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3. Abbreviations 
 

DHS   dihydrosphingosine 

DHS-P  dihydrosphingosine phosphate 

E-MAP  epistatic mini-array profile 

ESR   electron spin resonance 

FRAP   fluorescence recovery after photobleaching 

GFP   green fluorescent protein 

GPI   glycosylphophatidylinositol   

GUV   giant unilamellar vesicle 

IPC   inositol phosphoceramide  

LCB   long chain base 

Lo   liquid ordered  

Ld    liquid disordered  

MAPK   mitogen-activated protein kinase 

MCC   membrane compartment occupied by Can1 

MCP   membrane compartment occupied by Pma1 

MCT   membrane compartment occupied by TORC2 

MDCK   Madin-Darby canine kidney 

MIPC   mannose-inositol-phosphoceramide 

M(IP)2C  mannose-(inositol-P)2-ceramide 

mTORC2  mammalian target of rapamycin complex 2 

PA   phosphatidic acid 

PC   phosphatidyl-choline 

PDK1   phosphoinositide dependent kinase 1  

PE    phosphatidyl-ethanolamine 

PH domain  pleckstrin homology domain 

PHS   phytosphingosine 

http://en.wikipedia.org/wiki/Kidney
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PHS-P  phytosphingosine phosphate 

PI    phosphatidyl-inositol 

PIP   phosphoinositide 

PI(4,5)P2  phosphatidylinositol 4,5-bisphosphate 

PS    phosphatidyl-serine 

SDPE   1-stearoyl-2-docosahexaenoyl-sn-glycerophosphoethanol-amine 

SGA   synthetic genetic array 

SGK   serum glucocorticoid inducible kinase 

SILAC   stable isotope labeling of amino acids in cell culture 

SPT   serine palmitoyl transferase 

SV40   simian virus 40 

TORC2  target of rapamycin complex 2 
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4. Summary 
 

The protein and lipid composition of eukaryotic plasma membranes is highly dynamic 

and regulated according to need. Despite its great plasticity, the plasma membrane 

retains some organizational features, such as its lateral organization into distinct 

domains. In the yeast, Saccharomyces cerevisiae, large immobile protein clusters, 

termed eisosomes, are important for plasma membrane organization. Eisosomes 

help to sort proteins into discrete domains, function in endocytosis and are implicated 

in cellular signaling. The major eisosome components Pil1 and Lsp1 were first 

identified as in vitro targets of the sphingolipid long chain base-regulated Pkh-

kinases. However, it is not known if eisosomes are targets of Pkh-mediated 

sphingolipid signaling in vivo. In this thesis, I show that Pkh-kinases regulate 

eisosome formation in response to alterations of complex sphingolipid levels in the 

plasma membrane. I found that Pkh-kinase-dependent phosphorylation of Pil1 

controls the assembly state of eisosomes. The combination of different unbiased, 

global analysis methods, such as proteomics and high content screening enabled me 

to identify Nce102 as a negative regulator of Pkh-kinases. Nce102 relocalizes 

between MCC domains, overlaying eisosomes, and the remainder of the plasma 

membrane in response to alterations in sphingolipid levels. Together with its 

regulatory function on Pkh-kinases that localize at eisosomes, this relocalization 

suggests that it is part of a sphingolipid sensor. Furthermore, I identified Rom2, a 

Rho1 GTPase exchange factor, as a novel regulator of sphingolipid metabolism. My 

data reveal several new insights into regulation of sphingolipid metabolism and 

plasma membrane organization. I provide a model how a homeostatic feedback loop 

may control sphingolipid levels. This likely will help in understanding how cells adjust 

processes, such as eisosome driven domain organization, endocytosis and actin 

organization to altered conditions. Furthermore, I anticipate that the datasets created 

in this thesis will serve as a resource for future studies on plasma membrane 

function. 
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5. Introduction 
 

5.1 Architecture of the plasma membrane 
 

5.1.1  Structure and components of the plasma membrane 
 

The plasma membrane defines the boundary of eukaryotic cells by separating the 

cellular interior from the extracellular space. It surrounds all cells and is selectively 

permeable, thus controlling the movement of small water-soluble molecules in and 

out of the cell. The plasma membrane is primarily composed of proteins and lipids, 

each of which may be glycosylated. Molecules of both classes are approximately 

present in equal molar amounts. The basic structure of the plasma membrane is a 

lipid bilayer of approximately 30 Å (Lee, 2003). 

All lipid molecules in the plasma membrane are amphiphatic. The chemistry of 

membrane lipids is modular and combinations of different headgroups and side-

chains result in several thousand different lipid species. Based on their headgroup 

chemistry, lipids are classified into three major groups, phospholipids, sphingolipids, 

and sterols. (for examples see figure 1)  

Phospholipids consist of a glycerol backbone to which different chemical groups can 

be attached. Two fatty-acyl chains are attached to carbon-1 and carbon-2 of the 

glycerol. Variations in chain length and saturation of these acyl chains further add to 

lipid heterogeneity. A phosphate group is bonded to the third glycerol carbon. The 

simplest phospholipid is thus phosphatidic acid (PA) where a phosphate is the polar 

headgroup. Various modifications of the phosphate with alcohols or sugars lead to 

other abundant phospholipids, specifically phsophatidyl-choline (PC), phosphatidyl-

ethanolamine (PE), phosphatidyl-serine (PS) and phosphatidyl-inositol (PI). 

The various modifications of the headgroups lead to different molecular shapes of 

phospholipids. PC has a cylindrical shape. PC moleulces can thus be arranged in a 

plane to form planar bilayers in aqueous phase. In such bilayers, the hydrophobic 

tails point to each other and the hydrophilic headgroups face the water. Other 

phospholipids, such as PE, have a more conical shape (Cullis and de Kruijff, 1979). 
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Conical shaped lipids are necessary in vivo to induce curvature in membranes, which 

is important to generate the rounded shape of vesicles, tubules and many organelles. 

Besides their function in forming lipid bilayers, signaling functions and interactions 

with the cytoskeleton of phospholipids also participate in the organization of 

membrane domains. For example, Phosphoinsositols (PIs) are phosphorylated at 

several positions of their inositol ring. The resulting phosphoinositides (PIPs) are of 

low abundance in comparison to PIs, but are important for several processes 

including the recruitment of proteins to membranes. For example, many actin binding 

proteins have a conserved pleckstrin homology (PH) domain that binds PI(4,5)P2, a 

phosphoinositide exclusively found in the plasma membrane. This way, PIP2 

provides an anchor for the actin cytoskeleton at the plasma membrane. Together with 

its interactions with membrane proteins, this helps to organize the plasma membrane 

and align it with the actin cytoskeleton (Sechi and Wehland, 2000).  

Sterols are another abundant lipid class in the plasma membrane. They consist of a 

polar headgroup, a planar steroid ring structure and a non polar hydrocarbon tail. The 

amphipathic character of sterols is due to the hydroxyl substituent on the steroid ring. 

Because of the small size and partial charge of the headgroup, and the resulting 

weak polar character of the molecule, it is too weak to form bilayers by itself. 

However, sterols are found abundantly in most eukaryotic plasma membranes. 

Sterols are incorporated in between phospholipids with their hydroxyl groups close to 

the polar headgroups of phospholipids. In this position, the steroid ring structures of 

sterols can immobilize the fatty acid chains of phospholipids close to the polar 

headgroups. This results in a less deformable membrane. In addition, during the 

lowering of temperature, cholesterol molecules intercalate with their bulky structure 

into the increasingly ordered phospholipid bilayers and therefore prevent membranes 

from freezing (Rottem et al., 1973). 

Despite their near ubiquitous presence in most organisms, sterols are not essential 

for plasma membrane function. Nematodes for example have no sterols in the 

plasma membrane. In Caenorhabditis elegans, for example, sterols are just 

necessary as precursors for steroid hormones which is another important function of 

these lipids (Merris et al., 2003). 



Sphingolipids complete the description of lipid classes in the plasma membrane. 

They constitute 10-20 mol % of all plasma membrane lipids. Sphingolipids are 

characterized by an amide linkage of a fatty acid to a sphingoid long chain base. The 

latter are amino-alcohols with a hydrocarbon chain. The condensation reaction to 

form the amide takes place at the ER and yields ceramide. In mammalian cells, 

ceramides are transported by CERT proteins to the Golgi apparatus where they are 

flipped to the inner leaflet of the Golgi membrane (Hanada et al., 2003). There, 

different chemical groups, for example phosphocholine, can be further attached to 

Phosphatidylcholine  

               

 

Cholesterol  

          

 

Sphingomyelin 

 

           

Figure 1: Structural formulas of phosphatidylcholine, cholesterol and sphingomyelin 
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the C1 hydroxyl of ceramides. A phosphocholine headgroup attached to a ceramide 

yields sphingomyelin, the most abundant sphingolipid in eukaryotic cells. 

Alternatively ceramides can be glycosylated by glucosylceramide synthases or 

galactosylceramide synthases. The glycan structure of the resulting 

glycosphingolipids can interact with lipids or proteins of neighbouring cells. Therefore 

glycosphingolipids play a role in cell recognition and signaling (Hakomori and 

Igarashi, 1995). 

Additionally, sphingosines, ceramides and their phosphorylated derivates 

sphingosine-1-phosphate and ceramide-1-phosphate are second messengers and 

have been linked to a variety of cellular processes, such as apoptosis, proliferation 

and stress response (Chalfant et al., 1999; Pettus et al., 2005). Furthermore, 

sphingolipids are linked to several human diseases, such as diabetes (Summers, 

2006), a range of cancers (Modrak et al., 2006; Ogretmen and Hannun, 2004), and 

Alzheimer´s disease (Han, 2005).  

In comparison to the variability of sphingolipids in simple model organisms, they have 

a great diversity of sphingolipids in mammalian cell. The complexity in polar 

headgroups and fatty acids makes it difficult to study them. Therefore, the common 

baker´s yeast Saccharomyces cerevisiae has been used with great success to 

identify important enzymes in sphingolipid biology (Dickson and Lester, 2002). Since 

salient features of many biochemical pathways, including sphingolipid synthesis, are 

evolutionary conserved, these studies help to explain the complex processes in 

mammalian cells (Sims et al., 2004). Yeast sphingolipids are also in the focus of this 

work and their synthetic pathways will be described later in this thesis. 

