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Abstract 
In this thesis, we investigate the electronic coupling in quantum dot (QD) solids, optical 
anisotropies of nanowires (NWs) with diameters comparable to the wavelength of light, and 
the propagation of light in nanoribbon waveguides. In particular, we demonstrate a new 
mechanism to control the electronic coupling in QD solids thermomechanically, and how size 
controls the optical anisotropies in NWs.  

We firstly demonstrate that the electronic coupling in QD solids can be controlled by a 
new thermomechanical mechanism. This mechanism is realized by controlling the expansion 
and shrinkage of the interstitial material in the QD solids, which in turn controls the distance 
and distance-dependent electronic coupling between semiconductor nanocrystals (SNCs). 
Photoluminescence (PL) and TEM investigation demonstrate the tuning of the band gap 
emission in individual polycrystalline NWs and densely packed SNCs via this mechanism. At 
low temperature, temperature-induced blueshift in densely packed SNC film and redshift in 
polycrystalline NWs were realized. This is qualitatively different from bulk CdTe and isolated 
CdTe SNCs. The electronic coupling between the nearest SNCs for sub-nm distances agrees 
well with semiempirical calculations.  

Size dependence of optical anisotropies in NWs is demonstrated in this work. We found 
optical anisotropies in NWs with diameters comparable to the wavelength of light in the NW, 
i.e., beyond the electrostatic limit, are much lower than those of NWs in electrostatic limit. 
Finite-difference time domain calculations, with realistic parameters for the CdTe NWs, for 
excitation and PL anisotropy were carried out. It was found that the optical anisotropies of 
NWs display a strong size dependence when the NW is beyond the electrostatic limit. 
Changing the diameter allows tuning the polarization anisotropy from its maximum, predicted 
by the electrostatic limit, to zero. The optical anisotropies of a NW are determined by the 
diameter-wavelength ratio, the material dispersion, as well as the local refractive index of the 
surrounding. In addition, the optical anisotropies can be transferred into macroscopically 
aligned NW arrays, and the anisotropies of the NW arrays are determined by the optical 
anisotropies of isolated NWs, the disorder of the NWs in the film, the local environment and 
multiple scattering in the thick film. 

Furthermore, we show that self-assembled nanoribbons can serve as single-mode 
waveguides for the propagation of PL light. Calculations show that the minimum width 
needed for single-mode operation is approximately 150 nm, which agrees well with SEM 
measurements. The loss in the nanoribbon waveguides was quantitatively determined. Re-
absorption was demonstrated in the nanoribbon waveguides to be a major contribution in the 
loss mechanism. Losses in the nanoribbon waveguide are on the same order of magnitude as 
for plasmon waveguides. 
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Kurzfassung 
Im Rahmen dieser Arbeit untersuchen wir die elektronische Kopplung zwischen 
Quantenpunkten (QD) in QD-Festkörpern, optische Anisotropien von Nanodrähten (engl. 
Nanowires), deren Durchmesser vergleichbar mit der Wellenlänge im Material sind, sowie die 
Ausbreitung des Lichts in Nanoband (engl. Nanoribbon) Wellenleitern. Insbesondere 
demonstrieren wir einen neuen Mechanismus um die elektronische Kopplung in QD-
Festkörpern thermomechanisch zu kontrollieren, und zeigen, wie die Größe die optische 
Anisotropie in Nanodrähten  bestimmt. 

Zunächst zeigen wir, dass die elektronische Kopplung in QD-Festkörpern durch einen neuen 
thermomechanischen Mechanismus kontrolliert werden kann. Dieser Mechanismus wird 
realisiert, indem die Ausdehnung und das Schrumpfen des Materials in den Zwischenräumen 
des QD-Festkörpers, welche wiederum den Abstand und somit die abstandsabhängige   
elektronische Kopplung zwischen den Halbleiter-Nanokristallen (SNCs) bestimmen, 
kontrolliert wurden. Photolumineszenz- (PL) und TEM-Untersuchungen veranschaulichen die 
Einstellung der Bandlücken–Emission in einzelnen polykristallinen Nanodrähten und dicht 
gepackten SNC-Filmen durch diesen Mechanismus. Bei tiefen Temperaturen wurden eine 
temperaturinduzierte Blauverschiebung in dicht gepackten SNC-Filmen und eine 
temperaturinduzierte Rotverschiebung in einzelnen polykristallinen Nanodrähten realisiert. 
Dies ist ein qualitativ neues Verhalten im Vergleich zu CdTe-Volumenkristallen und 
isolierten CdTe-SNC. Die elektronische Kopplung zwischen den nächstgelegenen Nachbarn 
im QD-Festkörper zeigt eine gute Übereinstimmung mit semiempirischen Rechnungen. 

Des Weiteren wird in dieser Arbeit die Größenabhängigkeit der optischen Anisotropie in 
Nanodrähten untersucht. Wir zeigen, dass die optischen Anisotropien in Nanodrähten mit 
Durchmessern vergleichbar mit der Wellenlänge im Material, d.h. oberhalb des 
elektrostatischen Limits, kleiner sind als die von Nanodrähten mit kleineren Durchmessern. 

FDTD–Rechnungen (engl. Finite-difference time domain) mit realistischen Parameter für die 
CdTe-Nanodrähte wurden für Anregungs- und Photolumineszenz-Anisotropie durchgeführt. 
Diese belegten, dass die optischen Anisotropien der Nanodrähte eine starke 
Größenabhängigkeit aufweisen falls der Durchmesser des Nanodrahts oberhalb des 
elektrostatischen Limits liegt. Änderungen des Durchmessers erlauben das Einstellen der 
Polarisationsanisotropie von ihrem Maximum bis zu null. Die optischen Anisotropien der  
Nanodrähte werden durch das Durchmesser-Wellenlänge-Verhältnis, die Materialdispersion 
sowie den Brechungsindex der Umgebung bestimmt. Außerdem bleiben die optischen 
Anisotropien einzelner Nanodrähte in Filmen makroskopisch ausgerichteter Nanodrähte 
größtenteils erhalten. Die optischen Anisotropien dieser Filme werden durch die optischen 
Anisotropien der einzelnen Nanodrähte, die Unordnung des Films, den Brechungsindex der 
Umgebung und durch multiple Streuprozesse in den dicken Filmen bestimmt. 

Weiterhin zeigen wir, dass selbst-aggregierte Nanobänder als Einzelmoden-Wellenleiter für 
die Ausbreitung des Photolumineszenz-Lichtes fungieren können. Modellrechnungen zeigen, 
dass 150 nm als minimale Breite für den Einsatz als Einzelmoden-Wellenleiter notwendig 
sind. Diese Größe liegt in guter Übereinstimmung mit SEM-Experimenten. Die Verluste in 
Nanobänder wurden quantitativ bestimmt. Hierzu wurde gezeigt, dass die Reabsortion in den 
Nanobänder den Hauptanteil am Verlust-mechanismus darstellt. Die Verluste in den 
Nanobändern sind von derselben Größenordnung wie bei plasmonischen Wellenleitern. 
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1. Introduction  

Semiconductor nanocrystals (SNCs), also known as quantum dots (QDs), have attracted much 

attention since they were discovered in the beginning of the 1980s [1]. SNCs, with sizes 

between the molecular and solid state regime, confine the electrons and holes on the 

nanometre scale. This gives rise to quantized electronic states which in turn control the optical 

properties. Consequently, optical and electronic properties can be controlled by the size and 

shape of the SNCs [2-5]. The controllable physical properties provide rich ground for basic 

scientific research that has attracted considerable attention. 

Because of their peculiar optical and electronic properties, SNCs are promising 

components for applications in optoelectronic devices. The high luminescence efficiency and 

the narrow spectral emission allow for the application of SNCs in light sources. When used in 

hybrid light-emitting diodes (LEDs), the control of the colour of the emission can be achieved 

by tuning the size of the SNCs due to the quantum size effect [6-7], and broad spectral 

emission is generated by mixed monolayer of SNCs with different sizes in the hybrid 

structures [8]. Optical gain in SNCs can overcome optical losses from scattering. As emission 

wavelengths are tuneable with the size of SNCs, wavelength controlled lasing has been 

demonstrated [9]. Classical light sources, such as LEDs and lasers, usually generate a large 

number of photons obeying Poisson statistics. On the other hand, several applications in the 

field of quantum information technology require light sources that can control the number of 

photons. SNCs can be used for such applications and the controlled generation of single 

photons can be realized using different methods [10-12]. Because SNCs have a larger 

interfacial area for change transfer than bulk materials, they are also used in solar cells. 

Compared to organic solar cells, the higher electron mobility in SNCs can improve the 

efficiency [13-15] of solar cells. W. U. Huynh et al. have investigated the efficiency of 

nanorod-polymer solar cells with nanorods of different morphologies, and they found the 



Chapter 1. Introduction 

 2

charge transport in the solar cells depends on the length of nanorods [13]. Single-electron 

transistors based on the Coulomb blockade in the tunnel junctions have also been designed 

using SNCs [16-17]. At present, SNCs are mostly used in the field of biology. The broad 

absorption spectra of SNCs enable excitation by a wide range of wavelengths. Because SNCs 

are extremely bright and photostable, they can be used as cell markers in the field of live-cell 

imaging [18-22]. SNCs can also be used as ion probes and pH sensors because the 

luminescence intensity of SNCs is affected by the ionic environment and the pH [23-25]. 

SNCs can self-assemble to give extended arrays, called QD solids. This kind of artificial 

solids exhibits tuneable optical and electronic properties [26-27], and offers opportunities to 

explore cooperative physical phenomena and to engineer the optical and electronic properties 

of materials on the nanometre scale. The optical and electronic properties of these systems are 

determined by the electronic structures of the SNC building blocks and the interactions 

between them. The former can be controlled by the material, size and shape of SNCs [2-5]. 

And the latter, the electronic coupling between them, is tuneable by adjusting the distance 

between the SNCs [27]. The control of the electronic coupling in QD solids by the adjustment 

of the capping group of SNCs [28], or by removing the ligands to reduce the distance between 

SNCs [29] has been reported. As the expansion and shrinkage of a solid can be controlled by 

temperature, it is interesting to know if the electronic coupling can be controlled 

thermomechanically, i.e., by controlling the separation between SNCs with temperature. In 

this work, we will explore the possibility of thermomechanical control of electronic coupling 

in QD solids. 

Since the 1990s, quasi one-dimensional (1D) semiconductor nanostructures, i.e., 

nanowires (NWs) and nanoribbons, have emerged [30]. These structures have cross-sections 

of 2–200 nm and lengths up to several micrometers. SNCs confine charge carriers in all three 

dimensions and consequently the band gap depends on the size of the SNCs. Different from 

SNCs, in the 1D nanostructures, charge carriers are confined only in two dimensions. The size 

dependence of the band gap has also been observed due to quantum confinement [31-32], and 

the band gap increases as the diameter of the quantum wire decreases. The high-aspect-ratio 

of the 1D nanostructures allows for the bridging between the nanoscopic and macroscopic 

world. And the 1D nanostructures were recognized as the essential building blocks for 

electrical or optoelectronic devices [33-35].  
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The appearance of 1D nanostructures attracted much attention and much work has been 

centred on the synthesis of 1D semiconductor nanostructures for specific applications. 

Catalysts are most frequently used to prepare nanostructures from vapour [36-40] or in 

solution [41-43]. Investigation on the growth mechanism shows that the diameter of the 

product is controlled by the size of the catalyst [44]. This method is mostly used to prepare 

single crystalline NWs with high electrical conductivity. Catalysts are also employed to 

prepare p-n junction NWs, or grow a QD in the NW, or even prepare NW superlattices, by the 

modulation of the reactants during growth [45-47]. Besides catalysts, templates are also 

commonly used for the preparation of 1D nanostructures [48-52]. The underlying idea is the 

crystallization of semiconductors within the restricted environment of the template. The 

template serves as a scaffold in this method against which other materials with similar 

morphologies are synthesized. Another method to prepare 1D semiconductor nanostructures 

is the oriented attachment of SNCs [53-56]. This method is used in this work, and it will be 

discussed in detail in chapter 2.  

1D semiconductor nanostructures show important applications in diverse areas. As 

discussed above, using catalysts, p-n junctions and even QDs can be synthesised in the NWs. 

NW p-n junctions used for LEDs can control electrical injection along the wire [47, 57]. A 

QD grown within a p-n diode can precisely define the emission in the QD region [58]. 

Because semiconductor NWs with high surface-volume ratio allow for fast electron transport 

along the NWs, compared to SNCs, semiconductor NWs are preferred in solar cells [59]. As 

the binding of charged molecules will result in depletion or accumulation of carriers and 

change the conductance of NWs, NW-based field-effect transistors can be used as sensitive 

chemical and biological sensors [60-65]. Another interesting property of 1D semiconductor 

nanostructures is their optical anisotropy [66-67]. The anisotropies of thin NWs mainly 

originate from the dielectric mismatch between the 1D nanostructure and the surrounding 

environment, and the polarized properties of 1D nanostructures allow for their applications as 

polarized light sources [47] and detectors [68]. In this work, we will investigate the optical 

anisotropies of NWs with diameters comparable with the wavelength of light in the NWs, and 

to explore if the optical anisotropies depend on the size of the NWs. 

For some applications of 1D nanostructures in optical, electronic and optoelectronic 

devices, it is important to transfer the properties of individual NWs into large NW arrays. 

Aligned NWs have already shown their advantages in many fields, for example, crossed NWs 
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are used in LEDs to control the colour of the emitted light [69]; NW arrays are used in solar 

cells to increase the efficiency of the solar cells [70-71]; integrated NW array sensors, in 

which distinct NWs were incorporated as individual device elements, can largely increase the 

sensitivity [64]; and also aligned 1D nanostructure arrays can be used as polarized light 

source or detector [72-74]. The alignment of NWs in a particular direction is an attractive 

topic, and external forces are used for this purpose, including electric fields [35, 73, 75-77], 

templates [78-80], Langmuir−Blodgett techniques [81], or stretching of polymer film [82-83]. 

In this work, NWs were aligned in polymer film. We will study the optical anisotropies of 

NW arrays, combining with those of single NWs. 

In integrated photonic circuits, photons are required to be precisely delivered between 

different components, and the development of 1D semiconductor nanostructure waveguides is 

an important step towards this end. The dielectric contrast between the semiconductor and its 

surrounding enables the confinement of the wave in the nanostructure and propagation along 

the axis [84-87]. With flat reflecting end facets, the nanostructure can serve as an axial Fabry-

Pérot cavity. In addition, the semiconductor nanostructures represent an optical gain medium 

and above a certain threshold of incident pump power, lasing was observed [88-89]. In this 

work, the propagation of light in the nanoribbon waveguides will be investigated. 

This work aimed at exploring possibilities to control the electronic coupling in QD solids, 

to study size dependent optical anisotropies and propagation of light in 1D semiconductor 

nanostructures, as well as possible applications. 

This thesis consists of seven chapters, and it is arranged in following way. After this 

general introduction of SNCs, the background needed for the understanding of the work 

presented in this thesis is introduced in chapter 2. Since 1D semiconductor nanostructures 

investigated in this thesis are prepared from SNCs, the fundamentals of semiconductors and 

SNCs are firstly reviewed, followed by the interactions between SNCs in the QD solids and 

the oriented attachment of SNCs into 1D nanostructures. In 1D semiconductor nanostructures, 

dielectric screening can lead to optical anisotropies and total internal reflection can restrict 

and guide the waves to propagate along the nanostructures. As optical anisotropies and 

waveguiding are studied in this work, we will discuss how electromagnetic waves are passing 

through or propagating in materials. 

Chapter 3 describes the materials and experimental methods used in this work.  
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In chapter 4, we demonstrated the thermomechanical control of electronic coupling in QD 

solids by controlling the expansion and shrinkage of inter-particle distance with temperature.  

The size-dependent optical anisotropies in semiconductor NWs were demonstrated in 

chapter 5. And the anisotropies of single NWs were transferred into macroscopically aligned 

NW arrays. 

In chapter 6, we investigated the propagation of waves in the nanoribbon waveguides.  

The work ends with a conclusion and outlook. 
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2. Background 

This chapter gives an introduction to the background needed for the understanding of the 

work presented in this thesis. We firstly describe the fundamentals of semiconductor and 

semiconductor nanocrystals. Afterwards interactions between SNCs in QD solids are 

presented. Oriented attachment of SNCs, which is the method to prepare quasi one-

dimensional semiconductor nanostructures in this work, is introduced. In addition, we will 

introduce how waves are passing through different mediums or propagating in the same 

medium. 

2.1 Semiconductor nanocrystals 

Semiconductor nanocrystals have received growing interests because of their high 

luminescence efficiency (on the order of 10%) and size controllable optical and electronic 

properties [2-5]. In this work, CdTe SNCs are building block of 1D polycrystalline 

nanostructures. In what follows, the fundamental properties of semiconductor and SNCs are 

presented. 

2.1.1 Band gap in semiconductor materials 

The properties of a solid are significantly determined by the arrangement of the atoms in the 

form of a periodic lattice with a lattice vector R . The electrons in the solids not only have 

interactions with atomic nuclei, but also with other electrons. Assuming that all the 

interactions between electrons and nuclei are described by an effective potential )(rU , the 

electronic properties of a solid can be examined by the time independent Schrödinger 

equation 2.1 [90]  
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Here, )(rψ is the wave function for one electron. One of the most important properties of the 

potential )(rU  is that it is periodic on a lattice, i.e., )()( RrUrU += . Independent electrons, 

which obey a one-electron Schrödinger equation 2.1 with a periodic potential, are known as 

Bloch electrons. 

At the edge of the Brillouin zone, the strong scattering produces standing waves of the 

electron wave function and different distributions of the charge density arise. The 

distributions with different energies are the origin of the band gap [91]. 

The band structures of many semiconductor materials have been calculated by M. L. 

Cohen and T. K. Bergstresser [92]. Figure 2.1 shows the band structure of CdTe, the material 

of which SNCs are investigated in this work. One can see that there are energies that are not 

allowed at a temperature T = 0. For CdTe, all states of the valence band are filled, while the 

states in the conduction band are empty. The minimum of the conduction band and the 

maximum of the valence band appear at the same wave vector, which makes CdTe a direct 

band gap semiconductor. Because the band gap is rather small, electrons may be excited 

thermally at room temperature from the valence band to the conduction band. Generally 

speaking, the number of excited electrons is appreciable (at room temperature) when the 

energy gap is smaller than 2 eV.  

 

Figure 2. 1: Band structure of CdTe. Reprinted figure with permission from [92]. Copyright 2006 by 

the American Physical Society. 
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The band gap of a semiconductor, however, depends strongly on the temperature of the 

material. This behaviour is described by a simple formula by Y. P. Varshni [93]: 

T
TETE GG +

−=
β
α 2

)0()(                              (2.2) 

Here )0(GE is the band gap at T = 0 K, α  and β  are empirical parameters. The band gap of 

bulk CdTe is 1.51 eV at room temperature and it increases to 1.61 eV at liquid helium 

temperature [94]. The band widening of CdTe at low temperature is explained by the 

shrinkage of the crystal lattice and reduced phonon scattering [95]. 

