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Introduction and Objective of the Thesis 

 

 

Abstract 

 

In the general introduction, vascular grafts for the replacement of blood vessels and 

approaches for their improvement concerning the main problems graft infection, 

thrombogenicity, and intimal hyperplasia were discussed. A focus was on the 

special role of endothelial cells in vessel replacement and graft healing after 

implantation. The approaches for performance improvement of these prostheses 

were highlighted concentrating on the problems surrounding the endothelialization 

of the inner vascular graft surface, due to its importance for the long term patency of 

prostheses. Furthermore, polymers for the potential modification of vascular grafts 

were introduced describing their relevance in the field of controlled release 

applications.  

 

 

Keywords: vascular graft, Dacron®, ePTFE, collagen, PLGA, endothelial cell 
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1 Introduction 

The use of vascular grafts in vessel replacement is not a modern age occurrence. 

Vascular surgery, a necessary prerequisite for vessel replacement, dates as far 

back as 130 AD when first surgeons used vascular ligature to stop and control 

bleedings from vessels. Early prostheses were made of metal, glass or ivory, which 

rapidly blocked due to blood clotting [1]. It was not until Carrel reported a reliable 

method for suturing cut ends of blood vessels together with appropriate patency 

rates in 1912 that extensive vascular surgery became available and was no longer 

the exclusive domain of a few [2]. From there on, the use of autologous vein grafts 

was a common procedure. During World War I and II and the Korean War there was 

significant improvement in the techniques used for vascular surgery and vessel 

replacement [3-4].  

Ever since, vascular grafts have been extensively used and today coronary and 

peripheral vascular bypass grafting is performed on a daily basis in the United 

States and Europe [5]. Nevertheless, it is not without significant constraints and 

complications that these procedures are performed. Ever since the first bypass 

surgery the ultimate goal was to achieve complete revascularization with patency of 

the transplanted grafts for the duration of a patient‟s lifetime [6]. However, most 

attempts, especially in the field of small diameter vascular grafts (< 6 mm) and low 

blood flow locations have failed. These failures are due to the occurrence of 

adverse events, such as graft infection, thrombogenicity of the internal graft surface 

or growth of smooth muscle cells leading to intimal hyperplasia resulting in 

occlusion. 

Therefore, there is a tremendous momentum in the vascular community to develop 

synthetic small-diameter grafts that have high long-term patency rates. Off-the-shelf 

availability in various diameters and lengths, uncomplicated storage or preparation 

requirements, and ease of handling are the main advantages of such grafts [7]. 

Several improvements to vascular grafts have been made in the laboratory setting, 

but failed to convince in the clinic, which is the reason that to this day the majority of 

surgeons continue to implant the well-established products of the past decades [8]. 
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2 Vascular grafts 

2.1 Materials used for vascular grafts 

The first materials used for vessel replacement were made of metals, glass or ivory. 

However, the materials used in modern day vessel replacement have undergone a 

tremendous development, comparable to the surgical techniques employed to place 

them. In contemporary surgeries the use of autologous, homologous, heterogenous 

and alloplastic vessel prostheses is common practice. However, the most preferred 

material to date by surgeons is still the autologous vein graft such as the saphenous 

vein or, for coronary artery grafting, the internal mammary artery [9-10]. Yet, in at 

least 30% of the patients, these veins or others can not be used due to earlier 

removal or other pre-existing conditions. In the absence of suitable autologous 

veins, homologous and heterogenous alternatives can be considered as substitutes. 

The so called Dardik prostheses makes use of the human umbilical vein 

(homologous graft) in combination with a polyester mesh and has been used for 

replacements. However, its difficult preparation process, which includes 

intraoperative irrigation with large volumes of heparinized solutions and the difficulty 

of sewing make it an unattractive alternative [11]. Bovine and ovine arteries 

(heterogenous grafts) have also been used for vessel replacement. However, first 

promising results concerning their effectiveness had to be put in perspective, since 

long term follow up documented aneurysm formation and decreased resistance to 

infection [11].  

The development of alloplastic alternatives started with the accidental observation 

of a pseudointima formation around a silk suture [12-13]. A continuous search for 

better, more blood-compatible materials and improved manufacturing processes 

resulted in prostheses of many different substances and fabrics in a short time. 

Prostheses were made of Nylon®, Teflon®, Orlon®, Dacron®, plastic and 

polyurethane [1]. Nylon was soon abandoned, due to the rapid degeneration after 

implantation, resulting in aneurysm formation [1, 14]. Teflon® (Polytetrafluoro-

ethylene) and Dacron® (Polyethylene terephthalate) showed the most suitable and 

superior properties [14] and represent the gold standard of synthetic vascular grafts 

nowadays. 
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2.1.1 Dacron® 

Dacron® is a form of multiple filaments either woven or knitted into vascular grafts 

(compare Figure 1-1). While woven grafts have smaller pores, knitted grafts formed 

by looping fibers together have larger pores which promote greater tissue ingrowth 

[15]. They are commonly used for larger vessel replacements in regions of high 

blood flow. Before application, porous alloplastic Dacron® grafts are impregnated 

with connective tissue proteins or preclotted with the patient`s blood in order to 

reduce blood loss, aid clotting, and stimulate tissue ingrowth [13, 15]. 

(a) (b) 

  

Figure 1-1: Scanning electron microscopical appearance of a Dacron
®
 prosthesis with large 

folds of Dacron
®
 material (a) and fiber bundles (b). 

 

2.1.2 ePTFE 

PTFE or Teflon® was first used for artificial heart valves and subsequently a more 

microporous material was developed by extrusion and sintering to form expanded 

PTFE (ePTFE) for vascular grafts [15]. It is characterized by circumferentially 

aligned, thin and irregular-shaped solid membranes, the so-called „„nodes‟‟, and a 

dense meshwork of fine fibrils stretching between the nodes (Figure 1-2) [8]. The 

porosity of ePTFE grafts is defined by internodual distance (IND), therefore “low 

porosity” (30 µm IND) and “high porosity” (60 µm IND) grafts are available. Tissue 

ingrowth is only possible down to an IND of approximately 45 µm, which leaves “low 
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porosity” grafts impermeable for tissue ingrowth such as transmural capillarization 

[8]. 

(a) (b) 

  

Figure 1-2: Expanded polytetrafluoroethylene (ePTFE) prosthesis as seen with scanning 

electron microscope of the regular pattern at the inner surface (a) and numerous and densely 

packed fine internodular fibrils (b). 

 

2.2 Failure of vascular grafts 

It is well known that autologous vein grafts are still the graft of choice by surgeons in 

peripheral arterial bypass procedures due to superior patency rates when compared 

to prosthetic grafts [16]. Most of the above described materials show good 

performances and patency in high blood flow regions and with large inner diameters 

(> 6 mm). However, when implanted in regions with low blood flow and smaller 

diameters, vascular grafts start failing. When looking at patency rates of vascular 

prosthesis, synthetic materials have yet to match those of autologous grafts [10]. 

Therefore, synthetic grafts are only used when the use of autologous material is 

contraindicated. Some of the reasons include compliance mismatch, 

thrombogenicity and poor haemodynamics. The main problems that occur during 

the use of artificial vein grafts that have been reported are graft infection [17], 

thrombogenicity of the internal graft surface [18], or growth of smooth muscle cells 

resulting in intimal hyperplasia leading to occlusion [19]. Graft infection is a 

devastating complication with incident rates of 1 % to 6 % [13]. Significant mortality 

and limb amputation rates have been reported for infections occurring in vessel 
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replacement therapy [17]. However, the main reasons for low patency rates are 

thrombogenicity and intimal hyperplasia, with thrombogenicitiy being responsible for 

early graft occlusion [20]. Upon implantation of a vascular graft, plasma proteins 

immediately adsorb to the wall. They present binding sites for integrin receptors, 

which are to be found on platelets and many other cells [21]. Adhesion to these, as 

well as, to the vessel wall itself may cause activation of the platelets [18], resulting 

in thrombosis. Intimal hyperplasia, the reason for late graft occlusion, which is 

associated with the abrupt change in distensibility between native vessel and stiff 

prosthesis at the anastomosis [22], is commonly caused by smooth muscle cell 

proliferation and extracellular matrix deposition [23]. Several of these causes have 

their origin in the lack of a functional endothelial cell lining on the inner surface of 

grafts, especially in mid graft sections after even long periods of implantation [8]. 

Despite the shortcomings of contemporary vascular prostheses, no alternative 

concept has yet emerged that promises to replace the current generation of 

synthetic grafts. 

 

2.3 Improvement of vascular graft performance 

Several approaches to overcome the limitations and complications connected with 

the use of small caliber vascular grafts and their endothelialization have been 

undertaken. Concerning vascular graft infection, it has been reported that even high 

local concentrations of antibiotics can not completely eradicate bacteria in 

established biofilms on vascular grafts [24-25], therefore avoiding the bacterial 

adhesion on vascular grafts is of high importance [13, 26]. In order to achieve this, 

the coating of vascular graft surfaces with antibiotics has been established. Several 

antimicrobial agents [27-28] have been employed, as well as, different ways of 

attachment on the graft surface. Common methods are the use of surfactant 

mediated agents or the incorporation of drugs in biodegradable polymer carriers 

[13, 29-30]. 

In order to reduce thrombogenicity and enhance the blood compatibility of vascular 

graft materials, and therefore one of the reasons for early graft occlusion [18], 

several approaches using Heparin have been undertaken [16, 31]. However, 
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different results were obtained in dependence of the method of bonding, with 

covalent bonding being responsible for a lasting reduction in thrombogenicity in 

vascular grafts made of PTFE [32] and Dacron® [33]. Yet, transient coatings did not 

result in an improvement of patency [18]. These findings have lead to the 

development of a commercially available vascular ePTFE graft (GORE-TEX 

PROPATEN® Vascular graft, W.L. Gore and Associates, Flagstaff, AZ) with long-

term bonding of heparin accomplished by covalent linkage of the anticoagulant [16]. 

Another approach that has been utilized or the reduction of thrombogenicity of 

vascular grafts is the impregnation with carbon [34]. Due to its hydrophobic nature 

and negative charge these coatings lower platelet deposition. However, this 

approach has shown no real advantage in comparison to standard ePTFE grafts 

[35-36]. Other attempts to improve graft patencies have involved the coating with 

albumin, gelatin, and collagen [37-39]. Several other investigations aim at the 

establishing of a functional endothelial cell lining on the inner surface of the vascular 

graft material to mimic the natural conditions via endothelial cell seeding or the 

improvement of endothelial cell adhesion on the graft surface (compare 3.2). 

 

3 Endothelial cells and their role in vessel replacement 

Endothelial Cells (ECs) were once thought to be a monolayer of passive cells lining 

the vasculature [40]. Nowadays, it is known that this endothelial monolayer that 

lines the healthy blood vessel serves as regulator of cardiovascular physiology [5]. It 

provides structural integrity by forming a thromboresistant barrier between 

circulating blood and the arterial wall [41]. It controls blood flow and vessel tone 

[42], platelet activation, adhesion and aggregation, leukocyte adhesion [43] and 

smooth muscle cell (SMC) migration, and proliferation [5]. Therefore, the lack of a 

functional endothelial cell lining on the inner surface of vascular grafts is considered 

to be one of the main factors for small caliber vascular graft failure [5]. 

Consequently, ECs are interesting as coverage of inner prosthetic graft surfaces 

with the idea behind EC seeding or attraction to improve the patency of small 

diameter vascular grafts by establishing a functional biological lining on the luminal 

surface.  
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3.1 Endothelial cell related problems 

Most of the problems occurring during the use of vascular grafts (compare 2.2) are 

related to the lack of an endothelial cell lining, independent of the origin of graft 

material. In case of autologous vein grafts, one would expect a functional 

endothelial cell lining to be present on the inner graft surface since these vessels 

were removed from other regions in a patient‟s body prior to their use and were 

functional until the time of removal. However, even in the case of autologous grafts, 

vascular endothelium related problems occur [10]. During the excision of autologous 

veins for use as vein grafts, in both the arterial and venous circulations, the 

endothelium of the vessel is thought to be traumatized with a resulting reduction in 

its functional capability [44], which causes the aforementioned complications. 

In case of alloplastic vascular grafts, endothelialization mainly occurs at the 

anastomotic region of prosthetic grafts with a maximum depth of penetration of 

endothelial cells into the graft of approximately 10 - 20 mm, even after years of 

implantation [8] leaving the inner part of the grafts permanently without endothelium 

and its resulting complications. Another way of endothelialization of the vascular 

graft surface is transmural migration of endothelial cells in case of ePTFE grafts with 

high IND and Dacron® grafts with sufficient porosity. This effect is responsible for the 

majority of confluent endothelium forming in animal models [18], however only to a 

negligible extent in humans [8, 45]. A further mechanism that has gained interest in 

recent years is the endothelialization of vascular grafts by the transformation of 

endothelial progenitor stem cells (EPCs) with the identification and origins of EPCs 

to be defined [18, 46]. 

 

3.2 Approaches for endothelialization 

A functioning endothelial cell lining on the inner graft surface is the prerequisite for 

long patency rates of vascular grafts [5]. Therefore, the establishing of a thin layer of 

endothelial cells on vascular grafts has been the interest of research groups for a 

long time. 
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3.2.1 In vitro endothelialization 

Endothelial cell seeding seemed a promising approach and first successful 

approaches for seeding vascular grafts in dogs were reported by Herring et al. [47]. 

Several studies in dogs followed implementing different harvesting techniques [40]. 

Two principal methods for the harvest were described: mechanical and chemical. 

The first method was the scraping of endothelial cells from the intima, with the 

drawback of cell damage and possible contamination with smooth muscle cells, 

which could lead to intimal hyperplasia. Latter techniques involved the incubation of 

endothelium with collagenase to separate the cells from the extracellular matrix and 

basement membrane [40, 48]. First studies of seeded cells in humans were 

reported in 1984 [49] with several studies following, however the results were 

controversial [50-52].  

In the following years, different seeding techniques were implemented with the two 

stage seeding technique that makes use of cultured endothelial cells to be seeded 

on grafts [40, 53] and the in vitro culturing of cells on the prosthetic graft. This way, 

the amount of cells and the resistance of cells to shear stress were achieved [54], 

which were thought to be the reason of failure for the previously described attempts 

to seed cells. Despite strong evidence that the effect of endothelial cell seeding [55-

57] is beneficial for the performance of vascular grafts, a major drawback of all 

studies is the labor intensity. There is a 4 to 5 week delay between cell harvest and 

graft implantation, making this an unfeasible alternative for emergency applications. 

In addition, growth and infection problems can occur and the costs of cell culture 

under good manufacturing practice are substantial [40, 58]. In order to avoid these 

risks, a search for other cell types and for other EC sources has been started, with a 

focus on mesothelial cells, microvascular endothelial cells, and endothelial 

progenitor cells [40]. 

 

3.2.2 In vivo endothelialization 

In order to overcome the limitations of in vitro endothelial cell seeding, as mentioned 

above, but still establish a functional endothelial cell lining on the inner surface of 

vascular grafts, in vivo endothelialization has been a focus for several years. The 
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goal is to increase the transanastomotic ingrowth of endothelial cells and to capture 

endothelial progenitor cells present in the blood stream and stimulate their growth 

and attachment. Several approaches to achieve this endeavor have been 

undertaken using a multitude of modifications of the graft surface. The modification 

of graft surfaces using plasma have been shown to enhance the cell compatibility 

properties of ePTFE grafts [59]. Another approach is the attachment of RGD peptide 

sequences to vascular graft surfaces, as they are widely acknowledged as cell-

binding signals [60]. 

Several other approaches include the use of growth factors to induce endothelial 

cell growth and attraction. Among the growth factors investigated, the family of 

fibroblast growth factors, especially basic fibroblast growth factor (bFGF), has been 

investigated for the use to enhance endothelialization [61]. However bFGF has also 

been shown to have stimulatory effects on smooth muscle cell growth, which in turn 

can lead to intimal hyperplasia and vessel occlusion [62-63], making it a less ideal 

candidate. Another widely investigated growth factor is the Vascular Endothelial 

Growth Factor (VEGF). VEGF is a secreted protein ligand that activates 

transmembrane receptors on endothelial cells. It is a disulfide-linked homodimer 

and exists in several isoforms, four of which consist of 121, 165, 189 and 206 amino 

acids [64] and are produced from a single human gene as a result of alternate 

splicing [65]. This growth factor has been shown to have very high endothelial cell 

specificity without mitogenic activity for other cell types [66], making it an ideal 

candidate for the specific stimulation of endothelial cell growth in vascular graft 

applications. Multiple ways of presenting these growth factors have been 

investigated, including extracellular matrix coatings [67], electrostatic interaction 

[45], and fibrin matrices [65, 68], all of which have shown promising results.  

The controlled release of therapeutic agents from the vascular graft surface 

constitutes a promising approach for the improvement of vascular graft patency and 

the establishing of a functioning endothelial cell lining. A coating with biocompatible 

and biodegradable polymers for this approach and the subsequent local drug 

delivery for modifying the response of the surrounding tissue could induce 

spontaneous endothelialization and/or inhibit smooth muscle cell proliferation and 

therefore overcome the limitations of small caliber vascular grafts. 
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4 Polymers for controlled release applications 

As mentioned above (compare 3.2) the establishing of a functioning endothelial cell 

lining on the vascular graft surface is an important prerequisite for the long term 

patency of small caliber grafts. The controlled release of endothelial cell specific 

growth factors, such as VEGF, from film coatings on vascular grafts presents a 

promising approach to overcome the problems encountered in in vitro and in vivo 

endothelialization. This paragraph discusses commonly used biocompatible and 

biodegradable polymers for controlled release applications and their potential use 

for vascular graft coatings. 

 

4.1 Natural polymers - collagen 

The class of natural polymers can be divided in two main groups polysaccharide 

and protein based polymers. The polysaccharide based polymers comprise of 

chitosan, starch, alginate, hyaluronic acid and chondroitin sulphate [69-70] and can 

be obtained from different sources, such as microbial, animal, or vegetal and show 

good hemocompatibility and non-toxicity [71]. Protein based polymers include 

collagen, gelatin, fibrin, and albumin [69, 72]. The availability of large quantities and 

the good biocompatibility of these natural polymers makes them an attractive 

alternative for drug delivery devices [72]. However, due to their natural origin, batch 

to batch variations in their composition can occur [73].  

A commonly used biopolymer in controlled release and biomaterial applications is 

collagen [74-79]. Collagen is the primary and major structural protein of vertebrates, 

representing almost 30% of total protein present in a body [80]. Due to its 

mechanical and biochemical properties, it can primarily be found in areas of high 

mechanical strain. Hence, 90% of extracellular protein in tendon and bone, and 

more than 50% in skin, consist of collagen [81]. Most of the structural support in 

mammals is achieved by collagen, its primary function in the extracellular matrix. 

Nevertheless, to date 27 collagen types have been isolated with a variety of 

functions [82]. However, collagen type I is the most investigated for biomedical 

applications. 
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4.1.1 Structure of collagen 

Collagen is characterized by a very high mechanical strength and stability caused 

by the characteristic triple helical structure [83-84]. These helices are composed of 

three polypeptide α-chains each consisting of more than 1000 amino acids, which 

are arranged in a characteristic repetitive unit glycine-X-Y (Gly-X-Y) (Figure 1-3a). 

The absence of a side chain in glycine results in the formation of a typical left-

handed triple helix as closest packing with glycine oriented in the core [72], 

representing the secondary structure of collagen (Figure 1-3b). The X- and Y- 

positions can be occupied by any amino acids, however about 35% of the non-

glycine positions are dominated by proline in the X-position and 4-hydroxyproline in 

the Y-position [83]. Three triple helical polypeptides then form a rope-like right 

handed supercoil, also know as tropocollagen, with a length of approximately 

300 nm and a diameter of 1.5 nm (Figure 1-3b). In addition, there are regions of 

about 9-26 amino acids at the amino and carboxyl terminal ends that are not 

incorporated in the helical structure, the so called telopeptides, which are the main 

molecular sites involved in collagen cross linking [85]. These tropocollagen 

molecules form longitudinal and bilateral microfibrils and further fibrils with distinct 

periodicity [79] (Figure 1-3c). These collagen fibrils organize into fibers which on 

their part can form even larger fiber bundles [83]. 

    

   

 

   

(a)
  ) 

(b)
  ) 

(c)
  ) 

 

Figure 1-3: Chemical structure of collagen type I with primary amino acid sequence (a), 

secondary left handed helix and tertiary right handed triple-helix structure (b) and staggered 

quaternary structure (c) [80]. 
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4.1.2 Crosslinking of collagen 

Natural crosslinking gives high tensile strength and proteolytic resistance to 

collagen. Due to dissociation of crosslinks in the course of the isolation processes, 

reconstituted forms of collagen such as films, fibers, or sponges can lack sufficient 

strength and may disintegrate upon handling or collapse under the pressure from 

surrounding tissue in vivo [83]. In addition, the biodegradation and therefore the 

release of incorporated compounds may need to be customized, which can be 

achieved by crosslinking of collagen by means of chemical or physical methods. 

The amount of penetrating water responsible for the swelling of the collagen 

decreases in correlation to the increase of crosslinking degree [86], thus limiting the 

release of high molecular weight compounds due to the entrapment of such 

compounds in the crosslinked matrix in contrast to low molecular weight compounds 

[83]. Chemical crosslinking of collagen can be performed using a variety of 

reagents. Aldehydes (e.g. glutaraldehyde) have been extensively used due to their 

good efficiency, inexpensiveness, and short treatment times [83, 87]. However, 

crosslinking may sometimes be restricted to the surface and heterogenous 

crosslinking can occur. In addition, glutaraldehyd is incorporated in the new linkage 

raising the question of cytotoxicity and biocompatibility [87]. Carbodiimides (e.g. 

Ethyl(dimethylaminopropyl)-carbodiimide) and acyl azides represent zero-length 

crosslinking methods, where the chemical is not integrated in the newly formed 

bond, but acts as an initiator for the linkage of free carboxylic and amino groups to 

form amide bonds. Furthermore, crosslinking can be performed by the use of tannic 

acid [88], polyepoxy compounds [89], and hexamethylene-diisocyanate [90]. In 

addition to chemical crosslinking methods, physical procedures such as 

dehydrothermal treatment [79, 83, 91] and UV radiation have been reported [83, 

92]. 

These methods of crosslinking can be applied in order to prevent rapid degradation 

of collagen based biomaterials during in vivo application, improve its mechanical 

stability [93] and reduce tissue response [94]. Crosslinking is especially useful when 

using collagen in controlled release applications. By means of crosslinking the 

release of compounds entrapped in the collagen matrix can be tailored to the 

specific needs of the application. 



Chapter 1 

 

14 

4.2 Synthetic polymers - PLGA 

Synthetic polymers have been widely used in the field of controlled release 

applications and biomaterials [95-98]. They comprise of poly(amides), poly(amino 

acids) poly(alkyl-α-cyano acrylates), poly(acrylamides), and poly(esters) [99]. 

Amongst them, the aliphatic poly(esters) polylactides (PLA), polyglycolides (PGA), 

and especially PLGA have been of great interest due to their good biocompatibility 

and biodegradability [100-102]. They are the most widely known, studied, and used 

bioabsorbable synthetic polymers in medicine. Polyglycolide and polylactide (PLA) 

homopolymers and their copolymers (PLGA) are all poly (α-hydroxyacids). Poly (α-

hydroxy acids) can be polymerized via condensation, although only low molecular 

weight polymers are produced [103]. In order to obtain a higher molecular weight 

and thus mechanical strength and longer degradation time, the polymers are 

polymerized from the cyclic dimers dilactide and diglycolide via ring-opening 

polymerization using appropriate initiators and co-initiators [104]. The general 

chemical structure is displayed in Figure 1-4. 

 

O C
H

R1

C

O

O C
H

R2

C

O

OH
n

 
R3

 

 

polylactic acid (PLA):   R1, R2 = -CH3 

polyglycolic acid (PGA):   R1, R2 = H 

poly(lactic-co-glycolic) acid (PLGA): R1 = H, R2 = -CH3 

non end-capped versions:  R3 = H 

end-capped versions:   R3 = -alkyl 

Figure 1-4: General chemical structure of poly(α-hydroxyacids). 

 

By modification of molecular weight [105], ratio of the used monomers, and degree 

of crystalllinity [106-107] the degradation and release properties of the copolymers 

can be tailored to the specific needs of the application. Furthermore, the release 
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properties can be altered by esterification of the carboxylic end groups of the 

polymer using long chain alcohols in order to obtain end capped polymers with a 

more hydrophobic character in contrast to the more hydrophilic properties of the 

non-end-capped varieties [108]. The degradation of these polymers is mainly driven 

by hydrolysis of the polymer chains in smaller fragments [109-110] down to lactic 

and glycolic acid [111] that can be eliminated by the kidneys or in form of carbon 

dioxide via the lungs. Enzymatic involvement in the degradation of the polymers is 

unclear [106]. The rate of hydrolysis and therefore the rate of degradation is mainly 

controlled by the amount of penetrating water [112-113]. It has been shown that this 

rate is decreased for pure crystalline poly-l-lactide and polyglycolide and that it 

increases with an increasing ratio of glyoclid in the copolymer and increasing 

hydrophilicity [114-115]. Therefore, a whole range of polymers with varying 

properties and applications is commercially available from Boehringer Ingelheim 

under the name of Resomer® [116-117]. However, PLGA copolymers as well as PLA 

and PGA are also available from other suppliers, such as Birmingham Polymers or 

Purac Biomaterials. 

Despite the wide range of polymers available, their release rates are difficult to 

predict and dependent on the compounds incorporated and the geometry of the 

device [118]. In general, their release profiles are characterized by an initial burst 

release of drug that is deposited near the surface and is caused by its dissolution 

[119], followed by a sustained release phase characterized by zero order kinetics 

[120]. Consequently, release mechanisms with different stages are proposed for 

devices made of PLGA [121]. Other limitations of PLGA based release systems for 

protein delivery are the use of organic solvents during the manufacturing process 

and the decrease in pH caused by acidic erosion products that may cause harm to 

the incorporated protein [122]. Nevertheless, PLGA is considered the “gold 

standard” of biodegradable polymers [73]. 

 

The described polymers, collagen, and PLGA have been widely used in controlled 

release applications due to their good biocompatibility and biodegradability. 

Collagen in particular has been investigated for the release of growth factors for 
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vascular graft application [61] with promising results. Both polymers have been 

shown to be suitable for vascular applications [112, 123] and intravenous drug 

delivery. Therefore, these polymers present a promising tool for the controlled 

release of endothelial cell specific growth factors from film coatings on vascular 

grafts as a device to overcome the problems encountered in in vitro and in vivo 

endothelialization. 

 

5 Conclusions 

The use of alloplastic prothestic vascular grafts in vessel replacement therapy is 

inevitable and many approaches to overcome the limitations, especially in the field 

of small diameter grafts in low blood flow regions, have been undertaken. The lack 

of a functioning endothelial cell lining, being one of the main contributors to these 

limitations, has been addressed by a multitude of studies and several promising 

attempts have been carried out. Yet, some are inapplicable in emergency situations 

due to long preparation times and difficult preparation procedures. Therefore, 

despite all the research in this field no alternative concept has yet emerged that 

promises to replace the current generation of synthetic grafts, which enables off-the-

shelf availability and supports complete endothelialization of the inner surface and 

complete healing of the vascular graft to ensure patency for a patient‟s lifetime. 
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6 Objectives of the Thesis 

The goal of the thesis was the investigation of functional coatings for the 

improvement of vascular graft performances, especially in regards of 

endothelialization with the help of endothelial cell specific growth enhancers.  

