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Zusammenfassung

Der Hauptgegenstand dieser Arbeit ist die Untersuchung von Vielteilcheneffekten in stark kor-
relierten eindimensionalen oder quasi-eindimensionalen Festkörpersystemen. Das charakteristi-
sche an solchen Systemen sind ihre großen thermischen und quantenmechanischen Fluktuatio-
nen. Da aufgrund dieser Eigenschaften ein Zugang mittels Molekularfeldmethoden oder auch
störungstheoretischer Methoden ausgeschlossen ist, können solche Systeme in der Regel nur
numerisch untersucht werden. Die Dichtematrix-Renormierungsgruppe (DMRG) ist eine ausge-
reifte und gut verstandene Methode, die geeignet ist, um aussergewöhnlich große eindimensio-
nale Systeme mit hoher Präzision zu untersuchen. Diese ist 1992 von Steven White zunächst nur
für statische Probleme entwickelt worden und wurde im Laufe der Zeit zu der zeitabhängigen
DMRG erweitert, mit welcher sich auch Nichtgleichgewichtsszenarien erfolgreich untersuchen
lassen.

In dieser Arbeit untersuche ich drei konzeptionell unterschiedliche Probleme, wobei ich
größtenteils die Krylov-Unterraum Variante der zeitabhängigen DMRG Methode benutze. Mei-
ne Ergebnisse sind für kürzlich gemachte Experimente mit ultrakalten Atomgasen unmittelbar
von Bedeutung. Diese Experimente sind unter anderem auch an der LMU in der Gruppe von
Immanuel Bloch durchgeführt worden.

Das erste Projekt zielt bereits auf die ultimative Anwendung ultrakalter Atome in optischen
Gittern ab, nämlich der Möglichkeit diese als Quantensimulator für kompliziertere Festkörper-
systeme zu benutzen. Die bei diesem Projekt zugrunde liegende Idee ist die Simulation eines ma-
gnetischen Modells mittels bosonischer Atome in zwei verschiedenen Hyperfeinzuständen, wel-
che in einem optischen Übergitter gefangen sind. Das System wird durch das Bose-Hubbard Mo-
dell für zwei Spezies beschrieben und kann in einem bestimmten Parameterbereich näherungs-
weise eine Spin-1/2 Heisenbergkette simulieren, wobei die Wechselwirkung zwischen den Spins
über einen Hüpfprozess zweiter Ordnung realisiert wird. Das Umschalten zwischen den schnel-
len Hüpfprozessen erster Ordnung und denen zweiter Ordnung lässt sich über die Abstimmung
der Parameter des Übergitters steuern. Diese Untersuchung orientiert sich an zwei erst kürzlich
durchgeführten Experimenten, in denen eine kohärente Zweiteilchendynamik mittels ultrakal-
ter Bosonen in isolierten Doppelmulden realisiert worden ist. In meinen Rechnungen befasse ich
mich mit der kohärenten Vielteilchendynamik nach dem Koppeln dieser isolierten Doppelmulden
zu einer Kette. Dabei untersuche ich analytisch und numerisch die Zeitentwicklung von experi-
mentell zugänglichen Größen. Das relativ einfache Umschalten zwischen dem Bose-Hubbard
und dem Heisenberg Modell kann dazu genutzt werden, um experimentell die Unterschiede der
Relaxation in den stationären Zustand zwischen nicht-integrablen und Bethe-Ansatz-integrablen
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Modellen zu untersuchen. Es stellt sich heraus, dass die Relaxation beim Heisenberg Modell
über eine Phasenmittelung geschieht, welche sich vollständig vom Thermalisierungsprozess über
Stöße, welcher typisch für nicht-integrable Prozesse ist, unterscheidet.

Im zweiten Teil meiner Arbeit untersuche ich die Erweiterung der ursprünglichen Landau-
Zener Formel auf ein bosonisches Vielteilchensystem. Diese Formel gibt die Tunnelwahrschein-
lichkeit zwischen den zwei Zuständen eines Zwei-Niveau Systems an, wobei die Energiediffe-
renz zwischen diesen zwei Niveaus linear in der Zeit verändert wird. In einem kürzlich reali-
sierten Experiment wurde diese Fragestellung auf ein Vielteilchensystem übertragen, welches
aus mehreren paarweise miteinander gekoppelten eindimensionalen Bose-Einstein Kondensaten
besteht. Man hat festgestellt, dass die Kopplungstärke zwischen den Bose-Einstein Kondensaten
und die Kopplung innerhalb der einzelnen Bose-Einstein Kondensate das ursprüngliche Landau-
Zener Szenario stark modifizieren. Nach einer kurzen Einführung in das Zwei-Niveau und das
Drei-Niveau Landau-Zener Problem zeige ich die Resultate der Quantendynamik des mikrosko-
pischen Modells und den Vergleich mit den experimentellen Ergebnissen. Dabei berechne ich
sowohl die beiden möglichen Landau-Zener Szenarien als auch die Zeitentwicklung zu einer
fixen Energiedifferenz. Letzteres kann, vorausgesetzt die Anfangsteilchendichte ist ausreichend
hoch, dazu benutzt werden, um einen quasi-thermalisierten Zustand mit einer beliebigen Tempe-
ratur zu erzeugen.

Das dritte Projekt ist mathematischer Natur und verbindet die beiden Forschungsbereiche
des Quantencomputings und der Quanteninformation. Die Aufgabe besteht darin, systematisch
die Auswirkungen der Dekohärenz auf maximal verschränkte multipartite Zustände zu untersu-
chen, welche typischerweise beim Durchlaufen eines Quantenalgorithmus generiert werden. Da-
bei gilt, je höher die Anzahl der verschränkten Qubits desto fragiler ist die kostbare Gesamtver-
schränkung unter dem Einfluß von Dekohärenz. Ich untersuche zunächst nur zwei verschränkte
Qubits, wobei eines an eine beliebige Umgebung gekoppelt ist. Für diesen besonderen Fall kann
ich eine einfache Formel für den Verschränkungsabbau herleiten. Als nächstes untersuche ich die
Verschränkungsabnahme von zwei, drei und vier verschränkten Qubits, welche mit einem glo-
balen Spin-1/2 Bad oder mit voneinander unabhängigen Spin-1/2 Bädern wechselwirken. Ob-
wohl es für drei und mehr Qubits kein allgemeines Verschränkungsmaß gibt, stellt sich heraus,
dass die Verschränkungsabnahme direkt mit dem Verschränkungsaufbau zwischen dem zentralen
System und der Umgebung zusammenhängt. Das impliziert die Entstehung eines noch größeren
Netzwerkes aus verschränkten Teilchen. Mittels der von-Neumann Entropie und der Wootters-
Concurrence, kann ich eine einfache Obergrenze für die verschränkungsbrechende Wirkung des
Bades auf die anfänglich maximal verschränkten Vielteilchenzustände ableiten.



Summary

The main topic of this thesis is the study of many-body effects in strongly correlated one- or quasi
one-dimensional condensed matter systems. These systems are characterized by strong quantum
and thermal fluctuations, which make mean-field methods fail and demand for a fully numerical
approach. Fortunately, a numerical method exist, which allows to treat unusually large one -
dimensional system at very high precision. This method is the density-matrix renormalization
group method (DMRG), introduced by Steve White in 1992. Originally limited to the study of
static problems, time-dependent DMRG has been developed allowing one to investigate non-
equilibrium phenomena in quantum mechanics.

In this thesis I present the solution of three conceptionally different problems, which have
been addressed using mostly the Krylov-subspace version of the time-dependent DMRG. My
findings are directly relevant to recent experiments with ultracold atoms, also carried out at LMU
in the group of Prof. Bloch.

The first project aims the ultimate goal of atoms in optical lattices, namely, the possibility to
act as a quantum simulator of more complicated condensed matter system. The underline idea
is to simulate a magnetic model using ultracold bosonic atoms of two different hyperfine states
in an optical superlattice. The system, which is captured by a two-species Bose-Hubbard model,
realizes in a certain parameter range the physics of a spin-1/2 Heisenberg chain, where the spin
exchange constant is given by second order processes. Tuning of the superlattice parameters
allows one to controlling the effect of fast first order processes versus the slower second order
ones. The analysis is motivated by recent experiments, where coherent two-particle dynamics
with ultracold bosonic atoms in isolated double wells were detected. My project investigates the
coherent many-particle dynamics, which takes place after coupling the double well. I provide
the theoretical background for the next step, the observation of coherent many-particle dynam-
ics after coupling the double wells. The tunability between the Bose-Hubbard model and the
Heisenberg model in this setup could be used to study experimentally the differences in equi-
libration processes for non-integrable and Bethe ansatz integrable models. It turns out that the
relaxation in the Heisenberg model is connected to a phase averaging effect, which is in contrast
to the typical scattering driven thermalization in nonintegrable models

In the second project I study a many-body generalization of the original Landau-Zener for-
mula. This formula gives the transition probability between the two states of a quantum me-
chanical two-level system, where the offset between the two levels is varying linearly in time.
In a recent experiment this framework has been extended to a many-body system consisting of
pairwise tunnel-coupled one-dimensional Bose liquids. It was found that the tunnel coupling
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between the tubes and the intertube interactions strongly modify the original Landau-Zener pic-
ture. After a introduction to the two-level and the three-level Landau-Zener problem I present
my own results for the quantum dynamics of the microscopic model and the comparison to the
experimental results. I have calculated both Landau-Zener sweeps as well as the time-evolution
after sudden quenches of the energy offset. A major finding is that for sufficiently large initial
density quenches can be efficiently used to create quasi-thermal states of arbitrary temperatures.

The third project is more mathematical and connects the fields of quantum computation and
of quantum information. Here, the main purpose is to analyse systematically the effects of de-
coherence on maximally entangled multi-partite states, which arise typically during quantum
computation processes. The bigger the number of entangled qubits the more fragile is its entan-
glement under the influence decoherence. As starting point I consider first two entangled qubits,
whereby one qubit interacts with an arbitrary environment. For this particular case I have de-
rived a factorization law for the disentanglement. Next, I calculate the decrease of entanglement
of two , three and four entangled qubits, general W - and general GHZ-state, coupled to a global
spin-1/2 bath or several independent spin-1/2 baths , one for each qubit. Although there is no
appropriate entanglement measure for three and more qubits, it turns out that this decrease is
directly related to the increase of entanglement between the central system and the bath. This
implies the formation of a much bigger multipartite entangled network. Thus, using the von Neu-
mann entropy and the Wootters concurrence, I derive a simple upper bound for the bath-induced
entanglement breaking power of the initially maximally entangled multi-partite states.
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Orso: Landau-Zener dynamics in coupled Bose-Hubbard chains, in preparation (2010)



xiv Publication list



Chapter 1

Introduction and overview

With the first realization of Bose-Einstein condensation in dilute atomic gases in 1995 [10, 75,
42] a new and very dynamic field of physics emerged. Spectacular experiments with atomic
Bose-Einstein condensates have demonstrated the remarkable wave-like nature of this new form
of matter. Similar to the emitted light of a laser, which is a perfect realization of a classical
electromagnetic wave, a Bose-Einstein condensate can be considered as the perfect realization
of a classical matter wave.

The first generation of experiments with Bose-Einstein condensates focused on the coher-
ence properties of these weakly-interacting superfluids. Some of the most important examples
are the observation of interference between two overlapping condensates [14], of long-range
phase coherence [39], and of quantized vortices and vortex lattices [1]. All of these phenom-
ena can be explained by introducing a so-called macroscopic wave function or order parameter,
which reduces the full many-body problem to a nonlinear single particle problem governed by
the Gross-Pitaevskii equation for bosons or the Ginzburg-Landau theory for fermions.

Only a few years after the first realization of the BEC two other developments have cre-
ated much attention among physicists with a background in condensed matter physics, nuclear
physics and quantum information science. One is the ability to tune the interaction strength
between atoms by means of so-called Feshbach resonances [64, 143], allowing one to enter
the strongly interaction regime [302]. The other is the possibility to load ultracold quantum
gases into optical lattices [118]. This technique allows to create the perfect periodic structure
of arbitrary dimension and tunable tunneling rates. The combination of these two revolutionary
techniques allows experimentalists to use cold atoms as quantum simulators, at first advocated
by Richard P. Feynmann [99]. The quantum simulator is a highly controllable quantum system
which is used to simulate the dynamical behaviour of another more complex quantum system
[99]. An optical lattice offers remarkably clean access to a particular Hamiltonian and thereby
serves as a model system for testing fundamental theoretical concepts and examples of quantum
many-body effects.

Among the various systems, one dimensional and quasi-one dimensional systems are a fan-
tastic playground for quantum phase transitions, with rather unique properties [110]. Contrary
to the two and three dimensional cases, interactions play a major role since in one dimension
particles cannot move without affecting their neighbours. Hence, any individual motion of the
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particles must be transformed into a collective one, leading to a very special universality class
for interacting quantum systems, known as Luttinger liquids [181]. Moreover, in one dimension
quantum and thermal fluctuations are pushed to a maximum. This provides a severe limitation
to mean-field approaches and fully numerical methods are generally needed to understand these
physical systems.

Fortunately, in recent years a new numerical exact method, which goes under the name of
density-matrix renormalization group (DMRG), allows one to treat unusually large one-dimensional
systems at very high precision[242]. Only one decade after the initial DMRG formulation,
given in 1992 by Steve White[284], and originally limited to the study of static problems, time-
dependent renormalization group techniques have been developed, provide a interesting link
between quantum information theory and computational condensed matter physics. This allows
one to investigate quantum-many-body systems out of equilibrium, making DMRG a necessary
tool to describe current experiments with ultra cold atoms in optical lattices [57].

Optical latices provide a flexible tool for probing fundamental condensed physics [37, 38], as
well as finding applications in quantum optics [144, 175] and quantum information processing
[43, 45, 38]. The clear realizations of many Hamiltonians and the high-tunability of the inter-
nal parameters allow the creation of many different scenarios, which go beyond those currently
achievable in typical condensed-matter physics systems [175]. One can create exotic many-body
states [224], which are initially entangled [22] or states with a desired local density [260] as
well as systems consisting of different types of bosons or fermions or mixtures between them
[204]. By changing the lattice parameters or the whole lattice structure during an experiment
it is possible to study exotic phase transitions [118, 128], transport phenomena [281] or non-
equilibrium relaxation processes [157, 138] which have been so far unknown, or far from being
fully understood.

A fundamental problem in quantum mechanics is the study of relaxation phenomena which
occur in system coupled to an environment (open system). Closed systems, which are described
by a pure wave function [44], can never relax on a global scale, since their total energy or sim-
ilar conserved quantities remain constant throughout the whole time-evolution [101]. However,
different subsystems of the total system can exchange energy or particles among each other and
can therefore relax [24, 66]. These subsystems are simply open systems with respect to the rest
of the total system, which acts as an environment. Beside the pure observation of relaxation, it
remains an open question, how relaxation occurs in detail and what is the final relaxed state.

The interaction between different parts of system happens due to some flow of particle den-
sities, via hopping, or spin, via spin flips, which depends in highly non-trivial way on the Hamil-
tonian. All these different processes have in common that they lead to an increase of a quantity
called entanglement [139]. As a concrete example one could think about an experiment where
the initial state is a so-called domain wall state, i.e. a chain of spins with one half of the spin
being spin-ups and the other half being spin-downs. At the beginning of the experiment every-
thing is clear to the observer and a measurement at this point would not lead to a gain of further
information. The situation changes rapidly as one turns on interactions, here in form of nearest
neighbour spin-flips. This leads to a new description of the total wave function in form of a
superposition between different possible states. The redistribution of local quantities between
different possible states in a superposition gives rise to entanglement [17]. The longer the sub-
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systems stay in contact with each other the more entanglement will be created. Meanwhile, the
observer becomes more and more ignorant until he makes a measurement on the system. In con-
trast to a situation before turning on the spin-flips, a measurement now increases his amount of
information about the system.

It is important to say that entanglement is not only a by-product of many-body quantum
theory, as it is currently used as the key resource for many applications in quantum engineering
[112, 139], like e.g. quantum communication [113] or quantum computing [82]. In a typical
scenario one prepares a system consisting of few entangled particles, e.g. spin states, which
are used later as the carrier of of some quantum information protocol [41, 250]. Since it is
in general impossible to isolate this small system from some environment one will encounter
all disadvantages of an open system here. As the entanglement between the system and the
environment growths the valuable initial few-body entanglement in the system will decrease
[163]. Thus, one observes also here a kind of redistribution of the quantity entanglement which
comes along with the redistribution of the spins which have been entangled at the beginning.

1.1 Goals of this thesis

The aim of this thesis is the investigation of different many-body phenomena and relaxation
physics of quantum many-particle lattice systems which are made either of interacting bosons
moving in a lattice or, similarly, interacting spins that are localized on the sites of a quasi one-
dimensional lattice. The here presented work is, mostly, strongly related to experiments with
ultra cold atoms in optical lattices. With the help of the time-dependent DMRG method and,
wherever it was possible or useful, other analytical calculations I have tried to:

(i) explain the experimentally observed quantum phenomena in one-dimensional atomic sys-
tems. It turns out that very simple questions in quantum mechanics, which has been stated and
already solved several decades ago, become fascinating again when put in the context of strongly
interacting many-body quantum system. Due to the complexity of the new problems there is of-
ten not even a simple picture which could explain the observed behaviour to entire satisfaction.
This is in particular true for non-static problems. Despite the possibility to elaborate an an-
swer analytically, e.g. using a mean-field approach, a precise analysis is only possible using the
time-dependent DMRG method.

(ii) elaborate theoretical proposal for new and feasible experiments. Numerical analysis helps
indeed to find the best parameter regime at which the desired many-body quantum effects are
more visible but under the experimental constraints. Here the main purpose is to provide a
complete physical picture of the relaxation process of some highly perturbed quantum state to a
steady state in the long time limit.

(iii) clarify the question of entanglement evolution, breaking and decoherence effects in real
environments. The main motivation was to develop a full theoretical description of the entangle-
ment evolution of two and more initially entangled spin-1

2 particles in a spin bath.
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1.2 Content of the thesis and outlook
The thesis is organized as follows. The first part consisting of two chapters, in which I introduce
the DMRG method and in which I give an overview about the field of ultracold atoms in optical
lattices, is followed by a second part in which I analyse three concrete problems.

Chapter 2 I give a summary of the density-matrix renormalization group methods in terms of
the matrix product state (MPS) description. After introducing the MPS I explain all the necessary
tools which are relevant for a successful implementation of a ground state and time-dependent
DMRG method. In order make this preamble more readable, in particular for newcomers in the
field of DMRG, I visualise most of the steps using also a simple pictorial language. In particular I
present the two mostly used time-evolution methods, namely the Suzuki-Trotter and the Krylov-
subspace method. I also provide a detailed formulation of a recently proposed time-evolution
method, the so-called folding algorithm.

In Chapter 3 I give an overview on the topic of ultracold gases in optical lattices. In the
first part I derive the so-called Gross-Pitaevskii equation for a weakly interacting Bose-Einstein
condensate, which allows one to investigate coherent phenomena in ultra cold bosonic gases
or macroscopic coherent phenomena. Moreover, I introduce the concepts of ultracold collisions
and Feshbach resonances and provide the most important experimental quantities in the so-called
Thomas-Fermi limit. In the second part I present the concept of optical lattices and derive the
Bose-Hubbard Hamiltonian, which is the simplest model of strong correlated systems. The third
and last part describes briefly the most common measurement techniques in optical lattices. I
close each of the three parts by an up-to-date overview about the recent development.

In the second part of my thesis I present my results that follow from three different projects.
The first two projects have been elaborated in collaboration between the theoretical group of
Ulrich Schollwöck and the ultracold atoms group of Immanuel Bloch.

In Chapter 4 I study how well magnetic models can be implemented with ultracold bosonic
atoms of two different hyperfine states in an optical superlattice. The system is captured by a two-
species Bose-Hubbard model, but realizes in a certain parameter regime actually the physics of a
spin-1

2 Heisenberg magnet, describing the second order hopping processes. Tuning of the super-
lattice allows for controlling the effect of fast first order processes versus the slower second order
ones. Using the density-matrix renormalization-group method, I provide the evolution of typical
experimentally available observables. The validity of the description via the Heisenberg model,
depending on the parameters of the Hubbard model, is studied numerically and analytically. The
analysis is also motivated by recent experiments [103, 271] where coherent two-particle dynam-
ics with ultracold bosonic atoms in isolated double wells were realized. I provide theoretical
background for the next step, the observation of coherent many-particle dynamics after coupling
the double wells. Contrary to the case of isolated double wells, relaxation of local observables
can be observed. The tunability between the Bose-Hubbard model and the Heisenberg model
in this setup could be used to study experimentally the differences in equilibration processes for
nonintegrable and Bethe ansatz integrable models. The relaxation in the Heisenberg model is
connected to a phase averaging effect, which is in contrast to the typical scattering driven ther-
malization in nonintegrable models. Finally, I discuss the preparation of magnetic groundstates
by adiabatic tuning of the superlattice parameters.
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In 1932 L. Landau and C. Zener [170, 297] have derived a formula for the transition probabil-
ity between the two states of a quantum mechanical two-level system, where the offset between
the two levels is varying linearly in time. In Chapter 5 I investigate a many-body generalization
of this original Landau-Zener scenario based on a recent experiment [57]. Here, the concept of
the two-level system is extended to a system of pairwise tunnel-coupled one-dimensional Bose
liquids with an time-dependent offset between the tubes. It turns out that the original Landau-
Zener picture can be strongly modified by increasing the infratube and the intertube interactions.
A particularly striking result is the breakdown of adiabaticity observed in the inverse sweep,
which means that the initially filled tube is the one with higher energy. Contrary to the two-level
model it turns out that in the many-body case slower sweeps lead to a lower transfer efficiency.
Using the time-dependent DMRG I can qualitatively reproduce the experimental observations
for the groundstate sweep as well as for the inverse sweep scenario. Moreover, I monitor the
time-evolution of important quantities, e.g. momentum distribution or energies, in order to get
a complete picture behind the breakdown. Additionally, I study the time-evolution after sud-
den quenches of the energy offset. First of all, the quenches give a stroboscopic picture of the
sweeps and reduce simultaneously the parameter space, and thus the complexity of the scenario.
Second, it turns out that for sufficiently large initial density quenches can be efficiently used to
create quasi-thermal states of arbitrary temperatures. The simplicity of the protocol allows for
an easy experimental realization of these thermal states. After a introduction to the two-level
and the three-level Landau-Zener problem I present my result for the quantum dynamics of the
microscopic model and the comparison to the experimental results. I calculate the two possible
Landau-Zener scenarios as well as the time-evolution after sudden quenches of the energy offset.
A major finding is that for sufficiently large initial density quenches can be efficiently used to
create quasi-thermal states of arbitrary temperatures.

Another application of ultracold atoms in optical lattices is the possible realization of a quan-
tum computer a concept which has attracted much attention in recent years. These systems are
a formidable starting point for such a realisation of a quantum computer as they already consist
of 10000 atoms, which can all be considered to be the carrier of quantum information in form
of a qubit, the quantum analogue of the classical bit. A qubit can be realized by any quantum
mechanical two-level system, e.g. by a spin-1

2 particle. Therefore, I have investigated in chapter
6 the entanglement evolution of initially maximally entangled qubits, i.e. spin-1

2 particles, which
do interact with a large spin-1

2 bath. The here considered initial states are, in the two qubit case,
the Bell states and, in the many qubit case, the general W and GHZ-state. Due to the existence
of a two qubit quantum measure, i.e. the concurrence, it is possible to fully monitor the process
of entanglement decrease in that particular case. I will derive an analytical formula for the en-
tanglement decay in the case that only one qubit interacts with an environment. In the case of
a few-body system, I consider the systems of three and four qubits. Here a substancial compli-
cation arise from the fact that there is no satisfying entanglement measure for mixed states of
three or more particles. However, there is not such a problem if the total system is pure and one
can measure the entanglement growth between the qubits and the spin bath, a consequence of
system-bath-interaction, in terms of the von Neumann entropy. It turns out that the von Neumann
entropy, after a trivial normalization by the number of qubits, shows always a universal linear
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growth followed by a non-universal convergence to some finite value. At this time scale, the
stored quantum state does not exist anymore since it is completely merged with the environment.
One can, in general, observe that the bigger the central system is the sooner the entropy satu-
rates. Although it is too difficult to find an analytical exact relation one can definitely exclude an
exponential dependence between system size and saturation time.



Chapter 2

Matrix Product State, DMRG, Time
evolution

Strongly correlated, low-dimensional quantum systems exhibit many extraordinary effects of
modern many-body physics. Indeed such one- or two-dimensional structures are not exotic but
have been found and studied often in nature. More recently, the advent of highly controlled and
tunable strongly interacting ultracold atoms in optical lattices has added an entirely new direction
to this field [38].

Now these kind systems are, both analytically and numerically, very hard to study. Exact
solutions have been found only in some particular cases, e.g. by the Bethe ansatz in one di-
mension. Moreover due to the strong interactions in such systems it is not possible to apply
perturbation theories. Field theoretical approaches make many severe approximations and need
to be additionally validated by numerical methods.

Fortunately, powerful numerical methods has been developed to study strong correlated low-
dimensional systems . It was in 1992 when Steve White [283][284] has invented the density-
matrix renormalization group (DMRG) method, which turned out to be one the most powerful
methods for one-dimensional systems [242]. At the beginning it was only possible to study static
properties (energy, order parameters, n-point correlation functions) of low-lying eigenstates, in
particular the ground states. The method has been improved constantly becoming also a powerful
tool to the study of dynamic properties of eigenstates, e.g. dynamical structure functions or
frequency-dependent conductivities [165] [146], as well as the time-evolution of non-eigenstates
under time-dependent and time-independent Hamiltonians [70] [285].

As it turns out, DMRG can be formulated as a variational method on a certain class of ansatz
states [205] [242], the so-called matrix product states (MPS) [232] [93].
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2.1 Matrix Product States
Considering a system with a finite system length L, e.g. an (anisotropic) Heisenberg antiferro-
magnetic spin chain with an additional magnetic field,

Ĥ =
L−1

∑
i=2

J
2
(
S+i S−i+1 +S−i S+i+1

)
+ JzSz

i S
z
i+1−

L

∑
i=1

hSz
i . (2.1)

For a sufficient large L it will be impossible to find an exact solution with, e.g., exact diagonal-
ization methods. The reason for that is an exponential growth of the Hilbert space dimension
with the system length. For a chain of spin-1

2 particles, with a local state dimension d = 2, the
Hilbert space growth as dL = 2L. Now it turns out that in many situations the relevant physics
can be encoded in a much smaller effective Hilbert space using a parametrization provided by
matrix product states.

In order to avoid exponential state space growth I assume an upper bound D� dL for the
state dimension. Once state dimension grows above D, state space has to be truncated down by
some procedure. Now imagine that the state is sufficiently large and one therefore has to find
a D-dimensional effective basis to describe it. In a first step I divide the system of the above
Hamiltonian cutting it in three parts at some site l. The state can then be written as a linear
combination of the tensor product between a left block {|al−1〉} (sites 1, ..., l−1), the local spin
state {|σl〉} at site l, and a right block {|al+1〉} (sites l +1, ...,L)

|Ψ〉= ∑
al−1

∑
σl

∑
al+1

〈al−1σl |al〉|al−1〉|σl〉|al+1〉, (2.2)

with |al〉 being the basis state for the left block together with the local spin state.
Introducing now d matrices Aσ of dimension (D×D) each1, I can rewrite the above equation

as

|Ψ〉= ∑
al−1

∑
σl

∑
al+1

Aσl
al−1al

|al−1〉|σl〉|al+1〉, (2.3)

where Aσl
al−1al = 〈al−1σl |al〉 is an arbitrary rank-3 tensor, as depicted in Fig.(2.1). The advantage

of the matrix notation is that it allows for a simple recursion formula to repeat this step for the
left |al−1〉 block

|Ψ〉= ∑
al−1

∑
σl

∑
al+1

Aσl
al−1,al

|al−1〉|σl〉|al+1〉

= ∑
al−1,al−2

∑
σl−1,σl

∑
al+1

Aσl−1
al−2,al−1Aσl

al−1,al
|al−2〉|σl−1〉|σl〉|al+1〉

= ∑
a1,...,al−1

∑
σ1,..,σl

∑
al+1

Aσ1
1,a1

Aσ2
a1,a2

... Aσl
al−1,al

|σ1〉|σ2〉...|σl〉|al+1〉. (2.4)

1for open boundary conditions the most left and right Aσ can be smaller
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σi

ai−1 ai
Aσi

ai−1,ai
= |Ψ�

Aσ1 AσLAσ2 Aσ3 · · ·· · ·

Figure 2.1: Matrix product state representation. The left figure shows the graphical representation of a single Aσi-
tensor with an horizontal leg denoting σi the physical and two vertical legs denoting ai−1 and ai the row and column
index respectively. The graphical representation of the whole matrix product state can be seen on the right.

Repeating the same procedure for the, so far, unchanged right block |al+1〉 I obtain

|Ψ〉= ∑
ai

∑
σi

Aσ1
1,a1

Aσ2
a1,a2

... Aσl
al−1,al

Aσl+1
al ,al+1... AσL

aL−1,aL
|σ1〉|σ2〉...|σl〉|σl+1〉...|σL〉, (2.5)

which in a more general way can be written as

|Ψ〉= ∑
σ1,...,σi

Tr(Aσ1... AσL)|σ1〉...|σL〉. (2.6)

Throughout out this chapter, only systems with open boundary conditions are considered. In this
case the outer left matrices, Aσ1 , and the outer right ones, AσL , have the dimension 1× d and
respectively d×12. Hence the trace becomes trivial and can be omitted

|Ψ〉= ∑
σ1,...,σi

Aσ1... AσL |σ1〉...|σL〉. (2.7)

Up to now I have introduced the matrix product state by adding piecewise one lattice site from
a right block to the left block of the system which make the matrix product state growing from
left to right. There are no particular constraints on the matrices Aσ except that their dimensions
must match appropriately. However, for certain operations, like the calculation of expectation
values or the compressing of a matrix product state, to simplify, I demand that the chosen basis
states for each block length are orthonormal to each other. If I assume the growth from left to
right I obtain (for each left block) the condition

δa′lal
= 〈a′l |al〉= ∑

al

∑
al−1

∑
σl

Aσl†
a′l−1,a

′
l
Aσl

al−1,al
= ∑

σl

(Aσl†Aσl)a′l ,al
. (2.8)

The above result can be summarized in a left-normalization condition (and similarly in right-
normalization condition, assuming a growth form right to left)

∑
σ

Aσ†Aσ = I left-normalization (2.9)

∑
σ

Aσ Aσ† = I right-normalization (2.10)

In the following part I will show how to calculate, the overlap, expectation values, correlators in
the matrix product state language.

2the outer matrices have the form row and column vector



10 2. Matrix Product State, DMRG, Time evolution

Overlaps

As a first example of the advantage of MPS formulation I calculate the overlap between the two
states |ψ〉 and |φ〉, as depicted in Fig.(2.2). In order to avoid confusion I chose A to be the tensors
of |ψ〉 and B tensors for |φ〉. Taking the adjoint of |φ〉 the overlap reads

〈φ |ψ〉= ∑
σ

Bσ1∗... BσL∗Aσ1... AσL . (2.11)

I would like to keep the above product structure between matrices, which is less complicated
than a triple sum which includes the indices ai. Apparently, the B and the A are not in the right
order. Fortunately transposing the whole product (Bσ1∗... BσL∗)T is all one has to do in order to
keep a product structure of matrices, but now in an order which makes the calculation much less
demanding (CD)T = DTCT )

〈φ |ψ〉= ∑
σ

BσL†... Bσ1†Aσ1... AσL . (2.12)

If one decides to contract first over the matrix indices and then over the physical indices, he
would have to sum over dL strings of matrix multiplications. But this approach is exponentially
costly. Now it turns out, that it is much easier to first sum over the physical index σ to obtain
a matrix (so matrix multiplication can be used), which in the next step is calculated as product
between three matrices. Following the second approach the overlap reads

〈φ |ψ〉= (∑
σL

BσL†(... (∑
σ2

Bσ2† (∑
σ1

Bσ1†Aσ1)︸ ︷︷ ︸
C

Aσ2)

︸ ︷︷ ︸
BCA

... )AσL). (2.13)

The complexity of the whole calculation does not grow anymore after the first step. Performing
the operation BCA as (BC)A we carrying out (2L− 1)d multiplications, which means that the
complexity becomes weak polynomial instead of being exponential.

Norm

For the calculation of the norm 〈ψ |ψ〉 I need simply to replace the matrices B by A. Having a
left-normalized state it follows from condition [2.9] that the innermost sum (at site 1) is C = I.
This repeats for the following steps in the calculation

〈φ |ψ〉= (∑
σL

AσL†(... (∑
σ2

Aσ2†(∑
σ1

Aσ1†Aσ1)Aσ2)... )AσL)

= (∑
σL

AσL†(... (∑
σ2

Aσ2†Aσ2)... )AσL)

= (∑
σL

AσL†(... I... )AσL) = · · ·= 1. (2.14)
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Ô

|Ψ�

�Φ|

|Ψ�

�Ψ|

Figure 2.2: Overlap and expectation value. The left figure shows the overlap between two different state. Connecting
the most left and right legs of both states is equivalent to the contraction over these indices. The right figure shows
the expectation value of Ô.

Expectation Values

The general form of an expectation value is given by 〈ψ|ÔiÔ j... |ψ〉/〈ψ |ψ〉. Since I have already
discussed the calculation of the norm [2.14] I can directly proceed to the calculation of a general
matrix element 〈φ |ÔiÔ j... |ψ〉 from which I can then easily deduce the form of the nominator. I
start with the assumption having an operator Ô on every site [see Fig. (2.2)]. In practice Ôi = Î
on almost all sites, e.g. for local expectation values or two-site correlators. Thus, considering the
operators Oσ1,σ

′
1... OσL,σ

′
L the matrix element reads (again we take B for |φ〉)

〈φ |Ô1Ô2... ÔL|ψ〉= ∑
σ

∑
σ ′

Bσ1∗... BσL∗Oσ1,σ
′
1... OσL,σ

′
LAσ ′1... Aσ ′L

= ( ∑
σLσ ′L

BσL†ÔσLσ ′L(... ( ∑
σ2σ ′2

Bσ2†Ôσ2σ ′2( ∑
σ1,σ

′
1

Bσ1†Ôσ1σ ′1Aσ ′1)Aσ ′2)... )Aσ ′L),

(2.15)

where in last line I have used again the transpose of (Bσ1∗... BσL∗Oσ1,σ
′
1 ... OσL,σ

′
L)T .

Schmidt decomposition and Entanglement

Again, I consider an arbitrary large system (not necessarily one-dimensional) described by the
state |Ψ〉. I divide the system in two parts, G and H, and assume further that there is some
interaction between subsystem G and subsystem H. Considering this interaction on a quantum
mechanical level I can assume that G and H are correlated in non-classical way; one can simply
say that G and H are entangled. Any pure state |Ψ〉 on GH can be written as

|Ψ〉= ∑
i j

ψi j|i〉G| j〉H , (2.16)

where {|i〉G} and {| j〉H} are orthonormal basis of G and H with dimension NG and NH
respectively and ψi j is some complex coefficient matrix. Now every pure bipartite quantum state
can be also written in a more efficient way using the Schmidt decomposition [17][199]. This
decomposition is based on the singular value decomposition (SVD) [69], which guarantees for
an arbitrary (rectangular) matrix A of dimensions NG×NH the existence of a decomposition A =
USV †. Matrix U and V † can be interpreted as two unitary rotation operators3, which act locally

3the matrices U and V † are not always quadratic
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on G or H respectively. S is a diagonal matrix (connecting G and H) with coefficients sτ , which
are called singular values or Schmidt-numbers. Since the singular values describe a normalized
quantum state they are all positive and satisfy the condition ∑τ s2

τ = 1. This corresponds to the
probability condition of a proper quantum state.

Now if one interprets ψi j as a matrix which we singular value decompose, one get

|Ψ〉= ∑
i j

min(NG,NH)

∑
τ=1

Ui,τSττV ∗jτ |i〉G| j〉H

=
min(NG,NH)

∑
τ=1

(∑
i

Ui,τ |i〉G)(∑
j

V ∗j,τ | j〉H)

=
min(NG,NH)

∑
τ=1

sτ |aτ〉G|aτ〉H . (2.17)

Due to the properties of U and V †, the sets {|aτ〉G} and {|aτ〉H} are orthonormal and can
be extended to a full bases of G and H. These two orthonormal sets are not unique. One can
still apply an additional local rotation acting on G or on H without changing the singular val-
ues. The numbers sτ connect physical states in G and H in an unique way. However, from the
purely mathematical point of view the vectors which represent physical basis states, are simple
normalized euclidian vectors which contain no further information. Thus, all information about
the state |Ψ〉 must be encoded in the singular values. This property is the starting point for the
renormalization or truncation step of a given state in one-dimensional chain. In the following I
restrict the sum to run only over the r ≤min(NG,NH) positive and nonzero singular values,

|Ψ〉=
r

∑
τ=1

sτ |aτ〉G|aτ〉H . (2.18)

The above state has two limits: for r = 1 it corresponds to a product state, for r ≥ 2 to an
entangled state and finally it corresponds to a maximally entangled state, if r = min(NG,NH),
The maximal entangled state has then sτ =

√
1/min(NG,NH) ∀ τ .

One can easily read off the reduced density matrix for G and H by tracing over H and G
respectively, which reveal that both reduced density matrices

ρ̂G =
r

∑
τ=1

s2
τ |aτ〉G〈aτ |G ρ̂H =

r

∑
τ=1

s2
τ |aτ〉H〈aτ |H , (2.19)

share the same spectrum. This allows to define an entanglement measure of a pure bipartite
state, the von Neumann entropy

SG|H(|Ψ〉) =−Trρ̂G log2 ρ̂G =−
r

∑
τ=1

s2
τ log2 s2

τ . (2.20)
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For a general D-dimensional lattice (e.g. a ball of radius l) the maximum entanglement
entropy for a subsystem G in a larger environment H is

Smax(l,D) = log2 dṄG = O(lD), (2.21)

i.e., proportional to the subsystem volume. States with a large entanglement entropy dominate in
the Hilbert space [222]. Fortunately, many systems of interest often do actually not exploit the
maximum number of degrees of freedom. This is reflected in the way the entanglement entropy
scales with the subsystem size for the states of interest. A central result is that in ground states
of gapped systems with short-range interactions, the entanglement entropy does not scale with
the volume of the subsystem as in [Eq.(2.21)], but rather with the subsystem surface area as
lD, which is called the area law [28][253][48][218][91], or as lD log l for some cases of critical
systems.

Approximate compression of MPS

Various algorithms that can be formulated with MPS lead to substantial increase of the matrix
dimensions. One needs a way to approximate a given state (output state after some calculation)
with matrix dimensions (D′i×D′i+1) by another state with a smaller matrix dimension (Di×Di+1).
To this purpose two procedures are available, SVD compression and variational compression.
The SVD approach is fast, but it has the disadvantage to be not optimal, since the result at a
given site is not independent of the compression at other sites4. The slightly slower variational
approach is optimal in the sense, that it will always lead to an energy reduction of the total wave
function.

The idea behind the SVD compression is the following. Starting at one end of a state |Ψ〉
one go site by site through the MPS such that we can read off the Schmidt coefficients [2.18]. At
each step one discards the matrix entries that are smaller than a given bound, i.e. one truncates
the lowest weight contributions to the reduced density operators.

I assume that |Ψ〉 fulfills the left-normalization condition [2.9]. Starting from the right end
of the MPS one perform a singular value decomposition of the matrix AσL which leads to

|Ψ(L−1)〉= ∑
σ

Aσ1... AσL−1

AσL︷ ︸︸ ︷
U SV σL† |σ1〉... |σL〉

= ( ∑
σ1...σL−1

Aσ1... AσL−1U︸ ︷︷ ︸
new A

′σL−1

|σ1〉... |σL−1〉)S (∑
σL

V σL†|σL〉). (2.22)

Since V †V = I the block |aL−1〉H = ∑σL V σL†|σL〉 is already right-normalized, i.e. V σL† ≡ AσL .
The states at the left block |aL−1〉G = ∑σ1...σL−1 Aσ1 ... AσL−1U |σ1〉... |σL−1〉 are also orthogonal
as U is unitary operation which rotates a orthogonal basis set.

4So far there is no mathematical proof for the correctness of the SVD approach.
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Thus one arrives at a correct Schmidt decomposition (S is diagonal):

|ΨL−1〉= ∑
aL−1

saL−1|aL−1〉G|aL−1〉H . (2.23)

It is obvious that repeating this step at the next bond L− 2 one gets exactly the same form.
The successive repetition of the above steps at each bond while going (without changing the
direction)from one end of |Ψ〉 to other is called sweep or sweeping procedure5. The optimal
approximation is provided by keeping during the sweep from right to left the D largest singular
values saL−1,saL−2,...sa1

and set the smaller ones to zero. The right matrix AσL conserves in its
arrangement of rows the corresponding states on the right (in H) one would like to keep. The
truncation is then equal to cutting down the right matrix AσL by removing their bottom rows
and rightmost columns. By repeating this procedure at every bond one obtains |Ψ〉 → |Ψ̃〉 the
desired state with dimension D. The second method, the variational compression, is, from the

=
|Ψ�

Aσi

=

Aσi

M

�Ψ̃|

�Ψ̃|
Ãσi

Ãσi

�Ψ̃|

Figure 2.3: Variational compression of an MPS. The upper figure corresponds to the extremization equation
Eq.(eq:varioCompression) where I have already removed Ãσi∗. The lower figure corresponds to equation Eq.(2.25)
which is the result after a contraction over all indices except i.

mathematical point of view, a much cleaner approach to approximate a given MPS. Here one
tries to minimize ‖ |Ψ〉− |Ψ̃〉 ‖2

2, which is equivalent to the minimization of 〈Ψ|Ψ〉− 〈Ψ̃|Ψ〉−
〈Ψ|Ψ̃〉+ 〈Ψ̃|Ψ̃〉 with respect to |Ψ̃〉. The procedure can be done iteratively as follows. One
starts with an initial ansatz state |Ψ̃〉 of the desired reduced dimension D′. This state can be the
output state from the SVD compression approach, which I have explained before. Next, one tries
to minimize the distance to the original MPS |Ψ〉 to |Ψ̃〉 by changing iteratively the Ãσi matrices
(Ã correspond to |Ψ̃〉) site by site. The new Ãσi can be found by extremizing ‖ |Ψ〉− |Ψ̃〉 ‖2

2
6

with respect to Ãσi∗, which only shows up in 〈Ψ̃|Ψ̃〉−〈Ψ̃|Ψ〉:
∂

∂ Ãσi∗
(〈Ψ̃|Ψ̃〉−〈Ψ̃|Ψ〉) =

∑
σ∗
(Ãσ1∗... Ãσi−1∗)1,ai−1(Ã

σi+1∗... ÃσL∗)ai,1Ãσ1... Ãσi.. ÃσL−

∑
σ∗
(Ãσ1∗... Ãσi−1∗)1,ai−1(Ã

σi+1∗... ÃσL∗)ai,1Aσ1... Aσi.. AσL = 0, (2.24)

5The DMRG ground state calculation requires several sweeps forth and back from one end to the other.
6This problem can be related to SVD, because the 2-norm of |Ψ〉 is identical to the Frobenius norm of the

coefficient matrix ψi j, with |Ψ〉= ∑i j ψi j|i〉G| j〉H , i.e. ‖ |Ψ〉 ‖2
2=‖ ψi j ‖2

F
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where the sum σ∗ runs over all physical sites except i. Although the above equation looks very
complicated it has a simple structure of a linear equation system. Assuming that the left and right
block are left- and right-normalized, one may solve this equation (using the transpose operation)
keeping the matrix Ãσi explicit and obtains [see Fig.(2.3)]

Ãσi
a′i−1,a

′
i
= ∑

ai−1,ai

Ma′i−1a′i,ai−1ai
Aσi

ai−1,ai
, (2.25)

where M is the outcome after the calculation of the partial overlap in Eq.(2.24).

Matrix product operator

σ�
i

σi

C
ci

ci−1

The concepts of the matrix product states can be also extended to represent
general operators. Any operator which acts on |Ψ〉 can be described using
so-called matrix product operators which have the big advantage that they
leave the form of the MPS invariant. To see this I start with a general matrix
product operator (MPO)

Ô = ∑
σ

∑
σ ′

Cσ1,σ
′
1...CσL,σ

′
L |σ1〉〈σ ′1|⊗ ... ⊗|σL〉〈σ ′L|, (2.26)

where Cσi,σ
′
i are rank-4 tensors. The application of a matrix product operator to a matrix product

state is given by

Ô|Ψ〉= ∑
σ ,σ ′

∑
a,c
(Cσ1,σ

′
1

1,c1
...CσL,σ

′
L

cL−1,cL)(A
σ ′1
1,a1

... Aσ ′L
aL−1,aL)|σ1〉... |σL〉

= ∑
σ ,σ ′

∑
a,c
(Cσ1,σ

′
1

1,c1
Aσ ′1

1,a1
)... (CσL,σ

′
L

cL−1,cLAσ ′L
aL−1,aL)|σ1〉... |σL〉

= ∑
σ

∑
a,c

Dσ1
(1,1),(c1,a1)

... DσL
(cL−1,aL−1),(cL,aL)

)|σ1〉... |σL〉. (2.27)

One obtains a new matrix product state at the cost of a multiplication of the matrix dimensions
of A and C. The result can be summarized as |Φ〉= Ô|Ψ〉 with |Φ〉 an MPS built from matrices
Dσ according to

Dσ

(k,m),(k′,m′) = ∑
σ ′

Cσ ,σ ′

k,k′ Aσ ′
m,m′ . (2.28)

Writing Hamiltonians in MPO form

In order to explain how to construct a general Hamiltonian in MPO form I start with trivial case
of no interactions. I consider a Hamiltonian Ĥ• which can be written as a sum of local operators
acting on a single site,

Ĥ• =
L

∑
i=1

X̂i. (2.29)
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where each local operator is given by X̂i = ∑σσ ′ Xσi,σ
′
i |σi〉〈σ ′i |. In turns out that it is not very

difficult to express a general Hamiltonian in MPO form, i.e. as product of matrices which act on
different sites Ĥ =Cσ1,σ

′
1Cσ2,σ

′
2...CσL,σ

′
L . The Hamiltonian Ĥ• can be encoded by the following

operator-valued matrices:

Cσi,σ
′
i =

(
δσi,σ

′
i

0
Xσi,σ

′
i δσi,σ

′
i

)
, for 1 < i < L, (2.30)

and Cσ1,σ
′
1 = (Xσ1,σ

′
1,δσ1,σ

′
1
) and CσL,σ

′
L = (δσL,σ

′
L
,XσL,σ

′
L)T . Thus every Hamiltonian which can

be written as sum of local operators can always be represented as a 2×2 matrix product operator.
In the next step we consider a Hamiltonian Ĥ•• with next-nearest interactions7

Ĥ•• =
L−1

∑
i=1

X̂iŶi+1, (2.31)

with X̂i and Ŷi being single site operators. The matrix product operator representation of Ĥ•• is
now given by:

Cσi,σ
′
i =

 δσi,σ
′
i

0 0
Y σi,σ

′
i 0 0

0 Xσi,σ
′
i δσi,σ

′
i

 , for 1 < i < L, (2.32)

and Cσ1,σ
′
1 = (0,Xσ1,σ

′
1,δσ1,σ

′
1
) and CσL,σ

′
L = (δσL,σ

′
L
,Y σL,σ

′
L ,0)T . This scheme can be generalized

to arbitrary Hamiltonians and finite-size operators [215]. For commonly used one-dimensional
Hamiltonians the resulting matrix dimensions are small, for instance 5× 5 for a Heisenberg
model in a transverse field [2.1] or 6×6 for a fermionic Hubbard model.

Together with the above tools I am ready to make the connection from the matrix prod-
uct states and operators to the density matrix renormalization method (DMRG) and the time-
dependent DMRG methods, which are the main methods of my thesis.

2.2 DMRG
Originally, DMRG has been considered as a renormalization group method. The method consists
of a systematic truncation of the system Hilbert space. Sweeping site by site, we keep only a
small number of important states while minimizing the total energy. The states that are kept
in order to construct a renormalization group transformation are the most probable eigenstates
of a reduced density matrix and not simply the lowest energy states as in a standard numerical
renormalization group (NRG) calculation. Now, DMRG can also be formulated with the help
of matrix product states From this point of view, DMRG can be seen as an algorithm which
optimizes variationally some wavefunction with has the structure of a MPS. This formulation of

7This example already covers a huge number of models studied in modern literature



2.2 DMRG 17

DMRG has revealed the deep connection between the density-matrix renormalization approach
and quantum information theory and has lead to significant extensions of DMRG algorithms, e.g.
efficient algorithms for simulating the time-evolution.

There exist two slightly different possibilities to implement the DMRG. The starting point for
first approach is a state living on a block-site-site-block configuration G••H. This is called two-
site DMRG. Alternatively one can consider a block-site-block configuration G •H (the same
as in the introduction of MPS) which is there called one-site DMRG. It turns out that the old
formulation of the finite-size one-site DMRG is equal to the groundstate calculation with MPS.
In the following we will explain the one-site DMRG.

Groundstate calculation

The first application area for the DMRG method was to calculate the optimal approximation of
the ground state, which means to minimize

〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(2.33)

The idea of the DMRG is very similar to the compression methods in MPS. We start with
an ansatz state |Ψ〉 and perform in a variational way a local optimization of each Aσl keeping
the matrices on all other sites constant. This naturally introduces several sweepings through the
whole state, e.g. going site by site from right to left and then back to the right. This sweep
procedure is repeated several times until the state is sufficiently converged.

