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Abstract

This thesis presents the experimental investigation of the phase state of two-dimensional
complex plasmas by means of their dynamical and kinetic properties. The two-dimensional
complex plasma consists of negatively charged micron-sized plastic spheres, levitated in the
sheath of a radio-frequency noble gas discharge in a single horizontal layer. In two different
experiments the thermodynamical state of a crystalline complex plasma (“plasma crystal”),
and the process of recrystallization of a molten complex plasma is studied.
The experiments were performed on strictly two-dimensional particle systems, and all data
analysis builds on the examination of particle coordinates and trajectories.
One important aspect of the data analysis is the estimation of uncertainties. A procedure
has been developed to obtain reliable estimations of the measurement uncertainties intro-
duced by the recording method and the particle tracking algorithm. The implications of the
uncertainties on the scientific interpretation of the experimental results will be considered
throughout the thesis.
The first experiment aims to estimate the coupling parameter of a two-dimensional, crys-
talline complex plasma. The coupling parameter of an ensemble of particles is the ratio
of their mean potential energy to their mean kinetic energy. It describes the thermody-
namical state of the system, and is therefore an important quantity to characterize such a
system. To calculate it, not only the particle temperature has to be estimated, but also
an expression for the interparticle potential has to be known. For charged particles, this
depends on the particle charge, which can often only be obtained with additional experi-
mental effort, and its measurement is usually subject to large uncertainties. A simple, new
method to calculate the coupling parameter from solely the spatial particle coordinates will
be presented in this thesis, and verified to be consistent with the conventional estimation
by charge and temperature measurements.
The second experiment involves the creation of a two-dimensional plasma crystal and its
shock melting by the application of a short electric pulse. The following phase of rapid
recrystallization gives insight into the nature of a non-equilibrium transition of a two-
dimensional system of interacting particles from a disordered to an ordered state. The
measurements have been performed at a high temporal resolution to ensure the possibility
to obtain kinetic energies from particle velocity distributions. The process is investigated
thoroughly by means of the time-dependent development of the kinetic particle energy and
structural properties of the system, such as translational and orientational long range order,
defects fraction and spatial defect arrangements. Finally the connection of structural order
parameters to the kinetic energy – in comparison with conventional models and theories –
gives novel insights into the underlying physical processes determining the two-dimensional
phase transition.
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Zusammenfassung

Diese Doktorarbeit befasst sich mit der experimentellen Untersuchung des Phasenzustandes zwei-
dimensionaler, komplexer Plasmen anhand ihrer dynamischen und kinetischen Eigenschaften. Das
zweidimensionale, komplexe Plasma besteht aus negativ geladenen, mikrometer grossen Plas-
tikkügelchen, die in der Randschicht einer Radiofrequenz-Entladung eines Edelgases in einer
einzelnen, horizontalen Lage schweben. In zwei verschiedenen Experimenten wird zum einen der
thermodynamische Zustand eines kristallinen komplexen Plasmas (des “Plasmakristalls”), zum
anderen der Vorgang des Rekristallisierens eines geschmolzenen komplexen Plasmas erforscht.
Die Experimente wurden an strikt zweidimensionalen Teilchensystemen durchgeführt, wobei die
gesamte Datenauswertung auf der Untersuchung der Teilchenkoordinaten und Trajektorien basiert.
Ein wichtiger Aspekt der Datenanalyse ist die Bestimmung von Unsicherheiten. Ein Verfahren
zur verlässlichen Abschätzung der Messunsicherheiten, die durch die Aufnahmemethode und den
Algorithmus zum Auffinden der Teilchen verursacht werden, wurde entwickelt. Die Auswirkun-
gen der Unsicherheiten auf die wissenschaftlichen Interpretation der experimentellen Ergebnisse
werden im Laufe dieser Arbeit berücksichtigt.
Das erste Experiment dient der Bestimmung des Kopplungparameters eines zweidimensionalen,
kristallinen komplexen Plasmas. Der Kopplungsparameter eines Teilchenensembles ist gegeben
durch das Verhältnis seiner mittleren potentiellen Energie zu seiner mittleren kinetischen En-
ergie. Er beschreibt den thermodynamischen Zustand des Systems, und ist deshalb eine wichtige
Grösse für die Charakterisierung des Systems. Um ihn zu berechnen muss nicht nur die Teilchen-
temperatur bekannt sein, es muss auch die Form des Wechselwirkungspotentials zwischen den
Teilchen bekannt sein. Im Falle geladener Teilchen hängt dieses von der Ladung der Teilchen
ab, die oftmals nur mit zusätzlichem experimentellen Aufwand zu bestimmen ist, und deren Mes-
sung üblicherweise mit grossen Fehlern behaftet ist. Eine einfache, neue Methode zur Berechnung
des Kopplungparameters ausschliesslich aus den räumlichen Teilchenkoordinaten wird in dieser
Doktorarbeit vorgestellt, und ihre Übereinstimmung mit der üblichen Bestimmung über Teilchen-
ladung und Temperatur wird nachgewiesen.

Das zweite Experiment beinhaltet die Erzeugung eines zweidimensionalen Plasmakristalls und das
Schock-Schmelzen desselben durch einen kurzen, elektrischen Puls. Die darauffolgende Phase der
raschen Rekristallisation ermöglicht Einblicke in die Natur des Nichtgleichgewichtsübergangs eines
zweidimensionalen Systems wechselwirkender Teilchen aus einem ungeordneten in einen geord-
neten Zustand. Die Messungen wurden mit hoher zeitlicher Auflösung durchgeführt, um die
Möglichkeit sicherzustellen, kinetische Energien aus den Geschwindigkeitsverteilungen zu erhal-
ten. Der Vorgang wurde eingehend in Bezug auf die zeitabhängige Entwicklung der kinetischen
Teilchenenergie und struktureller Eigenschaften des Systems untersucht, wie zum Beispiel die lan-
greichweitige Translations- und Orientierungsordnung, der prozentuale Anteil an Gitterfehlstellen
und die räumliche Anordnung derselben. Schliesslich ergeben die Abhängigkeiten der strukturellen
Ordnungsparameter von der kinetischen Energie – im Vergleich mit konventionellen Modellen und
Theorien – neuartige Einblicke in den zugrundeliegenden, physikalischen Vorgang, der den zwei-
dimensionalen Phasenübergang bestimmt.
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Chapter 1

Introduction

The mechanisms of phase transitions in two-dimensional systems are subject to extensive
investigation, e.g. in monolayer crystals of molecules at interfaces [1], in trapped atomic
gases [2], or 2D superconducting vortex lattices [3]. Several theoretical studies describe the
possible nature of such phase transitions [4, 5, 6, 7, 8], often affirmed by results of computer
simulations [9, 10, 11]. A variety of experiments have been performed with different two-
dimensional or quasi-2D systems to confirm the theoretical predictions. Works include
the two-dimensional electron solid [12, 13], or x-ray scattering studies on the freezing of
monolayer structures of xenon on graphite [14, 15].

Most prominent in this field of research are colloidal systems of particles immersed in a fluid,
because they provide the possibility to generate two-dimensional, easily observable particle
systems, similar to the complex plasma [16, 17, 18, 19]. Colloid systems are usually strongly
overdamped, which leads to the necessity of long observation times, but – as complex
plasmas – they provide the interesting feature of direct optical observation of particles
trajectories. This makes it possible to characterize the nature of a phase transitions with
regard to the dynamical features of the system, and not only by thermodynamical quantities
of the ensemble.

This thesis aims to investigate experimentally the dynamical and kinetic properties of
two-dimensional complex plasmas with regard to their phase state.

Complex plasmas in the laboratory consist of micron-sized plastic spheres levitated in the
sheath of a noble gas discharge. The grains get charged negatively due to fluxes of charged
plasma constituents to their surface, and interact via a screened Coulomb potential [20].
They can be made visible to cameras or the eye by illumination with a laser. The particle
motion can then be studied directly by tracking the particle trajectories from recorded
images, yielding a direct measurement of the dynamical properties, namely the particle
coordinates and velocities.

If the experimental conditions are chosen accordingly, the grains can form regular struc-
tures, the plasma crystal, with interparticle distances of several 100 micrometers, and even
real two-dimensional systems can be generated, consisting of a single plane of particles
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[21, 22, 23].
Methods of phase manipulation include the variation of the neutral gas pressure in the
plasma chamber [24, 25], local heating of individual particle by lasers [26, 27], or the
application of strong electric pulses to melt an initially crystalline state [28], as it was also
done here.
In the work described in this thesis, two-dimensional, initially crystalline, complex plas-
mas were generated in an asymmetric radio-frequency Argon discharge at low neutral gas
pressure. They were studied in their initial state, and melted by negative electric pulses
to induce a phase transition and observe the process of recrystallization. The horizontal
particle layer was imaged from the top view by a high speed digital camera to ensure high
temporal resolution.
In the first step of the data analysis, the uncertainties arising from the pixel noise of the
images and from the uncertainty of the tracking procedure, impose significant restrictions
on the spatial resolution of coordinates and consequently on the temporal resolution of the
velocities [29, 30]. In the scope of this thesis, an extensive investigation of those uncertain-
ties was performed by simulating different error sources and examining their effects on the
further data analysis. This included not only a static analysis of single artificial images,
but also the simulation of particle motion and the resulting errors in dynamical properties
such as velocities. Further, many different particle-image sizes and levels of pixel-noise
were taken into account, yielding a total of 2380 artificial data sets available for statistical
interpretation of the errors. The implications of this study are taken into account during
the scientific interpretation of all presented experiments.
The first experiment concentrates on the coupling parameter Γ of two-dimensional com-
plex plasmas. For a system of interacting particles, Γ is defined as the ratio of their mean
potential energy to their mean kinetic energy. Together with the screening parameter κ,
given as the ratio of mean interparticle distance to the Debye length of the charged par-
ticle in the plasma, it describes the phase state of the particle system with regard to the
coupling strength between individual particles, and it can be used to determine its phase
and as a criterion for the occurrence of phase transitions [31, 32]. Phase diagrams (Γ,κ) for
3D complex plasma systems have been obtained numerically [33, 31, 34], but to measure Γ
experimentally, the particle charge and temperature, and the screening parameter have to
be determined in order to calculate the potential and kinetic energies. The procedures to
measure those usually involve additional experimental effort for the charge and κ estima-
tion (e.g. investigation of particle collisions [35], or wave spectra analysis [36]), and a high
temporal and spatial resolution for the temperature, and are subject to large uncertainties.
Here a method will be introduced which allows to obtain Γ from solely the particle dy-
namics, i.e. the spatial particle coordinates. The method is applied to a two-dimensional
plasma crystal, recorded at a high spatial and temporal resolution. Additionally, the par-
ticle charge, screening parameter and particle temperature are measured by conventional
methods, and the outcomes for the coupling parameter are compared. It will be shown
that the proposed methods gives reliable results consistent with conventional methods, and
also follows from simple geometrical approaches.
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The second experiment constitutes the main part of this work. The aim was to investigate
the phase transition of a two-dimensional complex plasma from an unordered state to an
ordered state. Different states of order, and also transitions between them, have been
observed in several experiments with quasi-2D and 2D complex plasmas [24, 25, 26], and
the results have been compared to known theories of two-dimensional melting (reviewed in
[37]). Here for the first time the connection between the dynamical and kinetic properties
during the crystallization process will be investigated on a fundamental level. From this, the
character of the phase transition can be deduced, i.e. a connection between the individual
particle motion and the thermodynamical state of the system is established.
As in the first experiment, a two-dimensional plasma crystal was generated in a low pres-
sure, radio-frequency Argon discharge, and then melted by application of a 0.2 s negative
electric pulse to wires attached inside the plasma chamber. The short pulse melts the
crystal completely, followed by a phase of rapid cooling and recrystallization, during which
no external forces were applied to the system, and the damping of particle motion is de-
termined by the friction with the neutral gas atoms. The whole process of melting and
crystallization was observed from the top view at a high temporal resolution with 500
recorded frames per second. The particle motion was tracked and velocities were calcu-
lated by tracing the particles across consecutive frames.
The velocities yield the time dependent mean kinetic energy of the particles as a ther-
modynamical quantity, defining the development of the thermodynamical state during
recrystallization.
The development of the order in the system was studied with regard to translational
and orientational correlation functions [38, 5, 39], calculated at each available time step,
yielding parameters such as correlation lengths as a measure for the spatial range of long
range order. Additionally, the “local” order at the individual particle positions, affected by
the degree of regularity in the crystallizing lattice, and by local distortions of the lattice
structure, has been investigated.
All structural parameters clearly indicate a highly disordered state short after the pulse
was applied, followed by a rapid change towards the initial, crystalline state. The kinetic
particle energy as the thermodynamical property of the system was then connected to the
structural properties such as defect fractions, correlation lengths and the local orientational
order of nearest neighbor bonds which gives an estimate for the goodness of the lattice
structure. It was found that all quantities exhibit a power law dependence on the energy,
indicating a scale free transition from a disordered to an ordered state. The reason of the
observed behavior is identified as the forming of domains of different lattice orientations,
separated by strings of defects, or grain boundaries. During the rapid cooling, the domains
grew continuously in size, while the defect fraction decreased. It will be shown that the
grain boundaries seem to contain a considerable fraction of the total energy in the particle
system, and therefore strongly influence the thermodynamical behavior, leading to the
scale free, continuous transition to higher order. A possible theoretical model based on the
work of Frenkel [40], consistent with the experimental findings, is presented under reserve
of certain assumptions which still have to be confirmed.



4 1. Introduction

The thesis is organized as follows:
Chapter 2 gives a short review of complex plasmas in general, their occurrence in nature
and industrial applications, and the basic processes determining the behavior of particles
in plasmas.
The experimental setup is described in Chapter 3. There also a short overview of the
treatment of measurement uncertainties is given; the complete procedure and all results
are compiled in the appendix A.
Chapter 4 explains the techniques used in the data analysis, including a method for charge
estimation and the calculation of structural and statistical properties.
The new method for the estimation of Γ is presented in Chapter 5 with the experimental
results and interpretation.
An overview of existing theories of phase transitions in two-dimensional systems is given
in Chapter 6, followed by the experimental details and results of the analysis of the recrys-
tallization experiments in Chapter 7.
Chapter 8 summarizes the findings of this thesis, and concludes with an outlook for future
studies.



Chapter 2

Complex Plasmas

An ionized gas containing ions, electrons and neutral atoms is called a plasma if it meets the
conditions quasineutrality and collective behavior. The quasineutrality exists for distances
much larger than the Debye length at which the potential caused by a charged particle
has dropped to 1/e due to the shielding by oppositely charged species. Collective behavior
arises when one charged particle interacts with many other charged particles through the
Coulomb force. This means much more than one particle has to remain within a Debye
sphere. The motion of the constituents of a plasma should further be caused by electro-
magnetic interaction rather than direct particle collisions, requiring that the frequency of
such collisions is much smaller than the plasma frequency – the frequency of typical plasma
oscillations [41].
A Complex plasma is a plasma containing micron-sized particles, sometimes referred to
as dust particles, as an additional component besides the ions, electrons and neutral gas
atoms. These particles get charged inside the plasma due to streams of electrons and ions
to their surface, and interact with each other and with the plasma constituents, in turn
complicating the behavior of the plasma.
Complex plasmas are present everywhere in nature, from interstellar space and circumstel-
lar clouds [42] to the solar system: as interplanetary dust, in comet tails and planetary
rings, and also in the earth magnetosphere and atmosphere [43, 44, 45, 46]. The grains
can be e.g. ice, silicates, or metallic compounds with a wide variety of shapes. They are
subject to radiation pressure and gravity, and, due to their charge, they are affected by
the electromagnetic forces of the planetary magnetosphere or solar magnetic winds. In-
terplanetary dust is responsible for the occurrence of the zodiacal light, while the dust in
planetary rings is assumed to be responsible for spoke formation, for example in the Saturn
ring system [47, 48, 49].
In industrial applications dust dispensed in plasmas can have devastating effects [50]. The
chemically active plasmas used for deposition or etching in the manufacturing of microchips
are prone to produce unwanted particles of the size of nanometers to micrometers by
polymerization and sputtering processes in the ionized gas phase [51]. This contamination
of the plasma leads to defects in the fabricated circuits, especially when the grains are of
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the size of the structures to be generated. In fusion reactors, particles are generated in
plasma-surface interactions, leading to problems with plasma stability and safety of the
operation of the device [52]. On the other hand, applications such as surface processing
make use of the grains dispersed in the plasma [50]. Examples are the growth of carbon-
based nanostructures on surfaces used for electronic devices such as sensors or data storage
technologies [53]. Silicon-based films as used in flat panel displays or solar cells show an
improved performance if nanoparticles, generated in the plasma by chemical reactions,
are embedded into the film [54]. Other applications include the synthesis of composite
materials or coating of particles by plasma processing [55].

To understand the behavior of the particle component, complex plasmas are generated and
studied in laboratories on earth, and under microgravity conditions in parabolic flights and
on the international space station (ISS) [56, 57, 58]. The particles with sizes of usually
several µm are inserted into radio-frequency (RF) [22, 21, 23, 59] or DC discharges [60, 61] of
inert gases in plasma reactors, and can be made observable to the eye and to video cameras
by scattering of visible laser light. External parameters such as the reactor geometry, gas
pressure, discharge conditions and particle composition and size determine the particle
charge and temperature and therefore the dynamical behavior and the state of order of the
system. Typical parameters for the discharge are neutral gas pressures of 1 to 100 Pa and
ion and electron densities of 108 − 109 cm−3 in the plasma. The electron temperature lies
usually within 1−7 eV, while the ions and the neutral gas atoms are basically at or close to
room temperature 0.025−0.03 eV. The dust particles are typically dielectric plastic spheres,
with radii in the range of 0.5 − 30µ, and they can reach charges of 103 − 105 elementary
charges [50].

The time scales for grain charging are very short, and an equilibrium state can be reached
within fractions of seconds. Compared to e.g. strongly overdamped colloidal systems
(particles immersed in a fluid) with equilibration times of days to weeks [16, 62], the
lower friction on particles in a plasma environment leads to much shorter equilibration and
observation times. Further, complex plasmas are optically thin, allowing the observation of
many particle layers. The multitude of possible different states – from gaseous over liquid
to solid-like states, in two or three dimensions – and the usual short time scales of physical
processes and good conditions for optical data acquisition makes the complex plasma a
perfect model system to study particle interactions. A wide range of other phenomena
such as dust-acoustic and dust-lattice waves [63, 64, 65, 36], and instabilities have been
widely investigated (see reviews in [56, 66]). Recently, nonlinear phenomena like solitons
[67, 68, 69, 70], shock waves [28] and Mach cones [71] were discovered. Also of interest
are kinetic studies of fluid dynamics with complex plasmas, e.g. superdiffusion [72] or
the recently found electrorheological plasmas [73]. Phase transitions between solid and
liquid-like states have been observed in three- and also two-dimensional complex plasmas
[74, 75, 76, 77, 78, 79, 80].

Purely two-dimensional systems are in general difficult to find in nature. Complex plasmas
provide a relatively easy way to generate such a particle system. If the experimental
parameters are chosen accordingly, a single horizontal layer of particles can be levitated at
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an equilibrium height above a horizontal electrode inside a rf discharge chamber. Vertical
forces can be neglected in the analysis, provided vertical fluctuations (e.g. caused by
charge fluctuations) are small. The particle dynamics are then restricted to a 2D plane,
simplifying especially the structural analysis of the system. Also, an instantaneous study
of the mutual particle interaction and the resulting dynamics of the system is possible:
all neighboring particles can be imaged at once on a 2D imaging device, while in three-
dimensional complex plasmas only a cross section of the whole system can be recorded at
one time.
The following Chapter 2.1 will in short address the charging process and the particle in-
teraction potential. The different forces acting on the particles dispersed in a plasma,
especially in the (earth bound) laboratory, are discussed in Chapter 2.2. Lastly, the fun-
damental characterization of complex plasmas as coupled systems is given in Chapter 2.3.

2.1 Particle Charge and Interaction

Several processes contribute to the charging of a particle in a plasma. Most important is
the collection of charge carriers on the grain surface due to the electron and ion fluxes any
surface in contact with a plasma is subject to. The temporal charge evolution is then given
by

(2.1)
dQD

dt
= Ii − Ie

Expressions for the fluxes Ie,i can be derived from the OML (orbit motion limited) ap-
proximation of isolated grains in a collisionless plasma [81, 82, 83]. Also no barrier in the
effective potential of the grain is assumed, so that ions can neither be trapped in orbits
around the particle nor be reflected by the barrier.
Then [84, 56]

Ie =
√

8πTe/mea
2ne exp (eΦf/Te)

Ii =
√

8πTi/mia
2ni (1− eΦf/Ti)

with the temperatures Te,i, massesme,i and densities ne,i for electrons and ions, respectively,
and the particle surface potential Φf . The net particle charge can be obtained by solving
the equilibrium condition Ie = Ii for Φf , which is usually negative with respect to the
plasma due to the higher mobility of the electrons. Then QD = CΦf with the capacitance
C. In case of spherical particles with radius a, the capacitance would be C = 4πε0a.
It was found that this approximation works well for sufficiently small grains with a/λD <
0.2 with the grain radius a [85, 86]. There also exist models for weakly or strongly collisional
regimes and for anisotropic plasmas, which often lead to much smaller charges than the
predictions of the OML theory [56, 87, 88].
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Another mechanism contributing to the charging is the electron emission. In low temper-
ature plasmas the thermionic emission of electrons can lead to positive particle charges
[56]. For complex (dusty) plasmas in space the photoelectric emission of electrons due to
fluxes of photons to the particle surface plays an important role [89], as does the secondary
electron emission caused by incident primary electrons with energies above a material de-
pendent threshold [90]. In the plasma regime of a typical RF-discharge, as used for the
experiments presented later, the contribution to the charge by the emission processes can
be neglected.
The charged particle has a linearized Debye length defined by the electron and ion Debye
lengths λe,i [85, 91, 92]

(2.2)
1

λ2
D

=
1

λ2
e

+
1

λ2
i

=
e2n

ε0

(
1

kBTe
+

1

kBTi

)
where n is the undisturbed electron and ion density and Te,i are the temperature of electrons
and ions, respectively. Inside the plasma sheath of a discharge, where the dust particles
are usually located, the ion energy is large due to the Bohm sheath criterion and λD ≈ λe
[93].
The charging time is inversely proportional to the particle size and the plasma density n,
τ ∝ 1/(an), and lies in the range of 10−6 s. The charging process is stochastic, therefore
charge fluctuations appear on a scale defined by the width of the Gaussian charge distribu-
tion, which is inversely proportional to

√
QD, and fluctuations appear at frequencies below

0.024/τ [84, 94].
The charged particles interact with each other via an electrostatic potential which can be
approximated by a screened Coulomb potential (Yukawa-like potential) [95]:

(2.3) Φ(r) =
QD

4πε0r
e−∆/λD

Here ∆ is the average distance between two particles, and for like particles, Φ(r) is always
repulsive. The approximation does not take into account the charge fluctuations, and it
assumes a low enough particle density with “isolated” particles.
There exist effective attractive forces between the particles, e.g. the ion shadowing force,
which appears for particles in the plasma at distances less than the ion mean free path.
Then surrounding particles shield the fluxes of plasma constituents to a particle surface.
A similar shadowing force due to neutral gas atoms exists, which can be both attractive or
repulsive, depending on the ratio of the temperature of the particle surface to that of the
neutral gas. The shadowing forces scale with 1/r and therefore gain importance compared
to the electrostatic interaction ∝ 1/r2 at larger r [96, 97, 56]. Another attractive force
is caused by ions streaming past the particles and producing a positive wake behind the
negative particle which attracts other negative particles [96, 98]. For the investigation
of short-range particle interactions, the Coulomb approximation work well and attractive
forces are often neglected.
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2.2 Forces

Besides the interparticle forces, several external forces play a major role in the behavior of
the particle component in a complex plasma. These forces are shortly introduced in the
following section (see e.g. [99] for a detailed compilation).

Electrostatic Force An external electric field E causes a force which can be well approx-
imated by the electrostatic force Fes = QDE ∝ a which scales linear with the particle radius
a. The Debye sheath surrounding the particles can be neglected as long as the dust particle
radius is small compared with the shielding length and the sheath is not distorted [100]. If
there is a distortion in the sheath, an additional polarization force FP = −Q2

DE/(8πε0λD)
has to be added [91]. The electrostatic force is an important tool for particle confinement
inside plasma chambers, or for complex plasma manipulation.

Ion Drag Force Ions exchange momentum with dust grains due to Coulomb interaction
(“orbit force”, o) and collection of ions (“collection force”, c), the later leading to a momen-
tum transfer. The result force Fc,o = nimiσ

c,o
m vv depends on the ion velocity v and the

cross-sections σc,om for each process. Both parts of the ion drag force scale with a2, due to the
quadratic dependence of the cross-section on the particle radius. Especially in the plasma
sheath region between the plasma and a wall, ions are accelerated towards the wall due to
the electric field inside the sheath which points to the wall. The ion drag force therefore
tends to push particles located in the plasma sheath toward the walls [101, 102, 103, 104].

Neutral Drag Force Another force exerted on the particles is the neutral gas drag due
to the momentum transfer in collisions of particles with neutral gas atoms. For small
relative velocities between gas atoms and dust particles this force can be approximated by
the Epstein drag force as Fnd = −4/3δa2mNnNvth,N(uD − uN) , with the gas mass and
density mN , nN and the thermal velocity of the gas vth,N . uD,N are the mean velocities
of the particles and neutral gas atoms, respectively [105]. The coefficient δ has to be
chosen according to the mechanism of the reflection of gas atoms from the particle surface.
Epstein calculated values for spheres for specular (δ = 1) and diffuse (δ = 1 + 9π/64 =
1.442) reflection, the latter being the case for a thermal non-conducting material. Recent
measurements using complex plasmas resulted in similar values in the range 1.26 − 1.48
[93, 106].

Thermophoretic Force In case of a temperature gradient in the neutral gas compo-
nent, a force called thermophoretic force acts on the particles. It is caused by the higher
momentum transfer on the side of the higher temperature and points to regions with lower
temperature. Therefore it is proportional to the thermal conductivity of the gas κT , the
temperature gradient and the squared particle radius: Fth ∝ a2κT∇TN . Thermophoresis
can be used to levitate particles in a plasma chamber against gravity into regions in the
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bulk plasma, providing similar conditions as experiments in microgravity, and it can lead
to other interesting phenomena such as convection, circulations and formation of structures
[107, 108, 109, 110].

Gravitational Force On earth, the particles are subject to gravity. The gravitational
force Fg = mDg = 4/3πa3nρDg for particles with the mass density ρD scales with a3 and
becomes especially important for large particles with radii > 10µm, or particles with a
high mass density. To levitate them inside a plasma, an opposing force has to be present.
In a typical parallel plate RF discharge, the electric field E(z) in the plasma sheath regions
between electrodes and bulk plasma depends linear on the distance z to the surface. For
horizontal electrodes, it points upwards from the lower electrode and can counteract gravity
and levitate the particles at the height ζ where mDg = QDE(ζ).
In summary, the forces acting on a particle are listed in their order of magnitude as it is
valid for small particles (a < 1µm), including their dependence on the particle radius:

(2.4)
F = Fes + Fid + Fnd + Fth + Fg

Fes ∝ a ; Fid, Fnd, Fth ∝ a2 ; Fg ∝ a3

The electrostatic force is dominant, followed by the orbit-force part of the ion drag force.
The neutral drag force and thermophoresis are usually of the same magnitude. As the
particle radius becomes larger, all forces gain in magnitude, but especially the ion drag
and gravitational forces will exceed Fes for particles with a > 10µm.

2.3 Characterization of a Complex Plasma

Two dimensionless quantities, namely the coupling strength Γ and the screening parameter
κ, are used to characterize a complex plasma [31].
The screening parameter κ is the ratio of the average interparticle distance ∆ to the
screening length λD of the dust grains:

(2.5) κ = ∆/λD

The factor e−κ appeared in Eq. 2.3 and reduces the potential strength of the pure Coulomb
interaction potential. When the screening length is small compared with the interparticle
distance, the neighboring particles will see a smaller effective charge, and the potential will
be diminished.
The coupling strength Γ is the ratio of the mean potential energy to the mean kinetic
energy of the particles. The potential energy is defined by the average position a particle
occupies in the potential well created by its charged neighboring particles. Using the
Yukawa-type interaction potential Φ given in the former paragraph, the potential energy
can be calculated from Epot = QΦ. The kinetic energy Ekin is derived from the average
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thermal motion of the particles with a temperature T , yielding 1
2
kBT per degree of freedom

with the Boltzmann constant kB. Then

(2.6) Γ =
〈Epot〉
〈Ekin〉

=
Q2

4πε0∆ · 0.5ndofkBT
F (κ)

with the number of degrees of freedom ndof = 2 (2D) or ndof = 3 (3D).
The factor F (κ) describes the influence of the screening on the mean potential energy
and depends on the underlying theory used to describe the particle system. In the one-
component-plasma (OCP) limit with a screened Coulomb interaction potential, F (κ) would
simply be exp (−κ) [20].
If the average kinetic energy of particles in a complex plasma exceeds their average poten-
tial energy, the particles will not be caught in the potential well created by surrounding
particles, and the system will be in a liquid-like or gaseous state. In the opposite case
of strong coupling, for Ekin << Epot, a crystalline structure of dust grains, the plasma
crystal, can form. The existence of such a structure, also called Coulomb crystal, was
predicted theoretically by Ikezi in 1986 [20], and later verified by the first observations
of plasma crystals in gas discharges [21, 22, 23]. Phase transitions to or from this solid
state of complex plasmas were investigated in simulations [75] even prior to the first exper-
imental discovery of the crystalline phase. The good experimental accessibility of complex
plasmas, mentioned in the introduction of this chapter, offers a opportunity for the study
of such phase transitions. The knowledge of Γ in that case is of high importance, since it
contains valuable information on the thermodynamic state of the system, and can be used
to characterize the transitions.
For 3D particle systems interacting by a Yukawa-type potential, (Γ,κ) phase diagrams were
calculated in molecular-dynamics simulations for the OCP limit, indicating melting lines
between a fluid phase and two solid phases with either a fcc (face-centered-cubic) or bcc
(body-centered-cubic) lattice [111, 33, 112]. Later the phase diagrams were revised by
taking into account the lattice dynamics, which modifies F (κ) [113, 31, 34, 32]. A method
to obtain Γ from easily accessible data in experiments with 2D complex plasmas will be
presented later in this thesis in Chap. 5, where also an expression for F (κ), specifically for
two-dimensional systems, will be given.
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Chapter 3

Experiments

The experiments performed in the scope of this thesis aim to contribute to the under-
standing of the description of a two-dimensional system of particles on the kinetic level,
particularly with regard to the phase state.
For this purpose, a two-dimensional system of dust particles had to be generated in the
laboratory and its state had to be identified not only by means of structural properties,
but in consideration of the particle motion itself. The behavior of those dynamical and
structural characteristics during a continuous change of the state of the system has to be
observed to understand the underlying processes.
The basic experimental setup is described in the following Chapter 3.1, including the
techniques for particle detection and the methods for manipulation of the particle system
necessary to obtain a change in its state.
An overview on the data acquisition and primary data analysis to obtain particle coor-
dinates and velocities is given in Chapter 3.2. The uncertainties to be considered in this
procedures are addressed in the last Chapter 3.3.

3.1 Experimental Setup

The experiments have been performed in the vacuum chamber shown in Fig. 3.1. The
chamber was build into a metal frame which also contained magnet coils (partly shown in
the top part of Fig. 3.1) for particle manipulation, and a water cooling system (yellow and
blue tubes) for the rf electrode. The chamber itself is an octagon with an alternating edge
length of ≈ 193 mm and 85 mm and a height of 120 mm.
The specific experimental setup used in the work presented here is illustrated in the sketch
in Fig. 3.2. The long chamber edges could be used as side windows, while on the short
edges and in the top plate there were vacuum flanges for mounting equipment inside the
chamber. Two of the side windows were optically accessible, and the central part of the
top chamber plate was replaced by a large circular window for viewing from the top with
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Figure 3.1: Picture of the setup of the vacuum chamber used in the experiments. The
metal frame contains the chamber, magnet coils and a water cooling system. The optical
components can be mounted at the side and top of the chamber. A part of the gas flow
system can be seen in the lower right corner.

the camera.
Details of the setup shown in Fig. 3.2 will be explained in the following sections 3.1.1 to
3.1.4.

