic, we shall need two technical
lemmata, the first of which is in essence Theorem 2.1 in [Kȩd]. Kȩdra considered only
the universal cover of a manifold, however our assumption that p∗α is exact in bounded
cohomology ensures that his proof goes through.

Lemma 3.3.6. Let X̄
p→ X be a covering of simplicial complexes, with X finite. Let

α ∈ Hk
b (X,R) be a bounded cohomology class such that p∗α is trivial in Hk

b (X̄,R). Then
there is a de Rham representative Φα of α and a bounded (k − 1)-form Φβ with

dΦβ = p∗Φα.

Proof. We first lift the simplices of X to X̄ and let ḡ be the lifted metric. Now let β be a
bounded singular (k − 1)-cochain on X̄ so that δβ = p∗α. By restricting to the simplicial
cochain complex, we obtain a simplicial cochain

βs =
∑

λσ̄σ̄,

where the λσ̄ are bounded and δβs = p∗αs as simplicial cochains. Applying the inverse of
the de Rham isomorphism to αs, βs we obtain forms Φα,Φβ such that dΦβ = p∗Φα and by
Proposition 3.3.2 the form Φβ is bounded.

The next lemma gives sufficient conditions under which integration along the fibre maps
bounded forms to bounded forms.
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Lemma 3.3.7. Let F → E
π→ B be a smooth fibre bundle over a manifold B, whose fibre is

a closed manifold of dimension m. Let gB be a metric on B, gE a submersion metric on E
and let Ωv denote the fibrewise volume form induced by gE. Then the map

π! : Ωk+m(E)→ Ωk(B)

maps bounded forms to bounded forms provided that π!Ωv is bounded.

Proof. Let φ be a bounded (k + m)-form with respect to the metric gE. Let U be an open
neighbourhood of p ∈ B and choose a trivialisation V = π−1(U) ∼= U ×F . We let {e1, ..., en}
be a local orthonormal frame on U with respect to gB and {e1, .., en} its dual. On V we may
decompose φ as

φ =
∑
I

(fIΩv) ∧ (π∗eI) + ψ,

where I is a multi-index of length k and ψ vanishes on k-tuples of vertical vectors. Choose
a local orthonormal frame {f1, ...fk} about a point (p, x) in V and let {ē1, ...ēn} be a lift of
this frame to E that is guaranteed by the assumption that gE is a submersion metric. Then
{f1, ...fk, ē1, ...ēn} is an orthonormal frame and, hence, as φ is bounded

|φ(f1, ...fk, ē1, ...ēn)(p, x)| = |fI(p, x)| < C.

Thus we conclude locally

π!φ(p) =
∑
I

∫
Fp

(fIΩv)e
I

and

|
∫
Fp

fIΩv| ≤ C|π!Ωv(p)|

so π!φ is bounded if π!Ωv is.

With the aid of these results we will prove the hyperbolicity of the MMM-classes.

Theorem 3.3.8. The MMM-classes ek are hyperbolic.

Proof. We let e denote the vertical Euler class and X
f→ BΓh be the classifying map of a

bundle E over a finite simplicial complex X. We first assume that X = B is a smooth,
compact manifold (possibly with boundary). We let Ẽ be the pullback bundle over the
universal cover of B:

Ẽ
p //

π

��

E

π

��

// EΓh

��
B̃

p // B
f // BΓh.

We further let Σh
ι→ Ẽ be the inclusion of a fibre. Morita has shown that ι∗e2 is trivial in

bounded cohomology (cf. [Mor4], Section 6). Thus the same holds for ι∗ek+1. Moreover, since
π1(Ẽ) ∼= π1(Σg) this inclusion induces an isomorphism on bounded cohomology. We may
thus choose a bounded chain bk ∈ C2k−1

b (Ẽ,R) with p∗ek+1 = δbk.
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Then by Lemma 3.3.6 there is a form Φk on Ẽ which is bounded with respect to the
pullback metric and a form Ψk+1 on E that is a representative of ek+1 so that p∗Ψk+1 = dΦk.
Since integration along the fibre is natural and commutes with the exterior derivative, we
compute

p∗ek = p∗π!Ψk+1 = π!p
∗Ψk+1

= π!dΦk = d(π!Φk)

We finally need to check that π!Φk is bounded with respect to the pullback metric on B̃. Let
gB be any metric on the base and let gE be a submersion metric on E. The pullback metric
g̃ = p∗gE is a submersion metric for gB̃ = p∗gB and the vertical volume form Ω̃v on Ẽ is the
pullback of the vertical volume form Ωv on E and thus

π!Ω̃v = π!p
∗Ωv = p∗π!Ωv

is a pullback of a form on B and is hence bounded. Now Φk is bounded with respect to
the metric g̃ and thus by Lemma 3.3.7 it follows that π!Φk is bounded and ek ∈ H2k(B) is
hyperbolic.

In the general case let X be any arbitrary simplicial complex. We may embed X in RN

for some sufficiently large N . We then let B = ν(X) be a (compact) regular neighbourhood
of X in RN . Since ν(X) deformation retracts onto X there is a commutative diagram

X //

f !!DD
DD

DD
DD

D ν(X)

f̄
��

BΓh.

Then by the argument above, f̄ ∗ek is hyperbolic and by naturality so is f ∗ek.

3.4 Holomorphic surface bundles

An interesting special class of surface bundles are those that carry a complex structure. If
the base is two dimensional and the genus of fibre and base are greater than 2, then it has
been shown by Kotschick that one may assume that there is a complex structure on the base
so that the projection is holomorphic (see [Kot2]). In general a complex structure on the
total space need not imply the existence of a holomorphic projection to the base. However,
if one assumes that π is holomorphic, then there are restrictions on the topology of such
bundles. In particular, we have the following result, the first part of which was sketched
in an unpublished note of Reznikov (cf. [Rez]). For this we note that if the projection is
holomorphic, the fibres are Riemann surfaces and the map Φ : B →Mg that sends a point
b to the conformal class of the fibre π−1(b) in the moduli space of genus g Riemann surfaces
is a holomorphic map.

Theorem 3.4.1. Let Σg → E
π→ B be a holomorphic bundle over a complex manifold with

holomorphic projection map and g ≥ 3. If the induced map B
Φ→ Mg has maximal rank
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generically, then the simplicial volume ||B|| is positive. If, in addition, the base is Kähler,
then either the first MMM-class e1 does not vanish, or there is a fibrewise holonomy-invariant
complex structure on the fibres.

Proof. Since the compactification of the moduli space is an algebraic variety, there is an
embeddingMg ⊂ CPN for some large N . The Fubini-Study form then defines a cohomology
class ω on the moduli space. Since the rational cohomologies of Mg and Γg are isomorphic
and H2(Γg,Q) = Q for g ≥ 3 (cf. [Iva2]), we conclude that the class ω is a multiple of the
first MMM-class e1. Since the map Φ is holomorphic, the Proper Mapping Theorem (cf.
[GrH]) implies that Φ(B) is a subvariety of CPN . If k denotes the complex dimension of
Φ(B), then ωk is generically positive on the image of Φ and, hence, ωk is non-trivial on Φ(B).

If Φ is generically of maximal rank, then n = dim(B) = dim(Φ(B)) and ωn pulls back to
a generically positive volume form on B. Since ω was a multiple of e1, the class Φ∗en1 = en1 (E)
is then non-zero and as this class is bounded we conclude that

||e1||n∞ ||B|| ≥ |en1 (E)| > 0,

proving the first part of the lemma.
In general, either Φ(B) is of positive dimension or Φ is constant and there is a fibrewise

holonomy-invariant complex structure on the fibres. We assume that the dimension of Φ(B)
is strictly positive. We saw above that this implies that ωk is non-trivial on Φ(B). Thus,
the Poincaré dual of Φ∗ωk is given by the preimage of a regular point of Φ(B), which is
then an analytic subvariety of B. Since B is Kähler, the Poincaré dual of any subvariety
is non-trivial and, hence, Φ∗ωk is non-trivial. Since ω was a multiple of e1, this implies in
particular that Φ∗e1 = e1(E) is non-trivial and the second part of the lemma is proven.

This leads to the following corollary.

Corollary 3.4.2. Let Σg → E
π→ B be a holomorphic surface bundle over a compact Kähler

manifold with holomorphic projection and let ρ : π1(B)→ Γg denote the associated holonomy
map. If π1(B) is amenable, then the holonomy group ρ(π1(B)) is finite, so that E has a finite
cover that is a product.

Proof. By Theorem 3.4.1 there is either a holonomy-invariant complex structure on the
fibres or the first MMM-class is non-trivial, which would contradict Theorem 3.2.3. Since
the automorphism group of a Riemann surface is finite, the result follows.

Surface bundles with holomorphic structures have also been studied by Harris in [Har],
where he considered non-degenerate families of curves. This means that the induced map to
the moduli space of Riemann surfaces considered above is assumed to be finite. Under this
assumption he was able to show that the vertical line bundle is ample and, hence, that the
total space is automatically algebraic ([Har], Th. 1). Moreover, any non-trivial monomial
in the MMM-classes whose cohomological degree is smaller than the dimension of the base
does not vanish ([Har], Cor. 5). There are certain cases of holomorphic bundles where one
can ensure that the natural map to the moduli space must be finite, which implies the
non-existence of certain types of holomorphic structures.
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Proposition 3.4.3. Let Σg → E
π→ B be a surface bundle and suppose that B = Σ1 × Σ2

decomposes as a direct product of Riemann surfaces. Then if e2
1 does not vanish, there is no

complex structure on the total space making the projection holomorphic.

Proof. Since by assumption some MMM-class in top degree is non-trivial, the map Φ : B →
Mg must have generically maximal rank. Suppose that the pre-image of some point, say
Φ−1(p0), has dimension greater than 0. Thus, some irreducible component V of this pre-
image must have complex dimension 1.

We let S1 = Σ1 × pt and S2 = pt×Σ2 and we denote by E1 resp. E2 the restriction of E
to these two embedded curves. Since the first MMM-class vanishes on tori by Theorem 3.2.3
we conclude that

e1(E) = e1(E2)[S1] + e1(E1)[S2].

Furthermore, since e2
1(E) 6= 0 and the bundles E1 and E2 are holomorphic, both coefficients

are in fact positive. We note further that both [S1].[V ] and [S2].[V ] are non-negative and at
least one of these numbers is strictly positive. Using the naturality of e1 we compute that

e1(E|V ) = e1(E2)[S1].[V ] + e1(E1)[S2].[V ] > 0.

Hence, the bundle E|V has non-trivial first MMM-class. We let Ṽ → V be a desingularisation
of V and note that the pullback of E to Ṽ also has non-trivial first MMM-class. But this
contradicts the fact that the induced map to the moduli space is constant on V and, hence, on
Ṽ . Thus, the map Φ is finite and by the results of Harris e2 is non-trivial, which contradicts
Theorem 3.2.5.

Although we have only proven Proposition 3.4.3 for the product of two Riemann surfaces,
the same proof works for an arbitrary product of Riemann surfaces so that any bundle over a
product of Riemann surfaces with e2

1 6= 0 admits no complex structure making the projection
holomorphic.





Chapter 4

Flat surface bundles

In this chapter we shall consider characteristic classes of flat bundles that have closed leaves.
In particular, we show that there exist flat bundles with closed leaves that have non-trivial
self-intersection numbers. Moreover, given any bundle with a section, we prove that this sec-
tion can be made a leaf of a foliation after stabilisation under a certain divisibility assumption
(Theorem 4.1.7). We also show that there exist flat bundles with symplectic holonomy that
have arbitrarily many leaves with prescribed self-intersection numbers.

The holonomy group of a flat bundle with a closed leaf lies in Diff+(Σh,k) and the
main result of this chapter is that the abelianisation of this group is R+ × Z2, if h ≥ 3
and k is at least 2. We also compute the abelianisation of the group of compactly supported
diffeomorphisms on R2 fixing the origin, which is a special case of a result originally proved by
Fukui in all dimensions. Our argument, which uses Sternberg Linearisation, is independent of
that given in [Fu], where the argument given seems to be incomplete in the two dimensional
case.

4.1 Closed leaves and horizontal foliations

Interesting examples of foliations on 4-manifolds come from considering the horizontal fo-
liations of flat surface bundles. In this section we will focus on the closed leaves of such
foliations. Let us first recall the definition of a flat bundle.

Definition 4.1.1. A surface bundle E is flat if and only if its holonomy map ρ admits a lift
to Diff+(Σh)

Diff+(Σh)

��
π1(B)

ρ //

ρ̄
88q

q
q

q
q

Γh

If B is a manifold, then this is equivalent to the existence of a foliation that is comple-
mentary to the fibres. Such a foliation wil be called a horizontal foliation.

Proposition 4.1.2. Let Σh → E → B be a surface bundle over a manifold B. Then E is
flat if and only if it admits a foliation that is complementary to the fibres.

63
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Proof. First suppose that E is flat, with holonomy ρ̄ : π1(B)→ Diff+(Σh). Let B̃
p→ B be

the universal cover of B. Then the pullback bundle p∗E = Σh × B̃ is trivial. Moreover, E
is isomorphic to the quotient of Σh × B̃ by the diagonal action of π1(B), where the action
on the first factor is given by deck transformations and on the second by ρ̄. The horizontal
foliation on Σh × B̃ descends to a horizontal foliation on the quotient so that E admits a
foliation that is complementary to the fibres.

Conversely, let F be a horizontal foliation. We choose a base point p ∈ B and consider
a loop γ(t) in B based at p. Let x be a point in the fibre Fp over p. There is a unique
lift γ̃x(t) of γ that is tangent to F and such that γ̃x(0) = x. We define a diffeomorphism
ρ(γ) : Fp → Fp by the formula

ρ(γ)(x) = γ̃x(1).

Since F is a foliation this map only depends on the homotopy class of γ and the choice of base
point p. Thus we obtain a map ρ̄ : π1(B) → Diff+(Σh). Moreover, ρ̄ is a homomorphism
and is a lift of the (topological) holonomy map ρ. We conclude that E is a flat bundle.

For a flat bundle E over a manifold a closed leaf of the horizontal foliation yields k
marked points in each fibre. The existence of such a foliation is thus equivalent to a lift of
the holonomy map ρ to the group of diffeomorphisms fixing k marked points Diff+(Σh,k)

Diff+(Σh,k)

��
π1(B)

ρ //

ρ̄
88p

p
p

p
p

Γh.

By taking pullbacks under a suitable finite cover of the base, one obtains a horizontal foliation
with a leaf S that intersects each fibre exactly once, in which case the holonomy of E lies
in Diff+(Σh,1). Moreover, the horizontal foliation induces a flat structure on the normal
bundle νS of S, which is given by composing ρ̄ with the derivative map at p:

Diff+(Σh,1)
Dp→ GL+(TpΣg) = GL+(2,R).

In [Mil], Milnor constructed flat bundles with non-trivial Euler class over oriented surfaces
and, hence, the image of the Euler class in H2(GL+

δ (2,R)) is non-trivial. Moreover, the self-
intersection of S in E is given by D∗p e. In view of this, to show that there are flat bundles
with horizontal leaves of non-zero self-intersection it will suffice to show that the map Dp

induces an injection H2(GL+
δ (2,R))→ H2(Diff+

δ (Σh,1)).
To this end, we let Gp be the (discrete) group of smooth diffeomorphism germs that fix

the marked point p. We then define

Diff+(Σh,1) π // Gp
D̄p // GL+(TpΣg)

s

ff ,

where π is the map taking a diffeomorphism fixing p to its germ at p and D̄p maps a
germ to its linear part. The kernel of the map π consists of diffeomorphisms with support
disjoint from the marked point p and will be denoted by Diff c(Σh,1). The final map has an
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obvious section given by considering a linear map as an element of Gp. Thus, to show that
the map H2(GL+

δ (2,R)) → H2(Diff+
δ (Σh,1)) is injective, it will be sufficient to show that

H2(Gp)→ H2(Diff+
δ (Σh,1)) is injective. We first prove the following lemma.

Lemma 4.1.3. The following sequence of groups is exact

1→ Diff c(Σh,1)→ Diff+(Σh,1)→ Gp → 1.

Proof. The only point to be checked here is that the final map is surjective. Let φ ∈ Gp be
a germ and assume that φ is defined on a convex neighbourhood U of p. We define

Φt(x) =

{
1
t
φ(tx), 0 < t ≤ 1

Dpφ(x), t = 0.

Since GL+(2,R) is connected we may take some path At between Dpφ and Id. The com-
position of Φt and At, which we denote by Ψt, then gives a path of diffeomorphisms from
φ to the identity, and without loss of generality we may take this path to be smooth. The
path Ψt then corresponds to a local flow about p which is generated by some time-dependent
vector field Xt. Since Xt(p) = 0 for all times 0 ≤ t ≤ 1, this local flow is defined on a
neighbourhood W ⊂ U of p at time t = 1. We choose a cutoff function β : W → [0, 1], with

β ≡ 1 on some neighbourhood of p and Supp(β) ⊂ W and set X̃t = β Xt. This vector field

can be extended as zero on the complement of W in Σh and we let Ψ̃t be the flow generated
by this vector field. Then by construction Ψ̃1 = φ as germs. Hence, the right most map in
the sequence above is indeed surjective.

We may now prove the existence of horizontal foliations that have compact leaves with
non-trivial self-intersection numbers.

Proposition 4.1.4. If h ≥ 3, then there exist flat surface bundles Σh → E → Σg with
horizontal foliations that have leaves of non-zero self-intersection.

Proof. We consider the last three terms of the five-term exact sequence in cohomology asso-
ciated to the extension of Lemma 4.1.3:

H1(Diff cδ (Σh,1))Gp → H2(Gp)
π∗→ H2(Diff+

δ (Σh,1)).

From our discussion above it is sufficient to show that the map π∗ is injective or by exactness
that H1(Diff cδ (Σh,1))Gp = 0. We claim that H1(Diff cδ (Σh,1)) is in fact trivial and by the
Universal Coefficient Theorem the same holds in cohomology.

Let Σε
h = Σh \Dε denote Σh with a disc of radius ε removed. We note that Diff c(Σh,1)

is isomorphic to the direct limit of the groups Diff c(Σε
h). By the stability result of Harer

H1(Γ1
h) = H1(Γh) for h ≥ 3 (cf. [Iva1]). Moreover, by [Pow] Γh is perfect for h ≥ 3. Finally,

by the classical result of Thurston the identity component of Diff c(Σε
h) is also perfect (see

[Th1]). The five-term sequence in homology then implies that H1(Diff cδ (Σ
ε
h)) = 0. Hence,

each of the groups H1(Diff cδ (Σ
ε
h)) is trivial and we conclude that H1(Diff cδ (Σh,1)) also

vanishes.
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One may interpret the proof of Proposition 4.1.4 in a more geometric fashion, which gives
a sharper result, and we note this in the following proposition.

Proposition 4.1.5. If h ≥ 3 and k ∈ Z, then there exist flat surface bundles Σh → E → Σg

with horizontal foliations that have closed leaves of self-intersection k.

Proof. Let ai, bi ∈ π1(Σg) denote the standard generators of the fundamental group and let
ξk be a flat GL+(2,R)-bundle over Σg that has Euler class k ≤ g − 1 as provided by [Mil].
This corresponds to a holonomy representation

ai 7→ Ai

bi 7→ Bi

for Ai, Bi ∈ GL+(2,R). Then by performing the extension trick of Lemma 4.1.3 we obtain
diffeomorphisms φi, ψi which agree with Ai, Bi in a small neighbourhood of p so that the
product η =

∏g
i=1[φi, ψi] has support disjoint from p, that is η ∈ Diff c(Σh,1). This group is

perfect and, thus, we may write η−1 =
∏g′

i=1[αi, βi] where αi, βi ∈ Diff c(Σh,1). We define a
flat bundle over Σg+g′ by the holonomy representation

ai 7→ φi, bi 7→ ψi for 1 ≤ i ≤ g

ag+j 7→ αj, bg+j 7→ βj for 1 ≤ j ≤ g′,

which we denote by ρ. This bundle then has a compact leaf S corresponding to the marked
point p. The Euler class of the normal bundle to S is computed from the induced holonomy
representation Dpρ on νS:

ai 7→ Dp(φi) = Ai, bi 7→ Dp(ψi) = Bi for 1 ≤ i ≤ g

ag+j 7→ Dp(αj) = Id, bg+j 7→ Dp(βj) = Id for 1 ≤ j ≤ g′.

In view of formula (2.4) in Section 2.4, it is clear that e(νS) = k and thus [S]2 = k

With the geometric construction of Proposition 4.1.5 we are now able to say when a
section S of a bundle E can become a leaf of a foliation after stabilisation.

Definition 4.1.6. A surface bundle E ′ over a surface is called a stabilisation of a bundle
E, if it is the fibre sum of E with a trivial bundle Σh × Σg′ . This is then a bundle over the
connected sum Σg#Σg′ = Σg+g′ that is trivial over the second factor.

We will show that under certain conditions any bundle E with a section S of self-
intersection k can be stabilised to a bundle E ′ that admits a horizontal foliation with a
closed leaf S ′ that agrees with S on E ′|Σg .

If the bundle E is trivial then after stabilisation it remains trivial. For a trivial bundle
the vertical Euler class e(E) is divisible by 2h − 2 and, hence, the same is true for the
self-intersection of S and its stabilisation S ′. Thus, the condition that e(E) is divisible by
2h− 2 is, in general, necessary for the existence of a stabilisation of the desired form. It is,
however, also sufficient and this is the content of the following theorem.
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Theorem 4.1.7. Let Σh → E → Σg be a surface bundle that has a section of self-intersection
k, where k is divisible by 2h − 2. Then after stabilisation E admits a flat structure whose
horizontal foliation has a closed leaf of self-intersection k.