2.1.2 Excitons in semiconductor materials 

The excitation of electrons to the conduction band can be realized by the absorption of 

photons of appropriate energy. When electrons are excited across the gap, the bottom of the 

conduction band is populated by electrons, and the top of the valence band by holes. The 

electron and hole are bound as a pair by Coulomb attraction and the bound state is called 

exciton. The exciton has an energy slightly lower than an unbound electron-hole pair, and the 

quantum mechanical description of excitons is similar to the one of hydrogen atom. The 

energy of the exciton can be described in equation 2.3 [90] 

r
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Here, ∗
em  and ∗

hm  are the effective masses of the electron and hole, respectively. ε  is the 

dielectric constant of the semiconductor. The first two terms are the kinetic energies of 

electron and hole, and the last term corresponds to the attractive Coulomb interaction.  

With the known solutions for the hydrogen atom [90], the energy levels of an exciton are 

given by  
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Here µ  is the reduced mass given by 
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The Bohr radius of the exciton is given by  

 2

2
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e
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πεε h
=                                          (2.6) 

Charge carriers in semiconductors normally have relatively low effective mass and the 

refractive index of the materials is high, so that the Bohr radius of the exciton is typically 

about several nm [96]. 

2.1.3 Excitons in semiconductor nanocrystals 

In bulk semiconductor, excitons are delocalized on the scale of the Bohr radius. But SNCs 

with size smaller than the Bohr radius strongly confine the wave functions of electrons and 

holes in all three dimensions, and the charge carriers have to assume higher kinetic energies 

leading to an increasing band gap and quantization of the energy levels to discrete values. 

Such three-dimensional confinement effects collapse the continuous density of states of the 

bulk solid into the discrete electronic states of the SNC [97]. Figure 2.2 shows how the 

density of states changes with energy for semiconductor structures with different geometries. 

SNCs, belonging to 0-dimensional case, have discrete energy levels.   

 

Figure 2. 2: Density of states of a charge carrier confined in different dimensions. Eg is the band gap 

of bulk semiconductor. 

Semiconductor nanocrystals, with a size of several nanometres have some peculiar and 

fascinating properties and applications superior to both bulk and molecular systems. Strong 

photoluminescence and size-dependent optical and electronic properties are most promising 

features of SNCs [3-4]. The finite size of the SNC quantizes the allowed wave vector (k) 
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values. Decreasing the size of SNC shifts the first states to larger k values and increases the 

energetic separation between the states. Spectroscopically, the blueshift of the PL and 

absorption was observed when decreasing the diameter of SNCs, indicating the increase of 

quantum confinement [98-100]. (Figure 2.3) 

 

Figure 2. 3: (a) Energy diagrams illustrate that decreasing the diameter of the SNCs shifts the first 

state to larger values of k and increases the energetic separation between states. (b) PL image and (c) 

absorption and PL spectra of CdTe NCs with different diameters. The arrows in (b) and (c) indicate 

the decreasing the size of SNCs. Reprinted with permission from [100]. Copyright 2002 American 

Chemical Society. 

The quantum states of charge carriers in the SNCs can be considered as those of a particle 

in a central potential )(rU [90]. If the Coulomb interaction between electron and hole is 

considered, the Hamiltonian of the system is given by  
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For CdTe, the effective masses of the electrons and holes are 0.096 m0 [101] and 0.37 m0 [102] 

with m0 the free electron mass, respectively. So the effective masses of the two charges are 

only a small fraction of an electron mass, implying the large localization energies for electron 

and hole. The dielectric constant of inorganic semiconductors is very large, for example, bulk 
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CdTe has a dielectric constant between 12 and 9 in the UV-Vis spectral range [103], the 

Coulomb interaction is very small and can be considered as a perturbation [96]. 

L. E. Brus built a model to explore the relationship between band gap and the size of 

SNCs [96]. In this model, the kinetic energy is treated by the effective mass approximation, 

and Coulomb interaction is considered. An approximate formula is given for the lowest 

excited electronic state energy by solving Schrödinger equation. The band gap gE  can be 

approximately written as [96, 104] 
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Here, bulk
gE is the bulk energy gap, R is the particle radius, µ  is the effective mass of the 

exciton, ε is the relative permittivity, and e is the charge of the electron. It can be seen that the 

band gap is increasing by decreasing the size of nanoparticles.  

2.2 Electronic coupling in quantum systems 

SNCs have interesting properties and promising applications in many fields [6-7, 23-25], 

however, the optical and electronic properties of individual SNCs can be modified via 

electronic coupling between densely packed SNCs. The electronic coupling between SNCs is 

investigated within the course of this work. In this section, the fundamental principles of such 

electronic coupling will be introduced.  

2.2.1 Electronic interactions in the hydrogen molecule 

Electronic coupling not only occurs between SNCs, but also occurs between atoms or 

molecules. When atoms or molecules organize into condensed systems, new collective 

phenomena develop. The simplest case is the hydrogen molecule, H2, which can be 

considered to be made up of two separate protons and electrons. The electrons in isolated 

hydrogen atoms occupy atomic orbitals, and the spatial wave functions are schematically 

illustrated in figure 2.4 (a) and (b). When the hydrogen atoms are bound to form a molecule, 

there are two molecular orbitals formed due to the interaction between the electrons. The 

lower energy orbital, called the bonding molecular orbital, with the wave function shown in 

figure 2.4(c), has significant electron density between the two nuclei. While the antibonding 
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molecular orbital has a vanishing electron density in the centre and it has higher energy than 

the atomic orbitals (Figure 2.4(d)). 

 

Figure 2. 4: (a), (b) The spatial wave function of electrons in isolated hydrogen atoms, and the wave 

functions of a hydrogen molecule for the bonding state (c), which has lower energy than the atomic 

orbitals, and the antibonding state (d) with higher energy. 

2.2.2 Electronic coupling in 1D quantum well superlattices 

Like atoms or molecules, but in the next level of hierarchy, SNCs may also be used as the 

building blocks of condensed matter. The exciton in SNCs is similar to the hydrogen atom, 

and electronic coupling will occur when the distance between the SNCs is comparable to 

atomic distance. As an introduction to the interactions between neighbouring SNCs, we start 

with 1D quantum well superlattices.  

 

Figure 2. 5: Potential and subband energy diagrams of (a) isolated quantum well and (b) superlattice. 

In the superlattice, confined states in isolated quantum well expand to form minibands. 
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We assume that the superlattice is composed of smaller-band gap (Eg
W) quantum well 

layers with a thickness of LZ, and the larger-band gap (Eg
B) barriers with a width of LB. In the 

case of an isolated quantum well, confined subband states, formed due to quantum size effect, 

are localized in the particular well regions shown in figure 2.5(a). However, in the 

superlattices, the confined states are degenerate in energy and can couple through the thin 

barriers by tunnelling, the envelope wave function is delocalized and spread over all wells, 

and the original states expand to form minibands, as illustrated in figure 2.5(b) [105]. 

1D minibands are formed for the tunnelling of both the electrons and holes. The width of 

the miniband, ∆2 , depends on how much the wave function can penetrate into the classical 

forbidden area, and it can be calculated based on the Kronig-Penney model [106] using the 

effective mass approximation. The eigenvalue of energy can be calculated from the following 

equation:  
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V denotes the band offset between the quantum well and the barrier, h  is Plank’s constant 

divided by π2 , ZL  and BL  are the thickness of the quantum well and barrier, K  is the wave 

vector, and ∗
Wm  and ∗

Bm  are the effective masses of the quantum well and barrier materials, 

respectively. 

The width of the miniband for GaAs/AlAs superlattice is calculated [105], and the 

calculation is schematically shown in figure 2.6. It allows the following conclusions [105]: (1) 

If the thickness of the quantum well ( ZL ) stays constant, the coupling of the electronic wave 

function decreases with increasing barrier thickness. (2) If the barrier stays constant, 

decreasing the thickness of the quantum well will increase the energy of the subband states. 

The coupling strength is illustrated in figure 2.6(a) as ∆2 . (3) The calculations [105] indicate 

that the width of the miniband can be tuned between zero and a few hundred meV. (4) The 

width of the heavy-hole miniband is narrower than that of electron miniband, because of 

larger effective mass (figure 2.6(b)). These phenomena are experimentally confirmed by 

absorption spectra [107]. By decreasing the barrier thickness, the absorption edge shifts to 
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lower energies, indicating the enhancement of resonant coupling through the tunnelling 

process between the quantum wells. 

 

Figure 2. 6: Schematic illustration of minibands for (a) electrons in different quantum wells and (b) 

electrons and holes in the same quantum well in GaAs/AlAs superlattices. 

2.2.3 Electronic coupling in QD solids 

As synthetic techniques have developed for producing SNCs with very narrow size 

distributions, they may also be used as the building blocks of condensed matter. Many 

artificial SNCs structures, like ordered arrays of SNCs or SNC superlattices [27], SNC 

particle chains [108], conjugates of NWs and SNCs [109], and SNC bilayers [110-111] have 

been built. In the NC assemblies, which are also called QD solids, the strong confinement of 

electrons and holes within isolated SNCs can be relaxed by tunnelling of charge carriers 

between neighbouring SNCs. So the properties of SNC assemblies are determined not only by 

the SNC units but also by the interactions between neighbouring SNCs. The new collective 

phenomena in the artificial SNC structures offer enormous possibility in the design of novel 

materials with controlled optical and electronic properties. Furthermore, such materials 

provide a unique model system for the study of fundamental physical processes, such as 

charge carrier transport, exciton diffusion, and energy transfer. They also open up the 

possibilities of fabricating new solid state materials and devices with novel physical 

properties. 
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Similar to 1D quantum well superlattices, the control of the optical and electronic 

properties of QD solids can be realized by controlling the SNC units or the coupling between 

them.  

The coupling strength in the QD solids depends on the distance between the adjacent 

SNCs. When the inter-particle separations is between 0.5 and 10 nm, the interaction between 

proximal SNCs is dominated by dipolar coupling [27]. The dipoles in SNCs arise from 

oscillations in charge distributions as SNCs change eigenstate, and dipole-dipole interactions 

lead to electronic energy transfer. Energy transfer often occurs in solids containing two sizes 

of SNCs, one called the donor and the other the acceptor. The acceptor has both a transition in 

resonance with the energy of donor emission and a lower energy state in which to trap the 

transferred excitation. Once the transferred excitation is trapped in the lower energy state of 

the acceptor, the excitation cannot be transferred back because the donor is transparent to the 

lower energy excitation. Energy transfer is measured spectroscopically by the quenching of 

the PL quantum yield of the donor, or by the accompanied enhancement of the PL quantum 

yield of the acceptor. Energy transfer was experimentally realized in many artificial SNC 

assembles, for example, the mixture of different SNCs [112], layer-by-layer assembled 

bilayers of SNCs with different sizes [113], SNCs electrostatically bound by ions [114], or 

even transfer from organic dye molecules to SNCs [115].  

When the distance between SNCs is smaller than 0.5 nm, exchange interactions become 

significant, and electronic excitations are delocalized over many SNCs. S. V. Gaponenko et al. 

[26, 116-117] showed that in close-packed QD solids, the electronic wave functions of the 

SNCs extended toward neighbouring SNCs. In the case of densely packed SNCs, the 

exchange interactions become significant and electronic excitations become delocalized. 

When the size of the SNCs decreases, the electronic wave functions from the SNC states spill 

further outside the volume of the SNCs, and the optical spectra of close-packed SNC solids, 

prepared from the smallest CdSe NCs, are similar to those of bulk CdSe [117].  

Consequently, the control of the optical and electronic properties of QD solids can be 

achieved by controlling the size and material of the SNCs, or by tuning the separation 

between SNCs. The first mechanism is based on the quantum size effect, and the second is 

based on the distance dependent coupling. Usually, SNCs are capped by ligands, and the 

control of the inter-particle distance can be realized by adjusting the size of capping groups 

SNCs [28] or by removing the ligands [29, 118].  
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Electronic coupling can also be investigated using scanning tunnelling microscopy and 

spectroscopy at low temperature. The investigation of quantum mechanical coupling in two-

dimensional (2D) arrays of PbSe NCs has been reported by P. Liljeroth et al. [119]. PbSe has 

low effective masses of both the electron and hole, which lead to an increased extension of 

the wave function outside the SNC and an increased coupling between adjacent SNCs. By 

comparing the tunnelling spectra of isolated SNC (figure 2.7(a)) and single SNC in SNC 

arrays (figure 2.7(b)), predominant coupling between individual NC in the 2D array was 

found with a coupling strength of 50-150 meV between the electronic states. In some regions, 

the strong coupling of both the conduction and valence levels was observed. 

 

Figure 2. 7: Experimental dVdI  spectra measured on (a) an isolated QD and (b) different QDs in 

the QD arrays. Reprinted figure with permission from [119]. Copyright 2006 by the American 

Physical Society. 

In this work, investigation of electronic coupling between SNCs in QD solids is carried 

out spectroscopically on polycrystalline NWs, which have inter-particle distances smaller 

than 0.5 nm due to organic ligands. The NWs are prepared by the oriented attachment of 

CdTe SNCs. In what follows, this method is introduced.  

2.3 Oriented attachment of SNCs 

1D nanostructures can be prepared using catalysts [43-50] or templates [48-52]. Comparing to 

these two methods, the growth of 1D semiconductor nanostructures by the oriented 

attachment of SNCs is a new method. This method was first reported by R. L. Penn and J. F. 

Banfield in 1998 [53-54]. In this process, the adjacent SNCs organize spontaneously, and the 
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coalescence of primary SNCs in specific crystallographic orientation is caused by the 

difference of surface energy at each face. 

In this work, 1D semiconductor nanostructures are prepared by the oriented attachment of 

CdTe SNCs. As CdTe SNCs have been reported to have many important applications in 

photovoltaic devices [120], and biolabeling and detection [121-122], preparation of 

nanostructures using CdTe SNCs has attracted much attention [55, 123-125]. The 

semiconductor nanostructures prepared using CdTe SNCs are expected to enhance or modify 

the optical and electronic properties of their units.  

 

Figure 2. 8: (a) and (b) Optical image and high resolution transmission electron microscope (TEM) 

image of the particle chains prepared by mixing SNCs with PBS solution. Reprinted with permission 

from [124]. Copyright 2007 American Chemical Society. (c) Particle chains were firstly prepared by 

removing the ligands efficiently and storing the solution for several days and NWs (d) were prepared 

by further crystallization. From [55]. Reprinted with permission from AAAS. 

Many methods have been reported to realize the oriented attachment of CdTe SNCs. One 

of the methods is prepare particle chains by washing the CdTe SNCs using phosphate 

buffered saline (PBS) solution [62-63]. In a typical synthesis, CdTe SNCs were mixed with 

PBS solution, which removes the ligands of the SNCs softly. The mixture was dropped on a 

glass substrate and the particle chains were observed within several minutes (Figures 2.8 (a) 

and (b)). The destabilization of stabilizer ligand shells leads to the appearance of charged 

dipoles, and the oriented attachment of the SNCs is caused by the dipole-dipole interactions 
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between spherical SNCs. As prepared particle chains are not stable and can be dispersed as 

individual SNCs in water. Another method was reported by N. A. Kotov’s group [55]. They 

found that negatively charged zincblende CdTe NCs can spontaneous self-assembly into NWs. 

NW formation was initiated by removing the stabilizer efficiently by washing with methanol 

followed by centrifugation. The precipitate was then redispersed in water at pH 9 and allowed 

to age at room temperature in the dark for several days. During this period, SNCs firstly 

connected to form particle chains (Figure 2.8(c)), and over 7 days, the colour of the solution 

gradually turned from orange to dark brown or black, and NWs were observed in the solution 

(Figure 2.8(d)).  

The oriented attachment of SNCs has attracted much interest because it is a general 

method applicable in principle to all colloidal SNCs [65-71], and materials with controlled 

size and morphology can be designed using this method.  

The shape and property of the nanostructures prepared by the oriented attachment of 

SNCs depend on the primary SNCs. For example, the choice of the SNC size offers a suitable 

way to control the extent of quantum confinement and morphology of the NWs. Single 

crystalline NWs were prepared by the oriented attachment of CdTe NCs by Z. Y. Tang et al. 

The diameters of the NWs are identical to the diameters of precursor nanoparticles, and the 

emission wavelength of the NW luminescence can be easily tuned by sizing the starting 

nanoparticles [55].  

Materials with controlled size and morphology can also be realized by controlling the 

growing conditions during the oriented attachment. PbSe NWs with different thickness and 

even smooth, single crystalline rectangular nanorings were controllably realized at different 

conditions [126]. By the modulation of surface energies of the different crystallographic faces, 

nanostructures with shape evolves from bullet and diamond structures to rods and branched 

rods were prepared [127].  

At present, the detailed assembly process is not fully understood, and it is considered that 

charged dipoles are induced by the removal of ligands and oriented attachment in the 

formation of nanostructures involves dipole–dipole attractions between SNCs [55]. From a 

thermodynamical point of view, the combination in a coherent crystallographic orientation 

will eliminate the interfaces and the surface energy of SNCs will be reduced in this process. 
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The difference of surface energy at each face leads to the coalescence of primary particles in 

specific crystallographic orientation and oriented attachment based growth [56]. 

Simulations of the oriented attachment process of CdTe nanoparticles into NWs was also 

reported [128]. In this simulation, the SNCs were assumed to have the shape of a truncated 

tetrahedron. The direction of the dipole moment is strongly dependent on the number of 

truncations. The oriented attachment depends on the face-face attraction between SNCs and 

the repulsion caused by the charges. The delicate balance of various anisotropic interactions 

between the SNCs is responsible for the assembly. 

Not only QDs can grow into 1D nanostructures by oriented attachment, but also nanorods 

or NWs can attach to build different morphologies [129]. Nanorods with diameters between 

20 and 1000 nm were reported to axially self-assemble into multisegmented coaxial NWs by 

an end-to-end self-assembly process (Figure 2.9(a)). While NWs with diameter of 10~30 nm 

aligned side-by-side to form nanoribbons (Figure 2.9(b)).  

 

Figure 2. 9: Illustration of end-to-end oriented attachment assisted self-assembly of nanorods into 

multisegmented coaxial nanowires (a) and side-by-side oriented attachment assisted self-assembly of 

nanowires into nanobelts (b). Reprinted with permission from [129]. Copyright 2007 American 

Chemical Society. 

The end-to-end attachment is due to high-energy crystal face on the tips of nanorods. The 

high-energy faces act as the sticky points to induce the nanorods to join in the ends. As a 

result, the nanorods attach end-by-end along the axis of the nanorods to form NWs. Lateral 

oriented attachment occurs when the energy of the crystal face of the side is adequate for 
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NWs to align side-by-side and to form NW bundles. Nanobelts were prepared by the further 

crystallization of the NW bundles through oriented attachment. In this work, polycrystalline 

semiconductor NWs were prepared by the oriented attachment of CdTe NCs, and nanoribbons 

were prepared by the side-by-side alignment of NWs. 

