
MDD4SOA
Model-Driven Development for
Service-Oriented Architectures

Philip Mayer

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität München

zur Erlangung des Grades
Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt von
Philip Mayer

München, 22. Oktober 2010

Erstgutachter Prof. Dr. Martin Wirsing
Ludwig-Maximilians-Universität München
Deutschland

Zweitgutachter Dr. Stephen Gilmore
The University of Edinburgh
Scotland

Tag des Rigorosums 23. November 2010

Abstract

This thesis presents a methodological as well as tool-based integration of Model-
Driven Development (MDD) and Service-Oriented Computing (SOC). Model-
driven development is a process for creating software by employing models to
design and analyse a system before creating source code, while service-oriented
computing is based on Service-Oriented Architectures (SOAs) for structuring
software systems by using the concept of services, which are self-describing net-
worked software artefacts offering a particular encapsulated functionality.

Four main results are contributed to this area. First, we provide a UML-
based, domain-specific modelling language specifically targeted at modelling
service behaviour and service protocols. Secondly, these models are given a
rigorous semantics based on transition systems, and a verification method is
provided. Thirdly, we introduce model transformations to be used to generate
code from UML models of SOA software systems for the Web Service standards
platform as well as a traditional object-oriented language. Fourth, we provide a
testing environment for the generated code, and relate the code generation and
formal semantics areas with a simulation and tracing approach.

Model-driven development of service-oriented architectures (MDD4SOA)
consists of many individual steps and shows its full potential when automated.
Each of the contributions of this thesis is thus fully tool-supported, providing
modelling assistance, automated analysis, and generation of executable source
code. Furthermore, a common development environment is provided in which
MDD4SOA-related tools can be integrated and combined in workflows as re-
quired by the development task at hand.

Taken together, the methods and tools provided in this thesis form the
blueprint of an UML-based, analysis-supported, model-driven development ap-
proach to service-oriented software.

iii

iv

Zusammenfassung

Diese Arbeit stellt einen Ansatz zur methodologischen sowie werkzeugunter-
stützten Integration modellgetriebener Entwicklung (MDD) und dienstorien-
tierter Datenverarbeitung (SOC) vor. Die modellgetriebene Entwicklung ist ein
Prozess zur Herstellung von Software, bei welchem vor Erzeugung des Quelltexts
Modelle zum Entwurf und zur Analyse eines Systems eingesetzt werden; diensto-
rientierte Datenverarbeitung nutzt dienstorientierte Architekturen (SOAs) zur
Strukturierung von Softwaresystemen mittels des Dienst-Konzepts. Dienste sind
selbstbeschreibende, vernetzte Softwareartefakte, welche spezifische gekapselte
Funktionalität bereitstellen.

Vier wichtige Ergebnisse werden zu diesem Gebiet beigesteuert. Zunächst
wird eine UML-basierte, domänenspezifische Modellierungssprache bereitge-
stellt, welche genau auf die Bedürfnisse der Modellierung von Dienstverhalten
und Dienstprotokollen zugeschnitten ist. Zweitens erhalten so erstellte Mod-
elle eine rigorose Semantik auf der Basis von Transitionssystemen; außerdem
wird eine Verifikationsmethode bereitgestellt. Drittens werden Modelltrans-
formationen zur Generierung von Quelltext aus UML-Modellen eingeführt —
sowohl mit dem Ziel der Web Service Standards Platform als auch einer tradi-
tionellen objektorientierten Sprache. Viertens wird eine Testumgebung für den
generierten Quelltext bereitgestellt, und durch einen Simulations- und Nachver-
folungsansatz wird eine Beziehung zwischen Quelltexterzeugung und formaler
Semantik hergestellt.

Die modellgetriebene Entwicklung dienstorientierter Architekturen (MDD4-
SOA) besteht aus vielen einzelnen Schritten und zeigt ihr ganzes Potential erst
durch Automatisierung. Jeder der einzelnen Beiträge dieser Arbeit ist daher
vollständig werkzeugunterstützt, wodurch Hilfestellung bei der Modellierung,
automatisierte Analyse, und die Erzeugung ausführbaren Quelltexts ermöglicht
wird. Darüber hinaus wird eine gemeinsame Entwicklungsumgebung bereit-
gestellt, in welche die MDD4SOA-Werkzeuge integriert und wie von der jeweili-
gen Entwicklungsaufgabe verlangt zu Arbeitsabläufen zusammengefasst werden
können.

Zusammengefasst bieten die Methoden und Werkzeuge in dieser Arbeit die
Grundlage für einen UML-basierten, durch Analysemethoden unterstützten,
modellgetriebenen Softwareentwicklungansatz für dienstorientierte Software.

v

vi

Acknowledgements

Firstly, I would like to thank my supervisor Martin Wirsing for his support
during my work at the chair for Programming and Software Engineering (PST),
both with regard to my thesis and other projects I’ve been involved in. I am
very grateful for his friendliness and respect which I will remember always.

Staying at PST, I would like to extend my thanks to all of my (former)
colleagues and will always remember the good times we had both in Munich
and on various mountains in the Bavarian alps. Most especially, I’d like to
thank Andreas Schroeder, my room mate and fellow coder, who has been a
great source of inspiration for many of the topics found in this thesis. I am also
very grateful for the help given by Sebastian Bauer and Nora Koch for their
support regarding MIOs and UML, respectively. Matthias Hölzl has greatly
helped in improving the text of this thesis.

The bulk of my research has been done in the context of the EU project
Sensoria. Here, I’d particularly like to thank Howard Foster and Mirco Triba-
stone for their support of my work and the good times we had at the Sensoria
meetings. This also holds true for Stephen Gilmore, who I am additionally
very grateful to have as my second reviewer and whose helpful suggestions have
greatly improved my thesis.

Moving to a new city is never easy, and settling in requires open-hearted
people to relate to. I am very lucky to have found such people. My thanks
go out to the entire “Monaco Gang”, but most of all to my former colleague
Florian Lasinger for welcoming me to Munich and feeling right at home.

And last, but certainly not least — special thanks go to Stephanie Fichtner
for her love and support through all these years!

vii

viii

Contents

1 Introduction 1
1.1 MDD4SOA . 2
1.2 Contributions of this Thesis . 5
1.3 Sensoria . 6
1.4 The eUniversity Case Study . 7
1.5 Thesis Structure . 8

2 Setting the Stage 9
2.1 Service-Oriented Computing . 9
2.2 The Unified Modeling Language 22
2.3 SoaML . 31
2.4 Model-Driven Development . 36
2.5 Modal I/O Automata and Interface Theories 40
2.6 Technical Background . 45

3 Modelling Service Behaviour in UML 49
3.1 Extending UML for Service Behaviour 50
3.2 The UML4SOA Profile . 55
3.3 Modelling Examples . 99
3.4 Tool Support . 104
3.5 Related Work . 105
3.6 Summary . 109

4 The Service Meta-Model 111
4.1 Overview . 112
4.2 The Service Meta-Model . 113
4.3 Summary . 127

5 Semantics and Analysis 129
5.1 A Formal Semantics for UML4SOA 130
5.2 Analysing UML4SOA Models . 161
5.3 Tool Support . 181
5.4 Related Work . 191
5.5 Summary . 193

ix

x CONTENTS

6 Transformations and Code 195
6.1 Transforming Service Models . 196
6.2 UML to SMM . 198
6.3 SMM to Web Services . 214
6.4 SMM to Java . 232
6.5 Tool Support . 254
6.6 Related Work . 258
6.7 Summary . 260

7 Simulation and Tracing 263
7.1 Introduction . 264
7.2 Simulation . 266
7.3 Tracing . 270
7.4 Case Study . 272
7.5 Tool Support . 273
7.6 Summary . 275

8 SOA Tooling for SOA Software 277
8.1 Integrating Tools for SOA Development 278
8.2 The Service Development Environment 280
8.3 MDD4SOA Tools . 286
8.4 Other Integrated Tools . 288
8.5 Tool Applications . 293
8.6 Related Work . 297
8.7 Summary . 298

9 Conclusion 301
9.1 Contributions . 302
9.2 Discussion . 303
9.3 Future Work . 305
9.4 Final Words . 306

Bibliography 307

List of Tables 323

List of Figures 325

List of Algorithms 329

List of Listings 331

List of Definitions 333

Chapter 1

Introduction

Software based on Service-Oriented Architectures (SOAs) [Erl05, SD05] consists
of individual, self-describing networked components called services, which each
implement and offer a certain encapsulated set of functionality. Central reg-
istries provide an index of available services to be discovered and used by the
participants of the system, which communicate with each other via standard-
ised protocols. Services can be combined to yield new services, thus enabling
compositional development of software systems.

Since their inception, SOAs have quickly gained support in both industry and
academia as the main architectural paradigm for developing enterprise software
applications. However, the promised benefits of SOAs — such as high interop-
erability, maintainability, and the ability to evolve in small steps — come at the
price of increased complexity of SOA artefacts and thus development of SOA
systems. This has led to the unsatisfying situation that SOA development today
is mostly done in an ad-hoc way: Software development processes, methods, and
tools have not yet caught up with the new requirements of the SOA paradigm.

For example, the Unified Modeling Language (UML) as one of the main
graphical languages for modelling software systems does not contain any spe-
cific constructs for SOA systems; profiles which add this support are only slowly
emerging. Furthermore, theoretical foundations for systems build on SOAs are
not yet integrated with high-level modelling approaches, which is required to
validate system design and instill trust in SOA implementations. Lastly, SOA
design has a lower granularity than traditional software; it represents a new ab-
straction step away from computer hardware towards software artefacts under-
standable and directly relevant on a business level. Ad-hoc industry approaches
for creating SOA systems with existing technology such as object-oriented lan-
guages fall short of fully embracing, and exploiting, this abstraction step.

As the use of SOAs now starts to permeate the software industry and is be-
coming a requirement for the design of many large software systems, employing
unified, SOA-aware software development methods, tools, and processes is of
paramount importance to be able to deal with the complexity, but also with the
opportunities inherent to the SOA paradigm.

1

2 CHAPTER 1. INTRODUCTION

Model-Driven Development (MDD) [Sel03] is a software development process
which enables the evolution of existing methods, tools, and processes towards a
more structured, rigorous approach to the development of SOA systems [Fra03].
MDD focuses on models of a software system, which represent an abstract view
of the system to be developed. The modelling principle is well-known in tra-
ditional engineering methods. Transferred to software engineering, the benefit
of using models is in fact not restricted to communication of the design, but
promises to be even greater: Through automation, models can drive the system
implementation or even replace the need to implement a system by hand.

Another benefit of models is enabling early analysis of software systems.
Using formal methods, a rigorous semantics can be designed which is amenable
to verification and thus yields results for improving the software system.

This thesis shows how to integrate the SOA and MDD concepts, and presents
a unified approach to model-driven development of service-oriented systems
(MDD4SOA). The MDD4SOA approach is comprehensive as it provides a se-
mantic foundation, formal analysis, and tool support throughout the develop-
ment.

An introduction to MDD4SOA is given in section 1.1. Section 1.2 gives a first
look at the contribution of this thesis. MDD4SOA has been developed within
the Sensoria EU project, which we reference in section 1.3. For discussing
the individual results of this thesis, we employ a case study from the domain
of computer-assisted university management, which is introduced in section 1.4
and elaborated in further chapters. Finally, the structure of this thesis is shown
in section 1.5.

1.1 MDD4SOA

This thesis develops a complete end-to-end approach to model-driven devel-
opment for service-oriented systems, starting with SOA models created in an
appropriate modelling language, performing formal analysis on these models to
provide early feedback about design problems, and finally using the SOA mod-
els to generate code in executable target languages, which can also be validated
against the formal model. All areas are based on a meta-model for services, and
are complemented by a common tooling platform which allows the use of tools
supporting these areas as well as externally contributed tools in an integrated
development environment.

A graphical overview of the different contribution areas of the MDD4SOA
approach is shown in figure 1.1. The individual areas are discussed in the
following sections.

1.1.1 Modelling

The first area of the MDD4SOA approach shown in figure 1.1 and thus the first
part of this thesis is concerned with modelling SOA artefacts. We have chosen
the Unified Modeling Language (UML) [OMG10b] as the basis for this step.

1.1. MDD4SOA 3

code generation

semantics

trace annotation

simulation

Service Meta-Model (SMM)

business goals

deployment

Common Tooling Platform

Formal Modelanalysis

Java and
Web Services

UML Model

modelling

Figure 1.1: The MDD4SOA Approach

UML is a well-known and mature language for software design, and is regarded
as the de facto standard for software modelling. However, as we will point out in
the corresponding chapter, UML lacks specific elements for modelling services
(and in particular, service behaviour). This thesis thus contributes adequate
support to the UML in the form of a profile, which is called UML4SOA.

Modelling support for SOAs is particularly promising as SOA applications
tend to implement complex business functionality. Furthermore, services are
usually of lower granularity than traditional components. Thus, a more abstract
view comes naturally to a service-based architecture in comparison to traditional
programming languages.

1.1.2 Service Meta-Model (SMM)

In order to be able to discuss formal analysis and code generation for UML-
4SOA, this thesis defines a Service Meta-Model (the SMM), which offers the
necessary meta-classes for describing complete SOA systems. This includes
static, dynamic, and data handling aspects. The SMM is shown as an enclosing,
dashed rectangle in figure 1.1.

The UML4SOA profile already mentioned above, along with parts of the
UML, forms the concrete syntax of the SMM. The next two areas of MDD4SOA
further build on the SMM, first defining a formal semantics with analysis support
and, secondly, code generation.

4 CHAPTER 1. INTRODUCTION

1.1.3 Semantics and Analysis

One of the main benefits of using a model-driven development approach is the
availability of models early in the development phase. Depending on the current
level of abstraction, the models may or may not be complete, but should be
correct in the sense that they are an appropriate representation of the final
system. This opens up the possibility of model analysis.

Formal verification requires the introduction of a rigorous semantics for a
model specification on which analysis can be performed. This thesis provides
such a semantics for UML4SOA (via the Service Meta-Model) which is based
on modal input/output transition systems [LNW07a], a specialised form of tran-
sition systems [And94]. Furthermore, we provide an analysis method for check-
ing these automata for protocol compliance using interface theories [BMSH10],
which, in turn, allows verification of UML4SOA models.

1.1.4 Code Generation

It has been remarked [Sel03] that models of software systems offer another ben-
efit which is not available in traditional, non-software engineering approaches:
The ability to automatically or semi-automatically generate the resulting sys-
tem from a model. Due to this possibility, MDD has also been described as the
next step in programming language evolution: Instead of generating byte code
or machine code, an MDD compiler will instead generate code in traditional
programming languages such as Java from higher-level models of the system
[MCF03].

This thesis has addressed the generation of executable code from UML4SOA
(again via the Service Meta-Model) by investigating two model transformations:
The first uses Web Services [WCL+05] as the target platform, while the other
employs a traditional programming language (Java) [GJSB05]. The use of differ-
ent execution platforms illustrates another benefit of MDD, which is the ability
to switch concrete execution platforms by adapting the transformers.

1.1.5 Simulation and Tracing

In order to be able to execute the generated code and observe its behaviour,
we use a simulation and tracing approach. Through an automated testing en-
vironment, the generated code is executed, creating a trace of occurring events
(simulation). Furthermore, this trace can be compared with the transition sys-
tems semantics, yielding information about how the paths through the automata
are used during runtime (trace annotation). This approach furthermore allows
validation of the generated code.

1.1.6 Tooling

Each step in the MDD4SOA approach and thus each internal arrow in figure 1.1
is tool-supported; an overview of all tools is shown in section 8.3 (page 287).

1.2. CONTRIBUTIONS OF THIS THESIS 5

However, we believe that besides the availability of tools for the individual
steps shown above, a coherent development platform which integrates these
tools (and related ones) is of great importance to foster the use of model-driven
development techniques for service-oriented software.

Thus, a common tooling platform has been developed as part of this thesis;
it is shown as the encompassing element of figure 1.1. In fact, the service-
oriented principle has been applied to this tooling platform as well: Each tool
is integrated as a service, and may be combined with other tools to form a
workflow as required by the development task at hand.

1.2 Contributions of this Thesis

The contribution of this thesis is the investigation of and research into a full end-
to-end approach to model-driven development of service-oriented architectures,
which includes modelling, analysis, code generation, and automated testing,
along with an integrated tooling environment.

� The contribution in the modelling domain lies in the introduction of a
lightweight, non-intrusive extension for service behaviour to the UML. As
pointed out in the corresponding chapter, the UML4SOA profile achieves
this goal with a minimum amount of changes to the UML itself. UML-
4SOA is already based on the SoaML OMG standard [OMG09b] which
is currently in beta status, and thus is readily usable as the behavioural
counterpart of SoaML by UML modellers.

� With regard to semantics and analysis, the contribution lies in the defini-
tion of a rigorous semantics for UML4SOA (via the Service Meta-Model)
and the introduction of a domain-specific interface theory for early proto-
col verification of SOA models. Another important aspect in this regard is
the availability of full tool support for formal verification, which includes
the automated generation of the formal model. Furthermore, the tools do
not require developers to understand or even see the formal backing.

� In the area of code generation, we contribute two model transformations
which enable generation of executable code from UML4SOA (again, via
the Service Meta-Model) for two industry-standard platforms. The key
contribution here lies in the transformation descriptions which show how
the mapping of high-level UML4SOA models to actual code is carried out.

� The simulation and tracing approach contributes the ability to directly ex-
ecute the generated implementations, thus completing the MDD approach
and furthermore enabling a comparison of the behaviour of the generated
implementations against the formal semantics of UML4SOA. This part
also contributes tools for automating the simulation and annnotation pro-
cess.

6 CHAPTER 1. INTRODUCTION

� Finally, the contribution of the integrated tooling platform lies in the suc-
cessful integration of different kinds of tools through a lightweight, SOA-
based architecture. We believe that due to its open structure, this ap-
proach can serve as a blueprint for development tool integration.

It is important to note that the contributions of this thesis do not only lie
in the individual methods and tools listed above, but also in their integration.
By taking part in a fully automated and integrated process from modelling via
analysis to code, the individual steps benefit from each other, improving and
streamlining the MDD approach as a whole.

As an example for this integration, we use a case study which is first in-
troduced in section 1.4. In each subsequent chapter, this case study is used to
illustrate the results and benefits of the corresponding methods and tools; thus,
the case study provides an end-to-end example of the development of a SOA
system in a model-driven way.

1.3 Sensoria

MDD4SOA has been developed while the author took part in Sensoria, an
integrated project funded by the European Commission (EC) which took place
from 2005 to 2010. For a comprehensive overview of Sensoria, the reader is
referred to [WBC+09].

The aim of the Sensoria project has been the development of a novel com-
prehensive approach to the development of service-oriented overlay computers,
and as such, some of the results presented in this thesis have contributed to the
core of Sensoria. In particular, the following three main research objectives
of Sensoria have a direct relationship with this thesis:

� Service-Oriented Extensions of the UML. This objective addresses the
need for primitives for modelling SOA systems in UML. UML4SOA has
been developed as an answer to this objective.

� Model Transformations. Sensoria also addresses the need for model
transformations, both for generating code and for mediating between dif-
ferent formal tools. The model transformers and code emitters provided
as part of this thesis are a contribution to this objective.

� Tool Integration. Finally, Sensoria addresses tool support and in partic-
ular tool integration as a major requirement for the development of SOA
systems. The common tooling platform introduced in this thesis has been
developed to meet this objective.

Each of the methods and tools introduced in this thesis have been applied to
the case studies provided by the Sensoria project, which has led to important
feedback from both industry and academia for improving the results of this
thesis.

1.4. THE EUNIVERSITY CASE STUDY 7

1.4 The eUniversity Case Study

For discussing the results of this thesis, we employ a common case study through-
out all chapters. The case study is taken from the domain of computer-assisted
university management

The administration of a university is a complicated task. Student appli-
cations, enrolment, course management, theses, and examination management
all pose individual problems and, in general, a lot of paperwork. Nowadays,
many of these tasks can be and are being automated. As universities are often
large organisations with autonomous sub-organisations, a promising approach
for this is the use of SOA-based software, in which the individual parts of a uni-
versity as well as (external) students can work together with respective back-
and front-ends of a web-based system.

To investigate the problem of developing SOA-based university management
systems, the Sensoria project includes a case study based on a set of university
scenarios that make use of the specific features of SOAs [H0̈7]. In particular, we
consider eUniversities, i.e., universities in which at least all of the paperwork, if
not the courses themselves, are handled online.

The chosen scenario for this thesis is the problem of Thesis Management. In
this scenario, we have considered the management of a student thesis (bachelor,
master, or diploma) from the initial announcement to the final grading.

Tutor Student

Graduation Service

Blackboard

Examination Office

Figure 1.2: eUniversity Case Study: Overview

The scenario consists of six partners and computing systems working to-
gether. As shown in figure 1.2, a tutor (left) first provides a new thesis proposal
— bachelor, master, or diploma — to a central server (middle), which distributes
it to a university-wide blackboard (bottom centre) to inform students of this
opportunity. Once a student (right) decides to pick up a thesis, the central

8 CHAPTER 1. INTRODUCTION

server starts the thesis, informing both the examination office (bottom right),
and registering the student for the graduation ceremony (bottom left).

While the thesis is in progress, the student may provide updates, which the
tutor may retrieve. Once the thesis is declared to be finished, an assessment is
requested from the tutor. If the assessment is positive, the examination office is
instructed to issue the corresponding certificates. If not, the examination office
is informed of the problem, and the graduation service needs to unregister the
student from the graduation ceremony.

The thesis management scenario is an interesting case study as it integrates
several autonomous organisational entities which each provide their own ser-
vices, as well as two clients of the system with different interests and required
functionality. Thus, it provides us with the complex multiparty interactions
typical of systems based on service-oriented architectures.

In each of the following chapters, this case study is revisited to illustrate
newly introduced concepts and their effect on the case study model.

1.5 Thesis Structure

The structure of this thesis follows the development process laid out in figure 1.1.
We begin with introducing the relevant background information which sets the
stage for later chapters in chapter 2. This includes an overview of Service-
Oriented Architectures (SOAs), Model-Driven Development (MDD), parts of
the Unified Modelling Language (UML), the UML profile SoaML, the domain
of modal input/output automata and interface theories, as well as an overview
of technical resources used in this thesis.

Chapters 3, 5, 6 and 7 introduce the main contributions of this thesis; they
are grouped around the discussion of the Service Meta-Model (SMM) in chap-
ter 4. Chapter 3 introduces a profile for modelling service behaviour in UML,
and how this behaviour may be attached to the artefacts provided by the SoaML
profile. The formal semantics and analysis methods are discussed in chapter 5.
The third area of MDD4SOA, model transformations and code generation with
the target of the Web Services family and Java, are discussed in chapter 6. Fi-
nally, we discuss the simulation and tracing approach for the generated code in
chapter 7.

Last, but not least, our tool integration platform — the Service Develop-
ment Environment1 — is introduced in chapter 8, along with a description of
integrated tools, and tool chains which demonstrate the ability of combining
tools using the platform.

A summary of the provided methods and tools of this thesis along with a
review of achievements and an outlook for future work is given in chapter 9.

1Formerly named Sensoria Development Environment.

Chapter 2

Setting the Stage

This chapter introduces the underlying concepts and technologies which form
the basis for the main chapters of this thesis.

The chapter begins with an introduction of the research areas to which the re-
sults of the thesis contributes. Section 2.1 introduces the area of service-oriented
computing and the Web Services standards family as the current industry stan-
dard for realising SOAs. In section 2.2, a brief overview of the Unified Modeling
Language (UML) is provided, along with an introduction into the extension
mechanisms of the UML used later in the thesis.

Both the SOA and the UML sections are brought together in section 2.3
with the introduction of the UML profile SoaML, which captures the static part
of SOA modelling in UML and is a prerequisite to the profile introduced in
chapter 3.

The concept of model-driven development used in chapter 6 is introduced in
section 2.4. Section 2.5 introduces the formal framework of modal input/output
automata and interface theories used for formal verification.

All results presented in this thesis are supported by tools. For the imple-
mentation of these tools, a series of frameworks and libraries are used which are
introduced in section 2.6.

2.1 Service-Oriented Computing

Service-Oriented Computing, or SOC for short, refers to a computing envi-
ronment built on services, which are software artefacts providing a certain set
of functionality, in most cases via a network such as the Internet. Enabling
Service-Oriented Computing requires a certain structure to be followed in the
implementation of software systems, which is referred to as the Service-Oriented
Architecture (SOA).

While the term SOA only refers to an arbitrary software design which is
based on services, concrete implementations and standards families have been
created which allow a precise and technical specification of each component

9

10 CHAPTER 2. SETTING THE STAGE

in a SOA and their collaboration. The most popular realisation of SOAs are
Web Services, which are defined through various documents in the Web Service
family of standards.

The following two subsections introduce the abstract concepts of SOAs, and
the realisation of SOAs through Web Services, respectively.

2.1.1 Service-Oriented Architectures

The Service-Oriented Architecture (SOA) is an architectural paradigm which
has gained great momentum in the industry in recent years. SOA-based systems
are the latest approach to building, integrating, and maintaining complex enter-
prise software systems. Although it is hard to find an exact definition, a SOA
is generally regarded as having the following basic characteristics ([WCL+05],
[ACKM03], [EN06]):

� The basic building blocks of a SOA are services, which are distributed and
invoked via a network, and should be loosely coupled.

� Services are described in some sort of abstract interface language, and can
be invoked without knowledge of the underlying implementation through
standardised communication protocols.

� Services can be dynamically discovered and used ; the discovery process is
based on meta-data about the required services.

� A SOA supports integration, or composition, of services in a recursive way,
i.e. compositions of services can again be regarded as services.

SOAs are closely tied to the hope of being able to re-structure the intra- and
inter-enterprise software landscape to allow greater flexibility, thus being able
to respond more quickly to changing business requirements.

Distributed architectures and integration methods have been around for
some time, and SOA has evolved out of these methods rather than being a
completely new concept. In fact, SOAs take intra-enterprise integration sys-
tems to a new level — as companies are outsourcing parts of their business
or are cooperating with partners, their information systems also grow across
company borders. Additionally, SOAs enable re-use of existing applications by
wrapping them as services.

A very important feature of SOAs is the concept of service compositions.
Environments which support service composition have their roots in workflow
management, where business logic was implemented by composing existing,
coarse-grained applications [ACKM03]. SOAs take composition to the next
level by offering a much more homogeneous environment, as all parts of a com-
position are services themselves, (ideally) described in the same fashion, and
communicating with the same messaging standards. One key application area
of service composition is the realisation of business processes as a composition
of services, thereby placing SOAs at the very heart of enterprise IT.

2.1. SERVICE-ORIENTED COMPUTING 11

Service composition differs from traditional composition approaches in two
important ways:

� Service composition is recursive. A composition of services is, in most
cases, a service itself, which can be composed even further. This is an
elegant way of dealing with complexity in large service-based systems.

� Service composition works in a distributed fashion. In traditional com-
position approaches, components are compiled, linked, included, and sold
with the final composition. Service compositions, on the other hand, use
existing services as-is, invoking them via a network.

There are two distinct ways for designing composite services, which have
been named choreography and orchestration [SD05]:

� Choreography. A choreography describes a collaboration between services
to achieve a certain goal. The control logic of a choreography is distributed
— each service knows what to do and whom to contact; these actions are
not described as part of the choreography. A choreography is an abstract
definition of an interaction, intended to convey the general purpose and
goal of the composition.

� Orchestration. An orchestration, on the other hand, focuses on one ser-
vice, specifying the concrete actions to take to implement that service
by using other services. The control logic is therefore centralised in the
orchestration. An orchestration is intended to be executed.

From a more technical perspective, there are three key features of SOA-based
systems which pose challenges, but also offer benefits for implementations:

� First, SOA-based systems are open systems: Invocation of service func-
tionality should be possible without having access to the complete system;
not only due to the distributed deployment of services but also due to their
abstract (self-) descriptions and standardised protocols for interoperabil-
ity.

� Second, a SOA consists of independent services, which talk to one another
via a network. Thus, communication between services is a key aspect of
SOAs. Although the complexity of network calls is still a challenge for
system integration, the hope is to abstract from this layer when writing
applications on a SOA level.

� Third, the distributed nature of SOAs render it very hard to guarantee
atomic behaviour, i.e. an all-or-nothing semantics for certain tasks. Thus,
another key concept of SOAs is support for compensation, which is used
to explicitly state behaviour to roll-back, or undo, already successfully
completed work.

12 CHAPTER 2. SETTING THE STAGE

Systems based on service-oriented architectures can be realised in a multi-
tude of languages and can take very different technical representations — some
are implemented on top of existing paradigms (such as in Java or the languages
of the .NET platform); in others, new languages with a specific focus on SOAs
have been created. The most successful family of standards for the implemen-
tations of SOAs are Web Services, which are detailed in the next section.

2.1.2 The Web Service Standards Family

Web Services are, arguable, the most important realisation of a SOA today. The
Web Service architecture consists of over a dozen standards, which are managed
by standardisation bodies like W3C [W3C10] and OASIS [OAS10]1. The Web
Service movement is backed by large industry players like IBM, Microsoft, Or-
acle, and others.

There are many different definitions of a Web Service. Even the W3C, which
is involved in many of the basic Web Service standards, has two definitions
available ([Wor04a], [Wor04b]). The first definition is relatively abstract:

A software application identified by a URI, whose interfaces and
bindings are capable of being defined, described, and discovered as
XML artefacts. A Web Service supports direct interactions with
other software agents using XML-based messages exchanged via Int-
ernet-based protocols [Wor04b].

A few things should be noted with regard to this definition. Firstly, the
definition describes a Web service as a software application, which can basically
mean anything from a small script to a large, server-spanning enterprise soft-
ware system. In other words, the Web Services technology does not presume
any specific size of Web Services; this lies in the responsibility of the interface
designer. Secondly, a Web Service is self-describing, and must be discoverable,
with the use of XML. The use of XML is important as it is a text-only, open
standard, and if properly designed, XML documents may be read by humans
and easily manipulated. Thirdly, a Web Service does not interact with humans,
but with other software agents. Finally, as can be seen from this definition and
in fact from the name Web Services itself, the Web plays a major role in the
Web Service standards. The definition not only mentions the concept of a URI,
but also Internet-based protocols as the message exchange layer.

W3C has another definition available, which already includes the names of
some of the most important W3C Web Service standards, which are described
below:

A Web Service is a software system designed to support interopera-
ble machine-to-machine interaction over a network. It has an inter-
face described in a machine-processable format (specifically WSDL).
Other systems interact with the Web Service in a manner prescribed

1OASIS has also published a reference model for SOAs in [OAS06].

2.1. SERVICE-ORIENTED COMPUTING 13

by its description using SOAP messages, typically conveyed using
HTTP with an XML serialisation in conjunction with other Web-
related standards [Wor04a].

Web Services offer a significant step forward from existing middleware and
EAI solutions due to three aspects, which are identified in [ACKM03]:

� Service Orientation. As a realisation of a SOA, service orientation comes
natural to Web services. However, inherent loose coupling between the
components of a system — each service is independently implemented —
is a major change from older middleware systems.

� Peer-to-Peer Middleware Protocols. The runtime environment of Web Ser-
vices — which consists of inter-enterprise space — offers no place for a
central coordinator for management of resources and locks. Instead, the
various peers must be able to agree upon such things on a bilateral basis.

� Standardisation. The aim of Web Services is to offer cross-enterprise in-
tegration, which necessitates industry-wide standards. The Web Service
movement has been successful in many ways in introducing such standards
by employing standardisation bodies and major industry players.

The first three standards of the Web Service technology stack are SOAP,
WSDL, and UDDI, which have been published around the year 2000. SOAP
(which is not an acronym) defines the basic messaging standard of Web Services;
WSDL (Web Service Description Language) is an interface description language
for Web Services. Finally, UDDI (University Discovery, Description, and Inte-
gration Service) handles dynamic discovery of Web Services. An overview of
how SOAP, WSDL, and UDDI are related to one another and other important
Web Service standards is shown in figure 2.1.

The Web Service architecture stack plays a major role as a transformation
target in chapter 6. The following standards from the stack are relevant for this
chapter:

� BPEL. The Business Process Execution Language (BPEL) is a high-level
language for describing service and service orchestration behaviour. BPEL
processes are based on many of the lower-level artefacts, and contain primi-
tives for direct communication with other services without requiring lower-
level networking details.

� WSDL. The Web Service Description Language (WSDL) is used to declare
the functional interfaces of Web Services (which includes BPEL processes).
Using the notions of services, ports, and messages, WSDL allows the spec-
ification of available services, operations supported by a service, and the
data structures expected to arrive and to be sent out.

� SOAP. SOAP defines how messages to be sent or retrieved between ser-
vices are structured and encoded. A SOAP definition for each provided

14 CHAPTER 2. SETTING THE STAGE

Transport HTTP, SMTP, TCP/IP, ...

Structure XML Schema

Description WSDL

XML

WS-Policy

QoS WS-Reliable Msg. WS-Security WS-AT, WS-BA

Xpath, ...

Components Composite (BPEL) Atomic (Java, .NET, ...)

U
D

D
I

Messaging SOAP WS-Addressing JMS, ...

Figure 2.1: Web Service Architecture Stack

and required service is thus a necessary requirement for a successful invo-
cation.

� WS-Addressing. In order to allow asynchronous callbacks to partners
which are previously unknown, the location of a caller must be part of
or attached to a message. The WS-Addressing standard provides the abil-
ity for such annotations.

� XML Schema. Both BPEL programs and WSDL definitions use types to
identify legal sets of data to be sent or retrieved. XML Schema (XSD) is
used to define composite types and elements describing the data structures
to be used.

� XPath. Data manipulation within a BPEL program requires addressing
individual parts of a message and copying data from literals, variables,
or variable contents to other variables or variable contents. To address
the individual elements of an XSD-typed variable, the XPath language is
used.

It is assumed that the reader is familiar with XML, XML Schema, and
XPath. The four other standards are shortly introduced in the following. For a
thorough description of the individual parts of a Web Service-based application,
the reader is referred to [WCL+05].

2.1. SERVICE-ORIENTED COMPUTING 15

2.1.2.1 SOAP

SOAP [soa07] is a protocol for exchanging messages between peers in a dis-
tributed environment. SOAP is based on XML and defines a standardised mes-
sage format, a processing model, a set of conventions defining how to map ap-
plication data into messages, and a mechanism for binding messages to network
protocols for transport. These are described in the following.

Standardised Message Format

SOAP specifies how information is packaged into a standardised XML document
(a SOAP Message) to be transported in a communication. A SOAP message
consists of a SOAP envelope, which in turn contains an (optional) header, and
a (required) body. The header contains meta-data with instructions on how
to process the message (see processing model). The actual application data is
placed in the SOAP body (see mapping conventions).

Processing Model

The SOAP processing model defines roles for senders and receivers of SOAP
messages, specifying which parts of a message must be processed by a role.
In particular, the blocks making up a SOAP header may contain attributes
indicating the intended use of this header block, i.e. operations to be performed
by each node the SOAP message passes through. The payload of each header
block is an XML fragment in its own namespace, and is thus not defined by
SOAP.

Mapping Conventions

The SOAP specification contains a set of conventions for mapping application
data into the SOAP messages, for example for specifying a remote procedure
call. A mapping specifies an interaction style (RPC and document) as well as
encodings (literal and SOAP encoding). The interaction style defines how the
message is structured. In RPC (Remote Procedure Call) style, the SOAP body
contains a complete method invocation with the operation name and parame-
ters. In document style, the SOAP body contains a business document. The
encodings, on the other hand, define how to encode application data into XML.
The literal style does not perform any encoding (i.e. the data is already in XML
format), while the SOAP encoding style defines a specific encoding format (for
example, how to convert arrays, structured data types, and simple types like
double and string into XML).

Network Protocol Bindings

Through bindings, SOAP specifies how to transmit SOAP messages over the
network. SOAP includes two bindings out of the box: HTTP and SMTP.
Through extensions, other protocols can also be used. It is important to note
that in general, the target of a message — i.e., the address — is not part of

16 CHAPTER 2. SETTING THE STAGE

a SOAP message. Instead, addressing is performed by the transport protocol,
and the target address — an URL in case of HTTP, or an email address in
case of SMTP -- must be specified outside of the SOAP message. However, a
specialised header — for example, specified using the WS-Addressing standard
— may be introduced to assume this task.

2.1.2.2 WSDL

The Web Service Description Language (WSDL) [CCMW01] is an XML-based
language used to describe the functional interface of Web Services — what they
can do, where they are located, what kind of data they expect and send out, and
in which format. WSDL thus combines features commonly found in Interface
Definition Languages (IDLs) with access and location information.

A WSDL documents consist of two parts: An abstract and a concrete part.
This structure is shown in figure 2.2.

WSDL Definition

Abstract Part

Concrete Part

Types Messages

Part
Part

Part

Port Types

Part
Part

Operation

Services

Part
Part

Port

Bindings

Part
Part

Element

Part
Part

Operation Binding

Figure 2.2: WSDL Definition Structure

All elements are required to define an executable and usable Web Service.
The abstract part consists of three elements:

� The Types element contains basic data structure definitions, such as types
of messages. The types are usually defined in XML Schema.

� Each of the Message elements is used to define a message to be sent or
received; each message consists of parts which are usually typed with XML
Schema types, either standard or newly defined in the Types section.

2.1. SERVICE-ORIENTED COMPUTING 17

� Finally, each of the defined PortTypes represents an interface with a list of
operations which may be invoked on a service, each specifying input, out-
put, and possible fault thrown by the operation. The input, output, and
fault elements are specified as messages. Depending on which elements are
present, an operation is inbound, outbound, or both. Usually, either one-
way operations or request-response operations are used: The first receives
a message from a client without returning a result; the second receives a
message from the client and sends back an answer.

With types, messages, and port types specified, a client knows which oper-
ations are available, which messages with which parts must be sent in order to
invoke an operation, and which messages with which parts are to be expected
back (if any). However, the description is still abstract in the sense that the
actual location of the service and the wire format of the messages are yet un-
specified. This information is contained in the concrete part of a WSDL service
description, which consists of two elements:

� A Binding element specifies how to bind a port type to a data transmit
format; for example, use of SOAP over HTTP to transmit the actual data.

� The Port elements connect a binding with a port type, and additionally
add the location of the port, mostly in terms of a URL. A port, in turn,
belongs to a Service element which, finally, defines a service consisting of
ports and associates it with a name.

Through this structure, the Service element contains the information from
all parts and serves as the top-level element for the traversal of the definitions
in a WSDL file.

2.1.2.3 WS-Addressing

As already noted in the previous sections, routing messages to the correct Web
service and, in the case of asynchronous callbacks, back to the original sender
(or a different Web Service, for the matter) requires additional addressing infor-
mation to be included in the exchanged messages. The Web Service Addressing
standard (WS-Addressing [wsa04]) provides such means by defining the notion
of a service endpoint and how to encode addressing information in a message
(specifically, a SOAP message).

The three key characteristics of WS-Addressing are protocol independence,
asynchronous communication, and stateful, long-running transaction. Here, we
are mainly concerned with the second point, as the first is out of scope of this
thesis and the third is addressed by BPEL as well.

Asynchronous communication is concerned with the problem of being able
to reply to a partner whose address is not known during design time. The key
headers WS-Addressing introduces to SOAP headers to enable asynchronous
callbacks are the following.

18 CHAPTER 2. SETTING THE STAGE

� To header. This header contains the address of the target endpoint. For
example, if HTTP is used, this header contains an URL.

� ReplyTo header. The ReplyTo header contains a complete endpoint refer-
ence to send the reply message to. It must be present in the first message
of a request-reply operation.

� Action header. This header contains an identification URI, defining the
semantics of the message (in general, the operation invoked).

� MessageID header. This header contains an ID which uniquely identifies
the message which it is part of. Specifying a message ID allows creat-
ing relationships between messages. This header is required in the first
message of a request-reply operation.

� RelatesTo header. This header is the counterpart of the MessageID
header and must contain the MessageID of the previous message in a
message exchange. The RelatesTo header has an attribute specifying the
communication relationship with a code (the RelationShipType), which
is defined in the WS-Addressing specification. For example, a reply in a
request-response operation carries the attribute Reply, which is also the
default value if no attribute is specified.

Note that including WS-Addressing information alone is not sufficient for
enabling asynchronous callbacks to this address; the target service invoked (and
its middleware) must understand and support WS-Addressing to enable this
feature.

2.1.2.4 BPEL

The ability to integrate, or compose, existing services into new services is, ar-
guably, the most important functionality provided by SOAs [JMS03]. At its
core, composition of services should allow creating, running, adapting, and
maintaining services which rely on other services in an effective and efficient
way [SD05].

The Business Process Execution Language (BPEL) has been created with the
purpose of achieving this goal. BPEL is an XML-based programming language
which allows the specification of both choreographies and orchestrations; only
the latter are executable. Artefacts written in BPEL are closely integrated with
other standards of the Web Service family, in particular WSDL, XML Schema,
and XPath.

BPEL programs revolve around the following key concepts:

Partner Services

A BPEL process is intended to compose services. To achieve this goal, services
must be identified and invoked; BPEL requires them to be described in WSDL.

2.1. SERVICE-ORIENTED COMPUTING 19

Likewise, the BPEL process itself is invoked by another party to start the exe-
cution; through recursion, a BPEL process is a Web Service itself and must also
be described in WSDL. A Web Service which interacts with the BPEL process
in any way is called a partner.

BPEL does not differentiate between a client (which calls the BPEL pro-
cess) and a Web Service which is invoked by the BPEL process, as an invoked
Web Service may become a client itself when asynchronous callbacks are used.
Instead, the relationship between a partner and the BPEL process is described
in an abstract way by using the notion of partner link types. A partner link
type contains at least one and at most two roles -- one role being played by the
process and one being played by an external service.

Partner link types are instantiated to partner links, in which the roles are
assigned: The process itself may take up a role by specifying it as myRole, or
assign it to an external partner with partnerRole.

Workflow Specification

The BPEL business logic consists of a series of activities which are executed in
sequence or in parallel. Activities are either basic or structured. Basic activities
include the invocation of other Web Services or receiving incoming invocations;
structured activities are used to define the relationship between activities. Fi-
nally, BPEL introduces the concept of handlers which may be attached to the
process or a local scope to deal with exceptions, events, and compensation.

Many activities deal with variables or contents of variables. As BPEL is
based on WSDL and XML Schema, types of variables are (usually) defined as
WSDL messages or XML Schema types. XML Schema can thus be seen as the
de facto type system of BPEL, and any variable data is literal XML which may
be validated against an XML Schema. Variables may be declared on the process
level, or on the level of scopes (see below).

Basic activities in BPEL can be separated into communication activities and
other basic activities. The important ones in this context are the communication
activities:

� The receive activity waits for a message from a partner; part of the
receive specification is the partner link and the operation from the corre-
sponding port type to expect.

� The invoke activity invokes a partner. Likewise, it is linked to a partner
and an operation. The invoke activity can be used for both one-way and
request-response operations, i.e. it is able to wait for a return value.

� The reply activity sends an answer for a message previously received with
a receive activity.

Another important activity is the assign activity, which deals with data
manipulation. An assign may contain a number of copy statements, which
copy data from a right-hand side to a left-hand side. While the latter will

20 CHAPTER 2. SETTING THE STAGE

always be a variable or message part, the right-hand side may include arbitrary
statements; for example, calculations done with the help of XPath expressions.

Structured activities determine the order in which enclosed activities are
executed. Structured activities may be nested in arbitrary ways, i.e. include
basic or other structured activities. BPEL includes activities for sequential
control (sequence, switch, and while), concurrent activity execution (flow),
and reaction to events (pick).

The activities for sequential controls are well-known from conventional struc-
tured programming languages:

� The sequence activity represents a normal, sequential flow of execution:
All enclosed activities will be executed one after another in the order they
are specified. Most BPEL processes will use a sequence as the root activity.

� The switch activity introduces conditional behaviour. It contains a se-
ries of ordered case branches, each including a branch condition, and an
optional otherwise branch, which is taken if none of the branch conditions
hold true. The case branches are tested in the order in which they occur
in the source code.

� The while activity repeats an enclosed activity until a condition no longer
evaluates to true.

Support for concurrent activity execution is provided by the flow activity.
This activity is the most powerful construct in the BPEL language. All activi-
ties inside a flow activity are executed simultaneously once the flow activity is
executed.

Lastly, the pick activity allows local reactions to a set of events. When
the activity is executed, it waits for the occurrence of one of these events, and
executes the activities specified for this event.

Closely related to structured activities is the scope construct. A scope
defines the behavioural context for a certain part of the BPEL document; it does
not by itself impose any execution semantics on its children. However, handlers
may be attached to the scope, which is discussed in the next paragraph.

Exceptions, Events, and Compensation

BPEL defines the concept of handlers to be able to deal with exceptions, events,
and compensation.

Exception handling, termed fault handling in BPEL, follows the idea of
object-oriented programming. To deal with faults, a fault handler may be asso-
ciated with a scope (or with the process itself). A fault handler catches faults
which are raised in a scope. If a fault occurs, processing of the scope is stopped,
and a matching catch block is executed, which may contain arbitrary activities.
A fault may be thrown by various means: The first are communication prob-
lems, the second are faults due to an incorrect BPEL specification, and finally,
the BPEL throw activity allows for explicitly throwing a fault.

2.1. SERVICE-ORIENTED COMPUTING 21

BPEL processes allow the specification of event handlers in the process itself
and every scope. An event handler, as the name implies, handles events, which
occur asynchronously while the main process logic is running. As a consequence
of such an event, arbitrary activities may be executed, just like in the normal
flow of the process.

An event handler is active as long as the scope it belongs to is active. In
case of a global event handler, i.e. one defined in the process itself, the event
handler stays active during the complete lifetime of a business process instance.
An event handler cannot start a process instance; the instance must already be
running.

There are two types of events which may be specified:

� Message Events. A message event occurs when a certain incoming message
is received by the process.

� Alarm Events. An alarm goes off after a certain duration, or at a specified
time.

It is important to note that events may occur multiple times during the
runtime of a BPEL instance, but also not at all.

Finally, compensation in a BPEL process allows undoing successfully com-
pleted work in a certain scope. A compensation handler attached to a scope
becomes active as soon as the scope has completed successfully; it can later be
invoked by means of a compensate or compensateScope call.

A compensation handler for a scope contains arbitrary activities which undo
the regular work of the scope. Note that the invocation is only allowed from the
fault handlers and compensation handlers of the immediately enclosing scope.
Furthermore, the process as a whole may also have a compensation handler,
which undoes the complete business process. This compensation handler must
be invoked by platform-specific means.

Correlation

Once a BPEL process instance is running, it sends out messages to partners,
and expects answers in return. The BPEL middleware must be able to route
such messages back to the appropriate instance, which is especially difficult
when dealing with asynchronous callbacks. In traditional middleware solutions,
an ID token was generated and maintained (added to messages and extracted
from messages) by the middleware. BPEL, on the other hand, deals with loosely
coupled, distributed Web Services not under the control of a specific middleware.
Therefore, BPEL introduces the (optional) correlation concept to achieve the
same thing by using the application data itself.

Correlation allows BPEL designers to decide which parts of the messages sent
out to and received from partners constitute the ID of the message exchange, and
thus, how to map message exchanges to a concrete business process instance.
For example, when dealing with a Web Service for ordering items, the Web
Service might give out an order number as part of the first exchange, which can

22 CHAPTER 2. SETTING THE STAGE

then be used to correlate subsequent messages with this order number to the
same business process instance.

As a BPEL process may deal with many different partners, multiple IDs
may need to be created, which nevertheless point to the same process instance.
In BPEL, correlation is based on two concepts: properties and correlation sets.

� A property has a name and type, and is mapped via property aliases
to parts of the messages which might be sent or received as part of the
interactions of a BPEL process. A property represents one part of an ID
for a message exchange.

� A correlation set consists of multiple properties, and represents the com-
plete ID of an application-level conversation with a process instance. A
BPEL process may have multiple correlation sets for different sets of mes-
sages sent and received.

Correlation sets are used to associate messages with a business process in-
stance. An initial message initialises the correlation set, i.e. defines the values of
each property. The partner that sends this message is called the initiator of the
set. All following messages must carry the identical values in the properties of
the set to be routed to the given instance. All partners that use only follow-up
messages are called followers of the set.

To use a correlation set, it must be attached to invoke, receive, and reply
activities. The first message sent or received by one of these activities initiates
the set; this fact must be specified as part of the activity.

2.2 The Unified Modeling Language

The Unified Modeling Language (UML) is a (visual) language for describing
software designs, and is considered to be the de facto standard for modelling
software systems. Its origins lie in three distinct methods which have been
combined in 1994: The Booch Method [Boo93], the Object Modeling Technique
[RBL+90], and Objectory [Jac92]. UML has since been standardised under the
umbrella of the Object Management Group (OMG); the latest version available
is version 2.3 [OMG10b].

The aim of the UML is providing a way for developers to model software
systems. For this purpose, the UML offers the ability to graphically describe cer-
tain aspects of a system; for example, one aspect might be the static structure,
another might be the behaviour of a certain component. The UML provides
several diagram types for each of these purposes, which each show a certain
view on the modelled system. Taken together, a complete model of the system
emerges.

The following three sections highlight the aspects of the UML which are
important in this thesis. The first discusses the three most important model
elements referred to in the remainder of the thesis. The second introduces UML
profiles. Finally, section 2.2.3 briefly covers model serialisation.

2.2. THE UNIFIED MODELING LANGUAGE 23

2.2.1 Selected UML Modelling Elements

As indicated above, UML models may not only contain elements from various
abstraction levels of the system, but also for different phases of the develop-
ment process (for example, use case and deployment artefacts). In fact, the
UML meta-model consists of over 250 classifiers to be used in 14 types of di-
agrams. The contributions in this thesis affect three diagram types and (part
of) their model elements, namely composite structures, activities, and protocol
state machines. In the following, a short introduction into the relevant elements
is given.

2.2.1.1 Composite Structures

A first important concept for the design of complex systems are composite struc-
tures, i.e. the specification of elements which contain inner structure only visible
on a relevant level of abstraction. An example for a class with composite struc-
ture is shown in figure 2.3.

Figure 2.3: Structured Class Example

The main elements of a composite structure are the following:

� Structured Classes. A structured class (or more specifically, a class as
extended by the StructuredClasses package) is used to denote classes
which have internal structure and ports. The graphical representation
is the same as a standard class used in a class diagram, i.e. a solid line
rectangle with the class name written in the centre.

� Ports. A port offers an interaction point between an element and its envi-
ronment. In the context discussed here, a port is used to denote the fact
that the class offers functionality to the outside. The port thus effectively
hides the inner structure and implementation of this functionality. A port
is drawn as a small square on the boundary of the class; the name and
multiplicity are written near the square.

� Required and Provided Interfaces. A port may have provided and required
interfaces. The provided interfaces describe which requests the structured
class is able to handle through the given port, while the required interfaces

24 CHAPTER 2. SETTING THE STAGE

specify the requests the class itself may issue through the port to connected
elements. A provided interface is denoted through the lollipop notation,
while a required interface is shown as a semi-circle.

� Port Types. Declaring a port implicitly defines a type of the port which
implements the provided interfaces; an instance of this type is instanti-
ated to represent a port at runtime. However, the port type may also be
explicitly declared, in which case it must implement at least the provided
interfaces of the port. A port type is denoted as text next to a port.

The SoaML profile defined in the next section uses composite structures as
the basis for the specification of SOA-based systems and adds a few requirements
of its own.

Note that the definition of composite structures in the UML includes the
concept and representations of collaborations, which are not used in this thesis
and are therefore left out here.

2.2.1.2 Activities

The previous section has shown how to denote a structured class and its ports;
the latter representing entry points into the behaviour of the class. Behaviour of
classifiers can be specified in UML using various methods such as interactions,
state machines, or activities. In this thesis, the latter is used to model service
behaviour.

Activities can be used for several purposes in UML. The simplest is a proce-
dural description of work performed as a result of a method call. Another is the
specification of a workflow, for example of a business process; in this case, events
external to the system trigger the execution. In the first case, the activity starts
directly with an execution of actions, while in the second, the activity contains
actions which react to triggers.

An example for an activity is shown in figure 2.4. Activity modelling is based
on the following main concepts:

� Action Nodes. The fundamental building blocks of activities are action
nodes, or actions for short. An action describes a certain unit of exe-
cutable functionality, which may also use input data and produce out-
put data. The UML defines various kinds of actions. Communication
actions include AcceptCallAction (for receiving a call request), CallOp-
erationAction (for sending an operation call), and ReplyAction (for
replying to an operation call); other important actions are RaiseExcep-

tionAction (for throwing an exception) and OpaqueAction (which has an
implementation-specific semantics). Fundamentally, an action is denoted
as a rounded rectangle, but the actual representation depends on the type
of the action.

� Control Flow. The actions which are specified as part of an activity are
connected via control flows. Using control flows, the sequential behaviour

2.2. THE UNIFIED MODELING LANGUAGE 25

Figure 2.4: Activity Example

of an activity is specified. A control flow is an edge with an arrow, and
indicates that the action on the arrow side of the edge is executed after the
action on the non-arrow side of the edge. A sequence of actions combined
using control flows is called a flow in short.

� Control Nodes. To coordinate the flow in an activity, control nodes may
be used. There are five control nodes; three are used for denoting the start
and end of an activity or part of an activity, while the other two are used to
split and combine control flows (i.e., creating non-sequential behaviour).
The simplest control node is the InitialNode, which indicates the start of
an activity. The end of an activity is denoted by the ActivityFinalNode;
a FlowFinalNode is used to end only the current flow, not the complete
activity. For splitting control flow, DecisionNode and MergeNode are
used; a decision node splits the flow into several ones of which only one
may be executed, while the merge node combines them again. Another
possibility is allowing several flows to run in parallel. The ForkNode is
used to start multiple such flows, while a JoinNode is used to wait for all
flows to return.

26 CHAPTER 2. SETTING THE STAGE

� Nesting. An activity may include nested elements to further structure
the behaviour. First, an activity may invoke other activities by means of
a CallBehaviourAction call. Secondly, an activity may contain Struc-

turedActivityNode nodes, which are owned by the parent activity for
the sole purpose of nesting. A related concept is the InterruptibleAc-

tivityRegion, which defines a certain area in the activity which can be
interrupted by control flows leaving the region.

� Object Flow, Object Nodes, and Pins. Activities may not only be used to
describe control flow, but data (object) flow as well. ObjectFlow edges are
used to model the flow of data from or to ObjectNode elements. An object
node may contain a value corresponding to its type; the flow indicates
transfer of a value to another object. A specialised short-hand notation
for object nodes is the Pin, which is directly attached to an action and
models input (InputPin) required by the action or output (OutputPin)
provided by the. Pins may again be linked with object flows, although,
as detailed in the next chapter, an indirect variable-based data flow is
possible as well.

� Exception Handling. The last relevant concept from activity modelling is
exception handling, which is twofold. First, UML provides the Excep-

tionHandler element, which is used to denote an element which contains
behaviour to execute if an exception occurs in a protected node. The
protected node is linked to the handler may means of a special edge with
a lightning-bolt notation. An exception may be thrown by means of a
RaiseExceptionAction, which leads to the execution of the attached ex-
ception handler.

The UML specification defines additional concepts such as looping, expan-
sion regions, or streaming actions. As these are not relevant for the extensions
provided in this thesis, they are not further discussed here.

2.2.1.3 Protocol State Machines

The last model element used in this thesis are Protocol State Machines (PrSMs).
PrSMs are restrictions of state machines which are used to express usage pro-
tocols; for example, compound transitions, sub-state machines, and composite
states are not allowed.

PrSMs are always defined in the context of a classifier such as a structured
class or a port: The aim of PrSM is the specification of call sequences, i.e.
which operations of the classifier can be called in which state and under which
condition. As such, PrSMs formalise the interface of classes.

An example of a protocol state machine is shown in figure 2.5. The following
elements are key to protocol state machines:

� States. A state of a protocol state machine models a defined situation a
behaviour is in. The state may be static, i.e. the behaviour is waiting for an

2.2. THE UNIFIED MODELING LANGUAGE 27

Figure 2.5: Protocol State Machine Example

external event, or dynamic, i.e. the behaviour is performing a calculation
or is preparing a communication. A state is denoted as a rounded rectangle
with the state name inside.

� Protocol Transitions. Each transition between states in a protocol state
machine is a ProtocolTransition. A protocol transition may contain
pre- and post conditions; it may also be associated to an operation of the
context classifier through a Trigger with a certain event, for example, a
ReceiveOperationEvent. A protocol transition may not contain an effect
action. A transition is denoted as a solid open arrow between two states.

� Pseudo States. State machines may contain different kinds of pseudo
states. As in activities, there is pseudo node for indicating the start of the
protocol (Initial) and for denoting the end (Exit). Furthermore, the
Terminate pseudo state aborts the execution of the complete PrSM. For
modelling branches, the Choice pseudo node is used.

The description of protocol state machines concludes the introduction of the
relevant UML modelling artefacts for this thesis. For more information on UML,
the reader is referred to [OMG10b].

2.2.2 MOF, UML, and Profiles

One of the aims of this thesis is creating the ability to model service-oriented
systems in UML, and thus, the introduction of a domain-specific, graphical
language for SOA modelling. There are basically two options for creating such
a language: The first is adapting and extending the UML itself to SOA concepts;
the second is using the profiles extension mechanism provided by the UML. In
the following, these two alternatives are elaborated.

Adapting and extending the UML requires changing the definition of UML.
The UML specification is modelled using the Meta Object Facility (MOF), a
platform-independent meta-modelling framework defined by the OMG.

MOF is defined as a layered architecture. Each layer (also referred to as a
meta-level) contains instances of the elements defined in the level above it, and
may define the meta-elements for the elements in the level below it. A special

28 CHAPTER 2. SETTING THE STAGE

role is given to the uppermost level, which contains elements defined in itself
for bootstrapping.

M3 MOF

M2 UML

M1
 eUniversity
 System

M0 Instances

<<instanceof>>

<<instanceof>>

<<instanceof>>

Class

Class

Blackboard

Blackboard Instance at http://...

Figure 2.6: MOF Layers Example

An example for the layered approach of MOF is shown in figure 2.6, which
shows the definition of the Unified Modeling Language in MOF, concrete sys-
tems modelled in UML, and instances of these systems. The figure thus shows
four levels, named M3 to M0. The first level (M3) contains MOF, which is de-
fined in itself. The second level (M2) contains UML, which is defined in terms
of MOF. Concrete models of software systems, like for example the eUniversity
system in the case study, are defined in terms of UML and thus reside on level
M1. Finally, the classes of the eUniversity system are instantiated at runtime,
which takes place in level M0.

The first option thus consists of changing the MOF meta-model of the UML
according to the requirements of SOAs. This is discussed in the next section.

The second option does not require changes to the meta-model of the UML.
The UML meta-model (residing in M2 in the above figure) already contains an
extension mechanism which is separate from the MOF layers. This mechanism
allows for the creation of profiles, which form a conservative extension to the
UML and are only defined in the terms allowed by the UML specification. This
is discussed in section 2.2.2.2.

Finally, both options may be combined, which will be shown in section 2.2.2.3.

2.2. THE UNIFIED MODELING LANGUAGE 29

2.2.2.1 MOF Meta-Models

As mentioned above, the first option of extending the UML is by extending,
and possibly adapting, the UML meta-model itself. As the UML meta-model is
modelled in MOF, any changes need to be done on the MOF level.

This is referred to as a heavyweight extension of the UML. Heavyweight
extensions have the following benefits:

� Using MOF allows using the full power of meta-modelling to precisely and
succinctly define relationships between modelling elements, which includes
constraining extended classes.

� The definition and naming scheme of the newly introduced meta-model
can follow the UML model more closely, making it more readable for
developers with experience in UML.

� A complete meta-model may also serve as a domain definition, fully spec-
ifying the concepts and relations in a standard syntax. This also increases
understandability for software engineers.

On the other hand, heavyweight extensions are not risk-free. Firstly, changes
on this level are completely unrestricted and may even completely replace core
UML concepts, altering the semantics to a point where knowledge of the UML
is no longer useful for the newly introduced concepts.

A second problem associated with a heavyweight extension is tool support.
As a MOF extension effectively creates or changes model elements directly, each
tool needs to be specifically adapted to support them, i.e. there is no generic
out-of-the-box support for changes to the UML meta-model.

2.2.2.2 Profiles

The profile extension mechanisms of the UML is defined in chapter 18 of the
UML superstructure [OMG10b]. Profiles define a mechanism for adapting a
reference meta-model (which, in this case, is the UML specification) for a specific
target domain. In particular, the elements defined in a profile may not contradict
the semantics of the reference meta-model, and may not add new meta-classes
in the UML meta-class hierarchy nor change existing meta-class definitions. In
a sense, a profile has a read-only relationship with its reference meta-model,
i.e. the meta-model may only be extended without changes.

A profile is thus not a first-class extension mechanism but rather allows a
lightweight extension of the UML. Profiles are defined by using the following
concepts:

� A Profile itself is a UML Package, which references the UML meta-
model package and any additional required profiles.

� Special meaning is given to UML meta-classes by means of Extension

with a Stereotype. A stereotype defines a new semantics for the extended

30 CHAPTER 2. SETTING THE STAGE

class, which is applicable if the stereotype is used on a corresponding class
in a concrete model.

� A stereotype may have attribute definitions, which are referred to as Tag

Definitions. The types used for tag definitions may be standard meta-
classes or stereotypes. When a stereotype is applied in a concrete model,
the corresponding attribute values are referred to as Tagged Values.

Lightweight extension of the UML have the following benefits:

� A profile is easy to define, as it only allows extensions of existing meta-
classes and thus, inherits most of the semantics from UML.

� In general, the risks of changing the UML semantics to a point where the
original intentions are lost are lower than in heavyweight extensions.

� Most UML modellers include support for profiles, which means instant
tool availability for new concepts introduced through profiles.

The disadvantage of using profiles is the loss of the ability to change existing
concepts.

2.2.2.3 Hybrid DSL Specifications

Interestingly, many existing UML profile specifications do not introduce their
profiles directly as a set of stereotypes and tag definitions. Rather, they define a
MOF meta-model for the extension, later mapping the newly introduced meta-
classes and meta-attributes to stereotypes and tag definitions.

Using this approach, the constraints of the profile mechanism and the ex-
tended language (i.e., UML) must already be considered during the definition
of the meta-model extension. However, if successful, the resulting specifications
combine the best of two worlds:

� Using MOF to define the meta-model for the new language allows for a
precise and technically unrestricted definition of the extension; the descrip-
tion can follow the UML standard closely to increase understandability.

� Using the profile mechanism to define a corresponding profile has the
advantage of tool support, and thus immediate applicability.

� In rare cases, the profile and the meta-model might disagree, indicating a
missing or problematic feature of the UML meta-model. In this case, the
disagreement is already a precise specification of the problem.

Examples of profiles with this approach include SoaML ([OMG09b]) and
MARTE ([OMG08a]), both of which are on their way to becoming OMG stan-
dards. In fact, the first profile makes use of a disagreement between profile and
meta-model to point to a new extension required in the UML for modelling
service-oriented systems.

2.3. SOAML 31

2.2.3 Model Serialisation

The principle of graphical representation lies at the core of UML. However, to
be able to store and exchange UML models, a machine-readable serialisation
format is required. UML 2 models are serialised in XMI according to the rules
specified by the MOF 2.0 XMI Mapping Specification (see [OMG07]). In prac-
tise, however, different tools implement different versions of this specification,
or define their own format altogether.

With the introduction of the Eclipse Model Development Tools project
(MDT) [Ecl10c], this field has seen some consolidation. The MDT project de-
fines the complete UML2 meta-model based on the Eclipse Modelling Frame-
work (EMF); many tools are now based on this model and thus use the same
serialisation format. The UML2-EMF-XMI format of Eclipse can be written
and read by the Eclipse UML2 tools, read and written by the Rational Software
Architect [IBM09] modelling tool by IBM, and exported by many other tools,
for example by MagicDraw [NoM10].

Figure 2.7: A UML Model and its Serialisation

An example of a serialisation of an UML2 activity diagram to EMF2-XMI is
shown in figure 2.7. All tools presented in this thesis are based on this format.

It is important to note that the UML2-EMF-XMI format does not include
any layouting information, such that manual layouts (which are quite common)
are lost during serialisation and deserialisation.

2.3 SoaML

One of the contributions of this thesis is adding the ability to model service-
oriented systems with UML by extending and adapting UML elements to the
SOA view. Although the focus of the extensions in this thesis is on the be-
havioural part, behaviour can only be defined in the context of a system struc-
ture. Thus, a way of modelling the static part of a SOA system in UML is
required as well.

32 CHAPTER 2. SETTING THE STAGE

A first step into this direction has already been taken with the UML profile
SoaML [OMG09b], which is a draft OMG standard for describing the static
aspects of service-oriented systems in UML. Although SoaML is currently in
beta status, the concepts are considered valid and stable enough to be included
in this thesis. Nevertheless, the final version of SoaML might differ from the
concepts presented here.

Structural service modelling in SoaML employs the basic UML mechanisms
for modelling composite structures as introduced in the last section. SoaML
adds several stereotypes to the elements present in composite structures, and
defines several constraints on these elements. In the following, the SoaML con-
cepts relevant for this thesis are presented.

2.3.1 Participants

In SoaML, the basic unit for implementing service functionality is a participant.
A participant can represent people, organisations, or system components, and
may offer or require any number of services. SoaML introduces the stereotype
�Participant�, which is used to tag UML components to indicate that the
component takes part in a SOA. A participant may be both a consumer and a
provider of services, depending on the ports associated with the participant.

A SoaML participant may include UML ports, which are interaction points
where services are provided or requested. Each of the ports of a participant is
tagged with either �Service� or �Request�. In the former case, the partic-
ipant offers a service through this port, while in the second case, a service is
requested on this port.

The behaviour of the provided services of a participant may be implemented
by different means. The SoaML specification lists three possible ways of pro-
viding such behaviour:

� A first option is to implement each provided operation separately, i.e. by
using an owned behaviour of the corresponding method. The behaviour
may be realised by an interaction, activity, state machine, protocol state
machine, or opaque behaviour.

� A second action is through the means of event handling. Using this con-
cept, a participant is active in the sense that it already contains running
behaviour and is thus able to react to incoming events using actions such
as AcceptCallAction.

� The third options is delegation: A participant may also delegate incom-
ing requests to inner parts in the composite structure. This allows for
wrapping existing implementations, or for further decomposition.

The UML4SOA profile introduced in chapter 3 takes the second approach by
providing workflows which are able to react to incoming events from the ports
of the owning participant.

2.3. SOAML 33

SoaML defines another concept, the �MessageType�, which is relevant to
this thesis. A message type is an extension of the UML meta-classes DataType

and Class, and is used to represent information exchanged between participant
requests and services. Message types may not contain operations or behaviours:
The intention is to only allow data to be transported between services. Data
can be represented through attributes and associations to other message types.

SoaML requires that all input and output parameters of operations defined
in the provided and required interfaces of service and request ports must be
typed with either simple types or message types.

2.3.2 Services and Requests

Ports of SoaML participants tagged with �Service� or �Request� may be
typed with a simple UML interface (in which case, no protocol is assigned to
the port), or with a �ServiceInterface�, which is another concept defined by
SoaML. A�ServiceInterface�, which is an extension of an UML class, specifies
the responsibilities of both the participant to which the corresponding port is
attached, and the communication partner which is connected to the port.

For service interfaces used as types of �Service� ports, the semantics is
as expected from the UML: Interfaces implemented by the service interface
are provided by the participant; thus, the behaviour of the participant must
implement them and provide the corresponding functionality. Interfaces used
by the service interface are required by the participant, thus, the communication
partner must implement them and provide the corresponding functionality.

