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Zusammenfassung

Der spektakuläre Fortschritt auf dem Gebiet der ultrakalten Quantengase be-

ruht auf der Kontrolle von internen- und Bewegungs-Quantenzuständen sowie

Kollisions-Wechselwirkungen. Atomchips ermöglichen solche Kontrolle von Quan-

tensystemen in kompakten, robusten und skalierbaren Aufbauten.

In dieser Dissertation berichte ich über Experimente auf einem Atomchip mit

integrierten Wellenleitern, deren Mikrowellen-Nahfelder als eine neue Methode zur

kohärenten Manipulation von ultrakaltem Rubidium verwendet werden.

Mikrowellen-Nahfeldpotentiale vereinen die Flexibilität und Vielseitigkeit von

optischen Fallen mit der Robustheit und Kon�gurierbarkeit von statischen Mikro-

fallen. Die Mikrowellenpotentiale hängen vom internen atomaren Hyperfeinzustand

ab, was wir für die zustandsselektive Aufspaltung von Bose-Einstein Kondensa-

ten verwenden. Wir demonstrieren erstmalig die kombinierte kohärente Manipu-

lation von internen- und Bewegungs-Zuständen in einem Atominterferometer auf

einem Atomchip, mit Kennzeichnung der Interferometerarme durch interne Hy-

perfeinzustände. Weiter verwenden wir die Nahfeld-Potentiale um via zustandsab-

hängiger Kollisions-Wechselwirkungen gequetschte Spin-Zustände für die Quanten-

Metrologie herzustellen. Ausserdem existieren sehr vielversprechende Vorschläge,

mittels dieser Potentiale ein Quanten-Phasengatter zu realisieren.

Das Vermessen von Mikrowellen-Feldern ist bedeutsam für die Entwicklung

von Mikrowellen-Komponenten sowie in der Wissenschaft, z.B. zur Vermessung

der Feld-Homogenität in den Wechselwirkungs-Regionen einer Atomuhr.

Wir haben eine Technik entwickelt, die Wolken von ultrakalten Atomen als

emp�ndliche, abstimmbare, und nichtinvasive Sonden für das Abbilden von Mikro-

wellen-Feldverteilungen mit einer räumlichen Au�ösung im Mikrometerbereich be-

nutzt. Die Mikrowellenmagnetfeld-Komponenten treiben Rabi-Oszillationen zwi-

schen atomaren Hyperfeinzuständen, deren Resonanzbedingung mittels eines sta-

tischen Magnetfelds abgestimmt werden kann. Das Auslesen geschieht mit zu-

standsselektiver Absorptionsabbildung. Eine quantitative Auswertung ist einfach

und es ist möglich die Verteilung der verschiedenen Polarisationskomponenten

sowie Phasen des Mikrowellenmagnetfelds zu rekonstruieren. Die Mikrowellen-

Nahfeldverteilung um einen der Wellenleiter auf dem Atomchip wird vermessen

und die damit korrespondierende Stromverteilung auf dem Wellenleiter wird re-

konstruiert. Für unsere experimentellen Parameter können wir Amplituden des

Mikrowellenmagnetfelds von bis zu 2× 10−4 G messen.

Die vorgestellten Experimente sind Basis für die Realisierung transportabler,

auf Verschränkung basierender Quanten-Interferometer, Quanten-Phasengatter und

eines neuen Verfahrens zur Charakterisierung von Mikrowellen-Feldverteilungen.





Abstract

The spectacular progress in the �eld of ultracold quantum gases is intimately

connected with the availability of sophisticated techniques for quantum-level con-

trol of internal states, motional states, and collisional interactions. Atom chips

provide such control in compact, robust, and scalable setups, which makes them

attractive for both applications and fundamental studies.

In this thesis I report on experiments that use a new method for coherent

manipulation of ultracold atoms. The method is based on microwave near-�elds,

provided by a waveguide structure that is fully integrated on an atom chip. We

generate microwave near-�eld potentials that combine the versatility of optical

traps with the robustness and tailorability of static magnetic microtraps. These

potentials depend on the internal atomic state, and we use them for state-selective

splitting of Rb Bose-Einstein condensates. We show for the �rst time combined

coherent manipulation of internal and motional states on an atom chip, realizing

a trapped-atom interferometer with internal state labeling of the interferometer

paths. Moreover, we use microwave near-�eld potentials for the preparation of

spin-squeezed states for quantum-enhanced metrology through controlling state-

dependent collisional interactions. In addition, very promising proposals exist for

the implementation of a quantum phase gate using these potentials.

Measuring microwave �elds is important for engineering of microwave devices

as well as in science, e.g. to characterize the �eld homogeneity in the interaction

regions of an atomic clock. We develop a novel technique that uses clouds of

uncondensed ultracold atoms as sensitive, tunable and non-invasive probes for mi-

crowave �eld imaging with micrometer spatial resolution. The microwave magnetic

�eld components drive Rabi oscillations on atomic hyper�ne transitions whose fre-

quency can be tuned with a static magnetic �eld. Readout is accomplished using

state-selective absorption imaging. Quantitative data extraction is simple and it is

possible to reconstruct the amplitudes and phases of the di�erent microwave mag-

netic �eld components. While we demonstrate 2D imaging, an extension to 3D

imaging is straightforward. We use the method to determine the microwave near-

�eld distribution around the on-chip waveguide and reconstruct the corresponding

current distribution. For our experimental parameters, the method provides a mi-

crowave magnetic �eld sensitivity of ∼ 2 × 10−4 G, which can even be improved

further with variants discussed.

The experiments presented in this thesis open the path for the realization

of portable quantum-enhanced interferometer devices, the implementation of a

quantum phase gate as well as for a new generation of microwave �eld sensors.
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Introduction

Ultracold neutral bosonic atoms are an ideal system to study quantum ef-
fects. They can be cooled relatively easily to ultra low temperatures, where
quantum effects such as Bose-Einstein condensation [1] become relevant. The
atoms are isolated amazingly well from the environment by levitating them
either in a magnetic [2] or optical [3] trapping potential inside a UHV vac-
uum chamber. Furthermore, most relevant atomic species have an internal
hyperfine structure which can be manipulated in the experiment, and which
is well protected from the environment. For quantum information processing,
for example, internal quantum states represent qubits, while coherent atomic
motion in combination with collisions can be used to generate entanglement.

On an “atom chip” [4, 5, 6, 7], magnetic trapping potentials are generated
by currents on wires that are microfabricated on a chip substrate. In the
near-field of the wires, complex and tight potentials can be generated, which
can vary on a micrometer lengthscale, realizing e.g. a magnetic conveyor belt
for atoms [8]. Atom chips combine the excellent coherence properties of ul-
tracold neutral atoms [9] with a compact, robust and scalable setup through
microfabrication [10, 11], realizing a versatile “quantum laboratory on a mi-
crochip”. Atom chips have already been used to investigate the coherence
of internal hyperfine states [9], to study cavity quantum electrodynamics
[12], low-dimensional quantum gases [13], magnetic lattices [14] and atom
interferometry [15, 16, 17, 18, 19, 20, 21]. Atoms on atom chips have been
used as probes for atom-surface interactions [22, 23], the Meissner effect [24],
electric and magnetic field distributions [25, 26, 27], and thermal magnetic
near-field noise [28, 29]. Chip-based atom clocks are currently being devel-
oped [9, 30, 31], portable setups have already been built [32, 33] and key
components are now commercially available.1

However, a severe limitation of atom chips is that techniques to gener-
ate entanglement have not been experimentally available so far. The con-
trolled generation of entanglement is currently of great interest in the field
of ultracold atoms, both because a better understanding of this puzzling fea-

1www.coldquanta.com
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Introduction

ture of quantum mechanics is desired, and because it may form the basis of
future technologies such as quantum information processing [34], quantum
simulations [35], and quantum-enhanced metrology [36, 37, 38, 39]. Several
proposals for the on-chip generation of entanglement for individual atoms
[40, 41, 42, 43, 44] and ensembles [45, 46] exist. An essential ingredient of
many of these proposals is a hyperfine-state dependent potential [43, 46] that
allows one to condition interactions on the internal state, resulting in entan-
glement. In the work presented in this thesis, we realize such a potential for
the first time on an atom chip [21] and use it to generate entangled states of
a BEC [47].

We are working with 87Rb, which has two hyperfine levels |F = 1,mF =
−1〉 ≡ |1〉 and |F = 2,mF = 1〉 ≡ |2〉 (the qubit or clock states) which are
magnetically trappable and which have the same magnetic moment, making
their energy difference insensitive to magnetic field fluctuations to first order
[48].2 For the robust state pair |1〉 and |2〉, a combination of static electric and
magnetic fields can not provide state selective potentials for entanglement
generation [43]. Optical traps are also impractical because if operated at a
detuning which is large compared to the hyperfine splitting, the differential
potential is only weak, whereas at a detuning comparable to the hyperfine
splitting, the differential potential can become strong, but problems with
decoherence due to photon scattering arise [43]. Furthermore, the integration
of optical components on an atom chip is a non-trivial task.

The solution is to use microwave potentials [49, 50], which can be made
state-selective via microwave frequency and polarization. Spontaneous de-
cay is negligible and they can be tailored on a µm scale using the strong
microwave near-field dependence around a waveguide structure [51] fully in-
tegrated on an atom chip. Microwave near-fields can be extremely strong:
When microwave trapping with far-field radiation was demonstrated in 1994
[50], a cavity with a circulating microwave power of several hundreds of kilo-
watts was used to reach a resonant Rabi frequency of up to |Ωfar−f./2π|=
36 MHz. In the near-field of the micron-sized waveguide integrated on our
atom chip, we measure a Rabi frequency |Ωnear−f./2π| ∼1 MHz with only
∼10 mW microwave power at a distance of 8.5 µm from the on-chip waveg-
uide. In addition, the achievable gradients in the near-field |∇Ωnear−f.| can
be orders of magnitude stronger than achievable in the far-field.

State-dependent microwave potentials allow us to adjust the spatial wave
function overlap of states |1〉 and |2〉. This enables the realization of a
trapped-atom interferometer with internal-state labeling of the interferome-

2The energy difference between two states is the quantity that is measured e.g. in an
atomic clock.
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ter arms [52, 21], paving the way to portable atom interferometric sensors
[53, 54], as well as the controlled generation of multi-particle entanglement
in the form of spin-squeezed states [46, 47] and entangling quantum gates
[43].

This thesis

I report on the design and fabrication of a novel atom chip with micron-sized
integrated microwave guiding structures, which exhibit strong microwave
near-field gradients. We develop a sensitive, tunable and non-invasive method
to measure and reconstruct a microwave magnetic field distribution using
clouds of uncondensed ultracold atoms [55, 56]. We use it to characterize
the microwave near-field distribution of the waveguide on our atom chip.
Furthermore, we use the state-selective microwave potentials for the imple-
mentation of a trapped-atom interferometer with internal state labeling of
the interferometer arms, realizing for the first time combined coherent ma-
nipulation of internal and motional states on an atom chip [21]. We apply
the state-selective potentials for the production of spin-squeezed states [46],
where we measure a spin noise reduction of −3.7 ± 0.4 dB (−2.5 ± 0.6 dB
useful squeezing) [47], which implies four-partite entanglement between the
condensate atoms [57].

Microwave field imaging. − Today, Monolithic Microwave Integrated
Circuits (MMICs) are of great importance in science and technology. Func-
tion and failure analysis is of crucial importance for the design of MMICs
as well as for simulation verification [58]. External port measurements (e.g.
using a network analyzer) offer only limited insight. The microwave near-
field distribution on the device gives much more information, enabling spe-
cific improvement. We develop a non-invasive method to characterize a
microwave near-field distribution using clouds of non-degenerate ultracold
atoms [55, 56], which works by releasing a cloud of atoms to free fall, and
using the microwave near-field to drive resonant Rabi oscillations on different
hyperfine transitions, which can be detected using state-selective absorption
imaging [48]. Since the microwave field can be probed on a relatively large
region of interest at once, this method is time efficient. Moreover, the distri-
bution of the microwave magnetic field components and their phases can be
fully reconstructed.

We use this method to characterize the microwave near-field distribution
of the on-chip waveguide and reconstruct the current distribution on the
waveguide wires by comparing the measured microwave field distribution to
simulations.
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For our experimental parameters, this imaging technique provides a mi-
crowave magnetic field sensitivity down to 2× 10−4 G at a spatial microwave
field resolution of s = 8µm. With variants presented, the microwave mag-
netic field sensitivity could be increased to 5× 10−9 G, which is comparable
to the DC magnetic field sensitivity reached with SQUIDs, but at a much
higher spatial resolution [27]. While we demonstrate 2-dimensional imaging,
an extension to 3D imaging slice-by-slice is straight forward.

Trapped-atom interferometry. − In a second set of experiments,
we use microwave near-fields for state-selective splitting of mesoscopic Bose-
Einstein condensates (BECs) containing about 400 atoms. We measure the
coherence of the splitting process by implementing a trapped-atom inter-
ferometer with internal state labeling of the interferometer arms [21]. This
demonstrates for the first time combined coherent control of internal and
motional states on an atom chip. Internal-state labeling of the interferom-
eter arms allows for convenient interferometer readout because interference
fringes do not have to be resolved spatially. Instead, only the numbers of
atoms in the two states have to be measured, which can be done with high
accuracy.

Atom interferometry holds great promise for the detection of inertial ef-
fects like acceleration, rotation and gravitation [59]. The intrinsic sensitivity
of atom interferometers e.g. to rotations is about eleven orders of magnitude
higher than that of optical interferometers, assuming equal particle flux [60].
In combination with the compactness of atom chip setups, this holds great
promise for real-life applications of atom interferometers, e.g. for resource
exploration [61] or for precision measurements in space.

The scalability through microfabrication makes quantum information pro-
cessing on atom chips particularly attractive. The reported experiments
demonstrate a key ingredient for the implementation of a chip-based con-
trolled phase gate for single atoms [43].

Production of spin-squeezed states. − The state-selective potentials
can be used to tune interactions in a state-dependent way for atoms such as
87Rb that do not have convenient Feshbach resonances [21]. Controlling the
wave function overlap of states |1〉 and |2〉 in a two-component condensate
allows for the generation of spin-squeezed states [46], as has been shown in one
of our recent experiments [47]. These states are useful for quantum metrology
to surpass the standard quantum limit of interferometric measurement [39].
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Organization of chapters

The first chapter gives an introduction to atom chips. I describe magnetic
trapping on atom chips, present our robust clock or qubit states and give
a review of Bose-Einstein condensation. Special emphasis is placed on two-
component BECs and the origin of our state-selective microwave potentials.

The second chapter introduces our atom chip with integrated microwave
structures. I describe the design of the waveguide structures, the atom chip
fabrication, and its DC and microwave characterization.

The third chapter lines out our experimental setup, with special focus
on the vacuum system, the magnetic µ-metal shielding, the DC, RF and mi-
crowave sources, and the experimental control and data acquisition system.
I give a brief description of the production of mesoscopic BECs and describe
a first set of experiments, where we show that large Rabi frequencies and
gradients can be obtained in the microwave near-field.

The fourth chapter shows a first set of main results of this thesis, where
I describe the new microwave field imaging method that we developed. I
present its theory, describe two methods for quantitative data extraction
and use it to characterize the microwave near-field distribution around the
coplanar waveguide on our chip. The sensitivity of this method is estimated,
and variants for increasing the microwave sensitivity and the spatial resolu-
tion are discussed.

The fifth chapter presents a second set of main results, where we demon-
strate the state-selectivity of the microwave near-field potentials and where
we show full coherent control of internal and motional wave functions by
implementing a trapped-atom interferometer with internal state labeling. I
discuss several sources of noise in our experiment and elaborate on the role
of mean-field effects in the splitting experiments.

The sixth chapter presents the application of the state-dependent potentials
for the on-chip generation of multi-particle entanglement. I briefly describe
an experiment where we produce and characterize spin squeezed states with
two-component BECs. Furthermore, I line out how our state-selective po-
tentials could be used for the on-chip implementation of a controlled phase
gate for single atoms.
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Chapter 1

Atom chips and coherent
manipulation of ultracold atoms

The magnetic potentials for the first magnetic atom traps were produced by
macroscopic coils. While magnetic fields produced in such a way allow for the
creation of large trapping volumes, the tailorability of the potentials is only
very limited. This is due to the fact that the magnetic fields can only vary on
a length scale comparable to the distance of the atoms to the field generating
devices and the size of them. This poses limitations on achievable gradients.
Complex potential landscapes e.g. forming a micron-sized beam splitter are
not readily implementable. On atom chips on the other hand, the atoms
are at just some µm distance from the current-carrying wires that create the
magnetic fields. This allows the realization of much higher gradients. There
is great flexibility in the arrangement of the wires on the chip, such that
complex geometries can be implemented. Using microfabricated multi-layer
wire structures on an atom chip, nearly arbitrary potential configurations can
be implemented. Therefore, atom chips bring the scalability and versatility
of microfabrication to the world of atomic physics and quantum optics.

In the following, I will present the basic theory relevant for trapping
neutral 87Rb atoms in chip traps. I discuss the production and properties
of two-component Bose-Einstein condensates (BECs), before state-selective
microwave potentials are described. For further information on chip traps,
the reader is also referred to some recent atom chip review articles [62, 5, 6, 7].

1.1 Magnetic trapping

Early experiments on trapping of neutral atoms with magnetic fields were
reported in 1985 [2]. Soon after that, the density and the number of trapped

11



Atom chips and coherent manipulation of ultracold atoms

Figure 1.1.1: Illustration of an atom with magnetic moment µ in a static
magnetic field B. The atomic magnetic moment µ is precessing around B
at the Larmor frequency ωL. The angle θ between B and µ is constant.

atoms was improved by many orders of magnitude using superconducting
traps and different loading schemes [1, 63, 64, 65]. Since then, magnetic
traps became the every day workhorses in cold atoms experiments. The
basics of magnetic trapping is presented in the following.

The potential energy EB(r) of a neutral atom with magnetic moment µ
in a static magnetic field B(r) is given by

EB(r) = −µ ·B(r). (1.1.1)

The magnetic moment µ is precessing around B(r) (see Figure 1.1.1) at the
Larmor frequency

ωL(r) =
µB(r)

~
. (1.1.2)

This precession stabilizes the projection µ·B(r). Classically, µ can have
any orientation relative to B(r). Quantum mechanically, the projection of
µ onto B(r) has discrete values given by the quantum number mF of the
z-component of the total angular momentum operator F = I + J, where I is
the nuclear-spin operator and J the operator for the total angular momentum
of the electron. Therefore atoms in a magnetic field B(r) have a potential
energy

EB(r) = µBgFmF |B(r)| , (1.1.3)

with µB the Bohr magneton and gF the Landé g-factor (see Figure 1.1.2).
The formula above is valid as long as EB � ∆Ehfs, with ∆Ehfs the hyperfine
splitting. The Landé factor gF is given by [66]

12



1.1 Magnetic trapping

DE = 6.835 GHzhfs h·

F=2 (gF=1/2)

F=1 (g =-1/2)F

m =-2F -1 0 1 2

VZ

Figure 1.1.2: Hyperfine term scheme of the 52S1/2 ground state of 87Rb in
a static magnetic field B. The Zeeman shift between the different mF levels
is given by VZ = µBB

2
. Weak-field seeking states - states with gFmF > 0 -

are indicated in red.

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)

+gI
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)

≈ gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
. (1.1.4)

The approximation above neglects the nuclear term, which would only be a
correction of the order of 0.1%.

An inhomogeneous magnetic field exerts a force on atoms with a finite
magnetic moment µ. The force is given by

F(r) = −∇EB(r) = −µBgFmF∇ |B(r)| . (1.1.5)

Atoms with gFmF > 0 (weak field seeking states) are attracted to regions of
lower magnetic fields while for gFmF < 0 (strong field seeking states) atoms
get accelerated towards regions of high magnetic field. According to Wing’s
theorem [67], in free space a magnetic field cannot have a local maximum,
but a local minimum. Therefore only atoms with gFmF > 0 can be trapped
in static magnetic traps.1

An atom moving in a magnetic trap experiences a magnetic field B that
is changing in direction and magnitude over time. For mF to stay constant
during movement of the atoms in the trap, the change of the direction of
the magnetic field θ(t) has to be slow compared to the Larmor precession
frequency ωL of the magnetic moment µ:

1Atoms in a strong field seeking state can be “trapped” along Kepler guides [68].
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dθ

dt
� ωL =

µB

~
(1.1.6)

An upper bound for dθ
dt

is the trap frequency. A change in gFmF is called
(Majorana) spin flip. If mFgF ≤ 0, then the atom is lost from the trap,
because for gFmF = 0 the atom sees no magnetic trapping potential and for
gFmF < 0 the formerly attractive potential becomes repulsive. Therefore,
one has to avoid regions of vanishing magnetic field in an atom trap when
designing it.

A trap is implemented by realizing a spatially varying magnetic field
landscape B(r). In the following, some magnetic trap field configurations
are presented.

1.2 Quadrupole and Ioffe-Pritchard traps

The traps used in our experiment can be divided into two classes: Quadrupole
traps, which have a vanishing magnetic field in the trap center, and Ioffe-
Pritchard traps, where the magnetic field at the bottom of the trap is finite
[6].

1.2.1 Quadrupole traps

In a quadrupole trap, the magnetic field vanishes at the trap minimum. The
magnetic field around the minimum can be approximated by a linear function

B = B′xxex +B′yyey +B′zzez. (1.2.1)

Maxwell’s equations require B′x + B′y + B′z = 0. Quadrupole traps suffer
from trap loss due to Majorana spin flips near the trap center. For clouds
which are relatively hot, the atoms spend most of the time away from the
zero crossing of the magnetic field, and the spin flip loss is only weak. In
our experiment, a quadrupole magnetic field configuration is used during the
magneto-optical trap (MOT) stage.

1.2.2 Ioffe-Pritchard traps

The lowest-order (and therefore tightest) trap which can have a nonzero field
in the minimum is a harmonic trap [1]. A magnetic trap with non-vanishing
bias field along x has an axial field Bx = B0 + B′′ x

2

2
. Applying Maxwell’s

equations and assuming axial symmetry, the trapping field has the form [1]
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B = B0

 1
0
0

+B′

 0
−y
z

+
B′′

2

 x2 − 1
2
(y2 + z2)
−xy
−xz

 . (1.2.2)

The magnetic field around the trap center, expanded up to second order can
be written as [1]

B(r) ≈ B0 +
B′′

2
x2 +

1

2

(
B′2

B0

− B′′

2

)(
y2 + z2

)
. (1.2.3)

This results in harmonic confinement of atoms with magnetic moment µ =
µBgFmF and mass m with axial (radial) trap frequencies ωx (ω⊥) [69]

ωx =

√
µ

m
B′′, ω⊥ =

√
µ

m

(
B′2

B0

− B′′

2

)
. (1.2.4)

This trap configuration was first proposed and demonstrated for atom trap-
ping by Pritchard [63, 70, 1]. It is similar to the configuration discussed by
Ioffe for plasma confinement in the 1960s [1].

1.3 Static magnetic traps on atom chips
There are various possibilities to generate magnetic potentials on atom chips.
Among those are current conducting wires [7], permanent magnets [71] and
superconducting circuits [72]. On our atom chip we use normal conducting
wire structures made out of gold, that have been patterned using photo
lithography. The following describes the trapping principles using on-chip
wires.

1.3.1 Wire guide

If a wire carries a current I, a circular magnetic field around that wire is
created (see illustration on Figure 1.3.1). In the following we will assume the
wire to be infinitely thin. The superposition of wire’s magnetic field with
an homogeneous, external magnetic field Be, oriented perpendicular to the
wire, leads to a region of vanishing magnetic field, at a distance of

z0 =
µ0I

2πBe

. (1.3.1)

Since the geometry is translational invariant along the direction of the wire,
the region of vanishing magnetic field is also a line along that direction.
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e

e

e

Figure 1.3.1: Wire guide trapping potential. The trapping potential is
generated by the superposition of the magnetic field from a straight wire,
biased by a current I and an external, homogeneous magnetic field Be, which
is oriented perpendicular to the wire. At a distance z0 = µ0I

2πBe
the magnetic

fields compensate each other, forming a two dimensional quadrupole trap in
the yz-plane. Weak-field seeking atoms can be trapped in two dimensions,
but are not confined along x. The figure is adapted from [6].

Near that magnetic field minimum line, the transverse magnetic field is well
approximated by a two-dimensional quadrupole field with gradient B′ =
− µ0I

2πz2
0
.

The wires used in our experiment are not infinitely thin and free standing,
but have a rectangular cross section (thickness t, width w), and are fabricated
on a substrate. For distances d from that wire, with d� w , t, the magnetic
field around the wire is well approximated by that of an infinitely thin wire.

Weak-field seeking atoms in such a magnetic potential are trapped in
two dimensions, but are free to move in the direction along the wire. Three
dimensional confinement can be achieved either by bending the ends of the
wire or by crossing the wire with an additional wire (the so called dimple
trap). Both configurations are discussed in the following.

16



1.3 Static magnetic traps on atom chips

-100 -50 0 50 100

10

20

30B [G]

x [µm]
0 50 100

0

50

100

150

]
G[

B

z [µm]

0 50 100

0

50

100

150

]
G[

B

z [µm]
-100 -50 0 50 100

10

20

30
B [G]

x [µm]

Be

Be

I

I

Quadrupole
“U”-trap

Ioffe-Pritchard
“Z”-trap

x

y

z

a)

b)

L

L

Figure 1.3.2: Wire configuration for a quadrupole (a) and a Ioffe-Pritchard
trap (b). While the “U”-shaped wire configuration in (a) results in a trap
minimum with vanishing magnetic field, wires shaped like a “Z” (b) result in
a magnetic field configuration with finite magnetic field at the trap center.
For this calculation, length L = 250µm, wire-width w = 50µm and I = 2 A.
The bias-field along y is Be = 54 G (dashed lines) and 162 G (solid lines).
The Figure is adapted from [6].

1.3.2 U / Z shaped wire

Three dimensional trapping can be provided by bending the wire ends at right
angles to form either a “U” or a “Z” (see Figure 1.3.2). In both cases, the
magnetic fields from the currents in the input leads provide axial confinement,
while the central part of the wire generates radial confinement.

For the case of a “U”, the magnetic fields from the input leads compen-
sate each other at x = 0, thereby forming a three dimensional quadrupole
potential with field zero at x = 0, y > 0 and z ≈ z0.

In the case of a “Z”, the magnetic fields from the input leads do not
compensate each other, leading to a finite field in the trap center at x = 0.
The trapping potential is a three-dimensional Ioffe-Pritchard potential.

1.3.3 Dimple trap

A very versatile Ioffe-Pritchard trap configuration is the dimple trap above
a wire crossing (see Figure 1.3.3). The wire along x with current I0 together
with Be,y produce a two-dimensional quadrupole field in the yz-plane, with
minimum at z = z0, y = 0, and no longitudinal confinement along x. A
longitudinal magnetic field Be,x together with a current I1 along y removes
the field zero and provides longitudinal confinement. For sufficiently small
I1 � I0, the transverse confinement is nearly unchanged and the dimple trap
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Be,y

Be,x

|B0(x)|

zm

Figure 1.3.3: Dimple trap above a wire crossing. The magnetic field of the
current I0 together with the homogeneous magnetic field Be,y creates a 2d
quadrupole potential in the yz-plane, where the atoms are not confined along
x. The superposition of the magnetic field from I1 together with the bias
field Be,x modulates the magnetic field along the x-axis and provides three
dimensional confinement. Typically I1 � I0, for which the symmetry of the
2d quadrupole is only weakly distorted. Larger values twist the quadrupole
guide as indicated. The Figure is adapted from [62].

minimum is located at zdimple ≈ z0 and ydimple = 0. The trap frequencies can
be approximated by [69]

ωx =

√
µ

m

µ0I1

πz3
0

and ω⊥ =

√
µ

m

µ2
0I

2
0

4π2z4
0 |Be,x + µ0I1/2πz0|

. (1.3.2)

Larger ratios of I1
I0

lead to a displacement and twisting of the trap as illus-
trated in Figure 1.3.3.

The dimple trap constitutes a building block for adjustable, more complex
trap geometries like multi well configurations [43] or arrays of atom traps.

1.4 Breit-Rabi formula

The magnetically trappable hyperfine states |F = 1,mF = −1〉 ≡ |1〉 and
|F = 2,mF = 1〉 ≡ |2〉 (the clock-states) have nearly identical magnetic mo-
ments µ and therefore are very promising for the on-chip implementation of
an atomic clock [9, 30, 31] and as qubit basis states for quantum information
processing (QIP) [43]. In the following I describe their energy difference ∆E
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1.5 Bose-Einstein condensation

and differential magnetic moment ∆µ as a function of the external magnetic
field B.

The formula (1.1.3) on page 12 is the result of a perturbative calculation
of EB using eigenstates |F,mF 〉 of the operator F = J + I. For stronger
magnetic fields, the ground state 52S1/2 of 87Rb is more accurately described
by the Breit-Rabi Hamiltonian [73, 66]:

H = AhfsI · J + µBB(gJJz + gIIz). (1.4.1)

Even though
∣∣∣ gIgJ ∣∣∣ ≈ 10−3, the coupling of I to the magnetic field B is not

completely negligible, especially for spectroscopic experiments. In general,
the eigenstates of Eq. (1.4.1) have to be determined by numerical diagonal-
ization of the Hamiltonian. An analytical formula exists for the ground state
manifold of a D transition, the Breit-Rabi formula [66]

EF,mF = − ∆Ehfs

2(2I + 1)
+ gIµBmF ±

∆Ehfs

2

(
1 +

4mFβ

2I + 1
+ β2

)1/2

, (1.4.2)

where ∆Ehfs = Ahfs(I + 1
2
) is the hyperfine splitting and β = (gJ−gI)µBB

∆Ehfs
,

see Appendix B for numerical values. mF = mI±mJ (the ± sign is the same
as in Eq. (1.4.2)).

