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Zusammenfassung

Dem vorherrschenden Paradigma zufolge wurden die beobachteten Anisotro-
pien der Mikrowellenhintergrundstrahlung in einer frühen Phase inflationärer
Expansion des Universums erzeugt. Die einfachsten Modelle zur Beschrei-
bung dieser Ära sagen nahezu perfekt Gaussförmige primordiale Fluktuatio-
nen voraus, allerdings können in naheliegender Weise konkurrierende The-
orien formuliert werden, die einen wesentlich höheren nicht-Gaussförmigen
Beitrag erwarten lassen. Damit wird aus der Suche nach Signaturen dieser
Art ein grundlegendes Verfahren, die physikalischen Prozesse während der
inflationären Phase des Universums näher zu bestimmen.

Ziel dieser Arbeit ist es, eine Bayesianische Methode zur Messung des
nicht-Gaussförmigen Anteils lokaler Form in der Mikrowellenhintergrund-
strahlung zu erarbeiten. Bayesianische Statistik legt großen Wert auf eine
konsistente Formulierung des Problems, weiterhin werden die Fehlerbalken
des Messwerts auf der Grundlage des jeweiligen Datensatzes bestimmt. Der
erste Schritt besteht in der Entwicklung eines exakten Algorithmus zur Simu-
lation von Temperatur- und Polarisationskarten der Mikrowellenhintergrund-
strahlung mit beliebigem nicht-Gaussförmigen Beitrag. Ein Optimierungs-
schema erlaubt es, die Präzision der Simulationen vorherzusagen und aktiv
zu steuern. Auf seiner Grundlage kann die numerische Effizienz des Pro-
gramms gegenüber bisherigen Implementationen um eine Größenordnung
verbessert werden. Der nächste Schritt gilt der Entwicklung des Formalismus
zur Bayesianischen Extraktion des Anteils an nicht-Gaussförmigkeit. Wir be-
nutzen einen Hamiltonschen Monte Carlo Algorithmus, um Zufallszahlen von
der zugrunde liegenden Wahrscheinlichkeitsverteilung zu ziehen. Mit Hilfe
dieser Zufallszahlen ist es möglich, die a-posteriori-Wahrscheinlichkeitsdichte
des Anteils an nicht-Gaussförmigkeit in Abhängigkeit der Daten zu konstru-
ieren. Die Anwendbarkeit des Schemas wird anhand eines vereinfachten
Datenmodells demonstriert. Abschließend implementieren wir die nötigen
Gleichungen für ein realistisches Experiment zur Vermessung der Mikro-
wellenhintergrundstrahlung, mit der Fähigkeit, anisotroper Rauschcharakte-
ristik und lückenhafter Himmelsabdeckung Rechnung zu tragen. Ein direkter
Vergleich zwischen herkömmlichem frequentistischen Schätzer und exaktem
Bayesianischen Ansatz zeigt die Vorteile der neu entwickelten Methode. Bei
einem signifikanten Nachweis eines nicht-Gaussförmigen Beitrags verhält sich
der Schätzer nicht optimal – das Bayesianische Schema hingegen liefert im-
mer die engstmöglichen Fehlergrenzen.
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Abstract

The tremendous impact of Cosmic Microwave Background (CMB) radia-
tion experiments on our understanding of the history and evolution of the
universe is based on a tight connection between the observed fluctuations
and the physical processes taking place in the very early universe. Accord-
ing to the prevalent paradigm, the anisotropies were generated during the
era of inflation. The simplest inflationary models predict almost perfectly
Gaussian primordial perturbations, but competitive theories can naturally
be constructed, allowing for a wide range in primordial non-Gaussianity. For
this reason, the test for non-Gaussianity becomes a fundamental means to
probe the physical processes of inflation.

The aim of the project is to develop a Bayesian formalism to infer the
level of non-Gaussianity of local type. Bayesian statistics attaches great im-
portance to a consistent formulation of the problem and properly calculates
the error bounds of the measurements on the basis of the actual data. As
a first step, we develop an exact algorithm to generate simulated temper-
ature and polarization CMB maps containing arbitrary levels of local non-
Gaussianity. We derive an optimization scheme that allows us to predict
and actively control the simulation accuracy. Implementing this strategy,
the code outperforms existing algorithms in computational efficiency by an
order of magnitude. Then, we develop the formalism to extend the Bayesian
approach to the calculation of the amplitude of non-Gaussianity. We im-
plement an exact Hamiltonian Monte Carlo sampling algorithm to generate
samples from the target probability distribution. These samples allow to
construct the full posterior distribution of the level of non-Gaussianity given
the data. The applicability of the scheme is demonstrated by means of a
simplified data model. Finally, we fully implement the necessary equations
considering a realistic CMB experiment dealing with partial sky coverage
and anisotropic noise. A direct comparison between the traditional frequen-
tist estimator and the exact Bayesian approach shows the advantage of the
newly developed method. For a significant detection of non-Gaussianity, the
former suffers from excess variance whereas the Bayesian scheme always pro-
vides optimal error bounds.
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Chapter 1

Introduction

1.1 A cosmic review

Since the 1970’s, theoretical cosmology has made substantial progress in pro-
viding a comprehensive and consistent description of the history of the uni-
verse. With the development of new concepts in particle physics—in partic-
ular the gauge theories of weak, electromagnetic, and strong interactions—it
was possible to extrapolate the matter equation of state beyond nuclear den-
sities. Thereby, the properties of the elementary particles under extreme con-
ditions were realized to differ fundamentally from what we observe in the low
energy limit. Around that time, the concept of unifying weak, electromag-
netic, and strong forces in phase transitions at high energies was introduced,
pointing towards the fact that also the understanding of the fundamental
interactions had to be revised.

Roughly one decade later, observational cosmology has entered its golden
age. With the advent of novel technologies, new experiments became fea-
sible resulting in a vastly increasing amount of astronomical data. For ex-
ample, the introduction of large telescopes with sensitive spectrographs has
led to the compilation of comprehensive galaxy catalogs, containing not only
the angular position of the sources, but also additional redshift information
(e.g. the Center for Astrophysics Redshift Survey, Huchra et al. 1983; the
Southern Sky Redshift Survey, da Costa et al. 1998; the 2dF Galaxy Redshift

Survey, Colless 1999; the Sloan Digital Sky Survey, York et al. 2000; or the
6df Galaxy Survey, Jones et al. 2004). By means of these catalogs, three-
dimensional maps of the galaxy distribution could have been generated in
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Figure 1.1: Distribution of galaxies. We show a map of the large scale
structure constructed out of the 2dF Galaxy Redshift Survey galaxy catalog.
The slices are 4◦ in thickness (image courtesy of Peacock et al. 2001).

order to obtain a statistically meaningful representation of the large scale
structure of the universe (Fig. 1.1). Another pillar of cosmology is the ob-
servation of the cosmic microwave background (CMB) radiation (Fig. 1.2).
After the first detection by Penzias & Wilson (1965), detailed measurements
of its anisotropies have turned out to be one of the most important sources of
information in cosmology (e.g. by the Cosmic Background Explorer satellite,
Smoot et al. 1992; Wright et al. 1992; the Balloon Observations of Millimetric

Extragalactic Radiation and Geophysics experiment, Netterfield et al. 2002;
Sievers et al. 2003; the Wilkinson Microwave Anisotropy Probe satellite, Ben-
nett et al. 2003a; Spergel et al. 2003; the Arcminute Cosmology Bolometer

Array Receiver, Kuo et al. 2004; or the Degree Angular Scale Interferome-

ter, Leitch et al. 2005). With the increasing amount of observational data,
it became possible to test the predictions of various theoretical models in
detail. As a result, cosmology has evolved from a merely speculative to an
evidence-based science over the last century.
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Figure 1.2: The Cosmic Microwave Background radiation. We illustrate the
CMB radiation full-sky map at 33 GHz (upper panel) and 94 GHz (lower

panel) as observed by the Wilkinson Microwave Anisotropy Probe in galactic
coordinates. The frequency dependent contribution of secondary sources due
to galactic dust, synchrotron, and free-free emission is clearly visible at low
latitudes.
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The collation of fundamental results from theory and experiments has
finally led to the formulation of the prevalent cosmological paradigm, the so
called Λ-Cold Dark Matter (ΛCDM) cosmology (e.g. Linde 1990b; Dodelson
2003; Mukhanov 2005). That is, the evolution of the universe, which emerged
in a hot big bang from an initial singularity, is governed by its dark energy
and cold dark matter content. The theory is based on the cosmological prin-

ciple, the cornerstone of modern cosmology, which postulates homogeneity
and isotropy of the universe on scales larger than about 100 Mpc. A time-
line of the history of the universe according to the standard model can be
summarized as follows:

• Planck epoch, t < 10−43 s.
Close to the Planck scale, the classical description of space-time brakes
down. Here, a non-perturbative theory of quantum gravity is required.
Although promising candidate theories exist (e.g. string theory, loop
quantum gravity), the physical processes at the highest energies (T >
1019 GeV ) remain to be understood.

• Epoch of grand unification, t ≈ 10−36 s.
According to theories of grand unification (GUT), at energies above
T ≈ 1016 GeV all fundamental forces except for gravity are unified.
Topological defects and many exotic particle species have probably
been produced in this era. The theory of general relativity becomes
appropriate to describe the dynamics of the universe.

• Electroweak epoch, t ≈ 10−10 s.
The strong force has now decoupled from the electroweak force in a
phase transition. Baryon and fermion number violating processes are
taking place. The energy scale of T ≈ 103 GeV is directly accessible to
experiments conducted on present day accelerators.

• Quark epoch, t ≈ 10−5 s.
After electroweak symmetry breaking, the fundamental forces have
taken their present form. The universe was filled with a hot quark-
gluon plasma, containing quarks, leptons and their antiparticles. Ac-
cording to the standard model of particle physics, the particle masses
emerge from symmetry breaking via the Higgs mechanism.

• Hadron epoch, t ≈ 10−1 s.
The free quark-gluon plasma becomes confined in baryons and mesons.
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The ratio of neutrons to protons freezes out. At about one second after
the big bang, neutrinos decouple and start to stream freely through the
universe.

• Big bang nucleosynthesis, t ≈ 102 s.
As nuclear reaction rates level off, the primordial nucleosynthesis sets
in and starts to burn light elements. Besides 25 % of helium, traces of
deuterium, lithium, and beryllium have been produced.

• Photon epoch, t ≈ 109 s.
Due to the large entropy of the universe, its dominating constituent
remains radiation until approximately 60 000 yr after the big bang. Fi-
nally, after about 380 000 yr, atoms form and the universe becomes
transparent, i.e. the mean free path of the CMB photons now is larger
than the Hubble radius.

The fundamental parameters of the standard model of cosmology as
obtained from a joint analysis of Wilkinson Microwave Anisotropy Probe

(WMAP) data, baryon acoustic oscillations (BAO), and supernova (SN) ex-
periments, are provided in table Table 1.1.

In the following, we briefly review the cosmological standard model, some
of its problems, and their solutions as proposed within the framework of
inflation. An overview with the focus on the discussion of inflation or the
CMB radiation is given by, e.g., Mukhanov et al. (1992); Frieman (1994);
Lyth & Riotto (1999); Brandenberger (1999); Bartolo et al. (2004); Burgess
(2007); Linde (2008); Baumann (2009); Kinney (2009); Bartolo et al. (2010);
Brandenberger (2010); Chen (2010); Liguori et al. (2010); Wands (2010). See
also the textbooks of, e.g., Linde (1990b); Liddle & Lyth (2000); Dodelson
(2003); Mukhanov (2005); Weinberg (2008).

1.2 Standard cosmology

1.2.1 Overview

Most of the cosmological observations can be explained within a simple hot
big bang model, where the universe emerged out of an initial singularity with
infinite temperature and density. Over time, the subsequent expansion led
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Table 1.1: Cosmological parameters from WMAP7 + BAO + SN in
ΛCDM cosmology (Komatsu et al. 2010)

Description Symbol Value

Hubble constant H0 69.9± 1.3 km s−1 Mpc−1

Age of the universe t0 13.8± 0.1 Gyr
Baryon density Ωb 0.0461± 0.0015
Dark matter density Ωc 0.232± 0.013
Dark energy density ΩΛ 0.722± 0.015
Curvature fluctuation amplitude1 ∆R (2.46± 0.09)× 10−9

Scalar spectral index ns 0.960± 0.13
Redshift of radiation-matter equality zequ 3249± 83
Redshift of decoupling zdec 1088.4± 1.1

1at k = 2 · 10−3Mpc−1

to an adiabatic cool down to the temperature we observe nowadays in the
CMB radiation, TCMB = 2.73 K (Fixsen et al. 1996).

The quantitative mathematical treatment of this process is based on
Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-times, the most gen-
eral ansatz in agreement with the fundamental symmetries postulated by
the cosmological principle (Friedmann 1922, 1924; Lemâıtre 1927; Robertson
1935, 1936a,b; Walker 1935). Here, the metric gµν takes a simple form in
comoving spherical coordinates (r, θ, φ),

ds2 = gµνdxµdxν

= dt2 − a(t)2

[
dr2

1− κr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1.1)

where a is the time dependent scale factor, and the parameter κ = −1, 0, 1
determines the spatial curvature of the universe to be open, flat, or closed,
respectively.

Now, it is straightforward to derive Hubble’s law. Consider an object
locally at rest, the physical distance to the origin reads

xproper = a(t) xcomoving . (1.2)
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Using an overdot to indicate a derivative with respect to physical time, we
obtain for the apparent motion

ẋproper = ȧ xcomoving (1.3)

=
ȧ

a
xproper (1.4)

= H xproper , (1.5)

where we have introduced the Hubble parameter H ≡ ȧ/a as factor of pro-
portionality. The redshift of objects observed over cosmological distances
can therefore be attributed to a global expansion of the universe (Lemâıtre
1927; Hubble 1929).

The dynamical evolution of the universe is governed by the Einstein equa-
tions (Einstein 1916),

Rµν −
1

2
gµνR − Λgµν = 8πG Tµν . (1.6)

Here, the indices run from µ, ν = 0, . . . 3, Rµν and R is the Ricci tensor
and Ricci scalar, respectively, and the speed of light was set to unity. We
further introduced the cosmological constant Λ, Newton’s constant G, and
the energy-momentum tensor, denoted by Tµν . Considering a homogeneous
and isotropic universe (i.e. T = diag(ρ,−p,−p,−p), where ρ is the energy
density and p the pressure), we obtain the Friedmann equations (Friedmann
1922, 1924),

(
ȧ

a

)2

+
κ

a2
=

8πG

3
ρ +

Λ

3
(1.7)

ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
. (1.8)

Combining the two Friedmann equations, we derive the energy conserva-
tion equation,

ρ̇ + 3H(ρ + p) = 0 , (1.9)

which may also be written in terms of the of covariant derivative of the
energy-momentum tensor, T µν

;ν = 0.
Regarding the constituents of the universe as perfect fluid at rest and

parametrizing the equation of state by p = wρ, we obtain the scaling relation
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of the energy density for different particle species in an evolving universe from
Eq. 1.9. For cold, non-relativistic matter (w = 0), we find

ρm ∝ a−3 , (1.10)

whereas for radiation (w = 1/3), we obtain a different scaling,

ργ ∝ a−4 . (1.11)

The third relevant case we consider is a cosmological constant with equation
of state w = −1. Here, we get

ρΛ = const. , (1.12)

i.e. the energy density is independent of the evolution of the scale factor. In
an expanding universe with Λ > 0, the cosmological constant will therefore
eventually dominate over all other species. For the cosmological parameters
as provided in Table 1.1, we sketch the evolution of ρm, γ, Λ in Fig. 1.3.

1.2.2 Problems of standard cosmology

Whereas being very successful in explaining important fundamental proper-
ties of the universe, the standard model of cosmology is faced with several
serious issues that have been the driving force for a major revision. We will
discuss three of them in greater detail in the following.

One problem is known as flatness problem, the fact that the total en-
ergy density of today’s universe is remarkably close to the critical density,
−0.018 < Ωtot− 1 ≡ ρtot/ρcrit− 1 < 0.006 at 2-σ level (Komatsu et al. 2010).
This observation has no natural explanation within the standard model of
cosmology. Setting Λ = 0 for simplicity, we rewrite Eq. 1.7 in terms of the
critical density ρcrit ≡ 3H2/8πG,

ρ a2 − ρcrit a
2 =

3κ

8πG

⇔ Ωtot − 1

Ωtot
ρ a2 =

3κ

8πG
= const. (1.13)

For an universe dominated by matter or radiation, the product ρ a2 scales
as ρm a2 ∝ a−1 or ργ a2 ∝ a−2, respectively (Eq. 1.10 et seq.). In order to
explain the present day value of Ωtot ≈ 1, the initial energy density had to
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be extremely close to the critical density. Extrapolating backwards in time
to an energy of about T = 1015 GeV , for example, the deviation from unity
was bounded by roughly

|Ωtot − 1|
Ωtot

< 10−50 , (1.14)

requiring an extreme amount of fine-tuning.
Another issue is the so called horizon problem. Observations of the CMB

radiation have revealed a black body spectrum that is extremely isotropic
over the entire sky, with characteristic fluctuations of the order 10−5 (Jarosik
et al. 2010). A comparison between the past and the future light cone to
recombination,

lp =

∫ t0

trec

dt

a

≈ 3 t
2/3
0 (t

1/3
0 − t1/3

rec )

lf =

∫ trec

0=tBB

dt

a

≈ 3 t
2/3
0 t1/3

rec , (1.15)

reveals the former to be considerably larger than the latter, lp ≫ lf (see also
left-hand panel in Fig. 1.4). This poses a serious problem within standard cos-
mology; according to Eqs. 1.15, the observable universe would have emerged
from a huge number of causally disconnected regions which had never been
in thermal equilibrium with each other. The almost perfect isotropy found
in CMB radiation experiments remains unexplained.

The related problem of structure formation in standard cosmology is
based on observational evidence for a nonrandom correlation between clus-
ters of galaxies on scales as large as 100 Mpc and beyond (see, e.g., Eisenstein
et al. 2005). If the initial density perturbations were produced before recom-
bination, the distance between them is too large to explain the correlation
among them by causal processes (see right-hand panel in Fig. 1.4). This
issue appears in standard FLRW cosmologies, as the Hubble radius increases
faster than space expands. Therefore, primordial perturbations always enter
the horizon from the outside, and on no account leave it from the inside.
Furthermore, gravity alone turns out to be too weak to provide the seeds
for structure formation on the larges scales after recombination. Hence, the

12



x
 p

t

 t
 BB 

 −

 t
 REC

 −

 t
 0  

 −

 l f

 l p

x
 c

t

 t
 BB 

 −

 t
 REC

 −

 t
 0  

 −

 d c

 l f = H −1

Figure 1.4: Qualitative space-time diagrams in standard cosmology. The
horizon problem in physical coordinates versus time (left panel): The future
light cone lf from big bang to recombination is much smaller than the past
light cone lp from today to recombination. The structure formation problem
in comoving coordinates versus time (right panel): The comoving distance dc

between two clusters is larger than the Hubble radius c H−1 at recombination.
(Plots after Brandenberger 1999.)

question of the origin of the primordial density perturbations and the ob-
served large scale correlation cannot be answered satisfactorily within the
framework of standard cosmology.

It is important to note that the problems discussed so far do not render
the standard model of cosmology invalid, they only lack a sound explanation.
The history of the universe can consistently be explained if we postulate a set
of carefully adjusted initial conditions. We need to assume that the universe
began homogeneously on superhorizon scales with exactly the right amplitude
of fluctuations to explain the process of structure formation. Furthermore,
in the beginning, the initial value of the total energy density must have been
extremely close to unity to be consistent with observations. As such an
universe needs an enormous amount of fine tuning, a theory seems desirable
which naturally transforms a wide range of initial conditions to values that
give rise to an universe similar to ours. As we will show in the next section,
inflation is capable of doing so.
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1.3 Inflation

1.3.1 The foundations of inflation

In order to find a natural solution to the problems outlined in Sect. 1.2.2, sci-
entists have revised the standard model of cosmology to include the epoch of
inflation. This theory makes strict predictions about the large scale structure
of the universe on the basis of well understood mechanisms (Guth 1981; Sato
1981; Albrecht & Steinhardt 1982; Linde 1982; Bardeen et al. 1983; Linde
1983; Mukhanov 1985, see also the earlier work of Starobinskǐi 1980).

The key feature of inflationary cosmology is that the scale factor of the
universe underwent a phase of exponential expansion,

a(t) ∝ eHt , (1.16)

where the Hubble parameter H stayed (almost) constant over time. The
expansion was driven by gravity which acted as a repulsive force during
this period. According to the model, inflation set in subsequent to the GUT
phase transition at a temperature of roughly 1015 GeV and was finished about
10−33 s after the big bang.

The postulation of such a period allows to easily address the flatness
problem of standard cosmology (Linde 1982). Inflation strictly predicts the
universe to be flat on cosmological scales, i.e. Ωtot ≡ 1. Any potentially large
curvature that may have existed prior to the phase of accelerated expansion
gets stretched to scales much larger than the Hubble radius and therefore be-
comes unobservable. This fact can be described quantitatively using Eq. 1.7.
Assuming Λ = 0 for simplicity, we rewrite it to read

Ωtot(a)− 1 =
κ

a2H2
. (1.17)

During inflation, a vastly increased while the Hubble parameter H remained
constant; the solution Ωtot = 1 becomes an attractor for any initial spatial
curvature κ. From observations, we find that the scale factor has grown by
more than about 60 e-folds during inflation (Baumann 2009), a constraint
that can also be obtained from entropy considerations (Brandenberger 1999).
Note that we can only provide a lower limit to the expansion rate as an upper
bound can neither be inferred from theory, nor from observations.

Also, the era of inflation offers a natural solution to the horizon problem.
During inflation, the scale factor underwent a phase of accelerated growth,
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Figure 1.5: Same as Fig. 1.4, but revised to include the epoch of inflation
(grayish regions). Solution to the horizon problem in physical coordinates
versus time (left panel): Taking into account a period of exponential expan-
sion, the future light cone lf encloses the past light cone lp. Solution to
the structure formation problem in physical coordinates versus time (right
panel): The distance dc starts out within the Hubble radius, crosses the hori-
zon and re-enters at later time. It never falls outside the future light cone.
(Plots after Brandenberger 1999.)

ä > 0, such that a finally increased much faster than the cosmic time t (see
left-hand panel in Fig. 1.5). As a result, the future light cone from big bang
to recombination expanded exponentially and now easily encloses the past
light cone to recombination. Therefore, the formerly causally disconnected
areas building up the source region of the CMB radiation had been into
contact with each other before.

The problem of structure formation can be explained in a similar fashion
(Fig. 1.5, right-hand panel). According to the theory of inflation, the seeds
present day structure evolved from, were generated by quantum fluctuations
on microscopic scales (Mukhanov & Chibisov 1981; Guth & Pi 1982; Hawking
1982; Starobinskǐi 1982). As these diminutive dimensions get stretched out by
many orders of magnitude, the correlations we observe on the largest scales
naturally emerged out of fluctuations on small patches with well defined
statistical properties.
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1.3.2 A simple inflationary model

As we find inflation to be a very promising candidate to solve several problems
encountered in standard cosmology, we now address the question of how
to realize a phase of exponential expansion on the basis of known physical
processes.

For inflation to be realized successfully, the Friedmann (Eq. 1.7) together
with the continuity equation (Eq. 1.9) constrain the energy density to be
dominated by a fluid with equation of state parameter w = −1. Although
satisfying this condition, dark energy, today’s dominant contribution to the
total energy budget of the universe, could not have been the driving force
behind inflation. As its energy density ρΛ remains constant during expansion,
it was completely negligible in the radiation dominated epoch of the early
universe (Fig. 1.3).

A quantitative calculation of the relevant processes relies on classical gen-
eral relativity as a method to describe space and time, and quantum field
theory (QFT) as a means to describe particle fields and interactions. In gen-
eral, QFT deals with matter fields (fermions, spin 1/2 particles), and bosons
as gauge bosons with spin 1, or scalar fields with spin 0 (e.g. Ryder 1996;
Weinberg 1996; Zee 2003). To discuss the basic properties of the inflationary
mechanism, we review a simple model in greater detail in what follows.