When using �Request� ports, this situation is inverse: Implemented op-
erations of the service interface are requested by the participant, and must be
implemented by the partner. To avoid having to create two service interfaces due
to this problem, SoaML introduces the notion of conjugation. In a �Request�
port, the provided and required interfaces of a port type are inverted, which
means that the port uses the port type instead of implementing it.

Note that when using service interfaces, provided and required interfaces
are not specified on the port but on the port type, and are derived in the port.
Furthermore, the behavioural protocol observed at the port is also attached to
the service interface. This will become important in chapter 3 with the definition
of service protocols.

2.3.3 SoaML Meta-Model

The meta-model for the four new SoaML concepts introduced above — partici-
pants, service ports, request ports, and service interfaces, is shown in figure 2.8.

The figure shows how the �Service� and �Request� stereotypes are
derived from the Port meta-class, and redefines the type of Port with the
�ServiceInterface� stereotype. The latter is an extension of the UML meta-

34 CHAPTER 2. SETTING THE STAGE

Figure 2.8: SoaML Meta-Model (Excerpt)

class Class. Furthermore, on the bottom, the stereotype �Participant� is
shown as an extension of Component, and the �DataType� stereotype as an
extension of both Class and DataType.

2.3.4 Case Study

SoaML has been used to model the static part of the eUniversity case study
introduced in chapter 1. The architecture makes use of all of the SoaML stereo-
types introduced above and is shown in figure 2.9. Note that the port types are
associated with the ports with a usage link stereotyped with �type�; this is
a convenience notation used to clarify the relationship between a port and its
service interface and is not a UML or SoaML concept. The figure shows only
one participant — ThesisManagement — which has two �Service� ports and
three �Request� ports. The service interfaces of the �Service� ports both
implement and use operations, while the service interfaces of the �Request�
ports are simpler and only implement operations.

The types referenced in the composite structure are all message types, and
are shown in figure 2.10.

2.3. SOAML 35

Figure 2.9: eUniversity Case Study: Static Model

36 CHAPTER 2. SETTING THE STAGE

Figure 2.10: eUniversity Case Study: Data Types

2.4 Model-Driven Development

Model-Driven Development (MDD) [MCF03, Sel03], also called Model-Driven
Software Engineering (MDSE), refers to a software development process which
focuses on building models of software systems before actually implementing
them. This principle is well-known in traditional engineering principles; in fact,
in many cases the construction of complex structures such as buildings or bridges
is not feasible without a model. MDD attempts to transfer the advantages of
modelling to software engineering, in which case the benefits from a process
based on models promise to be every greater: Through automation, models can
be used for more than just communication purposes; in fact, they can be used
to drive the system implementation or even replace the need to implement a
system by hand.

The concept of model-driven development is independent of any concrete
technology. Several frameworks for MDD have been proposed, the most promi-
nent of which is the Model-Driven Architecture (MDA) by the OMG [Ric00].
MDA is closely related to other OMG standards such as the UML and MOF
introduced in previous sections.

This thesis takes a wider approach to MDD without committing to any
particular OMG or other standard.

The following subsections describe the idea of models in software develop-
ment, the added benefits of being able to analyse models before implementing a
software system, and finally the automatic generation of software artefacts and,
in the end, executable code.

2.4. MODEL-DRIVEN DEVELOPMENT 37

2.4.1 Models

It is difficult to arrive at a global, agreed-upon definition of a model, as models
differ between application areas, abstraction level, and purpose. For example,
one might consider code written in Java or C# to be a model of a software sys-
tem, since it abstracts from the concrete machine instructions, instead allowing
developers to think and write code in terms of classes, objects, and (virtual)
method invocations. Another view might consider code written in such a lan-
guage to be too concrete, and consider a graphical representation of a system,
for example drawn using UML constructs, as a model later to be implemented
in Java or another language.

In general, the definition of a model tends to concentrate as much on what
is modelled as on what is not, i.e. the implementation which is abstracted away.
Each of the two examples provided above is based on this view: The respective
models are more general than their counterpart implementations, and thus fur-
ther removed from any concrete implementation technique and more focused on
abstract concepts. The term of platform independence is often associated with
models, which reflects the attempt to model software independent of any one
realisation option. An example of the inverse relationship of abstraction and
platform dependence is shown in figure 2.11.

Abstraction

Machine CodeByte CodeJava CodeActivityUse Case

Platform Dependence

Figure 2.11: Model-Driven Development

Independent of the concrete model abstraction level, a model should be
easy to specify, understand, and maintain, which means that the modelling
technique must be tailored to the concrete problems at hand. This has given
rise to the concept of domain-specific modelling languages (DSMLs). It is also
important to note that using MDD is by no means a single-step approach:
Models can be refined in a step-wise fashion, thus introducing many intermediate
representations of the system with varying levels of details.

There is always a balance involved in models between being too generic —

38 CHAPTER 2. SETTING THE STAGE

and thus allowing too much freedom in implementation — and too specific,
negating the benefits of using a model in the first place. The level of detail
required depends on the target use of the model. For maximum usability, a
model should at least be amenable to analysis, if not for code generation. These
two ideas are discussed in the following.

2.4.2 Analysis on Models

Using models as an abstract representation of a computer system has the benefit
of being more amenable to (formal) analysis, as fewer details need to be taken
care of and the essence of the software behaviour can be extracted in an easier
fashion. As models are available in an earlier phase of a software development
process than the actual implementation, there is a higher chance of still being
able to correct a system design if problems are found.

Analysis of software models has the aim of testing, or verifying, that certain
properties hold in the modelled software. Such analysis can take the form of
executing (parts of) a model to evaluate its runtime properties; another form is
using rigorous mathematical techniques for verifying the qualitative or quantita-
tive aspects of the system, i.e. aspects such as deadlock freeness or performance
analysis and prediction in different usage scenarios.

In chapter 1, the Sensoria project has already been mentioned. Many
results of this project lie in the area of model-driven verification by using formal
methods; also, several of the tools developed in Sensoria address this area and
have been integrated into the common tooling platform introduced in chapter 8.

2.4.3 Model Transformations and Code Generation

Model-driven development and its promise of automated development is closely
linked to the domain of model transformation, which is in fact regarded as one
of the core technologies for the realisation of model-driven development.

As noted above, model-driven development is not a single-step approach
from a model to executable source code. Rather, multiple steps are possible
where both the source and the target artefacts can be regarded as models of
the software system. Thus, model transformation may refer to any translation
from a source software artefact to a target artefact; the latter might even be a
model of machine code.

Model transformations are defined in terms of domain meta-models instead
of models. As shown in figure 2.12, a model transformation relates two meta-
models to one another; execution of the transformation then results — depend-
ing on the direction — of a transformation of a concrete model compliant to one
of the meta-models to a concrete model compliant to the other meta-model.

Model transformations, in general, are not concerned with generating code,
but stay on the level of model instances. Thus, two additional steps are required
on a technical level to acquire the source model from its native representation,
and to emit the target model in the same way. These are referred to as deseri-
alisation and serialisation, and are shown at the bottom of the figure.

2.4. MODEL-DRIVEN DEVELOPMENT 39

Input Meta-
Model

Input Model

Transformation
Specification

Transformation
Execution

Output Meta-
Model

Output Model

instance of instance ofexecution of

source

reads

target

writes

deserialise serialise

Figure 2.12: Model Transformations

It is important to note that MDD in itself does not define which models
are considered read-only, and which are to be edited further. In figure 2.11, for
example, a concrete development process might allow editing of all artefacts, or
only of the artefacts higher than or on the same level as UML or Java. There
are two fundamental views of MDD which affect this decision.

� The first view is that of MDD as a compilation step. In this view, a certain
model is selected as the definitive implementation of the system. All other
models on the way to machine code are generated and not to be read by
humans. In this view, MDD is a natural extension, or new layer, on top
of existing compilers.

� The second view is that of MDD as a helping hand in programming:
Models do not contain the complete specification of a system, but are
rather seen as a first step to generate code which is later extended in a
lower-level programming language.

Note that in the first view, all information about the system resides in the
model, as all changes are done in the model, and the code is re-generated after
each change. In the second view, changes to the initially generated code lead to
inconsistencies between the model and the implementation. Possible remedies
include discarding the model once it has served its purpose, or attempting to
keep both artefacts in sync. The latter, however, is a complicated topic and a
research area of its own.

40 CHAPTER 2. SETTING THE STAGE

2.5 Modal I/O Automata and Interface Theo-
ries

Part of the specification of a high-level modelling language for SOA behaviour in
this thesis is the definition of a formal semantics, which, in turn, offers the ability
for formal verification of SOA systems modelled using this technique. As will
be discussed further in chapter 5, the semantic domain chosen for the developed
language are modal input/output automata (MIOs) [LNW07a]; furthermore, the
verification methods used are based on interface theories [BMSH10].

In this section, MIOs as well as interface theories are introduced. A more
thorough discussion of these topics may be found in [BMSH10].

2.5.1 Modal I/O Transition Systems

Among the most widely accepted methods for specifying behavioural properties
of software are input/output automata [LT87, LT89], which have been intro-
duced to specify the temporal ordering of events involving a component, explic-
itly taking communication aspects such as sending or receiving messages into
consideration. Many variations of these automata have been introduced over
the years; for example interface automata [dAH05], timed interface automata
[dAHS02], or resource automata [CdAHS03].

At the same time, another aspect of interface behaviour has been studied:
Modal automata [LT88b] explicitly address the difference between required and
optional actions by using must and may transitions, which allow protocols and
implementations to differ with regard to non-compulsory actions.

Recently, both the input/output and the may/must aspects of behavioural
specifications have been integrated [LNW07a], giving rise to modal I/O au-
tomata (MIOs).

A modal transition system is characterised by the fact that it has two tran-
sition relations, indicating allowed (may) and required (must) behaviour. Here,
we consider an extended version of the original modal transition systems [LT88b]
by including a signature which distinguishes between internal and external ac-
tions.

Definition 1 (Modal Transition System) A modal transition system (M-
TS) S = (statesS , startS , (extS , intS), 99KS ,−→S) consists of a set of states
statesS, an initial state startS ∈ statesS, disjoint sets extS and intS of external
and internal actions where actS = extS ∪ intS denotes the set of (all) actions, a
may-transition relation 99KS ⊆ statesS × actS × statesS, and a must-transition
relation −→S ⊆ statesS × actS × statesS. The pair (extS , intS) is called the
signature of S.

An MTS S is called syntactically consistent if every required transition is
also allowed, i.e. it holds that −→S ⊆ 99KS . From now on we only consider
syntactically consistent MTSs. Moreover, we call an MTS S an implementation
if the two transition relations coincide, i.e. −→S = 99KS .

2.5. MODAL I/O AUTOMATA AND INTERFACE THEORIES 41

Modal I/O transition systems [LNW07a] further differentiate between two
kinds of external actions, namely input and output actions.

Definition 2 (Modal I/O Transition System) A modal I/O transition sys-
tem (MIO) S is an MTS with the set of external actions extS partitioned into
two disjoint sets inS, outS of input and output actions, respectively. The triple
(inS , outS , intS) is called the signature of S.

The notions of syntactic consistency and implementation also apply for
MIOs.

2.5.2 Interface Theories

When modelling the behaviour of service- or component-based systems, two
questions may be asked of a model:

� Does a certain behavioural model refine another model?

� Are two behavioural models compatible with one another?

Interface theories or interface languages are commonly used to precisely de-
fine these notions. Interface theories can be defined as follows (see [BMSH10]):

Interface theories are tuples I = (A,≤,∼,⊗) consisting of a specification
domain A, a reflexive and transitive refinement relation ≤ ⊆ A×A, a symmetric
compatibility relation ∼ ⊆ A × A, and a partial composition operator ⊗ :
A×A → A. If two interfaces are compatible then their composition is defined,
i.e. for all S, T ∈ A, if S ∼ T then S ⊗ T is defined. Moreover, interface
theories impose the following requirements on their refinement and compatibility
relations:

� Preservation of compatibility under refinement:

for all S, T, T ′ ∈ A,

if S ∼ T and T ′ ≤ T then S ∼ T ′.

� Compositionality:

for all S, T, T ′ ∈ A,

if S ⊗ T defined and T ′ ≤ T then S ⊗ T ′ defined and S ⊗ T ′ ≤ S ⊗ T .

These properties imply independent implementability, which is the basis for
a top-down design of services and service protocols: In order to refine a given
composed interface S⊗T towards an implementation, it suffices to independently
refine S and T , say, to S′ and T ′, respectively; then the refinements S′ and T ′

are compatible and their composition (which is defined) refines the interface
S ⊗ T .

In this thesis, we shall always employ modal I/O transition systems as the
domain for the interface theories discussed, varying the notions of refinement,
compatibility, and composition.

42 CHAPTER 2. SETTING THE STAGE

2.5.2.1 Strong Refinement and Compatibility

In the following, we recall the standard definition of refinement for modal tran-
sition systems, cf. [LT88b]. The notion of refinement aims at capturing the
relation between an abstract specification of an interface and a more detailed
one, possibly an implementation of that interface. Thus, it allows for a stepwise
refinement of an abstract specification towards an implementation.

The basic idea of modal refinement is that any required (must) transition
in the abstract specification must also occur in the concrete specification. Con-
versely, any allowed (may) transition in the concrete specification must be al-
lowed by the abstract specification. Moreover, in both cases the target states
must conform to each other. Modal refinement has the following consequences:
A concrete specification may leave out allowed transitions, but is required to
keep all must transitions, and moreover, it is not allowed to perform more tran-
sitions than the abstract specification admits. The following definition of modal
refinement is called strong since every transition that is taken into account must
be simulated “immediately”, i.e. without performing internal actions before.

Definition 3 (Strong Modal Refinement [LT88b]) Let S and T be MTSs
(MIOs, resp.) with the same signature. A relation R ⊆ statesS × statesT is
called strong modal refinement for S and T iff for all (s, t) ∈ R and for all
a ∈ actS it holds that

1. if t
a−→T t

′ then there exists s′ ∈ statesS such that s
a−→Ss

′ and (s′, t′) ∈ R,

2. if s
a
99KSs

′ then there exists t′ ∈ statesT such that t
a
99KT t

′ and (s′, t′) ∈ R.

We say that S strongly modally refines T , written S ≤m T , iff there exists a
strong modal refinement for S and T containing (startS , startT).

If both S and T are implementations, i.e. the must-transition relation coincides
with the may-transition relation, then strong modal refinement coincides with
(strong) bisimulation; if −→T = ∅ then it corresponds to simulation [Mil89].

Next, we introduce a composition operator on MIOs. When two protocols
(implementations), each one describing a particular component, can commu-
nicate by synchronous message passing, we are interested in computing the
resulting protocol (implementation) of the composed system.

Although composition can obviously be defined for MTSs, we directly give
a definition for MIOs as this is our main interest.

It is convenient to restrict the composition operator to composable MIOs by
requiring that overlapping of actions only happens on complementary types.

Definition 4 (Composability [LNW07a]) Two MIOs S and T are called
composable if (inS∪intS)∩(inT ∪intT) = ∅ and (outS∪intS)∩(outT ∪intT) = ∅.

We now define composition of MIOs in a straightforward way by a binary
partial function ⊗ synchronising on matching (shared) actions.

2.5. MODAL I/O AUTOMATA AND INTERFACE THEORIES 43

Definition 5 (Composition [LNW07a]) Two composable MIOs S1 and S2

can be composed to a MIO S1⊗S2 defined by statesS1⊗S2 = statesS1 × statesS2 ,
the initial state is given by startS1⊗S2

= (startS1
, startS2

), inS1⊗S2
= (inS1

\
outS2

) ∪ (inS2
\ outS1

), outS1⊗S2
= (outS1

\ inS2
) ∪ (outS2

\ inS1
), intS1⊗S2

=
intS1 ∪ intS2 ∪ (inS1 ∩outS2)∪ (inS2 ∩outS1). The transition relations 99KS1⊗S2

and −→S1⊗S2
are given by, for each ∈ {99K,−→},

� for all i, j ∈ {1, 2}, i 6= j, for all a ∈ (actS1
∩ actS2

), if si
a
 Si

s′i and

sj
a
 Sj

s′j then (s1, s2)
a
 S1⊗S2

(s′1, s
′
2),

� for all a ∈ actS1 , if s1
a
 S1

s′1 and a /∈ actS2 then (s1, s2)
a
 S1⊗S2

(s′1, s2),

� for all a ∈ actS2 , if s2
a
 S2

s′2 and a /∈ actS1 then (s1, s2)
a
 S1⊗S2

(s1, s
′
2).

Composition of MIOs only synchronises transitions with matching shared
actions and same type of transition, i.e. a must-transition labeled with a shared
action only occurs in the composition if there exist corresponding matching
must-transitions in the original MIOs.

A well-known problem occurs when composing arbitrary MIOs S and T : If
for a reachable state (s, t) in S⊗T , S in state s is able to send out a message a
shared with T , and T in state t is not able to receive a then this is considered
as a compatibility problem since S may get stuck in this situation. We want to
rule out this erroneous behaviour by requiring that S and T must be compatible.

The following definition of strong compatibility is strongly influenced by
[dAH05] and [LNW07a]. Intuitively, two MIOs S and T are compatible if for
every reachable state in the product S⊗T , if S is able to provide an output which
is shared with T , i.e. is in the input alphabet of T , then T must “immediately”
be able to receive this message (and vice versa).

Definition 6 (Strong Modal Compatibility) Let S and T be composable
MIOs. S and T are called strongly modally compatible, denoted by S ∼sc T , iff
for all reachable states (s, t) in S ⊗ T ,

1. for all a ∈ (outS ∩ inT), if s
a
99KSs

′ then there exists t′ ∈ statesT such that

t
a−→T t

′,

2. for all a ∈ (outT ∩ inS), if t
a
99KT t

′ then there exists s′ ∈ statesS such that

s
a−→Ss

′.

MIOs equipped with∼sc and≤m form a valid interface theory (see [BMSH10]
for a proof).

2.5.2.2 Weak Refinement and Compatibility

The basic (strong) form of modal refinement requires that every transition that is
taken into account must be simulated immediately. There are many application
areas in which this definition is too strong (see [HL89]). However, it can be

44 CHAPTER 2. SETTING THE STAGE

weakened by distinguishing between external and internal actions and allowing
an external action to be enclosed in internal actions. In this case, we speak of
weak transitions.

For denoting weak transitions, given a MIO S and an action a ∈ extS , we

write s
a−→
∗
Ss
′ iff there exist states s1, s2 ∈ statesS such that

s(
τ−→S)∗s1

a−→Ss2(
τ−→S)∗s′

where t(
τ−→T)∗t′ stands for finitely many transitions, labelled with internal

actions, leading from t to t′; possibly no action and in this case t = t′. Here and
later on, the action τ always denotes an arbitrary internal action. Moreover, we
write

s
â−→
∗
Ss
′ iff either s

a−→
∗
Ss
′ and a ∈ extS , or s(

τ−→S)∗s′.

Both notations are analogously used for may-transitions. Using this notion of
weak transitions, we can define weak modal refinement.

Definition 7 (Weak Modal Refinement [HL89]) Let S and T be MIOs
such that αext(S) = αext(T). S weakly modally refines T , denoted by S ≤∗m T ,
iff there exists a relation R ⊆ statesS × statesT containing (startS , startT) such
that for all (s, t) ∈ R, for all a ∈ actS ∪ actT ,

1. if t
a−→T t

′ then there exists s′ ∈ statesS such that s
â−→
∗
Ss
′ and (s′, t′) ∈ R,

2. if s
a
99KSs

′ then there exists t′ ∈ statesT such that t
â
99K
∗

T t
′ and (s′, t′) ∈ R.

Weak modal compatibility moderates the usual notion of strong compatibil-
ity [LNW07a] by requiring that an output (issued by a may- or must-transition)
must be accepted with a corresponding input (by a must-transition), which may,
however, possibly be preceded and followed by internal actions.

Definition 8 (Weak Modal Compatibility [BMSH10]) Let S and T be
composable MIOs. S and T are called weakly modally compatible, written S ∼wc
T , iff there exists a relation R ⊆ statesS × statesT containing (startS , startT)
such that for all (s, t) ∈ R,

1. for all a ∈ (outS∩inT), if s
a
99KSs

′ then ∃t′ ∈ statesT .t
a−→
/

T t
′ and (s′, t′) ∈

R,

2. for all a ∈ (outT ∩inS), if t
a
99KT t

′ then ∃s′ ∈ statesS .s
a−→
/

Ss
′ and (s′, t′) ∈

R,

3. for all a ∈ (intS ∪ extS \ shared(S, T)), if s
a
99KSs

′ then (s′, t) ∈ R,

4. for all a ∈ (intT ∪ extT \ shared(S, T)), if t
a
99KT t

′ then (s, t′) ∈ R.

Again, MIOs equipped with ∼wc and ≤∗m form a valid interface theory (see
again [BMSH10] for a proof).

2.6. TECHNICAL BACKGROUND 45

2.5.2.3 Hiding

The interface theories introduced in the previous sections are based on match-
ing alphabets of the automata to be refined or verified for compatibility. The
notion of hiding (see, e.g., [Mil89]), i.e. internalising a set of actions, has been
introduced to be able to loosen this constraint in certain situations. We can
define hiding as follows:

Definition 9 (Hiding) Let S = (statesS , startS , inS , outS , intS , 99KS ,−→S)
be a MIO, and X ⊆ extS a set of actions. Then, hiding the actions X in S
yields S \X = (statesS , startS , inS \X, outS \X, intS ∪X, 99KS ,−→S).

This concludes the introduction of modal I/O automata as well as the strong
and weak interface theories. We shall come back to these topics in chapter 5.

2.6 Technical Background

This thesis introduces a variety of tools for supporting the model-driven develop-
ment of service-oriented software. These tools have been created using different
frameworks and libraries, which have proven invaluable to the realisation of the
practical part of this thesis, and are shortly introduced in the following.

2.6.1 Eclipse Platform

Nearly all tools presented in this thesis are based on the Eclipse framework
[Ecl10i, DFK04]. Eclipse itself is an open source community focused on build-
ing tools for software development and thus includes a variety of libraries and
frameworks; the Eclipse project was created in 2001 by IBM and taken under
the umbrella of the Eclipse Foundation in 2004.

The core of the Eclipse project is an extensible application framework which
is able to host all kinds of Java-based desktop and server applications, provid-
ing a rich editor- and view-based UI, plug-in support, automatic updates, and
various platform services such as a selection service and (retargetable) actions.
On top of this framework, a variety of applications have been built; the most
well-known of which is the Eclipse Java IDE.

Since version 3.0, the Eclipse platform is based on the OSGi Dynamic Module
System for Java [OSG08], which introduces a service layer to the Java program-
ming language. OSGi is based on bundles, which are components grouping a set
of Java classes and meta-data providing among other things name, description,
version, and imported as well as exported packages of the bundle. A bundle
may provide arbitrary services to the platform. Each bundle may be dynami-
cally started and stopped as well as added and removed from the platform.

Eclipse provides its own implementation of the OSGi standard named Equi-
nox [GHM+05], and uses the term plug-in for bundles integrating into Eclipse.
Equinox adds the ability of declarative service descriptions by means of exten-
sions and extension points: Using an XML dialect, a plug-in may describe at

46 CHAPTER 2. SETTING THE STAGE

which points it may be extended by other plug-ins, and which extensions it
contributes to the platform itself. This mechanism enables Eclipse applications
to be extended in a flexible way.

OSGi may also be extended by the distributed middleware platform R-OSGi
[RAR07]. R-OSGi adds distributed module management to OSGi: Modules
may not only be loaded locally, but be deployed, started and stopped on remote
machines as well.

Eclipse provides its own library to replace the Java standard Swing/AWT
for its user interface. The Standard Widget Toolkit (SWT) [Ecl10f, NW04] is
closely based on platform APIs, such that it does not only provide a native
look-and-feel, but actually uses the widgets available on the platform. SWT is
available for various platforms including Windows, Mac OS, and Linux.

There are several libraries available which extend SWT to provide support
for different UI use cases such as displaying structured data in tables and trees
and for drawing graphical elements by hand. In this thesis, the Draw2D frame-
work2 is used for the implementation of graphical editors. Draw2D provides a
lightweight toolkit of graphical components called figures, which can be assem-
bled on a canvas. Using connections, edges can be drawn between the figures
which are automatically routed according to certain constraints.

2.6.2 Model Development Tools and Meta-Models

An important part of this thesis deals with model transformations, which are
based on meta-models of certain domains. To create a meta-model, a meta-
modelling language is required. In this thesis, the Eclipse Modeling Framework
(EMF) [Ecl10a] has been used for this purpose. EMF and MOF are two similar
meta-modelling frameworks, which can in fact be translated into one another
[GR03]. However, EMF includes the ability to generate a complete Java imple-
mentation of a meta-model, which greatly facilitates development and usage of
such models.

The preferred way of creating a meta-model in EMF is using an XMI format,
for which editors are available in the tool support for EMF. From this format,
code can be generated which includes Java classes for all meta-modelling con-
cepts, and a factory for creating concrete instances of the meta-model. Further-
more, EMF provides standard serialisation and deserialisation support for all
created models.

As we shall see in later chapters, this thesis introduces two new meta-models
for the domains of modal I/O automata and behavioural service specifications.
It also re-uses a set of existing meta-models for industry standards, for which
an EMF version has already been created.

The first of these is the UML2 meta-model, which is provided by the UML2
subproject of the Eclipse MDT project [Ecl10c]. UML2 is an EMF-based im-
plementation of the Unified Modeling Language (UML) 2 OMG meta-model for
the Eclipse platform. As discussed in section 2.2.3, the serialisation and dese-

2Draw2D is part of the Graphical Editing Framework (GEF) [Ecl10b].

2.6. TECHNICAL BACKGROUND 47

rialisation support of this project is now in use by many UML2 modellers and
thus enables exchange of UML models between these tools.

Another set of meta-models provided by the Eclipse project are the meta-
models for the Web Service standards family. As indicated in section 2.1.2,
there are numerous Web Service related standards; in this thesis, we are mainly
concerned with BPEL, WSDL, SOAP, and XML Schema.

A meta-model for BPEL is provided by the Eclipse BPEL project [Ecl10g].
The meta-model covers the BPEL 2 specification by OASIS, and includes the
WSDL extensions for partner link types and message properties for correlation.
The meta-models for WSDL and SOAP are provided by the Eclipse Web Tools
Platform project [Ecl10j], and covers WSDL 1.1 as well as SOAP 1.2. Lastly,
the meta-model for XML Schema is provided by the Eclipse Modelling Tools
Project [Ecl10c], which covers XSD version 1.0 provided by the W3C.

Finally, this thesis includes a model transformation to the Java programming
language. A meta-model for Java is provided by the Eclipse Model Discovery
component (MoDisco) [Ecl10e]. This model is a reflection of the Java language
as defined in version 3 of the Java Language Specification [GJSB05] from Sun
Microsystems (now Oracle).

2.6.3 Other Tools and Libraries

Three other tools and libraries are worth mentioning as they have been used in
the development of the tools in this thesis.

The first of these tools is ANTLR [Par07], a parser generator for Java which
has been used to define and implement the data manipulation language intro-
duced in chapter 3.

While creating artefacts for the Web Service family of standards has already
been discussed in the last section, executing and testing them is another matter.
For this purpose, two tools from the Apache project as well as one commercial
tool have been used.

Firstly, the BPEL container Apache ODE [Apa10b] has been used to execute
and test the generated BPEL files. Secondly, Apache Axis [Apa10a] along with
the Apache Tomcat [Apa10c] server has been used to implement the partners
of the generated BPEL processes. Finally, SoapUI [Evi10] has been used to
test-drive the running services against their specification.

48 CHAPTER 2. SETTING THE STAGE

Chapter 3

Modelling Service
Behaviour in UML

The Unified Modeling Language (UML) [OMG10b] is a well-known and ma-
ture language for modelling software systems with support ranging from re-
quirement modelling to structural overviews of a system down to behavioural
specifications of individual components. However, UML has been designed with
object-oriented systems in mind, thus native support and top-level constructs
for service-oriented computing such as participants in a SOA, modelling service
communication, and compensation support are not included. As a consequence,
modelling SOA systems with plain UML requires the introduction of technical
helper constructs, which degrades usability and readability of the models.

In this chapter, we therefore introduce a UML extension for SOAs — called
the UML4SOA profile — which is a high-level domain-specific language for
modelling the behaviour of services, service orchestrations, and service protocols.
For modelling the structural aspects of services, we build on the upcoming
OMG standard SoaML [OMG09b]. One of the main goals of UML4SOA is
minimalism and conciseness: service engineers should have to provide only as
much information as necessary for the generation of code, and at the same time
as little as possible in order to keep diagrams readable.

In the following, we first introduce the UML4SOA design considerations and
the relationship to structural modelling with SoaML (section 3.1). The profile
itself is discussed in section 3.2. An example for modelling with UML4SOA is
given in section 3.3. Finally, we introduce tool support in section 3.4, discuss
related work (section 3.5) and conclude in section 3.6.

Published results: Results presented in this chapter are based on publications
[KMH+07], [MSK08b], [MSK08a], [FGK+10a], and [GGK+10]. Furthermore,
UML4SOA is a result developed as an answer to one of the main Sensoria
research objectives (service-oriented extensions of UML) and has been reported
in several technical reports, brochures, and presented at fairs.

49

50 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

3.1 Extending UML for Service Behaviour

The Unified Modeling Language Infrastructure [OMG10a] describes several ways
of extending the UML for specific modelling purposes, among them being pro-
files, a lightweight mechanism of defining domain-specific modelling languages
on top of the UML. We have introduced the notion of profiles in chapter 2, along
with a profile for modelling the structural aspects of SOAs (SoaML) which is
on the way to becoming an OMG standard.

In this section, we describe why a profile for behavioural SOA modelling on
top of the UML is desirable before moving on to the description of the profile
in the next section.

Behavioural modelling of services and service orchestrations has several re-
quirements on a (graphical) modelling language; in particular, the following
three concepts — first-level citizens of a SOA system — should be supported:

� Communication and Partners. Services are inherently based on a net-
worked architecture, i.e. communication between services is a key re-
quirement for a working SOA-based system. Communication primitives
for sending and receiving calls must thus be supported in a domain-
specific SOA language; furthermore, specification of communication part-
ners should be possible in a straightforward way.

� Long-Running Transactions. A service, and in particular a service orches-
tration may represent a business transaction and thus potentially run for
a long time. This has various requirements for the modelling language: It
must be possible to query the transaction for status updates; it must be
possible to handle problems occurring during the transactions, and finally
successfully completed transactions might need to be undone due to later
failures.

� Self-Descriptions. Part of the appeal of service-oriented computing is the
focus on a clear self-description of each component in the SOA. Regarding
the behaviour, a specification of the protocol a service provides or requires
is key to enabling quick and confident assembly of SOAs.

UML already includes several ways of specifying the behaviour of software
systems which we can extend for modelling service behaviour. In particular,
the following two model elements and accompanying diagram types are a good
match for modelling SOA behaviour:

� Activities. In UML, activities are used for modelling the behaviour of a
software component based on a workflow-like paradigm. Workflows are a
concept which is also common outside of software modelling; in particu-
lar, an interesting area are business processes as they closely match the
abstraction level of SOAs. We use activities as the basic mechanism for
specifying service and service orchestration behaviour.

3.1. EXTENDING UML FOR SERVICE BEHAVIOUR 51

� State Charts. The UML distinguishes between behavioural and protocol
state machines; the first being used to model element behaviour, the sec-
ond for describing the behaviour of a protocol. As communication is a key
aspect of services and service orchestrations, modelling the protocol of a
service is important to be able to identify matching service implementa-
tions. We therefore use protocol state machines, with a minimal extension
to be able to model observed operation calls, in addition to activity mod-
elling for specifying the required or provided protocol of a service.

Attempting to model services using these two UML elements and diagrams
while considering the three key aspects of SOA systems discussed above shows
several important shortcomings of the UML. We consider our case study as an
example for these problems. The structural aspects of the case study, modelled
using UML and SoaML, have already been shown in figure 2.9 on page 35.

There are several entities in figure 2.9 for which we might want to spec-
ify behaviour. First of all, there is the central participant ThesisManagement,
which is a service orchestration for which the workflow might be specified. Sec-
ondly, the participant contains service and request ports at which services are
provided and required, their interfaces being specified as �ServiceInterface�s.
For these interfaces, the protocol may be specified as a state chart. Finally, the
services required by the orchestration have their own behaviour which may be
implemented by external means, or may be modelled using UML or UML4SOA
as well.

As an example for the three requirements of modelling SOA systems given
above, we model the behaviour of the participant ThesisManagement and its
required and provided protocols. This example will also be used in the remainder
of this chapter.

3.1.1 Communication Actions

The first requirement is the ability to specify communications in-between ser-
vices. The ThesisManagement orchestration, for example, is contacted by a
student accepting a thesis, subsequently registering this thesis with the exam-
ination office. Modelling this sequence as an activity looks like the diagram
shown in figure 3.1.

The first action in the figure is an UML AcceptEventAction or subclass
thereof. It identifies a point in the workflow where the process waits for an
incoming event or operation call. The result of the call is placed in an output
pin, which is denoted with an arrow leading away from the action. The second
action in the figure is an UML InvocationAction or subclass, and shows that
the process sends out an event or operation call. There are several problems
with modelling service communication in this style:

� In UML, there is no graphical distinction between the various subclasses
of AcceptEventAction, and — even worse — no distinction between an
InvocationAction and a generic action. This requires a description such

52 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Figure 3.1: eUniversity Case Study: Communications

as the one given above to precisely define the semantics of the diagram. A
better way would be to use precisely specified symbols or tags to identify
a receiving, sending, or replying action in the sense of a service communi-
cation.

� Each of the operations referred to by an action (and denoted in the body)
are part of a ServiceInterface attached to a service- or request port,
specifying the port on which an event or operation is expected or sent
out. This way of specifying a port is rather indirect and not visible in the
diagram, which does not lay well with the fact that partner services are
a first-level concept in a SOA. Furthermore, there is no way of specifying
which port is to be used if several ports share one ServiceInterface.
Thus, specifying the port as part of an action would greatly increase read-
ability of the model and also allow for more precise specifications.

� Finally, standard input- and output-pins are used to denote data to be
received or sent. In the case of an AcceptEventAction, an output pin is
used as the data is a result of the action; in the case of an InvocationAc-

tion, an input is used as the data is used in the action. When considering
service calls, however, another intuition is possible: Data received in the
process is input data, and data sent is output data. A different notation
for data sent and received in a service context can clarify the intuition in
use.

We shall come back to these three problems in the next section, where we
define our UML profile.

3.1.2 Long-Running Transactions

The second requirement discussed above is support for long-running transac-
tions. Services and, in particular, service orchestrations may be used to specify
business or technical processes which potentially run a long time. There should
be specific support for such processes in the modelling language; in particular,
a long-running transaction may run into problems which need to be handled; it

3.1. EXTENDING UML FOR SERVICE BEHAVIOUR 53

may need to be queried for status updates, and it may need to be rolled back
in case of subsequent errors.

Figure 3.2: eUniversity Case Study: Long-Running Transactions

Consider figure 3.2 which contains a plain UML activity diagram which
models two different part of the eUniversity case study. In the upper part, the
bootstrapping of the thesis is modelled, in which a student has already accepted
a thesis topic and the necessary messages are sent out to register this informa-
tion. This initialisation might later need to be rolled back (compensated), for
example if the student has already been registered for a graduation ceremony.
In the lower part, the thesis is in progress. The student provides updates until
he is finished, and additionally — and concurrently — the tutor might ask for
the current status. Again, there are several problems involved in the figure.

� Firstly, the behaviour for rolling back the main activity later cannot be
attached to the activity itself — it must be placed at the point where the
rollback(s) takes place and therefore a different place than expected in the
diagram. A better way would be associating rollback actions directly with
the element to be undone.

� Secondly, modelling concurrent behaviour which might occur multiple
times — such as the tutor requesting the status — is difficult to model

54 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

in UML. The status requests are in fact optional, which is enabled by
the interrupting edge leaving the interruptible activity region. Needless
to say, this is not very intuitive to write and read; a better separation
between the main behaviour and events such as the status updates might
be appropriate.

UML4SOA addresses these concerns as discussed in the next section.

3.1.3 Self-Descriptions

Most of the basic definitions of services include a notion of self-description,
i.e. the ability of a service to describe, more or less completely, how it can be
invoked. The SoaML model for the eUniversity case study shown in figure 2.9
(page 35) already addresses the static aspect of such self-description: The main
participant provides two services through the �Service� ports whose opera-
tions are given as part of the StudentServiceInterface and the TutorSer-

viceInterface, and requires two services through its �Request� ports whose
operations are given in their respective interfaces. While these descriptions are
required as the basis for service interactions, the actual protocol of a provided
or required service is not yet specified.

Figure 3.3: eUniversity Case Study: Protocol

UML Protocol State Machines (PrSMs) can be used for this purpose; in our
case, they are attached to the types of the SoaML service and request ports, i.e.,
the ServiceInterfaces. A protocol state machine in UML may contain states
and (protocol) transitions; the latter of which may contain triggers. An example
for a standard UML protocol state machine for the Tutor ServiceInterface

is shown in figure 3.3.

In this figure, two types of events are used: acceptTopic, updateStatus
and the first finished transition are based on ReceiveOperationEvent trig-
gers, while the second finished transition is based on a SendOperationEvent

trigger. There are two problems associated with this diagram.

First, the fact that the first three transitions actually use a ReceiveOper-

ationEvent, and the last an SendOperationEvent is not visible in the figure,

3.2. THE UML4SOA PROFILE 55

degrading readability and hampering the comparison with the actual service
behaviour (which needs to fulfil this protocol).

Second, the finished transition is not legal in the standard definition of
protocol state machines. Although it only observes an event, this event is not
targeted at an operation implemented by the classifier the PrSM is attached to,
but rather by a required interface of the classifier. However, as we believe that
the observation of calls to external services are an important aspect of service
specifications, this ability should be added.

Finally, in the interest of ease of modelling and readability, it is again desir-
able to have a special notation for service-related communication.

Due to the shortcomings discussed above, modelling service behaviour, ser-
vice orchestrations and protocols with plain UML is a cumbersome task. At the
same time, the resulting UML models are difficult to read and translate into
executable code. For this reason, we have developed the UML4SOA profile and
meta-model which adds specific support for services, service orchestrations and
service protocols to the UML.

3.2 The UML4SOA Profile

This section introduces the UML4SOA profile, a domain-specific, graphical no-
tation for modelling service behaviour and service protocols. As outlined in
chapter 2, extending the UML is possible via several mechanisms, among them
MOF meta-model extensions and UML profiles. Both mechanisms can also be
combined, an approach which has been used for UML4SOA as well.

In section 3.2.1, we discuss the design decisions behind the profile, intro-
ducing — on a high level — the concepts UML4SOA contributes to the UML.
In section 3.2.2, we define the meta-model in a MOF modelling style. Map-
ping of this meta-model to a UML profile takes place in section 3.2.3. Data
handling in UML4SOA is discussed in 3.2.4. We discuss the difference between
UML4SOA/Open and /Strict in section 3.2.6, and finally talk about life cycle
management in section 3.2.7.

3.2.1 Design Considerations

The design of a meta-model for behavioural service specifications requires spe-
cific support for the three concepts communication and partners, long-running
transactions, and self-descriptions already introduced in section 3.1, which we
shall revisit in this section, discussing how UML4SOA addresses these issues.

Furthermore, an important point in specifying service behaviour is data
handling, in particular in service orchestrations: Data must be received, might
need to be manipulated, and then passed on. Although the UML defines a set of
actions for explicitly dealing with data, a textual DSL for data handling greatly
simplifies this task for developers.

56 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

We begin with defining special support for service communication in ac-
tivities in section 3.2.1.1, discuss long-running transactions in section 3.2.1.2,
introduce self-descriptions as protocols in section 3.2.1.3, and finally discuss
data handling in section 3.2.1.4.

3.2.1.1 Service Interactions and Partners

In section 3.1.1, we have noted that although using subclasses of the UML Invo-

cationAction or AcceptEventAction actions in activities is the preferred way
of modelling communication, using this approach suffers from several problems.
As a remedy, UML4SOA adds specific support for the requirements of service
communication: Firstly, actions are explicitly marked as sending, receiving, or
replying. Secondly, we add specialised pins for specifying input and output data.
These pins are stereotyped with new icons which precisely show whether data
is sent or received. Finally, the partner service an action relates to is attached
to an action in a new pin. An UML4SOA diagram replacing the pure UML
diagram from section 3.1.1 is shown in figure 3.4.

Figure 3.4: eUniversity Case Study: Communications in UML4SOA

As usual in the UML, we employ operation specifications for referencing
which functionality is invoked in an interaction. In the case of services, these
operations are specified in interfaces or classes used as types of the �Service�
or �Request� ports of SoaML. We distinguish:

� service invocations (e.g. reportThesisStart), for which we define the
new stereotypes �Send� and �Send&Receive� for invoking an action
without or with an expected return information. A service invocation is an
interaction with a named partner, in which an operation is called, which
may, as usual, have parameters and return types.

� service receives (e.g. acceptTopic), for which we define the new stereo-
type�Receive�. A service receive is a point where a behaviour waits for
an incoming call from a partner, receiving an operation invocation which
may, again, have parameters.

� Finally, we add the notion of service replies, which are used to answer a
call previously received from a certain partner, and add the new stereotype

3.2. THE UML4SOA PROFILE 57

�Reply� for this notion. As usual in UML, a reply ends a previous
invocation.

Each of the service actions may have associated pins which are again stereo-
typed with UML4SOA stereotypes. They are used to specify the following
information:

� a �Lnk� (link) pin specifies the partner for an operation (i.e., the port
through which messages are sent or received, for example student or
eoffice in the example above),

� a �Rcv� (receive) pin denotes where received information is stored. In
general, this will be a variable (studentId and thesis in the example
above),

� a �Snd� (send) pin denotes the information to be sent as part of a
call (the variable contents of the thesis variable in the example above).
Besides the contents of variables, such data may also be generated on-the-
fly (for example, by string concatenation).

More information about the data handling syntax is given in 3.2.1.4.

3.2.1.2 Events and Compensation

Handling long-running transactions in the SOA world has two major require-
ments. First of all, it should be possible to query a long-running service for its
status or other information, which is additional work the service has to carry
out in addition to the normal behaviour. Secondly, successfully completed work
might need to be undone in a customised way (transaction rollback).

The first issue is handled in UML4SOA by means of event handlers, which
allow the specification of optional behaviour occurring in parallel to the main
work of a service. The second issue is handled by means of compensation han-
dlers, which allow attaching roll-back behaviour to a certain action or set of
actions of a process definition. An example of both is shown in figure 3.5, the
counterpart of figure 3.2 in UML4SOA.

As the figure shows, UML4SOA introduces a grouping concept — the�Ser-
viceActivity� — to which specialised edges for event and compensation han-
dling can be attached.

Firstly, the figure shows how to attach compensation handling to an area in
UML4SOA (top half). We use a specialised edge�Compensation�, indicating
that compensation handling is available for a certain area. In the example, the
complete Registration activity can be rolled back by executing the action in
the CompensationHandler activity. By attaching these actions to the area to
be compensated, we only need to specify them once, and they are defined in
close context to their counterpart.

With regard to events, UML4SOA includes a specialised �Event� edge to
attach an event handler to a certain area. In the example, an event handler is

58 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Figure 3.5: eUniversity Case Study: Long-Running Transactions in UML4SOA

attached to the InProgress activity. This means that during the waiting time
for any number of updateStatus calls or a final finished call, a getStatus call
might come in and is answered. In general terms, an event is a message which
might be accepted during the run of a certain element in the workflow, asking
— for example — for status information or for cancellation. The �Event�
edge allows us to specify such events in an easy and readable way.

3.2.1.3 Self-Describing Protocols

UML4SOA orchestration specifications are complemented by protocols assigned
to the ports of the SoaML participant. A port protocol always describes actions
of the �Participant� — either actions provided to clients or actions invoked
on or expected from partners.

As noted in the previous section, the definition of protocol state machines
in UML [OMG10b] allows referencing operations implemented by the context
classifier. An important part of service behaviour, on the other hand, is sending
out calls to partner services; these operations are used by context classifiers.
UML4SOA thus extends the ability of PrSMs to include triggers with a Send-

OperationEvent event. It is important to note that this event is not an effect

3.2. THE UML4SOA PROFILE 59

of a transition; rather; it is an observed operation call of the participant the
classifier of the PrSM is attached to.

As already discussed in section 3.2.1.3, it is again beneficial to tag the indi-
vidual parts of a PrSM to clarify the semantics of UML4SOA protocols. The
following actions may be observed in a service protocol:

� The receipt of an invocation is observed as a (UML) ReceiveOperation-
Event. UML4SOA adds a special transition with this constraint with the
�Receive� stereotype.

� A service invocation is observed as a (UML) SendOperationEvent. UML-
4SOA adds a special transition with this constraint with the �Send�
stereotype.

� As noted above, a service invocation might be a reply to a previous
�Receive�. For clarity, this is modelled separately in UML4SOA, al-
though we observe again a (UML) SendOperationEvent. The UML4SOA
stereotype for a service reply transition is �Reply�.

� Finally, a protocol may also need to specify the fact that a reply is ex-
pected from a partner in response to a previous�Send�. The UML4SOA
stereotype for an expected reply transition is�ReceiveReply�; the event
used is again a ReceiveOperationEvent.

A matching UML4SOA diagram for figure 3.1 is shown in figure 3.6.

Figure 3.6: eUniversity Case Study: Protocols in UML4SOA

The protocols specified at the ports of a �Participant� must match the
behaviour of the orchestration. Furthermore, clients and partners must be com-
patible with the given protocol for the system to work correctly. This will be
discussed in more detail in chapter 5.

3.2.1.4 Data Handling

Services in a real-world environment are about data: Whether from user input,
databases, or as a result of a lengthy calculation, data needs to be handled
within services and received via or sent over the network. This holds especially
true for service orchestrations, part of whose job is the distribution of data.

60 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

The SoaML profile introduced in section 2 already defines the static aspects
of data handling with the �MessageType� stereotype, which tags data classes
without behaviour to be used in operation calls. In UML activities, certain
actions such as ReadVariableAction or AddVariableValueAction are available
for dealing with data. In the interest of both readability and usefulness, UML4-
SOA replaces these with a simple data manipulation language on top of message
types, which allows assignments of (parts of) data and manipulations such as
simple mathematical operations or string concatenation. It is important to note
that this language is not an action language; its sole purpose is the specification
of data manipulation statements.

A syntax for data handling is relevant in three parts of UML4SOA specifi-
cation:

� Variables. (UML) variables hold the data of the service. A variable is
referred to in UML4SOA receive pins (for storing data) and in send pins
(for data to be sent out).

� Guards. A guard (for example on an outgoing edge from a decision node)
may contain a boolean condition which might reference data from one of
the variables.

� Explicit Data Operations. Finally, sometimes using on-the-fly data han-
dling is not enough; for example, when performing complex copy oper-
ations between input and output operations. UML4SOA introduces a
specific action for these transactions.

The UML4SOA data handling language is a strongly typed language built on
primitive data types and the message types defined in the SoaML model part.
Inspired by the Java syntax, the language reads like pseudo code and matches
the overall abstraction layer of UML4SOA. An example for three different ex-
pressions in this language is shown in listing 3.1.

Listing 3.1: UML4SOA Data Handling Example

String currencies;

currencies= convert.from + ”-” + convert.to

::Main.conversionInfo= currencies

The first line declares a variable currencies with the well-known UML type
String. The second line assigns a field of a variable convert concatenated with
the constant string “-” concatenated with another field of convert to curren-

cies. The third line assigns currencies to an existing variable conversion-

Info which resides in an enclosing element called Main.
In general, a UML4SOA �Rcv� pin contains what is usually regarded as

the left-hand side of an expression, i.e. the specification of where to store data.
This will normally be some variable which, if it does not exist, is implicitly
created in UML4SOA. A �Snd� pin may contain what is usually regarded

3.2. THE UML4SOA PROFILE 61

as the right-hand side of an expression, i.e. a complete statement including
mathematical or string operations.

Regarding more complex data operations, UML4SOA adds a new action for
data handling with the stereotype �Data�, which may contain statements for
declaring variables and manipulating data.

3.2.2 The UML4SOA Meta-Model

In this section, we define the UML4SOA meta-model which forms the basis for
the UML4SOA profile. The meta-model is closely based on the UML meta-
model and in particular, UML activities and protocol state machines.

The two figures 3.7 and 3.8 on pages 62 and 63 show the complete meta-
model. Grey classes are taken from the UML while white classes are newly
defined in UML4SOA. Note that some classes appear twice for layouting pur-
poses.

The two figures can be grouped into four areas. In the first, the top shows
the main structuring element of UML4SOA (ServiceActivityNode) along with
actions and edges for specifying compensation and data. We shall discuss these
in section 3.2.2.1. The bottom of this figure shows the protocol extensions,
which we discuss last (section 3.2.2.4).

In the second figure, the service communication actions are shown, which
are linked to data pins on the bottom. We shall discuss the pins first in sec-
tion 3.2.2.2, afterwards using them in the definition of the communication ac-
tions in section 3.2.2.3.

3.2.2.1 Structuring Elements

Structuring service behaviour diagrams is important not only for readability,
but for being able to handle events and compensation in a straightforward way.
As discussed in the last section, UML4SOA introduces the structuring concept
of ServiceActivityNodes, to which event and compensation handlers can be
attached. Compensation handlers can later be invoked by using specialised
actions.

ServiceActivityNode

Description

A ServiceActivityNode represents either

1. a special Activity for service behaviour, or

2. a grouping element for actions and other ServiceActivityNodes (top-
level, and nested)

A ServiceActivityNode may have control edges connected to it, and pins
when merged with CompleteActivities or on specialisations in CompleteStruc-
turedActivities. The execution of any embedded actions may not begin until

62 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Figure 3.7: UML4SOA Meta-Model (Structures and Protocols)

3.2. THE UML4SOA PROFILE 63

Figure 3.8: UML4SOA Meta-Model (Actions and Pins)

64 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

the ServiceActivityNode has received its object and control tokens. The avail-
ability of output tokens from the structured activity node does not occur until
all embedded actions have completed execution. Note that completion waits for
already running event handlers.

In addition to both Activity and StructuredActivityNode, a Service-

ActivityNode node may have attached event and compensation handlers. An
event handler may be executed at any time during the execution of the Ser-

viceActivityNode, running in parallel to the ServiceActivityNode. Event
handlers may be invoked multiple times. A compensation handler, on the other
hand, defines behaviour to be executed to undo the work of a successfully com-
pleted ServiceActivityNode. Note that if no compensation handler is defined
for a ServiceActivityNode, a default handler with a �CompensateAll� ac-
tion is assumed.

Furthermore, interrupting edges may halt execution at any time (as already
defined in the UML class InterruptibleActivityRegion).

A top-level service activity is attached to a SoaML �Participant� and
defines the behaviour of the �Participant� across all service- and request
ports.

Generalisations

� StructuredActivityNode

� InterruptibleActivityRegion

� Activity

Associations

� eHandler : EventEdge[0..*]
An event edge leading to an event handler for this activity.
{subsets outgoing}

� eventBase : EventEdge[0..*]
An event edge leading to another activity for which this activity is an
event handler.
{subsets incoming}

� cHandler : CompensationEdge[0..1]
A compensation edge leading to a compensation handler for this activity.
{subsets outgoing}

� compensated : CompensationEdge[0..1]
A compensation edge leading to another activity for which this activity is
the compensation handler.
{subsets incoming}

3.2. THE UML4SOA PROFILE 65

Constraints

1. If a compensation handler is specified, the target element must have this
element as the compensated element.

2. If event handlers are specified, each of them must have this element as the
eventBase element.

Notation

As a ServiceActivityNode comes in two versions, there are two notations.

1. StructuredActivityNode notation: the ServiceActivityNode is drawn
with a dashed round cornered rectangle enclosing its nodes and edges, with
the stereotype notation �ServiceActivity� at the top. Also see children
of StructuredActivityNode.

2. Activity notation: Same notation as for activities applies; as before, the
�ServiceActivity� stereotype must be used.

Examples

The following examples show the use of a service activity. The activity on the left
contains one action with the stereotype �Send�, which in turn contains three
pins. The service activity is annotated with the�ServiceActivity� stereotype,
and carries a name (Registration). On the right, an action for invoking the
activity without displaying the internals is shown.

CompensationEdge

Description

A CompensationEdge is an edge connecting a ServiceActivityNode to be com-
pensated with the one specifying a compensation. It does not model a normal
control flow — instead, it indicates an association between a (main) service
element and a compensation handler. Execution of a compensation handler is
triggered with a CompensateAction or a CompensateAllAction.

Exceptions thrown during a compensation handler must be handled in the
invoking ServiceActivityNode, or in a handler attached to the compensation
handler.

66 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Generalisations

� ActivityEdge

Associations

� compensated : ServiceActivityNode[1..1]
The service activity which is compensated.
{subsets source}

� cHandler : ServiceActivityNode[1..1]
The service activity specifying the compensation actions.
{subsets target}

Constraints

The compensated element must have this element as the compensation handler.
A compensation edge may only be attached to a service activity.

Notation

The edge is annotated with the stereotype �Compensation�.

Examples

This example shows the use of a �ServiceActivity�-typed compensation han-
dler. An ordinary �ServiceActivity� registers a student for a graduation cel-
ebration event. Later on, if the student fails to graduate, the compensation
handler is invoked to unregister the student.

EventEdge

Description

An EventEdge is an edge connecting event handlers with a ServiceActivityN-

ode during which the event may occur. It does not model a normal control flow
— instead, it indicates an association between a (main) service element and an
event handler.

Execution of an event handler is triggered externally by means of a call, or
a timed event. An event handler may be executed zero, one, or multiple times

3.2. THE UML4SOA PROFILE 67

in parallel to the service element it is attached to.
Note that only one instance of a specified event handler is active at the same

time.

Generalisations

� ActivityEdge

Associations

� eventBase : ServiceActivityNode[1..1]
The service activity to which an event handler is attached.
{subsets source}

� eHandler : ServiceActivityNode[1..1]
The service activity specifying an event handler.
{subsets target}

Constraints

The event base element must have this element as an event handler. An event
edge may only be attached to a service activity.

Notation

The edge is annotated with the stereotype �Event�.

Examples

This example shows the use of a �ServiceActivity�-typed event handler. The
event handler is installed in parallel to the InProgress activity, and allows to
retrieve the status of the service with a call (getStatus). This happens in
parallel to the InProgress activity.

68 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

CompensateAction

Description

The CompensateAction invokes the compensation handler for a particular Ser-
viceActivityNode, whose name is given in the body of the action and which
must be nested inside the service element the handler in which the Compensate-
Action is specified in is attached to.

A CompensateAction may only be invoked from an exception or compensa-
tion handler. After the compensation handler of the given ServiceActivityN-

ode has been executed, the instance is removed (uninstalled) from the referenced
node, and the execution resumes normally after the CompensateAction.

Generalisations

� OpaqueAction

Associations

� compensationTarget : ServiceActivityNode[1..1]
The ServiceActivityNode to be compensated.

Constraints

� The CompensateAction may only be used within a compensation or ex-
ception handler.

� The compensationTarget must be a ServiceActivityNode which has a
compensation handler, and that ServiceActivityNode must be nested
within the ServiceActivityNode in which the compensation action is
invoked.

Notation

Annotation with stereotype �Compensate�. The target name is given inside
the body of the action.

Examples

This example shows the use of the compensate action. In this example, the com-
pensation handler of Registration is invoked by means of a �Compensate�
action.

3.2. THE UML4SOA PROFILE 69

CompensateAllAction

Description

The CompensateAllAction invokes all installed compensation handlers which
are nested in the ServiceActivityNode to which the handler the Compensate-

AllAction is specified in is attached to.

A CompensateAllAction may only be invoked from an exception or com-
pensation handler. It starts compensation of all inner ServiceActivityNodes
of the ServiceActivityNode the exception- or compensation handler the action
is defined in is attached to.

The inner ServiceActivityNodes with compensation handlers are compen-
sated in reverse order of their completion, i.e. the last completed ServiceActiv-

ityNode first. However, this applies only if the ServiceActivityNodes are on
the same level; inside the compensation handlers which are started in reverse
order, the inner compensated ServiceActivityNodes compensation handlers
might not necessarily run in (global) reverse order (they do in local reverse
order).

After the compensation handlers have been executed, the instances are re-
moved (uninstalled) from their respective ServiceActivityNodes, and the ex-
ecution resumes normally after the CompensateAllAction.

Generalisations

� OpaqueAction

Associations

None.

70 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Constraints

The CompensateAllAction may only be used within a compensation or excep-
tion handler.

Notation

Annotation with stereotype �CompensateAll�.

Examples

In this example, two service activities are present. Each has an attached com-
pensation handler. The first is installed after the Graduation activity completes;
the second after JobPoolEnlisting. Both can potentially be invoked with the
�CompensateAll� call if an exception is caught in the Main scope.

DataAction

Description

A DataAction is an action for data manipulation, for example, declaring vari-
ables and manipulating them (assignments, calculations, etc.). The DataAction
allows the specification of arbitrarily many statements, written in the domain-
specific UML4SOA expression language (see Sect. 3.2.4).

3.2. THE UML4SOA PROFILE 71

Generalisations

� OpaqueAction

Associations

None.

Constraints

No additional constraints.

Notation

A DataAction is stereotyped with �Data�. The statements to be executed
are given inside the body.

Examples

This example shows a data action. In the action, a string-typed variable is
declared (conversion). Afterwards, conversion is assigned by using two fields
of the request variable, a string (“ to ”), and the string concatenation operator
“+”.

3.2.2.2 Pins

This section lists the pin classes of UML4SOA, which are used in service in-
teractions for denoting partners as well as received and sent calls. The pin
meta-classes are shown at the bottom of figure 3.8.

LinkPin

Description

A LinkPin is used to indicate the partner service for the service interaction. As
a partner service is indicated through the ports of the participant to which the
main ServiceActivityNode is attached to, the LinkPin is bound to a port. At
runtime, an instance of the port is dynamically provided at LinkPins.

Note that for LinkPins referencing Request ports, a partner must be bound
before execution by external means. For Service ports, incoming calls trigger
creation of a new port instance which is given in the LinkPin.

72 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Generalisations

� InputPin

Associations

� port : Service xor Request[1..1]

Constraints

� The port must be attached to the class which the root ServiceActivity-
Node of this behavioural specification belongs to.

Notation

The pin is stereotyped with �Lnk�, or with the corresponding icon (“lnk”).
The port name is specified along with the pin.

Examples

This example shows the use of a LinkPin. In all partner-related actions, for ex-
ample in this�Send�, the port at which the operation is requested or received
must be specified.

In the example, the port is a �Service� port of the corresponding partici-
pant which carries the name eoffice.

InteractionPin

Description

An InteractionPin serves as the common abstract base class of SendPin and
ReceivePin, restricting their type to either MessageType or PrimitiveType.

Generalisations

� Pin

Associations

� (inherited association from supertype) : MessageType xor
PrimitiveType[1..1]
{subsets type}

3.2. THE UML4SOA PROFILE 73

Constraints

The type must be a subtype of either MessageType or PrimitiveType.

Notation

None.

SendPin

Description

A SendPin is used in send actions to denote the data to be sent to an external
service. A SendPin specifies data to be transmitted. Arbitrary right-hand side
expressions specified in the UML4SOA expression language may be used.

Generalisations

� InputPin

� InteractionPin

Associations

No additional associations.

Constraints

The type must be a subtype of either MessageType or PrimitiveType. Also,
the SendPin must have the correct type for the operation and partner invoked.

Notation

The SendPin must be stereotyped with�Snd�, or with the corresponding icon
(“snd”). Furthermore, it needs to be annotated with the information about data
to be sent. In UML, pins are ordered, which cannot directly be shown in the
diagram. As a convention, UML4SOA send pins should be denoted on the
right-hand side of an action from top to bottom.

Examples

This example shows the use of two SendPins; this means that the operation used
(reportThesisStart) requires two parameters. The first send pin specifies the
variable student; the second the variable thesis.

74 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

ReceivePin

Description

A ReceivePin is used in receive actions to denote the place where the data re-
ceived from an external service is stored (i.e., a variable, or a part of a variable).

Generalisations

� OutputPin

� InteractionPin

Associations

No additional associations.

Constraints

The type must be a subtype of either MessageType or PrimitiveType. Also, the
ReceivePin must have the correct type for the operation and partner invoked.

Notation

The ReceivePin must be stereotyped with �Rcv�, or with the corresponding
icon (“rcv”). Furthermore, it needs to be annotated with the information about
where to store the received data.

In UML, pins are ordered, which cannot directly be shown in the diagram.
As a convention, UML4SOA send pins should be denoted on the right-hand side
of an action from top to bottom.

Examples

This example shows the use of ReceivePins. There are three receive pins; each
for one of the parameters of the createThesis call. Each pin contains the target
where the data will be stored; in this case, these are all variable names.

3.2.2.3 Communication Actions

Having introduced structuring elements and pins for data handling, we can now
discuss the specialised actions for communication in UML4SOA. These actions
are displayed on the top of figure 3.8.

3.2. THE UML4SOA PROFILE 75

ServiceInteractionAction

Description

ServiceInteractionAction is the common base class of all service interaction
actions which have an associated LinkPin. The interaction is linked to a partner
(i.e. a certain port) of the behaviour via the link pin (see section 3.2.2.2 for more
information on LinkPins). The operation is specified in the actions themselves.

Generalisations

None.

Associations

� partner : LinkPin[1..1]
Specifies the partner of this ServiceInteractionAction. In case of a
ServiceSendAction, this association subsets target.

Constraints

No additional constraints.

Notation

No notation.

ServiceSendAction

Description

A ServiceSendAction is an action that invokes an operation of a target service
without expecting a return value. The argument values are data to be trans-
mitted as parameters of the operation call. CallOperationAction contains the
operation directly.

ServiceSendAction inherits argument from InvocationAction. We re-
strict this to SendPins which contain the data to be sent.

Generalisations

� CallOperationAction

� ServiceInteractionAction

Associations

� (inherited association from supertype) : SendPin[0..*]
{subsets argument}

76 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Constraints

� ServiceSendAction constrains argument (inherited from InvocationAc-

tion) to pins of type SendPin.

� target is constrained to instances of LinkPin.

Notation

A ServiceSendAction is stereotyped with �Send�. The operation name is
given inside the action body.

Examples

This example shows a send. An operation call is sent to the partner attached
to the port eoffice (specified in the link pin). The data to be sent is stored
in two variables: student and thesis (specified in the send pins). There is no
return value.

ServiceReceiveAction

Description

A ServiceReceiveAction is an accept call action representing the receipt of
an operation call from an external partner. No answer is given to the external
partner.

A ServiceReceiveAction blocks until the specified operation call is re-
ceived. It requires a trigger (with a CallEvent event), which contains the
operation. According to the operation, appropriate ReceivePins must be given
which contain the variables in which the incoming data is stored.

Note that there is a caveat involved with attaching, through the superclass
ServiceInteractionAction, a LinkPin to a ServiceReceiveAction. The for-
mer is an InputPin, while the second is an AcceptCallAction. Unfortunately,
the UML superstructure defines a constraint on AcceptEventAction (the di-
rect superclass of AcceptCallAction, prohibiting the use of InputPins on this
class. This will be further discussed in section 3.2.5.

Generalisations

� ServiceInteractionAction

� AcceptCallAction

3.2. THE UML4SOA PROFILE 77

Associations

� (inherited association from supertype) : ReceivePin[0..*]
{subsets result}

Constraints

The result pins must be ReceivePins. This ensures that the data received has
value or message types. The trigger must be a CallEvent.

Notation

A ServiceReceiveAction is stereotyped with �Receive�. The operation
name (from trigger → CallEvent) is given inside the action body.

Examples

This example shows a receive. A call is received from a partner (called tutor,
specified in the link pin). The data is stored in three variables (thesisId,
title, and description (specified in the receive pins). The operation invoked
is called createThesis.

ServiceReplyAction

Description

ServiceReplyAction is an action that accepts a return value and a value con-
taining return information produced by a previous ServiceReceiveAction.
The reply action returns the values to the request port of the previous call,
completing execution of the call.

ServiceReplyAction is a specialised version of ReplyAction for the service-
oriented context. The inherited attribute replyValue is subset to point to
instances of SendPin, instead of a generic input pin, thereby ensuring the data
can be interpreted as value data. Thus, a ServiceReplyAction sends back data
to a request port for which previous data was received.

Generalisations

� ReplyAction

� ServiceInteractionAction

78 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Associations

� (inherited association from supertype) : SendPin[0..*]
{subsets replyValue}

Constraints

The replyValue pins must be of type SendPin.

Notation

A ServiceReplyAction is stereotyped with �Reply�. The operation name is
given inside the action body (corresponding to the operation inside the attached
trigger).

Examples

This example shows a reply. A reply is always an answer to a previous receive,
and carries the same partner and operation name as the receive. In this example,
a getStatus call is received from partner tutor, and the single parameter is
stored in the variable thesisId. Now, some processing takes place. Afterwards,
the data in the variable result is sent as a reply to the tutor partner.

ServiceSend&ReceiveAction

Description

A ServiceSend&ReceiveAction action is a complete operation call execution
with a partner. Some data (stored in the SendPins) is sent, then the action
waits for data to be sent back, which is stored in the ReceivePins.

Generalisations

� ServiceSendAction

� ServiceReceiveAction

3.2. THE UML4SOA PROFILE 79

Associations

None.

Constraints

No additional constraints.

Notation

A ServiceSend&ReceiveAction is stereotyped with �Send&Receive�. The
operation name is given inside the action body.

Examples

This example shows a �Send&Receive�. An operation is invoked on the part-
ner tutor (specified in the link pin). The data itself is stored in the variable
thesisId (specified in the send pin) and must be initialised before the action.
The return value from the service is stored in the element grade of the variable
thesis (specified in the receive pin).

3.2.2.4 Protocols

This section lists specialised transitions for denoting send, receive, and reply
operations of a participant a UML4SOA protocol state machines belongs to.

ReceiveTransition

Description

A specialised transition indicating that an operation call is received by the
participant to which the protocol state machine is attached to.

Generalisations

� ProtocolTransition

Associations

None.

80 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Constraints

The trigger of this transition must be a ReceiveOperationEvent. Furthermore,
the event must reference an operation implemented in the port type the PrSM
is attached to.

Notation

Annotation with stereotype �Receive�.

Examples

This example shows a �Receive� in a protocol state machine. The example
contains two states, started and working. In the started state, the operation
call acceptTopic is expected, which leads the PrSM to the working state.

SendTransition

Description

A specialised transition indicating that an operation is invoked without return-
ing information by the participant to which the protocol state machine is at-
tached to. The operation invoked must be specified in a required interface of
the classifier the protocol state machine is attached to.

Generalisations

� ProtocolTransition

Associations

None.

Constraints

The trigger of this transition must be a SendOperationEvent. Furthermore,
the event must reference an operation implemented in an interface used in the
port type the PrSM is attached to.

3.2. THE UML4SOA PROFILE 81

Notation

Annotation with stereotype �Send�.

Examples

This is an example for using a send transition. Two states are used: start

and posted. In the start state, the participant may choose to send out the
postToBoard call; in this case, the PrSM is advanced to the posted state.

ReplyTransition

Description

A specialised transition indicating that a previous operation call is being replied
to by the participant to which the protocol state machine is attached to.

Generalisations

� ProtocolTransition

Associations

None.