3.1.1 Vacuum System

The gas inflow was controlled by a thermal mass flow controller with a maximum flow
rate of 10 sccm and an accuracy of ±1% of the full scale, calibrated for N2. Since in
all measurements Argon was used as gas, the read out of the flow controller has to be
multiplied by the gas correction factor of 1.39 for Ar. The gas was directed into the
chamber through a fitting in the top flange, and then pumped out of the chamber by a
turbomolecular pump attached to a backing pump. The outlet to the pumps, provided
with a valve, was mounted on the side flange directly below the gas inflow to ensure that
there were no direct gas flows through the whole chamber during an experiment, which
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Figure 3.2: Top: Sketch of the experimental setup including the chamber (center), the
vacuum system (top left), the gas flow and pressure control units (left and top right), the
RF generator (bottom left), the optical components (red dashed box) and the electronics
for particle manipulation (blue dashed box, see Fig. 3.3). Bottom: Detailed sketch of the
optical system used for particle illumination and recording (devices enclosed by the red
dashed box in the upper sketch). The laser beam is directed into the chamber through a
side window as a vertically thin, but horizontally expanded layer, while the camera views
from the top. The red arrows indicate the axis along which devices can be moved.



16 3. Experiments

would otherwise influence the particle dynamics.

A Baratron (capacitance manometer) with a range of 13.3 Pa and an accuracy of ±0.25%
measured the neutral gas pressure in the chamber and sent the value to a control unit where
it was displayed. The combination transducer (Ionivac) shown in Fig. 3.2 is a combination
of a hot cathode ionization sensor and a Pirani sensor. It covers a much wider range of
pressures (5 · 10−8 − 105 Pa) but is dependent on the sort of gas and was not used during
experiments in favor of the more exact readings at low pressures provided by the Baratron.

3.1.2 Plasma Generation

An electrode was mounted horizontally on the bottom of the chamber, 70± 0.6 mm apart
from the top plate of the vacuum chamber. It was a flat aluminium disk with a diameter
of 196 ± 0.2 mm and a 6 ± 0.2 mm wide elevated rim with a height of 2 ± 0.05 mm for
plasma potential shaping.

The electrode was capacitively coupled to a radio-frequency (rf) generator and isolated from
the rest of the metal chamber which was grounded and served as the counter electrode.
This setup is also called an asymmetric rf discharge (see e.g. [114]), and is shortly explained
in the following:

When a plasma is ignited by applying a rf power to the electrode, electrons and ions
stream to the surrounding surfaces. Due to the higher mobility of the electrons, the
surfaces obtain a negative charge compared to the plasma potential. Potential differences
Vdriven across a boundary layer (sheath) between electrode surface and the bulk plasma,
and Vgrounded across the layer between grounded surface and bulk plasma, appear. While
the electrons quickly flow off the grounded parts, the capacitor between electrode and rf
generator, which is conductive for the rf frequency, prevents the electrode to discharge. A
permanent negative dc self bias VSB is generated. The quantity of VSB depends on the
time averaged voltage drops across the sheaths, VSB = −(V driven − V grounded). Since the
area of the driven electrode is much smaller than the area of the grounded chamber walls,
and the voltage drop is inversely proportional to those areas (the sheath can be seen as a
capacitor), V driven > V grounded and therefore VSB < 0.

The rf generator was operated at 13.56 MHz with a maximum power output of 300 W. It
further contained a matching circuit to adjust forward and reflected power, and displayed
both the adjusted power and the self bias voltage at the electrode. The peak-to-peak
voltage Vpp – the voltage drop between the driven electrode and the grounded chamber
– was measured later with an oscilloscope. Vpp is of special interest for repeating the
experiment in another setup, or comparing it with other experiments, since the impact on
the plasma parameters of setting a certain rf power depends on the geometry of the setup
(ie. on the size of the surfaces of chamber and electrode), while Vpp is a setup-independent
quantity.
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3.1.3 Particle Injection and Detection

Two dispensers for dust particles were attached at two side flanges opposite to the gas
flow system. The dispensers consisted of a bar extending into the chamber with a small
box at the end which contained the dust particles. When the bar was manually shaken
from the outside, the particles fell through a sieve out of the box. The dispenser could be
moved forward, so that particles could be inserted into the plasma in the middle of the
chamber, and back out of the area of interest for examination. The dust particles used in
all experiments were melamine-formaldehyde spheres with a diameter of 9.19 ± 0.09 µm
and a mass density of 1.51 g/cm3.
A two-dimensional crystal was generated by igniting an Argon plasma at a low pressure
(1-2 Pa) and shaking some dust particles into the plasma. The particles quickly obtain
a negative charge of the magnitude of several 104 e due to the fluxes of electrons and
ions to their surface, as it was explained in Chap. 2.1. The particles levitate vertically
in the plasma sheath above the electrode where gravity is compensated by the electric
force pointing in direction of the bulk plasma for the negatively charged particles. In the
horizontal direction, the particles are subject to their mutual, usually repulsive, interaction
and to confining forces given by the shaped electrode. This modifies the radial shape of
the plasma potential such that a parabolic potential well is created which confines the
particles to the center region at the potential minimum. If the number of particles is small
enough (< a few 1000), all can be located in one layer and arrange themselves in a two-
dimensional crystalline structure. For large numbers of particles, particles at the edges
are pushed into another vertical layer by the radial confining potential and the structure
becomes three-dimensional. If this happens, particles can either be dropped down onto
the electrode by diminishing the rf power (thus decreasing the levitation height), or, by
increasing the power, the highest particle layer can be pumped out of the chamber. This
has to be done until a two-dimensional system is obtained, with no particles located below
or above the crystal plane.
For optical investigation of the system, the particle layer was illuminated by a 532 nm
Nd:YAG laser (TEM00) with a beam diameter < 2 mm and a maximum power output
of 215 mW. The laser was mounted vertically in front of the chamber (see Fig. 3.2) on
an electronic translation slide together with four lenses and a mirror. The first two lenses
were spherical biconvex and focussed the beam. The location of the focal point was defined
by the distance between those lenses. Two cylindrical planoconvex lenses then spread the
beam in one direction. A mirror directed the resultant (horizontally wide, but vertically
thin) sheet of light into the chamber.
The Gaussian vertical beam width was roughly estimated to be≈ 200−300 µm in the center
of the chamber. This was obtained by scanning vertically through a layer of particles and
taking the range in which the particles were still visible. A more accurate measurement for
the same setup was done in [115] with a 3D-scanning system consisting of tiltable mirrors.
It gave a full width at half maximum of 137 µm.
The whole optical system consisting of laser, lenses and mirror could be moved in the verti-
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cal direction through a computer interface in steps of 0.1 mm for vertical scans through the
chamber, and to adjust the laser sheet height to the height of the particle layer. According
to the Mie theory for the scattering of electromagnetic waves by spherical particles of a
size of the magnitude of the wavelength [116], the laser light is scattered by the grains
into all directions and can be recorded by a camera mounted perpendicular to the plane
of incidence of the laser beam.
A high speed CMOS camera (Photron Fastcam) was mounted on three translation stages
on top of the chamber looking through the top glass window providing images of the plane
of particles (Fig. 3.2). It could be moved electronically in all directions, and it was possible
to synchronize the vertical motion of the camera with that of the laser. This ensured that
the focus of the camera always stayed adjusted to the laser illumination plane. An object
lens with a focal length of 105 mm and an aperture of 1 : 2.8D was used in the experiments.
The camera chip had 1024 × 1024 square pixels with a pixel size of 17.5 µm. It recorded
time series of a maximum length of 6144 frames per run, with a maximum frame rate of
2000 fps at the full spatial resolution. Usually, frame rates ≤ 500 fps are preferable, since
the exposure time at faster recordings is too small to provide reliable particle images bright
enough for the analysis. The maximum number of images and therefore the total recording
time, was restricted by the storage space on the memory chip on which the images were
stored.
The camera was able to handle trigger signals to match the start of a record with an event
like the inducing of the melting of the crystal, as will be described in the next section.

3.1.4 Particle Manipulation

The basic aim of this work is to observe the dynamics of phase transitions in two-dimensional
complex plasmas. A possibility to manipulate the state of the particle system is to apply
a negative electric pulse to wires mounted inside the chamber. The negatively charged
particles are repelled by such a pulse, and if the generated electric force is strong enough
to exceed the force responsible for the mutual interparticle repulsion, the initially formed
lattice compound breaks open.
For this manipulation, two thin tungsten wires with a diameter of 0.1 mm were mounted
parallel and horizontally above the electrode, as sketched in the left panel of Fig. 3.3. The
wires could be moved in the vertical direction by a mechanical system mounted through a
vacuum fitting, which was manually operated from the outside. Their height was adjusted
in each experiment to be at approximately the particle layer height. The gap between the
wires was centered over the electrode center and aligned along the direction of the laser
sheet. The exact size of the gap was measured for each experiment separately, since it
varied within a small range with the wire height.
Both wires were attached to a power supply with a maximum output voltage of 300 V
DC via a circuit which was controlled by a function generator. The circuit is shown on
the right side in Fig. 3.3. It consists basically of a MOSFET transistor which opens the
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Figure 3.3: Left: Sketch of the experimental setup with the wires for particle manipulation.
Right: Circuit for the pulse generation and for synchronizing the pulse with the start of
the recording of the camera (corresponding to the devices in the dashed blue box in Fig.
3.2).

connection between the power supply and the wires only for the duration of a suitable
signal from the function generator. In principle this was a 5 V peak-to-peak square wave
signal. The carrier frequency, burst rate and duty cycle set at the function generator
defined the occurence and duration of pulses. The voltage at the power supply had to be
set to a negative value < −200 V to achieve melting. To avoid repeated melting of the
crystal and thus destabilize it, the power supply was turned down except for the time when
a recording was done. If not used for the excitation, the wires acquired a negative floating
potential in the plasma and contributed to the confinement in the particle plane.
This setup provided the possibility to apply electric pulses simultaneoulsy to both wires
for particle manipulation. The SYNC output of the function generator sent a TTL ’low’
signal for the duration of a burst and was attached to the camera to provide a trigger
signal for the start of a recording.

3.2 Particle Tracking and Tracing

Particle positions were extracted from the images by an intensity weighted center-of-mass
method, also called moment method. One image is searched for pixels with intensity values
I above a chosen threshold. If one such pixel is found, close-by pixels are checked for their
brightness consecutively until the magnitude of the intensity falls below the threshold. If
the total number of adjacent pixels with intensity values above the threshold is larger than
a chosen minimum, this region is registered as a particle. The particle position (x, y) is
calculated as the intensity weighted center of the region:

(3.1) x =

∑nx
i=1 xiIi∑nx
i=1 Ii

, y =

∑ny
i=1 yiIi∑ny
i=1 Ii

The sums run over the number of illuminated pixels of one particle in x- and y-direction,
nx and ny, respectively.
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After all images of a time series are tracked for particles, velocities are obtained by tracing
individual particles from frame to frame. The tracing algorithm takes a position xk(t) =(
xk(t)
yk(t)

)
of a particle k in the frame at time t, and searches in the consecutive frame at time

t+ ∆t for a particle within an adjustable radius centered around xk(t). ∆t is the time step
between the consecutive frames. If a particle is found in the specified region, it is assigned
to be the same particle k. The search radius has to be chosen large enough according to
the expected velocity in order to not loose track of particles, but much smaller than the
interparticle distance to avoid assigning a next neighbor to a particle by mistake (this is
important if a particle vanishes out of the image, e.g. through vertical displacement; then
the algorithm has to stop tracing this particle trajectory).
The velocity is then calculated as

(3.2) vk(t) =
xk(t+ ∆t)− xk(t)

∆t

This procedure is consecutively repeated for all frames of the time series.

3.3 Treatment of Measurement Uncertainties

The accuracy of the tracked particle positions is determined by two factors: the accuracy
of the tracking algorithm itself, and the pixel-noise.
The tracking algorithm has to work with a discrete set of intensity values (the pixels) onto
which the continuous intensity distribution of the particles is mapped. The deviation of
a tracked position from the real center of an intensity distribution then depends on the
number of illuminated pixels per particle and on the position of the real center within a
pixel (sub-pixel position).
The second source of uncertainties is the pixel-noise. The pixel-noise originates from the
finite temperature of the chip of the camera. The chip is a device consisting of semiconduc-
tor cells (pixels) in which incident photons create electron-hole pairs. A finite temperature
causes vibrations of the atoms in the pixels and randomly generates electron-hole pairs by
inelastic collisions, even if the chip is not exposed. This pretends incident photons when
the pixels are read out. In the image it appears as random intensity values drawn from a
Gaussian distribution with parameters depending on the quantity of thermal vibrations,
which are superimposed on each pixel and falsify the intensity profile of particle images.
Due to the intensity weighting in the tracking procedure, in the further course this causes
a misinterpretation of the tracked particle position.
The full procedure for the investigation of both error sources together with detailed results
is given in the Appendix A. A short summary is given in the following paragraph:
Sets of 10 images, each containing 2500 artificial particles have been generated. An artificial
particle was defined by a two-dimensional Gaussian intensity profile, with the mean being
the “real” particle center position and the width being the particle size. The real particle
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centers in the first image were located on the nodes of a square grid representing the
pixel grid, plus a small random component which placed the centers on arbitrary sub-pixel
positions. Particle displacements from frame to frame were then defined as random values
drawn from a Gaussian distribution, which were added to the coordinates of each particle
in the image to obtain the next image. This simulates a random particle vibration as one
would expect for Brownian motion of particles with a finite temperature. This procedure
was then iterated to obtain 10 images.
To examine the effects of particle image size (the size the particle appears to have in units
of pixels), 17 different Gaussian widths of the intensity profile have been chosen to obtain
particle sizes from 1 to 33 pixels per particle. Also, 14 different quantities of particle
displacements from frame to frame were tested, by picking 14 values from the range 0.014
to 0.285 pixels as the width of the random displacement distribution.
All sets of images produced so far were copied and additionally superimposed with artificial
pixel-noise. For each image, a separate noise matrix of the size of the image matrix,
containing random numbers, was generated. The noise matrix was added to the image and
the resulting image was scaled back to the original color space. The random numbers where
again taken from Gaussian distributions with 10 different widths – simulating different noise
levels – from the interval 2 to 20 in units of intensity (the maximum intensity is 255).
In total, that gives 17 · 14 · 10 = 2380 sets of 10 images each for analysis of the noisy data,
and 17 · 14 = 238 sets without noise (the original images) to investigate solely the quality
of the tracking algorithm.
The images have been fed into the same procedure as the experimental data to obtain
particle coordinates and velocities, or in this case displacements from frame to frame.
Since each manipulation of the originally defined particle position had been stored as the
’real’ particle coordinates, the differences between the original values and the estimated
values could then be analyzed statistically.

Particle Coordinates The results in the case of zero noise show a systematic error
depending on the respective sub-pixel position, in particular for small particles. This effect
is often referred to as pixel-locking: The resolution of a narrow intensity profile is very
coarse, and small movements are not imaged one-to-one on the pixel grid. The particle
seems to move much slower in some parts, or even stand still, while it practically jumps from
one position to the next in another part. For particle sizes > 10 pixels, the dependence on
the sub-pixel position decreases quickly and the error becomes more uniformly distributed
within a pixel (for an example, see Figs. A.2 and A.3 in the appendix).
The imposed pixel-noise changes the situation qualitatively. The formerly systematic errors
are masked by a larger statistical error even for small particles ≥ 3 pixels if the width of
the noise distribution is larger than 10. For particles with more than 9 pixels any noise
level causes the total error to become statistical. Fig. 3.4 a-c shows the most probable error
(the highest peak in the histogram of absolute error values), the maximum error and the
mean error (standard deviation of the error distribution) vs. noise level for particle sizes
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of 2 − 11 pixels. The most probable error is shown, because in most cases the maximum
error appears for a very small number of sub-pixel positions only, and therefore gives a
misleading impression of the quantity of the error one has to expect. The mean error only
makes sense for statistical error distributions.
The results can be interpreted in the following way: For noiseless data (noise level 0 in
Fig. 3.4) and for particle image sizes smaller than 3 pixels regardless of the noise level, the
most probable error should be chosen. This error is also applicable for particle image sizes
≥ 3 pixels and noise levels < 10. All other data have a superficial statistical error, and the
standard deviations presented in Fig. 3.4c can be used.
One can simplify this situation, since from the noise-level 4 on the width of a Gaussian fit
to the error distribution represents the quantity of the error reasonably well for particles
with more than 6 pixels (see Appendix A), though one has to keep in mind that the error
in that cases is not perfectly statistical. In general, at noise level 0 the most probable
error drops fast from a maximum of 0.3 pixels for particles with 2 pixels, to 0.01 pixels
for particles consisting of 11 pixels. This trend is also visible for increasing noise, while at
the same instant, with increasing noise the error decreases for equal numbers of pixels per
particles. When the error becomes statistical, it increases slightly with increasing noise,
whereas the dependence on the particle size is small.
Note that the absolute particle positions have no physical importance in most of the analysis
carried out. Mostly distances between particles, or displacements of a particle from frame
to frame are of interest. The systematic error in the coordinates therefore has not much
impact.

Particle Displacements The implication of a systematic error δx on the errors of the
particle displacements is a dependence of the error on the actual distance a particle moves:
the errors have a direction and can not be handled by error propagation, rather they are
added or subtracted, respectively, if a distance ∆x = x2 − x1 is calculated:

(3.3) ∆x+ δ(∆x) = x2 + δx2 − (x1 + δx1) = (x2 − x1) + (δx2 − δx1)

For close-by positions it was found that the errors often are very similar and have the same
sign. Then δx2 − δx1 can become very small.
To get an idea of the behavior of the error of displacements from frame to frame, it was
calculated directly from the deviation of the original, real displacement and the respective
displacement estimated by the tracing algorithm. It was found that the displacement errors
have no systematic features but are Gaussian distributed for all cases, with and without
noise. The Gaussian width depended on the quantity of the particle displacement (repre-
senting for example a particle temperature), the particle size and the noise level. Therefore,
the error in the displacements is the standard deviation of the error distribution which is
shown in Fig. 3.4d for selected cases. In all examples, the error increases considerably with
increasing particle displacement and with decreasing particle size.
The dependence of the error on the actual quantity of particle displacements complicates
the error analysis for e.g. velocities from experimental data: The size of the uncertainty
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is only known, if the magnitude of the velocity is known. The following example, using
numbers from experimental data, should illustrate the implications of the displacement
error:
Assuming particles at room temperature (T = 293.15 K) with a mass of m = 6.14 ·
10−13 kg and a spatial resolution of 6.74 ·10−3 mm/px, and assuming a Maxwellian velocity
distribution, the width of this distribution would be σv =

√
kBT/m ≈ 12 px/s. With a

frame rate of 500 fps this would be a displacement width of 0.024 px. According to Fig. 3.4d,
a possible error in the displacements for low pixel-noise is ≈ 0.03 px (=̂ 15 px/s) in that
case. Since velocity distribution and error distribution are Gaussian, the distribution which
would actually be measured is given by a convolution of them, yielding an apparent velocity
distribution with the width 19.2 px/s =̂ 0.064 eV ≈ 746 K.
To find the error in an experimentally obtained data set, the average number of pixels
per particle and the noise level must be known. Then a comparison with the artificial
particles used above yields an estimate of the uncertainties to be taken into account. The
number of pixels per particle is easily obtained during the tracking procedure. The noise
level can be extracted from the images by analyzing the histogram of intensity values of
the image background between the particles. Depending on the camera settings it can
happen that the pixel-noise background is cut off in the dark regions of the images, but a
procedure to estimate the noise level from intensity fluctuations of the particle images has
been developed for this case [117] and is explained in the Appendix A.
The uncertainties in the displacements restrict the resolvable distances in a measurement:
Any distance, e.g. the particle motion from frame to frame, has to be much larger than the
estimated displacement error to retain a physical meaning. This applies also to distances
between particles in one frame, though in this case the error, determined by the difference of
the sub-pixel components of the coordinates, becomes small compared with the interparticle
distance of usually several pixels. If velocity distributions are to be measured, one has to
keep in mind that such a distribution is easily masked by a Gaussian error distribution.
Since the distributions are obtained as histograms of velocities, the bin widths should then
be chosen to be larger than the expected errors to even out statistical fluctuations caused
by the errors in case of small counts per bin.
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Figure 3.4: Error of absolute particle positions vs. noise level for particle sizes of 2-
11 pixels/particle (color-coded). a) Most probable error, position of the maximum of
the histograms of absolute error values. b) Maximum error. c) Standard deviation of a
Gaussian fit to the error histograms. d) Error of particle displacements vs. the width of
the real particle displacement distribution for selected cases of particle size and noise level
(see legend in the plot). The black solid line is the bisector where the size of the error is
equal to the width of the displacement distribution. The presented curves are relevant for
most experiments presented in the thesis.



Chapter 4

Data Analysis Techniques

In the following sections the concepts and techniques used in the data analysis are illus-
trated. Chapter 4.1 shortly explains the calculation of charge and screening parameter by
wave spectra analysis. The structural properties of the two-dimensional system, and the
methods to obtain them are described in Chapter 4.2, starting with the defect analysis in
4.2.1. The long range translational and orientational order of the system are described by
means of the pair- and bond-correlation functions in Chapters 4.2.2 and 4.2.3. A measure
for local order is introduced in Chapter 4.2.4 with the bond order parameter which can be
defined at each respective particle position within the lattice. The last Chapter 4.3 con-
cludes this section with the statistical description of the dynamics of a system of particles
with regard to distribution functions of displacements and velocities.

4.1 Estimation of Particle Charge and Screening Pa-
rameter

The particle charge Q and the screening parameter κ = ∆/λD can be derived from the
sound velocities of phonons in a plasma crystal. Here ∆ is the interparticle spacing and
λD the Debye length of the particles. Phonons are natural waves which exist in any
plasma crystal due to random particle motions without the need of excitation. Their wave
numbers k and the wave frequencies ω for longitudinal (index “l”) and transverse (index
“tr”) waves are connected through the dispersion relations ω = cl,trk, with the respective
sound velocities cl and ctr. The following relations show the dependence of the sound
velocities on the charge and κ in the limit of k → 0 and κ→ 0 [118, 119]:
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ctr
c0

= 0.51317− 0.0226(κ/lcorr)
2 ≈ 0.51317(4.1)

cl
c0

=
2.585√
κ/lcorr

(4.2)

c0 = Ω0∆ =
Q√

4πε0m∆3
∆(4.3)

Ω0 is the plasma frequency and lcorr =
√

2/
√

3 ≈ 1.075 is a correction factor accounting
for the geometrical arrangement in a 2D hexagonal lattice.
With c0 the particle charge can be calculated as

(4.4) Q = c0

√
4πε0m∆

The screening parameter κ is given by the direct dependency of cl on (
√
κ)−1 in Eq. 4.2.

The sound velocities can be obtained from the wave spectra V (k, ω) of the phonons by the
following procedure [36, 120, 121, 122]:
The particle velocities vx,y(t) are averaged in spatial bins of the width δx and in temporal
bins of the width δt for the directions x and y in the image separately. The bin widths
have to be chosen accordingly to get a good resolution. This gives matrices V (x, t), V (y, t)
with equally spaced entries - each component (x, t), (y, t) corresponds to an equally spaced
range in space and time, with the quantity of the entry being the average of the velocity
components of all particles falling into that range.
V (x, t) and V (y, t) are then Fourier transformed to the frequency space to obtain the
spectra V (kx, ω), V (ky, ω). The two matrices for x and y are then squared and added to
get the final spectrum V (k, ω), dependent on the frequency ω and the wave number k.
The left panel of Fig. 4.1 shows an example of such a matrix in the frequency space. Each
pixel in the plot corresponds to an entry of V (k, ω) at the respective position (k, ω). The
brightness is a measure for the quantity of the matrix entry, where brighter pixels mean
higher values. The two wave branches ωl, ωtr can be seen as the brighter accumulations of
pixels.
Both branches of the spectrum have to be fitted by lines for small k as it is implied by the
Eqs. 4.1,4.2. From the theory follows [118], that the transverse branch ωtr (lower branch
in Fig. 4.1), giving the particle charge, is linear over a wider range, while the longitudinal
branch is linear only for very small k. Due to the often very poor resolution and contrast
at low k, which arises from the limited system size and length of the time series in real
space, the fitting of a line to ωl(k) is usually subject to large errors. Note that the large
uncertainty in the particle velocities discussed in Chap. 3.3 further diminishes the quality
of the spectra.
Instead of directly applying fits to the spectra, first the positions (k, ωl,tr) defining the wave
branches are identified. For one value of k and a restricted range of ω at approximately the
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Figure 4.1: a) Example of a wave spectrum for one of the performed experiments. Brighter
pixels mean a higher density of velocities at the respective wave number k and frequency
ω. Yellow diamonds mark the points used for the direct linear fit (white lines) to the two
branches. The blue and red dashed lines correspond to the fits of the theoretical model.
b) Measured sound velocity vs. k. The error bars are calculated from the dispersion of
intensity values at one k from the spectrum in (a). The red and blue lines are fits of
theoretical curves giving κ = 0.56 ± 0.23 from the longitudinal, and Q = 10500 ± 300 e
from the transverse sound velocities, respectively.

position of one of the wave branches, all pixels brighter than a threshold are chosen. This
is done for both branches separately. ωl,tr is then the intensity weighted center of these
pixels. The dispersion of intensity values gives error bars for ωl,tr. The positions (k, ωl,tr)
define the sound velocities vl,tr = ωl,tr/k. The obtained sound velocities are plotted vs. k
in Fig. 4.1b, with error bars are transformed from the error bars of ωl,tr.

It is now possible to fit the theoretical model ctr = 0.51317c0 to the transverse branch vtr
(lower curve in Fig. 4.1b) with c0 as fit parameter, and with that to obtain the particle
charge Q from Eq. 4.4 (the interparticle spacing ∆ is usually known from the pair cor-
relation function, see Chap. 4.2.2). The longitudinal branch in that range of k is clearly
not linear. To find a function which could be fitted over the whole range of k, theoretical
curves cl,tr/c0 for different κ/lcorr between 0.5 and 3 were calculated for a similar range of
k with the co obtained from the transverse wave. The transverse velocities shown in the
Fig. 4.2b are only weakly dependent on κ, as expected. From the longitudinal velocities
cl/c0 (shown in Fig. 4.2a) a polynomial fit connecting the curves for different κ was used
to create coefficients depending on κ. Then a 5th grade polynomial with those coefficients
was fitted to vl/c0 (red line in Fig. 4.1b), yielding a best estimate for κ.
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Figure 4.2: Theoretical curves cl/c0 (a) and ctr/c0 (b) vs. wave number k for values of
κ = 0.5, 0.65, 0.8, 1, 1.2, 1.5, 2, 3. The wave polarization direction is 0◦.

4.2 Structural Analysis

4.2.1 Defects

Defects are disruptions of the crystal structure. Possible defects in a two-dimensional
system are point defects - or disclinations - consisting of a vacancy or an interstitial. The
lattice around such an isolated defect is distorted so that the crystal structure is maintained.
In a hexagonal lattice with typically six nearest neighbors to each lattice site, the most
common point defects are five-folded (vacancy) or seven-folded (interstitial) lattice sites,
one of which is illustrated in Fig. 4.3a.
Point defect positions are found by performing a Delauney triangulation on the particle
coordinates (x, y) in an image. In the later analysis, the Triangle-algorithm described in
[123] was used. The triangulation covers the two-dimensional xy-surface with a mesh of
triangles between neighboring particles under the condition that lines never cross. Each
lattice site is then connected by n lines to the adjacent n lattice sites. Those bonds define
the number and position of all nearest neighbor particles. In the hexagonal 2D lattice, the
lattice site is a point defect if n 6= 6.

Dislocations Another type of defect is the dislocation which can be understood as an
additional row of particles inserted into an ideal lattice [124]. At the end of this row there
will be a pair of disclinations to adjust the lattice, usually a pair of a five- and seven-
fold defect as seen in Fig. 4.3b. In the following the expression “dislocation” will mean a
pair of a 5-fold and 7-fold disclination, since this is the most prominent in the hexagonal
lattice. Dislocations can form pairs as shown in Fig. 4.3c. This configuration, also called
“dislocation pair”, is used in the theories for dislocation-mediated two-dimensional melting,
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which will be introduced later.
Dislocations can be described by means of their Burgers vector [124, 125]. If one draws
a closed path around a dislocation, jumping from one lattice site to the next, the same
path (the equal number of jumps in the same directions as before) will not close in an
ideal lattice. The Burgers vector is the additional vector needed to close that path. It
is perpendicular to the dislocation line, i.e. the vector connecting the two disclinations.
In the case of a dislocations pair as in Fig. 4.3c, the net Burgers vector will be zero. For
this, the two dislocations do not necessarily have to be adjacent in the lattice, only their
orientation (the direction of the Burgers vector) is important.

a b c

Figure 4.3: Defects in a two-dimensional hexagonal lattice. a) Free disclination (5-fold). b)
Free dislocation (pair of a 5- and a 7-fold disclination). c) Pair of dislocations. The dashed
lines indicate the nearest neighbor bonds with red symbolizing 5-fold and blue 7-fold lattice
sites.

Defect Analysis The arrangement of defects in a lattice, for example as dislocations,
can provide valuable information on the system in addition to the absolute number of
disclinations. To investigate dislocations, one has to assign adjacent point defects to each
other. In experimental data the following defect configurations (for five- and seven-folds)
can usually be seen:

1. isolated, “free” disclinations (either 5- or 7-fold)

2. isolated, “free” dislocations

3. open chains with alternating 5-folds and 7-folds

4. closed chains with alternating 5-folds and 7-folds (“loops”, loops of four adjacent
defects are an unique dislocation pair)

5. clusters of defects (a larger amount of disclinations in one region, without apparent
structure)
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The points 2-5 always contain at least two defect lattice sites directly adjacent to each
other. Point 1 does not need further examination, and for the second case the assignation
of the defect pair is straightforward. There are two approaches for analysis of the other
cases:

1. Always pair those 5- and 7-fold defects with the smallest distance between them.
This is a very simple procedure, but it can only identify free dislocations, not complex
structures such as chains or loops.

2. After finding a defect pair, search all neighboring lattice sites of each defect for other
defects successively until no further adjacent defects are found. With this procedure,
chains and closed loops can be identified. Dislocations can be associated within this
structures. Defect clusters can not be specified correctly, since they are misinterpreted
as chains or loops.

The second procedure is preferable, because it finds both free dislocations and chains or
loops. The only problem are the identification of clusters with no apparent structure, or the
misinterpretation of randomly distributed disclinations, which often appear in liquid-like
states of high disorder, as structures.
Point defects with less than five, or more than seven neighbors can be observed in complex
plasmas, but their numbers are very small, especially in the crystalline state they are
practically absent.

4.2.2 Pair Correlation Function

The pair - or translational correlation function g(r), also called radial density distribution,
shows the probability to find a particle in a distance r from another particle [38]. It is
computed for an image by choosing consecutively each particle as a center particle i and
counting the number of particles j found in a ring with radius r and width dr around
that particle. r goes up to a maximum radius rmax. The results for the different center
particles Ncp are averaged and then normalized by the particle density Ncp/(πr

2) times
the ring area 2πrdr for each r. The normalization factor was further improved by taking
into account that rings might cross the edge of the analyzed region, or the image edges.
Therefore a correction factor ρcorr was calculated specifically for each center particle and
r from a simple geometric construction, and the bin counts were normalized by it. This
ensured that for large r, g(r) goes to 1.