The Breit-Rabi eigenenergies as a function of the magnetic field are il-
lustrated in Figure 1.4.1. At a magnetic field of B♦ = 3.229 G, the clock-
states |1〉 and |2〉 have to first order a constant differential Energy ∆E =
E2,1 − E1,−1=h · 6.834678113 GHz as a function of (B − B♦), and therefore
they share the same magnetic moment µ. The differential magnetic moment
between |1〉 and |2〉 is given by ∂(∆E)

∂B
= ∆µ2,1

1,−1 = 2h·431 Hz
G2 ·(B−B♦)+O(B2)

[74]. The common magnetic moment for |1〉 and |2〉 maximizes the coherence
time in the presence of magnetic field fluctuations.

For strong magnetic fields, where the interaction with the magnetic field
dominates the hyperfine interaction, we enter the Paschen-Back regime, where
I and J couple independently to B.

1.5 Bose-Einstein condensation
Bose-Einstein condensation, which is the macroscopic occupation of a single-
particle quantum state of motion, has opened up the possibility to explore
quantum phenomena on a macroscopic scale. The achievement of Bose-
Einstein condensation on an atom chip [75] has significantly lowered the
technical complexity required to produce this fascinating state of matter,
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Figure 1.4.1: Energy of the hyperfine levels as a function of the static mag-
netic field B. (a) The energy of the different |F,mF 〉 sublevels for the 52S1/2

ground state of 87Rb for values of B of up to 5 × 103 G = 0.5 T. The clock-
states |1,−1〉 ≡ |1〉 and |2, 1〉 ≡ |2〉 are indicated in red. The slope shows
that for high and low values of B, different hyperfine levels are magnetically
trappable (i.e. those with positive slope). (b) Energy difference between |1〉
and |2〉 (with an offset of 6.834682610 GHz substracted) as a function of
B. At the sweetspot B♦=3.229 G, both states have a vanishing first order
differential Zeeman shift. The Figure has been taken from [69].
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1.5 Bose-Einstein condensation

and portable devices have already been implemented [32]. Using a chip trap
makes it possible to realize much more complex potentials. Furthermore, the
chip can also constitute an interface between the Bose-Einstein condensate
(BEC) and different types of (quantum) technology such as superconducting
structures [76, 24, 72], optical single atom detectors [12], (reconfigurable)
permanent magnetic structures [77], and nanomechanical resonators [78] to
name just a few.

Bose-Einstein condensation occurs in thermal equilibrium, when entropy
is maximized by putting a macroscopic population of bosonic atoms into the
ground state of the system.2 Since only atoms in an excited state contribute
to the entropy, their contribution is maximized by forming a BEC in the
ground state and distributing the remaining energy between the atoms which
are not in the ground state of the trap [1]. A BEC is simply formed by
lowering the temperature of the sample below the critical temperature Tc.
Condensate growth is governed by bosonic stimulation [79], very similar to
the stimulated emission in a laser.

In the case of non-interacting particles, the critical temperature Tc, the
temperature at which condensation starts, for the case of a harmonic trap
with trap frequencies ωx, ωy and ωz, and ωho = (ωxωyωz)

1/3, is given by [80]

Tc = 0.94 · ~ωhoN
1/3

kB
, (1.5.1)

where the prefactor is obtained in the limit N � 1. Corrections of the
formula above for the case of finite N can be found in [81]. For a given
number of atoms N at temperature T ≤ Tc, the number of atoms N0 in the
ground state is given by

N0(T ) = N

(
1− T 3

T 3
c

)
. (1.5.2)

In the following, we assume that the BEC is fully condensed (i.e. N0 ≈ N),
which is justified, since in our experiment, typically T � Tc. In the non-
interacting case, the wave function ΨN of the condensate can be written as
the product of N single particle wave functions φ(r)

ΨN(r1, r2, .., rN) =
∏
i=1..N

φ(ri) (1.5.3)

The wave function φ(r) is the single particle ground state wave function
of the confining potential, with

´
dr |φ(r)|2 = 1, and the condensate order

parameter Ψ(r) =
√
N · φ(r).

2Real ultracold gas systems are only metastable and decay on a timescale which is
typically much longer than the thermalization time.
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In a real condensate however, in general interactions between the atoms
are not negligible. In a cold, dilute gas of 87Rb atoms, the interaction is
dominated by elastic binary collisions at low energy which are characterized
by a single parameter, the s-wave scattering length as [82]. For 87Rb atoms,
as > 0 and the interaction is repulsive. In a mean-field description, the
energy of the interacting system with N � 1 (neglecting terms ∝ 1

N
) is

given by the functional [80]

E(φ) = N ·
ˆ
dr

[
~2

2m
|∇φ(r)|2 + V (r) |φ(r)|2 +

gN

2
|φ(r)|4

]
, (1.5.4)

where the coupling constant g is related to the s-wave scattering length as
through

g =
4π~2as
m

. (1.5.5)

An equation for the wave function φ(r) can be obtained by minimizing E(φ)
with respect to φ subject to the condition of normalization

´
dr |φ(r)|2 = 1

being obeyed. This leads to the stationary Gross-Pitaevskii equation(
− ~2

2m
∇2 + Vext(r) + gN |φ(r)|2

)
φ(r) = µcφ(r), (1.5.6)

where interactions between the atoms are described by the nonlinear mean-
field term. Solving the above equation gives the single-particle wave function
φ(r) and the chemical potential µc. For non-interacting particles µc is equal
to the energy per particle ε - but in the interacting case, it is the energy of
adding another particle. In the mean-field description, quantum depletion,
which is an admixture of excited states, is neglected. In the Bogoliubov
theory, the quantum depletion is 8

3π1/2

√
na3

s, which is typically less than 1%
for alkali condensates [1].

Dynamics in condensates (neglecting dissipation) is described by the time-
dependent version of the Gross-Pitaevskii equation [83]

i~
∂

∂t
φ(r, t) =

(
− ~2

2m
∇2 + Vext(r) + gN |φ(r, t)|2

)
φ(r, t). (1.5.7)

1.5.1 Non-interacting case

In the case of non-interacting atoms, g = as = 0, and φ(r) is a Gaussian
function given by [82]

φ(r) =
(mωho

π~

)3
4 · exp

(
−m

2~

( ∑
j=x,y,z

ωjj
2

))
. (1.5.8)
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1.6 Two-photon transition

The extension aho of the ground state wave function φ(r) is

aho =

√
~

mωho

(1.5.9)

and is independent of the number of atoms N .

1.5.2 Thomas-Fermi approximation

In many experimental situations of atoms with repulsive interaction, the
kinetic energy term in Eq. (1.5.6) is much smaller than the potential or
interaction energy, except very close to the edge of the condensate. Neglecting
the kinetic energy term from the Gross-Pitaevskii equation, gives the atom
density distribution

n(r) = N |φ(r)|2 =
1

g
[µ− Vext(r)] (1.5.10)

in the region where the right hand side is positive, and n(r) = 0 outside this
region [80]. The boundary of the cloud is therefore given by Vext(r) = µ. In
the case of a harmonic trap, the condensate has a parabolic density profile
[1]

nc(r) =
15

8π

Nm
3
2ωxωyωz

(2µc)
3
2

max

(
1−

∑
i=x,y,z

i2

R2
i

, 0

)
, (1.5.11)

with Ri =
√

2µc/mω2
i the Thomas-Fermi radii, where the condensate density

goes to zero.

1.5.3 Intermediate regime

In the experiments presented in Chapter 5, we prepare condensates contain-
ing between 400 to 1000 atoms. Our experiment trap has axial (radial) trap
frequencies of fx = 109 Hz (f⊥ = 500 Hz), which for 400 (1000) atoms gives a
chemical potential µc = h · 890 Hz (h · 1150 Hz) [84]. Therefore, with our ex-
perimental parameters we are neither in the non-interacting case (µc � h ·fi)
nor in the Thomas-Fermi regime (µc � h · fi). Formulas interpolating be-
tween both regimes can be found in [84, 85].

1.6 Two-photon transition
Coherent transitions between the clock-states |1〉 and |2〉 require a two-
photon drive, because they differ by two units of angular momentum. Such
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a two-photon drive can consist of a microwave at frequency ωmw, blue de-
tuned by ∆ with respect to |1,−1〉 ↔ |2, 0〉 and a radio-frequency at ωrf

which is red detuned relative to the transition |2, 0〉 ↔ |2, 1〉 such that
(E2,1 − E1,−1 + Els)/~ = ωmw + ωrf (see Figure 1.6.1). Els denotes the level-
shift between the clock-states due to the off-resonant microwave, and in the
limit of large detuning is given by Els = V 2,1

mw − V 1,−1
mw , see Section 1.8.1.

The level-shift arises due to the AC-Zeeman effect of the microwave and
scales linearly with the applied microwave power (see Section 1.8). Various
transitions contribute to Els due to the different microwave polarization com-
ponents that are present. The radio frequency also causes similar level shifts,
but for a linearly polarized radio frequency (as used in our experiment), the
shifts of |1〉 and |2〉 are identical [69], and can therefore be neglected in this
consideration.

When the resonant Rabi frequencies Ωmw and Ωrf are much smaller than
the detuning (|Ωmw|2 and |Ωrf |2 � ∆2), then the population of the interme-
diate state |2, 0〉 is very small and the three-level system can be treated as
an effective two-level system with a two-photon Rabi frequency [86]

Ω2P =
ΩmwΩrf

2∆
. (1.6.1)

The two-photon pulse duration dt2P should be short compared to the char-
acteristic trap times 2π

ωi
in order to prevent any undesired density evolution

during the pulses.

1.7 Two-component BECs
The first binary mixture of BECs has been demonstrated in [87]. They
produced two overlapping 87Rb BECs in the hyperfine states |1,−1〉 and
|2, 2〉 by sympathetic cooling of the atoms in |2, 2〉 with the atoms in state
|1,−1〉. As a result of the different magnetic moments, the clouds were not
overlapping completely due to different trapping potentials in combination
with the gravitational sag. Furthermore, there was no fixed and repeatable
phase relation between both condensates.

Ultracold clouds and condensates in a coherent superposition of states
|1〉 and |2〉, prepared using the two-photon transition as described in the
previous section, have been studied extensively by the Cornell group, where
they measured atomic coherence properties [88], studied effects of elastic col-
lisional interactions [48, 74], observed component separation [89], measured
cooling due to decoherence in a partially condensed system [90] and spin
waves [91].
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Figure 1.6.1: Two-photon transition between the hyperfine states |1,−1〉 ≡
|1〉 and |2, 1〉 ≡ |2〉 of the 87Rb ground-state. The transition is the result of
a blue detuned microwave (detuning ∆) at frequency ωmw with respect to
the transition |1,−1〉 ↔ |2, 0〉 and a red detuned radio-frequency field at
frequency ωrf . If |Ωmw|2 and |Ωrf |2 � |∆|2 then the system can be seen
as an effective two-level system. The level-shift Els due to the off-resonant
microwave field is not shown. For our experimental parameters, Els is on the
order of some h · 10 kHz, depending on the values of the microwave power
Pmw and intermediate state detuning ∆.

In our experiment we initially condense the atoms in state |1〉. Under
influence of a resonant Rabi drive of duration dt2P, the state of the initially
single-component BEC changes according to [92]

∏
i=1..N

φ1(ri) →
∏
i=1..N

{
cos[

1

2
|Ω2P| dt2P]φ1(ri) + ie−iα sin[

1

2
|Ω2P| dt2P]φ2(ri)

}
= Ψ2c, (1.7.1)

where φ1 (φ2) is the spatial mode function of state |1〉 (|2〉). For a suffi-
ciently fast two-photon pulse, φ1 ≡ φ2 immediately after the pulse. Using
this method it is possible to prepare any desired superposition of both states
with a well defined, relative phase ie−iα, where Ω2P = |Ω2P| eiα. Both in-
volved states |1〉 and |2〉 have the same magnetic moments and therefore
both components see identical confining potentials. Furthermore, the com-
mon magnetic moment preserves coherence in the presence of magnetic field
fluctuations.

Measuring the number of atoms N1 (N2) in states |1〉 (|2〉) of Ψ2c, we get
a binomial distribution with mean value N1 = p1 · N , (N2 = N − N1) and
widths σ1 = σ2 =

√
N · p1(1− p1), where p1 = cos2[1

2
|Ω2P| dt2P]. For large

values of N , the distribution of N1 (N2) is essentially peaked at N1 (N2). In
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a mean-field description, we can approximate Ψ2c by

Ψ̃2c(r) =

√
N1 · φ1(r) + ie−iα

√
N2 · φ2(r) = Ψ1(r) + ie−iαΨ2(r). (1.7.2)

Notice that the approximation made in Eq. (1.7.2) neglects certain physi-
cal effects. The superposition of different atom numbers in both states in
Eq. (1.7.1) in the presence of interactions also leads to a phase spreading,
called phase diffusion [93]. This can be used to create entanglement and
spin squeezed states, as we have shown in our experiment, see Section 6.1
and [47].

1.7.1 Time evolution of a two-component BEC

In a two-component BEC, where both states experience the same potential
and the Rabi coupling between both states is turned off (Ω2P = 0), there are
three important quantities which characterize the evolution of the system:
The self-repulsion for each of the states and the mutual repulsion between
them [94]. Both condensate components are initially prepared with identical
density distributions since typically dt2P � 2π

ωi
. This constitutes the starting

point from which the condensate mean-field wave functions Ψ1 (Ψ2) evolve
and redistribute themselves. The evolution of the binary-component system,
including release from the trap, is governed by a pair of coupled Gross-
Pitaevskii equations for the condensate wave functions Ψi (again for Ni � 1
and thereby neglecting terms ∝ 1

Ni
) [89]

i~
∂Ψi(r, t)

∂t
=

(
− ~2

2m
∇2 + Vext(r) + Uii |Ψi(r, t)|2 + Uij |Ψj(r, t)|2

)
Ψi(r, t),

(1.7.3)
where i, j = 1, 2 (i 6= j), the mean-field potentials Uij =

4π~2aij
m

, and m
the mass of a 87Rb atom. The different measured scattering lengths are
a11 = 100.40 a0, a12 = 97.66 a0 and a22 = 95.00 a0 [95]. Due to their sim-
ilarity, the total density distribution nT (r) = |Ψ1(r)|2 + |Ψ2(r)|2 will not
change significantly from its original value during the redistribution of the
wave functions, but the effect on the equilibrium distribution of the different
components may be profound [89]: Since a2

12 > a11a22 the condensate is un-
stable to component separation [80]. It has been theoretically predicted and
experimentally verified that the energetic minimum for a large atom number
N is reached when the state |2〉 resides in the trap center, surrounded by
a shell of state |1〉. This arrangement is energetically favored because the
state with the higher scattering length forms a lower density shell around
the higher density state with the smaller scattering length [89, 95].
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Figure 1.7.1: Simulated normalized 1D ground-state mode functions Ψ1

and Ψ2 along x of a two-component BEC in an equal superposition of states
|1〉 and |2〉 for our experiment trap parameters and different atom numbers
N . The description is given in the main text.

In Figure 1.7.1 we show the normalized ground-state mode functions Ψ1

and Ψ2 along x of a two-component BEC in an equal superposition of states
|1〉 and |2〉 for different atom numbers N , calculated for our experiment trap
parameters of Chapter 5 (fx = 109 Hz, f⊥ = 500 Hz) using a 1D Gross-
Pitaevskii (GP) solver written by Philipp Treutlein. In this simulation, we
assume that the condensate is in the ground state of the transverse harmonic
trapping potential. As the total atom number N increases, the overlap of
both ground state mode functions decreases because of the difference in the
intra- and inter-species scattering lengths. For the atom numbers N = 400
used in our experiments described in Chapter 5 we find that component
separation is negligible, which is also confirmed by a 3D GP simulation by
Li Yun and Alice Sinatra from Paris.

Pulses on the two-photon transition lead to a change of the population
in the respective states with different scattering lengths, on a time scale
typically much faster than the characteristic trap times 2π

ωi
. A change in the

internal state population is accompanied by a sudden change in the mean-
field energy. This can lead to oscillatory spatial behavior of the condensate
wave functions as in [48, 95]. Again, for our atom numbers this is negligible.
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Atom chips and coherent manipulation of ultracold atoms

The presence of a binary mixture of states in a condensate has also im-
plications on trap loss, as will be detailed in the following section.

1.7.2 Trap loss in a two-component BEC

In the following, I describe sources for loss of atoms in chip traps. This
imposes limitations e.g. on the duration of interferometric measurements.

Loss of magnetically trapped atoms can be caused by collisions with back-
ground gas atoms, which have a relatively high kinetic energy, or by inelastic
collisions between the trapped atoms. The loss of atoms of a magnetically
trapped, single-component condensate is described by the rate equation [69]

dN

dt
= −γbg

ˆ
n(r)d3r−K

ˆ
n2(r)d3r− L

ˆ
n3(r)d3r +O(n4),

↔ 1

N

dN

dt
= −γbg −K 〈n〉 − L

〈
n2
〉
. (1.7.4)

In this equation the coefficient γbg describes the loss arising from collisions
with the residual background gas in the vacuum chamber, which is propor-
tional to the background gas pressure. The second term describes inelastic
two-body collisions between the trapped atoms, and the last term describes
three-body recombination, where two atoms form a molecule and the kinetic
energy is carried away by the molecule and the atom, satisfying energy and
momentum conservation.

Inelastic two-body collisions Inelastic two-body collisions are the result
of two effects: Spin-exchange processes and magnetic dipole-dipole interac-
tions [80]. For transitions, which are not forbidden by angular momentum
selection rules, spin-exchange rates dominate by far over dipole-dipole inter-
actions. An allowed spin-exchange process is e.g. |2, 1〉+|2, 1〉 → |2, 0〉+|2, 2〉,
which conserves total mF . The rate constant K|2,1〉 ≡ K2 has recently been
measured to be K2 = 1.194(19)× 10−13 cm3s−1 [95].

For states |1,−1〉 and |2, 2〉, spin-exchange collisions are forbidden by
angular moment selection rules [80]. They can make transitions via the
magnetic dipole-dipole interaction at much lower rates.

Three-body collisions Three-body loss puts stringent limits on achiev-
able densities in atom traps. Typically both the molecule and the remaining
atom are lost from the trap. For state |1,−1〉 the rate constant has been
measured to be L|1,−1〉 = L1 = 5.8(19)× 10−30cm6s−1 [96].

For a thermal ensemble, the constants for two- and three-body losses have
to be multiplied by a quantum statistical factor of 2! and 3!, respectively,
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1.8 State-dependent microwave potentials

which appears due to bosonic bunching. These have been verified experi-
mentally. This constitutes an affirmation of the second order coherence in a
condensate, as opposed to the classical case [96].

Loss in a two-component condensate Aforementioned loss rates are
only valid when there is only one single condensate component. A conden-
sate in a superposition of different hyperfine states is subjected to additional
loss channels due to collisions between the different states. For a condensate
in a superposition of states |1〉 and |2〉, the dominant contributions to colli-
sional loss is described by (assuming perfect spatial overlap between the two
components) [69]

1

N1

dN1

dt
= −γbg −K12 〈n2〉 − L1

〈
n2

1

〉
, (1.7.5)

1

N2

dN2

dt
= −γbg −K12 〈n1〉 −K2 〈n2〉 , (1.7.6)

with Ni and ni the expectation values for numbers and densities of atoms
in states |i〉. The rate constants for a BEC are L1, K2 as above and K12 =
0.780(19)× 10−13 cm3s−1 [95].

1.8 State-dependent microwave potentials
Many interesting effects can be studied with state-dependent potentials, in-
cluding atom interferometry with internal state labeling [52], entanglement
through state-selective collisions [43, 97] and spin squeezing [47]. Atom in-
terferometry (see [53] and Chapter 5) allows a precise measurement e.g. of
inertial [98, 60] and surface forces. Compared with optical interferometry,
atoms have an intrinsic sensitivity e.g. to rotation, which is increased by the
ratio of their rest energy to the energy of the photon, typically about ten
orders of magnitude higher [59, 53, 60].

A combination of static magnetic and electric fields (as considered in
[40, 99]) is not capable of providing a differential potential for the robust
pair |1〉 and |2〉. This is because the magnetic moments and electrostatic
polarizabilities are equal for both states [43]. Optical dipole traps are also
not practical because if operated at a detuning from the D1 or D2 transition
much larger than the hyperfine splitting of 87Rb, the differential potential is
relatively weak. If an optical dipole trap is operated at a detuning comparable
to the hyperfine splitting, the differential potential can be made strong, but
spontaneous scattering of photons becomes strong, which causes decoherence,
heating and loss of the atoms in the trap [43]. A further disadvantage of
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Atom chips and coherent manipulation of ultracold atoms

optical potentials is that while it is possible to integrate optical components
on an atom chip [12, 15, 100, 101, 102], it is hard to implement tailor-made
potentials, which are non-periodic.

We have established a new technique to generate state dependent poten-
tials on an atom chip using microwave near-fields. It combines the flexibility
of optical dipole potentials with the stability and tailorability of static mag-
netic microtraps.

Trapping of neutral atoms using far-field microwave radiation has first
been proposed in [49] and the first experimental realization was reported in
[50]. Microwave potentials arise by a similar effect as optical dipole traps, but
while optical potentials are generated by the AC Stark effect [1], microwave
potentials arise via the AC Zeeman effect. For microwaves, decoherence rates
due to spontaneous emission are negligible and the state-selectivity can be
adjusted via microwave frequency and polarization.

In the following, I describe the origin of microwave potentials for ground-
state 87Rb atoms. While I start with the assumption of the microwave field
being a classical field, a quantum treatment can be found in [69, 103]. Here
and in the rest of this thesis the Larmor frequency ωL is given by ωL = µBB

2~ .

Consider a 87Rb atom in the 52S1/2 ground state at fixed coordinate r.
The atom interacts with the local static magnetic field B0 and the (classi-
cal) real-valued microwave magnetic field Bmw(t) = 1

2

[
B̂mwe

iωt + B̂∗mwe
−iωt
]
,

with B̂mw a complex phasor. The atomic hyperfine states are described by
the Hamiltonian3

H = (~ωhfs/2)I · J + µB(gJJ + gII) · (B0 + Bmw(t)). (1.8.1)

The first term describes the hyperfine coupling between the total electron
spin J and the nuclear spin I. The second term is the coupling of the static
and microwave magnetic field to J and I. For high precision simulations
yielding a comparison to spectroscopic measurements, all the terms have to
be taken into account. For our purpose, a number of approximations can be
made:

• We neglect the coupling of I to the magnetic fields because
∣∣∣ gIgJ ∣∣∣ ≈

5× 10−4.

• We treat the coupling of J to B0 perturbatively because µBB0 � ~ωhfs

(ωhfs = ∆Ehfs/~).
3The electric field of the microwave has not to be considered, because the energy shift

is common mode for F = 1 and F = 2. [66]
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1.8 State-dependent microwave potentials

• We transfer to a frame rotating at frequency ω and make the rotating-
wave approximation, which is valid because µBBmw, ~∆0 � ~ω, with
∆0 = ω − ωhfs.

With these approximations, we express H in the basis |F,mF 〉, with the
quantization axis along B0:

H ≈
∑
m2

(
−1

2
~∆0 + ~ωLm2

)
|2,m2〉〈2,m2|

+
∑
m1

(
1
2
~∆0 − ~ωLm1

)
|1,m1〉〈1,m1| (1.8.2)

+
∑
m1,m2

(
1
2
~Ω2,m2

1,m1
|2,m2〉〈1,m1| + c.c.

)
,

where we have approximated gJ ≈ 2. The microwave couples the transition
|1,m1〉 ↔ |2,m2〉 with Rabi frequency

Ω2,m2

1,m1
=

(
2µB
~

)
〈2,m2|B̂mw · J|1,m1〉 (1.8.3)

and detuning
∆2,m2

1,m1
= ∆0 − (m2 +m1)ωL. (1.8.4)

In our simulations, we numerically diagonalize the Hamiltonian of Eq. (1.8.2).
The eigenstates are the dressed states |D〉, which are shown in Figure 1.8.1.

An anti-crossing emerges whenever ∆2,m2

1,m1
vanishes and Ω2,m2

1,m1
is simulta-

neously non-zero. In the vicinity of an anti-crossing, the dressed eigenstates
are mainly a superposition of the states that anti-cross. Accordingly, the
energy difference between both dressed eigenstates near an anti-crossing in a
two-level approximation can be written as [103]:

E+ − E− ≈ ~
√∣∣Ω2,m2

1,m1

∣∣2 +
∣∣∆2,m2

1,m1

∣∣2. (1.8.5)

Consequently, the energy difference between the dressed states on resonance
is given by ~

∣∣Ω2,m2

1,m1

∣∣.
In Figure 1.8.2 I show E(D) as a function of Bmw = |Bmw| for the exper-

imental parameters of Chapter 5, i.e. B0 = 3.23 G and microwave frequency
ω which is blue detuned by δ ≡ ∆2,−1

1,−1 = 2π × 600 kHz with respect to the
transition |1,−1〉 → |2,−1〉 (∆0 = −2ωL + 2π × 600 kHz). One can see that
for small values of Bmw the energy of state |1,−1〉 is shifted much more than
that of |2, 1〉.
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Figure 1.8.2: E(D) as a function of |Bmw| for B0 = 3.23 G along x and
microwave frequency ω which is blue detuned by δ = 2π × 600 kHz with
respect to the transition |1,−1〉 → |2,−1〉 (∆0 = −2ωL + 2π × 600 kHz) for
(a) Bmw = (1, 0, 0) (a π-polarized microwave) and (b) Bmw = (1, 1, 1)/

√
3.

For small values of Bmw the energy of state |1,−1〉 is shifted much more than
that of |2, 1〉.
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1.8 State-dependent microwave potentials

1.8.1 Limit of large detuning

In the case of a far-detuned microwave, where
∣∣Ω2,m2

1,m1

∣∣2 � ∣∣∆2,m2

1,m1

∣∣2 for all
m1, m2, each eigenstate |D〉 consists essentially of a |F,mF 〉 of the unper-
turbed system. The admixture of other states is of order Ω2,m2

1,m1
/2∆2,m2

1,m1
� 1

[69]. In this regime, the energy for an eigenstate |D〉 ≈ |F,mF 〉 can be
written as

E(D) ≈ EF
0 + V F,mF

Z + V F,mF
mw . (1.8.6)

Here V F,mF
Z is the static Zeeman shift and V F,mF

mw is the microwave potential
due to the AC Zeeman shift given for F = 1 by [43]

V 1,m1
mw =

~
4

∑
m2

∣∣Ω2,m2

1,m1

∣∣2
∆2,m2

1,m1

, (1.8.7)

and for the F = 2 manifold by

V 2,m2
mw = −~

4

∑
m1

∣∣Ω2,m2

1,m1

∣∣2
∆2,m2

1,m1

. (1.8.8)

The state-selectivity in the limit of far detuning can clearly be seen by com-
paring Eq. (1.8.7) with Eq. (1.8.8). Working in the limit of large detuning
is advantageous, since the admixture of other states ∝ Ω2,m2

1,m1
/2∆2,m2

1,m1
can be

made small. This is important for good coherence since the admixed states
typically have a different magnetic moment µ̃ which leads to an increased
sensitivity to magnetic field fluctuations.
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Chapter 2

A microwave atom chip

In the experiments reported in this thesis, we employ a newly developed atom
chip, which combines wires for static magnetic trapping with integrated mi-
crowave waveguide structures (see photograph on Figure 2.0.1). This chapter
covers the design of the chip as well as its fabrication and characterization.

The design of the chip fulfills a number of requirements. In order to be
able to produce BECs we need to have an on-chip mirror for the mirror-MOT
as well as wires for magnetic trapping, which can withstand the high current
densities required to compress the magnetic trap for efficient evaporative
cooling. We need micron sized waveguide structures on the chip that exhibit
strong near-field gradients (for state-dependent microwave potentials that
vary on a µm scale) and the feasibility to superimpose microwave and DC
currents on the same wires, where the latter are used for static magnetic
trapping. To avoid electrical contact between the waveguide and wires for
magnetic trapping, the chip must contain two layers of metalization. We
need substrates with high thermal conductivity to prevent overheating of the
on-chip wires. Furthermore, the chip substrate has to be compatible with
microwave structures (i.e. not cause high losses). Last but not least, we need
good optical access to the chip for optical imaging.

In the following, I give an overview of microwave waveguide basics and
introduce the coplanar waveguide (CPW) structure, which we chose to inte-
grate on the atom chip. I will cover the field distribution around the CPW,
which determines the potentials seen by the atoms, and which allows to
create microwave potentials that vary on a micrometer scale. Thereafter,
I describe how we design, simulate and characterize microwave test struc-
tures fabricated in the design process. Finally, I will cover the fabrication
of the atom chip and then conclude this chapter with its DC and microwave
characterization.

