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Zusammenfassung

Das Forschungsgebiet nanomechanischer Systeme betrachtet die Bewegung von Struk-
turen, deren Länge in mindestens einer Richtung deutlich unter einem Mikrometer
liegt. Meist werden dabei Auslenkungen untersucht, die in der Nähe einer mecha-
nischen Resonanz angetrieben werden. Das wissenschaftliche Interesse an solchen
Strukturen hat mehrere Gründe: aufgrund der kleinen Masse und oftmals gerin-
gen Dämpfung (d.h. hohe Güte) reagieren solche nanomechanischen Systeme sehr
empfindlich auf Änderungen ihrer Umgebung oder ihrer eigenen Eigenschaften wie
etwa ihrer Masse. Die große Vielfalt der nanomechanischen Systeme erlaubt die
Kopplung an verschiedenste physikalische Größen wie (Umgebungs-)Druck, Licht,
elektrische/magnitische Felder. Dies ermöglicht, die Wechselwirkung selbst zu un-
tersuchen oder entsprechende Änderungen empfindlich zu detektieren.

Im Rahmen der vorliegenden Arbeit wurde die Resonator Bewegung von doppel-
seitig eingespannten Balken untersucht; diese wurden mit konventioneller Mikrofab-
rikation aus verspanntem Silizium-Nitrid gefertigt. Die große Zugspannung in den
Balken führt zu einer hohen mechanischen Stabilität und ebenso zu hohen mecha-
nischen Güten.

Ein Teil der Arbeit befasste sich mit der Entwicklung neuer Detektions- und
Antriebsmechanismen. Unter Ausnutzung der Polarisierbarkeit des Resonators wurde
ein lokaler Antrieb realisiert, der sich durch besondere Einfachkeit auszeichnet.
Ebenso wurden Fortschritte in der optischen Detektion erzielt. Ein Photodetek-
tor konnte innerhalb einer optischen Wellenlänge Abstand zum Resonator plaziert
werden; dies ermöglicht die lokale Detektion seiner Bewegung.

Hochempfindliche Messungen nutzen oft optische Resonanzen; bisherige Umset-
zungen basieren auf Reflexionen und sind daher auf Objekte beschränkt, die größer
als die verwendete Wellenlänge sind. In einer Zusammenarbeit mit Prof. Kippen-
berge konnte diese Beschränkung umgangen werden, indem geführtes Licht in einem
Mikro-Toroiden verwendet wurde.

Weiter wurde in der Arbeit die resonante Bewegung selbst untersucht. Im Bereich
hoher Amplituden zeigt die rücktreibende Kraft nichtlineares Verhalten. Das sich
dadurch ergebende bistabile Verhalten des Resonators wurde mit Hilfe von kurzen,
resonanten Pulsen untersucht; schnelles Schalten wurde erreicht.

Die mechanische Dämpfung der Siliziumnitrid Resonatoren wurde untersucht.
Die hohen Güten von Systemen unter Zugspannung konnte erklärt werden durch



die sich ergebende erhöhte gespeicherte elastische Energie; im Gegensatz zu einem
veränderten Dämpfungsverhalten.
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Abstract

In the field of nanomechanical systems the mechanical motion of objects is studied
that have at least one dimension that is well below 1 µm. In most yet not all cases
the displacement is studied when exciting near a mechanical resonance. They at-
tract scientific attention for several reasons: because of their small masses and their
often little mechanical damping, that is high mechanical quality factors, these sys-
tems sensitively react to changes in their environment as well as to changes of their
own properties such as their mass. In addition, the huge variety of nanomechan-
ical systems facilitates the optimization of coupling these to very diverse physical
quantities such as ambient pressure, (visible) light, electro/magnetostatic fields and
mass. This enables to either study the interaction itself or to measures such changes
with high precision.

In the framework of this thesis the resonant motion of a doubly clamped beam
was investigated that was fabricated by conventional top-down lithographic meth-
ods from pre-stressed silicon nitride. The mechanical beams are therefore under
high tensile stress resulting in an exceptional structural stability as well as high
mechanical quality factors.

As part of this thesis new transduction mechanisms were developed. The polar-
izability of the resonator has been utilized to create a local and widely applicable
dielectric transduction scheme. Several advances have been achieved concerning the
interferometric detection of nanomechanical displacement. Creating a photodetec-
tor within a distance on the order of an optical wavelength to the resonator enabled
the local optical detection of its motion.

In order to increase the detection sensitivity optical resonances are employed;
previous implementations however suffer from their restriction to objects larger than
the wavelength because they rely on specular reflection. In a cooperation with the
group of Prof. Kippenberg a setup was realized that overcomes this limitation using
near-field coupling to guided light circulating in micro-toroid.

Apart form the task of transduction, the resonant motion of the nanomechanical
beams itself was investigated: oscillating at high amplitudes, the restoring force
exhibits nonlinear terms. In the resulting bistable regime, additional short pulses are
utilized to map the stability diagram and enable fast switching of a nanomechanical
memory element.

The mechanical damping of the fabricated silicon nitride resonators has been



studied. In particular the high quality factors exhibited by the pre-stressed nanobeams
could be deduced to be a result of the increased stored elastic energy with pre-stress
rather than a large modification of the damping characteristics.
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Introduction

Since the development of the first centimeter-sized transistor developed 1947 at the
Bell Labs [1], a rapid technical development emerged that now allows the fabrication
of structures with sizes that are well below 100 nm. Whereas the focus of this
development was primarily to produce ever-faster electrical logics, the techniques
can be equally employed to create mechanical structures of small sizes.

This enables mass-fabrication as well as the integration of mechanical systems
to electrical circuits [2–4], leading to the development of so-called Microelectrome-
chanical Systems (MEMS). Depending on the desired task, these can be processed
to have high quality factors [4–6], small spring constants [7, 8] and high frequen-
cies [4, 5]. A variety of applications has emerged, including frequency filters [4, 9],
chemical sensors [10, 11] and ultra-sensitive force sensors capable of detecting the
presence of few nuclear spins [12], single electrons [13], or dipolar forces [14]. It is
noteworthy that force sensitivity scales inversely with resonance frequency; high res-
olution setups therefore incorporate long and soft cantilevers that are attributed to
the MEMS regime [7, 12].

In a ground-breaking work performed by Cleland and Roukes a further reduction
in the size of the mechanical element was achieved [15], leading to a sub-micron
sized paddle oscillator capable of detecting charge variations of less than a single
electron [16]. As the characteristic length scales of the employed resonators are
partly well below 1µm, these are called Nanoelectromechanical Systems (NEMS).

Their most notably different parameter when compared with MEMS probably
is the reduced mass, leading to a very high mass resolution when implemented as
sensors [17, 18]. The low mass translates into fairly low spring constants at high
frequencies, a favorable combination when a coherent quantum mechanical control
of the mechanical element is aimed at [19].

However, reducing the size is accompanied with several obstacles: the smaller size
typically complicates the transduction of the resonator motion; oscillators used in
AFM scanning setups are still based on MEMS. Another example of this difficulty
can be inferred from the fact that the first and still sole demonstrated resonator
observed in its quantum mechanical ground state is a MEMS resonator [20].

In addition, with decreasing size the surface-to-volume ratio increases; as the
fabrication typically introduces surface defects, the quality factor of the structures
degrade [6, 21–23].

Yet, the nanoscopic world may offer a unique solution to this latter problem:
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several NEMS resonator have recently been demonstrated that were fabricated by
chemical growth, avoiding the top-down fabrication. Thereby, ultra-clean resonators
have been achieved [24, 25]. In addition, such resonators can be composed of ma-
terials that are inherently reduced in their dimensionality d, namely carbon nan-
otubes [25, 26] (1d) and graphene [27] (2d). Such materials avoid any intrinsic com-
positional or sterical impurities that cause dissipation [28, 29], as the entire material
likewise forms the surface. Such implementations of mechanical resonators also seem
to represent the ultimate reduction in size.

Scope of the thesis

The present work is organized as follows: as it is cumulative; each chapter (1 -
6) is a summary of a publication that can be found in the appendix (A - F). A
redundancy of information is therefore unavoidable, yet enables the independent
readability, which is hopefully of convenience to the reader. Although new process-
ing techniques have been developed, these are not presented as a separate chapter,
because these have been described in detail elsewhere [30]. Additional information,
including the supplement of the publications and calculations can be found in the
appendix; the thesis is concluded by a discussion of possible continuations. In the
following, a short overview of each project is given.

Throughout this thesis, the resonant motion of high aspect ratio nanomechanical
beams is investigated; these are fabricated from silicon nitride layers that are under
high tensile stress. As a result, the released strings are subject to a high pre-stress
of approximately 830 MPa. The experiments are carried at room temperature and
in vacuum to avoid gas damping.

Chapter 1 of this work deals with the above mentioned problem of transducing
the nanomechanical motion, presenting a near-field scheme that solely relies on the
polarizability of the nanomechanical beams. As a result, it was possible for the first
time to locally transduce the motion of the resonator using electrical signals without
introducing any restriction on material or additional mechanical damping. The
latter problem is commonly associated with electric transduction, as most schemes
necessitate the deposition of conducting metal onto the resonator that has been
shown to introduce large mechanical damping [31]. The experimental realization
consist of two metal wires placed besides and oriented along the resonator and is
therefore very easy to implement.

Chapter 2 demonstrates an optical stroboscopic implementation of the well-
established down-conversion method. Such methods avoid the processing of high fre-
quency signals by introducing a suitable modulation of the detection signal [32, 33].
In the experiment an intensity-modulated light beam is focused onto the resonator
and the reflection is analyzed, similar to [34]. As the displacement of the beam causes
an additional intensity modulation, it is now possible to detect the beating of the
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two signals, whose frequency can be chosen at will. Thereby the bandwidth of the
employed photodetector imposes no longer a restriction, enabling here the detection
of higher order mechanical modes. Based on the observed frequency spectrum and
the nonlinear characteristics of the mechanical oscillation, it was possible for the
first time, to quantitatively measure the elastic parameter of the strained resonator.

In chapter 3 a very sophisticated setup to transduce the nanomechanical dis-
placement is introduced. Compared to the previous chapter, the focus here is not
(yet) to provide a simple and widely applicable detection scheme; it is rather a high
precision setup to sensitively detect the displacement of a nanomechanical object.
Sensitive optical schemes incorporate optical cavities, see e.g. [35–38]; the measured
object forms one end of the cavity [35–37], or is placed within the light field [38].
However, reducing the size of the mechanical object introduces scattering of the
photons out of the cavity or limits the interaction strength with the light field. In
both cases the transduction sensitivity reduces. To circumvent this limitation, the
optical resonance of a micro toroid is chosen [39]; the mechanical nanoresonator is
placed in the near-field of the toroid; its displacement thereby causes a shift in the
optical resonance frequency. The effect of scattering in this configuration is shown
to be negligible.

The next chapter (4) also deals with detection of nanomechanical motion. It rep-
resents a combination of electrical and optical detection: the detection mechanism
still relies on an interference effect. However, complementary to previous realiza-
tions [40] the resulting optical intensity modulation caused by the beam displacement
is now detected in the near-field of the mechanical element. This enables the cre-
ation of individual, local electrical signals, a prerequisite to implement mechanical
based logic [41]. In addition, the optical setup reduces to a light source.

The remaining chapters present fundamental studies of the oscillatory mechani-
cal response: in chapter 5, the nonlinear response of the nanobeam is investigated in
greater detail. Subject to suitable actuation, a nonlinear oscillator displays bistabil-
ity (see e.g. [42]); therefore its response is hysteretic, i.e., it depends on the history.
In the bistable regime, the state of the resonator represent a simple memory ele-
ment [43]. As part of this thesis a suitable switching scheme has been established
based on additional excitation pulses that allows for the first time to switch directly
and fast between the stable states. In addition this represents an investigation on
the attractor characteristics of the stable states [44, 45].

Lastly, the damping properties of the investigated beams are analyzed (chapter
6). Apart from the mechanical robustness, prestressed silicon nitride resonators of
moderate frequencies display unusual high mechanical quality factors, i.e. sharp
resonances [46]. A quantitative analysis adapting Zener’s phenomenological model
of damping [47] to pre-stressed system has been achieved, the measured quality
factors could be quantitatively reproduced with a single fit-parameter. This analysis
shows that the enhanced quality factors result from the increased stored energy
of oscillating with applied stress. In particular, the damping characteristics of the
material are not influenced by the pre-stress, in contrast to existing speculations [48].

3
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Chapter 1

Dielectric Transduction

The present chapter is based on the publication shown in chapter A, see pages 51
et seq.

A prerequisite to study the resonant oscillations of nanomechanical elements is
the ability to actuate these. This can be provided by the thermal noise [1], yet
for many purposes a coherently driven signal is necessary. There are many imple-
mentations in order to exert a force on a nanoresonator. Experiments incorporate
capacitive [2, 3], magnetomotive [4], piezoactive [5], inertial [6] and local heating [7, 8]
schemes. An ideal actuation mechanism has several desirable characteristics:

� simple setup, ideally no external components required

� local actuation scalable to resonator arrays

� high bandwidth, frequency-independent actuation efficiency

� no restriction on resonator material and geometry

� temperature-independence, no unnecessary heating of the sample

� access to higher harmonics

For example the widely used magnetomotive scheme requires the metallization of the
sample [4] which is accompanied by a degradation in mechanical quality factor [9],
requires large magnetic fields and cannot actuate higher harmonics.

Complementary to the above mentioned implementations, we introduce a modifi-
cation of the capacitive scheme [2, 10, 11] in which the resonator forms one electrode
of a capacitor and therefore has to be highly conductive. In our approach the ca-
pacitor is formed by two electrodes, the mechanical element is placed in its local,
non-uniform electric field. As a result of its polarizability the resonator gets at-
tracted towards larger fields. A typical experimental implementation is shown in
Fig. 1.1(a,b). Related experiments using micromechanical resonators are described
in [12].
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Figure 1.1: SEM picture, cross section and force acting on a typical
nanomechanical resonator. a Scanning electron micrograph of a typical device.
Shown in green is the silicon nitride forming resonator and its supports; the gold
electrodes (yellow) are biased by DC and RF voltages. b Schematic cross-section,
including the electric field lines provided by a finite elements simulation. c Simu-
lated dielectric force vs. distance from the substrate d applying a voltage of 2V to
the electrodes.

The applied electric field influences a dipolar moment in the resonator, here most
prominently in-plane. The dipole in turn gets attracted towards larger fields which
is towards the electrodes. As both effects are linear in the electric field, the force
is proportional to the square of the applied voltage. To resonantly and efficiently
actuate the beam, a combination of voltages is therefore chosen, a large DC voltage
and a small RF voltage. Most conveniently, one can think of this as the DC field
influencing the dipolar moment; the RF component exerting an oscillating force on
the dipole.

Here, the applied detection scheme is based on optical interference [13] and shall
be explained in greater detail in chapter 2 and 4. The performance of the actuation
is shown in Fig. 1.2; in (a) the Brownian motion of the resonator is displayed; as its
magnitude is predicted by theory [14] it offers a calibration to convert the measured
signal into displacement. In (b) the oscillation amplitude of the actuated beam is
shown vs. frequency; the response is precisely described by a Lorentzian lineshape,
as expected for a harmonic oscillator. Part (c) is composed of several such frequency
sweeps with different DC voltages, the measured signal power is color-coded. The
resonance frequency can be seen to shift downwards with DC bias in a quadratic
manner. This can be readily understood as the attractive dielectric force is strongly
distance dependent, see Fig. 1.1(c). Applying a DC field, the resonator relaxes in
a new equilibrium position, the resulting increase in strain and the accompanying
frequency shift, see e.g. [15] is calculated in G.1.

The up-shift however is overcompensated by the following effect: for sufficiently
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a

b

d

Frequency
Detuning [Hz]

c

Resonant
Amplitude [pm]

Figure 1.2: Response of the mechanical beam. a Measured Brownian motion
(black) of the beam at room temperature. b Dielectrically excited oscillation ap-
plying VDC + VRF = 1 V ± 0.2 mV; the data is fitted using a Lorentzian lineshape.
c and d Response of the resonator as function of frequency and DC-bias; applying
an VRF = ±0.06 mV; in c the power response is color-coded, one can see that the
resonance frequency quadratically decreases with applied DC-voltage (fit as black
line). The resonant amplitude is shown in d; the linear dependence on bias reflects
the coupling to the dipolar moment provided by the DC-voltage.

small amplitudes the remaining part of the dielectric force is linear in displacement
(F = ∂xFδx). This modifies the intrinsic spring constant k0 and therefore the
resonance frequency f ; as the force is quadratic in applied voltage VDC, it follows
(with c being a constant, m effective resonator mass):

f =
1

2π

√
k

m
=

1

2π

√
k0 − cV 2

DC

m
≈ 1

2π
f0

(
1− cV 2

DC

2k0

)
(1.1)

Consequently, a quadratic detuning of the resonance frequency is anticipated, in
accordance with the data, highlighted by the solid black line in (c). Lastly, part (d)
shows the mechanical amplitude on resonance; its magnitude is directly proportional
to the DC bias, as expected.

The detuning range can be as large as 200 kHz, corresponding to 2000 FWHM
(full width at half max). The voltage-tunability also facilitates the actuation of
parametric oscillation, see e.g. [16]. Even in the absence of an external force, modu-
lating the resonance frequency can lead to the spontaneous build-up of an oscillation;
this happens most efficiently if the modulation occurs at twice the resonance fre-
quency [16]. In Fig 1.3(a) the mechanical response near such a parametric resonance
is shown as a function of applied RF power and frequency. Please note that the
oscillation is detected at half the actuation frequency.
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Figure 1.3: Parametric Oscillation and Dielectric Detection a Interferomet-
rically measured power response subject to parametric actuation at twice the dis-
played frequency and VDC = 3 V. c The resonator is parametrically actuated using
VDC = 20 V; the resulting response is dielectrically detected by biasing the underly-
ing electrodes and measuring the their capacitance change with beam displacement.

Complementary to a driven harmonic resonance, the oscillation amplitude van-
ishes completely outside a specific parameter range leading to the tongue-like image.
Within the tongue-like range it is limited by the onset of nonlinear effects [17].

We utilize the parametric resonance to separate actuation and detection fre-
quency and thereby suppress resonant cross-talk. This facilitates the dielectric
detection of the mechanical motion; in this detection scheme the oscillating res-
onator modulates the mutual capacitance of the gold electrodes, similar to previous
implementations of the capacitive scheme [2, 18]. When biased, this leads to the
generation of charge. We establish a preliminary setup in which the current is de-
tected with a near-chip current-voltage converter. In Fig. 1.1(a) two pairs of gold
electrodes can be seen; one pair serves to actuate the mechanical resonator; the
second pair is biased and detects the oscillatory motion. Fig. 1.3(b) shows the same
parametric resonance, measured dielectrically. Comparing the signal strength and
noise background, one can estimate a sensitivity of approximately 20 pm/

√
Hz.

This sensitivity could be readily improved using the same techniques as in ca-
pacitive detection schemes by either resonantly enhancing the created charge [2] or
converting the change in capacitance into a frequency modulation of an LC cir-
cuit [18, 19] (see also section G.2.2). Therefore, a complete transduction based on
electrical signals is possible that merely requires two nearby metal gates to the
mechanical resonator.
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Chapter 2

Stroboscopic Downconversion

The present chapter is based on the publication shown in chapter B, see pages 55
et seq.

Various optical detection schemes have been established to detect [1–9] or ac-
tuate [8, 10, 11] nanomechanical motion. In the detection schemes scattering and
interference lead to intensity modulations with beam displacement. We utilize a ba-
sic version of such a scheme [1, 6]: the bare end of a cleaved fibre is closely positioned
above the mechanical resonator. The beam and its surroundings are illuminated;
the reflected light partly couples back into the fibre; its intensity is measured using
a photodetector.

In general, to detect the resulting high frequency signals requires either a fast
measurement setup or suitable downconversion [3, 12–16]. These implementations
utilize two different strategies: the first measures the envelope of the oscillation [14–
16] rather than performing a linear position measurement. To increase sensitivity,
the actuation strength is modulated and thereby the magnitude of the envelope
oscillates. The second introduces an additional pre-modulation of the later detected
signal [3, 12, 13]. Therefore the product of both modulations (pre- and probe) is
generated; it includes sum and difference frequencies. A suitable choice of pre-
modulation frequency allows the latter to be a low-frequency signal; the former will
be neglected.

We adapt the concept previously employed in electrical setups [12, 13] and in
optical large-scale setups [17] to our optical scheme; the illumination is modulated
by switching on and off the light source. The signal path now is as follows, see
Fig 2.1: an electrical signal of frequency fLO is converted to fRF − fLO using a
second frequency fRF and actuates the mechanical resonator (the mechanism has
been explained in the previous chapter 1). The second signal is converted into an
intensity modulation at fRF, the resulting beat in light intensity (at fLO) is measured.

The setup significantly surpasses the bandwidth of the employed photodetector
(PDA55, 10 MHz); it is sensitive to the phase of the mechanical oscillation. In
Fig. 2.2(a,d) the mechanical response vs. applied actuation frequency is shown. The
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Figure 2.1: Schematic transduction setup the nanomechanical resonator is
mounted in vacuum below the bare end of a cleaved glass fiber. The electronic path
provides dielectric actuation at fRF − fLO and an illumination intensity modulated
at fRF, creating a coherent signal at fLO.

increased bandwidth enables us to record several mechanical harmonics, yielding
more information of the system, e.g. enables the determination of mass and position
of attached particles [18].

In order to identify the measured resonances, we scan along the nano strings
and record the phase of the oscillation; whenever an oscillation node is crossed one
expects the phase to jump by π, in accordance with the data, see Fig. 2.2(b). Please
note that although there is no focusing objective in our setup; the spatial resolution
can be estimated to be around 1µm, this is a result of the fact that backscattered
light that is not in the center of the optical beam does not couple back into the glass
fibre. Fig.2.2(b) displays frequency and quality factor of the obtained resonances
versus mode index (i.e. the number of antinodes). The quality factor will be treated
in greater detail in chapter 6; here we focus on the frequency. One can deduce
from the linear dependence on mode index that the mechanical resonator can be
accurately treated as an oscillating string under tensile stress (as opposed to a stiff
beam).

We utilize the model to extract the elastic parameters of the beam; method and
results represents a novelty in the field of nanomechanics. The restoring force of
the oscillatory mode can easily be calculated as shown in the appendix G.3 (see
also [19]). The utilized parameters and their measured or extracted values are listed
in table 2.1.
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Figure 2.2: Stroboscopically measured Response a Lorentzian res ponnse of
a nanomechanical resonator of dimensions 35 · 0.2 · 0.1 µm3, length, width, height,
respectively, actuated at the second harmonic. b Spatial distribution of of the
measured phase of the observed modes scanning along the beam. c Resonance
frequency and quality factor of the resonances; the frequencies display a string-
like linear dependence on mode index. d Nonlinear response and fit of the resonator
strongly actuated at its 5th harmonic; the fit enables the conversion to displacement
amplitudes and the determination of Young’s Modulus.

F [a]

meff

=
π2σ0

ρl2︸ ︷︷ ︸
≡(2πf0)2

a+
π4E

4ρl4︸︷︷︸
≡α3

a3 (2.1)

For sufficiently small oscillation amplitudes a as in Fig 2.2(a), the measurement
of the resonance frequency thereby yields the pre-stress σ0. With increasing am-
plitude, nonlinear effects become noticeable, the lineshape bends over to higher
frequencies [20, 21] as seen in Fig. 2.2(d). The nonlinear response shall be treated in
greater detail in chapter 5 and G.5.

To obtain the the cubic correction α3 and thereby E, first the Brownian motion of
the fundamental mode is measured, see chapter 1. Thereby the measured signal can
be calibrated into displacement. Then the beam is strongly actuated, its nonlinear
response is measured and fitted with a solution of the nonlinear (so-called Duffing)
equation. We thereby obtain α3 for the fundamental mode and are able to calculate
Young’s modulus.

The nonlinear contribution α3 can now be calculated for higher harmonics as well
from eq. 2.1, α3 ∝ l−4

n . Here, ln is the length of the resonator divided by the mode
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designation symbol value

density [22] ρ 2.8 · 103kg/m3

length l 35µm
resonance frequency f0 7.71 MHz
prestress σ0 850 MPa
cubic part of the restoring force α3 8.1 · 1026 m−2s−2

(fundamental mode)
Young’s Modulus E 165 GPa

Table 2.1: Geometric and elastic Parameters of the Employed Nanores-
onator

index l/n, i.e. the distance between adjacent antinodes. The nonlinear response of
higher harmonics is now fitted and rescaled to match the calculated α3, as shown in
Fig. 2.2(d). We thereby achieve a displacement calibration, although the Brownian
motion of the higher harmonics can not be resolved.

Related experiments have been reported in Ref. [23], yet the material param-
eters could not be retrieved and therefore quantitative exact amplitude could be
calculated.
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Chapter 3

Near-field cavity optomechanics

The present chapter is based on the publication shown in chapter C, see pages 59
et seq.

Coupling optical and mechanical degrees of freedom has become a prospering
field in science since the experimental realization of cooling a cantilever’s thermal
motion using an intrinsically passive method [1]. In these experiments, mechanical
displacement detunes an optical [2–4] or LC [5, 6] resonance. The resulting phase
shift of the electromagnetic wave with displacement allows the sensitive detection of
motion [2–4, 6], at the same time the field exerts force on the mechanical element.
As this force does not react instantaneously to a change in position because of the
finite lifetime of the stored photons, force and position are out of phase. This phase
lag can lead to either cooling or heating of the mechanical degree of freedom. The
ultimate reduction in displacement noise would reveal the quantum nature of the
system. This could illuminate the transfer of photon shot-noise to the mechanical
oscillation [7, 8] and might help to understand the process of decoherence [8, 9].