(4.5) g(r) =
1

2πrdr

πr2
max

Ncp

1

Ncp

Ncp∑
i=1

1

ρcorr,i(r)

∑
r−dr<rj−ri≤r+dr

1

The shape of g(r) in an ideal lattice is composed of singular peaks at the distinct distances
given by the lattice constant, and of an decaying envelope of the peak amplitudes due to
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the normalization. For r → ∞, g(r) goes to 1. In the real crystal, the thermal motion of
the particles caused by the finite particle temperature T broadens and lowers the peaks.
The measured curve then looks like a series of Gaussian functions, each centered around
the respective distance given by the lattice constant (or interparticle distance). The peak
amplitudes decrease with increasing r, as shown in the example in Fig. 4.4a. In a liquid-
like state, Fig. 4.4 b, the peaks become wider and begin to overlap while their amplitude
decays very fast exponential with r.
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Figure 4.4: Examples of g(r) found in two-dimensional complex plasmas. r is normalized
by the mean particle distance ∆. The red lines correspond to fits using Eqs. 4.6 and 4.7. a)
Solid state with the fit function proposed by Beresinskii. b) Liquid state with exponential
fit.

The following fit function for g(r) was proposed in [62] and used in 2D complex plasma
analysis [78]; the free fit parameters are marked in red:

(4.6) gfit,1(r) =

[
k√
2π

1

σ0

∑
i

gid(xi)

∆xi
exp

(
−(r −∆xi)

2

2σ0
2

)
− 1

]
× exp (−r/ξ) + 1

with a prefactor k depending on the normalization of g(r) by the particle density, the peak
width σ0, the mean interparticle distance ∆ and an exponential decaying envelope ∝ e−r/ξ.
ξ is also called translational correlation length. gid(xi) is the total number of particles
found on a ring with radius xi around a center particle in the ideal hexagonal lattice. The
positions xi are distinct and defined by the translation vectors (1, 0) and (1/2,

√
(3)/2) of

the lattice. From this, gid(xi) can be calculated. The summation in Eq. 4.6 goes over all
calculated xi, here n = 120 positions were used. This function is valid in liquid states,
where an exponential decaying g(r) is expected [5]. Another function was introduced by
Beresinskii in [126, 127] for solid systems in one and two dimensions. The main difference
to Eq. 4.6 is a peak width σ̃ depending on the distance r. With the correct normalization
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factors the following fit function was construct:

(4.7) gfit,2(r) =

[
Ahex

(2π)3/2

1

σ̃

n∑
i=1

gid(xi)

∆xi
exp

(
−(r −∆xi)

2

2σ̃2

)
− 1

]
× exp (−r/ξ) + 1

with σ̃ = σ0

√
ln
r

r0

, r0 = 0.3∆

The prefactor is composed of the inverse particle density Ahex, which should be equal to the
area of one Voronoi cell around a particle in a hexagonal lattice, the factor 1/

√
2πσ̃ from

the Gaussian shape of the peaks, and 1/(2π) from the normalization of g(r). Additional, a
parameter r0 is introduced, which was theoretically estimated to be between 0.2− 0.4 for
the investigated system. It was chosen to be 0.3 in the fit. The peaks become wider with
increasing r in this model, which agrees well with the observations in the experimental
data. In fact, this function fitted the data better than Eq. 4.6 even in liquid-like states
of high disorder. The following paragraph gives some details on the fit procedure itself to
explain the interpretation of the outcome of the fit.

Fit Procedure The fit procedure used here is implemented in IDL (Interactive Data
Language) and described in [128]. It performs a Levenberg-Marquardt least-squares mini-
mization on a given set of points y(x) using a user-supplied function f(x, a). Two functions
were written using Eqs. 4.6 and 4.7, with the free parameters a = (Ahex,∆, σ0, ξ). One
set of guessed, initial parameters have to be supplied to the fit procedure. The best set
of parameters is then the set which minimizes

∑
x[y(x) − f(x, a)]2. In each iteration, the

parameters are varied in direction of their negative gradient until the minimum is reached.
In general this is a very effective method, but in case of the rather complex function gfit(r)
with four free parameters, the choice of the initial starting parameters can become cru-
cial. There is always the danger that local minima of the parameter set appear for certain
starting values, which then lead to ambiguous results. Therefore the fit should be repeated
with different configurations to ensure the validity of the result.
The fit procedure also provides the 1-σ uncertainty for each fit parameter, which is calcu-
lated during the fit as described in [129], and the χ2 as a measure of the goodness of the fit.
χ2 is the weighted sum of squared distances between data and fit, divided by the squared
uncertainties of the data. Often the reduced χ2 is stated as χ2

ν = χ2/Ndof with Ndof being
the number of degrees of freedom (number of fitted points minus number of fit parameters).
The fit procedure assumes that the supplied uncertainties reflect the deviations of the fit
model to the real data, therefore only by supplying valid uncertainties a meaningful χ2

and 1-σ can be obtained. Since the uncertainty in the single points of g(r) is of purely
statistical nature (only numbers of particles were counted), and the number of particles
used in the analysis is very high (> 1000), the statistical error bars are very small, which
makes χ2 very large. With this kind of uncertainties it is not possible to take into account
a deviation of the experiment from the model. Therefore, χ2 should not be interpreted as
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the real probability of the goodness of the fit, but the ratio χ2
ν,B/χ

2
ν,E (index B: Beresinskii

fit, index E: exponential fit) can be used as an estimate to choose the best fitting function.
To obtain more realistic values for the 1-σ uncertainty of each fit parameter, the reduced
χ2
ν can be manually set to 1, implying that the fit is the best possible. With that, the 1-σ

uncertainties are calculated again, and should now represent the actual deviation of data
to fit function [78].

Interpretation The pair correlation function provides a good estimate for the mean
interparticle spacing ∆ as the position of the first peak. Further is gives information on
the range of translational order in a system, expressed by the correlation length ξ, which
is of importance for some established theories of phase transitions, as will be discussed in
later chapters.
Aside from the structural information immanent in g(r), the fit parameter σ0 is correlated
to the particle temperature and with that to the dynamics of the particle motion. σ0

is the dispersion of the particle separation, or lattice constant. This quantity is related
to the radius σr of the area a single particle occupies in average while it oscillates with
the frequency ΩE around its lattice site (σr is the width of the particle displacement
distribution):

(4.8) σr =

√
kBT

mΩ2
E

=
σ0√

2

The factor
√

2 comes from the fact that σ0 is the width of the Gaussian distribution f(∆ik)
of the vectors ∆ik between two particles i, k. The mean ∆ of the values ∆ik is the distance
between the mean lattice sites of the two particles, and ri,k are the respective displacement
vectors of the particles i, k from their mean lattice site. Since ∆ik −∆ = rk − ri, it holds:

f(∆ik) ∝ exp

{
−(∆ik −∆)2

2σ2
0

}
= exp

{
− 2r2

2σ2
0

}
= exp

{
− r2

2σ2
r

}
∝ f(ri) · f(rk)

⇒ σ2
0/2 = σ2

r

In the equality it was used that all ri,k have the same distribution, which is only shifted
in space by a constant factor, therefore r2

i + r2
k = 2r2, and that the motion of the two

particles are uncorrelated. Then rirk ≈ 0. In other words, f(∆ik) is the convolution of
two independent Gaussian distributions. Due to the convolution invariance of Gaussian
distributions, the relation between the widths also follows directly.

4.2.3 Bond Correlation Function

An ideal hexagonal crystal has angles of multiples of 60◦ between any two nearest-neighbor
bonds, no matter how far the bonds are separated in space. This defines an orientational
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long range order which can be described by the bond correlation function g6(r) [5, 39]. To
calculate g6(r), the nearest neighbor bonds have to be identified by a Delauney triangula-
tion. The bond correlation function g6(r) is then defined as

(4.9) g6(r) =

∣∣∣∣∣∣ 1

NB

NB∑
l=1

1

n(l)

n(l)∑
k=1

exp{i · 6(θ(rk)− θ(rl))}

∣∣∣∣∣∣
Here NB is the total number of bonds in the crystal, n(l) is the number of bonds at the
distance r from bond l, θ(rk,l) are the respective angles of bonds at rk,l to an arbitrary
axis. Note that g6(r) is always 1 for the perfect hexagon by definition. In the solid state,
g6(r) should be constant and close to 1. Further, power-law and exponential decays for
large r are predicted in hexatic and liquid states, respectively [5, 78]. The hexatic state
is an intermediate two-dimensional state assumed to appear between the solid and liquid
phase according to some theories. This state will be addressed later in chapter 6.
The following three models were fitted to g6(r):

1. Exponential decay g6(r) = A1 · e−r/ξ6 with the fit parameters A1 and ξ6

2. Power-law decay g6(r) = A2 · r−η6 with the fit parameters A2 and η6

3. Linear decay g6(r) = c6 · r + A3 with the fit parameters A3 and c6.

The third model, the linear decay, is not mentioned in the theories, but it was added due
to the findings in the experimental data.
The fits are applicable for large r only, since the bond correlation function describes the
long range behavior of the system. Values of r < 2−3∆ have therefore to be omitted in the
fit. The degree of order goes roughly from unordered (exponential) to ordered (linear). ξ6

serves as a correlation length comparable to ξ of the pair correlation function. The decay
of the power-law is slower than the exponential decay and could be applicable for a better
ordered system.
The linear decay can be seen as a practically constant g6(r), but under the influence
of long range effects not considered in the common theories of two-dimensional melting.
In all experimental data a substantial slope c 6= 0 was found in states appearing rather
crystalline with regard to other properties, while power-law decays where hard to find
at all. To examine the effect leading to a linear decay, an artificial particle lattice was
generated and modified to simulate different deviations from the ideal lattice (compression,
domain forming, rotation of domains). The bond correlation function was calculated and
a linear decay of g6(r) appeared in such cases when larger adjacent domains where formed
which were rotated relative to one another by large angles, while the unit cells around
particles within each domain were kept ideal hexagonal. The domain boundaries consisted
necessarily of defect strings to compensate for the deformation. The complete procedure
and graphical results are given in detail in the Appendix B.
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This result coincides with the observation in the experimental data, where the same kind of
rotated domain structures could be identified. It should be noted that the strong influence
of the domains on g6(r) could mask any power-law or exponential decay as well as prevent
g6(r) from being constant for large r.
Examples for g6(r) are given in Fig. 4.5 for the two states crystalline (Fig. 4.5a) and
liquid-like (Fig. 4.5b). The different models of linear (black line), power-law (blue line)
and exponential (red line) decay were fitted and are shown for comparison.
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Figure 4.5: Examples of g6(r) as found in experimental data of two-dimensional complex
plasmas. r is normalized by the mean particle separation ∆. a) The linear decay (black
line) fits best, the exponential (red line) fits well but has to be omitted because ξ6 ≈ 26∆
which is larger than the actual system size. The power-law (blue line) fits only poorly.
b) Examples of different states of order, distinguished by different plot symbols (x, �, +).
Colored lines correspond to fits with the decay power-law (blue) and exponential (red).
The fits were performed for r > 2∆ only as indicated by the change from dotted lines to
solid lines.

4.2.4 Bond Order Parameter

A useful quantity to examine the lattice in terms of the local orientational order is Ψ6

which is defined as (following the definition given in [130]) :

Ψ6,k =
1

n

n∑
j=1

e6iθkj = |Ψ6,k| · e{iφ}(4.10)

φ = arctan {=(Ψ6,k)/<(Ψ6,k)}(4.11)

over the n nearest neighbors of each particle k with θkj being the angle between the nearest-
neighbor-bond of the particles k and j and the x-axis (Fig. 4.6 a). The axis can in fact be
chosen arbitrary as long as it is fixed, but typically the image x-axis is taken.
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Figure 4.6: a) Hexagonal cell around a particle k defined by its nearest neighbors. The
bond between particles k and j has an angle θkj to the x-axis. b) Imaginary plane with
the red line being the modulus of Ψ6,k of one center particle k, and the angle φ colored in
blue being the argument of Ψ6,k. In the ideal hexagon, the modulus is always 1. φ lies in
the interval [0, π] for rotations of the unit cell from 0− 30◦ from the x-axis, and in [−π, 0]
for angles between 30− 60◦.

The modulus |Ψ6,k| of this complex quantity is the bond order parameter [62] which is 1
by definition for an ideal hexagonal structure. It is often averaged over all particles in the
lattice and then used as a measure for the mean local order of the crystal. In Fig. 4.6b it
is represented as the length of the red line in the complex number plane.

The argument φ = arg(Ψ6,k) is the angle colored blue in Fig. 4.6. It is a measure for the
unit cell orientation with respect to the x-axis (the unit cell is the Wigner-Seitz or Voronoi
cell, not the cell larger cell spanned by the neighboring particles). For rotations of a unit
cell around a center particle with respect to the fixed axis, i.e. a common rotation of all
nearest neighbors, the angle between the axis and bonds modulo π/3 is mapped like:

(θkj mod π/3) ∈ [0, π/6] → [0, π]

(θkj mod π/3) ∈ [π/6, π/3] → [−π, 0]

The dependence of φ on the degree of rotation is shown in Fig. 4.7. The black dots
correspond to the ideal hexagonal unit cell. In the non-ideal crystal the angles might
deviate from 60◦ , and this dependence is slightly shifted, but still gives an idea of the
orientation of the cell. Only for defect lattice sites and strongly deformed hexagons the
information in φ is not reliable when comparing it to other unit cell orientations.
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Figure 4.7: The argument φ of Ψ6 vs. rotation of a unit cell with respect to the x-axis.
The black dots refer to an ideal hexagon, the red dots are a cell with angles between the
bonds varying slightly from 60◦.

4.3 Statistical Evaluation of Particle Dynamics

If the crystalline particle system is in local equilibrium, the particle interaction with the
plasma is balanced by the neutral gas friction. The particle motion around its mean lattice
site can then be described by a Langevin equation [131]

(4.12) mr̈ = −mΩ2
Er−mνEpv + ζ(t)

with the particle mass m, displacement r from the mean lattice site and the velocities v.
The Einstein frequency ΩE is the frequency of the particle oscillation around its equilibrium
position [125], and νep the Epstein drag coefficient. ζ(t) is a stochastical force which is the
driving thermal force originating from the finite temperature T of the particles. It causes
the particles to perform a random Brownian motion and counteracts the damping and the
restoring forces.
The first term on the right hand side of Eq. 4.12 describes the restoring force, which drives
the particle towards its mean lattice site, as a repulsive electric force between the equally
charged particles. A mean lattice site with respect to the surrounding particles is defined
as the position of the minimum of the electric potential of all neighboring particles. A
particle oscillates around this center with a frequency ΩE, depending on the shape of the
potential and the particle charge. The basic interaction potential for the complex plasma
was introduced as the Yukawa-type potential Φ(r) = QDe

−r/λD/(4πε0r) with the screening
length λD, in Chap. 2.1.
The particle motion is damped mainly by collisions with neutral gas atoms. This process
is described by the second rhs term in Eq. 4.12 and was explained in Chap. 2.2 as well
approximated by Epstein damping. The rate of collisions and therefore the rate of damping,
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νEp, depends on the neutral gas properties pressure p, gas temperature Tg, mass of the gas
atoms mg and on dust particle properties and can be calculated as [36]:

(4.13) νEp = δ

√
8mg

πkBTg

p

ρrp

with the radius and mass density rp and ρ of the particles and the Boltzmann constant kB.
The coefficient δ depends on the mechanism of the reflection of gas atoms from the particle
surface. For thermal nonconductive, spherical particles, Epstein calculated δ = 1.442 in
the case of diffuse reflection [105]. The coefficient δ was also measured in experiments from
horizontal oscillations of particles in a potential well to be 1.48± 0.05 [93], and 1.26± 0.13
[106]. A vertical resonance method yielded 1.44± 0.19 [106].
The Langevin equation of motion can be solved by the Fokker-Planck equation which yields
a particle ensemble that obeys a Maxwell-Boltzmann distribution at a particle temperature
T . The Hamiltonian for one cell in the lattice is

(4.14) H = Ekin(v) + Epot(r) =
1

2
m(v− < v >)2 +W (r)

The mean value < v > is subtracted to eliminate contributions to the kinetic energy due
to motions of the center of the lattice site itself. The probability distribution becomes

(4.15) P (r,v) = C exp

{
− H

kBT

}
= C exp

{
−m(v− < v >)2

2kBT

}
· exp

{
−mΩ2

Er2

2kBT

}
with C a constant factor depending on the normalization.
The probability distribution can be separated into functions for the several components of
the displacement and velocity vectors as long as they are independent:

(4.16) P (r,v) = p(r)p(v) = p(rx)p(ry) · p(vx)p(vy) ∝ e−
r2x
2σr · e−

r2y
2σr · e−

(vx−vx)2

2σv · e−
(vy−vy)2

2σv

The above distribution functions are provided directly by the measurement of particle
coordinates in the images, provided there is a high enough spatial and temporal resolution
to resolve the particle oscillation amplitude as well as the velocity. Of importance here
is the quantity of the measurement error which puts a limit on the smallest measurable
distance.
The calculation of the velocity was given in Eq. 3.2. The displacements r(t) =

(
rx(t)
ry(t)

)
can

be estimated by defining a mean lattice site for each particle i in one frame at time t as
the mean of all n nearest neighbor coordinates xk(t):

(4.17) r(t) = xi(t)−
1

n

n∑
i=1

xk(t)

where the coordinates xi(t),xk(t) are with respect to the image axis. The mean lattice
site is then time-dependent. Motions not related to the particle oscillation like rotations or
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shifts of the whole system are therefore eliminated in ri(t). This method is only applicable
as long as the crystal structure is well defined. If the nearest neighbors of a particle change
from one frame to the next, e.g. due to diffusion, it is not possible to define the mean
lattice site clearly, and large jumps in r can be the consequence.
The displacement and velocity distributions are given by the histograms of the respective
quantity. Gaussian fits A ∝ e−(ξ−ξ)2/(2σ2

ξ ) with ξ = rx, ry, vx, vy to each component of those
quantities provide the widths σr, σv separately for the x- and y-direction. In an isotropic
system, the fits produce the same outcome for both directions. Such fits were performed
with the same Levenberg-Marquardt-Algorithm as it was introduced in Chap. 4.2.2 for the
pair correlation function, giving the goodness of the fit χ2 and the 1-σ uncertainty for the
fit parameters for a qualitative evaluation.
In the case of problems with the mean lattice site identification, another method to at
least obtain the dispersion of the displacement was also presented Chap. 4.2.2 through the
relation σr = σ0/

√
2 of σr to the dispersion of the interparticle distances (Eq. 4.8). σ0 can

either be obtained from the fit to the pair correlation function, or directly from a Gaussian
fit to the histogram of interparticle distances in one image.
The obtained widths σr, σv are connected to the particle temperature and Einstein fre-
quency:

(4.18) σr =

√
kBT

mΩ2
E

, σv =

√
kBT

m

It is therefore possible to obtain averaged quantities like the particle temperature by a
simple measurement of all particle coordinates in one image. On the other hand, the same
distributions can be calculated for a single particle from a long enough time series. This
then yields a locally defined temperature as an average over time.
In an ergodic system, the averages over the particle ensemble are equal to those over time.
Assuming that the ergodic hypothesis holds for plasma crystals, one could simply record
images of a few particles out of a larger ensemble, at a spatial resolution high enough to
calculate velocities. From long time series of single particle trajectories then a temperature
representing that of the particle ensemble could be estimated. This way one could avoid
the bad spatial resolution accompanying the recording of a huge ensemble, where velocities
are subject to large uncertainties. An analysis of the ergodicity of (small) plasma crystals
showed that the assumption of ergodicity might be wrong [132], it might be valid though
in large enough systems, where external parameters change only slowly compared to the
spatial scale of the system.
The above interpretation of the distribution functions as thermodynamic characterization
of the particle system by means of a temperature is not strictly valid, because the complex
plasma is an open system, not in thermal equilibrium with its surroundings. However, the
continuous interaction of the particles with plasma constituents establish a certain equilib-
rium with regard to the particle energy (damping by collisions with neutral atoms, heating
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by inelastic collisions with ions). Then the system can be described by a kinetic temper-
ature behaving similar to an equilibrium temperature as was argued in [25, 131]. In fact,
experimentally obtained velocity distributions in two-dimensional complex plasmas are of-
ten found to be Gaussian distributed, defining a particle temperature from the Maxwellian
model (e.g. in [120, 26, 64]). A theoretical approach to the velocity distribution yielded
an Maxwellian distribution with an effective particle temperature two times larger than
the temperature of the ions, following from inelastic collisions with ions in the calculations
[133].



Chapter 5

Estimation of the Coupling Strength Γ

One of the parameters characterizing complex plasmas as it was introduced in Chap. 2.3 is
the coupling parameter Γ - the ratio of the mean potential to the mean kinetic energy. For
a Yukawa-type potential Qe−r/λD/(4πε0r) with a screening length λD, the particle charge
Q and a particle temperature kBT this yields

(5.1) Γ =
< Epot >

< Ekin >
=

Q2F (κ)

4πε0∆kBT
= Γeff · F (κ)

with the screening parameter κ = ∆/λD. The mean kinetic energy is kBT/2 per degree
of freedom (in 2D this are two), and ∆ is the equilibrium interparticle distance. The
factor F (κ) contains the modification of the potential due to screening and depends on
the arrangement of the nearest neighbors; Γeff is the effective coupling parameter for an
unscreened potential.
To obtain Γ for a specific experiment, one needs to measure particle charge and temper-
ature, interparticle distance and the screening parameter κ. Further one needs a model
for the calculation of F (κ). Except of the interparticle distance, those quantities are not
easily acquired and often subject to large uncertainties. Especially the measurement of the
charge by the use of wave spectra analysis [36, 120, 122] can be subject to inaccuracies of
15 %. Other methods for charge measurement like vertical particle oscillations [93] involve
additional experimental effort.
Here, a method for the estimation of Γ is presented which solely depends on particle
dynamics. In Fig. 5.1a the situation is sketched for three particles. The center particle
with charge Q1 sits at the mean distance ∆ from its neighboring particles with charges
Q2 = Q3 = Q1. The distance is given as the position where the potential energy is
minimized. The outer particles are held fixed, while the center particle has a temperature
kBT and therefore can move a distance 2σ inside the potential well (blue and green lines)
where the kinetic energy exceeds the potential energy.
In the two-dimensional case, Fig. 5.1b, the area A1 (blue shaded) of the hexagon of the
nearest neighbors around the center particle reflects the mean potential energy, because
particles take their equilibrium positions due to their charge and the potential shape. This
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Figure 5.1: a) Potential well generated by two particles with equal charges Q2, Q3 as seen
by the center particle with the same charge Q1. The surrounding particles are 2∆ apart,
with ∆ being defined by the minimum of the potential energy. The center particle can
move inside the potential well up to a distance of 2σ, depending on its kinetic energy, or
temperature. b) Areas in a 2D hexagonal structure. The center particle can visit the red
shaded area A2 defined by its temperature and the potential distribution.

area is obviously proportional to the squared interparticle distance ∆2. Again all particles
have equal charge, and the outer particles are fixed. The center particle, oscillating around
its mean position, visits the area A2 (red shaded), defined by the confinement distance σr
of the repulsive potential well generated by the surrounding particles. The driving force
for this motion defining the range σr is the particle temperature. σr is the displacement
dispersion introduced in Chap. 4.3, and A2 is proportional to its squared value.

Then the ratio of the areas A1 and A2 should represent the ratio of mean potential to mean
kinetic energy:

(5.2)
A1

A2

=
∆2

σ2
r

= Γ̃

The first equality holds under the assumption of equally shaped areas.

Γ̃ is a quantity which can be measured directly from the particle coordinates, provided the
spatial resolution is high enough to resolve the displacement from the mean lattice site.

For this purpose, the particle displacements r and ∆ will be calculated as localized quanti-
ties. A local coordinate system is introduced for each particle separately. Its center is the
mean lattice site defined as the time dependent mean position of all n nearest neighbors
of particle i. The time dependence removes systemic trends like rigid-body drifts of the
system. In the local coordinate system, for each particle i a localized, time dependent



5.1 Experimental Parameters 43

displacement ri(t), nearest neighbor distance ∆i(t) and velocity vi(t) can be calculated:

ri(t) =

(
rx,i(t)

ry,i(t)

)
= Ri(t)−

1

n

n∑
j=1

Rj(t)(5.3)

∆i(t) =
1

n

n∑
j=1

|Ri(t)−Rj(t)|(5.4)

vi(t) = [ri(t+ δt)− ri(t)] /δt(5.5)

The summation is over the n nearest neighbors found by performing Delauney triangula-
tions. Rk(t) =

(
xk(t)
yk(t)

)
are the original particle coordinates as to the image axis found by

the tracking algorithm. From here on, indices x and y will always refer to the direction x, y
of the image axis, and rx,y and vx,y mean the quantities in the local coordinate system with
axis parallel to the image axis. Coordinates (x, y) refer to the coordinates in the image
coordinate system.
The following sections present the results of the first experiments performed to estimate
the coupling strength Γ̃ using the method proposed above; they were also published in
[134].
The experimental parameters and the uncertainties in the coordinates and displacements
are given in chapters 5.1 and 5.2. The localized particle dynamics are presented and
analyzed in chapter 5.3. The underlying theoretical model will be introduced in chapter 5.4.
The last section 5.5 summarizes the results.

5.1 Experimental Parameters

The basic setup of the plasma chamber and discharge generation has been described in
Chap. 3.1. For the estimation of Γ̃ an undisturbed two-dimensional crystalline system was
needed.
For this purpose, a two-dimensional crystal, consisting of melamine-formaldehyde spheres
with a diameter of 9.19±0.09 µm, was generated in an argon discharge with a peak-to-peak
voltage of −172 VPP and 1.94 Pa neutral gas pressure. The particles were levitated at a
height of 6.4 mm above the lower electrode. The crystal dimensions were≈ 41.9×17.4 mm2.
It was verified that no particles were located above or below the layer by scanning vertically
through the chamber and searching for particles at another height. The crystal was confined
from two sides by parallel tungsten wires 59.2 mm apart and a few millimeters above the
crystal plane. The wires were at a negative floating potential caused by electrons collected
from the plasma.
Two recordings, numbered I and II, were done at a high spatial and temporal resolu-
tion. They show different sections of the same crystal. A 105 mm lens plus three ad-
ditional distance-rings with a total length of 49.5 mm provided a spatial resolution of
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6.74 · 10−3 mm/px. The field of view (fov) had a size of 6.9 mm×6.9 mm. The total
recording length for each experiment was 6144 frames at a frame rate of 500 fps.
In experiment I approximately 111 particles where located in the field of view including
a 5-fold and a 7-fold defect forming a dislocation, while in experiment II a perfect crystal
with approximately 115 particles was recorded at a higher illumination level of the laser.
The approximate values come from the fact that particles at the image edges sometimes
vanish out of the field of view during a recording.
An additional set of images, referred to as experiment III, of the same crystal at a lower
spatial resolution of 0.0325 mm/px was recorded, with a fov size of33.28 mm×33.28 mm.
Pressure and discharge parameter settings were kept unchanged. It contained 2248 particles
in the field of view, providing a much larger system. This allowed a wave spectra analysis
as described in Chap. 4.1 to estimate the particle charge Q and screening parameter κ. The
wave spectrum and sound velocities are shown in Fig. 5.2. The particle charge is estimated
to be Q = −10500± 100 elementary charges, and κ = 0.86± 0.37.
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Figure 5.2: a) Wave spectrum ω vs. k. Marked in yellow are positions identified as the
longitudinal (�) and transverse branch (4). b) Transverse (•) and longitudinal (×) sound
velocities obtained from the wave spectrum in the left panel, plotted vs. wave number
k. Red and blue lines are fits according to theory (chapter 4.1). The fits yield the sound
speed c0 and therefore the particle charge from the transversal (blue line), and κ from the
longitudinal velocity (red line).

Charge and κ – and also the particle temperatures kBT , which will be derived from the
velocity distributions – will be needed in the later Chap. 5.4 to compare the theoretical
model with the assumption that the coupling parameter is given by Γ̃.
Table 5.1 lists all experimental parameters and additionally some properties of the crystal.
With the gas parameters and particle diameter Eq. 4.13 yields the damping rate due to
collisions with neutral gas atoms νEp = 2.28 Hz according to the reflection index δ = 1.26
measured in [106], or νEp = 2.68 Hz with δ = 1.48 from [93], for δ measured from horizontal
oscillations.
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I II III
Discharge settings

rf power forward/reflected 10/0 W
self bias −69 . . .− 70 V

peak-to-peak voltage −172 V
gas Ar

flow rate 4.5 sccm
neutral gas pressure 1.946 Pa 1.947 Pa

Particles
particles MeF, ∅ 9.19± 0.09 µm

particle mass density 1.51 g/cm3

Epstein drag coefficient 2.28 Hz (δ = 1.26), 2.68 Hz (δ = 1.48)
particle charge −10500± 100 e

screening parameter 0.86± 0.37
height of particles

above the electrode 6.4 mm 6.7 mm

Recording
recorded frames 6144

frame rate 500 fps
resolution 6.74 · 10−3 mm/px 0.0325 mm/px
aperture 2.8 5.5

illuminating laser power 88 mW 106 mW 200 mW

Table 5.1: Experimental parameters and basic properties of the plasma crystal for the
experiments used to measure Γ̃. The Epstein drag coefficient depends strongly on the
reflection index δ used in its calculation, therefore two extreme values are given according
to the quantity of δ = 1.26 and δ = 1.48 from the references [106] and [93].

Fig. 5.3a shows an example of the images for the high resolution data of experiment I. For
better visibility, 100 consecutive frames were overlaid to enhance the particle image size
and brightness. Fig. 5.3b shows the Voronoi cells of one frame with the defect lattice sites
marked in colors red (5-fold) and blue (7-fold).

5.2 Uncertainties

The quantity of the error in the coordinates is identified by comparing the number of
illuminated pixels per particle and the pixel-noise level with the outcome of the simulations
in the Appendix A.
The number of pixels per particle is obtained during the particle tracking and then aver-
aged over all particles. In experiment I an average of 6.7 pixels per particle was found.
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Figure 5.3: a) 100 consecutive images of experiment I, averaged for better visibility. b)
Voronoi cells of one image of experiment I. The red and blue colored cells mark a 5- and
a 7-fold defect, resp.

Experiment II was recorded at a higher illumination level. The particle images are larger,
on average consisting of 12 pixels/particle. The experiment III with a low spatial resolution
had mean particle sizes of 6.7 pixels/particle.

The pixel-noise level was estimated using the method of intensity fluctuations in the pixels
composing the particle images, as mentioned earlier in Chap. 3.3 and explained in the
Appendix A. Noise levels of 8.4, 11.7 and 12.6 (in units of intensity with a maximum of
255) for experiments I,II and III respectively, were found. The higher noise levels for the
data sets II and III are attributed to the corresponding higher illumination laser power of
106 and 200 mW compared to 88 mW in experiment I.

For noise-levels> 4 and particles> 6 pixels the combined error δr,abs in absolute coordinates
caused by tracking and pixel-noise effects was found to be well approximated by a statistical
error.

Table 5.2 lists the particle sizes, noise levels and the range of respective standard deviations
of the error distributions of the absolute particle positions for the cases of interest here.
Also shown are the expected errors for a frame rate of 500/3 ≈ 166 fps. To lower the frame
rate and improve the shape of the particles in the images, each three consecutive images
were averaged as to their intensity. This reduces the pixel-noise by a factor of 1/

√
3. The

number of pixels per particle was practically not affected by this procedure. The necessity
for this procedure becomes evident from the quantity of the error for particle displacements
at the full frame rate.
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I II III
500 frames per second

number of pixels/particle 6.7 12 6.7
pixel-noise level 8.4 11.7 12.6

error absolute coordinates δr,abs [px] 0.074 0.072 0.082
500/3 frames per second

pixel-noise level 4.9 6.8 7.3
error absolute coordinates δr,abs [px] 0.070 0.054 0.073

Table 5.2: Pixels per particle, pixel-noise and errors of absolute coordinates for experiments
I, II and III for frame rates of 500 fps and 500/3 fps.