Proof. We first stabilise E until the Milnor-Wood equality is satisfied for S. We let ḡ =
g + g′ denote the genus of the base of the stabilisation and let ρ̄ : π1(Σḡ) → Γh,1 be its
holonomy representation. Since the Milnor-Wood inequality is satisfied for S, it has a tubular
neighbourhood νS that is diffeomorphic to a flat GL+(2,R)-bundle. We let ξ denote the
corresponding horizontal foliation on νS. We extend ξ to a horizontal distribution ξ′ that
agrees with ξ on a (possibly smaller) neighbourhood of S. We choose curves ai, bi representing
the standard generators of π1(Σḡ) and let φi, ψi ∈ Diff+(Σh) be the holonomy maps induced
by ξ′, so that [φi] = ρ̄(ai) and [ψi] = ρ̄(bi) in Γh. Note that these diffeomorphisms depend
on the choice of curves and not just their homotopy classes.

By construction the distribution ξ′ is a foliation in a neighbourhood of S. Hence the
product of commutators η =

∏ḡ
i=1[φi, ψi] has compact support disjoint from the marked

point corresponding to the section S, and is thus an element in Diff c(Σ1
h). We next consider

the following diagram that relates the mapping class groups Γ1
h,Γh,1 and Γh

1

��

1

��
Z

��

Z

��
1 // π1(T1Σh) //

��

Γ1
h

��

// Γh // 1

1 // π1(Σh) //

��

Γh,1

��

// Γh // 1

1 1 .

Here Z is generated by a positive Dehn twist ∆∂ along an embedded curve parallel to the
boundary of Σ1

h and T1Σh denotes the unit tangent bundle of Σh.

Now the image of η in Γh,1 is trivial. Thus η = ∆k
∂ where k is the self-intersection of S.

This is because the second column is the central extension corresponding to the vertical Euler
class as a characteristic class in the group cohomology of Γh,1. By assumption k is divisible
by 2h− 2 and hence η ∈ H1(π1(T1Σh)) = H1(T1Σh) is trivial. Again this is because the left
most column is the central extension corresponding to the Euler class of the unit tangent
bundle over Σh and [η] is a multiple of the fibre class of this S1-bundle that is divisible by
2h− 2. Hence η−1 =

∏N
j=1[αj, βj] is a product of commutators in Γ1

h each of which lie in the
kernel of the natural map to Γh.

We let φj, ψj ∈ Diff+(Σ1
h) be representatives of the mapping classes αj, βj respectively,

and consider the product γ = η.
∏N

j=1[φj, ψj] in Diff c0(Σ1
h). Since this group is perfect we

may write γ−1 =
∏M

l=1[γl, δl]. Letting ai, bi be standard the generators for π1(Σḡ+N+M), we
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define a flat bundle via the holonomy map

ai 7→ φi, bi 7→ ψi for 1 ≤ i ≤ ḡ

aḡ+j 7→ αj, bḡ+j 7→ βj for 1 ≤ j ≤ N

aḡ+N+l 7→ γl, bḡ+N+l 7→ δl for 1 ≤ l ≤M.

This gives a horizontal foliation with a closed leaf of self-intersection k on a stabilisation of
E. That the bundle is a stabilisation of the original bundle follows since the mapping classes
represented by αj, βj, γl, , δl are trivial in Γh.

In [BCS] Bestvina, Church and Souto show the non-existence of certain lifts of bundles
with sections to the diffeomorphism group with marked points, using the bounds on the
Euler class given by the Milnor-Wood inequality. In particular, the diagonal section in the
product of two genus g surfaces provides such an example. However, by Theorem 4.1.7, these
examples do possess lifts after stabilisation.

4.1.1 Computation of H1(Diff
+
δ (Σh,k))

Our discussion above will enable us to calculate the first group homology of Diff+(Σh,1)
and, in particular, we will show that this group is not perfect. In fact it is clear that the group
Diff+(Σh,1) is not perfect, as there is a surjection to GL+(2,R) given by the derivative map
and

H1(GL+
δ (2,R)) = H1((SL(2,R)× R+)δ) = R+,

since SL(2,R) is a perfect group. But this is the only contribution to H1(Diff+
δ (Σh,1)) if

h ≥ 3. The proof of this fact is based on the following result due to Sternberg.

Theorem 4.1.8 (Sternberg’s Linearisation Theorem, [Ster]). Let φ be a smooth diffeomor-
phism defined in a neighbourhood U of the origin in Rn and let φ(0) = 0. Further, let
s1, ...sn ∈ C denote the eigenvalues (counted with multiplicities) of the Jacobian D0(φ) at the
origin and assume that

si 6= sm1
1 ...smnn ,

for all non-negative integers m1, ...,mn with
∑
mi > 1. Then there is a change of coordinates

ψ that fixes the origin so that on a possibly smaller neighbourhood W ⊂ U the following holds

ψφψ−1 = D0(φ).

Remark 4.1.9. We note that the hypotheses of Theorem 4.1.8 hold, in particular, if D0(φ) =
λ Id for λ 6= 0, 1. Sternberg’s Theorem may also be interpreted in terms of germs of diffeo-
morphisms, i.e. if the hypotheses of the theorem are satisfied for a germ φ ∈ Gp, then φ is
conjugate to the germ represented by Dp(φ).

Proposition 4.1.10. Let Σh be a surface of genus h ≥ 3. Then H1(Diff+
δ (Σh,1)) = R+.



4.1. Closed leaves and horizontal foliations 69

Proof. We consider the extension given in Lemma 4.1.3

1→ Diff c(Σh,1)→ Diff+(Σh,1)
π→ Gp → 1.

Since the group Diff c(Σh,1) is perfect (cf. Proposition 4.1.4), the associated five-term exact
sequence yields H1(Diff+

δ (Σh,1)) = H1(Gp). Next we consider the exact sequence

1→ Gp,Id → Gp
Dp→ GL+(2,R)→ 1,

where Gp,Id is the set of germs whose linear part is the identity. By Remark 4.1.9 above, if
φ ∈ Gp and Dp(φ) = λ Id for some λ > 1, then there is a ψ ∈ Gp so that ψφψ−1 = λ Id. We
set Aλ = λ Id, then for any φ ∈ Gp,Id, there is a germ ψ such that

Aλ = ψ(Aλφ)ψ−1.

Since Aλ is central in GL+(2,R), we may assume that ψ ∈ Gp,Id after conjugating the above
equation with the element Dpψ. Thus φ = ψ−1A−1

λ ψAλ = [ψ−1, A−1
λ ] and we have shown

that H1(Gp,Id)GL+(2,R) = 0.
In view of this, the five-term exact sequence gives

0 = H1(Gp,Id)GL+(2,R) → H1(Gp)→ H1(GL+
δ (2,R))→ 0

and, hence, H1(Diff+
δ (Σh,1)) = H1(GL+

δ (2,R)) = R+.

We let PDiff+(Σh,k) denote the group of pure orientation preserving diffeomorphisms,
i.e. an element φ ∈ PDiff+(Σh,k) is a diffeomorphism of Σh, which fixes a set of k marked
points pointwise. With exactly the same argument as in Proposition 4.1.10 we obtain the
following.

Proposition 4.1.11. Let Σh be a surface of genus h ≥ 3. Then H1(PDiff+
δ (Σh,k)) = (R+)k.

Using Proposition 4.1.11 it is now possible to compute the first homology of the full
diffeomorphism group Diff+(Σh,k). For this we need the following lemma.

Lemma 4.1.12. Let G be a finite group. Then all elements in H2(G) are torsion of order
at most |G|.

Proof. Let α be an element in H2(G) given by a G-representation ρ of the fundamental group

of some orientable surface π1(Σg)
ρ→ G. Since G is a finite group, the homomorphism ρ has

an associated |G|-fold covering map Σḡ
p→ Σg. The composition fρ ◦ p then represents |G|α,

and since the induced map on fundamental group is trivial so is |G|α. We conclude that
H2(G) consists of torsion elements of order at most |G|.

Proposition 4.1.13. Let Σh be a surface of genus h ≥ 3 and let k ≥ 2. Then

H1(Diff+
δ (Σh,k)) = R+ × Z2.
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Proof. By considering the action on the marked points induced by Diff+(Σh,k), we obtain
the following extension of groups

1→ PDiff+(Σh,k)→ Diff(Σh,k)→ Sk → 1.

The five-term exact sequence for group homology then gives

H2(Diff+
δ (Σh,k))→ H2(Sk)

∂→ H1(PDiff+
δ (Σh,k))Sk → H1(Diff+

δ (Σh,k))→ H1(Sk)→ 0.

By Proposition 4.1.11 we have that H1(PDiff+
δ (Σh,k)) = (R+)k, which, in particular, implies

that H1(PDiff+
δ (Σh,k))Sk = R+. By Lemma 4.1.12 the group H2(Sk) consists of torsion,

hence as R+ is torsion free the connecting homomorphism ∂ is trivial and we obtain the
following short exact sequence:

0→ R+ → H1(Diff+
δ (Σh,k))→ H1(Sk) = Z2 → 0.

Finally, since in R+ every element has a square root, this extension has a section and we
conclude that

H1(Diff+
δ (Σh,k)) = R+ × Z2.

4.1.2 Computation of H1(Diff
c
δ (R2, 0))

The proof of Proposition 4.1.10 above will allow us to calculate the first group homology
of Diff c(R2, 0), which here denotes the group of diffeomorphisms of the plane that have
compact support and fix the origin. This fact was stated in a more general form by Fukui
in [Fu], however his argument appears to be incomplete.

Fukui argues as follows (see [Fu], p. 485). Let φ ∈ Diff c(Rn, 0) have D0φ = Id, then

there is a product of commutators so that η = φ
∏g′

i=1[αi, βi] is the identity on some neigh-
bourhood of 0. He then claims that by Thurston’s result on the perfectness of the identity
component the group of diffeomorphisms, we may write η as a product of commutators of
elements in Diff c(Rn \ {0}), which denotes the group of compactly supported diffeomor-
phisms of Rn \ 0. In order to apply the result of Thurston, one must have that η is isotopic
to the identity through diffeomorphisms with compact support away from the origin. How-
ever, it is not clear that η is isotopic to the identity through diffeomorphisms with support
disjoint from the origin. In fact for n = 2 the mapping class group of compactly supported
diffeomorphisms on R2 \ {0} is isomorphic to Z (cf. [Iva1], Cor. 2.7 E). As a corollary of the
results we have obtained thus far we shall be able to give a complete proof of the theorem
stated by Fukui in the case n = 2.

Theorem 4.1.14. H1(Diff cδ (R2, 0)) = R+.

Proof. We have the following exact sequences

1→ Diff c(R2 \ {0})→ Diff c(R2, 0)
π→ Gp → 1

and
1→ Diff c0(R2 \ {0})→ Diff c(R2 \ {0})→ Z→ 1.
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We consider the five-term sequence in cohomology associated to the first exact sequence
above

0→ H1(Gp)→ H1(Diff cδ (R2, 0))→ H1(Diff cδ (R2\{0}))Gp δ→ H2(Gp)→ H2(Diff cδ (R2, 0)).

By Thurston’s result Diff c0(R2 \ {0}) is perfect and applying the five-term exact sequence
to the second exact sequence above implies that H1(Diff cδ (R2 \ {0})) = Z.

Next we consider the sequence of classifying spaces

BDiff cδ (R2, 0) // BGp // BGL+
δ (2,R) // BGL+(2,R).

The Euler class is a generator of H2(BGL+(2,R)) and the pullback to H2(Gp) is non-zero and
primitive, as one sees by evaluating this class on a flat GL+

δ (2,R)-bundle with Euler class 1,
thought of as an element H2(Gp). Moreover, a flat bundle with holonomy in Diff c(R2, 0) is
topologically trivial, since it admits a section with vanishing self-intersection number. Hence
the pullback of e to H2(Diff cδ (R2, 0)) is zero. By exactness of the five-term sequence above
e = δ(f) for some f ∈ H1(Diff cδ (R2 \ {0}))Gp ⊂ Z. Hence as e is a primitive, non-torsion
class, the connecting homomorphism for the five-term exact sequence in homology must be
surjective. Thus by exactness

H1(Diff cδ (R2, 0)) = H1(Gp) = R+,

where the second equality was shown in the proof of Proposition 4.1.10.

4.2 Closed leaves of flat bundles with symplectic holon-

omy

One may consider flat bundles with additional structure. In the context of surface bundles
with horizontal foliations it is natural to consider bundles whose horizontal foliations are
transversally symplectic. This is equivalent to the existence of a fibrewise symplectic form
that is holonomy invariant, and such a bundle will be called symplectically flat. In this way, a
flat bundle Σh → E → B with a transversal symplectic structure is equivalent to a holonomy
representation π1(B)

ρ→ Symp(Σh, ω), where ω is the symplectic form restricted to a fibre.
We shall for the most part suppress any explicit reference to the symplectic form, since by
Moser stability any two symplectic forms on Σh are equivalent after rescaling.

We shall first investigate the possible compact leaves of the horizontal foliation of a
symplectically flat bundle. To this end we denote by Symp(Σh,1) the group of symplec-
tomorphisms fixing a marked point p ∈ Σh. Furthermore, we shall denote by GSympp the
(discrete) group of symplectomorphism germs that fix the marked point p.

Let E be a flat bundle that is given by a holonomy homomorphism π1(Σg)
ρ→ Symp(Σh,1).

We note that such a flat structure induces a flat structure on the normal bundle of the
leaf S corresponding to the marked point, which is given by composing ρ with the map
Symp(Σh,1) → Sp(TpΣh) that maps φ to its derivative at the marked point p ∈ Σh. The
self-intersection of S can then be calculated directly from the holonomy representation Dpρ
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(see formula (2.4), Section 2.4). Moreover, by Darboux’s Theorem we may assume that the
symplectic form ω is standard in a neighbourhood of the marked point p. Thus we have the
following sequence

Symp(Σh,1) π // GSympp

D̄p // Sp(TpΣg)

s
jj

= SL(2,R),

where π is the map taking a symplectomorphism fixing p to its germ at p and D̄p maps a
germ to its linear part. The kernel of the map π will be denoted by Sympc(Σh,1) and consists
of symplectomorphisms whose supports are disjoint from p. The final map has an obvious
section given by considering an element of SL(2,R) as an element in GSympp .

By arguing exactly as in the smooth case, we see that the existence of symplectically flat
bundles that have closed horizontal leaves of non-zero self-intersection reduces to showing

that the map H2(GSympp )
π∗→ H2(Sympcδ(Σh,1)) is injective. As a first step we have the

analogue of Proposition 4.1.3.

Proposition 4.2.1. The following sequence of groups is exact

1→ Sympc(Σh,1)→ Symp(Σh,1)
π→ GSympp → 1.

Proof. We only need to show that the final map is surjective. Let φ ∈ GSympp be a germ. We
assume that φ is defined on a convex neighbourhood U of p and define

Φt(x) =

{
1
t
φ(tx), 0 < t ≤ 1

Dpφ(x), t = 0,

which is a smooth path of symplectomorphisms. Since SL(2,R) is connected there is a path
At between Dpφ and Id. The composition of Φt and At, which we denote by Ψt, then gives
a path of symplectomorphisms from φ to the identity and without loss of generality we may
assume that Ψt is smooth. This path then corresponds to a local flow about p, which is
generated by some time-dependent vector field Xt. Since Xt(p) = 0 for all times 0 ≤ t ≤ 1,
we may assume that Xt is defined on a contractible neighbourhood W ⊂ U of p for all times
0 ≤ t ≤ 1.

By the Cartan formula Ψt is a path of symplectomorphisms if and only if 0 = dιXtω,
and since W is contractible, there is a smooth family of Hamiltonians Ht for Xt on W .
We then choose a cutoff function β : W → [0, 1], with Supp(β) ⊂ W and β ≡ 1 on some

neighbourhood of p and set H̃t = β Ht. This function can be extended as zero on the
complement of W in Σh and the Hamiltonian flow Ψ̃t generated by H̃t is defined in such
a way that Ψ̃1 = φ as germs. Hence, the right most map in the sequence above is indeed
surjective.

We shall next discuss the abelianisation of Sympcδ(Σh,1). In order to be able to compute
H1(Sympcδ(Σh,1)) we will need to recall several natural homomorphisms on the group of

symplectomorphisms of an arbitrary symplectic manifold. We shall let S̃ympc0(M) denote
the universal cover of the identity component of the group of symplectomorphisms with
compact support. This may in turn be identified with homotopy classes of paths [ψt] in
Sympc0(M) based at the identity.
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Definition 4.2.2 (Flux homomorphism). Let (M,ω) be a symplectic manifold. We define

Flux : S̃ympc0(M)→ H1
c (M,R) by

Flux([ψt]) =

∫ 1

0

ιψ̇tω ∈ H
1
c (M,R).

This map is a well-defined, surjective homomorphism (cf. [McS1]). In the case where
M = Σk

h is a surface of genus h ≥ 2 with k boundary components, the identity component
of the symplectomorphism group is simply-connected and, hence, Flux descends to a well-
defined homomorphism on Sympc0(Σk

h). Furthermore, this Flux homomorphism satisfies the
following equivariance property, where ψ ∈ Sympc0(Σk

h) and φ ∈ Sympc(Σk
h) is arbitrary (cf.

[KM1], Lemma 6):
Flux(φψφ−1) = (φ−1)∗Flux(ψ). (4.1)

We next recall the definition of the Calabi map, which can be defined on any exact symplectic
manifold.

Definition 4.2.3 (Calabi homomorphism). Let (M,ω) be an exact symplectic manifold and
let Sympc0(M) denote the group of symplectomorphisms with compact support on M . We
choose a λ so that ω = −dλ and define Cal : Sympc0(M)→ R by

Cal(φ) = − 1

n+ 1

∫
M

φ∗λ ∧ λ ∧ ωn−1.

One can show that this map is surjective and that it is independent of the choice of λ on
the kernel of Flux (cf. [McS1]) . For any two elements φ, ψ ∈ Sympc0(M) the Calabi map
satisfies the following two properties:

Cal(φψ) = Cal(φ) + Cal(ψ) +
1

n+ 1

∫
M

Flux(φ) ∧ Flux(ψ) ∧ ωn−1 (4.2)

and for a commutator of elements

Cal([φ, ψ]) = Cal(φψ) + Cal(φ−1ψ−1) +
1

n+ 1

∫
M

Flux(φψ) ∧ Flux(φ−1ψ−1) ∧ ωn−1

= Cal(φ) + Cal(ψ) + Cal(φ−1) + Cal(ψ−1)

+
1

n+ 1

∫
M

Flux(φ) ∧ Flux(ψ) ∧ ωn−1

+
1

n+ 1

∫
M

Flux(φ−1) ∧ Flux(ψ−1) ∧ ωn−1

=
2

n+ 1

∫
M

Flux(φ) ∧ Flux(ψ) ∧ ωn−1, (4.3)

where we have used the fact that Flux is a homomorphism and Cal(φ−1) = −Cal(φ). The
subgroup Hamc(M) of Hamiltonian diffeomorphisms with compact support corresponds to
the kernel of the Flux homomorphism and the Calabi map restricts to homomorphism on
this group. We then have the following classical result of Banyaga.
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Theorem 4.2.4 (Banyaga, [Ban]). The kernel of the map Cal : Hamc(M)→ R is a simple,
and hence perfect, group.

By combining Theorem 4.2.4 and formula (4.1) we deduce the following lemma.

Lemma 4.2.5. For h ≥ 2, the Flux homomorphism induces a Γkh-equivariant isomorphism

H1(Sympc0,δ(Σ
1
h))→ H1

c (Σk
h,R),

where Γkh acts on H1(Sympc0,δ(Σ
1
h)) via conjugation and on H1

c (Σk
h,R) via φ.α = (φ−1)∗α.

As a final preliminary we need to understand the group of coinvariants H1
c (Σk

h,R)Γkh
.

Lemma 4.2.6. For any h ≥ 1, we have H1
c (Σk

h,R)Γkh
= 0.

Proof. By Poincaré duality the group H1
c (Σk

h,R)Γkh
is isomorphic to H1(Σk

h,R)Γkh
, where the

mapping class group acts via φ.a = φ∗a. Let {ai, bi, cj} be a basis of H1(Σk
h) such that {ai, bi}

is a standard symplectic basis for the homology of the closed surface obtained by filling the
boundary components and the cj are boundary components. Furthermore, let dj denote an
embedded curve so that a1, dj and c1, ...cj bound a (j + 2)-punctured sphere in Σk

h. We let
φai , φbi , φdj denote positive Dehn twists about these curves and compute

[(φai)∗ − Id](bi) = ai

[(φbi)∗ − Id](ai) = bi

[(φdj)∗ − Id](b1) = −a1 − c1 − ...− cj,

whence H1(Σk
h,R)Γkh

= 0.

We are now in a position to prove that the entire symplectomorphism group Sympc(Σk
h)

is perfect for sufficiently large genus.

Lemma 4.2.7. The group Sympc(Σk
h) is perfect for h ≥ 3.

Proof. We first consider the inclusion Sympc0(Σk
h) ↪→ Diff c0(Σk

h). By Moser stability this
map is a weak homotopy equivalence and, hence, we have the following exact sequence

1→ Sympc0(Σk
h)→ Sympc(Σk

h)→ Γkh → 1,

where Γkh denotes the mapping class group of diffeomorphisms with compact support in the
interior of Σk

h. If we consider the associated five-term exact sequence in homology we have

H1(Sympc0,δ(Σ
k
h))Γkh

→ H1(Sympcδ(Σ
k
h))→ H1(Γkh)→ 0.

By Lemma 4.2.5 the group H1(Sympc0,δ(Σ
k
h))Γkh

is isomorphic to H1
c (Σk

h,R)Γkh
, which vanishes

by Lemma 4.2.6. Furthermore, H1(Γkh) = 0 for h ≥ 3 (cf. Proposition 4.1.4) and we conclude
that H1(Sympcδ(Σ

1
h)) vanishes, that is Sympc(Σ1

h) is perfect.