In a simple model, one postulates the existence of a dominating scalar
field φ, the inflaton. We derive its dynamical evolution from the variation
principle assuming the action

S =

∫
d4x
√−g

(
1

2
R + Lφ

)
, (1.18)

where g ≡ det(gµν) is the determinant of the metric, and R the Ricci scalar
(e.g. Mukhanov 2005; Baumann 2009). We suppose a minimal coupling to
gravity which neglects a back-reaction of the metric to the inflaton field.
Variation of the action with respect to the first term results in Eqs. 1.6, the
Einstein equations. The Lagrangian Lφ is constrained by gauge invariance
and renormalizability, and takes the form

Lφ =
1

2
gµν∂µφ ∂νφ− V (φ) , (1.19)

consisting of the canonical kinetic term T ∝ (∂φ)2, and the inflaton potential
V , describing the field’s self-interaction. Obtaining the energy-momentum
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tensor by varying the action with respect to the metric results, for a flat
space-time, in the φ-depended contribution to the pressure and density,

pφ =
1

2
φ̇2 − V (φ) , (1.20)

ρφ =
1

2
φ̇2 + V (φ) . (1.21)

Spatial variations ∇φ have been neglected in the above expressions as they
will be smoothed out shortly after the onset of inflation. The equation of
state of such a scalar field, p = −ρ + φ̇2, shows almost the desired structure.
In the limit of a vanishing kinetic term, i.e. a potential dominated expres-
sion for pressure and energy density, an inflationary epoch can be realized.
Furthermore, the equation of state offers a natural explanation for the end
of inflation. When the kinetic term becomes important, the approximation
w = −1 brakes down and inflation terminates.

The dynamics of the inflaton field is described by the Klein-Gordon equa-
tion

φ̈ + 3Hφ̇ + V ′(φ) = 0 , (1.22)

which shows the same structure as the equation of motion of a harmonic
oscillator with friction term (Linde 1990b). It is now possible to further
quantify the conditions for the potential V under which an inflationary period
can be realized. From the Friedman equations (Eq. 1.7 et seq.), we derive an
expression for the so called slow-roll parameter ǫ,

ä

a
= −4πG

3
ρ (1 + 3w)

= H2
[
1− 3/2 (w + 1)︸ ︷︷ ︸

≡ǫ

]
, (1.23)

which can be expressed in terms of the Hubble parameter,

ǫ = − Ḣ

H2
. (1.24)

To sustain accelerated expansion, ǫ < 1 is mandatory. For inflation to last
long enough, the second time derivative of the inflaton field must be small.
This condition is usually expressed in terms of a second slow-roll parameter,
η,

η ≡ − φ̈

Hφ̇
. (1.25)
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Imposing |φ̈| < |3Hφ̇|, |φ̈| < |V ′| is equivalent to the constraint |η| < 1.
If the above mentioned conditions are met, i.e. ǫ < 1 and |η| < 1, we find

for the dynamical evolution of the variables from Eq. 1.7 and Eq. 1.22

H ≈
√

1

3
V (φ)

≈ const. (1.26)

φ̇ ≈ − V ′

3H
, (1.27)

thus, an exponential increase of the scale factor,

a(t) ∝ eHt , (1.28)

until inflation terminates when finally ǫ(φf ) = 1 is reached. As an example
of a potential fulfilling the requirements, a Coleman-Weinberg type potential
(Coleman & Weinberg 1973) is shown on the left-hand side in Fig. 1.6.

During inflation, the universe expanded by at least a factor of 1030. Its
constituents, i.e. radiation and particles, potentially contributing substan-
tially to the energy density prior to inflation, have been extremely diluted.
At the end of inflation, the temperature had dropped down to essentially zero;
the universe was cold and empty except for the scalar inflaton field. Shortly
afterwards, the inflaton decayed completely and all of its energy was injected
into the particle sector; this epoch is called reheating (Abbott et al. 1982;
Kofman et al. 1994, 1997). During reheating, the temperature increased to
about its original value and the universe was repopulated with the precursors
of present day particles and radiation. We qualitatively sketch the thermal
history of the early universe in the right-hand panel of Fig. 1.6.

Besides from the simple model of a single scalar field as described above,
the era of inflation can be realized within a variety of scenarios which only
need to mimic a scalar condensate in slow-roll regime. For example, in k -
inflation, an exponential expansion is achieved even without a potential term
(Armendáriz-Picón et al. 1999; Garriga & Mukhanov 1999). In this models,
the inflaton Lagrangian Eq. 1.19 gets modified to contain higher order (i.e.
non-quadratic) terms,

Lφ → L̂φ = P (φ, X) , (1.29)

where P is a functional of X ≡ gµν∂µφ ∂νφ. To obtain a slow variation of the
field, these models impose a limit to the inflaton “speed of sound”, which
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Figure 1.6: Qualitative sketch of inflation. Left panel : The inflaton field
evolves slowly from its initial false vacuum state at φi to the minimum of the
potential at φ0. Inflation ends at φf , when the kinetic energy of the inflaton
can no longer be neglected. Right panel : Prior to inflation, the temperature
decreases moderately with time, T ∝ a−1 ∝ t−1/2. With the onset of the
exponential expansion at ti, particles and radiation get rapidly diluted and
the universe becomes cold and empty. After tf , the end of inflation, reheating
increases the temperature to about its original value.

differs generically from the speed of light. In another class of models, the
assumption is relaxed that the inflaton field drives both the expansion of the
universe and the generation of the primordial perturbation. Motivated by
particle physics, in multiple field inflationary models (Linde 1990a; Copeland
et al. 1994) at least one additional scalar field χ is introduced which may
couple to the inflaton via a modified potential term in the Klein-Gordon
equation (Eq. 1.22),

V ′(φ)→ V̂ ′(φ, χ) . (1.30)

Likewise, by adding corrections to the Einstein-Hilbert term of the action
Eq. 1.18, it is possible to realize inflation entirely within the theory of gravity
(Barrow & Ottewill 1983; Starobinskǐi 1983). With the introduction of higher
order spatial curvature terms,

S → Ŝ =

∫
d4x
√−g

(
1

2
R + c1R

2 + c2RµνR
µν + . . .

)
, (1.31)
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the equations of motions are no longer of second order only. Thereby, the
gravitational field has gained extra degrees of freedom, generically including
a scalar field that can imitate the role of the inflaton.

1.4 Inflation and non-Gaussianity

1.4.1 Classification scheme

The properties of the universe after the epoch of inflation are, to a large
extent, independent of the details of its actual physical realization. This, on
the one hand, makes inflation a robust theory with strict and well testable
predictions. On the other hand, if we would like to learn more about the
underlying scenario, we are forced to develop and conduct sophisticated ex-
periments. On closer inspection, it turns out that there are three general
tests inflationary models can be put to: measurements of the tilt of the pri-
mordial power spectrum, the test for relic gravitational waves, and the search
for primordial non-Gaussianity.

If the inflaton was responsible for both driving the exponential expansion
and generating the primordial perturbations, measurements of the spectral
tilt and its scale dependence turn out to be a valuable tool to distinguish
between various slow-roll models. A deviation from the Harrison-Zeldovich
spectral index ns = 1 has been successfully proven by WMAP data (see
Table 1.1) and experiments at the sensitivity level of the Planck satellite
mission will significantly constrain the functional form of the inflaton poten-
tial. However, if the assumption of a single field in slow-roll approximation
is relaxed, measurements of the spectral tilt may lose their predictive power
to a large extent (Bartolo et al. 2004).

During a de Sitter phase of accelerated expansion, long wavelength grav-
itational waves get naturally produced (e.g. Starobinskǐi 1979; Fabbri & Pol-
lock 1983; Abbott & Wise 1984; Sahni 1990). As their creation is unrelated
to the mechanism responsible for seeding the primordial perturbations, they
provide an independent test for the inflationary epoch. In particular, from
the amplitude of the gravitational waves, it is possible to unravel the energy
scale where inflation occurred (Lyth 1997). However, due to their extremely
tiny effects on the ambient medium, the detection of primordial gravitational
waves is very challenging. The fact that their amplitude is predicted to be
highly suppressed in some classes of inflationary models can further exacer-

20



bate the situation. Besides from measuring effects of incident gravitational
waves directly, a promising avenue towards a detection is to search for so
called B-modes in the polarization signature of the CMB radiation. How-
ever, for the time being, it has only been possible to impose upper limits on
the strength of primordial gravitational waves (see, e.g., Jenet et al. 2006;
Ade et al. 2008; The LIGO Collaboration & The Virgo Collaboration 2009;
Komatsu et al. 2010).

The third test for inflationary models is the search for non-Gaussian sig-
natures in the primordial perturbations. For the simplest models of inflation,
linear theory predicts them to be Gaussian (Maldacena 2003; Creminelli &
Zaldarriaga 2004, see also Sect. 1.4.2). Very recently, the full second order
treatment of the problem has quantified the corrections to this prediction
(Beneke & Fidler 2010; Pitrou et al. 2010); the effect of non-linear mode
coupling introduces small non-Gaussian phase correlations. In order to real-
ize this lowest possible level of non-Gaussianity, four conditions have to be
fulfilled (Bartolo et al. 2004):

• Slow-roll condition. The large friction term in the Klein-Gordon equa-
tion (Eq. 1.22) highly suppressed temporal variations of the inflaton
field, |φ̇| ≪ 1.

• Single field model. Both the accelerated expansion of the universe and
the generation of the primordial perturbations were driven by a single
scalar field.

• Canonical kinetic term. The kinetic term in the inflaton Lagrangian
Eq. 1.19 is given by the canonical quadratic term, i.e., T ∝ gµν∂µφ ∂ν .

• Bunch-Davies vacuum. The evolution of the inflaton field started out
from the preferred de Sitter invariant ground state (Bunch & Davies
1978).

If at least one of the above mentioned conditions is violated, the primordial
perturbations are no longer expected to be Gaussian. Conversely, a signifi-
cant detection of non-Gaussianity in e.g. CMB radiation experiments has the
potential to inevitably rule out all single field inflationary models (Creminelli
& Zaldarriaga 2004).

Note, however, that the non-Gaussian contribution can only be a very
subtle effect—current experiments constrain it to a level below about 0.1 %
(Slosar et al. 2008; Komatsu et al. 2010).

21



A Gaussian random field is fully described by its power spectrum and no
additional information can be extracted from the data set by calculating other
statistical quantities. As for a Gaussian field the n-point correlation functions
vanish exactly if n is odd, the lowest non-trivial order, the 3-point function,
turns out to be a powerful tool to test an arbitrary field for a non-Gaus-
sian contribution. For our particular purpose, i.e. for the analysis of CMB
radiation data, it turns out to be convenient to consider the corresponding
Fourier transform, the so called bispectrum, which we defined as

〈Φ(~k1)Φ(~k2)Φ(~k3)〉 = (2π)3δ3(~k1 + ~k2 + ~k3)F (k1, k2, k3) . (1.32)

Here, Φ is the gauge invariant metric perturbation as introduced by Bardeen
(1980), and F (k1, k2, k3) defines the shape function which fully character-
izes the momentum dependence of the specific bispectrum signature (Babich
et al. 2004; Fergusson & Shellard 2009). Restricted to sub-horizon scales and
written in longitudinal (conformal-Newtonian) gauge, the perturbations Φ
coincide with the ordinary Newtonian gravitational potential up to a minus
sign (Mukhanov 2005).

Dependent on the process responsible for the generation of primordial
non-Gaussianity, the function F (k1, k2, k3) in Eq. 1.32 will take different
shapes. As a result, it is possible to characterize the functional dependence
of the bispectrum in terms of the contribution from different momentum vec-
tors according to the underlying physical model responsible for generating
the non-Gaussianity. For example, we obtain

F equ(k1, k2, k3) ∝
(k1 + k2 − k3)(k2 + k3 − k1)(k3 + k1 − k2)

k1k2k3
(1.33)

for non-Gaussianity of equilateral type, as predicted by inflationary models
with modified kinetic term in the inflaton Lagrangian (Babich et al. 2004).
Here, a considerable amount of power comes from momentum configurations
where k1 ≈ k2 ≈ k3, i.e. from modes that were shifted outside the horizon
during inflation at roughly the same time.

Non-Gaussianity of folded type is produced if we allow for variations in
the vacuum ground state of the inflaton field. A deviation from Bunch-
Davies vacuum may be the result of trans-Planckian effects during inflation.
Although we completely lack a consistent description of the processes at the
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highest energies, it is nevertheless possible to predict the expected contribu-
tion to the bispectrum,

F vac(k1, k2, k3) ∝
1

k3
1k

3
2
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1
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3
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. (1.34)

Here, the most important configuration of the momenta in the shape function
is approximately given by kh ≈ ki ≈ kj/2 (Chen et al. 2007).

Likewise, if we violate the single field condition, we introduce non-Gaus-
sianity of local type,

F loc(k1, k2, k3) ∝
1

k3
1k

3
2

+
1

k3
1k

3
3

+
1

k3
2k

3
3

=

∑
i k

3
i∏

i k
3
i

, (1.35)

where most of the power stems from modes which satisfy the squeezed trian-
gle configuration, kh ≈ ki ≫ kj (Babich et al. 2004). The shape functions of
the three inflationary classes discussed are plotted in Fig. 1.7. As they are
intrinsically very different, it will be possible to discern between them once
a significant detection of non-Gaussianity has been made.

We will concentrate on local non-Gaussianity in the remainder of the
thesis. It has been proven to be of particular importance, as a significant
detection of that kind of non-Gaussianity would inevitably rule out all sin-
gle field inflationary models (Creminelli & Zaldarriaga 2004), irrespective of
other details of their realization (e.g. form of the inflaton potential, ground
state, kinetic term, or slow-roll condition). The shape function Eq. 1.35 of
non-Gaussianity of local type was derived from the characteristic functional
form of the primordial perturbations Φ. When perturbatively expanded in
the regime of weak non-Gaussianity, multi-field inflationary models predict
a specific non-Gaussian signature which is localized in real space (Salopek &
Bond 1990; Gangui et al. 1994),

Φ(r) = ΦL(r) + fNL

(
Φ2

L(r)− 〈Φ2
L(r)〉

)
. (1.36)

Here, ΦL is a Gaussian random field with power spectrum as predicted by
inflation, and fNL is the dimensionless measure of non-Gaussianity. Current
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Figure 1.7: Bispectrum shape functions. We show the momentum depen-
dent contribution to the bispectrum of local type, predicted by multi-field
inflationary models (upper panel). For comparison, we illustrate the shape
function of equilateral type, typically encountered in models which include
deviations from the canonical kinetic term in the inflaton Lagrangian (lower

left panel). Also, we plot the bispectrum signature of folded type, character-
istic for models with modified inflaton vacuum state (lower right panel). We
parametrized the momenta via k1 = (1 − β) k, k2 = 1/2 (1 + α + β) k, and
k3 = 1/2 (1− α + β) k.

24



limits on the amplitude of non-Gaussianity from the WMAP 7-year data
release are

−10 < fNL < 74

at 2-σ level (Komatsu et al. 2010). This result was derived within a fre-
quentist approach by means of a bispectrum estimator (Komatsu et al. 2005;
Smith et al. 2009). In the limit of vanishing non-Gaussianity, the estimator
is optimal, i.e. it saturates the Cramer-Rao bound.

The data obtained with the Planck satellite mission will allow for a sig-
nificant improvement of the error bars by almost one order of magnitude—a
Fisher matrix forecast predicts a formal 1-σ error in fNL of about 5 for a
CMB radiation temperature only analysis which may be further improved
to finally achieve a fNL of 3 if polarization information is taken into account
(Yadav et al. 2007).

1.4.2 Single field inflation

For simple inflationary models where only one dynamical field was present,
the level of primordial non-Gaussianity from first order perturbation theory
is predicted to be very small (Gangui et al. 1994; Maldacena 2003; Creminelli
& Zaldarriaga 2004; Lyth 2007; Bartolo et al. 2008). To relate to this result,
we follow the arguments in Creminelli & Zaldarriaga (2004) and first define
the curvature perturbations1, ζ , via the spatial components of the metric of
uniform energy density slices,

gij ≡ a(t)2e2ζ(t,x)hij(t, x) , (1.37)

where hij encodes the tensor perturbations, but will be of no relevance for
our discussion here, i.e. it is save to assume hij = δij .

Interested in the bispectrum of ζ in the squeezed limit, we set k1 ≪ k2, k3

without loss of generality and write

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 ≈ 〈ζ(~k1) 〈ζ(~k2)ζ(~k3)〉ζ(~k1)
〉 , (1.38)

where the 2-point function 〈ζ(~k2)ζ(~k3)〉 is to be evaluated for a given value

ζ(~k1).

1Note, that in the matter dominated era, the curvature perturbations can simply be
rewritten in terms of the gauge invariant potential, Φ = 3

5
ζ.
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In the relevant regime, i.e. when the modes k2 and k3 are crossing the
horizon, k1 is already far outside the horizon and therefore frozen (Salopek

& Bond 1990). As a result, it is justified to consider ζ(~k1) = ζB as a purely
classical background affecting the metric Eq. 1.37 only on the largest scales.

We now consider the real space expression of 〈ζ(~k2)ζ(~k3)〉ζB, and expand
it to linear order for small perturbations of the background,

〈ζ(~x2)ζ(~x3)〉ζB = 〈ζ(~x2)ζ(~x3)〉ζB=0 + ζB ∂

∂ζB
〈ζ(~x2)ζ(~x3)〉ζB

∣∣
ζB=0

+O((ζB)2) .

(1.39)
As the wave vector k1 is small with respect to k2 and k3, we first note that
the background ζB is almost constant over the relevant distances ~x2 − ~x3.
As a result, the small-scale dependency of 〈ζ(~x2)ζ(~x3)〉ζB must be attributed
solely to the change of the physical distance as mediated by the metric,
δxphys = a eζB

δx. Therefore, it is possible to rewrite the derivative in Eq. 1.39,

∂

∂ζB
〈ζ(x)ζ(0)〉ζB = x

d

dx
〈ζ(x)ζ(0)〉ζB . (1.40)

Substituting this expression into Eq. 1.39 will lead after a Fourier transfor-
mation to the consistency relation (Maldacena 2003)

lim
~k1→0
〈ζ(~k1)ζ(~k2)ζ(~k3)〉 ≈ (2π)3 δ(~k1 + ~k2 + ~k3) (1− ns)P(k1)P(k2) , (1.41)

where we made use of the primordial power spectrum P(k) and its spectral

tilt according to 1 − ns ≡ −d ln(k3P(k))
d ln k

. As the spectral tilt is known to be
small, the primordial non-Gaussianity of local type in single field inflationary
models is vanishing, fNL < 1.

For the calculation presented here, no assumptions on the specific model
were made, thus, the result is valid for single field inflation in general. How-
ever, in this simple approach, one relies on a strictly classical prescription of
the process neglecting quantum mechanical effects. Once the calculation is
repeated within a proper field theoretical framework, the above conclusion
may not hold in full generality (Ganc & Komatsu 2010).

1.4.3 Generating primordial non-Gaussianity

A non-Gaussian contribution of local type to the otherwise Gaussian primor-
dial fluctuations is generically predicted if more than one scalar field played
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a crucial role in the process of generating the primordial perturbations. A
simple and well studied model falling within this important class is the curva-
ton scenario (Mollerach 1990; Linde & Mukhanov 1997; Moroi & Takahashi
2001; Enqvist & Sloth 2002; Lyth & Wands 2002).

Here, a weakly coupled second scalar field is introduced, the curvaton
χ, which has a small mass during inflation but contributes negligibly to the
total energy density. Therefore, its quantum fluctuations initially sources
perturbations of isocurvature (entropy) type. After the end of inflation,
when the inflaton has already decayed into radiation, the temperature of
the universe drops such that the curvaton field’s energy density eventually
contributes an important fraction to the total energy density. In this epoch,
it becomes a source of curvature fluctuations. It starts to oscillate around the
minimum in an approximately quadratic potential. As the curvaton obeys
the equation of state of a cold, non-relativistic fluid with equation of state
parameter w = 0, its energy density decreases as ρχ ∝ a−3 and therefore
more slowly than that of the radiation (scaling as ργ ∝ a−4). In order not to
dominate the total energy density at later times, the curvaton is supposed
to decay well before the onset of primordial nucleosynthesis. During decay
into thermalized radiation, the inhomogeneous density of the curvaton field
will finally be converted into primordial adiabatic perturbations.

Besides from generating primordial perturbations after the end of infla-
tion, another important difference to the conventional single field model is
the fact that the seed fluctuations originally are of isocurvature instead of
adiabatic type. As a result, the mechanism responsible for suppressing non-
Gaussianity in the single field models is no longer valid. For a more quantita-
tive description of the underlying processes in multi-field models in general,
we shall review the so called δN formalism in the following (Starobinskǐi
1985; Salopek & Bond 1990; Sasaki & Stewart 1996; Lyth et al. 2005; Lyth
& Rodŕıguez 2005).

We start out from the definition equation of the curvature perturbation
Eq. 1.37. Written in this way, ζ can be interpreted as the perturbation to
the scale factor ln a(t). Allowing for a spatially inhomogeneous expansion
factor, N(t)→ N(t, x), we find that the curvature perturbation encodes the
fluctuations in the expansion,

ζ(t, x) = δN

≡ N(t, x)− 〈N(t, x)〉x , (1.42)
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where we introduced the unperturbed median expansion rate 〈N(t, x)〉x ≡
ln a(t)

a(ti)
. As a rough estimate, one can obtain ζ from the spatial variations in

the duration of the expansion,

ζ ≈ H δt

≈ H
δχ

χ̇
, (1.43)

where χ is the relevant scalar field, e.g. the inflaton, or the curvaton. Finally,
we assume that the dynamical evolution of each patch of the universe is
independent of all other patches (‘separate universe’ assumption). With this
simplification, the energy is locally conserved (Rigopoulos & Shellard 2003;
Lyth et al. 2005).

Given an arbitrary number of light scalar fields with small Gaussian fluc-
tuations, χi(x) = χ̄i + δχi(x), we derive an approximate expression for the
small inhomogeneities in the expansion factor,

δN ≈ N,iδχi + 1/2N,ijδχiδχj +O(δχ3) , (1.44)

where we defined the partial derivative of N via N,i ≡ ∂N
∂χi

, and sum over all
repeated indices. We identify the nearly flat power spectrum of the scalar
field perturbations (Bunch & Davies 1978),

〈δχ(k1)δχ
∗(k2)〉 = (2π)3H2

_

2k3
1

δ(k1 − k2) , (1.45)

where we used the Hubble parameter at horizon exit of the corresponding
modes, H

_
. Combining Eq. 1.42 and Eq. 1.44, we conclude for the curvature

perturbation power spectrum at first order (Sasaki & Stewart 1996)

〈ζ(k1)ζ
∗(k2)〉 = (2π)5 Pζ

2k3
1

δ(k1 − k2) , (1.46)

where

Pζ =

(
H

_

2π

)2 ∑

i

N2
,i . (1.47)

In analogy to Eq. 1.36, we introduce the level of non-Gaussianity, fNL, as
overall prefactor to a non-linear transform of the curvature perturbations,

ζ(r) = ζL(r) +
3

5
fNL

(
ζ2
L(r)− 〈ζ2

L(r)〉
)

≡ ζL(r) +
3

5
fNL ζNL(r) . (1.48)
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Interested in the corresponding expression in momentum space, we rephrase
the non-Gaussian term as

ζNL(k) =

∫
d3p

(2π)3
ζL(k + p)ζ∗

L(p)− (2π)3σ2δ3(k) , (1.49)

where the second term subtracts the variance σ2 of the field to ensure 〈ζNL〉 =
0. Now, we identify an important non-vanishing contribution to the bispec-
trum (Komatsu & Spergel 2001),

〈ζ(k1)ζ(k2)ζ(k3)〉 ⊇ 〈ζL(k1)ζL(k2)ζNL(k3)〉+ 2 cycl.

=
6

5
fNL (2π)3 [P (k1)P (k2) + 2 cycl.] . (1.50)

On the other hand, we use Eq. 1.44 to expand the expression to fourth order
in δχ,

〈ζ(k1)ζ(k2)ζ(k3)〉 = N,iN,jN,h〈δχi(k1)δχj(k2)δχh(k3)〉
+ N,iN,jN,hk [〈δχi(k1)δχj(k2)δχh(k3)δχk(k3)〉+ 2 cycl.]

+O(δχ4) . (1.51)

The first term on the right hand side vanishes as it contains the expectation
value of an odd number of independent Gaussian variables. For an explicit
expression of the amplitude of non-Gaussianity, we finally obtain (Lyth &
Rodŕıguez 2005; Byrnes et al. 2006; Sasaki et al. 2006)

fNL =
5

6

∑
ij N,ijN,iN,j

(
∑

i N
2
,i)

2
, (1.52)

where we have used Eq. 1.45 and Eq. 1.47 to rewrite H
_

in terms of deriva-
tives of N .