  

 

 

 

 

 

http://en.wikipedia.org/wiki/Glucosylceramide_synthase
http://en.wikipedia.org/w/index.php?title=Galactosylceramide_synthase&action=edit&redlink=1


5.1.2 Membranes are two dimensional fluids 
 

The first studies on the behavior of lipids in a bilayer were made with liposomes and 

planar bilayers, called “black membranes”. Lipids with a polar headgroup that 

contained a spin label, such as a nitroxyl group, were incorporated into artificial 

membranes. The nitroxyl group contains an unpaired electron whose spin creates a 

paramagnetic signal. These signals can be recognized by electron spin resonance 

(ESR) spectroscopy. From the recorded spectra, the motion and behavior of a spin-

labeled lipid can be deduced. These experiments showed that phospholipids do 

rarely flip between the two leaflets of a bilayer (on average less than once a month 

for each individual molecule). On the other side, lipids laterally exchange very rapidly 

with neighboring lipids (on average 107 times per second). Similar data were 

obtained from experiments with fluorescently labeled lipids. These and other results 

lead to a first commonly accepted model of plasma membrane structure, proposed by 

(Singer and Nicolson, 1972). It depicted a “fluid mosaic” of proteins and lipids, where 

proteins are freely floating around in a two dimensional, homogeneous fluid of lipids 

(Figure 2). 

 

Figure 2: The fluid mosaic model of the plasma membrane (Singer and Nicolson 1972) 

12 
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The fluidity of membranes is regulated to ensure that cellular processes, such as 

transport across the membrane, occur normaly. Consistent with this notion, such 

transport was inhibited when the bilayer fluidity was experimentally increased, 

(Friedlander et al., 1988). An artificial bilayer that contains only one type of 

phospholipid will change from a liquid state to a two dimensional crystalline state at a 

certain freezing point. This is a phase transition and its defining parameters -

temperature and pressure - depend on attractive forces between lipids, length and 

saturation of the hydrocarbon chains. Especially, van der Waals attractions occur 

between the non-polar groups of the fatty acid chains and are responsible for the 

viscosity of a membrane.  
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5.1.3 Lipid rafts 
 

In the last forty years, the model proposed by Singer and Nicolson was modified in 

several important ways: For example, it is now established that the lateral lipid 

distribution of the plasma membrane is not homogenous, but instead clusters and 

domains of distinct sizes and composition exist (Bagnat et al., 2000; Simons and 

Ikonen, 1997; van Meer and Simons, 1988)  

The plasma membrane is the only organelle where high concentrations of 

sphingolipids are present (van Meer et al., 2008). The attractive forces between 

sphingolipids are just high enough to hold them together in small microdomains, 

called lipid rafts (Simons and Ikonen, 1997). The formation of microdomains 

represents a phase separation in the fluid lipid bilayer. The resulting domains are 

often described as liquid orderd (lo) phase and liquid disordered (ld) phase. When 

sphingomyelin, cholesterol and 1-stearoyl-2-docosahexaenoyl-sn-

glycerophosphoethanol-amine (SDPE) were mixed in equal molar amounts, phase 

separation was shown in artificial membranes (Shaikh et al., 2001). By using 

fluorescently labeled lipid analogs, phase separation was also shown in giant 

unilamellar vesicles (GUVs), where it results in large domains visible by two photon 

microscopy (Kahya et al., 2003). The reasons why in vivo mostly very small raft 

microdomains are observed, whereas in vitro these phases coalesce to very large 

domains is not yet clear. One model to explain this is that in vivo, the plasma 

membrane is close to a critical point of phase transitions. The small clusers that are 

therefore disperse, but poised to cluster, which might be mediated by interaction with 

plasma membrane proteins or the cytoskeleton (Honerkamp-Smith et al., 2008; 

Honerkamp-Smith et al., 2009; Veatch et al., 2008) 

Lipid rafts are formed by both, sphingolipids and sterols. The interaction between 

these two molecular classes may be stabilized by a hydrogen bond between the 3-

hydoxyl group of the sterol and the amide group of the ceramide (Brown, 1998; Veiga 

et al., 2001).  Because the much smaller sterols are positioned between sphingolipids 

with the long fatty acids and the large headgroups, this can be pictured as an 

umbrella of sphingolipids that shields the small sterols from too much exposure to the 

aqueous environment (Ikonen, 2008). The length of the fatty acyl chains and the 

concentration of sphingolipids also implies that lipid rafts, or lo domains, are thicker 
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than the remainder of the membrane, as shown in planar lipid bilayer systems 

(Lawrence et al., 2003). This might provide a local environment in which proteins with 

unusually long transmembrane domains can preferentially incorporate and cluster 

together. For at least some cases, this was shown to affect the function of the 

proteins. For example, nanoclusters formed by glycosylphophatidylinositol (GPI) 

anchored proteins, in the outer leaflet of the cell surface are important for uptake of 

proteins by non-clathrin mediated endocytosis (Sharma et al., 2004b). 
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5.2 Mechanisms of plasma membrane organization 
 

To accommodate communication and transport in and out of the cell under changing 

conditions, the plasma membrane is constantly remodeled and regulated according 

to need. However, despite its great plasticity, the plasma membrane retains some 

characteristic organizational features, including lateral organization in distinct 

domains. These phenomena can be distinguished into macro-phenomena that 

separate large parts of the membrane and micro-phenomena, such as lipid rafts that 

organize proteins and lipids into small areas of the membrane.  

 

5.2.1 Macro-organization of the plasma membrane  
 

An example of macro-organization is the separation of the apical and the basolateral 

membrane domains in epithelial cells. In polarized Madin-Darby canine kidney 

(MDCK) cells, the apical membrane is enriched in glycosphingolipids and 

sphingomyelin. In contrast, the basolateral membrane of these cells is rich in 

phosphatidylcholine. Both lipid classes are localized at the outer leaflet of the 

membrane and their mixing is prevented by tight junctions. The Golgi apparatus is 

the site of complex sphingolipid synthesis, where they are thought to form small 

clusters in the membrane. These clusters are believed to be sorting centers for 

proteins destined to the apical membrane (Simons and Ikonen, 1997). Consistent 

with this notion, (GPI) anchored proteins preferentially incorporate into these clusters 

and use their glycolipid anchors as apical sorting determinants (Brown and Rose, 

1992).  

The separation into apical and basolateral is important because the two domains 

face different environments and thus fulfill different functions.  

 

 

 

 

http://en.wikipedia.org/wiki/Kidney
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5.2.2 Micro-organization of the plasma membrane 
 

In contrast to macro-organization, micro organization of the plasma membrane 

ranges in dimensions from nanometers to a few microns. An example of protein-

driven micro-organization in mammalian cells are small, flask-shaped invaginations of 

about 50-100nm in the plasma membrane, termed caveolae. The principal protein 

organizing these domains is caveolin. Each caveola contains 100-150 caveolin 

molecules that assemble into large, filamentous complexes (Fra et al., 1995). 

Caveloae are very static structures, as shown by fluorescence recovery after 

photobleaching (FRAP) experiments (Fernandez et al., 2002; Thomsen et al., 2002). 

It was also shown that cells with different fluorescently tagged caveolins do not 

exchange subunits after cell fusion. Instead, the fused cell maintained the originally 

labeled caveolae (Tagawa et al., 2005). Together these results indicate that 

caveolae, once they are formed, are very stable, immobile structures that do not 

exchange caveolins with a free cytoplasmic pool. 

Interaction of caveolin with the plasma membrane is mediated by a scaffolding 

domain with many basic and aromatic amino acids that is thought to interact directly 

with cholesterol. This domain is followed by a 33 amino acid long intramembrane 

domain and a lipid anchor. The anchor mainly consists of palmitoylated cysteins. The 

intramembrane domain, thought to form a hairpin structure in the membrane, 

together with the anchor and the scaffolding domain mediate the interaction with the 

membrane. The self-assembly and the lipid binding properties of caveolin are the 

driving forces of membrane organization. Consistent with these properties, it was 

described that caveolae accumulate cholesterol and sphingolipids (Ortegren et al., 

2004). 

Besides their membrane organizing capabilities, caveloae have been associated with 

endocytosis. Some pathogens, such as the simian virus 40 (SV40), use caveloae as 

entry sites into the cells (Pelkmans et al., 2001). This might be achieved by fusion 

and fission of caveolae with internal compartments. It was also shown that caveolae 

internalization can be stimulated by cholera toxin, as well as by addition of 

exogenous cholesterol and glycosphingolipids (Sharma et al., 2004a).  

 



5.2.3 Plasma membrane organization in Saccharomyces cerevisiae 
 

Recently, a system for lateral plasma membrane organization has been discovered in 

the yeast Saccharomyces cerevisiae. In this model organism, large protein clusters, 

termed eisosomes, are localized in a peculiar, punctate pattern underneath the 

plasma membrane, which they organize into domains of distinct protein composition. 

An example for a protein in the eisosomal domain is the plasma membrane protein 

Sur7, which was shown to colocalize with eisosomes. Its localization completely 

collapsed upon deletion of the major eisosome component Pil1. Striking features of 

eisosomes are their uniform size, their stability over time and their composition of 

many copies of identical subunits. The main components of eisosomes are the two 

highly homologous proteins, Pil1 and Lsp1. Yeast cells possess around 25-45 

eisosomes. Each eisosome consists of 2000-5000 Pil1 and Lsp1 proteins, as 

calculated from fluorescent intensity (Walther et al., 2006). 

Eisosomes colocalize with a number of plasma membrane proteins that form a 

special compartment at this site, including the arginine permease Can1. The plasma 

membrane domain overlaying eisosomes is therefore named -membrane 

compartment occupied by Can1 (MCC). A normal yeast cell possesses around 25-45 

MCCs that are mutually exclusive 

with a second domain called 

membrane compartment containing 

Pma1 (MCP) (Malinska et al., 2003). 

The MCP forms a continuous 

meshwork-like structure that covers 

most of the plasma membrane. 

Recently, a third domain was 

discovered that harbors the target of 

rapamycin complex 2 (TORC2) and 

is mutually exclusive with both other 

domains (Berchtold and Walther, 

2009) 

 

Figure 3: Eisosomes localize to the yeast cell 
cortex. Green fluorescent protein (GFP)-tagged Pil1 
and Lsp1 are shown in midsections of yeast 
cells(upper panels) and in 3D reconstructions of the 
cells (lower panels). (Figure from (Walther et al., 
2006)) 

The MCC domain also harbors 

several other integral membrane 
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proteins, such as the uracil/H+ symporter Fur4 or members of the Sur7 protein 

family. MCC domains are stable over time, as shown by FRAP experiments. MCCs 

also likely have a distinct lipid composition that is enriched in ergosterol, because 

they colocalize with membrane domains stained by fillipin, a fluorescent marker that 

binds to sterols (Grossmann et al., 2007). Since ergosterol preferentially localizes 

together with sphingolipids, it was hypothesized that MCCs represent raft like 

structures in Saccharomyces cerevisae (Malinska et al., 2003).  

