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Chapter 1

Introduction

In principle the determination of the electric conductivity (or resistivity) of
a conducting perfect crystal is a “simple” problem. An electron which moves
in a periodic potential can propagate without any effective scattering due to
the fact that the coherent scattered waves interfere constructively [1, 2]. This
leads to an infinite conductivity or equivalently the resistivity becomes zero.
This is in contrast with experimental observations which show that the re-
sistivity of metals is non-zero. The reason for this discrepancy is that in real
solids the periodicity of the potential is distorted due to various phenomena
like thermally induced atomic displacements, lattice distortions (e.g. screw
and edge dislocations) or atomic and magnetic disorder [3]. The aim of the
present work is to investigate on an ab initio level transport phenomena as
the residual resistivity of alloys where the ideal lattice periodicity is distorted
due to disorder of the atomic lattice site occupation.
Due to the fact that even very low impurity concentrations can drastically
influence transport phenomena it is obvious that for technical applications
within standard electronics or spintronics (see below) it is crucial to under-
stand the underlying mechanisms which are responsible for the modification
of transport properties of a certain material.

During the last years a new research area emerged which is called spin-
tronics [4–8]. Spintronics is a technology that exploits the intrinsic spin of
the electron and its associated magnetic moment in addition to its funda-
mental electronic charge. The central issue of this multidisciplinary field is
the manipulation of the spin degree of freedom in solid-state systems [6].
One of the most prominent effects which belongs to the field of spintronics is
the giant magnetoresistance (GMR) effect. The GMR effect was discovered
independently by A. Fert [9] and P. Grünberg [10] for which they have been
awarded the 2007 Nobel Prize in Physics. A typical GMR device consists of
two magnetic layers which are separated by an additional non-magnetic layer
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Chapter 1. Introduction

(e.g. Co/Cu/Co). If one measures the resistivity of such a device one obtains
a strong dependence of the resistivity on the relative orientation of the mag-
netic configuration of the two Fe layers. A ferromagnetic alignment of the
Fe layers lead to a different resistivity as compared to an anti-ferromagnetic
configuration. The industrial importance of this effect is demonstrated by
the fact that nowadays the GMR is widely used in read heads of modern
hard drives [11].

Due to the fact that spintronic devices generically need an imbalance be-
tween spin-up and spin-down populations of electrons [8] it seems almost a
given fact that ferromagnetic components are necessary for the construction
of spintronic devices. Discoveries in recent years have inspired a completely
different route in spintronic research which need no ferromagnetic compo-
nents [8]. The research field “spintronic without magnetism“ is based on the
possibility to manipulate electric currents via spin-orbit coupling only. Spin-
orbit coupling generates spin-polarization and therefore allows the generation
and manipulation of spins solely by electric fields. The advantage of “spin-
tronics without magnetism“ compared to standard spintronics is the reduced
device complexity which is considerable in standard spintronic devices due
to the incorporation of local magnetic fields into the device architecture [8].
Generating and manipulating the spin polarization is one of the important
prerequisites for the realization of new spintronic devices [6]. The spin Hall
effect (SHE) is considered as a convenient method for generating spin polar-
ization, in addition to traditional methods like spin injection from ferromag-
netic metals [12]. The SHE appears when an electric current flows through a
medium with spin-orbit coupling present, leading to a spin-current perpen-
dicular to the charge current. This effect is even present in non-magnetic
materials as could be demonstrated experimentally e.g. for Pt [13]. The SHE
was first described 1971 by Dyakonov and Perel [14, 15] and more recently
by Hirsch [16]. This effect is illustrated schematically in Fig. 1.1. The elec-
tric current splits into a spin-up and spin-down part which leads to a spin
accumulation at the edges without any accompanying Hall voltage. In sum-
mary, due to the fact that establishing techniques for efficient generation and
manipulation of spin-currents is a key for further advancement of spintronic
devices the SHE can be considered as one of the most promising effects in
recent spintronic research [13]. Therefore, the electrical conductivity tensor
which includes the spin Hall conductivity coefficient is one of the central
quantities within spintronics. The main issue of the present work is to study
in detail the underlying mechanisms of the aforementioned effects.

The present work is organized as follows: In chapter 2 the fundamentals
of density functional theory (DFT) are presented which are the basis of the
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Figure 1.1: Schematic picture of the spin Hall effect [17].

calculations shown in this work. In chapter 3 the relativistic Korringa-Kohn-
Rostoker Green’s function method (KKR-GF) is discussed. This method
has been used for the calculation of the electronic structure of the investi-
gated systems. In order to describe the electronic structure of alloys the
coherent potential approximation (CPA) as well as the non-local coherent
potential approximation (NLCPA) are introduced. Chapter 4 discusses in
detail the derivation of the Kubo equation which can be used for the ab
initio calculation of the conductivity tensor within linear response theory.
Starting from the Kubo equation the Kubo-Středa equation is derived using
the independent electron approximation. This equation is the basis of all
transport calculations of the present work. In chapter 5 the spin decompo-
sition problem within a fully relativistic description is addressed. Due to
the fact that the well known non-relativistic spin operator does not com-
mute with the Dirac equation the spin is no longer conserved and not a good
quantum number if spin-orbit coupling is present. Therefore, using relativis-
tic polarization operators spin projection operators are derived and applied
to several alloy systems. The results are compared to an approximate spin
decomposition scheme. In chapter 6 the the residual resistivity of the diluted
magnetic semiconductor system Ga1−xMnxAs is discussed. In addition, the
influence of short ranged correlations of the atomic lattice site occupation
is investigated using the NLCPA. It is demonstrated that the transport for-
malism using the NLCPA is able to describe the counterintuitive K-effect
which is connected with an increase of the residual resistivity with increas-
ing ordering. Chapter 7 investigates the SHE for several non-magnetic 4d-
and 5d-transition metal alloys. The anomalous Hall effect (AHE) is also dis-
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Chapter 1. Introduction

cussed for magnetic Pd based alloys with 3d-transition metals. The SHE as
well as AHE is decomposed into intrinsic and extrinsic (skew and side-jump
scattering) contributions. In order to complete the Hall effect discussion the
orbital Hall effect is addressed in addition.

In summary, the major aim of the present work is to investigate several
transport phenomena like e.g. residual resistivity, spin Hall effect as well as
anomalous Hall effect of alloys on a fully relativistic ab initio level.
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Chapter 2

Density Functional Theory

Density functional theory (DFT) is a sophisticated way to substitute an ex-
tremely complicated many-body problem by an effective one-body problem.
The central quantity within DFT is the electron density ρ(r). DFT allows one
to work with the electron density ρ(r) instead of the complicated N -electron
wave function Ψ(x1,x2, ...,xN ).

The first scheme which used ρ(r) as a central quantity like “modern”
DFT have been performed by Thomas [18] and Fermi [19]. 1964 Hohenberg
and Kohn [20] published a paper in which they proved that there is a one-
to-one mapping between the ground state wave function and the ground
state electron density (Ψ0 ⇔ ρ0) and also between the potential vext and
the ground state wave function (vext ⇔ Ψ0). The combination of these
two mappings show that vext, Ψ0 and ρ0 determine each other mutually and
uniquely (vext ⇔ Ψ0 ⇔ ρ0). The important observation that the ground state
is a unique functional of the ground state density |ψ[ρ0]〉 implies that the
density determines all electronic ground state properties of the investigated
system [21].

2.1 Density Variational Principle

Hohenberg and Kohn [20] proofed their observations via a reductio ad ab-
surdum procedure. Levy [22] showed that it is also possible to use a con-
strained search approach to proof that the external potential is uniquely
determined by the ground state density. In the following the proof by Levy
[22] is sketched.

The variational principle states that the ground state energy E can be
found by a minimizing procedure

E = min
Ψ

〈Ψ|Ĥ|Ψ〉 (2.1)
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Chapter 2. Density Functional Theory

over all normalized and antisymmetric wave functions |Ψ〉 [23]. Ĥ describes
the fully interacting many-body system:

Ĥ = T̂ + V̂ee + V̂ , (2.2)

with the kinetic energy operator T̂ , the electron electron interaction operator
V̂ee and the external potential operator V̂ . The next step is to split the
minimizing procedure into two parts. The first part is a minimization over
all |Ψ〉 which yield a given density ρ(r) and in the second part one has to
minimize over all N -electron densities ρ(r):

E = min
ρ








min
Ψ→ρ

〈Ψ|T̂ + V̂ee|Ψ〉
︸ ︷︷ ︸

=F [ρ]

+

∫

d3r vext(r)ρ(r)







. (2.3)

In order to take into account that only N -electron densities are considered
one introduces a Lagrange multiplier µ into the functional variation:

δ

δρ(r)

{

F [ρ] +

∫

d3r vext(r)ρ(r) + µ

(

N −

∫

d3r ρ(r)

)}

= 0 , (2.4)

which is equivalent to the Euler equation:

δF

δρ(r)
+ vext(r) = µ . (2.5)

Eq. (2.5) shows that the external potential vext(r) is uniquely determined by
the ground state density [24].

2.2 Kohn-Sham Equation

The application of the equations shown above is hindered due to the fact that
it is not clear how to express T [ρ] and Vee[ρ] as functionals of the density
ρ. The traditional Thomas-Fermi model or the improved Thomas-Fermi-
Dirac model [25] are based on drastic assumptions which lead to a restricted
applicability of these models. 1965 Kohn and Sham [26] achieved a break
through concerning the treatment of the kinetic energy functional T [ρ]. They
postulated the existence of a non-interacting reference system which has the
same ground state density ρ0 as the interacting system.

For a non-interacting system of electrons Eq. (2.5) transforms to:

δTs

δρ(r)
+ vs(r) = µ , (2.6)
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2.2. Kohn-Sham Equation

with the kinetic energy of a non-interacting system Ts[ρ] and the Kohn-Sham
potential vs. The interacting system is connected with the non-interacting
system via the equation:

F [ρ] = Ts[ρ] + U [ρ] + Exc[ρ] . (2.7)

U [ρ] is the classical part of Vee[ρ] which describes the Coulomb potential
energy:

U [ρ] =
1

2

e2

4πǫ0

∫ ∫

d3r d3r′
ρ(r)ρ(r′)

|r − r′|
. (2.8)

The exchange-correlation energy Exc[ρ] is defined via Eq. (2.7) and therefore
take care that the the Euler Eqs. (2.5) and (2.6) are consistent with each
other implying the relation:

vs(r) = vext(r) +
δU [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
. (2.9)

At a first view there is no advance through the change from the interacting
to the non-interacting system because it is not clear how to calculate Exc[ρ].
Fortunately, it turns out that Ts[ρ] typically captures a very large part of the
energy whereas Exc[ρ] is a smaller part [24]. Therefore, Exc[ρ] is much more
appropriate to be treated in an approximate way.

In order to continue with the derivation of the Kohn-Sham equations one
has to consider that the non-interacting N -particle many-body Schrödinger
equation can be reduced by separation of the variables to N single particle
equations. From the solutions of the single particle equations one can easily
construct the N particle wave function with the help of a Slater determinant
of Kohn-Sham orbitals φi. These observations lead to the non-relativistic
Kohn-Sham equations:

(

−
~

2

2m
∇2 + vext(r) +

e2

4πǫ0

∫

d3r′
ρ(r′)

|r − r′|
+
δExc[ρ]

δρ(r)

)

φi(r) = ǫiφi(r) ,

(2.10)
with

δU [ρ]

δρ(r)
=

e2

4πǫ0

∫

d3r′
ρ(r′)

|r − r′|
(2.11)

ρ(r) =
N∑

i=1

φ†
i (r)φi(r) . (2.12)
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Chapter 2. Density Functional Theory

2.2.1 Relativistic Formulation

The relativistic Hohenberg-Kohn theorem was first formulated by Rajagopal
and Callaway [27] and later amplified by Ramana and Rajagopal [28]. It
states that the ground-state energy is a unique functional of the ground-
state four-current Jµ(r). Therefore, the proper name of this theory is four-
current density functional theory [29]. Within this theory one obtains the
Dirac-Kohn-Sham equations [30]:

[
cα · (p̂ − eAeff(r)) + βmc2 + veff(r)

]
φi(r) = ǫiφi(r) , (2.13)

with

veff(r) = vext(r) +
e2

4πǫ0

∫

d3r′
J0(r′)

|r − r′|
+
δExc[J

µ(r)]

δJ0(r)
(2.14)

Aeff(r) = Aext(r) +
e

4πǫ0c2

∫

d3r′
J(r′)

|r − r′|
+

1

e

δExc[J
µ(r)]

δJ(r)
(2.15)

J0(r) =
N∑

i=1

φ†
i (r)φi(r) J(r) = c

N∑

i=1

φ†
i (r)αφi(r) (2.16)

and with the standard 4 × 4 Dirac matrices αi, β [31]. According to the
fact that the Dirac-Kohn-Sham equation contains 4 × 4 matrices the wave
functions are four spinors.

In order to make applications of Eq. (2.13) feasible the four-current den-
sity Jµ(r) can be split by a Gordon decomposition. This procedure decom-
poses Jµ(r) into terms which have a clear physical interpretation. In the
stationary situation the three-current density J(r) can be written as a sum
of orbital and spin-current densities [32]. If one completely neglects the or-
bital current and considers only the spin magnetization density m(r) which
correspond to a collinear alignment of the spins (the orientation of m(r) is
globally fixed as m(r)ez) [33] Eq. (2.13) simplifies drastically [34]:

[
cα · p̂ + βmc2 + veff(r) + βΣzBeff(r)

]
φi(r) = ǫiφi(r) (2.17)

with

veff(r) = vext(r) +
e2

4πǫ0

∫

d3r′
ρ(r′)

|r − r′|
+
δExc[ρ(r),m(r)]

δρ(r)
(2.18)

Beff(r) = Bext(r) +
δExc[ρ(r),m(r)]

δm(r)
(2.19)

m(r) =
N∑

i=1

φ†
i (r)βΣzφi(r) Σz = σz ⊗ 12 , (2.20)
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2.2. Kohn-Sham Equation

where Bext(r) is an external magnetic field. Eq. (2.17) is widely used in
computations and is also used in the present work with the restriction that the
potential terms are spherically symmetric (the atomic sphere approximation
(ASA) has been used):

veff(r) = veff(r) . (2.21)

2.2.2 The Exchange-Correlation Energy

Density functional theory is in principle an exact theory. The major prob-
lem of DFT is that no exact expression for the exchange-correlation energy
functional Exc[ρ(r)] is available. Nevertheless, since the famous paper of
Hohenberg and Kohn [20] much work has been done to develop reliable ap-
proximations for Exc[ρ(r)] [35]. Although, Exc[ρ(r)] often is a small fraction
of the total energy, Exc[ρ(r)] is a kind of “glue” that allows atoms to build
bonds [21]. Thus, accurate approximations for Exc[ρ(r)] are essential for
meaningful calculations.

The most simple approximation for Exc[ρ(r)] is the local density approxi-
mation (LDA). In this approximation, electronic properties are determined as
functionals of the electron density by applying locally relations appropriate
for a homogeneous electronic system [21]. In order to calculate spin polarized
systems Kohn and Sham [26] proposed the local spin density approximation
(LSDA):

ELSDA
xc [ρ↑(r), ρ↓(r)] =

∫

d3rρ(r)exc[ρ↑(r), ρ↓(r)] , (2.22)

with ρ(r) = ρ↑(r) + ρ↓(r). The quantity exc[ρ↑(r), ρ↓(r)] is the known [36]
exchange-correlation energy per particle for an electron gas of uniform spin
densities ρ↑(r) and ρ↓(r), respectively. The LSDA is the most popular method
in solid state physics for electronic structure calculations whereas the general-
ized gradient approximation (GGA) is more common in quantum chemistry
[24]. The GGA is an extension of the LDA which takes into account the
gradient of the density:

EGGA
xc [ρ↑(r), ρ↓(r)] =

∫

d3rf [ρ↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r)] . (2.23)

Due to the fact that the gradient of the density in real materials becomes
very large a simple expansion of the density breaks down. Therefore, many
different ways were proposed which modify the behavior at large gradients.
While there is only one type of LDA there are several different ways to
account for density gradients of the GGA like e.g. B88 [37], PW91 [38] and
PBE [39].

9



Chapter 2. Density Functional Theory

A very frequently used functional in the chemistry community is the so-
called B3LYP functional [35], that belongs to the class of hybrid functionals.
Hybrid functionals are defined as functionals which consists of a mixture of
exact exchange from Hartree-Fock theory in combination with exchange and
correlation from LDA or GGA.

In relativistic DFT the construction of Exc[ρ(r),m(r)] becomes even more
involved due to the fact that nothing is known about the m(r) dependence of
Ec[ρ(r),m(r)] up to know [33]. Therefore, relativistic DFT is usually applied
in conjunction with non-relativistic spin-density functionals Enrel

xc [ρ↑(r), ρ↓(r)]
which are adapted in the following way [33]:

ρ±(r) =
1

2

[

ρ(r) ∓
1

µB

m(r)

]

(2.24)

δExc[ρ(r),m(r)]

δρ(r)
=

1

2

{
δEnrel

xc [ρ+(r), ρ−(r)]

δρ+(r)
+
δEnrel

xc [ρ+(r), ρ−(r)]

δρ−(r)

}

(2.25)

δExc[ρ(r),m(r)]

δm(r)
=

1

2

{
δEnrel

xc [ρ+(r), ρ−(r)]

δρ−(r)
−
δEnrel

xc [ρ+(r), ρ−(r)]

δρ+(r)

}

. (2.26)

10



Chapter 3

Multiple Scattering Theory

Multiple scattering theory (MST) was first used in 1892 by Lord Rayleigh
[40] to describe the propagation of heat or electricity through inhomogeneous
media. The power of this method is illustrated by the fact that a medium
which consists of several non-overlapping potentials can be treated in such a
way that the single potentials are independently investigated and afterwards
the observations are combined to describe the complete medium [41]. This
is an enormous advantage because a N -potential problem can be decoupled
to N single potential problems.

In the present work MST has been employed for the calculation of the
electronic structure of solid materials. 1947 Korringa [42] demonstrated that
MST can be used to calculate eigenvalues and eigenvectors associated with
the electronic states of a periodic system via a secular equation. An equiva-
lent equation was found by Kohn and Rostoker [43] with the help of a varia-
tional formalism. The method which evolves out of these pioneering works to-
gether with several other works e.g. [44–48] is nowadays called the Korringa-
Kohn-Rostoker (KKR) method or the KKR Green’s function method (KKR-
GF)(accordingly for the spin-polarized relativistic case: SPR-KKR-GF). A
characteristic and remarkable feature of the KKR-GF method is the com-
plete separation of the structural aspects (the geometrical arrangement of
the scattering potentials) from potential aspects. The structural aspects of
the investigated material can be independently calculated which leads to
the so-called structure constants for a certain lattice. The whole potential
aspects are contained in the t-matrix which has to be determined for each
potential type. The decoupling of the potential aspects from the structural
aspects allows a computational efficient application of the KKR-GF method.

The phrase “Green’s function” in the acronym KKR-GF indicates that
this method gives in a naturally way access to the Green’s function of the
investigated system. The access to the Green’s function is an important
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Chapter 3. Multiple Scattering Theory

advantage compared to other methods for the determination of the electronic
structure due to the fact that many solid state physic problems are theoretical
described via the Green’s function as for example transport and spectroscopic
properties [49, 50]. Another advantage of the KKR-GF method is the fact
that disordered systems can be treated in a very accurate way with the help
of the coherent potential approximation (CPA). The CPA is a mean field
theory for the electronic structure of disordered alloys and has to be seen as
the best single-site solution to this problem [41]. However, alloys often exhibit
short-ranged correlation effects in the lattice site occupation which leads to a
locally ordered structure. Even such effects like short-ranged ordering effects
can be described on an ab initio level via the KKR-GF method in conjunction
with the non-local coherent potential approximation (NLCPA).

The combination of all of the above mentioned properties make the KKR-
GF method to a very powerful and flexible tool for the investigation of various
solid state phenomena.

3.1 Single-Site Scattering

3.1.1 The Dirac Equation for Free Electrons

The Dirac equation without a potential can be written as [31]:

(cα · p̂ + βmc2)ψ(r) = Eψ(r) , (3.1)

with p̂ = −i~∇ and the Dirac matrices:

α =

(
0 σ

σ 0

)

and β =

(
12 0
0 −12

)

. (3.2)

In Eq. (3.2) σ denotes the Pauli matrices:

σx =

(
0 1
1 0

)

σy =

(
0 −i
i 0

)

σz =

(
1 0
0 1

)

(3.3)

and 12 denotes the 2×2 unity matrix. α as well as β are 4×4 matrices and ψ is
a bi-spinor. If one compares the properties of the Schrödinger equation with
the properties of the Dirac equation one finds that the Dirac Hamiltonian
HD no longer commutes with l̂2, l̂z and σz. This clearly indicates that in a
relativistic theory l, ml as well as ms are no longer good quantum numbers.
It turns out that HD commutes with the operators σ2, ĵ2 and ĵz with j
the total angular momentum and additional with the spin-orbit operator
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3.1. Single-Site Scattering

K̂ = β(14 + l̂ · σ). A set of eigenfunctions to the operators {σ2, ĵ2, ĵz, K̂}
are the spin-angular functions [31]:

χΛ(r̂) =
∑

ms

C(l
1

2
j;µ−ms,ms)Y

µ−ms

l (r̂)χms
, (3.4)

with the Clebsch-Gordan coefficients C(l 1
2
j;µ −ms,ms), the spherical har-

monics Y µ−ms

l and the spin eigenvectors χT
1/2 = (1, 0), χT

−1/2 = (0, 1) (r̂

denotes the angular dependent part of r). The eigenvalue relations are:

σ2 χΛ(r̂) =
3

4
χΛ(r̂) (3.5)

ĵ2 χΛ(r̂) = j(j + 1) χΛ(r̂) (3.6)

ĵz χΛ(r̂) = µ χΛ(r̂) (3.7)

K̂ χΛ(r̂) = −κ χΛ(r̂) , (3.8)

with Λ = (κ, µ).
In order to solve Eq. (3.1) one can use the following ansatz [31]:

ψµ
κ(r) =

(
gκ(r)χ

µ
κ(r̂)

ifκ(r)χ
µ
−κ(r̂)

)

. (3.9)

Now one can substitute this bi-spinor ansatz into the Dirac equation in polar
coordinates and obtains the following expressions for the radial wave func-
tions [31]:

∂2Pκ(r)

∂r2
=

(
κ(κ+ 1)

r2
−
p2

~2

)

(3.10)

Qκ(r) = c2~(E +mc2)−1

(
∂Pκ(r)

∂r
+
κ

r
Pκ(r)

)

, (3.11)

with Pκ(r) = rgκ(r), Qκ(r) = crfκ(r) and p2 is defined via the relativistic
energy-momentum relation E2 = p2c2 +m2c4. Eq. (3.10) can be transformed
into a differential equation of the general form:

x2d
2R

dx2
+ 2x

dR

dx
+ [x2 − n(n+ 1)]R = 0 (3.12)

which is the spherical Bessel differential equation [51]. The solutions to this
differential equation are the spherical Bessel functions jl(pr), the spherical
Neumann functions nl(pr) and the spherical Hankel functions:

h±l (pr) = jl(pr) ± inl(pr) , (3.13)
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Chapter 3. Multiple Scattering Theory

with p =
√

E2−m2c4

c2
. Finally, one arrives at the following expression for the

most general eigenfunctions of the free Dirac equation in spherical coordi-
nated [52]:

ψµ
κ(r) =

(
[cos δκ jl(pr) − sin δκ nl(pr)]χ

µ
κ(r̂)

ipcSκ

E+mc2
[cos δκ jl(pr) − sin δκ nl(pr)]χ

µ
−κ(r̂)

)

, (3.14)

with Sκ = sgn κ, l = l− Sκ and cos δκ as well as sin δκ have to be considered
as coefficients of the Bessel and Neumann functions. Restricting to physically
acceptable solutions for the free electron case that are regular at the origin
one ends up with:

ψµ
κ(r) =

(
jl(pr)χ

µ
κ(r̂)

ipcSκ

E+mc2
jl(pr)χ

µ
−κ(r̂)

)

. (3.15)

This section shows that in the case of a relativistic free-particle the Dirac
equation can be decomposed into a radial and a angular dependent part.
The radial dependent part leads as a corresponding non-relativistic quantum
mechanical treatment of a free-particle to the well known spherical Bessel
differential equation with the spherical Bessel, Neumann and Hankel func-
tions as solutions. An important difference to the non-relativistic theory
is that the solutions of the spherical Bessel equation contain as argument
the relativistic k which is defined via the relativistic energy-momentum re-

lation. The ambiguity in the choice of the sign of the square root
√

E2−m2c4

c2

leads to the particle anti-particle problem in a relativistic theory [31]. In the
present work only states corresponding to positive energies are considered
and therefore interactions between the negative energy continuum states and
the positive energy states are neglected.

3.1.2 The Relativistic Free-Particle Green’s Function

In general the Green’s function can be defined as the solution of the inho-
mogeneous differential equation [50]:

(E − Ĥ)G(r, r′, E) = δ(r − r′) , (3.16)

with an arbitrary Hamiltonian Ĥ which contains a differential operator. A
formal solution to Eq. (3.16) is:

G(r, r′, E) =
∑

n

〈r|φn〉〈φn|r〉

E − λn

, (3.17)

14



3.1. Single-Site Scattering

with
Ĥ|φn〉 = λn|φn〉 . (3.18)

If Ĥ is a Hermitian operator the Green’s function shows singularities only at
the real eigenvalues of Ĥ. To overcome these singularities one can transfer
the Green’s function into the complex plane where it becomes an analytic
function. This transferring into the complex plane can be done with the help
of a limiting procedure:

G± = lim
η→0+

(E − Ĥ ± η)−1 . (3.19)

G+ and G− are called the retarded and advanced Green’s functions, respec-
tively. In the following the superscript is omitted implying that always the
retarded Green’s function is meant.

The relativistic free-particle Green’s function is defined via the following
equation [52]:

(E − cα · p̂ − βmc2)G0(r, r
′, E) = δ(r − r′)14 , (3.20)

which can be transformed to:

G0(r, r
′, E) = −

1

~2c2
(cα · p̂ + βmc2 + E)

eipR

4πR
(3.21)

(R = r − r′). With the help of the identity [31]:

eipR

4πR
= ip

∑

l,m

hl(pr)jl(pr
′)Y m

l (r̂)Y m∗
l (r̂′) , (3.22)

the free-particle Green’s function becomes [53]:

G0(r, r
′, E) = −ip

∑

κ,µ

[
Jµ

κ (r)Hµ +×
κ (r′)Θ(r′ − r) +Hµ +

κ (r)Jµ×
κ (r′)Θ(r − r′)

]
,

(3.23)
with

Jµ
κ (r) =

√

E +mc2

c2

(
jl(pr)χ

µ
κ(r̂)

ipcSκ

E+mc2
jl(pr)χ

µ
−κ(r̂)

)

(3.24)

Hµ +
κ (r) =

√

E +mc2

c2

(
h+

l (pr)χµ
κ(r̂)

ipcSκ

E+mc2
h+

l
(pr)χµ

−κ(r̂)

)

. (3.25)

In Eq. (3.23) the symbol “×” indicates the left-hand side solutions of the
Dirac equation [54]. In the case of free particles, non-magnetic muffin-tin
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Chapter 3. Multiple Scattering Theory

potentials and muffin-tin potentials with magnetization parallel the z-axis
the symbol “×” implies the relation:

Aµ×
κ (r) =

(
gκ(pr)χ

µ
κ(r̂)

ifκ(pr)χ
µ
−κ(r̂)

)×

=
(

gκ(pr)χ
µ†
κ (r̂),−ifκ(pr)χ

µ†
−κ(r̂)

)

. (3.26)

As one can see from Eqs. (3.24) and (3.25) the radial dependency of
the free-particle Green’s function is fully determined through the solutions
of the spherical Bessel differential equation and the angular dependency is
determined through the spin-angular functions.