For distances between two coordinates, e.g. velocities and displacements, the error is
statistical all the time, but depends on the real distance between the two positions. It is
presented graphical in Fig. 5.4 for experiments I,II and III. The figure shows the width
of the error distribution plotted vs. the width of the real displacement distribution, both
converted to units of pixels. The data come from the artificial particle error analysis with
parameters meeting the conditions of the experiments. The real displacement means here
the distance between any two positions. For velocities, this distance has to be divided by
the time step.
The solid black line is the bisecting line where the error equals the real displacement. If one
wants to measure the width of the distribution of real values, the error must be below this
line, i.e. the error must be smaller than the value which is to be measured. For particles at
room temperature the dotted vertical lines show the quantity of the width of the velocity
distribution in units of pixels for the spatial and temporal resolutions of experiments I-III.
It is clear from Fig. 5.4a, that at 500 fps it is not possible to obtain a valid temperature
from the velocity distribution for particles at room temperature. For 500/3 fps, Fig. 5.4b,
the error is smaller than the real value for the high spatial resolution of experiments I and
II. Since experiment III will be used only for wave spectra analysis, the high temporal
resolution is not essential, and an even lower frame rate of 83 fps is applicable. For the
measurement of σr the frame rate is not important. However it was found that σr is much
larger (≈ 10×) than the errors plotted in Fig. 5.4, so it should not be affected much by
the uncertainties.
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Figure 5.4: Errors of particle displacements vs. real displacement for particle image sizes
and noise-levels comparable to the experiment I,II,III. The data are taken from simulations
of artificial particles. The dotted lines show the width of a velocity distribution of particles
at room temperature at the respective spatial and temporal resolutions. The error must
be smaller than the bisecting line for valid measurements. Errors for: a) Pixel-noise values
from the original images at 500 fps. b) Pixel-noise values for images averaged over three
consecutive frames, leading to a noise level reduced by 1/

√
3.
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5.3 Localized Particle Dynamics

Fig. 5.5 shows all particle trajectories of experiment I (a) and II (b) for the whole time
series of overlaid images with the reduced frame rate 500/3 fps. Colored trajectories where
analyzed. The dislocation consisting of a 5- and a 7-fold defect in the image 5.5a is
marked green and yellow. All other particles (red and blue) have hexagonal unit cells. The
trajectories colored blue in experiment I are close to a disturbance visible in the upper left
line of particles and will be referred to later. Due to out-of-view neighbor particles it is
not possible to define the mean lattice site for particles at the image edges (black) which
are therefore not considered.
The 5-fold defect particle in experiment I vanishes and re-emerges several times thus frag-
menting its trajectory. The particle is badly illuminated, presumably due to a small vertical
offset from the crystal plane, and at some times a further decrease of its intensity, maybe
due to small additional vertical oscillations, prevents tracking. This affects the velocity
calculation as well as the estimation of the mean lattice site of its nearest neighbors. To
prevent jumps in the mean lattice sites, only those frames were considered for the 5-fold
and its neighbors in which all particles were visible.
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Figure 5.5: Particle trajectories for the whole measurement time. All colored trajectories
where analyzed. The colors mean 5-fold (green), 6-fold (blue and red) and 7-fold (yellow)
lattice sites. The blue trajectories will be referred to later. Trajectories colored black are
edge particles not used in the analysis. a) Experiment I. The two red particles enclosed
by the black ellipse showed a different behavior from all other 6-fold particles and will be
referenced later. b) Experiment II.
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5.3.1 Local Coordinate System

For each time-series, the histograms of displacement components rx,i(t), ry,i(t) and velocity
components vx,i(t), vy,i(t), calculated in the local coordinate system introduced in Eq. 5.5,
are obtained separately. The histograms were Gaussian distributed, and are interpreted in
context of the statistical evaluation from Chap. 4.3. The interparticle distance ∆ is calcu-
lated in each frame locally for each nearest neighbor to a particle i and then averaged over
all neighbors, yielding a time-series of ∆i(t) which appears Gaussian distributed around a
local mean ∆. The Gaussian fits to the histograms produced the widths σv,x, σv,y, σr,x, σr,y
and the local mean ∆ for each particle.
The local particle temperature Ti for the ith particle is then given by σ2

v,i = (σ2
vx,i+σ

2
vy ,i)/2.

The displacement dispersion is σ2
r,i = (σ2

rx,i + σ2
ry ,i)/2 ≡ ∆2

i /Γ̃i. With the knowledge of the
∆i, Γ̃i can be calculated as a local quantity using Eq. 5.13 as Γ̃i = ∆2

i /σ
2
r,i.

Particle temperature Ti, displacement dispersion σr,i, ∆i and Γ̃ are displayed in Figs. 5.6
and 5.7 in dependence on the average mean lattice site position on the x-axis of the im-
ages for experiments I and II. The average interparticle separation obtained from the pair
correlation function for the whole crystal is indicated as a red line in Figs. 5.6a,5.7a for
comparison with the localized quantity.

Experiment I The values for particles marked green,yellow and blue in Fig. 5.5a are
colored in the same manner in Fig. 5.6. Colored in red are the two particles included in
the black ellipse in Fig. 5.6. Those particles are direct neighbors to the dislocation and are
affected by the non continuous trajectory of the 5-fold particle.
The defect pair pair (green, yellow) stands out with a smaller resp. larger local interparticle
distance for the 5- and the 7-fold (Fig. 5.6a) This is reflected in Γ̃ in Fig. 5.6d. The
temperatures for both defects are nearly half of that of the other particles (Fig. 5.6c). This
is caused by their non-continuous trajectories and the resulting small number of velocities
which introduces large errors into the statistical analysis. Also the two direct neighbors of
the defects marked in red have huge error bars in kBT due to the lack of good statistics.
σr for the dislocation particles and the neighbors is in the range of the results for the other
6-folds.
Standing out are the blue trajectories with high σr and therefore low Γ̃. On the first
look, these particles, located next to a small disturbance in the crystal in the upper line
of edge particles, seem to be more mobile than the rest, though their temperature is not
affected. The effect seen in the displacements is artificial, as shown in Figs. 5.6e,f. Here, the
displacement was calculated by subtracting a trajectory smoothed over 100 points as the
mean lattice site from the coordinates, instead of introducing the local coordinate system.
In that configuration, σr and Γ̃ of the blue particles do not deviate from that of the other
6-folds, but now the defect particles and their closest neighbors show higher mobility.
Obviously the local coordinate system introduces large errors as soon as the neighboring
particles do not behave completely linear. This is illustrated in Fig. 5.8 by examples
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of the displacement and velocity histograms and the particle trajectory in the localized
coordinate system, compared with those where the mean motion was subtracted as a
smoothed trajectory. The top line (a,b) shows histograms of a particle with 6 neighbors
out of the bulk of the crystal, and the particle trajectory in the local coordinate system in
c. The middle line (d-f) belongs to one of the blue colored particles, featuring a double-
peak in the displacement distribution (d). The velocity histogram (e) is not affected and
practically looks identical to that in Fig. 5.8b. The bottom line (g-i) shows the histograms
for the same particle as the middle line, now not in the local coordinate system, but with a
smoothed trajectory subtracted. The double-peak is gone in the displacement distribution,
and comparing the particle trajectories f,i one can see that the disturbance in the upper
line of particles leads to a large deviation of the mean lattice site to the actual average
particle position: in Fig. 5.8f the trajectory is off-center in the plot, and even seems to
shift, therefore the elongated shape.
This effect is artificial, since obviously by looking at the trajectories in Fig. 5.5, the distur-
bance only shifts the mean lattice site geometrically, but does not affect the trajectories of
the blue colored neighboring particles.

Experiment II In the case of the almost perfect crystal of experiment II, a dependence
on the x-coordinate appears in all quantities, see Fig. 5.7. Especially the temperature
shows the same features in dependence on x as σr and Γ̃, as it would be expected, since
Γ̃ ∝ 1/T ∝ 1/σ2

r .
The next section emphasizes the local characteristics of the individual particles. The
influence of the location within the crystal on the particle dynamics is evaluated further.
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Figure 5.6: Experiment I. Quantities calculated in the local coordinate system from his-
tograms and plotted vs. the average mean lattice site position on the x-axis of the images.
The error bars are the 1-σ uncertainties provided by the fit of Gaussian functions to the
histograms. Colors are explained in the text. a) Interparticle distance ∆, b) particle tem-
perature kBT , c) displacement dispersion σr, d) Γ̃ = ∆2/σ2

r . The following quantities are
calculated not in the local coordinate system, but by substraction of a smoothed trajectory
from the original data: e) displacement dispersion σr, f) Γ̃.
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Figure 5.7: Experiment II. Quantities calculated in the local coordinate system from his-
tograms and plotted vs. the average mean lattice site position on the x-axis of the images.
The error bars are the 1-σ uncertainties provided by the fit of Gaussian functions to the
histograms. a) Interparticle distance ∆, b) displacement dispersion σr, c) particle temper-
ature kBT , d) Γ̃ = ∆2/σ2

r .
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Figure 5.8: Examples of displacement (left) and velocity (middle) histograms with Gaussian
fits, and local particle coordinates (right). The components x, y and vx, vy were examined
separately and are colored red (x, vx) and blue (y, vy). (a-c) 6-fold lattice site; (d-f) 6-
fold lattice site close to a small disturbance, quantities calculated in the local coordinate
system; (g-i) the same 6-fold lattice site, quantities calculated by taking the smoothed
particle trajectory as the mean lattice site.
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5.3.2 2D Maps

Coordinate maps of the particle system were generated containing all information obtained
in the former chapter. At each location (x, y) of a particle the Voronoi cell is colored
according to the time-averaged localized data. This is done for the temperature Ti, the
interparticle distance ∆i, the width σr,i and Γ̃i.
To identify the role of structural properties of the crystal, the bond order parameter Ψ6

introduced in Eq. 4.2.4 has also been calculated at each particle position as the average
over time of Ψ6(t).

Experiment I Fig. 5.9 presents the results for experiment I. The dislocation is clearly
identified at the lower left corner by its deviating values in all maps. Disregarding the
defects, the ∆-map (Fig. 5.9a) reveals a density gradient 0.68 − 0.75 mm, from right
0.68 mm to left 0.75 mm, which is caused by the weak horizontal compression produced
by the floating wires located to the right and left. Obviously, the field of view was not
centered between the wires.
The distribution of T (Fig. 5.9b) across the crystal is random within a range of 0.041 −
0.061 eV, slightly above room temperature, for all particles except the defect lattice sites,
which deviate strongly in T due to the poor statistics mentioned above. Remarkably,
neither the defects nor the aforementioned disturbance at the upper part of the crystal
influence the particle temperature in their vicinity.
Fig. 5.9c,d show the maps of σr and Γ̃. Due to the problems of the localized coordinate sys-
tem mentioned if the last chapter, the presented values are those obtained from subtracting
the smoothed particle trajectory in the displacement calculation. While σr lies mostly in
the range of 0.0040 − 0.0055 mm, the 5- and 7-fold and two of their nearest neighbors
stand out with a much higher displacement of 0.0075− 0.0096 mm. This is reflected in a
low Γ̃ < 10000 (Fig. 5.9d) while the influence of the gradient of ∆ on Γ̃ is not noticeable.
Elsewhere, Γ̃ falls in the range 15000− 30000.
The map of the local bond order parameter is plotted in Fig. 5.9e. The defect pair exhibits
a very low order, as it is expected, since Ψ6 is defined for a hexagonal cell. The hexagonal
bond order also reacts sensitively in the wider vicinity of the defect. Also the gradient in
the interparticle distance might have some influence on Ψ6, since in average it decreases
from 0.98 at the right side (smaller ∆) to 0.89 on the left side (larger ∆).

Experiment II Another part of the crystal was recorded in experiment II without any
defects or disturbances within the field of view. The results, now calculated in the local
coordinate system, are shown in the maps in Fig. 5.10. The gradient in ∆ (Fig. 5.10a) is
clearly correlated to the gradient in Ψ6 (Fig. 5.10e). The temperature (Fig. 5.10b) is dis-
tributed across the crystal in a range of 0.038−0.062 eV, with smaller values accumulated in
the center region, as it was already indicated in the x-dependence in Fig. 5.7. Accordingly,
smaller values of σr and higher values of Γ̃ appear in that region (Figs. 5.10c,d).
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Conclusion The localized coordinate system works well for stationary crystal structures
without lattice defects. If non-stationary processes take place, the mean lattice sites are not
identified correctly, giving misleading results. In that case, the particle displacements have
to be calculated by other methods, as it was done for experiment I. Defect sites are then
easily identified by significantly decreasing Γ̃ even in the closer neighborhood of the defect
itself. Further, Γ̃ is not visibly affected by small linear density gradients. The essential
factor influencing Γ̃ locally is the average displacement of a particle from its mean lattice
site.
The particle temperature in both experiments scatter around 0.05 eV. This is twice the
room temperature of ≈ 20◦ C, corresponding to 0.025 eV. The spatial and temporal reso-
lution during the experiment were high enough to measure the real particle temperatures
from the velocity distributions, considering both the required time scales and the uncer-
tainties. The time scale defined by the oscillation frequency of the particles within their
nearest neighbor cells is of the order of 0.03-0.04 s (this is the inverse Einstein frequency
which will be derived in the next chapter and shown in table 5.3). The time step between
frames with the reduced frame rate 166 fps is sufficiently small with 0.006 s. The measured
temperature is therefore real, and particles actually are above room temperature. Assum-
ing that the temperature of the neutral gas, and that of the ions is at room temperature (see
Chap. 2 and basics of complex plasmas), the measured particle temperature is consistent
with the calculations by Zagorondy in [133], who finds an effective particle temperature
twice the temperature of the ions. The reason stated there is the additional heating of dust
particles by inelastic charging collisions with ions, in contrast to pure Brownian motion.
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(a) Interparticle distance ∆ (b) Particle temperature kBT

(c) Displacement dispersion σr (d) Coupling parameter Γ̃

(e) Bond order parameter Ψ6

Figure 5.9: Experiment I. 2D maps of local crystal parameters. The Voronoi cell around each
particle is color coded according to the value of the particular measured quantity (see colorbars
on the right side of each picture). The displacement dispersion and coupling parameter were
calculated by substraction of the smoothed particle trajectory from the original trajectory. The
(compressing) wires were arranged along the vertical image axis to the left and right of the plasma
crystal.
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(a) Interparticle distance ∆ (b) Particle temperature kBT

(c) Displacement dispersion σr (d) Coupling parameter Γ̃

(e) Bond order parameter Ψ6

Figure 5.10: Experiment II. 2D maps of local crystal parameters. The Voronoi cell around each
particle is color coded according to the value of the particular measured quantity (see colorbars
on the right side of each picture). The displacement dispersion and coupling parameter were
calculated in the local coordinate system. The (compressing) wires were arranged along the
vertical image axis to the left and right of the plasma crystal.
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5.4 Theory for the Estimation of f (κ)

In this chapter, the theory for the calculation of f(κ) = ΩE/Ω0 will be explained. It will be
shown, that the factor F (κ), introduced in the beginning of chapter 5 in the equation for
the coupling parameter Γ = F (κ)Γeff , is related to this quantity. It describes the influence
of the screening on the potential energy. It will also be shown that the quantity Γ̃ = ∆2/σ2

r ,
which was calculated from the particle coordinates in a two-dimensional crystalline system
in the last chapter, is equal to Γ [134].
In the plasma crystal, particles oscillate about their equilibrium positions within the lattice
with the plasma crystal Einstein frequency ΩE [125]. This frequency depends on the
Yukawa-type interparticle potential, and this in turn depends on the particle charge.
Assuming a regular lattice of particles with the charge Q, one can choose an arbitrary test
particle and divide the lattice around that particle into concentric circles in 2D, or spheres
in 3D, for simplicity referred to as shells. Each shell contains a set of particles, as indicated
in the left part of Fig. 5.11 for the two-dimensional case.

R i

χ
i

displacement position
center particle

mean lattice site
center particle

R

r

a

b

β

α

Particle i

Figure 5.11: Left: Consecutive shells (red and blue) around a test particle (green). The
first shell contains the nearest neighbors to the green center particle, the next shell includes
the next set of particles, and so on. Right: Construction to obtain the distance Ri in Eq.
5.7 between the displacement position of the center particle (blue) to a neighboring particle
i (black). The displacement refers to the mean lattice site (red).

If the center particle has a small displacement r from its mean lattice site while all other
particles are fixed, the potential energy W (r) is

(5.6) W (r) =
∑
shells

∑
i

QΦ(Ri)

with an isotropic interaction potential Φ and the distance Ri between the displaced center
particle and the ith particle of one shell. The first sum goes over all shells.
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The distance Ri can be calculated using the construction in the right part of Fig. 5.11. R is
the shell radius and r points from the mean lattice site (red in the figure) to the displaced
(actual) position of the center particle (blue). χi is the angle between the displacement
vector r and the vector Ri from the displaced position to the any particle i. With the
annotations in the figure follows:

cosα = a/r
sinα = b/r
(R− a)2 + b2 = R2

i

α + β + χi = π

⇒ R2
i = R2 − 2Rr cosα + r2 cos2 α + r2 sin2 α

= R2 − 2Rr cosα + r2

cosα can be written as cosα = cos(π − β − χi) = − cos β cosχi + sin β sinχi. For small
displacements r the angle β becomes very small and the approximation sin β ≈ 0 and
cos β ≈ 1 is applicable, therefore:

cosα ≈ − cosχi

R2
i = R2 + r2 + 2Rr cosχi(5.7)

The potential energy can be expanded around the equilibrium position r = 0 in a Taylor
expansion, where r is just the distance from the center and the angle dependence is included
in Ri:

(5.8) W (r) = W0 +
dW

dr

∣∣∣∣
r=0

r +
1

2

d2W

dr2

∣∣∣∣
r=0

r2 +O(r3)

W0 is simply a constant factor equals the minimum potential energy at r = 0. The first
derivative dW

dr

∣∣
r=0

= −F = 0 at the minimum r = 0 is zero, there is no force acting
in equilibrium. With the Yukawa interaction potential between the particles, Φ(R) =
Qe−K/(4πε0R) with K = R/λD, the Taylor expansions gives:

(5.9) W (r) = W0 +
1

2

Q2

4πε0λ3
D

·
∑
shells

∑
i

e−K

K

[
(1 + 3K−1 + 3K−2) cos2 χi −K−1 −K−2

]
· r2

This describes a harmonic oscillator, and the acting forces for small displacements can be
expressed as F = −kr with a spring constant k = mΩ2

E, where m is the particle mass and
ΩE the Einstein frequency. With d2W/dr2 = −dF/dr = k = mΩ2

E, an expression for the
Einstein frequency is obtained from Eq. 5.9:

(5.10) Ω2
E =

Q2

4πε0mλ3
D

∑
shells

∑
i

e−K

K

[
(1 + 3K−1 + 3K−2) cos2 χi −K−1 −K−2

]
In two-dimensional systems, cosχi = cos(φ− φi) with the angles φ, φi of the polar coordi-
nates of the respective particles.
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With the frequency of the one-component plasma Ω0 =
√
Q2/(4πε0m∆3), the ratio ΩE/Ω0 ≡

f(κ) can be calculated as:

(5.11) f(κ) ≡ ΩE

Ω0

=

√√√√( ∆

λD

)3 ∑
shells

∑
i

e−K

K
[(1 + 3K−1 + 3K−2) cos2 χi −K−1 −K−2]

Considering only the first nearest neighbor shell, R = ∆ and K = R/λD = ∆/λD ≡ κ
becomes the screening parameter. For different geometries Eq. 5.11 then simplifies to

(5.12)

1D chain (2 NN)
2D hexagonal (6 NN)
3D bcc (8 NN)
3D fcc, hcp (12 NN)

 fNN(κ) =
ΩNN

Ω0

=



√
4e−κ(1 + κ+ 1

2
κ2)√

3e−κ(1 + κ+ κ2)√
8
3
e−κκ2

√
4e−κκ2

with the number NN of particles in the first shell in parenthesis.
Fig. 5.12 shows f(κ) for different lattices in two and three dimensions. The green line,
corresponding to the two-dimensional hexagonal lattice, can be fitted by the polynomial
(a + bκ2)−1 with a = 0.427 and b = 0.0295. Remarkably the ratio is the same for the
two-dimensional hexagonal crystal and the three-dimensional bcc lattice. The inset shows
the ratio of ΩNN from the nearest neighbor approximation to ΩE. One can see that for
three dimensions (blue and turquoise lines) the inclusion of more shells becomes important
even for large values of κ >> 1, while in one- and two-dimensional systems the influence of
distant particles is not so large. The reason in the 3D cases is the small distance between
consecutive shells (in the bcc lattice for example the distance between the first and second
shell is only (2/

√
(3)− 1)∆ ≈ 0.15∆).

The described theory holds for sufficiently small oscillations of the particles, so that there
are no anharmonic effects and the linear harmonic oscillations of particles are independent
from each other.
With the relation σ2

r = kBT/(mΩ2
E) for the width of the displacement distribution (Eq. 4.18)

and the equations ΩE = f(κ)Ω0 and Ω0 =
√
Q2/(4πε0m∆3) from above follows:

(5.13) Γ̃ =
∆2

σ2
r

=
∆2mΩ2

E

kBT
=

∆2mf(κ)2Ω2
0

kBT
=

Q2f 2(κ)

4πε0∆kBT
= f 2(κ)Γeff = Γ

5.5 Interpretation and Discussion

The ratio of areas given by the interparticle distance and the mean displacement of a
particle from its equilibrium lattice site, A1/A2 = ∆2/σ2

r , suggested in the beginning of
this chapter, offers in fact a simple method for the estimation of the coupling parameter Γ.
The essential quantities are easy to measure directly from images of the particle system.
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Figure 5.12: Ratio of the Plasma Crystal Einstein (PCE) frequency ΩE to the one-
component plasma frequency Ω0 vs. the screening parameter κ = ∆/λD for a 1D chain
(red), 2D hexagonal lattice (green) and 3D bcc (turquoise) and fcc/hcp (blue) lattices.
The inset shows the ratio of ΩNN obtained from the nearest neighbor approximation in
Eq. 5.12 to ΩE in dependence of κ.

The localized coordinate system introduced for this purpose is very vulnerable to produce
artificial features in the case of non-stationary processes due to misinterpretation of the
mean lattice sites. In the case of a completely stationary crystal structure, it works well and
gives consistent results for Γ in comparison with the particle temperature T , which should
both show the same features. The method to apply for the calculation of the displacements
is therefore to be chosen according to the present experimental data. Further the spatial
resolution can become a restricting factor: the displacements of particles from the mean
lattice site (in units of pixels) has to be much larger than the resolvable distance, or the
uncertainty in the recorded images. Else the particle either does not seem to move at all,
or one could mistake fluctuations in the intensity values due to pixel noise as a particle
oscillation.

After these problems are taken into account, the calculation of ∆2/σ2
r is not only a simple

way to specify the thermodynamical state of the system, but also the particle charge can be
derived, since Γ ∝ Q2/∆T . Necessary for this is the additional estimation of the particle
temperature T and the screening parameter κ from the data.

For temperature calculations the temporal resolution must be high: The time step between
recorded images has to be small enough to not exceed the time scale of the thermal motion
of the particles. On the other hand, the distance (in units of pixels) the particles have to
move from frame to frame has to be much larger than the resolvable distance. Here the
same reasons apply as mentioned for the displacement above. The particle temperature
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can then be measured from the width of the velocity distribution.
The factor F (κ) introduced in 5.1 describes the contribution of screening to the mean
potential energy and is given by the expression f 2(κ), which was derived in the last section
for several specific structures, in particular for the two-dimensional hexagonal crystal. To
derive f(κ), κ still has to be estimated, e.g. from the longitudinal branch of the wave
spectrum.
From Eq. 5.13 then follows

(5.14) Q =
∆

σr

√
4πε0∆kBT

f(κ)

Charge and Γ are presented in table 5.3 for experiments I and II. The values for charge
Qws and screening parameter κws are those from the wave spectra analysis presented in
Chap. 5.1. κws was used for the calculation of f(κ) and fNN(κ) in the nearest neighbor
approximation.
From table 5.3 one can see that Γ and Γ̃ are in good agreement, with Γ̃ slightly higher than
Γ. Questionable stays the use of the nearest neighbor approximation in the calculation of
f(κ): ΓNN differs by a factor of 1.5−1.6 from Γ and Γ̃, respectively. The very similar results
for Γ and Γ̃ lead to similar particle charges, mutually validating the different approaches
of wave spectra and particle motion analysis.
Molecular dynamics (MD) simulations on a two-dimensional system with comparable pa-
rameters as the above experiments have been performed and their dynamical properties
have been evaluated, presented in [134]. A defect lattice site was included in the simulation.
The results were consistent with the experimental findings: the influence of the defect on
the local bond order parameter was long-range, while the interparticle spacing and Γ̃ were
affected only locally by the lattice disruption.
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Experiment I Experiment II
charge and κ from wave spectra analysis

Qws −10500± 100 e
κws 0.86± 0.37

f(κ) from theory, using κws
f(κ) 2.23± 0.09

fNN(κ) 1.82± 0.02

∆, kBT calculated from data
〈∆〉 0.710± 0.017 mm 0.649± 0.005 mm

〈kBT 〉 0.051± 0.005 eV 0.048± 0.004 eV
Ω0,ΩE,ΩE,NN from wave spectra charge

Ω0 = Qws/
√

4πε0m∆3 10.8± 0.1 12.3± 0.1

ΩE = Ω0f(κ) 24.0± 1.0 27.4± 1.2

ΩE,NN = Ω0fNN(κ) 19.5± 0.3 22.3± 0.3

Γ from wave spectra charge
Γ = Γefff(κ)2 21000± 3000 25000± 3000

ΓNN = ΓefffNN(κ)2 14000± 1500 17000± 1600

ΩE, Γ̃ from particle motion
ΩE = σv/σr 24± 4 28± 2

Γ̃ = ∆2/σ2
r 23000± 4000 27000± 4000

charge from Γ̃ and f(κ)

Q −10800± 1200 e −11000± 1000 e
QNN −13300± 1400 e −13500± 1100 e

Table 5.3: Listing of some quantities calculated by different methods. Qws and κws are
the charge and screening parameter obtained from wave spectra analysis. f(κ), fNN(κ) are
calculated from the theory with κws. The index NN corresponds to the nearest neighbor
approximation in Eq. 5.12. 〈∆〉 and 〈kBT 〉 are averages over all particles and frames. With
these values follow the frequencies Ω0,ΩE, and Γ = f 2(κ)Γeff . The Einstein frequency is
also calculated independent from the charge as σv/σr, and Γ̃ = ∆2/σ2

r . From this follow
the particle charges in the last two lines.



Chapter 6

Theory of Phase Transitions in 2D
Systems

The phase of a two-dimensional complex plasma can be defined, in the thermodynamical
sense, by the Coulomb coupling parameter Γ, the ratio of the average kinetic and potential
energy, as it was introduced in Chap. 2.3. Critical values Γc at the point of the phase tran-
sition between the liquid and solid state in a two-dimensional system have been obtained
in computer simulations of the liquid to solid transition of a 2D electron gas as Γc = 95±2
[135]. Thouless [136] calculated it based on the dislocation mediated melting mechanism
as Γc = 78. This melting mechanism will be subject of the following chapter. A later
experiment with 2D electron sheets [12] yielded a Γc = 137 ± 15 which is larger than the
theoretical prediction, and close to the critical value for 3D systems of Γc,3D = 172 as it
was obtained in Monte-Carlo simulations of a one-component plasma (OCP) [137]. The
last chapter 5 gave a simple method for the estimation of Γ of a two-dimensional system
of particles, if the particle coordinates are available with a high spatial resolution. Though
observing Γ during an experiment involving a phase transition could help to identify the
respective phases and the point of phase transition, it gives no information on how this
transition might work on a fundamental level. The next chapters will address the different
theories attempting to explain the underlying mechanisms.
Several theories for phase transitions of two-dimensional systems exist. They include mod-
els of first or second order phase transitions driven by different mechanisms. The next
chapters give an overview over the most common theories. Generally accepted is the
KTHNY theory [138, 4, 5, 39, 6] - named after Kosterlitz, Thouless, Halperin, Nelson
and Young. It describes the melting of two-dimensional systems with continuous phase
transitions (second order) (Chap. 6.1). In opposition, a first order transition similar to
three-dimensional systems is proposed by the grain-boundary theory [139, 7, 140] and the
density-wave theory [8, 141, 11]. The models for first order transitions are explained in
Chapter 6.2.
The above models have in common the description of the mechanism of the phase transition
on the level of the individual particles, which then can be connected to the thermodynam-
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ical quantity, namely the particle temperature defined as the ensemble average over all
particles. A modified Lindemann criterion of melting [142] will be introduced in Chap-
ter 6.3. It predicts the point of the phase transition using a comparably simple criterion
based on the oscillation of particles about their equilibrium positions. The last Chapter 6.4
is concerned with another approach to the mechanism of melting and recrystallization on
the kinetic level as it was brought forward by J. Frenkel [40].

6.1 Second Order Phase Transition: KTHNY

6.1.1 Topological Long Range Order

Kosterlitz and Thouless [138, 4] developed a theory in which the behavior of defects de-
termines the nature of the phase transition, i.e. a theory of dislocation-mediated melting.
The consequences of this model for the system properties were examined later by Halperin,
Nelson and Young [5, 39, 6].
The main achievement of the KTHNY theory was a new definition of long range order
of a 2D system based on overall system properties, i.e. the concentration and behavior of
dislocations in the system. This is an advantage in cases where the correlation functions, for
example a spin-spin correlation function in a 2D spin system, vanish at a finite temperature
and can not be used as evidence for the existence of long range order.
In a solid in equilibrium free dislocations do not exist, and the system has a topological
long range order. In the liquid state free dislocations which can move along the surface,
destroy the long range order. In contrast to the free dislocations, pairs of dislocations with
opposite Burgers vector can form due to thermal excitation even at low temperatures in
the solid state. They have a finite energy while the energy Esd of a single dislocation in a
2D system increases logarithmically with the system size:

(6.1) Esd =

(
ν∆2(1 + τ)

4π

)
ln

A

A0

∆ is the mean interparticle distance, ν and τ are the 2D rigidity modulus and the Poisson
ratio, A and A0 are the system area and the area of a unit cell, respectively. From Eq.
6.1 the entropy S = kB ln A

∆2 and the free energy can be derived. The critical temperature
Tc1 at which its is likely that dislocation pairs split a free dislocation appears can then be
calculated as the temperature at which the free energy changes sign:

(6.2) kBTc1 = ν∆2(1 + τ)/4π

The existence of free dislocations in a system can be determined by tracing a closed path
of total length L from one lattice site to the next. To each free dislocations enclosed by the
path a Burgers vector can be assigned. The Burgers vector is the vector which is necessary
to close an equivalent path with the same number of steps in each direction in an ideal
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lattice. In the case of more than one dislocations the Burgers vectors are summed up to
close the gap. The number of free dislocations Ndis is proportional to the enclosed area A.
For dislocation pairsNdis is proportional to the path length. Pairs of dislocations contribute
only if the path cuts through the pair. The sum of the Burgers vectors is proportional to√
Ndis (see Eq. 6.3) [138]. This criterion can be to determine the occurrence of topological

long range order.

(6.3) free dislocations
pairs Ndis ∝

{
A
L

, B ∝
{ √

A√
L

Model systems were investigated with regard to the theory including the two-dimensional
crystal which is of interest in the case of the two-dimensional plasma crystal. The in-
terparticle correlation function shows no long-range order in that kind of system. Here
the displacement of particles from their mean lattice sites is used for energy calculation.
The response of the medium with dislocations to stress shows that the energy of isolated
dislocations grows logarithmically with the area of the system while the energy stays finite
for pairs of dislocations. Therefore dislocations are closely bound for low temperatures.