The concept of eisosomes being main organizers of the yeast plasma membrane 

was obtained from simple genetic experiments. When PIL1 is deleted, localization of 

fluorescently tagged MCC markers completely collapses into a uniform plasma 

membrane signal with one or a few spots per cell. These are the sites where Lsp1, 

the second major eisosome component resides and they were therefore termed 

“eisosome remnants” (Walther et al., 2006). In addition, the regular distribution of 

ergosterol is also absent in PIL1 deletion cells, resulting in a uniform staining of the 

plasma membrane with a few remnants (Figure 4). Together, these results suggest 

that lipids, most likely ergosterol together with sphingolipids, are not sufficient to form 

MCC domains in living yeast cells. On the other hand, it cannot be excluded that they 

are necessary to form domains. Most likely lipids and proteins, such as caveolin and 

Pil1 acting as a scaffold, are both necessary for membrane organization.  

Eisosomes (from greek “eis” meaning into and latin “soma” meaning body) were 

initially described as static sites of endocytosis. When a lipophilc tracer, FM4-64 

(Vida and Emr, 1995), is added to yeast cells, it forms endocytic intermediates that 

                      

Figure 4: Eisosomes organize the plasma membrane. Fillipin stained WT (left) and pil1Δ  (right) 
yeast cells. Pictures are taken from (Grossmann et al., 2007) 
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colocalize with eisosomes. Interestingly, intermediates are formed only on some and 

not all eisosomes. It is unclear what distinguishes these “active” eisosomes from the 

other eisososmes. Endocytosis in yeast is actin dependent. However, the endocytic 

FM4-64 intermediates at eisosomes were still formed even if the actin cytoskeleton 

was depolymerized (Walther et al., 2006). There are two possible explanations for 

these results. One possibility is that eisosomes act in endocytosis upstream of actin 

in the formation of FM4-64 intermediates. The second possibility is that eisosomes 

mediate an actin independent endocytic pathway, similar to caveolae. Consistent with 

this, the uptake of the mating type receptor Ste3 is reduced in strains lacking normal 

eisosomes.  

In addition to their function in endocytosis, eisosomes are implicated in cellular 

signaling. Pil1 and Lsp1 were first identified as inhibitors of the Pkh-kinases. Yeast 

has two Pkh-kinases that are highly similar and share at least one essential function. 

They are functional homologs of the mammalian phosphoinositide dependent kinase 

(PDK1). However, in contrast to PDK1 that binds phosphoinositides via its PH 

domain for plasma membrane recruitment and activation, Pkh-kinases do not contain 

such a domain and their activation in vitro does not depend on phosphoinositides 

(Casamayor et al., 1999). Pkh-kinases physically interact with eisosome components 

(Ho et al., 2002) and phosphorylate them in vitro (Zhang et al., 2004). In these in 

rwactions, phosphorylation of Pil1 and Lsp1 is oppositely regulated by long chain 

bases (LCBs). Pil1 phosphorylation is inhibited by LCBs, whereas Lsp1 

phosphorylation is promoted by LCBs. These results make eisosomes an interesting 

target of sphingolipid signaling in vivo. One possibility is that eisosomes function as a 

signaling platform by clustering lipids and/or proteins together at the membrane, 

thereby facilitating their interaction. 
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5.3 Sphingolipids 
 

5.3.1 Sphingolipid biosynthesis in Saccharomyces cerevisiae  
 

The synthesis of sphingolipids starts with the condensation of serine with fatty acyl-

CoA at the cytosolic leaflet of the ER to yield 3-ketodihydrosphingosine. This step is 

catalyzed by the serine palmitoyl transferase (SPT) and is rate limiting in the 

synthesis of sphingolipids. The SPT is a heterodimer composed of the proteins Lcb1 

and Lcb2. A third protein, Tsc3, is necessary for optimal activity of the SPT and is 

essential for SPT activity at elevated temperatures (Gable et al., 2000), although the 

exact function of Tsc3 is still unknown. The second step of sphingolipid synthesis is 

catalyzed by Tsc10 that reduces 3-ketodihydrosphingosine to dihydrosphingosine 

(DHS) (Beeler et al., 1998). DHS is then attached via an amide linkage to a C26 fatty 

acid, catalyzed by either of two ceramide synthases Lag1 and Lac1 and yields N-

acylsphiganine (dihydroceramide) (Guillas et al., 2001; Schorling et al., 2001). At this 

step also a third protein, Lip1, is involved. It was shown that Lip1 is necessary for the 

activity of the complex, but the mechanism how it functions is still unknown (Vallee 

and Riezman, 2005). Dihydroceramide is further hydroxylated at the C4 position by 

Sur2 to give phytoceramide. DHS can alternatively hydroxylated by Sur2 to yield 

phytosphingosine (PHS), which is then attached to a C26 fatty acid to yield 

phytoceramide (Haak et al., 1997). The chain length of DHS can be 16, 18 or 20 

carbon atoms, and PHS contains either 18 or 20 carbon atoms. 

The substrates required for ceramide synthesis, long chain bases and C26 fatty 

acids, are made in the ER. Synthesis of the latter requires several enzymes: Elo1, 

Fen1, Sur4, Tsc13, Phs1 and Acp1. C26 fatty acids are made from C14-C18 fatty 

acids and the elongation is achieved by a cycle of four reactions. The first step 

condenses malonyl-CoA with an acyl-CoA to yield 3-ketoacyl-CoA. The 3-ketoacyl-

CoA is then reduced to 3-hydroxy acyl-CoA, which is reduced to an enol 

intermediate. The final step reduces the enol to yield an acyl-CoA that is two carbons 

longer than the starting compound (Beaudoin et al., 2002; Han et al., 2002; Oh et al., 

1997; Toke and Martin, 1996). 



Once ceramides are made, they are transported from the ER to the Golgi apparatus. 

It is not clear if this is an active, transport in vesicles or a non-vesicluar transport that 

requires contact sites between ER and Golgi membranes. In mammalian cells, the 

CERT proteins are responsible for this transport, but yeast homologs have not been 

identified yet (Hanada et al., 2003). There is evidence that both pathways exist in 

yeast (Funato and Riezman, 2001). At the inner Golgi membrane, ceramides are 

modified by the inositol phopshoryl ceramide synthase (IPC synthase) Aur1 (Levine 

et al., 2000; Nagiec et al., 1997). An inositol phosphate is transferred from 

phosphatidyl inositol to the C1 OH group of the ceramide to yield the first complex 

sphingolipid, inositol phosphoceramide (IPC). 

 

Figure 5: Sphingolipid metabolism in yeast (Dickson, 2008) 

For the next step in sphingolipid biosynthesis, the three enzymes Csg1, Csg2 and 

Csh1 are required (Uemura et al., 2003). They transfer a mannose from GDP-

mannose to the inositol C2-OH group. This results in a mannose-inositol-

phosphoceramide (MIPC), which is the second complex sphingolipid in yeast.  

In a final step of sphingolipis synthesis, a second inositol phosphate from 

phosphatidyl inositol is transferred to MIPC. This results in mannose-(inositol-P)2-

ceramide (M(IP)2C). This reaction requires the IPT1 gene. M(IP)2C is the most 
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abundant of the complex sphingolipids in yeast, which – in analogy to the situation in 

mammalian cells- are all thought to reside in the outer leaflet of the plasma 

membrane. Only IPC might also be present in the vacuolar membrane, but its 

function there is unknown.  

In comparison to the knowledge on sphingolipid synthesis, relatively little is known 

about the turnover of sphingolipids. There is some biological evidence that an 

enzyme with phospholipase C activity degrades sphingolipids. This activity is 

encoded by ISC1 and hydrolyses the polar headgroup of all three complex 

sphingolipids, yielding ceramides (Sawai et al., 2000). Two genes have also been 

identified that encode ceramidases, YDC1 and YPC1 (Mao et al., 2000). These 

enzymes can hydrolyze the amide bond between the sphingosine and the fatty acid. 

However, single deletion of each of the genes has no effect on the viability of yeast, 

nor any other discernible phenotype. Thus, the biological relevance of the reactions 

catalyzed by  the two genes remains unknown. 

Sphingosines that are derived from breakdown of ceramides as well as de novo 

synthesized sphingosine can be phosphorylated. There are two LCB kinases in 

yeast, Lcb4 and Lcb5, which can produce PHS-1-phosphate (PHSP) and DHS-1-

phosphate (DHSP). The function of these two molecules is not entirely clear. There is 

some evidence that they play a role in entry to the diaucix shift (Alvarez-Vasquez et 

al., 2007). 

PHSP and DHSP can be either dephosphorylated by two LCB phosphatases, Lcb3 

and Ysr3 or cleaved by an LCB lyase, Dpl1. Cleavage of LCB phosphates yields 

ethanolamine phosphate and a C16 aldhehyde. This pathway is the only exit from the 

sphingolipid biosynthesis pathway. Since double deletion of LCB3 and DPL1 is lethal 

for cells, it was suggested that high levels of LCB phosphates are toxic (Zhang et al., 

2001). Sphingolipid metabolism in yeast is summarized in figure 5. 

The basic metabolism of sphingolipids is conserved in mammalian cells, at least to 

the step of ceramides. In mammalian cells, inositol phosphates are not added to the 

ceramides. Instead, hydrophilic groups, such as phosphatidylcholine are added. The 

identification of yeast genes functioning in sphingolipid metabolism helped in many 

cases to identify their mammalian homologs. For example, the identification of the 

LAG1/LAC1 genes helped to clarify the molecular function of the human LASS gene 
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family, which are now all shown to have ceramide synthase activity. Furthermore, 

some of the human LASS genes can complement the function of their yeast 

counterparts (Cerantola et al., 2007), thus demonstrating the evolutionary 

conservation of enzymatic function. 
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5.3.2 Regulation of sphingolipid levels 
 

Even though many important enzymes for sphingolipid biosynthesis have been 

identified, very little is known about the regulation of sphingolipid levels. It is clear 

already that the relative amount of sphingolipids  changes under different conditions 

and that this is important for plasma membrane function (Bagnat et al., 2000). Some 

studies focused on the transcriptional regulation of sphingolipid synthesis genes. So 

far, only LAG1 and LAC1 seem to be transcriptionally regulated. However, the 

changes in their expression levels are very low and do not influence the levels of 

sphingolipids (Kolaczkowski et al., 2004) 

In contrast, it is known that sphingolipid intermediates fluctuate rapidly after a change 

in conditions. Cells that are shifted to a temperature of 37°C or 39°C show a 2-3 fold 

increase in C18-PHS and C18-DHS and a 100-fold increase in C20-PHS and C20-DHS. 