Recently, the mechanical ground state has been reached using a very different
setup [10]. Instead of parametrically coupling the motion to a resonance and thereby
allowing a linear position measurement, the mechanical oscillation is resonantly
coupled to a phase qubit. Because of its strong nonlinear dependence on photon
number [11] it allows the preparation of states of discrete energy quanta [10, 11]
(Fock-states). Tuning the qubit in resonance with the mechanical element, the
excitation oscillates between both systems. The mechanical degree of freedom is
realized as bulk oscillations of a piezoelectric resonator. In this configuration a
change in size of the resonator leaves the essential characteristics unchanged, as
the effect of smaller zero-point displacement with increasing size is compensated by
increased electro-mechanical interaction. The cooling in this experiment is provided
by standard cryogenic techniques.

In a more typical setup a small resonator has advantageous properties; it enables
at the same time high resonance frequencies and low effective masses. This leads
to a large energy spacing that mitigates the temperature requirements and large
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zero-point motion facilitating the detection of displacement [12, 13].

Figure 3.1: Evanescent coupling to a microtoroid Schematic image of setup,
showing a tapered fibre, its traveling mode is coupled to a the optical whisper-
ing gallery mode of a microresonator. The nanomechanical beams are dispersively
coupled to the evanescent light field of the toroid.

However, previous optical setups relying on free-space beams [4, 14, 15] do not
allow a reduction in size of the mechanical element below the wavelength of the
light as the increasing scattering rate decreases the finesse of the optical cavity. To
overcome this limitation, a micro-toroid with a high finesse is used, see Fig. 3.1;
the light is guided along the circumference of the ring because of total internal
reflection, referred to as whispering-gallery mode. The optical mode couples to
the evanescent light field of a nearby tapered glass-fibre [16]. As the coupling is
adiabatic, i.e. changes in the effective index of refraction occur slowly on length
scales of the wavelength it introduces negligible scattering.

This coupling mechanism is now utilized once again as the whispering-gallery
mode also has an evanescent tail extending into the vacuum. A nanomechanical
resonator is placed in close proximity to the toroid; its (optical) dielectric constant
leads to a local change in effective refractive index of the optical mode. Consequently
the optical resonance frequency shifts, this is shown in fig. 3.2 versus the (static)
distance of the mechanical resonator. The coupling rate can be seen to decrease
exponentially with the distance reflecting the the field intensity distribution. At
the same time the finesse of the optical mode does not degrade as can be inferred
from the unaffected linewidth demonstrating that the optomechanical interaction is
dispersive.

To sensitively detect the displacement of the nanomechanical beam, a laser is
locked to the cavity resonance, using an optical phase shift technique [2, 17]. The
transmission through the optical fibre equally gets phase shifted with mechanical
oscillation; the resulting intensity modulation is detected. This setup has been shown
to allow near-quantum limited sensitivity [2]; its imprecision is (nearly) limited by
photon shot noise. Figure 3.3 shows the displacement spectrum of a nanomechanical
resonator, exhibiting a dynamic range of 60 dB. Remarkably, the imprecision of the
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Figure 3.2: Measured coupling rate and linewidth The optomechanical cou-
pling rate (blue) is displayed vs. toroid-resonator separation (see inset); its expo-
nential dependence reflects the intensity profile of the evanescent optical field. The
optical linewidth (i.e. the finesse of the cavity) can be seen not to degrade even at
the smallest distances.

measurement is below the standard quantum limit (SQL) which is the minimum
achievable detection sensitivity. Please note that the imprecision can be lower than
the sensitivity, as the detection necessarily impinges noise on the resonator. In
addition, the mechanical resonance frequency is larger than the photon loss rate;
the setup is in the so-called resolved sideband regime, a prerequisite to to allow
cavity assisted ground state cooling [12, 13].

Although higher optical sensitivities had been reported earlier [2, 18], this was
the first to fall below the SQL. After submission a measurement implementing a
microwave-setup demonstrated a measurement imprecision at the SQL [19]. In the
summary (pages 47 et seq.) a further improvement of the setup is briefly discussed.
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Figure 3.3: Displacement Measurement Room temperature Brownian motion
of the fundamental mode of a nanomechanical string with dimensions 110 nm ·
800 nm · 35 µm. The measurement imprecision at an optical input power of 65 µW
is 570 am Hz1/2 (grey line), below the standard quantum limit of 820 am Hz1/2 (red
dashed line). The background noise is laser shot noise (40%, purple), thermorefrac-
tive noise (orange) and detector noise.
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Chapter 4

On-chip Interferometric Detection

The present chapter is based on the publication shown in chapter D, see pages 65
et seq.

Complementary to the setup of the previous chapter, optimized to yield a very
high displacement sensitivity, here a method is presented that provides a very inte-
grable transduction. It can be seen as a modification of the optical detection setup
introduced in chapter 2. Existing detection schemes either rely completely on opti-
cal [1–9] or electrical [10–16] signals. Whereas optical schemes offer the advantage of
being material independent and can easily be designed not to introduce damping [17]
they require external optical components. In particular in all these schemes the op-
tical signal is measured off-chip, making these schemes less integrable, although
research is pushing into on-chip optical signal processing [18–20].

Demonstrated electrical schemes however require the (partial) conductance of the
resonator and often introduce damping that is inherently connected to the generation
of the electrical signal [10, 12].

We present a detection scheme that relies on an optical interference effect, yet
the intensity modulation is detected in the direct vicinity of the resonator, providing
on-chip electrical signals. Figure 4.1 shows the detection principle: as in chapter 2
the mechanical resonator and its surroundings are illuminated. The light gets partly
reflected forming a standing wave; the exact intensity profile will strongly depend on
geometry. In particular a displacement of the beam will result in changes of the light
pattern. We locally detect this modulation by placing two gold electrodes in the
direct vicinity of the beam that are in contact with the silicon substrate. Thereby a
Schottky-contact forms, see e.g. [21]; the light intensity leads to a photocurrent that
is amplified and its modulation is detected.

Figure 4.2 displays the characteristics of the setup. In (a) the DC-response of
the Schottky-contact is shown for different light intensities, it clearly displays the
expected diode-like IV-curve.

Subject to (dielectrical, see chapter 1) actuation; a strong modulation of the
photocurrent is recorded, see Fig. 4.2(b). It is composed of two contributions, a
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Figure 4.1: Setup and Detection Principle a SEM picture (false color) of the
sample; two pairs of electrods (yellow) provide actuation (lower pair) and detection.
The latter are partly in direct contact to the underlying silicon as seen in the encir-
cled area. b Cross-section; the contact leads to the formation of a Schottky-contact;
the intensity modulation of the optical near-field pattern with beam displacement
leads to a modulated photocurrent.

frequency-independent electric cross-talk and a sharp Lorentzian resonance corre-
sponding to the mechanical displacement. The data can be accurately fitted using
the sum of the two effects.

To convert the photocurrent into displacement, we successfully detect the Brow-
nian motion of the resonator, see Fig. 4.2(c). We thereby obtain a calibration, as
theory predicts the magnitude [22]. It also enables the determination of the setup
sensitivity; as a bandwidth of 50 Hz was chosen, we conservatively estimate it to be
1 pm/Hz1/2.

We further check the linearity of our setup by exciting the resonator to large
amplitudes as shown in Fig. 4.2(d). The quadrature components of the signal are
parametrically plotted versus applied frequency. The measured data points are
found to be aligned on a circle until a sudden jumps to lower amplitudes occurs, as
expected for a Duffing oscillator [23]. Any deviation from linear transduction would
have lead to distortions from the observed behavior, we therefore conclude that the
scheme remains linear up to amplitudes of ±45 nm.

To demonstrate the applicability of our detection scheme, we implement a self-
oscillator that is the detected signal is amplified and fed back to actuate the res-
onator. The signal path therefore forms a closed loop; in order to sustain an oscil-
lation, the signal has to accumulate 2π · k, (k: integer) phase during one round-trip
and the gain has to be greater or equal 1, see e.g. [24, 25]. As broad-band cross-talk
likely enables such a resonance condition as well, one has to sufficiently suppress its
magnitude. Here, this is accomplished by introducing a reference line in parallel to
the sample; it is designed to produce a similar output as the cross-talk yet shifted

28



On-chip Interferometric Detection

Bias Voltage [V]

D
C

 c
u
rr

e
n
t 
[µ

A
]

2 nm

b

R
F

 p
h
o
to

c
u
rr

e
n
t 
[n

A
]

100

50

0

-50

-2.0 -1.5 -1.0 -0.5 0.0

Illuminating Power [µW]
0 400
38 810
72 1100
190

a

R
F

 p
h
o
to

c
u
rr

e
n
t 
[n

A
]

Frequency [MHz]

0.20

0.15

0.10

8.08098.08058.0801 O
u

t-
o

f-
p

h
a

s
e

 p
h

o
to

c
u

rr
e

n
t 

[µ
A

]
In-phase photocurrent  [µA]

-0.8

-0.7

-0.6

-0.2 -0.1 0.0

6 pm/Hz
1/2

45 nm

dc

Figure 4.2: DC and resonant characteristics of the Schottky Detection a Subject
to different illumination intensities, the photocurrent is measured vs. applied bias.
b The RF-photocurrent is displayed when resonantly actuating the resonator; the
data (black) can be accurately fitted using the sum of a mechanical Lorentzian
and a flat cross-talk. c The Brownian Motion of the resonator leads to an RF-
photocurrent in the absence of actuation; it allows the quantitative conversion of
signal into displacement. d The quadrature components of the signal are displayed,
the resonator is actuated well in the nonlinear regime; the response lies on the
segment of a circle, confirming the linearity of the detection scheme up to amplitudes
of 45 nm.

by π over the relevant frequency range. The sum of the signals will cancel except
for the mechanically induced signal; frequency components that are far off-resonant
are suppressed by a bandpass filter.

It is noteworthy that the use of a downconversion technique as in chapter 2 also
evades such crosstalk, yet it requires an external frequency source.

Figure 4.3(a) shows the obtained frequency spectrum: a sharp spike that peaks
out of a nearly flat background. In (b) we plot the single-sided spectrum versus
frequency offset. This is often referred to as phase noise [24], and ultimately limited
by the Brownian motion of the resonator, as shown in the figure. We have therefore
successfully implemented a nanomechanical oscillator [26], able to operate at room
temperature, that solely requires a light source as external component.
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Figure 4.3: Nanomechanical Oscillator We suitably feed back the detected signal
to the actuation electrodes and obtain self-oscillation, applying an optical power of
1 mW and -2 V Schottky bias). a Measured power spectrum normalized to the
maximum; the inset shows a zoom of the sharp peak, exhibiting a linewidth of
10 Hz. b The single-sideband noise is shown (black); for comparison the theoretical
minimum given by the thermal noise of the resonator is shown.
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Chapter 5

Nonlinear Switching Dynamics

The present chapter is based on the publication shown in chapter E, see pages 69
et seq.

Exciting an oscillator to large amplitudes, the approximation of a linear restoring
force often has to be extended to include higher order components. The systems
exhibiting nonlinearity are diverse including the relativistic motion of electrons in
a magnetic field [1], light passing through nonlinear media [2] current through a
Joshephson junction [3], and common strings [4].

Subject to suitable actuation a bistability regime develops [5] involving phenom-
ena such as jumps [2], hysteresis [1] and transitions between the stable states [5–9].
These are mediated by a rapid change in frequency [5] or noise [6–9]. Complemen-
tary, we utilize resonant RF-pulses to actively manipulate the resonator’s state and
thereby obtain a basic version of a mechanical memory element [10, 11].

Nanomechanical oscillators provide convenient means to study nonlinear phe-
nomena as they exhibit fairly low drifts and fast response times that allow to map
out a large set parameters [5].

The resonator is excited using the dielectric actuation scheme, described in chap-
ter 1, its motion is recorded with an on-chip photodetector, see chapter 4. The equa-
tion of motion is the so called Duffing equation (with x[t], f0, Q, α3, k, f displacement,
resonance frequency, mechanical quality factor, cubic restoring force parameter, ac-
tuation strength and frequency).

x′′[t] +
2πf0

Q
x′[t] + (2πf0)2x[t] + α3x[t]3 = k cos[2πft] (5.1)

As shown in the appendix (section G.5) this equation is solved to describe the
dynamics of the oscillatory state x[t] = a[t] cos[2πft+ γ[t]]:
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a′[t] = −πf0a[t]

Q
+
k sin[γ[t]]

4πf0

γ′[t] = 2π(f − f0)− 3α3a[t]2

16πf0

+
k cos[γ[t]]

4πf0a[t]
(5.2)

We determine the mechanical parameters of eq. 5.1 by measuring a nonlinear
resonance as seen in chapter 2 and fitting a quasistatic solution of eqs. 5.2 to the
data.

Any initial state converges towards one of the two stable states, dividing the
resonator’s phase space into two areas (basins) of attraction. For a fixed actuation
frequency we calculate [5] the stable states and the area form eq. 5.2 as shown in
fig. 5.1(a) as black and white areas.
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Figure 5.1: Time evolution of the resonator state a The resonator’s phase
space is shown as the quadrature components of the oscillation. Subject to hard
excitation two stable states exist (blue points). Each state has a (calculated) area
(basin) of attraction shown in black and white. The traces (red and blue) display
the measured convergence of an excited state towards the stable states. The smooth
green curves show the calculated response starting from the lower stable state subject
to an 18-fold larger additional excitation and relative phase φ = 262◦, 172◦ (light
and dark green, respectively). b and c display the same experimentally obtained
relaxation curve as a, the quadrature components are plotted versus time.

We shall first consider relaxation towards the stable states and utilize this be-
havior to quantify the action of applying pulses. We therefore prepare the resonator
in the bistable regime by applying a constant actuation at a frequency of 1 kHz
above the resonance frequency of the string. We then apply a short and resonant
RF-pulse to move the resonator state away from equilibrium. Immediately after the
end of the pulse we record the resonator’s relaxing towards one of the stable states
as shown as red and blue traces in Figure 5.1(a).
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Figure 5.2: Time evolution during RF-pulse a the measured final state (after
the relaxation) is shown as black/white after vs. length and phase of the applied an
RF-pulse. The excitation amplitude is always the same; the resonator is prepared in
the lower stable state before the pulse is applied. b Simulation of the measurement
employing no fit parameters.

Figure 5.1(b,c) show the same data with the two oscillatory quadrature compo-
nents plotted versus time. The two green traces in Fig. 5.1(a) display the calculated
mechanical response if in addition to the constant drive the RF pulse actuates the
resonator. It is this response that we want to study in detail. We therefore prepare
the resonator in its lower stable state and apply an RF pulse of fixed amplitude and
systematically vary its duration and phase (with respect to the constant background
actuation).

Figure 5.2(a) shows the measured data arranged in a polar plot; (b) is a calcula-
tion based on the numerical integration of eqs. 5.2, employing no fit parameters.

The agreement allows us to quantitatively predict the action of the pulse and
calculate the parameters necessary in order to directly switch between the stable
states (without any post-pulse relaxation).

In fig. 5.3(a) we show the out-of-phase component of the oscillation versus time
as we apply a properly chosen pulse. Immediately after the end of the end of the
pulse the recorded state can be seen to be stationary, complementary to the traces
displayed in fig. 5.1(b,c).

We therefore conclude that we are able to directly address the desired stable
state. The same holds true if we apply another pulse having different parameters
to switch back to the initial stable state, see fig. 5.3(a) and apply these consecu-
tively 5.3(b,c). As no relaxation is needed to switch or record the state our scheme
overcomes typical response time scales Q/f0 ≈ 20 ms and thereby exceeds demon-
strated controlled switching speeds by a factor of 1000, ref. [11, 12].
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Figure 5.3: Switching between the stable states a Measured out of phase
component of the oscillation amplitude; the gray areas highlight the stable states.
Applying a suitable RF-pulse directly switches between the stable states (the visible
overshoots are a result of cross-talk). b Consecutive switching with a repetition
rate is 1 kHz, faster than the relaxation rate given by ω0/Q ≈ 50 Hz. c Same data,
plotted in phase space.

36



References

[1] G. Gabrielse, H. Dehmelt, and W. Kells, “Observation of a Relativistic, Bistable
Hysteresis in the Cyclotron Motion of a Single Electron” Phys. Rev. Lett. 54,
537–539 (1985).

[2] B. Ritchie and C. M. Bowden, “Dynamical response and switching of an opti-
cally bistable anharmonic oscillator” Phys. Rev. A 32, 2293 (1985).

[3] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio,
and M. H. Devoret, “RF-Driven Josephson Bifurcation Amplifier for Quantum
Measurement” Phys. Rev. Lett. 93, 207 002 (2004).

[4] A. Alippi and A. Bettucci, “Nonlinear strings as bistable elements in acoustic
wave propagation” Phys. Rev. Lett. 63, 1230 (1989).

[5] I. Kozinsky, H. W. C. Postma, O. Kogan, A. Husain, and M. L. Roukes, “Basins
of Attraction of a Nonlinear Nanomechanical Resonator” Phys. Rev. Lett. 99,
207 201 (2007).

[6] J. S. Aldridge and A. N. Cleland, “Noise-Enabled Precision Measurements of a
Duffing Nanomechanical Resonator” Phys. Rev. Lett. 94, 156 403 (2005).

[7] C. Stambaugh and H. B. Chan, “Supernarrow Spectral Peaks near a Kinetic
Phase Transition in a Driven Nonlinear Micromechanical Oscillator” Phys. Rev.
Lett. 97, 110 602 (2006).

[8] R. Almog, S. Zaitsev, O. Shtempluck, and E. Buks, “Signal amplification in a
nanomechanical Duffing resonator via stochastic resonance” Appl. Phys. Lett.
90, 013 508 (2007).

[9] R. L. Badzey and P. Mohanty, “Coherent signal amplification in bistable
nanomechanical oscillators by stochastic resonance” Nature 437, 995–998
(2005).

[10] R. L. Badzey, G. Zolfagharkhani, A. Gaidarzhy, and P. Mohanty, “A con-
trollable nanomechanical memory element” Appl. Phys. Lett. 85, 3587–3589
(2004).

[11] I. Mahboob and H. Yamaguchi, “Bit storage and bit flip operations in an elec-
tromechanical oscillator” Nat. Nanotechnol. 3, 275 (2008).

http://link.aps.org/abstract/PRL/v54/p537
http://link.aps.org/abstract/PRL/v54/p537
http://link.aps.org/abstract/PRL/v54/p537
http://link.aps.org/abstract/PRA/v32/p2293
http://link.aps.org/abstract/PRA/v32/p2293
http://link.aps.org/abstract/PRL/v93/e207002
http://link.aps.org/abstract/PRL/v93/e207002
http://link.aps.org/abstract/PRL/v93/e207002
http://link.aps.org/abstract/PRL/v63/p1230
http://link.aps.org/abstract/PRL/v63/p1230
http://link.aps.org/abstract/PRL/v99/e207201
http://link.aps.org/abstract/PRL/v99/e207201
http://link.aps.org/abstract/PRL/v99/e207201
http://link.aps.org/abstract/PRL/v94/e156403
http://link.aps.org/abstract/PRL/v94/e156403
http://link.aps.org/abstract/PRL/v97/e110602
http://link.aps.org/abstract/PRL/v97/e110602
http://link.aps.org/abstract/PRL/v97/e110602
http://link.aip.org/link/?APL/90/013508/1
http://link.aip.org/link/?APL/90/013508/1
http://link.aip.org/link/?APL/90/013508/1
http://dx.doi.org/10.1038/nature04124
http://dx.doi.org/10.1038/nature04124
http://dx.doi.org/10.1038/nature04124
http://link.aip.org/link/?APL/85/3587/1
http://link.aip.org/link/?APL/85/3587/1
http://link.aip.org/link/?APL/85/3587/1
http://dx.doi.org/10.1038/nnano.2008.84
http://dx.doi.org/10.1038/nnano.2008.84


References

[12] D. N. Guerra, M. Imboden, and P. Mohanty, “Electrostatically actuated silicon-
based nanomechanical switch at room temperature” Appl. Phys. Lett. 93,
033 515 (2008).

38

http://link.aip.org/link/?APL/93/033515/1
http://link.aip.org/link/?APL/93/033515/1
http://link.aip.org/link/?APL/93/033515/1


Chapter 6

Damping Characteristics

The present chapter is based on the publication shown in chapter F, see pages 73
et seq.

A central characteristic of an oscillatory motion is its energy loss that is mostly
parameterized as the quality (Q) factor. It is defined as the energy stored in the
oscillatory motion divided by the energy loss per oscillation

Q ≡ 2π
U

∆U
(6.1)

A high quality factor means that the oscillatory degree of freedom is only weakly
coupled to its environment. The corresponding sharp resonance enhances the sensi-
tivity of the resonator, see e.g. [1, 2],facilitates cooling of the thermal motion [3–5].
Yet in most cases a fundamental understanding of the physical processes has not
been achieved. This may be partially caused by the fact that a broad spectrum of
different resonators is investigated [6–10], varying in material as well as fabrication
methods.

In 2006 it was experimentally shown that doubly-clamped silicon nitride res-
onators under high tensile stress exhibit largely enhanced quality factors when com-
pared to stress-free resonators fabricated from the same material [11] at comparable
frequencies. This effect has been reproduced with GaAs microresonators [12], poly-
mer resonators [9] and in simulations on metal wires [13] and graphene [14]. The
underlying mechanism of the enhancement however has not yet been explained, in
particular it has been speculated that stress causes decreased damping [15].

We present investigations based on continuum elastic theory that relate the
damping to the local oscillatory strain in the mechanical resonator. The strain
can be inferred from the spatial profile u[x] of the oscillation, as schematically de-
picted in Fig. 6.1. We therefore solve the corresponding differential equation (h, ρ, f
are height, density and eigenfrequency of the resonator; E1, σ0 are the (unknown)
real elastic Young’s Modulus and pre-stress):
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max

0

Figure 6.1: Strain Distribution The strain caused by the oscillation is schemati-
cally shown. In order to emphasize that the sign of the stress (tensile or compressive)
is irrelevant in our damping model, the absolute value is color-coded.

1

12
E1h

2 ∂
4

∂x4
u[x]− σ ∂2

∂x2
u[x]− ρ(2πf)2u[x] = 0 (6.2)

A set of resonances, varying in resonator length and harmonic mode are mea-
sured using transduction methods as explained in chapter 1. The solution of eq. 6.2
satisfying the boundary conditions of a doubly-clamped beam is fitted to reproduce
the measured frequencies as seen in fig. 6.2.
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Figure 6.2: Resonance Frequency and Mechanical Quality Factor Measured
and calculated response of the mechanical resonators; the different beam lengths are
color-coded; the harmonic modes of the same beam are interconnected for clarity.
The frequencies are reproduced using continuum elastic theory, fitting to the fre-
quencies yields E1 = 163 GPa, σ0 = 839 MPa Young’s Modulus and pre-stress. The
quality factor is calculated from the strain profile using a Zener model with one fit
parameter.

We thereby obtain the elastic parameters namely E = 163 GPa and σ0 =
839 MPa in excellent agreement with the values obtained by the investigation of
the nonlinear behavior in chapter 2.
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To relate the oscillating local strain with energy dissipation, we apply the model
of Zener [16], modifying the (scalar) stress-strain relation to account for phase lags
(σ = Eε with E = E1+ıE2 complex). This leaves a single fit parameter to reproduce
the measured quality factors as shown in fig. 6.2. The agreement is seen to be
excellent, it can be further improved by letting E2 depend on frequency, see section
G.6.3.

A similar calculation can be found in Ref. [17] considering thermoelastic damp-
ing [18]. Yet the effect is shown to be negligible and the underlying enhancement in
quality factor is not specified, as we do now.

The strain caused by the oscillation can be separated into two contributions:
local bending and overall elongation; please refer to section G.6.1 for details. It is
found that the effect of elongation is a minor correction to the oscillatory strain for
small amplitudes, being responsible for the energy loss in our model. However, its
contribution to the stored elastic energy is boosted by the pre-stress, see section
G.6.2. Therefore, one is able to increase the stored energy with prestress without
introducing energy loss at the same rate, in total the quality factor increases. This
effect can be seen to be most prominent for large antinode-separation, as there the
bending is less pronounced.

This finding shall be treated somewhat more precisely: the bending strain is
linear in displacement whereas the elongation strain is quadratic. The latter is
therefore very small and so is its contribution to energy loss; at very high amplitudes
however, it may become noticeable, see section G.7.

Considering the elastic energy, the situation is different; the bending energy is
quadratic in strain; however the elongation energy is linear in (solely elongation)
strain. Both energies are therefore quadratic in displacement.

Figure 6.3(a) shows a calculation of the relevant energies (losses) versus different
applied overall stress. Please note that in our model the energy loss is proportional
to the bending energy, section G.6.1 and G.6.2. A relatively weak increase of energy
loss with increasing stress is seen; this is caused by the changing mode profile.

For low stress the energy is dominated by bending; as for higher stress the total
energy is increasingly dominated by elongation energy; the ratio of total energy and
energy loss (bending energy) highlighted by the gray area directly shows the boost
of quality factor with applied stress. It is noteworthy that increasing the stress also
causes the linewidth to decrease, see section G.6.4.

Figure 6.3(b) shows the resulting parametric dependence of quality factor on res-
onance frequency, the almost linear relation is consistent with published results [19].