With these facts we will now be able to prove the analogue of Proposition 4.1.4 for bundles
with symplectic holonomy.
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Proposition 4.2.8. If h ≥ 3, then there exist symplectically flat surface bundles with fibre
Σh, whose horizontal foliations have closed leaves of non-zero self-intersection.

Proof. It suffices to show that the map H2(GSympp )
π∗→ H2(Sympδ(Σh,1)) is injective (cf.

Proposition 4.1.4). Now if Σε
h = Σh \Dε denotes Σh with a disc of radius epsilon removed,

then Sympc(Σh,1) is isomorphic to the injective limit of the groups Sympc(Σε
h). By Lemma

4.2.7 each of the groups H1(Sympcδ(Σ
ε
h)) is trivial and hence H1(Sympcδ(Σh,1)) vanishes.

We then take the five-term exact sequence associated to the exact sequence of Proposition
4.2.1 to obtain

0 = H1(Sympcδ(Σh,1))G
Symp
p → H2(GSympp )

π∗→ H2(Sympδ(Σh,1)),

and the result follows by exactness.

There is also a geometric construction of symplectically flat bundles, whose horizontal
foliations have leaves with non-trivial self-intersection numbers. This will be somewhat more
general than that given in the smooth case and will be recorded in the following proposition.

Proposition 4.2.9. For h ≥ 3, there exist flat bundles Σh → E → Σg that have symplectic
holonomy and whose horizontal foliations have arbitrarily many closed leaves Sk of prescribed
self-intersection [Sk]

2 = mk ≤ h − 1. In particular, if mk = 0 we may assume that the
horizontal foliation in some neighbourhood νk of Sk is given by the kernel of a projection
νk = Σh ×D2 → D2.

Proof. We let ai, bi ∈ π1(Σg) denote the standard generators of the fundamental group and
let ξmk be a flat SL(2,R)-bundle over Σg with mk ≤ g− 1 as provided by [Mil] (cf. Theorem
2.3.2). This corresponds to a holonomy representation

ai 7→ Ai,k

bi 7→ Bi,k,

with Ai,k, Bi,k ∈ SL(2,R). Then by performing the extension trick of Proposition 4.2.1 we
obtain symplectomorphisms φi, ψi which agree with Ai,k, Bi,k in a small neighbourhood of
each marked point pk ∈ Σh. Moreover the product η =

∏g
i=1[φi, ψi] has support disjoint

from the marked points pk. That is η ∈ Sympc(Σε
h), where Σε

h = Σh \ (∪kDε(pk)) denotes
the surface Σh with a union of small ε-neighbourhoods of the marked points pk deleted.

By Lemma 4.2.7 this group is perfect, and we may write η−1 =
∏g′

i=1[αi, βi], where
αi, βi ∈ Sympc(Σε

h) ⊂ Sympc(Σh,k). We define a flat bundle over Σg+g′ by the holonomy
representation

ai 7→ φi, bi 7→ ψi for 1 ≤ i ≤ g

ag+j 7→ αj, bg+j 7→ βj for 1 ≤ j ≤ g′,

which we denote by ρ. This bundle then has compact leaves Sk corresponding to the marked
points pk. The Euler class of the normal bundle to Sk is computed from the induced holonomy
representation Dpkρ:

ai 7→ Dp(φi) = Ai,k, bi 7→ Dp(ψi) = Bi,k for 1 ≤ i ≤ g
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ag+j 7→ Dp(αj) = Id, bg+j 7→ Dp(βj) = Id for 1 ≤ j ≤ g′.

In view of formula (2.4) in Section 2.4 above, it follows that e(νSk) = mk. If mk = 0, we may
take the trivial flat structure on ξ0 and, hence, on some neighbourhood νk = Σh ×D2 of Sk
the horizontal foliation will be given as the kernel of the projection to the D2-factor.

We may now give examples of manifolds with symplectic pairs, both of whose kernel
foliations have closed leaves of non-zero self-intersection.

Corollary 4.2.10. There exist 4-manifolds that admit symplectic pairs (ω1, ω2) both of whose
kernel foliations F1,F2 have closed leaves L1, L2 with [Li]

2 6= 0.

Proof. We let E1 be a flat symplectic bundle with a section s1 such that [s1]2 6= 0. We
further let E2 be a flat symplectic bundle with two sections s2, t2, the first of which has
non-trivial self-intersection and the second of which is projectable (cf. Definition 2.5.5). The
existence of these bundles is guaranteed by Proposition 4.2.9. By a suitable choice of E1 we
may assume that the genus of its fibre g(F1) to be arbitrarily large. After stabilisation of
E2, we may also assume that the genus of the base of E2 is g(F1). By Proposition 2.5.6 the
Gompf sum

X = E1#F1=t2E2

admits a symplectic pair, with kernel foliations that we denote F̃i. Then by construction
the connect sums

σ1 = s1#F2

σ2 = s2#F1

are leaves of F̃i and [σi]
2 = [si]

2 6= 0.

For smooth diffeomorphisms we computed the abelianisation of Diff+(Σh,k). It is then
natural to try to determine the abelianisation of Symp(Σh,k), however one cannot mimic
the proof of Proposition 4.1.10 used above. The first step is still valid and thus one has
that H1(Sympδ(Σh,1)) = H1(GSympp ). There is also a version of the Sternberg Linearisation
Theorem for symplectic germs, but the normal form that it yields is not linear, and thus the
computation of H1(Sympδ(Σh,1)) remains an open question.

4.2.1 The case of genus 0

So far the results that we have obtained have been for bundles whose fibre Σh has been of
genus at least 3. We shall now consider the case of genus 0, where one can give a fairly
precise description of the possible compact leaves of a (symplectically) flat bundle.

Examples of sphere bundles with horizontal foliations that have closed leaves of arbitrary
self-intersection have been given by Mitsumatsu (cf. [Mit1]). We shall summarise his con-
struction here. Let R2 → ξk → Σg be a flat bundle of Euler class k ≤ g−1 as given by [Mil].
Then the sphere bundle Sk = S(ξk⊕R) is flat and has two sections L± corresponding to the
north and south poles of the fibre and [L±]2 = ±k.

We would of course like to have similar examples for flat bundles with symplectic holon-
omy. The flat structures that one obtains via the construction of Mitsumatsu cannot have



4.2. Closed leaves of flat bundles with symplectic holonomy 77

symplectic holonomy. For if so, then one would have a vertical symplectic form ωv that is
positive on each fibre, i.e. ωv([F ]) 6= 0, and vanishes identically on the leaves of the horizon-
tal foliation. But the set {L−, L+} generates H2(Sk,R), which is a contradiction. Thus in
order to produce horizontal foliations of sphere bundles with symplectic holonomy we will
have to adapt the argument of Proposition 4.2.8. Again we let ξk be a flat SL(2,R)-bundle
over Σg as above. We let ai, bi ∈ π1(Σg) denote the standard generators of the fundamental
group so that holonomy homomorphism for ξk is given by

ai 7→ Ai

bi 7→ Bi.

Then by performing the extension trick of Proposition 4.2.1 we obtain Hamiltonian diffeo-
morphisms φi, ψi, which have compact support inside some disc D2

− ⊂ R2. Moreover, the
product η =

∏g
i=1[φi, ψi] has Cal(η) = 0 and is the identity in some neighbourhood of the

origin. So in fact η has support in some annulus A ⊂ D2
−. If we consider D2

− ⊂ S2 as the
southern hemisphere of the 2-sphere we see that η may equally well be thought of as a diffeo-
morphism acting on the upper hemisphere, that is as an element in Hamc(D2

+). Then, since

Cal(−η) = 0, Banyaga’s Theorem implies that η−1 =
∏g′

j=1[αj, βj], with αj, βj ∈ Hamc(D2
+).

We then define a flat S2-bundle Ek over Σg+g′ with symplectic monodromies as follows:

ai 7→ φi, bi 7→ ψi for 1 ≤ i ≤ g

ag+j 7→ αj, bg+j 7→ βj for 1 ≤ j ≤ g′,

and by construction there is a leaf L corresponding to the south pole that has [L]2 = k.
Interestingly, this can be the only compact leaf of the horizontal foliation. For if L′ were any
other leaf then {L,L′} would generate H2(Ek,R) and this would contradict the existence of
a vertical symplectic form.





Chapter 5

Surface bundles and extended
Hamiltonian groups

Motivated by the problem of extending flat structures on the boundaries of surface bundles
to their interiors, we show that an arbitrary circle bundle over a surface can be filled by a
flat surface bundle after stabilisition. We may even assume that the horizontal foliation of
such a bundle is symplectic if the genus of the fibre is large enough. The condition that the
genus of the fibre is non-zero in the symplectic case is necessary by a result of Tsuboi, which
expresses the Euler class of the boundary circle bundle in terms of the Calabi invariant of
certain Hamiltonian extensions of the holonomies on the boundary to the disc.

We shall extend this result to the case of arbitrary Riemann surfaces. In the course of
generalising Tsuboi’s result we are naturally lead to consider extended Hamiltonian groups
as introduced by Kotschick and Morita. By considering the extended Hamiltonian groups
as extensions of the mapping class group of punctured surfaces, we also obtain a formula
that relates the Calabi invariant to the first MMM-class of surface bundles with boundary.
Finally, we resolve a special case of a question posed in [KM1] by showing that the second
MMM-class vanishes for surface bundles with holonomy in the extended Hamiltonian group.

5.1 Filling flat S1-bundles

Given an arbitrary manifold M it is natural to ask what sort of manifolds bound M . If M
is an S1-bundle then the natural class of null-cobordisms to consider are surface bundles,
whose fibre is a punctured surface Σ1

h. If M is in addition a flat S1-bundle, then one would
like to know when M bounds a flat surface bundle. To answer the latter question in full
generality is a subtle matter. However for bundles over compact surfaces we will show that
after stabilisation any flat S1-bundle can be filled in by a flat Σ1

h-bundle. We first make
precise what we mean by a stabilisation in this context.

Definition 5.1.1. Let E be a flat S1-bundle over Σg with holonomy representation given by

π1(Σg)
ρ→ Diff0(S1). Let Σg+g′ → Σg be the map that collapses Σg′ in the decomposition

Σg+g′ = Σg#Σg′ . Then the stabilisation of ρ is the flat bundle associated to the composition
of ρ with this collapsing map.

79
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If we allow the monodromies to be arbitrary, then it is an easy matter to show the
following.

Proposition 5.1.2. Let h ≥ 3 or h = 0 and let M be a flat S1-bundle. Then there is a flat
bundle Σ1

h → E → Σg, whose boundary is a stabilisation of M . In particular, there exist flat
Σ1
h-bundles whose boundaries have non-trivial Euler class.

Proof. Let ai, bi ∈ π1(Σg) denote the standard generators of the fundamental group and
let φi = ρ(ai) and ψi = ρ(bi) be the images of these generators in Diff0(S1) under the
monodromy homomorphism ρ. Since φi, ψi are isotopic to the identity, we may extend them
to diffeomorphisms φ̄i, ψ̄i on a collar of the boundary [0, 1]× S1 in such a way that

φ̄i(t, x) = (t, φi(x)) , ψ̄i(t, x) = (t, ψi(x)) for 0 ≤ t < ε

and
φ̄i(t, x) = ψ̄i(t, x) = Id for 1− ε < t ≤ 1.

We then extend by the identity to obtain φ̄i, ψ̄i ∈ Diff+(Σ1
h) such that η =

∏g
i=1[φ̄i, ψ̄i] lies

in Diff c(Σ1
h).

In the proof of Proposition 4.1.4 we saw that for h ≥ 3 the group Diff c(Σ1
h) is perfect

and for h = 0 this is the classical result of Thurston (cf. [Th1]). Thus we may write

η−1 =
∏g′

i=1[αi, βi], where αi, βi ∈ Diff c(Σ1
h). We define a flat bundle E over Σg+g′ by the

holonomy representation
ai 7→ φ̄i, bi 7→ ψ̄i for 1 ≤ i ≤ g

ag+j 7→ αj, bg+j 7→ βj for 1 ≤ j ≤ g′.

The boundary of E is a flat S1-bundle and by construction it has the following holonomy
representation:

ai 7→ φi, bi 7→ ψi for 1 ≤ i ≤ g

ag+j 7→ Id, bg+j 7→ Id for 1 ≤ j ≤ g′

so that ∂E is a stabilisation of M as required.
The second statement follows from the existence of flat S1-bundles with non-trivial Euler

classes (cf. [Mil]).

Proposition 5.1.2 implies that any flat circle bundle can be filled in by a flat disc bundle
after a suitable stabilisation. On the other hand, if we require that the bundle have symplectic
holonomy, then this is no longer true (cf. Theorem 5.2.1 below). However, if the fibre has
genus h ≥ 3, then one can indeed find a filling by a symplectically flat bundle after a suitable
stabilisation. To this end we shall need an analogue of the extension trick of Proposition
5.1.2 in the symplectic case.

Proposition 5.1.3. Let π1(Σg)
ρ→ Diff0(S1) be a flat structure on an S1-bundle M and

let φi, ψi denote ρ(ai), ρ(bi) respectively. Then there are symplectic extensions φ̃i, ψ̃i on the
annulus A = S1 × [0, 1] that are the identity in a neighbourhood of S1 × {1} such that∏g

i [φ̃i, ψ̃i] has support in the interior of A.
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Proof. Let F be the horizontal foliation given by the flat structure on M and let α ∈ Ω1(M)
be a defining 1-form for F . We choose a function φ on [0, 1], which is equal to t on a
neighbourhood of 0 and is identically zero for all t in a neighbourhood of 1. We set ω =
dt ∧ α + φ(t)dα on E = M × [0, 1] and let ∂

∂θ
denote a vector field that is tangent to the

fibres of M . Then

ω(
∂

∂t
,
∂

∂θ
) = α(

∂

∂θ
) 6= 0,

since F is transverse to the fibres of M and, thus, ω is a nowhere vanishing 2-form on E.
Furthermore, since F is a foliation we compute:

ω2 = (dt ∧ α + φ(t)dα)2

= 2φ(t)dt ∧ α ∧ dα = 0.

Thus Fω = Ker(ω) is a well-defined distribution that is transverse to the (annular) fibres
of E → Σg. Moreover, since ω = d(tα) in a neighbourhood of M × {0} this distribution is
integrable and transversally symplectic on this neighbourhood, and restricts to F on M×{0}.
On a neighbourhood of M×{1} the form ω reduces to dt∧α and again the kernel distribution
is integrable and agrees with F on this neighbourhood.

We choose a base point x0 ∈ Σg and embedded representatives ai, bi for the standard
generators of π1(Σg, x0). We let φ̄i, ψ̄i be the holonomies of the curves ai, bi given by the
distribution Fω. Then on S1 × {0} and near S1 × {1} these diffeomorphisms are given by
φi× Id and ψi× Id respectively, where φi, ψi are the images of the standard basis under the
holonomy representation of M . Since φi, ψi lie in Diff0(S1), we may alter the maps φ̄i, ψ̄i
near S1×{1} so that they restrict to the identity in a neighbourhood of S1×{1}. We shall
continue to denote these altered maps by φ̄i, ψ̄i.

We let Ω be the restriction of ω to the annular fibre over x0. Then the forms φ̄∗iΩ−Ω and
ψ̄∗i Ω − Ω are trivial in compactly supported cohomology, since the holonomies φ̄i, ψ̄i have
support in S1 × [0, 1) and the distribution defining them was transversally symplectic in a
neighbourhood of M × {0}. By applying a Moser isotopy, which will have support in the
interior of S1 × [0, 1], we obtain symplectomorphisms φ̃i, ψ̃i that are symplectic extensions
of φi, ψi respectively, and by construction

∏g
i [φ̃i, ψ̃i] has support in the interior of A.

Proposition 5.1.3 is the main step in extending flat structures symplectically and the
following result follows from this and the perfectness of Sympc(Σ1

h).

Theorem 5.1.4. Let M be a flat S1-bundle and assume that h ≥ 3. Then some stabilisation
of M bounds a flat Σ1

h-bundle with symplectic holonomy.

Proof. Let π1(Σg)
ρ→ Diff0(S1) be the holonomy representation associated to M and let

φ̃i, ψ̃i ∈ Symp(A) be the extensions given by Proposition 5.1.3. After a suitable choice of
symplectic form on Σ1

h, we may symplectically embed A = S1× [0, 1] in Σ1
h so that S1×{0}

maps to ∂Σ1
h . We then consider η =

∏g
i [φ̃i, ψ̃i] as an element in Sympc(Σ1

h). This group is
perfect by Lemma 4.2.7 and, thus, we may write η−1 as a product of g′ commutators. We
then define the associated flat bundle E ′ over Σg+g′ as in the proof of Proposition 5.1.2, and
by construction the boundary ∂E ′ is a stabilisation of M .
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Theorem 5.1.4 can be interpreted in terms of the five-term exact sequence of a certain
extension of groups. For this we let Symp(Σ1

h) as usual denote the group of symplectomor-
phisms of Σ1

h. We further let Symp(Σ1
h, ∂Σ1

h) denote those symplectomorphisms that restrict
trivially to the boundary. Then as a consequence of Proposition 5.1.3 the following sequence,
which is given by restriction to ∂Σ1

h, is exact:

1→ Symp(Σ1
h, ∂Σ1

h)→ Symp(Σ1
h)→ Diff+(∂Σ1

h) = Diff0(S1)→ 1.

With this notation we have the following proposition.

Proposition 5.1.5. For h ≥ 3 the connecting homomorphism in the five-term exact sequence
in real cohomology associated to the following exact sequence is trivial:

1→ Symp(Σ1
h, ∂Σ1

h)→ Symp(Σ1
h)→ Diff+(∂Σ1

h) = Diff0(S1)→ 1.

Proof. By the Universal Coefficient Theorem it suffices to show that the map

H2(Sympδ(Σ
1
h))→ H2(Diff0,δ(S

1))

is surjective on integral cohomology. This follows immediately from Theorem 5.1.4, since
any flat S1-bundle extends after stabilisation and this does not change the homology class
represented by this bundle in H2(Diff0,δ(S

1)).

The Godbillon-Vey class of the horizontal foliation of a flat S1-bundle M defines an
element GV in H2(Diff0,δ(S

1),R), which is non-trivial by the work of Thurston (cf. [Bott]).
It is possible that the Godbillon-Vey class provides an obstruction to the existence of a flat
symplectic bundle E that bounds M . However, by Proposition 5.1.5 the image of the class
GV in H2(Sympδ(Σ

1
h),R) is non-trivial. Geometrically, this means that after stabilisation

the horizontal foliation of any S1-bundle extends to a transversally symplectic foliation on
some surface bundle E with fibre Σ1

h. In particular, the Godbillon-Vey class is not an
obstruction to finding a null-cobordism that extends the horizontal foliation of M to the
interior of E symplectically.

5.2 Flat bundles and the extended Hamiltonian group

We have seen that after a stabilisation any flat circle bundle over a surface can be filled by a
flat disc bundle with smooth holonomy. However, as was shown in [Tsu], it is not in general
possible to fill in a flat circle bundle by a flat disc bundle that has symplectic holonomy,
since the existence of such a filling implies that the Euler class of the circle bundle vanishes.
More specifically Tsuboi proved the following theorem.

Theorem 5.2.1 ([Tsu]). Let ψ : π1(Σg) → Diff0(S1) be a homomorphism and let ai, bi
be standard generators of π1(Σg). Furthermore, let fi, hi ∈ Symp(D2) be extensions of
ψ(ai), ψ(bi) respectively. Then Cal([f1, h1]...[fg, hg]) is a non-zero multiple of the Euler class
of the associated S1-bundle evaluated on the fundamental class [Σg].
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In the case of a disc, a diffeomorphism is symplectic if and only if it is Hamiltonian. For
bundles with fibres of higher genus we shall generalise Tsuboi’s result under the assumption
that the holonomies are Hamiltonian. As a first step, following [Tsu] we will show that it is
always possible to extend diffeomorphisms on the boundary of a manifold M to its interior in
a volume preserving manner. It will suffice to consider the case M = [0, 1)×X and to show
that any diffeomorphism of the boundary extends to a volume preserving diffeomorphism on
M that has compact support. The following is a slight refinement of Lemma 2.2 in [Tsu].

Lemma 5.2.2. Let M = [0, 1)×X and let Ω be a volume form of finite total volume. Then
the map Diff cΩ(M)→ Diff0(∂M) given by restriction is surjective.

Proof. Let (t, x) be coordinates on M . We choose a volume form Ω∂M on ∂M = X so that

Ω|∂M = dt ∧ Ω∂M and set Ω̃ = dt ∧ Ω∂M on M .
Let λ be a step function such that λ(x) = 0 in a neighbourhood of 0 and λ(x) = 1 in a

neighbourhood of 1, and define a volume form on M by Ω̄ = λ Ω̃+(1−λ)Ω. After multiplying
Ω̄ by an appropriate positive function, we may assume that Ω̄ has the same total volume
as Ω and that it agrees with the original form near the boundary of M . We then consider
the family of forms Ωs = sΩ̄ + (1 − s)Ω, which has the property d

ds
[Ωs] = 0. Moreover, by

construction Ωs = Ω near {0} × ∂M and Ωs = Ω̃ on {1} × ∂M for all s.
Applying the Moser trick we obtain a compactly supported isotopy φs such that φ∗sΩs =

Ω0 and φs|∂M = Id for all s. Thus, without loss of generality, we shall assume that Ω is
dt ∧ Ω∂M for some volume form Ω∂M on the boundary. Let h ∈ Diff0(∂M) and choose an
isotopy hs joining h0 = Id to h1 = h. We let ξs be the time dependent vector field generating
hs and define the divergence of ξs by

div(ξs)Ω∂M = dιξsΩ∂M .