.
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Figure 2.0.1: Overview of our atom chip. The atom chip consists of three
chips, the base chip, the science chip and a spacer chip between the two.
These are glued to each other. The base chip consists of a 800µm thick AlN
substrate with 12 µm thick gold wires, which are used for the last MOT
stage. The base chip constitutes a wall of the vacuum system, seals it, and
provides electrical feed through to the vacuum, including DC and microwave
contacts for the science chip. Both, the science and the spacer chip consist
of a 525µm thick high-resistivity Si substrate, oxidized with a 20 nm SiO2

insulation layer. While the spacer chip contains no metallic structures, the
science chip has two layers of metalization, separated by a 6µm thin poly-
imide layer. While the wires on the lower layer are used for static magnetic
trapping only, the wires on the upper layer carry DC currents for static
trapping as well as microwave currents for the state-selective microwave po-
tentials. Furthermore, the upper metalization layer contains gold mirrors
for the mirror-MOT. The atom chip package is water cooled on its backside
(shown in Figure 2.2.6).
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2.1 Microwave design

It is well known that in the far-field of an electromagnetic radiation source,
focusing to much below a wavelength is impossible (known as the Abbe-
Rayleigh diffraction limit). Accordingly, structuring microwave potentials
on a µm scale in the far-field of a microwave source at νmw = 6.8 GHz is
impossible because the (vacuum) wavelength λmw = c

νmw
≈ 4.4 cm. This

limitation can be overcome by going to the near-field of a microwave guiding
structure; at a distance d � λmw. In the near-field region, the microwave
magnetic fields created by the microwave currents on the waveguide structure
have the same position dependence as magnetic fields created by DC currents
on the same wires [104]. Therefore, in the near-field, the relevant length scale
for achievable field gradients is not a function of λmw, but of the lateral extent
of the microwave guiding structure s+2w (see Figure 2.1.1) and the distance
d to the waveguide structures, which allows the realization of much stronger
gradients than achievable in the far-field (see Section 3.9).

There exist several planar waveguide geometries which can be integrated
on an atom chip. We chose to integrate coplanar waveguides (CPWs) onto
our atom chip, a waveguide structure that has first been described by C.P.
Wen [105]. A CPW in its ideal form consists of an infinitely thin conducting
strip (the signal wire) with two semi-infinite ground conductors on a surface
of an infinitely thick dielectric substrate [106]. In practice, CPW grounds
always have a finite extent g and the substrate has a finite thickness or is
even a multi-layer dielectric (see schematic on Figure 2.1.1).

CPWs are well suited for integration on an atom chip, because they are
uniplanar in construction (all structures are on the same side of the sub-
strate), no via holes [107] are needed, and they can be tapered without
change in the characteristic impedance [108]. Knowledge of the microwave
field distribution around the CPW is important because it determines the mi-
crowave potential for the atoms. In the following, the basic theory of CPWs,
microwave propagation and the near-fields around them will be presented.

2.1.1 Coplanar waveguide theory

For ideal, translationally invariant transmission lines with perfect conductors,
that are in addition completely surrounded by a uniform dielectric medium,
the principal wave that can exist on the transmission line is a TEM wave [51],
where the electric and magnetic fields for an electromagnetic wave traveling
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Figure 2.1.1: (Left) Schematic drawing of a CPW structure that is inte-
grated on our atom chip. The thicknesses are tpoly ≈ 6µm and tSi = 525µm.
The conductivity of gold is σ = 4.5× 107 Ω−1m−1 at room temperature. The
voltages and currents indicated correspond to that of an ideal CPW mode.
(Right) Exemplary microfabricated CPW structure (here, t = 800 nm).

along y are given by

E(r, t) = Re [E(x, z) exp(iωt− γy)] , (2.1.1)
B(r, t) = Re [B(x, z) exp(iωt− γy)] . (2.1.2)

TEM waves are convenient because the distribution of the transverse fields
can be calculated by combining computationally cheap 2D electro- and mag-
netostatic analyses.

Conductor loss In micrometer sized transmission lines, conductor loss
plays an important role [109]. A finite conductivity σ not only leads to
attenuation but also changes the current distribution within the wire via the
skin effect [104], which affects the electromagnetic field within and around
the wire. For gold and ω = 2π×6.8 GHz, the skin depth δskin =

√
2/ωµ0σ =

0.9µm is comparable to the dimensions of the micron sized structures on our
chip (see Section 2.1.3).

Planar transmission lines, like a CPW, where the dielectric does not fill
the complete surrounding, and/or where the conductors have only finite con-
ductivity (see Figure 2.1.1) do not support true TEM waves. There are
longitudinal field components at the dielectric-air interface as well as inside
the conductors of finite conductivity σ. In the low-frequency limit, where
λmw/(s + 2w) � 1 and for weak conductor losses, the dominant mode of
propagation is very similar to the true TEM case, i.e. the longitudinal field
components are much smaller than the transverse [110]. These are called
quasi-TEM modes [51]. Typically the condition

λmw/(s+ 2w) > 10 (2.1.3)
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Figure 2.1.2: Visualization of the electric field distribution E(x, z) of the
two modes supported by CPW structures. The modes are called (a) the CPW
mode and (b) the slotline or odd mode. In our experiment, any coupling of
power from the CPW mode to the slotline mode is undesired. The potentials
of the CPW wires are indicated on the bottom. The figure has been adapted
from [111].

is sufficient to guarantee quasi-TEM behavior [109].
Since a CPW consists of three wires, it has two eigenmodes, the CPW

and the slotline mode (see Figure 2.1.2). We excite only the CPW mode (by
pulling both grounds to the same potential), but discontinuities in the CPW
geometry can couple power from the CPW mode to the slotline mode. This
could be avoided by equilibrating the potential between both grounds by
properly spaced conductive bridges [112, 113], but this is incompatible with
the DC currents on the CPW grounds as required on our chip. We carefully
designed and tested the structures on our chip to minimize such coupling
between modes.

The electric and magnetic field distribution E(r) and B(r) around a
waveguide can in general be computed with a computationally very expen-
sive full-wave 3D simulation, using software packages like HFSS 1 or Yatpac.2
If the condition for quasi-TEM behavior is satisfied (Eq. (2.1.3)), then for
a piece of transmission line with constant cross section, the fields E(x, z)
and B(x, z) can be calculated using a 2D quasistatic simulation that takes
conductor loss into account, as described in [109, 69, 114].3 Both methods
yield a field distribution which takes the current distribution in the wires
into account, that is strongly influenced by the skin effect [104].

At distances d from the waveguide, with d� s, w, and t, the simulation

1From Ansoft, www.ansoft.com
2www.yatpac.org
3If conductor loss is negligible, then a static simulation is sufficient.
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R L

C G

Figure 2.1.3: Equivalent circuit for a piece of transmission line with con-
stant cross section. The parameters R, L, C and G (all defined per unit
length) are defined as integrals of E(x, z) and B(x, z). From these param-
eters, the complex propagation constant γ and the complex characteristic
impedance Zc can be calculated. While for typical waveguides G� ωC, for
micron sized structures R and ωL can be of comparable magnitude.

can be simplified even further to a static simulation, where the waveguide
currents are approximated by homogeneous currents that flow on infinitely
thin waveguide wires, and B(x, z) is calculated via the law of Biot-Savart.

In many cases, where the structure is not translational invariant (therefore
a 2D quasistatic or static analysis is inappropriate) and full-wave 3D simu-
lations are too expensive, one can use 3D planar simulations using software
packages like Sonnet4 or Microwave Office.5 Their outputs are S-parameters
[115] and current distributions on infinitely thin layers. The correspond-
ing microwave magnetic near-field distribution can be calculated from the
current distribution again using the law of Biot-Savart.

Equivalent circuit model A piece of a transmission line with constant
cross-section, where the (quasi)-TEM condition is fulfilled (Eq. (2.1.3)), can
be related to an equivalent circuit model [109] (see Figure 2.1.3), which is
very helpful for intuition. Such a circuit contains the series resistance R,
inductance L, capacitance C and shunt conductance G, which are all defined
per unit length of the transmission line. These parameters are defined as
integrals of E(x, z) and B(x, z) [51], and we calculate them using E(x, z)
andB(x, z) from a quasi-static simulation. From these, the parameters which
describe the wave propagation on the transmission line can be derived:

Zc =

√
R + iωL

G+ iωC
, (2.1.4)

γ = α + iβ =
√

(R + iωL)(G+ iωC). (2.1.5)

Zc = Vmw

Imw
is called the characteristic impedance, and is in general complex.

A complex-valued Zc leads to a phase shift between electric and magnetic
4www.sonnetsoftware.com
5From AWR, www.awrcorp.com
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2.1 Microwave design

fields, but this does not influence the microwave potential for the atoms.
Changes of Zc along the transmission line lead to mismatch loss (reflections).
The quantity γ is the propagation constant, which contains α quantifying
microwave attenuation and β = 2π

λmw
with λmw the wavelength of the guided

wave. In a lot of cases, for the calculation of Zc and γ it is not necessary to
perform a numerical simulation. For most regimes, approximate analytical
formulas exist [109], which yield useful results. A helpful tool for estimates
is the program TX-Line.6

Scaling For an ideal CPWwith perfect conductors, Zc is only a function
of s

s+2w
[69, 108] and therefore the idealized CPW can be tapered without

change in Zc by scaling s and w by a common factor. For a real CPW, the
same is approximately true.

2.1.2 Designing the microwave chip

In designing the microwave chip, it is important to keep reflections, mi-
crowave attenuation and coupling of power from the even to the odd mode
at tolerable levels, in order to get the desired field distribution and field
strength at the position of the atoms. Discontinuities along a CPW can
cause such undesired behavior. Since discontinuities cannot be fully avoided,
they have to be designed carefully to minimize unwanted effects. Further-
more, a substrate has to be chosen which does not cause strong microwave
losses.

We chose a hybrid aproach, where we simulated test structures using
quasi-static simulations and Sonnet, and compared the simulations to mea-
surements on fabricated test structures, which we characterized on a probe
station7 (see Figure 2.1.4) using a vector network analyzer8 together with
high-frequency probes,9 see below. In this way we identified suitable sub-
circuits for the atom chip.

For the design of the final chip, we used our experience gained with the
test structures. We simulated the outer regions of the CPW with quasi-static
simulations (i.e. for the calculation of Zc such that there are no jumps in
impedance), while the central part of the CPW was simulated using Sonnet.
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20 mm

Figure 2.1.4: A test-chip with relatively large CPW structures fabricated
on an AlN substrate, under test on our probe station. The lowest two circuits
contain on-chip Bias-Tee structures. To characterize the microwave proper-
ties of such a structure, we use a vector network analyzer (VNA) which
generates a microwave signal at variable frequency (up to 8.5 GHz). This
is fed onto one port of the structure using high-frequency probes. The re-
flected and transmitted signal is evaluated by the VNA, which calculates the
frequency-dependent scattering matrix Sij.
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Design and characterization of sub-circuits

The following structures, which we analyzed using test chips, were included
in the final chip design:

• On-chip Bias-Tees, used to superimpose microwave and DC currents
on the CPW wires. The DC currents constitute dimple trap currents,
as described in Section 1.3. For the CPW signal wire, a commercially
available, external coaxial Bias-Tee10 is used. For the CPW grounds
we want individual control of the static currents on the CPW ground
wires. Since such an external split-ground Bias-Tee is not available, we
developed an on-chip Bias-Tee for the CPW grounds, which together
with its performance is shown in Figure 2.1.5.

• Wire bonds, which connect the CPW on the base chip with the one on
the science chip.

• Bends of the CPW.

• Tapering of the CPW. In the center of the chip, the CPW has to
have µm sized wires which results in strong near-field gradients. At
the edges of the chip, it is technically much more straight forward to
connect a millimeter sized CPW than a microns sized structure. In be-
tween, the CPW has to be tapered without changing the characteristic
impedance Zc too abruptly11 (which otherwise would cause reflections).
A microns sized CPW causes considerable microwave loss, limiting the
power reaching the chip center, therefore the tiny part of the CPW
should not be longer than necessary.

• Crossing of metallic structures, which are in the lower layer of the
science chip. The CPW crosses wires on the lower layer which are
separated by a insulating polyimide layer with thickness tPoly ≈ 6µm
(see Figure 2.1.6). The layer thickness tPoly is comparable to s+ 2w in
the center. As a result, fringing fields induce currents into the lower
layer structure which themselves create microwave magnetic fields.

6From AWR, web.awrcorp.com
7Süss Microtech Prober PM5 HF
8Agilent E5071B
9Süss Microtech Z-Probe 40K3N, 500 µm pitch

10UMCC BT-S000-HS
11In the final chip Zc changes smoothly from |Zc| = 50 Ω at the edge of the science chip

to |Zc| = 70 Ω and |Zc| = 80 Ω in the chip center, respectively, see Section 2.1.3.
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• We tested the compatibility of several substrate materials with mi-
crowave circuits. AlN as well as high-resistivity silicon (ρ > 104 Ωcm)
have been identified as suitable materials for our microwave circuits
(i.e. do not cause excessive microwave loss).

As examples, the measured characteristics for the on-chip Bias-Tee (Figure
2.1.5) and for a CPW test structure crossing a wire (Figure 2.1.6) are shown.

The microwave potential seen by the atoms depends on the distribution
of the microwave magnetic field B(r), which itself depends on microwave
currents, including currents induced in the lower layer of metalization. The
influence of induced microwave currents on B(r) had to be estimated nu-
merically. F. Peretti and G. Csaba from the Lugli-Group at the TU Mu-
nich performed an HFSS full-wave 3D simulation of a test structure, where a
micron-sized, tapered CPW crosses a 50µm broad wire in the lower layer, sep-
arated by ≈ 4µm of polyimide (see Figure 2.1.6a). The impedance changes
from |Zc| = 50 Ω at the edge of the chip to |Zc| = 80 Ω in the center. The
results of their calculation are the E(r) and B(r) field distributions as well
as the S-parameters. We compare the simulated S-parameters with HFSS to
a simulation with Sonnet as well as to measurements on the same structure.
The results are shown in Figure 2.1.6b. We find good qualitative agreement
for the reflective S-parameters, while the simulations underestimate losses.
Furthermore, we compare the HFSS-simulated B(r) distribution12 with a
quasi-static simulation. We find that distortions of the microwave field are
small as long as s + 2w is not much larger than the thickness of the poly-
imide between both layers of metalization. In this case, the fields from the
full-wave 3D simulations agree reasonably well with quasi-static simulations
[69].

2.1.3 Microwave structures on the atom chip

Here I present the microwave structures on our chip. We have decided to
integrate two separate microwave structures, which are shown in Figure 2.1.7.
One structure consists of a single CPW, with dimensions in the center of the
chip s = g = 6µm and w = 3µm. The other structure consists of two
shorted CPWs, placed next to each other. The dimensions in the chip center
are s = g = 2.5µm, w = 2µm. The thickness of both structures is t = 1µm.
At the position of the short, we get an anti-node in the microwave current
Imw, and therefore an antinode of B(r). This ensures a maximum potential
seen by the atoms. The modulation of B(r) over the small extent of the atom
cloud due to the standing wave is negligible.

12The simulated area has a side length of 25µm

44



2.1 Microwave design

IDC IMW

1 mm

b)

a)

A
tt
e
n
u
a
ti
o
n
 [
d
B

]

||
| |

2

2

orc

Figure 2.1.5: On-chip Bias-Tee and its performance. (a) Picture of a Bias-
Tee on the base chip for one of the CPW grounds, consisting of a 100 pF
SMD capacitor. On the right, the schematic circuit is shown. Microwaves
are injected via a Mini-SMP plug. (b) Picture of a test-structure and its
transmission characteristic (red) and as comparison (blue) the measurement
of a translational invariant CPW, without capacitors. Note that the Bias-Tee
structure has again two SMD capacitors on the other end of the CPW. The
Bias-Tee leads to additional losses of about 0.5 dB at 6.8 GHz. On the pho-
tograph, the CPW shows some bubble-like notches, which sometimes appear
when using an old electroplating bath in the fabrication. These bubbles are
not expected to modify the microwave propagation characteristics, because
their extent is much less than λmw. On the experiment chip, we have no such
bubbles.
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Figure 2.1.6: Comparison between measurement and numerical simula-
tions. (a) Illustration of the examined test structure. A CPW structure
(800 nm thick gold) is deposited on a 4µm thick layer of polyimide. Below
the polyimide, we have a 50 µm broad DC wire crossing the center of the
CPW. (b) Comparison between the measured S-parameters and simulations,
either full-wave 3D simulations using the package HFSS or 3D planar simula-
tions using Sonnet. We find good agreement in the reflection characteristics.
(c) Field distribution in the center of the CPW, extracted from the HFSS
simulation.
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2.1 Microwave design

Since t is comparable to the skin depth of δskin = 0.9 µm at ω = 2π ×
6.8 GHz (see Section 2.1.1), microwave electromagnetic fields are not screened
from the inside of the conductors and microwave currents flow in the whole
cross section of the wires [43].

The characteristic impedance of the CPWs changes smoothly from |Zc| =
50 Ω on the base chip and on the edge of the science chip to |Zc| = 70 Ω
(|Zc| = 80 Ω) in the center of the single (double) CPW structure.

The chip design is shown in detail in Appendix A.
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Figure 2.1.7: Microscope images of the two waveguide structures integrated
on our atom chip. The single CPW structure (a) is the one used in the
experiments reported in this thesis. The structure consists of five wires, out
of which the three center ones form the CPW (highlighted in green), where
microwave and DC currents are superimposed. The two lateral wires are DC
wires which can be used for static trapping. The second structure (b), the
double CPW structure, consists of two CPWs next to each other (highlighted
in red and blue). Both waveguides of the double CPW structure are shorted,
which creates a standing microwave, with an antinode in Imw (and therefore
B) at the position of the short, close to the static trap for the atoms. A
schematic overview can be found in Appendix A.
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2.2 Fabrication

Figure 2.2.1: Photographs of the base chip. (Left) base chip with the Si
spacer chip glued on top. The 40 laser drilled holes can be recognized. The
U-shaped wires for the last MOT stage are hidden below the spacer chip.
(Right) Picture of the same base chip, after the mini-SMP plugs and the
male DC connectors have been soldered to the base chip using In-Pb solder.

2.2 Fabrication

Now I give a short description of the fabrication and characterization of the
atom chip that was built and used in this thesis. For a detailed fabrication
recipe, the reader is referred to [69].

The chip was microfabricated in the clean room facility of Prof. Kotthaus.
I am very grateful for generously being allowed to use the equipment in his
clean room.

Our atom chip (shown on Figure 2.0.1) consists of three sub-chips: The
base chip, a spacer chip and the science chip. The base chip seals the vacuum
and provides electrical feed through to the science chip inside the vacuum.
It contains relatively thick (12µm) and broad (up to 1 mm) wires which are
used in the last MOT phase, the MOT close to the chip surface, with currents
of up to 10 A. The spacer chip ensures that the science chip is above the
solder joints (see right part of Figure 2.2.1) and the glue meniscus between
the base chip and the Pyrex glass cell (see later), which would otherwise
obstruct the absorption imaging beam at grazing incidence. The science
chip contains wires used for magnetic trapping and microwave manipulation
of the ultracold atoms.

2.2.1 Base chip

The base chip (see Figure 2.2.1) is fabricated on a 800 µm thick AlN sub-
strate, a non-toxic ceramic which has a relatively high thermal conductivity
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of 180 WK−1m−1 [6]. The AlN ceramic is mechanically more stable than
Si, and therefore provides stability to the chip package. Its relatively rough
surface inhibits using it for the magnetic trapping structures on the science
chip. The substrate contains 40 laser drilled holes with radii of 300 µm
each,13 which are used for DC electrical contacting the base chip from the
back. The laser drilling produces Al droplets, which are distributed all over
the substrate. Before further processing, these droplets had to be removed by
a combination of cleaning with a fiberglass brush, ultrasonic acetone baths
and piranha etch.14 After cleaning of the substrate, the chip structure is fab-
ricated by electroplating (see schematic on Figure 2.2.2). First, we deposit
in a UHV e-beam evaporation chamber a 3 nm Ti adhesion layer, followed
by a 50 nm gold seed layer. Then a 8 µm thick layer of photoresist (ma-P
1240 from micro resist technology) is spun on. This photoresist layer is then
photolithographically structured using a foil mask.15 The exposed gold seed
layer is subsequently electroplated to a thickness of 12 µm.16 The “overplat-
ing” of 12 µm gold in 8 µm deep trenches is uncritical for the relatively wide
wire structures on the base chip. Subsequently, the photoresist structure is
removed using acetone and piranha etch. Then, the unplated seed-layer (in-
cluding the Ti adhesion layer) is removed by dipping the chip for 1 minute
into aqua regia.17 In this step, also the electroplated gold structures are
thinned by ∼ 100 nm.

We glue the spacer chip on the base chip, using the heat conductive glue
H77S from Epo-Tek, which is carefully outgassed under vacuum conditions
before application in order to prevent any virtual leaks. Furthermore, we
take care to apply only a thin layer in order to get good thermal contact
between the base and the spacer chip, such that dissipated heat is transported
efficiently to the water cooled base chip to avoid thermal damage of the
chip. The spacer chip is a high-resistivity Si substrate18 like the one for the
science chip. The spacer chip touches some bond wires as well as wires and
feed lines on the base chip. Since we want to avoid any cross-talk between
the wires in order to be able to define the currents on the 10−5 level, the

13The holes in the AlN substrate have been laser drilled by A.L.L. Lasertechnik GmbH,
München

14Piranha etch is a highly reactive mix of sulfuric acid and hydrogen peroxide. We use
a mixture of 96% H2SO4 and 33% H2O2 in the volume ratio of 4:1. CAUTION! Never
increase H2O2 concentration beyond 3:1 and never bring piranha etch in contact with
organic solvents; this would result in an explosion.

15From Zitzmann GmbH, Eching. The masks have a resolution of 16’000 DPI.
16Using an ammoniumsulfite-gold solution from Metakem.
17Aqua regia is a mixture of water, hydrochloric acid and nitric acid with volume ratios

H2O : 32% HCL : 65% HNO3 = 1 : 3 : 1. It dissolves Au as well as Ti.
18Float-zone Si in (100) orientation from Topsil.
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Figure 2.2.2: Schematic illustration of the fabrication process for the elec-
troplated structures. Electroplating allows time and material efficient pro-
duction of relatively thick structures. The process steps are explained in the
main text. The Figure has been taken from [69].

spacer has to be highly isolating. Neither does the 2 nm native SiO2 layer
provide enough isolation, nor does the bulk resistivity of the high-resistivity
Si, where ρ ∼ 104 Ωcm. Therefore, we oxidize a 20 nm layer of SiO2 by
thermal oxidation at 1100 °C. The substrates oxidized in this way exhibit a
measured DC resistivity > 40 MΩ. Since the thermal conductivity of SiO2

(1.5 WK−1m−1) is much lower than that of Si (150 WK−1m−1), the insulating
layer should not be grown any thicker than necessary [11].

In the next step, socket adapters with a pitch of 2.54 mm are trimmed
and their pins are insert into the laser drilled holes, from the back of the chip
(see the right part of Figure 2.2.1). The plugs are mechanically fixed using
the glue Epo-Tek 353ND. For electrical contacting of the SMD capacitors,
mini-SMP jacks19 as well as the DC pins, we use the indium solder reflow
paste Indalloy 204.20 Indalloy 204 has a melting point of 170°C and consists
of 70% In and 30% Pb. After the solder paste is applied, we put the chip on
an aluminum block21 with temperature monitoring, and heat the block on
a hotplate at a ramp speed of 10°C per minute to a temperature of 200°C,

19from Rosenberger GmbH
20from “Indium Corporation”.
21The glued plugs prevent good thermal contact between the chip and the hotplate if

directly placed on it.
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hold the temperature steady for about 30 s, until we slowly ramp down the
temperature again (-10°C per minute).

Before using Indalloy solder pastes, we tried to solder with conventional
Sn based reflow pastes or conducting epoxies like H20F from Epo-Tek. It
turned out that soldering gold conductors with Sn pastes does not work
because the paste completely dissolves the gold stripe [116], establishing no
electrical contact. Furthermore, there seem to be issues with Sn based solder
getting brittle when dissolving gold. Using conductive, silver-filled epoxy
glues like H20F from Epo-Tek works on a short time scale, but it turned out
that electrical contact worsens with time (on the order of weeks) by at least
a factor of 10. It turns out to be a well-known problem, which is attributed
to an incompatibility of silver-filled glues with Sn, which is contained in the
DC pins as well as in the SMD solder pads.22

2.2.2 Science chip

The science chip consists of the same, very smooth oxidized Si substrate as the
spacer chip (see above). The chip accommodates two layers of metalization.
The lower layer is fabricated by the same procedure as described above for
the base chip, except that the spin coated photoresist has only a thickness
of 6.5 µm, we use a higher resolution chrome mask23 for lithography and the
structures are electroplated to a thickness of only 5 µm (see Figure 2.2.3a).
The wires exhibit a very low r.m.s. surface roughness of 15 nm (measured
for a 7µm thick wire [69]). Smooth wire surfaces and edges are important in
order to prevent magnetic potential corrugations [117].

Before fabricating the upper layer of metalization, we have to deposit an
isolating film in between to prevent wires in the upper layer from being short
circuit by the ones in the lower layer. We chose polyimide, which provides
good insulation and is compatible with a UHV environment. We apply 3
consecutive layers of polyimide. After each spin-on of the liquid polyimide
solution,24 we perform a hard-bake at 350°C in a nitrogen atmosphere. After
the hard-bake, each layer has a thickness of ≈ 2µm. Baked polyimide is
highly resistant to chemicals like acetone, aqua regia and even piranha etch,
but not to oxygen plasma. The polyimide does not only provide insulation,
but it also smoothens out the underlying bumpy structure. Using multiple
layers of polyimide, the planarization improves with each additional layer.
This smoothing is important since the gold mirror for the mirror-MOT (which

22According to Epo-Tek, tin-oxide passivates the Ag particles contained in the glue,
which degrades the electrical contact.

23From Delta Mask, the mask is produced with a laser spot size of 0.8µm
24Polyimide PI 2562 and adhesion promoter VM651, both from HD MicroSystems.
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a)
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27 mm

gold

photoresist

Figure 2.2.3: Overview of the different progress steps in the fabrication of
the science chip. (a) Picture of the chip after the fabrication of the lower
metalization layer, whose wires are used for magnetic trapping. (b) SEM
pictures of the upper gold layer before and (c) after the lift-off step. (d)
Photograph of the chip after lift-off, before trimming the chip with a diamond
sawing blade.
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is deposited on top of the polyimide), should be as flat as possible and because
there should be no bumps in the CPW. At the same time the polyimide layer
should not be too thick because the thermal heat conductivity of polyimide
is about three orders of magnitude lower than that of Si.

For the metallic structures on the upper layer, on top of the polyimide,
we apply a lift-off metalization technique (see schematic in Figure 2.2.4). We
first apply and photolithographically pattern a photoresist film, onto which
we evaporate gold. Gold that is deposited onto photoresist is subsequently
removed together with the resist in an acetone bath.

We spin on 1.6µm image reversal photoresist.25 An image reversal resist
allows to create an undercut in the photoresist structures (the undercut is
faintly visible in Figure 2.2.3b). An undercut of the photoresist avoids direct
contact between the gold on the polyimide and that on the photoresist, and
therefore enables the removal of the gold in the lift-off step. The resist is first
exposed for a few seconds to UV light through a chrome mask with the in-
verted structure (Figure 2.2.4a). Due to the small light dose, the photoresist
is not fully exposed down to the bottom over the whole area, which leads to
the undercut and the contrast is not diminished by any back scattered light.

The next step is the image reversal bake (Figure 2.2.4b) on a hotplate
at a temperature of 120°C. In that step the exposed resist cross-links and
thereby makes itself insoluble to the developer and to any further exposure.
In the next step, the whole chip is exposed to UV light (Figure 2.2.4c), which
renders the previously unexposed areas soluble in the developer. These areas
are then removed by the developer in the subsequent step (Figure 2.2.4d).
After a further cleaning step in oxygen plasma, the chip is ready for gold
coating.

The chip is locked in the UHV e-beam evaporation chamber, where we
first deposit 3 nm of Ti adhesion layer followed by 1µm of evaporated gold
(Figure 2.2.4e). The gold is grown at a rate of 0.03 − 0.04 nm/s, the whole
gold evaporation takes more than 7 hours. The evaporated gold exhibits a
very smooth surface, which is essential for the on-chip gold mirrors. The
resulting surface roughness has been measured to be 3 nm r.m.s. [69].

After locking out the chip from the UHV chamber, we put it into a glass
with acetone. After some minutes, the remaining photoresist dissolves and
the gold peels off (Figure 2.2.4f). The chip now looks as in Figure 2.2.3d.

The last step is to cut away the unnecessary part of the Si substrate.
Therefore we coat the chip with a thick layer of photoresist (ma-P 1240),
which serves as a protection layer, and trim the Si substrate with a dia-
mond saw blade at 20’000 RPM. Furthermore, we scratch off some of the

25AZ 5214 E from Clariant
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Figure 2.2.4: Illustration of the lift-off process, which is used for the upper
layer of the science chip. The individual steps are explained in the main text.
The Figure has been taken from [69].

polyimide, for electrical contacting of the wires on the lower layer, using a
scalpel. Finally, we again remove the protective resist layer using acetone.

2.2.3 Combining base and science chip

The last step in the fabrication of the atom chip is to glue the base and the
science chips together, and to establish electrical contact between them.

The science chip is glued to the spacer chip on the base chip using out-
gassed H77S. As it is the case of gluing the spacer chip, we take care to use
as little glue as possible in order to get good thermal contact with the spacer
chip.

For electrical contact between the base chip and the science chip, we apply
up to 15 gold bond wires per contact pad (see Figure 2.2.5). Using test chips
it turned out that using more bonds and crossing the individual bond wires
is beneficial for the microwave transmission characteristics. Furthermore, in
order to prevent charges being accumulated on the three gold mirrors on the
chip, we also use one bond wire each to contact them with wires on the upper
metalization layer.