6.1.2 Consequences of the Kosterlitz-Thouless Approach

Halperin and Nelson applied the Kosterlitz-Thouless approach to a two-dimensional trian-
gular lattice and found a second transition temperature Tc2 above the formerly mentioned
Tc1. This makes the melting transition a two-stage process from the solid phase over an
intermediate phase - the so called hexatic phase - to the liquid. The consequences for struc-
tural properties of the system are investigated and predictions for the long range behavior
of the pair and bond correlation functions are made.
The pair correlation function g(r) is a measure of the translational order of a system. It
gives the probability to find a particle at a distance r from another one:

g(r) =
∑

r−δr≤r<r+δr

〈ρ(r)ρ∗(0)〉(6.4)

ρ(r) = exp {iG[r + u(r)]}

where G is the reciprocal lattice vector and u the displacement of a particle form its mean
lattice site.
Similar, the bond correlation function g6(r) for the orientational order can be defined. It
measures the orientation of nearest neighbor bonds separated by the distance r.

g6(r) =
∑

r−δr≤r<r+δr

〈Ψ∗(r)Ψ(0)〉(6.5)

Ψ = exp {iθ(r)}



68 6. Theory of Phase Transitions in 2D Systems

with the angle θ(r) between a nearest neighbor bond and an arbitrary chosen axis.
In the solid phase T < Tc1 all dislocations are bound in pairs. The pair correlation function
g(r) decays with a power law∝ r−η(T ) for large distances r due to fluctuations of the particle
displacements [143]. There is no long range translational order in the system. The bond
correlation function g6(r) tends to a nonzero constant for large r, therefore there is long
range orientational order [144]. This definition of a solid differs from that of a three-
dimensional solid due to the lack of translational order. Still the state is clearly different
from a liquid.
As the temperature reaches Tc1 from below, an upper bound for η(T ) is found which is 1/3
for a triangular lattice. At Tc1 the dislocation pairs start to dissociate, and for T > Tc1
g(r) decays exponentially ∝ e−r/ξ with a correlation length ξ. Orientational order persists
with a slow algebraic decay of g6(r) ∝ r−η6(T ). This transition if often referred to as the
Kosterlitz-Thouless transition.
Halperin and Nelson found a second transition at a temperature Tc2 > Tc1. Here the
dislocations themselves break up into free disclinations and both correlation functions
decay exponentially for T > Tc2 [5, 39]. The following shows a compilation with the most
important results:

solid T < Tc1

{
g(r) ∝ r−η(T )

g6(r)→ const. for large r
T → T−c1 η(T )→ upper bound (1/3 for triangular lattice)

hexatic Tc1 < T < Tc2

{
g(r) ∝ e−r/ξ

g6(r) ∝ r−η6(T ), η6(T ) = 18kBT/(πKA(T ))

T → T+
c1 ξ+(T ) ∝ ∆ exp

{
b

(T/Tc1 − 1)0.36963

}
T = Tc2 η6(Tc2) = 0.25

liquid Tc2 < T

{
g(r) ∝ e−r/ξ

g6(r) ∝ e−r/ξ6 , ξ6(T ) ∝ exp (a/|T − Tc2|0.5)

with b, a constants, ∆ is the lattice constant and KA(T ) is the Franck constant which is
∝ ξ2

+(T )kBT . It goes to infinity shortly above Tc1, and jumps to zero at Tc2. The exponent
0.36963 in the proportionality of ξ has been derived by Young [6] under consideration of
angular and radial interactions between dislocation pairs in a triangular lattice.

6.1.3 Summary of KTHNY

The KTHNY theory describes a defect mediated melting with two transition points for
two-dimensional systems. Starting with a solid phase, the first transition involves the
breaking up of bound dislocation pairs. An intermediate phase appears with no long range
translational order, but still orientational order can be found in the system. This phase is
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referred to as the hexatic phase. At the second transition point at a higher temperature
the dislocations dissociate into free disclinations and the liquid state is reached. Both
transitions are continuous (2nd order) phase transitions. The phases can be characterized
by topological properties solely. Further, the theory makes specific predictions about the
behavior of the translational and orientational correlation functions which can be used to
compare the theory with experimental data.

6.2 First Order Phase Transition

Two other approaches involving a first order transition for two-dimensional systems are
worth mentioning. The density wave theory by Ramakrishnan and Yussouff [8] describes
the freezing of a two-dimensional system as a first order transition without an intermediate
phase. Melting due to the generation of grain boundaries is addressed in the second theory
by Chui [140].

6.2.1 Density-Wave Theory

The density-wave theory [8, 141] is a mean field theory for two-dimensional systems. If a
density wave forms in the system near the melting temperature, the positional correlation
is lost. From the density change the free energy balance between solid and liquid is derived.
This leads to a freezing condition which is independent of interaction forces between the
particles (and therefore of the crystal structure). Only short-range two-body correlations
and geometrical factors enter the calculation [8].
Monte Carlo simulations at a fixed pressure at different temperature [11] showed a discon-
tinuity in the density as well as the occurrence of latent heat. This points to a first order
transition between the solid and liquid phase in contrast to the predictions of the KTHNY
theory. Further no hexatic phase could be found in the simulations.
As Ramakrishnan points out, there is still the possibility that the first order transition
takes place before or after the dislocation transition, but with long relaxation times so
that the system seems to be solid within the observation time.
One problem of the density-wave theory was addressed in [37]: As a mean-field theory it
neglects the fluctuations that destroy the long range positional order and might not be
applicable to predict the nature of a transition.

6.2.2 Grain-boundary Theory

Chui [7, 140] proposes a melting transition that appears due to the spontaneous generation
of grain boundaries at a lower temperature than the one where dislocations unbind (Tc1
in the above KTHNY description). The grain boundaries consist of chains of dislocations,
therefore the number of dislocations has to show a sharp increase at the point of melting.
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A melting scenario due to grain boundaries was already considered earlier in [139] for
small-angle grain boundaries, but it was concluded there to be identical to the KTHNY
mechanism.
In opposition, Chui’s calculations lead to a first order transition, if the grain boundaries are
coupled to a finite change in density or to bound dislocation pairs. The quantity of the core
energy of the dislocations [139] plays an important role: For core energies below 2.84Tc1, he
predicts that the transition goes from weakly first-order to strongly first-order. As in the
density-wave theory, the hexatic phase does not exist as long as there are no bound states
between grain boundaries with opposite Burgers vector. In the case of bound states, the
Burgers vectors of grain boundaries could cancel out, and there would be orientational long
range order, defined by a power-law decay of g6(r). Without bound states, g6(r) decays
exponentially and the hexatic phase can exist, but only for temperatures smaller than Tc1
[140].
According to [37], for dislocation core energies < 2.8Tc1 the distance between dislocations
constituting to a grain boundary become large compared to the distance between grain
boundaries (which opposes the assumptions of Chui), and the predictions of a first-order
transition for core energies below 2.8Tc1 are not reliable.

6.3 Lindemann Criterion of Melting

Lindemann stated [142] that the melting of a three-dimensional crystal appears when
thermal vibrations of the particles around their mean lattice sites get large enough for
neighboring particles to collide. Later [145] this criterion was stated more precisely: When
the root mean amplitude

√
< u2 > of the vibrations reaches ≈ 10 % of the mean interpar-

ticle distance, the solid melts. This criterion is not applicable to two-dimensional systems,
because the fluctuations

√
< u2 >/∆ become infinite as the system size goes to infinity.

An approach to estimate a critical temperature in two-dimensional systems based on Lin-
demanns work was done by Lozovik and Farztdinov [146]. A dimensionless parameter γ
is introduced as the ratio of the mean square difference of particle displacements u from
their mean lattice sites to the squared interparticle distance:

(6.6) γ =
〈(ui − ui+1)2〉

∆2

This leads to a Lindemann-like criterion of melting as γ reaches a critical value γc which
was confirmed to be valid by molecular dynamics simulations by Bedanov et al. [147].
They find a linear γ below the melting temperature, and a sharp growth at the melting
point which coincides with leaps in the parameters describing translational order, while
orientational order persists until a higher temperature. This is consistent with the results
of the KTHNY theory. For Coulomb systems a γc ≈ 0.1 was found [147, 148] for the
melting of a two-dimensional system from the solid to the hexatic phase.



6.4 Kinetic Theory of Melting (Frenkel) 71

6.4 Kinetic Theory of Melting (Frenkel)

In his book ’Kinetic Theory of Liquids’ [40], J. Frenkel describes the process of melting on
the kinetic level.
The crystalline state is defined by a regular lattice with fixed equilibrium positions for each
particle. At any finite temperature, the particles are subject to heat motion, which in turn
causes particle vibrations around the equilibrium positions. If the energy of a particle is
high enough to overcome the potential barrier set by the neighboring particles, it can jump
from its lattice site into an adjacent interstice, leaving a hole in the regular structure. Both
holes and interstices can independently diffuse through the crystal.
The formation of such a lattice defect increases the internal energy of the whole system by
the amount of the activation energy UD the particle needed to jump into the interstitial
position.
Then the free energy of ND defects becomes F = NDUD−TS where the entropy S is given
by the number of possibilities PD to distribute ND defects in a system of N particles with
a regular lattice structure.
Assuming distinguishable particles, the probability is PD = N !/(ND!(N − ND)! and the
entropy is S = kB lnPD. The minimum of F (ND) – corresponding to the thermodynamical
equilibrium – is given by ∂F/∂ND = 0 and leads to the relation:

(6.7) ND = N exp

(
− UD
kBT

)
The total number of defect sites decreases exponentially with the temperature of the par-
ticles (Arrhenius law). A higher activation energy UD will decrease the slope of the decay.
Recently evidence for this behavior has been found [80] in a two-dimensional complex
plasma system observed in different kinetic states. In that experiment, the particles were
heated by two incident laser beams. Depending on the laser power, steady state regimes
of certain particle temperatures could be obtained. The number of defects identified in the
system for each laser power decayed exponentially with the particle temperature.
The transition from the solid to the liquid state is accompanied by a volume increase of
10 % at the transition point, which is small enough so that the arrangement of particles in
the liquid must be similar to the solid, but large enough to allow particles to be displaced
and constitute to a high fluidity. The character of heat motion in the liquid close to
the crystallization point is fundamentally the same, consisting of small vibrations around
equilibrium positions, but the mean time of a particle remaining on such a position is much
shorter as in the solid.
The main difference lies in the degree of order: in the solid state, long range transitional
and orientational order exist, while in the liquid the order is lost in the system due to the
stronger heat motion and fluidity. The effect of the heat is amplified by the increase of
volume which in turn lowers the cohesive forces.
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Frenkel also described the behavior of liquid crystals, which, when heated from the solid
state, first loose their translational long range order, but keep a high degree of orientational
order within larger continuous groups of particles (“swarms”). This intermediate liquid-
crystalline state will melt to the liquid state at further increase of the temperature by
gradually decreasing the orientational order and replacing the large swarms by smaller, so-
called “cybotactic”, groups of particles. An expression for the average number of molecules
in such a group or domain in dependence of the temperature of the system can be derived
by the following considerations.
If the total number of molecules is N , then there are z = N/ND homogenous regions
each containing ND molecules. While the molecules are oriented equal within one region,
the orientation of two domains can be completely different. Each region has a surface
area, resulting in an increase of the internal energy of the system due to the additional
surface energy by E = σV 2/3z1/3 with the surface tension σ and the enclosed volume
V . The distribution of molecules across the domains is described by the probability P =
N !/ [(N/z)!]z ≈ zN which increases the entropy of the system by S = kB lnP = kBN ln z.
Then in equilibrium it follows from ∂F/∂ND = 0 that z =

(
3NkBT
σV 2/3

)
and

(6.8) ND =
N

V

(
σV

3NkBT

)3

In this derivation the behavior of structural order parameters are not discussed specifically,
but it is to be expected that, due to the domain forming, long range orientational order
can not persist.
The theoretical derivation, originally derived for the behavior of molecule crystallites, fits
very well as a model for the behavior of the rapidly cooling two-dimensional complex
plasma and is able to explain the experimental findings presented in the following chapters
more conveniently than other theories.



Chapter 7

Recrystallization of a 2D Plasma
Crystal

A phase transition in a complex plasma can be induced by several mechanisms, e.g. laser
induced heating of the crystal [26, 149, 27, 80], changing of plasma parameters (pressure
change, rf power changes) [24, 25, 150], or electric manipulation [28, 79]. Either a crystalline
system can be melted and thus brought into a liquid or gaseous state, or the other direction,
i.e. the recrystallization of a unordered system can be investigated. In any case, the process
has to be observed at a high temporal resolution to obtain dynamical properties, and a
good spatial resolution to derive the structural properties mentioned in the last chapter in
theoretical models, and to compare them.

Several experiments were performed with the aim to observe the process of recrystallization
and to characterize it by connecting the thermodynamical state with the particle properties
on a kinetic level. Part of this work has been published in [79].

The recrystallization was induced by a short electric pulse which melted a two-dimensional
complex plasma, initially in a highly ordered state. Images of the initial state, the melting
and the following recrystallization were recorded with a high speed digital camera. The
experimental parameters of two experiments which will be presented in detail are given in
Chapter 7.1. That section also covers the technical details of the induced melting.

The thermodynamical state of the system is determined by the particle temperature, which
can be obtained from the analysis of the particle oscillations at their mean lattice sites,
as it was already done in chapter 5. To resolve this motion, a high spatial and temporal
resolution is required. Since the temperature is a quantity of the particle ensemble rather
than of individual particles, a large number of particles have to be available for valid
statistical averaging. In an experiment one has to find a compromise between those two
requirements. In the presented experiments the spatial resolution was chosen rather low
to obtain a large number of particles in the field of view. The measurement uncertainties
and the implications on the particle temperature analysis will be discussed in Chapters 7.2
and 7.3 in detail.
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The global and local structural properties of the system are investigated in Chapters 7.5
and 7.6. Finally a connection between the thermodynamical state of the system and
the structural changes it undergoes during recrystallization is established in Chapters 7.7
and 7.8.1. The last Chapters 7.8.2 to 7.9 contain a theoretical approach to explain the
experimental findings, and the interpretation of the results in the context of the theories.

7.1 Experimental Parameters

Two experiments will be presented in the following, referred to as experiments rI and rII.
The basic setup for the experiments was described in Chap. 3.1. The parameters used
here are very similar to those used in the experiments to measure Γ in chapter 5. The
main differences lie in the larger number of particles in the field of view at the cost of a
lower spatial resolution, and by the manipulation of the particles by an electric pulse. All
experimental parameters and settings are listed in table 7.1.
An argon plasma was ignited with the radio-frequency power set to 10 W forward and 0 W
reflected, with a peak-to-peak voltage measured between driven electrode and ground of
−172 V. The self bias at the lower electrode was measured to be −70 V and the neutral gas
pressure was 1.938 Pa at a flow rate of 4 sccm. Two parallel tungsten wires were mounted
horizontally inside the chamber at a height of 8.2 mm above the lower electrode. The gap
between the wires was 58.7 mm (see Fig. 3.3).
Melamine-formaldehyde (MeF) particles with a diameter of 9.19 ± 0.09 µm were inserted
by shaking the particle dispenser. The particles arranged themselves in a horizontal layer
8 mm above the electrode, approximately 0.2 mm below the level of the wires. The crystal
extended over an estimated area of 69.6 × 38.5 mm2 between the two wires. The system
was checked for its two-dimensionality by moving the illuminating laser and the camera
vertically over the extend of the particle plane and it was verified that above or below the
layer no particles were to be seen in the live stream of the camera.
The illuminating laser was set to a power of 132 mW. The CMOS high speed camera
with a 105 mm lens achieved a spatial resolution of 0.034 mm/px with an image size of
1024×1024 px2 corresponding to a region of 34.8×34.8 mm2. Each set of recorded images
contains 6144 images at a frame rate of 500 fps, yielding a total measurement time of
12.29 s per run.
The function generator attached to the wires was set to generate a pulse every 100 s,
with a carrier frequency of 1 Hz and a 20 % duty cycle. The pulse length is then (duty
cycle)/(carrier frequency) = 0.2 s. For the duration of the pulse, a 5 V peak-to-peak voltage
was applied to a circuit which then opened the connection between the power supply, set
to −253 V, and the wires.
The function generator also triggered the camera to start a record at an adjustable time
before the next pulse, usually 2 s. To avoid repeated melting of the crystal and thus
destabilize it, the power supply was turned down except for the time when a recording was
done.
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A schematic view through the top window of the chamber is shown in Fig. 7.1. The wires
are drawn on the top and bottom with the two-dimensional particle cloud (green area)
located in between. The dashed rectangle indicates the field of view of the camera. The
coordinate system is drawn to the right for later reference of the x, y coordinates used in
the analysis. The dotted horizontal line marks the center between both wires and divides
the field of view in two regions A,B. The blue arrows indicate the particle motion when the
pulse is applied: both wires accelerate the negatively charged particles abruptly towards
the center region, and the crystalline order is completely destroyed. When reaching the
central region, particles from both sides collide and reverse their motion. Due to the strong
damping, the system relaxes to a crystalline state very fast as soon as the pulse ends.
The induced common motion of particles is always opposite in the regions marked A and B
in Fig. 7.1. To subtract this directional motion perpendicular to the center line, particles
in the region A and B are analyzed separately in the initial statistical analysis, i.e. the
velocity distributions. Quantities like the velocity dispersion which are not affected by the
common motion can then be averaged over both regions.

wire

wire

B

A

58.7 mmdirection

y

x

particle cloud

wave

Figure 7.1: Schematic view from the top. The wires used for excitation were mounted
parallel at nearly the same height as the particle layer. The blue arrows indicate the
direction into which the particles are pushed when a negative pulse is applied to both
wires simultaneously. They meet in the center at the dotted line, dividing the field of view
into the regions A and B. The dashed rectangle marks the field of view of the camera. The
coordinate system shows the notation used for the images axis later in the analysis.

During and shortly after the pulse the particles move too fast to be traced from frame to
frame. Further, particles might leave the field of view for a short time after the pulse impact
as the system relaxes towards the wires and particles shoot past their initial positions.
The data presented in later chapters are derived for times after the melting when the
number of particles in the field of view was at least 80 % of the average undisturbed
number of particles, which was measured in the 2 s before the pulse. Also, particles had
to be traced for at least 30 contiguous frames to be taken into account. Fig. 7.2 shows
the number NP of tracked particles vs. time meeting this criterium. In both experiments
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Figure 7.2: Number NP of particles per frame. Only particles which could be traced from
frame to frame in at least 30 contiguous frames were counted. The melting pulse hits at 2 s,
from that on the analysis was discontinued until 3.5 s. (a) Experiment rI, (b) Experiment
rII.

the pulse hits at 2 s in the recording time, characterized by the sharp drop of NP . The
fluctuations at t ≈ 4 s is caused by the rebound of the particles towards the center. Note
that this is not the actual number of particles seen by the eye in the images, but only the
number of particles which could be traced for at least 30 frames. In the later analysis, the
time between 2-3.5 s was omitted.
In experiment rI, the average number of particles used for the data analysis was close
to 1900, while in experiment rII a larger region of the images could be used, including
approximately 2700 particles. The region of the images suitable for analysis is in general
restricted by the weaker illumination along the two edges parallel to the wires (i.e. along
the y-direction close to both wires in Fig. 7.1). The reason seems to be a variation in
the particle levitation heights from the edges parallel to the wires towards the center (in
x-direction), making it difficult to obtain an uniform illumination. This could be caused
by a slightly curved potential due to the permanent weak negative floating potential of the
wires. Depending on the case, the original field of view supplied by the camera was cut
in the analysis to omit badly illuminated particles from the analysis. In experiment rI the
effective area became 623× 823 px2, while in experiment rII is was 773× 1023 px2.
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Discharge settings
rf power forward/reflected 10/0 W

self bias −70 V
peak-to-peak voltage −172 V

gas Ar
flow rate 4 sccm

neutral gas pressure 1.938 Pa
Particles

particles MeF, ∅ 9.19± 0.09 µm
particle mass density 1.51 g/cm3

particle mass 6.14 · 10−13 kg
average interparticle distance 0.6 mm

Epstein drag coefficient 2.28 Hz (δ = 1.26), 2.68 Hz (δ = 1.48)
particle charge −12200± 340 e

screening parameter 0.77± 0.03
height of particles above the electrode 8.0 mm

Recording
recorded frames 6144

frame rate 500 fps
start of recording (before pulse) 2 s

resolution 0.034 mm/px
illumination laser power 132 mW

Pulse settings
height of wires above the electrode 8.2 mm
voltage at the wires during pulse −253 V

pulse duration 0.2 s

Table 7.1: Experimental parameters for the recrystallization experiments rI and rII. The
derivation of the particle charge, screening parameter, the Epstein drag coefficient and the
average interparticle distance will be done in Chapters 7.3 and 7.5.1. The two values for
the Epstein coefficient are calculated for the two different reflection indices δ = 1.26 and
δ = 1.48 from the references [106] and [93].
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7.2 Uncertainties

Particle coordinates and velocities were extracted from the images. An analysis of the
expected uncertainties due to tracking inaccuracies and pixel noise was performed by com-
paring the number of illuminated pixels per particle and the quantity of the pixel-noise
with the results of the error analysis given in the appendix A. The pixel-noise level is esti-
mated from intensity fluctuations of the particle images and is approximately 7 in units of
intensity (the maximum intensity is 255). The average size of the particles lies in the range
6 − 7 pixels per particle, obtained as the mean of a Gaussian fitted to the distribution
of the number of pixels per particle for each experiment. The specific values are listed
in table 7.2 along with the deduced uncertainty in the absolute particle positions. The
uncertainties are also given for a reduced framerate of 500/3 fps obtained by averaging
each three consecutive images. In that case, the pixel-noise level is reduced to 1/

√
3 of the

original noise due to its Gaussian nature: averaging leads to a convolution of the Gaussian
noise of three images, resulting in a Gaussian noise with width

√
3 times the original noise

width, but divided by three due to averaging.

rI rII
500 frames per second

number of pixels/particle 6.655±0.001 7.853±0.001
pixel-noise level 6.9 7.1

error absolute coordinates
δr,abs [px]

0.073 0.075

500/3 frames per second
pixel-noise level 4.0 4.1

error abs. coord.δr,abs [px] 0.070 0.063

Table 7.2: Pixels per particle, pixel-noise level and errors of the absolute coordinates for
experiments rI and rII. Values are given for the original frame rate of 500 fps, and for
a reduced frame rate of 500/3 ≈ 166 fps, obtained by averaging each three consecutive
images.

Note that reducing the frame rate has practically no influence on the quantity of the error
of the absolute coordinates. It gains importance for the magnitude of the uncertainty in
quantities depending on the displacements from frame to frame, e.g. the velocities and
from that the particle temperature. It was already mentioned in earlier chapters that the
error of displacements depends on the value of the displacement itself. Fig. 7.3 illustrates
this dependency for the particle sizes and noise levels of interest here. Fig. 7.3a shows the
situation for a frame rate of 500 fps, Fig. 7.3b for the reduced 500/3 fps.
The intersection of the error curve with the black bisecting line at ≈ 0.05 px (500 fps)
and 0.03 px (500/3 fps) gives the lower limit to any measureable distance (blue dashed
line). Translated to temperatures measured from velocity distributions, the full framerate
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Figure 7.3: Displacement error vs. real particle displacement as measured for artificially
generated particles. The artificial particles were created as cummulations of pixels with a
Gaussian intensity profile. They were given a temperature by adding a random velocity
drawn from a Gaussian distribution to the former defined particle positions sucessive for
several time steps. Pixel noise was added to these artificial images, and the deviation of
the tracking and tracing results from the real, known values was calculated. The black
solid line is the bisecting line (error=displacement), the colored curves are the errors for
special cases of pixels/particle and noise-levels (see legend). The vertical dashed red line
marks the expected displacment of particles at room temperature, the dashed blue line is
the intersection from which on the error becomes smaller than the real displacement. (a)
Pixel-noise 7 for 500 fps (b) Pixel-noise 4 for 500/3 fps.

of 500 fps is restricted to T > 2.5 eV while for 500/3 ≈ 166 fps the limit is at 0.1 eV.
Room temperature 0.025 eV could not be measured until lowering the frame rate down to
≈ 70 fps.
The reduced frame rate of 166 fps is preverable, since it still provides a high temporal
resolution, but lowers the errors to a tolerable value, therefore from now on, the notation
one frame will refer to the overlay of three original frames. The next chapter will jusitfy
this procedure with regard to some physical aspects.
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7.3 Time Scales

The finite particle temperature causes the particles to oscillate with the Einstein frequency
ΩE about their equilibrium lattice sites located within their nearest neighbor cage. Accord-
ing to the Nyquist-Shannon sampling theorem, the sampling rate (in this case the frame
rate of the camera) must be larger than two times the lowest frequency to be measured:

frame rate > 2ΩE

To estimate the Einstein frequency, the relation between the dispersion of the displacements
from the mean lattice site, σr, and ΩE could be used: ΩE =

√
kBT/(mσ2

r). But during
recrystallization the particle system in the experiments rI and rII is dominated by non-
stationary processes, which makes it difficult to determine a mean lattice site and σr.
Further it is questionable if the real particle temperature kBT can be estimated due to the
restrictions imposed by the low spatial resolution and the resulting uncertainties, as was
shown in the former Chap. 7.2.
If the particle charge and the screening parameter κ are known, ΩE can be estimated using
Eq. 5.11 as ΩE = Ω0f(κ) with f(κ) = (a + bκ2)−1 calculated from the polynomial fit to
the curve in Fig. 5.12.
The last 546 frames of experiments rI and rII, and of two additional experiments where
used for a wave spectra analysis to obtain the particle charge Q and κ. All experiments
where performed at the same discharge and pressure settings. First, for each set of images
the spectrum analysis was performed separately. The individual spectra matrices were
then added up to achieve a combined spectrum with a higher resolution. The fitting of
the transversal and longitudinal sound velocities as described in Chap. 4.1 gives a particle
charge Q = 12200 ± 340 e and κ = 0.77 ± 0.03. With the average interparticle distance
∆ = 0.6 mm derived later (Chap. 7.5.1), this yields:

f(κ) = 2.25± 0.01
Ω0 = 16.1± 0.4 s−1 ⇒ ΩE = 36± 1.0 s−1

The minimum sampling rate allowed is therefore 2 ·36/(2π) ≈ 11 Hz, meaning a maximum
time step of dt = 0.09 s.
Depending on the planned analysis, dt is further restricted:
Assuming room temperature of 0.025 eV and purely thermal motion, the width of the
velocity distribution would be σv =

√
kBT/m = 0.081 mm/s with the particle mass

6.14 · 10−13 kg. The width of the displacement distribution would then be σr = σv/ΩE =
0.0028 mm. Again assuming a particle oscillates from −σr to +σr with respect to the
mean lattice site, and one wanted to reduce the frame rate as much as to just measure
that distance 〈∆x〉 = 0.0028 mm, it applies for dt = 〈∆x〉/

√
kBT/m = 0.033 s matching

a frame rate of ≈ 30 Hz. At frame rates smaller than that, the particle will already be on
its way back in the oscillation path. To measure more than just one point of each period,
the frame rate should be considerably higher that 30 fps. Note that according to the last
chapter, only temperatures T > 0.1 eV can be measured.
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Another time scale of interest for the particle dynamics is defined by the Epstein damping
coefficient – the damping rate of particle motion due to the collisions of the particle with
neutral gas atoms. It was calculated from known gas parameters and the particle size and
mass [36, 106] using Eq. 4.13. For Argon gas at room temperature at a pressure of 1.94 Pa
and particles with a radius of 4.595 µm and a mass of 6.14 · 10−13 kg, the damping rate
is νEp = 2.28 Hz for the reflection index δ = 1.26 measured in [106], or νEp = 2.68 Hz for
δ = 1.48 from [93]. This defines a time scale of 0.44 s or 0.37 s, respectively.
The requirement on the time step dt between two frames is (with the smaller value from
the damping rate)

(7.1) dt <

(
〈∆x〉√
kBT/m

= 0.033 s

)
<

(
π

ΩE

= 0.09 s
)
<

(
1

νEp
= 0.37 s

)

With the frame rate of 166 fps chosen in the last chapter to reduce the measurement
uncertainties, dt = 0.006 and the above condition is met more than sufficiently.
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7.4 Particle Kinetic Energy

A consequence of the measurement uncertainties described in Chap. 7.2 is the impossibility
to resolve real particle temperatures below a certain level in the presented experimental
data. It is safe to assume that the measured velocities represent the kinetic energy of the
particles which might be composed not only of the heat motion, but also of motion caused
by other forces. To which extent the kinetic energy differs from the real temperature is
unknown, but since collective particle motions will be subtracted from the velocities, the
behavior of the mean kinetic energy should reflect the thermodynamical state of the system
well enough.

The histograms of particle velocities used in the following were Gaussian distributed, as it
was found in other experiments (e.g. [120, 26]), and the bin sizes were chosen to be larger
than the measurement uncertainty to even out statistical fluctuations. For each frame
the mean particle kinetic energies Ex, Ey were obtained by using the standard deviations
of Maxwellian fits to the velocity histograms of vx and vy. By analyzing the regions A
and B, labeled in Fig. 7.1, separately, for each frame a set of four distribution functions
p(vx)A, p(vy)A, p(vx)B and p(vy)B is obtained. Examples of those functions are shown in
Fig. 7.4 together with the corresponding fit. The position of the mean of the distributions
differs especially for the x-directions in regions A and B due to the opposite sign of the
collective particle motion. Without splitting the field of view, the distributions would
become non-Maxwellian with two peaks and lead to wrong fitting results.
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Figure 7.4: Examples of velocity distributions for the regions A (blue diamonds) and B
(red crosses) indicated in Fig. 7.1. The error bars are derived from Poisson weighting as√
p(v). Solid lines are Maxwellian fits. (a) p(vx); (b) p(vy).

The quality of the Maxwellian fit is given by its reduced χ2, which was on average 1.3 for
experiment rI and 1.5 − 2.2 for experiment rII. The kinetic energies in x- and y-direction
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are given by the average of the value for both regions A and B:

kBEx = 0.5(σ2
vx,A + σ2

vx,B)m(7.2)
kBEy = 0.5(σ2

vy,A + σ2
vy,B)m(7.3)

Ex and Ey are plotted in Fig. 7.5a,b for the experiments rI and rII. They show the same
characteristics during the recrystallization process. The kinetic energy returns to the con-
stant value of ≈ 0.1 eV also found in the initial state at 0−2 s. The limit to the measurable
energy given by the error is indicated by the solid black line in Fig. 7.5. It is clear, that
the constant energies of 0.1 eV are of the magnitude of the measurement error between
0 − 2 s and from approximately 8 s (rI) respectively 10 s (rII) on. Here it is not possible
to separate the real σv from the noise distribution. However, the data of interest lie in
the region in between, where the recrystallization takes place. The errors δEx, δEy are
taken from the 1-σ uncertainty of the fit parameter distribution width calculated by the fit
procedure. The magnitude of those errors depends on the goodness of the fit. To avoid an
overloaded plot, only one representative error bar is shown in Fig. 7.5. The relative errors
δEx,y/Ex,y were constant at ≈ 3.8 % in rI and ≈ 3.3 % in rII.

0 2 4 6 8 10 12
time [s]

0.1

1.0

10.0

E
x,

y 
[e

V
]

a

typical size
of error bar

Ex
Ey
0.1 eV 
(error limit)

0 2 4 6 8 10 12
time [s]

0.1

1.0

10.0

E
x,

y 
[e

V
]

typical size
of error bar

b
Ex
Ey
0.1 eV 
(error limit)

Figure 7.5: Kinetic particle energies Ex (red) and Ey (blue) vs. time for experiments rI
(a) and rII (b). The gap between 2 − 4 s corresponds to the time where particles could
not be traces sufficiently. The relative errors δEx/Ex and δEy/Ey are ≈ 3.8 % in (a) and
≈ 3.3 % in (b) (with δEx, δEy are the 1-σ uncertainties from the fit). The dashed black
line marks 0.1 eV – the limit of the resolvable particle motion, imposed by pixel-noise and
tracking uncertainties. Data points close to or below this line are omitted from further
interpretation.

The energies in x- and y-direction are averaged for each frame at a time t to obtain the
kinetic energy E(t) = [Ex(t) +Ey(t)]/2. The behaviour of E(t) represents the exponential
decay of its components, and fits E(t) = ce−νt + 〈E〉 were performed with a constant c,
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the slope ν and a ground value 〈E〉 which, in the ideal case, would be the ground energy
of the particle system at room temperature. Here, it will reflect the limit imposed by the
uncertainties.

Experiment rI Fig. 7.6a shows E(t)−〈E〉, 〈E〉 = 0.1 eV, for the part of the time series
during recrystallisation which was above the limit of the measurement uncertainties. The
curve decays exponentially in the beginning with E(t) − 〈E〉 ∝ e−2.59t. The solid red line
shows the exponential fit. The dashed black line at 0.1 eV is the quantity substracted from
E(t). Below that line, E(t) becomes smaller than two times the measurable limit. Here
the decay rate drops slightly before the constant level is reached at 8 s (end of the x-axis in
this figure). The slower decay and spreading of points is presumably due to the influence
of the large relative error δE > 50 % in E(t) close to 0.1 eV.