Constraints

The trigger of this transition must be a SendOperationEvent. The event must
reference an operation implemented in the port type the PrSM is attached to.

Notation

Annotation with stereotype �Reply�.

Examples

This is an example for using a reply transition. At the beginning, the PrSM is
in the statusRequest state. Here, the participant may choose to reply to the
getStatus call. The PrSM is advanced to the running state.

82 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

ReceiveReplyTransition

Description

A specialised transition indicating that an operation call is received by the
participant to which the protocol state machine is attached to, and that this
receive is in response to a previous send originating from this participant.

Generalisations

� ProtocolTransition

Associations

None.

Constraints

The trigger of this transition must be a ReceiveOperationEvent. The event
must reference an operation implemented in the port type the PrSM is attached
to.

Notation

Annotation with stereotype �ReceiveReply�.

Examples

This example shows a �ReceiveReply� in a protocol state machine. The ex-
ample contains two states, assessing and finished. In the assessing state,
a reply to the operation getAssessment is expected, which leads the PrSM to
the finished state.

3.2. THE UML4SOA PROFILE 83

OptionalTransition

Description

OptionalTransition is a specialised transition indicating that the operation
given as part of this transition (specified with�Send�,�Receive�,�Receive-
reply� or �Reply�) is optional, i.e. may or may not be supported by an
implementation of this protocol.

Generalisations

� ProtocolTransition

Associations

None.

Constraints

The transition must also be annotated with �Send�, �Receive�, �Receive-
reply�, or �Reply�.

Notation

Annotation with stereotype �Optional�.

Examples

This is an example for using an optional send transition. If the PrSM is in the
state posted, the participant may choose to send the unregisterFromGradua-

tion call, leading to the state undone.

84 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

3.2.3 From Meta-Model to Profile

As indicated at the beginning of section 3.2, the aim is defining a lightweight
extension of the UML in the form of a profile. In the previous section, we
have defined a meta-model for UML4SOA; we now map the meta-classes and
attributes of this meta-model to stereotypes and tag definitions.

As a UML profile, UML4SOA defines a profile package whose meta-model
reference-element is the UML, and which additionally imports the stereotypes
from the SoaML profile (see figure 3.9).

Figure 3.9: UML4SOA Profile Package

The following figures will each show several meta-classes and their mapping
to stereotypes. The notation is as follows:

� UML meta-classes, which are extended by the stereotypes of the UML4-
SOA profile, are shown in gray.

� Stereotypes of the UML4SOA profile are shown in yellow. Note that
these may only extend UML meta-classes, which is shown by the extension
arrows.

� Finally, as a reference, the UML4SOA meta-classes are shown in white. A
�mapsTo� relation between a stereotype and an UML4SOA meta-class
gives the intuition of which stereotype represents which meta-class; this
notation is not defined in the UML.

We attach a specific semantic meaning to the �mapsTo� relationship: If a
stereotype maps to a UML4SOA meta-class, it is subject to the same constraints
regarding inherited associations. For example, the meta-class ServiceSend-

Action requires that all arguments must be SendPins; this is transferred to the
�Send� stereotype.

Note that the stereotypes are defined with an uppercase letter; by contrast,
the application of a stereotype uses a lowercase letter. This style is in line with
section 18.3.8 (Stereotypes) of the UML superstructure (see [OMG10b]).

3.2. THE UML4SOA PROFILE 85

Figure 3.10: UML4SOA Stereotypes for Structuring Classes

3.2.3.1 Structuring Classes

We begin with the structuring classes of the UML4SOA meta-model. Figure 3.10
shows the mapping of these classes of the UML4SOA meta-model to the stereo-
types of the UML4SOA profile.

The most important stereotype is�ServiceActivity�, which corresponds to
the ServiceActivityNode meta-class. The �Compensation� and �Event�
stereotypes are based on ActivityEdge and correspond to the Compensation-

Edge and EventEdge meta-classes of UML4SOA. Note that we do not define tags
here; the relationship between base elements and compensation/event handlers
is given through the standard meta-attributes of ActivityEdge; constraints
apply as per definition in the UML4SOA meta-classes ServiceActivityNode

and ActivityEdge.

In the lower section of the figure, three stereotypes for actions are defined,
namely �Compensate�, �CompensateAll� and �Data�. They correspond
to the meta-classes CompensateAction, CompensateAllAction and DataAc-

86 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

tion, respectively. The first of these needs a tag definition: The �Comp-
ensate� stereotype must be tagged with the target service activity to be com-
pensated.

3.2.3.2 Communication Classes

We continue with classes used for communication, i.e. the various sending and
receiving actions as well as pins for specifying partners and data. Figure 3.11
shows the mapping of the corresponding meta-classes to stereotypes.

Figure 3.11: UML4SOA Stereotypes for Communication Classes

On the top, the stereotypes �Snd� and �Rcv� are defined; both with
an optional icon for displaying a pin graphically. The first stereotype maps to
the SendPin meta-class, thus inheriting the requirement that the type of the
pin must be either a MessageType or an PrimitiveType; the second stereotype
likewise maps to the ReceivePin meta-class.

In the second row, the stereotype �Lnk� is mapped to the meta-class
LinkPin. Note that we need to define an additional tag here, specifying which
port of the corresponding participant is referenced.

The�Reply� stereotype in the second row and the�Receive�,�Send�,
and �Send&Receive� stereotypes in the third row are used for tagging com-
municating actions. They correspond to the ServiceReplyAction, Service-

3.2. THE UML4SOA PROFILE 87

ReceiveAction, ServiceSendAction and ServiceSend&ReceiveAction meta-
classes, respectively. No tag definitions are required, however, once again, con-
straints apply.

3.2.3.3 Protocol Classes

Finally, we get to the last five stereotypes of the UML4SOA profile, which
concern the specification of service protocols and are shown in figure 3.12.

Figure 3.12: UML4SOA Stereotypes for Protocol Specification

We have seen three of the stereotypes listed here before; they are used
for both activities and protocol state machines. As expected, the �Send�
stereotype maps to the SendTransition meta-class, �Receive� maps to the
ReceiveTransition meta-class, and �Reply� maps to the ReplyTransition

meta-class. Furthermore, the�ReceiveReply� stereotype maps to the Receive-
ReplyTransition meta-class and the �Optional� stereotype maps to the
OptionalTransition meta-class.

No further tag definitions are required, though it is worth noting that the
communicating stereotypes inherit a constraint on the trigger allowed on a
stereotyped transition. By contrast, the �Optional� stereotype is only used
for tagging the transition.

The UML4SOA profile is thus complete and can be used in arbitrary, profile-
enabled UML modelling tools. An example for this is given in section 3.4.

88 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

3.2.4 Data Handling

An important point in modelling service behaviour and service orchestrations
is data handling. Data is received by services, manipulated, and then sent on
or back to another service. We have devised a declarative, textual language for
this purpose, which aims to closely match the level of detail of UML4SOA. A
major goal of the UML4SOA data handling language was to be generic enough
to be understandable on the modelling level, yet contain enough information
to allow transformation to more lower-level languages for execution. The main
requirements for a UML4SOA data handling language is support for data in
messages sent in-between services, and variables for storing such data, which
requires:

� Support for primitive and complex (composite) data types.

� Typing of and access to variables, including assignments and partial as-
signments.

� Basic operations for manipulation data.

The UML4SOA data handling language is strongly typed and based on UML
primitive types as well as classes annotated with the �MessageType� stereo-
type from the SoaML profile, which are in effect data types (i.e., classes without
behaviour). Data is modified by imperative statements which may be used in
three distinct areas within UML4SOA models:

� Pins. While receive pins may only hold variable references or (implicit)
variable declarations, send pins may also be used to construct new data
on-the-fly.

� Guards. A guard may contain a boolean-typed UML4SOA expression.

� Data Handling Actions. When inline data handling in pins or guards is
not possible, data handling statements can also be added explicitly with
a �Data� action.

Usually, services and service orchestrations directly work on structured data,
i.e. �MessageType�-typed classes which carry the business-relevant informa-
tion. The UML4SOA data handling language provides built-in support for these
data types, although some restrictions apply:

� A data type may only be assembled from primitive types or other struc-
tured data types.

� Inheritance is allowed, but again only amongst structured data types.

� Associations between structured data types is possible with the exception
of bidirectional associations.

The data manipulation language supports both sets and lists (unordered and
ordered associations). Furthermore, operations on basic data types is supported
(mathematical operation on integers and reals; logical operations on booleans,
and concatenation on strings).

3.2. THE UML4SOA PROFILE 89

3.2.4.1 Syntax Used

Whenever a concrete syntax is described in this document, we display it the same
manner as in the Java Language Specification [GJSB05]. We use a context-free
grammar, i.e. a number of productions with a nonterminal symbol on the left
and both terminals and non-terminals on the right:

Listing 3.2: Context-Free Grammar Example

Element :
execute(AnotherElement)

We denote nonterminal symbols with italics, and terminal symbols with bold
font. A definition of a nonterminal is given by the nonterminal suffixed with a
colon (:), as shown for Element in the example. For Element, the right-hand side
consists of the terminal symbol execute followed by the terminal symbol for
an opening brace ((), the non-terminal AnotherElement, and another terminal
symbol, the closing brace ()).

In general, the right-hand side of a non-terminal definition consists of one
or more lines which form the possible alternatives. An example is the following
definition:

Listing 3.3: Denoting Alternatives

Elements:
Element
Elements Element

This definition of Elements introduces two alternatives: Either the non-
terminal Element, or Elements again, followed by a single Element. This def-
inition is recursive, as Elements occurs both left and right of the colon. Note
that if a line is too long to fit on the page, we let it continue indented below.

We introducing a special suffix (opt) for specifying an optional element.
Consider the following example:

Listing 3.4: Optional Elements (1)

Element :
execute(AnotherElement) OtherElementsopt

In this definition of Element, OtherElements may optionally be specified
after the main execute definition. This is a shortcut for

90 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Listing 3.5: Optional Elements (2)

Element :
execute(AnotherElement)
execute(AnotherElement) OtherElements

Finally, we define three special non-terminals:

� String, which identifies a sequence of arbitrary characters,

� Number, which identifies a sequence of characters in the range of [0-9],

� and VarName, which identifies a sequence of letters and numbers, where
the first character must be a letter.

This concludes the introduction of the syntax notation.

3.2.4.2 Grammar

We start with the declaration of a statement and preliminaries:

Listing 3.6: UML4SOA Data Handling Syntax

DataHandling :
Statement

Statement :
Declaration
Assignment

Declaration is used to declare the type of a variable. To denote an ordered
or unordered list, the corresponding brackets ([] or {}) can be appended to the
type:

Listing 3.7: UML4SOA Data Handling Syntax: Declarations

Declaration:
Type Identifier ;

Type:
VarName ([]opt | {}opt)

Identifier :
VarName

An Assignment is an expression for assigning a value to a variable. It is split
between a left-hand-side (left of the assignment operator) and a right-hand-side
(right of the assignment operator):

3.2. THE UML4SOA PROFILE 91

Listing 3.8: UML4SOA Data Handling Syntax: Assignments

Assignment :
LeftHandSideExpression := RightHandSideExpression;

Left-hand sides are, in effect, references to variables or elements within vari-
able types. A variable in UML4SOA has a declaring scope, which is the service
activity it was first used or declared in. If the scope of a variable is not the cur-
rent one, it may be given with the ::ServiceActivityName syntax. Furthermore,
not only a variable can be referenced but also a part within the variable, which
must be a publicly accessible field of a �MessageType�.

Listing 3.9: UML4SOA Data Handling Syntax: Left-Hand Sides

LeftHandSideExpression:
(::VarName.)opt VarAccess

VarAccess:
VarName (.VarAccess)opt

Right-hand sides are more complex as they can be used not only in assign-
ments, but also in conditional statements; furthermore, they contain the com-
plete syntax for data manipulation and calculations. RightHandSideExpression
is defined by starting with a conditional or, which has the least precedence, and
continuing until we reach the basic literals and qualifiers.

Listing 3.10: UML4SOA Data Handling Syntax: Right-Hand Sides (1)

RightHandSideExpression:
ConditionalOrOperation

ConditionalOr :
ConditionalAnd (|| ConditionalAnd)opt

ConditionalAnd :
Equality (&& Equality)opt

Equality :
Relational ((== | !=) Relational)opt

92 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Listing 3.11: UML4SOA Data Handling Syntax: Right-Hand Sides (2)

Relational :
Additive ((> | >= | <= | <) Additive)opt

Multiplicative:
PrefixedUnary ((∗ | / | %) PrefixedUnary)opt

PrefixedUnary :
(− | !) Unary

Evaluating right-hand sides starts from the bottom to the top, i.e. the pre-
fixed unary literals - and ! have the highest precedence, while the conditional
or || has the lowest.

Before we can define the literals, we have to take care of the unary elements
referenced above. A unary element is either a literal, a left-hand-side expression,
or a right-hand-side expression in parenthesis.

Listing 3.12: UML4SOA Data Handling Syntax: Unary Elements

Unary :
Literal | LeftHandSideExpression | ParenthesisExpression

ParenthesisExpression:
(RightHandSideExpression)

Finally, we can define the literals, which are simple numbers, string con-
stants, boolean constants, or the special value null.

Listing 3.13: UML4SOA Data Handling Syntax: Literals

Literal :
StringLiteral | NumberLiteral | BooleanLiteral | null

StringLiteral :
”String”

NumberLiteral :
Number (. Number)opt

BooleanLiteral :
true | false

As usual, this grammar allows a few constructs which are not legitimate
from a semantic point of view. For example, comparing a string with a boolean
using the Equality construct makes no sense in a strongly typed language. We

3.2. THE UML4SOA PROFILE 93

believe, however, that these cases are intuitively clear and thus do not require
further lengthy discussion.

3.2.4.3 Using the data language

Three of the non-terminal elements of the UML4SOA data language can be used
as top-level elements in expressions inside of UML4SOA models:

� The DataHandling statement is intended to be used in �Data� actions.
A �Data� action may contain an arbitrary number of data handling
statements.

� LeftHandSideExpressions and Declarations may be used in �Rcv� pins.
The first is used to specify an already existing variable in which the data
received is to be placed. The second can be used as a shortcut for the
modeller; it both declares the variable and specifies it for the received
data.

� In �Snd�-Pins, entire RightHandSideExpressions can be used. This al-
lows creating data on-the-fly. In this case, it is convenient to think of a
remote message invocation as a distributed assignment.

Figure 3.13: UML4SOA Data Manipulation: Simple Example

An example of using simple data types, assignment operations, and basic
operation on numbers and strings is shown in figure 3.13. First, a variable
is declared on-the-fly in a �Rcv� pin of the �Receive� action calculate;
the variable is called n and is typed with the well-known UML type Integer.
Second, a data handling action is used which executes four statements:

� The variable r is declared with the UML type Real,

94 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

� r is assigned the expression n / 3,

� the variable s is declared with the UML type String,

� s is assigned the expression r + " Percent".

Finally, the reply action uses the on-the-fly right-hand expression "Calcu-

lated " + s to add an additional string before r, the result of which is then
sent back to the invoker.

As indicated above, the UML4SOA data language also provides extensive
support for dealing with structured data types, which are tagged with �Mes-
sageType� in SoaML. An example of three structured data types is shown in
figure 3.14: a Thesis object may reference a Student and a Tutor.

Figure 3.14: UML4SOA Data Manipulation: Structure Types

Working with the instances of the Thesis class in UML4SOA can take ad-
vantage of these associations. Figure 3.15 shows an example where both the
tutor and the student association ends are set in a single data action.

Figure 3.15: UML4SOA Data Manipulation: Structure Example

To sum up, adding a data handling language to UML4SOA has the benefits
of being able to specify data operations on the UML level of abstraction. With
its low complexity and easy-to-use syntax, the language is a good match for
the UML4SOA graphical language and will later enable transformation to code
(chapter 6).

3.2. THE UML4SOA PROFILE 95

3.2.5 Changes to the UML

Specifying service behaviour in UML introduces some key new requirements for
a modelling language which was originally designed with object-oriented systems
in mind. The SoaML profile [OMG09b] has already shown how to mould the
UML to include SOA concepts, which has led to the proposal of adding the
concept of conjugation to the UML.

Within UML4SOA, we have identified the need for two additional changes
to the UML to enable developers to model SOA behaviour in a natural and
straightforward way. In the following, we revisit these changes already intro-
duced in the previous sections.

3.2.5.1 Adding an InputPin to AcceptCallAction

UML4SOA uses the UML meta-class AcceptCallAction with the stereotype
�Receive� for denoting a place where service behaviour waits for an incoming
call through a port of the corresponding participant. As has been discussed
above, the concrete port must be specified as part of the action to indicate the
partners from which a call is to be expected. UML4SOA has introduced the
�Lnk� stereotype for this purpose, which is attached to the UML meta-class
InputPin, as the partner information is an input to the receiving action.

Unfortunately, the UML superstructure [OMG10b] contains a restriction
on AcceptEventAction, which is a superclass of AcceptCallAction, which
prevents the use of input pins on instances of this class.

UML4SOA requires that this restriction is relaxed to allow pins which carry
additional information for the receiving action, which, in our case, is a�Lnk�-
stereotyped InputPin specifying the port the operation attached to the trigger
of the action is received on.

3.2.5.2 Allowing Call Observations in PrSMs

Transitions in UML Protocol State Machines [OMG10b] are based on the meta-
class ProtocolTransition. This class contains two important restrictions.
First, the effect association must be empty, i.e. a protocol transition may
not have associated actions. Second, as a subclass of Transition, a protocol
transition may include a trigger. There are two restrictions on this trigger:

� First, the specification of ProtocolTransition includes the requirement
that if a call trigger is used, the operation referenced should apply to the
context classifier of the state machine of the protocol transition.

� Second, the specification states that non-call events may be used on pro-
tocol transitions, but again refers to incoming events whose target is the
context classifier.

We believe that in the context of service protocol specification, this restric-
tion should be lifted to be able to observe events which originate from the
context classifier instead of using it as a target. In fact, a corresponding UML

96 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

meta-class for this concept exists: SendOperationEvent specifies that a call
invocation request is sent to an object (at which it may result in the occurrence
of a call event).

As sending out calls to partner services requires being able to note this
fact in a protocol, we believe that it should be possible to also reference op-
erations which are used by the context classifier of a protocol state machine.
UML4SOA thus extends the ability of PrSMs to include triggers with a Send-

OperationEvent event. It is important to note that this event is not an effect
of a transition; rather; it is an observed operation call of the participant the
classifier of the PrSM is attached to.

This ability is restricted in UML4SOA to transitions stereotyped with
�Send� or �Reply�.

3.2.6 UML4SOA/Open and UML4SOA/Strict

In this section, we introduce two dialects of UML4SOA: One serves modellers
interested in having maximum freedom in applying UML4SOA in combination
with the UML, while the other serves modellers interested in code generation
and formal analysis.

On the one hand, UML as a graphical language is great for communication
between people. For this use case, the focus lies on readable diagrams, which
tend to focus on the overall architecture of a system and ignoring low-level
details. Some of the diagram types of UML, for example use case diagrams, are
explicitly geared towards this usage, but with a sufficient level of abstraction
this method is applicable to all modelling elements. UML4SOA can be used for
this purpose: UML4SOA/Open defines a dialect which contains no restrictions
on how UML elements and UML4SOA elements may be used and combined in
models, only requiring the constraints in section 3.2 to hold.

On the other hand, model-driven software approaches build on generating
code from models. To enable such code generation, the semantics of the models
must be specified more precisely, which in general requires more detail and
stricter rules for placing elements in the model. Again, some diagram types in
UML are better suited for this purpose, for example state machines and activity
diagrams, but once more there are also methods for generating i.e. tests from
use case diagrams. UML4SOA can be used for this purpose as well: UML4-
SOA/Strict defines a set of rules for modellers to follow which enables formal
analysis and code generation which will be detailed in chapters 5 and 6.

3.2.6.1 UML4SOA/Open

The purpose of UML4SOA/Open is to give maximum freedom to software mod-
ellers. For this reason, no additional constraints apply — UML4SOA elements
may be freely mixed with UML activity and state machine model elements, fully
exploiting the means of specifying models with UML.

3.2. THE UML4SOA PROFILE 97

3.2.6.2 UML4SOA/Strict

By contrast, UML4SOA/Strict defines a set of rules which must be followed
to create compliant UML4SOA activity and state machine models usable for
generation of code and the specification of a formal semantics.

� A UML4SOA/Strict model must be based on a SoaML �Participant�
with �Service� or �Request� ports. Each port must have a port type
stereotyped with �ServiceInterface� which may include operations (ei-
ther directly or inherited) and declare usage relationships to other types.
Each operation may have multiple in and return parameters; out and
inout parameters are not allowed.

� All UML4SOA activities must be stereotyped with �ServiceActivity�
and attached to a �Participant�. The only actions allowed in an UML-
4SOA activity diagram are the actions stereotyped with UML4SOA stereo-
types with the one exception of RaiseExceptionAction. All communi-
cating actions must reference an operation (either directly or through a
trigger) from one of the port types of the corresponding participant.

� For controlling the workflow, decision and merge nodes as well as fork
and join nodes may be used. However, the resulting model must be well-
nested, i.e. all paths from a decision node not ending in a flow-final or
activity-final node must end in a merge node. The same goes for fork and
join nodes. Loops can (as usual) be modelled using fork and join nodes;
however, the looping (back) link may not carry any additional actions.
Each service activity must have an identifiable start node, i.e. either an
action without incoming links or a dedicated start pseudo node.

� The only grouping constructs allowed are UML4SOA service activities.
Handlers (again, service activities) may be attached as usual to service
activities, but interrupting edges are restricted to non-handler service ac-
tivities. Handlers may only be attached to non-handler service activities.

� Each event handler must start with a �Receive� action and end with a
�Reply� action or a RaiseExceptionAction to ensure the event handler
termination is either communicated to the partner, or exception handling
is triggered.

� All data handling statements in �Snd� and �Rcv� pins, guards, and
data actions must follow the syntax and semantics of the UML4SOA data
manipulation language. The only UML primitive types allowed are In-

teger, Boolean, and String; additionally, floating point values may be
declared using a (custom) data type Double, and dates with a (custom)
data type Date.

� The root behaviour of a participant must start with a �Receive� action
to ensure that it can be started from the outside.

98 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

For protocol state machines, the following rules apply:

� Transitions not annotated with a UML4SOA communication stereotype
are allowed, but are assumed to be internal to the protocol and the cor-
responding implementation. They do not follow the usual completion
semantics.

� States may not be nested, i.e. the state and transition structure must be
flat.

� An explicit start pseudo node is required to be present. The usual restric-
tions apply for the start transition.

We believe that besides being a requirement for code generation and for-
mal analysis, these requirements also lead to more readable diagrams and easier
implementation, and thus recommend following the constraints given here re-
gardless of the use of code generation.

3.2.7 Lifecycle Management

A SoaML participant with its accompanying service and request ports and UML-
4SOA activities models a single instance of an orchestration execution. The
owned behaviours (UML4SOA service activities) each model one execution of
the orchestration; the port protocols (UML4SOA PrSMs) each model an obser-
vation of the interaction with a partner during the lifetime of the orchestration
(provided or requested).

However, in client/server and SOA computing, an orchestration is normally
executed multiple times, often in parallel. In UML4SOA, we do not require
the developer to model this bootstrapping mechanisms as it is normally not
of interest to the modeller. Handling of multiple workflows, including instance
matching, is done implicitly in UML4SOA designs as follows (cf. figure 3.16).

Generic <<Service>>

Generic <<Service>>

Concrete <<Service>>

Concrete <<Service>>

Concrete <<Request>>

Concrete <<Request>>

Generic
<<Participant>>

Concrete
<<Participant>>

Figure 3.16: Generic and Concrete Participants

A concrete UML4SOA participant (i.e. the version modelled by a user) is
not instantiated directly on system startup. Instead, one can imagine that a
generic version of the participant is implicitly created and instantiated. The

3.3. MODELLING EXAMPLES 99

generic version has as many �Service� ports as the concrete one — these are
generic �Service� ports, which each provide and accept only one operation
again and again, which corresponds to the first accepted operation in the con-
crete�Service� port PrSM. On startup of the generic participant, the generic
ports wait for incoming calls. Once a message is received, a new instance of the
concrete participant along with its ports is instantiated by the generic partici-
pant and the startup message is passed to the corresponding concrete port.

All non-startup communication is done directly with the concrete instances
of the participant and its ports. To ensure instance matching, the port instances
are provided to the workflow via the �Lnk� pins.

Finally, instance matching, i.e. routing messages to the appropriate port
and thus instances of UML4SOA activities, requires some information (like an
ID) as part of the message with which the system can route a message to the
appropriate port (and thus workflow) instance. This information is assumed to
be added transparently to the incoming and outgoing messages of the workflow
based on the unique IDs associated with each port instance.

Each service action in UML4SOA service activities has a�Lnk� pin which
carries the information about the instance of the port which is in use for this
particular orchestration instance. This information is used to match calls to
and from the correct workflow instance.

3.3 Modelling Examples

In this section, we will detail how the thesis management scenario from the
eUniversity case study from the Sensoria project has been modelled with UML-
4SOA, and give some pointers to other examples.

3.3.1 Modelling the eUniversity Case Study

In section 3.1, we have introduced the static (SoaML) model of the eUniversity
case study (Figure 2.9 on page 35). Now, after having discussed the UML4-
SOA profile and its extensions for activities and protocol state machines, we
can add the behaviour of the ThesisManagement participant and the protocols
of its ports. In the following, we use the UML4SOA/Strict dialect for both the
activity and the PrSM models.

The UML4SOA activity describing the behaviour of the ThesisManagement

participant is shown in figure 3.17. From top to bottom, the behaviour is as
follows:

� The orchestration begins with a �Receive� action, requiring a client to
send the createThesis call via the service port tutor. A thesis object is
expected and placed in the newly declared thesis variable.

� Afterwards, the process starts with its Main activity and another receive
operation: acceptTopic allows a student to start working on the the-
sis. Attached to Main is an exception handler which catches the Thesis-

100 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

FailedException. It contains one action, namely a �Compensate� call
with the target activity Registration.

� Having completed acceptTopic, the Registration activity is entered.
Here, we first inform the examination office about the newly started thesis,
and secondly register the student for a seat in the graduation gala. This is
a classic example of how certain parts of a workflow complete successfully
but may need to be undone later on; therefore, the Registration scope
has an attached compensation handler CompensateRegistration which
undoes the reservation of a seat in the gala (this happens if the thesis is
not accepted).

� Finally, the tutor is notified that a student has accepted the thesis and is
now working on it.

� Now that the thesis is in progress, we enter the InProgress activity, which
starts with a loop. In this loop, the student is allowed to send updates
by using the updateStatus call via the student port until the thesis is
complete, in which case he sends a finished call.

� During this time, which is potentially quite long, the tutor might want to
request updates. Therefore, the InProgress activity has an event handler,
StatusInformation, which contains the receive action getStatus to be
used by the tutor for retrieving the current status of the thesis.

� Once the finished call has been received, the assessment is requested
from the tutor using getAssessment, which is reported to the student.
In case the thesis was finished successfully, this information is reported to
the examination office and the process ends. If not, a failure is reported
and an exception thrown, which leads, via the compensate activity in the
ExceptionHandler, to unregistering the student from the gala.

As the ThesisManagement participant uses four ports — two service port
and two request ports — we define four UML4SOA protocol state machines for
specifying the externally visible protocol of the participant.

Figure 3.18 shows the protocols of the ThesisManagement participant. From
top left to bottom right, these are the student protocol, the eoffice protocol,
the bboard protocol, and the tutor protocol.

Student Protocol

The protocol provided to the student allows receipt of the acceptTopic call.
Once received, the protocol is in working state, allowing the receipt of either the
updateStatus call, which leads back to working, and finished, which requests
the process to finished (being replied to with �Reply� finished).

3.3. MODELLING EXAMPLES 101

Figure 3.17: eUniversity Case Study: Thesis Manager Activity

102 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Figure 3.18: eUniversity Case Study: Protocol Specification

3.3. MODELLING EXAMPLES 103

EOffice Protocol

The protocol of the examination office begins with the ability to send a report-

ThesisStarted call, indicating that a student has started a thesis. In the
subsequent state working, the thesis is either reported as being successfully
completed with reportThesisSuccess leading to the success state, or having
failed, in which case we receive a reportThesisFailure which leads to the
failed state.

Graduation Protocol

The graduation service protocol is rather simple — the TutorManagement par-
ticipant expects to be able to send a registerForGraduation call to the grad-
uation service, and it might — using the �Optional� stereotype — also need
to unregister the student with unregisterFromGraduation.

Tutor Protocol

Finally, the tutor protocol is another protocol provided by the ThesisManager.
The participant first expects a postThesis message from the tutor. Once a
student has chosen the thesis, the tutor is informed with the thesisInProgress
call. Now, the tutor may send getStatus calls for retrieving the status of
the thesis, for which he must be able to receive a reply. Finally, once the
getAssessment call is sent to the tutor, he must send back the assessment with
the getAssessment call.

3.3.2 Other Examples

Besides the thesis management scenario of the eUniversity case study, UML4-
SOA has also been used for several other scenarios from different case studies
within the Sensoria project.

� In the context of the eUniversity case study, another scenario has been
modelled with UML4SOA, which revolves around a student application to
an online university.

� From the automotive case from the Sensoria project, several scenarios
have been modelled in UML4SOA, the most elaborate of which is the
roadside assistance scenario.

� Finally, the finance case study and its credit request scenario have been
modelled with UML4SOA.

An overview of these scenarios is given in [EGK+10]. Furthermore, the
Sensoria web site www.sensoria-ist.eu contains tutorials and downloads for
each of these case studies.

www.sensoria-ist.eu

104 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Figure 3.19: UML4SOA Tool Support in RSA

3.4 Tool Support

As outlined in chapter 2, one of the benefits of defining a UML profile instead of a
heavyweight extension or a completely new graphical language is the availability
of UML tools which readily offer support for UML profiles. The definition of
profiles using the mechanisms provided by the tool is usually sufficient to be able
to use the included stereotypes, although not always in the most convenient way.

In the next section, we discuss support for UML4SOA in IBM Rational
Software Architect (RSA) [IBM09] and the MDT UML2 Tools [Ecl10d] by means
of a simple profile definition. In section 3.4.2, we discuss a more thorough
integration into the tool MagicDraw [NoM10].

3.4.1 Profile Support in RSA and MDT UML2

Both the Rational Software Architect by IBM and the MDT UML2 Tools are
based on the Eclipse platform and a common meta-model of the UML modelled
in the Eclipse Modelling Framework (EMF). Thus, although the graphical front-
ends of these two tools are very different, the underlying model is (mostly)
equivalent. In particular, profiles can be defined which can be used by both
platforms.

An example of using RSA with the UML4SOA profile is shown in Figure 3.19;
the view in Eclipse is similar. On the left hand side, the stereotypes of the profile
are shown, which can be applied to a certain element in the diagram by drag and
drop or context menu selection. On the right-hand side, the first two actions
from the ThesisManagement can be seen in the diagram view.

3.4.2 Integration into MagicDraw

In contrast to both RSA and the MDT UML2 Tools, the MagicDraw product
by NoMagic is not built on Eclipse nor the EMF UML2 meta-model discussed

3.5. RELATED WORK 105

Figure 3.20: UML4SOA Tool Support in MagicDraw

above, but uses a proprietary UML meta-model. Thus, the profile must be
defined separately using the tools provided in MagicDraw.

MagicDraw can be easily extended with additional toolbars which enable
modellers to immediately create a stereotyped element without first having to
select the correct meta-class and later on applying a stereotype. We provide
such a toolbar for UML4SOA, which is shown in figure 3.20 on the left-hand
side. The already stereotyped actions or edges shown there can be directly
dragged to the diagram view on the right-hand side, which (again) shows the
first two actions of the ThesisManagement orchestration.

3.5 Related Work

As the UML is the de facto standard for modelling software systems and further-
more offers the profile mechanism for allowing extensions, it is not surprising
that a number of profiles and other extensions are available for modelling SOA
systems. However, adding SOA semantics to the UML is not trivial: As shown
in section 3.2.1, the UML semantics differs in several aspects from the ideas
of SOAs. Section 3.5.1 discusses existing approaches which touch the area of
behavioural SOA modelling.

UML models are not only about behaviour; and neither are profiles. The
Sensoria project thus provides supplementary profiles which address additional
aspects of SOA systems and can be used in combination with UML4SOA. They
are discussed in section 3.5.2.

106 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

Although the aim of this thesis has been the adaptation of UML to be-
havioural SOA modelling, there are other languages which may be used for this
purpose as well. An overview is given in 3.5.3.

3.5.1 UML extensions

[Joh05] provides an extension for the specification of services addressing struc-
tural aspects. The focus lies on the concepts of services and in particular tech-
nical concerns such as message passing with attachments. As such, it is closely
related to the Web Service family standards; in fact, WSDL is mentioned ex-
plicitly. The profile thus does not include its own platform-independent layer.
Furthermore, neither behaviour of services nor orchestration is addressed in that
work.

The work of Skogan et al. [SGS04] has a similar focus to the approach pre-
sented in this thesis, i.e. a model-driven approach for services based on UML
models and transformations to executable descriptions of services. The main dif-
ficulty in the use of this approach lies in the Web Service composition method,
which is closely based on Web Services, as the workflow starts with a WSDL
specification which is transformed to UML as the basis of a behavioural work-
flow. Furthermore, the stereotypes of the profile carry direct links to Web
Service artefacts (for example, the �WebServiceCall� stereotype carries the
corresponding WSDL definition in the tagged value wsdl). Thus, the relation-
ship between Web Services and UML is much closer than in UML4SOA.

The style-based modelling and refinement approach [BHTV06, HLT03] by
Baresi et al. focuses on modelling SOA architectures by refining business-oriented
architectures. The refinement is based on conceptual models of the platforms in-
volved as architectural styles, formalised by graph transformation systems. The
extension includes stereotypes for the structural specification of services; how-
ever, it does not introduce specific model elements for behavioural descriptions
of services.

Ermagan and Krüger [EK07] extend the UML2 with components for mod-
elling services defining a UML2 profile for rich services. Collaboration and
interaction diagrams are used for modelling the behaviour of such components.
Neither compensation nor exception handling is explicitly treated in this ap-
proach.

Another approach to modelling of Web Service compositions is UML-S
[DNsmGW08]. Although the authors explicitly mention Web Services instead
of SOAs, the UML-S profile is defined in a relatively platform-independent way.
The profile includes both static aspects and behavioural aspects. In the latter,
however, the focus lies on providing stereotypes for control flow patterns such
as while and N-Join. Very little information is given on the communicating
actions, and neither event handling nor compensation handling is mentioned.

In 2006, the OMG started an effort to standardise a UML Profile and Meta-
model for Services (UPMS) [OMG06]. SoaML [OMG09b] has been created in
response to this call, and is on its way to becoming an OMG standard (the
project is currently in its second beta version). Both UPMS and SoaML are

3.5. RELATED WORK 107

restricted to the static aspects of SOA architectures. As such, SoaML has been
used as the basis for the work in this thesis as already described in section 2.3.

Several approaches have been implemented for the automated transforma-
tion from UML to BPEL with the commonality of requiring very technical,
BPEL-focused UML diagrams from designers. A first automated mapping of
UML models to BPEL [AGGI03] defines a very detailed UML profile that in-
troduces stereotypes for almost all BPEL activities — even for those already
supported in plain UML, which makes the diagrams drawn with this profile
hard to read. This profile is rather old; it is based on BPEL 1.1. and UML 1.4.
A follow-up diploma thesis [Amb05] lifts it to BPEL 2.0 and UML 2.0, keeping
the same spirit.

Another example which is directly based on BPEL (1.1) is the UML profile
described in [Man03]. A state chart is used to denote behaviour, with addi-
tional nesting elements describing the partner who is responsible for an action.
Advanced BPEL concepts such as event handling or compensation are not men-
tioned.

Finally, a rather new approach by Li et al. [LZP09] uses UML sequence di-
agrams to describe service compositions. Starting from a set of WSDL files,
the sequence diagrams are annotated with BPEL-like stereotypes and are later
transformed to BPEL. However, no profile has been defined, and neither com-
pensation, event handling, nor faults are mentioned.

In contrast to the above approaches, UML4SOA does not focus on any par-
ticular target implementation technology. Rather, it attempts to provide, in the
simplest and most UML-like way possible, a complete solution for modelling be-
havioural service-oriented concepts in UML.

3.5.2 Related Profiles

As sketched in the introduction of this thesis, UML4SOA has been defined in
the context of the Sensoria project [WBC+09], which as a whole had the aim
of supporting the rigorous engineering of service-oriented software. To be able
to specify aspects of SOAs not covered in SoaML and UML4SOA, the project
provides additional profiles [FGK+10b] which may be used in combination with
UML4SOA. These profiles address non-functional properties of services, business
policies, implementation of service modes, and service deployment [FGK+10a].

The non-functional extension profile for SOAs aims at modelling of arbitrary
quality of service properties [GGK+10]. The profile defines a general framework
for quality of service (QoS), which can later be instantiated to address different
concerns such as performance, logging, or security. In the same spirit as in
UML4SOA, the NFP profile includes model transformations which support the
automated code generation of middleware configurations with QoS constraints
[GV10].

UML-based modelling of business policies in Sensoria is based on the
StPowla approach [GMRMS09]. StPowla defines a business process through
basic tasks, which in turn use resources. Through access control over these re-

108 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

sources, StPowla enables business stakeholders to adapt the process to arising
needs based on policies. The UML extension for StPowla follows a hybrid ap-
proach: The actual policies are expressed using tables (outside of the UML),
while the StPowla UML integration is a support profile integrating UML arte-
facts and policies.

Another approach developed within the Sensoria project is the concept of
service modes [HKMU06], which are an extension of software architecture modes.
Service modes describe different architectural configurations of a SOA-based
software system; depending on certain constraints, the system can dynamically
switch between different modes to adapt to the current external requirements
placed on its behaviour. Different modes may require different services based
on different constraints. The UML profile for service modes [FUMK08] allows
the specification of modes, collaborations and constraints as well as broker con-
straints and components to address this concern.

Finally, the service deployment profile [FEK+07] of Sensoria complements
UML4SOA by providing the ability to specify service deployment on infrastruc-
ture nodes such as web servers and servlets. The profile allows the specification
of characteristics a host server must provide, thus enabling verification of actual
deployment configurations for safety and correctness.

3.5.3 Other modelling approaches

Behavioural service modelling can be performed on either a platform-independent
or a platform-specific level; depending on the definition of modelling, one can
even include traditional programming languages in this discussion.

A related approach to UML4SOA is the Business Process Modelling Notation
(BPMN) [OMG09a]. BPMN is based on a workflow-like notation similar to
activity diagrams. The BPMN language originates from the domain of business
process modelling instead of software design specifications; the primary focus
is thus a standard notation which is understandable by business stakeholders
such as business analysts and managers, aiding them in their communication
with one another and with the software engineers implementing the business
workflows.

The BPMN specification includes an informal, partial mapping to BPEL.
This mapping has shown to be problematic [RM06] due to conceptual mis-
matches between the two languages, which mainly revolve around the different
backgrounds of business versus software engineering perspectives.

UML4SOA differs from BPMN in the same spirit. Firstly, its main target
users are software developers. Second, although UML4SOA can be used to
model business processes, we provide no specific support for them; instead,
the modelling approach is to provide a generic, platform-spanning approach to
modelling behaviour on a service level of abstraction.

Another major industry approach to SOA is the Service Component Archi-
tecture (SCA) [MR09]. SCA is a programming model for building applications
based on SOAs. Different than in the case of Web Services, SCA does not fo-
cus on any particular language or framework; in fact, existing languages can be

3.6. SUMMARY 109

used to define the behaviour of services in SCA. The current standard contains
specifications for Java, C++, BPEL, and PHP. As such, SCA does not include
its own means of specifying service behaviour.

There are also platform-dependent approaches to the specification of service
behaviour. The first language which comes to mind is the Business Process
Execution Language (BPEL) [OAS07], which is specific to the domain of Web
Services as it is fundamentally based on WSDL. BPEL itself is not a graphical
language; however, most BPEL modellers introduce proprietary graphical mod-
elling elements to aid customers in the specification of BPEL processes, whose
syntax is in fact defined in XML.

Another platform-specific language for service modelling is the jBPM Process
Definition Language (JPDL) [JBo10]. jBPM is a business process management
suite based on process descriptions which can directly be executed by a virtual
machine. JPDL is a process language which allows the specification of busi-
ness processes using the Java language; similar to activity diagrams, it takes a
graph-based approach to the specification of control flows. JPDL programs are
deployed on the JBoss jBMN server to execute.

UML4SOA differs from the above approaches by providing a platform-in-
dependent, graphical modelling approach based on the Unified Modeling Lan-
guage. Regarding SCA, UML4SOA models may be in fact be used with a num-
ber of target languages including Java and BPEL to contribute components to
systems based on the SCA.

3.6 Summary

This chapter has introduced the UML4SOA profile, a lightweight extension of
the UML for modelling the behaviour and the protocols provided and required
of participants in service-oriented architectures.

In section 3.1, we have discussed the need for an extension for service be-
havioural modelling in the UML due to insufficient representation of key service
concepts such as communicating actions, long-running transactions, and self-
descriptions in activities and protocol state machines.

Section 3.2 has then introduced the UML4SOA meta-model and, subse-
quently, the profile. According to the main aim of the definition of the UML4-
SOA profile — minimalism and conciseness — we have defined additions to the
UML for both activities and PrSMs, while reusing existing UML constructs such
as structured activities, actions, and control structures such as fork or decision
nodes.

This section has also discussed a lightweight data manipulation language for
guards, actions, and pins in UML4SOA, which enables the modeller to stay on
the same level of abstraction as in the rest of UML4SOA. Finally, in order to
accommodate different usage scenarios of UML4SOA, the two dialects UML4-
SOA/Open and UML4SOA/Strict have been introduced. The former focuses on
maximum expressiveness and integration with existing UML constructs, while
the latter adds a set of constraints for ensuring unambiguous models ready for

110 CHAPTER 3. MODELLING SERVICE BEHAVIOUR IN UML

code generation and analysis.
Section 3.3 has shown a practical example of how to model with UML4SOA

in the form of diagrams for the eUniversity case study introduced in chapter 1.
More examples can be found in [EGK+10].

We have discussed tool support for modelling UML4SOA in different UML
modelling tools in section 3.4. Finally, section 3.5 has discussed related work.

Chapter 4

The Service Meta-Model

The MDD4SOA approach to model-driven development of service-oriented ar-
chitectures consists of three main components — modelling, analysis, and code
generation. Before discussing analysis and code generation in the next two
chapters, we take a step back to address the underlying structure of these three
components: A meta-model for services.

The previous chapter has already introduced UML4SOA, a profile for spec-
ifying SOA behaviour based on the UML. Together with parts of the UML and
the SoaML profile referenced in chapter 2, UML4SOA defines a syntax for mod-
elling SOA systems. This chapter refines this field with the introduction of the
Service Meta-Model (SMM). The SMM is a generic, language- and platform-
independent meta-model for describing the static, dynamic, and data handling
aspects of a SOA system. It relates to the three main components of MDD4SOA
as follows:

� Taken together with the restrictions discussed in UML4SOA/Strict, the
UML, SoaML, and UML4SOA form the concrete syntax for the SMM.

� A semantics and corresponding formal analysis methods for the behavioural
parts of the SMM allow evaluation of UML4SOA models, which will be
discussed in chapter 5.

� Model transformations based on the SMM enable code generation of UML-
4SOA models; in particular, we discuss transformations to actual exe-
cutable code in Java and BPEL (chapter 6).

This chapter is structured as follows. First, we show how the individual
parts presented in this thesis fit together based on the SMM (section 4.1). Sec-
ond, we introduce the Service Meta-Model (SMM), detailing its design ideas
(section 4.2). Finally, we conclude in section 4.3.

Published results: Results presented in this chapter are based on publications
[MSK08a] and [MSK08b].

111

112 CHAPTER 4. THE SERVICE META-MODEL

4.1 Overview

The three main contributions areas of MDD4SOA — modelling, analysis, and
code generation — share a common idea of a service-oriented system. This
chapter defines this common idea with the Service Meta-Model (SMM).

Before we introduce the SMM, it is important to understand how the SMM
relates to UML4SOA, the formal semantics and analyses, and the transforma-
tions to code. This is shown in figure 4.1.

Static Part Data

S e r v i c e M e t a - M o d e l (S M M)

Web Services

Graphical Notation

SoaML/UML4SOA

Behaviour

MIO-based formal semantics

Java

Figure 4.1: Overview: The SMM and Related Artefacts

The figure shows the Service Meta-Model (SMM) in the middle, consisting of
three parts — a static part (left) which describes the static structure of a SOA
system, a data part (right) which contains constructs for assignments, variable
declarations, and operations, and finally (middle) the behavioural part.

The SMM in general does not have any notation, graphical or otherwise.
This part is played by the UML and the SoaML and UML4SOA profiles, which
are displayed on top of the SMM. The SoaML profile has been introduced in
chapter 2 and is used as the concrete syntax for modelling the static part of the
SMM. The UML4SOA profile has been introduced in chapter 3 and is used as
the concrete syntax for the behavioural and data parts of the SMM.

We have introduced two variants of UML4SOA: UML4SOA/Open, which is
intended for maximum expressiveness and free modelling of SOA systems mainly

4.2. THE SERVICE META-MODEL 113

for communicating ideas, and UML4SOA/Strict, which requires a more rigid
structure and constrains the elements allowed in the models. The SMM forms
the basis for UML4SOA/Strict; strict-compliant models can thus be directly
parsed into instances of the SMM. A complete description of this translation
will be presented in chaper 6.

The behavioural part of the SMM is given a rigorous formal semantics in
the domain of modal input/output automata. By means of a denotational se-
mantics function, this translation is described fully in chapter 5. To simplify
this specification, the SMM includes a textual notation for just the behavioural
part, which will be introduced later in this chapter.

Finally, the SMM serves as the basis for the transformations to the Web Ser-
vices family of standards (BPEL, WSDL, XSD) and Java, which are displayed
at the bottom of the figure. In case of the Java implementation, a simulation
and annotation approach allows executing the generated code and comparing
runtime traces with the formal model, which is shown with an upward arrow.
This approach is described in chapter 7.

In the following section, we give an introduction into the SMM.

4.2 The Service Meta-Model

The Service Meta-Model (SMM) is a generic meta-model for modelling SOA
participants with provided and required services, service behaviour, and message
exchanges between services.

The SMM attempts to capture general concepts which underlie service-
oriented architectures while keeping in mind the requirements for concrete no-
tations such as SoaML and UML4SOA as well as the need to be able to specify
a rigorous formal semantics for the behavioural part and the ability to generate
code in executable, industry-standard platforms.

Figure 4.2: SMM Packages

114 CHAPTER 4. THE SERVICE META-MODEL

The SMM has been built using the Eclipse Modelling Framework (EMF)
introduced in chapter 2. It consists of 59 classifiers and 57 structural features.
The meta-model is split into three packages (cf. figure 4.2) which are discussed
in the following three subsections. Within the SMM package, the Statik1 package
defines the static aspects of a SOA (such as participants, partners, and message
types). Based on these aspects, data handling statements (such as assignments
and data manipulation actions) are defined in the Data package and, finally,
the behaviour of SOA participants (i.e. the actual steps to be executed, and the
protocols to be adhered to) in the Behaviour package.

4.2.1 Static Aspects

The Statik package of the SMM defines the basic static structure expected in
a SOA and is shown in figure 4.3. The root entry point of an SMM model is
the class Participant, which is shown in the top left.

A participant is a software artefact which provides or requires several ser-
vices. Through these services, the participant addresses partners (or is addressed
by a partner). The Service class is an abstraction of a service interaction point
— either a service is provided by the participant (ProvidedService) or required
(RequiredService).

As the root entity of an SMM model, the participant also contains a list of
SMMTypes. These types are used in interfaces and as message types for trans-
mitting information.

Each service has a type (InterfaceType), which includes a set of imple-
mented and used operations (bottom right). For example, a provided service
(class ProvidedService) may contain both implemented operations (invoked
on the participant) and used operations (invoked, as callbacks, on the partner).
On the other hand, implemented operations of a RequiredService are invoked
on a partner, while used operations are invoked as callbacks on the partici-
pant itself. As usual, an operation may contain input parameters and output
parameters which are again typed with SMMType.

The central class SMMType has several subclasses for denoting different kinds
of types. On the left, the supported PrimitiveType elements are shown. These
types capture the primitive types encountered in most programming languages.
For exchanging data between services, the MessageType element is used, which is
a data-only class without any operations. It contains several MessageProperty
elements which are used to model both primitive properties as well as associa-
tions. Finally, ExceptionType is used for modelling exceptions, and the special
NullType represents a non-existent type of a variable.

Finally, note the class TypedMultiElement. This class captures multiplici-
ties in associations: Message properties, operation parameters, and (later) vari-
ables may be used to store more than one element in an ordered or unordered
way. This is captured through the min, max, and ordered properties.

1ending in a k due to static being a reserved keyword in Java.

4.2. THE SERVICE META-MODEL 115

Figure 4.3: SMM: Statik Package

116 CHAPTER 4. THE SERVICE META-MODEL

4.2.2 Handling Data

The SMM Data package defines the structures required for storing data expres-
sions used in assignments, declarations, and parameters of service calls and call
receptions. Furthermore, it includes support for defining and referencing vari-
ables and attributes within variables. The Data package is shown in figure 4.4.

The root class of the Data package is the Expression class. An SMM Ex-

pression has a type (imported from the Statik package) and is realised as
either a RightHandSideExpression or a LeftHandSideExpression. These two
classes match the usual idea of the left- and right-hand side of an assignment.
The left-hand side represents a reference to a data container, such as a variable
or a property, which is represented in the SMM by means of the VariableRef-

erence and the PropertyReference classes. A right-hand side may represent
literals or operation calls in addition to data containers. The Literal class
models literals in one of the primitive data types of the Statik package, while
the Operation class models the invocation of a standard operation. The SMM
defines these operations in the OperationType class:

� The first six operation types are mathematical operations for adding, sub-
tracting, multiplying and dividing numbers as well as performing the mod-
ulo operation and negating numbers. The add operation is overloaded to
also handle string concatenation.

� The other nine operations are used in conditions; the usual logical oper-
ations and, or, and not are used to combine statements, while equals,
greater, less, and not-equals are used to form boolean expressions.

Right- and left-hand-side expressions are brought together with assignments
as modelled by the Assignment class. Furthermore, variables can be declared
with the Declaration class. Finally, the InteractionParameter class models
either incoming or outgoing parameters of a service call. A SendParameter can
carry a complete right-hand side expression which is to be sent to a partner,
while the ReceiveParameter may only specify a left-hand side expression for
storing the data.

4.2.3 Modelling Behaviour

The last package in the SMM meta-model is the Behaviour package, which is
shown in the two figures 4.5 and 4.6. The Behaviour package includes elements
from the Data and Statik package to define a structure for the execution of
a participant, which includes service communication, structured elements like
loops, parallel behaviour, or decisions, as well as the new service-oriented con-
cepts of event- and compensation handling. Furthermore, it contains elements
for defining protocols for services.

Figure 4.5 is concerned with the structuring actions and non-communication
actions of the behaviour of a participant. On the bottom right, the Participant
class from the Statik package is shown. The Behaviour package adds a new

4.2. THE SERVICE META-MODEL 117

Figure 4.4: SMM: Data Package

118 CHAPTER 4. THE SERVICE META-MODEL

Figure 4.5: SMM: Behaviour Package (1/2)

4.2. THE SERVICE META-MODEL 119

Figure 4.6: SMM: Behaviour Package (2/2)

120 CHAPTER 4. THE SERVICE META-MODEL

association to this class, namely a list of ServiceActivity elements which, on
this level, each represent one complete behaviour of the participant.

ServiceActivity is one of the two central classes in the Behaviour package
(the other main class is ServiceProtocol, see below). It contains — transitively
— all other elements associated to this behaviour of a participant. ServiceAc-
tivity is a specialisation of CompositeElement, which is in turn a specialisation
of ServiceElement. CompositeElement, as the name suggests, follows the com-
posite pattern, and may contain a number of children of type ServiceElement.
In particular, if a CompositeElement contains more than one child, the chil-
dren are assumed to be in sequence (executed one after another). Through this
mechanism, the complete behaviour can be modelled, as all simple and struc-
tured actions are subclasses of ServiceElement — including ServiceActivity,
which allows nesting of behaviour.

In its role as a structuring construct, ServiceActivity may contain a num-
ber of variables (Variable class from the Data package) and a number of event,
exception, and compensation handlers. A ServiceActivity with an attached
compensation handler may also be the target of a Compensate action (middle
right).

For structuring child elements non-sequentially, the SMM includes three
composite elements modelled as subclasses of PathBasedPartition, which mod-
els a partition in the execution workflow with a specialised meaning attached to
its children, which must be instances of the type Path.

� A Decision models a choice: Just one of the paths is executed; which
one depends on the attached enterCondition which is modelled as an
Expression (from the Data package).

� A Parallel models concurrent behaviour of child paths.

� Finally, a loop indicates that the children in its (only) path are to be
looped until the leaveCondition evaluates to true.

Subclasses of Handler already mentioned above are again composite ele-
ments which model compensation, exception and event handling, respectively.

� Exception handlers stand out as they both have a type of exceptions to
be caught (SMMType class from the Statik package) as well as a place to
store and reference the caught exception (VariableReference class from
the Data package).

� Compensation handlers are used to model behaviour which undoes the
work of the service activities they are attached to. A compensation handler
may specify arbitrary elements; it is invoked by means of the Compensate

or CompensateAll constructs (see below).

� Finally, event handlers are used to attach optional parallel behaviour to a
ServiceActivity. An event handler may be executed at any time, and

4.2. THE SERVICE META-MODEL 121

also multiple times, during the execution of the attached ServiceActiv-

ity. It also may not be invoked at all. An event handler must begin with
a Receive element (see below).

The right-hand side of the figure shows the non-communicating simple ac-
tions. All non-structuring actions are subclasses of SimpleElement. Two deal
with compensation handling: The Compensate class models the compensation
of a single referenced activity, while the CompensateAll class models default
compensation for all nested service activities: By default, all successfully com-
pleted inner activities of the compensated ServiceActivity are compensated
in reverse order of their execution.

The Throw element models an exception; the type of the exception is refer-
enced in the exceptionType association (by means of ExceptionType from the
Data package). Terminate ends the complete behaviour. Lastly, the DataHan-

dling element may contain a number of data manipulation statements which
are modelled by reference to the Statement class from the Data package.

The second figure (figure 4.6) is concerned with the communication actions
of a participants behaviour as well as the protocols of services.

The right-hand side of the figure shows the communication actions, i.e.,
ServiceInteraction elements (middle right), of which there are four:

� Receive, already mentioned above, waits for an incoming call from a
partner of the participant. A receive may be an interrupting receive,
it which case the link to a corresponding parent service activity is set;
otherwise, this link is left open. An interrupting receive can end the
activity at any time.

� Send sends out a call to a partner without waiting for a return value.

� Reply has the same semantics as Send, but ends a previous call from a
partner and, for this reason, contains a link to the previous Receive.

� SendAndReceive combines a Send with a Receive, i.e. an operation call
is sent out and an answer is received.

The ServiceInteraction class contains a set of links which are (mostly)
common to its subclasses. First of all, a service interaction references a service
to which a call is sent, or from which a call is received (partner association,
referencing Service from the Statik package). The operation which is expected
or invoked is modelled by means of the operation association, referencing the
InterfaceOperation class from the Statik package. Lastly, an interaction may
contain a set of parameters to be sent or received; depending on the concrete
subclass of ServiceInteraction, only one association or both may be used.
Both parameter sets are referenced as InteractionParameter elements from
the Data package.

Finally, the left-hand side of this figure contains the elements for proto-
cols. Each InterfaceType (from the Statik package) may have an associated

122 CHAPTER 4. THE SERVICE META-MODEL

ServiceProtocol, which is — in effect — a state machine consisting of Proto-
colStates and ProtocolTransitions linking them together; the protocol itself
has a designed start state. There are five ProtocolTransition subtypes:

� SendTransition indicates that the participant to which the protocol is
attached to sends a call.

� ReceivingTransition indicates that the participant to which the proto-
col is attached to receives a call.

� ReplyTransition denotes the fact that a reply is being sent out to a
previous receive.

� ReceiveReplyTransition denotes the fact that a reply is expected from
the behaviour to which the protocol is attached.

� Finally, NoopTransition is a transition without any externally visible
effect (i.e., no communication).

The operation involved is given as an association to InterfaceOperation

(from the Statik package). Note that a transition may be optional, as indicated
by the isOptional flag.

This concludes the discussion of the SMM meta-model for service-oriented
architectures. The next section will discuss a textual syntax for the behavioural
part, which will become important in chapter 5.

4.2.4 Textual SMM

The SMM, as a meta-model, does not include any syntax; this part is played by
the UML, SoaML, and UML4SOA as shown in the last chapter. However, for
the definition of the formal semantics using modal I/O automata in chapter 5,
it is convenient to have a textual notation available for the parts of the SMM
relevant to the semantics, and which benefit from a textual notation. In our case,
this is the definition of the behaviour of a SOA participant. A textual notation
for protocols is not required as the translation is straightforward (cf. chapter 5).

We can take advantage of the well-nestedness of the SMM during the defi-
nition of the syntax; the resulting code is well-nested, too.

4.2.4.1 SMM Behavioural Textual Syntax

As in chapter 3, we again use the syntax definition style from the Java language
specification. We start with a number of definitions for identifiers.

4.2. THE SERVICE META-MODEL 123

Listing 4.1: SMM Syntax: Identifiers

OperationIdent :
ExceptionIdent :
ActivityIdent :

String

We now define the denotation of an SMM participant behaviour, which is an
SMM ServiceActivity. An activity definition begins with the keyword activ-
ity, has a name, and must contain an inner Element. It may have, additionally
and optionally, associated exception, event, and compensation handlers as well
as interruptions, mirroring the meta-class associations in the SMM.

Listing 4.2: SMM Syntax: Services

ServiceActivity :
activity(ActivityIdent : Element ActivityInterruptionsopt)

ActivityExceptionsopt ActivityEventsopt ActivityCompensationopt

Before presenting the child elements, we introduce interruptions and han-
dlers. Firstly, the SMM defines the concept of interrupting receives, allowing
the interruption of a ServiceActivity. An interrupting receive is modelled
with the Receive meta-class which has its interrupting association set to a
ServiceActivity; in turn, the ServiceActivity references the Receive in its
interruptingReceives association. We denote an interrupting receive with
the keyword interrupt and a Receive element (to be defined later).

Listing 4.3: SMM Syntax: Interruptions

ActivityInterruptions:
ActivityInterruption
ActivityInterruptions ActivityInterruption

ActivityInterruption:
interrupt Receive

Exception handlers, which are modelled in the SMM with the Exception-

Handler meta-class, are defined with the keyword exception, an exception to
catch, and a body. The exception to catch corresponds to the exceptionType

association of the ExceptionHandler class and thus corresponds to an Excep-

tionType. There may be multiple exception handlers attached to a service
activity.

124 CHAPTER 4. THE SERVICE META-MODEL

Listing 4.4: SMM Syntax: Exception Handlers

ActivityExceptions:
ActivityException
ActivityExceptions ActivityException

ActivityException:
exception ExceptionIdent : Element

Event handlers (EventHandler meta-class) are defined by using the event
keyword. They do not need any additional information — the SMM requires
the first element of an event handler to be a receive action, though.

Listing 4.5: SMM Syntax: Event Handlers

ActivityEvents:
ActivityEvent
ActivityEvents ActivityEvent

ActivityEvent :
event Element

Finally, a service activity may have one compensation handler (Compensa-
tionHandler meta-class) which is denoted with the keyword compensation.

Listing 4.6: SMM Syntax: Compensation

ActivityCompensation:
compensation Element

We have now bootstrapped the definition of SMM participant behaviours.
Each service activity as well as all handlers are SMM CompositeElements, which
may contain several children. We allow the notation of possible children with
the Element non-terminal.

Listing 4.7: SMM Syntax: Elements

Element :
Activity
StructuredElement
BasicAction

As can be seen from this definition, an Element can (again) be an activity,
a structured element, or a basic action (send, receive, etc.). Most commonly,
an activity will contain a structured element as its immediate child, which is
defined as follows:

4.2. THE SERVICE META-MODEL 125

Listing 4.8: SMM Syntax: Structured Elements

StructuredElement :
Sequential
Parallel
Decision
Loop

These elements correspond to the basic, well-nested structuring mechanisms
in the SMM. A sequential block simply consists of a number of statements
separated by semicolons (;); this notation is used for SMM CompositeElements
with more than one child. A parallel block (meta-class Parallel, denoted as
parallel) consists of multiple individual elements which all run in parallel. In
the case of a decision (Decision meta-class, denoted as decision), one of the
elements is picked for execution. Finally, a loop (Loop meta-class, denoted as
loop) indicates that the enclosed element is to be repeated.

Listing 4.9: SMM Syntax: Sequential, Parallel, Decision and Loop

Sequential :
Element
Sequential ; Element

Parallel :
parallel(Element | Element)

Decision:
decision(Element | Element)

Loop:
loop(Element)

Leaving the area of structured statements, we now move on to the discussion
of actions. The abstract non-terminal for actions is BasicAction, which is split
into ServiceAction and ControlAction:

Listing 4.10: SMM Syntax: Actions

BasicAction:
ServiceAction
ControlAction

ServiceActions are used for communicating with other services from within
the participant; ControlActions trigger exceptions and compensations.

126 CHAPTER 4. THE SERVICE META-MODEL

Listing 4.11: SMM Syntax: ServiceActions and ControlActions

ServiceAction:
Send
Receive
Reply
Send&Receive

ControlAction:
Throw
Compensate
CompensateAll

Finally, we can specify the terminals for these actions. The names of these
terminals directly map to the corresponding SMM meta-classes (for example, the
send terminal corresponds to the Send meta-class). Note that the Data action
is missing from this list, as data handling is ignored in the formal semantics.

Listing 4.12: SMM Syntax: Action Terminals

Send :
send(OperationIdent)

Receive:
receive(OperationIdent)

Reply :
reply(OperationIdent)

Send&Receive:
send&receive(OperationIdent)

Throw :
throw(ExceptionIdent)

Compensate:
compensate(ActivityIdent)

CompensateAll :
compensate()

4.2.4.2 Example

As an example, we refer back to the ThesisManager process from the case study
already modelled in chapter 3 and directly translate the sub-activity registration
shown in figure 4.7 into the textual syntax of the SMM (listing 4.13).

4.3. SUMMARY 127

Figure 4.7: eUniversity Case Study: Registration Activity (Graphical)

A complete description of the parsing of UML4SOA models to the SMM will
be given in chapter 6.

Listing 4.13: eUniversity Case Study: Registration Activity (Textual)

activity (Registration :
send(reportThesisStart) ;
send(registerForGraduation)

) compensation activity (CompensationHandler :
send(unregisterFromGraduation)

)

4.3 Summary

This chapter has introduced the Service Meta-Model (SMM), which forms the
underlying basis of the three main components of the MDD4SOA approach —
modelling, analysis, and code generation.

The SMM is a generic, language- and platform-independent meta-model for
describing the static, dynamic, and data handling aspects of a SOA system. We
have first given an overview of how the SMM fits into the MDD4SOA approach
(section 4.1), followed by a description of the meta-model itself (section 4.2).
The latter has included a textual notation for the behavioural part of the SMM.

The UML, SoaML, and the UML4SOA profile as defined by the UML4-
SOA/Strict dialect form the concrete syntax of the SMM. A formal semantics
and analysis methods for the behavioural parts of the SMM will be discussed in
the next chapter.

Finally, the model transformations for code generation introduced in chap-
ter 6 use the complete SMM as the source model. This chapter also includes a
detailed description of how to parse a combined UML, SoaML, and UML4SOA
model into an instance of the SMM.

128 CHAPTER 4. THE SERVICE META-MODEL

Chapter 5

Semantics and Analysis

Chapters 3 and 4 have introduced the UML4SOA profile and the Service Meta-
Model (SMM), both for participant behaviours and protocols, along with a
natural language description of the meaning of the newly introduced constructs.
However, for the purpose of analysis and verification, a more rigorous description
of these models is required.

In this chapter, we therefore introduce a formal semantics for UML4SOA
participant behaviours and protocols (via the Service Meta-Model). As the
semantic domain, we employ modal input/output transition systems (MIOs),
which have already been introduced in chapter 2 (section 2.5). The mapping
between SMM models and MIOs is given in a denotational style. The mapping
function is fully executable and tool-supported.

A formal semantics as the one introduced here forms the basis for rigor-
ous analysis and verification of the modelled system. As outlined in chapter 2,
interface theories can be used for formally specifying and verifying notions of
interface conformity and compatibility. In addition to existing interface theories
which are directly usable on the formal semantics of UML4SOA, we also intro-
duce a domain-specific interface theory for checking observational compliance.

To aid in the verification of UML4SOA models in their MIO representation,
we have furthermore created a verification tool, the Mio Workbench, which
supports verification of MIOs using a variety of interface theories and their
notions of refinement and compatibility.

This chapter is structured as follows. We introduce the denotational seman-
tics for UML4SOA in section 5.1. Formal analysis based on MIOs is discussed
in section 5.2. Tool support, which includes the executable semantics, the Mio
Workbench, and a tool for back-annotation of analysis results to UML, is ex-
amined in section 5.3. Related work is presented in section 5.4. We conclude
this chapter with a summary in section 5.5.

Published results: Results presented in this chapter are based on publications
[SM08], [BMSH10], and [MSB10].

129

130 CHAPTER 5. SEMANTICS AND ANALYSIS

5.1 A Formal Semantics for UML4SOA

This section is concerned with defining a formal semantics for the participant
behaviours and service protocols of UML4SOA. The semantics is defined on the
Service Meta-Model introduced in the previous chapter; as UML4SOA models
form the syntax of the SMM, the semantics is defined for and can be (mechan-
ically) produced from both.

We follow a denotational style to devise the semantics of the SMM, i.e., we
specify a semantic function which maps the elements of the SMM to mathemat-
ical objects. We employ the semantic domain of modal input/output automata
(MIOs). MIOs are a good match for the SMM models as they:

� allow the specification in terms of a transition system, which captures the
workflow-like ideas behind the SMM,

� natively support input and output actions, matching the send and receive
operations introduced in the SMM,

� can distinguish between required and optional operations. Optional (may)
transitions in protocols are required to be able to verify optional imple-
mentation behaviour such as compensation calls.

Translating SMM behaviours into MIOs needs to take the SOA elements
of compensation, events, and exceptions into consideration and thus requires a
complex transformation process. This process is thus discussed first in the next
section. SMM protocols, on the other hand, are already state machines and are
thus easier to translate. They will be dealt with in the subsequent section.

5.1.1 SMM Participant Behaviours

The semantics presented in this chapter is inspired by the semantics given for
FSP in [MK99]. The particular focus of the semantics for the SMM lies on
the newly introduced elements for service-oriented computing: communication,
compensation handling, event handling, and the interactions of each of these
with exceptions. Thus, we disregard the data types and the data access and
manipulation functions of the SMM.

Note that some parts of the denotational function are specified in an impera-
tive, algorithmic style. We have chosen this approach as the resulting algorithms
are shorter and thus more readable and understandable. Furthermore, we only
use local data inside the individual function definitions. The algorithms thus
have an obvious translation into a purely functional style.

In the following, we will detail the formal semantics for SMM ServiceActiv-

ity elements. We use the textual notation defined in chapter 4 as a convenient
shortcut to the SMM meta-model.