It was of interest to be able to apply these modifications on existing commercially 

available vascular grafts; therefore a suitable model system for the investigations 

needed to be developed. Due to the low adhesion of coatings on the model surface 

PTFE, it was necessary to enhance its coating accessibility. Therefore, the first 

objective was the investigation and implementation of the plasmabrush® for argon 

plasma treatment of the PTFE surfaces and the characterization thereof 

(Chapter 2).  

For the presentation of cell growth enhancers to the endothelial cells two 

approaches were considered: 

The first approach was the incorporation of the cell growth enhancer in matrices and 

the controlled release thereof within an appropriate period of time. Therefore, the 

second main objective of the thesis was the investigation of biodegradable film 

coatings for the controlled release of the growth enhancers. The polymers of choice 

were PLGA and collagen. The influences of several parameters on the release 

needed to be investigated, specifically in the case of collagen, the influence of 

crosslinking on the release rate. The coating cell compatibility and the cell growth 

enhancement of the released protein were to be studied and quantified (Chapter 3 

and 4). 

For the second approach, the presentation of a cell growth enhancer at the surface, 

the covalent linkage of an enhancer to modified films was investigated. Thus, the 

third objective was the chemical modification of PLGA and collagen using a 

functional polyethylene glycol (PEG) spacer and the covalent linkage of the 

enhancer to the surface of a film consisting thereof. Furthermore, detection methods 

for the surface bound protein needed to be evaluated and developed. After 

successful linkage, the influence of the covalently attached protein was to be 
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evaluated in a cell assay concerning its effect on endothelial and smooth muscle 

cells (Chapter 5 and 6). 

 

Thus, in summary the main objectives of the thesis were: 

1. Implementation of the plasmabrush® and establishing a method for surface 

modification of PTFE to enhance the coating accessibility, and understanding 

the change in physical properties induced by plasma modification by means of 

surface sensitive analytical techniques (Chapter 2). 

2. Investigation and modification of PLGA and collagen films for the controlled 

release of the endothelial cell specific growth enhancer VEGF165. Establishing 

an in vitro cell culture system and quantification of the stimulatory effect of the 

developed release systems (Chapter 3 and 4). 

3. Covalent attachment of VEGF165 to chemically modified PLGA and collagen 

films by the use of a bifunctional PEG-spacer and the identification of analytical 

methods to detect surface bound protein. Evaluation of developed systems 

concerning their cell growth enhancing properties (Chapter 5 and 6). 
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Chapter 2 

 

Modification of PTFE using atmospheric plasma and its 

characterization 

 

 

Abstract 

 

The implementation of the plasmabrush® (Reinhausen Plasma GmbH, Regensburg, 

Germany) and the optimization of the plasma treatment process for polytetrafluoro-

ethylene (PTFE) to enhance coating adhesion was studied. Furthermore, the 

changes induced by the atmospheric argon plasma treatment process were 

characterized using surface sensitive techniques, such as scanning electron 

microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray 

photoelectron spectroscopy (XPS), and surface energy determination. Scanning 

electron microscopy did not reveal any changes in surface morphology and FT-IR 

was not sensitive enough to detect alterations in surface chemistry. XPS revealed 

minor variations in the binding energy region of oxygen; however, a decrease was 

shown for plasma treated samples, which suggested a cleansing effect of the argon 

plasma treatment for the PTFE samples. A change in surface energy was 

detectable for the treated samples using test inks. In addition, it was shown that the 

treatment significantly increased coating adhesion of applied collagen and 

poly(lactic-co-glycolic acid) (PLGA) films, as well as, cell adhesion of human 

umbilical vein endothelial cells (HUVECs) in comparison to untreated PTFE. 

 

Keywords: PTFE, atmospheric argon plasma, surface energy, endothelial cells 
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1 Introduction 

Synthetic polymeric materials have been widely used in the field of biomaterial 

applications. Polymers such as polyurethane, poly(methylmethacrylate), ultrahigh 

molecular weight polyethylene, polyetheretherketone (PEEK), polyethylene 

terephthalate (PET), and PTFE have been used for bone plates, screws, artificial 

lenses, bone cements, abdominal wall prostheses, and vascular grafts [1-2]. 

However, most of these materials do not meet the demands for both their surface 

and bulk properties when used as biomaterials [3]; a very low surface energy and 

resulting poor adhesion being one crucial factor. Adhesion is generally considered 

to be a surface property, where only molecular layers at the surface of the material 

are responsible for the effect [4]. Several approaches have been undertaken to 

change the surface properties of polymeric surfaces, with the most obvious being a 

surface roughening by sand blasting or etching in order to increase the surface area 

for enhanced adhesion [5]. Other methods applied are oxidation [6], ion implantation 

[7], or graft polymerization [8]. In recent years, plasma treatment of polymer 

surfaces has been employed as an interesting alternative for surface modification 

[4]. Depending on the gas composition and plasma conditions, ions, electrons, fast 

neutrals, radicals, and UV radiation contribute to the polymer treatment, resulting in 

etching, activation, and/or cross-linking [9]. Since these changes generally occur 

within the top layers of the treated materials [10], plasma treatment is an interesting 

approach to modify the near surface region without modifying the bulk properties of 

the polymers. 

Therefore, the goal of this study was the implementation of the atmospheric plasma 

treatment torch plasmabrush® for the modification of PTFE surfaces, and the 

enhancement of its coating accessibility and cell compatibility. For this purpose, 

changes induced by atmospheric plasma treatment were characterized by various 

surface sensitive techniques, such as SEM, FT-IR spectroscopy, XPS, and surface 

energy determination. To get insight in the cell compatibility and attachment, cell 

studies using human umbilical vein endothelial cells (HUVECs) were performed. 
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2 Materials and Methods 

2.1 Materials 

PTFE was obtained from GM GmbH (Freiham, Germany), argon process gas and 

nitrogen from Linde AG (Pullach, Germany), collagenase A from Roche (Penzberg, 

Germany), endothelial cell growth medium from Provitro (Berlin, Germany), heat 

inactivated fetal bovine serum from Biochrom (Berlin, Germany), buffered 

formaldehyde solution (4%) from Polysciences Inc. (Warrington, PA, USA), crystal 

violet and dichloromethane from Merck KGaA (Darmstadt, Germany), Resomer® 

(RG 502H, RG 503, RG 503H and RG 504H) from Boehringer Ingelheim 

(Ingelheim, Germany), and equine collagen type I derived from tendon from Innocoll 

GmbH (Saal/Donau, Germany). The pH of the solutions was adjusted using 

hydrochloric acid or sodium hydroxide from Merck KGaA (Darmstadt, Germany) and 

measured with a pH meter Inolab level 1 from WTW (Weilheim, Germany). 

 

2.2 Methods 

2.2.1 Plasma activation 

PTFE-discs were activated with an atmospheric plasma jet (plasmabrush®, 

Reinhausen Plasma GmbH, Regensburg, Gemany) (see Figure 2-1) using argon 

with a purity of 5.0. Gas flow was adjusted to 10 l/min. The voltages for plasma 

discharge and treatment time were evaluated. 

 

Figure 2-1: plasmabrush ® atmospheric plasma jet (Reinhausen Plasma GmbH, Re gensburg, 

Germany) 
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2.2.2 Characterization of surfaces after plasma modification 

2.2.2.1 Scanning Electron Microscopy 

Samples for SEM were fixed on specimen holders using conductive double sided 

tape before sputtering with a thin layer of carbon under vacuum. SEM images were 

obtained using a Philips XL Series XL20 (Philips, The Netherlands) at 4.0kV. 

 

2.2.2.2 X-ray Photoelectron Spectroscopy (XPS) 

XPS measurements were performed using a Vacuum Science Workshop (VSW) 

surface analysis chamber equipped with a VSW HA 100 hemispherical analyzer 

(Vacuum Science Workshop, United Kingdom). The analyzer was operated in Fixed 

Analyzer Transmission (FAT) mode with variable retarding potential of 22 eV. The 

base pressure during the XPS measurements was <10−7 Pa.  

 

2.2.2.3 Attenuated Total Reflection- FT-IR spectroscopy (ATR-FT-IR) 

FT-IR measurements were performed on a Tensor 27 FT-IR spectrometer (Bruker 

Optics GmbH, Ettlingen, Germany) using the Miracle ATR unit. The recorded 

spectra were obtained from 4000 to 900 cm-1 wavenumbers, in attenuated total 

reflectance (ATR) mode at 20°C. Each measurement wa s an average of 240 scans. 

While data acquisition was performed, the optical bench was purged with dry 

nitrogen to reduce interference from water vapour IR absorption and each spectrum 

was corrected for the background. 

 

2.2.2.4 Surface energy determination 

The change in surface energy of plasma treated discs was evaluated using test inks 

for surface energy determination (Plasmatreat Testtinte, Plasmatreat GmbH, 

Steinhagen, Germany) in a range of 30 – 72 mN/m. 
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2.2.3 Cell compatibility 

The cell compatibility of untreated and plasma treated PTFE-discs was evaluated 

using HUVECs. HUVECs were prepared by digestion of umbilical veins with 0.1 g/l 

collagenase A. Cells were cultured in endothelial cell growth medium supplemented 

with 10% heat-inactivated fetal bovine serum in a humidified atmosphere at 5% CO2 

and 37°C. Cells were used at passage no. 3. For vis ualization of cells on the 

different surfaces, cells were fixed with a buffered formaldehyde solution (4%) and 

nuclei were stained with crystal violet (0.5% in 20% methanol). Images were 

obtained with a SZX7 microscope and an ALTRA20 CMOS camera (Olympus, 

Hamburg, Germany). 

 

2.2.4 Film adhesion 

1% (w/v) Resomer® (RG 503 and RG 503H) solutions in dichloromethane and 0.5 

and 1% (w/v) aqueous collagen dispersions were used to coat untreated and argon 

plasma treated PTFE-discs with a diameter of 15 mm. Therefore, the discs were 

placed in 24-well aluminum well plates and covered with the different coating 

solutions. The discs were air dried for one hour and subsequently removed from the 

wells, and dried under vacuum over night or until further use. For the investigation 

of film adhesion, the coated discs were examined concerning the ablation of PLGA 

and collagen films after drying by means of visual inspection. 

 

3 Results and Discussion 

3.1 Surface characterization 

In order to gain insight in the changes of surface properties and composition of the 

atmospheric plasma treated samples, as well as, to obtain a better understanding of 

the plasma treatment in general, several methods to investigate the changes and 

the process were utilized. Therefore, the samples were plasma treated and 

subsequently analyzed by means of SEM, FT-IR spectroscopy, and XPS. In 
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addition, the change in surface energy was determined using commercially 

available test inks. 

 

3.1.1 Surface morphology 

One of the main effects reported for the treatment of polymer surfaces with plasma 

is the ablation or the etching of material of the surface, which can remove weak 

boundary layers and increase the surface area [4, 11]. Therefore, changes in 

surface morphology could potentially be visualized using scanning electron 

microscopy. For the investigations, untreated and plasma treated PTFE samples 

were prepared according to 2.2.1 and examined concerning their morphology. 

(a) (b) 

  

(c) (d) 

  

Figure 2-2: Scanning electron micrographs of untrea ted PTFE discs as overview (a) and 

magnification (b) and argon plasma treated PTFE dis cs as overview (c) and magnification (d). 
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Figure 2-2 shows the surface of plasma treated and untreated polymer by SEM. 

The overview micrographs of both samples (Figure 2-2a and c) showed similar 

scratch patterns on the surface that originated from the manufacturing process of 

the PTFE. Magnifications of both samples (Figure 2-2b and d) showed again no 

differences concerning the surface morphology, such as, smoothing of the surface 

due to etching or ablation in contrast to cases reported in literature for different 

polymers using various process gases [10, 12]. However, Park et al. reported 

similar findings when investigating the change in surface morphology of polymers 

under the influence of plasma treatment [13]. Therefore, it must be concluded that 

the short treatment times of the atmospheric argon plasma did not suffice to inflict 

changes on the surface morphology of the used PTFE samples. 

 

3.1.2 Surface chemistry analysis by ATR-FTIR 

In order to investigate the introduction of functional groups on the surfaces of 

plasma treated PTFE discs, FT-IR measurements were performed. For the 

measurements, PTFE-discs were treated with argon plasma according to 2.2.1 with 

a constant nozzle to surface distance of 10 mm, an excitation voltage of 4.5 kV, and 

a treatment time of 15 s. FT-IR spectra were recorded prior to treatment for pristine 

PTFE samples and immediately after plasma treatment. 

900140019002400290034003900

wavenumber [cm -1]  

Figure 2-3: FT-IR spectra of untreated ( ) and plasma treated ( ) PTFE discs using 

argon with adjusted intensity for better comparabil ity. 
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Figure 2-3 shows the recorded ATR-FTIR spectra of untreated and argon plasma 

treated samples. No differences of the recorded spectra were observable over the 

range of wavenumbers investigated. It has been reported in literature that plasma 

treatment of polymer surfaces with various process gases results in the removal of 

hydrogen atoms especially for inert gas plasmas [14] or in the case of PTFE the 

removal of fluorine atoms from the polymer surface and the formation of carbon 

radicals. Most carbon radicals will then be oxidized into oxygen functional groups, 

when the polymer specimen are exposed to air in case of low pressure plasma or 

during the treatment process in case of atmospheric plasma treatment [8, 15-16]. 

The results demonstrate that in case of plasmabrush® treatment of PTFE, oxygen 

functional groups are not introduced due to the very high bond strength between 

carbon and fluorine atoms [17] or are introduced at a concentration which is below 

the limit of detection for FT-IR spectroscopy. The depth of penetration for FT-IR of 

several microns [18] might be responsible for a reduced sensitivity as argon plasma 

affects the 30 nm region of surfaces treated [10]. It has also been reported that the 

main effect of argon plasma on polymer surfaces is ablation and etching [10], but 

could not be confirmed using SEM. 

 

3.1.3 Surface composition 

XPS has been widely used in the investigation of the influence of plasma 

modification on polymer surfaces [19-21]. It is a method sensitive to minor changes 

in the surface composition of studied materials, which made it a promising tool for 

the investigation of the upper layers within the top 3-6 nm of the investigated 

polymer [22]. For the investigations, untreated and plasma treated PTFE samples 

were prepared according to 2.2.1 and were examined concerning their surface 

composition (compare 2.2.2.2). 
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Figure 2-4: Overview XPS spectra of untreated (   ) and argon plasma treated (    ) PTFE discs 

with adjusted intensity for better comparability. 

 

The overview XPS spectra recorded for the untreated and treated PTFE samples 

are shown in Figure 2-4. The peak that occured at 294 eV could be ascribed to the 

C1s spectrum attributed to the CF2 species and was present in both untreated and 

argon plasma treated polymer species. The second characteristic peak at 691 eV 

could be ascribed to the F1s spectrum and was observed in both polymer species 

as well. In order to further investigate the influence of argon plasma on the chemical 

composition of the polymer surface, the areas of the XPS spectra for the peaks 

representing the C1s, F1s, O1s and N1s were analyzed at higher resolution. The 

later were investigated with the intention of studying the introduction of functional 

groups including oxygen and nitrogen. 
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Figure 2-5: Magnification of XPS spectra of untreat ed (  ) and argon plasma treated 

( ) PTFE discs of binding energy regions of F1s (a), C1s (b) and O1s (c).  

 

The magnification of the binding energy regions for the F1s spectrum (Figure 2-5a) 

revealed no differences for the untreated and plasma treated PTFE samples. The 

same result was obtained when investigating the magnification of the binding 

energy region of the C1s spectrum (Figure 2-5b) and the N1s region (data not 

shown). When studying the magnification of the O1s region of the binding energy 

minor differences were observable that were hardly delimitable from background 

noise. However, contrary to the expectations, a decrease of oxygen content was 

detected for the plasma treated samples in comparison to the unmodified PTFE 

(Figure 2-5c). The introduction of oxygen containing species by the formation of 
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radicals during the plasma treatment process and subsequent saturation by oxygen 

present during the plasma treatment process or post treatment with ambient air 

have been reported in literature [23-24]. A decrease in oxygen content for the 

plasma treated samples could be ascribed to cleansing of the surface by ablation of 

weak boundary layers [4] contaminated with oxygen. A removal of plasma activated 

layers and the exposure of untreated polymer as reported in literature [25] might 

have added to that effect. 

 

3.1.4 Determination of surface energy - hydrophilicity 

For the determination of surface energy of the untreated and argon plasma treated 

PTFE samples, commercially available test inks were used. It is a simple, quick, 

and easy to use method for measuring surface energy on materials such as plastic, 

metal, or glass. In order to determine the surface energy of samples, the test inks 

were applied to the surface. In case good wetting occurred after application, the 

surface energy of the material being tested was higher than the corresponding 

surface tension value of the ink applied. The test was repeated with the next higher 

test value until wetting failed to occur. Accordingly, the surface energy of the 

material corresponds to the value of the test ink that last wetted it for at least 2 

seconds. Obtained values for surface energies are relative values and can not be 

directly compared to values acquired with other methods. 

(a) (b) 

    

Figure 2-6: Determination of surface energy of PTFE  discs using 30 mN/m test inks of a disc 

prior to treatment (a) and after argon plasma treat ment (b). 

 

Figure 2-6 shows the results obtained for an untreated and plasma treated sample. 

Prior to treatment PTFE, had a surface energy of below 30 mN/m (Figure 2-6a), the 
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lower limit of detection for the applied test inks, as could be seen by the bad wetting 

of the applied test ink. These results are in accordance to values reported in 

literature for pristine PTFE of approximately 15 – 20 mN/m [17, 26-27]. Following 

plasma treatment, the surface energy of the samples increased to values above 

30 mN/m as could be seen by the good wetting of the applied test ink (Figure 2-6b). 

This increase in surface energy for plasma treated samples was in accordance to 

studies reported in literature [23, 28-29].  

Thus, despite the fact that neither XPS, ATR-FTIR, nor SEM could prove chemical 

or surface morphology changes, the important parameter for coating [30] or cell 

adhesion [31], surface energy could be significantly increased by atmospheric 

plasma treatment.  

 

3.2 Optimization of the plasma activation process using the plasmabrush® 

In order to optimize the procedure for atmospheric plasma treatment using the 

plasmabrush®, the aforementioned method to determine changes in surface energy 

using test inks was employed to characterize the treated surfaces and to optimize 

the treatment parameters. The effect of changes in parameters, such as, ignition 

voltage of the plasma, treatment time, and aging of the treated surfaces were 

investigated. 

 

3.2.1 Optimization of ignition voltage 

For the optimization of the ignition voltage of the plasma, treatment time for all 

PTFE samples was kept constant at 10 s, as well as, the nozzle to surface distance, 

which was 10 mm. Samples were plasma treated using argon gas at a flow rate of 

10 l/min with different ignition voltages ranging from 3.5 kV, the lowest voltage 

applicable due to non ignition of plasma at lower voltages, and 8.0 kV, the highest 

voltage applicable due to arc discharges occurring at higher voltages. Surface 

energy of the treated samples was measured immediately after the plasma 

treatment. 
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Figure 2-7: Development of surface energy in correl ation to treatment voltage for argon 

plasma treated PTFE discs. (average ± SD; n=3) 

 

Figure 2-7 shows the development of the surface energy of the plasma treated 

samples in accordance to the ignition voltage. The activation started at 3.5 kV with a 

surface energy of the treated samples of approximately 31 mN/m and reached a 

maximum of activation at 34 mN/m for the samples treated with 4.0 and 4.5 kV. 

Surface energies for the samples treated with voltages higher than 4.5 kV 

decreased to 32 mN/m for those treated with 5.5 and 6.0 kV. A further decrease to 

approximately 31.5 mN/m was experienced for the samples treated with a higher 

voltage than 6.0 kV up to 8.0 kV, the highest voltage applicable. 

Contrary findings have been reported in literature. Water contact angles, the basis 

for the calculation of surface energy based on the method of Owens and Wendt 

[32], were measured in dependence of different acceleration voltages in a low 

pressure plasma setting [33]. Water contact angles increased with low voltages 

leading to lower surface energies and decreased with higher voltages, reflecting 

higher surface energies. Similar findings were also reported by Liu et al [34] for 

atmospheric plasma treatment. 

In this case the ignition voltage of up to a 4.5 kV in combination with the short 

treatment time of 10 s might be responsible for a cleansing and modification of the 
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surface of the PTFE film leading to an increased surface energy. Further increase of 

the ignition voltage could then cause a removal of activated polymer layers and the 

exposure of untreated polymer, as reported in literature [25], resulting in a 

subsequent decrease of surface energy, as observed during the optimization 

process. 

 

3.2.2 Optimization of treatment time 

In order to optimize treatment times of the plasma treatment process nozzle to 

surface distance for all PTFE samples was kept constant at 10 mm and two ignition 

voltages 3.5 and 4.5 kV were investigated. Samples were plasma treated using 

argon gas at a flow rate of 10 l/min with different treatment times ranging from 5 s to 

60 s. Surface energy of the treated samples was measured immediately after the 

plasma treatment. 
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Figure 2-8: Development of surface energy in correl ation to treatment time for 3.5 kV (  ) 

and 4.5 kV (  ). (average ± SD; n=3) 

 

It was expected that increasing treatment times could result in increasing 

modification of the surface, in this case the surface energy, as reported in literature 

[17, 35]. For both excitation voltages, an increase in surface energy was detected in 
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the first 15 s of treatment time, with surface energies of 30.0 and 30.5 mN/m for 3.5 

and 4.5 kV respectively after 5 s of treatment and a maximum of 32.0 and 

34.0 mN/m after 15 s (Figure 2-8). Increasing the treatment times did not result in a 

further increase of surface energy, but in a decrease to 30.5 mN/m for both voltages 

after a treatment time of 30 s. A further reduction of surface energy to 30 mN/m after 

treatment times of 60 s, irrespective of the excitation voltage was observed. The 

decrease in surface energy might indicate that other processes, such as, molecular 

turn-over, weak boundary layers, and etching were dominating the treatment [36] 

and were therefore leading to the ablation of plasma activated layers and the 

exposure of untreated polymer [25]. 

 

3.2.3 Influence of aging time post treatment on surface energy 

With the aim of bulk production of plasma treated samples, it was important to 

investigate the influence of aging time post treatment on plasma modified PTFE 

samples. Therefore, PTFE discs were treated with atmospheric plasma using argon 

gas as process gas at a flow rate of 10 l/min, a nozzle to surface distance of 10 mm, 

an excitation voltage of 4.5 kV, and a treatment time of 15 s. For the investigations 

sufficient, amounts of PTFE samples were plasma treated and stored at room 

temperature under a fume hood until measurement using the test inks. For each 

time point new samples were measured and discarded afterwards in order to 

eliminate the effect of the test ink on the surface. 

 

The results for the effect of aging time on the surface energy of argon plasma 

treated samples are shown in Figure 2-9. A maximum of activation could be 

observed 60 min post treatment that decreased with increasing aging time and 

stabilized at a surface energy of 32 mN/m that was maintained for several weeks 

(data not shown). Similar results have been described using low pressure plasma. 

Koenig et al. reported that in dependency of storage conditions post treatment the 

changes in surface properties on PTFE samples were reversible [18]. The same 

phenomenon has also been reported for other polymers, for example polycarbonate 

[9]. 
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Figure 2-9: Development of surface energy of PTFE d iscs in correlation to aging time after 

argon plasma treatment. (average ± SD; n=4) 

 

It has been shown that O2 plasma treated surfaces generally show short aging 

times and recover hydrophobicity partially or even completely. The possible 

mechanisms for this are believed to be reorientation or migration of treated polymer 

chains from the surface to the bulk. The driving force is the minimization of 

interfacial energy, and this irreversible recovery is found in most plasma-treated 

polymer surfaces [37]. A similar process in case of the argon plasma treated 

samples could be responsible for the recovery of hydrophobicity over time.  

However, the effect achieved by argon plasma treatment was stable throughout 

several weeks and a surface energy of 32 mN/m could be maintained during the 

investigated time period. In contrast to the initial surface energy of pristine PTFE of 

15 – 20mN/m, this represents a significant increase in hydrophilicity by means of 

plasma treatment. 

 

3.3 Cell compatibility of plasma treated surfaces 

For the intended application of the plasma treatment process for the modification of 

vascular grafts in order to enhance adhesion of polymer film coatings for the 

controlled release of endothelial cell specific growth enhancers, an important 
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prerequisite is the cell compatibility of the plasma modified surfaces. Therefore, 

argon plasma activated PTFE samples were tested concerning their HUVEC 

compatibility in an in vitro setting. Unmodified and plasma modified PTFE samples 

were incubated with endothelial cells for 3 days and cells were subsequently 

visualized according to 2.2.3. In addition, control samples of HUVECs were grown 

on collagen coated well plates and treated accordingly. Cells were analyzed 

concerning cell morphology, cell viability, and proliferation on the disc. 

(a)       (b)      

    

Figure 2-10: HUVEC compatibility and growth on coll agen coated well plate (a) as control and 

argon plasma treated PTFE disc (b). 

 

Figure 2-10 shows pictures of the stained cells after a three day incubation period. A 

confluent monolayer of endothelial cells grown on the argon plasma treated PTFE 

discs was found. Cell viability and proliferation were comparable to cells grown on 

collagen coated control wells. Unmodified PTFE discs did not support endothelial 

cell attachment and cell growth by any means (data not shown). These findings are 

in accordance to studies reported in literature that demonstrated the non adherence 

of endothelial cells with increasing hydrophobicity of the polymer [38], and an 

increase in cell growth and attachment could be shown for plasma modified polymer 

surfaces [39]. 

 

3.4 Film adhesion 

In order to investigate the film adhesion of collagen and PLGA films on plasma 

treated and untreated PTFE discs, films were prepared according to 2.2.4. After 
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coating of the surfaces, the film adhesion was investigated by visual inspection and 

rated according to the following scaling: Films that exhibited very good adhesion of 

close to 100% of the film on the PTFE surface were rated as “++”. In case minor 

ablation of the films occurred around the edges of the PTFE discs, the film adhesion 

was considered good and rated as “+”. In case of poor film adhesion with more than 

just the edges of the film detaching from the surface, the adhesion was considered 

poor and was rated as “-“. In case more than 50% of the film did not adhere to the 

surface, the adhesion was considered very poor and was rated as “--“. 

 

Table 2-1: Evaluation of PLGA and collagen film adh esion on plasma treated and untreated 

PTFE discs. (++ = very good adhesion; + = good adhe sion; - = poor adhesion and -- = very 

poor adhesion). 

 plasma treated PTFE untreated PTFE 

RG 503 ++ -- 

RG 503H ++ -- 

0.5% collagen + -- 

1% collagen + -- 

 

Table 2-1 provides an overview of the results obtained for the investigated collagen 

and PLGA materials on PTFE discs. Both PLGA materials exhibited very poor 

adhesion on the untreated PTFE surfaces, in both cases showing ablation of more 

than 50% of the film applied on the surface. However, after plasma treatment, both 

PLGA materials exhibited very good adhesion to the plasma modified polymer 

surface. Collagen exhibited very poor adhesion, irrespective of the dispersion 

concentration on untreated PTFE surfaces with more than 50% of the film detaching 

after drying, and in some cases showing complete ablation of the film. After plasma 

treatment of the PTFE surface collagen materials exhibited a good adhesion with 

only minor ablation visible at the edges of the coated discs. 