2.4 Propagation of electromagnetic waves 

1D semiconductor nanostructures prepared by the oriented attachment of CdTe SNCs in this 

work have high-aspect-ratio and large dielectric constant [103]. They have promising shapes 

for applications in the field of polarization and waveguiding. In this work, we investigate how 

light is emitted/absorbed between NWs and the surrounding, and how it is guided to 

propagate in nanoribbons. The basic knowledge on how electromagnetic waves passing 

through different mediums or propagating in the same medium will be introduced in the 

following section. 

2.4.1 Maxwell’s equations in matter 

To understand how light is passing through or propagating in the 1D semiconductor 

nanostructures, we need to know the physical process when electromagnetic waves propagate 

in nanostructures and the surrounding medium. Maxwell’s equations are the fundamental 

equations describing the evolution of electromagnetic fields in the presence of charges, 

current, and media. This set of equations includes Gauss’ (2.10 and 2.11), Faraday’s (2.12), 

and Ampère’s (2.13) laws. They relate the electric flux density D  (C/m2), electric field E  

(V/m), magnetic flux density B  (T = Wb/m2), magnetic field H  (A/m), charge density ρ  

(C/m3), and current density J  (A/cm2), to one another in space and time [130], as 

ρ=⋅∇ D                                       (2.10)                

0=⋅∇ B                                        (2.11)               

dt
BdE −=×∇                                (2.12)            
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dt
DdJH +=×∇                            (2.13) 

When the electrodynamic theory is used to describe the interactions of matter with electric 

and magnetic fields, some material properties (for example, the complex dielectric function) 

enter as input parameters. The material dependent parameters are taken either from 

experimental data or calculations by solid state theory. And the changes in the material 

properties induced by the interaction with electromagnetic field cannot be explained by 

classical electrodynamics.  

To distinguish external fields and fields produced by the response of the material, the 

electric flux density D  and the induced electrical polarization P  (C/m2) are related to E  by 

EEEEEDP m χεεεεεεεεε 000000 )1()()( =−=−=−=−=                      (2.14) 

mε  represents the permittivity (F/m). ε  is the dielectric constant, a dimensionless term. And 

the susceptibility χ  is defined as 

IR iχχεχ +=−= 1                                                                                          (2.15) 

Microscopically, the real part of the susceptibility χ  is derived from the dipole response of 

atoms and electrons in the material to an electromagnetic wave, which is the basis of 

polarization.  

Likewise, the magnetic field vector H  is related to the magnetic flux density B  by  

HB mµ= , mµ  represents the permeability (H/m).  

Since the spatial variation of E  is related to a time variation of H  and vice versa, the 

propagation of electromagnetic waves can be described explicitly by means of a wave 

equation.  

If we assume that the electric field propagates in the z direction, 
λ
π2

=k  is the 

propagation constant in the material, and ω is the angular frequency, then in the case where 

0=ρ , the electric field and the polarization term P  can be described as plane waves: 
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The electric field can be presented by the components of absorption, propagation and time 

dependence of a wave in a material: 

tizikz
eeeEE Z ωα −−

⋅⋅= 2
1

0                                                                                     (2.17) 

Here, α  is the intensity loss coefficient, and the equation gives the magnitude, phase, and 

time dependence of the electric field propagating in the z direction in a material. 

In a homogeneous medium, all components of the field E , H , D , and B  are continuous 

functions of space. At the boundary between two dielectric media, in the absence of free 

electric charges and currents, the tangential components of the electric and magnetic fields E  

and H  are continuous. While the normal components of the electric and magnetic flux 

densities D  and B  are continuous.  

2.4.2 Optical anisotropies of 1D nanostructures 

Studying the propagation of electric field in NWs and the surrounding medium also helps to 

understand the optical anisotropies in semiconductor NWs. Most of the semiconductor 

materials have a dielectric constant much larger than air [103]. When the semiconductor NWs 

are measured in vacuum, because of the 1D morphology, the dielectric screening of the 

electric field leads to anisotropies in absorption, emission and scattering at different 

polarizations. A purely dielectric contrast model is usually used to explain the polarization 

anisotropy of NWs when the diameter is much smaller than the wavelength of light in the NW, 

i.e., the NW is in the electrostatic limit [66, 131].  
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Figure 2. 10: Dielectric contrast model of polarization anisotropy. The laser polarizations are 

considered as electrostatic fields oriented as depicted. Field intensities (|E|2) are calculated from 

Maxwell’s equations. It clearly shows that for the perpendicular polarization, the field is strongly 

attenuated inside the NW, whereas the field inside the nanowire is unaffected for the parallel 

polarization. From [66]. Reprinted with permission from AAAS. 

The dielectric contrast model illustrated in figure 2.10 is based on the anisotropic 

dielectric mismatch between the NW and its environment, i.e., an anisotropic refractive index 

“contrast”. In the dielectric contrast model, the NW in the electrostatic limit is treated as an 

infinite dielectric cylinder in a vacuum. When the polarization of the incident field is parallel 

to the cylinder, the electric field inside the cylinder is not reduced:  

//// ei EE =                                                                                     (2.17) 

But when the polarization of the excitation is perpendicular to the axis of the NW, the 

amplitude of the electric field is attenuated following the equation:  

⊥⊥ ⎟⎟
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= ei EE
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0
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2

εωε
ε

                                                                  (2.18) 

Here, iE  and eE  represent the electric field inside and outside of the NWs, respectively. 

)(ωε  and 0ε  are the dielectric constants of the NW and the surrounding medium. It should be 

noted that the dielectric constant )(ωε  depends on the wavelength in the material, due to 

material dispersion.  

The polarization ratio of the NW is defined by  
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Where //I  and ⊥I  are the intensities of photoluminescence when the polarization of the 

excitation is parallel and perpendicular to the axis of the NW, respectively.  

J. F. Wang et al. investigated optical anisotropies of InP NWs satisfying the electrostatic 

limit [66]. It was found that the polarization anisotropies of the photoluminescence of the 

NWs are larger than 0.9 in both excitation and emission. It agrees very well with the 

theoretical polarization ratio calculated using the dielectric contrast model (P = 0.96). C. X. 

Shan et al. investigated the optical anisotropies of NWs of different growth direction [131], 

and it was found that the contribution from the symmetry of the crystal structure is negligible. 

It indicates that optical anisotropies are expected in polycrystalline NWs, although to our 

knowledge, all of the reports on optical anisotropies are from single crystalline NWs. 

There is another mechanism for NWs with diameters smaller than the exciton Bohr radius 

that leads to polarization anisotropies. This mechanism is based on the mixing of valence 

band states due to quantum confinement, which strongly alters the underlying polarization 

sensitivity and selectivity of interband optical transitions [132-133]. Experimental evidence 

for this mechanism has been reported from lithographically defined InGaAs quantum well 

wires [134]. To avoid the dielectric contrast contributions to the anisotropy as discussed 

above, the observed wires were prepared in a medium having a similar dielectric constant. 

Smaller anisotropies ( excP  ≈ 0.4) have been observed, demonstrating that confinement-

induced valence band mixing occurs. Analogous behaviour was also seen in GaAs/AlAs wires 

where similar excP  values were measured [135]. These results, along with corresponding 

theory [132-133], simultaneously support an important role played by confinement in 

inducing nanowire polarization anisotropies. 

Both of the above two mechanisms are limited in NWs in electrostatic limit. However, 

size-dependent effects can be expected when the diameter of the NW is comparable to the 

wavelength of light in the material [136-137]. Only little work has been done so far on the 

size-dependent optical properties of NWs. In this work, we investigate the optical anisotropies 

of NWs with an average diameter of about 90 nm, which is comparable with the wavelength 

of the light in the NWs. Size-dependent optical anisotropies were observed in such NWs, and 
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the optical anisotropies of single NWs can be transferred into macroscopically aligned NW 

arrays. 

Polarized photoluminescence is observed in NWs with small diameters, while for 1D 

nanostructures with large width, photons are confined in two dimensions and are guided along 

the third dimension. In the following section, the propagation of light, i.e., waveguiding in the 

1D nanostructures will be introduced. 

2.4.3 Waveguiding in 1D nanostructures 

Waveguides are generally based on the phenomenon of total internal reflection. When a wave 

propagates from a material of high refractive index in  to another material with lower 

refractive index tn , total internal reflection at the interface can occur, which confines the 

wave in the material with high refractive index. If iθ  is the incidence angle, the condition for 

total internal reflection at the interface is given by [130] 

tii nn ≥θsin                                                                                                           (2.20)  

No light will be transmitted across the boundary when the angle of incidence is larger than the 

critical angle  
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If the high index material is completely surrounded by the low index material, the waves will 

be confined in the material with high refractive index by total internal reflection. 

However, this does not mean light rays with arbitrary angles larger than cθ  can be guided 

to propagate in the material. In the simplest configuration [138], light is guided in a slab 

waveguide, which can be modelled in the simplest case as two plane mirrors held parallel to 

each other in free space, as shown in figure 2.11. The plane waves are expected to bounce up 

and down between the mirrors and the field is guided down the z-axis. The distance between 

the two mirrors is h. 



2.4 Propagation of electromagnetic waves 
 

 27

 

Figure 2. 11: Propagation of a wave in the parallel-mirror slab waveguide. 

If we assume that a y-polarized plane wave travels at an angle θ  to the z-axis, then the 

time-independent field has the form: 

[ ] [ ])cossin(exp)cossin(exp θθθθ xzikExzikEEy −−++−= −+                       (2.22) 

The first part indicates an upward-travelling wave and the second part indicates a downward-

travelling wave. 
λ
π2

=k  is the propagation constant.  

The boundary conditions require the electric field to vanish at the walls, i.e., Ey = 0 at x = 

0 and x = h. The boundary conditions can be satisfied if the time-independent field have the 

form: 

)sinexp()cossin(0 θθ ikzkxEEy −=                                                                       (2.23) 

and 0)cos2sin()cossin( == θ
λ
πθ hkh                                                                    (2.24)                                     

Equation 2.24 is satisfied whenever 
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N 2
cos 1 λθ                              N=1, 2, 3……                                                (2.25) 

Equation 2.25 indicates that the in the waveguide, the propagation takes place in the form 

of discrete modes with different reflection conditions. 

Consider 1cos
2

≤= Nh
N θλ , for the smallest N value, N=1, 2

λ≥h . It means that the 

thickness of the material should be large enough to serve as waveguide for a specific 

electromagnetic wave. Also, for specific waveguides, the propagation wavelength should 
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satisfy h2≤λ . And for wavelengths longer than a certain cutoff wavelength hc 2=λ ,  no 

mode will be allowed for the propagation.  

Here, we only consider the simplest model, i.e., two mirrors in free space. For dielectric 

waveguides, some other effects, such as phase shift upon total internal reflection, should be 

taken into account. 

If the wave is confined in a further dimension by adding more surfaces, then a channel 

waveguide is formed. It represents optical fibers and leads the guided wave along the axis. 

Nanostructural waveguides with such geometry have attracted much attention because of the 

important applications of optical fibers in optical communication systems. Nanowire or 

nanoribbon waveguides have been realized using different semiconductor materials [85-88, 

139] or conjugated polymer NWs [140]. The development of 1D subwavelength waveguides 

is an important step towards the application of 1D nanostructure in photonic devices. Similar 

to the propagation in slab waveguides, electromagnetic wave propagation in fibers is known 

to occur in discrete modes that are guided as stable light patterns along the fiber [141], while 

continuous modes are not guided along the fiber [142].  

Similar to the restriction in the slab waveguide, the propagation of waves in 1D 

nanostructures is also determined by the size of the structures. F. Balzer et al. developed an 

analytical expressions to describe optical waveguiding through two dimensionally confined 

rectangular nanofibers [143]. In the analytical theory, the electromagnetic fields in the 

rectangular waveguide and surrounding space are derived from Maxwell’s equations and the 

boundary conditions. It is found that electromagnetic waves can propagate in such a 

waveguide only as transverse magnetic (TM) modes (Hz = 0). The propagation constant 

c
nωβ =   can be written as 

2//
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π

ε
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⊥

−=          m=1, 2, 3……     (2.26)                                                       

Here, a is the width of the nanofiber, and ⊥ε  and //ε  are the dielectric constants along and 

perpendicular to the fiber. 

The cutoff wavelength for TM waves satisfies  
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And the width of the waveguide is restricted by 

⊥−
>

ε
ε

εε
λ //

//2 s

ma                                             (2.28)                                       

Here, sε  is the dielectric constant of the substrate, and m is the number of possible modes. 

Equation 2.28 indicates that the dimensions required for a waveguide is mainly 

determined by the dielectric constant of the waveguide and also by the wavelength of the 

propagating light. The width requirement for waveguides has been experimentally proved. 

Figure 2.12 shows morphology and PL images of CdS NWs with different diameters. The 

wavelength of PL peak for both of the two batches of NWs is about 500 nm. It is assumed that 

both ⊥ε  and //ε  of CdS are close to the bulk material (~6.3 [139]), the dielectric constant of 

glass substrate is ~2.3 [144]. According to equation 2.28, the minimum width required for 

light propagation at 500 nm is approximately 125 nm as given by m=1. Figure 2.12 (a) and (b) 

show TEM and PL images of CdS NWs with diameter of about 14 nm. It is found that the PL 

is uniform along the NW [145]. While CdS NWs shown in figure 2.12(c) have diameters of 

about 200 nm, which is larger than the minimum width required for the propagation of PL, 

and waveguide was observed to propagate PL (Figure 2.12(d)) [146]. 

 

Figure 2. 12: (a) TEM image of CdS NWs with diameter of ~14 nm, and (b) PL image of a single NW. 

Reprinted with permission from [145]. Copyright 2008 American Chemical Society. (c) SEM images 

of three CdS NWs, and (d) PL image of a single NW excited in the centre. Reprinted with permission 

from [146]. Copyright 2010 American Chemical Society.   
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Equation 2.28 can also be interpreted such that the wavelength of the propagating light is 

restricted by the dimensions of the waveguide. As light below the cutoff frequency can not 

propagate in the waveguide, optical waveguides can serve as short-pass filters [86]. 

According to Maxwell’s equations, for the case of 0== ρσ , and vanishing the 

polarization, we can obtain the equation 

2

2
2

t
EE

∂
∂

=∇ εµ                         (2.29) 

By applying the technique of separation of variables, if the electric field is assumed to be 

separable, )()(),( tTrRtrE = , then equation 2.29 can be written as  
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We arrive at the Helmholtz equation  

RkR 22 =∇                                (2.31) 

Equation 2.31 is similar to the Schrödinger equation in quantum mechanics 

ϕϕ )(2
2

2 EVm
−=∇

h
           (2.32) 

In quantum mechanics, when the distance between charged particles decreases, their wave 

functions will interact. Similarly, in QD solids, the electronic wave functions couple between 

neighbouring NCs by tunnelling. The propagation of electromagnetic wave is in close analogy 

with the quantum theory of charged particle, the mode coupling might occur between parallel 

waveguides in fiber-optics bundles or in photonic crystals [147]. The optical coupling can 

also occur between crossed waveguides [148]. The coupling between fibers of an array is of 

interest in the fields of fiber optics and optical communication.   
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3. Experimental 

 

In this chapter, the materials and the various characterization techniques employed within the 

course of this work are presented. In the first part of this chapter, CdTe semiconductor 

nanocrystals, as the building block for one-dimensional semiconductor nanostructures studied 

in this work, will be introduced. Then, the preparation of 1D semiconductor nanostructures 

and the alignment of nanowires to form NW arrays will be presented. The characterization 

techniques used in this work will be discussed in the second part of this chapter. Absorption 

and photoluminescence spectroscopy was used to characterize the SNCs, in terms of their size, 

concentration, and band gap. Single-molecule spectroscopy and combined dark field/laser 

microscopy were used for the photoluminescence and scattering measurements. The 

photoluminescence lifetime of quantum dot solids was measured using time-correlated single-

photon counting. Optical lithography was used to prepare macroscopic electrodes as well as 

grids as labels for the measurements of the same sample at different setups.  
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3.1 Materials and sample preparation 

In this work, we investigated 1D polycrystalline nanostructures prepared using CdTe SNCs. 

In what follows, we will introduce the materials investigated in this work, including the 

starting material, CdTe SNCs, 1D semiconductor nanostructures, i.e., NWs and nanoribbons, 

and NW arrays aligned in polymer film. 

3.1.1 Synthesis of CdTe nanocrystals 

The CdTe SNCs used in this work were synthesized using the method described in Ref.[149]. 

In a typical synthesis, Cd(ClO4)2×6H2O was dissolved in water, and thiol stabilizer was added 

under stirring. The thiol ligands control the growth process and prevent the aggregation of the 

prepared SNCs. The pH of the solution was adjusted by dropwise addition of a 1 M solution 

of NaOH to 11.2. H2Te gas was firstly produced in the reaction of solid Al2Te3 with sulphuric 

acid H2SO4 (reaction 1) in a nitrogen atmosphere. The gas was then passed through the 

Cd(ClO4)2 solution under stirring, together with a slow nitrogen flow. CdTe SNC precursors 

were formed at this stage (reaction 2). Formation and growth of SNCs (reaction 3) proceed 

upon refluxing at 100 °C under ambient atmosphere with a condenser attached. The size of 

the resulting SNCs can be controlled by the reaction time at this stage, and the synthesis 

process can last between several tens of minutes and several days depending on the desired 

diameter of the SNCs (2-8 nm size range).  

Al2Te3 + 3H2SO4 ⎯→⎯  3H2Te↑  + Al2(SO4)3                 (1) 

Cd(ClO4)2 + H2Te ⎯⎯ →⎯ −RHS  Cd-(SR)xTey + 2HClO4       (2) 

Cd-(SR)xTey ⎯⎯ →⎯ Co100  CdTe – nanocrystals                      (3) 

Different thiol stabilizers were used in the synthesis of SNCs, whose chemical structures 

are depicted in figure 3.1 for mercaptopropionic acid (MPA), mercaptoamine (MA), and 

thioglycolic acid (TGA). CdTe SNCs capped with TGA are mostly used in this work for the 

preparation of 1D nanostructures. The TGA ligand is expected to be about 0.4 nm in length. 

Each SNC is covered with tens to hundreds of TGA molecules of which the thiol group (-SH) 

is connected to the SNC surface as shown in figure 3.1(d) and the –COOH groups provide 

negative charge on the outer surface in basic aqueous environment (–COO-).  
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Figure 3. 1: (a), (b), and (c) Chemical structure of MPA, MA, and TGA, respectively. (d) Schematic 

representation of a CdTe SNC with a stabilizing layer of TGA. 