By keeping at each site the matrices on all other sites constant the variables appear in a
quadratic form, for which the determination of the extremum is a linear algebra problem. The
minimization of Eq.(2.33) under the constraint of keeping the norm can be reformulated as

∂

∂Aσ ′l ∗
(〈Ψ|Ĥ|Ψ〉−λ 〈Ψ|Ψ〉) = 0, (2.34)

where λ is the Langrangian multiplicator of the constraint.
I start with the calculation of the overlap keeping Aσl explicit. Moreover, I assume that the

left block |ai−1〉G and the right block |al〉H are already left- and right-normalized respectively.
According to the result for the calculation of overlap (again using the transpose trick) one finds

〈Ψ|Ψ〉= ∑
σl

∑
σ1,... ,σl−1

∑
σl+1,... ,σL

(Aσl−1†... Aσ1†Aσ1... Aσl−1)a′l−1,al−1
Aσl

al−1,al
Aσl∗

a′l−1,a
′
l
×

× (Aσl+1... AσLAσL†... Aσl+1†)al ,a′l1
, (2.35)

which after applying the normalization condition immediately gives

〈Ψ|Ψ〉= ∑
σl

∑
al−1,al

δa′l−1,al−1
Aσl

al−1,al
Aσl∗

a′l−1,a
′
l
δal ,a′l

. (2.36)
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λ=
|Ψ�|Ψ�

�Ψ|�Ψ|

Aσi

Aσi∗

Aσi

Aσi∗

λ=

AσiAσi

Ψ̂σ�σ

Figure 2.4: One-site DMRG in MPS representation. The upper figure is equivalent to the extremization equation
Eq.(2.34). After the contraction over all bond but i the extremization reduces to equation Eq.(2.39), depicted in the
lower figure

In the next step I consider the expectation value 〈Ψ|Ĥ|Ψ〉, with Ĥ in the MPO representation

〈Ψ|Ĥ|Ψ〉= ∑
σl

∑
σ ′l

∑
a′l−1,a

′
l

∑
al−1,al

Ψ̂
σ ′i σi
a′l−1a′lal−1al

Aσl∗
a′l−1,a

′
l
Aσl

al−1,al
, (2.37)

where Ψ̂σ ′i σi written in the left-right block representation ( C are the MPO matrices) reads

Ψ̂
σ ′i σi
a′l−1a′lal−1al

= ∑
kl−1kl

Ψ̂
G
a′l−1,kl−1,al−1

Cσ ′i σi
kl−1kl

Ψ̂
H
a′l ,kl ,al

. (2.38)

The block contributions have a slightly more complicated structure than the normal block struc-
ture, e.g. the left block looks similar to (Aσ ′l−1†... Aσl−1)(Bσ ′1σ ′1... Bσ ′l−1σ ′l−1 .). Now if one takes

the extremum of the above equation with respect to A
σ ′l ∗
a′l−1a′l

one obtains after the contraction over
all indices but i [see. Fig.(2.4)]:

∑
σl

∑
al−1al

Ψ̂
σ ′i σi
a′l−1a′lal−1al

Aσl
al−1al

−λA
σ ′l
a′l−1a′l

= 0. (2.39)

By introducing the matrix Hσ ′l a′l−1a′l ,σlal−1al
= Ψ̂

σ ′i σi
a′l−1a′lal−1al

and the vector vσlal−1al = Aσl
al−1,al ,

one arrives at a simple eigenvalue equation

Hv−λv = 0. (2.40)

In the next step one must solve the above equation. The lowest eigenvalue λ0, which is
current estimate of the ground state, corresponds to the vector v0

σlal−1al
which is reshaped back to

a new Aσl
al−1,al .

Although one could reduce the whole minimization problem to the optimization of a single
Aσl it is in general too demanding to solve the above eigenvalue equation directly. But since one
is only interested to find the lowest eigenvalue and eigenstate, it is sufficient to use an iterative
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eigensolver, like Lanczos algorithm [169][235][69], which allows for the calculation of the ends
of the spectrum. The speed of Lanczos depends very much on the initial starting vector. It turns
out that Aσl = v is already a good guess vector as it is a reasonable approximation of the right
solution.

The total algorithm then runs as follows. Starting from some initial guess for |Ψ〉, one sweeps
from right and left through the lattice, always improving on one site i, with the energy going down
all the time. Convergence is achieved if energy converges. But the best test, to see whether an
eigenstate has been reached, is to consider 〈Ψ|Ĥ2|Ψ〉− (〈Ψ|Ĥ|Ψ〉)2.

λ=
|Ψ�|Ψ�

�Ψ|�Ψ|

SVD

solving E.-equation

Figure 2.5: Two-site DMRG scheme. In the two-site DMRG one optimizes two bonds at once. This leads to a new
object which is not of MPS form. Therefore, the extremization must always be followed by a SVD which produces
two new bond operators and thus a proper MPS.

In the two-site DMRG the same optimization takes place on two sites instead of only one site.
First one makes a contraction between the two central site matrices ∑al

Aσl
al−1,al A

σl+1
al ,al+1 = Ãσlσl+1

al−1,al+1

and obtains a bigger matrix. Next, one optimize this new central matrix as it was explained for
the one-site DMRG. Finally, after the calculation of the lowest λ one has to bring the big matrix
back to the initial form of two Aσl Aσl+1 matrices by performing a SVD [see Fig.(2.5)]. Now there
is small difference between the one-site and two-site approach. While for the one-site DMRG the
dimension of the local matrix Aσl does not increase, it does for the two-site DMRG (dimension
becomes D→ dD). Therefore, in order to keep the maximal dimension D one has to truncate
the states, which can be done automatically in the last SVD step before saving the new matrices
Aσl Aσl+1 .

The ansatz for the ground state calculation for the one-site DMRG is totally variational.
Hence, we always reduce the total energy at each step. For the two-site (and more-site) DMRG
the same happens until the last step where one has to perform a SVD together with the truncation.
By cutting away the local Hilbert space one cannot guarantee that the energy is lowered at each
step.

On the other hand one-site DMRG contains also a disadvantage. At each step one takes
only into account a local potential. This becomes a problem when treating systems with strong
disorder from site to site. This increase the chance that the one-site DMRG can be trapped in
some metastable state. Here one has to use the two-site DMRG or modify the one-site DMRG,
e.g. by adding a small perturbation term to the local density matrix of the left and right block
[284].
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Symmetries

In the previous section I have shown that the ground state calculation can be reduced to the op-
timization of a single Aσ , which is equal to solving an eigenvalue equation. Independently of
the strategy to find a solution for this eigenvalue equation one can profit from symmetries in
the system, which reduce the complexity of the eigenvalue problem [see Fig.(2.6)]. In order to
accelerate the computation, one can make use of operators that commute with the Hamiltonian.
These can be, first of all, the total number of particles N or the the total spin Sz

tot, respectively
the generators of the U(1) algebras. Here, by doing a simple bookkeeping for each local site one
can decide which A-matrices must be kept or not. A further reduction of computational cost can
be obtained including (wherever it is suitable) non-Abelian symmetries [191][34]. According to
the Wigner-Eckart theorem [286] certain laws of conservation correspond to symmetry transfor-
mation groups of space. A set of 2k+1 operators {T (k)

q : (−k ≤ q≤ k)} which transform under
the action under the action of rotation like

R(α,β ,γ)T (k)
q R(α,β ,γ)(−1) = ∑

q′
Dk

q,q′(α,β ,γ)T (k)
q′ , (2.41)

are said to form an irreducible tensor of degree k. For example a scalar operator N, which is
by definition invariant under rotations, R(α,β ,γ)S R(α,β ,γ)(−1) = S, is an irreducible tensor of
degree k= 0. A vector operator V̂ is an irreducible tensor of degree k= 1, and so on. Knowing the
basis vectors of the rotation R(α,β ,γ) the Wigner-Eckart theorem states that the matrix element
T (k)q may be written in the form

〈 j′,m′|T (k)
q | j,m〉= ( j,k,m,q| j′m′)〈 j′||T (k)|| j〉, (2.42)

which is a product between the Clebsch-Gordan coefficient ( j,k,m,q| j′m′) and the irreducible
matrix element 〈 j′||T (k)|| j〉, which is independent of m,m′,q. Now, additional to a similar book-

λ=

AσiAσi

=̂ Ψ̂σ�σ

Figure 2.6: Symmetries in DMRG. By using symmetries one can bring Ψσ ′σ from the DMRG equation Eq.(2.39)
into a block-diagonal form which reduces the diagonalization problem of a huge matrix to a the diagonalization of
much smaller matrices.

keeping as for abelian symmetries one writes down the state using a suitable basis (non-abelian)
which corresponds to the conserved quantity. Then, in order to evaluate a physical quantity one
has to transform back from this non-abelian basis to an abelian one which can be obtained using
the above Wigner-Eckart theorem[191].
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2.3 Time dependent DMRG methods
The DMRG is an excellent method for calculating ground states and also selected eigenstates.
We have discussed physical properties which are true equilibrium quantities. However, together
with the development in nanoelectronics, ultra cold atoms and many other field of research,
problems considering non-equilibrium physical systems became very important during the last
two decades. Time-dependent DMRG has been used extensively in the meantime and found
to open completely new perspectives on the non-equilibrium behaviour of strongly correlated
one-dimensional systems [114] [162] [269] [66].

All time-evolution methods for the DMRG follow one of two strategies. The so-called static
Hilbert-space DMRG methods try to enlarge optimally the truncated Hilbert space of |Ψ(t = 0)〉
such that it is big enough to describe |Ψ(t)〉 to a very good approximation [54]. On the other
hand, so-called adaptive DMRG tries to change the truncated Hilbert space of |Ψ(t)〉 during the
time-evolution without increasing the dimension. The methods presented in the following belong
to the class of the adaptive ones.

The first implementation of time-dependent DMRG using adaptive Hilbert spaces [285] [70]
based on a classical simulation of the time evolution of weakly entangled states, knowing as
time-evolving block-decimation (TEBD) algorithm [275] . Both implementations use for the
time evolution the so-called Suzuki-Trotter decomposition [107] assuming only nearest neighbor
interactions, which is the starting point of the following discussion.

2.3.1 Trotter Algorithm
I assume a time-independent Hamiltonian Ĥ which only nearest-neighbor interactions8

Ĥ = ∑
i

Ĥi, (2.43)

where i is a bond Hamiltonian which connects the sites i and i+ 1, joined by bond i. One can
decompose this Hamiltonian into two parts

Ĥ = Ĥodd + Ĥeven, (2.44)

with Ĥodd = Ĥ1 + Ĥ3 + ... the Hamiltonian acting on the odd bonds and Ĥeven = Ĥ1 + Ĥ3 + ...
acting on the even bonds. While all terms in odd and even part commute, [Hodd, Ĥeven] 6= 0. The
idea is now to apply a sequence of the odd and even Hamiltonian and to factorize the whole time
evolution into operators which act only on two bonds. Therefore, dividing the time argument of
the time-evolution into infinitesimal time steps ∆t leads to

e−iĤt = e−iĤ∆te−iĤ∆te−iĤ∆te−iĤ∆t ... (2.45)

Up to here there there was no approximation made. Next, one applies the Suzuki-Trotter de-
composition which represents a general way of writing a matrix exponential. The exponential of

8Ĥ denotes the full Hamiltonian under which the system will evolve.
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two non-commuting operators A and B reads in first order eδ (A+B) = limδ→0(eδAeδB +O(δ 2))9.
Thus, replacing A and B by the odd and the even part of Ĥ and δ by ∆t (and skipping this part)
one arrives at

e−iĤt = e−iĤodd∆te−iĤeven∆te−iĤodd∆te−iĤeven∆t .... (2.46)

where one makes an error proportional to ∆t2. According to the above equation the time evolution
can be performed as follows [see Fig.(2.7)]. Starting from the left border of the system we apply
the odd bond Hamiltonians Ĥ1, Ĥ3, ... sweeping until the right end10. Then one performs the
reverse sweep from right to left but now with the even bond Hamiltonians Ĥ2, Ĥ4.... Finally,
before moving to the next time step, one needs to truncate the new MPS to the desired dimension.
This steps are repeated until one reaches the total time t. It is also possible to construct a higher

SVD

RL

L L L

LL

RR

R R

R

L

|Ψ(t+∆t)�

|Ψ(t)�

|Ψ(t)�

∆t

∆t

Uodd

Ueven

Uodd Uodd

Ueven

compression

odd

even

Figure 2.7: The Suzuki-Trotter algorithm in first order. This is the graphical representation of a single calculation
step [Eq.(2.46)] during the whole time evolution of |Ψ〉. The upper figure shows the action a two-bond operation of
the form eiĤ••t on a MPS. In order to keep the structure of an MPS and MPO unchanged one can first decompose
each two-bond operation into two single bond operations L and R, by using a SVD. This creates a valid MPO
according to our definition Eq.(2.26), which can then be applied to the MPS by means of Eq.(2.27). After each
single time step one has to perform an additional compression of the whole state. This last step which makes the
method adaptive, which means that the optimal basis of |Ψ(t)〉 is also evolving in time.

order Suzuki-Trotter time evolution at the cost of more than two sweeps. For example the second
order Suzuki-Trotter decomposition reads

e−iĤt = e−iĤodd∆t/2e−iĤeven∆te−iĤodd∆t/2, (2.47)

9For the here considered Hamiltonian [A[A,B]] = 0 and [B[B,A]] = 0 holds and thus one can use the simple
version of the Baker-Haussdorff formula eAeB = eA+Be[A,B]/2.

10Alternatively to apply a two-site operation followed by a SVD of the 2-block tensors, one can, in order to handle
with a proper MPO, first do a SVD of the two-site Hamiltonians before applying them on the |Ψ〉. Doing so one
does not need to implement new types of MPOs.
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where the error per timestep is only O(∆t3). After each timestep the dimension of the state will
be increased. In order to keep a considerably number of states one has to perform a compression
of the MPS at the end of each timestep. This compression leads automatically to a new optimal
basis, which makes the this time-evolution an adaptive one. The Suzuki-Trotter error together
with the error from the truncation are the two sources of error in this algorithm. But while one can
reduce the Suzuki-Trotter error by making the time step ∆t smaller, the error from the truncation
remains.

2.3.2 Krylov Algorithm
The following time evolution method, the so-called Krylov time evolution, has become one of the
most powerful method for time dependent calculations. In contrast to the Suzuki-Trotter method
it bases on a Krylov subspace expansion of the time evolution operator [69], which I will explain
in the following. The usual way to calculate the time evolution of the state |Ψ〉 , thus

|Ψ(t)〉= e−iĤt |Ψ(0)〉, (2.48)

would be to decompose |Ψ(0)〉 in the eigenbasis of Ĥ, which then shifts the time evolution from
the state to some precoefficients11,

|Ψ(t)〉=
N−1

∑
n=0

ane−iλnt |en〉, with |Ψ(0)〉=
N−1

∑
n=0

an|en〉, (2.49)

where {|en〉} form the orthonormal eigenbasis of Ĥ and dim(Ĥ) = N. Since the Hilbert space
of Ĥ is usually very large we have to truncate Ĥ to some Ĥeff. It turns out that for a sufficiently
small time step Ĥeff can be very small. Again the first step is to divide the time argument of
the time-evolution into infinitesimal time steps ∆t. Assuming that one knows a way to build an
effective basis, which consists of K elements, he can rewrite the time-evolution and get

|Ψ(∆t)〉= Ieffe−iĤ∆t |Ψ(0)〉

=
K−1

∑
j=0
|k j〉〈k j|e−iĤeff∆t |Ψ(0)〉=

K−1

∑
j=0
〈k j|e−iĤeff∆t |Ψ(0)〉|k j〉. (2.50)

The above optimistic estimate using K vectors of with maximal dimension D is only possible
if indeed the |k j〉 are linearly independent [107]. A good guess for such a basis is the Krylov
subspace which is spanned by images of |Ψ〉 under the first K powers of Ĥ. The Krylov subspace
corresponds to the expansion of eĤ starting from Ĥ0 = I:

KK(Ĥ, |Ψ〉) = span{|Ψ〉, Ĥ1|Ψ〉, Ĥ2|Ψ〉, , ... , Ĥ(K−1)|Ψ〉}. (2.51)

Unfortunately the vectors tend very quickly to become almost linearly dependent. Hence, meth-
ods relying on Krylov subspace involve additionally some orthogonalization scheme, such as the

11Again, Ĥ denotes the full Hamiltonian



24 2. Matrix Product State, DMRG, Time evolution

Lanczos iteration [169][69] or the Gram-Schmidt orthogonalization [69]. While Gram-Schmidt
takes therefore into account all basis state, the Lanczos algorithm connects at each step a vector
with the two previously orthogonalized vectors. The starting point for the iterative orthogonal-
ization of the Krylov subspace is the zeroth Krylov vector |k0〉= |Ψ(0)〉. The next higher Krylov
vectors are obtained according the Lanczos iteration scheme

βi+1|ki+1〉= Ĥ|ki〉−αi|ki〉−βi|ki−1〉, (2.52)

where αi and βi are chosen such that the orthonormality condition 〈ki |k j〉 = δi j is fulfilled. To-
gether with the new orthonormal basis set KN(Ĥ, |Ψ〉) = span{|k0〉, |k1〉, |k2〉, ...} the approxi-
mated time-evolution reads

|Ψ(∆t)〉=
K−1

∑
j=0
|k j〉〈k j|e−iĤKrylov

eff ∆t |k0〉|k j〉=
K−1

∑
j=0

c j(∆t)|k j〉, (2.53)

with (ĤKrylov
eff )m,n = 〈km|Ĥ|kn〉. Since a product between a MPO and a MPS leads to increase of

the dimension of the new state one still has to perform a compression of the final state at each
time step. The coefficient c j(∆t) is used for the effective convergence criterion. Once it drops
below a certain value the procedure is stopped. As in the case of the Suzuki-Trotter algorithm
the effective Hilbert space is moving during the time evolution adapting the right Hilbert space.
The Krylov method can be adapted easily to matrix product states in combination with matrix
product operators [cp. Fig.(2.8)]. Each Krylov vector can be stored separately and we can exploit
the full local Hilbert space to represent each vector.

|k0� |k2�|k1�

|Ψ(t+∆t)�

ĤĤ

|Ψ(t)�

compression

|k0� |k1�{
+addition

Figure 2.8: Krylov time evolution scheme. Starting from |Ψ〉 one calculates an orthogonal Krylov subspace by suc-
cessive application of Ĥ on |Ψ〉= |k0〉 followed by an orthogonalization procedure like Lanczos or Gram-Schmidt.
Together with the new subspace one can calculate the outgoing state according to Eq.(2.53) which is followed by a
compression of the outgoing state. Indeed, it is this last step which makes the method adaptive.

The matrix dimensions for each Krylov vector will become large, especially for higher
Krylov vectors. Thus a truncation of the states is needed, limiting the accuracy of the calcu-
lated vectors. Another error is induced by limiting the Hamiltonian Ĥ to the Krylov subspace
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Ĥeff = Ieff Ĥ Ieff. It turns out that for sufficient small time steps ∆t the coefficients of the higher
Krylov vectors are exponentially suppressed. The error considering a finite number of Krylov
vector is roughly proportional to cK−1 the coefficient of |kK−1〉 the last Krylov vector. Together
with the error induced by the finite dimension of the Krylov subspace, one gets a bound for the
total error of the resulting wave function given by

‖ |Ψ j+1〉− e−iĤ∆t |Ψ j〉 ‖2< ε
2, (2.54)

with a fixed error bound ε for each timestep [136]. The number of Krylov vectors are iteratively
increased, while the truncation error of each Krylov vector is adapted such that the error bound
[2.54] is fulfilled. It turns out that typically 3-10 Krylov vectors are sufficient for a successful
calculation of the time evolution. For bosonic systems the error bound was in between 10−5−
10−4, while for spin systems an error of 10−6 was sufficient to maintain convergence.

2.3.3 Folding Algorithm
The following procedure, which is called the tensor folding algorithm [19], is based on the nor-
mal time-evolution methods, e.g. the Suzuki-Trotter time-evolution. The normal time evolu-
tion consists of applying an unitary operation e−Ĥ∆t on a MPS |Ψ(t0)〉 which gives another
MPS |Ψ(t0 +∆t)〉 which becomes the new input state in the next step. Now, the here pre-
sented method benefits again from matrix product representation of the state and all operators.

O

|Ψ0�

�Ψ0|
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Drawing the time evolution of some observable leads to a two dimensional rect-
angular tensor network (right figure). From this perspective it turns out that the
calculation of the observable in the time-direction can be performed as well in
the spatial direction. This approach is called the transverse contraction and leads
to new transverse MPSs and MPOs12. Starting from the transverse contraction
scheme one can see that two tensors that lie at the same distance from the mid-
dle bond correspond to two MPOs from the same time step (bracket in right
picture), coming from a certain term and its adjoint in the Trotter decomposi-
tion13. Originally strongly correlated in time these two tensors become after the
rotation two strongly correlated sites. This fact allows one to find a more efficient representation
of the entanglement in the transverse MPSs. As I will show below one can group such pairs
together in a new MPSs and MPOs by folding the original transverse MPSs and MPOs.

Transverse contraction

The basic idea is to look at the quantity that one wants to compute, say the time dependent
expectation value of some local operator, 〈Ψ(t)|Ô|Ψ(t)〉, as the contraction of a two dimensional
tensor network, and perform it, not along time, but in the direction of space.

The tensor network should be regarded as a theoretical construction, which allows for the
study of other evaluation concepts. In the usual time evolution scheme one starts with the initial

12The physical aspects of the transverse MPSs and MPOs can probably not be understood very easily.
13It could be also any other time-evolution method which can be written as tensor network.



26 2. Matrix Product State, DMRG, Time evolution

O

|Ψ0�

�Ψ0|

O

�Ψleft| |Ψright�

rotation
O

�Ψleft|

|Ψright�

Figure 2.9: Tensor rotation and transverse contraction. The usual tensor network (left figure) consists of two MPSs
at the top and the bottom and an equal number of MPOs for both states which represent the time evolution of the
state and its complex conjugate. The transverse contraction scheme is equivalent to a rotation of the whole network
by 90 degrees. This leads to new MPS at top and bottom and new MPOs which are the starting point of a contraction
in the space-direction.

finite size MPS and applies, for every times evolution step, the proper MPOs representing eiĤ∆t .
Repeating this for the required number of evolution steps, one arrives at the exact evolved MPS
(within the Trotter approximation), as no truncation is carried out. Finally, one adds the local
operator Ô and contract with the Hermitian conjugate of the evolved state [cp. Fig.(2.9)].

The idea of the transverse contraction is to rotate first the tensor network 90 degrees (clock
or anti-clockwise), as depicted in Fig.(2.9). This rotation comes along with a total change of
indices and thus of the role of the matrix product tensors. The spatial indices (or bond indices)
become the new indices of the local dimension and vice-versa. After the rotation one obtains
two new states 〈Ψleft| and |Ψright〉 and a two new sets of MPOs, for each new state one. What
follows is the usual time evolution scheme in which one applies successively these new left and
right MPOs to 〈Ψleft| and |Ψright〉 respectively.

Folding algorithm

It turns out that there is a more efficient way to construct a tensor network. The previous rotation
of the tensor network is equivalent to changing the time direction into the spacial direction and
vice versa. Thus, two initially time-correlated tensors correspond now to two spatially correlated
sites [see. Fig.(2.10)]. Under the assumption that the Hamiltonian of original time-evolution
contains only homogenous couplings, e.g. an isotropic Heisenberg model, one can even deduce
that this particular symmetry also holds for later times (in the rotated picture). By folding the
network in the middle of the system one brings strong entangled regions of the network close
to each other (ideally on top of each other), as depicted in Fig.(2.10). This concept allows a
more efficient representation of the time-evolution, which become noticeable in the benefit of
simulation time.

The calculation of the two folded MPS states goes as follow. Setting out from a general MPS
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(not necessarily after the transverse operation)

|Ψ〉= ∑
σ

∑
a1,...

Aσ1
1,a1

Aσ2
a1,a2

.... AσL
aL−1,1|σ1... σL〉, (2.55)

we obtain the folded MPS

|Ψfold〉= ∑
σ

∑
a1,...

Aσ1
1,a1

Aσ2
a1,a2

.... A
σL/2
aL/2−1,aL/2 A

σL/2+1
aL/2,aL/2+1... AσL

aL−1,1|σ1... σL/2σL/2+1... σL〉

= ∑
σ

∑
a1,...

(
Aσ1

1,a1
(AσL

aL−1,aL
)T
)(

Aσ2
a1,a2

(AσL−1
aL−2,aL−1)

T) ...
...
(

A
σL/2
aL/2−1,aL/2(A

σL/2+1
aL/2,aL/2+1)

T
)
|(σ1σL)(σ2σL−1)... (σL/2σL/2+1)〉

= ∑
Σ

DΣ1DΣ2... DΣL/2|Σ1... ΣL/2〉. (2.56)

The new MPS |Ψfold〉 is built from matrices DΣ according to

DΣi = D(σL+1−iσi)
(ai−1aL+1−i),(aiaL−i)

= D(ai−1σiaL+1−iσL+1−i),(aiaL−i)

= A(ai−1σi),ai⊗A(aL+1−iσL+1−i),aL−i

= Aσi
ai−1,ai

AσL+1−i
aL+1−i,aL−i

= Aσi
ai−1,ai

(AσL+1−i
aL−i,aL+1−i)

T . (2.57)

An exception are the two sites at the left and right of bend, AσL/2 and AσL/2+1 and thus DΣL/2 the
last MPS tensor of the folded state (the two small figure at the right in Fig.(2.10)). One obtains
DΣL/2 by an additional contraction over the indices which connect the two A matrices. In order
to get a valid last MPS tensor DΣL/2 one adds a trivial column index with dimension one:

DΣL/2 = D
(σL/2+1σL/2)

(aL/2−1aL/2+1),1
= D(aL/2−1σL/2),(aL/2+1σL/2+1)

= ∑
aL/2

A(aL/2−1σL/2),aL/2
AaL/2,(aL/2+1σL/2+1)

= ∑
aL/2

A
σL/2
aL/2−1,aL/2A

σL/2+1
aL/2,aL/2+1

= ∑
aL/2

A
σL/2
aL/2−1,aL/2(A

σL/2+1
aL/2+1,aL/2)

T . (2.58)

In a very similar way one constructs the new folded MPO FΣ′i,Σi for a given site i. Assuming
Bσ ′i σi to represent the old MPO before the folding the result can be summarized as follows:

FΣ′i,Σi = F
(σ ′i σ ′L+1−i),(σiσL+1−i)

(ai−1aL+1−i),(aiaL−i)
= B(ai−1σ ′i ),(aiσi)⊗B(aL+1−iσ

′
L+1−i),(aL−iσL+1−i)

= Bσ ′i ,σi
ai−1,aiB

σ ′L+1−i,σL+1−i
aL+1−i,aL−i

= Bσ ′i ,σi
ai−1,ai(B

σ ′L+1−i,σL+1−i
aL−i,aL+1−i )T , (2.59)
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Figure 2.10: Folding scheme. After the rotation of the initial tensor network one can see that there is symmetry
around the middle bond of the new MPS. Two bond lying at the same distance from the middle correspond to the
same time in the unrotated network from Fig.(2.9). This also holds for the other tensors in the rotated network,
which have been perfectly correlated in time before the rotation. By folding the network at the middle bond one
can bring these maximally entangled regions on top of each other [see Eqs.(2.56) and (2.59)]. This immediately
reduces long distance correlations which makes otherwise the simulations harder. The time evolution of the new
folded MPSs and MPOs is done in exact the same way as for the rotated network without a folding. The two small
figures on right visualize how one calculates [cp. Eq.(2.58)] the edges of the folded network in order to get proper
MPS and MPO objects.

where again one calculates DΣ′L/2ΣL/2 via a contraction over the indices which connect the two B
matrices at the bend and uses the trick adding a trivial column index. As depicted in Fig.(2.10)
there is one new MPO which contains the information about the observable Ô. One can add the
information to this MPO by a simple merging of Ô with one of the neighboring tensors, e.g. the
tensor BσL/2,σ

′
L/2 , which leads to a new tensor

B̃σ ′′L/2,σL/2 = ∑
σ ′L/2

Ôσ ′′L/2,σ
′
L/2 Bσ ′L/2,σL/2. (2.60)

Apart from this detail one calculates the folded version of this MPO in exact the same way as
already explained above.

Together with the new MPS 〈Ψfold
left | and |Ψfold

right〉 and the new folded MPOs one calculates
the time evolution by a successive application of the folded left and right MPOs on 〈Ψfold

left | and
|Ψfold

right〉 respectively. It turns out that the folding algorithm in combination with the transverse
rotation does only require a small modification of the local basis of the old MPS and MPO, which
after the transverse step is not anymore a constant for the rotated sites. On the other hand one
could also try to implement the whole folding without any rotation of the tensor network.



Chapter 3

Ultra Cold Gases

With the realization of Bose-Einstein condensates [10, 42, 75] and of Fermi degeneracy [76, 244,
272] in dilute ultra cold gases a bright source of giant coherent matter waves is available. This
has opened up a new chapter in atomic and molecular physics in which the atomic matter waves
generated from such condensates can be described by a single macroscopic wave function with
typical wave length scale of several micrometers. This allows to directly visualize and investigate
quantum mechanical matter wave dynamics.

Some prominent examples include the observation of overlapping condensates [14], of long-
range phase coherence [39], the prove of superfluidity through the excitations of vortices [189,
184, 1] and the repulsively bound atom pairs in an optical lattice[287]. The nonlinear behaviour
of the BEC was matter wave was demonstrated with the realization of a matter wave amplifier
[142] and the excitations of solitons [79].

Gases , in particular dilute gases, were never thought to exhibit strong correlation. Now, two
new developments have considerably changed this opinion in the case of ultra cold gases. The
first is the ability to tune the interaction strength in cold gases by Feshbach resonances [64, 143].
The second the possibility of generating strong periodic potentials for cold atoms through optical
lattices [118]. The two developments allow to enter a regime in which interaction in extremely
dilute gases cannot be longer described by a picture based on noninteracting quasiparticles.

Experimentally the strong coupling regime in dilute gases was first reached using Feshbach
resonances for bosonic atoms [63]. This approach has one main disadvantage. The increasing
the scattering length a enhances the the three-body collisions (rate varies on average as a4) and
thus to a strong decrease of the condensate lifetime [96, 214]. In another approach to the strong
coupling regime, an optical lattice has been loaded by BEC [118]. This approach does not suffer
from the problems with lifetime of the condensate. By tuning the amplitude of the laser field
the BEC has shown a quantum phase transition from a superfluid to a Mott-insulating phase
even in the standard regime where the interparticle spacing is much larger scattering length.
Other experiments of this type has followed. The realization of a bosonic Luttinger liquid by
the observation of a Tonks-Girardeau hard-core Bose gas in 1-D [156, 209]. In two dimensions,
a Kosterlitz-Thouless crossover between a normal phase and one with quasi-long-range order
[128].

In the following I divide the discussion about ultra cold atoms in three parts. The first con-
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cerns the realization of the BEC. In the second part I introduce the concept of optical lattices.
Finally, in the third part, I discuss the possible measurement techniques.

3.1 Bose Einstein Condensation
The theory of BEC is directly based on the foundations of of quantum statistics. The condensa-
tion of particles into the ground state of the system without taking into account any interactions
was predicted by Einstein in 1925 [90] as an consequence of his extension of Bose’s work on
photon statistics [40] to massive particles. This section will give an overview of the theory of
BEC in ideal and in dilute and weakly interacting gas systems. I will start with qualitative in-
terpretation the phenomenon of BEC followed by a more formally expressed one in terms of
quantum statistic of an ideal gas.

Depending on its temperature an atomic cloud of bosons behaves in different ways. At high
temperatures, the atoms in the gas behave as point-like particles. When the temperature is low-
ered, the atoms have to be described as quantum mechanical wave packets with an extent on the
order of the de Broglie wavelength

λdB =
h√

2πmkBT
, (3.1)

where T is the temperature and m is he mass of the particle. The size of the atomic wavepackets
gets larger the further the temperature is lowered. At a certain point, the wavelength of the bosons
becomes comparable with the distance between them. The overlap of the atomic wavepackets can
be quantified in terms of the phase-space density, defined as the density of the gas n multiplied
by volume occupied by the wavepacket

D = nλ
3
dB. (3.2)

When the phase-space density is on the order of unity, a phase transition will occur and the bosons
form a Bose-Einstein condensate, where all atoms occupy the same quantum state. The atoms
can then be described by a single macroscopic wave function. The critical temperature for this2.1. Basic concepts

Figure 2.3: The behaviour of a gas of identical bosonic atoms at different temperatures. (A) At high
temperatures, the gas can be treated as system of point-like particles. (B) For sufficiently
low temperatures, the atoms must be described as wavepackets that scatter according to
quantum mechanics. (C) A phase transition to a BEC occurs when the size of the atomic
wavepackets is comparable to the mean distance between particles and the wavepackets
start to overlap. (D) At zero temperature, all particles are in the same quantum state and
can be described by a single macroscopic wave function. Adapted from [Ket99].

have to be described as quantum mechanical wave packets with an extent on the order of
the de Broglie wavelength

λdB =
h√

2πmkBT
, (2.6)

where T is the temperature and m is the mass of the particle. The extent of the atomic
wavepackets gets larger the further the temperature is lowered. At some point, the inter-
atomic separation becomes comparable with size of the atomic wavepackets. The overlap of
the atomic wavepackets can be quantified in terms of the phase-space density, defined as the
density of the gas n multiplied by volume occupied by the wavepacket,

D = nλ3
DB. (2.7)

When the phase-space density is on the order of unity, a phase transition will occur and the
(bosonic) atoms form a Bose-Einstein condensate, where all atoms occupy the same quantum
state. The atoms can then be described by a single macroscopic wave function. Note that to
reach Bose-Einstein condensation, the gas must be sufficiently dilute that it does not become
a liquid or a solid when being cooled. A BEC of atoms is in fact a metastable state, and will
eventually decay through the formation of molecules.

There is a vast body of literature covering ultracold gases and Bose-Einstein condensa-
tion and I will here only review the parts of the subject that are relevant to the work presented
in this thesis. Several textbooks [Pit03, Pet02] and review articles [Ket99, Dal99a, Cas01] pro-
vide further reading.

BEC of an ideal gas

Let us consider an ideal gas of bosons in thermal equilibrium with temperature T . The quan-
tum state v will have a mean occupation number Nv given by the Bose distribution function

Nv =
1

e(�v−µ)/(kBT ) − 1
, (2.8)

where �v is the energy of state v and µ is the chemical potential. For a fixed total number of
particles N , the chemical potential is related to the temperature through the normalization

17

Figure 3.1: The behaviour of a gas of identical bosonic atoms at different temperatures. (A) At high temperatures,
the gas can be treated as system of point-like particles. (B) For sufficiently low temperatures, the atoms must be
described as wavepackets that scatter according to quantum mechanics. (C) A phase transition to a BEC occurs
when the size of the atomic wavepackets is comparable to the mean distance between particles and the wavepackets
start to overlap. (D) At zero temperature, all particles are in the same quantum state and can be described by a single
macroscopic wave function. Adapted from [154].
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phase transition can be directly estimated from [Eq.3.1] and [Eq.3.2]. This critical temperature
is usually several orders of magnitude higher than the temperature corresponding to the energy
level spacing between the ground and the first excited state of the system. Therefore, BEC has
nothing to do with naturally freezing out the atomic motion. It is a true a high-temperature
phenomenon. Note that to reach Bose-Einstein condensation, the gas must be sufficiently dilute
that it does not become a liquid or a solid when being cooled. Moreover a BEC of atoms is
a metastable state, which will eventually decay through the formation of molecules. Several
textbooks [217, 213] and review articles [154, 71, 50][173] cover the topic of ultracold gases and
Bose-Einstein condensation.

3.1.1 BEC of an ideal gas
The most convenient treatment to describe a BEC can be obtained within the framework of
quantum statistics using the grand canonical ensemble. In the following I assume an ideal gas of
bosons in thermal equilibrium with temperature T . According to the Bose distribution the mean
occupation number ni of a single-particle state |i〉 is given by

ni =
1

eβ (εi−µ)−1
, (3.3)

where εi is the energy of the state |i〉 and µ is chemical potential. For a fixed total number of par-
ticles N, the chemical potential is related to the temperature through the normalization condition
N = ∑i ni. The above result provides the important constraint µ < ε0 for the chemical potential
of the ideal Bose gas, where ε0 is the lowest eigenvalue of the single-particle Hamiltonian. The
violation of this equality would result in a negative value for the occupation number of the states
with energy smaller then µ . Now, when µ → ε0 the occupation number of the lowest state

N0 = n0 =
1

eβ (ε0−µ)−1
(3.4)

becomes increasingly large. This is the mechanism of the Bose-Einstein condensation. The total
number of particles can be written as a sum of N0, the occupation number in the ground state,
and a thermal component Nth, the number of particles out of the condensate

N = N0 +Nth = N0 +
∞

∑
i=1

1
eβ (εi−µ)−1

. (3.5)

Now, for a fixed temperature, Nth(µ) varies smoothly and reaches a maximum for µ = ε0. Thus
the maximum number of particles out of condensate is

Nth,max =
∞

∑
i=1

1
eβ (εi−ε0)−1

(3.6)

For very low temperatures Nth,max can be significantly lower than the total number of particles N.
This implies that a significant amount of particles must occupy the ground state. The temperature
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at which the macroscopic occupation of the lowest single-particle state takes place is called the
critical temperature Tc. If the thermal energy is much larger than the spacing between the energy
levels kBT � εi− εi−1 the sum in equation (3.6) can be replaced by an integral

Nth,max =
∫

∞

0
ρ(ε,V (r))N(ε), (3.7)

with ρ(ε,V (r)) the energy of states in a potential U(r) and N(ε) the continuous Bose distribu-
tion. It turns out that the critical temperature Tc depends on the specific confining potential V (r).
Using the fact that the particle density in a given potential is determined by the particle number
and ensemble temperature one can express the critical temperature in dependence of the particel
number. For a harmonic trapping potential V (r) = Arα (with a box potential α→∞), the critical
temperature turns out to be given by the expression [123, 20]

kBTc = h̄ωho

(
N

ζ (3)

)1/3

= 0.94h̄ωhoN1/3, (3.8)

where I have introduced the geometric average ωho = (ωxωyωz)
1/3 of the oscillator frequencies.

ζ (n) is the Riemann function with ζ (3) ≈ 1.202. Another important quantity is the relative
occupation of the ground state

N0

N
= 1−

(
T
Tc

)3/2+3/α

. (3.9)

For potential with lower α , the ground state occupation grows very fast for T → 0. For typical
harmonic potentials about 90% of the atoms occupy the ground state at T = Tc/2. the reason is
the following. The potential becomes steeper around its minimum decreasing α . This leads to
a low number of states at low energies with relatively large spacing, which then favors the the
occupation of the potential ground state.

3.1.2 Ultracold collisions
The differences between an ideal quantum gases and the real quantum gases start with two-
particle interaction. Therefore the study of ultracold collisions is a natural starting point for
investigation of an interacting quantum gas. Collisions determine two crucial aspects of BEC
experiments. The first regards to the evaporative cooling rate necessary for the realization of an
BEC. It turns out that this rate depends on the elastic cross section, proportional to the square
of the s-wave scattering length. Second, the sign of the scattering length indicates the stability
of the condensate. Positive scattering lengths lead to large stable condensates while negative
scattering length do not.

A good approach to describe the scattering of two colliding atoms is to expand their wave
function of the relative motion in spherical partial waves. Each of the spherical partial waves
is characterized by its angular momentum l. At sufficiently low energies, the centrifugal barrier
prohibits partial waves with nonzero angular momentum and only s-wave scattering (l = 0) needs
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to be considered1. The scattering is then isotropic and is characterized by the corresponding
phase shift δ0(k) between the incoming and the outgoing s-wave [171]. In the limit of zero
collision energy, the scattering is usually parameterized by the scattering length

a = lim
k→0

tanδ0(k)
k

, (3.10)

where k denotes the wave vector of the relative motion of the atoms. In the low-energy limit, the
two-body collision problem is then described by one single parameter, the scattering length. This
quantity independent of all the details of the interaction potential between the colliding particles.
For alkali atoms the typical range of the s-wave scattering is in between 10−100a0, where a0 is
the Bohr radius.

For two identical bosons, the collisional cross-section is [72]

σc =
8πa2

1+ k2a2 . (3.11)

This expression has two limiting cases. For large scattering lengths, such that ka� 1, the cross
section is limited by the collision energy, σc = 8π/k2. This is called the unitarity limit. In the
limit of small scattering length, ka� 1, the cross section is σc8πa2.

The above cross section, which is exact in the s-wave limit, corresponds to a point-like scat-
tering potential (pseudopotential)

V (r) = gδ (r), (3.12)

where r is the distance between the colliing particles and the coupling constant g is proportional
to the scattering length

g =
4π h̄2a

m
. (3.13)

This approximation is valid in many situations, provided no longer-range contributions come
into play. For example different forms of dipole-dipole interaction [198][236]. The interaction
is repulsive for positive and repulsive for negative scattering lengths.

Feshbach resonances

In simplified picture, a Feshbach resonance occurs, when the energy of a bound state of the
interatomic potential is equal to the kinetic energy of the colliding pair of atoms. This degeneracy
can occur only when the bound state exist in a potential that has a higher threshold energy than
the energy of the colliding pair. Such a condition can be satisfied for ultracold gases of alkali
atoms, due to their hyperfine structure. This concept has been studied in the context of nuclear
physics [98] and later applied to atom-atom scattering [264].

1and p-wave for fermions
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Figure 3.2: Two-channel model for a Feshbach resonance. Two atoms, which are in the lower hyperfine state F1 = 0
undergo a collision at a low incident energy. In the course of the collision, the open channel is coupled to the closed
channel F2 = 1 via a virtual process (2nd order). When a bound state of F2 = 1 is close to the kinetic energy of the
incoming pair, a scattering resonance occurs. The position of the closed channel can be tuned with respect to the
open one, e.g. by varying the magnetic field. The right figure shows the scattering amplitude a vs. the magnetic
field B. One can tune a from positive to negative, thus, from repulsive to attractive interactions respectively.

In the following I assume a collision between two atoms which are in the lower hyperfine
state F1 = 0. The interatomic potential associated with the upper hyperfine state F2 = 1 may
have a bound state close to the kinetic energy of the incoming pair [see Fig.(3.2)]. The different
magnetic moments mF1 and mF2 one can tune the bound state energy into resonance with the
colliding atom energy using an external magnetic field. The elastic scattering physics, i.e. the
scattering length a, can be dramatically altered by tuning an experimentally accessible parameter
[258]. Additionally to low collision energy and hyperfine structure, one requires for the existence
of a Feshbach resonance a coupling between the open (the continuum energy of this channel is
below the total energy of the incoming atom pair) and the closed channel (the continuum energy
of this channel is above the total energy of the incoming atom pair). The coupling is provided by
the Coulomb interaction, which couples together different hyperfine state at short internuclear
distance. As the atoms move together during a collision, the strong electrostatic interaction be-
tween the nuclei and the electron overwhelms the relatively weak hyperfine interaction, allowing
a spin flip to occur. Due to the symmetry of the two-body system the total magnetic moment
mF tot = mF1 +mF2 is conserved, while the total spin F tot = F1 +F2 is not! This requirements
restrict the number of closed channels that can couple to an open channel.

A Feshbach resonance can be characterized by its position B0, the magnetic field where the
molecular state crosses the incident scattering state, and its width ∆B, which is dependent on the
magnetic moment of the bound state and the strength of the coupling between the two scattering
channels. On a phenomenological level the scattering length around a Feshbach resonance can
be written as

a(B) = abg

(
1− ∆B

B−B0

)
, (3.14)

where abg is the off-resonant background scattering length, which would govern the collision if
no resonance would appear in this field range. In general, the variation of the scattering length
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by external fields means tuning of the two-body interaction between being effectively attractive
and repulsive for sufficient small kinetic energies.

3.1.3 BEC of a weakly interacting gas
A dilute Bose gas of interacting particles in a trapping potential V (r) can at zero temperature
(or very low temperature) be treated in a mean-field approach [124][216][217]. At lowest-order
and low temperatures one can simply replace the operator Ψ̂(r, t) with a classical field Ψ(r, t),
also called the order parameter or the wave function of the condensate. The field operator in the
Heisenberg representation fulfills the exact equation

ih̄
∂

∂ t
Ψ̂(r, t) =

[
− h̄2

2m
∇

2 ++Vext(r)+
∫

Ψ̂
†(r′, t)V (r′− r)Ψ̂(r′, t)dr′

]
Ψ̂(r, t) (3.15)

Now, if one assumes instead of V (r′− r) an effective soft potential Veff
2 where the Born

approximation is applicable one can replace Ψ̂(r, t) with Ψ(r, t). Assuming further that Ψ(r, t)
varies slowly on distances of the order of the range of the interatomic force, one can substitute r′
for r in the arguments of Ψ and obtains the so-called Gross-Pitaevskii equation

ih̄
∂

∂ t
Ψ(r, t) =

[
− h̄2

2m
∇

2 +Vext(r)+g|Ψ(r, t)|2
]

Ψ(r, t), (3.16)

with the coupling constant g = 4π h̄2a
m [cp. Eq.3.13]. the Gross-Pitaevskii equation takes a simple

form in the case of stationary solutions. The time dependence of the condensate ground state
function is fixed by the chemical potential µ = ∂E

∂N . Thus, the condensate function evolves in
time according the law Ψ(r, t) = Ψ(r)e−iµt/h̄. The Gross-Pitaevskii equation then reduces to
[177]

µψ(r) =
[
− h̄2

2m
∇

2 +Vext(r)+g|ψ(r)|2
]

ψ(r), (3.17)

with µ the chemical potential. ψ(r) can be chosen to be a real function with N = N0 =
∫

drψ2

and thus related to the particle density as ψ2(r) = n(r). The energy of the system depending on
the particle density reads

E =
∫ [ h̄2

2m
|∇
√

n|2 +nV (r)+
gn
2

]
dr = Ekin +Epot +Eint. (3.18)

Ekin is the quantum kinetic energy, often refered to as quantum pressure, Epot is the potential
energy of the system and Eint is the interaction energy or the mean-filed energy. The kinetic and
interaction energy terms determine another important parameter, the so-called healing length.

2The potential Veff should reproduce the same low energy scattering properties given by the bare potential V
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The healing length is the distance over which the condensate wave function can compensate for
density variations. It is not possible for the condensate density to grow from 0 to n on arbitrary
short distances, since this would lead to a divergence of the quantum pressure Ekin. The shortest
possible distance ξ for such a change of density is given by the balance of Ekin ∼ h̄2/(2mξ 2) and
the interaction energy Eint ∼ 4π h̄an/m, which defines the healing length

ξ =
1√

8πna
(3.19)

3.1.4 Thomas-Fermi approximation
The Gross-Pitaevskii equation only describes the physics for very low temperatures T → 0, thus
for the condensate fraction only. While the condensation is taking place in the weakly interacting
gas the condensates dynamics is dominated by interactions as the kinetic energy in the lowest
quantum state is relatively small and in most cases negligible compared to the interaction energy.
These assumptions lead to the Thomas-Fermi approximation which consists in neglecting the
kinetic term in the Gross-Pitaevskii equation [3.17], which results in the condensate density

n(r) =

{
µ−Vext(r)

g for µ−Vext(r)> 0
0 otherwise

(3.20)

The Thomas-Fermi approximation allows the determination of several condensate param-
eters. The central condensate density is given by n(0) = µ

g = µm
4π h̄2a

, the chemical potential

as a function of particle number µ = h̄ωho
2 (15Na

aho
)2/5, the mean interaction energy per particle

Ekin
N = 2

7 µ , and finally the condensate radii Ri =
√

2µ

mω2
i
. These equations are very useful in the

discussion of concrete experiments and allow an easy estimation of physical parameters of BEC
[280].

3.1.5 Recent development
Solitons

Solitons are distinguished as wave packet like objects that do not change their shape and prop-
agate with a constant velocity in homogeneous systems. A detailed balance between dispersion
induced spreading and a focusing or defocusing mediated by a non-linear interaction stabilizes
the soliton as it propagates through a well suited non-linear medium [104]. Long-lived dark and
dark-bright solitons with lifetimes of up to several seconds as well as their dynamics has been
observed[281, 254, 27].

Forming Molecules

A promising approach is to create the molecular gas directly from an ultracold atomic gas.
Bosons in Bose-Einstein condensate have been coupled to electronic ground-state molecules
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FIG. 2: Figure 2 — Dark soliton oscillations in a
trapped BEC. a A set of absorption images showing the

soliton position at various times after phase imprinting. The

soliton propagates to the right and is reflected off the edge

of the condensate after t ≈ 80 ms. The corresponding evo-

lution time for each image is given in units of the oscillation

period T . b Results of a numerical calculation solving the 1D

Gross-Pitaevski equation corresponding to our parameters in

units of T are presented. Experimentally observed features

like density modulations caused by a density wave on the left

side of the condensate as well as the development of a tiny

second soliton are reproduced. c Axial positions of the soli-

ton (•) with respect to the center of mass and normalized

to the width of the condensate. The oscillation frequency is

Ω = 2π×(3.8±0.1)Hz. The positition of a second tiny soliton

(•) as well as a sinusoidal fit ( ) to the position of the soli-

ton are shown. Each data point was obtained from a different

experimental run. The scatter is due to small fluctuations in

the preparation process. Errors in extracting the solitons po-

sition from the individual images are typically less than 0.02

and therefore not plotted.
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FIG. 3: Figure 3 — Creation and oscillation of a dark-
bright soliton. a A local population transfer in the center

of the trapped BEC is achieved by a coherent two-photon

Raman process between the two hyperfine states F = 1 and

F = 2 leading to the generation of a dark-bright soliton (b).

c A set of double exposure absorption images showing the

density distributions of the two components which undergo
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the soliton in addition to corresponding sinusoidal fits to the

position. Note that the time scale is different by almost an
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first 175ms see Fig. 4.

Figure 3.3: Dark soliton oscillations in a trapped BEC. A set of absorption images showing the soliton position at
various times after phase imprinting. The soliton propagates to the right and is reflected at the edge of the condensate
after t = 80 ms. From [27]

through photoassociation or Feshbach resonances. The availability of atomic Fermi gases of-
fers the prospect of coupling fermionic atoms to bosonic molecules, thus altering the quantum
statistics of the system. Such a coupling would be closely related to the pairing mechanism in
a fermionic superfluid, predicted to occur near a Feshbach resonance. The first successful ex-
periments [134, 225] produced molecules of fermions using Feshbach resonances. Stimulated
adiabatic Raman passage has been used in order to transfer weakly bound molecules (through
Feshbach resonances) to ground state which avoids heating the sample [198]. Recently chem-
ical reactions between molecules in this new regime has been studied [204] showing that tiny
changes, such as orientation of the single nuclear spin have profound consequences for how
chemical reaction occur. There is an intense parallel effort to cool preexisting molecules (which
cannot be laser cooled) to the ultracold regime which would allow to study chemically important
polar molecules such as ammonia and free radicals.

BEC-BCS crossover

At very low temperatures the kinetic energy of the atoms is very small and scattering between the
atoms can be considered exclusively s-wave. Since s-wave scattering is not allowed for identical
fermions they are essentially non-interacting particles. This is rather uninteresting 3 and there-
fore the investigation concerns systems consisting of different kinds of fermions or Bose-Fermi
mixtures. Interactions are also important for the cooling. More precisely in its last stage known
as evaporative cooling where fast rethermalisation is crucial. This requires naturally strong inter-
actions between atoms, and for this purpose cooling is always performed in mixtures, either of
different fermions or more often of fermions and bosons. The Bardeen-Cooper-Schrieffer (BCS)
formalism with its particular Ansatz for the ground state wavefunction describes the formation
of weakly interacting Cooper pairs as well as strong interacting of a dilute gas of molecules
which undergo a BEC [174]. The ability to tune the interaction through a Feshbach resonance
allows one to explore the crossover from a BCS superfluid, when the attraction is weak and pair-
ing shows up only in momentum space, to a Bose-Einstein condensate of tightly bound pairs

3Actually, non-interacting fermions are of high interest for high-precision atomic clocks.
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in real space. A quantum phase transition to the normal state on the weak-coupling side of the
BCS-BEC crossover [302] as well as a phase separation in the crossover region [302][211], both
driven by density imbalance, have been identified. Contrary to expectations for the weakly inter-
acting case, superfluidity in the resonant region is extremely stable against population imbalance
[302]. This opens a path to realize more exotic solutions which allow superfluidity also with
imbalanced densities, most notably the FFLO state[49].

3.2 BEC in optical lattices

The combination between ultracold atoms and periodic potentials allows to form a physical sys-
tem which is closely related to many systems in condensed matter physics. In order to have a
large tunnel coupling between the neighboring potentials it is highly desirable to keep spacing
between individual lattice sites as small as possible. This can be achieved by using the stand-
ing wave interference pattern of two counterpropagating laser beams, where the lattice spacing
equals half of the laser wavelength. The atoms are can be trapped in the intensity maxima or
minima of light field due to the optical dipole force [152].