We consider now possible physical mechanisms that cause the energy loss in our
system. As shown in the supplement (section G.6.5) damping caused by thermoelastic-
[18, 20], Akhiezer-relaxation [20, 21] and clamping losses [22, 23] are of minor im-
portance. Therefore, energy loss related to defects is regarded as dominant; several
arguments favor this concept. As shown in section G.6.6 a non-optimized dry etch
step leads to quality factors that are uniformly reduced; yet the damping model is
still valid using an increased loss modulus E2. The dry etch is expected to introduce
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Figure 6.3: Elastic Energy and Quality Factor a The calculated elastic energies
vs. prestress are shown for the fundamental mode of a 35 µm beam. The bend-
ing energy is proportional to the energy loss; therefore the gray area represents the
enhancement in quality factor with applied stress. b The quality factor vs. reso-
nance frequency is parametrically shown for varying prestress for comparison with
published results.

sterical and compositional defects, yet has no influence on the above cited damping
mechanism. In addition, a model calculation shows that a defect ensemble having a
broad range of relaxation times and energies leads to a frequency-independent loss
modulus [24], the central assumption of our model. The quality factor of our strings
if they were relaxed can be calculated to be approximately 4000. Silicon nitride res-
onators have been cooled to liquid helium temperature without exhibiting a drastic
change in quality factor [15]. This magnitude is well in the ”glassy range” exhibited
by amorphous material, the damping there is described by two-level fluctuators [25].

However, these are considered to be uniformly distributed throughout resonator,
whereas the above finding of increased damping points towards defects that are
predominantly concentrated at or near the surface. Our model assumes a uniform
distribution of defect states along the beam and cannot resolve any question, con-
cerning the distribution of damping centers in the cross section, see also secion
G.6.7.

Given a multitude of experiments that point towards defects [6, 9, 10, 14, 26–30],
it is highly likely that these mediate the energy loss. Our findings suggest that either
ultra-pure systems [31] or systems in which the enhancement of quality factor with
stress is most prominent [32, 33] in accordance with the cited publications.

42



References

[1] T. D. Stowe, K. Yasumura, T. W. Kenny, D. Botkin, K. Wago, and D. Rugar,
“Attonewton force detection using ultrathin silicon cantilevers” Appl. Phys.
Lett. 71, 288–290 (1997).

[2] A. N. Cleland, “Thermomechanical noise limits on parametric sensing with
nanomechanical resonators” New J. Phys. 7, 235 (2005).

[3] C. H. Metzger and K. Karrai, “Cavity cooling of a microlever” Nature 432,
1002 (2004).

[4] C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical
motion with a microwave cavity interferometer” Nat. Phys. 4, 555 (2008).

[5] P. Rabl, P. Cappellaro, M. V. G. Dutt, L. Jiang, J. R. Maze, and M. D. Lukin,
“Strong magnetic coupling between an electronic spin qubit and a mechanical
resonator” Phys. Rev. B 79, 041 302 (2009).

[6] K. Y. Yasumura, T. D. Stowe, E. M. Chow, T. Pfafman, T. W. Kenny, B. C.
Stipe, and D. Rugar, “Quality factors in micron- and submicron-thick can-
tilevers” J. Microelectromech. S. 9, 117–125 (2000).

[7] L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and
J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond”
Appl. Phys. Lett. 81, 4455–4457 (2002).

[8] X. L. Feng, R. He, P. Yang, and M. L. Roukes, “Very High Frequency Silicon
Nanowire Electromechanical Resonators” Nano Lett. 7, 1953–1959 (2007).

[9] S. Schmid and C. Hierold, “Damping mechanisms of single-clamped and pre-
stressed double-clamped resonant polymer microbeams” J. Appl. Phys. 104,
093 516 (2008).

[10] S. Fukami, T. Arie, and S. Akita, “Temperature Dependence of Cantilevered
Carbon Nanotube Oscillation” Jpn. J. Appl. Phys. 49, 06GK02 (2010).

[11] S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G.
Craighead, “High quality factor resonance at room temperature with nanos-
trings under high tensile stress” J. Appl. Phys. 99, 124 304 (2006).

http://link.aip.org/link/?APL/71/288/1
http://link.aip.org/link/?APL/71/288/1
http://link.aip.org/link/?APL/71/288/1
http://dx.doi.org/10.1038/nature03118
http://dx.doi.org/10.1038/nature03118
http://dx.doi.org/10.1038/nphys974
http://dx.doi.org/10.1038/nphys974
http://link.aps.org/abstract/PRB/v79/e041302
http://link.aps.org/abstract/PRB/v79/e041302
http://link.aps.org/abstract/PRB/v79/e041302
http://link.aip.org/link/?APL/81/4455/1
http://link.aip.org/link/?APL/81/4455/1
http://link.aip.org/link/?APL/81/4455/1
http://dx.doi.org/10.1021/nl0706695
http://dx.doi.org/10.1021/nl0706695
http://link.aip.org/link/?JAP/104/093516/1
http://link.aip.org/link/?JAP/104/093516/1
http://link.aip.org/link/?JAP/104/093516/1
http://link.aip.org/link/?JAP/99/124304/1
http://link.aip.org/link/?JAP/99/124304/1
http://link.aip.org/link/?JAP/99/124304/1


References

[12] H. Yamaguchi, K. Kato, Y. Nakai, K. Onomitsu, S. Warisawa, and S. Ishihara,
“Improved resonance characteristics of GaAs beam resonators by epitaxially
induced strain” Appl. Phys. Lett. 92, 251 913 (2008).

[13] S. Y. Kim and H. S. Park, “Utilizing Mechanical Strain to Mitigate the Intrinsic
Loss Mechanisms in Oscillating Metal Nanowires” Phys. Rev. Lett. 101, 215 502
(2008).

[14] S. Y. Kim and H. S. Park, “The Importance of Edge Effects on the Intrinsic
Loss Mechanisms of Graphene Nanoresonators” Nano Lett. 9, 969–974 (2009).

[15] D. R. Southworth, R. A. Barton, S. S. Verbridge, B. Ilic, A. D. Fefferman,
H. G. Craighead, and J. M. Parpia, “Stress and Silicon Nitride: A Crack in the
Universal Dissipation of Glasses” Phys. Rev. Lett. 102, 225 503 (2009).

[16] C. Zener, “Internal Friction in Solids II. General Theory of Thermoelastic In-
ternal Friction” Phys. Rev. 53, 90–99 (1938).

[17] S. Kumar and M. Haque, “Reduction of thermo-elastic damping with a sec-
ondary elastic field” J. Sound Vib. 318, 423–427 (2008).

[18] R. Lifshitz and M. L. Roukes, “Thermoelastic damping in micro- and nanome-
chanical systems” Phys. Rev. B 61, 5600–5609 (2000).

[19] S. Verbridge, D. Shapiro, H. Craighead, and J. Parpia, “Macroscopic Tuning
of Nanomechanics: Substrate Bending for Reversible Control of Frequency and
Quality Factor of Nanostring Resonators” Nano Lett. 7, 1728–1735 (2007).

[20] A. A. Kiselev and G. J. Iafrate, “Phonon dynamics and phonon assisted losses
in Euler-Bernoulli nanobeams” Phys. Rev. B 77, 205 436 (2008).

[21] A. Akhieser, “On the absorption of sound in solids” J. Phys. - USSR 1, 277–287
(1939).

[22] Z. Hao, A. Erbil, and F. Ayazi, “An analytical model for support loss in micro-
machined beam resonators with in-plane flexural vibrations” Sens. Actuators,
A 109, 156–164 (2003).

[23] I. Wilson-Rae, “Intrinsic dissipation in nanomechanical resonators due to
phonon tunneling” Phys. Rev. B 77, 245 418 (2008).

[24] J. JACKLE, “Ultrasonic Attenuation In Glasses At Low-temperatures” Z. Phys.
257, 212–223 (1972).

[25] R. O. Pohl, X. Liu, and E. Thompson, “Low-temperature thermal conductivity
and acoustic attenuation in amorphous solids” Rev. Mod. Phys. 74, 991 (2002).

[26] D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, “Mea-
surement of mechanical resonance and losses in nanometer scale silicon wires”
Appl. Phys. Lett. 75, 920–922 (1999).

44

http://link.aip.org/link/?APL/92/251913/1
http://link.aip.org/link/?APL/92/251913/1
http://link.aip.org/link/?APL/92/251913/1
http://link.aps.org/abstract/PRL/v101/e215502
http://link.aps.org/abstract/PRL/v101/e215502
http://link.aps.org/abstract/PRL/v101/e215502
http://dx.doi.org/10.1021/nl802853e
http://dx.doi.org/10.1021/nl802853e
http://link.aps.org/abstract/PRL/v102/e225503
http://link.aps.org/abstract/PRL/v102/e225503
http://link.aps.org/abstract/PRL/v102/e225503
http://link.aps.org/doi/10.1103/PhysRev.53.90
http://link.aps.org/doi/10.1103/PhysRev.53.90
http://www.sciencedirect.com/science/article/B6WM3-4T8334N-1/2/6b2a2e14487d8aff9e258741a4f0a873
http://www.sciencedirect.com/science/article/B6WM3-4T8334N-1/2/6b2a2e14487d8aff9e258741a4f0a873
http://link.aps.org/abstract/PRB/v61/p5600
http://link.aps.org/abstract/PRB/v61/p5600
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/nl070716t
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/nl070716t
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/nl070716t
http://link.aps.org/abstract/PRB/v77/e205436
http://link.aps.org/abstract/PRB/v77/e205436
http://www.sciencedirect.com/science/article/B6THG-4B1X5FS-1/2/55d79c91ace701ea1c56b1ada82eee40
http://www.sciencedirect.com/science/article/B6THG-4B1X5FS-1/2/55d79c91ace701ea1c56b1ada82eee40
http://www.sciencedirect.com/science/article/B6THG-4B1X5FS-1/2/55d79c91ace701ea1c56b1ada82eee40
http://link.aps.org/doi/10.1103/PhysRevB.77.245418
http://link.aps.org/doi/10.1103/PhysRevB.77.245418
http://link.aps.org/abstract/RMP/v74/p991
http://link.aps.org/abstract/RMP/v74/p991
http://link.aip.org/link/?APL/75/920/1
http://link.aip.org/link/?APL/75/920/1
http://link.aip.org/link/?APL/75/920/1


REFERENCES

[27] J. Yang, T. Ono, and M. Esashi, “Surface effects and high quality factors in
ultrathin single-crystal silicon cantilevers” Appl. Phys. Lett. 77, 3860–3862
(2000).

[28] J. L. Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick
single-crystal silicon cantilevers” J. Microelectromech. S. 11, 775–783 (2002).

[29] Y. Wang, J. Henry, A. Zehnder, and M. Hines, “Surface Chemical Control of
Mechanical Energy Losses in Micromachined Silicon Structures” J. Phys. Chem.
B 107, 14 270–14 277 (2003).

[30] G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and T. J. Kippenberg,
“Ultralow-dissipation optomechanical resonators on a chip” Nat. Photonics 2,
627–633 (2008).

[31] A. K. Huettel, G. A. Steele, B. Witkamp, M. Poot, L. P. Kouwenhoven, and
H. S. J. van der Zant, “Carbon Nanotubes as Ultrahigh Quality Factor Me-
chanical Resonators” Nano Lett. 9, 2547–2552 (2009).

[32] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin,
and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a
micromechanical membrane” Nature 452, 72–75 (2008).

[33] D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity Optome-
chanics with Stoichiometric SiN Films” Phys. Rev. Lett. 103, 207 204 (2009).

45

http://link.aip.org/link/?APL/77/3860/1
http://link.aip.org/link/?APL/77/3860/1
http://link.aip.org/link/?APL/77/3860/1
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp0360164
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp0360164
http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/jp0360164
http://dx.doi.org/10.1021/nl900612h
http://dx.doi.org/10.1021/nl900612h
http://dx.doi.org/10.1021/nl900612h
http://dx.doi.org/10.1038/nature06715
http://dx.doi.org/10.1038/nature06715
http://dx.doi.org/10.1038/nature06715
http://link.aps.org/doi/10.1103/PhysRevLett.103.207204
http://link.aps.org/doi/10.1103/PhysRevLett.103.207204


References

46



Summary and Perspectives

In the framework of this thesis, the resonant motion of strained nanomechanical
oscillators has been investigated at room temperature. Its essential results and
ongoing and possible future projects shall be briefly discussed.

A central aspect of the work is the development of new transduction schemes,
also suited for insulating resonators. Chapter 1 introduces such a new scheme that
relies on the dielectric interaction: the polarizable mechanical element is placed
in an inhomogeneous electric field. Consequently, it gets attracted towards higher
field intensity; in turn a mechanical displacement leads to an electrical capacitance
change. The main focus of the publication is to demonstrate simple actuation.
However it is straightforward to extend the scheme to allow for sensitive detection by
measuring the capacitance change. This can be accomplished by either measuring
the creation of charge [1, 2], or transform it into a modulation of the resonance
frequency of an LC circuit [3, 4] (see also the supplement, section G.2.2). Both
approaches are currently pursued at the chair, yet not concluded.

The transduction mechanism presented in chapter 3 similarly utilizes gradient
fields: the tail of an optical mode circulating in a micro-cavity dielectrically interacts
with a nanomechanical resonator. The resulting phase shift of the optical path is en-
hanced by the optical cavity and allows to sensitively detect the displacement of the
oscillator. To further increase sensitivity, at least two approaches are straightforward
and have already been implemented [? ]. Decreasing the wavelength increases the
slope of the decay of the evanescent field and thereby the optomechanical coupling.
Reducing the total optical mode-volume (the size of the micro-toroid) enhances the
relative optical frequency shift with mechanical displacement, as it scales with the
optical mode volume interacting with the mechanical resonator divided by the to-
tal mode volume. Whereas at room temperature this latter modification leads to
an increased thermorefractive noise, it suggest that an imprecision of 10 dB below
the standard quantum limit can be reached by (conventionally) cooling the optical
resonator to 10 K.

In chapter 4 an integrable detection scheme is presented; the optical intensity
modulation with beam displacement is converted into a photocurrent generated by a
nearby Schottky-contact. There are again straightforward ideas to further increase
the sensitivity (as pointed out in the paper): implementing an optical resonant
structure [5, 6] can increase the detected signal strength as well as the modulation
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depth with mechanical displacement.
The focus of chapter 2 is two-fold: by implementing a downconversion technique

the limited bandwidth of the employed photodetector can be exceeded. The present
implementation switches the employed laser completely on and off, resulting in op-
tical noise; however, achieving a sine-like modulation with acousto-optic modulators
should largely reduce the noise and enable the detection of yet higher frequencies.
It is noteworthy that a stroboscopic technique also eliminates cross-talk; it therefore
may be useful to combine it with the on-chip detection scheme discussed in section
4. The second topic of the paper was to yield additional insight into the (elastic)
mechanics based on the nonlinear characteristics of the oscillation. Deducing that
a long beam could be treated as string, allowed to separate bending from stretch-
ing effects and isolate the mechanical parameters. These parameters could then be
utilized to convert the measured signal into mechanical displacement.

A further insight into the nonlinear mechanics is shown in chapter 5. There the
response of the system subject to short, resonant RF-pulses is studied and their
application to implement a nanomechanical memory element. A possible continu-
ation is to apply stronger pulses to enable faster switching and eventually observe
the break-down of the perturbative modeling. Another extension is to actuate the
resonators to amplitudes that display effects of not only 3rd but also 5th order terms
in displacement [7]. Presumably, a more complex topography and a tristable state
can be observed.

Lastly, the damping of the nanomechanical structures has been investigated,
chapter 6. The work demonstrates that a simple strain-based Zener model can be
employed to quantitatively predict the quality factor of the mechanical resonators.
Several arguments are given that clearly point towards local defects to cause the ob-
served damping. Here, work can be performed to yield further insight: the presented
data have been taken at room temperature. The damping exhibited by amorphous
materials is mostly studied at low temperature and can be modeled assuming the
defects to be two-level systems coving a broad range in energy and relaxation rate.
In particular, it seems appealing to study the damping behavior subject to sudden
changes in the equilibrium of the defects. This change could be implemented by
applying a different stress (see also section G.1) or the electric field as these systems
display a dipolar moment a.

There are more effects that can be investigated and may be related to defects:
subject to DC-bias the resonators show a drift in eigenfrequency, see section G.2.3.
The dipolar moment of the beams thereby changes with time, to clarify the physical
origin more work is required possibly including different temperatures.

Applying the damping model in the highly excited regime (section G.7) shows
that at large amplitudes, a deviation from linear damping may be observed as a
geometric (not microscopic) consequence. The challenge here probably is to deal
with the elastic nonlinearities.

aS. Ludwig, private communication
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LETTERS

Universal transduction scheme for nanomechanical
systems based on dielectric forces
Quirin P. Unterreithmeier1, Eva M. Weig1 & Jörg P. Kotthaus1

Any polarizable body placed in an inhomogeneous electric field
experiences a dielectric force. This phenomenon is well known
from the macroscopic world: a water jet is deflected when
approached by a charged object. This fundamental mechanism is
exploited in a variety of contexts—for example, trapping micro-
scopic particles in an optical tweezer1, where the trapping force is
controlled via the intensity of a laser beam, or dielectrophoresis2,
where electric fields are used to manipulate particles in liquids.
Here we extend the underlying concept to the rapidly evolving
field of nanoelectromechanical systems3,4 (NEMS). A broad range
of possible applications are anticipated for these systems5,6,7, but
drive and detection schemes for nanomechanical motion still need
to be optimized8,9. Our approach is based on the application of
dielectric gradient forces for the controlled and local transduction
of NEMS. Using a set of on-chip electrodes to create an electric
field gradient, we polarize a dielectric resonator and subject it to
an attractive force that can be modulated at high frequencies. This
universal actuation scheme is efficient, broadband and scalable. It
also separates the driving scheme from the driven mechanical
element, allowing for arbitrary polarizable materials and thus
potentially ultralow dissipation NEMS10. In addition, it enables
simple voltage tuning of the mechanical resonance over a wide
frequency range, because the dielectric force depends strongly
on the resonator–electrode separation. We use the modulation of
the resonance frequency to demonstrate parametric actuation11,12.
Moreover, we reverse the actuation principle to realize dielectric
detection, thus allowing universal transduction of NEMS. We
expect this combination to be useful both in the study of
fundamental principles and in applications such as signal proces-
sing and sensing.

Common actuation mechanisms of nanomechanical resonators
can be divided into local on-chip schemes and schemes relying on
external excitation. The former are based on voltage-induced forces
such as internal piezo-electrical9,12, capacitive11, magnetomotive13,
electrothermal14 or static dipole-based dielectric15. Although highly
integrable and efficient, these schemes impose constraints on mater-
ial choice and geometry and thus mostly suffer from large dissipa-
tion16. The latter employ external actuation such as photothermal17

or inertia-based piezo-actuated schemes10, which is less restrictive on
system choice and hence advantageous in terms of dissipation3,10.
However, attaining high-frequency actuation as well as integrability
remains a challenge.

Here, we introduce a driving scheme that integrates external, yet
local actuation for arbitrary resonators, directly based on electrical
signals. It enables independent optimization of both the actuation
and the resonant element. Our mechanism relies solely on dielectric
interaction: A polarizable material experiences an attractive force in
an inhomogeneous electric field directed towards the maximum field
strength. In our case the polarizable element is a doubly clamped

silicon nitride beam, as depicted in Fig. 1a, which serves as a low-
dissipation radio-frequency (r.f.) resonator10. The inhomogeneous
field in the beam plane is created by two subjacent gold electrodes
(see inset of Fig. 1b). A static voltage Vd.c. (direct current, d.c.)
applied to the electrodes induces a strong dipolar moment in the
resonator that in turn experiences an attractive force directed
towards the electrodes. Modulating Vd.c. with an r.f. signal Vr.f. gives
rise to an oscillating force component that drives the resonator per-
pendicularly to the chip plane.

To obtain quantitative insight into the dielectric forces, we carried
out finite element simulations for the given geometry (see Fig. 1). The
black line in Fig. 1b depicts the dielectric force acting on the resonator
as a function of its distance d from the substrate. The force exhibits a
maximum at a distance that is comparable, though somewhat smaller
than our resonator–substrate separation of d < 300 nm. In addition,
the simulations can be used to extract information on the underlying
circuitry. The mutual capacitance of the electrodes is Cmutual < 1.5 fF.
Along with an impedance of R < 50V, this yields a cut-off frequency
fc 5 1/(2pRCmutual) in the terahertz regime, which goes well beyond
attainable frequencies for driven nanomechanical systems4. A simple
analytical model reproduces the simulated behaviour. As the electric
field lines in the inset of Fig. 1b show, the overall dominant field
component in the vicinity of the resonator is parallel to the surface

1Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany.
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Figure 1 | Sample geometry and force acting on the nanomechanical
resonator. a, Scanning electron micrograph of a representative device. The
high-stress silicon nitride film (green) forms the suspended doubly clamped
beam and its supports. The four nearby gold electrodes (yellow) are
connected to both a d.c. and an r.f. voltage source used to polarize and
resonantly excite the beam. b, Electrostatic force per unit length in the z
direction, perpendicular to the sample plane, versus distance d from the
electrodes for Vd.c. 5 2 V simulated by a finite element calculation (black)
and approximated by an analytical fit (red). In our experiments d is about
300 nm. The inset depicts a cross-section of the device and shows the electric
field lines obtained by the simulation. We note that the field component Ez

changes sign across the beam along the x direction, giving rise to a finite
hEz/hx, as in equation (1).
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(x direction). Therefore, the induced charge distribution on the
resonator can be approximated by a dipole oriented in the x direction
proportional to the electric field component in this direction:
px 5 xEx, with susceptibility x. The charging qi of each electrode is
described by a point charge. Neglecting the electrostatic contribution
of the influenced charges, the z component of the resulting force Fz in
this simple dipole approximation is proportional to the field gradient
along the x direction:

Fz~px
LEz

Lx
!ExEz

with E rð Þ~
X

i ~ 1, 2

qi

r { ri

r { rij j3

ð1Þ

Using the mutual distance of the electrodes jr1 2 r2j and the resonator
susceptibility x as fit parameters, the simulated results are well
approximated (see red line in Fig. 1b). Neglecting small deformations
of the resonant element by electrical forces, equation (1) predicts a
quadratic dependence on electric field, just as in the case of capacitive
actuation11. Weakly modulating the applied bias voltage therefore
gives rise to an oscillating force:

F Vd:c:zVr:f :½ �~c1 Vd:c:zVr:f :ð Þ2<c1V 2
d:c:z2c1Vd:c:Vr:f :

with c1 a constant

ð2Þ

Equation (2) shows that two independent parameters ensure optimized
actuation: while Vr.f. is employed to actuate the oscillatory motion of the
resonator, the amplitude of Vd.c. independently controls the strength of
the polarization. This striking behaviour is a distinct feature of electrical
realizations of dielectric force gradients. Optically generated gradient
forces which have recently been reported as actuation for nanomecha-
nical resonators18 do not incorporate this polarization tunability
because both polarization and actuating force result from the same laser
field. Unlike for the related concept of laser tweezers employing
polarizing quasi-static electrical fields1, the polarizing d.c. voltage allows
efficient operation even in the case of a reduced susceptibility x(v) in
the frequency regime of resonator eigenmodes.

Our experiments are performed at room temperature in a vacuum of
P , 3 3 1023 mbar to exclude gas damping. Resonators with typical
dimensions of (30–40) 3 0.2 3 0.1mm3 (length 3 width 3 height)
are fabricated from high-stress silicon nitride10 using standard litho-
graphic methods. The drive electrodes are defined by lithographic post-
processing on fully released beams, enabled by the strong tensile stress of
1.4 GPa of the silicon nitride film. Several resonators processed on
different sample chips were investigated. The results shown in this work
are representative and have been taken from three distinct resonators.

Using a standard fibre-based optical interferometer19, we detect
the out-of-plane displacement of the resonator sensitively enough to
resolve the Brownian motion of the resonator, as shown in Fig. 2a.
The fundamental resonance is described by a harmonic differential
equation, with effective mass m, spring constant k0, eigenfrequency
f0~

ffiffiffiffiffiffiffiffiffiffiffi
k0=m

p �
2p, mechanical quality factor Q and external force F.

For the investigated resonators, f0 lies between 5 and 9 MHz, while Q
ranges from 100,000 to 150,000, comparable to values reported
elsewhere10. The frequency spectrum of the thermally driven system
is Lorentzian. Its calculated amplitude20 is used as a calibration to
convert the measured optical signal into displacement. Figure 2b
displays the driven resonator amplitude versus frequency along with
a Lorentzian fit. The measured resonance amplitude (all indicated
amplitudes are half-peak-to-peak amplitudes) for an actuation with
Vd.c. 1 Vr.f. 5 1 V 6 0.2 mV is about 60.8 nm. A simple model based
on the simulated forces yields 60.3 nm when assuming a dielectric
constant of silicon nitride of 7 (the literature21 reports values between
6 and 9), which is in fair agreement. From the experimental data we
estimate that a minimal actuation voltage Vr.f. 5 65 mV is sufficient
to drive more strongly than the Brownian motion for a bandwidth of
50 Hz. With the simulated value of Cmutual < 1.5 fF this translates
into resonantly charging the electrodes by just 0.05 electrons, which

is below recently reported results9. In Fig. 2c individual power res-
ponse traces are plotted as a function of frequency on a colour scale for
a series of Vd.c. and Vr.f. 5 663mV. The corresponding resonant
amplitude is depicted in Fig. 2d. It clearly scales linearly with the
applied d.c. bias voltage, as expected from equation (2). The resonance
frequency decreases quadratically with bias voltage (see fit indicated
by solid black line in Fig. 2c). This can be readily understood from the
force dependence on the distance d (see Fig. 1b). Expanding this
dependence around the equilibrium position d0 yields:

F d0zdd½ �~F0z
LF

Ld
ddzO ddð Þ2 ð3Þ

The constant term F0 leads to a new equilibrium position and can be
ignored. However, the term linear in displacement (at the same time
quadratic in applied voltage) acts as an additional spring constant on
the resonator. It follows from Fig. 1b that this contribution is negative

for the given d < 300 nm. The resulting eigenfrequency ~ff0 therefore
shifts in leading order with the observed quadratic voltage dependence:

~ff 0~
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0{c2V 2

d:c:

m

r
<f0 1{

c2V 2
d:c:

2k0

� �

with c2 a constant

ð4Þ

Figure 3a exhibits a frequency tuning range of more than 100 kHz,
corresponding to approximately 1,000 full width at half maximum
(FWHM < 100 Hz).