3.1.3 Single-Site Scattering

In order to describe a scattering experiment that consists of a free parti-
cle which gets scattered by a single potential well V (r) one can use the
Lippmann-Schwinger equation [55]:

ψ(r) = φ(r) +

∫

d3r′G0(r, r
′)V (r′)ψ(r′) , (3.27)

with φ(r) the solution of the Dirac equation for the free-particle (energy
dependencies are omitted). The physical interpretation of this equation is
that φ(r) represents the incident particle and the second term corresponds
to an implicit expression for the perturbation of the wave function due to
the potential.

If one expands Eq. (3.27):

ψ(r) =φ(r) +

∫

d3r′G0(r, r
′)V (r′)φ(r′) (3.28)

+

∫ ∫

d3r′d3r′′G0(r, r
′)V (r′)G0(r

′, r′′)V (r′′)φ(r′′) + ... , (3.29)

one can reformulate the Lippmann-Schwinger equation in the following way:

ψ(r) = φ(r) +

∫ ∫

d3r′d3r′′G0(r, r
′)t(r′, r′′)φ(r′′) , (3.30)

with the t-matrix:

t(r, r′) = V (r)δ(r − r′) + V (r)G0(r, r
′)V (r′) + ... , (3.31)

or alternatively:

ψ(r) = φ(r) +

∫

d3r′G(r, r′)V (r′)φ(r′) , (3.32)
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3.1. Single-Site Scattering

with

G(r, r′) =G0(r, r
′) +

∫

d3r′′G0(r, r
′′)V (r′′)G0(r

′′, r′) + ... (3.33)

=G0(r, r
′) +

∫

d3r′′G0(r, r
′′)V (r′′)G(r′′, r′) . (3.34)

Eq. (3.34) is the so-called Dyson equation.
Using the Dirac notation the Lippmann-Schwinger equation can be writ-

ten as:

|ψ〉 =|φ〉 +G0V |ψ〉 (3.35)

=
∑

γ

aγ|φγ〉 +
∑

γ

G0|φγ〉〈φγ|V |ψ〉 (3.36)

=
∑

γ

aγ|φγ〉 +
∑

γ

G0 tγ|φγ〉 , (3.37)

with the matrix element tγ = 〈φγ|V |ψ〉 or in the |r〉 representation:

〈r|ψ〉 =〈r|φ〉 +

∫ ∫

d3r′d3r′′〈r|G0|r
′〉〈r′|V |r′′〉〈r′′|ψ〉 (3.38)

=〈r|φ〉

+
∑

γ

∫ ∫ ∫

d3r′d3r′′d3r′′′〈r|G0|r
′〉〈r′|φγ〉〈φγ|r

′′′〉〈r′′′|V |r′′〉〈r′′|ψ〉

(3.39)

=〈r|φ〉 +
∑

γ

∫

d3r′〈r|G0|r
′〉tγ〈r

′|φγ〉 , (3.40)

with

tγ =

∫ ∫

d3rd3r′〈φγ|r〉〈r|V |r′〉〈r′|ψ〉δ(r − r′) . (3.41)

In Eq. (3.41) it has been used that the potential is diagonal in r and r′.
In order to calculate the scattering solution ψ(r) it is difficult to use the

Lippmann-Schwinger equation due to the fact that one can use this equation
only within an iterative procedure. However, it is possible to calculate ψ(r)
in a different way which avoids an iterative expansion of ψ(r) in terms of
φ(r). The idea of this procedure is based on a division of space into two
different regions. If the scattering potential V (r) consists of a muffin tin
potential with a muffin tin radius rmt the potential V (r) 6= 0 if r < rmt and
becomes 0 if r ≥ rmt. Therefore, the wave function for r ≥ rmt must be a
linear combination of the regular and irregular zero-potential solutions like
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Chapter 3. Multiple Scattering Theory

Eq. (3.14). In appendix A it is shown that there is a close connection between
the coefficients cos δκ, sin δκ and tγ. This decomposition of space allows to
solve the Dirac equation in each spatial region independently and to match
afterwards the solutions at the boundary (rmt) to obtain a solution which is
valid for the whole space. The condition to obtain a smooth matching of the
wave functions leads for the phase shift δκ to the following expression [52]:

tan δκ(E) =

fκ(rmt,E)
gκ(rmt,E)

jl(prmt) −
ipcSκ

E+mc2
jl(prmt)

fκ(rmt,E)
gκ(rmt,E)

nl(prmt) −
ipcSκ

E+mc2
nl(prmt)

. (3.42)

The last equation is only applicable if the potential contains no magnetic
field. The matching procedure of the wave functions in the magnetic case is
similar to the procedure shown above but it becomes more difficult to define
appropriated phase shifts (the details are discussed in Ref. [48]).

To evaluate Eq. (3.42) one has to calculate the right-hand side solutions
of the Dirac equation for r < rmt. In the following treatment of the Dirac
equation the general case of a potential with an additional magnetic field
(pointing along the z-axis) is discussed. Using the ansatz from Eq. (3.9)
(now with (κ, µ)-dependent radial solutions) in combination with the Dirac
equation shown in Eq. (2.17) one obtains [56]:

∂

∂r
PΛ = −

κ

r
PΛ +

(
E

c2
+ 1

)

QΛ −
1

c2

∑

Λ′

V −
ΛΛ′QΛ′ (3.43)

∂

∂r
QΛ =

κ

r
QΛ − EPΛ +

∑

Λ′

V +
ΛΛ′PΛ′ , (3.44)

with PΛ(r, E) = rgΛ(r, E), QΛ(r, E) = crfΛ(r, E) and the spin-angular ma-
trix elements:

V ±
ΛΛ′(r) = 〈χ±Λ|veff(r) ± σzBeff(r)|χ±Λ′〉 (3.45)

(−Λ = (−κ, µ)). If one evaluates the matrix elements given in Eq. (3.45) it
turns out that only under certain conditions the matrix elements are 6= 0:

〈χΛ|σz |χΛ′〉 = δµµ′







−
µ

κ+ 1
2

forκ = κ′

−

√

1 −
µ2

(
κ+ 1

2

)2 forκ = −κ′ − 1

0 otherwise .

(3.46)

Due to the fact that the allowed values for the quantum number κ are:

κ = − l − 1 if j = l +
1

2
(3.47)

κ =l if j = l −
1

2
, (3.48)
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3.1. Single-Site Scattering

one obtains only a coupling between the solutions of Eqs. (3.43) and (3.44)
if ∆l = 0, 2 in combination with ∆µ = 0. However, this leads to an infinite
system of coupled radial differential equations. Feder et al. [47] pointed out
that the matrix elements which belong to the coupling ∆l = 2 give a small
contribution compared to the matrix elements which belong to the coupling
∆l = 0. Therefore, the coupling ∆l = 2 is neglected in the present work.
The coupling ∆l = 0 leads to two coupled radial equations if j = l + 1/2
together with µ = ±j, otherwise one obtains four coupled radial equations.
Jenkins and Strange [57] investigated in detail the impact of neglecting the
coupling ∆l = 2. They suggested that it may be important to include this
coupling if one calculates quantities like the magnetocrystalline anisotropy
which are very small on the scale of electronic energies.

3.1.4 The Relativistic Single-Site Scattering Green’s
Function

To construct the relativistic single-site scattering Green’s function one can
use the Dyson equation (Eq. (3.34)) in combination with Eqs. (3.31) and
(3.23). This leads to the following expression for the Green’s function [53]:

Gss(r, r
′, E) =

∑

ΛΛ′

ZΛ(r, E)tΛΛ′(E)Z×
Λ′(r

′, E)

−
∑

Λ

[
ZΛ(r, E)J×

Λ (r ′, E)Θ(r′ − r)

+JΛ(r, E)Z×
Λ (r ′, E)Θ(r − r′)

]
, (3.49)

with

tΛΛ′(E) =

∫

d3r

∫

d3r′ J×
Λ (r, E)t(r, r ′, E)JΛ′(r ′, E) . (3.50)

For r, r′ ≥ rmt one has:

ZΛ(r, E) =
∑

Λ′

JΛ′(r, E)t−1
Λ′Λ(E) − ipH+

Λ (r, E) (3.51)

Z×
Λ (r′, E) =

∑

Λ′

J×
Λ′(r

′, E)t−1
Λ′Λ(E) − ipH+×

Λ (r′, E) , (3.52)

which indicates that ZΛ and Z×
Λ are general solutions of the free-particle Dirac

equation like Eq. (3.14) but with a different normalization [41, 52]. In the
case of r, r′ = rmt these functions match smoothly to the regular right- and
left-hand side solutions of the Dirac equation with V (r) 6= 0. As mentioned
above, due to this matching procedure at rmt one obtains solutions of the
Dirac equation for the whole space.
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Chapter 3. Multiple Scattering Theory

3.2 Multiple Scattering Theory

In order to describe the propagation of an incident wave through a complex
scattering assembly one can use the Lippmann-Schwinger equation as in the
case of a single scattering potential:

|ψin,i〉 = |φ〉 +G0

∑

k 6=i

tk|ψin,k〉 . (3.53)

This equation describes the incoming wave at site i which consists of a su-
perposition of an unperturbed wave |φ〉 with incoming waves at site k are
scattered there and propagate via G0 toward site i. The wave function of the
entire system can be written as:

|ψ〉 = |φ〉 +G0T |φ〉 , (3.54)

with the total T -matrix:

T =
∑

i

ti +
∑

i

∑

k 6=i

tiG0t
k +

∑

i

∑

k 6=i

∑

j 6=k

tiG0t
kG0t

j + ... . (3.55)

The exclusions in the sums of Eq. (3.55) prevent two successive scattering
events occurring at the same site. This restriction is necessary because the
t-matrix describes the complete scattering of a single scattering potential i.e.
within an atomic potential well.

An alternative way to write the multiple scattering series shown in
Eq. (3.55) is to use the so-called scattering-path operator τ ij which was first
introduced by Györffy and Stott [58] and is one of the central quantities of
multiple scattering theory. The scattering-path operator consists of a partial
summation which describes the complete scattering between the sites i and
j. With the help of the scattering-path operator the following expression can
be derived for the T -matrix:

T =
∑

i,j

τ ij , (3.56)

with

τ ij = tiδij +
∑

k 6=i

tiG0t
kδkj +

∑

k 6=i

∑

l 6=k

tiG0t
kG0t

lδlj + ... . (3.57)

Eq. (3.57) clearly shows the physical interpretation of the scattering-path
operator. The operator τ ij describes a scattering event that starts at site j,
propagates via G0 to other scattering sites and finally ends at site i.
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In the introduction to this chapter it was mentioned that the decoupling
of structural aspects from potential aspects is an advantage of the KKR-
GF method. In order to point out this property it is useful to introduce in
Eq. (3.57) an expansion of the free-particle Green’s function G0(r, r

′, E) in
terms of spherical Bessel functions centered around two different lattice sites
Ri, Rj [52]:

G0(r, r
′, E) =G0(ri + Ri, rj + Rj, E)

=
∑

ΛΛ′

JΛ(ri, E)G0,ΛΛ′(Ri − Rj, E)J×
Λ′(rj, E) , (3.58)

where the expansion coefficients G0,ΛΛ′(Ri − Rj, E) with Ri 6= Rj are the
so-called real-space structure constants. The real-space structure constants
consist of Gaunt coefficients in combination with Hankel functions (explicit
expressions are given in Refs. [41, 52]). Inserting Eq. (3.58) into Eq. (3.57)
and multiplying from left with J×

Λ′(ri, E) and from right with JΛ′(rj, E) in
combination with an integration over ri and rj one obtains:

τ ij
ΛΛ′(E) = tiΛΛ′(E)δij +

∑

k 6=i

∑

Λ′Λ′′

tiΛΛ′(E)G0,Λ′Λ′′(Ri −Rk, E)τ kj
Λ′′Λ′(E) , (3.59)

or in matrix notation:
τ = t+ t G

0
τ , (3.60)

where indicates a supermatrix with respect to the site and angular mo-
mentum indices. It is important to note that the matrix t is diagonal in the
site indices (ti δij) whereas the matrix G

0
consists only of non-diagonal site

elements (Gij
0 (1 − δij)). Eq. (3.60) can be solved for finite systems via a

matrix inversion:

τ =
(

t−1 −G
0

)−1

. (3.61)

This equation clearly shows the decoupling of the potential aspects which
enter into the determination of the t-matrix from the structural aspects which
determine the structure constants.

3.2.1 The Relativistic Multiple Scattering Green’s
Function

For the derivation of the multiple scattering Green’s function one can start
from the Dyson equation:

Gnn = Gn
ss +Gn

ssT
nnGn

ss , (3.62)
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with
T nn =

∑

i6=n

∑

j 6=n

τ ij . (3.63)

The idea of Eq. (3.62) is that one starts with a reference system that consists
of a single scatterer at position n surrounded by vacuum. This reference
system is fully described by the single-site scattering Green’s function Gn

ss.
The remaining scattering centers are treated as a perturbation. This method
for the determination of the multiple scattering Green’s function was first
suggested by Faulkner and Stocks [59] for the non-relativistic case.

Finally, one obtains for the relativistic multiple scattering Green’s func-
tion [53]:

G(r, r ′, E) =
∑

ΛΛ′

Zi
Λ(r, E)τ ij

ΛΛ′(E)Zj×
Λ′ (r ′, E)

−
∑

Λ

[
Zi

Λ(r, E)J i×
Λ (r ′, E)Θ(r′ − r)

+J i
Λ(r, E)Zi×

Λ (r ′, E)Θ(r − r′)
]
δij , (3.64)

for r within the cell i and r′ within the cell j. This expression is very similar
to the expression for the single-site scattering Green’s function (Eq. (3.49)).
The only difference compared to Eq. (3.49) is that the t-matrix is replaced
by the scattering-path operator τ .

3.2.2 Coherent Potential Approximation (CPA)

The problem of calculating the electronic structure of a random substitu-
tional alloy is a classic problem in solid state physics [60]. The theoretical
description of alloys is hindered due to the fact that traditional method-
ologies of solid state physics are no longer applicable because of the loss of
translational symmetry [61].

The best single-site approach to describe random substitutional alloys is
the CPA [41]. The CPA was first introduced by Soven [62] and is a mean field
theory which leads to the construction of an effective medium that mimics
the scattering properties of an alloy in an averaged way.

The configuration averaged Green’s function can be written as [53]:

〈G(E)〉 = 〈(E −H)−1〉 = [E −H0 − Σ(E)]−1 , (3.65)

or via a Dyson equation:

〈G(E)〉 = G0 +G0 Σ(E) 〈G(E)〉 , (3.66)
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with the electron self-energy operator Σ(E) and H = H0 +
∑

i Vi. For a
binary alloy AxB1−x the potential at site i is either VA or VB. If one now
introduces an energy dependent translational invariant site quantity Wi(E)
one can rewrite the expression for the Green’s function in the following way:

G(E) = [E −H0 − V + W(E) −W(E)]−1 = [E − γ(E) −H(E)]−1 , (3.67)

with γ(E) =
∑

i[Vi −Wi(E)] = V −W(E) and H(E) = H0 + W(E). The
consideration of γ(E) as a perturbation leads to the “unperturbed” Green’s
function:

G̃0(E) = [E −H(E)]−1 . (3.68)

With the help of the last equation one can construct a Dyson equation for
the full Green’s function:

G(E) = G̃0(E) + G̃0(E)T (E)G̃0(E) , (3.69)

with
T (E) = γ(E) + γ(E)G̃0(E)T (E) . (3.70)

The averaging over G leads to:

〈G(E)〉 = G̃0(E) + G̃0(E)〈T (E)〉G̃0(E) , (3.71)

because G̃0(E) is translationally invariant. It is important to note that
Eq. (3.71) is an exact equation. The CPA demands that 〈T (E)〉 = 0 and
therefore 〈G(E)〉 = G̃0(E). The alloy is now described via a translationally
invariant effective medium W(E) = Σ(E).

The T -matrix can be rewritten with the help of partial summations in a
more convenient form:

〈T (E)〉 =
∑

i

〈t̃i(E)〉 +

〈

t̃i(E)G̃0(E)
∑

j 6=i

Qj(E)

〉

(3.72)

Qj(E) = t̃j(E) + t̃j(E)G̃0(E)
∑

k 6=j

Qk(E) (3.73)

t̃i(E) = γi(E) + γi(E)G̃0(E)t̃i(E) . (3.74)

In the single-site approximation the averaging procedure is restricted to
an averaging at single sites i independently of the surrounding sites
(e.g. 〈t̃iG̃0tj〉 = 〈t̃i〉G̃0〈t̃j〉). Therefore, the CPA condition 〈T (E)〉 = 0
reduces to 〈t̃i(E)〉 = 0 ∀i which explicitly excludes the incorporation of
short-ranged order effects into the averaging procedure. It is important
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x +  =x(1−  )

Figure 3.1: The CPA self-consistency condition. The red spheres indicate
the CPA medium.

= Σ(E)+
〈G(E)〉〈G(E)〉 G0 G0

Figure 3.2: Diagrammatic representation of Eq. (3.66).

to note that terms like 〈t̃iG̃0t̃jG̃0t̃iG̃0t̃j〉 in Eq. (3.72) which describe re-
peated scattering back and forth between a pair of sites are neglected in the
CPA because they are not made to vanish by the condition 〈t̃i(E)〉 = 0 ∀i
(〈t̃iG̃0t̃jG̃0t̃iG̃0t̃j〉 6= 〈t̃i〉G̃0〈t̃j〉G̃0〈t̃i〉G̃0〈t̃j〉 = 0).

The single-site CPA condition can be also formulated via the scattering-
path operator 〈τ̃ ii(E)〉 = 0 ∀i (Eq. (3.57) with t and G0 replaced by t̃ and
G̃0, respectively) or alternatively (in the case of a binary alloy AxB1−x) [53]:

x〈τ ii(E)〉(i=A) + (1 − x)〈τ ii(E)〉(i=B) = τ ii
CPA , (3.75)

where 〈τ ii(E)〉(i=A) is the scattering-path operator of the effective medium
with an atom of type A at site i. The physical interpretation of Eq. (3.75)
is that excess scattering off a single-site impurity embedded into the effec-
tive medium should be zero on the average. A schematic representation of
Eq. (3.75) is shown in Fig. 3.1.

The CPA can also be described via diagrammatic techniques. The start-
ing point of a diagrammatic description of the CPA is Eq. (3.66) which can
be written in a diagrammatic way as shown in Fig. 3.2. The self-energy
Σ(E) is defined as the sum of all irreducible diagrams which appear in the
expansion of Eq. (3.66) (an irreducible diagram is a diagram which can not
be split into two diagrams by cutting a single propagator line G0) [63]. These
diagrams are shown in Fig. 3.3 up to forth order for the case of a statistical
independent distribution of the atom types. As mentioned above, the CPA
is exact up to the forth order if the atom distribution is purely random. The
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Σ(E)

1.th order 2.th order

3.th order

4.th order

Figure 3.3: Diagrammatic representation of Σ(E) up to the forth order.
The dashed lines indicate an interaction with a potential at site i which is
indicated by the black dot. Different dots represent potentials at different
sites. The figure has been taken from Ref. [64].

Figure 3.4: The first diagram neglected in the CPA (all diagrams shown in
the present work are created with JaxoDraw [65]).

corresponding neglected diagram is shown in Fig. 3.4 and belongs to the so-
called class of crossed diagrams. An appealing feature of the diagrammatic
representation is that the differences between the CPA and other alloy the-
ories like the virtual crystal approximation (VCA) or the average t-matrix
approximation (ATA) show up in a transparent way (the details of these
theories are described for example in Ref. [61]). The VCA self-energy takes
only into account the first order diagram shown in Fig. 3.3 whereas the ATA
considers also higher order diagrams. The advantage of the CPA compared
to the ATA is that also nested diagrams like Fig. 3.5 are included in the CPA.

25



Chapter 3. Multiple Scattering Theory

Figure 3.5: The first nested diagram in the expansion of Σ(E).

3.2.3 Non-Local Coherent Potential Approximation
(NLCPA)

The major problem of the CPA is that the possibility to investigate correla-
tion effects between the electrostatic potentials on different sites is explicitly
excluded by the CPA. Therefore, it is not possible to include e.g. short-ranged
ordering effects into the calculations. The self energy expansion shown in
Fig. 3.3 is only valid if the atom type distribution is statistical indepen-
dent. If correlations between the electrostatic potentials on different sites
are present diagrams as shown in Fig. 3.6 appear in the self energy expan-
sion. A possible way to overcome the shortcoming of the CPA is to use the

+ +

Figure 3.6: Exemplary diagrams for the case of correlated potentials (the
correlation is indicated by the wavy line).

non-local coherent potential approximation (NLCPA) [66–69]. The NLCPA
has emerged from the dynamical cluster approximation (DCA) [70] which
was used originally for the description of dynamical spin and charge fluctu-
ations in strongly correlated electron systems. The static limit of the DCA
has been formulated by Jarrell and Krishnamurthy [71] to describe electrons
moving in a disordered potential via a tight-binding model.

In order to derive the NLCPA formalism it is useful to start from the
CPA. The scattering-path operator within the CPA can be written as [60]:

τ̂ ij
CPA = t̂CPA δij +

∑

k 6=i

t̂CPAG(Rik) τ̂ kj
CPA , (3.76)

where the circumflex denotes a quantity of an effective medium and the
underscore indicates a matrix in a particular representation (e.g. Λ in the
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P
1
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2 P

3
+ + + ... =

Figure 3.7: The NLCPA self-consistency condition. The red spheres indicate
the NLCPA medium.

relativistic case). In addition, in Eq. (3.76) the structure constants G(Rik)
appear as function of the position vector Rij = Ri −Rj which connects site
i and j.

A similar equation as Eq. (3.76) can be formulated for the NLCPA [66]:

τ̂ ij
NLCPA = t̂NLCPA δij +

∑

k 6=i

t̂NLCPA

[

G(Rik) + δĜ
ij
]

τ̂ kj
NLCPA (3.77)

(in the following the acronym NLCPA is omitted). The matrix δĜ
ij

is a
translationally invariant effective disorder term which takes into account the
nonlocal correlations in the investigated material. Due to the fact that the
NLCPA is a cluster generalization of the CPA it has to be fulfilled that,
similar as in the CPA (Eq. (3.75)), the embedding of an impurity cluster into
the NLCPA medium leads to no excess scattering on the average:

∑

γ

Pγτ
IJ
γ = τ̂ IJ , (3.78)

with
∑

γ Pγ = 1. τ IJ
γ describes the scattering from cluster site I to cluster site

J (capital letters always indicate sites within the cluster) for a cluster with the
configuration γ embedded into the NLCPA medium. For a binary alloy the
number of possible configurations γ is 2Nc with Nc being the number of sites
within the cluster. A schematic picture of the self-consistency condition from
Eq. (3.78) is shown in Fig. 3.7 The translational invariance of the NLCPA
medium allows it to write the scattering-path operator as [66]:

τ̂ IJ =
1

ΩBZ

∫

ΩBZ

d3k [̂t
−1

−G(k) − δĜ(k)]−1 eik(RI−RJ ) , (3.79)

with ΩBZ as the volume of the Brillouin zone. Due to the fact that it is not
feasible to solve the problem exactly one has to introduce a coarse graining
procedure in the spirit of the DCA. The finite number of cluster atoms (Nc)
at the sites {I} leads to a corresponding set of cluster momenta {Kn} in
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reciprocal space. The coarse graining amounts to finding {I} and {Kn}
satisfying:

1

Nc

∑

Kn

eiKn(RI−RJ ) = δIJ . (3.80)

This procedure leads to a subdivision of reciprocal space into non-overlapping
tiles centered around the vectors {Kn}, with Nc tiles covering the Brillouin
zone volume [72]. The coarse graining procedure allows to approximate δĜ(k)
through δĜ(Kn) if k is in the nth reciprocal space patch. Finally, the Fourier

transform δĜ(k) and δĜ
IJ

are related via the following equations:

δĜ
IJ

=
1

Nc

∑

Kn

δĜ(Kn) eiKn(RI−RJ ) (3.81)

δĜ(Kn) =
∑

I 6=J

δĜ
IJ
e−iKn(RI−RJ ) . (3.82)

An important point to mention is that the NLCPA shows proper behavior
for Nc → ∞ and Nc = 1, respectively. For Nc going to infinity the NLCPA
becomes exact {Kn} → {k} and correlations over all length scales are in-
cluded. In the case of Nc = 1 the NLCPA recovers the CPA due to the fact

that δĜ
II

= 0.

In order to proceed with Eq. (3.79) one has to apply the coarse graining
procedure to the scattering-path operator:

τ̂ IJ =
1

ΩBZ

∑

Kn

∫

ΩKn

d3k[̂t
−1

−G(k) − δĜ(Kn)]−1eiKn(RI−RJ ) . (3.83)

The NLCPA medium can be iteratively constructed until Eqs. (3.78) and
(3.83) are satisfied [66].

A crucial point of the NLCPA is the determination of an appropriate clus-
ter. Jarrell and Krishnamurthy [71] pointed out that the allowed set {Kn}
is limited by the point-group symmetry of the Bravais lattice i.e. the real
space cluster must preserve the translational symmetry of the lattice. These
restrictions lead to the fact that for a fcc lattice the smallest possible cluster
consists of four sites (Nc = 4) whereas the smallest bcc cluster contains only
two sites (Nc = 2) [66]. The corresponding number of possible configurations
in the case of a binary alloy is 16 (fcc) and 4 (bcc), respectively. In the
present work only the smallest fcc and bcc clusters were used due to compu-
tational limitations. The details of the cluster construction are discussed in
Refs. [66, 67, 73].
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3.2.4 Calculating Properties with the Green’s Func-
tion

The Density of States

In order to calculate the density of states (DOS) one can use the retarded
Green’s function G+ (Eq. (3.19)) in the spectral representation and uses the
Dirac identity [49]:

lim
η→0+

∫
f(x)

x± iη
dx =

(

P

∫
f(x)

x
dx

)

∓ iπf(0) , (3.84)

or symbolically

lim
η→0+

1

x± iη
= P

1

x
∓ iπδ(x) , (3.85)

where P denotes the principle part. This leads to the following expression
for the DOS:

n(E) = −
1

π
ℑ

∫

TrG(r, r, E) d3r =
∑

n

δ(E − λn) , (3.86)

where λn are the electronic eigenvalues of the system.