These results demonstrate the increased coating adhesion of PLGA and collagen 

films on plasma modified PTFE surfaces. Plasma treatment of polymer surfaces, in 



Modification of PTFE using atmospheric plasma and its characterization 

 

45 

this case PTFE, has been proven to be an easy and cost effective approach to 

enhance the adhesion of coatings on modified surfaces in a lab setting. 

 

4 Conclusions 

The aim of this study was the implementation of the plasmabrush® for plasma 

modification of PTFE substrates. The main goal was the investigation of a fast and 

straightforward method to modify the polymer with the aim of enabling coating 

accessibility. It was of interest to characterize the changes induced by the 

atmospheric plasma treatment by means of SEM, ATR-FTIR, XPS, and surface 

energy determination. In the process of this study, a plasma treatment process for 

making PTFE more hydrophilic and accessible for coating was successfully 

developed. The effect characterized by surface energy determination was stable for 

several weeks. It was possible to increase the surface energy of PTFE samples by 

10-15 mN/m depending on process conditions. The characterization of changes 

induced by atmospheric argon plasma, by means of the other methods than surface 

energy determination, did not show any variations. The improved hydrophilicity and 

wettability of the polymer was unlikely to result from surface roughening, since SEM 

revealed no differences in surface morphology for investigated samples. 

Furthermore, the introduction of functional groups containing oxygen or nitrogen 

species by the treatment process could not be confirmed using ATR-FTIR as well as 

XPS, which did not reveal any chemical alteration on the outer surface. These 

methods, however, might have not been sensitive enough to detect the changes 

induced by the atmospheric plasma treatment. 

The established plasma activation process significantly increased the coating 

adhesion of PLGA and collagen films applied on the modified surfaces in contrast to 

the non adhesion of these films on unmodified PTFE surfaces. In addition, it was 

shown that the plasma modification greatly improved the adherence of endothelial 

cells on the plasma treated surfaces. Therefore, the atmospheric plasmabrush® was 

shown to be an easy and efficient approach to modify surfaces for coating in a lab 

setting. 
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Chapter 3 

 

Investigation of PLGA films for controlled release applications 

 

 

Abstract 

The use of poly(lactic-co-glycolic acid) (PLGA) for protein drug carrying film 

coatings of vascular grafts to enhance endothelialization was investigated. The in-

vitro release of Fluorescein isothiocyanat (FITC) dextran as a model compound 

from PLGA coated discs was evaluated and the influence of the properties of a 

group of commercially available polymers was studied. Investigations revealed the 

dependency of the release rate on molecular weight and esterification of carboxylic 

end groups, as previously described. In addition, the independency of the release 

rate from the particle size of model compound suspended in the coating solution, 

especially in regards to the burst release, could be shown. 

Furthermore, the cell compatibility of PLGA coatings was shown using human 

umbilical vein endothelial cells (HUVECs) and cell quantification methods were 

evaluated. Fluorescence Activated Cell Sorting (FACS) and Propidium Iodide 

staining were found unsuitable to reproducibly detect cell growth differences in the 

desired range. Cell Titer-Blue®, a commercially available cell viability test, was 

found suitable to successfully detect differences. 

 

Keywords: PLGA, FITC-dextran, vascular graft, endothelial cell, Cell Titer-Blue® 
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1 Introduction 

Synthetic polymers are widely utilized in the fields of controlled release applications 

and biomaterials. Commonly used polymers include poly(amides), poly(amino 

acids), poly(alkyl-α-cyanoacrylates), poly(acrylamides), and poly(esters) [1]. 

Amongst them, the aliphatic poly(esters) polylactid (PLA), polyglycolid (PGA), and 

especially PLGA are of great interest due to their good biocompatibility and 

biodegradability [2-4]. These polymers have been used in a multitude of 

applications for controlled release of active ingredients, in form of micro- and 

nanoparticles [5-6], film coatings [7-8], and scaffolds [9]. PLGA, PLA and PGA were 

first used as absorbable sutures, clamps, and meshes [10] before their relevance 

for controlled release applications was discovered. This type of polymers are 

synthesized via condensation from lactic acid and glycolic acid for lower molecular 

weight polymers and ring opening polymerization of dilactide and diglycolide for the 

higher molecular weight species [11]. 

The swelling, the water uptake, the degradation, and therefore, the release 

properties can be tailored to the needs of its application. The mechanism of 

degradation of these polymers is based on the hydrolysis of the polymer chains into 

smaller fragments that can be eliminated via the kidneys in case of D-lactic acid, or 

can be metabolized via the citric acid cycle in case of L-lactic acid and glycolic acid, 

and can be exhaled via the lungs in form of carbon dioxide [12]. The rate of 

hydrolytic degradation can be controlled by altering the physical properties, such as 

molecular weight, degree of crystallinity, or glass transition temperature (Tg) [13]. In 

addition, the carboxylic end groups of the polymer can be esterified using long chain 

alcohols in order to obtain end capped polymers with a more hydrophobic character, 

in contrast to the more hydrophilic properties of the non-end-capped varieties, which 

then leads to changed release properties [14]. In general, all these modifications 

have an influence on the rate and extent of water penetration into the polymer 

structures, which are critical for the rate of degradation [8, 15], and the diffusion or 

erosion controlled release of incorporated compounds. It has been shown that e.g. 

the rates are decreased for pure crystalline poly-L-lactide and polyglycolide, and 
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that the process accelerates with an increasing ratio of glycolide to lactide in the 

copolymer and increasing hydrophilicity [16-17]. 

In this study, the influence of polymer molecular weight and the esterification of 

carboxylic functional groups on the release rates of a model compound (FITC-

dextran) from PLGA films reflecting potential coatings on vascular grafts, were 

investigated. Release rates of incorporated compound of 10 - 14 days were desired 

to enhance endothelialization in the early stages after implantation to overcome 

complications, such as intimal hyperplasia. Cell compatibility of the established 

PLGA coatings is required to be highly beneficial for cell growth and was evaluated. 

Detection methods for the quantification of endothelial cell growth, such as FACS, 

propidium iodide staining, and the use of a cell viability assay, Cell Titer-Blue®, were 

established and applied. 

 

2 Materials and Methods 

2.1 Materials 

FITC-dextran with a molecular weight of 40 kDa was purchased from Sigma Aldrich 

(Steinheim, Germany), dichloromethane and cover glasses from VWR (Darmstadt; 

Germany), Resomer® (RG 502H, RG 503, RG 503H and RG 504H) from 

Boehringer Ingelheim (Ingelheim, Germany), PTFE from GM GmbH (Freiham, 

Germany), Falcon tubes from Greiner (Frickenhausen, Germany), disposable 

Plastibrand® PMMA plastic cuvettes from Brand (Wertheim, Germany), collagenase 

A from Roche (Penzberg, Germany), endothelial cell growth medium from Provitro 

(Berlin, Germany), heat-inactivated fetal bovine serum from Biochrom (Berlin, 

Germany), buffered formaldehyde solution (4%) from Polysciences, Inc. 

(Warrington, PA, USA), propidium iodide from Fluka (Steinheim, Germany), 0.1 M 

sodium hydroxide solution from Merck KGaA (Darmstadt, Germany), Trypsin from 

PAN-Systems GmbH (Aidenbach, Germany), ethylenediaminetetraacetic acid 

(EDTA) from Carl Roth GmbH & CO. KG (Karlsruhe Germany), and Cell Titer-Blue® 

from Promega (Madison, WI, USA). 
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The pH of the solutions was adjusted using hydrochloric acid or sodium hydroxide 

from Merck KGaA (Darmstadt, Germany) and measured with a pH meter Inolab 

level 1 from WTW (Weilheim, Germany). 

 

2.2 Methods 

2.2.1 FITC-dextran size reduction 

2.2.1.1 Swing mill 

FITC-dextran with a molecular weight of 40 kDa was milled under the exclusion of 

light in a MM200 swing mill (Retsch GmbH, Hahn, Germany) in dichloromethane 

(VWR, Darmstadt; Germany) with a frequency of 30 s-1. The resulting FITC-dextran 

suspension was used for size analysis or coating and release experiments. 

 

2.2.1.2 Spray drying 

FITC-dextran 40 kDa was dissolved in water at a concentration of 1 mg/ml. The 

solution was spray dried using a Büchi Nano Spray Dryer B-90 (Büchi Labortechnik 

AG, Flawil, Switzerland). Spray dried FITC-dextran was stored in a desiccator under 

the exclusion of light until analysis or further use. 

 

2.2.2 Morphological analysis 

2.2.2.1 Scanning electron microscopy 

Samples for scanning electron microscopy (SEM) were fixed on specimen holders 

using conductive double sided tape before sputtering with a thin layer of carbon 

under vacuum. SEM images were obtained using a Philips XL Series XL20 (Philips, 

The Netherlands). 
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2.2.2.2 Laser diffraction 

Particle sizes were determined using a Horiba Laser Diffraction Particle Size 

Distribution Analyzer LA-950 (Retsch Technology GmbH, Hahn, Germany). 

Therefore samples were dispersed in dichloromethane. 

 

2.2.3 PLGA coating procedure 

Different species of Resomer® (RG 502H, RG 503, RG 503H and RG 504H) were 

used to coat PTFE-discs, argon plasma activated with a plasmabrush® (Reinhausen 

Plasma GmbH, Regensburg, Germany), or cover glasses, both with a diameter of 

15 mm. Therefore, the discs were placed in a 24-well aluminum well plate and 

covered with different concentrations of the PLGA-species dissolved in 

dichloromethane. The discs were air dried for one hour and subsequently removed 

from the wells and dried under vacuum over night or until further use. For the 

release studies, 0.01% (w/w) FITC-dextran as a model compound was suspended 

in the PLGA solutions. For the cell culture studies all these procedures were 

performed under a laminar flow workbench (Thermo, Langenselbold, Germany). 

 

2.2.4 In-vitro release studies 

For the release analysis, triplicates of coated discs were incubated in 10.0 ml 

phosphate buffered saline (PBS) pH 7.4 in 50 ml Falcon tubes in a water bath 

(Haake SWB25, Haake, Karlsruhe, Germany) at 37°C and at 25 rpm horizontal 

shaking under exclusion of light. 2 ml samples were drawn and replaced with fresh 

PBS buffer at several time points. Released FITC-dextran was quantified using 

fluorescence spectroscopy, which was performed using a Varian Cary Eclipse 

fluorescence spectrometer (Varian GmbH, Darmstadt, Germany). Therefore, 

samples were measured in disposable Plastibrand® PMMA plastic cuvettes with an 

excitation wavelength of 495 nm, an emission wavelength of 517 nm, and were 

adjusted with a PBS buffer blank. Samples were diluted using PBS buffer, if 

necessary. The amount of released FITC-dextran was calculated using a calibration 

curve. 
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2.2.5 Cell compatibility testing 

The cell compatibility of PLGA coated discs was evaluated using HUVECs. 

HUVECs were prepared by digestion of umbilical veins with 0.1 g/l collagenase A. 

Cells were cultured in endothelial cell growth medium supplemented with 10% heat-

inactivated fetal bovine serum in a humidified atmosphere at 5% CO2 and 37°C. 

Cells were used at passage no. 3. For visualization of cells on the surfaces, cells 

were fixed with a buffered formaldehyde solution (4%) and were stained with 

propidium iodide in PBS buffer with a final concentration of 50 µg/ml. Images were 

obtained with a Zeiss LSM 510 confocal laser scanning microscope (CLSM) (Zeiss, 

Oberkochen, Germany). 

 

2.2.6 Evaluation of cell quantification methods 

2.2.6.1 Propidium iodide dye 

For quantification of cells on the surfaces, cells were fixed with a buffered 

formaldehyde solution (4%) and were stained with propidium iodide in PBS buffer. 

After rinsing, propidium iodide was quantified via fluorescence spectroscopy using a 

Spectrafluor plus plate reader (Tecan, Crailsheim, Germany) with an excitation 

wavelength of 530 nm and emission recording at 635 nm. The dye was quantified in 

its bound state on the vacuum dried discs or an aliquot of the eluted dye after 

incubation with 0.1 M sodium hydroxide solution (NaOH) at 2-8°C overnight. 

 

2.2.6.2 Fluorescence activated cell sorting (FACS) 

For quantification of cells, incubated discs with cells were washed three times with 

PBS buffer pH 7.4. Subsequently, cells were covered with 300 µl of Trypsin/EDTA in 

PBS buffer, containing 0.05% Trypsin and EDTA. Discs were then incubated in a 

water bath at 37°C for 8 min. 250 µl of the cell suspension were added to 150 µl of 

a buffered formaldehyde solution (4%). 120 µl of this cell suspension were 

quantified using the BD FACSCanto II in High Throughput Screening (HTS) mode 

(Becton Dickinson GmbH, Heidelberg, Germany). 
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2.2.6.3 Cell Titer-Blue® 

Cells on the discs were quantified using Cell Titer-Blue®. Therefore, discs were 

incubated with Cell Titer-Blue® and an aliquot of the supernatant was analyzed 

using a Spectrafluor plus plate reader (Tecan, Crailsheim, Germany) with an 

excitation wavelength of 550 nm and emission recording at 595 nm. 

 

3 Results and Discussion 

3.1 FITC-dextran size reduction 

All PLGA coatings needed to be prepared in organic solvents, due to the non-

solubility of PLGA in aqueous solutions. Suitable solvents for PLGA are, amongst 

others, N-methyl-2-pyrrolidinone, ethyl acetate, acetone, dimethyl sulfoxide, and 

dichloromethane. The solvent of choice for all investigations within these studies 

was determined to be dichloromethane, due to the good solubility of PLGA in this 

solvent and the high vapor pressure of dichloromethane to enable fast and efficient 

drying. However, the model substrate used for the release investigations, FITC-

dextran, is insoluble in dichloromethane or other organic solvents suitable for the 

preparation of PLGA solutions. Therefore, the preparation of FITC-dextran 

suspensions in PLGA solutions in dichloromethane for the coating of PTFE discs 

was required. In order to guarantee reproducible results for the coatings, 

homogenous size distributions of the FITC-dextran particle was required. Therefore, 

different techniques for particle size reduction of FITC-dextran were investigated. 

 

3.1.1 Size reduction by milling 

One suitable option for FITC-dextran particle preparation in dichloromethane is 

milling. The influence of milling time on the size reduction of FITC-dextran was 

investigated. Therefore, FITC-dextran in dichloromethane was milled for a period of 

180 min and the size of the particles (d90) was analyzed at several time points using 

laser light diffraction in order to determine a suitable milling time to achieve small 



Chapter 3 

 

56 

and homogenous particle sizes. The results shown in Figure 3-1 indicated a 

correlation between milling time and average particle size.  
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Figure 3-1: FITC-dextran particle size (d
90

) in correlation to milling time. (average ± SD; n=3) 

 

The particle size determined for FITC-dextran decreases with increasing milling 

time. After 15 min of milling, a particle size of approximately 15 µm was determined 

that decreased to 12 µm, and 10 µm after milling for 30 min and 60 min, 

respectively. A further increase in milling time only resulted in little further size 

reduction. Therefore, the standard milling time for the preparation of further milled 

FITC-dextran particles was set to 60 min in order to lower the temperature stress on 

the samples and the risk of degradation due to accidental exposure to light of the 

model compound. 

 

3.1.2 Size reduction using spray drying 

In order to evaluate the influence of FITC-dextran particle size on the release rates 

from PLGA films, it was necessary to obtain a second set of FITC-dextran particles 

with a smaller particle size as achieved by milling. Therefore, a solution of FITC-

dextran in water with a concentration of 1 mg/ml was spray dried using the Büchi 

Nano Spray Dryer B-90. Spray-drying was conducted under the exclusion of light in 

order to guarantee the stability of FITC-dextran. However, the increase in 
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temperature during the spray drying process, in addition to some light exposure 

during the preparation and collection of spray dried particles, might have affected 

the stability of FTIC-dextran. Therefore, samples of spray dried FITC-dextran were 

analyzed using fluorescence spectroscopy, according to the procedures described 

in 2.2.4, to investigate any changes in excitation or emission wavelength, as well as, 

decreases in fluorescence intensity compared to standard samples that did not 

undergo spray drying. Findings (data not shown) confirmed that the spray drying 

process, as well as, accidental exposure to light did not have a negative effect on 

the stability and fluorescence properties of the fluorophore of FITC-dextran. 

 

Figure 3-2: Scanning electron micrograph of spray dried FITC-dextran particles. 

 

Samples were analyzed using SEM to investigate the size distribution and particle 

shape of the FITC-dextran particles. Figure 3-2 shows a representative particle 

population for a spray dried sample. A homogenous particle distribution in a size 

range of 1 µm could be detected. The majority of particles were of spherical shape, 

but some doughnut shaped particles could be observed. Therefore, spray drying 

can be considered a suitable method to generate FITC-dextran particles with size 

distributions in the low µm-range. 

 

3.2 In vitro release studies 

The release rates of model compound from the generated PLGA films are highly 

dependant on the polymer used for their production and its characteristic physical 
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and chemical properties, such as molecular weight, modification of the terminal 

carboxylic group of the polymer, crystallinity, and the lactide:glycolide ratio [18]. In 

order to investigate their effect on the release rates of formed films, several 

polymers varying in molecular weight and esterified end groups were used for the 

release investigations. Polymers with a low molecular weight were the focus of 

these investigations in order to guarantee a release of model compound in a one to 

two week time period. 

 

3.2.1 Influence of PLGA molecular weight on release rates 

The influence of molecular weight on the release of the model compound FITC-

dextran was investigated using the PLGAs Resomer® RG 502H, RG 503H, and 

RG 504H. The molecular weights, as well as, the inherent viscosities of these 

PLGAs can be seen in Table 3-1. In general, release profiles from biodegradable 

monolithic systems are a combination of several phases depending on the 

dominating process. Predominantly, biphasic release patterns can be observed, 

which are characterized by a strong burst release of drug or model compound that 

are deposited near the film or microparticle surface and are caused by their 

dissolution [19]. It is followed by the second phase of release which is usually 

diffusion controlled and is characterized by sustained release that can be described 

by zero order kinetics [20]. 

 

Table 3-1: Overview of molecular weight, inherent viscosity and thermal properties of PLGA 

variants used during release investigations [21-23].  

Polymer 
Mw 

[Da] 

Inherent viscosity 

[dl/g] 

Tg 

[°C] 

Resomer® RG 502H 13,500 0.16 – 0.24 42 – 46 

Resomer® RG 503H 36,000 0.32 – 0.44 44 – 48 

Resomer® RG 503 36,000 0.32 – 0.44 44 – 48 

Resomer® RG 504H 48,000 0.45 – 0.60 46 – 50 
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The release profiles for the investigated films in PBS buffer pH 7.4 at 37°C can be 

seen in Figure 3-3. Films made from Resomer® RG 502H were characterized by an 

initial burst release of approximately 20% (compare Figure 3-3a), followed by a 

continuous release of 100% FITC-dextran up to 14 days. Films made with 

Resomer® RG 503H (Figure 3-3b) exhibited the same level of burst release, 

however, the following sustained release was characterized by a slower release 

rate and complete release of almost 100% model compound took place within 21 

days. Resomer® RG 504H films showed a higher burst release compared to the 

lower molecular weight PLGAs of approximately 40%, followed by a continuous 

release of model compound that was investigated for 4.5 weeks and afterwards 

aborted, due to the unsuitability of the release profile for the intended application 

with a release of model compound within a period of one to two weeks. It was 

hypothesized that the higher inherent viscosity of the higher molecular weight 

species of PLGA was responsible for a lower sedimentation rate of the FITC-

dextran particles within the coating solution, which resulted in higher amounts of 

model compound close to the film surface, leading to higher initial burst release 

rates. 

To further elucidate this phenomenon, investigations using different FITC-dextran 

particle sizes in the coating solution were performed to be able to clarify the 

hypothesis of lower sedimentation rates in the higher viscous coating solutions 

(compare 3.2.3). It was shown, that the viscosity of both RG 503H and RG 502H 

were not high enough to circumvent sedimentation of FITC-dextran, which led to a 

depletion of model compound on the surface and resulted in lower burst release. 
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Figure 3-3: : Cumulative in-vitro FITC-dextran release from PLGA coated discs RG 502H (a), 

RG 503H (b) and RG 504H (c). (average ± SD; n=3) 

 

The observed release profiles were in accordance with reported biphasic release 

profiles for PLGA based drug delivery systems [20, 24]. Water penetration into the 

system leads to release by dissolution of surface bound compound and diffusion of 

molecules through water filled pores [19]. Specifically for lower molecular weight 

PLGA species, release based on diffusion takes place much faster in comparison to 

high molecular weight PLGAs [25]. Correspondingly, a decrease in continuous 

release was observed in dependency of the increase of molecular weight. In 

addition to the lower rate of diffusion, this is due to the water penetration into the 
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PLGA films that causes the hydrolysis of the polymer. Hydrolysis causes the 

polymer to be degraded to smaller molecular weight species which upon reaching a 

certain level of molecular weight become water soluble and erosion of the matrix 

takes place, thereby releasing incorporated compounds [18], in this case FITC-

dextran. Due to the difference in molecular weight and consequently longer polymer 

chain units for the higher molecular weight PLGAs, the degradation of these units in 

water soluble PLGA fragments is more time consuming compared to the low 

molecular weight PLGA Resomer® RG 502H. This effect caused the observed 

slower release rates for the continuous sustained release phase of the higher 

molecular weight PLGAs which, in turn, lead to longer total release times. 

Therefore, only the PLGA Resomer® RG 502H films, with a total release within the 

first 14 days of incubation, were within the desired period of release of one to two 

weeks. 

 

3.2.2 Influence of esterification on release rates 

In addition to the investigations concerning the influence of molecular weight 

differences of the applied PLGAs on the release rates, the influence of end capping 

of the carboxylic group of Resomer® RG 503 / 503H was studied. Therefore, PTFE-

discs were coated with solutions of each polymer containing 0.01% (w/w) FITC-

dextran and investigated concerning the release in vitro in PBS buffer pH 7.4 at 

37°C. The release profiles for the investigated films can be seen in Figure 3-4. Both 

PLGA species exhibit a burst release of approximately 25% of the loaded FITC-

dextran, followed by a continuous sustained release for Resomer® RG 503H up to 

day 21 when 100% of the model compound was liberated. However, Resomer® RG 

503 exhibited a lag phase of release after the initial burst for approximately 20 days 

followed by a fast release of another 50% of FITC-dextran. 
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Figure 3-4: Cumulative in-vitro FITC-dextran release from RG503 coated discs with 

endcapped carboxylic group (
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These findings are in accordance with results reported in literature for end capped 

polymers and polymers with free carboxylic groups [5]. The sigmoidal release profile 

for the films made of Resomer® RG 503 indicates bulk erosion of the polymer [26], 

as well as, diffusion controlled release of the model compound. As mentioned 

before (see 3.2.1), the penetration of water into the polymer is responsible for the 

hydrolysis of the polymer into smaller fragments that are required for achieving 

water solubility [27-28]. However, this penetration of water into the more 

hydrophobic polymer RG 503 is strongly reduced compared to the more hydrophilic 

polymer RG 503H due to the lack of hydroxyl and carboxylic groups that are present 

in RG 503H. This reduction of penetrating water leads to a significant decrease of 

hydrolysis of the polymer, which leads to slower erosion and in turn a decreased 

release of compound. In general, it can be stated that the water uptake of polymer 

increases with the hydrophilicity of the polymer, which enables more drug to be 

released and the polymer to be degraded faster [6]. Therefore, the release rate from 

the more hydrophic species of PLGA are characterized by a distinctive lag phase 

after the initial burst release as observed in the case of RG 503 and RG 503H. 
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3.2.3 Influence of FITC-dextran particle size on release rates 

The results obtained when investigating the influence of molecular weight on the 

release rate of PLGA films (compare 3.2.1) led to the hypothesis of an influence of 

FITC-dextran particle size present in the coating suspension on the release rate. 

The initial burst release for the higher molecular weight PLGA Resomer® RG 504H 

was more pronounced in comparison to the two lower molecular weight species 

RG 502H and RG 503H potentially due to sedimentation of FTIC-dextran particles 

in the lower molecular weight PLGA solutions. According to Stokes, the rate of 

sedimentation in a suspension is dependant on the square of the particle diameter. 

Therefore, film coatings made of PLGA with FITC-dextran of two different size 

distributions were investigated. Resomer® RG 503 was used for these 

investigations with an inherent viscosity between RG 502H and RG 504H. 
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Figure 3-5: Cumulative in-vitro FITC-dextran release from PLGA RG 503 coated discs with 

FITC-dextran particle size of 1µm (
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The release rates shown in Figure 3-5 were identical for both sets of PLGA coatings 

with particles of 1 and 10 µm. Burst release was low with approximately 5% FITC-

dextran released within the first 24 hours. After a pronounced lag phase 

characteristic for PLGAs with end capped carboxylic groups, release continued with 

a fast release of approximately 40%, followed by slow continuous release until the 

end of the investigation period. The findings did not support the hypothesis of a 
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reduced exposure of FITC-dextran particles at the surface of the coatings of 502H 

and 503H due to sedimentation. 

A possible other explanation could be the difference in Tg of the polymers. The Tg 

for RG 502H and RG 503H is lower than that of RG 504H (compare Table 3-1). It is 

reported in literature that incubation of PLGA devices at temperatures above Tg 

leads to increased mobility of compounds, and diffusivity of both penetrating water 

and drug are higher [5, 17]. Consequently, faster hydrolysis and drug release are 

observed [29-30], which can be seen by the higher release rates after initial burst 

release for the lower molecular weight PLGAs. In addition, once Tg is exceeded, the 

initial glassy device converts to a rubbery state with hydration which makes polymer 

chain segments more mobile [17]. This higher polymer mobility might cause a 

sealing of the film surface leading to a reduced initial burst release in case of RG 

502H and RG 503H upon exposure to the incubation solution at 37°C. In case of 

RG 504H, the incubation temperature is below the Tg and therefore the film remains 

in its glassy state leading to a higher initial burst release, because the surface 

sealing does not take place, followed by the continuous release controlled by 

diffusion and erosion. 

 

3.3 Cell compatibility of PLGA coatings 

In addition to their release characteristics, the cell compatibility of the different 

PLGA species was investigated. Cell compatibility is of great importance, especially 

for the intended use as biomaterial substrate to potentially enhance attachment, 

attraction, and endothelial cell growth, either by itself due to its properties, but also 

in its function as matrix for the release of for example endothelial cell specific 

growth enhancers, such as Vascular Endothelial Growth Factor (VEGF). PLGA 

constructs have been reported to be biocompatible, as well as, their degradation 

products lactic and glycolic acid [2, 4]. Therefore, it has been widely used in 

controlled release applications such as micro- and nanoparticles [5-6], film coatings 

[7-8], and scaffolds [9]. Two PLGA species, RG 503H representing the polymers of 

higher hydrophilicity due to its free carboxylic group and RG 503 a more 

hyrdrophobic polymer due to its esterified carboxylic group, were investigated 
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concerning their cell compatibility using HUVECs. PTFE discs were coated with 

either polymer, subsequently seeded with HUVECs and cells were allowed to attach 

and grow on the polymers and were stained using propidium iodide after 3 days. 

The stained cells were analyzed using CLSM concerning the cell morphology, cell 

viability, and proliferation on the discs. 