We then define a vector field on M by Xs = ξs+t div(ξs)
∂
∂t

. By the Cartan formula LXsΩ = 0.
Moreover, the form ιXsΩ is identically zero when restricted to ∂M , hence ιXsΩ is exact for
all s and there are forms αXs that depend smoothly on s so that ιXsΩ = dαXs . Finally, by
multiplying with a cut off function λ as defined above, the Hamiltonian flow generated by
α̃Xs = λαXs will have compact support and, hence, provides the desired extension to M .

As an immediate corollary we obtain an analogous exact sequence for arbitrary manifolds
with non-empty boundary. Here the group DiffΩ

0 (M,∂M) denotes those volume preserving
diffeomorphisms that are isotopic to the identity and restrict to the identity on the boundary.

Corollary 5.2.3. The following sequence is exact

1→ DiffΩ
0 (M,∂M)→ DiffΩ

0 (M)→ Diff0(∂M)→ 1.

We shall now restrict our attention to the case of symplectic surfaces. To this end we
choose a symplectic form ω on Σ1

h and consider the group of symplectomorphisms Symp(Σ1
h)

of (Σ1
h, ω). We let Symp(Σ1

h, ∂Σ1
h) denote those symplectomorphisms that restrict to the

identity on ∂Σ1
h. In this case Corollary 5.2.3 implies the exactness of the following sequence:

1→ Symp(Σ1
h, ∂Σ1

h)→ Symp(Σ1
h)→ Diff+(∂Σ1

h) = Diff0(S1)→ 1. (5.1)
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We claim that there is also a similar sequence for Hamiltonian diffeomorphisms, where as
usual a symplectomorphism ψ ∈ Symp0(Σ1

h) will be called Hamiltonian if it is isotopic to the
identity via an isotopy ψt such that ιψ̇tω = dHt for 0 ≤ t ≤ 1. This is immediate, as given
any diffeomorphism f of the boundary of Σ1

h, the proof of Lemma 5.2.2 gives a Hamiltonian
extension of f to Σ1

h. So one has an exact sequence:

1→ Ham(Σ1
h, ∂Σ1

h)→ Ham(Σ1
h)→ Diff+(∂Σ1

h) = Diff0(S1)→ 1, (5.2)

whereHam(Σ1
h, ∂Σ1

h) denotes the intersection Symp(Σ1
h, ∂Σ1

h)∩Ham(Σ1
h). We saw in Section

4.2 that the compactly supported Hamiltonian group may be thought of as the kernel of a
Flux homomorphism (cf. Definition 4.2.2). For surfaces with boundary one may also define
a Flux homomorphism Symp0(Σ1

h)→ H1(Σ1
h,R) via the formula

Flux(ψ) =

∫ 1

0

ιψ̇tω dt,

where ψt is an isotopy joining ψ to the identity. As in the compactly supported case, one can
show that Flux(ψ) = [λ− ψ∗λ] for any primitive λ such that ω = −dλ (cf. [McS1], Lemma
10.14). Hence, Flux is well-defined independently of the choice of isotopy ψt and primitive
λ, and Ker(Flux) = Ham(Σ1

h) as the following lemma shows.

Lemma 5.2.4. Let Σ1
h be a surface with one boundary component. Then Ham(Σ1

h) =
Ker(Flux).

Proof. We have the following commutative diagram

Sympc0(Σ1
h)

Flux //

��

H1
c (Σ1

h,R)
s

nn

∼=
��

Symp0(Σ1
h)

Flux // H1(Σ1
h,R),

where the upper Flux map has a continuous (set-theoretic) section s (cf. [McS1], p. 318).
Since H1

c (Σ1
h,R) ∼= H1(Σ1

h,R) for a surface with one boundary component, the bottom Flux
map also has such a section and, thus, defines a fibration:

Ker(Flux)→ Symp0(Σ1
h)

Flux→ H1(Σ1
h,R).

Hence, the inclusion Ker(Flux) ↪→ Symp0(Σ1
h) is a weak homotopy equivalence, and if

ψ ∈ Ker(Flux), then there is an isotopy ψt joining ψ to the identity that is wholly contained
in Ker(Flux). For such an isotopy∫ t

0

ιψ̇sω ds is exact for all t

and it follows that
d

dt

∫ t

0

ιψ̇sω ds = ιψ̇tω is exact for all t

and, hence, ψ is Hamiltonian. Conversely, if ψt is a Hamiltonian isotopy then

Flux(ψ) =

∫ 1

0

ιψ̇sω ds =

∫ 1

0

dHs ds = 0 ∈ H1(Σ1
h,R).
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One may also define a Calabi homomorphism Cal on Ham(Σ1
h, ∂Σ1

h). For this one chooses
a primitive λ so that ω = −dλ and defines

Cal(φ) = −1

3

∫
Σ1
h

φ∗λ ∧ λ.

Again this definition is independent of the choice of λ (see [McS1]).
We will extend Tsuboi’s result to bundles with fibre Σ1

h, and then to the so-called extended
Hamiltonian group. In order to do this we shall need to reinterpret Theorem 5.2.1 in terms
of the five-term exact sequence associated to the exact sequence (5.2) for cohomology groups
taken with real coefficients. Now the map Cal is an element of H1(Hamδ(D

2, ∂D2)) and we
claim that it is invariant under the conjugation action of Ham(D2). For let ψ ∈ Ham(D2)
and φ ∈ Ham(D2, ∂D2), and let λ be a primitive such that ω = −dλ. Then ψ∗λ is also a
primitive for ω and we have∫

D2

φ∗λ ∧ λ =

∫
D2

φ∗(ψ∗λ) ∧ (ψ∗λ) =

∫
D2

(ψφψ−1)∗λ ∧ λ. (5.3)

Thus, in fact, Cal ∈ H1(Hamδ(D
2, ∂D2))Diff0(S1) and we claim that Tsuboi’s result, and

its extension, can be interpreted as saying that the image of Cal under the connecting
homomorphism in the five-term exact sequence is a non-zero multiple of the Euler class e
considered as an element in the real group cohomology of Diff0(S1).

For this we will need an explicit cocycle description of the connecting homomorphism in
the five-term exact sequence. This along with several important facts about the five-term
exact sequence have been gathered in Appendix A.

Theorem 5.2.5. Consider the extension of groups

1→ Ham(D2, ∂D2)→ Ham(D2)→ Diff0(S1)→ 1,

and let δ denote the connecting homomorphism in the five-term exact sequence in real coho-
mology. Then δ[Cal] is a non-zero multiple of the Euler class in H2(Diff0(S1),R).

Proof. In order to verify the equality δCal = µ e in real cohomology, it suffices to evaluate
both sides on 2-cycles Z in H2(Diff0(S1),Z). Such a cycle may be thought of as the image
of the fundamental class under the map induced by a representation of a surface group

π1(Σg)
ψ→ Diff0(S1). If we let ai, bi be standard generators of π1(Σg), then a generator of

H2(π1(Σg)) may be described by the group 2-cycle

z = (a1, b1) + (a1b1, a
−1
1 ) + ...+ (a1b1...bg−1a

−1
g , b−1

g )

− (2g + 1)(e, e)−
g∑
i=1

(ai, a
−1
i ) + (bi, b

−1
i ).

Since [a1, b1]...[ag, bg] = e in π1(Σg), we compute that

∂z =

g∑
i=1

(ai) + (a−1
i ) + (bi) + (b−1

i )−
g∑
i=1

[(ai)− (e) + (a−1
i ) + (bi)− (e) + (b−1

i )]− 2g(e)

+ ([a1, b1]...[ag, bg])− (e) = 0.
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We let fi, hi denote representatives of ψ(ai), ψ(bi) in Diff0(S1) considered as a quotient
group, and let z̃ be the associated lift of the fundamental cycle above. Then we compute

∂z̃ = ([f1, h1]...[fg, hg])− (e).

Thus, by Lemmas A.1 and A.3, there is a set-theoretic extension CalS of Cal to Ham(D2)
such that

±δCal(Z) = δ̄Cal(Z) = δCalS(ψ∗[Σg]) = CalS(∂z̃)

= CalS(([f1, h1]...[fg, hg])− (e)) = Cal([f1, h1]...[fg, hg]),

and by Proposition 5.2.6 this is a multiple of the Euler class. Thus we conclude that δCal =
µ e for some non-zero µ ∈ R.

With this formulation it is an easy matter to extend Tsuboi’s result to surfaces of higher
genus.

Proposition 5.2.6. Let ψ : π1(Σg)→ Diff0(S1) be a homomorphism and let ai, bi be stan-
dard generators of π1(Σg). Let fi, hi ∈ Ham(Σ1

h) be any extensions of ψ(ai), ψ(bi) respec-
tively. Then Cal([f1, h1]...[fg, hg]) is a non-zero multiple of the Euler class of the associated
S1-bundle evaluated on the fundamental class [Σg].

Proof. By Lemma 5.2.2 we may assume that the extensions fi, hi are Hamiltonian and have
support in a collar K = [0, 1) × S1 of the boundary. We may then consider K ⊂ D2 with
an appropriately chosen area form Ω on D2 and fi, hi as elements in DiffΩ(D2). We then
compute

ψ∗δCal([Σg]) = CalΣ
1
h([f1, h1]...[fg, hg]) = CalD

2

([f1, h1]...[fg, hg]), (5.4)

where the first equality follows as in Theorem 5.2.5 and the second follows from our choice
of extensions. The latter value is µ e([Σg]) by Theorem 5.2.5. Thus since the left hand side
of equation (5.4) is independent of any choices we conclude that for any extensions fi, hi

CalΣ
1
h([f1, h1]...[fg, hg]) = µ e([Σg]).

In particular, it follows by the exactness of the five-term sequence that the boundary of
any flat bundle with holonomy in Ham(Σ1

h) is trivial as an S1-bundle. Furthermore, with our
interpretation of Tsuboi’s result we may extend our discussion to the extended Hamiltonian
group. To this end we first define an extended version of the Flux homomorphism, which
will in general only be a crossed homomorphism (cf. [KM1]).

Definition 5.2.7 (Extended Flux). We define F̃ luxλ : Symp(Σ1
h)→ H1(Σ1

h,R) by

F̃ luxλ(φ) = [(φ−1)∗λ− λ] for some fixed primitive −dλ = ω.

This definition depends in an essential way on the choice of primitive λ. For if λ′ is another
primitive, then λ− λ′ = α is closed and

F̃ luxλ(φ) = F̃ luxλ′(φ) + [(φ−1)∗α− α]. (5.5)
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In terms of group cohomology this means that F̃ luxλ and F̃ luxλ′ are cohomologous, when
considered as elements in H1(Symp(Σ1

h), H
1(Σ1

h,R)). The extended Hamiltonian group

H̃am(Σ1
h) is defined as the kernel of F̃ luxλ, which is a subgroup since F̃ luxλ is a crossed

homomorphism. The group Ham(Σ1
h) is contained in H̃am(Σ1

h) and we may extend the

Calabi homomorphism to a map C̃alλ on the group

H̃am(Σ1
h, ∂Σ1

h) = Symp(Σ1
h, ∂Σ1

h) ∩ H̃am(Σ1
h)

by defining

C̃alλ(φ) = −1

3

∫
Σ1
h

φ∗λ ∧ λ =
1

3

∫
Σ1
h

(φ−1)∗λ ∧ λ,

where λ is the primitive chosen in the definition of F̃ luxλ. This is a homomorphism on

H̃am(Σ1
h, ∂Σ1

h), since the following holds on Symp(Σ1
h, ∂Σ1

h) (cf. [KM2], Prop. 19)

C̃alλ(φψ) = C̃alλ(φ) + C̃alλ(ψ) +
1

3
F̃ luxλ(φ) ∧ (φ−1)∗F̃ luxλ(ψ). (5.6)

Again the definition of C̃alλ depends on the choice of primitive λ. However, we do have the
following technical lemma, which will be important in showing the equivariance of C̃alλ.

Lemma 5.2.8. Let φ ∈ H̃amλ(Σ
1
h, ∂Σ1

h)∩ H̃amλ′(Σ
1
h, ∂Σ1

h) for two different primitives λ, λ′

and set α = λ− λ′, further assume that φ∗α− α = dHφ is exact. Then C̃alλ(φ) = C̃alλ′(φ).

Proof. By assumption λ− (φ−1)∗λ is exact and hence φ∗λ−λ = dFφ is also exact. Since the
boundary of Σ1

h is connected we may further assume that Fφ = 0 on ∂Σ1
h. We compute

C̃alλ(φ) = −1

3

∫
φ∗λ ∧ λ

= −1

3

∫
(φ∗λ− λ) ∧ λ

= −1

3

∫
dFφ ∧ λ

= −1

3

∫
d(Fφλ)− Fφ ∧ dλ

= −1

3

∫
Fφω.

Similarly one has

C̃alλ′(φ) = −1

3

∫
Fφω −

1

3

∫
Hφω,
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where φ∗α− α = dHφ and again we assume that Hφ = 0 on ∂Σ1
h. We next compute

−
∫
Hφω =

∫
Hφdλ

=

∫
d(Hφλ)− dHφ ∧ λ

=

∫
(α− φ∗α) ∧ λ

=

∫
α ∧ λ− φ∗α ∧ λ

=

∫
φ∗α ∧ φ∗λ− φ∗α ∧ λ

=

∫
φ∗α ∧ (φ∗λ− λ)

= 0

since λ− φ∗λ = dFφ, dα = 0 and Fφ|∂Σ1
h

= 0.

Lemma 5.2.8 then implies that C̃alλ is equivariant under the conjugation action of H̃am(Σ1
h).

Corollary 5.2.9. Let ψ ∈ H̃amλ(Σ
1
h), then C̃alλ = C̃alψ∗λ. In particular, C̃alλ is equivari-

ant under the action of H̃amλ(Σ
1
h).

Proof. Let λ′ = ψ∗λ, then λ′ is also a primitive with −dλ′ = ω and α = λ′ − λ = dHψ is

exact since ψ ∈ H̃amλ(Σ
1
h). By formula (5.5), it follows that F̃ luxλ = F̃ luxλ′ and hence

H̃amλ(Σ
1
h, ∂Σ1

h) = H̃amλ′(Σ
1
h, ∂Σ1

h).

By applying Lemma 5.2.8 we conclude that C̃alλ = C̃alψ∗λ. Furthermore this implies

C̃alλ(φ) = −1

3

∫
φ∗λ ∧ λ

= −1

3

∫
φ∗(ψ∗λ) ∧ ψ∗(λ)

= −1

3

∫
(ψφψ−1)∗λ ∧ λ

= C̃alλ(ψφψ
−1),

which is the desired equivariance.

We may now prove an analogue of Tsuboi’s result for the extended Hamiltonian group.
For the sake of notational expediency, we shall drop any explicit references to λ.

Theorem 5.2.10. Let ψ : π1(Σg)→ Diff0(S1) be a homomorphism and let ai, bi be standard

generators of π1(Σg). Let fi, hi ∈ H̃am(Σ1
h) be any extensions of ψ(ai), ψ(bi) respectively.
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Then C̃al([f1, h1]...[fg, hg]) is a non-zero multiple of the Euler class of the associated S1-
bundle evaluated on the fundamental class [Σg]. In particular, if Σ1

h → E → Σg is a flat
bundle with holonomy in the extended Hamiltonian group, then the boundary is a trivial
bundle.

Proof. We consider the commuting diagram

1 // Ham(Σ1
h, ∂Σ1

h)
//

��

Ham(Σ1
h)

//

��

Diff0(S1) //

��

1

1 // H̃am(Σ1
h, ∂Σ1

h)
// H̃am(Σ1

h)
// Diff0(S1) // 1.

The five-term sequence then gives the following commuting triangle

H1(Hamδ(Σ
1
h, ∂Σ1

h),R)Diff0(S1) δ // H2(Diff0,δ(S
1),R)

H1(H̃amδ(Σ
1
h, ∂Σ1

h),R)Diff0(S1)

OO
δ

44hhhhhhhhhhhhhhhhhhh

.

By Corollary 5.2.9 we see that C̃al ∈ H1(H̃amδ(Σ
1
h, ∂Σ1

h),R)Diff0(S1). If ι denotes the

inclusion of Ham(Σ1
h, ∂Σ1

h) into H̃am(Σ1
h, ∂Σ1

h), then ι∗C̃al = Cal and, hence, δ(C̃al) =
δ(Cal) is also a multiple of the Euler class by Proposition 5.2.6.

The second statement follows from the exactness of the five-term sequence.

A comparison of Theorem 5.1.4 and Theorem 5.2.10 exhibits a stark difference between

the two groups Symp(Σ1
h) and H̃am(Σ1

h).

5.3 The Calabi map and the first MMM-class

We have seen that the Euler class of the boundary of a surface bundle with one boundary
component can be interpreted as the image of the Calabi map under the connecting homo-
morphism of a certain five-term exact sequence. We shall give a similar construction for the
first Mumford-Miller-Morita (MMM) class e1, which represents a generator of H2(Γ1

h,R) ∼= R
for h ≥ 3. Recall that the first MMM-Class is up to a constant just the signature of a surface
bundle with fibre Σ1

h (cf. [Mor1]).

For this purpose we will consider extended Flux homomorphisms F̃ lux : Sympc(Σ1
h) →

H1
c (Σ1

h), which are by definition crossed homomorphisms that restrict to the ordinary flux
map on Sympc0(Σ1

h). Any such crossed homomorphism defines an element in
H1(Sympc(Σ1

h), H
1
c (Σ1

h,R)) and this group has been computed by Kotschick and Morita (cf.
[KM1], [KM2]).

When one has such a map one may define the extended Hamiltonian group H̃amc(Σ1
h)

as the kernel of F̃ lux and one obtains the following extension of groups

1→ Hamc(Σ1
h)→ H̃amc(Σ1

h)
p→ Γ1

h → 1. (5.7)
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The number of such extensions is, in a sense, rather small, as we have the following lemma,
which can be found in [KM2].

Lemma 5.3.1. Let F̃ lux1, F̃ lux2 be two extended Flux homomorphisms, then as classes in
H1(Sympc(Σ1

h), H
1
c (Σ1

h,R))

[F̃ lux1]− [F̃ lux2] = [a.p∗kR],

where kR ∈ H1(Γ1
h, H

1
c (Σ1

h,R)) ∼= R is the generator defined by the extended Johnson homo-
morphism of Morita.

Proof. We let ∆ = F̃ lux1 − F̃ lux2. For φ ∈ Sympc0(Σ1
h) and ψ ∈ Sympc(Σ1

h) we see that on
the level of cochains

∆(φ.ψ) = [F̃ lux1 − F̃ lux2](φ.ψ) = [F̃ lux1(φ)− F̃ lux2(φ)] + (φ−1)∗[F̃ lux1(ψ)− F̃ lux2(ψ)]

= [Flux(φ)− Flux(φ)] + [F̃ lux1(ψ)− F̃ lux2(ψ)]

= [F̃ lux1(ψ)− F̃ lux2(ψ)] = ∆(ψ).

Moreover, ∆ vanishes on Sympc0(Σ1
h) by definition and is coclosed, hence [∆] = p∗[β] for

some [β] ∈ H1(Γ1
h, H1(Σ1

h,R)). Now this group is isomorphic to R and is generated by the
extended Johnson homomorphism of Morita (cf. [KM2] and [Mor2]).

Next we define a pairing

H1(G,H1
c (Σ1

h,R))×H1(G,H1
c (Σ1

h,R))→ H2(G,R),

which we denote [α.β] for classes [α], [β] ∈ H1(G,H1
c (Σ1

h,R)). This is defined via the follow-
ing formula

α.β(φ, ψ) = α(φ) ∧ (φ−1)∗β(ψ).

The induced map on cohomology is well-defined independently of the chosen representatives,
and is natural with respect to pullbacks (cf. [KM2], Lemma 18).

We shall let F̃ luxc denote F̃ luxλ for a fixed primitive λ so that in general

[F̃ lux] = [F̃ luxc] + a p∗kR,

for some a ∈ R. We may now prove the following theorem.

Theorem 5.3.2. Let h ≥ 2 and let

1→ Hamc(Σ1
h)→ H̃amc

a(Σ
1
h)

p→ Γ1
h → 1

be the extension associated to the extended Hamiltonian group defined by the extended flux

map F̃ luxa = F̃ luxc + a p∗kR. Then the image of [Cal] ∈ H1(Hamc(Σ1
h),R)Γ1

h under the
connecting homomorphism of the five-term exact sequence is ±1

3
a2e1. In particular, if a is

non-zero, then any flat bundle with holonomy in H̃amc
a(Σ

1
h) has signature zero.
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Proof. We consider the following part of the five-term exact sequence associated to the
extended Hamiltonian group

H1(H̃amc
a(Σ

1
h),R)→ H1(Hamc(Σ1

h),R)Γ1
h

δ→ H2(Γ1
h,R).

We first claim that the Calabi map lies in the invariant part of H1(Hamc(Σ1
h),R). For if λ

is a primitive for the symplectic form ω on Σ1
h, then so is ψ∗λ for any ψ ∈ H̃amc

a(Σ
1
h). Thus,

since the Calabi map is independent of the choice of primitive for any φ ∈ Hamc(Σ1
h), we

compute that

Cal(φ) = −1

3

∫
Σ1
h

φ∗λ∧λ = −1

3

∫
Σ1
h

φ∗(ψ∗λ)∧(ψ∗λ) = −1

3

∫
Σ1
h

(ψφψ−1)∗λ∧λ = Cal(ψφψ−1),

and [Cal] lies in H1(Hamc(Σ1
h),R)Γ1

h as claimed.

If i denotes the inclusion H̃amc
a(Σ

1
h) ↪→ Sympc(Σ1

h), then by definition F̃ luxa vanishes

on H̃amc
a(Σ

1
h) and we see that

i∗[F̃ luxc] = −a.i∗(p∗[kR]).