The Bloch Spectral Function

In a most general way the density of states may be defined as:

n(E) =
∑

n

δ(E − λn), (3.87)

In analogy the Bloch spectral function (BSF) can be defined by [59]:

A(E,k) =
∑

n

δ[E − λn(k)] (3.88)

and for that reason can be regarded as a k-resolved density of state. Dealing
with an ordered system and a given k-vector the BSF has at the positions of
the eigenvalues an infinitely sharp peak and is zero everywhere else. If one
deals with an alloy instead of a perfect crystal an appropriate expression for
the BSF within KKR-CPA was worked out by Faulkner and Stocks [59]:

A(E,k) = −
1

π
ℑTr [F ccτCPA(E,k)]

−
1

π
ℑTr [(F c − F cc)τCPA] , (3.89)
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with

τCPA =
1

ΩBZ

∫

BZ

d3k τCPA(E,k) . (3.90)

The matrices F c and F cc are given in terms of the overlap integrals:

Fαβ
ΛΛ′ =

∫

Ω

d3r Zα×
Λ (E, r)Zβ

Λ′(E, r) . (3.91)

α, β denotes an atom type of the alloy. For more details and explicit ex-
pressions see Ref. [59]. Compared to a pure system, the BSF for an alloy
becomes broadened due to the disorder. This broadening can be related to
the lifetime of an electron in a Bloch state and is therefore quite useful for
the interpretation of resistivity data [74].
With the BSF it is possible to discuss a dispersion relation E(k) even for al-
loys [75]. Strictly spoken such a dispersion relation is in general not defined
for alloys because k is not a good quantum number for disordered systems.
Nevertheless, the dispersion relation represented by the BSF can be used to
calculate Fermi velocities [74] and gives therefore useful hints for the inter-
pretation of resistivity data.

The derivation of the Bloch spectral function within the NLCPA is pre-
sented in Ref. [76].

The Charge Density

The charge density

ρ(r) =
N∑

i=1

φ†
i (r)φi(r) (3.92)

(with N as the number of occupied states) can be easily calculated via the
Green’s function. If one applies the Dirac identity shown in Eq. (3.85) to the
retarded Green’s function in the spectral representation one obtains:

ρ(r) = −
1

π
ℑ

∫ EF

−∞

TrG(r, r, E) dE . (3.93)
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Chapter 4

Electronic Transport within the
Kubo formalism

4.1 Kubo Equation

Many experiments in condensed matter physics investigate the response of
a system under an external perturbation. The perturbation can e.g. be an
electric or a magnetic field. In the case of a weak perturbation the response
of the investigated system is often directly proportional to the intensity of
the external perturbation (linear response). In order to investigate such
an experiment from a theoretical point of view the Kubo formalism can be
employed. The Kubo formalism contains a whole class of equations which
describe in a rigorous quantum mechanical way the linear response in terms of
correlation functions of the perturbation and the response. Such an equation
was first proposed by Green [77] in order to investigate transport in liquids.
Kubo [78] was the first who derived such an equation for the calculation of
the electrical conductivity in solids.

Due to the fact that the Kubo formalism is based on linear response
theory the subsequent procedure is only valid for small perturbations. The
starting point for the derivation of the Kubo equation is a system which is
in equilibrium and described by the Hamiltonian Ĥ. On this system a small
time dependent perturbation Ŵ (t) e.g. an electric field (adiabatic switching
on) is applied. The question which arises is how an expectation value of
an arbitrary operator D̂ transforms due to the perturbation? To answer this
question one needs the statistical operator ρ(t). If the system is in equilibrium
one can calculate the expectation value of an arbitrary operator D̂ via the
formula [23]:

〈D̂〉 = Tr(ρ0D̂) , (4.1)
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with the density matrix:

ρ0 =
e−βĤ

Tr(e−βĤ)
. (4.2)

Here β = (kBT )−1, kB is the Boltzmann constant and T is the temperature.
After applying a time dependent perturbation to the system the expectation
value of the operator D̂ becomes time dependent. In order to calculate the
corresponding time dependent expectation value one uses the time dependent
density matrix ρ(t):

< D̂ >t= Tr[ρ(t)D̂] . (4.3)

To find an expression for ρ(t) one can use the fact that ρ(t) fulfills the von-
Neumann-equation:

i~
∂

∂t
ρ(t) = [(Ĥ + Ŵ (t)), ρ(t)] . (4.4)

The von-Neumann-equation consists of a commutator between the total
Hamiltonian of the perturbed system Ĥ and ρ(t). In Eq. (4.4) Ĥ is decom-
posed into a part which describes the unperturbed system Ĥ and a part which
describes the perturbation Ŵ (t). If ρ(t) is transformed from the Schrödinger
picture to the interaction picture:

ρI(t) = eiĤt/~ρ(t)e−iĤt/~ , (4.5)

one can rewrite the von-Neumann-equation in the following way:

i~
∂

∂t
ρI(t) = i~

{

i/~[Ĥ, ρI(t)] + eiĤt/~
∂ρ(t)

∂t
e−iĤt/~

}

(4.6)

= −
{

[Ĥ, ρI(t)] − eiĤt/~[(Ĥ + Ŵ (t)), ρ(t)]e−iĤt/~

}

(4.7)

= [ŴI(t), ρI(t)] , (4.8)

with ŴI(t) = eiĤt/~ Ŵ (t)e−iĤt/~. The advantage of the change from the
Schrödinger picture to the interaction picture is that in Eq. (4.8) the Hamil-
tonian of the unperturbed system (Ĥ) disappears. In a next step one can
transform back to the Schrödinger picture and integrate over time:

ρ(t) = ρ0 − i/~

∫ t

−∞

dt′ e−iĤ(t−t′)/~ [Ŵ (t′), ρ(t′)] eiĤ(t−t′)/~ . (4.9)

This equation shows that one needs for the calculation of ρ(t) the density
matrix for previous times (t′ < t). Due to the fact that small perturbations
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are considered one can solve this equation iteratively:

ρ(t) = ρ0 +
∞∑

n=1

(−i/~)n

∫ t

−∞

dt1

∫ t1

−∞

dt2...

∫ tn−1

−∞

dtn e
−iĤt/~

∗ [ŴI(t1), [ŴI(t2), [..., [ŴI(tn), ρ0]...]]] e
iĤt/~ . (4.10)

For small perturbations it is justified to keep only the first order term:

ρ1(t) = ρ0 − i/~

∫ t

−∞

dt′e−iĤt/~ [ŴI(t
′), ρ0] e

iĤt/~ . (4.11)

The combination of the Eqs. (4.3) and (4.11) leads to:

< D̂ >t=Tr(ρ0D̂) − i/~ Tr

∫ t

−∞

dt′ e−iĤt/~ [ŴI(t
′), ρ0] e

iĤt/~D̂ (4.12)

= < D̂ > −i/~

∫ ∞

−∞

dt′ Θ(t− t′) < [D̂I(t), ŴI(t
′)] > . (4.13)

Eq. (4.13) is the central equation within linear response theory. With this
equation it is possible to calculate the expectation value of an arbitrary
operator for a perturbed system only in terms of the commutator of the un-
perturbed density matrix ρ0 with the operator representing the perturbation.

For the calculation of the response to an applied electric field Et =
E0e

−i(ω+iδ)t (with δ → 0+, the term iδ takes into account that for t → −∞
the investigated system is unperturbed) one has D̂ = ĵ with the current den-
sity operator ĵ. Due to the fact that the present work investigates also the
spin-current density response (spin Hall effect) in the following the operator
Ĵ is used to represent either the electric current or the spin-current density
as a response of the system. The applied electric field couples to the operator
of the electric dipole moment:

P̂ =
N∑

i=1

qir̂i , (4.14)

with the charge qi and the position operator r̂i for the i-th point charge.
This gives an interaction operator Ŵt = −P̂ · Et which can be inserted into
Eq. (4.13) [49]. This leads to:

< Ĵµ >t= i/~
∑

ν

∫ ∞

−∞

dt′ Θ(t− t′) < [Ĵµ,I(t), P̂ν,I(t
′)] > E0,νe

−i(ω+iδ)t′ .

(4.15)
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The first term in Eq. (4.13) drops out in Eq. (4.15) because no current appears
if no perturbation is present. The expectation value of the commutator in
Eq. (4.15) can be rewritten in a way that one of the operators remains time
dependent:

< [Ĵµ,I(t), P̂ν,I(t
′)] > = Tr

(

ρ0

[

eiĤt/~Ĵµe
−iĤt/~eiĤt′/~P̂νe

−iĤt′/~

−eiĤt′/~P̂νe
−iĤt′/~eiĤt/~Ĵµe

−iĤt/~

])

(4.16)

= Tr
(

ρ0

[

Ĵµe
iĤ(t′−t)/~P̂νe

−iĤ(t′−t)/~

−eiĤ(t′−t)/~P̂νe
−iĤ(t′−t)/~Ĵµ

])

(4.17)

= < [Ĵµ, P̂ν,I(t
′ − t)] > . (4.18)

The last equation can be inserted into Eq. (4.15):

< Ĵµ >t = i/~
∑

ν

∫ ∞

−∞

dt′ Θ(t− t′)

< [Ĵµ, P̂ν,I(t
′ − t)] > e−i(ω+iδ)(t′−t)E0,νe

−i(ω+iδ)t (4.19)

= i/~
∑

ν

∫ ∞

−∞

dt′′ Θ(−t′′)

< [Ĵµ, P̂ν,I(t
′′)] > e−i(ω+iδ)t′′Et,ν . (4.20)

From Eq. (4.20) one obtains via the relation Jµ = σµνEν for the frequency
dependent conductivity tensor:

σµν = i/~

∫ ∞

−∞

dt Θ(−t) < [Ĵµ, P̂ν,I(t)] > e−i(ω+iδ)t . (4.21)

The expression for the conductivity tensor can be rewritten with the help of
the Kubo identity [49]:

[Ô(t), ρ] = −i~ρ

∫ (kBT )−1

0

dλ
˙̂
O(t− i~λ) , (4.22)

which is valid for any operator Ô. Combining this identity with the relation
˙̂
P = V ĵ (V is the volume of the sample) gives a new expression for the
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conductivity tensor:

σµν = i/~

∫ ∞

−∞

dt Θ(−t)Tr
(

[P̂ν,I(t), ρ0]Ĵµ

)

e−i(ω+iδ)t (4.23)

=

∫ (kBT )−1

0

dλ

∫ 0

−∞

dt Tr
(

ρ0
˙̂
Pν,I(t− i~λ)Ĵµ

)

e−i(ω+iδ)t (4.24)

= V

∫ (kBT )−1

0

dλ

∫ 0

−∞

dt Tr
(

ρ0ĵν,I(t− i~λ)Ĵµ

)

e−i(ω+iδ)t (4.25)

= V

∫ (kBT )−1

0

dλ

∫ ∞

0

dt Tr
(

ρ0ĵν ĴI,µ(t+ i~λ)
)

ei(ω+iδ)t , (4.26)

or

σµν = V

∫ (kBT )−1

0

dλ

∫ ∞

0

dt < ĵν ĴI,µ(t+ i~λ) > ei(ω+iδ)t . (4.27)

This equation is the so-called Kubo equation [78] for the conductivity corre-
sponding to the general response Ĵ . The Kubo equation primarily consists
of a current-current correlation function. For the derivation of Eq. (4.26)
one uses again the cyclic permutation under the trace in combination with
the observation that the correlation function only depends on the time
difference [49]. The Kubo equation is in principle an exact equation and
not restricted to the single particle picture. The only restriction of this
equation is that only small perturbations are allowed to be investigated.
Nevertheless, solving the Kubo equation is a very difficult task because it
takes into account all many body effects. To make the scheme tractable,
further approximations have been devised one of them using the independent
electron approximation. This procedure outlined in the next section leads
to the Kubo-Středa equation.

4.2 Kubo-Středa Equation

The Kubo-Středa-equation [79] is derived from the Kubo equation using a
single particle picture. A similar equation was derived before by Bastin et al.
[80]. The starting point is Eq. (4.26):

σµν = V

∫ (kBT )−1

0

dλ

∫ ∞

0

dt Tr
(〈

ρ0ĵν ĴI,µ(t+ i~λ)
〉

c

)

ei(ω+iδ)t , (4.28)

where<>c indicates a configurational average (an average over configurations
is required for the investigation of alloys). If one neglects the dependence on
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ω and uses the independent electron picture one obtains [81]:

σµν =
1

V

∫ (kBT )−1

0

dλ

∫ ∞

0

dt
∑

n,m

〈

e−λ(En−Em)f(Em)[1 − f(En)]

eit/~(i~δ+En−Em) < m|ĵν |n >< n|Ĵµ|m >
〉

c
, (4.29)

with the Fermi-Dirac distribution function f(E) = (e(E−µ)/kBT + 1)−1 where
µ denotes the chemical potential. Performing the integrations over λ and t
leads to:

σµν =
i~

V

∑

n,m

〈

f(Em) − f(En)

(En − Em)(En − Em + i~δ)
< m|ĵν |n >< n|Ĵµ|m >

〉

c

,

(4.30)
where for the integration over t the identity [49]:

Θ(t) = lim
δ→0+

i

2π

∫ ∞

−∞

dx
e−ixt

x+ iδ
, (4.31)

has been applied. Eq. (4.30) is similar to expressions frequently used for
the calculation of the Hall and the spin Hall effect for pure systems [82–84].
These works calculate σµν via Berry-curvatures (see chapter 7) that arises
naturally within the Kubo formalism.

One can use the relation
∫∞

−∞
dEδ(E− Ĥ) = 1 together with the identity:

lim
δ→0+

1

(En − E)(En − E + iδ)
= lim

δ→0+

d

dE

(
1

En − E + iδ

)

(4.32)

and obtains:

σµν = −
i~

V

∫ ∞

−∞

dEf(E)

∑

n,m

〈

< m|ĵν |n >
d

dE

(
1

E − En − iδ

)

< n|Ĵµ|m > δ(E − Em)

− < m|ĵν |n > δ(E − En) < n|Ĵµ|m >
d

dE

(
1

E − Em + iδ

)〉

c

,

(4.33)

or similar in operator notation:
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σµν =
i~

V

∫ ∞

−∞

dEf(E)Tr

〈

Ĵµ
dG+(E)

dE
ĵνδ(E−Ĥ)−Ĵµδ(E−Ĥ)ĵν

dG−(E)

dE

〉

c
(4.34)

with G±(E) = (E − Ĥ ± iδ)−1. Eq. (4.34) is the so-called Bastin formula
[80]. This equation primarily consists of an energy integration over terms
which involve the energy derivative of the retarded and advanced Green’s
functions. The numerical difficulties which appear if one tries to deal with
this equation are that one has to calculate the energy derivative of the Green’s
function which includes the regular as well as the irregular solutions of the
Schrödinger/Dirac-equation. In addition, one has to calculate an integral
over δ-function like terms which naturally leads to a very slow convergence of
the numerical integration. A possible way to overcome these difficulties could
be a shift of the integration into the complex plane. Středa [79] reformulated
Eq. (4.34) for the athermal limit (T = 0) in the Schrödinger case. He obtained
an expression without any integration and all energy dependent terms have
to be evaluated at the Fermi energy EF :

σµν =
~

4πV
Tr
〈

Ĵµ(G+ −G−)ĵνG
− − ĴµG

+ĵν(G
+ −G−)

〉

c

+
e

4πiV
Tr
〈

(G+ −G−)(r̂µĴν − r̂ν Ĵµ)
〉

c
. (4.35)

This results in the so-called Kubo-Středa equation. Crépieux and Bruno [81]
showed that the derivation holds also in the Dirac case.
The derivation of the first term in Eq. (4.35) is straightforward but the second
term is written in a way which is only valid under certain circumstances. The
second term is a reformulation of the following expression [81]:

σ̃µν =
~

4πV

∫ ∞

−∞

dEf(E)

Tr

〈

Ĵµ
dG−

dE
ĵνG

− − ĴµG
−ĵν

dG−

dE
︸ ︷︷ ︸

σ̃I,−
µν

+ ĴµG
+ĵν

dG+

dE
− Ĵµ

dG+

dE
ĵνG

+

︸ ︷︷ ︸

σ̃I,+
µν

〉

c

.

(4.36)

Eq. (4.36) is derived from Eq. (4.34) and can be considered as an equation
that consists of two similar integrals which contain only retarded or advanced
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Green’s functions, respectively. Therefore, it is sufficient to investigate the
integral:

σ̃I
µν =

~

4πV

∫ ∞

−∞

dEf(E)Tr

〈

Ĵµ
dG

dE
ĵνG− ĴµGĵν

dG

dE

〉

c

, (4.37)

without the superscripts + or −.
Now one can introduce the velocity operator v̂ via the relation ĵ = −ev̂
(e = |e|) into the last equation. For the special case that one is interested in
a spin-resolved current response one can use for the operator Ĵ the expression
Ĵ = −eP v̂ which includes additionally a spin-projection operator P (explicit
expressions for P are derived in Sec. 5.2). The combination of these relations
with the identities i~v̂i = [r̂i, Ĥ] = −[r̂i, G

−1] and dG
dE

= −G2 leads to:

σ̃I
µν =

e

4πiV

∫ ∞

−∞

dEf(E)Tr

〈

P [r̂µ, G
−1]

dG

dE
ĵνG− ĴµG[r̂ν , G

−1]
dG

dE

〉

c

(4.38)

=
e

4πiV

∫ ∞

−∞

dEf(E)Tr

〈

− P r̂µG
−1G2ĵνG+ PG−1r̂µG

2ĵνG

+ ĴµGr̂νG
−1G2 − ĴµGG

−1r̂νG
2

〉

c

(4.39)

=
e

4πiV

∫ ∞

−∞

dEf(E)

Tr

〈

− P r̂µGĵνG+ PG−1r̂µG
2ĵνG+ ĴµGr̂νG− Ĵµr̂νG

2

〉

c

(4.40)

=
e

4πiV

∫ ∞

−∞

dEf(E)Tr

〈

G2
(

ĵνGPG
−1r̂µ − Ĵµr̂ν

)
〉

c
︸ ︷︷ ︸

=σ̃Ia
µν

−
e2

4π~V

∫ ∞

−∞

dEf(E)Tr

〈

− P r̂µG[r̂ν , G
−1]G+ P [r̂µ, G

−1]Gr̂νG

〉

c
︸ ︷︷ ︸

=σ̃Ib
µν

.

(4.41)

38



4.2. Kubo-Středa Equation

The first term of Eq. (4.41) can be reformulated as follows:

σ̃Ia
µν =

e

4πiV

∫ ∞

−∞

dEf(E)Tr

〈

G2
(

ĵνGP(i~v̂µ + r̂µG
−1) − Ĵµr̂ν

)
〉

c

(4.42)

=
e

4πiV

∫ ∞

−∞

dEf(E)Tr

〈

i~G2ĵνGP v̂µ +GĵνGP r̂µ −G2Ĵµr̂ν

〉

c

(4.43)

=
e

4πiV

∫ ∞

−∞

dEf(E)Tr

〈

i~G2 e

i~
[r̂ν , G

−1]GP v̂µ

+G
e

i~
[r̂ν , G

−1]GP r̂µ −G2Ĵµr̂ν

〉

c

(4.44)

=
e

4πiV

∫ ∞

−∞

dEf(E)Tr

〈

eG2r̂νP v̂µ − eGr̂νGP v̂µ

+
e

i~
Gr̂νP r̂µ −

e

i~
r̂νGP r̂µ −G2Ĵµr̂ν

〉

c

(4.45)

=
e

4πiV

∫ ∞

−∞

dEf(E)Tr

〈

G2
(

er̂νP v̂µ − Ĵµr̂ν

)
〉

c
︸ ︷︷ ︸

σ̃Ia G2
µν

−
e2

4πiV

∫ ∞

−∞

dEf(E)Tr

〈

Gr̂νGP v̂µ

〉

c

. (4.46)

Under the assumption that the commutation relation [P , r̂] = 0 concerning
the spin-projection operator P is fulfilled one can reformulate σ̃Ia

µν via a partial
integration which gives:

σ̃Ia G2

µν = −
e

2πiV

∫ ∞

−∞

dEf(E)Tr

〈

G2Ĵµr̂ν

〉

c

(4.47)

= −
e

2πiV

∫ ∞

−∞

dE
df(E)

dE
Tr

〈

GĴµr̂ν

〉

c

(4.48)

=
e

2πiV

∫ ∞

−∞

dEδ(E − EF )Tr

〈

GĴµr̂ν

〉

c

(4.49)

=
e

2πiV
Tr

〈

G(EF )Ĵµr̂ν

〉

c

. (4.50)

Eq. (4.50) is restricted to the athermal case because otherwise the derivative
of the Fermi-Dirac distribution function does not become a δ-function.
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The second term of Eq. (4.41) gives:

σ̃Ib
µν =

e2

4π~V

∫ ∞

−∞

dEf(E)Tr

〈

− P r̂µGr̂νG
−1G+ P r̂µGG

−1r̂νG

+ P r̂µG
−1Gr̂νG− PG−1r̂µGr̂νG

〉

c

(4.51)

=
e2

4π~V

∫ ∞

−∞

dEf(E)Tr

〈

− P r̂µGr̂ν + P r̂µr̂νG

+ P r̂µr̂νG− PG−1r̂µGr̂νG

〉

c

(4.52)

=
e2

4π~V

∫ ∞

−∞

dEf(E)Tr

〈

− P r̂µGr̂ν + P r̂µr̂νG

+ P r̂µr̂νG− P[i~v̂µ + r̂µG
−1]Gr̂νG

〉

c

(4.53)

=
e2

4π~V

∫ ∞

−∞

dEf(E)Tr

〈

− P r̂µGr̂ν + P r̂µr̂νG

+ P r̂µr̂νG− P r̂µr̂νG

〉

c

+
e2

4πiV

∫ ∞

−∞

dEf(E)Tr

〈

P v̂µGr̂νG

〉

c

. (4.54)

The first integral of the last expression becomes zero when the assumed
commutation relation [P , r̂] = 0 is fulfilled.
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4.3. Kubo-Greenwood Equation

Finally, one obtains:

σ̃µν =σ̃I,+
µν + σ̃I,−

µν (4.55)

= −
e

2πiV
Tr
〈

(G+ −G−)Ĵµr̂ν

〉

c

+
e2

2πiV

∫ ∞

−∞

dEf(E)Tr

〈

P v̂µG
+r̂νG

+ − P v̂µG
−r̂νG

−

〉

c

(4.56)

= −
e

2πiV
Tr
〈

(G+ −G−)r̂ν Ĵµ

〉

c

−
e

2πiV

∫ ∞

−∞

dEf(E)Tr

〈

ĴµG
+r̂νG

+ − ĴµG
−r̂νG

−

〉

c

(4.57)

=
e

4πiV
Tr
〈

(G+ −G−)(r̂µĴν − r̂ν Ĵµ)
〉

c

−
e

2πiV

∫ ∞

−∞

dEf(E)Tr

〈

ĴµG
+r̂νG

+ − ĴµG
−r̂νG

−

〉

c

, (4.58)

which corresponds to the second term in Eq. (4.35) in combination with an
additional Fermi sea term. It is important to note that the Fermi sea term
is only present if [P , G] 6= 0.

To summarize, in this section it has been shown how the Kubo-Středa
equation can be derived from the Kubo equation within an independent elec-
tron picture without any further approximations. The important reformula-
tion of the Bastin formula by Středa [79] avoids an integration over energy
which makes the calculation of the Kubo-Středa equation numerically less
demanding. All energy dependent terms have to be evaluated at the Fermi
energy if [P , G] = 0. In that case only electronic states at the Fermi edge
contribute to the conductivity for the athermal limit.

4.3 Kubo-Greenwood Equation

The conductivity tensor of a cubic crystal with spontaneous magnetization
along the z-axis has the form [85]:

σ =





σxx σH 0
−σH σyy 0

0 0 σzz



 , (4.59)

with the Hall conductivity σH and σxx = σyy. The diagonal elements of
σ belong to the symmetric part (for systems with lower symmetries also
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non-diagonal elements may belong to the symmetric part) and the Hall
conductivity belongs to the anti-symmetric part of the conductivity tensor.
The Kubo-Středa equation gives access to the complete conductivity tensor
whereas the Kubo-Greenwood equation [86] gives only access to the symmet-
ric part. Therefore, it is not possible to calculate the Hall conductivity within
the Kubo-Greenwood formalism. For the derivation of the Kubo-Greenwood
equation one can start with Eq. (4.35):

σµν =
i~

2πV
Tr
〈

ĴµℑG
+ĵν(ℜG

+ − iℑG+) − Ĵµ(ℜG+ + iℑG+)ĵνℑG
+
〉

c

+
e

2πV
Tr
〈

ℑG+(r̂µĴν − r̂ν Ĵµ)
〉

c
(4.60)

=
i~

2πV
Tr
〈 [

ĴµℑG
+ĵν − ĵνℑG

+Ĵµ

]

ℜG+
〉

c
︸ ︷︷ ︸

σA
µν

+
~

πV
Tr
〈

ĴµℑG
+ĵνℑG

+
〉

c
︸ ︷︷ ︸

σB
µν

+
e

2πV
Tr
〈

ℑG+(r̂µĴν − r̂ν Ĵµ)
〉

c
︸ ︷︷ ︸

σC
µν

, (4.61)

with (G+ − G−) = 2iℑG+, G+ = ℜG+ + iℑG+ and G− = ℜG+ − iℑG+.
Eq. (4.61) shows that the Kubo-Středa equation consists of three different
terms σµν = σA

µν + σB
µν + σC

µν . These terms fulfill the relations σA
µν = −σA

νµ,
σB

µν = σB
νµ and σC

µν = −σC
νµ. This clearly shows that only term σB

µν contributes
to the symmetric part of the conductivity tensor. The term σB

µν represents the
so-called Kubo-Greenwood equation. This analysis demonstrates that under
the assumption of a small Hall conductivity (compared to the symmetric
elements) the Kubo-Greenwood equation is sufficient for calculations of the
residual resistivity of an alloy.
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4.4. Hierarchy of the Linear Response Equations

4.4 Hierarchy of the Linear Response Equa-

tions

The following diagram summarizes the various transport equations and their
interrelationship:

Kubo equation

σµν = V

∫ (kBT )−1

0

dλ

∫ ∞

0

dt
〈

ĵν ĴI,µ(t+i~λ)
〉

c
ei(ω+iδ)t

?

independent electron approximation,
ω = 0

Bastin equation

σµν =
i~

V

∫ ∞

−∞

dEf(E)Tr

〈

Ĵµ
dG+(E)

dE
ĵνδ(E−Ĥ)−Ĵµδ(E−Ĥ)ĵν

dG−(E)

dE

〉

c

?