The increase in LCBs occurred within 5-10 min after heat shock and quickly returned 

to normal levels, even if the cells remained at an elevated temperature (Dickson et 

al., 1997; Jenkins et al., 1997). Sphingolipids cannot be stored in cells and the rapid 

increase of LCBs occurs through de novo synthesis. Since little transcriptional control 

is present and the responses are very fast, one would expect that most homeostatic 

controls occur via posttranslational modifications.  

First evidence for this hypothesis comes from studies on the target of rapamycin 

complex 2 (TORC2), which is required for ceramide synthesis (Aronova et al., 2008). 

It signals through the downstream kinases Ypk1 and Ypk2, representatives of the 

AGC-kinase family, which includes human AKT. In agreement with a function in 

sphingolipid regulation, YPK1 was identified as a high copy suppressor in yeast cells 

that were grown in the presence of low concentrations of myriocin, an inhibitor of the 

SPT (Sun et al., 2000).  

In analogy to mammalian systems, TORC2 is thought to phosphorylate an otherwise 

autoinhibitory sequence in the C-terminus of the Ypk-kinases (Kamada et al., 2005). 

Phosphorylation by TORC2 recruits Pkh-kinases, which can phosphorylate Ypk-

kinases at their T-loop sequence. This is required for full activation of Ypk-kinases. 

Furthermore, Ypk-kinases are recruited to the plasma membrane after depletion of 

sphingolipids (Kobayashi et al., 2005), the place where TORC2 and Pkh-kinases 

localize. 
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In addition, TORC2 and Pkh-kinases share another essential downstream target. The 

proteins Slm1 and Slm2 were shown to physically interact with TORC2 (Tabuchi et 

al., 2006) and are also implicated in sphingolipid signalling (Daquinag et al., 2007). 

Some of their signals occur through the calcineurin phosphatase, but the exact 

output is unknown. One downstream effect of Slm-proteins is the inhibition of Isc1, 

the homolog of mammalian phospholipase C, cleaving sphingolipids (Tabuchi et al., 

2006). 

Together, these results indicate a complex signaling network that regulates the levels 

of sphingolipids. The main components of the network are conserved throughout 

evolution. However, our understanding of these processes is still rudimentary. New 

findings might help to understand complex processes in higher eukaryotes. This is of 

special interest, because misregulation of sphingolipid levels is linked to many 

common human diseases (see section 5.1.1).  
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5.3.3 Cellular processes regulated by sphingolipids 
 

Sphingolipid intermediates participate in many important cellular processes, such as 

heat shock response, growth control, actin cytoskeleton organization, endocytosis 

and cell wall integrity. Isolation of a temperature sensitive mutant of the LCB1 gene, 

lcb1-100, helped in studying the functions of LCBs in these processes. Using this 

mutant, it was shown that these functions are regulated by signaling via Ypk- and 

Pkh-kinases. For example, lcb1-100 yeast cells show an endocytic defect at the 

restrictive temperature (Friant et al., 2000). Overexpression of either Pkh1 or Pkh2 

restored endocytosis in lcb1-100 cells via activation of the protein kinase Pkc1, a 

downstream target of the Pkh-kinases (Inagaki et al., 1999). It was also shown that 

LCBs are required for actin organization. lcb1-100 cells have depolymerized actin 

patches at the restrictive temperature. This defect was also rescued by the addition 

of exogenous PHS via the activation of Pkc1 through Pkh kinases (Friant et al., 2001) 

Another link between sphingolipid signaling, endocytosis and Pkh-kinases is provided 

by eisososmes. Before my thesis, nothing was known about the regulation of Pkh-

kinases in vivo, how and where they might phosphorylate eisosome components and 

what the cellular consequences of this might be. In addition, many apparent 

paradoxes persisted. For example, LCBs are synthesized in the ER, whereas Pkh-

kinases localize to the plasma membrane. It is thus not clear how Pkh-kinases 

respond to the levels of LCBs. The overall aim of my thesis was therefore to 

determine how sphingolipid levels are perceived in the cell, how this information is 

relayed to eisosomes and what the cellular consequences of this signaling are. 
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5.4 Aims of the thesis 
 

Eisosomes are static sites of endocytosis and help to organize the plasma 

membrane. Several lines of evidence suggest a connection between eisosomes and 

the Pkh kinases: 1) Pil1 and Lsp1, the main components of eisosomes, negatively 

regulate Pkh-kinase activity (Zhang et al., 2004). 2) The localization of overexpressed 

Pkh2 was very similar to the localization pattern of eisosomes (Roelants et al., 2002) 

3) Both Pkh-kinases and eisosomes are linked to endocytosis (deHart et al., 2002; 

Friant et al., 2001; Walther et al., 2006). 

Additionally, Pkh-kinases are regulated by LCBs, precursors of complex 

sphingolipids. LCBs are reported to function as signaling molecules that transduce 

stress signals (Friant et al., 2001). Therefore, I wanted to investigate if eisosomes are 

targets of sphingolipid signaling in vivo, possibly mediated by Pkh-kinases. I set out 

to identify proteins that have an effect on the localization of eisosomes either directly 

or through signaling via Pkh-kinases. To identify such proteins in an unbiased 

fashion, we incorporated a GFP tagged version of Pil1 in a comprehensive library of 

yeast gene deletion strains and visually screened for candidate genes encoding such 

proteins, using high throughput microscopy. 

In a complementary approach, I employed high throughput genetics. Synthetic 

genetic array (SGA) screens are a common technique to compare the growth 

difference between a double mutant of two genes and the related single mutants 

(Tong et al., 2001). Classically, researchers focused on genes that show very strong 

phenotypes with each other or even lethality. A recently described modification of 

SGA screens is the so called epistatic mini-array profile (E-MAP) (Schuldiner et al., 

2005). In this strategy, a large set of double mutants is created and the growth of 

each double mutant is measured. For each double mutant, a quantitative score is 

calculated that reflects the deviation of the growth rate of the individual mutant from 

the median of all mutants of the dataset. This quantative interaction score (or S-

score) can display negative interactions (e.g. synthetic sick or lethal), as well as 

positive ones (e.g. suppression). The individual S-scores of each mutant can be 

compared with the S-scores of all other mutants and genes with similar interaction 

profiles can be clustered together. It has been shown that genes with very similar S-

score profiles are likely to act in the same biological pathway (Schuldiner et al., 2005; 
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Ulitsky et al., 2008). We created a plasma membrane E-MAP that reveals insights 

into the connections between processes, such as eisosome assembly, endocytosis 

and sphingolipid biosynthesis.  

In a third, complementary approach developed in this thesis, I investigated eisosome 

and sphingolipid biology in Saccaromyces cerevisiae by mass spectrometry based 

quantitative proteomics. In combination with SILAC (stable isotope labeling of amino 

acids in cell culture; (Ong et al., 2002), this methodology is a very usefull tool in cell 

biology (Blagoev et al., 2003; Foster et al., 2006; Vermeulen et al., 2007). In contrast 

to classical biochemical methods, such as a Western blot, many changes in the cell 

can be investigated quantitatively at the same time. Usually, lysine and arginine 

auxotrophic cells are grown in the presence of [13C6/15N2]L-lysine and [13C6/15N4]L-

arginine, whereas control cells are grown with unlabeled amino acids. Proteins from 

both populations are mixed, and digested with proteases that cut only after lysines 

and arginines. The resulting peptides contain just one lysine or arginine and are 

analyzed in the mass spectrometer. Incorporation of the non-radioactive heavy amino 

acids results in a characteristic mass shift that can be distinguished in the mass 

spectra. Therefore, changes in the abundance of proteins can be analyzed 

quantitatively. I used these mass spectrometry based proteomics methods to identify 

new interaction partners of eisosomes, as well as posttranslational modifications of 

eisosome components. 
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6 Discussion 
 

I used several systems biology approaches in my studies. In particular, I combined a 

number of unbiased, comprehensive methodologies, such as proteomics, high 

content screening and systematic genetics with hypothesis-driven biochemical and 

cell biological experiments. 

High resolution mass spectrometry-based proteomics is a very powerful tool to study 

cell biology (Blagoev et al., 2003; Foster et al., 2006; Vermeulen et al., 2007). 

Quantitative proteomics enables comparison of changes of endogenous proteins 

under different conditions, and is therefore ideally suited to analyze the response of a 

system to changes in conditions or genetic alterations.  

We used this technique to measure levels of all proteins in haploid yeast cells 

compared to their diploid counterparts. Most of the proteins showed a SILAC ratio in 

these experiments, allowing for a global view of proteome changes under each 

condition. Confirmation of abundance changes of many proteins by Western blots 

confirmed the MS-based quantification. Specifically, we could show that many 

proteins of the mating pathway are specific to haploid cells, as expected for this 

tightly regulated pathway (Dohlman and Slessareva, 2006). Interestingly, the overall 

correlation between SILAC ratios and changes in messenger RNA levels, derived 

from previous studies (Galitski et al., 1999), was poor. Only when the data was 

filtered for significant outliers the correlation coefficient increased. It is therefore likely 

that changes on the trascriptome level do not directly reflect changes of the proteome 

level. Similar findings were also obtained in a study analyzing the proteome and 

transcriptome of Drosophila cells (Bonaldi et al., 2008), suggesting that this is 

universal feature of biological systems (Publication 2). 

Besides protein quantifications in cells under different conditions, mass spectrometry 

also allows for the quantification of changes in posttranslational modifications, such 

as phosphorylation. Therefore this method can be used to study complex networks of 

signal transduction. As a model for signal transduction, we investigated the osmotic 

stress response in yeast. We identified 3383 yeast proteins and 5534 unique 

phosphorylation sites, of which more than 15 % were changed significantly after 5 

min of salt stress. Among the hits, we identified several proteins of the Hog1 
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mediated mitogen-activated protein kinase (MAPK) signal pathway, which is known 

to respond to osmotic stress and therefore confirms the quality of the dataset. In 

addition, several other pathways were regulated that were previously not recognized 

to be involved in osmotic stress resistance. Thus, our dataset will serve as a resource 

for future studies of the yeast response to salt stress (Publication 4). 

Together, these studies illustrate the power of mass spectrometry based proteomics. 

Other people have, at the same time, combined MS-based proteomics with other 

techniques, such as cryo-electron tomography, to quantify the absolute abundances 

of proteins (Malmstrom et al., 2009). An overview of the currently used techniques, 

such as SILAC based proteomics and label free approaches, is given in (Frohlich and 

Walther, 2009) (Publication 5). 