3.2.1 Dipole force

When an atom is placed into laser light, the electric field Ê induces an atomic dipole moment d̂
that oscillates with the driving frequency ω [121]. The dipole amplitude d̃ is simply related to
the field amplitude Ẽ by p̃ = α(ω)Ẽ with α the complex polarizability. The potential energy of
the atom in the filed is proportional to the intensity and the real part of the polarizability,

Vdip =−
1
2
〈d̂Ê〉=−1

2
Re(α(ω))I((r)), (3.21)

where the angular brackets denote the time average over rapid oscillating terms. The file intensity
is I = 2ε0c|Ẽ|2, and the factor 1

2 takes into account that the dipole moment is an induced and not
a permanent one. The dipole force results from the gradient of the interaction potential,

Fdip =−∇Vdip(r) =
1
2

Re(α)∇I(r). (3.22)

The direction of the force depends on the sign of the polarizability α(ω). In the vicinity of
the atomic resonance from ground |g〉 to an excited state |e〉 at frequency ω0, one can write the
polarizability using semiclassical approach as α(ωL)≈ |〈e|d̂|g〉|2/h̄(ω0−ωL). Thus, atoms are
attracted to the nodes or the antinodes of the laser intensity for blue- (ωL > ω0) or red-detuned
(ωL < ω0) laser light respectively.



3.2 BEC in optical lattices 39

Er = !2k2/2m

Er
87

θ

σ+ σ−

V+(x, θ) = V0 cos2(kx + θ/2) V−(x, θ) =
V0 cos2(kx − θ/2)
θ

∆x = θ/π · λx/2
θ

θ = n · π n

V0 d = π/k
V0 " Er

!ω0 " Er

q

ε0(q) =
3

2
!ω0 − 2J (cos qxd + cos qyd + cos qzd) + . . .

J > 0
V0 " Er

W → 4J

J =
4√
π

Er

(

V0

Er

)3/4

exp−2

(

V0

Er

)1/2

.

V0 > 15Er

J 10%
Vp(r + R) =

Vp(r)
ψn,q(r)

n
q

Er = !2k2/2m

Er
87

θ

σ+ σ−

V+(x, θ) = V0 cos2(kx + θ/2) V−(x, θ) =
V0 cos2(kx − θ/2)
θ

∆x = θ/π · λx/2
θ

θ = n · π n

V0 d = π/k
V0 " Er

!ω0 " Er

q

ε0(q) =
3

2
!ω0 − 2J (cos qxd + cos qyd + cos qzd) + . . .

J > 0
V0 " Er

W → 4J

J =
4√
π

Er

(

V0

Er

)3/4

exp−2

(

V0

Er

)1/2

.

V0 > 15Er

J 10%
Vp(r + R) =

Vp(r)
ψn,q(r)

n
q

REVIEW ARTICLE

24 nature physics | VOL 1 | OCTOBER 2005 | www.nature.com/naturephysics

complete control of the experimentalist. For example, 
the geometry of the trapping potentials can be changed 
by interfering laser beams under a di! erent angle, thus 
making even more complex lattice con" gurations19, 
such as Kagomé lattices20. # e depth of such optical 
potentials can even be varied dynamically during 
an experimental sequence by simply increasing or 
decreasing the intensity of the laser light, thus turning 
experimental investigations of the time dynamics of 
fundmental phase transitions into a reality.

Each periodic potential formed by a single 
standing wave has the form

Vlat(x) = V0sin2(kLx),

where kL = 2π/λL is the wave vector of the laser 
light used to form the optical standing wave and V0 
represents the lattice potential depth, usually given 
in units of the recoil energy ER = h _ 2kL

2/2m (m being 
the mass of a single neutral atom), which is a natural 
energy scale for neutral atoms in periodic light " elds. 
Note that by choosing to interfere two laser beams 
at an angle less than 180°, one can form periodic 
potentials with a larger period.

# e motion of a single particle in such periodic 
potentials is described in terms of Bloch waves 
with crystal momentum q. However, an additional 
harmonic con" nement arises due to the gaussian 
pro" le of the laser beams (see Fig. 2). Although this 
harmonic con" nement is usually weak (typically 
around 10–200 Hz oscillation frequencies) 
compared with the con" nement of the atoms on 
each lattice site (typically around 10–40 kHz), it 
generally leads to an inhomogeneous environment 
for the trapped atoms. One must be careful, 
therefore, when comparing experimental results 
derived for a homogeneous periodic potential case 
to the ones obtained under the inhomogeneous 
trapping conditions as described.

Owing to the large degree of control over the 
optical lattice parameters, a number of detection 
techniques have become available to directly measure 
the band populations present in the periodic potential. 
A good example of such a measurement technique 
is the mapping of a Bloch state in the nth energy 
band with crystal momentum q onto a free-particle 
momentum in the nth Brillouin zone (see Fig. 3). # is 
can be achieved by adiabatically lowering the lattice 
potential depth, such that the crystal momentum 
of the excitation is preserved during ramp-down. 
# en, the crystal momentum is eventually mapped 
onto a free-particle momentum in the corresponding 
Brillouin zone21,22 (see Fig. 3). For instance, for an 
equal statistical mixture of Bloch states in the lowest 
energy band, one expects a homogeneously " lled 
momentum distribution of the atom cloud within 
the " rst Brillouin zone (a square in momentum space 
with width 2h _ kL). # e atom cloud for such an input 
state should then expand like a square box a$ er the 
adiabatic lowering of the optical lattice potential, 
which has indeed been observed experimently22–24. 
Occupation of higher energy bands becomes visible 
as higher Brillouin zones are populated, and the atom 
cloud expands in a stair-case density distribution a$ er 
adiabatic turn-o! 23 (see Fig. 3e).

a

b

Figure 1 Optical lattice potentials formed by superimposing two or three orthogonal standing waves. 
a, For a 2D optical lattice, the atoms are confi ned to an array of tightly confi ning 1D potential tubes. 
b, In the 3D case, the optical lattice can be approximated by a 3D simple cubic array of tightly 
confi ning harmonic oscillator potentials at each lattice site.
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Figure 2 Optical lattice potentials. a, The standing-wave interference pattern creates a periodic 
potential in which the atoms move by tunnel coupling between the individual wells. b, The gaussian 
beam profi le of the lasers, a residual harmonic trapping potential, leads to a weak harmonic confi nement 
superimposed over the periodic potential. Thus the overall trapping confi guration is inhomogeneous.
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Figure 3.4: Optical lattices. The standing-wave interference pattern creates a periodic potential in which the atoms
move by tunnel coupling between the individual wells. The gaussian beam profile of the lasers, a residual harmonic
trapping potential, leads to a weak harmonic confinement superimposed over the periodic potential. Thus the overall
trapping configuration is inhomogeneous (left). The middle and the right picture show the resulting lattice structure
after superimposing two, respectively, three orthogonal standing waves. Illustration from [37]

3.2.2 Optical potential
The intensity profile I(r,z) of a Gaussian laser beam propagating along the z direction has the
form

I(r,z) =
[

2P
πw2(z)

]
e−2r2/w2(z), (3.23)

with P the total power of the laser beam, r the distance from the center, and w(z)=w0

√
1+ z2/z2

R

the 1/e2 radius. This radius is characterized by a beam waist w0, which is typically around
100µm, and the Rayleigh length zR, which is in the millimeter to centimeter range. Due to the
Stark shift, that atoms experience in an off-resonant light field [121], a potential minimum occurs
around the intensity maximum of the beam leading to an approximately harmonic potential

Vdip ≈−Vtrap
[
1−2(r/w0)

2− (z/z0)
2] . (3.24)

The trap depth Vtrap is linearly proportional to the laser power.

3.2.3 Optical lattices
Two superimposed counter-propagating narrow-band laser beams will interfere and create an
optical standing wave with period λ/2. If the laser beams are far detuned from the atomic
resonance and have radially symmetric Gaussian beam profiles, the resulting periodic potential
at the beam focus takes the form

V (r,z)'−V0e−2r2/w2(r) sin2(kz), (3.25)

where k = 2π/λ is the wave vector of the laser light. An easy way to create a standing wave is
to simply retro-reflect a single beam by a perfect mirror. Due to constructive interference of the
two laser beams, V0 is four times larger than Vtrap (which is not retro-reflected) if the laser power
and beam parameters of the two interfering lasers are equal.

Periodic potentials in two dimensions are formed by overlapping two optical standing waves
along, not necessarily, orthogonal direction. The resulting optical potential in the center of the
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trap is is then a simple sum of sinusoidal potential in bot directions. In such a configuration
atoms are confined to arrays of tightly confining one-dimensional tubes. The trapping potential
strength in the radial direction of each tube goes up to 100 kHz. Since the trapping potential
strength along the tubes are much weaker, around 10−200 Hz, the atoms can only move axially
along the tube. Thus, each tube represents a highly tunable one dimensional system of strongly
correlated atoms. The first realizations of such quantum wires are [117, 195, 209, 156, 265].

By adding a third optical standing wave, orthogonal to the previous two, one can create a
three-dimensional lattice potential. The resulting potential is then given by the sum of the three
standing waves. The trapping potential in the center of the trap can be approximated as the sum
of a homogeneous periodic lattice potential

Vp(x,y,z) =V0(sin2(kx)+ sin2(ky)+ sin2(kz))+Vtrap, (3.26)

with the harmonic trapping potential

Vtrap =
1
2
(mω

2
x x2 +mω

2
y y2 +mω

2
z z2) (3.27)

as an additional external harmonic confinement due to the Gaussian laser beam profile.
Coming back to the one dimensional wires created by a a two-dimensional optical lattice

lattice potential. By superimposing of two weak standing waves with different frequencies along
the direction of the tube it is possible to create so-called superlattice structures, e.g. 2D arrays of
of double-well potentials [248]. The advantage of such superlattice structures is the possibility to
manipulate (almost) independently the intrawell and interwell interactions. First main examples
for the rich possibilities of superlattices are the study of the superexchange mechanism [103],
the spin-dependent transport [172] and the development of a new mapping procedure [249].
Moreover, a variety of lattice structures can be obtained by interfering laser beams under different
angles [148, 125].

3.2.4 Band structure
The eigenstates for a periodic potential Vp(r+R) = Vp(r) maybe written in terms of the Bloch
functions, which are a product between an envelope plane wave function and a periodic function
un,q(r) = un,q(r+R) that has the same periodicity as the as the potential

ψn,q(r) = eiqrun,q(r). (3.28)

The corresponding energy eigenvalue of a periodic potential with periodicity Q (the reciprocal
lattice vector) is εn(q) = εn(q+Q). The energies associated with the index n vary continuously
with wavevector q and form an energy band identified by band index n. All distinct values of
εn(q) occur for q-values within the first Brillouin zone of the reciprocal lattice [15]. The Bloch
states form an orthogonal set of eigenstates to the Schrödinger equation delocalized over the
entire lattice. This a good choice of basis to work with if the lattice is shallow. However, when
working with deep lattices, it is more convenient to work with a set of states localized to a single
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U J

Figure 3.5: Bose Hubbard Hamiltonian in one dimension. This cartoon picture illustrates a system consisting of
two different bosonic species in a lattice potential which is described by the interaction U and the hopping J.

lattice site R. This is provided by the Wannier functions wnR which are connected with the Bloch
functions by a Fourier transform

ψn,q(r) = ∑
Q

wnReiqR. (3.29)

The Wannier functions depend only on the relative distance r−R. The Wannier functions form
a complete basis for all bands n and sites R. Therefore one can expand the operator ψ̂(r), which
destroys a particle at an arbitrary point r, in the form

ψ̂(r) = ∑
n,R

wn(r−R)ân,R, (3.30)

where ân,R is the annihilation operator for particles in the corresponding Wannier states.

3.2.5 Bose Hubbard Hamiltonian
One of the first examples demonstrating the possibilities how cold atoms combined with opti-
cal lattices can be used to study many body phenomena was the Superfluid-Mott transition for
bosonic atoms [118, 100]. A conceptual simple model to describe cold atoms in an optical lat-
tice at finite density is the Bose-Hubbard model. The Bose-Hubbard model is obtained from a
general many-body Hamiltonian for bosonic atoms in an external potential

Ĥ =
∫

drψ̂
†(r)

(
− h̄2

2m
∇

2 +V0(r)+Vtrap(r)
)

ψ̂(r)+
g
2

∫
drψ̂

†(r)ψ̂†(r)ψ̂(r)ψ̂(r), (3.31)

with V0(r) the optical potential 3.26 and Vtrap(r) an additional (slowly varying) external trapping
potential 3.27. The interaction energy is approximated by a short-range contact potential with
g = 4πah̄2

m 3.13. In the following I assume that the thermal and the mean interaction energies at
a site are much smaller compared to h̄ω0 the excitation energy to the second band. Expanding
the field operators in the Wannier basis 3.30 and keeping only the lowest vibrational states 4,
ψ̂(r) = ∑R w(r−R)aR, the general many-body Hamiltonian 3.31 reduces to the Bose-Hubbard
model [144]

Ĥ =−J ∑
〈RR′〉

â†
RâR′+

U
2 ∑

R
n̂R(nR−1)+∑

R
εRnR, (3.32)

4the Wannier functions have to decay essentially within a single lattice constant
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Box 2 | Creating controlled disordered potentials.

In atomic gases, disorder can be created in a controlled way. For instance, the so-called speckle potentials are formed as follows107. A
coherent laser beam is diffracted through a ground-glass plate and focused by a converging lens (Box 2 Fig. 1a). The ground-glass plate
transmits the laser light without altering the intensity, but imprinting a random phase profile on the emerging light. Then, the complex electric
field E(r) on the focal plane results from the coherent superposition of many independent waves with equally-distributed random phases, and
is thus a Gaussian random process. In such a light field, atoms with a resonance slightly detuned with respect to the laser light experience
a disordered potential V(r) which, up to a shift introduced to ensure that the statistical average �V� of V(r) vanishes, is proportional to the
light intensity, V(r) ∝ ±(|E(r)|2 − �|E|2�), an example of which in shown in Box 2 Fig. 1b. Hence, the laws of optics allows us to precisely
determine all statistical properties of speckle potentials. First, although the electric field E(r) is a complex Gaussian random process, the
disordered potential V(r) is not Gaussian itself, and its single-point probability distribution is a truncated, exponential decaying function,
P (V(r)) = e−1|VR|−1 exp(−V(r)/VR)Θ (V(r)/VR + 1), where

�
�V2� = |VR| is the disorder amplitude and Θ is the Heaviside function. Both

modulus and sign of VR can be controlled experimentally30: The modulus is proportional to the incident laser intensity while the sign is
determined by the detuning of the laser relative to the atomic resonance (VR is positive for ‘blue-detuned’ laser light30, 36, 39, 41, and negative
for ‘red-detuned’ laser light35, 37, 40). Second, the two-point correlation function of the disordered potential, C2(r) = �V(r)V(0)�, is determined
by the overall shape of the ground-glass plate but not by the details of its asperities107. It is thus also controllable experimentally30. There
is however a fundamental constraint: Since speckle potentials result from interference between light waves of wavelength λL coming from a
finite-size aperture of angular width 2α (Box 2 Fig. 1a) they do not contain Fourier components beyond a value 2kC, where kC = (2π/λL) sin(α).
In other words, C2(2k) = 0 for |k| > kC.

Speckle potentials can be used directly to investigate the transport of matter-waves in disordered potentials35–38. They can also be super-
imposed to deep optical lattices83. In the latter case, the physics is described by Box 1 Hamiltonian (2) with Vσ, j a random variable whose
statistical properties are determined by those of the speckle potential. In particular, Vσ, j is non-symmetric and correlated from site to site. Yet
another possibility to create disorder in deep optical lattices is to superimpose a shallow optical lattice with an incommensurate period38, 42, 82.
In this case, Vσ, j = ∆ cos(2πβ j + φ), where ∆ and φ are determined by the amplitude and the phase of the second lattice and β = k2/k1 is the
(generally irrational) ratio of the wavevectors of the two lattices. Although the quantity Vσ, j is deterministic, it mimics disorder in finite-size
systems32, 33, 84, 85. In contrast to speckle potentials, these bichromatic lattices form a pseudo-random potential, which is bounded (|Vσ, j| � ∆)
and symmetrically distributed.

Box 2 Figure 1 | Optical speckle potentials. a) Optical configuration. b) Two-dimensional representation of a speckle potential.

actions, the Fermi superfluid is well described by the Bardeen-Schrieffer-
Cooper (BCS) theory and formation of spatially extended Cooper pairs
consisting of two fermions of opposite spins and momenta. On the re-
pulsive side, pairs of fermions form bosonic molecules, which undergo
Bose-Einstein condensation. Although disorder should not significantly
affect pairing, BCS superfluidity and BEC superfluidity are expected to
react differently to disorder78, 79. The famous Anderson theorem80 indi-
cates that disorder should not affect very much the BCS superfluid ow-
ing to the long-range and overlapping nature of the Cooper pairs. Con-
versely, disorder should seriously affect the molecular BEC, enhancing
phase fluctuations.

Strongly-correlated lattice gases
Strong interactions are also very important in various disordered sys-
tems, e.g. superfluids in porous media or ‘dirty’ superconductors. Metal-
insulator transitions attain a particularly interesting, but not fully under-
stood character in lattice systems. In this respect, the Bose-Hubbard
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â j +

1
2

�

j

U â
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is central in condensed-matter physics47 for it forms a tractable model,
which captures the elementary physics of strongly interacting systems.
Hamiltonian (4) describes bosons, in a lattice with inhomogeneous on-
site energies Vj, which can tunnel between the sites, with rate J, and
interact when placed in the same site, with interaction energy U. In-
terestingly, this model contains the most fundamental two phenomena
underlying metal-insulator transitions. They correspond to the Ander-
son transition5, 6 in the absence of interactions (U = 0) as discussed
above, and to the Mott transition81 in the absence of disorder (V = 0). In
systems dominated by repulsive interactions, density fluctuations, which
are energetically costy, are suppressed, and a Mott insulator (MI) state,
|ΨMI� ∝

�
j (â†

j
)n|0�, is formed. Then, the number of bosons per site,

n = [µ/U + 1], where [.] represents the integer part, is determined and

5

Figure 3.6: Disorder potential created with a glass plate. A coherent laser beam is diffracted through a ground-glass
plate and focused by a converging lens. The ground-glass plate transmits the laser light without altering the intensity,
but imprinting a random phase profile on the emerging light. Then, the complex electric field on the focal plane
results from the coherent superposition of many independent waves with equally-distributed random phases, and is
thus a Gaussian random process. Illustration taken from [239].

where 〈RR′〉 denotes the sum over all lattices R and its nearest neighbors. The parameters U =
g
∫

dr|w(r)|4 correspond to the strengh of the repulsion of two atoms on the lattice site R, J =∫
drw∗(r−R)[− h̄

2m∇2 +V0(r)]w(r−R′) is the hopping matrix element between neighboring
sites, and εR =

∫
dRVtrap|w(r−R)|2 ≈ Vtrap(R) describes the energy offset at each lattice site.

The Bose-Hubbard model describes the competition between the kinetic energy J and the on-site
interaction U . The advantage of the optical lattices is that ratio between U/J can be changed
by varying the dimensionless depth V0/Er of the optical lattice, which is controlled by the laser
light.

In the following I will consider an optical lattice at very low filling. A pair of atoms at the
same site has an energy U above or below the center of the lowest band. If the interaction energy
is attractive U < 0 and sufficiently large the two particles will for a bound state. In the repulsive
case the pair is usually expected to be unstable. The two atoms will try to hop onto different
lattice sites far from each other. But this process is forbidden if the energy of the two particles
is above the energy of the band for a repulsive interaction U > Uc. The momentum and energy
conservation do not allow the two particles to separate because there are simply no free states
available which can absorb this energy. Thus the two atoms can also form a repulsive bound pair
[287].

3.2.6 Recent development
BEC in quasiperiodic lattices. Disorder

Current activities in the field of ultracold atoms in optical lattices concerns disorder in interacting
quantum systems. Such systems constitute paradigmatic examples of mesoscopic systems where
the interplay of interactions, quantum interferences and the external potential give rise to a rich
physics. One central aspect for bosonic systems [111] is the competition between disorder, which
tends to localize particles [12], and weak repulsive interactions, which instead have a delocalizing
effect. Joint theoretical [73, 234, 238, 237] and experimental efforts [183, 61, 246, 89] has been
made and recently Anderson localization has been observed in one and two-dimensional systems
of ultracold atoms [168, 35, 247]. It is impossible to completely eliminate it in real physical
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systems, but its effect on the microscopic components of matter is not as negative as it was
previously thought. Recently the effect of disorder on superconductivity and quantum magnetism
has been investigated [239].

for three different values of J. In all three cases, the system enters the
localized regime at the same disorder strength, providing compelling
evidence of the scaling behaviour intrinsic to the model described in
equation (1).

In this regime, the eigenstates of the hamiltonian in equation (1)
are exponentially localized, and the tails of diffusing wave packets are
expected to behave like stretched exponentials24. We therefore ana-
lysed the tails of the spatial distributions with an exponential func-
tion of the form fa(x)5Aexp(2j(x2 x0)/lja), the exponent a being a
fitting parameter. Two examples of this analysis, one for weak dis-
order and one for strong disorder, are shown in Fig. 3a, b. The
exponent a exhibits a smooth crossover from a value of two to a
value of one as D/J increases (Fig. 3c), signalling the onset of an
exponential localization. The value a5 2 that we obtain for small
D/J corresponds to the expected ballistic evolution of the initial
gaussianmomentum distribution of the non-interacting condensate.
We note that in the radial direction, where the system is only har-
monically trapped, the spatial distribution is always well fitted by a
gaussian function (a5 2).

Information on the eigenstates of the system can also be extracted
from the analysis of the momentum distribution of the stationary
atomic states in the presence of the harmonic confinement. The
width of the axial momentum distribution P(k) is inversely propor-
tional to the spatial extent of the condensate in the lattice. We mea-
sure it by releasing the atoms from the lattice and imaging them after
a ballistic expansion.

In Fig. 4, we show examples of the experimental momentum dis-
tributions that are in agreement with the model predictions for the
low-lying eigenstates. Without disorder, we observe the typical grat-
ing interference pattern with three peaks at k5 0,62k1, reflecting the
periodicity of the primary lattice. The very small width of the peak at
k5 0 indicates that the wavefunction is spread over many lattice
sites25. For weak disorder, the eigenstates of the hamiltonian in equa-
tion (1) are still extended, and additionalmomentum peaks appear at
momentum space distances 62(k12 k2) from the main peaks, cor-
responding to the beating of the two lattices. As we further increase
D/J, P(k) broadens and its width eventually becomes comparable
with that of the Brillouin zone, k1, indicating that the extension of
the localized states becomes comparable with the lattice spacing.
From the theoretical analysis of the Aubry–André model, we have a
clear indication that in this regime the eigenstates are exponentially
localized on individual lattice sites.

We note that the side peaks in the two bottom profiles of Fig. 4a, b
indicate that the localization is non-trivial, that is, the tails of the
eigenstates extend over several lattice sites even for large disorder.
The small modulation on top of the profiles is due to the interference
between the several localized states over which the condensate is
distributed. In Fig. 4c, we present the root-mean-squared width of
the central peak of P(k) as a function of D/J, for three different values
of J. The three data sets lie on the same line, confirming the scaling
behaviour of the system. A visibility of the interference pattern,
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realized in the experiment. The hopping energy J describes the tunnelling
between different sites of the primary lattice and 2D is the maximum shift of
the on-site energy induced by the secondary lattice. The lattice constant is
516 nm. b, Typical calculated density plot of a low-lying eigenstate of the
bichromatic potential, as a function ofD/J (vertical axis). For small values of
D/J the state is delocalized over many lattice sites. For D/J$ 7 the state
becomes exponentially localized on lengths smaller than the lattice constant.
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Figure 2 | Probing the localization with transport. a, In situ absorption
images of the Bose–Einstein condensate diffusing along the quasi-periodic
lattice for different values of D and J/h5 153Hz (where h denotes Planck’s
constant). ForD/J. 7 the size of the condensate remains at its original value,
reflecting the onset of localization. b, Root-mean-squared size of the
condensate for three different values of J, at a fixed evolution time of 750ms,
versus the rescaled disorder strengthD/J. The dashed line indicates the initial
size of the condensate. The onset of localization appears in the same range of
values of D/J in all three cases. Vertical error bars, 95% confidence level
(62 s.e.m.); horizontal error bars, 10% uncertainty due to the nonlinearity
of the modulators’ response.
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for three different values of J. In all three cases, the system enters the
localized regime at the same disorder strength, providing compelling
evidence of the scaling behaviour intrinsic to the model described in
equation (1).

In this regime, the eigenstates of the hamiltonian in equation (1)
are exponentially localized, and the tails of diffusing wave packets are
expected to behave like stretched exponentials24. We therefore ana-
lysed the tails of the spatial distributions with an exponential func-
tion of the form fa(x)5Aexp(2j(x2 x0)/lja), the exponent a being a
fitting parameter. Two examples of this analysis, one for weak dis-
order and one for strong disorder, are shown in Fig. 3a, b. The
exponent a exhibits a smooth crossover from a value of two to a
value of one as D/J increases (Fig. 3c), signalling the onset of an
exponential localization. The value a5 2 that we obtain for small
D/J corresponds to the expected ballistic evolution of the initial
gaussianmomentum distribution of the non-interacting condensate.
We note that in the radial direction, where the system is only har-
monically trapped, the spatial distribution is always well fitted by a
gaussian function (a5 2).

Information on the eigenstates of the system can also be extracted
from the analysis of the momentum distribution of the stationary
atomic states in the presence of the harmonic confinement. The
width of the axial momentum distribution P(k) is inversely propor-
tional to the spatial extent of the condensate in the lattice. We mea-
sure it by releasing the atoms from the lattice and imaging them after
a ballistic expansion.

In Fig. 4, we show examples of the experimental momentum dis-
tributions that are in agreement with the model predictions for the
low-lying eigenstates. Without disorder, we observe the typical grat-
ing interference pattern with three peaks at k5 0,62k1, reflecting the
periodicity of the primary lattice. The very small width of the peak at
k5 0 indicates that the wavefunction is spread over many lattice
sites25. For weak disorder, the eigenstates of the hamiltonian in equa-
tion (1) are still extended, and additionalmomentum peaks appear at
momentum space distances 62(k12 k2) from the main peaks, cor-
responding to the beating of the two lattices. As we further increase
D/J, P(k) broadens and its width eventually becomes comparable
with that of the Brillouin zone, k1, indicating that the extension of
the localized states becomes comparable with the lattice spacing.
From the theoretical analysis of the Aubry–André model, we have a
clear indication that in this regime the eigenstates are exponentially
localized on individual lattice sites.

We note that the side peaks in the two bottom profiles of Fig. 4a, b
indicate that the localization is non-trivial, that is, the tails of the
eigenstates extend over several lattice sites even for large disorder.
The small modulation on top of the profiles is due to the interference
between the several localized states over which the condensate is
distributed. In Fig. 4c, we present the root-mean-squared width of
the central peak of P(k) as a function of D/J, for three different values
of J. The three data sets lie on the same line, confirming the scaling
behaviour of the system. A visibility of the interference pattern,
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Figure 1 | The quasi-periodic optical lattice. a, The quasi-periodic potential
realized in the experiment. The hopping energy J describes the tunnelling
between different sites of the primary lattice and 2D is the maximum shift of
the on-site energy induced by the secondary lattice. The lattice constant is
516 nm. b, Typical calculated density plot of a low-lying eigenstate of the
bichromatic potential, as a function ofD/J (vertical axis). For small values of
D/J the state is delocalized over many lattice sites. For D/J$ 7 the state
becomes exponentially localized on lengths smaller than the lattice constant.
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Figure 2 | Probing the localization with transport. a, In situ absorption
images of the Bose–Einstein condensate diffusing along the quasi-periodic
lattice for different values of D and J/h5 153Hz (where h denotes Planck’s
constant). ForD/J. 7 the size of the condensate remains at its original value,
reflecting the onset of localization. b, Root-mean-squared size of the
condensate for three different values of J, at a fixed evolution time of 750ms,
versus the rescaled disorder strengthD/J. The dashed line indicates the initial
size of the condensate. The onset of localization appears in the same range of
values of D/J in all three cases. Vertical error bars, 95% confidence level
(62 s.e.m.); horizontal error bars, 10% uncertainty due to the nonlinearity
of the modulators’ response.
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Figure 3.7: Quasi-periodic optical potential and Anderson localization. The left figure shows the resulting quasi-
periodic lattice structure of a one dimensional lattice which is perturbed by a second, weak incommensurate lattice.
The hopping energy J describes the tunnelling between different sites of the primary lattice and 2∆ is the maximum
shift of the on-site energy induced by the secondary lattice. The right figure shows the calculated density of a low-
lying eigenstate of the bichromatic potential, as a function of ∆/J (vertical axis). For small values of ∆/J the state is
delocalized over many lattice sites. For ∆/J > 7 the state becomes exponentially localized on lengths smaller than
the lattice constant. Illustrations from [230].

Dipolar gases in optical lattices

Atoms or molecules having a permanent dipole moment (either magnetic or electric) interact not
only via short-range potentials, but also via the dipole-dipole interaction. Contrary to the case of
usual quantum degenerate bosonic gases, where s-wave scattering dominates (often replaced by a
contact potential proportional to the scattering length a) the physics of dipolar gases is governed
by the interaction potential being long-range and anisotropic. There are several candidates to
realize experimentally a dipolar quantum gas: Rydberg atoms [291], which can have very large
induced electric dipole moments, molecules having a permanent electric dipole moment d [204,
203], or ground state atoms, e.g. chromium [120], having a large magnetic moment µ . Recently
dipolar effects has been observed in alkali atoms [94, 273]. This longer range interaction will
allow access to a new regime of strongly correlated quantum gases with unique phase transitions,
such as to supersolid phases for bosons [115] and to topological superfluid phases for fermions
[62]. Dipolar atoms in two-dimensional lattices can be used in order to create controllable states,
robust against small local imperfections, aimed to be quantum memories [224] used for quantum
information processing.

Quantum simulator

Conventional computers lack the processing power to calculate the behavior of complex quan-
tum systems. For the general description of a quantum spin system with 300 particles a computer
would need more memory than there is available in the world. Atoms in an optical lattice are a
nearly perfect quantum simulator for solids, as they offer a very flexible model-system in a clean
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and well-controlled environment. Recent development in this field go beyond the realization of
simple cubic structures. More complex lattice configuration such as arrays of fully controllable
double wells [271] has opened a way for study of magnetic systems [23] or the Landau-Zener
phenomenon [56]. A possibility to generate artificially generated vector gauge potentials was
demonstrated in [178] which shows possible to study the fractional quantum hall effect [129].
In the same fashion one can create ladder systems or 2D checkerboard structures studying topo-
logical effects on single plaquettes [208] or d-wave pairing and superconductivity [226]. The
realization of triangonal and hexagonal structures [26] exhibit very rich new phases showing,
e.g. supersolidity [193, 282], quantum stripe ordered states, exotic superconducting states [188]
or graphene-like physics [151]. Recently it was proposed how frustrated quantum magnets can
be realized within a triangular optical lattice [87].

Quantum Information Processing

Atoms in an optical lattice in the Mott insulator regime serve as a large qubit [16] register.
Neutral atoms present two essential advantages for quantum information processing. They are
relatively weakly coupled to the environment, so that decoherence can be controlled better than
in most other systems [43]. A simple 1D model for quantum computation based on an optical
lattice with one atom per lattice site and coherent manipulation between two different atomic
ground states has been proposed in [207]. Another proposal for a massively parallel quantum
gate array, which allows the creation of a highly entangled many-body cluster state through
coherent collisions between atoms on neighboring lattice sites has been made [270]. Based on
a double well potential a technique has been developed to adress spatially dense field-intensitive
qubit register and perform quantum gates [180].

Relaxation Physics

Recent experiments, especially with ultracold gases, have revived the interest on relaxation
physics of non-integrable and integrable systems. For integrable systems, the time evolution
can cause a dephasing effect, leading for finite subsystems to certain steady states [24]. It is
an open question whether a given integrable system in a certain initial state will evolve to any
steady state and whether this will be a thermal state ρ ≈ e−∑k akÔk . Such experiments with inte-
grable systems have shown the absence of thermalization [157, 138]. An analytical prove under
what circumstances integrable systems relax to non-canonical steady states has been given [24].
Whether or how thermalization occurs in non-integrable systems is in general unclear [228]. In
the study of relaxation processes in coherent non-equilibrium dynamics of quenched quantum
systems, ultracold atoms in optical superlattices with periodicity two provide a very fruitful test
ground [101, 66]. While the global system preserves the information about the initial condi-
tion, local quantities, like local magnetization [24], relax to the state having maximum entropy
respecting the constraints of the initial condition.



3.3 Measurement in optical lattices 45

Bose-Fermi mixtures

Mixtures between bosonic and fermionic gases in optical lattices form novel quantum many-
body systems. Such mixtures occur frequently in nature, where usually bosons act as carriers of
force between fermionic particles5. Since cooling of fermions very difficult due to the lack of
s-wave scattering (three-body processes are very unlike) most cooling strategies for fermions use
evaporation of bosons. Thus, Bose-Fermi mixtures come across with experiments on ultracold
fermions.

Pairing of fermions with one or more bosons opens a path to new quantum phases in one
and more dimensions [202, 127, 221]. These mixtures also suggest fundamental relevance for a
broad range of phenomena, like high-TC [141], but also exotic systems such as neutron stars and
quark-gluon plasmas [259]. Recently a Bose-Fermi mixture was used as a playground for the
investigation of chemical reactions [204].

3.3 Measurement in optical lattices

The primary tool of detecting and characterizing cold atom systems are interference experiments
[32, 67]. First experiments have been focused on demonstrating macroscopic coherence of large
Bose Einstein condensates [14]. Subsequent work has used interference experiments to explore
more interesting phases and phenomena. To name only few examples, the interference in time-
of-flight experiments was used to explore the superfluid to Mott insulator transition in optical
lattices [118], analysis of fluctuations in low-dimensional systems [128, 138], and studies of
phase diffusion and decoherence in dynamically split condensates [14, 137, 249]. But these
interference patterns can also contain information about second- and higher-order coherence
[6]. The analyse of second-order correlation and anticorrelations within the interference patterns
has been used to demonstrate the Hanburry Brown Twiss [130] type of bunching of bosonic
[102, 206, 252, 240, 126] and antibunching and fermionic atoms [231, 147, 119].

3.3.1 Time-of-flight and adiabatic measurement

There exist two possible methods to release ultracold gases from optical lattice. The first way is
turn off the potential abruptly. Assuming that the atoms do not interact after the release a given
Bloch state with quasimomentum q will expand according to its momentum distribution as a
plane wave with momenta pn = h̄q±n2h̄k. After a certain time of flight a laser beam illuminates
the falling atoms and the resulting shadow is imaged on a CCD chip [154]. The amount of light
absorbed is related to the column density of the atom cloud, and by comparing the shadow image
to a reference image taken with no atoms present, the density distribution and atom number can
be determined. The absorption imaging is destructive and one must rerun the experiment for
every picture. The density distribution observed after a fixed time of flight at position x (on the

5A prominent example of such systems is the conventional Bardeen-Cooper-Schrieffer superconductivity, caused
by an effective interaction between fermions induced by the elcetron-phonon coupling.
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Figure 3.8: Time of flight measurement. A BEC is re-
leased from the harmonic trap (a) and, while expand-
ing, falls down due to the gravitation force. After some
time of flight an absorption image of the expanding
cloud is taken, which can be seen in (b) and (c). Illus-
tration from [37].
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Direct observation of second-order atom tunnelling
S. Fölling1, S. Trotzky1, P. Cheinet1, M. Feld1, R. Saers2, A. Widera1,3, T. Müller1,4 & I. Bloch1

Tunnelling ofmaterial particles through a classically impenetrable
barrier constitutes one of the hallmark effects of quantum physics.
When interactions between the particles compete with their
mobility through a tunnel junction, intriguing dynamical beha-
viour can arise because the particles do not tunnel independently.
In single-electron or Bloch transistors, for example, the tunnelling
of an electron or Cooper pair can be enabled or suppressed by the
presence of a second charge carrier due to Coulomb blockade1,2.
Herewe report direct, time-resolved observations of the correlated
tunnelling of two interacting ultracold atoms through a barrier in
a double-well potential. For the regime in which the interactions
between the atoms are weak and tunnel coupling dominates, indi-
vidual atoms can tunnel independently, similar to the case of a
normal Josephson junction. However, when strong repulsive
interactions are present, two atoms located on one side of the
barrier cannot separate3, but are observed to tunnel together as
a pair in a second-order co-tunnelling process. By recording both
the atom position and phase coherence over time, we fully char-
acterize the tunnelling process for a single atom as well as the
correlated dynamics of a pair of atoms for weak and strong inter-
actions. In addition, we identify a conditional tunnelling regime in
which a single atom can only tunnel in the presence of a second
particle, acting as a single atom switch. Such second-order tunnel-
ling events, which are the dominating dynamical effect in the
strongly interacting regime, have not been previously observed
with ultracold atoms. Similar second-order processes form the
basis of superexchange interactions between atoms on neighbour-
ing lattice sites of a periodic potential, a central component of
proposals for realizing quantum magnetism4–7.

For the description and observation of quantum mechanical tun-
nelling, a double-well-type potential, where two localized spatial
modes are separated by a barrier, is among the conceptually simplest
set-ups. When a particle is initially prepared on one side of this
barrier, it will tunnel back and forth between the two sides with a
well-defined frequency. For macroscopic quantum systems, such as
superconductors or atomic Bose–Einstein condensates, this tunnel
coupling can lead to a Josephson-type tunnelling dynamics8–10.When
interactions between individual particles are much stronger than
the tunnel coupling in the system, quantized Josephson dynamics
arises—inwhich, for example, the charge carriers in superconducting
devices tunnel individually across barriers11,12.

In the case of coupled mesoscopic quantum dots, a co-tunnelling
regime can be achieved, where separate electrons only tunnel in a
correlated way13,14. For ensembles of ultracold atoms in periodic
potentials, strong interactions fundamentally alter the properties of
the many-body system, leading to strongly correlated phases such as
the Mott insulating state15–19. In such cases, where direct first-order
tunnelling of single atoms is highly suppressed, second-order corre-
lated tunnelling processes can be the dominant dynamical effects.
Despite the absence of direct long-range interaction mechanisms
between particles, second-order ‘‘superexchange’’-type processes

can provide effective spin-dependent interactions between particles
at separate positions4–7.

The dynamics of interacting bosonic atoms in a double well with
tight confinement is described by a quantized Josephson or a two-
mode Bose–Hubbard hamiltonian11,12
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Figure 1 | Schematics of double-well generation, loading and detection
sequences. a, Superimposing two optical lattice potentials differing in
period by a factor of two creates an array of double-well potentials.
b, Preparation sequence. An initially large well is split into a biased double-
well potential such that each left well is populated. The bias is then removed
and the central barrier lowered to initiate the tunnelling dynamics (d denotes
the well separation). c, Position measurement. The atom number on each
side can be recorded by ‘dumping’ the population of the left well into an
excited vibrational state of the right well21. Subsequent band-mapping
projects both states into separate Brillouin zones in free space30 (marked red
and blue in the inset). d, Interferometric detection. After sudden release
from the double-well potential and a period of free expansion, the double-slit
interference pattern is recorded. Particles localized to one well exhibit no
interference; for delocalized atoms the pattern yields the relative single-
particle phase (2p/2 in the case shown).
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Figure 3.9: Density measurement via band mapping
technique. The population of the left well is lifted
by the help of a superlattice. As soon as the tunnel
barrier between the left and right well becomes vary
small the particles from the left well can tunnel to right
well where they initially occupy a higher band. Dur-
ing the adiabatic ramp down of the confining potential
the quasi momentum is conserved. The Bloch wave in
the nth energy band in the right well is mapped onto
a free particle with momentum p in the nth Brillouin
zone [271].

CCD chip) corresponds to the momentum distribution of the particles

n(x) = (mh̄t)3|w(k)|2G (k), (3.33)

with k = mx/h̄t due to the assumption of a ballistic expansion. w(k) is the Fourier transform of
the Wannier function. All coherence properties are characterized by the Fourier transform

G (k) = ∑
R,R′

eik(R−R′)G(R,R′) (3.34)

of the one-particle density matrix G(R,R′) = 〈â†
RâR′〉. However, the measured momentum distri-

bution can deviate from the distribution in the optical lattice if one cannot neglect the interactions
during the time of flight or if the expansion time is not long enough to guarantee that the initial
size of the cloud can be neglected (far-field approximation) [212, 109].

Now, the second way to release the atoms profits from the big advantage of optical lat-
tice potentials that the lattice depth can be dynamically controlled by simply tuning the laser
power. By adiabatically opening a deep lattice and converting it into a shallow one the quasi-
momentum q is preserved. After releasing the atoms completely the Bloch-wave in the nth
energy band is mapped onto a corresponding free-particle momentum p in the nth Brillouin zone
[152, 117, 160]. The homogeneously filled lowest energy band then corresponds to a fully oc-
cupied central Brillouin zone (a square of widht 2h̄k. If higher bands are populated one also
observes populations in higher Brillouin zones. This is a very efficient method to visualize the
distribution of particels over the Bloch states in different energy bands. It as been also applied
successfully in combination with a double well potential to measure the population of the left
and the right double well in a superlattice structure[249].
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w̃(k)

〈â†
RâR′〉 = nR δR,R′

1/N

〈n̂3D(x)n̂3D(x′)〉 = |w̃(Mx/!t)|2|w̃(Mx′/!t)|2N2

×



1 ±
1

N2

∣

∣

∣

∣

∣

∑

R

ei(x−x′)·R(M/!t)nR

∣

∣

∣

∣

∣

2


 .

nR

k − k′

G

|x − x′| = # =
2ht

λM
.

x
x′

Figure 3.10: Noise correlations of a Mott insulator released from a 3 d lattice.Figure (a) shows the image of a single
shot and a cut through the image (b). A statistical analysis over several single shot picture is shown in (c) together a
cut through it (d). Figures are taken from [102].

3.3.2 Noise correlations
The successful study of an interacting many-body quantum system requires detection methods
which are sensitive to higher-order correlations. Quantum fluctuations in many-body observable
as fluctuation patterns in the momentum distribution after release from trap contain information
about initial correlated quantum state [6, 220, 298, 122]. Among these noise-correlation tech-
niques the most developed and used ones give information about the first- and the second-order
correlation properties. The main reason why higher-order correlations are difficult to detect is due
to the low intensity of the observed signal. Typically the observed signal is around 10−3−10−4

and deviates significantly from the theoretically predicted value of 1. The development of CCD
chips with a higher spatial and temporal resolution can overcome such limitations and also eval-
uate higher-order correlations.

Let us consider a quantum gas released from a trapping potential. After a certain flight
time t the resulting density cloud yield a density distribution n̂(x). Assuming that there are no
interactions after releasing the atoms and that the time-of-fight t is sufficiently large in order to
use the far field approximation the average density distribution (repeating the experiment several
times) is related to the quantum state in the trap (before the release) via

〈n̂(x)〉TOF = 〈â†(x)â(x)〉TOF ≈ 〈â(k)â(k)〉trap = 〈n̂(k)〉trap. (3.35)

The above equation connects the density distribution after the time-of-flight with the mo-
mentum distribution reflecting first-order coherence properties of the state in the trap. However
there is another source of fluctuations of the interference pattern which is purely quantum nature.
Each pixel in the image records on average a substantial number of atoms. For each of those
pixels the number of atoms recorded in a single realization of experiment will exhibit shot-noise
fluctuations 6. Shot noise is especially strong in systems with short-range single particle correla-
tions, in particular in fermionic systems [122]. Probing coherence properties using interference

6This analog to the double slit experiment with single photons. For each run the position of the photon is random
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is much more difficult in such systems than in system with a long- or quasi-long-range order.
Here the shot noise is less important than the low wavelength thermal or quantum fluctuations
[219] However when interactions have been enhanced , e.g. by Feshbach resonance, or a high
density sample is prepared, Eq. [3.35] is not valid anymore.

So far I have only discussed the first-order coherence properties. The next order of coherences
are encoded in the density-density correlations in the expanding cloud. Doing a similar analysis
as in the first-order case one can find a relation between the density-density correlators in the
cloud and the momentum density-density correlators of the state in the trap

〈n̂(x)n̂(x′)〉TOM ≈ 〈â†(k)â(k)â†(k′)â(k′)〉trap = 〈â†(k)â†(k′)â(k′)â(k)〉trap +δkk′〈â†(k)â(k)〉trap.
(3.36)

The last term in Eq. [3.36] only enters for x = x′ and contains no more information about the
initial quantum state than the momentum distribution [3.35] itself.

3.3.3 Recent development
Probing fermionic superfluidity

A new method for detecting paired states in either bosonic or fermionic systems has been pro-
posed using interference experiments with independent or weakly coupled low dimensional sys-
tems [122]. Under the assumption of weakly coupled condensates (Josephson coupling) and
region dependent noise measurement one is able to detect s-wave, d-wave and FFLO-like pair-
ing.

Photoemission and Raman spectroscopy

In analogy to the photoemission spectroscopy in electronic systems a pulse of radio-frequency
drives atoms into an unoccupied Zeeman spin state, where they are counted to yield a spectrum
of counts versus radio-frequency frequency [225] [58]. While the first implementation of pho-
toemission spectroscopy could not resolve the single-particle excitation spectrum (fundamental
theoretical property), the elementary excitations and energy dispersion could be probed recently
[256]. A similar but no identical technique is to use Raman transition, by using a weak external
field, to change the internal states of atoms from a magnetically trapped state to an untrapped
state. Afterwards the atoms can be extract from a trap to a free space [182, 190]. The output-
coupling current from a Bose gas in the optical lattice can be directly related with single-particle
correlation functions of the Bose-Hubbard model. Recently the Raman transition method has
been successfully implemented for fermions [290] probing as well the momentum distribution
[74] of the condensate.

Bragg spectroscopy

There exist several ways to sample the excitation spectrum of a complex system. This spectrum
gives often crucial information about the many-body dynamics of this system. The Bragg spec-
troscopy [92] uses elementary excitations in ultra-cold atomic gases via the inelastic scattering of
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Figure 1 | Experimental realization and schematic representation of the Bragg process in real and momentum space. a, Schematic of the experimental
set-up. An ensemble of ultracold atoms is prepared in an optical lattice. The Bragg process with a freely variable momentum transfer, which is realized by a
mechanical change of the incidence angle, is driven by two laser beams with difference frequency δ = ω2−ω1. For clarity, only two dimensions of the 3D
optical lattice are shown. b, Bragg process in momentum space. The figure shows the excitation spectrum of a square lattice. The Bragg process transfers
energy and momentum by means of a two-photon process and populates a different state, thereby giving information on the excitation spectrum. Here an
excitation in the [1,1] direction close to the Brillouin zone edge is shown.

Band structure in optical lattices
Similar to electrons in crystals, neutral atoms in periodic potentials
generated by optical lattices can be described in the non-interacting
case by Bloch functions φ(n)

k
with quasimomentum k, resulting

in the well-known band structure with band index n and energy
E
(n)(k). A central question is how interactions of the particles

modify the single-particle band structure. Quantum gases usually
show short-range interactions characterized by an s-wave scattering
length a0 leading to an interacting many-body system that is
described in good approximation by the Bose–Hubbardmodel:

Ĥ = −J
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where J is the hopping matrix element (usually derived from the
above single-particle picture) and U is the on-site interaction22.
The operator n̂R counts the number of atoms at lattice site R,�R
is the external potential and �R,R�� restricts the tunnelling â

†
R
âR�

to nearest neighbours.
To study such a lattice system, we measure its excitation

spectrum for different parameters, revealing many crucial aspects
from the role of interaction to the nature of excitations. As a
central result, Fig. 2 shows for the first time the detailed excitation
spectrum of a quantum gas in a square optical lattice ranging
from small k up to the edge of the Brillouin zone for different
lattice depths V0. For our measurements, we have chosen the
momentum transfer along the [1,1] direction, also called the nodal
direction from � to M, where the Brillouin zone edge corresponds
to kBZ. Figure 2a shows the resonance positions of the lowest
excitations corresponding to the first band for several lattice depths.
A spectrum of a harmonically trapped quantum gas is shown for
comparison. The band is well resolved and its decreasing width with
increasing lattice depth is visible.

In particular, there is huge theoretical interest in the behaviour
of possible collective excitations in the optical lattice23–28. Here we
present the first systematic study of low-momentum excitations
in optical lattices, revealing a distinct phonon-like behaviour in
this regime. The speed of sound cs can be evaluated by the linear
slope of the dispersion relation and corresponds to the propagation
speed of the phonons. In the magnetic trap, we determine the

sound velocity to be cs = (0.18±0.04)mm s−1, in accordance with
theory and experiment4,5. Within our experimental accuracy, cs
stays constant applying a lattice of V0 = 3 Er, where Er = h̄

2
k
2
L/(2m)

is the recoil energy and kL is the wavevector of the lattice laser.
Going to deeper lattices, we observe a clear reduction of the
sound velocity to cs = (0.15±0.02)mm s−1 at V0 = 7 Er and finally
cs = (0.11±0.02)mm s−1 at V0 = 11 Er, which matches theoretical
expectations for the two-dimensional (2D) case28. Close to the
Brillouin zone edge, the influence of the lattice fundamentally
changes the excitation spectrum, resulting in the opening of a
bandgap, which will be discussed later. Our findings are consistent
with the single data points frompreviousmeasurements11,12.

Figure 2b shows a comparison of the experimental data to both
the theory of a non-interacting single-particle and a mean-field
approximation of a Bose–Hubbard model for the lattice depths
V0 = 7 Er and 11 Er. As the dashed lines show the results of a
single-particle band-structure calculation, it is obvious from the
data that interactions strongly modify the excitation spectrum in
the superfluid regime. It is now especially interesting to check the
validity of a mean-field approach for quantum gases in optical
lattices within a wide range of parameters. We compare our
data with a Bogoliubov-type approximation in the Bose–Hubbard
framework29,30, which gives an analytical expression for the
excitation energies in the first band:

h̄ωk =
�

4J sin2
�
ka

2

��
2nU +4J sin2

�
ka

2

��
(1)

where a is the lattice spacing. As the momentum transfer is in
the [1,1] direction with kx = ky , we obtain excitation frequencies
ωkx ,ky = ωkx

+ωky
. These are shown as solid lines in Fig. 2 on the

basis of a fit of the parameter nU in equation (1) to the experimental
data. Although the interaction effects are still relatively small for
V0 = 3 Er, they increase substantially with larger lattice depth,
owing to the rise in the term 2nU in equation (1). The deeper the
lattice, the stronger the atoms are confined locally at the lattice
sites, resulting in a larger on-site interaction U . In addition, a
deeper lattice also leads to a stronger harmonic confinement and
thus to an increase in the average atom number per site n. In
conclusion, the data agree qualitatively very well with the above
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Figure 3.11: Bragg spectroscopy of a trapped condensate. A condensate was exposed to two counterpropagating
laser beams and analyzed using time of flight absorption. If the momentum and energy of the laser beams is resonant
with a two-photon transition in the atomic sample a transition occurs within the lowest phononic band. In this way
one can obtain the whole dispersion relation of the system.

two laser light beams by the atomic sample. The light scattering process occurs when the energy
transfer ε and the momentum transfer q given by the laser beams is resonant with a two-photon
transition (between the lowest bands) in the atomic sample. The two-photon transition does not
change the internal state of the atoms. Bragg spectroscopy allows to extract information about
the dynamical structure factor S(q,ω) and about the one-particle spectral function A(q,ω) and
could be extended to study more exotic correlated phases of ultracold atoms [60].