T = 0K

Kubo-Středa equation

σµν =
~

4πV
Tr
〈

Ĵµ(G+ −G−)ĵνG
− − ĴµG

+ĵν(G
+ −G−)

〉

c

+
e

4πiV
Tr
〈

(G+ −G−)(r̂µĴν − r̂ν Ĵµ)
〉

c

?

retaining symmetric part only

Kubo-Greenwood equation

~

πV
Tr
〈

ĴµℑG
+ĵνℑG

+
〉

c
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Chapter 4. Electronic Transport within the Kubo formalism

4.5 Diagrammatic Representation

For the discussion of the conductivity via a diagrammatic representation it
is useful to start from Eq. (4.35) in the weak-disorder limit. In the weak-
disorder limit the second term from Eq. (4.35) is negligible [87] as well as the
contributions of the first term which contains two retarded or two advanced
Green’s functions (the latter is proved in appendix C for the case of negligible
vertex corrections). Therefore, the conductivity reduces to:

σµν =
~

2πV
Tr
〈
ĵµG

+ ĵν G
−
〉

c
. (4.62)

This equation can be represented via diagrams as shown in Fig. 4.1. The full

= +

+ +

+ +Γ

G+

G−

jµ jν

Figure 4.1: The conductivity represented via Feynman diagrams. The mean-
ing of the dashed lines and the black dots is explained in the caption of
Fig. 3.3. The curly lines represent the current density operator.

conductivity is illustrated via the diagram which includes the three-point vec-
tor vertex Γ [63]. Γ primarily represents all impurity scattering events which
connects the two Green’s function G+ and G− with each other. Therefore,
diagrams of the type like the second or the third on the right-hand side in
Fig. 4.1 are called vertex diagrams [88] and belong to the class of so-called
ladder and crossed diagrams, respectively. Within semiclassical Boltzmann
theory the vertex corrections correspond to the scattering-in term (see ap-
pendix D) which is important in the case of anisotropic scattering.
In the present work the averaging over two Green’s function is carried out in
the spirit of the CPA [89] which leads to the neglect of the crossed diagrams
which are responsible for the weak-localization effect [63, 90]. If one approx-
imates the averaging over two Green’s function in Eq. (4.62) by an averaging
over single Green’s function:

σµν =
~

2πV
Tr ĵµ

〈
G+
〉

c
ĵν
〈
G−
〉

c
, (4.63)
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=+++

Figure 4.2: Exemplary diagrams contributing to the bubble diagram. The
thick lines indicate the averaged propagators

〈
G±
〉

c
.

the vertex diagrams are neglected in the expansion of the full conductivity
diagram. Therefore, the conductivity can be represented by the bubble dia-
gram shown in Fig. 4.2. The conductivity calculated via the bubble diagram
can be connected with the classical Drude conductivity [63]:

σ =
e2τ n

m
, (4.64)

with the electron charge e, the mass m, the carrier density n and the relax-
ation rate τ .

4.6 Calculation of the conductivity tensor σµν

In this section the details of the calculation of the full conductivity tensor σµν

are presented. The most difficult part in the calculation of the conductivity
is the proper inclusion of vertex corrections. The vertex corrections take into
account that for the calculation of conductivity one has to perform a config-
uration average procedure (due to disorder in the investigated alloy) over a
product of two Green’s function (see Sec. 4.5). Butler [89] derived a scheme
to calculate the vertex corrections in a reliable way within the CPA. In this
scheme he derives response functions which give access after Fourier trans-
form to the vertex corrections (see Sec. 4.6.1). This non-relativistic scheme
was applied by Banhart and Ebert [91] to the spin-polarized relativistic case.
Tulip et al. [92] extended Butler’s scheme for the inclusion of ordering effects
in the lattice site occupation. Therefore, the scheme was reformulated within
the NLCPA (see Sec. 4.6.2).
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4.6.1 Symmetric Part of σµν within KKR-CPA

For the calculation of the symmetric part of the conductivity tensor one needs
only the Kubo-Greenwood equation:

σKG
µν =

~

πNaΩ
Tr
〈

ĴµℑG
+(EF )ĵνℑG

+(EF )
〉

c
, (4.65)

where Na is the number of atoms in the system and Ω the volume per atom.
Using the identity ℑG+ = 1

2i
(G+−G−) the last equation can be decomposed

in the following way:

σKG
µν =

1

4

[
σ̃µν(G

+, G+) + σ̃µν(G
−, G−) − σ̃µν(G

+, G−) − σ̃µν(G
−, G+)

]
,

(4.66)
with

σ̃µν(G
±, G±) = −

~

πNaΩ
Tr
〈

ĴµG
±(EF ) ĵµG

±(EF )
〉

c
. (4.67)

For the calculation of σ̃µν the Green’s function shown in Eq. (3.64) has to be
inserted into Eq. (4.67). Due to the fact that the second term in Eq. (3.64)
is purely real for a real potential and for real energies one can neglect the
second term of the standard multiple scattering representation of the Green’s
function [89]. This leads to:

σ̃µν(z1, z2) = −
~

πNaΩ

∑

m,n

Tr
〈

Jmµ(z2, z1)τ
mn(z1)j

nµ(z1, z2)τ
nm(z2)

〉

c
.

(4.68)
Here the underline denotes a matrix in ΛΛ′ with the matrix elements:

Jmµ
ΛΛ′(z2, z1) =

∫

d3rZ m×
Λ (r, z2) Ĵµ Z

m
Λ′ (r, z1) (4.69)

jnµ
ΛΛ′(z1, z2) =

∫

d3rZ n×
Λ (r, z1) ĵµ Z

n
Λ′(r, z2) (4.70)

= − ec

∫

d3rZ n×
Λ (r, z1)αµ Z

n
Λ′(r, z2) , (4.71)

where zk is a complex number being either EF + iδ or EF − iδ and ĵ = −ev̂ =
−ecα has been used where α is the vector of Dirac matrices (see Eq. (3.2)).
The next step in Butler’s scheme is to split σ̃µν into an on-site term centered
at site 0:

σ̃0
µν = −

~

πΩ
Tr
〈

J0µ(z2, z1)τ
00(z1)j

0ν(z1, z2)τ
00(z2)

〉

c
(4.72)
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and an off-site term:

σ̃1
µν = −

~

πΩ

∑

n6=0

Tr
〈

J0µ(z2, z1)τ
0n(z1)j

nν(z1, z2)τ
n0(z2)

〉

c
. (4.73)

The strategy for the further procedure is to define the last two equations via
response functions which contain only one current operator and to search
for a closed set of auxiliary equations which allows the calculation of these
response functions. The necessary response functions K and L are defined
via the following equations:

σ̃0
µν = −

~

πΩ

∑

α

xα TrK0α
ν (z1, z2)J

αµ(z2, z1) , (4.74)

with

K0α
ν (z1, z2) =

〈

τ 00(z1)j
αν(z1, z2)τ

00(z2)
〉

0=α
(4.75)

and

σ̃1
µν = −

~

πΩ

∑

n6=0

∑

α,β

xαxβ TrL0α,nβ
ν (z1, z2)J

αµ(z2, z1) , (4.76)

with

L0α,nβ
ν (z1, z2) =

〈

τ 0n(z1)j
βν(z1, z2)τ

n0(z2)
〉

0=α,n=β
. (4.77)

The Eqs. (4.74) - (4.77) contain the indices α and β that give the atom type
at a certain lattice position n. In the case of a binary alloy A1−xBx the matrix
element jnν must be either that of an A atom (with probability xα = 1 − x)
or of a B atom (with probability xβ = x). Therefore, the notation of the
matrix elements is slightly changed i.e. jβν = (jnν)n=β.
Butler was able to show that the response functions are connected within the
CPA in the following way:

K0α
ν (z1, z2) = D0α(z1)K̃

0α
ν (z1, z2)D̃

0α
(z2) , (4.78)

with

K̃0α
ν (z1, z2) =τ 00

CPA(z1)j
αν(z1, z2)τ

00
CPA(z2)

+
∑

k 6=0

τ 0k
CPA(z1)L̃

k0α
ν (z1, z2)ω(z1, z2) τ

k0
CPA(z2) (4.79)

and

L0α,nβ
ν (z1, z2) = D0α(z1)L̃

0nβ
ν (z1, z2)D̃

0α
(z2) , (4.80)
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with

L̃0nβ
ν (z1, z2) =τ 0n

CPA(z1)D
nβ(z1)j

βν(z1, z2)D̃
nβ

(z2)
︸ ︷︷ ︸

j̃
βν

(z1,z2)

τn0
CPA(z2)

+
∑

k 6=(0,n)

τ 0k
CPA(z1)L̃

knβ
ν (z1, z2)ω(z1, z2) τ

k0
CPA(z1) . (4.81)

Here the operators:

D0α(z) =1 + τ 00
CPA(z)xα(z) (4.82)

D̃
0α

(z) =1 + xα(z)τ 00
CPA(z) (4.83)

xα(z) =
{[
t−1
α (z) − t−1

CPA(z)
]−1

+ τ 00
CPA(z)

}

(4.84)

ωΛ1Λ2Λ3Λ4
(z1, z2) =

∑

α

xαx
α
Λ1Λ2

(z1)x
α
Λ3Λ4

(z2) , (4.85)

have been used with tα and tCPA are the single site t-matrix for atom type α
and for the CPA medium, respectively. It turns out that the only response
function which has to be calculated is L̃. Butler [89] shows that this can
be done with a Fourier transform of L̃. This procedure leads to an explicit
expression for the response function L̃:

L̃ = (1 − χω)−1 χ j̃ , (4.86)

with

χΛ1Λ2Λ3Λ4
(z1, z2) =

1

ΩBZ

∫

BZ

d3k τΛ1Λ2
(k, z1)τΛ3Λ4

(k, z2)

− τ 00
CPA,Λ1Λ2

(z1)τ
00
CPA,Λ3Λ4

(z2) . (4.87)

With Eq. (4.86) one has a closed set of equations which allows the calculation
of the terms σ̃0

µν and σ̃1
µν [89]:

σ̃µν =σ̃0
µν + σ̃1

µν (4.88)

= −
~

πΩ

∑

α

xα Tr J̃
αµ

(z2, z1)τ
00
CPA(z1)j

αν(z1, z2)τ
00
CPA(z2)

−
~

πΩ

∑

α,β

∑

Λ1,Λ2
Λ3,Λ4

xαxβ Tr J̃αµ
Λ1Λ2

(z2, z1)
[
(1 − χω)−1χ

]

Λ1Λ2
Λ3Λ4

j̃βν
Λ3Λ4

(z1, z2) ,

(4.89)
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with

j̃
αµ

(z1, z2) =D̃
0α

(z1)j
αµ(z1, z2)D

0α(z2) (4.90)

J̃
αµ

(z2, z1) =D̃
0α

(z2)J
αµ(z2, z1)D

0α(z1) (4.91)

where the term (1 − χω)−1 accounts for the vertex corrections to the con-
ductivity. For calculations without vertex corrections this term is replaced
by the unity matrix.
The presented scheme for the calculation of the conductivity is derived within
the CPA. As discussed in Sec. 4.5 this implies that certain classes of diagrams
are not considered in the derivation. In addition, it is not possible to include
ordering effects in the atomic lattice site occupation. This shortcoming can
be avoided by an employment of the NLCPA instead of CPA. The correspond-
ing scheme for a derivation within the NLCPA is sketched in the following
section.

4.6.2 Symmetric Part of σµν within KKR-NLCPA

In the previous section a scheme for the calculation of the conductivity of
an disordered alloy is presented. In this section a similar scheme derived by
Tulip et al. [92] is presented which is based on the NLCPA.
The starting point for the derivation of an expression for the conductivity
within the NLCPA is again the Kubo-Greenwood equation which is rewritten
as shown in Eq. (4.66). After this the conductivity is decomposed in a similar
way as in Eqs. (4.72-4.73). Due to the fact that the NLCPA is a cluster theory
the natural decomposition of the conductivity is to separate the conductivity
into an intra-cluster conductivity:

σ̃0,NLCPA
µν = −

~

πΩ

∑

N∈C

Tr
〈

JMµ(z2, z1)τ
MN(z1)j

Nν(z1, z2)τ
NM(z2)

〉

c
,

(4.92)
where M,N are sites in reference cluster C and an inter-cluster conductivity:

σ̃1,NLCPA
µν = −

~

πΩ
∑

C′ 6=C

∑

N∈C′

Tr
〈

JMµ(z2, z1)τ
M,C′+N(z1)j

Nν(z1, z2)τ
C′+N,M(z2)

〉

c
,

(4.93)

which describes the conductivity between reference cluster C and all sur-
rounding clusters C ′.
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Chapter 4. Electronic Transport within the Kubo formalism

The strategy for the further procedure is very similar to the previous section:
defining response functions like K and L and searching for a closed set of
equations which allow within the NLCPA the calculation of the conductivity
including vertex corrections. Finally, one arrives at the following equations
[92]:

σ̃NLCPA
µν =σ̃0,NLCPA

µν + σ̃1,NLCPA
µν (4.94)

= −
~

πΩ

∑

γC

∑

N,K,L

PγC
Tr

J̃
KLµ

γC
(z2, z1)τ

LN
NLCPA(z1)j

Nν

γC
(z1, z2)τ

NK
NLCPA(z2)

−
~

πΩ

∑

γC ,γC′

∑

K,L,M,N

∑

Λ1,Λ2
Λ3,Λ4

PγC
PγC′

Tr

J̃KLµ
Λ1Λ2,γC

(z2, z1)
[
(1 − χω)−1χ

]LMNK

Λ1Λ2Λ3Λ4
j̃MNµ
Λ3Λ4,γC′

(z1, z2) , (4.95)

with

j̃
KLµ

γC
(z1, z2) =

∑

N

D†,γC

KN (z1)j
Nν

γC
(z1, z2)D

γC

NL(z1) (4.96)

J̃
KLµ

γC
(z2, z1) =

∑

N

D†,γC

KN (z2)J
Nν
γC

(z2, z1)D
γC

NL(z1) (4.97)

and JNν
γC

(jNν
γC

) is a matrix element as given by Eq. (4.69) (Eq. (4.70)) for site

N within a cluster with configuration γC (PγC
is the probability for occurrence

of a cluster with configuration γC with
∑

γC
PγC

= 1). The matrices DγC

NL and

D†,γC

NL correspond to their CPA-related counterparts given in Eqs. (4.82) and
(4.83), respectively. Similar to the CPA case the term (1−χω)−1 in Eq. (4.95)
accounts for the vertex corrections to the conductivity. The matrices ω and
χ are cluster generalizations of the definitions given in the previous section:

ωLMNK
Λ1,Λ2,Λ3,Λ4

=
∑

γC

PγC
xKL

Λ4Λ1
xMN

Λ2Λ3
(4.98)

χLMNK
Λ1,Λ2,Λ3,Λ4

=Nc

∑

C′ 6=C

τL,C′+M
NLCPA,Λ1Λ2

τC′+N,K
NLCPA,Λ3Λ4

(4.99)

=Nc

∑

C′

τL,C′+M
NLCPA,Λ1Λ2

τC′+N,K
NLCPA,Λ3Λ4

−Ncτ
LM
NLCPA,Λ1Λ2

τNK
NLCPA,Λ3Λ4

(4.100)

=
1

ΩBZ

∫

ΩBZ

d3k τΛ1Λ2
(k)τΛ3Λ4

(k)eik(RL−RM+RN−RK)

−Ncτ
LM
NLCPA,Λ1Λ2

τNK
NLCPA,Λ3Λ4

, (4.101)
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4.6. Calculation of the conductivity tensor σµν

where Nc denotes the number of sites within a cluster (the matrix xKL

is also a cluster generalization of the corresponding CPA matrix shown in
Eq. (4.84)).
Applying the coarse graining procedure described in Sec. 3.2.3 the expression
for χ can be rewritten in the following form:

χLMNK
Λ1,Λ2,Λ3,Λ4

=
Nc

ΩBZ

∑

Kn

∫

ΩKn

d3k τΛ1Λ2
(Kn,k)τΛ3Λ4

(Kn,k)eiKn(RL−RM+RN−RK)

−Ncτ
LM
NLCPA,Λ1Λ2

τNK
NLCPA,Λ3Λ4

. (4.102)

The most time consuming step is the calculation of the vertex corrections
(1 − χω)−1 due to the inversion of the super matrix (1 − χω). This super
matrix has a dimension Nc×Nc×NΛ×NΛ (NΛ denotes the number of angular
momentum quantum numbers) which gives in the case of the smallest possible
fcc cluster (Nc = 4) with Lmax = 3 (NΛ = 32) a 16384 × 16384 matrix.

4.6.3 Anti-Symmetric Part of σµν within KKR-CPA

In order to calculate the anti-symmetric part of the conductivity tensor via
the Kubo-Středa equation one has to evaluate the first and third term given
in Eq. (4.61):

σanti
µν =

i~

2πV
Tr
〈 [

ĴµℑG
+ĵν − ĵνℑG

+Ĵµ

]

ℜG+
〉

c
︸ ︷︷ ︸

σanti,A
µν =σ

anti,Aµν
µν −σ

anti,Aνµ
µν

+
e

2πV
Tr
〈

ℑG+(r̂µĴν − r̂ν Ĵµ)
〉

c
︸ ︷︷ ︸

σanti,B
µν

, (4.103)

with the first term giving the dominant contribution (this is demonstrated in
Sec. 7.2 for the anomalous Hall effect and in Sec. 7.1 for the spin Hall effect).
If one compares the Kubo-Greenwood equation with these two terms it turns
out that again an averaging procedure over two or one Green’s function has
to be done, respectively. The averaging over a single Green’s function can be
done with the standard CPA algorithm (therefore σanti,B

µν is not further dis-
cussed) whereas the averaging over two Green’s functions takes into account
the vertex corrections to the conductivity and need a similar treatment as
for the symmetric part of σµν .

The conductivity term σanti,A
µν

Concerning the first term in Eq. (4.103) the only important difference to
the treatment of the Kubo-Greenwood equation is that the real part of the
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Chapter 4. Electronic Transport within the Kubo formalism

Green’s function is needed in addition to the imaginary part:

ℑG+(r, r ′, EF ) =ℑ
∑

ΛΛ′

Zi
Λ(r, E+

F )τ ij
ΛΛ′(E

+
F )Zj ×

Λ′ (r ′, E+
F ) (4.104)

ℜG+(r, r ′, EF ) =ℜ
∑

ΛΛ′

Zi
Λ(r, E+

F )τ ij
ΛΛ′(E

+
F )Zj ×

Λ′ (r ′, E+
F )

−
∑

Λ

[
Zi

Λ(r, E+
F )J i×

Λ (r ′, E+
F )Θ(r′ − r)

+J i
Λ(r, E+

F )Zi×
Λ (r ′, E+

F )Θ(r − r′)
]
δij . (4.105)

Using the identities ℑG+ = 1
2i

(G+ − G−) and ℜG+ = 1
2
(G+ + G−) one can

rewrite σ
anti,Aµν
µν in the following way:

σanti,Aµν
µν =

i~

2πV
Tr
〈

ĴµℑG
+ĵνℜG

+
〉

c
(4.106)

=
1

4i

[
σ̃anti

µν (G+, G+) − σ̃anti
µν (G−, G−)

+σ̃anti
µν (G+, G−) − σ̃anti

µν (G−, G+)
]
, (4.107)

with

σ̃anti
µν (G±, G±) =

i~

2πV
Tr
〈

ĴµG
±(EF ) ĵµG

±(EF )
〉

c
(4.108)

(the procedure for the second term σ
anti,Aνµ
µν is identical).

Eq. (4.108) is similar to Eq. (4.67) which appears in the calculation of the
symmetric part of the conductivity tensor. However, the important difference
compared to the calculation of the symmetric part is that the full Green’s
function is needed. For the calculation of the symmetric part it turns out that
all terms which include the second term of Eq. (4.105) (this term is purely
real) drop out. Therefore, the second term of Eq. (4.105) can be neglected
for the calculation of the symmetric part [89] (this is what one would expect
because in the Kubo-Greenwood equation only ℑG+ appears).

Splitting of σ̃anti
µν into an on-site term σ̃anti,0

µν and an off-site term σ̃anti,1
µν (as

shown in Sec. 4.6.1 for σ̃µν) shows that the second term from Eq. (4.105) gives
only a contribution to the on-site conductivity. From physical reasons and
also from the experience with the symmetric part of the conductivity tensor
the on-site contribution is negligible compared to the off-site conductivity.
In order to avoid numerical difficulties with the irregular solutions which
appear in the second term from Eq. (4.105) the on-site conductivity σ̃anti,0

µν is
neglected for the anti-symmetric part of the conductivity tensor.

The calculation of σ̃anti,1
µν can be done with the scheme presented in

Sec. 4.6.1. Therefore, the calculation of σanti,A
µν is based essentially on a sim-

ilar procedure as for the symmetric part which account in a proper way for
the vertex corrections.
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Chapter 5

Spin Resolved Conductivity

During the last years research activities in spintronics increased very rapidly.
The reason for the growing interest in this field is based on the close connec-
tion with fundamental scientific questions as well as its impact on technology
[5, 8]. Compared to standard electronics where only the charge of the elec-
trons is used, spintronics uses the charge of the electrons in combination with
the spin degree of freedom. Fig. 5.1 shows schematically the dependence of
the electric current on the spin orientation. The green spin-down electrons
which have primarily d character are “stronger” scattered than the the red
spin-up electrons. This leads for this schematic example to an electric current
dominated by spin-up electrons. The observation that transport properties
can be very sensitive to the spin orientation of the electrons is the basis of
spintronics.

Figure 5.1: Schematic picture of spin dependent electric transport (from
Ref. [93]).
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Chapter 5. Spin Resolved Conductivity

One of the most exciting effects within spintronics is the spin Hall effect
(SHE) which is discussed in Sec. 7.1. The SHE appears when an electric
current flows through a medium with spin-orbit coupling present, leading
to a spin current perpendicular to the charge current. For a theoretical in-
vestigation of effects like the SHE it is obviously crucial to have a reliable
description for the spin-dependent transport that accounts for the impact of
spin-orbit coupling in a proper way.
Within non-relativistic quantum mechanics the electronic spin can be de-
scribed via the well known Pauli matrices σi, specifying the non-relativistic
spin operator s = ~

2
σ. Due to the fact that the Schrödinger Hamiltonian HS

commutes with s the projection of the spin e.g. to the z-axis is a constant
of motion. This is no longer the case within a scheme that accounts for
spin-orbit coupling. The most reliable approach in this context makes use of
electronic structure calculations on the basis of the Dirac equation. It turns
out that even in the simplest case of a free electron the Dirac Hamiltonian
does not commute with e.g. sz. However, it is possible to define a generalized
spin operator which commutes with the free electron Dirac Hamiltonian and
shows all characteristic properties of a spin operator (see Sec. 5.2).
Within the fully relativistic description it is not possible to decompose the
conductivity in a strict sense into spin-up and spin-down contributions in a
simple way. Therefore, one may use approximative schemes or one can switch
to scalar-relativistic calculations [94, 95] to decompose the conductivity into
two different spin channels. The disadvantage of these two approaches is that
approximative schemes work only under certain circumstances and scalar-
relativistic calculations neglect all scattering events that lead to a spin flip
due to the fact that such calculations neglect spin-orbit coupling. To avoid
such shortcomings a proper relativistic spin projection operator is necessary.
Most investigations concerning spin-dependent transport within a medium
with spin-orbit coupling present were based on the Pauli equation including
spin-orbit coupling explicitly as a relativistic correction term and represent-
ing the spin-current density essentially by a combination of the Pauli spin
matrix σz with the conventional current density operator [96]. Very few in-
vestigations have been done so far on the basis of the Dirac equation using
an expression for the spin-current density, albeit introduced in an ad-hoc
manner [84]. In contrast to these approximate schemes to deal with spin-
dependent transport the approach suggested by Vernes et al. [97] supplies
a fully relativistic and coherent description of electronic spin-polarization
and the associated spin-current density. This approach based on the four-
component polarization operator T introduced by Bargmann and Wigner
[98] leads, in particular, to a corresponding set of continuity equations (in
Sec. 7.1 a spin-current density operator derived from T will be used in order
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to calculate the spin Hall effect for non-magnetic alloys). In the following,
spin projection operators derived from the polarization operator T are intro-
duced. This allows a decomposition of the conductivity into contributions
from each spin channel within fully relativistic transport calculations. Appli-
cations on the spin-dependent transport of various magnetic transition metal
alloy systems demonstrate the flexibility and reliability of the new approach.

5.1 An Approximative Spin Decomposition

Scheme

In order to decompose the conductivity into two different spin channels one
can manipulate certain matrix elements which appear in the Kubo formalism
presented in chapter 4 which leads to an approximate spin decomposition
scheme. Such a scheme was recently suggested by Popescu et al. [99]. Within
the Kubo formalism the various contributions e.g. to σxy are of the form (see
Sec. 4.6):

σxy ∝ Tr

〈

jx τ jy τ

〉

, (5.1)

where the double underlines indicate a supermatrix with respect to the site
and angular momentum indices and jΛΛ′ is a current density matrix element.
This equation can be transformed from the standard relativistic representa-
tion (using the quantum numbers Λ = (κ, µ) as labels) to a spin-projected
one (using the quantum numbers L = (l,ml,ms) as labels). Suppressing the
spin-flip term of the current density matrix elements jLL′ one can easily split
the conductivity into spin-up and spin-down contributions and an additional
spin-flip contribution σz+− that is related to the spin-off-diagonal elements
of the scattering path operator τ :

σxy ∝ Tr

〈(
Jx

++ 0
0 Jx

−−

) (
τnm

++ τnm
+−

τnm
−+ τnm

−−

)(
Jy

++ 0
0 Jy

−−

) (
τmn

++ τmn
+−

τmn
−+ τmn

−−

)〉

(5.2)

with +=spin-up and −=spin-down. From Eq. (5.2) on can easily calculate
the contributions of the different spin channels to the conductivity. E.g. the
spin-up contribution to the conductivity is:

σz+
xy ∝ Tr

〈(
Jx

++ 0
0 0

) (
τnm

++ τnm
+−

τnm
−+ τnm

−−

)(
Jy

++ 0
0 0

) (
τmn

++ τmn
+−

τmn
−+ τmn

−−

)〉

.

(5.3)
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Figure 5.2: Spin decomposition of the Fe1−xCrx conductivity. The left figure
compares the isotropic conductivity (σ = 2

3
σxx + 1

3
σzz) calculated without

spin decomposition scheme with the conductivity calculated via σz+ + σz−.
The right figure shows the spin decomposition of the conductivity.

As an example Fig. 5.2 shows the application of the presented spin de-
composition scheme for Fe1−xCrx. The left panel shows that the deviations
between the conductivity calculated via Eq. (5.2) i.e. σxy = σz+

xy + σz−
xy and

the conductivity calculated without spin decomposition are negligible for this
system. This demonstrates that the approximate spin decomposition scheme
is suitable for Fe1−xCrx. The right panel of Fig. 5.2 displays the decom-
position into spin-up and spin-down contributions. In addition, the small
spin-flip conductivity σz+− is shown. All applications of the scheme made so
far imply that it works well for systems containing relatively light elements
(i.e. including 3d transition metals), but fails if heavier elements are involved
(see below).

The spin decomposition scheme shown in this section is based on drastic
matrix element manipulations and is therefore only applicable under certain
circumstances. If the spin-flip contributions are non-negligible the scheme
will fail. Therefore, the need for a more general applicable spin decomposition
scheme is obvious. Such a general scheme is presented in the following section.

5.2 Relativistic Spin Projection Operators

The starting point of the derivation of suitable relativistic spin projection
operators is based on the four-vector polarization operator T which was
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derived by Bargmann and Wigner [98]:

T = βΣ −
γ5Π

mc
(5.4)

T4 = i
Σ·Π

mc
, (5.5)

with the kinetic momentum Π = (p̂ + |e|
c
A)14 and the canonical momentum

p̂. The matrices Σ are the relativistic Pauli-matrices, β is one of the standard
Dirac matrices and [31]:

γ5 =

(
0 −12

−12 0

)

. (5.6)

The operator T can be considered as a generalized spin operator which com-
mutes with the field free Dirac Hamiltonian [31]:

H free = cα·̂p + βmc2 . (5.7)

In addition, the components Tµ are the generators of the little group that
is a subgroup of the group of Lorentz transformations [100]. In comparison
to other suggested forms of polarization operators the operator T is gauge
invariant [31] and therefore the appropriate basis for calculations which in-
clude electromagnetic fields.
A widely used relativistic scheme to deal with magnetic solids within spin
density functional theory was introduced by MacDonald and Vosko [34]. The
corresponding Dirac Hamiltonian (see Eq. (2.17)):

H = cα·̂p + βmc2 + veff + βΣ·Beff , (5.8)

includes an effective scalar potential veff and an effective magnetic field Beff

coupling only to the spin degree of freedom. For the subsequent discussion
we choose Beff = B(r) êz as frequently done within electronic structure cal-
culations. The commutator of T and H is non zero which shows that T is
no longer a constant of motion.