2.2.4 Glass cell

Finally, we glue the chip to a Pyrex cell.26 The Pyrex cell has an inner edge
length of 30 mm, and is anti-reflection coated for 780 nm at the outside.

26Hellma 704.027-BF, without label.
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Figure 2.2.5: Close-up of wire bonds on a test chip. The same kind of wire
bonds is used for the actual chip. The individual gold wires have a diameter
of 25µm each. Each wire can typically withstand a DC current of 800 mA.

Pyrex
cell

glass-to-metal
adapter

water cooled copper block
with integrated U-wire

35 mm

DC connectors

Figure 2.2.6: The atom chip is glued to the Pyrex cell, which is connected
to the glass-to-metal adapter, that is attached to the stainless steel vacuum
chamber. On top of the atom chip, the water-cooled copper block with inte-
grated U-wire conductor can be seen, which is used to create the quadrupole
magnetic field configuration for the MOT.
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The inner edges are beveled, to prevent a big glue meniscus, which could
disturb optical access. Before attaching the chip to the Pyrex cell, we drill
a hole with a diameter of 23 mm through the bottom of the Pyrex cell and
glue the cell to a glass-to-metal adapter (see Figure 2.2.6) using outgassed,
vacuum-compatible Epo-Tek 353ND.We follow an optimized curing schedule,
which reduces stress due to the glue and the different expansion coefficients
of Pyrex and glass. After applying the glue, we wait two days for the glue
to shrink while still being viscous, before we perform the final curing. In
the final curing, the whole cell assembly is slowly heated during 1.5 h to a
final temperature of 150°C. After curing at this temperature for one hour,
we slowly ramp the temperature down again.

For gluing the Pyrex cell to the chip, we follow the same procedure as
before. The Pyrex cell is rotated by an angle of 3° relative to the chip edges
such that reflected laser beams do not overlap, which would otherwise cause
interference fringes on absorption images.

The glue joint between the base chip and the Pyrex cell also transverses
the CPWs on the base chip. This leads to a local change in the CPW
impedance which causes reflections. We examine this effect using a test
chip and find that the presence of one glue joint on the base chip leads to
a decrease in CPW power transmission by 0.18 dB and an increase in the
reflected power by about the same amount. This means that there is no
significant absorption by the glue joint.
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2.3 DC and MW characterization of the sci-
ence chip

Resistive heating of a chip wire in combination with its thermal contact to
the substrate limits the maximum current the wire can withstand. A current
flowing in a wire heats it up and thereby increases its resistivity, which again
increases resistive power dissipation. The wire will eventually find its thermal
equilibrium, or “burn”. Power dissipation at microwave frequencies not only
depends on the total current but also on the current density distribution
j(x, z) in the cross section of the wire, which is strongly influenced by the
skin effect [104].

In the following, I present DC and microwave characterizations of some
of the science chip wires.27 During all these measurements, the chip is placed
on the metal chuck of our probe station. The relatively high heat capacity
of the chuck “simulates” the water-cooled heat sink on the back of the atom
chip built into the experiment. The dominant cooling mechanism for the
wires is heat conduction to the substrate [11]. Therefore, the results of the
measurements below, which are carried out at ambient pressure, are also
valid for a vacuum environment.

DC characterization Knowledge of the (maximum) DC current density
jmax a wire can withstand is important because the confinement for the atoms
scales with j [11].

We send DC current pulses through the respective wires and measure the
voltage drop across them. We apply currents at a duty-cycle of ∼ 30% (3 s
on, 7 s off), which is a typical atom chip DC wire duty cycle. In Figure 2.3.2,
the results of two upper layer wires and a thin wire on the lower metalization
layer on the science chip are shown.

The measurements show that the wires on the upper layer can carry a
current density of at least 2.8 × 1010 A/m2, while the wires below the poly-
imide can endure at least 5.5× 1010 A/m2.28 Using the measured increase in
resistivity, it is possible to estimate the temperature change of the respective
wire. Assuming that the increase in resistance of the signal wire of the double
CPW structure (see Figures 2.3.1 and 2.3.2a) is only due to heating of the
central part with cross section 1µm × 2.5µm and length 240µm, we get a
temperature change ∆T = 450°C. This value overestimates the actual ∆T
because it neglects heating of the wire leads. In the actual experiments, we

27The tested chip is identical to the one built into the experiment.
28In [69] it is reported that a very much comparable wire on the lower layer of a two-layer

chip burns at jmax = 6× 1010 A/m2.
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11 µm 
IDC

Isignal incident
reflected
microwave: Pmw

CPW short 

CPW short 

Figure 2.3.1: Illustration of the double CPW wires used in the current tests.
The wire with IDC is a wire on the lower layer (cross section 11µm× 5µm),
while the one with Isignal (cross section 2.5µm × 1µm) is located on the
upper layer. For microwave tests, an incident microwave (ω = 2π× 6.8 GHz)
is reflected at the CPW short and forms a standing wave with a periodicity
of 1.4 cm, a factor 50 longer than the length of the central part of the CPW.
The microwave current forms an antinode at the position of the short.

stay well below the maximum currents applied in the tests described here
(cf. Section 3.8).

Microwave characterization Here I present a characterization of the on-
chip microwave structures on the science chip (i.e. before gluing it to the
base chip) by performing S-parameter measurements. In Chapter 4 a more
sophisticated characterization of the microwave near-field is presented where
atoms are used as probes.

We measure the frequency dependent microwave S-parameter character-
istics of one of the fabricated science chips using the network analyzer. The
results are shown in Figure 2.3.3. For the case of the single CPW structure,
due to the symmetry we infer from the transmission measurements an atten-
uation of −2.15 dB from the edge to the center of the chip. Furthermore, the
flatness of the transmitted signal is an indication that there is no significant
standing wave present on the chip. In the case of the double CPW structure,
from the reflected signal we infer a microwave attenuation of −2.65 dB from
the corner of the chip to its center. For both structures, we find the attenu-
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Figure 2.3.2: Results from the DC characterization of some science chip
wires. We push a variable DC current through some of the chip wires and
record the voltage drop (left). From the steady state voltage drop, the wire
resistivity (right) is extracted. The change in resistivity indicates the temper-
ature change of the wire. Measurements include the approximately constant
resistance of the cables of 0.3 Ω. (a) Current through the smallest wire on
the upper layer with a cross section of 2.5µm × 1µm, highlighted in blue
on Figure 2.3.1 (current Isignal). Due to the tiny heat capacity, and small
total power dissipation, which does not change the substrate temperature
significantly, the steady state is reached within some ms. (b) Signal wire of
the single CPW structure, see Figure 2.1.7a, with cross section 6µm× 1µm
(current Is in Figure 3.8.1). Compared with (a), the slope of the resistance
differs by a factor ≈ 1

2
. (c) Measurement for the narrowest wire on the lower

layer, highlighted in pink on Figure 2.3.1 (current IDC), with minimal cross-
section 11µm×5µm. For this wire, it takes about 2 s to reach a steady state
resistance. We attribute this long time scale to heating of the substrate.
The maximum current density tested on this wire is jmax = 5.5× 1010 A/m2,
which caused no damage.
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Figure 2.3.3: Microwave transmission and reflection characteristics of the
single and double CPW structures. For the single CPW structure, we have
a transmission of -4.3 dB at 6.8 GHz. The reflected signal shows that there
is a resonance at 6.8 GHz, but since there is no significant modulation of
the transmitted signal, there is no indication of any experimentally relevant
standing wave. For the double CPW structure, we have the inverse situation.
We have a reflection of -5.3 dB at 6.8 GHz. The high reflectivity is expected as
a result of the CPW short. A transmission is not given because the wires after
the short do not form a CPW anymore. These characteristics are measured
in the dark, because the presence of light modifies the transmission as well
as the reflection characteristics through excitation of electron-hole pairs in
the substrate. The effects of the probes and cables have been calibrated out.

ation increase slightly with growing values of the microwave power Pmw (see
Figure 2.3.4). Measurements were performed without illumination, because
the presence of light increases the microwave attenuation through excitation
of electron-hole pairs in the Si semiconductor substrate.

We test the chip for the maximum microwave power the structures can
withstand. We find that for both structures, we can feed at least 26 dBm
(400 mW) onto the CPW, without damaging it (in this chapter, microwave
power readings correspond to the power at the corner of the science chip).
This corresponds to an incident r.m.s. microwave current Imw,rms = 90 mA
at the corner of the chip (|Zc,corner| = 50 Ω) or an incident Imw,rms = 59 mA
in the center of the chip (|Zc,center| = 70 Ω) for the single CPW structure.
In the center of the double CPW structure (|Zc,center| = 80 Ω), we have a
standing wave antinode with an amplitude of 104 mA. The measurements
were performed at a 10% duty-cycle; 500 ms on, 4500 ms off. Again, in the
experiment we stay well below these power levels.

Power dissipation and microwave attenuation We also examine the
influence of DC currents on microwave characteristics. We find that by in-
creasing IDC and/or Pmw, we get increased microwave loss (see Figure 2.3.4a,
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Figure 2.3.4: Influence of DC currents IDC, Isignal and microwave power
Pmw on microwave attenuation characteristics. We use the double CPW
structure, and record the attenuation of the reflected microwave at fixed
frequency ω = 2π × 6.8 GHz. We find that by increasing the microwave
power Pmw in a), as well as by increasing IDC in b), or by increasing Isignal in
c), the microwave attenuation increases. In (c), at Isignal = 99 mA the wire
burns.
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2.3 DC and MW characterization of the science chip

2.3.4b). The same is also true for the DC current Isignal (Figure 2.3.4c). We
attribute the dependence of microwave attenuation on DC currents purely
to thermal effects. At simultaneous application of Isignal = 99 mA, Pmw =
440 mW, and IDC = 1 A, the limit of the signal wire is reached, and it burns
in the very center.
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Chapter 3

Setup and preparation of
mesoscopic BECs

In this chapter, the experimental setup is presented. It covers the equipment
used for quick cycle and highly reproducible production of mesoscopic BECs,
containing down to 100 atoms or less; this includes a vacuum and laser
system, low-noise current sources as well as a magnetic µ-metal shielding.
Furthermore, the microwave and RF setup for the coherent manipulation
of atoms with state dependent microwave potentials is covered, which is
essential for the experiments presented in Chapter 5. This chapter also gives
a description of the experimental control and the low-noise imaging system,
which allows the detection of spin-squeezed states (see Chapter 6). I conclude
this chapter with a first set of experiments, where the microwave near-field
around the single CPW structure is characterized with trapped condensates.

3.1 Chip, coils & vacuum

The optically accessible part of the vacuum system is the glass cell (see
Figure 2.2.6 in the previous chapter). The glass cell with the atom chip is
surrounded by three pairs of Helmholtz coils, as can be seen in the overview
in Figure 3.0.1 and the close-up in Figure 3.1.1. The coil cage is water cooled
to prevent thermal drifts and air convection. The flange of the glass-to-metal
transition is attached to our vacuum system (Figure 3.1.2), which has a base
pressure of 5×10−10 mbar. The vacuum is maintained by a 40 l/s ion pump1
and a Ti-sublimation pump, and the background gas pressure is measured

1VacIon Plus 40 Diode
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Setup and preparation of mesoscopic BECs

Figure 3.0.1: The atom chip setup. The magnetic µ-metal shield is partly
opened. The atom chip and the glass cell is surrounded by three pairs of
water-cooled Helmholtz coils. Attached to the back of the chip is a water
cooled copper block with an integrated U-wire that is used for the creation
of the quadrupole field for the MOT and which provides cooling to the chip.
Laser light is fed to outcouplers via optical single-mode fibers. The objective
and a part of the camera for imaging on the y-axis are visible on the right
part. The µ-metal shielding has a diameter of about 50 cm.
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Microwave horn

RF antenna

Cable for on-chip DC currents

Imaging beam outcoupler Horizontal MOT 
outcoupler

Coil cage

Figure 3.1.1: Close-up of the chip setup. The atom chip and the glass cell
are surrounded by the coil cage.
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Setup and preparation of mesoscopic BECs

using an ion gauge.2 During the experiments, the ion gauge is switched off,
because its emitted infrared radiation is visible on the camera.

The vacuum system consists of a single chamber, where the loading of
the magneto-optical trap (MOT) with 87Rb atoms from the background gas
is done at the same location as the subsequent forced evaporative cooling to
quantum degeneracy. While fast loading of the MOT requires a relatively
high background gas pressure, collisions with the background gas shorten the
magnetic trap life times. This is unfavorable for subsequent efficient forced
evaporative cooling. The essential condition for evaporative cooling is a long
lifetime of the atomic sample compared to the thermalization time [1]. In
magnetic microtraps, the solution is to increase the inter-atomic collision rate
during evaporative cooling by compressing the magnetic traps, and relaxing
the trap after condensation to decrease loss due to inelastic collisions between
trapped atoms in the experiment trap. In this way, we achieve 1-body loss
dominated trap lifetimes, measured with a sample initially prepared as a
BEC of about 4.5 s. This is indeed at least a factor of 20 lower than what
can be achieved in a two-chamber setup [118], but is fully sufficient for our
experiments.

3.1.1 Rubidium source

As a source for 87Rb atoms, we have integrated three rubidium dispensers into
the vacuum system (see Figure 3.1.2). Two dispensers3 contain a rubidium-
chromate and a redox agent. In addition, we have integrated a third dis-
penser,4 which contains a rubidium-indium alloy. The dispensers are point-
welded to a wire which is connected to the internal ports of an electrical
vacuum feed through (see Figure 3.1.2). Release of atomic 87Rb is controlled
via the current that is sent through the dispenser.5 The current is at a few
hundred mA above the threshold, at which the release of 87Rb starts. In all
experiments reported in this thesis, always the same SAES dispenser is used.
When running the experiment, the dispenser is running continuously at a
constant current level IDisp = 3.75 A. A modulation of the current would
cause atom number drifts and seems not to be compatible with the short
experimental cycle time desired. The option of modulating the rubidium
background pressure using light-induced atomic desorption (LIAD) as e.g. in
[119] seems to be unfavorable, because this would also lead to drifts in the
total atom number.

2Leybold Ionivac IE514 Extraktor
3SAES Getters RB/NF/3,4/12FT10+10
4Alvatec AS-RbIn-5-F
5Release of 87Rb is always accompanied by emission of other unwanted contaminants.
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Pressure
gauge Dispenser

feed through

Ti sublimation
feed through

Glass cell
and chip

Ion pump

Viewport

Figure 3.1.2: Overview of our compact vacuum system. It contains electri-
cal feed throughs for the Ti sublimation pump as well as for the dispensers.
The glass cell and the chip are flanged to the top port of a six-way cross.
On top of the chip, there is the water-cooled copper block with a “U”-shaped
wire for the MOT, which can withstand currents > 60 A. On the opposite
port of the six-way cross, there is a viewport for a camera used to observe
the fluorescence from the MOT.
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Figure 3.1.3: Change of resistivity between some of the on-chip wires indi-
cated in (b) as a function of time. (a) The first measurement of the resistivity
was taken after about 7 months of operation with the atom chip, about 3
months after the first BEC. It seems that the decrease in resistivity is slowly
saturating. (b) Schematic of our atom chip with the wires from (a) indicated.
Wires on the base chip are drawn in green, those in the lower layer of the
science chip are yellow, while wires on the upper layer are colored in red (see
Appendix A for a enlarged version).

Rubidium has a very high probability of sticking to a surface. As a result,
the pressure gauge, which is located at another port of the six-way cross (see
Figure 3.1.2), does not adequately measure the 87Rb pressure inside the glass
cell [120].

Rubidium deposition on the chip When the atom chip was built into
the setup, we measured a DC resistance > 40 MΩ between all wires on the
science chip as well as between the wires on the base chip. We measure a
decrease of the insulation between the wires as a function of time, as shown
in Figure 3.1.3. We attribute this to rubidium, which is adsorbed on the
surface of the chip and slowly creates a conducting layer on the atom chip.
We have not yet tried whether the resistivity can be recovered by using a
LIAD technique, since the lowest resistivity (65 kΩ) is still a factor of 4000
above the resistivity of the signal wire of the single CPW structure, measured
from one end of the chip to the other.
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3.2 Magnetic shielding

z

Figure 3.2.1: Measurement of the magnetic field fluctuations in our lab.
Measured magnetic field fluctuations on the two axes with the highest am-
plitude outside the µ-metal (left) and inside the magnetic field shield (right),
both measured with a flux gate (Bartington MAG03-MC70). One can clearly
recognize that the shielding factor is not the same on both axes at the po-
sition of measurement, which is some centimeters away from the position of
the atoms. The main contribution to the slow drifts of the magnetic field is
due to the nearby subway line.

3.2 Magnetic shielding
The stability of the (static) magnetic field is important for two main reasons:
Firstly, magnetic field fluctuations inhibit the preparation of a reproducible
atom number through forced evaporative cooling, as the final atom number
is very sensitive on the magnetic field, because it influences the trap bottom.
Secondly, magnetic field fluctuations limit the coherence time between states
|1〉 and |2〉 in general [69], and especially when using microwave potentials,
because then the dressed states have a differential magnetic moment [21, 47].

Therefore, we have put a magnetic shielding6 around our experiment.
Without magnetic shielding, we measure peak-to-peak fluctuations of the
magnetic field of up to 33 mG, which is mostly caused by the nearby subway
line. The magnetic field changes on a minute time-scale. Inside the magnetic
shielding, we measure total peak-to-peak magnetic field fluctuations of up to
2.6 mG (225 µG r.m.s.), see Figure 3.2.1.

A side effect of the magnetic shield is that its interior acts as a microwave
resonator. We find, that by moving parts like e.g. the camera tubus inside
the µ-metal, even by only some mm, the microwave field strength radiated
from the horn and measured with the atoms changes substantially.

6Single-layer µ-metal shielding from Sekels GmbH
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3.3 Microwave and radio-frequency setup

3.3.1 Microwave for on-chip CPW

We create state-selective potentials for states |1〉 and |2〉 by coupling an off-
resonant microwave into the CPW. In the limit of large detuning

∣∣Ω2,m2

1,m1

∣∣2 �∣∣∆2,m2

1,m1

∣∣2 for all m1, m2, the differential potential between |1〉 and |2〉 depends
linearly on the microwave power Pmw (see Section 1.8.1). Therefore, to mini-
mize dephasing between |1〉 and |2〉 we need high stability and reproducibility
of Pmw.

The microwave power for the on-chip waveguide is generated by an ampli-
fied Agilent 8257D microwave generator, whose output is amplitude stabilized
using a feedback loop with a 20 dB directional coupler and an Agilent 8471E
microwave detector (see Figure 3.3.1). We measure a relative long-term drift
in Pmw of < 5× 10−4 peak-to-peak if we set the amplitude modulation (AM)
input to a constant level by the experiment control. For frequency stabil-
ity, the microwave generator’s internal clock is phase-locked to a 10 MHz
Oscilloquartz OCXO 8607-BM reference.

The transmission through the atom chip (including the base chip) is at-
tenuated by ∼ 6 dB at 6.8 GHz (see Figure 3.3.2). We find that the relative
drift of the power launched into the chip is the same as that of the transmit-
ted power. This indicates that there is no significant long-term drift of the
CPWs transmission properties.

3.3.2 Microwave and radio-frequency for state prepara-
tion

Microwave and radio-frequency fields irradiated to the atoms for internal
state preparation should be as homogeneous as possible to prevent Rabi
frequency gradients across the clouds.

Microwave

The microwave for the state-preparation is generated by a second Agilent
8257D microwave generator. It is also phase-locked to the Oscilloquartz
OCXO 8607-BM. Its output is fed through a circulator and a switch7 and is
amplified using a 4 W amplifier.8 We measure a relative long-term stability

7Miteq N147BDM2
8AML 48P4201-4W
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MW OutALC in

att.
32 dB amp.

AML 218P3203 20 dB dir. coupler
Pulsar CS20-10-435/1

microwave detector
Agilent 8471E

circulator
AEROTEK
H15-1FFF

50 terminationΩ

Microwave gen.
Agilent 8257D

switch20 dB dir. coupler
Pulsar CS20-10-435/1

microwave detector
Agilent 8471E

power monitoring

cable to CPW
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absorptive
circulator
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Bias-Tee
UMCC BT-S000-HS
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Figure 3.3.1: Sketch of the microwave power stabilization circuit. The
microwave generator’s output is running cw. It is attenuated, such that
the generators maximum output (+14 dBm) saturates the 32 dB amplifier.
1% of the amplified microwave power is fed back to the generator’s ALC
(“automatic leveling control”) input to stabilize the output power. The ALC
bandwidth is set to 100 kHz. Even though the microwave switch (rise/fall-
time < 300 ns) is an absorptive switch, we need 2 circulators until we see
no effect of the switch on the power stabilization. From this chapter on to
the end of this thesis, microwave power values Pmw correspond to the power
measured at the second directional coupler.

73



Setup and preparation of mesoscopic BECs

T
ra

n
s
m

is
s
io

n
 [

d
B

]

Frequency [GHz]

0 2 4 6 8

0

-10

-20

-30

|S12|
2

|S21|
2

Figure 3.3.2: Measurement of the microwave transmission characteristics
of the single CPW structure including cables. We measure a damping of
10 dB at 6.8 GHz from one end to the other, including the cables which
contribute 4 dB. |S12|2 and |S21|2 are equal, as it is expected in absence of
non-linearities. Due to symmetry, we expect an attenuation of 5 dB from
one end of the cable to the chip center.

of the pulse-area after the amplifier of 2× 10−3. The output of the amplifier
is then fed to the microwave horn shown in Figure 3.1.1. The horn irradiates
the atom chip with a relatively homogeneous, linearly polarized microwave,
whose AC magnetic field is approximately perpendicular to the static mag-
netic field in the trap center. However, the presence of the structured chip
surface causes microwave near-field variations, see Section 4.4.

Radio-frequency

The radio-frequency for the two-photon drive is generated by an Agilent
33250A function generator. It is phase-locked to the same 10 MHz reference
as the microwave generators. The output is then fed through a switch9 and
is amplified by an amplifier10 to up to 2 W. We measure a relative long-
term stability of the pulse area of 1 × 10−3. The output of the amplifier is
then fed to the radio-frequency antenna indicated on Figure 3.1.1. The same
generator is also used for the first two (of three) forced evaporative cooling
ramps.

9Mini-circuits ZASWA-2-50DR
10Mini-circuits ZHL-1-2W
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Figure 3.3.3: Coupling between the microwave horn and the on-chip CPW.
Using a network analyzer, a variable microwave frequency is sent to the
microwave horn, and the signal picked up by the single CPW structure is
measured. |S21|2 is the transmitted signal picked up by the CPW and |S11|2
is the signal reflected by the microwave horn due to impedance mismatch.
The data includes about 4 dB attenuation from the cables to the horn and
from the CPW to the network analyzer. The data is taken with the magnetic
shield closed.

Coupling between the horn and the CPW

We find a finite coupling between the microwave horn and the on-chip CPW.
Using a network analyzer, we shine in a microwave of variable frequency
through the horn to the chip and measure the signal picked up by the CPW.
The measurement is shown in Figure 3.3.3. The consequence is a degraded
microwave horn field homogeneity near the CPW, which leads to dephasing
of Rabi oscillations, see Figure 5.1.1a. In Section 4.4 we find that the mi-
crowave field inhomogeneities near the CPW cannot be explained purely by
the coupling between the horn and the on-chip waveguide.

3.4 Current sources

For the critical chip wire currents on the lower layer of the science chip,
where the stability is very important,11 we use ultra-stable, bipolar current
sources, which have been developed in our group [121]. These current sources
have a maximum output current (voltage) Imax = ±3 A (Vmax = ±10 V), and

11As opposed to currents e.g. in the MOT phase or the first magnetic trap
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Figure 3.5.1: Illustration of the optical beam paths for cooling, optical
pumping and imaging. The beams from the 45° MOT outcouplers are re-
flected at the upper metalization layer on the science chip. The polarizations
of the beams with respect to their propagation directions are indicated, where
RHP (LHP) stands for right-hand-side (left-hand-side) circular polarization.
The current through the copper-U, that is glued on the back of the atom chip,
together with homogeneous external fields create the quadrupole magnetic
field for the MOT.

exhibit an r.m.s. current noise ∆I/ |Imax| = 5× 10−6 in a frequency band of
0.3 Hz - 200 kHz. The current drifts within an hour by less than 10−5 |Imax|
peak-to-peak. The sources can switch currents within 15µs (10%-90%) for
typical loads of some Ohms.

For the coils, we use sources with similar characteristics, but with Imax =
±5 A and which are optimized for inductive loads. These sources can switch
the currents in the coils in less than 1 ms.

For DC currents in the upper layer of the science chip, we use commercial
current sources.12 These bipolar sources have a maximum output current
(voltage) of Imax = ±20 mA (Vmax = ±10 V). They exhibit a relative drift
of ∆I/ |I| ≤ 6 × 10−5 within 500 s. We measured an r.m.s. current noise
∆I/ |Imax| = 1.2× 10−5 in a frequency band of 3 Hz - 230 kHz.
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Figure 3.5.2: 87Rb term scheme and overview of the laser frequencies used
in the experiment. The MOT cooling light frequency is detuned by −2Γ
with respect to the resonance F = 2 → F ′ = 3, the light for the molasses
cooling is detuned by −13Γ. The lock point for the master laser is indicated
in blue in the saturation spectroscopy error signal on the upper right. The
spectroscopic error signal has been taken from [122].

3.5 Laser system

Laser light for cooling of atoms in the mirror MOT [4] and molasses, opti-
cal pumping, and imaging of the atoms is generated by three diode lasers,13
which emit light near the D2 line of 87Rb (λ = 780 nm). The relevant laser
frequencies which are derived from the diode lasers using acousto-optic mod-
ulators (AOMs) are indicated in Figure 3.5.2. The laser light after the AOMs
is coupled into polarization maintaining single-mode fibers and is guided to
outcouplers near the glass cell. Here I will only give a short overview of the
laser system. A more detailed description can be found in [121].

Cooling laser Cooling in the MOT and in the optical molasses is per-
formed on the transition F = 2 ↔ F ′ = 3. The laser light required is
generated by two lasers in master-slave configuration. The master laser is
a grating stabilized diode laser in Littrow configuration [123], which is fre-
quency locked using Doppler-free saturation spectroscopy on the crossover-
resonance F = 2 → F ′ = CO(2, 3) (see Figure 3.5.2). The laser light is
frequency shifted in a double-pass AOM by 2×

(
110 MHz + ∆

2

)
, before it is

12BCS 002/10 from HighFinesse GmbH.
13with Sharp GH0781JA2C laser diodes, Pmax = 120 mW.
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injected into the slave diode laser. This locks the frequency of the slave laser
to the incident laser frequency. The slave laser light passes another AOM,14
which shifts the light frequency by -86.65 MHz, before it is split and fed
into four polarization maintaining fibers leading to the outcouplers for the
mirror-MOT (see Figure 3.5.1).

The MOT laser light frequency can be shifted from the resonance F =
2 → F ′ = 3 by up to ∆ = −16Γ/2π to the red and ∆ = 7Γ/2π to the blue,
with the slave diode laser still being injection locked. The light for the MOT
is detuned by ∆ = −2Γ/2π, while during the molasses phase, ∆ = −13Γ/2π.

Repump laser During the MOT and molasses phase, atoms can be pumped
off-resonantly by the cooling light to the F = 1 ground state. To bring the
atoms back to the cooling cycle, we use repump laser light, which is res-
onant with the transition F = 1 → F ′ = 2. This light is generated by
a second grating stabilized diode laser, which is locked on the transition
F = 1 → F ′ = CO(1, 2) (cf. Figure 3.5.2), which is then frequency shifted
on resonance with the atomic transition F = 1 → F ′ = 2 by an AOM at
frequency 78.5 MHz. This light beam is superimposed to the cooling light in
both 45° mirror-MOT outcouplers.

The repump laser light is not only used for cooling, but also for state-
selective absorption imaging, see in Section 3.7.1 below.

Pump lasers We use the combination two left-hand circularly polarized
beams resonant with the transitions F = 2 → F ′ = 2 (2-2-pump) and
F = 1 → F ′ = 1 (1-1-pump) to transfer the atoms to the magnetically
trappable state |1,−1〉 after molasses cooling. Both beams are superimposed
into a separate optical single-mode fiber (pump fiber), whose light at the
other end is superimposed with one of the horizontal MOT beams (cf. Figure
3.5.1).

2-2-pump laser The 2-2-pump beam is taken directly from the master
diode laser, before the double-pass AOM. The light has to be shifted by
−133.5 MHz. Since the AOM used here works efficiently only up to 90 MHz,
the laser is frequency shifted in a double-pass AOM configuration by 2 ×
−66.75 MHz.

1-1-pump laser The 1-1-pump is derived from the repump diode laser,
and is frequency shifted using an AOM by -78.5 MHz, before it is coupled
into the pump beam fiber.

14This AOM is also used for laser power modulation and fast switching
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Detection laser The detection laser is resonant with F = 2→ F ′ = 3 and
is taken from the MOT laser beam. The detection laser is either coupled into
a separate single-mode fiber for imaging along the y axis or into the pump
fiber for imaging along x.

Our laser system is very stable - as long as the air condition keeps the
temperature steady, the laser system can be operated for days without re-
locking.