3.1.2 Size-selective precipitation of CdTe nanocrystals 

Although the average diameter of the SNCs is controlled by the reaction time, the freshly 

synthesized CdTe SNCs are of a broad size distribution in the resulting solution. In order to 

obtain SNCs with a narrow size distribution, size-selective precipitation is applied [150]. In 

this centrifugation process, larger particles precipitate faster than smaller particles when a 

non-solvent (2-propanol) is added to the solution. The precipitate containing the largest 

particles stays at the bottom of the tube after centrifugation and can be easily re-dispersed in 

pure water given the first fraction, while the smaller particles stay in the solution. The size of 

the precipitated particles depends on the amount of the non-solvent added. Several fractions 

of SNCs of gradually decreasing sizes can be obtained from the crude solution by repeated 

addition of the non-solvent followed by centrifugation process. Figure 3.2(a) shows 

photoluminescence of CdTe SNCs with different sizes after size-selective precipitation. Size-

selected SNCs have a very narrow size distribution of about 10% after the size-selective 

precipitation procedure. Figure 3.2(b) is a representative high-resolution TEM image of CdTe 

SNCs fraction after size-selective precipitation, with a mean particle size of 4 nm. It should be 

noted that size-selective precipitation process offers an added advantage of the removal of the 

excess cadmium salt and stabilizer from the solution of SNCs. 
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Figure 3. 2: (a) PL spectra of CdTe SNCs synthesized in the same batch after size-selective 

precipitation. (b) High-resolution TEM image of CdTe SNCs. 

3.1.3 Isolated CdTe NCs in a polyvinyl alcohol matrix 

CdTe SNCs were dispersed in a polyvinyl alcohol (PVA) matrix in order to investigate the 

electronic properties of isolated SNCs. PVA is a water-soluble synthetic polymer and with a 

density of about 1.269 g/cm3. Typically, 1 µL CdTe SNCs (~10-4 M particle concentration) 

were dispersed in 100 µL PVA (10% wt). The mixture was dropped on a substrate and kept in 

dark until it dried. The distance between SNCs in the PVA matrix is about 100 nm. 

3.1.4 Densely packed CdTe NCs 

Densely packed SNC film was prepared by dropcasting CdTe SNCs (~10-4 M) on the 

substrate. When the sample dries, the SNCs in the film are separated only by the organic 

stabilizer. As the TGA stabilizer is expected to be about 0.4 nm in length, the inter- SNC-

distances are typically between 0.4 and 0.8 nm. 

3.1.5 Nanowires prepared from CdTe NCs 

In this work, polycrystalline nanowires were prepared by the oriented attachment [55, 126] of 

CdTe SNCs. In a typical fabrication procedure, phosphate buffered saline (PBS) solution (for 

exact composition, see Ref. [123]) was mixed with 0.01mM (particle concentration) colloidal 

solution of the CdTe SNCs in a 3:1 ratio, and the mixture was kept in the dark for 3 days. 

Then the solution was centrifuged for 3 min at 6000 rpm, and the precipitate was separated 
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and dispersed in water. The solution was dispersed on a glass substrate and 1D structures with 

a length of about 20 µm were observed using optical microscopy (figure 3.3).   

 

Figure 3. 3: Optical image of 1D structures prepared from CdTe SNCs. 

The morphology of the 1D structures was investigated using transmission electron 

microscope and atomic force microscope (AFM). As evidenced by figure 3.4, NWs with 

diameter between 60 and 120 nm are prepared. AFM results (Figure 3.4 (c)-(e)) indicate the 

height is uniform along the NW and is the same as that measured using TEM (figure 3.4 (a) 

and (b)). High resolution TEM image (Figure 3.4 (f)) and the electron diffraction pattern 

(Figure 3.4 (g)) reveal the polycrystalline nature of the NWs.  

The NWs are prepared by the oriented attachment of SNCs. The TGA capped CdTe SNCs 

are homogenously negatively charged after size-selective precipitation because of the 

presence of deprotonated carboxylic groups of TGA molecules all over the surface of SNCs. 

When PBS buffer solution is mixed with CdTe SNCs, it both removes the stabilizer of SNCs 

in a gentle way and also screens the charges at the SNC surface. The removal of the stabilizer 

reduces the overall charges of the SNCs, while the screening action of ions induces charged 

dipoles [125, 128]. The interaction between SNCs is determined by the dipole-dipole 

attraction and the repulsion caused by charges. The partial removal of the stabilizer decreases 

the repulsion between the SNCs, and the induced dipole-dipole interaction serves as the main 

attraction force for the oriented attachment of SNCs. The oriented attachment is determined 

by the particle size, the charge on the SNCs, the concentration of the free stabilizer present in 

the solution, and the dipole-dipole interactions. In an ideal situation, when the stabilizer is 

removed from the surface over some critical point, the repulsion between SNCs becomes very 

weak, and the SNCs start to form chain-like clusters due to the dipole-dipole interactions [128] 
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and on the later stages NWs. The oriented attachment takes place only when the stabilizer is 

properly removed and the dipole-dipole attraction is the dominant force in the growth. Taken 

into account the complexity of the above described processes, it is clear that the reliable 

formation of high-quality NWs depends on many factors and may not be so easy to achieve. 

The oriented attachment of SNCs depends on the repulsion caused by charges and the 

attraction by the charged dipoles. 

 

Figure 3. 4: (a) (b) TEM images indicate the NWs have a diameter between 60 and 120 nm. (c) AFM 

image of a single NW shows it has a length of more than 20 µm. (d) Cross-section along the black line 

in (c). (e) 3D AFM topographic graph of the NW in (c) indicates the uniform in height. High 

resolution TEM image (f) and the electron diffraction pattern (g) reveal the polycrystalline nature of 

the NWs. 
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The optical and electronic properties of SNCs can be well controlled by the reaction time 

and the size-selective precipitation. However, it is difficult to control the distribution of 

charges on SNCs, which is the most important parameter in the oriented attachment of SNCs. 

The stabilizers on SNCs can also be partially removed when we carry out the size-selective 

precipitation, which will reduce the charges on the SNCs. The charge variation between 

different batches of SNCs influences the reproducibility of the formation of 1D nanostructures 

which vary significantly from batch to batch. For some batches of SNCs, it was extremely 

difficult and sometimes even impossible to reliably form NWs; for others the wires formed 

readily and reproducibly and these were the batches which were used to produce NWs studied 

in details in this work in terms of their strong electronic coupling, optical anisotropies and 

waveguiding properties.  

The morphology of the product was also significantly influenced by SNCs prepared in 

different batches. Besides 1D nanostructures, 3D aggregates as well as nanoribbons described 

below were observed for some batches of TGA capped CdTe SNCs. Besides TGA capped 

CdTe SNCs, CdTe SNCs capped with MPA and MA, and CdSe SNCs capped with TGA were 

also tested for their ability to form NWs, however, with limited success. For the batches of 

CdTe SNCs which readily formed NWs, the diameter of the NWs can be controlled by tuning 

the ratio between the NCs and the PBS solution. Figure 3.5 (a) and (b) show TEM images of 

the prepared NWs when the volume ratio between PBS solution and the SNCs is 3:1 and 1:1, 

respectively. It is found that by decreasing the volume ratio between PBS solution and SNCs, 

the average diameter decreases from 110 to 40 nm. When increasing the ratio between PBS 

solution and SNCs, the stabilizer of the SNCs is removed more efficiently, the charge 

repulsion between SNCs becomes weaker, and the SNCs have more potential to grow in the 

radial direction when the repulsion is decreased. 
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Figure 3. 5: TEM images of the NWs prepared using the same batch of CdTe NCs. The volume ratio 

between PBS solution and the SNCs decreases from 3:1 (a) to1:1 (b). 

3.1.6 Nanoribbons prepared from CdTe NCs 

Formation of nanoribbons was observed for the similar conditions of growth for some batches 

of CdTe SNCs used. Figure 3.6(a) shows a TEM image of typical nanoribbons. Most of the 

nanoribbons have a width between 150 nm and 500 nm, and they have an average length of 

about 5 µm. AFM image of a nanoribbon is shown in figure 3.6(b), and the cross-section in 

figure 3.6(c) shows it has a height of about 70 nm. Cross-section measurements of many 

nanoribbons show that the height of the nanoribbons ranges from 30 to 80 nm. Figure 3.6(d) 

and (e) are the AFM image of the tip marked by the arrow in figure 3.6(b), and the 

corresponding 3D AFM topography. It indicates the nanoribbons have been formed by the 

lateral (side-by-side) attachment of NWs with diameter of 20-40 nm which were initially 

formed by the oriented attachment of CdTe NCs as described above. The removal of the 

stabilizer increases the energy of the crystal face on the side of the NWs. The NWs aligned 

side-by-side and nanoribbons were formed through further partial crystallization.  
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Figure 3. 6: (a) TEM image of nanoribbons indicates they have diameters between 150 to 500 nm. (b) 

AFM image of a single nanoribbon. (c) Cross-section measured in the middle of the nanoribbon shown 

in (b). (d) AFM image of the tip of the nanoribbon indicated by the arrow in (b). (e) 3D AFM 

topographic graph of the sample. 

3.1.7 Alignment of NWs 

In this work, NWs were aligned using the stretching of a polymer film [82-83]. The procedure 

is illustrated in figure 3.7. Typically, NWs were mixed with polyvinyl alcohol (PVA, 7.5%wt), 

and the mixture was dropped on a glass substrate. The sample was kept for 24 hours until it 

dried, and then the polymer film with the NWs embedded in it was separated from the 

substrate. The film was held at the ends and stretched.  



Chapter 3. Experimental 

 40

 

Figure 3. 7: Schematic illustration of the procedure for the preparation of NW arrays. (a) and (b) The 

mixture of NWs and polymer was dropped on substrate. (c) The drop was allowed to dry for 24 hours, 

and (d) the polymer film was separated from the substrate. (e) The film was held at the ends and 

stretched along the direction illustrated by the arrow in (f). 

A typical Rayleigh scattering image of NWs aligned in a PVA film is shown in figure 3.8. 

The NWs can be clearly recognized as bright elongated objects of high scattering intensity. 

As prepared NW arrays have lateral sizes of about 1.5 cm and the thickness of the film is 

about 50 µm. 

 

Figure 3. 8: Rayleigh scattering image of NW arrays. The arrow indicates the average orientation by 

the statistics of app. 120 NWs. 
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3.2 Experimental setups 

In the last section, we described the materials and samples investigated in this work. In this 

section, we will introduce the setups used to investigate the physical properties of the 

nanostructures. 

3.2.1 Absorption and photoluminescence spectroscopy 

The optical density of a sample indicates the ability of absorption at a specific wavelength, 

and the transmission of light through the sample is measured to determine this parameter.  

 

Figure 3. 9: Absorption (black) and photoluminescence (red) of the same CdTe NCs. 

As an example, a typical absorption spectrum of CdTe NCs in solution is shown by the 

black curve in figure 3.9. The size of the SNCs can be determined by the wavelength of the 

first excitonic absorption peak. W. W. Yu et al. measured the PL spectra and the size of 

different SNCs, and they gave the empirical fitting functions of several semiconductor SNCs 

[151]. The size of the CdTe NCs is given by 

84.1940064.1107147.1108127.9 2337 −⋅+⋅×−⋅×= −− λλλD             (3.1) 

In the above equation, D (nm) is the diameter of CdTe NCs, and λ  (nm) is the wavelength of 

the first excitonic absorption peak. 
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The concentration of the SNCs can also be determined by the value of the optical density 

at the first absorption peak position. According to the Beer-Lambert Law, the intensity 

transmitted through the sample at wavelength λ  is determined by  

lcII ελλ −⋅= 10)()( 0                                    (3.2) 

Where )(0 λI  is the incident light intensity on the sample, ε  is the extinction coefficient per 

mole of SNCs (L/mol×cm), c  is the molar concentration (mol/L) of the SNCs, and l  is the 

thickness of the sample (cm). The optical density (OD) is defined as 

                          (3.3) 

The extinction coefficient of CdTe NCs can be fitted into an empirical function of the size 

of the SNCs, which is determined by the wavelength of the first excitonic absorption peak 

[151]. 

12.210043 D⋅=ε                                        (3.4) 

When the thickness of the sample is known, the concentration is determined by 

εl
Ac =                                                        (3.5) 

The CdTe NCs used in this work have a diameter between 2 and 6 nm and the 

concentration is about 4101 −× M. 

The SNCs have very good luminescence properties shown by the red curve in figure 3.9, 

which indicates the band gap of the SNCs. In a typical measurement, the sample was excited 

at 350 nm, and the signal is collected at an angle of °90  with the excitation beam. It is 

important to perform the PL measurements in diluted solutions (OD < 0.05) so that re-

absorption of light in the solution could be avoided. The spectra in the figure show that the PL 

and the absorption overlap at the blue edge of the PL spectrum. 

3.2.2 Single-molecule spectroscopy 

A home built single-molecule spectroscopy setup was used for the photoluminescence 

measurements of isolated SNCs, densely packed SNC film and single polycrystalline NWs at 

)(log
0

10 I
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different temperatures, and PL images of single NWs at different orientations. The setup is 

schematically illustrated in figure 3.10.  

 

 

Figure 3. 10: Schematic of the single molecule setup. 

The principle of the setup is similar to a wide field microscope. The excitation light is the 

frequency doubled output of a Ti:Sapphire laser (Spectra Physics, model Tsunami) pumped 

by a Nd:YVO4 laser emitting at 532 nm (Spectra Physics, Millennia model V). The 

wavelength of the Ti:Sapphire laser can be tuned up to 918 nm, and it was selected 830 nm in 

the measurements. A lithium Triborate (LBO) crystal is used for second harmonic generation 

of the laser light. An additional narrow band-pass filter is installed to fix the excitation at 415 

nm. The sample is held in vacuum in a helium flow cryostat microscope (CryoVac GmbH and 

Co KG, model continuous cryostat micro). The cryostat is located in a xy-translation stage 

and the temperature can be controlled between 5 and 300K. The fluorescence of the sample is 

collected using a microscopy objective with a numerical aperture (N.A.) of 0.55 (Olympus, 

PlanFC model, 40-fold magnification) and a working distance of 8 mm. The focus is adjusted 

using the scattering of the excitation laser. A longpass filter is placed in the detection path to 

block scattered excitation light. In the spectrometer there are two different grids for spectral 

analysis and a mirror for direct viewing of the sample. The best spectral resolution of the 

grating is 0.10 nm for the grating with 1200 lines / mm, and the other is 0.40 nm for the 

grating with 300 lines / mm. The fluorescence is collected by a Peltier-cooled charge-coupled 

device (CCD, LaVision, Imager QE model) at a working temperature of -10°C to reduce 

thermal noise. 
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In the PL measurements, the signal can be collected as images using a mirror in place of 

the grating in order to identify and select the region of interest. Figure 3.11 displays the 

procedure to investigate the photoluminescence of single SNCs. A wild field imaging mode is 

firstly used to obtain the PL image of many SNCs. The entrance silt is then reduced for 

selecting object of interest, and all other SNCs having the same y coordinate with the selected 

SNC have been blocked. If the mirror is replaced by a grating, i.e., the spectrometer is 

changed to spectrum mode, the light entering the entrance slit is horizontally dispersed 

according to its frequency. The data are analyzed using the software program Extreme Fun 

Imager. The spectrum in the region of interest is integrated over several lines and the 

spectrum from the single nanostructure is obtained by subtracting the background. 

 

Figure 3. 11: Measurements (a)-(c) and analysis (d), (e) of the photoluminescence of a single SNC. (a) 

Wide field PL image of many SNCs. (b) PL image of selected SNCs in the entrance slit and the 

corresponding spectrum (c). (d) Selection of region of interest (white rectangle) and background (red 

rectangle). (e) PL spectrum of a single SNC. 

When measuring the photoluminescence of single NWs at different temperatures, the wide 

field PL image is very important. Because the sample might move when the cooling system is 

connected, the photoluminescence of nearby nanostructures can be used to find the same NWs 

at different temperatures. 
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When measuring the polarized photoluminescence on single NWs, a 4
λ  plate was 

installed in the excitation beam path to obtain circularly polarized laser. For polarized 

excitation, another polarizer was put in the excitation path to obtain linearly polarized 

excitation and the complete emission signal was collected. For polarized detection, a polarizer 

was installed in front of the spectrometer with circularly polarized excitation. Isotropically 

emitting and absorbing test samples were used to correct for the intrinsic polarization effects 

of the optics in the setup. 

3.2.3 Dark field microscopy 

Dark field microscopy was used to measure optical anisotropies of white light Rayleigh 

scattering of single NWs and NW arrays. The dark field setup combined with laser 

microscopy was also used for the photoluminescence measurements on single NWs and NW 

arrays. The setup is schematically illustrated in figure 3.12.  

 

Figure 3. 12: Schematic of the dark field microscopy. 

In optics, the N.A. characterizes the range of angles over which an optical system can 

accept or emit light. In most areas of optics, the numerical aperture of an optical system is 

defined by: 
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)sin(.. θnAN =                                            (3.6) 

Here, n  is the refractive index of the medium in which the light propagates. θ  is the half-

angle of the maximum cone of light that can enter or exit the optical system, which is shown 

in figure 3.12 (a) and (b) for objective and dark field condenser, respectively. 

 

Figure 3. 13: Schematic illustration of θ  for objective and dark field condenser. 

The dark field aperture has to block exactly the light which would propagate directly into 

the objective. So the N.A. of the condenser has to be larger than that of the objective. The oil 

condenser used here has an illumination N.A. of 1.2 to 1.4, and the objective has N.A. of 0.9. 

The air condenser has an illumination N.A. of 0.8 to 0.95, and that of the corresponding 

objective is 0.75.  

In the measurements of scattering, white light is used as the excitation, and the scattered 

light is coupled to the spectrometer then to a liquid nitrogen cooled CCD array (Princeton 

Instruments). Similar to the single-molecule setup, the signal could be collected as images 

using a mirror in place of the grating in order to identify and select the region of interest. If 

the mirror is replaced by a grating, the light entering the entrance slit is horizontally dispersed 

according to its frequency. The software (WinSpec32) allows the integration of the light 

collected from the region of interest in x direction. To obtain the scattering spectra, the spectra 

need to be corrected with the spectrum of the excitation white light.  

The setup also allows the use of a laser for PL measurements. The second harmonic of a 

diode-pumped Nd:YAG laser emitting at 532 nm was used in this work, and the PL was 

collected by the same objective and split off using a dichroic mirror and a laser blocking filter. 

Combining a focused laser with a movable microscope stage allows localized excitation and 

precise positioning.  
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Polarization measurements on photoluminescence or scattering can be carried out on this 

setup. A polarizer was used to obtain linearly polarized excitation or detect the 

photoluminescence or scattering at different polarization orientations.  

3.2.4 Time-correlated single photon counting 

A fluorescence lifetime spectrometer FluoTime 200 (PicoQuant) combined with optical 

microscopy was used for the measurement of PL lifetimes. The FluoTime 200 uses a 

technique called Time-Correlated Single Photon Counting [152-153]. A pulsed LDH-P-C-405 

diode laser with 400 nm wavelength was used for excitation, and the excitation is focused on 

one spot on the sample. The repetition rate can be varied between 2.5 to 40 MHz. When a 

photon is detected, the time of the corresponding detector pulse is measured. The events are 

collected in a memory location with an address proportional to the detection time. After many 

photons, the number of registered photons depending on their detection time is plotted as a 

histogram. The system is schematically shown in figure 3.14.  