When work on this thesis commenced, very little was known about the function and 

composition of eisosomes. To identify new eisosome components, as well as 

posttranslational modifications of the core components, I started by affinity purifying 

Pil1 from yeast cells and analyzing its modifications and interactors by mass 

spectrometry. 

This analysis of purified Pil1 led to the identification of at least 13 phosphorylation 

sites in the protein. At least four of these sites are important for the assembly state of 

eisosomes. A non-phosphorylatable mutant of Pil1-GFP that carries alanines at 

positions S45, S59, S230 and T233, showed a hyper-assembled phenotype. In 

contrast, a phospho-mimicking mutant of Pil1-GFP, where the same amino acids 

were mutated to aspartates, led to a reduced number of eisosomes with a 

corresponding increase in cytoplasmic signal. (Publication 1) 

Another systems biology approach I used in this thesis was quantitative, systematic 

genetics, which I employed to generate a plasma membrane E-MAP. E-MAPs have 

previously been used to uncover complex biological processes, and to describe 

signaling networks and previously unrecognized protein-protein interactions (Fiedler 

et al., 2009; Schuldiner et al., 2005; Ulitsky et al., 2008). The plasma membrane E-

MAP helped us to generate hypothesis on the regulation of sphingolipid metabolism, 

which will be discussed below. Besides that, I worked on two genes with the highest 

correlating genetic profiles compared with PIL1, EMP70 and YMR031C. Analysis of 

the transmembrane protein Emp70 revealed a very complex localization. It is 
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possible that Emp70 plays a role in endocytosis, but this hypothesis needs further 

investigation. (Publication 6) 

Another protein that consistently appeared in our screens linked to eisosomes was 

Ymr031c/Eis1. When I analyzed this protein, I found it to localize at eisosomes. In 

addition, SILAC based interaction proteomics confirmed that Ymr031C/Eis1, besides 

other proteins, physically interacts with eisosomes. This is consistent with another 

recent report, which also found the physical interaction of Ymr031c/Eis1 with 

eisosomes (Deng et al 2009 Mol Cell Prot). Based on its much lower abundance in 

comparison to eisosome core components, Ymr031C/Eis1 unlikely has a structural 

role at eisosomes, but instead may have regulatory function. This is also in line with 

data from our visual screen for genes affecting Pil1-GFP localization, the third high-

throughput method I used, which shows that deletion of YMR031C/EIS1 results in a 

phenotype similar to mutants in sphingolipid signaling. The question if and how 

Ymr031c/Eis1 participates in this signaling persists however.  

In our systematic screen of gene deletions affecting Pil1-GFP localization, we 

identified 88 genes that are important for assembly of eisosomes. These are roughly 

three times more than identified in a similar screen that focused on localization of 

Can1 in MCC domains (Grossmann et al., 2008). It remains to be determined 

whether this difference is caused by different thresholding of phenotypes during the 

screen or biological differences between eisosomes and MCCs. Because Pil1 is 

necessary for the localization of MCCs, it is surprising that there is little overlap 

between the two screens. Only three genes were identified in both screens: MNN1, 

SUR4 and NCE102, wich wil be discussed further below. (Publication 3) 

Together the data presented in this thesis provide an example how different high 

throughput datasets can be combined to generate novel insights into biological 

questions. Many hypotheses that may be generated from these three different 

methods described here will need further investigation: For example, questions on 

the molecular function of Ymr031c/Eis1 or the connection between eisosomes and 

Emp70 remain to be adressed. Nonetheless, the data obtained from these 

approaches already served as a starting point for the main focus of this thesis, the 

analysis of sphingolipid signaling, and its relationship with eisosomes and plasma 

membrane organization. 
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Eisosomes organize the plasma membrane by clustering different proteins into a 

discrete domain (Grossmann et al., 2007; Walther et al., 2006). In my thesis, I 

showed that the major eisosome component Pil1 is a target of Pkh-kinases in vivo. I 

showed that Pkh-kinases localize to eisosomes and physically interact with them. 

This is consistent with previously published high throughput pull-down studies (Ho et 

al., 2002). Additionally, it was also shown previously that Pkh-kinases can 

phosphorylate the eisosome components Pil1 and Lsp1 in vitro (Zhang et al., 2004). I 

found that either overexpression of Pkh-kinases or expression of a phospho-

mimicking mutant of Pil1 results in disassembly of eisosomes. In contrast, more Pil1 

assembles into eisosomes when Pkh-kinase activity is reduced in a temperature 

sensitive pkh mutant, or a non-phosphorylatable mutant of Pil1. Together with other 

data, this led me to conclude that Pil1 phosphorylation is critical for the assembly 

state of eisosomes. These results may be interpreted in two different ways: First, 

phosphorylation of Pil1 might be important for its assembly into eisosomes. Second, 

phosphorylation of Pil1 might lead to the disassembly of existing eisosomes. Of the 

two possibilities, I consider the latter more likely, because overexpression of Pkh-

kinases from an inducible promoter leads to disassembly of existing eisosomes. 

My data is different from findings by Luo et al (2008), who reported that a mutant 

form of Pil1 harboring five phosphosites mutated to alanines (S6A, S59A, T233A, 

S273A and S299A) could not assemble properly. Therefore they suggested that 

phosphorylation of Pil1 is important for the assembly of eisosomes, rather than 

disassembly. In my studies a mutant that lacks these five sites and even two 

additional sites (S6A, S45A, S59A, S230A, T233A, S273A and S299A) assembles 

properly into eisosomes. The reason for this difference is unclear at the moment, but 

might hint to the possibility that formation of eisosomes is regulated in a more 

complex fashion, and therefore dependent on conditions or different genetic 

background between the experiments. 

Taken together, my results show that eisosome formation is dependent on 

phosphorylation of Pil1 by Pkh-kinases. Therefore, I used eisosome formation as a 

biological readout to identify regulators of Pkh-kinase activity. Pkh-kinases have been 

linked to LCB signaling in several studies (deHart et al., 2002; Friant et al., 2001). As 

expected from these studies, I could show that eisosome formation is dependent on 

sphingolipid signaling, mediated by Pkh-kinases. Eisosomes hyper-assemble after 



addition of exogenous LCBs. In contrast, upon depletion of LCBs by inactivation of 

the serine palmitoyl transferase in lcb1-100 cells or of its inhibition by myriocin, 

eisosomes disassemble. This phenotype was blocked by insertion of a non 

phosphorylatable pil1(4A) mutant. Apparently my results contradict published data 

that suggest an increase in Pkh activity by LCBs (Friant et al., 2001; Zanolari et al., 

2000). However, this might be explained by the fact that these studies focused on 

different downstream targets of Pkh-kinases, such as the Pkc1 kinase. For Pil1 

phosphorylation by Pkh-kinases though, also Zhang et al (Zhang et al., 2004) 

observed decreased activity in vitro, after addition of LCBs.  

Taken together, these results suggest that the relative amounts of sphingolipids are 

sensed and transduced by Pkh-kinases to regulate eisosome formation and function, 

as well as other downstream targets. One of the targets phosphorylated by Pkh-

kinases are Ypk-kinases, which are required for efficient ceramide synthesis. 

Moreover, Ypk-kinases are phosphorylated on a different site by TORC2, which is 

also required for normal ceramide synthesis (Kamada et al., 2005). From my studies 

presented here, I propose a model for a homeostatic feedback loop that regulates 

levels of sphingolipids. This model is shown in Figure 6.  

 

         
 
Figure 6: Model for a homeostatic feedback loop that controls sphingolipid levels. Nce102 (green) 
senses sphingolipid levels in the plasma membrane by distributing between the thick sphingolipid rich 
MCC (blue) and the rest of the plasma membrane (gray) depending on sphingolipid levels. It releases 
Pkh-kinases from inhibition by distributing away from MCCs under low sphingolipid levels. Pkh-kinases 
can activate Ypk-kinases, which also need TORC2 phosphorylation, functioning as a gain control, for full 
activation. Increased Ypk kinase activity stimulates ceramide synthesis, either directly or through 
signaling via Rom2.  
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In this model, Ypk-kinases are recruited to the plasma membrane when sphingolipids 

are depleted, as previously shown (Kobayashi et al 2005 JBC). This is also the place 

where Pkh-kinases and TORC2 are located, albeit in different membrane domains 

(Berchtold and Walther, 2009; Frohlich et al., 2009; Walther et al., 2007). For full 

activation, the Ypk-kinases have to be phosphorylated by both upstream branches. In 

analogy to mammalian systems, it is thought that TORC2 phosphorylates an 

otherwise auto-inhibitory sequence in the C-terminus of Ypk-kinases (Kamada et al., 

2005), resulting in a recruitment of Pkh-kinases. Pkh-kinases phosphorylate Ypk-

kinases at their T-loop sequence, which leads to a full activation of the Ypk-kinases 

(Inagaki et al., 1999). The upstream mechanisms of TORC2 regulation are still 

unclear. An interesting hypothesis is that TORC2 coordinates sphingolipid 

metabolism with levels of other lipids in the plasma membrane. Consistent with this 

notion, it was recently shown that TORC2 activity is modulated by both, the 

hydroxylation of sphingolipids and the levels of sterols (Guan et al., 2009). 

Phosphorylation of the autoinhibitory sequence of Ypk-kinases by TORC2 might in 

this scenario function as a gain control in the feedback loop, to adjust the magnitude 

of the Pkh-response dependent on the levels of other lipids in the plasma membrane.  

The second branch, Ypk-activation is regulated by Pkh-kinases that respond to 

changes in sphingolipid levels. Using a combination of phosphoproteomics and a 

high throughput visual screen, I identified Nce102 as a negative regulator of Pkh-

kinases. Upon deletion of NCE102, the phenotype of Pil1-GFP localization was very 

similar to that one of a phosphomimetic form of Pil1. This phenotype could be 

blocked by either the reduction of Pkh-kinase activity in pkh1 pkh2 mutant cells or by 

the introduction of the non-phosphorylatable pil1(4a) mutant. Additionally, I could 

show that Pil1 is indeed more phosphorylated at some critical residues in nce102Δ 

cells, suggesting increased Pkh-kinase activity. I have also shown that Nce102 

localization is highly sensitive to sphingolipid levels. At normal sphingolipid levels, 

Nce102 localizes to MCC domains where it is in close contact with the Pkh-kinases. 