From T corresponding spin projection operators P± can be derived by
demanding:

P+ + P− = 1 (5.9)

P+ − P− = T , (5.10)

or equivalently

P± =
1

2
(1 ± T ) . (5.11)
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The projection of T to a unit vector along the z-axis nT = (0, 0, 1, 0) leads
to the following expression:

T · n = βΣz −
γ5Πz

mc
. (5.12)

Making use of the relation B = ∇ × A between the vector potential A
and the magnetic field B, A has only non-zero components in the xy-plane
if B ‖ êz (see Eq. (5.8)), i.e. Az = 0. For the spin projection operators this
leads to:

P±
z =

1

2

[

1 ±

(

βΣz −
γ5p̂z

mc

)]

. (5.13)

Starting from the polarization operator T Vernes et al. [97] could demon-
strate that a corresponding spin current density operator is given by a com-
bination of T with the conventional relativistic electron current density op-
erator:

ĵµ = −ecαµ , (5.14)

where αµ is one of the standard Dirac matrices [31] (e = |e|). Accordingly,
we get an operator for the spin-projected current density by combining P±

z

and ĵµ which leads to J z±
µ = P±

z ĵµ.
Using J z±

µ to represent the observable within Kubo’s linear response formal-
ism one can derive expressions for a corresponding spin-projected conductiv-
ity tensor (see chapter 4). Restricting to the symmetric part of the tensor
one arrives at (see Eq. (4.61)):

σz±
µν =

~

πNΩ
Tr

〈

J z±
µ ℑG+(EF ) ĵν ℑG

+(EF )

〉

. (5.15)

Here N is the number of atomic sites, Ω the volume per atom, ĵµ is the
current density operator (µ = x, y, z) and ℑG+(EF ) is the imaginary part of
the retarded one particle Green function at the Fermi energy EF .
Eq. (5.15) is obviously the counter-part to the conventional Kubo-Greenwood
equation [89] for the spin-integrated conductivity that is recovered by replac-
ing J z±

µ by ĵµ.

5.3 Results

As a first application of the presented projection scheme the spin resolved
conductivity of the alloy system Fe1−xCrx has been calculated assuming the
magnetization to be aligned along the z-axis. The presence of the spin-orbit
coupling gives rise to the anisotropic magnetoresistance (AMR, see Sec. 7.2)
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Figure 5.3: Spin resolved conductivity tensor elements σ
z+(−)
xx and σ

z+(−)
zz of

Fe1−xCrx calculated for the magnetization pointing along the z-axis using
the operators P±

z (full symbols). In addition, results are shown that have
been obtained using the approximate scheme from Sec. 5.1.

with the conductivity tensor elements σxx = σyy 6= σzz for this situation.
The reduced symmetry is also reflected by the spin projected conductivities
σ

z+(−)
xx and σ

z+(−)
zz , as can be seen in Fig. 5.3. Obviously, the conductiv-

ity is quite different for the two spin channels. This behavior can be traced
back straight forwardly to the electronic structure of the alloy system around
the Fermi energy that can be represented in a most detailed way in terms
of the spin-projected Bloch spectral function (BSF) [101]. While for the
spin-down subsystem there exists a well-defined Fermi surface with domi-
nant sp-character corresponding to a sharp BSF, the spin-up subsystem is
primarily of d-character that is much more influenced by the chemical disor-
der in the system leading to a BSF with rather washed-out features. As the
width of the BSF can be seen as a measure for the inverse of the electronic
lifetime the very different width found for the two spin subsystems explain
the very different spin-projected conductivities. The influence of an increas-
ing Cr concentration for Fe rich Fe1−xCrx alloys on the BSF and the residual
resistivity is discussed in detail in Sec. 6.2.2.
Fig. 5.3 shows in addition results that have been obtained on the basis of the
approximate spin-projection scheme presented in Sec. 5.1. For 3d-elements
with a relatively low spin-orbit coupling it is found that the neglect of spin-
off-diagonal elements of jLL′ is well justified and that σz+− is quite small.
In fact the spin-projected conductivities σ

z+(−)
xx and σ

z+(−)
zz obtained by the

approximate scheme compare very well with the results using the spin pro-
jection operators P±

z (see Fig. 5.3).

In Fig. 5.4 the operators P±
z are applied to the alloy system Co1−xPtx.
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Figure 5.4: Isotropic spin resolved conductivity σz+(−) = (2σ
z+(−)
xx +σ

z+(−)
zz )/3

of Co1−xPtx for the magnetization pointing along the z-axis (full symbols).
In addition, results are shown that have been obtained using the approximate
scheme from Sec. 5.1.

The results are again compared with calculations using the approximative
scheme. This figure clearly shows that the operators P±

z are also suitable for
alloys with strong spin-orbit coupling whereas the approximative scheme fails
as it leads to unrealistic results. The calculation of the total conductivity for
e.g. Co0.2Pt0.8 via Eq. (5.2) leads to a conductivity which is approximately
six times larger than the conductivity calculated with the Kubo-Greenwood
equation without any spin decomposition. This shows that the neglect of
spin-off-diagonal elements of jLL′ is not justified for this system.
Another important issue that can be seen from Fig. 5.4 is that the difference
between the contributions of the two spin channels to the total conductivity
is small. This observation is in agreement with the calculations of Ebert
et al. [94]. They calculated the ratio between the spin-up and the spin-down
resistivity within the two-current model and obtained values between ≈1.0-
1.8 (present work ≈1.0-1.2 using P±

z ).

As another application of the operators P±
z results for diluted Ni-based

alloys with xNi = 0.99 are shown in Fig. 5.5 in terms of the isotropic residual
resistivities ρz+(−) = ((2σ

z+(−)
xx + σ

z+(−)
zz )/3)−1. As one notes, the resistivity

for the two spin channels show a rather different variation with the atomic
number of the impurities. This can be traced back again to the spin-projected
electronic structure of Ni at the Fermi level and the position of the impurity
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Figure 5.5: Spin resolved resistivity of Ni with 3d transition metal impurities
(1%) obtained by the present scheme (full squares) compared to theoretical
data from Mertig et al. [102] (open squares), experimental data from Fert
[103] (full circles) and other experimental data (see Ref. [104], open cir-
cles). The left and right panel show the data for spin-up and for spin-down,
respectively.

d-states [102]. In Fig. 5.5 the results of calculations by Mertig et al. [102]
have been added, that were done in a scalar-relativistic way – i.e. ignoring
spin-orbit coupling – on the basis of the Boltzmann-formalism and by making
use of the two-current model. In spite of the various differences between this
approach and the presented scheme, the resulting spin-projected resistivities
agree fairly well. This also holds concerning corresponding experimental
data that have been deduced from measurements relying on the two-current
model.

In summary, two schemes for a spin projection within transport calcula-
tions have been presented. The spin projection operators from Sec. 5.2 have
been derived from a relativistic four-vector polarization operator which can
be considered as a generalized spin operator which exhibits similar features
as the well known non-relativistic spin operator.
The applications presented were restricted to the symmetric part of the corre-
sponding conductivity tensor described by a Kubo-Greenwood-like equation.
Results obtained for the disordered alloy systems Fe1−xCrx, Co1−xPtx and
diluted Ni-based alloys were compared to results based on an alternative but
approximate projection scheme and theoretical as well as experimental data
based on the two current model. The good agreement found for the inves-
tigated systems ensures the consistency and reliability of the presented spin
projection operator scheme. Accordingly, this is expected to hold also when
dealing with spin-projected off-diagonal conductivities as e.g. σ

z+(−)
xy on the

basis of Kubo-Středa-like equations. This gives access in particular to the
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spin-projected Hall conductivity in magnetic materials as well as to the spin
Hall conductivity in non-magnetic materials which is investigated in Sec. 7.1.
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Chapter 6

Residual Resistivity
Calculations

6.1 Ga1−xMnxAs

The system Ga1−xMnxAs belongs to the class of so-called diluted magnetic
semiconductors (DMS). These systems combine ferromagnetism with semi-
conducting properties which makes them promising for future spintronics ap-
plications [5]. In order to use such materials in technical applications a high
Curie temperature TC (above room temperature) is needed. Ga1−xMnxAs
belongs to DMS-systems for which Curie temperatures are predicted theo-
retically above room temperature for Mn concentrations ≥ 10% [105]. In
spite of these optimistic predictions up to now the highest measured Curie
temperatures are ≈ 185 K (12.5 % Mn) [106].
The measured Curie temperature is highly affected by the quality of the
grown samples [105]. Therefore, the understanding of the influence of the
defects appearing during the grow process like e.g. the occupation of inter-
stitial positions by Mn is essential for further applications of these materi-
als. However, such defects play also a crucial role for transport properties
like e.g. the residual resistivity of the grown samples. In order to apply
Ga1−xMnxAs in further spintronics applications a detailed understanding of
the transport properties of imperfect samples is required. The present work
investigates the influence of several defect types on the residual resistivity of
Ga1−xMnxAs.

The preferred position of Mn in the GaAs host (ZnS structure) is the Ga
position (Mn(Ga)). In this position Mn acts as an acceptor. In addition, Mn
can occupy the less favorable interstitial position (Mn(i)) [107] which leads
to a double donor behavior for the Mn impurities [105].
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Figure 6.1: Residual resistivity of Ga1−xMnxAs as function of the Mn(Ga)

concentration. The calculated data of the present work are (VC = vertex
corrections) compared with other theoretical works (Turek et al. [108], Ogura
unpublished) as well as experimental data (Edmonds et al. [109], Choi et al.
[110], Chun et al. [111]).

Fig. 6.1 shows the residual resistivity as calculated in the present work
for Ga1−xMnxAs as function of the Mn(Ga) concentration. Obviously, the
resistivity decreases with increasing Mn(Ga) concentration. This behavior is
opposite to that found for metallic alloys which show an increase of resis-
tivity with increasing impurity concentration due to an increase of impurity
scattering. Such a metallic like behavior is also present in Ga1−xMnxAs but
the increased Mn(Ga) concentration leads to an increasing number of carriers
which overcompensates the impurity scattering effect.
The agreement of the calculated data with other theoretical works is very
good and the observation that vertex corrections only slightly change the re-
sistivity is in line with the calculations by Turek et al. [108] (in the following
only results including vertex corrections are shown).
The experimental data shown in Fig. 6.1 show a strong scatter. This observa-
tion hinders a direct comparison with calculated resistivities. Nevertheless,
all experimental resistivities are above the calculated resistivities. In order to
simulate a more realistic sample one has to consider various types of defects.
This is illustrated in Fig. 6.2 where the residual resistivity of Ga1−xMnxAs
samples with additional 1% Mn(i), 1% As(Ga) (As antisites) as well as combi-
nations of 1% Mn(i) with 1% As(Ga) are shown. It turns out that the addition
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Figure 6.2: Residual resistivity of Ga1−xMnxAs with several additional types
of defects. The experimental data are similar to Fig. 6.1.

of further types of defects lead to an increase of resistivity. This is based on
the fact that Mn(i) as well as As(Ga) act as a double donor and therefore com-
pensate the holes created by two Mn(Ga) [112] leading to a reduction of carri-
ers and therefore to an increased resistivity. The combination of Mn(i) with
As(Ga) leads, as expected, to the highest resistivity values and this way makes
contact to experimental resistivities. It is noteworthy that the resistivity of
Ga0.95Mn0.05As compared to the resistivity of (Ga0.95Mn0.04As0.01)AsMn

(i)
0.01 is

increased by ≈ 300% which clearly indicates the sensitivity of the system to
imperfections. This sensitivity is obviously responsible for the large scatter
in the experimental data. Therefore, the comparison with experimental data
remains difficult due to uncontrolled impurity creation during the growth
process.

6.2 Influence of Short Ranged Ordering

The measurement of the electrical resistivity of a conducting solid is easy to
perform and can be used to characterize its microstructure. As many other
physical properties of alloys, the residual resistivity is affected by short-range
order (SRO) and so its measurement can be used to monitor changes in SRO
as they occur in material processing. For technical applications it is im-
portant to know what these changes are so that physical properties can be
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controlled. SRO plays an important role concerning this and resistivity mea-
surements are used to follow its variation [113]. Therefore, the dependence
of resistivity on SRO needs to be understood in detail. On intuitive grounds
many materials are expected to increase their resistivity with increasing dis-
order [3] - fluctuations in the occupation of the lattice sites lead to so-called
disorder scattering of the current-carrying electrons and thus to an increase
in the resistivity. On the same grounds the resistivity is expected to drop if
SRO is introduced into the material. Many alloys follow this general trend,
e.g. Cu1−xZnx [3] (see Sec. 6.2.1). However, there is a significant set of alloys
which show completely contrary behavior so that their resistivities actually
increase when SRO is increased. These materials belong to the class of so-
called K-state alloys [114] which are discussed in detail in Sec. 6.2.3.
In the following three different ordering situations are simulated:

− random disorder (disorder)
no correlations between occupation of neighboring lattice sites

− SRO
enhanced probability for unlike atom types sitting next to each other

− clustering
enhanced probability for like atom types sitting next to each other.

6.2.1 Cu1−xZnx

In order to demonstrate the applicability of the formalism shown in Sec. 4.6.2
the alloy system Cu1−xZnx is a suitable test case. The phase diagram of this
alloy system shows a lot of complex phases [115]. However, for approximately
equiatomic concentrations the system exhibits above 468 ◦C a randomly dis-
ordered bcc phase which transforms for temperatures below 468 ◦C to a
ordered CsCl structure [116]. Therefore, bcc Cu1−xZnx has been used in the
following to simulate the impact of ordering effects on the residual resistivity.
Randomly disordered bcc Cu1−xZnx exhibits an ideal parabolic like x(1− x)
behavior of the concentration dependent residual resistivity (Nordheim be-
havior [117]) as shown by Fig. 6.3. This figure demonstrates in addition the
importance of vertex corrections for this system.

As expected in general Cu1−xZnx shows a decrease in resistivity upon or-
dering [3]. For the inclusion of short ranged ordering effects of the lattice site
occupation within resistivity calculations the NLCPA formalism introduced
in Sec. 4.6.2 has been employed. Short ranged ordering can be defined via
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Figure 6.3: Residual resistivity of randomly disordered Cu1−xZnx. The
dashed line indicates the CPA results neglecting vertex corrections (VC)
whereas the solid line connects the results including vertex corrections.

the Warren-Cowley SRO parameter α [118, 119]:

αij = 1 −
pA

i |j
B

cA
(6.1)

where cA is the concentration of atom type A and pA
i |j

B is the conditional
probability that an atom of type A occupies site i when site j is occupied
with an atom of type B. If the investigated alloy is randomly disordered pA

i |j
B

is equal cA which leads to αij = 0 whereas in the case of clustering (phase
segregation) pA

i |j
B = 0 and αij = 1.

For the calculations the smallest bcc cluster has been used (2-atomic
cluster which leads to four different cluster configurations). The associated
cluster probabilities for the different ordering situations are shown in ap-
pendix B. The results of these calculations are displayed in Fig. 6.4. As one
can see from this figure the agreement of the CPA calculations compared
with the NLCPA calculations in the case of randomly disorder is very good
which shows that the NLCPA implementation (i.e. algorithm) is reliable.
If one includes clustering effects in the NLCPA calculations the resistivity
increases whereas the inclusion of SRO ordering leads to a drastic decrease
of resistivity especially in the case of Cu0.5Zn0.5. The decrease in resistivity
by approaching the concentration Cu0.5Zn0.5 is in good agreement with the
shown experimental data. For Cu0.5Zn0.5 one can define the following cluster

67



Chapter 6. Residual Resistivity Calculations

0 0.2 0.4 0.6 0.8 1
x

0

5

10

15

ρ 
(1

0-6
O

hm
 c

m
)

CPA (no VC) 
CPA (VC) 
NLCPA disordered (no VC) 
NLCPA disordered (VC) 
NLCPA clustering (VC)
NLCPA SRO (VC)
Exp. SRO

Figure 6.4: Residual resistivity of Cu1−xZnx for various ordering situations.
In addition, experimental data from Ref. [120] for ordered samples with CsCl
structure are displayed.

probabilities:

PCu,Cu =0.25 +
α

4

PCu,Zn =0.25 −
α

4

PZn,Cu =0.25 −
α

4

PZn,Zn =0.25 +
α

4
,

where α is the first shell Warren-Cowley SRO parameter which is in the
range of 1 (clustering) and −1 (SRO). With these cluster probabilities one
can continuously simulate the influence of SRO on the resistivity. Fig. 6.5
compares the resistivity of Cu0.5Zn0.5 as function of α with an experimental
room temperature measurement. The intersection of the dashed line with the
solid line corresponds to α ≈ −0.6. At room temperature, the atoms form an
essentially perfectly ordered CsCl structure [116] what implies α ≈ −1. The
overestimate of α compared to the ordered CsCl structure based presumably
on the fact that the calculations where done in the athermal limit (0 K)
and therefore all temperature induced scattering effects (e.g. phonons) are
neglected which leads to an underestimation of the resistivity compared to
experiment. In addition, crystal imperfections lead also to an increase of the
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Figure 6.5: Residual resistivity of Cu0.5Zn0.5 as function of the first shell
Warren-Cowley SRO parameter α. The circles show results including vertex
corrections. The dashed line is an experimental value measured at room
temperature from Ref. [120].

measured resistivity [3] and therefore complicate the comparison between
experimental and theoretical investigations.

This section demonstrates that the inclusion of short ranged ordering
effects can drastically influence the residual resistivity. It turns out that
relatively small cluster sizes of the NLCPA clusters are already sufficient to
simulate the impact of short ranged ordering effects on the residual resistivity.

6.2.2 Fe1−xCrx and the Slater-Pauling Curve

The Slater-Pauling plot of average magnetization per atom M versus va-
lence electron number Nv which is shown in Fig. 6.6 plays a pivotal role in
the understanding of the properties of ferromagnetic alloys [121]. Its trian-
gular structure of two straight lines with gradients of opposite sign neatly
categorizes most alloys into one of two classes where dM

dNv
= ±1. Long ago

Mott [123] pointed out how this behavior can be explained by requiring ei-
ther the number of majority or minority spin electrons to be fixed. This
notion has subsequently been confirmed and given substance by modern spin
density functional theory calculations [124–127].

Many DFT calculations for disordered ferromagnetic alloys show that
the majority-spin electrons ‘see’ little disorder and that the majority-spin
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Figure 6.6: The Slater-Pauling curve (from Ref. [122]).

d-states are fully occupied. This leads to dM
dNv

= −1 [124]. In contrast
the minority-spin electron states are significantly affected by disorder. The
overall electronic transport is therefore dominated by the sp-majority-spin
electrons. Alloys in this category include fcc-based CoMn, FePt and Ni-rich
NiFe alloys.

On the other hand, for some other alloys, typically Fe-rich, bcc-based al-
loys and many Heusler alloys, the number of minority-spin d-electrons is fixed
as the Fermi energy EF is pinned at a low level in a trough of the d-electron
density of states. The property dM

dNv
= +1 of the Slater-Pauling curve follows

directly from this [124]. It is the ramification of this feature for the electronic
transport in such alloys that is investigated here. For the systems consid-
ered here disorder is ‘seen’ strongly by the majority-spin electrons and rather
weakly by the minority-spin electrons. Fig. 6.7 provides as an illustration the
DOS for bcc Fe0.8Cr0.2 disordered alloy. The Fe- and Cr-related minority-
spin densities of states curves have similar structure in contrast to those for
the majority spin. The Fermi level EF is positioned in a valley resulting in
the average number of minority spin electrons ≈ 3. Moreover from these
observations one can expect the resistivity to be dominated by minority spin
electrons and to be rather insensitive to overall composition and short-range
order. Recently, measurements of the residual electrical resistivity of iron-
rich Fe1−xCrx alloys have been reported and described as anomalous. The
measurements show that the resistivity increases as small amounts of Cr are
added to Fe until a plateau is reached ranging from x = 10% to 20% [128].
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Figure 6.7: Spin projected CPA density of states of disordered bcc Fe0.8Cr0.2.
The solid line shows the total DOS, the dashed line shows the Fe d-states
and the dotted line shows the Cr d-states. The Fermi level is located at the
zero of the energy-axis.

This behavior differs markedly from the Nordheim parabolic concentration
dependence (see Sec. 6.2.1). An analysis of the data is hindered by a com-
plexity of short-range order in Fe1−xCrx. Mirebeau et al. [129] reported that
for x < 10% the system develops short-ranged order whereas for larger x
short-ranged clustering is found. At higher Cr concentrations still (> 20%),
the alloys can undergo on aging a separation into Fe-rich (α) and Cr-rich (α′)
phases [130, 131] leading either to a miscibility gap or a transformation into
a tetragonal σ phase.

The central result of this section is shown in Fig. 6.8. This figure shows
the residual resistivity of Fe1−xCrx and Fe1−xVx as a function of the Cr/V
concentration x. As mentioned above, the experimental Fe1−xCrx data show
an anomalous behavior. In the low Cr concentration regime (. 10%) the
residual resistivity increases with increasing Cr concentration. Further in-
crease of the Cr content does not lead to a further increase of the resistivity.
The theoretical results show the same variation with the Cr concentration.
At 10% Cr the highest value for the resistivity is achieved. If one further
increases the Cr concentration, the resistivity stays more or less constant at
about 8 µΩcm.
The Fe1−xVx alloys show a similar behavior for the theoretical residual resis-
tivity. With increasing V concentration the residual resistivity increases up
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Figure 6.8: The residual resistivity of Fe1−xCrx and Fe1−xVx as a function
of the Cr/V concentration x. The asterisks show the experimental data for
Fe1−xCrx of Ref. [132] at 4.2K. The triangles and diamonds show CPA results
for Fe1−xCrx and Fe1−xVx, respectively.

to about 2 µΩcm (at 6% V). Further increase of the V concentration leads
only to small changes in the residual resistivity.
This behavior can be explained by a different variation of the electronic
structure for the majority and minority spin subsystems when the Cr/V
concentration changes. Adding Cr to pure Fe in a random way the disorder
in the system increases and with this the resistivity increases. This conven-
tional behavior is observed in the regime with a Cr content . 10% where
the system shows a Nordheim like behavior. To identify the contribution of
the majority/minority spin subsystems to the conductivity, Bloch spectral
functions (BSF, see Sec. 3.2.4) are calculated. Fig. 6.9 shows the total and
spin projected BSF for three different Cr concentrations (4%, 12% and 20%
Cr). The important observation from the displayed BSF are the different
dependencies of the majority and minority spin subsystem on the Cr con-
centration. At 4% Cr both spin subsystems show sharp peaks for the BSF
which indicate that the impact of disorder is relatively small. If one increases
the Cr concentration up to 12% a dramatic change occurs. For the BSF of
the majority subsystem the prominent lens-shaped band disappears and the
remaining rectangular-shaped band become strongly smeared out whereas
the minority component is almost unchanged. Further increase of the Cr
concentration continues this trend. Due to the fact that an increased broad-
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Figure 6.9: Total and spin projected BSF of Fe1−xCrx at the Fermi energy
in the (001) plane for different Cr concentrations (top: 4% Cr, middle: 12%
Cr, bottom: 20% Cr). The black regions correspond to values > 50 a.u.. For
a better resolution the cusps of the BSF have been cut.

ening of the BSF leads to a decreased life time of the electronic state, the
different behavior of the BSF for the majority spin subsystem compared to
the minority spin subsystem indicates that the conductivity is dominated by
the minority spin channel.
For a better illustration of the influence of the Cr increase on the minor-
ity component Fig. 6.10 shows explicitly the peaks of the BSF at the Fermi
energy along the Γ − X direction. The BSF shows three main peaks with
the last peak (the closest peak to the X point) being split. At 4 % Cr an
additional small peak is present to the right of the split peak. This peak is
due to a hybridisation with the majority subsystem. This can be inferred
from Fig. 6.9 if one compares the minority and majority BSF for 4 % Cr.
The reason for this hybridisation is, that in fully relativistic calculations the
spin is not a good quantum number because of the presence of spin-orbit
coupling [133].
The behavior of the three remaining peaks is quite different. The narrow
peak shifts with increasing Cr concentration towards the Γ-point and at 20%
Cr this peak overlaps with the peak closest to the Γ-point. The split peak
remains nearly fixed at its position but one observes a narrowing with in-
creasing Cr concentration, which corresponds to an increased lifetime of this
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Figure 6.10: BSF along the Γ - X direction for the minority spin subsystem
in Fe1−xCrx for three different Cr concentrations (4%, 12% and 20% Cr).
The cusps of the BSF have been cut at 300 a.u..

state.
For comparison BSF for Fe1−xVx are also calculated. As expected, the
Fe1−xVx BSF show a similar behavior of the majority/minority spin sub-
system as for Fe1−xCrx. Fig. 6.11 shows the spin projected BSF for Fe0.8V0.2.
One can see again that the majority component becomes smeared out whereas
the minority component displays sharp peaks. To get a more detailed picture
of the Fe1−xVx BSF in Fig. 6.12 a similar picture as shown in Fig. 6.10 for
Fe1−xCrx is displayed. If one compares Fig. 6.12 with Fig. 6.10 one can see
that for Fe1−xVx the BSF peaks are more sharp than for Fe1−xCrx. Therefore
one can say that the minority spin electrons “see” a smaller difference be-
tween Fe and V atoms compared to Fe and Cr atoms. This explains why the
residual resistivities are higher in Fe1−xCrx compared to Fe1−xVx. Fig. 6.12
shows that the increased disorder due to the increased V concentration does
not affect the BSF peaks of the minority spin subsystem. Jen and Chang
[134] measured the residual resistivity of polycrystalline Fe1−xVx. They ob-
served a monotonically increase of the residual resistivity in the range of
0.04 < x < 0.2. They also measured the anisotropic magnetoresistance and
obtained a maximum for this quantity at ≈ 7% V. The direct comparison of
these measurements with present transport calculations is difficult, however,
due to the influence of the polycrystalline nature of the samples on the re-
sistivity that is hard to simulate.
To identify the character of the smeared out states from the majority sub-
system, one can project the Fe1−xCrx BSF according to its s-, p- and d-
contributions. This is shown in Fig. 6.13. The main part of the majority
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Figure 6.11: Total and spin projected BSF of Fe0.8V0.2 at the Fermi energy
in the (001) plane. The black regions correspond to values > 50 a.u.. For a
better resolution the cusps of the BSF have been cut.

Figure 6.12: BSF along the Γ - X direction for the minority spin subsystem
in Fe1−xVx for three different V concentrations (4%, 12% and 20% V). The
cusps of the BSF have been cut at 300 a.u..