 

(a)        (b) 

   

Figure 3-6: Propidium iodide stained cells on PLGA coated PTFE discs after incubation for 3 

days on RG 503 (a) and RG 503H (b) 

 

Figure 3-6 shows the acquired pictures for the stained cells after a three day 

incubation period. All pictures showed a confluent monolayer of endothelial cells 

grown on the PLGA films with a morphology attributed to HUVECs. Therefore, it can 

be concluded that the applied polymers, as well as the polymers used for other 

studies (RG 502H and RG 504H) had good cell compatibility, which was in 

accordance to prior findings. 

 

3.4 Evaluation of cell quantification methods 

For the intended application of the PLGA films as potential coating for vascular 

grafts to enhance endothelialization through the incorporation of cell growth specific 

growth enhancers, such as VEGF165 [31], it was of importance to qualify methods of 
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quantification for the initiated cell growth on the PLGA film surfaces. Therefore, 

PTFE and glass discs were coated using PLGA, incubated with HUVECs, and 

quantified using several methods for cell quantification. 

 

3.4.1 Cell quantification using FACS 

For the cell quantification using FACS, different amounts of cells ranging from 

100,000 to 120,000 cells per well were cultured on PLGA RG 502H coated discs 

and were allowed to adhere for 24 hours. Subsequently, cells were harvested using 

Trypsin/EDTA incubation for 8 min at 37°C. After the addition of buffered 

formaldehyde solution (4%), cells were quantified using the BD FACSCanto II in 

High Throughput Screening (HTS) mode. Cell numbers present in the measured 

aliquots were then calculated back to the numbers of cells harvested per well. 
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Figure 3-7: Calculated cells per well after adhesion on PLGA RG 502H coated discs and 

subsequent detachment using Trypsin / EDTA and FACS analysis. (average ± SD; n=2). 

 

Figure 3-7 shows the calculated values of recovered cells after the harvesting 

process using Trypsin/EDTA and the FACS analysis for two sets of identically 

treated PLGA coated discs. Calculated values for one set of discs seeded with 

equal amounts of HUVECs showed a very low standard deviation indicating good 

reproducibility within one set of discs in one experiment. However, there was no 

correlation between the amount of seeded cells and the amount of recovered cells 



Investigation of PLGA films for controlled release applications 

 

67 

for a concentration series investigated. For the first set, cell counts increased 

significantly from the discs incubated with 100,000 to 105,000 cells, however the 

recovered cell amounts for 110,000 and 120,000 seeded cells declined from 

thereon. In comparison, the second set of experiments showed different results, 

with a decrease of recovered cells after 100,000 seeded cells and a significant 

increase in recovered cell amounts for the discs seeded with 120,000 cells. Since 

no correlation between the amounts of cells seeded and the detected cell number 

was found, and even worse non-reproducibility between two sets of experiments 

was shown, this method of cell quantification was unsuitable for the quantification of 

HUVECs after growth on PLGA films. A possible cytotoxic effect of the coatings on 

HUVECs can be ruled out, since cell compatibility of the coatings was shown 

(compare 3.3). Low recovery and varying amounts of recovered cells might be 

explained by non adherence of cells during the incubation period resulting in a loss 

of cells during the washing procedure. In addition, an insufficient detachment of 

cells during the Trypsin/EDTA incubation time might have added to the low recovery 

of cells seeded. The incubation time was not further increased due to concerns of 

digestion of HUVECs by Trypsin. 

 

3.4.2 Cell quantification using propidium iodide dye 

Propidium iodide has already been shown to be a suitable detection method for the 

evaluation of cell compatibility of PLGA coatings (compare 3.3). Due to its 

fluorescence properties, it might also represent a possible alternative for cell 

quantification. Therefore, sets of 100,000 and 200,000 HUVECs were seeded on 

PLGA coated discs, incubated for 24 hours, and subsequently stained using 

propidium iodide. The amount of bound dye on the dried PLGA coated discs was 

then quantified using fluorescence spectroscopy. In addition, the dye was eluted 

using sodium hydroxid solution and was again measured using fluorescence 

spectroscopy. 
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Figure 3-8: Fluorescence intensity of propidium iodide stained cells in bound state and after 

elution using 0.1 M sodium hydroxide solution. (average ± SD; n=2). 

 

The results of the fluorescence measurements for both sets of investigations are 

shown in Figure 3-8. A fluorescence intensity difference of propidium iodide on discs 

incubated with 100,000 and 200,000 cells can be detected for both bound and 

eluted dye. A significant decrease in fluorescence was observed for the eluted dye 

in comparison to bound dye due to dilution and insufficient elution during the 

incubation procedure. However, reproducibility of these measurements with a 

second set of PLGA coated discs under the same conditions was not given as can 

be seen in Figure 3-8 (second set). Fluorescence intensity for all samples increased 

for all measured samples, making this an unsuitable method for cell quantification 

on PLGA surfaces. Again, low recovery and varying amounts of fluorescence might 

be explained by non adherence of cells during the incubation period resulting in a 

loss of cells during the washing procedure and hence, resulting in varying 

fluorescence intensities. 

 

3.4.3 Cell quantification using a cell counting chamber 

Since propidium iodide staining with subsequent fluorescence measurements failed 

to provide reproducible results for cell quantification on PLGA coated discs, 
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however, provided good properties for cell visualization on the surfaces, cell 

quantification using a cell counting chamber was evaluated. Therefore, cells were 

grown on PLGA RG 502H covered discs with varying cell amounts seeded per well. 

Cells were then subsequently stained using propidium iodide and evaluated using 

CLSM. 

(a)        (b) 

   

Figure 3-9: Propidium iodide stained cells on a PLGA RG 502H coated PTFE discs seeded 

with 100,000 cells after incubation for 3 days at center of disc (a) and border of disc (b). 

 

Figure 3-9 shows representative exemplary CLSM pictures of PLGA coated discs 

seeded with 100,000 cells stained with propidium iodide. Similar results were 

obtained for all other discs incubated with varying amounts of cells. Figure 3-9a 

shows the center of the disc investigated with non confluent amounts of cells 

detected. In contrast, Figure 3-9b shows the border of the identical disc with high 

amounts of endothelial cells present. This inhomogeneity made it impossible to find 

representative areas on discs suitable for cell quantification by the use of a cell 

counting chamber. The patches of no-cell growth in the center of the disc 

substantiate the prior findings using other techniques for cell quantification. The non 

reproducibility of cell quantification was most likely due to the loss of cells grown on 

the PLGA surface, which detached after hydrolysis of the PLGA. Cells and PLGA 

fragments were then lost in the necessary washing steps that were performed for 

the different quantification methods, leading to non reproducible and unreliable 

results as seen above. 
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3.4.4 Cell quantification using Cell Titer-Blue® 

In order to quantify cell growth on PLGA surfaces, a suitable method needed to be 

implemented that did not require washing steps after the incubation. Therefore, Cell 

Titer-Blue® a commercially available cell viability assay was evaluated. Cell Titer-

Blue® is based on the metabolic capacity of cells an indicator of their viability.  
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Figure 3-10: Conversion of resazurin to resorufin by metabolically active cells adapted from 

Promega [32] 

 

The indicator dye resazurin is used to measure the metabolic capacity of cells. Cells 

reduce resazurin into resorufin, which is highly fluorescent (Figure 3-10) and can be 

detected at an excitation wavelength of 550 nm and an emission wavelength of 

595 nm. Nonviable cells rapidly lose metabolic capacity, and therefore do not 

reduce the indicator dye, and thus do not generate a fluorescence signal. 
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Figure 3-11: Fluorescence intensity of Cell Titer-Blue
®
 after incubation for 6 hours on 

endothelial cell seeded PLGA RG 502H coated discs – broad cell number screening. (average 

± SD; n=2). 

 

In a first suitability screening, PLGA RG 502H coated discs were seeded with 

50,000 to 70,000 cells per well and were cultured for 24 hours. After the incubation 

time Cell Titer-Blue® was added to the wells and further incubated for 6 hours, 

sufficient time for the cells to reduce the indicator dye. Subsequently, aliquots of the 

incubation solution were measured using fluorescence spectroscopy. In order to 

investigate reproducibility of this method, a second set of PLGA coated discs were 

treated accordingly. The results represented in Figure 3-11 showed an increase in 

fluorescence with an increasing amount of cells seeded on the discs with low 

standard deviations. However, the increase in fluorescence was not in correlation to 

the increase in seeded cells. Therefore, an absolute quantitative measurement did 

not seem possible, however, a relative quantification appeared possible. The 

second set of experiments confirmed the reproducibility of the experiment, making 

the quantification with Cell Titer-Blue® the method of choice for cell quantification. 

Nevertheless, since the increase or difference in cell growth expected for discs 

coated with PLGA and cell growth stimulant were anticipated to be in a range of 

20%, further investigations were necessary to elucidate on the possibility of 

quantifying smaller amounts and differences in cell growth. 
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Therefore, another set of experiments was performed with a narrower distribution in 

cell numbers. PLGA coated discs were seeded with cells in a range of 20,000 to 

30,000 cells and treated according to the above described procedure. Again, two 

sets of experiments were performed in order to gain information about the 

reproducibility of the quantification method. 
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Figure 3-12: Fluorescence intensity of Cell Titer-Blue
®
 after incubation for 6 hours on 

endothelial cell seeded PLGA RG 502H coated discs – narrow cell number screening. 

(average ± SD; n=2). 

 

Employing the quantification method using Cell Titer-Blue® it was possible to 

differentiate between small amounts of cell growth differences with weaknesses in 

the range of 22,000 to 24,000 cells. Fluorescence of the incubated discs increased 

in accordance to the seeded cells (Figure 3-12). However, the correlation was not 

linear, making it a relative quantification method as described above. The 

reproducibility could be confirmed using the second set of experiments which 

showed results of similar fluorescence for the cell seeded incubated discs. 
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4 Conclusions 

PLGA films were investigated for potential coating of vascular grafts to improve 

endothelialization. The incorporation of endothelial cell specific growth enhancers, 

such as VEGF165, and its subsequent release from the matrix could be used to 

enhance the cell retention and cell growth on vascular grafts. Therefore, different 

PLGA species were investigated concerning their release properties using a model 

compound, FITC-dextran, with a molecular weight comparable to VEGF165. The 

influence of the polymer molecular weight on the release rates was shown. 

Resomer® RG 502H, a low molecular weight species of a commercially available 

polymer, was shown to be the only suitable polymer in the range of polymers 

investigated. Its release rate suited the intended purpose and the desired release 

time period of 1 to 2 weeks. In addition, it was shown that the influence of 

esterification of free carboxylic groups of the used polymers did not have a 

beneficial effect on the release rates of the coatings. The influence of the 

suspended model compound particles on the coating process and the subsequent 

release was investigated and was shown to have no influence on the outcome of 

release investigations, especially in respect of burst release from such coatings in 

contrary to previously reported findings. 

In addition, the cell compatibility of the applied PLGA coatings was shown using 

HUVECs. Detection methods to quantify the increase in cell growth on such 

coatings were investigated towards their ability to reveal small differences in cell 

growth. FACS analysis, propidium iodide staining in combination with fluorescence 

measurements, and using a counting chamber were shown to be unsuitable for this 

application. However, Cell Titer-Blue®, a commercially available cell viability assay, 

was found to be appropriate to detect minor changes in cell growth increase. 
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Chapter 4 

 

Investigation of collagen films for controlled release of VEGF165 

 

 

Abstract 

The influence of Vascular Endothelial Growth Factor (VEGF165) incorporated into 

collagen films for the coating of vascular grafts to enhance their endothelialization 

was investigated. Therefore, the release behavior of collagen films was initially 

investigated using Fluoresceinisothyocyanat (FITC) dextran as a model compound. 

In order to minimize initial burst release that was observed for unmodified collagen 

films, collagen was cross-linked using Ethyl(dimethyl-aminopropyl)-carbodiimide 

(EDC). Release rates for crosslinked collagen films showed a decrease in initial 

burst release in correlation to the crosslinking degree and increasing amounts of 

entrapped FITC-dextran in the collagen matrix. The modified release parameters 

were confirmed using VEGF165 that was incorporated in the collagen films. The 

biological activity of the incorporated VEGF165 in modified and unmodified collagen 

films was investigated using human umbilical vein endothelial cells (HUVECs) and 

rat aortic smooth muscle cells (SMCs). An increase in endothelial cell growth was 

observed in dependency of the concentration of incorporated VEGF165. No effect of 

VEGF on SMCs could be detected. The stability and biological activity of VEGF165 

was maintained throughout the production process and incubation of collagen films 

contrary to the generally low stability of this protein in vitro and in vivo, making this 

an interesting approach for vascular grafts to enhance their performance. 

 

Keywords: Collagen, crosslinking, VEGF, endothelial cell, controlled release 
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1 Introduction 

The controlled release of therapeutic agents from the vascular graft surface 

constitutes a promising approach for the improvement of vascular graft patency and 

the establishing of a functioning endothelial cell lining. A coating with biocompatible 

and biodegradable polymers for this approach and the subsequent local drug 

delivery for modifying the response of the surrounding tissue could induce 

spontaneous endothelialization and / or inhibit smooth muscle cell proliferation, and 

therefore overcome the limitations of small caliber vascular grafts. 

Collagen is the primary and major structural protein of vertebrates, representing 

almost 30% of total protein present in a body [1]. It has been widely used in the field 

of controlled release applications and biomaterials [2-4] due to its biocompatibility 

and biodegradability. Especially in the field of biomaterials, one of its advantages is 

the ease of production in aqueous media without the application of high 

temperatures, which still results in a variety of forms and applications, such as 

coatings, fibers, films, implants, injectable solutions, membranes, sheets, and 

sponges. Collagen crosslinking using physical and / or chemical methods can be 

applied to prevent rapid degradation of such collagen based biomaterials during in 

vivo application, improve its mechanical stability [5], and reduce tissue response [6]. 

Crosslinking is also useful when using collagen in controlled release applications.  

Several approaches using collagen for the improvement of vascular grafts have 

been undertaken, among others, collagen in combination with growth factors [7], 

heparin [8], or a combination thereof [6]. Among the growth factors investigated, 

basic fibroblast growth factors (bFGF) [7, 9-10] and VEGF [11-13] have been widely 

investigated. Yet, bFGF has been shown to have stimulatory effects on smooth 

muscle cell growth, which can lead to intimal hyperplasia and vessel occlusion [14-

15]. VEGF, on the other hand, has been shown to have very high endothelial cell 

specificity without mitogenic activity for other cell types [16].  

The aim of this study was to prove a successful incorporation of VEGF into collagen 

matrices, while maintaining its biological activity in order to stimulate endothelial cell 

growth without stimulating other cells after being released. Therefore, the first 

studies focused on the investigation of release behavior of FITC-dextran 40 kDa 
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from collagen matrices and the chemical modification of collagen via crosslinking in 

order to adjust the release profiles. The characterization of changes induced by 

crosslinking was important, in order to understand the effect of the treatment. DSC 

measurements and cell compatibility investigations were conducted for that 

purpose. Based on the results from the release experiments, two suitable collagen 

materials for the release of VEGF165 were to be selected and investigated using an 

enzyme linked immunosorbent assay (ELISA) to confirm the release behavior. In 

order to prove the preservation of biological activity and to get further insight into the 

cell growth enhancing properties, the influence of VEGF165 incorporated into 

collagen films towards its effect on HUVECs and SMCs was investigated. 

 

2 Materials and Methods 

2.1 Materials 

Equine collagen type I derived from tendon was provided by Innocoll GmbH 

(Saal/Donau, Germany) as lyophilized material, VEGF was kindly donated by 

Genentech (San Francisco, CA, USA), and rat aortic smooth muscle cells (SMCs) 

were provided by PD Dr. Wolgang Erl (Institut für Prophylaxe und Epidemiologie der 

Kreislaufkrankheiten, Ludwig-Maximilians-Universität München, Munich, Germany). 

EDC, Na2HPO4, N-Hydroxysuccinimide (NHS), 2-Amino-2-hydroxymethyl-propane-

1,3-diol (Tris), and FITC-dextran with a molecular weight of 40 kDa was purchased 

from Sigma Aldrich (Seelze, Germany), 1 M HCl, 1 M NaOH and glacial acetic acid 

from Merck KGaA (Darmstadt, Germany), 50 ml Falcon tubes from Greiner Bio-One 

GmbH (Frickenhausen, Germany), plastic Petri dishes (diameter: 5.5 cm) and cover 

glasses from VWR (Darmstadt, Germany), Polytetrafluoroethylene (PTFE) from GM 

GmbH (Freiham, Germany), 24-well plates from Corning (Amsterdam, The 

Netherlands) and TPP Techno Plastic Products (Trasadingen, Switzerland), 

collagenase A from Roche (Penzberg, Germany), endothelial cell growth medium 

from Provitro (Berlin, Germany), heat-inactivated fetal bovine serum from Biochrom 

(Berlin, Germany), M199 from PAA (Pasching, Austria), buffered formaldehyde 

solution (4%) from Polysciences, Inc. (Warrington, PA, USA), propidium iodide from 

Fluka (Steinheim, Germany), disposable Plastibrand® PMMA plastic cuvettes from 
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Brand (Wertheim, Germany), Human VEGF ELISA from Ray Bio® from Ray Biotech 

Inc. (Norcross, GA, USA), smooth muscle cell growth medium DMEM /F12 from 

PAA (Pasching, Austria), and Cell Titer-Blue® from Promega (Madison, WI, USA) 

The pH of the solutions was adjusted using hydrochloric acid or sodium hydroxide 

from Merck KGaA (Darmstadt, Germany) and measured with a pH meter Inolab 

level 1 from WTW (Weilheim, Germany). 

 

2.2 Methods 

2.2.1 Collagen crosslinking 

2.2.1.1 Crosslinking procedure 

Crosslinking of collagen with EDC was performed according to a protocol from 

Metzmacher [17]. Therefore, 1% (w/w) collagen in water was adjusted to pH 3.5 

with 1 M HCl and pre-swollen for 1 hour. After dispersion for 10 minutes with an 

Ultraturrax® (IKA-Werke GmbH Co. KG, Staufen, Germany), the pH was adjusted to 

pH 5.1 with 1 M Na2HPO4 and 10% stock solutions of EDC and NHS (molar ratio 

5:2) were added. Three different collagen / EDC-ratios were used: 1 g / 16.9 mg, 

1 g / 67.7 mg and 1 g / 203.1 mg. The dispersion was homogenized and the 

reaction was performed for 2 hours at room temperature under pH-control. 

Subsequently, the pH was adjusted to 9.1 by adding 1 M Na2HPO4 and 1 M NaOH. 

After another 2 hours of stirring, the pH was adjusted to 6.5 using 1 M HCl. 

Subsequently, each collagen dispersion was transferred into 50 ml Falcon tubes 

and centrifuged at 5,100 rpm for 20 minutes using a Sigma 4 K15 lab centrifuge 

(Sigma, Osterode, Germany). Each residue was washed using 50 ml of Milli-Q 

water with centrifugation at 5,100 rpm after each washing step to collect the 

residues. After 10 washing steps, residues were lyophilized (see 2.2.1.2). 

 

2.2.1.2 Lyophilization 

Lyophilization was performed in a ε2-6D special freeze-dryer (Martin Christ 

Gefriertrocknungsanlagen GmbH, Osterode, Germany) with EDC crosslinked 
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collagen dispersions prepared according to 2.2.1.1. Collageneous materials were 

cast in plastic Petri dishes (diameter: 5.5 cm) to a height of about 10 mm. Samples 

were lyophilized according to the following program: 

 

Table 4-1: Lyophilization protocol for the freeze-drying of EDC crosslinked collagen material. 

Step Time 

[hh:mm] 

Temperature 

[°C] 

Vaccum 

[mbar] 

Start 00:00 20 --- 

Ramp 02:00 - 20 --- 

Freezing 02:00 - 20 --- 

Ramp 00:05 - 20 0.1 

Ramp 03:00 15 0.1 

Primary Drying 25:00 15 0.1 

Ramp 01:00 25 0.1 

Ramp 00:03 25 0.045 

Secondary Drying 15:00 25 0.045 

 

2.2.1.3 Differential Scanning Calorimetry 

Samples were analyzed with a Mettler Toledo DSC 821e machine (Mettler-Toledo 

GmbH, Giessen, Germany). Samples of approximately 10 mg were incubated in 

1 ml 0.05 M Tris buffer pH 7.5 at room temperature for at least 2 hours. 

Subsequently, samples were transferred in aluminum pans (ME 26763 AL-Crucibles 

40 µl without pin, Mettler-Toledo GmbH, Giessen, Germany) and containers were 

sealed. Samples were heated from 20 to 90°C at 5 K/min. Analyses were performed 

in triplicates against an empty reference pan. 

 

2.2.1.4 Karl-Fischer titration 

Residual moisture of samples was determined by Karl-Fischer titration using an 

Aqua 40.00 titrator with Head-Space oven (Analytik Jena AG, Jena, Germany). 
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Sealed samples were fixed in the oven chamber and heated to 60°C for 30 minutes. 

Vaporized water was transported into the Karl-Fischer cell, determined 

coulometrically, and calculated as water amount in % (w/w). Measurements were 

carried out in triplicate. 

 

2.2.2 Collagen coating procedure 

2.2.2.1 Preparation of collagen dispersion 

Collagen dispersions were prepared by redispersion of collagen material in water at 

1% and 3% (w/w). The pH was adjusted to 3.5 using glacial acetic acid. Swelling 

was performed at room temperature for 4 hours with dispersion for 60 s using an 

Ultraturrax® (IKA-Werke GmbH Co. KG, Staufen, Germany) every 30 minutes at 

10,000 rpm and an additional dispersion step at the end of the swelling period of 

3 minutes at 10,000 rpm. The dispersion was then centrifuged at 5,000 rpm at 10°C 

for 10 minutes using a Sigma 4 K15 lab centrifuge (Sigma, Osterode, Germany) to 

remove air bubbles from the dispersion. Thereafter, the dispersion was used for the 

coating (compare 2.2.2.2 and 2.2.2.3) or stored at 2-8°C until further use. 

 

2.2.2.2 Coating procedure – cover coating 

Collagen dispersions (compare 2.2.2.1) were used to coat Polytetrafluoroethylene 

(PTFE) -discs, argon plasma activated with a plasmabrush® (Reinhausen Plasma 

GmbH, Regensburg, Germany) or cover glasses, both with a diameter of 15 mm. 

Therefore, the discs were placed in 24-well plates and covered with the collagen 

dispersions. The discs were air dried for 1 hour and subsequently dried under 

vacuum over night or until further use. For cell culture studies all these procedures 

were performed under a laminar flow workbench (Thermo, Langenselbold, 

Germany). 
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2.2.2.3 Coating procedure - squeegee 

The higher concentrated collagen dispersion (compare 2.2.2.1) was used to coat 

PTFE-discs, argon plasma activated with a plasmabrush® or cover glasses, both 

with a diameter of 15 mm. Therefore, the discs were covered with the collagen 

dispersion using a squeegee with a defined height of 1 mm (Figure 4-1). The discs 

were subsequently placed in 55 mm petri dishes, air dried for 1 hour, and 

subsequently dried under vacuum over night or until further use. For the cell culture 

studies, all these procedures were performed under a laminar flow workbench. 

 

1000 µm
 

Figure 4-1: Schematic of collagen coating using a squeegee. 

 

2.2.3 Cell compatibility 

The cell compatibility of collagen coated discs was evaluated using Human 

Umbilical Vein Endothelial Cells (HUVECs). HUVECs were prepared by digestion of 

umbilical veins with 0.1 g/l collagenase A. Cells were cultured in endothelial cell 

growth medium supplemented with 10% heat-inactivated fetal bovine serum in a 

humidified atmosphere at 5% CO2 and 37°C. Cells were used at passage no. 3. For 

visualization of cells on the different surfaces, cells were fixed with a buffered 

formaldehyde solution (4%) and were stained with propidium iodide in phosphate 

buffered saline (PBS) buffer with a final concentration of 50 µg/ml. Images were 

obtained with a Zeiss LSM 510 confocal laser scanning microscope (CLSM) (Zeiss, 

Oberkochen, Germany). 
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2.2.4 In-vitro release studies 

2.2.4.1 Release study of FITC-dextran from collagen matrices 

For the release study, plasma activated PTFE-discs were coated with collagen 

dispersions containing 0.1% (w/w) of FITC-dextran with a molecular weight of 

40 kDa based on the dry weight of collagen in accordance to 2.2.2.2 and 2.2.2.3. 

After coating, discs were left to dry at room temperature for 1 hour and 

subsequently under vacuum for several hours or until further use. Drying was 

performed under the exclusion of light, due to the light sensitivity of FITC-dextran. 

For the release analysis, triplicates of the coated discs were incubated in 10.0 ml 

PBS pH 7.4 in 50 ml Falcon tubes in a water bath (Haake SWB25, Haake, 

Karlsruhe, Germany) at 37°C and at 25 rpm horizontal shaking under exclusion of 

light. 2 ml samples were drawn and replaced with fresh PBS buffer at several time 

points. Released FITC-dextran was quantified using fluorescence spectroscopy, 

which was performed using a Varian Cary Eclipse fluorescence spectrometer 

(Varian GmbH, Darmstadt, Germany). Therefore, samples were measured in 

disposable Plastibrand® PMMA plastic cuvettes with an excitation wavelength of 

495 nm, an emission wavelength of 517 nm, and adjusted with a PBS buffer blank. 

Samples were diluted using PBS buffer, if necessary. The amount of released FITC-

dextran was calculated using a calibration curve. 

 

2.2.4.2 Release study of VEGF165 from collagen matrices 

For the release study, glass-discs were coated with collagen dispersions containing 

VEGF165 in accordance to 2.2.2.3. The amount of VEGF165 incorporated per disc 

was 1 µg, unmodified and crosslinked collagens were used in this study. After 

coating, discs were left to dry at room temperature for 1 hour and subsequently 

under vacuum for several hours or until further use. For the release analysis, 

triplicates of the coated discs were in incubated in 10.0 ml phosphate buffered 

saline (PBS) pH 7.4 in 50 ml Falcon tubes in a water bath (Haake SWB25, Haake, 

Karlsruhe, Germany) at 37°C and at 25 rpm horizontal shaking. In order to 

investigate the stability of VEGF165 in buffer, 1 µg VEGF165 was incubated in 10.0 ml 

PBS buffer pH 7.4 in 50 ml Falcon tubes, as well. These investigations were 
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performed in duplicate. 1 ml samples were drawn and replaced with fresh PBS 

buffer at several time points. Samples were frozen at -80°C until measurement. 

Released amounts of VEGF165 were quantified with a sandwich enzyme-linked 

immunosorbent assay (ELISA), using a commercially available kit for human VEGF 

from Ray Bio®. The ELISA was performed according to protocol; samples were 

measured at 450 nm using a Spectrafluor Plus plate reader (Tecan, Crailsheim, 

Germany). The amount of released VEGF165 was then calculated using a calibration 

curve. 

 

2.2.5 Influence on cell growth by incorporated VEGF165 

2.2.5.1 Rat aortic smooth muscle cells 

The influence of discs on the cell growth of smooth muscle cells was evaluated 

using rat aortic smooth muscle cells (SMCs). Cells were cultured in smooth muscle 

cell growth medium DMEM /F12 supplemented with 10% heat-inactivated fetal 

bovine serum in a humidified atmosphere at 5% CO2 and 37°C. 