Conversely, Nce102 leaves the MCC domains after depletion of sphingolipids and 

releases the Pkh-kinases from inhibition. These results suggest that Nce102 might be 

part of a sensor of complex sphingolipid levels in the plasma membrane that 

transduces this information to Pkh-kinases. In the simplest model, Nce102 regulates 

Pkh-kinase activity just by its juxtaposition to the kinases located at the MCC. 
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Nce102 localization to MCCs, which are thought to be enriched in ergosterol 

(Grossmann et al., 2007), could also implicate that Nce102 responds to ergosterol 

levels in the plasma membrane. However, deletion of nonessential erg mutants had 

no effect on Nce102 localization. Since sterols preferentially localize together with 

sphingolipids to form rafts, MCCs are thought to represent raft like domains in yeast 

(Malinska et al., 2003). Therefore Nce102 could either directly bind to sphingolipids 

or preferentially incorporate into a special membrane environment. Mechanistically, 

the latter may be an area of increased membrane thickness due to its elevated levels 

of sphingolipids. Alternatively, it was recently suggested that filipin stained domains 

are areas of free ergosterol, not complexed to sphingolipids (Jin et al., 2008). That 

would mean that Nce102 localizes to sphingolipid de-riched domains of the plasma 

membrane. In either of the two models, Nce102 leaves the MCC domains when 

sphingolipid levels are low, which corresponds to increased activity of Pkh-kinases 

towards Pil1 and potentially other targets, such as the Ypk-kinases. 

In addition to the regulation by Nce102, activity of Pkh-kinases responds to levels of 

long chain base precursors that are synthesized in the ER. However, the addition of 

exogenous PHS did not rescue the observed phenotype of NCE102 deletion towards 

Pil1 in my experiments. Additionally, inhibition of the IPC synthase by the drug 

aureobasidin, with a corresponding increase in LCBs and ceramides (Cerantola et 

al., 2009), has the same phenotype as the inhibition of the SPT. Therefore, the effect 

of LCB mediated Pkh-kinase activation is probably minor compared to the activation 

by Nce102 (Publication 3). 

In addition, to this emerging picture of complex regulation of sphingolipid metabolism, 

I identified another protein that may be function in this regulation, using the plasma 

membrane E-MAP. In this E-MAP, phenotypic profiles of genes encoding sphingolipid 

metabolism highly correlate and therefore cluster together when all such profiles are 

compared. In this cluster, I found ROM2, a gene encoding a Rho1 GTPase exchange 

factor, arguing that it may have a regulatory function in sphingolipid metabolism. 

Particularly, ROM2 has a very high correlation with profiles of genes that act early in 

the sphingolipid synthesis pathway. Furthermore, it clusters together with genes that 

encode two subunits of the ceramide synthase (lag1Δ and lac1Δ). Therefore, I 

hypothesize that it is an activator of the ceramide synthase. This is further supported 

by comparison of ”shotgun lipidomic” analysis of mutants in sphingolipid synthesis 
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and rom2Δ. These experiments revealed that rom2Δ cells accumulate LCBs. One 

possibility to explain these data is that activation of Rom2 leads to increased long 

chain fatty acid synthesis. Long chain fatty acids are one of two substrates of 

ceramide synthase. Depletion of one of the two substrates leads to accumulation of 

the other substrate that is not being used, in this case LCBs (Publication 6).  

The activation of the ceramide synthase by Rom2 might be achieved through 

regulation by TORC2. TORC2 was shown to regulate Rho1 and Rho2 by activation of 

Rom2 (Schmidt et al., 1997). This suggests an alternative pathway besides ceramide 

synthase activation via Ypk-kinases. An alternative model would be that TORC2 

activates Rom2 via Ypk-kinases, a possibility not addressed in the studies of Schmidt 

et al.  

Rom2 also localizes to the plasma membrane where it binds to PI(4,5)P2 via its PH 

domain (Audhya and Emr, 2002). Interestingly, it relocalizes from the cytoplasm to 

the plasma membrane after depletion of sphingolipid levels by myriocin (Kobayashi et 

al., 2005). A possible function of the TORC2/Rom2 module is therefore to coordinate 

the sphingolipid levels with PI(4,5)P2 levels in the plasma membrane. 

Taken together, my data reveal several new insights into regulation of sphingolipid 

levels and plasma membrane organization. This might be important for the cell to 

maintain homeostasis of sphingolipids, as well as for the adjustment to altered 

conditions, for example during heat stress. Under heat stress conditions, cells control 

fluidity of the plasma membrane, which is regulated by sphingolipids (Guan et al., 

2009). Ypk-kinases and Pkh-kinases are also linked to other cellular processes, such 

as endocytosis, actin cytoskeleton organization and the cell integrity pathway. It is 

possible that all these processes are coordinated to allow the cell to adapt to 

changing environments. For example, I could show that modulation of Pkh-kinase 

activity by deletion of NCE102 led to altered plasma membrane organization, as 

observed for MCCs and MCPs. This might explain the effect of inactivation of Pkh-

kinases on endocytosis (deHart et al., 2002). In line with this hypothesis, nce102Δ 

cells showed a reduction of endocytic foci at the plasma membrane, marked by the 

lipophilic dye FM4-64. Another group has furthermore reported that nce102Δ cells 

have altered endocytosis rates of some membrane transporters, for example 

accelerated uptake of Can1 (Grossmann et al., 2008). 
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It is already clear that the described pathways are just a small part of a much more 

complex signaling network. Recent studies have identified the proteins Orm1 and 

Orm2 as interactors and regulators of SPT (Breslow et al., 2010; Han et al., 2010). 

The authors showed that the phosphorylation of Orm-proteins is regulated by 

sphingolipid levels, but the responsible kinases/phosphatases are not yet identified. 

In addition, the phosphoinositide phosphatase Sac1 is part of the SPT/Orm complex. 

Sac1 had been described previously as a regulator of sphingolipid levels by 

generating substrates for complex sphingolipid synthesis (Brice et al., 2009). 

However, the identification of Sac1 as a member of the SPT/Orm-complex suggests 

a more direct role in this regulation. Another example was given by the identification 

of the proteins Slm1 and Slm2 as targets of TORC2 as well as Pkh-kinases. They 

have been linked through sphingolipid signaling via the phosphatase calcineurin. The 

exact output of this pathway is unknown, but it involves inhibition of Isc1, a 

homologue of the mammalian phospholipase C, which hydrolyses complex 

sphingolipids (Tabuchi et al., 2006). 

The regulation of sphingolipid levels is not restricted to simple eukaryotes, such as 

yeast. The core components of my model, for example Pkh-kinases, Ypk-kinases, 

TORC2, as well as many enzymes of the sphingolipid synthesis pathway are 

evolutionary conserved. For some cases, it has been shown that mammalian 

homologs can complement the function of their yeast counterparts, for example the 

LASS genes, encoding ceramide synthases (Cerantola et al., 2007). However, 

mammals have at least six different ceramide synthases that are expressed in 

different tissues (Teufel et al., 2009). Therefore, it is unlikely that mammalian TORC2 

(mTORC2) regulates all these enzymes directly, but it might regulate some of them 

through the Ypk homolog serum glucocorticoid inducible kinase (SGK). SGK belongs 

to the AGC kinase family which includes also Akt and PKB. Since all these kinases 

are known downstream targets of mTORC2, it is possible that they transduce 

mTORC2 signals to different ceramide synthases. In addition, SGK is also a known 

downstream target of the Pkh-kinase homolog PDK1 (Kobayashi and Cohen, 1999; 

Park et al., 1999). It will be exciting therefore to test whether a similar network is 

controlling sphingolipid metabolism in humans. 
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Eisosomes help sequester a subgroup of plasma membrane

proteins into discrete membrane domains that colocalize

with sites of endocytosis. Here we show that the major

eisosome component Pil1 in vivo is a target of the long-

chain base (LCB, the biosynthetic precursors to sphingoli-

pids)-signaling pathway mediated by the Pkh-kinases.

Eisosomes disassemble if Pil1 is hyperphosphorylated (i)

upon overexpression of Pkh-kinases, (ii) upon reducing

LCB concentrations by inhibiting serine-palmitoyl trans-

ferase in lcb1-mutant cells or by poisoning the enzyme

with myriocin, and (iii) upon mimicking hyperphospho-

rylation in pil1-mutant cells. Conversely, more Pil1 assem-

bles into eisosomes if Pil1 is hypophosphorylated (i) upon

reducing Pkh-kinase activity in pkh1 pkh2-mutant cells,

(ii) upon activating Pkh-kinases by addition of LCBs, and

(iii) upon mimicking hypophosphorylation in pil1-mutant

cells. The resulting enlarged eisosomes show altered orga-

nization. Other data suggest that Pkh signaling and sphingo-

lipids are important for endocytosis. Taken together with

our previous results that link eisosomes to endocytosis,

these observations suggest that Pkh-kinase signaling

relayed to Pil1 may help regulate endocytic events to

modulate the organization of the plasma membrane.

The EMBO Journal (2007) 26, 4946–4955. doi:10.1038/

sj.emboj.7601933; Published online 22 November 2007

Subject Categories: membranes & transport; signal transduc-

tion

Keywords: PDK1-kinases; Pil1; plasma membrane; sphingo-

lipid signaling

Introduction

To perform its many functions, the composition of the plasma

membrane is highly dynamic and is continually remodeled

according to need. In yeast cells, several plasma membrane

transporters and signaling proteins are expressed on the

surface in a conditional, tightly regulated manner. This

regulation is achieved by the interplay between the delivery

of proteins to the plasma membrane and their retrieval by

endocytosis. The yeast plasma membrane contains patches of

segregated plasma membrane proteins that are thought to be

the functional equivalents of the lipid raft domains of mam-

malian cells (Malinska et al, 2003, 2004; Opekarova et al,

2005; Grossmann et al, 2006). The functional relevance of

these domains is so far unclear, but one intriguing possibility

is that they provide the framework for efficient regulation of

different plasma membrane proteins by segregating them into

different pools that can be recruited into a specialized lipid/

protein environment and can be taken up separately by

endocytosis.

Recently large, immobile complexes that mark sites

of endocytosis were discovered and termed eisosomes

(Walther et al, 2006). Eisosomes are positioned underneath

the plasma membrane. Their striking features include their

uniform pattern at the plasma membrane, their stability over

time, their relatively uniform size, and their composition of

many copies of identical subunits. How these features are

achieved molecularly is largely unknown; even our know-

ledge of the composition of eisosomes is still incomplete. The

two major subunits of eisosomes are the Pil1 and Lsp1

proteins. Pil1 most likely is the main organizer of eisosomes,

since its deletion leads to collapse of the normal eisosome

organization and relocation of all other known eisosome

components to a few eisosome remnants in the cell periphery

(Walther et al, 2006; Grossmann et al, 2007). This effect is

specific to Pil1, since deletion of the homologous Lsp1 has no

such consequences and also does not aggravate the effect

observed in yeast cells lacking Pil1.