Figure 6.13: Projected majority component of the Fe1−xCrx BSF at 4% Cr.
The left plot shows the total BSF whereas the middle and the right plot show
the s+ p and d projected BSF, respectively.
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Figure 6.14: Spin projected CPA density of states of Fe0.96Cr0.04. The solid
line shows the total DOS, the dashed line shows the Fe d-states and the
dotted line shows the Cr d-states. The Fermi level is located at the zero of
the energy-axis.

states has d-like character. These states obviously strongly broaden with in-
creasing Cr concentration. This behavior is opposite to that of the minority
subsystem although this is also dominated by d-like states. The different
behavior of the d-states for the two spin subsystems can also be seen in the
density of states. In Figs. 6.7 and 6.14 the spin projected DOS of Fe1−xCrx

for two different Cr concentrations is shown. In addition to the total DOS
the d-like part of the DOS is also displayed. The DOS shown in Fig. 6.14
is very close to that of pure Fe. One can see that for the majority compo-
nent also the antibonding Fe d-states are occupied whereas for the minority
component the Fermi level is located in a so-called pseudogap below the anti-
bonding states. Fig. 6.7 clearly shows the relative positions of the Cr and Fe
d-states. These states are strongly hybridized for the minority component.
The opposite happens in the majority spin channel, where the Fe and the Cr
d-states are well separated in energy.
With increasing Cr concentration the antibonding Fe d-peak of the major-
ity component becomes more and more depopulated and new states appear
above the Fermi level. Olsson et al. [131] showed that this leads to a com-
pletely smeared out band at approximately equiatomic composition. If one
compares this with the behavior of the d-states of the minority component,
one can see that the increase in Cr concentration has no effect on the total
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Figure 6.15: Spin resolved conductivities σ↑ and σ↓ using a logarithmic scale
for Fe1−xCrx as a function of the concentration x.

DOS of the minority component.
It is well known that the DOS of Fe1−xVx consists of a minority spin

subsystem with the Fermi energy pinned in a pseudogap and a majority
spin subsystem which becomes broadened and depopulated with increasing
V concentration [125, 127]. This characteristic similar for the Fe1−xCrx and
Fe1−xVx DOS is responsible for following the Slater-Pauling curve of the mag-
netic moment for these alloys. Due to the fact that the number of minority
electrons (N↓) is independent of the Cr/V concentration the magnetization
per atom M varies linearly with the Cr/V concentration [125]:

M = Z − 2Nd ↓ − 2Nsp ↓ , (6.2)

with Z the number of valence electrons. The number of sp-electrons in the
minority spin system Nsp ↓ changes only very little across the 3d row [125]).
Therefore one can conclude that the Cr/V concentration independent hy-
bridized Fe and Cr/V d-states of the minority spin subsystem are responsi-
ble for the appearance of the Slater-Pauling curve and in addition for the
apparently anomalous behavior of the residual resistivity of these materials.
In order to confirm the observation that the conductivity is dominated by the
minority spin channel the spin resolved conductivity is shown in Fig. 6.15.
The spin decomposition is achieved via the scheme presented in Sec. 5.1.
The results for σ↑ and σ↓ indeed confirm the picture that evolved from the
BSF; i.e. σ↓ is about two orders of magnitude larger than σ↑ and is nearly
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concentration independent for x > 8%.
In summary, the resistivity increase from 0-10% Cr (0-6% V) is due to

the increased disorder scattering for the majority spin subsystem; roughly
speaking, the contribution of the majority subsystem to the conductivity
drops down. This drop down can be explained by a smeared out BSF for
this component. The increasing Cr/V concentration leads to a broadening
of the BSF. This broadening can be related to a decrease of the lifetime of
the investigated electronic state which leads to an increasing resistivity. At
higher Cr/V concentrations only the minority subsystem contributes to the
conductivity. The increase of the Cr/V concentration leads to no broadening
of the minority states. Therefore, the contribution of this component to the
conductivity in the range of 10-20% Cr (6-20% V) is constant. This leads to
a nearly constant resistivity in that concentration regime.

The next step in the analysis of the theoretical results is to investigate
the influence of SRO effects on the residual resistivity as this was suggested
to be the reason for the anomalous concentration dependence of the residual
resistivity. To include SRO effects the NLCPA is employed (see Sec. 3.2.3).
Therefore one has to define appropriate cluster configurations and their as-
sociated probabilities (Pγ). These probabilities are specified in appendix B.
To display the contributions of the different cluster configurations to the
density of states of a disordered Fe1−xCrx crystal in Fig. 6.16 the cluster
resolved density of states for two different Cr concentrations is shown. From
this figure one can see that the total DOS agrees very well with the total
CPA DOS from Figs. 6.7 and 6.14. The most dominant contribution to the
total DOS comes from the FeFe-cluster due to the high Fe concentration. If
one compares Fig. 6.16 with Figs. 6.7 and 6.14 one obtains a similar behav-
ior of the minority/majority spin subsystem. The minority part of the DOS
shows a hybridization between all cluster configurations whereas the majority
part shows a separation in energy between the FeFe/FeCr- and CrCr/CrFe-
clusters.
Fig. 6.17 shows the residual resistivity calculated within the NLCPA. In this

plot again the three curves from Fig. 6.8 are shown and additionally some
curves for different ordering situations. The NLCPA results for disordered
Fe1−xCrx shows good agreement with the CPA results.
Experimentally it is observed that Fe1−xCrx tends for x < 0.1 to SRO and
for x > 0.1 to clustering [129] whereas Fe1−xVx tends to SRO [135]. There-
fore, in Fig. 6.17 NLCPA calculations which simulate SRO (Fe1−xCrx and
Fe1−xVx) as well as clustering (Fe1−xCrx) are displayed.
The important observation from the calculations is that the influence of or-
dering effects (SRO and clustering) on the residual resistivity is very small for
these systems. In Sec. 6.2.1 and Sec. 6.2.3 the same formalism (using 2- and
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4-atomic clusters) is applied to bcc Cu1−xZnx and fcc Ag1−xPdx, respectively
and gives a strong variation of the resistivity as function of the ordering state.
The small influence of ordering effects on the resistivity for Fe1−xCrx was also
found experimentally by Mirebeau et al. [129]. This shows that the NLCPA
formalism for the calculation of the residual resistivity can handle various
different ordering dependences of the residual resistivity. Nevertheless, one
has to mention that only small cluster sizes with two atoms are used in the
calculations. Therefore, it is not possible to preclude that bigger cluster sizes
would have a bigger impact on the transport properties.

In summary, the present work deals on an ab-inito level with the anoma-
lous concentration dependence of the residual resistivity in Fe1−xCrx and
Fe1−xVx alloys (x ≤ 0.2). It turns out, that the concentration independence
of the residual resistivity can be related to the specific behavior of the elec-
tronic structure with increasing alloying which is common for alloys of this
branch of the Slater-Pauling plot. Therefore, the behavior of the residual
resistivity is by no means anomalous for these materials and one can pre-
dict a similar behavior for other alloy systems from the same branch of the
Slater-Pauling plot. In addition, the influence of short-ranged correlations
in the lattice site occupation by employing the NLCPA formulation of the
Kubo-Greenwood equation is investigated. The inclusion of such short-range
effects has only little influence on the results.
The comparison of the Fe1−xCrx calculations with experiment show satis-
fying agreement. The difference in the height of the plateau, as compared
to the experiment, could be attributed to impurities, lattice defects, grain
boundaries, etc. which are always present in samples and therefore influ-
ence the experimental data. Such imperfections, which have been neglected
in the present calculations, lead in general to an increase of the measured
resistivity [3]. The calculations show the initial linear increase albeit with
a lower slope than seen in experiment. In Ref. [128] it is argued that this
is a consequence of the limitations of the CPA for alloys with a dominant
concentration of one constituent. However, it should be pointed out that the
NLCPA results confirm the single-site CPA data. The calculations reveal a
plateau of the residual resistivity starting at the same Cr concentration as
seen in experiment (at 10% Cr). This is in variance to an earlier theoretical
study [128] which finds the starting point of the plateau only at ≈ 20% Cr.

6.2.3 The K-effect

There is a significant set of alloys which show a completely opposite behavior
compared to the observations from Sec. 6.2.1. These alloys show a decreasing
resistivity with decreasing ordering. This phenomenon is often discussed in
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6.2. Influence of Short Ranged Ordering

terms of a “komplex” state or K-state [114]. Such alloys are typically rich in
late transition metals such as Ni, Pd or Pt and alloyed with a mid-row ele-
ment such as Cr, Mo or W. This behavior was first observed in Ni1−xCrx [114]
which was cold-worked what means that the metal is plastically deformed at
a temperature low relative to its melting point [136, 137] and later in dif-
ferent materials [138–142] such as Ni1−xMox and Pd1−xWx alloys. When a
metallic alloy is cold-worked the number of dislocations and other defects is
increased and atomic SRO is reduced [136]. In an cold-worked alloy solute
atoms can congregate in the regions around defects [137].
The K-state group contains some important industrial materials as for ex-
ample Ni1−xCrx “Nichrome” alloys that are well suited for the production of
high-quality resistors [143], high temperature devices (e.g. turbine blades in
steam engines [144]) and corrosion protected devices [145].

In order to simulate the K-effect the NLCPA medium has been con-
structed via the smallest possible fcc cluster allowing for non-local correla-
tions over nearest atomic neighbor length scales. For a fcc lattice this implies
a cluster of Nc =4 atoms being considered [66, 146]. In a disordered binary
fcc alloy, A1−xBx, there are 16 (2Nc) possible arrangements, of the 2 types of
atom distributed over the sites of such a cluster. By weighting these configu-
rations appropriately one can incorporate short-ranged ordering or clustering
effects. For example, just 2 configurations, 4 A and 4 B atoms, weighted 1−x
and x, respectively, describe clustering over nearest neighbor scales whilst 4
equally weighted configurations for the different ways 3 A and 1 B atoms
can be arranged simulates short-ranged order in a A0.75B0.25 alloy. In a
A0.80B0.20 alloy the configuration weighting to describe a completely random
alloy causes a A(B) atom to have on average 9.6 (2.4) like nearest neighbor
atoms whereas for our SRO system a A(B) atom has an average of 9.45 (1.8)
like nearest neighbors and its counterpart in a short-ranged clustered system
has 10.2 (4.8) like nearest neighbors. The explicit cluster probabilities asso-
ciated with different ordering situations are given in appendix B.
In this section the influence of short-range ordering and clustering on the
residual resistivity of Ni0.8Mo0.2, Ni0.8Cr0.2 and Pd0.8W0.2 is presented and
analyzed in detail for Ni0.8Mo0.2. Furthermore, it will be shown that the
same mechanism is valid for cold worked Pd-rich Pd1−xAgx alloys.

In Fig. 6.18 the calculated residual resistivities for the alloys Ni0.8Cr0.2,
Ni0.8Mo0.2 and Pd0.8W0.2 are shown for three cases: for (i) random disorder,
(ii) short-ranged order and (iii) short-ranged clustering using this approach.
Comparison of the resistivities calculated within the CPA with the resistiv-
ities obtained on the basis of the NLCPA which describe random disorder
show good agreement. Nicholson and Brown [142] also investigated Ni0.8Mo0.2

and obtained for the disordered case a residual resistivity of 129× 10−6 Ωcm
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Figure 6.18: The residual resistivities for three investigated alloys Ni0.8Cr0.2,
Ni0.8Mo0.2 and Pd0.8W0.2 for random disorder (squares (CPA) and diamonds
(NLCPA)), short-ranged order (circles) and short-ranged clustering (trian-
gles).

that is in variance to the present work. The difference is caused presum-
ably by an insufficient angular momentum expansion used in Ref. [142]. For
lmax = 2 the residual resistivity as calculated in this work is 131× 10−6 Ωcm
in perfect agreement with Ref. [142]. An increase of the angular momen-
tum expansion to lmax = 3 leads to a decrease of the resistivity down to
82 × 10−6 Ωcm (lmax = 4 gives 81 × 10−6 Ωcm).
It is noteworthy that the resistivities for the clustered configuration are much
smaller than those of the other two configurations whilst the resistivities for
the disordered and short-ranged ordered configurations are very similar. This
shows emphatically how the conductivity increases as the number of like late
TM nearest neighbors increases. This effect is consistent with the experimen-
tal observation that quenched samples of these materials (in these materials
SRO is present according to x-ray experiments [147–149]) show a higher re-
sistivity than the cold-worked samples. The cold-working leads to a decrease
of the SRO in the samples and therefore increases the probability of having
like atoms sitting next to each other.

A more detailed analysis of the calculated resistivities for Ni0.8Mo0.2 is
shown in Fig. 6.19. Similar features are found for the other alloys. This
figure shows the conductivity decomposed into contributions from different
atom pairs. One can clearly see that the conductivity between Ni-Ni pairs
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is the dominant contribution which increases significantly when short-ranged
clustering is included. This observation is opposite to one of the few theo-
retical investigations of the K-effect which was directed at Ni0.8Mo0.2 alloy
[142]. There it was claimed that the smaller resistivity when SRO is reduced
arises from an enhanced current flowing between the minority Mo-Mo pairs.
Fig. 6.19 also shows the contributions of different scattering channels to the
Ni-Ni conductivity accounting for the selection rules [89, 92]. One can see
that the dominating scattering channel for this system is the p-d-p-channel.
This is unlike typical examples from electronic transport theory where the
conductivity is taken to be dominated by the mobile s electrons [3].

One can obtain further insight from the calculations by examining the
electronic structure of the alloy and the changes induced by short-ranged
ordering or clustering. As can be seen in Fig. 6.20 the DOS for the randomly
disordered and the short-range ordered cases are very similar (especially at
EF ), whereas for the clustered configuration significant differences appear.
If one compares the Ni DOS of short-ranged ordered Ni0.8Mo0.2 with the
corresponding clustered one it turns out that the increase of the probability
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Figure 6.20: Density of states of paramagnetic Ni0.8Mo0.2, Ni0.8Cr0.2 and Pd0.8W0.2 for (i) random disorder (top
panel), (ii) containing short-ranged order (middle panel) and (iii) short-ranged clustering (bottom panel). The DOS
are resolved into angular momentum s, p and d components. The d-resolved DOS of Ni0.8Mo0.2 are also shown
further resolved into eg and t2g components. The vertical line highlights the Fermi energy.
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for Ni-Ni neighbors leads to a splitting of the d-state peak into three peaks.
There is a weakening of the t2g Ni-Mo bonding states. In particular the new
peak close to EF is caused by an increase of the non-bonding t2g DOS at this
energy. The increase of the t2g states leads to an ≈ 40% increase of the d-state
density at EF for the clustered configuration which leads directly to an en-
hanced conductivity for this configuration. The NLCPA electronic structure
calculations directly produce measures of the Bloch spectral function coarse
grained over the Brillouin zone [76]. The difference between Bloch spectral
function at EF averaged over a cube centered on the Γ point occupying a
quarter of the volume of the Brillouin zone and that of a same sized cube
centered on the X-point, ∆ĀB = ĀB(X) − ĀB(Γ), gives a rough average of
the Fermi velocity. This quantity varies consistently with the observation
that the clustered configuration exhibits the smallest resistivity. For exam-
ple for Ni0.8Mo0.2 ∆ĀB becomes -0.66, -0.62 and 8.08 states/atom/(a.u.)3

for the randomly disordered, short-range ordered and short-range clustered
cases respectively.

Concluding one can propose the following explanation for the K-effect.
In K-state alloys the density of states (DOS) around the Fermi energy EF is
predominantly associated with the d-electrons from the late-row transition
metal (TM) element and is large as EF lies near the top of these d-bands. In
a random disordered alloy, or one with SRO, there is however only a modest
contribution to current carried by this d-electron channel owing to the low
Fermi velocity and short lifetime. For late TMs like Ni, Pd or Pt, the Fermi
energy EF lies in the bands set up by d-orbitals that point between next
neighboring atoms. The strong electrostatic repulsion effects associated with
these orbitals as described by ligand field theory make these orbitals the last
to be occupied. For example in the face centered cubic systems studied in
this paper these are the t2g bands - crystal field effects having broken the 5-
fold d-degeneracy into eg and t2g components and the t2g bands lie at higher
energy than the eg ones. When an alloy rich in a late TM is ‘worked’, the
number of unlike nearest neighbor atoms is reduced and the probability for
electron hopping between neighboring ”like” late TM atoms is enhanced for
energies near EF . It follows that there is an increased bandwidth, larger
Fermi velocity and therefore a bigger contribution to the conductivity for
this situation.
The studies on Ni1−xMox, Ni1−xCrx and Pt1−xWx alloys show that changes
of the t2g amplitude and band width for electron hopping between majority
TM sites at EF is responsible for their K-state behavior of the resistivity.
It follows that other late TM-rich alloys should behave similarly. In order
to demonstrate this the alloy system Pd1−xAgx is investigated. This alloy
system is well-known for deviation from the Nordheim behavior [3] and a
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continuous decrease of the d-state density at EF with increasing Ag concen-
tration. Fig. 6.21 shows the residual resistivity of Pd1−xAgx for the three
investigated ordering situations and gives the averaged number of like near-
est neighbors for each atom type depending on the ordering situation. From
this figure one can clearly see the deviation from the Nordheim behavior.
Once again one finds that when short-range clustering is simulated for these
alloys the calculated resistivity is decreased for the Pd-rich alloys where EF

lies at the top of the t2g states. In order to demonstrate this behavior Fig
6.22 shows the normalized resistivity difference:

ρ =
ρclus − ρord

1
2
(ρclus + ρord)

, (6.3)

for Pd1−xAgx where ρclus denotes the resistivity in the case of clustering and
ρord corresponds to the resistivity when SRO is present. In addition, Fig. 6.22
shows the number of Pd t2g states at EF as function of Ag concentration x.
One can see that with decreasing number of Pd t2g states ρ approaches zero
and becomes positive for x ≥ 0.5.

From the investigations of the present work one can conclude that this
effect should be present in any late TM-rich alloy which can develop short-
and long-ranged order that can be modified by materials processing.
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Chapter 7

Hall effect

In 1879 Edwin H. Hall observed that a current-carrying non-magnetic con-
ductor exposed to an external magnetic field B shows a transverse voltage
[151]. This voltage is based on the Lorentz force which shifts the electrons
to one side of the conductor. The corresponding effect is the so-called ordi-
nary Hall effect (OHE). In 1881 Edwin H. Hall reported that he observed in
ferromagnetic metals a similar effect which is approximately ten times larger
as in non-magnetic conductors [152]. In ferromagnets the Hall voltage con-
sists of two different contributions namely the OHE and the anomalous Hall
effect (AHE). The AHE originates from the spin polarization of the carriers
in combination with the relativistic spin-orbit interaction and is proportional
to the magnetization M of the ferromagnet. Therefore, the AHE is a purely
relativistic effect.
These observations lead to the following equation for the Hall resistivity of
a ferromagnetic conductor [153]:

ρH = R0B +RAM , (7.1)

where R0 and RA are the ordinary and anomalous Hall coefficients, respec-
tively.
The spin Hall effect (SHE) was first described 1971 by Dyakonov and Perel
[14, 15] and more recently by Hirsch [16]. The SHE appears even in non-
magnetic conductors without any external magnetic field. This effect as
well as the AHE are based on the observation that e.g. in the case of spin-
dependent scattering by impurities “spin-up” electrons are scattered into
opposite direction compared to “spin-down” electrons due to spin-orbit cou-
pling [17]. This leads to a spin-up and spin-down accumulation perpendicular
to the electric field, respectively. Due to the fact that non-magnetic conduc-
tors exhibit no spin-polarization the spin separation shows no accompanying
Hall voltage. In the case of the AHE this spin separation leads due to spin
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Chapter 7. Hall effect

Figure 7.1: Schematic illustration of the OHE, AHE and SHE (from
Ref. [17]).

imbalance to a charge accumulation which is responsible for the Hall voltage.
Despite the difficulties associated with the absence of the Hall voltage in the
case of SHE a few groups succeeded in measuring the SHE [13, 154–157]. In
order to clarify the differences between the mentioned Hall effects Fig. 7.1
shows in schematic way the OHE, AHE and SHE (in the following only the
AHE and especially the SHE are investigated).

The AHE and SHE result from the same microscopical mechanisms. The
only difference is that for the AHE spin polarization has to be present in the
investigated material. Therefore, the AHE and SHE can be discussed in a
very similar way. First of all these effects can be decomposed into two dif-
ferent contributions namely the extrinsic and the intrinsic contribution. The
extrinsic contribution to the AHE/SHE is based on spin-dependent scattering
e.g. by impurities. Microscopically, two dominant mechanisms are responsible
for spin-dependent scattering: skew scattering which results from asymmet-
ric scattering [158, 159] and side-jump scattering [160]. The first mechanism
leads to a deflected averaged trajectory of ≈ 0.6◦ wheres the second mecha-
nism corresponds to a lateral displacement (≈ 10−11m) of the center of the
wave-packet during the scattering process [81]. These two effects are shown
schematically in Fig. 7.2.
Crépieux and Bruno [81] identified the corresponding diagrams of the skew
and side-jump scattering. They used a diagrammatic representation of the
Kubo-Středa equation as shown in Fig. 7.3 (see Sec. 4.5) in combination
with a model Hamiltonian calculation. The identified diagrams are shown
in Fig. 7.4. Obviously, these diagrams belong to the class of vertex dia-
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Figure 7.2: Schematic picture of the side-jump (top) and skew scattering
(bottom) mechanism which lead to spin-dependent scattering.
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Figure 7.4: Representative diagrams contributing to the side-jump and skew
scattering.

++

Figure 7.5: Representative non-vertex diagrams contributing to the extrinsic
AHE/SHE.

grams. Therefore, the neglect of vertex corrections leads to a neglect of
diagrams which are responsible for skew and side-jump scattering. However,
non-vertex diagrams as shown in Fig. 7.5 give also a contribution which is
impurity based. Nevertheless, in the following only vertex diagrams are dis-
cussed as contributions to the extrinsic SHE/AHE whereas all other diagrams
are discussed as intrinsic contributions.

The intrinsic AHE/SHE appears in pure systems where no impurity scat-
tering is present. This effect can be related to a geometric phase the so-called
Berry phase [83, 153, 161, 162]. In order to calculate the intrinsic AHE/SHE
one can use the following equation [82]:

σintr
xy = −e2~

∑

n

∫

BZ

d3k

(2π)3
fn Ωn(k) , (7.2)

with the Berry curvature:

Ωn(k) = −
∑

n′ 6=n

2ℑ〈ψnk|vx|ψn′k〉〈ψn′k|vy|ψnk〉

(En′ − En)2
, (7.3)
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Figure 7.6: Diagrammatic representation of the intrinsic AHE/SHE.

where |ψnk〉 and En are the eigenstates and eigenvalues of a Bloch Hamil-
tonian, respectively, fn is the equilibrium Fermi-Dirac distribution function
and v’s are velocity operators. Eq. (7.2) is derived from the Kubo-equation
and similar to Eq. (4.30).
Using again the diagrammatic representation of the Kubo-Středa equation
one can identify the diagram which corresponds to the intrinsic contribution.
This diagram is shown in Fig. 7.6. Due to the fact that the intrinsic contri-
bution is a band structure effect and not related to impurity scattering, the
corresponding diagram shows no impurity interactions.

The theoretical investigation of the AHE/SHE is a very challenging re-
search field. In order to calculate the AHE/SHE one needs a transport
theory which gives access to the anti-symmetric part of the conductivity
tensor in combination with a proper relativistic treatment (inclusion of spin-
orbit coupling) of the electronic structure. In addition, one needs a reli-
able treatment of disorder to determine the extrinsic AHE/SHE contribu-
tion and for the calculation of the SHE a spin decomposition scheme has
to be applied. Therefore, only few theoretical investigations are available
which consider the intrinsic AHE [82, 163, 164] and SHE [84, 165–168] on
an ab initio level or the intrinsic/extrinsic contribution via model Hamilto-
nians e.g. [81, 83, 87, 96, 169–171]. The method used in the present work
(Kubo-Středa equation in combination with fully relativistic spin polarized
KKR and CPA) allows for the first time a simultaneous investigation of the
extrinsic as well as intrinsic contribution to the AHE/SHE on an ab initio
level.

7.1 Spin Hall Effect

The following section investigates the extrinsic and intrinsic spin Hall effect
for several non-magnetic 4d and 5d transition metal alloys. In order to cal-
culate the SHE the Kubo-Středa equation is combined with an appropriate
spin-current density operator derived from the Bargmann-Wigner four-vector
polarization operator T (see Sec. 5.2 and appendix E). Vernes et al. [97] de-
rived from this fully relativistic polarization operator a continuity equation
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and could identify the explicit expression for the spin-current density oper-
ator Ĵ j

i = ecαiTj (e = |e|). For a current along the direction of the x-axis
and the spin component along the z-axis the spin-current density operator
becomes Ĵz

x = ecαxTz. Taking this operator as representative for the observ-
able one gets the following expression for the spin-current conductivity (see
Eq. (4.35)):

σz
xy =

~

2πV
Tr
〈

Ĵz
xG

+ĵyG
−
〉

c
+

e

4πiV
Tr
〈

(G+ −G−)(r̂xĴ
z
y − r̂yĴ

z
x)
〉

c
, (7.4)

where terms containing products of the retarded (advanced) Green’s func-
tions only have been dropped as they give only a minor contribution to the
spin Hall conductivity (SHC) [162]. It is important to note that the sign of
the SHC depends on the definition of the spin-current density operator i.e.
using e or −e for the conversion of the spin conductivity into the unit of
charge conductivity.

Fig. 7.7 shows the SHC for three different alloy systems: PtxIr1−x,
AuxPt1−x and AgxAu1−x. In order to avoid numerical instabilities the al-
loy concentrations range for each alloy system according to 0.01 ≤ x ≤ 0.99.
In Sec. 4.6.3 it was mentioned that the term σanti,B z

xy from Eq. (4.103) (corre-
sponding to the second term from Eq. (7.4)) has only a negligible influence
on the SHC. The contribution of this term to the SHC is displayed in Fig. 7.8.
Obviously, the contribution of σanti,B z

xy is indeed negligible compared to the
first term from Eq. (7.4).

Fig. 7.7 clearly shows the strong dependence of the role of the vertex
corrections (VC) on the alloy system. Vertex corrections to the SHC of
PtxIr1−x are negligible within the investigated alloy concentration regime
whereas AuxPt1−x and especially AgxAu1−x show a dramatic increase of the
conductivity when approaching the pure metals if vertex corrections are in-
cluded. If one subtracts from calculations including vertex corrections the
results without vertex corrections one gets the extrinsic SHC contribution.
This indicates that the extrinsic SHE is very pronounced in Au with small
concentrations of Ag or Pt impurities as well as in Ag with small concen-
trations of Au impurities. In order to show that the extrinsic contribution
can be calculated via the difference between calculations with and without
vertex corrections one has to take into account that the conductivity includ-
ing/neglecting vertex corrections is proportional to:

σVC
xy ∝ J̃x(z2, z1)

[
(1 − χω)−1χ

]
j̃y(z2, z1) (7.5)

σnoVC
xy ∝ J̃x(z2, z1)χ j̃

y(z2, z1) (7.6)

(angular momentum indices are neglected, the explicit expression is shown
by Eq. (4.89)). The term (1 − χω)−1 accounts for vertex corrections and is
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Figure 7.7: The spin Hall conductivity for three different alloy systems:
PtxIr1−x, AuxPt1−x and AgxAu1−x. The circles (black line) correspond to
calculations including vertex corrections (the VC results of AgxAu1−x are
multiplied by 0.25) and the triangles (blue line) represent calculations with-
out vertex corrections. In addition, data of other theoretical investigations
concerning the intrinsic SHE are displayed (Refs. [96, 165, 166, 168]) as well
as an experimental data point from Vila et al. [156].

replaced by the unity matrix if vertex corrections are neglected [89]. If one
uses:

(1 − χω)−1 = 1 + χω + χω χω + ... , (7.7)

it turns out that:

σVC
xy ∝ σnoVC

xy + J̃x(z2, z1) [χω χ+ χω χω χ+ ...] j̃y(z2, z1) . (7.8)

Therefore, the subtraction of σnoVC
xy from σVC

xy gives the contribution of vertex
diagrams i.e. the extrinsic contribution to the SHE.