 

2.2.5.2 Cell growth study 

For the study VEGF containing collagen coated discs holding varying amounts of 

VEGF were prepared. Therefore, collagen dispersions were prepared according to 

2.2.2.1 with VEGF added to the collagen dispersions prior to coating according to 

2.2.2.3. Control samples not carrying VEGF were treated accordingly. The discs 

were then placed on the bottom of 24-well plates and subsequently covered with 

500 µl of starvation medium: in case of HUVECs, containing 80% of M199 and 20% 

of endothelial cell growth medium, in case of SMCs, 100% of DMEM /F12. 20,000 

viable HUVECs (prepared according to 2.2.3) or SMCs (prepared according to 

2.2.5.1) were seeded per well. Thereafter, cells were cultured in a humidified 

atmosphere at 5% CO2 and 37°C. Cells on the discs were quantified at day 3 using 

Cell Titer-Blue®. Therefore, cells were incubated with Cell Titer-Blue® for 6 hours 

and an aliquot of the supernatant was analyzed using a Spectrafluor plus plate 

reader (Tecan, Crailsheim, Germany) with an excitation wavelength of 550 nm and 
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emission recording at 595 nm. The increase in cell growth was calculated as % 

increase in relation to cells grown on collagen coated discs without VEGF165. 

 

3 Results and Discussion 

3.1 Characterization of crosslinked collagen 

For a complete understanding of the properties of the collagen materials and the 

release behavior, it was of importance to characterize physical or chemical changes 

induced by the crosslinking process. Therefore, DSC and Karl-Fischer 

measurements of the different collagen materials were performed to determine the 

melting temperature and the residual moisture levels after drying. These two critical 

parameters are indicative for, on the one hand, a successful crosslinking in case of 

DSC [17], and on the other hand, can be a first indicator for the swelling properties 

and the release characteristics in case of residual moisture determination [18-20]. 

 

3.1.1 Differential Scanning Calorimetry 

Collagen variants were analyzed using DSC in order to determine the midpoint of 

transition, also known as melting temperature (Tm). It is of critical interest to 

evaluate this characteristic value since it gives insight in the physicochemical 

changes that can occur during in vitro and in vivo tests or be an indicator for 

variations that can occur during storage. The heating of collagen results in a loss of 

structural properties of the collagen, especially the helical structure and is therefore 

a valuable tool to determine the degree of crosslinking of swollen collagen samples 

[21-22]. Stronger interactions between the collagen fibers that result from 

crosslinking are responsible for an increase in melting temperature and this 

increase can be used to indirectly identify the degree of crosslinking of the analyzed 

samples [17]. Impartial to the degree of crosslinking, thermal denaturation occurs at 

temperatures above 100°C for collagen in a dried state [1], therefore indicating that 

a storage of dried collagen at room temperature is possible without risking 

temperature induced changes. 
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For the collagen material investigated in this study, the non crosslinked equine 

collagen raw material showed a denaturation temperature of 53°C (Figure 4-2). 

During subsequent cooling and a second heating step of the sample, no peaks were 

detectable. This was an indicator for the complete and irreversible denaturation of 

the collagen material, which was in accordance with literature [21]. EDC 

crosslinking resulted in an increase in melting temperatures of the collagen samples 

in correlation to the employed EDC : collagen ratios. For the collagen samples 

1:16.9 (g collagen : mg EDC), a melting temperature of 54°C was detected, which 

increased for the samples 1:67.7 to 59°C and a further increase to 65°C was 

detectable for the samples with a ratio of 1:203.1 (Figure 4-2). 
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Figure 4-2: Melting temperature of equine collagen raw material crosslinked with different 

EDC ratios determined by DSC (average ± SD; n=3). 

 

These results indicated a stronger interaction of the collagen fibers, which resulted 

in an increase in denaturation temperature for the EDC crosslinked collagen 

samples. Crosslinking collagen is a useful tool to control the properties of collagen 

and is often applied to prevent a rapid degradation of collagen-based biomaterials 

during in vivo application, in order to suppress its antigenicity and to improve 

mechanical properties [5, 17]. Overall, this data is consistent with data presented by 

Metzmacher, who showed an increase in Tm for EDC crosslinked equine collagen in 

a range of 54°C and 65°C [17].  
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3.1.2 Residual moisture of crosslinked collagen 

The residual moisture of EDC crosslinked collagen after freeze-drying was 

determined using Karl-Fischer titration in order to guarantee low moisture levels in 

the collagen material to ensure stability during storage. The untreated non 

crosslinked equine collagen starting material showed a residual moisture level of 

8.0% ± 0.16. In comparison, all EDC crosslinked materials showed lower levels in 

residual moisture decreasing with increasing collagen : EDC ratios. The collagen 

with the lowest degree of cross-linking exhibited residual moisture levels of 7.4% ± 

0.15, medium crosslinked material showed 7.1% ± 0.10, and highest crosslinked 

collagen 7.0% ± 0.23 residual moisture.  

These lower numbers for residual moisture of crosslinked collagen material could 

be associated with the swelling behavior of crosslinked collagen that was reported 

in literature. In studies, decreases in swelling were shown for crosslinked collagen 

matrices, which were caused by a decrease in the amounts of penetrating solvents 

[18-20]. 

 

3.2 Cell compatibility of collagen variants 

In addition to collagen melting temperature and residual moisture, the different 

crosslinked collagen species were analyzed concerning their cell compatibility. Cell 

compatibility is of great importance, especially for the intended use as biomaterial 

substrate to enhance attachment, attraction, and endothelial cell growth, either by 

itself due to its properties as a natural collagenous tissue, and also in its function as 

matrix for the release of endothelial cell specific growth enhancers, such as 

VEGF165. Studies of collagen in a similar application have been performed before, 

but only for native collagen with human origin [23] or with cells of different origin 

than endothelial cells [24]. Thus, it was of interest how collagen of different origins 

and after chemical crosslinking would perform. Therefore, the collagen materials 

were used to coat glass discs, which were subsequently seeded with HUVECs. 

Cells were allowed to attach and grow on the modified and unmodified materials 

and were stained using propidium iodide after 3 days. The stained cells were 
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analyzed using CLSM concerning the cell morphology, cell viability, and proliferation 

on the discs. 

(a) (b) (c) (d) 

    

Figure 4-3: CLSM images of propidium iodide stained collagen coated discs after incubation 

with endothelial cells on native collagen (a), crosslinked collagen 1:16.9 (b), crosslinked 

collagen 1:67.7 (c) and crosslinked collagen 1:203.1 (d). 

 

Figure 4-3 shows the acquired pictures for the stained cells after a 3 day incubation 

period. All pictures showed a confluent monolayer of endothelial cells grown on the 

collagen films with a morphology attributed to HUVECs. The different intensities 

originated from different levels of background staining of collagen. Crosslinking of 

the collagen material did not influence the growth behavior of endothelial cells; 

hence a treatment with EDC and NHS did not leave behind any cytotoxic residues 

and thereby did not affect cyctotoxicity of the collagen material. However, the issue 

of blood compatibility, especially thrombogenicity could not be elucidated by these 

investigations. This is one of the main concerns that arise when working in the field 

of vascular graft applications, which can be seen by the multitude of studies 

performed to overcome this problem [25-28]. Collagen itself has a thrombogenic 

potential [29], and therefore, several groups have investigated this effect and have 

come to the conclusion that collagen in combination with Heparin can lower this 

thrombogenic potential [8, 30]. In addition, it has been reported that crosslinking of 

collagen could lower the tissue reaction of surrounding tissue [6], thus being a first 

indicator that crosslinking can be beneficial in itself to lower thrombogenicity. 
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3.3 In vitro release studies 

In the previous section, the collagen raw and crosslinked material was 

characterized with respect to physical behavior and cell compatibility. Consequently, 

the aspect of release behavior of higher molecular weight compound from collagen 

film coatings had to be elucidated. In our case, collagen was used to establish thin 

films on vascular graft raw materials, such as PTFE and later glass as model 

substrate. For first release investigations, FITC-dextran 40 kDa was incorporated in 

the films and its release from films investigated. Subsequently, the model compound 

was substituted by the endothelial cell specific growth enhancer VEGF165 [31] with a 

molecular weight of 42 kDa and its release was studied. 

Collagen devices exhibit strong swelling behavior in contact with water depending 

on their crosslinking degree [18]. Sano et al. observed that penetrating solvent 

dissolved water soluble drugs, which were incorporated into a matrix and that the 

release of the dissolved compound was controlled by the swelling behavior of the 

collagen matrix rather than the speed of dissolution [32]. These findings were 

confirmed by Maeda et al. who additionally suggested that the release occurs 

through water filled pores, and therefore an increasing release rate can be observed 

for porous structures [33]. In general, collagen devices, specifically collagen films, 

exhibit fast release of incorporated compounds [3]. 

 

3.3.1 Influence of coating procedure on FITC-dextran release profile 

During preliminary FITC-dextran release investigations, highly variable release 

profiles were observed for drip coating collagen coated discs, with up to 60% 

difference in the totally released percentages. Release of model compound during 

these investigations was completed within 2 hours, which was in accordance with 

findings reported in literature [1, 3, 34]. Therefore, a 24 hour time period was 

chosen for the investigation of further release experiments. It was postulated that 

the coating procedure applied had a strong influence on drug liberation. 

Consequently, this influence was investigated by applying a different coating 

technique in comparison to the applied drip coating method. 
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Drip coating was performed by covering discs that were placed in a well plate with 

collagen dispersion. The discs were subsequently air dried for several hours before 

being dried under vacuum over night. Thereafter, discs were removed from the well 

plates, which lead to the loss of some of the coating material at the disc-well plate 

interface due to strong adherence of the collagen coating. The alternative coating 

approach was performed using a squeegee that enabled the application of higher 

concentrated collagen dispersions with a defined height on the discs. Since coating 

was performed outside of well plates, a loss of collagen after drying was 

circumvented. This coating procedure posed several advantages over the 

previously applied drip coating procedure. Due to the application of collagen 

dispersion with a defined height, a more homogenous coating with a constant 

thickness could be applied that might result in better drying of the coating, as well 

as faster drying due to the higher concentrations of collagen applied. In addition, the 

increase in concentration should lead to a slower diffusion of the incorporated 

compound, resulting in a more consistent distribution within the matrix, since the 

first dry spots are formed next to still high concentration collagen gel areas. 
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Figure 4-4: Cumulative in-vitro FITC-dextran release from drip coating collagen coated discs 
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Figure 4-4 shows the cumulative release of the incorporated FITC-dextran. 

Collagen coated discs manufactured by drip coating exhibited an initial burst 

release of approximately 60% within the first hour which stayed constant throughout 

the entire investigated 24 hour time period. In contrast, the collagen coated discs 

manufactured by squeegee coating exhibited an almost complete release of FITC-

dextran within the first hour that was constant throughout the investigated time 

period. It was apparent that the standard coating procedure resulted in a lower total 

release after the incubation period, indicating a loss of FITC-dextran, whereas the 

squeegee coated discs exhibited a close to 100% release of the model compound. 

These findings suggested a loss of FITC-dextran during the coating procedure or 

the subsequent retrieval of samples. However, the described loss of collagen 

coating after drying could not account for the high loss of incorporated model 

compound, assuming its even distribution in the film. Maeda et al. had observed 

cluster formation of their model compound during drying and hypothesized that this 

phenomenon occurred due to phase separation. Since their model compound did 

not exhibit significant affinity with collagen, a cluster formation was therefore 

possible [33]. This cluster formation and phase separation phenomenon was 

presumed to be the reason for the significant loss of FITC-dextran. Evidently, the 

phase separation caused an accumulation of FITC-dextran in the peripheral region 

of the discs and the well plate, thus leading to a substantially higher loss of FITC-

dextran when amounts of collagen coating were lost during sample retrieval. These 

results indicated a superiority of the squeegee method over the standard coating 

method to coat discs for release investigations. 

 

3.3.2 Influence of crosslinking on FITC-dextran release profile 

An almost complete release of FITC-dextran from unmodified collagen films, as 

seen in 3.3.1, took place within the first hour after incubation. For an application of 

controlled release in the field of vascular grafts to stimulate endothelialization, a 

constant release over a prolonged period of time is desirable. Therefore, the 

influence of crosslinking on the release rate of the model compound was 

investigated in order to minimize the initial burst release and establish a steady 
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release to stimulate endothelial cells. In accordance to Sano et al. [32], it was 

expected that the higher collagen crosslinking degree would result in lower swelling 

of the established films and therefore would reduce the initial release and allow for a 

more constant release profile.  
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Figure 4-5: Cumulative in-vitro FITC-dextran release from native collagen coated discs (
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The acquired release profiles can be seen in Figure 4-5. All systems investigated 

exhibited a strong burst release within the first 30 minutes of incubation. A complete 

release for the non-crosslinked collagen occurred within 1 hour. Lower total 

amounts of FITC-dextran were released from all other samples in correlation to their 

crosslinking degree. The samples with a collagen : EDC ratio of 1:16.9 showed a 

total cumulative release of 70%, followed by the samples with a ratio of 1:67.7 with 

a release of 60%, and the samples with a ratio of 1:203.1, which showed a release 

of 30%. Burst release rate for the unmodified samples, as well as, the two collagen 

varieties with the lower crosslinking degree were similar, however, the highest 

crosslinked collagen’s burst release rate was lowered. It has been reported in 

literature that, especially for high molecular weight compounds, the release rates 

decrease with an increase in crosslinking degree. This phenomenon was observed 

independent of the method applied for crosslinking [1]. In contrast, low molecular 

weight substrates showed no differences in release rates in accordance to the 
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crosslinking degree [1]. The initial release can be explained by the presence of 

model compound that was released through the porous structure of the film, 

immediately after incubation. The remaining fraction of FITC-dextran was 

mechanically fixed within the collagen after drying and was released to a lesser 

degree due to lower swelling resulting from crosslinking [1, 35-36]. This mechanical 

fixation, however, can be beneficial for the intended application of such coatings on 

vascular grafts to enhance endothelialization. Collagenolytic enzymes are 

expressed in endothelial cells [37], therefore the trapped compounds can be 

released upon digestion of the matrix by the endothelial cells and become available 

to attract further cells and stimulate their proliferation. 

 

3.3.3 Release of VEGF165 from collagen matrices 

After having successfully characterized the in vitro release profiles for the model 

compound FITC-dextran from non-modified and modified collagen films, the in vitro 

release profile of VEGF165 incorporated in collagen films was to be tested. Non-

modified and crosslinked collagen with a collagen : EDC ratio of 1:67.7 were used 

to coat glass discs carrying amounts of VEGF165. In parallel to the release study, the 

stability of VEGF165 under release conditions was analyzed and the equivalent 

amount of VEGF165 incorporated in the collagen films was incubated in PBS buffer 

alone. 
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Figure 4-6: Cumulative in-vitro VEGF165 release from native collagen coated discs (
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The release profiles for VEGF165 from native and crosslinked collagen are 

presented in Figure 4-6. Burst release was seen for VEGF165 for both versions of 

collagen films. The initial release for the protein embedded in the unmodified 

collagen film was complete within the first hour of incubation. The corresponding 

release from the crosslinked collagen was finished in the same period of time. 

However, the amount of total released protein was approximately 40% lower than 

observed for the umodified collagen. This was in accordance to the findings for 

FITC-dextran. These results also corresponded with findings in literature, as 

mentioned before, that the release of higher molecular weight compounds 

decreases with increasing crosslinking degree [1]. This was anticipated since the 

molecular weights of the model compound FITC-dextran and VEGF165 are in a 

similar range of 40 kDa. However, after the initial release of VEGF165, the amount 

present in the release medium drastically decreased within the following 48 hours 

and stabilized at a level of 30% for the unmodified collagen and 5% for the 

crosslinked collagen. A similar instability was observed for the VEGF165 incubated in 

PBS buffer at 37°C over a time period of 7 days (Figure 4-7). After 24 hours only 5% 

of the initially present VEGF could be detected. 
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Figure 4-7: VEGF165 stability in PBS. (average ± SD; n=2) 
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Contradictory findings about the stability of VEGF165 in buffer have been reported in 

literature [38-39]. The present findings suggested a fast degradation and low 

recovery of VEGF165 in solution at 37°C, which was in accordance to other in vitro 

findings [39]. However, it has been reported in literature that the addition of BSA to 

formulations containing VEGF can have a beneficial effect on VEGF recovery [38, 

40]. Therefore, the low recovery of VEGF in these investigations determined by 

ELISA might be due to the adsorption of VEGF to container surfaces. Other 

possible explanations for the low recovery could be the loss of affinity of VEGF 

towards the antibody used during the ELISA measurements resulting in low 

recovery, but not reflecting loss of biological activity. Thus, more important than the 

amount of recovered VEGF165 in the stability investigations is the availability and 

biological activity of released VEGF165 in a cell growth setting (compare 3.4). 

In conclusion, it can be said that native and crosslinked collagen showed 

comparable release profiles for VEGF as previously determined using FITC-

dextran. Native collagen stabilized VEGF165 in solution, as seen by higher levels of 

cytokine present in solution, in comparison to crosslinked collagen and VEGF in 

buffer alone over a time period of 170 hours. The biological activity of entrapped 

VEGF165 in the crosslinked collagen matrix could not be investigated in this setting, 

however, it is suggested that due to the limited swelling of this collagen and 

therefore lower amounts of penetrating solvent, the biological activity of VEGF in the 

matrix was conserved. Furthermore, the high concentration of the obviously 

stabilizing agent collagen in the environment added to the preservation of biological 

activity. However, the cell growth experiments on pre-incubated samples should 

give further insight into the stability of the remaining VEGF (compare 3.4). 

 

3.4 Influence of incorporation of VEGF165 in collagen matrices on cell 

growth 

The influence of incorporated VEGF165 and its release on cells is a very important 

prerequisite for the application of collagen films for the intended purpose of vascular 

graft coating to improve the cell adhesion and growth of endothelial cells. VEGF165 

has been widely used in the field of vascular graft applications to enhance the 
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proliferation of endothelial cells in order to improve the performance of grafts [11-

13]. Therefore, the goal of this study was to investigate the different effects of 

incorporated VEGF165 on endothelial and smooth muscle cells in an in vitro setting. 

Additionally, it was crucial for the success of the application of collagen coatings for 

vascular grafts to examine the stability and biological activity of VEGF throughout 

the coating process, the incorporation into the collagen, and drying of the collagen 

films.  

Therefore, glass discs were coated with non-modified and crosslinked collagen with 

a collagen : EDC ratio of 1:67.7 and varying VEGF165 concentrations. The influence 

on the cell growth of SMCs and HUVECs was investigated in comparison to control 

samples not carrying VEGF. In order to identify a suitable concentration for cell 

growth stimulation, a wide range of VEGF concentrations of 1, 10 and 100 µg per 

disc, in case of HUVECs, were tested in a cell growth assay (compare 2.2.5.2). In 

order to investigate the stability of VEGF remaining in wet collagen films after initial 

burst release and its effect on SMCs and HUVECs, discs coated with both collagen 

carrying 10 µg VEGF165 were incubated over night in PBS buffer, subsequently 

rinsed to ensure removal of adsorbed VEGF to the collagen surface and then 

transferred to fresh well plates to examine them in the same cell growth setting. 

 

3.4.1 Smooth muscle cells 

Contradictory findings concerning the effect of VEGF165 on the proliferation and 

migration of SMCs are reported in literature. It has been reported, that VEGF165 can 

have a positive effect on SMC growth and migration induced through various 

pathways [41-42]. However, other groups have identified VEGF165 to have no 

stimulating effect on SMCs [11, 43]. In our case, no differences for the SMCs grown 

on the VEGF165 collagen matrices were observed independent of the amount of 

VEGF165 incorporated (Figure 4-8).  
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Figure 4-8: Smooth muscle cell growth on collagen (
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coated discs with 1 or 10 µg incorporated VEGF165 and after prior 24h incubation. 

(average ± SD; n=3) 

 

All samples except the crosslinked collagen sample carrying 1 µg VEGF showed a 

SMC growth comparable to the control samples without VEGF. The crosslinked 

collagen matrix carrying 1 µg VEGF showed a decrease in cell growth of 15% 

compared to all other samples. This decrease could not be attributed to the effect of 

crosslinked collagen on SMCs, since all other crosslinked samples carrying higher 

amounts of VEGF did not show a reduction of cell growth. Pre-incubation of 

collagen samples with 10 µg VEGF showed neither a beneficial, nor a detrimental 

effect on SMC growth.  

 

3.4.2 Vascular endothelial cells 

VEGF is a widely investigated growth factor. It is a secreted protein ligand that 

activates transmembrane receptors on endothelial cells and it consists of a 

disulfide-linked homodimer. It exists in several isoforms, four of which consist of 

121, 165, 189 and 206 amino acids [31] and are produced from a single human 

gene as a result of alternate splicing [11]. This growth factor has been shown to 

have very high endothelial cell specificity without mitogenic activity for other cell 

types [16], making it an ideal candidate for the specific stimulation of endothelial cell 
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growth in vascular graft applications. Multiple ways of presenting these growth 

factors have been investigated, including extracellular matrix coatings [13], 

electrostatic interaction [12], and fibrin matrices [11, 44] that have shown promising 

results. 

The stability and remaining biological activity of VEGF within dried collagen 

matrices and after release from the coating is of great importance for the application 

of collagen coatings for the controlled release of VEGF to enhance 

endothelialization of vascular grafts. Therefore, the goal of these investigations was 

to show the influence of VEGF165, which had been incorporated and dried in 

collagen matrices, on endothelial cells. 
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Figure 4-9: Endothelial cell growth on collagen (
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The results of the cell growth investigations are presented in Figure 4-9. Endothelial 

cells grown on both collagen variations, the non-modified and crosslinked collagen 

films, exhibited good growth when grown on control samples without VEGF, 

ensuring the cell compatibility and non toxicity of the materials as shown before 

(see 3.2). Endothelial cell growth on films carrying 1 µg VEGF165 increased by 

almost 60%, when grown on either collagen variety. No differences could be 

observed for the different collagen samples. When the film load increased to 10 µg 

VEGF165 per film endothelial cell growth on non-modified collagen dropped to 100%, 
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comparable to the cells grown on control samples without VEGF. However, cells 

grown on crosslinked collagen films containing 10 µg VEGF showed comparable 

growth to those containing 1 µg. For the samples carrying films with 100 µg 

VEGF165, the cell growth decreased to 70% for samples coated with non-modified 

collagen and 30% for those coated with crosslinked collagen. This decrease, as well 

as the decrease for the collagen coated samples containing 10 µg VEGF, could be 

ascribed to the immediate release of high amounts of VEGF165, which led to an over 

stimulating effect of the cytokine on endothelial cells, which slowed proliferation. 

The preservation of cell growth increase observed for the samples coated with 

crosslinked collagen and 10 µg VEGF can be attributed to the lower immediate 

release during incubation, as also seen for FITC-dextran (compare 3.3.2), which 

resulted in a prolonged stimulatory effect of the cytokine on endothelial cells. 

For the samples that were incubated in buffer prior to cell seeding to eliminate the 

effect of burst released VEGF and to investigate on the stability of the cytokine in 

swollen collagen matrices, an increase of 25% for the non-modified collagen and a 

40% increase for crosslinked collagen could be observed. This is in agreement with 

findings from prior in vitro release experiments (compare 3.3) where varying 

amounts of model substrate and VEGF165 remained in the collagen film depending 

on the crosslinking degree. Under in vitro conditions, the remaining substrate could 

not be released through further incubation for several hours, due to the higher 

molecular weight of the compounds and the entrapment in the pores of the collagen 

film that results from it [1]. However, in the case of the growth of endothelial cells, a 

stimulation of cells after incubation and rinsing was observed, which leads to the 

conclusion that the collagenolytic activity of the endothelial cells [45] was 

responsible for degradation of the collagen film and a further release of VEGF165, 

which stimulated further cell growth. These findings show a sustained biological 

activity of VEGF165 in the collagen film, despite the short half life and in vitro 

recovery as seen before (compare 3.3.3). Therefore, it can be concluded that the 

incorporation of VEGF165 into collagen films stabilized the protein and its biological 

activity was sustained as shown by cell growth stimulation of collagen coated 

samples incubated for more than 24 hours. 
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4 Conclusions 

The goal of the study was to show the cell growth stimulatory effect of VEGF165 

released from collagen films as potential coatings for vascular grafts to enhance 

their in vivo endothelialization. 

Early results for the release of FITC-dextran showed fast release rates from 

collagen films within the first 2 hours. In order to modify these release 

characteristics, collagen crosslinking was performed using carbodiimide chemistry. 

Characterization of the crosslinked material was performed using DSC 

measurements to confirm the efficiency of the procedure and the successful 

crosslinking. In addition, the postulated low toxicity of carbodiimide crosslinked 

collagen was successfully confirmed using endothelial cells. Release studies, using 

FITC-dextran 40 kDa, showed modified release rates for the crosslinked collagen 

materials. It was shown that with increasing crosslinking degree, the initial release 

of model compound was reduced in accordance to the crosslinking degree. 

Therefore, crosslinking of collagen was shown to be an effective tool to modify 

release properties of collagen without risking the good biocompatibility of this 

material. Furthermore, the results obtained for FITC-dextran formed the basis for 

the investigation of VEGF165 containing films concerning their release behavior. The 

predetermined release properties could be successfully confirmed for the 

endothelial cell specific growth factor. Therefore, the modified collagen materials 

constitute a suitable carrier for controlled release of VEGF. 

Furthermore, it was of central interest to investigate the biological activity of the 

incorporated VEGF, after processing of the collagen films and subsequent release 

on cells. Therefore, VEGF incorporated into collagen films was investigated towards 

its effect on endothelial and smooth muscle cells. No stimulatory effect on SMCs 

could be shown. This is an important prerequisite for the application in vascular 

grafts, since an excessive growth could lead to vessel occlusion, the reason for the 

unsuitability of i.e. basic fibroblast growth factor. Furthermore, and more importantly, 

an increase in endothelial cell growth by VEGF released from collagen films was 

shown. Thus, it was possible to maintain the biological activity of a sufficient amount 
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of VEGF throughout the manufacturing and drying process of collagen films and the 

subsequent release to stimulate endothelial cell growth. 

Therefore, Collagen film coatings carrying VEGF165 constitute an interesting 

alternative for the modification of vascular grafts to enhance their endothelialization, 

and thereby their long term performance. 
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Chapter 5 

 

Cell growth stimulation by VEGF165 covalently linked to a 

modified PLGA-matrix 

 

 

Abstract 

It was the goal to investigate the effect of Vascular Endothelial Growth Factor 

(VEGF) irreversibly linked to a modified poly(lactic-co-glycolic acid) (PLGA) on the 

growth of endothelial and smooth muscle cells (SMCs). In doing so, it was to be 

shown whether the irreversible linkage interfered with the mechanism of action of 

VEGF and its receptor internalization. Commercially available PLGA was modified 

using a homobifunctional polyethylene glycol (PEG) spacer for protein attachment. 

VEGF165 was covalently attached via succinimidyl ester to discs coated with the 

modified polymer. Successful binding, potentially maintained VEGF integrity, and 

optimization of coating and coupling procedures could be shown by employing an 

antibody staining method, whereas FTIR and other adapted staining methods could 

not provide further insight.  

The preservation of the biological activity of VEGF165 was shown by a substantial 

growth increase of endothelial cells. Furthermore, PEG-PLGA could be shown to 

have a limiting effect on the proliferation of SMCs, due to its cell-adhesion-resistant 

properties, in comparison to unmodified PLGA matrices. Furthermore, it was shown 

that irreversibly linked VEGF165 was still able to interact with its receptor and to 

stimulate endothelial cells. 