 

Figure 3. 14: Schematic of the FluoTime 200 combined with optical microscopy. 

In the measurement, the repetition rate of the laser has to be chosen so that the time 

between the pulses is longer than the fluorescence lifetime of the sample. The intensity of the 

pulsed laser also needs to be controlled to make sure that after each laser pulse, no more than 

one single photon is detected. PL lifetime can then be determined from fits of the arrival time 

distribution of the photons. 



Chapter 3. Experimental 

 48

3.2.5 Optical lithography 

Optical lithography was used to prepare finger electrodes used for the conductivity 

measurements and grids on the substrates. Figure 3.15 illustrates the lithography process to 

prepare electrodes on the substrates. A layer of 10nm thick adhesion promoter (ALLRESIST 

GmbH, AR 300-80) and a layer of 1 µm of photoresist (ALLRESIST GmbH, AR-P 5350) 

were baked after spin coating. The exposure process is applied in a mask aligner (Suss 

MicroTec Lithography GmbH, Model MicroTec MA6). After illumination, the photoresist 

exposed to light becomes soluble to the photoresist developer (ALLRESIST GmbH, 300-35 

AR), and it was removed after developing. A layer of Au was deposited on top using a 

thermal evaporation (Edwards, Edwards Auto 306 Turbo model). In the last step, the 

remaining photoresist was removed using hot acetone in the lift-off process. 

 

Figure 3. 15: (a)-(f) Schematic illustration of the procedure for the lithography. (a) and (b) Spin 

coating and baking of promoter and photoresist. (c) Illumination in mask aligner followed by 

developing (d). (e) and (f) Evaporation and lift off. (g) and (h) Optical images of finger electrodes 

prepared using lithography. (i) Optical image of grids prepared by lithography. 

In the process to prepare grids on the substrates, the photoresist was prebaked and 

exposed to a pattern of intense light, followed by a second baking and exposure of the whole 

substrate. The photoresist, which was protected during the first exposure become soluble in 

the developer. And then a layer of metal was evaporated and the rest of the photoresist was 

removed by acetone. 
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3.2.6 Further devices used in this work 

A transmission electron microscope JEOL JEM 1011 was used to measure the morphology 

and the size of nanostructures. 

High resolution TEM with an acceleration voltage of 300 kV as used to determine the crystal 

structure of the NWs. The NWs were measured using the same TEM at room temperature and 

liquid nitrogen temperature to investigate the thermal expansion of the NWs. 

A scanning electron microscope (SEM) was used to measure the width of nanoribbon 

waveguides. 

An atomic force microscope (JPK) combined with optical microscopy (ZEISS) was used to 

measure the size of nanoribbons. 

Agilent 4156C Semiconductor Parameter Analyzer with 0.01 fA display resolution at 10 pA 

range was used to measure the conductivity of NWs.  
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4. Thermomechanical control of 

electronic coupling in QD solids 

 

In this chapter, we demonstrate that the electronic coupling between semiconductor 

nanocrystals in a quantum dot solid can be controlled thermomechanically, i.e., by controlling 

how the solid shrinks or expands with temperature. We studied single polycrystalline 

nanowires and densely packed films, prepared from colloidal CdTe SNCs coated by 

thioglycolic acid stabilizer, via photoluminescence and transmission electron microscopy at 

variable temperatures. In the case of strongest coupling the PL shifts to the red at low 

temperatures, while it shifts to the blue for weaker coupling. The redshift is in stark contrast 

to the well-established blueshift in bulk CdTe and in isolated SNCs in our measurements. 

TEM-based length measurements of individual NWs at room and liquid nitrogen temperature 

reveal that individual NWs indeed exhibit thermomechanical properties different from the 

bulk semiconductor material. Our study shows that, with QD solids, the temperature 

dependence of the band gap emission can be controlled and in particular, materials with 

temperature independent band gaps can be realized. 
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4.1 Electronic coupling in QD solids 

As introduced in chapter 2, the strong confinement of electronic wave functions within 

isolated SNCs can be relaxed by quantum mechanical coupling between them in the QD 

solids. In what follows, we will investigate the electronic coupling in QD solids composed of 

CdTe NCs. 

4.1.1 QD solids with different coupling strength 

Three different sample geometries of QD solids: well-separated CdTe NCs in a polyvinyl 

alcohol (PVA) matrix, densely packed film of SNCs, and polycrystalline NWs made from the 

same SNCs, were investigated, as shown in figures 4.1(a)-(c). The preparation of the samples 

has been introduced in chapter 3. 

 

Figure 4. 1: Three geometries of QD solids: (a) Well-separated CdTe NCs with negligible electronic 

coupling between the SNCs due to the large interparticle distances. (b) Densely packed CdTe NCs 

with weaker electronic coupling between the SNCs due to the presence of an intact ligand shell on 

each SNC. (c) Polycrystalline NWs with strong electronic coupling between the constituting CdTe 

NCs. Modified with permission from [154]. Copyright 2010, American Institute of Physics. 

In the PVA matrix, the distance between CdTe NCs is about 100nm, and the coupling is 

completely absent. In the densely packed SNC film, the SNCs are separated by the organic 

stabilizer. The coupling is significant since the inter- SNC-distances are typically between 0.4 

and 0.8 nm. In the NWs, the distance between the SNCs is smaller than that in the densely 
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packed SNC film since during the synthesis of polycrystalline semiconductor NWs, the 

stabilizing ligands of the CdTe NCs were partially removed. So the coupling in the NWs is 

expected to be stronger than densely packed SNCs. 

 

Figure 4. 2: (a) Absorption and PL spectra of 3.3 nm diameter CdTe NCs in aqueous solution, 

excitation wavelength 350 nm, (b) and (c) TEM images of NWs and (d) High resolution TEM image 

of a NW. In (d) individual SNCs with different lattice orientation indicated by the bars are circled. The 

inset in (d) shows an electron diffraction pattern from an individual NW. Reprinted with permission 

from [154]. Copyright 2010, American Institute of Physics. 

Figure 4.2(a) displays the optical absorption and PL spectra of the starting material (CdTe 

NCs) in solution. The TGA stabilized SNCs have an average core diameter of 3.3 nm and 

show a strong PL emission peaking at 2.11 eV. NWs were prepared by partial removal of the 

TGA stabilizer and the oriented attachment of SNCs. As evidenced by the TEM images 

displayed in figures 4.2(b) and (c), NWs with lengths of up to 20 µm and diameters of 60 to 

70 nm are formed. It should be noted that due to the slow destabilization of the colloidal 

SNCs, some ligands are expected to be present in the NWs. High resolution TEM reveals the 
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polycrystalline nature of the NWs as displayed in figure 4.2(d). Several individual SNCs are 

indicated with circles. Crystallites are clearly visible with sizes of a few nanometres and with 

different orientations. The inset shows an electron diffraction pattern from such a 

polycrystalline NW exhibiting an intense ring that corresponds to a lattice spacing of 

(3.9±0.2) Å. This spacing is consistent with the CdTe (111) lattice plane spacing of 3.7 Å in 

the cubic (zincblende) structure of CdTe [155]. 

4.1.2 Photoluminescence at room temperature 

The photoluminescence of the three different sample geometries was measured in a home 

built single-molecule spectroscopy setup. Figure 4.3 displays the PL spectra of a typical 

single NW (green, triangle), a film of densely packed SNCs with intact ligand shells (red, 

circle), and a film of SNCs well-dispersed in PVA (black, square) at room temperature. It can 

be clearly seen by comparing the spectra in figure 4.3, that there is an increasing redshift of 

the PL from isolated SNCs via densely packed SNCs to NWs. The overall increasing redshift 

of the PL is due to increasing coupling in the three sample geometries. The NWs represent a 

quantum dot solid with a particularly strong electronic coupling between the constituting 

SNCs, and the strongest redshift is observed in the NWs. 

For well-separated CdTe NCs, at room temperature the PL maximum is observed at 2.09 

eV. While for densely packed SNCs the PL maximum is located at 2.04 eV. The redshift 

comparing to isolated SNCs shows the coupling between the SNCs. The PL from isolated 

single NWs (a typical example of a NW is shown in figure 4.3, green curve) is broad and 

peaks between 1.98 eV and 2.03 eV (as determined from Gaussian fits) at room temperature. 

The broad PL spectra of the NWs are attributed to the disorder in the polycrystalline NWs. 

The peak is significantly shifted to the red (80 to 130 meV) compared to the PL of SNCs in 

solution, indicating strong coupling between the SNCs in the NWs [28, 117]. The variation of 

peak position for different NWs is likely due to differences in morphology between individual 

NWs such as thickness, amount of remaining ligands, etc. 
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Figure 4. 3: PL spectra of well-separated CdTe NCs in PVA (black, square), close packed CdTe NCs 

(red, circle) and an individual NW (green, triangle) at room temperature. The band gap energies of 

bulk CdTe of 1.51eV at room temperature is indicated as vertical line. The inset shows the PL image 

of an individual NW at room temperature (height of image 17.5 µm). Modified with permission from 

[154]. Copyright 2010, American Institute of Physics. 

4.1.3 Photoluminescence lifetime at room temperature 

The argument of the strong electronic coupling in the NWs prepared by the oriented 

attachment of SNCs is further supported by the photoluminescence lifetime measurements. 

The lifetime of diluted CdTe NCs in solution, SNC clusters dropped on the substrate and a 

single polycrystalline NW prepared using the corresponding SNCs were measured at room 

temperature, using time-correlated single-photon counting as introduced in chapter 3. The 

samples were excited using 400 nm picosecond pulses with a 5 MHz repetition rate. And the 

photons emitted at the whole wavelength were detected. 

Figure 4.4 shows the PL decay curves of the samples with different morphologies. PL 

decay curve for SNC clusters shows a decrease in the luminescence lifetime (6.5 ns) 

comparing with the SNC solution (21.6 ns), and a further decrease to 3 ns for NWs. The 

decrease of the PL lifetime indicates the optical properties of the SNCs in the QD solids are 

influenced by the interactions between SNCs and they are different from those of isolated 

SNCs. 
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Figure 4. 4: PL decay curves of CdTe NCs in solution (black), SNCs clusters (red) and a single NW 

made from the same SNCs (green). 

4.2 Thermomechanical control of electronic coupling  

As discussed in chapter 2, the optical and electronic properties of the QD solids are 

determined not only by the SNC units but also by the interactions between neighbouring 

SNCs. The latter can be controlled by tuning the distance between SNCs, which has been 

realized via adjustment of the capping group [28], or by removing the ligands of SNCs [29]. 

Here, we demonstrate a new mechanism to control the electronic coupling 

thermomechanically. The thermomechanical control of the electronic coupling in the QD 

solids is mainly based on the control of the expansion and shrinkage of solids by temperature. 

The nature and amount of interstitial material, i.e., ligands in between the SNCs constituting 

the solid, controls the temperature dependence of the inter-particle distances and thereby also 

the distance dependent electronic interactions between them. These interactions include 

Coulomb, exchange and excitonic contributions. At sub-nm distances, exponential distance 

dependence dominates, and QD solids with tunable degrees of electronic coupling between 

SNCs can be expected by varying the temperature. In addition, the temperature dependent 

band gap of semiconductor materials can also affect the electronic coupling. 

4.2.1 Photoluminescence at 5K 

The thermomechanical control of the electronic coupling in QD solids is demonstrated by 

comparing the PL of QD solids with different geometries at variable temperatures.  
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As can be seen from comparing the PL spectra of the same samples at 300K (Figure 4.3) 

and 5K (Figure 4.5), well-separated CdTe SNCs and densely packed SNCs show a blueshift 

of the PL at 5K compared to 300K, however, NWs show a surprising redshift. For well-

separated SNCs (Figure 4.5, black curve, square) the PL maximum shifts to the blue by 100 

meV at 5K. And for densely packed SNCs (Figure 4.5, red curves, circle) it shifts to the blue 

by 80 meV at 5K. While for individual NWs, the surprising redshift of the PL on average by 

~70 meV is observed. For other individual NWs we observed redshifts as large as 120 meV, 

but never a blueshift. The redshift of PL at low temperature has been observed in all 

investigated batches of NWs. 

 

Figure 4. 5: PL spectra of well-separated CdTe NCs in PVA (black, square), close packed CdTe NCs 

(red, circle) and an individual NW (green, triangle) at 5K. All of the spectra are taken from the same 

samples shown in figure 4.3 at low temperature. The band gap energies of bulk CdTe of 1.61eV at 5K 

is indicated as vertical line. The dotted lines indicate the PL maximums of the samples measured at 

room temperature. The arrows in the figure indicate the shift of the PL maximums. The inset is the PL 

image of the same NW shown in figure 4.3 at 5K. Modified with permission from [154]. Copyright 

2010, American Institute of Physics. 

The inset of figure 4.5 is the PL image of the same NW shown in figure 4.3 at 5K. The PL 

intensity increases about four times at low temperature for single NWs, which is similar to the 

behaviour of SNCs. The increase of the PL intensity at low temperature is explained by the 
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diminishing of non radiative processes based on the concept of a temperature dependent trap 

population [156]. 

4.2.2 Electronic coupling in QD solids at different temperatures 

In what follows, we will show that all the shifts can be explained with the shrinkage of the 

semiconductors and organic materials at low temperature, comparing with the measurements 

at room temperature. Due to the shrinkage, the quantum confinement of the CdTe SNCs is 

improved and the band gap increased, in addition, the inter-particle distances rapidly decrease 

with temperature and, both of these affect the electronic coupling between SNCs and their PL 

response at low temperature.  

Figure 4.6 displays a cartoon of the electronic structures of the three sample geometries at 

room temperature (black, (a), (b) and (c)) and 5K (red, (d), (e) and (f)), affected by the 

shrinkage of the crystal lattice of CdTe and organic materials, and both of them increase the 

electronic coupling.  

We firstly focus on the discussion of the PL in the 3 cases at room temperature. 

Experimental results show that the PL of the well-dispersed CdTe NCs (2.09 eV) agrees with 

that in solution (2.11 eV), and the little difference is due to the different dielectric constant of 

the environment around SNCs [157-158]. In the densely-packed structures, the separation 

between the SNCs is determined by the organic ligands protecting the SNCs. As the TGA 

stabilizer is expected to be about 0.4 nm in length, the distances between neighbouring SNCs 

are typically between 0.4 and 0.8 nm. Within this regime, the interactions due to the 

tunnelling of the electronic wave functions between neighbouring SNCs become significant. 

In figure 4.6(b), delocalized states across neighbouring SNCs appear in both conduction band 

and valence band, which is due to the coupling of the electronic wave functions between 

electrons and holes, respectively. For CdTe material, the effective mass of electron is 0.096 

m0, much smaller than that of hole (0.37 m0), and the energetic shift of the delocalized states 

is larger in the conduction band than in the valence band. The formation of delocalized states 

across neighbouring SNCs is consequently observed as a redshifted emission. Upon formation 

of NWs, the distance between SNCs is further reduced. This leads to increased electronic 

coupling and stronger charge carrier delocalization since the coupling strength depends 

exponentially on distance in the sub-nm range. It is reflected in the cartoon as the increasing 

of the energetic shift of the delocalized states (Figure 4.6(c)), and consequently an even larger 
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redshift is observed experimentally compared to densely packed SNCs. Förster-type resonant 

energy transfer (FRET) is excluded here as a dominant mechanism, since after size selective 

precipitation, the SNCs have a very narrow size distribution of about 10%, and FRET 

typically does not lead to a shift of the low energy edge of the PL emission [114]. 

 

Figure 4. 6: Cartoon representation of the sample geometries studied at 300K and 5K: (a) and (d), 

well-dispersed SNCs in a matrix, (b) and (e), densely packed SNCs and (c) and (f), polycrystalline 

NW. D and L indicate the size of the NC and the distance between neighbouring SNCs. At 300K, from 

(a) to (c), the decrease of the inter-particle distance leads to the increase of exchange interaction and 

larger energetic shift of the delocalized states. At 5K, the shrinkage of the crystal leads to the increase 

of the band gap of isolate CdTe NCs (d). The decrease of the separation between SNCs in the QD 

solids increases the electronic coupling and the energetic shift of the delocalized states (e and f). 

We now turn to the PL at 5K. For bulk CdTe, band gap widening at low temperatures is 

well-known [94] and has been explained by the shrinkage of the crystal lattice and reduced 
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phonon scattering [95]. The temperature-induced blueshift of the PL of isolated SNCs in PVA 

of 100 meV is similar to the bulk value of 90 meV [159] (Figure 4.6(d)).  

The optical and electronic properties of the densely packed SNC film at low temperature 

are determined by the shrinkage of the whole system. The shrinkage of CdTe crystal lattice 

and the reduction of phonon scattering increase the band gap of CdTe SNCs. In addition, the 

shrinkage of the whole system including organic ligands in the SNC film reduces the 

separation between SNCs and increases the electronic coupling between them, which partially 

compensates the blueshift of the PL caused by isolated SNCs (illustrated in figure 4.6(e)). The 

influence of the electronic coupling caused by the shrinkage of SNCs in QD solids is a small 

effect and will be neglected here. Comparing with the temperature-induced band gap 

widening of isolated CdTe SNCs, the electronic coupling between SNCs in the densely 

packed SNC film was still very weak at low temperature, and a temperature-induced blueshift 

to 80 meV was experimentally observed in densely packed SNCs. 

The redshift of the PL in the NWs at low temperature can be explained using the same 

model. In the NWs, the distance between the SNCs is smaller than 0.5 nm. Within this regime, 

the electronic coupling increases strongly with the decrease of the separation. At low 

temperature, the shrinkage of the organic ligands in the NWs greatly increases the electronic 

coupling, and, the energetic shift of the delocalized states caused by the electronic coupling 

between neighbouring SNCs overcompensates the temperature-induced band gap widening of 

isolated CdTe SNCs, illustrated in the cartoon by comparing figure 4.6(c) and (f). The strong 

electronic coupling results in a redshift of the PL spectra in polycrystalline NWs at low 

temperature. 

4.2.3 Calculation of electronic coupling in QD solids 

Theoretical descriptions of electronic coupling between SNCs need to take into account the 

quantum-mechanic nature of the SNCs. In QD solids, the wave functions of electrons and 

holes are typically obtained by numerically solving Schrödinger’s equation in a chosen 

potential such as rectangular or Gaussian confining potentials [160]. The wave functions 

generally extend into the classically forbidden regions, which leads to spatial overlap with 

wave functions of electrons and holes in neighbouring SNCs when the inter-particle distance 

is sufficiently small. The tunnelling of the electronic wave functions eventually results in 

energetic degeneracy and delocalization of the states in the QD solids. In addition, Coulomb 
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interaction between charge carriers needs to be taken into account. The Coulomb interaction 

can be either repulsive, i.e., electron-electron or hole-hole-interaction, or attractive, i.e., 

exciton binding. The latter case, relevant after optical excitation, counteracts the above 

discussed delocalization of the charge carriers, while the former case is more relevant in the 

description of charge carrier transport [161]. A careful consideration of both tunnelling and 

Coulomb interaction is needed for an accurate description and to identify the dominant 

mechanism in a given QD solid. We firstly estimate the electronic coupling energy in a simple 

tight binding model and then discuss more systematic semiempirical calculations. 