Experiment rII E(t)−〈E〉 is shown in Fig. 7.6b with an exponential decay E(t)−〈E〉 ∝
e−2.50t (solid red line). For an interval of ≈ 2 s the decay decreases further to E(t)−〈E〉 ∝
e−1.25t (solid blue line). Then follows the same phenomenon as in rI for E(t) < 0.2 eV
(0.2 eV corresponds to all values below the dashed black line, E(t) − 〈E〉 < 0.1 eV) with
values spreading broader and decaying slower until the constant level is reached at 10 s.
The reason for the slower decay above 0.2 eV (“blue” regime) in experiment rII is due to
regions with higher particle mobility. This can be seen in the overlay of all trajectories
of the time interval 5.1 − 9 s in Fig. 7.7. Regions of higher mobility are recognizable as
the darker parts in the images, where the trajectories are longer because particles move
faster. Two of these regions are marked in Fig. 7.7b (experiment rII) by red circles. This
leads to broader velocity distributions and thus the seemingly slower decay of E(t)− 〈E〉
as an artefact of the local phenomenon of “hot spots”. In comparison, in experiment rI in
Fig. 7.7a, the particle motion is more uniform without localized disturbances.
To identify the “hot spots” as the reason for the slower decay, the kinetic energy was
calculated separately for the regions A and B, corresponding to the right (A) and left (B)
half of the image in Fig. 7.7b. The result is shown in Fig. 7.6c: E(t)− 〈E〉 from region A
(black dots) – the “undisturbed” part – follows the initial exponetial decay (red line). The
kinetic energy from region B (yellow dots) – containing the marked “hot spots” – is clearly
higher and decays slower. The blue line is the same exponetial decay as in Fig. 7.6b, and
represents well the average between both.

Conclusion The exponent of the initial decay for both experiments is close to the Epstein
drag coefficient νEp = 2.69 Hz from the last section. If the smaller νEp = 2.28 Hz, calculated
with the smaller reflection index, is considered, the system would cool down even faster that
just due to the friction, but the reflection index in this case was subject to a relatively large
error of 0.13 [106]. The coefficient δ = 1.442 originally calculated by Epstein [105] would
lead to νEp = 2.61 Hz, still larger than the decay rate of the kinetic energy. Considering
the uncertainties in δ, it can be well enough concluded that the system initially cools down
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basically due to Epstein damping, i.e. the damping of the particle motion by friction with
neutral gas atoms.
In rII, though, after≈ 2 s from the beginning of the plot in Fig. 7.6, a process heats particles
locally. This decreases the cooling rate even below the Epstein coefficient. The source of
increased heat motion was identified as “hot spots” with increased particle mobility in one
half of the field of view. The reason for the appearance of this phenomenon is unknown.
Since it does not appear in both experiments, it could be a random, local instability arising
while particles try to rearrange themselves into the lattice structure. Close to the limit of
0.1 eV, under the influence of the large relative error δE > 50 %, the energies deviate from
the exponential decay and disperse.
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Figure 7.6: Mean kinetic energy of the particles vs. time calculated as the average of the
energies in x and y direction. A ground value 〈E〉, marked by the dashed line, of 0.1 eV
has been substracted. The colored lines represent exponential fits to the curves (see inset
for details). The error bars (green) are representative for all values. (a) Experiment rI,
(b) Experiment rII, (c) Experiment rII, with the kinetic energies separatly shown for the
regions A (black dots) and B (yellow dots) of Fig. 7.7.
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Figure 7.7: Particle trajectories during the time interval [5.1, 9] s after melting. (a) Ex-
periment rI, (b) Experiment rII, red circles mark examples for regions with higher particle
mobility. The left half of the images corresponds to region B, the right half to region A
marked in Fig. 7.1.
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7.5 Global Structural Properties

The pair correlation function g(r) and the bond correlation function g6(r) are calculated
and analyzed to investigate the global system properties with respect to the degree of long
range order of the distribution of particles (the translational order) and of the mutual
orientation of nearest neighbor bonds (the orientational order). The definitions and inter-
pretations of both functions were described in detail in 4.2.2 and 4.2.3 which also gave all
nessecary technical information on the calculations and fitting routines.
Of special interest is of course the change of the order during the recrystallization process.
Therefore, the quantities derived in the following chapter will be primarily presented in de-
pendence on the progressing time. Later the structural order parameters will be connected
with the thermodynamical state of the particles - the kinetic energy.

7.5.1 Translational Order

The pair correlation function g(r) was calculated for each frame up to a distance r ≈
17∆. Examples for different stages during the recrystallization are shown in Fig. 7.8 for
experiments rI (left column) and rII (right column) at levels of equal kinetic energy. g(r)
was then fitted by the function given in Eq. 4.7 with a variable peak width, as suggested
by Beresinskii [126]. The fit is shown as the solid red line in Fig. 7.8. Though this model
was originally derived for crystalline states with low particle temperatures, it was in good
agreement for high particle kinetic energies up to approximately 10 eV.
The exponential fit with fixed peak width from Eq. 4.6 worked too, but the goodness-of-fit
test produces a larger χ2

Exp ≈ 1.04..2.26χ2
Ber for experiment rI and χ2

Exp ≈ 1.00..2.25χ2
Ber

for rII for the purely exponential fit in comparison with the Beresinkii function. The ratio
of χ2

exp/χ
2
Ber close to 1 appears at the highest particle energies only. Therefore, the results

of the Beresinkii fit were taken.
In experiment rI, the reduced χ2

Ber,ν of the Beresinskii fit was high with 70 − 90 before
melting, and rising up to 60 during recrystallization, with high values in more ordered
states. For rII, the value was even higher with nearly 100 in the beginning, but settled at
around 25 towards the end of the measurement.
The estimated parameters interparticle distance ∆, initial peak width σ0 and the transla-
tional correlation length ξ are shown in Fig. 7.9 for experiments rI (a-c) and rII (e-f). The
fourth fit parameter, connected to the particle density, contains no additional information
since it is proportional to ∆2, but the fitting procedure was more stable when it was allowed
to fit this parameter, too.
The fitting routine provides the 1-σ uncertainty in the estimates for each fit parameter.
Since the basis for the calculation of the 1-σ uncertainty is the statistical error of each
point of g(r), and this error was very small due to the large number of points contributing
to the calculation of g(r) as it was already addressed in Chap. 4.2.2, the error bars become
very small. Sample error bars representing 1-σ in the plots in Fig. 7.9 give an impression



7.5 Global Structural Properties 89

on the quantity of the error. Note that this error bars describe the goodness of the fit,
not the measurement errors of physical quantities and that the 4-parameter fit of a rather
complex function to g(r) is always at a risk of misinterpretations due to local minima of
the parameter set which might make the fit result ambiguous.

Experiment rI The interparticle distance ∆, initialy at 0.592 mm, fluctuates due to the
influence of the compressing disturbance of the electric pulse during an interval of ≈ 2 s.
It relaxes to a value of 0.594 mm towards the end of the measurement. The peak width
σ0 decays quickly during recrystallization until 0.032 mm close to σ0 = 0.030 mm in the
beginning. The correlation length ξ starts at ≈ 9.5∆ and exhibits a strong increase up to
14∆ short before the pulse was applied. During recrystallization, it increases from close to
zero within 4 s to an average of 10∆ with some fluctuations. The reason the the increase
before melting is not clear. From visual inspection of the movies of that time frame it
looks like some defects move towards the image edge, and therefore the translational order
might spread over a longer range than before. Defects usually influence g(r) by broadening
and decreasing the peaks; then the envelope decreases faster.

Experiment rII In contradiction to experiment rI, here ∆ settles at a larger value of
≈ 0.595 mm after melting compared to the initial ∆ < 0.590 mm. This indicates a shift
in the particle density towards a lower value after the recrystallization. A possible reason
is a decrease of the system due to the loss of particles during melting, therefore leaving
some space for expansion. The peak width σ0 returns to the initial 0.033 − 0.034 mm. ξ
is in general smaller than in experiment rI: ξ ≈ 8∆ in the initial phase, and it increases to
≈ 9∆ during the recrystallization. There is no sudden increase of ξ before melting as in rI.
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Figure 7.8: Examples of g(r) during recrystallization. Solid red lines are fits with the
Beresinkii-function. Left column (a-f): Experiment rI; right column (g-l): Experiment rII
at equal values of the kinetic energy E as rI.
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Figure 7.9: Fit parameters interparticle distance ∆, peak width σ0 and correlation length ξ
of the pair correlation function g(r) for experiments rI (a-c) and rII (d-f). ξ is normalized by
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Figure 7.10: Width of the displacement distribution σ2
r = σ2

0/2 vs. particle kinetic energy
E for experiments rI (a) and rII (b). The solid lines are linear fits with slopes given in
the legend. The steeper slopes (blue) are fitted for energies / 1 eV. Selected error bars
for larger σ2

r and E are shown. For values < 1 eV, error bars are of the size of the plot
symbols. In general, the relative errors of E are of the magnitude 2 − 3 % and constant.
The relative errors of σ2

r lie in the interval {0.5, 1.6} % for rI and rII.

Peak Width In crystalline states, the peak width σ0/
√

2 = σr is a measure of the
dispersion of particles at their mean lattice sites, caused by the finite particle temper-
ature, and it is connected to the particle temperature and the Einstein frequency by
σr =

√
(kBT )/m/ΩE (Eq. 4.8). In states of high particle temperatures, the mean lat-

tices sites are not clearly defined, if they exist at all. Then σr is more likely related to
the temperature – or kinetic energy E – by a time scale 1/Ω defined by the underlying
dynamic processes, and σr =

√
E/m/Ω.

σ2
0/2 is plotted versus E in Fig. 7.10. A linear decay σ2

r = σ2
0/2 = σ2

off +K · E was fitted
(solid lines in Fig. 7.10) with

Experiment rI

σ2
off = 8.40 · 10−4mm2

K = 2.18 · 10−4mm2/eV

}
1.4 < E < 17eV⇒ Ω = 34.6s−1

σ2
off = 5.39 · 10−4mm2

K = 4.99 · 10−4mm2/eV

}
E < 1.4eV⇒ Ω = 22.9s−1

Experiment rII

σ2
off = 9.21 · 10−4mm2

K = 2.35 · 10−4mm2/eV

}
0.9 < E < 13eV⇒ Ω = 33.3s−1

σ2
off = 5.09 · 10−4mm2

K = 6.24 · 10−4mm2/eV

}
E < 0.9eV⇒ Ω = 20.5s−1
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Remarkable is the change of the slope to a steeper decay at lower energies, and the non-zero
offset of σ2

r .
The offset of σ2

r at E = 0 is presumably due to the non-ideal lattice structure caused by
defects. In an ideal hexagonal crystal at zero temperature, there would be no variation of
interparticle spacings, and σoff = 0 there.
The change of the slope with the particle energy suggests that the typical time scale
changes, since K = 1/(mΩ2), and the particle mass m is constant. Ω is given in the table
above. In the first regime, Ω ≈ 33 − 35 s−1, while in the regime with steeper decay, the
frequency is 20− 23 s−1.
Examining other quantities at the time at which the slope changes abruptly, one finds that
for both experiments it coincides with a fluctuation of the mean interparticle distance ∆,
marked by the vertical red lines in Figs. 7.9a,d. Apparently the particle system is expanding
at the times to the left of the red line where the interparticle distance is increasing. This
means an increase of the area of the unit cells of particles, causing a decreasing interparticle
confinement and therefore an increase in the area particles can visit within their unit cell
with respect to their nearest neighbors. Since σ0 is a measure for that area, it decays slower
as long as the system is expanding. This feature does not appear in the kinetic energies
defined by the width of the velocity distributions, because the mean motion caused by the
pulse only influenced the position of the mean of the distribution, not its width.
It is interesting, that σ0 does not decay further towards the end of the measurements. If the
particle kinetic energy stays at 0.1 eV due to restriction of the measurement uncertainties,
other quantities depending on E, which are not affected by the same measurement uncer-
tainties, should decrease until they reach the equivalent of room temperature, since that is
the assumed temperature of particles in a complex plasma. The minimum of σ0 measured
from g(r) is approximately 2 times higher than the uncertainty, but g(r) is calculated by
counting particle numbers in bins, and the choice of the bin size of g(r) of 2 pixels restricts
the resolution to of σ0 to ≈ 0.034 px.
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7.5.2 Orientational Order

The bond correlation function g6(r) measures the average orientation of nearest neighbor
bonds separated by the distance r in the crystal (see Chap. 4.2.3). g6(r) was obtained for
each frame up to r ≈ 17∆, and power-law ∝ r−η6 , exponential ∝ e−r/ξ6 and linear ∝ c6r
decays were fitted to g(r) for r ≥ 3∆. For smaller r the model of the long range order
does not apply. Some examples for g6(r) are shown in Figs. 7.11a-f for experiment rI, and
Figs. 7.11g-l for rII, taken at the same times as the examples of the pair correlation function
in the previous chapter. The three fits are plotted as blue (power law), red (exponential)
and black (linear) solid lines.
The fits yield the parameters η6, the bond correlation length ξ6 and the linear slope c6,
respectively, as they were defined in Chap. 4.2.3. The fit parameters are displayed in
Figs. 7.12b-d and Figs. 7.12f-h. To find the best model for the data, all fits are compared
by means of their reduced χ2

ν in Figs. 7.12a,e.
The origin of the linear decay, which is not accounted for in the theory, is presumably due
to domain forming. This possible explanation was given in Chap. 4.2.3 and is worked out
in more detail in the Appendix B. The domain forming was also observed in the presented
experiments, as will be shown in a later section.

Experiment rI In the initial state the exponential decay has the lowest χ2
ν , but with

a the correlation length ξ6 ≈ 47 . . . 55∆, which is much larger than the distance of 17∆
up to which g6(r) has been measured. As is can be seen Fig. 7.11a, the exponential fit
(red line) is practically a linear decay. The power law and linear fits seem to be equally
good, with η6 ≈ 0.15 meeting the requirements of the KTHNY theory (η6 < 0.25). After
melting, between 3.5-4.5 s, g6(r) falls to zero within less than 2-3 interparticle distances,
as shown in Fig. 7.11b. The application of any long range order model valid for r > 3∆
is not appropriate in this regime, and one can safely assume that there is no long range
orientational order. From 4.5 . . . 5 s (Fig. 7.11c) on, the power law decay has the smallest
χ2
ν , but η6 > 1. The exponential decay with ξ6 rising from 1.9∆ at 4.5 s to ≈ 6∆ at 10 s

also seems to be a good model here (Figs. 7.11d,e). It is replaced by the linear decay after
10 s (Fig. 7.11f).

Experiment rII The initial state differs remarkably from experiment rI, in that η6 ≈
0.32 > 0.25 and ξ6 ≈ 20∆ which is of the magnitude of the measured distance. From
Fig. 7.11g it is clear that the power law decay does not fit as well as in rI.
The following development of g6(r) is comparable to rI, with a disordered phase between
3.5-4.5 s (Fig. 7.11h). The exponential decay fits well from ≈ 4.5 . . . 12 s with 1.9∆ < ξ6 <
6.5∆ as can be seen in Figs. 7.11i-l. Though the linear decay has the lowest χ2

ν for times
after 11 s, the line seems not to fit as well as it does at the end of experiment rI.
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Figure 7.11: Examples of g6(r) during recrystallization. Solid lines are power law (blue),
exponential (red) and linear (black) fits. Left column (a-f): Experiment rI; right column
(g-l): Experiment rII at equal values of the kinetic energy E as rI.
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Figure 7.12: χ2
ν and the fit parameters η6, ξ6 and c6 of the bond correlation function g6(r) for

experiments rI (a-d) and rII (e-h). The smallest χ2
ν indicates the best model for the data. ξ6 is

normalized by the interparticle distance ∆. The typical size of the (1-σ) uncertainty of the fitted
parameters is shown as an example error bar in each plot.
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7.5.3 Conclusion - Global Order

The long range translational order is high in the initial state, and g(r) has pronounced
peaks for large r, as can be seen in Fig. 7.8a,g. This state is also reached again at the end
of the time series. The correlation length is high with ξ > 8∆ in the ordered states at the
beginning and end. Short after melting long range order is lost and ξ ≈ 2∆, but it rises fast
towards the initial value. The model which was fitted to g(r) did include an exponential
decaying envelope, but also an algebraic decay in the factor

√
ln(r/r0) (Eq. 4.7). The

exponential decay seems to be prominent, and no purely power law decays could be fitted
to g(r). According to the KTHNY theory, this indicates a liquid or hexatic state, but this
interpretation contradicts with the shape of g(r). Since the fit model is modified, a direct
comparison to the theory might be difficult.

Further the split of the second peak can be taken as an indicator of a crystalline state.
It clearly appears in the initial state, and short after melting the second peak was found
to split at approximately 1 eV (between Figs. 7.8c,d (rI) and Figs. 7.8i,j (rII)). Another
interesting feature is the change of the linear slope of σ2

0 in dependence of the particle
kinetic energy E at 1.4 eV (rI) and 0.9 eV (rII), which can most likely be attributed to
the remaining disturbance of the system by the propagation of the shock induced by the
electric pulse.

The orientational correlation function is neither constant nor does it show a pronounced
power law decay. The power law can be fitted short after melting in a time window of about
1 s, but with a very high exponent > 1.5, which contradicts the predictions of η6 < 0.25 in
the hexatic phase in which a power law decay appears according to KTHNY. After that
short phase, exponential decays are found with a correlation length ξ6 increasing up to
< 7∆, which is smaller than the translational correlation length. Towards the end of the
measurement, linear decays are found, as in the initial state. It is worth to note that the
grain boundary theory of melting suggested an exponential decay of g6 in the case that no
bound states exist between grain boundaries, and a power law decay if there are bound
states, because then the net Burgers vector would be zero, and long range order could
persist [7]. The linear decay was explained as a possible effect of domain forming (see also
Appendix B). Then the regime of linear decay could be seen as high ordered states with
respect to the orientational order on a small length scale, but not on long ranges. Those
states are reached 8-9 s after melting, which is more than 2 s after the translational long
range order was restored.

In conclusion, the system initially is in a state with long range translational order, and
some intermediate range orientational order, which are both destroyed by the melting
process. During the recrystallization, long range translational order is restored fast within
approximately 5 s after melting, while the long range orientational order is not restored
to its initial state until 3 s later, defined by the moment of occurring linear decay of
g6(r). Still, from Figs. 7.11f,l one can see that g6(r) decays much faster at the end of the
measurement than in the initial state. The apparent absence of long range orientational
order with respect to common theories will be investigated qualitatively from the point of
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view of a localized order analysis in the next chapter 7.6.3. In any case, the behavior of
the cooling complex plasma seem to deviate from the predictions of the KTHNY theory,
at least from the point of view of the correlation function analysis: The translational order
should have been restored at lower temperatures than the orientational order, which is
clearly not the case. Also the occurrence of an intermediate hexatic phase is questionable,
since the expected power-law decay with η < 0.25 of the orientational correlation function
does not appear.
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7.6 Local Structural Properties

As a measure for the degree of short range order the bond order parameter and the aver-
age defect fractions are calculated. Those quantities are defined locally and measure the
goodness of the structure of the lattice directly at the respective particle positions. The
defects are further evaluated as to their distribution and arrangement across the lattice
structure.

7.6.1 Bond Order Parameter

The average bond order parameter Ψ6 shown in Fig. 7.13 was obtained by calculating Ψ6,k

from Eq. 4.10 for each unit cell - or particle - k and then averaging its modulus over all
cells in one frame. Ψ6 is a measure for the local order in the system: The closer it is to one,
the closer the cells are to an ideal hexagon in average. Lattice sites with nearest neighbor
bond angles deviating from 60◦ will decrease Ψ6. The same accounts for lattice sites with
a number of nearest neighbors other than six.
Experiment rI has a better local order with Ψ6 = 0.89 before and 0.87 after melting, while
in experiment rII it was 0.83 and 0.84, respectively. The minimum was Ψ6 ≈ 0.34 in both
cases. This minimum value seem not to be coincidental, but was also found in another,
completely unrelated experiment [151].
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Figure 7.13: Bond order parameter Ψ6.

The use of the bond order parameter as an averaged value gives a first impression on the
degree of short range order in the particle system, but not on its distribution across the
ensemble. After examining the defects in the next section, a more qualitative analysis will
illustrate the spatial distribution of short range order.
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7.6.2 Defect Fractions

Any lattice site with a number of neighbors deviating from 6 is a defect lattice site, or
disclination. Most common defects in a two dimensional hexagonal lattice are 5-fold and
7-fold lattice sites. Are two defects located next to each other in such a way that a non-zero
Burgers vector emerges, this pair forms a dislocation.
The number of nearest neighbors of each particle is obtained by performing Delauney
triangulations for each frame, yielding the fraction Nk/N of Nk disclinations with k nearest
neighbors. N is the total number of particles in a frame.
Nk/N is shown in Fig. 7.14a, b for experiments rI and rII, for k = 4, 5, 7, 8. The fractions
for k = 4, 8 are interesting in the short time directly after melting only, while 5− and
7−folds prevail at most times.

Experiment rI In the initial state, the defect fractions are very low, with 1.8% 5-fold
and 1.5% 7-fold lattice sites. Shortly after melting, the fraction of pentagons decreases
linear and very fast from 26% at t = 3.5 to 8% at 5 s, that of heptagons from 21% down
to 7%. The decay rate then slows down and saturations are reached in the last seconds of
the measurement with N5/N = 3% and N7/N = 2.8%.
The fractions of particles with 4 or 8 nearest neighbors is lower than 0.03% in the beginning
and drop simultaneously to less than 0.06% after t = 4 s from their maxima of 2.7% and
4% at t = 3.5 s.

Experiment rII The development of the defect fractions with time are practically the
same as in rI. 5-fold lattice sites start at 3%, and then drop from 26% at t = 3.44 s to 6.8%
at t = 5.5 s, while the 7-folds go from 21% to 6.3% in the same time interval. The final
values are 4% and 3.5%, respectively.
For k = 4, 8, the initial values are higher with N4,8/N ≈ 0.1%, as are the final fractions
with N4/N = 0.04% and N8/N = 0.18%.

Defect Condensation Parameter The defect fraction itself gives no insight in the
arrangement of defects within the system. For this purpose the defect condensation pa-
rameter S, introduced in [25], is calculated. S is the average number of nearest neighbors
of a defect lattice site that are defects themselves. In case of isolated disclinations, the
defect condensation parameter would become zero, while it would be one if all defects
would be organized in dislocations with exactly one defect neighbor. In case of defect
string formation, most defects would have two defect neighbors, and S would become two.
Higher numbers are then reached for larger defect clusters, i.e. more than two neighbors
of a defect are defects, too. One has to be careful, though, because S is not unique. Equal
contributions of isolated defects (0) and defect strings (2) might result in an average S = 1.
Fig. 7.15a,b show the defect condensation parameter for rI and rII versus time. For clarifi-
cation of the situation, Fig. 7.15c,d show the fraction of defects with a particular number
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Figure 7.14: Defect fractions for experiments (a) rI and (b) rII. The colors green, red, blue
and yellow mark the fraction of particles with the number of nearest neighbors 4,5,7 and
8, respectively.

n of defect neighbors n = 0, 1, 2 and n > 2. In the following, values are given for rI, and
rII in brackets: S stays at 1.5 (1.4) in the initial phase, with 56% (67.5%) from disloca-
tions, 33% (24.1%) from defect chains and 10% (6.7%) from larger defect clusters. Isolated
disclinations play no significant role with less than 1% (1.7%).
In the early recrystallization stage, defects seem to be organized in larger clusters, starting
at an average of approximately 3.5 defect neighbors. S then decreases quickly within less
than 2 s to the initial situation of 1.5 defect neighbors, again with the percental contribu-
tions of dislocations, strings and clusters as in the initial state. Obviously there is no phase
dominated by isolated disclinations. The ground state of the systems consists mainly of
dislocations and defect strings as a significant feature. Defect clusters are important in
the high temperature phases only. There even isolated dislocations are rare, but for large
numbers of defects in disordered states the probability to find more than one defect in the
vicinity of another is also high.
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Figure 7.15: Defect condensation parameter for experiments (a) rI and (b) rII. The value
of ≈ 1.5 before and after recrystallization indicates the forming of defect strings as a
significant feature in the arrangement of disclinations, as can be verified by the fraction of
defects with n defect neighbors, plotted in (c) for rI and (d) for rII. The colored lines are
the fraction of defects with one (red), two (blue), more than two (green) and no (white)
adjacent defect.
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7.6.3 Spatial Distribution of Defects and Local Order

Both, defects and the bond order parameter are in contrast to the correlation functions
locally defined quantities. In their presentation as ensemble averages above it is not possible
to deduce on their distribution across the system. The defect condensation parameter gave
a first impression of the arrangement of defects.
Another, more qualitative representation of the data is presented in Figs. 7.16 and 7.17. It
shows greyscale maps of |Ψ6,k| for selected frames, with brighter shades of grey correspond-
ing to unit cells with higher order. The arrows represent the vector field of Ψ6,k introduced
in 4.2.4. It is a measure for the orientation of unit cells as to the x-axis of the images, map-
ping the angles between nearest neighbor bonds [0, π/6]→ [0, π] and [π/6, π/3]→ [−π, 0].
Arrows pointing in opposite directions therefore mean that the unit cells are rotated by
30% as to each other, which is the maximum of the difference in the orientation. The red
and blue dots mark the locations of 5- and 7-fold defects. The location of bond orientation
jumps indicated by the vector field is clearly correlated with the lines of defect locations.

Experiment rI In the initial crystal (Fig. 7.16a) the cells are close to the ideal hexag-
onal state and mostly identically oriented (practically no abrupt differences of arg(Ψ6,k)
are found). After shock-melting, a disordered liquid-like state forms (Fig. 7.16b). Crystal-
lization proceeds first to a system of small ordered ’crystallites’ with arbitrary orientations
separated by strings of defects. As the system cools down, these crystallites grow and
merge with neighboring regions (Fig. 7.16c-d), causing the bonds to tilt to the (single)
orientation of the growing region. A metastable state is reached which is characterized by
highly ordered adjoined crystalline domains (Fig. 7.16e). Since arg(Ψ6,k) changes abruptly
across the domain boundaries – even to directions with opposite signs for adjoining do-
mains – long range orientational order cannot be found in g6(r) in contrast to the initial
state. Locally, the quality of the hexagonal cells is good within larger regions, and deterio-
rates towards defect locations, where the lattice structure becomes distorted by the defect
lattice sites.

Experiment rII The frames shown for experiment rII are chosen for comparable kinetic
energies of the particles as for rI. The system is less uniform in the beginning compared to
rI (Fig. 7.17a). Unit cell orientations differ between domains, and there are disturbances in
the upper left and lower right image edges. The quality of hexagonal cell is good only in the
central region. Again, strings of defect pairs can be seen between the domains of different
orientation. After melting, a disordered state like in experiment rI appears (Fig. 7.17b),
followed by the rapid cooling phase (Fig. 7.17c-d). Here, the crystallite forming is not so
strong pronounced as in rI, and regions with considerably higher defect fractions appear,
especially in the upper left half of the image. This coincides with the observations of “hot
spots” in the analysis of the kinetic energy. The final state (Fig. 7.17e) consists of domains
with different unit cell orientation separated by defect strings, but with a visibly higher
defect fraction, as it was found earlier (see Fig. 7.14).
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Defect Strings Apparently from Figs. 7.16 and 7.17, defects seem to form strings
consisting of alternating 5- and 7-fold lattice sites. These strings separate domains of high
local order from each other, as illustrated by the high bond order parameter of the single
unit cells. From the defect condensation parameter it is known, that more than 50 % of
defects are organized in dislocations, and not in defect strings. The above figures make it
clear, though, that the dislocations might not be connected with each other directly, but
nonetheless form chain-like structures across a considerable distance. It is not possible to
show here a long time series of above maps, but a movie of the series of maps of each
frames shows that the chains are also stable over a longer time [152].
An attempt to identify the strings of defects by assigning pairs of 5- and 7-folds is shown in
Figs. 7.18 and 7.19 for the same time steps as in Figs. 7.16 and 7.17. The unit cells are as
before colored according to their local bond order parameter. The arrows between 5- and
7-folds indicate a dislocation. The assignation procedure was described in chapter 4.2.1. It
searches all lattice sites adjacent to a defect for another defect successively until no more
defects are found. That ensures that chains and clusters are identified, additionally to
isolated disclinations or dislocations.

Experiment rI Except on the image edges, no isolated disclinations can be found in
the initial state 7.18a. Instead the defects are arranged in either isolated dislocations, or
chains of alternate 5-fold and 7-fold lattice sites. But the free dislocations (lower half of
the image) are not randomly distributed, but form a chain-like structure, separated only
by a few hexagonal cells. Directly after melting in the disordered state, assignation of
defect pairs is more or less random (7.18b-c). A lot of disclinations are not assigned in that
regime. Later more and more dislocations are uniquely identified, and strings of defect
pairs are formed again (7.18d-f). The interruption of defect chains by 6-fold lattice sites
explains the outcome of the defect condensation parameter, which showed that isolated
dislocations dominate the system at most times.

Experiment rII The interpretation is practically the same as in rI, shown in 7.19a-f.
There is a visible higher defect fraction, and a few isolated disclinations can be seen. All
other defects are found in pairs or chains, and chain-like structures with dislocation pairs
alternating with 6-fold lattice sites.
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Figure 7.16: Experiment rI: Development of the local order parameter |Ψ6,k| (grey-shaded
unit cells) and the orientation of unit cells, represented by the argument of Ψ6,k plotted
as arrays, during recrystallization. The red and blue dots mark 5- and 7-fold defect lattice
sites.
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Figure 7.17: Experiment rII: Development of the local order parameter |Ψ6,k| (grey-shaded
unit cells) and the orientation of unit cells, represented by the argument of Ψ6,k plotted
as arrays, during recrystallization. The red and blue dots mark 5- and 7-fold defect lattice
sites.
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Figure 7.18: Experiment rI: Development of defect chains during recrystallization. Arrows
connect one 5-fold (red dot) with an adjacent 7-fold (blue dot) defect. Unit cells of particles
are grey-shaded according to their bond-order parameter.
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Figure 7.19: Experiment rII: Development of defect chains during recrystallization. Arrows
connect one 5-fold (red dot) with an adjacent 7-fold (blue dot) defect. Unit cells of particles
are grey-shaded according to their bond-order parameter.
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7.6.4 Conclusion - Local Order

The local order given by the bond order parameter is high before melting with an average
Ψ6 ∈ [0.8, 0.9]. This state is reached again within ≈ 2.5 s after melting (Chap. 7.6.1).
Also the defect fraction quickly return to low values shortly after the system was melted
(Chap. 7.6.2). Clearly the system initially was in a highly ordered state, where most defects
were organized in dislocations, as indicated by the defect condensation parameter. The
dislocations formed strings or string-like structures interrupted by hexagonal unit cells. The
quality of hexagons was diminished in the vicinity of the dislocations, where the crystal
had to arrange its structure due to the distortion (Chap. 7.6.3). Shortly after melting,
the defect fraction was high and disclinations were randomly distributed. Defects were
mostly in larger clusters. The system was in a high disordered state, but quickly changed
to a regime of domain forming, with domains characterized by a uniform, high bond order
parameter within the domain. Domains were separated by defect strings, and they were
growing as the system cooled down, until a state similar to the initial was obtained, and
few strings of dislocations prevailed. The higher percentage of free dislocations than strings
of dislocations in the defect condensation parameter is caused by the interruption of the
strings by non-defect lattice sites, but the geometrical arrangement could clearly be seen
in Figs. 7.16 and 7.17.