An application of this formula to the curvaton scenario as discussed above
allows us to predict the range of non-Gaussianity expected in this model.
Considering perturbations in the curvaton field around a mean value χ̄, χ =
χ̄ + δχ, we find for the contribution to the energy density in a quadratic
potential (Tseliakhovich et al. 2010)

ρ̄χ ∝ 〈χ2〉
= χ̄2 + 〈δχ2〉 , hence

δρχ

ρ̄χ
≈ 2δχ

χ̄
+

δχ2 − 〈δχ2〉
χ̄2

. (1.53)
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Obviously, the above equation resembles the definition equation of local non-
Gaussianity, Eq. 1.36. Any non-Gaussian signature in δρχ will finally be
imprinted onto the CMB radiation.

We now define N as expansion factor from the onset of the oscillations of
the curvaton field after the end of inflation until its decay. We introduce the
ratio of the curvaton energy density compared to the total energy density at
decay time tf ,

r =
ρχ

f

ρf
. (1.54)

In the following, we focus on the most relevant case, the limit of a radiation
dominated universe, r < 1.

For a slice of uniform total energy density, the perturbation of the expan-
sion factor is given by

δN = r
δρχ

f

4ρχ
f

, thus (1.55)

N = r
ln(ρχ

f )

4
+ C1 , (1.56)

where we introduced an arbitrary constant of integration. We now make
use of the fact that the curvaton energy density perturbation remains con-
stant during the period considered here, and rewrite it as a function of the
amplitude of the curvaton field when the oscillation started, χi,

N = r
ln(1/2m2

χχ2
i )

4
+ C1

= r
ln(χi)

2
+ C2 , (1.57)

where we have used a quadratic approximation for the potential V (χ), and
the particle mass mχ. Finally, we apply Eq. 1.52 to predict the level of
non-Gaussianity of local type in the curvaton scenario,

fNL =
5

6

N,χχ

(N,χ)2

= − 3

5r
. (1.58)

Hence, the curvaton scenario generically predicts a negative value of fNL and
the free parameter r is already highly constrained by the latest observational
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bounds (Komatsu et al. 2010). The analysis can be extended to the case of
two or more curvaton fields (Assadullahi et al. 2007; Choi & Gong 2007), or to
include higher order terms in the curvaton potential, leading to a non-linear
dynamical evolution prior to the decay (Enqvist & Nurmi 2005; Huang 2008).
As a result, the predicted value of fNL can also become large and positive
(Enqvist et al. 2010).

We now review another class of early universe scenarios predicting a sig-
nificant level of local non-Gaussianity. The ekpyrotic and cyclic universe
models were recently introduced to apply concepts adopted from string the-
ory within a cosmological framework (Gordon et al. 2001; Khoury et al. 2001,
2002; Notari & Riotto 2002; Steinhardt & Turok 2002a,b). Although not yet
fully understood and still plagued by very serious problems (see, e.g., Kallosh
et al. 2001; Lyth 2002; Kallosh et al. 2008; Linde et al. 2010, especially violat-
ing the null energy condition turns out to be problematic), these models may
offer a way to overcome some shortfallings of inflation. Here, the period of in-
flation gets completely replaced by a phase of slow contraction postulated to
take place prior to the big bang. It can be shown that during such an epoch,
almost scale-invariant scalar perturbations in a flattened region of space can
be generated, resolving the problems of standard cosmology (Erickson et al.
2007). In addition to the absence of gravitational waves, a significant level
of local non-Gaussianity is predicted, both potentially observational signa-
tures that in principle would allow to distinguish ekpyrotic models from the
simplest inflationary scenarios.

To realize an ekpyrotic epoch of contraction, we first note that from
Eq. 1.9 we can derive the general functional dependence of the energy density
of a particle species on the scale factor,

ρ ∝ a−3(1+w) . (1.59)

In the pre-bounce contracting phase, the existence of a component with a very
large equation of state parameter w ≫ 1 is postulated. Once the scale factor
decreases, it will finally dominate over matter (ρm ∝ a−3) and radiation
(ργ ∝ a−4). As a result, the relative energy density of radiation and its
perturbations will decrease until it eventually becomes a negligible fraction
of the total energy density; the space becomes flat.

It is possible to introduce this new kind of matter with w ≫ 1 by means of
scalar fields. For the primordial perturbations to gather a nearly scale invari-
ant spectrum in agreement with observations, more than one of such fields
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is necessary (Koyama & Wands 2007; Koyama et al. 2007b). For simplicity,
however, we will restrict the discussion to single field ekpyrotic models in the
following.

For the self-interaction of the scalar field, a steep, negative potential is
required in ekpyrotic scenarios, e.g. of the form (Buchbinder et al. 2007;
Lehners et al. 2007)

V (χ) = −V0 e−Cχ , (1.60)

where C is a positive constant. This is a simple parametrization of the po-
tential encountered in heterotic M-theory (Hořava & Witten 1996; Witten
1996; Lukas et al. 1999b,a). The original version of ekpyrotic models pro-
posed an effective 5-dimensional Universe consisting of two bounding (3+1)-
dimensional branes separated through a finite bulk volume. The visible of
the two branes corresponds to the usual four-dimensional universe we live in,
whereas the hidden brane remains inaccessible (Khoury et al. 2001). Then,
the potential Eq. 1.60 induces a force acting along the fifth dimension with a
certain probability to make the branes collide. Such an approach, collision,
and subsequent phase of recession corresponds to a full cycle in the evolution
of the universe with collapse, bounce, and expansion. Here, we will assume
a regular bounce during which the curvature perturbations on super-horizon
scales remain unaffected. As a result, the entropy perturbations generated
during the ekpyrotic phase can be directly mapped to the adiabatic pertur-
bations after the bounce.

Following Koyama et al. (2007a); Creminelli & Senatore (2007); Lehn-
ers (2010), to quantify the non-Gaussian contribution expected in ekpyrotic
models, we neglect the effect of gravity. We consider small perturbations of
the scalar field χ around its mean value, χ(x, t) = χ̄(t) + δχ(x, t), and start
out with the evolution equation of the unperturbed spatially invariant field,

χ̈(t) + V,χ(χ(t)) = 0 , (1.61)

and constrain the functional form of the potential by requiring a scale in-
variant power spectrum of the field perturbations. For the Fourier modes of
the fluctuations, the equation of motion takes the form of a wave equation
(Creminelli & Senatore 2007),

δ̈χ +
[
k2 + V,χχ(χ)

]
δχ = 0 . (1.62)

In the regime V,χχ < −k2 < 0, the solution to Eq. 1.62 stops oscillating and
freezes out. As a result, a functional dependence of V,χχ ∝ t−2 is required to
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obtain a power law solution in this region of parameter space. Adopting this
form, one finds the asymptotic behavior of the field perturbations,

δχ(k, t) ∝ k−1/2 f(kt) , (1.63)

where the function f(kt) describes the oscillatory behavior of the pertur-
bations. To maintain a scale invariant solution after freeze-out, we enforce
δχ(k, t) ∝ t−1 and eventually obtain the explicit expression for the second
derivative of the potential

V,χχ = − 2

t2
. (1.64)

Finally, we find the normalized solution to Eq. 1.62,

δχ(k, t) =
1√
2k

(
1− i

kt

)
e−ikt . (1.65)

To derive an explicit expression for the potential, we calculate the time
derivative of Eq. 1.61,

...
χ − 2

t2
χ̇ = 0 , (1.66)

with power law solution χ̇(t) = −2M/t, where we introduced a constant of
integration M and neglected the decaying term ∝ t2. Integration yields to
the expression

χ(t) = −2M log(−t) + C , (1.67)

which we use to replace the time variable in the equation for the potential
V,χχ = −2/t2 in favor of χ to finally obtain

V (χ) = −V0 eχ/M , (1.68)

resembling the suggested functional form of the potential in Eq. 1.60.

To calculate the level of non-Gaussianity in ekpyrotic models, we adopt
the procedure of Maldacena (2003) and write the leading order component
in the bispectrum by means of the interaction Hamiltonian,

〈δχ(k1)δχ(k2)δχ(k3)〉 = −i

∫ t

−∞

〈δχ(k1)δχ(k2)δχ(k3)Hint(t
′)〉dt′ + c.c. ,

(1.69)
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The cubic self-interaction is described by

Hint(t) =
V,χχχ

3!
δχ3

= − 2

t2
δχ3

3!M
, (1.70)

where we made use of Eq. 1.68. Substituting Eq. 1.65, it is possible to identify
the leading order term in the bispectrum for small t (Creminelli & Senatore
2007),

〈δχ(k1)δχ(k2)δχ(k3)〉 = (2π)3δ(k1 + k2 + k3)

∑
i ki∏
i ki

1

8Mt4
. (1.71)

The characteristic momentum dependence found here unravels a non-Gaus-
sian contribution of local type (cf. Eq. 1.35).

The free choice of the parameter M results in a model dependent non-
Gaussian contribution. However, in reasonable scenarios, the expected range
of non-Gaussianity lies around −50 . fNL . 60 (Lehners & Renaux-Petel
2009)—it is significantly wider than for single field inflationary models.

1.4.4 Secondary sources of non-Gaussianity

Due to a tight coupling between the primordial plasma and photons, non-
Gaussianity in the perturbations will leave an imprint onto the CMB ra-
diation, opening up the opportunity to construct dedicated tests searching
for this signature. However, as various physical mechanisms are capable
of modifying the pristine fluctuations in the CMB radiation on their way
from recombination at redshift z ≈ 1100 to the detectors at present time
(Aghanim et al. 2008), secondary non-Gaussianity of non-primordial origin
will be induced. As it is imperative to quantify the expected amount of
contamination, these effects have been subject to extensive studies in liter-
ature (e.g. by Goldberg & Spergel 1999; Spergel & Goldberg 1999; Verde &
Spergel 2002; Castro 2003; Serra & Cooray 2008; Hanson et al. 2009; Khatri
& Wandelt 2009; Pitrou 2009).

The most important among all possible contributions to non-primordial
non-Gaussianity stems from the correlation between the non-linear integrated
Sachs-Wolfe effect2 (ISW, Sachs & Wolfe 1967) and weak gravitational lens-
ing. The ISW effect, originating from the time evolution of the gravitational

2That is, the linear ISW plus the Rees-Sciama effect, Rees & Sciama 1968
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potential during photon crossing, affects the CMB radiation pattern on large
scales. Contrary, lensing induced by galaxy clusters (themselves residing in
potential wells), modifies the fluctuations on small scales. The correlation
between these two effects will, therefore, peak for squeezed triangle momen-
tum configurations, mimicking the shape function of non-Gaussianity of local
type. While for WMAP data this mechanism should lead to only a small bias
∆fNL ≈ 3 (Komatsu et al. 2010) which has not been detected directly (Mun-
shi et al. 2009), for the analysis of Planck satellite data the effect will play an
important role and may lead to a contribution of up to ∆fNL ≈ 10 (Mangilli
& Verde 2009).

Beyond, radiation from residual point sources has been discussed as pos-
sible secondary source of non-Gaussianity. They are either radio sources, lu-
minous infrared galaxies, or galaxy clusters inducing spectral distortions due
to Compton upscattering of CMB photons via the Sunyaev-Zeldovich effect
(Sunyaev & Zeldovich 1970). To reasonable approximation, they have a con-
stant bispectrum amplitude which is independent of the multipole moments
considered, though their contribution varies in different frequency bands (Ko-
matsu et al. 2003). To reduce the effect of radio sources, a point-source mask
is usually imposed to the data prior to the analysis, constructed either from
the CMB radiation maps themselves, or with the help of dedicated radio
surveys as e.g. the GB6 (Gregory et al. 1996), or the PMN surveys (Griffith
& Wright 1993). However, as sources can only be detected and removed
down to an experiment-specific flux limit, a residual contribution will remain
in the data. Recently, an estimate of the contribution of point sources to
local non-Gaussianity has been quantitatively specified. The correction is
most important at low frequencies but will probably not exceed ∆fNL . 1
for Planck data (Babich & Pierpaoli 2008).

Another large contribution to the radiation in the GHz regime is gener-
ated within our Galaxy (Bennett et al. 2003b; Gold et al. 2009). A relevant
physical process of particular importance at low frequencies is synchrotron
emission from relativistic electrons interacting with the Galactic magnetic
field. Similar in spectral shape and therefore also important at low frequen-
cies is free-free radiation generated by electrons scattering off charged parti-
cles. A third component whose contribution is becoming dominant towards
higher frequencies is sourced by emission from thermal dust. To correct for
this class of secondary sources, foreground templates describing the spatial
pattern of the emission are marginalized over in the analysis (Smith et al.
2009). They were constructed from a 408 MHz full sky survey (synchrotron
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template, Haslam et al. 1981), Hα line emission maps (free-free template,
Finkbeiner 2003), and infrared emission data (dust template, Finkbeiner
et al. 1999). To constrain the foreground emission at the frequencies of the
CMB radiation experiment, the templates have to be extrapolated assuming
a specific spectral index for the component. A comparison between the de-
duced fNL values from raw and cleaned WMAP 7-year data indicates that the
smooth components amount for a non-Gaussian signal of about ∆fNL ≈ 10
when a conservative sky mask is imposed (Komatsu et al. 2010). However,
the residuals after template marginalization are probably negligible (Smith
et al. 2009).

The issue of a different kind of non-Gaussianity, primary non-Gaussianity,
has recently been comprehensively addressed in Pitrou et al. (2010) (see also
Beneke & Fidler 2010). It specifies the contribution from phase correla-
tions arising due to non-linear processes between the end of inflation and
recombination. To quantify this contribution, the full second order Boltz-
mann equation was solved, including all components of the cosmic fluid. It
was found that these effects will induce excess non-Gaussianity at a level of
about ∆fNL ≃ 5.

1.5 Bayesian statistics

In this thesis, we pursue the goal to develop a Bayesian method to search
for non-Gaussianity in CMB radiation data. Unfortunately, using Bayesian
statistics is still a less common alternative to the currently predominant fre-

quentist approach—we therefore briefly outline its foundations in what fol-
lows (for a more comprehensive discussion, see the textbooks of, e.g., Leonard
& Hsu 2001; Gill 2002; MacKay 2005; Bolstad 2007; Hobson et al. 2010).

The frequentist approach is characterized by basic ideas that can be sum-
marized as follows:

• Probabilities are defined as relative frequencies in infinite repetitions
of random experiments.

• The parameters that characterize a population are fully determined yet
unknown constants.

• The quality of statistical methods is assessed by how well they perform
given an infinite number of repetitions of the experiment.

36



In the frequentist approach, it is only possible to quantify the proba-
bility of random variables. But as physical parameters like e.g. the speed of
light, Newton’s constant, or the level of primordial non-Gaussianity are fixed,
probability statements about their numerical values cannot be made. To cir-
cumvent this problem, a sampling distribution is constructed, the probability
distribution of a given statistic obtained from random samples drawn from
the population. Finally, a confidence interval of the parameter is deduced
from the width of that distribution.

An intrinsic shortcoming of this procedure is the ambiguity in the def-
inition of estimators, i.e. the statistics used to measure the parameter of
interest. For a given problem, several of them can usually be constructed. In
general, their outcome will be different, necessitating the development of so-
phisticated methods to judge over performance and reliability of estimators.
Another objection concerns the generation of the sampling distribution. As
it involves random realizations drawn from the population that actually have
not been observed in the experiment, information other than that carried in
the data become relevant.

Bayesian statistics, on the contrary, is based on an extended interpreta-
tion of probability. Here, it is used in a more general way, to measure a
degree of belief in a certain proposition. On the basis of three axioms, it is
possible to map the degree of belief onto a probability (Cox 1946). Denoting
the degree of belief in proposition a by D(a), we define the degree of belief in
a conditional proposition a given a second proposition b to be true by D(a|b).
Then, the axioms are:

• Ordering: If D(a) ≤ D(b) and D(b) ≤ D(c), then D(a) ≤ D(c), where
“≤” is a suitable order operator.

• Negation: There exists a relation f between the degree of belief in a
proposition a and its negation ā such that D(a) = f [D(ā)].

• Conjunction: A conjunction of propositions a and b can be expressed
via a function g such that D(a, b) = g [D(a|b), D(b)], where D(a|b) is
the conditional degree of belief as defined above.

If the axioms are fulfilled, the degrees of belief can be mapped onto usual
probabilities with the well-known properties, P (false) = 0, P (true) = 1,
0 ≤ P (a) ≤ 1, and comply with the relations P (a) = 1 − P (ā), P (a, b) =
P (a|b) P (b).
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With this redefinition, we can apply the concept of probability to a much
broader class of problems from the outset. For example, although the Hubble
constant is not a random variable, we may ask the question: “What is the
probability to find its current value within the range 69 km s−1 Mpc−1 ≤
H0 ≤ 71 km s−1 Mpc−1?” It is important to note that we are forced to
provide limits like that to H0 because our knowledge about its true value is
incomplete, not because it is the outcome of a random experiment with a
given probability distribution.

The cornerstone of Bayesian statistics is the theorem of Bayes that allows
to specify how the knowledge about a parameter of interest λ should be
updated after new data D were taken into account (Bayes & Price 1763).
It formally results from symmetry considerations of the joint distribution of
two events; from

P (λ, D) = P (λ|D)P (D) , and

P (λ, D) = P (D, λ)

= P (D|λ)P (λ) , we follow

P (λ|D) =
P (D|λ)P (λ)

P (D)
. (1.72)

In the above expression, P (λ) is the prior distribution, representing our
knowledge about λ before the data were taken into account, P (D|λ) is the so
called likelihood function of the parameter, and the normalization constant
P (D) is the evidence. Together, they build up the posterior distribution,
P (λ|D), which mirrors our updated knowledge about the parameter after
the data have been analyzed.

Let us now summarize the main characteristics of the Bayesian approach
to statistics:

• The parameters we want to constrain are put on the same level with
random variables.

• We use the degree of belief to interpret probability statements about
parameters.

• Inference about parameters is made by directly applying the rules of
probability calculus.

• To update our knowledge about parameters when new data arrive, we
make use of Bayes’ theorem (Eq. 1.72).
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Contrary to the frequentist approach, the Bayesian concept offers a con-
sistent and unambiguous way to update our (subjective) prior knowledge
about a parameter when new data become available. That is, an indepen-
dent analysis that makes use of the same data and prior distribution will
lead to identical results. Furthermore, only information from the data that
have actually been observed enter the analysis, obviating the necessity to
construct sampling distributions from possible (but unrealized) outcomes of
the experiment.

For illustrative purposes, we include a brief discussion of a simple example
(based on MacKay 2005) to compare the two schools of statistics against
each other. Let us assume that a coin have been tossed N = 250 times and
a sequence of nh = 141 heads was observed. Now, we want to contrast the
hypothesis H0 “the coin is fair” with hypothesis H1 “the coin is biased” in a
quantitative way.

In the frequentist analysis, which we discuss first, one completely concen-
trates on the null hypothesis. We expect the number of heads to follow a
binomial distribution

P (nh|N, p) =

(
N

nh

)
pnh(1− p)N−nh , (1.73)

where p ≡ 1/2 for a fair coin as stated inH0. Then, we specify the probability
to find an as extreme value for nh as observed in the data,

P (nh = 141) = 2

250∑

n=141

(
250

n

)
1/2250

= 0.0497 , (1.74)

i.e. in the frequentist analysis, we reject the null hypothesis at a significance
level of 5 %. As a result, we conclude that the coin is biased at a confidence
level of 95 %.

We will now focus on the Bayesian analysis. In the language of Bayesian
statistics, we have to perform a model comparison between model H0 (the
coin is fair) and model H1 (the coin is biased) given the data. To this end,
we define the probabilities of (that is, our degree of belief in) H0,

P (H0|nh) =
P (nh|H0)P (H0)

P (nh)
, (1.75)
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and H1,

P (H1|nh) =
P (nh|H1)P (H1)

P (nh)
, (1.76)

using Bayes’ theorem. For the analysis, we further have to specify the sub-
jective prior distribution of p which we choose to be flat, P (p|H1) = 1. Not
preferring any of the two hypotheses a priori (i.e. P (H0) ≡ P (H1) = 1/2), we
construct the so called Bayes factor, the likelihood ratio of the hypotheses,

P (nh|H1)

P (nh|H0)
=

∫ 1

0
dp pnh(1− p)N−nhP (p|H1)

(1/2)nh(1− 1/2)N−nh

=
141!109!

251!

(1/2)250

= 0.61 . (1.77)

In fact, the Bayesian analysis reveals that hypothesis H0 is actually slightly
preferred over hypothesis H1, i.e. for the choice of the prior as stated above,
we conclude that the coin is fair. Note, however, that a Bayes factor close to
one signalize indecisive data. The result will therefore be relatively sensitive
to the prior distribution P (p|H1). But even for an overidealized choice of
the prior—an a posteriori constructed delta function exactly matching the
relative frequency of heads in the data, P (p|H′

1) = δ(p−141/250)—we obtain
a Bayes factor of

P (nh|H′
1)

P (nh|H0)
=

p141(1− p)109
∣∣
p= 141

250

(1/2)250

= 7.8 , (1.78)

indicating only moderate evidence in favor of H′
1.

This example illustrates the basic concepts and advantages of Bayesian
statistics. Directly applying the rules of probability theory to a degree of
belief provides the framework for a powerful and consistent analysis. Instead
of specifying the probability to find an as extreme outcome as in the data
given the null hypothesis to be correct and assuming an infinite repetition
of the experiment (as it is done in the frequentist approach), the Bayesian
method allows us to directly address the relevant question, namely which of
the two competing models is actually preferred by the data.
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1.6 Outline of the thesis

The objective of this thesis is to search for primordial non-Gaussianity of
local type in CMB radiation data using Bayesian statistics. To this end, we
first develop an improved algorithm to simulate CMB radiation temperature
and polarization maps containing an arbitrary level of primordial non-Gaus-
sianity of local type in Chap. 2. We formulate an optimization scheme that
allows us to control the simulation accuracy and speed up the calculation by
about one order of magnitude. Then, we introduce the Bayesian approach
to infer the level of non-Gaussianity from a data set and demonstrate the
principal aspects on the basis of a simplified toy model (Chap. 3). Also,
we contrast an exact treatment of the problem with an approximate yet
computationally more efficient implementation. As a next step, we provide
a detailed comparison to the conventional frequentist approach in Chap. 4.
Against the background of realistic CMB radiation temperature maps, we
examine the performance of the competing methods. We summarize our
results in Chap. 5. In App. A, we provide supplementary information to
the simulation algorithm, and we finally discuss the extension of the analysis
scheme to constrain higher order non-Gaussian terms in App. B.
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Abstract

We describe an algorithm to generate temperature and polarization maps of
the cosmic microwave background radiation containing non–Gaussianity of
arbitrary local type. We apply an optimized quadrature scheme that allows
us to predict and control integration accuracy, speed up the calculations, and
reduce memory consumption by an order of magnitude. We generate 1000
non–Gaussian CMB temperature and polarization maps up to a multipole
moment of ℓmax = 1024. We validate the method and code using the power
spectrum and the fast cubic (bispectrum) estimator and find consistent re-
sults. The simulations are provided to the community1.

1Available at http://planck.mpa-garching.mpg.de/cmb/fnl-simulations



2.1 Introduction

The simplest models of inflation predict almost perfectly Gaussian primor-
dial fluctuations, generated by a single scalar quantum field in ground state
(Guth 1981; Bardeen et al. 1983; Mukhanov et al. 1992), but a large num-
ber of alternative scenarios can easily be constructed. To test competing
inflationary models, measurements of statistical properties of the cosmic mi-
crowave background (CMB) radiation have turned out to be of particular
importance. Combined with constraints on the scalar spectral index ns and
the search for gravitational waves imprinted on the polarization signature,
the test for non-Gaussianity is a fundamental means to probe the physical
processes of inflation.

Among all inflationary models predicting significant levels of non-Gaus-
sianity, two broad classes can be distinguished. Non–Gaussianity of equilat-

eral type is realized primarily in models with non–minimal Lagrangian in-
cluding higher order derivatives (Alishahiha et al. 2004; Senatore 2005; Chen
2005; Langlois et al. 2008). Non–Gaussianity of local type is achieved to very
good approximation in multi–field inflation (Moroi & Takahashi 2001; En-
qvist & Sloth 2002; Lyth et al. 2003), or in cyclic/ekpyrotic universe models
(Khoury et al. 2001; Steinhardt & Turok 2002; Lehners & Steinhardt 2008).