Within a simple tight binding model we estimate the electronic coupling energy Eβ 

between neighbouring SNCs from the observed decrease of the band gap ∆Eg neglecting the 

exciton binding energy [29]. Assuming a (locally) hexagonally close packed arrangement of 

SNCs with 12 nearest neighbours so that  
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Here we use the approximation that the effective hole mass is four times the effective electron 

mass in CdTe [160]. With this, the coupling energy between two neighbouring SNCs at room 

temperature is becomes 3 meV in densely packed SNCs and between 4 and 7 meV in NWs. 

At 5K these values increase to 5 meV and to the range between 15 and 20 meV, respectively. 

In order to obtain a more quantitative estimate of the electronic coupling effects between 

SNCs in the NWs we modelled the system by using a semiempirical approach based on an 

effective mass approximation [162-163]. The calculation was carried out by C. Mauser. In the 

stationary Schrödinger equation ψψ EH = , the exciton-Hamilton is 
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The last part is the Coulomb term, the coupling between electron and hole. 

If we do not consider the Coulomb interaction, the ground-state wave function and energy 

of electron and hole can be obtained by solving the Schrödinger equation of electron and hole 

separately. The coupling energy is defined as the energy shift of the lowest conduction and 

valence band levels for interacting SNCs compared to a single SNC:  
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couplingE energy  = nglesiE SNC  - teractinginE SNCs                                               (4.3) 

Here, we use the effective masses of electrons and holes in CdTe NCs 0.096 m0 [101] and 

0.37 m0 [102], respectively. As dielectric constant of CdTe 7.1 is used [164], and the potential 

barrier between the SNCs was set to 2 eV. The Schrödinger equation was solved for a single 

exciton in single SNCs with a diameter of 3.3 nm as reference. And SNC diameters and SNCs 

in a hexagonally closed packed geometry with 12 nearest neighbours were calculated with a 

dielectric constant for the remaining capping ligands of 3.  

 

Figure 4. 7: (a) and (b) Isosurface-plot of distribution of the electronic wave function in isolated NC 

and NC dimer, respectively. (c) Coupling energy between the SNCs in the dimer as function of the 

distance. 

The distributions of the electron wave function are displayed in a coloured isosurface plot 

for a single CdTe NC and NC dimer in figure 4.7 (a) and (b), and the coupling energy of 

electrons and holes in the NC dimer at different barrier energy was calculated in figure 4.7(c) 

for different distances. It can be seen that for both electrons and holes, the coupling energy 
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increases with decreasing distance, and the increase is becoming stronger at smaller distance 

(electron coupling increases 7 meV when the inter-particle distance decreases from 0.3 to 0.2 

nm, while 5.6 meV when the distance changes from 0.4 to 0.3 nm). Because of the large 

effective mass, the coupling between holes is much smaller than electrons.  

 

Figure 4. 8: (a) Geometry of the NC cluster considered here. Isosurface-plot of wave function 

distributions of electron (b) and hole (c) calculated using the geometry in (a). (d) Coupling energy 

between the SNCs in the cluster as function of the distance between them. 

The coupling energy between the CdTe NCs in a NW is calculated for the 12 nearest 

neighbours in a hexagonally closed packed geometry. The three-dimensional arrangement of 

the SNCs in a hexagonal closed packed system is shown in figure 4.8(a), and the distance 

between the SNCs is 0.3 nm. In Figure 4.8(b) and (c), the wave function distributions of the 

electron and hole are displayed in a coloured isosurface plot for the same configuration of 

figure 4.8(a), respectively. The calculated coupling energy for different distances is illustrated 
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in figure 4.8(d). It indicates that at sub-nm distances, the coupling energy can shift in the 100 

meV range. The energy level shift strongly depends on the inter-particle distance when the 

distance between SNCs is very small. 

If the Coulomb interaction between electrons and holes is included, the Hamiltons of the 

electron and hole can be described by the uncoupled term with an effective potential 
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The effective potential is calculated with the Poisson equation 
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The Hartree-Fock method was used for the determination of ground-state energy and 

wave function. The uncoupled Schrödinger equation of holes ( 0)(, =heffectivee rV r ) was firstly 

solved numerically to obtain the ground-state wave function hψ . Using this wave function, 

we can determine the effective potential )(, eeffectiveh rU r , which helps us to solve the Schrödinger 

equation of electrons. The wave function eψ  is used for the effective potential of electrons 

)(, heffectivee rV r , which appears in the Schrödinger equation of holes. And then the wave function 

of holes can be determined in the second cycle. By iteration, we can determine the stable 

eigenvalues (energy) and wave functions of electrons and holes. 

Figures 4.9 (a) and (b) show the wave function distributions of hole and electron without 

Coulomb interactions. Clearly the wave functions extend to neighbouring CdTe NCs, 

indicating the coupling in the NC ensemble. Figure 4.9(c) is the distribution of wave function 
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indicating the coupling in the NC ensemble. Figure 4.9(c) is the distribution of wave function 

of electron after three cycles of calculation using Hartree-Fock method. Comparing with the 

distribution without Coulomb interaction (figure 4.9(b)), Coulomb interaction shrinks the 

wave function to the centre, and the strength of coupling decreases. It can be understood, 

because Coulomb interaction between electrons and holes is attractive (exciton binding). The 

fourth cycle further decreases the tunnelling of the wave function (figure 4.9(d)). After six 

cycles, the distributions of the wave function are stable, and we find Coulomb interaction 

greatly confines the wave functions of electrons (figure 4.9(e)) and holes (figure 4.9(f)) in the 

SNCs.  

 

Figure 4. 9: (a) and (b) Isosurface-plot of wave function distributions of hole and electron without 

Coulomb interaction. (c) and (d) Wave function distributions of electron after 3 cycles and 4 cycles of 

calculation. (e) and (f) Wave function distributions of electron and hole considering Coulomb 

interaction. 

Figure 4.10 compares calculations that take into account both Coulomb and tunnelling 

coupling (black squares), or tunnelling coupling only (blue circles). It can be observed in 

figure 4.9 that Coulomb interaction shrinks the wave function to the centre, and reduces the 

coupling strength. In both cases, energy level shifts, in the 100 meV range were found for 

sub-nm distances between the CdTe NCs. And the magnitude of the calculated coupling 

energies corresponds well to the redshifts observed for individual NWs as compared to well 

separated SNCs at room temperature and 5K, respectively. This supports our attribution of the 

redshifts to electronic coupling between the SNCs and suggests that we mainly observe 

nearest neighbour interactions. Furthermore, it can be seen that the Coulomb interaction 
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lowers the coupling energies due to higher localization of the charge carriers. However, this 

effect is smaller than the tunnelling coupling which therefore governs the coupling energy at 

small distances and thus the redshifts. More realistic model need to take into account the 

disorder of the SNCs in the NWs and the barrier variation. In conclusion, our simple model 

calculations reproduce the order of magnitude of the observed redshifts. It is also revealed 

that the electronic coupling is dominated by tunnelling interactions between the nearest 

neighbours. 

 

Figure 4. 10: Coupling energy between the SNCs in the cluster as function of the distance between 

them without (black squares) and with Coulomb interaction (blue circles). 

4.2.4 Composite nature of polycrystalline NWs 

Our interpretation that the polycrystalline NWs are composite materials composed of CdTe 

SNCs and organic ligands in between is supported by length measurements of individual 

NWs by TEM at different temperatures.  

The length of individual NWs was measured at room and liquid nitrogen temperatures 

using TEM. The measurements were carried out in collaboration with Dr. M. Döblinger and 

we observed significant shrinkage between 0.2 and 0.4%. This corresponds to thermal 

expansion coefficients (averaged over this temperature range) of 1x10-5 to 2x10-5/K. 

Polystyrene latex beads (Sigma, LB-11) were also measured at room and liquid nitrogen 
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temperatures, and an average shrinkage of 0.9% was observed, corresponding to a thermal 

expansion coefficient of 4.5x10-5, which agrees with that of organic materials (5x10-5 to 10-

4/K). It shows that the shrinkage values of the polycrystalline NWs are larger than the values 

for bulk CdTe (~3x10-6/K [165]), while smaller than that of organic materials, suggesting that 

we observe the behavior of a composite material. An averaged linear expansion coefficient of 

the NWs αNW as we have measured can be estimated as 

)/()( 111 dDdD SNCSNCCdTeNW ++= ααα                  (4.8) 

where CdTeα  and 1α  are the expansion coefficients of CdTe and ligands, respectively, and 

SNCD  and 1d  are the SNC diameter and the inter-SNC distance filled with ligands, 

correspondingly. Using this equation, the above expansion coefficients, and SNCD =3.3 nm, 

we estimate a lower limit for the inter-NC-distances 1d  of 0.3 nm, which is an order-of-

magnitude estimate in the expected range. It should be noted that the shrinking of the NWs is 

not substrate-induced since the substrates, for both optical and TEM measurements, have 

linear expansion coefficients much smaller than observed for the NWs. 

Because of the existence of organic ligands in the NWs, low conductivity is expected in 

the polycrystalline NWs. In order to measure the conductivity of a singe NW, NWs were 

deposited on a quartz substrate, and Au finger electrodes were deposited on top. A single NW 

connecting electrodes was observed by optical microscopy shown in figure 4.11(a). Then all 

the other electrodes were destroyed, leaving only this pair of electrodes with the single NW 

connecting them. The conductivity was measured using Agilent 4156C Semiconductor 

Parameter Analyzer by two-terminal sensing. Similar method was used for the measurements 

of bare substrate.  

Figure 4.11(b) shows I-V cures of a single NW (red) and the quartz substrate (black) 

measured in vacuum. A very weak current is observed through the NW. The almost 

symmetrical nonlinear I-V curve of the NW exhibits the sign of a Schottky barrier in this 

system. The Schottky barrier is a well-studied phenomenon that exists at the metal-

semiconductor interface [166], and it has a direct effect on the nonlinearity of the I-V curve 

[167]. At very low bias, the current passing through the system is small and mainly 

distributed on the Schottky barriers. At high bias the majority of the voltage drop is 

distributed to the NW [167]. Here, the resistance is calculated when the voltage is larger than 
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6 V. The resistively of the nanowire is about 2×106 Ω·cm, which is two orders larger than that 

of polycrystalline CdTe NWs reported by M. C. Kum et al. (~1×104 Ω·cm) [168]. The poor 

conductivity in the polycrystalline NWs is due to the composite nature of the NWs. The 

existence of the organic ligands prevents the charge transport in the NWs.  

 

Figure 4. 11: (a) Optical image of a single NW connects two electrodes. (b) I-V curve of the NW (red) 

and substrate (black). 

4.3 Conclusion 

In this chapter, we demonstrate a new mechanism to control the electronic coupling in QD 

solids. This new mechanism, i.e., thermomechanical control of the electronic coupling, is 

realized by controlling the expansion and shrinkage of inter-particle distance by temperature. 

Semiempirical calculations of the coupling energies agree well with experiment and it is 

revealed the coupling is dominated by tunnelling coupling between the nearest neighbouring 

interactions. The QD solids are composed of CdTe SNCs and organic ligands between them. 

Three different kinds of samples, isolated CdTe SNCs, densely packed SNC film, and 

polycrystalline NWs prepared using the same SNCs were investigated. The increasing 

electronic coupling between SNCs due to the decreasing inter-particle distance was 

demonstrated by the increasing redshift of the PL spectra in the three samples. At 5K, the 

shrinkage of the inter-particle distance allows for an increase of electronic coupling in QD 

solids. Comparing with that of isolated SNCs, a smaller blueshift of PL spectra was observed 

in densely packed SNC film with weak electronic coupling. A redshift of PL spectra from 

CdTe QD solids was firstly observed in polycrystalline NWs with strong electronic coupling. 

Coupling energies were calculated for the nearest neighbours in a hexagonally closed packed 
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geometry. They show the right order of the magnitude comparing with the redshifts observed 

for individual NWs at room temperature and 5K, respectively. This supports our attribution of 

the redshifts to electronic coupling between the nearest SNCs.  
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5. Optical anisotropy of semiconductor 

NWs beyond the electrostatic limit 

 

In the previous chapter, we investigated the electronic coupling between semiconductor 

nanocrystals in polycrystalline nanowires, which determines the optical properties of NWs. 

Here, we will investigate how light is absorbed/emitted in NWs, and how these processed 

depend on the size of the NWs. In particular, polarization anisotropies were observed in 

excitation, photoluminescence, and Rayleigh scattering from CdTe NWs with diameters of 

about 90 nm. Finite-difference time domain calculations were performed with realistic 

parameters of the CdTe NWs for polarized photoluminescence. It is demonstrated that for 

NWs with diameter comparable with the wavelength of light in material, the optical 

anisotropies are determined by diameter-wavelength ratio, the material dispersion of the NW 

(i.e., the wavelength dependency of the refractive index), as well as the local refractive index 

of the surrounding. The ensembles of NWs arrays in polymer films were prepared by 

stretching the film. The optical anisotropies of individual NWs can be completely transferred 

into macroscopically aligned polymer films. The polarization properties of the NW arrays are 

not only determined by the optical anisotropies of isolated NWs, but also by the disorder of 

the NWs in the film, the local environment and multiple scattering in the thick film. 
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5.1 Optical anisotropies in single NWs  

Semiconductor NWs exhibit strong polarization anisotropies of excitation, photoluminescence, 

and photoconductivity when the diameter of the NWs is much smaller than the wavelength of 

light in the material, i.e., the NW is in electrostatic limit [66]. NWs with diameters 

comparable to the wavelength of light in the material might have some interesting properties 

that are absent both for very thin NWs and bulk-like materials[136-137]. Here, we will 

explore size-dependent optical anisotropies in NWs beyond the electrostatic limit. 

The NWs investigated were prepared by the oriented attachment of colloidal CdTe SNCs 

as introduced in chapter 3. The absorption (red) and PL (black) spectra of the CdTe NCs used 

to prepare the NWs are shown in figure 5.1(a). The absorption at 535 nm indicates the CdTe 

NCs have a diameter of 3.1 nm. As an evidence for the formation of NWs, a representative 

TEM image of the products is shown in figure 5.1(b). The TEM image shows that the NWs 

have an average diameter of about 90 nm. From the analysis of more than 50 NWs, the NWs 

have an average diameter of 90 nm with a standard deviation of 20 nm as determined from the 

TEM images. This diameter range is on the same order of magnitude as the wavelength of 

visible light in, the high refractive index, CdTe. The green curve in figure 5.1(a) is a typical 

PL spectrum of an individual NW. Comparing with the photoluminescence of the SNCs in 

solution, the spectrum of the NW is redshifted. It indicates the electronic coupling between 

the SNCs in the polycrystalline NWs, which is discussed in chapter 4. Here, we want to 

explore whether there are size-dependent effects in these NWs. 

 

Figure 5. 1: (a) Absorption (red, triangle) and PL (black, square) spectra of the SNCs used to prepare 

the NWs. The green curve (circle) is a typical PL spectrum of a single NW. (b) A TEM image of the 

NWs. (c) Statistic distribution of the diameter of NWs. 
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5.1.1 Polarized photoluminescence from single NWs 

Polarization anisotropies in excitation and photoluminescence were investigated from 

individual NWs. The measurements were performed on a home built single-molecule 

spectroscopy setup, which has been introduced in chapter 3. The wavelength of the excitation 

was fixed at 415 nm. 

Figures 5.2 (a)-(f) show PL images of an individual NW excited with linearly polarized 

laser light, the polarization of the excitation is indicated by the arrows in each panel. It can be 

clearly seen, that, the PL intensity is smallest when the polarization of the excitation is 

perpendicular to the long axis of the NW, and largest when they are parallel with each other.  

 

Figure 5. 2: Polarized photoluminescence in a single NW. (a)-(f) Wide-field PL images of an 

individual NW for different excitation polarizations as indicated by the arrow (raw data). The scale bar 

is 5µm. (g) and (h) PL intensity under linearly polarized excitation or detection, respectively, of the 

same individual NW shown in (a)-(f). The angle is measured with respect to the long axis of the NW. 

Squares are experimental data, and curves are best fits to cos²-functions. 
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Figure 5.2(g) quantifies the PL intensity for a larger number of excitation angles. The 

angular dependence, like all the following dependences, can be well fitted by cos²-function. 

The polarization anisotropy is defined by 
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The anisotropy in excitation for this NW as calculated from the fit parameters is 0.37. 

Upon excitation of the same NW with circularly polarized light and a polarizer in the 

detection path, the curve displayed in figure 5.2(h) is obtained. The polarization anisotropy of 

P = 0.52 for polarized detection is larger than that for the excitation. This observation is the 

same for all individual NWs investigated, which shows average polarization anisotropies of 

0.32 and 0.48 with standard deviations of 0.10 and 0.07 for polarized excitation and detection 

of photoluminescence, respectively. 

5.1.2 Breakdown of the electrostatic limit 

If we simply consider the electrostatic limit, in which the diameter of the NW is much smaller 

than the wavelength in the material, the polarization anisotropies would be explained by the 

dielectric contrast between NW and surrounding environment [66]. The incident electric field 

eE  would not be attenuated inside the NW if the polarization of the excitation is along the 

long axis of the NW. But if it is perpendicular to the NW axis, the attenuation of the electric 

field would be determined by the dielectric contrast between the NW and the environment, 

following the equation 
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Here, Ei and Ee are the electric field inside the NW and the excitation field, respectively. 0ε  is 

the dielectric constant of the surrounding environment, and )(ωε  is the dielectric constant of 

the NW. 

The polarization ratio defined in equation 5.1 can be written as 
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The dielectric constant of bulk CdTe is between 12 and 9 in the UV-Vis spectral range 

[103], and if we neglect the contributions from the substrate, one would expect a polarization 

anisotropy larger than 0.9 in excitation. This value of the polarization anisotropy calculated in 

the electrostatic limit is much larger than what we observed.  

In this simple calculation, we neglect the existence of organic stabilizer in the NWs. We 

have demonstrated in the previous chapter that the NWs prepared from SNCs are composite 

materials. In order to estimate the effect of the composite materials on the dielectric constant, 

we assume that the CdTe NCs in the NWs are closely packed and occupy 74% of its volume. 

The composite nature of the NW was taken into account by estimating its effective dielectric 

constant using the Maxwell-Garnett approximation [169-170] 
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 Here, eε  is the effective dielectric constant of the medium, iε  is the dielectric constant of the 

inclusions and mε  is that of the matrix. δ  is the volume fraction of the embedded material. In 

the polycrystalline NWs, the CdTe SNCs are treated as the matrix. If we assume the dielectric 

constant of CdTe is 9, and that of TGA ligands is 2, then the NWs have an effective dielectric 

constant of 6.7. The polarization ratio of this material calculated in the electrostatic limit is 

0.87, which is still much larger than the experimental results.  