Their uniform size, firm anchoring underneath the plasma

membrane, and seemingly stable assembly into complexes

that do not readily exchange subunits with a free cytoplasmic

pool suggests that eisosomes, once assembled, are static

structures. As eisosomes are constructed of a few thousand

copies each of their two major protein subunits Pil1 and Lsp1,

their structure must form as a repeating arrangement of many

identical units. Such assembly suggests a role as a scaffolding

device that may recruit other components and perhaps

modulate their activities by concentrating them locally in a

specialized lipid/protein environment. As such, eisosomes

have emerged as central players in the organization of the

plasma membrane, since deletion the PIL1 gene encoding one

of their subunits leads to (i) large aberrant plasma membrane
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invaginations associated with eisosome remnants and (ii)

loss of the normal domain distribution of several plasma

membrane proteins and sterol lipids (Walther et al, 2006;

Grossmann et al, 2007). The distinct subcompartments in the

plasma membrane that they organize comprise small, ran-

domly distributed membrane patches that colocalize with

eisosomes.

Tanner and co-workers recently termed the eisosome-

organized membrane domains MCCs for ‘Membrane

Compartments occupied by Can1’ (Grossmann et al, 2007),

because they contain the arginine/proton symporter Can1,

among other Hþ -gradient driven symporters and Sur7, a

plasma membrane protein that is genetically linked to the

endocytic machinery. As MCCs are enriched in sterols, they

provide a unique lipid environment for the membrane pro-

teins that are embedded in it. The domains are thought to be

the equivalent of lipid-ordered domains in higher eukaryotes

(Malinska et al, 2003, 2004). Deletion of Pil1 leads to a

collapse of MCCs (Grossmann et al, 2007), suggesting that

eisosomes are essential to determine their size and organiza-

tion in the plasma membrane. Disruption of the Hþ gradient

across the plasma membrane also leads to release of Can1

and other transport proteins from MCCs, indicating that their

localization of some membrane proteins can be dynamically

controlled. Since functional studies suggest that their activity

can strongly depend on the lipid environment (Lauwers and

Andre, 2006), their recruitment into MCCs may provide an

on/off switch. By contrast, other MCC constituents, such as

Sur7, remain firmly anchored when the Hþ gradient is

disrupted and hence may serve structural roles that help

define the membrane domain. Pil1 emerges as the main

organizer, because its deletion causes the remaining eiso-

some and the plasma membrane proteins recruited there to

disperse or collapse.

Pil1 and Lsp1 were initially characterized as modifiers of

Pkh signaling (Zhang et al, 2004). The central components of

Pkh -signaling are two redundant kinases Pkh1 and Pkh2 that

are functional homologues of the mammalian phosphoinosi-

tide-dependent kinase (PDK1) (Casamayor et al, 1999). The

salient features of this signaling pathway are conserved

(Inagaki et al, 1999; Sun et al, 2000; Roelants et al, 2002).

Several laboratories have shown that Pkh-kinases are re-

quired for efficient endocytosis (Friant et al, 2001; deHart

et al, 2002). Endocytosis in yeast is mediated by actin patches

(Engqvist-Goldstein and Drubin, 2003) and the defect in

endocytosis of cells deficient in Pkh signaling correlates

well with a decrease in polarization of the actin cytoskeleton

in these cells (Daquinag et al, 2007; TC Walther, PS Aguilar,

and P Walter, unpublished observation). Again, salient fea-

tures of this signaling seem conserved, since the mammalian

Pkh homologue PDK1 also regulates the actin cytoskeleton,

for example during insulin signaling (Dong et al, 2000).

Even though the molecular events leading to activation of

Pkh-kinases are still only poorly understood, we know that

they are regulated by the long-chain bases (LCBs), phyto-

sphingosine (PHS), and dihydrosphingosine (DHS) (Friant

et al, 2001). Consistent with this finding, it was shown that

LCBs modulate yeast endocytosis via Pkh-kinase regulation

(Zanolari et al, 2000; Friant et al, 2001; deHart et al, 2002). At

least part of this regulation might occur through eisosomes,

since the major eisosome components Pil1 and Lsp1 are

phosphorylated by Pkh-kinases in vitro (Zhang et al, 2004).

Several lines of evidence point to a functional connection

between eisosomes and Pkh signaling: (i) genetic evidence

suggest that the major eisosome components Pil1 and Lsp1

negatively regulate Pkh-kinases (Zhang et al, 2004); (ii) we

and others biochemically found Pkh1 and Pkh2 associated

with eisosomes (F Fröhlich, Ivan Mattic, Matthias Mann, and

TC Walther, unpublished observation; Ho et al, 2002; Krogan

et al, 2006); (iii) cellular localization of Pkh1 is reminiscent of

eisosomes (Roelants et al, 2002); (iv) both eisosomes and

Pkh-kinases have purported roles in endocytosis (Friant et al,
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2001; deHart et al, 2002; Walther et al, 2006), and (v) Pkh-

kinases phosphorylate Pil1 and Lsp1 in vitro (Zhang et al,

2004).

Here we investigated the effect of Pkh signaling on eiso-

somes and found that Pkh-kinases regulate aspects of eiso-

some assembly and organization. We suggest that this is part

of a regulatory homeostasis mechanism that adjusts eiso-

some assembly in accordance to sphingolipid levels, perhaps

providing negative feedback regulation to set eisosome abun-

dance appropriately.

Results

Pkh-kinases localize to eisosomes

To further explore the connection of Pkh1 and Pkh2 with

eisosomes, we first asked whether the Pkh-kinases associate

with eisosomes in vivo. To this end, we expressed N-termin-

ally GFP-tagged Pkh1 or Pkh2 in cells also expressing Cherry-

tagged Lsp1 from its genomic locus. We found that the levels

of GFP-Pkh1 and GFP-Pkh2 expressed from the PKH1 and

PKH2 promoters were too low to detect the fusion proteins.

We therefore overexpressed each fusion protein from the

inducible GAL promoter, analyzing the earliest time points

after induction that allowed reliable detection. As shown in

Figure 1A, we observed robust induction of GFP fluorescence

at a 1-h time point after shift from raffinose to galactose

medium. Both GFP-Pkh1 and GFP-PKH2 localized to both a

cytoplasmic pool and a distinct punctate pattern underlying

the plasma membrane. For both kinases, the punctual stain-

ing colocalized with eisosomes marked by Lsp1-Cherry

(Figure 1A and B). To get a quantitative impression of the

degree of colocalization, we measured the relative fluores-

cence along the plasma membrane and overlayed the inten-

sity profiles for either Pkh-kinase with the signal from Lsp1.

For most eisosomes, we observed corresponding peaks of

Pkh fluorescence (Figure 1A and B, lower panels).

To test whether eisosomes are required for the targeting of

Pkh-kinases to the plasma membrane, we expressed GFP-

Pkh1 and GFP-Pkh2 in wild-type and pil1D cells, in which

eisosomes are disrupted. Instead of being distributed evenly

around the cell periphery, eisosome remnants cluster in pil1D
cells to one or a few spots along the cell periphery. Indeed,

pil1D cells also mislocalized Cherry-Pkh1 and Cherry-Pkh2 to

the cytosol (Figure 1C, top panels) and to a few spots along

the cell periphery, presumably corresponding to eisosome

remnants. These results suggest that both Pkh1 and Pkh2 are

at least partially localized to eisosomes, and that Pkh1 but

not Pkh2 requires Pil1 for this association.

Sphingolipid signaling controls eisosome assembly

Pkh-kinases are regulated by LCBs, which are metabolic

precursors of sphingolipids. LCBs may have roles as signaling

molecules, transmitting information about cell stress and/or

information about the lipid composition of the plasma mem-

brane (Dickson et al, 1997). In vitro experiments have shown

that Pil1 and Lsp1 can be phosphorylated by Pkh-kinases

(Zhang et al, 2004), suggesting that eisosomes might be a

target of the LCB-signaling pathway.

To test this hypothesis, we monitored the effects of altering

sphingolipid synthesis on eisosome assembly and organiza-

tion. To this end, we used a temperature-sensitive allele of

LCB1 (lcb1-100), encoding serine-palmitoyl transferase,

which is the rate-limiting enzyme in LCB synthesis. In lcb1-

100 cells expressing Pil1-GFP, we observed a strong defect of

eisosome assembly already at the permissive temperature

(Figure 2A): cytoplasmic Pil1-GFP fluorescence was markedly

increased compared with wild-type control cells. The effect is

most clearly seen on a fluorescence profile of a line drawn

through the diameter of the cell such that it bisects eiso-

somes, if visible, on either end (Figure 2A, lower panel).

Accumulation of cytoplasmic Pil1-GFP was further aggra-

vated after cells were shifted to the non-permissive tempera-

ture (Figure 2B). Under both permissive and non-permissive

conditions, the total cellular Pil1-GFP levels were increased

by roughly threefold (as assessed by western blotting, data

not shown), perhaps due to a compensatory mechanism

induced by failure to assemble eisosomes. To inhibit the

synthesis of LCBs more acutely than possible with mutant

cells that must be grown for many generations before analy-

sis, we assessed the effects of myriocin, an inhibitor of Lcb1

(Fujita et al, 1994), on wild-type cells expressing Pil1-GFP.

We imaged the cells 1 h after addition of myriocin

(Figure 2C). Under these conditions the cellular Pil1 protein

levels were unchanged (data not shown). The images show

that cytoplasmic Pil1-GFP fluorescence increased and eiso-

some number at the cell periphery decreased. This experi-

ment shows that LCB synthesis is required for maintenance of

assembled eisosomes; due to the short time of myriocin

treatment and the uniform phenotype observed, we can

exclude that only newly formed eisosomes are affected by

the drug.

Since inhibiting LCB synthesis affects eisosomes, we rea-

soned that, conversely, an increase in LCBs may also affect

their assembly and organization. To test this possibility, we

added exogenous LCBs to the medium. Indeed, addition of

25 mM PHS for 1.5 h yielded eisosomes that are about twofold

brighter in the fluorescence images (Figure 2D). In addition to

the increased fluorescence per eisosome, eisosomes appear

elongated in the fluorescent images, perhaps indicative of

two eisosomes becoming stacked next to one another.

Similar to the effects of myriocin, addition of aureobasidin,

which blocks the synthesis of ceramide downstream of LCBs,

led to comparable defects in eisosome assembly and organi-

zation. Thus taken together, these data show that both LCBs

and ceramides regulate the assembly of eisosomes: increased

LCB levels lead to more Pil1 assembled into eisosomes,

whereas decreased LCB or ceramide levels lead to less Pil1

assembled.