The next step in analyzing contributions to the SHE is to decompose
the extrinsic SHE into skew scattering and side-jump scattering. For this
decomposition one can use the following equation which has been taken over
from the usual decomposition of the AHE [162]:

σxy = σskew
xy + σsj

xy + σintr
xy , (7.9)
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Figure 7.8: The contribution of σanti,B z
xy from Eq. (4.103) to the SHE for the

transition metal alloys AuxPt1−x, AgxAu1−x and PtxIr1−x.

where σskew
xy corresponds to skew scattering, σsj

xy corresponds to side-jump
scattering and σintr

xy gives the intrinsic contribution (σxy has no superscript z
because this relation holds also for the AHE).
A common way to display the AHE is to plot σxy versus σxx (see Fig. 7.9).
Such plots can be divided into certain regions in which σxy ∝ σ1

xx (for
σxx & 106 (Ωcm)−1), σxy ∝ σ0

xx (for σxx ≈ 104 − 106 (Ωcm)−1) and σxy ∝ σ1.6
xx

(for σxx < 104 (Ωcm)−1) [171]. Onoda et al. [170] theoretically showed
that skew-scattering is the dominant mechanism in the superclean case
(σxx & 106 (Ωcm)−1) which leads to σskew

xy = σxxS where S is the so-called
skewness factor. Due to the fact that σsj

xy and σintr
xy do not depend on impurity

concentrations [153] the following relation should be valid in the superclean
case:

σxy = σxxS + σsj
xy + σintr

xy
︸ ︷︷ ︸

=const

. (7.10)

Fig. 7.10 displays for AuxPt1−x the SHC versus the longitudinal conductivity
σxx. It turns out that for Au with Pt concentration ≤ 10% and Pt with Au
concentration ≤ 10% a linear behavior is obtained. Analyzing σz

xy in the
spirit of Eq. (7.10) the blue and orange lines are linear fits of the data points
which belong to impurity concentrations ≤ 10%. The intersection of the blue
and orange line with the y-axis gives the side-jump and intrinsic contribution
to the SHC.

The intrinsic SHE of Pt and Au have been calculated by performing cal-
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Figure 7.9: Experimental anomalous Hall conductivity vs. longitudinal con-
ductivity for several materials. The solid magenta line shows theoretical
results from Onoda et al. [171]. The figure is taken from Ref. [171].

0 0.2 0.4 0.6 0.8 1
σ

xx
 (10

-6
 Ohm cm)

-1

0

2

4

6

8

10

σ xyz    
(1

0-3
 O

hm
 c

m
)-1

Au
0.99

Pt
0.01

Au
0.01

Pt
0.99

Au
0.9

Pt
0.1

Au
0.1

Pt
0.9

Au
0.4

Pt
0.6

Figure 7.10: The spin Hall conductivity versus σxx for AuxPt1−x (black
line/circles). The blue and orange lines/diamonds are explained in the text.
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Figure 7.11: The spin Hall conductivity versus σxx (black lines/circles) for
AgxAu1−x (left panel) and PtxIr1−x (right panel). The blue and orange
lines/diamonds are explained in the text. The inset of the left panel shows
a magnification of the low longitudinal conductivity regime.

culations without vertex corrections (see below). The results are represented
by the blue and orange diamonds. The side-jump conductivity σsj

xy can be
calculated as the difference between the intersections of the fitted lines with
the y-axis and the corresponding diamonds. The diamonds are very close to
the corresponding intersections of the blue and orange line with the y-axis
which shows that side-jump scattering must be very small. A similar analy-
sis is displayed in Fig. 7.11 for PtxIr1−x and AgxAu1−x. These alloy systems
exhibit also a clear linear behavior in the diluted limit which shows that the
relation represented by Eq. (7.10) is justified. Once again, the intersection of
the linear fits with the y-axis are close to the intrinsic SHC indicating that
side-jump contributions are small. However, for Ag rich AgxAu1−x this is not
the case. As demonstrated by the inset of the left panel from Fig. 7.11 there is
no matching of the blue line with the blue diamond. This demonstrates that
for this system an important contribution of side-jump scattering (compared
to the intrinsic contribution) is present. Nevertheless, this contribution is
small compared to the very big skew scattering contribution.

The intrinsic SHC can be derived from calculations without vertex cor-
rections extrapolated down to pure metals. Fig. 7.7 shows that calcula-
tions which neglect vertex corrections match when approaching pure metals
e.g. Pt0.99Ir0.01 gives nearly the same result as Pt0.99Au0.01 which indicates
that the intrinsic contribution of Pt is observed. In addition, Fig. 7.7 dis-
plays results from other theoretical investigations concerning the intrinsic
SHC. The quantitative agreement with the ab initio investigations of Guo et
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al. [166, 168] (these data have been multiplied by a factor of two in order to
be consistent in units) and Yao and Fang [165] is good. However, deviations
from the results of Tanaka et al. [96] are obtained. This can be presumably
related to the fact that these results based on tight-binding calculations and
therefore are less reliable as the ab initio results.
Using the diagrammatic representation of the Kubo-Středa equation the dia-
gram which corresponds to the intrinsic SHE can be identified as the diagram
displayed in Fig. 7.6. This diagram is approximated in the present work by
the bubble diagram shown in Fig. 4.2 in which CPA averaged Green’s func-
tions are employed. However, this approximation should be well justified in
the diluted case. The matching of the calculations without vertex correc-
tions when approaching the pure metals indicates that the contributions of
diagrams as shown in Fig. 7.5 are small.

As mentioned above Onoda et al. [170] investigated the crossover between
an extrinsic and intrinsic dominated regime (see Fig. 7.9). They showed that
the extrinsic contribution rapidly decreases as function of the inverse life-
time τ of the electronic states and drops below the intrinsic contribution. A
similar analysis is shown in Fig. 7.12. The displayed extrinsic contribution
is calculated via the difference between calculations including vertex cor-
rections and calculations without vertex corrections whereas σintr

xy = σnoVc
xy .

Obviously, σextr
xy decreases rapidly with decreasing σxx (σxx ∝ τ) and crosses

σintr
xy . Due to the fact that Fig. 7.12 considers only impurity concentrations

up to 30% the lifetime decrease in Ag(Au) is not enough to lead to the dis-
cussed crossover. However, the other investigated systems show clearly the
crossover of the extrinsic and the intrinsic contribution which is responsible
for the transition from the extrinsic to the intrinsic regime (see Fig. 7.9) with
σxy ∝ σ0

xx. In addition, this figure shows that σintr
xy is nearly independent of

σxx.
Another interesting property of the intrinsic SHC is the sign change which
appears for early 4d and 5d transition metals. Kontani et al. [172] theoreti-
cally showed that early 4d and 5d transition metals have a negative intrinsic
SHC whereas the late ones exhibit a positive SHC. This is in agreement with
experimental data which show for Pt [156] and Pd [173] a positive and for
Nb, Mo and Ta [173] a negative intrinsic SHC (the negative SHC of Nb is also
mentioned in Ref. [172] as unpublished data from Y. Otani et al.). Fig. 7.13
shows the SHC for two bcc systems which belong to the early 4d and 5d tran-
sition metals: NbxMo1−x and WxTa1−x, respectively. In addition, Fig. 7.14
displays the contribution of the term σanti,B z

xy from Eq. (4.103) and Fig. 7.15
shows an analysis similar to Fig. 7.10. As in the case of late transition met-
als the contribution of the term σanti,B z

xy is very small. In agreement with
the above mentioned theoretical and experimental observations the intrin-
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Figure 7.12: The extrinsic/intrinsic contribution to the SHE versus the in-
verse of the longitudinal conductivity for several alloy systems. The atom
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Figure 7.14: The contribution of σanti,B z
xy from Eq. (4.103) to the SHC for the

transition metal alloys WxTa1−x and NbxMo1−x.
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intrinsic skew scattering side-jump

alloy system σintr
xy σskew

xy σsj
xy

AuxPt1−x

Au 1.44 Au0.99Pt0.01 7.31 0.08
Pt 4.23 Au0.01Pt0.99 -0.74 -0.17

AgxAu1−x

Ag 0.32 Ag0.99Au0.01 -51.52 1.58
Au 0.95 Ag0.01Au0.99 24.00 -0.12

PtxIr1−x

Pt 4.58 Pt0.99Ir0.01 0.17 -0.02
Ir 0.84 Pt0.01Ir0.99 -0.65 0.18

WxTa1−x

W -0.64 W0.99Ta0.01 -1.90 -0.13
Ta -0.19 W0.01Ta0.99 18.80 -0.08

NbxMo1−x

Nb -0.07 Nb0.99Mo0.01 14.73 -0.18
Mo -0.28 Nb0.01Mo0.99 -3.80 0.05

Table 7.1: SHE for several 4d and 5d transition metals decomposed
into intrinsic, skew scattering and side-jump contribution (all results in
103(Ω cm)−1).

sic SHC which is derived from an extrapolation of the calculations without
vertex corrections to the pure metals exhibits a negative sign and is much
smaller as e.g. for Pt. The analysis of the SHC results for WxTa1−x and
NbxMo1−x which is shown in Fig. 7.15 displays a clear linear dependence of
σz

xy from σxx what indicates that again Eq. (7.10) is fulfilled.
Tab. 7.1 summarizes the observations of the present section concerning the
SHC. σintr

xy is derived from the extrapolation of σnoVC
xy to the pure metals

whereas σskew
xy and σsj

xy are calculated from analysis shown in Figs. 7.10, 7.11
and 7.15. It is important to note that the meaning of the numbers for σsj

xy

is limited. Due to the fact that σsj
xy is very small (apart from Ag with Au

impurities) the indirect calculation of the side-jump contribution via a fit-
ting procedure leads to a dependency of the results from e.g. the chosen
data points which are considered within the fitting procedure. Therefore,
the conclusion is that side-jump scattering is small for all systems compared
to skew scattering and for nearly all systems small compared to the intrinsic
contribution. Depending on the system σsj

xy shows a tendency to a positive
or negative sign independent of the sign of σskew

xy . There seems to be no cor-
relation of the sign of σsj

xy to that of σintr
xy for the systems studied here.

In order to proof that the analysis used for the decomposition of σz
xy is justi-

fied one can compare σskew
xy which is calculated via σskew

xy = σxxS (S is derived
from the slope of the linear fits) with a direct calculation of the skew scatter-
ing contribution from the Boltzmann equation (see appendix D). Fig. 7.16
displays a comparison of the results from the present work with calculations
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Figure 7.16: The longitudinal conductivity σxx (left panel) and σskew
xy (right

panel) calculated with the Kubo-Středa and the Boltzmann formalism [174]
for impurity concentrations of 1%. The atom type within the brackets de-
notes the impurity type.

using the Boltzmann formalism [174]. This figure demonstrates that a very
good quantitative agreement is achieved for σxx as well as σskew

xy . This clearly
shows that the decomposition procedure of the SHC in skew scattering and
side-jump scattering as performed in the present work is well justified.

The quantitative agreement of σintr
xy with experimental data for the in-

trinsic SHC is good for early transition metals like e.g. Nb whereas for Pt a
significant deviation is observed in the present work as well as in Ref. [166].
Guo et al. [166] theoretically investigated the influence of temperature on
the SHC. They showed that the intrinsic SHC in Pt rapidly decreases with
increasing temperature and obtained a very good agreement of the calcu-
lated intrinsic SHC at room temperature compared to experiment. At first
sight the observation of a decreasing SHC with increasing temperature is in
variance to measurements of Vila et al. [156] which observed a nearly tem-
perature independent SHC in the range from ≈ 5-300 K. This contradiction
can be presumably explained by the fact that even at very low temperatures
the measurements show a longitudinal conductivity of σxx ≈ 105 (Ω cm)−1

which is much lower compared to the superclean regime assumed in the work
of Guo et al. [166]. Therefore a direct comparison is hindered.
The observation that small impurity concentrations can drastically increase
the SHC is in agreement with recent experimental measurements. Seki et al.
[157] measured a gigantic SHC in Au (σz

xy ∝ 105 (Ωcm)−1). They conclude
that the large SHC is based on extrinsic contributions (skew scattering) from
impurities in Au. Similar observations are made by Koong et al. [175] which
measured a huge SHC in Pt and attributed this the skew scattering mecha-
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Figure 7.17: OrbHC for three different alloy systems: PtxIr1−x, AuxPt1−x

and AgxAu1−x. The circles (black line) correspond to calculations including
vertex corrections (the VC results of AgxAu1−x are multiplied by 0.5) and
the triangles (blue line) represent calculations without vertex corrections. In
addition, theoretical data from Tanaka et al. [96] for the intrinsic OrbHC are
shown.

nism.
The family of Hall effects contains as further related effect the so-called

orbital Hall effect (OrbHE) [96, 172, 176]. This effect can be calculated via
the Kubo-Středa equation:

σz,O
xy =

~

2πV
Tr
〈

Ĵz,O
x G+ĵyG

−
〉

c
+

e

4πiV
Tr
〈

(G+ −G−)(r̂xĴ
z,O
y − r̂yĴ

z,O
x )

〉

c
,

(7.11)

with Ĵz,O
x = e l̂z ĵx (l̂z is the z-component of the angular momentum oper-

ator, e = |e|). The OrbHE corresponds to a flow of atomic orbital angular
momentum in a transverse direction compared to the applied electric field.
Theoretical investigations predict the intrinsic OrbHE in transition metals
[96] and oxides [177] even larger than the intrinsic SHE. Figs. 7.17 and
7.18 show the orbital Hall conductivity (OrbHC) for late and early transi-
tion metals, respectively. For comparison theoretical data for the intrinsic
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Figure 7.18: OrbHC for WxTa1−x (left panel) and NbxMo1−x (right panel).
The circles (black line) correspond to calculations including vertex correc-
tions and the triangles (blue line) represent calculations without vertex cor-
rections. In addition, theoretical data from Tanaka et al. [96] for the intrinsic
OrbHC are shown.
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Figure 7.19: The orbital Hall conductivity versus σxx (black lines/circles)
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lines/diamonds are explained in the text.
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OrbHC from Tanaka et al. [96] are displayed. These data have been de-
rived from tight-binding model calculations which presumably explains the
quantitative deviations for some metals. However, the qualitative agreement
is reasonable. Tanaka et al. [96] predicted no sign change of the intrinsic
OrbHC over the whole range of 4d and 5d transition metals what is in agree-
ment with the present work. Fig. 7.19 shows a similar analysis as displayed
in e.g. Fig. 7.10 for an early and late transition metal alloy system. The
OrbHC shows as the SHC a linear behavior for the diluted case allowing an
analysis employing Eq. (7.10). The comparison of the intersections of the
blue and orange line with the y-axis with the corresponding intrinsic OrbHC
shows that the side-jump contribution is small. The dominant mechanism is
skew scattering with the exception of Pt with small Au concentrations where
the large intrinsic effect prevails.

7.2 Anomalous Hall Effect

In this section the AHE is investigated for three different fcc alloy systems:
FexPd1−x, CoxPd1−x and NixPd1−x. These alloy systems are chosen due to
the fact that experimental data over a wide concentration range are available.
In addition to the anomalous Hall conductivity (AHC) the isotropic residual
resistivity ρ = 1

3
ρ‖ + 2

3
ρ⊥ and the anisotropic magnetoresistance (AMR) are

shown for each alloy system. The AMR is defined as [178]:

∆ρ

ρ
=

ρ‖ − ρ⊥
1
3
ρ‖ + 2

3
ρ⊥

, (7.12)

where ρ‖ and ρ⊥ are the resistivity parallel and perpendicular to the mag-
netization direction, respectively. Similar to the AHE, the AMR is a purely
relativistic effect which is caused by spin-orbit coupling.

Fig. 7.20 shows the residual resistivity as well as the AMR for FexPd1−x.
The comparison with experimental data shows good agreement. However,
one has to take into account that for the calculations a fcc lattice has been
used whereas experimental investigations indicate the possibility of a face-
centered tetragonal phase for Fe concentrations between ≈ 37-55% (at higher
Fe concentrations a bcc phase coexists with the face-centered phases) [181].
Fig. 7.21 shows the AHC as well as the contribution of the term σanti,B

xy from
Eq. (4.103) for FexPd1−x. In order to compare the calculated AHC with
experiment one has to use the results including vertex corrections. Obvi-
ously, a satisfying agreement with the experimental data is obtained. Even
the experimental sign change is in excellent agreement with the theoretical
one. In Sec. 4.6.3 it was claimed that the contribution of the term σanti,B

xy is
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Figure 7.20: Residual resistivity (left figure) and AMR (right figure) of
FexPd1−x. The experimental resistivity data are from Skalski et al. [179]
(4.2 K) and the experimental AMR data are from Senoussi et al. [180] (1.5 K)
as well as Hsu et al. [181] (4.2 K).
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Figure 7.21: The AHC of FexPd1−x. The circles show results including vertex
corrections and the triangles show results without vertex corrections. In
addition, the inset displays the small contribution of the term σanti,B

xy from
Eq. (4.103). The squares show experimental data from Ref. [182] (4.2 K).

negligible compared to the term σanti,A
xy . This is demonstrated by the insets

of Figs. 7.21, 7.23 and 7.25.

Figs. 7.22 and 7.23 show the residual resistivity, AMR and the AHE
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Figure 7.22: Residual resistivity (left figure) and AMR (right figure) of
CoxPd1−x. The experimental resistivity data are from Jen et al. [183] (4 K)
and the experimental AMR data are from Jen [184] (4 K).

for CoxPd1−x, respectively. Again, the agreement with experimental data is
good. However, the AMR shows some deviations at higher Co concentrations
which could be due to structural deviations from the pure fcc phase. The
comparison of the AHC with experiment shows for Co concentrations & 8%
a very good agreement but for lower Co concentrations a deviation from
experiment is obtained. Due to the fact that with decreasing impurity con-
centration the disorder induced broadening of the electronic states decreases
the Brillouin zone integration (see Sec. 4.6.1) becomes numerically very de-
manding. Therefore, the experimental sign change of the AHC for diluted
Co concentrations is difficult to reproduce. The smallest Co concentration
considered is only 1% and therefore one can not preclude that calculations
using lower Co concentrations show the experimental sign change (impurity
concentrations down to 0.2% indicate no sign change in the present work).

For the alloy system NixPd1−x the residual resistivity and the AMR are
shown in Fig. 7.24 and the AHC is shown in Fig. 7.25. For this system the
residual resistivity shows a systematic underestimation over the whole con-
centration range. Usually the residual resistivity calculated within the for-
malism used in the present work is in good agreement with low temperature
measurements (see e.g. Figs. 6.21, 7.20 and 7.22). Therefore, the pronounced
deviation could presumably be related to lattice imperfections in the exper-
imental investigated samples. Lattice imperfections of any kind lead to an
increase of the measured resistivity [3]. Nevertheless, the AHC effect shows
good quantitative agreement with the experimental data and the sign change
is in line with the experimental observations.

If one subtracts from calculations including vertex corrections the results
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Figure 7.23: The AHC of CoxPd1−x. The circles show results including
vertex corrections and the triangles show results without vertex corrections.
In addition, the inset displays the small contribution of the term σanti,B

xy

from Eq. (4.103). The squares and diamonds show experimental data from
Ref. [182] and [185] (4.2 K), respectively.
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Figure 7.24: Residual resistivity (left figure) and AMR (right figure) of
NixPd1−x. The experimental resistivity data are from Dreesen and Pugh
[186] (4 K) and the experimental AMR data are from Senoussi et al. [180]
(1.5 K).
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Figure 7.25: The AHC of NixPd1−x. The circles show results including vertex
corrections and the triangles show results without vertex corrections. In
addition, the inset displays the small contribution of the term σanti,B

xy from
Eq. (4.103). The squares show experimental data from Ref. [182] (4.2 K).

from calculations without vertex corrections one gets the purely extrinsic
contribution to the AHE (see Sec. 7.1). In order to decompose the extrinsic
AHC into skew and side-jump scattering one can employ Eq. (7.10) with-
out the intrinsic contribution i.e. σextr

xy = σxxS + σsj
xy. Fig. 7.26 shows the

extrinsic AHC versus the longitudinal conductivity for Pd with impurity con-
centrations up to 10%. Obviously, a linear behavior due to skew scattering is
observed. The brown, magenta and orange lines are linear fits of the corre-
sponding calculated data points. The intersections of the fitted lines with the
y-axis give the side-jump scattering contribution which is very small com-
pared to skew scattering for all three alloy systems. This analysis is very
similar to the analysis used for the spin Hall effect (see e.g. Fig. 7.10). How-
ever, Fig. 7.26 shows only the extrinsic contribution to the AHC whereas
Fig. 7.10 shows the sum of extrinsic and intrinsic SHC.

Due to the fact that non-magnetic metals exhibit no intrinsic AHE the
calculations which neglect vertex corrections should go down to zero when
approaching Pd. At first sight this is in contradiction with the results shown
in Figs. 7.21, 7.23 and 7.25 where the calculations without vertex corrections
still give ≈ −103 Ωcm for 1% impurity concentration. Numerically very de-
manding calculations (up to ≈ 109 k-points within the first Brillouin zone

110



7.2. Anomalous Hall Effect

0 1 2 3 4
σ

xx
 (10

-6
 Ohm cm)

-1

-6

-4

-2

0

2

4

σ xyex
tr
   

(1
0-3

 O
hm

 c
m

)-1

Fe
0.003

Pd
0.997

Co
0.002

Pd
0.998

Ni
0.02

Pd
0.98
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Figure 7.27: The AHC of NixPd1−x and CoxPd1−xcalculated without vertex
corrections for diluted impurity concentrations.

have been used) for slightly lower impurity concentrations indicate that the
calculations without vertex corrections approaches zero with decreasing im-
purity concentration. This behavior is shown in Fig. 7.27 for NixPd1−x and
CoxPd1−x. Due to computational limitations concerning the k-space integra-
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tion impurity concentrations < 0.2% have not been investigated within the
present work.

In summary, this section demonstrates that the method used in the
present work is suitable for investigations of the AHE. The quantitative
agreement with experimental data is good. Only for very diluted impu-
rity concentrations deviations from experimental data are observed. It turns
out that for low impurity concentrations skew scattering is the dominant
mechanism.
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Summary

The major aim of the present work was to investigate theoretically the sym-
metric as well as anti-symmetric part of the electric conductivity tensor for
alloys on a relativistic ab initio level. This has been achieved using the spin-
polarized fully relativistic Korringa-Kohn-Rostoker Green’s function method
(SPR-KKR-GF) in conjunction with the linear response Kubo-Středa formal-
ism. For the investigation of the SHE a fully relativistic spin-current density
operator derived from the Bargmann-Wigner four-vector polarization opera-
tor T has been used. In order to investigate spin dependent phenomena spin
projection operators derived from T have been employed. The simulation of
the electronic structure of random disordered alloys has been performed us-
ing the coherent potential approximation (CPA). In addition, the non-local
coherent potential approximation (NLCPA) has been employed to include
short ranged correlations in the atomic lattice site occupation.
In particular the theoretical investigation of the anti-symmetric part of the
conductivity tensor, i.e. the Hall conductivity coefficients, is very challeng-
ing. In order to calculate the intrinsic SHE/AHE one needs a transport
theory which gives access to the anti-symmetric part of the conductivity
tensor in combination with a proper relativistic treatment (inclusion of spin-
orbit coupling) of the electronic structure. In addition, for the calculation of
the SHE a spin decomposition scheme has to be applied. Recently, it turned
out that the SHE/AHE is very sensitive to impurities which give rise to the
extrinsic SHE/AHE. To investigate the extrinsic SHE/AHE the theoretical
framework has to be extended to a reliable treatment of disorder. The com-
bination of all the mentioned requirements makes the ab initio calculation
of the SHE/AHE very challenging. Therefore, only few theoretical investiga-
tions are available which consider the intrinsic AHE and SHE on an ab initio
level or the intrinsic/extrinsic contribution via model Hamiltonians. The
method used in the present work allows the first simultaneous investigation
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of the extrinsic as well as intrinsic contribution to the SHE/AHE on an ab
initio level. This has been demonstrated for several non-magnetic 4d- and
5d-transition metal alloy systems (SHE) and for magnetic Pd based alloys
with 3d-transition metals (AHE). Due to the fact that intrinsic as well as
extrinsic contributions are investigated on equal footings it was for the first
time possible to decompose the SHE/AHE in a reliable way into skew and
side-jump scattering as well as intrinsic contributions.

One of the central observations is that for all investigated alloy systems
skew scattering is the dominant mechanism within the investigated super-
clean regime. However, for impurity concentrations of 1% the intrinsic con-
tribution can exceed the skew scattering contribution. Such a behavior was
observed for the SHE of PtxIr1−x where the vertex corrections (VC) are small
for impurity concentrations ≥ 1% which indicates that the skew scattering
dominated regime for this system emerges for impurity concentrations below
1%. It turns out that the side-jump contribution is negligible for most of
the investigated systems within the superclean regime which is in agreement
with earlier theories. In order to show the reliability of the decomposition
method used within the present work to extract skew and side-jump scatter-
ing the SHE results for skew scattering are compared with calculations using
the Boltzmann formalism which show good quantitative agreement.
The present work clarified the ongoing debate about the importance of VC. It
was demonstrated that the inclusion of VC which give rise to the skew scat-
tering contribution is essential for the calculation of the SHE/AHE within
the superclean regime. The observation that the importance of VC increases
with decreasing impurity concentration is in contrast to the observations
within standard transport calculations like the residual resistivity where VC
become negligible in the very diluted case. In addition, it was shown that
with going from the dilute to concentrated concentration regime the impor-
tance of VC for the SHE/AHE drop down which lead to a switching from an
extrinsic to an “intrinsic” regime dominated by intrinsic instead of extrinsic
effects. Therefore, the present work clearly demonstrates that experimen-
tal investigations of the intrinsic SHE using metallic samples of very high
purity are extremely sensitive to impurity atoms which can influence the
measurements in a very pronounced way. This leads to the counterintuitive
observation that such measurements should be performed using samples with
well-defined impurity concentrations i.e. depending on the impurity type one
has to go beyond a certain impurity concentration in order to reduce the di-
verging skew scattering contribution with decreasing impurity concentration.
The comparison of the calculations with experimental data show especially
in the case of the AHE an excellent quantitative agreement. All experimen-
tally observed sign changes for concentrated alloys could be reproduced. In
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particular, the calculated sign change of the intrinsic SHE from early to late
transition metals is in line with experimental data.

In order to decompose the conductivity tensor elements into “spin-up”
and “spin-down” contributions a spin decomposition scheme had to be used.
The present work derives suitable spin projection operators from the rel-
ativistic Bargmann-Wigner four-vector polarization operator which can be
considered as a generalized spin operator. These spin projection operators
have been applied to the symmetric part of the conductivity tensor. The
results are compared to an approximate spin decomposition scheme which
shows a very good agreement for alloy systems with negligible spin-flip con-
tributions (low spin-orbit coupling). In addition, it has been demonstrated
that for systems with strong spin-orbit coupling the approximate scheme fails
whereas the spin projection operators give reliable results.