It should also be noted that in the electrostatic limit, the polarization anisotropy is 

determined by the dielectric constant, which depends on the wavelength in the material. D. T. 

F. Marple measured the refractive index of several materials at 300K from a prism of melt-

grown material with polished surfaces [171]. The following empirical formula was found for 

the dielectric constant: 
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For CdTe, the best values of the parameters are A = 5.68, B = 1.53, and c2 = 0.366. This shows 

that the dielectric constant decreases with increasing wavelength. So compared to polarized 

detection, the polarized excitation has higher dielectric constant since it occurs at shorter 

wavelength. According to equation 5.3, the optical anisotropy of polarized excitation should 
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be larger than that of polarized detection. However, our measurements show an opposite 

effect: the polarization ratio of detection was observed to be larger than that of excitation for 

all individual NWs.  

Both of these phenomena strongly suggest that the polarization anisotropies reported 

above reflect the breakdown of the electrostatic limit. For a proper explanation, the finite NW 

diameter needs to be taken into account.  

5.1.3 FDTD calculations of polarization anisotropies  

In order to have a full understanding of the polarization of the NWs with diameter comparable 

to the wavelength of the light in the semiconductor material, a series of FDTD calculations 

were performed to include a finite NW diameter. The calculations were carried out by A. A. 

Lutich. In the calculations, the NW was modeled as a cylinder placed on a silica substrate 

( subε  = 2.13). The cylinder has an effective dielectric constant effε  and a diameter d. With 

bulk dielectric constants for different wavelength from the literature, we considered the 

composite nature of the NWs and found the effective dielectric constant at 400 nm and 600 

nm are 8.3 and 6.42, respectively [103]. Both of these effective dielectric constants predict 

polarization anisotropies larger than 0.8 in the electrostatic approximation, and thus 

significantly larger values than what we observed in the measurements.  

The simulated geometries are illustrated in figure 5.3 (a) and (c) for the excitation and 

detection of photoluminescence, respectively. For the polarization anisotropy in excitation, 

the NW was excited by an incident plane wave at 400 nm, which is close to the experimental 

excitation wavelength (415 nm). The polarization anisotropy was determined by comparing 

the average power density in the NW when the polarization of the incident plane wave was 

parallel or perpendicular to the long NW axis, respectively. For the calculation of the 

polarization anisotropy in detection, a point source was placed inside the NW with its dipole 

moment parallel to the substrate. The emission was set to 600 nm, which is close to the 

emission of the NWs. The polarization anisotropy was calculated from the energy flux 

passing through the plane of a virtual detector in the far-field when the dipole moment was 

either parallel or perpendicular to the NW axis, respectively. In the latter approach we did not 

include the anisotropy in excitation because we found that ensembles of SNCs immobilized 

on a substrate did not exhibit a polarized emission under linearly polarized excitation. 
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Figure 5. 3: (a) and (c) Simulated geometries for the excitation and detection of PL, respectively. (b) 

and (d) Calculated polarization anisotropy in excitation and emission as function of the NW diameter-

to-vacuum wavelength ratio, respectively. The blue curves represent the calculation using electrostatic 

limit without a substrate, the red solid curves show FDTD calculations including the substrate, and the 

black dash-dot curves are FDTD calculations without the substrate. 

The results of the calculations are summarized in figure 5.3 (b) and (d). Figure 5.3(b) 

displays the calculated polarization anisotropies in excitation as function of diameter-

wavelength ratio d/λ of the NW. The blue line represents the calculation using the dielectric 

contrast model. The black dash-dot curve represents our calculation in absence of the 

substrate, while the red solid curve is the calculation including the substrate. Firstly, we point 

out that at the smallest ratios, i.e., thinnest NWs, our calculations without substrate perfectly 

reproduce the electrostatic limit and predict a polarization anisotropy of 0.9. The presence of 

the substrate (red curve) lowers this anisotropy slightly since the refractive index “contrast” 

near the NW is reduced. However, at d/λ ratios larger than 0.05, significant deviation from the 
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electrostatic limit are observed. First, the anisotropy slightly increases, and then, at ratios 

exceeding 0.1 sharply decreases, displaying a strong diameter dependence. For NWs with a 

diameter of 90 nm and an excitation wavelength of 400 nm our calculations predict a 

polarization anisotropy of ~0.38, which is in excellent agreement with the observation of 

0.32+/-0.1 for individual NWs reported above. We therefore conclude that the observed 

polarization anisotropies reflect the finite diameter of the NWs and thus the breakdown of the 

electrostatic limit associated with it. 

Figure 5.3(d) displays the calculation results for the polarization anisotropy in the 

emission. Qualitatively, the same behaviour, i.e., agreement with the electrostatic limit at 

small d/λ ratios and sharp decrease of polarization at large d/λ ratios, is observed. Subtle but 

important difference can be found: Both the electrostatic limit and our calculation now predict 

slightly lower polarization anisotropies for the thinnest NWs, compared to the polarized 

excitation. According to equation 5.5, the dielectric constant at the detection wavelength is 

smaller than that for the excitation, and a smaller polarization ratio is expected in the 

polarized detection.  

The predicted difference of the polarization anisotropy in emission and excitation is 

further illustrated in figure 5.4, in which we show excem PPP −=∆  as function of the d/λ ratio. 

Two facts should be noted: Firstly, one can see that at small d/λ ratios, excP  is larger, which 

agrees with the argument of dielectric contrast model, while for larger d/λ ratios, emP  is larger. 

Secondly, the largest diameter dependent differences are observed in the diameter range 

spanned by our NWs. For thin NWs, our calculations reproduce the polarization of 

electrostatic limit, indicating the polarization ratio is determined mainly by the dielectric 

contrast as discussed above. The effective dielectric constant of CdTe at excitation 

wavelength (400 nm) is larger than that at detection wavelength (600 nm). And the higher 

polarization in the excitation is due to the larger dielectric contract between the NW and the 

environment. While for NWs with diameter-wavelength ratio larger than 0.1, for both the 

excitation and detection, the polarization ratio drops very fast when increasing the d/λ ratio of 

the NWs. For the same NW, the diameter-wavelength ratio is smaller at the detection 

wavelength than that for excitation. Thus, the calculations predict a larger polarization 

anisotropy of NWs in detection than in excitation. In a word, the polarization competition 

between the excitation and the emission depends both on the material dispersion and the 
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diameter-wavelength ratio. The diameter of the NWs investigated in the thesis lies in the 

region where the polarization is mainly determined by the diameter-wavelength ratio, and 

experimentally, we observed that individual NWs show (on average) 50% higher anisotropies 

in the emission. 

 

Figure 5. 4: The difference of the polarization anisotropy between detection and excitation. 

5.1.4 Polarized scattering from single NWs 

The NWs beyond electrostatic limit show strong Rayleigh scattering when excited by white 

light in a dark-field microscope. The Rayleigh scattering of single NWs shows a polarization 

anisotropy in excitation and emission when a polarizer is placed in either the excitation path 

or in front of the detector.  

Figures 5.5(a) through (l) show scattering images of two individual NWs excited with 

non-polarized white light and detection at different polarizations. The polarization of the 

detection is indicated by the arrows. Similar to the PL, the scattering of the NWs also shows 

polarization anisotropies. Quantified scattering intensities in excitation and detection from the 

NW marked by the arrow were plotted in figures 5.5(m) and (n), respectively. The red curves, 

fits by cos²-function, indicate polarization anisotropies of 0.34 and 0.61 for scattering 

excitation and detection, respectively. The measurements of a number of NWs yield average 

values of 0.58 and 0.35, with standard deviations of 0.06 and 0.04, for polarized detection and 

excitation of scattering, respectively. Similar to the case of PL, the anisotropy is larger for the 

polarized detection. 
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Figure 5. 5: Polarized scattering in single NWs. (a)-(l) Rayleigh scattering images of two individual 

NWs when excited by non-polarized light and detected at different polarizations. The height of the 

images is 60µm. (m) and (n) Rayleigh scattering intensity of the NW marked by the arrow under 

polarized excitation and detection, respectively. The angle is measured with respect to the long axis of 

the measured NW. Squares are experimental data, and curves are best fits to cos²-functions. 

The polarization anisotropies in Rayleigh scattering are more complicated than in 

photoluminescence, and we limit ourselves to a qualitative discussion here. One can expect an 

anisotropic excitation of classical scattering dipoles, and these classical scattering dipoles will 

lead to anisotropic scattering. The calculations for the polarization anisotropy in excitation of 

photoluminescence can in principal also be used for the classical scattering dipoles. However, 

the polarized excitation and detection in scattering is performed in the same, much broader 

spectral range, so the above discussion on material dispersion and wavelength are not valid 

anymore. In addition, with a polarizer in front of the dark field condenser the excitation 

polarization at the sample is not purely linearly polarized [172]. The polarization of the light 

will be changed after passing through the dark field condenser, and the light beam only has a 

dominant polarization component in the projection of the excitation light into the sample 

plane. Therefore, the observed lower polarization anisotropy in excitation is likely to contain 

a major component from this difference in excitation geometry. 
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5.2 Optical anisotropies in NW arrays 

Single NWs show optical anisotropies in photoluminescence and scattering, and transferring 

the anisotropies into NW arrays is attractive for application as polarized light source, or for 

the detection of polarized light [73-74]. 

The NWs were mixed with PVA and they were aligned by stretching the polymer film. 

The process of this method and a typical Rayleigh scattering image of the NW arrays were 

shown in chapter 3. As prepared NW arrays have lateral sizes of about 1.5 cm and thicknesses 

of about 50 µm. 

 

Figure 5. 6: PL intensity of NW ensembles aligned in polymer films under: (a) under linearly 

polarized excitation, and (b) linearly polarized detection. (c) and (d) Rayleigh scattering of these films 

with a polarizer in the excitation and detection paths, respectively. Blue squares are experimental data, 

and red curves are best fits to sin²-functions. 

Rayleigh scattering and photoluminescence of the NW arrays were measured in a 

combined dark-field/laser microscopy. The PL of NW arrays was excited with the second 

harmonic of a diode-pumped Nd:YAG laser at 532 nm, and Rayleigh scattering was excited 

with white light. Polarized excitation and detection were observed in both photoluminescence 

and scattering as shown in figure 5.6. The blue squares are experimental data, and red curves 
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are best fits to sin²-functions. The measurements show the polarization ratios for the NW 

arrays are 0.22, 0.2, 0.41 and 0.26 for PL excitation, PL detection, excitation and detection of 

scattering, respectively. The pronounced optical anisotropies of NW arrays originate from the 

contribution of their unit. However, the polarization anisotropies of the NW ensembles are 

lower than those of single NWs.  

The polarization of single NWs, the disorder of the NWs in the aligned films, the presence 

of a higher refractive index environment, i.e., the PVA matrix, as well as multiple scattering 

events need to be taken into account to understand the optical anisotropies of the NW arrays. 

We will discuss each contribution separately in what follows. 

5.2.1 Disorder in NW arrays  

In this section, we will discuss the relationship of the optical anisotropies between single 

NWs and NW arrays, based on the statistics of the anisotropies in single NWs and the 

disorder of the NWs in the NW arrays.  

Figure 5.7 shows the distribution of the angle between NWs with respect to the alignment 

direction determined from 120 NWs in the scattering image in figure 3.8. The standard 

deviation of this distribution is ~30°. The distribution was fitted to a Gaussian distribution 

shown by the blue curve. 

 

Figure 5. 7: Distribution of the angle between the long axis of individual NWs and the alignment 

direction in the PVA film. The blue curve is the Gaussian fit of the distribution. 

Figures 5.8 (a) through (d) display best fits curves of the experimental measurements of 

polarized NW arrays (red). Green curves are the calculations from single NWs, considering 

the disorder of the NWs in the NW arrays. These curves were obtained from numerically 

convoluting the trace expected from an average individual NW with the fitted Gaussian 
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distribution shown in figure 5.7. The shaded areas represent the standard deviation of the 

polarization anisotropies observed for individual NWs.  

 

Figure 5. 8: Polarized PL and Rayleigh scattering in excitation and detection from NW arrays. Red 

curves are best fits of the measurements of NW arrays to cos²-functions, and green curves are the 

expected polarization anisotropies based on average single NW polarization anisotropy convoluted 

with the distribution of the angle shown by the blue curve in figure 5.7. The shaded areas represent 

expected standard deviation based on average single NW data. 

For the polarization anisotropy in PL excitation and in both excitation and detection of 

Rayleigh scattering, we find agreement between the curves calculated from the single-NW 

data and the experimental data of the ensembles within one standard deviation. The 

polarization anisotropy in PL emission is slightly smaller for the ensembles than expected 

from the convoluted single-NW data.  

This good agreement, only considering the disorder in the films is surprising, since we did 

not consider the presence of the PVA matrix. In what follows, we will discuss the 

contribution of the polymer matrix to the optical anisotropy of NW arrays. 
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5.2.2 Polymer environment 

The polymer matrix is expected to reduce the “refractive index contrast” with the NWs due 

to its refractive index being larger than 1. This should lead to a further decrease of the 

polarization anisotropy. We therefore tested the significance of the matrix effect by Rayleigh 

scattering from single NWs with a polarizer in the detection path. For the same individual 

NWs we obtained polarization anisotropies in air and in PVA film, respectively (figure 5.9). 

Indeed, we found that for each NW the polarization anisotropy was significantly reduced in 

the higher refractive index medium. On average a reduction of 40% was observed. Similar 

behaviour was observed when measuring polarization anisotropies of NWs in air and in oil 

with a large refractive index of 1.518.  

 

Figure 5. 9: (a) and (b) Rayleigh scattering intensity of the same NW under polarized detection 

measured in air and in PVA film, respectively. Squares indicate experimental data, and curves are best 

fits to sin²-functions. 

The optical anisotropies of NWs decrease in PVA matrix so large that the agreement by 

only considering the disorder in the film must be considered coincidental. Then the in the 

films is broken down. Therefore, there must be an additional effect that increases the 

polarization ratio in the NW arrays.  

5.2.3 Multiple scattering 

Since the films are tens of micrometers thick, multiple scattering becomes significant when 

light passing through the film. During the multiple scattering processes, the NWs are 

illuminated not by circularly polarized light, but by partially polarized light with preferred 

polarization ratio long the NW axis, and each of the multiple scattering process increases the 

polarization anisotropy of the detected light. An alternative explanation for increased 
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polarization anisotropy via the birefringence of stretched PVA films is considered unlikely 

since the differences in refractive index for the different polarization are small, typically on 

the order of 10-2 refractive index units [173].  

We therefore attribute the polarization anisotropies in the polymer films to a combined 

effect of disorder, higher refractive index matrix, and multiple scattering. The disorder in the 

NW arrays and the polymer environment decrease the polarization anisotropies, while the 

multiple scattering increases the anisotropies. 

5.3 Conclusion 

In this chapter, we studied the optical anisotropies in semiconductor NWs as function of the 

size of the NWs. The optical anisotropies of individual NWs could be completely transferred 

into macroscopically aligned NW arrays. The polarization anisotropy in excitation and 

emission of photoluminescence as well as Rayleigh scattering from individual and ensembles 

of CdTe NWs aligned in polymer films were investigated. The experimental results on the 

photoluminescence of single NWs reflect the breakdown of electrostatic limit, which is used 

to explain the optical anisotropies in NWs with diameter much smaller than the wavelength. 

FDTD calculations were carried out to understand the anisotropies in the NWs, and the 

calculations agree well with the experimental results. It indicates that for very thin NWs, the 

anisotropies are mainly determined by the dielectric mismatch between the NW and the 

surrounding environment. While for NWs with diameter comparable with the wavelength, the 

optical anisotropies strongly depend on the diameter-wavelength ratio of the NWs. We 

investigated a NW diameter regime in which a pronounced dependence of the polarization 

anisotropy on the diameter-wavelength ratio is observed. In this regime, the optical 

anisotropies can be tuned between its maximum predicted by the electrostatic limit to zero. A 

lower polarization anisotropy in excitation is observed than in emission because of the higher 

diameter-wavelength ratio at shorter wavelength for the same NW. Furthermore, the 

polarization anisotropy is affected by the material dispersion of the NWs and the local 

refractive index of the environment. The properties of individual NWs can be completely 

transferred into macroscopically aligned polymer films. The optical anisotropies of the NW 

arrays are determined by the polarization of single NWs, the disorder of the NWs in the 

aligned films, the presence of a higher refractive index matrix, as well as multiple scattering 



Chapter 5. Optical anisotropy of semiconductor NWs beyond the electrostatic limit 

 86

events in the thick film. The alignment of the NW arrays opens opportunities for their 

applications in polarization sensitive applications. 
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6. Nanoribbon waveguide 

 

 

 

In the last chapter, we investigated the absorption, emission and scattering of light by the 

one-dimensional nanostructure. Optical anisotropies were observed because of the dielectric 

screening of the electric field. Here, we will investigate the propagation of light in the 

nanostructures. The nanoribbons prepared from semiconductor nanocrystals serve as optical 

waveguide on the nanoscale. When the nanoribbons are optically excited, the 

photoluminescence will couple into a guided mode, propagate in the ribbon, and be emitted 

at the ends. Calculation and SEM measurements show that most of the nanoribbons are 

single-mode waveguides. In addition, coupling between different nanoribbon waveguides is 

observed. Re-absorption of the photoluminescence is demonstrated when PL propagating in 

the waveguides. The propagation loss of the waveguides is quantitatively determined.  
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6.1 Nanoribbons prepared by CdTe nanocrystals 

The preparation of nanoribbon by the oriented attachment of CdTe NCs was introduced in 

chapter 3. The absorption (black) and photoluminescence (PL, red) spectra of the SNCs used 

to prepare the nanoribbons are shown in figure 6.1(a). The SNCs have an average diameter of 

3.5 nm. The green curve in figure 6.1(a) is the PL spectrum of a single nanoribbon collected 

from the whole ribbon. The redshift of the PL spectrum comparing to that of the SNCs is due 

to the electronic coupling between the SNCs in the nanoribbons, as discussed in chapter 4. 

Figure 6.1(b) shows a TEM image of the nanoribbons. Besides nanoribbons, there are also 

some particle chains in the TEM image. The particle chains, as the intermediate products, 

were also observed during the preparation of nanowires using NCs [55]. Most of the 

nanoribbons have width between 150 and 500 nm, but nanoribbons with diameters of about 

100 nm or even thinner were also observed in the TEM and SEM measurements. 

 

Figure 6. 1: (a) Absorption (black) and PL (red) spectra of CdTe NCs with a diameter of 3.5 nm used 

to prepare the nanoribbons and a typical PL spectrum of a single ribbon (green). (b) TEM image of 

nanoribbons. 

6.2 Nanoribbon waveguides 

In this section, we will demonstrate that nanoribbons can serve as waveguide, and the PL can 

be guided in the nanoribbon and emitted at the tips.  