3.6 Experiment control

The experiment is controlled by a computer equipped with 4 National Instru-
ments digital/analog cards (2×PCI-6733, 1×PCI-6723 and 1×PCIe-6259) as
well as a GPIB adapter. In total, we have 20 analog 16bit, 32 analog 13bit
and 48 digital ports. All analog-out channels show high frequency glitches at
the beginning of each sample.15 Amplitudes and durations of these glitches
are shown in the table below, measured at a sampling frequency of 100 kHz.
Furthermore, I show the expected maximum voltage drifts during 24 h for
an output voltage of 10 V, calculated according to the specs of the cards.

card drift within glitch glitch
24 h [mV] amplitude [mV] duration [µs]

PCI-6733 1.4 5 2
(8×16bit, 8 digital)
PCIe-6259 2.1 10 1
(4×16bit, 32 digital)
PCI-6723 10 100 2
(32×13bit)

On some critical channels, we filter the glitches with a low-pass filter.
The experimental control software is based on goodTime, a program writ-

ten by Jakob Reichel. I extended it by implementing the following features:
Syntax highlighting and a virtual oscilloscope (see Figure 3.6.1), relocking
to the 50 Hz power net frequency, as well as inter-process communication
with the camera software for triggering and parameter transmission via Mi-
crosoft’s DCOM interface.16 We are working with a sample interval of 10µs.

15These glitches are documented.
16Using DCOM (Distributed Component Object Model), the process to communicate

with can be on the same computer as well as on any computer reachable via the network. In
our case, the camera control software runs on a different computer than the experimental
control software.
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Shorter intervals needed for the Ramsey sequence are generated using a SRS
DG535 delay generator, triggered by goodTime.

Syntax highlighting and virtual oscilloscope Syntax highlighting in
combination with code folding facilitates reading and writing of code enor-
mously (see Figure 3.6.1a). The syntax highlighting class built into goodTime
is based on the Scintilla library.17

The idea behind the virtual oscilloscope (see Figure 3.6.1b) is as follows:
It turns out that in the daily lab work debugging of the experimental control
code is done more efficiently (and much more often successfully) by checking
the relevant analog/digital channels with an oscilloscope rather than by ana-
lyzing the code of the sequence. Since our oscilloscopes have only up to four
channels, and setting up a measurement takes some time, a graphical pre-
view of arbitrarily many chosen output channels should facilitate sequence
examination and debugging.

3.7 Data acquisition

3.7.1 State-selective absorption imaging

We take our experimental data using state-selective resonant absorption
imaging [1], where a σ− polarized laser pulse (duration dtim = 40µs), reso-
nant with the cycling transition F = 2, mF = −2 → F ′ = 3, mF ′ = −3, is
shone through the atom cloud and the shadow cast by the atoms is imaged
with a CCD camera. We use an Andor iKon-M DU934N-BR-DD camera,
which contains a back-illuminated, deep depletion CCD chip, that exhibits
a quantum efficiency of q = 0.90 at λ = 780 nm and Temperature −80°C.
Two thirds of the CCD are shadowed by a razor blade, and are only used
as a storage area. We start with two laser pulses which image the different
hyperfine states. The first laser pulse projects the atoms which are in a su-
perposition of the hyperfine states |1〉 and |2〉, onto the F = 2 manifold and
images the atoms in F = 2. After the image is taken, the charges accumu-
lated in the illuminated area of the CCD are moved into the shadowed area,
which takes dtmove = 1.6 ms. During dtmove, atoms in F = 2 fly out of the
depth of focus of the imaging system due to the photon recoil momentum
transferred by the imaging pulse. Subsequently, a 20 µs repumping pulse
pumps the atoms from F = 1 to F = 2, which are then imaged as in the
first pulse. Subsequently, the charges of the second exposure are also shifted
into the shadowed region, before a last exposure without atoms is performed.

17www.scintilla.org
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a)

b)

Figure 3.6.1: Screen shot of our experimental control software goodTime.
(a) Main user interface of goodTime, with syntax highlighting and code fold-
ing. (b) The virtual oscilloscope shows a preview of the output on the re-
spective channels. This can facilitate debugging a lot.
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Figure 3.7.1: State-selective absorption image of a BEC prepared in a
superposition of |1〉 and |2〉 (top: F = 2, bottom: F = 1) with about 1000
atoms in total (F = 2 : N2 ∼ 800 atoms, F = 1 : N1 ∼ 200 atoms).
We detect the number of atoms in each hyperfine manifold with an r.m.s.
imaging noise of 10 atoms, which is dominated by photonic shot noise. The
time between both absorption images in F = 2 and F = 1 is 1.6 ms; the
atoms in F = 2 are imaged after 4 ms time-of-flight (TOF), while the atoms
in F = 1 are imaged after 5.6 ms of free fall. The resolution of our imaging
system is sopt = 4µm.
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3.7 Data acquisition

After that, the mechanical shutter of the camera closes, and the accumulated
charges of the two absorption images and from the reference image on the
chip are read out to the camera count bitmaps nabs,F=2(x, y), nabs,F=1(x, y)
and nref(x, y). Furthermore, we take about once a day a picture without a
laser pulse, ndark(x, y), which measures background light and camera dark
current.

The spatial atomic density distribution in the manifolds F = 1 and F = 2,
NF=i(x, y), can then be calculated according to [124]

NF=i(x, y) =
A

σeff

ln

(
nref(x, y)− ndark(x, y)

nabs,F=i(x, y)− ndark(x, y)

)
+

2

Γdtimqg
(nref − nabs,F=i) ,

(3.7.1)
where A = (lpixel · αmag)2 is the pixel area in the object plane (lpixel is the
pixel period on the CCD chip and αmag is the magnification of the imaging
system), Γ = 2π × 6.067 MHz is the natural line width of the D2-line, q is
the quantum efficiency and g the gain of the camera, and σeff = εσ0 with
σ0 = 3λ2/2π is the resonant cross-section for a two-level atom. ε adjusts
the effective scattering cross section σeff , and is calibrated following [124] to
ε = 0.90, such that the measured atom number is independent of the imaging
intensity I. The factor ε takes into account the effects of pumping the atoms
to the cycling transition as well as imperfect imaging light polarization. The
product q · g can be calculated from a measurement of photonic shot noise
(we take the measurement g = 1.11 from the camera manufacturer).

Measurement of the number of atoms both in F = 1 and F = 2 in a single
shot allows to take out fluctuations in the total atom number preparation.

Imaging noise We image the atoms with an imaging beam intensity I ≈
Isat, where Isat is the saturation intensity, because this provides us the best
signal to noise ratio.18

When imaging typical BECs containing 1000 atoms after a time-of-flight
of 4 ms, the photonic shot noise on the camera over the image area of the BEC
leads to an atom number uncertainty of 10 atoms r.m.s. on the absorption
images for each hyperfine manifold.

When imaging clouds in a superposition of states |1〉 and |2〉, with N1 and
N2 the number of detected atoms in states |1〉 and |2〉 and σ1 (σ2) the imaging
noise for state |1〉 (|2〉), the r.m.s. imaging noise σnorm of the normalized atom

18Ed Marti (UC Berkeley), private communication.
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number19 N1(2),norm =
N1(2)

N1+N2
(N1 +N2) is given by

σnorm =

√
N

2

1σ
2
2 +N

2

2σ
2
1

(N1 +N2)
(3.7.2)

For mean atom numbers N1 = N2 = 500, we get σnorm = 10√
2
≈ 7.1. This

is substantially below projection noise σproj =
√
N1 ·N2/(N1 +N2) = 15.8.

This in turn allows the detection and characterization of entangled states like
spin-squeezed states using our imaging system [47].

3.7.2 Camera control

For camera control and data processing, I wrote a MATLAB-GUI based pro-
gram called MatCam. The main advantage of a MATLAB based program is
that modifying, extending and debugging can be done with great ease, with-
out having to restart or even recompile the program after each modification.
MatCam camera drivers have to implement a simple interface, and have to
be provided as a Win32-DLL file. Currently, I have implemented camera
drivers for 5 different camera types. Furthermore, MatCam also provides a
simple interface for user-defined m-file based fitting routines.

MatCam communicates with goodTime via the already mentioned DCOM
interface. It takes parameters from the experimental control software, e.g. for
proper atom number calculation (i.e. dtim from Eq. (3.7.1)) as well as any cho-
sen parameter. All transmitted parameters as well as extracted values (e.g.
the number of atoms, or the extracted temperature) are logged to text-files,
which can be imported into any analysis software. Furthermore, MatCam
comes with a reanalysis function, which allows to reanalyze previous scans.

3.8 Production of mesoscopic BECs

In this section, I briefly sketch the procedure for the production of mesoscopic
BECs in state |1〉, which constitute the starting point for the experiments
described in the following section and Chapter 5. For a detailed treatise of
laser cooling and Bose-Einstein condensation in chip traps, see [125, 126].

19The normalized atom number takes out the relatively small fluctuations in the total
number of prepared atoms.
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Figure 3.7.2: Screen shot of MatCam with its primarily used tool windows.

MOT and optical molasses Atoms are collected and cooled from the
background gas by the mirror-MOT and a subsequent optical molasses phase
as described in [69], except that we do not modulate the background pressure
with a LIAD technique. At the end of the molasses phase, we end up with an
atomic ensemble of about 6×106 atoms at a temperature of 7µK. Due to the
wire gaps and bumps of the on-chip mirrors (see Figure 2.0.1 and Chapter
A) the MOT has some fuzzy structure, which turned out to be no problem
for subsequent loading of the magnetic traps.

Optical pumping Before switching on the magnetic traps, we have to
optically pump the atoms into a magnetically trappable hyperfine state. We
do this by shining in a 400µs pulse of 1-1-pump and 2-2-pump laser light
which is σ− polarized with respect to the magnetic field of 2 G. This transfers
the atoms with high efficiency into the magnetically trappable hyperfine state
|1〉. The optical pumping increases the temperature of the cloud to 11 µK.

Magnetic trapping and evaporative cooling The first magnetic trap
(“Z-Ioffe”), a Ioffe-Pritchard trap with a relatively large trapping volume that
is formed by a “Z”-shaped wire on the lower layer of the chip (IZ = 2.65 A,
see Figure 3.8.1a and Table 3.1), is switched on and captures about 4.5×106

atoms. This trap is then compressed adiabatically to increase the elastic
collision rate (which is a prerequisite for fast evaporative cooling) and the
temperature of the cloud is lowered by a first RF evaporation ramp, such
that the remaining precooled cloud (≈ 1×106 atoms) fits into the next trap.
We then ramp the atoms adiabatically into the next, more elongated “Long-
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Ioffe” trap (ILZ = 630 mA, on the lower chip layer), followed by smooth
turning on of the “Dimple-1” trap (current ID1=350 mA, lower chip layer).
There we perform another RF evaporation ramp, such that we empty the
“plateau” of this dimple trap (see Figure 3.8.1b), and end up with a cloud of
30’000 atoms at a temperature close to but still above Tc. Subsequently, we
crossfade from the dimple trap created by ID1 to a little more relaxed one
(“Dimple-2”) created by DC currents on the single-CPW wires where each
of the three CPW wires carries a current of 15 mA (total current ID2=2 ×
15 mA − 15 mA=15 mA, see Table 3.1).20 In this dimple trap we perform a
last step of RF evaporative cooling (see Figure 3.8.2), such that we end up
with quasi pure condensates containing up to 5’000 atoms. The prepared
atom numbers in the BEC is highly reproducible (see Figure 3.8.3). Then,
we ramp the condensate during 150 ms into the experiment trap, which is
created by currents on the Long-Ioffe and CPW wires. This ramp is adiabatic
to avoid excitations in the BEC.

We could also create condensates directly in the “Dimple-1” trap, but then
we would have to transfer the condensate from a dimple trap created by cur-
rent ID1 to the experiment trap created by DC currents on the CPW wires,
which not only involves ramping of currents but also switching of a current
source at the risk of creating excitations in the condensate. Performing the
second RF evaporation directly in the trap “Dimple-2” is not an option be-
cause the achievable trap volumes are too small because of the limited DC
current capabilities of the CPW wires.

We measure the trap bottom as the stop frequency of the last RF evap-
oration ramp at which the trap is emptied to 1.4130 MHz (including some
10 kHz due to RF power broadening), corresponding to a magnetic field
B0=2.019 G in the trap center (we simulate B0 = 1.89 G, see Table 3.1). To
produce BECs with 400 atoms, we have to stop the RF-evaporation 3.3 kHz
above the trap bottom. This agrees well with the calculated chemical poten-
tial µc=3.7 kHz for a BEC of 400 atoms in the condensation trap (fx=200 Hz,
f⊥=2100 Hz) [84].

20This choice of currents on the CPW wires has historic reasons as one of the current
sources was originally connected in the wrong way. Since condensation works well in this
configuration, we did not change it.
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Figure 3.8.1: Illustration of the science chip wires for static magnetic trap-
ping and the magnetic field configurations they create in the experiment.
(a) Geometry of the relevant on-chip wires together with their currents (the
arrow indicates the current direction, see Appendix A for more details). All
wires, except for the “Dimple-2” wires are located on the lower layer of the
science chip. The smallest widths of the “Z-Ioffe”, “Long-Ioffe” and “Dimple-
1” wires are 50 µm, 17 µm and 10 µm respectively. “Left” and “Right” in IG,L

and IG,R corresponds to the nomenclature in the experiment control code.
(b) Magnetic fields in the different traps on a cut along x through the trap
minimum (x = y = 0 is at the intersection of the middle “Dimple-2” and
“Long-Ioffe” wire). One can clearly recognize the plateau of the “Dimple-
1” trap, which is emptied during the second RF evaporation, such that the
cooled cloud accumulates in the dimple.
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Step ∆t IZ ILZ ID1 IG.L IS IG,R Be,x Be,y d f1 f2 f3 B0 νRF

[ms] [A] [mA] [G] [µm] [Hz] [G] [MHz]

Z-Ioffe1 2 2.65 0 0 0 0 0 0 12 400 24 180 220 1.90

ramp 200 ↓ 0 0 0 0 0 ↓ ↓
Z-Ioffe2 500 2.5 0 0 0 0 0 1.4 55 76 16 3820 3870 1.85 50→17.5

ramp 10 ↓ 0 0 0 0 0 1.4 ↓
Z-Ioffe3 5 0.63 0 0 0 0 0 1.4 20 47 7 2120 2140 1.47

ramp 100 ↓ ↓ 0 0 0 0 1.4 20

Long-

Ioffe

1 0 0.63 0 0 0 0 1.4 20 53 17 2280 2320 1.55

ramp 100 0 0.63 ↓ 0 0 0 ↓ 20

Dimple-1 1000 0 0.63 -0.35 0 0 0 12 20 51 460 3800 3900 0.793 19→1.8

ramp 50 0 0.63 ↓ ↓ ↓ ↓ ↓ 20

Dimple-2 600 0 0.63 0 -15 -15 15 2.3 20 53 200 2100 2100 1.89 2→1.4

ramp 150 0 ↓ 0 ↓ ↓ ↓ ↓ ↓
ExpTrap ∼15 0 0.13 0 -2 -2 2 3.3 5.2 44 109 500 500 3.23

Table 3.1: Sequence of traps created with the wires in Figure 3.8.1. ExpTrap
is the trap that is used for the experiments in Chapter 5 and Section 6.1.
Durations ∆t, trap frequencies fi, distances of the trap centers from the chip
surface d, magnetic fields in the trap center B0 and the frequencies νRF of
the RF evaporative cooling ramps are shown in the table. Arrows indicate
smooth ramps from the start to the end values. Numbers given for fi, B0

and d have been calculated (except for ExpTrap, for which these values have
been measured).
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Figure 3.8.2: Bose-Einstein condensation through RF evaporative cooling.
The lower part of the figure shows the number of atoms for different values
of the end frequency of the last RF ramp. In this set of measurements we
produce “pure” BECs with about 2000 atoms without discernible thermal
fraction. The upper part shows the optical density of the clouds after a
time-of-flight of 7.7 ms. The condensed component is only slightly elongated
because the atoms are released from a relaxed detection trap (fx = 40 Hz,
f⊥ = 130 Hz).
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Figure 3.8.3: Stability of the atom number preparation in a BEC. We re-
peatably prepare a mesoscopic BEC by cutting with the RF-ramp for conden-
sation deep into the BEC. We end up with a condensate containing 533±22
atoms (including imaging noise of about 10 atoms r.m.s.). This exceptional
stability is only possible with the magnetic µ-metal shield.
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3.9 Atoms in the CPW near-field
In this section, I report on a first set of measurements, which characterize
the microwave near-field around the single CPW structure. We ramp a con-
densate containing 3000 atoms to different traps at different positions and
drive resonant single-photon Rabi oscillations on the σ−, π and σ+ tran-
sition using the CPW. The static magnetic field B0 in the trap center is
approximately oriented along x. We find very high microwave magnetic field
gradients, and measure Rabi oscillation frequencies |Ω/2π| reaching nearly
1 MHz for Pmw = 25 mW (see Figure 3.9.1). We compare the measured Rabi
frequencies with a static simulation for an ideal CPW mode (assuming ho-
mogeneous microwave currents Imw on the signal wire and −Imw/2 on each
of both grounds), and find rough agreement. The observed Rabi oscillations
are quickly damped out, which is caused by the strong field gradient across
the extent of the atom cloud.

The high microwave near-field strength can be illustrated by comparing
our measured Rabi frequencies |Ω/2π| ∼1 MHz for about 8 mW microwave
power reaching the chip center with the first microwave trapping experiments
[50], where they reached |Ω/2π|= 36 MHz inside a microwave cavity with a
circulating microwave power of several hundreds of kilowatts.

For a thorough comparison between measurement and simulation, the
microwave field at many more trap positions should have been measured,
which is a very time-consuming task. In the following chapter, I will present
a more sophisticated and parallelized method for measuring a microwave
near-field distribution and compare it to simulations.
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Figure 3.9.1: Measurement of the resonant Rabi frequencies |Ω/2π| at
different trap positions. We prepare a BEC containing 3000 atoms in different
traps (the calculated trap positions are indicated by the filled circles). In
the traps, the static magnetic field is approximately along x. We launch
a resonant microwave at frequency ω = ω− (Pmw = 25 mW) into the single
CPW structure and observe resonant Rabi oscillations between states |1,−1〉
and |2,−2〉 (see inset). The Rabi oscillations are highly damped because of
microwave field gradients across the BEC. The measured Rabi frequencies
|Ω/2π| for different trap positions are indicated in black next to the trap.
A static simulation of an ideal CPW mode (semi-transparent background)
is adjusted by scaling the microwave current amplitude Imw, such that the
measured frequency at the trap indicated by the blue filled circle is equal to
the measured one (117 kHz). Numbers given in blue correspond to the Rabi
frequencies extracted from the simulation. We find rough agreement between
measurements and the simulation.
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Chapter 4

Imaging of microwave fields using
ultracold atoms

When we started using the on-chip CPW structure, we were curious about its
microwave near-field distribution, and how well the distribution agrees with
what is expected from simulations. First tests, where we measured the mi-
crowave Rabi frequency at some points in the CPW near-field with trapped
condensates (see Section 3.9) showed some discrepancy between measure-
ments and static simulations, in which we assume a homogeneous CPW
mode current distribution on infinitely thin waveguide wires, see Section
2.1.1. Furthermore, the displacement of the atoms observed when applying
the state dependent microwave potentials (see next chapter) was not repro-
duced very well by the simulation. One way to clarify the incongruity would
have been to map out the whole microwave near-field with trapped conden-
sates. Recording the whole CPW near-field in that way would have been
very time consuming: Each trap has to be simulated, and at least one of
the microwave resonance frequencies for the different polarizations has to
be adjusted experimentally,1 since the simulation typically does not predict
the magnetic field in the trap center and thereby the transition frequencies
sufficiently accurately.

Measuring a microwave near-field distribution of a device is not only rele-
vant for atom chips, but it is also of interest for a broader microwave engineer-
ing community. Today, Monolithic Microwave Integrated Circuits (MMICs)
are of great importance in science [21, 127] and technology. In particular, they
constitute key building blocks of today’s communication technology [128].
Function and failure analysis is of crucial importance for the design of MMICs

1As soon as the resonance frequency for one polarization component is found experi-
mentally, the Zeeman shift is known and the other resonance frequencies can be calculated.
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Figure 4.0.1: Illustration of the working principle of the microwave field
imaging technique. The description is given in the main text.

as well as for simulation verification [129, 58]. External port measurements
(e.g. using a network analyzer) offer only limited insight. The microwave
near-field distribution on the device gives much more information, enabling
specific improvement. Therefore, different methods have been developed to
measure the spatial distribution of microwave near-fields. These methods
include electron beam testing [130], photo-emissive probing [130], photo-
excitation testing [130], internal and external electro-optic sensing [130, 131],
charge density probing [130], electric force microscopy [130, 129], the capac-
itive coupling method [130], SQUID microscopy [132], modulated scattering
probing [133] as well as various pickup devices [134, 135, 136, 137]. All these
methods use diverse physical effects to measure the microwave near-field dis-
tribution. However, these methods have in common that they use a scanning
technique to measure the field distribution point-by-point, which can be a
quite time consuming task.

We conceived and implemented a different, parallelized way of mapping
out a microwave near-field distribution. It works in the following way: we
move a trapped thermal cloud of atoms close to the microwave structure to
be characterized. Then the trap is switched off and the atoms are released
to free fall. During a hold-off time dtho, the cloud drops due to gravity and
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Figure 4.0.2: Ground state hyperfine levels of 87Rb atoms in a static mag-
netic field. Initially, the atoms are trapped in state |F,mF 〉 = |1,−1〉. The
three relevant transitions |1,−1〉 ↔ |2,m2〉, (m2 = −2,−1, 0) are indicated.
The corresponding transition frequencies ωγ (γ = −, π,+) are split by ωL due
to the Zeeman Effect. The resonant Rabi frequencies Ωγ are also indicated.

expands due to its thermal velocity spread, filling the region to be imaged
(Figure 4.0.1a+b). We maintain a homogeneous static magnetic field B0. It
provides the quantization axis and splits the hyperfine transition frequencies
ωγ, (γ = −, π,+) by ωL, see Figure 4.0.2. A microwave signal on the CPW is
subsequently switched on for a duration dtmw (typically some tens of µs). We
select one of the transitions by setting the microwave frequency to ω = ωγ.
The microwave magnetic field couples to the atomic magnetic moment and
drives Rabi oscillations at frequency |Ωγ(r)| on the resonant transition, with
|Ωγ(r)| ∝ Bγ(r), where Bγ(r) is the microwave magnetic field polarization
component at spatial position r, that drives the transition ωγ.

After the resonant microwave pulse, a spatial distribution of atomic pop-
ulations in F = 1 and F = 2 results, see Figure 4.0.1c. The probability to
detect an atom at position r in F = 2 is

p2(r) ≡ n2(r)

n1(r) + n2(r)
= sin2

[
1
2
|Ωγ(r)| dtmw

]
. (4.0.1)

Here, n1(r) (n2(r)) is the density of atoms in F = 1 (F = 2), which can be
measured using state-selective absorption imaging [48]. An overview of p2(r)
arising from the different polarization components around our single CPW
structure is shown in Figure 4.0.3.

From p2(r) we can reconstruct |Ωγ(r)| and thus the spatial distribution
of the resonant microwave magnetic field polarization component Bγ(r), as
shown in Section 4.2 below. In the following section, we derive the rela-
tion between |Ωγ| and Bγ, and show how the relative phases between the
microwave polarization components can be reconstructed.
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Figure 4.0.3: Imaging of microwave magnetic field components near the
single CPW structure. The images show the measured probability p2(r) to
find an atom in F = 2 after applying the microwave pulse, see Eq. (4.0.1).
Columns correspond to measurements on the three different transitions ωγ,
rows to three different orientations of B0. The imaging beam is reflected
from the chip surface at an angle of 2°. As a result, on each picture, the
direct image and its reflection on the chip surface are visible. The dashed
line separates the two. Due to distortions of the imaging beam caused by the
CPW, no atoms are visible in the center. The microwave power launched into
the CPW, Pmw, and the microwave pulse duration dtmw are indicated. dtho

varies between 1 − 2 ms. The noise on the image periphery corresponds to
regions without atoms. Images are averaged over several experimental runs
(15 to 130).
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4.1 Theory

4.1.1 Rabi frequencies Ωγ

We derive the Rabi frequencies [86] for the resonant coupling of ground
state hyperfine levels of 87Rb with a microwave field. In the following,
we consider an atom in a weak static magnetic field B0, so that the Zee-
man splitting ωL = µBB0/2~ is small compared to the zero-field splitting of
ω0 ' 2π × 6.8 GHz between the two hyperfine states F = 1 and F = 2 of
the 52S1/2 electronic ground state of 87Rb. The atom is initially prepared
in the hyperfine sublevel |F,mF 〉 = |1,−1〉, and the microwave frequency
ω is equal to one of the ωγ. The real-valued microwave magnetic field at
position r = (x, y, z) in the fixed Cartesian laboratory coordinate system is
B(r, t) = 1

2

[
B̂(r)e−iωt + B̂?(r)eiωt

]
with the complex phasor

B̂(r) ≡

 B̂x(r)e
−iφx(r)

B̂y(r)e
−iφy(r)

B̂z(r)e
−iφz(r)

 .

Here, we have chosen B̂i(r), φi(r) ∈ R≥0, (i = x, y, z).
In the following, we consider a fixed position in space and suppress the

dependence of Bi(r) and φi(r) on r to simplify notation. We apply a homo-
geneous static magnetic field B0. For a given B0, we choose a new Cartesian
coordinate system (x′, y′, z′) with the z′-axis pointing along B0, which defines
the quantization axis for the atomic states |F,mF 〉. In this new coordinate
system, the microwave magnetic field phasor is given by

B̂ ≡

 B̂x′e
−iφx′

B̂y′e
−iφy′

B̂z′e
−iφz′

 .

The microwave magnetic field couples to the magnetic moment of the electron
spin of the atom. The coupling to the nuclear magnetic moment is neglected,
because it is three orders of magnitude smaller than the electron magnetic
moment. The Rabi frequency on the hyperfine transition |1,m1〉 ↔ |2,m2〉
is given by

Ω2,m2

1,m1
=

2µB
~
〈2,m2|B̂ · J|1,m1〉, (4.1.1)

with J = (Jx′ , Jy′ , Jz′) the electron spin operator. Using J± = Jx′ ± iJy′ we
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can write

B̂ · J = B̂x′e
−iφx′Jx′ + B̂y′e

−iφy′Jy′ + B̂z′e
−iφz′Jz′

= 1
2

(
B̂x′e

−iφx′ − iB̂y′e
−iφy′

)
J+ + 1

2

(
B̂x′e

−iφx′ + iB̂y′e
−iφy′

)
J−

+B̂z′e
−iφz′Jz′ . (4.1.2)

Evaluating the matrix elements for the three transitions connecting to |1,−1〉
(see Appendix C), we obtain the Rabi frequencies:

Ω− ≡ Ω2,−2
1,−1 =

2µB
~
〈2,−2|1

2

(
B̂x′e

−iφx′ + iB̂y′e
−iφy′

)
J−|1,−1〉

= −e−iφ− ·
√

3 · µB
~
B̂−, (4.1.3)

Ωπ ≡ Ω2,−1
1,−1 =

2µB
~
〈2,−1|B̂z′e

−iφz′Jz′|1,−1〉

= −e−iφπ ·
√

3

4
· µB
~
B̂π, (4.1.4)

Ω+ ≡ Ω2,0
1,−1 =

2µB
~
〈2, 0|1

2

(
B̂x′e

−iφx′ − iB̂y′e
−iφy′

)
J+|1,−1〉

= e−iφ+ ·
√

1

2
· µB
~
B̂+, (4.1.5)

where the following definitions are used

B̂−e
−iφ− := 1

2

(
B̂x′e

−iφx′ + iB̂y′e
−iφy′

)
, (4.1.6)

B̂πe
−iφπ := B̂z′e

−iφz′ , (4.1.7)

B̂+e
−iφ+ := 1

2

(
B̂x′e

−iφx′ − iB̂y′e
−iφy′

)
, (4.1.8)

with B̂γ, φγ ∈ R≥0, (γ = −, π,+). We note that Ωπ is proportional to the
projection of B̂ ontoB0, while Ω+(−) is proportional to the right (left) handed
circular polarization component in the plane perpendicular to B0.

In the experiment, we choose a sufficiently strong static field B0 so that
ωL � Ωγ. Furthermore, we choose the microwave frequency resonant with
one of the transitions, ω = ωγ. In this way, Rabi oscillations are induced only
on the resonant transition in a given run of the experiment, which allows us
to selectively image the individual microwave magnetic field components B̂γ.
The extraction of the field components from absorption images is described,
in Section 4.2 below.
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4.1.2 Reconstruction of the microwave magnetic field

The amplitudes B̂x, B̂y, and B̂z of the Cartesian components of B̂ in lab-
oratory coordinates can be easily determined by measuring |Ωπ| with the
quantization axis B0/B0 pointing along x, y, and z, respectively. In the fol-
lowing, the upper index indicates the direction of the quantization axis in
laboratory coordinates, e.g. Ωy

− (B̂y
−) means Ω− (B̂−) for B0 pointing along

the y-axis.
To reconstruct the relative phases (φy − φx) and (φz − φx) between the

Cartesian components of B̂, we also measure the amplitudes of the circularly
polarized components B̂x

+, B̂x
−, B̂

y
+, B̂

y
−, B̂z

+, and B̂z
−. Having measured these

components, we can reconstruct the relative phases according to the following
recipe.

B0 along x We choose a coordinate system with z′ along x, resulting from
the following coordinate transformation:

x′ = −z
y′ = y
z′ = x

In this rotated coordinate system, the microwave magnetic field phasor
reads

B̂ ≡

 B̂x′e
−iφx′

B̂y′e
−iφy′

B̂z′e
−iφz′

 =

 −B̂ze
−iφz

B̂ye
−iφy

B̂xe
−iφx

 .