Subject to strong actuation, the resonator response enters the non-
linear regime. This can be achieved for relatively small actuation
powers, which do not give rise to a significant thermal heating of the
sample (see Supplementary Information). Higher-order terms in dis-
placement display similar tuning effects22, which will be presented
elsewhere. The voltage tuning enables parametric excitation: a modu-
lation of the resonance frequency at about 2~ff0 can give rise to instability
and self-oscillation of the system even without the applied resonant
force F23,24. Figure 3b depicts the power response versus detection
frequency f near ~ff0 and r.f. frequency modulation power leading to
the modulation amplitude df (see Fig. 3a). The characteristic Arnold
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Figure 2 | Response of the dielectrically driven nanomechanical resonator.
a, Brownian motion at room temperature for Vd.c. 5 1 V without r.f.
excitation. b, Dielectrically driven oscillation with Vd.c. 1 Vr.f. 5 1 V 6 0.2 mV,
corresponding to an r.f. power of 270 dBm. The data in a and b (dots) are well
fitted by Lorentzians (red lines). The magnitude of the Brownian motion is
used to convert the measured signal into the amplitude of the resonator
displacement. c and d, Response of the resonator as a function of frequency
and d.c. bias voltage at r.f. drive Vr.f. 5 60.06 mV. In c, the power response is
logarithmically colour-coded. The resonance frequency decreases
quadratically with Vd.c. (fit shown by the black line). The resonant amplitude
of c is displayed as a function of the d.c. bias in d, reflecting the linear
dependence of the resonator polarization on d.c. bias voltage (fit shown by the
red line).
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tongue7 indicates the region of instability and self-oscillation as experi-
mental evidence of parametric actuation. In particular, when the
resonance frequency ~ff0 is modulated at exactly twice its value with

df tð Þ~df |cos 2 2p~ff 0

� �
t

� �
, theory predicts the transition to occur

when df w
~ff0=Q. For the case shown in Fig. 3a, the transition is

expected for a driving power of 225 dBm, which is in good agreement
with the data. However, we note that there is some ambiguity in
defining the onset of spontaneous oscillation11.

Reversing the actuation principle, we can also electrically detect the
motion of the resonator locally. Therefore, on a different sample, a
second pair of biased electrodes is introduced, which had previously
been shunted with the driving electrodes (see Fig. 1a). The oscillating
motion of the polarized resonator modulates the mutual capacitance
of these electrodes, thereby creating an electrical signal. To avoid cross-
talk from a resonant drive signal, the beam was parametrically excited
around 2~ff0, as discussed above. The dielectric detection scheme uses an
impedance converter near the sample and is demonstrated in Fig. 3c.
To estimate the achieved sensitivity, the response amplitudes of Fig. 3b
and c are compared when the resonator is driven 10 dB beyond the
onset of spontaneous oscillation. An amplitude of 610 nm results in
an electrical signal power of approximately 280 dBm. As the noise
level is about 2100 dBm when measuring at 50 Hz bandwidth, the
sensitivity is approximately 20 pm Hz21/2 for the unoptimized device.
An estimate of the limits of this detection scheme using a more
advanced set-up can be found in the Supplementary Information.

Although other electrical displacement sensors have obtained higher
sensitivities13,25,26, the integration with a highly efficient, material-
independent drive makes our dielectric scheme an interesting candidate
for nanomechanical transduction.

In conclusion, by taking advantage of dielectric gradient forces, we
realize and quantitatively validate a new and widely applicable actuation
and readout scheme for nanoelectromechanical systems. It is on-chip
and scalable to large arrays, broadband potentially beyond the gigahertz
regime, and imposes no restrictions on the choice of resonator material.
It thus enables the optimization of mechanical quality factors of the
resonator without being bound by specific material requirements. The
sensitivity of mechanical sensors scales with the quality factor3, so we
anticipate the scheme to be of interest in the fast-developing field of
sensing5,6. Capable of locally addressing individual resonators, it is
particularly relevant for bio-sensing, where large arrays of individually
addressable resonators are desirable to analyse multiple constituents.
Because the driven mechanical element can be fabricated separately
from the actuating capacitor, it will also permit bottom-up fabrica-
tion27. Using this actuation scheme we demonstrate strong electrical
field-effect tuning of both the resonance amplitude and frequency. This
facilitates parametric excitation of the resonator at 2f, thus allowing
decoupled detection of its oscillation at f. The large frequency tuning
range can, for example, be used for in-situ tuning of several mechanical
elements into resonance28 or coupling to external elements29. Moreover,
the combination of parametric excitation and (even weak) signal
extraction enables digital signal processing based on mechanical ele-
ments, as has recently been demonstrated for microelectromechanical
resonators12. With additional tuning, an almost ideal electromechanical
bandpass filter has been suggested7. Whereas we already achieve highly
efficient actuation, as reflected by the low driving voltages in the micro-
volt regime, the sensitivity of our detection scheme can be significantly
enhanced by, for example, using a microwave tank circuit26. This also
opens a pathway to cooling the mechanical eigenmodes26,30.
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Coherent detection of nonlinear nanomechanical motion using
a stroboscopic downconversion technique
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A method is presented that overcomes bandwidth limitations arising in a fiber-optic setup
transducing mechanical motion. The reflected light from a sample incorporating a nanomechanical
resonator is analyzed. Modulating the incoming laser intensity at a suitably chosen frequency, the
mechanically induced oscillation of the reflected light is coherently downconverted to a frequency
within the detection bandwidth. Additionally, based on the mechanical nonlinear response, the
optical signal can be quantitatively converted into displacement, yielding a sensitivity of 7 pm /�Hz
at optical power levels of 20 �W. We detect and image mechanical modes up to the seventh
harmonic of the fundamental mode at 7.7 MHz. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3155164�

The resonant motion of micro- and nanoelectromechani-
cal systems is increasingly investigated. Their small masses,
high quality �Q� factors, and high integrability make them
equally interesting for fundamental research as well as appli-
cations in sensing and signal processing.1,2 Optical setups are
among the most sensitive ones for the detection of the me-
chanical motion. With decreasing dimensions and increasing
resonance frequencies of the mechanical systems the detec-
tion of the motion requires increasingly complex setups.3 In
particular, sensitive optomechanical transduction typically
employs reference beams3 and/or optical cavities.4 These ap-
proaches equally require very stable lasers and optical paths.
We employ a simpler fiber-optical setup, as sketched in
Fig. 1 and described, e. g., in Ref. 5.

In this setup the sample is illuminated with light coming
out of a bare close-by glass fiber and the scattered light is
collected with the same fiber without additional optical com-
ponents. Our investigated nanomechanical system consists
of a stretched SiN wire6 of dimensions 35 �m�250 nm
�100 nm, length, width, and height, respectively. The me-
chanical actuation is induced by dielectric forces caused by
an essentially spatially inhomogeneous electrical field gener-
ated by suitably biased electrodes close to the resonator as
discussed elsewhere.7 Since the motion of the resonator only
weakly modulates the reflected laser intensity, significant
amplification of the detected signal oscillating at radio fre-
quency of the mechanical resonances is required. Typically,
amplifiers exhibit a trade-off concerning bandwidth, amplifi-
cation factor, and amplifier noise. The photodiode with an
integrated preamplifier �Thorlabs PDA55� used for this work
has variable gain and bandwidth �maximum of 10 MHz�. The
datasheet shows that these quantities are approximately in-
versely proportional whereas the amplifier noise is rather
constant with varying bandwidth. In order to exceed the am-
plifier constraints, we introduce a modulation of our laser
intensity at frequency fRF, as sketched in Fig. 1. Here, a
square-wave modulation of the laser intensity is imple-
mented with a homemade switching circuit. We actuate the
mechanical resonator with frequency fRF− fLO. This driving

signal is coherently generated by mixing the signal that
modulates the laser with the signal of a local oscillator, op-
erating at fixed frequency fLO=0.9 MHz employing a home-
made single sideband modulator. Consequently, the light re-
flected from the driven mechanical resonator contains
frequency components at the sum �2fRF− fLO� and difference
�fLO� frequency. The sum frequency typically exceeds the
bandwidth of our detector and is suppressed. However, the
difference frequency is coherently detected using a network
analyzer. Sweeping fRF while retaining fLO=0.9 MHz yields
the frequency-dependent response of the mechanical resona-
tor at fRF− fLO. In the following all experiments are per-
formed at room temperature and a pressure below 5
�10−4 mbar.

A typical response curve can be seen in Fig. 2�a�; fitting
a Lorentzian line shape yields the mechanical resonance fre-
quency and quality �Q� factor. With the stroboscopic detec-
tion scheme, we are able to investigate also harmonic modes

a�Electronic mail: quirin.unterreithmeier@physik.uni-muenchen.de.
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FIG. 1. �Color online� Schematical transduction setup; the electronic path is
plotted in black; the area surrounded by the dashed rectangle depicts the
optical path; arrows indicate the direction of signal propagation. The sample
containing a string as nanomechanical resonator is mounted in vacuum just
below the end of the optical fiber as indicated. As the sample is actuated at
fRF− fLO and the illuminating laser intensity is modulated at fRF a coherent,
low-frequency beat at fLO is created on the photodetector.
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of our mechanical resonator at frequencies beyond the band-
width of our photodetector. The ability to record several
modes has been demonstrated to be advantageous for
sensing.8 In Fig. 2�b�, resonance frequencies and quality fac-
tors are displayed versus the respective mode number n cor-
responding to the number of antinodes along the length of
the resonator. In contrast to a doubly clamped beam,9 the
frequencies can be clearly seen to scale linearly with mode
number. As the implementation of the employed actuation
scheme is spatially symmetric, we are not able to excite all
antisymmetric, even n, modes. From the resulting spectrum,
one can deduce that the model of a string can be safely
employed to describe the resonant motion. The relatively
large Q values are found to decrease with increasing fre-
quency, a phenomenon generally observed6 but still not
quantitatively understood. In Fig. 2�c�, we scan the detection
fiber along the wire and plot the locally obtained phase of the
oscillation; a method for convincingly identifying a given
mode. It is noteworthy that techniques relying on modulation
of the driving amplitude are not able to retrieve this informa-
tion, see for example Ref. 10. Using a direct detection
scheme of the mechanical resonance under cw illumination,
we obtain a somewhat higher displacement resolution �yet
bandwidth limited� and are able to measure the Brownian
motion of the fundamental mode at 300 K. This enables us
to quantitatively convert the measured signal into
displacement.11

In the following, we describe how the nonlinear behav-
ior of the resonator can be employed to transfer this displace-
ment calibration to the higher harmonics. Related experi-
ments have been reported in Ref. 12. At large driving
amplitudes, the restoring force F�z� exhibits nonlinear terms

in displacement z. For convenience we write F�z�=k ·z
+meff�3 ·z3. Here meff, k=meff�2�f�2, and meff�3 denote the
effective mass, linear spring constant, and cubic contribution,
respectively, of the mechanical mode considered. For the
case of a string, the spatial modes are described by a cosine,
thereby a simple calculation yields the restoring force up to
cubic order. We define L as half the wavelength of the reso-
nant mode, which for the fundamental mode equals the
length of the string l and for the higher modes L= l /n with
n=2,3 , . . .. With E, �, and � being Young’s modulus, tensile
stress, and density of the resonator material, we obtain

F�z�
meff

=
�2�

L2�
z +

�E + 3/2���4

4L4�
z3. �1�

We note that this result reflects the well-known fact that
a string doubles its resonance frequency when halving its
length. Assuming a density of �=3000 kg /m3,13 the mea-
sured frequency of the fundamental mode translates into a
tensile stress of �=830 MPa, significantly less than the
given specifications of the unprocessed SiN films �1400
MPa�. For the amplitude conversion we note that the nonlin-
ear term scales with the length as �3�L−4. The differential
equation employing the nonlinear restoring force, the so-
called Duffing equation, can be solved in the case of a
steady-state oscillation, yielding a frequency-dependent
amplitude �z�= �z��f�. The explicit calculations are not pre-
sented here and can be found for example in Ref. 14. With
increasing actuation amplitude, the initial Lorentzian line
shape begins to bend over to one side and eventually be-
comes bistable, a nonlinear phenomenon often seen in
nanomechanics.15 We fit the measured resonance curves near
the onset of bistability with the solution of the Duffing equa-
tion. For the fundamental mode we thereby derive an abso-
lute value for �3. With the given geometry this translates into
a Young’s Modulus of E=100 GPa, reduced with respect to
the literature value of spatially homogeneous SiN films
around 300 GPa.13 Applying the obtained values, continuum
mechanics predicts a flexural contribution to the restoring
force less than 2%.6 To extend the calibration to the case of
the harmonics, the values for �3 are rescaled to obey 1 /L4

scaling with respect to the fundamental mode �see Eq. �1��.
Thus a scaling factor is obtained to convert the measured
detector signal into displacement. Figure 3�a� shows such
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FIG. 2. �Color online� �a� Mechanical response and Lorentzian fit of a
nanomechanical stretched SiN wire with dimensions 35 �m�250 nm
�100 nm length, width, and height, respectively, driven around the second
harmonic mode. �b� Resonance frequencies and quality factors of the fun-
damental mode and all observed harmonics are plotted vs mode number n,
reflecting the number of antinodes along the length of the wire. To empha-
size the scaling behavior of the frequencies a linear fit is shown. �c� Spatial
distribution of the phase of the observed mechanical modes as measured
with the detection fiber moved by position x along the wire �see Fig. 1�. For
clarity the curves are offset in phase with respect to each other.
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FIG. 3. �Color online� �a� Nonlinear response of the fifth harmonic mode;
experimental data �black� and theoretical fit �red�. The fit is employed to
convert the detected signal into mechanical displacement. ��b� and �c�� Com-
parison of signal transduction using stroboscope �a� and �b� and cw illumi-
nation �c� measuring with 50 Hz bandwidth. Note that the driving amplitude
in �a� and �c� are identical; therefore the noise floor in �c� can be estimated
to be about 2 nm and is substantially larger than the one of about 50 pm �b�
achieved in the stroboscopic detection scheme.
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rescaled measurement and the corresponding nonlinear fit.
The fitting procedure proves to be surprisingly stable, even
in the case that none of the fitting parameters, such as f0 ,Q
are held fixed. In contrast, if we directly employed literature
values for E, appropriate for our wafer material, the conver-
sion would yield amplitudes that are approximately half as
large.

Using above calibration, we are able to determine the
sensitivity of our setup. Figure 3�b� shows a weakly driven
resonance detected in the stroboscopic mode, from which
one can deduce a noise floor of about 50 pm measured at a
bandwidth of 50Hz. This corresponds to a sensitivity of
7 pm /�Hz at an average incoming laser power of 20 �W.
The values obtained for the other modes deviate slightly
from this value; we attribute this to the modulation amplitude
of our laser that is measured to be not completely constant
over the whole range of modulation frequencies �data not
shown�. Normalized to the laser intensity, these sensitivity
values are comparable to those reported in Ref. 5 based on
cw illumination. To quantify the signal-enhancement caused
by the stroboscopic downconversion technique, Fig. 3�c�
shows the same resonance as Fig. 3�a� employing cw illumi-
nation. The obtained maximum in the spectrum therefore
corresponds to an amplitude of 3 nm, whereas the noise floor
translates into an amplitude of at least 2nm rms, about a
factor of 50 worse than in Fig. 3�b�.

Assuming that the modulation of the illuminating laser at
higher frequencies does not increase the noise of the optical
signal detected at frequency fLO, the detected signal de-
creases only in proportion to the mechanical displacement of
the string and the sensitivity is expected to be independent of
frequency.

Other stroboscopic techniques have been reported that
do not require additional optical components: Ref. 16 em-
ploys short light pulses freezing the mechanical motion that
produce phase-shifted spatial images and typically achieves
displacement resolutions not exceeding nanometer. Another
recently reported time-domain technique,17 employing local
interferometric effects, is equally based on short probing and
excitation pulses. There, displacement resolutions in the pi-
cometer regime are observed up to resonator frequencies in
the GHz regime. However, as pulsed excitation is applied,
this technique imposes challenges when studying steady-
state phenomena.

In conclusion we demonstrate a simple stroboscopic
technique to coherently detect nanomechanical motion, sepa-
rating the detection frequency fLO from the frequency of me-
chanical motion fRF− fLO. This allows to far exceed band-
width limitations imposed by sensitive detection electronics.
Based on this approach sensitivities of the mechanical dis-
placement down to 7 pm /�Hz are demonstrated at an aver-
age incoming laser power of only 20 �W and resonant mo-
tion between 7 and 55 MHz. It is expected that this technique
facilitates detection ranging in the GHz regime. Nonlinear
characteristics of the mechanical resonator are employed to
quantitatively convert the measured signal into displacement.

Financial support by the Deutsche Forschungsgemein-
schaft via Project Ko 416/18–1 as well as the German Ex-
cellence Initiative via the Nanosystems Initiative Munich
�NIM� and LMUexcellent is gratefully acknowledged.

1H. G. Craighead, Science 290, 1532 �2000�.
2K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 �2005�.
3H. Martinussen, A. Aksnes, and H. E. Engan, Opt. Express 15, 11370
�2007�.

4Y. Hadjar, P. F. Cohadon, C. G. Aminoff, M. Pinard, and A. Heidmann,
Europhys. Lett. 47, 545 �1999�.

5N. O. Azak, M. Y. Shagam, D. M. Karabacak, K. L. Ekinci, D. H. Kim,
and D. Y. Jang, Appl. Phys. Lett. 91, 093112 �2007�.

6S. S. Verbridge, J. M. Parpia, R. B. Reichenbach, L. M. Bellan, and H. G.
Craighead, J. Appl. Phys. 99, 124304 �2006�.

7Q. P. Unterreithmeier, E. M. Weig, and J. P. Kotthaus, Nature �London�
458, 1001 �2009�.

8S. Dohn, W. Svendsen, A. Boisen, and O. Hansen, Rev. Sci. Instrum. 78,
103303 �2007�.

9I. Kozinsky, H. W. Ch. Postma, I. Bargatin, and M. L. Roukes, Appl. Phys.
Lett. 88, 253101 �2006�.

10A. San Paulo, J. P. Black, R. M. White, and J. Bokor, Appl. Phys. Lett. 91,
053116 �2007�.

11D. T. Gillespie, Am. J. Phys. 64, 225 �1996�.
12D. W. Carr, S. Evoy, L. Sekaric, H. G. Craighead, and J. M. Parpia, Appl.

Phys. Lett. 75, 920 �1999�.
13M. Gad-el-Hak, The MEMS Handbook �CRC, New York, 2001�.
14A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations �Wiley, New York,

1995�.
15I. Kozinsky, H. W. Ch. Postma, O. Kogan, A. Husain, and M. L. Roukes,

Phys. Rev. Lett. 99, 207201 �2007�.
16D. Hessman, M. Lexholm, K. A. Dick, S. Ghatnekar-Nilsson, and L. Sam-

uelson, Small 3, 1699 �2007�.
17N. Liu, F. Giesen, M. Belov, J. Losby, J. Moroz, A. E. Fraser, G. McKin-

non, T. J. Clement, V. Sauer, W. K. Hiebert, and M. R. Freeman, Nat.
Nanotechnol. 3, 715 �2008�.

263104-3 Unterreithmeier, Manus, and Kotthaus Appl. Phys. Lett. 94, 263104 �2009�

Downloaded 23 Sep 2009 to 129.187.254.47. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp





ARTICLES
PUBLISHED ONLINE: 11 OCTOBER 2009 | DOI: 10.1038/NPHYS1425

Near-field cavity optomechanics with
nanomechanical oscillators
G. Anetsberger1, O. Arcizet1, Q. P. Unterreithmeier2, R. Rivière1, A. Schliesser1, E. M. Weig2,
J. P. Kotthaus2 and T. J. Kippenberg1,3*

Cavity-enhanced radiation-pressure coupling between optical and mechanical degrees of freedom allows quantum-limited
position measurements and gives rise to dynamical backaction, enabling amplification and cooling of mechanical motion. Here,
we demonstrate purely dispersive coupling of high-Q nanomechanical oscillators to an ultrahigh-finesse optical microresonator
via its evanescent field, extending cavity optomechanics to nanomechanical oscillators. Dynamical backaction mediated by the
optical dipole force is observed, leading to laser-like coherent nanomechanical oscillations solely due to radiation pressure.
Moreover, sub-fm Hz−1/2 displacement sensitivity is achieved, with a measurement imprecision equal to the standard quantum
limit (SQL), which coincides with the nanomechanical oscillator’s zero-point fluctuations. The achievement of an imprecision
at the SQL and radiation-pressure dynamical backaction for nanomechanical oscillators may have implications not only for
detecting quantum phenomena in mechanical systems, but also for a variety of other precision experiments. Owing to the
flexibility of the near-field coupling platform, it can be readily extended to a diverse set of nanomechanical oscillators. In
addition, the approach provides a route to experiments where radiation-pressure quantum backaction dominates at room
temperature, enabling ponderomotive squeezing or quantum non-demolition measurements.

Nanomechanical oscillators1,2 possess wide-ranging applica-
tions in both fundamental and applied sciences. Owing
to their small mass, they are ideal candidates for probing

quantum limits of mechanical motion in an experimental setting.
Moreover, they are the basis of various precision measurements3–5.
Significant attention has been devoted to developing sensitive read-
out techniques for nanomechanical motion over the past decade. A
natural scale for comparing the performance achieved with systems
of different size and mass is given by the variance of the mechanical
oscillators’ zero-point motion 〈x(t )2〉zp = h̄/(2mΩm) (h̄: reduced
Planck constant; m, Ωm/2π, Q: mass, resonance frequency, quality
factor of the oscillator). In Fourier space, the zero-point motion
can be described by a corresponding single-sided spectral density
Sxx [Ω], which at the mechanical oscillator’s resonance is given by
Sxx [Ωm] = 2h̄Q/mΩ 2

m and coincides with the SQL of continuous
position measurement6–9. So far, the most sensitive transducers
for nanomechanical motion have been based on electron flow
using a single-electron transistor10 or atomic point contact11 cou-
pled to a nanomechanical string in a cryogenic environment and
have achieved a position imprecision of order 10−15 mHz−1/2. An
imprecision at the level of the SQL, however, has not yet been
achieved. In contrast, parametric motion transducers based on
photons in a cavity—which are the basis for laser gravitational wave
interferometers—provide quantum-limitedmeasurement impreci-
sion exceeding 10−18 mHz−1/2 (refs 12, 13) being at or even below14

the zero-point fluctuations of the respective mechanical oscillator
but are typically orders of magnitude less sensitive when applied
to less massive, nanomechanical oscillators owing to the optical
diffraction limit15. Moreover, cavity–optomechanical coupling of
mechanical oscillators allows the exploitation of radiation-pressure
dynamical backaction16,17 that is associated with the momentum

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany, 2Fakultät für Physik and Center for NanoScience (CeNS),
Ludwig-Maximilians-Universität (LMU), Geschwister-Scholl-Platz 1, 80539 München, Germany, 3Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015
Lausanne, Switzerland. *e-mail: tobias.kippenberg@epfl.ch.

transfer from the photons involved in the measurement to the
probed object and provides a mechanism for cooling18–20 or co-
herent amplification21 of mechanical motion. As such, an ideal
platform would combine the quantum-limited detection and con-
trol afforded by cavity–optomechanical coupling with nanoscale
mechanical oscillators which, owing to their small masses, pro-
vide large zero-point motion and high force sensitivity. Such an
approach may therefore have promising implications for probing
quantum phenomena of mechanical systems22 and equally in preci-
sion experiments, such as mass spectroscopy3, charge sensing4 and
single-spin detection5 that are based on ultra-sensitive nanome-
chanical oscillators.

Efficient optomechanical interaction with nanomechanical
oscillators requires avoiding introducing losses to the high-finesse
optical cavity by the nanomechanical object, while maintaining
large optomechanical coupling and mitigating thermal effects.
Here, we demonstrate this combination, by evanescently coupling
high-Q nanomechanical oscillators to the tightly confined op-
tical field of an ultrahigh-finesse toroidal silica microresonator.
Purely dispersive radiation-pressure coupling to the nanomechan-
ical strings is observed and allows sub-fmHz−1/2 displacement
imprecision (at room temperature), equal to the SQL, which
previously has not been possible10,11,23–25. In contrast to the re-
cently developed optomechanical zipper cavities25, which also op-
erate at the nanoscale, the reported near-field approach moreover
decouples optical and mechanical degrees of freedom and thus
provides a versatile platform to which diverse nanoscale oscilla-
tors, such as nanowires26, graphene sheets27 or carbon nanotubes,
can be tunably coupled, extending cavity optomechanics17 into
the realm of nanomechanical oscillators. In particular, it enables
simultaneously high mechanical and optical Q, giving access to the
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Figure 1 | Evanescent coupling of nanomechanical oscillators to an
optical microresonator. a, Schematic of the experiment, showing a
tapered-fibre-interfaced optical microresonator dispersively coupled to an
array of nanomechanical oscillators. b, Scanning electron micrograph (false
colour) of an array of doubly clamped SiN nanostring oscillators with
dimensions 110 nm×(300–500) nm×(15–40) µm. c, Scanning electron
micrograph (false colour) of a toroid silica microcavity acting as an
optomechanical near-field sensor.

resolved-sideband regime14,28,29. By detuned excitation, dynamical
backaction mediated by the optical dipole force is demonstrated,
which leads to radiation-pressure-induced coherent oscillations
of the nanomechanical oscillator, whereas thermal effects are
negligible. Equally important, the combination of picogram and
high-quality-factor nanostrings30 with an ultrahigh-optical-finesse
microresonator provides a route to the remarkable regime where
radiation-pressure quantum backaction is the dominant force
noise on the mechanical oscillator even at room temperature
and might thus allow quantum optomechanical experiments such
as ponderomotive squeezing31, quantum non-demolition (QND)
measurements of photons32,33 or optomechanical entanglement34 at
ambient temperature.