 

Keywords: PLGA, VEGF, vascular graft, endothelial cell, covalent linkage, PEG 
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1 Introduction 

After implantation of biomaterial surfaces in a body, the body generally identifies 

these surfaces as foreign objects resulting in a repair response rather than a 

regenerative response [1]. These repair responses lead to unwanted side effects 

which, in the case of vascular grafts for vessel replacement, can lead to 

complications [2-4]. Local treatment with bioactive molecules constitutes an 

interesting approach to overcome these problems. The easiest approach for site 

specific delivery of bioactive molecules to an implantation site is the pre-incubation 

of the implantable biomaterial in a solution containing the active ingredient, a 

method commonly used to treat vascular graft infection [5]. However, this method 

provides little, if any, control over the local delivery which is strongly influenced by 

the environment of the site of implantation and the patient’s condition. A more 

controlled approach for delivery is the use of matrices or scaffolds that incorporate 

biomolecules that are released after implantation [6-7]. One big advantage is the 

controlled release of these molecules over an extended period of time. However, it 

also poses the risk of dose dumping and systemic side effects once released into 

the blood in case of vascular grafts. 

Another alternative is the chemical attachment of these biomolecules to surfaces to 

enable a direct interaction of cells of interest with growth enhancers and provide a 

more controlled approach over cell – biomaterial interactions. However, the question 

arises whether the chemical attachment of such molecules interferes with their 

mechanism of action, especially in regards of binding sites being shielded due to 

linkage, sterical hindrance, conformational changes [8], or loss of receptor 

internalization [9-11] due to irreversible linkage. Several promising attempts have 

been carried out to immobilize a variety of proteins on biomaterial surfaces [12-13]. 

It has also been shown that the introduction of spacer molecules between the 

substrate surface and the attached biomolecule can be beneficial for the 

maintenance of the biological activity [14-15]. Furthermore, the use of PEG as a 

spacer might have the advantage of increasing the half life of used molecules [16-

17], resulting in a longer activity, which is a common approach in pegylation of 

therapeutic proteins [18-20]. Approaches for the chemical attachment of proteins 

have made use of functional groups present within the sequence of proteins, such 
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as amino, carboxyl [21], and aldehyd groups [15]. VEGF165, the predominant 

isoform from the VEGF family [22], carries these functional groups within its 

sequence and makes it accessible for covalent attachment to biomaterials. 

VEGF165, a 42 kDa protein, has been widely investigated for the controlled release 

and use in artificial graft applications [13, 23-24]. VEGF is involved in several 

endothelial cell specific activities, such as proliferation and migration [25], at the 

same time limiting the mitogen-induced vascular SMC proliferation [26]. Therefore, 

it seems a very promising approach for the improvement of vascular grafts by 

controlled presentation of VEGF165 at the graft surface by chemically attaching the 

protein to a modified matrix. 

The objective of this study was to show a successful covalent linkage of VEGF165 to 

modified PLGA, a commonly used polymer in controlled release applications with 

biodegradable and biocompatible attributions [27-28], while maintaining the 

biological activity. The polymer was to be chemically altered using a 

homobifunctional PEG spacer carrying succinimidyl ester groups to attach the PEG 

structur to amino moieties within the protein sequence.  

The first focus was the evaluation of the linkage of VEGF to the matrix. Therefore, a 

suitable detection technique using infrared spectroscopy and several staining 

methods had to be identified. A suitable antibody staining method to determine 

bound protein needed to be developed and was used to optimize linkage conditions 

and examine the unspecific adsorption of VEGF on matrices. More importantly, the 

cell compatibility of the modified PLGA material and the preservation of the 

biological activity of the attached VEGF were evaluated. Therefore, their effect on 

HUVECs and SMCs was investigated  
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2 Materials and Methods 

2.1 Materials 

Resomer® (RG 502H and RG 504H) was provided by Boehringer Ingelheim 

(Ingelheim, Germany), VEGF165 was kindly donated by Genentech (San Francisco, 

CA, USA), and rat aortic smooth muscle cells were provided by PD Dr. Wolgang Erl 

(Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Ludwig-

Maximilians-Universität München, Munich, Germany). O,O′-Bis(2-amino-propyl) 

polyethylene glycol (PEG(NH2)2) with a molecular weight of 500 Da, succinic 

anhydride, N-Hydroxysuccinimide (NHS), N,N'-Dicyclohexylcarbodiimide (DCCI), 

dimethyl sulfoxide (DMSO), 2,4,6-Trinitrobenzenesulfonic acid solution (TNBS), 

Bovine Serum Albumin (BSA), and Reversible Protein Detection Kit were purchased 

from Sigma (Steinheim, Germany), toluene, and diethyl ether from Merck KGaA 

(Darmstadt, Germany), triethylamine, dichloromethane, ethylenediamine, 

ethanolamine, cover glasses, plastic petri dishes from VWR (Darmstadt, Germany), 

polytetrafluoroethylene (PTFE) from GM GmbH (Freiham, Germany), SilverXPress® 

Silver Staining Kit, and goat-anti-rabbit antibody Alexa Fluor 488 from Invitrogen 

(Karlsruhe, Germany), Deep Purple™ Total Protein Stain from GE Healthcare 

(Freiburg, Germany), rabbit Anti-Human VEGF antibody from Pepro Tech GmbH 

(Hamburg, Germany), collagenase A from Roche (Penzberg, Germany), endothelial 

cell growth medium from Provitro (Berlin, Germany), heat-inactivated fetal bovine 

serum from Biochrom (Berlin, Germany), smooth muscle cell growth medium 

DMEM /F12 and M199 from PAA (Pasching, Austria), 24-well plates from TPP 

Techno Plastic Products (Trasadingen, Switzerland), and Cell Titer-Blue® from 

Promega (Madison, WI, USA). 

The pH of the solutions was adjusted using hydrochloric acid or sodium hydroxide 

from Merck KGaA (Darmstadt, Germany) and measured with a pH meter Inolab 

level 1 from WTW (Weilheim, Germany). 
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2.2 Methods 

2.2.1 PLGA modification 

2.2.1.1 Synthesis of PEG-spacer 

A bifunctional PEG-spacer was synthesized using O,O′-Bis(2-aminopropyl) 

polyethylene glycol (PEG(NH2)2) with a molecular weight of 500 Da as starting 

material. In a first reaction step (Figure 5-1), the amine groups of the PEG were 

modified into carboxylic groups using succinic anhydride. The reaction was carried 

out in anhydrous toluene with the addition of triethylamine at room temperature over 

night. 
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Figure 5-1: Reaction mechanism for the synthesis of PEG-(COOH)2. 

 

The resulting functionalized PEG carrying two carboxylic groups was subsequently 

activated (Figure 5-2) using N-Hydroxysuccinimide (NHS) and N,N'-

Dicyclohexylcarbodiimide (DCCI) to carry two succinimidyl ester. The reaction was 

carried out in anhydrous dichloromethane at 0°C for 3 hours and subsequently at 

room temperature over night. The product was recovered and purified by 

precipitation in cold diethyl ether. The final compound was desiccated under 

vacuum for several hours and the activity was determined by a TNBS assay 

(compare 2.2.1.3). 
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Figure 5-2: Reaction mechanism for the synthesis of PEG-(NHS)2. 

 

2.2.1.2 Synthesis of PEG-PLGA 

The free carboxylic groups of two variants of non end-capped PLGA (RG 502H and 

RG 504H) were activated (Figure 5-3) in a first step using NHS and DCCI. The 

reaction was carried out in anhydrous dichloromethane at 0°C for 3 hours and 

subsequently at room temperature over night. 
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Figure 5-3: Reaction mechanism for the synthesis of activated PLGA. 

 

The resulting activated PLGA carrying a succinimidyl ester was subsequently 

coupled to ethylenediamine in anhydrous dichloromethane at room temperature 

over night (Figure 5-4).  
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Figure 5-4: Reaction mechanism for the synthesis of PLGA-Ethylenediamine. 

 

In a last step, the PLGA carrying the amine group was coupled to the PEG-spacer 

in anhydrous dichloromethane at room temperature over night (Figure 5-5).  
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Figure 5-5: Reaction mechanism for the synthesis of PEG-PLGA. 

 

The product was recovered and purified by precipitation in boiling diethyl ether. The 

final compound was desiccated under vacuum for several hours and the activity 

was determined by a TNBS assay (compare 2.2.1.3). 

 

2.2.1.3 TNBS assay 

The degree of ability of the activated species of PLGA and PEG to couple with 

primary amines within protein sequences was determined using a modified assay 

according to Snyder et al [29]. Therefore, the activated species were dissolved in 

anhydrous DMSO and were coupled with the primary amine of ethanolamine 

(Figure 5-6). 
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Figure 5-6: Conjugation reaction of activated species with ethanolamine. 

 

In a next step, the free ethanolamine was quantified using TNBS in a 0.1 molar 

borate buffer pH 8.3. The yellow conjugate (Figure 5-7) formed was quantified via 

UV-spectroscopy at 420 nm using the Agilent 8453 (Agilent Technologies, 

Böblingen, Germany). The degree of activation was calculated as % of coupled 

ethanolamine compared to reference samples containing no activated species. 

NO
2

O
2
N

NO
2

SO
3
H

NH
2

OH NO
2

O
2
N

NO
2

NH

OH

r.t.

borate buffer pH 8.3
+

 

Figure 5-7: Quantification reaction for free ethanolamine. 

 

2.2.2 Coating procedure for PEG-PLGA 

Different species of PLGA (RG 504H, activated PLGA and PEG-PLGA) were used 

to coat PTFE-discs, argon plasma activated with a plasmabrush® (Reinhausen 

Plasma GmbH, Regensburg, Germany) or cover glasses, both with a diameter of 

15 mm. Therefore, the discs were placed in a 24-well aluminum well plate and 

covered with different concentrations of the synthesized PLGA-species dissolved in 

anhydrous dichloromethane. The discs were air dried for one hour and 

subsequently removed from the wells and dried under vacuum over night or until 

further use. For the cell culture studies all these procedures were performed under 

a laminar flow workbench (Thermo, Langenselbold, Germany). 
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2.2.3 VEGF165 linkage to modified PLGA matrix 

For the linkage of VEGF165, PLGA, and PEG-PLGA, coated discs were transferred 

to plastic petri dishes and covered with different concentrations of VEGF165 in 

phosphate buffered saline (PBS) buffer pH 7.4 for 30 minutes. Reference samples 

not carrying VEGF165 were treated with either PBS buffer alone or with PBS 

containing 1 mg/ml BSA to block unspecific binding. After incubation, the discs were 

intensely washed in Milli-Q water and stored in PBS buffer for immediate use. For 

the cell culture studies all these procedures were performed under a laminar flow 

workbench. The approach for protein attachment is shown in Figure 5-8. 
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Figure 5-8: Idealized scheme for protein attachment to PEG-PLGA matrix. 

 

2.2.4 Evaluation of detection methods for surface bound VEGF165 

2.2.4.1 Attenuated Total Reflection- FT-IR Spectroscopy (ATR-FTIR) 

FT-IR measurements were performed on a Tensor 27 FT-IR spectrometer (Bruker 

Optics GmbH, Ettlingen, Germany) using the Miracle ATR unit. In addition, 

measurements were also performed using a Hyperion 3000 FT-IR microscope 

(Bruker Optics GmbH, Ettlingen, Germany) using the ATR object lense. The 

recorded spectra were obtained from 4000 to 900 cm-1 wavenumbers in attenuated 

total reflectance mode at 20°C. Each measurement was the average of 240 scans 

for the Miracle ATR unit and 64 scans in case of the ATR FT-IR microscope. While 
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data acquisition was performed, the optical bench was purged with dry nitrogen to 

reduce interference from water vapour IR absorption and each spectrum was 

corrected for the background. 

 

2.2.4.2 VEGF165 detection using staining methods 

For the detection of surface bound VEGF165, several staining techniques were 

evaluated. Silver staining of the discs was performed using a SilverXPress® Silver 

Staining Kit, Reversible Protein Detection Kit, and Deep Purple™ Total Protein 

Stain. The stained discs were air dried and the coating was analyzed using an 

Axiovert 25 microscope (Zeiss, Göttingen, Germany) using a 200fold magnification 

in case of silver staining and the Reversible Protein Detection Kit. In case of Deep 

Purple™ Total Protein Stain, stained samples were analyzed using the Zeiss LSM 

510 confocal laser scanning microscope (CLSM) (Zeiss, Oberkochen, Germany). 

 

2.2.4.3 Antibody detection 

For VEGF165 detection, discs were incubated with a rabbit Anti-Human VEGF 

antibody in PBS buffer pH 7.4 at 2-8°C over night. Thereafter, discs were rinsed with 

PBS buffer three times to eliminate unbound primary antibody. In a second step, 

samples were incubated with a secondary goat-anti-rabbit antibody Alexa Fluor 488 

for 2 hours at room temperature under exclusion of light. Samples were again 

rinsed with PBS and subsequently analyzed using the Zeiss LSM 510 confocal laser 

scanning microscope (Zeiss, Oberkochen, Germany). 

 

2.2.5 Influence on cell growth by covalent linkage of VEGF165 

2.2.5.1 Vascular endothelial cells 

The influence of discs on the cell growth of vascular endothelial cells was evaluated 

using Human Umbilical Vein Endothelial Cells (HUVECs). HUVECs were prepared 

by digestion of umbilical veins with 0.1 g/l collagenase A. Cells were cultured in 

endothelial cell growth medium supplemented with 10% heat-inactivated fetal 
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bovine serum in a humidified atmosphere at 5% CO2 and 37°C. Cells were used at 

passage no. 3.  

 

2.2.5.2 Rat aortic smooth muscle cells 

The influence of discs on the cell growth of SMCs was evaluated using rat aortic 

SMCs. Cells were cultured in smooth muscle cell growth medium DMEM /F12 

supplemented with 1% heat-inactivated fetal bovine serum in a humidified 

atmosphere at 5% CO2 and 37°C. 

 

2.2.5.3 Cell growth study 

For the study, discs were placed on the bottom of 24-well plates  and subsequently 

covered with a layer of starvation medium in case of HUVECs containing 80% of 

M199 and 20% of endothelial cell growth medium, in case of SMCs 90% of 

DMEM /F12 and 10% heat-inactivated fetal bovine serum. 20,000 viable HUVECs 

or SMCs were seeded per well. Thereafter, cells were cultured in a humidified 

atmosphere at 5% CO2 and 37°C. Cells on the discs were quantified at day 3 using 

Cell Titer-Blue®. Therefore, cells were incubated with Cell Titer-Blue® for 6 hours 

and an aliquot of the supernatant was analyzed using a Spectrafluor plus plate 

reader (Tecan, Crailsheim, Germany) with an excitation wavelength of 550 nm and 

emission recording at 595 nm. The increase in cell growth was calculated as % 

increase in relation to cells grown on coated discs without VEGF165. 
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3 Results and Discussion 

3.1 PLGA modification 

The goal of the PLGA modification was the introduction of a functionalized PEG-

spacer into the PLGA matrix in order to covalently bind VEGF165. It has been shown 

in literature that the use of spacer molecules between the substrate and the 

biomolecule to be attached can be beneficial for the maintenance of the biological 

activity [14-15]. Furthermore, the use of PEG as a spacer might have the advantage 

of increasing the half life of VEGF165 in solution, as seen for other proteins reported 

in literature [16-17] and results in a longer activity, which is a common approach in 

pegylation of therapeutic proteins [18-20].  

In a first attempt to chemically modify PLGA, RG 502H with a molar ratio of 50:50 of 

D,L-lactide to glycolide and an approximate molecular weight of 15,000 Dalton was 

used in combination with a homobifunctional PEG-spacer carrying succinimidyl 

ester for chemical linkage of amine groups that had a molecular weight of 

approximately 2,000 Dalton. The activity of all intermediates carrying succinimidyl 

ester was determined using a modified TNBS assay, and a binding activity of more 

than 90 % was assured before proceeding with synthesis of the following 

intermediates or the final product. For the last reaction step to form functionalized 

PEG-PLGA, the PLGA carrying amine groups was combined with the 

homobifunctional PEG-spacer. The final product was felled in boiling diethyl ether. 

However, the recovery of a solid precipitate was not possible. The product that was 

obtained was a viscous material that did not solidify after desiccation under vacuum 

for several hours and further additional felling steps to ensure the removal of any 

byproducts of the synthesis. 

PEG has been reported to have a plasticizing effect on polymers in the case of 

PLGA:PEG di-block copolymers by lowering their glass transition temperature [30]. 

The plasticizing effect of PEG is based on the reduction of the attractive forces 

among the polymer chains, which leads to a decrease in the attractive forces 

leading to an increase in the mobility of the macrochains, resulting in the decrease 

of the glass transition temperature [31]. Furthermore, studies have shown that in 

dependency of the molecular weight of the PEG and PLGA employed the glass 
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transition temperature of resulting conjugates was drastically decreased [30-32]. In 

one reported case, the combination of PLGA RG 502 with PEG 2000 and 5000 

formed compolymers with glass transition temperatures of 1.2°C and -29.9°C 

respectively [30]. Accordingly, in the case of the combination of the 

homobifunctional PEG-spacer with RG 502H, the plasticizing effect of PEG resulted 

in a decrease of the glass transistion temperature, leading to the viscous product. 

Consequently, for the second approach to synthesize a functional PEG-PLGA 

material, the molecular weight of the PEG used for the synthesis of the PEG-spacer 

was reduced to 600 Dalton. Furthermore, the higher molecular weight PLGA variety 

RG 504H, with a molecular weight of approximately 50,000 Dalton, was used. 

Again, a binding activity of above 90 % was assured before proceeding with 

synthesis of the following intermediates or the final product. The final product was 

successfully felled in boiling diethyl ether and dried under vacuum for several hours. 

The product was a solid, white cluster that could be transformed into a white 

powder. Therefore, it was concluded that the adjustment of molecular weight for 

PEG and PLGA had lowered the plasticizing effect of PEG leading to solid product. 

The final product showed a succinimidyl ester activity of 94.4 % and was stored in a 

desiccator under the exclusion of moisture, due to the moisture sensitivity of the 

functional group. 

Thus, an active PEG-PLGA material was successfully synthesized, but further 

experiments were necessary to show that the activity of the material was 

maintained throughout the coating process. Furthermore, the ability to covalently 

attach VEGF165, while maintaining its biological activity, to the PEG spacer needed 

to be investigated. 

 

3.2 Covalent linkage of VEGF165 to modified PLGA matrices 

3.2.1 Comparison of VEGF165 detection methods 

The successful linkage of VEGF165 was an important prerequisite for further cell 

studies and a reliable method of detection therefore a crucial requirement. In order 

to determine a suitable detection method, commonly used methods for protein 
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detection, such as gel staining methods [33-34], FT-IR spectroscopy for insight into 

secondary structural changes [35], and antibody staining were adapted for the use 

on PLGA matrices and the evaluation of VEGF linkage. 

 

3.2.1.1 FT-IR Spectroscopy 

FT-IR spectroscopy is a commonly used method for the investigation of protein 

secondary structure [35]. This method was anticipated to not only provide 

information about the presence of VEGF165, but could have also been used to 

characterize the protein’s conformational status. Fu et al. were able to demonstrate 

that in case of PLGA microsphere formulations the C=O stretching vibration 

occurring at approximately 1750cm-1 of the PLGA polymer was well separated from 

the typical amid I vibration of proteins occurring at 1600 – 1700 cm-1 [36]. However, 

in our case, no differences between the recorded FT-IR spectra of surface bound 

VEGF165 carrying samples and control samples could be detected (Figure 5-9). This 

was true for either discs coated with activated PLGA as well as PEG-PLGA. In 

general, spectra recorded for PLGA were consistent with literature [37]. 

 (a) 

900190029003900

wavenumber [cm-1]
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 (b) 

900190029003900

wavenumber [cm-1]
 

 

Figure 5-9: FT-IR spectra of PEG-PLGA (a) and activated PLGA (b), both with (

900190029003900

wavenumber [cm-1]

PEG-PLGA

PEG-PLGA + VEGF) and 

without (

900190029003900

wavenumber [cm-1]

PEG-PLGA

PEG-PLGA + VEGF

) VEGF165 with adjusted intensity for better comparability. 

 

Spectra recorded using the more site specific and sensitive FT-IR microscope, 

confirmed the previous findings. No differences between blanks and the samples 

carrying VEGF165 could be detected. Figure 5-10 shows a close-up of the spectra 

obtained for PEG-PLGA within the region of 1900 to 1400 cm-1, the region 

commonly allotted to protein secondary structure, especially at 1650 cm-1 assigned 

to α-helical segments and at 1620 cm-1 assigned to intermolecular ß-sheet 

structures [38] were of interest. However, no changes were observable in this 

region, nor throughout the whole spectra. 
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Figure 5-10: FT-IR microscopy spectra of PEG-PLGA with (

900190029003900

wavenumber [cm-1]

PEG-PLGA

PEG-PLGA + VEGF) and without (

900190029003900

wavenumber [cm-1]

PEG-PLGA

PEG-PLGA + VEGF

) VEGF165. 

 

The main reason for the unsuccessful detection of VEGF165 using FT-IR 

spectroscopy is most likely the very low concentrations of protein (10 µg/ml) applied 

on the surfaces, resulting in even lower concentrations bound on the surface. Even 

with the more site specific FT-IR microscopy the sensitivity for this method could not 

be increased to a sufficient level to detect VEGF165. 

 

3.2.1.2 Reversible Protein Detection Kit 

The subsequently applied staining methods were adapted from either gel staining or 

filter staining procedures, more sensitive methods in comparison to FT-IR 

spectroscopy. The Reversible Protein Detection Kit is commonly used to detect 

protein on filter membranes. However, when trying to determine whether the binding 

procedure for VEGF165 on activated PLGA and PEG-PLGA was successful no 

staining could be detected for the coupled discs and the reference material. Thus, 

the covalent conjugation of VEGF165 to the modified PLGA matrices could not be 
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determined. A reason for this phenomenon could be the fact that according to Li et 

al. this rather simple staining method is specific to insoluble protein aggregates on 

membranes and therefore, no single molecules in native state bound on a surface 

could be detected [33]. 

 

3.2.1.3 Silver staining of covalently linked VEGF165 

Silver staining is commonly used for protein detection on SDS-PAGE gels when a 

very high sensitivity is necessary and smallest amounts of protein need to be 

detected, therefore, silver staining could be useful to determine the covalent binding 

of VEGF165 on discs. The staining was carried out on discs coated with PLGA and 

PEG-PLGA both coupled with VEGF165 and placebo, as negative control. The 

microscopic images of the discs carrying VEGF165 (Figure 5-11c and d) showed 

areas of black staining compared to the negative controls (Figure 5-11a and b), 

therefore indicating the presence of protein on the surface of the coated discs. 

Moreover, a difference in intensity can be seen for the samples carrying PEG-PLGA 

and VEGF165 in comparison to those being coated with activated PLGA and carrying 

the protein.  

(a) (b) (c) (d) 

    

Figure 5-11: Microscopic images of silver stained discs coated with activated PLGA without 

VEGF as control (a), PEG-PLGA without VEGF as control (b), activated PLGA incubated with 

10 µg/ml VEGF (c), and PEG-PLGA incubated with 10 µg/ml VEGF (d). 

 

This was a first indicator for the hypothesis that the PEG-spacer is necessary to 

ensure accessibility of the linker presented at the surface to the binding sites within 

the protein structure. Prior findings in literature investigating the influence of spacer 

length on the effect of surface immobilized VEGF on endothelial cells [15], as well 
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as other studies investigating the increase in effectiveness by introduction of 

spacers [39-40] further support this hypothesis. Overall, silver staining provides a 

useful tool to characterize coated discs and to determine the successful linkage of 

protein. However, the detection method is very unspecific. An interference of the 

immobilized PEG-spacer could be ruled out due to previously reported studies that 

employed silver staining to detect protein in PEG environments [41]. 

 

3.2.1.4 Deep Purple™ Total Protein Stain for the detection of VEGF165 

As an alternative, Deep Purple™ Total Protein Stain was used to stain PEG-PLGA 

coated discs incubated with buffer and VEGF165 (c = 10 µg/ml), in order to 

determine the successful linkage of the cytokine to the modified PEG-PLGA matrix. 

Deep PurpleTM is a naturally occurring compound, epicocconone, extracted from the 

fungal species Epicoccum nigrum. Epicocconone reacts reversibly with primary 

amines in proteins and the result is a highly fluorescent enamine [34]. The stain is 

commonly used for gel staining and has been shown to be more sensitive towards 

proteins in comparison to other commercially available gel stains. 

(a)        (b) 

   

Figure 5-12: CLSM images of Deep Purple™ stained discs coated with PEG-PLGA without 

VEGF as control (a) and PEG-PLGA incubated with 10 µg/ml VEGF (b). 

 

Figure 5-12 shows the CLSM images for the samples incubated with buffer as 

control and VEGF165. For the samples incubated with the cytokine, a stronger 
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fluorescence could be detected, however a slight fluorescence was also observed 

for the control samples. Since the Deep PurpleTM stain is a rather unspecific stain 

interacting with primary amines an unspecific interaction with other adsorbed 

proteins or unmodified primary amines, in the PEG-PLGA backbone that might have 

resulted from incomplete modification can not be ruled out. Therefore, the Deep 

PurpleTM Total Protein Stain was another indicator for the linkage of VEGF165, but 

could not provide final proof. 

 

3.2.1.5 Antibody detection of covalently linked VEGF165  

In order to further characterize and to provide final proof of linkage of VEGF to the 

coated discs, a more specific approach was required. Therefore, a staining 

procedure utilizing a VEGF-specific antibody was established. Preliminary results 

(Figure 5-13) with the antibody detection performed on PEG-PLGA coated discs 

coupled with and without VEGF165 using the primary and secondary antibody 

indicated a good specificity of the employed method towards the coated and 

coupled discs and gave first evidence of the sustained integrity of the attached 

protein. 

 (a)        (b) 

    

Figure 5-13: CLSM images of antibody stained discs coated with PEG-PLGA incubated 

without VEGF as control (a) and PEG-PLGA incubated with 10 µg/ml VEGF (b). 
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However, further investigations, including control experiments with unmodified 

PLGA coated discs (Figure 5-14), suggested unspecific protein adsorption. Samples 

coated with PLGA and incubation with VEGF165 and samples coated with PLGA and 

incubation with PBS buffer, stained with both antibodies, showed fluorescence in 

CLSM (Figure 5-14 a and b). However, samples coated with PLGA, incubation with 

VEGF165, and detection with solely the secondary antibody did not show 

fluorescence (Figure 5-14 c). These findings support the theory of unspecific protein 

adsorption of either VEGF165 or the primary anti-human-VEGF antibody on the 

surface of the unmodified PLGA, since there seemed to be no unspecific interaction 

of the secondary antibody. 

 (a)     (b)     (c) 

   

Figure 5-14: CLSM images of antibody stained discs coated with PLGA without VEGF as 

control (a), PLGA incubated with 10 µg/ml VEGF (b), and PLGA incubated with 10 µg/ml VEGF 

as control using only the secondary antibody (c). 