From this we obtain:

B̂x′ = B̂z φx′ = φz + π

B̂y′ = B̂y φy′ = φy
B̂z′ = B̂x φz′ = φx

Using Eqs. (4.1.6) and (4.1.8), we calculate

B̂2
+ − B̂2

− = −B̂x′B̂y′ sin(φy′ − φx′). (4.1.9)

By insertion of the coordinate transformation and using Eqs. (4.1.3) - (4.1.5),
we obtain

sin (φz − φy) =
~

4µ2
BB̂zB̂y

(
4

3
|Ωx
−|2 − 8|Ωx

+|2
)

=
1

~B̂yB̂z

(
(B̂x
−)2 − (B̂x

+)2
)
.

(4.1.10)
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B0 along y A similar calculation as before yields

sin (φx − φz) =
~

4µ2
BB̂xB̂z

(
4

3
|Ωy
−| − 8|Ωy

+|2
)

=
1

~B̂xB̂z

(
(B̂y
−)2 − (B̂y

+)2
)
.

(4.1.11)

B0 along z In this case, we obtain

sin (φy − φx) =
~

4µ2
BB̂xB̂y

(
4

3
|Ωz
−| − 8|Ωz

+|2
)

=
1

~B̂xB̂y

(
(B̂z
−)2 − (B̂z

+)2
)
.

(4.1.12)
All quantities on the right hand sides of Eqs. (4.1.10) - (4.1.12) can be

measured. From Eqs. (4.1.10) - (4.1.12), the relative phases (φy − φx) and
(φz − φx) can be determined. The solution is unique except for the very
degenerate case where sin (φx − φz) = sin (φy − φx) = sin (φz − φy) = 0. In
this case, there are 4 solutions which cannot be distinguished. The absolute
microwave phase distribution can be reconstructed using an interferometric
method as described in Section 4.5 below.

4.2 Data extraction methods

In the beginning of this chapter, I discussed that the spatial probability
p2(r) of finding an atom at position r in state F = 2 can be measured.
From p2(r), we can calculate |Ωγ(r)| by inverting Eq. (4.0.1) unambiguously
only if |Ωγ(r)| dtmw ≤ π everywhere. For |Ωγ(r)| dtmw > π, there is no unique
solution (see Figure 4.2.1b). We have developed two methods, the ray-tracing
method and the movie method, to determine |Ωγ(r)| uniquely.

4.2.1 Ray-tracing method

In the ray-tracing method, the calculation of |Ωγ(r)| up to an offset n·2π/dtmw

depends on whether p2(r) is on the falling or rising slope with respect to Pmw

(with dtmw fixed) or dtmw (with Pmw fixed), see illustration in Figure 4.2.1.
The calculation works in the following way: On the image of p2(r), we send
rays from the image periphery (where |Ωγ| dtmw � 1 and n = 0) through
the point of interest r to the center of the microwave structure (where |Ωγ| is
maximal). We count the number of minima and maxima of p2(r) encountered
on the ray. Each time the ray passes a maximum plus a minimum, n increases
by one. If on the way from the periphery to the point r the last extremum
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Figure 4.2.1: Illustration of the ray-tracing method. (a) Simulation of the
distribution p2(r) around the CPW (indicated in yellow, calculated with a
static simulation for a perfect CPW mode on the waveguide wires) for B0

along z and ω = ωπ. The simulation shows what corresponds to the direct
image (below) as well as the mirror image on the chip (above). The blue
dashed line separates the two (cf. Figure 4.0.3). A sample ray (see text) is
indicated in red. (b) p2(r) on the ray indicated in a). r = 0 corresponds to
the center of the CPW structure. By inverting Eq. (4.0.1), |Ωπ| cannot be
calculated unambiguously. By counting the numbers of minima and maxima
on the ray (counted from outside, where |Ωπ(r)| · dtmw � 1) and by track-
ing the slope on the ray, |Ωπ(r)| can be calculated uniquely, see main text.
The small peak around r = 4µm is caused by the ray being tangent to an
isopotential line of p2(r).
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was a maximum, we are on a falling slope, otherwise we are on a rising one.
We calculate for the case of a rising slope:

|Ωγ(r)|rising =
2

dtmw

arcsin
(√

p2(r)
)

+ n
2π

dtmw

, (4.2.1)

whereas in the case of a falling slope

|Ωγ(r)|falling = (n+ 1)
2π

dtmw

− 2

dtmw

· arcsin
(√

p2(r)
)
. (4.2.2)

The ray-tracing process is illustrated in Figure 4.2.2.
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Figure 4.2.2: Demonstration of the ray-tracing method, here for the dis-
tribution of B̂z

π(r). We take at least one image of the total atom number
distribution n1(r) + n2(r), see panel (a), and of the number of atoms in
F = 2, n2(r), see panel (b). From these we can calculate p2(r) = n2(r)

n1(r)+n2(r)
,

panel (c), and remove the regions without atoms (d), because they disturb
the peak finding algorithm. We send rays from the periphery to the center
of the structure and identify the different positive and negative slope regions
on p2(r) as well as their value of n. The different recognized slope regions
for n = 0 (e,f) and n = 1 (g,h) are highlighted. Due to dephasing across a
pixel caused by the strong near-field gradients, the proper recognition of the
different slope regions complicates with increasing values of n. This problem
could be avoided e.g. by taking two images with different dtmw, one with small
dtmw for the region close to the CPW, and one with larger dtmw for the outer
regions. Using Eqs. (4.2.1) and (4.2.2) we calculate B̂z

π(r) as shown in panel
(i). From the reconstructed B̂z

π(r) we again calculate p2(r) as shown in panel
(j). Note that the reconstructed field corresponds to the same component
that is shown in Figure 4.2.1 for an ideal CPW mode. The horizontal side
lobes cannot be recognized because there are too few atoms in the respective
regions.
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Figure 4.2.3: Imaging of B̂x
π(r) using the movie method. We take series of

k images, scanning either Pmw and/or dtmw. Here, we only scan Pmw (and
thereby Imw) while keeping dtmw = 20µs fixed. From the images, we extract
B̂x
π(r) as described in the main text.

4.2.2 Movie method

In the movie method, we take series of k images, scanning either the mi-
crowave power Pmw and/or dtmw, see Figure 4.2.3. k depends on the desired
dynamic range, but can be as low as 10. The lowest value of Pmw and dtmw

should be such that |Ωγ| dtmw � 1 in the region of interest. For each image
pixel, we thus obtain a sequence of k data points showing Rabi oscillations,
see Figure 4.2.4a. We fit a function ∝ sin2

[
1
2
|Ωγ(Pmw)| dtmw

]
to the data,

where |Ωγ(Pmw)| = a
√
Pmw, and a is the fit parameter. From the fit, we

determine |Ωγ(Pmw)| and thus via Eqs. (4.1.3) - (4.1.5), B̂γ at this pixel for
a given Pmw. As an example, Figure 4.2.4b shows an image of the Cartesian
microwave field component B̂x(r) near our on-chip CPW reconstructed in
this way. We find that the fits can be improved by adding an exponential de-
cay to the fit function, which accounts for dephasing due to microwave field
gradients across the pixel or the optical resolution of the imaging system,
whatever is greater.

4.2.3 Comparison between both extraction methods

Using the ray-tracing method, it is in principle possible to extract the mi-
crowave magnetic field distribution for one component B̂γ using just one
image of n2(r) and n1(r) + n2(r). To improve the data quality, we average
over several images of n2(r) and n1(r) + n2(r).2 A reliable recognition of the
minima and maxima on a ray is not trivial. To improve the determination
of minimas and maximas on a ray, we use smoothing and anti-aliasing3 algo-

2In our experiment, the time to record one frame is 14 s, but could be reduced to below
3 s [33].

3In anti-aliasing, not just one but several rays are sent out, having a small divergence.
This is a well-known method e.g. in computer graphics rendering, which avoids staircase-
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Figure 4.2.4: Movie method extraction of the microwave magnetic field
component B̂x(r) in the vicinity of the CPW and comparison to a simulation.
The measurement is performed with ω = ωπ and B0 along x. (a) Rabi-
oscillations at two exemplary pixels of the image, recorded by varying Pmw

at fixed dtmw = 20µs. The sinusoidal fits used to determine |Ωx
π| and thus

B̂x
π as a function of

√
Pmw are shown. The observed decay of the oscillations

is due to microwave field gradients across the pixel. (b) Image of B̂x
π(r) at

Pmw = 120 mW as obtained from the data. (c) Corresponding adjusted static
simulation of B̂x

π(r), which reproduces the measured field distribution best,
see Section 4.3.

rithms in order not to mistake noise (like imaging or projection noise) as a
minimum or maximum. This is a delicate task, because smoothing must not
be too strong in order not to smooth out a true extremum. Furthermore, for
the microwave near-field of complex structures, it might not be sufficient to
send rays from all directions to the same center because there could be local
extrema of the field.

Using the movie method on the other hand, we always need several im-
ages, but the data fitting procedure is relatively robust, as long as good
starting values for the curve fitting are provided. In addition, with the movie
method we typically achieve a higher dynamical range than with the ray-
tracing procedure (see Figure 4.2.5). Therefore, for most tasks the movie
method is more favorable than the ray-tracing method.

like sampling artifacts.
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Figure 4.2.5: Comparison of the microwave magnetic field amplitudes B̂z
π

extracted using the movie method (left) and the ray-tracing method (center).
The movie data is extracted from 25 shots with Pmw,i = (i+ 1)× 1 mW and
dtmw = 20µs, while the ray-tracing data is extracted from the average of 60
shots imaging n2(r) and n1(r) + n2(r), at Pmw = 50 mW and dtmw = 10µs.
The plots shown are scaled to P̃mw = 120 mW for better comparison with
Section 4.3. In the right panel, the ratio of the extracted magnetic fields is
shown. In the outer regions, the extracted values from both methods agree
very well. One can still recognize discontinuities from the ray-tracing method
arising from the different recognized slope regions. In the center, where B̂z

π

is maximal, the data quality for both methods is not very good because of
dephasing across the optical resolution caused by the strong microwave field
gradient (pixel size 2.7 µm, optical resolution 10 µm in this set of measure-
ments). In the case of the movie method, this causes strong damping of
the sine oscillations which complicates the fitting, while for the ray-tracing
method, it becomes increasingly difficult to properly determine p2(r) as well
as the slope and the offset n of |Ωγ(r)|, see Eqs. (4.2.1) and (4.2.2).
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4.2.4 Consistency check for extracted fields

It is possible to derive relations between the field components that allow one
to check for validity of the extracted data. E.g. from Eqs. (4.1.6) and (4.1.8),
one can derive the relation(

B̂z′

−

)2

+
(
B̂z′

+

)2

=
1

2

((
B̂x′

π

)2

+
(
B̂y′

π

)2
)

=
1

2

(
B̂2
x′ + B̂2

y′

)
. (4.2.3)

Using Eqs. (4.1.3) - (4.1.5) this can also be written as∣∣∣Ωz′

−

∣∣∣2 + 6
∣∣∣Ωz′

+

∣∣∣2 = 2
∣∣∣Ωx′

π

∣∣∣2 + 2
∣∣∣Ωy′

π

∣∣∣2 . (4.2.4)

We test a subset of the movie-extracted data using Eq. (4.2.3), with z′ ≡ x,
x′ ≡ −z and y′ ≡ y. The results are shown in Figure 4.2.6. We find that
the extracted data reproduces Eq. (4.2.3) to within ±25% in regions with
|z| > 20µm and which are well covered by atoms. More towards the center
dephasing due to microwave field gradients across the optical resolution of
10µm becomes strong and fitting is very difficult.

4.2.5 3D imaging

This near-field imaging technique can be extended to measure 3D distribu-
tions of B̂γ(r) slice by slice, either by using a gradient of B0(r) such that
only a slice of atoms is resonant with ω, or by using a light sheet detection
technique [138], where slices perpendicular to the camera line of sight are
imaged.

A further variant is to shape an atomic cloud either in the spatial atom
number distribution or in the spatial hyperfine state population, prior to
applying the microwave pulse, such that the atoms only undergo Rabi oscil-
lations within a defined layer.

4.3 Characterization of the on-chip CPW

In this section, I exemplarily extract the microwave magnetic field compo-
nents B̂x

π(r) and B̂z
π(r) around our single CPW structure with the movie

method, and compare them to simulations (see Figures 4.3.1 - 4.3.3). In this
way, the microwave current distribution on the atom chip wires, including
induced currents in the metalization nearby, can be reconstructed.
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Figure 4.2.6: Consistency check for the data extracted using the movie
method (reconstructed using 50 frames each). (a) Map of the extracted
microwave magnetic field polarization components. In the center of the plots,
near the CPW, microwave field gradients across the optical resolution lead
to strong dephasing, which makes curve fitting very difficult. Therefore, for
pixels whose fitted Rabi oscillation amplitude falls below a threshold, the
magnetic field at the corresponding pixel is set to zero. (b) Calculation of
the left-hand-side (LHS) and right-hand-side (RHS) of Eq. (4.2.3), as well as
the ratio RHS/LHS and the normalized difference between RHS and LHS,
(RHS− LHS)/(RHS + LHS). Regions which are well covered with atoms
and where |z| > 20µm exhibit a normalized difference mostly below 25%.
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4.3 Characterization of the on-chip CPW

Ideal CPW current distribution. We find that the measured field dis-
tributions B̂x

π(r) and B̂z
π(r) (Figure 4.3.1 left) do not agree with a static

simulation for an ideal CPW mode (homogeneous planar currents Imw on
the signal wire and −Imw/2 on both grounds), see middle and right of Figure
4.3.1. The measured distribution extends much more along z than it does in
the simulation.

Sonnet simulated current distribution. A refinement for the simula-
tion drops the assumption of perfect and homogeneous CPW mode currents
and uses the current distribution from Sonnet for the same structure (see
Figure 4.3.2). Sonnet’s current distribution shows induced currents in both
DC wires next to the CPW grounds as well as currents induced in the lower
wire layer. Interestingly, currents in a cut along x do not sum up to zero,
which we attribute to surface charges due to the non-translational invariant
structure.

The simulated fields with the current distribution from Sonnet (Imw =
62 mA) and comparison to the measurements are shown in the first two
columns of Figure 4.3.3. We find that the current distribution from Son-
net reproduces the extracted fields much better than the perfect CPW mode
before. Sonnet’s current distribution produces microwave fields which extend
much more along z, similar to the measured fields. Furthermore, the simu-
lated field shows also a slight left/right asymmetry in B̂x

π , which is however
less pronounced than what we measure. The origin of this asymmetry in the
simulation is the asymmetry of the currents induced in the lower layer of the
chip.

Adjusted static model. We adjust our static model to reproduce the
measured fields as good as possible. The results are shown in the last two
columns of Figure 4.3.3. We set the currents on the wires in the upper layer
(including both DC wires next to the CPW) to the integrated values from
Sonnet and allow for a 10% asymmetry in the currents in the wires left of
the signal wire relative to those right of it (see top of third column in Figure
4.3.3). The results are shown in the third and fourth column of Figure 4.3.3.
With this adjustment, we find the best agreement between measurements
and simulation.
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Figure 4.3.1: Measurements of B̂x
π(r) and B̂z

π(r) and comparison to a static
simulation. The first column shows the measured values for B̂x

π(r) and B̂z
π(r),

reconstructed with the movie method (using 50 frames each). The plots show
the microwave magnetic field for P̃mw = 120 mW. The field distribution for
a perfect CPW mode, calculated with a static simulation, is shown in the
center column (Imw = 62 mA on the signal wire and −Imw/2 on each of
both grounds). The rightmost column displays the normalized difference
of the extracted microwave field and the simulated one. One can clearly
recognize that the simulated field distribution does not adequately reproduce
the measurements if one assumes an ideal CPW mode.
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Figure 4.3.2: Illustration of the extracted current distribution from Sonnet.
The upper row shows the current density in the upper layer of metalization
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in the lower layer. The inset in the upper left plot shows a cut along the
black line indicated. The integrated current on the signal wire is equal to
Imw = 62 mA.
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Figure 4.3.3: Comparison of the simulated microwave field distribution
using Sonnets current distribution B̂i

π,Son to the one measured with the movie
method B̂i

π,mov (left) and comparison to an adjusted static simulation B̂i
π,stat

(right). The (integrated) current on the signal wire is equal to Imw = 62 mA.
The description is given in the text.
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4.4 Characterization of the microwave horn

This field imaging technique can also be used to characterize the field ho-
mogeneity from the microwave horn (that is used for internal state manip-
ulation) at the position of the atoms. We release a cloud of atoms in state
|1〉, while maintaining a magnetic field B0 = 1.1 G along z. After waiting
for dtho = 2.35 ms for the atom cloud to expand, we shine in a 40µs pulse
at frequency ω = ω+ at a power of 1 W, that partly transfers the atoms
to |2, 0〉. The atoms in F = 2 are then detected using state-selective ab-
sorption imaging. The result is shown in Figure 4.4.1. We do not observe a
homogeneous field distribution, instead we find a nearly circularly symmetric
intensity gradient, which is centered around the on-chip CPW. The observed
field distribution is not primarily due to microwave power coupled into the
CPW modes, as the coupling between the horn and the CPW is much too
weak (see measurement in Section 3.3.2) and the measured field distribution
corresponds to neither of both CPW modes. It is not entirely clear where
the microwave currents are induced, but we speculate that currents induced
in the gold mirrors on the chip may be involved in addition to currents on
the CPW wires.

The field gradient results in spatial modulation of the Rabi oscillation
frequencies for internal state manipulation. However, this modulation is still
weak enough such that high contrast Rabi oscillations can be driven, see next
chapter.

4.5 Reconstruction of the absolute microwave
phase

While Section 4.1.2 describes the reconstruction of the relative phases (φy −
φx) and (φz−φx) between the Cartesian components of B̂, it is also possible to
reconstruct the spatial dependence of the global phase of B̂ using a Ramsey-
type scheme. The procedure uses two microwave pulses. During the whole
sequence, B0 remains constant. In the following, we assume B0 is pointing
along the x-axis, so that φx(r) is measured. The other two phases, φy(r) and
φz(r), can then be determined from the already known relative phases.

After releasing the atoms from the trap, they are prepared in an equal
superposition of states |1,−1〉 and |2,−1〉 by application of a π

2
-pulse at

frequency ω = ωπ. This microwave pulse is applied from a well-characterized
source, so that it has negligible (or at least known) intensity gradients and
negligible (or known) phase gradients across the atomic cloud. This can be
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Figure 4.4.1: Distribution of Rabi frequencies Ωz
+(r) from the microwave

horn at the position of the atoms. See main text for the description of the
experimental procedure. The left panel shows a measurement of n2(r), while
in the right, a measurement of p2(r) is displayed. n2(r) and n1(r) are the
average of 50 experimental runs. The CPW is indicated in yellow in both
plots.

achieved by using an external microwave horn4 [21]. The duration of the
pulse is dtmw,1 = π

2|Ωπ,1| , where Ωπ,1 = |Ωπ,1| eiφπ,1 is the Rabi frequency for
the pulse. The state after this preparation pulse is (in the rotating wave
approximation) [92]

|ψ1〉 = 1√
2

(
|1,−1〉+ ie−iφπ,1|2,−1〉

)
. (4.5.1)

Immediately after the end of this preparation pulse, the microwave in the
device to be characterized is pulsed on at frequency ωmw,2 = ωπ for a duration
dtmw,2. The Rabi frequency and phase of this second microwave pulse are
denoted by Ωπ,2(r) and φπ,2(r), respectively. After the second pulse, the
state of an atom at position r is

|ψ2(r)〉 = 1√
2

[
cos
(
|Ωπ,2(r)|dtmw,2

2

)
− eiφπ,2(r)−iφπ,1 sin

(
|Ωπ,2(r)|dtmw,2

2

)]
|1,−1〉

+ i√
2

[
e−iφπ,1 cos

(
|Ωπ,2(r)|dtmw,2

2

)
+ e−iφπ,2(r) sin

(
|Ωπ,2(r)|dtmw,2

2

)]
|2,−1〉.

The probability p2(r) of finding an atom at position r in state F = 2 is given
4I assume that the coupling into the microwave structure observed in the previous

section can be calibrated out.
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by

p2(r) =
1

2
+

1

2
sin (|Ωπ,2(r)| dtmw,2) · cos (φπ,1 − φπ,2(r)) (4.5.2)

To calculate φπ,2(r), the quantities |Ωπ,2(r)| and φπ,1 have to be known.
|Ωπ,2(r)| can be measured as described in Section 4.2. If B0 is pointing
along the x-axis, then φx(r) ≡ φπ,2(r).

The calculation above assumes that there is zero delay between the end
of the first preparation pulse and the second microwave pulse. A similar
calculation is also possible for non-zero delay between the two pulses.

4.6 Sensitivity and spatial resolution
In this section I estimate the maximum sensitivity of this technique for our
set of experimental parameters. The microwave magnetic field sensitivity
is mainly determined by the interaction time dtmw of the atoms with the
microwave pulse. A longer interaction time dtmw leads to a higher microwave
magnetic field sensitivity, because then a weaker microwave field can already
drive a substantial fraction of a Rabi cycle. However, at the same time the
effective spatial resolution seff ≡ 2σeff decreases as the image blurs due to the
movement of the atoms during dtmw. In the following, the symbol σ always
refers to an r.m.s. width. σeff is determined by the average moving distance
σmw of the atoms during the microwave pulse, by the optical resolution of the
imaging system sopt ≡ 2σopt, and by the movement of the atoms during the
imaging laser pulse, where thermal motion (σtm) and diffusive motion due to
photon scattering (σps) contribute. In the following, we will calculate σmw,
σtm, σps, and σeff .

Movement of atoms during the microwave pulse - σmw

A free-falling atom in a cloud at temperature T has a mean thermal velocity
perpendicular to the line of sight of vth =

√
2kBT
m

[1]. After releasing the
atom from the trap and waiting for dtho, the atom has furthermore acquired
a velocity vg = g · dtho along the direction of gravity. During the interaction
with the microwave for a time dtmw, the atom moves ballistically by an
average distance

σmw = g · dtho · dtmw +
1

2
g · dt2mw +

√
2kBT

m
dtmw (4.6.1)

For T = 5µK, dtho = 0, and dtmw = 80µs we obtain σmw = 2.5µm. For
short times, the last term in the equation above dominates (as it is the case
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for our parameters). The displacement of the atoms during the microwave
pulse can then be approximated by a Gaussian function fmw of r.m.s. width
σmw.

Movement of atoms during the imaging pulse - σtm

During the imaging pulse of duration dtim, the atoms move ballistically by
an average distance σtm given by

σtm = g(dtho + dtmw)dtim +
1

2
g · dt2im +

√
2kBT

m
· dtim (4.6.2)

due to gravity and thermal motion. For dtim = 40µs we get σtm = 1.3µm.
Again, for short times the atomic density distribution after the imaging pulse
can be approximated by a Gaussian ftm with r.m.s. width σtm.

Diffusive movement of atoms due to photon scattering -
σps

During the imaging laser pulse of duration dtim, the atoms randomly scatter
photons. The associated momentum recoils lead to a diffusive motion of
the atoms, which leads at the end of the pulse to an average displacement
perpendicular to the line of sight of [1]

σps =

√
2

3
·
√
Np

3
· vrec · dtim,

where vrec = ~k/m = 5.9 mm/s is the atomic recoil velocity for 87Rb, and
Np the number of scattered photons, with Np = (Γ/2) dtim s/(1 + s) and
the natural line width Γ = 2π × 6.1 MHz. For our experimental parameters
(saturation parameter s = I/Isat = 1, dtim = 40µs) we get σps = 2.2µm.

Effective spatial resolution seff = 2σeff

The effective resolution can approximately be calculated by the convolution
feff = fopt ∗ [fps ∗ (ftm ∗ fmw)], where fopt approximates the point spread
function of the imaging system by a Gaussian fopt with σopt = 2µm. As
a result, we get σeff = 4.1µm. We take as the effective resolution for our
parameters seff = 2σeff = 8.2µm.
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4.6 Sensitivity and spatial resolution

Imaging noise

The noise on the absorption images is important for the sensitivity of our
technique. It determines the minimum number of atoms N2,min that has to be
transferred by the microwave into the F = 2 manifold during dtmw in order
for the microwave field to be detectable. We currently use an Andor iKon-M
camera with a quantum efficiency of 90% for absorption imaging. The optical
resolution of our imaging system is sopt = 4µm, the imaging pulse duration
dtim = 40µs, and we are imaging at saturation intensity (s = I/Isat = 1).5
With these parameters, we calculate an uncertainty in the number of atoms
detected in an area Aeff = πσ2

eff of 1.4 atoms r.m.s. We measure a value of
σN,psn = 2.0 atoms. The difference can be explained by interference fringes
on the image. This additional noise could certainly be decreased further.

Quantum projection noise due to the probabilistic nature of the mea-
surement process is an additional contribution of noise on the images. The
measurement process projects the atomic superposition state onto the F = 1
and F = 2 states, resulting in a number of atoms of N1 and N2 in the two
states, respectively. Even if the total number of atoms N = N1 + N2 is the
same in each shot, N1 and N2 will show (anti correlated) fluctuations. This
projection noise has an r.m.s. amplitude of σN1 = σN2 =

√
N · p2 · (1− p2),

where σNi denotes noise in Ni and p2 = N2/N = N2/(N1 + N2). The total
noise on N2 is thus σN,tot =

√
σ2
N,psn + σ2

N2
. We find that in order to obtain a

signal-to-noise-ratio SNR ≡ N2/σN,tot > 1, we have to have N2 > N2,min = 3.

Microwave field sensitivity

For the experimental data presented here, we trap about N = 9× 103 atoms
in the magnetic trap. The trapping frequencies are ωx = 2π × 27 Hz and
ωy ≈ ωz = 2π × 680 Hz. We calculate the average atomic density in the
trap to n = 2.2 × 1011cm−3 [1]. The trapped cloud has a 1/e radius of

ρ =
√

2kBT
m

1
ωy

= 7.2µm along the y-axis, which is the direction of the imaging
beam. If we image the atoms with dtho = 0, we have about N = 170 atoms
inside a cylinder of radius σeff and height 2ρ. The microwave magnetic field
which transfers on averageN2,min = 3 atoms to F = 2 is obtained by requiring
that

N2 = N sin2

[
1

2
|Ωγ|dtmw

]
!

= N2,min. (4.6.3)

5The images evaluated in this chapter have been taken with a Princeton Instruments
Coolsnap HQ, for which we measured a quantum efficiency of 41%. Furthermore the
imaging system had a lower resolution of sopt = 10µm.
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For the three transitions ω = ω−, ω = ωπ, and ω = ω+, this is equivalent to

NF=2 = N sin2

[
1

2

(µB
~
√

3B̂−
)
dtmw

]
≈ N

[
1

2

(µB
~
√

3B̂−
)
dtmw

]2
!

= 3,

(4.6.4)

NF=2 = N sin2

[
1

2

(
µB
~

√
3

4
B̂π

)
dtmw

]
≈ N

[
1

2

(
µB
~

√
3

4
B̂π

)
dtmw

]2

!
= 3,

(4.6.5)

NF=2 = N sin2

[
1

2

(
µB
~

√
1

2
B̂+

)
dtmw

]
≈ N

[
1

2

(
µB
~

√
1

2
B̂+

)
dtmw

]2

!
= 3.

(4.6.6)
Solving the above equations with dtmw = 80µs, we get B̂− = B̂−,min

= 2.2× 10−4 G, B̂π = B̂π,min = 4.4× 10−4 G, and B̂+ = B̂+,min = 5.4× 10−4 G.
Note that the projection noise σN2 slowly increases with increasing N2.

Therefore, the absolute microwave magnetic field resolution of our method
decreases with increasing values of B̂γ.

The consideration above relies on the assumption that we can achieve
perfect resonance ω = ωγ. Solving Eq. (4.6.3) for N2,min, we obtain |Ωγ|/2π =
0.53 kHz for N2 = 3. A change in ωγ/2π of 0.53 kHz corresponds to a
magnetic field instability of 2.5×10−4 G for Ω−, 3.8×10−4 G for Ωπ and 7.6×
10−4 G for Ω+. Inside the magnetic shielding surrounding our experiment,
we achieve a stability of B0 of 2 × 10−4 G r.m.s., which could certainly be
improved such that the effect can be neglected.

The sensitivity of our field imaging technique can be increased by using
colder or denser clouds. Suitable techniques to reduce the temperature fur-
ther are adiabatic relaxation of the trap or further forced evaporative cooling.

4.7 Measurement of microwave fields with trapped
atoms

Our microwave field imaging method can be modified in different ways to get
better spatial or field resolution. In the following I will outline some of those
ideas.

4.7.1 Magnetically trapped atoms

For measuring the microwave magnetic field on a small region of investigation,
it is possible to hold a BEC in a magnetic trap and optionally scan its position
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spatially from shot to shot (cf. Section 3.9). Such scanning can be done
on a sub-µm length scale [23], and the trap position can be scanned in all
three dimensions. A typical step size is given by twice the Thomas-Fermi
radius rTF of the BEC in the trap. For example, for 1000 atoms in a trap
with trap frequencies fi = 500 Hz (i = x, y, z), the Thomas-Fermi radius is
rTF = 1.2µm. Because |2,m2〉 with m2 = −2,−1, 0 are magnetically non-
trappable states, transitions are measured by detecting atom loss from the
trap. The magnetic field sensitivity is limited by atom loss not caused by the
microwave. If initially N = 1000 atoms in a BEC in state |1,−1〉 are trapped
in a spherical magnetic trap with fi = 500 Hz, 500 ± 16 atoms are lost during
a trap holding time of 3 s due to three body recombination and background
gas collisions.6 An additional loss of ∼ 20 atoms due to the microwave can
be recognized (at a signal-to-noise-ratio & 1). The corresponding microwave
magnetic field B̂γ is estimated by

NF=2 = Ñ
(

1− e−Γγ(B̂γ)·dtmw

)
!