Several alloys show instead of random disorder short ranged correlations
in the lattice site occupation. This can drastically influence the transport
properties of the alloys. In order to investigate the influence of such short
ranged correlations one has to go beyond the CPA. The NLCPA is a cluster
generalization of the CPA which allows to simulate short ranged ordering
effects. Usually, the residual resistivity decreases with increasing ordering.
This is demonstrated for CuxZn1−x within the present work. However, there
is a significant set of alloys which show a completely opposite behavior so
that their resistivities actually increase when ordering is increased. These
materials belong to the class of so-called K-state alloys. Such alloys are
typically rich in late transition metals such as Ni, Pd or Pt and alloyed with a
mid-row element such as Cr, Mo or W. The K-effect has been investigated for
Ni0.8Mo0.2, Ni0.8Cr0.2 Pd0.8W0.2 and AgxPd1−x. The NLCPA results confirm
a decrease in resistivity with decreasing ordering. For AgxPd1−x the K-
effect is only observed for the Pd rich side. The present work proposes an
explanation of the K-effect which is caused by characteristic features of the
electronic states at the Fermi energy. These features could be observed and
identified for all investigated K-state alloys.
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Appendix A

Wave function of a Scattered
Electron for r ≥ rmt

In order to calculate the wave function of a scattered electron outside the
potential region (V (r) = 0) one can use Eq. (3.27) in conjunction with
Eqs. (3.9), (3.15) and (3.23). This leads to the following expression

ψ(r) =
∑

κ,µ

(
jl(pr)χ

µ
κ(r̂)

ω jl(pr)χ
µ
−κ(r̂)

)

−
∑

κ,µ
κ′,µ′

∫ rmt

0

∫

dr′dr̂′ r′ 2 i p η

(
h+

l (pr)χµ
κ(r̂)

ω h+

l
(pr)χµ

−κ(r̂)

)

(

jl(pr
′)χµ

κ(r̂′)
ω jl(pr

′)χµ
−κ(r̂

′)

)×

V (r′)14

(

gκ′(r′)χµ′

κ′(r̂′)

ifκ′(r′)χµ′

−κ′(r̂′)

)

(A.1)

for r ≥ rmt with η = E+mc2

c2
and ω = ipcSκ

E+mc2
. The last equation can be written

as

ψ(r) =
∑

κ,µ

(
jl(pr)χ

µ
κ(r̂)

ω jl(pr)χ
µ
−κ(r̂)

)

−
∑

κ,µ

i p η

(
h+

l (pr)χµ
κ(r̂)

ω h+

l
(pr)χµ

−κ(r̂)

)

tκ,µ (A.2)

with

tκ,µ =
∑

κ′,µ′

∫ rmt

0

∫

dr dr̂ r 2

(
jl(pr)χ

µ
κ(r̂)

ω jl(pr)χ
µ
−κ(r̂)

)×

V (r)14

(

gκ′(r)χµ′

κ′(r̂)

ifκ′(r)χµ′

−κ′(r̂)

)

(A.3)

=

∫ rmt

0

dr r 2

(
jl(pr)
ω jl(pr)

)×

V (r)12

(
gκ′(r)
ifκ′(r)

)

. (A.4)
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For the derivation of Eq. (A.4) the identity

∫

dr̂χµ
κ(r̂)†χµ′

κ′(r̂) = δκ,κ′δµ,µ′ (A.5)

has been used in combination with the assumption that the potential V (r)
contains no terms that couple to the spin-angular functions (this would be
the case if the potential includes a magnetic field). Finally, the wave function
of the scattered electron becomes

ψ(r) =
∑

κ,µ

(
jl(pr)χ

µ
κ(r̂)

ω jl(pr)χ
µ′

−κ(r̂)

)

−
∑

κ,µ

i p η

(
(jl(pr) + inl(pr))χ

µ
κ(r̂)

ω (jl(pr) + inl(pr))χ
µ
−κ(r̂)

)

tκ

(A.6)
where Eq. (3.13) has been used. If one compares Eq. (A.6) with Eq. (3.14)
it turns out that the coefficients of Eq. (3.14) are directly related to tκ via

cos δκ = 1 − i p η tκ sin δκ = −p η tκ . (A.7)

This observation shows that it is sufficient to calculate the phase shifts δκ to
determine tκ.

A more general method for the determination of tκ was derived by Ebert
and Györffy [187]. This method uses a Wronskian relation for the calcu-
lation of tκ and is also applicable in the case of non-spherically-symmetric
potentials.
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Cluster Probabilities

In order to apply the NLCPA a crucial step is the proper definition of cluster
probabilities Pγ. In the present work only the smallest fcc (four atoms) and
bcc (two atoms) clusters are used. This lead for a binary bcc (fcc) alloy to
4 (16) cluster configurations. The corresponding cluster probabilities Pγ are
shown in Tab. B.1 and Tab. B.2.

cluster disorder clustering ordering
configuration Pγ = Pγ =

Cu,Cu x2 x Pγ = 2x− 1 if x ≥ 1
2

; Pγ = 0 if x < 1
2

Cu,Zn x(1 − x) 0 Pγ = 1 − x if x ≥ 1
2

; Pγ = x if x < 1
2

Zn,Cu x(1 − x) 0 Pγ = 1 − x if x ≥ 1
2

; Pγ = x if x < 1
2

Zn,Zn (1 − x)2 1 − x Pγ = 0 if x ≥ 1
2

; Pγ = 1 − 2x if x < 1
2

Table B.1: Cluster probabilities for the NLCPA bcc cluster (shown for
CuxZn1−x).
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cluster disorder clustering ordering
configuration Pγ = Pγ =

Ni,Ni,Ni,Ni x4 x Pγ = 0 if x < 0.75 ; Pγ = 4x− 3 if x ≥ 0.75

Ni,Ni,Ni,Mo x3(1 − x) 0 Pγ = 0 if x < 0.5 ; Pγ = x− 0.5 if 0.5 ≤ x < 0.75 ; Pγ = 1 − x if x ≥ 0.75
Ni,Ni,Mo,Ni x3(1 − x) 0 Pγ = 0 if x < 0.5 ; Pγ = x− 0.5 if 0.5 ≤ x < 0.75 ; Pγ = 1 − x if x ≥ 0.75
Ni,Mo,Ni,Ni x3(1 − x) 0 Pγ = 0 if x < 0.5 ; Pγ = x− 0.5 if 0.5 ≤ x < 0.75 ; Pγ = 1 − x if x ≥ 0.75
Mo,Ni,Ni,Ni x3(1 − x) 0 Pγ = 0 if x < 0.5 ; Pγ = x− 0.5 if 0.5 ≤ x < 0.75 ; Pγ = 1 − x if x ≥ 0.75

Ni,Ni,Mo,Mo x2(1 − x)2 0 Pγ = 0 if x < 0.25 ;Pγ = 2
3
x− 1

6
if 0.25 ≤ x < 0.5 ; Pγ = 1

2
− 2

3
x if x ≥ 0.75

Ni,Mo,Ni,Mo x2(1 − x)2 0 Pγ = 0 if x < 0.25 ;Pγ = 2
3
x− 1

6
if 0.25 ≤ x < 0.5 ; Pγ = 1

2
− 2

3
x if x ≥ 0.75

Mo,Ni,Mo,Ni x2(1 − x)2 0 Pγ = 0 if x < 0.25 ;Pγ = 2
3
x− 1

6
if 0.25 ≤ x < 0.5 ; Pγ = 1

2
− 2

3
x if x ≥ 0.75

Mo,Ni,Ni,Mo x2(1 − x)2 0 Pγ = 0 if x < 0.25 ;Pγ = 2
3
x− 1

6
if 0.25 ≤ x < 0.5 ; Pγ = 1

2
− 2

3
x if x ≥ 0.75

Ni,Mo,Mo,Ni x2(1 − x)2 0 Pγ = 0 if x < 0.25 ;Pγ = 2
3
x− 1

6
if 0.25 ≤ x < 0.5 ; Pγ = 1

2
− 2

3
x if x ≥ 0.75

Mo,Mo,Ni,Ni x2(1 − x)2 0 Pγ = 0 if x < 0.25 ;Pγ = 2
3
x− 1

6
if 0.25 ≤ x < 0.5 ; Pγ = 1

2
− 2

3
x if x ≥ 0.75

Mo,Mo,Mo,Ni x(1 − x)3 0 Pγ = x if x < 0.25 ; Pγ = 0.5 − x if 0.25 ≤ x < 0.5 ; Pγ = 0 if x ≥ 0.5
Mo,Mo,Ni,Mo x(1 − x)3 0 Pγ = x if x < 0.25 ; Pγ = 0.5 − x if 0.25 ≤ x < 0.5 ; Pγ = 0 if x ≥ 0.5
Mo,Ni,Mo,Mo x(1 − x)3 0 Pγ = x if x < 0.25 ; Pγ = 0.5 − x if 0.25 ≤ x < 0.5 ; Pγ = 0 if x ≥ 0.5
Ni,Mo,Mo,Mo x(1 − x)3 0 Pγ = x if x < 0.25 ; Pγ = 0.5 − x if 0.25 ≤ x < 0.5 ; Pγ = 0 if x ≥ 0.5

Mo,Mo,Mo,Mo (1 − x)4 1 − x Pγ = 1 − 4x if x < 0.25 ; Pγ = 0 if x ≥ 0.25

Table B.2: Cluster probabilities for the NLCPA fcc cluster (shown for NixMo1−x).
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Appendix C

Weak-Disorder Limit

The diagrammatic representation of the conductivity in Sec. 4.5 considers
only terms which consists of a combination of retarded and advanced Green’s
functions. The reason for this procedure is that in the weak-disorder limit the
contributions of terms which consists of a combination of two retarded or two
advanced Green’s functions give a negligible contribution to the conductivity.
In order to proof this statement one can start from Eq. (4.62) with two
retarded Green’s functions. In case of negligible vertex corrections (Refs. [63,
88] discuss also the more general case) this equation becomes proportional
to
〈
G+
〉〈
G+
〉
. With the help of Eq. (3.65) one can write

〈
G+
〉〈
G+
〉

=
1

(E −H −ℜΣ
︸ ︷︷ ︸

= x

−i ℑΣ
︸︷︷︸

=−∆

)2
=

1

(x+ i∆)2
×

(x− i∆)2

(x− i∆)2
(C.1)

=
x2 − ∆2 − 2ix∆

(x2 + ∆2)2
=

1

x2 + ∆2
−

2∆2

(x2 + ∆2)2
−

2ix∆

(x2 + ∆2)2

(C.2)

=
A

2∆
−

1

2
A2 −

ix

2∆
A2 (C.3)

with the spectral function

A =
−2ℑΣ

[E −H −ℜΣ]2 + (ℑΣ)2
=

2∆

x2 + ∆2
. (C.4)

In the weak-disorder limit the impurity concentration ni → 0 and therefore
∆ → 0. From Eq. (C.4) one can easily see that for ∆ → 0 the spectral
function becomes a δ-function. The application of this limiting procedure to
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Appendix C. Weak-Disorder Limit

Eq. (C.3) leads to the following expression

〈
G+
〉〈
G+
〉

=
A

2∆
−

1

2
A2 −

ix

2∆
A2 →

A

2∆
−

A

2∆
−

ix

2∆2
A→ −

i

2∆2
xδ(x) = 0

(C.5)
where the identity A2 → A/∆ for ∆ → 0 [88] has been used.

If one investigates the behavior of the term which is proportional to
〈
G+
〉〈
G−
〉

one obtains

〈
G+
〉〈
G−
〉

=
1

(E −H −ℜΣ − iℑΣ)
×

1

(E −H −ℜΣ + iℑΣ)
(C.6)

=
1

[E −H −ℜΣ]2 + [ℑΣ]2
=

A

−2ℑΣ
=

A

2∆
. (C.7)

The last equation clearly shows that the term
〈
G+
〉〈
G−
〉

diverges if ∆ →
0 implying that if the disorder approaches zero the conductivity becomes
infinite.

The considerations in this appendix justify the approximation of the con-
ductivity by Eq. (4.62) which is used for the diagrammatic representation of
the conductivity in the weak-disorder limit.
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Appendix D

Boltzmann Equation

The central quantity of the Boltzmann equation is the distribution function
fk(r). This distribution function gives the concentration of charge carriers
in a quantum state k at position r. This distribution function can change
during time trough three main processes: diffusion, the influence of external
fields and scattering. The Boltzmann equation states that the total rate of
change has to vanish [2, 188]:

−
∂fk
∂t

∣
∣
∣
∣
scatt.

+
∂fk
∂t

∣
∣
∣
∣
field

+
∂fk
∂t

∣
∣
∣
∣
diff.

= 0 . (D.1)

Neglecting the diffusion term the Boltzmann equation consists of the external
field term (here only an electric field E is considered) [189]:

∂fk
∂t

∣
∣
∣
∣
field

=
dk

dt

∂fk
∂Ek

∂Ek

∂k
= −|e|

∂fk
∂Ek

vk · E , (D.2)

with k̇ = −|e|E and Ek are eigenvalues of the Bloch states of the ideal crystal
and the scattering term. The change of the distribution function fk due to
scattering processes is given by [188]:

∂fk
∂t

∣
∣
∣
∣
scatt.

=
∑

k′

[fk′(1 − fk)Pk′k − (1 − fk′)fkPkk′ ] , (D.3)

where Pk′k corresponds to a transition probability for scattering from state k′

to state k. Therefore, the first term from Eq. (D.3) describes the scattering
from the occupied state k′ to the unoccupied state k. This term is the
so-called “scattering-in” term which corresponds in the diluted limit to the
vertex corrections of the Kubo-Středa equation [89]. The second term is the
“scattering-out” term which describes the scattering from an occupied state
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Appendix D. Boltzmann Equation

k into an unoccupied state k′.
Using the Boltzmann equation in the spirit of linear response theory (small E,
gk ∝ E) one can assume that the deviation gk of the equilibrium distribution
function f 0

k
(Fermi-Dirac distribution) is small:

fk = f 0
k

+ gk , (D.4)

with gk ≪ f 0
k
. This leads to:

∂fk
∂t

∣
∣
∣
∣
scatt.

=
∑

k′

Pkk′ (gk′ − gk) , (D.5)

where Pk′k = Pkk′ has been used. Making the ansatz [188]:

gk = −|e| δ(Ek − EF )Λk · E , (D.6)

where Λk is the vector mean free path. Combining Eqs. (D.1), (D.2), (D.5)
and (D.6) one obtains:

−|e|
∂fk
∂Ek

vk ·E = − |e|
∑

k′

Pkk′ [δ(Ek′ − EF )Λk′ ·E − δ(Ek − EF )Λk ·E]

(D.7)

−δ(Ek − EF )vk ·E =
∑

k′

Pkk′ [δ(Ek′ − EF )Λk′ ·E] − τ−1
k
δ(Ek − EF )Λk ·E

(D.8)

Λk ·E δ(Ek − EF ) =τk

{

vk ·E δ(Ek − EF ) +
∑

k′

Pkk′ [Λk′ ·E δ(Ek′ − EF )]

}

(D.9)

where higher order terms in E have been neglected and the Boltzmann re-
laxation time τ−1

k
=
∑

k′ Pkk′ has been used. From Eq. (D.9) one obtains for
the vector mean free path:

Λk = τk

(

vk +
∑

k′

Pkk′Λk′

)

. (D.10)

The second term from this equation corresponds to the scattering-in term
which causes the vertex corrections. In order to solve this equation an iter-
ative scheme can be employed [190]. Finally, the conductivity can be calcu-
lated via a Fermi surface integral [189]:

σxy =
e2

(2π)3

∑

n

∫ ∫

FS

dS
1

vn
k

vn,x
k

Λn,y
k

. (D.11)
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(here an additional band index n has been used). In order to calculate the
extrinsic spin Hall effect which based on skew scattering one can use a similar
equation [191]:

σz
xy =

e2

(2π)3

∑

n

∫ ∫

FS

dS
sz

n(k)

vn
k

vn,x
k

Λn,y
k

, (D.12)

with matrix elements sn
z (k) = 〈φn

k
|β Σz|φ

n
k
〉 (the Boltzmann formalism results

shown in Fig. 7.16 are multiplied by −1 in order to be consistent with the
conversion from spin conductivity into the unit of charge conductivity used
within the present work). It turns out that only the scattering-in term gives a
contribution to skew scattering. This observation is in line with the analysis
of the contributions to skew scattering within the Kubo-Středa formalism.
In Sec. 7.1 it was mentioned that only a certain class of vertex diagrams
contribute to skew scattering.
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Appendix E

Reformulation of the
Spin-Current Density Operator
Matrix Element

The matrix element of the current density operator ĵ has the following form:

−〈Λ, E|ecα|Λ′, E〉 , (E.1)

with Λ = (κ, µ) and E gives the energy dependence (e = |e|). An exact
reformulation of this matrix element for non-magnetic systems is [192]:

−〈Λ, E|ecα|Λ′, E〉 = −
e

m+ E/c2
〈Λ, E|p̂ +

V

c
α|Λ′, E〉 , (E.2)

with the canonical momentum operator p̂ and the potential V .
Vernes et al. [97] showed that a proper relativistic spin-current density

operator can be defined as Ĵ j
i = ecαiTj where T is the spatial component of

the Bargmann-Wigner four-vector polarization operator (see Sec. 5.2). Pro-
jecting T to the z-axis one arrives for non-magnetic systems at the following
expression:

Tz = βΣz −
1

mc
γ5p̂z . (E.3)

This leads for a spin projection on the z-axis in combination with a current
along the x-axis to the spin-current density operator:

Ĵz
x = ec

(

βΣzαx −
1

mc
γ5p̂zαx

)

. (E.4)

In the following it will be shown that the matrix element of the first term can
be reformulated in a similar way as shown by Eq. (E.2). In order to perform
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Appendix E. Reformulation of the Spin-Current Density
Operator Matrix Element

such a reformulation one can use the relation:

〈Λ, E|[HD, βΣzαx]+|Λ
′, E〉 = 2(mc2 + E)〈Λ, E|βΣzαx|Λ

′, E〉 , (E.5)

where HD corresponds to the Dirac Hamiltonian. Calculating the anti-
commutator [HD, βΣzαx]+ for non-magnetic systems i.e.:

HD = cα · p̂ + βmc2 + V , (E.6)

leads to the following expression:

[HD, βΣzα]+ =HDβΣzα + βΣzαHD (E.7)

=cα · p̂βΣzα + βmc2βΣzα + V βΣzα+

+ βΣzαcα · p̂ + βΣzαβmc
2 + βΣzαV (E.8)

=cβΣz[(αxp̂x + αyp̂y − αzp̂z)α + αα · p̂]

+mc2 (Σzα + βΣzαβ)
︸ ︷︷ ︸

=0

+2V βΣzα (E.9)

=cβΣz(α · p̂α + αα · p̂) − 2cβΣzαzp̂zα + 2V βΣzα (E.10)

=2cβΣz(p̂ +
V

c
α) + 2cβγ5p̂zα , (E.11)

where it has been used that αiβ = −βαi, [αi,Σz]+ = −2γ5δiz with i = x, y, z
and [αi, αj] = 2αiαj(1 − δij). Inserting Eq. (E.11) into Eq. (E.5) leads to:

〈Λ, E|βΣzαx|Λ
′, E〉 =

1

mc+ E/c
〈Λ, E|[βΣz(p̂x +

V

c
αx) + βγ5p̂zαx]|Λ

′, E〉 .

(E.12)
Therefore, the matrix element of the spin-current density operator shown by
Eq. (E.4) transforms to:

〈Λ, E|Ĵz
x |Λ

′, E〉 =
e

m+ E/c2
〈Λ, E|βΣz(p̂x +

V

c
αx)|Λ

′, E〉

+ e〈Λ, E|
1

m+ E/c2
βγ5p̂zαx −

1

m
γ5p̂zαx|Λ

′, E〉 (E.13)

=
e

m+ E/c2
〈Λ, E|βΣz(p̂x +

V

c
αx)|Λ

′, E〉

+ e〈Λ, E| −
1

m+ E/c2
βΣxp̂z +

1

m
Σxp̂z|Λ

′, E〉 (E.14)

=
e

m+ E/c2
〈Λ, E|βΣz(p̂x +

V

c
αx)|Λ

′, E〉

+
e

m+ E/c2
〈Λ, E|[(1 +

E

mc2
)14 − β]Σxp̂z|Λ

′, E〉 . (E.15)
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Due to the fact that E/(mc2) is small and β affects only the contribution due
to the small components of the bi-spinors the second term from Eq. (E.15)
is negligible. This leads to the following form of the spin-current density
operator matrix element:

〈Λ, E|Ĵz
x |Λ

′, E〉 ≈
e

m+ E/c2
〈Λ, E|βΣz(p̂x +

V

c
αx)|Λ

′, E〉 , (E.16)

which can be used for the calculation of the SHC. The advantage of the
matrix element shown in Eq. (E.16) compared to the matrix element of the
operator given by Eq. (E.4) is that the dominant contribution to the SHC
comes from the first term in Eq. (E.16) which allows to neglect the term which
includes the αµ matrix. Due to the fact that the αµ matrix couples the small
and large component of the bi-spinors whereas p̂ couples the large and small
components independently (what allows to consider the large component
only) the matrix element is drastically simplified. However, it is important to
note that effects like the microscopical side-jump scattering mechanism which
is related to the anomalous velocity are no longer included in calculations
which use the matrix element given by Eq. (E.16) neglecting the potential
term.
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Appendix F

Computational Details

All calculations were done in the framework of spin density functional theory
using the local spin density approximation (LSDA) using the parameteriza-
tion of Vosko, Wilk and Nusair [36] for the exchange correlation functional.
The potential construction has been done within the atomic sphere approxi-
mation (ASA). All transport results include vertex corrections if not stated
otherwise. For the angular momentum expansion a cutoff of lmax = 3 has
been used apart from the results for Ga1−xMnxAs for which lmax = 2 has been
used. A very crucial point within the presented transport calculations is the
number of k-points used for the Brillouin zone integration. Therefore, well
converged k-meshes in the range of ≈ 50000 (residual resistivity) up to 109

(very low impurity concentrations AHE) k-points within the first Brillouin
zone have been used.
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Appendix G

Acronyms

The present work uses a variety of acronyms where the most important are
listed in the following:

• AHC anomalous Hall conductivity

• AHE anomalous Hall effect

• AMR anisotropic magnetoresistance

• BSF Bloch spectral function

• CPA coherent potential approximation

• DFT density functional theory

• DOS density of states

• GF Green’s function

• KKR Korringa-Kohn-Rostoker

• NLCPA non-local coherent potential approximation

• OHE ordinary Hall effect

• OrbHC orbital Hall conductivity

• OrbHE orbital Hall effect

• SHC spin Hall conductivity

• SHE spin Hall effect

• VC vertex corrections
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[90] V. K. Dugaev, A. Crépieux, and P. Bruno, “Localization corrections to
the anomalous Hall effect in a ferromagnet,” Phys. Rev. B 64, 104411
(2001).

[91] J. Banhart and H. Ebert, “First-principles calculation of spontaneous
magnetoresistance anisotropy and anomalous Hall effect in disordered
ferromagnetic alloys,” Europhys. Lett. 32, 517 (1995).

141



Bibliography

[92] P. R. Tulip, J. B. Staunton, S. Lowitzer, D. Ködderitzsch, and H. Ebert,
“Theory of electronic transport in random alloys with short-range or-
der: Korringa-Kohn-Rostoker non-local coherent potential approxima-
tion approach,” Phys. Rev. B 77, 165116 (2008).

[93] P. Grünberg, “It’s the coupling that creates resistance: Spin electronics
in layered magnetic structures,” Ann. Physik 17, 7 (2008).

[94] H. Ebert, A. Vernes, and J. Banhart, “Anisotropic electrical resistivity
of ferromagnetic Co-Pd and Co-Pt alloys,” Phys. Rev. B 54, 8479
(1996).

[95] J. Banhart, H. Ebert, and A. Vernes, “Applicability of the two-current
model for systems with strongly spin-dependent disorder,” Phys. Rev.
B 56, 10165 (1997).

[96] T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Ya-
mada, and J. Inoue, “Intrinsic spin Hall effect and orbital Hall effect
in 4d and 5d transition metals,” Phys. Rev. B 77, 165117 (2008).

[97] A. Vernes, B. L. Györffy, and P. Weinberger, “Spin currents, spin-
transfer torque, and spin-Hall effects in relativistic quantum mechan-
ics,” Phys. Rev. B 76, 012408 (2007).

[98] V. Bargmann and E. P. Wigner, “Group theoretical discussion of rela-
tivistic wave equations,” Proc. Natl. Acad. Sci. U.S.A. 34, 211 (1948).

[99] V. Popescu, H. Ebert, N. Papanikolaou, R. Zeller, and
P. H. Dederichs, “Spin-dependent transport in ferromag-
net/semiconductor/ferromagnet junctions: A fully relativistic
approach,” J. Phys.: Condensed Matter 16, S5579 (2004).

[100] D. M. Fradkin and R. H. Good, “Electron polarization operators,” Rev.
Mod. Phys. 33, 343 (1961).

[101] S. Lowitzer, D. Ködderitzsch, H. Ebert, and J. B. Staunton, “Electronic
transport in ferromagnetic alloys and the Slater-Pauling curve,” Phys.
Rev. B 79, 115109 (2009).

[102] I. Mertig, R. Zeller, and P. H. Dederichs, “Ab initio calculations of
residual resistivities for dilute Ni alloys,” Phys. Rev. B 47, 16178
(1993).

[103] A. Fert, “Nobel lecture: Origin, development, and future of spintron-
ics,” Rev. Mod. Phys. 80, 1517 (2008).

142



Bibliography

[104] J. W. F. Dorleijn and A. R. Miedema, “A quantitative investigation of
the two current conduction in nickel alloys,” J. Phys. F: Met. Phys. 5,
487 (1975).

[105] T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, and A. H. MacDonald,
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[108] I. Turek, J. Kudrnovksý, V. Drchal, and P. Weinberger, “Residual resis-
tivity of diluted III-V magnetic semiconductors,” J. Phys.: Condensed
Matter 16, S5607 (2004).

[109] K. W. Edmonds, K. Y. Wang, R. P. Campion, A. C. Neumann, C. T.
Foxon, B. L. Gallagher, and P. C. Main, “Hall effect and hole densities
in Ga1−xMnxAs,” Appl. Physics Lett. 81, 3010 (2002).

[110] H. K. Choi, Y. S. Kim, S. S. A. Seo, I. T. Jeong, W. O. Lee, Y. S.
Oh, K. H. Kim, J. C. Woo, T. W. Noh, Z. G. Khim, et al., “Evidence
of metallic clustering in annealed Ga1−xMnxAs from atypical scaling
behavior of the anomalous Hall coefficient,” Appl. Physics Lett. 89,
102503 (2006).

[111] S. H. Chun, Y. S., Kim, H. K. Choi, I. T. Jeong, W. O. Lee, K. S. Suh,
Y. S. Oh, K. H. Kim, Z. G. Khim, et al., “Interplay between carrier and
impurity concentrations in annealed Ga1−xMnxAs: Intrinsic anomalous
Hall effect,” Phys. Rev. Letters 98, 026601 (2007).
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