Let f = C̃alλ and note that by formula (5.6) this map satisfies the hypotheses of Lemma

A.4. Thus we have an explicit description of the connecting homomorphism in terms of C̃alλ.
More precisely, let φ, ψ ∈ Γ1

h be considered as elements of the quotient, then we compute

δ(Cal)(φ, ψ) = C̃alλ(φ) + C̃alλ(ψ)− C̃alλ(φ.ψ) = −1

3
F̃ luxc(φ) ∧ (φ−1)∗F̃ luxc(ψ)

= −1

3
a.i∗(p∗kR)(φ) ∧ (φ−1)∗a.i∗(p∗kR)(ψ)

= −1

3
a2kR(φ) ∧ (φ−1)∗kR(ψ).

Thus we have shown that

[δ(Cal)] = ±1

3
a2[kR.kR],

where the sign ambiguity is a consequence of Lemma A.3. Now we know by [Mor3] that
[kR.kR] = −e1 where e1 is the first MMM-class. Thus δ[Cal] = ±1

3
a2e1. The second claim

follows by the exactness of the five-term exact sequence.

We may now give an interpretation of the signature of certain surface bundles in terms
of the Calabi map of commutators lying in the kernel of an extended Flux homomorphism

F̃ lux. Specifically, we let F̃ lux be the pullback of the extended flux map on Symp(Σh)
under the inclusion Sympc(Σ1

h) ↪→ Symp(Σh). By Theorem 12 of [KM2] we know that

[F̃ lux] = [F̃ luxc] + p∗[kR]. Then as a consequence of Theorem 5.3.2 and the calculations in
the proof of Theorem 5.2.5 we obtain the following corollary.

Corollary 5.3.3. For h ≥ 2 let Σ1
h → E → Σg be a bundle with holonomy representation

π1(Σg)
ρ→ Γ1

h. We let ai, bi be a standard basis for π1(Σg) and let αi = ρ(ai) and βi = ρ(bi).

Then for any lifts φi, ψi ∈ H̃amc
1(Σ1

g) of αi, βi the signature satisfies

σ(E) =
1

3
e1(E) = ±Cal([φ1, ψ1]...[φg, ψg]).
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5.4 The second MMM-class vanishes on H̃am

In [KM1] it was shown that the k-th power of the first MMM-class is non-trivial in the group
H∗(Sympδ(Σh)) if h ≥ 3k (cf. [KM1], Theorem 3). On the other hand, the Bott vanishing
Theorem (cf. [Bott], p. 35) implies that the higher MMM-classes ek vanish for all flat surface
bundles if k ≥ 3. Thus the question remains open as to the non-triviality of e2 for flat
surface bundles (cf. [KM1], Problem 4). Motivated by this, we will show that the higher
MMM-classes as well as all the higher powers of e1 vanish on the extended Hamiltonian

group H̃am(Σh) = Ker(F̃ lux), where F̃ lux is the extended Flux map for closed surfaces as
defined in [KM1].

As a first step we show that the first MMM-class itself is non-trivial on H̃am(Σh) for
h ≥ 3.

Proposition 5.4.1. The image of e1 under the map induced by the projection H̃am(Σh)→
Γh is non-trivial for h ≥ 3.

Proof. Applying the five-term exact sequence to the extension

1→ Ham(Σh)→ H̃am(Σh)→ Γh → 1,

exactness and the perfectness of Ham(Σh) allow us to conclude that the map

H2(Γh)→ H2(H̃amδ(Σh))

is injective. Since e1 ∈ H2(Γh) is non-trivial for h ≥ 3 (cf. [Iva1]), the result follows.

In the remainder of this section we will show that the classes ek1, e2 ∈ H∗(H̃amδ(Σh),R)
are trivial. To this end we shall need the following two facts. The first is a proposition due
to Morita.

Proposition 5.4.2 ([Mor1], Prop. 3.1). Let Σh → E
π→ B be any oriented surface bundle.

Then the Serre spectral sequence for the fibration collapses on the second page for cohomology
with real or rational coefficients. In particular, the map π∗ is injective on cohomology.

Next, in accordance with [KM1] we let v ∈ H2(Sympδ(Σh),R) denote the vertical sym-
plectic class, normalised so that v(F ) = 2h − 2 on the fibre. We further let e denote the
vertical Euler class. With this notation we may state the following theorem.

Theorem 5.4.3 ([KM1], Th. 2). The projection of e+v to the E∞1,1-term in the Serre spectral
sequence of the fibration Σh → ESympδ(Σh)→ BSympδ(Σh) is the cohomology class of the
extended flux homomorphism

[F̃ lux] ∈ E∞1,1 ⊂ H1(Sympδ(Σh), H
1(Σh,R)).

We are now ready to prove the main result of this section.

Theorem 5.4.4. The second MMM-class e2 vanishes in H4(H̃amδ(Σh),R) for h ≥ 2. More-

over, for all k ≥ 2 the powers ek1 ∈ H2k(H̃amδ(Σh),R) are also trivial.
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Proof. Let

Σh → EH̃amδ(Σh)
π→ BH̃amδ(Σh)

be the total space of the universal bundle over BH̃amδ(Σh) and let ι denote the inclusion

H̃am(Σh) ↪→ Symp(Σh). Then by the naturality of the Serre spectral sequence combined

with Theorem 5.4.3, we see that the projection of ι∗(e+v) to the E∞1,1-term is ι∗[F̃ lux], which

is trivial by the definition of H̃am(Σh) as the kernel of the extended Flux map. Thus by
Proposition 5.4.2

ι∗(e+ v) ∈ E∞2,0 = E2
2,0 = π∗H2(H̃amδ(Σh),R)

and we conclude that ι∗(e+ v) = π∗β for some class β ∈ H2(H̃amδ(Σh),R). We rewrite the

equation for e in H2(H̃amδ(Σh),R) given above, dropping the ι∗ for notational convenience

e = −v + π∗β. (5.8)

Since v2 = 0, we compute that

e1 = π!e
2 = −2(2h− 2)β. (5.9)

By Bott vanishing, v ` e2 = 0 in H∗(Sympδ(Σh),R) (cf. [KM2], Section 7), and thus
e3 = (e+ v)3. We conclude that

e2 = π!e
3 = π!(e+ v)3 =

1

(4− 4h)3
π!π
∗e3

1 = 0,

and, hence, e2 vanishes in H4(H̃amδ(Σh),R).

On the other hand equations (5.8) and (5.9) imply that

e3 =
−3

(4− 4h)2
v ` π∗e2

1 +
1

(4− 4h)3
π∗e3

1.

Thus applying the transfer map we obtain

0 = e2 = π!e
3 =
−3(2h− 2)

(4− 4h)2
e2

1

so that e2
1 = 0 in H4(H̃amδ(Σh),R). Finally, the fact that e2

1 vanishes implies that ek1 also
vanishes for all k ≥ 2.





Chapter 6

Characteristic classes of symplectic
foliations

In [KM3] Kotschick and Morita defined foliated characteristic classes of transversally sym-
plectic foliations in terms of factorisations of ordinary characteristic classes. Motivated by
this we give a geometric construction for defining foliated characteristic classes as factori-
sations of certain Pontryagin classes. In contrast to [KM3] our construction yields foliated
characteristic classes for foliations that are only transversally volume preserving rather than
transversally symplectic.

For the special case of codimension 2 foliations, the factorisation of the first Pontryagin
class gives a foliated characteristic class γ1. A similar class, that we denote by γKM , was
defined in [KM3] and we show that the classes γ1 and γKM coincide under the assumption
that the normal bundle to the foliation is trivial.

In general, any foliated cohomology class defines a genuine characteristic class by re-
stricting to a leaf. We construct transversally symplectic foliations with closed leaves L such
that the restriction of γKM to L is non-trivial. Moreover, these foliations have trivial nor-
mal bundles so we deduce that the classes γ1 and γKM carry information that is not purely
topological.

6.1 Factorisation of Pontryagin classes

In this section we describe factorisations of certain polynomials in the Pontryagin classes
of the normal bundles of transversally volume preserving foliations, which are analogous to
factorisations obtained in [KM3]. We shall use Chern-Weil theory, rather than Gelfand-
Fuks cohomology as in [KM3], to obtain factorisations of polynomials of total degree 4q in
the Pontryagin classes of the normal bundle of any codimension 2q, transversally volume
preserving foliation F . If P denotes a polynomial of the correct degree and ω is a transverse
volume form for F , then these factorisations are of the form

P (Ω) = ω ∧ γP .

The main benefit of our approach is that the classes γP are canonically defined in terms of
the foliation F and the form ω, whereas those given in Theorem 4 of [KM3] are not.

95
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In order to obtain the factorisations mentioned above, we shall need an explicit description
of integration along the fibre for the case of M × [0, 1]

π→ M . We let α ∈ Ωk(M × [0, 1]) be
a k-form, which may be uniquely written as

α = ρ+ σ ∧ dt,

where ρ has no dt component. Then integration along the fibre

π! : Ωk(M × [0, 1])→ Ωk−1(M)

is given explicitly via the following formula

π!α =

∫ 1

0

σ dt.

Furthermore, we have the following lemma.

Lemma 6.1.1. Let α ∈ Ωk(M× [0, 1]) be a k-form and let ι0, ι1 be the inclusions of M×{0}
resp. M × {1} in M × [0, 1]. Then the following relation holds

π! dα− d π!α = ι∗1α− ι∗0α.

Proof. We write
α = ρ+ σ ∧ dt.

If dM denotes the exterior derivative on M , then we have

dMπ!α = dM

∫ 1

0

σ dt =

∫ 1

0

dMσ dt.

Moreover

dα = dρ+ d(σ ∧ dt) = dMρ+
∂ρ

∂t
∧ dt+ dMσ ∧ dt

and thus

π! dα− d π!α =

∫ 1

0

(
∂ρ

∂t
+ dMσ) dt−

∫ 1

0

dMσ dt

=

∫ 1

0

∂ρ

∂t
dt

= ι∗1α− ι∗0α,

where we have used the Fundamental Theorem of Calculus to obtain the final equality.

We shall next recall the definition of foliated cohomology. To this end we let I∗(F)
denote the ideal of forms that vanish on F . The Frobenius Theorem implies that I∗(F)
is closed under the exterior differential and, thus, d descends to a differential dF on the
quotient complex Ω∗(M)/I∗(F). We define the foliated cohomology as the cohomology of
this quotient complex:

H∗F(M) = H∗(Ω∗(M)/I∗(F), dF).

Another important notion is that of a Bott connection on a foliated manifold.
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Definition 6.1.2. Let F be a foliation on a manifold M . A Bott connection on the normal
bundle νF = TM/TF is a connection ∇ such that for X ∈ Γ(TF) and Y ∈ Γ(νF)

∇X Y = [X, Ỹ ],

where Ỹ denotes any lift of Y to TM .

The most important properties of Bott connections are that they are flat when restricted
to the leaves of F (cf. [Bott]) and that they are canonically defined along any leaf by the
formula in Definition 6.1.2. Conversely, to define a Bott connection for a given foliation one
chooses a splitting

TM ∼= TF ⊕ νF .
If X = XF +Xν is the decomposition of a vector X with respect to this splitting, then after
choosing a connection ∇ on νF , one may define a Bott connection ∇ as follows:

∇X Y = [XF , Ỹ ] +∇Xν Y.

There is an alternate formulation of the Bott condition in terms of connection matrices.
For this we let S1, ..., Sq be a local frame for νF and choose lifts S̃1, ..., S̃q to TM . We let θij
denote the connection matrix of ∇ with respect to the frame S1, ..., Sq so that

∇Si =

q∑
j=1

θij ⊗ Sj.

We further let θ1, ..., θq be a dual basis for S1, ..., Sq, which means that θi vanishes on TF
and

θi(S̃j) = δij.

To check the Bott condition it suffices to verify that the following holds for all X ∈ TF and
all Si:

∇X Si = [X, S̃i],

or equivalently that
θj(∇X Si) = θij(X) = θj([X, S̃i])

for all 1 ≤ i, j ≤ q. We compute that

dθj(X, S̃i) = LXθj(S̃i)− LS̃iθj(X)− θj([X, S̃i])
= LXδji − 0− θj([X, S̃i]) = −θj([X, S̃i])

and conclude that ∇ is a Bott connection if and only the connection 1-forms satisfy

dθj(X, S̃i) = −θij(X).

In particular, if θ1, ..., θq is any local basis for I1(F), then by the Frobenius Theorem there
exist 1-forms θij such that

dθj =

q∑
i=1

θi ∧ θij. (6.1)

The matrix of 1-forms (θij) then defines a local Bott connection. This description of Bott
connections will be useful in our discussion of Gelfand-Fuks cohomology in Section 6.2 below.

We now come the main result of this section.
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Proposition 6.1.3. Let F be a transversally volume preserving foliation of codimension 2q
on a manifold M with defining form ω and let P be any polynomial of total degree 4q in the
Pontryagin classes of the normal bundle. Then there is a factorisation

P (Ω) = ω ∧ γP

for a well-defined foliated class γP ∈ H2q
F (M).

Proof. Let ∇ be a Bott connection on the normal bundle νF of F . Since a Bott connection
is flat along leaves, the components Ωij of the curvature matrix vanish on F . We choose a
local basis θ1, ..., θ2q of I1(F) such that

θ1 ∧ θ2... ∧ θ2q = ω.

With respect to this basis the curvature forms Ωij ∈ I2(F) can locally be expressed as

Ωij =

2q∑
k=1

θk ∧ αk.

Since the Chern-Weil representative for P is given by a symmetric polynomial of degree 2q
in the entries of Ω, the following holds locally:

P (Ω) = θ1 ∧ θ2... ∧ θ2q ∧ γP = ω ∧ γP .

Let Ann(ω) be the subbundle of 2q-forms annihilated by ω and let Ann(ω)⊥ ⊂ Λ2q(M) be
a complement to Ann(ω). Then on the level of forms the equation

P (Ω) = ω ∧ γP

has a unique global solution γP ∈ Γ(Ann(ω)⊥). The form γP is well-defined modulo elements
in Γ(Ann(ω)) = I2q(F), so we obtain a class [γP ] ∈ Ω2q(M)/I2q(F). Next, since ω and P (Ω)
are closed we compute

0 = d(ω ∧ γ) = ω ∧ dγP
and dγP ∈ I∗(F). Thus we have a well-defined class [γP ] ∈ H2q

F (M).
We finally need to show that the class we obtain in foliated cohomology does not depend

on the choice of Bott connection. Let ∇0,∇1 be two Bott connections on νF and let π denote
the projection M × [0, 1]→M . We then define a connection on π∗νF by setting

∇ = t π∗∇1 + (1− t)π∗∇0.

This connection is then a Bott connection for the foliation π∗F that is obtained as the
preimage of F under the projection π. Now π∗ω is a defining form for π∗F and, as above,
after the choice of a splitting Λ2q(M × [0, 1]) ∼= Ann(π∗ω) ⊕ Ann(π∗ω)⊥, there is a unique
form γP ∈ Γ(Ann(π∗ω)⊥) so that

P (Ω) = π∗ω ∧ γP .
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Since the form P (Ω) is closed, Lemma 6.1.1 yields

−d π!P (Ω) = ι∗1P (Ω)− ι∗0P (Ω)

= P (Ω1)− P (Ω0).

Hence, one has

ω ∧ (−d π!γP ) = ω ∧ γ1
P − ω ∧ γ0

P

or equivalently

γ1
P − γ0

P
∼= −d(π!γP ) mod I∗(F).

Thus [γ1
P ] = [γ0

P ] as classes in H2q
F (M).

If one assumes further that the foliation F is transversally symplectic with defining form
ω, then one obtains a similar factorisation for any polynomial of the form ωkP (Ω), where
P is a polynomial in the Pontryagin classes of total degree 4q − 2k. We note this in the
following proposition, whose proof is almost identical to that of Proposition 6.1.3.

Proposition 6.1.4. Let F be a transversally symplectic foliation of codimension 2q on a
manifold M with defining form ω and let P be any polynomial of total degree 4q − 2k in the
Pontryagin classes of the normal bundle. Then there is a factorisation

ωkP (Ω) = ω2q ∧ γP

for a well-defined foliated class γP ∈ H2q
F (M).

For certain polynomials it is easy to show that the class P (Ω) = ω2q ∧ γP is non-trivial
and, hence, that the class γP is non-trivial in foliated cohomology. This was shown in [KM3]
for polynomials of the form pq1. A similar argument covers the other extreme case when
P = pq is the q-th Pontryagin class. For simplicity we write γq for the corresponding foliated
cohomology class.

Proposition 6.1.5. There exist foliations Fq for which the classes γq ∈ H2q
F (M) do not

vanish.

Proof. We let F be a codimension 2, transversally symplectic foliation on a 4-manifold such
that p1(νF) is non-trivial (cf. [KM1]). We define Fq as the product foliation on the q-fold
product M q induced by F and by πi the i-th projection. These foliations are transversally
volume preserving, they are even transversally symplectic. Finally, using the Whitney sum
formula and the naturality of Pontryagin classes we obtain:

pq(νFq) = pq(

q⊕
i=1

π∗i νF) =

q∏
i=1

π∗i p1(νF) 6= 0.

Although Proposition 6.1.5 shows that γq is non-trivial, we cannot conclude that the
classes γq and γpq1 are linearly independent.
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6.2 Gelfand-Fuks cohomology

In this section we clarify the relationship between the foliated class γ1 = γp1 given by
Proposition 6.1.3 and the Kotschick-Morita class γKM defined in [KM3]. In particular, we
show that both classes agree under the assumption that the normal bundle of F is trivial.

We begin by recalling the construction of Gelfand-Fuks cohomology for the Lie algebra of
formal Hamiltonian vector fields (cf. [GKF], [KM3]). We let H2n

R denote the standard Sp(2n)-
representation and consider the Lie algebra of polynomials on H2n

R with trivial constant term
endowed with the Poisson bracket

R[X1, ..., Xn, Y1, ..., Yn]/R = ⊕∞k=1Sym
kH2n

R .

The completion of this Lie algebra is the ring of formal power series with the induced Poisson
bracket, which we denote by ham2n. The Gelfand-Fuks cochain complex is then

C∗GF (ham2n) = ⊕∞k=1Λ∗Symk(H2n
R ),

where the differential is defined in terms of the Poisson bracket in the usual fashion. For any
subalgebra g, the relative complex is by definition the complex of g-basic forms.

The Lie algebra ham2n has a natural filtration

ham2n ⊃ ham0
2n ⊃ ham1

2n... ⊃ hamk
2n ⊃ ... ,

where hamk
2n denotes those power series that are trivial up to order k + 1. The subalgebras

hamk
2n are actually ideals in ham0

2n and the quotient gkham = ham0
2n/hamk

2n is the Lie algebra of
the group of k-jets of Hamiltonian maps that fix 0, which will be denoted by Jkham. Moreover,
the Lie algebra sp2n embeds naturally in ham2n.

For any manifold M with a transversally symplectic foliation of codimension 2n there is a
natural map H∗GF (ham2n, un)→ H∗(M). We shall recall the construction of this map follow-
ing Bott and Haefliger (see [BH]). We let Γham2n denote the Lie pseudogroup of Hamiltonian
diffeomorphisms of open sets in R2n. We define P k

ham(F) to be the principal Jkham-bundle
whose fibre at x consists of the k-jets of local F -projections that preserve the transverse
structure and map x to 0. We further let P k(Γham2n ) denote the principal Jkham-bundle of
k-jets of elements in Γham2n at 0 and note that the pseudogroup itself acts transitively on the
left of this bundle.

An element γ in H∗GF (ham2n, un) determines a Γham2n -equivariant differential form Φloc
γ on

P k(Γham2n ) for some sufficiently large k. Since the bundle P k
ham(F) is locally the pullback

of the bundle P k(Γham2n ) under an F -projection and the form Φloc
γ is Γham2n -equivariant, the

pullbacks of these local forms glue together to give a well-defined form Φγ on the total space.
The form Φγ may also be defined in terms of the tautological 1-forms, which we discuss in
detail in the next paragraph. If γ was un-basic, then the differential form Φγ descends to the
quotient P k

ham(F)/U(n). This is then a bundle with contractible fibre and, hence, we obtain
a class in H∗(M) ∼= H∗dR(P k

ham(F)/U(n)), where the isomorphism is induced by the bundle
projection.

An analogue of the map H∗GF (ham2n, un)→ H∗(M) described above can also be defined
for the Gelfand-Fuks cohomology of the Lie algebra of formal smooth vector fields a2n,
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in which case one obtains a map H∗GF (a2n, o2n) → H∗(M). The definition of this map
uses the principal bundles P k(F) of k-jets of F -projections and is formally identical to the
construction described in the previous paragraph. Moreover, there is a collection of (2n)k

tautological 1-forms δi1i2...ik on P k(F) (cf. [Pit], [Bott3]). These forms have an important
interpretation for small k. In particular, the forms δi define a trivialisation of the bundle of
1-forms that vanish on the foliation F1 which is obtained as the preimage of F under the
bundle projection P (F)→M . They also satisfy the following equation on P 2(F)

d δj =
2n∑
i=1

δi ∧ δij,

where by abuse of notation we again denote by δi the pullbacks of these forms under the map
P 2(F)→ P (F). Thus, we see that the matrix (δij) defines a (universal) Bott connection for
the foliation F2 on P 2(F) (cf. equation (6.1) above). By taking pullbacks the same holds on
P k(F) with respect to the pullback foliation Fk and the curvature forms for this universal
Bott connection are by definition

Ωi
j = d δij −

2n∑
k=1

δik ∧ δkj .