 

To further identify and investigate these findings, control experiments using BSA 

solutions to block unspecific adsorption of VEGF165 or the detection antibodies were 

performed. Therefore, the following incubations (Table 5-1) and analysis were 

performed and evaluated using CLSM. 
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Table 5-1: Overview of incubation and detection procedures for the evaluation of unspecific 

adsorption on PEG-PLGA and PLGA coated discs and order of incubation for PLGA-04 and 

PLGA-05, as well as PEG-PGLA-04 and PEG-PLGA-05. 

 incubation solution detection antibodies 

Sample PBS 
VEGF165 

[20 µg/ml] 

BSA 

[1 mg/ml] 
anti-VEGF 

goat-anti-
rabbit 

PLGA-01  X  X X 

PLGA-02 X   X X 

PLGA-03  X   X 

PLGA -04  1.) X 2.) X X X 

PLGA-05  2.) X 1.) X X X 

PLGA-06   X X X 

PLGA-07   X  X 

PEG-PLGA-01  X  X X 

PEG-PLGA-02 X   X X 

PEG-PLGA-03  X   X 

PEG-PLGA-04  1.) X 2.) X X X 

PEG-PLGA-05  2.) X 1.) X X X 

PEG-PLGA-06   X X X 

PEG-PLGA-08   X  X 

 

PLGA coated samples showed a strong fluorescence for several of the incubated 

samples. A very high fluorescence could be seen for the samples incubated with 

VEGF165, PBS buffer, and those incubated with BSA solutions and VEGF165 

subsequently (Figure 5-15 a, b and e). A slightly lower fluorescence could be 

detected for the samples incubated with VEGF165 and subsequently BSA (Figure 5-

15 d). The sample incubated with BSA, on the other hand, showed an irregular 

pattern of fluorescence, displaying areas of no intensity (Figure 5-15 g) or areas of 

spotted intensity (Figure 5-15 f). The control samples incubated with VEGF165 and 

BSA (Figure 5-15 c and g), for which only the interaction of the secondary antibody 

was evaluated, showed no significant fluorescence.  
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

    

Figure 5-15: CLSM images of antibody stained discs PLGA-01 (a), PLGA-02 (b), PLGA-03 (c), 

PLGA-04 (d), PLGA-05 (e), PLGA-06.1 (f), PLGA-06.2 (g), and PLGA-07 (h). 

 

Therefore, it can be concluded that there was no unspecific interaction of the 

secondary goat-anti-rabbit antibody with the surfaces, since no fluorescence could 

be observed for the samples treated solely therewith. However, there was an 

interaction observed for the anti-VEGF-antibody with the surface which can be 

clearly seen by the high fluorescence of the sample being incubated with buffer 

alone and to a lesser degree the sample being incubated with BSA. The interaction 

of VEGF165 with the unmodified PLGA matrix could not be assessed. The unspecific 

interaction of the primary anti-VEGF-antibody made it impossible to determine the 

origin of the fluorescence, whether it was due to the antibody interacting with 

VEGF165 or solely with the surface. The sample incubated with BSA and 

subsequently with VEGF165 could be seen as a first indicator for the interaction of 

VEGF165 with the surface. The increased fluorescence compared to the sample 

solely incubated with PBS buffer must have originated from VEGF165 adsorbed onto 

the PLGA surface since an interaction of the primary antibody with the surface can 

be eliminated due to the prior incubation with BSA. The incubation with BSA could 

be shown to lower the unspecific interaction of the primary antibody. However, it 

was not possible to eliminate the interaction entirely. 
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(a) (b) (c) (d) 

    

(e) (f) (g)  

   

 

Figure 5-16: CLSM images of antibody stained discs PEG-PGLA-01 (a), PEG-PLGA-02 (b), 

PEG-PLGA-03 (c), PEG-PLGA-04 (d), PEG-PLGA-05 (e), PEG-PLGA-06 (f), and PEG-PLGA-07 

(g). 

 

Images obtained using CLSM for the samples coated with PEG-PLGA, on the other 

hand, were in accordance with previous findings and could not support the theory of 

unspecific protein binding on the surface of the coatings in contrast to the results 

obtained for PLGA matrices. The control samples using only the secondary 

detection antibody (Figure 5-16 c and g) exhibited no fluorescence, as well as the 

samples incubated with BSA solutions and PBS buffer detected with both antibodies 

(Figure 5-16 b and f). These findings are in accordance with literature, where the 

influence of PEG to modify the cell and protein adhesive properties has been 

investigated. It has been shown that the incorporation of PEG into polymer and 

biomaterial surfaces can decrease the unspecific adhesion of proteins, but allowed 

a controlled attachment of cells [42-44]. The samples incubated with BSA solution 

and subsequently VEGF165 showed slight fluorescence, indicating the existence of 

still active functional groups that are able to couple VEGF165 even after the 

incubation with BSA, in contrary to literature, where half lives of succinimidyl esters 

of less than 30 minutes are documented [45]. Samples incubated with VEGF165 and 

those additionally treated with BSA demonstrated a strong fluorescence (Figure 5-

16 a and d). 
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Therefore, it can be concluded, that a successful linkage of VEGF165 to the modified 

PLGA-matrix was accomplished. Furthermore, unspecific adsorption of VEGF on 

the PEG-PLGA matrix could be ruled out and more importantly, the integrity of 

VEGF165 throughout the preparation process was conserved, as seen by successful 

binding of the anti-VEGF antibody. 

 

3.2.2 Influence of PLGA coating concentration on VEGF165 linkage 

Since the main objective of the present study was to investigate the effect of 

covalently attached VEGF on endothelial cells and smooth muscle cells, rather than 

to examine the dose-dependent effects of immobilized VEGF, the goal was to bind a 

maximal amount of VEGF on the surface. Therefore, in order to elucidate the effect 

of coating thickness or ablation of PEG-PLGA on the effectiveness of VEGF linkage, 

as well as to identify the conditions for maximum VEGF attachment, PTFE discs 

were coated with varying concentrations of PEG-PLGA. The coating solutions had a 

concentration of 0.1, 0.5, 1.0 and 3.0 % of PEG-PLGA in dichloromethane. 

Subsequently, all discs were incubated with VEGF165 solution (20 µg/ml) or PBS-

buffer. The bound VEGF165 was detected with the antibody detection method as 

described above (compare 2.2.4.3). 

The images that were obtained using CLSM (Figure 5-17) showed an increase in 

fluorescence with increasing concentration of PEG-PLGA that was used to coat the 

samples up to 1.0 %. The fluorescence reached a maximum for the samples coated 

with 1.0 % PEG-PLGA that was not further increased when increasing the 

concentration to 3.0 %. 

(a) (b) (c) (d) 

    

Figure 5-17: CLSM images of antibody stained discs coated with 0.1% (a), 0.5% (b), 1.0% (c), 

and 3.0% (d) PEG-PLGA and subsequent incubation with 20.0 µg/ml VEGF165. 
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An increase in fluorescence observed in CLSM has a direct correlation with the 

amount of VEGF bound on the surface of the matrices. Since a maximum coverage 

of the surface with VEGF seems favorable to ensure a lasting effect of the cytokine 

during incubation and cell growth experiments, the coatings with the highest 

fluorescence observed appeared advantageous over the one’s with lower 

fluorescence. Furthermore, in order to eliminate the risk of ablation of coating due to 

increased coating thickness, it was decided to proceed with the 1 % PEG-PLGA 

concentration for the further studies. 

 

3.2.3 Influence of VEGF165 concentration on the linkage procedure 

A second parameter investigated was the effect of VEGF165 concentration in the 

incubation solutions on VEGF binding. Again, the goal was to achieve good linkage 

efficiency with maximum coverage of the PEG-PLGA surface with VEGF. Therefore, 

discs were coated with PEG-PLGA in dichloromethane (compare 2.2.2) with a 

concentration of 1 % (w/v), and incubated for 30 minutes with varying 

concentrations of 2.0, 10.0, and 20.0 µg/ml VEGF165 and analyzed using the 

antibody detection method. 

 (a)     (b)     (c) 

   

Figure 5-18: CLSM images of antibody stained PEG-PLGA discs incubated with 2.0 µg/ml (a), 

10.0 µg/ml (b), and 20 µg/ml (c). 

 

No clear difference in fluorescence between the samples incubated with 2.0 and 

10.0 µg/ml were detectable (Figure 5-18 a and b), but the fluorescence seemed to 

intensify for the samples incubated with 20 µg/ml VEGF165 (Figure 5-18 c) 
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suggesting better linkage efficiency. Consequently, since the goal was to bind a 

maximal amount of VEGF on the PEG-PLGA surfaces, rather than to examine the 

dose-dependent effects of immobilized VEGF, it was decided to perform all further 

linkage experiments with a concentration of VEGF165 in the incubation solution of 

20 µg/ml. 

 

3.3 Influence of covalently linked VEGF165 on cell growth 

3.3.1 Vascular endothelial cells 

In order to evaluate the activity of the covalently linked VEGF165 and therewith the 

accessibility of the VEGF surface receptor (VEGFR-1) [15, 22] on the endothelial 

cells towards the covalently linked protein, cell growth studies were performed. In 

addition, these experiments were also meant to give further insight into the 

necessity of internalization of the receptor complex in order for the cytokine to 

stimulate proliferation of the cells, as described before in literature [9-11]. 

Additionally, several control experiments were performed to elucidate the effect of 

loosely adsorbed protein on the surface of unmodified coated discs. Therefore, 

PLGA and PEG-PLGA coated discs were treated with different incubation solutions 

in accordance to Table 5-2 and immediately thereafter rinsed and incubated with 

endothelial cells. After a 3 day incubation period, cells were quantified using Cell 

Titer-Blue®
. The increase in cell growth was calculated as % increase in relation to 

the amount of cells grown on the PLGA and PEG-PLGA coated discs incubated with 

PBS buffer. 
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Table 5-2: Overview of incubation solutions for the evaluation of endothelial cell growth on 

PEG-PLGA and PLGA coated discs and order of incubation solutions applied. 

 incubation solution 

Sample PBS buffer 
VEGF165 

[20 µg/ml] 

BSA 

[1 mg/ml] 

PLGA (control) X   

PLGA (VEGF)  X  

PLGA (BSA)   X 

PLGA (BSA + VEGF)  2.) X 1.) X 

PLGA (VEGF + BSA))  1.) X 2.) X 

PEG-PLGA (control) X   

PEG-PLGA (VEGF)  X  

PEG-PLGA (BSA)   X 

PEG-PLGA (BSA + VEGF)  2.) X 1.) X 

PEG-PLGA (VEGF + BSA))  1.) X 2.) X 

 

The results showed an increase in cell growth for PLGA coated discs incubated with 

VEGF165 of around 30% compared to the discs incubated with buffer alone (Figure 

5-19). The same increase in cell growth was detected for PLGA coated discs 

incubated with BSA and VEGF165 subsequently. This leads to the conclusion that 

BSA could not be used to block all unspecific adsorption of VEGF165 on the PLGA 

surface. PLGA discs incubated with BSA alone showed an extent of cell growth 

comparable to the discs incubated with buffer solely, therefore, eliminating an 

interference of BSA with the cell growth study. Investigations reported in literature 

for hydrophobic and hydrophilic surfaces came to the conclusion that the incubation 

procedure for BSA, especially such parameters as concentration and incubation 

time, had a strong influence on the blocking efficiency [46-47], which leads to the 

conclusion that the incubation conditions chosen for this setting needed further 

optimization. Furthermore, it has been reported that incubation of BSA only blocked 

50 % of unspecific binding sites on hydrophobic surfaces [48] under various 

incubation conditions. Discs coated with PLGA incubated with VEGF165 and 

subsequently with BSA showed an increase in cell growth comparable to the 

aforementioned discs. Therefore, all variations of incubation solutions containing 

VEGF165 on PLGA coated discs showed comparable cell growth increase for 
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endothelial cells. Therefore, these results suggested an insufficient blockage of 

unspecific binding sites by BSA, which might have caused unspecific interaction of 

the cytokine VEGF165 with the unmodified surface, leading to the increase in cell 

growth. 

The modified PEG-PLGA discs that were incubated with VEGF165 also showed an 

increase in cell growth. The effect was more pronounced as compared to the 

unmodified PLGA discs incubated with the same solution. VEGF165 coupled PEG-

PLGA discs exhibited a cell growth increase of approximately 50%, 20% more than 

the unmodified species. The same holds true for the PEG-PLGA discs incubated 

with VEGF165 and subsequently BSA and vice versa. No differences could be 

observed for the order of incubation for VEGF165 and BSA. It was expected to see a 

lower cell growth increase for the samples first incubated with BSA, due to 

inactivation of the active binding site for VEGF165. Yet, this observation was not 

made, which leads to the proposition that the incubation time with BSA was not 

sufficient to inactivate the PEG-PLGA coating, which was therefore still carrying 

functional groups able to bind to VEGF165. This was already observed in previous 

experiments when determining the linking sufficiency by antibody detection 

(compare 3.2.1.5). The surface charge of the different reaction partners under the 

chosen conditions might have influenced the efficiency of the linkage. BSA exhibits 

a negative surface charge [49], in contrast to VEGF, which has a positive charge at 

the chosen pH [50]. Taking into consideration that PLGA is reported to have a 

negative overall charge due to its carboxylic groups [51] at physiological pH, the 

repulsion between the also negatively charged BSA might have led to a decrease in 

linking efficiency and thus leading to residual active functional groups able to bind 

VEGF165. Furthermore, PEG-PLGA coated discs incubated with BSA alone 

exhibited a cell growth increase of approximately 20 % compared to the control 

group grown on PEG-PLGA. This difference might be attributed to the cell repellent 

properties of PEG [52-53] present on the control group. These repellent properties 

might have been compensated by the covalent attachment of BSA leading to an 

increased cell growth. 
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Figure 5-19: Endothelial cell growth on PLGA (
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These results indicate an unspecific interaction of the cytokine VEGF165 with 

unmodified PLGA matrices and an adjunctive increase in cell growth. In addition, it 

was shown that the incubation with BSA was not able to block unspecific adsorption 

on unmodified PLGA, as well as linkage of VEGF165 on PEG-PLGA, as was already 

seen for earlier investigations using the antibody staining method (compare 3.2.1.5) 

However, the linkage of VEGF165 to modified PLGA matrices shows superiority over 

this unspecific effect, which can be seen by an increased cell growth. Covalent 

attachment of VEGF165 did not interfere with the mechanism of action, as seen by 

the stimulation of endothelial cell growth increase, which was in accordance with 

findings reported in literature [15]. VEGF165 was still capable to interact with the 

endothelial cell receptor and stimulate proliferation. Yet, it is still unclear whether 

VEGF165 had to be separated from the PEG-PLGA back bone through degradation 

or digestion to be internalized to show an effect as reported in literature [9-11], or 

was able to activate the proliferation while still being attached to the surface [15]. 
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3.3.2 Cell growth comparison study for smooth muscle and endothelial cells 

In order to further elucidate the influence of the coupled VEGF165 on other cells, a 

further study was initiated to investigate the effect on SMCs in comparison to 

endothelial cells. Therefore, discs were coated with PLGA and PEG-PLGA and 

subsequently incubated in buffer, BSA or VEGF165. The samples were intensely 

rinsed after incubation and consequently incubated with endothelial cells and 

smooth muscle cells according to 2.2.5.3. After a 3 day incubation period, cells were 

quantified using Cell Titer-Blue®
. The increase in cell growth was calculated as % 

increase in relation to the amount of cells grown on the PLGA and PEG-PLGA 

coated discs incubated with PBS buffer. 
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Figure 5-20: Endothelial and smooth muscle cell growth on PLGA (
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coated discs after treatment with different incubation solutions. (average ± SD; n=3) 

 

Figure 5-20 shows the effect on endothelial and smooth muscle cell growth for the 

PLGA and PEG-PLGA samples incubated with buffer, BSA, and VEGF165. As 

described before (compare 3.3.1), an increase in cell growth could be detected for 

the samples incubated with VEGF165. The increase for PLGA after incubation with 

VEGF165 was in accordance with previous findings (compare 3.3.1), most likely 

originating from unspecific interaction of VEGF with the PLGA matrix. Furthermore, 
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cell growth on discs incubated with BSA alone was also in accordance with previous 

findings (compare 3.3.1). 

The cell growth for the SMCs on the other hand showed no increase for all PEG-

PLGA discs independent of the incubation solution and an increase of 10 % for PLGA 

discs incubated with BSA and VEGF165. The superiority of the PEG-PLGA material in 

contrast to the PLGA matrices towards the reduction of SMC growth might be 

attributed to the cell-adhesion-resistant properties of PEG [54-55]. In case of 

endothelial cells, these adhesion-resistant-properties might have been overcome by 

the stimulating effect of the coupled VEGF165 [25]. Thus, the cell growth comparison 

study successfully demonstrated the beneficial effect of VEGF165 coupled PLGA 

matrices, PEG-PLGA matrices in particular, for the stimulation of endothelial cell 

growth. In addition, the slight decrease of SMC growth for the PEG-modified PLGA 

matrices provides an additional benefit of the PEG-PLGA matrices for the coating of 

vascular grafts to specifically enhance endothelial cell growth without stimulating 

SMC growth that is commonly attributed with vascular graft complications, such as 

neointimal hyperplasia [4, 56]. 
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4 Conclusions 

A functionalized PLGA polymer carrying a PEG-spacer with an activated 

succinimidyl ester was successfully synthesized. It was shown that this 

functionalized PEG-PLGA was able to covalently bind VEGF165 using several 

staining techniques, such as silver staining and Deep PurpleTM Total Protein Stain. 

Other techniques, for example FT-IR spectroscopy, which could have provided 

additional information about conformational changes of the protein in its bound state 

if successful, could not determine the presence of bound cytokine due to the low 

concentrations applied on the surface. However, another VEGF specific method, an 

antibody staining, could be developed to determine the presence of VEGF165 on the 

modified surface and thereby confirming successful linkage of the cytokine to the 

effectively modified PLGA matrix. The interaction of the bound VEGF165 with the 

antibody was a first indicator of the sustained functionality of the cytokine. 

The modified PLGA matrix was used to coat model substrates, was subsequently 

coupled with VEGF165, and was tested in several cell assays to investigate its effect 

on endothelial cells and smooth muscle cells. Covalently attached VEGF had a 

positive effect on the growth of endothelial cells. The effect was superior to effects 

for loosely adsorbed VEGF165 on PLGA matrices that were observed during the 

investigations. Furthermore, PEG-PLGA could be shown to have a limiting effect on 

the proliferation of SMCs, due to its cell-adhesion-resistant properties, in 

comparison to unmodified PLGA, therefore, adding to the beneficial properties of 

the modified PLGA material. Thus, successful attachment of VEGF165 could be 

shown whilst preserving the biological activity and endothelial cell specific growth 

stimulation. Moreover, it was shown, that the irreversible linkage of VEGF165 still 

allowed for interaction of VEGF165 with its receptor. 
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Cell growth stimulation by covalent linkage of VEGF165 to a 

modified collagen-matrix 

 

 

Abstract 

The effect of covalently attached Vascular Endothelial Cell Growth Factor (VEGF165) 

to a modified collagen matrix on the growth of endothelial and smooth muscle cells 

(SMCs) was investigated. Therefore, collagen coated substrates were modified 

using a homobifunctional polyethylene glycol (PEG) spacer and VEGF165 was 

covalently attached. A method for the detection of small amounts of attached protein 

was established, using an anti-human VEGF antibody. Successful binding of the 

protein and optimization of coating and coupling procedures could be shown. 

In addition, in vitro cell growth experiments were performed to determine the effect 

of bound VEGF165 on the cell growth of endothelial cells and smooth muscle cells. 

The biological activity of VEGF165 was sustained, which was shown by the 

substantial growth increase of endothelial cells in comparison to control samples. 

Furthermore, the effect on SMCs was investigated and an unchanged growth 

behavior of SMCs was observed when grown on VEGF coupled matrices. It was 

also shown that the linkage and functionality of VEGF165 to the collagen matrix was 

sustained, even after incubation in buffer medium for more than 24 hours, indicating 

a prolonged stability of the attached protein in vitro. Therefore, successful 

attachment of VEGF165 was shown while preserving biological activity and 

endothelial cell specific growth stimulation. 

Keywords: Collagen, VEGF, vascular graft, endothelial cell, covalent linkage, PEG 
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1 Introduction 

The main objective of tissue engineering is the regeneration or replacement of cells 

or biological material and therewith the function formerly performed by the tissue [1]. 

However, after implantation of biomaterial surfaces in a body, the body generally 

identifies these surfaces as foreign objects resulting in a repair response rather than 

a regenerative response [2], which causes severe problems especially in case of 

vascular grafts [3-5]. A manifold of approaches to overcome these problems have 

been investigated, among others, the chemical attachment of proteins to biomaterial 

surfaces [6-8]. For the chemical attachment, functional groups present within the 

sequence of proteins, such as amino, carboxyl [9], and aldehyd groups [7] are 

commonly used. VEGF165, the predominant isoform from the VEGF family [10], 

carries these functional groups within its sequence and makes it accessible for 

covalent attachment to biomaterials. VEGF165, a 42 kDa protein, has been widely 

investigated for the controlled release and use in artificial graft applications [6, 8, 

11]. VEGF is involved in several endothelial cell specific activities, such as 

proliferation and migration [12], at the same time limiting the mitogen-induced 

vascular SMC proliferation [13]. Therefore, it seems a very promising approach for 

the improvement of vascular grafts by controlled presentation of VEGF165 at the 

graft surface by chemically attaching the protein to a modified matrix. 

Collagen has been widely used in biomaterial applications [14-16] due to its 

biocompatibility and degradation products that can be metabolized and excreted 

[17]. It is a well tolerated substrate for endothelial cell growth, which can be seen by 

its previous use in vascular graft applications [18-20]. In contrast to PLGA 

investigated in Chapter 5, collagen represents a naturally occurring polymer in 

mammals representing almost 30% of total protein present in a body [21]. 

Therefore, collagen constitutes an interesting and promising approach for the 

chemical modification and the covalent attachment of VEGF165. 

The main goal of this study was to prove a successful covalent linkage of VEGF165 

on collagen matrices while maintaining its biological activity in order to specifically 

stimulate endothelial cell growth without stimulation of other cells. For the 

attachment, the use of a homobifunctional PEG-spacer was investigated. Therefore, 
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first studies focused on the evaluation of an antibody staining method previously 

developed to detect VEGF attached to PLGA matrices (compare Chapter 5) to 

determine the successful linkage, an important precondition for the cell growth 

investigations. Furthermore, the results were to be used to optimize linkage 

conditions. More importantly, the cell compatibility of the modified collagen material 

and the preservation of the biological activity of the attached VEGF were evaluated. 

Therefore, their effect on HUVECs and SMCs was investigated  

 

2 Materials and Methods 

2.1 Materials 

VEGF165 was kindly donated by Genentech (San Francisco, CA, USA), rat aortic 

smooth muscle cells were kindly gifted by PD Dr. Wolgang Erl (Institut für 

Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Ludwig-Maximilians-

Universität München, Munich, Germany), and equine collagen type I derived from 

tendon provided as lyophilized material was provided by Innocoll GmbH 

(Saal/Donau, Germany). O,O′-Bis(2-amino-propyl) polyethylene glycol (PEG(NH2)2) 

with a molecular weight of 500 Da, succinic anhydride, N-Hydroxysuccinimide 

(NHS), N,N'-Dicyclohexyl-carbodiimide (DCCI), dimethyl sulfoxide, 2,4,6-

Trinitrobenzenesulfonic acid solution (TNBS), and Bovine Serum Albumin (BSA) 

were purchased from Sigma (Steinheim, Germany), toluene, diethyl ether, and 

glacial acetic acid from Merck KGaA (Darmstadt, Germany), triethylamine, 

dichloromethane, ethanolamine, cover glasses, plastic petri dishes from VWR 

(Darmstadt, Germany), polytetrafluoro-ethylene (PTFE) from GM GmbH (Freiham, 

Germany), goat-anti-rabbit antibody Alexa Fluor 488 from Invitrogen (Karlsruhe, 

Germany), rabbit Anti-Human VEGF antibody from Pepro Tech GmbH (Hamburg, 

Germany), collagenase A from Roche (Penzberg, Germany), endothelial cell growth 

medium from Provitro (Berlin, Germany), heat-inactivated fetal bovine serum from 

Biochrom (Berlin, Germany), smooth muscle cell growth medium DMEM /F12 and 

M199 from PAA (Pasching, Austria), 24-well plates from TPP Techno Plastic 

Products (Trasadingen, Switzerland), and Cell Titer-Blue® from Promega (Madison, 

WI, USA). 
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The pH of the solutions was adjusted using hydrochloric acid or sodium hydroxide 

from Merck KGaA (Darmstadt, Germany) and measured with a pH meter Inolab 

level 1 from WTW (Weilheim, Germany). 

 

2.2 Methods 

2.2.1 Synthesis of PEG-spacer 

A bifunctional PEG-spacer was synthesized using O,O′-Bis(2-aminopropyl) 

polyethylene glycol (PEG(NH2)2) with a molecular weight of 500 Da as starting 

material. In a first reaction step (Figure 6-1), the amine groups of the PEG were 

modified into carboxylic groups using succinic anhydride. The reaction was carried 

out in anhydrous toluene with the addition of triethylamine at room temperature over 

night. 
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Figure 6-1: Reaction mechanism for the synthesis of PEG-(COOH)2. 

 

The resulting functionalized PEG carrying two carboxylic groups was subsequently 

activated (Figure 6-2) using NHS and DCCI. The reaction was carried out in 

anhydrous dichloromethane at 0°C for 3 hours and subsequently at room 

temperature over night. The product was recovered and purified by precipitation in 

cold diethyl ether. The final compound was desiccated under vacuum for several 

hours and the activity was determined by a TNBS assay (compare 2.2.2). 
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Figure 6-2: Reaction mechanism for the synthesis of PEG-(NHS)2. 

 

2.2.2 TNBS assay 

The degree of ability of the activated species of the PEG-spacer to couple with 

primary amines within protein sequences was determined using a modified assay 

according to Snyder et al [22]. Therefore, the activated species were dissolved in 

anhydrous DMSO and were coupled with the primary amine of ethanolamine 

(Figure 6-3). 
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Figure 6-3: Conjugation reaction of activated species with ethanolamine. 

 

In a next step, the free ethanolamine was quantified using TNBS in a 0.1 M borate 

buffer pH 8.3. The yellow conjugate formed (Figure 6-4) was quantified via UV-

spectroscopy at 420 nm using the Agilent 8453 (Agilent Technologies, Böblingen, 

Germany). The degree of activation was calculated as percentage of coupled 

ethanolamine compared to reference samples containing no activated species. 
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Figure 6-4: Quantification reaction for free ethanolamine. 

 

2.2.3 Collagen coating procedure 

2.2.3.1 Preparation of collagen dispersion 

The collagen dispersion was prepared by redispersion of equine collagen type I 

derived from tendon in water at 1% (w/w). The pH was adjusted to 3.5 using glacial 

acetic acid. Swelling was performed at room temperature for 4 hours with dispersion 

for 60 s using an Ultraturrax® (IKA®-Werke GmbH Co. KG, Staufen, Germany) every 

30 minutes at 10,000 rpm and an additional dispersion step at the end of the 

swelling period of 3 minutes at 10,000 rpm. The dispersion was then centrifuged at 

5,000 rpm at 10°C for 10 minutes using a Sigma 4 K15 lab centrifuge (Sigma, 

Osterode, Germany) to remove air bubbles from the dispersion. Thereafter, the 

dispersion was used for the coating (compare 2.2.3.2) or stored at 2-8°C until 

further use. 

 

2.2.3.2 Coating procedure 

The collagen dispersion (compare 2.2.3.1) was used to coat PTFE-discs, argon 

plasma activated with a plasmabrush® (Reinhausen Plasma GmbH, Regensburg, 

Germany) or cover glasses, both with a diameter of 15 mm. Therefore, the discs 

were placed in 55 mm petri dishes and covered with 150 µl of collagen dispersion. 