Figure 1a shows a schematic of the experimental set-
up. We use an array of nanomechanical oscillators in the
form of high-Q, tensile stressed and doubly clamped SiN
strings15,30 such as shown in Fig. 1b. The strings have typical
dimensions of 110 nm × (300–800) nm × (15–40) µm, effective
masses of meff = 0.9–5 pg and fundamental resonance frequen-
cies Ωm/2π = 6.5–16MHz with mechanical quality factors of
Q= 104–105 (see Supplementary Information). Following a special
fabrication process (see Supplementary Information) indeed
allows using the tightly confined optical modes of toroid silica
microcavities as near-field probes (see Fig. 1c) that interact with the
nanomechanical oscillator through their evanescent field decaying
on a length scale of α−1 ≈ (λ/2π)/

√
n2−1 (that is, approximately

238 nm for the refractive index of silica n = 1.44 and a vacuum
wavelength of λ≈1,550 nmused throughout this work).

Optomechanical coupling rate
First, we study the strength of the optomechanical coupling of
the nanomechanical oscillators to the optical mode of a 58-µm-
diameter microcavity (showing an unloaded optical linewidth of
4.9MHz, that is, a finesse of F = 230,000). The presence of a
dielectric oscillator in the evanescent cavity field, at a distance
x0 to the microresonator surface, can in principle give rise to
both a reactive and dispersive contribution to the optical-cavity
response35. The former would be characterized by increased cavity
losses owing to scattering or absorption, given by a position-
dependent cavity linewidth κ(x0)/2π. The latter can be described by
an optical-frequency shift 1ω0(x0)/2π= (ω0(x0)−ω0)/2π caused
by the increased effective refractive index sampled by the evanescent
fraction of the mode (ω0 denotes the unperturbed cavity frequency

with the nanomechanical oscillator being removed). Using energy
considerations the (small) shift can be approximated by:

1ω0(x0)=−
ω0

2
Vnano

Vcav
(n2nano−1)ξ

2e−2αx0 (1)

where Vnano is the volume of the nanomechanical oscillator
(refractive index nnano) sampled by the microcavity with mode
volumeVcav. Themagnitude of the cavity field at the toroid/vacuum
interface divided by the maximum electric field inside the cavity
is denoted by ξ (see Supplementary Information for a more
detailed analysis). To probe this static interaction, we position
the nanomechanical strings tangentially to the optical whispering-
gallery mode trajectory and vary their distance (see Fig. 2a,
inset) to the cavity using piezoelectric positioners. Note that all
experiments are carried out in this horizontal configuration of
the nanostrings as well as in vacuum with a pressure <10−4 mbar
unless otherwise specified. As shown in Fig. 2a, the interaction
with a nanomechanical string (110 nm×800 nm×25 µm) induces
the expected optical frequency shift that exponentially increases as
the distance x0 is decreased and reaches the gigahertz range. The
measured decay length of 110 nm is in good quantitative agreement
with the value 1/(2α) expected from equation (1). Importantly,
we do not measure any degradation of the optical linewidth (see
Fig. 2a) even for the strongest coupling. Ourmeasurement accuracy
of changes in the cavity linewidth ∆κ/2π < 0.5MHz allows an
upper bound of 0.5 ppm equivalent optical loss induced by the SiN
nanomechanical oscillator to be inferred. Thus, the optomechanical
coupling is purely dispersive and can therefore formally be
described by the dispersive Hamiltonian Ĥ0 = h̄ω0(x0)â†â, where
â†â denotes the intracavity photon number. Linearized for small
fluctuations x�α−1 around x0, for example, the Brownian motion
of the string placed at x0, the interaction Hamiltonian reads:
Ĥint = Ĥ0 + h̄g (x0)x̂ â†â with the optomechanical coupling rate
g (x0)= dω0(x0)/dx0.

Experimentally, the position-dependent optomechanical cou-
pling rates of the nanomechanical string to the microcavity can be
obtained by taking the derivative of the measured static frequency
shifts, that is, g (x0)= dω0(x)/dx|x=x0 . These statically determined
coupling rates reach values up to g/2π=10MHznm−1 (see Fig. 2a).
For comparison, also data obtained with a two-dimensional (2D)
nanomechanical oscillator in the form of a 30 nm×40 µm×50 µm
sheet of Si3N4 are shown, which also show purely dispersive
coupling (see Fig. 2b) of up to g/2π = 20MHznm−1. This size-
able coupling is due to the small mode volume Vcav of toroid
microcavities because the optomechanical coupling scales as
g ∝ (Vnano/Vcav) ·ω0/l , where l is the characteristic length scale,
which in our case is given by the field intensity decay length,
that is, l = 1/(2α)≈ 110 nm (see Supplementary Information for
analytical expressions of g ). Yet higher optomechanical coupling
rates can be attained in our system by reducing the size of the
microcavity and the wavelength of the used light. An integrated
photonic-crystal device with a larger ratio Vnano/Vcav, recently
allowed remarkably large coupling rates of about 100GHz nm−1 to
be obtained25. It however also entailed the difficulty of obtaining
sufficiently high optical Q in photonic-crystal cavities such that
the resolved-sideband regime where the optical linewidth is com-
parable to or smaller than the mechanical oscillation frequency
could not be achieved in ref. 25. The approach presented here,
in contrast, separates optical and mechanical degrees of freedom.
As the nanomechanical oscillators do not induce any measurable
losses to the ultrahigh-finesse microresonators, it thus particularly
allows combination of the toroids’ high optical Q (>108) with
high mechanical Q and falls naturally into the resolved-sideband
regime, which enables ground-state cooling28,29 or backaction-
evading measurements6.
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Figure 2 | Characterization of the optomechanical coupling. a,b, The dependence of a 58-µm-diameter optical microcavity’s linewidth (red) and
negative optical frequency shift (blue) as a function of the distance x0 to nanomechanical oscillators in the form of a doubly clamped SiN string
(110 nm×800 nm×25 µm (a)) and a 2D Si3N4 sheet (30 nm×40 µm×50 µm (b)). The data reveal in both cases purely dispersive coupling without
introducing a measurable degradation of the microcavities’ optical decay rate. The right axes show the static optomechanical coupling rates
g(x0)= dω0(x0)/dx0, as given by the negative derivative of the fitted frequency shift data (blue alone). Coupling rates g/2π of order 10 MHz nm−1 are
achieved. c, The Brownian noise associated with the nanomechanical oscillator of a transduced by the optical cavity for different oscillator positions. The
respective dynamical coupling rates g/2π are derived from the calibrated frequency noise spectra Sωω[Ω ] as explained in the text. d, The interference of
the nanomechanical oscillator’s force and the microcavity’s Kerr response to a modulated laser field, confirming the attractive nature of the dipole force.
This measurement represents a third, independent method to determine the optomechanical coupling rates (see text and Supplementary Information).
Inset: Broadband response of the nanomechanical oscillator–microcavity system, showing thermal cutoff and Kerr background as well as the first low-Q
mechanical modes of the microcavity. It is noted that the presence/absence of the nanomechanical oscillator does not alter this broadband,
off-resonant response.

Transduction of nanomechanical motion
The optomechanical coupling rate transduces the motion
of the nanomechanical oscillator’s eigenmodes (characterized
by the displacement spectral density Sxx [Ω]) into frequency
noise Sωω[Ω] of the optical cavity mode. Figure 2c shows
the Brownian motion of a nanostring at room temperature
(110 nm × 800 nm × 25 µm,Ωm/2π = 10.74MHz,Q = 53,000,
meff = 3.6 pg,xrms = 16 pm) imprinted into cavity frequency noise,
probed by a laser locked to cavity resonance and calibrated using
a known external frequency modulation13,14. The nanostring’s
room-temperature Brownian noise Sxx [Ω] can thus be used to
directly determine the optomechanical coupling g =

√
Sωω/Sxx

in a second, independent way. We refer to this as a dynamic
measurement. Both for the SiN nanostring and the 2D Si3N4
nanosheet, the values obtained for the dynamically measured
coupling rates are in good agreement with the statically determined
values (see Supplementary Information). It is important to note that
this identity of static and dynamic coupling rates is in agreement
with the expectation for optical dipolar interaction, which should
give rise to frequency-independent optomechanical coupling rates
g . The non-measurably small optical losses (<0.5 ppm) induced
by the nanostrings also indicate that dissipative coupling mediated
by thermal effects caused by light absorption has an insignificant
role. Indeed, differentiating radiation pressure from thermal
effects is a challenge that has eluded researchers for centuries. A
prominent example is the light mill that can be driven by thermal
heating, rather than by radiation pressure. More recently, thermal
effects have been shown to have a significant role in micro- and
nanomechanical systems25,36,37. It is, however, only the conservative

Hamiltonian of radiation pressure that allows phenomena such as
ponderomotive squeezing31 or QND measurements of photons32.
Therefore, it is central to clearly identify the origin of the
optomechanical interaction.

Demonstration of radiation-pressure interaction
The optomechanical coupling not only gives rise to a differential
cavity-frequency shift that transduces the nanostring’s mechanical
motion but also conveys the per-photon force −h̄g (x0) inevitably
acting on the mechanical degree of freedom, as expected for any
linear continuous position measurement. As proof that the optical
dipole force mediates the optomechanical coupling—rather than
thermal effects36,37—we carry out a pump–probemeasurement that
probes the force response of the nanomechanical oscillator. A reso-
nant, intensity-modulated pump laser provides themodulated force
δF [Ω] =−h̄gδN [Ω] (where N is the intracavity photon number)
acting on the nanomechanical oscillator while a second, weak probe
laser measures the response of the cavity resonance frequency. The
measured data (see Fig. 2d) consist of the nanomechanical oscilla-
tor’s force response, interfering with the constant background due
to the Kerr nonlinearity of silica (that is, its intensity-dependent
refractive index, see Fig. 2d and ref. 20). Note that the data for dif-
ferent optomechanical coupling rates are scaled to the constant Kerr
background, which allows an accurate determination of the magni-
tude of the nanomechanical oscillator’s response. Two important
conclusions can be drawn from this measurement. First, the shape
of the interference in Fig. 2d implies that the force experienced by
the nanomechanical oscillator is attractive (that is, pointing towards
higher intensity) as expected for an optical-gradient force. Below its
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Figure 3 |Displacement measurement of a nanomechanical oscillator
with an imprecision at the SQL. a, Room-temperature Brownian noise of a
nanomechanical string with a fundamental resonance frequency of
8 MHz and dimensions 110 nm×800 nm×35 µm (meff=4.9 pg,
Q=40,000). For an input power of 65 µW, the displacement imprecision
reaches a value of 570 am Hz−1/2 (grey line), 0.7 times the SQL, that is, the
oscillator’s expected zero-point fluctuations of 820 am Hz−1/2 (red dashed
line). The large dynamic range across the wide frequency window gives rise
to a 1.5 dB error bar for this value (shown in red). The background is due to
laser shot-noise (purple dotted line) with smaller contributions from
thermal noise of the cavity (orange dotted line), thermorefractive and
detector noise (not shown). The second, 20 dB smaller peak is attributed to
a second resonator in the toroid’s field of view. Inset: Finite-element
simulation of the string’s fundamental mode. b, A schematic of the
measurement set-up used to attain an imprecision at the SQL using a
low-noise fibre laser emitting at 1,548 nm and locked to cavity resonance
(κ/2π= 50 MHz for the measurement shown in a). PD: photodiode, PC:
personal computer, SA: spectrum analyser, EOM: electro-optic modulator,
FPC: fibre-coupled polarization controller.

resonance frequency, where the mechanical oscillator responds in
phase with a modulated force, it is pulled towards the optical mode,
which leads to an increased redshift, adding to the in-phase red-
shift due to the Kerr contribution. Above its resonance frequency
where the nanomechanical oscillator responds with a phase lag
of 180◦, the attractive force leads to destructive interference with
the in-phase Kerr response. Second, the ratio of the mechanical to
the Kerr nonlinearity response constitutes a relative measure20 and
allows derivation of the per-photon force acting on the nanome-
chanical oscillator independent of the optical parameters (cavity
linewidth, coupling conditions, input power). The coupling rates
g independently measured in this per-photon-force measurement
match the values determined by both methods presented earlier
(see Supplementary Information for more details). This measure-
ment thus unambiguously demonstrates that the interaction of the
nanomechanical oscillator and the optical cavity is mediated by the
dispersive, ponderomotive radiation-pressure interaction, that is,
the optical dipole force. No thermal forces are observable.

Measurement imprecision at the SQL
Having established its ponderomotive origin, we use the opto-
mechanical coupling to obtain a high-sensitivity readout of

nanomechanical motion with an imprecision at the SQL. To
this end, we use a low-noise fibre laser that is quantum-limited
in both amplitude and phase at the Fourier frequency of the
mechanical oscillators (>6MHz), resonantly locked using a
Pound–Drever–Hall technique12. The experimental set-up is shown
in Fig. 3b. Remarkably, using a κ/2π=50MHz optical mode, more
than 60 dB signal to background ratio can be obtained when mea-
suring the Brownian motion Sxx [Ωm] of nanomechanical strings at
room temperature. In an ideal measurement, the background of
the measurement is given only by laser shot-noise, which limits the
single-sided displacement sensitivity attainable for an input power
Pin and an impedance matched cavity to12:

√
Sxx [Ω]=

√
h̄ω0

Pin

κ/2
√
2g

√
1+4

Ω 2

κ2
(2)

The best single-sided displacement sensitivity (as deter-
mined from the background of the measurement) that was
achieved amounts to S1/2xx = 570 amHz−1/2, as shown in Fig. 3a,
using an 8MHz doubly clamped nanomechanical SiN string
(110 nm×800 nm×35 µm,meff= 4.9 pg,Q= 40,000),65 µW input
power and a coupling rate of g/2π=3.8MHznm−1.

To allow a comparison of the attained imprecision with values
obtained using other nanomechanical motion transducers, we scale
it to the nanomechanical oscillator’s zero-point fluctuations, which
for the nanostring of Fig. 3 amount to 820 amHz−1/2 (single-
sided). Thus, our measurement imprecision amounts to only
0.7 times the oscillator’s zero-point fluctuations, that is, 0.7 times
the SQL. Interestingly, the condition for a measurement with an
imprecision better than the zero-point fluctuations can (for both
single- and double-sided spectra) be recast into the condition of
a signal-to-background ratio greater than

√
2kBT/h̄Ωm

∼=
√
2n̄,

where n̄ ∼= kBT/h̄Ωm denotes the average phonon occupation
number of the mechanical mode (T : temperature, kB: Boltzmann
constant). Such an imprecision had so far never been achieved,
neither with the best transducers of nanomechanical motion
based on electronic current flow using single-electron transistor10,
atomic point contact11 and superconducting quantum interference
device23 sensors operating in a cryogenic environment, nor
with integrated photonic-crystal systems25. Thus, although higher
absolute sensitivity has recently been obtained for an oscillator
that is ten times heavier25, our approach for the first time
allows the measurement of nanomechanical motion with an
imprecision at the SQL.

Although the current measurement allows inferring an upper
bound of 380 amHz−1/2 for the shot-noise limit (in agreement with
equation (2), see Supplementary Information), our measurement
is at present also partially limited by detector noise, which can
be eliminated by means of straightforward technical amendments.
Moreover, further improvements are readily feasible. Using smaller
microcavities and a shorter optical wavelength may allow an
increase of g by up to one order of magnitude. Thus, displacement
sensitivities at the level of 10−17 mHz−1/2 may be attainable, which
would allow measurements with an imprecision far below the
SQL. Ultimately, the background afforded by mechanical modes
of the cavity13,38 (see Fig. 3a) and thermorefractive noise13,39 of the
cavity will limit the sensitivity. These noise sources can, however,
in principle be suppressed by cryogenic operation, which toroid
microcavities have been shown to be compatible with40.

Radiation-pressure dynamical backaction
A second important ramification of the reported cavity–
optomechanical system stems from the fact that the nanomechanical
oscillators show oscillation frequencies that equal or even exceed
the photon decay rate of the optical resonator, enabling access to
the regime of dynamical backaction both in the Doppler18–20 and
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Figure 4 |Observation of radiation-pressure-induced dynamical
backaction and coherent oscillations of a nanomechanical oscillator.
a, Mechanical linewidth of a SiN nanostring (110 nm×800 nm×25 µm
with a Q of 70,000 at 10.8 MHz and meff= 3.6 pg) as a function of the
optomechanical coupling rate for three different launched powers but fixed
blue-detuning ∆=+κ/2 (κ/2π= 12 MHz). The lines are fits to the dipolar
force contribution using the input power as the only fit parameter, which is
in good agreement with the actual input power used (inset). Regions where
the linewidth drops to a value close to zero coincide with the onset of
regenerative mechanical oscillations. b, The oscillation amplitude of the
nanomechanical string (derived from a 30-Hz-bandwidth power
measurement) as a function of the optomechanical coupling showing
threshold and saturation at typical values of 10 nm. c, The transmitted
power past the cavity (normalized by the off-resonant transmission) for a
nanomechanical string in the regime of the parametric oscillation
instability. The coherent mechanical oscillation of the 3.6 pg string at
10.8 MHz causes a close to unity modulation depth of the optical field
transmitted by the cavity.

resolved-sideband14,28,29 limits. To observe dynamical backaction,
the optical microcavity is excited with a positive laser detuning
∆=ω−ω0(x0), which can lead to maser/laser-like amplification41

of mechanical motion. Thereby, the mechanical oscillator resumes
the role of the photon field in the laser and the cavity, in turn, has
the role of the (phonon) gain medium. As in the case of a laser,
the canonical signs of this phenomenon are linewidth narrowing,
threshold behaviour and eventual saturation of the oscillation. All
of these features are observed with the nanomechanical strings
as shown in Fig. 4. For fixed detuning, the backaction gain
rate Γba ∝ −g 2Pin/meff (see Supplementary Information) grows
linearly with increased g 2. In the experiment, the optomechanical
coupling g is varied (for fixed detuning∆= κ/2,κ/2π= 12MHz),
giving rise to a narrowing of the total mechanical linewidth
Γ = Γm + Γba, as shown in Fig. 4a (Γm/2π denotes the intrinsic
mechanical damping rate). The experimentally observed slopes

∂Γ/∂(g 2) are in good quantitative agreement with the theoretical
expectation for the dipolar force (see inset Fig. 4a). When the
backaction rate eventually equals the mechanical damping rate,
the nanomechanical oscillator experiences net gain, which leads
to the onset of coherent mechanical oscillations. A clear threshold
of the mechanical oscillation amplitude as shown in Fig. 4b is
observable, followed by a saturation of the mechanical motion once
the frequency shift caused by the mechanical oscillator exceeds
the cavity linewidth, leading to gain saturation. Indeed, the large
coherent oscillations of several nanometres in amplitude can lead,
remarkably and despite the nanoscale nature of the strings, to
near-unity modulation depth of the optical-cavity transmission, as
shown in Fig. 4c, when the oscillation amplitude is close to (κ/2)/g .
The resulting radiofrequency signal may serve as a photonic clock42
and is expected to show a linewidth limited only by thermal noise,
as in the case of a maser41. The observation of dynamical backaction
amplification (and coherent oscillations) constitutes the first report
of dynamical backaction onto a nanomechanical oscillator using
radiation pressure (in contrast to thermal effects25,36), and in
particular using optical gradient or dipole forces. So far, in the field
of nanomechanics, dynamical backaction cooling or amplification
has been achieved only using microwave fields43, which owing to
the about ×104 longer wavelength show lower coupling rates and
do not allow access to quantum-limited displacement sensing yet
(albeit significant progress is being made44).

Outlook
The extension of quantum-limited sensitivity with an imprecision
at the SQL and dynamical backaction to nanomechanical systems
manifests a promising realm for future studies explaining the
quantum nature of optomechanical interaction. Remarkably, we
note that combined with state-of-the-art nanomechanical strings30,
the ratio of radiation-pressure quantum backaction (the force
noise provided by photon shot-noise) and thermal force spectral
density can reach unity at room temperature owing to the very
small (picogram) mass and ultrahigh finesse (>400,000) of the
optomechanical system (see Supplementary Information). This
brings the long sought-after6,7 regime of quantum backaction
into reach even at room temperature, which would allow
ponderomotive squeezing31 or QND measurements of the intra-
cavity field32,33. A further distinguishing feature of the presented
approach is that by coupling the nanostrings transversely to the
direction of the whispering-gallery mode field, quadratic coupling
to the position coordinate of the nanomechanical oscillators
enabling QND measurements of mechanical motion45,46 can be
implemented by exploiting the standing-wave mode patterns that
microresonators can show (see Supplementary Information).

Pertaining to the wider implications, the presented approach
allows coupling to virtually any dielectric nanomechanical oscil-
lator. The ability to combine nanoscale mechanical oscillators—
which are at the heart of proximity (Casimir) force sensors and a
variety of other high-resolution measurement techniques3–5—with
quantum-limited displacement sensitivity at the sub-fmHz−1/2
level conceivably offers opportunities for improved performance in
these research fields. Particularly interesting may also be the study
of graphene sheets27. The possibility to couple several mechanical
oscillators to a single opticalmodemaymoreover provide a straight-
forward way to achieve optically mediated coupling between differ-
ent mechanical oscillators. Finally, the used microtoroidal platform
has already been demonstrated as an interface for atomic cavity
quantum electrodynamics47, enabling potentially the interaction of
phonons, photons and atoms or qubits, as recently proposed48,49.

Note added in proof. After submission of this work, a measurement
of nanomechanical motion using microwaves with an imprecision
at the SQL was reported50.

NATURE PHYSICS | VOL 5 | DECEMBER 2009 | www.nature.com/naturephysics 913
© 2009 Macmillan Publishers Limited.  All rights reserved. 

 



ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS1425

Received 13 May 2009; accepted 4 September 2009;
published online 11 October 2009

References
1. Craighead, H. G. Nanoelectromechanical systems. Science 290,

1532–2537 (2000).
2. Ekinci, K. L. & Roukes,M. L. Nanoelectromechanical systems.Rev. Sci. Instrum.

76, 061101 (2005).
3. Jensen, K., Kwanpyo, K. & Zettl, A. An atomic-resolution nanomechanical

mass sensor. Nature Nanotech. 3, 533–537 (2008).
4. Cleland, A. & Roukes, M. A nanometre-scale mechanical electrometer. Nature

392, 160–162 (1998).
5. Rugar, D., Budakian, R., Mamin, H. & Chui, B. Single spin detection by

magnetic resonance force microscopy. Nature 430, 329–332 (2004).
6. Braginsky, V. B. & Khalili, F. Y. Quantum Measurement (Cambridge Univ.

Press, 1992).
7. Tittonen, I. et al. Interferometric measurements of the position of a

macroscopic body: Towards observation of quantum limits. Phys. Rev. A 59,
1038–1044 (1999).

8. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23,
1693–1708 (1981).

9. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J.
Introduction to quantum noise, measurement and amplification. Preprint at
<http://arxiv.org/abs/0810.4729v1> (2008).

10. LaHaye, M. D., Buu, O., Camarota, B. & Schwab, K. C. Approaching the
quantum limit of a nanomechanical resonator. Science 304, 74–77 (2004).

11. Flowers-Jacobs, N. E., Schmidt, D. R. & Lehnert, K. W. Intrinsic noise
properties of atomic point contact displacement detectors. Phys. Rev. Lett. 98,
096804 (2007).

12. Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical
resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97,
133601 (2006).

13. Schliesser, A., Anetsberger, G., Riviere, R., Arcizet, O. & Kippenberg, T. J.
High-sensitivity monitoring of micromechanical vibration using optical
whispering gallery mode resonators. New J. Phys. 10, 095015 (2008).

14. Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J.
Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4,
415–419 (2008).

15. Unterreithmeier, Q. P., Weig, E. M. & Kotthaus, J. P. Universal transduction
scheme for nanomechanical systems based on dielectric forces. Nature 458,
1001–1004 (2009).

16. Braginsky, V. & Manukin, A. Measurement of Weak Forces in Physics
Experiments (Univ. Chicago Press, 1977).

17. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: Back-action at the
mesoscale. Science 321, 1172–1176 (2008).

18. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidman, A.
Radiation-pressure cooling and optomechanical instability of a micromirror.
Nature 444, 71–74 (2006).

19. Gigan, S. et al. Self-cooling of a micromirror by radiation pressure.Nature 444,
67–70 (2006).

20. Schliesser, A., Del’Haye, P., Nooshi, N., Vahala, K. J. & Kippenberg, T. J.
Radiation pressure cooling of a micromechanical oscillator using dynamical
backaction. Phys. Rev. Lett. 97, 243905 (2006).

21. Kippenberg, T. J., Rokhsari, H., Carmon, T., Scherer, A. & Vahala, K. Analysis
of radiation-pressure induced mechanical oscillation of an optical microcavity.
Phys. Rev. Lett. 95, 033901 (2005).

22. Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics.
Phys. Today 58, 36–42 (2005).

23. Etaki, S. et al. Motion detection of a micromechanical resonator embedded in
a d.c. SQUID. Nature Phys. 4, 785–788 (2008).

24. Poggio, M. et al. An off-board quantum point contact as a sensitive detector of
cantilever motion. Nature Phys. 4, 635–638 (2008).

25. Eichenfield, M., Camacho, R., Chan, J., Vahala, K. & Painter, O. A picogram-
and nanometre scale photonic-crystal optomechanical cavity. Nature 459,
550–555 (2009).

26. Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly
sensitive and selective detection of biological and chemical species. Science 293,
1289–1292 (2001).

27. Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science
315, 490–493 (2007).