Real space microscopy

Figure 3.12: Direct microscopy of trapped atoms. The left picture is taken from a recent experiment by [21]. During
an experiment the position of the atoms is frozen by making the whole lattice deeper. Next, the atoms are illuminated
by a highly focused probe beam. The scattered fluorescence light is collected by an objective lens and projected
onto a CCD. The additional knowledge about the possible positions of the atoms allows to obtain a resolution which
is below the wave length of the probe beam. The same technique allows in principle to manipulate the atoms e.g. to
create holes in order to study transport phenomena (right figure).

Recently the first successful attempt to visualize atoms in real space has been realized. By the
implementation of a high-resolution optical imaging system, single atoms have been detected on
individual sites of a Hubbard regime optical lattice [21]. In order to get an image of the system
one has to freeze the position of the atoms by making the lattice very deep. Next, a highly focused
probe beam scans the system and the scattered fluorescence light is collected by an objective
lens and projected onto a CCD. Now, it turns out that together with the information about the
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possible positions of the atoms one can find an atom even at a lattice spacing which is smaller
than the wave length of the probe beam. Taking the fluorescence picture one can use advanced
techniques from image analysis which allow for an identification of an atom out of the noisy
picture. Moreover, it should be possible to use the probe beam in order to create holes in a regular
structure and also to perform two-site operation which are the basis for quantum computing. So
far, a direct microscopy of a whole setup will in general destroy the whole experiment. Therefore,
in order to get a time-evolution one has to repeat the experiment a couple times.



Chapter 4

Magnetism, coherent many-particle
dynamics, and relaxation with ultracold
bosons in optical superlattices

One of the most exciting recent events in physics has been the increasing overlap between two
previously disjoint fields, quantum optics and condensed matter physics. This has become pos-
sible due to the enormous progress in cooling dilute bosonic and also fermionic gases down to
temperatures where respectively Bose-Einstein condensation and Fermi degeneracy (tempera-
tures well below the Fermi energy) are reached.

A very attractive feature of this new class of experiments is that they provide the arguably
cleanest realization of the (bosonic) Hubbard model [144], which with nearest-neighbor hopping
and onsite interaction is the minimal model of strong correlation physics [140].

Here, I describe and analyze numerically a particular setup with ultracold bosons of two
species in an optical superlattice, described by a Bose-Hubbard model. In the limit of strong
onsite interactions, the system can be described by the spin-1/2 Heisenberg antiferro- or ferro-
magnet, depending on the parameters of the superlattice [23]. The motivation is fourfold:

(i) In the vein of Feynman’s idea to simulate quantum systems by other quantum systems [99],
it would be a great achievement to implement models of magnets like the Heisenberg model with
ultracold atoms in optical lattices. In condensed matter systems, collective magnetism arises
from the Coulomb interaction and the particle statistics which cause (super)exchange processes
[132, 80, 133, 81, 164, 11, 13]. In particular, exchange interactions resulting from second order
hopping processes in the Fermi-Hubbard model dominate its behavior in the limit of strong onsite
interaction and are captured by an effective spin model, namely the Heisenberg antiferromagnet
[13, 55, 95].

While collective magnetism has been widely studied in solids over the decades, several ex-
perimental restrictions apply quite generally: It is generally far from clear to what extent the
typical simplified models are quantitatively realistic, and how to obtain the interaction param-
eters. External control of these parameters is very difficult. Moreover, quantum magnetism
becomes particularly interesting in low dimensions. In real effectively low-dimensional solids
it is however hard to control or assert the effect of the weaker interactions in the second and/or
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third dimension. Last but not least, solids give us only access to the linear response regime as
sampled e.g. by neutron scattering. Questions of out-of-equilibrium many-body dynamics are
essentially inaccessible.

Experiments with ultracold atoms in optical lattices constitute clean and well-tunable mani-
festations of the Bose- or Fermi-Hubbard model [144, 38]. To implement magnetic systems, the
most straight forward approach would hence be to use a gas of ultracold fermions. However,
cooling of fermionic gases to the quantum regime is a considerably harder task due to the lack
of s-wave scattering among identical fermions [76, 77, 201, 160, 59]. Hence it is desirable to
develop an alternative route via gases of ultracold bosons. The here presented investigations fol-
low this idea [166, 84, 7, 106, 22]. Although I focus here on one dimension, analogous setups
in higher dimensions [248] could be used to investigate a plethora of frustrated spin systems that
are hard to access analytically and numerically.

(ii) The superlattice structure chosen in the following setup (in analogy to the recent experi-
ments [103, 271]) allows in contrast to [84, 7] for the tuning of the effective spin-spin interaction
by changing an alternating scalar potential ∆; Fig 4.1. With the hopping strength t and the onsite
interaction U of the Hubbard model, the coupling in the corresponding effective spin model is
then 4t2U/(U2−∆2). This allows on the one hand to switch for the effective model between
the Heisenberg ferro- and antiferromagnet. On the other hand one might hope to increase for a
fixed onsite interaction U the effective coupling, by choosing ∆ ∼U . In this case, the relevant
physics would become visible at correspondingly higher temperatures. However, the validity of
the effective model breaks down in the vicinity of ∆ ∼ U . So one has to balance the validity
of the Heisenberg description and the temperatures needed to observe the quantum effects. To
this purpose, the parameter ∆ can be easily varied and used to tune to the Heisenberg regime in
controlled fashion.

(iii) In recent experiments [103, 271] by the Bloch group, the same optical superlattice as
the one discussed here was used. But its parameters were chosen such that the superlattice
decomposed actually into isolated double wells. The experiments analyzed dynamics in these
double wells and contrasted in particular first order (hopping) processes (Hubbard regime) versus
slower second order processes (Heisenberg regime). The next step would be to observe coherent
many-particle dynamics after coupling the double wells. We analyze such a situation by the
time-dependent density matrix renormalization group method (DMRG) [70, 285]. I focus on the
coherent evolution of an initial Néel state and the differences between the Heisenberg and the
Hubbard regimes and present the experimentally available observables.

(iv) Besides testing the coherence in the experiments, the setup allows to address questions
of non-equilibrium many-particle systems, which is in general difficult for all present analytical
and numerical methods. Contrary to the setup of isolated double wells, one observes for the
many-particle dynamics in the here considered setup a relaxation of local quantities. This is an
indicator for convergence of subsystems with finite real-space extent to a steady state. Recently,
the mechanism of how such a relaxation may occur was clarified for (free) integrable systems in
[24]. Corresponding examples can also be found in [229, 53, 65, 105]. For a few nonintegrable
systems the question was analyzed numerically in [161, 186, 66] and analytically e.g. in [194,
88]. In general one expects that in nonintegrable models, thermalization occurs (due to scattering
processes), and that in integrable models, relaxation (to a nonthermal steady state) occurs via
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phase averaging effects [24]. This is demonstrated here analytically for the Heisenberg model.
The setup could be used to study experimentally such relaxation processes – in particular, the
qualitative differences between nonintegrable systems, here the Bose-Hubbard model, and Bethe
ansatz integrable models [33, 296], here the Heisenberg model.

The here presented work also fill a certain gap of current literature on such topics (see e.g.
[84, 7, 106]) by emphasizing that the Heisenberg spins of the effective model, obtained by the
Schrieffer-Wolff transformation [245, 23], should not be identified directly with the two boson
species. A spin up of the effective model corresponds rather to a particle of species 1 dressed
by hole-double-occupancy fluctuations. The analogy holds only for small t/(U ±∆). The con-
sequences for experimentally available observables are surprisingly strong. Recently in [22] a
setup of coupled double wells (∆ = 0, but alternating hopping t 6= t′ in Fig. 4.1) was analyzed
numerically – in particular, the possibilities to generate entangled pairs of particles were studied.
Again, a perfect mapping to a spin model was assumed from the outset.

The chapter is organized as follows. Section 4.1 describes the experimental setup and how it
can be described by a Bose-Hubbard model. Restricting to half filling, Section 4.2 derive by a
Schrieffer-Wolff transformation for the limit of large onsite interactions an effective model which
is the Heisenberg antiferro- or ferromagnet. In Section 4.3, I investigate by time-dependent
density-matrix renormalization-group (DMRG) the evolution of typical observables like mag-
netization, momentum-space and real-space correlators, where the first two are also available
experimentally. The focus is on contrasting the differences between the full Hubbard dynamics
and the corresponding effective spin model, and also the differences to the case of isolated dou-
ble wells [103, 271]. Indications for (local) relaxation to steady states can be observed. This
is discussed in Section 4.4 where I also explain how the relaxation for the Heisenberg model is
connected to a phase averaging effect. Section 4.5 addresses in more detail the question why and
under what circumstances the effective model is a valid description for the full Hubbard Hamil-
tonian, especially for the dynamics. In Section 4.6 I argue that the groundstate of the Heisenberg
antiferromagnet could be prepared by tuning an alternating hopping parameter of the superlattice
adiabatically. Section 4.7 gives a short conclusion.

4.1 Setup and model
In the following, I present a setup of ultracold bosonic atoms in a one-dimensional optical su-
perlattice that reduces in certain parameter regimes, where first order hopping processes are
suppressed, to the Heisenberg ferro- or antiferromagnet. The use of bosons is motivated by the
fact that experimentally, access to the low energy quantum physics is at the moment still much
harder for fermionic systems. In analogy to the fermionic case, for which the antiferromagnetic
Heisenberg model describes the effective low-energy physics of the fermionic Hubbard model, I
choose to have two species σ ∈ {↑,↓} of bosons in the lattice – two hyperfine states of a bosonic
atom. At half filling (N sites, N↑ = N↓ = N/2), the effective low energy model is, as one will see
later, the ferromagnetic Heisenberg model. To allow for tuning the effect of first order processes
and to switch between a ferromagnetic and antiferromagnetic regime, I employ an alternating
onsite potential ∆i and call the two sublattices A and B. The potential minima differ by a value
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be used to investigate a plethora of frustrated spin systems
that are hard to access analytically and numerically.

!ii" The superlattice structure chosen in our setup !in anal-
ogy to the recent experiments #25,26$" allows in contrast to
#20,21$ for the tuning of the effective spin-spin interaction by
changing an alternating scalar potential ! !Fig. 1". With the
hopping strength t and the on-site interaction U of the Hub-
bard model, the coupling in the corresponding effective spin
model is then 4t2U / !U2−!2". This allows on the one hand to
switch for the effective model between the Heisenberg ferro-
magnet and antiferromagnet. On the other hand one might
hope to increase for a fixed on-site interaction U the effective
coupling by choosing !%U. In this case, the relevant phys-
ics would become visible at correspondingly higher tempera-
tures. However, the validity of the effective model breaks
down in the vicinity of !%U. So one has to balance the
validity of the Heisenberg description and the temperatures
needed to observe the quantum effects. To this purpose, the
parameter ! can be easily varied and used to tune to the
Heisenberg regime in controlled fashion.

!iii" In recent experiments #25,26$ by the Bloch group, the
same optical superlattice as the one discussed here was used.
But its parameters were chosen such that the superlattice
decomposed actually into isolated double wells. The experi-
ments analyzed dynamics in these double wells and con-
trasted in particular first-order !hopping" processes !Hubbard
regime" versus slower second-order processes !Heisenberg
regime". The next step would be to observe coherent many-
particle dynamics after coupling the double wells. We ana-
lyze such a situation by the time-dependent density-matrix
renormalization-group !DMRG" method #27,28$. We focus
on the coherent evolution of an initial Néel state and the
differences between the Heisenberg and the Hubbard regimes
and present the experimentally available observables.

!iv" Besides testing the coherence in the experiments, the
setup allows one to address questions of nonequilibrium
many-particle systems, which is in general difficult for all
present analytical and numerical methods. Contrary to the
setup of isolated double wells, one observes for the many-
particle dynamics in our setup a relaxation of local quanti-
ties. This is an indicator for convergence of subsystems with
finite real-space extent to a steady state. Recently, the mecha-
nism of how such a relaxation may occur was clarified for
!free" integrable systems in #29$. Corresponding examples
can also be found in #30–33$. For a few nonintegrable sys-
tems the question was analyzed numerically in #34–36$ and
analytically, e.g., in #37,38$. In general one expects that in
nonintegrable models, thermalization occurs !due to scatter-
ing processes" and that in integrable models, relaxation !to a
nonthermal steady state" occurs via phase averaging effects
#29$. This is demonstrated here analytically for the Heisen-
berg model. Our setup could be used to study experimentally
such relaxation processes—in particular, the qualitative dif-
ferences between nonintegrable systems, here the Bose-
Hubbard model, and Bethe ansatz integrable models #39,40$,
here the Heisenberg model.

We also fill a certain gap of current literature on such
topics !see, e.g., #20–22$" by emphasizing that the Heisen-
berg spins of the effective model, obtained by the Schrieffer-
Wolff transformation !in Appendix A" #41$, should not be
identified directly with the two boson species. A spin up of
the effective model corresponds rather to a particle of species
1 dressed by hole-double-occupancy fluctuations. The anal-
ogy holds only for small t / !U"!". The consequences for
experimentally available observables are surprisingly strong.
Recently in #23$ a setup of coupled double wells !!=0,
but alternating hopping t! t! in Fig. 1" was analyzed
numerically—in particular, the possibilities to generate en-
tangled pairs of particles were studied. Again, a perfect map-
ping to a spin model was assumed from the outset. The va-
lidity of this mapping is one central topic of our paper.

The paper is organized as follows. Section II describes the
experimental setup and how it can be described by a Bose-
Hubbard model. Restricting to half-filling, Sec. III and Ap-
pendix A derive by a Schrieffer-Wolff transformation for the
limit of large on-site interactions an effective model which is
the Heisenberg antiferromagnet or ferromagnet. In Sec. IV,
we investigate by time-dependent DMRG the evolution of
typical observables such as magnetization, momentum-space
correlator, and real-space correlator, where the first two are
also available experimentally. The focus is on contrasting the
differences between the full Hubbard dynamics and the cor-
responding effective spin model and also the differences to
the case of isolated double wells #25,26$. We observe indi-
cations for !local" relaxation to steady states. This is dis-
cussed in Sec. V where we also explain how the relaxation
for the Heisenberg model is connected to a phase averaging
effect. Section VI addresses in more detail the question why
and under what circumstances the effective model is a valid
description for the full Hubbard Hamiltonian, especially for
the dynamics. In Sec. VII we argue that the ground state of
the Heisenberg antiferromagnet could be prepared by tuning
an alternating hopping parameter of the superlattice adiabati-
cally. Section VIII gives a short conclusion.
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FIG. 1. !Color online" !a" Tight-binding system parameters for
our system of ultracold bosons of two species !↑ ,↓" in a one-
dimensional optical superlattice !1". !b" If the phase shift between
the two laser potentials !dashed lines" is zero, the minima of the full
potential !solid line" are equidistant, the Wannier wave functions for
each site are reflection symmetric, and hopping parameters t and t!
are hence equal.
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Figure 4.1: a) Tight-binding system parameters for the here considered system of ultracold bosons of two species
(↑, ↓) in a one-dimensional optical superlattice (4.1). b) If the phase shift between the two laser potentials (dashed
lines) is zero, the minima of the full potential (solid line) are equidistant, the Wannier wave functions for each site
are reflection symmetric, and hopping parameters t and t′ are hence equal.

∆ > 0. Such superlattices can be generated by the superposition of two laser frequencies of ratio
1 : 2, see Ref. [9, 103, 271] and Fig. 4.1. Further, the tight-binding approximation with restriction
to the first Bloch band (one Wannier function per site) is assumed. Then the system is described
by the two-species Bose-Hubbard Hamiltonian

Ĥ =−t ∑
σ ,〈i j〉

(a†
σ iaσ j +H.C.)+∑

σ ,i
∆inσ ,i +U ∑

i
n↑in↓i +

Us

2 ∑
σ ,i

nσ i(nσ i−1), (4.1)

In particular, I choose

∆i =

{
−∆/2 for even i
∆/2 for odd i.

(4.2)

The superlattice potential is of the form [cp. Eq.3.26]

V (x) =V0 sin2(kx)+V1 sin2(kx/2+φ). (4.3)

The amplitude V1 of the second potential can be used to tune ∆; for my purposes, V1� V0. In
(4.1) it was assumed that hopping from a site i to its neighbors i±1 occurs with equal amplitude
t. In principle, the hopping depends exponentially on the distance between the potential minima
[144, 301]. Only if one chooses the phase difference φ to vanish as in Fig. 4.1b, the positions of
the potential minima will be equidistant for all V1, and the Wannier wave functions for all sites
are reflection symmetric. In this case, the hopping will hence be of equal strength for all bonds,
i.e. t= t′ in Fig. 4.1. This situation is considered in the following.

For the actual analysis of dynamics in Section 4.3, I will choose equal inter- and intra-species
interaction, U = Us. This is at the moment the standard situation for the corresponding experi-
ments. With U =Us, the effective Heisenberg models, describing the second order physics, will
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turn out to be isotropic. The onsite potential ∆ and interaction U can be calculated in harmonic
approximation of the lattice potential around its minima. For φ = 0 in (4.3), the corresponding
oscillator frequencies are h̄ω± = 2

√
Er(V0±V1/4) ≈ 2

√
ErV0(1± 1

8
V1
V0
), where Er ≡ h̄2k2

2m is the
recoil energy of the laser potential with the shorter wave length. For the dependence of the onsite
potential on the lattice parameters follows

∆ =V1− h̄
2(ω+−ω−)≈V1

(
1− 1

4

√
Er
V0

)
. (4.4)

In order to achieve an effectively one-dimensional lattice, V (x) is superimposed with two transver-
sal laser beam potentials of a (higher) amplitude V⊥. Within the harmonic approximation, and
with the s-wave scattering length as, the resulting onsite interactions for two neighboring sites
are [301]

U± =

√
8
π

ask
(
(V0±V1/4)V 2

⊥
E3

r

) 1
4

Er. (4.5)

They are in principle not identical. Irrespective of this, the effective spin model derived in Sec-
tion 4.2 would be isotropic and translation invariant. As I will show in the following for a set
of realistic experimental parameters, one finds for the case V1 = 0 (⇒ ∆ = 0) that V0� Er and
V0�U . The onsite potentials ∆ considered in the here presented numerical simulations of the
Hubbard model (4.1) are from the interval ∆ ∈ [0,4U ]. According to (4.4), V1 will for nonzero ∆

hence obey V0�V1 and one can thus use U+ =U− ≡U in good approximation.
For the tight-binding approximation to hold, one needs that energies t, U , and ∆ are well

below h̄ω± ≈ 2
√

ErV0, the energy scale for vibrations of an atom in one minimum of the laser
potential. With the hopping t = 4√

π

(
V0V 2
⊥/E3

r
)1/4 e−2

√
V0/ErEr [301, 38], one has for example

with λ = 2π/k = 800nm, Rubidium atoms (i.e. ask ≈ π0.01), V0 ≈ 8.7Er and V⊥ ≈ 30Er (cmp.
e.g. to [103]) that t ≈ 0.06Er, U ≈ 8t and h̄ω0 ≈ 100t. So as long as ∆ is also well below 100t,
the tight-binding approximation for (4.1) using the lowest Bloch band is valid.

4.2 Effective model
To go to a regime where the physics of the two-species Bose-Hubbard model (4.1) reduces to
that of a Heisenberg magnet, I choose half filling

N↓ = N↑ = N/2, (4.6)

(N is the total number of lattice sites) and assume the large-U limit

t� |U±∆|. (4.7)

In this limit, occupation of a single site by more than one boson is energetically unfavorable and
will occur only in short lived intermediate states. This means that single (first order) hopping
processes are suppressed. Besides some hybridization effects, exactly one boson sits on each
lattice site and can be identified with an effective spin on that site (up and down orientations
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We will show below how the effective Hamiltonian can
be derived by a Schrieffer-Wolff transformation. While this
is a well-known procedure, there is an interesting twist to the
interpretation of the result. For the moment let us work with
the naive identification of spins up and down of the effective
model with the two boson species of the full model !Eq. "1#$.
We want to derive an effective Hamiltonian describing the
physics of Hubbard Hamiltonian "1# in the subspace H1 of
singly-occupied sites,

H1 ª span%&↑', &↓'(!N. "8#

The effective Hamiltonian can be deduced from the follow-
ing simple recipe: with exactly one spin per site, the on-site
interaction is ineffective. Hopping processes occur only in
second order, leading to a spin-spin interaction,

Ĥeff = − J)
*ij'

"Ŝi
xŜj

x + Ŝi
yŜj

y# + "J − Js#)
*ij'

Ŝi
zŜj

z. "9#

The corresponding coupling strengths J and Js are obtained
by dividing for each possible second-order process "Fig. 2#
the product of the transition matrix elements t · t for the hop-
ping to a neighboring site and back by the energy difference
U!" "Us!"# to the intermediate state and adding all such
terms that contribute to the same effective spin-spin interac-
tion "see also !26$#,

J =
2t2

U + "
+

2t2

U − "
=

4t2U

U2 − "2 , Js = 2
4t2Us

Us
2 − "2 . "10#

The effective Hamiltonian "9# is the XXZ model. From now
on we specialize to U=Us, i.e., J−Js=−J, and have hence the
isotropic Heisenberg ferromagnet for "#U "J$0# and the
isotropic antiferromagnet for "$U "J#0#. Note that the
effective Heisenberg Hamiltonian would also be isotropic
and translation invariant if the on-site interaction U would be
different for even and odd sites. If the hopping would be
alternating "t! t!#, we would obtain the dimerized Heisen-
berg model.

A common mathematical approach for the deduction of
such effective models is the Schrieffer-Wolff transformation

!41$. We are interested in the physics of the subspace H1
with exactly one particle per site. The Hubbard Hamiltonian
couples this subspace in first order of the hopping t to the
rest of the Hilbert space "states with doubly-occupied and
empty sites#. The Schrieffer-Wolff transformation,

Ĥeff
full ª eiŜĤe−iŜ, H1

orig ª e−iŜH1, "11#

is a unitary transformation with generator Ŝ chosen such that
the transformed Hamiltonian Ĥeff

full does not contain terms
anymore that couple H1 to the rest of the Hilbert space or at
least only in some higher order of t. In Appendix A, a gen-
erator

Ŝ = O+ t

U ! "
, "12#

is derived, such that effective Hamiltonian is

Ĥeff = Ĥeff
full&H1

= − J)
*ij'

Ŝi · Ŝ j + O"t4# . "13#

The full effective Hamiltonian Ĥeff
full !Eq. "A16#$ still contains

a term i!Ŝ , Ĥt
0$ representing the remaining coupling of the

subspace H1 to the rest of the Hilbert space which is of order
t2.

The method is based on the smallness of Ŝ. According to
Eq. "12#, it hence breaks down when U-&"&. The effective
Hamiltonian "13# is only valid for &U!"&% t. Only in this
regime, the first-order hopping processes leading out of H1
are suppressed. See the discussion in Sec. VI.

Often spin up "down# states of the effective model are
then identified with a boson of species ↑ "species ↓# on the
corresponding sites. However, with respect to the original
model !Eq. "1#$, it is not H1 itself that is weakly coupled to
the rest of the Hilbert space and evolves according to the
Heisenberg Hamiltonian but the subspace H1

orig defined in
Eq. "11#. A spin up in the effective model corresponds rather
to a boson of species ↑ with a cloud of hole-double-
occupancy fluctuations a&i→eiŜa&ie−iŜ "see also Fig. 3#. The
experimental consequences are surprisingly strong, as we
will see in Sec. IV.

t2

U!!
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U!!

2t2

Us+!
2t2
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2t2

Us!!
2t2
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FIG. 2. "Color online# Some second-order hopping processes
"superexchange# contributing to the effective spin model "9# when
first-order hopping processes in the full Hubbard model "1# are
suppressed. The figure displays possible initial states "light color#
with one particle per site and intermediate states "dark color# with
doubly-occupied and empty sites.
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FIG. 3. "Color online# Spin up "down# states of the effective
magnetic model are not to be identified directly with a boson of
species ↑ "species ↓# in the experimentally realized Bose-Hubbard
model. A spin up in the effective model corresponds rather to a
boson of species ↑ with a cloud of hole-double-occupancy fluctua-
tions a&i→eiŜa&ie−iŜ. In the vicinity of "=U, the correspondence
breaks down.
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Figure 4.2: Some second order hopping processes (superexchange) contributing to the effective spin model (4.9)
when first order hopping processes in the full Hubbard model (4.1) are suppressed. The figure displays possible
initial states (light color) with one particle per site and intermediate states (dark color) with doubly occupied and
empty sites.

corresponding each to one of the boson species). The second order hopping processes as depicted
in Fig. 4.2 lead then to nearest neighbor spin-spin interactions.

I will show below, how the effective Hamiltonian can be derived by a Schrieffer-Wolff trans-
formation. While this is a well-known procedure, there is an interesting twist to the interpretation
of the result. For the moment l will work with the naive identification of spins up and down of
the effective model with the two boson species of the full model (4.1). I want to derive an effec-
tive Hamiltonian describing the physics of the Hubbard Hamiltonian (4.1) in the subspace H1 of
singly-occupied sites.

H1 := span{| ↑〉, | ↓〉}⊗N (4.8)

The effective Hamiltonian can be deduced from the following simple recipe: With exactly one
spin per site, the onsite interaction is ineffective. Hopping processes occur only in second order,
leading to a spin-spin interaction

Ĥeff =−J ∑
〈i j〉

(Ŝx
i Ŝx

j + Ŝy
i Ŝy

j)+(J− Js)∑
〈i j〉

Ŝz
i Ŝ

z
j. (4.9)

The corresponding coupling strengths J and Js are obtained by dividing for each possible second
order process (Fig. 4.2) the product of the transition matrix elements t · t for the hopping to a
neighboring site and back by the energy difference U ±∆ (Us±∆) to the intermediate state, and
adding all such terms that contribute to the same effective spin-spin interaction (see also [271]).

J =
2t2

U +∆
+

2t2

U−∆
=

4t2U
U2−∆2 , Js = 2

4t2Us

U2
s −∆2 . (4.10)

The effective Hamiltonian (4.9) is the XXZ model. From now on I specialize to U = Us, i.e.
J− Js = −J and have hence the isotropic Heisenberg ferromagnet for ∆ < U (J > 0) and the
isotropic antiferromagnet for ∆ > U (J < 0). Note that the effective Heisenberg Hamiltonian
would also be isotropic and translation invariant if the onsite interaction U would be different for
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even and odd sites. If the hopping would be alternating (t 6= t′), one would obtain the dimerized
Heisenberg model.

A common mathematical approach for the deduction of such effective models is the Schrieffer-
Wolff transformation [245]. I am interested in the physics of the subspace H1 with exactly one
particle per site. The Hubbard Hamiltonian couples this subspace in first order of the hopping t to
the rest of the Hilbert space (states with doubly occupied and empty sites). The Schrieffer-Wolff
transformation,

Ĥfull
eff := eiŜ Ĥe−iŜ , H orig

1 := e−iŜ H1, (4.11)

is a unitary transformation with generator Ŝ chosen such that the transformed Hamiltonian Ĥfull
eff

does not contain terms anymore that couple H1 to the rest of the Hilbert space, or at least only
in some higher order of t. Together with the appropriate generator [23]

Ŝ = O

(
t

U±∆

)
, (4.12)

one obtains the effective Hamiltonian

Ĥeff = Ĥfull
eff |H1 =−J ∑

〈i j〉
Ŝi · Ŝ j +O(t4). (4.13)

The full effective Hamiltonian Ĥfull
eff still contains a term i[Ŝ , Ĥ0

t ] representing the remaining
coupling of the subspace H1 to the rest of the Hilbert space which is of order t2.

The method is based on the smallness of Ŝ . According to (4.12), it hence breaks down when
U ∼ |∆|. The effective Hamiltonian (4.13) is only valid for |U±∆| � t. Only in this regime, the
first order hopping processes leading out of H1 are suppressed. See the discussion in Section 4.5.

Often spin up (down) states of the effective model are then identified with a boson of species
↑ (species ↓) on the corresponding sites. However, with respect to the original model, Eq. (4.1),
it is not H1 itself that is weakly coupled to the rest of the Hilbert space and evolves according
to the Heisenberg Hamiltonian but the subspace H orig

1 defined in Eq. (4.11). A spin up in
the effective model corresponds rather to a boson of species ↑ with a cloud of hole-double-
occupancy fluctuations aσ i → eiŜ aσ ie−iŜ ; see also Fig. 4.3. The experimental consequences
are surprisingly strong, as I will show in the next section.

4.3 Time-evolution from the Néel state
In the following, numerical results for the evolution of the system where the initial state is the
Néel state

|φ〉 := | ↑↓↑↓↑↓ . . .〉 ∈H1 (4.14)

are presented. This parallels recent experimental investigations [103, 271] of the evolution of
corresponding states | ↑↓〉 in isolated double wells.

To compare the effect of first and second order processes, the evolution was done twice for
each set of parameters (t = 1, U = 8, various ∆; see Section 4.1), once with the corresponding
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Heisenberg model (in the subspace H1) and once with the full Hubbard Hamiltonian (in the
full Hilbert space), where the initial state (4.14) was in fact chosen as the tensor product of
alternatingly having one boson of species ↑ or ↓ on each site. The two different time scales
of first and second order processes become clearly visible. The qualitative differences to the
isolated double well situation (as analyzed in [103, 271]) and resulting interesting questions for
experimental investigations are discussed.

4.3.1 Errors through experimental limitations in state preparation and
measurement

I shortly want to discuss how well the dynamics of the magnetic model, the Heisenberg model,
can be implemented experimentally by those of the two-species Bose-Hubbard model. In the
literature on magnetism via ultracold two-species atom gases in optical lattices [84, 7, 22], spins
up and down of the magnetic system are usually identified directly with atoms of species ↑ and ↓
of the ultracold gas. In this vein, evolution of the Néel state (4.14) with the Heisenberg Hamilto-
nian would be translated into evolution of the state | ↑↓↑↓↑↓ . . .〉 with the Hubbard Hamiltonian.
This is actually correct only to zeroth order in Ŝ .

I want to implement the evolution of a state |φ〉 ∈H1, (4.8), under the effective Hamiltonian
Ĥeff = eiŜ Ĥe−iŜ |H1 by the evolution of a state |ψ〉= e−iŜ |φ〉 ∈H orig

1 , (4.11), under the Bose-
Hubbard Hamiltonian Ĥ. The state |ψ〉 is |φ〉, superimposed with states where starting from
|φ〉, pairs of doubly occupied sites and empty sites were created (e.g. Eq. (4.18) and Fig. 4.3
below). This can also be interpreted as constructing the Néel state with effective spins, each
corresponding to a boson accompanied by a cloud of hole-double-occupancy fluctuations aσ i→
eiŜ aσ ie−iŜ . The decisive point is now that it seems not possible to prepare such states from
H orig

1 (and has to my knowledge never been done), but only some specific states from H1.
Hence, instead of starting the experiment from the initial state |ψ〉, one is forced to neglect the
Schrieffer-Wolff transformation and start from the state |φ〉 – in my example the Néel state. For
observables that do not change the number of doubly occupied sites, this results in an error of
O(Ŝ 2).

If one had determined the exact Schrieffer-Wolff transformation e−iŜ (i.e. Ŝ exact to all
orders in t) and could actually implement it e.g. by time evolution in the experiment, all mea-
surements would be exact. One could prepare the state |φ〉, apply the Schrieffer-Wolff trans-
formation by time evolution to obtain |ψ〉, evolve with the Hubbard Hamiltonian for some time
t, apply the inverse Schrieffer-Wolff transformation and measure the observable Ô. This would
yield the exact equality

〈φ |e−Ĥefft/ih̄ · Ô · eĤefft/ih̄|φ〉= 〈φ |eiŜe−Ĥt/ih̄e−iŜ · Ô · eiŜeĤt/ih̄e−iŜ|φ〉, (4.15)

where Ĥeff would now of course be a generalization of the Heisenberg model with longer ranged
interactions.

Using a Ŝ which is determined to first order in t
U±∆

instead of the exact one1, the remaining

1and correspondingly Ĥeff to first order in the effective coupling J
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We will show below how the effective Hamiltonian can
be derived by a Schrieffer-Wolff transformation. While this
is a well-known procedure, there is an interesting twist to the
interpretation of the result. For the moment let us work with
the naive identification of spins up and down of the effective
model with the two boson species of the full model !Eq. "1#$.
We want to derive an effective Hamiltonian describing the
physics of Hubbard Hamiltonian "1# in the subspace H1 of
singly-occupied sites,

H1 ª span%&↑', &↓'(!N. "8#

The effective Hamiltonian can be deduced from the follow-
ing simple recipe: with exactly one spin per site, the on-site
interaction is ineffective. Hopping processes occur only in
second order, leading to a spin-spin interaction,

Ĥeff = − J)
*ij'

"Ŝi
xŜj

x + Ŝi
yŜj

y# + "J − Js#)
*ij'

Ŝi
zŜj

z. "9#

The corresponding coupling strengths J and Js are obtained
by dividing for each possible second-order process "Fig. 2#
the product of the transition matrix elements t · t for the hop-
ping to a neighboring site and back by the energy difference
U!" "Us!"# to the intermediate state and adding all such
terms that contribute to the same effective spin-spin interac-
tion "see also !26$#,

J =
2t2

U + "
+

2t2

U − "
=

4t2U

U2 − "2 , Js = 2
4t2Us

Us
2 − "2 . "10#

The effective Hamiltonian "9# is the XXZ model. From now
on we specialize to U=Us, i.e., J−Js=−J, and have hence the
isotropic Heisenberg ferromagnet for "#U "J$0# and the
isotropic antiferromagnet for "$U "J#0#. Note that the
effective Heisenberg Hamiltonian would also be isotropic
and translation invariant if the on-site interaction U would be
different for even and odd sites. If the hopping would be
alternating "t! t!#, we would obtain the dimerized Heisen-
berg model.

A common mathematical approach for the deduction of
such effective models is the Schrieffer-Wolff transformation

!41$. We are interested in the physics of the subspace H1
with exactly one particle per site. The Hubbard Hamiltonian
couples this subspace in first order of the hopping t to the
rest of the Hilbert space "states with doubly-occupied and
empty sites#. The Schrieffer-Wolff transformation,

Ĥeff
full ª eiŜĤe−iŜ, H1

orig ª e−iŜH1, "11#

is a unitary transformation with generator Ŝ chosen such that
the transformed Hamiltonian Ĥeff

full does not contain terms
anymore that couple H1 to the rest of the Hilbert space or at
least only in some higher order of t. In Appendix A, a gen-
erator

Ŝ = O+ t

U ! "
, "12#

is derived, such that effective Hamiltonian is

Ĥeff = Ĥeff
full&H1

= − J)
*ij'

Ŝi · Ŝ j + O"t4# . "13#

The full effective Hamiltonian Ĥeff
full !Eq. "A16#$ still contains

a term i!Ŝ , Ĥt
0$ representing the remaining coupling of the

subspace H1 to the rest of the Hilbert space which is of order
t2.

The method is based on the smallness of Ŝ. According to
Eq. "12#, it hence breaks down when U-&"&. The effective
Hamiltonian "13# is only valid for &U!"&% t. Only in this
regime, the first-order hopping processes leading out of H1
are suppressed. See the discussion in Sec. VI.

Often spin up "down# states of the effective model are
then identified with a boson of species ↑ "species ↓# on the
corresponding sites. However, with respect to the original
model !Eq. "1#$, it is not H1 itself that is weakly coupled to
the rest of the Hilbert space and evolves according to the
Heisenberg Hamiltonian but the subspace H1

orig defined in
Eq. "11#. A spin up in the effective model corresponds rather
to a boson of species ↑ with a cloud of hole-double-
occupancy fluctuations a&i→eiŜa&ie−iŜ "see also Fig. 3#. The
experimental consequences are surprisingly strong, as we
will see in Sec. IV.
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FIG. 2. "Color online# Some second-order hopping processes
"superexchange# contributing to the effective spin model "9# when
first-order hopping processes in the full Hubbard model "1# are
suppressed. The figure displays possible initial states "light color#
with one particle per site and intermediate states "dark color# with
doubly-occupied and empty sites.
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FIG. 3. "Color online# Spin up "down# states of the effective
magnetic model are not to be identified directly with a boson of
species ↑ "species ↓# in the experimentally realized Bose-Hubbard
model. A spin up in the effective model corresponds rather to a
boson of species ↑ with a cloud of hole-double-occupancy fluctua-
tions a&i→eiŜa&ie−iŜ. In the vicinity of "=U, the correspondence
breaks down.
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Figure 4.3: Spin up (down) states of the effective magnetic model are not to be identified directly with a boson
of species ↑ (species ↓) in the experimentally realized Bose-Hubbard model. A spin up in the effective model
corresponds rather to a boson of species ↑ with a cloud of hole-double-occupancy fluctuations aσ i→ eiŜ aσ ie−iŜ .
In the vicinity of ∆ =U , the correspondence breaks down.

errors [23] in the observables are of order Ŝ 4, i.e. O(( t
U±∆

)4). However, failing to implement
the Schrieffer-Wolff transformation completely, i.e. measuring 〈φ |e−Ĥt/ih̄ · Ô · eĤt/ih̄|φ〉 instead
of (4.15), leads to errors of order Ŝ 2. This will be demonstrated in an example (Section 4.3.4).
In addition to the error from neglecting or truncating the Schrieffer-Wolff transformation, there
is the error from truncating the effective Hamiltonian (4.13). This accumulates with time and
is in principle of order J2t, but may also just result in a sort of rescaling of the time axis. Also
the local observables considered relax relatively quickly, making this second source of error less
important.

In the remainder of the article, the initial state (4.14), evolved with the Heisenberg Hamil-
tonian (4.13) will be called φ(t). If it is evolved with the Hubbard Hamiltonian (4.1), it will be
called φ̃(t).

|φ(t)〉 := eĤefft/ih̄|φ〉 and |φ̃(t)〉 := eĤt/ih̄|φ〉, (4.16)

and concerning observables I have explained that

〈Ô〉
φ̃
= 〈Ô〉φ +O(Ŝ 2). (4.17)

To illustrate the considerations above, I shortly regard the case of an isolated double well
(two sites). Hamiltonian and Ŝ read

Ĥ = Ĥt + Ĥ0

Ĥ0 = (U +∆)|0,↑↓〉〈0,↑↓ |+(U−∆)| ↑↓,0〉〈↑↓,0|
Ĥt =−t

(
|0,↑↓〉〈↑,↓ |+ | ↑↓,0〉〈↓,↑ |+H.C.

)
Ŝ = it

U−∆
| ↑↓,0〉

(
〈↓,↑ |+ 〈↑,↓ |

)
− it

U+∆
|0,↑↓〉

(
〈↓,↑ |+ 〈↑,↓ |

)
+H.C. .

With this, the effective Hamiltonian and the transformed initial state are

Ĥeff =− 4t2U
U2−∆2 Ŝ1 · Ŝ2 +O(Ŝ 4)

e−iŜ | ↑,↓〉= (1− iŜ )| ↑,↓〉+O(Ŝ 2)

' | ↑,↓〉+ t
U−∆
| ↑↓,0〉− t

U+∆
|0,↑↓〉. (4.18)
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So a magnetic state with one particle per site corresponds in the experimentally realized Hubbard
model to the magnetic state plus an admixture of states with doubly occupied and empty sites,
Fig. 4.3. The original Hamiltonian generates with Ĥt doubly occupied sites to first order in t.
Conversely, in the (full) effective model, such terms are at least of order t2 (in the two site case
here, actually of order t4).

4.3.2 Symmetry between the ferromagnetic and the antiferromagnetic cases
The Néel state |φ〉, (4.14), and the effective Hamiltonian (4.13) are both real in the {Sz

i}i-
eigenbasis B := {|σ〉= |σ1σ2 . . .〉} (real coefficients and matrix elements). Typical observables
Ô of interest like Ŝz

i for the magnetization or Ŝz
i Ŝ

z
j and Ŝ+i Ŝ−j + Ŝ+j Ŝ−i for correlators are real

in that basis and selfadjoint. It follows that the corresponding expectation values 〈Ô〉φ(t) are
identical for the Heisenberg ferromagnet (J = 1) and antiferromagnet (J = −1): Let oσ ,σ ′ :=
〈σ |Ô|σ ′〉, φσ := 〈σ |φ〉, and u(a)fm,σ ,σ ′(t) := 〈σ |Û(a)fm(t)|σ ′〉 for the time evolution operator of
the (anti)ferromagnetic Heisenberg model. Then

R 3 〈φ |U†
fm(t) · Ô ·Ufm(t)|φ〉=

(
φ

†u†
fm(t) ·o ·ufm(t)φ

)∗
(4.19)

= φ
†(u†

fm(t))
∗ ·o · (ufm(t))

∗
φ (4.20)

= 〈φ |U†
afm(t) · Ô ·Uafm(t)|φ〉. (4.21)

The evolution of the corresponding observable under the full Hubbard Hamiltonian 〈Ô〉
φ̃(t)

will obey this symmetry to zeroth order in Ŝ . Typically, the resulting curve will coincide well
with the corresponding Heisenberg curve. The smaller |U2−∆2| is chosen, the worse the effec-
tive model will capture the actual dynamics and the stronger deviations from the corresponding
Heisenberg results will be. The specific form of the deviations, however, will depend on the
choice of U , ∆, and t. In particular they show no symmetry when switching between the an-
tiferromagnetic and the ferromagnetic regimes (∆ ≷ U). To illustrate this further, several plots
contain the two curves ∆ = 0 and ∆ =

√
2U which have according to (4.10) the same effective

spin spin interaction strength J, except for the opposite sign (FM, AFM, respectively).

4.3.3 Numerical method and parameters
For the numerical simulation, a Krylov subspace variant [210, 136] of the time-dependent DMRG
algorithm is used [285, 70, 243]. For the Hubbard model, the site basis is restricted to a maximum
of two particles for each species. Insensitivity of observables to the chosen maximum number of
bosons per site was affirmed. I chose a lattice sizes of L = 33 for the Bose-Hubbard model and
L = 65 sites for the Heisenberg model. Odd numbers are useful here to have reflection symmetric
states.

As a matter of fact, boundary effects are much less problematic here than in groundstate
calculations, as the initial state is a product state and correlations between sites are generated
inside a causal cone (the analogon of a light cone; see Section 4.3.5, in particular Figs. 4.9
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Ĥeff = −
4t2U

U2 − !2 Ŝ1 · Ŝ2 + O!Ŝ4" ,

e−iŜ#↑ ,↓$ = !1 − iŜ"#↑ ,↓$ + O!Ŝ2"

% #↑ ,↓$ + t
U−! #↑↓,0$ − t

U+! #0,↑↓$ . !18"

So a magnetic state with one particle per site corresponds in
the experimentally realized Hubbard model to the magnetic
state plus an admixture of states with doubly-occupied and
empty sites !Fig. 3". The original Hamiltonian generates with
Ĥt doubly-occupied sites to first order in t. Conversely, in the
!full" effective model, such terms are at least of order t2 !in
the two-site case here, actually of order t4".

B. Symmetry between the ferromagnetic
and the antiferromagnetic cases

The Néel state #"$ &Eq. !14"' and the effective Hamil-
tonian &Eq. !13"' are both real in the (Si

z)i eigenbasis B
ª (#!$= ##1#2. . .$) !real coefficients and matrix elements".
Typical observables Ô of interest like Ŝi

z for the magnetiza-
tion or Ŝi

zŜj
z and Ŝi

+Ŝj
−+ Ŝj

+Ŝi
− for correlators are real in that

basis and self-adjoint. It follows that the corresponding ex-
pectation values *Ô$"!t" are identical for the Heisenberg fer-
romagnet !J=1" and antiferromagnet !J=−1": let o!,!!ª *!#Ô#!!$, "!ª *! #"$, and u!A"FM,!,!!!t"ª *!#Û!A"FM!t"#!!$ for the time evolution operator of the
!anti"ferromagnetic Heisenberg model. Then

R ! *"#UFM
† !t" · Ô · UFM!t"#"$

= &"†uFM
† !t" · o · uFM!t""'!

= "†„uFM
† !t"…! · o · „uFM!t"…!"

= *"#UAFM
† !t" · Ô · UAFM!t"#"$ . !19"

The evolution of the corresponding observable under the
full Hubbard Hamiltonian *Ô$"̃!t" will obey this symmetry to
zeroth order in Ŝ. Typically, the resulting curve will coincide
well with the corresponding Heisenberg curve. The smaller
#U2−!2# is chosen, the worse the effective model will cap-
ture the actual dynamics and the stronger deviations from the
corresponding Heisenberg results will be. The specific form
of the deviations, however, will depend on the choice of U,
!, and t. In particular they show no symmetry when switch-
ing between the antiferromagnetic and the ferromagnetic re-
gimes !!$U". To illustrate this further, several plots contain
the two curves !=0 and !=+2U which have, according to
Eq. !10", the same effective spin-spin interaction strength J
except for the opposite sign !FM and AFM, respectively".

C. Numerical method and parameters

For the numerical simulation, a Krylov subspace variant
&44,45' of the time-dependent DMRG algorithm was used
&27,28,46'. For the Hubbard model, the site basis was re-
stricted to a maximum of two particles for each species. In-

sensitivity of observables to the chosen maximum number of
bosons per site was affirmed. We chose lattice sizes of L
=33 for the Bose-Hubbard model and L=65 sites for the
Heisenberg model. Odd numbers are useful here to have re-
flection symmetric states.

As a matter of fact, boundary effects are much less prob-
lematic here than in ground state calculations, as the initial
state is a product state and correlations between sites are
generated inside a causal cone !the analogon of a light cone;
see Sec. IV E". So as long as measurements are done in the
middle of the system, outside of the causal cones starting
from the boundary sites, results are, except for exponentially
small contributions, identical to those of an infinite system
!thermodynamic limit".

In the time evolution, the absolute difference per physical
time unit between exactly evolved state and the state evolved
via DMRG ,%dt

exact−%dt
DMRG, /dtN was bounded from above by

&=10−4 to &=10−6 and the time step chosen appropriately
between dt=0.1 and 0.01. The errors were determined in a
rigorous fashion by calculating the exact value of ,#k+1$
− Ĥ#k$,, where #k$ are the Krylov vectors. For all calculated
observables, convergence in the error bound and dt was
checked. The resulting number of basis states, used to repre-
sent the time-evolved state, was '3000.

D. Site magnetization

Figures 4–6 show the evolution of the site magnetization
mx= *Ŝx

z$" in the Heisenberg model and the corresponding
quantity m̃x= *n↑x−n↓x$"̃ /2 !=*Ŝx

z$"+O!Ŝ2" according to Sec.
IV A" for the full Hubbard Hamiltonian. For the latter, times
were rescaled by the coupling constant J &Eq. !10"' of the
corresponding effective spin model. Site x was chosen to be
in the middle of the system in order to avoid finite-size ef-
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FIG. 4. !Color online" Evolution of the magnetization on a
particular site x, starting from the Néel state and evolving with
respect to the full Hubbard Hamiltonian with U=8 and !(U, and
the isotropic Heisenberg antiferromagnet, respectively. The first-
order processes occur on the time scale t=1 !here 1 /J due to the
rescaling of the time axis, where time is given in units of the effec-
tive coupling J" and their amplitude decreases quickly with increas-
ing #U2−!2#.
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Figure 4.4: Evolution of the magnetization on a par-
ticular site x, starting from the Néel state and evolv-
ing with respect to the full Hubbard Hamiltonian with
U = 8 and ∆ >U , and the isotropic Heisenberg antifer-
romagnet, respectively. The first order processes occur
on the time scale t= 1 (here 1/J due to the rescaling of
the time axis, where time is given in units of the effec-
tive coupling J) and their amplitude decreases quickly
with increasing |U2−∆2|.

fects !cf. Sec. IV C". For the Heisenberg model !in the ther-
modynamic limit", the site magnetization obeys for symme-
try reasons mx+1=−mx. Analogously, due to invariance under
translations by an even number of sites and particle number
conservation, one has for the Hubbard model !again in the
thermodynamic limit" #n!x+n!x+1$"̃=1∀t and hence m̃x+1
=−m̃x and #n↑x+1+n↓x+1$"̃=2− #n↑x+n↓x$"̃ for all times. As
discussed in Sec. IV C, deviations of our numerical results
from the thermodynamic limit are negligible, although the
simulations are carried out with finite lattice sizes.

The larger %U2−#2% is !for fixed t=1", the better the
curves for the full Hubbard Hamiltonian coincide with those
of the Heisenberg model. This is consistent with Sec. III as
the perturbative derivation of the effective model becomes
exact in this limit. Note that the deviations between the mea-
surements stem from two contributions here: !a" failure of
preparing the correct H1

orig state, i.e., applying the Schrieffer-
Wolff transformation at t=0 and !b" failure of measuring Ŝx

z

instead of e−iŜŜx
zeiŜ= Ŝx

z − i&Ŝ , Ŝx
z'+O!Ŝ2". The weight of

those errors which are of order Ŝ2 vanishes only far away
from %#%=U.

For the Heisenberg model, we observe relaxation of the
site magnetization from $1 /2 to 0. The oscillations of this
observable occur on the time scale 1 /J. The relaxation is
possible due to the continuous spectrum of the Heisenberg
model !in the thermodynamic limit". Here, the convergence
to a steady state is connected to a phase averaging effect, as
is typical for integrable systems. Analytically this can be
seen in a time-dependent mean-field treatment of the Heisen-
berg model which we present in Sec. V B. For the staggered

magnetization !mx" one obtains !in this approximation" a
damped oscillation with the amplitude decaying as (1 / t3/2.
This coincides well with the DMRG data, giving support to
the mean-field approach !see Sec. V B and Fig. 18".

For large %U2−#2% the Hubbard dynamics clearly follow
the curves obtained with the Heisenberg model !second-
order processes" !Figs. 4 and 5". On the shorter time scale
1 / t=1 !J / t in the rescaled plots", corresponding to first-order
processes, small oscillations around the Heisenberg curves
are visible. Their amplitude decreases with increasing %U2

−#2%. The perturbative treatment of the system, leading to
the isotropic Heisenberg model, breaks down for %#%(U. In
this case, the two boson species cannot be interpreted as spin
up or down states anymore and one has an appreciable
amount of double occupancies in the system as demonstrated
in Fig. 6.