There is also a natural map from the Gelfand-Fuks group H∗GF (ham0
2n, sp2n) to the foli-

ated cohomology of M . In order to define this we let γ be a representative of a given class and
consider the pullback of γ to the chain complex C∗GF (ham2n, sp2n) induced by the projection

ham2n

p→ ham0
2n, whose kernel consists of linear elements H2n

R . We note that this map is not
a map of Lie algebras. However, if we begin with an sp2n-basic element, then p∗γ is closed
modulo elements in the differential ideal I((H2n

R )∗) generated by linear elements. Thus, using
the construction described above, we obtain a differential form Φγ on P k

ham(F). Moreover,
the form Φγ is closed modulo elements in the differential ideal generated by the tautological

1-forms δi. Such an element then descends to a form Φ̂γ on P̂ k
ham(F) = P k

ham(F)/U(n), which

is a bundle over M with contractible fibre. Moreover, Φ̂γ is an element in the foliated coho-

mology of the pullback foliation Hk
π̂∗kF

(P̂ k
ham(F)) and the projection induces an isomorphism

to Hk
F(M), thus giving the desired element in the foliated cohomology of M .

Now the class γKM defines a factorisation of the first Pontryagin class in Gelfand-Fuks
cohomology by ([KM3], Theorem 4). Using the map described in the previous paragraph,
this decomposition then becomes a factorisation of the first Pontryagin class of the universal
Bott connection on P 3

ham(F). More specifically, if ω is a closed defining form for F and π3

is the bundle projection of P 3
ham(F), then π∗3ω is a defining form for F3 = π∗3F and

p1(Ω) = γKM(F3) ∧ π∗3 ω.

Now supposing that the bundle P 3
ham(F)→M has a section s, then by naturality the matrix

(s∗δij) is the connection matrix of a global Bott connection for F = s∗(F3). Moreover,

p1(s∗Ω) = s∗p1(Ω) = s∗γKM(F3) ∧ s∗π∗3 ω = γKM(s∗(F3)) ∧ ω = γKM(F) ∧ ω,

and it follows that γKM(F) = γ1(F) in H∗F(M) if the normal bundle of F is trivial. We note
this in the following proposition.
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Proposition 6.2.1. Let F be a transversally volume preserving foliation of codimension 2
and assume that its normal bundle is trivial. Then γKM(F) = γ1(F).

6.3 Characteristic classes of leaves

In Section 6.1 we defined characteristic classes of transversally volume preserving foliations
in foliated cohomology. The restriction of such a class to a leaf of a foliation defines a
cohomology class in ordinary cohomology and, thus, determines a characteristic class of
the individual leaves. By using results on normal forms for germs of Hamiltonian diffeomor-
phisms we will show that there exist symplectically foliated R2-bundles with holonomy in the
group Sympk(R2, 0) of Ck-symplectomorphisms that fix the origin, for which the Kotschick-
Morita class γKM restricts non-trivially on the central leaf that corresponds to the origin.
Moreover, these bundles may be chosen to be topological trivial, which means that the same
holds for γ1 by Proposition 6.2.1. These examples show that the classes γ1 and γKM carry
information that is sensitive to the geometry of the foliation and not just to the homotopy
class of the underlying distribution as is the case for p1.

We let P k
ham(F) be the principal Jkham-bundle of k-jets of local F -projections that preserve

the transverse symplectic structure. Now if L is the leaf of a foliation, then the restriction
of the bundle P k

ham(F) to L is a flat principal Jkham-bundle, which is then determined by its
holonomy representation π1(L)→ Jkham. An analogous construction to that given in Section
6.2, associates to any class in H∗GF (ham0

2n, un), a class in H∗(L). Moreover, by composing
with the natural map

H∗GF (ham0
2n, sp2n)→ H∗GF (ham0

2n, un)

one obtains the following commutative diagram where the rightmost arrow is given by re-
striction

H∗GF (ham0
2n, sp2n) //

��

H∗F(M)

��
H∗GF (ham0

2n, un) // H∗(L).

We remark that these observations still hold for the cohomology of the truncated Lie algebra
gk−1
ham = ham0

2n/hamk−1
2n , in the case that the foliation F is only of class Ck.

In general, any element in the relative Lie algebra cohomology H∗(g, k) of a pair (G,K)
defines a characteristic class of flat principal G-bundles via the construction described above,
provided that G/K is contractible. In the context of flat G-bundles this is often referred to as
the Reinhard construction. It is clear that these classes are natural with respect to pullbacks
under both maps between manifolds and between pairs of Lie groups. Furthermore, Rein-
hard’s construction may be used to define elements in the group cohomology of G considered
as a discrete group. For in order to define an element φ ∈ Hk(Gδ,R) it suffices to define how
φ evaluates on integral homology classes. For homology classes that are representable by
(singular) manifolds we may use the Reinhard construction directly. Moreover, any two sin-
gular manifolds that are homologous are cobordant after possibly taking multiples. Hence,
by Stokes’ Theorem the map φ is well-defined on the subgroup Hk

man ⊂ Hk(Gδ) of ele-
ments that are representable by manifolds. It then follows from Thom’s Representability
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Theorem that the quotient of these two groups consists of torsion and, thus, any homomor-
phism Hk

man → R extends uniquely to a homomorphism Hk(Gδ)→ R yielding a well-defined
element in Hk(Gδ,R).

We will restrict ourselves to the special case G = Jkham. In particular, we consider
the class γ = γKM in H2

GF (ham0
2n, sp2) that was defined in [KM3] via the explicit cocycle

representative
(X3 ∧ Y 3 − 3X2Y ∧XY 2)∗.

This cocycle is the pullback of the corresponding element γjet in the Lie algebra chain group
C2(g2

ham, sp2). Via the Reinhard construction the class γjet defines a cohomology class in
H2((J2

ham)δ,R), which will also be denoted by γjet, and we claim that γjet is non-trivial. In
fact, the restriction of γjet to the subgroup J2

ham,Id ⊂ J2
ham is non-trivial, where J2

ham,Id is
the subgroup of 2-jets with linear part equal to the identity. To see this we take the trivial
bundle

E = J2
ham,Id × T 2 → T 2

and let Ẽ → R2 be its universal cover. Since J2
ham,Id is a simply connected abelian Lie group,

it is isomorphic to its Lie algebra Sym3H2
R. We let x1, ..., x4 be coordinates on the fibre

with respect to the standard basis of Sym3H2
R and choose coordinates y1, y2 on R2. We then

consider the horizontal foliation on Ẽ given by the projection

(x1, ..., x4, y1, y2)→ (x1 − y1, x2, x3, x4 − y2).

This foliation descends to E and by inspecting the definition of γjet, or more precisely its
restriction to Sym3H2

R, it is clear that this class evaluates non-trivially on the (foliated)
principal bundle E.

Remark 6.3.1. We note that γjet and the pullback of the Euler class under the map J2
ham →

J1
ham = SL(2,R) are linearly independent, since the restriction of the Euler class to J2

ham,Id

is trivial.

We will further show that the image of γjet in H2((Jmham)δ,R) is non-trivial for arbitrary
finite m, which is an immediate consequence of the following lemma.

Proposition 6.3.2. The natural map Jmham → J2
ham induces an injection on second real

cohomology for all m ≥ 2.

Proof. We first note that the map factors as

Jmham → Jm−1
ham → ...→ J2

ham.

Thus it suffices to show that the map Jm−1
ham → Jm−2

ham induces an injection on cohomology for
all m ≥ 4. We note that the kernel of this map is a simply connected abelian Lie group of
rank m + 1, which we denote by Km−1. As such it is isomorphic to its Lie algebra, which
in this case is SymmH2

R with the trivial Lie bracket and an isomorphism is induced by the
exponential map. Restricted to the subalgebra SymmH2

R the exponential map is given by
considering the (m− 1)-jet at the origin of the Hamiltonian flow generated by an element in
SymmH2

R.
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By the Universal Coefficient Theorem, injectivity in real cohomology, will follow from
the surjectivity of the induced map in integral homology. By considering the five-term exact
sequence associated to the extension

1→ Km−1 → Jm−1
ham → Jm−2

ham → 1,

it will suffice to show that the group of coinvariants H1((Km−1)δ)Jm−2
ham

is trivial.

First recall that if Φt
H is the Hamiltonian flow generated by H, then for any symplecto-

morphism ψ the flow ψΦt
Hψ
−1 is the Hamiltonian flow generated by (ψ−1)∗H. Thus under

our identification of Km−1 with its Lie algebra, conjugation by an element ψ ∈ Jm−1
ham corre-

sponds to precomposition in the Lie algebra of Km−1 by ψ−1, where Km−1 has been identified
with the additive group of homogeneous polynomials of degree m. Now if we let

u(λ) =

(
λ 0
0 λ−1

)
,

then for any monomial p(X, Y ) = XkY m−k, we compute

p− p ◦ u−1(λ) = (1− λm−2k)XkY m−k.

If m− 2k 6= 0, we may choose λ > 0 such that

1− λm−2k =
1

2
.

Thus we conclude that 1
2
p(X, Y ) is trivial in H1((Km−1)δ)Jm−2

ham
and, hence, the same holds

for p(X, Y ).
If 2k = m, let

ρ(θ) =

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
denote the rotation by θ. The coefficient of the XmY m-term in p ◦ ρ(θ) is

cm,m(θ) =
∑
l+q=m

(−1)m−l
(
m

l

)(
m

q

)
cosl(θ)sinm−l(θ)sinq(θ)cosm−q(θ)

=
∑
l+q=m

(−1)q
(
m

l

)(
m

q

)
cos2l(θ)(1− cos2(θ))q.

This is a polynomial of degree 2m in cos(θ), whose leading term has coefficient∑
l+q=m

(−1)2q

(
m

l

)(
m

q

)
=
∑
l+q=m

(
m

q

)2

6= 0.

Since cm,m(0) = 1, there is some θ0 so that cm,m(θ0) = 1 ± ε for any sufficiently small ε.
Hence, the coefficient of the XmY m-term in p − p ◦ ρ(θ0) is ±ε. Combining this with the
case m 6= 2k considered above, we conclude that ±εXmY m is trivial in H1((Km−1)δ)Jm−2

ham
.

Since the group generated by such elements includes all monomials aXmY m, the group
H1((Km−1)δ)Jm−2

ham
vanishes and the desired claim follows by the exactness of the five-term

sequence.
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In order to extend our results from jets to actual germs we shall need a normal form
theorem for Hamiltonian germs. This is provided by a result of Banyaga, de la Llave and
Wayne in [BLW]. In order to state their result we need to define several constants.

Let M be a real linear map and assume that there are constants

0 < λ−1
− < λ+ < 1 < µ−1

− < µ+

so that the (complex) eigenvalues λ of M satisfy

λ−1
− ≤ |λ| ≤ λ+ or µ−1

− ≤ |λ| ≤ µ+.

We shall call such a a linear map hyperbolic. For any such constants we define

A =
|lnλ+|

(lnµ+ + |lnλ+|)
|lnµ−|

(lnλ− + |lnµ−|)

and
B = 1− 2A.

With these definitions we may now state the following theorem that gives hypotheses under
which a Hamiltonian diffeomorphism germ of class Cr can be linearised.

Theorem 6.3.3 ([BLW], Th. 1.1). Let φ be the germ of a Cr-Hamiltonian diffeomor-
phism fixing the origin, whose (k − 2)-jet is linear and hyperbolic. Then there exists a
C l-Hamiltonian germ ψ with D0ψ = Id so that

ψ−1φψ = D0φ,

provided that 1 ≤ l ≤ kA−B for a suitable choice of λ±, µ± and r > 2k + 4.

This is the main tool to show that the class γ induces a non-trivial class in the cohomology
of Hamiltonian germs of class Ck at the origin.

Theorem 6.3.4. The class γ is non-trivial in H2(Gkham) for all 2 ≤ k <∞.

Proof. By Proposition 6.3.2 the image of γjet in H2((Jmham)δ,R) is non-trivial for all m. We
let σ be an integral homology class in H2((Jmham)δ) that pairs non-trivially with γjet. Such
a class is equivalent to a representation of some surface group π1(Σg)→ Jmham. We let ai, bi
be standard generators for π1(Σg) and let αi, βi denote their images in Jmham. Then if we
consider the m-jets αi, βi as (smooth) germs in the natural way, we see that the m-jet of

φ =

g∏
i=1

[αi, βi]

is the identity. Thus after multiplying φ with a hyperbolic element M ∈ SL(2,R), Theorem
6.3.3 implies that we may linearise the resulting germ by a Hamiltonian diffeomorphism germ
ψ of class C l. Since the value of l grows linearly with m, after taking m large enough we
may assume that l = k and, hence, the following holds in Gkham

ψ

g∏
i=1

[αi, βi]Mψ−1 = M.



106 6. Characteristic classes of symplectic foliations

In other words
g∏
i=1

[ψαiψ
−1, ψβiψ

−1][ψ,M ] = 1.

The image of the class in H2((Jkham)δ) that is associated to the representation of the surface
group π1(Σg+1) given by the above relation decomposes as σ + τψ,M , where σ is our original
class and τψ,M is the class associated to the representation of the fundamental group of the
2-torus defined by the k-jets of the elements ψ and M . We note that γjet depends only on
2-jets and we have the following split exact sequence given by taking a 2-jet to its linear part

1→ J2
ham,Id → J2

ham → SL(2,R)→ 1.

Thus any element ψ ∈ J2
ham can be written uniquely as ψ = ψId ◦ D0ψ, where the linear

part of ψId is the identity. As in the proof of Proposition 6.3.2, we may identify J2
ham,Id with

Sym3H2
R via the exponential map.

Now after a linear change of coordinates, we may assume that the hyperbolic element
M is diagonal and thus M commutes with an element ψ if and only if it commutes with
ψId and D0ψ. Since J2

ham,Id is just the group of homogeneous polynomials of degree 3, the
calculation of Proposition 6.3.2 shows that if ψ and M commute, then ψId must be trivial.
Furthermore, since the linear part of ψ can be chosen to be the identity, Proposition 6.3.3
implies that the 2-jet of ψ is trivial and, hence, that the homology class τψ,M is trivial in
H2((J2

ham)δ). Thus we have

γ(σ′) = γjet(σ + τψ,M) = γjet(σ) 6= 0

and the claim follows.

The final step is to extend classes given by germs to classes defined by actual Ck-
symplectomorphisms. This extension will rely on the following lemma, which mimics the
original proof of Mather (cf. [Math1], [LeR]) that the group of compactly support homeo-
morphisms is perfect.

Lemma 6.3.5. Let φ be an element in the group Hamk
c (R2n \ {0}) that consists of Hamil-

tonian diffeomorphisms of class Ck with compact support. Then φ can be written as the
product of commutators of elements in Sympk(R2n \ {0}), whose supports are disjoint from
0.

Proof. First of all since φ can be connected to the identity by a path of Hamiltonian diffeo-
morphisms with compact support, the standard fragmentation argument given in the smooth
case applies and we may assume that φ is a product of elements with support in a ball (cf.
[Ban], p. 110). Thus it suffices to consider the case where φ has support in a ball B. Now
we let Bi be disjoint translates of B and let Ci be larger balls with the property that Ci
contains both Bi and Bi+1 and Ci is disjoint from Ci+2. We further assume that the Ci are
chosen so that there is a symplectomorphism hi with support in Ci that interchanges Bi and
Bi+1.
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We then inductively define g1 = φ and gi+1 = higih
−1
i . The elements gi commute as they

have disjoint supports and the same holds for hi, hj and gi, hj, provided that |i− j| ≥ 2. We
may then define the following infinite products

A = g2g4g6..., B = h2h4h6..., C = g1g3g5..., D = h1h3h5...

and one computes that
φ = [A,B][C,D].

Finally, by choosing the balls Bi appropriately one may assume that the supports of A,B,C
and D are disjoint from 0.

We will also need an analogue of Theorem 4.1.14, which in essence gives an explicit
description of the Euler class in H2(Gp). First of all we note that since the inclusion
Sympkc (R2\{0}) in Diffkc (R2\{0}) is a weak homotopy equivalence, the group of compactly
supported symplectomorphisms of R2 \ {0} modulo isotopy is isomorphic to the compactly
supported mapping class MCGc(R2 \ {0}), which is in turn Z. With the aid of this obser-
vation we prove the following proposition.

Proposition 6.3.6. Let α be the natural homomorphism from Sympkc (R2 \ {0}) to the com-
pactly supported mapping class group of R2 \ {0} and consider the following extension of
groups

1→ Sympkc (R2 \ {0})→ Sympkc (R2, 0)→ Gkham → 1.

Then the Euler class in H2(Gkham) is, up to sign, the image of α in the five-term exact
sequence associated to the above extension.

Proof. We consider the following commutative diagram of group extensions

1 // Diff 1
c (R2 \ {0}) // Diff 1

c (R2, 0) // GL+(2,R) // 1

1 // Sympkc (R2 \ {0}) //

OO

Sympkc (R2, 0) //

OO

Gkham //

OO

1,

where the map on the right is given by taking a germ to its linear part. We note that the
Euler class e in H2(Gkham) is just the pullback of the Euler class in H2(GL+

δ (2,R)) under this
map. Now the image of the Euler class in H2(Diff 1

c,δ(R2, 0)) is torsion since a flat bundle
with holonomy in the group Diff 1

c (R2, 0) has a section and is thus topologically trivial.
Since the group Diff 1

c,0(R2 \ {0}) is perfect by the classic result of Mather (cf. [Math2]),
we have that H1(Diff 1

c,δ(R2 \ {0})) = Z and an isomorphism is given via the map α
to MCGc(R2 \ {0}). Moreover, this map is equivariant with respect to conjugation by
GL+(2,R), thus the invariant part H1(Diff 1

c,δ(R2 \ {0}))GL+(2,R) is isomorphic to Z. Simi-
larly the group of coinvariants H1(Diff 1

c,δ(R2 \ {0}))GL+(2,R) is also isomorphic to Z. Thus,
in particular, H1(Diff 1

c,δ(R2, 0)) is torsion free. The Universal Coefficient Theorem then
implies that H2(Diff 1

c,δ(R2, 0)) is torsion free and we conclude that the image of the Euler
class is in fact trivial.

Now since the Euler class e is a primitive class whose image in H2(Diff 1
c,δ(R2, 0)) is

trivial and H1(Diff 1
c,δ(R2 \{0}))GL+(2,R) = Z, the exactness of the five-term sequence means
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that e = ±δα. By the naturality of the five-term exact sequence the same then holds for the
extension involving Sympk.

We may now prove the main result of this section that the class γ is non-trivial in
H2(Sympkδ (R2, 0)).

Theorem 6.3.7. For any 2 ≤ k < ∞ there exist foliated R2-bundles over a surface with
holonomy in Sympk(R2, 0) for which the characteristic class γ is non-trivial. Moreover, we
may assume that such a bundle is topologically trivial.

Proof. By Theorem 6.3.4 there exists a representation of some surface group π1(Σg)→ Gkham
for which γ is non-trivial. As usual we let ai, bi be the standard basis of π1(Σg) and let αi, βi
denote the images of this basis in Gkham. We further let α̃i, β̃i be representatives of these
germs that have compact support in R2. Then by construction

φ =

g∏
i=1

[α̃i, β̃i]

is an element in Sympkc (R2\{0}). By Proposition 6.3.6 and the explicit form of the connecting
homomorphism in the five-term exact sequence given by Lemma A.1, the Euler class of the
bundle given by the original representation into Gkham is given (up to sign) by φ considered
as an element in MCGc(R2 \ {0}) (see also the proof of Theorem 5.2.5). As the Euler class
can be chosen to be trivial (see Remark 6.3.1), we may assume that φ lies in the identity
component.

Moreover, φ lies in Hamk
c (R2 \ {0}) since

FluxR2\{0}(φ) = FluxR2

(φ) = FluxR2

(

g∏
i=1

[α̃i, β̃i]) = 0.

Thus by Lemma 6.3.5 we my write φ−1 as a product of N commutators of elements that have
support disjoint from 0. We may then define a representation π1(Σg+N)→ Sympk(R2, 0) on
which the class γ is non-trivial. Moreover, by construction the associated foliated bundle is
topologically trivial.



Chapter 7

Symplectic cobordism and transverse
knots

We introduce the notion of symplectic cobordism for transverse links in contact 3-manifolds
considered as the boundary of certain symplectic fillings. This notion is analogous to the
Lagrangian cobordism relation for Legendrian links as introduced by Chantraine. As in
the case of closed symplectic surfaces in closed manifolds, we show that a symplectic null-
bordism is genus minimising under certain assumptions on the topology of the symplectic
filling. If the ambient cobordism is the symplectisation of a contact manifold, then the sym-
plectic cobordism relation is transitive and reflexive on the set of isotopy classes of transverse
links. However, the genus minimising property of symplectic null-bordisms means that the
symplectic cobordism relation is not symmetric and, hence, does not define an equivalence
relation. Thus we are led to consider symplectic concordance, for which the minimal slic-
ing genus is no longer an obstruction to symmetry. But this relation too fails define an
equivalence relation and we exhibit an infinite family of examples, for which symmetry fails.

7.1 Contact manifolds and symplectic cobordisms

We first review some basic facts about contact manifolds and the symplectic manifolds they
bound. For our purposes a contact structure ξ on an oriented 3-manifold M will always be
a co-oriented distribution of hyperplanes ξ such that λ ∧ dλ > 0 for any 1-form defining ξ.
Since the fundamental work of Giroux it is now common to study contact manifolds in terms
of open books.

Definition 7.1.1 (Open Book). Let M be an oriented 3-manifold. An open book (M,π,B)
consists of an oriented link B and a fibration π : M \ B → S1 so that in a neighbourhood
D2 × B of the binding π has the form π(reiθ, x) = eiθ. We call the fibres of the projection
the pages and B the binding of the open book. If (M, ξ) is a contact manifold then we say
that the open book is adapted to ξ if there exists a defining contact form λ that is positive
on the binding and so that dλ restricts to a positive area form on the pages.

The Thurston-Winkelnkemper construction (cf. [ThW]) shows that given an open book
one can always find contact structures adapted to it. Moreover, by a result of Giroux this
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contact structure is unique up to isotopy (cf. [Gir]). An open book (M,π,B) is determined
by the monodromy of the fibration π and this allows one to study contact manifolds by
means of the mapping class groups of punctured surfaces.