= 20. (4.7.1)

Γγ is the outcoupling rate, taking into account that Ωγ � µc, and therefore
only a fraction of the atoms is effectively resonant with ω, which leads to
incoherent coupling. Γγ is given by Γγ = −15π

8

~Ω2
γ

µc
(rc − r3

c ), rc =
√

~δγ/µc
[78], where δγ = ω − ωγ is the detuning in the trap center. Γγ is maximized
for rc =

√
3 [78]. Solving Eq. (4.7.1) with Ñ = Ninitial+Nfinal

2
= 750 and

µc = h · 2 kHz we get a sensitivity of B− = 1.6× 10−7 G, Bπ = 3.1× 10−7 G
and B+ = 3.8× 10−7 G.

In this consideration, fluctuations of B0 have not been taken into account.
Fluctuations ofB0 are tolerable as long as |(mF=2gF=2 −mF=1gF=1)µB∆B0| <
µc. For mF=2 = 0 and mF=1 = −1 we get ∆B0 = 2.9× 10−3 G.

4.7.2 Optically trapped atoms

If instead of a magnetic trap, a far-detuned crossed optical dipole trap is
used (with the same trap frequencies of fi = 500 Hz), the sensitivity can be
increased further. This increase is due to two reasons. Firstly, all hyperfine
states are trapped, therefore a transfer of 10 atoms into F = 2 is detectable
using state selective imaging. Secondly, not only a fraction ∝ Ωγ

µc
of the

atoms in the trap are coupled incoherently by the microwave magnetic field,
as it is the case for magnetically trapped atoms, but all atoms are coupled
in a coherent way (neglecting the small differences in the relevant scatter-
ing lengths). Therefore the maximum microwave magnetic field sensitivity,

6assuming a background collisional life time of 8 s.
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Figure 4.8.1: Transition frequencies ω−, ωπ, and ω+ for 87Rb as a function
of B0. The individual transition frequencies can be tuned by up to 10 GHz
with magnetic fields of up to 5000 G.

estimated by

NF=2 = Ñ · sin2

[
1

2
|Ωγ| dtmw

]
!

= 10, (4.7.2)

for dtmw = 3 s and Ñ = 750 atoms, is B− = 5 × 10−9 G, Bπ = 1 × 10−8 G
and B+ = 1.2× 10−8 G. Here, stability of the static magnetic field B0 limits
the achievable microwave field sensitivity in the same way as described in
Section 4.6.

By using an optical lattice, not only one trap is formed, but many. In
this way, the field distribution is measured in 2D, which is substantially faster
than the optical scanning method.

4.8 Tunability of frequencies ω−, ωπ and ω+

The transition frequencies ω−, ωπ, and ω+ between the initial state |1,−1〉
and the target states |2,m2〉 (m2 = −2,−1, 0) for 87Rb, can be adjusted
by change of the static magnetic field B0. For small magnetic fields (B0 <
500 G) the transition frequencies are approximately given by ω− = ω0− 3ωL,
ωπ = ω0 − 2ωL and ω+ = ω0 − ωL, where ω0 = 2π × 6834.682610 MHz and
ωL = µBB0/2~.

For larger values of B0, the above formula is not valid anymore, and the
Breit-Rabi formula has to be used, see Section 1.4.

For 87Rb, the transition frequencies ωγ/2π can be tuned over a range of
more than 10 GHz using technically feasible magnetic fields of up to 5000 G
(see Figure 4.8.1). Note that for B0 > 104 G, we start entering the Paschen-
Back regime, where the matrix elements of Eqs. (4.1.3) - (4.1.5) change and
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4.9 Ramsey interferometry and off-resonant probing

the theory has to be modified.

By using atomic species other than 87Rb, different frequency ranges become
accessible, e.g. 9.2 GHz for Cs or 1.7 GHz for Na.

4.8.1 Using a two-photon transition

Instead of using a one-photon Rabi transition, it is also possible to use a
two-photon transition, where two microwave fields or a microwave and a
radio frequency field are applied to the atoms (see Section 1.6). This widens
the accessible frequency range for imaging. The first field (frequency ω1)
is applied externally with known spatial distribution, while the other field
(frequency ω2) is the field to be imaged. Resonant Rabi oscillations occur for
ω1 + ω2 −Els/~ = ωγ, where Els denotes the level shift from the off-resonant
electromagnetic fields (see Section 1.6).

4.9 Ramsey interferometry and off-resonant prob-
ing

Instead of having ω resonant with a hyperfine transition frequency, it is also
possible to probe an off-resonant microwave or light-field (or anything else
that causes a differential energy shift between the involved hyperfine levels)
using a scheme based on Ramsey interferometry [139]. In Ramsey interfer-
ometry, the interaction with the off-resonant microwave field of duration Tint

is enclosed by two resonant π
2
-pulses. The first pulse prepares the atoms in

an equal superposition of two hyperfine states such as

|ψ1〉(t = 0) = 1√
2

(
|1,−1〉+ ie−iφmw |2,m2〉

)
. (4.9.1)

During time Tint both states accumulate a differential phase shift ∆φ =´ Tint

0
Ediff

~ dt. Ediff is the differential potential between the two hyperfine levels
involved and is in general state-dependent, see next chapter. The state after
this interaction is

|ψ1〉(t = Tint) = 1√
2

(
|1,−1〉+ ie−i∆φ−iφmw |2,m2〉

)
. (4.9.2)

After applying the second π
2
-pulse, the state is

|ψ2〉 = 1
2

[(
1− e−i∆φ

)
|1,−1〉+ ie−iφmw

(
e−i∆φ + 1

)
|2,m2〉

]
, (4.9.3)
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Imaging of microwave fields using ultracold atoms

where φmw is the phase of the resonant microwave in a frame rotating at the
atomic transition frequency. The probabilities to detect an atom in state
|1,−1〉 and |2,m2〉, respectively, show Ramsey oscillations of the form

p1(r) = 1
2

(1− cos(∆φ)) , (4.9.4)
p2(r) = 1− p1(r) = 1

2
(1 + cos(∆φ)) . (4.9.5)

By measuring the relative populations p1(r) and p2(r) after the second π
2

pulse, it is possible to determine the value of ∆φ and thereby Ediff . Details
on the effect of an off-resonant microwave field are discussed in Section 1.8
and in the next chapter.
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Chapter 5

Trapped-atom interferometry on
a chip

Applications of ultracold neutral atoms in quantum information processing
[34], quantum simulations [140] and quantum-enhanced metrology [141, 142,
36] rely on the coherent control of internal states, motional states and col-
lisional interactions. Coherent manipulation of internal [9] and motional
[15, 16, 17, 18, 19, 20] states on atom chips has been demonstrated in sep-
arate experiments. The combined coherent manipulation of internal and
motional states with a state-dependent potential on a chip was shown for the
first time in the experiments reported in this chapter [21]. We use a state-
dependent microwave potential to implement a trapped-atom interferometer
with internal-state labeling of the interferometer paths. In combination with
collisional interactions, it is a crucial ingredient for entanglement generation
and at the heart of recently proposed schemes for atom-chip quantum gates
[40, 43] and for producing spin squeezed states on an atom chip [46], as has
recently been demonstrated in our experiment, see [47] and Chapter 6.

The state-selective potential is generated by the on-chip microwave near-
fields. We entangle atomic internal state and motional state in a controlled
and reversible way, as required for the gate of [40, 43].

Microwave potentials generated by far-field radiation were already stud-
ied in the 1990s [49, 50]. Hundreds of kilowatts of circulating microwave
power inside a cavity were necessary, because the centimeter wavelength pre-
vents tight focusing and thus limits the attainable potential gradients. Using
microwave near-fields generated by micrometer-sized waveguides on atom
chips, it is possible to realize much stronger gradients with only milliwatts
of power, because the near-field gradients do not depend on the wavelength,
but instead on the transverse waveguide dimensions and the distance from
the waveguide (see Chapter 2).
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Trapped-atom interferometry on a chip

In this chapter, I first report on coherent internal state manipulation and
present the performance of the state-selective near-field potentials, before I
cover an experiment where we implement a trapped-atom interferometer with
internal state labeling. We show combined coherent control of both internal
and motional degrees of freedom [21].

5.1 Coherent internal-state manipulation

For all measurements in this chapter, we use a quasi-pure condensate in
state |1〉 (with spatial wave function ψ|1〉) containing up to 1000 atoms. We
transfer it into the experiment trap, which is a cigar-shaped harmonic trap
VZ(r) with measured trap frequencies fx = 109 Hz (f⊥ = 500 Hz) in the
axial (radial) direction, and measured static magnetic field in the trap center
B0(rm) = 3.23 G, pointing along x (see Table 3.1). The trap is at a distance of
44µm from the surface, the position rm of the minimum of VZ(r) is indicated
in Figure 5.2.2 below.

To prepare the BEC in a superposition of states |1〉 and |2〉, we coherently
couple both states with a two-photon transition (see Figure 5.2.1), which is
the combination of a blue detuned microwave (detuning ∆ = 2π × 360 kHz
from the intermediate state), radiated by the microwave horn, and a red de-
tuned radio-frequency, applied to the atoms using the rf-antenna (see Section
1.6). This results in a two-photon Rabi frequency Ω2P/2π = 2.1 kHz, and the
efficiency of a π-pulse is (96 ± 1)% in the experiment presented here. Such
two-photon Rabi oscillations are shown in Figure 5.1.1a. A slight dephasing
(1/e dephasing time τ = 11.5 ms) is caused by the microwave field gradients
from the horn at the position of the atoms, in qualitative agreement with the
findings in Section 4.4.

For measuring atomic coherence properties, we use Ramsey’s separated
oscillatory fields method [139], where we vary the delay time TR between
two π/2 pulses. We observe Ramsey oscillations at frequency ΩRamsey/2π =
7.6 kHz, which show a contrast of (96±1)% after 12.7 ms (see Figure 5.1.1b).
While the pulses are applied, the two-photon resonance frequency is shifted
by νls = Els/h = 7.6 kHz with respect to the undriven system, which is caused
by the detuned microwave of the two-photon drive (see Section 1.6). We
always adjust the frequency of the two-photon drive such that the detuning
from the two-photon resonance is zero while the pulse is applied. In between
the pulses, the phase of the atomic superposition state thus evolves at a rate
−2πνls with respect to the two-photon drive, which determines ΩRamsey [47].
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5.1 Coherent internal-state manipulation

Time between π/2 pulses T  [ms][µs]

a) b)

R

Figure 5.1.1: Rabi and Ramsey oscillation in the relative atom number
Nrel for a BEC with in total 1000 atoms. (a) Rabi oscillations resulting from
the resonant two-photon drive, with measured frequency Ω2P/2π = 2.1 kHz.
The observed decay is due to microwave field gradients across the BEC,
see main text. (b) Measured Ramsey interference fringes between |1〉 and
|2〉 as a function of the delay TR between both π/2 pulses, with frequency
ΩRamsey = 2π × 7.6 kHz, and a contrast of (96 ± 1)% after 12.7 ms. Both
measurements have been carried out with the Andor iKon-M camera, which
allows to take out fluctuations in the prepared total atom number (see Section
3.7.1).
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Trapped-atom interferometry on a chip
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Figure 5.2.1: Coherent internal-state manipulation and generation of state-
dependent microwave potentials. Hyperfine structure of the 87Rb ground
state in the static magnetic field of the microtrap. The clock states |1〉 and
|2〉 experience nearly identical Zeeman energy shifts VZ . To generate state-
dependent potentials, the microwave near-field of the CPW couples |1〉 to
the auxiliary state |3〉 with Rabi frequency Ωπ and detuning δ = ∆2,−1

1,−1.
The resulting dressed state |1〉 is shifted in energy by Vmw with respect to
|1〉. State |2〉 is nearly unperturbed by the microwave near-field, because all
transitions connecting to |2〉 are far off resonance.

5.2 State-selective splitting of a BEC

To generate the state-selective potentials, we launch a microwave at fre-
quency ω into the single CPW structure, which is blue detuned by δ = ∆2,−1

1,−1

with respect to the transition |1〉 ↔ |F = 2,mF = −1〉 ≡ |3〉 (see Fig-
ure 5.2.1). The detuning δ is chosen such that the microwave primarily
couples |1〉 to the auxiliary state |3〉, with position-dependent Rabi fre-
quency Ωπ(r) = −

√
3/4(µB/~)Bπ(r). All transitions other than |1〉 ↔ |3〉

are much further off resonance and therefore have only minor effects (i.e.∣∣∆2,−1
1,−1

∣∣ � ∣∣∆2,i
1,j

∣∣, [i, j] 6= [−1,−1]). The coupling results in a dressed state
|1〉 that is shifted in energy by Vmw(r) with respect to |1〉; the overall potential
seen by |1〉 is thus V|1〉 = VZ + Vmw. In contrast, state |2〉 and its potential
remain essentially unchanged, |2〉 ≈ |2〉 and V|2〉 ≈ V|2〉 = VZ (see Figure
5.2.1), because the microwave is very far off resonance from all transitions
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5.2 State-selective splitting of a BEC

connecting to this state. In the experiments described in this chapter, we
focus on the regime |Ωπ|2 � |δ|2, where |1〉 contains only a small admixture
of state |3〉, which is important because |3〉 has opposite magnetic moment,
and a large admixture would spoil the good coherence properties of our state
pair. In this limit, Vmw(r) ≈ ~ |Ωπ(r)|2 /4δ(r) and |1〉 ≈ |1〉+ Ωπ(r)/2δ(r)|3〉.

To demonstrate state-selective splitting, we prepare BECs in our exper-
iment trap in an equal superposition of states |1〉 and |2〉. Here and in the
following, the two-photon microwave intermediate state detuning ∆/2π =
280 kHz and Ω2P/2π = 1.47 kHz.

5.2.1 Adiabatic splitting

We prepare BECs containing N = 400 atoms in an equal superposition of
states |1〉 and |2〉 by applying a π/2 pulse of 170 µs duration on the two-
photon transition. Right after this pulse, which is fast compared with the
trap oscillation periods, the motional wave functions of |1〉 and |2〉, ψ|1〉 and
ψ|2〉, overlap completely. Then, within 150 ms, we smoothly ramp up the
microwave power in the CPW to a final value Pmw = 120 mW, at fixed
detuning δ(rm) = δm = 2π × 150 kHz. This corresponds to a ramp of Vmw

that is adiabatic with respect to the dynamics of the internal state, ensuring
population of only state |1〉, but not |3〉, as well as adiabatic to the motion,
enabling the BEC wave function ψ|1̄〉 to follow the potential. At the end of
the ramp, we switch off the combined static and microwave potential within
0.3 ms and image the atomic density distributions quasi in situ, using state-
selective absorption imaging [48]. Figure 5.2.3a shows images taken in this
way. We observe that the BEC is state-selectively split along x by a distance
s = 9.4µm, which is 3.9 times the radius of each of the two trapped clouds
[143].

The splitting is due to the strong near-field gradient in |Ωπ(r)| around
r = rm (see Figure 5.2.2). By comparison, the spatial dependence of δ(r)
is weak. Although |Ωπ(r)| has gradients of similar magnitude along x and
z (see Figure 5.2.2b), the spatial splitting is nearly one-dimensional because
f 2
⊥ � f 2

x . Figure 5.2.3b shows the measured s as a function of Pmw/δ for
different values of δ. The data points lie on top of each other as expected
from the scaling Vmw ∼ |Ωπ|2 /δ ∼ Pmw/δm in the regime |Ωπ|2 � |δ2|. The
maximally applied Pmw = 120 mW corresponds to |Ωπ(rm)| = 2π × 122 kHz,
which we measure independently by driving resonant Rabi oscillations with
the microwave near-field. Note that for δ > 0, the repulsive microwave
potential pushes state |1〉 into regions where |Ωπ(r)| � |Ωπ(rm)| so that
|Ωπ|2 � |δ|2 is always satisfied.

The observed splitting is reproduced by our static simulation of V|1〉 and
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Figure 5.2.2: Visualization of the near-field gradients in the experiment
region. (a) Photograph of the atom chip and (b) close up of the experimen-
tal region. The position rm = (xm, ym, zm) = (12, 0, 44)µm of the minimum
of the static trap VZ(r) is indicated by the black cross (r = 0 corresponds
to the top surface of the wire in the center of the CPW). An ideal CPW
mode with microwave current amplitudes Isig = Imw on the signal wire and
Ig1 = Ig2 = −Imw/2 on each of both grounds is indicated. Equipotential
lines of |Ωπ| /2π are indicated for Imw = 76 mA (line spacing 70 kHz). The
asymmetry in |Ωπ| /2π with respect to x = 0 is due to the spatial dependence
of the static magnetic field B0(r), that gives rise to VZ(r). (c) Comparison
between the calculated distribution of |Ωπ| /2π for an ideal CPW mode (left)
and for Sonnet’s current distribution, see Section 4.3. Both distributions are
calibrated by the measured Rabi frequency |Ωπ(rm)| /2π = 122 kHz. Even
though both distributions differ significantly, the field gradients at the posi-
tion of the trap are very similar.
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Figure 5.2.3: State-selective splitting of a BEC. (a) Absorption images
of the adiabatically split BEC (Pmw = 120 mW, δm = 2π × 150 kHz). By
imaging both hyperfine states simultaneously (top), only F = 1 (middle) or
only F = 2 (bottom), the state-selectivity of the splitting is demonstrated.
(b) Measured splitting distance as a function of Pmw/δm for different values of
δm as indicated. The solid red line is the result of a static simulation assuming
an ideal CPW mode; the dashed line assumes a slightly asymmetric mode
(Ig1 = −0.45× Imw, Ig2 = −0.55× Imw). The green line shows the splitting
resulting from the adjusted static current distribution, which reproduced the
measured microwave field distribution best in Section 4.3. Notice that even
though the measured field distribution shows a significant deviation from the
ideal CPW mode for z ≥ 50µm (see Chapter 4), the field gradients along x
are of similar magnitude near rm. (c) Simulated potentials along the splitting
direction (see the dashed line in Figure 5.2.2b), for an ideal CPW mode and
Imw = 76 mA, corresponding to the parameters of a). The potential minimum
of V|1〉 is shifted by the microwave, whereas V|2〉 ≈ VZ . The full microwave
potential Vmw (dashed blue) and the approximation Vmw ≈ ~ |Ω|2 /4δ for
|Ω|2 � |δ|2 (dash dotted green) are shown in comparison.

129



Trapped-atom interferometry on a chip

Figure 5.2.4: Measurement of the splitting s along x as a function of Pmw

and δm with BECs. For s > 11µm the atoms are lost because the trap opens.
The displacement along z is below the resolution of our imaging system.

V|2〉 that takes the full 8-level system into account (see Section 1.8), where the
microwave current amplitude Imw is calibrated using the measured |Ωπ(rm)|.
Figure 5.2.3c shows a slice through the simulated potentials along the split-
ting direction, assuming an ideal CPW mode. In agreement with the experi-
ment, the simulation shows that we can selectively displace the wave function
of state |1〉 with the microwave potential gradient.

Sign of detuning δm By changing the sign of the detuning δm from blue
to red, the microwave potential can be changed from repulsive to attractive
for |1〉. Measurements of s along x for various positive and negative values
of δm are shown in Figure 5.2.4. We observe that the trapped atoms are lost
for small negative values of δm and s > 11µm because the trap opens.

5.3 BEC interferometry
In the following, we demonstrate the coherence of the splitting process by
carrying out trapped-BEC interferometry with internal state labeling of the

130



5.3 BEC interferometry

interferometer arms. Our interferometer consists of a Ramsey (π/2)-(π/2) se-
quence on the |1〉 ↔ |2〉 transition in combination with state-dependent split-
ting and recombination of the motional wave functions between the pulses.
We use a non-adiabatic splitting and recombination scheme, see Figure 5.3.1a,
which is motivated by the sequence required for the atom chip controlled
phase gate in [43]. By choosing δm = 600 kHz, we ensure that the admixture
of state |3〉 is small enough so that decoherence due to magnetic field noise is
not a problem on the timescale of our experiment. After the first π/2 pulse,
which prepares the atoms in an equal coherent superposition of |1〉 and |2〉,
the microwave on the CPW is switched on within 50µs to Pmw = 120 mW,
which corresponds to a sudden displacement of the potential minimum for
state |1〉 by 4.3µm. After a variable delay, we switch off the microwave within
50µs, followed by the second π/2 pulse and state-selective detection (after a
time-of-flight of 4 ms) to determine the number of atoms N1 (N2) in state
|1〉 (|2〉). The time between the π/2 pulses, TR, corresponds to the overall
time the microwave was turned on. In this scheme, the switching of Vmw is
adiabatic with respect to the internal-state dynamics, but fast compared to
the trap oscillation period. The wave function ψ|1〉 is thus set into oscillation
in the shifted potential V|1〉. We can record these oscillations by varying TR

and imaging the atoms without applying the second π/2 pulse, see Figure
5.3.1b. The wave function ψ|1〉 oscillates with a peak-to-peak amplitude of
8.5 µm and a frequency of f̃x = 116 Hz. Small deviations of the oscillation
frequency f̃x from the trap frequency fx arise due to additional mean field
effects from the resting wave function ψ|2〉. Periodically ψ|1〉 comes back to
its initial position, when TR is an integer multiple of 1/f̃x = 8.6 ms. At these
times, it overlaps with the wave function ψ|2〉. Note that owing to collisions,
ψ|2〉 starts to oscillate as well.

If we apply both π/2 pulses and vary TR, we observe Ramsey interference
fringes, see Figure 5.3.2. The interference contrast is modulated by the wave
function overlap of the two states and thus periodically vanishes and reap-
pears again owing to the oscillation of state ψ|1〉. As a measure of the wave
function overlap, we plot σ(N2)/N̄2 as a function of TR, where σ(N2) is the
standard deviation and N̄2 is the mean of N2 obtained from a running aver-
age over one period of the Ramsey fringes (15 measured datapoints for each
state), see Figure 5.3.2a. This measure of the overlap has the advantage that
it is largely insensitive to noise on the Ramsey fringes. Corresponding fringe
data and in situ images of the atoms at specific times TR are shown in Figure
5.3.2b+c. Precisely at the time when the wave function ψ|1〉 has carried out
a full oscillation in V|1〉, a sharp recurrence of the contrast is observed. The
recurrence of the interference proves that the combined evolution of inter-
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Figure 5.3.1: Dynamical splitting and recombination scheme used for BEC
interferometry. (a) Timing sequence of the interferometer. In between the
two π/2-pulses of a Ramsey sequence on the |1〉 ↔ |2〉 transition, the mi-
crowave on the CPW is pulsed on for a duration TR, resulting in a sudden
displacement of the potential minimum of V|1〉. This sets the wave function
ψ|1〉 into oscillation. (b) Oscillation of the atoms, recorded with the sequence
of (a), but with the second π/2 pulse omitted. The center-of-mass (c.o.m.)
position of the atoms at the end of the sequence is shown as a function of
TR. ψ|1〉 oscillates whereas ψ|2〉 remains initially at rest. Each time the wave
functions overlap in the trap, energy is transferred between the states.
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5.4 Role of atomic collisions

nal and motional state is coherent. The relatively high contrast of the first
recurrence (Michelson contrast 50%) shows that the collisional interactions
between the atoms observable in Figure 5.3.1b lead only to a relatively small
distortion of the wave functions ψ|i〉. Wave function distortion can be reduced
to negligible levels by optimal control of the splitting process as discussed in
[43].

For the second (and subsequent) recurrences, we observe substantial phase
noise on the Ramsey fringe data. In contrast, when we take Ramsey fringes
without splitting the BEC, comparable noise is visible only for TR beyond
several hundred milliseconds. Fundamental as well as technical sources of
this noise are discussed in Section 5.5.

5.4 Role of atomic collisions

Collisional interactions play an important role during splitting and merging of
the different states. Furthermore, spin-squeezing arises as a result of collisions
when the spatial wave functions ψ|1〉 and ψ|2〉 are not overlapping completely,
see [47] and Section 6.1.

In the following, I present some experimental findings on collisional effects
in our system and compare them to simulations.

In the diabatic splitting scheme, where the wave function ψ|1〉 oscillates
and overlaps with ψ|2〉 periodically, momentum is transferred each time they
meet, as can be seen in Figure 5.3.1b. Our collaborators Li Yun and Al-
ice Sinatra from Paris (LKB/ENS) performed a 3D Gross-Pitaevskii (GP)
simulation for our set of parameters (i.e. N = 400 atoms). The simulated
dynamics (Figure 5.4.1a) is similar to the measured one (Figure 5.3.1b). One
can recognize in the simulation that collisions do not only influence center of
mass oscillations of both BECs, but also lead to excitations within their spa-
tial wave functions ψ|i〉. Such excitations decrease the wave function overlap
at the recurrences, which results in a decreased Ramsey contrast (see Figure
5.4.1b).

For splitting distances s which are large compared to the radii rx of ψ|i〉,
the recurrence times k · τ̃x = k/f̃x (k = 1, 2, . . .) are approximately multiples
of τx = 1/fx, since the states experience the mean-field repulsion of the
other state only for a relatively short period of time compared to τ̃x. As the
splitting distances s get smaller and become comparable to or less than rx,
the dynamics becomes increasingly influenced by the presence of the other
wave function. This effect is illustrated in Figure 5.4.2a-d, where I performed
a 1D Gross-Pitaevskii (GP) simulation (using a MATLAB program written
by Philipp Treutlein) for two different atom numbers and variable splitting
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Figure 5.3.2: Periodic recurrences of Ramsey interference contrast in the
BEC interferometer. The contrast of the Ramsey fringes on the |1〉 ↔ |2〉
transition is modulated owing to the periodic splitting and recombination
of the motional wave functions ψ|i〉. (a) As a measure of the wave function
overlap, we show σ(N2)/N̄2 as a function of TR, where σ(N2) is the standard
deviation and N̄2 is the mean of N2 obtained from a running average over
a time interval [TR − 75µs, TR + 75µs], corresponding to one period of the
Ramsey fringes. The width of the recurrence is influenced by nonlinear wave
function dynamics due to mean-field interactions. (b) Corresponding Ramsey
fringe data for selected values of TR. Each data point is determined from two
consecutive runs of the experiment, in which either N1 or N2 is detected. The
surplus of atoms in state |2〉 at times when the contrast has vanished (second
and fourth graph) is probably due to the intensity gradients of the microwave
used to drive the two-photon transition. The data shown here is taken with
the CoolSnap camera, which only images one state per experimental cycle.
The data thus includes fluctuations in the prepared total atom number, which
cannot be taken out. (c) In situ images of the atomic density distribution of
|1〉 and |2〉, for TR corresponding to the center of the windows in (b).
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Figure 5.4.1: 3-dimensional Gross-Pitaevskii (GP) simulation for our ex-
perimental parameters (N = 400 atoms) including atom loss, performed by
Li Yun from Alice Sinatra’s group. (a) Axial density distribution as a func-
tion of TR. At time TR = 0 the atoms are prepared in an equal superposition
of |1〉 and |2〉. 10 µs later, the potential minimum for state |1〉 is shifted dur-
ing 50µs by 4.3µm along x. The spatial wave function ψ|1〉 oscillates in the
shifted trap while the wave function ψ|2〉 remains at rest. At the recurrences,
the oscillating wave function ψ|1〉 kicks the wave function ψ|2〉, which affects
center of mass motion as well as excitations within ψ|i〉. (b) Wave function
overlap of ψ|1〉 and ψ|2〉 as a function of TR, which is equal to the expected
Ramsey contrast in the absence of technical noise. The wave function overlap
at the time of the first recurrence is 75% and the one at the second recurrence
is 50%.
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Figure 5.4.2: Splitting dynamics from 1-dimensional GP simulations, where
the splitting distance s is varied, for 400 and 1000 atoms. (a) shows the time
of the first recurrence τ̃x and the peak-to-peak splitting between ψ|1̄〉 and
ψ|2〉 as a function of the trap displacement s (see main text). (b) Wave
function overlap between both states at the time of the first recurrence for
400 and 1000 atoms. (c) and (d) show the axial atomic densities from the
GP simulation for s = 0.6µm and s = 5µm (N = 400, each colormap is
arbitrarily scaled). In d) the time of maximum splitting (first recurrence) is
4.3 ms (8.6 ms), while in c), the times are 6 ms (10.8 ms). (e) For comparison
a complete experimental scan, with δm = 2π×12 MHz and N = 1250 atoms,
where both potential minima for |1〉 and |2〉 are shifted in opposite directions
along x by in total s = 0.52µm. Here the time of the first recurrence (τ̃x =
12.7 ms) is significantly longer than τx. This data has been taken with the
iKon-M camera, which allows to correct for the total prepared atom number.
The fringes can be fitted by a continuous, amplitude-modulated sine function.
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Figure 5.4.3: Collapse and recurrence by varying Pmw at fixed pulse dura-
tion TR =8.6 ms and fixed δm = 2π × 150 kHz.

distances s. One can see that with decreasing s the time of the first recurrence
τ̃x increases, in agreement with our experimental findings. The peak-to-peak
(P2P) separation between ψ|1〉 and ψ|2〉, which in the non-interacting case
would be 2s, is a little larger than 2s due to mean-field repulsion, and for
s→ 0 saturates at finite values comparable to the Thomas-Fermi radii of the
clouds. In fact, a small displacement s can trigger a component separation,
as has been observed in [89, 47].

Figure 5.4.2b shows the simulated wave function overlap between ψ|1〉 and
ψ|2〉 at the time of the first recurrence. For 1000 atoms, it is much more mod-
ulated by mean-field repulsion effects and the excitation of breathing modes.
Panels c) and d) show the simulated axial atomic density distribution as a
function of time for s = 0.6µm and s = 5µm.