5.1. A FORMAL SEMANTICS FOR UML4SOA 131

5.1.1.1 Preliminaries

Although the structure of SMM behavioural models is simple and easy to un-
derstand, the interactions of events, compensations, and exceptions are non-
trivial. These interactions are inherent to services, and the translation function
to MIOs has to reflect this complexity. Nevertheless, we have opted to present
the complete semantics here as we feel that it is important to understand the
above-mentioned interactions.

The translation is defined with a denotational-style semantics. We use
a mapping function from syntax to semantics, which is defined on all non-
terminals in the SMM syntax. For each non-terminal, we precisely define the
mapping with a pseudo-code notation.

Furthermore, the definition of the algorithms can be greatly simplified by
introducing an intermediate automaton which contains more information than
the resulting MIO. This information is only used during the translation process
and is not required anymore after the translation is finished, thus the interme-
diate automaton is mapped to a MIO as the last step in the process. Recalling
from chapter 2, we can write a MIO as follows:

Listing 5.1: MIO Definition

MIO =< states,
startState,
actions,
transitions >

with actions =
⋃
{inputActions, outputActions, internalActions},

transitions =
⋃
{mustTransitions,mayTransitions}

For the transformation, we introduce an intermediate automaton (IA). This
automaton carries some additional information detailed below, but disregards
the difference between must and may transitions as we consider SMM service
behaviour to be implementations in the terminology of MIOs.

Listing 5.2: IA Definition

IA =< states,
startState,
endStates,
actions,
transitions,
comps >

with endStates =
⋃
{eeStates, neStates},

actions =
⋃
{inActions, outActions, intActions}

132 CHAPTER 5. SEMANTICS AND ANALYSIS

The elements introduced to the IA — eeStates, neStates, and comps —
have the following intuition:

� eeStates (error end states) and neStates (normal, or non-error, end states)
are two disjunct sets of states representing the end states of the automa-
ton. The states are also part of the states set of the IA.

� comps : String → IA is a function for storing compensation information.
comps maps activity names to the actual automaton which was created
for the compensation handler of the activity indicated by the given name.

In the following, we define a function iaJK with the following signature:

ia : SMMNonterminal→ IA

iaJK is defined on all non-terminals of the SMM textual syntax introduced in
chapter 4. This function yields an IA automaton. An IA can be mapped to
a MIO by disregarding (forgetting) the additional information and using the
transition set as both must and may transitions. This is done with the function
forget : IA→MIO:

Listing 5.3: Mapping IAs to MIOs

forget(< states, start, ends, actions, transitions, comps >) =
< states, start, actions, transitions >

As the notation for both MIOs and IAs, we use the standard labelled tran-
sition system syntax:

� A state is denoted by a white circle with a solid line around it. The start
state of an automaton is denoted as a grey circle.

� A transition is denoted by a directed edge between states with the transi-
tion label written alongside the transition. Output labels are suffixed with
an exclamation mark (!); input labels with a question mark (?). Internal
labels are suffixed with a semicolon (;). We leave these suffixes out if they
are not relevant.

MIOs have two different sets of transitions, namely must- and may transi-
tions. The former are denoted by a solid line, the latter by a dashed line. How-
ever, as an IA does not differentiate between these two types, we will mostly
see solid lines.

For IAs, we add the following extensions:

� End states are denoted by black circles instead of white ones.

� The names of installed compensation handlers are noted as text beneath
the state.

5.1. A FORMAL SEMANTICS FOR UML4SOA 133

X

Installed Handler: A

send!

receive?

internal;
Normal

state

End state

Error End
State

Start state

Figure 5.1: Notation for IAs

An example for an IA is shown in figure 5.1. To reach the corresponding
MIO of an IA, the information about end states and compensation installations
is removed — no further changes are necessary.

Before we start with the definition of the function iaJK, we first discuss the
algorithm syntax, notations, and helper functions used in the following sections.

Algorithm Listings

In general, we denote each (helper) function with an algorithm. An example is
shown in listing 5.4.

Listing 5.4: Algorithm Example

Definition
Signature

Input/Output
Input and Output

Algorithm
Statement1
. . .
Statementn

Each algorithm is split into three parts:

� Definition. The definition part denotes the function name, parameters,
and the result. In most cases, the result will be an automaton which will
be built up in the remainder of the listing.

� Input and Output. The input and output parts define how the param-
eters of the function are to be used in the algorithm as well as the result

134 CHAPTER 5. SEMANTICS AND ANALYSIS

of the algorithm.

� Algorithm. The algorithm part contains a pseudo-code listing of how
the returned element of the function is built.

Notations

In the algorithm section, we use a set of notations for precisely and concisely
noting the operations performed. First, we define a set of assignment operators.

� ← is the normal assignment operator: The right-hand side is assigned to
the left-hand side.

� ←add adds the single element or the set of elements given on the right-hand
side into the set given on the left-hand side.

� 7→ adds a new element to a specified function, thus defining the mapping
of one element of the domain to one element of the range.

We denote a transition as a three-tuple (startState, transition, endState).
Adding such a transition to an automaton has the double effect of a) adding
the transition and b) adding the underlined transition label if it does not yet
exist. To distinguish between the three sets of labels present in the automaton,
we use the symbols ?, !, and ; to indicate the set of input, output, and internal
actions, respectively. These symbols are not part of the transition label.

Helper Functions

Finally, we define a set of helper functions required to describe the algorithms
without too much technical detail. The reader may refer back to this list as
required when reading the algorithms.

� addAll : IA → IA adds elements from the automaton specified on the
right-hand side to the automaton specified on the left-hand side. It is
important to note that elements already existing in the automaton on the
left are not removed.

� addPreSpacing : IA× State→ IA and addPostSpacing : IA× State→
IA returns a new version of the given automaton, in which an interspace
internal transition is placed before or after, respectively, the given state.
The given state must be a start or end state; thus, to add the internal
transition, a new start state or a new end state is introduced. The new
automaton includes all states, transitions, actions, and compensation in-
stallations of the old one plus the new state and transition, which have
not been in the automaton before.

Interspaces are needed to prevent situations such as consecutively adding
two loops and being able to execute the first one again after the second.

5.1. A FORMAL SEMANTICS FOR UML4SOA 135

� cInstallT ransitions : IA × State → ℘(Transition) returns the set of
transitions where the transition label starts with compInstalled, starting
backwards from the given transition to the start state of the automaton
— unless there is a transition in-between with a compHandled label (in
which case the handler has already been executed).

� cCallT ransitions : IA → ℘(Transition) returns all transitions in the
given automaton where the transition label starts with compensate.

� compensationsMatch : Transition×Transition→ Boolean returns true
if the label of the first transition starts with a label compensate or compen-
sateAll and the label of the second transition starts with a label compIn-
stalled. In case the first transition models a compensateAll, true is re-
turned. Otherwise, true is returned if the service activity given after
compensate equals the one given after compensateAll.

� actName : Transition → String returns an activity name as found in
the label of the given compensation-related transition. We use three
compensation label types for denoting the installation of a compensation
handler (compInstalled(activityName)), the usage (or uninstallation) of a
compensation handler (compHandled(activityName)), and finally the call
for invoking a compensation handler (compensate(activityName) or simply
compensateAll).

� newState : IA→ IA×State returns a new version automaton with a new
state State.

� exceptionsMatch : ℘(Transition) × ident → Boolean, where state is a
non-error end state, ident an exception identifier, and IA an automaton
returns true if one of the given transitions has a label which starts with
throw and contains the ident exception identifier.

� isErrEnd : IA × State → Boolean and isNormEnd : IA × State →
Boolean return true or false, depending on whether the given state is in
the set of error ends or non-error ends.

� mergeEnds : IA → IA returns a new version of the given automaton in
which all non-error end states of the given automaton which share the same
set of installed compensation handlers (given by cInstalls) are merged.

� mergeStates : IA×State1×· · ·×Staten → IA×State, where State1 . . .
Staten are states from statesIA, returns a new version of the automaton
in which the given states are merged into one. The result is that each
incoming edge of the given states now leads to the new state, and all
outgoing edges of the given states start from the new state. The original
states are no longer present. The result of this function is the new IA and
the newly merged state.

� relabel : IA→ IA returns a relabelled automaton.

136 CHAPTER 5. SEMANTICS AND ANALYSIS

� isInLoop : IA× Transition→ Boolean returns true if the Transition is
in a loop within IA, which means that it is possible to return to Transition
through the target state.

� Additionally, we use the following convenience functions for working with
IAs:

– out : IA × State → ℘(Transition) returns the outward transitions
in IA from state State,

– in : IA × State → ℘(Transition) returns the inward transitions in
IA to state State,

– label : Transition → String returns the label of the transition
Transition in IA,

– target : Transition→ State returns the target state of the transition
in IA, and

– source : Transition → State returns the source state of the transi-
tion in IA.

5.1.1.2 Service Actions

Notation

Service Actions are denoted as follows:

send(OperationIdent)
receive(OperationIdent)
reply(OperationIdent)
send&receive(OperationIdent)

Intuition

A send, receive, reply, or send&receive in the SMM is an action within an activ-
ity. In an automaton, an action is not attached to a state, but to a transition.
We use the following mapping from SMM actions to transitions:

SMM MIO

Send Output
Receive Input
Reply Output

Send & Receive Two transitions: Input, Output

Table 5.1: Mapping of SMM Actions to MIO Transitions

Each send, receive, or reply is therefore a transition in the automaton. In
case of send&receive, we get two transitions.

The first non-terminal to be converted is the send action of the SMM, which
models an operation call from the participant to an outside partner. A send is
translated with the following algorithm.

5.1. A FORMAL SEMANTICS FOR UML4SOA 137

Listing 5.5: MIO: Send

Definition
iaJsend(opName)K = S

Algorithm
statesS ← { startSend, endSend }
startStateS ← startSend
neStatesS ← { endSend }
outActionsS ← { opName }
transitionsS ← { (startSend,opName!,endSend) }

The definition shows that the ia function is now defined on the SMM textual
syntax non-terminal send(opName), and yields an intermediate automaton (IA)
S. S contains two states: startSend and endSend, of which startSend is the
start state and endSend is an end state. Furthermore, the IA contains one
output action opName, and one transition from startSend to endSend which
is labelled with the output action opName.

As an initial example, figure 5.2 shows how the UML4SOA concrete nota-
tion maps into an IA. On the left, a send action in UML4SOA is shown; on
the right, the same action as an IA. In the IA, startSend is the start state,
endSend a (normal) end state. The transition in-between has the output la-
bel reportThesisStart. As mentioned above, the corresponding MIO to the IA
looks the same, but is without a special denotation of the end state.

«send»
reportThesisStart

reportThesisStart!

startSend

endSend

Figure 5.2: Example: A Send in UML4SOA and as an IA

The remaining communication actions — receive, reply, and send&receive —
are converted likewise. For receive, we get:

138 CHAPTER 5. SEMANTICS AND ANALYSIS

Listing 5.6: MIO: Receive

Definition
iaJreceive(opName)K = S

Algorithm
statesS ← { startRcv, endRcv }
startStateS ← startRcv
neStatesS ← { endRcv }
inActionsS ← { opName }
transitionsS ← { (startRcv,opName?,endRcv) }

A reply is denoted similar to a send; however, we add a return prefix indicating
that this output action is in response to a previous input action:

Listing 5.7: MIO: Reply

Definition
iaJreply(opName)K = S

Algorithm
statesS ← { startReply, endReply }
startStateS ← startReply
neStatesS ← { endReply }
outActionsS ← { ”return ” + opName }
transitionsS ← { (startReply,”return ” + opName!,endReply) }

Finally, send&receive uses two transitions, one for send and one for receive.
Again, we use a prefix return for denoting that the input action is an expected
return of the previous output action.

Listing 5.8: MIO: Send&Receive

Definition
iaJsend&receive(opName)K = S

Algorithm
statesS ← { startS&R, midS&R, endS&R }
startStateS ← startS&R
neStatesS ← { endS&R }
inActionsS ← { ”return ” + opName }
outActionsS ← { opName }
transitionsS ← { (startS&R,opName!,midS&R),

(midS&R, ”return ” + opName?, endS&R) }

5.1. A FORMAL SEMANTICS FOR UML4SOA 139

5.1.1.3 Control Actions

The actions throw, compensateAll and compensate are used for controlling the
flow in an activity. We convert these actions to transitions in the automaton.
All three actions cannot be given meaning considering only the action itself —
instead, meaning is given to them later by considering the environment — in
particular, an enclosing activity.

Throw

Notation

throw(ExceptionIdent)

Intuition

A throw action marks an exception, and thus the end of a path — the path is not
continued. When encountered, a throw transition directly leads to a final state
which is called an error end state. When we later handle a complete service
activity which has an exception handler, we can revisit these error states and,
if the exception handler matches the exception thrown, attach the handler to
the error state to handle the exception, thus creating a non-error end state.

Note that an exception handler may not be encountered in the direct parent
activity of a throw, but also transitively in another parent. This is not a problem
as the error end state stays untouched until a valid exception handler is found.
If none is found at all, the error end state ends the complete automaton.

Listing 5.9: MIO: Throw

Definition
iaJthrow(exName)K = S

Algorithm
statesS ← { startThrow, endThrow }
startStateS ← startThrow
eeStatesS ← { endThrow }
intActionsS ← { throw(exName) }
transitionsS ← { (startThrow,throw(exName);,endThrow) }

Compensation

Notation

compensate(ActivityIdent)
compensateAll()

140 CHAPTER 5. SEMANTICS AND ANALYSIS

Intuition

A compensate or compensateAll action may only be used in an exception or
compensation handler. A compensate or compensateAll marks the invocation
of one or many compensation handlers, which are defined in inner activities of
the activity the handler in which the compensate or compensateAll action is
included is attached to.

When we encounter a compensate or compensateAll call, we are currently
dealing with a handler, i.e. a service activity (see below). This means that we do
not yet have access to the activities to compensate. Therefore, like in a throw,
we note the fact that there was a compensate call and use this fact later when
handling the service activity which the handler is attached to.

Listing 5.10: MIO: Compensate

Definition
iaJcompensate(actName)K = S

Algorithm
statesS ← { startComp, endComp }
startStateS ← startComp
neStatesS ← { endComp }
intActionsS ← { compensate(actName) }
transitionsS ← { (startComp,compensate(actName);,endComp) }

Listing 5.11: MIO: CompensateAll

Definition
iaJcompensateAll()K = S

Algorithm
statesS ← { startComp, endComp }
startStateS ← startComp
neStatesS ← { endComp }
intActionsS ← { compensateAll() }
transitionsS ← { (startComp,compensateAll();,endComp) }

5.1.1.4 Structured Actions

Structured actions are used to aggregate activities in a certain semantic way;
we distinguish between the sequential operation, decisions, loops, and parallel
execution.

An important challenge when handling structured actions is keeping throw
and compensation-installation information in a correct way through the struc-
tured actions.

5.1. A FORMAL SEMANTICS FOR UML4SOA 141

Sequential

Notation

Element1 ; Element2

Intuition

Sequential execution of activities means concatenating their automata together,
one after the other. In this process, error end states are ignored, because they
mean that the whole sequence is aborted. A non-error end state, however, cor-
responds to a set of installed compensation handlers; we must keep this infor-
mation throughout the sequential area. Therefore, when we encounter multiple
non-error end states in an automaton, we multiply the automaton which comes
after it.

Note that it might be necessary to add an interspace transition in-between
two consecutively executed automaton in case the end states of the former have
outgoing and the start state of the latter has incoming transitions. This ensures
sequential execution.

The algorithm for sequential behaviour is shown in listing 5.12.

Listing 5.12: MIO: Sequential

Definition
iaJElement1;Element2K = S

Input/Output
Let A1 = relabel(iaJElement1K)
Let A2 = relabel(iaJElement2K)
Let S = ∅

Algorithm
S ← addAll(statesA1

, ∅, <∅, eeStatesA1
>, actionsA1

, transitionsA1
,

compsA1
)

for each endState in neStatesA1
do

Acopy ← relabel(A2)
S ← addAll(statesAcopy , <∅, eeStatesAcopy>, actionsAcopy ,

transitionsAcopy
, compsAcopy

)
if out(endState) 6= ∅ and in(startStateAcopy

) 6= ∅ then
S ← addPostSpacing(S, endState)

end if
< S , > ← mergeStates(S, endState, startStateAcopy

)
neStatesS ←add neStatesAcopy

end for
S ← mergeEnds(S)

142 CHAPTER 5. SEMANTICS AND ANALYSIS

Decision

Notation

decision(Element1 | Element2)

Intuition

Decision means only one of two possible automatons is executed. Each of the
automata may have multiple non-error end states; if they contain the same set
of compensation handler installations, they can be merged; otherwise, we just
leave them as is. Error end states are, as usual, not handled.

The algorithm for decisions is shown in listing 5.13.

Listing 5.13: MIO: Decision

Definition
iaJdecision(Element1;Element2)K = S

Input/Output
Let A1 = relabel(iaJElement1K)
Let A2 = relabel(iaJElement2K)
Let S = ∅

Algorithm
if in(startStateA1

) 6= ∅) then
A1 ← addPreSpacing(A1, startStateA1

)
end if
if in(startStateA2) 6= ∅) then

A2 ← addPreSpacing(A2, startStateA2
)

end if
S ← addAll(A1)
S ← addAll(A2)
< S, startStateS > ← mergeStates(S, startStateA1 , startStateA2)
S ← mergeEnds(S)
for each endState in S do

if out(S, endState) 6= ∅ then
S ← addPostSpacing(S, endState)

end if
end for

As for the definition of the send action above, we again give an example of
how a decision in the UML4SOA concrete syntax maps into an IA. Figure 5.3
shows a simple decision in UML4SOA without any compensation handlers at-
tached. To the left and right of the UML4SOA syntax, the individual IAs
created for the left and right of the decision are shown.

The bottom of the figure shows the combined IA after the decision has been

5.1. A FORMAL SEMANTICS FOR UML4SOA 143

thesisPassed!

«send»
thesisPassed thesisFailed!

«send»
thesisFailed

thesisPassed! thesisFailed!

startSend

endSend

startSend

endSend

startSend1
x

startSend2

endSend1
x

endSend2

Figure 5.3: Example: A Decision in UML4SOA and as an IA

handled. Note that both automata have been relabelled — in this example, by
suffixing the states with numbers, although this might also be achieved by some
other means. As there are no compensation handlers, the decision algorithm
was able to merge both ends into one; furthermore, as there are no loops, no
spacing was required.

Parallel

Notation

parallel(Element1 | Element2)

Intuition

Parallel execution of automata means that although each automata follows its
own sequence of actions, these actions may occur in an arbitrarily interleaved
sequence. The automata only reach an end if both have completed their own
sequence.

A commonly used technique for achieving such a semantics is full inter-

144 CHAPTER 5. SEMANTICS AND ANALYSIS

leaving; however, the fact that our automata distinguish between error- and
non-error ends would require an additional clean-up after calculating the prod-
uct, i.e. removing all edges and states after a combined state which includes
an error state. Therefore, we interleave by traversing the automata from the
combined start state.

Listing 5.14: MIO: Parallel

Definition
iaJparallel(Element1;Element2)K = S

Input/Output
Let A1 = relabel(iaJElement1K)
Let A2 = relabel(iaJElement2K)
Let S = ∅

Algorithm
S ← interleave(A1, A2, false)

The interleaving process itself is performed by a helper function interleave :
IA × IA × Boolean → IA, which takes as parameters two intermediate au-
tomata and a boolean flag indicating whether the second automaton is to be
interpreted as optional. In this case, the interleaving process allows the com-
bined automaton to complete without the second. The interleaving algorithm
is shown in listing 5.15.

Loop

Notation

loop(Element)

Intuition

The intuition behind the loop function is to enclose an existing modal I/O
automaton in a loop to enable to run it multiple times — at least once. The
main challenge here is to ensure that if the loop contains error ends or multiple
non-error ends, these are still available after a loop. This means:

1. If the original automaton ends with an error state, the whole loop must
be aborted and the error state kept as an end error state of the loop.

2. If the original automaton ends with a non-error end state, the information
attached to this state (installation of compensation handlers) must be kept
as an end state of the loop. For example, consider an automaton with two
endings — one in which a compensation handler A is installed, one in
which a compensation handler B is installed. If we loop this automaton,

5.1. A FORMAL SEMANTICS FOR UML4SOA 145

Listing 5.15: Handling Interleaving

Definition
interleave : IA× IA×Boolean→ IA, (A1, A2, opt) 7→ S

Algorithm
compsS ←add compsA1

, compsA2

<S, startStateS > ← newState(S)
origA1

← origA1
[startStateS 7→ startStateA1

]
origA2 ← origA2 [startStateS 7→ startStateA2]
queue ←add startStateS
origA1

= [], origA1
= []

seen ← ∅
while queue 6= ∅ do

state ← pop(queue)
seen ←add state
if isErrEnd(A1, origA1(state)) or isErrEnd(A2, origA2(state)) then

eeStatesS ←add state
else if isNormEnd(origA1

(state)) and
isNormEnd(origA2

(state)) then
neStatesS ←add state

else
if opt and isNormEnd(origA1

(state)) and
isStart(origA2

(state)) then
neStatesS ←add state

end if
for each transition in out(A1, origA1(state)) do

< S, statecombined > ← newState(S)
origA1

← origA1
[statecombined 7→ target(transition)]

origA2
← origA2

[statecombined 7→ origA2
(state)]

transitionsS ←add (state, label(transition), statecombined)
if statecombined 6∈ seen then

push(queue, statecombined)
end if

end for
for each transition in out(A2, origA2

(state)) do
< S, statecombined > ← newState(S)
origA1

← origA1
[statecombined 7→ origA1

(state))]
origA2

← origA2
[statecombined 7→ target(transition)]

transitionsS ←add (state, label(transition), statecombined)
if statecombined 6∈ seen then

queue ←add statecombined
end if

end for
end if

end while

146 CHAPTER 5. SEMANTICS AND ANALYSIS

Installed Handler: BInstalled Handler: A

start

neState
A

neState
B

Figure 5.4: Semantics: An Automaton with Two Non-Error Ends

there are three possible ends: A installed, B installed, or both A and B
installed.

Encountering an error end when dealing with loops effectively aborts the
loop. Thus, in such cases, this end is kept as a non-error end and the path is
not pursued further.

For non-error ends, we need to encode the information about which com-
pensation handlers were installed in a loop run within the automaton itself. If
the initial loop body — i.e., the first one the automaton runs into — ends with
a non-error end state in which a certain set of compensation handlers S is in-
stalled, we need to keep this information, possibly adding more compensation
handlers, until the loop is left.

We can do this by creating a copy of the original loop body for each possible
set of installed compensation handlers after the loop. We say that this copy
corresponds to the set of installed compensation handlers — i.e., whenever we
handle a state in this copy, we have at least the compensation handlers installed
which the copy stands for — plus possibly more when we reach a non-error end.

Thus, whenever we encounter a non-error end, we can either leave the loop
or stay in the loop. In the latter case, we don’t move back to the beginning of
our current copy, but rather to the start of the copy which corresponds to the
set of compensation handlers which includes a) the set of the current copy, and
b) the set of the current non-error state.

The looping algorithm thus loops a child automaton while keeping the in-
formation about installed compensation handlers. There are two basic cases: If
there are no non-error ends, a loop is not required. Otherwise, the automaton
needs to be looped. An example of an automaton with two non-error ends with
different compensation handlers installed is shown in figure 5.4.

The non-error end states of an automaton each correspond to a set of com-
pensation handlers which are installed in the course of the automaton and are
now available for later compensate calls. As the automaton may reach different
end states in different loop runs, the installed compensation handlers at the
end of the loop may include some or all of these sets. In particular, once the

5.1. A FORMAL SEMANTICS FOR UML4SOA 147

automaton has successfully completed by traversing to an end state, the set of
compensation handlers installed in this end state must be stored until the loop
is finished.

To achieve this, we multiply, or copy, the loop n times, where n is the size
of the powerset of the installed compensation handler sets of the end states of
the original automaton. This includes the empty set — corresponding to which
compensation handlers are installed at the beginning of the loop — and every
combination of possible sets of compensation handlers. The loop begins with
the copy corresponding to the empty set. Once an end state is reached, the loop
may be exited, or the automaton can continue in the copy which corresponds
to the set of installed handlers in the end state.

An example of the automaton in figure 5.4 after loop handling is shown in
figure 5.5.

Note that we add a new start state to the start of the loop. This is required
as otherwise two consecutive loops can be executed out of order (i.e. it would
be possible to execute the first loop again after the second). Furthermore, note
that due to a loop, a compensation handler might get installed multiple times.
In order to keep the resulting transition system finite, and in line with our
disregard for data, we only note the fact that compensation was installed. Note
that the handler might be executed multiple times as well (see section 5.1.1.5).

Although the algorithm (as usual) is directly defined on the syntax as input,
we can also imagine a function loop : IA→ IA implementing the body. We will
use this function in later algorithms.

The algorithm for loops is shown in listing 5.16.

5.1.1.5 Activities

Notation

activity(ActivityIdent : Element ActivityInterruptionsopt)
ActivityExceptionsopt ActivityEventsopt ActivityCompensationopt

Intuition

An activity is the main structured concept of the SMM. An activity includes
children and has attached handlers. We have already defined what a child can
look like; mostly, it will be a structured element. An activity has a name,
children, several (including zero) exception handlers with each specify which
exception they handle, several (including zero) event handlers, and zero or one
compensation handler. Furthermore, it may have interrupting receives which
can be invoked at any time, ending the activity.

The intuition for handling an activity is more complex than for any other
element. The following list gives an overview of the process of handling an
activity; they will be detailed in the following sections.

1. First of all, an activity is a grouping concept, therefore it has a child which
must be executed as part of the activity.

148 CHAPTER 5. SEMANTICS AND ANALYSIS

Installed Handler: A Installed Handler: B

Installed Handler: A

Installed Handler: A and B

Installed Handler: B

Installed Handler: A and BInstalled Handler: A and B

Installed Handler: A and B

Installed Handler: A
Installed Handler: B

Installed Handler: A and B

No handlers installed

startA

End A
End B

start

startOld

End A End B

startB

End A End B

startAB

End A End B

neState
B

neState
B

neState
A and B

Figure 5.5: Semantics: Looping with Compensation Handlers

5.1. A FORMAL SEMANTICS FOR UML4SOA 149

Listing 5.16: MIO: Loops

Definition
iaJ loop(Element) K = S

Input/Output
Let A = relabel(iaJElementK)
Let S = ∅

Algorithm
if neStatesA = ∅ then

S ← A
else

cSet ← ℘(cInstallTransitions(A, endStateA,1) . . .
cInstallTransitions(A, endStateA,n))

automataSet ← ∅
for each installSet in cSet ordered by size descending do

cur ← relabel(A)
cur ← addPreSpace(cur)
cur ← addPostSpace(cur)
automataSet ←add (installSet 7→ cur)
S ← addAll(statescur, <∅, eeStatescur>, transitionscur,

compscur)
if installSet = ∅ then

startStateS ← startStatecur
end if
for each nonErrorEnd in neStatescur do

combinedSet ← installSet ∪
cInstallTransitions(S, nonErrorEnd)

target ← automataSet(combinedSet)
transitionsS ←add (nonErrorEnd, loop;, startStatetarget)

end for
end for

end if

150 CHAPTER 5. SEMANTICS AND ANALYSIS

2. If interrupting receives are specified, these must be possible at any time
during the execution of the child element.

3. An activity may have event handlers, which is additional behaviour which
may run, at any time, zero, once, or multiple times, in parallel to the
activity. Therefore, this behaviour needs to be weaved into the normal
behaviour given by the children.

4. An activity may have exception handlers, which specify behaviour to be
executed if a certain exception (attached to the handler) is thrown in the
activity, i.e. within the behaviour of the child.

5. An activity may have a compensation handler. If this is the case, the
activity may later be undone with the behaviour in the handler, thus we
need to store the handler for later use. Also, we need to make sure that
for each outgoing non-error state from this activity, it is known that we
have successfully installed a compensation handler.

6. Finally, the exception- or compensation handlers of the activity may have
compensate calls, i.e. invocation of formerly installed compensation han-
dlers. We therefore need to check such calls to see if we have installed
compensation handlers we can execute at the site of the compensate call
within the handler.

Due to the complexity of activity handling, we split the definition of the
algorithm into these six steps and define a new function for handling each step.
See listing 5.17 for the activity-handling algorithm.

� The first function to execute is handleInterruption : IA × IA → IA. It
merges the second parameter (the interruption) with the first parameter
(an activity automaton).

� The next function to execute is handleException : IA×String×IA→ IA.
This function checks whether the automaton given as the first parameter
contains any dangling error ends matching the exception identifer given as
the second parameter; if so, the automaton given as the third parameter
is added as the exception handler.

� For all event handlers, handleEvent : IA × IA → IA is called, which
weaves the event handler Ev into the automaton S as appropriate.

� The function handleCompensationCalls : IA → IA looks for compen-
sation invocations inside the given automaton, replacing them with logic
from already installed compensation handlers.

� Finally, handleCompensation : IA × IA → IA ensures that the com-
pensation handler given as the second parameter is added to the main
automaton given as the first parameter.

In the following, we define the functions used in the above definition.

5.1. A FORMAL SEMANTICS FOR UML4SOA 151

Listing 5.17: MIO: Activities

Definition
iaJactivity(sIdent : ElementCh interrupt Receive1 . . .

interrupt Receivem)
exception identX1

: ExceptionX1
. . . identXn

: ExceptionXn

event Elemente1 . . . event Elementeo
compensation Elementco K = S

Input/Output
Let A = relabel(iaJElementChK)
Let R1 . . . Rm = relabel(iaJReceive1K) . . . relabel(JReceivemK)
Let X1 . . . Xn = relabel(iaJElementx1

K) . . . relabel(JElementxn
K)

Let Ev1 . . . Evo = relabel(iaJElemente1K) . . . relabel(JElementeoK)
Let C = relabel(iaJElementcoK)
Let S = ∅

Algorithm
S ← addAll(A)
evAttStatesS ← statesS

for each R in R1 . . . Rn do . Interruptions
S ← handleInterruption(S, R)

end for

for each X in X1 . . . Xn do . Exception Handling
S ← handleException(S, identX , X)

end for

for each Ev in Ev1 . . . Evm do . Event Handling
S ← handleEvent(S, Ev)

end for

S ← handleCompensationCalls(S) . Compensation Calls
S ← handleCompensation(S, sIdent, C) . Compensation Handler

152 CHAPTER 5. SEMANTICS AND ANALYSIS

Interruptions

The algorithm defined in function handleInterruption adds a receiving transition
to each of the states in the child automaton which is to be interrupted, except
for error ends. Each receiving transition leads to a new end state, as the child
automata may have different compensation handler installations.

Newly created end states which are equal with regard to compensation in-
stallations are merged at the end.

Listing 5.18: Handling Interruptions

Definition
handleInterruption : IA× IA→ IA, (A, R) 7→ S

Algorithm
S ← A
neStatesS ← ∅
for each state in statesS do

if not state ∈ errStatesS then
Rcopy ←relabel(R)
S ← addAll(Rcopy)
< S , > ← mergeStates(S, state, startStateRcopy

)
end if

end for
S ← mergeEnds(S)

Exception Handlers

SMM activities may throw exceptions which may be handled by an exception
handler attached to a service activity. In an IA, an exception is encoded as
an error end state, indicating that the normal flow of execution ends at this
point. An exception handler can be used to handle the exception, and thus
allow subsequent behaviour after the error end.

Adding exception handling is only possible if we have matching exception
handlers installed — i.e., if the exception corresponding to a handler is the same
one as the exception corresponding to an error end state.

The algorithm for handling exceptions is given in listing 5.19. An example
for exception handling is shown in figure 5.6. Three IAs are shown. The first
(left) is the existing automata A in which exceptions are to be handled. The
second (middle) is the exception handling IA itself, which is associated in the
textual syntax with the same exception myFault thrown in the IA on the left.
Finally, the right-hand side shows the resulting automaton S. Note that the
former error end state in the middle is now a normal state and has been merged
with the start state of the error handling automaton. This error end will thus
not be handled again. The final state is a non-error state.

5.1. A FORMAL SEMANTICS FOR UML4SOA 153

Listing 5.19: Handling Exceptions

Definition
handleException : IA× String × IA→ IA, (A, ident, X) 7→ S

Algorithm
S ← A
for each errEnd in eeStatesS do

if exceptionsMatch(in(errEnd), ident) then
S ← addAll(X)
< S , > ← mergeStates(S, errEnd, startStateX)
eeEndsS ← eeEndsS \ errEnd

end if
end for

throw(myFault); fail!

X

throw(myFault);

fail!

start

error end

eStart

eEnd

start

error end
x

eStart

eEnd

Figure 5.6: Example: Interruptions

Event Handlers

An event handler must run in parallel to the normal children of the activity
— it may be executed multiple times, but also not at all. Therefore, we can
reuse the algorithms already defined for looping and parallel behaviour; the only
difference is that an event handler is optional.

Thus, the algorithm for event handling is quite short:

154 CHAPTER 5. SEMANTICS AND ANALYSIS

Listing 5.20: Handling Events

Definition
handleEvent : IA× IA→ IA, (A, Ev) 7→ S

Algorithm
S ← interleave(A, loop(Ev), true)

Compensation Calls

A compensate(activity) or compensateAll transition is added to an automaton
during the handling of an exception- or compensation handler. Now that the
handler is added to a scope, compensation handlers are available which might
need to be handled. By traversing the automaton back to the start state, a
list of installed compensation handlers can be identified. Note that ordering is
important in the case of compensateAll, as we want to compensate activities in
the reverse order of execution.

Actual compensation takes place by replacing the compensate(activity) or
compensateAll transitions with an (inverse) concatenation of compensation
handlers.

See listing 5.21 for the compensation call algorithm.

Compensation Handler

A compensation handler is behaviour which rolls back an activity. The be-
haviour can be used later in the automaton in a compensate call.

Listing 5.22: Handling Compensation Handlers

Definition
handleCompensation : IA× String × IA→ IA, (S, name, C) 7→ S

Algorithm
compsS ←add name 7→ C
for each nonErrorEndState in neStatesS do

<S, newEndState> ← newState(S)
neStatesS ← neStatesS ∪ newEndState \ nonErrorEndState
transitionsS ←add (nonErrorEndState,

compInstalled(name), newEndState)
end for

We need to do two things on the spot:

� We need to add the information that a compensation handler exists for the
current activity. This effectively means adding the compensation handler
to comps of the main automaton.

5.1. A FORMAL SEMANTICS FOR UML4SOA 155

Listing 5.21: Handling Compensation Calls

Definition
handleCompensationCalls : IA→ IA, S 7→ S

Algorithm
for each call in cCallTransitions(S) do

installTransitions ← cInstallTransitions(S, call)
assignTo ← source(call)
for each iTransition in installTransitions do

if compensationsMatch(call, iTransition) then
C ← comps(actName(iTransition))
< C , end > ← mergeStates(C, neStatesC)
if isInLoop(S, iTransition) then

transitionsC ←add (end, loop;, startStateC)
C ← addPreSpacing(C, startC)

end if
S ← addAll(C)
< S , > ← mergeStates(S, assignTo, startStateC)
assignTo ← end

end if
end for
<S , handledState > ←add newState(S)
transitionsS ←add (assignTo, compHandled(actName(iTransition)),

handledState)
< S , > ← mergeStates(S, target(call), handledState)
transitionsS ← transitionsS \ call

end for

156 CHAPTER 5. SEMANTICS AND ANALYSIS

� Furthermore, we need to add the information about the installed han-
dler to the main activity automaton. This is done by adding an internal
transition with the label compInstalled(name).

The definition of handleCompensation concludes the discussion of activity
conversion. Thus, all functions for converting SMM behavioural service descrip-
tions have been introduced.

5.1.2 SMM Protocols

An SMM protocol is specified as a state machine; as discussed in chapter 3
and further detailed in chapter 6, it maps to a UML protocol state machine in
UML4SOA.

Our semantic domain for the SMM, modal input/output transition systems,
is already very close to the SMM definition of a protocol, which consists of the
following elements:

� States. The set of states; one state is denoted as the start state.

� Transitions. A transition is a directed link between two states.

– A transition is either a SendingTransition, a ReceivingTransi-

tion, a ReplyingTransition, a ReceiveReplyingTransition, or a
NoopTransition.

– A transition may furthermore be optional if the isOptional flag is
set.

– A transition may be linked to an InterfaceOperation by means of
the operation association.

Recalling from chapter 2, a modal input/output transition system consists
of the following elements:

� States. One state is distinguished as a start state; the others are a flat set.

� Input, Output, and Internal Actions. Input actions correspond to received
messages, output actions to sent messages, and internal actions to non-
external steps.

� May and Must Transitions. Transitions are directed edges between two
states; they are either must or may.

From the two above lists, it follows that the mapping is rather straightfor-
ward. We can give a simple algorithm which achieves this by iterating over all
input elements:

� Each state in the SMM protocol is converted to a MIO state. The resulting
converted state of the start state is set as the start state of the MIO.

5.1. A FORMAL SEMANTICS FOR UML4SOA 157

� Each operation linked from a transition of the SMM protocol is converted
to a MIO action as follows:

– For SendingTransitions, the operation name of the linked opera-

tion is used as the label of an output action.

– For ReplyingTransitions, the operation name of the linked oper-

ation is used as the label of an output action, but is prefixed with
”return ”.

– For ReceivingTransitions, the operation name of the linked oper-

ation is used as the label of an input action.

– For ReceiveReplyingTransitions, the operation name of the linked
operation is used as the label of an input action, but is again prefixed
with ”return ”.

� Each transition of the SMM protocol is converted into a MIO transition.
Depending the state of the isOptional flag of the SMM transition, the
corresponding set is chosen. The label of the transition depends on the
transition type: For SendingTransition and ReplyingTransition, the
corresponding output label for the operation of the transition is selected;
for ReceivingTransition and ReceiveReplyingTransition, the corre-
sponding input label. In case of a NoopTransition, we use tau from the
internal action set.

This simple algorithm suffices for the conversion of SMM protocols to modal
input/output transition systems.

5.1.3 A Complete Example

While the previous sections have discussed the translation of SMM models into
MIOs for each individual construct of services and protocols, the case study
we have already introduced in chapter 3 uses (nearly) all of these elements in
combination. In the following, we thus give an example of how the case study
(modelled in UML4SOA) is translated into MIOs. As UML4SOA is the concrete
syntax for the SMM, we skip displaying the SMM meta-model.

Recalling from chapter 3, the central participant of the case study — the
ThesisManager process — is shown in figure 5.7. Mapping this process to MIOs
yields the transition system shown in figure 5.8. Comparing these two figures
to one other yields several interesting insights.

First, the obvious fact to note is the conversion of the basic communication
actions into transitions in the MIO. For example, the first action in the UML-
4SOA activity — the createThesis receive — appears as a transition with the
label createThesis and the suffix ? indicating that the label originates from
within the input action set in the MIO. Likewise, each send operation in the
UML4SOA model appears as a label from the output action set (indicated by
the ! suffix).

158 CHAPTER 5. SEMANTICS AND ANALYSIS

Figure 5.7: Thesis Manager in UML4SOA

5.1. A FORMAL SEMANTICS FOR UML4SOA 159

createThesis?

acceptTopic?

removeFromBoard! registerForGraduation!

compInstalled(Registration);

thesisInProgress!

getAssessment!

return_getAssessment?

thesisFailed!

throw(ThesisFailedException);

unregisterFromGraduation!

compHandled(Registration);

loop;

updateStatus?

loop;

getStatus?

return_getStatus!

updateStatus?

loop;

loop;

loop;

updateStatus?

return_getStatus!

finished?

return_getStatus!

getStatus?

getStatus?

finished?

finished?

finished?finished?

finished?

postToBoard!

thesisStarted!

assessmentComplete!

thesisPassed!

0

1

3

5

6

7

8

9

12

18

23 24

25

2627

15

10

11

17

21

14

2

4

22

Figure 5.8: Thesis Manager as a MIO

160 CHAPTER 5. SEMANTICS AND ANALYSIS

Second, after the thesis is in progress, we enter a loop in which the student
may provide updates. The loop occurs multiple times as it is interleaved with
the event handler and the interrupting action finished — at various places, the
updateStatus and corresponding internal loop action can be seen.

Third, note how events are handled in the MIO: The loop which contains
the updateThesis call has an event handler — thus, in each state which is part
of the loop in the MIO, the getStatus call can be received (and replied to, even
if there are interleaved calls in-between).

As an automaton does not contain specific support for compensation, the
(single) compensation handler of the process is added at the appropriate invo-
cation site. In this case, the invocation of the compensation handler is executed
as part of the exception handler of the Registration scope, where compensate
is invoked. Thus, after the throw actions in the automaton, the actions of the
compensation handler are inserted.

Finally, note that the finished receive in the UML4SOA process with its
interrupting edge effectively aborts the InProgress scope. Thus, from each state
which is part of the inner loop, a finished transition leads to the final part of
the process which handles cleaning up and reporting the state of the thesis.

Converting UML4SOA protocols is easier and more straightforward. An
example for a protocol conversion is shown in figure 5.9: On the left hand
side, the Student protocol in UML4SOA is shown; on the right-hand side, the
corresponding MIO is displayed.

Figure 5.9: Student Protocol: UML4SOA (left), MIO (right)

5.2. ANALYSING UML4SOA MODELS 161

5.1.4 Conclusion

This section has introduced a semantics for both SMM participant behaviour
and SMM service protocols. Firstly, we have defined the function iaJK which
transforms the textual syntax of SMM participant behaviour to modal I/O
automata via intermediate automatas (IAs). As the UML, SoaML, and the
UML4SOA/Strict profile form the concrete syntax of the SMM, the semantics
can directly be used for UML4SOA models. Secondly, we have introduced a
direct mapping from SMM service protocols to MIOs, and thus, also for SOA
participant protocols modelled in UML4SOA/Strict (which are specialised UML
PrSMs).

Both mappings from SMM participant behaviours and service protocols to
MIOs are defined through deterministic algorithms with guaranteed termina-
tion; they are hence well-defined. Termination of the given algorithms can be
shown as follows: All inputs of the behaviour semantics function are based on
the well-nested SMM structure; they do not contain any links back to potentially
already visited nodes which might lead to infinite behaviour. Of the functions
with IAs as input, only one traverses the input graph: The interleave function
uses a queue to walk through existing IAs. To avoid termination problems, the
corresponding algorithm uses a cache to note already visited nodes (in the seen
variable). Finally, the protocol semantics function does not change the structure
of the data, directly converting states to states and transitions to transitions; it
thus also does not suffer from termination problems.

As we show in later sections, the pseudo-code given above has been fully
implemented in a tool and used to transform several case studies.

With the above definitions, we have defined a rigorous semantics for SMM
participants and protocols which can be used for formal analysis, checking,
validation, and verification of UML4SOA models.

5.2 Analysing UML4SOA Models

A formal semantics such as the one introduced for UML4SOA in the previous
sections forms the basis for rigorous analysis and verification of the modelled
SOA system. The semantic domain used in our case — modal input/output
transition systems — is amenable to various kinds of analyses. In chapter 2,
we have introduced the notion of interface theories for precisely specifying and
answering two very important questions to be asked of a system model which
are directly relevant for the developers. In the context of services and service
protocols, these questions can be reformulated as follows:

1. Does a service correctly implement a given protocol?

2. Do two given protocols work together correctly?

Again, it is important to note that these two questions are directly related
to one another: Usually, given two protocols which can work together and a

162 CHAPTER 5. SEMANTICS AND ANALYSIS

participant behaviour which implements one of these, we want to be able to
assume that the participant can work with the other protocol as well. Interface
theories formalise this idea, precisely defining the two questions given above
as refinement and compatibility, and giving the assurance that compatibility is
ensured under refinement. A graphical overview of how the intuitive notion of
the questions given above map to the formal specifications is given in figure 5.10.

MIO

UML4SOA (Syntax) UML4SOA (Syntax)Modal I/O Automata (Semantics)

MIO

MIO MIO

semantics

compatible?

compatible?

re
fi
n

e
s
?

re
fi
n

e
s
?

im
p

le
m

e
n

ts
?

im
p

le
m

e
n

ts
?

fit together?

fit together?

semanticssemantics

semantics

ParticipantParticipant

Protocol Protocol

Figure 5.10: UML4SOA Analysis: Syntax & Semantics

Various interface theories and, along with them, various notions of refinement
and compatibility have been defined in the literature; each having a different
application area and thus differing in the details of which MIOs are regarded as
refinements or as compatible.

We first discuss analysis with weak modal refinement and compatibility as
introduced in chapter 2, which is focused on race conditions. Afterwards, we
introduce an additional interface theory which allows a protocol-based analysis
focused on deadlocks not based on race conditions.

5.2.1 Analysis with Weak Refinement and Compatibility

Chapter 2 has introduced the weak interface theory. This theory is useful in
the process of checking the refinement of a service to a service protocol, and
in checking protocol compatibility as it enables bypassing internalised actions
without sacrificing rigorous verification with regard to race conditions.

A service is checked against its protocols in a pair-wise fashion, i.e. sepa-
rately for each protocol. For checking participant behaviours with more than

5.2. ANALYSING UML4SOA MODELS 163

Figure 5.11: Incorrect Excerpt from Case Study (1)

one partner, we additionally need the notion of hiding as introduced in chapter 2
to internalise actions not present in the current protocol to be checked.

As an example for using weak refinement and compatibility, we consider
again our case study. The ThesisManagement process and its MIO representa-
tion illustrated on pages 158 and 159 can be shown to be a refinement of all
protocols (which are shown on page 160). To illustrate the analysis, we will
therefore introduce an error into the participant behaviour.

Consider the excerpt from the case study shown in figure 5.11. In this ex-
ample, the tutor is required to fill out a personalised form for assessing the
student, which is to be retrieved from the examination office before the assess-
ment can take place. A new action has been added for retrieving the form, and
the subsequent interaction with the tutor and examination office uses the form.
Furthermore, the call has also been added to the expected protocol from the
examination office (not shown).

Running a weak refinement analysis on the MIO representation of the Tutor
protocol and the ThesisManager participant reports a race condition between
the getStatus receive and the getAssessment send&receive: During the ge-

tReportingForm call, the tutor does not yet know that the thesis is finished
and thus, nothing restricts him from sending out another getStatus call which
cannot be accepted anymore by the participant behaviour.

Race conditions like the one shown here are in fact common and are reliably
found by checking for weak refinement. In our case, this problem can be allevi-
ated by first informing the tutor about the finished state of the thesis (before
getReportingForm).

In the next section, we revisit this example, showing what other types of
errors can occur and how to detect them.

164 CHAPTER 5. SEMANTICS AND ANALYSIS

5.2.2 Strict-Observational Analysis

A key application area of UML4SOA is designing SOA models early in the
development process, where the focus is on the big picture of the resulting
system. In this context, we believe that is important to support developers
in answering the two questions discussed in the beginning of this section on a
higher level than it is currently possible.

Weak modal refinement and compatibility already impose very strict require-
ments on the system design; their results include checking for race conditions
which may, but need not necessarily lead to problems during execution. While
these checks are necessary in the end, they detract from more obvious and crit-
ical problems during the initial design phase, where the focus is on the overall
design of the system.

Thus, we have chosen to create an additional interface theory which is fo-
cused on the externally visible behaviour of services. The difference between
the two notions of weak and strict-observational checking lies in the treatment
of race conditions. A race condition may (in one path) lead to a deadlock, but
it is possible to use another path which succeeds. On the other hand, there are
deadlocks which are not race conditions; these cannot be avoided when following
the protocol from the start state. Our new notions of refinement and compat-
ibility ignore deadlocks associated with race-conditions; they instead focus on
deadlocks which will always be reached.

Thus, this form of analysis enables checking if a participant behaviour is
able to follow the possible calls described in a protocol, or if two protocols can
follow each other’s call sequences. A positive answer guarantees that there is
no hard deadlock, i.e. it is possible to follow the correct path in the behaviour.
On the other hand, a negative answer indicates that either the service or the
protocol must be corrected in order to work at all.

For introducing the formal notions of strict-observational refinement and
compatibility, we use a simple example with a participant behaviour O and two
protocols P and R, shown in figure 5.12. In the next section, we apply the new
interface theory to the case study.

We first try to analyse this service with existing interface theories for modal
I/O automata. The closest to our own definitions of refinement and compat-
ibility for MIOs are weak refinement and compatibility, complemented by the
notion of hiding.

5.2.2.1 Refinement

Let us first consider checking the participant behaviour O, focusing on the ques-
tion of whether it implements (refines) the P protocol with weak refinement.

First, we need to hide actions not in P. Recalling from chapter 2, the notion
of hiding allows moving an action label from the output or input set of the au-
tomaton to the internal set, i.e., effectively hiding it from the external alphabet.
In our example, this applies to the action e? which is from a different protocol
(R) than the one we are currently checking (P).

5.2. ANALYSING UML4SOA MODELS 165

a?

c?

e?

b!

O

R

e?

a?

b!

P

c?

refines?

refines?

c?

Figure 5.12: MIO Example for Strict-Observational Analysis (1)

Now, using weak refinement, we get the following problem report: After hav-
ing taken the now-internal e; call, the protocol action c? is no longer possible.
This is a classic race condition.

As indicated above, we are not interested in deadlocks originating in race
conditions in our new interface theory. Rather, we want to report deadlocks
which can not be bypassed in a race. Thus, focusing only on actions of P, we
notice that the participant behaviour waits for another c? action (illustrated in
red) after b!. This action is never allowed in P and the implementation will
always deadlock at this point.

Strict-observational refinement is geared towards reporting such problems.In
other words, instead of detecting errors that may lead to a deadlock in one
path, strict-observational refinement reports deadlocks which occur in all rele-
vant paths — i.e., situations in which the protocol cannot be followed by the
participant behaviour. The other problem indicated above (c? not being possi-
ble after e?) is not detected by our refinement notion, but can be readily dealt
with using weak refinement.

In the following, we formalise the notion of strict-observational refinement
motivated above. Please refer back to chapter 2 for the basic definitions of
MIOs, refinement, and transition types.

To capture the idea of strict-observational analysis, we first define the notion
of action-weak transitions.

Given a MIO S, a set of actions L ⊆ actS , and an action a ∈ actS , we write

s
a−→
/(L)

S s′ iff either s
a−→Ss

′ or there exist n ≥ 1, states s1, . . . , sn ∈ statesS ,
and actions b1, . . . , bn ∈ (actS \ L) such that

166 CHAPTER 5. SEMANTICS AND ANALYSIS

s
b1−→Ss1 . . . sn−1

bn−→Ssn
a−→Ss

′.

The intuition of an action-weak transition is that a single relevant action is
performed, which may be preceded by irrelevant actions not in L. Moreover,

we write s
a−→
/

Ss
′ to abbreviate s

a−→
/(extS)

S s′. The same notions are analogously
used for may-transitions.

We now adapt weak modal refinement to satisfy our needs, i.e. we only
want to consider relevant actions during refinement of MIOs. The basic idea
for our refinement is to skip leading actions unrelated to the protocol under
investigation. First, the refining MIOs may have more actions than the refined
one, and second, in both directions in the definition we focus on the external
actions of the more abstract MIO since these actions are the relevant ones.

Definition 10 (Strict-Observational Modal Refinement) Let S and T be
MIOs such that αext(S) ⊇ αext(T). S strict-observationally refines T , de-
noted by S ≤so T , iff there exists a relation R ⊆ statesS × statesT containing
(startS , startT) such that for all (s, t) ∈ R, for all actions a ∈ extT ,

1. if t
a−→
/

T t
′ then there exists s′ ∈ statesS such that s

a−→
/(extT)

S s′ and (s′, t′)
∈ R,

2. if s
a
99K

/(extT)

S s′ then there exists t′ ∈ statesT such that t
a
99K

/

T t
′ and (s′, t′)

∈ R.

Note that strict-observational refinement only uses the modal aspects of
MIOs and can thus also be defined for modal transition systems in their original
form (i.e. not distinguishing between input/output/internal actions).

Strict-observational modal refinement can be proved to be a preorder on
MIOs, i.e. it is reflexive and transitive.

Lemma 1 Strict-observational modal refinement ≤so is reflexive and transitive.

Before we go on to prove this lemma, we include (and prove) the following helper
lemma:

Lemma 2 Let S be a MIO and a ∈ actS. If s
a−→
/(L)

S s′ and L′ ⊆ L then

s
a−→
/(L′)

S s′.

Proof 1 of Lem. 2 Let s
a−→
/(L)

S s′ and L′ ⊆ L. By definition of −→/(L), we
must distinguish two cases.

1. s
a−→Ss

′. Here, s
a−→
/(L′)

S s′ holds.

2. there exist n ≥ 1, states s1, . . . , sn ∈ statesS, and actions b1, . . . , bn ∈
(actS \ L) such that

s
b1−→Ss1 . . . sn−1

bn−→Ssn
a−→Ss

′.

5.2. ANALYSING UML4SOA MODELS 167

Since L′ ⊆ L, it holds for all bi that bi ∈ (actS \ L′). From this we can

deduce that s
a−→
/(L′)

S s′ holds.

Proof 2 of Lem. 1 (Reflexivity and Transitivity of Refinement)

As reflexivity of refinement is easy to show, we focus on showing transitivity.

Let S ≤so U and U ≤so T , we have to show that S ≤so T . We can assume a
strict-observational modal refinement R1 for S and U , and a strict-observational
modal refinement R2 for U and T . We now define a relation R ⊆ statesS ×
statesT by

R = {(s, t) | ∃u ∈ statesU .(s, u) ∈ R1 ∧ (u, t) ∈ R2}.

We show that R is a strict-observational modal refinement for S and T.
First, it holds that (startS , startT) ∈ R. Now, we have to show (i) and (ii)
from Definition 10 of strict-observational modal refinement.

1. (Protocol to Implementation). Assume (s, t) ∈ R and

t
a−→
/

T t
′

for some a ∈ extT (only consider externals as per definition of ≤so).
By definition of R, there exists u ∈ statesU such that (s, u) ∈ R1 and
(u, t) ∈ R2. From R2 it follows that there exists a state u′ ∈ statesU such
that

u
a−→
/(extT)

U u′

and (u′, t′) ∈ R2. It follows that we have

u
b1−→

/

U . . .
bn−→

/

U û
a−→
/

Uu
′

for some n ≥ 0 (if n = 0 then u = û) and for some bi ∈ extU \ extT ,
1 ≤ i ≤ n (if n > 0). By assumption we know (s, u) ∈ R1. By induction
on the number of transitions between u and û in this trace we can show
that there exist transitions

s
b1−→

/(extU)

S . . .
bn−→

/(extU)

S ŝ
a−→
/(extU)

S s′

such that (s′, u′) ∈ R1. By Lemma 2 and because of bi /∈ extT we get

s
a−→
/(extT)

S s′,

thus, by definition of R, we get (s′, t′) ∈ R.

2. (Implementation to Protocol). The proof for the other direction is very
similar.

168 CHAPTER 5. SEMANTICS AND ANALYSIS

Going back to our example, we had the problem that under weak refinement,
the c? call is reported as an error, as it is no longer accepted after e?. With
strict-observational refinement, e? is no longer relevant for the refinement check
between the student protocol and the participant behaviour. As a result, the
only problem reported is the deadlock due to the second c? call shown in red
in the participant behaviour of figure 5.12.

Thus as expected, strict-observational refinement does not imply weak re-
finement, as shown in the counter example in figure 5.12. However, although
strict-observational refinement has been created with weak refinement as its ba-
sis, weak refinement also does not imply strict-observational refinement. This
is due to the differences in handling of internal actions: While weak refinement
allows suffixed internal actions, strict-observational does not. A counter exam-
ple with a MIO B which is a weak, but not a strict-observational refinement of
a MIO A is shown in figure 5.13.

A

a?

c? τ

b?

B

a?

b?c? τ

a?

b?

Figure 5.13: Weak vs. SO Refinement

The difference lies in the fact that weak refinement relates the state following
the right-hand-side a? of automaton B with the state after tau in A. Strict-
observational refinement, however, must choose the state following a? in A.

A remaining question is the relationship between strong refinement as defined
in chapter 2, and strict-observational refinement. Here, it can be shown that
strong implies strict-observational refinement.

Proposition 1 [Strong and Strict-Observational Refinement] Let S and
T be MIOs. If S ≤m T , then also S ≤so T .

Proof 3 of Prop. 1 (Strong Ref. implies Strict-Observational Ref.)
Let S ≤m T , we have to show that S ≤so T . Because of S ≤m T , we have

a relation R ⊆ statesS × statesT as specified in ≤m. We prove that R is also a
relation for S ≤so T .

5.2. ANALYSING UML4SOA MODELS 169

First, extT = extS as S ≤m T . Thus, all actions not in extT are inter-
nal by definition (and furthermore, intT = intS). Now, R obviously includes
(startS , startT). We show (i) and (ii) from Definition 10 (Strict-Observational
Modal Refinement) for all (s, t) ∈ R.

1. (Protocol to Implementation). Assume (s, t) ∈ R and

t
a−→
/(extT)

T t′

for some a ∈ extT . In more detail, this transition is written as

t
b1−→T t1 . . . tn−1

bn−→T tn
a−→T t

′

with b1, . . . , bn ∈ (intT = intS). For each of the transitions bi, we can
apply rule (1) from the definition of ≤m, in each case moving one step in
both S and T , finally reaching (sn, tn) ∈ R.

From (sn, tn) we can again apply rule (1) with the external action a. We
thus know that there exists s′ with

sn
a−→Ss

′

and (s′, t′) ∈ R. Thus, we also have

s
a−→
/(extT)

S s′

since we have only taken internal transitions not in extT followed by the
final transition with a ∈ extT .

2. (Implementation to Protocol). The proof for the other direction is very
similar.

5.2.2.2 Compatibility

Now we focus on our second aim which concerns compatibility checks. Consider
figure 5.14, which is a replica of figure 5.12, however this time with comple-
ments of the protocols given before. The question is whether the protocols are
compatible with their complements and whether the protocols are compatible
with the participant behaviour.

Let us again check the example, this time focusing on the question of whether
the required student protocol is compatible with the participant behaviour. We
expect compatibility to hold; however, weak compatibility reports a similar
violation as observed before during our discussion of refinement: After having
taken the e? transition, which is external to the participant behaviour but not
shared with the protocol, the c! transition of the protocol P can no longer be
taken. This problem cannot be alleviated by hiding as hiding does not affect

170 CHAPTER 5. SEMANTICS AND ANALYSIS

a?

c?

e?

b!

O

R

e!

a!

b?

P

c!

compatible?

compatible?

Figure 5.14: MIO Example for Strict-Observational Analysis (2)

weak modal compatibility in any relevant way. Instead, the idea is to reduce
the set of state pairs considered during compatibility checking.

We want to consider both protocols to be compatible with the (new) service
O, in each case only considering the protocol-observable actions as before. We
define strict-observational I/O compatibility to reach this goal.

Definition 11 (Strict-Observational I/O Compatibility) Let S and T be
composable MIOs, and let L be the set shared(S, T) of shared labels of S and
T . S and T are called strict-observationally I/O compatible, written S ∼so T ,
iff there exists a relation R ⊆ statesS × statesT containing (startS , startT) such
that for all (s, t) ∈ R,

1. for all a ∈ (outS ∩ inT), if s
a
99K

/(L)

S s′ then there exists t′ ∈ statesT such

that t
a−→
/(L)

T t′ and (s′, t′) ∈ R,

2. for all a ∈ (outT ∩ inS), if t
a
99K

/(L)

T t′ then there exists s′ ∈ statesS such

that s
a−→
/(L)

S s′ and (s′, t′) ∈ R.

Considering again the example of compatibility between the participant be-
haviour and the student protocol, strict-observational I/O compatibility treats
e? differently, as it is not defined in the student protocol — it is no longer rel-
evant in its own right, but only as a prefix to b!. We therefore get a positive
compatibility result between O and P as expected.

Lemma 3 Strict-observational I/O compatibility ∼so is symmetric.

As seen in the above example, strict-observational refinement does not imply
weak refinement as expected (figure 5.14). The other direction, however, holds

5.2. ANALYSING UML4SOA MODELS 171

true; weak compatibility between two MIOs A and B implies strict-observational
compatility.

Proposition 2 [Weak and Strict-Observational Compatibility] Let S and
T be composable MIOs. If S ∼wc T , then also S ∼so T .

Proof 4 of Prop. 2 (Weak Comp. implies Strict-Observational Comp.)
Let S ∼wc T , we have to show that S ∼so T . Because of S ∼wc T , we have

a relation R ⊆ statesS × statesT as specified in ∼wc. We prove that R is also
a relation for S ∼so T . First, R includes (startS , startT). Second, we need to
show (i) and (ii) from Definition 11 (Strict-Observational I/O Compatibility)
for all (s, t) ∈ R; L being defined as shared(S, T).

1. (Protocol to Implementation). Assume (s, t) ∈ R and

s
a
99K

/(L)

S s′

for some a ∈ (outS ∩ inT). In more detail, this transition is written as

s
b1−→Ss1 . . . sn−1

bn−→Ssn
a−→Ss

′

with b1, . . . , bn ∈ (actS ∪ actT) \ shared(S, T). Since the transitions take
place in S, we can reduce this to intS∪extS \shared(S, T). For each of the
transitions bi, we can apply rule (3) from the definition of ∼wc, arriving
at (sn, t) ∈ R (we are thus not moving in T).

For the final a ∈ outS ∩ inT , we can employ rule (1) of ∼wc for sn
a
99KSs

′

and conclude that

t
a−→
/

T t
′

and (s′, t′) ∈ R. Obviously, we then also have

t
a−→
/(L)

T t′

as the actions which can be bypassed in /(L) include intS.

2. (Implementation to Protocol). The proof for the other direction is very
similar.

5.2.2.3 Interface Theory

With strict-observational modal refinement and compatibility in place, we can
now come back to our initial goal of defining a domain-specific interface theory
targeted at checking protocol compliance in SOA systems.

In order to prove that MIOs together with strict-observational modal refine-
ment and strict-observational I/O compatibility form an interface theory, we

172 CHAPTER 5. SEMANTICS AND ANALYSIS

need an appropriate notion of composition for MIOs, called strict-observational
composition and denoted by ⊗so, which is adapted to our strict-observational
view. Then we show that indeed Iso = (MIO,≤so,∼so,⊗so), where MIO is
the domain of all modal I/O automata, satisfies preservation of compatibility
and compositionality.

Definition 12 (Strict-Observational Composition) Two composable mo-
dal input/output automata S1 and S2 can be strict-observationally composed to
a MIO S1 ⊗so S2 defined by

� statesS1⊗soS2 = statesS1 × statesS2 ,

� startS1⊗soS2
= (startS1

, startS2
),

� inS1⊗soS2
= (inS1

\ outS2
)] (inS2

\ outS1
),

� outS1⊗soS2 = (outS1 \ inS2)] (outS2 \ inS1),

� intS1⊗soS2
= ∅.

The transition relations are given by

1. for all ai ∈ shared(S1, S2), 1 ≤ i ≤ n, if there exists c ∈ (extS1
\

shared(S1, S2)) and s1
a1−→

/

S1
. . .

an−→
/

S1
s′1

c−→
/

S1
s′′1 , and s2

a1−→
/

S2
. . .

an−→
/

S2
s′2,

then (s1, s2)
c−→S1⊗soS2

(s′′1 , s
′
2) (if n = 0 then s1 = s′1 and s2 = s′2),

2. for all ai ∈ shared(S1, S2), 1 ≤ i ≤ n, if there exists c ∈ (extS2
\

shared(S1, S2)) and s1
a1−→

/

S1
. . .

an−→
/

S1
s′1, and s2

a1−→
/

S2
. . .

an−→
/

S2
s′2

c−→
/

S2
s′′2 ,

then (s1, s2)
c−→S1⊗soS2

(s′1, s
′′
2) (if n = 0 then s1 = s′1 and s2 = s′2),

3. and (iv), two similar rules for may-transitions (99K).

The intuition of this composition operator is to capture non-shared external
actions c, which may be prefixed by a number of shared actions a1 . . . an (or
none at all): any paths only involving transitions with shared labels do not
appear in the form of a series of synchronised actions in the composition; in
fact, compositions S1 ⊗so S2 do not contain any internal actions at all. In
particular, any communication failures of two composed MIOs which are not
compatible (i.e. a shared output is not received) do not emerge in the composed
MIO.

Strict-observational composition satisfies associativity and commutativity
which is a basic requirement for any reasonable composition operator (note that
for commutativity to hold, we assume that two MIOs are considered equal if
they have the same (internal and external) alphabet and there exists a bijection
between the state spaces such that both may- and must-transition relations are
preserved).

Lemma 4 Strict-observational composition ⊗so is commutative and associa-
tive.

5.2. ANALYSING UML4SOA MODELS 173

Proof 5 of Lem. 4 (Commutativity and Associativity of Composition)
Commutativity is easy see as the definition of composition is symmetric. We
focus here on the associativity of composition, i.e. to show that (S⊗soT)⊗soU =
S ⊗so (T ⊗so U) modulo state bijection. First, we need to show that that S
is composable with T and S ⊗so T is composable with U if and only if T is
composable with U and S is composable T ⊗so U .

Assume that S is composable with T and S ⊗so T is composable with U .
From the definition of composability, it follows that

(inS ∪ intS) ∩ (inT ∪ intT) = ∅ (i)

(outS ∪ intS) ∩ (outT ∪ intT) = ∅ (ii)

[(inS \ outT) ∪ (inT \ outS) ∪ intS ∪ intT ∪ (outS ∩ inT) ∪ (outT ∩ inS)]
∩(inU ∪ intU) = ∅ (iii)

[(outS \ inT) ∪ (outT \ inS) ∪ intS ∪ intT ∪ (outS ∩ inT) ∪ (outT ∩ inS)]
∩(inU ∪ intU) = ∅ (iv)

By applying (A\B)∪(A∩B) = A, the equations (iii) and (iv) can be simplified.

(inS ∪ inT ∪ intS ∪ intT) ∩ (inU ∪ intU) = ∅ (v)

(outS ∪ outT ∪ intS ∪ intT) ∩ (inU ∪ intU) = ∅ (vi)

Now, we have to show that T is composable with U , i.e.

(inT ∪ intT) ∩ (inU ∪ intU) = ∅ (vii)

(outT ∪ intT) ∩ (outU ∪ intU) = ∅ (viii)

Equation (vii) follows directly from (v), and (viii) follows from (vi). Next, we
need to show that S is composable T ⊗so U , i.e.

(inS ∪ intS) ∩ (inU ∪ intU ∪ inT ∪ intT) = ∅ (ix)

(outS ∪ intS) ∩ (outU ∪ intU ∪ outT ∪ intT) = ∅ (x)

The left-hand side of (ix) can be transformed as follows.

(inS ∪ intS) ∩ (inU ∪ intU ∪ inT ∪ intT)

= [(inS ∪ intS) ∩ (inU ∪ intU)]︸ ︷︷ ︸
=∅, from (i)

∪ [(inS ∪ intS) ∩ (inT ∪ intT)]︸ ︷︷ ︸
=∅, from (v)

Similarly, the left-hand side of (x) can be transformed.

(outS ∪ intS) ∩ (outU ∪ intU ∪ outT ∪ intT)

= [(outS ∪ intS) ∩ (outU ∪ intU)]︸ ︷︷ ︸
=∅, from (ii)

∪ [(outS ∪ intS) ∩ (outT ∪ intT)]︸ ︷︷ ︸
=∅, from (vi)

Hence, S is composable T ⊗so U . The proof for the inverse direction can be
shown in the same way.