28. Wilson-Rae, I., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of
ground state cooling of a mechanical oscillator using dynamical backaction.
Phys. Rev. Lett. 99, 093901 (2007).

29. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of
cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99,
093902 (2007).

30. Verbridge, S. S., Craighead, H. G. & Parpia, J. M. A megahertz nanomechanical
resonator with room temperature quality factor over a million. Appl. Phys. Lett.
92, 013112 (2008).

31. Fabre, C. et al. Quantum-noise reduction using a cavity with a movable mirror.
Phys. Rev. A 49, 1337–1343 (1994).

32. Heidmann, A., Hadjar, Y. & Pinard, M. Quantum nondemolition
measurement by optomechanical coupling. Appl. Phys. B: Laser Optics
64, 173–180 (1997).

33. Verlot, P., Tavernarakis, A., Briant, T., Cohadon, P.-F. & Heidmann,
A. Scheme to probe optomechanical correlations between two
optical beams down to the quantum level. Phys. Rev. Lett. 102,
103601 (2009).

34. Vitali, D. et al. Optomechanical entanglement between a movable mirror and a
cavity field. Phys. Rev. Lett. 98, 030405 (2007).

35. Favero, I. & Karrai, K. Cavity cooling of a nanomechanical resonator by light
scattering. New J. Phys. 10, 095006 (2008).

36. Zalalutdinov, M. et al. Autoparametric optical drive for micromechanical
oscillators. Appl. Phys. Lett. 79, 695–697 (2001).

37. Höhberger Metzger, C. & Karrai, K. Cavity cooling of a microlever. Nature
432, 1002–1005 (2004).

38. Anetsberger, G., Rivière, R., Schliesser, A., Arcizet, O. & Kippenberg, T.
Ultralow-dissipation optomechanical resonators on a chip. Nature Photon. 2,
627–633 (2008).

39. Gorodetsky, M. L. & Grudinin, I. S. Fundamental thermal fluctuations in
microspheres. J. Opt. Soc. Am. B 21, 697–705 (2004).

40. Arcizet, O., Rivière, R., Schliesser, A., Anetsberger, G. & Kippenberg, T. J.
Cryogenic properties of optomechanical silica microcavities. Phys. Rev. A 80,
021803 (2009).

41. Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112,
1940–1949 (1958).

42. Hossein-Zadeh, M., Rokhsari, H., Hajimiri, A. & Vahala, K. J. Characterization
of a radiation-pressure-driven micromechanical oscillator. Phys. Rev. A 74,
023813 (2006).

43. Teufel, J. D., Harlow, J. W., Regal, C. A. & Lehnert, K. W. Dynamical
backaction of microwave fields on a nanomechanical oscillator. Phys. Rev. Lett.
101, 197203 (2008).

44. Castellanos-Beltran, M., Irwin, K., Hilton, G., Vale, L. & Lehnert, K.
Amplification and squeezing of quantum noise with a tunable Josephson
metamaterial. Nature Phys. 4, 929–931 (2008).

45. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a
micromechanical membrane. Nature 452, 72–75 (2008).

46. Miao, H., Danilishin, S., Corbitt, T. & Chen, Y. Standard quantum
limit for probing mechanical energy quantization. Phys. Rev. Lett. 103,
100402 (2009).

47. Aoki, T. et al. Observation of strong coupling between one atom and a
monolithic microresonator. Nature 443, 671–674 (2006).

48. Hammerer, K., Aspelmeyer, M., Polzik, E. S. & Zoller, P. Establishing
Einstein–Poldosky–Rosen channels between nanomechanics and atomic
ensembles. Phys. Rev. Lett. 102, 020501 (2009).

49. Rabl, P. et al. Strong magnetic coupling between an electronic spin qubit and a
mechanical resonator. Phys. Rev. B 79, 041302 (2009).

50. Teufel, J. D., Donner, T., Castellanos-Beltran, M. A., Harlow, J. W. &
Lehnert, K. W. Nanomechanical motion measured with precision beyond
the standard quantum limit. Preprint at <http://arxiv.org/abs/0906.1212v1>
(2009).

Acknowledgements
T.J.K. acknowledges financial support by an Independent Max Planck Junior Research
Group of the Max Planck Society, an ERC Starting Grant (SiMP), MINOS and a Marie
Curie Excellence Grant as well as the Nanosystems Initiative Munich (NIM). J.P.K.
acknowledges financial support by the Deutsche Forschungsgemeinschaft through
project Ko 416/18, the German Excellence Initiative through the Nanosystems Initiative
Munich (NIM) and LMUexcellent as well as LMUinnovativ. O.A. acknowledges financial
support from a Marie Curie Intra European Fellowship within FP7 (project QUOM).
T.J.K. thanks P. Gruss and the MPQ for continued Max-Planck support. The authors
thankM.L. Gorodetsky for valuable discussions.

Author contributions
J.P.K. initiated the study and jointly devised the concept with T.J.K. G.A. and O.A.
planned, carried out and analysed the experiments supervised by T.J.K. Q.P.U. and
E.M.W. designed and developed suitable nanomechanical resonators. All authors
discussed the results and contributed to the manuscript. R.R. contributed to the
development of the experimental apparatus and A.S. assisted with the
response measurements.

Additional information
Supplementary information accompanies this paper on www.nature.com/naturephysics.
Reprints and permissions information is available online at http://npg.nature.com/
reprintsandpermissions. Correspondence and requests for materials should be
addressed to T.J.K.

914 NATURE PHYSICS | VOL 5 | DECEMBER 2009 | www.nature.com/naturephysics

© 2009 Macmillan Publishers Limited.  All rights reserved. 

 



On-Chip Interferometric Detection of
Nanomechanical Motion
Quirin P. Unterreithmeier, Thomas Faust, Stephan Manus, and Jörg P. Kotthaus*

Fakultät für Physik and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1,
München 80539, Germany

ABSTRACT An integrable on-chip displacement transduction of nanomechenical motion is developed that senses the modulation of
the optical near-field of an illuminated vibrating string with a nearby Schottky photodiode. This scheme poses no restrictions on
resonator material and avoids additional damping. The achieved sensitivity of 1 pm/Hz1/2 enables the detection of Brownian motion
of our mechanical resonators at room temperature. Implementing a feedback scheme of the detected signal into the electrical actuation,
we demonstrate self-oscillation.

KEYWORDS Nanomechanics, photodetection, motion detection, near-field interferometry, self-oscillation

The study of nanoelectromechanical systems (NEMS)
is a rapidly evolving field of science, with implications
ranging from fundamental science1-5 to applications

such as ultrasensitive systems detecting, e.g., mass,6 tem-
perature,7 charge8 or nuclear spins,9 and signal generation10

or processing.11 Displacement detection schemes for such
systems may be divided into two classes. One being optical
interference techniques1,3,12-14 which have the advantage
of being material independent, yet usually require external
components. The other utilizing on-chip components that
transduce mechanical motion into modulated electrical
signals,2,15-20 with the inherent benefit of being integrable.
The drawback of these techniques is their restriction to either
low temperatures2,15 and/or specific materials.16-20 Here,
we present a detection scheme that combines the local
generation of the measurement signal and material inde-
pendence. Our scheme is derived from the interferometric
setup; there the mechanical resonator (and its surroundings)
is illuminated and the reflected21 or diffracted22 beam is re-
collected. Mechanical displacement is converted into a
modulation of the measured light intensity. Complementary
to these schemes, we directly study the intensity modulation
in the near-field of the resonator with a local photodiode,
thereby creating an on-chip signal.

Figure 1a shows our setup: we study the displacement
of a doubly clamped silicon nitride resonator of dimensions
35 µm × 100 nm × 200 nm (length, height, width, respec-
tively). The utilized wafer consists of a typical sandwich
structure: the substrate is n-doped (≈10 Ωcm) silicon that
is partly oxidized, forming a 400 nm thick sacrificial layer.
The device layer on top is composed of prestressed silicon
nitride, leading to high mechanical quality factors23 of, in
this case, 105. The fabrication implements standard e-beam

lithographic methods and subsequent reactive ion- and wet-
etches to release the resonator. The wet-etch partly removes
the silicon oxide with a remaining thickness of about 50 nm.

We electrically actuate our resonator via a pair of suitably
biased electrodes processed on the postreleased structure
nearby the resonator leading to an attractive dielectric
force.12,24 The high mechanical quality factor facilitates
considerable displacements at low driving powers. A second
pair of electrodes is processed with a small area in direct
contact to the silicon substrate. This is accomplished by
locally removing the SiO2 employing another e-beam and
wet etch step, leaving clearly visible depressions in the SiO2,

* To whom correspondence should be addressed, kotthaus@lmu.de.
Received for review: 10/23/2009
Published on Web: 00/00/0000

FIGURE 1. Setup and detection principle: (a) SEM picture (false color)
of the sample; highlighted in green is the silicon nitride device layer
forming the mechanical resonator and its supports. Two pairs of
electrodes are marked in yellow; one pair serves as dielectric
actuator, being suitably biased by dc and rf voltages. Small parts of
the second electrode pairs are in direct contact with the silicon
substrate, thereby forming a Schottky contact, as seen in the
encircled area and in (b). Schematic cross section of the detection
configuration; illumination (and suitably chosen bias) gives rise to
a photocurrent that is detected using a current-voltage converter
placed close to the sample. Interference and scattering lead to a
nonuniform distribution of the resulting optical intensity in the
near-field of the resonator; this intensity distribution is modulated
by the displacement of the mechanical resonator, resulting in an rf
part of the photocurrent.
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© XXXX American Chemical Society A DOI: 10.1021/nl903556s | Nano Lett. XXXX, xxx, 000–000



as seen in Figure 1a. See Supporting Information for more
geometric details. The thus formed Schottky contact causes
depletion of the underlying silicon substrate, as indicated in
Figure 1b. Illumination of a Schottky contact leads to the
generation of mobile charges thus giving rise to a photocur-
rent. The illumination (coming from the top) forms a stand-
ing wave pattern, as sketched in Figure 1b, with the resulting
optical near-field depending on the position of the mechan-
ical resonator. As a consequence, the photocurrent is modu-
lated with resonator displacement yielding the resonant
signal. We employ the light of either a diode laser (DL, 670
nm) or a superluminescent diode (SLED, its wavelength is
centered around 750 nm), coming out of the cleaved end of
a bare glass fiber positioned above the resonator.14 All our
measurements are carried out under vacuum <10-4 mbar
at room temperature.

We now investigate the effect of (different) illumination;
in our experiments an illumination power of 1 mW corre-
sponds to an on-chip intensity of 6.4 W/mm2. Figure 2a
shows the typical dc current-voltage characteristics of the
Schottky diode: with no illumination present the current is
largely suppressed in reverse bias, i.e., at negative gate
voltage; illumination leads to an enhanced (photo)current.
We now actuate our mechanical resonator while sweeping
the actuation frequency. The resulting rf part of the mea-

sured photocurrent is shown in Figure 2b. The sharp reso-
nance corresponds to the mechanically induced rf photo-
current and is superposed by a frequency-independent
background (cross talk). The latter we attribute to capacitive
coupling of our actuation signal modulating the depletion
region of the Schottky diode. The measured signal can be
excellently fitted using a superposition of a Lorentzian line
shape centered around the mechanical resonance frequency
f0 ≈ 8 MHz and a flat background. The indicated displace-
ment amplitude (in nanometers) is obtained as explained
below. Please note that all amplitudes in this work are given
as half-peak-to-peak values.

Figure 2c shows several such traces for different illumina-
tion powers; we mathematically subtract the cross talk
resulting in the familiar Lorentzian lineshapes. Two effects
arising from different illumination powers are clearly visible.
Both the signal strength and the mechanical resonance
frequency vary with the intensity. While the former is
expected, the latter can be explained as a result of the
illumination leading to an optical intensity pattern. As in the
case of optical tweezers, see, e.g., ref 25, the resonator is
attracted toward the region of larger light intensity. The
influence on the mechanical resonance frequency results
from the fact that this force is not uniform and hence its
gradient counteracts in our geometry the intrinsic mechan-
ical spring constant. This optical effect is in complete analogy
to its dc dielectric counterpart employed in our actuation
scheme.12 To exclude heating effects, a model calculation
can be found in the Supporting Information.

In order to compare the dc and rf part of the photocur-
rent, the intensity of the illumination is varied over almost
2 orders of magnitude. The rf amplitude on resonance and
the dc part of the photocurrent are logarithmically plotted
in Figure 2d. Both results are fitted with a power law axb,
where x designates the light intensity and a and b are fit
parameters. The slope of the curves yields the exponent b.
Here the fit gives b ) 0.84 and 0.86 for the rf and dc part,
respectively, showing that both follow the same law. The
slight deviation from linear behavior is assumed to reflect
the reduction of the depletion zone with higher light intensi-
ties. The measurements of Figure 2 were performed using
the DL, as it is experimentally easier to attenuate its inten-
sity. Employing the SLED leads to virtually the same results
with an additional advantage over the DL apart from setup
complexity: in contrast to the output of our SLED, the DL is
not externally intensity stabilized. As intensity fluctuations
translate into fluctuations of the mechanical frequency, using
the DL gives rise to undesirable additional fluctuations of the
resonant displacement signal.

The high sensitivity of the setup allows us to directly
measure the Brownian motion of our resonators. In Figure
3a we show the spectrum of the photocurrent without any
rf actuation (measured with a bandwidth of 50 Hz). The
thermally induced mean square displacement is predicted
by theory 〈x2〉 ) kBT/(meff(2πf0)2) (kBT and meff are thermal

FIGURE 2. dc and rf photocurrent (diode laser illumination): (a) dc
current traces vs applied voltage are displayed for different illumina-
tion powers, clearly exhibiting diode-like behavior. (b) Subject to
actuation of the mechanical resonator, the rf part of the photocur-
rent is shown (black points). The resulting resonance can be
excellently fitted using a Lorentzian superimposed by frequency-
independent cross talk (red line). (c) Four rf resonances with
mathematically subtracted cross talk are displayed, measured with
different illumination powers. The resonance frequency is shifted
by optical gradient forces. (d) The on-resonance rf photocurrent
amplitude (light blue dots) and the dc photocurrent (dark blue dots)
are depicted for illumination powers ranging over 2 decades. Both
measurements can be seen to be proportional to the illumination
power and with respect to each other, highlighted by the respective
fits (red and black line).
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energy and effective mass of the oscillatory mode, respec-
tively); its frequency spectrum is fitted to the experimental
data and enables us to convert the measured photocurrent
into mechanical displacement26 (also utilized in Figure 2b).
Measuring with a 1 Hz bandwidth reduces the whole spec-
trum uniformly by a factor of 501/2, then the maximum
would correspond to an amplitude close to 1 pm/Hz1/2, thus
representing our estimate of sensitivity. As the noise floor
is independent of applied bias across the Schottky diode and
illumination power, we deduce that it is generated in the
current-voltage converter.

Our measurement scheme avoids additional damping,
i.e., preserves the unloaded quality factor. This is in contrast
to “passive” schemes such as capacitive20 or magneto-
motive4,5,10,11,16 detection. There the detection of Brownian
motion at room temperature of a resonator with frequency
f0 ) 10 MHz and an unloaded quality factor Q ) 1 × 105

degrades the quality factor by 10% when the signal power
P exceeds P ) ∆Ef0 ) 0.1kBT/Qf0 ≈ 40 zW (∆E designates
the energy loss per oscillation). The resulting signal corre-
sponding to -164 dBm would be rather difficult to detect.

To check the linearity of the detection scheme, we
measure the mechanical displacement subject to strong rf
excitation. Figure 3b shows the in- and out-of-phase (quadra-
ture) components of the rf photocurrent while sweeping the
frequency. For a harmonic resonator this response is ex-
pected to move on a circle when sweeping over a resonance.
Here, the measured response is statically shifted with respect
to the origin because of the capacitive cross talk. Entering
the nonlinear regime of this oscillator, this circular line is
only followed in part until a sudden jump to lower amplitude
values occurs.27 However, the circular line is clearly followed
(no distortion is seen), demonstrating the linearity of the
detection scheme up to amplitudes of 45 nm.

Having characterized our detection scheme, we now
demonstrate its applicability to implement a feedback-
induced nanomechanical (self) oscillator,10 here operating
at room temperature. To obtain such self-oscillation, the
detected displacement signal has to be suitably phase
shifted, amplified, and fed back into the actuation. In order
to suppress unwanted oscillations arising from the on-chip
cross talk, a compensation line is introduced to minimize
cross talk close to the mechanical resonance frequency. In
addition, a bandpass filter is employed to eliminate off-
resonant cross talk. Figure 4a shows the resulting power
spectrum of the oscillator, biased only by a dc voltage. In
the region around the resonance frequency, a prominent
maximum dominates the nearly flat background signal. Its
narrow line width of only about 10 Hz as visible in the inset
is a characteristic of spontaneous feedback-stabilized oscil-
lation. Compared to the case of the directly driven resonator,
this represents a narrowing by a factor 8. In Figure 4b the
power spectrum is plotted vs the frequency difference, often
referred to as phase noise. On the basis of a simple model,
see, e.g., ref 28, the theoretical minimum has been shown
to have a slope of -20 dB per decade. In the range of
approximately 10-500 Hz the observed slope appears to
be steeper, possibly resulting from up-converted flicker
noise.10 We attribute the shoulder visible in the spectrum
ranging approximately from 1 to 500 kHz to the not com-

FIGURE 3. Sensitivity and linearity: (a) With no driving present, we
measure (black dots) the rf photocurrent showing the Brownian
motion of our mechanical resonator (measurement bandwidth, 50
Hz; DL illumination power, 0.8 mW; Schottky bias, 0 V). From theory
(red line fit) we thereby obtain a factor to convert the measured
signal into displacement. (b) Measurement (black dots) of a strongly
actuated mechanical resonance, well within the nonlinear regime
(SLED illumination power 1 mW and Schottky bias -2 V). The
resulting rf photocurrent is plotted, divided into in- and out-of-phase
components. As in the linear case, the measured points follow a
circle, as shown by a fit (solid red line) and its continuation to a
full circle (dashed red line). Thereby we can deduce that our
detection scheme transduces displacements linearly up to am-
plitudes of 45 nm.

FIGURE 4. Suitably feeding back the displacement signal into the
actuating electrodes, we obtain spontaneous oscillation of the
resonator (SLED illumination power 1 mW, -2 V Schottky bias). (a)
Measured power spectrum of the oscillator. The inset shows a zoom
into the sharp resonance linearly plotted vs frequency. We attribute
the shoulder visible in the spectrum to our not perfectly suppressed
cross talk. (b) The single-sideband phase noise is shown (black line)
in comparison to the theoretically predicted minimum (dashed line).
For a discussion of the excess noise please see the main text.

© XXXX American Chemical Society C DOI: 10.1021/nl903556s | Nano Lett. XXXX, xxx, 000-–000



pletely suppressed cross talk, because its frequency range
and shape (visible also in Figure 4a) match the frequency
response of the employed bandpass filter intended to sup-
press the cross talk.

In conclusion, we established a new near-field detection
scheme employing an on-chip Schottky photodiode and
globally illuminated by light with low spatial coherence.13

We are thereby able to reduce the external components
necessary for the detection of the mechanical displacement
of our nanoresonator to a mere illumination, making the
scheme widely applicable. Superior to other utilized local
detection schemes the near-field approach avoids appre-
ciable loading the Q of the nanomechanical resonator.
In addition, the detection scheme does not introduce
any restrictions on resonator material such as conduc-
tivity.4,5,10,11,16,20 We are able to measure the Brownian
motion of our resonator at room temperature, achieving a
sensitivity exceeding 1 pm/Hz1/2. In addition, we demon-
strate its versatility inducing self-oscillation providing a
suitable feedback. It is noteworthy that this measurement
scheme does not utilize down-conversion19 or rf-reflection
techniques,29 both of which would make it less suitable as
clock generator. Beyond the demonstrated performance,
there is still plenty of room for improvements. The sur-
rounding area of the mechanical resonator and the Schottky
contact have not yet been optimized to yield a maximum
photosignal with resonator displacement. Implementing a
photonic cavitiy3 or an optical near-field enhancement25

seems straightforward. In addition, to realize an on-chip
stand-alone clock, one would have to integrate the light
source on-chip, a task that can be solved by either changing
the substrate material or applying wafer bonding tech-
niques.30 One might even speculate that the signal generated
in an optimized implementation of such a scheme would be
strong enough to sustain self-oscillation without any ad-
ditional amplification, thereby driven solely by the light
source. Our detection scheme could also translate optically
induced self-oscillation31 into an on-chip electrical signal.
Given recent demonstrations of operating nanomechanical
resonators under ambient conditions,32 the implementation
of all these improvements could yield a completely inte-
grable NEMS clock source. However, it remains to be shown
whether the higher integrability and lower power consump-
tion will outperform existing clock sources based on hybrid
micromechanical systems.
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Nonlinear switching dynamics in a nanomechanical resonator
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We report studies on the nonadiabatic time evolution of a nonlinear resonator subject to short and intense
resonant RF actuation. We are able to quantitatively model the experimental data using a Duffing oscillator.
Applying suitably chosen RF pulses, we demonstrate active switching between the two stable states of a
Duffing oscillator on short time scales, well below the relaxation time.
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The oscillatory response of nonlinear systems exhibits
characteristic phenomena such as multistability,1 discontinu-
ous jumps,2,3 and hysteresis.3 These can be utilized in appli-
cations leading, e.g., to precise frequency measurement,4

mixing,5 memory elements,6,7 reduced noise characteristics
in an oscillator,8 or signal amplification.9–12 Approaching the
quantum regime,13 concepts have been proposed that enable
low backaction measurement techniques11 or facilitate the
visualization of quantum mechanical effects.14

Nanoelectromechanical systems �NEMS� have been es-
tablished as excellent devices to explore nonlinear dynamical
behavior, as they exhibit high mechanical quality �Q�
factors,15,16 fast response times,17 and fairly low drift,1 and
can be easily excited into the nonlinear regime.1 Here we
study the time-dependent response of NEMS resonators in
the nonlinear regime aiming at a more detailed understand-
ing of the dynamics. Complementary to previous investiga-
tions that concentrated on phenomena arising near the onset
of bistability,1,4,9 we present experiments that yield insight
into the time evolution of the mechanical system. As we
apply strong pulses, the system moves away from a station-
ary state and we study its response to this nonadiabatic ac-
tuation. The system is thereby highly excited into the non-
linear regime up to ten times the critical amplitude. Please
note that the influence of the actuation on the lattice tempera-
ture of the beam is negligible.4 We employ our extended
knowledge to perform fast switchings between the stable
states no longer bound by relaxation times.

The employed resonator consists of a doubly clamped sili-
con nitride string of dimensions 35 �m�250 nm
�100 nm �length, width, and height, respectively� under
high tensile stress, leading to high mechanical Q factors.18 In
vacuum and at room temperature, we electrically excite the
resonator at RF frequencies employing dielectric gradient
forces provided by suitably located and biased
electrodes.18,19 Illuminating the resonator with a light emit-
ting diode, we detect the resonant motion by a small on-chip
Schottky diode fabricated close to the resonator and serving
as a photodetector for the oscillating component of the opti-
cal near field as discussed in detail elsewhere.20 As this
scheme enables the detection of the resonator’s Brownian
motion at room temperature we are able to convert the mea-
sured signal into absolute displacement. The nonlinear reso-
nator is continuously actuated by the RF output of a network
analyzer as depicted in Fig. 1�a�.

Applying sufficiently strong excitation amplitudes, the

mechanical response around resonance tends to bend toward
higher frequencies as depicted in Fig. 1�b�, corresponding to
string hardening. This behavior can be quantitatively mod-
eled by solving the so-called Duffing equation,21 an exten-
sion of the simple harmonic oscillator by a nonlinear term of
third order.

ẍ�t� +
2�f0

Q
ẋ�t� + �2�f0�2x�t� + �3x�t�3 = k cos�2��f0 + ��t� .

�1�

Here, x�t� designates resonator displacement, f0=8 MHz,
Q=1.2�105 its resonance frequency and quality factor; and
�3 is the cubic correction to the linear restoring force. The
excitation amplitude is k and its frequency detuning from the
mechanical resonance is �= f − f0. We apply a perturbation
calculation using the ansatz x�t�=a�t�cos�2��f0+��t+��t��,
with time-dependent displacement amplitude a�t� and phase
��t�. This leads to the two coupled equations21

ȧ�t� = −
2�f0a�t�

2Q
+

k sin���t��
4�f0

,

�̇�t� = 2�� −
3�3a�t�2

16�f0
+

k cos���t��
4�f0a�t�

. �2�

By setting ȧ�t�=0, �̇�t�=0, one arrives at the quasistatic so-
lution a=a�f�. This curve can be excellently fitted to the
measured data �see Fig. 1�b��, thereby obtaining �3=9
�1026 �ms�−2 as the only additional numerically adjusted
parameter. The onset of bistability, at which the first and
second derivative of the amplitude with respect to f diverge
��a /�f =	 ,�2a / ��f�2=	� is called critical displacement.
Throughout this work, all displacements a�t� are given in
units normalized to this critical displacement, it applies ac

=4�2�f0 / �33/4��3Q�=6 nm �half peak-to-peak�, the corre-
sponding critical actuation amplitude is kc=150 ms−2.

Figure 1�c� shows the calculated displacement response of
the resonator when actuated with an excitation amplitude
that is ten times larger than the critical actuation leading to
the critical displacement ac. In the following, we always con-
tinuously excite our system �=1 kHz above resonance, well
in the bistable regime. The two stable oscillatory amplitudes
are marked as blue dots in Fig. 1�c�.
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To gain insight into the dynamical behavior of our system,
we measure the relaxation toward one of these stable points
of the continuously driven string after additional pulsed ex-
citation. The pulsed excitation is provided by the output of a
frequency generator that is phase-locked to the network ana-
lyzer and operates at the same frequency f as the continuous
drive. The phase of the frequency generator’s signal can be
adjusted to any phase 
 with respect to the continuous drive
as sketched in Fig. 1�a�. To avoid confusion, we always
specify the two phases with their respective symbol � or 
 in
the ongoing text. An RF switch serves to define RF pulses of
adjustable duration.