We are interested in the way contact manifolds can bound symplectic manifolds. When
one considers contact manifolds as boundaries of symplectic manifolds there is a certain
compatibility of the two structures that is usually required. The precise meaning of this
compatibility is contained in the following definition of a symplectic cobordism.

Definition 7.1.2 (Symplectic cobordism). A symplectic cobordism between two contact
manifolds (M+, ξ+) and (M−, ξ−) is a symplectic manifold (X,ω) whose boundary is a disjoint
union ∂X = M+ tM− such that ξ+ and ξ− are positive/negative contact structures on M+

and M− respectively. Moreover, we require that the symplectic form be positive on the
contact planes, i.e. ω|ξ± > 0.

If M− = ∅, then X will be called a weak convex filling of M = M+. Similarly, if M+ = ∅,
then X will be called a weak concave filling of M = M−. Finally, if a weak convex filling
exists for a given contact manifold (M, ξ), we will say that M is weakly fillable.

Remark 7.1.3. We shall wish to consider contact structures up to isotopy. If f±t is an isotopy
from ξ±0 to ξ±1 , then any symplectic cobordism from ξ−0 to ξ+

0 can be modified to give one
from ξ−1 to ξ+

1 . One first adds small collars to the ends of the symplectic cobordism X and
extends the symplectic form to some ω̂, which again yields a symplectic cobordism from ξ−0
to ξ+

0 . One then applies the map gt = (t, f±t ) on the collars and the form g∗t ω̂ defines the
desired cobordism from ξ−1 to ξ+

1 .

The canonical example of a symplectic filling is S3 considered as the boundary of the
4-ball B4 ⊂ C2 with the standard symplectic structure, where the contact structure ξst on S3

is defined by the set of complex tangencies in TS3. There are strong restrictions on weakly
symplectically fillable contact manifolds as provided by the following fundamental theorem
of Eliashberg and Gromov.

Theorem 7.1.4 ([Eli1]). Let (M, ξ) be a weakly symplectically fillable contact manifold, then
ξ is tight.

There are more restrictive classes of fillings, the first of which are the so-called strong
fillings.

Definition 7.1.5 (Strong symplectic filling). A contact manifold is strongly symplectically
fillable if there is a weak filling (X,ω) and an outward pointing symplectic dilation on ∂X.
Here a symplectic dilation is a vector field V defined on a neighbourhood of ∂X that points
out of X along the boundary and has the property that LV ω = ω.

Such a filling is often referred to simply as a convex filling. One can equally well define a
concave filling as one with an inward pointing symplectic dilation, or equivalently an outward
pointing contraction, that is a V so that LV ω = −ω. One can show that (X,ω) is a strong
filling if and only if X is a weak filling and ω is exact on a neighbourhood of ∂X. This is a
consequence of the following lemma of Eliashberg, which we note for future reference.



7.1. Contact manifolds and symplectic cobordisms 111

Lemma 7.1.6 ([Eli2], Prop. 4.1). Let (X,ω) be a weak filling of a contact manifold (M, ξ).
Suppose that ω is exact on an open set U ⊂ M that contains some compact set K. Then
there is a symplectic form ω̃ that fills (M, ξ) and

ω̃|K = C d(etλ)

for some large constant C > 0 and λ a contact form for ξ. In particular, if ω = dλ in a
neighbourhood of the boundary then (X, ω̃) defines a strong filling of (M, ξ).

In the setting of the contact topology of 3-manifolds there are two special classes of
links that one considers. Namely the Legendrian links, that are everywhere tangent to the
contact structure, and transverse links that are everywhere transverse to it. When one has
a symplectic cobordism (X,ω) it is natural to study cobordisms of such links. In the case
of Legendrian links one may consider Lagrangian cobordisms, as defined in [Cha], and in
the transverse case one can consider symplectic cobordisms. For technical reasons it will be
convenient to define the notion of transverse link cobordism for links that lie in the ends of
cobordisms with strongly convex/concave ends. In this case one may attach positive and
negative ends to X to obtain an open symplectic manifold

X̂ = (M− × (−∞, 0]) ∪X ∪ (M+ × [0,∞)),

where M+ × [0,∞), M− × (−∞, 0] are given the symplectic structures ω± = d(etλ±) for
contact forms λ±. We go to the trouble of adding these ends to make gluing cobordisms
well-defined, and so that transversely isotopic knots are cobordant in the symplectisation of
M . With these preliminaries we make the following definition.

Definition 7.1.7 (Symplectic cobordism of links). Let (X,ω) be a strong symplectic cobor-
dism and let L± ⊂ M± be transverse links, oriented by the co-orientations of the contact
structures. Then we will say the L− is symplectically cobordant to L+ if there is a properly
embedded symplectic surface Σ ⊂ X̂ such that for some R > 0

Σ ∩ (M+ × [R,∞)) = L+ × [R,∞)

and
Σ ∩ (M− × (−∞,−R]) = L− × (−∞,−R].

If ΣR denotes the truncated surface given by deleting the ends M+ × (R,∞) and M− ×
(−∞,−R), we require that for ∂ΣR = L+tL−, where ΣR is given the symplectic orientation.

To show that this definition is a sensible one, we first show that two transversely isotopic
links are cobordant in the symplectisation of (M, ξ).

Lemma 7.1.8. Let L,L′ be isotopic transverse links in (M, ξ), then they are cobordant in
(M × [0, 1], d(etλ)).

Proof. We assume for simplicity that L is a knot. Let f(θ, t) : S1 × R → M be an isotopy
from L′ to L through transverse knots, which we assume to be independent of t for |t| > 1.
For any ε > 0 we define a map Fε : S1 × R→M × R by

Fε(θ, t) = (f(θ, εt), t).
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This is clearly an embedding and has the correct asymptotic properties for a cobordism.
Thus we need only to see that it defines a symplectic annulus. To this end we calculate

ω(
∂Fε
dt

,
∂Fε
dθ

) = (etdt ∧ λ)(
∂Fε
dt

,
∂Fε
dθ

) + etdλ(
∂Fε
dt

,
∂Fε
dθ

)

= (etdt ∧ λ)(
∂Fε
dt

,
∂Fε
dθ

) + ε etdλ(
∂f

∂t
,
∂Fε
dθ

)

= et[λ(
∂f

dθ
(εt)) + ε dλ(

∂f

∂t
,
∂Fε
dθ

)].

As all knots are positive transverse, the first term is strictly positive for all t. Thus for ε
sufficiently small the annulus we obtain is indeed a symplectic cobordism from L′ to L. For
disconnected links the exact same argument holds if we replace S1 by a disjoint union of
circles.

Another natural construction is that of gluing together two cobordisms.

Lemma 7.1.9 (Gluing cobordisms). Let Σ1 ⊂ X1 and Σ2 ⊂ X2 be symplectic cobordisms
between L1 and L and L and L2 respectively, where the positive end (M1, ξ1) of X1 is con-
tactomorphic to the negative end (M2, ξ2) of X2. Then we may glue the cobordisms to obtain
a symplectic cobordism Σ = Σ1 ∪ Σ2 from L1 to L2 in X = X1 ∪X2.

Proof. Let X̂1 and X̂2 denote the manifolds obtained by attaching half infinite symplectic
ends. The symplectic form on the positive end of X̂1 has the form d(etλ1) and d(etλ2) on the
negative end of X̂2. Let R > 0 be such that Σ1 ∩ (M1× [R,∞)) and Σ2 ∩ (M2× (−∞,−R])
are products as prescribed by Definition 7.1.7. Next we take ψ to be a contactomorphism
between (M1, ξ1) and (M2, ξ2), so that ψ∗λ2 = gλ1 for some strictly positive function g.
We map a piece of the positive neck M1 × (R + ε, R + 3ε) to a piece of the negative neck
M2 × (−R− 3ε,−R− ε) by defining

Ψ(x, t) = (ψ(x), t− (R + 3ε))

so that Ψ∗(d(etλ2)) = d(e−(R+3ε)getλ1). To compensate for the multiplicative factor e−(R+3ε)g
we will need to multiply the symplectic form ω2 on X̂2 by a large positive constant K
in order to perform an inflation. We take this constant to be so large that the function
gK = Ke−(R+3ε)g is greater than 1 and, thus, has a positive logarithm, which we denote by
h = log(gK). We next consider the map on M1 × [R,∞) given by

Φ(x, t) = (x, t+ γ h(x)),

where γ is a non-decreasing cut off function that is identically 0 for t ≤ R + 3
2
ε and is

identically 1 for t ≥ R + 2ε. By construction Φ∗d(etλ1) = d(e−(R+3ε)gKe
t λ1) for t ≥ R + 2ε.

Thus the map Ψ ◦ Φ−1 allows us to glue the cobordisms together in a manner compatible
with the symplectic structures. Moreover, all the maps given preserve the product structure
of the symplectic ends and, thus, this gluing defines a symplectic cobordism between the
links L1 and L2.
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For two transverse links L± in a contact manifold, let us write L− ≺s L+ if they are
symplectically cobordant in the symplectisation of M , where L± correspond to the positive
resp. negative ends of Σ. In the case of a symplectisation Lemma 7.1.9 is significantly
easier and the ambient cobordism obtained in the gluing construction can be assumed to be
the symplectisation of (M, ξ) itself, albeit with its symplectic form scaled by some positive
constant. As this does not affect symplectic cobordism we obtain the following proposition
as a consequence of the two previous lemmas.

Proposition 7.1.10. The relation ≺s gives a transitive relation on the set of isotopy classes
of transverse links.

It is particularly interesting to consider symplectic null-cobordisms, in which case a given
transverse knot or link bounds a symplectic surface in the filling X. We shall call such links
symplectic and the bounding surface a symplectic spanning surface. The main examples of
such links are provided by C-links in the 3-sphere.

Example 7.1.11 (C-links). We let L be defined as the intersection of a smooth algebraic curve
Σ with the boundary of a polydisc D2 ×D2 ⊂ C2, where one assumes that this intersection
is transverse and is contained in the interior of ∂D2 ×D2. Following [Rud1], such a surface
is called quasipositive. Since Σ is complex, it is symplectic for the standard symplectic
structure on C2. By rescaling the first factor by a large, positive constant we may assume
that the tangent spaces of Σ are almost horizontal near the boundary. One may then add an
infinite end to Σ and since Σ was almost horizontal this can be smoothed in such a manner
that the resulting surface Σ̂ is a symplectic spanning surface for L.

7.2 Symplectic spanning surfaces and slice genus

In the symplectic topology of 4-manifolds an embedded symplectic surface minimises genus
in its homology class. This is known as the symplectic Thom conjecture and was finally
proven in complete generality by Ozváth and Szabó.

Theorem 7.2.1 ([OS]). A closed symplectic surface Σ in a closed symplectic 4-manifold
(X,ω) is genus minimising in its homology class.

We would like to say the same for symplectic spanning surfaces. For this we shall in-
troduce the notion of the minimal (negative) Euler characteristic of a spanning surface of a
null-homologous knot or link sitting in the boundary of a 4-manifold.

Definition 7.2.2. Let L ⊂ M = ∂X be an oriented null-homologous link. We define the
minimal Euler characteristic of L in X to be

χXmin(L) = min{−χ(Σ) | ∂Σ = L, Σ a properly embedded, connected surface in X}.

Under the assumption H2(X) = 0 we will prove that −χ(Σ) = χXmin(L) for symplectic
spanning surfaces. This is the symplectic analogue of a similar statement in [Cha] for the
case of a Lagrangian spanning surfaces bounding Legendrian links in B4. For the case of
a symplectic spanning surface in B4 this result is due to Boileau and Orevkov (cf. [BO]),
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whose proof relies on J-holomorphic curves and the local Thom Conjecture. Instead we shall
use the construction of Gay to add symplectic handles to X in such a way as to cap off Σ to
a closed symplectic surface in a symplectic manifold with convex boundary. Then a result
of Eliashberg will allow us to embed this manifold symplectically in a closed symplectic
manifold and the result will follow from the Symplectic Thom Conjecture. In this way we
obtain a slight strengthening of the result of Orevkov and Boileau.

Theorem 7.2.3. Let (X,ω) be a convex symplectic filling with H2(X) = 0 and L ⊂ ∂X a
transverse link with symplectic spanning surface Σ. Then χXmin(L) = −χ(Σ).

Before we give a proof of Theorem 7.2.3 we shall need to review the construction for
attaching symplectic handles along transverse knots in the boundaries of convex symplectic
fillings following [Gay]. We first consider a standard symplectic 2-handle, which is defined as
a subset of H ⊂ R4. We use polar coordinates x = (r1, θ1, r2, θ2) and set f = −r2

1 + r2
2, then

H is defined as the locus of points with H = {x | ε1 ≤ f(x) ≤ ε2} for some small ε1 < 0 < ε2.
We let

ω0 = r1dr1 ∧ dθ1 + r2dr2 ∧ dθ2

be the standard symplectic form on R4 and

V =
1

2
[(r1 −

1

r1

)
∂

∂r1

+ r2
∂

∂r2

].

This vector field is an inward pointing symplectic dilation, that is a symplectic contraction.
We set H1 = f−1(ε1) and take the attaching circle to be ∂1H = H1 ∩ {r2 = 0}, which is

a transverse knot for the contact form on H1 given by

α1 = ιV ω0 =
1

2
[(r2

1 − 1)dθ1 + r2
2dθ2].

Since V is inward pointing along H1, the induced orientation will agree with that given by
the coordinates r = r2, µ = θ2, λ = −θ1. In these coordinates α1 becomes

1

2
[r2dµ− (r2 − ε1 − 1)dλ]

so that ∂H1 is a positive transverse knot with respect to this contact form.
Now let K be a transverse knot in the boundary of a strong symplectic filling X with

symplectic form d(etα) near the boundary and symplectic dilation ∂
∂t

. By the Darboux
Theorem for transverse knots there is a diffeomorphism φ between a neighbourhood U of K
and W of ∂H1 so that φ∗α1 = gα for some positive function g. By multiplying ω0 by a large
constant we may assume that g > 1 and we let h = log(g). The final step will be to inflate
X so that the induced contact form on ∂X is ehα = gα, which we record in the following
lemma (see also Lemma 7.1.9).

Lemma 7.2.4 (Inflation Lemma). Let ω0 = d(etα) be a symplectic form on the symplecti-
sation X of a contact manifold (M,ker(α)) and let g > 1 be a smooth function on M . Then
there is a diffeomorphism φ(x, t) = (x, log(g) + t) so that φ∗(ω0) = d(etgα).
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In order to apply Lemma 7.2.4 we cut off h so that it has support in the chosen neigh-
bourhood U of K and is equal to h on some possibly smaller neighbourhood. By abuse of
notation we continue to call this function h. We then add a long neck to X and consider the
subset

Xh = X ∪ {(p, t) | 0 ≤ t ≤ h(p)}.

This is again a strong symplectic filling of M with symplectic dilation ∂
∂t

. We next identify
∂X with ∂Xh = {(p, h(p))} by sending p 7→ (p, h(p)). Under this identification the pullback
of the contact structure is exactly ehα.

Hence, by using a Darboux chart to identify U with W and matching inward and outward
pointing symplectic dilations, we may smoothly attach H to X in a way that is compatible
with both symplectic structures at the expense of multiplying ω0 by some large constant.
Moreover, if K × (−ε, 0] were a product piece of a symplectic spanning surface, then the
extension of this to Xh is again symplectic with transverse boundary and under the gluing
map described above such a surface will attach smoothly to the symplectic core disc r2 = 0 in
H. Thus, if Σ was a symplectic spanning surface with boundary K, then we have described
how to cap it off to get a closed symplectic surface Σ̂ = Σ∪D2 in the interior of a symplectic
manifold X̂. Furthermore, by ([Gay], Theorem 1.1) we may assume that X̂ is a convex
symplectic filling. With this construction we may now prove Theorem 7.2.3.

Proof of Theorem 7.2.3. We let L be a transverse link. Then by attaching handles along
each component as above we obtain an embedded symplectic surface

Σ̂ = Σ ∪ki=1 D
2
i

in the interior of some convex filling X̂. By Theorem 1.3 in [Eli2] we may symplectically
embed X̂ in a closed symplectic manifold Y so that the Symplectic Thom conjecture implies
that Σ̂ minimises genus in its homology class in Y . Now let Σ′ be any other spanning surface
of L, then we can close this up in X̂ to a surface Σ̂′ , which we then embed in Y . If H2(X) is
trivial, then [Σ̂] = [Σ̂′] as homology classes in Y . Thus, as Σ̂ minimises genus in its homology
class, we have

−(χ(Σ) + k) = −χ(Σ̂) ≤ −χ(Σ̂′) = −(χ(Σ′) + k).

We conclude that −χ(Σ) ≤ −χ(Σ′) for all spanning surfaces of L and hence

−χ(Σ) ≤ χXmin(L).

The opposite inequality is obvious by the definition of χXmin and hence χXmin(L) = −χ(Σ).

The main examples for which the hypotheses of Theorem 7.2.3 hold are S3 and S2 × S1

with their Stein fillings B4 and B3 × S1 respectively.

7.3 Symplectic links are quasipositive in S3

In this section we shall consider the special case of symplectic links in (S3, ξst) considered as
the boundary of B4 with the standard symplectic structure. The question as to which links
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are symplectic has been considered in [BO], where it is shown that the symplectic links are
precisely those that are quasipositive. Before stating this result we need to recall the notion
of a braid and Rudolph’s definition of quasipositivity.

The braid group on n-strands Bn is defined as the fundamental group of the configuration
space Cn = (Cn \ ∆n)/Sn, where ∆n is the diagonal subvariety consisting of all vectors
(z1, z2, ... , zn) for which at least two distinct entries are equal and Sn acts by permutations
on the coordinate vectors. Inherent in this definition is the choice of base point, which can
be solved by considering free homotopy classes of loops, or equivalently conjugacy classes
of braids. Now the braid group is generated by positive half twists σ1, ..., σn−1 and has the
following presentation

Bn = 〈σ1, ..., σn−1 | σiσjσi = σjσiσj if |i− j| = 1 and σiσj = σjσi if |i− j| ≥ 2〉.

An important fact that we shall need is that the braid group is isomorphic to the mapping
class group MCGc(D2, {p1, p2..., pn}) of compactly supported diffeomorphisms of D2 that fix
n marked points {p1, p2..., pn} as a set (cf. [Bir]). Given an element β ∈ Bn we can construct
its closure in S1×D2 that we denote by β̂. This is obtained by taking the associated element
φ ∈ MCGc(D2, {p1, p2..., pn}) and defining β̂ to be the image of [0, 1]× {p1, p2..., pn} in the
mapping torus defined by φ.

Definition 7.3.1 (Quasipositivity, [Rud1]). A braid β is called quasipositive if it has a
factorisation of the form

β =
k∏
i=1

Qiσ1Q
−1
i ,

where Qi ∈ Bn are arbitrary braids.

Any link in S3 is isotopic to a link in braided position (cf. [Bir]), thus when we speak
of a quasipositive link we will mean that it is quasipositive after being braided. With this
notion of quasipositivity we may state the following result.

Theorem 7.3.2 ([BO]). A link L ⊂ S3 is symplectic if and only if it is quasipositive.

Remark 7.3.3. In fact Boileau and Orevkov show that if Σ is any symplectic spanning surface
in B4, then the pair (B4,Σ) is diffeomorphic to (B4,Σalg), where Σalg is a piece of algebraic
curve that is quasipositive (cf. Example 7.1.11). We also note that the proof of Theorem
7.3.2 in [BO] requires only that the link in question is positively transverse with respect to
the contact structure without any additional assumption on the asymptotics of the spanning
surface.

Thus, when studying transverse links from the perspective of symplectic cobordism, it is
reasonable to single out the set of null-bordant links, which in view of Theorem 7.3.2 is just
the set of quasipositive links and we will denote this set by QP . There is an obvious map
on QP given by χmin = χB

4

min, which by Theorem 7.2.3 is order preserving.

Proposition 7.3.4. Let L1, L2 ∈ QP and assume that L1 ≺s L2 via a connected symplectic
cobordism Σ, then

χmin(L1) = −χ(Σ) + χmin(L2).

In particular, χmin(L1) ≤ χmin(L2).
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This corollary exhibits the asymmetry of the symplectic cobordism relation. To see this
we note that any quasipositive link L can be isotoped to lie on an algebraic curve Cd of degree
d in CP 2. By perturbing this curve we may assume that it intersects the line at infinity
transversally. This curve then defines a symplectic cobordism K ≺s ∆2

d, where ∆2
d ∈ Bd

denotes the braid given by a full twist on all d strands. In the case of the right-handed
trefoil K we have d = 3. Furthermore, χmin(K) = χmin(∆2

3) = 1 and, thus, Proposition
7.3.4 implies that any symplectic cobordism Σ from ∆2

d to K must have χ(Σ) = 0. But any
cobordism Σ between ∆2

d and K must have at least 3 + 1 = 4 boundary components, that is
χ(Σ) < 0 and we arrive at a contradiction. Thus, we conclude that ∆2

d is not symplectically
cobordant to K.

We next note that there are obstructions for a transverse knot or link to be quasipositive
and, hence, symplectic. The first of these is given by the self-linking number of the closure
of a braid.

Definition 7.3.5. Let β ∈ Bd be a braid given by a factorisation

β = Q1σ
ε1
i1

(Q1)−1...Qkσ
εi
ik

(Qk)
−1,

where εi = ±1. We let n−, n+ be the number of εi that are +1,−1 respectively. We then
define the self-linking number

sl(β) = n+ − n− − d.

This of course corresponds to the classical self-linking number of a transverse knot in S3

(cf. [Etn]). A classical result of Rudolph is the following.

Theorem 7.3.6 (Rudolph, [Rud2]). Let β be a quasipositive braid, then sl(β) = χmin(β̂).

As an immediate corollary we have our first obstruction to a transverse link being quasi-
positive.

Proposition 7.3.7. Let L be a quasipositive link, then sl(L) > −1.