174 CHAPTER 5. SEMANTICS AND ANALYSIS

Now, as a small lemma, it is convenient to show that if S, T and U are com-
posable, then shared(S, T ⊗so U) = shared(S, T)] shared(S,U). By definition
of shared and since S, T and U are composable, it holds that

shared(S, T ⊗so U) = (inS ∩ outT⊗soU)] (inT⊗soU ∩ outS)

This term can be further transformed as follows.

(inS ∩ (outT \ inU] outU \ inT)] (outS ∩ (inT \ outU] inU \ outT))

= (inS ∩ outT \ inU)] (inS ∩ outU \ inT)

](outS ∩ inT \ outU)] (outS ∩ inU \ outT)

This last term can be simplified again since S, T and U are composable and
therefore inS ∩ inU = ∅, outS ∩ outU = ∅ inS ∩ inT = ∅, and outS ∩ outT = ∅:

(inS ∩ outT)] (inS ∩ outU)] (outS ∩ inT)] (outS ∩ inU)

This is exactly the same as

shared(S, T)] shared(S,U)

Finally, we show that

(sS , (sT , sU))
c−→S⊗so(T⊗soU)(s

′
S , (s

′
T , s
′
U))

if and only if
((sS , sT), sU)

c−→S⊗so(T⊗soU)((s
′
S , s
′
T), s′U)

Assume hence that

(sS , (sT , sU))
c−→S⊗so(T⊗soU)(s

′
S , (s

′
T , s
′
U))

The same must be shown for may also, but this can be shown just as below. We
deal with each of the cases according to the definition of −→S⊗so(T⊗soU).

(1) Let c ∈ extS \ extT⊗soU . By definition, there is a path wS ∈ (intS]
shared(S, T)] shared(S,U))∗ in S to ŝS with

ŝS
c−→
/

Ss
′
S

Similarly, there is a path in T ⊗so U , w ⊆ wS, w ∈ (shared(S, T)]
shared(S,U))∗ from (sT , sU) to (s′T , s

′
U). Note that w does not contain

any internal actions due to the definition of strict-observational compo-
sition. From the existence of the path w, it follows that there are paths
wT ∈ (intT] shared(T,U)] shared(T, S))∗ from sT to s′T , and wU ∈
(intU]shared(U, T)]shared(U, S))∗ from sU to s′U . Both wT and wU cor-
respond to w on shared actions. Now, considering (sS , sT) in S⊗so T , from
the existence of wS and wT which correspond on shared actions, we can
derive that there is a path from (sS , sT) to (ŝS , s

′
T), wST ∈ (shared(T,U)]

shared(S,U))∗. Furthermore, we know that (ŝS , s
′
T)

c−→S⊗soT (s′S , s
′
T). As

wST correspond to wU on shared actions, we can derive that

((sS , sT), sU)
c−→(S⊗soT)⊗soU ((s′S , s

′
T), s′U)

5.2. ANALYSING UML4SOA MODELS 175

(2) Let c ∈ extS \ extT⊗soU . By definition, there is a path wS ∈ (intS]
shared(S, T)] shared(S,U))∗ in S to s′S. Similarly, there is a path in
T ⊗so U , w ⊆ wS w ∈ (shared(S, T)] shared(S,U))∗ from (sT , sU) to
(ŝT , ŝU), and a transition

(ŝT , ŝU)
c−→
/

T⊗soU (s′T , s
′
U)

Again, w does not contain any internal actions by definition of strict-
observational composition. From the existence of the path w, it follows
that there are paths wT ∈ (intT] shared(T,U)] shared(T, S))∗ from sT to
ŝT , and wU ∈ (intU] shared(U, T)] shared(U, S))∗ from sU to ŝU . Again,
both wT and wU correspond to w on shared actions. Now, considering
(sS , sT) in S ⊗so T , from the existence of wS and wT which correspond on
shared actions, we can derive that there is a path from (sS , sT) to (s′S , ŝT),
wST ∈ (shared(T,U)] shared(S,U))∗. Again, it holds that wST corre-
sponds to wU on shared actions. Next, we need to consider the origin of
c ∈ extS \ extT⊗soU .

(a) c ∈ extT \ extU . Here, we know that ŝU = s′U , and by definition of

strict observational composition also that ŝT
c−→
/

T s
′
T . Hence,

(s′S , ŝT)
c−→S⊗soT (s′S , s

′
T)

and therefore also ((s′S , ŝT), ŝU)
c−→(S⊗soT)⊗soU ((s′S , s

′
T), s′U).

(b) c ∈ extU \ extT . Conversely, it holds that ŝT = s′T , and ŝU
c−→
/

T s
′
U .

From this, it follows directly that

((s′S , ŝT), ŝU)
c−→(S⊗soT)⊗soU ((s′S , s

′
T), s′U)

Altogether, we have shown that

((sS , sT), sU)
c−→(S⊗soT)⊗soU ((s′S , s

′
T), s′U)

The inverse direction can be proven in the same way, which concludes the proof
for associativity of strict-observational composition.

First, we show that strict-observational compatibility is preserved under
strict-observational modal refinement.

Theorem 1 [Preservation of Compatibility] Let S, T , T ′ be MIOs, and
let S, T and S, T ′ be composable. If S ∼so T , T ′ ≤so T and shared(S, T) =
shared(S, T ′), then it follows that S ∼so T ′.

Proof 6 of Thm. 1 (Preservation of Compatibility)
Assume S ∼so T and T ′ ≤so T . We have to show that S ∼so T ′. From the

first assumption it follows that there exists a strict-observational I/O compati-
bility relation RC between S and T . From the second assumption it follows that

176 CHAPTER 5. SEMANTICS AND ANALYSIS

there exists a strict-observational modal refinement relation RT for T ′ and T .
We define a relation R ⊆ statesS × states ′T as follows:

R = {(s, t′) | ∃ t ∈ statesT . (t′, t) ∈ RT ∧ (s, t) ∈ RC}

We first show that (startS , startT ′) ∈ R. As S ∼so T , we know that
(startS , startT) ∈ RC . As T ′ ≤so T , we know that (startT ′ , startT) ∈ RT .
It follows that (startS , startT ′) ∈ R from the definition of R.

Now, assume (s, t′) ∈ R. We have to show (i) and (ii) from Definition 11
of strict-observational I/O compatibility. Let L = shared(S, T) = shared(S, T ′).

1. (S to T ′). Assume

s
a!
99K

/(L)

S s

for some a ∈ (outS ∩ inT ′). Per definition of R, there exists a t ∈ T with

(t′, t) ∈ RT and (s, t) ∈ RC . Because (s, t) ∈ RC and s
a!
99K

/(L)

S s we know
that

t
a?−→

/(L)

T t and (s, t) ∈ RC .

� If also t
a?−→

/

T t then because of (t′, t) ∈ RT it follows t′
a?−→

/(extT)

T ′ t
′

and (t
′
, t) ∈ RT . By Lemma 2 also t′

a?−→
/(L)

T ′ t
′

since L ⊆ extT . Per

definition of R we get (s, t
′
) ∈ R.

� Otherwise there exists bi ∈ extT \ L, 1 ≤ i ≤ n, such that

t
b1−→

/

T . . .
bn−→

/

T t̂
a?−→

/

T t.

By a stepwise application of refinement we get

t′
b1−→

/(extT)

T ′ . . .
bn−→

/(extT)

T ′ t̂′
a?−→

/(extT)

T ′ t
′

such that (t
′
, t) ∈ RT . Similar to above (since L ⊆ extT), by Lemma

2 we get

t′
b1−→

/(L)

T ′ . . .
bn−→

/(L)

T ′ t̂′
a?−→

/(L)

T ′ t
′

and because bi /∈ L it follows that t′
a?−→

/(L)

T ′ t
′
.

2. (T ′ to S). Assume

t′
a!
99K

/(L)

T ′ t
′

for some a ∈ (outT ′ ∩ inS). Per definition of R, there exists a t ∈ T with
(t′, t) ∈ RT and (s, t) ∈ RC .

� If also t′
a!
99K

/(extT)

T ′ t
′

then we get t
a!
99K

/

T t and (t
′
, t) ∈ RT . By Lemma

2 also t
a!
99K

/(L)

T t. By compatibility it follows s
a?−→

/(L)

S s, (s, t) ∈ RC ,

and hence (s, t
′
) ∈ R.

5.2. ANALYSING UML4SOA MODELS 177

� Otherwise there exist bi ∈ extT \ L, 1 ≤ i ≤ n, such that

t′
b1
99K

/(extT)

T ′ . . .
bn
99K

/(extT)

T ′ t̂′
a!
99K

/(extT)

T ′ t
′
.

By a stepwise application of refinement we get

t
b1
99K

/

T . . .
bn
99K

/

T t̂
a!
99K

/

T t

such that (t
′
, t) ∈ RT . By Lemma 2,

t
b1
99K

/(L)

T . . .
bn
99K

/(L)

T t̂
a!
99K

/(L)

T t

and because of bi /∈ L, t
a!
99K

/(L)

T t. By compatibility it follows s
a?−→

/(L)

S s,

(s, t) ∈ RC , and hence (s, t
′
) ∈ R.

Compositionality is the prerequisite for independent implementability of ser-
vices and their modular verification.

Theorem 2 [Compositionality] Let S, T , T ′ be MIOs, and let S, T and S,
T ′ be composable. If T ′ ≤so T and shared(S, T) = shared(S, T ′), then S ⊗so
T ′ ≤so S ⊗so T .

Proof 7 of Thm. 2 (Compositionality of Refinement)
Let S, T , T ′ be MIOs with T ′ ≤so T . From T ′ ≤so T it follows that there
exists a strict-observational refinement RT for T ′ and T . We have to prove that
S ⊗so T ′ ≤so S ⊗so T holds. Therefore, we define a relation R ⊆ (statesS ×
statesT ′)× (statesS × statesT) by

R = {((s, t′), (s, t)) | (t′, t) ∈ RT }

which we show now is a strict-observational refinement relation for S⊗soT ′ and
S ⊗so T .

We immediately know by definition that ((startS , startT ′), (startS , startT)) ∈
R holds. We now take an arbitrary pair ((s, t′), (s, t)) ∈ R, and show (i) from
Definition 10 of strict-observational modal refinement; condition (ii) can be
proved in an analogous way.

Let
(s, t)

a−→
/

S⊗soT (s, t)

for some a ∈ extS⊗soT (we only consider external actions as per definition of
strict-observational modal refinement; note also that extS⊗soT does not contain
shared labels). We have to show that there exists

(s, t′)
a−→
/(extS⊗soT)

S⊗soT ′ (s, t
′
)

such that
((s, t

′
), (s, t)) ∈ R.

In S⊗so T , all occurring actions are those which were already external in either
S or T , i.e. not shared between S and T . Thus, either

178 CHAPTER 5. SEMANTICS AND ANALYSIS

(1) a ∈ extS , a /∈ extT , or

(2) a /∈ extS , a ∈ extT .

We deal with each of these two cases.

(1) a ∈ extS , a /∈ extT
Given is the following:

(s, t)
a−→
/

S⊗soT (s, t)

Using the Definition 12 of ⊗so, part (i), we get

s
b1−→

/

S . . .
bn−→

/

S ŝ
a−→
/

Ss and t
b1−→

/

T . . .
bn−→

/

T t

for some n ≥ 0; either n = 0 then s = ŝ and t = t, or n > 0 then there exist
shared actions b1, . . . , bn ∈ shared(S, T). As said before, a ∈ extS , a /∈ extT .
Now, by induction on the length n ≥ 0, we show that from the latter and
the assumption (t′, t) ∈ RT , we can get

t′
b1−→

/(extT)

T ′ . . .
bn−→

/(extT)

T ′ t
′

and (t, t
′
) ∈ RT .

Base case n = 0. Then t = t, t′ = t
′

and (t
′
, t) = (t′, t) ∈ RT by assumption.

Induction step. Assume that we have for some n

t
b1−→

/

T . . .
bn−→

/

T tn
bn+1−→

/

T t and (t′, t) ∈ RT .

By applying our induction hypothesis, we get

t′
b1−→

/(extT)

T ′ . . .
bn−→

/(extT)

T ′ t′n and (t′n, tn) ∈ RT .

From strict-observational modal refinement, we get that

t′n
bn+1−→

/(extT)

T ′ t′n+1 and (t′n+1, tn+1) ∈ RT

which concludes the proof by induction. Thus, we have shown that

t′
b1−→

/(extT)

T ′ . . .
bn−→

/(extT)

T ′ t
′

and (t, t
′
) ∈ RT .

When transforming this trace to action-weak transitions w.r.t. /(extT ′),
every transition with label bi is preceded by finitely many transitions la-
belled with actions in extT ′ \ extT which by assumption (shared(S, T) =
shared(S, T ′)) are not in shared(S, T ′). Hence by Definition 12 of strict-
observational composition, we can successively compose these tranformed
transitions with the transitions

s
b1−→

/

S . . .
bn−→

/

S ŝ
a−→
/

Ss

5.2. ANALYSING UML4SOA MODELS 179

yielding a transition with label a in extS⊗soT ′ preceded by finitely many
transitions labelled with actions in extT ′ \ extT . Thus, by restricting the
relevant actions to extS⊗soT , we get

(s, t′)
a−→
/(extS⊗soT)

S⊗soT ′ (s, t
′
).

As we also have (t
′
, t) ∈ RT , we get

((s, t
′
), (s, t)) ∈ R.

(2) (case a /∈ extS , a ∈ extT).

Again, assume

(s, t)
a−→
/

S⊗soT (s, t)

Using the Definition 12 of ⊗so, part (i), we get

s
b1−→

/

S . . .
bn−→

/

Ss and t
b1−→

/

T . . .
bn−→

/

T t̂
a−→
/

T t

for some n ≥ 0; either n = 0 then s = ŝ and t = t, or n > 0 then there
exist shared actions b1, . . . , bn ∈ shared(S, T). One can show, similar to the
previous case, that it holds (by induction) that there exist

t′
b1−→

/(extT)

T ′ . . .
bn−→

/(extT)

T ′ t̂′
a−→
/(extT)

T ′ t
′

and (t, t
′
) ∈ RT .

Again, by the same argument as above, we get

(s, t′)
a−→
/(extS⊗soT)

S⊗soT ′ (s, t
′
).

As we also have (t
′
, t) ∈ RT , we get

((s, t
′
), (s, t)) ∈ R.

The second part (ii) (≤so, Implementation to Protocol) can be proven in a
similar way as above, just with may-transitions instead of must-transitions.

Independent implementability is a direct consequence of preservation of com-
patibility under refinement and compositionality of refinement. Even more than
in traditional software architectures, SOA systems benefit from this property
due to the inherent distribution of services in the service-based application land-
scape.

Corollary 1 [Independent Implementability] Let S, T , T ′ be MIOs, and
let S, T and S′, T ′ be composable. If S ∼so T , T ′ ≤so T , S′ ≤so S and
shared(S, T) = shared(S′, T ′), both S′ ∼so T ′ and S′ ⊗so T ′ ≤so S ⊗so T follow.

180 CHAPTER 5. SEMANTICS AND ANALYSIS

Figure 5.15: Incorrect Excerpt from Case Study (2)

Proof 8 of Corollary 1 (Independent Implementability) First, it can be easily
shown that

shared(S, T) = shared(S, T ′) = shared(S′, T ′).

By Thm. 1, it follows S ∼so T ′, and by Lem. 3, T ′ ∼so S. Again by Thm. 1
and Lem. 3, it follows that S′ ∼so T ′. Second, we show S′ ⊗so T ′ ≤so S ⊗so T .
We apply Thm. 2 to get S ⊗so T ′ ≤so S ⊗so T . Moreover, by Thm. 2, it follows
T ′ ⊗so S′ ≤so T ′ ⊗so S. Since ⊗so is commutative (Lem. 4) and ≤so transitive
(Lem. 1), it holds that S′ ⊗so T ′ ≤so S ⊗so T .

With preservation of compatibility under refinement and compositionality
(which together imply independent implementability), we have arrived at our
goal of defining an interface theory for strict-observational analysis of MIOs.

Corollary 2 [Strict-Observational Interface Theory] Iso = (MIO,≤so,
∼so,⊗so) is an interface theory.

5.2.2.4 Example

Let us consider again our (adapted) case study in figure 5.11 on page 163.
Running strict-observational refinement on this example will show no errors:
The race condition is ignored, and as there is no additional deadlock, the analysis
completes sucessfully.

For an actual error, consider a revised tutor protocol as shown in figure 5.15
(note that this is not a required protocol of the ThesisManagement participant,
but the opposite version of the tutor service). The new version of the protocol
has an added exchange between tutor and ThesisManagement, in which the
tutor is informed about and has to acknowledge the official end of the thesis.

Checking the participant behaviour against this new tutor protocol with
weak compatibility (as usual, with hiding) yields the same problem as with weak

5.3. TOOL SUPPORT 181

refinement as expected and discussed in the last section. The higher-level prob-
lem of the complete thesisFinished call being missing from the participant
behaviour is not reported, as it comes after the race condition.

Checking the participant behaviour with strict-observational compatibility,
on the other hand, yields the desired result: The thesisFinished exchange is
flagged as not being possible in the participant behaviour after the getAssess-

ment call.

5.2.3 Conclusion

In this section, we have discussed exploiting the modal input/output represen-
tation of UML4SOA via the Service Meta-Model (SMM) for formal analysis. In
particular, we have discussed two of many possible options for analysing MIOs:
Firstly, we have discussed using the existing notions of weak modal refinement
and compatibility, which report all kinds of deadlocks including those created by
race conditions. Secondly, we have introduced strict-observational refinement
and compatibility, a new domain-specific interface theory which is explicitly
targeted at verifying protocol-based compliance of participant behaviour and
protocols, i.e. detecting deadlocks which are not based on race conditions.

We believe that with these two verification options, UML4SOA modellers
gain the ability to verify their models early in the development process. Both
options are tool-supported as we shall discuss in the next section, and can be
used prior to generating code as discussed in chapter 6.

5.3 Tool Support

This chapter has presented formal support for UML4SOA: Firstly, we have
discussed a semantics for UML4SOA models — both participant behaviour and
protocols — given in denotational style with the semantic domain of modal I/O
transition systems. Secondly, we have discussed analysis of the modelled SOA
system on the MIO level, and hinted at the relevance the results of this analysis
have on the UML level.

In this section, we introduce and discuss tool support for formal analysis of
UML4SOA models. Enabling such analysis requires three steps:

� First, we translate UML4SOA models into modal I/O transition systems.
This has been discussed in section 5.1.

� Such a transformation enables analysis to be performed on the MIO level,
for example using the interface theory described in section 5.2.

� Results of the analysis can be readily shown on the MIO level; however,
to allow the use of the formal analysis by developers not knowledgeable
or interested in these details, a better way of visualising them is a back-
annotation on the UML4SOA level. This requires a third step.

182 CHAPTER 5. SEMANTICS AND ANALYSIS

We have implemented these three steps in two tools. The first tool, called the
Mio Workbench, is a general-purpose editor and verification tool for modal I/O
automata. It implements various interface theories and thus notions of refine-
ment and compatibility, among them the strict-observational interface theory
introduced in section 5.2. This tool takes care of the second step in the above
process; it is described first as the other steps use some of the core technology
introduced in the workbench. The workbench is discussed in section 5.3.1.

The second tool, called UtbM (UML4SOA to-and-back-from MIOs) covers
transforming UML4SOA models to MIOs as discussed in section 5.1. Further-
more, it is able to annotate the analysis results from the Mio Workbench back
to UML4SOA models (back-annotation). The tool integrates with both a UML
modelling tool (MagicDraw) and the Mio Workbench to fully automate this
process. UtbM is discussed in section 5.3.2.

5.3.1 The Mio Workbench

The background chapter as well as section 5.2 have introduced modal I/O au-
tomata as well as interface theories with different notions of refinement and
compatibility. While the definitions given there as mathematical formula are
concisely formulated and unambiguous, manually checking an automata for a
certain property is tedious and error-prone. This holds especially true if, as
in our case, the automata are automatically generated from UML models. We
have therefore implemented a mechanical checker able to analyse MIOs based
on different interface theories. The resulting software system, called the Mio
Workbench, is an Eclipse-based verification tool and editor for modal I/O au-
tomata.

In itself, the Mio Workbench is independent of UML4SOA, as it can be used
on arbitrary modal I/O automata and with arbitrary notions of refinement and
compatibility.

5.3.1.1 Features

The most direct and intuitive way to work with MIOs is using a graphical
editing facility based on a graph of nodes (states) and edges (transitions) as
well as accompanying labels. The first feature provided by the workbench is
thus an editor:

� Graphical Editor, allowing creation of new or changing existing MIOs.

The implementation of the different notions of refinement and compatibility
are the next features of the Mio Workbench:

� Refinement Verification. These include strong, may-weak, weak, and
strict-observational modal refinement.

� Compatibility Verification. We support the notions of strong (with and
without “helpful” environment, cf. [dAH05]), weak, and strict-observatio-
nal modal compatibility.

5.3. TOOL SUPPORT 183

Furthermore, the Mio Workbench supports actual composition of compos-
able MIOs:

� Composition Operations on MIOs (standard and strict-observational).

The output of a composition operation is either the composed MIO or a list
of problematic actions which caused the composition to fail.

Considering refinement and compatibility verification, we can get two very
important, but very different results. First, if refinement or compatibility is pos-
sible, we get refinement relation(s) and matching states, respectively. However
— and this is even more important — if the verification fails, we get the error
states and the error transitions in the two automata, i.e. the exact position(s)
which led to the erroneous outcome.

During out work, we have noticed that having a visual feedback when testing
different notions of refinement and compatibility is of great help to understand-
ing the subtleties involved in the definitions. Therefore, the workbench also
includes:

� Refinement relation and state match view. If a refinement or compatibility
verification was successful, the workbench graphically displays the relation
or the matching states side-by-side between the two input MIOs.

� Problem view including error states and unmatched actions. If a re-
finement or compatibility verification was not successful, the workbench
graphically displays, side-by-side, the path which led to an erroneous state,
and the transition possible in one automaton, but not in the other.

5.3.1.2 Architecture

On the technical side, the Mio Workbench is based on the Eclipse platform. We
use an Eclipse Modeling Framework (EMF)-based meta-model for MIOs, which
enables persistence and simple access to concrete automata. The workbench
integrates into Eclipse by adding MIO-specific file handling and the new MIO
editor as well as the verification view. The Mio Workbench is extensible with
regard to new notions of refinement, compatibility, and composition, by means
of standard Eclipse extension points. The architecture of the Mio Workbench
is shown in figure 5.16.

The figure shows the Mio Workbench component with its three main sub-
components — the MIO meta-model, which uses the Eclipse EMF meta-model,
and the editor and operation view UI elements, which contribute to the Eclipse
workbench. Finally, the Mio Workbench contributes the MIO file handling to
the Eclipse resource environment.

The underlying framework for all data operations in the Mio Workbench is
the EMF-based meta-model of modal I/O automata shown in figure 5.17. A
ModalIOAutomaton (bottom) includes a set of states, may- and must transitions
as well as input, output, and internal actions. The start State is denoted with
a special association. A transition is linked to two states (source and target) via

184 CHAPTER 5. SEMANTICS AND ANALYSIS

Figure 5.16: Mio Workbench: Architecture

the abstract Transition superclass of may- and must transitions. Likewise, it
is linked to an action represented with the abstract Action superclass of input,
output, and internal actions.

Within the Mio Workbench components, the operation view and the editor
both use the Mio Model. The most interesting component is, of course, the
operation view, which allows executing operations such as compatibility checks
in the workbench. Various refinements, compatibility notions and compositions
are provided per default in the Mio Workbench (all shown in the figure). As
the Mio Workbench has an open architecture, additional notions of refinement,
compatibility and composition can be plugged in without changing the code.

5.3.1.3 User Interface

Figure 5.18 shows the MIO editor inside the Eclipse workbench with the (incor-
rect) eUniversity participant behaviour from the last section. On the left-hand
side, the project explorer shows MIOs stored on the file system as .mio files; on
the right-hand side, the editor for one of these MIOs is displayed. A MIO is
displayed in the classical way by using nodes as states and edges as transitions.
Each transition has a type (must or may), which is indicated by a square or
diamond, respectively. Furthermore, each transition also stands for an internal,
input, or output action. An input action is coloured green and is suffixed with

5.3. TOOL SUPPORT 185

Figure 5.17: MIO Meta-Model

a question mark (?). An output action is coloured red and is suffixed with an
exclamation mark (!). Finally, an internal action is gray and does not have a
suffix. The MIO editor offers all the usual operations such as adding new nodes,
moving them around, changing labels, types, and re-layouting.

Figure 5.18: Mio Workbench: Editor

The verification view of the Mio Workbench is the central access point to
the verification functionality. It features a side-by-side view of two modal I/O
automata, which can then be analysed for refinement or compatibility, or com-
posed.

Figure 5.19 shows an example of a successful refinement check: The (correct)
eUniversity participant behaviour from the example in the last section is shown
to be a refinement of the student protocol. The green background in the top-

186 CHAPTER 5. SEMANTICS AND ANALYSIS

Figure 5.19: Mio Workbench: Refinement View

Figure 5.20: Mio Workbench: Refinement Problem View

5.3. TOOL SUPPORT 187

centre panel indicates a successful check; in the side-by-side view below, green
dashed arrows indicate which states are in relation.

As noted above, the most interesting results are negative cases, i.e. if a
refinement does not exist or compatibility does not hold. In this case, the MIO
Workbench displays the possible error paths, each indicating a state pair in
violation and the corresponding erroneous action.

Figure 5.20 shows the visualisation of a strict-observational refinement again,
but this time with the incorrect participant behaviour from the previous section.
This participant behaviour is not a refinement of the student protocol, which is
indicated by the red top-centre panel and the fact that two states are marked
red. These states form the state pair in which one action is possible in one
automaton (s:complete? on the right) but not in the other.

The Mio Workbench contains additional helpful features such as automat-
ically laying out MIOs, adjusting an alphabet of a MIO by hiding non-shared
labels for a compatibility or refinement check, and more.

5.3.1.4 Summary

In this section, we have presented a verification tool and graphical editor for
modal I/O automata called the Mio Workbench, which implements various re-
finement and compatibility notions based on MIOs. We believe that tool support
is of great help for discussing modal I/O automata and may serve in research,
teaching, and as a prototype for industrial applications. The Mio Workbench is
open source and can be freely downloaded from http://www.miowb.net.

5.3.2 UtbM: From UML4SOA to MIOs and Back

Section 5.1 has presented an abstract view on the transformation algorithm
we use for defining modal I/O transition systems as the formal semantics of
UML4SOA participant behaviour and protocols. In this section, we discuss tool
support — the UtbM transformer tool — for generating MIOs from directly
from the UML4SOA syntax, and for back-annotating results of analyses in the
Mio Workbench to UML. In principle, the UML2MIO part of UtbM is a model
transformation tool: It works on UML4SOA models, transforming them to MIO
models. Both input and output models are based on the Eclipse Modelling
Framework (EMF). The transformation itself follows the algorithms discussed
in section 5.1. UtbM is implemented as a hybrid MagicDraw and Eclipse plug-in
in Java.

5.3.2.1 Features

The UtbM tool has two objectives, and therefore, two features:

� UML to MIO. UtbM allows conversion of (graphical) UML models mod-
elled in a standard UML modelling tool into MIOs.

http://www.miowb.net

188 CHAPTER 5. SEMANTICS AND ANALYSIS

UML4SOA Model

Analysis

UML-2-MIOBack-Annotation

MIO Workbench

UtbM

MagicDraw

Figure 5.21: The Workflow of Using UtbM

� MIO to UML. The reverse step is not a transformation but a back-
annotation, which allows annotating the result of an analysis operation in
the Mio Workbench into the graphical representation of the UML model.

The process of using these features in combination with a modelling tool and
the Mio Workbench is shown in figure 5.21.

For the purpose of directly working with graphical UML models, UtbM
integrates into the UML modelling tool MagicDraw, which is used as a front-
end to the entire process of converting to MIOs, analysing, and re-annotating
the result in UML. Furthermore, the first feature is also available in Eclipse,
allowing developers to directly work with both UtbM and the Mio Workbench.

5.3.2.2 Architecture

The architecture of the UtbM tool is shown in figure 5.22. The figure shows the
UtbM system at the bottom, including three sub-systems called UserInterface,
UML2MIO, and Results2UML.

UtbM has two user interface components. The first integrates into the Mag-
icDraw platform, enabling developers to transform to MIOs and get their back-
annotation on the graphical models in UML. The second integrates into Eclipse,
allowing developers to work on the actual source XMI and MIO files with more
fine-grained control over the analysis in the Mio Workbench.

The UML2MIO transformer is based on the Eclipse UML meta-model as in-
dicated above, plus the MIO meta-model defined as part of the Mio Workbench.

Finally, the Results2UML back-annotation is based on both the results of
the MIO Workbench and on the MagicDraw platform to enable drawing results
in the original UML diagrams.

5.3. TOOL SUPPORT 189

Figure 5.22: UtbM: Architecture

5.3.2.3 User Interface

The goals of the two user interface components in UtbM is rather different:
While the integration into MagicDraw aims at ease of use for the developers,
the integration into Eclipse takes a hands-on approach to the full analysis details.

Integration into MagicDraw is shown in figure 5.23. Within the graphical
view, a developer selects a protocol and a participant behaviour or two protocols
and selects a check method in the (new) UML4SOA menu. The result is shown
in the same diagrams by means of colour: As in the Mio Workbench, red signals
an error; green signals success.

Integration into Eclipse is shown in figure 5.24. The transformation process is
started by right-clicking an UML2-EMF-XMI file and selecting the appropriate
transformation entry. A dialog is displayed with activities and PrSMs to choose
from; the result is shown directly in the editor of the Mio Workbench.

5.3.2.4 Summary

In this section, we have introduced UtbM, a model transformation and back-
annotation tool which bridges the gap between UML models designed with
the help of the UML4SOA profile and their semantic domain of modal I/O
automata. The first part of the tool, UML2MIOs, implements the semantics
described in detail in section 5.1 and can be invoked from both MagicDraw
and within Eclipse. The second part, Results2UML, enables users to view the

190 CHAPTER 5. SEMANTICS AND ANALYSIS

Figure 5.23: UtbM: MagicDraw Integration

Figure 5.24: UtbM: Eclipse Integration

5.4. RELATED WORK 191

analysis results of the Mio Workbench directly on the graphical models within
MagicDraw.

5.4 Related Work

The analysis approach discussed in this chapter revolves around the idea of
protocol analysis, i.e. determining whether a certain behavioural specification
matches its specified protocols. A new interface theory has been presented
which contributes a high-level view on this problem. Related work for this
theory is discussed in section 5.4.1.

Furthermore, this chapter has introduced the Mio Workbench, a verification
tool built on the domain of modal I/O automata and interface theories. See
section 5.4.2 for related work for the workbench.

Finally, there are other forms of analysis available for UML4SOA which we
shall discuss in section 5.4.3.

5.4.1 Protocol-Based Analysis

This section is concerned with related work for our definition of an interface
theory for protocol-based analysis of modal input/output automata. The gen-
eral study of interface theories was started by de Alfaro and Henzinger in
[dAH01b, DHJP08]. Their well-known interface theory called interface au-
tomata essentially builds on the formalism of input/output automata [LT87,
LT89, GL00] accompanied with notions of refinement (defined by alternating
simulation) and compatibility [dAH01a]. This theory has recently been gener-
alised to an interface theory based on modal input/output transition systems
[LNW07a, LNW07b] which uses modal automata [LT88a, HL89] for modelling
interface behaviour.

However, less attention has been paid to refinement between interfaces with
different alphabets. Recently, the approach proposed in [RBB+09a, RBB+09b]
deals with alphabet extension by adding self-loops for the new actions to all
states of the automaton. It is easy to see (same argument as given in the
previous section) that this solution is not adequate to handle our situation.

In [FBU09] Fischbein et al. propose branching alphabet refinement of modal
transition systems to cope with the problem of unintuitive implementations
allowed by weak modal refinement. However, their refinement is classic in the
sense that it considers single transitions in the preconditions, which is too strict
for our application area.

Action refinement [GR01] is a flexible notion of refinement which is based on
refining actions when changing the abstraction level: An action of an abstract
specification can be decomposed into a sequence of low-level actions specifying
the system in more detail. We differ from this notion as all of our actions reside
on the same abstraction level, yet we only consider some of them depending on
the current viewpoint.

192 CHAPTER 5. SEMANTICS AND ANALYSIS

There is also an extensive body of knowledge on analysis of Web Service
orchestrations based on industry standards like BPEL; [tBBG07] provides a
decent overview. However, to the best of our knowledge, no approach so far
has considered early application-level verification as a precursor to existing ap-
proaches.

Instead, the focus lies on analysis of specific aspects of service orchestrations.
Both [LMSW06] and [Mar05] analyse BPEL compositions through transforma-
tions to petri-nets. Their composition analysis assumes a friendly environment
in the sense of [dAH01a], but is not geared towards application-level analysis of
service orchestrations.

Fu et al. [FBS04] present a translation of BPEL processes to Promela, the
input language of the SPIN model checker [Hol03]. However, due to the inter-
action semantics of the translation, application-level verification is not feasible.

Two further approaches that are closer to ours use calculi to specify the un-
derlying labelled transition systems. [BZ07] explicitly focuses on strong notions
of compliance and compatibility; for calculi-based model-checking approaches
like [FGL+08], the same reasoning as for [FBS04] applies: application-level ver-
ification is prohibited by the composition semantics of the language.

5.4.2 Tooling

The Mio Workbench is a verification tool for modal input/output automata;
however, with the semantics presented for UML4SOA we can also characterise
it as a formal analysis tool for SOAs.

Regarding the first view, the Mio Workbench differs from existing tools by
explicitly focusing on both modality and input/output aspects of MIOs. In
fact, we believe that it is the first verification workbench with this functional-
ity. Related work in this section include the Modal Transition System Anal-
yser (MTSA) [DFCU08, DFFU07] which uses modal transition systems; TICC
[AdAdS+06] (for input/output transition systems), and finally Tempo [LMS08],
which is based on timed input/output automata.

Compared to SOA verification tools such as WS-Engineer [FUMK07], the
Mio Workbench is further removed from the input language and thus requires
a dedicated back-annotation tool (such as UtbM).

Furthermore, the Mio Workbench is more experimental in nature: Based on
input given directly as MIOs, it allows different (pluggable) interface theories
to be applied to investigate both the model and the theories themselves.

5.4.3 Other Analysis Methods

During the development of UML4SOA, two approaches to the formal verifica-
tion of service models have been particularly inspiring to the author. The first
addresses quantitative analysis of service models; the second deals with qual-
itative analysis for interacting service processes. We shall provide pointers to
these two approaches in the following.

5.5. SUMMARY 193

First, an important aspect of systems based on service-oriented architectures
are scalability issues, as the systems are inherently distributed and in many cases
offer an interface to customers via the Internet. Qualitative analysis of service
models can provide insights into the performance of SOA systems. The PEPA
stochastic process calculus [Hil96] provides different means of performing such
analysis. A mapping from UML4SOA to PEPA is available in executable form.
PEPA allows both discrete- and continuous-state interpretations, which enables
the goal of scalable analysis of scalable systems [CGT09b].

A discussion of using PEPA on UML4SOA models may be found in [TG10],
which introduces an end-to-end example of a quantitative analysis using PEPA
on one of the case studies of the Sensoria project.

Second, the previous sections have provided an analysis approach for proto-
col verification of service behaviour. A different approach is provided by WS-
Engineer [FUMK03, FUMK06], a verification tools which directly works with
the behaviours of different services implemented in BPEL. Though not directly
usable on UML4SOA models, the model transformers which will be introduced
in chapter 6 and integrated using the tooling platform discussed in chapter 8
allow the exploitation of WS-Engineer for UML4SOA.

WS-Engineer provides several options for checking behavioural service spec-
ifications. In the context of UML4SOA service specifications, interaction check-
ing of collaborating BPEL orchestrations is of particular interest, as these or-
chestrations can be generated from UML4SOA models. Another option in WS-
Engineer is performing design analysis of BPEL processes against message se-
quence charts. In this scenario, model checking is used to verify that a BPEL
process provides the necessary activities to meet the MSC specification.

More information on how WS-Engineer, with the starting point of UML4-
SOA, can be used for model verification is provided in [FM08].

5.5 Summary

In this chapter, we have introduced and discussed formal support for UML4SOA
with applications and tool support.

We have begun with a formal semantics for UML4SOA via the Service Meta-
Model (SMM) by defining the algorithm used for transforming between SMM
models and Modal I/O Automata (MIOs) both for participant behaviours and
protocols. The denotational function has been described for each of the relevant
elements of the SMM, given by the textual notation defined in chapter 4.

This denotational definition of the mapping between SMM models and modal
I/O automata rigorously defines the meaning of participant behaviours and
protocols and serves as the semantics of the SMM and the UML4SOA profile
(chapter 3).

Having a representation of UML4SOA models as MIOs opens up a number
of verification and checking options. In this thesis, we have focused on using
interface theories to check refinement of an (implementation) MIO to a (proto-
col) MIO, and the compatibility of two (protocol) MIOs. Besides the option of

194 CHAPTER 5. SEMANTICS AND ANALYSIS

using standard interface theories such as strong and weak, we have contributed
our own option, the strict-observational interface theory, which is suitable for
detecting deadlocks which are not race conditions. This interface theory can
be used very early in the modelling phase to find and correct errors in the
communication between services.

Furthermore, we have discussed tool support for the formal semantics of
UML4SOA as well as verification on the MIO level. First, we have introduced
the Mio Workbench, a formal verification tool built on the domain of modal I/O
automata and supporting a set interface theories for verification of refinement
and compatibility.

Second, we have discussed the UtbM tool, which implements the formal
semantics given for UML4SOA, thus enabling automatic transformation be-
tween UML4SOA models and MIOs. The tool also supports back-annotation,
i.e. showing the results of MIO-based analyses on a UML level.

Finally, we have discussed related work to the strict-observational interface
theory as well as tool support in section 5.4.

Chapter 6

Transformations and Code

A key requirement of model-driven development (MDD) [Sel03] approaches is
the ability to generate executable code from the model of a system. This can be
achieved by using model transformations [MCG05] and model-to-code emitters
to produce code in executable target languages. This chapter introduces model
transformations with tool support for SOA systems based on UML4SOA models.

To illustrate the conversion of UML4SOA models to executable software arte-
facts, we provide two examples of model transformations and code generation
with different targets. The first target is the Web Service (WS) standards family
[WCL+05] (which includes the Business Process Execution Language (BPEL)
[OAS07] and surrounding artefacts such as WSDL [CCMW01] descriptions and
XML Schema [FW04] types); the second target is the standard object-oriented
programming language Java [GJSB05].

The basic ideas and intuition behind model transformation and code gener-
ation based on UML4SOA is discussed in section 6.1. As will be seen in this
section, the Service Meta-Model (SMM) already introduced in chapter 4 is used
as the basis for these transformations: We first create SMM instances out of
UML4SOA models, and then move on to code.

The initial step of parsing UML4SOA models into instances of the SMM is
discussed in section 6.2. The next two sections each discuss a transformation
from the SMM to a model of an executable language: Transformation from the
SMM to the Web Services family is discussed in section 6.3; SMM to Java is
discussed in section 6.4.

We discuss tool support in section 6.5, followed by related work in section 6.6.
Finally, a conclusion is drawn in section 6.7.

Published results: Results presented in this chapter are based on publications
[KMH+07], [MSK08b], [MSK08a], [FGK+10a], and [GGK+10]. Furthermore,
the code generators are a result developed as an answer to one of the main
Sensoria research objectives (model transformations) and has been reported
in several technical reports, brochures, and presented at fairs.

195

196 CHAPTER 6. TRANSFORMATIONS AND CODE

6.1 Transforming Service Models

In this chapter, we discuss the transformation of UML4SOA-based models of
SOA software with regard to two different targets: The first target is the Web
Services family of standards (and in particular, the BPEL language); the sec-
ond is the well-known Java programming language. Web Services and Java have
been chosen as they are representations of two separate programming paradigms:
Service- and object-orientation. The corresponding transformations and results
are thus different in both structure and behaviour, and provide interesting in-
sights into the mapping from UML4SOA to executable code.

The Business Process Execution Language (BPEL), introduced in 2003, is
a language which has already been designed with services in mind, and can be
regarded as the current industry standard for writing orchestrations based on
Web Services technology. BPEL is platform-dependent in the sense of a close
integration with the Web Service technology stack; furthermore, BPEL uses
an XML-based syntax which is hard to read and write by hand, requiring even
native BPEL editors to transform their own (mostly graphical) models of BPEL
to code.

Java, on the other hand, has been introduced in 1995 and is one of the
most successful object-oriented programming languages, widely used in both
academia and industry to develop a wide range of software systems from small
embedded programs to enterprise-level SOA solutions. Java does not include
service concepts as first-level citizens. Any attempt to capture the service-
based ideas of UML4SOA thus requires a careful mapping of SOA concepts to
Java code, using as much as possible of the underlying Java infrastructure but
introducing an additional (SOA) layer where appropriate.

As already introduced in chapter 2, model transformations based on meta-
models of the source and target language are a core enabling technology in
model-driven development approaches. In this chapter, we introduce model
transformations between several different meta-models: Firstly, the UML meta-
model with extensions from SoaML and UML4SOA; secondly, the SMM meta-
model, and thirdly, the various meta-models of the Web Service family languages
and again a single meta-model for Java.

6.1.1 From UML4SOA to Code

For developers, code generation in MDD4SOA should start with UML, SoaML
and UML4SOA and directly lead to executable code. As pointed out in chap-
ter 4, however, SoaML and UML4SOA are in fact the concrete syntax of the
Service Meta-Model (SMM), which defines the structure of the SOA system and
includes a rigorous semantics for the behavioural specifications.

Our model transformations to executable code should thus not directly start
at the UML model, but should instead be based on the Service Meta-Model.
This necessitates an initial parsing step from UML, SoaML, and UML4SOA to
the SMM. As both ends of this parsing process are in fact meta-models, we have
implemented this process already as a model transformation.

6.1. TRANSFORMING SERVICE MODELS 197

Java

UML2SMM
Model Transformation

source model

target model

UML
UML4SOA, SoaML

SMM

BPEL
WSDL, XSD

SMM2Java
Model Transformation

SMM2BPEL
Model Transformation

source model

target model target model

source model

Figure 6.1: Two-Step Transformation Using the SMM

From the SMM, we can move on to our original targets, which is again
implemented by model transformations: Meta-models exist for both the Web
Services family standards and Java; our own meta-model for the SMM has
already been defined in chapter 4. After each transformation, the generated
instance of the target model can be serialised down to actual code, which can
be readily executed.

Thus, the transformation of UML4SOA to code consists of two steps. As
a first step, the UML model (including SoaML and UML4SOA extensions) is
transformed (parsed) into an instance of the SMM; the second step consists of
individual transformations from the SMM to actual code in a concrete target
platform. The complete approach is shown in figure 6.1.

6.1.2 Key Aspects

Each of the three transformations shown in the figure must consider all the
aspects present in a SOA system which have been introduced in chapter 4:
Static aspects, behaviour, and data handling.

� Static Aspects. The root elements of SMM models are SOA participants.

198 CHAPTER 6. TRANSFORMATIONS AND CODE

These include provided and required services as the provided and required
functionality of the actual behaviour of a participant. These services,
in turn, are typed with service interfaces specifying the operations and
parameters for invoking service functionality. Parameters and return types
may be typed with primitive types or more complex message types which
must then be considered as well (including their possible relationships).

� Behaviour. Participants may have one or more behaviours attached.
The transformations need to consider the individual aspects of these be-
haviours: First, this includes structural concepts such as decisions, loops,
parallel behaviour, exception handling, and the SOA-specific concepts of
event and compensation handling. Secondly, we need to handle communi-
cation actions (for example, for sending and receiving calls); finally, other
primitive actions like compensation calls or throwing exceptions need to
be considered.

� Data Handling. Finally, a key aspect of executable services is data.
The Service Meta-Model includes data manipulation elements which al-
low declaring variables, assignments, and primitive operations; all of these
elements are well-typed. Depending on the source and target of the trans-
formation, these elements need to be converted appropriately.

In the following, we first present the UML2SMM transformation, followed by
the two transformations to executable target languages (SMM2WS, SMM2Java).

6.2 UML to SMM

The UML to SMM transformation handles the task of converting a complete
UML/SoaML/UML4SOA model to an instance of the SMM, which includes
the static, behavioural, and data aspects of the model discussed in section 6.1.
The following sections contain a description of the individual transformations
applied to the source elements of the UML model. The aim is to provide a
conceptual overview of the transformation; technical details present in the full
implementation are left out. For the complete executable transformation, see
section 8.3.

The UML meta-model consists of 264 classifiers with a total of 618 struc-
tural features. For the UML to SMM transformation, however, not all of these
elements are relevant; the transformation can be restricted to meta-classes and
structural features allowed by UML4SOA/Strict and their attached stereotypes
defined by SoaML and UML4SOA.

6.2.1 Parsing UML

Intuitively, creating an SMM instance out of SoaML and UML4SOA models is
straightforward; however, some difficulties arise in practise which must be dealt
with in the UML2SMM transformation.

6.2. UML TO SMM 199

� Profile Element Recognition. A first problem to be dealt with is the non-
explicit representation of profile concepts in the UML meta-model. As
discussed in chapter 3, UML profiles are not a first-level extension mech-
anism. As a consequence, the source model — UML — does not contain
meta-classes from SoaML and UML4SOA, but instead tags existing meta-
classes with stereotypes. Writing a transformation based on such a model
thus requires matching stereotypes and classes, which is a tedious middle
step required of all transformations based on UML profiles.

� Workflow interpretation. Another problem is the structural mismatch be-
tween UML activities and the SMM. Although UML4SOA/Strict already
requires proper nesting of UML constructs such as decision and merge
nodes, an activity model still (and purposefully) has a workflow intuition:
A decision node, for example, can both be a branch start or a loop end
depending on the context, while branches and loops are quite different
concepts and are represented as such in the SMM and many standard
programming languages. Furthermore, even though well-nesting is a re-
quirement for UML4SOA diagrams, premature path termination by means
of flow or activity final nodes and exceptions is commonly modelled with-
out an explicit closing node; such situations need to be properly recognised
when parsing the input model.

� Parsing Data Statements. Finally, UML4SOA introduces a data manip-
ulation language with its own set of parsing rules and semantics. Being
based on SoaML message types — which are UML classes — a transforma-
tion needs to ensure type correctness, and create a proper representation
of the language constructs before converting the statements to the respec-
tive target model. This task thus requires the implementation of a parser
for the data handling semantics.

In the following, we discuss the implementation of the UML2SMM transfor-
mation which addresses these concerns.

6.2.2 Transforming the Static Part

The roots of a SoaML/UML4SOA model of a SOA system are participants,
i.e. UML classes stereotyped with �Participant�. UML4SOA/Strict requires
that the ports of the UML class are stereotyped with either �Service� or
�Request�; furthermore, each port type must be a class stereotyped with
�ServiceInterface� which contains the operations provided or required at the
given port.

An interface type may contain two types of operations: implemented and
used ones. Declared operations of the UML�ServiceInterface�— inherited or
declared directly on the type — are attached as implemented operations. Used
operations are treated in a slightly different way: In UML, a class may declare
its use of another class or interface, but not (without specifying behaviour) of
the actual operations used. The UML2SMM transformation is therefore also

200 CHAPTER 6. TRANSFORMATIONS AND CODE

restricted to usage relationships and adds all operations of used interfaces or
types as used operations.

Figure 6.2: UML2SMM: Participants and Interfaces

An example for this first transformation step is shown in figure 6.2. Note
that as the SMM has no graphical representation, the right-hand side is shown
as an UML instance diagram of the SMM elements and their relationships.

Transformation 1 (Participants and Interfaces) Each UML class stereo-
typed with �Participant� is transformed to an SMM Participant with the
same name. The ports associated with the class are transformed to either SMM
ProvidedService or RequiredService and are attached to the SMM Partic-

ipant. For each port type, an instance of an SMM InterfaceType is created
and set as the type of the service. As indicated above, operations implemented
or used by the port type are both converted to ServiceOperation and attached
using either the used or provided association.

Parameters of interfaces are the first of many elements which require data
types — either primitive or defined by the developer as a �MessageType�. In
UML4SOA/Strict, five primitive types may be used (Integer, Double, Boolean,
String, and Date), which match the SMM versions; if one of these types is
encountered in the input model, the corresponding SMM type is instantiated.
Note that Double and Date are not native to the UML; however, many UML
modelling tools include these types as extensions to the UML and thus can be
readily used by developers.

Developers may also define their own types with associations and attributes.
These are converted to SMM MessageType instances along with correspond-
ing MessageProperty instances. Finally, exception types to be used in throw
statements and exception handlers are converted to ExceptionType instances.

Types are encountered at several places in the input model — in parameters
of service interfaces, properties of message types, and later on in variables, throw
statements, and exception handlers. For each of these places, the following
transformation step may be used. An example for this step is shown in figure 6.3

6.2. UML TO SMM 201

for two message types with an association between them and a reference to a
primitive type.

Figure 6.3: UML2SMM: Data Types

Transformation 2 (Data Types) Each referenced primitive, message, or ex-
ception type in the UML source model is transformed to an instance of SMM
PrimitiveType, MessageType, or ExceptionType. All outgoing associations of
a message type are converted to MessageProperty instances with correct set-
tings for min, max, and ordered. For the target of the association, the same
rules apply.

Declared or used operations may contain in and return parameters. Each
parameter must be converted, along with its type, to instances of SMM Inter-

faceParameter. The next transformation step deals with such parameters. An
example using an operation and a message type from the previous steps is given
in figure 6.4.

Transformation 3 (Interface Parameters) Each in parameter of an oper-
ation declared as part of a MessageType is converted to an SMM InputParam-

eter; min, max, and ordered properties are set as appropriate. The InputPa-

rameter is added as a parameter of the operation. For return parameters, an
SMM OutputParameter is created which is treated likewise.

It is worth mentioning that the UML2SMM transformer creates a flat type
structure, i.e. without packages and inheritance. However, any inheritance
present in the input model is resolved; i.e., inherited associations and attributes
are added to each type during conversion. This is mainly done for simplicity
reasons and as a MessageType, being designed for network communication, nor-
mally does not rely on an intricate inheritance design. Furthermore, note that

202 CHAPTER 6. TRANSFORMATIONS AND CODE

Figure 6.4: UML2SMM: Parameters of Service Operations

types are added on demand: Both primitive types of the UML and message
types of the input model are only added to the SMM if they are actually used
within the UML input model.

6.2.3 Handling UML4SOA Activities

A participant may own several activities, each realising a different implementa-
tion. In UML4SOA/Strict, these activities must be stereotyped with�Service-
Activity�. The UML2SMM transformation converts each of these top-level
activities to an SMM ServiceActivity which is attached to the participant
using the behaviours association; afterwards, the (possibly nested) children of
each UML service activity are transformed to the appropriate SMM constructs.

Before being able to create the appropriate SMM composite elements for an
UML4SOA service activity, the inner structure of the activity must be recog-
nised. As noted in the first section, an UML activity — even with the restrictions
applied due to UML4SOA/Strict — has a workflow structure in which decision
and merge nodes are used to create loops and decisions, the latter of which may
or may not have a dedicated end merge node, as usage of raise and termination
action is allowed, too. It is therefore not clear without further inspection which
SMM composite elements to transform to.

To address this problem, the UML2SMM transformer uses a divide-and-
conquer approach for transforming service activities. The first step follows the
control flows of the activity, identifying groups of actions; the second uses this
information to actually create SMM counterparts for the identified groups and
actions. The two steps are detailed in the next two sections.

Transformation 4 (Divide-And-Conquer) A group of UML elements is di-
vided into partitions. Each partition is then conquered with an appropriate trans-
formations step for the type of the partition. Note that the conquering part may
recursively invoke step 4 for children of conquered partitions.

6.2. UML TO SMM 203

The transformation starts by creating partitions for the root service activities
of the participant and transforming each of them with transformation step 5.
In turn, this step invokes the divide-and-conquer transformation step 4 for the
children of the service activity.

6.2.3.1 Partitioning an Activity

The division step in the transformation from UML to the SMM requires a par-
titioning mechanism: The input elements are divided into individual partitions
which correspond to either control constructs (activities, loops, branches, par-
allel behaviour) or individual actions. Partitioning is performed one layer after
another: First, the root activity is partitioned; afterwards, the children of each
recognised partition are partitioned, etc. This top-down process is repeated un-
til only simple elements remain. There are five partition types, which can be
characterised as follows:

� Service Activity Partition. A service activity partition is created if a nested
service activity is encountered. Both the children of the partition as well
as handlers attached to the activity are seen as part of the partition, as
they need to be attached to the converted activity as well.

� Loop Partition. Loops in UML4SOA/Strict must have a dedicated start
merge and final decision node with a link back from the final to the first
node. If such a pattern is identified in the input activity, a loop partition
is created and the inner elements of the loop are added to this partition.

� Branch Partition. A branch partition represents a decision in the input
model, which is characterised by a decision start node with several out-
going guarded paths. Note that a final merge node might not exist, for
example if one path ends with a termination or raises an exception. If such
a pattern is identified in the input model, a branch partition is created. A
branch imposes a certain semantics on its children: Only one of the paths
which each represent a possible execution sequence is executed.

� Parallel Partition. For parallel behaviour, UML4SOA uses the standard
fork and join nodes of UML; if these are encountered, a parallel partition
is created. As in a branch, the children of a parallel partition are added
to paths.

� Single Action Partition. Identifying and partitioning the input UML
model sooner or later leads to the individual actions of UML4SOA, like
send, receive, or data. For each of these actions, a new partition is created
which marks the end of the nested structure.

An example of how the partitioning proceeds is shown in figure 6.5. The fig-
ure shows the same UML4SOA service activity three times. In the first example
on the left, the overall process has been divided into three partitions. The upper
and lower partition each consist of only one element and are thus Single Action

204 CHAPTER 6. TRANSFORMATIONS AND CODE

Figure 6.5: UML2SMM: Partitioning a Service Activity

6.2. UML TO SMM 205

Partitions (1a and 1c). In the middle, a loop has been found and thus, a Loop
Partition (1b) has been created.

The loop partition is now further partitioned as shown in the process in the
centre. In the upper part, a service activity is found and thus a Service Activity
Partition (2a) is created. In the lower part, a decision has been identified which
leads to a Branch Partition (2b).

In the last step, both the children of the Service Activity Partition and the
Branch Partition are partitioned further (shown in the process to the right).
The children of the service activity are omitted here (3a). In the lower part, the
children of the branch are divided into two Single Action Partitions (3b and 3c)
in separate paths of the branch.

Partitioning UML4SOA structures does not actively transform elements to
the SMM, but is rather a preliminary phase to the actual conversion discussed
in the next section. Nevertheless, it is interesting to have a look at the algorithm
which is shown in listing 6.1. Its input is a set of UML activity nodes — this
includes control nodes, data nodes, and executable nodes — and the control
flows between them. One of the activity nodes is designated as the start node;
in the example given above, this is the initial node. In the beginning of the
behavioural transformation, the input elements used are the children of the
root service activity; as the transformation progresses, children of inner service
activities, loops, branches, and parallel blocks will be handled.

Starting from the initial node, the algorithm moves through the control flows
between the given nodes. Depending on the type of node it encounters, different
partitions are created. For merge, decision, and fork nodes, the algorithm per-
forms a look ahead to identify the end of the partition. Everything in-between
the current node and the identified end node of the partition is then added
to the partition and the algorithm proceeds after the end node. Note that al-
though the intuition of finding a corresponding end node of a partition is clear,
the resulting algorithm is non-trivial; however, as it mainly deals with technical
details it is not shown here.

Once the division algorithm has identified the (flat) list of partitions in the
current set of activity nodes, this list is given to the conquering part of the
transformation, which iterates through the partitions, creating SMM elements
as appropriate or again turning to the division algorithm for a further division
of the children of a partition. This is discussed in the next section.

6.2.3.2 Conquering Partitions

Having identified a list of partitions for the current level in the UML4SOA
service activity, these partitions can be transformed to the appropriate SMM
composite elements.

In the following, the partition types and their transformation to the SMM
are discussed.

206 CHAPTER 6. TRANSFORMATIONS AND CODE

Listing 6.1: UML2SMM: Dividing Elements

Definition
UML2SMM partitioning algorithm
input: a set of UML activity nodes, their control flows,

and a designated start node
output: a list of partitions and their children

Algorithm
create partition list
current element := designated start node
while current element is not null do

if current is structured activity node then . service activity
create service activity partition

with children of service activity
add handlers to partition
add partition to partition list
current element := next after current

else if current is merge node then . loop
look ahead to find corresponding decision node
create loop partition with all elements until end node
add partition to list
current element := first after the decision node

else if current is decision node then . branch
look ahead to find corresponding end (merge node, or last element)
create branch partition
for each outgoing link of decision node do

create path with elements until end node
add path to branch partition

end for
add branch to list
current element := first after the end of branch

else if current is fork node then . parallel
look ahead to find corresponding join node
create parallel partition with these elements
for each outgoing link of fork node do

create path with elements until end node
add path to parallel partition

end for
add parallel to partition list
current element := first after join node

else if current is service action then . single
create single action partition with this element
add partition to partition list
current element := next after current

end if
end while
return partition list

6.2. UML TO SMM 207

Service Activity Partition

The first partition encountered in any transformation is the service activity
partition, as each behaviour is in fact a (UML4SOA) service activity itself.
A service activity is a grouping concept — it contains nested children with
their own sequence of control flows. Furthermore, a service activity may have
associations to handlers, which are service activities too and need to be added
to the SMM. The following transformation step deals with service activities.

Transformation 5 (Service Activity Partition) For each service activity
partition, an SMM ServiceActivity is created and added to the children of
the enclosing one (if one exists). For the children of the UML4SOA service
activity, divide-and-conquer (step 4) is performed.

Furthermore, all handlers of the UML service activity are transformed to in-
stances of SMM EventHandler, CompensationHandler, or ExceptionHandler

depending on the type. Each handler is added to the handlers association of
the newly created SMM ServiceActivity. For the children of each handler,
divide-and-conquer is performed. In the special case of an ExceptionHandler,
the exception type of the caught exception is resolved to the corresponding SMM
ExceptionType and added as the exceptionType of the handler.

Last, for each interrupting receive in the UML service activity (i.e., receives
with an outgoing interrupting control flow), an SMM Receive (step 9) is created
and added to the interruptingReceives association.

An example for a nested UML4SOA service activity and its corresponding
SMM model is shown in figure 6.6. The service activity contains one event- and
one compensation handler as well as one interrupting receive. Children of the
activities are left out.

Branches, Loops, and Parallel Partitions

Besides service activity partitions, the other three main grouping concepts of
UML4SOA are branches, loops, and parallel partitions. All three are similar in
that they subject their children to a certain execution semantics: In a branch,
only a certain set of children are executed; in a loop, the children are executed
more than once; and in a parallel partition, certain sets of children are exe-
cuted in parallel. In the SMM, these partitions are modelled as subclasses of
PathBasedPartition; the sets of children are modelled by the Path class.

Transformation 6 (Branch) For each branch partition, an SMM Decision

instance is created. The children of the branch have already been separated into
paths by the divide algorithm; for each path, an SMM Path instance is created
and added to the children of the Decision instance. An UML4SOA decision
has associated guards with each path; these guards are transformed to instances
of RightHandSideExpression (discussed in the next section) which are added
as the enterCondition of the corresponding Path. Finally, divide-and-conquer
is performed for the children of each path.

208 CHAPTER 6. TRANSFORMATIONS AND CODE

Figure 6.6: UML2SMM: Service Activities and Handlers

Transformation 7 (Loop) For each loop partition, an SMM Loop instance is
created. A loop instance only has one path which is transformed to an SMM
Path and added to the children of the Loop instance. Furthermore, an UML4-
SOA/Strict loop has a condition for exiting the loop; the condition is transformed
to an instance of RightHandSideExpression (discussed in the next section)
and added as the leaveCondition of the Loop. Finally, divide-and-conquer is
performed for the children of the loop.

Transformation 8 (Parallel) For each parallel partition, an SMM Parallel

instance is created. The children of the parallel partition have already been sep-
arated into paths by the divide algorithm; for each path, an SMM Path instance
is created and added to the children of the Parallel instance. Finally, divide-
and-conquer is performed for the children of each path.

An example for a branch partition is given in figure 6.7. The example shows
how one Decision is created for the branch partition in UML4SOA; each path
is converted to a Path with (in this case) one child Send. Furthermore, a
RightHandSideExpression with the condition is attached as the enterCondi-

tion of each path; for more details on expressions, see the next section.

As the conversion of loop and parallel is similar, examples are omitted.

6.2. UML TO SMM 209

Figure 6.7: UML2SMM: Branch

Single Action Partition

The last partition type is the Single Action Partition, which consists of only
one UML action to which, in most cases, a UML4SOA stereotype is attached
— CallOperationAction (send, send&receive), AcceptCallAction (receive),
ReplyAction (reply), OpaqueAction (compensate, compensateAll, data), Rai-
seExceptionAction and ActivityFinalNode. For each of these actions, the
corresponding SMM equivalent is created and added to the current SMM com-
posite element.

The most complex of these actions are the communicating actions, as they
may have attached pins which must be converted to their own SMM model
elements.

Transformation 9 (Communicating Actions) Depending on the stereotype
of the input action, an SMM Send, Receive, SendAndReceive, or Reply action
is created. Each UML4SOA communication action has a pin which indicates
the name of the partner of the communication. This name is resolved to an
instance of an SMM Service, which is added as the partner of the communi-
cating action.

Next, the operation attached to the action is resolved — in case of send,
send&receive and reply, the operation is given directly in the action; in case
of a receive, the operation is attached to the CallEvent of the trigger. Either
way, the operation is resolved to the corresponding SMM ServiceOperation

and attached to the SMM action using the operation association.
Finally, send- and receive pins are handled. Send pins are converted to

instances of SMM SendParameter, while receive pins are converted to instances
of SMM ReceiveParameter; they are associated with the action using the snd-

Parameters or rcvParameters association.

210 CHAPTER 6. TRANSFORMATIONS AND CODE

The expression specified in each send pin is converted to a RightHandSide-

Expression, which is attached as the source of the SendParameter; the expres-
sion specified in each receive pin is converted to a LeftHandSideExpression

and attached as the target of the ReceiveParameter. Expressions are discussed
further in the next section.

An example for an UML4SOA receive operation which references the part-
ner provided and the operation providedOperation from figures 6.2 and 6.4,
respectively, is shown in figure 6.8. The example shows how the partner, the
operation, and the (single) receive pin are attached to the SMM Receive ele-
ment. Note that this example is not complete, as the LeftHandSideExpression
is missing elements. Expressions are discussed in the next section.

Figure 6.8: UML2SMM: Receive Action

The non-communicating actions of UML4SOA — data, compensate, com-
pensateAll, and throw — also each have their corresponding SMM counterpart.
Each is slightly different with regard to the attached information.

Transformation 10 (Data) Each data action in the UML4SOA activity is
converted to an SMM Data element. The body of a data action contains state-
ments; these are converted to instances of SMM Statement and added to the
statements association. Statements are discussed in the next section.

Transformation 11 (Compensation Actions) UML4SOA�Compensate�
and �CompensateAll� actions are converted to SMM Compensate and Com-

6.2. UML TO SMM 211

pensateAll instances, respectively. In case of a compensate action, the name of
the target service activity is given in the body of the action. The target activity
is resolved, and the corresponding compensation handler (an SMM ServiceAc-

tivity) is attached to the SMM Compensate element by means of the target

association.

Transformation 12 (RaiseExceptionAction) An UML RaiseException-

Action is converted to an SMM Throw instance. A RaiseExceptionAction

has an attached value pin which carries the exception; the type of this exception
is resolved to an SMM ExceptionType and added as the exceptionType of the
Throw.

Transformation 13 (Activity Final Node) An UML activity final node
aborts an activity; if this node is used somewhere within the activity this fact
must be noted in the SMM. Therefore, an activity final node is transformed to
an SMM Terminate action.

This concludes the transformation of UML4SOA behaviour to the SMM.
The next section deals with data handling.

6.2.4 Parsing and Converting Data Statements

Statements and expressions written in the UML4SOA data manipulation lan-
guage may occur in two places in an UML4SOA model: In the body of�Data�
actions, and in the body of pins (receive, send, and the value pins of RaiseEx-
ceptionAction). In the first case, statements are used, while the second consists
of left-hand side expressions (receive pins) and right-hand side expressions (send
and exception value pins).

Data statements and expressions are parsed according to the UML4SOA
data manipulation grammar described in chapter 3 (section 3.2.4). During this
process, instances of the corresponding meta-classes of the SMM discussed in
chapter 4 are created and added to the SMM model of the service behaviour.

The parsing process deals with the usual intricacies of source code; for a
detailed specification, see section 8.3. Here, the transformation steps for the
three types of data manipulation elements occurring in UML4SOA are listed
along with an example.

Transformation 14 (Statement) A UML4SOA data manipulation state-
ment may occur within the body of a �Data� action. There are two kinds
of statements: Declarations, in which a variable is newly declared with a type,
and assignments, in which a variable or property is assigned to. In the first case,
an SMM Declaration instance is created. For the declared variable, a Vari-

able is created and added to the service activity the �Data� action belongs to.
To associate the declaration with its variable, a VariableReference instance is
created and added as the declaredVar of the declaration. In the second case,
an Assignment is created. An assignment has a left- and right-hand side, which
are added as indicated in the next two steps.

212 CHAPTER 6. TRANSFORMATIONS AND CODE

Transformation 15 (Left-Hand Side) A left-hand-side specifies a container
for data: In UML4SOA, this is either a variable, or the property of a vari-
able if typed with a message type. Therefore, the transformation creates one
of the concrete subclasses of LeftHandSideExpression: VariableReference

or PropertyReference. While the former only links to a Variable, the latter
links to both a property and its parent left-hand side. This enables not only
referencing a property of a variable, but a property of a property as well. This
structure is resolved during the transformation. Note that if a variable referenced
in a left-hand side does not yet exist, it is created and added to the enclosing
SMM ServiceActivity element.

Figure 6.9: UML2SMM: Converting an UML4SOA Data Statement

Right-hand sides are used for several purposes in UML4SOA. The simplest
one is specifying literals. A second purpose is performing calculations or string
concatenations on literals, variables, and properties, or specifying conditional
expressions through the use of operations such as equals or greater than. Fi-
nally, as the SMM LeftHandSideExpression is derived from RightHandSide-

Expression, variable- or property references may also be used as right-hand
sides.

Transformation 16 (Right-Hand Side) Depending on the structure of the
source code, the transformation either creates an SMM Operation with an ap-
propriate OperationType, an SMM Literal with the appropriate value, or as
discussed above one of the subclasses of LeftHandSideExpression. In the case
of operations, the operands are handled recursively and added to the operands

association.

6.2. UML TO SMM 213

An example for the transformation of data statements is given in figure 6.9,
which shows the conversion of an assignment inside a �Data� action to the
SMM. The statement itself is converted to an SMM Assignment. The target of
the assignment is an SMM VariableReference to the variable sum; the source
is an SMM Operation with two operands: One is, again, a VariableReference

to the variable base, the other is a literal with the value 15. Both variables and
the literal share a common type (IntegerType).

This concludes the discussion of the data statements of UML4SOA to the
SMM.

6.2.4.1 Converting Protocols

As discussed in chapter 3, a UML4SOA protocol is specified as a UML protocol
state machine. As for participant behaviour, we focus again on the UML4-
SOA/Strict version of protocol definitions. The subset of UML protocol state
machines we consider in UML4SOA/Strict consist of the following elements:

� States. The set of states includes the pseudostates start and end as well
as normal states.