Finally, we want to compare those results to the dynamics
for isolated double wells as addressed experimentally in
&25,26'. Figure 7 shows for this case the dynamics of the site
magnetization again for the Hubbard model at various #
%U and the corresponding antiferromagnetic Heisenberg
model. The decisive difference is that no equilibration is pos-
sible in this case. This is due to the fact that the Hamiltonian
has only a few discrete eigenvalues here, as opposed to a
gapless continuous spectrum for the lattice systems in the
thermodynamic limit. In the two-site Heisenberg model we
have only two states in the basis of the Sz=0 Hilbert space.
The two eigenstates have energy difference J. The magneti-
zation curve for the Heisenberg curve is hence just a cosine
with frequency J and constant amplitude 1. The dynamics of
the corresponding two-site Hubbard model is determined by
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FIG. 6. !Color online" Evolution of the occupation number
#n↑x+n↓x$−1 !upper panel" and its variance #nx

2$− #nx$2 !lower
panel" on a particular site x, starting from the Néel state and evolv-
ing with respect to the full Hubbard Hamiltonian with U=8 and
several #. The two quantities should be exactly zero if the analogy
to the spin model was exact. The analogy breaks when %U2−#2%
goes to zero. In the special case #=0, the system is !additionally
to the invariance under translations by two sites" invariant under
translation by one site plus interchange of particle species. Hence
#n↑x+n↓x$=1∀t for #=0.
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FIG. 5. !Color online" Evolution of the magnetization on a par-
ticular site x, starting from the Néel state and evolving with respect
to the full Hubbard Hamiltonian with U=8 and #&U, and the
isotropic Heisenberg ferromagnet, respectively. The first-order pro-
cesses occur on the time scale t=1. Here the contributions of the
first-order processes cannot be made arbitrarily small as we are
limited by %U2−#2%'U2. The Heisenberg curve here is identical to
the one of the antiferromagnet in Fig. 4 due to symmetry !see Sec.
IV B". The effective coupling J has the same modulus for #=0 and
#=)2U, namely, %J%=4t2 /U, but opposite sign. The two curves
show quite different behavior. There is no particular symmetry ex-
cept the one for the second-order physics as discussed in Sec. IV B.
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Figure 4.5: Evolution of the magnetization on a par-
ticular site x, starting from the Néel state and evolv-
ing with respect to the full Hubbard Hamiltonian with
U = 8 and ∆ < U , and the isotropic Heisenberg ferro-
magnet, respectively. The first order processes occur
on the time scale t = 1. Here the contributions of the
first order processes cannot be made arbitrarily small
as one is limited by |U2−∆2| ≤U2. The Heisenberg
curve here is identical to the one of the antiferromagnet
in Fig. 4.4 due to symmetry, see Section 4.3.2.

and 4.11). So as long as measurements are done in the middle of the system, outside of the causal
cones starting from the boundary sites, results are except for exponentially small contributions
identical to those of an infinite system (thermodynamic limit).

In the time evolution, the absolute difference per physical time unit between exactly evolved
state and the state evolved via DMRG ||ψexact

dt −ψDMRG
dt ||/dtN is bounded from above by ε =

10−4 to ε = 10−6 and the time step chosen appropriately between dt = 0.1 and 0.01. The errors
are determined in a rigorous fashion, by calculating the exact value of || |k+1〉− Ĥ|k〉 ||, where
|k〉 are the Krylov vectors. For all calculated observables, convergence in the error bound and dt
was checked. The resulting number of basis states, used to represent the time-evolved state, is
. 3000.

4.3.4 Site magnetization

Figures 4.4–4.6 show the evolution of the site magnetization mx = 〈Ŝz
x〉φ in the Heisenberg

model and the corresponding quantity m̃x = 〈n↑x − n↓x〉φ̃/2 (= 〈Ŝz
x〉φ +O(Ŝ 2) according to

Section 4.3.1) for the full Hubbard Hamiltonian. For the latter, times are rescaled by the cou-
pling constant J, (4.10), of the corresponding effective spin model. Site x is chosen to be in
the middle of the system in order to avoid finite size effects (cf. Section 5.2.1). For the Heisen-
berg model (in the thermodynamic limit), the site magnetization obeys for symmetry reasons
mx+1 =−mx. Analogously, due to invariance under translations by an even number of sites and
particle number conservation, one has for the Hubbard model (again in the thermodynamic limit)
〈nσx + nσx+1〉φ̃ = 1∀t and hence m̃x+1 = −m̃x, and 〈n↑x+1 + n↓x+1〉φ̃ = 2−〈n↑x + n↓x〉φ̃ for all
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times. As discussed in Section 5.2.1, deviations of the numerical results from the thermodynamic
limit are negligible, although the simulations are carried out with finite lattice sizes.

The larger |U2−∆2| is (for fixed t= 1), the better the curves for the full Hubbard Hamiltonian
coincide with those of the Heisenberg model. This is consistent with Sec. 4.2 as the perturbative
derivation of the effective model becomes exact in this limit. Note that the deviations between the
measurements stem from two contributions here: (a) failure of preparing the correct H orig

1 state,
i.e. applying the Schrieffer-Wolff transformation at t = 0, (b) failure of measuring Ŝz

x instead of
e−iŜ Ŝz

xeiŜ = Ŝz
x− i[Ŝ , Ŝz

x]+O(Ŝ 2). The weight of those errors which are of order Ŝ 2 vanishes
only far away from |∆|=U .

For the Heisenberg model, one observes relaxation of the site magnetization from ±1/2 to
0. The oscillations of this observable occur on the time scale 1/J. The relaxation is possible
due to the continuous spectrum of the Heisenberg model (in the thermodynamic limit). Here, the
convergence to a steady state is connected to a phase averaging effect, as is typical for integrable
systems. Analytically this can be seen in a time-dependent mean field treatment of the Heisen-
berg model which I present in Section 4.4.2. For the staggered magnetization (mx) one obtains
(in this approximation) a damped oscillation with the amplitude decaying as ∼ 1/t3/2. This co-
incides well with the DMRG data, giving support to the mean field approach; see Section 4.4.2,
Fig. 4.17.

fects !cf. Sec. IV C". For the Heisenberg model !in the ther-
modynamic limit", the site magnetization obeys for symme-
try reasons mx+1=−mx. Analogously, due to invariance under
translations by an even number of sites and particle number
conservation, one has for the Hubbard model !again in the
thermodynamic limit" #n!x+n!x+1$"̃=1∀t and hence m̃x+1
=−m̃x and #n↑x+1+n↓x+1$"̃=2− #n↑x+n↓x$"̃ for all times. As
discussed in Sec. IV C, deviations of our numerical results
from the thermodynamic limit are negligible, although the
simulations are carried out with finite lattice sizes.

The larger %U2−#2% is !for fixed t=1", the better the
curves for the full Hubbard Hamiltonian coincide with those
of the Heisenberg model. This is consistent with Sec. III as
the perturbative derivation of the effective model becomes
exact in this limit. Note that the deviations between the mea-
surements stem from two contributions here: !a" failure of
preparing the correct H1

orig state, i.e., applying the Schrieffer-
Wolff transformation at t=0 and !b" failure of measuring Ŝx

z

instead of e−iŜŜx
zeiŜ= Ŝx

z − i&Ŝ , Ŝx
z'+O!Ŝ2". The weight of

those errors which are of order Ŝ2 vanishes only far away
from %#%=U.

For the Heisenberg model, we observe relaxation of the
site magnetization from $1 /2 to 0. The oscillations of this
observable occur on the time scale 1 /J. The relaxation is
possible due to the continuous spectrum of the Heisenberg
model !in the thermodynamic limit". Here, the convergence
to a steady state is connected to a phase averaging effect, as
is typical for integrable systems. Analytically this can be
seen in a time-dependent mean-field treatment of the Heisen-
berg model which we present in Sec. V B. For the staggered

magnetization !mx" one obtains !in this approximation" a
damped oscillation with the amplitude decaying as (1 / t3/2.
This coincides well with the DMRG data, giving support to
the mean-field approach !see Sec. V B and Fig. 18".

For large %U2−#2% the Hubbard dynamics clearly follow
the curves obtained with the Heisenberg model !second-
order processes" !Figs. 4 and 5". On the shorter time scale
1 / t=1 !J / t in the rescaled plots", corresponding to first-order
processes, small oscillations around the Heisenberg curves
are visible. Their amplitude decreases with increasing %U2

−#2%. The perturbative treatment of the system, leading to
the isotropic Heisenberg model, breaks down for %#%(U. In
this case, the two boson species cannot be interpreted as spin
up or down states anymore and one has an appreciable
amount of double occupancies in the system as demonstrated
in Fig. 6.

Finally, we want to compare those results to the dynamics
for isolated double wells as addressed experimentally in
&25,26'. Figure 7 shows for this case the dynamics of the site
magnetization again for the Hubbard model at various #
%U and the corresponding antiferromagnetic Heisenberg
model. The decisive difference is that no equilibration is pos-
sible in this case. This is due to the fact that the Hamiltonian
has only a few discrete eigenvalues here, as opposed to a
gapless continuous spectrum for the lattice systems in the
thermodynamic limit. In the two-site Heisenberg model we
have only two states in the basis of the Sz=0 Hilbert space.
The two eigenstates have energy difference J. The magneti-
zation curve for the Heisenberg curve is hence just a cosine
with frequency J and constant amplitude 1. The dynamics of
the corresponding two-site Hubbard model is determined by
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FIG. 6. !Color online" Evolution of the occupation number
#n↑x+n↓x$−1 !upper panel" and its variance #nx

2$− #nx$2 !lower
panel" on a particular site x, starting from the Néel state and evolv-
ing with respect to the full Hubbard Hamiltonian with U=8 and
several #. The two quantities should be exactly zero if the analogy
to the spin model was exact. The analogy breaks when %U2−#2%
goes to zero. In the special case #=0, the system is !additionally
to the invariance under translations by two sites" invariant under
translation by one site plus interchange of particle species. Hence
#n↑x+n↓x$=1∀t for #=0.
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FIG. 5. !Color online" Evolution of the magnetization on a par-
ticular site x, starting from the Néel state and evolving with respect
to the full Hubbard Hamiltonian with U=8 and #&U, and the
isotropic Heisenberg ferromagnet, respectively. The first-order pro-
cesses occur on the time scale t=1. Here the contributions of the
first-order processes cannot be made arbitrarily small as we are
limited by %U2−#2%'U2. The Heisenberg curve here is identical to
the one of the antiferromagnet in Fig. 4 due to symmetry !see Sec.
IV B". The effective coupling J has the same modulus for #=0 and
#=)2U, namely, %J%=4t2 /U, but opposite sign. The two curves
show quite different behavior. There is no particular symmetry ex-
cept the one for the second-order physics as discussed in Sec. IV B.
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Figure 4.6: Evolution of the occupation number 〈n↑x +n↓x〉−1 (upper panel) and its variance 〈n2
x〉− 〈nx〉2 (lower

panel) on a particular site x, starting from the Néel state and evolving with respect to the full Hubbard Hamiltonian
with U = 8 and several ∆. The two quantities should be exactly zero, if the analogy to the spin model is exact. The
analogy breaks when |U2−∆2| goes to zero. In the special case ∆ = 0, the system is (additionally to the invariance
under translations by two sites) invariant under translation by one site plus interchange of particle species. Hence
〈n↑x +n↓x〉= 1∀t for ∆ = 0.

For large |U2−∆2| the Hubbard dynamics clearly follow the curves obtained with the Heisen-
berg model (second order processes); Fig. 4.4 and 4.5. On the shorter time-scale 1/t= 1 (J/t in
the rescaled plots), corresponding to first order processes, small oscillations around the Heisen-
berg curves are visible. Their amplitude decreases with increasing |U2−∆2|. The perturbative
treatment of the system, leading to the isotropic Heisenberg model, breaks down for |∆| ∼U . In
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three !discrete" incommensurate frequencies. The magnetiza-
tion is hence not completely periodic but due to the relation
to Heisenberg model, a frequency #J is still dominating. No
sign of relaxation is visible.

As mentioned above, the differences between Hubbard
and Heisenberg dynamics stem from the fact that the two
Schrieffer-Wolff transformations in Sec. IV A have been ne-
glected. Figure 7 shows in the lower panel the site magneti-
zation for the case where both error sources !a" and !b" have
been corrected. Although this should be hard to implement
experimentally, it is unproblematic for our numerical analy-
sis. We apply the Schrieffer-Wolff transformation !A14", cor-
rect up to O! t

U!" ", to the initial state before the Hubbard
time evolution and its inverse before the measurement. As
discussed in Sec. IV A, the remaining deviations from the
Heisenberg curve are then only of order Ŝ4 !Figs. 7 and 8".

E. Correlation functions

The correlation functions in Figs. 9–12 support on the one
hand the results already obtained from the magnetization dy-
namics in Sec. IV D. On the other hand one also sees here
explicitly that correlations spread out inside a causal cone
!analogon of a light cone" defined by the maximum group
velocity. The latter coincides for large $U2−"2$ with the
maximum group velocity 2J of the Heisenberg model. One
also notes here that equilibration to a steady state occurs first
for small subsystems. This issue will be discussed in Sec. V.

F. Momentum distribution and correlators

Experimental access to on-site magnetization or, corre-
spondingly, the particle number difference !“spin imbal-
ance”" has already been demonstrated %25,26&. However
there is no direct access to the real-space correlators. As it
turns out, the standard experimental observable for experi-
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FIG. 7. !Color online" Evolution of the magnetization %m̂1ª !n↑1−n↓1" /2& on one site of an isolated double well, starting from
the Néel state and evolving with respect to the full two-site Hub-
bard Hamiltonian with U=8 and "=10,16,24,32, and the isotropic
Heisenberg antiferromagnet, respectively. Contrary to the case of an
infinite lattice, the magnetization does not relax here. The upper
panel shows 'm̂1(#̃)'#$e−Ĥt/i$m̂1eĤt/i$$#(. In the lower panel shows
'#$eiŜe−Ĥt/i$e−iŜm̂1eiŜeĤt/i$e−iŜ$#(, i.e., there the Schrieffer-Wolff
transformation was accounted for %Ŝ correct to O! t

U!" "&. As dis-
cussed in Sec. IV A, the stretching in the curves with respect to
time results from terms of order J2 in the effective Hamiltonian.
They originate from fourth-order hopping processes.
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FIG. 8. !Color online" Time average of the particle number vari-
ance on one site of an isolated double well !n1)n↑1+n↓1", evolving
with respect to the full two-site Hubbard Hamiltonian with several
U and " %J=4t2U / !U2−"2"&. The variance should be exactly zero
if the analogy to the spin model was exact as we would have ex-
actly one particle per site then. As discussed in Sec. IV A, the error
is of O!Ŝ2" if the Schrieffer-Wolff transformation is neglected com-
pletely %Eq. !17"& and of O!Ŝ4" if its first-order approximation
!A14" is used. In the special case of the isolated double well, the
second-order terms in Ŝ vanish %because Ĥt

0)0 here, see Eq. !A6"&.
Hence, we actually observe O!Ŝ6" instead of O!Ŝ4". The quantity
on the x axis quantifies O!Ŝ". For each curve, either " or U was
kept constant and the other parameter varied. Compare also to Figs.
4 and 6.
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FIG. 9. !Color online" Evolution of the analogon
1
4 '!n↑x−n↓x"!n↑x+!−n↓x+!"(#̃− 1

4 'n↑x−n↓x(#̃'n↑x+!−n↓x+!(#̃ of the
magnetization-magnetization correlation function, starting from the
Néel state and evolving with respect to the full Hubbard Hamil-
tonian with U=8 and "=16. The plot shows the absolute value of
the correlator in logarithmic scaling. The line denotes the maximum
group velocity 2J of the Heisenberg model.
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Figure 4.7: Evolution of the magnetization (m̂1 :=(n↑1−n↓1)/2) on one site of an isolated double well, starting from
the Néel state and evolving with respect to the full two-site Hubbard Hamiltonian with U = 8 and ∆ = 10,16,24,32,
and the isotropic Heisenberg antiferromagnet, respectively. Contrary to the case of an infinite lattice, the magne-
tization does not relax here. The upper panel shows 〈m̂1〉φ̃ ≡ 〈φ |e−Ĥt/ih̄m̂1eĤt/ih̄|φ〉. In the lower panel shows

〈φ |eiŜe−Ĥt/ih̄e−iŜm̂1eiŜeĤt/ih̄e−iŜ|φ〉, i.e. there the Schrieffer-Wolff transformation was accounted for (Ŝ correct to
O( t

U±∆
)). As discussed in Section 4.3.1, the stretching in the curves w.r.t. time results from terms of order J2 in the

effective Hamiltonian. They originate from fourth-order hopping processes.

this case, the two boson species cannot be interpreted as spin up or down states anymore and one
has an appreciable amount of double occupancies in the system as demonstrated in Fig. 4.6.

Finally, I want to compare those results to the dynamics for isolated double wells as addressed
experimentally in [103, 271]. Fig. 4.7 shows for this case the dynamics of the site magnetization
again for the Hubbard model at various ∆ >U and the corresponding antiferromagnetic Heisen-
berg model. The decisive difference is that no equilibration is possible in this case. This is due
to the fact that the Hamiltonian has only a few discrete eigenvalues here, as opposed to a gapless
continuous spectrum for the lattice systems in the thermodynamic limit. In the two-site Heisen-
berg model there are only two states in the basis of the Sz = 0 Hilbert space. The two eigenstates
have energy difference J. The magnetization curve for the Heisenberg curve is hence just a co-
sine with frequency J and constant amplitude 1. The dynamics of the corresponding two-site
Hubbard model is determined by three (discrete) incommensurate frequencies. The magnetiza-
tion is hence not completely periodic, but due to the relation to Heisenberg model, a frequency
∼ J is still dominating. No sign of relaxation is visible.

As mentioned above, the differences between Hubbard and Heisenberg dynamics stem from
the fact that the two Schrieffer-Wolff transformations in (4.3.1) have been neglected. Fig. 4.7
shows in the lower panel the site magnetization for the case where both error sources (a) and (b)
have been corrected. Although this should be hard to implement experimentally, it is unprob-
lematic for the numerical analysis. Applying the Schrieffer-Wolff transformation , correct up to
O( t

U±∆
), to the initial state before the Hubbard time evolution and its inverse before the mea-

surement. As discussed in Section 4.3.1, the remaining deviations from the Heisenberg curve are
then only of order Ŝ 4; Fig. 4.7.
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three !discrete" incommensurate frequencies. The magnetiza-
tion is hence not completely periodic but due to the relation
to Heisenberg model, a frequency #J is still dominating. No
sign of relaxation is visible.

As mentioned above, the differences between Hubbard
and Heisenberg dynamics stem from the fact that the two
Schrieffer-Wolff transformations in Sec. IV A have been ne-
glected. Figure 7 shows in the lower panel the site magneti-
zation for the case where both error sources !a" and !b" have
been corrected. Although this should be hard to implement
experimentally, it is unproblematic for our numerical analy-
sis. We apply the Schrieffer-Wolff transformation !A14", cor-
rect up to O! t

U!" ", to the initial state before the Hubbard
time evolution and its inverse before the measurement. As
discussed in Sec. IV A, the remaining deviations from the
Heisenberg curve are then only of order Ŝ4 !Figs. 7 and 8".

E. Correlation functions

The correlation functions in Figs. 9–12 support on the one
hand the results already obtained from the magnetization dy-
namics in Sec. IV D. On the other hand one also sees here
explicitly that correlations spread out inside a causal cone
!analogon of a light cone" defined by the maximum group
velocity. The latter coincides for large $U2−"2$ with the
maximum group velocity 2J of the Heisenberg model. One
also notes here that equilibration to a steady state occurs first
for small subsystems. This issue will be discussed in Sec. V.

F. Momentum distribution and correlators

Experimental access to on-site magnetization or, corre-
spondingly, the particle number difference !“spin imbal-
ance”" has already been demonstrated %25,26&. However
there is no direct access to the real-space correlators. As it
turns out, the standard experimental observable for experi-
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FIG. 7. !Color online" Evolution of the magnetization %m̂1ª !n↑1−n↓1" /2& on one site of an isolated double well, starting from
the Néel state and evolving with respect to the full two-site Hub-
bard Hamiltonian with U=8 and "=10,16,24,32, and the isotropic
Heisenberg antiferromagnet, respectively. Contrary to the case of an
infinite lattice, the magnetization does not relax here. The upper
panel shows 'm̂1(#̃)'#$e−Ĥt/i$m̂1eĤt/i$$#(. In the lower panel shows
'#$eiŜe−Ĥt/i$e−iŜm̂1eiŜeĤt/i$e−iŜ$#(, i.e., there the Schrieffer-Wolff
transformation was accounted for %Ŝ correct to O! t

U!" "&. As dis-
cussed in Sec. IV A, the stretching in the curves with respect to
time results from terms of order J2 in the effective Hamiltonian.
They originate from fourth-order hopping processes.
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FIG. 8. !Color online" Time average of the particle number vari-
ance on one site of an isolated double well !n1)n↑1+n↓1", evolving
with respect to the full two-site Hubbard Hamiltonian with several
U and " %J=4t2U / !U2−"2"&. The variance should be exactly zero
if the analogy to the spin model was exact as we would have ex-
actly one particle per site then. As discussed in Sec. IV A, the error
is of O!Ŝ2" if the Schrieffer-Wolff transformation is neglected com-
pletely %Eq. !17"& and of O!Ŝ4" if its first-order approximation
!A14" is used. In the special case of the isolated double well, the
second-order terms in Ŝ vanish %because Ĥt

0)0 here, see Eq. !A6"&.
Hence, we actually observe O!Ŝ6" instead of O!Ŝ4". The quantity
on the x axis quantifies O!Ŝ". For each curve, either " or U was
kept constant and the other parameter varied. Compare also to Figs.
4 and 6.
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FIG. 9. !Color online" Evolution of the analogon
1
4 '!n↑x−n↓x"!n↑x+!−n↓x+!"(#̃− 1

4 'n↑x−n↓x(#̃'n↑x+!−n↓x+!(#̃ of the
magnetization-magnetization correlation function, starting from the
Néel state and evolving with respect to the full Hubbard Hamil-
tonian with U=8 and "=16. The plot shows the absolute value of
the correlator in logarithmic scaling. The line denotes the maximum
group velocity 2J of the Heisenberg model.
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Figure 4.8: Evolution of the analogon 1
4 〈(n↑x −

n↓x)(n↑x+`− n↓x+`)〉φ̃ − 1
4 〈n↑x− n↓x〉φ̃ 〈n↑x+`− n↓x+`〉φ̃

of the magnetization-magnetization correlation func-
tion, starting from the Néel state and evolving with re-
spect to the full Hubbard Hamiltonian with U = 8 and
∆ = 16. The plot shows the absolute value of the corre-
lator in logarithmic scaling. The line denotes the max-
imum group velocity 2J of the Heisenberg model.

three !discrete" incommensurate frequencies. The magnetiza-
tion is hence not completely periodic but due to the relation
to Heisenberg model, a frequency #J is still dominating. No
sign of relaxation is visible.

As mentioned above, the differences between Hubbard
and Heisenberg dynamics stem from the fact that the two
Schrieffer-Wolff transformations in Sec. IV A have been ne-
glected. Figure 7 shows in the lower panel the site magneti-
zation for the case where both error sources !a" and !b" have
been corrected. Although this should be hard to implement
experimentally, it is unproblematic for our numerical analy-
sis. We apply the Schrieffer-Wolff transformation !A14", cor-
rect up to O! t

U!" ", to the initial state before the Hubbard
time evolution and its inverse before the measurement. As
discussed in Sec. IV A, the remaining deviations from the
Heisenberg curve are then only of order Ŝ4 !Figs. 7 and 8".
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hand the results already obtained from the magnetization dy-
namics in Sec. IV D. On the other hand one also sees here
explicitly that correlations spread out inside a causal cone
!analogon of a light cone" defined by the maximum group
velocity. The latter coincides for large $U2−"2$ with the
maximum group velocity 2J of the Heisenberg model. One
also notes here that equilibration to a steady state occurs first
for small subsystems. This issue will be discussed in Sec. V.
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Experimental access to on-site magnetization or, corre-
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FIG. 7. !Color online" Evolution of the magnetization %m̂1ª !n↑1−n↓1" /2& on one site of an isolated double well, starting from
the Néel state and evolving with respect to the full two-site Hub-
bard Hamiltonian with U=8 and "=10,16,24,32, and the isotropic
Heisenberg antiferromagnet, respectively. Contrary to the case of an
infinite lattice, the magnetization does not relax here. The upper
panel shows 'm̂1(#̃)'#$e−Ĥt/i$m̂1eĤt/i$$#(. In the lower panel shows
'#$eiŜe−Ĥt/i$e−iŜm̂1eiŜeĤt/i$e−iŜ$#(, i.e., there the Schrieffer-Wolff
transformation was accounted for %Ŝ correct to O! t

U!" "&. As dis-
cussed in Sec. IV A, the stretching in the curves with respect to
time results from terms of order J2 in the effective Hamiltonian.
They originate from fourth-order hopping processes.
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FIG. 8. !Color online" Time average of the particle number vari-
ance on one site of an isolated double well !n1)n↑1+n↓1", evolving
with respect to the full two-site Hubbard Hamiltonian with several
U and " %J=4t2U / !U2−"2"&. The variance should be exactly zero
if the analogy to the spin model was exact as we would have ex-
actly one particle per site then. As discussed in Sec. IV A, the error
is of O!Ŝ2" if the Schrieffer-Wolff transformation is neglected com-
pletely %Eq. !17"& and of O!Ŝ4" if its first-order approximation
!A14" is used. In the special case of the isolated double well, the
second-order terms in Ŝ vanish %because Ĥt

0)0 here, see Eq. !A6"&.
Hence, we actually observe O!Ŝ6" instead of O!Ŝ4". The quantity
on the x axis quantifies O!Ŝ". For each curve, either " or U was
kept constant and the other parameter varied. Compare also to Figs.
4 and 6.
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FIG. 9. !Color online" Evolution of the analogon
1
4 '!n↑x−n↓x"!n↑x+!−n↓x+!"(#̃− 1

4 'n↑x−n↓x(#̃'n↑x+!−n↓x+!(#̃ of the
magnetization-magnetization correlation function, starting from the
Néel state and evolving with respect to the full Hubbard Hamil-
tonian with U=8 and "=16. The plot shows the absolute value of
the correlator in logarithmic scaling. The line denotes the maximum
group velocity 2J of the Heisenberg model.
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Figure 4.9: Evolution of the magnetization-
magnetization correlation function 〈Ŝz

xŜz
x+`〉φ −

〈Ŝz
x〉φ 〈Ŝz

x+`〉φ , starting from the Néel state and evolving
with respect to the isotropic Heisenberg antiferromag-
net. The plot shows the absolute value of the correlator
in logarithmic scaling. The line denotes the maximum
group velocity 2J of the Heisenberg model.

4.3.5 Correlation functions
The correlation functions in Figs. 4.8–4.11 support on the one hand the results already obtained
from the magnetization dynamics in Section 4.3.4. On the other hand one also sees here explic-
itly that correlations spread out inside a causal cone (analogon of a light cone) defined by the
maximum group velocity. The latter coincides for large |U2−∆2| with the maximum group ve-
locity 2J of the Heisenberg model. One also notes here that equilibration to a steady state occurs
first for small subsystems. This issue will be discussed in Section 4.4.

4.3.6 Momentum distribution and correlators
Experimental access to onsite magnetization or, correspondingly, the particle number difference
(“spin imbalance”) has already been demonstrated [103, 271]. However there is no direct ac-
cess to the real-space correlators. As it turns out, the standard experimental observable [see.
Sec.3.3.2] for experiments with ultracold atoms, the momentum distribution 〈nk〉 = 〈n↑k +n↓k〉,
is to zeroth order in Ŝ constant in time. It measures to this order simply the particle density
which is in the limit of Heisenberg dynamics ∆�U very close to one.

nk =
1
N ∑

i
ni +

1
N ∑

σ ,i 6= j
eik·(ri−r j)a†

σ iaσ j (4.22)

It follows with (4.17)
〈nk〉φ̃ = 〈nk〉φ +O(Ŝ 2) = 1+O(Ŝ 2). (4.23)

Hence one needs to go beyond the measurement of the momentum distribution. By analysis
of shot-noise of absorption images taken by time-of-flight measurements [cp. Sec.3.3], one ob-
tains momentum-space particle density correlation functions [6, 102]. Experimentally available
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ments with ultracold atoms, the momentum distribution
!nk"= !n↑k+n↓k", is to zeroth order in Ŝ constant in time. It
measures to this order simply the particle density which is in
the limit of Heisenberg dynamics !"U very close to 1,
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It follows with Eq. $17%

!nk"$̃ = !nk"$ + O$Ŝ2% = 1 + O$Ŝ2% . $21%

Hence one needs to go beyond the measurement of
the momentum distribution. By analysis of shot noise of ab-
sorption images taken by time-of-flight measurements, one

obtains momentum-space particle density correlation func-
tions &47,48'. Experimentally available are !n#kn#k!" and
!nknk!"=###!!n#kn#!k!" and hence also ##!n#kn−#k!". In the
following, we will again use the approximation !Ô"$̃= !Ô"$
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Those give information about long-range spin correlations
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z%$ 3

2 + Ŝj
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for the observable ##!n#kn−#k!". This also reflects the fact
that to zeroth order of Ŝ, there are no double occupancies
with respect to the original basis. However, there is an ad-
mixture of them, contributing in second order of Ŝ,
!n↑in↓i"$̃=O$Ŝ2%. Inserting Eqs. $23% and $24% to Eq. $22%
yields
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FIG. 10. $Color online% Evolution of the magnetization-
magnetization correlation function !Ŝx

zŜx+!
z "$− !Ŝx

z"$!Ŝx+!
z "$, starting

from the Néel state and evolving with respect to the isotropic
Heisenberg antiferromagnet. The plot shows the absolute value of
the correlator in logarithmic scaling. The line denotes the maximum
group velocity 2J of the Heisenberg model.
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FIG. 11. $Color online% Evolution of short range magnetization-
magnetization correlation function $distances !=1,2 ,3%, starting
from the Néel state and evolving with respect to the full Hubbard
Hamiltonian with U=8 and !=16 and the isotropic Heisenberg
antiferromagnet, respectively. With increasing time, deviations be-
tween Heisenberg and Hubbard dynamics become more pronounced
than for the magnetization in Fig. 4. However, in both cases ten-
dency toward equilibration to a steady state is visible.
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Figure 4.10: Evolution of short range magnetization-
magnetization correlation function (distances ` =
1,2,3), starting from the Néel state and evolving with
respect to the full Hubbard Hamiltonian with U = 8 and
∆ = 16 and the isotropic Heisenberg antiferromagnet,
respectively. With increasing time, deviations between
Heisenberg and Hubbard dynamics become more pro-
nounced than for the magnetization in Fig. 4.4. How-
ever, in both cases tendency toward equilibration to a
steady state is visible.
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from the Néel state and evolving with respect to the isotropic
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the correlator in logarithmic scaling. The line denotes the maximum
group velocity 2J of the Heisenberg model.
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antiferromagnet, respectively. With increasing time, deviations be-
tween Heisenberg and Hubbard dynamics become more pronounced
than for the magnetization in Fig. 4. However, in both cases ten-
dency toward equilibration to a steady state is visible.
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FIG. 12. $Color online% Evolution of the magnetization-
magnetization correlation function, starting from the Néel state and
evolving with respect to the full Hubbard Hamiltonian with U=8
and !=16 and the isotropic Heisenberg antiferromagnet, respec-
tively. See also Fig. 11.
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Figure 4.11: Evolution of the magnetization-
magnetization correlation function, starting from the
Néel state and evolving with respect to the full Hubbard
Hamiltonian with U = 8 and ∆ = 16 and the isotropic
Heisenberg antiferromagnet, respectively. See also
Fig. 4.10.

are 〈nσknσk′〉 and 〈nknk′〉 = ∑σσ ′〈nσknσ ′k′〉 and hence also ∑σ 〈nσkn−σk′〉. In the following, I
will again use the approximation 〈Ô〉

φ̃
= 〈Ô〉φ +O(Ŝ 2)' 〈Ô〉φ .

〈nσknσ ′k′〉φ̃ =
1

N2 ∑
i j,nm

eik·(ri−r j)eik′·(rm−rn)〈a†
σ iaσ ja

†
σ ′ma

σ ′n〉φ̃ (4.24)

Those give information about long-range spin correlations.
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†
↑ma↑n〉φ̃ '〈δi jδmnn↑in↑m +(1−δi j)δinδ jma†

↑ia↑ ja
†
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1
2 + Ŝz

i )(
1
2 + Ŝz

m)+(1−δi j)δinδ jm(
1
2 + Ŝz

i )(
3
2 + Ŝz

j)〉φ (4.25)

for the observable 〈n↑kn↑k′〉 and

∑σ 〈a†
σ iaσ ja

†
−σma−σn〉φ̃ '〈δi jδmn ∑σ nσ in−σm +(1−δi j)δinδ jm ∑σ a†

σ iaσ ja
†
−σ ja−σ i〉φ

=〈δi jδmn(
1
2 −2Ŝz

i Ŝ
z
m)+(1−δi j)δinδ jm2(Ŝx

i Ŝx
m + Ŝy

i Ŝy
m)〉φ (4.26)

for the observable ∑σ 〈nσkn−σk′〉. This also reflects the fact that to zeroth order of Ŝ , there
are no double occupancies with respect to the original basis. However, there is an admixture
of them, contributing in second order of Ŝ , 〈n↑in↓i〉φ̃ = O(Ŝ 2). Inserting (4.25) and (4.26) to
(4.24) yields

〈n↑kn↑k′〉φ̃ '
1
4 −

1
N + 3

4δkk′+ 〈Ŝz
∆kŜz
−∆k〉φ

= 〈n↓kn↓k′〉φ (4.27)
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where #k'k−k!, Ŝq
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N&ieiq·riŜi
%, Ŝ%' 1

N&iŜi
%, and

Ŝz(!$t%"=0 were used.
A numerical comparison of the evolution of the

momentum-space spin-spin $density-density% correlator for
the Heisenberg and the Hubbard models is given in Figs.
13–15. To achieve such a good agreement, two corrections
were necessary that are described in more detail in Appendix
B. First of all one needs to correct for finite-size effects.
Second, single-particle Green’s functions !ai

†aj" enter which
are trivial when evolving with the Heisenberg model
$!ai

†aj"!="ijn↑i$t%% but have contributions of O$Ŝ2% when
evolving with the Hubbard Hamiltonian. In the comparison
of both evolutions, they can hence be understood as a major
carrier of disturbance, reflecting first-order processes in the
Hubbard model. To achieve comparability it would be desir-
able to remove contributions from !ai

†aj" completely. This
would be possible for our numerical analysis. In a corre-
sponding experiment, however, the quantities are not avail-
able. Hence we confined ourselves to removing only the con-
tributions from nearest-neighbor correlators !ai

†ai&1". As
Figs. 13–15 demonstrate that this is already sufficient and
Fig. 16 that it is necessary. The experimental observation of
the nearest-neighbor correlators is within reach )49*.

The specific form of the momentum-space correlation
function can be understood with the causal cone behavior of
the corresponding real-space correlators discussed in Sec.
IV E. At the beginning of time evolution, correlations for
small distances build up $e.g., due to the spin flip terms

Ŝi
+Ŝi&1

− in the Heisenberg model%. This corresponds in the
momentum-space representation to correlations for large #k.
As the correlations spread out in real space, correlations for
smaller momenta #k build up.

V. RELAXATION TO STEADY STATES

A. General features

Contrary to the setup of isolated double wells, one ob-
serves for the many-particle dynamics in our setup a relax-
ation for local quantities. This may be seen as an indicator
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FIG. 13. $Color online% Evolution of the momentum-space spin-
spin correlator !Ŝ#k

z Ŝ−#k
z "! for the Heisenberg antiferromagnet. The

correlator corresponds according to Eq. $25% to the density-density
correlator in the Hubbard model and is available in experiments
with ultracold atoms )47*. The initial state $14% is uncorrelated.
Correlations build up on the time scale 1 /J. Finite-size effects have
been corrected $see text%.
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FIG. 14. $Color online% Evolution of the momentum-space
density-density correlator 1

Nk
&k!n↑k+#kn↑k"!̃ )minus the trivial parts

on the right hand side of Eq. $25%* in the Hubbard model with
U=8 and #=16. Except for quick oscillations on the time scale
t=1 / t, the result reflects the evolution of the corresponding spin-
spin correlator in the Heisenberg model $Fig. 13%. Finite-size effects
have been corrected and first-order hopping contributions entering
through the nearest-neighbor correlator !ai

†aj"!̃ were removed $see
text%.
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FIG. 15. $Color online% Evolution of the momentum-space
density-density correlator 1

Nk
&k!n↑k+'n↑k"!̃ for #k=' )minus the

trivial parts on the right-hand side of Eq. $25%* in the Hubbard
model with U=8 and #=16,24. The Hubbard results follow once
more the Heisenberg curves, except for some quick oscillations due
to first-order hopping processes which die out for (#( far from U.
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Figure 4.12: Evolution of the momentum-space spin-
spin correlator 〈Ŝz

∆kŜz
−∆k〉φ for the Heisenberg antifer-

romagnet. The correlator corresponds according to
Eq. (4.27) to the density-density correlator in the Hub-
bard model and is available in experiments with ultra-
cold atoms [6]. The initial state (4.14) is uncorrelated.
Correlations build up on the time scale 1/J. Finite-size
effects have been corrected (see text).
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momentum-space spin-spin $density-density% correlator for
the Heisenberg and the Hubbard models is given in Figs.
13–15. To achieve such a good agreement, two corrections
were necessary that are described in more detail in Appendix
B. First of all one needs to correct for finite-size effects.
Second, single-particle Green’s functions !ai

†aj" enter which
are trivial when evolving with the Heisenberg model
$!ai

†aj"!="ijn↑i$t%% but have contributions of O$Ŝ2% when
evolving with the Hubbard Hamiltonian. In the comparison
of both evolutions, they can hence be understood as a major
carrier of disturbance, reflecting first-order processes in the
Hubbard model. To achieve comparability it would be desir-
able to remove contributions from !ai

†aj" completely. This
would be possible for our numerical analysis. In a corre-
sponding experiment, however, the quantities are not avail-
able. Hence we confined ourselves to removing only the con-
tributions from nearest-neighbor correlators !ai

†ai&1". As
Figs. 13–15 demonstrate that this is already sufficient and
Fig. 16 that it is necessary. The experimental observation of
the nearest-neighbor correlators is within reach )49*.

The specific form of the momentum-space correlation
function can be understood with the causal cone behavior of
the corresponding real-space correlators discussed in Sec.
IV E. At the beginning of time evolution, correlations for
small distances build up $e.g., due to the spin flip terms

Ŝi
+Ŝi&1

− in the Heisenberg model%. This corresponds in the
momentum-space representation to correlations for large #k.
As the correlations spread out in real space, correlations for
smaller momenta #k build up.

V. RELAXATION TO STEADY STATES

A. General features

Contrary to the setup of isolated double wells, one ob-
serves for the many-particle dynamics in our setup a relax-
ation for local quantities. This may be seen as an indicator
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FIG. 13. $Color online% Evolution of the momentum-space spin-
spin correlator !Ŝ#k

z Ŝ−#k
z "! for the Heisenberg antiferromagnet. The

correlator corresponds according to Eq. $25% to the density-density
correlator in the Hubbard model and is available in experiments
with ultracold atoms )47*. The initial state $14% is uncorrelated.
Correlations build up on the time scale 1 /J. Finite-size effects have
been corrected $see text%.
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on the right hand side of Eq. $25%* in the Hubbard model with
U=8 and #=16. Except for quick oscillations on the time scale
t=1 / t, the result reflects the evolution of the corresponding spin-
spin correlator in the Heisenberg model $Fig. 13%. Finite-size effects
have been corrected and first-order hopping contributions entering
through the nearest-neighbor correlator !ai

†aj"!̃ were removed $see
text%.

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 0.5 1 1.5 2 2.5 3 3.5 4

<
S

z ∆k
S

z -∆
k

>

J t

Hubbard ∆=16
Hubbard ∆=24

AFM Heisenberg

FIG. 15. $Color online% Evolution of the momentum-space
density-density correlator 1

Nk
&k!n↑k+'n↑k"!̃ for #k=' )minus the

trivial parts on the right-hand side of Eq. $25%* in the Hubbard
model with U=8 and #=16,24. The Hubbard results follow once
more the Heisenberg curves, except for some quick oscillations due
to first-order hopping processes which die out for (#( far from U.
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Figure 4.13: Evolution of the momentum space
density-density correlator 1

Nk
∑k〈n↑k+∆kn↑k〉φ̃ (minus

the trivial parts on the right hand side of Eq. (4.27)) in
the Hubbard model with U = 8 and ∆ = 16. Except for
quick oscillations on the time scale t = 1/t, the result
reflects the evolution of the corresponding spin-spin
correlator in the Heisenberg model, Fig. 4.12. Finite-
size effects have been corrected and first order hop-
ping contributions entering through the nearest neigh-
bor correlator 〈a†

i a j〉φ̃ are removed (see text).

and

∑
σ

〈nσkn−σk′〉φ̃ '
1
2 −

1
N +2〈Ŝx

∆kŜx
−∆k + Ŝy

∆kŜy
−∆k〉φ , (4.28)

where ∆k ≡ k− k′, Ŝα
q ≡ 1

N ∑i eiq·ri Ŝα
i , Ŝα ≡ 1

N ∑i Ŝα
i , and Ŝz|φ(t)〉= 0 are used.

A numerical comparison of the evolution of the momentum-space spin-spin (density-density)
correlator for the Heisenberg and the Hubbard models is given in Figs. 4.12-4.14. To achieve
such a good agreement, two corrections are necessary. First of all one needs to correct for fi-
nite size effects. Secondly, single particle Green’s functions 〈a†

i a j〉 enter which are trivial when

evolving with the Heisenberg model (〈a†
i a j〉φ = δi jn↑i(t)), but have contributions of O(Ŝ 2),

when evolving with the Hubbard Hamiltonian. In the comparison of both evolutions, they can
hence be understood as a major carrier of disturbance, reflecting first order processes in the Hub-
bard model. To achieve comparability it would be desirable to remove contributions from 〈a†

i a j〉
completely. This would be possible for the numerical analysis. In a corresponding experiment
however, the quantities are not available. Hence I remove only the contributions from nearest
neighbor correlators 〈a†

i ai±1〉. As Figures 4.12-4.14 demonstrate that this is already sufficient
and Fig. 4.15 that it is necessary. The experimental observation of the nearest-neighbor correla-
tors is within reach [101].

The specific form of the momentum-space correlation function can be understood with the
causal cone behavior of the corresponding real-space correlators discussed in Section 4.3.5. At
the beginning of time evolution, correlations for small distances build up (e.g. due to the spin flip
terms Ŝ+i Ŝ−i±1 in the Heisenberg model). This corresponds in the momentum space representation
to correlations for large ∆k. As the correlations spread out in real-space, correlations for smaller
momenta ∆k build up.
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z Ŝ−#k
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would be possible for our numerical analysis. In a corre-
sponding experiment, however, the quantities are not avail-
able. Hence we confined ourselves to removing only the con-
tributions from nearest-neighbor correlators !ai

†ai&1". As
Figs. 13–15 demonstrate that this is already sufficient and
Fig. 16 that it is necessary. The experimental observation of
the nearest-neighbor correlators is within reach )49*.

The specific form of the momentum-space correlation
function can be understood with the causal cone behavior of
the corresponding real-space correlators discussed in Sec.
IV E. At the beginning of time evolution, correlations for
small distances build up $e.g., due to the spin flip terms

Ŝi
+Ŝi&1

− in the Heisenberg model%. This corresponds in the
momentum-space representation to correlations for large #k.
As the correlations spread out in real space, correlations for
smaller momenta #k build up.

V. RELAXATION TO STEADY STATES

A. General features

Contrary to the setup of isolated double wells, one ob-
serves for the many-particle dynamics in our setup a relax-
ation for local quantities. This may be seen as an indicator
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FIG. 13. $Color online% Evolution of the momentum-space spin-
spin correlator !Ŝ#k

z Ŝ−#k
z "! for the Heisenberg antiferromagnet. The

correlator corresponds according to Eq. $25% to the density-density
correlator in the Hubbard model and is available in experiments
with ultracold atoms )47*. The initial state $14% is uncorrelated.
Correlations build up on the time scale 1 /J. Finite-size effects have
been corrected $see text%.
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FIG. 14. $Color online% Evolution of the momentum-space
density-density correlator 1

Nk
&k!n↑k+#kn↑k"!̃ )minus the trivial parts

on the right hand side of Eq. $25%* in the Hubbard model with
U=8 and #=16. Except for quick oscillations on the time scale
t=1 / t, the result reflects the evolution of the corresponding spin-
spin correlator in the Heisenberg model $Fig. 13%. Finite-size effects
have been corrected and first-order hopping contributions entering
through the nearest-neighbor correlator !ai

†aj"!̃ were removed $see
text%.
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FIG. 15. $Color online% Evolution of the momentum-space
density-density correlator 1

Nk
&k!n↑k+'n↑k"!̃ for #k=' )minus the

trivial parts on the right-hand side of Eq. $25%* in the Hubbard
model with U=8 and #=16,24. The Hubbard results follow once
more the Heisenberg curves, except for some quick oscillations due
to first-order hopping processes which die out for (#( far from U.
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Figure 4.14: Evolution of the momentum space
density-density correlator 1

Nk
∑k〈n↑k+π n↑k〉φ̃ for ∆k =

π (minus the trivial parts on the right hand side of
Eq. (4.27)) in the Hubbard model with U = 8 and
∆ = 16,24. The Hubbard results follow once more the
Heisenberg curves, except for some quick oscillations
due to first order hopping processes which die out for
|∆| far from U .

for convergence of the states of subsystems with finite real-
space extent to a steady state. Recently, the mechanism of
how such a relaxation may occur was clarified for !free"
integrable systems #29$. Corresponding examples can also
be found in #30–33$. The setup considered in this paper
could be used to study experimentally such relaxation
processes—in particular, the differences for the noninte-
grable Bose-Hubbard model and the Bethe ansatz integrable
Heisenberg model. Experimental investigations would be
very useful here, as the fast entanglement growth during time
evolution #Fig. 17$ prohibits numerical access to long times
and for Bethe ansatz integrable systems, analytical results are
also relatively limited for such purposes.

Integrable many-particle systems do not relax to the well-
known canonical, or “thermal,” ensembles !a fact that was
already observed experimentally, e.g., in #51$". If they relax
the steady state is due to the integrals of motion to a much
more constrained ensemble #29,30$. This could be detected
experimentally by comparing the steady state correlation
functions after time evolution to those obtained for the cor-
responding thermal ensemble. The temperature should be
chosen such as to have the same energy in both states. For
!free" integrable models, the relaxation occurs due to a phase
averaging !“dephasing”" effect #29$. In Sec. V B, the relax-
ation in the Bethe ansatz integrable Heisenberg model is
treated within a mean-field approximation. Also in this case,
relaxation is connected to a phase averaging effect.

Nonintegrable systems are generally believed to relax to a
thermal ensemble due to effective scattering processes. Re-
cent numerical analysis of such systems #34–36$ is not yet
fully conclusive due to limitations on maximum observation
times !density-matrix renormalization group" or system size
!exact diagonalization". Analytical approaches are usually re-
stricted to rather exotic models or limiting cases. See, e.g.,
#37,38$ for investigations by dynamical mean-field theory
!DMFT".

In our setup, the nonintegrable two-species Bose-Hubbard
model could be tuned so close to the Heisenberg regime

!large %U2−!2%" that thermalization occurs very slowly. One
might hence observe first a relaxation to a nonthermal !al-
most" steady state due to the integrable Heisenberg dynam-
ics, which would then be followed by slower thermalization
due to the remaining nonintegrable first-order processes of
the full Bose-Hubbard Hamiltonian.

B. Relaxation for the Heisenberg magnet
in mean-field approximation

In this section, we investigate analytically the relaxation
of the Heisenberg magnet with the initial state being the Néel
state !14". In particular we will derive that the !staggered"
magnetization decays as 1 / t3/2 due to a phase averaging ef-
fect.

The model is Bethe ansatz integrable #39,40$. However, it
is in general not possible to solve the equations of motion for
arbitrary initial states. With appreciable numerical effort this
has been achieved recently !only" for the initial state being
the ground state plus a one-particle excitation #52$. To inves-
tigate the dynamics nevertheless, we hence employ a mean-
field approximation for the Ŝi

zŜi+1
z term,

Ĥ = &
i

# 1
2 !Ŝi

+Ŝi+1
− + Ŝi

−Ŝi+1
+ " + Ŝi

zŜi+1
z $

→ &
i

# 1
2 !Ŝi

+Ŝi+1
− + Ŝi

−Ŝi+1
+ " − 2!− 1"i"#!t"Ŝi

z$ , !27"

where the order parameter "# is the staggered magnetization
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FIG. 16. !Color online" The same observable as in Fig. 14 ex-
cept that the observable has not been corrected for finite-size effects
and the effects of the correlator 'ai

†aj($̃. We see here clearly that
those corrections of the raw data are important to achieve compa-
rability to the corresponding Heisenberg result in Fig. 13.
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FIG. 17. !Color online" For the initial state !14", evolution of the
entanglement entropy with respect to a partition of the system into
left and right half. The growth is roughly linear in time !compare,
e.g., to #50$" resulting in an exponential increase in the computation
time required for the simulation. The more important the first-order
processes are, the faster the entanglement entropy increases. The
tuning from the Heisenberg model !%U2−!2%→%", where no first-
order processes occur, to the regime %!%)U=8 can be understood
as a smooth increase in the number of relevant degrees of freedom,
resulting in a stronger entanglement growth. The entanglement en-
tropies for the Heisenberg ferromagnet and antiferromagnet are
identical because the corresponding density matrices are in the *Ŝi

z+
eigenbasis simply related by complex conjugation !cf. Sec. IV B".
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Figure 4.15: The same observable as in Fig. 4.13
except, that the observable has not been corrected
for finite size effects and the effects of the correlator
〈a†

i a j〉φ̃ . One can see here clearly, that those correc-
tions of the raw data are important to achieve com-
parability to the corresponding Heisenberg result in
Fig. 4.12.

4.4 Relaxation to steady states

4.4.1 General features

Contrary to the setup of isolated double wells, one observes for the many-particle dynamics in
the setup a relaxation for local quantities. This may be seen as an indicator for convergence of
the states of subsystems with finite real-space extent to a steady state. Recently, the mechanism
of how such a relaxation may occur was clarified for (free) integrable systems [24]. Correspond-
ing examples can also be found in [229, 53, 66, 105]. The setup considered in this paper could
be used to study experimentally such relaxation processes – in particular, the differences for the
nonintegrable Bose-Hubbard model and the Bethe ansatz integrable Heisenberg model. Exper-
imental investigations would be very useful here, as the fast entanglement growth during time
evolution, Fig. 4.16, prohibits numerical access to long times and for Bethe ansatz integrable
systems, analytical results are also relatively limited for such purposes.

Integrable many-particle systems do not relax to the well known canonical, or “thermal”,
ensembles (a fact that was already observed experimentally e.g. in [157]). If they relax the steady
state is due to the integrals of motion to a much more constrained ensemble [229, 24]. This
could be detected experimentally by comparing the steady state correlation functions after time
evolution to those obtained for the corresponding thermal ensemble. The temperature should be
chosen such as to have the same energy in both states. For (free) integrable models, the relaxation
occurs due to a phase averaging (“dephasing”) effect [24]. In Section 4.4.2, the relaxation in the
Bethe ansatz integrable Heisenberg model is treated within a mean field approximation. Also in
this case, relaxation is connected to a phase averaging effect.

Nonintegrable systems are generally believed to relax to a thermal ensemble due to effective
scattering processes. Recent numerical analysis of such systems [186, 161, 66] is not yet fully
conclusive due to limitations on maximum observation times (density-matrix renormalization-
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for convergence of the states of subsystems with finite real-
space extent to a steady state. Recently, the mechanism of
how such a relaxation may occur was clarified for !free"
integrable systems #29$. Corresponding examples can also
be found in #30–33$. The setup considered in this paper
could be used to study experimentally such relaxation
processes—in particular, the differences for the noninte-
grable Bose-Hubbard model and the Bethe ansatz integrable
Heisenberg model. Experimental investigations would be
very useful here, as the fast entanglement growth during time
evolution #Fig. 17$ prohibits numerical access to long times
and for Bethe ansatz integrable systems, analytical results are
also relatively limited for such purposes.