Concentrating on local non-Gaussianity, we parameterize the primordial
curvature perturbations, Φ, by introducing an additional quadratic depen-
dence on a purely Gaussian auxiliary field ΦL, that is local in real space, of
the form (Verde et al. 2000; Komatsu & Spergel 2001)

Φ(r) = ΦL(r) + fNL ΦNL(r) , (2.1)

where ΦNL(r) is defined as

ΦNL(r) = Φ2
L(r)− 〈Φ2

L(r)〉 , (2.2)

and fNL is the dimensionless measure of the amplitude of non-Gaussianity.
Primordial non-Gaussianity in the curvature perturbations Φ will be encoded
in the CMB signal.

Simulations of maps containing non-Gaussianity of local type have been
extensively used in the context of WMAP data analysis. They play a crucial
role in probing the sensitivity of analysis tools and provide the opportunity
to quantitatively estimate the contribution of secondary anisotropies or in-
strumental effects to the measured level of non-Gaussianity in experimental
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data. With the advent of Planck, probing the non-Gaussian contribution
within the CMB radiation even more accurately, the requirements for high
resolution, high accuracy simulations of non-Gaussian CMB temperature and
polarization maps will further increase.

To meet the demand for simulated non-Gaussian maps, several different
approaches have been taken. First simulations of temperature maps with
primordial non-Gaussianity of local type have generated the underlying pri-
mordial perturbation in Fourier space (Komatsu et al. 2003). This approach
is computationally very demanding while it is difficult to preserve numeri-
cal accuracy. A different method has been proposed in Liguori et al. (2003,
2007), where the authors work with ‘filter’ functions to introduce the proper
spatial correlations of the primordial potential. Recently, a fast, specifically
tailored algorithm for the weakly non-Gaussian regime has been introduced
by Smith & Zaldarriaga (2006), that focuses on simulating maps with a given
three–point function. While it is not restricted to non-Gaussianity of local
type, higher order correlations are not guaranteed to match the model.

The algorithm presented here was closely inspired by the work of Liguori
et al. (2003). We focus on an enhancement of their algorithm in view of
its numerical efficiency. Our idea is to precompute quadrature nodes and
weights; this is similar in spirit to Smith & Zaldarriaga (2006), but aims
at assuring accurately simulated maps to all correlation orders, rather than
focusing exclusively on the three–point function.

This paper is organized as follows. In Sect. 2.2, we present a new ap-
proach to simulate non-Gaussian temperature and polarization maps. An
optimization scheme is provided in Sect. 2.3 that allows for an increase in
computational efficiency. We then apply the fast estimator to simulated CMB
maps to check our results for consistency (Sect. 2.4). Finally, we summarize
our findings in Sect. 2.5.

Throughout the paper we assume the following W MAP5+BAO+SN cos-
mological parameters2: ΩΛ = 0.721, Ωc h2 = 0.1143, Ωb h2 = 0.02256,
∆2

R(0.002 Mpc−1) = 2.457 · 10−9, h = 0.701, ns = 0.96, and τ = 0.084.

2.2 Simulation of non–Gaussian CMB maps

We describe a new, direct method to simulate non-Gaussian CMB tempera-
ture and polarization maps below. Our objective is to generate a set of linear

2Obtained from http://lambda.gsfc.nasa.gov/product/map/dr3/parameters.cfm
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and non–linear spherical harmonic coefficients that are valid realizations of
temperature and polarization fluctuations, {aL ℓm, aNL ℓm}, for a given cos-
mological model. A map with any desired level of non-Gaussianity, fNL, can
then be realized by linear combination,

aℓm = aL ℓm + fNL · aNL ℓm . (2.3)

The expansion coefficients aℓm of the CMB temperature and polarization
anisotropies in harmonic space are related to the primordial fluctuations
Φℓm(k) via the equation (Komatsu et al. 2003)

ai
ℓm =

(−ı)ℓ

2π2

∫
dk k2 Φℓm(k) gi

ℓ(k) . (2.4)

Here, gi
ℓ(k) is the transfer function of temperature (i = T ) or polarization

(i = E) in momentum space. Analogously, we can define an equivalent
equation as a function of comoving distance,

ai
ℓm =

∫
dr r2 Φℓm(r) αi

ℓ(r) , (2.5)

where we have used the real space transfer function according to

αi
ℓ(r) =

2

π

∫
dk k2 gi

ℓ(k) jℓ(kr) , (2.6)

where jℓ(kr) denotes the spherical Bessel function of order ℓ.
We can now outline our recipe for simulating non-Gaussian CMB maps

as following: (i) Generate the multipole moments of a purely Gaussian grav-
itational potential ΦL ℓm(r) as a function of conformal distance. (ii) Com-
pute the spherical harmonic transform to derive the corresponding expres-
sion in pixel space, ΦL(r). (iii) Square it and subtract the variance ac-
cording to Eq. 2.2 to get the non-Gaussian potential ΦNL(r). (iv) Inverse
transform to spherical harmonic space to obtain ΦNL ℓm(r). (v) Solve the
radial integral Eq. 2.5 for ΦL ℓm(r) and ΦNL ℓm(r) separately to compute
{aT

L ℓm, aE
L ℓm; aT

NL ℓm, aE
NL ℓm}.

One difficulty in this approach is that we have to take into account the
radial correlation of the gravitational potential in step (i). Its covariance ma-
trix is determined by the primordial power spectrum predicted by inflation,
P(k), and is given by (Liguori et al. 2003)

〈
ΦL ℓ1m1(r1) Φ∗

L ℓ2m2
(r2)

〉
= 4π δℓ1

ℓ2
δm1
m2

∫
dk

∆2
R(k)

k
jℓ1(kr1) jℓ2(kr2) , (2.7)
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where we have replaced P(k) by

∆2
R(k) =

k3

2π2
· P(k) , (2.8)

that is constant for vanishing spectral tilt (ns = 1). The covariance matrix
will be denoted by PΦ ℓ(r1, r2) in what follows. To draw a random realiza-
tion of the linear gravitational potential at distances r = (r1, r2, . . . , rn), we
calculate

ΦL ℓm(r) = P
1/2
Φ ℓ · g , (2.9)

where g is a vector of independent complex Gaussian random variables with
zero mean and unit variance.

For this algorithm to run efficiently, we have to reduce the number of
quadrature points in the numerical evaluation of the radial integral (Eq. 2.5),
to keep the number of computationally expensive spherical harmonic trans-
formations necessary to generate the non-Gaussian gravitational potential as
low as possible. Details of the implementation together with an optimization
scheme will be described in the next section.

2.3 Implementation and Optimization

To be able to perform the steps outlined in the last section, we first have to
precompute the necessary auxiliary data. This needs to be done only once
for a given set of cosmological parameters. First, we obtained the transfer
functions in momentum space from a modified version of the latest CAMB
software package3 (Lewis et al. 2000). We then derived their equivalent
expressions in real space using Eq. 2.6. Examples of temperature and po-
larization transfer functions as a function of conformal distance for several
multipole moments are shown in Fig. 2.3.

As a next step, we calculate the covariance matrix of the gravitational
potential on a fine grid with Ntot = 400 shells from the origin to the present
time cosmic horizon (Eq. 2.7). As a start, we resolve the last scattering sur-
face with uniform spacing using an increment of ∆r ≈ 3.5 Mpc and chose
a larger interval elsewhere (∆r ≈ 100 Mpc). This simple approach will be
refined later. Using the derived quantities, it is now possible to generate

3Obtained from http://camb.info
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Figure 2.1: Real space transfer functions. We show examples of the real
space transfer functions of temperature (left panel) and polarization (right
panel) for three different multipole moments ℓ = 5, 20, and 100. At low ℓ,
the effect of the late time ISW effect is clearly visible. Reionization occurred
at about r = 10 Gpc.

ΦL ℓm(ri), ΦNL ℓm(ri) and numerically solve the radial integral Eq. 2.5 to ob-
tain simulated non-Gaussian CMB maps. However, significant improvement
in the numerical evaluation of the integral is achievable by choosing both
weights and quadrature points in an optimal way, as we will show in the
following.

Keeping the multipole moment (ℓ, m) fixed for simplicity, we want to
accurately compute the integral

I =

∫
dr r2 α(r) Φ(r) . (2.10)

This is done in a two step process: We first approximate Eq. 2.10 with a
discrete sum over Ntot shells. Then, we try to obtain comparable accuracy
with fewer shells N ≪ Ntot introducing weights,

Î =

N∑

i=1

wi Φ(ri) , (2.11)
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where the gravitational potential is evaluated at the nodes ri and weighted
by the factors wi. Now, we can derive the expectation value of the quadratic
error

〈(Î − I)2〉 =

Ntot∑

k=1

λk

(∫
dr r2 α(r) φk(r)

)2

− wTPΦw , (2.12)

where we have introduced the eigenvalues λk and eigenvectors φk of the co-
variance matrix of the potential on the fine grid with Ntot = 400 elements.
We show λk for several multipole moments in the left panel of Fig. 2.3. If
the eigenvalues decrease sufficiently fast, the error is expected to be low al-
ready for a small number of quadrature points N . This seems especially to
be true on large angular scales. However, this finding is partially counterbal-
anced by the fact that the transfer functions are significantly different from
zero at small radii for low multipole moments (late ISW effect, reionization),
enforcing the inclusion of additional nodes.

Based on the expression for the expected quadratic error, it is straightfor-
ward to calculate optimal weights by satisfying the condition ∂

∂wi
〈(Î−I)2〉 =

0, which leads to a system of N linear equations,

N∑

j=1

PΦ ij(ri, rj) wj =

Ntot∑

k=1

λk φk(ri)

∫
dr r2 α(r) φk(r) . (2.13)

Even more important, Eq. 2.12 allows us to formulate a greedy algorithm
to compute optimal quadrature points. We select a subset of nodes out of the
fine radial grid with 400 elements iteratively, in each step including the point
that most efficiently reduces the remaining error. To simultaneously optimize
for temperature and polarization, we add the expectation values of the two
errors with equal weights. We use the outcome of the procedure to tune
the radii of the input grid with 400 elements. We choose a smaller spacing
down to ∆r = 1.2 Mpc at the last scattering surface, where nodes were
selected with the highest priority, and a larger step size up to ∆r = 140 Mpc
at distances, where the quadrature points were classified as less important.
Then, we repeated the optimization process a second time. In the right
panel of Fig. 2.3, we visualize the first 100 iterations of the optimization
scheme. We display the expectation value of the relative quadratic error for
N = 30, 50 and N = 70 quadrature points in Fig. 2.3. The raise in error
towards the largest angular scales is caused by the increasing contribution
from late ISW effect and reionization.
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Figure 2.2: Optimization scheme. Left panel: We display the largest 100
eigenvalues λk of the covariance matrix of ΦL ℓ(r), normalized and in de-
scending order for ℓ = 5, 20, and 100. For low multipole moments, the
number of quadrature points can be reduced most efficiently. Right panel:

The radial positions of the shells included in the first 100 iteration steps.
For illustrative purposes, we interchanged open and filled symbols every 10
iterations. The most important nodes are included first.
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Figure 2.3: Error of integration. We depict the relative mean quadratic error
introduced by approximating the integral Eq. 2.5 by a sum over N = 30, 50,
and 70 elements for temperature (left panel) and polarization (right panel).
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As a last step, we show how to reduce the memory consumption of the
code. Whereas the potentials ΦL ℓm(r) and ΦNL ℓm(r) can be co–added to the
spherical harmonic coefficients of the CMB map ai

L ℓm and ai
NL ℓm (Eq. 2.5)

one shell after another, the radial correlation of ΦL(r) forces one to generate it
at all N shells simultaneously, potentially requiring large amounts of memory.
To circumvent this problem, we keep the random seeds that were used to
draw the potential. By means of the seeds, we are able to easily regenerate
the gravitational potential at any radii (r1, r2, . . . , rN). Thus, we only store
its real space representation at the radius that is currently added to the
CMB map, substantially reducing the overall memory consumption of the
algorithm.

Having optimized the simulation algorithm in this way, we generated
Nsim = 1000 realizations of temperature and polarization CMB maps. We
chose a HEALPix resolution parameter of nside = 512 and a maximum mul-
tipole moment of ℓmax = 1024. We used N = 70 quadrature points for
evaluation of Eq. 2.5, although we stress that this choice is conservative and
it is possible to derive reasonable results with smaller values of N .

With these input parameters, we aim for sub–percentage accuracy of
the final map over the entire range of multipole moments, guided by the
intrinsic precision of the underlying transfer functions, running CAMB with
RECFAST at standard accuracy. An example is displayed in Fig. 2.3, where
we illustrate a realization of temperature and polarization maps of the linear
and non–linear part of the CMB. We show the averaged power spectra of
all simulations along with a comparison to the theoretical values in Fig. 2.3.
A detailed comparison to the expected statistical fluctuations (∝ N

−1/2
sim )

reveals remaining slight systematic deviations for the TT and EE spectra at
high ℓ at the level of less than 1% of the input power spectrum. If required
this error could be further reduced by adding integration nodes. It takes
about 20 minutes to generate a single map with the given resolution on a
single Intel Xenon processor with a clock rate of 2.33 GHz, requiring only
a modest amount of memory (≈ 400 MB). The most time consuming part
is the evaluation of the spherical harmonic transforms necessary to compute
the non-Gaussian potential.

The algorithm described here generates valid realizations of primordial
curvature perturbations in real space. This itself is an interesting quantity
and can be used to e.g. test the performance of reconstruction techniques as
we will show in the next section. We visualize the 3D gravitational potential
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ΦL(r) and ΦNL(r) in Fig. 2.3; long–distance correlations on large scales are
in evidence.

Our simulation algorithm is conceptually very similar to the method pro-
posed in Liguori et al. (2007), where the authors generate the gravitational
potential on 400 shells, requiring 800 spherical harmonic transforms to cal-
culate a single non-Gaussian CMB map, and report a runtime of 3 hours for
ℓmax = 500. By applying our optimized quadrature scheme, we have demon-
strated that it is possible to reduce the number of transforms considerably,
resulting in an increase of computational efficiency. Another, albeit more
formal difference is the way the gravitational potential is generated. We use
the real space covariance matrix to draw ΦL(r) directly, whereas the authors
of Liguori et al. (2007) compute the gravitational potential by performing an
integral over uncorrelated random numbers weighted by ‘filter’ functions.

In Smith & Zaldarriaga (2006), where the authors focused on a perturba-
tive reproduction of the correct bispectrum in the regime of weak non-Gaus-
sianity, a runtime of about three minutes is reported to simulate one non-
Gaussian CMB temperature map at an angular resolution of ℓmax = 1000.
Although slower by an order of magnitude, and tuned for local non-Gaus-
sianity, the algorithm presented here is capable of simulating both temper-
ature and polarization maps (i.e. three maps for the stokes parameter I, Q,
and U) within the same framework and with nearly the same computational
cost compared to temperature alone. Furthermore, as recently pointed out
by Hanson et al. (2009), in the case of local non-Gaussianity an additional
modification of the algorithm of Smith & Zaldarriaga (2006) is necessary to
suppress the power spectrum of the non-Gaussian part of a simulated map,
found to be artificially enhanced by several orders of magnitudes on large
angular scales.

Notwithstanding the aforementioned higher computational costs, we re-
gard our method as useful for the study of local non-Gaussianity, because the
simulated maps are well suited to test any kind of estimator, e.g. based on
Minkowsky functionals (Spergel et al. 2007; Hikage et al. 2008), or a wavelet
analysis (Mart́ınez-González et al. 2002; Mukherjee & Wang 2004). If a de-
tection of nonzero fNL is reported, it will be important to confirm the result
with alternative statistical tools, as they are sensitive to different systematic
effects.

In the following section, we apply the KSW estimator (Komatsu et al.
2005) to our set of simulated maps with known non-Gaussian contribution
to test whether the input values for fNL can be recovered.
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Figure 2.4: Example of simulated non-Gaussian map. We show the linear (left
column) and the associated non–linear part (right column) of a realization of
temperature (first row) and polarization intensity (second row) CMB data.
The polarization intensity is defined as I =

√
Q2 + U2, where Q and U are

the Stokes parameters.
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Figure 2.5: Averaged power spectra. Left panel: We display the power spec-
tra CTT , CEE, and CTE of the linear part of the simulated CMB maps, aver-
aged over 1000 simulations. We do not show the input power spectra here,
as the lines cannot be discerned in this view. Right panels: The ratio of the
power spectra divided by their theoretical values for temperature (XX = TT ,
upper sub–panel), polarization (XX = EE, middle sub–panel), and cross–
power spectrum (XX = TE, lower sub–panel). Oscillatory features in the
latter are caused by roots of the denominator. The grayish area indicates the
2-σ bounds of an ideal simulation code. Sub-percentage, systematic devia-
tions for the TT and EE spectra remain but are consistent with the precision
goal.
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Figure 2.6: Examples for simulated curvature perturbations. Left panel: We
visualize the linear gravitational potentials ΦL(r), generated on N = 70 shells
from the origin (center) to the last scattering surface (outermost shells).
Right panel: The associated non-Gaussian potential, displayed at nonlinear
scale.

2.4 Bispectrum Analysis

As we do not aim to describe the fast estimator in detail, we include a brief
summary here and refer the reader to the extensive literature for further
details and a comprehensive discussion (e.g. in Komatsu et al. 2005; Smith
& Zaldarriaga 2006; Creminelli et al. 2007; Yadav et al. 2007).

To estimate the non-Gaussianity of a CMB map, one constructs the statis-
tic Sprim out of a cubic combination of the data,

Sprim =

∫
dr r2

∫
d2n̂ A(r, n̂) B2(r, n̂) . (2.14)

The radial integral runs over two filtered maps,

A(r, n̂) =
∑

i,j=T,E

∑

ℓ,m

(C−1)ij
ℓ αi

ℓ(r) aj
ℓm Yℓm(n̂) , (2.15)

B(r, n̂) =
∑

i,j=T,E

∑

ℓ,m

(C−1)ij
ℓ βi

ℓ(r) aj
ℓm Yℓm(n̂) , (2.16)
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that are constructed using the auxiliary functions

αi
ℓ(r) =

2

π

∫
dk k2 gi

ℓ(k) jℓ(kr) , (2.17)

βi
ℓ(r) = 4π

∫
dk

∆2
R(k)

k
gi

ℓ(k) jℓ(kr) , (2.18)

and the inverse of the matrix containing the CMB power spectrum elements,

C−1
ℓ =

(
CTT

ℓ CTE
ℓ

CTE
ℓ CEE

ℓ

)−1

. (2.19)

One of these maps, B(r, n̂), is exactly the Wiener filter reconstruction of the
underlying gravitational potential Φ(r). With the simulation algorithm pre-
sented in Sect. 2.2, it is possible to compare the potential used to synthesize
the map with its reconstruction directly. An example is shown in Fig. 2.4,
where we depict the reconstruction of the potential around last scattering
using only temperature, and using both, temperature and polarization infor-
mation.

As the estimator Sprim is proportional to the non-Gaussianity parameter
fNL, we can calculate its expectation value by applying a suitable normaliza-
tion,

fNL =




∑

i,j,k,o,p,q

=T,E

∑

ℓ1≤ℓ2≤ℓ3

1

∆ℓ1ℓ2ℓ3

Bijk, prim
ℓ1ℓ2ℓ3

(C−1)io
ℓ1

(C−1)jp
ℓ2

(C−1)kq
ℓ3

×Bopq, prim
ℓ1ℓ2ℓ3




−1

· Sprim , (2.20)

where ∆ℓ1ℓ2ℓ3 = 6, when ℓ1 = ℓ2 = ℓ3, 2, when ℓ1 = ℓ2 6= ℓ3 or ℓ1 6= ℓ2 = ℓ3,
and 1 otherwise. We further introduced the theoretical bispectrum for fNL =
1, Bijk, prim

ℓ1ℓ2ℓ3
, which is defined as

Bijk, prim
ℓ1ℓ2ℓ3

= 2 Iℓ1ℓ2ℓ3

∫
dr r2 [βi

ℓ1
(r)βj

ℓ2
(r)αk

ℓ3
(r) + βk

ℓ3
(r)βi

ℓ1
(r)αj

ℓ2
(r)

+ βj
ℓ2

(r)βk
ℓ3

(r)αi
ℓ1

(r)] , (2.21)
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where the prefactor is given by

Iℓ1ℓ2ℓ3 =

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3

0 0 0

)
. (2.22)

We used the equations above to implement the fast estimator for tem-
perature and polarization. As our primary goal is to validate our simulation
algorithm, we do not take into account possible instrumental effects, sky
cut, or noise. To test our simulations, we generate two sets of 1000 CMB
temperature and polarization maps with resolution parameter nside = 512,
and ℓmax = 1024. We consider one sample of purely Gaussian realizations of
the CMB sky (fNL = 0), and one non-Gaussian sample with a fiducial value
of fNL = 100. We then run the fast estimator on the maps to compute an
estimate of fNL. We show the distribution of the derived values in Fig. 2.4.
We find the input parameters to be recovered well, the means of the distribu-
tions are 〈fG

NL〉 = −0.1 and 〈fNG
NL 〉 = 98.4 for the Gaussian and non-Gaussian

simulations, respectively. The estimated standard deviations are σfG
NL

= 2.4
and σfNG

NL
= 8.4, compared to the expected error predicted from a Fisher in-

formation matrix analysis of σF isher
fNL

= 2.4. We conclude that the algorithm
outlined in Sect. 2.2 and implemented as described in Sect. 2.3 produces valid
realizations of non-Gaussian CMB temperature and polarization maps.

2.5 Summary

In this paper, we introduced a new algorithm to simulate temperature and
polarization CMB maps containing non-Gaussianity of arbitrary local type.
In the proposed scheme, we generate spherical harmonic coefficients of the
Gaussian potential as a function of conformal distance, taking into account
the proper radial correlations. Then, the potential is transformed to pixel
space to compute the associated non-Gaussian contribution. Finally, we
make use of the real space representation of the transfer functions to perform
the line of sight integral in order to calculate Gaussian and non-Gaussian
contribution to the CMB maps.

We developed and applied a quadrature scheme that allows us to increase
the numerical efficiency of the code. As a starting point, we derived an
expression to quantitatively calculate the mean error introduced by replacing
the radial integral by a finite sum. On that basis, we were able to choose
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Figure 2.7: Wiener filter reconstruction of the gravitational potential. We
illustrate the input gravitational potentials ΦL(r) at the last scattering sur-
face r = 14.0 Gpc (middle panel) used to generate a simulated CMB map
and its Wiener filter reconstruction based solely on temperature data (left
panel), and based on both, temperature and polarization data (right panel)
of the same map. Each patch is 50◦ on the side.
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Figure 2.8: Histogram of the recovered fNL values. We display the distri-
bution of estimated fNL values when applying the fast estimator to 1000
realization of temperature and polarization CMB maps. The input values
used for the simulations were fNL = 0 (left panel), and fNL = 100 (right
panel).
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both, nodes and weights for numerical quadrature in an optimal way. As a
last step, we successfully reduced the memory consumption of the algorithm.

For W MAP5+BAO+SN cosmological parameters, we simulated 1000 re-
alizations of non-Gaussian CMB temperature and polarization maps with
resolution parameters nside = 512 and ℓmax = 1024. To validate the al-
gorithm, we applied the well studied and widely accepted fast cubic (bis-
pectrum) estimator to the simulations. For both, a set of Gaussian and
non-Gaussian realizations of CMB sky maps, the input parameters were con-
sistently recovered. We make our simulations publicly available at http:

//planck.mpa-garching.mpg.de/cmb/fnl-simulations.
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Abstract

Aims. We outline the Bayesian approach to inferring fNL, the level of non-
Gaussianities of local type. Phrasing fNL inference in a Bayesian framework
takes advantage of existing techniques to account for instrumental effects and
foreground contamination in CMB data and takes into account uncertainties
in the cosmological parameters in an unambiguous way.
Methods. We derive closed form expressions for the joint posterior of fNL and
the reconstructed underlying curvature perturbation, Φ, and deduce the con-
ditional probability densities for fNL and Φ. Completing the inference prob-
lem amounts to finding the marginal density for fNL. For realistic data sets
the necessary integrations are intractable. We propose an exact Hamiltonian
sampling algorithm to generate correlated samples from the fNL posterior.
For sufficiently high signal-to-noise ratios, we can exploit the assumption of
weak non-Gaussianity to find a direct Monte Carlo technique to generate
independent samples from the posterior distribution for fNL. We illustrate
our approach using a simplified toy model of CMB data for the simple case
of a 1-D sky.
Results. When applied to our toy problem, we find that, in the limit of high
signal-to-noise, the sampling efficiency of the approximate algorithm outper-
forms that of Hamiltonian sampling by two orders of magnitude. When fNL

is not significantly constrained by the data, the more efficient, approximate
algorithm biases the posterior density towards fNL = 0.