� Transitions. A transition is a directed edge between two states.

– A transition may be annotated with a UML4SOA communication
stereotype (one of �Send�, �Receive�, �ReceiveReply�, or
�Reply�).

– A transition may furthermore be annotated with the UML4SOA
�Optional� stereotype.

– If an annotation with a communication stereotype is given, the tran-
sition also must specify a trigger (either SendOperationEvent in case
of �Send� and �Reply�, or ReceiveOperationEvent in case of
�Receive� or �ReceiveReply�).

The SMM defines a very similar set of elements for protocols:

� States. A ProtocolState in the SMM contains a name. There is only
one type of state; which state is the start state is defined in the Service-

Protocol element.

� Transitions. There are five transition types in the SMM; each transi-
tion may be declared optional with the isOptional flag. The first four
types correspond to the UML4SOA stereotypes listed above; included are
SendingTransition, ReceivingTransition, ReplyingTransition, and
ReceiveReplyingTransition. The last type corresponds to a transition
without a stereotype and is labeled NoopTransition.

From the two above lists, it follows that the mapping is rather straightfor-
ward. We can give three simple transition steps for states and transitions. First,
we convert the protocol itself:

214 CHAPTER 6. TRANSFORMATIONS AND CODE

Transformation 17 (Service Protocol) For each PrSM attached to an UML-
4SOA port, an SMM ServiceProtocol element is created and attached to the
respective InterfaceType.

Second, we deal with protocol states:

Transformation 18 (Protocol States) Each state in the UML4SOA PrSM
is converted to an SMM ProtocolState, including pseudo initial and end states.
The resulting converted state of the pseudo initial state is set as the start state
of the SMM Protocol.

Finally, we can convert the transitions.

Transformation 19 (Protocol Transitions) Each transition in an UML4-
SOA PrSM is converted to an SMM ProtocolTransition of the corresponding
subtype. The isOptional flag is set to true if the PrSM transition has the
�Optional� stereotype; otherwise, it is set to false. The subtype of Proto-
colTransition is chosen as follows: SendingTransition is used for �Send�
transitions, ReceivingTransition is used for �Receive� transitions, Reply-
ingTransition is used for �Reply� transitions, and ReceiveReplyingTran-

sition is used for �ReceiveReply� transitions. Finally, if a transition does
not have a communication stereotype attached, NoopTransition is used. The
operation associated to the trigger of the PrSM transition, if exists, is resolved
and attached as the operation of the SMM transition.

This concludes the discussion of UML2SMM. In the following, instances of
the SMM meta-model created by the UML2SMM transformation will be used
as the source models for the SMM2WS and SMM2Java transformations.

6.3 SMM to Web Services

The first target for the transformation from UML4SOA is the Web Services fam-
ily of standards [WCL+05], which consists of a number of interacting standards
for defining Web Services. In particular, the transformation target chosen for the
SMM behaviour is the Business Process Execution Language (BPEL) [OAS07].
BPEL is the de facto standard for Web Service orchestration and as such a citi-
zen of the SOA world. Services and service communication, compensation, and
event handling are first-class concepts in BPEL; thus, the programming style
of UML4SOA, the SMM, and BPEL match in most cases. Still, there are some
areas in which technical constructs are necessary to correctly map UML4SOA
elements to BPEL. These will be detailed below.

Converting a complete SMM participant to the Web Service standards family
requires not only the behavioural description in BPEL, but additional artefacts
for describing the service interfaces, types, wire formats, addressing, and data
manipulation. Thus, the SMM2WS transformation creates artefacts in BPEL,

6.3. SMM TO WEB SERVICES 215

WSDL, XML Schema, XPath, and SOAP. The relevant standards from the
Web Service family have been described in section 2. The transformation is
implemented as a model-to-model transformation, thus, a meta-model for each
of these languages is required; these are provided by the Eclipse Web Tools
Platform project [Ecl10j] (WSDL, SOAP), the Eclipse Modelling Tools [Ecl10c]
(XML Schema) and the Eclipse BPEL project [Ecl10g] (BPEL). XPath frag-
ments are generated on-the-fly without a meta-model. Finally, WS-Addressing
elements are not required at design time but will be used at runtime by the
BPEL engine.

Each of the meta-models discussed above includes serialisation support; thus,
the instances of the meta-models can be used to generate code in the actual tar-
get language such as BPEL or WSDL. Note that there is no standard graphical
or non-XML textual notation for these meta-models. The following sections will
thus use the serialised target code of the corresponding instances as examples.

The SMM2WS transformation creates one BPEL process for each of the
behaviours of a participant. The BPEL process uses a set of WSDL files which
describe both the services provided by the BPEL process and those provided
by partners; the WSDL files in turn are based on the types declared in an
XML Schema. The next section describes the static part of the transformation
(WSDL and XSD), followed by the behavioural part (BPEL).

6.3.1 Transforming the Static Part

As in the transformation from UML4SOA to the SMM, the static part con-
sists of two closely related elements: First, the definition of partners, partner
operations, and their parameters; second, the message types available for com-
munication. The transformation of partners and partner-related artefacts to
WSDL is discussed in the next section; the conversion of the message types of
the SMM to XML Schema is discussed in section 6.3.1.2.

6.3.1.1 Generating WSDL

As introduced in chapter 2, the functional description of a SOA participant is
expressed using the Web Service Description Language (WSDL). The structure
of a WSDL definition consists of an abstract part and a concrete part; the first
includes types, messages, and port types, while the second contains bindings,
services, and ports. This structure will be filled in the following transformation
steps.

The SMM2WS transformation starts by generating a WSDL definition for
each provided and required service of an SMM participant:

Transformation 1 (Services) For each SMM Service, a WSDL Defini-

tions element is created. The name of the definition is set to the partner
name and a sensible name space is chosen and specified. In the Types section,
the XML Schema of the process is referenced (see step 4).

An example for the basic WSDL structure generated is shown in listing 6.1.

216 CHAPTER 6. TRANSFORMATIONS AND CODE

The second transformation step deals with the remaining abstract parts of
the WSDL definition, i.e. port types and messages.

Both service- and request ports are transformed using the same algorithm.
First, the main PortType of the WSDL definition is created. It captures the
the operations invoked on the partner, and thus, includes WSDL versions of
all operations implemented in the SMM ServiceInterface. Secondly, if the
service interface also contains used operations, another port type with these
operations is created: This is a callback port type, used to invoke operations on
a communication counterpart of the current partner. WSDL services referencing
the port type with the implemented operations of provided services are later
provided by the generated BPEL process for the behaviours of the participant,
while WSDL services referencing the port type with the implemented operations
of required services are implemented by external partners and invoked by the
BPEL process. The callback services are used in the complementary way.

Each SMM ServiceOperation is converted to a WSDL Operation inside of
a PortType. A WSDL operation, however, may only contain one input message
and (if necessary) one output message, whereas SMM operations may include
several in- and output parameters. Thus, a maximum of two messages are
created per operation: One containing all input parameters as WSDL Parts;
and one using the output parameters as Parts.

Transformation 2 (Port Types, Operations, and Messages) One Port-
Type is generated for the partner with the partner name. For each implemented
operation, a WSDL Operation is created along with input- and output Mes-

sages containing the Parts corresponding to the operation parameters. If the
partner has used operations, a callback port type is generated in the same way;
to distinguish the port types, the callback port type is suffixed with “ callback”.

An example of the conversion of a service to an abstract WSDL definition
is shown in figure 6.10 and listing 6.2, respectively. XML namespace definitions
have been left out for clarity; xs refers to XML Schema and this to the current
WSDL definition.

The third transformation step deals with the concrete part of a WSDL def-
inition, which consists of bindings, services, and ports. A binding associates
wire transportation formats to a port type, its operations, and input/output
messages: A serialisation format for message transport is chosen, and an action
name is associated with operations. In the case of UML2SMM, the Bindings
generated always use SOAP RPC/Literal HTTP transport, and the SOAP Ac-
tion is set to the original name of the operation.

Second, Service and Port elements are created. As indicated above, a
maximum of two services are generated; one for the operations provided by
the partner and one for the callbacks. Each service contains one port which
references the appropriate binding, and which includes a target address where
the service will be deployed (as part of tool support).

Transformation 3 (Bindings, Ports, and Services) For each SMM Port-

Type generated using the last step, a Binding element is created. The binding

6.3. SMM TO WEB SERVICES 217

<wsdl:definitions name=”partnerName”
targetNamespace=”http://www.mdd4soa.eu/generated/

partner/partnerName/”>
<wsdl:types>
<xs:schema>
<xs:import namespace=”http://www.mdd4soa.eu/generated/ParticipantName/”

schemaLocation=”Participant.xsd”/>
</xs:schema>

</wsdl:types>
<!−− more code here −−>

</wsdl:definitions>

Listing 6.1: SMM2WS: Basic WSDL Structure

Figure 6.10: SMM2WS: Services, Operations, and Messages (SMM)

<wsdl:message name=”requestStatus inMessage”>
<wsdl:part name=”id” type=”xs:string”/>
<wsdl:part name=”title” type=”xs:string”/>

</wsdl:message>
<wsdl:message name=”requestStatus outMessage”>
<wsdl:part name=”status” type=”xs:boolean”/>

</wsdl:message>

<wsdl:portType name=”status”>
<wsdl:operation name=”requestStatus”>
<wsdl:input message=”this:requestStatus inMessage”

name=”requestStatus input”/>
<wsdl:output message=”this:requestStatus outMessage”

name=”requestStatus output”/>
</wsdl:operation>

</wsdl:portType>

Listing 6.2: SMM2WS: Services, Operations, and Messages (WSDL)

218 CHAPTER 6. TRANSFORMATIONS AND CODE

is set to RPC style and HTTP transfer. All operations of the port types are refer-
enced and their name is set as the SOAP action. Each input or output is set
to LITERAL style. Secondly, one Service element is created for each port type.
A Port is added to the service, referencing the corresponding binding; finally, a
(preliminary) SOAP address is added to the port.

Listing 6.3 shows the concrete counterpart for the abstract WSDL section in
listing 6.2. A binding has been created for the port type, referencing the chosen
SOAP transport protocol and serialisation format; lastly, a service is available
with a port referencing the binding.

<wsdl:binding name=”status binding” type=”this:status”>
<soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http”/>
<wsdl:operation name=”requestStatus”>
<soap:operation soapAction=”requestStatus”/>
<wsdl:input name=”requestStatus input”>
<soap:body namespace=”http://www.mdd4soa.eu/generated/Participant/”

use=”literal”/>
</wsdl:input>
<wsdl:output name=”requestStatus output”>
<soap:body namespace=”http://www.mdd4soa.eu/generated/Participant/”

use=”literal”/>
</wsdl:output>

</wsdl:operation>
</wsdl:binding>

<wsdl:service name=”status”>
<wsdl:port binding=”this:status binding” name=”status”>
<soap:address location=”**DUMMY**”/>

</wsdl:port>
</wsdl:service>

Listing 6.3: SMM2WS: Bindings, Ports, and Services (WSDL)

Finally, the WSDL definition needs to be enhanced with BPEL-specific ex-
tension elements, ensuring that the generated BPEL process is able to integrate
with the WSDL definition. This requires the generation of partner link types,
roles, properties, and property aliases; a discussion of these elements can be
found in section 6.3.2.

6.3.1.2 Generating XSD

XML Schema specifications provide the ability to define the structure of XML
documents. Since the standard way of communication between Web Services is
using XML-based messages, XML Schema is used to define the structure of these
messages as a whole and of the message parts which carry application data. The
SMM2WS transformation creates XML Schema complex types with appropriate

6.3. SMM TO WEB SERVICES 219

inner elements corresponding to the SMM MessageType and MessageProperty

classes, respectively. XML Schema elements may contain a minOccurs and
maxOccurs attributes, which match the semantics of the min and max SMM
attributes.

Unfortunately, there is no useful native support for unordered sets in XML
Schema: first, due to the fact that an XML element is a serialised tree whose
elements are ordered in the document, second, as the xsd:all construct imposes
some severe restrictions on the modeller, rendering it impracticable (for example,
elements within an xsd:all may not be tagged with a maxOccurs value other
than 1) (cf. also [Jam02]). For this reason, and due to the fact that an ordered
list can always be viewed as unordered, no attempt is made to enforce unordered
sets in the generated XML Schema types.

Each message type of the SMM is converted to an appropriate XML Schema
type and is include in one XML Schema, which is referenced by the generated
WSDL and BPEL files. This is captured in the next transformation step.

Transformation 4 (Message Types) For each message type, an XML Sche-
ma complexType definition is created; an XML Schema sequence element is
added as the first child. For each message property, an XML Schema element

is created. If the property has a primitive type, the appropriate XML Schema
primitive type is referenced. Otherwise, another complex type is created (with
this step) and referenced. If a property is multi-valued, the minOccurs and
maxOccurs attributes are set as appropriate.

An example for the conversion of an SMM message type to XML Schema is
shown in figure 6.11 and listing 6.4, respectively.

This concludes the transformation of XML Schema and WSDL artefacts. In
the following, the behavioural part of the SMM model is converted to BPEL.

<xs:complexType name=”Message”>
<xs:sequence>
<xs:element minOccurs=”0” maxOccurs=”unbounded” name=”contents”

type=”this:MessageContent”/>
</xs:sequence>

</xs:complexType>
<xs:complexType name=”MessageContent”>

<xs:sequence>
<xs:element minOccurs=”0” name=”content” type=”xs:integer”/>

</xs:sequence>
</xs:complexType>

Listing 6.4: SMM2WS: Message Types (XML Schema)

6.3.2 Transforming the Behaviour

The behavioural part of the SMM2WS transformation is concerned with gen-
erating one BPEL process for each behaviour of the transformed participant,

220 CHAPTER 6. TRANSFORMATIONS AND CODE

Figure 6.11: SMM2WS: Message Types (SMM)

which additionally necessitates some additions to the WSDL files by means of
extension elements.

Transformation 5 (Behaviours) For each SMM root ServiceActivity, a
BPEL Process is created. The name of the definition is set to the behaviour
name; a sensible name space is chosen and specified.

<bpel:process name=”BehaviourName”
targetNamespace=”http://www.mdd4soa.eu/generated/process/BehaviourName/”>

<!−− code here −−>

</bpel:process>

Listing 6.5: SMM2WS: Basic BPEL Structure

An example for a basic BPEL process generated is shown in listing 6.5.

The structure of the SMM model and the layout of a BPEL process are
similar: Both are based on nested structuring activities (service activities in the
SMM, scopes in BPEL) and communication actions (send, receive, reply, and
send&receive in the SMM, invoke, receive and reply in BPEL). Furthermore,
both support the concept of exception, event, and compensation handlers and
the invocation of the latter by specialised compensate actions. Finally, the SMM
data manipulation language can be converted to a combination of BPEL assign
statements and XPath expressions for addressing parts of a variable.

6.3. SMM TO WEB SERVICES 221

However, there are three areas in which the transformation needs to generate
additional technical constructs:

� Message-based communication. Communication actions (Invoke, Receive,
and Reply) in BPEL are based on sending or receiving single messages as
defined in the WSDL operation specification. An SMM ServiceOpera-

tion, on the other hand, is based on in and out parameters with standard
or custom data types. Thus, these parameters need to be placed in a
message-typed variable to be sent before each Invoke and Reply, and
need to be extracted from a message-typed variable after each Receive.
This is done by means of a BPEL Assign action.

� Instance matching. During runtime, multiple instances of a BPEL process
may be active. To be able to match incoming calls to the right instance,
the middleware needs a handle for each process for matching messages to
instances. In the absence of object identities, BPEL defines the concept
of correlation. Thus, the transformation needs to generate correlation
artefacts for this mechanism.

� Interrupting Receives. The SMM defines the concept of interrupting re-
ceives which are able to interrupt a service activity. As BPEL does not
include such a concept, interrupting receives need to be simulated by us-
ing an specialised exception which interrupts a scope but is caught on the
outside, such that the process may continue normally.

In the following, the SMM2WS transformation is discussed in three steps.
The first step deals with the declaration of partners in both the BPEL process
and the corresponding WSDL definitions, which is a requirement for commu-
nication with the outside world. The second step discusses generation of the
actual behaviour inside the BPEL process, which includes service activity nest-
ing, communication actions, handlers, and interrupting receives. Finally, the
last step discusses correlation.

6.3.2.1 Defining Partners

For offering and requesting services, BPEL uses the notion of partner links and
partner link types. A partner link type defines up to two roles which can be
played by the BPEL process or an external service. Each role corresponds to a
WSDL port type. Through the definition of a partner link based on the partner
link type, the roles are assigned to the BPEL process itself (my role) or a partner
(partner role).

The transformation of the static part of an SMM Participant has already
created up to two port types for a service: One port type with the operations
implemented by the service, and (possibly) another one with the operation used
by the service. Depending on the type of the service, the roles corresponding to
the generated port types are assigned as shown in table 6.1.

To illustrate this concept, the following list shows two common occurrences
of provided and required services:

222 CHAPTER 6. TRANSFORMATIONS AND CODE

Partner Type Operations Assigned to

Service Implemented BPEL process (my role)
Service Used Remote Service (partner role)
Request Implemented Remote Service (partner role)
Request Used BPEL process (my role)

Table 6.1: Mapping of SMM Service Operations to Partner Roles

� Service offered by the participant. For an SMM participant with a provided
service only implementing operations, one port type and one partner link
type with one role are generated; the role is played by the BPEL process.

� Service offered by a partner. For an SMM participant with a required
service only implementing operations, one port type and one partner link
type with one role are generated, but the role is played by an external
service.

While partner link definitions and role assignments are part of a BPEL
process definition, partner link type and role definitions are part of the corre-
sponding WSDL file. The following transformations step addresses both.

Transformation 6 (Partner Link Types and Partners) For each SMM
Service, a partner link type in the WSDL file of the service is created. If the
service contains implemented operations, a role with the name of the partner and
the corresponding port type is created. If the service contains used operations,
an additional role with the name of the partner suffixed by “ callback” and the
corresponding port type is created. In the BPEL process, the corresponding
partner link based on the partner link type is created; the roles are set as shown
in table 6.1.

An example for the partner link types and partner links generated for the
SMM participant shown in figure 6.10 is given in listing 6.6.

<!−− WSDL −−>
<plnk:partnerLinkType name=”status”>

<plnk:role name=”status” portType=”this:status”/>
</plnk:partnerLinkType>

<!−− BPEL −−>
<bpel:partnerLink myRole=”status” name=”status”

partnerLinkType=”status:status”/>

Listing 6.6: SMM2WS: Partner Link Types and Partner Links (WSDL/BPEL)

6.3. SMM TO WEB SERVICES 223

6.3.2.2 Converting the Behaviour

As the nested structure of the SMM and BPEL is similar, a depth-first recursive
algorithm is used in the conversion, starting with the root service activity. This
is captured in the following transformation step:

Transformation 7 (Service Activity) A service activity is converted to a
BPEL Scope with the same name. The variables attached to the service ac-
tivity are converted to BPEL variables with the corresponding XSD type and
added to the scope. A BPEL Sequence is created inside the scope to ensure
sequential behaviour. All handlers of the service activity are converted to BPEL
handlers (step 8). Interrupting receives are handled as shown in step 9. Finally,
the children of the service activity are handled one-by-one; for each child, the
corresponding transformation step (steps 13 to 19) is executed.

The transformation of a service activity to a scope yields the code shown in
listing 6.7.

<bpel:scope name=”ThesisManager”>
<bpel:variables>

<bpel:variable name=”id” type=”xsd:string”/>
<!−− more variables −−>

</bpel:variables>
<bpel:sequence>
<!−− code −−>

</bpel:sequence>
</bpel:scope>

Listing 6.7: SMM2WS: Scope with Initial Sequence (BPEL)

The next step in the conversion of a service activity is the transformation
of handlers. For each SMM handler, a corresponding BPEL construct exists.
An instance of this construct is created by the transformation according to the
following considerations:

Compensation Handlers. The corresponding BPEL element for an SMM Com-

pensationHandler is a CompensationHandler which shares the same seman-
tics.

Event Handlers. The corresponding BPEL element for an SMM EventHandler

is an OnEvent element inside a EventHandlers group. The OnEvent element is
actually a specialised receive. The first receive of the SMM EventHandler is
converted to the OnEvent element (for the conversion of receives, see step 14).

Exception Handlers. The corresponding BPEL element for an SMM Exception-

Handler is a Catch activity inside FaultHandlers group, which again shares

224 CHAPTER 6. TRANSFORMATIONS AND CODE

the same semantics as the UML4SOA version. An SMM event handler refer-
ences an exception type and variable name. In BPEL, a faultName is used to
identify an exception. The SMM exception type name is used to generate this
name.

Conversion of handlers is captured in the next transformation step.

Transformation 8 (Handlers) Each SMM handler is converted to its BPEL
counterpart as discussed above, and attached to the corresponding BPEL scope.
An inner scope with an empty Sequence is generated for each handler. The chil-
dren specified in the handler are then transformed one-by-one by the appropriate
steps.

The last construct attached to an SMM ServiceActivity are interrupting
receives. An interrupting receive of an SMM service activity is active during the
time the activity is active; if the receive is triggered, the activity along with all
of its children is aborted and execution continues after the activity. There is no
native BPEL counterpart for interrupting receives, thus, an interrupting receive
is converted to a BPEL event handler with an OnEvent element for receiving the
message, a throw element for interrupting the scope to which the event handler
is attached, and an empty Catch attached to the scope to catch the fault.

Transformation 9 (Interrupting Receive) For each interrupting receive of
a service activity, a BPEL EventHandler is created. The receive is converted to
an OnEvent element in the handler; in the sequence of the handler, a throw with
a specialised fault name is added. Furthermore, a FaultHandler is attached to
the scope which catches the same fault. The fault handler otherwise remains
empty.

An example for a scope with an interrupting receive is shown in listing 6.8.

Before the transformation steps for the children of a service activity can
be discussed, another important aspect must be handled: The communication
actions, the data handling statement, and the structured actions of the SMM
are all based on the data access and manipulation statements from the SMM
data package. Thus, the right- and left-hand side expressions of the SMM need
to be converted to appropriate XPath expressions and placed in BPEL Assign

activities. This is discussed next.

In general, data handling is performed in BPEL by using Assign activities.
Each assign activity may have number of Copy children, which copy data from
a source to a target, where the source may include operation calls (as usual
on a right-hand side). BPEL Copy elements distinguish between different kinds
of copy operations; different notations are used for the copy target for WSDL
message parts, standard BPEL variables, and inner elements of variables with
complex XML Schema types. The same holds true for the copy source, which
distinguishes between the same elements as above and additionally allows a

6.3. SMM TO WEB SERVICES 225

<bpel:scope name=”Main”>
<bpel:onEvent
<!−− receive specification −−> >
<bpel:scope name=”Interrupting Receive”>
<bpel:sequence>
<!−− assign for receive −−>
<bpel:throw faultName=”types:InterruptionFault”/>

</bpel:sequence>
</bpel:scope>

</bpel:onEvent>

<bpel:faultHandlers>
<bpel:catch faultName=”types:InterruptionFault”>
<!−− empty −−>

</bpel:catch>
</bpel:faultHandlers>

</bpel:scope>

Listing 6.8: SMM2WS: Scope with Interrupting Receive (BPEL)

literal element for predefined XML fragments. The following steps do not dis-
tinguish between the different notations; in each case to and from clauses with
appropriate attributes and expressions are generated.

Transformation 10 (Data Statements) There are two kinds of statements
in the SMM: Declarations and assignments. The former is used to initialise
a variable, i.e. declaring it in the current scope; the latter assigns a value to
a variable or property. In the first case, step 7 has already created a BPEL
variable corresponding to the declaration, as a variable is always attached to its
service activity. The initialisation step consists of creating the inner structure
of the variable; using a BPEL Assign and a Copy child, a literal XML fragment
corresponding to the XML Schema type is copied into the variable. In the case
of an assignment, an SMM RightHandSideExpression is assigned to a Left-

HandSideExpression. This is again handled with a BPEL Assign and Copy

element; details are discussed in the next two steps.

Transformation 11 (Data Storage using Left-Hand Sides) A left-hand
side in the SMM is either a VariableReference or a PropertyReference.
Left-hand sides are used to denote a place to store data — as targets of assign-
ments, or as receive parameters in receive operations. In both cases, the from

element of a BPEL Copy activity is used to indicate the variable. Additionally,
in the case of a property reference, a query path is attached to the variable to
indicate the assigned subelement.

Transformation 12 (Data Retrieval using Right-Hand Sides) Finally,
a right-hand side in the SMM is a Literal, an Operation, or a LeftHand-

SideExpression. In each case, the converted element is placed in the from

226 CHAPTER 6. TRANSFORMATIONS AND CODE

element of a BPEL Copy activity. The first is converted to an XML literal.
Note that this is not always a trivial task, as the XML Schema needs to parsed
and a literal XML fragment constructed according to the requirements of the
schema. In the second case, the SMM OperationType must be converted to an
XPath operation; however, the XPath operations match quite naturally to the
SMM operation types. Finally, VariableReference and PropertyReference

right-hand sides are converted as in step 11.

An example for the conversion of a data statement is shown in figure 6.12
and listing 6.9.

Figure 6.12: SMM2WS: Assignment (SMM)

<bpel:assign>
<bpel:copy>
<bpel:from>$target</bpel:from>
<bpel:to>$origin/types:calculatedNumber</bpel:to>

</bpel:copy>
</bpel:assign>

Listing 6.9: SMM2WS: Assignment (BPEL/XPath)

The children yet to be handled can be categorised into three groups. The
first group consists of the SMM communication primitives (send, send&receive,
receive, reply); the second group consists of primitive structuring actions (data,
throw, compensate, and compensate all), and the third group consists of struc-
tured elements (loop, parallel, and decision).

6.3. SMM TO WEB SERVICES 227

Communication Primitives

The SMM actions Send and Send&Receive each model a call from the partici-
pant to the outside. A Send might have input parameters which are SMM right-
hand sides; a Send&Receive may additionally have return parameters which are
SMM left-hand sides. However, as mentioned in section 6.3.1, BPEL operations
may only use WSDL messages as in- and output. Thus, an appropriate message
must be constructed before the send operation out of the right-hand sides of
the SMM send parameters. The same holds true for the returning message:
The parts of the received message are extracted and copied into the variables
specified as the SMM receive parameters.

Transformation 13 (Send and Send&Receive) Both Send and Send&Re-

ceive SMM actions are converted to a BPEL Invoke activity, which references
the partner link corresponding to the referenced SMM partner and the WSDL
operation corresponding to the referenced SMM operation. For the data to be
sent, a BPEL variable with the appropriate WSDL message type is created and
attached to the current scope. Before the Invoke, an Assign activity is inserted
into the BPEL code, which copies the right-hand sides specified in the sndPa-

rameters into the appropriate message parts of the generated message variable.
In case of a Send&Receive, an additional Assign activity is inserted after the
Invoke, which extracts the message parts from the received message and copies
them to the appropriate variables specified as the left-hand sides in the rcvPa-

rameters. Again, the message itself is stored in a BPEL variable attached to
the current scope.

An example for transforming a Send from the SMM to BPEL and XPath is
shown in figure 6.13 and listing 6.10.

A Receive action is converted to a BPEL Receive activity. As in the second
part of a Send&Receive, the message-typed variable resulting from the operation
is split into its parts in a subsequent Assign.

Transformation 14 (Receive) An SMM Receive action is converted to a
BPEL Receive activity which references the BPEL partner link corresponding to
the SMM partner and the WSDL operation corresponding to the SMM operation
attached to the receive. To be able to store the receive message, a BPEL variable
with the appropriate WSDL message type is created and attached to the current
scope. An Assign activity is inserted after the Receive, which extracts the
message parts from the received message and copies them to the appropriate
variables specified as the left-hand sides in the rcvParameters of the receive.

Finally, a reply operation is converted in the same way as a send.

Transformation 15 (Reply) An SMM Reply action is converted to a BPEL
Reply activity, which references the partner link corresponding to the referenced
SMM partner and the WSDL operation corresponding to the referenced SMM

228 CHAPTER 6. TRANSFORMATIONS AND CODE

Figure 6.13: SMM2WS: Send (SMM)

<bpel:assign>
<bpel:copy>
<bpel:from>$var</bpel:from>
<bpel:to part=”doc” variable=”sendDocument send”/>

</bpel:copy>
</bpel:assign>
<bpel:invoke

operation=”sendDocument” inputVariable=”sendDocument send”
partnerLink=”required” portType=”required:required”>

Listing 6.10: SMM2WS: Send (BPEL/XPath)

operation. To ensure that the reply is connected to its receive, a randomly gener-
ated messageExchange identifier is added to both BPEL elements. For the data
to be sent, a BPEL variable with the appropriate WSDL message type is created
and attached to the current scope. Before the Invoke, an Assign activity is
inserted into the BPEL code which copies the right-hand sides specified in the
sndParameters into the appropriate message parts of the generated message.

Primitive Structuring Actions

The group of primitive structuring actions consist of Throw, Data, Compensate,
and CompensateAll.

A Throw action raises an exception, which ends at least the current scope
(and subscopes); possibly more until handled. In BPEL, this concept is called
fault handling. Instead of exceptions, fault handling is based on (qualified) fault
names. In the transformation, such names are generated based on the process
namespace and the simple name of the exception type.

A Data action performs a set of data statements on the variables of the
participant. The statements are translated as indicated in the corresponding
transformation step with a BPEL Assign element.

6.3. SMM TO WEB SERVICES 229

Finally, both the Compensate and CompensateAll SMM actions invoke and
wait for the compensation handler of the indicated, or all inner, scopes. The
BPEL equivalent for the compensate action is the CompensateScope activity,
which contains a link to the target scope to be compensated; the equivalent
for the compensate all action is the Compensate element. The semantics are
identical.

Transformation 16 (Primitive Structuring Actions) For an SMM Throw,
a BPEL Throw activity is created with a fault name as indicated above. For an
SMM DataHandling action, a BPEL Assign activity is generated; the individual
statements are converted as shown in step 10. For Compensate and Compen-

sateAll, the BPEL activities CompensateScope and Compensate are generated;
in the former case, the name of the target scope is attached to the activity.

Structuring Elements

For each of the structured activities of the SMM, a corresponding BPEL activity
exists: An SMM Loop is converted to a RepeatUntil activity; a Parallel is
converted to a Flow with inner Sequences, and a Decision is converted to
If/ElseIf/Else activities.

Transformation 17 (Loop) An SMM Loop is converted to a BPEL Re-

peatUntil activity. The leaveCondition of the SMM loop is transformed to
XPath using step 12, negated, and used as the condition for the RepeatUntil

activity. A BPEL Sequence is added to the RepeatUntil statement to ensure
ordering, and the children of the SMM Loop are each converted and added to
the sequence as usual. Note that if no leaveCondition exists, the condition is
set to false; in this case, only an interrupting receive or throw can lead the
process out of the loop.

An example for a loop transformation is shown in figure 6.14 and listing 6.11.

Transformation 18 (Decision) An SMM Decision is converted to BPEL
If/ElseIf/Else activities. The enterCondition of the first path encountered
is transformed to an XPath expression using transformation step 12 (right-hand
sides) and used as the condition for the first BPEL If statement. For all subse-
quent paths, an ElseIf statement is created with the appropriate enterCondi-

tion and attached to the preceding If. Note that only one of the conditions may
be missing; in this case, a final else statement is employed for the correspond-
ing path. Inside each If or ElseIf activity, a BPEL sequence is created; the
children of the corresponding SMM path are added to these sequences as usual.

Transformation 19 (Parallel) An SMM Parallel is converted to a BPEL
Flow activity. For each path in the parallel activity, a new BPEL Sequence is
created and added to the flow. The children of the corresponding SMM path are
added to these sequences as usual.

The discussion of the transformation of structuring activities concludes the
main transformation from the Service Meta-Model (SMM) to the BPEL pro-
gramming language.

230 CHAPTER 6. TRANSFORMATIONS AND CODE

Figure 6.14: SMM2WS: Loop (SMM)

<bpel:repeatUntil>
<bpel:sequence>
<bpel:invoke> ... </bpel:invoke>

</bpel:sequence>
<bpel:condition>$variableToCheck == 4</bpel:condition>

</bpel:repeatUntil>

Listing 6.11: SMM2WS: Loop (BPEL)

6.3.2.3 Correlation

In the comparison of UML4SOA/Open and UML4SOA/Strict, the concept of
instance matching has already been mentioned (cf. section 3.2.6): As a partic-
ipant — including its associated behaviours — only describes a single instance
of a service execution, a middleware needs to take care of starting, handling,
and stopping these instances. In the case of BPEL, this function is performed
by a BPEL container such as Apache ODE [Apa10b], the ActiveBPEL engine
[Act10], or the Oracle BPEL Process Manager [Ora10].

If multiple instances of a BPEL process are running at the same time, incom-
ing calls from partners must be routed to the correct instance. In UML4SOA
(and, as the next transformation shows, in Java), this problem is solved by the
object-oriented principle of object identity — once a port (or partner object)
is instantiated, the identity of the port associated to the behaviour takes care
of appropriately routing calls. BPEL, on the other hand, defines the concept of
correlation to achieve instance matching, which is not based on the object iden-
tity of ports or messages; instead, certain elements in the message payload are
chosen as correlation ids which identify the concrete instance a call is targeted
at.

Considering the eUniversity case study already used in the previous chapter,
correlation is only required for partners with callbacks, i.e. student and tutor.
A good candidate for a correlation element is the thesis id, as it unambigously

6.3. SMM TO WEB SERVICES 231

identify the process instance (since one BPEL process instance handles one
thesis).

As correlation IDs are only required for certain transformation targets such
as BPEL, correlation is not part of the general definition of UML4SOA as de-
scribed in chapter 3. Rather, the transformation offers the option of adding
correlation to the process, requiring the developer to select a set of correlation
elements in the generated messages and automatically creating the required
artefacts.

Correlation in BPEL is based on four concepts: Properties, property aliases,
correlation sets, and message correlation. The first two are extensions to WSDL,
while the latter two are used in the BPEL process.

Transformation 20 (Properties and Property Aliases) For each set of
correlation elements chosen by the developer, a Property is generated in a new
WSDL definition imported by all partner WSDL definitions. For each correla-
tion element, a PropertyAlias is defined in the corresponding partner WSDL
definition, binding the correlation element to the property.

Transformation 21 (Correlation Sets and Message Correlation) For
each set of correlation elements chosen by the developer, a CorrelationSet

is created in the BPEL process referencing the corresponding generated WSDL
property. In each communication with the selected partners, a message Cor-

relation element is added, referencing the corresponding set. For the first of
these communications in the process, the initiate attribute is set to true.

This concludes the discussion of the SMM2WS transformation.

6.3.3 Semantics of SMM and BPEL

The aim of the transformation from the SMM to BPEL — with surrounding
artefacts — has been enabling developers to ultimately convert from UML4SOA
to code, while keeping to the semantics defined for the SMM and UML4SOA
laid down in chapter 5.

The semantics defined for the SMM matches the generated BPEL code in
many cases; in particular, the nesting construct, parallel, loop, and decision
handling, as well as compensation handling is the same. However, there is no
one-to-one mapping to the MIO semantics, which lies in the mismatch of the
UML4SOA and BPEL specifications. This hinders an exact mapping from the
SMM to BPEL, which affects the following SMM elements:

� Communication Actions. The BPEL specification leaves the exact han-
dling of receiving and sending actions open — i.e., it is not clear for exam-
ple in a one-way invoke whether the message must in fact be received by
the partner (with an acknowledgement): Each engine may implement its
own strategy. By contrast, the UML4SOA semantics is very strict about
these matters.

232 CHAPTER 6. TRANSFORMATIONS AND CODE

� Interrupting Edges. An interrupting receive, in the SMM, effectively
aborts an activity and all event handlers (although they are allowed to
finish) and then moves on to the next element. There is no concept for in-
terrupting receives in BPEL. Thus, to implement an interrupting receive,
an exception is thrown, caught, and then the following actions are allowed
to continue. As this is a multi-step approach, there might be other parallel
actions interjecting during this process which is not possible in the SMM.

� Event Handlers. The BPEL specification allows event handlers to run in
parallel; not only to others but also to themselves. This is not allowed
in UML4SOA; here, a second event handler of the same type must wait
for the first. This problem is somewhat alleviated by the fact that the
protocol has to allow this too; nevertheless, the execution semantics is
different.

Finally, it has been shown that different BPEL engines in fact implement
different semantics [LPT09], which further complicates an exact mapping. Re-
quiring UML4SOA-like semantics in BPEL, however, would lead to a new im-
plementation of a BPEL engine. We have therefore opted to address this level
of preciseness in the Java transformation in the next section.

6.3.4 Case Study Example

The eUniversity case study already presented in the previous chapters has been
converted using the SMM2WS transformation. The generated Web Service arte-
facts for the eUniversity case study are comprised of one BPEL process (as there
is only one activity attached to the ThesisManager participant), five WSDL
definitions (Blackboard, Examination Office, Graduation Service, Student, and
Tutor), and one XML Schema which contains four complex types (Thesis, Stu-
dent, Grade, and Document). Of the five WSDL definitions, three contain only
one service (Blackboard, Examination Office, and Graduation Service), while
the other two contain an additional callback service (Student and Tutor).

A graphical representation of the static structure of the converted eUniver-
sity case study is shown in figure 6.15. The behavioural part of the case study
(i.e. the BPEL process ThesisManager) consists of 421 lines of code and is thus
not shown here. The full implementation may be downloaded from the links
provided in section 8.3.

6.4 SMM to Java

The second target language and paradigm chosen for transformation is the
object-oriented programming language Java. As an object-oriented language,
Java follows a method-invocation, object-based programming paradigm which
is different from the communication-based workflow structure of UML4SOA and
SMM service behaviours. There are two options for dealing with this mismatch.

6.4. SMM TO JAVA 233

ThesisManager BPEL Process

Student
WSDL Definition

student
callback
Service

Black Board
WSDL Definition

bboard
Service

student
Service

Tutor
WSDL Definition

tutor
callback
Service

tutor
 Service

myRole myRolepartnerRole partnerRole

Graduation Service
WSDL Definition

gservice
Service

Examination Office
WSDL Definition

eoffice
Service

partnerRole partnerRole partnerRole

X
M

L
Sc

h
em

a
fo

r
Th

es
is

M
an

ag
er

Figure 6.15: eUniversity Case Study: Static Part in BPEL

The first option places emphasis on the source, i.e. SMM and the UML4-
SOA meta-model and semantics. This, of course, has the advantage of truly
capturing the ideas behind UML4SOA. On the other hand, these concepts do
not lend themselves naturally to Java concepts and thus, the transformation
needs to create code which differs from the usual Java programming style.

The other possibility is placing emphasis on the target, i.e. trying to generate
code with naturally fits the Java paradigm, sacrificing an exact mapping from
UML4SOA for native, straightforward Java code.

This choice depends on one’s view of MDD. The former view is that of MDD
as a compilation step. In this view, the only interesting — and edited — artefact
is the model, while the rest is machine code not to be read by humans. The
second view is that of MDD as a helping hand in programming: Models are seen
as a first step and the generated code is seen as a skeleton, later to be completed
in the target programming language.

While both views have their application areas, this section takes the first
approach, as the aim here is an exploration of SOA concepts such as commu-
nication between services, compensation, and event handling — which includes
the question of how to faithfully capture these concepts in a traditional pro-

234 CHAPTER 6. TRANSFORMATIONS AND CODE

gramming language. For the same reason, no specific SOA libraries for Java,
like for example Apache Axis [Apa10a], are used — instead, the converted code
only uses functionality available within the core Java API.

As usual, the SMM2Java transformation is implemented as a model-to-model
transformation between two EMF meta-models. The first is the SMM meta-
model which has been introduced in chapter 4; the second is the MoDisco
[Ecl10e] meta-model, which is a reflection of the Java language as defined in
the Java Language Specification [GJSB05]. The meta-model consists of 132
classifiers and 213 structural features. Instances of the MoDisco model can
later be serialised to actual code; this is discussed in the tools section. For
readability, the following discussion uses plain Java code in the transformation
examples.

6.4.1 Transforming the Static Part

As in the previous sections, transforming the static part of the system is a
prerequisite to the behaviour. As the static part of the SMM is essentially
object-oriented, the mapping of the corresponding SMM constructs to Java
code does not require a significant add-on to what is provided by the language.

The SMM2Java transformation starts with the root element of the SMM
— a participant, which may have several behaviours. Each behaviour is rep-
resented in Java as a class. As the static aspects of a participant apply to all
behaviours, all generated classes share the corresponding features as well. A
participant has provided and required services, each referencing implemented

and used operations. In Java, an operation which is invokable on the behaviour
must be declared in an interface implemented by the (behaviour) classes, while
operations invoked on partners must be declared in an interface used by the
classes. In general, a maximum of two Java interfaces are created for each ser-
vice — one for the required, and one for the provided operations. Table 6.2
shows how operations are mapped to interfaces, and how these interfaces are
used by participants.

Partner Type Operation Mapping to Java

Service Implemented Interface implemented by participant
Service Used Interface referenced by participant
Request Implemented Interface referenced to participant
Request Used Interface implemented by participant

Table 6.2: Mapping of SMM Services to Java Interfaces

The transformation of participants and their services is captured in the fol-
lowing first transformation step.

Transformation 1 (Participants and Services) For each root service ac-
tivity of an SMM participant, a Java class is created. The partners associated
to the participant are transformed as listed in table 6.2: For each partner, a

6.4. SMM TO JAVA 235

maximum of two interfaces is created, one with a “ required” suffix, one with a
“ provided” suffix. Provided interfaces are implemented by the behaviour classes,
while a field is created for required ones; the field is set via constructor injec-
tion. In each generated interface, the corresponding operations are defined as
methods; the parameter and return types are transformed as shown in step 2.
For provided interfaces, method stubs are generated in all behavioural classes.

An example for the conversion of a participant with a service is shown in
figure 6.16 and listing 6.12. The first figure shows the SMM model, while the
listing shows the converted Java code.

Message and exception types, in both UML and the SMM, already follow
the object-oriented idea of classes which encapsulate their relationships and
attributes. Thus, the message types can be converted as-is to Java classes.
Exception types are treated likewise, but must extend the Java Exception class
and provide certain constructors to be useful.

An interesting point to note is that both the UML and the SMM handle
multiplicity as being attached to an element instead of a type — i.e. the meta-
classes Variable, Parameter, and MessageProperty all have a lower and upper
bound as well as an indication whether they are ordered. This idea is similar
to the UML MultiplicityElement meta-class and also matches the minOccurs
and maxOccurs attributes in XML Schema (section 6.3).

In Java, however, while there is built-in support for arrays with an upper
bound, these are always ordered; furthermore, modern Java programs usually do
not rely on arrays but on parameterised version of the Set and List interfaces
provided as part of the Java collections API — i.e., the notion of multiplicity is
not attached to an element but to its type. Additionally, ensuring a maximum
occurrence of a property is usually done by explicit logic rather than constraints
on the type (which would require a specific set or list implementation). In our
transformation, all maximum occurrences other than one are thus treated as
being unbounded. If the property is ordered, a parameterised list is generated;
otherwise, a parameterised set.

Message types are converted as shown in the next transformation step. An
example for this transformation step is shown in figure 6.17 and listing 6.13,
respectively.

Transformation 2 (Message- and Exception Types) For each message
and exception type, a Java class is created. For each property, a field is created.
If the property is defined with a primitive SMM type, the corresponding Java type
is used; in case of a MessageType, step 2 is invoked for the target type and the
result is referenced in the declaration. In case the property is multi-valued and
ordered, a parameterised Java ArrayList is created; if unordered, a HashSet.
Furthermore, getters and setters are created for all fields. Finally, if the type is
an exception type, an extends clause for java.lang.Exception is added along
with the default constructors.

236 CHAPTER 6. TRANSFORMATIONS AND CODE

Figure 6.16: SMM2Java: Participants and Interfaces (SMM)

interface ProvidedServiceInterface Provided {
void providedOperation();

}

interface RequiredServiceInterface Required {
void requiredOperation();
}

class MainBehaviour implements ProvidedServiceInterface Provided {

private RequiredServiceInterface Required partner required;

public Participant(RequiredServiceInterface Required required) {
partner required= required;

}

void providedOperation() {
// code here

}

}
Listing 6.12: SMM2Java: Participants and Interfaces (Java)

6.4. SMM TO JAVA 237

Figure 6.17: SMM2Java: Message- and Exception Types (SMM)

class Message {

private HashSet<MessageContent> contents;

public void setProperties(HashSet<MessageContents> contents) {
this.contents= contents;
}

public HashSet<MessageContent> contents() {
return contents;
}
}

class MessageContents {

int content;

// etc

}
Listing 6.13: SMM2Java: Message- and Exception Types (Java)

238 CHAPTER 6. TRANSFORMATIONS AND CODE

6.4.2 Transforming the Behaviour

The behavioural part of the SMM2Java transformation is concerned with im-
plementing the bodies of the Java classes created in step 1 for each behaviour
of the transformed participant.

As mentioned above, the SOA-inspired ideas behind UML4SOA differ in
some key points from the standard semantics of Java. The following list identifies
requirements to be considered when transforming SMM instances to Java code.

� Firstly, as children of the networked world, services and service orches-
trations are inherently parallel: Using event handlers, parallel blocks, or
interrupting receives in an UML4SOA service description easily leads to
a situation in which more than one part of the behaviour is active at
the same time. This problem necessitates the first requirement for imple-
menting UML4SOA behaviours in Java: Individual parts of the behaviour
— service activities, handlers, parallel blocks, and interrupting receives —
must execute in parallel. In the following, these parts are named execution
scopes.

� A second issue arises when considering the structure of UML4SOA activi-
ties and the structure of Java programs. UML4SOA and SMM models are
well-nested: Each execution scope has a parent and children, each han-
dler and interrupting receive belongs to one service activity, and variable
access as well as exception handling is based on nested elements. Thus,
another requirement on the SMM2Java transformation is a concept for
declaring and exploiting the parent/child relationship of execution scopes.

Placing child execution scopes under the direct control of their parents has
several benefits in the implementation. First, when a service activity completes
or is interrupted, it can stop its still-running children (like event handlers),
waiting for them to complete as required by UML4SOA. Second, an exception
thrown in a certain scope is handled by interrupting the scope, setting an ex-
ception flag, and then interrupting the parent who can deal with the situation
appropriately (if it has an exception handler, handle the exception — otherwise,
propagate it). Finally, the scopes for interrupting receives can stop themselves
and indicate to their parent to interrupt, which the parent can handle as usual
(by stopping all other children and then itself). The following list contains the
required operations on an execution scope.

� Starting scopes. Execution scopes must be able to start their child scopes
— whether they are handlers, interrupting receives, or plain nested activ-
ities. Handlers and interrupting receives are started as soon as a service
activity starts, while other service activities are only enabled as soon as
they are encountered in the sequential flow.

� Waiting for scopes. Execution scopes must be able to wait for the regular
end of a scope. Note that the regular end might also be the start (in case
of an event handler).

6.4. SMM TO JAVA 239

� Forcing scope termination. If an execution scope must be aborted for some
reason, it needs to be able to force its children to close. Note that in the
case of interrupting receives, the parent scope is forced to close.

� Propagating exceptions. If an exception is thrown in an execution scope
without an attached handler, it needs to be stored and propagated to the
parent scope.

� Storing and retrieving variables. Variables are attached to scopes, and can
be retrieved from them. As the structure of scopes is composite, retrieving
a variable traverses the tree to the root scope until a variable is found.

Finally, a third requirement needs to be taken into consideration, which
affects the implementation of communication actions in Java:

� The third issue concerns the implementation of�Receive� (and as shown
later, �Reply�) actions in Java. Quite naturally, the ability to receive
an operation invocation is modelled as a method, which follows from the
implementation of the corresponding provided interface as discussed in
the last section. However, while (public) methods in a Java class are at
all times visible and invokable from the outside, UML4SOA �Receive�
actions are usually not enabled during the complete execution of a be-
haviour. Instead, they are only invokable in certain states: This is both
indicated by their placement in the activity workflow and in the corre-
sponding protocol. This means that a �Receive� is only possible once
the workflow has reached the action, and can only continue if a call comes
in, i.e. invoker and invoked must wait for one another until they can per-
form the �Receive� together. Attempting to capture this idea in Java
leads to a third requirement for the transformation: methods provided for
receives must contain a mechanism which synchronises the invoker with
the currently active execution scope of the service implementation.

There is another, more subtle problem associated with implementing in-
coming receive actions as methods in Java: As noted above, the �Receive�
action is performed by both invoker and invoked together. However, this is also
the only step which is performed in unison; after the receive action has com-
pleted, each party continues independently. In particular, any subsequent steps
the UML4SOA behaviour executes are not part of the execution of the receive
(unless the receive is linked to a later �Reply�, see below). This concept is
in contrast to the default semantics of Java methods: When implementing a
method to handle a �Receive�, the statements following the receive must not
be executed as part of the method body, but after the method has returned.
Thus, the Java implementation may not contain subsequent actions of a receive
inside the receive method body, but must execute them as part of the execution
scopes discussed above.

The inverse problem occurs for �Reply� actions, which returns an answer
to a previous receive. Before a method which implements a receive may return,

240 CHAPTER 6. TRANSFORMATIONS AND CODE

the action in-between receive and reply must have been executed. Thus, a reply
requires another synchronisation between the invoker and the currently active
execution scope. Note that this is not a problem for send and send&receive
operations: The responsibility for synchronisation lies with the call receiver,
which in this case is the partner.

In the following, Java constructs for addressing these requirements are dis-
cussed, before moving on to the actual transformation steps.

6.4.2.1 Mapping UML4SOA to Java

The three issues mentioned above can be addressed with two constructs from the
Java language and API. The first construct are threads; the second are barriers.

The need to perform several task in parallel is addressed in SMM2Java by
employing Java threads (with accompanying runnables). The transformation
creates one runnable for each execution scope (service activities, handlers, in-
terrupting receives, and parallel blocks) in the input behaviour. Although not
strictly necessary in all cases, unifying the representation of scopes greatly sim-
plifies the transformation and increases readability — each execution scope can
be started, stopped, and interrupted in a standard way.

The transformation provides the pre-implemented class ServiceRunnable

which is subclassed by all generated runnables. ServiceRunnable contains
methods for starting a thread based on the runnable, waiting for a thread to
complete, force-ending a thread, and storing exceptions. To be able to wait for
the runnable to complete, it contains a flag — isCloseable — which indicates
whether the current state of the runnable allows the runnable to be closed (in
most cases, this state is the same as the thread isAlive flag, but there are
exceptions). The methods provided are the following:

� The start() method creates a new thread based on the ServiceRunna-

ble. The state of the service runnable is set to active, and the thread is
started. The start method contains one parameter — the parent execution
scope, which is stored for use in interruptParent() (see below).

� The waitForEnd() method waits for the runnable to reach its end and
then returns. This is a graceful stop of the runnable.

� The forceEnd() method interrupts the runnable, forcing it to shut down
(after cleaning up).

� The interruptParent() method calls forceEnd() on the parent given in
start().

� The setExcception() method notes the fact that an exception has been
thrown in this thread. More information on exceptions is given below.

� The addVariable() method adds a named variable with a certain value
to the scope.

6.4. SMM TO JAVA 241

� The getVariable() returns the value of a named variable from the scope
or, recursively, the parent of the scope.

The run() method of each ServiceRunnable is implemented as part of the
transformation and follows the natural sequential flow described in the SMM
input. The pattern for creating the run() method is shown in listing 6.14 (an
enumeration ExecutionScope listing the available scopes, and a map runnables

containing the scope runnables are, for now, assumed to be present).

The example shows the run() method of a service activity scope which has
one event handler and one inner scope. The event handler is started before the
actual scope actions are executed; before the scope finishes, the event handler
is allowed to finish.

void run() {
try {

runnables.get(ExecutionScopes.EventHandler).start(this);
// ...
runnables.get(ExecutionScopes.InnerScope).start(this);
runnables.get(ExecutionScopes.InnerScope).waitForEnd();
// ...
runnables.get(ExecutionScopes.EventHandler).waitForEnd();

} catch (InterruptedException e) {
runnables.get(ExecutionScopes.InnerScope).forceEnd();
runnables.get(ExecutionScopes.EventHandler).waitForEndEnd();

}
setCloseable(true);

Listing 6.14: SMM2Java: Execution Scope Runnable Example Code

The inner scope is started at the appropriate place; as this is a sequential
invocation, the behaviour waits for the inner scope to complete. In case of an
interruption, the inner scope is forced to finish. Note that an event handler is
always allowed to finish when running, as this is a requirement of UML4SOA
and is needed when interruptions by interrupting receives occur. Finally, as the
last statement, a flag is set in the runnable to indicate that the thread may be
closed at any time now.

Synchronisation of an external call with the currently executed scope —
as indicated in the third requirement listed above — is essentially a thread
synchronisation problem: In each case, two threads — the invoking thread
executing the provided method and the thread running the execution scope
which contains the corresponding receive (and possibly reply) — need to wait
for one another, performing the operation together.

The Java concurrency API contains the concept of barriers which address
this issue. A barrier consists of an object on which a specified number of threads
can synchronise — as soon as all threads arrive at the barrier, a barrier runnable
is executed, after which each thread continues on its own. This concept is shown

242 CHAPTER 6. TRANSFORMATIONS AND CODE

in figure 6.18. In SMM2Java, all barriers are used to synchronise only two
threads: An external invoker thread and one of the threads of the participant.

Thread 1

Barrier Runnable

Thread 2

Thread 1

BARRIER

Thread 2

Figure 6.18: SMM2Java: Barrier Concept

The barrier runnable is used to change the state of the behaviour in an
atomic fashion. As such, it is responsible for handling the data associated with
a receive or reply — in the first case, storing new data, in the second retrieving
it. Similar to the implementation of the execution of scope runnables, the
SMM2Java transformation provides a common superclass for barrier runnables,
BarrierRunnable, which contains two methods for storing and retrieving the
arguments of the call (setArguments() and getArguments(), respectively).
Again, the run() method is implemented as required during the transformation.

A receive or reply call thus requires the generation of code in three places
in the participant class: In the provided method, in the execution scope where
the receive was originally placed, and in the barrier runnable. The generation
pattern is shown in listing 6.15 (note that an enumeration Barriers listing the
available barriers and two maps barrierRunnables and barriers are assumed
to present. They will be introduced in the corresponding transformation step).

The upper part of the listing shows the implemented method from the pro-
vided interface, in which the given argument is set on the runnable, and the
code then proceeds to wait for the active behaviour to arrive at the barrier.
The middle part shows a part of the active behaviour, which also waits for the
barrier. Together, they then perform the code in the lower part, which is the
run method of the barrier runnable.

With the concepts of service runnables, barriers, and barrier runnables in
place, the remaining issues in transforming the behaviour of an UML4SOA
participant to Java can be handled as part of the transformation description
listed in the next section.

6.4. SMM TO JAVA 243

void externalCall(String parameter) {
synchronized(lock partner) {

barrierRunnables.get(Barriers.startService).setArguments(parameter);
barriers.get(Barriers.startService).await();

}
}

void run() {
//...
barriers.get(Barriers.startService).await();
//...
}

void run() {
addVariable(ExecutionScopes.Main, ”parameter”, getArguments().get(0));
}

Listing 6.15: SMM2Java: Barrier Example Code

6.4.2.2 Transforming the Behaviour

Implementing the structure discussed above requires a multi-step approach to
the transformation: First, the required anonymous inner classes and methods
are created with their method bodies remaining empty. In a second step, the
methods are implemented with the appropriate code. Note that the first set of
empty methods — the implemented methods of the provided interfaces — has
already been created in the static section.

The following steps are executed for each behaviour attached to the SMM
participant. The transformation begins with the execution scopes.

Transformation 3 (Structure of Execution Scopes) An enumeration Ex-

ecutionScopes is generated in the behaviour class. For each service activity,
handler, interrupting receive, and path in a parallel element, an enumeration
constant with the appropriate name is created. Furthermore, a hashmap (Ex-
ecutionScopes → ServiceRunnable) with the name scopes is created. In
the constructor already created in the static part, an anonymous subclass of
ServiceRunnable is created for each scope and added to the scopes map. The
run() method is left empty.

The second step concerns the barriers; the same initialisation is required as
for the execution scopes.

Transformation 4 (Structure of Barriers) An enumeration Barriers is
generated in the behaviour class. For each receive and reply, an enumeration
constant with the appropriate name is created. Furthermore, two hashmaps
are created: barriers (Barriers → CyclicBarrier) and barrierRunnables

244 CHAPTER 6. TRANSFORMATIONS AND CODE

(Barriers → BarrierRunnable) is created. In the constructor already cre-
ated in the static part, an anonymous subclass of BarrierRunnable is created
for each enumeration constant and added to the barrierRunnables map. The
run() method is left empty. Furthermore, for each enumeration constant, a new
instance of CyclicBarrier is created with the corresponding BarrierRunnable

as a parameter. The barrier is set to wait for two threads, and is added to the
barriers map.

The pattern generated by the last two transformation steps is shown in
listing 6.16. In the upper part, the enumerations and maps are shown. In the
lower part, the constructor already introduced in the static section is shown
again. Here, the maps are initialised and the runnables and barriers created.
Note that the run() methods are not yet implemented, and that the barriers
are initialised to wait for two threads, and use the barrier runnable created for
them.

The SMM2Java transformation uses the following transformation steps to
convert one execution scope to Java, adding code to the run() method of the
scope runnable, and — if the scope contains receive or reply actions — to the
corresponding run() methods of the barrier runnables and the method bodies
of the implemented methods of the provided interfaces.

Transformation 5 (Service Activity Behaviour) A try/catch statement is
added to the run() method of the service runnable to ensure that started child
scopes can be closed. At the beginning of the try statement, event handlers are
started with a call to start() of the corresponding service runnable. At the
end of the try statement, waitForEnd() is invoked on the same runnables; in
the catch statement, forceEnd() is invoked for all inner scopes except for event
handlers, for which waitForEnd() is invoked. An example for this code has
already been given in listing 6.14.

The SMM children of the execution scope are handled one-by-one. For each
child, the corresponding transformation step (see below) for the type of the child
(for example, receive, inner service activity, or data) is executed.

A path in a parallel execution scope is similar to a service activity, except
that it does not contain any handlers. Thus, the above transformation step can
be used for the paths of parallel scopes as well. For event handlers, the following
step is used:

Transformation 6 (Event Handler Behaviour) In addition to the state-
ments added in the step for service activities, a while(true) loop is added
to the try statement, as event handlers may be executed more than once. An
event handler is optional; i.e. while waiting for the initial receive, it can be can-
celled. Thus, before the first receive statement, the state of the runnable is set
to be closeable; after the receive statement, it is set to not closeable (the
invoker must wait for the event handler to finish once it has been started).

6.4. SMM TO JAVA 245

private enum ExecutionScopes { ScopeA, ... };

private HashMap<ExecutionScopes, ServiceRunnable> scopes;

private enum Barriers { ReceiveA, ... };

private HashMap<Barriers, BarrierRunnable> barrierRunnables;

private HashMap<Barriers, CyclicBarrier> barriers;

public BehaviourClass(...) {

// field setup (see static part)

scopes= new HashMap<ExecutionScopes, ServiceRunnable>();
scopes.put(ExecutionScopes.ScopeA, new ServiceRunnable() {

public void run() {
//...

}
});

// more scopes

barrierRunnables= new HashMap<Barriers, BarrierRunnable>();
barrierRunnables.put(Barriers.ReceiveA, new BarrierRunnable() {

public void run() {
//...

}
});

// more barrier runnables

barriers= new HashMap<Barriers, CyclicBarrier>();
barriers.put(Barriers.ReceiveA, new CyclicBarrier(2,

barrierRunnables.get(Barriers.ReceiveA));

// more barriers
}

Listing 6.16: SMM2Java: Runnable Setup

246 CHAPTER 6. TRANSFORMATIONS AND CODE

Finally, interrupting receives of service activities have their own runnables,
as they execute in parallel with their main scope, interrupting it if necessary.
This is captured by the following step:

Transformation 7 (Interrupting Receive Behaviour) An interrupting re-
ceive only consists of one statement — the receive. Nevertheless, the same steps
as in the service activity step are executed. As an interrupting receive has the
task of interrupting its parent when triggered, the last statement in the try block
is an interruptParent() call.

An interrupting receive is thus basically handled as a normal receive (see
below) in its own execution scope. One more caveat is attached to an interrupt-
ing receive, however: The semantics states that a) event handlers are allowed
to run even after an interrupting receive has occurred, and b) event handlers
are no longer allowed after the next call is received. To ensure this behaviour,
the actions immediately following an interrupting receive in the SMM must be
prefetched and executed before the event handler is stopped. The following
transformation step ensures this behaviour.

Transformation 8 (Prefetching Interrupting Receive Follow-Ups) The
communication actions immediately following an interrupting receive are moved
from their original place to the beginning of the interruption-handling block of
the execution scope in which the interrupting receive is handled. They thus take
place before the event handlers are canceled, which is done within the same
synchronized-block (discussed below) to ensure atomicity.

The communication actions of the SMM, as well as the data statements and
conditions used in structured elements may contain data expressions, which
need to be transformed to Java. The following transformation steps deal with
data statements.

Transformation 9 (Data Statements) There are two kinds of statements
in the SMM: Declarations and assignments. The former is used to initialise a
variable, i.e. declaring it in the current scope; the latter assigns a value to a
variable or property. In the first case, the method addVariable() is invoked
on the current scope with the name of the variable and a newly created instance
of the variable type. In the second case, an SMM RightHandSideExpression

is assigned to a LeftHandSideExpression. This is discussed in the next two
steps.

Transformation 10 (Data Storage using Left-Hand Sides) A left-hand
side in the SMM is either a VariableReference or a PropertyReference.
Left-hand sides are used to denote a place to store data — as targets of assign-
ments, or as receive parameters in receive operations. There is a fundamental
difference in Java between adding a new variable or setting a property. In the
case of a VariableReference, the intention is adding, or replacing the value
of the variable. Thus, the generated code is addVariable() with the name and

6.4. SMM TO JAVA 247

value of the variable to set. In the case of a PropertyReference, a variable
must already exist. Thus, the generated code invokes the setter for the property
using getVariable().setProperty(), with the property name replaced appro-
priately.

Transformation 11 (Data Retrieval using Right-Hand Sides) Finally,
a right-hand side in the SMM is a Literal, an Operation, or a LeftHand-

SideExpression. The first is converted to a Java literal as expected. In the
second case, the SMM OperationType must be converted to Java. The types
can be directly mapped to Java operators.

It is important to note, however, that using a LeftHandSideExpression as
a right-hand side is a different use case to the previous transformation step:
The aim of right-hand sides is to retrieve data, not to store it. Thus, a Vari-

ableReference in a right-hand-side is converted to a getVariable() statement
instead of addVariable. Likewise, the generated code for PropertyReference

invokes the getter for the property using getVariable().getProperty() in-
stead of using a setter.

An example for the conversion of data statements from the SMM to Java is
shown in figure 6.19 and listing 6.17.

Figure 6.19: SMM2Java: Assignment (SMM)

setVariable(”target”, getVariable(”origin”).getCalculatedNumber());

Listing 6.17: SMM2Java: Assignment (Java)

The children yet to be handled can be grouped into three categories: com-
munication primitives (send, send&receive, receive, reply), primitive structur-

248 CHAPTER 6. TRANSFORMATIONS AND CODE

ing actions (throw, data, compensate, compensate all), and structured elements
(service activity, decision, loop, and parallel).

Communication Primitives

There are four communication primitives to be handled: Send, Send&Receive,
Receive, and Reply. Each of these actions references a certain partner. In
order to ensure that only one action by a partner is active at the same time,
all communication actions are enclosed in synchronized-blocks using a lock for
the corresponding partner. The next transformation introduces these locks.

Transformation 12 (Communication Locks) For each partner, a field is
generated in the implementation. The field has the name of the partner prefixed
with ’lock ’; has an Object type and is directly initialised.

The SMM actions Send and Send&Receive model a call from the participant
to the outside. A send might have input parameters which are SMM right-hand
sides; a send&receive may additionally have return parameters which are SMM
left-hand sides; both can be converted as shown above. Thus, the transformation
step only consists of generating the call:

Transformation 13 (Send and Send&Receive) Both Send and Send&Re-

ceive SMM actions are converted to Java method calls on the field correspond-
ing to the partner. Each parameter is converted as shown in the right-hand side
transformation step. In case of a Send&Receive, the result of the method call is
assigned to the appropriate variable or property as shown in the left-hand side
transformation step. The method call is enclosed in a synchronized-block using
the appropriate partner lock.

An example for transforming a Send from the SMM to Java is shown in
figure 6.20 and listing 6.18.

A Receive action requires the participant to wait for an incoming message.
Handling a receive thus requires adding code for a) waiting for the barrier in the
scope runnable, b) waiting for the barrier in the implemented service method,
and c) performing the data assignment in the barrier runnable. An example of
the converted code has already been given in listing 6.15 on page 243.

Transformation 14 (Receive) In the run() method of the current execution
scope, an await call for the receive barrier is placed. In the provided method for
the receive, parameters of the method are stored in the barrier runnable using
setArguments(), and the second await call for the barrier is added. Finally,
the arguments are retrieved using getArguments() in the run() method of the
barrier runnable, and stored as appropriate in a variable or property. The body
of the provided method for the receive is enclosed in a synchronized-block using
the appropriate partner lock.

6.4. SMM TO JAVA 249

Figure 6.20: SMM2Java: Send (SMM)

synchronized(lock required) {
partner required.sendDocument((Document) getVariable(”var”));
}

Listing 6.18: SMM2Java: Send (Java)

A Reply action is used to answer a call received in a previous receive action.
It requires an additional reply barrier: The scope runnable needs to wait for the
reply barrier upon encountering the reply, and the implemented service method
needs to wait for the reply barrier after the receive barrier has been passed.
Thirdly, as in the case of receive, the reply barrier runnable needs to handle the
data. The code therefore looks similar to the one given in listing 6.15 on page
243.

Transformation 15 (Reply) In the run() method of the current execution
scope, an await call for the reply barrier is placed. In the provided method
for the receive associated with the reply, the second await method call is placed
after the receiving code; after the await call, a return statement is added with the
arguments retrieved by using getArguments() on the reply runnable. Finally,
in the run() method of the reply barrier runnable, the return values are retrieved
using getVariable() and stored in the runnable by using setArguments().

Primitive Structuring Actions

The group of primitive structuring actions consists of Throw, DataHandling,
Compensate, and CompensateAll.

A Throw action raises an exception which ends at least the current scope
(and sub-scopes) — possibly more, until handled. As indicated in the previous
section, throwing standard Java exception is not possible due to the nested

250 CHAPTER 6. TRANSFORMATIONS AND CODE

structure of the SMM inherited by the Java implementation. Therefore, the
generated code notes the exception and interrupts itself. The code for invoking
a service activity runnable is responsible for handling the exception, as detailed
in the next paragraph.

A DataHandling action includes a set of data statements manipulating the
variables of the participant. The statements are translated as indicated in trans-
formation step 9.

Finally, both the Compensate and CompensateAll SMM actions invoke and
wait for the compensation handler of the indicated, or all inner, scopes. Since
SMM2Java generates one runnable for each handler, such a runnable exists and
can directly be invoked in the same way as a nested activity.

Transformation 16 (Primitive Structuring Action) For an SMM Throw

element, a setException() call is placed and an InterruptedException is
thrown. For an SMM DataHandling element, the individual statements are con-
verted as shown in transformation step 9. For Compensate and CompensateAll,
one or several compensation handler runnables are started using start() and
allowed to finish with waitForEnd().