Any nonstationary resonator state �defined by its displace-
ment amplitude a and phase � referred to the continuous
drive; or equivalently by its in-phase �a cos���� and out-of-
phase �a sin���� amplitude component� will converge toward
either of the two stable states. This convergence divides the
resonator’s phase space into two basins of attraction,1,21 as
depicted in Fig. 2�a� as black and white regions, obtained by
numerically integrating Eqs. �2�. To test this simulated be-
havior experimentally, we apply the described short and in-
tense RF pulse that excites the oscillator away from the
stable state. Immediately after switching off this pulse, we
start recording the resonator state with a sampling rate of 100
kHz. Depending on amplitude, duration, and phase 
 of the
pulsed excitation, the resonator’s dynamic state starts in ei-
ther the white or black region of phase space directly after
excitation and relaxes in a spiraling motion toward either of

the stable states staying within the respective region of phase
space as theoretically predicted. In Fig. 2�a� two measured
traces of such a relaxation differing in the phase 
 of the
previously applied RF pulse are plotted in phase space and
show excellent agreement with theory. Figures 2�b� and 2�c�
display the evolution with time, showing fast dynamics for
high amplitudes. Eventually, the state oscillates around either
of the stable points with constant frequency.

We intend to utilize the pulses to controllably switch be-
tween the stable points, therefore we apply an indirect mea-
surement scheme to explore the nonadiabatic time evolution
during strong pulse excitation. Such an indirect scheme is
needed because electric crosstalk prevents a direct measure-
ment of the resonator’s state during the strong RF pulses. To
predict the action of the RF pulse excitation in addition to the
continuous drive, the green curves shown in Fig. 2�a� display
the calculated mechanical response to a pulse excitation am-
plitude of kPulse�27�103 ms−2 corresponding to 18 times
the continuous drive. Both curves start in the lower stable
state, they differ in the phase 
 of the applied pulse and are
obtained by numerically time integrating Eqs. �2�. As can be
inferred from Fig. 2�a�, we consecutively cross the two ba-
sins of attraction. Thereby, any resonator state with an am-
plitude lower then �10ac can be addressed by suitably
choosing the pulse phase and duration with the given pulse
amplitude.

In the experiment, the oscillator is prepared in its lower
stable state by subsequently switching off and on the con-
tinuous actuation. We then apply a short RF pulse with the
same excitation amplitude as in the above calculation. After
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FIG. 1. �Color online� Setup and quasistatic response: �a� sche-
matic setup, a nanomechanical resonator is continuously actuated in
the nonlinear regime using the RF output of a network analyzer;
additional RF pulses of the same frequency are provided by a fre-
quency generator that is phase-locked to the network analyzer; the
output of the frequency generator can be adjusted to any phase 

with respect to the continuous actuation; an RF switch defines short
RF pulses. The resonator’s oscillatory state, given by its displace-
ment amplitude a and phase �, is recorded by a nearby photodiode
and the network analyzer. �b� Quasistatic response to continuous
actuation near the onset of bistability, measurement �black� and fit
�red/gray� using a solution of the Duffing equation; the displace-
ment amplitude a is given in units of the critical displacement ac,
marking the onset of bistability. �c� Calculated response when ac-
tuating ten times the critical driving amplitude. At an actuation
frequency f 1 kHz above resonance f0, two stable oscillation am-
plitudes exist, marked with blue/dark gray dots; this actuation is
used for all following measurements.
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FIG. 2. �Color online� Time evolution of the resonator state: �a�
the resonator’s phase space is shown parametrized by the in
�a cos���� and out-of-phase �a sin���� components of the oscilla-
tory displacement. Because of the nonlinear actuation, two stable
points exist �blue/dark gray dots�, each having its �calculated� basin
of attraction �black/white: high/low displacement amplitude�. The
displayed traces �red/gray and blue/dark gray lines� show the mea-
sured relaxation of an oscillatory state after being excited to an
amplitude a�8ac for two different excitation phase 
 settings. �b�
and �c� display the same relaxation process versus time, the trace
color corresponds to �a�. The smooth green curves in a show the
calculated time evolution during the application of an RF pulse of
phases 
=262° , 172° �light and dark curve, respectively� and an
amplitude 18-fold larger than the continuous actuation starting from
the lower stable state; the displayed time values are given in �s.
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waiting several relaxation times given by Q / �2�f0�, the at-
tained stable state is recorded in displacement amplitude a
and phase �. We repeat this sequence, restore the lower
stable state and systematically vary the length of the RF
pulse and its phase 
; the excitation amplitude is always the
same. Thereby we implicitly map the end point of the green
traces as shown in Fig. 2�a� and obtain the spirals in Fig.
3�a�. This measured result is in excellent agreement with the
calculation shown in Fig. 3�b�, employing no fit parameters.
The range of achieved displacement amplitudes extends
those of previous measurements1 to values of ten times the
critical amplitude ac. We can deduce that the perturbation
solution describing the time evolution Eqs. �2� remains ac-
curate at least up to displacements that correspond to ten
times the critical amplitude ac. This demonstrates that the
dynamics of a strongly driven nanomechanical resonator can
still be accurately described by a perturbation solution of the
Duffing equation, therefore serving as model system to study
nonlinear dynamics22,23 well in the nonadiabatic regime.

Our quantitative understanding of the experiment enables
us to numerically calculate the parameters needed in order to
access any desired resonator state. In particular we are able
to switch directly between the two stable states. We thus
extend previous concepts6,7 of switching limited by the re-
laxation time scale Q / �2�f0� to active switching via RF
pulses suitably chosen in amplitude, phase, and length. Fig-
ure 4�a� shows two consecutive switching events; during the
80-�s-long RF pulses electric crosstalk produces overshoots
partially exceeding the displayed range of displacement am-
plitudes. The nearly constant amplitude values highlighted
by gray areas reflect the respective stable state of the bistable
system. Note that the approach toward these constant ampli-
tudes occurs on a time scale of less than 1 ms and only
reflects the limited dynamics of the electronic measurement
setup in contrast to the mechanical relaxation behavior stud-
ied in Figs. 2�b� and 2�c�.

Since we can pulse toward either of the targeted stable
states with high precision in phase space, we can switch
between the stable states with a high repetition rate. Any
systematic deviation would add up, eventually preventing
controllable switching. Figure 4�b� shows ten consecutive

switching events within ten milliseconds each going back
and forth between the two stable states. This corresponds to
a demonstrated operating speed of 2 kHz. The applied pulse
duration of 80 �s of a single pulse allows operation speeds
of approximately 11 kHz. In Fig. 4�c�, we plot the same
switching sequence in phase space. The image shows some
systematic deviation of the measured traces with respect to
the predicted stable states occurring immediately after the
application of an RF pulse. This deviation is a result of the
electric crosstalk and the finite bandwidth of the measure-
ment setup. The experimentally chosen pulse durations devi-
ate by less than 4% from the ones that were predicted theo-
retically.

The duration of the switching pulses corresponds here to
approximately 1000 cycles of oscillation. This is signifi-
cantly less than the number of oscillations required for the
relaxation from an excited to a stable state corresponding to
several times the quality factor of here Q=1.2�105. Al-
though being advantageous in terms of power consumption,
a high-quality factor prevents fast switching in passive
schemes, such as a sudden parameter change7 or the intro-
duction of a weak external perturbation.6 Our scheme over-
comes this limitation and achieves a four orders of magni-
tude improvement in speed when compared to these previous
results.

It remains to be shown whether any logic or memory
based on nanomechanical elements will play a significant
role in the future. To achieve an operating speed of 100
MHz, another improvement of switching duration of 104 is
required. As resonators with GHz resonance frequencies17

and high-quality factors16 have been demonstrated, this goal
is not principally out of reach.

In conclusion, we quantitatively study the dynamical os-
cillatory response of a nonlinear nanomechanical resonator
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phase 
 and plotted in polar coordinates. �b� Simulation of the
measurement employing no fit parameters.
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FIG. 4. �Color online� Switching between the stable points: �a�
Out-of-phase component of the measured resonator displacement
a sin���; the part of nearly constant amplitude �highlighted by the
gray background� corresponds to the stable points; the spikes are a
result of electric crosstalk when applying short RF pulses suitably
chosen to directly switch between these states and do not corre-
spond to displacement amplitudes. �b� Consecutive switching; ten
pairs of switching events are shown; the duration of one pulse is
approximately 80 �s, the repetition rate of the pairs is 1 kHz. Be-
cause of the finite measurement bandwidth and electric crosstalk
there is a systematic deviation compared to �a�. �c� The same mea-
surement displayed in phase space.
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in bistable configuration. The application of short RF pulses
allows us to modify the resonator state at will. We utilize
these pulses to highly excite the resonator. The measured
results can be excellently modeled using a combination of
perturbation calculation and numerical integration. We
thereby directly confirm the accuracy of this model calcula-
tion to describe nonlinear dynamics.14,23 Our quantitative un-
derstanding allows us to predict and generate RF pulse

parameters that directly switch between the two stable states
repeatedly.
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We study the transverse oscillatory modes of nanomechanical silicon nitride strings under high tensile

stress as a function of geometry and mode index m � 9. Reproducing all observed resonance frequencies

with classical elastic theory we extract the relevant elastic constants. Based on the oscillatory local strain

we successfully predict the observed mode-dependent damping with a single frequency-independent fit

parameter. Our model clarifies the role of tensile stress on damping and hints at the underlying micro-

scopic mechanisms.

DOI: 10.1103/PhysRevLett.105.027205 PACS numbers: 85.85.+j, 46.40.Ff, 62.40.+i

The resonant motion of nanoelectromechanical systems
has received a lot of recent attention. Their large frequen-
cies, low damping, i.e., high mechanical quality factors,
and small masses make them equally important as sensors
[1–4] and for fundamental studies [3–9]. In either case, low
damping of the resonant motion is very desirable. Despite
significant experimental progress [10,11], a satisfactory
understanding of the microscopic causes of damping has
not yet been achieved. Here we present a systematic study
of the damping of doubly-clamped resonators fabricated
out of prestressed silicon nitride leading to high mechani-
cal quality factors [10]. Reproducing the observed mode
frequencies applying continuum mechanics, we are able to
quantitatively model their quality factors by assuming that
damping is caused by the local strain induced by the
resonator’s displacement. We thereby deduce that the
high quality factors of strained nanosystems can be attrib-
uted to the increase in stored elastic energy rather than a
decrease in energy loss. Considering various microscopic
mechanisms, we conclude that the observed damping is
most likely dominated by dissipation via localized defects
uniformly distributed along the resonator.

We study the oscillatory response of nanomechanical
beams fabricated from high stress silicon nitride (SiN). A
released doubly-clamped beam of such a material is there-
fore under high tensile stress, which leads to high mechani-
cal stability [12] and high mechanical quality factors [10].
Such resonators therefore have been widely used in recent
experiments [6,9]. Our sample material consists of a silicon
substrate covered with 400 nm thick silicon dioxide serv-
ing as sacrificial layer and a h ¼ 100 nm thick SiN device
layer. Using standard electron beam lithography and a
sequence of reactive ion etch and wet-etch steps, we fab-
ricate a series of resonators having lengths of 35=n �m,
n ¼ f1; . . . ; 7g and a cross section of 100� 200 nm2 as
displayed in Figs. 1(a) and 1(b). Since the respective
resonance frequency is dominated by the large tensile
stress [10,13], this configuration leads to resonances of
the fundamental modes that are approximately equally

spaced in frequency. Suitably biased gold electrodes pro-
cessed beneath the released SiN strings actuate the reso-
nators via dielectric gradient forces to perform out-of-
plane oscillations, as explained in greater detail elsewhere
[12]. The length and location of the gold electrodes is
properly chosen to be able to also excite several higher
order modes of the beams. The experiment is carried out at
room temperature in a vacuum below 10�3 mbar to avoid
gas friction.
The displacement is measured using an interferometric

setup that records the oscillatory component of the re-
flected light intensity with a photodetector and network
analyzer [12,14]. The measured mechanical response
around each resonance can be fitted using a Lorentzian
line shape as exemplarily seen in the inset of Fig. 2. The
thereby obtained values for the resonance frequency f and
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y

(a) (b)

5 µm

x

z

(c)

max

0

FIG. 1 (color online). Setup and geometry. (a) Scanning elec-
tron microscope picture of our sample; the lengths of the inves-
tigated nanomechanical silicon nitride strings are 35=n �m,
n ¼ f1; . . . ; 7g; their widths and heights are 200 nm and
100 nm, respectively. (b) Zoom-in of (a) the resonator (high-
lighted in green [dark gray]) is dielectrically actuated by the
nearby gold electrodes (yellow [light gray]); its displacement is
recorded with an interferometric setup. (c) Schematic mode
profile and absolute value of the resulting strain distribution
(color coded) of the second harmonic.

PRL 105, 027205 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
9 JULY 2010

0031-9007=10=105(2)=027205(4) 027205-1 � 2010 The American Physical Society



quality factor Q for all studied resonators and observed
modes are displayed in Fig. 2 (filled circles). In order to
reproduce the measured frequency spectrum, we apply
standard beam theory (see, e.g., [15]). Without damping,
the differential equation describing the spatial dependence
of the displacement for a specific mode m of beam n
un;m½x� at frequency fn;m writes (with � ¼ 2800 kg=m3

being the material density [16]; E1, �0 are the (unknown)
real Young’s modulus and built-in stress, respectively):

1

12
E1h

2 @4

@x4
un;m½x� � �0

@2

@x2
un;m½x�

� �ð2�fn;mÞ2un;m½x� ¼ 0 (1)

Solutions of this equation have to satisfy the bound-
ary conditions of a doubly-clamped beam (displacement
and its slope vanish at the supports (un;m½�l=ð2nÞ� ¼
ð@=@xÞun;m½�l=ð2nÞ� ¼ 0, l=n: beam length). These con-

ditions lead to a transcendental equation that is numerically
solved to obtain the frequencies fn;m of the different

modes.
The results are fitted to excellently reproduce the mea-

sured frequencies, as seen in Fig. 2 (hollow squares). One
thereby obtains as fit parameters the elastic constants of the
microprocessed material E1 ¼ 160 GPa, �0 ¼ 830 MPa,
in good agreement with previously published measure-
ments [13].

For each harmonic, we now are able to calculate the
strain distribution within the resonator induced by the
displacement u½x� and exemplarily shown in Fig. 1(c).
The measured dissipation is closely connected to this
induced strain �½x; z; t� ¼ �½x; z� exp½i2�ft�. As in the
model originally discussed by Zener [17] we now assume
also for our case of a statically prestressed beam that the
displacement-induced strain and the accompanying oscil-
lating stress �½x; z; t� ¼ �½x; z� exp½i2�ft� are not per-
fectly in phase; this can be expressed by a Young’s
modulus E ¼ E1 þ iE2 having an imaginary part. The
relation reads again �½x; z� ¼ ðE1 þ iE2Þ�½x; z�. During
one cycle of oscillation T ¼ 1=f, a small volume �V of
length s and cross section A thereby dissipates the energy
�U�V ¼ As�E2�

2. The total loss is obtained by integrat-
ing over the volume of the resonator.

�Un;m ¼
Z
V
dV�U�V ¼ �E2

Z
V
dV�n;m½x; z�2 (2)

The strain variation and its accompanying energy loss
can be separated into contributions arising from overall
elongation of the beam and its local bending. It turns
out that here the former is negligible, despite the fact
that the elastic energy is dominated by the elongation
of the string, as discussed below. To very high accu-
racy we obtain for the dissipated energy �Un;m �
�=12E2wh

3
R
l dxð@2=ð@xÞ2un;mÞ2. A more rigorous deri-

vation can be found in the supplementary information [18].
The total energy depends on the spatial mode [through
�n;m, see exemplary Fig. 1(c)] and therefore strongly dif-

fers for the various resonances. To obtain the quality factor,
one has to calculate the stored energy, e. g., by integrating
the kinetic energy Un;m ¼ R

l dxA�ð2�fn;mÞ2un;m½x�2. The
overall mechanical quality factor is Q ¼ 2�Un;m=�Un;m.

A more detailed derivation can be found in [18].
Assuming that the unknown value of the imaginary part

E2 of the elastic modulus is independent of resonator
length and harmonic mode, we are left with one fit pa-
rameter E2 to reproduce all measured quality factors and
find excellent agreement (Fig. 2, hollow squares). We
therefore successfully model the damping of our nano-
resonators by postulating a frequency-independent mecha-
nism caused by local strain variation. We wish to point out
that the quality factor of, e.g., the second harmonic of a
particular beam is significantly higher if compared to the
fundamental one of a shorter beam with the same fre-
quency. This can be understood by the fact that the maxi-
mum strain and thus local dissipation occurs near the
clamping points and a higher harmonic has less clamping
points per antinode [see Fig. 1(c)].
Allowing E2 to depend on frequency, the accordance

gets even better, as discussed in detail in [18].
We now discuss the possible implications of our find-

ings, considering at first the cause of the high quality
factors in overall prestressed resonators and then the com-
patibility of our model with different microscopic damping
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FIG. 2 (color online). Resonance frequency and mechanical
quality factor. The harmonics of the nanomechanical resonator
show a Lorentzian response (exemplary in the inset). Fitting
yields the respective frequency and mechanical quality factor.
The main figure displays these values for several harmonics
(same color) of different beams as indicted by the color. To
reproduce the resonance frequencies, we fit a continuum model
to the measured frequencies. We thereby retrieve the elastic
constants of our (processed) material, namely, the built-in stress
�0 ¼ 830 MPa and Young’s modulus E1 ¼ 160 GPa. From the
displacement-induced, mode-dependent strain distribution, we
calculate (except for an overall scaling) the mechanical quality
factors. Calculated frequencies and quality factors are shown as
hollow squares, the responses of the different harmonics of the
same string are connected.
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mechanisms. In a relaxed beam, the elastic energy is stored
in the flexural deformation and becomes for a small test
volume U�V ¼ 1=2AsE1�

2. In the framework of a Zener
model, as employed here, this result is proportional to the
energy loss [see Eq. (2)] and thus yields a frequency-
independent quality factor Q ¼ E1=E2 for the unstressed
beam. In accordance with this finding, Ref. [10] reports a
much weaker dependence of quality factor on resonance
frequency, in strong contrast with the behavior of their
stressed beams.

Similar as in the damping model, the total stored elastic
energy in a beam can be very accurately separated into a
part connected to the bending and a part coming from the
overall elongation. The latter is proportional to the pre-
stress �0 and vanishes for relaxed beams, refer to [18] for
details. Assuming a constant E ¼ E1 þ iE2, Fig. 3 dis-
plays the calculation of the elastic energy and the qual-
ity factor for the fundamental mode of our longest
(l ¼ 35 �m) beam as a function of overall built-in
stress �0. The total elastic energy is increasingly domi-
nated by the displacement-induced elongation Uelong ¼
1=2�0wh

R
l dxð@=ð@xÞu½x�Þ2. In contrast the bending en-

ergy Ubend ¼ 1=24E1wh
3
R
l dxð@2=ð@xÞ2u½x�Þ2, which in

our model is proportional to the energy loss, is found to
increase much slower with �0. Thus one expects Q to
increase with �0, a finding already discussed by Schmid
and Hierold for micromechanical beams [19]. However,
their model assumes the simplified mode profile of a
stretched string and can not explain the larger quality
factors of higher harmonics when compared to a funda-
mental resonance of the same frequency. Including beam
stiffness, our model can fully explain the dependence of
frequency and damping on length and mode index, as
reflected in Fig. 2. It also explains the initially surprising
finding [20] that amorphous silicon nitride resonators ex-
hibit high quality factors when stretched whereas havingQ

factors in the relaxed state that reflect the typical magni-
tude of internal friction found to be rather universal in
glassy materials [21]. More generally we conclude that
the increase in mechanical quality factors with increasing
tensile stress is not bound to any specific material.
Since the resonance frequency is typically easier to

access in an experiment, we plot the quality factor vs
corresponding resonance frequency in Fig. 3(b), with
both numbers being a function of stress. The resulting
relation of quality factor on resonance frequency is (except
for very low stress) almost linear; experimental results by
another group can be seen to agree well with this finding
[22]. In addition, we show in [18] that although the energy
loss per oscillation increases with applied stress, the line-
width of the mechanical resonance decreases.
We will now consider the physical mechanisms that

could possibly contribute to the observed damping. As
explained in greater detail in [18], we can safely neglect
dampings that are intrinsic to any (bulk) system, namely,
clamping losses [23,24], thermoelastic damping [25,26]
and Akhiezer damping [26,27], since the corresponding
model calculations all predict damping constants signifi-
cantly smaller than the ones observed.
Therefore, we would like to discuss the influence of

localized (defect) states. Mechanisms with discrete re-
laxation rates will exhibit damping maxima whenever
the oscillation frequency matches the relaxation rate
[25,26,28]. As our model however is based on a
frequency-independent loss mechanism, we therefore con-
clude that a broad range of states is responsible for the
observed damping. This assumption is consistent with a
model calculation dealing with the influence of two-level
systems on acoustic waves [29] at high temperatures.
There, the strain modulates the energy separation of the
two states and thereby excites the system out of thermal
equilibrium; the subsequent relaxation causes the energy
loss. In addition, published quality factors of relaxed sili-
con nitride nanoresonators [20] cooled down to liquid
helium temperature display quality factors that are well
within the typical range of amorphous bulk materials [21],
therefore the observed damping mechanism can be as-
sumed to reduce to the concept of two-level systems at
low temperatures. Moreover, on a different sample chip we
measured a set of resonators showing quality factors that
are uniformly decreased by a factor of approximately 1.4
compared to the data presented in Fig. 2; the corresponding
data are presented in [18]. Their response can still be
quantitatively modeled resulting in an increased imaginary
part of Young’s modulus E2. We attribute this reduction in
quality factor to a nonoptimized RIE-etch step, that leads
to an increased density of defect states in the near-surface
region of the resonator. In contrast, the above mentioned
intrinsic mechanisms are not expected to be influenced by
such processing.
We wish to point out some limitations of our simple

model description. One is that the above stated simplifica-
tion to local two-level systems cannot be rigorously ap-
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FIG. 3 (color online). Elastic energy and mechanical quality
factor of the beam in dependence of stress. (a) The elastic
energies of the fundamental mode of the beam with l ¼
35 �m are displayed vs applied overall stress separated into
the contributions resulting from the overall elongation and the
local bending. The dashed line marks the strain of the experi-
mentally studied resonator �0 � 830 MPa, there the elongation
term dominates noticeably. (b) Quality factor and frequency are
calculated for varying stress �0. In order to compare the calcu-
lation with other published results, quality factor and stress are
displayed vs resulting frequency.
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plied at elevated temperatures as the concept of two-level
systems should be replaced by local excitable systems. The
other is that our assumption of a damping mechanism via
localized defects distributed uniformly along the resonator
cannot differentiate between surface and volume losses
(see [18]). In fact, measurements performed on beams
with larger width exhibit slightly higher quality factors
pointing toward a contribution of surface defects as does
the effect of sample processing discussed above, a well-
known observation in micro- or nanoresonators, see e.g.
[30,31]. At present we cannot conclude on the microscopic
nature of the defect states implicitly assumed in our model.
These could reflect the amorphous nature of the SiN reso-
nator but also be influenced by near-surface modification.

In conclusion, we systematically studied the transverse
mode frequencies and quality factors of prestressed SiN
nanoscale beams. Implementing continuum theory, we
reproduce the measured frequencies varying with beam
length and mode index over an order of magnitude.
Assuming that damping is caused by local strain variations
induced by the oscillation, independent of frequency, en-
ables us to calculate the observed quality factors with a
single interaction strength as free parameter. We thus
identify the unusually high quality factors of prestressed
beams as being primarily caused by the increased elastic
energy rather than a decrease in damping rate. Several
possible damping mechanisms are discussed; because of
the observed nearly frequency independent damping pa-
rameter E2, we attribute the mechanism to interaction of
the strain with local defects of not yet identified origin. One
therefore expects that defect-free resonators exhibit even
larger quality factors, as recently demonstrated for ultra-
clean carbon nanotubes [11].
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Appendix G

Supporting Information

G.1 Frequency of a pulled string

In this section the upshift in resonance frequency of a string-like oscillator under
tensile stress is calculated caused by a uniform loading of the string.

We regard a string-like resonator of length l subject to a tensile force Fσ and
a perpendicular and uniform force per length FL. The displacement is designated
u[x]; the string is subdivided in rigid segmentsof length δx, see Fig. G.1.

Regarding small amplitudes, the z-component of the tensile force at the inter-
connection is Fz = Fσ sinα ≈ Fσu

′[x]. In equilibrium, the sum of the two forces has
to equal the external force FLδx (again assuming small amplitudes). It therefore
applies:

δxFL = Fσ(u′[x+ δx]− u′[x]) or u′′[x] = u′′ =
FL
Fσ

(G.1)

The total elongation of the string can now be calculated by integration:

∆l =

∫ l/2

−l/2
dx(
√

1 + u′[x]2 − 1) ≈
∫ l/2

−l/2
dx

1

2
u′′2x2 =

1

12
u′′2l3 (G.2)

For convenience, we now regard the tensile stress instead of force; the elongation
increases the tensile stress by σ = σ0 +E∆l/l, the resonance frequency gets thereby
shifted by (c: proportionality constant)

f = c
√
σ ≈ f0

(
1 +

1

2

∆σ

σ0

)
= f0

(
1 +

1

24

El2

σ0

(
FL
Aσ0

)2
)

(G.3)

Related considerations concerning a beam rather than a string can be found in
Ref. [1].