3.1 Introduction

The analysis of cosmic microwave background (CMB) radiation data has
considerably improved our understanding of cosmology and played a crucial
role in constraining the set of fundamental cosmological parameters of the
universe (Spergel et al. 2007; Hinshaw et al. 2009). This success is based
on the intimate link between the temperature fluctuations we observe today
and the physical processes taking place in the very early universe. Inflation
is currently the favored theory predicting the shape of primordial perturba-
tions (Guth 1981; Linde 1982), which in its canonical form leads to very small
non-Gaussianities that are far from being detectable by means of present-day
experiments (Acquaviva et al. 2003; Maldacena 2003). However, inflation
scenarios producing larger amounts of non-Gaussianity can naturally be con-
structed by breaking one or more of the following properties of canonical
inflation: slow-roll, single-field, Bunch-Davies vacuum, or a canonical kinetic
term (Bartolo et al. 2004). Thus, a positive detection of primordial non-
Gaussianity would allow us to rule out the simplest models. Combined with
improving constraints on the scalar spectral index ns, the test for non-Gaus-
sianity is therefore complementary to the search for gravitational waves as a
means to test the physics of the early Universe.

A common strategy for estimating primordial non-Gaussianity is to ex-
amine a cubic combination of filtered CMB sky maps (Komatsu et al. 2005).
This approach takes advantage of the specific bispectrum signatures produced
by primordial non-Gaussianity and yields to a computationally efficient algo-
rithm. When combined with the variance reduction technique first described
by Creminelli et al. (2006) these bispectrum-based techniques are close to
optimal, where optimality is defined as saturation of the Cramer-Rao bound.
Lately, a more computationally costly minimum variance estimator has been
implemented and applied to the WMAP5 data (Smith et al. 2009).

Recently, a Bayesian approach has been introduced in CMB power spec-
trum analysis and applied successfully to WMAP data making use of Gibbs-
sampling techniques (Jewell et al. 2004; Wandelt et al. 2004). Within this
framework, one draws samples from the posterior probability density given
the data without explicitly calculating it. The target probability distribution
is finally constructed out of the samples directly, thus computationally costly
evaluations of the likelihood function or its derivatives are not necessary.
Another advantage of the Bayesian analysis is that the method naturally
offers the possibility to include a consistent treatment of the uncertainties
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associated with foreground emission or instrumental effects (Eriksen et al.
2008). As it is possible to model CMB and foregrounds jointly, statistical
interdependencies can be directly factored into the calculations. This is not
straightforward in the frequentist approach where the data analysis is usually
performed in consecutive steps. Yet another important and desirable feature
is the fact that a Bayesian analysis obviates the necessity to specify fiducial
parameters, whereas in the frequentist approach it is only possible to test
one individual null hypothesis at a time.

In this paper, we pursue the modest goal of developing the formalism
for the extension of the Bayesian approach to the analysis of non-Gaussian
signals, in particular to local models, where the primordial perturbations
can be modeled as a spatially local, non-linear transformation of a Gaussian
random field. Utilizing this method, we are able to write down the full poste-
rior probability density function (PDF) of the level of non-Gaussianity. We
demonstrate the principal aspects of our approach using a 1-D toy sky model.
Although we draw our discussion on the example of CMB data analysis, the
formalism presented here is of general validity and may also be applied within
a different context.

The paper is organized as follows. In Sect. 3.2 we give a short overview
of the theoretical background used to characterize primordial perturbations.
We present a new approximative approach to extract the amplitude of non-
Gaussianities from a map in Sect. 3.3 and verify the method by means of
a simple synthetic data model (Sect. 3.4). After addressing the question of
optimality in Sect. 3.5, we compare the performance of our technique to an
exact Hamiltonian Monte Carlo sampler which we develop in Sect. 3.6 and
discuss the extensions of the model required to deal with a realistic CMB sky
map (Sect. 3.7). Finally, we summarize our results in Sect. 3.8.

3.2 Model of non-Gaussianity

The expansion coefficients aℓm of the observed CMB temperature anisotropies
in harmonic space can be related to the primordial fluctuations via

aℓm =
2bℓ

π

∫
k2dk r2dr [ Φℓm(r) gadi

ℓ (k) + Sℓm(r) giso
ℓ (k) ] jℓ(kr) + nℓm , (3.1)

where Φℓm(r) and Sℓm(r) are the primordial curvature and isocurvature per-
turbations at comoving distance r, gadi

ℓ (k) and giso
ℓ (k) their corresponding
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transfer functions in momentum space. The spherical Bessel function of order
ℓ is denoted by jℓ(kr), bℓ includes beam smearing effects, and nℓm describes
instrumental noise. As curvature perturbations dominate over isocurvature
perturbations (Bean et al. 2006; Trotta 2007), we will neglect the contribu-
tion of Sℓm in our subsequent analysis.

Any non-Gaussian signature imprinted in the primordial perturbations
will be transferred to the aℓm according to Eq. 3.1 and is therefore detectable,
in principle. Theoretical models predicting significant levels of non-Gaus-
sian contributions to the observed signal can be subdivided into two broad
classes (Babich et al. 2004): one producing non-Gaussianity of local type, the
other of equilateral type. The former kind of non-Gaussianity is achieved to
very good approximation in multi-field inflation as described by the curvaton
model (Moroi & Takahashi 2001; Lyth et al. 2003), or in cyclic/ekpyrotic
universe models (Khoury et al. 2001; Enqvist & Sloth 2002; Steinhardt &
Turok 2002). The latter type of non-Gaussianity is typically a result of single
field models with non-minimal Lagrangian including higher order derivatives
(Alishahiha et al. 2004; Senatore 2005).

Concentrating on local models, we can parametrize the non-Gaussianity
of Φ by introducing an additional quadratic dependence on a purely Gaussian
auxiliary field ΦL, that is local in real space, of the form (Verde et al. 2000;
Komatsu & Spergel 2001)

ΦNL(r) = ΦL(r) + fNL[Φ2
L(r)− 〈Φ2

L(r)〉] , (3.2)

where fNL is a dimensionless measure of the amplitude of non-Gaussianity.

3.3 Bayesian inference of non-Gaussianity

It has been shown to be feasible to reconstruct the primordial curvature po-
tential out of temperature or temperature and polarization sky maps (Yadav
& Wandelt 2005; Elsner & Wandelt 2009), which allows searching for primor-
dial non-Gaussianities more sensitively. Although the mapping from a 3D
potential to a 2D CMB sky map is not invertible unambiguously, a unique
solution can be found by requiring that the result minimizes the variance.
In this conventional frequentist approach, the level of non-Gaussianity and
an estimate of its error is derived from a cubic combination of filtered sky
maps (Komatsu et al. 2005). We will show in the following sections how to
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sample fNL from the data and unveil the full posterior PDF using a Bayesian
approach.

3.3.1 Joint probability distribution

In our analysis we assume the data vector d to be a superposition of the
CMB signal s and additive noise n

d = Bs + n

= BMΦ + n , (3.3)

where information about observing strategy and the optical system are en-
coded in a pointing matrix B and M is a linear transformation matrix. In
harmonic space, the signal is related to the primordial scalar perturbation as

sℓm =
2

π

∫
k2dk r2dr Φℓm(r) gadi

ℓ (k) jℓ(kr)

≈
∑

i

MiΦℓm(ri)

≡MΦℓm . (3.4)

Our aim is to construct the posterior PDF of the amplitude of non-Gaus-
sianities given the data, P (fNL|d). To do so, we subsume the remaining set
of cosmological parameters to a vector θ and calculate the joint distribution
as

P (d, ΦL, fNL, θ) = P (d|ΦL, fNL, θ)P (ΦL|θ)P (θ)P (fNL) . (3.5)

Now, we can use Eq. 3.2 to express the probability for data d given ΦL, fNL,
and θ

P (d|ΦL, fNL, θ) =
1√
|2πN |

× e −1/2 [d−BM(ΦL+fNL(Φ2
L−〈Φ2

L〉))]
†N−1[d−BM(ΦL+fNL(Φ2

L−〈Φ2
L〉))] , (3.6)

where N is the noise covariance matrix. The prior probability distribution
for ΦL given θ can be expressed by a multivariate Gaussian by definition.
Using the covariance matrix PΦ of the potential, we derive

P (ΦL|θ) =
1√
|2πPΦ|

e −1/2Φ†
LP−1

Φ ΦL . (3.7)
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For flat priors P (fNL), P (θ) we finally obtain

P (d, ΦL, fNL, θ) ∝ exp

{
−1

2

[
(d−BM(ΦL + fNL(Φ2

L − 〈Φ2
L〉)))†N−1

×(d− BM(ΦL + fNL(Φ2
L − 〈Φ2

L〉))) + Φ†
LP−1

Φ ΦL

] }
(3.8)

as an exact expression for the joint distribution up to a normalization factor.
To derive the posterior density, P (fNL|d), one has to marginalize the joint

distribution over ΦL and θ. As it is not possible to calculate the high dimen-
sional ΦL integral directly, an effective sampling scheme must be found to
evaluate the expression by means of a Monte Carlo algorithm. One possibility
would be to let a Gibbs sampler explore the parameter space. Unfortunately,
we were not able to find an efficient sampling recipe from the conditional den-
sities for fNL and ΦL as the variables are highly correlated. An algorithm
that also generates correlated samples, but is potentially suitable for non-
Gaussian densities and high degrees of correlation is the Hamiltonian Monte
Carlo approach. We will return to this approach in Sect. 3.6.

For now we attempt to go beyond correlated samplers and see whether
we can develop an approximate scheme, valid in the limit of weak non-Gaus-
sianity, to sample fNL independently. We start out by expanding the target
posterior distribution into an integral of conditional probabilities over the
non-linear potential ΦNL,

P (fNL|d) =

∫
dΦNLdθ P (fNL|ΦNL, θ)P (ΦNL|d, θ)P (θ|d) . (3.9)

To construct the conditional probability P (ΦNL|d, θ) in the integrand, we
need to find an equivalent equation for the joint distribution (Eq. 3.8) as
a function of the field ΦNL. However, a simple analytic expression for the
prior distribution of ΦNL does not exist because it is a non-linear transform
of the Gaussian auxiliary field ΦL. To quantify the expected correction, we
calculate its covariance matrix,

(PΦNL
)ij = 〈(ΦNL)i(ΦNL)j〉

= 〈(ΦL)i(ΦL)j〉+ f 2
NL[〈(ΦL)2

i (ΦL)2
j〉 − 〈(ΦL)2

i 〉〈(ΦL)2
j〉]

= (PΦL
)ij + 2f 2

NL(PΦL
)2
ij . (3.10)

As the covariance matrix PΦL
is of the order O(10−10) and the non-Gaus-

sian contribution to ΦNL is known to be small, we neglect the higher order
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correction in the prior distribution in what follows. That is, we approximate
the true prior probability function by a Gaussian distribution in ΦNL and in
this way derive a simple expression for the joint density, as a function of ΦNL,

P (d, ΦNL, θ) ∝ exp

{
−1

2

[
(d− BMΦNL)†N−1(d− BMΦNL)

+ Φ†
NLP−1

Φ ΦNL

]}
. (3.11)

Note, that the approximation applies to the second term only, the first part
of the expression remains unaffected. As this approximation is equivalent
to imposing the prior belief of purely Gaussian primordial perturbations, we
expect to underestimate fNL in the low signal-to-noise regime, as we tend to
replace the Wiener filtered noise with purely Gaussian signal. Contrary, the
method is unbiased when the likelihood dominates over the prior which is
unlikely for data derived by the Planck mission.

The direct evaluation of the joint distributions over a grid in the high
dimensional parameter space is computationally not feasible. One option
would be to approximate the PDF around its maximum to get an expression
for the attributed errors (Tegmark 1997; Bond et al. 1998). These methods
are still computationally expensive and can also not recover the full posterior.
An alternative approach to overcome these problems is to draw samples from
the PDF which is to be evaluated as we will discuss in the next section.

3.3.2 Conditional probabilities

To construct the target posterior density Eq. 3.9, we have to find expressions
for the conditional probabilities P (ΦNL|d, θ) and P (fNL|ΦNL, θ). The former
distribution can easily be derived from the joint probability density Eq. 3.11.
Since the exponent is quadratic in ΦNL in our approximation, the conditional
PDF of ΦNL given d and θ is Gaussian. Therefore, we can calculate mean
and variance of the distribution via differentiating the expression,

〈ΦNL〉 = 〈(ΦNL − 〈ΦNL〉)2〉 M †B†N−1d

〈(ΦNL − 〈ΦNL〉)2〉 =
[
M †B†N−1BM + P−1

Φ

]−1
. (3.12)
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As a next step, we derive the conditional probability distribution of fNL for
given ΦNL. This expression is not affected by the approximation and can be
derived from a marginalization over ΦL,

P (fNL|ΦNL, θ) =

∫
dΦL P (fNL|ΦL, ΦNL) P (ΦL|θ)

=

∫
dΦL δ(ΦNL − ΦL − fNL(Φ2

L − 〈Φ2
L〉)) P (ΦL|θ) . (3.13)

Using Eq. 3.7, we can calculate the integral and obtain

P (fNL|ΦNL, θ) ∝
∣∣∣∣∣
∏

i

1

1 + 2fNL(Φ̃L)i

∣∣∣∣∣ e −1/2 Φ̃†
LP−1

Φ Φ̃L , (3.14)

where Φ̃L is a function of fNL and can be regarded as inversion of Eq. 3.2,

Φ̃L =
1

2fNL

[
−1 +

√
1 + 4fNL(ΦNL + fNL〈Φ2

L〉)
]

. (3.15)

Note that we can resolve the ambiguity in sign in the weakly non-Gaussian
limit (Babich 2005). Because the absolute value of the elements of the second
solution is typically larger by orders of magnitude, the probability of its real-
ization is strongly disfavored by the prior P (ΦL). The factor of suppression
is typically less than 10−1000 and further vanishing with decreasing fNL.

After setting up the conditional densities, we now can sample from the
distributions iteratively. First, we draw ΦNL from a Gaussian distribution
using Eqs. 3.12. Then, fNL can be sampled according to Eq. 3.14 using the
value of ΦNL derived in the preceding step. Thus, the sampling scheme reads
as

Φi
NL ←֓ P (ΦNL|d, θ)

f i
NL ←֓ P (fNL|Φi

NL, θ) . (3.16)

Note that this is not Gibbs sampling. For a fixed set of cosmological
parameters, we can chain together samples from the conditional densities
above, producing independent fNL samples. The efficiency of such a direct
Monte Carlo sampler is therefore expected to be much higher than that of a
Gibbs sampler, which, in the general case, would produce correlated samples.
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As an extension of the sampling scheme presented so far, we sketch an
approach to account for uncertainties in cosmological parameters and fore-
ground contributions. Complementing the scheme (Eqs. 3.16) by an addi-
tional step allows to take into account the error in the parameters θ,

Φi
NL ←֓ P (ΦNL|d, θi−1)

f i
NL ←֓ P (fNL|Φi

NL, θi−1)

θi ←֓ P (θ|d, f i
NL) , (3.17)

where the last equation updates the cosmological parameters that can be
sampled from the data by means of standard Monte Carlo analysis tools1.
Now, the scheme formally reads as a Gibbs sampler and can in principle
take into account the correlation among fNL and the other cosmological pa-
rameters exactly. In practice, however, the impact of a non-vanishing fNL

is expected to be negligible, i.e. P (θ|d, fNL) ≈ P (θ|d). Likewise, we can al-
low for an additional sampling step to deal with foreground contributions,
e.g. from synchrotron, free-free, and dust emission. Foreground templates
f sync, free, dust, that are available for these sources, can be subtracted with
amplitudes csync, free, dust which are sampled from the data in each iteration,
ci ←֓ P (c|d, f sync,free, dust, θi) (Wandelt et al. 2004). Alternatively, compo-
nent separation techniques could be used to take foreground contaminants
into account without the need to rely on a priori defined templates (Eriksen
et al. 2006). The traditional approach to deal with point sources is to mask
affected regions of the sky to exclude them from the analysis. Discrete object
detection has been demonstrated to be possible within a Bayesian framework
(Hobson & McLachlan 2003; Carvalho et al. 2009), and can be fully included
into the sampling chain. However, as sources are only successfully detected
down to an experiment-specific flux limit, a residue-free removal of their
contribution is in general not possible.

As the angular resolution of sky maps produced by existing CMB exper-
iments like WMAP is high and will further increase once data of the Planck
satellite mission becomes available, computational feasibility of an analysis
tool is an issue. The speed of our method in a full implementation is limited
by harmonic transforms which scale as O(N

3/2
pix ) and are needed to calculate

the primordial perturbations at numerous shells at distances from the cos-
mic horizon to zero. Thus, it shows the same scaling relation as fast cubic

1E.g. as described in Lewis & Bridle (2002)
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estimators (Komatsu et al. 2005; Yadav et al. 2007), albeit with a larger
prefactor.

3.4 Implementation and Discussion

To verify our results and demonstrate the applicability of the method, we
implemented a simple 1-D toy model. We considered a vector ΦL of random
numbers generated from a heptadiagonal covariance matrix with elements

PΦ =




. . .

. . . 0 0.1 0.2 0.5 1.0 0.5 0.2 0.1 0 . . .
. . .


× 10−10 . (3.18)

Then, a data vector with weak non-Gaussianity according to Eq. 3.2 was
produced and superimposed with Gaussian white noise. Constructed in this
way, it is of the order O(10−5), thus the amplitude of the resulting signal s
is comparable to CMB anisotropies.

The data vector had a length of 106 pixels; for simplicity, we set the
beam function B and the linear transformation matrix M to unity. This
setup allows a brute force implementation of all equations at a sufficient
computational speed. We define the signal-to-noise ratio (S/N) per pixel as
the standard deviation of the input signal divided by the standard deviation
of the additive noise. It was chosen in the range 0.5-10 to model the typical
S/N per pixel of most CMB experiments. To reconstruct the signal, we draw
1000 samples according to the scheme in Eq. 3.16.

Whereas the ΦNL can be generated directly from a simple Gaussian distri-
bution with known mean and variance, the construction of the fNL is slightly
more complex. For each ΦNL, we ran a Metropolis Hastings algorithm with
symmetric Gaussian proposal density with a width comparable to that of
the target density and started the chain at fNL = 0. We run the fNL chain
to convergence. We ensured that after ten accepted steps the sampler has
decorrelated from the starting point. Our tests conducted with several chains
run in parallel give 1 < R < 1.01, where R is the convergence statistic pro-
posed by Gelman & Rubin (1992). We record the last element of the chain
as the new fNL sample.

Finally, we compared the obtained sets of values {Φi
NL}, {f i

NL} to the
initial data. An example is shown in Fig. 3.1, where we illustrate the re-
construction of a given potential ΦNL for different signal-to-noise ratios per
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pixel. The 1−σ error bounds are calculated from the 16 % and 84 % quantile
of the generated sample. Typical posterior densities for fNL as derived from
the samples can be seen in Fig. 3.2. We considered the cases fNL = 0 and
fNL = 200 with S/N = 10 per pixel and show the distributions generated
from 1000 draws. The derived posterior densities possesses a mean value of
fNL = 6 ± 40 and fNL = 201 ± 40, respectively. The width of the posterior
is determined by both the shape of the conditional PDF of fNL for a given
ΦNL and the shift of this distribution for different draws of ΦNL (Fig. 3.3).
The analysis of several data sets indicate that the approximation does not
bias the posterior density if the data are decisive. We illustrate this issue in
the left panel of Fig. 3.4, where we show the distribution of the mean values
〈fNL〉 of the posterior density constructed from 100 independent simulations.
For an input value of fNL = 200 we derive a mean value 〈fNL〉 = 199.3±34.8
and conclude that our sampler is unbiased for these input parameters. For a
high noise level, however, the ΦNL can always be sampled such that they are
purely Gaussian fields and thus the resulting PDF for fNL is then shifted to-
wards fNL = 0. This behavior is demonstrated in Fig. 3.5 where we compare
the constructed posterior density for the cases S/N = 10 and S/N = 0.5 per
pixel. If the noise level becomes high, the approximated prior distribution
dominates and leads to both, a systematic displacement and an artificially
reduced width of the posterior. Therefore, the sampler constructed here is
conservative in a sense that it will tend to underpredict the value of fNL if
the data are ambiguous.

An example of the evolution of the drawn fNL samples with time can be
seen in Fig. 3.6, where we in addition show the corresponding autocorrelation
function as defined via

ξ(∆N) =
1

N

N∑

i

(f i
NL − µ) · (f i+∆N

NL − µ)

σ2
, (3.19)

where N is the length of the generated fNL chain with mean µ and variance
σ2. The uncorrelated samples of fNL ensure an excellent mixing of the chain
resulting in a fast convergence rate.

3.5 Optimality

In a frequentist analysis, parameter inference corresponds to finding an es-
timator that enables to compute the most probable value of the quantity
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of interest as well as a bound for the error. Ideally, the estimator is unbi-
ased and optimal, i.e. it’s expectation value coincides with the true value of
the parameter and the error satisfies the Cramer-Rao bound. Contrary, in
a Bayesian approach, one calculates the full probability distribution of the
parameter directly. Strictly speaking, optimality is therefore an ill-defined
term within the Bayesian framework. All we have to show is that the approx-
imation adopted in Eq. 3.11 does not affect the outcome of the calculation
significantly. Note that the simplification corresponds to imposing the prior
of a purely Gaussian data set. In the case of the CMB, this is a very reason-
able assumption because up to now no detection of fNL has been reported.

To investigate the effects of the approximation, we checked the depen-
dence of the width of the posterior distribution on fNL by running a set of
simulations with varying input values fNL = 0, 50, 100, 150, 200, 250. The
estimated standard deviation σfNL

of the drawn fNL samples, each averaged
over 10 simulation runs, are depicted in the right panel of Fig. 3.4. Contrary
to the KSW estimator that shows an increase of σfNL

with fNL, we find no
such indication of sub-optimal behavior in the relevant region of small non-
Gaussianity. In particular, as the width of the distribution stays constant in
the limit fNL → 0 where our approximated equations evolve into the exact
expressions, we conclude that the adopted simplification does not affect the
result significantly.

This finding can also be interpreted from a different point of view: It
is possible to define a frequentist estimator for fNL based on the mean of
the posterior distribution. Our results indicate that such an estimator is
unbiased in the high signal-to-noise regime.

We apply an additional test in the next section where we compare our
sampling algorithm to a slower but exact scheme.

3.6 Hamiltonian Monte Carlo sampling

In addition to the sampling technique presented above, we tested whether an
exact Hamiltonian Monte Carlo (HMC) sampler is applicable to the problem.
Within this approach one uses the methods developed in classical mechanics
to describe the motion of particles in potentials. The quantity of interest
is regarded as the spatial coordinate of a particle and the potential well
corresponds to the PDF to evaluate (Duane et al. 1987). To each variable
(fNL, ΦL,1, . . . , ΦL,n), a mass and a momentum is assigned and the system
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Figure 3.1: Examples of reconstructed potentials ΦNL. Left panel: The input
parameters for the calculation were fNL = 200 and S/N = 1. Right panel:

Analysis of the same data set for a signal-to-noise ratio of S/N = 10. For
clarity, we show only 40 elements of the ΦNL-vector (thick solid line) and
its reconstruction (thin solid line) as well as the 1− σ error bounds (dashed
lines). As the difference between ΦNL and the linear potential ΦL is very
small, ΦL can not be distinguished from ΦNL in this plot. In both cases 1000
samples were drawn.
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Figure 3.2: Examples of a constructed posterior distribution for fNL. The
input parameters used in this runs were Npix = 106, S/N = 10 and fNL = 0
(left panel) or fNL = 200 (right panel). For each parameter combination 1000
samples were drawn.
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Figure 3.3: Build-up of the posterior distribution of fNL. We depict the
conditional probability distributions P (fNL|ΦNL, θ) for several realizations
of ΦNL (left panel) and the constructed posterior after 1000 drawn samples
(right panel). The input parameters were chosen to be Npix = 106, fNL = 0,
and S/N = 2.
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Figure 3.4: Properties of the sampler. Left panel: Shown is the distribution
of the derived mean values of fNL from 100 simulations for a fiducial value of
fNL = 200. Right panel: We display the estimated standard deviation σfNL

of the drawn fNL samples as a function of fNL. Each data point is averaged
over 10 simulations. The input parameters used in this runs were Npix = 106

and S/N = 10, in each simulation 1000 samples were drawn.
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Figure 3.5: Impact of the signal-to-noise ratio on the approximate sampling
scheme. Left panel: Example of a constructed posterior distribution for
S/N = 10. Middle panel: Analysis of the same data set, but for S/N = 0.5.
At high noise level, the distribution becomes too narrow and systematically
shifted towards fNL = 0. Right panel: For comparison, we show the anal-
ysis of the data set at S/N = 0.5 using exact Hamiltonian Monte Carlo
sampling. As input parameters, we used fNL = 300 and Npix = 106. For
the approximate and exact analysis, 1000 and 15 000 samples were drawn,
respectively.
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Figure 3.6: Example fNL chain. Left panel: We display the chain of 1000
generated fNL samples which built up the histogram plotted on the right hand
side in Fig. 3.2. Right panel: The autocorrelation function of fNL confirms
the uncorrelatedness of the samples.
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is evolved deterministically from a starting point according to the Hamilton
equations of motion.