Structuring Elements

The structuring elements to be handled in this section are ServiceActivity,
Decision, Loop, and Parallel.

The transformation of ServiceActivity and its inner components has been
the subject of the discussion of most of the transformation steps above, starting
with transformation step 3 (structure of execution scopes). What has not yet
been fully discussed is the process of starting and ending the service runnable
of a service activity, in particular in combination with exception handling.

Exception handling is done by starting an exception handler, which, as usual
for execution scopes, is transformed to a runnable itself. However, a service
activity might not have an exception handler attached although an exception is
thrown. In this case, the exception is simply passed on to the next parent.

Transformation 17 (Invoking Service Activities) A service activity is in-
voked by executing the start() method of the corresponding runnable. To wait
for an activity, the waitForEnd() method is used. This method returns if the
end of the runnable is reached, but also in case of an exception in the service ac-
tivity. Thus, the method getException() is used after waitForEnd() to check
for an exception. In case an exception is found, and a corresponding excep-
tion handler is attached to the current scope, this handler is executed, again by
means of start() and waitForEnd(). In case an exception is found but no
event handler is present, the exception is propagated with setException() and
throwing an InterruptedException as shown in transformation step 16.

An example for starting a service activity and passing on an exception is
given in listing 6.19.

6.4. SMM TO JAVA 251

runnables.get(ExecutionScopes.InnerActivity).start(this);
runnables.get(ExecutionScopes.InnerActivity).waitForEnd();
if (runnables.get(ExecutionScopes.InnerActivity).getException() != null) {

setException(runnables.get(ExecutionScopes.InnerActivity).getException());
throw new InterruptedException();

}
Listing 6.19: SMM2Java: Handling Exceptions

An SMM Decision composite element models a conditional check; as a
result, only one of several possible paths of elements are executed. Each path
contains a condition which must be checked before entering the path. A decision
can be transformed naturally to Java by using an if-else statement.

Transformation 18 (Decision) A decision is converted to a Java if-else

statement. The enterCondition of the first path encountered is transformed to
a Java expression using transformation step 11 (right-hand sides) and used as
the condition for the first if statement. For all subsequent paths, another if

statement is used in the else branch of the preceding if. Note that one of the
conditions may be missing; in this case, the final else statement is employed
for the corresponding path. The children of the paths are handled one-by-one as
usual and added to the body of the if statement generated for the path.

An example for converting an SMM Decision to Java code is shown in
figure 6.21 and listing 6.20, respectively. The SMM model contains two paths;
one with an enterCondition, the other without. The send statements are not
fully specified to keep the diagram readable.

if (((Integer) getVariable(”variableToCheck”)) < 4) {
partner.sendA();
} else {

partner.sendB();
}

Listing 6.20: SMM2Java: Decision (Java)

An SMM Loop composite element models recurring behaviour. The loop
body is executed at least once; depending on an exit condition, the runnable
may step out of the loop. In Java, the do-while loop may be used for modelling
this behaviour; note that the exit condition must be negated to achieve the right
semantics.

Transformation 19 (Loop) A loop is converted to a Java do-while state-
ment. The leaveCondition of the loop is transformed to a Java expression
using transformation step 11 (right-hand sides) and used as the condition for
the while statement. The children of the loop are added within the do-while

252 CHAPTER 6. TRANSFORMATIONS AND CODE

Figure 6.21: SMM2Java: Decision (SMM)

statement. Note that a special case occurs if no exit condition is given: In this
case, the loop condition is set to true and the loop iterates until the thread is
interrupted.

An example for a loop transformation is shown in figure 6.22 and listing 6.21,
respectively.

do {
partner.sendA();
} while (! (((Integer)getVariable(”variableToCheck”)) == 4));

Listing 6.21: SMM2Java: Loop (Java)

Finally, an SMM Parallel composite element requires starting the runnables
corresponding to the individual paths and waiting for all of them to finish.
This has been already been discussed in transformation step 17 and shown in
listing 6.19.

Transformation 20 (Parallel) The paths of a parallel statement are avail-
able as execution scopes and can thus be started and stopped as discussed in
transformation step 17.

The discussion of the transformation of structuring activities concludes the
transformation from the Service Meta-Model (SMM) to the Java programming
language.

6.4. SMM TO JAVA 253

Figure 6.22: SMM2Java: Loop (SMM)

6.4.3 Semantics of SMM and Java

As in the previous transformation, the aim of the transformation from the SMM
to Java has been enabling developers to ultimately convert from UML4SOA
to code, while keeping to the semantics defined for UML4SOA discussed in
chapter 5.

We believe that the above transformation creates Java implementations
which are faithful to the MIO-based semantics. We further discuss this issue
with a simulation and tracing approach in chapter 7.

6.4.4 Case Study Example

In the following, an overview of the generated Java code for the eUniversity
case study already presented in the previous chapters is given. The static part
consists of one class implementing the behaviour (as there is only one activ-
ity attached to the ThesisManager participant) with two provided interfaces
(Student and Tutor), five required interfaces (Blackboard, Examination Office,
Graduation Service, and again Student and Tutor), four message types (Thesis,
Student, Grade, and Document) and one exception type (ThesisFailedExcep-
tion).

Furthermore, the generated code contains several helper classes mentioned
in the transformation (in particular, ServiceRunnable and BarrierRunnable).
The static structure of the converted eUniversity case study is shown as an UML
class diagram in figure 6.23.

The behavioural part of the case study, consisting of the class ThesisMan-

ager, contains eight execution scopes (ThesisManager, Main, Registration, In-
Progress, StatusEventHandler, ExceptionHandler, RegistrationCompensation-
Handler, and finally the scope for the finished interrupting receive) and seven
barriers (createThesis, acceptTopic, updateStatus, getStatus, getStatus reply,
finished, and getAssessment). The generated code consists of 322 lines and is
thus not shown here. As an example, the code for the main ThesisManager

254 CHAPTER 6. TRANSFORMATIONS AND CODE

Figure 6.23: eUniversity Case Study: Static Part in Java

service runnable run() method is shown in listing 6.22.
The full implementation may be downloaded from the links provided in

section 8.3.

6.5 Tool Support

In the previous sections, three model transformations starting from UML4SOA
have been introduced. First, the UML2SMM transformation, which transforms
from one platform-independent services model (UML4SOA) to another (the
SMM); second, the SMM2WS and SMM2Java transformations, which transform
from a platform-independent model (SMM) to platform-specific models; in the
first case, to models of the various standards of the Web Service platform; in
the second case, to a model of the Java programming language.

Describing the transformation in abstract terms is a good way of under-
standing the differences between the meta-models and therefore, the principles
behind the transformation. However, such a description is not yet executable.
This section describes the actual implementation of the three transformations
listed above, and goes one step further by generating executable code from the
generated target model instances.

6.5. TOOL SUPPORT 255

public void run() {
try {

barriers.get(Barriers.createThesis).await();
addVariable(”thesis”, new Thesis());
((Thesis) getVariable(”thesis”)).setThesisId((String) getVariable(”thesisId”));
((Thesis) getVariable(”thesis”)).setTitle((String) getVariable(”title”));
((Thesis) getVariable(”thesis”)).setDescription((String) getVariable(”description”));

partner bboard.postToBoard((Thesis) getVariable(”thesis”));
runnables.get(ServiceActivity.Main).start(this);
runnables.get(ServiceActivity.Main).waitForEnd();
if (runnables.get(ServiceActivity.Main).getException() != null) {

runnables.get(ServiceActivity.ExceptionHandler).start(this);
runnables.get(ServiceActivity.ExceptionHandler).waitForEnd();
}
} catch (Exception e) {}

setCanEnd(true);
}

Listing 6.22: eUniversity ThesisManager ServiceRunnable

6.5.1 Transformation Architecture

The model transformations described above are based on EMF models and their
corresponding Ecore meta-models. Ecore is the EMF equivalent to EMOF,
i.e. the root meta-model in which EMF itself and all EMF-derived meta-models
are described. There are seven meta-models in use in the transformations:

� The source meta-model of the UML2SMM transformation is the UML2
meta-model. The actual meta-model implementation used in the transfor-
mation is the EMF-based implementation of the Unified Modeling Lan-
guage (UML) 2 OMG meta-model for the Eclipse platform. The model is
provided by the Eclipse Model Development Tools (MDT) [Ecl10c] project.
This meta-model is a complete implementation of the UML2 standard and
thus includes all static and behavioural elements of the UML.

� The target meta-model of the UML2SMM transformation, which is also
the source model of the SMM2Java and SMM2WS transformation, is the
SMM meta-model which underlies modelling, analysis, and code genera-
tion in this thesis and has been described in section 4.

� The target meta-model of the SMM2Java transformation is the MoDisco
EMF model [Ecl10e]. The MoDisco Java meta-model it a reflection of the
Java language, as defined in version 3 of the Java Language Specification
[GJSB05].

� Finally, there are several target meta-models in the SMM2WS transfor-

256 CHAPTER 6. TRANSFORMATIONS AND CODE

Figure 6.24: Transformation Tool in Eclipse

6.5. TOOL SUPPORT 257

mation. Being part of the Web Service family of standards, BPEL closely
integrates with the Web Service Definition Language (WSDL), the XML
Schema Language (XSD), extensions to WSDL (Partner Link Specifica-
tions and Correlation Property Specifications) as well as the SOAP and
WS-Addressing standards. The corresponding meta-models are provided
by the Eclipse Web Tools Platform [Ecl10j] (WSDL, SOAP), the Eclipse
Modelling Tools (XSD) [Ecl10c] and the Eclipse BPEL project (BPEL)
[Ecl10g].

Recalling from chapter 2, a model transformation translates between two
models. Additional steps are required for acquiring the source model from its
native representation and emitting the code corresponding to the target model,
as shown in figure 2.12 on page 39.

Each of the meta-models provided by the various projects listed above pro-
vide deserialisation- and serialisation support as required for the model transfor-
mations. The former is relevant for the transformation sources: The UML2SMM
and SMM2Code transformations must be able to read the source model in-
stances from a stored representation. In both cases, this is a specific XMI
format defined by EMF.

The latter is relevant for the transformation targets: Here, the aim is creating
the actual (source) code of a model instance. In the case of Web Services, for
example, the serialisation is provided in the (XML-based) BPEL language and
its required elements (WSDL, XSD, WS-Addressing, etc.). In the case of Java,
the serialisation creates actual Java code; the MoDisco model employs a model-
to-text transformation written in the Model to Text (MTL) [OMG08b] language
defined by the OMG and executed by Acceleo [Ecl10h] to emit Java code.

In most cases, the user of these transformations is not interested in the
technical details behind the scenes. Thus, the transformation tools have been
integrated into the Eclipse platform where they can be invoked on the relevant
input UML artefacts, directly generating Web Service or Java code. This is
discussed in the next section.

6.5.2 Tool Integration

The transformation steps between two instances of the corresponding meta-
models shown in the middle of figure 2.12 are implemented as Eclipse plug-ins,
and thus contribute their functionality to the Eclipse workspace.

Thus, starting from a .uml file inside the Eclipse workbench, developers
can select the targets BPEL and Java, and additionally (for testing purposes),
the SMM. Upon selecting a target, the developer is presented with a choice of
which participants and behaviours to convert. Selecting OK then transforms
the artefacts; the result is shown in the workspace as well and can be opened
for inspection by the user.

An example of the UI is shown in figure 6.24. On the left-hand side, the
resource explorer is shown with several .uml files; on one, the transformation
has been invoked. In the centre, the selection dialog is shown which enables

258 CHAPTER 6. TRANSFORMATIONS AND CODE

users to select individual participants or behaviours from the model. In the
background, a converted Java file is shown.

The transformation plug-ins are available online. The corresponding links
can be found in section 8.3.

6.6 Related Work

As the UML4SOA profile is a product of this thesis, there is expectedly no
related work which describes transformations from UML4SOA to executable
code. However, there are two interesting related areas which we would like to
present here.

First, Chapter 3 has already mentioned some alternative UML profiles for be-
havioural SOA modelling, some of which have model transformations attached.
These are discussed again, with a focus on transformation, in section 6.6.1.

Second, there are a number of related transformations which can be used
in combination with the MDD4SOA transformers. Two concern the related
Sensoria profiles discussed in section 3.5.2; two have been written as follow-
ups to the transformations of MDD4SOA. These are listed in section 6.6.2.

6.6.1 From SOA UML Profiles to BPEL

In this section, we discuss UML-based profiles with support for behavioural
modelling of service behaviour and transformation support. This is a subset of
the profiles discussed in section 3.5.

The first explicit attempt of converting a UML-based SOA structure with
behaviour to BPEL known to us is the work of Skogan et al. [SGS04]. The
transformation from workflow to BPEL is an XSLT transformation. It explicitly
addresses communication between services; however, higher-level concepts such
as compensation, exceptions, or events are not mentioned.

The UML-S profile [DNsmGW08] was also extended with transformation
support. In [DGW08], the authors have provided an overview of rules for trans-
forming UML-S behaviour to BPEL. The focus lies again on workflow patterns;
communication and again more complex constructs such as compensation and
events are not addressed. Also, tool support is not mentioned for this transla-
tion.

In their work on a UML2 profile for service modelling [EK07], Ermagan
and Krüger mention transformations as a possible way of realising the UML
behaviour, but no further elaboration is made.

Finally, the BPEL-specific profiles mentioned in section 3.5 also include
transformation support. The first profile [AGGI03] can be mapped to WSDL
and BPEL by using the (commercial) products Rational Rose and Rational
XDE. The document lists compensation as future work. However, a follow-up
diploma thesis lifts the profile up to BPEL 2.0 and provides a complete trans-
formation using non-commercial technology.

6.6. RELATED WORK 259

The second profile [Man03] also includes transformation support; however,
it is only shortly described and tool support is no longer available.

The approach by Li et al. [LZP09] discusses automated generation of BPEL
from UML sequence diagrams annotated with BPEL-like stereotypes. The pro-
cess starts with a WSDL file which is used as the functional description of each
service. As the sequence diagram may contain more than two life lines, it is
possible to get a more global perspective than using activity diagrams. The
paper does not mention faults, events, or compensation.

In general, however, the basic problem of these profiles discussed in chapter 3,
i.e. their closeness to BPEL, remains.

It should be noted that we do not know of any other attempts to transform-
ing behavioural SOA models directly to plain Java. Still, we believe that this
compiler-approach is an interesting topic and should be investigated further.

6.6.2 Related Transformations

Two of the additional Sensoria profiles discussed in section 3.5 enjoy transfor-
mation support. The first is the non-functional properties extension; the second
is the architectural modes extension.

With respect to non-functional properties, NFP-enriched UML models can
be used to automatically generate Quality of Service (QoS) artefacts for the Web
Services family of standards, which is shown in [GGK+10]. The transformations
handle reliable message communication and security in service-oriented systems,
and include both the generation of a WS-Policy-compliant descriptor (with links
to WS-Security and WS-Reliable Messaging), as well as platform-dependent
configuration files for middleware platforms such as Apache Sandesha.

The second profile deals with service modes, which describe different archi-
tectural configurations of a SOA-based software system. A transformation is
available [FUMK08] which generates a series of dynamic service brokering re-
quirements and capability specifications for the service broker Dino [MDEK95].
The functional description of a service taking part in a mode is described using
OWL-S; the constraints for service brokering which includes QoS attributes is
described in an XML document to be read by Dino.

The Sensoria project has included several case studies, among them the
finance and the automotive case study, which have been introduced by two sep-
arate companies (s&n and Cirquent, respectively). Each company deals with
different target platforms; the first with the ActiveBPEL engine [Act10], the
second with the JBoss jBPM application server [JBo10]. Both, however, have
faced the problem of adding user interactions (i.e. a human component) to the
BPEL processes generated by MDD4SOA. Thus, two transformations have been
written which take the generated BPEL output from the MDD4SOA transform-
ers as input and provide a human-enabled, container-specific version as output.

Each transformation solves the above problem by adding a dedicated Web
Service as an intermediary between the user and the business process; in each
case, a web-based UI is created for user interaction. Several activities are added

260 CHAPTER 6. TRANSFORMATIONS AND CODE

to the original business process which enable communication between the inter-
mediary and the business process itself.

The first of these transformations is the ActiveBPEL transformation created
by Cirquent for the automotive case study [XK09] of Sensoria. It includes the
ViewManager, a service-side program to coordinate the BPEL process and the
user interfaces. The transformations adds a series of invoke and reply statements
to the main BPEL process which allows it to interoperate with the ViewManager.
Note that the ViewManager is tied to the ActiveBPEL engine as it has access to
and depends on the receive queue of the BPEL process for deciding what to show
next in the UI. The transformation also includes the generation of deployment
artefacts for the ActiveBPEL engine.

The second transformation is the task manager service transformation cre-
ated by s&n for the finance case study [ES09] of Sensoria. A task system
[Lin06] is used to bridge the gap between users and BPEL process, which is
based on tasks which are made available to and need to carried out by humans
via a Web site. A dedicated Web Service — the TaskService — is used im-
plement this bridge. The task service is specifically generated for each BPEL
process and, as the name suggests, is bound to a Web site on which the different
tasks are displayed and thus available for completion by various kinds of users
(such as a customer, a clerk, or a supervisor). Again, the original BPEL process
is extended with invoke and reply statements for keeping the task manager up
to date. Like before, the transformation includes the generation of deployment
artefacts for the jBoss application server.

As noted above, the last two transformation discussed go beyond what has
been provided by the MDD4SOA transformers: We have left the issue of human
interaction open, as it does not directly affect the service specification. Thus,
these two transformations give a good insight on how one might proceed in an
automated way from the artefacts generated by MDD4SOA.

6.7 Summary

This chapter has introduced the code generation part of model-driven devel-
opment with UML4SOA, which enables UML4SOA modellers to automatically
convert their models to either the Web Service technology stack (which includes
BPEL, WSDL, and XSD artefacts) or the Java programming language.

The first section (section 6.1) of this chapter has discussed the use of model
transformations for converting UML4SOA models to source code. Transform-
ing models from UML4SOA to standard executable target languages provides
some challenges: the static, behavioural, and data handling parts need to be
considered. As UML4SOA has the backing of the Service Meta-Model (SMM)
introduced in chapter 4, the transformations have been split into two parts;
first parsing the UML source model into an instance of the SMM and only then
moving on to the target languages.

In the following, three model transformations have been discussed. First,
section 6.2 has introduced the UML2SMM transformation, whose main focus

6.7. SUMMARY 261

is recognising patterns in the UML4SOA activities and partitioning the service
activities to create a well-nested, ordered structure to be represented in the
SMM. Furthermore, this transformation deals with parsing data statements,
converting them to an instance of the AST-like SMM data part.

Section 6.3 has shown a transformation from the SMM to the Web Service
family of standards, which includes BPEL, WSDL, XSD, and accompanying
standards. While the main structure of the SMM and BPEL is quite similar, a
lot of detail in handling the individual artefacts is required in this transformation
to ensure executability by a BPEL engine. Furthermore, some of the concepts
of the SMM are non-existant in BPEL and must be added manually.

The third transformation SMM2Java has been discussed in section 6.4. As
Java is an object-oriented language without built-in SOA support, an adequate
transformation concept has been introduced first. The transformation uses this
concept, which is based on threads, thread nesting, and barriers, to create an
appropriate representation of SMM participant behaviour in Java, staying true
to the spirit of the SMM but using as many natural Java concepts as possible.

Afterwards, section 6.5 has given a short overview of the tool support for
the transformations described and their integration into the Eclipse workbench.
Each transformation is fully implemented and executable.

Finally, section 6.6 has discussed related work.

262 CHAPTER 6. TRANSFORMATIONS AND CODE

Chapter 7

Simulation and Tracing

In this chapter, we investigate the runtime behaviour of UML4SOA participants
based on the generated Java code introduced in chapter 6, comparing this be-
haviour to the MIO-based semantics of UML4SOA shown in chapter 5. We are
thus addressing the fourth contribution area of the MDD4SOA approach shown
in figure 1.1 (introduction chapter, page 3): Simulation based on the generated
code on the right-hand side as well as trace annotation from the generated code
to the formal model.

The chosen approach is based on simulation, tracing, and trace comparison.
Firstly, we introduce an automated testing environment which allows direct ex-
ecution of the generated code and thus also the UML4SOA and SMM models.
An execution generates a trace consisting of send and receive events as they
occur during runtime. Through the introduction of latency, the execution time
is stretched at various points, thus simulating different load conditions. A mul-
titude of such traces is generated to ensure a high coverage of the generated
code.

Secondly, the generated traces can be used to gain insight into the runtime
behaviour of the code: The series of events present in a trace can be anno-
tated on the formal model by symbolically executing the corresponding modal
input/output automata. This yields statistical information on how the paths
present in the automata are actually used during runtime. Additionally, this
information can also be used for validating the implementation.

An overview of our approach is given in section 7.1. Simulation and the
generation of an automated testing environment is discussed in more detail in
section 7.2, followed by tracing and trace annotation on the formal semantics in
section 7.3. We apply our approach to the eUniversity case study in section 7.4.
Tool support for both simulation and annotation is discussed in section 7.5, and
a summary is given in section 7.6.

Published results: The results presented in this chapter are original and have
not been published before.

263

264 CHAPTER 7. SIMULATION AND TRACING

7.1 Introduction

This chapter introduces a method for automatically executing the generated
code of a participant behaviour, and using trace information from such exe-
cutions for understanding and comparing the runtime behaviour against the
formal semantics.

First, an automated testing environment is used for creating a trace of events
which each denote a sending or receiving operation in the code. Second, this
trace can be compared with the formal semantics of the corresponding partici-
pant behaviour, yielding information about how the paths of the automata are
actually used during runtime. This also allows validation of the code against the
formal semantics: If the trace can be consumed by the automata, the execution
of the generated code conforms to the specification; else, it does not.

Figure 7.1 shows the simulation and tracing approach.

Automated Testing Environment

MIO
Automata

Partner

Partner

Partner

Partner

Participant
Behaviour

Trace Annotation

Trace

Figure 7.1: Simulation and Tracing Approach

The approach consists of three main components:

� Firstly, the generated code needs to be executed. We thus introduce an
automated testing environment which is able to call and receive operations
of the participant behaviour by simulating any external partners attached
to the behaviour.

� Secondly, the generated code will need to keep a record of its activities,
i.e. write a trace of events occurring in the code.

� Thirdly, we can compare the generated traces to the modal/input out-
put automata representing the semantics of the behaviour with a trace
comparison component.

7.1. INTRODUCTION 265

As each individual trace only represents one path through the executed code,
it is furthermore important to generate many different traces to achieve a high
coverage of the generated code. A common way of achieving different traces in
testing of concurrent systems is artificially slowing down the implementation,
creating arbitrary latency at different places to elicit different behaviour (or at
least, different code paths taken). We use this technique in our approach as
well.

Our simulation and tracing approach has several benefits for developers of
SOA systems using the MDD4SOA approach:

� Firstly, the automated testing environment — which is automatically gen-
erated from the model — can be directly started and thus employed to
test the model, thus following the basic idea of the model-driven approach.
The testing environment can not only be used for testing the generated
code, but also changes to the code as well as completely custom imple-
mentations.

� Secondly, results from such an execution — in the form of observed be-
haviour or in form of a trace — gives feedback to the developers which
can be used to improve the model. In particular, traces can be compared
against the formal model, which yields information about which parts are
used in the implementation.

� Finally, the trace annotation approach can also be used to validate any
executed code, as it yields an error if a trace can not be consumed by the
modal input/output automata.

We have chosen the Java implementations generated by SMM2Java for our
simulation approach. Java is a good choice for this approach for the following
reasons:

� With Java being an object-oriented language, all SOA aspects have been
implemented on top of the language. The implementation thus directly
follows the semantics of the SMM and UML4SOA.

� The Java implementation is very flexible with regard to adding statements
required by the approach, such as logging statements for denoting events
as they occur.

� The tools used to implement the approach — the SMM2Java transformer
and the Mio Workbench — are based on Java and Eclipse, and the result-
ing code may be run within Eclipse as well. Thus, we get integrated tool
support for all steps.

In the following, we first discuss the simulation aspect of the approach.
Afterwards, we introduce trace generation and comparison, i.e. a method for
checking the generated traces against the formal semantics.

266 CHAPTER 7. SIMULATION AND TRACING

7.2 Simulation

The simulation aspect of our approach is made possible by the generation of
an automated testing environment which is able to execute the participant be-
haviour. As this behaviour expects calls from its partners on provided interfaces
and sends out calls to required interfaces, the testing code must be able to invoke
the operations offered by the participant as well as be available for invocations
from the participant. Thus, the testing environment must implement all part-
ners of the participant.

As the aim is the complete execution of the participant, the testing envi-
ronment must also follow the communication rules which are specified as pro-
tocols of the partners of the participant. Thus, contrary to the transformation
of participant behaviour from the SMM to Java, we now face the challenge of
transforming service protocols to Java as well. As each partner is fundamentally
independent from all others, they should be executed in parallel, each following
its own generated representation of the ServiceProtocol state machine given
in the SMM.

In each state, the partner may be faced with one of three situations: Either
the partner needs to invoke an operation, receive an operation, or do both:

� Send State. The state may have only outgoing send actions for the part-
ner. In this case, the implementation can freely (and non-deteministically)
decide which transition to take.

� Receive State. The state may have only incoming receive actions for the
partner. In this case, the implementation waits for one of the messages
to arrive. To avoid waiting forever, a timer is necessary which aborts a
receive after a certain time, leading to an error.

� Mixed States. In case both send and receive transitions are possible, the
partner must be able to receive a call. The partner may also decide to
arbitrarily send out a message, in which case the receiving process will be
aborted.

Note that as all protocols are seen from the point of view of the partici-
pant, the transition roles are inverted: A ReceivingTransition leads to a send
operation in the partner, while SendingTransition leads to a receive.

Besides the actual implementation of the protocol state machines, the testing
environment must also include statements for starting and stopping partners,
and for connecting the participant code with the environment.

As mentioned above, single traces generated from an execution only repre-
sent individual paths through the executed code. To achieve a more thorough
picture of the possible traces, a large number of traces must be generated; each
run should furthermore ideally elicit different behaviour from the code. There
are two ways in which we can change the path through the generated participant
behaviour:

7.2. SIMULATION 267

� Firstly, as indicated above, the implementation may be slowed down by
introducing latency at various points in the implementation. Latency
should be chosen non-deterministically in each execution; thus, each run
exhibits different timings, increasing the chance for execution of a different
path. We add latency by means of wait statements.

� Secondly, participant implementations may also exhibit different behaviour
based on different input data. This touches the area of test case genera-
tion and model-based testing, which lies outside our focus. We thus have
opted to simulate only one set of data, which consists of the default data
values of Java (for example, 0 for an integer, true for a boolean, and
a new instance of more complex types). If other paths are necessary, the
testing environment needs to be adapted by hand.

The testing environment may be generated from the SMM with the following
transformation steps. The first creates the central simulator class and initialises
the partners.

Transformation 21 (Testing Environment) For each behaviour of a Par-

ticipant, a simulator class is created. The class carries the same name as
the behaviour with the Simulator suffix. It contains a main method which in-
stantiates the class and invokes the start method. The start method in turn
initialises the behaviour class in a field, and starts a thread for each partner
(with the partner runnables, see below).

The partners are bootstrapped by executing the following step for each part-
ner of the participant to which the behaviour is attached:

Transformation 22 (Simulated Partners) For each partner of the current
participant, a) an enum is created, containing the states in the corresponding
partner protocol, b) a currentState field is created for the current state value,
and c) a queue is created for incoming messages for this partner.

We need to ensure that we are able to receive all messages sent to the testing
environment as well as sending all possible messages out of the testing environ-
ment; thus, a method for each send and receive is created. The former reside
in the simulator class, the latter in anonymous class implementations of the
corresponding partner required interface.

Transformation 23 (Send Methods) For each implemented method of a pro-
vided service and each used method of a required service, a method with the
operation name and a send prefix is created in the simulator class. The send
method invokes the corresponding method on the actual participant class field.

Transformation 24 (Receive Methods) For each partner which has a re-
quired interface, an anonymous subclass of this interface is created and stored
in a field. Inside the subclass, all methods of the interface are implemented.
Each method stores the operation call name in the queue of the corresponding
partner.

268 CHAPTER 7. SIMULATION AND TRACING

We can now turn to the actual implementation of the partners. As said
above, each partner is implemented as a thread; thus, a runnable is created for
each partner, which contains a loop and a switch over all states.

Transformation 25 (Partner Runnables) For each partner, a runnable is
created. The run method uses a while loop with a switch statement to select
the current state. Each case decides what is to be done based on the outgoing
links of the current state; the loop is left if a state has no outgoing links.

In each case, we add a wait statement which introduces an arbitrarily se-
lected latency1.

We have discussed the issue of three different state types above. These are
converted as follows.

Transformation 26 (States) For each state in a partner state machine:

� If there are only outgoing sends, one is picked non-deterministically. The
corresponding operation is called and the next state is selected.

� If there are only incoming receives, we wait for one of them to arrive, thus
advancing to the next state. If a timeout occurs while waiting, or a wrong
message is received, the partner thread is closed.

� In mixed states, we again wait for incoming receives. During the wait-
ing time, the implementation may decide non-deterministically to send a
call instead. In both cases, the impementation moves to the next state as
indicated by the corresponding transition.

� In case a state does not have any outgoing links, the partner thread is
closed.

This concludes the generation of the automated testing environment. The
simulator class can now be directly started; it will interact with the generated
participant behavioural implementation. Due to the generated timeouts, the
testing environment will terminate in any case, which includes both normal
situations (for example, optional messages may not arrive) and error situations
(wrong message order, or exception).

As an example, listing 7.1 shows the code for a part of an eUniversity partner
(student). In State 1 working, the partner sends out a message — either
updateStatus or finished. The state moves to State 1 working in the first
and State 2 finishing in the second case.

In State 2 finishing, a receive is shown: We need to wait for a message
(assessmentComplete) to be received. In case it does not arrive in time (tim-
out), an error is reported. If the wrong message arrives, an error is reported,
too (protocol breach).

1In our implementation, latency lies between zero and one seconds.

7.2. SIMULATION 269

enum States student { State 0 started, State 1 working, State 2 finishing, State 3 done }

Runnable partner student= new Runnable() {
public void run() {

partner state student = States student.State 0 started;
while (true) {

switch (partner state student) {

...
case State 1 working:

SimHelper.waitRandom();
int rnd = new Random().nextInt(2);
switch (rnd) {

case 0:
send updateStatus();
partner state student = States student.State 1 working;
break;

case 1:
send finished();
partner state student = States student.State 2 finishing;
break;
}

break;

case State 2 finishing:
SimHelper.waitRandom();
int timer finishing = 0;
while (queue student.peek() == null

&& timer finishing <= TIMEOUT)
timer finishing += SimHelper.waitRandom();

if (timer finishing > TIMEOUT)
// return with error (timout)

String msgReceived finishing = queue student.poll();
if (”assessmentComplete”.equals(msgReceived finishing)) {

partner state student = States student.State 3 done;
break;
}

// return with error (wrong message)

...
case State 3 done:

return;
}
}
}
}

Listing 7.1: Simulation: Testing Environment Code

270 CHAPTER 7. SIMULATION AND TRACING

7.3 Tracing

To be able to gain information from the execution of the behaviour, we need to
log the series of events handled within the service behaviour. Second, we can
use this information for comparison with the formal model. We discuss each
step in turn.

7.3.1 Generating Traces

Trace generation is made possible by the addition of logging statements to all
send, receive, reply, and send&receive actions in the generated code. During
this process, additional opportunity for different execution paths can be created
by adding latency-generating statements to the implementation as well.

Chapter 6 has already introduced transformation steps for generating the
individual communication actions mentioned above. We can extend them here
to emit trace logs and add latency. This touches transformation steps 13, 14,
and 15. The first and the second two are extended as follows, respectively:

Transformation 27 (Send and Send&Receive) Before the Java method
call on a partner, a trace statement is added which stores the current time,
partner, operation (send) and message sent in an appropriate place for later
retrieval. In case of a send&receive, another trace statement is added after the
method call which denotes the return of the method. The second trace statement
thus stores a receive event. Furthermore, a wait statement is added to simulate
latency.

Transformation 28 (Receive and Reply) For receive and reply operations,
barriers are used in the implementation. In each barrier, a trace statement is
added which stores the current time, partner, operation (receive) and message
received in an appropriate place for later retrieval. Finally, a wait call is added
again.

Having trace statements in place generates a series of trace messages for
each run of the environment. Each trace message either denotes a message sent
or received. An example of a trace (taken from the eUniversity case study) is
shown in listing 7.2: Each trace event is annotated with time, event, partner,
and the operation sent or received.

7.3.2 Trace Comparison

Each run of the testing environment yields a trace of send and receive events with
attached messages. The message order can now be compared with the modal
input/output automata (MIO) which defines the semantics of the corresponding
participant behaviour. This is done by symbolically executing the automata
with a trace annotation algorithm. The algorithm begins in the start state of
the automaton with the first event in the trace, and proceeds as follows:

7.3. TRACING 271

17:02:33:698:RECEIVED:tutor:createThesis
17:02:33:700:SEND:bboard:postToBoard
17:02:34:329:RECEIVED:student:acceptTopic
17:02:34:329:SEND:bboard:removeFromBoard
17:02:34:331:SEND:eoffice:thesisStarted
17:02:34:331:SEND:gservice:registerForGraduation
17:02:34:332:SEND:tutor:thesisInProgress
17:02:34:378:RECEIVED:student:updateStatus
17:02:34:758:RECEIVED:student:finished
17:02:34:758:SEND:tutor:getAssessment
17:02:34:758:RECEIVED:tutor:return getAssessment
17:02:34:759:SEND:student:assessmentComplete
17:02:34:759:SEND:eoffice:thesisPassed

Listing 7.2: Example Trace

� In each state, the outgoing transitions which can handle the current event
are identified. There may be more than one — for example, an internal
transition and a receiving transition with the same operation name as an
receive event might be possible. In this case, one transition is chosen non-
deterministically2. If the chosen transition option is later found to lead to
an error state, the next one is chosen.

� The transition is taken, i.e. the current state moves to the target state
of the transition. If the transition is external, the next element from the
trace is selected; otherwise, the current trace element stays the same. The
algorithm continues recursively with the new state and trace element.

� Aborting conditions:

– If the end of the trace is reached, the execution was successful. A list
of executed transitions is returned.

– If a state does not have outgoing transitions, or none matches the cur-
rent element, the algorithm returns to the previous level and chooses
the next possible path.

– If all options are exhausted without reaching the end of the trace,
an error is reported along with an error situation, i.e. a path taken
which leads to a situation where an event cannot be consumed.

Symbolically executing the automata can either be successful (i.e., all mes-
sages can be consumed by the automata) or not (i.e., one message is not possible
in a certain state). While the former indicates that, for this trace, the implemen-
tation in Java conformed to the semantics, the second indicates that a certain
trace was possible in the implementation although not allowed by the semantics.

2Enumerating all possible ways through an automaton yields too many paths, even with
small examples.

272 CHAPTER 7. SIMULATION AND TRACING

Note that a successful execution does not prove that the implementation is free
of errors; however, it does provide some empirical evidence.

The output of the trace annotation algorithm is a path through the automa-
ton, which consists of alternating states and transitions. Later, this path can
be shown as a graphical annotation on the automaton — in case the trace was
not fully consumed, including the information about an event which was not
possible in a certain state.

We can now refer back to the trace shown in listing 7.2, which is an example
of a successful trace. A graphical representation of (parts of) this trace is shown
in figure 7.2: The corresponding path has been selected and is drawn in red; all
others are merely possible options which have been ignored.

Figure 7.2: Trace Annotation

In case the trace includes a problematic sequence, the annotation is done as
far as possible (i.e., until the first non-solvable situation). For example, consider
switching the finished / getAssessment calls in the listing above. In this case,
the annotation would end at state 11, indicating that getAssessment was not
possible in this state.

7.4 Case Study

We have applied the simulation and tracing approach to the eUniversity case
study. Generating the code for the case study yields 480 additional lines of

7.5. TOOL SUPPORT 273

code for the simulator class as well as 16 additional log- and wait statements,
respectively, in the actual participant code.

As mentioned above, the generated code contains only primitive handling
of data, i.e. newly created instances of each message type. However, the eUni-
versity participant behaviour has two possible paths, depending on which grade
the tutor selects. We have thus adapted the testing environment code into two
versions: The first version gives a grade of 1 (which is smaller than 4), the
second of 5 (which is larger than 4 and means the student has failed). We have
then generated 104 traces of each version, and have annotated these traces onto
the MIO representation of the participant shown in figure 5.8 on page 159.

The annotation has shown no errors. A statistical analysis of the executed
transitions shows that all transitions except for the final one (which is a techni-
cal transition showing that the compensation handler was executed) have been
executed at least once. Some of the transitions — in particular, the initial ones
and the getAssessment call to the tutor — have been executed in each trace,
and thus 2 · 104 times. Within the InProgress scope, numbers vary as the
updateStatus call as well as the getStatus and return getStatus transitions
are optional, and there are multiple transitions for each event due to inter-
leaving and the event handler loops. We have annotated the statistical result
graphically in figure 7.3: Each transition is associated with a color from red to
blue. Full red indicates a hot transition (i.e., executed every time) while full
blue indicates a cold transition (i.e., never executed); these are combined in 23
gradations.

7.5 Tool Support

Simulating Java code and comparing the result on MIOs is made possible by
extensions to the SMM2Java transformer introduced in chapter 6 as well as the
Mio Workbench introduced in chapter 5.

Firstly, the SMM2Java transformer includes both the transformations steps
discussed in sections 6.4 and section 7.2. The UI for the transformer allows to
enable the generation of the automated testing environment, which means cre-
ating a simulator class as well as the necessary logging- and latency statements
in the actual implementation.

Secondly, the Mio Workbench includes a graphical view of a MIO which can
be extended with trace annotations. The Mio Workbench is able to read both
single trace files as well as entire directories of traces. In the first case, the trace
is annotated on the view; if the trace contains invalid actions this is shown to
the user in a dialog box. In the second case, all traces are checked versus the
automata. In case all traces are valid, a statistics file is generated; otherwise,
the first problematic trace is annotated onto the MIO representation.

A screenshot of the Mio Workbench with an annotated trace is shown in
figure 7.4.

274 CHAPTER 7. SIMULATION AND TRACING

createThesis?

acceptTopic?

removeFromBoard! registerForGraduation!

compInstalled(Registration);

thesisInProgress!

getAssessment!

return_getAssessment?

thesisFailed!

throw(ThesisFailedException);

unregisterFromGraduation!

compHandled(Registration);

loop;

updateStatus?

loop;

getStatus?

return_getStatus!

updateStatus?

loop;

loop;

loop;

updateStatus?

return_getStatus!

finished?

return_getStatus!

getStatus?

getStatus?

finished?

finished?

finished?finished?

finished?

postToBoard!

thesisStarted!

assessmentComplete!

thesisPassed!

0

1

3

5

6

7

8

9

12

18

23 24

25

2627

15

10

11

17

21

14

2

4

22

Figure 7.3: eUniversity Full Trace Annotation

7.6. SUMMARY 275

Figure 7.4: Trace Annotation in the Mio Workbench

7.6 Summary

This section has introduced an approach to simulation and tracing of generated
Java implementations of SMM models, and thus, in turn, of UML4SOA models.
Furthermore, we have shown how to compare traces to the automata of the
MIO-based formal semantics.

We have begun by discussing the generation of an automated testing envi-
ronment in addition to the actual participant behaviour which is based on the
protocols associated with each partner of the participant and executes different
paths in the implementation by employing non-deterministically chosen send
operations as well as the introduction of latency (section 7.2). The testing en-
vironment can be used on the generated code, but also on manually created or
changed code.

Secondly, we have discussed how to augment the participant behaviour itself
with logging statements such that an execution of the behaviour produces an
output trace, and how to add additional latency to the implementation.

In section 7.3, we have discussed how to symbolically execute an automaton
given a trace, which yields a path through the automaton. This path yields
information about actually executed transitions of the automaton, and can also

276 CHAPTER 7. SIMULATION AND TRACING

be used for validating the behaviour of the code.
Our approach has several benefits for developers. Firstly, the testing envi-

ronment provides the ability to directly execute the generated code and thus an
UML4SOA model. The testing environment can also be used for checking man-
ual changes, or completely custom implementations. Secondly, trace generation
allows developers to understand how the implementation proceeds through the
different paths of the corresponding automaton at runtime. Finally, the traces
can also be used to validate the code against the semantics.

We have applied the approach to the eUniversity case study in section 7.4 to
show how the generated code compares to the MIO semantics, which has shown
that all parts of the automata are in fact used during runtime, and no errors
occur with regard to the semantics. Finally, we have shown how the MDD4SOA
tools have been extended to deal with simulation and tracing (section 7.5).

Chapter 8

SOA Tooling for SOA
Software

Developing service-oriented software involves dealing with multiple languages,
platforms, artefacts, and tools. In the previous chapters, we have introduced
tool support for the concerns of modelling, analysis, and code generation. How-
ever, when considering the complete software development process, additional
tasks like policy specifications, artefact integration, deployment, and runtime
support need to be considered. There are tools available from both academia
and industry for addressing these concerns.

A tooling platform specifically targeted at the integration of tools for the
service-oriented development process can provide support for developers to find,
use, and combine all of these tools. In this chapter, we introduce the Service
Development Environment (SDE), a service-oriented tooling platform for de-
veloping service-oriented software. The SDE does not only include the tools
discussed in this thesis or developed within the Sensoria project, but also ex-
ternal tools from both academia and industry. It is furthermore based on the
Eclipse platform which ensures interoperability with a wealth of other tools.

In section 8.1, an overview of tool integration for SOA development and the
support by the SDE is given. Section 8.2 details the design of the integration
platform. In sections 8.3 and 8.4, we give an overview of tools (specifically cre-
ated for MDD4SOA; and additional ones) integrated into the SDE. Section 8.5
shows examples of how tools can be orchestrated to perform in collaboration.
Finally, section 8.6 discusses related work, and section 8.7 concludes the chapter.

Published results: Results presented in this chapter are based on publications
[MB07], [MRH08], [MR10], [FM08], [WHK+08], [WHA+08], and [AKCF+08].
Furthermore, the SDE is a result developed as an answer to one of the main Sen-
soria research objectives (comprehensive tool support) and has been reported
in several technical reports, brochures, and presented at fairs.

277

278 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

8.1 Integrating Tools for SOA Development

The success of the Service-Oriented Architecture (SOA) [Erl05] in both industry
and research has resulted in a growing need for tool support for developers of
services and service-based systems. Specific support for developing SOA systems
is beneficial in all phases of the development process, ranging from modelling
to runtime, from analysis to implementation.

The previous chapters have introduced tool support for three important
areas in the development of service-oriented software systems:

� Chapter 3 has introduced a UML profile for modelling the behaviour of
SOA systems, including support for two industry-standard modelling tools
(MagicDraw and Rational Software Artefact).

� Building on these specifications, chapter 5 has introduced formal analysis
support for UML4SOA models by means of a transformation tool to the
domain of modal input/output automata, and the Mio Workbench for
the verification of the transformed models. Additionally, tool support for
re-annotation of UML models has been discussed.

� Finally, chapter 6 has introduced tools for transforming UML4SOA models
to artefacts based on the Web Services standards platform as well as the
object-oriented language Java.

From a developers standpoint, it is important to be able to use these tools
in combination to ensure a smooth transition from one step to another, thus
increasing productivity and control over the development process. As developers
might also want to use other tools in the same process, tool integration should be
open and standards-based in order to allow easy inclusion of other development
tools.

These considerations have led to the development of a tooling platform,
the Service Development Environment1 (SDE) [MR10], which integrates the
various tools required in the service development process, including modelling,
analysis, code generation, and runtime functionality. The SDE gives developers
an overview of available tools and their area of application, and allows developers
to use tools in a homogeneous way, re-arranging tool functionality in a common
way as required.

Through integrated tools, the SDE supports the following areas of the de-
velopment of SOA systems:

� Modelling: Graphical editors for familiar modelling languages such as
UML, which allow intuitive modelling at a high abstraction level, and
also text- and tree-based editors for formal languages.

� Model Transformation Functionality, including Code Generation: Auto-
mated model transformations from UML to formal languages and back to

1Formerly named Sensoria Development Environment.

8.1. INTEGRATING TOOLS FOR SOA DEVELOPMENT 279

bridge the gap between these worlds; also, generation of executable code
(for example, Web Service standards like BPEL).

� Formal Analysis Functionality: Model checking and numerical solvers for
stochastic methods based on process calculi code defined by the user or
generated by model transformation.

� Runtime Functionality: Integration of runtime platforms, for example
BPEL process engines or the Java runtime as well as runtime support
for services, for example dynamic service brokering.

The functionality indicated in the previous list is implemented in various
tools, some of which have been developed within the Sensoria project, some
developed outside of the project. The tools have not only been developed at
different sites, but are also vastly different with regard to user interface, func-
tionality, required computing power, execution platform and programming lan-
guage. However, all of the tools contribute to the development process and in
many cases deliver artefacts which may serve as input to other tools.

The Service Development Environment (SDE) provides an integration of
these tools through a carefully designed, lightweight integration architecture.
This is achieved through the following core features:

� Tools As Services. The SDE itself is based on a service-oriented archi-
tecture, allowing easy integration of tools and querying the platform for
available functionality. The tools hosted in the SDE are installed and
handled as services.

� A Composition Infrastructure. As development of services is a highly
individual process and may require several steps and iterations, the SDE
offers a composition infrastructure which allows developers to automate
commonly used workflows as an orchestration of integrated tools.

� Eclipse Integration. The SDE is based on the industry-standard Eclipse
platform and is fully compatible with tools installed in Eclipse either with
or without the SDE. This ensures maximum interoperability with a vast
amount of Eclipse-based development tools and workbenches.

As with services in a SOA, tool composition in the SDE is a lightweight one,
i.e., the connection between tools is not a priori fixed and including additional
tools requires only minimal change to the integrated tools. Using the tool-as-a-
service metaphor, tools are services, each consisting of functions which can be
invoked by the user or other services. Contrary to Web services [WCL+05], user
interaction is very important for some software development tools. For example,
a modelling tool requires a lot of user interaction — ideally, the modelling tool
runs on the computer of the user. A model checker, on the other hand, requires
a lot of computing power and thus will most likely run on a dedicated server
to be accessed remotely with none or only a minimal, generated UI available.
Both use cases are supported in the SDE.

280 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

Orchestration Languages

Local Tool Local Tool Local Tool Remote Tool

Remote SDE PlatformLocal SDE Platform

Remote Tool

Figure 8.1: SDE: Architectural Overview

By using a SOA-based infrastructure, combining tools into more complex
tool chains is straightforward, i.e. possible via dedicated orchestration languages.
A typical scenario for tool composition can be found in the analysis and verifi-
cation of software; for example, model checkers require a certain input format
into which most source models first need to be transformed by a transforma-
tion tool; the same applies to the output. The SDE contains both a textual
(JavaScript) and a graphical workflow-based orchestration language, allowing
users to integrate various tools, thereby handling the data flow between these
tools. Having encapsulated the integrating steps, they can be run over and over
again for performing the same steps with different input and output data.

Figure 8.1 shows the architecture of the SDE. As discussed previously, the
integration platform hosts a number of tools as services. Through its dedicated
orchestration infrastructure, the SDE allows developers to orchestrate tools to
be used in combination, with remote invocation functionality for invoking tools
hosted on different machines.

8.2 The Service Development Environment

The tools and techniques developed in this thesis as well as the Sensoria project
support the creation of service-oriented software by augmenting existing de-
velopment processes and tools. A requirement for the SDE was therefore to
integrate with existing tools and platforms for the development of SOA sys-
tems. For this reason, the SDE is based on the well-known Eclipse platform
[Ecl10i] and its underlying, service-oriented OSGi [OSG08] framework. OSGi
is based on bundles, which are components grouping a set of Java classes and
meta-data providing among other things name, description, version, exported
and imported packages of the bundle. A bundle may provide arbitrary services
to the platform.

8.2.1 Architecture

The technical architecture of the SDE is shown in figure 8.2, which shows the
SDE Platform as an OSGi bundle, its dependencies and dependent bundles.

8.2. THE SERVICE DEVELOPMENT ENVIRONMENT 281

 Native (OS)

 Java

 (R-)OSGi

 Eclipse

Native Tool

Java Tool

Equinox Bundles

SDE Tool SDE ToolSDE Tool

UI UI UI UI

SDE Platform

Figure 8.2: SDE: Technical Architecture

Fundamentally, all tools in the SDE are integrated as OSGi bundles which
offer certain functions for invocation by the platform. As indicated above, the
tools integrated into the SDE are vastly different, ranging from user-driven
graphical modelling tools to computationally intensive analysis tools with very
basic interaction mechanisms. Thus, it is not possible to define a common API
for all tools. In the SDE, this problem is solved by using (declarative) OSGi
services for each tool. Furthermore, the SDE allows tools to provide their own
UI, but also provides a generic invocation mechanism which enables users to
invoke arbitrary functions, either directly or through an orchestration. Finally,
tool integration requirements should be kept low to ensure integration of as
many tools as possible. The SDE re-uses OSGi and Eclipse technology and
declarative service descriptions which are generated from Java annotations for
a fast and straightforward integration process.

As can be seen in figure 8.2, the SDE platform and the integrated tools are
based on (R-)OSGi only (or, more specifically, the Equinox implementation of
OSGi [GHM+05]). This means that fundamentally, tools must be implemented
in Java, although they may wrap native code or remote invocations as required.
Being only based on OSGi, they can be invoked completely independently from
Eclipse. If they additionally choose to provide a UI, this UI is integrated into
and based on the Eclipse platform, as is the UI for the SDE platform itself.

Figure 8.3 shows a screenshot of the SDE UI. On the left hand side, the tool
browser shows installed tools available for invocation and automation. Tools

282 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

Figure 8.3: SDE: UI

are grouped by category, allowing quick access by application area. Double-
clicking a tool in the browser yields more information about the tool and its
functionality. This information is shown in the view in the middle: As an
example, an integrated tool for model transformation (the UML2BPEL/WSDL-
Converter) is shown in more detail. Each tool function displayed here can be
invoked by clicking the link and providing the parameters. Finally, on the right,
the blackboard is shown, which is a storage area where tools may place arbitrary
objects for later use. Finally, at the bottom, the shell is displayed, which is a
live JavaScript execution environment (see section 8.2.2).

As an example for a function invocation, clicking on the convertToBPEL()

function in the UML2BPEL/WSDL tool yields the dialogs shown in figure 8.4,
where the data for the two parameters (activity and outputDirectory) can
be selected from various sources.

Finally, the SDE core integrates with R-OSGi [RAR07] to provide the ability
to host tools for external invocation, and connect to remote SDE cores. The
tools in the tool view in figure 8.3 (left), for example, are listed under the local
core. Further (remote) cores may be added as required, and their tools are
then listed and used in the same way as described above. Furthermore, the
blackboard (right) also distinguishes between the various cores.

8.2. THE SERVICE DEVELOPMENT ENVIRONMENT 283

Figure 8.4: SDE: Generic Invocation Wizard

8.2.2 Composing Tools

The SDE provides the ability to compose new tools out of existing ones, which is
the same concept as orchestration in SOA terminology. Creating orchestrations
is possible in the SDE by using two mechanisms: A textual, JavaScript-based
approach, and a graphical workflow approach.

Orchestrating with JavaScript

The ability to use tool APIs directly within JavaScript enables developers to
create a workflow by invoking tool functions and passing data in-between those
functions. To enable the newly created workflow to be usable as a tool in
its own right, two things are required: Instead of simply creating a workflow,
a JavaScript function definition is required which states a function name and
parameters. As each tool, function, parameters, and return types may have
descriptions and additional meta-data attached, this meta-data must be spec-
ified in some way in the JavaScript source files. Both points have been ad-
dressed in the SDE. The first is simple; function definitions are already part of
the JavaScript specification. The second was solved by employing a JavaDoc-
comment-style approach to meta-data specification. Tags like @description

are used to convey meta-data information.

As an example, figure 8.5 (left) shows a script for converting UML2 activity
diagrams to BPEL, then analysing them using the WS-Engineer tool, and finally
converting the result back to UML2 sequence diagrams showing the error trace.

284 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

Figure 8.5: SDE: Orchestration with JavaScript

Figure 8.5 (right) shows the converted tool inside the SDE tool browser. Scripts
created like this can be used on any SDE installation which has the required
tools installed. No particular deployment is necessary save copying the script
and registering it with the core.

For testing purposes, the SDE also contains a JavaScript live execution en-
vironment, the SDE Shell (figure 8.3), where JavaScript commands can be exe-
cuted without compiling a complete script.

Graphical Orchestration

Besides the ability to use JavaScript for orchestration as indicated above, the
SDE also contains the ability to orchestrate tools graphically. The syntax used
is that of UML activity diagrams, although the main focus is on data flow, i.e.
the flow of information from pin to pin. An activity in the diagram represents
one function in the tool to be generated which has input pins (parameters) and
one output pin (return type). Inside the activity, actions represent function
calls to arbitrary (installed) tools. These actions have pins themselves; data
flow edges model the data transfer.

As an example, consider the screenshot in figure 8.6, which shows the orches-
tration introduced in the previous paragraph as a graphical workflow, including
the editor which supports it. The function checkActivity(uml) is modelled as
an activity, and each call to a particular function of an installed tool is modelled
as an action. On the right-hand side, the toolbar shows all available tools and
the functions they provide. Once modelled, an orchestration such as the one
above is converted to a Java class, compiled in-memory and installed as a tool
in the SDE.

8.2. THE SERVICE DEVELOPMENT ENVIRONMENT 285

Figure 8.6: SDE: Graphical Orchestration

8.2.3 Extending the Platform

The SOA-based architecture of the SDE enables tool integration through a core
API and an extension point for registering tools. Basically, each tool is an
OSGi bundle with some published API and meta-data XML to register the tool
with the SDE core. Thus, creating a facade class and registering the class with
the SDE extension point enables tool functionality to be immediately available
within the SDE, both for manual invocation and automation.

Tools within the SDE are loosely coupled, as they are fundamentally inde-
pendent from each other and interact through their published service interfaces
only. They may, of course, require other tools to be installed for them to work.
This is defined in a declarative way through the Equinox extension mechanism
and checked by the platform prior to tool installation.

The SDE core also contains a set of Java annotations, which enable tool
developers to define their tools and functions without writing any XML. As an
example, consider figure 8.7: On the left-hand side, a tool interface with SDE
annotations is shown; on the right-hand side, the corresponding tool view in the
SDE.

The API defined within the integration tool service bundle provides access
to all installed tools. A tool may use this API to verify installation of required

286 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

Figure 8.7: SDE: Tool Registration

tools; search for tools based on meta-data, and invoke functionality as needed.
Therefore, it serves as a discovery service which moderates between the tools.
Once the connection has been made, communication between tools is done di-
rectly.

8.3 MDD4SOA Tools

This thesis has introduced several tools for aiding developers in the development
of service-oriented systems. All tools presented in this thesis are open source
and licensed with the Eclipse Public License (EPL) [Ope04], which is an OSI-
approved license [OSI10] which guarantees source code availability and at the
same time does not restrict selling, extending, and re-licensing extended versions
of the code.

Figure 8.8 shows the overview figure from the introduction (page 3) again;
this time with annotated tools.

The tools created as part of this thesis can be grouped into three categories.
For each of these categories, a web site is available which hosts binary and source
versions of the tools belonging to the category.

8.3.1 Modelling and Semantics

The first category includes tools for modelling SOA systems with UML4SOA,
and for mechnically translating UML4SOA diagrams to modal input/output
automata.

Firstly, this includes the UML4SOA profile itself. As discussed in chapter 3,
the UML4SOA profile is available for both MagicDraw and Rational Software

8.3. MDD4SOA TOOLS 287

code generation

semantics

trace annotation

simulation
Formal Modelanalysis

Java and
Web Services

UML Model

modelling
MagicDraw/RSA Integration

UtbM

MDD4SOA Transformers

Automated Testing Environment
(created by MDD4SOA Transformers)MIO Workbench

MIO Workbench

Figure 8.8: MDD4SOA Tools

Architect. Furthermore, a toolbar in form of a module is available for Magic-
Draw.

Secondly, the modelling category of tools also includes the UtbM tool which
converts UML4SOA models to modal input/output automata, and enables back-
annotation of verification results to MagicDraw UML models. The UtbM tool
has been introduced in chapter 5.

The tools of this category are available from the UML4SOA website.

UML4SOA Website: http://www.uml4soa.eu/.

8.3.2 Verification Support

The second category consists of the Mio Workbench described in chapter 5 —
an Eclipse-based verification tool and editor for modal I/O automata (MIOs).
The Mio Workbench provides:

� A graphical editor for MIOs;

� Verification support for different refinement and compatibility notions;
and

� Trace annotation capability.

The Mio Workbench includes all interface theories mentioned in this thesis,
i.e. strong, weak, and strict-observational. Furthermore, several additional
notions such as hiding and helpful environments are provided.

http://www.uml4soa.eu/

288 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

The Mio Workbench is available as an Eclipse plugin, and may be installed
directly from the update site of the Mio Workbench website.

Mio Workbench Website: http://www.miowb.net/

8.3.3 Transformation and Code Generation

Transformation and code generation have been described in chapter 6. This
includes the following tools:

� UML2SMM: A transformer from an UML4SOA model created with a mod-
elling tool such as MagicDraw, Rational Software Architect, or the Eclipse
UML2 tools to an instance of the SMM.

� SMM2Java: A transformer from the SMM to Java. Note that this tool
optionally takes UML as input, performing the UML2SMM step as well.

� SMM2WS: A transformer from the SMM to the Web Service standards
family, which includes the creation of BPEL, WSDL, and XSD files. As
in the case of SMM2Java, this tool optionally takes UML as input, per-
forming the UML2SMM step as well.

Each of the transformers is available as an Eclipse plugin, and may be in-
stalled directly from the update site of the MDD4SOA Website.

MDD4SOA Website: http://www.mdd4soa.eu/.

8.4 Other Integrated Tools

This chapter lists other tools which have been integrated into the SDE platform,
sorted by integrated category.

8.4.1 Modelling

MagicDraw

MagicDraw [NoM10] is a platform-independent UML modeller with profile sup-
port for UML2.

http://www.magicdraw.com/

Rational Software Architect

Rational Software Architect [IBM09] is a UML modelling tool which supports
UML2 profiles and is built on the Eclipse platform.

http://www.ibm.com/software/awdtools/architect/swarchitect/

http://www.miowb.net/
http://www.mdd4soa.eu/
http://www.magicdraw.com/
http://www.ibm.com/software/awdtools/architect/swarchitect/

8.4. OTHER INTEGRATED TOOLS 289

Figure 8.9: UML4SOA Website

Figure 8.10: Mio Workbench Website

290 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

Figure 8.11: MDD4SOA Website

8.4.2 Transformation

Hugo/RT

Hugo/RT [SKM01] is a UML model translator for model checking, theorem
proving, and code generation: A UML model containing active classes with state
machines, collaborations, interactions, and OCL constraints can be translated
into the system language of the real-time model checker UPPAAL, the on-the-
fly model checker SPIN, the system language of the theorem prover KIV, and
into Java and SystemC code.

http://www.pst.informatik.uni-muenchen.de/projekte/hugo/

VIATRA2

The main objective of the VIATRA2 (VIsual Automated model TRAnsforma-
tions) framework [BV06] is to provide general-purpose support for the entire life-
cycle of engineering model transformations including the specification, design,
execution, validation and maintenance of transformations within and between
various modelling languages and domains.

http://wiki.eclipse.org/VIATRA2

http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
http://wiki.eclipse.org/VIATRA2

8.4. OTHER INTEGRATED TOOLS 291

SOA2WSDL-Transformation

The SOA2WSDL [ÁvédVG06] transformation, written in VIATRA2, takes high
level UML models and produces WSDL output.

http://viatra.inf.mit.bme.hu/

SRMC/UML Bridge

The SRMC/UML bridge [TG08] offers facilities for meta-model transformation.
It translates a subset of UML2 models (Interactions and State Machines) into
an SRMC description for performance evaluation. Results are reflected back
into the UML model.

http://groups.inf.ed.ac.uk/srmc/

Modes Parser and Browser

The Modes Parser and Browser [FMRU08] is a WS-Engineer plug-in to parse
and extract broker requirements from UML2 Modes Models.

http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer

8.4.3 Analysis

LTSA

LTSA [MK99] is a verification tool for concurrent systems. It checks that the
specification of a concurrent system satisfies the properties required of its be-
haviour. In addition, LTSA supports specification animation to facilitate inter-
active exploration of system behaviour.

http://www.doc.ic.ac.uk/ltsa/

WS-Engineer

The LTSA WS-Engineer plug-in [FUMK06] is an extension to the LTSA Eclipse
Plug-in which allows service models to be described by translation of the service
process descriptions, and can be used to perform model-based verification of
Web Service compositions.

http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/

SRMC/PEPA

The SRMC (Sensoria Reference Markovian Calculus) tool [CGT09a] provides
support for SRMC, an extension to PEPA. It covers steady-state analysis of the
underlying Markov chain of SRMC descriptions.

http://groups.inf.ed.ac.uk/srmc/

http://viatra.inf.mit.bme.hu/
http://groups.inf.ed.ac.uk/srmc/
http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer
http://www.doc.ic.ac.uk/ltsa/
http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/
http://groups.inf.ed.ac.uk/srmc/

292 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

SPIN

Spin [Hol97] is an open-source software tool used for the formal verification of
distributed software systems.

http://spinroot.com/

UPPAAL

Uppaal [BLL+95] is an integrated tool environment for modelling, validation
and verification of real-time systems modelled as networks of timed automata,
extended with data types (bounded integers, arrays, etc.).

http://www.uppaal.com/

CMC / UMC

CMC and UMC [tBMG09] are model checkers and analysers for systems de-
fined by interacting UML state charts. Both allow on-the-fly model checking of
abstract behavioural properties in the Socl branching-time state-action based,
parametric temporal logic.

http://fmt.isti.cnr.it/cmc/,http://fmt.isti.cnr.it/umc/

LySa tool

LySa [Buc05] is a static analyser for security protocols defined in the LYSA pro-
cess calculus. The tool provides a LYSA editor to assist users in the modelling
of protocols. Given a LYSA model the analyser will verify properties related to
secrecy and authentication.

http://www2.imm.dtu.dk/cs_LySa/lysatool/

8.4.4 Deployment and Runtime

UML2AXIS Transformation

The UML2AXIS [ÁvédVG06] transformation, written in VIATRA2, takes UML
models with specifications of non-functional attributes for reliable messaging,
and produces Web Service code based on the Apache Axis Java library.

http://viatra.inf.mit.bme.hu/

Dino Broker

The Dino Broker [FMRU08] provides dynamic runtime discovery of services
which are described in OWL and WSDL documents, thus enabling developers
to bind services which correspond to specific criteria.

http://www.cs.ucl.ac.uk/research/dino/

http://spinroot.com/
http://www.uppaal.com/
http://fmt.isti.cnr.it/cmc/, http://fmt.isti.cnr.it/umc/
http://www2.imm.dtu.dk/cs_LySa/lysatool/
http://viatra.inf.mit.bme.hu/
http://www.cs.ucl.ac.uk/research/dino/

8.5. TOOL APPLICATIONS 293

8.5 Tool Applications

The tools listed in the previous chapter can be combined in various ways to
achieve different transformations and analyses. Figure 8.12 lists, non-exhausti-
vely, the links between the tools.

As examples, we provide three scenarios with different tools to give some
insights into how tools may be chained together in the SDE. In the following
sections, we use four paragraphs to describe each scenario:

� Use Case describes when and why to use a certain tool chain.

� In Tools Involved, we list the tools required to perform the functionality
of the scenario.

� Data Flow shows the individual steps to be executed in the tool chain.

� Finally, Results describes the consequences and benefits of using the sce-
nario.

The tool chains may be realised manually, i.e. with the user performing one
step after another and storing the intermediate objects on disk or on the black-
board, or automatically by employing JavaScript or the graphical orchestration
mechanism.

8.5.1 Analysis and Code Generation of Services

Use Case

This use case describes, in short, the techniques and tools provided by this thesis,
i.e. a model-driven development approach with analysis support for services and
service orchestrations. A customised UML2 profile for modelling SOAs (UML4-
SOA) is used to create a model of the target SOA system. Besides modelling the
behaviour itself, a behavioural protocol can help to assess the external behaviour
of the orchestration and used to verify the actual implementation. Once a
service orchestration has been verified, it needs to be transformed to code in
target languages like BPEL or Java to deploy it for execution.

Tools Involved

This tool chain includes a UML modeller with profile support, like MagicDraw or
Rational Software Architect. The Mio Workbench is used to report on protocol
violations. Finally, the model transformers of MDD4SOA are used to transform
the UML specifications to code in executable languages (for example, BPEL
and WSDL) for deployment.

Data Flow

The chain starts with the user who employs a UML modeller to design both the
orchestration implementation and the service protocol. The resulting diagrams

294 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

M
ag

ic
D

ra
w

M
o

d
el

lin
g

H
u

go
/R

T
Tr

an
sf

o
rm

at
io

n

SP
IN

M
o

d
el

 C
h

ec
ki

n
g

U
P

P
A

A
L

M
o

d
el

 C
h

ec
ki

n
g

Ti
m

ed
 A

u
to

m
at

a
LT

L

U
M

L
M

o
d

el

LT
SA

/W
S-

En
gi

n
ee

r
M

o
d

el
 C

h
ec

ki
n

g

V
IA

TR
A

2
G

en
er

ic
 M

o
d

el
 T

ra
n

sf
o

rm
er

A
rb

it
ra

ry
 m

o
d

el
s

R
at

io
n

al
 S

o
ft

w
ar

e
A

rc
h

it
ec

t
M

o
d

el
lin

g
A

rg
o

U
M

L
M

o
d

el
lin

g

M
D

D
4

SO
A

Tr

an
sf

o
rm

at
io

n
SO

A
2

W
SD

L
Tr

an
sf

o
rm

at
io

n
/D

ep
lo

ym
en

t

SR
M

C
/P

EP
A

Q
u

an
ti

ta
ti

ve
 A

n
al

ys
is

B
P

EL
W

SD
L

M
SC

s

U
M

L2
P

EP
A

B
ri

d
ge

SR
M

C
/P

EP
A

C
M

C
 /

 U
M

C
M

o
d

el
 C

h
ec

ki
n

g

M
o

d
es

 P
ar

se
r

an
d

 B
ro

w
se

r
Tr

an
sf

o
rm

at
io

n

M
o

d
es

 S
p

ec
if

ic
at

io
n

D
in

o
 B

ro
ke

r
R

u
n

ti
m

e
D

is
co

ve
ry

O
W

L-
S

U
M

L2
A

X
IS

Tr
an

sf
o

rm
at

io
n

A
xi

s
C

o
d

e
M

IO
 W

o
rk

b
en

ch
Ja

va

U
tB

M

M
o

d
al

 I/
O

 A
u

to
m

at
a

C
M

C
/U

M
C

Figure 8.12: SDE: Available Tool Chains

8.5. TOOL APPLICATIONS 295

are saved as documents in the XMI format. These files can then be used by
the UtBM to convert to MIOs, and checked using the Mio Workbench, which
either reports no protocol violations or creates a violation trace which is back-
annotated to UML by using UtbM. This process is repeated until the process is
error-free. Finally, the UML2 models are read by the MDD4SOA Transformers,
which generate the appropriate target code, depending on which language has
been selected by the user.

Results

Chaining tools together in this fashion enables the developer to quickly react
to changes in requirements, as the chain can be run automatically whenever a
change has occurred, either informing the user of newly introduced problems in
the protocol or, if the protocol is valid, creating the new implementation in the
selected target language.