7.4 Branched covers and symplectic spanning surfaces

We have seen that there are topological obstructions to transverse links in S3 having sym-
plectic spanning surfaces in B4. In this section we shall show that there are also contact
topological obstructions to the existence of a symplectic spanning surface Σ bounding a
transverse knot or link in an arbitrary symplectic filling X. These obstructions arise when
one takes branched coverings over symplectic spanning surfaces. If L is a transverse link in a
contact 3-manifold that spans a symplectic spanning surface, then one can take a branched
cover M̃ with branching locus L. This will bound the cover of X branched over Σ, which
is then a symplectic filling of M̃ so that the induced contact structure on M̃ is tight. Of
course one must assume such a cover exists, but this is always true for example in the case
X = B4.

As a first step we shall explain how one obtains a contact structure on a cover branched
over a transverse link L, which will be assume to be a knot for simplicity (cf. [Pla]). We
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choose coordinates in a neighbourhood of the branching knot K so that the covering map
M̃

π→ M has the form (z, w) 7→ (z, wd), where z corresponds to the core circle of a tubular
neighbourhood S1 × D2 of K. By the Darboux Theorem we may assume that the contact
distribution is Ker(dz + r2dθ), where we take polar coordinates on D2. Then the pullback
under the projection of this form is dz + dr2ddθ, which is a contact form away from the core
circle r = 0. To fix this we define a function fδ(r) which interpolates between r2 and dr2d,
has positive derivative and is equal to dr2d for r > δ.

The form dz + fδdθ is a contact form on S1×D2 and is isotopic to the standard contact
form on the δ-neighbourhood Uδ for delta sufficiently small. By defining α̃ as π∗α outside of
Uδ we obtain the desired contact form on M̃ .

It is shown in [Pla] that for sufficiently small δ the contact structure thus defined is
unique up to isotopy. We shall next show that the symplectic form on a branched cover that
is branched over a symplectic spanning surface may be chosen in a fashion compatible with
the construction of the contact structure on the boundary.

Proposition 7.4.1. Let X be a weak symplectic filling and let X̃
π→ X be a branched covering

branched over a symplectic spanning surface Σ. Then X̃ is a weak symplectic filling of M̃ .
In particular, the induced contact structure is tight.

Proof. It suffices to consider the case of a knot. The condition of being a weak filling is
that ω ∧ α > 0 on M , for a contact form α. We first choose a trivialisation D2 × Σ → N
of a tubular neighbourhood of Σ such that on the boundary the induced trivialisation is a
Darboux chart of the contact form in a neighbourhood of K = ∂Σ. Furthermore, we assume
that π is of the form (p, z) 7→ (p, zd) in these coordinates.

By our assumption on the boundary trivialisation there is a contact form such that
α = (dz + r2dθ) on a δ-neighbourhood Uδ = D2 × ∂Σ. We let f̃δ(r)dθ = π∗α − α̃ on Uδ
and note that f̃δ has support in Uδ. Moreover, for all sufficiently small r there is a positive
constant C so that

|f̃δ(r)| ≤ C r2. (7.1)

We choose a 2-form τ on D2 of the form φ dx ∧ dy for some non-negative bump function φ
with support in a δ-ball about the origin. We set ω̃ = π∗ω + ετ as in Proposition 2.5.11
and note that this is symplectic for all sufficiently small ε. By definition τ is positive on
planes that intersect Σ transversally. Thus, by our orientation convention, this is true for
positive transversals to K and τ ∧ π∗α > 0 on K. Moreover, the following holds on the
neighbourhood N :

ω̃ ∧ α̃ = (π∗ω + ετ) ∧ (π∗α− f̃δdθ)
= π∗(ω ∧ α) + ε(τ ∧ π∗α)− f̃δ[(π∗ω + ετ) ∧ dθ].

Hence, as the first term is positive away from K and the second is positive on K, by taking
ε sufficiently small we conclude that the sum of the first two terms is strictly positive on
M̃ . By equation (7.1) we may assume (independent of our choice of ε) that the last term is

arbitrarily small and hence ω̃ ∧ α̃ is strictly positive on M̃ as desired.

As an application of Proposition 7.4.1 we note the following corollary.
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Corollary 7.4.2. There exist infinitely many transverse knots of arbitrary self-linking num-
ber that cannot bound symplectic spanning surfaces in S3 = ∂B4.

Proof. We may always take a cyclic 2-fold branched cover over any properly embedded
surface Σ in B4. If Σ is symplectic then the induced contact structure on the boundary of
this branched cover is fillable and, hence, tight by Proposition 7.4.1. However the negative
stabilisation K− of any transverse knot has an overtwisted branched cover by Proposition
4.2 of [HKP]. Thus K− cannot bound any positive symplectic surface.

Finally, if K has sl(K) = N , then the self-linking number of the negative stabilisation
is sl(K−) = N − 2. Thus for an appropriate choice of K we may assume that sl(K−) is
arbitrarily large.

7.5 Symplectic concordance

A natural specialisation of the relation of symplectic cobordism on the set of transverse knots
is symplectic concordance.

Definition 7.5.1 (Symplectic concordance of knots in S3). Let K1 and K2 be transverse
knots in S3. We say that K1 is symplectically concordant to K2 if they are symplectically
cobordant in the symplectisation of S3 via an annulus whose negative end is K1 and whose
positive end is K2. In this case we write K1 ≺c K2.

We have already seen that the notion of symplectic cobordism is much stronger than
that of ordinary smooth cobordism on the set of quasipositive links, as shown for example
by Proposition 7.3.4, which shows that the symplectic cobordism relation is far from being
symmetric unlike its smooth counterpart. However, this asymmetry was detected by the
slice genus of the respective knots, so it is not a priori clear whether the same holds for
the symplectic concordance relation. In this section we will consider examples for which the
symplectic concordance relation fails to be symmetric as well.

To this end we let Kn be the quasipositive knots given as the closure of the following
family of braids in B3:

βn = σ1σ
n
2σ1σ

−n
2 .

It follows from Theorem 7.3.6 that Kn is a slice quasipositive knot since sl(βn) = −1. We
let Σ(∅, K) be a holomorphic slicing disc in B4 for K = Kn (cf. Remark 7.3.3) and we let K0

denote the transverse unknot. Then by taking the complement of a small ball about some
x ∈ Σ(∅, K), we conclude that K0 ≺c K.

We will show that the opposite relation does not hold. As a first step we will show that if
a quasipositive slice knot is symplectically concordant to the unknot, then it is in fact doubly
slice. Recall that a knot is called (smoothly) doubly slice if it is obtained as the transverse
intersection of an embedded 3-sphere in S4 with an unknotted, embedded 2-sphere S2 ↪→ S4.
Such knots have been considered by many authors and there are well-known obstructions to
a given knot being doubly slice.

Proposition 7.5.2. Let K be a slice quasipositive knot. If K is symplectically concordant
to the unknot, then K is doubly slice.
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Proof. We let Σ(K,K0) be a symplectic concordance from K to K0. After gluing the concor-
dance Σ(K,K0) together with the holomorphic slicing disc Σ(∅, K) we obtain a symplectic
disc ∆ in a large ball B4

N of radius N , which in turn embeds into CP 2 with the Fubini-Study
form ωFS. This disc may then be capped off at infinity by a standard holomorphic (and hence
symplectic) linear disc D2 to obtain a symplectically embedded sphere S = ∆ ∪D2 ⊂ CP 2.

The sphere S may then be made J-holomorphic for some J that is tamed by ωFS and as
the sphere is a linear disc at infinity we may assume that the almost complex structure J
agrees with the standard, integrable almost complex structure J0 in a neighbourhood of the
line at infinity CP 1

∞.
Let y = S ∩ CP 1

∞ and let x be a point in the interior of the disc ∆. By a result of
Gromov, any two symplectic spheres S1, S2 representing a generator of H2(CP 2) are isotopic
through symplectic spheres (cf. [McS2]). In order to construct an isotopy between S1 and
S2 one chooses ωFS-tamed almost complex structures J1, J2 that make S1 and S2 almost
complex. If Jt is a path of tamed complex structures joining J1 to J2, then there is a unique
Jt-holomorphic line containing x and y that we denote by Lx,y(t) (cf. [McS2], Cor. 9.4.5),
and this family of symplectic spheres provides the desired isotopy.

In our case we have J1 = J0 and J1 = J and by construction we may assume that the
path Jt interpolating the two almost complex structures in standard in a neighbourhood
of infinity. Hence the line at infinity CP 1

∞ is Jt-holomorphic for all t and by positivity of
intersections Lx,y(t) intersects CP 1

∞ transversely for all t. Thus we may embed this isotopy
in an ambient isotopy, which fixes the point x and CP 1

∞ as a set. By performing a further
isotopy in a neighbourhood of CP 1

∞, we may assume that our isotopy has compact support
disjoint from the line at infinity. Thus the affine part of S, that we denote by Ŝ = S \ y, is
isotopic through compactly supported diffeomorphisms to a complex line and hence embeds
into S4 as an unknotted sphere that we continue to denote by S. Since the alterations that
were made occurred in a neighbourhood of the line at infinity, the intersection with S3 ⊂ S4

is still K, and hence K is doubly slice.

There are many obstructions to a knot being doubly slice. In particular, the torsion
numbers of the 2-fold cover of S3 branched over K come in pairs.

Lemma 7.5.3 ([Sum], Cor. 2.6). Let K be a doubly slice knot and let MK be the 2-fold cover
of S3 branched over K. Then H1(MK) is finite and the torsion numbers come in pairs, that
is H1(MK) ∼= A⊕ A, for some finite group A.

We are now ready to show that Kn is not symplectically concordant to the unknot for
certain values of n.

Theorem 7.5.4. The symplectic concordance relation is not symmetric. In fact, there are
infinitely many quasipositive slice knots that are not symplectically concordant to the unknot.

Proof. We let K = Kn be as above and we assume that n is odd. It follows from Proposition
7.5.2 that if Kn is symplectically concordant to the unknot then it is doubly slice and we
will show that this is not the case.

To this end we let MK denote the 2-fold cover of S3 branched over K. The standard
open book on S3, whose binding is a Hopf circle, pulls back under this branched double
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cover to give an open book decomposition on MK whose page P is a once punctured torus
and whose monodromy A is given by lifting the word β ∈ B3 to the mapping class group Γ1

1.
This group fits into the exact sequence

1→ Z→ Γ1
1 → Γ1 = SL(2,Z)→ 1.

We let Ā denote the image of the monodromy in SL(2,Z). The images of the lifts of the
generators are

σ̄1 =

(
1 0
−1 1

)
σ̄2 =

(
1 1
0 1

)
and we compute that

Ā =

(
1− n n2

n− 2 −n2 + n+ 1

)
.

Thus MK is the union of the mapping torus PĀ with monodromy Ā and a solid torus whose
meridian is glued to a longitude on the boundary. The Wang sequence gives the following
exact sequence

0→ H1(P )
Ā∗−Id∗→ H1(P )→ H1(PĀ)→ H0(P )→ 0,

where the first map is given by the matrix

Ā− Id =

(
−n n2

n− 2 −n2 + n

)
.

Hence H1(PĀ) ∼= Zn2 ⊕ Z if n is odd. Then attaching the meridian of a solid torus along
a longitude will kill the second factor and we deduce that H1(MK) ∼= Zn2 . This, however,
contradicts Lemma 7.5.3, since Zn2 does not split as a sum of groups of equal order and we
conclude that Kn is not symplectically concordant to the unknot for n odd.

It is in fact difficult to imagine that any non-trivial knot is symplectically concordant to
the unknot and this motivates the following conjecture.

Conjecture 7.5.5. Let K be a transverse knot. Then K0 ≺c K and K ≺c K0 if and only if
K = K0.

Of course if every quasipositive slice knot were not doubly slice then the conjecture would
be trivially true, however for example the 946 knot is doubly slice by [Sum] and quasipositive.
An explicit quasipositive braiding is given by the following representation in the braid group
on 4 strands B4:

(σ1σ2σ2σ3σ
−1
2 σ−1

2 σ−1
1 )(σ2σ1σ

−1
2 )(σ2σ3σ

−1
2 ).

A special case of Conjecture 7.5.5 is that the 946 knot is not symplectically concordant to
the unknot. For Legendrian knots and Lagrangian concordance this has been shown by
Chantraine (cf. [Cha]) for a particular Legendrian representative, and one would expect that
the same should hold for symplectic concordance.

We conclude with some remarks concerning the proof of Theorem 7.5.4.
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Remark 7.5.6. The argument of Theorem 7.5.4 is in essence topological and the additional
fact that we are considering symplectic concordance was only used to deduce that the knots
under consideration are doubly slice. Indeed our initial approach to this question was the
following: by taking the 2-fold cyclic branched coverings over a symplectic concordance from
K to the unknot one obtains a strong symplectic cobordism from the 2-fold branched cover
MK to S3. If the contact structure on MK were a perturbation of a taut foliation, then one
can easily derive a contradiction using certain cut and paste arguments and the uniqueness
of symplectic fillings of S3. However, a criterion developed by Honda-Kazez-Matic in [HKM]
for determining when a particular open book with pseudo-Anosov monodromy supports a
contact structure obtained as a perturbation of a taut foliation is unfortunately not decisive
in this special case. For even though the monodromy is pseudo-Anosov, the fractional Dehn
twist coefficient c can be computed by an algorithm due to Davie to be 1

2
(cf. [Dav]) and

this is precisely the case not covered by Theorem 4.2 of [HKM]. Thus this approach fails as
stated, even though it is still possible that ξk is a perturbation of a taut foliation for other
reasons.

Remark 7.5.7. If one considers the stronger relation of J-tamed concordance, then there is
a more elementary proof of Theorem 7.5.4. Here a symplectic concordance Σ is J-tamed
if there is a non-singular J-convex function φ on S3 × [0, 1] so that φ(S3 × 0) = 0 and
φ(S3× 1) = 1 for some almost complex J with respect to which Σ is J-holomorphic. If such
a cobordism exists, then the branched double cover over Σ is a cobordism from MK to S3

and contains only 1- and 2-handles in equal number. From this one sees immediately that
MK must have trivial first homology. We saw in the proof of Theorem 7.5.4 that H1(MKn)
is non-trivial and, hence, there can exist no J-tamed concordance form Kn to K0. In fact,
such a concordance gives a ribbon concordance as defined by Gordon and there are severe
restrictions on the existence of such concordances (cf. [Gor]).



Appendix A

Five-term exact sequences

To any extension of groups 1 → N → G → Q → 1 one may associate a five-term exact
sequence is group cohomology of the following form:

1 // H1(Q,R) // H1(G,R) // H1(N,R)Q
δ // H2(Q,R) // H2(G,R) .

This exact sequence is generally derived by means of the Serre spectral sequence, but we
choose to give an alternate description in order to obtain an explicit description of the
connecting homomorphism. This account is based on the analogy with the definition of
Euler classes in the case of central extensions (cf. [Bro]).

Lemma A.1. Let 1 → N → G
π→ Q → 1 be an extension of groups and let S denote

a normalised set-theoretic section of the final map so that s(e.N) = e. Further let φ ∈
H1(N,R)Q lie in the invariant part of H1(N,R) for any coefficient ring R. Define

φS(g) = φ(ng) + f(s(N.g))

where ng ∈ N is the unique element such that g = ng.s(N.g) and f is a function on the set
of coset representatives determined by s.

Then the map δ̄ : H1(N,R) → H2(Q,R) defined by δ̄φ = δφS is well-defined and the
five-term sequence is exact with δ̄ as the connecting homomorphism. Furthermore if 1

2
∈ R,

then we may assume that φS(g−1) = −φS(g).

Proof. First we note by definition

φS(n.g) = φS(n) + φS(g)− f(s(N.e))

for all n ∈ N, g ∈ G . Thus using bracket notation for inhomogeneous chains (cf. [Bro], p.
36) we calculate

(δφS)(na, b) = φS(na)− φS(nab) + φS(b)

= φS(n)− f(s(N.e)) + φS(a)− φS(n) + f(s(N.e))− φS(ab) + φS(b)

= (δφS)(a, b).
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Similarly we compute

(δφS)(a, nb) = φS(a)− φS(anb) + φS(nb)

= φS(a)− φS(ana−1) + f(s(N.e))− φS(ab) + φS(n)− f(s(N.e)) + φS(b)

= (δφS)(a, b),

where we have used the fact that φ lies in the invariant part of the first cohomology to
deduce the last equality. Thus δφS does not depend on the coset representative and, hence,
descends to a well-defined cochain δφS ∈ C2(Q,R). This cochain is by construction closed
and we claim that it is independent of the choice of section. For given another section S ′,
we have

(φS − φS′)(ng) = (φS − φS′)(g),

so this difference descends to a cochain ψ = φS − φS′ ∈ C1(Q,R) and

δφS − δφ′S = δψ.

Similarly, if we choose different functions f, f ′ in the definition of φS,f , φS,f ′ respectively, then
we see that

φS,f − φS,f ′ = f − f ′ ∈ C1(Q,R),

and thus δφS,f − δφS,f ′ is exact in H2(Q,R).
Next we claim that [δφS] = 0 if and only if φ extends to a homomorphism on G. If φ

extends to φ̃ this is clear as we set f = φ̃ in the definition of φS so that φS = φ̃ and δφS = 0.
Conversely, assume that δφS = δψ for ψ ∈ C1(Q,R). We set f = π∗ψ in the definition

of φS and define φ̃ = φS − π∗ψ. This is a set-theoretic extension of φ and we compute

δφ̃ = δφS − π∗δψ = δφS − π∗δφS = 0.

Thus φ extends to a homomorphism on G and we have shown exactness at H1(N,R)Q.
By construction the composition

H1(N,R)Q
δ̄→ H2(Q,R)

π∗→ H2(G,R)

is zero. Next we need to check exactness at H2(Q,R). To this end let α ∈ C2(Q,R) and
assume π∗α = δβ. Then π∗α(n, g) = π∗α(e, g) if and only if

β(n)− β(ng) + β(g) = β(e)− β(g) + β(g) = β(e)

and by adding an exact constant cochain to π∗α, we may assume that β(e) = 0. So in
fact β(ng) = β(n) + β(g) for all n ∈ N, g ∈ G. In particular β is a homomorphism on
N . Similarly, we deduce from the equation π∗α(g, n) = π∗α(g, e) that β(gn) = β(g) + β(n)
for all n ∈ N, g ∈ G. Then using the fact that π∗α(gng−1, g) = π∗α(e, g) we see that
β(gng−1) = β(n). Thus setting f = β and φ = β|N we obtain φS = β for any section and
[α] = δ̄φ.

Finally, given any normalised section S we obtain another S−1 by inverting elementwise.
We set f = 0 and define

φSym(g) =
1

2
(φS(g)− φS−1(g−1)),

to obtain a cochain that is antisymmetric under inversion and such that δφSym = δφ.
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This alternative connecting homomorphism is natural in the following sense.

Lemma A.2. Consider the following commuting diagramm of group extenstions

1 // N // G // Q // 1

1 // N ′ //

β

OO

G′ //

OO

Q′ //

γ

OO

1.

This induces a commutative diagram of five-term exact sequences

1 // H1(Q,R) //

γ∗

��

H1(G,R) //

��

H1(N,R)Q
δ̄ //

β∗

��

H2(Q,R) //

γ∗

��

H2(G,R)

��
1 // H1(Q′, R) // H1(G′, R) // H1(N ′, R)Q

′ δ̄ // H2(Q′, R) // H2(G′, R).

Proof. Choose normalised set-theoretic sections s, s′ so that the following diagramm com-
mutes:

1 // N // G // Q //
s

ii 1

1 // N //

β

OO

G′ //

OO

Q′ //

γ

OO

s′
jj 1.

We set f = 0 in the definition of δ̄ given in Lemma A.1. Then on the level of cochains we
have

γ∗δ̄φ = γ∗δφS = δγ∗φS = δ(γ∗φ)S′ = δ̄(γ∗φ).

As commutativity is clear for all other squares the result follows.

As a consequence of Lemma A.2 we see that δ̄ agrees with the ordinary connecting
homomorphism δ up to sign if we consider cohomology with real coefficients.

Lemma A.3. Let δ be the connecting homomorphism in the five-term exact sequence and
let δ̄ be the map defined in Lemma A.1. Then δ̄ = ±δ on cohomology with real coefficients.

Proof. Consider a group extension

1 // N // G // Q // 1

and let φ ∈ H1(N,Z)Q. Further let σ ∈ H2(Q,Z) be a homology class represented by a map
h : Σ → K(Q, 1) from some closed, oriented surface. By taking the pullback of the above
extension under h and applying Lemma A.2 we have a commuting diagram

0 // H1(Q,Z) //

γ∗

��

H1(G,Z) //

��

H1(N,Z)Q
δ̄ //

��

H2(Q,Z) //

γ∗

��

H2(G,Z)

��
0 // H1(Q′,Z) // H1(G′,Z) // H1(N,Z)Q

′ δ̄ // H2(Q′,Z) = Z // H2(G′,Z).
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By exactness the maps δ, δ̄ : H1(N,Z)Q
′ → H2(Q′,Z) = Z have the same kernel and im-

age. Any two homomorphisms from a group to Z with this property must agree up to sign.
Since this holds for all elements of H2(Q,Z), we conclude that δφ = ±δ̄φ as elements in
Map(H2(Q,Z),Z) and by the Universal Coefficient Theorem this also holds in real cohomol-
ogy.

It will be convenient to give a slightly different formulation of Lemma A.1 for performing
calculations.

Lemma A.4. Let 1→ N → G→ Q→ 1 be an extension of groups and let f ∈ H1(N,R)Q.
Further let f̄ be an extension of f to G such that f(n.g) = f(n) + f(g) for all n ∈ N and
g ∈ G. Then for any [g1], [g2] ∈ Q in the quotient we have a representative cocycle for δ̄φ
such that

δ̄f([g1], [g2]) = f(g1) + f(g2)− f(g1.g2).
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