Integrable many-particle systems do not relax to the well-
known canonical, or “thermal,” ensembles !a fact that was
already observed experimentally, e.g., in #51$". If they relax
the steady state is due to the integrals of motion to a much
more constrained ensemble #29,30$. This could be detected
experimentally by comparing the steady state correlation
functions after time evolution to those obtained for the cor-
responding thermal ensemble. The temperature should be
chosen such as to have the same energy in both states. For
!free" integrable models, the relaxation occurs due to a phase
averaging !“dephasing”" effect #29$. In Sec. V B, the relax-
ation in the Bethe ansatz integrable Heisenberg model is
treated within a mean-field approximation. Also in this case,
relaxation is connected to a phase averaging effect.

Nonintegrable systems are generally believed to relax to a
thermal ensemble due to effective scattering processes. Re-
cent numerical analysis of such systems #34–36$ is not yet
fully conclusive due to limitations on maximum observation
times !density-matrix renormalization group" or system size
!exact diagonalization". Analytical approaches are usually re-
stricted to rather exotic models or limiting cases. See, e.g.,
#37,38$ for investigations by dynamical mean-field theory
!DMFT".

In our setup, the nonintegrable two-species Bose-Hubbard
model could be tuned so close to the Heisenberg regime

!large %U2−!2%" that thermalization occurs very slowly. One
might hence observe first a relaxation to a nonthermal !al-
most" steady state due to the integrable Heisenberg dynam-
ics, which would then be followed by slower thermalization
due to the remaining nonintegrable first-order processes of
the full Bose-Hubbard Hamiltonian.

B. Relaxation for the Heisenberg magnet
in mean-field approximation

In this section, we investigate analytically the relaxation
of the Heisenberg magnet with the initial state being the Néel
state !14". In particular we will derive that the !staggered"
magnetization decays as 1 / t3/2 due to a phase averaging ef-
fect.

The model is Bethe ansatz integrable #39,40$. However, it
is in general not possible to solve the equations of motion for
arbitrary initial states. With appreciable numerical effort this
has been achieved recently !only" for the initial state being
the ground state plus a one-particle excitation #52$. To inves-
tigate the dynamics nevertheless, we hence employ a mean-
field approximation for the Ŝi

zŜi+1
z term,

Ĥ = &
i

# 1
2 !Ŝi

+Ŝi+1
− + Ŝi

−Ŝi+1
+ " + Ŝi

zŜi+1
z $

→ &
i

# 1
2 !Ŝi

+Ŝi+1
− + Ŝi

−Ŝi+1
+ " − 2!− 1"i"#!t"Ŝi

z$ , !27"

where the order parameter "# is the staggered magnetization
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FIG. 16. !Color online" The same observable as in Fig. 14 ex-
cept that the observable has not been corrected for finite-size effects
and the effects of the correlator 'ai

†aj($̃. We see here clearly that
those corrections of the raw data are important to achieve compa-
rability to the corresponding Heisenberg result in Fig. 13.
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FIG. 17. !Color online" For the initial state !14", evolution of the
entanglement entropy with respect to a partition of the system into
left and right half. The growth is roughly linear in time !compare,
e.g., to #50$" resulting in an exponential increase in the computation
time required for the simulation. The more important the first-order
processes are, the faster the entanglement entropy increases. The
tuning from the Heisenberg model !%U2−!2%→%", where no first-
order processes occur, to the regime %!%)U=8 can be understood
as a smooth increase in the number of relevant degrees of freedom,
resulting in a stronger entanglement growth. The entanglement en-
tropies for the Heisenberg ferromagnet and antiferromagnet are
identical because the corresponding density matrices are in the *Ŝi

z+
eigenbasis simply related by complex conjugation !cf. Sec. IV B".

MAGNETISM, COHERENT MANY-PARTICLE DYNAMICS,… PHYSICAL REVIEW A 79, 053627 !2009"

053627-11

Figure 4.16: For the initial state (4.14), evolution of the entanglement entropy with respect to a partition of the
system into left and right half. The growth is roughly linear in time (compare e.g. to [47]) resulting in an exponential
increase in the computation time required for the simulation. The more important first order processes are, the faster
the entanglement entropy increases. The tuning from the Heisenberg model (|U2−∆2| → ∞), where no first order
processes occur, to the regime |∆| ∼U = 8 can be understood as a smooth increase in the number of relevant degrees
of freedom, resulting in a stronger entanglement growth. The entanglement entropies for the Heisenberg ferro- and
antiferromagnet are identical, because the corresponding density matrices are in the {Ŝz

i}-eigenbasis simply related
by complex conjugation; cf. Section 4.3.2.

group) or system size (exact diagonalization). Analytical approaches are usually restricted to
rather exotic models or limiting cases. See e.g. [88, 194] for investigations by dynamical mean-
field theory (DMFT).

In the here considered setup, the nonintegrable two-species Bose-Hubbard model could be
tuned so close to the Heisenberg regime (large |U2−∆2|) that thermalization occurs very slowly.
One might hence observe first a relaxation to a nonthermal (almost) steady state due to the inte-
grable Heisenberg dynamics, which would then be followed by slower thermalization due to the
remaining nonintegrable first order processes of the full Bose-Hubbard Hamiltonian.

4.4.2 Relaxation for the Heisenberg magnet in mean field approximation
In this section, the relaxation of the Heisenberg magnet with the initial state being the Néel state
(4.14) will be investigated. In particular I will derive that the (staggered) magnetization decays
as 1/t3/2 due to a phase averaging effect.

The model is Bethe ansatz integrable [33, 296]. However, it is in general not possible to solve
the equations of motion for arbitrary initial states. With appreciable numerical effort this has been
achieved recently (only) for the initial state being the groundstate plus a one-particle excitation
[51]. To investigate the dynamics nevertheless, I hence employ a mean field approximation for
the Ŝz

i Ŝ
z
i+1 term.

Ĥ = ∑i
(1

2(Ŝ
+
i Ŝ−i+1 + Ŝ−i Ŝ+i+1)+ Ŝz

i Ŝ
z
i+1
)

→ ∑i
(1

2(Ŝ
+
i Ŝ−i+1 + Ŝ−i Ŝ+i+1)−2(−1)iρπ(t)Ŝz

i
)

(4.29)

where the order parameter ρπ is the staggered magnetization

ρπ ≡ 1
N ∑x(−1)x〈Ŝz

x〉= 1
N ∑x(−1)x〈nx− 1

2〉. (4.30)
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!" ! 1
N"

x
#− 1$x%Ŝx

z& = 1
N"

x
#− 1$x%nx − 1

2& . #28$

After a Fourier and a Jordan-Wigner transformation '53,54(
with

ci ª #− 1$"n=1
i−1 #Ŝn

z+1/2$Ŝi
−

and Ŝi
z=ci

†ci−
1
2 , the mean-field Hamiltonian and the stag-

gered magnetization read with #kªcos k,

Ĥ#t$ = "
−"/2$k%"/2

'#kck
†ck − 2!"#t$ck+"

† ck( , #29$

!"#t$ =
1
N "

−"/2$k%"/2
2 Re%ck

†ck+"& . #30$

The initial state is the Néel state #14$ and reads in the fermi-
onic operators for t=0 with uk#0$=vk#0$=1 /)2,

*&#t$& = +
−"/2$k%"/2

#uk#t$ck
† + vk#t$ck+"

† $*0& . #31$

So each mode ck is in the initial state only correlated with
mode ck+". As mean-field Hamiltonian #29$ couples for every
k also just those two modes, the state remains in form #31$
for all times. With i'!tck#t$= 'ck , Ĥ#t$( one obtains the equa-
tions of motion #'=1$

i!tuk#t$ = #kuk#t$ − 2!"#t$vk#t$ , #32a$

i!tvk#t$ = − #kvk#t$ − 2!"#t$uk#t$ , #32b$

a system of N coupled nonlinear differential equations.
Those can be integrated numerically, yielding for the stag-

gered magnetization !"#t$ a damped oscillation decaying as
1 / t3/2. Figure 18 compares !"#t$ from the mean-field analysis

to the corresponding DMRG result #Fig. 4$ and shows good
qualitative agreement.

As demonstrated in '55(, where the same equations of
motion were obtained for the evolution of a system of spin-
less fermions, Eq. #31$ is equivalent to the equations of mo-
tion of the classical Hamiltonian

HS = − "
−"$k%"

2#kSk
z +

2
N "

k,k!

#Sk
xSk!

x + Sk
ySk!

y $ #33$

with the Anderson pseudospin variables Sk
+=vk

!uk, Sk
z

= 1
2 #*vk*2− *uk*2$ for − "

2 $k% "
2 and Sk+"

x =Sk
x, Sk+"

y,z =−Sk
y,z

'55,56(. This Hamiltonian occurred in the mean-field analy-
sis of quenches in fermionic condensates #see, e.g., '57–60($.
From this, it is known that Eq. #33$ and hence Eq. #31$ are
integrable '59( due to the N /2 integrals of motion Lk

2,

Lk ! ez + 2 "
k"k!

Sk!
#k − #k!

, !tLk
2 = 0. #34$

One can now argue that the x and y components of
the vectors Lk will vanish for large times, as done in '55(.
From this one can determine the #nonthermal$ steady state
by equating 'Lk

z#t→($(2 with Lk
2#t=0$. The result is

limt→( Sk
z#t$= 1

2cos k. With Sk
z = 1

2 #*vk*2− *uk*2$ and *vk*2+ *uk*2
=1 ∀t, it follows that

lim
t→(

*uk#t$* = )1 − cos k/)2, #35$

lim
t→(

*vk#t$* = )1 + cos k/)2. #36$

With the knowledge of the steady state, the 1 / t3/2 decay of
the magnetization !" can now be derived.

To this purpose let us first recall the general dephasing
scenario for d-dimensional #free$ integrable models. In '29(
it was demonstrated that local observables G#t$ #i.e., correla-
tors$ lead in general to expressions of the form

G#t$ = G0 +, ddkei)#k$t f#k$ , #37$

where the amplitude f#k$ is determined by the chosen ob-
servable, the initial state, and the eigenbasis of the Hamil-
tonian. The phase function )#k$ is determined by the spec-
trum of the Hamiltonian. Now, the quantity G#t$ relaxes to
G0 for large times if the phase function varies quickly
enough in regions of the k space where the amplitude f#k$ is
nonzero. Whether and how quickly an observable relaxes is
in particular determined by contributions from points where
)#k$ is stationary or f#k$ diverges. For the paradigmatic sce-
nario of )#k$-)0+ *k*!, f#k$-1 /km near a stationary point
k0=0, the integral in Eq. #37$ behaves as

ei)0t, ddk 1
*k*m ei*k*!t -, dq 1

q* eiqt, * = m+!−d
! . #38$

Hence the time-dependent contribution to G#t$, for t→(,
does not vanish if *+1, vanishes as 1 / t1−* if 0%*%1, and
at least as 1 / t if *%0 '61(.
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FIG. 18. #Color online$ Evolution of the magnetization on a
particular site x, starting from the Néel state and evolving with
respect to the isotropic Heisenberg Hamiltonian, once with DMRG
and once in the mean-field approximation. The #staggered$ magne-
tization shows a 1 / t3/2 decay #dotted lines$. In the mean-field ap-
proach one sees that local relaxation is connected to a phase aver-
aging effect as is typical for integrable models '29( #see text$.
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Figure 4.17: Evolution of the magnetization on a particular site x, starting from the Néel state and evolving with
respect to the isotropic Heisenberg Hamiltonian, once with DMRG and once in the mean field approximation. The
(staggered) magnetization shows a 1/t3/2 decay (blue). In the mean field approach one sees that local relaxation is
connected to a phase averaging effect as is typical for integrable models [24]; see text.

After a Fourier and a Jordan-Wigner transformation [149, 176] with ci := (−1)∑
i−1
n=1(Ŝ

z
n+

1
2 )Ŝ−i and

Ŝz
i = c†

i ci −
1
2 , the mean field Hamiltonian and the staggered magnetization read with εk := cosk

Ĥ(t) = ∑
− π

2≤k< π

2

(εkc†
kck−2ρπ(t)c

†
k+π

ck), (4.31)

ρπ(t) =
1
N ∑
− π

2≤k< π

2

2ℜ〈c†
kck+π

〉. (4.32)

The initial state is the Néel state (4.14) and reads in the fermionic operators for t = 0 with
uk(0) = vk(0) = 1/

√
2

|φ(t)〉= ∏
− π

2≤k< π

2

(uk(t)c
†
k + vk(t)c

†
k+π

)|0〉. (4.33)

So each mode ck is in the initial state only correlated with mode ck+π . As the mean field Hamil-
tonian (4.31) couples for every k also just those two modes, the state remains in the form (4.33)
for all times. With ih̄∂tck(t) = [ck, Ĥ(t)] one obtains the equations of motion (h̄ = 1)

i∂tuk(t) = εk ·uk(t)−2ρπ(t) · vk(t), (4.34a)
i∂tvk(t) =−εk · vk(t)−2ρπ(t) ·uk(t), (4.34b)

a system of N coupled nonlinear differential equations.
Those can be integrated numerically, yielding for the staggered magnetization ρπ(t) a damped

oscillation decaying as 1/t3/2. Fig. 4.17 compares ρπ(t) from the mean field analysis to the cor-
responding DMRG result (Fig. 4.4) and shows good qualitative agreement.

As demonstrated in [131], where the same equations of motion were obtained for the evolu-
tion of a system of spinless fermions, Eq. (4.34) is equivalent to the equations of motion of the
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classical Hamiltonian

HS =− ∑
−π≤k<π

2εkSz
k +

2
N ∑

k,k′
(Sx

kSx
k′+Sy

kSy
k′) (4.35)

with the Anderson pseudospin variables S+k = v∗kuk, Sz
k =

1
2(|vk|2− |uk|2) for −π

2 ≤ k < π

2 and
Sx

k+π
= Sx

k, Sy,z
k+π

= −Sy,z
k , [12, 131]. This Hamiltonian occurred in the mean field analysis of

quenches in fermionic condensates; see e.g. [279, 263, 294, 295]. From this, it is known that
(4.35) and hence (4.34) are integrable [295] due to the N/2 integrals of motion L2

k ,

Lk ≡ ez +2 ∑
k 6=k′

Sk′

εk− εk′
, ∂tL2

k = 0. (4.36)

One can now argue that the x and y components of the vectors Lk will vanish for large times,
as done in [131]. From this one can determine the (nonthermal) steady state, by equating (Lz

k(t→
∞))2 with L2

k(t = 0). The result is limt→∞ Sz
k(t) =

1
2 cosk. With Sz

k =
1
2(|vk|2−|uk|2) and |vk|2 +

|uk|2 = 1 ∀t , it follows that

lim
t→∞
|uk(t)|=

√
1− cosk/

√
2, (4.37)

lim
t→∞
|vk(t)|=

√
1+ cosk/

√
2. (4.38)

With the knowledge of the steady state, the 1/t3/2 decay of the magnetization ρπ can now be
derived.

To this purpose let us first recall the general dephasing scenario for d-dimensional (free)
integrable models. In [24] it was demonstrated that local observables G(t) (i.e. correlators) lead
in general to expressions of the form

G(t) = G0 +
∫

ddkeiϕ(k)t f (k), (4.39)

where the amplitude f (k) is determined by the chosen observable, the initial state, and the eigen-
basis of the Hamiltonian. The phase function ϕ(k) is determined by the spectrum of the Hamil-
tonian. Now, the quantity G(t) relaxes to G0 for large times if the phase function varies quickly
enough in regions of the k space where the amplitude f (k) is nonzero. Whether and how quickly
an observable relaxes is in particular determined by contributions from points where ϕ(k) is sta-
tionary or f (k) diverges. For the paradigmatic scenario of ϕ(k)∼ ϕ0 + |k|`, f (k)∼ 1/km near a
stationary point k0 = 0, the integral in (4.39) behaves as

eiϕ0t ∫ ddk 1
|k|m ei|k|`t ∼

∫
dq 1

qχ eiqt , χ = m+`−d
` . (4.40)

Hence the time-dependent contribution to G(t), for t→ ∞, does not vanish if χ ≥ 1, vanishes as
1/t1−χ if 0 < χ < 1, and at least as 1/t if χ < 0, 2.

2For free systems, the (Gaussian) state of any subsystem is fully characterized by its one-particle Green’s func-
tion. This was exploited in [24] to derive conditions on the relaxation of subsystem states, based on the relaxation
of the Green’s function.
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Now we come back to the staggered magnetization. Ex-
pressed in the variables u and v, it reads after going to the
thermodynamic limit

!"!t" =# dk Re!uk
!vk" =# dk Re$ei#!k"t f!k,t"% . !39"

This is, except for the additional time dependence of the
amplitude function f!k , t", an integral of the form !37". Pre-
suming that !" vanishes for long times, it follows from the
equations of motion $Eq. !31"% that for large t, the phases of
uk and vk are roughly $%kt and hence #!k"&%k−%k+"

=2 cos k, which is stationary !with !=2" at k=0 !cf. Fig. 19".
For finite times, the amplitudes of uk and vk are finite as
'uk'2= (nk) and 'vk'2= (nk+")=1− (nk). Hence m=0 for k=0
which is also confirmed numerically in Fig. 19. The dephas-
ing of the staggered magnetization !39" is determined by the
stationary point k=0 of #. With d=1, m=0, and !=2 we
have &= m+!−d

! = 1
2 . The phase averaging accounts hence for a

factor of 1 / t1−&=1 / t1/2 for the decay of the staggered mag-
netization. Linearizing the equations of motion around the
steady state we find that 'u0

!v0' $f!k , t" around k=0% decays as
1 /*t and further that only a vicinity 'k''1 /*t of k=0 is
contributing to !the leading order of" the integral !39". Tak-
ing all this together, we infer the 1 / t3/2 decay of the stag-
gered magnetization.

VI. VALIDITY OF THE EFFECTIVE SPIN MODEL

One may be wondering why the restriction to the single-
occupancy space H1 $Eq. !8"% is justified !if the initial state
of the system is in H1 and we evolve with the effective
Hamiltonian", although the coupling to the rest of the Hilbert
space has the same strength as the coupling for dynamics
inside the subspace H1 and although parts of the rest of the
Hilbert space overlap energetically with H1. There could be
considerable transition rates out of the subspace with !pre-
dominantly" one particle per site, rendering a description or
comparison with dynamics of the effective model derived for
that subspace useless. We will assess here that this is not the
case !for the large-U limit".

First of all, the numerical results of Sec. IV showed that
for large 'U2−(2', the Hubbard curves follow quite precisely
the Heisenberg curves, indicating very little transitions to
other subspaces. One can also give a somewhat handwaving
but rather suggestive argument. We will show in the follow-
ing that transition matrix elements leading out of H1 occur
predominantly to states with energy difference +U and di-
minish in the large-U limit. Those yield therefore finite small
transition amplitudes. In higher orders of the perturbation
theory, there are also transitions to states with energy
+U$(, which will lead to a small !controllable" transition
rate out of H1.

In the full effective Hamiltonian !A16", we regard the
term V̂= i$Ŝ , Ĥt

0% that generates or destroys double occupan-
cies, i.e., generates transitions between subspace Mn with n
doubly-occupied sites as a perturbation,

Ĥeff
full = Ĥeff

0 + V̂ . !40"

The subspaces Mn separate !energetically" further into
Mm−),m

n with m doubly-occupied and ) empty sites on sub-
lattice A !n−m doubly-occupied and n−) empty sites on
sublattice B"; i.e., H1,M0,0

0 . Figure 20 shows the many-
particle spectrum of the effective Hamiltonian Ĥeff

0 for the
subspaces M0 and M1 as obtained from exact diagonaliza-
tion in the Sz=0 sector for N=8 sites.

The single !quasi"particle excitations in these subspaces
have energies of order O!J , t"—spinwaves and hopping of
doubly-occupied and empty sites. However, the subspaces
overlap energetically !in the thermodynamic limit" as, in a
qualitative picture, one can have +N quasiparticle excita-
tions resulting in the width +N'J'*U of the spectrum for
each subspace. Specifically for M0, the lower and upper
bounds on the spectrum are determined by the ground state
energies of the ferromagnetic and the antiferromagnetic
Heisenberg models. Those are in the thermodynamic limit
EFM=− 1

4JN and −EAFM= !ln 2− 1
4 "JN $39,62%.

If we act on a state '+)!M0 of energy E with the opera-
tor V̂= i$Ŝ , Ĥt

0% !cf. Appendix A", first, Ŝ generates a double
occupancy and an empty site; ',i ,,i+1)" ',i,i+1 ,0) on two
neighboring sites i and i+1. Second, a corresponding
hopping term from Ĥt

0 acts on i !or i+1" and i−1 !or i+2"
such that, e.g., ',i−1 ,,i,i+1 ,0)" ',i−1,i ,,i+1 ,0) or
',i,i+1 ,0 ,,i+2)" ',i,i+1 ,,i+2 ,0). Hence both the doubly-
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FIG. 19. !Color online" Evolution of the occupation number
(nk)=1− (nk+"), phase #!k"=arg$uk
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the wave function, and 'uk
!vk' for each pair of modes ck, ck+". The

initial state, the Néel state with uk=vk=1 /*2, is evolved with the
mean-field approximation of the isotropic Heisenberg Hamiltonian
!29". Except for the lowest panel, the curves for t=128 coincide
!within resolution of the plots" with the limiting curves for t→-
which are 1−cos k

2 , 2 cos k, and 'sin k' /2, respectively.
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Figure 4.18: Evolution of the occupation number 〈nk〉 = 1 − 〈nk+π〉, phase ϕ(k) = arg(u∗k(t)vk(t)) −
arg(u∗

π/2(t)vπ/2(t)) of the wavefunction, and |u∗kvk| for each pair of modes ck, ck+π . The initial state, the Néel

state with uk = vk = 1/
√

2, is evolved with the mean field approximation of the isotropic Heisenberg Hamiltonian
(4.31). Except for the lowest panel, the curves for t = 128 coincide (within resolution of the plots) with the limiting
curves for t→ ∞ which are 1−cosk

2 , 2cosk, and |sink|/2, respectively.

Now I come back to the staggered magnetization. Expressed in the variables u and v, it reads
after going to the thermodynamic limit

ρπ(t) =
∫

dkℜ(u∗kvk) =
∫

dkℜ(eiϕ(k)t f (k, t)). (4.41)

This is, except for the additional time dependence of the amplitude function f (k, t), an integral
of the form (4.39). Presuming that ρπ vanishes for long times, it follows from the equations
of motion (4.34) that for large t, the phases of uk and vk are roughly ±εk · t and hence ϕ(k) ≈
εk− εk+π = 2cosk, which is stationary (with ` = 2) at k = 0; cf. Fig. 4.18. For finite times, the
amplitudes of uk and vk are finite as |uk|2 = 〈nk〉 and |vk|2 = 〈nk+π〉 = 1−〈nk〉. Hence m = 0
for k = 0 which is also confirmed numerically in Fig. 4.18. The dephasing of the staggered
magnetization (4.41) is determined by the stationary point k = 0 of ϕ . With d = 1, m = 0, and
` = 2 one has χ = m+`−d

` = 1
2 . The phase averaging accounts hence for a factor of 1/t1−χ =

1/t1/2 for the decay of the staggered magnetization. Linearizing the equations of motion around
the steady state one finds that |u∗0v0| ( f (k, t) around k = 0) decays as 1/

√
t and further that only

a vicinity |k|. 1/
√

t of k = 0 is contributing to (the leading order of) the integral (4.41). Taking
all this together, one infers the 1/t3/2 decay of the staggered magnetization.

4.5 Validity of the effective spin model
One may be wondering why the restriction to the single-occupancy space H1, (4.8), is justified
(if the initial state of the system is in H1 and I evolve with the effective Hamiltonian), although
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occupied and the empty sites are on the same sublattice A or
B and the resulting state V̂!!"!M0,0

1 !M0,1
1 has energy E

#E+U $see Fig. 21%.
Let us consider transitions from M0 to M1. For any ini-

tial eigenstate !i"!M0 the transition amplitude to a state
!f"!M1 is in the Born approximation given by

cf$T% =
− i

"
&

t0

T

dt'f !V̂!i"ei#fit = O( t2

U $ %
·

1
U
) . $41%

This estimate of a small $oscillating% transition amplitude
follows from the consideration that nonvanishing transition
elements exist only for states with energy differences "# fi
=O$U%. We have pointed out that the subspaces M0 and M1

ultimately overlap energetically. However, states !f" and !i"
with comparable energy will have a vanishing transition ma-

trix element: as argued above, the operator V̂ generates states
from M1 and causes a change of #U in energy. Besides this
it can create or destroy in a qualitative picture only a small
number of quasiparticle excitations as it is a product of only
four ladder operators. This will change the energy only by a
small amount of O$J , t%. So "# fi will indeed be of order
O$U% for all nonvanishing transition amplitudes 'f !V̂!i".

To illustrate this, Figs. 22 and 23 show the transition ma-
trix elements 'f !V̂!i" between eigenstates of the effective
Hamiltonian Ĥeff

0 for the subspaces M0 and M1 as obtained
from exact diagonalization in the Sz=0 sector for N=8 sites.

FIG. 20. $Color online% The many-particle spectrum of the ef-
fective Hamiltonian Ĥeff

0 for the subspaces M0 $green% and M1

$black% with U=8 and %=2,4 ,6 ,8 ,10,*2U ,14,16, . . . as obtained
from exact diagonalization in the Sz=0 sector for N=8 sites
$dim M0=70, dim M1=2800%. Each dot corresponds to an
eigenenergy. For the plot, small random numbers were added to the
% values to give a rough impression of the density of states. The
subspace M1 is separated energetically into M0,0

1 !M0,1
1 around

E=U and M1,1
1 , M−1,0

1 around E=U$%.

! " ! " ! " ! "
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FIG. 21. $Color online% The subspace M1, with exactly one
doubly-occupied and one empty sites, separates energetically into
three different subbands M1,1

1 , M0,0
1 !M0,1

1 , and M−1,0
1 . The

operator V̂= i+Ŝ , Ĥt
0, maps states from M0 to states from

M0,0
1 !M0,1

1 that differ in energy by #U $see text%.

FIG. 22. $Color online% Transition matrix elements 'f !V̂!i" be-
tween eigenstates of the effective Hamiltonian Ĥeff

0 for the sub-
spaces M0 and M1 with U=8 and %=16 as obtained from exact
diagonalization in the Sz=0 sector for N=8 sites. Each dot corre-
sponds to a nonzero transition matrix element. The narrow panels to
the left and bottom show the corresponding eigenenergies. Nonva-
nishing matrix elements exist only for states with energy difference
of O$U%.

FIG. 23. $Color online% Transition matrix elements 'f !V̂!i" be-
tween eigenstates of the effective Hamiltonian Ĥeff

0 for the sub-
spaces M0 and M1 with U=8 and %=10 as obtained from exact
diagonalization in the Sz=0 sector for N=8 sites. Still nonvanishing
matrix elements exist only for states with energy difference of
O$U%. But as % is closer to U here, the matrix elements are larger in
amplitude +Eq. $41%, and the spectral subbands are broader due to a
larger effective coupling J.
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Figure 4.19: The many-particle spectrum of the effective Hamiltonian Ĥ0
eff for the subspaces M 0 (green) and M 1

(black) with U = 8 and ∆ = 2,4,6,8,10,
√

2U,14,16, . . . as obtained from exact diagonalization in the Sz = 0 sector
for N = 8 sites (dimM 0 = 70, dimM 1 = 2800). Each dot corresponds to an eigenenergy. For the plot, small
random numbers are added to the ∆ values to give a rough impression of the density of states. The subspace M 1 is
separated energetically into M 1

0,0∪M 1
0,1 around E =U and M 1

1,1, M 1
−1,0 around E =U±∆.

the coupling to the rest of the Hilbert space has the same strength as the coupling for dynamics
inside the subspace H1 and although parts of the rest of the Hilbert space overlap energetically
with H1. There could be considerable transition rates out of the subspace with (predominantly)
one particle per site, rendering a description or comparison with dynamics of the effective model
derived for that subspace useless. I will assess here that this is not the case (for the large-U limit).

First of all, the numerical results of Section 4.3 showed that for large |U2−∆2|, the Hubbard
curves follow quite precisely the Heisenberg curves, indicating very little transitions to other
subspaces. One can also give a somewhat handwaving but rather suggestive argument. I will
show in the following that transition matrix elements leading out of H1 occur predominantly to
states with energy difference ∼U , and diminish in the large-U limit. Those yield therefore finite
small transition amplitudes. In higher orders of the perturbation theory, there are also transitions
to states with energy ∼U±∆, which will lead to a small (controllable) transition rate out of H1.

In the full effective Hamiltonian (4.9), I regard the term V̂ = i[Ŝ , Ĥ0
t ] that generates or de-

stroys double occupancies, i.e. generates transitions between subspace M n with n doubly occu-
pied sites as a perturbation.

Ĥfull
eff = Ĥ0

eff +V̂ (4.42)

The subspaces M n separate (energetically) further into M n
m−µ,m with m doubly occupied and µ

empty sites on sublattice A (n−m doubly occupied and n−µ empty sites on sublattice B); i.e.
H1 ≡M 0

0,0. Fig. 4.19 shows the many-particle spectrum of the effective Hamiltonian Ĥ0
eff for

the subspaces M 0 and M 1 as obtained from exact diagonalization in the Sz = 0 sector for N = 8
sites.

The single (quasi-)particle excitations in these subspaces have energies of order O(J, t) –
spinwaves and hopping of doubly occupied and empty sites. However, the subspaces overlap
energetically (in the thermodynamic limit) as, in a qualitative picture, one can have ∼ N quasi-
particle excitations resulting in the width∼N|J| �U of the spectrum for each subspace. Specif-
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from exact diagonalization in the Sz=0 sector for N=8 sites.
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fective Hamiltonian Ĥeff

0 for the subspaces M0 $green% and M1

$black% with U=8 and %=2,4 ,6 ,8 ,10,*2U ,14,16, . . . as obtained
from exact diagonalization in the Sz=0 sector for N=8 sites
$dim M0=70, dim M1=2800%. Each dot corresponds to an
eigenenergy. For the plot, small random numbers were added to the
% values to give a rough impression of the density of states. The
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1 !M0,1
1 around

E=U and M1,1
1 , M−1,0

1 around E=U$%.

! " ! " ! " ! "

!E = U !!!E = U !! !E = U +!!E = U +!!E = U!E = U

FIG. 21. $Color online% The subspace M1, with exactly one
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0, maps states from M0 to states from
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FIG. 22. $Color online% Transition matrix elements 'f !V̂!i" be-
tween eigenstates of the effective Hamiltonian Ĥeff

0 for the sub-
spaces M0 and M1 with U=8 and %=16 as obtained from exact
diagonalization in the Sz=0 sector for N=8 sites. Each dot corre-
sponds to a nonzero transition matrix element. The narrow panels to
the left and bottom show the corresponding eigenenergies. Nonva-
nishing matrix elements exist only for states with energy difference
of O$U%.

FIG. 23. $Color online% Transition matrix elements 'f !V̂!i" be-
tween eigenstates of the effective Hamiltonian Ĥeff

0 for the sub-
spaces M0 and M1 with U=8 and %=10 as obtained from exact
diagonalization in the Sz=0 sector for N=8 sites. Still nonvanishing
matrix elements exist only for states with energy difference of
O$U%. But as % is closer to U here, the matrix elements are larger in
amplitude +Eq. $41%, and the spectral subbands are broader due to a
larger effective coupling J.
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Figure 4.20: The subspace M 1, with exactly one doubly occupied and one empty site separates energetically into
three different subbands M 1

1,1, M 1
0,0∪M 1

0,1, and M 1
−1,0. The operator V̂ = i[Ŝ , Ĥ0

t ] maps states from M 0 to states
from M 1

0,0∪M 1
0,1 that differ in energy by ∼U (see text).

ically for M 0, the lower and upper bounds on the spectrum are determined by the ground state
energies of the ferromagnetic and the antiferromagnetic Heisenberg models. Those are in the
thermodynamic limit Efm =−1

4JN and −Eafm = (ln2− 1
4)JN, [33, 192].

If one acts on a state |ψ〉 ∈M 0 of energy E with the operator V̂ = i[Ŝ , Ĥ0
t ] (cf. Appendix ??),

firstly, Ŝ generates a double occupancy and an empty site; |σi,σi+1〉 7→ |σiσi+1,0〉 on two
neighboring sites i and i+ 1. Secondly, a corresponding hopping term from Ĥ0

t acts on i (or
i+1) and i−1 (or i+2) such that e.g. |σi−1,σiσi+1,0〉 7→ |σi−1σi,σi+1,0〉 or |σiσi+1,0,σi+2〉 7→
|σiσi+1,σi+2,0〉. Hence both, the doubly occupied and the empty site are on the same sublattice
A or B and the resulting state V̂ |ψ〉 ∈M 1

0,0∪M 1
0,1 has energy E ∼ E +U ; see Fig. 4.20.

Let us consider transitions from M 0 to M 1. For any initial eigenstate |i〉 ∈M 0 the transition
amplitude, to a state | f 〉 ∈M 1 is in the Born approximation given by

c f (T ) =
−i
h̄

∫ T

t0
dt〈 f |V̂ |i〉eiω f it = O(

t2

U±∆
· 1
U
). (4.43)

This estimate of a small (oscillating) transition amplitude follows from the consideration that
nonvanishing transition elements exist only for states with energy differences h̄ω f i = O(U). I
have pointed out that the subspaces M 0 and M 1 ultimately overlap energetically. However,
states | f 〉 and |i〉 with comparable energy will have a vanishing transition matrix element: As
argued above, the operator V̂ generates states from M 1 and causes a change of ∼U in energy.
Besides this it can create or destroy in a qualitative picture only a small number of quasi-particle
excitations as it is a product of only four ladder operators. This will change the energy only by
a small amount of O(J, t). So h̄ω f i will indeed be of order O(U) for all nonvanishing transition
amplitudes 〈 f |V̂ |i〉.

To illustrate this, Figs. 4.21 and 4.22 show the transition matrix elements 〈 f |V̂ |i〉 between
eigenstates of the effective Hamiltonian Ĥ0

eff for the subspaces M 0 and M 1 as obtained from
exact diagonalization in the Sz = 0 sector for N = 8 sites.

Small matrix elements to states with energy difference U±∆ remain. For unfortunate choice
of U and ∆ one may hence encounter nonvanishing transitions to states in M n>0 with h̄ω f i ∼ 0.
Consider e.g. ∆ = 2U . In this case, two actions of the operator V̂ may end up in a state | f 〉 with
comparable energy (U +(U−∆) = 0) and hence to a (finite but small) transition rate out of M 0.
By appropriate choice of the ratio U/∆, one can achieve that the effect occurs only in higher
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Figure 4.21: Transition matrix elements 〈 f |V̂ |i〉 be-
tween eigenstates of the effective Hamiltonian Ĥ0

eff for
the subspaces M 0 and M 1 with U = 8 and ∆ = 16 as
obtained from exact diagonalization in the Sz = 0 sector
for N = 8 sites. Each dot corresponds to a nonzero tran-
sition matrix element. The narrow panels to the left and
bottom show the corresponding eigenenergies. Nonva-
nishing matrix elements exist only for states with en-
ergy difference of O(U).

Figure 4.22: Transition matrix elements 〈 f |V̂ |i〉 be-
tween eigenstates of the effective Hamiltonian Ĥ0

eff for
the subspaces M 0 and M 1 with U = 8 and ∆ = 10 as
obtained from exact diagonalization in the Sz = 0 sec-
tor for N = 8 sites. Still nonvanishing matrix elements
exist only for states with energy difference of O(U).
But as ∆ is closer to U here, the matrix elements are
larger in amplitude, (4.43), and the spectral subbands
are broader due to a larger effective coupling J.

orders V̂ , resulting in a small transition rate. Further, the transition matrix elements itself can be
made small by going to the large-U limit (4.7).

4.6 Preparation of the antoferromagnetic groundstate by adi-
abatic evolution

In the Sections 4.3 and 4.5 I have given arguments and gathered numerical support for the fact
that transition rates from the single-occupancy subspace H orig

1 , (4.11), to the rest of the Hilbert
space can be made small for time evolution with the Hubbard Hamiltonian. If this can also be
realized experimentally for sufficiently long times, it would be possible to prepare for example
the ground state of the antiferromagnetic Heisenberg model by adiabatically switching on the
coupling t′ between initially isolated double wells, Fig. 4.1, i.e. switching from t′ = 0 to t′ = t,
while t is kept constant. As demonstrated in [103, 271] for the initial situation of isolated double
wells, the groundstate of the single occupancy subspace (4.8) can be prepared experimentally.

For the adiabatic approximation [153, 18] to be applicable, the system needs to be gapped
on the whole path in the space of system parameters except for the end point, where the gap
has to close abruptly enough. As argued in Section 4.5, transitions to other subspaces with
(quasiparticle) double occupancies can be neglected for a certain period of time T that can be
made very large. So one only needs to worry about transitions from the H orig

1 groundstates to
excited states inside the subspace, i.e. one needs to derive conditions on the dependence of the
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corresponding energy gap on the hopping t′ between initially isolated double wells such that
t′ = t can be reached adiabatically in a finite amount of time τ < T .

The quantitative condition for adiabaticity is generally stated as∣∣∣∣∣〈E0(t)|dĤ
dt |En(t)〉

E0(t)−En(t)

∣∣∣∣∣� 1 ∀t∈[0,τ],n6=0, (4.44)

where |En(t)〉 label the energy eigenstates and |E0(0)〉 is the initial state. Recently, substantial
problems were pointed out [187, 266] and two more conditions added [267]∫

τ

0
dt

∣∣∣∣∣ d
dt
〈E0(t)|dĤ

dt |En(t)〉
E0(t)−En(t)

∣∣∣∣∣� 1, (4.45)

∫
τ

0
dt

∣∣∣∣∣〈E0(t)|dĤ
dt |En(t)〉

E0(t)−En(t)

∣∣∣∣∣ |〈En(t)|
dĤ
dt
|Em(t)〉| � 1. (4.46)

If one has one time-dependent system parameter p(t), namely the dimerization p = δ , where

δ :=
1−|J′/J|
1+ |J′/J|

=
1−|t′/t|2

1+ |t′/t|2
, (4.47)

and one part of the Hamiltonian is linear in that parameter (this is the case for the effective
Hamiltonian and δ → 0), the numerators of (4.44)-(4.46) are proportional to the sweeping speed
v(t) := dp(t)/dt. The denominator is the spectral gap Eg(t). Only points p(τ) in parameter space
where the gap vanishes are problematic. If the gap vanishes as

Eg(t) ∝ |p(τ)− p(t)|ν , ν > 0, (4.48)

v should (for t close to τ) be reduced as c|τ− t|µ . According to (4.44),

1� c|τ− t|µ

Eg(t)
∝

|τ− t|µ

|
∫

τ−t
0 ds · sµ |ν

∝ |τ− t|µ−ν(µ+1). (4.49)

Hence, only for ν < 1, i.e. for gaps that close abruptly enough, adiabaticity can be reached with
µ ≥ ν

1−ν
. The second condition, (4.45), is in this scenario fulfilled automatically, the third,

(4.46), implies µ > ν−1
2−ν

which is also true.
For J′ ' J, a situation which was examined intensively in the context of spin-Peierls systems,

the model was first treated by Jordan-Wigner transformation and subsequent bosonization [68].
The precise result for the excitation gap can be obtained by a mapping to the four-state Potts
model [36] or conformal field theory [2] (see also [167]). The gap is given by

Eg(δ ) ∝
δ 2/3

| lnδ |1/2 = O(δ 2/3). (4.50)

That means one has a gap with ν = 2/3 < 1 and hence the gap can be closed in a finite
amount of time with exponent µ = 2. This means that the dimerization δ has to be varied with
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speed v(t) = c|τ− t|2, hence δ (t) = c
2 |τ− t|3. One needs thus the time τ = (2/c)1/3. The smaller

c is, the farther one is in the adiabatic regime but the longer one needs for the preparation. An
analysis of how small c is to be chosen to achieve a given accuracy of the prepared state could
be carried out along the lines of Ref. [269].

Note that in [159], it was recently discussed within a mean-field approach, how the antifer-
romagnetic phase of the three-dimensional Fermi-Hubbard model could be reached by adiabatic
tuning of the lattice potential.

4.7 Conclusion
A setup of two species of ultracold bosonic atoms in an optical superlattice has been studied. This
setup realizes in a certain parameter regime the Heisenberg ferro- and antiferromagnet. The focus
was in particular on time evolution of nonequilibrium states. The numerical results and analytical
considerations showed that the physics of Bose-Hubbard model implemented in the experiment
differs for certain parameter ranges considerably from the physics of the effective Heisenberg
models. Note that this would also be true for alternative suggestions as in [166, 84, 7, 106, 22].
The spin states up and down can in general not be identified directly with a bosonic particle of one
specific species. The regime where the correspondence between the two models is good, implies
higher requirements on cooling and coherence (coherence time) in an experimental realization.
The explicit form of the Schrieffer-Wolff transformation was used to analyze the transition rates
out of the magnetic subspace of the full Hilbert space.

In contrast to the accomplished experiments [103, 271] for isolated double-wells (filled each
with two particles), the setup of coupled double-wells discussed here allows for relaxation of
the many-particle state. In the numerics one can observe indications for (local) relaxation to
steady states. For the Heisenberg model in a mean field approximation, are explained how the
relaxation is connected to a phase averaging effect. This is typical for integrable models which
have nonthermal steady states. Nonintegrable models are generally believed to thermalize due
to effective scattering effects. The here considered setup can be tuned from the nonintegrable
Bose-Hubbard model to the Bethe ansatz integrable Heisenberg model and could hence be used
to study the differences of the relaxation processes experimentally.

Finally I argued that the groundstate of the Heisenberg antiferromagnet could be prepared by
tuning an alternating hopping parameter of the superlattice adiabatically.



Chapter 5

Landau Zener dynamics on a ladder with
ultra cold bosons

Current ultracold atomic systems offer an entirely new perspective on low-dimensional quantum
liquids. The extremly precise tunability of optical lattices allows one to focus on non-equilibrium
dynamical behaviour of bosonic and fermionic many-body systems. Compared to the equilib-
rium properties, the theoretical understanding of dynamics in such systems is far more rudimen-
tary since, in general, it is very difficult to obtain full analytical expressions for the dynamics of
quantum mechanical systems; in particular if the Hamiltonian is time-dependent. One of the few
analytically solved exceptions is the famous Landau-Zener problem [170, 297]. The Landau-
Zener problem describes the dynamics of a time-dependent two-level quantum system, which
can be described by

Ĥ(t) =
(

0 J
J 2ε

)
, (5.1)

where J is the coupling between the two levels and 2ε = 2αt is the energy offset. The Landau-
Zener problem can be found in applications in physics and theoretical chemistry. For the latter
the Landau-Zener formula was important for the understanding of atomic and molecular scat-
ter processes for which non-adiabatical transitions between potential barriers became important
[200, 86, 108, 255]. Indeed, this was the original context for which the Landau-Zener scenario
was formulated independently by Landau [170], Zener [297] and Stückelberg [261] in 1932. In
the same year Majorana has described the dynamic of a spin-1

2 particle in an inhomogeneous
magnetic field [185, 233] 1.

The Landau Zener formulation plays a crucial role in experiments with ultracold atoms in
magnetooptical traps, where non-adiabatical spin flips lead to a loss of atoms [262]. Further
examples can be found in the field of semiconductor physics [46], in particle physics [268] and
nuclear physics [135]. One of the most important and probably most investigated phenomenon is
the interaction between single atoms or molecules and laser light. In such a typical scenario the

1The Landau-Zener formula should be rather called the Landau-Zener-Stückelberg-Majorana formula, which is
definitely too long



78 4. Magnetism, coherent many-particle dynamics, and relaxation

original Landau-Zener formula describes an atom approximately as a two-level system, which
is driven by an external time-dependent laser field [5, 251]. The adiabatic dynamics induced by
the laser field is used in order to change coherently the occupation probability between the two
internal states. By the help of additional lasers one can induce the AC-Stark shift and to change
the relative position between the initial and the final levels. This is the famous Stark Chirped
Rapid Adiabatic Passage (SCRAP) [276, 289, 227]2, which was later extended the Stimulated
Raman Adiabatic Passage (STIRAP) [31] the adiabatic transition via a third level (dark-state).
Moreover, it turns out that the influence of a constant external force on the dynamics in periodic
structures leads not only to Bloch oscillations in the lowest energy band but also to Landau-
Zener-type oscillations between different Bloch bands. These effects has been experimentally
observed in semi-conductor systems having a superlattice structure [97] and for ultracold atoms
in optical lattices [29].

There exist many complicated systems for which the original Landau-Zener description holds.
However, many other applications and scenarios cannot be described by a simple two-level
model. Generalizations assuming more than two coupled modes are often not solvable analyti-
cally. The problem might be treated then using approaches known from field of open quantum
systems. Here the most difficult part is to define a bath which leads to the correct damping factors
in the evolution of the original two-level problem.

In the present chapter I introduce a particular Landau-Zener scenario which has been studied
recently with ultracold bosons in an optical lattice [57]. This experiment addresses a direct
many-body generalization of the Landau-Zener problem. The system at hand consists of pairwise
tunnel-coupled one-dimensional Bose liquids. By tuning the correlations of the one-dimensional
gases, via a change of the tunnel coupling between the tubes and the inter-tube interactions it is
possible to switch between regimes which go far beyond the original Landau-Zener picture.

The aim of the here presented work is twofold. First, using the time-dependent DMRG
method it is possible to verify the experimental results obtained in [57]. Second, the numerical
exact method allows for the extraction of important quantities, e.g. real space correlators, which
help clarifying the microscopic understanding of the physical system.

5.1 Mean field description
The two-body problem Eq. (5.1) has been first solved independently in 1932 by Landau [170],
Zener [297], Stückelberg [261] and Majorana [185] and later rediscovered by Wannier [278]
in 1964. The time-dependent two-level Hamiltonian Eq. (5.1) has the eigenvalues E1,2 = ε ∓
√

ε2 + J2 and the eigenvectors |φ1,2〉 = 1
w1,2

(
1

ν1,2

)
with ν1,2 = E1,2/J and the normalization

constant w1,2 =
√
(E1,2/J)2 +1. The eigenstates of the uncoupled system |eL〉=

(
1
0

)
and |eR〉=(

0
1

)
(J = 0) are called the standard basis states.

2The original realization of the adiabatic transfer, known as Rapid Adiabatic Passage [179], has changed the
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Abbildung 2.8: Wahrscheinlichkeit der diabatischen Zeitentwicklung eines durch den Hamiltonopera-

tor (2.25) mit ε = αt und v = 0.2 beschriebenen Systems in Abhängigkeit von α.

In beiden Fällen gilt demnach

PLZ = e
−πv2

|α| . (2.63)

In Abb. 2.8 ist der Verlauf für ein Beispiel dargestellt. Für α→ 0 geht die Landau-Zener-

Überlebenswahrscheinlichkeit gegen Null; das System folgt komplett dem adiabatischen

Zustand. Dies ist gerade die Aussage des Adiabatentheorems.

Der Vollständigkeit halber sei an dieser Stelle ohne weitere Details erwähnt, dass sich

die obige Darstellung von den Ansätzen von Majorana [3], Landau [1] und Stückelberg

[4] unterscheidet. Die beiden letzteren betrachteten die Fortsetzung der zeitabhängigen

Schrödingergleichung zu komplexen Zeiten. In dieser Betrachtungsweise bilden die adiaba-

tischen Niveaus die beiden Blätter einer sogenannten zweiblättrigen Riemannschen Fläche.

In der semiklassischen Näherung geht man davon aus, dass die Übergänge zwischen den

adiabatischen Zuständen nur in der Nähe der Schnittpunkte der zugehörigen adiabatischen

Energieniveaus in der komplexen Zeit stattfinden. Die Übergangswahrscheinlichkeiten

hängen dann davon ab, wie weit dieser Verzweigungspunkt von der reellen Zeitachse ent-

fernt ist. Majorana betrachtete direkt das Differentialgleichungssystem (2.26), (2.27) und

löste es mit Hilfe der Konturintegralmethode, die im wesentlichen auf einer Laplacetrans-

formation beruht. Diese Vorgehensweise wurde zum erfolgreichsten Ansatz in der weiteren

Entwicklung der verallgemeinerten Landau-Zener-Probleme wie sie in Kapitel 4 dargestellt

wird.

Zeitentwicklung eines beliebigen Zustandes

Nach Präparation in einem diabatischen Zustand bei ε→ −∞ ist die Wahrscheinlichkeit

einer diabatischen Zeitentwicklung durch PLZ , die einer adiabatischen Zeitevolution durch

1−PLZ gegeben. Aufgrund des Superpositionsprinzips ist es nun möglich, die Asymptotik
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Figure 5.1: The left figure shows the energies of the two-level problem Eq. (5.1) as a function of time. The smaller
the gap between the energies the more adiabatic must be the transition. On the right one can see a typical curve for
the transition probability PLZ as a function of the transition speed. For the simple case of a two-level model there
is no difference between the forward sweep and the inverse sweep scenario which are depicted as an insert; in both
scenarios PLZ has the same dependence on α .

5.1.1 Landau-Zener formula
In the following I will derive the Landau Zener formula under the assumption that the system
changes linearly in time, starting at large negative time and evolving to a large positive time.
Moreover, I assume that for t = 0 the system starts in one of its eigenstates. During the time
evolution the system is given as linear combination between the two standard basis states

|ψ(t)〉= ψ1(t)
(

1
0

)
+ψ2(t)

(
0
1

)
. (5.2)

I assume now without loss of generality that |ψ1(t → −∞)| = 1.Together with time-evolution
described by ih̄|ψ(t)〉= Ĥ(A(t))|ψ(t)〉 one obtains the two coupled first order differential equa-
tions

ih̄ψ̇1 = Jψ2

ih̄ψ̇2 = Jψ1 +2αtψ2, (5.3)

which can be put together into a single second order differential equation using ψ2 =
i
J ψ̇1 and

ψ̇2 =
i
J ψ̈1:

ψ̈1 +2iαtψ̇1 + J2
ψ1 = 0. (5.4)

Together with the ansatz ψ(t) =U(t)e f (t) and its derivations one obtains

Ü +U̇(2 ḟ +2iαt)+U( f̈ + ḟ 2 +2iαt ḟ + J) = 0

Ü +U
(
J2− iα +(iαt)2)= 0 (5.5)

where in the last line I used the identity ḟ = −iαt and therefore f = − i
2αt2 +C which makes

U̇ in the first line vanish. The linear transformation z = ei π

4 (2α)
1
2 t leads to the so-called normal

couplings between the levels.
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formof the Weber differential equation

d2

dz2U(z)+
(

ν +
1
2
− 1

4
z2
)

U(z) = 0 with ν =
iJ2

2α
. (5.6)

The above equation can be solved by means of a simple linear combination between the two
Weber functions Dν(z) and Dν(−z) for which the asymptotic behavior [25] at large large times
|t| is known3. Assuming that α > 0 and under the constrain that 0 ≤ |ψ1(t → +∞)|2 ≤ 1 one
finds the only possible solution to be Dν(z) which leads together with the original ansatz to the
solution 4

ψ1(t) = Aexp
(
− i

2
αt
)

Dν

(
ei π

4 (2α)
1
2 t
)
. (5.7)

The normalization constant A can be calculated from the asymptotic solution as

|ψ1(t→−∞)|2 = 1 = |A|2
∣∣∣Dν

(
ei π

4 (2α)
1
2 t, t→−∞

)∣∣∣2 = |A|2e
3πJ2
4α (5.8)

Now, together with above eqaution one can easily find the Landau-Zener formula PLZ = |ψ1(t→
+∞)|2, which gives the transition probability between the initial ground and the excited state (or
vice versa):

PLZ = e−
3πJ2
4α

∣∣∣Dν

(
ei π

4 (2α)
1
2 t, t→+∞

)∣∣∣2 = e−
3πJ2
4α e−

πJ2
4α = e−

πJ2
α (5.9)

In a similar way one can also derive for α < 0 the same Landau-Zener probability as for α > 0.
Thus, one finally arrives at the known expression

PLZ = e−
πJ2
|α| . (5.10)

5.1.2 Extensions of the Landau-Zener formula

Two-level system coupled to an infinitely large bath

After the discussion of the pure Landau-Zener problem for a closed two-level quantum system
I would like to consider a more realistic scenario of a two-level system coupled to an infinitely
large bath. The coupling to the bath leads to a decay of the population of the two internal
states. It turns out that such a simple coupling which results in an constant decay rate does not
change the Landau-Zener formula Eq.(5.10). Nevertheless, in order to model a more convenient
environment it is important to know why the Landau-Zener formula is not affected by such a
bath.