The strings were identified in Chap. 7.6.3, and it would now be possible to calculate a
total Burgers vector, since the vector between the two components of a dislocation is
perpendicular to its Burgers vector. If the total Burgers vector is 0, the system would have
bound states of dislocations, and long range order could exist [39, 7]. The total Burgers
vector has been calculated for experiment rI after assigning the defect pairs. Its length,
normalized by the number of dislocations, is plotted in Fig. 7.20. It is higher in the initial
state with 0.2, then it falls close to 0 after melting. Until the end of the measurement it
fluctuates between 0 and 0.2. It can not be decided from this quantity, if a zero value comes
from bound dislocations or from random extinction of vectors. Since only a section of the
whole particle system is seen in the field of view of the camera, it is impossible to obtain a
meaningful net Burgers vector. Even if the whole system would be analyzed, from the net
Burgers vector alone the existence of bound dislocation pairs, as proposed by the KTHNY
theory, can not be distinguished from bound states of grain boundaries, as mentioned in
the grain boundary theory.

Especially a binding of free dislocations into pairs with opposite Burgers vector, as it is
expected in the KTHNY theory of dislocation mediated melting, could not be observed.
The forming of domains with different lattice orientation, as is was found qualitatively
here, is the reason for the absence of long range orientational order in g6(r) and its linear
decay, confirmed by the results in the Appendix B. Orientational long range order can only
exist within a domain, as soon as a boundary is crossed, the order is destroyed.

A computer simulation was performed with 816 particles and identical conditions as in
the above experiments. The particle cluster was heated to 10 eV and then left alone to
crystallize. It was found that the particle temperature had the same exponential decay as



110 7. Recrystallization of a 2D Plasma Crystal

Figure 7.20: Total Burgers vector normalized by the number of dislocations vs. time for
experiment rI.

found in the experimental data, and the formation of a crystallite, separated from the bulk
by a circular grain boundary, was observed [79].
The observed tendency of dislocations to form grain boundaries was found in another
experiment with two-dimensional plasma crystals at constant external conditions: Pairs of
dislocations where continuously created by applying shear stress to the 2D crystal [153].
The pair then split into two free dislocations, which moved away from the generation area
in opposite directions, and sedimented into parallel grain boundaries.
The impact of the grain boundaries will be investigated closer in the next chapter.



7.7 Boundary Energy 111

7.7 Boundary Energy

From the previous results it is obvious that defects are organized in chain-like structures,
and these structures define boundaries between regions of different unit cell orientation.
An estimate for the energy stored in those boundaries can be obtained by calculating the
average energy 〈E5,7〉 of all 5- and 7-fold defects in one frame, and the average “bulk”
energy 〈E6〉 stored in the hexagonal, non-defect lattice sites. Then the ratio 〈E5,7〉 / 〈E6〉
gives an estimate of the average excess energy of a defect lattice site located in a boundary.
Due to the high uncertainties in the velocities especially at the beginning and end of the
time series, instead of directly calculating the kinetic energy or temperature, the mean
square displacement (MSD) of particles, 〈r2〉k, is calculated for the bulk (k = 6) and
the boundaries (k = 5, 7) separately in each frame, as a measure for the mobility of the
particles. r is the modulus of the displacement vector calculated in the local coordinate
system with Eq. 4.17, and rx, ry are its components:

(7.4) 〈r2〉k =
1

Nk

Nk∑
i=1

r2
i,x + r2

i,y

with k = 6 or k = 5, 7 and the sum going over all N6 sixfold particles in one frame for the
bulk, 〈r2〉6, and over all defect particles N5 and N7 for the boundary, 〈r2〉5,7.
The behavior of 〈r2〉k should represent the behavior of the kinetic energy of the particles
in a qualitative way. However, the local coordinate system should not be understood in
the context of an equilibrium mean lattice site, since this can only be defined clearly in a
crystalline state. The above summation rather represents the average mobility of particles
within the area defined by their nearest neighbors, which is a measure for the kinetic energy.
〈r2〉5,7 / 〈r2〉6 is shown in Fig. 7.21a,b for experiment rI and rII. Also shown are the com-
ponents 〈r2〉5,7 and 〈r2〉6 in Fig. 7.21c,d.
Both experiments rI and rII show the same behavior. Shortly after melting at 4 s the
average energy in boundary and bulk is equal. This corresponds to a time where the defect
fraction is high, and defects are mostly randomly distributed. The system cools down due
to damping of the particle motion (the decay found in Chapt. 7.4), but within less than one
second the ratio increases and from Figs. 7.21c,d it is clear that the average energy in the
boundaries stays constant, while the bulk energy continues to decrease. For comparison
with the arrangement of defects in the system, the increase of the energy ratio appears at
a time between Figs. 7.16b,c (rI) or Figs. 7.17b,c (rII). Subsequently the boundaries start
to form between domains and the domains grow. During all this, the average energy in the
boundaries seems to be constant and higher by a factor of 10 (rI and rII) than the energy
stored in the bulk. In the initial state before melting, this ratio was even higher with ≈ 25.
The separation of domains with different lattice orientation by grain boundaries with a high
energy stored in the boundaries was also found in experiments with 3D complex plasmas
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Figure 7.21: Ratio of the mean squared displacement (MSD) of particles in boundaries
(defect chains) to the mean squared displacement of particles in the bulk (6-fold lattice
sites. a) Experiment rI. b) Experiment rII. MSD of particles in boundaries (red dots) and
MSD of particles in the bulk (black dots): c) Experiment rI. d) Experiment rII.

[76]. There the boundaries seemed to be molten as to their energy, but optically showed a
structural order.
Apparently, the particles located in the grain boundaries have a considerable higher mo-
bility (higher kinetic energy) than particles in the bulk. This has to have some impact on
the behavior of the complete system, which will be investigated closer when the nature of
the phase transition is considered in Chap. 7.9.
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7.8 Connection between Structure and Kinetic Energy

The dependence of structural properties of the particle system during recrystallization
on the particle kinetic energy is investigated. From this connection between fundamental
dynamical properties and a thermodynamical quantity, insights into the nature of the phase
transition are obtained.

7.8.1 Power Law Scaling

The parameters describing the long range and the local order in the particle system, namely
the translational and orientational correlation lengths ξ and ξ6, the fraction of defectsNk/N
(k = 5, 7) and the average bond order parameter Ψ6, are plotted versus the average kinetic
particle energy E in double-logarithmic plots, shown in Figs. 7.22 for experiment rI, and
7.23 for experiment rII. All quantities exhibit a power law dependence on the average
particle kinetic energy E. Fits cEβ with a constant c and the exponent β were performed
for all quantities, and plotted as black lines in the figures.
Table 7.3 lists all exponents β. Additionally is shows β for a fit to the defect fraction of
all defects, (N5 +N7)/N , which is not shown in the figures.

β
Experiment rI Experiment rII

ξ −0.28 −0.26
ξ6 −0.33 −0.32

N5/N +0.34 +0.34
N7/N +0.33 +0.35

(N5 +N7)/N +0.34 +0.35
Ψ6 −0.16 −0.16

Table 7.3: Exponents β from power law fits to the correlation lengths, defect fractions and
bond order parameter.

The power law dependencies on E of all presented quantities suggest that the system is
scale free during recrystallization. Especially the proposed exponential dependencies of ξ
and ξ6 on the energy (or temperature) from the KTHNY theory of melting (Chap. 6.1.2)
can not be confirmed.
Interesting would be the dependence of the coupling parameter Γ, estimated with the
relation found in Chap. 5, on the kinetic energy E. Generally, Γ ∝ 1/E would be expected
by definition of Γ. But the derived relation might not be correct in the case of high
energies, because the idea of an oscillation of particles around their mean lattice site is
not applicable. The mean squared displacement from the last chapter could be used as
a substitute for σr, but it is questionable if the value calculated with it is comparable to
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Figure 7.22: Experiment rI: Dependence on the kinetic energy E of (a) translational and
orientational correlation length ξ/∆ (red) and ξ6/∆ (blue), (b) defect fractions N5/N (red)
and N7/N (blue), and (c) bond order parameter Ψ6. The black lines are power law fits
∝ Eβ.

known values of Γ. The same argumentation can be applied for the Lindemann criterion,
which basically states a critical value at the melting point = 2/Γ.
The next chapter will introduce a possible theoretical explanation for the power law decays,
based on the theories of Frenkel (Chap. 6.4, [40]).
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Figure 7.23: Experiment rII: Dependence on the kinetic energy E of (a) translational and
orientational correlation length ξ/∆ (red) and ξ6/∆ (blue), (b) defect fractions N5/N (red)
and N7/N (blue) and (c) bond order parameter Ψ6. The black lines are power law fits
∝ Eβ.
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7.8.2 Theory for the Crystallization of a 2D complex plasma

The surprising result of power law dependencies of structural quantities from the last
chapter might be connected to the domain structure which developed during the recrys-
tallization. The Arrhenius law for the dependence of the defect fractions on the particle
temperatures in Eq. 6.7 was applicable for systems in thermodynamical equilibrium. The
recrystallization experiments presented in the last chapter involved the rapid cooling of a
two-dimensional particle system, which is basically a non-equilibrium situation.
Based on the work of Frenkel [40], a theoretical model is developed to explain this behavior
for a two-dimensional system.
A 2D system at a temperature T consisting of N particles is divided into z = N/Nd

homogenous domains each containing Nd particles on average. The domains are separated
by boundaries consisting of dislocations - pairs of 5-fold and 7-fold defects. There are no
correlations of the structural order between the domains. For the moment only averages
are considered in the following. The mean domain radius r is derived from the domain area
which is equal to the sum of all unit cells around the particles. The interparticle separation
is ∆.

(7.5) πr2 =
1

4
Ndπ∆2 ⇒ r =

√
Nd

∆

2

The additional energy E of the domain boundaries is

(7.6) E = 2πrσz = π∆σ
√
Nz

with the surface tension σ.
The available number of microstates P accessible to the system can be obtained by a
calculation of the number of possibilities to distribute N distinguishable particles on z
regions with Nd particles in each region:
The number of possibilities P1 to choose Nd distinguishable particles out of N is

(7.7) P1 =

(
N

Nd

)
=

N !

Nd!(N −Nd)!

Now again Nd particles are chosen from the remaining N −Nd with the number of possi-
bilities P2:

(7.8) P2 =

(
N −Nd

Nd

)
=

(N −Nd)!

Nd!(N − 2Nd)!

This is repeated until all z regions are filled. Since the events Pi, i ∈ [1, z], are independent
from each other, the total number of possibilities P to arrange the N particles is the
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product of all Pi:

P =
z∏
i=1

(
N − (i− 1)Nd

Nd

)

=
N !

Nd!(N −Nd)!
· (N −Nd)!

Nd!(N − 2Nd)!
· (N − 2Nd)!

Nd!(N − 3Nd)!
· · · (N − (z − 1)Nd)!

Nd!(N − zNd)!

=
N !

Nd! ·Nd! · · ·Nd!︸ ︷︷ ︸
ztimes

· 1

(N − zNd)!︸ ︷︷ ︸
=0!=1

=
N ![
Nd!
]z

From this follows for the entropy of the system:

(7.9) S = kB lnP

with the Boltzmann constant kB. Using Stirling’s approximation, ln(N !) = N ln(N) − N
for large N (for N > 1000 the relative error of the approximation is < 1%), with N , Nd

sufficiently large and Nd = N/z, the term lnP can be approximated:

lnP = ln

(
N ![
Nd!
]z
)

= ln(N !)− z ln[(N/z)!]

≈ N ln(N)−N − zN
z

[ln(N)− ln(z)] + z
N

z
= N ln(z)(7.10)

Therefore we get for the entropy and the free energy F for the system at temperature T :

S = NkB ln z(7.11)
F = E − TS = π∆σ

√
Nz −NKBT ln z(7.12)

At any instant during the cooling process we may assume that the free energy is indepen-
dent of the distribution of domains in the system and that parameters such as temperature
and pressure are the same within all domains. Then

∂F

∂z
= 0 ⇒ 0.5π∆σ

√
N/z −NkBT/z = 0

⇒ z =

(
2kBT

π∆σ

)2

N(7.13)

Eq. 7.13 gives a relationship between the number of domains and the temperature. Note
that z does not depend on the average number of particles in a domain Nd.
Now the fractal nature of the domains is introduced as a hypothesis. The
following equation then connects the domain area to the length of its boundary:

(7.14) Nd∆
2B = [∆NS]1+α
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with B a constant and NS the average number of particles in the domain wall. B and α
are dependent on the shape of the domain, i.e.

circular domain B = π2, α = 1
compact domain (Nd → NS) B → 1/∆, α→ 0
long narrow domain B → 2/∆, α→ 0

For real (fractal) 2D systems, 0 < α < 1 is expected.
With Nd = N/z and z from Eq. 7.13, Eq. 7.14 yields for the total number of particles
located in domain walls, NT ≡ zNS:

(7.15)
NT

N
= B1/(1+α)∆(1−α)/(1+α)

(
2kBT

π∆σ

)(2α)/(1+α)

In the above calculation it is assumed that the surface tension σ is constant, especially
that there is no temperature dependence of σ.

7.8.3 Comparison with the Measurements

The experimentally found power law decay of the defect fractions is now compared with
Eq. 7.15, with the kinetic energy E representing the particle temperature kBT .
The temperature dependence of ∆ is now assumed to be weak enough to be neglected:
the total fluctuation of ∆ during recrystallization is 4.2% in experiment rI and 2.7% in
experiment rII (% of the average value) as can be seen in Figs. 7.9a,b. Assuming that all
defects are located in boundaries, so that (N5 +N7)/N = NT/N and the surface tension σ
does not depend on E, and further assuming that the domains and boundary lengths have
in fact a fractal dependence, it follows from the performed fit (N5 +N7)/N = cEβ

c = B1/(1+α)∆(1−3α)/(1+α)

(
2

πσ

)(2α)/(1+α)

and

(7.16) β = (2α)/(1 + α)⇒ α =
β

2− β

With the values for β found in Chap. 7.8.1 for the combined 5-fold and 7-fold defect
fractions this yields

Experiment rI Experiment rII
c 0.16 0.17
β 0.34 0.35
α 0.20 0.21
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The calculated exponent α satisfies the condition 0 < α < 1. It was however a hypothesis
that the system is fractal. Only if that is the case, Eq. 7.15 can describe its behavior
correct. In 3D complex plasmas it was already found that a crystallization front could be
characterized by a fractal dimension [76].
The other important assumption was the constancy of the surface tension σ in Eq. 7.14.
For 3D systems there exist models for the temperature dependence of σ (e.g. [154, 155]).
The Eötvös rule states a linear dependence σV 2/3 = k(Tc−T ) with a constant k, the critical
temperature Tc and the molar volume V for a liquid pure substance. Ramsay and Shields
improved this equation to σV 2/3 = k (TC − T − 6), taking into account a temperature offset
of 6 K, which seemed to fit better to real data at low temperatures. Later Guggenheim
and Katayama (and van der Waals) found σ = σo

(
1− T

TC

)n
with a constant σ0 and the

empirical factor n = 11/9 which is valid for all organic liquids.
For 2D systems, no such dependencies are known yet. One could assume now that σ =
σ0(TC − T ), similar to the Eötvös rule. Then the temperature dependence of the defects

fractions in Eq. 7.15 would become NT
N
∝
(

T
TC−T

)β
. If TC << T this would yield T

TC−T
→ 1

and NT/N would not depend on T . For TC within the measured temperature range, NT/N
would have a singularity and some feature like a kink should at least appear in the measured
data. Both are not the case as one can see in the measured decay fractions. For TC >> T ,
the surface tension would be constant, and T

TC−T
→ T/TC . The dependence NT/N ∝ T β

follows as it was found earlier, therefore the assumption of a constant surface tension is
consistent with the experimental findings.
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7.9 Interpretation and Discussion

Now the nature of the transition is considered. That the transition exists is affirmed by the
investigation of the structural properties (the point of melting in the following corresponds
to the time when the pulse was initiated):

Translational Long-Range Order The pair correlation function g(r) changes from a
clearly liquid-like state with a correlation length ξ near 0 to a state with pronounced peaks
and a ξ ≈ 10∆ approximately 5 s after the melting was induced. The second peak splits
at 1 eV. The correlation length covers a considerable range in the field of view, and the
system can be considered to have long range translational order. g(r) is the same at the
end of the measurement as it was in the initial state.

Orientational Long-Range Order The initial state is characterized by a linear decay
of g6(r). After melting, a short period with power law decay is found, which is soon
replaced by an exponential decay. The correlation lengths ξ6 increases from near to 0 to
≈ 6∆ in a time span of 8 s after melting. Then it is replaced by the linear decay with a
steeper slope as in the initial state. There is no long range orientational order in the regime
of exponential decay. The linear decay was found to be caused by domain forming, and
could be interpreted as some kind of intermediate range of orientational order, but clearly
no long range order can be found.

Local Order The bond order parameter was high with Ψ6 > 0.8 in average in the initial
state, indicating a good hexagonal structure of the unit cells. It increases fast within 2 s
from 0.34 to over 0.8 during recrystallization. The fraction of 5- and 7-fold defects is
low (< 5%) at the beginning and end of the measurement. It falls from over 25% within
less than 2 s and reaches less than 5% approximately 4 s after melting, even before the
translational order is restored. The defect condensation parameter indicates that most
defects are organized in free dislocations in the initial state. After melting it falls from 3.5
(defect clustering) to 1.5 within 1 s and stays constant. From Fig. 7.15c,d one could see
that aside from free dislocations, defects often have two defect neighbors, yielding chain-
like structures. Qualitatively it was seen in Figs.7.18 and 7.19 that also free dislocations
are arranged in the chains, or grain boundaries.
All above findings clearly indicate that a transition occurs from a state of high disorder to
an ordered state, characterized by long range translational order, short range orientational
order and low defect fractions.

The experimental results are now compared with the possible theories:

KTHNY Theory A exponential decay of g(r) indicates a liquid or hexatic phase. How-
ever, the strongly pronounced peaks and structure of g(r) in the ordered state indicate
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the existence of long range order. ξ does further not decay exponentially with the energy,
as it is predicted in the KTHNY theory. The orientational correlation function is never
constant (solid state); when it decays with a power law (hexatic state) in the short period
after melting, the exponent is > 1 which is not compatible with η6 < 0.25. Elsewhere, g6(r)
decays exponentially, meaning a liquid state according to KTHNY. The linear decay is not
accounted for in the theory, because domain forming is not a feature there. The correlation
length ξ6 does also not depend exponentially on the energy (see the compilation in 6.6 for
the temperature-dependence of ξ and ξ6). The organization of defects in dislocations can
be confirmed, but bound pairs of dislocations can not be identified.
According to the correlation analysis of the KTHNY theory, the system would be in a
liquid state practically always. But the models proposed in that theory contradict the
experimental findings, and it does not seem applicable to interpret the results in that
context.

1st Order Transitions In general no indications for a first order transition can be found,
since there are no discontinuities in any investigated parameter, or indications for latent
heat. The density wave theory claims a discontinuity in the density. The interparticle
distance, representing the density well, fluctuates short after melting, but this feature is
attached to the shock of the electric pulse.
The grain boundary mechanism is interesting, since grain boundaries are found, but there
appears no significant feature in the defect fractions in dependence on the kinetic energy
which could indicate a 1st order transition. The exponential decay of g6(r) – and absence
of long range orientational order – was predicted in that theory to appear if there are no
bound states between the grain boundaries. An investigation of bound states involves the
summation of all Burgers vectors of the dislocations: If bound states exist, the total Burgers
vector should be zero. This requires a state where no randomly distributed dislocations
can cancel out by chance (no liquid state), and a record which captures all dislocations in
the system, which was not the case here.
The modified Lindemann criterion of melting predicts a leap in the translational order
parameter, which was not found, and it predicts that the orientational order persists at
larger temperatures than the translational order, which is clearly not the case here. Note
that the peak width obtained from the pair correlation function (shown in Fig. 7.10) is
practically equal to γ∆2 (γ is the Lindemann parameter). γ calculated from this relation
for the presented data, is always much smaller than the critical value 0.1 at the point of
melting for 2D systems [147, 148]. Even at the highest energy it is still smaller by a factor
of 10. That result would put the critical temperature far out of the measured range.

Kinetic Theory (Frenkel) The kinetic theory by Frenkel gives a direct dependence of
the defect fraction on the system temperature. In the case of a system in thermodynamical
equilibrium, an exponential Arrhenius law (Eq.6.7) is expected for the decay of the defect
fraction with T .
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Here the transition happens in a non-equilibrium regime, because the cooling is very rapid,
and there is no time for thermodynamical equilibrium to become established. In compari-
son, in an experiment where the melting of a 2D plasma crystal was induced by different
laser heating methods, stepwise to ensure an equilibrium processes, an Arrhenius law with
an exponential decay was found [80]. Fig. 7.24 shows the exponential decay of defect
fractions for several equilibrium situations (red diamonds and blue and green triangles),
compared to the power law decay found in the experiments presented here (blue circles).
The defect fractions are plotted vs. the inverse temperature.
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Figure 7.24: Defect fractions vs. inverse temperature for several experiments with 2D
plasma crystals, where melting was induced by laser heating, while the system was in
thermodynamical equilibrium (red diamonds, blue and green triangles. The defect fractions
decay according to an Arrhenius law (exponential). The blue circles are the defect fractions
from the non-equilibrium recrystallization process presented earlier, and the black line
shows the power law decay.

The power law dependencies of several structural quantities (defect fractions, correlation
lengths and bond order parameter) indicate a scale free transition from the disordered
to the ordered state. Qualitatively, this behavior can be described by Eq. 7.15 based on
the ratio of grain boundary length to domain size. This relation is valid only if the ratio
has a fractal dimension, and if the surface tension σ is independent on the temperature.
Assuming that, the power law exponent α can be calculated from the data, and compared
with the theoretical prediction. Note that the theory only states an interval for α, not a
fixed value.

Influence of the Grain Boundaries The reason for the scale free behavior is found
in the mechanism of recrystallization. The defect condensation parameter showed that
practically all 5-fold and 7-fold defects are organized in dislocations (Chap. 7.15), while
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the qualitative inspection of the particle system showed additionally that in the later
stages most dislocations form chains which build up grain boundaries separating domains
of different lattice orientation (Figs. 7.18 and 7.19).

It was shown in Fig. 7.21 that the average energy (represented qualitatively by the mean
squared displacements) stored in a defect lattice site exceeds that stored in a hexagonal
lattice site.

As a measure for the total energy of the grain boundaries in one frame, the total number of
defects multiplied by their average mean square displacement, r5,7 = (N5 +N7) ·〈r2〉5,7 with
〈r2〉5,7 from Eq. 7.4, is calculated. The same is done for all 6-fold lattice sites (the bulk),
yielding r6. Fig. 7.25 shows the ratio r5,7/r6 vs. the mean kinetic energy of the particles
E (a,b), and vs. the defect fractions (N5 + N7)/N (c,d). This ratio gives an impression
of the total energy stored in grain boundaries compared to the total energy stored in the
bulk.
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Figure 7.25: Average MSD vs. kinetic energy E: a) Experiment rI; b) Experiment rII.
Average MSD vs. total fraction of defects: c) rI; d) rII.
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The ratio starts at approximately 1 (corresponding to 50% of the energy is stored in
defects and bulk, respectively) for high energies E and high defect fractions (right sides
of the plots). It decreases with decreasing kinetic energy (decreasing defects fraction). At
≈ 1 eV, which corresponds to the time 5 s from the beginning of the measurement, and a
defect fraction of ≈ 0.2 the behavior is reversed. The total energy stored in the boundaries
increases again, however the number of particles constituting to them continues to fall:
The system becomes cooler and more ordered into a hexagonal lattice, and the (fewer)
defects eventually contain more thermal energy than the (much more numerous) particles
in the well ordered domains.
As E = 0.1 eV is reached, the total energy stored in the boundaries, compared to that
stored in all bulk particles, is only smaller by a factor of 0.6-0.8 in rI, and practically equal
in rII, even though only 10% of the particles are organized in boundaries, i.e. approximately
40% (rI) and even 50% (rII) of the total system energy is stored in less than 10% of all
the particles. At the turning point of the curves, the 20% defects already contain 25% (rI)
and 30% (rII) of the total system energy.
The thermodynamical behavior of the system must therefore severely be determined by
the small fraction of particles in the grain boundaries with the driving force being the high
boundary energy. This illustrates the importance of defects.
The turning point of the curves, indicating the dominating influence of the boundaries,
appears at a kinetic energy of approximately 1 eV. The behavior of other quantities at this
point is investigated:

• For experiment rII: the exponent of the decay of the kinetic energy changes to a
slower decay

• The second peak of the pair correlation splits up

• The fluctuation of the interparticle distance is at a turning point from increase to
decrease

• The change of the slope of the peak width σ2
0 vs. E appears at approximately 1 eV

• The bond correlation functions decays exponentially from 1 eV on

• At 1 eV: Ψ6 = 0.65, N5,7/N = 0.08

• The defect condensation parameter becomes constant with S = 1.5; the number of
free dislocation exceeds the number of defects with two defect neighbors (crossing of
blue and red lines in Figs. 7.15c,d)

The slower decay of the kinetic energy was found to be caused by local heating. The
fluctuation of the interparticle distance was assigned to the remaining influence of the
shock wave due to the mechanism of melting, and the slope change of the peak width was
related to that feature. It is possible that until the energy of 1 eV the dynamical behavior
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of the particles is still affected by the propagating shock. From 1 eV on, where maybe
domain sizes and boundary length have reached a critical threshold, the dynamics become
more and more dominated by the grain boundaries, while the structural reorganization
takes place.
The continuous increase of domain size, accompanied by the decrease of the boundary
lengths (decrease of total number of defects) leads to a continuous change of the system
state, and the scale free behavior ensues.
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Chapter 8

Summary and Outlook

The work described in this thesis was concerned with the experimental investigation of
the phase state of two-dimensional complex plasmas, consisting of micrometer sized plastic
spheres immersed in an Argon plasma.

Error Analysis The data analysis was performed on recorded images containing the
illuminated particles. Particle coordinates were extracted directly from this images by a
tracking algorithm, which provides the possibility to observe physical processes on a funda-
mental kinetic level. The estimation of uncertainties due to the particle tracking procedure
and due to pixel-noise in the recorded images was an important part of this work. Arti-
ficial images have been generated, containing particles as accumulations of “illuminated”
pixels, and a random particle motion has been simulated in series of consecutive images.
The influence of different quantities of pixel-noise and particle-image sizes (corresponding
to the number of illuminated pixels per particle) was investigated. The procedure yielded
estimates for the uncertainties which could be transferred to the experimental data, and
enabled to identify the limits of resolvable distances. This allowed the validation especially
of the measurement of particle velocities and displacements above the error threshold. The
uncertainties were considered throughout the data analysis for all experiments individually.
Only by considering this errors, the scientific interpretation of the acquired data gains a
physical meaning.
Two kinds of experiments have been performed, addressing different aspects of the state
of the 2D particle system.

Estimation of the Coupling Parameter In the first experiments, the dimensionless
coupling parameter Γ, defined as the ratio of mean potential to mean kinetic energy, was
measured in a two-dimensional plasma crystal recorded at a high spatial and temporal
resolution. Γ characterizes the phase state of the system, and can usually be calculated
from the quantities particle charge and temperature, and the screening parameter κ which
defines the modification of the interparticle potential due to charge screening. Here a new
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method was presented to obtain Γ from the directly accessible particle coordinates by using
the relations between the caged particle motion and the potential and kinetic energy of the
particles. It was shown that the results of the measurement are in good agreement with
the results of the conventional method for the calculation of Γ from particle charge and
temperature. This new method therefore provides an alternative way for the estimation of
the coupling parameter without the need of additional experimental effort for charge and
temperature measurement.

Recrystallization The second experiments were dedicated to the phase transition of a
2D complex plasma. A single-layer plasma crystal was melted by a short electric pulse, and
its undisturbed recrystallization was studied time-dependent with regard to the kinetic en-
ergy of the particles, and several structural properties. Due to the high temporal resolution
of the recording, the mechanism of the phase transition could be studied on a fundamen-
tal kinetic level, and at the same time allows for the first time a connection between the
thermodynamical state and the particle motion itself. It was found that a disorder-order
transition takes place (confirmed by the development of structural properties), from a
state without long-range order to a state characterized by long-range translational order,
but only short range orientational order. The transition happens in a non-equilibrium
regime, and power-law dependencies of the defect fractions, the bond order parameter (as
a measure of the local crystal structure) and the translational and orientational correlation
lengths (measuring the range of the respective order) on the kinetic particle energy were
found during the crystallization process. This indicates a scale-free transition, in compari-
son to the exponential dependence (Arrhenius law) expected in a transition of a system in
thermodynamical equilibrium.
A qualitative analysis showed that during the stages of the recrystallization small domains
of uniform, hexagonal lattice orientation formed. The domains were separated by grain
boundaries consisting of strings of dislocations, and the lattice orientation often changed
abruptly across such boundaries, thus destroying the long-range orientational order. During
the rapid cooling, the domains continuously grew in size, and the number of defects (and
the boundary length) decreased. It was further shown that a considerable amount of the
total thermal energy of the system was located in the grain boundaries: up to 50% of
the energy was stored in less than 10% of the particles. Therefore the thermodynamical
behavior of the cooling plasma crystal has to be strongly determined by the high energetic
grain boundaries made from dislocations, leading to the observed scale-free transition.
The mechanism of the transition could not be explained by conventional theories of two-
dimensional melting, such as dislocation-mediated melting or theories of first-order tran-
sitions. A theory by Frenkel [40], based on the relation between the domain size and the
length of its boundary, explains the observed power-law dependence of the defect fractions
under the assumptions that the grain boundaries have a fractal dimension, and that the
surface tension at the domain border does not depend on the kinetic energy. From the
present data the dimension of the boundaries could not be concluded, because the observed
system is too small and boundaries vanish out of the field of view. The assumption of a
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constant surface tension was consistent with the experimental data, but yet there exist no
theories on this subject for 2D systems.

Outlook In future experiments, the results of the investigation of measurement uncer-
tainties can be used to adjust the experimental parameters, especially of the data acqui-
sition (camera settings and particle illumination), so that the range for particle energy
measurements can be extended to lower values.
Another open question is the dimensionality of the grain boundaries, and the possible
temperature dependence of the surface tension in 2D systems. Answering that questions
would allow a substantiated conclusion as to the validity of the kinetic theory for the
two-dimensional complex plasma.