The applicability of HMC sampling techniques to cosmological parame-
ter estimation has been demonstrated in Hajian (2007), and the authors of
Taylor et al. (2008) compared HMC with Gibbs sampling for CMB power
spectrum analysis. To apply HMC sampling to fNL inference, we deduced
the expression of the Hamiltonian

H =
∑

i

p2
i

2 mi

− log[P (d, ΦL, fNL, θ)] , (3.20)

where the potential is related to the PDF as defined in Eq. 3.8. The Hamilton
equations of motion,

dxi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂xi

=
∂ log[P (d, ΦL, fNL, θ)]

∂xi

, (3.21)

are integrated for each parameter {xi; pi} = {fNL, ΦL; pfNL
, pΦL

} using the
leapfrog method with step size δt,

pi(t +
δt

2
) = pi(t) +

δt

2

∂ log[P (d, ΦL, fNL, θ)]

∂xi

∣∣∣∣
x(t)

xi(t + δt) = xi(t) +
δt

mi
pi(t +

δt

2
)

pi(t + δt) = pi(t +
δt

2
) +

δt

2

∂ log[P (d, ΦL, fNL, θ)]

∂xi

∣∣∣∣
x(t+δt)

. (3.22)

The equations of motion for xi are straightforward to compute, as they only
depend on the momentum variable. To integrate the evolution equations for
the pi, we derive

∂ log[P (d, ΦL, fNL, θ)]

∂fNL
= (Φ2

L − 〈Φ2
L〉)†M †B†N−1

× (d−BMΦL − fNLBM(Φ2
L − 〈Φ2

L〉)) ,

∂ log[P (d, ΦL, fNL, θ)]

∂ΦL

≈M †B†N−1(d−BMΦL)− P−1
Φ ΦL

+ 2fNL diag(M †B†N−1d)ΦL +O(Φ2
L) , (3.23)
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where we have truncated the gradient in the latter equation at order O(Φ2
L).

The final point of the trajectory is accepted with probability p, calculated
from p = min(1, exp[−∆H ]), where ∆H is the difference in energy between
the end- and starting point. This accept/reject step allows us to restore ex-
actness as it eliminates the error introduced by approximating the gradient
in Eq. 3.23 and by the numerical integration scheme. In general, only accu-
rate integrations where ∆H is close to zero result in high acceptance rates.
Furthermore, the efficiency of a HMC sampler is sensitive to the choice of the
free parameters mi, which corresponds to a mass. This issue is of particular
importance if the quantities of interest possess variances varying by orders
of magnitude. Following Taylor et al. (2008), we chose the masses inversely
proportional to the diagonal elements of the covariance matrix which we re-
constructed out of the solution of the sampling scheme from Sect. 3.3. We
initialized the algorithm by performing one draw of ΦNL from the conditional
PDF P (ΦNL|d, θ) and setting fNL = 0. The outcome of repeated analyses
of the data set presented in Fig. 3.3 is shown in Fig. 3.7. The consistency
of the distributions confirms the equivalence of the two sampling techniques
in the high signal-to-noise regime. However, convergence for the HMC is far
slower, even for the idealized choice for mi and a reasonable starting guess,
as can be seen from the large width of the autocorrelation function (see right
panel of Fig. 3.7).

We conclude, therefore, that the direct sampling scheme presented in
Sect. 3.3 is more efficient than HMC when applied to the detection of local
non-Gaussianities in the high signal-to-noise regime. However, as shown in
the rightmost panel of Fig. 3.5, the exact analysis using a HMC algorithm
remains applicable at high noise level.

3.7 Extension to realistic data

Applying the method to a realistic CMB data set requires recovering the
primordial potential ΦL on shells at numerous distances ri from the origin to
the present time cosmic horizon. Thus, the product of the transfer matrix
M with the potential transforms to

MΦ→
∑

i

MiΦ(ri) . (3.24)
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Figure 3.7: Performance of the Hamiltonian Monte Carlo sampler. Left

panel : Analysis of the data set of Fig. 3.3 using the HMC sampler. Here,
15 000 samples were draw. Right panel : The autocorrelation function of fNL.

Here, the matrix M projects a weighted combination of the Φ(ri) at different
radii to a resulting two dimensional signal map s. The resolution of the
r-grid can be coarser where the transfer functions for radiation are close to
zero and must be finer at the distances of recombination and reionization.
Another modification concerns the covariance matrix PΦ of the potential.
Now it additionally describes the correlation of Φ on distinct shells at different
distances,

Φ†P−1
Φ Φ→

∑

i,j

Φ(ri)P
−1
Φ(ri),Φ(rj)

Φ(rj) , (3.25)

and can be calculated from the primordial power spectrum P(k) predicted
by inflation

PΦ(ri),Φ(rj) ℓ =
2

π

∫
k2dkP(k) jℓ(k r1) jℓ(k r2) . (3.26)

To tighten the constraints on Φ, polarization information can be included
into the analysis as well simply by replacing the temperature by the po-
larization transfer function in the expression for M . We plan to study the
application of our methods to realistic CMB data in a future publication.

The computational speed of a complete implementation is limited by
harmonic transforms that scale as O(N

3/2
pix ).
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3.8 Summary

In this paper, we developed two methods to infer the amplitude of the non-
Gaussianity parameter fNL from a data set within a Bayesian approach. We
focused on the so called local type of non-Gaussianity and derived an expres-
sion for the joint probability distribution of fNL and the primordial curvature
perturbations, Φ. Despite the methods are of general validity, we tailored
our discussion to the case example of CMB data analysis.

We developed an exact Markov Chain sampler that generates correlated
samples from the joint density using the Hamiltonian Monte Carlo approach.
We implemented the HMC sampler and applied it to a toy model consisting
of simulated measurements of a 1-D sky. These simulations demonstrate that
the recovered posterior distribution is consistent with the level of simulated
non-Gaussianity.

With two approximations that exploit the fact that the non-Gaussian con-
tribution to the signal is next order in perturbation theory, we find a far more
computationally efficient Monte Carlo sampling algorithm that produces in-

dependent samples from the fNL posterior. The regime of applicability for
this approximation is for data with high signal-to-noise and weak non-Gaus-
sianity.

By comparison to the exact HMC sampler, we show that our approxi-
mate algorithm reproduces the posterior location and shape in its regime of
applicability. If non-zero fNL is not supported by the data the method is bi-
ased towards Gaussianity. The approximate posterior more strongly prefers
zero fNL compared to non-zero values than the exact posterior, as expected
given the nature of the approximations which Gaussianize the prior. This
method is therefore only applicable if the data contains sufficient support
for the presence of non-Gaussianity essentially overruling the preference for
Gaussianity in our approximate prior.

Our efficient method enables us to perform a Monte Carlo study of the
behavior of the posterior density for our toy model data with high signal-to-
noise per pixel. We found that the width of the posterior distribution does
not change as a function of the level of non-Gaussianity in the data, contrary
to the frequentist estimator where there is an additional, fNL dependent,
variance component (Creminelli et al. 2007; Liguori et al. 2007). Our results
suggest that this may be an advantage of the Bayesian approach compared
to the frequentist approach, motivating further study of the application of
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Bayesian statistics to the search for primordial local non-Gaussianity in cur-
rent and future CMB data.

We close on a somewhat philosophical remark. Even though we chose a
Gaussian prior approximation for expediency, it may actually be an accurate
model of prior belief for many cosmologists since canonical theoretical models
predict Gaussian perturbations. From that perspective our fast, approximate
method may offer some (philosophically interesting) insight into the question
“what level of signal-to-noise in the data is required to convince someone of
the presence of non-Gaussianity whose prior belief is that the primordial
perturbations are Gaussian?”
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Abstract

We introduce an exact Bayesian approach to search for non-Gaussianity of
local type in Cosmic Microwave Background (CMB) radiation data. Using
simulated CMB temperature maps, the newly developed technique is com-
pared against the conventional frequentist bispectrum estimator. Starting
from the joint probability distribution, we obtain analytic expressions for
the conditional probabilities of the primordial perturbations given the data,
and for the level of non-Gaussianity, fNL, given the data and the perturba-
tions. We propose Hamiltonian Monte Carlo sampling as a means to derive
realizations of the primordial fluctuations from which we in turn sample
fNL. Although being computationally expensive, this approach allows us to
exactly construct the full target posterior probability distribution. When
compared to the frequentist estimator, applying the Bayesian method to
Gaussian CMB maps provides consistent results. For the analysis of non-
Gaussian maps, however, the error bars on fNL do not show excess variance
within the Bayesian framework. This finding is of particular relevance in the
light of upcoming high precision CMB measurements obtained by the Planck
satellite mission.



4.1 Introduction

Precise measurements of the cosmic microwave background (CMB) radiation
have vastly improved our understanding of cosmology and played a crucial
role in constraining the set of fundamental cosmological parameters (Spergel
et al. 2003, 2007; Hinshaw et al. 2009; Larson et al. 2010). This success is
based on a tight connection between the temperature fluctuations we observe
today and the physical processes taking place in the early universe.

Inflation is currently the favored theory predicting the shape of primordial
perturbations (Guth 1981; Albrecht & Steinhardt 1982; Linde 1982; Starobin-
skǐi 1982). In its simplest form, it is driven by a single scalar field in ground
state with quadratic kinetic term that rolled down a flat potential slowly.
This configuration leads to very small non-Gaussianities (see Acquaviva et al.
2003; Maldacena 2003 for a first order, and Pitrou et al. 2010 for the full sec-
ond order calculation). Hence, a clear detection of an excess of primordial
non-Gaussianity would allow us to rule out the simplest models. Together
with constraints on the scalar spectral index nS and the search for primordial
gravitational waves, the test for non-Gaussianity therefore becomes another
important means to probe the physical processes of the early universe.

In this paper, we focus on non-Gaussianity of local type, where the ampli-
tude of non-Gaussianity is measured by a single parameter, fNL (Salopek &
Bond 1990). A common strategy for estimating fNL is to evaluate the bispec-
trum of the CMB (Komatsu et al. 2002, 2003; Spergel et al. 2007; Yadav &
Wandelt 2008; Smith et al. 2009). This is usually done indirectly via a cubic
combination of filtered CMB maps reconstructing the primordial perturba-
tions (Komatsu et al. 2005; Yadav et al. 2007, 2008). This approach takes
advantage of the specific signatures produced by primordial non-Gaussianity,
resulting in a computationally efficient algorithm. A variant of this estima-
tor has been successfully applied to the 7-year data release of the Wilkinson
Microwave Anisotropy Probe (WMAP), resulting in −10 < fNL < 74 at 95 %
confidence level (Komatsu et al. 2010).

The bispectrum estimator used in previous analyses has been shown to be
optimal, i.e. it satisfies the Cramér-Rao bound (Babich 2005). However, this
turns out to be true only in the limit of vanishing non-Gaussianity (Creminelli
et al. 2007). For a significant detection of fNL, the estimator suffers from ex-
cess variance, a finding that has also been verified numerically (Liguori et al.
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2007). For the simplified case of a flat sky approximation, neglected trans-
fer functions and instrumental noise, Creminelli et al. (2007) showed that it
should be possible to construct an improved version of the estimator that is
equivalent to a full likelihood analysis up to terms of the order O(1/ lnNpix).

Bayesian methods for the analysis of various aspects of CMB data have
been successfully developed in the past, e.g., for an exact power spectrum
determination using Gibbs sampling (e.g. Jewell et al. 2004; Wandelt et al.
2004; Larson et al. 2007; Jewell et al. 2009), to separate foreground contri-
butions from the CMB anisotropies (e.g. Hobson et al. 1998; Barreiro et al.
2004; Eriksen et al. 2006, 2008a,b; Dickinson et al. 2009), or to probe for
non-Gaussian features (e.g. Rocha et al. 2001; Enßlin et al. 2009; Vielva &
Sanz 2009; Efstathiou et al. 2010). They offer a natural way to marginalize
over uncertainties e.g. attributed to foreground contamination or instrumen-
tal effects. This is of particular importance for a reliable analysis of weak
signals and an advantage over frequentist methods, where no such proce-
dures exist. Here, we advance the exact scheme introduced in Elsner et al.
(2010) to infer the level of non-Gaussianity from realistic CMB data within
a Bayesian approach.

We use simulated Gaussian and non-Gaussian CMB temperature maps
to compare and contrast the conventional frequentist (bispectrum) estimator
with the exact Bayesian approach. We show that the latter method does not
suffer from excess variance for non-zero fNL, and can deal with partial sky
coverage and anisotropic noise properties, a feature of particular importance
for local non-Gaussianity and for any realistic experiment.

The paper is organized as follows. In Sect. 4.2, we briefly outline the
theoretical model used to describe primordial non-Gaussianity. We review
the conventional frequentist bispectrum estimator and present our exact
Bayesian approach to infer the amplitude of non-Gaussianity in Sect. 4.3.
Then, we use simulated maps to compare the performance of the newly de-
veloped technique to the traditional estimator (Sect. 4.4). We demonstrate
the capability of the Bayesian scheme to deal with realistic CMB experiments
in Sect. 4.5. Finally, we summarize our results in Sect. 4.6.

Throughout the paper, we assume the WMAP5+BAO+SNALL cosmo-
logical parameters (Komatsu et al. 2009): ΩΛ = 0.721, Ωc h2 = 0.1143,
Ωb h2 = 0.02256, ∆2

R(0.002 Mpc−1) = 2.457 · 10−9, h = 0.701, ns = 0.96, and
τ = 0.084.
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4.2 Model of non–Gaussianity

The multipole coefficients aℓm of the CMB temperature anisotropies are re-
lated to the primordial fluctuations,

aℓm =
2

π

∫
k2dk r2dr Φℓm(r) gℓ(k) jℓ(kr) + nℓm

≡MΦℓm + nℓm , (4.1)

where Φℓm are the primordial adiabatic perturbations at comoving distance
r, gℓ the transfer function in momentum space, and jℓ the spherical Bessel
function of order ℓ. Additive noise is taken into account by nℓm, for a compact
notation we will use the operator M as a shorthand for the radial integral in
what follows. Traces of non-Gaussianity in the primordial fluctuations will
be transferred to the multipole moments aℓm according to Eq. 4.1, potentially
making them accessible to CMB experiments.

We focus on non-Gaussianity of local type, which is realized to very good
approximation in multi-field inflationary models as described by the curvaton
model (Moroi & Takahashi 2001; Lyth et al. 2003), or in ekpyrotic/cyclic uni-
verse models (Khoury et al. 2001; Enqvist & Sloth 2002; Steinhardt & Turok
2002). Here, we can parametrize the non-Gaussianity of Φ via a quadratic
dependency on a Gaussian auxiliary field ΦL, that is local in real space, of
the form (Salopek & Bond 1990; Gangui et al. 1994)

Φ(r) = ΦL(r) + fNL[Φ2
L(r)− 〈Φ2

L(r)〉] +O(Φ3
L) , (4.2)

where fNL is a dimensionless measure of the amplitude of non-Gaussianity
and we truncate the expansion at third order in ΦL.

4.3 Analysis techniques

4.3.1 Frequentist estimator

In the following, we briefly review the fast estimator as proposed by Komatsu
et al. (2005). This estimator is optimal for uniform observation of the full
sky. More general least-square cubic estimators have been found for data
with partial sky coverage and anisotropic noise (Creminelli et al. 2006, see
also the review of, e.g., Yadav & Wandelt 2010).
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To estimate the non-Gaussianity of a CMB temperature map, one con-
structs the statistic Sprim out of a cubic combination of the data,

Sprim =

∫
dr r2

∫
d2n̂ A(r, n̂) B2(r, n̂) . (4.3)

The spatial integral runs over two filtered maps,

A(r, n̂) =
∑

ℓ,m

C−1
ℓ αℓ(r) aℓm Yℓm(n̂) , (4.4)

B(r, n̂) =
∑

ℓ,m

C−1
ℓ βℓ(r) aℓm Yℓm(n̂) , (4.5)

that are constructed using the auxiliary functions

αℓ(r) =
2

π

∫
dk k2 gℓ(k) jℓ(kr) , (4.6)

βℓ(r) =
2

π

∫
dk k2P(k) gℓ(k) jℓ(kr) , (4.7)

and the inverse of the CMB plus noise power spectrum, C−1
ℓ . The power

spectrum of the primordial perturbations is denoted by P(k). Now, we can
calculate the expectation value of fNL from the statistics Sprim by applying
a suitable normalization,

fNL =

[
∑

ℓ1≤ℓ2≤ℓ3

1

∆ℓ1ℓ2ℓ3

(Bprim)2
ℓ1ℓ2ℓ3

C−1
ℓ1
C−1

ℓ2
C−1

ℓ3

]−1

· Sprim , (4.8)

where ∆ℓ1ℓ2ℓ3 = 6, when ℓ1 = ℓ2 = ℓ3, 2, when ℓ1 = ℓ2 6= ℓ3 or ℓ1 6= ℓ2 = ℓ3,
and 1 otherwise. The theoretical bispectrum for fNL = 1, Bprim

ℓ1ℓ2ℓ3
, is given by

Bprim
ℓ1ℓ2ℓ3

= 2 Iℓ1ℓ2ℓ3

∫
dr r2 [βℓ1(r)βℓ2(r)αℓ3(r) + βℓ3(r)βℓ1(r)αℓ2(r)

+ βℓ2(r)βℓ3(r)αℓ1(r)] , (4.9)

where a combinatorial prefactor is defined as

Iℓ1ℓ2ℓ3 =

√
(2ℓ1 + 1)(2ℓ2 + 1)(2ℓ3 + 1)

4π

(
ℓ1 ℓ2 ℓ3

0 0 0

)
. (4.10)
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Recently, the Bayesian counterpart of the fast estimator has been de-
veloped within the framework of information field theory by expanding the
logarithm of the posterior probability to second order in fNL (Enßlin et al.
2009). Here, the equivalent of the normalization factor in Eq. 4.8 becomes
data dependent, accounting for the fact that the ability to constrain fNL

varies from data set to data set. We will go beyond this level of accuracy
and present an exact Bayesian scheme in the next section.

4.3.2 Exact Bayesian inference

We now introduce a Bayesian method that, in contrast to the bispectrum
estimator, includes information from all correlation orders. Our aim is to
construct the posterior distribution of the amplitude of non-Gaussianities
given the data, P (fNL|d). To this end, we subsume the remaining set of
cosmological parameters to a vector θ and rewrite the joint distribution as

P (d, ΦL, fNL, θ) = P (d|ΦL, fNL, θ) P (ΦL|θ) P (fNL) P (θ) . (4.11)

Substituting the noise vector in terms of data and signal, we can use Eq. 4.1
et seq. to express the probability for data d given ΦL, fNL, and θ up to an
overall prefactor

P (d|ΦL, fNL, θ) ∝ e −1/2 [d−M(ΦL+fNL(Φ2
L−〈Φ2

L〉))]
†N−1[d−M(ΦL+fNL(Φ2

L−〈Φ2
L〉))] ,

(4.12)
where we introduced the noise covariance matrix N . The prior probability
P (ΦL|θ) can be expressed as multivariate Gaussian distribution by construc-
tion, thus, we eventually obtain

P (d, ΦL, fNL, θ) ∝ exp
{
−1/2

[
d−M(ΦL + fNL(Φ2

L − 〈Φ2
L〉))

]†
N−1

×
[
d−M(ΦL + fNL(Φ2

L − 〈Φ2
L〉))

]
− 1/2 Φ†

LP−1
Φ ΦL − f 2

NL/2σ2
fNL

}
(4.13)

as an exact expression for the joint distribution up to a normalization factor,
assuming a Gaussian prior for fNL with zero mean and variance σ2

fNL
, and

a flat prior for the cosmological parameters. The covariance matrix PΦ is
constrained by the primordial power spectrum predicted by inflation, P(k),
and given by (Liguori et al. 2003)

〈
ΦL ℓ1m1(r1) Φ∗

L ℓ2m2
(r2)

〉
=

2

π
δℓ1
ℓ2

δm1
m2

∫
dk k2P(k) jℓ1(kr1) jℓ2(kr2) . (4.14)
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To evaluate the joint distribution (Eq. 4.13) directly would require to per-
form a numerical integration over a high dimensional parameter space. For
realistic data sets this turns out to be impossible computationally. We pur-
sue a different approach here. First, we note that the exponent in Eq. 4.13 is
quadratic in fNL and hence the conditional density P (fNL|d, ΦL, θ) is Gaus-
sian with mean and variance

〈fNL〉 = 〈(fNL − 〈fNL〉)2〉(Φ2
L − 〈Φ2

L〉)†M †N−1(d−MΦL)

〈(fNL − 〈fNL〉)2〉 =
[
(Φ2

L − 〈Φ2
L〉)†M †N−1M(Φ2

L − 〈Φ2
L〉) + 1/σ2

fNL

]−1
.

(4.15)

Thus, for any realization of ΦL, Eqs. 4.15 permit us to calculate the dis-
tribution of fNL given the data. Similarly, we can calculate the conditional
probability P (ΦL|d, θ) by analytically marginalizing Eq. 4.13 over fNL,

P (ΦL|d, θ) =

∫
dfNL P (ΦL, fNL|d, θ)

∝ [σ2
fNL

(Φ2
L − 〈Φ2

L〉)†M †N−1M(Φ2
L − 〈Φ2

L〉) + 1]−1/2

× e
−1/2 (d−MΦL)†

"
N−1−

σ2
fNL

N−1M(Φ2
L−〈Φ2

L〉)(Φ2
L−〈Φ2

L〉)†M†N−1

σ2
fNL

(Φ2
L
−〈Φ2

L
〉)†M†N−1M(Φ2

L
−〈Φ2

L
〉)+1

#

×(d−MΦL)−1/2 Φ†
LP−1

Φ ΦL. (4.16)

Now we can outline our approach to infer the level of non-Gaussianity from
CMB data iteratively. First, for given data d, we draw ΦL from the distri-
bution Eq. 4.16. Then, fNL can be sampled according to Eqs. 4.15 using the
value of ΦL derived in the preceding step. If the sampling scheme is iterated
for a sufficient amount of cycles, the derived set of fNL values resembles an
unbiased representation of the posterior distribution P (fNL|d, θ).