8.5.2 Qualitative and Quantitative Analysis

Use Case

Service-oriented software systems are commonly distributed — they make use
of a network to combine various individual software components to work in
coordination to reach a higher-level goal. In general, a SOA system contains
many different threads of execution, which run in parallel and interact with one
another in nontrivial ways. This poses a difficult problem to software designers,
as the interaction of such threads needs to be analysed in order to ensure that
no undesirable effects occur. Furthermore, it is not always clear how the system
time is spent during runtime. Therefore, mechanical checkers are needed to ver-
ify whether a certain implementation is free from conditions such as deadlocks,
and secondly for assessing the runtime characteristics of the overall system.

Tools Involved

Again, we employ UML modellers like Rational Software Architect or Magic-
Draw for the modelling of a service-oriented system written in UML. Based on
these models, quantitative analysis as well as qualitative analysis is then per-
formed by the SRMC tool and the WS-Engineer tool, respectively. While the
former is able to deal with UML directly, the latter requires the BPEL for-
mat as input, so another tool is used (one of the MDD4SOA transformers) for
converting between UML and BPEL.

Data Flow

The chain starts with the user who employs a UML modeller to design a model
of communicating systems in UML2. The resulting model, in the format of an
UML2 XMI file, can be read directly by the SRMC tool to report on the distri-
bution of time spent in the various states of the process. Using the MDD4SOA

296 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

transformers, the UML2 model is converted to BPEL to serve as input for WS-
Engineer, which is used to verify the required properties (for example, freeness
from dead-locks). Finally, the result of the analysis is shown to the user: The
quantitative analysis can be directly annotated to the original UML model (or
output as graphs), the qualitative analysis — if resulting in an error trace — is
shown as Message Sequence Charts (MSCs).

Results

This tool chain provides the user with a “one-click” verification of the model
— instead of requiring the user, as is common in many verification tools, to
activate a translation of service implementations, feed the translation through
a model parser, compile the model, and invoke a verify option on the model
checker. All these single steps are handled by the tool chain and the script used
to combine the two different analysers. Thus, checking becomes less of a hassle
and will be executed more often, resulting in higher-quality systems.

8.5.3 Modes-Based Dynamic Runtime Discovery

Use Case

One of the promises of the Service-Oriented Architecture is the ability to quickly
react to changes, for example — on the business level — a change of a business
partner, or — on a technical level — network connection problems or server
overload. To deal with these problems, the concept of dynamic service discovery
and binding has been introduced, which enables developers to specify, on an
abstract level, the properties and constraints required of certain services needed
by an orchestration. Specification of such properties, the criteria of when to
change the service to be used (specified by “modes”), and testing of the resulting
runtime behaviour are non-trivial issues, and tool support is needed to make
such approaches practical.

Tools Involved

The main focus of this tool chain lies on testing of dynamic service discovery,
hence the most important tool is the Dino Broker used for service discovery.
Serving input to Dino is the Modes Parser and Browser Tool which handles
translation of modes from the UML2 models. Dino also requires WSDL and
OWL documents for service specification which can, in part, be generated by
the VIATRA2 SOA2WSDL transformation tool. Again, the initial mode speci-
fication is done in UML2, for which a UML2 modeller is required.

Data Flow

The chain starts with the user who employs a UML modeller to design a model
of a SOA system enhanced with mode specifications and the required constraints
on services. The Modes Parser and Browser Tool is then used to convert these

8.6. RELATED WORK 297

specifications to input for the Dino Broker. In parallel, the services to be discov-
ered are deployed to the Dino runtime, either from pre-existing OWL/WSDL
specifications or from those generated by the SOA2WSDL transformation. Fi-
nally, the developer can employ the Dino Broker front-end which is available
through the SDE to test-drive the service discovery, and once satisfied, use the
generated documents for the final implementation.

Results

The ability to generate input for Dino from UML2 and test-driving the discovery
right from within the development environment greatly speeds up the process of
finding the right mode and constraint specifications. Automation allows writing
test cases for the complete process, thus the user may change the specifications
at the beginning of the chain and verify the output stemming from an actual
discovery run with the Dino Broker, saving time and effort in debugging.

8.6 Related Work

There are several distinguishing features of the SDE which sets it apart from
standard development environments. The main aspect is the idea of SOA-based
tooling, i.e. regarding the development environment as a SOA itself, which leads
to the concept of tools as services, a discovery mechanism, and orchestration
support. Furthermore, the integrated tools are at least partly graphical and
interactive, requiring fast response time for developers and thus, a local instal-
lation. This effectively prevents the use of solutions based only on Web Services.

In the following, integration platforms with similar aims are discussed and
compared to the SDE. One exception is Eclipse, which is discussed first as a
baseline for comparison.

The first question to answer is why the basis of the SDE, i.e. Eclipse itself, is
not sufficient for tool integration purposes. Eclipse, as a platform, indeed pro-
vides many of the features which are required for tool integrations, such as the
ability to extend the platform at certain points, using update sites for discover-
ing and installing software, and the workbench concept of action contributions.
However, the SDE provides two important aspects which are missing in Eclipse.

First, this is the concept of providing arbitrary, machine-invokable services
and their functions — the Eclipse platform only allows contributions to existing
extension points, but not in a generic way. Second, and this feature requires
the first, is the concept of service composition or orchestration without writing
custom code: The SDE contains both a textual and a graphical orchestration
mechanism for combining tool functionality, which, again, is not provided by
Eclipse.

The following discussion is restricted to tools which are based on a SOA-like
structure, thus enabling tools to add generic, machine-invokable functionality
in a uniform way.

298 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

The EU funded project SeCSE [SeC10] provides a middleware, the SeCSE
IF (Integration Framework) and a corresponding development environment, also
called SDE (SeCSE Development Environment). The integration framework is
based on Web Service- and Java technology. Development and runtime are
integrated, i.e. the IDE can be used for monitoring and runtime changes as
well. The development environment is provided as a web-only custom solution
and is thus limited with regard to modelling tool support.

The jETI framework [MNS05] is a redesign of the Electronic Tools Integra-
tion platform (ETI) in Java and uses Web Services. It is intended for remote
tool integration of verification tools and allows integration, organisation, and
execution of remote functionalities. jETI also provides a client, which can be
used for the coordination of the various tools, either stand-alone or as an Eclipse
plug-in. Tools within jETI are represented as Web Services, which means that
they are executed on the remote site and thus are again limited regarding the
user interface options. While it is possible to start a remote tool with its user
interface redirected to the computer where the user of the tool is located, it
requires a high bandwidth connection in case of a graphical user interface.

PWeb [BBFR04] is a tool integration platform based on Web Services de-
veloped in the EU project Profundis [PRO05]. Its goal is the integration of
semantic-based verification toolkits which are accessible as Web Services them-
selves. PWeb comes with a directory service which offers the primitives to
publish a service and to query for a service. In principle, the discovery service
can be distributed as it can contain references to other discovery services.

A main focus of PWeb is the possibility to coordinate the various tools
by using Python as the orchestration language. PWeb focuses only on Web
Services, again rendering it difficult to integrate modelling tools which have
their own user interface. Furthermore, PWeb itself only provides a rudimentary
Web interface as the user interface.

Finally, an interesting approach to tool integration is the FUJABA tool
[BGT+04], which places special emphasis on the data required by individual
tools, and provides support for meta-model level data integration. This ap-
proach is orthogonal to the principles behind the SDE, as it does not offer
SOA-based tool integration itself.

8.7 Summary

In this chapter, we have discussed the need for, requirements of, design, and
usage of a tool integration platform for the development of service-oriented
software systems. Based on a service-oriented architecture itself, the Service
Development Environment (SDE) contains tools for modelling and analysing
service artefacts as well as generating code and supporting services at runtime,
allows remote invocation of tool functionality, and enables composition of tools
by a textual and graphical orchestration mechanism.

We believe that thinking of individual development tools as services and
including SOA features like self-describing services, remote invocation, and or-

8.7. SUMMARY 299

Figure 8.13: SDE Website

chestration into a tooling environment greatly extends the applicability of the
integrated tools.

This chapter has also listed tools integrated into the SDE, and has discussed
three end-to-end examples of development workflows created with the orches-
tration functionalities available in the SDE.

The SDE is available for download on http://svn.pst.ifi.lmu.de/trac/

sde (see figure 8.13). This page also includes a tutorial for tool integration and
videos demonstrating the SDE in action.

http://svn.pst.ifi.lmu.de/trac/sde
http://svn.pst.ifi.lmu.de/trac/sde

300 CHAPTER 8. SOA TOOLING FOR SOA SOFTWARE

Chapter 9

Conclusion

The topic of this thesis has been the integration of Model-Driven Development
(MDD) and the paradigm of Service-Oriented Architectures (SOAs). This has
led to the development of a comprehensive approach for model-driven develop-
ment of service-oriented systems, which we have termed MDD4SOA. Both the
methodological as well as tool-based integration aspects have been considered.

The complete MDD4SOA approach is shown again in figure 9.1.

code generation

semantics

trace annotation

simulation

Service Meta-Model (SMM)

business goals

deployment

Common Tooling Platform

Formal Modelanalysis

Java and
Web Services

UML Model

modelling

Figure 9.1: The MDD4SOA Approach

We have addressed the area of modelling with the high-level, domain-specific
service modelling language UML4SOA. Second, we have provided a rigorous for-

301

302 CHAPTER 9. CONCLUSION

mal semantics and analysis support for this language. The area of code gener-
ation provides model transformers and code emitters for generating executable
code from UML4SOA. Finally, our simulation and trace annotation approach
allows executing the generated code and comparing the runtime behaviour with
the formal semantics. All components share a common basis, the Service Meta-
Model (SMM), which is shown as a dashed rounded rectangle.

Furthermore, we have developed a common tool integration platform (en-
closing component) which integrates all tools from this thesis as well as external
ones contributing to the overall model-driven development process for software
systems based on service-oriented architectures.

9.1 Contributions

In more detail, the contributions of this thesis are the following:

� UML Modelling. We have contributed the UML4SOA profile for be-
havioural modelling of services and service protocols to the Unified Mod-
eling Language (UML). During the development of this profile, care has
been taken to create a minimal extension, i.e. to use as many of the con-
cepts already present in the UML and only add concepts which add to the
clarity and ease of use of the profile. Furthermore, the profile is based on
the upcoming OMG standard SoaML for structural modelling of SOAs,
thus increasing applicability and usefulness for practitioners.

� Semantics and Analysis. A second contribution of this thesis has been a
rigorous formal semantics for UML4SOA (via the Service Meta-Model),
thus enabling formal analysis of behavioural service models. The thesis has
shown how to use interface theories for protocol verification of SOA im-
plementations, and has contributed the high-level, protocol-focused strict-
observational interface theory for early verification of SOA designs.

� Code Generation. Model-driven development comes with the promise of
being able to use models for more than just communication between de-
velopers and the ability for analysis. This thesis has thus investigated
model transformations from UML4SOA models (again via the SMM) to
executable target languages. Two end-to-end transformations have been
provided; the first targeting the Web Service standards family languages,
the second targeting Java.

� Simulation and Tracing. We have provided a simulation and tracing ap-
proach which enables direct execution of the generated Java implemen-
tation and thus the UML4SOA model. Furthermore, traces from such
executions can be compared with the transition systems of the semantics,
yielding additional information for developers as well as a validation of
the generated code.

9.2. DISCUSSION 303

� Integrated Tooling. Finally, we have developed the Service Development
Environment (SDE), an Eclipse-based, service-oriented integration plat-
form for development tools targeted at SOA systems. The SDE integrates
all tools provided in this thesis and additional tools from both academia
and industry, and includes the ability to combine tools, thereby creating
development workflows tailored to the problem at hand.

As mentioned above, the main components of the MDD4SOA approach are
based on a common Service Meta-Model (SMM). The SMM employs parts of
the UML, the UML4SOA profile, and the SoaML profile as its concrete syn-
tax (modelling component), and modal input/output automata (semantics and
analysis component) for the definition of its semantics. Furthermore, SMM
models can be translated to executable code (code generation) and executed
(simulation and tracing).

We have shown the practicability of the results presented in this thesis by
application to the five case studies of the Sensoria project [WBC+09]. One of
the case studies has been selected for a more thorough investigation: The eU-
niversity case study has accompanied us throughout the chapters of this thesis,
demonstrating a complete application of the MDD4SOA process from modelling
via analysis to code generation.

9.2 Discussion

This thesis has tackled various problems in its aim of integrating the domain
of model-driven development and the architectural design of service-oriented
software systems. In the following discussion, we highlight three interesting
areas we believe to be important both for evaluating the results of this thesis
and as a basis for future work.

9.2.1 Model-Driven Development of SOAs

One of the initial assumptions of this thesis has been the suitability and useful-
ness of model-driven development for service-oriented software systems [Fra03].
We believe that the results of this thesis support this claim.

Firstly, SOA artefacts reside on a higher level than traditional object-oriented
models created in UML or cast in Java. This means that modelling and pro-
gramming of SOA systems in these languages is cumbersome, as the UML4SOA
chapter and the transformation to Java have shown. Creating a new level of ab-
straction on which to specify SOA models has the benefit of enabling developers
to use services and service-related concepts without any technical overhead. The
UML4SOA modelling language presented in this thesis provides this level of ab-
straction. Furthermore, the rigorous formal semantics and analysis techniques
introduced in chapter 5 provide an early feedback mechanism on the same level
as the model, which is a direct benefit of the MDD approach to SOA.

Secondly, the code generation part has shown that with regard to Web Ser-
vices, a single SOA UML model necessitates artefacts in six different languages

304 CHAPTER 9. CONCLUSION

with additional requirements on the runtime platform. Clearly, availability of a
unified model greatly increases usability for developers of SOA systems: Start-
ing from a UML4SOA model, the code generators provided in chapter 6 allow
developers to keep all relevant information in one model, generating the runtime
artefacts as required, which is again a benefit of the MDD4SOA approach.

With regard to Java, we have shown that besides the generation of the actual
implementation, a further way of exploiting the models is the generation of an
automated testing environment which can be used for executing the generated
code; traces from such executions can be compared against the formal semantics.
This is another benefit of using models in the development of software systems.

9.2.2 The Purpose of Models

While studying how to design models and modelling languages to enable MDD4-
SOA, three different usage scenarios had to be considered, each with different
requirements on model design. The first scenario was using models for commu-
nication between software developers; the second was employing (behavioural)
SOA models for formal analysis, and the third was using models as the basis
for the generation of executable code.

Graphical models in the classic sense and as initially introduced by the UML
have been designed for communication between software developers. A model
intended for this purpose has the requirements of being readable, intuitive,
understandable, and maintainable. In fact, such systems are sometimes not
even created with tool support, but drawn on white boards or sheets of paper
[Cra04]. A benefit of this approach is the ability to combine it with discussion
techniques such as brainstorming, in which the model might even be enriched
with artefacts from non-software domains.

These requirements differ greatly from the second usage scenario, which was
the use of formal methods for the analysis of a model. Here, the requirements
are based on the need to build a straightforward semantics for the model, i.e.
creating a clear mapping to the formal foundation. The smaller the modelling
language (and the model), the simpler the mapping. At the very least, it should
be possible to link the formal artefacts closely to the original model, while at
the same time keeping them as minimal as possible to enable analysis.

Finally, the usage scenario of code generation introduced a third set of re-
quirements. To enable code generation, a model must be complete in the sense
that each model element must be fully specified, i.e. there may be no opaque
behaviours or unresolvable ambiguities. Furthermore, the model must be con-
structed in a way which allows the translation into a target executable language.

In this thesis, we have attempted to create a unified modelling approach
which addresses all three usage scenarios and their requirements. We believe
that only unified models can reap the full benefit of model-driven development,
which necessitates finding the right balance between formality and usability.

As we have seen in the UML4SOA chapter, we provide two versions of UML-
4SOA. The first version is intended for communication: UML4SOA/Open is
not formally precise, but expressive and ideal for human communication during

9.3. FUTURE WORK 305

the initial, unstructured attempts to finding a system design. As soon as the
architecture matures, models created with UML4SOA/Open can be refined to
UML4SOA/Strict models. While the latter are restricted in available model
elements, they are still useful for communication in a more settled phase of the
software development process.

The advantage of UML4SOA/Strict models is their suitability for both for-
mal analysis and code generation. Regarding analysis, chapter 5 has shown
a semantics for UML4SOA based on the domain of modal input/output tran-
sition systems, which map closely to the actions and transitions of UML4SOA
and even enable a tool-supported mapping of analysis results back to UML4SOA
models. Regarding code generation, chapter 6 has shown how a translation of
UML4SOA models to two industry-standard executable target languages can
be carried out; in the simulation and tracing section (chapter 7), we have also
seen how to generate additional external code out of the models for simulation
purposes.

9.2.3 SOA Tooling

The development of an integration platform for SOA development tools has
initially been targeted at the tools for formal analysis developed in Sensoria.
However, the inclusion of other tools such as modelling and transformation sup-
port has proven to greatly enhance the benefit of the platform for model-driven
development of SOAs. Of particular importance in this context are two features
of the Service Development Environment: The first is the ability to integrate
tools without introduction of a major overhead through the service-based ar-
chitecture. The second is the composition support within the platform, which
allows the combination of several tools to perform as a whole: In particular in
the case of formal analysis, several tools need to work together to produce an
output which is relevant to the software engineer, for example through genera-
tion of graphical representations of analysis results or re-annotation of violation
traces on the original model.

A difficult aspect of tool integration is data: Tools must be aware of common
data formats to enable sharing of artefacts. While basing tool in- and output
on standardised (EMF) meta-models as done here can alleviate some of the
problematic aspects of data integration, this topic remains an open area to be
aware of when designing and implementing integration platforms.

9.3 Future Work

The domain of model-driven development of service-oriented systems offers sev-
eral areas in which further work is required.

As has been discussed in chapter 3, modelling support for SOA architectures
based on UML is still in its infancy, with the first OMG standard relating to
service architectures (SoaML) just having entered beta state. SoaML and UML-
4SOA now provide a solution for modelling both the static and structural aspects

306 CHAPTER 9. CONCLUSION

of SOAs in UML; furthermore, the profiles introduced in Sensoria address
several additional aspects of SOAs. Still, there is more to be done. A first
problem to be solved is finding a suitable way for modelling dynamic services in
SOA UML models, which includes service endpoint manipulation and dynamic
discovery. A further problem to be addressed are security concerns, which play a
major role in open SOA platforms; adding support for modelling these concerns
to UML and the model-driven process will greatly increase the value of UML
models in security-critical applications. Finally, integration of user interaction
with SOA behaviour is another interesting area.

As already shown in the related work section of chapter 5, several formal
methods and tools are available for the analysis and verification of SOA and
UML4SOA models. Nevertheless, there is opportunity for additional work here.
A first important aspect in SOA applications is data. Taking this domain into
consideration during verification processes is a very difficult problem, but will
certainly lead to additional benefits for developers of SOA systems. Second,
as mentioned above, the introduction of security aspects into SOA models al-
lows their exploitation in formal analysis. Finally, we believe that quantitative
methods are an important area of research with regard to large-scale SOA sys-
tems, and SOA modelling can benefit from the performance predictions and
simulations provided by these methods.

Lastly, we believe tool support to be of paramount importance in the MDD-
4SOA domain. The past decade has shown tremendous advances in integrated
development environments for traditional programming languages such as Java,
and it is important to transfer these results to model-driven development of
service-oriented architectures; in particular with the integration of formal anal-
ysis. The Service Development Environment (SDE) has shown how a SOA-based
platform can be employed to integrate different tools from modelling via anal-
ysis to code generation. Maturing such platforms is an important task to be
done in the future.

Finally, although the Sensoria project has included three end-to-end case
studies starting from modelling via analysis and finally code generation, there
is plenty of opportunity for further validation of the MDD4SOA approach in
everyday industry life.

9.4 Final Words

This thesis has provided an end-to-end example of model-driven development
for service-oriented systems. In our opinion, both MDD and SOAs will have a
lasting impact on software engineering, and we believe that their integration is
key to the development of next-generation computing systems. Our contribution
to this area consists of the high-level modelling language UML4SOA, a formal
semantics and analysis method for UML4SOA models, model transformations
from UML to the Web Service standards family and the Java programming
language with execution support, and integrated tools for the complete process
of model-driven development of service-oriented systems.

Bibliography

[ACKM03] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machi-
raju. Web Services: Concepts, Architectures, and Applications.
Springer, Berlin, 2003.

[Act10] Active Endpoints. The ActiveBPEL Engine, 2010.
http://www.activevos.com/community-open-source.php.

[AdAdS+06] B. Thomas Adler, Luca de Alfaro, Leandro Dias da Silva, Marco
Faella, Axel Legay, Vishwanath Raman, and Pritam Roy. Ticc:
A Tool for Interface Compatibility and Composition. In Thomas
Ball and Robert B. Jones, editors, 18th Int. Conf. Computer
Aided Verification, CAV 2006, volume 4144 of LNCS, pages 59–
62. Springer, 2006.

[AGGI03] Jim Amsden, Tracy Gardner, Catherine Griffin, and Sridhar
Iyengar. Draft UML 1.4 Profile for Automated Business
Processes with a mapping to BPEL 1.0. Technical re-
port, International Business Machines Corporation (IBM),
2003. http://www.ibm.com/developerworks/rational/library/
content/04April/3103/3103 UMLProfileForBusinessPro-
cesses1.1.pdf.

[AKCF+08] Ashok Argent-Katwala, Allan Clark, Howard Foster, Stephen
Gilmore, Philip Mayer, and Mirco Tribastone. Safety and
response-time analysis of an automotive accident assistance ser-
vice. In Margaria and Steffen [MS08], pages 191–205.

[Amb05] Thomas Ambühler. UML 2.0 Profile for WS-BPEL with Map-
ping to WS-BPEL. Technical report, Universität Stuttgart, 2005.

[And94] Andre Arnold. Finite Transition Systems: Semantics of Com-
municating Systems. Prentice Hall, June 1994.

[Apa10a] Apache Software Foundation. Axis: The Apache Web Services
Project, 2010. http://ws.apache.org/axis/.

[Apa10b] Apache Software Foundation. ODE: The Apache Orchestration
Director Engine, 2010. http://ode.apache.org/.

307

308 BIBLIOGRAPHY

[Apa10c] Apache Software Foundation. Tomcat: A Java Servlet Container,
2010. http://tomcat.apache.org/.

[ÁvédVG06] János Ávéd, Dániel Varró, and László Gönczy. Model-based
deployment of web services to standards-compliant middleware.
In Miguel Baptista Nunes Pedro Isaias, editor, Proc. of the Iadis
International Conference on WWW/Internet 2006(ICWI2006).
Iadis Press, 2006.

[BBFR04] Michael Baldamus, Jesper Bengtson, Gian Luigi Ferrari, and
Roberto Raggi. Web services as a new approach to distributing
and coordinating semantics-based verification toolkits. Electr.
Notes Theor. Comput. Sci., 105:11–20, 2004.

[BGT+04] Sven Burmester, Holger Giese, Jörg Niereand Matthias Tichy,
Jörg Wadsack, Robert Wagnerand, Lothar Wendehals, , and Al-
bert Zöndorf. Tool integration at the meta-model level: the
fujaba approach. Int. J. Softw. Tools Technol. Transf., 6(3):203–
218, 2004.

[BHTV06] Luciano Baresi, Reiko Heckel, Sebastian Thöne, and Dániel
Varró. Style-based modeling and refinement of service-oriented
architectures. Software and System Modeling, 5(2):187–207,
2006.

[BKM08] Athman Bouguettaya, Ingolf Krüger, and Tiziana Margaria, ed-
itors. Service-Oriented Computing - ICSOC 2008, 6th Interna-
tional Conference, Sydney, Australia, December 1-5, 2008. Pro-
ceedings, volume 5364 of Lecture Notes in Computer Science,
2008.

[BLL+95] Johan Bengtsson, Kim Guldstrand Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi. Uppaal - a tool suite for automatic
verification of real-time systems. In Rajeev Alur, Thomas A.
Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems, vol-
ume 1066 of Lecture Notes in Computer Science, pages 232–243.
Springer, 1995.

[BMSH10] Sebastian S. Bauer, Philip Mayer, Andreas Schroeder, and Rolf
Hennicker. On Weak Modal Compatibility, Refinement, and the
Mio Workbench. In 16th Int. Conf. Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2010), 2010.

[Boo93] Grady Booch. Object Oriented Analysis and Design with Appli-
cations. Addison Wesley Professional, 10 1993.

[Buc05] Mikael Buchholtz. Automated analysis of infinite scenarios.
In Rocco De Nicola and Davide Sangiorgi, editors, TGC, vol-
ume 3705 of Lecture Notes in Computer Science, pages 334–352.
Springer, 2005.

BIBLIOGRAPHY 309

[BV06] András Balogh and Dániel Varró. Advanced model transforma-
tion language constructs in the viatra2 framework. In SAC, pages
1280–1287, 2006.

[BZ07] Mario Bravetti and Gianluigi Zavattaro. A Theory for Strong
Service Compliance. In Amy L. Murphy and Jan Vitek, editors,
9th Int. Conf. Coordination Models and Languages, COORDI-
NATION 2007, volume 4467 of LNCS, pages 96–112. Springer,
2007.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Snjiva
Weerawarana. Web Services Description Language (WSDL) 1.1.
World Wide Web Consortium, March 2001.

[CdAHS03] Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger,
and Mariëlle Stoelinga. Resource interfaces. In Rajeev Alur and
Insup Lee, editors, EMSOFT, volume 2855 of Lecture Notes in
Computer Science, pages 117–133. Springer, 2003.

[CGT09a] Allan Clark, Stephen Gilmore, and Mirco Tribastone. Quantita-
tive analysis of web services using srmc. In Marco Bernardo, Luca
Padovani, and Gianluigi Zavattaro, editors, SFM, volume 5569
of Lecture Notes in Computer Science, pages 296–339. Springer,
2009.

[CGT09b] Allan Clark, Stephen Gilmore, and Mirco Tribastone. Scalable
analysis of scalable systems. In Marsha Chechik and Martin
Wirsing, editors, FASE, volume 5503 of Lecture Notes in Com-
puter Science, pages 1–17. Springer, 2009.

[Cra04] Craig Larman. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development.
Prentice Hall, November 2004.

[dAH01a] Luca de Alfaro and Thomas A. Henzinger. Interface automata.
Software Engineering Notes, pages 109–120, 2001.

[dAH01b] Luca de Alfaro and Thomas A. Henzinger. Interface Theories
for Component-Based Design. In Thomas A. Henzinger and
Christoph M. Kirsch, editors, First Int. Workshop Embedded
Software, EMSOFT 2001, volume 2211 of LNCS, pages 148–165.
Springer, 2001.

[dAH05] Luca de Alfaro and Thomas A. Henzinger. Interface-based
Design. In Manfred Broy, Johannes Grünbauer, David Harel,
and C. A. R. Hoare, editors, Engineering Theories of Software-
intensive Systems, volume 195 of NATO Science Series: Mathe-
matics, Physics, and Chemistry, pages 83–104. Springer, 2005.

310 BIBLIOGRAPHY

[dAHS02] Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga.
Timed interfaces. In Alberto L. Sangiovanni-Vincentelli and
Joseph Sifakis, editors, EMSOFT, volume 2491 of Lecture Notes
in Computer Science, pages 108–122. Springer, 2002.

[DBL88] Proceedings, Third Annual Symposium on Logic in Computer
Science, 5-8 July 1988, Edinburgh, Scotland, UK. IEEE Com-
puter Society, 1988.

[DFCU08] Nicolás D’Ippolito, Dario Fischbein, Marsha Chechik, and Se-
bastián Uchitel. MTSA: The Modal Transition System Analyser.
In 23rd Int. Conf. Automated Software Engineering, ASE 2008,
pages 475–476. IEEE Computer Societey, 2008.

[DFFU07] Nicolás D’Ippolito, Dario Fischbein, Howard Foster, and Se-
bastián Uchitel. MTSA: Eclipse support for modal transition
systems construction, analysis and elaboration. In Li-Te Cheng,
Alessandro Orso, and Martin P. Robillard, editors, OOPSLA
Workshop Eclipse Technology eXchange, ETX 2007, pages 6–10.
ACM Press, 2007.

[DFK04] Jim D’Anjou, Scott Fairbrother, and Dan Kehn. The Java De-
velopers’s Guide to Eclipse. Addison-Wesley Longman, Amster-
dam, November 2004.

[DGW08] Christophe Dumez, Jaafar Gaber, and Maxime Wack. Model-
driven engineering of composite web services using uml-s. In
Gabriele Kotsis, David Taniar, Eric Pardede, and Ismail Khalil
Ibrahim, editors, iiWAS, pages 395–398. ACM, 2008.

[DHJP08] Laurent Doyen, Thomas A. Henzinger, Barbara Jobstmann, and
Tatjana Petrov. Interface theories with component reuse. In Luca
de Alfaro and Jens Palsberg, editors, 8th Int. Conf. Embedded
software, EMSOFT 2008, pages 79–88. ACM Press, 2008.

[DNsmGW08] Christophe Dumez, Ahmed Nait-sidi moh, Jaafar Gaber, and
Maxime Wack. Modeling and specification of web services com-
position using uml-s. In NWESP ’08: Proceedings of the 2008
4th International Conference on Next Generation Web Services
Practices, pages 15–20, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[Ecl10a] Eclipse Foundation. EMF: The Eclipse Modeling Framework,
2010. http://eclipse.org/modeling/emf/.

[Ecl10b] Eclipse Foundation. GEF: The Graphical Editing Framework,
2010. http://www.eclipse.org/gef.

[Ecl10c] Eclipse Foundation. MDT: The Eclipse Model Development
Tools Project, 2010. http://www.eclipse.org/modeling/mdt/.

BIBLIOGRAPHY 311

[Ecl10d] Eclipse Foundation. MDT:UML2: The Eclipse Model
Development Tools: UML2 Tools Subproject, 2010.
http://www.eclipse.org/modeling/mdt/?project=uml2tools.

[Ecl10e] Eclipse Foundation. MoDisco: The Eclipse/GMT Model Discov-
ery Component, 2010. http://www.eclipse.org/MoDisco/.

[Ecl10f] Eclipse Foundation. SWT: The Standard Widget Toolkit, 2010.
http://www.eclipse.org/swt.

[Ecl10g] Eclipse Foundation. The Eclipse BPEL project, 2010.
http://eclipse.org/bpel/.

[Ecl10h] Eclipse Foundation. The Eclipse Model
To Text (M2T) Acceleo Subproject, 2010.
http://www.eclipse.org/modeling/m2t/?project=acceleo.

[Ecl10i] Eclipse Foundation. The Eclipse Project, 2010.
http://www.eclipse.org/.

[Ecl10j] Eclipse Foundation. WTP: The Eclipse Web Tools Platform
Project, 2010. http://www.eclipse.org/webtools/.

[EGK+10] Jannis Elgner, Stefania Gnesi, Nora Koch, , and Philip Mayer.
Specification and Implementation of Demonstrators for the Case
Studies, chapter 7.1. Springer Verlag, 2010.

[EK07] Vina Ermagan and Ingolf H. Krüger. A uml2 profile for service
modeling. In Gregor Engels, Bill Opdyke, Douglas C. Schmidt,
and Frank Weil, editors, MoDELS, volume 4735 of Lecture Notes
in Computer Science, pages 360–374. Springer, 2007.

[EN06] Greg Lomow Eric Newcomer. Business Process Execution Lan-
guage for Web Services. Packt Publishing, 2006.

[Erl05] Thomas Erl. Service-Oriented Architecture: Concepts, Technol-
ogy, and Design. Prentice Hall International, 2005.

[ES09] Jannis Elgner and Kamil Swierkot. Finance Case Study: Credit
Portal. Technical report, s&n AG, 2009.

[Evi10] Eviware. SoapUI: Web Service Testing, 2010.
http://www.soapui.org/.

[FBS04] Xian Fu, Tevfik Bultan, and Jianwen Su. Analysis of Interacting
BPEL Web Services. In 3rd Int. Conf. on Web Services, ICWS
2004, pages 621–630. IEEE Computer Society, 2004.

312 BIBLIOGRAPHY

[FBU09] Dario Fischbein, Vı́ctor A. Braberman, and Sebastián Uchitel. A
Sound Observational Semantics for Modal Transition Systems.
In Martin Leucker and Carroll Morgan, editors, 6th Int. Collo-
quium Theoretical Aspects of Computing, ICTAC 2009, volume
5684 of LNCS, pages 215–230. Springer, 2009.

[FEK+07] Howard Foster, Wolfgang Emmerich, Jeff Kramer, Jeff Magee,
David Rosenblum, and Sebastian Uchitel. Model Checking Ser-
vice Compositions under Resource Constraints. In ESEC-FSE
’07: Proceedings of the the 6th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Sym-
posium on the foundations of Software Engineering, pages 225–
234, New York, NY, USA, 2007. ACM.

[FGK+10a] Howard Foster, László Göczy, Nora Koch, Philip Mayer, Carlo
Montangero, and Dániel Varró. D1.4b: UML for Service-
Oriented Systems. Specification, SENSORIA Project 016004,
2010.

[FGK+10b] Howard Foster, László Gönczy, Nora Koch, Philip Mayer, Carlo
Montangero, and Dániel Varró. Sensoria: Software Engineering
for Service-Oriented Overlay Computers, chapter UML Exten-
sions for Service-Oriented Systems. Springer Verlag, 2010.

[FGL+08] Alessandro Fantechi, Stefania Gnesi, Alessandro Lapadula,
Franco Mazzanti, Rosario Pugliese, and Francesco Tiezzi. A
model checking approach for verifying COWS specifications. In
J. L. Fiadeiro and P. Inverardi, editors, 11th Int. Conf. Funda-
mental Approaches to Software Engineering, FASE 2008, volume
4961 of LNCS, pages 230–245. Springer, 2008.

[FM08] Howard Foster and Philip Mayer. Leveraging integrated tools for
model-based analysis of service compositions. In Abdelhamid
Mellouk, Jun Bi, Guadalupe Ortiz, Dickson K. W. Chiu, and
Manuela Popescu, editors, ICIW, pages 72–77. IEEE Computer
Society, 2008.

[FMRU08] Howard Foster, Arun Mukhija, David S. Rosenblum, and Se-
bastián Uchitel. A model-driven approach to dynamic and
adaptive service brokering using modes. In Bouguettaya et al.
[BKM08], pages 558–564.

[Fra03] David Frankel. Model Driven Architecture: Applying MDA to
Enterprise Computing. Wiley, January 2003.

[FUMK03] Howard Foster, Sebastián Uchitel, Jeff Magee, and Jeff Kramer.
Model-based verification of web service compositions. In ASE,
pages 152–163. IEEE Computer Society, 2003.

BIBLIOGRAPHY 313

[FUMK06] Howard Foster, Sebastián Uchitel, Jeff Magee, and Jeff Kramer.
Ltsa-ws: a tool for model-based verification of web service com-
positions and choreography. In Leon J. Osterweil, H. Dieter
Rombach, and Mary Lou Soffa, editors, ICSE, pages 771–774.
ACM, 2006.

[FUMK07] Howard Foster, Sebastián Uchitel, Jeff Magee, and Jeff Kramer.
WS-Engineer: A Model-Based Approach to Engineering Web
Service Compositions and Choreography. In Luciano Baresi and
Elisabetta Di Nitto, editors, Test and Analysis of Web Services,
pages 87–119. Springer, 2007.

[FUMK08] Howard Foster, Sebastian Uchitel, Jeff Magee, and Jeff Kramer.
Leveraging Modes and UML2 for Service Brokering Specifica-
tions. In Proceedings of the 4th Model-Driven Web Engineering
Workshop (MDWE 2008), Toulouse, France, 2008.

[FW04] David C. Fallside and Priscialla Walmsley. XML Schema Part 0:
Primer Second Edition. World Wide Web Consortium, October
2004.

[GGK+10] Stephen Gilmore, László Gönczy, Nora Koch, Philip Mayer,
Mirco Tribastone, and Dániel Varró. Non-functional proper-
ties in the model-driven development of service-oriented systems.
Software and System Modeling, 2010.

[GHM+05] Olivier Gruber, B. J. Hargrave, Jeff McAffer, Pascal Rapicault,
and Thomas Watson. The eclipse 3.0 platform: Adopting osgi
technology. IBM Systems Journal, 44(2):289–300, 2005.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification. Addison Wesley, 2005.

[GL00] Stephen J. Garland and Nancy Lynch. Using I/O Automata for
Developing Distributed Systems. In In Gary T. Leavens and Mu-
rali Sitaraman, editors, Foundations of Component-Based Sys-
tems, pages 285–312. Cambridge University Press, 2000.

[GMRMS09] Stephen Gorton, Carlo Montangero, Stephan Reiff-Marganiec,
and Laura Semini. StPowla: SOA, Policies and Workflows.
In Elisabetta Di Nitto and Matei Ripeanu, editors, ICSOC’07
Workshops Revised Selected Papers, volume 4907 of Lecture
Notes in Computer Science, pages 351–362. Springer, 2009.

[GR01] Roberto Gorrieri and Arend Rensink. Action refinement. In
J. A. Bergstra, A. Ponse, and S. A. Smolka, editors, Handbook
of Process Algebra, chapter 16, pages 1047–1147. Elsevier, 2001.

314 BIBLIOGRAPHY

[GR03] Anna Gerber and Kerry Raymond. Mof to emf: there and back
again. In Michael G. Burke, editor, OOPSLA Workshop on
Eclipse Technology eXchange, pages 60–64. ACM, 2003.

[GV10] László Gönczy and Dániel Varró. Developing Effective Service
Oriented Architectures: Concepts and Applications in Service
Level Agreements, Quality of Service and Reliability, chapter En-
gineering Service Oriented Applications with Reliability and Se-
curity Requirements. IGI Global, 2010. To be published.

[H0̈7] Matthias Hölzl. D8.4a: Distributed E-University Management
and E-Learning System: Requirements modelling and analysis of
selected scenarios. Deliverable for the eu project sensoria, report-
ing period october 2006 - september 2007, SENSORIA Project
016004, 2007.

[Hil96] Jane Hillston. A compositional approach to performance mod-
elling, 1996.

[HKMU06] Dan Hirsch, Jeff Kramer, Jeff Magee, and Sebastian Uchitel.
Modes for Software Architectures. In Proceedings of EWSA 2006,
3rd European Workshop on Software Architecture, Lecture Notes
in Computer Science. Springer Verlag, 2006.

[HL89] Hans Hüttel and Kim Guldstrand Larsen. The Use of Static
Constructs in A Modal Process Logic. In Albert R. Meyer and
Michael A. Taitslin, editors, Symp. Logical Foundations of Com-
puter Science, Logic at Botik 1989, volume 363 of LNCS, pages
163–180. Springer, 1989.

[HLT03] Reiko Heckel, Marc Lohmann, and Sebastian Thne. Towards
a uml profile for service-oriented architectures. In Workshop on
Model Driven Architecture: Foundations and Applications, 2003.

[Hol97] Gerard J. Holzmann. The model checker spin. IEEE Trans.
Software Eng., 23(5):279–295, 1997.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker : Primer and
Reference Manual. Addison-Wesley Professional, 2003.

[IBM09] IBM Corporation. Rational Software Archi-
tect for WebSphere Software, 2009. http://www-
01.ibm.com/software/awdtools/swarchitect/websphere/.

[Jac92] Ivar Jacobson. Object Oriented Software Engineering: A Use
Case Driven Approach. Bennet Books Ltd, 07 1992.

[Jam02] James Clark. RELAX NG and W3C XML Schema, 2002.
http://www.imc.org/ietf-xml-use/mail-archive/msg00217.html.

BIBLIOGRAPHY 315

[JBo10] JBoss Community. JBoss jBPM - Workflow in Java, 2010.
http://www.jboss.org/jbpm.

[JMS03] Matjaz Juric, Beny Mathew, and Poornachandra Sarang. Web
Services: Concepts, Architectures, and Applications. Springer,
Berlin, 2003.

[Joh05] Simon Johnston. UML 2.0 Profile for Software Services. Tech-
nical report, IBM Corporation, Apr 2005. https://www.ibm.

com/developerworks/rational/library/05/419_soa/.

[KMH+07] Nora Koch, Philip Mayer, Reiko Heckel, László Göczy, and Carlo
Montangero. D1.4a: UML for Service-Oriented Systems. Speci-
fication, SENSORIA Project 016004, 2007.

[Lin06] Fabian Linz. Integration von Benutzeraktionen in BPEL-
Prozesse. Masters thesis, Universitt Paderborn (in Kooperation
mit der S&N AG), 2006.

[LMS08] Nancy A. Lynch, Laurent Michel, and Alexander Shvartsman.
Tempo: A Toolkit for The Timed Input/Output Automata For-
malism. In Sándor Molnár, John Heath, Olivier Dalle, and
Gabriel A. Wainer, editors, 1st Int. Conf. Simulation Tools and
Techniques for Communications, Networks, and Systems, Simu-
Tools 2008. ICST, 2008.

[LMSW06] Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela
Weinberg. Analyzing interacting BPEL processes. In Schahram
Dustdar, José Luiz Fiadeiro, and Amit P. Sheth, editors, 4th Int.
Conf. Business Process Management, BPM 2006, volume 4102
of LNCS, pages 17–32. Springer, 2006.

[LNW07a] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski.
Modal I/O Automata for Interface and Product Line Theories.
In Rocco De Nicola, editor, 16th Eur. Symp. Programming, Pro-
gramming Languages and Systems, ESOP 2007, volume 4421 of
LNCS, pages 64–79. Springer, 2007.

[LNW07b] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski.
On Modal Refinement and Consistency. In Lúıs Caires and
Vasco Thudichum Vasconcelos, editors, 18th Int. Conf. Con-
currency Theory, CONCUR 2007, volume 4703 of LNCS, pages
105–119. Springer, 2007.

[LPT09] Alessandro Lapadulaa, Rosario Pugliese, and Francesco Tiezzi.
Using formal methods to develop WS-BPEL applications. Tech-
nical report, Dipartimento di Sistemi e Informatica, University
of Firenze, 2009.

https://www.ibm.com/developerworks/rational/library/05/419_soa/
https://www.ibm.com/developerworks/rational/library/05/419_soa/

316 BIBLIOGRAPHY

[LT87] Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness
proofs for distributed algorithms. In 6th Annual Symp. Prin-
ciples of Distributed Computing, PODC 1987, pages 137–151.
ACM Press, 1987.

[LT88a] Kim Guldstrand Larsen and Bent Thomsen. A Modal Process
Logic. In 3rd Annual Symp. Logic in Computer Science, LICS
1988 [DBL88], pages 203–210.

[LT88b] Kim Guldstrand Larsen and Bent Thomsen. A modal process
logic. In LICS [DBL88], pages 203–210.

[LT89] Nancy A. Lynch and Mark R. Tuttle. An introduction to in-
put/output automata. CWI Quarterly, 2:219–246, 1989.

[LZP09] Bixin Li, Yu Zhou, and Jun Pang. Model-driven automatic gen-
eration of verified bpel code for web service composition. In
Shahida Sulaiman and Noor Maizura Mohamad Noor, editors,
APSEC, pages 355–362. IEEE Computer Society, 2009.

[Man03] Keith Mantell. From UML to BPEL: Model Driven Architecture
in a Web Services world. Technical report, International Business
Machines Corporation (IBM), September 2003.

[Mar05] Axel Martens. Analyzing web service based business processes.
In Maura Cerioli, editor, 8th Int. Conf. on Fundamental Ap-
proaches to Software Engineering, FASE 2005, volume 3442 of
LNCS, pages 19–33. Springer, 2005.

[MB07] Philip Mayer and Hubert Baumeister. D7.4b: Report on the Sen-
soria CASE Tool: Description and Evaluation. Deliverable for
the eu project sensoria, reporting period october 2006 - septem-
ber 2007, SENSORIA Project 016004, 2007.

[MCF03] Stephen J. Mellor, Anthony N. Clark, and Takao Futagami.
Guest editors’ introduction: Model-driven development. IEEE
Software, 20(5):14–18, 2003.

[MCG05] Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. A tax-
onomy of model transformations. In Jean Bezivin and Reiko
Heckel, editors, Language Engineering for Model-Driven Soft-
ware Development, number 04101 in Dagstuhl Seminar Pro-
ceedings, Dagstuhl, Germany, 2005. Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying
distributed software architectures. In Proc. ESEC 1995, volume
989 of LNCS, pages 137–153. Springer, 1995.

BIBLIOGRAPHY 317

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall
(International Series in Computer Science), 1989.

[MK99] Jeff Magee and Jeff Kramer. Concurrency: state models & Java
programs. John Wiley & Sons, Inc., New York, NY, USA, 1999.

[MNS05] Tiziana Margaria, Ralf Nagel, and Bernhard Steffen. Remote in-
tegration and coordination of verification tools in jeti. In ECBS,
pages 431–436. IEEE Computer Society, 2005.

[MR09] Jim Marino and Michael Rowley. Understanding SCA (Service
Component Architecture). Addison-Wesley Longman, July 2009.

[MR10] Philip Mayer and Istvan Rath. D7.4d: Report on the Sensoria
Development Environment (SDE), third version. Deliverable for
the eu project sensoria, reporting period october 2008 - february
2010, SENSORIA Project 016004, 2010.

[MRH08] Philip Mayer, Istvan Rath, and Adam Horvath. D7.4c: Report
on the Sensoria Development Environment (SDE), second ver-
sion. Deliverable for the eu project sensoria, reporting period oc-
tober 2007 - september 2008, SENSORIA Project 016004, 2008.

[MS08] Tiziana Margaria and Bernhard Steffen, editors. Leveraging Ap-
plications of Formal Methods, Verification and Validation, Third
International Symposium, ISoLA 2008, Porto Sani, Greece, Oc-
tober 13-15, 2008. Proceedings, volume 17 of Communications in
Computer and Information Science. Springer, 2008.

[MSB10] Philip Mayer, Andreas Schroeder, and Sebastian S. Bauer. A
Strict-Observational Interface Theory for Analysing Service Or-
chestrations. In 7th International Workshop on Formal Engi-
neering approaches to Software Components and Architectures
(FESCA 2010), 2010.

[MSK08a] Philip Mayer, Andreas Schroeder, and Nora Koch. Mdd4soa:
Model-driven service orchestration. In EDOC, pages 203–212.
IEEE Computer Society, 2008.

[MSK08b] Philip Mayer, Andreas Schroeder, and Nora Koch. A model-
driven approach to service orchestration. In IEEE SCC (2),
pages 533–536. IEEE Computer Society, 2008.

[NoM10] NoMagic, Inc. MagicDraw, 2010. http://www.magicdraw.com/.

[NW04] Steve Northover and Mile Wilson. SWT: The Standard Widget
Toolkit, Volume 1. Addison-Wesley Professional, July 2004.

[OAS06] OASIS. Reference Model for Service-Oriented Architecture 1.0.
Organization for the Advancement of Structured Information
Standards, Billerica, USA, August 2006.

318 BIBLIOGRAPHY

[OAS07] OASIS. Web Services Business Process Execution Language Ver-
sion 2.0. Organization for the Advancement of Structured Infor-
mation Standards, Billerica, USA, April 2007.

[OAS10] OASIS. Organization for the Advancement of Structured
Information Standards. Technical report, OASIS, 2010.
http://www.oasis-open.org/.

[OMG06] OMG (Object Management Group). UML Profile and Meta-
model for Services (UPMS) Request For Proposal, 09 2006.

[OMG07] OMG (Object Management Group). MOF 2.0/XMI Map-
ping, Version 2.1.1. Specification, OMG (Object Management
Group), 12 2007. http://www.omg.org/cgi-bin/doc?formal/

07-12-01.pdf.

[OMG08a] OMG (Object Management Group). A UML Profile for MARTE:
Modeling and Analysis of Real-Time Embedded systems, Beta
2. Technical report, OMG (Object Management Group), 2008.

[OMG08b] OMG (Object Management Group). MOF Model to Text Trans-
formation Language (MOFM2T), 1.0. OMG (Object Manage-
ment Group), Needham, USA, January 2008.

[OMG09a] OMG (Object Management Group). Business Process Model and
Notatation (BPMN). Specification, OMG (Object Management
Group), 1 2009. http://www.omg.org/spec/BPMN/1.2/.

[OMG09b] OMG (Object Management Group). Service oriented architec-
ture Modeling Language(SoaML), Beta 2. Technical report,
OMG (Object Management Group), 2009.

[OMG10a] OMG (Object Management Group). Unified Modeling Lan-
guage: Infrastructure, version 2.3. Technical report, OMG (Ob-
ject Management Group), 2010.

[OMG10b] OMG (Object Management Group). Unified Modeling Lan-
guage Superstructure. Specification, OMG (Object Manage-
ment Group), 5 2010. http://www.omg.org/spec/UML/2.3/

Superstructure/.

[Ope04] Open Source Initiative (OSI)). Eclipse Public License -v
1.0. License, OSI, May 2004. http://www.opensource.org/

licenses/eclipse-1.0.php.

[Ora10] Oracle. Oracle BPEL Process Manager, 2010.
http://www.oracle.com/technology/products/ias/bpel/.

[OSG08] OSGi Alliance. Osgi specification release 4. http://www.osgi.

org/Specifications/, 03 2008.

http://www.omg.org/cgi-bin/doc?formal/07-12-01.pdf
http://www.omg.org/cgi-bin/doc?formal/07-12-01.pdf
http://www.omg.org/spec/BPMN/1.2/
http://www.omg.org/spec/UML/2.3/Superstructure/
http://www.omg.org/spec/UML/2.3/Superstructure/
http://www.opensource.org/licenses/eclipse-1.0.php
http://www.opensource.org/licenses/eclipse-1.0.php
http://www.osgi.org/Specifications/
http://www.osgi.org/Specifications/

BIBLIOGRAPHY 319

[OSI10] OSI. OSI: The Open Source Initiative, 2010.
http://www.opensource.org/.

[Par07] Terence Parr. The Definitivie ANTLR Reference Guide: Build-
ing Domain-Specific Languages. Pragmatic Programmers, May
2007.

[PRO05] PROFUNDIS project team. PROFUNDIS: Proofs of
Functionality for Mobile Distributed Systems, 2005.
http://www.it.uu.se/profundis/.

[RAR07] Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-
OSGi: distributed applications through software modulariza-
tion. In Middleware ’07: Proceedings of the ACM/IFIP/USENIX
2007 International Conference on Middleware, pages 1–20, New
York, NY, USA, 2007. Springer-Verlag New York, Inc.

[RBB+09a] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benôıt
Caillaud, Axel Legay, and Roberto Passerone. Modal interfaces:
unifying interface automata and modal specifications. In Samar-
jit Chakraborty and Nicolas Halbwachs, editors, 9th Int. Conf.
Embedded software, EMSOFT 2009, pages 87–96. ACM Press,
2009.

[RBB+09b] Jean-Baptiste Raclet, Eric Badouel, Albert Benveniste, Benot
Caillaud, and Roberto Passerone. Why Are Modalities Good for
Interface Theories? In 9th Int. Conf. Application of Concurrency
to System Design, ACSD 2009, pages 119–127, Los Alamitos,
CA, USA, 2009. IEEE Computer Society.

[RBL+90] James Rumbaugh, Michael Blaha, William Lorensen, Frederick
Eddy, and William Premerlani. Object-Oriented Modeling and
Design. Bennet Books Ltd, 10 1990.

[Ric00] Richard Soley. Model Driven Architecture. Technical report,
OMG (Object Management Group), 2000.

[RM06] Jan Recker and Jan Mendling. On the translation between bpmn
and bpel: Conceptual mismatch between process modeling lan-
guages, 2006.

[SD05] Zoran Stojanovic and Ajantha Dahanayake. Service Oriented
Software System Engineering: Challenges and Practices. Idea
Group Publishing, April 2005.

[SeC10] SeCSE project team. Service Centric System Engineering
(SeCSE), 2010. http://www.secse-project.eu/.

[Sel03] Bran Selic. The pragmatics of model-driven development. IEEE
software, 20(5):19–25, 2003.

320 BIBLIOGRAPHY

[SGS04] David Skogan, Roy Grønmo, and Ida Solheim. Web service com-
position in uml. In EDOC, pages 47–57. IEEE Computer Society,
2004.

[SKM01] Timm Schäfer, Alexander Knapp, and Stephan Merz. Model
checking uml state machines and collaborations. Electr. Notes
Theor. Comput. Sci., 55(3), 2001.

[SM08] Andreas Schroeder and Philip Mayer. Verifying interaction pro-
tocol compliance of service orchestrations. In Bouguettaya et al.
[BKM08], pages 545–550.

[soa07] SOAP . World Wide Web Consortium (W3C), April 2007.

[tBBG07] Maurice H. ter Beek, Antonio Bucchiarone, and Stefania Gnesi.
Web Service Composition Approaches: From Industrial Stan-
dards to Formal Methods. In 2nd Int. Conf. Internet and Web
Applications and Services, ICIW 2007. IEEE Computer Society,
2007.

[tBMG09] Maurice H. ter Beek, Franco Mazzanti, and Stefania Gnesi. Cmc-
umc: a framework for the verification of abstract service-oriented
properties. In Sung Y. Shin and Sascha Ossowski, editors, SAC,
pages 2111–2117. ACM, 2009.

[TG08] Mirco Tribastone and Stephen Gilmore. Automatic translation
of uml sequence diagrams into pepa models. In QEST, pages
205–214. IEEE Computer Society, 2008.

[TG10] Mirco Tribastone and Stephen Gimore. Sensoria: Software Engi-
neering for Service-Oriented Overlay Computers, chapter Scaling
Performance Analysis using Fluid-Flow Approximation. Springer
Verlag, 2010.

[W3C10] W3C. World Wide Web Consortium. Technical report, W3C,
2010. http://www.w3.org/.

[WBC+09] Martin Wirsing, Laura Bocchi, Alan Clark, Jose Fiadeiro,
Stephen Gilmore, Matthias Hölzl, Nora Koch, Philip Mayer,
Roberto Pugliese, and Andreas Schroeder. At your service: Ser-
vice Engineering in the Information Society Technologies Pro-
gram, chapter Sensoria: Engineering for Service-Oriented Over-
lay Computers. MIT Press, 2009.

[WCL+05] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony
Storey, and Donald F. Ferguson. Web Services Platform Archi-
tecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging, and More. Prentice Hall, Upper Saddle
River, New Jersey, USA, 2005.

BIBLIOGRAPHY 321

[WHA+08] Martin Wirsing, Matthias M. Hölzl, Lucia Acciai, Federico
Banti, Allan Clark, Alessandro Fantechi, Stephen Gilmore,
Stefania Gnesi, László Gönczy, Nora Koch, Alessandro La-
padula, Philip Mayer, Franco Mazzanti, Rosario Pugliese, An-
dreas Schroeder, Francesco Tiezzi, Mirco Tribastone, and Dániel
Varró. Sensoriapatterns: Augmenting service engineering with
formal analysis, transformation and dynamicity. In Margaria and
Steffen [MS08], pages 170–190.

[WHK+08] Martin Wirsing, Matthias Hölzl, Nora Koch, Philip Mayer, and
Andreas Schroeder. Service engineering: The sensoria model
driven approach. In Proceedings of Software Engineernig Re-
search, Managaement and Applications (SERA), Prague, Czech
Republic, August 2008.

[Wor04a] World Wide Web Consortium (W3C). Web Services Architec-
ture. Technical report, World Wide Web Consortium (W3C),
2004.

[Wor04b] World Wide Web Consortium (W3C). Web Services Architecture
Requirements. Technical report, World Wide Web Consortium
(W3C), 2004.

[wsa04] Web Services Addressing (WS-Addressing) . World Wide Web
Consortium (W3C), August 2004.

[XK09] Rong Xie and Nora Koch. Automotive Case Study: Demonstra-
tor. Technical report, Cirquent GmbH, 2009.

322 BIBLIOGRAPHY

List of Tables

5.1 Mapping of SMM Actions to MIO Transitions 136

6.1 Mapping of SMM Service Operations to Partner Roles 222
6.2 Mapping of SMM Services to Java Interfaces 234

323

324 LIST OF TABLES

List of Figures

1.1 The MDD4SOA Approach . 3
1.2 eUniversity Case Study: Overview 7

2.1 Web Service Architecture Stack 14
2.2 WSDL Definition Structure . 16
2.3 Structured Class Example . 23
2.4 Activity Example . 25
2.5 Protocol State Machine Example 27
2.6 MOF Layers Example . 28
2.7 A UML Model and its Serialisation 31
2.8 SoaML Meta-Model (Excerpt) . 34
2.9 eUniversity Case Study: Static Model 35
2.10 eUniversity Case Study: Data Types 36
2.11 Model-Driven Development . 37
2.12 Model Transformations . 39

3.1 eUniversity Case Study: Communications 52
3.2 eUniversity Case Study: Long-Running Transactions 53
3.3 eUniversity Case Study: Protocol 54
3.4 eUniversity Case Study: Communications in UML4SOA 56
3.5 eUniversity Case Study: Long-Running Transactions in UML4SOA 58
3.6 eUniversity Case Study: Protocols in UML4SOA 59
3.7 UML4SOA Meta-Model (Structures and Protocols) 62
3.8 UML4SOA Meta-Model (Actions and Pins) 63
3.9 UML4SOA Profile Package . 84
3.10 UML4SOA Stereotypes for Structuring Classes 85
3.11 UML4SOA Stereotypes for Communication Classes 86
3.12 UML4SOA Stereotypes for Protocol Specification 87
3.13 UML4SOA Data Manipulation: Simple Example 93
3.14 UML4SOA Data Manipulation: Structure Types 94
3.15 UML4SOA Data Manipulation: Structure Example 94
3.16 Generic and Concrete Participants 98
3.17 eUniversity Case Study: Thesis Manager Activity 101
3.18 eUniversity Case Study: Protocol Specification 102

325

326 LIST OF FIGURES

3.19 UML4SOA Tool Support in RSA 104
3.20 UML4SOA Tool Support in MagicDraw 105

4.1 Overview: The SMM and Related Artefacts 112
4.2 SMM Packages . 113
4.3 SMM: Statik Package . 115
4.4 SMM: Data Package . 117
4.5 SMM: Behaviour Package (1/2) 118
4.6 SMM: Behaviour Package (2/2) 119
4.7 eUniversity Case Study: Registration Activity (Graphical) 127

5.1 Notation for IAs . 133
5.2 Example: A Send in UML4SOA and as an IA 137
5.3 Example: A Decision in UML4SOA and as an IA 143
5.4 Semantics: An Automaton with Two Non-Error Ends 146
5.5 Semantics: Looping with Compensation Handlers 148
5.6 Example: Interruptions . 153
5.7 Thesis Manager in UML4SOA . 158
5.8 Thesis Manager as a MIO . 159
5.9 Student Protocol: UML4SOA (left), MIO (right) 160
5.10 UML4SOA Analysis: Syntax & Semantics 162
5.11 Incorrect Excerpt from Case Study (1) 163
5.12 MIO Example for Strict-Observational Analysis (1) 165
5.13 Weak vs. SO Refinement . 168
5.14 MIO Example for Strict-Observational Analysis (2) 170
5.15 Incorrect Excerpt from Case Study (2) 180
5.16 Mio Workbench: Architecture . 184
5.17 MIO Meta-Model . 185
5.18 Mio Workbench: Editor . 185
5.19 Mio Workbench: Refinement View 186
5.20 Mio Workbench: Refinement Problem View 186
5.21 The Workflow of Using UtbM . 188
5.22 UtbM: Architecture . 189
5.23 UtbM: MagicDraw Integration 190
5.24 UtbM: Eclipse Integration . 190

6.1 Two-Step Transformation Using the SMM 197
6.2 UML2SMM: Participants and Interfaces 200
6.3 UML2SMM: Data Types . 201
6.4 UML2SMM: Parameters of Service Operations 202
6.5 UML2SMM: Partitioning a Service Activity 204
6.6 UML2SMM: Service Activities and Handlers 208
6.7 UML2SMM: Branch . 209
6.8 UML2SMM: Receive Action . 210
6.9 UML2SMM: Converting an UML4SOA Data Statement 212
6.10 SMM2WS: Services, Operations, and Messages (SMM) 217

LIST OF FIGURES 327

6.11 SMM2WS: Message Types (SMM) 220
6.12 SMM2WS: Assignment (SMM) 226
6.13 SMM2WS: Send (SMM) . 228
6.14 SMM2WS: Loop (SMM) . 230
6.15 eUniversity Case Study: Static Part in BPEL 233
6.16 SMM2Java: Participants and Interfaces (SMM) 236
6.17 SMM2Java: Message- and Exception Types (SMM) 237
6.18 SMM2Java: Barrier Concept . 242
6.19 SMM2Java: Assignment (SMM) 247
6.20 SMM2Java: Send (SMM) . 249
6.21 SMM2Java: Decision (SMM) . 252
6.22 SMM2Java: Loop (SMM) . 253
6.23 eUniversity Case Study: Static Part in Java 254
6.24 Transformation Tool in Eclipse 256

7.1 Simulation and Tracing Approach 264
7.2 Trace Annotation . 272
7.3 eUniversity Full Trace Annotation 274
7.4 Trace Annotation in the Mio Workbench 275

8.1 SDE: Architectural Overview . 280
8.2 SDE: Technical Architecture . 281
8.3 SDE: UI . 282
8.4 SDE: Generic Invocation Wizard 283
8.5 SDE: Orchestration with JavaScript 284
8.6 SDE: Graphical Orchestration . 285
8.7 SDE: Tool Registration . 286
8.8 MDD4SOA Tools . 287
8.9 UML4SOA Website . 289
8.10 Mio Workbench Website . 289
8.11 MDD4SOA Website . 290
8.12 SDE: Available Tool Chains . 294
8.13 SDE Website . 299

9.1 The MDD4SOA Approach . 301

328 LIST OF FIGURES

List of Algorithms

3.1 UML4SOA Data Handling Example 60
3.2 Context-Free Grammar Example 89
3.3 Denoting Alternatives . 89
3.4 Optional Elements (1) . 89
3.5 Optional Elements (2) . 90
3.6 UML4SOA Data Handling Syntax 90
3.7 UML4SOA Data Handling Syntax: Declarations 90
3.8 UML4SOA Data Handling Syntax: Assignments 91
3.9 UML4SOA Data Handling Syntax: Left-Hand Sides 91
3.10 UML4SOA Data Handling Syntax: Right-Hand Sides (1) 91
3.11 UML4SOA Data Handling Syntax: Right-Hand Sides (2) 92
3.12 UML4SOA Data Handling Syntax: Unary Elements 92
3.13 UML4SOA Data Handling Syntax: Literals 92

4.1 SMM Syntax: Identifiers . 123
4.2 SMM Syntax: Services . 123
4.3 SMM Syntax: Interruptions . 123
4.4 SMM Syntax: Exception Handlers 124
4.5 SMM Syntax: Event Handlers . 124
4.6 SMM Syntax: Compensation . 124
4.7 SMM Syntax: Elements . 124
4.8 SMM Syntax: Structured Elements 125
4.9 SMM Syntax: Sequential, Parallel, Decision and Loop 125
4.10 SMM Syntax: Actions . 125
4.11 SMM Syntax: ServiceActions and ControlActions 126
4.12 SMM Syntax: Action Terminals 126
4.13 eUniversity Case Study: Registration Activity (Textual) 127

5.1 MIO Definition . 131
5.2 IA Definition . 131
5.3 Mapping IAs to MIOs . 132
5.4 Algorithm Example . 133
5.5 MIO: Send . 137
5.6 MIO: Receive . 138
5.7 MIO: Reply . 138

329

330 LIST OF ALGORITHMS

5.8 MIO: Send&Receive . 138
5.9 MIO: Throw . 139
5.10 MIO: Compensate . 140
5.11 MIO: CompensateAll . 140
5.12 MIO: Sequential . 141
5.13 MIO: Decision . 142
5.14 MIO: Parallel . 144
5.15 Handling Interleaving . 145
5.16 MIO: Loops . 149
5.17 MIO: Activities . 151
5.18 Handling Interruptions . 152
5.19 Handling Exceptions . 153
5.20 Handling Events . 154
5.22 Handling Compensation Handlers 154
5.21 Handling Compensation Calls . 155

6.1 UML2SMM: Dividing Elements 206

List of Listings

6.1 SMM2WS: Basic WSDL Structure 217
6.2 SMM2WS: Services, Operations, and Messages (WSDL) 217
6.3 SMM2WS: Bindings, Ports, and Services (WSDL) 218
6.4 SMM2WS: Message Types (XML Schema) 219
6.5 SMM2WS: Basic BPEL Structure 220
6.6 SMM2WS: Partner Link Types and Partner Links (WSDL/BPEL)222
6.7 SMM2WS: Scope with Initial Sequence (BPEL) 223
6.8 SMM2WS: Scope with Interrupting Receive (BPEL) 225
6.9 SMM2WS: Assignment (BPEL/XPath) 226
6.10 SMM2WS: Send (BPEL/XPath) 228
6.11 SMM2WS: Loop (BPEL) . 230
6.12 SMM2Java: Participants and Interfaces (Java) 236
6.13 SMM2Java: Message- and Exception Types (Java) 237
6.14 SMM2Java: Execution Scope Runnable Example Code 241
6.15 SMM2Java: Barrier Example Code 243
6.16 SMM2Java: Runnable Setup . 245
6.17 SMM2Java: Assignment (Java) 247
6.18 SMM2Java: Send (Java) . 249
6.19 SMM2Java: Handling Exceptions 251
6.20 SMM2Java: Decision (Java) . 251
6.21 SMM2Java: Loop (Java) . 252
6.22 eUniversity ThesisManager ServiceRunnable 255

7.1 Simulation: Testing Environment Code 269
7.2 Example Trace . 271

331

332 LIST OF LISTINGS

List of Definitions

1 Modal Transition System . 40
2 Modal I/O Transition System . 41
3 Strong Modal Refinement [LT88b] 42
4 Composability [LNW07a] . 42
5 Composition [LNW07a] . 43
6 Strong Modal Compatibility . 43
7 Weak Modal Refinement [HL89] 44
8 Weak Modal Compatibility [BMSH10] 44
9 Hiding . 45

10 Strict-Observational Modal Refinement 166
11 Strict-Observational I/O Compatibility 170
12 Strict-Observational Composition 172

333

	Introduction
	MDD4SOA
	Contributions of this Thesis
	Sensoria
	The eUniversity Case Study
	Thesis Structure

	Setting the Stage
	Service-Oriented Computing
	The Unified Modeling Language
	SoaML
	Model-Driven Development
	Modal I/O Automata and Interface Theories
	Technical Background

	Modelling Service Behaviour in UML
	Extending UML for Service Behaviour
	The UML4SOA Profile
	Modelling Examples
	Tool Support
	Related Work
	Summary

	The Service Meta-Model
	Overview
	The Service Meta-Model
	Summary

	Semantics and Analysis
	A Formal Semantics for UML4SOA
	Analysing UML4SOA Models
	Tool Support
	Related Work
	Summary

	Transformations and Code
	Transforming Service Models
	UML to SMM
	SMM to Web Services
	SMM to Java
	Tool Support
	Related Work
	Summary

	Simulation and Tracing
	Introduction
	Simulation
	Tracing
	Case Study
	Tool Support
	Summary

	SOA Tooling for SOA Software
	Integrating Tools for SOA Development
	The Service Development Environment
	MDD4SOA Tools
	Other Integrated Tools
	Tool Applications
	Related Work
	Summary

	Conclusion
	Contributions
	Discussion
	Future Work
	Final Words

	Bibliography
	List of Tables
	List of Figures
	List of Algorithms
	List of Listings
	List of Definitions