With the values given in table G.1, the application 20 V leads to a frequency
upshift of 5.6 kHz, significantly less than the downshift observed in the experiment.
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Figure G.1: Forces acting on neighboring segments of a string under tensile
stress

designation symbol value
resonance frequency f0 10 MHz
Young’s Modulus E 160 GPa
prestress σ0 830 MPa
force per length FL 5 nN/µm
cross sectional area A 0.1 · 0.2 µm2

Table G.1: Calculation parameters of the pulled string

G.2 Supplement to Dielectric Actuation

G.2.1 Electrical heat dissipation

The mutual resistance between the on-chip electrodes is measured to be higher than
10 GΩ; 12 pairs of electrodes are always connected in parallel. With the applied d.c.
voltage not exceeding 20 V, this yields a maximum thermal contribution of 4 nW
per driving electrode. The incident r.f.-power in these experiments does not exceed
1 mW. The mutual capacitance of the electrodes is simulated to be approximately
1.5 fF. Therefore, the electrical current within the electrodes does not exceed 0.3µA
at 10 MHz. The ohmic resistance of a gold electrode of 30µm length can be estimated
not to exceed several ohms, yielding a local dissipation below 1 pW. Correspondingly,
r.f.-heating is insignificant. The thermal conductance of silicon at room temperature
is about 150 W/Km. Thus, assuming a near resonator dissipation of 4 nW and a
thermal bath in 100µm distance, this would lead to an increase in temperature of
about 1.5µK and can be neglected.

G.2.2 Electrical sensitivity

In order to increase the sensitivity, the demonstrated direct detection scheme can be
replaced with an extended gate architecture incorporating a LC circuit. The change
of capacitance of the detection electrodes with mechanical motion is thereby con-
verted into the change of resonance frequency of the circuit. This scheme yields
a significantly higher sensitivity, see ref. [2]. Our simulations predict a rela-
tive capacitance change with mechanical motion of the beam of approximately
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1/C · ∂C/∂d ≈ 10−4/nm. We assume that the added circuitry is designed care-
fully, avoiding extra capacitance. For a LC resonance frequency of 2π · 5 GHz, this
would correspond to a frequency shift of 2π · 50 kHz/nm. Comparing these values
to those published recently [2], a sensitivity close to 5 fm/

√
Hz should be obtain-

able. However, as this measurement setup includes superconducting striplines, low
temperature will be required to greatly improve the sensitivity.

G.2.3 Long-term drift of the resonance frequency

At d.c. bias of several volts all resonators that were investigated showed long-term
drifts of the resonance frequency in the kHz regime. Application of a bias Vd.c. 6= 0
results in a downshift in frequency while not strongly affecting the resonant ampli-
tude, independent of the sign of the bias. The long time constant observed in the
response is unlikely to result from simple heating. Charging can explain qualitatively
the above observation if the dominant charge accumulates beneath the resonator,
where it causes a frequency shift without significantly changing the amplitude. We
therefore investigated the influence of the thickness of the residual silicon dioxide
layer that is left of the sacrificial layer after underetching the resonator and that is
used to insulate the transduction electrodes, but found little influence (see Fig. G.2).
Further investigations to yield a better understanding of these drift phenomena, and
in particular their temperature dependence, are currently in preparation. In the
results presented in the main text we minimised these long term drifts by either
measuring on a sufficiently short time scale or by periodically reversing the d.c. bias
(e.g. in Fig. 3a in the main paper).

G.3 Nonlinear characteristics of a vibrating pre-

stressed string

The variables used in this section are the same as in section G.1. The calcula-
tion is independent of the harmonic, we therefore regard the spatial profile of the
fundamental mode of a vibrating string; it is given by [1] (a: peak amplitude):

u[x] = a cos(x/(2l)) (G.4)

The elongation is calculated by integrating over the length; the result is expanded
in a

∆l = 2

∫ l/2

−l/2
dx(
√

1 + u′[x]2) = l

(
π2

4

a2

l2
− 3π4

64

a4

l4
+ o[(a/l)6]

)
(G.5)

A change in beamlength causes a change in energy U ; it applies
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ba

Figure G.2: Long-term drift of the resonance frequency for two samples.
Electrostatically induced drift of the resonator eigenfrequency and amplitude. The
bias voltage is abruptly changed from 0 to −5 V. Subsequently the frequency re-
sponse is measured repeatedly. With elapsing time, the eigenfrequency (black dots)
shows a drift to lower values whereas there is almost no overall change in the ampli-
tude (red dots). To investigate the influence of the silicon dioxide insulating layer,
devices with different thickness are compared. a, Silicon dioxide sacrificial layer
completely removed. The insulating layer has the typical thickness of natural ox-
ides. b, Residual silicon dioxide layer with a thickness of about 100 nm, which is
about 25 % of the initial sacrificial layer. This device geometry is considered in the
main text. In both cases the drifts are comparable.

dU = F [∆l]d∆l = A

(
σ0 +

∆l

l
E

)
d∆l (G.6)

Replacing elongation by amplitude, a[∆l], one obtains up to o[(a/l)4]:

dU = A

(
σ0 + E

π2a2

4l2

)(
π2

2

a

l
− 3π4

8

a3

l3

)
da (G.7)

The restoring force divided by the effective mass of the oscillator meff = 1/2ρAl
therefore writes

F [a]

meff

=
1

meff

dU

da
=
π2σ0

ρl2
a+

(
π4E

4ρl4
− 3π4σ0

4ρl4

)
a3 (G.8)

From the first term, one can easily deduce the resonance frequency of a string
(f = 1/(2l)

√
σ0/ρ); the residual terms are the cubic corrections. The first term in

the brackets arises as the stress increases under elongation, the second is a correction
of the amplitude-dependent elongation; as σ0 � E it can be safely neglected.
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G.4 Supplement to On-chip Detection

G.4.1 Device Dimensions

In order to compare our results to (potential) future work, the device geometry is
given in greater detail here. It is displayed in Fig.G.3, which was taken under an
angle of 45 degrees. The beam dimensions are 100 · 200 nm (height, width, re-
spectively). The underlying gold electrodes are placed symmetrically beneath the
resonator with a distance of 350 nm below the bottom of the resonator. The holes in
the silicon dioxide are patterned with a rectangular PMMA etch mask of dimensions
2 · 1.5 µm (x-, y-direction). The resulting depressions reflect these dimensions, yet
the expected edges are significantly rounded with a radius of curvature of 400 nm.
From the upper corner, the depressions lower with a constant slope through the re-
maining silicon dioxide of 50 nm thickness to the underlying silicon within a vertical
distance of 300 nm. The resulting area of the exposed silicon is an ellipse of dimen-
sions 400 · 900 nm (x-, y-direction), which is half covered by the gold electrodes.
The area of the Schottky contact is therefore approximately 0.3 µm2.

400nm

300nm

300nm

2µm

x

400nm

1.5µm

y

900nm

Figure G.3: Dimensions of the Schottky contact and its surroundings

G.4.2 Heating of the beam

We apply a simple model calculation in order to exclude heating effects of the beam.
Reported absorption coefficients for silicon nitride [3] do not exceed 1 dB/cm, this
number translates into an absorbed fraction of 10−6 when passing through 100 nm
as in our experiment. The absorbed power is therefore lower than Pab = Pin ·10−6 =
1 nW. To estimate the effect of heating, we apply a rough model by assuming that
half of the beam (centered around its midpoint) has uniformly elevated temperature.
Assuming the residual beam to be the bottleneck of heat transportation yields a
temperature change of (A, l are cross sectional area and residual beam length; see
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name character value
Young’s Modulus E 100 GPa
tensile stress σ0 830 MPa
coefficient of thermal expansion α 3.3 · 10−6/K
thermal conductivity c 15 W/(m K)
cross sectional area A 0.1 · 0.2 µm2

residual beam length l 0.5 · 35 µm
incident optical power Pin 1 mW
frequency shift δf 700 Hz

Table G.2: Beam parameters

also Table G.4.2)

∆T =
1

2

Pabl/2

cA
≈ 15 mK (G.9)

We now calculate the temperature difference necessary to cause the observed fre-
quency shift. We consider only the effect of the uniformly warmer part of the res-
onator. It has been shown, that the resonance frequency of the beam is dominated
by the high built-in stress [4]; from which we also obtain the elastic parameters E,
σ. As the frequency is proportional to the square root of the stress, one obtains (see
Table G.4.2)

δf

f
=

1

2

δσ

σ
=
EαT

4σ

T =4
δf

f

σ

E

1

α
≈ 1K (G.10)

A rise in temperature of 1 K is therefore required to explain the observed shift
in resonance frequency with illumination intensity in clear contrast to the above
estimate.

G.5 Perturbation solution of the Duffing equation

As this calculation can be found in detail in textbooks [5] and publications [6], the
focus here is to legitimate the utilized simplifications. The Duffing equation writes
(please note that in order to be consistent with the publication, x[t] denotes now
the displacement, complementary to the previous sections, Q,ω0, α3, σ, k are quality
factor, (angular) resonance frequency, nonlinear restoring component, detuning from
resonance and actuation strength):
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x′′[t] +
ω0

Q
x′[t] + ω2

0x[t] + α3x[t]3 = k cos[(ω0 + σ)t] (G.11)

We seek resonant solutions when actuating close to the eigenfrequency ω ≈ ω0,
equation. Rewriting the restoring force yields:

F

m
= ω2

0x[t] + α3x[t]3 = ω2
0

(
1 +

α3

ω2
0

x[t]2
)
x[t] (G.12)

One can therefore regard the action of the nonlinearity as to detune the natural
resonance frequency with increasing amplitude. We shall treat the actuation regime
in which the detuning is small 1 � α3x[t]2/ω2

0. Close to the eigenfrequency the
amplitude of the oscillation is enhanced (up to the quality factor Q). Hence in
eq. G.11, the actuation term is small when compared with the kinetic or elastic term
x′′[t], ω2

0x[t]� k. Therefore we expand the differential equation to write:

x′′[t] + ε
ω0

Q
x′[t] + ω2

0x[t] + εα3x[t]3 = εk cos[(ω + σ)t] (G.13)

To lowest order, the solution is a fast oscillation multiplied by a slowly varying
(complex) amplitude, this shall be emphasized by introducing another ε in the ar-
gument. The introduction of ε merely helps to sort the terms, later on it will be set
to 1.

x[t] = A[εt] exp[ıω0t] + c.c.+ εx1[t] (G.14)

In table G.3 all these perturbation simplifications are listed, including approxi-
mate experimental values. The ansatz is chosen to solve eq. G.13 to lowest order
(ε0). The equation linear in ε is regarded, for simplification a new time variable is
introduced t1 ≡ εt.

2ıω0A
′[t1] + 3α3A[t1]2A∗[t1] + ı

1

Q
ω0A[t1]− 1

2
k exp[ıσt1] = 0 (G.15)

As the response is thereby separated into several time scales, the applied approx-
imation is called ”Method of Multiple Scales”.

To (analytically) solve the algebraic equation, A[t1] exp[ıω0t] is chosen to yield a
resonant oscillation; ε is now set to 1, thereby t1 = t.

A[t] =
1

2
(a[t] exp[ı(σt− γ[t])] + c.c.) with a[t], γ[t] real (G.16)

One therefore arrives at the two coupled equations (f = 1/(2π)(ω0+σ): actuation
frequency) that describe amplitude and phase of the oscillation (x[t] = a[t] cos[2πf+
γ[t]]).
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a′[t] = −πf0a[t]

Q
+
k sin[γ[t]]

4πf0

γ′[t] = 2π(f − f0)− 3α3a[t]2

16πf0

+
k cos[γ[t]]

4πf0a[t]
(G.17)

To calculate the steady-state response, one sets a′[t] = γ′[t] = 0 in eq. G.17.
The resulting cubic equation can be analytically solved [6] (even avoiding complex
numbers), yet the solution is somewhat lengthy and shall not be given here.

designation simplification experimental value
small detuning α3/ω

2
0x[t]2 � 1 1/1000

high Q 1/Q� 1 1/10000
near resonance |f − f0| � f0 1/1000
time scales ∂tA[t]� A[t]f0 1/1000

Table G.3: Perturbation Approximations and their relative strength

G.6 Supplement to Damping Characteristics

G.6.1 Damping Model

In a Zener model, an oscillating strain ε(t) = <[ε[ω] exp[iωt]] and its accompanying
stress σ[t] = <[σ[ω] exp[iωt]] are out-of phase, described by a frequency-dependent,
complex elastic modulus σ(ω) = E[ω]ε[ω] = (E1[ω] + iE2[ω])ε[ω]. This leads to an
energy loss per oscillation in a test volume δV = δA · δs of cross-section δA and
length δs.

∆UδV =

∫
T

dtEAε[t]︸ ︷︷ ︸
force

· ∂
∂t

(sε[t])︸ ︷︷ ︸
velocity

= πδAδsE2ε
2 (G.18)

We now employ this model for our case, namely a pre-stressed, rectangular beam
of length l, width w and height h, corresponding here to the x,y,z-direction, respec-
tively. The origin of the coordinate system is centered in the beam. The resonator
performs oscillations in the z-direction and, as we consider a continuum elastic
model, there will be no dependence on the y-direction. For a beam of high aspect
ratio l � h and small oscillation amplitude, the displacement of the m-th mode
can be approximately written um[x, y, z] = um[x]. During oscillation, a small test
volume within the beam undergoes oscillating strain εm[x, z, t].
This strain arises because of the bending of the beam as well as its elongation as it is
displaced. The stress caused by the overall elongation is quadratic in displacement,
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therefore it occurs at twice the oscillating frequency.

εm[x, z, t] =
1

2

(
∂

∂x
um[x]<[exp[iωt]]

)2

︸ ︷︷ ︸
elongation

+ z
∂2

∂x2
um[x]<[exp[iωt]]︸ ︷︷ ︸

bending

=
1

2

(
∂

∂x
um[x]

)2
1

2
(1 + <[exp[2iωt]]) + z

∂2

∂x2
um[x]<[exp[iωt]] (G.19)

Inserting this into eq. G.18 and integrating over the cross-section w · h, the ac-
companying energy losses can be seen to separate into elongation and displacement
caused terms.

∆Uw·h = πsE2[2ω]
wh

8

(
∂

∂x
um[x]

)4

+ πsE2[ω]
wh3

12

(
∂2

∂x2
um[x]

)2

(G.20)

Integrating over the length yields the total energy loss of a particular mode ∆U =∫ l/2
−l/2 dx∆Uw·h. In the case that E2 is only weakly frequency-dependent, it turns out

that for our geometries the elongation term is several orders of magnitude (105−107)
smaller than the term arising from the bending. The energy loss therefore may be
simplified and writes

∆U ≈ ∆Ubending = πE2
wh3

12

∫ l/2

−l/2
dx

(
∂2

∂x2
um[x]

)2

(G.21)

G.6.2 Elastic Energy of a Pre-Stressed Beam

A volume δV subject to a longitudinal pre-stress σ0 stores the energy UδV when
strained; E1 is assumed to be frequency independent in the experimental range
(5-100 MHz)

UδV = sA

(
σ0ε+

1

2
E1ε

2

)
(G.22)

To apply this formula to the case of an oscillating pre-stressed beam, we insert
eq. G.19|t=0 (maximum displacement) and integrate over the cross-section to obtain

Uw·h =
1

2
E1

(
1

4
wh

(
∂

∂x
um[x]

)4

+
1

12
wh3

(
∂2

∂x2
um[x]

)2
)

+
1

2
swhσ0

(
∂

∂x
um[x]

)2

(G.23)
Analog to eq. G.20 we can omit the first term in the brackets; integrating over the
length yields

U ≈
∫ l/2

−l/2
dx
( 1

2
whσ0

(
∂

∂x
um[x]

)2

︸ ︷︷ ︸
elongation

+
1

24
E1wh

3

(
∂2

∂x2
um[x]

)2

︸ ︷︷ ︸
bending

)
(G.24)
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We can therefore divide the total energy into parts arising from the elongation and
the bending of the beam. Depending on the magnitude of the pre-stress, either of
the two energies can dominate as seen in Fig. 3a of the main text. We have checked

that the kinetic energy Ukin = 1/2ρ(ωm)2
∫ l/2
l/2

dx(um[x])2; (ωm/(2π), ρ: resonance

frequency, material density, respectively) equals the total elastic energy, as expected.

G.6.3 Frequency-dependent Loss Modulus

There is no obvious reason that the imaginary part of Young’s modulus E2 should
be completely frequency-independent. We therefore assume that E2 obeys a (weak)
power-law and chose the ansatz:

E2[f ] = E2(f/f0)a (G.25)

Fitting our data with the thus extended theory, we achieve a very precise agreement
of measured and calculated quality factors, as seen in Fig. S1. The resulting exponent
is a = 0.075; E2 varies therefore by 20% when f changes by one order of magnitude.
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Figure G.4: Resonance frequencies and quality factors of the resonators
a Measured quality factor and resonance frequency of several harmonics of beams
with different lengths (color-coded) are displayed as filled circles (same data as in
Fig. 2 of the main text). The resonance frequencies are reproduced by a continuum
model; we calculate the quality factors using a model based on the strain caused by
the displacement. In contrast to Fig. 2 of the main text and Fig. S2 we here allow
E2 to be (weakly) frequency-dependent.

G.6.4 Linewidth of the Mechanical Resonance

The elastic energy of a harmonic oscillator is given by U = 1/2meffω
2
0x

2
0 with

meff , ω0, x0 being effective mass, resonance frequency and displacement, respectively.
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If we assume the effective mass to be energy-independent, it applies ω0 ∝
√
U . Re-

calling the definition of the quality factor Q = 2πU/∆U ∝ U , one obtains for the
for the Full Width at Half Max (FWHM) of the resonance

∆ω =
ω0

Q
∝
√
U

U/∆U
=

∆U√
U

(G.26)

As in the main text, the energy depends on the applied overall tensile stress.
Figure G.5 shows a numerical calculation of the resulting linewidth vs. applied
stress; one can see that increase in energy loss per oscillation is dominated by the
increase in energy, resulting in a decreased linewidth. The exact effective mass is
included in this calculation; as it changes by less than 20%, the above assumption
is justified.
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Figure G.5: Linewidth of the mechanical resonance The calculated linewidths
(FWHM) for the fundamental mode of the beam with l = 35µm are displayed vs.
applied overall stress.

G.6.5 Microscopic Damping Mechanisms

We start with clamping losses as discussed, e.g., in ref. [7, 8], i. e. the radiation of
acoustic waves into the bulk caused by inertial forces exerted by the oscillating beam.
With a sound velocity in silicon of vSi ≈ 8 km/s, the wavelength of the acoustic
waves radiated at a frequency of 10 MHz from the clamps into the bulk will be
greater than 500µm, and thus substantially larger than the length of our resonators.
Considering each clamping point as a source of an identical wave propagating into the
substrate, one would expect that mostly constructive/destructive interference would
occur for in-/out-of-phase shear forces exerted by the clamping points, respectively.
With clamping losses being important, one would therefore expect that spatially
asymmetric modes with no moving center of mass exhibit significant higher quality
factors than symmetric ones a. Another way to illuminate this difference is that

aI. Wilson-Rae, private communication
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symmetric modes give rise to a net force on the substrate, whereas asymmetric
modes yield a torque. Since the measurement (Fig. 2) does not display such an
alternating behavior of the quality factors with mode index m (best seen for the
longest beam), clamping losses are likely to be of minor importance.

The next damping mechanism we consider are phonon-assisted losses within the
beam. At elevated temperatures, at least two effects arise, the first being ther-
moelastic damping: because of the oscillatory bending, the beam is compressed
and stretched at opposite sides. Since such volume changes are accompanied by
work, the local temperature in the beam will deviate from the mean. For large
aspect ratios as in our case, the most prominent gradient is in the z direction. The
resulting thermal flow leads to mechanical dissipation. We extend existing model
calculations [9] to include the tensile stress of our beams. Using relevant macroscopic
material parameters such as thermal conductivity, expansion coefficient and heat ca-
pacity we derive Q-values that are typically three to four orders of magnitudes larger
than found in the experiment. Therefore, heat flow can be safely neglected as the
dominant damping mechanism. In addition, the calculated thermal relaxation rate
corresponds to approximately 2 GHz, so the experiment is in the so-called adiabatic
regime. Consequently, one would expect the energy loss to be proportional to the
oscillation frequency, in contrast to the assumption of a frequency independent E2

and our experimental findings.
Another local phonon-based damping effect is the Akhiezer-effect [10]; it is a

consequence of the fact that phonon frequencies are modulated by strain, parame-
terized by the Grüneisen tensor. If different phonon modes (characterized by their
wave vector and phonon branch) are affected differently, the occupancy of each mode
corresponds to a different temperature. This imbalance relaxes towards a local equi-
librium temperature, giving rise to mechanical damping. In a model calculation ap-
plying this concept to the oscillatory motion of nanobeams [11], the authors find in
the case of large aspect ratios length/height that the thermal heat flow responsible
for thermoelastic damping dominates the energy loss by the Akhiezer effect. We
thus can safely assume this mechanism to be also negligible in our experiment.

G.6.6 Reduced Quality Factor

We fabricated a set of resonators, shown in Fig. S1a, that showed lower quality fac-
tors than the ones presented in the main text (Fig. 2); we attribute this reduction to
a non-optimized RIE-etch step. As in the main article, it is possible to reproduce the
quality factors using a single fit parameter, namely the imaginary part of Young’s
modulus E2. The ratio of the two sets of quality factors is displayed in Fig. S1 b
and can be seen to be around 1.4 with no obvious dependence on resonance fre-
quency, mode index or length. A non-optimized etch step causes additional surface
roughness and the addition of impurities, thereby increasing the density of defect
states. As there is no obvious reason why another damping mechanism should be
thereby influenced, we interpret this as another strong indication that the dominant
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microscopic damping mechanism is caused by localized defect states.
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Figure G.6: Comparison of the resonance frequencies and quality factors
of the sets of resonators a Measured quality factor and resonance frequency of
several harmonics of beams with different lengths (color-coded) are displayed as
filled circles. The resonance frequencies are reproduced by a continuum model; a
model based on the strain caused by the displacement allows us to calculate the
quality factors, shown as hollow squares. The uniform reduction of the Q-factors is
attributed to an non-optimized RIE-etch. b The ratio of the quality factors of the
two sets resonators (Fig. 2 main article and Fig. S2a) are displayed vs. frequency,
being approximately constant.

G.6.7 Spatially Inhomogeneous Loss Modulus

Our model calculation assumes a spatially homogeneous imaginary Young’s Modulus
E2. In the view of thickness-dependent quality factors of Micro-Cantilevers [12] and
our own experimental findings, we show that a generalization has no influence to
our model.

We let E2 now depend on the position along the direction of displacement of the
resonator E2 = E2[z]. The elastic energy is obviously not affected. The energy loss
now reads with ε[x, z] ≡ zε0[x]:

∆U = π

∫
V

E2[z]ε[x, z]2 = πw

∫ h/2

−h/2
dzz2E2[z] ·

∫ l/2

−l/2
dxε0[x]2 (G.27)

The integral can be separated into the x and z direction; we now regard the ratio
of two different modes (i, j) with the same E2[z] (irrespective of whether the indices
refer to different harmonics or beam lengths):

∆Ui
∆Uj

=

∫
h
dzz2E2[z]∫

h
dzz2E2[z]

·
∫
l
dxε2i,0∫
l
dxε2j,0

(G.28)
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The ratio of the energy loss and therefore the quality factors can be seen not to be
influenced by the exact z-dependence, the same applies if one regards E2 = E2[y].
In other words, our model will hold true for any variance but cannot resolve these
either.

G.7 Nonlinear Damping

In this chapter, we will further specify the contributions of the neglected terms in
the damping (eq. G.18) and stored energy (eq. G.19). The neglected terms constitute
the slope of the spatial profile; it is on the order of ”amplitude/anti-node separation”
and therefore much less than one. These terms enter the equation to the forth order
in oscillation amplitude whereas the dominant ones are quadratic. At moderate
amplitudes they can therefore be safely neglected.

Yet at high amplitudes their contribution increases; Figs. G.7(a,b) show a cal-
culation of the energies (dissipations) involved vs. oscillation amplitude. At high
amplitudes, the quality factor (i.e. the ratio of the sums of both) can be seen to
degrade at high amplitudes, see Fig. G.7(c).
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Figure G.7: (Non)linear Energies and Losses The calculated elastic energies a,
energy losses b are shown vs. oscillation amplitude, separated into linear (black)
and nonlinear (red) constitutes. The 9th harmonic of a 35 µm beam is regarded. c
The resulting quality factor exhibits clear deviations at large amplitudes.

Yet, in complete analogue to the hardening string (see chapters 2,G.3) nonlinear
effects set in, the critical amplitude (the onset of bistability) can be calculated from
the data in Fig. G.7(b). The restoring force of a nonlinear oscillator is integrated to
yield the energy (see eq. G.11).

F

m
= ω2

0x+ α3x
3 ⇒ U =

1

2
mω2

0x
2︸ ︷︷ ︸

≡U2[x]

+
1

8
mα3x

4︸ ︷︷ ︸
≡U4[x]

(G.29)
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The critical amplitude writes [5]:

xcrit =
2
√

2ω0

33/4
√
Qα3

= x

√
U2

U4

√
2

33/4
√
Q

(G.30)

From the figure it can be estimated that at an amplitude of≈ 200 nm the energies
are equal; one therefore calculates a critical amplitude of 0.8 nm. However, a clear
deviation in quality factor requires 50 nm ampltiude, almost two orders of magnitude
higher and therefore difficult to measure. The hysteresis at that amplitude can be
estimated with a similar calculation to be approximately 1 MHz.
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an seinem Lehrstuhl die Promotion durchzuführen. Obwohl die Zusammenarbeit
mit einigen Anfangsschwierigkeiten versehen war, ist es nicht zuletzt seiner Philan-
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