Unfortunately, there exists no known way to draw uncorrelated samples
of ΦL from its non-Gaussian distribution function directly. Here, we propose
Hamiltonian Monte Carlo (HMC) sampling to obtain correlated realizations
of the primordial perturbations. In this approach, the variable is regarded
as the spatial coordinate of a particle moving in a potential well described
by the probability distribution function to evaluate (Duane et al. 1987). A
generalized mass matrix W and momentum variables p are assigned to the
system to define its Hamiltonian

H = 1/2 p†W−1p− log[P (ΦL|d, θ)] , (4.17)
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where the potential is related to the posterior distribution as defined in
Eq. 4.16. The system is evolved deterministically from a starting point ac-
cording to the Hamilton’s equations of motion

dΦL

dt
=

∂H

∂p
,

dp

dt
= − ∂H

∂ΦL
=

∂ log[P (ΦL|d, θ)]

∂ΦL
, (4.18)

which are integrated by means of the second order leapfrog scheme with step
size δt,

p(t +
δt

2
) = p(t) +

δt

2

∂ log[P (ΦL|d, θ)]

∂ΦL

∣∣∣∣
ΦL(t)

ΦL(t + δt) = ΦL(t) + δt W−1p(t +
δt

2
)

p(t + δt) = p(t +
δt

2
) +

δt

2

∂ log[P (ΦL|d, θ)]

∂ΦL

∣∣∣∣
ΦL(t+δt)

. (4.19)

The equation of motion for ΦL can easily be solved, as it only depends on
the momentum variable. To integrate the evolution equation for p, we derive

∂ log[P (ΦL|d, θ)]

∂ΦL
≈M †

[
N−1

−
σ2

fNL
N−1M(Φ2

L − 〈Φ2
L〉)(Φ2

L − 〈Φ2
L〉)†M †N−1

σ2
fNL

(Φ2
L − 〈Φ2

L〉)†M †N−1M(Φ2
L − 〈Φ2

L〉) + 1

]
(d−MΦL)− P−1

Φ ΦL

(4.20)

as an approximate expression neglecting higher order terms in ΦL. The final
point of the trajectory is accepted with probability p = min(1, exp[−∆H ]),
where ∆H is the difference in energy between the end- and starting point.
This accept/reject step allows us to restore exactness as it eliminates the
error introduced by approximating the gradient in Eq. 4.20 and by the nu-
merical integration scheme. In general, only accurate integrations where ∆H
is close to zero result in high acceptance rates. This can usually be archived
by choosing small time steps or an accurate numerical integration scheme.
However, as the time integration requires the calculation of spherical har-
monic transforms with inherently limited precision, higher order methods
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turn out to be unrewarding. Furthermore, the efficiency of a HMC sampler
is sensitive to the choice of the mass matrix W . In agreement with Taylor
et al. (2008), we found best performance when choosing W as inverse of the
posterior covariance matrix of the primordial perturbations, which we derive
from the Wiener filter equation for purely Gaussian perturbations to good
approximation,

P (d, ΦG, θ) ∝ exp
{
−1/2

[
d−MΦG

]†
N−1

[
d−MΦG

]
− 1/2 ΦG †P−1

Φ ΦG
}

,

(4.21)

with mean and variance of the distribution P (ΦG|d, θ)

〈ΦG〉 = 〈(ΦG − 〈ΦG〉)2〉M †N−1d

〈(ΦG − 〈ΦG〉)2〉 =
[
M †N−1M − P−1

Φ

]−1
, hence (4.22)

W = M †N−1M − P−1
Φ . (4.23)

For the calculation of the mass matrix W in the presence of anisotropic
noise or partial sky coverage, we still adopt a simple power spectrum as
approximation for N at the cost of a reduced sampling efficiency.

We initialize the algorithm by performing one draw of the primordial
perturbations from the Gaussian posterior P (ΦG|d, θ) (Eqs. 4.22).

4.4 Scheme comparison

We use simulated CMB temperature maps obtained with the algorithm de-
scribed in Elsner & Wandelt (2009) to compare the newly developed Bayesian
scheme to the conventional frequentist approach. We chose a Gaussian
(fNL = 0) and a non-Gaussian (fNL = 100) CMB realization at a HEALPix
resolution of nside = 256 and ℓmax = 512, superimposed by isotropic noise
with a constant power spectrum amplitude of Cnoise

ℓ = 10−7mK2. We show
the non-Gaussian temperature map besides the input signal and noise power
spectra in Fig. 4.4.

Performing the analysis within the frequentist framework, we get 〈fNL〉 =
4 for the Gaussian and 〈fNL〉 = 97 for the non-Gaussian simulation. To
obtain an estimate of the attributed error, we conducted 1000 Monte Carlo
simulations with the input parameters as quoted above. For the Gaussian
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realization, we find a standard deviation of σMC
fNL

= 15, in perfect agreement
with the value predicted form a fisher information matrix forecast. For the
non-Gaussian simulation, however, the derived error σMC

fNL
= 20 is already

considerably larger than in the Gaussian case—the sub-optimality of the
bispectrum estimator at non-zero fNL becomes manifest.

In the Bayesian analysis, we construct the full posterior distribution out
of the samples drawn from it. We chose a Gaussian prior for fNL with zero
mean and a very large width of σprior

fNL
= 500 in order to not introduce any bias

to the results. For an efficient sampling process, we tuned the time step size
δt of the HMC algorithm to realize a mean acceptance rate of about 40 %.
To reduce the overall wall clock time needed for the analysis of one CMB
map, we ran 32 chains in parallel and eventually combine all the samples.
For reliable results, it is imperative to quantitatively assess the convergence
of the Monte Carlo process. Here, we apply the statistics of Gelman & Rubin
(1992) to the obtained samples. It compares the variance among different
chains with the variance within a chain and returns a number in the range of
0 ≤ R < ∞ which reflects the quality of the convergence of the chains with
a given length. In general, a value close to R = 1 reflects good convergence.
As this value refers to the convergence of a single chain, we in fact obtain
a significantly better result after a combination of all of the 32 independent
chains we generated.

For the Gaussian simulation, we run chains with a length of 25 000 sam-
ples each, discarding the first 5000 samples during burn-in. With these pa-
rameters, we find excellent convergence as confirmed by the Gelman-Rubin
statistics, R = 1.04. The final result along with a comparison to the fre-
quentist scheme is shown in Fig. 4.2. In the Bayesian analysis, we find a
mean value of 〈fNL〉 = 3 and a width of the distribution σfNL

= 15. As
the bispectrum estimator is known to be optimal in the limit of vanishing
non-Gaussianity, the two different approaches lead to consistent results.

To repeat the analysis of the non-Gaussian map, we again generated 32
independent chains with a length of 40 000 samples each. After dropping
the first 10 000 elements to account for the period of burn-in, we estimated
the convergence of the individual chains by means of the Gelman-Rubin
statistics and find R = 1.4. The inferred mean of 〈fNL〉 = 99 at an 1-σ error
of σfNL

= 15 is in good agreement with the input value of the simulation. We
directly compare the Bayesian to the frequentist result in Fig. 4.3, where we
now find an important difference in the outcomes. Whereas for a significant
detection of non-Gaussianity the frequentist estimator suffers from excess
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variance, the Bayesian scheme still provides the same error bars as for the
Gaussian simulation.

We stress that the computational cost for the Bayesian analysis with the
exact marginalization of the high-dimensional Φ parameter space is quite
demanding. With the setup as described here, the runtime for the Gaussian
and the non-Gaussian simulation amounts to about 80 000 CPUh and 150 000
CPUh, respectively. The reason for the inefficiency lies in the large correla-
tion length of the fNL sampling chains. We illustrate this fact in Fig. 4.4,
where we display three out of the 32 chains of the non-Gaussian simulation.
In addition, we show the autocorrelation function of a chain as defined via

ξ(∆N) =
1

N

N∑

i

(f i
NL − µ)(f i+∆N

NL − µ)

σ2
, (4.24)

where N is the length of the fNL chains with mean µ and variance σ2.
It is interesting to note that the derived values of fNL and their error

bars will in general not agree exactly between the two approaches, even for
a Gaussian data set. The frequentist estimator is unbiased with respect to
all possible realizations of signal and noise. The error bars, calculated via
Monte Carlo simulations, are the same for all data sets with identical input
parameters by definition. The Bayesian approach, on the other hand, returns
the entire information contained about the local model in the particular
realization subject to the analysis. Thus, the uncertainty in the parameter
is computed from the data itself and will vary from data set to data set,
as cosmic variance or accidental alignments between signal and noise may
impact the ability to constrain the level of non-Gaussianity. Furthermore,
the Bayesian method constructs the full posterior probability function instead
of simply providing an estimate of the error under the implicit assumption
of a Gaussian distribution.

4.5 Application to more realistic simulations

In the previous section, we have demonstrated the Bayesian approach under
idealized conditions such as isotropic noise properties and a full sky analysis.
However, applying the method to a realistic CMB data set requires the ability
to deal with spatially varying noise properties and partial sky coverage.

In this context, a general problem is the mixture of preferred basis repre-
sentations. Whereas the covariance matrix of the primordial perturbations
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Figure 4.1: Properties of the maps analyzed. Left panel: Our non-Gaussian
CMB signal simulation in dimensionless units. Right panel: The input signal
(solid line) and noise (dashed line) power spectra.
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Figure 4.2: Analysis of the Gaussian simulation (fNL = 0). Left panel: We
show the analysis of the Gaussian CMB map by means of the frequentist
estimator. Plotted are the recovered value 〈fNL〉 = 4 (solid line) and the
2−σ error (dashed lines) as derived from Monte Carlo simulations, σMC

fNL
= 15.

Right panel: The analysis of the same data set within a Bayesian framework
constructs the full posterior distribution P (fNL|d, θ). We obtain a mean value
of 〈fNL〉 = 3 and a standard deviation of σfNL

= 15.
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Figure 4.3: Same as Fig. 4.2, but for the non-Gaussian simulation (fNL =
100). The results from a frequentist analysis are 〈fNL〉 = 97, σMC

fNL
= 20.

Using the Bayesian method, we obtain 〈fNL〉 = 99 and σfNL
= 15. For a

significant detection of fNL, the bispectrum estimator shows excess variance,
whereas the analysis on the basis of the exact Bayesian approach still provides
tight error bounds.
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Figure 4.4: Performance of the sampling algorithm. Left panel: We plot a
random selection of three of the 32 fNL sampling chains that build up the
histogram in Fig. 4.3. We discarded the first 10 000 samples during burn-in.
Right panel: The autocorrelation function of a sampling chain.
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can naturally be expressed in spherical harmonic space, the noise covariance
matrix and the sky mask are defined best in pixel space. For the frequentist
estimator, this is known to be problematic as e.g. in the calculation of the
auxiliary map B(r, n̂) in Eq. 4.5 (the Wiener filtered primordial fluctuations,
see also Eqs. 4.22 for an equivalent, but more didactic expression), the in-
version of a combination of the two covariance matrices has to be computed.
For anisotropic noise, this can only be done by means of iterative solvers,
whose numerical efficiencies depend crucially on the ability to identify pow-
erful preconditioners1.

For the Bayesian analysis scheme as presented here, however, the relevant
equations do not contain any terms of this structure. Therefore, the compu-
tations remain straightforward even in the presence of arbitrary anisotropic
noise properties and sky cuts. To demonstrate this ability, we performed
a reanalysis of the simulated non-Gaussian temperature map of Sect. 4.4,
now superimposed by anisotropic noise as typically expected for a high fre-
quency WMAP channel. With these parameters, the average noise power
spectrum roughly remains at a level of about Cnoise

ℓ ≈ 10−7mK2, but the noise
is no longer spatially invariant. Including the KQ75y7 extended temperature
mask, we we show the diagonal elements of the inverse noise covariance ma-
trix in Fig. 4.5.

Again, for the analysis, we generated 32 independent Monte Carlo chains
with 105 000 samples. After discarding the first 15 000 elements during burn-
in, we applied the Gelman-Rubin convergence diagnostics to the chains and
obtain a value of R = 1.5. The computed mean of 〈fNL〉 = 88 and the 1-σ
error of σfNL

= 16 are in agreement with the input values of the simulation.
We show the constructed histogram on the right hand panel of Fig. 4.5,
demonstrating the applicability of the algorithm to realistic data sets.

4.6 Summary

In this paper, we introduced an exact Bayesian approach to infer the level of
non-Gaussianity of local type, fNL, from realistic CMB temperature maps.
We derived conditional probabilities for the primordial perturbations given
the data, P (ΦL|d, θ), and for fNL given the data and the perturbations,
P (fNL|d, ΦL, θ). We used Hamiltonian Monte Carlo sampling to draw valid

1This can be very difficult, see, e.g., the discussion in Smith et al. (2007)
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Figure 4.5: Analysis in case of a realistic CMB experiment. Left panel: We
show the diagonal elements of the inverse noise covariance matrix in dimen-
sionless units adopted for the more realistic simulation. When expressed in
real space basis, off-diagonal terms vanish exactly. Pixel within the KQ75y7
mask are set to zero, corresponding to assigning infinite variance to them.
Right panel: The constructed posterior distribution P (fNL|d, θ) of the simu-
lated map. Obtaining 〈fNL〉 = 88 and σfNL

= 16 for the mean and standard
deviation, respectively, the input value (fNL = 100) gets consistently recov-
ered.

realizations of ΦL from which we in turn sample fNL. After convergence these
are samples from the full Bayesian posterior density of fNL given the data.

For a direct comparison of the newly developed scheme to the conventional
fast (bispectrum) estimator, we used simulated Gaussian and non-Gaussian
CMB maps superimposed by isotropic noise. Estimates of the error bars
within the frequentist approach were derived from Monte Carlo simulations.
As a result, we find consistent outcomes between the two approaches for the
analyzed Gaussian map, in agreement with the fact that the fast estimator is
optimal in the limit of vanishing non-Gaussianity. In the non-Gaussian case,
however, the advantage of the exact Bayesian approach becomes important.
Here, the uncertainty in fNL remains at the same level as for the Gaussian
simulation, whereas the frequentist technique suffers from excess variance.
Our results give the first example of an estimator (the “mean posterior es-
timator”) that saturates the Cramer-Rao bound for fNL even if the signal is
detectably non-Gaussian.

Finally, we demonstrate the applicability of the newly developed method
to a realistic data set with spatially varying noise properties and partial sky
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coverage. Considering a WMAP-like noise covariance matrix and imposing
the KQ75y7 extended temperature analysis mask, we analyze a non-Gaussian
simulation and recover the input value consistently.

In the limit of undetectable non-Gaussianity, the Bayesian approach ought
to yield the same information as the optimal bispectrum estimator (Babich
2005; Creminelli et al. 2007). Even in that limit it is useful as a cross-check
since it is implemented in a completely different way. Although being compu-
tationally expensive, we conclude that the method presented here is a viable
tool to exactly infer the level of non-Gaussianity of local type from CMB
radiation experiments within a Bayesian framework.

Acknowledgements. Some of the results in this paper have been derived
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Starobinskǐi, A. A. 1982, Physics Letters B, 117, 175

Steinhardt, P. J. & Turok, N. 2002, Phys. Rev. D, 65, 126003

Taylor, J. F., Ashdown, M. A. J., & Hobson, M. P. 2008, MNRAS, 389, 1284

Vielva, P. & Sanz, J. L. 2009, MNRAS, 397, 837

Wandelt, B. D., Larson, D. L., & Lakshminarayanan, A. 2004, Phys. Rev. D,
70, 083511

105



Yadav, A. P. S., Komatsu, E., & Wandelt, B. D. 2007, ApJ, 664, 680

Yadav, A. P. S., Komatsu, E., Wandelt, B. D., et al. 2008, ApJ, 678, 578

Yadav, A. P. S. & Wandelt, B. D. 2008, Physical Review Letters, 100, 181301

Yadav, A. P. S. & Wandelt, B. D. 2010, Advances in Astronomy, 2010

106



Chapter 5

Summary

In the standard model of cosmology, the universe arose out of a hot big
bang followed by a phase of cool-down due to an adiabatic expansion (Linde
1990b; Dodelson 2003; Mukhanov 2005). This simple model is very success-
ful in explaining the most important cosmological observations, namely the
black body nature of the cosmic microwave background (CMB) radiation,
the abundance patterns of the light elements generated during the primor-
dial nucleosynthesis, and Hubble’s law. Although being in good agreement
with these findings, some observations lack a sound explanation within this
framework. To be more specific, the flatness of the universe, the absence of
relic particles as magnetic monopoles, the almost perfect isotropy of the CMB
radiation, and the source of the seeds for structure formation put challenges
to standard cosmology. Albeit not in strict conflict with experiments, the
initial conditions of the universe have to be fine tuned to very high accuracy
in order to make the model consistent with observations.

The theory of inflation provides a valuable extension to the standard
model of cosmology that remedies the aforementioned discrepancies (Guth
1981; Linde 1982; Albrecht & Steinhardt 1982). In its simplest realization, it
proposes the existence of a scalar field, the inflaton, which triggered a short
epoch of exponential expansion immediately after the big bang. Because in
this scenario today’s observable universe has emerged out of a tiny patch in
thermal equilibrium that was stretched to macroscopic sizes, the predictions
for some of its fundamental properties change and now are in agreement with
observations in a natural way.

The forecasts of inflation are largely independent of the details of the
particular underlying model. As a result, to distinguish between competitive
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versions of inflationary theories, one has to probe experimental data for very
subtle effects. For example, the simplest inflationary scenarios predict the
primordial perturbations to be almost perfectly Gaussian (Acquaviva et al.
2003; Maldacena 2003). However, if the physical mechanisms responsible for
generating the perturbations deviate from the simplest setup, a non-Gaussian
signature is generically introduced.

As any non-Gaussian contribution present in the primordial fluctuations
gets imprinted onto the CMB radiation, the search for non-Gaussianity in
CMB data becomes an important test of the physical processes in the very
early universe. With the advent of full-sky CMB temperature measurements
conducted by the Cosmic Background Explorer (COBE) and the Wilkinson

Microwave Anisotropy Probe (WMAP) satellites, it was possible to impose
stringent limits on the amplitude of non-Gaussianity (e.g. Bennett et al.
1996; Komatsu et al. 2003). The situation will further improve considerably
once data of the Planck satellite mission become available which do not only
supersede WMAP’s temperature maps in resolution and noise level, but also
provide high quality full-sky polarization information (Efstathiou et al. 2005).

A classification scheme has been introduced to group inflationary models
according to their non-Gaussian signature. It is based on the characteris-
tic momentum modes dominating the contribution to the bispectrum, the
Fourier transform of the 3-point correlation function. Regarding non-Gaus-
sianity of equilateral type, for example, the important modes roughly form
a triangle of equilateral shape in momentum space, i.e. they are of compa-
rable absolute value. This kind of non-Gaussianity is predicted by models
with modified kinetic term in the inflaton Lagrangian (Babich et al. 2004).
Models where the inflaton vacuum expectation value deviates from the sim-
ple Bunch-Davies ground state fall into another class. Here, the bispectrum
shape function peaks at folded triangle configurations, i.e. when one momen-
tum is considerably larger than the other two (Chen et al. 2007). A third
class is defined by multi-field inflationary models, where the processes re-
sponsible for generating the primordial fluctuations were driven (or at least
affected) by another field. In this case, the relevant momentum configuration
can be described by a squeezed triangle, that is, one momentum is consid-
erably smaller than the other two (Babich et al. 2004). In this thesis, we
focused on the search for primordial non-Gaussianity of local type.

Non-Gaussianity of local type is generically predicted in multi-field in-
flationary models (Moroi & Takahashi 2001; Lyth et al. 2003). Also, mod-
els encountered in string theory as the cyclic/ekpyrotic universe model fall
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within this class (Khoury et al. 2001; Enqvist & Sloth 2002; Steinhardt &
Turok 2002b). According to these theories, the primordial fluctuations Φ can
be perturbational expanded in terms of a Gaussian auxiliary field ΦL and its
non-linear transform (Salopek & Bond 1990; Gangui et al. 1994),

Φ(r) = ΦL(r) + fNL

(
Φ2

L(r)− 〈Φ2
L(r)〉

)
+O(Φ3

L) , (5.1)

where fNL is the dimensionless amplitude of non-Gaussianity and we have
truncated the expansion at third order in ΦL. By the addition of a quadratic
contribution to the primordial fluctuations Φ, we introduce a phase correla-
tion among the different formerly uncoupled Fourier modes.

The main objective of this work was to develop and implement a Bayesian
method to infer the level of non-Gaussianity from CMB maps. To assess the
performance and validity of a newly introduced scheme, the analysis of sim-
ulated yet realistic data sets with known statistical properties is mandatory.
To this end, we first proposed an efficient method to generate temperature
and polarization CMB maps with an arbitrary level of local non-Gaussianity.
In this algorithm, we synthesize the 3-dimensional Gaussian primordial per-
turbations ΦL in spherical harmonic space, properly accounting for the ra-
dial correlations. The non-Gaussian contribution is calculated according to
Eq. 5.1, where the expression is to be evaluated in pixel space. Then, the cur-
vature perturbations get projected onto a 2-dimensional CMB map by means
of a line-of-sight integral using the radiation transfer functions. To increase
the accuracy as well as numerical efficiency of the method, we proposed a
new optimization scheme which aims at finding both optimal nodes and op-
timal weights needed for the numerical quadrature. Given the cosmological
parameters as inferred from WMAP 5-year data, baryonic acoustic oscilla-
tions, and supernova distance measurements, we generated 1000 realizations
of simulated CMB temperature and polarization maps. After validating the
results using the traditional frequentist bispectrum estimator (Komatsu et al.
2005), we provided them to the community1.

As a next step, we derived the basic equations to measure the level of
non-Gaussianity of local type in CMB data using Bayesian statistics. We ob-
tained an expression for the joint probability distribution of the primordial
perturbations, Φ, the level of non-Gaussianity, fNL, the remaining cosmolog-
ical parameters, θ, and the data, d. However, the very high dimensionality

1Available at http://planck.mpa-garching.mpg.de/cmb/fnl-simulations
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of the parameter space prohibits to evaluate the equation directly. To cir-
cumvent this problem, we proposed a Hamiltonian Monte Carlo algorithm to
draw fNL-samples from the target distribution. Once this process has been
repeated sufficiently often, the samples build up the exact posterior distribu-
tion of fNL given the data. For the case of weak non-Gaussianity and high
signal-to-noise ratios, we also identified a numerically much more efficient yet
approximate method to sample from the posterior distribution.

We demonstrated the applicability of the newly developed scheme by
studying a simplified 1-dimensional toy model of the CMB radiation. Ana-
lyzing data sets with varying non-Gaussian contribution, we found the width
of the posterior distribution to be constant. In contrast, this is not the
case for the conventional frequentist estimator, where an fNL-dependent ex-
cess variance has been observed (Creminelli et al. 2007; Liguori et al. 2007),
pointing towards a fundamental advantage of the newly developed Bayesian
approach.

After a further refinement of the method, we fully implemented a paral-
lelized version of the algorithm which is capable of calculating the level of
non-Gaussianity from realistic CMB temperature maps using Hamiltonian
Monte Carlo sampling. This is done in a two-step process. We first produce
a valid realization of the Gaussian auxiliary field from the fNL-marginalized
conditional probability ΦL ←֓ P (ΦL|d, θ). Then, we draw a fNL sample from
the Gaussian conditional density given the previously derived primordial per-
turbation, fNL ←֓ P (fNL|ΦL, d, θ). After iterating this process for a sufficient
amount of cycles, the generated set of fNL values is an unbiased representa-
tion of the target posterior distribution.

We compared our exact Bayesian approach to the frequentist estimator
which only takes into account information from the 3-point correlation func-
tion of the data set. For the analysis of a simulated Gaussian CMB map with
isotropic noise characteristics, we find the two schemes to produce results in
good agreement with each other. For simulations containing a significant
amount of non-Gaussianity, however, the bispectrum estimator is no longer
optimal, i.e. its variance is artificially enhanced. Contrary, the Bayesian
method still provides the tightest possible error bounds.

As a last step, we analyzed a non-Gaussian simulation with anisotropic
noise and partial sky coverage to demonstrate the applicability of the Bayesian
scheme to CMB maps obtained from realistic experiments. We find that all
relevant equations can be extended straightforwardly. We conclude, there-
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fore, that the newly developed scheme is an important tool to infer the level
of non-Gaussianity of local type from CMB data in an optimal way.

Although being a very valuable extension to the standard model of cos-
mology, in inflation some problems of principle remain. For example, if a
scalar field was the driving force behind the inflationary epoch, tracing back
the evolution of the universe inevitably leads to a singularity at the time of
the big bang (Hawking & Penrose 1970; Borde & Vilenkin 1994). Because
the initial values of physical quantities like the energy density are indefinite,
the theory must be considered incomplete.

A somewhat similar problem is known as trans-Planckian problem. If
inflation has sustained long enough (i.e. if the universe expanded by a factor
of at least 70 e-folds), all fluctuations within the Hubble radius today orig-
inally stem from a tiny patch smaller than the Planck length. Because our
theoretical description of space-time must be expected to brake down at this
scales, new and as yet not understood physics may have played a role during
the process of generating the primordial perturbations. And it is still an
open question, whether the predictions of inflation are robust to or depend
sensitively on trans-Planckian phenomenons (Easther et al. 2001, 2002; Shiu
& Wasserman 2002).