We also observe collapses and revivals of the Ramsey contrast when scanning
the microwave power Pmw while keeping the time TR fixed. This is due to
the time dependence of the recurrences as a function of s(Pmw) (see Figure
5.4.2a).

Experimental results are shown in Figure 5.4.3, where a microwave pulse
duration of TR = 8.6 ms ≈τx is chosen.

5.5 Phase noise
In this section, I discuss sources of phase fluctuations δϕ between states |1〉
and |2〉. They show up as noise in the Ramsey measurement shown in Figure
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5.3.2.

5.5.1 Technical phase noise

Magnetic field fluctuations The magnetic moment of state |1〉 is slightly
different than that of |2〉, which makes their relative phase sensitive to mag-
netic field fluctuations. We directly measure the magnetic field sensitivity
of the Ramsey fringes in Figure 5.3.2 by scanning B0(rm) in the experiment
with TR fixed, and find that a magnetic field change of 16 mG leads to a
phase shift of 2π at the time of the first recurrence. We measure r.m.s. mag-
netic field fluctuations inside the magnetic shielding of 225 µG (see Section
3.2), which corresponds to r.m.s. phase fluctuations of δϕB = 0.03π at the
first recurrence (TR = 8.6 ms) and δϕB = 0.06π at the second (because the
characteristic time scale of magnetic field fluctuations is many seconds and
therefore much longer than 2× τ̃x).

Surface effects, such as loss and decoherence due to thermal magnetic near-
field noise [7], are negligible in the present experiments because of the thin
metallic chip layers and relatively large atom-surface distances.

Fluctuations of Pmw We also measure the sensitivity of the Ramsey phase
on changes of Pmw, and use it to estimate that the measured r.m.s. fluctua-
tions of δPmw = 60µW result in phase fluctuations of δϕPmw = 0.01π at the
first recurrence and δϕPmw = 0.02π at the second.

Current source fluctuations The energy difference between states |1〉
and |2〉 is very sensitive to fluctuations of the homogeneous magnetic bias
field By. The strong dependence arises because fluctuations in By change
the position of the trapped atoms in the inhomogeneous microwave near-
field potential, resulting in a change of the differential energy shift of the two
states.

In the experiment, we measure fluctuations on the current which gener-
ates By corresponding to a magnetic field fluctuation of 10 mG peak-to-peak,
which are synchronous with the 50 Hz AC power line (By=5.2 G during the
relevant experiment phase). At the time when we performed these exper-
iments, we only synchronized the start of the experimental sequence with
the line phase, such that at the time of the relevant experimental phase the
line phase was randomly about ±π/6 out of phase with the experiment, due
to instabilities of the power line frequency. We measured r.m.s. fluctuations
of the mean of By of 570 µG in a 8.6 ms window and 810 µG for 17.2 ms
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windows at the relevant time in the experimental sequence.
A simulation shows that a change in By of 1 mG results in a change of the

differential energy between the trap minima for |1〉 and |2〉 of h · 30 Hz/mG.
Therefore, the fluctuations in By lead to an r.m.s. phase uncertainty of

δϕBy = 0.29π at the first revival and δϕBy = 0.81π at the second.

Fluctuations of the prepared total atom number We prepare 400
atoms with r.m.s. fluctuations in the total atom number of δN = 21 (in-
cluding imaging noise). The measurements in Figure 5.3.2 were performed
with the Coolsnap HQ camera, which can only image one state per exper-
imental cycle. Therefore, fluctuations in the detected atom number due to
imaging noise and imperfect atom number preparation appear as apparent
phase noise. This corresponds to a phase uncertainty of δϕN ∼ 0.03π on the
slope of a Ramsey fringe.

5.5.2 Quantum noise

Projection noise for a spin-squeezed state The internal state of a BEC
of N two-level atoms can be described by a collective spin S =

∑N
i=1 si, the

sum of the individual spins 1/2 of each atom. Its component Sz = (N2−N1)/2
is half the atom number difference between states |2〉 and |1〉. The first π/2
pulse prepares the BEC in a coherent spin state ψcss = 1

2N/2
(|1〉+ |2〉)⊗N with

mean spin 〈Sx〉 = N/2 and 〈Sy〉 = 〈Sz〉 = 0. In this state, the quantum noise
is evenly distributed among the spin components orthogonal to the mean
spin, σSy = σSz =

√
N/2, satisfying the Heisenberg uncertainty relation

σSyσSz = |〈Sx〉| /2 [47].
During the state-selective splitting the wave function of the initial state

ψcss evolves into a spin-squeezed state ψsss [47, 46]. In our sequence, this
squeezing shows up as increased projection noise because the second π/2
pulse rotates ψsss such that the anti-squeezed spin component is nearly ori-
ented along the poles of the Bloch sphere, which leads to strongly increased
projection noise [21] (see illustration in Figure 5.5.1 and the squeezing ex-
periments in Chapter 6.1 for details).

A two-mode simulation from Li Yun and Alice Sinatra (LKB/ENS Paris)
that includes atom loss suggests that for our experimental parameters, the
long axis of the squeezed state ψsss at the time of the first recurrence is 9
times longer than that of the initial state ψcss. After the second π/2 pulse
the anti-squeezed axis of ψsss has an angle of ∼ 10° with the axis of the Bloch
sphere, thus we expect an 8.9-fold increased projection noise.
We estimate that the increased projection noise due to spin squeezing cor-
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Figure 5.5.1: Effect of spin squeezing in our experiment, visualized on
a Bloch sphere. (a) Initially we prepare a condensate with 400 atoms in
state |1〉. (b) A π/2 pulse prepares the BEC in a coherent spin state ψcss.
The uncertainties in the plane perpendicular to the mean spin S are equal
σSy = σSz =

√
N/2. (c) During the process of splitting and recombining,

ψcss evolves into a spin squeezed state ψsss. At the time of the first revival,
the long semi-axis is about 9 × σSy , while the short semi-axis has a width
of ∼ σSz/5. The long axis is now nearly oriented along the equator of the
Bloch sphere, with an angle of ∼ 10° in between. (d) The second π/2 pulse
rotates ψsss on the Bloch sphere such that the anti-squeezed axis of ψsss has
an angle of ∼ 10° with the axis of the Bloch sphere. In the experiment this is
detected as a 8.9-fold increase in the measured projection noise. All numbers
were calculated by Li Yun and Alice Sinatra in a two-mode simulation for
our experimental parameters (including atom loss).

responds to a phase uncertainty of δϕss = 0.14π at the first recurrence and
δϕss = 0.28π at the second.

Furthermore, slight phase noise arises due to the discreteness of parti-
cle loss from the trap when ψ|1〉 and ψ|2〉 are separated. Each lost particle
changes the chemical potential µc,|i〉 in the respective state |i〉 which leads to
a change in the phase evolution. This contribution to the total phase noise
δϕ is very small and is not quantified here.

Putting all noise sources into a Ramsey-sequence simulation, where we
assume perfect spatial wave function overlap of ψ|1〉 and ψ|2〉, we expect a
Ramsey signal with a Michelson contrast of 68% at the first recurrence and
∼0% at the second (calculated using the average of 100 simulations, see
Figure 5.5.2a+b). If we include the simulated wave function overlap of 75%
at the first recurrence and 50% at the second (see Section 5.4), then we get
a Ramsey contrast of 52% at the first recurrence and still none at the second
(Figure 5.5.2c), very similar to the experimentally measured values (50% and
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Figure 5.5.2: Effect of technical and quantum noise as well as finite wave
function overlap on a Ramsey signal at the first revival (left column) and
second revival (right column). (a) Simulation of 100 Ramsey scans including
technical and quantum noise for on average N = 400 atoms, assuming perfect
spatial wave function overlap of ψ|1〉 and ψ|2〉 and (b) statistical average of
the scans. The Michelson contrast from the simulation is 68% at the first
recurrence and ∼0% at the second. (c) If we also take the simulated spatial
wave function overlap into account (75% at the first recurrence and 50% at
the second, see Section 5.4), we get a Ramsey contrast of 52% at the first and
∼0% at the second recurrence, which is very similar to the measured values.

0%, c.f. Figure 5.3.2b).
Since the phase noise is dominated by technical noise, we are very con-

fident that the observed noise level could be lowered significantly with an
optimized setup.

5.6 Advantages of microwave near-field poten-
tials

Internal-state labeling of the interferometer paths [52], as demonstrated here,
offers several advantages for trapped-atom interferometry. Compared with
state-insensitive beam splitters, which operate by ramping up a barrier in
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the potential, the splitting and recombination can be controlled much more
accurately by driving the internal-state transition. The interferometer paths
can be closed inside the trap without the excitation of solitons, which sub-
sequently decay into vortices [20, 144]. Furthermore, readout is greatly sim-
plified, because it does not require spatially resolving interference patterns.
Instead, only N1 and N2 have to be determined, which can be done with
high accuracy. Many-body effects in the interferometer could either be sup-
pressed by adjusting the trap frequencies for operation at lower density, or
used beneficially to increase measurement precision with spin-squeezed states
(see next chapter).

The oscillation of ψ|1̄〉 results in periodic entanglement and disentangle-
ment of internal and motional states of the atoms. This mechanism is at the
heart of the quantum phase gate proposed in [43, 40], see Section 6.2.

Microwave near-field potentials could be used to trap neutral atoms in
internal states that cannot be trapped with static fields [49, 50], or to realize
electrodynamic traps for ultracold molecules or electrons. An extension to
multiple microwave frequencies seems promising and is technically straight-
forward.

Further applications of microwave near-field potentials on atom chips are
discussed in the following chapter.
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Chapter 6

Entanglement generation with
microwave potentials

In the following, I discuss ways of using state-dependent microwave near-field
potentials to generate multi-particle entanglement via collisional interactions.

Entanglement of atoms has been generated in a similar way in state-
dependent optical lattice potentials [97]. The advantage of our system is
that it is adaptable to a large range of atom numbers, ranging from large
ensembles (as required for metrology with spin-squeezed states) over meso-
scopic atom numbers (for example, for experiments on entangled number
states) in principle down to individual atoms [145, 146, 12, 147] (as required
for quantum information processing).

6.1 Spin-squeezing and multi-particle entangle-
ment

Today’s best atomic clocks are limited by the “standard quantum limit” of
interferometric measurement [148], which arises from the quantum noise in-
herent in measurements on a finite number of uncorrelated particles. The
emerging field of quantum metrology investigates the use of multi-particle
entangled states, such as spin squeezed states, to improve the measurement
precision beyond the standard quantum limit [36].
The one-axis twisting scheme [149] in principle allows the creation of a huge
amount of atomic entanglement in a two-component BEC [46, 47]. In this
scheme, a coherent spin state ψcss dynamicaly evolves into a spin-squeezed
state ψsss where the condensate atoms are entangled, which is due to atomic
interactions that provide a nonlinear term in the Hamiltonian for the BEC
internal state [47].
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Entanglement generation with microwave potentials

As mentioned in Section 5.5.2, the internal state of a BEC of N two-level
atoms can be described by a collective spin S =

∑N
i=1 si with z-component

Sz = (N2 − N1)/2. For a BEC in a coherent spin state ψcss, the atoms are
uncorrelated and the quantum noise is evenly distributed among the spin
components orthogonal to the mean spin. For S along x, σSyσSz = |〈Sx〉| /2.
This gives rise to the standard quantum limit if ψcss is used in a Ramsey
interferometer, where the Ramsey phase ϕ can be measured with quantum
noise σϕ = 1/

√
N .

Quantum correlations between the atoms can reduce the noise of one
spin quadrature in the y − z plane at the cost on increasing the noise in the
orthogonal one, resulting in a spin squeezed state. Its usefulness in metrology
is quantified by the squeezing parameter [39]

ξ2 = Nσ2
S⊥,min

/ 〈Sx〉2 , (6.1.1)

where σ2
S⊥,min

is the minimal variance of the spin in the y-z plane. With en-
tangled states, a lower bound of the Ramsey phase uncertainty is σϕ = 1/N ,
known as the Heisenberg limit [150].

Spin squeezing is produced via the one-axis twisting Hamiltonian [149]

H/~ = βSz + Ω2PSϕ + χS2
z , (6.1.2)

which describes our BEC in good approximation. The first two terms in
Eq. (6.1.2) are linear and describe rotations of the spin on the Bloch sphere.
The third, nonlinear term with coefficient χ arises due to elastic collisional
interactions in the condensate. It “twists” the state on the Bloch sphere,
which results in spin squeezing and entanglement (see Figure 6.1.1). The
parameter χ is given by

χ =
1

2~
(∂N1µ1 + ∂N2µ2 − ∂N2µ1 − ∂N1µ2)〈N1〉〈N2〉 , (6.1.3)

and depends on the derivatives of the chemical potentials

µj = 〈φj |hj|φj〉+
∑
k=0,1

UijNk

ˆ
dr |φj|2 |φk|2 (6.1.4)

of the two BEC components evaluated at the mean atom numbers 〈N1〉 =
〈N2〉 = N/2 [47]. Here, hj is the single-particle Hamiltonian including kinetic
energy and the trapping potential, and φj(r) is the spatial mode function of
state |j〉. The interaction strengths Ujk are given in Section 1.7.1.
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Figure 6.1.1: Spin squeezing through controlled collisional interactions.
(a) Evolution of the BEC internal state on the Bloch sphere (β = 0 for
illustration). Starting with all atoms in |1〉, a π/2 pulse prepares a coherent
spin state ψcss with mean spin 〈S〉 along x and isotropic quantum noise
in the y-z plane (fuzzy red circle). Subsequent nonlinear evolution with χS2

z

deforms the noise circle into an ellipse, creating a spin-squeezed state ψsss with
reduced noise at an angle θmin. We turn the state ψsss with a second pulse by
different angles θ around −x and measure σSz . (b) Control of the nonlinearity
χ with the state dependent potentials. Its dependence on the normalized
density overlap λ of the two BEC components is shown, calculated from
stationary mode functions in potentials of increasing separation. The insets
represent situations with little overlap (λ� 1, left) and large overlap (λ ≈ 1,
right). (c) Experimental sequence and motion of the two BEC components
corresponding to (a). In between the pulses for internal-state manipulation
(green), the state-dependent microwave potential (δ = 2π × 12 MHz, Pmw =
120 mW) is turned on (blue, pulse durations and microwave ramp times are
exaggerated). It dynamically splits and recombines the wave functions ψ|1〉
and ψ|2〉, so that χ > 0 during the time T . The simulated center-of-mass
motion of the two states |1〉 (black) and |2〉 (red) is shown as a function of
time. A slight asymmetric splitting of the potentials results in an asymmetric
oscillation. Insets, corresponding BEC mode functions φ1 and φ2 along the
splitting direction at the beginning (left), in the middle (center) and at the
end (right) of the sequence.
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If the spatial modes of both BEC components overlap completely, φ1 =
φ2, then χ ≈ 0 because the crossed terms with the minus signs compen-
sate the direct terms with the plus sign in Eq. (6.1.3). We can control the
value of χ by controlling the overlap of φ1 and φ2 with our state-selective
near-field potentials. By spatially separating atoms in states |1〉 and |2〉
the crossed terms in Eq. (6.1.3) vanish and χ > 0. This is illustrated
in Figure 6.1.1b, where we plot χ as a function of the density overlap λ =(´

dr |φ1|2 |φ2|2
)
/
√´

dr |φ1|4
´
dr |φ2|4, calculated from stationary mode func-

tions in traps of increasing separation for our experimental parameters [47].

We recently performed such an experiment [47], where we split and recombine
a two-component BEC during 12.7 ms (Pmw = 120 mW and δ = 2π×12 MHz,
resulting in a splitting of both potential minima of s = 0.52µm [47]), see
schematic in Figure 6.1.1c. We then perform tomography of the squeezed
state by rotating ψsss around itself by an angle θ and measuring the pro-
jection noise σSz(θ). We measure a reduction in the detected projection
noise σ2

S⊥,min
= σ2

Sz
(θ = 6°) of −3.7 ± 0.4 dB compared with σ2

Sz
for a co-

herent spin state ψcss. Together with the measured Ramsey contrast after
splitting and recombining of C = (88 ± 3)% we get a squeezing parameter
ξ2 = −2.5± 0.6 dB [47], proving that the state is a useful resource for quan-
tum enhanced metrology. Furthermore, ξ2 is an entanglement witness with
ξ2 < 1 indicating at least bipartite entanglement between the atoms in the
condensate [45].

6.2 Controlled phase gate

Atom chips are very promising for applications in quantum information pro-
cessing (QIP) [34, 42]. They combine the exquisite coherence properties of
neutral atoms [9, 31] with the tailorability of micropotentials and the scalabil-
ity through microfabrication. The chip allows interfacing to photons (“flying
qubits”) through optical cavities on the chip [12, 151] as well as to solid-state
quantum devices [78, 152]. Furthermore, two-dimensional magnetic micro-
trap arrays (“qubit storage registers”) have already been realized on a chip
[14].

Recently, a controlled phase gate for single atoms was proposed [43, 40]
which relies on state-dependent microwave near-field potentials as investi-
gated in this thesis [43]. In this proposal, the truth table of a controlled
phase gate is realized (which results in entanglement) by means of state-
selective collisional interactions between single atoms (see Figure 6.2.1).
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Figure 6.2.1: Working principle of the collisional phase gate. (a) Initially
both qubit wave functions reside in their parts of the double well potential
uc, which is created by DC currents on chip wires. Notice that the state
labeling in this figure follows standard QIP conventions; |F = 2,mF = 1〉 ≡
|0〉 and |F = 1,mF = −1〉 ≡ |1〉 (b) Qubit wave functions during gate
operation. The microwave near-field generates a potential u0 (u1) for states
|0〉 (|1〉), which removes the barrier for state |1〉 so that the wave functions
ψ|1〉 start to oscillate in the resulting single-well potential. After an integer
number of oscillation periods, during which the oscillating states pick up a
collisional phase shift ϕg, the microwave potentials are switched off again and
the oscillating parts of the wave functions are brought back to rest again. (c)
Resulting truth table of the collisional phase gate. The collisional phase shift
ϕg of the two-qubit basis state |11〉 results in entanglement. For ϕg = π, we
get the truth table of a controlled phase gate. The figure is taken from [69].
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Entanglement generation with microwave potentials

For an experimental realization of [43] the following ingredients are re-
quired:

• Control of atomic collisions in a double well potential with state-dependent
barrier

• Single atom detection, ideally on-chip

• Deterministic single atom preparation in the vibrational ground state
of the trap

Our collaborating group in Paris lead by J. Reichel has very recently suc-
ceeded in demonstrating single atom detection and preparation by using an
on-chip optical fiber cavity [12, 153]. The coherent manipulation of motional
states shown in the previous chapter gives us confidence that we can realize a
double well potential with a state-dependent barrier, as required for the gate
of [43]. While we do not yet have single atom preparation ready in our ex-
periment, collisional interactions in a state-dependent double well potential
could already be investigated with small condensates in our experiment.

The next step would be to design a new chip, which combines our near-
field potentials with on-chip fiber cavities in order to realize the gate.
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Conclusion

In this thesis, I studied the coherent interaction of ultracold atoms with
microwave near-fields provided by a waveguide structure integrated on an
atom chip.

The microwave field imaging method presented in this thesis offers an
interesting combination of high spatial resolution and excellent microwave
magnetic field sensitivity, allowing full microwave field reconstruction [55].
The microwave field can be probed on a large region of interest at once, which
makes this method time efficient. It might e.g. be used in the atom clock
community to characterize the microwave field homogeneity in the interac-
tion region. Furthermore, since it is sensitive to frequencies used in commu-
nication technology, it could find commercial applications, e.g. in prototype
testing of MMICs. One could imagine that in a commercial application, the
device under test does not have to be locked into a vacuum chamber which
is time consuming, but rather the microwave device could be separated from
the cloud of atoms by a thin membrane through which the field distribution
is measured [56].

The state-selective microwave near-field potentials have been used for
coherent manipulation of the motional wave function of mesoscopic BECs
[21]. We reversibly entangled internal and motional states to implement a
trapped-atom interferometer with internal state labeling of the interferometer
arms. Such an interferometer might be used for portable inertial force sensing
systems [59, 32, 33].

The state-selectivity can also be used for the generation of multi-particle
entanglement. We already used a scheme similar to the one for trapped-atom
interferometry for the production of spin-squeezed states, where we measured
a spin noise reduction of −3.7± 0.4 dB (−2.5± 0.6 dB useful squeezing) im-
plying four-partite entanglement [47]. Spin-squeezed states are useful for
quantum metrology to surpass the “standard quantum limit” in interfero-
metric measurements [39]. The atom interferometer dynamics is also very
similar to the one required for the implementation of a controlled phase gate
for single atoms [43]. We foresee that the phase gate, which requires coherent
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Conclusion

state-selective manipulation of the motional wave functions in combination
with single atom preparation and detection, could be implemented by com-
bining our state-selective microwave near-field potentials with the on-chip
fiber cavities from Jakob Reichel’s group, which were already used for de-
terministic single atom preparation and detection [153]. A natural next step
towards the realization of the gate would be to simulate the collisional phase
shift with small BECs, which we can readily produce with our setup.

The same effect that produces the squeezing can also be used for the
generation of Schrödinger phase cat states [154, 155]. The phase spreading
mechanism will refocus the phase of the BEC after a time trev = 2/χ due to
the discreteness of the atom number (for our parameters, χmax = 3 Hz for
N = 1250, we get trev = 660 ms). In between, at time trev/2, the system is in
a Schrödinger phase cat state [154]. Such a state is easily destroyed (and its
formation is inhibited) by decoherence phenomena such as particle loss and
technical phase noise [154]. In our current setup, atom loss would limit us to
N = 14 [156], for which we would get a revival after trev = 5.4 ms. However,
such small atom numbers are hard to prepare reproducibly in our current
setup. We envisage that the deterministic preparation of such small atom
numbers could be achieved using on-chip optical fiber cavities [12, 153].

On-chip microwave near-fields are currently also investigated for the im-
plementation of compact and robust chip-based atomic clocks [30] with long
interrogation times, where the near-fields allow for well-defined and stable
Ramsey pulses.

Microwave near-field potentials could be used to trap neutral atoms in
internal states that cannot be trapped with static fields [49, 50], or to realize
electrodynamic traps for ultracold molecules and electrons. Experiments
to guide and manipulate electrons with microwave near-field potentials are
currently in preparation [157].

Finally, microwave near-fields around superconducting coplanar waveg-
uide resonators are also discussed as a way to reach strong coupling between
a hyperfine excitation in an atomic ensemble and a single photon in the
superconducting resonator [152].

I am convinced that the state-selective microwave near-field potentials
demonstrated in this work are a versatile tool which will pave the way to a
lot of very exciting experiments yet to come.
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Appendix A

Chip design

Here I present the design of the different chips of the atom chip package.
Figure A.0.1 shows the structures on the base chip (green) together with
the structures on the science chip, where the color yellow (red) indicates
structures on the lower (upper) layer of the science chip. The three gold
mirrors and the science chip substrate (blue) are plotted semi-transparent to
show the structures below. The labeling of the base chip wires corresponds to
the labeling on the patch board used to connect the chip wires with current
sources.

The base chip alone is shown in Figure A.0.2. Most wires on the chip are
just lead wires to the science chip. The current IUBasisMOT2 (up to 9.2 A)
is used to generate the quadrupole magnetic field in the last MOT stage, the
MOT close to the chip surface.

The science chip is shown in Figures A.0.3 and A.0.4. Figure A.0.3 shows
a schematic of both chip layers together with a photograph of a chip (the
picture shows the chip before cutting away the unnecessary parts of the Si
substrate, see Section 2.2.2). On the photo, one can recognize the bumps on
the on-chip mirror due to the structures in the lower chip layer. To avoid such
bumps of the CPW close to the atoms where the CPW crosses the Long-Ioffe
wire (see Figure 3.8.1), we designed “pedestals” for the CPW on the lower
layer, close to the Long-Ioffe wire (see the magnified insets in the upper part
of the Figure). The 5 µm broad gap between the pedestals and the Long-
Ioffe wire is well planarized out by the three polyimide layers between both
metalization layers (see the inset on the photograph).

Figure A.0.4 shows the structures in the lower layer of the science chip,
which are used for magnetic trapping. The currents indicated correspond to
the ones from Section 3.8.
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Figure A.0.1: Schematic of the structures on the base and the science chip.
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Figure A.0.2: Structures on the base chip.
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Figure A.0.3: Overview of the structures on both layers of the science chip.
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Appendix B

Fundamental constants and 87Rb
data

Fundamental constants
Planck’s constant h 6.626 068 96(33)× 10−34 Js
Bohr magneton µB 9.274 009 15(23)× 10−24 J/T

h · 1.399 624 604(35) MHz/G
Bohr radius a0 0.529 177 208 59(36)× 10−10 m

Rubidium-87 data
Atomic mass m 1.443 160 648(72)× 10−25 kg
Nuclear spin I 3/2

D2 transition (52S1/2 ↔ 52P3/2) optical properties
Wavelength (vacuum) λ 780.241 209 686(13) nm
Frequency ω0 2π · 384 230 484 468 5(62) THz
Natural line width Γ 2π · 6.0666(18) MHz
Saturation intensity
|F = 2,mF = ±2〉 ↔ |F ′ = 3,m′F = ±3〉 Isat 1.669(2) mW/cm2

cycling transition (σ± polarized light)
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Fundamental constants and 87Rb data

52S1/2 ground state porperties
Hyperfine structure constant Ahfs h · 3.417 341 305 452 15(5) GHz
Zero-field hyperfine splitting ∆Ehfs = 2Ahfs h · 6.834 682 610 904 29(9) GHz
Electron spin g-factor gJ 2.002 331 13(20)
Nuclear spin g-factor gI −0.000 995 141 4(10)
Static polarizability α0 h · 0.0794(16) Hz/(V/cm)2

S-wave scattering lengths from [95]
|1,−1〉 − |1,−1〉 a11 100.40 a0 = 5.3129 nm
|2, 1〉 − |1,−1〉 a21 97.66 a0 = 5.1679 nm
|2, 1〉 − |2, 1〉 a22 95.00 a0 = 5.0272 nm

Loss rate constants
Two-body collisions K|2,1〉 ≡ K2 1.194(19)× 10−13 cm3s−1 [95]

K|1,−1〉−|2,1〉 ≡ K12 0.780(19)× 10−13 cm3s−1 [95]
Three-body collisions L|1,−1〉 = L1 5.8(19)× 10−30cm6s−1 [96]

Data has been taken from [66] where not indicated otherwise.
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Appendix C

Angular momentum matrix
elements

In this chapter I give the matrix elements for magnetic dipole transitions
between hyperfine states |F,mF 〉. I follow [69] to which the reader is referred
for more details.

The strength of magnetic dipole transitions between hyperfine states
|F,mF 〉 ≡ |J, I, F,mF 〉 is related to the corresponding angular momentum
matrix elements . The total angular momentum is F = J+ I, where J is the
electron angular momentum and I is the nuclear spin. Within the ground
state hyperfine manifold of 87Rb, J = 1/2 and I = 3/2 have fixed values,
which can be combined to F = 1 and F = 2. In terms of Cartesian com-
ponents, F = (Fx, Fy, Fz), we define F± ≡ Fx ± iFy. Similar definitions are
used for I± and J±.

In this appendix, |F,mF 〉 refers to the eigenstates of the operators F2 and
Fz. Note that in the main text of this thesis, |F,mF 〉 refers more generally
to the eigenstates of the full Breit-Rabi Hamiltonian, Eq. (1.4.1), which are
a function of the external magnetic field B. Both definitions are equivalent
for B → 0.

The matrix elements 〈F ′,m′F |Fγ|F,mF 〉 (γ = +,−, z) between states with
F ′ = F are

〈F,m′F |Fz|F,mF 〉 = mF δm′F ,mF (C.0.1)

〈F,m′F |F±|F,mF 〉 =
√

(F ∓mF )(F ±mF + 1)δm′F ,mF±1. (C.0.2)

Matrix elements of F between states with F ′ 6= F vanish,
〈F ′ 6= F,m′F |Fγ|F,mF 〉 = 0. Using Fγ = Iγ + Jγ, we find

〈F ′,m′F |Iγ|F,mF 〉 = −〈F ′,m′F |Jγ|F,mF 〉 forF ′ 6= F.
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Angular momentum matrix elements

In the calculation of the microwave potentials (Section 1.8) and the Rabi
frequencies for microwave field imaging (Section 4.1.1), we neglected the cou-
pling of the microwave to the nuclear spin I and encounter the matrix ele-
ments

〈2,m2|ε · J|1,m1〉,
where ε = (εx, εy, εz) is a unit polarization vector, whose components may be
complex. Using Jx = 1

2
(J+ + J−) and Jy = − i

2
(J+ − J−), we express ε · J as

ε · J = εxJx + εyJy + εzJz = 1
2
(εx − iεy)J+ + 1

2
(εx + iεy)J− + εzJz.

The non-vanishing matrix elements are:

〈2, 2|J+|1, 1〉 =

√
3

4

〈2, 1|J+|1, 0〉 =

√
3

8
(C.0.3)

〈2, 0|J+|1,−1〉 =

√
1

8

〈2, 0|J−|1, 1〉 = −
√

1

8

〈2,−1|J−|1, 0〉 = −
√

3

8
(C.0.4)

〈2,−2|J−|1,−1〉 = −
√

3

4

〈2, 1|Jz|1, 1〉 = −
√

3

16

〈2, 0|Jz|1, 0〉 = −
√

1

4
(C.0.5)

〈2,−1|Jz|1,−1〉 = −
√

3

16
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