130 8. Summary and Outlook



Appendix A

Estimation of Uncertainties in the
Particle Coordinates

The tracking algorithm uses an intensity weighting center-of-mass method and was intro-
duced in section 3.2. The basic equation for the algorithm is given here as a short reminder.
A particle position (x, y) in an image is calculated as

(A.1) x =

∑nx
i=1 xiIi∑nx
i=1 Ii

, y =

∑ny
i=1 yiIi∑ny
i=1 Ii

The sums run over the number of pixels identified as a particle in x- and y-direction, nx
and ny, respectively. Ii are the intensity values of pixel i.
The tracing of particles in consecutive frames yield the time dependent particle trajectories.
A particle k in a frame t + dt is identified to be particle i from frame t, if the distance
between both coordinates xk(t+dt)−xi(t) is smaller than a user supplied value. This value
has to be chosen for a data set according to the expected particle displacements: it has to
be larger than the expected velocity, but much smaller than the average distance between
particles to ensure that the particle assignation is correct. After assigning all particles, the
displacements, or particle velocities, for particle k are

(A.2) vk(t) = (xk(t+ dt)− xk(t))/dt

dt is the time step in seconds between two images, or in case of artificial data sets, it is
equal 1.
The next section A.1 treats the uncertainties arising from the algorithm itself by tracking
a single artificial particle at different subpixel positions and comparing its real position
with the tracked position. Section A.2 extends the analysis to a larger space of parameters
as to particle-image size, pixel-noise and further investigates the influence of the error
on quantities depending on spatial particle displacements. A statistical evaluation of the
errors is performed. Section A.3 addresses the problem of extracting the quantity of the
pixel noise from real data.
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A.1 Single Artificial Particle

The error of the tracking algorithm can be analyzed by tracking an artificial particle with a
defined central position and comparing the outcome of the tracking with the original value.
The particle was designed as a 2-dimensional Gaussian intensity distribution I(x, y):

(A.3) I(x, y) = 255 · exp

[
−(x− xc)2 + (y − yc)2

2σ2

]
I(x, y) was calculated for integer positions (x, y) to simulate the pixel grid, with {xc, yc} ∈
R being the real center of the distribution and σ the Gaussian half-width. The maximum
peak height of 255 corresponds to 256 greyscales (0 counts as one value). The matrix
containing I(x, y) was then written into an image with 8 bit color depth. In this process
the intensity values are scaled to the color space of 256 greyscales and rounded to integers.
This simulates images comparable in their properties to those recorded by the camera in
the experiments. The left panel of Fig. A.1 shows an example artificial particle with σ = 1
and {xc, yc} = {10.71, 10.71}.
100 images with the artificial particle were now generated, in which the center was shifted
consecutively from frame to frame, starting from the center of pixel (0, 0) in direction of the
center of pixel (1, 1) in steps of 0.01 pixels per coordinate and frame. To simulate particles
of different size, this was done for each value of σ from 0.2 to 1 in steps of 0.1, i.e. 9 sets
of 100 images per set were generated. The number of “illuminated” pixels per particle for
different σ is shown in the right panel of Fig. A.1. Note that while the particle moves
through the pixel, the number of illuminated pixels can change within one set of images
for one value σ, because an adjacent pixel can get a non-zero intensity value as the particle
moves toward it, while all formerly illuminated pixels still have a non-zero intensity.
The particle of each set was then tracked with the intensity weighted center-of-mass method
described above. Figs. A.2 and A.3 show the results for all σ. In the first column the
tracked position is plotted vs. the real position, which in this case is the continuous sub-
pixel position. The second column shows the deviation between tracked and real particle
position vs. the real position. The number of pixels of the artificial particle in dependence
on its real position can be seen in the third column. One can see clearly that the number
of illuminated pixels changes for each σ, depending on the real particle position within
the pixel. Also note that though the same number of pixels might appear for different
σ, the errors differ in that cases. The error depends predominantly on the parameters of
the intensity distribution, not on the actual number of pixels per particle. On the other
hand, the geometrical alignment of pixels, i.e. how many pixels are illuminated in x- and
y-direction, is not considered here. But still the number of pixels can be a hint on the
quantity of the error, especially for very large or very small particle images.
Next it stands out that for σ > 0.6 the absolute deviations are rather small < 0.01 pixel,
and do not depend on the sub-pixel position. For σ = 0.6 one can see a slight dependence,
but the error is still small. The dependence grows rapidly for smaller values σ = 0.5-0.2,
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Figure A.1: Left: Example of an artificial particle with a Gaussian intensity profile centered
around {xc, yc} = {10.71, 10.71} with a width of σ = 1. Right: Number of pixels per
particle vs. standard deviation of the Gaussian intensity distribution used to create the
particles.

while simultaneously the maximal value of the error rises above 0.01 pixel. For σ = 0.2
the single particle has only one illuminated pixel, which leads to the so-called pixel-locking
effect: the total intensity of the particle is either located in the one pixel or in the next,
though the particle in fact moves through the pixel. This causes the tracked position to
be fixed in one pixel center until the particle crosses the border between two pixels. Then
a jump of +1 pixel appears in the tracked coordinate. Pixel-locking can be significant also
for larger particles, as will be shown later.

In summary, for particles with more than ≈ 10 − 15 illuminated pixels the error of the
tracking algorithm is small enough to be neglected, and besides that it has characteristics
of a statistical error, and its magnitude is independent of the number of pixels. For smaller
particle images, the error is systematic and depends strongly on the real position within
the pixel. Fig. A.4 shows the maximal error one has to consider (red dots). It is the
maximum absolute value of the deviation of tracked to real particle position in the middle
columns of Figs. A.2 and A.3. Since in general nothing is known about a particles real
position, this worst case is always possible and is the accuracy with which the particle
positions can be estimated. The blue dots in Fig. A.4 are the mean of the absolute value
of all possible errors within a pixel for a particle of a certain size, with the corresponding
standard deviation shown as error bars. Since the errors are not statistically distributed,
the calculation of the mean is not a good representation, but it still gives an idea of the
spreading of the possible errors. Finally, the black solid line is 1/

√
nP . This is the error δx

one would expect for a particle consisting of nP pixels, when the position x is calculated as
the mean of all pixels regardless the intensities, and the accuracy of each pixel is δxi = 1 px:
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(A.4) δx =

√√√√ nP∑
i=1

(
1

nP
δxi

)2

=
1

nP

√√√√ nP∑
i=1

1 =
nP√
nP

=
1
√
nP

The error in dependence on the number of pixels is high for small particles but falls rapidly
as demonstrated in Fig. A.4 for both maximum and mean error. The highest values for
particles with only a few pixels origin from the strong influence of pixel-locking, which can
only be avoided by providing measurements with large enough nP .
Since the error of the tracking algorithm is a systematic error, its propagation into quan-
tities calculated from the particle positions can not be obtained by Gaussian error prop-
agation. Of special interest here are particle velocities or in general the calculation of a
distance between two positions, i.e. a spatial displacement. In that case the systematic
errors are subtracted from each other as the following example shows for the calculation
of a distance ∆x between two coordinates x1, x2 with the respective errors δx1, δx2:

(A.5) ∆x+ δ(∆x) = (x2 + δx2)− (x1 + δx1) = (x2 − x1) + (δx2 − δx1)

The (signed) systematic errors in the coordinates could either cancel out or combine to the
maximal possible value for the error of ∆x, depending on the locations of x1 and x2 within
a pixel. This kind of error propagation especially applies for the calculation of velocities v
as the spatial displacement of a particle between the times t and t+ dt, scaled with 1/dt.
The magnitude of the error of the velocities is expected to be dependent on the magnitude
of the velocity itself, δv ∝ v: With higher velocities, the particles move a larger distance
from frame to frame and it is more likely that they are not close their original sub-pixel
position. Since the error in the coordinates is systematic, a small motion within one pixel
does not produce a large error (errors are subtracted in the calculation of δv), because the
errors are nearly the same. For larger velocities, the probability increases that two large
errors with maybe even opposite sign are subtracted, which leads to high errors in the
velocities. This will be investigated later in Chap. A.2.
The next section will address the behavior and the influence of the error in the case of
statistical analyses of the dynamics of larger numbers of particles. Further, the impact of
pixel-noise imposed on the images, which is inevitable in a real record due to the finite
temperature of the CCD or CMOS chip in the camera, will be investigated.
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Figure A.2: σ ∈ [0.6, 1]: Tracked particle position vs. real position (left column); deviation
of the tracked particle position to the real position vs. the particles subpixel position
(middle column); number of illuminated pixels vs. particle subpixel position (right column).
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Figure A.3: σ ∈ [0.2 − 0.5]: Tracked particle position vs. real position (left column),
deviation between both vs. subpixel position (middle column), number of illuminated
pixels vs. subpixel position (right column).
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Figure A.4: Maximum error (red dots) and mean error (blue dots) vs. number of pixels
per particle nP . The error bars for the mean error are the standard deviation of the values
used for the calculation of the mean. The black line is 1/

√
nP .
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A.2 Artificial Particles at Random Positions

To obtain a better statistic, sets of images with 2500 artificial particles per image were
generated in the following manner:
At first the particle center positions were placed on the nodes of a square grid with the
edge length 20 px, xi,fixed = 20

(
k
n

)
with k, n ∈ [1, 50] and i being the particle number.

To these coordinates, random numbers xi,random out of the interval [0.00, 1.00] with two
decimal places were added. The random numbers were drawn from an uniform distribution.
This method ensures that a lot of different subpixel positions xi,0 are occupied and the
uniqueness of the error can be tested sufficiently.

(A.6) xi,0 = xi,fixed + xi,random

Above equation defines the particle positions in the first image.
A set of 10 consecutive coordinate arrays was then generated by successively adding a
displacement ξ to the coordinates xi,0. The displacement was taken at random from a
Gaussian distribution with the width ∆ξ:

(A.7) f(ξ) =
1√

2π(∆ξ)
exp

(
− ξ2

2(∆ξ)2

)
The width is given in units of pixels. It can be compared with a particle temperature
kBT = (∆ξ(dr)/(dt))2m with the particle mass m and the spatial and temporal resolution
dr and dt as scaling factors. The particle center coordinates xi(t) in an image at time t
are now:

xi(t) = xi,0 +
t∑

j=1

ξj(A.8)

The summation was performed for t ∈ [0, 9], yielding 10 consecutive coordinate arrays with
coordinates for 2500 particles each.
The final coordinates xi(t) are used in Eq. A.3 to generate the image matrices containing
all particles, centered at the respective xi(t), and with the shape of a Gaussian intensity
distribution for given values of the distribution width (or particle size) σ.
To take into account different particles sizes and displacements, for each σ ∈ [0.2, 1] in
steps of 0.05 px (17 different σ) and for 12 widths ∆ξ of the displacement distribution
from Eq. A.7 out of the interval [0.014, 0.09] px, a set of 10 images was generated, giving
a total of 204 data sets.
The range of σ covers particle sizes of 1 pixels up to over 30 pixels. The width ∆ξ was
chosen such that after scaling the outcomes with the particle mass and spatial and temporal
resolution used in the experiments, the displacement becomes comparable to the range of
displacements (or velocities) usually observed in the experiment, i.e. for a spatial resolution
of 0.034 · 10−3 m/px, a mass of 6.14 · 10−13 kg and a time step between frames of 0.006 s,
the widths correspond – in units of temperature – to a range 0.024-0.99 eV.
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Error in the Coordinates All set of images were tracked by the particle tracking
routine described in the beginning of the appendix, and the difference between tracked
and real coordinates was analyzed. The real coordinates are the particle centers which
where calculated for each frame and each particle as explained above and stored in an
array. The normalized histograms (divided by bin size and total number of counts) of the
error in the particle coordinates are shown in Fig. A.5 for the different σ. From σ = 0.65
on, the errors have a Gaussian distribution centered around zero.
The impact of pixel-locking becomes visible in xy-maps of the subpixel parts of all tracked
coordinates. This is shown in Fig. A.6 for each value of σ. Pixel-locking is evident for
σ = 0.2 and σ = 0.25. For σ = 0.3 − 0.35 there still appear some preferred structures,
while for σ ≥ 0.4 the distribution of subpixel positions quickly becomes uniform.
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Figure A.5: Histograms of errors in the particle coordinates x (black) and y (red) for
different widths σ of the particle intensity distribution. The ranges of the number of
illuminated pixels per particle are shown inside the figures.
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Figure A.6: Maps x vs. y of the subpixel parts of the tracked coordinates of artificial
particles for different width σ of the particle intensity distribution.
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Error in the Displacements Displacements are calculated as the subtraction of the
particle positions from two consecutive frames. The real displacements from frame to frame
are known, they can be obtained from the subtraction of the respective real positions. The
tracking and tracing routines for experimental data were used on all 204 sets of artificial
images, and yield the measured particle displacements.

Then the error of the displacement is calculated as the difference between the measured
and the real displacements for each particle and each time step. This gives 22500 values
for the error per data set, which will be analyzed statistically.

The real displacements are Gaussian distributed by definition, because they were calculated
by adding values drawn from a Gaussian distribution to an initial position. The histograms
of real displacements were calculated anyway and fitted by Gaussians, with the goodness
of fit χ2 ≈ 1, as it is expected.

An example for the histograms of measured displacements is shown in Fig. A.7. For small
particles (σ < 0.35) the histograms look Gaussian distributed, but with one additional,
high central peak (one bin in the histogram) at the position displacement≈ 0. If a Gaussian
distribution is fitted including the central peak, the obtained width of the distribution will
be very small. Such a peak can usually be omitted in a fit, because it just shows that most
values were practically zero and are of no interest. Here the peak is clearly the effect of
pixel locking and the resulting, apparent lack of particle motion from frame to frame. This
feature of the central high peak depends on the particle size only, not on the quantity of
the particle motion (i.e. the quantity of the chosen particle “temperature” which simulates
the motion). The measured displacement histograms were fitted by Gaussians, excluding
the central peak.

Now the error of particle displacements will be investigated. Fig. A.8 shows example his-
tograms of the error for all values of σ for the data sets with the lowest ∆ξ, i.e. the
data were particles move the slowest. The histograms were obtained for the components
vx (black) and vy (red) of the displacement separately. The value of σ and the range of
the number of pixels per particle, np, is given in each plot window. The error histograms
can be fitted well by Gaussian distributions, with a χ2 between 1 − 25, where the higher
χ2 appear for the smaller particles. This fit was performed on all 204 data sets, yielding
14 × 17 fit parameters (width and mean of the fitted Gaussian distribution) for the error
histograms, and the same for the fit to the histograms of real displacements and measured
displacements. The widths of the latter two distributions, interpreted as velocity distri-
butions, would determine a particle temperature, while the width of the error distribution
has to be interpreted as a kind of white noise.

The scaling of the error with ∆ξ was already addressed in the former chapter and manifests
itself in broader error distributions with increasing displacement ∆ξ from frame to frame,
but they stay Gaussian with approximately the same goodness of the fit.

Fig. A.10 shows the widths obtained from the Gaussian fits for real and measured dis-
placements, and for the errors in comparison. The values for one σ are plotted versus the
width ∆ξ of the distribution which defined the particle motion. The scaling of the error
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Figure A.7: Examples of histograms of particle velocities v (�) for different widths σ =
0.2, 0.3, 0.35, 0.4, 0.7 of the particle intensity distribution. The black and green lines are
fits with and without considering the maximum peak, respectively. The red � and line is
the histogram of the error, the blue line shows the histogram of real velocities.
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with ∆ξ was already addressed in the former chapter and manifests itself in broader, but
always Gaussian, error distributions with increasing ∆ξ. The goodness of the fit χ2 stayed
approximately the same as given above.
The width of real displacements (black diamonds) is always equal to ∆ξ. Until σ = 0.3,
the width of measured displacements (blue crosses) is larger than the real value. The
width of the error distribution (red dots) is very large and practically equal to ∆ξ. This
range of σ correspond to the range of particle sizes until which the high central peak
appears in the histogram of displacements. Since the peak was not fitted, the width of
measured displacements is much higher than the real width. It was tested what happens
if the peak is included in the fit: the measured width becomes much lower than the real
one and with increasing σ approaches the real width from below, and exceeds the error
considerably not until σ = 0.4. One way or the other, it is never the real width of the
displacement distributions, because the error is of the magnitude of the quantity which
should be measured. Only from σ = 0.35 on, the expected width is obtained (the black
and blue line become equal, and the quantity of the error drops). This corresponds to
a particle size larger than ≈ 2-5 pixels, where 2 pixels in an exception. In Fig. A.9 the
percentage of the occurrence of a certain number of illuminated pixels for σ = 0.35 is
shown. Over 60% are at 4 pixels, and the particle consists of 3-4 pixels most of the time.
In conclusion, though the error caused by the tracking algorithm is systematic for the
particle coordinates and can take on values of up to 0.5 pixels in the worst case, the error
which follows for particle displacements or velocities can be described as a statistical error.
If particles are too small, pixel locking is still a problem. Further, if the particle size is
> 3 pixels, the error in the displacements seems not to have any influence on the measured
width of the displacement or velocity distribution. Therefore it should be possible to e.g.
calculate particle temperatures or kinetic energies from the width of such distributions,
even if the expected error in the particle coordinates is large.
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Figure A.8: Histograms of errors in the particle velocities vx (black) and vy (red) for
different widths σ of the particle intensity distribution. The ranges of the number of
illuminated pixels per particle are shown inside the figures.
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Figure A.9: Percentage of occurrence of a certain number of illuminated pixels for particle
sizes defined by the width σ = 0.35 of the Gaussian intensity distribution.
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Figure A.10: Standard deviations of Gaussian fits without considering the maximum peak
to the particle velocity distributions for real (�) and tracked (x) velocities and for the
distribution of the deviation of tracked from real velocities (•). Error bars (1-σ uncertainty
of the fit) are of the size of the plot symbols.
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A.3 Pixel-Noise

The uncertainty caused by the tracking itself is not the only source of errors. Images taken
with a digital camera are subject to noise which originates from the finite temperature of
the chip. This temperature heats the pixels in the chip and causes small currents to occur
which in turn simulate an incoming intensity. Since the source of this intensity is Gaussian
(white noise), the pixel-noise appears as Gaussian distributed intensity values superimposed
on all pixels, which are characterized by a certain width of their distribution. Due to the
random nature of this noise, it is not possible to substract it. The only possibility is to
learn about the quantity of the noise and the restrictions it imposes on resolving particle
positions and particle motion.
Noise is simulated in the artificial images from the previous section by adding an array of
random intensity values to the original image arrays. Then each pixel has the intensity
Ĩ(x, y) = I(x, y) + Inoise. Noise levels of 2 − 20 in steps of 2 in units of intensity (with a
maximum intensity of 255) where chosen, yielding 10 noise levels. Each data set from the
former section with 12 different values of particle displacement and 17 different values of
particle size, was superimposed with each of the 10 noise levels. Additionally, data sets
for all 17 particle sizes for two more simulated particle motions 0.202 px and 0.285 px
(corresponding to 5 and 10 eV) where generated and analyzed as noiseless and noisy data.
This gives a total of 238 data sets without noise, and 2380 with different noise levels, each
set consisting of 10 images. For each data set, the original, real particle coordinates are
known. Then the same analysis as in the last chapter was performed on all 2380 data sets.

Error in the Coordinates Particle coordinates were tracked for each set of images
and the deviation of tracked positions to real position is calculated. Instead of analyzing
the data in dependence on the width σ as it was done before, the number of pixels per
particle is taken as the particle size. In real data, the width of the intensity distribution
of the particle image is not known, the only quantity which can be estimated easily is the
number of illuminated pixels per particle. Now the error in the coordinates is presented as
the histograms of the error for particle sizes of 2-11 pixels for all noise levels, and for the
data without noise, in Fig. A.11. Noise levels are distinguished by colors. The noiseless
data (dark violet lines) have clearly a non Gaussian distribution, as already found in former
chapters. For small particles and low noise levels, the histograms are also not Gaussian.
The shape of the distributions becomes more and more normal with increasing noise and
particle size. Particle with sizes NP ≥ 5 px and noise levels of ≥ 6 have a Gaussian shaped
histogram of the errors, while from NP ≥ 10 px on, any noise level leads to the statistical
error distribution. An exception exists for the particle size NP = 4: a noise level of 4
already causes the error histogram to have a Gaussian shape. This is likely due to the
geometrical influence a central symmetric quadratic shape of 4 pixels has on the particle
center calculation.
To obtain a rough estimate on the quantity of the errors, Gaussian distributions were fitted
to all histograms, and their standard deviations are plotted in Fig. A.12, representing the
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mean error. The non-normal shape of the histograms at low noise levels and small NP has
to be kept in mind when interpreting or using this error values.

Error in the Displacements The errors for particle displacements are calculated as
before by tracing particles from frame to frame and subtracting the measured displacements
from the real displacements. The histograms of the errors are analyzed. An example for the
shape of the histograms is shown in Fig. A.13 for mean particle displacements from frame
to frame of ∆ξ = 0.029 px. All histograms could be fitted well by Gaussian distributions.
The distributions for noiseless data were already investigated in the last chapter. The noisy
data yield a statistical error, increasing with increasing noise level and particle size. For
other values of the defined particle motion ∆ξ, the histograms were always Gaussian, too,
and fits yield the widths of the error histograms as the estimate for the average error. The
error in particle displacements is statistical, as it was already found for the noise-free data.
The widths of all error distributions are plotted in Figs. A.14 and A.15 vs. the noise levels,
color-coded for the different particle sizes. One plot panel represents one particle motion
range in units of px. For slow particles, i.e. particle whose coordinates were calculated
with a low ∆ξ, the error increases with increasing noise level. For faster particles, the
error at low noise levels seems to increase especially for small particles, until at the highest
displacements from frame to frame (corresponding to 5 eV and 10 eV in the example in
Chap. A.2), particle with sizes ≤ 4 pixels have the largest errors in displacements at noise
levels< 6. Particles with only 2 pixels (dark violet line) stand out with a very small error for
small displacements. This is again the effect of pixel-locking, leading to a lot of measured
displacements close to 0. For low noise levels, the error is therefore practically of the
magnitude of the real displacements, while for large noise levels, the motion is completely
masked by the statistical, superimposed noise, and the errors seem not to change very
much with increasing noise.
To emphasize the effect of the particle displacement, which in real data would be the par-
ticle temperature, the same error values are plotted vs. the average particle displacement
separately for each noise level in Figs A.16 and A.17. The errors for different particle sizes
are again color-coded.
One can see from all 4 figures in summary, that:

1. The error in general increases with decreasing particle size (see different colored
curves)

2. The error increases with increasing noise level, with a steeper increase at lower noise
levels

3. The error for small particles is influenced mostly by the particle “temperature”, and
of the magnitude of the real particle displacement from frame to frame as an effect
of pixel locking. This leads to the very high error for low noise and small particles
with a high temperature (best seen in Fig. A.15n)
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Figure A.11: Distribution of errors of particle coordinates with noise added. Noise levels
are 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 (in units of intensity with a maximum intensity of 255).



A.3 Pixel-Noise 151

Figure A.12: Mean error in the particle coordinates vs. pixel-noise level for different
particle sizes. Particle sizes are defined as the number of illuminated pixels per particle.
The mean error is estimated from the Gaussian widths of the histograms.

4. At large noise levels, the errors increase very slowly with further increasing noise

The most important result of the simulations and statistics is that the errors of particle
coordinates and displacements, or velocities, become statistical in the presence of pixel
noise.



152 A. Estimation of Uncertainties in the Particle Coordinates

Figure A.13: Distribution of errors of particle displacements from frame to frame with
noise added. Noise levels are 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 (in units of intensity with a
maximum intensity of 255). The average particle displacement was ∆ξ = 0.029 px.
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Figure A.14: Average error of particle displacements vs. pixel-noise level for different
simulated particle motion of the quantity 0.014 px to 0.070 px. Number of pixels per
particle are color-coded.
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Figure A.15: Average error of particle displacements vs. pixel-noise level for different
simulated particle motion of the quantity 0.075 px to 0.285 px. Number of pixels per
particle are color-coded.
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Figure A.16: Average error of particle displacements vs. simulated particle motion for
different pixel-noise levels 0-10 in units of intensity. Number of pixels per particle are
color-coded.
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Figure A.17: Average error of particle displacements vs. simulated particle motion for
different pixel-noise levels 12-20 in units of intensity. Number of pixels per particle are
color-coded.



A.3 Pixel-Noise 157

A.3.1 Noise in Real Images

To use the results of the former chapters for the magnitude of uncertainties, one needs to
know the particle size in pixels and the value of the pixel noise. Then the error for a real
measurement is given by the error calculated above for the respective values. The number
of illuminated pixels per particles is determined during particle tracking. Two methods to
estimate the quantity of the pixel noise in real data are introduced in the following. The
first is the simple case applicable for images with a background noise. The second method
is needed in case the background was cut off during recording.

A.3.2 Pixel-Noise from Background

If there is background noise in the images in regions between illuminated particles, the noise
can be estimated as the width of the distribution of intensity values below the threshold
chosen for particle identification. This is done for a larger amount of consecutive images
of a measurement to get good statistical results. The widths obtained from the individual
frames are averaged afterwards.
A method to decrease pixel noise is to average consecutive images as to their intensity
values. Each pixel is subject to the same quantity of pixel noise, represented as random
values taken from the same Gaussian distribution. The addition of the intensity values of
two pixels is equivalent to the convolution of two Gaussians with the same width. The
Gaussian distribution is invariant against convolutions, therefore this addition leads to a
new, smeared out Gaussian noise distribution with a width scaled by a factor of

√
2. By not

only adding images, but averaging them, all intensity values, and also the width are divided
by the number n of images used for averaging, and the resulting noise distribution has the
original width divided by

√
n. Therefore, averaging consecutive images can significantly

decrease pixel noise and lower the statistical measurement uncertainties.

A.3.3 Pixel-Noise from Intensity Fluctuations

Sometimes it is not possible to obtain a pixel-noise distribution from the background, e.g.
if there was a cutoff intensity set during recording, or if the background is too dark, which
often happens at very high frame rates (short exposure times). Nevertheless, to obtain
an estimate of the uncertainties, the intensity fluctuations of individual particle images
from one frame to the next are considered [117]. At high frame rates the particles in an
undisturbed crystal move only a very small distance from one frame to the next. Therefore,
one can assume that the particle does not move into regions with different illumination
during this time, nor does the particle change its height within the laser sheet.
Then the total intensity Itot,k(t) of all pixels NP assigned to a particle should not change
from one frame to the next. Any fluctuations observed are assumed to be due to pixel
noise.
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The difference ∆I = Itot,k(t2)− Itot,k(t1) for particle k is calculated for consecutive frames
as long as its number of pixels stays constant. For good statistics, the largest possible
amount of frames and particles of a measurement should be considered. The distribution
of the ∆I of all particles with the same number of pixels N is then fitted by a Gaussian
function; examples are shown in Fig. A.18. If a particle changed its number of pixels from
one frame to the next, it was omitted. This procedure yields values for the pixel noise for
different sizes of particles. The width of the fitted distributions, divided by

√
2NP , is taken

as the magnitude of the error. The factor 1/
√

2NP comes from Gaussian error propagation.
The errors for different particle sizes should be equal since they all come from the same
pixel noise. All those were averaged where the number of points (the number of available
particles with a certain size) was large enough to have a reliable statistical result. This
then gives an estimate for the pixel noise in that peculiar experiment. Fig. A.19 shows the
results for the experiments which were presented in this thesis.

Figure A.18: Example of a histogram of ∆I(NP ) and the Gaussian fit for NP = 6 (left)
and NP = 1 (right). In the right plot, the red line is a fit without considering the central
peak.
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Figure A.19: Pixel noise as the standard deviations of the Gaussian fits to intensity fluctu-
ation of particles consisting of NP pixels, divided by

√
2 ·N . For the averaged value of the

pixel noise only values within the dashed lines were used. The data are from experiments
rI (a) and rII (b) of the recrystallization experiments, and the two data sets used in the
calculation of the coupling strength I (c) and II (d).
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Appendix B

Bond Orientational Order

To get an idea of the influence of non-ideal crystal structures on the behavior of the bond
correlation function g6(r), an artificial crystal with 4020 particles is generated and different
transformations are applied to the particle coordinates to simulate density gradients, do-
main forming and random particle motion. Then the bond correlation analysis is performed
on the simulated data and the shape of g6(r) is compared to bond correlation functions
obtained in the experiments.
The lattice vectors r which point to the respective lattice sites of an ideal hexagonal lattice
are given by:

(B.1) r = n1a + n2b with n1, n2 ∈ Z

and the elementary lattice vectors

(B.2) a = ∆

(
1

0

)
, b = ∆

(
0.5

sin (π/3)

)
Around each lattice site a unit cell is defined as the Wigner-Seitz cell, i.e. this cell is the
smallest unit to choose so that still all space between the lattice sites is covered by adjacent
cells.
The bond correlation function g6(r) gives information on the nature of the long range
orientational order. Its shape indicates how uniform the bond angles are directed across
the system when bonds separated by a distance r are compared with each other. g6(r) is
defined as

(B.3) g6(r) =

∣∣∣∣∣∣ 1

NB

NB∑
l=1

1

n(l)

n(l)∑
k=1

exp{i · 6(θ(rk)− θ(rl))}

∣∣∣∣∣∣
with NB the total number of bonds in the crystal, n(l) the number of bonds at the distance
r from bond l and θ(rk,l) being the respective angles of bonds at rk,l to an arbitrary axis.
Note that g6(r) is always 1 for a perfect hexagonal lattice by definition. The bond order
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parameter Ψ6 will be used to measure the local quality of the hexagonal structure. It is
calculated from the complex quantity Ψ6

Ψ6,k =
1

n

n∑
j=1

e6iθkj = Ψ6,k · e{iφ}(B.4)

φ = arctan {=(Ψ6,k)/<(Ψ6,k)}(B.5)

and is also 1 for the ideal hexagon.

B.1 Ideal Crystal

In the ideal crystal, g6(r) = 1 for all r. All unit cells are perfect hexagons and their
orientation is uniform. Fig. B.1a shows the map of the lattice (left image) with the cells
encircled by white lines. The color corresponds to the bond order parameter Ψ6, calculated
for each cell (brighter colors are closer to ideal hexagons), and the arrows point into the
direction of the argument φ of Ψ6. In the right column of Fig. B.1, the corresponding g6(r)
is plotted.

B.2 Compression

The crystal was compressed in x-direction (horizontal axis in the figures) by x = 0.6xideal.
The orientation of cells is still uniform in Fig. B.1b, but the darker color shows a decrease
in local order due to the distortion of the cells. Further g6(r) dropped to ≈ 0.4 but is still
constant.
The results for a compression with a symmetric gradient x = xideal±0.1x2

ideal in x-direction
is presented in Fig. B.1c. Due to the better hexagonal structure in the middle region
the bond correlation function is constant at ≈ 0.7, which is higher than in the linear
compression. The orientation of cells is uniform except in thin stripes along the outer
vertical edges.

B.3 Rotation of Areas of the crystal

The crystal is now divided into 4 equally sized parts and those parts are rotated with
respect to each other by an angle dθ, where rideal, θideal are the polar coordinates of the
particle in the ideal lattice:(

x

y

)
= rideal

(
cos (θideal + dθ)

sin (θideal + dθ)

)
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Figure B.1: Maps of particle positions of artificial crystals (left column) and corresponding
g6(r) (right column). The unit cells are color coded with respect to their bond order
parameter (lighter colors mean a higher value of Ψ6). The arrows show in the direction of
φ. a) Ideal lattice; b) Linear compression along x (horizontal direction); c) Compression
with a gradient along the x-axis.
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Figure B.2: Maps of particle positions of artificial crystals (left column) and corresponding
g6(r) (right column). The unit cells are color coded with respect to their bond order
parameter (lighter colors mean a higher value of Ψ6). The arrows show in the direction
of φ. Red and blue dots mark positions of 5-fold and 7-fold defects, resp. d) Rotation of
domains by small angles ≤ 1◦; e) Rotation of domains by large angles of 15◦.

Fig. B.2d shows the case of a small angle rotation with angles ≤ 1◦. The effect is nearly
non-existent, apart from a small decrease of g6(r) for all r, and the appearance of slightly
less perfect unit cells in the domain boundaries.
At rotation angles of 15◦ (Fig. B.2e) the domain boundaries contain defects symbolized by
red (5-fold) and blue (7-fold) dots. The orientation of unit cells differs considerably from
one domain to the next. The local order is still high, and does not seem to be affected
much by the rotation, except at the domain boundaries. A linear decay of g6(r) is clearly
visible in the right part of Fig. B.2e.

B.4 Random Particle Positions

A small random component ξ is added to the particle coordinates,
(
x
y

)
=
(
xideal
yideal

)
+ ξ.

In this particle distribution, g6(r) stays practically constant at less than 0.1 from the
beginning. A large amount of defects exist, and there is no local order or preferred direction
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Figure B.3: Maps of particle positions of artificial crystals (left column) and corresponding
g6(r) (right column). The unit cells are color coded with respect to their bond order
parameter (lighter colors mean a higher value of Ψ6). The arrows show in the direction of
φ. Red and blue dots mark positions of 5-fold and 7-fold defects, resp. f) Random particle
distribution; g) Random particle positions with a small number of ordered domains.

(Fig. B.3f).
A small number of highly ordered domains were inserted into the randomly distributed
system, shown in Fig. B.3g. It rises the magnitude of g6(r) to ≈ 0.3, independent of r.

B.5 Experimental Bond Correlations

The results for the artificial crystals are compared to two images from the experiment
(Fig. B.4h,i). The first example is from a state with high disorder (Fig. B.4h) and a large
defect fraction. Here g6(r) drops to 0 fast within less than 3 interparticle distances. The
second example Fig. B.4i is taken from a much more crystalline state. g6(r) drops linear
with r, as in the case of domain rotation by large angles (Fig. B.2e). In the particle map,
one can see the existence of domains with different orientation of unit cells, separated by
chains of defects. Apparently the linear decay of g6(r) is connected to the domains with
different lattice orientation.
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Figure B.4: Maps of particle positions of experimental data (left column) and corresponding
g6(r) (right column). The unit cells are color coded with respect to their bond order
parameter (lighter colors mean a higher value of Ψ6). The arrows show in the direction
of φ. Red and blue dots mark positions of 5-fold and 7-fold defects, resp. ; h) Random
particle distribution, liquid-like state; i) Crystalline state.
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