3The two Weber functions are linear independent iff ν 6= N
4The derivation is similar for α < 0.
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In the following I assume that the right standard basis state |eR〉 decays with a constant rate.
The system is now governed by the non-hermitian Hamiltonian

Ĥ(t) =
(

0 J
J 2ε−2iγ

)
with γ > 0. (5.11)

Similar to the hermitian case the time-evolution of the above system can be described through
a set of two coupled differential equation

ih̄ψ̇1 = Jψ2

ih̄ψ̇2 = Jψ1 +2αtψ2−2iγψ2, (5.12)

which leads to the following second order differential equation for ψ1:

ψ̈1 +2(iαt− γ)ψ̇1 + J2
ψ1 = 0. (5.13)

In an analogous way to Eq. (5.5) one obtains together with the ansatz state

ψ1(t) = Aexp
(
− i

2
αt2− γt

)
U(t) (5.14)

the following pre-Weber differential equation

Ü +(J2− iα +(αt− iγ)2)U = 0. (5.15)

FInally, after the transformation z = ei π

4 (2α)
1
2 (t− i γ

2) one obtains the Weber equation. For ν =

−iJ2/(2α) and thus al pha > 0 one gets the solution in terms of the Weber functions:

ψ1(t) = ψ1(t) = Aexp
(
− i

2
α(t− i

γ

α
)2
)

Dν

(
ei π

4 (2α)
1
2 (t− i

γ

2
)
)
. (5.16)

After the determination of A from the asymptotic behaviour at t→−∞ one obtains the Landau-
Zener probability from the opposite limit of t as

PLZ = e−
πJ2
|α| , (5.17)

which is totally independent of γ .

Three level Landau-Zener

It seems that that the probability PLZ to find the system after a time-evolution in its initial state
does not depend on the details of the coupling between the other standard basis state and some
arbitrary large bath. However, this is, in general, not true. Considering different system-bath-
couplings, and thus decay mechanisms which are different to the one which assumes an arbitrary
large continuum, one obtains changes in the Landau-Zener probability [277, 3]. Motivated by
this results I will try in the following another approach to model a bath. Instead of a local or
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Figure 5.2: Three level Landau-Zener sweep in a double well. Schematic sketch of the model in Eq. (5.18) with
respect to the experiment in [57]. At the beginning of the simulation (left figure) |ψ1|2 = 1 (red) and the energy levels
are ε2 � ε1 < ε3. According to the Hamiltonian (5.18) the first energy level is zero during the whole simulation.
The two transition speeds α > 0 and β < 0 and δ are chosen in such a way that an energy-crossing occurs in the
vicinity of ε2(t) = 0. The right figure shows the situation at t→+∞. The order of the energies is completely inverse
with respect to the initial situation.

global bath which couples to the two states I assume a third state which couples with the second
but not with the first state. Inspired by the recent experiment of Chen [57] I assume also the third
state to change its relative energy in time. Such a system can be described by

Ĥ(t) =

 0 J 0
J ε2(t) J2
0 J2 ε3(t)

 , (5.18)

with ε2(t) = ∆2 +αt, where |α| = 2∆2
T is the so-called sweep rate and T is the so-called sweep

time, i.e. the time-evolution runs between 0≤ t ≤ T with speed α . Finally, ε3(t) = ∆3 +δ +β t
with |β |= 2∆3

T and δ a small additional energy offset. J2 couples the second with the third level.
To give some numbers, in the following numerical simulations, J = J2 = −0.1, ∆2 = −30 with
α > 0 and ∆3 ≈ +1 with β < 0. The energy offset will be δ ≈ −0.1. Assuming that the third
standard basis state has constant energy, i.e. β = 0, one would obtain again the Landau-Zener
Eq.(5.10). Indeed, this model has been already solved [78] and belongs to the class of the so-
called equal slope N-level models.

Now, I consider the three level case with β 6= 0. It turns out that this scenario is to difficult
for a derivation of a Landau-Zener probability law from simple consideration of the adiabatic
theorem at the crossing points of the three involved energies. With regard to the breakdown of
the Landau-Zener formula [see Chap.(5.4)] for the so-called inverse sweep in [57], which means
the case of an adiabatic transfer of the excited state and not the ground state 5, I model the initial
state and the time evolution in the following way. The initial state in [57] consists of a BEC in one
tube and a second empty tube, which has an additional negative energy shift. For most of the time
during the adiabatic transport of bosons from the filled to the empty tube the effective coupling
between the two tubes is zero. While the effective coupling is zero the two tubes are independent
from each other and the BEC state in the filled tube can be considered to be the ground state.
This means for the three level model, that at t = 0 the energy of the second state is far below the

5In the simple two-level model the Landau-Zener probabilities for the excited state and for the ground state are
the same.
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energy of the first state ε2(t = 0) = ∆2� 0 = ε1 and on the other hand the energy of third state,
the additional channel for a decay, is slightly above first state energy ε3(t = 0) = ∆3 +δ > 0.

According to the experiment I choose for the time-evolution α = 2∆2
T and β = −2∆3

T , which
leads to ε2(t = 0) = −∆2 → ε2(T ) = +∆2 and ε3(t = 0) = ∆3− δ → ε3(T ) = −∆3 + δ and,
thus, to the final situation where ε3 < ε1� ε2. The choice of sign in α and β (and the relatively
small δ ≈−0.1) leads to two energy-crossings during the time-evolution, which take place when
ε2 ≈ 0. With the additional offset δ one can avoid the situation that both energy-crossings take
place at the same point, which would also mean that all three energies are the same. The choice
of δ < 0 also provides that already at the symmetric point, i.e. the situation after the half sweep,
ε1 > ε3. This is a reasonable due to the fact that at this point the initial BEC is certainly not the
ground state anymore. In figure Fig.(5.3) shows the fidelity |ψ2|2 as a function of the inverse
sweep rate α for different choices of δ . The other parameters are J = J2 = −0.1, ∆2 = −30,
∆3 = 1. One observes for fast sweeps (large α corresponds to a small T ) a monotonic increase of
the fidelity which then, for slower sweeps, is followed by its decrease. The smaller |δ | the faster
does the downturn occur and the stronger is decrease of the fidelity. This simple model could
serve as a starting point for the interpretation of the observed downturn in the coupled-tubes
scenario in [57], which I will discuss in the second part of this chapter.
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Figure 5.3: The three level model inverse sweep scenario. The plots are calculated by a simple direct integration
for the parameter: J = J2 = −0.1, ∆2(t = 0) = −30. Apart the grey curve the blue curves differ in the detuning of
the auxiliary energy level δ . The curves show an universal behaviour for very large sweep rates. The later observed
deviation from the universality occurs sooner for smaller δ . The insert show exemplary curve for a single sweep.
See also the inverse sweep with the bosonic ladder [Fig. (5.7)]

After the discussion of the original Landau-Zener scenario an the two extension in terms of
a constant decay rate to a infinitely large bath and the assumption of a third state I will now pro-
ceed with a more precise analysis of the Landau-Zener scenario in two coupled one-dimensional
bosonic condensates [57] using the time-dependent DMRG method.
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Figure 5.4: The bosonic ladder scheme. The Bose ladder model with the intratube hopping J‖ (z-axis), the onsite
interaction U , the intertube hopping J (x-axis) and the variable offset ∆ on the right tube.

5.2 Setup and model for the time-dependent DMRG calcula-
tions

I consider a bosonic ladder system made of two coupled one-dimensional tubes, the left L and
the right R tube, made of an optical lattice. Additionally to the intratube hopping JL,‖ = JR,‖ = J‖
(axial z-direction) and the onsite interaction U , there is a superlattice potential in the (transversal)
x-direction of the form

V (z) =V0 sin2(kz)+V1 sin2(kz/2+φ), (5.19)

where by simply varying V1 and the phase φ one can tune the intertube hopping J and create an
additional offset ∆ between the potential energy in the left and the right tube [cp. Fig. (5.4)]. The
superlattice structure can be generated by the superposition of two standing waves [103, 271]
generated with two lasers with the frequency ratio 1:2. Assuming the tight-binding approxima-
tion with restriction to the first Bloch band (one Wannier function per site) the system is then
described by the Bose-Hubbard Hamiltonian

Ĥ(t) = J‖ ∑
i,σ=L,R

(b̂†
i,σ b̂i+1,σ +h.c.)+ J ∑

i
(b̂†

i,Lb̂i,R +h.c.)

+
U
2 ∑

i,σ=L,R
n̂i,σ (n̂i,σ −1)+∆(t)∑

i
n̂i,R, (5.20)

For the initial system one calculates the ground state at ∆ = 100J, i.e. all bosons sit in the left
tube and quenches the ground state from ∆ = 100J to the desired initial value ∆(t0) = ∆0. Next,
the simulation is done by varying linearly ∆ in time according to

∆(t) = ∆0 +
∆ f −∆0

T
t = ∆0 +αt, where 0≤ t ≤ T, (5.21)

until one reaches the final ∆(T ) = ∆ f =−∆0. In the following I call such a simulation a sweep.
There are two types of sweeps. I use the term forward sweep (or ground state sweep) if ∆0 > 0
and the term inverse sweep if ∆0 < 0. In the following I will always consider situations where
the energy offset ∆0 is the largest energy scale, namely, |∆0| � J�U
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Figure 5.5: Forward sweep. The transfer efficiency, also called fidelity here, calculated for the single particle in a
double well [cp. Fig. (5.1)], for two particle in a double well and the experimentally obtained data for the coupled
tubes. Sweep fidelity is measured with the characteristic rate αc, which is the sweep rate to achieve a transfer
efficiency of 1− e−1 ≈ 63% with respect to the maximal measured value nmax

R . Figure adapted from [57].

5.2.1 Numerical method and parameters
For the numerical simulation, a Krylov subspace variant [210, 136] of the time-dependent DMRG
algorithm was used [285, 70, 243]. For the Hubbard model, the site basis was restricted to a
maximum of three particles for each species. Insensitivity of observables to the chosen maximum
number of bosons per site was affirmed. The investigated sizes of the ladder system are in
between of L = 8×2 and L = 16×2. In the time evolution, the absolute difference per physical
time unit between exactly evolved state and the state evolved via DMRG ||ψexact

dt −ψDMRG
dt ||/dtN

was bounded from above by ε = 10−4 and the time step chosen appropriately between dt = 0.05
and 0.005. The errors were determined in a rigorous fashion, by calculating the exact value of
|||k+1〉− Ĥ|k〉||, where |k〉 are the Krylov vectors. I have simulated the sweep with Ĥ(t) by
a step wise calculation with a static Hamiltonian. For this purpose it was sufficient to divide
∆ f −∆0 and the sweep time T into 100 sub-steps for the forward and 200− 400 sub-steps for
the inverse sweep. For all calculated observables, convergence in the error bound and dt was
checked. The resulting number of basis states, used to represent the time-evolved state, was
. 4000.

5.3 Forward sweep
I start the discussion of the ground state sweeps, where ∆0 > 0, i.e. the filled left tube is the
one with lower energy. The comparison of transfer efficiencies nR, which I also call fidelity, for
pairwise coupled dot-like lattice sites (or equivalently J‖ = 0 for the tubes) and one-dimensional
tubes as a function of sweep rate has been done in [57] and can be seen in Fig. (5.5). The
fidelity nR can be directly associated with 1−PLZ, the probability to stay in the ground state.
Except the general monotonic increase of nR [see inverse sweep Chap. (5.4)] in all cases, one
observes an enhance of this transfer with increasing interaction strength. In order to quantify the
sweep fidelity with a single number, one can defines the characteristic rate αc as the sweep rate
to achieve a transfer efficiency of 1− e−1 ≈ 63% with respect to the maximal measured value.
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Figure 5.6: Forward sweep. Characteristic rates αc for the transverse lattice depth Vx = 15Er and a different axial
lattice depths Vz for different initial fillings. The points have been obtained on a L= 8×2 lattice. For the initial filling
nL,0 = 2.5 one gets the best agreement with the experimental data where the average filling is around nL,0 = 2.6.
For large Vz (decoupled double wells) one recovers the two-level Landau-Zener result. The two additional plots at
the right show the dependence of the here presented results on the system length L. As expected, the bigger the
interactions the more important are finite size effects. Nevertheless, the error between L = 8×2 and L = 16×2 is
less then 5%.

Therefore, larger αc correspond to higher transfer rates. In the case of single atoms in the dot-
like sites, the result almost matches with the Landau-Zener formula. Here, αc = 2πJ2 sets the
natural scale for the sweep rate. If the filling is increased, one finds an enhanced value of αc.
This enhancement is even more pronounced in the case of the pairwise coupled tubes filled with
up to 100 atoms which leads to the conclusion that interactions are crucial for such enhancement.
Indeed, a non-interacting BEC, i.e. J‖, would result in the same transfer rate as is the case for a
single particle.

In Fig. (5.6) one can see the characteristic rates αc for the transverse lattice depth Vx = 15Er
and a different axial lattice depths Vz calculated using the time-dependent DMRG method. To
give some numbers, Vz = 4 is equivalent to J‖ = 0.63J and U = 4.03J while Vz = 15 corresponds
to J‖ = 0.06J and U = 5.7J. The dependence of αc on the transverse z-lattice depths accounts
well for the trends observed in the experiments. One observes a significant jump Vz ≈ 8 when
going from small lattice depths to large depths, where the condensate is significantly depleted
and driven towards the Mott transition of the quantum ladder. Deep in the Mott regime all
Bose enhancement in the tunneling process is lost and one essentially recovers the single-particle
Landau-Zener results.

5.4 Inverse sweep

After the discussion of the results for the ground state, or forward sweep, I will present, in
the following, the results for the simulation of the so-called inverse sweep. The inverse sweep
scenario aims the question of the probability for a successful transfer of an excited state from
the left to right tube. According to the preparation scheme [cp. Chap. (5.2)] the initial state is
obtained by a quench of ∆i→−∆0 < 0 at t = 0. The filled left tube lies energetically above the
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Figure 5.7: Fidelity in the inverse sweep. The left figure shows the fidelity nR as a function of the sweep rate α .
The solid black curve shows the Landau-Zener solution for a single particle problem in a double well. The grey
curves show the result of the time-dependent DMRG calculation for a L = 8×2 ladder at J‖ = 0.38J, U = 1.58J and
∆0 = 9.1J for three initial fillings nL,0 = 0.75 (light grey), nL,0 = 1 (grey), nL,0 = 1.25 (dark grey). For a quantitative
comparison I have plotted the data from the experiment (brown dots). The big discrepancy between the experiment
and the simulation comes from the fact that it was possible to reach the typical experimental densities nexp

L,0 ≈ 2.
However, the position and the absolute value of the maximum of nR(α) moves towards the experimentally observed
value as one increases the number of bosons, which corresponds to an increase of the effective interaction along
the tubes. The bigger this intratube interaction the sooner does the fidelity curve deviate from the single particle
solution. The upper right figure shows nmax

R as a function of the initial density nL,0 (black dots) . The extracted curve
coincides very well with the experimentally obtained position of nmax,exp

R (brown line). The smaller dark blue dots
correspond to the numerical calculation with L = 12×2. The finite size effects (at least at this densities) are in the
range of few percent. The upper lower figure shows a typical sweep of nR in real time. The final value of nR is
averaged over the last few (damped) oscillations.

empty right tube.
The results of the fidelity nR as a function of the sweep rate α , for different initial densities,

are depicted in Fig. (5.7). The parameters in units of the intertube hopping J are U = 1.58J,
J‖ = 0.38J and ∆i = −∆0 = −9.1J or equivalent Vx = 12Er and Vz = 4Er. After a monotonic
increase of nR for large α the fidelity starts to saturate at around some maximum value. Then,
contrary to the forward sweep scenario, nR does not approach the maximal fidelity but starts to
decrease with a decreasing sweep rate. This downturn disappears in the case of non interacting
bosons [cp. the two-level Landau-Zener in Chap. (5.1.1)], where forward and inverse sweeps
lead to a monotonically increasing fidelity. The solid black curve in the upper figure in Fig. (5.7)
shows the result of a single particle in a double well (or equivalently for tubes J‖ = 0) for both,
the forward and the inverse sweep. The surprising downturn effect must be a direct consequence
of interactions along the tubes (z-direction). As one can see in Fig. (5.7) the bigger the initial
density, and thus the overall interaction strength, the sooner does the fidelity break off the single
particle result. Moreover, with increasing interactions the maximal value of nR is smaller and
occurs at a higher rates α . Figure (5.7) shows also the experimental data for the same parameter
regime (brown dots). The typical densities in the experiments are around nexp

L,0 ≈ 2. It turns out
that such high densities and related time scales are not accessible by the time-dependent DMRG
method used in this project. Nevertheless, a simple linear extrapolation of the position of the
maxima as a function of nL,0 does almost perfectly coincide with the experimental value [see
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Figure 5.8: Dependence of the inverse sweep relaxation on the intratube coupling J‖. The four curves show
the fidelity as function of the inverse sweep rate α for four different intratube couplings Vz. For large Vz = 9Er
(corresponds to J‖ = 0.02) the double wells are not sufficiently connected and, thus, the curve shows basically the
single double well result. In particular, there is no downturn visible. As soon as one turns on the intratube hopping
the relaxation effect becomes more and more visible.

upper right figure in Fig.(5.7)]. The dependence of the relaxation on the intratube hopping is
also shown in figure (5.8). Here, I have plotted four different curves starting with the uncoupled
double wells case (Vz = 9Er), where a relaxation is not visible, and going down to smaller Vz
which correspond to an increase of J‖.

In the following I will try to explain the observed downturn and relaxation process for the in-
verse sweep. The initial state in the left tube describes approximately a Bose-Einstein condensate
and is, thus, a macroscopic object. For fast sweeps, or equivalently, for short coupling times, the
function of fidelity follows the PLZ as calculated for a single double well. The intratube hopping
J‖ is three time smaller than J and therefore not important for fast sweeps. However, as the sweep
rate α decreases the intratube hopping becomes more and more relevant. The fidelity starts to
deviate from the single double well picture [see Fig. (5.7). During a single sweep [see the lower
right figure in Fig. (5.7)] bosons swap from left to empty right tube and oscillate afterwards until
an equilibration in both tubes. While the first turnover is still a coherent process, which does not
destroy the BEC, the subsequent intertube oscillations already involve non-coherent scattering
process and intratube hopping; the condensate forms here a highly excited state [see Chap.(5.5)].
While the fraction of the initial condensate which swaps from left to right becomes bigger as one
increases the sweep time, the following intertube oscillations have a more or less constant ampli-
tude [see lower right figure in Fig(5.7)]. This oscillations lead to the redistribution of momenta
caused by collisions among the bosons under the restriction of a conserved total momentum. As
long as the double wells are not coupled, i.e. J‖ ≈ 0 there is no possibility for the bosons to
change their momenta after a scattering event. Once the double wells are coupled, bosons are al-
lowed to change their momenta during a collision, which is equivalent to an additional intertube
hopping. I have already mentioned that the total state, as well as the left and right states, corre-
spond to highly excited configuration throughout the whole sweep process. As I will show in the
next chapter [see Chap.(5.5)] a highly excited system of bosons, e.g. all bosons of the system sit
in the energetically higher tube, has always the tendency to equilibrate around fifty-fifty occupa-
tion, i.e. half of the bosons sit in the left and the other half in the right tube. This is exactly what
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Figure 5.9: Momentum distribution of the inverse sweep. The two upper plots show the momentum distribution nk
in the left and in the right tube as a function of the sweep rate. Since the initial state in the left tube is a BEC one
observers a large peak at k = 0. A fast inverse sweeps lead to a separation of the initial condensate among both tubes
collisions with a redistribution of momenta are not allowed. This is not anymore the case for longer sweeps. The
hopping along the tubes open a possibility for scattering processes with a high momentum exchange. Collisions with
a high momentum are favoured since the particles can then absorb most of the systems energy and put it into kinetic
energy along the tubes. The number of bosons which participate is much smaller than the total number of bosons
in the right tube. While the initial signal of the condensate, i.e. k = 0, survives much longer and in the right tube
(upper right), it disappears in the left tube, which make the observation of peaks at k = π possible (upper left). The
lower figure shows the broadening of nk in the left and in the right tube. While nk,L is already completely broaden
for moderate large sweep times the right tube shows the memory about the initial condensate even for longer sweep
times. Nevertheless, one can see a constant growth of the broadening also here. Finally, for very large sweep times
the left and right tube should have exactly the same distribution, since they stay long enough in contact with each
other.

happens during an inverse sweep. Bosons will always try to reach the fifty-fifty configuration as
long as the majority of them occupy the higher excited tube and, this is crucial, as long as the
two tubes are effectively coupled. Although there is finite intertube coupling J during the whole
sweep, there is only a certain parameter (or time) window when bosons are allowed to jump from
left to right and vice versa. Once the system passes this window the fidelity is locked and there
are only intratube processes going on.

The whole curve can be explained as follows. The increase for fast sweeps is a more or less
modified version of the isolated double well case. For longer sweeps the fidelity starts to deviate
from the Landau-Zener result for a single particle, since intratube hopping are allowed. The
energy of the system is redistributed into excitation along the tubes via collisions between the
bosons. The best way to redistribute the energy is to put it into the highest momentum modes,
i.e. k = π,−π . As one increases the sweep time further the system follows more and more the
dynamic of the quenches, i.e. the sweep can be seen as a sequence of several quenches.

There is a small difference between the left and right tube. While the fraction of oscillating
bosons at the end of each single sweep are much smaller than the total number of bosons in the
right tube, it is of the same order as the number of bosons in the left tube. Therefore, this highly



90 4. Magnetism, coherent many-particle dynamics, and relaxation

excited bosons cause a much faster broadening in the left than in the right tube, where there are
still enough bosons in the BEC state with k = 0 [see figure at bottom of Fig.(5.9)]. Finally, for
infinitely long sweeps the broadening of the left and right tube must be the same as there will be
an infinitely large number of intertube hopping processes during single sweep.

5.5 Time-evolution after quenches

The forward and inverse sweep in a bosonic ladder system can be seen as one particular example
of the Landau-Zener problem, i.e. the scenario of coupled double wells. The fact that bosons
are, now, strongly correlated along the legs of the ladder leads in the case of the inverse sweep
scenario to a remarkable deviation from the expected single double well result. While it is
possible to find a simple physical picture for the observed relaxation it turns out that a more
detailed explanation is a much harder task due to the large number of parameters combined with
the fact that the Hamiltonian, which governs the dynamic, is time-dependent. One possible way
to decrease the complexity of the problem is by studying systematically quench scenarios, i.e.
instantaneous quenches of the initial setup with all bosons sitting in the left tube, to a Hamiltonian
with a constant ∆ f = const. However, the fact that quenches allow for a clean stroboscopic picture
of the Landau-Zener problem is not the only reason for their investigation. Another important
reason is the possibility to create a quasi-thermal state6 using a simple experimental setup. Before
starting the discussion about the quenches there are two general remarks. Contrary to the sweeps
the total energy in the quench scenarios is a conserved quantity. Second, despite the fact that
J 6= 0 the effective hopping process can only occur in the vicinity of ∆ f = 0. Due to the energy
conservation no hopping is allowed if |∆ f | is too large.

As for the sweeps the following discussion will mainly relay on the results for the fidelity
and the broadening of the momentum distribution. The figure at the bottom of Fig. (5.10) shows
the broadening 〈k2〉 as a function of ∆ f for different fillings. For a sufficient large initial filling
nL,0, the broadening 〈k2〉 growths in a monotonic way. First of all 〈k2〉 is very small for very
large positive ∆ f . This is the regime where the initial state corresponds nearly to the true ground
state of the system, i.e. a quasi perfect condensate with a strong peak at k = 0. Now, decreasing
∆ f → 0 and further to ∆ f < 0 is equivalent to start with a more and more excited state, which
then can be associated to an effective temperature Teff > 0. As expected, the broadening becomes
here larger and larger since the momentum distribution starts to become flatter the larger Teff. The
largest possible value for 〈k2〉, i.e. 〈k2〉= π for a totally flat momentum distribution, is reached
approximately around ∆ f ≈ −2J. Figure (5.10) shows also the broadening of a thermal state
(red dots) with filling nL,0 = 1.5, calculated by the finite temperature DMRG calculation. The
agreement between the latter and steady state results for nL,0 = 1.5 is very good. This is not
the case anymore for smaller fillings. As one can see in [Fig.(5.10)] a peculiarity occurs in the
vicinity of the symmetric point (∆ f = 0); the broadening drops down to the initial value before
the quench. Since the resonance between the energy levels in the left and right tube is here
the biggest a dilute condensate can easy tunnel with the loss of coherences. For low fillings

6A steady state with almost the same properties like a true thermal state.
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Figure 5.10: Quench scenario. The figure at the bottom shows the broadening of the momentum 〈k2〉 as a function
∆ f . For a sufficiently large filling nL,0 the broadening (here the filling is 1.5, dark grey dots) of the steady state
after the quench is almost the same as for the thermal state with the same filling (red dots). For ∆ f > 0 the initial
state is almost the exact ground state of the system. Therefore, there is no much broadening visible. The opposite
effect occurs for ∆ f < 0, where the initial system is highly excited. The intertube oscillation comes along with a fast
redistribution of energy into all momenta states along the tubes, i.e. this leads to large broadening of k. If nL,0 is too
small a particularity occurs in the vicinity of the totally symmetric point ∆ f = 0. Here, the energy states in the left
and in the right tube are in perfect resonance. Additionally, there are not enough bosons for a fast redistribution of
energy through two-body collisions. Hence, the particles can move almost independently between the two tubes and
without any intratube excitation. The small insert on the lower figure shows the fidelity as a function of ∆ f . As one
approaches ∆ f = 0 the normalized fidelity approaches nR = 0.5. Since nR = 0.5 is equivalent to the most effective
exploitation of space the fidelity does not grow as one goes further to ∆ f < 0 but stays constant. Finally, for large
negative ∆ the fidelity becomes smaller again as the two tubes become more and more decoupled. The two figures
at the top show the fidelity (upper left) and the broadening (upper right) for three different ∆ f . The final value of nR
and 〈k2〉 is calculated from the average over the last oscillation.

the number of interbosonic collisions drops rapidly which leads to a stable coherent intertube
tunneling. However, also for lower filling it is only a matter of time until 〈k2〉 reaches the value of
the thermal state. For a larger ∆ f (approximately around |∆ f |> 2.5J) the tunneling rate decreases
rapidly since then a hopping process would violate the energy conservation in the system.

The small inset in the lower picture in figure (5.10) shows the final fidelity after a quench for a
system with the filling 1.5. There is a strong asymmetry between the positive and the negative ∆ f
which has been also observed experimentally. As expected the fidelity growths monotonically,
starting at zero for ∆ f � 0, as one approaches ∆ f = 0 for which nR = 0.5. In this regime one can
assume that two energy bands in the left and right tube are in resonance. This resonance leads to
a oscillation of some condensate fraction. Since the two tube evolve different in time and due to
the fact that bosons can collide and redistribute momenta, one observes an additional damping
of the oscillation. Now, things change a little bit as one goes further to negative ∆ f . The fidelity
remains more or less constant for 0 > ∆ f > −1.75. The reason for this plateau comes from the
fact that a fifty-fifty distribution of bosons guarantees the most optimal exploitation of space. The
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energy gain from this delocalization is redistributed into kinetic energy along the tubes. Finally,
for even smaller negative ∆ f the fidelity starts to decrease slowly to zero as one approaches the
parameter regime for which the two tubes are (energy conservation) decoupled. The two upper
figures in [Fig. (5.10)] show exemplary the fidelity (upper left) and the broadening (upper right)
for three different ∆ f for system with the initial filling nL,0 = 1.5. The final value of the steady
state is calculated taking the average over the last oscillation of each individual run.

The above quench scenario allows for the generation of a system of ultracold bosons with
any desired thermal distribution. The simplicity of the method allows for an easy experimental
implementation and has moreover the advantage that a desired temperature can be adjust by the
choice of the right ∆ f . The steady state after a few intertube oscillations can be used further for
other experiments where one would like to check the temperature dependence of some effect. As
long as the initial density is large enough there is no problem to generate this thermal ensemble
on fast time scales and without bigger loss of particles.

Finally, I would like to connect the results from the quench scenarios with the sweeps, and
here in particular, with the inverse sweep. A typical sweep consists of a large bosonic swap from
the left to the right tube followed by several intertube oscillations with a smaller amplitude [see
Fig.(5.7)]. As long as the time scale of the intertube tunneling is smaller than the sweep rate
α , i.e. fast sweeps, one observes only few intertube oscillations. Moreover, the first intertube
boson swap happens more or less when ∆(t) = 0. Thus, the fast sweep can be explained with the
results from the quenches to ∆ f ≥ 0. For example, one observes only a small broadening during
the fast sweep. The situation changes when the sweep time becomes smaller than the tunnel
rate. Here, the initial swap of bosons from left to right (∆(t) = 0) is followed by a backflow to
the left tube at ∆ > 0. However, the situation when bosons moves from to right to the almost
empty left tube is similar to a quench at ∆ f < 0, thus, the region where the broadening 〈k2〉
becomes maximally large. Only a small fraction of bosons is involved in the backflow and all
the additional oscillations. The remaining bosons in the right tube keep the initially imprinted
information about the condensate, i.e. the momentum distribution remains peaked around k = 0.
Therefore, one observes a much faster broadening in the left than in the right tube.



Chapter 6

Entanglement and Decoherence of
Multi-Qubit-Systems in external Baths

The main difference between the classical and the quantum description of world is the concept
of superposition. Although the description in terms of quantum mechanics apply for the micro-
scopic as well as for the macroscopic materia1, direct effects of superposition have been observed
only in the further. Interactions among the particles lead to two new characteristics of quantum
mechanics: the entanglement and the effects of decoherence [300].

Entanglement is a property of the quantum mechanical state of a system containing two or
more objects, where the objects that make up the system are linked in a way that one cannot
adequately describe the quantum state of a constituent of the system without full mention of its
counterparts, even if the individual objects are spatially separated [139]. This interconnection
leads to non-classical correlations between observable physical properties of remote systems,
often referred to as nonlocal correlations [8]. Entanglement is a precious resource in quantum
information processing. It is e.g. believed to be the ingredient of the quantum speed-up in quan-
tum computation [83] and communication. Moreover several quantum protocols, as teleportation
[30] just to mention an important example, can be realized exclusively with the help of entangled
states [41]. On the other hand it is the entanglement which makes it very difficult to study many-
body physics analytically as well as numerically on classical computers. This becomes obvious
when using DMRG methods which are working good as long as the entanglement between two
parts of the considered system does not grow exponentially fast.

Decoherence or dephasing is a mechanism that appears when a quantum system S inter-
act with an environment B. As long as a system does not interact with the environment it is
considered to be closed. One can describe this closed state by a pure wave function, which
in its in general contain phase coherent superpositions, i.e. the general wave function reads
|Ψ〉S = α0|φ0〉S +α1|φ1〉S + ... . Now, the interaction between the system S and the environment
B creates entanglement between S and B. This has an important consequence for the system
S. The initial superpositions disappear slowly and a collapse of the wave function occurs. The

1Due to the lack of a good criterion to distinguish between quantum and classical, an identification of the classical
with the macroscopic has often been accepted. A counter example is the cryogenic version of the Weber bar gravity-
wave detector, which must be treated as a quantum harmonic oscillator even though it may weight a ton [52]
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system S (as well as B) is now described by an ensemble of classically weighted wave vectors,
i.e. ρS = ∑i pi|ψi〉〈ψi|S. This description is equivalent to the outcome after a full measurement
on the initial system. The environment acts as a kind of measurement device which, within
the formulation of quantum mechanics, reads out information about the initial system at cost
of the destruction of phase coherent superpositions. Decoherence is the mechanism by which
the classical limit emerges out of a quantum starting point and it determines the location of the
quantum-classical boundary [300]. Although the two phenomena, i.e. entanglement and deco-
herence, are strongly connected with each other they are not the same. Entanglement is a much
stronger property on a quantum state than many-body coherence.

I have already mentioned that entanglement is a crucial ingredient for many applications
in quantum engineering. Some of these applications like secure quantum communication, also
called quantum cryptography [112], have already been demonstrated in experiment. This has
encouraged scientists to put effort in developing a more complex quantum device, the so-called
quantum computer. Computers which make direct use of quantum mechanical phenomena2 allow
to approach problems of a completely different complexity class [150] as classical computers.
In particular, it has been predicted that quantum computers should find the prime numbers of a
given number in polynomial time only [250].

In general one cannot build a quantum device which is completely decoupled from the en-
vironment. As mentioned above these interactions create entanglement between system and
environment at the cost destruction of the superpositions and the entanglement in the system.
In the context of quantum computing the main experimental challenge is to protect the system’s
coherence until the end of the performed algorithm. A quantum computer, as well as a classical
one, consists of computational steps and the storage of the input and the outcome [257]. One
can prove that all quantum algorithms can be reduced to sequence of operations on two or one
qubits [82]. Qubits, or quantum bits, the most basic entity of a quantum computer, are simply
quantum mechanical two-level systems. These can be for example, spin-1

2 particles, vertically
and horizontally polarized photons or the two energetically lowest states of an atom. Now, dur-
ing the runtime of some quantum algorithm the qubits in S will interact with the environment B.
This interaction introduces noise into the system S and leads to a discrepancy between the real
and the theoretical predicted outcome. This part of the computation has already been studied
intensively deducing several lower bounds in terms of the fidelity, i.e. the overlap of the real and
the predicted state. On the other hand, the storage of the input and the outcome, thus problems
concerning more that two qubits3, are much more difficult to investigate. The reason for that is
the following: although the investigation of entanglement has been intensified during the last two
decades, proper mathematical tools for an exact quantification of many-body entanglement are
still missing, i.e. in particular for the quantification of the entanglement of more than two qubits.
However, there has made a lot progress in the filed of quantum computation during the last few
years [158][292] and a new proposals for the implementation of a quantum computer has been
demonstrated successfully [299] [196].

2Classical computers do also follow the laws of quantum mechanics. In contrast to those, a quantum computer
uses directly the superposition and entanglement of quantum states.

3The successful storage requires the coherence of superposition of many qubits. In the case of the factorization
algorithm [250] the number qubits depends on the length of prime numbers one needs to factorize.
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In the following I consider the storage problem of many-body entangled states in a solid,
e.g. qubits on quantum dots. System and bath interact via a Heisenberg-like coupling. It has
been conjectured [223] that the typical time scales of total decoherence of a N-qubit state in a
spin environment decrease exponentially with N. These leads to the assumption that quantum
computer could save a N-qubit state for exponentially short time scales only. I focus on the open
question about the relation between decoherence time an and the size of the entangled many-
qubit state.

6.1 Quantifying Entanglement and Decoherence

In the following I will consider the situation where a system S consisting of one to few qubits
NS > 1 and a bath B of NB qubits (NB > NS). The total system containing N = NS+NB particles is
governed by HS the system, HB the bath and HS,B the interaction Hamiltonian between S and B.
The initial state, which consists of two or more qubits is maximal entangled. Moreover, I assume
that initially the system was not in contact with the bath, i.e. the wave function of S and B at time
t = 0 is a product state |Ψ〉SB = |ψ〉S|ψ〉B. In our general scenario the system S starts to build
up entanglement with the bath B. This destroys the coherence of the system and even more the
entanglement between parts within the system. One can say that one generates (NS +NB)-body
entanglement at the cost of NS-body entanglement. The information about the system S will be
in general contained in a density operator ρS.

I have already mentioned that the study of entanglement of an arbitrary many-body state
turns out to be a very hard task. Despite the enormous effort in the investigation of entanglement
these phenomenon is still not completely understood. This becomes evident when studying the
enormous number of different measures of this phenomenon. They all have the disadvantage of
being non-extendable to a general situation. A roughly overview over the possible entanglement
measures is given below (n denotes the number of entangled particles with the dimension d):

pure state |Ψ〉 mixed state ρ

n = 2 exists for all dimensions d exist only for d = 2
4 no easy measure for d > 2

n > 2 exists for special states with d = 2 good measure does not exist

Due to the lack of applicable entanglement measures I must restrict the investigation of systems
made of three and more qubits [see Sec.(6.3)] to the study of their coherence properties and two-
qubit entanglement within the system. One has to keep in mind that coherence and entanglement
are two distinct phenomena. A total disentanglement of a system will happen on much faster
time scale then the total decoherence.

Quantification of Decoherence

The quantification of the coherence in a system S comes along with the study of entanglement
between S and an environment B, thus a bipartite and pure system. Unlike for the entanglement,
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in the following, one is not restricted to a specific number of qubits in S. The general form of the
wave function (at some time t) for S and B using the Schmidt decomposition reads

|ΨSB〉= ∑
τ

sτ |ατ〉S|ατ〉B, (6.1)

with {|ατ〉S} and {|ατ〉B} being two orthonormal basis sets and sτ the Schmidt coefficients.
Now, the whole information about the system S is contained in the reduced density operator ρS =
TrB[|Ψ〉SB〈Ψ|SB] = ∑τ s2

τ |ατ〉〈ατ |S. The origin of decoherence is the interaction between S and
B, which can be interpreted as a sequence of indirect measurements on the system S performed
by the measuring apparatus called environment B. In analogy of the so-called von Neumann
measurement where this happens abruptly, correlations between states in S and B are build up at
cost of a damping of the superpositions in S5. Considering the density matrix again we observe
in general small dampings of the diagonal elements, i.e. the population of the density matrix,
and very fast decay of the off-diagonal elements which indicate the coherences in the system.
As shown in the first chapter there exist a quantum measure for the entanglement of |Ψ〉SB, the
so-called von Neumann entropy [cp. Eq.(2.21)] which is based on the Schmidt coefficients6:

E(|Ψ〉SB) := S(ρS) =−∑
τ

s2
τ log2 s2

τ . (6.2)

Now, the loss of the off-diagonal elements of ρS comes along with the grow of the diagonal ele-
ments and hence the increase of the entanglement. Therefore I will also study the von Neumann
entropy [Eq.(6.2)] which is a good indicator of loss of coherences for all system sizes.

Bipartite entanglement measures. Concurrence

The traditional entanglement measure for pure bipartite state |Ψ〉SB is given by E(|Ψ〉SB) the
von Neumann entropy Eq.(6.2). A maximal von Neumann entropy is equivalent to a maximal
entanglement between S and B. If the total wave function |Ψ〉SB is a product state and is thus
described by one Schmidt coefficient s1 = 1 only, E(|Ψ〉SB) = 0 as required. Since the Schmidt
decomposition exists for pure states only, E(|Ψ〉SB) cannot be directly used for mixed states ρSB

7.
According to [274], a possible extension of any pure state entanglement measure to a measure of
mixed state entanglement can be obtained by calculating the so-called convex roof. For the von
Neumann entropy E(|Ψ〉SB) this extension is known as the entanglement of formation [288]:

EF(ρSB) := inf
{pi,|φi〉SB}

{
∑

i
piE (|φi〉SB) | ρSB = ∑

i
pi|φi〉〈φi|SB

}
. (6.3)

5In the case of the von Neumann measurement the quantum mechanical states in S couple with macroscopical
pointer states in B. We do not go into the details of the modern measurement theory. A recent review on this topic
can be found here [241].

6The idea behind all bipartite pure state measurements is that from the quantum informational point of view an
orthonormal basis set does not contain any secret information. Thus, the information of entanglement must be a
function of the Schmidt coefficients only.

7Assuming the separable mixed state ρSB = ρS⊗ρB = IS⊗ IB we find by tracing out over B that E(ρSB) 6= 0,
which is simply wrong.
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The entanglement of formation of a mixed state is defined as the minimum average entanglement
of an ensemble of pure states {|φi〉} that represents the given mixed state ρSB. Unfortunately
there exist infinitely many decompositions of ρSB which makes it very hard to solve the above
equation. Remarkably, it turns out that in the case of two entangled qubits EF can be written as a
function of the so-called concurrence [288]

C(ρSB) = max
{

0,
√

λ1−
√

λ2−
√

λ3−
√

λ4

}
, (6.4)

with λi being the eigenvalues (in descending order) of matrix ρ = ρSBρ̃SB and ρ̃SB = σS
y ⊗

σB
y (ρ

∗
SB)σ

S
y ⊗σB

y . Since EF(ρSB) = f (C(ρSB)) and hence C(ρSB) has also the properties of a
good quantum measure I will use exclusively the concurrence in the following discussion of the
time-evolution of the entanglement.

Quantum channels, Kraus representation

There exist several ways how to describe the time-evolution of an open system [44]. All of
them have certain advantages (and certainly also disadvantages) and it depends very much on
the considered problem which description is preferred. In particular, for problems considering
entanglement and general aspects of quantum theory and quantum information the concept of
the so-called dynamical maps has been established. Dynamical maps describe the environment
as a black box for an incoming state giving back an outgoing state and can therefore be seen as
a snapshot of the time-evolution [4]. Starting from general considerations of time-evolution of
a closed system consisting of system S and environment B I will derive a correct mathematical
representation of the time-evolution of the open quantum system S alone.

Let us assume the initial state of S and B to be a pure product state |Ψ(t = 0)〉SB = |ψ〉S|ψ〉B
where |ψ〉S and |ψ〉B are the wave functions of the system and environment, respectively. The
transformation which describes the change of |ψ〉S at time t > 0 is given by

ρS(0)−→ ρS(t) = $(t)ρS(0)≡ TrB

[
U(t,0)(ρS⊗ρB)U(t,0)†

]
, (6.5)

with ρS(0) = |ψ〉〈ψ|S and ρB(0) = |ψ〉〈ψ|B. The above relation defines a map within the space
of density matrices $(t) : S (HS)→S (HS). It follows from [Eq.(6.5)] that in order to obtain
the map $ we have to trace out of the degrees of freedom in B. All we need for this purpose is
the spectral decomposition of ρB at a given time t > 0 (cp. Eq. (6.1)),

ρB = ∑
τ

sτ |ατ〉〈ατ |B, (6.6)

with {|ατ〉} being an orthonormal basis set in B and ∑τ sτ = 1. This leads to the so-called
operator-sum representation of the mapping $:

$(t)ρS = ∑
i j

Wi, j(t)ρSWi, j(t)†, (6.7)
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where Wi, j =
√

sτ〈αi|U(t,0)|α j〉 are operators acting on S. The above equation can be further
simplified through a unitary basis transformation of {|ατ〉} which leads to the so-called Kraus
representation

$(t)ρS = ∑
i

Ki(t)ρSKi(t)†. (6.8)

A dynamical map $ is called a complete positive map (CPM) or equivalently a quantum channel[4],
if it satisfies the following conditions:

• it maps Hermitian matrices to Hermitian matrices (Hermiticity preserving)

• it maps positive (semi-definite) matrices ρ ≥ 0 to positive (semi-definite) matrices (posi-
tivity preserving)

• completely positive if and only if for any state ρSB: $⊗1(ρSB)≥ 0.

Describing the action of B on S by a quantum channel allows for a very general analysis of the
disentangling action of arbitrary environments. In particular in the case of two entangled qubits
one can obtain a closed expression for the time-evolution of the entanglement. Together with the
definition of a quantum channel I can introduce now the Jamiołkowski isomorphism which is an
isomorphism between quantum channels and density matrices. This allows for a pictoral proof
of a general law of time-evolution of an entangled pair of qubits.

Jamiołkowski isomorphism

The concept of quantum channels allows to describe the time-evolution of ρS in form of a black
box like picture. An incoming state ρin = ρS(t = 0) is mapped by $(t) onto an outgoing state
ρout = ρS(t). It turns out that this concept is directly related with the phenomenon of quantum
teleportation in which some unknown and arbitrary properties of an incoming states are copied
onto an outgoing state8. The original teleportation scheme [30] which assumes the existence of a
maximally entangled pair of qubits as the resource for the transmission of quantum information
leads to perfect fidelity between ρin and ρout

9. In terms of dynamical maps this perfect teleporta-
tion would correspond to the trivial quantum channel 1, i.e. no interaction between environment
B and system S. This invariance is depicted in Fig.(6.2) Hence interactions between S and B lead
to an imperfect or noisy quantum channel which correspond to a non maximally entangled state
for the quantum teleportation.

This duality between maps and density matrices is given by the Jamiołkowski-Choi isomor-
phism [145] J. The mapping from bipartite density matrices (ρ$)CC′ to the linear maps $ and is
defined as

$(ρC̄) := dTrC̄C

[
ρC̄PΦ+

C̄C (ρ$)CC′
]
, (6.9)

8The quantum teleportation teleports properties of one state to another. The outgoing object must already exist
before the teleportation.

9In the original paper by Bennett ρin and ρout are both pure states for which the fidelity equals the overlap
between both states.
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FIG. 2: Entanglement decay scenarios. a) Laboratory sce-
nario: one of the qubits of the initial state |χ〉, the “right”
one, undergoes the action of a general quantum channel $.
b) Dual scenario: the same end result is obtained by inter-
changing the role of states and channels: the “left” qubit of
a mixed state ρ$ undergoes the action of the quantum chan-
nel $χ. Circles represent sources of entangled states, squares
symbolize channels.

We quantify entanglement by concurrence C [19],
which implies for the state |χ〉: C(|χ〉) = 2

√

ω(1 − ω).
For ω in (1) equal to zero or one, the state’s entangle-
ment and hence its concurrence vanishes; ω = 1/2 implies
|χ〉 = |φ+〉, one of the maximally entangled Bell states,
with maximal concurrence one.

Now the right qubit traverses an arbitrary quantum
channel $, as illustrated in Fig. 2a), and we want to de-
rive the qubits’ entanglement hereafter. To do so, note
that the qubits’ final state must be the same as in a dual
picture [20], where the roles of initial state and channel
are interchanged, as depicted in Fig. 2b). Thus, the two-
qubit state |χ〉 is identified with a qubit channel $χ, and
the qubit channel $ with a two-qubit state ρ$; symboli-
cally:

(11 ⊗ $) |χ〉〈χ|
p′

=
($χ ⊗ 11) ρ$

p
. (2)

Here, p′ = Tr[(11 ⊗ $) |χ〉〈χ|] and p = Tr[($χ ⊗ 11) ρ$] are
the probabilities for channels $ and $χ to act on the states
|χ〉〈χ| and ρ$, respectively. Thus, we also account for
non-trace-preserving channels, where the particle number
is not conserved.

We now need to determine $χ and ρ$ explicitely. For
this purpose, we first remember that Quantum Telepor-
tation [2] is a means to transfer the state of one system
to another one, in principle with perfect fidelity. Conse-
quently, teleporting the right qubit of the state |χ〉 as-
sisted by the maximally entangled state |φ+〉 leaves the
state |χ〉 invariant. This invariance is depicted in Fig. 3.
We therefore obtain the same final state as in the situ-
ation we considered so far (Fig. 2a)) – if we replace the
source preparing state |χ〉 by a source which prepares |χ〉
followed by a teleportation of the right qubit as shown in
Fig. 4. Let us now consider the source of the qubit pair
in state |φ+〉, which we inserted with the teleportation.
The succession of processes influencing the left qubit and

φ+

=

1

Mφ+

FIG. 3: Quantum Teleportation identity. The teleportation
protocol transfers the incoming state from the left to the out-
going state on the right [23]. The procedure consists of a
composite Bell measurement on the incoming qubit and on
one qubit of an auxiliary, maximally entangled state |φ+〉.
We restrict to the case where the measurement results in a
projection Mφ+ on the state |φ+〉.

those acting on the right qubit of the pair can be altered
without consequences for the final state. For this reason
we can replace the source producing the state |φ+〉 to-
gether with the channel $ acting on the right qubit by
yet another source which immediately prepares the state

ρ$ := (11 ⊗ $)|φ+〉〈φ+|/p′′ , (3)

where p′′ = Tr[(11 ⊗ $)|φ+〉〈φ+|], see Fig. 4. The result-
ing scheme in Fig. 5 transfers entanglement between the
qubit pairs prepared in states |χ〉 and ρ$ to entanglement
between the left qubit of the first pair and the right qubit
of the second pair. This scheme is called entanglement
swapping [2, 21, 22].

Finally, we define $χ to be the channel corresponding
to the change of the left qubit of ρ$ in Fig. 5, which
includes a projection Mφ+ of the left qubit of state ρ$

and the right qubit of |χ〉 on |φ+〉. Channel $χ can be
interpreted as imperfect teleportation assisted by state
|χ〉, leaves the resulting state in general non-normalized,
and can be expressed in the particularly simple form:

($χ ⊗ 11) ρ$ = (M ⊗ 11) ρ$

(

M † ⊗ 11
)

, (4)

with M =
(√

ω|0〉〈0| +
√

1 − ω|1〉〈1|
)

/
√

2. The nor-
malized final state ($χ ⊗ 11)ρ$/p is the same as (11 ⊗
$)|χ〉〈χ|/p′, as spelled out by (2) and in Fig. 2, but
the entanglement evolution induced by the particular
channel $χ can be deduced more easily, as we will now
demonstrate. The concurrence C of the final state
ρ′ = (11 ⊗ $) |χ〉〈χ|/p′ is given by

C(ρ′) = max
{

0,
√

ξ1 −
√

ξ2 −
√

ξ3 −
√

ξ4

}

, (5)

where the ξi are the eigenvalues of the matrix ρ′ · ρ̃′, in
decreasing order, with ρ̃′ = (σy ⊗σy) · ρ′∗ · (σy ⊗σy), and
ρ′∗ the complex conjugate of ρ′, in the canonical basis.
In order to evaluate this expression, we use relation (2)

Figure 6.1: Entanglement decay scenarios. a) Labora-
tory scenario: one of the qubits of the initial state |Ψ〉,
the right one, undergoes the action of a general quan-
tum channel $. b) Dual scenario: the same end result is
obtained by inter-changing the role of states and chan-
nels: the left qubit of a mixed state ρ$ undergoes the
action of the quantum channel $Ψ. Circles represent
sources of entangled states, squares symbolize chan-
nels.
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FIG. 2: Entanglement decay scenarios. a) Laboratory sce-
nario: one of the qubits of the initial state |χ〉, the “right”
one, undergoes the action of a general quantum channel $.
b) Dual scenario: the same end result is obtained by inter-
changing the role of states and channels: the “left” qubit of
a mixed state ρ$ undergoes the action of the quantum chan-
nel $χ. Circles represent sources of entangled states, squares
symbolize channels.

We quantify entanglement by concurrence C [19],
which implies for the state |χ〉: C(|χ〉) = 2

√

ω(1 − ω).
For ω in (1) equal to zero or one, the state’s entangle-
ment and hence its concurrence vanishes; ω = 1/2 implies
|χ〉 = |φ+〉, one of the maximally entangled Bell states,
with maximal concurrence one.