The discs were air dried for one hour and subsequently dried under vacuum over 

night or until further use. For the cell culture studies, all these procedures were 

performed under a laminar flow workbench (Thermo, Langenselbold, Germany). 
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2.2.4 VEGF165 linkage 

2.2.4.1 PEG-spacer coupling 

In order to attach the bifunctional PEG-spacer to the free amino groups on the 

collagen matrix, the dried collagen covered discs were placed in an aluminum 24-

well plate and covered with a 1% (w/v) solution of the PEG-spacer in anhydrous 

dichloromethane for 30 minutes at room temperature under gentle shaking. The 

derivatization reaction is shown in Figure 6-5. 
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Figure 6-5: Idealized scheme for PEG-spacer attachment to collagen matrix. 

 

The evaporated dichloromethane was replaced with fresh solvent if drying of the 

discs was anticipated. After 30 minutes the dichloromethane was removed by 

aspiration and the discs were washed with fresh dichloromethane in order to 

remove unbound PEG-spacer. Thereafter, discs were dried under vacuum for 

several hours. For the cell culture studies, all these procedures were performed 

under a laminar flow workbench. 
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2.2.4.2 VEGF165 linkage procedure 

For the linkage of VEGF165, collagen and PEG-collagen coated discs were 

transferred to plastic petri dishes and covered with VEGF165 in phosphate buffered 

saline (PBS) buffer pH 7.4 for 30 minutes. Reference samples not carrying VEGF165 

were treated with either PBS buffer alone or with PBS containing 1 mg/ml BSA to 

block unspecific binding. After the incubation, the discs were intensely washed in 

Milli-Q water and stored in PBS buffer for immediate use. For the cell culture 

studies, all these procedures were performed under a laminar flow workbench. The 

approach for protein attachment is shown in Figure 6-6. 
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Figure 6-6: Idealized scheme for protein attachment to PEG-collagen matrix. 

 

2.2.5 Antibody detection of surface bound VEGF165 

For VEGF165 detection discs were incubated with a rabbit Anti-Human VEGF 

antibody in PBS buffer pH 7.4 at 2-8°C over night. Thereafter, discs were rinsed with 

PBS buffer three times to eliminate unbound primary antibody. In a second step, 

samples were incubated with a secondary goat-anti-rabbit antibody Alexa Fluor 488 

for 2 hours at room temperature under exclusion of light. Samples were again 

rinsed with PBS and subsequently analyzed using the Zeiss LSM 510 confocal laser 

scanning microscope (CLSM) (Zeiss, Oberkochen, Germany). 
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2.2.6 Influence of covalently linked VEGF165 on cell growth 

2.2.6.1 Vascular endothelial cells 

The influence of discs on the cell growth of vascular endothelial cells was evaluated 

using Human Umbilical Vein Endothelial Cells (HUVECs). HUVECs were prepared 

by digestion of umbilical veins with 0.1 g / l collagenase A. Cells were cultured in 

endothelial cell growth medium supplemented with 10% heat-inactivated fetal 

bovine serum in a humidified atmosphere at 5% CO2 and 37°C. Cells were used at 

passage no. 3.  

 

2.2.6.2 Aortic smooth muscle cells 

The influence of discs on the cell growth of SMCs was evaluated using rat aortic 

smooth muscle cells. Cells were cultured in smooth muscle cell growth medium 

DMEM /F12 supplemented with 1% heat-inactivated fetal bovine serum in a 

humidified atmosphere at 5% CO2 and 37°C. 

 

2.2.6.3 Cell growth comparison study 

For the study discs were placed on the bottom of 24-well plates and subsequently 

covered with a layer of starvation medium in case of HUVECs containing 80% of 

M199 and 20% of endothelial cell growth medium, in case of SMCs 90% of 

DMEM /F12 and 10% heat-inactivated fetal bovine serum. 20,000 viable HUVECs 

or SMCs were seeded per well. Thereafter, cells were cultured in a humidified 

atmosphere at 5% CO2 and 37°C. Cells on the discs were quantified at day 3 using 

Cell Titer-Blue®. Therefore, cells were incubated with Cell Titer-Blue® for 6 hours 

and an aliquot of the supernatant was analyzed using a Spectrafluor plus plate 

reader (Tecan, Crailsheim, Germany) with an excitation wavelength of 550 nm and 

emission recording at 595 nm.  
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3 Results and Discussion 

3.1 Covalent VEGF165 linkage to modified collagen matrices 

In order to evaluate the effect of modified collagen matrices on cell growth, it was 

important to evaluate the successful linkage of VEGF165. Therefore, a previously 

identified and optimized antibody staining method (compare Chapter 5) was first 

evaluated towards its suitability to detect surface bound VEGF165 on collagen 

matrices. Furthermore, it was used to evaluate the coating procedure and to rule out 

unspecific adsorption of VEGF. 

 

3.1.1 Evaluation of antibody staining method 

For the evaluation of the antibody staining method, PEG-Collagen coated discs 

were incubated with buffer as control sample and VEGF165 solution with a 

concentration of 20 µg / ml for 30 minutes. The discs were subsequently stained 

and investigated using CLSM.  

 

 (a)     (b)     (c) 

   

Figure 6-7: CLSM images of antibody stained collagen coated discs for PEG-Collagen control 

(0 µg/ml VEGF) (a), PEG-Collagen VEGF (20 µg/ml) secondary antibody only (b), and PEG-

Collagen VEGF (20 µg/ml) (c). 

 

The obtained images shown in Figure 6-7 indicated successful linkage of VEGF165 

to the PEG-Collagen matrix, which can be seen by the fluorescence of the 
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secondary antibody in Figure 6-7c compared to the considerably lower fluorescence 

of the control sample seen in Figure 6-7a. In addition, the interaction of the 

secondary antibody with either VEGF165 or the PEG-Collagen matrix could be 

excluded, as seen by the lack of fluorescence for the sample only incubated with 

this antibody (Figure 6-7b). Therefore, it could be concluded that the previously 

established antibody staining method was also suitable to detect VEGF on collagen 

matrices. It also indicated the successful preservation of biological activity of VEGF, 

covalently attached to the collagen surface, throughout the preparation procedure. 

 

3.1.2 Analysis of the linkage procedure of VEGF to PEG-Collagen 

In order to further evaluate the suitability of the antibody detection method to identify 

bound VEGF165 on the surface of the collagen matrix, a set of control experiments 

was performed. In addition, these experiments were performed to optimize the 

linkage conditions and procedure, as well as, to understand the process of VEGF 

coupling. Furthermore, it was the aim to rule out the unspecific adsorption of 

VEGF165 on the modified collagen matrix. Thus, unmodified and modified collagen 

matrices were incubated with BSA, VEGF165, or buffer. VEGF was detected with 

varying combinations of detection antibodies (compare Table 6-1). 
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Table 6-1: Overview of incubation and detection procedures for the evaluation of unspecific 

adsorption on PEG-PLGA and PLGA coated discs and order of incubation for Collagen-04 and 

Collagen-05, as well as PEG-Collagen-04 and PEG-Collagen-05. 

 incubation solution detection antibodies 

Sample PBS 
VEGF165 

[20 µg/ml] 

BSA 

[1 mg/ml] 
Anti-VEGF 

goat-anti-
rabbit 

Collagen-01  X  X X 

Collagen-02 X   X X 

Collagen-03  X   X 

Collagen-04  1.) X 2.) X X X 

Collagen-05  2.) X 1.) X X X 

Collagen-06   X X X 

Collagen-07   X  X 

PEG-Collagen-01  X  X X 

PEG-Collagen-02 X   X X 

PEG-Collagen-03  X   X 

PEG-Collagen-04  1.) X 2.) X X X 

PEG-Collagen-05  2.) X 1.) X X X 

PEG-Collagen-06   X X X 

PEG-Collagen-07   X  X 

 

The results obtained for the unmodified collagen coated discs can be seen in Figure 

6-8. All samples, independent of their incubation solution, showed very little to no 

fluorescence in the pictures obtained using CLSM. Only the samples incubated with 

VEGF165 and BSA (Figure 6-8 d and e) exhibited slight fluorescence to the same 

extent that is in no correlation to the order of incubation solutions. The increased 

fluorescence in comparison to the other samples might be attributed to the 

increased background fluorescence when using a fluorescently labeled secondary 

antibody for detection and to the increased incubation time, which was double the 

time for the samples Collagen-04 and -05. 
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(a) (b) (c) (d) 

    

(e) (f) (g)  

   

 

Figure 6-8: CLSM images of antibody stained discs Collagen-01 (a), Collagen-02 (b), Collagen-

03 (c), Collagen-04 (d), Collagen-05 (e), Collagen-06 (f), and Collagen-07 (g) 

 

The results obtained from the control experiments, with non modified collagen 

matrices, showed that there was no unspecific interaction or adsorption of VEGF165 

that was detectable using this antibody staining method.  

The aim of the second set of experiments was to further investigate the binding 

efficiency and conditions of incubation for PEG-collagen matrices. Therefore the 

same set of incubations (compare Table 6-1) as for the non-modified collagen 

matrices were performed on PEG-collagen coated discs. The results obtained for 

these experiments can be seen in Figure 6-9. Figure 6-9a and b show the pictures 

of the samples incubated with VEGF165 and buffer respectively. It can be seen that 

there was a strong fluorescence for the VEGF165 incubated samples in contrast to 

the samples incubated with buffer alone, which indicated that the binding of 

VEGF165 antibody is specific for covalently attached VEGF and shows no interaction 

with the PEG-collagen matrix. The control samples incubated with VEGF165 and the 

fluorescently labeled secondary antibody showed no fluorescence (compare Figure 

6-9c), proving that there is no unspecific interaction or attachment of the secondary 

antibody with the attached VEGF165 and the PEG-collagen matrix. For the samples 

incubated with VEGF165 and BSA solution (Figure 6-9d) a slight decrease in 
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fluorescence could be observed in comparison to the samples only incubated with 

VEGF165. This decrease can be attributed to the increased incubation time of 

60 minutes compared to 30 minutes and a therewith associated further rinsing step. 

In addition to the increased incubation time, the blocking of binding sites due to the 

BSA incubation can also account for the decrease in fluorescence. 

(a) (b) (c) (d) 

    

(e) (f) (g)  

   

 

Figure 6-9: CLSM images of antibody stained discs PEG-Collagen-01 (a), PEG-Collagen-02 (b), 

PEG-Collagen-03 (c), PEG-Collagen-04 (d), PEG-Collagen-05 (e), PEG-Collagen-06 (f), and 

PEG-Collagen-07 (g) 

 

Interestingly, the sample first incubated with BSA solution and subsequent 

incubation with VEGF165 showed fluorescence (Figure 6-9e). It was expected that 

BSA would block all the active functional groups and hamper VEGF165 attachment. 

In addition, it is reported in literature that the half life of activated succinimidyl ester 

is around 30 minutes [23], and therefore, a subsequent attachment of VEGF165 was 

not expected. However, the fluorescence indicated successful linkage of the protein, 

which leads to the conclusion that the functional group was still active after BSA 

incubation. An interaction of BSA with the primary VEGF165 antibody or the 

fluorescently labeled secondary antibody could be excluded, since both control 

samples with BSA and incubation with either both antibodies or the secondary 

antibody only showed no fluorescence (Figure 6-9f and g).  



Cell growth stimulation by covalent linkage of VEGF165 to a modified collagen-matrix 

 

157 

These experiments proved that an unspecific adsorption of VEGF165 or the 

secondary fluorescently labeled antibody to the modified collagen matrix can be 

ruled out, as seen by the various control experiments using unmodified and 

modified collagen. Furthermore and more importantly, the successful linkage of 

VEGF165 to the modified collagen matrix was shown. 

 

3.2 Influence of VEGF165 covalently linked to PEG-Collagen on cell growth 

3.2.1 Vascular endothelial cells 

In order to evaluate the activity of the covalently linked VEGF165, and therewith the 

accessibility of the VEGF surface receptor (VEGFR-1) [10] on the endothelial cells 

towards the covalently linked protein, cell growth studies were performed. 

Additionally, several control experiments were performed to investigate the effect of 

loosely adsorbed protein on the surface of unmodified collagen coated discs. 

Therefore, collagen and PEG-collagen coated discs, respectively, were treated with 

different incubation solutions in accordance to Table 6-2 and immediately thereafter 

rinsed and incubated with endothelial cells. After a 3 day incubation period, cells 

were quantified using Cell Titer-Blue®
. The results were calculated as % increase in 

relation to the amount of cells that had grown on the collagen and PEG-collagen 

coated discs incubated with PBS buffer. 

 



Chapter 6 

 

158 

Table 6-2: Overview of incubation procedures for the evaluation of cell growth on PEG-

collagen and collagen coated discs and order of incubation. 

 incubation solution 

Sample PBS buffer 
VEGF165 

[20 µg/ml] 

BSA 

[1 mg/ml] 

Collagen (control) X   

Collagen (VEGF)  X  

Collagen (BSA)   X 

Collagen (BSA + VEGF)  2.) X 1.) X 

Collagen (VEGF + BSA))  1.) X 2.) X 

PEG-Collagen (control) X   

PEG-Collagen (VEGF)  X  

PEG-Collagen (BSA)   X 

PEG-Collagen (BSA + VEGF)  2.) X 1.) X 

PEG-Collagen (VEGF + BSA))  1.) X 2.) X 

 

The results presented in Figure 6-10 showed no significant increase in cell growth 

for the collagen coated discs incubated with VEGF, BSA, or combinations thereof 

compared to the control group incubated with buffer irrespective of the incubation 

solution used. Only a decrease in cell growth of approximately 20 % for the cells 

grown on discs incubated with BSA solution was observed. However, the discs 

coated with the modified PEG-collagen material exhibited different growth behavior 

for the endothelial cells, depending on the incubation solution. Discs incubated with 

VEGF165 alone showed an increase in cell growth compared to the buffer incubated 

samples of approximately 40%. An increase in cell growth was also observed for the 

samples incubated with VEGF165 and BSA. Those samples first incubated with 

VEGF165 and subsequent incubation with BSA showed an increase of approximately 

35% in contrast to the samples incubated with BSA first and subsequent incubation 

with VEGF165, which showed an increase of around 20%. This difference in increase 

can be explained by the lower amount of VEGF attached to the modified collagen 

surface, as observed before during antibody detection (compare 3.1.2). The 

increase in cell growth for these samples can not be attributed to the influence of 

BSA, since control samples incubated with BSA solely showed an extent of 

endothelial cell growth comparable to the control samples incubated with buffer. 
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Figure 6-10: Endothelial cell growth on Collagen (
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Therefore, it can be concluded, that VEGF165 was successfully attached to the 

modified PEG-collagen matrix without losing its biological activity. No unspecific 

interaction of VEGF with the unmodified collagen matrix could be observed in the 

cell growth study. In addition, it can be deducted that the attached VEGF on the 

PEG-collagen matrix was capable to stimulate the proliferation of endothelial cells. 

 

3.2.2 Cell growth comparison study 

In a second cell growth study, the influence of the covalently attached VEGF165 on 

endothelial cells in addition to SMCs was investigated. Therefore collagen and 

PEG-collagen coated discs were incubated with buffer, BSA, and VEGF165. The 

discs were subsequently rinsed using Milli-Q water and incubated with endothelial 

cells or smooth muscle cells for 3 days (compare 2.2.6.3). After the 3 day incubation 

period, cells were quantified using Cell Titer-Blue®
. The results were calculated as 

% cell growth in relation to the amount of cells present on the collagen and PEG-

collagen coated discs incubated with PBS buffer. In addition, one set of VEGF165 

exposed discs was incubated over night in PBS buffer and thereafter rinsed, placed 
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in a fresh 24-well plate, and treated accordingly. The additional experiment was 

performed to elucidate the stability of covalently attached VEGF. It was of interest 

whether the biological activity and the effect on endothelial cells could be sustained 

for an extended period of time during incubation in solution.  
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Figure 6-11: Endothelial cell growth on Collagen (
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The findings for the endothelial cells can be seen in Figure 6-11. Again, it was 

observed that BSA incubated discs demonstrated a decrease in cell growth 

compared to the buffer incubated samples after 3 days incubation, which was in 

accordance to the findings in previous endothelial cell growth studies (compare 

3.2.1). These results were in contrast to previously determined endothelial cell 

growth on modified PLGA matrices carrying VEGF covalently attached (see Chapter 

5). It has been reported in literature that positively charged surfaces are beneficial 

for endothelial cell adhesion [24-25]. At physiological conditions, BSA exhibits a 

negative surface charge [26] in contrast to VEGF that displays a positive charge 

under those conditions [27], which could explain the decrease in endothelial cell 

growth on the PEG-Collagen material incubated with BSA. In addition, a denser 

PEG coverage on the collagen modified material resulting from a higher density of 

modifiable amine groups in contrast to carboxylic groups on PLGA might have 
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caused the differences in cell growth observed for these two materials, since PEG is 

known to have protein repellent and cell adhesion resistant properties [28-29]. 

In contrary to prior findings, VEGF incubated collagen discs exhibited an increase in 

cell growth of approximately 20%, which was not observed before. Previous 

incubation of the samples over night in PBS buffer did not have an effect on the 

extent of cell growth increase in the case of collagen coated discs. However, PEG-

collagen coated discs that were treated with VEGF165 and discs that were 

subsequently incubated with buffer over night showed an increase in endothelial cell 

growth of approximately 45% and 80%, respectively. Therefore, the resulting 

difference in growth increase between VEGF incubated collagen and PEG-collagen 

discs was in a range of 25% and above, which was in accordance with prior findings 

(compare 3.2.1) where a growth increase for PEG-collagen discs with VEGF165 in a 

range of 20 – 35% was achieved.  

The considerable increase in cell growth of the VEGF165 coupled PEG-collagen 

discs that were incubated prior to cell seeding showed the sustainable effect of the 

VEGF attachment to the surface. VEGF165 was not lost during incubation or 

immediately eliminated from the surface, but showed an extended effect. It is a first 

indicator for a presentation possibility of VEGF165 at the matrix surface enabling a 

prolonged interaction and stimulation of endothelial cells. In contrast, contradictory 

findings about the stability of free VEGF165 in buffer have been reported in literature 

[30-31]. In this case, in accordance to findings reported in Chapter 4, the biological 

activity of VEGF165 and its endothelial cell specific growth stimulation could be 

maintained in solution for more than 24 hours incubation. Similar results have been 

reported by Sharon et al. for the immobilization of VEGF using dihydrazide spacers 

[7].  
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Figure 6-12: Smooth muscle cell growth on Collagen (
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In contrast to the findings observed for endothelial cells presented to VEGF165 

coupled discs, SMCs exhibited a different growth rate effect when grown on 

collagen and PEG-collagen coated discs (Figure 6-12). The growth of SMCs was 

not stimulated when presented with collagen coated discs irrespective of their 

incubation medium. A slight decrease was observed for cells grown on BSA 

incubated discs, as also seen for endothelial cells. The covalent attachment of 

VEGF165 to the PEG-collagen matrix did not affect this observed pattern. All discs 

showed a cell growth comparable to the buffer incubated samples. 

Therefore, it could be concluded that VEGF165 had no stimulatory effect on SMCs, 

however increased the growth of endothelial cells. This is in accordance with 

previous findings documented in literature [8, 12, 13, 32, 33]. Thus, the cell growth 

comparison study successfully showed a beneficial effect of VEGF165 coupled to 

PEG collagen matrices for the stimulation of endothelial cell growth. In addition, 

these experiments also gave further insight into the ability of internalization of the 

receptor complex in order for the cytokine to stimulate proliferation of the cells, as 

described before in literature [34-36]. Covalent attachment of VEGF165 did not 

interfere with the mechanism of action as seen by the stimulation of endothelial cell 

growth increase, which was in accordance with findings reported in literature [7]. 
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Furthermore, the matrices showed no stimulatory effect on SMC, which provides an 

additional benefit of the PEG-collagen matrices for the coating of vascular grafts to 

specifically enhance endothelial cell growth without increasing smooth muscle cell 

growth and therefore raising the risk of neointimal hyperplasia [5]. 

 

4 Conclusions 

A functionalized collagen coating was developed for the covalent linkage and 

immobilization of VEGF to surfaces. Therefore, collagen, a naturally occurring 

polymer was used to coat PTFE and glass disc as model substrates for vascular 

prosthesis surfaces. The collagen matrix was successfully functionalized using a 

homobifunctional PEG-spacer carrying succinimidyl ester to covalently bind to 

amino moieties within protein sequences. In our case, VEGF165, an endothelial cell 

specific growth stimulator, was used to be covalently attached to the modified 

polymer surface. The successful linkage of this protein was shown using an 

antibody staining method. The specificity and integrity of the method towards the 

target protein was shown using several control experiments. 

In addition, the effect of covalently immobilized VEGF on endothelial cells was 

shown in cell growth experiments using endothelial cells and smooth muscle cells. 

The effect of the attached VEGF165 to PEG-collagen matrices was superior to 

effects seen for loosely adsorbed protein on collagen matrices. In addition, the 

sustainable effect on endothelial cells of the attached protein was shown, proving 

the effective linkage. This is an advantage in regards to loosely adsorbed or in 

matrices incorporated protein, which can be washed away after release or during 

incubation. It is an important aspect especially with regards to vascular grafts that 

are used for vessel replacement and are placed in regions of varying flow 

conditions. Furthermore, it was shown, that the covalently attached VEGF did not 

have an effect on smooth muscle cells. Therefore, this approach is an interesting 

alternative for the modification of vascular grafts that can be used to improve the 

functionality of existing grafts. The next step to ensure its applicability to modify 

vascular grafts is the investigation of the performance of these coatings under flow 

conditions. 
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Chapter 7 

 

Summary of the Thesis 

 

The goal of this thesis was the improvement of vascular grafts to enhance 

endothelialization by applying surface coatings on existing commercially available 

grafts. Polytetrafluoroethylene (PTFE), chosen for its similar composition compared 

to expanded PTFE, which is used for vascular grafts, and glass, as models, were 

utilized as substrates for the coating. The general introduction gave an overview of 

frequently encountered problems when using vascular grafts in vessel replacement, 

especially for those employed in regions of low blood flow and of small diameter. 

In order to establish functional coatings on the surface of PTFE, atmospheric 

plasma treatment with a plasmabrush® using argon gas was performed. Changes 

induced by the plasma treatment process were evaluated using several methods to 

detect and characterize the alterations in surface morphology and composition, 

such as Fourier transform infrared (FT-IR) spectroscopy, scanning electron 

microscopy, X-ray photoelectron spectroscopy and surface energy determination. 

Effects were successfully characterized by surface energy determination and were 

stable for several weeks. After optimization of the process conditions, treatment 

time and ignition voltage it was possible to increase the surface energy of PTFE 

samples by 10-15 mN/m. The characterization of modifications, by means of other 

methods than surface energy determination, did not reveal radical structural or 

chemical alterations. However, the methods might have not been sensitive enough 

to detect the effects induced by the atmospheric plasma treatment. The established 

plasma activation process significantly increased the coating adhesion to PLGA and 

collagen films applied on the modified surfaces, in contrast to the non adhesion of 

these films on unmodified PTFE surfaces. In addition, it was shown that the plasma 

modification greatly improved the adherence of endothelial cells on the plasma 

treated surfaces. 

For the controlled presentation of VEGF165, an endothelial cell specific growth 

enhancer, two approaches, matrix embedding combined with sustained release and 
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covalent attachment, were pursued. For the matrix release approach, PLGA was the 

first polymer used due to the experience with this polymer in biomaterial 

applications. The polymers investigated in the process of this study were Resomer® 

RG 502H, RG 503, RG 503H, and RG 504H. The influence of molecular weight on 

the release of FITC-dextran as model compound was shown. Resomer® RG 502H, 

the lowest molecular weight species investigated, was shown to be the most 

suitable in the range of polymers examined. Its release rate suited the intended 

purpose and the desired release time period of 1 to 2 weeks. In addition, it was 

shown that the influence of esterification of free carboxylic groups of the used 

polymers did not have a beneficial effect on the release rates of coatings. The 

influence of the suspended model compound particles on the coating process and 

the subsequent release was investigated and was shown to have no influence on 

the outcome of release investigations, especially in respect of burst release from 

such coatings in contrary to previously reported findings. In addition, the cell 

compatibility of the applied PLGA coatings was shown using human umbilical cord 

endothelial cells. Fluorescent activated cell sorting analysis, propidium iodide 

staining in combination with fluorescence measurements, and using a counting 

chamber were shown to be unsuitable to reveal small differences in cell growth. 

However, minor changes in cell growth increase were successfully detected using 

Cell Titer-Blue®, a commercially available cell viability assay. 

The second polymer investigated for the matrix release approach was collagen, 

chosen for its ease of production in aqueous media and good cell compatibility. 

Crosslinking of collagen was performed and it was shown to be an effective tool to 

modify release properties of collagen without risking the good biocompatibility of this 

material. It was shown that in accordance with increasing crosslinking degree, the 

initial release of model compound was reduced and higher amounts, of up 70 % for 

the highest crosslinked material, were entrapped in the matrix. The predetermined 

release properties for the model compound, FITC-dextran, could be successfully 

confirmed for VEGF165. VEGF incorporated into collagen films was investigated 

towards its effect on endothelial and smooth muscle cells and no stimulatory effect 

on smooth muscle cells could be shown. More importantly, an increase in 

endothelial cell growth by VEGF released from collagen films was demonstrated. 
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Therefore, biological activity of a sufficient amount of VEGF was maintained 

throughout the manufacturing and drying process of collagen films and the 

subsequent release to stimulate endothelial cell growth. 

For the second approach, the influence of VEGF165 covalently attached to modified 

PLGA and collagen matrices on endothelial cells and smooth muscle cells was 

investigated. The modification was accomplished using a homobifunctional 

polyethylene glycol (PEG) spacer carrying succinimidyl ester groups to bind to 

amine groups within the protein sequence, the collagen, and the modified PLGA. 

For PLGA, it was shown that the functionalized PEG-PLGA was able to covalently 

bind VEGF165 using several staining techniques, such as silver staining and Deep 

PurpleTM Total Protein Stain. Other techniques, such as FT-IR spectroscopy, were 

not sensitive enough to detect VEGF. An antibody staining method was developed 

to determine the presence of VEGF165 on the modified PLGA and collagen surfaces, 

and thereby confirming successful linkage of the cytokine to the effectively modified 

polymers. The interaction of the bound VEGF165 with the antibody was a first 

indicator of the sustained functionality of the cytokine. In cell assays, covalently 

attached VEGF could be shown to have a positive effect on the cell growth of 

endothelial cells. Furthermore, PEG-PLGA exhibited a limiting effect on the 

proliferation of smooth muscle cells, due to its cell-adhesion-resistant properties. 

PEG-collagen matrices did not exhibit any effect on smooth muscle cell growth. The 

successful attachment of VEGF165 could be shown while preserving the biological 

activity and endothelial cell specific growth stimulation for an extended period of 

time in solution. Moreover, it was proven, that the irreversibly linked VEGF165 was 

still able to interact with its receptor and to stimulate endothelial cells. 

Within the scope of this thesis, several approaches for the improvement of vascular 

grafts using an endothelial cell specific growth stimulant were successfully 

developed and could be shown to have a positive effect on the stimulation of 

endothelial cells without stimulating the growth of smooth muscle cells. Especially 

the covalent linkage of active VEGF165 to a modified collagen or PLGA matrix 

appeared to be a promising tool to improve the performance of vascular grafts. 
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