We first measure the PL of the nanoribbon when exciting it locally in the centre. The 

experiment was carried out on a dark field microscopy combined with a green laser as 
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introduced in chapter 3. The experimental geometry is shown in figure 6.2(a). The second 

harmonic of diode-pumped Nd:YAG laser at 532 nm was focused by a 100x objective to a 

spot less than 1 µm in diameter. The laser spot is much smaller than the length of the 

nanoribbons, so the nanoribbons can be excited locally. The scattering or photoluminescence 

was collected by the same objective. The nanoribbons were spread on an ITO substrate with 

grids prepared using lithography for both morphology and optical investigation. The width of 

the nanoribbons was measured using SEM. Figure 6.2(b) and (c) show SEM and scattering 

images of the same nanoribbon, respectively. When the nanoribbon was excited in its centre, 

pronounced emission was observed at the tips, where the nanoribbon was not excited 

(Figure6.2 (d)). It indicates the strong emission at the tips propagated from the middle of the 

nanoribbon. 

 

Figure 6. 2: (a) Experimental geometry whereby the nanoribbon is excited in the middle by a focused 

laser. (b) SEM image of a single nanoribbon. (c) Scattering image of the same ribbon shown in 2(b). 

(d) PL image of the nanoribbon when excited in the middle of the nanoribbon. 

The propagation of the signal from the excitation spot to the tips may have different forms. 

The excitons might firstly recombine radiatively and the photons then propagate in the 

nanoribbon, or the excitons diffuse and emit photons after relaxation into low energy sites 

[174]. If it is the diffusion of excitons, strong emission along the whole nanoribbon is 
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expected. So it is the propagation of PL in the nanoribbon and the photons are emitted at the 

tips.  

The waveguide behaviour was also observed when the whole nanoribbon was excited. 

The measurement is schematically shown in figure 6.3(a). Blue light at 400 nm was focused 

using a 100x objective to form an excitation spot of about 50 µm in diameter. This spot is 

much larger than the length of the nanoribbons (~ 5 µm), so the whole nanoribbon is excited. 

Photoluminescence from the individual ribbons was collected by the same objective and a 

CCD was used for imaging. A photoluminescence image of a nanoribbon is shown in figure 

6.3(b). Pronounced emission is observed at two spots. The distance between the two spots is 

about 5 µm, which is very close to the length of the nanoribbons. So it is expected that the 

pronounced emission is from the tips, while the emission from the body of the ribbon is very 

weak. It also indicates that the emission from the body is guided in the nanoribbon waveguide 

and emitted at the tips. 

 

Figure 6. 3: (a) Experimental geometry whereby the nanoribbon is uniformly excited perpendicular to 

its long axis. (b) PL image of a nanoribbon under uniform laser illumination. Scale bar, 5 µm. 

6.3 Single-mode nanoribbon waveguides 

The development of nanoscale waveguides is an important step towards the manipulation of 

optical signals [85-87, 140, 144, 175-177] as discussed in detail in chapter 2. During our 

experiments, we found that not all the nanoribbons serve as waveguide. For some 

nanoribbons, when they were excited in the centre, emission was only observed at the 

excitation position. In order to determine the size of the waveguides, nanoribbons were 

dispersed on the ITO substrate with grids on the surface. The nanoribbons were firstly 

measured on the dark field microscopy combined with a green laser, and the sizes of the same 

ribbons were measured using SEM. Figure 6.4 (a) and (b) show the scattering and SEM 

images of the nanoribbons in the same grid. The width distribution of many nanoribbons that 

can serve as waveguide is show in figure 6.4(c). The smallest width of nanoribbon waveguide 
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measured is about 170 nm. During the SEM measurements, there were some nanoribbons 

with width of about 100 nm, and waveguiding was not observed in these structures. 

 

Figure 6. 4: Scattering (a) and SEM (b) images of nanoribbons in the same grid, and two of the 

nanoribbons are marked by the circles. (c) Width distribution of the nanoribbon waveguide. 

This indicates that the propagation of wave in the nanostructures is not only determined 

by the refractive index, but also the size of the nanostructures. Calculations have been carried 

out on the propagation of waves in the rectangular waveguide [143]. It was demonstrated that 

in 1D rectangular waveguides, waves can only propagate within the transverse magnetic (TM) 

mode. In addition, if the nanoribbon is expected to function as waveguide for guiding and 

manipulating light, the width of the nanoribbon needs to satisfy the following equation 

s
am εε

ε
ε

λ
−< ⊥

//
//

2           (6.1) 

Here, m is the number of possible modes, a is the width of the nanoribbons, λ  is the 

wavelength of the propagating light, Sε  is the refractive index of the substrate, //ε  and ⊥ε  are 

the refractive indices along and perpendicular to the axis of the nanoribbon, respectively.  

We assume a dielectric constant //ε = ⊥ε  = 6.42 [154] in polycrystalline CdTe nanoribbons, 

and the dielectric constant of glass substrate is 2.34 [144]. According to equation 6.1, if the 

propagation of a single-mode light at 600 nm is expected, the minimum width needed for the 

ribbon is about 150 nm.  
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This calculation agrees well with our measurements, in which waveguide is only observed 

in nanoribbons with width larger than 170 nm. Most of the nanoribbon waveguides have a 

width between 180 and 280 nm, and they are expected to be single-mode waveguides. And 

for the NWs investigated in the last two chapters, the diameter is not large enough to serve as 

waveguide, and the photoluminescence was observes uniform along the NWs. 

6.4 Optical coupling between crossed nanoribbons 

For the application of waveguide in integrated photonics, it is very important to route the 

wave in designed path. In the following experiment, we will demonstrate that the 

photoluminescence can not only propagate in isolated nanoribbon waveguides, but can also 

couple between crossed ribbons and propagate in another waveguides.  

 

Figure 6. 5: (a) Scattering image of several crossed nanoribbons. (b) Scattering image of the ribbons 

with laser spot. (c) PL image of the nanoribbons when excited in the middle of the ribbon 1. 

The crossed nanoribbons were prepared by dispersing nanoribbons with high 

concentration on the substrate. Figure 6.5(a) shows the scattering image of three crossed 

nanoribbons. Here, we only excite ribbon 1 and detect the signal from the crossed ribbons. In 

the scattering image shown in figure 6.5(b), we can see the laser spot which is focused on the 

middle of ribbon 1. Figure 6.5(c) is the corresponding photoluminescence image. Emission is 

observed not only from ribbon 1 which was excited, but also in the other nanoribbons. And 

the strongest emission is observed at the crossing of the nanoribbons. The emission at the tips 

of ribbon 1 is very weak, while for ribbon 2 and 3, the signal at the ends is stronger than in the 

body. It indicates that the photoluminescence produced in the middle of ribbon 1 firstly 

propagates along the ribbon, when the wave reaches the crosses between nanoribbons, it tends 

to couple to the other ribbon. There is a significant loss when the wave couples between 

nanoribbons. The wave coupled into the other ribbon will propagate and be emitted at the tips.  
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6.5 Losses studied by measuring the PL at tips as a 

function of excitation position 

The propagation loss is an important parameter in waveguiding. In this section, we will 

determine the propagation loss of the nanoribbon waveguides quantitatively. 

The scattering image of a typical nanoribbon is shown in figure 6.6(a), and figures 6.6(b)-

(d) show PL images of the nanoribbon when the excitation spot is shifted from left to right, 

indicated by the green arrows. The PL spectra at the tips of the ribbon are shown in figures 

6.6(e)-(g) for different excitation positions and the black and red curves indicate the emission 

spectra at tip 1 and tip 2, respectively. 

When the ribbon was excited close to the tip 1 (figure 6.6(b) and (e)), the strong emission 

at tip 1 was observed, and the peak position was at 610 nm. At tip 2, very weak emission was 

also observed with the emission peak at 616 nm. It should be noted that the emission at both 

tips originated from the same source. The spectra in figure 6.6(e) were normalized separately 

and shown in figure 6.6(h). One can clearly see that the two curves overlap at the red edge, 

i.e., at the edge of the larger wavelength. However, at the green edge with higher energy, the 

spectrum of tip 2, which is farther away from the excitation, the spectrum is partially 

disappearing. As shown in figure 6.1(a), the spectra of absorption and PL overlap in the green 

edge of the PL. Emitted photons with energy lying in the overlap region can be absorbed 

when propagating in the nanoribbon. The stronger re-absorption with longer propagation 

distance could explain the difference in the normalized spectra very well. The same behaviour 

was observed when reversing the tips (figure 6.6(d), (g) and (i)). 
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Figure 6. 6: (a) Scattering image of a single nanoribbon. (b)-(d) PL images of the nanoribbon in (a) 

when excited at different positions, the excitation spots are pointed by the arrows. (e)-(g) PL spectra 

collected at the tips of the nanoribbon in (b)-(d), respectively. The black curves are the spectra at tip 1, 

and red at tip 2. (h) and (i) are normalized spectra of (e) and (g), respectively. 

When the excitation spot was shifted from one end to the other, the redshift of the spectra 

at tip 1 was observed from 610 nm to 614 nm and further to 617 nm with the excitation 

moving away. In addition, the blue-shift of the spectra at tip 2 was observed from 616 nm to 

613 nm and further to 609 nm with the excitation moving closer (figures 6.6(e), (f) and (g)). 

The PL images indicate the decreasing of relative intensity with an increasing propagation 

distance and stronger re-absorption. 
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Figure 6. 7: (a)-(g) PL images of a nanoribbon excited with the excitation spots moving from tip a  to 

tip b . (h) Schematic indication of waves will be emitted at the boundary (red) and waves might 

propagate in a nanoribbon waveguide (blue). (i) Schematic depiction of the emission in a waveguide. 

The green spots in (h) and (i) indicate the excitation spots. (j) Distance dependence of the out-couple 

efficiency at two tips. The red and blue curves are fitted curves. 

The loss of the photoluminescence in the nanoribbon waveguide arises from re-absorption, 

the disorder induced scattering, etc. To understand the loss in the nanoribbon waveguide 

quantitatively, we measured the intensity at the tips as a function of the excitation position. 

Figures 6.7(a)-(g) are the PL images of the same nanoribbon when the excitation spot was 

moved from one tip to the other. In order to suppress the variation in excitation or emission 

efficiency along the waveguide, the PL intensities at a tip are normalized by the emission of 

the whole nanoribbon, which is called out-coupling efficiency at this tip. 

The total internal reflection at the boundary of a material and the air occurs when the 

incidence angle satisfies 
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1sin ≥θn                     (6.2) 

Here, n  is the refractive index of the material. Only the waves satisfying equation (6.2) might 

propagate in the nanoribbon waveguide (blue in figure 6.7(h)). Otherwise, they will be 

emitted to the air during propagation (red in figure 6.7(h)). 

To explain the process, a simple model schematically shown in figure 6.7(i) can be used. 

We assume that the nanoribbon waveguide is excited in position S , and the emitted photons 

have total intensity of 0I . The waves that do not satisfy equation (6.2) will escape the 

nanoribbon and will be emitted at the excitation position with an intensity of 0Iα . Waves with 

the same intensity 0Iβ  satisfying (6.2) will propagate towards the tip a  and b  of the 

waveguide. α  and β  fulfil: 

12 =+ βα                                                                                                               (6.3) 

In the following, we assume that the loss of PL is uniform along the axis of the 

nanoribbon waveguide. As illustrated in figure 6.7(i), the distances from the excitation 

position to tip a  and tip b  are 1L  and 2L , respectively. The length of the nanoribbon 

waveguide is 

21 LLL +=                                                                                                              (6.4)  

The length of the nanoribbon shown in figure 6.7 is 5.29 µm. 

The intensities of the emission at the tip a  and b  can be expressed by 

1
0

kL
a eII −= β , and 2

0
kL

b eII −= β                                                                              (6.5) 

Here, k is a fitting parameter. 

Then the out-coupling efficiency at tip a  is   
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The out-coupling efficiency at tip a  (indicated in figure 6.7(a)) as a function of excitation 

distance is plotted in figure 6.7(j) by the red dots. The red curve which fits to equation (6.6) 

indicates propagation loss of about 4.2 dB µm-1. The fitted parameter β  is 0.435, which 

indicates that more than 85% of the wave propagates towards the ends. If we assume that the 

nanoribbons have a refractive index of 3 [103], then the θ  satisfying equation (6.2) is smaller 

than 20°. Similar analysis was carried out on the emission at the other tip, shown in blue in 

figure 6.7(j). The fitted parameters of propagation loss and β  are 3.6 dB µm-1 and 0.47, 

respectively. The propagation loss is in the same order as metallic plasmon waveguides (~1 

dB µm-1) [178]. 

6.6 Conclusion 

In this chapter, we demonstrated that nanoribbons prepared by the oriented attachment of 

SNCs can serve as single-mode waveguides, and the loss in the nanoribbon waveguides was 

quantitatively determined. Strong emission was observed at the ends of the nanoribbons when 

they were locally excited. PL investigation shows that the strong emission at the tips arises 

from the propagation of PL in the nanoribbon. In addition, the PL was observed to couple 

between crossed nanoribbons. SEM measurements show that most of the nanoribbons have a 

width between 180 and 280 nm. Calculation indicates these nanoribbons are single-mode 

waveguides. Re-absorption was demonstrated when PL propagating in the nanoribbon 

waveguides. Propagation loss in the nanoribbon waveguides was studied by measuring the 

out-coupling efficiency of the PL at the ends as a function of excitation distance. Results 

show that the nanoribbon waveguides have the same order of propagation loss as metallic 

plasmon waveguides. 
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7. Conclusions and outlook 

This work aims at exploring the possibilities to control the electronic coupling in quantum dot 

solids, and to study the size dependent optical properties in quasi one-dimensional 

semiconductor nanostructures.  

We firstly demonstrated that the electronic coupling in QD solids can be controlled by a 

new thermomechanical mechanism. The interstitial material in the QD solids allows control 

of the expansion and shrinkage of the solid with temperature, and this thermomechanical 

control of the electronic coupling is realized by controlling the inter-particle distance with 

temperature. Photoluminescence and TEM investigation demonstrate tuning of the band gap 

emission in single polycrystalline nanowires and densely packed semiconductor nanocrystals 

via this mechanism. Temperature-induced blueshift in densely packed SNC film and redshift 

in polycrystalline NWs were realized at low temperature. The change of PL of QD solids at 

low temperature is qualitatively different from that of the bulk material and isolated CdTe 

SNCs. The electronic coupling between neighbouring SNCs in the polycrystalline NWs is 

estimated to be between 4 and 7 meV at room temperature and between 15 and 20 meV at 5K. 

Calculations of the electronic coupling between nearest SNCs for sub-nm distances show the 

same order of energetic shift of the delocalized states. This supports our attribution of the PL 

shifts to electronic coupling between the nearest SNCs.  

Size dependence of optical anisotropies in NWs was demonstrated, and the optical 

anisotropies can be transferred into macroscopically aligned NW arrays. Optical anisotropies 

in excitation and detection of photoluminescence and scattering were observed in NWs with 

diameters of about 90 nm. This diameter range is on the same order of magnitude as the 

wavelength of visible light in CdTe. The anisotropies in the thick NWs do not agree with the 

calculations of NWs in electrostatic limit. Finite-difference time domain calculations with 
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realistic parameters for the CdTe NWs for excitation and photoluminescence anisotropy were 

carried out in order to explain the observed anisotropies. It is found that the optical 

anisotropies of NWs display a strong size dependence especially when the diameter of the 

NW is comparable with the wavelength of light in the material. The optical anisotropies of a 

NW are determined by the diameter-wavelength ratio, the material dispersion, as well as the 

local refractive index of the surrounding. The NWs were aligned to form macroscopically 

NW arrays in polymer film, and it was found the optical anisotropies of individual NWs could 

be completely transferred into the NW arrays. The polarization properties of the NW arrays 

were not only determined by the optical anisotropies of isolated NWs, but also by the disorder 

of the NWs in the film, the local environment and multiple scattering in the thick film. 

We showed that nanoribbons can serve as single-mode waveguides for the propagation of 

PL, and the loss in the nanoribbon waveguides was studied. It was found that the nanoribbons 

with width larger than 170 nm could serve as waveguides. Strong emission was observed at 

the ends of the nanoribbons when they were locally excited. In addition, the PL was observed 

to couple between crossed nanoribbons. We calculated the size requirement of the 

nanoribbons to propagate waves using a model for rectangular waveguide. It was found that 

in order to propagate the PL in the nanoribbons, the minimum width needed was about 150 

nm, and SEM measurements showed that most of the nanoribbons were single-mode 

waveguides. By measuring the PL at the ends as a function of excitation distance, re-

absorption was demonstrated when light propagating in the nanoribbon waveguides. To 

quantitatively study the loss in the waveguides, we built a simple model to analyse the out-

coupling efficiency of the PL at the ends as a function of excitation distance. It was found the 

nanoribbons had a propagation loss of about 4 dB µm-1, the same order with the reported 

plasmon waveguides. 

Based on the work in this thesis, we suggest the following directions for further research. 

The thermomechanical control of the electronic coupling in QD solids indicates that one can 

control and design the temperature dependence of the PL wavelength in quantum dot solids. 

This mechanism can serve as a basis for tuning PL temperature dependence in SNC-based 

superlattices and quantum dot solids as well as in supramolecular organic systems exhibiting 

π-π-interactions. Such control may also be realized in quantum dot solids from core-shell 

nanoparticles of different materials and varying shell thicknesses. Furthermore, a similar 

control can be realized using stimuli other than temperature, i.e. chemical, pressure, light, etc. 
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It has been reported by Alivisatos’ group that optical and electrical properties of SNCs can be 

altered in response to the external stresses [179]. In the QD solids, the expansion and 

shrinkage can also be controlled by the mechanic force, and the design of the pressure 

dependence of optical properties in QD solids can be expected. 

Further investigation is needed to understand the detailed assembly process of oriented 

attachment. Nanostructures with different morphologies, such as NWs and nanoribbons, were 

prepared using different batches of CdTe SNCs. And we attributed the difference in 

morphology to batch-to-batch variation, because different nanostructures were prepared when 

different batches of SNCs with nearly the same size and concentration were used. The batch-

to-batch variation might be raised by different amount of ligands on the SNCs, the charge of 

SNCs etc. It is a challenge to suppress the batch-to-batch variation and realize the control of 

the morphology and size of nanostructures in the synthesis. 

Lasing was not observed in our measurement on the nanoribbon waveguides. It is because 

the resonator effect is suppressed by the rough ends of the nanoribbon. The preparation of 

nanoribbons with flat ends would potentially allow the realization of 1D QD solid lasers. 
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Abbreviations 

SNCs             Semiconductor nanocrystals 

QDs               Quantum dots 

LEDs              Light-emitting diodes 

1D                  Quasi one-dimensional  

NWs              Nanowires 

PL                  Photoluminescence  

FDTD            Finite-difference time domain  

TM                 Transverse magnetic  

TEM              Transmission electron microscope  

TGA              Thioglycolic acid  

 PVA              Polyvinyl alcohol 

PBS               Phosphate buffered saline  

AFM              Atomic force microscope  

OD                 Optical density  

CCD              Charge-coupled device  

N.A.               Numerical aperture  

SEM               Scanning electron microscope  
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