Over the last decades, people tried to construct theories that are capable
of consistently explaining the evolution of the universe from the very begin-
ning, either embedding or completely replacing the inflationary mechanism
discussed so far. As this goal is very ambitious, a much more comprehensive
framework must be worked out, going far beyond the well tested standard
model of physics. Such a theory has to include an unification of general rel-
ativity and quantum mechanics, presumably resulting in the need to modify
the most fundamental properties of the universe as increasing the number of
spatial dimensions in string theory (e.g. Green et al. 1986; Lüst & Theisen
1989; Zwiebach 2004), or quantizing space-time in loop quantum gravity (e.g.
Ashtekar & Tate 1991; Rovelli 1998; Thiemann 2001). For the time being, the
success of these efforts is unpredictable; whatever theory will finally emerge
out of today’s approaches, however, it must be able to explain the observed
features of the universe, including any non-Gaussian signatures in the CMB.
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Appendix A

Supplement to the simulation

algorithm

In the following, we provide supplementary information to Chap. 2.

The power spectrum of the Gaussian CMB radiation anisotropies can be
related to the statistical properties of the linear primordial perturbations
(e.g. Dodelson 2003),

Cℓ = 〈aℓm a∗
ℓm〉

=
2

π

∫
dkk2g2

ℓ (k)P(k) , (A.1)

where the gℓ(k) represent the radiation transfer functions and P(k) denotes
the primordial power spectrum.

Retaining the notation introduced above, we now derive the correspond-
ing expression for the CMB radiation power spectrum of the non-Gaussian
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part, CNL
ℓ , by solving the line-of-sight integral over the non-Gaussian primor-

dial perturbations for fNL= 1:

CNL
ℓ = 〈aNL

ℓm aNL∗
ℓm 〉

= 〈4π(−i)l

∫
d3k1

(2π)3
ΦNL(~k1)gℓ(k1)Y

∗
ℓm(k̂1)

× 4π(−i)l∗

∫
d3k2

(2π)3
ΦNL∗(~k2)gℓ(k2)Yℓm(k̂2)〉

=
1

4π4

∫
dk1k

2
1dΩk̂1

dk2k
2
2dΩk̂2

gℓ(k1)gℓ(k2)

× 〈ΦNL(~k1) ΦNL∗(~k2)〉Y ∗
ℓm(k̂1)Yℓm(k̂2) . (A.2)

The expectation value of the non-Gaussian potential can be written down
explicitly making use of Eq. 1.36 transformed to Fourier space,

〈ΦNL(~k1) ΦNL∗(~k2)〉 = 〈
(∫

d3p1

(2π)3
ΦL(~k1 + ~p1)Φ

L∗(~p1)− (2π)3σ2δ3(~k1)

)

×
(∫

d3p2

(2π)3
ΦL∗(~k2 + ~p2)Φ

L(~p2)− (2π)3σ2δ3(−~k2)

)
〉 , (A.3)

where σ2 = (2π)−3
∫

d3kP(k) is the variance of the linear potential. As we

do not consider a monopole contribution here, i.e. |~ki| > 0, the expression
simplifies,

〈ΦNL(~k1) ΦNL∗(~k2)〉 ≈ 〈
∫

d3p1

(2π)3
ΦL(~k1 + ~p1)Φ

L∗(~p1)

×
∫

d3p2

(2π)3
ΦL∗(~k2 + ~p2)Φ

L(~p2)〉 . (A.4)
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Using the theorem of Wick, it is possible to split the expectation value into
a sum over products according to the relation 〈ABCD〉 = 〈AB〉〈CD〉 +
〈AC〉〈BD〉+ 〈AD〉〈BC〉,

〈ΦNL(~k1) ΦNL∗(~k2)〉 =

∫
d3p1

(2π)3

∫
d3p2

(2π)3
〈ΦL(~k1 + ~p1) ΦL∗(~p1)〉

× 〈ΦL∗(~k2 + ~p2) ΦL(~p2)〉

+

∫
d3p1

(2π)3

∫
d3p2

(2π)3
〈ΦL(~k1 + ~p1) ΦL∗(~k2 + ~p2)〉

× 〈ΦL∗(~p1) ΦL(~p2)〉

+

∫
d3p1

(2π)3

∫
d3p2

(2π)3
〈ΦL(~k1 + ~p1) ΦL(~p2)〉

× 〈ΦL∗(~p1) ΦL∗(~k2 + ~p2)〉 . (A.5)

As the ΦL are uncorrelated in momentum space, the expectation values can
be computed as

〈ΦL(~k1 + ~p1) ΦL∗(~p1)〉 = (2π)3P(p1) δ3(~k1)

= 0 (A.6)

〈ΦL∗(~k2 + ~p2) ΦL(~p2)〉 = (2π)3P(p2) δ3(−~k2)

= 0 (A.7)

〈ΦL(~k1 + ~p1) ΦL∗(~k2 + ~p2)〉 = (2π)3P(k1 + p1) δ3(~k1 + ~p1 − ~k2 − ~p2) (A.8)

〈ΦL∗(~p1) ΦL(~p2)〉 = (2π)3P(p2) δ3(~p2 − ~p1) (A.9)

〈ΦL(~k1 + ~p1) ΦL(~p2)〉 = (2π)3P(k1 + p1) δ3(~k1 + ~p1 + ~p2) (A.10)

〈ΦL∗(~p1) ΦL∗(~k2 + ~p2)〉 = (2π)3P(p1) δ3(−~p1 − ~k2 − ~p2) . (A.11)

Thus, we derive for the autocorrelation function of the non-linear potential

〈ΦNL(~k1) ΦNL∗(~k2)〉 =

∫
d3p1 d3p2P(k1 + p1)P(p2)

× δ3(~k1 + ~p1 − ~k2 − ~p2)δ
3(~p2 − ~p1)

+

∫
d3p1 d3p2P(k1 + p1)P(p1)

× δ3(~k1 + ~p1 + ~p2)δ
3(−~p1 − ~k2 − ~p2)

= 2

∫
d3pP(k1 + p)P(p) δ3(~k1 − ~k2) , (A.12)
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where we used ~p2 = ~p1 and ~p2 = −~k1 − ~p1 to combine the first and second
term, respectively.

Substituting Eq. A.12 in Eq. A.2, we obtain a simplified relation for the
non-Gaussian CMB radiation power spectrum,

CNL
ℓ =

1

2π4

∫
d3p dk1k

2
1dΩk̂1

dk2k
2
2dΩk̂2

gℓ(k1)gℓ(k2)P(k1 + p)P(p)

× δ3(~k1 − ~k2)Y
∗
ℓm(k̂1)Yℓm(k̂2) . (A.13)

Rewriting the delta function by means of a Fourier transform,

δ3(~k1 − ~k2) =
1

(2π)3

∫
d3r ei(~k1−~k2)·~r , (A.14)

and making use of the plane wave expansion of the complex exponential,

ei~k·~r = 4π
∑

ℓm

iℓYℓm(k̂)Y ∗
ℓm(r̂)jℓ(kr) , (A.15)

we derive

CNL
ℓ =

1

π5

∫
d3p drr2dΩr̂ dk1k

2
1dΩk̂1

dk2k
2
2dΩk̂2

gℓ(k1)gℓ(k2)P(k1 + p)P(p)

×
∑

ℓ1 ℓ2 m1 m2

il1−l2Yℓ1m1(k̂1)Y
∗
ℓ1m1

(r̂)jℓ1(k1r)

× Y ∗
ℓ2m2

(k̂2)Yℓ2m2(r̂)jℓ2(k2r)Y
∗
ℓm(k̂1)Yℓm(k̂2)

=
1

π5

∫
d3p drr2dΩr̂ dk1k

2
1dΩk̂1

dk2k
2
2dΩk̂2

gℓ(k1)gℓ(k2)P(k1 + p)P(p)

× jℓ(k1r)jℓ(k2r) . (A.16)

Substituting the identity
∫

drr2 jℓ(k1r)jℓ(k2r) =
π

2

1

k2
1

δ(k1 − k2) , (A.17)

we finally obtain the non-Gaussian part of the CMB radiation power spec-
trum as convolution integral of the primordial power spectrum times the
transfer functions,

CNL
ℓ =

2

π3

∫
dpp2 dkk2 g2

ℓ (k)P(k + p)P(p) . (A.18)

We show a comparison of the averaged power spectrum of 1000 non-Gaus-
sian simulations to the theoretical values in Fig. A.1
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Figure A.1: Test of the power spectrum. We compare the theoretically
expected power spectrum (black lines) to the averaged power spectrum of
the 1000 simulated temperature and polarization CMB radiation maps (blue
lines). We show the temperature (CTT

ℓ , upper row), polarization (CEE
ℓ , mid-

dle row) and cross power spectrum (CTE
ℓ , lower row) of the Gaussian part

(left column) and the non-Gaussian part (right column) of the simulation. As
the systematic deviation of the Gaussian part is below 1 %, the lines cannot
be discerned in this view.
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Appendix B

Non-Gaussian signatures of

higher order

In Chap. 3 et seq., we developed an optimal way to infer the level of non-
Gaussianity of local type from CMB data. For the analysis, we focused
on the perturbational expansion of the primordial fluctuations up to second
order in Φ (see Eq. 1.36). However, as the quality of observational data
will considerable improve once CMB maps measured by the Planck satellite
experiment are released, it becomes possible to target constraining the next-
to-leading order non-Gaussian term.

For local non-Gaussianity, the expansion Eq. 1.36 can be revised to in-
clude the term O(Φ3

L),

Φ(r) = ΦL(r) + fNL

(
Φ2

L(r)− 〈Φ2
L(r)〉

)
+ gNL Φ3

L +O(Φ4
L) , (B.1)

where gNL is the amplitude of the non-Gaussian contribution proportional to
the cubic term of the primordial perturbations. We show an example of a
simulated CMB temperature map and its first and second order non-Gaus-
sian contribution in Fig. B.1.

Using WMAP data, first attempts have been made to provide limits to gNL

(Vielva & Sanz 2009), currently leading to the weak constrain of −7.4 ·105 ≤
gNL ≤ 8.3 · 105 at 2-σ level (Smidt et al. 2010). This result has been derived
within a frequentist approach, using estimators similar in construction to the
bispectrum estimator.

As several inflationary models predict the first and second order param-
eter of non-Gaussianity to be correlated, a simultaneous analysis would be
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Figure B.1: Higher order non-Gaussianity. We show an example of a set of
CMB temperature maps consisting of the Gaussian part (upper panel), the
first-order non-Gaussian part (∝ fNL, middle panel), and the second-order
non-Gaussian part (∝ gNL, lower panel).
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beneficial. In the following, we briefly outline how this can be done ex-
actly within a Bayesian framework on the basis of the sampling algorithm
presented in the previous chapters.

We revise the joint distribution to include the new variable gNL into the
analysis,

P (d, ΦL, fNL, gNL, θ) = P (d|ΦL, fNL, gNL, θ) P (ΦL|θ) P (θ) P (fNL) P (gNL) ,
(B.2)

where we introduced the prior distribution P (gNL) which we assume to be
Gaussian in what follows. Making use of Eq. B.1, the explicit expression for
Eq. B.2 transforms to

P (d, ΦL, fNL, gNL, θ) ∝ exp
{
−1/2

[
d−M(ΦL + fNL(Φ2

L − 〈Φ2
L〉) + gNLΦ3)

]†

×N−1
[
d−M(ΦL + fNL(Φ2

L − 〈Φ2
L〉) + gNLΦ3)

]

−1/2 Φ†
LP−1

Φ ΦL − f 2
NL/2σ2

fNL
− g2

NL/2σ2
gNL

}
.

(B.3)

Following the procedure outlined in Chap. 4, we first find conditional
expressions for the two parameters of non-Gaussianity, P (fNL|d, Φ, gNL, θ)
and P (gNL|d, Φ, fNL, θ), both of which are Gaussian with mean and variance,

〈fNL〉 = 〈(fNL − 〈fNL〉)2〉(Φ2
L − 〈Φ2

L〉)†M †N−1

× (d−MΦL − gNLMΦ3
L) ,

〈(fNL − 〈fNL〉)2〉 =
[
(Φ2

L − 〈Φ2
L〉)†M †N−1M(Φ2

L − 〈Φ2
L〉) + 1/σ2

fNL

]−1
, and

(B.4)

〈gNL〉 = 〈(gNL − 〈gNL〉)2〉Φ3†
L M †N−1

× (d−MΦL − fNLM(Φ2
L − 〈Φ2

L〉)) ,

〈(gNL − 〈gNL〉)2〉 =
[
Φ3†

L M †N−1MΦ3
L + 1/σ2

gNL

]−1

. (B.5)
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As a next step, we marginalize the conditional probability of the linear
primordial perturbations, P (Φ, fNL, gNL|d, θ), over fNL and gNL to obtain an
expression that only depends on the data and the cosmological parameter,

P (Φ|d, θ) =

∫
dfNL dgNL P (Φ, fNL, gNL|d, θ)

∝
∫

dfNL dgNL e−1/2 [d−M(ΦL+fNL(Φ2
L−〈Φ2

L〉)+gNLΦ3)]
†

×N−1[d−M(ΦL+fNL(Φ2
L−〈Φ2

L〉)+gNLΦ3)]

−1/2 Φ†
LP−1

Φ ΦL−f2
NL/2σ2

fNL
−g2

NL/2σ2
gNL . (B.6)

Performing the fNL integral first, we find

P (Φ, gNL|d, θ) ∝ e−1/2(d−M(ΦL+gNLΦ3))†N−1(d−M(ΦL+gNLΦ3))−1/2 Φ†
LP−1

Φ ΦL−g2
NL/2σ2

gNL

×
∫

dfNL e fNL(Φ2
L−〈Φ2

L〉)
†M†N−1(d−M(ΦL+gNLΦ3))

−1/2f2
NL(Φ2

L−〈Φ2
L〉)

†M†N−1M(Φ2
L−〈Φ2

L〉)−f2
NL/2σ2

fNL

= e−1/2(d−M(ΦL+gNLΦ3))†N−1(d−M(ΦL+gNLΦ3))−1/2 Φ†
LP−1

Φ ΦL−g2
NL/2σ2

gNL

×
∫

dfNL e
−

(fNL−f̄NL)2

2σ̄fNL
+

f̄2
NL

2σ̄fNL

∝
[
σ2

fNL
(Φ2

L − 〈Φ2
L〉)†M †N−1M(Φ2

L − 〈Φ2
L〉) + 1

]−1/2

× e
−1/2 (d−M(ΦL+gNLΦ3

L))†

"
N−1−

σ2
fNL

N−1M(Φ2
L−〈Φ2

L〉)(Φ2
L−〈Φ2

L〉)†M†N−1

σ2
fNL

(Φ2
L
−〈Φ2

L
〉)†M†N−1M(Φ2

L
−〈Φ2

L
〉)+1

#

×(d−M(ΦL+gNLΦ3
L))−1/2 Φ†

LP−1
Φ ΦL . (B.7)

Introducing the modified noise covariance matrix Ñ as a shorthand,

Ñ−1 ≡ N−1 −
σ2

fNL
N−1M(Φ2

L − 〈Φ2
L〉)(Φ2

L − 〈Φ2
L〉)†M †N−1

σ2
fNL

(Φ2
L − 〈Φ2

L〉)†M †N−1M(Φ2
L − 〈Φ2

L〉) + 1
, (B.8)
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we now marginalize over the remaining parameter of non-Gaussianity, gNL,

P (Φ, |d, θ) ∝
[
σ2

fNL
(Φ2

L − 〈Φ2
L〉)†M †N−1M(Φ2

L − 〈Φ2
L〉) + 1

]−1/2

× e−1/2 (d−MΦL)† eN−1(d−MΦL)−1/2 Φ†
LP−1

Φ ΦL

×
∫

dgNL e gNLΦ3†
L M† eN−1(d−MΦL)−1/2 g2

NLΦ3†
L M† eN−1MΦ3

L−g2
NL/2σ2

gNL

=
[
σ2

fNL
(Φ2

L − 〈Φ2
L〉)†M †N−1M(Φ2

L − 〈Φ2
L〉) + 1

]−1/2

× e−1/2 (d−MΦL)† eN−1(d−MΦL)−1/2 Φ†
LP−1

Φ ΦL

×
∫

dgNL e
−

(gNL−ḡNL)2

2σ̄gNL
+

ḡ2
NL

2σ̄gNL ,

thus,

P (Φ, |d, θ) ∝
[
σ2

fNL
(Φ2

L − 〈Φ2
L〉)†M †N−1M(Φ2

L − 〈Φ2
L〉) + 1

]−1/2

×
[
σ2

gNL
Φ3†

L M †Ñ−1MΦ3
L + 1

]−1/2

× e
−1/2 (d−MΦL)†

"
eN−1−

σ2
gNL

eN−1MΦ3
LΦ

3†
L

M† eN−1

σ2
gNL

Φ
3†
L

M† eN−1MΦ3
L

+1

#
(d−MΦL)−1/2 Φ†

LP−1
Φ ΦL

.
(B.9)

The sampling recipe to simultaneously infer fNLand gNL can now be sum-
marized as follows,

Φi
L ←֓ P (ΦL|d, θ)

f i
NL ←֓ P (fNL|d, Φi

L, gi−1
NL , θ)

gi
NL ←֓ P (gNL|d, Φi

L, f i
NL, θ) . (B.10)

Again, we propose a Hamiltonian Monte Carlo sampler to obtain valid re-
alizations of ΦL, and to draw the parameters of non-Gaussianity from their
Gaussian probability distribution given by Eq. B.4 et seq.
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Armendáriz-Picón, C., Damour, T., & Mukhanov, V. 1999, Physics Letters
B, 458, 209

Ashtekar, A. & Tate, R. S. 1991, Lectures on non-pertubrative canonical
gravity (Singapore: World Scientific)

Assadullahi, H., Väliviita, J., & Wands, D. 2007, Phys. Rev. D, 76, 103003

Babich, D., Creminelli, P., & Zaldarriaga, M. 2004, J. Cosmology Astropart.
Phys., 8, 9

Babich, D. & Pierpaoli, E. 2008, Phys. Rev. D, 77, 123011

Bardeen, J. M. 1980, Phys. Rev. D, 22, 1882

Bardeen, J. M., Steinhardt, P. J., & Turner, M. S. 1983, Phys. Rev. D, 28,
679

125



Barrow, J. D. & Ottewill, A. C. 1983, Journal of Physics A Mathematical
General, 16, 2757

Bartolo, N., Komatsu, E., Matarrese, S., & Riotto, A. 2004, Phys. Rep., 402,
103

Bartolo, N., Matarrese, S., Pietroni, M., Riotto, A., & Seery, D. 2008, J.
Cosmology Astropart. Phys., 1, 15

Bartolo, N., Matarrese, S., & Riotto, A. 2010, ArXiv e-prints

Baumann, D. 2009, ArXiv e-prints

Bayes, T. & Price, R. 1763, Phil. Trans., 53, 370

Beneke, M. & Fidler, C. 2010, ArXiv e-prints

Bennett, C. L., Banday, A. J., Gorski, K. M., et al. 1996, ApJ, 464, L1+

Bennett, C. L., Halpern, M., Hinshaw, G., et al. 2003a, ApJS, 148, 1

Bennett, C. L., Hill, R. S., Hinshaw, G., et al. 2003b, ApJS, 148, 97

Bolstad, W. M. 2007, Introduction to Bayesian statistics (Hoboken, NY:
Wiley)

Borde, A. & Vilenkin, A. 1994, Physical Review Letters, 72, 3305

Brandenberger, R. H. 1999, ArXiv High Energy Physics - Phenomenology
e-prints

Brandenberger, R. H. 2010, ArXiv e-prints

Buchbinder, E. I., Khoury, J., & Ovrut, B. A. 2007, Phys. Rev. D, 76, 123503

Bunch, T. S. & Davies, P. C. W. 1978, Royal Society of London Proceedings
Series A, 360, 117

Burgess, C. P. 2007, Classical and Quantum Gravity, 24, 795

Byrnes, C. T., Sasaki, M., & Wands, D. 2006, Phys. Rev. D, 74, 123519

Castro, P. G. 2003, Phys. Rev. D, 67, 123001

126



Chen, X. 2010, ArXiv e-prints

Chen, X., Huang, M., Kachru, S., & Shiu, G. 2007, J. Cosmology Astropart.
Phys., 1, 2

Choi, K. & Gong, J. 2007, J. Cosmology Astropart. Phys., 6, 7

Coleman, S. & Weinberg, E. 1973, Phys. Rev. D, 7, 1888

Colless, M. 1999, Royal Society of London Philosophical Transactions Series
A, 357, 105

Copeland, E. J., Liddle, A. R., Lyth, D. H., Stewart, E. D., & Wands, D.
1994, Phys. Rev. D, 49, 6410

Cox, R. T. 1946, American Journal of Physics, 14, 1

Creminelli, P. & Senatore, L. 2007, J. Cosmology Astropart. Phys., 11, 10

Creminelli, P., Senatore, L., & Zaldarriaga, M. 2007, J. Cosmology Astropart.
Phys., 3, 19

Creminelli, P. & Zaldarriaga, M. 2004, J. Cosmology Astropart. Phys., 10, 6

da Costa, L. N., Willmer, C. N. A., Pellegrini, P. S., et al. 1998, AJ, 116, 1

Dodelson, S. 2003, Modern Cosmology (Amsterdam: Academic Press (Else-
vier))

Easther, R., Greene, B. R., Kinney, W. H., & Shiu, G. 2001, Phys. Rev. D,
64, 103502

Easther, R., Greene, B. R., Kinney, W. H., & Shiu, G. 2002, Phys. Rev. D,
66, 023518

Efstathiou, G., Lawrence, C., & J., T. 2005, Planck. The Scientific
Program, Planck Science Team, http://www.rssd.esa.int/SA/PLANCK/
docs/Bluebook-ESA-SCI%282005%291_V2.pdf

Einstein, A. 1916, Annalen der Physik, 354, 769

Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, ApJ, 633, 560

127



Enqvist, K. & Nurmi, S. 2005, J. Cosmology Astropart. Phys., 10, 13

Enqvist, K., Nurmi, S., Taanila, O., & Takahashi, T. 2010, J. Cosmology
Astropart. Phys., 4, 9

Enqvist, K. & Sloth, M. S. 2002, Nuclear Physics B, 626, 395

Erickson, J. K., Gratton, S., Steinhardt, P. J., & Turok, N. 2007,
Phys. Rev. D, 75, 123507

Fabbri, R. & Pollock, M. D. 1983, Physics Letters B, 125, 445

Fergusson, J. R. & Shellard, E. P. S. 2009, Phys. Rev. D, 80, 043510

Finkbeiner, D. P. 2003, ApJS, 146, 407

Finkbeiner, D. P., Davis, M., & Schlegel, D. J. 1999, ApJ, 524, 867

Fixsen, D. J., Cheng, E. S., Gales, J. M., et al. 1996, ApJ, 473, 576

Friedmann, A. 1922, Zeitschrift für Physik, 10, 377

Friedmann, A. 1924, Zeitschrift für Physik, 21, 326

Frieman, J. A. 1994, in Building Blocks of Creation, From Microfermis to
Megaparsecs, ed. S. Raby & T. Walker, 421–+

Ganc, J. & Komatsu, E. 2010, ArXiv e-prints

Gangui, A., Lucchin, F., Matarrese, S., & Mollerach, S. 1994, ApJ, 430, 447

Garriga, J. & Mukhanov, V. F. 1999, Physics Letters B, 458, 219

Gill, J. 2002, Bayesian methods (Roca: Chapman & Hall/CRC)

Gold, B., Bennett, C. L., Hill, R. S., et al. 2009, ApJS, 180, 265

Goldberg, D. M. & Spergel, D. N. 1999, Phys. Rev. D, 59, 103002

Gordon, C., Wands, D., Bassett, B. A., & Maartens, R. 2001, Phys. Rev. D,
63, 023506

Green, M. B., Schwarz, J. H., & Witten, E. 1986, Superstring theory (Cam-
bridge: Cambridge University Press)

128



Gregory, P. C., Scott, W. K., Douglas, K., & Condon, J. J. 1996, ApJS, 103,
427

Griffith, M. R. & Wright, A. E. 1993, AJ, 105, 1666

Guth, A. H. 1981, Phys. Rev. D, 23, 347

Guth, A. H. & Pi, S. 1982, Phys. Rev. Lett., 49, 1110

Hanson, D., Smith, K. M., Challinor, A., & Liguori, M. 2009, Phys. Rev. D,
80, 083004

Haslam, C. G. T., Klein, U., Salter, C. J., et al. 1981, A&A, 100, 209

Hawking, S. W. 1982, Physics Letters B, 115, 295

Hawking, S. W. & Penrose, R. 1970, Royal Society of London Proceedings
Series A, 314, 529

Hobson, M. P., Jaffe, A. H., Liddle, A. R., Mukherjee, P., & Parkinson, D.
2010, Bayesian methods in cosmology (Cambridge: Cambridge University
Press)
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