Now the right qubit traverses an arbitrary quantum
channel $, as illustrated in Fig. 2a), and we want to de-
rive the qubits’ entanglement hereafter. To do so, note
that the qubits’ final state must be the same as in a dual
picture [20], where the roles of initial state and channel
are interchanged, as depicted in Fig. 2b). Thus, the two-
qubit state |χ〉 is identified with a qubit channel $χ, and
the qubit channel $ with a two-qubit state ρ$; symboli-
cally:

(11 ⊗ $) |χ〉〈χ|
p′

=
($χ ⊗ 11) ρ$

p
. (2)

Here, p′ = Tr[(11 ⊗ $) |χ〉〈χ|] and p = Tr[($χ ⊗ 11) ρ$] are
the probabilities for channels $ and $χ to act on the states
|χ〉〈χ| and ρ$, respectively. Thus, we also account for
non-trace-preserving channels, where the particle number
is not conserved.

We now need to determine $χ and ρ$ explicitely. For
this purpose, we first remember that Quantum Telepor-
tation [2] is a means to transfer the state of one system
to another one, in principle with perfect fidelity. Conse-
quently, teleporting the right qubit of the state |χ〉 as-
sisted by the maximally entangled state |φ+〉 leaves the
state |χ〉 invariant. This invariance is depicted in Fig. 3.
We therefore obtain the same final state as in the situ-
ation we considered so far (Fig. 2a)) – if we replace the
source preparing state |χ〉 by a source which prepares |χ〉
followed by a teleportation of the right qubit as shown in
Fig. 4. Let us now consider the source of the qubit pair
in state |φ+〉, which we inserted with the teleportation.
The succession of processes influencing the left qubit and

φ+

=

1

Mφ+

FIG. 3: Quantum Teleportation identity. The teleportation
protocol transfers the incoming state from the left to the out-
going state on the right [23]. The procedure consists of a
composite Bell measurement on the incoming qubit and on
one qubit of an auxiliary, maximally entangled state |φ+〉.
We restrict to the case where the measurement results in a
projection Mφ+ on the state |φ+〉.

those acting on the right qubit of the pair can be altered
without consequences for the final state. For this reason
we can replace the source producing the state |φ+〉 to-
gether with the channel $ acting on the right qubit by
yet another source which immediately prepares the state

ρ$ := (11 ⊗ $)|φ+〉〈φ+|/p′′ , (3)

where p′′ = Tr[(11 ⊗ $)|φ+〉〈φ+|], see Fig. 4. The result-
ing scheme in Fig. 5 transfers entanglement between the
qubit pairs prepared in states |χ〉 and ρ$ to entanglement
between the left qubit of the first pair and the right qubit
of the second pair. This scheme is called entanglement
swapping [2, 21, 22].

Finally, we define $χ to be the channel corresponding
to the change of the left qubit of ρ$ in Fig. 5, which
includes a projection Mφ+ of the left qubit of state ρ$

and the right qubit of |χ〉 on |φ+〉. Channel $χ can be
interpreted as imperfect teleportation assisted by state
|χ〉, leaves the resulting state in general non-normalized,
and can be expressed in the particularly simple form:

($χ ⊗ 11) ρ$ = (M ⊗ 11) ρ$

(

M † ⊗ 11
)

, (4)

with M =
(√

ω|0〉〈0| +
√

1 − ω|1〉〈1|
)

/
√

2. The nor-
malized final state ($χ ⊗ 11)ρ$/p is the same as (11 ⊗
$)|χ〉〈χ|/p′, as spelled out by (2) and in Fig. 2, but
the entanglement evolution induced by the particular
channel $χ can be deduced more easily, as we will now
demonstrate. The concurrence C of the final state
ρ′ = (11 ⊗ $) |χ〉〈χ|/p′ is given by

C(ρ′) = max
{

0,
√

ξ1 −
√

ξ2 −
√

ξ3 −
√

ξ4

}

, (5)

where the ξi are the eigenvalues of the matrix ρ′ · ρ̃′, in
decreasing order, with ρ̃′ = (σy ⊗σy) · ρ′∗ · (σy ⊗σy), and
ρ′∗ the complex conjugate of ρ′, in the canonical basis.
In order to evaluate this expression, we use relation (2)

Figure 6.2: Quantum Teleportation identity. The tele-
portation protocol transfers the incoming state from
the left to the outgoing state on the right. The pro-
cedure consists of a composite Bell measurement on
the incoming qubit and on one qubit of an auxiliary,
maximally entangled state |Φ+〉. I restrict to the case
where the measurement results in a projection MΦ+ on
the state |Φ+〉.

with PΦ+

C̄C = |Φ+〉〈Φ+|C̄C being the projector onto the maximally entangled state |Φ+〉= 1√
d ∑i |i〉C̄|i〉C

and d the dimension of all three subspaces 10. The r.h.s of the above equation is equivalent to the
formulation of a quantum teleportation scheme via (ρCC′). The inverse mapping from the linear
maps to density matrices reads

(ρ$)CC′ = 1⊗$(|Φ+〉〈Φ+|CC′). (6.10)

By sending one part of a maximal entangled pure state through the channel $ one can encode all
information of $ in a density matrix ρ$, see Fig.(6.3).

6.2 General entanglement law for entangled qubit pairs
Before starting with the numerical study of few-qubits decoherence and entanglement evolution
in arbitrary spin baths I will discuss a scenario for which a closed expression of the time-evolution
of entanglement in terms of concurrence has been found [163]. I consider entangled states of
qubit pairs, with one qubit being subject to an arbitrary channel $ which may represent the
influence of an environment, of a measurement, or of both. In order to illustrate the situation, I
consider a source which emits a particle to the left and another one to the right. Each particle
on its own carries one qubit of quantum information (in general a superposition or mixture of
two basis states |0〉 and |1〉). I therefore also refer to the particles as left and right qubit. Let the
particles leaving the source be in a pure state |Ψ〉:

|Ψ〉=
√

ω|00〉+
√

1−ω|11〉, (6.11)

with 0≤ ω ≤ 1, i.e., for values of ω between zero and one the particles are in a coherent super-
position of both being in state |0〉 and being in state |1〉. Any pure state can be written in this

10For simplicity I assume that C̄,C and C′ have the same dimension d.
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Mφ+

ρ$

$φ+χ

FIG. 4: Building in the teleportation identity. The right
qubit of |χ〉 undergoes the action of a quantum channel $,
after intermediate teleportation. The maximally entangled
state |φ+〉 together with the action of the channel 11⊗ $ yield
the source of the mixed state ρ$.

χ

$χ

ρ$Mφ+

FIG. 5: Entanglement swapping. Transfer of entanglement
between the qubit pairs of |χ〉 and ρ$, respectively, to en-
tanglement between the outgoing pair of qubits. The Bell
measurement Mφ+ together with the source of the entangled
state |χ〉 constitute the quantum channel $χ for the left qubit
of state ρ$.

together with (4). We write explicitly:

ρ′ · ρ̃′ =
1

p2
(M ⊗ 11) ρ$ · [MσyM ⊗ σy] · ρ∗$ · [Mσy ⊗ σy ] ,

(6)
where we employed that M = M † = M∗. For invertable
M [24], it follows that the eigenvalues of ρ′ · ρ̃′ and ρ$ · ρ̃$

are proportional, since

det
[

ρ′ · ρ̃′ − ξ11
]

= det
[

(M ⊗ 11)−1
]

det [M ⊗ 11] det
[

ρ′ · ρ̃′ − ξ11
]

= det
[

(M ⊗ 11)−1 ρ′ · ρ̃′ (M ⊗ 11) − ξ11
]

=
[

1
4p2 ω(1 − ω)

]4

det [ρ$ · ρ̃$ − µ11] ,

(7)

where µ = ξ
(

ω(1 − ω)/4p2
)−1

, and we used MσyM =
√

ω(1 − ω)σy/2 in order to obtain the last equality.
Eq. (5), together with the definitions of ρ$ = (11 ⊗
$)|φ+〉〈φ+|/p′′, ρ′ = (11 ⊗ $)|χ〉〈χ|/p′, and C(|χ〉) =
2
√

ω(1 − ω), thus lead [25] to our central result:

C [(11 ⊗ $) |χ〉〈χ|] = C
[

(11 ⊗ $) |φ+〉〈φ+|
]

C(|χ〉) (8)

– the entanglement reduction under a one-sided noisy
channel is independent of the initial state |χ〉 and com-
pletely determined by the channel’s action on the maxi-
mally entangled state. Thus, if we know the time evolu-
tion of the Bell state’s entanglement, we know it for any
pure initial state [26]. This result can also be interpreted
in terms of entanglement swapping between a pure state
|χ〉 and a mixed state ρ$, leading to the final state ρ′, due

to the equivalence of the processes represented in Figs. 2
and 5.

The factorization law (8) can be generalized for mixed
initial states ρ0, by virtue of the convexity of entan-
glement monotones such as concurrence, and given an
optimal pure state decomposition ρ0 =

∑

j pj |ψj〉〈ψj |,
in the sense that the average concurrence over this
pure state decomposition is minimal [27]. It then im-
mediately follows, by convexity, that C [(11 ⊗ $) ρ0] =

C
[

∑

j pj (11 ⊗ $) |ψj〉〈ψj |
]

≤
∑

j pjC [(11 ⊗ $) |ψj〉〈ψj |],
and application of (8) leaves us with

C [(11 ⊗ $) ρ0] ≤ C
[

(11 ⊗ $) |φ+〉〈φ+|
]

C(ρ0) . (9)

This inequality holds for all one-sided channels $, and has
an immediate generalization for local two-sided channels
$1 ⊗ $2 = ($1 ⊗ 11)(11 ⊗ $2):

C [($1 ⊗ $2) ρ0] ≤C
[

($1 ⊗ 11) |φ+〉〈φ+|
]

(10)

× C
[

(11 ⊗ $2) |φ+〉〈φ+|
]

C(ρ0) .

The concurrence after passage through a two-sided chan-
nel is thus bounded from above, which immediately
implies a sufficient criterion for finite-time disentangle-
ment [9, 10, 13] of arbitrary initial states, in terms of
the evolution of the concurrence of the maximally en-
tangled state under either one of the one-sided channels
(e.g., choose $1 or $2 induced by infinite temperature or
depolarizing environments).

Let us finally identify relevant cases when equality in
(9) holds. For that purpose, we consider mixed states
that are obtained after the application of a one-sided
channel to an arbitrary pure state, ρ0 = (11⊗ $)|ψ0〉〈ψ0|.
This occurs, for instance, if the qubit originally pre-
pared in a pure state suffers amplitude decay, and the
resulting mixed state again is subject to decay dynamics.
This is tantamount to the concatenation of channels on
one side, (11 ⊗ $2) (11 ⊗ $1) |ψ0〉〈ψ0|, what can be lumped
together as one channel which combines both actions,
(11 ⊗ $2) (11 ⊗ $1) = 11⊗$2,1. In a similar vein as for (10),
and using the factorization relation (8) for pure states,
we deduce

C
[

(11 ⊗ $2,1) |φ+〉〈φ+|
]

≤C
[

(11 ⊗ $2)|φ+〉〈φ+|
]

(11)

× C
[

(11 ⊗ $1)|φ+〉〈φ+|
]

.

The initial state’s concurrence rescales both sides of the
equation by the same amount, and therefore it is omit-
ted in above equation. It is now sufficient to investigate
the time dependence of the maximally entangled state’s
concurrence under the concatenated channels (much as
for the evaluation of (8)): if all of these are of the form
C(t) = exp(−Γt) (which is the case, e.g., for $1 an am-
plitude decay and $2 a dephasing channel), then equality
holds in (9), with $ = $1, ρ0 = (11 ⊗ $2)|ψ0〉〈ψ0|, and
C(ρt) = exp(−Γ1t)C(ρ0) (and, equivalently, for the roles
of channels 1 and 2 interchanged).

Figure 6.3: Building in the teleportation identity. The
right qubit of |Ψ〉 undergoes the action of a quantum
channel $, after intermediate teleportation. The maxi-
mally entangled state |Φ+〉 together with the action of
the channel 1⊗$ yield the source of the mixed state ρ$.
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FIG. 4: Building in the teleportation identity. The right
qubit of |χ〉 undergoes the action of a quantum channel $,
after intermediate teleportation. The maximally entangled
state |φ+〉 together with the action of the channel 11⊗ $ yield
the source of the mixed state ρ$.
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FIG. 5: Entanglement swapping. Transfer of entanglement
between the qubit pairs of |χ〉 and ρ$, respectively, to en-
tanglement between the outgoing pair of qubits. The Bell
measurement Mφ+ together with the source of the entangled
state |χ〉 constitute the quantum channel $χ for the left qubit
of state ρ$.

together with (4). We write explicitly:

ρ′ · ρ̃′ =
1

p2
(M ⊗ 11) ρ$ · [MσyM ⊗ σy] · ρ∗$ · [Mσy ⊗ σy ] ,

(6)
where we employed that M = M † = M∗. For invertable
M [24], it follows that the eigenvalues of ρ′ · ρ̃′ and ρ$ · ρ̃$

are proportional, since

det
[

ρ′ · ρ̃′ − ξ11
]

= det
[

(M ⊗ 11)−1
]

det [M ⊗ 11] det
[

ρ′ · ρ̃′ − ξ11
]

= det
[

(M ⊗ 11)−1 ρ′ · ρ̃′ (M ⊗ 11) − ξ11
]

=
[

1
4p2 ω(1 − ω)

]4

det [ρ$ · ρ̃$ − µ11] ,

(7)

where µ = ξ
(

ω(1 − ω)/4p2
)−1

, and we used MσyM =
√

ω(1 − ω)σy/2 in order to obtain the last equality.
Eq. (5), together with the definitions of ρ$ = (11 ⊗
$)|φ+〉〈φ+|/p′′, ρ′ = (11 ⊗ $)|χ〉〈χ|/p′, and C(|χ〉) =
2
√

ω(1 − ω), thus lead [25] to our central result:

C [(11 ⊗ $) |χ〉〈χ|] = C
[

(11 ⊗ $) |φ+〉〈φ+|
]

C(|χ〉) (8)

– the entanglement reduction under a one-sided noisy
channel is independent of the initial state |χ〉 and com-
pletely determined by the channel’s action on the maxi-
mally entangled state. Thus, if we know the time evolu-
tion of the Bell state’s entanglement, we know it for any
pure initial state [26]. This result can also be interpreted
in terms of entanglement swapping between a pure state
|χ〉 and a mixed state ρ$, leading to the final state ρ′, due

to the equivalence of the processes represented in Figs. 2
and 5.

The factorization law (8) can be generalized for mixed
initial states ρ0, by virtue of the convexity of entan-
glement monotones such as concurrence, and given an
optimal pure state decomposition ρ0 =

∑

j pj |ψj〉〈ψj |,
in the sense that the average concurrence over this
pure state decomposition is minimal [27]. It then im-
mediately follows, by convexity, that C [(11 ⊗ $) ρ0] =

C
[

∑

j pj (11 ⊗ $) |ψj〉〈ψj |
]

≤
∑

j pjC [(11 ⊗ $) |ψj〉〈ψj |],
and application of (8) leaves us with

C [(11 ⊗ $) ρ0] ≤ C
[

(11 ⊗ $) |φ+〉〈φ+|
]

C(ρ0) . (9)

This inequality holds for all one-sided channels $, and has
an immediate generalization for local two-sided channels
$1 ⊗ $2 = ($1 ⊗ 11)(11 ⊗ $2):

C [($1 ⊗ $2) ρ0] ≤C
[

($1 ⊗ 11) |φ+〉〈φ+|
]

(10)

× C
[

(11 ⊗ $2) |φ+〉〈φ+|
]

C(ρ0) .

The concurrence after passage through a two-sided chan-
nel is thus bounded from above, which immediately
implies a sufficient criterion for finite-time disentangle-
ment [9, 10, 13] of arbitrary initial states, in terms of
the evolution of the concurrence of the maximally en-
tangled state under either one of the one-sided channels
(e.g., choose $1 or $2 induced by infinite temperature or
depolarizing environments).

Let us finally identify relevant cases when equality in
(9) holds. For that purpose, we consider mixed states
that are obtained after the application of a one-sided
channel to an arbitrary pure state, ρ0 = (11⊗ $)|ψ0〉〈ψ0|.
This occurs, for instance, if the qubit originally pre-
pared in a pure state suffers amplitude decay, and the
resulting mixed state again is subject to decay dynamics.
This is tantamount to the concatenation of channels on
one side, (11 ⊗ $2) (11 ⊗ $1) |ψ0〉〈ψ0|, what can be lumped
together as one channel which combines both actions,
(11 ⊗ $2) (11 ⊗ $1) = 11⊗$2,1. In a similar vein as for (10),
and using the factorization relation (8) for pure states,
we deduce

C
[

(11 ⊗ $2,1) |φ+〉〈φ+|
]

≤C
[

(11 ⊗ $2)|φ+〉〈φ+|
]

(11)

× C
[

(11 ⊗ $1)|φ+〉〈φ+|
]

.

The initial state’s concurrence rescales both sides of the
equation by the same amount, and therefore it is omit-
ted in above equation. It is now sufficient to investigate
the time dependence of the maximally entangled state’s
concurrence under the concatenated channels (much as
for the evaluation of (8)): if all of these are of the form
C(t) = exp(−Γt) (which is the case, e.g., for $1 an am-
plitude decay and $2 a dephasing channel), then equality
holds in (9), with $ = $1, ρ0 = (11 ⊗ $2)|ψ0〉〈ψ0|, and
C(ρt) = exp(−Γ1t)C(ρ0) (and, equivalently, for the roles
of channels 1 and 2 interchanged).

Figure 6.4: Entanglement swapping. Transfer of en-
tanglement between the qubit pairs of |Ψ〉 and ρ$, re-
spectively, to entanglement between the outgoing pair
of qubits. The Bell measurement MΦ+ together with
the source of the entangled state |Φ+〉 constitute the
quantum channel $Ψ for the left qubit of state ρ$.

form, modulo local unitary operations, without loss of generality. The concurrence of the state
|Ψ〉 equals C(|Ψ〉) = 2

√
ω(1−ω). For ω in Eq.(6.11) equal to zero or one, the state’s entangle-

ment and hence its concurrence vanishes; ω = 1/2 implies |Ψ〉 = |Φ+〉, one of the maximally
entangled Bell states, with maximal concurrence C(|Ψ+〉) = 1.

Now the right qubit traverses an arbitrary quantum channel $, as illustrated in Fig. (6.1a). In
order to calculate the concurrence hereafter I use the fact that the qubits’ final state must be the
same as in the dual picture, yielded by the Jamiołkowski isomorphism J, in which the roles of
initial state |Ψ〉 and channel $ are interchanged, as depicted in Fig.(6.1b). Thus, the two-qubit
state |Ψ〉 is identified with the qubit channel $Ψ, and the qubit channel $ with the two-qubit state
ρ$. Symbolically:

(1⊗$)|Ψ〉〈Ψ|= ($Ψ⊗1)ρ$. (6.12)

More precisely, one obtains a new initial state ρ$ = (1⊗ $)|Φ+〉〈Φ+| and a new noisy channel
$Ψ(ρ) = (MΨ⊗ 1)ρ(M†

Ψ
⊗ 1) with M = (

√
ω|0〉〈0|+

√
1−ω|1〉〈1|)/

√
2 a filtering operation

used in weak measurement scenarios. The left and the right hand side of Eq.(6.12) correspond to
the equivalence between Fig.(6.3) and Fig.(6.4) respectively. The advantage of Eq.(6.12) is that
the entanglement evolution induced by the particular channel $Ψ can be deduced more easily, as
I will demonstrate now. The concurrence of the final state ρf = (1⊗ $)|Ψ〉〈Ψ| is a function of
the eigenvalues of the matrix [cp. Eq.(6.4)]:

ρfρ̃f = (MΨ⊗1)ρ$ · [MΨσyMΨ⊗σy] ·ρ∗$ · [MΨσy⊗σy] , (6.13)

where I have used Eq.(6.12) and the fact that M = M† = M∗. For invertible M, it follows that the
eigenvalues of ρfρ̃f and ρ$ρ̃$ are proportional, because

det[ρfρ̃f−λ I] = det
[
(MΨ⊗1)−1]det[MΨ⊗1]det[ρfρ̃f−λ I]

= det
[
(MΨ⊗1)−1

ρfρ̃f(MΨ⊗1)−λ I
]

= det [ω(1−ω)ρ$ρ̃$−λ I] , (6.14)

where I have used M$σyMΨ =
√

ω(1−ω)σy/2 to obtain the last equality. Otherwise, for ω = 0
or ω = 1 the concurrence vanishes because M$σyMΨ = 0.
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Together with the definition of ρ$, ρf and the concurrence C(|Ψ〉) = 2
√

ω(1−ω) one can
obtain the following factorization law:

C[(1⊗$)|Ψ〉〈Ψ|] =C[(1⊗$)|Φ+〉〈Φ+|]C(|Ψ〉). (6.15)

The entanglement reduction under a one-sided noisy channel is independent of the initial state
|Ψ〉 and completely determined by the channels action on the maximally entangled state. Thus,
if one knows the time evolution of the Bell states entanglement, one knows it for any pure initial
state. This result can also be interpreted in terms of entanglement swapping between a pure state
|Ψ〉 and a mixed state ρ$ leading to the final state ρf, owing the equivalence of the processes
represented in Fig.(6.4).

The factorization law Eq.(6.15) can be generalized for mixed initial states ρ0 and to two-sided
quantum channel $L⊗$R in form of an inequality11, which gives us an upper bound for the final
entanglement [163].

The scenario of an entangled qubit pair under the action of a one-sided quantum channel can
be found in some important applications like long distance quantum communication or telepor-
tation, where one qubit is sent from a sender to a receiver far away. Nevertheless, for the study
of decoherence and entanglement in the context of quantum computing it is necessary to study
more involved scenarios, where more than two qubits interact with an common environment. In
the next part I will take a closer look on such scenarios discussing qualitative and quantitative
results which have been obtained using the time dependent DMRG method [see Chapter ??].

6.3 Few qubits in a general spin bath

In the following I will consider a total system SB consisting of one or few qubits which mimic
our central system S, thus some entangled state which is stored for a further quantum computa-
tion operation, and a big bath B of spin-1

2 particles12. The evolution of SB is governed by the
following three Hamiltonians ĤS for the central system S, ĤB for the bath B and ĤI describing the
interactions between SB. Futher I assume that, in comparison with a long storage time, the quan-
tum operations happen on a time scale which is much faster then the typical interaction times
between S and B. The initial state at t = 0 is thus a product state |Ψ(t = 0)〉SB = |ψ0〉S|ψ0〉B
between the wave functions describing S and B; existing entanglement at t = 0 is neglected.
Together with the total number of system qubits NS and bath spins NB the initial Hamiltonian

11The simple factorization law Eq.(6.15) results from the trivial form of $Ψ (it consist of exactly one Kraus
operator) to the corresponding channel to |Ψ〉. To find the corresponding channel for a general initial mixed state ρ0
is a difficult variational problem of the same form as for the Entanglement of Formation Eq.(6.3)

12In the here considered scenario, the qubits of S can be some free electrons on a quantum dot which are coupled
to a bath of nuclear spin- 1

2 particles, which could be called qubits as well. In order to make a distinction between S
and B I call the particles in S qubits and the particles in B bath spins.
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Figure 6.5: The two models. The left picture corresponds to non decaying interactions between central system and
bath γ = 0. A distance between qubits and bath spins does not exist. The right picture shows the situation where
γ = 2, which is equivalent to decaying interaction strength and thus to a distance between system and bath spins.

reads

HS =−
NS−1

∑
i=1

NS

∑
j=i+1

∑
α=x,y,z

Jα
i, jS

α
i Sα

j ,

HB =−
NB−1

∑
i=1

NB

∑
j=i+1

∑
α=x,y,z

Ω
α
i, jI

α
i Iα

j ,

HI =−
NS

∑
i=1

NB

∑
j=1

∑
α=x,y,z

1
dγ

i, j
∆

α
i, jS

α
i Iα

j . (6.16)

The interaction strengths between the particles in S, B are given by the couplings Jα
i, j and Ωα

i, j,
respectively. Additionally to ∆α

i, j the coupling between central qubits and bath’s spins we add 1
dγ

a factor which mimics a decay of the interaction strength, with d a fictive distance between the
central qubits and some baths spin. A typical example is a central system consisting of one or
few qubits sitting on a quantum dot where qubits interact with the nuclear spins [155]. Typically
the damping constant γ is a complicated function of the interactions and of the dimension of
the system. Moreover, the above model does not consider interaction between more than two
particles since they are less probable.

In order to reduce the large number of free parameters I make a few restrictions on the total
system. I assume that all two-qubit calculation steps have been already performed and thus
ĤS(t ≥ 0) = 0, i.e. the system S does not evolve unitary. Furthermore I investigate only the
case where all couplings are isotropic, i.e. ∆x

i, j∆
y
i, j∆

z
i, j = ∆i, j and analogous for Ω . Since then

[Ii,I j] = 0 and [Si,I j] = 0 for all i, j and together with the relation [AB,C] = A[B,C] + [A,C]B
it follows that [ĤI, ĤB] = 0. Therefore, the decoherence process is solely determined by the
interaction ĤI which makes a discussion of Ω needless [293] (in all simulations Ω =−1).

It is well known, that a totally polarized bath would suppress decoherence completely since
the necessary spin-flip operations between S and B are not possible anymore. Unfortunately, the
maximal experimentally achieved polarization, e.g. in a quantum dot, is around 30%. Therefore,
I further assume the bath to be totally unpolarized ∑i〈Sz

i 〉 = 0. I have already mentioned the
quantum dot scenario which typically consists of 104−105 nuclear spins. This number of bath
spins is simply to large to be simulated with DMRG. But fortunately it turns out that the evolution
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JS1,S2

∆B,S1 ∆B,S2

B

S2S1

∆B1,S1 ∆B2,S2

JS1,S2

S1 S2

B1 B2

Figure 6.6: The two types of baths. The left picture shows the situation where both central qubits interact with a
global bath B. The right shows the general situation of two local baths B1 and B2, one for each qubit. A non existing
bath, or equivalently ∆ = 0, corresponds to a trivial time evolution with $ = 1.

of S is mostly affected by a small number of strongly coupled bath spins in the vicinity S. The
here considered baths size of NB = 40 and NB = 60 is sufficient in order to reveal the most
important qualitative and quantitative effects.

Finally, considering a quantum dot situation where the central qubits sits on two-dimensional
lattice I choose γ = 2. The assumption behind this value is the following: the interaction be-
tween the central qubits and the bath spins goes as 1/d3, which leads to a fast decay of the
interaction [257] . For a DMRG calculation one has to map this two-dimensional lattice onto a
one-dimensional chain. All spins which lie at a certain distance on a ring around the center of
system S are multiplied by the weight factor which leads to reduction of γ = 3 to γ = 2. This
model corresponds to strongly localized central qubits.

The initial bath is a superposition of several states with randomly distributed bath spins with
zero total magnetization. At the beginning of the simulation the total wave function a product
state |Ψ(t = 0)〉SB = |ψ0〉S|ψ0〉B. Additionally, the cases where the number of qubits NS ≥ 2 the
central state will be maximally entangled.

6.3.1 The two qubit case, Bell states

As a first example, I will discuss the entanglement evolution of maximally entangled qubit pairs
S interacting with some bath B. The advantage of this particular case is that the entanglement
for pure and mixed states is well defined in terms of the concurrence [cp. Eq.(6.4)]. Moreover,
one can study the decoherence of the central system using the von Neumann entropy and thus
the entanglement creation between S and B. It is well known that there exist a basis for all pure
two qubit states in term of the so-call Bell states. The total basis consist of four Bell states
|Φ±〉 = (|00〉± |11〉)/

√
2 and |Ψ±〉 = (|01〉± |10〉)/

√
2. In the following I will consider the

initial state to be |Φ+〉S or |Ψ+〉S. These two states have both total spin Sz
tot = 1 and belong to the

so-called spin triplet. The spin singlet |Ψ−〉S, on the other hand, shows a completely different
evolution. Since Sz

tot = 0 the state |Ψ−〉 evolves rather trivial which becomes obvious when one
calculates the time evolution of |Ψ−〉S and some bath spin |0 j〉B (or equivalently |1 j〉B) for a short
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time t:

exp(i(HS1B j
I +HS2B j

I )t)|Ψ−〉S|0 j〉B
∼=
(

1+ i[HS1B j
I +HS2B j

I ]t
)
|Ψ−〉S|0 j〉B

= |Ψ−〉S|0 j〉B+

+
1√
2

1
4
|010 j〉SB +

1
4
|100 j〉SB−

1
2
|001 j〉SB+

+
1
2
|001 j〉SB−

1
4
|010 j〉SB−

1
4
|100 j〉SB

= |Ψ−〉S|0 j〉B. (6.17)

As long as the interactions between S and B are isotropic the initial central system |Ψ−〉S will
not change. Since I consider only two-body interactions between S and B the above result will
not change even if I would assume a bigger bath.

In general, there exist two possible bath’ scenarios [see Fig.(6.3.1)]. In the first scenario both
qubits interact with one common bath B, also called a global bath. This situation is the case when
the two central qubits are very close to each other, e.g. both qubits sit on the same quantum dot.
The second scenario deals with two local baths B1 and B2 for each qubit. Here one can imagine
the situation in which one qubit remains at the source while the other is sent to some receiver, e.g.
quantum communication or teleportation. The second qubit interacts with completely different
environment than the first one. Since I am interested in the storage of some few-qubits state I
will investigate, in the following, the scenario of a global bath B. But first, I want to present
the results for the case where only one qubit interacts with a local bath. These result confirm
perfectly the factorization law [cp. Eq.(6.4)] for the entanglement decay.

Constant interaction γ = 0 and one-side channels

Let us start with scenario in which one qubit of our qubit pair, e.g. qubit S2, interacts with a
local bath B2 while the other is completely decoupled from any environment. This situation
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is directly related to the factorization law for entanglement evolution of qubit pairs [Eq.(6.4)].
Indeed, it turns out that the results completely agree with the factorization law. Of course, one
could understand this fact by doing a straight-forward calculation of the time-evolution but this is
in general a hard task. It turns out that a simpler calculation of the short time-evolution under the
assumption that the bath consists of two spins only already reveals the qualitatively behavior of
the central system S. Taking into account more bath spins would therefore change the prefactors
but not the general form of ρΨ+

S :

(1+ iδ t1⊗ (HS2B j
I +HS2Bk

I ))|Ψ+〉S|0 j1k〉B =

= 2|Ψ+〉S|0 j1k〉B + iδ t
1√
2

[
1
2
|00〉S|1 j1k〉B +

1
2
|11〉S|0 j0k〉B

]
LU
= (1+ iδ t1⊗ (HS2B j

I +HS2Bk
I ))|Φ+〉S|0 j1k〉B. (6.18)

Since all maximally entangled qubit pairs are mathematically equivalent under a local unitary
operations, i.e. for the here considered states |Φ+〉 = σx⊗ 1|Ψ+〉, and obviously then [σx⊗
1,1⊗$] = 0, the final result is also equivalent under a local unitary operation13. Taking the trace
over the baths spins leads to the final state

ρ
Ψ+

S (t) = p0(t) |Ψ+〉〈Ψ+|S︸ ︷︷ ︸
nothing happens

+ p1(t) [|00〉〈00|S + |11〉〈11|S]︸ ︷︷ ︸
outcome after projective measurement

, (6.19)

which is again a mixture between the maximally entangled state |Ψ+〉 and a total mixed state.
Roughly speaking ρΨ+

S (t) will be entangled as long as p0(t) > p1(t) or equivalently as long as
the entangled part |Ψ+〉〈Ψ+| dominates over the total mixture. As already mentioned one can
easily obtain the result for Φ+ by applying σx⊗1 on ρΨ+

S (t). Indeed one can see in Fig.(6.7) that
both initial states have the same entanglement evolution. This is consistent with the factorization
law [Eq.(6.4)] which must be valid for all maximally entangled states.

Two-side channels with constant interaction strength γ = 0

The effect of a single local bath, i.e. a one-sided quantum channel can be completely explained
with the factorization law for the entanglement evolution. In particular one can prove that the
law does not depend on the choice of the initial maximally entangled state. Now, this law is in
general not valid if one considers the scenario in which both qubits interact with an environment
[see Fig.(6.3.1)]. Hence, one can expect that a global bath leads to a different disentanglement
for different initial states. In the following I consider the situation of one global bath B for both
central qubis. It turns out that the entanglement evolution of |Ψ+〉S is completely different form
the evolution of |Φ+〉S.

Let us start with calculation of the general form of ρΨ+

S (t) after the time-evolution for a short
time. The general form does not depend on the number of bath spins. Hence, assuming two bath

13For the here considered case we can also write (1⊗$)|Ψ+〉= σx⊗1[(1⊗$)|Φ+〉].
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Figure 6.8: Evolution of concurrence for two-side channels. The parameters are ∆i = −1 and γ = 0. The bath’
length is NB = 40. The behavior of the entanglement for the two initial states |Ψ+〉 and |Φ+〉 is now different. In
the here considered situation one can find at least a simple relation between the entanglement evolution of |Ψ+〉
under the action of 1⊗ $ and the $⊗ $. For the latter the entanglement decays twice as fast as for the farther,
C[(1⊗$(2 · t))|Ψ+〉] =C[($⊗$(t))|Ψ+〉]. Due to a finite system size one observes recurrences of entanglement for
longer times.

spins only, one obtains

(1+ iδ t(HS1B j
I +HS1Bk

I )⊗ (HS2B j
I +HS2Bk

I ))|Ψ+〉S|0 j1k〉B

= 2|Ψ+〉S|0 j1k〉B + iδ t
1√
2

[
|00〉S|1 j1k〉B + |11〉S|0 j0k〉B

]
. (6.20)

As one can already guess from the form of the above equation, the reduced density matrix cor-
responding to Eq.(6.20) is similar to the reduced density matrix for a one-side channel. After
tracing out the environment one obtains a similar expression as in Eq.(6.19) with the only differ-
ence of new probabilities p′0(t) and p′1(t). According to the initial considerations the result for
the other Bell state |Φ+〉, i.e. for ρΦ+

S (t), must be different from ρΨ+

S (t). Indeed, one obtains
after a similar calculation as in Eq.(6.20) followed by a trace over B,

ρ
Φ+

S (t) = p′′0(t)|Φ+〉〈Φ+|S + p′′1(t)|Ψ+〉〈Ψ+|S. (6.21)

The above state ρΦ+

S (t) is a mixture between the two maximal entangled states |Φ+〉S and |Ψ+〉S
and becomes totally disentangled for p′′0(t) = p′′1(t). In Fig.(6.8) one can see the different evolu-
tion of entanglement of |Ψ+〉S and |Φ+〉S. It turns out that for the here considered scenario the
concurrence of ($⊗$)|Ψ+〉 decreases twice as fast as for a one-sided bath 1⊗$, and thus to:

C[($⊗$(t))|Ψ+〉S] =C[(1⊗$(2 · t))|Ψ+〉S]. (6.22)

Two-side channels with decaying interaction strength γ = 2

Up to now I have considered only the situation for which γ = 0. In the present section I will
discuss the more realistic case γ = 2. Due the fast decay of interaction strength the evolution of
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Figure 6.9: Evolution of concurrence and von Neumann entropy for ($⊗ $(t))|Ψ+〉. The parameters are ∆i = −1
and γ = 2. The bath’ length is NB = 40. The left and the right figure represent two arbitrary bath configurations.
One can see that time when the entropy reaches the first maximum coincide with the total disentanglement. This
point marks the time scale at which the central system become completely entangled with the bath.

entanglement will be dominated by a small part of the bath in the vicinity of the central system.
As already mentioned, I initialize the bath spin configuration of the bath randomly for each
simulation. As a consequence the time-evolution of entanglement and the decoherence process
vary for each individual run. These differences can be seen in Fig.(6.9) and Fig.(6.10) for both
|Ψ+〉 and |Φ+〉, respectively. For both initial states I present the results from two exemplary
simulations. As expected the concurrence as well as the one-qubit and the two-qubit coherences
have completely different characteristics. Nevertheless, both figures reveal a general law which
will be important for the investigation of more than only two central qubits. One can observe in
all cases that the entanglement decays on a faster time scale than the less fragile coherences of
the central system S, which are measured in terms of the von Neumann entropy E [cp. Eq.(6.2)].
This is a very important result with regard to the following analysis of three and more central
qubits for which a simple entanglement measure does not exist.
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Figure 6.10: Evolution of concurrence and von Neumann entropy for ($⊗$(t))|Φ+〉. The parameters are ∆i =−1
and γ = 2. The bath’ length is NB = 40. The same behavior same as in Fig.(6.9) can be observed. Maximal
entanglement between system and bath is equivalent to total disentanglement of the two qubits. The left and the
right figure represent two arbitrary bath configurations. Again, at longer time recurrences occurs.
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Figure 6.11: Three entangled qubits in a global bath. This cartoon picture shows three qubits in S surrounded by a
global bath B. Each qubit interacts with the surrounding bath spins as well as with each other. In the here considered
situation the central qubits are initially entangled.

6.3.2 The three and more qubit case, general W - and GHZ-state
Contrary to the case of entangled qubit pairs there are, so far, no applicable entanglement mea-
sures for systems with three or more qubits. Although there exist various proposals [139, 8] how
to quantify many-body entanglement, none of these measures can satisfy the following criteria:
1.) general validity for pure and in particular mixed states. 2.) simple accessibility and 3.) scala-
bility. In particular for mixed states, which are the central objects of investigation, entanglement
measures exist only as convex-roof constructions of pure state measures. These constructions re-
quires an optimization over infinitely many decompositions of the mixed state [see the definition
of the entanglement of formation Eq.(6.3)].

Fortunately it turns out that the lack of an adequate entanglement measure does not restrict
one to investigate the question whether a many-body state is still entangled or not. Entangle-
ment is a phenomenon which depends on the quantum coherences in a system. As long as the
system contains such coherences it can in priciple contain few-body entanglement. On the other
hand the total lost of coherences due to system-enviroment interactions denotes the point of a
total disentanglement. The results from the previous section, where I could monitor the time-
evolution of entanglement and decoherence, are in complete agreement with this upper bound on
the entanglement [see Fig.(6.9) and Fig.(6.10)].

In the following, I concentrate on two famous examples of maximally entangled many-body
states , the general W -state [199],

|Wn〉 ∝ |1000...〉+ |0100...〉+ |0010...〉+ .... , (6.23)

and the general Greenberger-Horne-Zeilinger, or GHZ-state[116],

|GHZn〉 ∝ |0000...〉+ |1111...〉 , (6.24)

where n denotes the number of qubits in S, i.e. here n = NS. The two previously studied Bell
states |Ψ+〉S and |Φ+〉S are obviously incorporated in the above definitions of |Wn〉 and |GHZn〉.
This allows to combine the results for the time evolution of decoherence with respect to an
entanglement breakdown for 2 qubits with the case of 3 and 4 qubits interacting with a global
bath B. The simulations has been performed taking NB = 44 bath spins into account.

Going back to Figs. (6.9) and (6.10) in the previous chapter one can see that entanglement
breaking occurs at the same time when the von Neumann entropy E(ρS) saturates for the first
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Figure 6.12: Evolution of Concurrence and the normalized von Neumann entropy for |W 〉-states in a global bath.
The bath length is NB = 40, the number of entangled qubits is NS = 2,3,4 and ∆i = −1. The left and the right
figure represent the two cases of non-decaying, γ = 0, and decaying interactions, γ = 2. In both pictures one can see
the universal behavior of the normalized entropies, thus a linear growth followed by a convergence to the maximal
possible value of entropy. This maximum marks the point of total entanglement breaking. To stress this fact I have
also plotted the Concurrence of |Ψ+〉. The bigger NS the sooner the entropy deviates from the linear part. Thus, the
fragility of many-body entanglement increases with the number of entangled parts. Due to the finite system size one
observes recurrences of entanglement.

time: the two qubit state S is completely entangled with the bath B. The total information, which
was initially stored in the non-local correlations between the two qubits, must be now located in
the quantum correlations between the system S and the bath B. Thus, the entanglement between
S and B serves as an indirect measure of the entanglement within S only. This observation is
independent of whether γ = 0 or γ = 2 and can, of course , be expanded to bigger systems S.

Figure (6.12) compares the time evolution of E(ρS) for W -like initial states for system sizes
NS = 2,3,4. In order to compare the entropy for different numbers of qubits I will plot the
entropy per qubit, i.e. E(ρS)/NS, in the following. The evolution of entropy can be divided
in three steps. First, at short time scales, it growth slowly followed then by a linear increase
at intermediate times and finally by a saturation to some maximal value. The deviation from
the linear increase of the normalized entropy thereby depends on the number of qubits NS. As
long as the entropy E(ρS) growths linearly the system S still contains entanglement. With the
beginning of the saturation of E(ρS) the entanglement of the system is definitely lost and the state
ρS cannot be used anymore as a quantum resource. The total coherence is distributed among n
particles which all interact independenly with a bath. Roughly speaking the influence of the bath
on the coherence of S is threefold. Therefore, it is no surprise that with the increasing number of
qubits (and assuming that all qubits interact) the coherences disappear faster.

The above observations are also valid in the case of the GHZ-like states. Figure (6.13)
compares E(ρS)/NS the von Neumann entropies normalized by the number of central qubits
NS. Also in this case the saturation of the entropy marks the time when the central system S
is completely disentangled and thus not usable anymore as quantum memory. This behavior is
completely independent on whether γ = 0 or γ = 2.

In general, the linear increase of the entropy agrees with the bounds given by the so-called
Lieb-Robinson theorem [197], a theorem about the entanglement growth in dynamical systems



110 6. Entanglement and Decoherence of Multi-Qubit-Systems in external Baths

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2  2.5  3

C
o

n
c
u

rr
e

n
c
e

 a
n

d
 E

n
tr

o
p

y

t

E [$ (t)(|GHZ
4
>)]

E [$(t)(|GHZ
3

>)]

E [ $(t)(|
+
>)]

C [
S

1
(t)]/2, |

+
>

γ=0

!" #$%#&'(&)%)*)
+,

-./"0'"* +,'1
-./"0'"*2345,'1
-./"0'"*2346,'1

!"

!"#$

!"#%

!"#&

!"#'

!"#(

!"#)

!" !"#( !$ !$#( !%

*+
,-
./
/0
,-
0!
1,
2!
3,
4/+
56

4

37894:9;<=>'?:@
!!39894:9;<=> ?:@

39894:9; A?:@
*9 B$CB%:D%C!;

A?

&

γ=2

!" #$%#&'(&)%)*)
+,

-./"0'"* +,'1
-./"0'"*2345,'1
-./"0'"*2346,'1

Figure 6.13: Evolution of Concurrence and the normalized von Neumann entropy for |GHZ〉-states in a global bath.
The bath’ length is NB = 40, the number of entangled qubits is NS = 2,3,4 and ∆i =−1. The left and the right figure
represent the two cases of non-decaying, γ = 0, and decaying interactions, γ = 2. The universal linear behavior of
the normalized entropy, already discussed in Fig.(6.12), can been seen also for the GHZ-like state, independently of
γ . Also here recurrences arise due to the finite system size.

[see Chapter ??]. The saturation of the entropy corresponds to the time scales at which ρS(t) has
minimal fidelity with the initial state. The state itself is definitely a mixed state from the very first
contact with the environment B. However, for short times it is still possible to extract an entangled
pure state out this mixture ρS(t) using appropriate purification techniques[85]. Nevertheless,
the question, how much mixedness is tolerable in ρS, will depend on the algorithms and error
correction schemes.

The attempt to extract a general law for T (NS) the time of the complete entanglement break-
ing was not successful. however, the simulations suggest that T (NS) does not grow exponentially
fast. Whether the correspondence is polynomial or even logarithmic could not be extracted from
the small number of data points. On the other hand, a fixed time T gives a non-exponential
bound to the maximal storable number of qubits NS (if one tolerates the total loss of system’s
entanglement).

However, it is more realistic to believe that one can tolerate a certain entanglement loss
only. The exact amount of entanglement does certainly not depend in a general way on the used
algorithms [257] and error correction schemes [85]. Let assume that a certain loss per qubit is
tolerable. Then the total storage time remains a constant up to maximal number of qubits Nmax

S .
Otherwise the storage time will definitely reduce by a further factor NS. As long as the von
Neumann entropy growth linearly this factor would look like 1/NS. However, at very small time
scales one observes a slow transient effect which suggests that f (NS)> 1/NS and thus a weaker
suppression of the time scale of a successful storage.

At least for the here considered central systems and baths one alway finds an increasing
fragility of the saved many-body state, which, however, is not exponentially fast. Due to the
limited methods of investigation it remains an open question whether this non-exponential result
is still valid for NS → ∞. Nevertheless, this thermodynamical limit has no relevance for the
experimentally aimed number of qubits NS.
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6.3.3 Summary and outlook
With regard to a possible storage of entangled states, I have investigated the entanglement evo-
lution and decoherence properties of initially maximally entangled many-body quantum states
using the time-dependent DMRG method together with available analytical tools. The here pre-
sented work assumes the central state and the bath to be spin-1

2 particles. Due to the general
complexity of the bath as well as the stored state a definite answer to the storage question has not
been found. Another substancial complication arise from the fact that, albeit intensive effort over
the last two decades, there is no satisfying entanglement measure for mixed states with three or
more particles.

In order to reduce the immense number of possible scenarios I have concentrated on situa-
tions which are typical for the storage of states in quantum dots. Despite the dependence of the
quantitative results on the parameter of the system it turns out that qualitative findings are can be
summarized in general law.

The here considered initial states are, in the two qubit case, the Bell states and, in the many
qubit case, the W and GHZ-state. All these states are maximally entangled and have been there-
fore the object of countless investigations on quantum information and computation.

Due to the existence of a two qubit quantum measure, i.e. the concurrence, it is possible to
fully characterize the process of entanglement decrease in that particular case. It turns out that
this decrease is directly related to the increase of entanglement between the central system and
the bath which corresponds to the creation of a much bigger multipartite entangled network. The
information which was initially stored in the non-local correlations between the qubits is now
redistributed over the whole environment. It is exactly this entanglement growth which makes
the environment act as a measuring device and which forbids the description of the central state
by a pure wave function. In general, one will need to apply additional error correction protocols
in order to restore some part of the initial state.

In the case of a few-body system, I have considered the systems of three and four qubits. It
turns out that the von Neumann entropy, after a trivial normalization by the number of qubits,
shows always a universal linear growth followed by a non-universal convergence to some finite
value. It is in the nature of the following state that the maximal possible linear entropy can never
be reached. However, at this time scale, the stored quantum state does not exist anymore since
it is completely merged with the environment. One can, in general, observe that the bigger the
central system is the sooner the entropy saturates. Although it is too difficult to find an analytical
exact relation one can definitely exclude an exponential dependence between system size and
saturation time. 1

In a scenario, in which it is possible to store a state up to some time T , the number of qubits
will be limited by Nmax

S a number which does not increase exponentially in time. For a smaller
amount of qubits NS < Nmax

S the upper bound is a result of the tolerable entanglement loss14. If
the upper bound is given by the entanglement loss per qubit, then, due to the universal linear
growth of the entropy, the maximal number of qubits is Nmax

S . While for a bound which is given
by the global entanglement loss the total storage time reduces by a factor f (NS)> 1/NS.

14The limit is given by the error correction schemes.



112 6. Entanglement and Decoherence of Multi-Qubit-Systems in external Baths



Bibliography

[1] J.R. Abo-Shaeer, C. Raman, J.M. Vogels und W. Ketterle, Science (New York, N.Y.) 292
(2001), 476.

[2] I. Affleck, D. Gepner, H.J. Schulz und T. Ziman, Journal of Physics A: Mathematical and
General 22 (1989).

[3] V. Akulin und W. Schleich, Physical Review A 46 (1992), 4110.

[4] R. Alicki und M. Fannes: Quantum Dynamical Systems. Oxford University Press, USA,
2001.

[5] L. Allen und J.H. Eberly: Optical Resonance and Two-Level Atoms. Dover Publications,
1987.

[6] E. Altman, E. Demler und M. Lukin, Physical Review A 70 (2004), 013603.

[7] E. Altman, W. Hofstetter, E. Demler und M.D. Lukin, New Journal of Physics 5 (2003),
113.

[8] L. Amico, R. Fazio, A. Osterloh und V. Vedral, Reviews of Modern Physics 80 (2008),
517.

[9] M. Anderlini, J. Sebby-Strabley, J. Kruse, J.V. Porto und W.D. Phillips, Journal of Physics
B: Atomic, Molecular and Optical Physics 39 (2006), S199.

[10] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman und E.A. Cornell, Science
(New York, N.Y.) 269 (1995), 198.

[11] P. Anderson, Physical Review 79 (1950), 350.

[12] P. Anderson, Physical Review 109 (1958), 1492.

[13] P.W. Anderson, Physical Review 115 (1959), 2.

[14] M.R. Andrews, Science 275 (1997), 637.

[15] N.W. Ashcroft und N.D. Mermin: Solid State Physics. Brooks Cole, 1976.



114 BIBLIOGRAPHY

[16] J. Audretsch: Verschrankte Welt: Faszination Der Quanten (German Edition). Wiley-
VCH Verlag GmbH, Weinheim, 2002.

[17] J. Audretsch: Verschrankte Systeme: Die Quantenphysik Auf Neuen Wegen (German Edi-
tion). Wiley-VCH Verlag GmbH, 2005.

[18] J.E. Avron, R. Seiler und L.G. Yaffe, Communications in Mathematical Physics 110
(1987), 33.
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[232] S. Rommer und S. Östlund, Physical Review B 55 (1997), 2164.

[233] N. Rosen und C. Zener, Physical Review 40 (1932).

[234] R. Roth und K. Burnett, Journal of Optics B: Quantum and Semiclassical Optics 5 (2003),
S50.

[235] Y. Saad: Iterative Methods for Sparse Linear Systems, Second Edition. Society for Indus-
trial and Applied Mathematics, 2003.

[236] J. Sage, S. Sainis, T. Bergeman und D. DeMille, Physical Review Letters 94 (2005).

[237] L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer und A. Aspect, New Journal of
Physics 10 (2008), 045019.



BIBLIOGRAPHY 125

[238] L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G. Shlyapnikov und A. Aspect,
Physical Review Letters 98 (2007), 210401.

[239] L. Sanchez-Palencia und M. Lewenstein, Nature Physics 6 (2010), 87.

[240] M. Schellekens, R. Hoppeler, A. Perrin, J.V. Gomes, D. Boiron, A. Aspect und C.I. West-
brook, Science (New York, N.Y.) 310 (2005), 648.

[241] M. Schlosshauer, Reviews of Modern Physics 76 (2005), 1267.
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“Strongly Interacting Quantum Systems out of Equilibrium
Ultracold Quantum Gases and Magnetic Systems”

07/2006 - 12/2006 Scientific internship in group of Prof. Dr. Juan Torres at the ICFO Barcelona
“Quantum Engineering of Light: Creating a Source of Entangled Photons”

05/2005 - 06/2006 diploma thesis with Prof. Dr. J. Audretsch at the University of Konstanz
“Disentangling Action of Quantum Channels”

10/2000 - 03/2005 studies of physics at the University of Konstanz and the La Sapienza Roma

07/1999 - 07/2000 civil service

06/1999 Abitur (high school diploma), Friedrich-Wöhler Gymnasium Singen am Hohentwiel
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