Pil1 phosphorylation depends on Pkh-kinases

Since Pkh-kinases can localize to eisosomes and Pil1 has

been shown to be a Pkh substrate in vitro, we asked whether

Pil1 is also phosphorylated in vivo by Pkh-kinases. Western

blot analysis with an antibody specific to Pil1 showed that

Pil1 migrates as a doublet on denaturing gels (Figure 3A;

Supplementary Figure S1). The slower-migrating form repre-

sents a phosphorylated Pil1, since it was sensitive to

l-phosphatase treatment. Dephosphorylation of Pil1 was

inhibited by a preincubation with phosphatase inhibitors

(Figure 3A).

We next asked whether Pil1 phosphorylation is dependent

on Pkh-kinases. To this end, we examined the phosphoryla-

tion state of Pil1 in yeast cells bearing a temperature-sensitive

allele of PKH1 and a deletion of PKH2 (Friant et al, 2001).
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Western blot analysis Pil1 of these strains showed that the

phosphorylation of Pil1 is almost completely abolished under

both permissive and restrictive conditions (Figure 3B). To

further test the possibility that Pil1 is phosphorylated in a

Pkh-kinase-dependent manner, we overexpressed Pkh1 and

Pkh2 by placing each gene under control of the GAL promo-

ter. At a 1.5-h time point after induction of either kinase, Pil1

phosphorylation was markedly increased (Figure 3C). Taken

together our data establish Pil1 as a phosphoprotein that is a

target of Pkh-kinase signaling in vivo.

To determine the sites of phosphorylation in Pil1, we

partially purified Pil1 tagged with a tandem affinity purifica-

tion tag or a myc-epitope and analyzed its phosphorylation

by tandem mass spectrometry. This analysis revealed that

Pil1 is phosphorylated at multiple sites. The MS/MS spectra

of Pil1 showed phosphorylation of residues serines 16, 26, 45,

98, 163, 230, and 273, as well as of threonine 233 (a

representative spectrum for this latter site is shown in

Figure 3D; for the serine modifications see Supplementary

Figures S2–S9). In addition, we found phosphorylation on

serine 6 and serine 299, but these phosphorylated peptides

were not detected in every preparation analyzed (F Chu and

AL Burlingame, unpublished observation; Changhui Deng

and Andrew Krutchinsky, personal communication). A

large-scale analysis of the yeast phospho-proteome detected

yet another phosphorylation site on serine 59 (Lyris de Godoy

and Matthias Mann, personal communication). As shown in

Figure 2E, the many phosphorylation sites on Pil1 are dis-

tributed across the protein, leaving a central predicted coiled-

coil domain (K165-A198) unphosphorylated.

To determine which site(s) are responsible for the shift in

mobility observed in SDS–PAGE gels (Figure 3A), we mutated

all residues alone and in various combinations to alanine.

Surprisingly mutation of up to six sites did alter Pil1’s

electrophoretic mobility. When we mutated S273 in addition,

the full magnitude of the shift was abolished. Kinetic experi-

ments dephosphorylating Pil1 in vitro by addition of

phosphatases did not show intermediates in mobility

(F Fröhlich and T Walther, unpublished observation), indi-

cating that phosphorylation of serine 273 alone is responsible

for the shift in mobility. As such, the gel shift assay does

not report comprehensively on the phosphorylation status

of Pil1.

Pkh signaling regulates eisosome assembly and

organization

To address whether Pkh-kinase phosphorylation of Pil1 med-

iates the effect seen on eisosome assembly and organization

upon inhibition of LCB synthesis and exogenously added

LCBs, we next monitored the consequences of either inacti-

vating or hyperactivating Pkh-kinases. First, we expressed

Pil1-GFP in pkh1ts pkh2D cells (Friant et al, 2001). Figure 4
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shows that even at the permissive temperature pkh1tspkh2D
cells display increased fluorescence intensity at the cell

membrane and an abnormal eisosome organization. As best

seen in the optical top sections, Pil1-GFP is found in

elongated filamentous structures that coalesce into a

reticular pattern, rather than in discrete, uniform punctate
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characteristic of eisosomes in wild-type cells. This effect was

further enhanced by shifting the cells to the restrictive

temperature for 1 h, and was more prominent in larger

mother cells (Figure 4B, lower panels; compare signal at

red arrows). By contrast, eisosomes remained well defined

and of uniform size in wild-type cells shifted to the elevated

temperature (compare Figure 4A and B, top panels).

Second, we overexpressed Pkh1 and Pkh2 from the GAL

promoter and monitored the localization of Pil1-GFP. The

Pil1-GFP signal at the cell periphery rapidly decreased upon

expression of either kinase. At a 1.5-h time point after

induction only a few bright spots remained (Figure 5A and

B, middle panels). This effect was specific to the enzymatic

activity of Pkh-kinases, since overexpression of a kinase-dead

mutant form of Pkh1, Pkh1(K154R) had no effect on eiso-

some assembly or organization (Figure 5B). The decrease of

fluorescence signal from eisosomes at the cell periphery is

most evident by comparing line plots through the diameter of

the cell (Figure 5A and C, graphs). Since this reaction

occurred relatively rapid and happened in all cells expressing

the kinase, we conclude that this decrease of Pil1-GFP signal

in the cell periphery must result from disassembly of existing

eisosomes. Some cells continued to show normal eisosome

organization, presumably due to loss of the overexpression

plasmid.

By contrast to eisosomes in wild-type cells, which are

immobile, we frequently observed smaller Pil1-GFP foci

that are detached from the plasma membrane in cells over-

expressing either one of the Pkh-kinases. These structures

were mobile within the cytoplasm, as apparent by time-lapse

confocal microscopy (Figure 5D). We never observed mobile

cytoplasmic Pil1-GFP foci in wild-type cells.

Pil1 phosphorylation can modulate its assembly into

eisosomes

Taken together, the results presented so far show that (i) Pkh-

kinases can localize to eisosomes, (ii) Pil1 phosphorylation is

at least partially dependent on Pkh-kinases, and (iii) mod-

ulating Pkh-kinase activity leads to defects in eisosome

assembly. To test whether the effect of Pkh-kinase activity

on eisosome assembly and organization is directly due to

phosphorylation of Pil1 rather than to an indirect effect, we

next mutated the mapped phosphorylation sites to either

alanine, which cannot be phosphorylated, or to negatively

charged aspartate, which mimics phosphorylated serine

or threonine. We introduced the mutated variants in the

context of the PIL1-GFP fusion gene into yeast strains as the

sole copy of PIL1. When analyzed by confocal fluorescence

microscopy, none of the single mutant Pil1 variants showed a

significant effect on eisosome assembly or organization (data

not shown), including serine 273, the single residue respon-

sible for the mobility shift on SDS–PAGE gels. Likewise,

deletion of the whole C-terminus up to residue 266 had no

effect on eisosome assembly or organization (TC Walther, PS

Aguilar, and P Walter, unpublished data). We therefore

mutated combinations of residues. Figure 6 shows the results

of two quadruple mutants in which serines 45, 59, and 230,

and threonine 233 were changed to alanine (Figure 6A) or

aspartate (Figure 6B). In pil1(S45A,S59A,S230A,T233A)—or

pil(4A) for short—cells, we found a strong increase in the

fluorescence of eisosomes compared with wild-type controls

and a structural defect qualitatively similar to but not quite as

strong as the phenotype of the temperature-sensitive Pkh-

kinase mutant cells (Figure 6A, lower panel). Conversely, in

pil1(S45D,S59D,S230D,T233D)—or pil(4D) for short—cells,

we observed mainly cytoplasmic Pil1-GFP with only a few

bright spots remaining (Figure 6B, lower panel). This pheno-

type is reminiscent of that observed in cells overexpressing

either of the Pkh-kinases (compare to Figure 5) and indicates

that phosphorylation of these four residues is sufficient to

exert this effect. The effect of this mutation on eisosome

organization and assembly is not further aggravated by

mutation of the Pkh-kinases (Figure 6C). To test whether

these residues are also required for the Pkh-kinase effect on

eisosomes, we expressed pil1(4A) in cells overexpressing

Pkh1 or Pkh2. We found that Pil1(4A) is much more resistant

to the disassembly and clustering observed for wild-type Pil1

under these conditions (Figure 6D).

Together, these data suggest that phosphorylation of Pil1

by Pkh-kinases shifts the assembly equilibrium of Pil1

between a free, phosphorylated form and an eisosome-

assembled, dephosphorylated form.
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Figure 4 Inactivation of Pkh-kinases leads to increased Pil1 assembly. (A) Pil1-GFP was expressed either in control wt cells or cells with a
deletion in PKH2 and a temperature-sensitive allele of pkh1 (pkh1ts pkh2D). Cells were grown at 241C and imaged by confocal microscopy.
Representative optical midsections (left panels) or top sections (right panels) are shown. (B) Cells described in panel A were shifted to 371C for
1.5 h and analyzed as described in panel A.
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Discussion

Eisosomes help sequester a subgroup of plasma membrane

proteins into discrete membrane domains that colocalize with

sites of endocytosis (Walther et al, 2006; Grossmann et al,

2007). Here we show that the major eisosome component

Pil1 in vivo is a target of the LCB-signaling pathway mediated

by the Pkh-kinases. We found that Pkh-kinases can localize

with eisosomes, consistent with other observations that

suggest physically association based on high-throughput

interaction screens and pull-down studies (Ho et al, 2002;

Krogan et al, 2006). Moreover, it was shown previously that

Pkh-kinases can phosphorylate Pil1 in vitro (Zhang et al,

2004). We find that phosphorylation is a critical regulator of

Pil1 assembly into eisosomes and affects their organization.

Eisosomes disassemble if Pil1 is hyperphosphorylated (i)

upon overexpression of Pkh-kinases, (ii) upon reducing

LCB concentrations by inhibiting serine-palmitoyl transferase

in lcb1-mutant cells or by poisoning the enzyme with

myriocin, and (iii) upon mimicking hyperphosphorylation

in pil1(4D)-mutant cells. Conversely, more Pil1 assembles

into eisosomes if Pil1 is hypophosphorylated (i) upon redu-

cing Pkh-kinase activity in pkh1 pkh2-mutant cells, (ii) upon

modulation of Pkh-kinases activity by addition of LCBs,

and (iii) upon mimicking hypophosphorylation in pil1(4A)-

mutant cells.

The resulting enlarged eisosomes show altered organiza-

tion. Other data suggest that Pkh signaling and sphingolipids

are important for endocytosis (Zanolari et al, 2000). Taken

together with our previous results that link eisosomes to

endocytosis (Walther et al, 2006), these observations suggest

that Pkh-kinase signaling relayed to Pil1 may help regulate

endocytic events.

At a first glance, the view of eisosomes as stable, uniformly

sized entities is at odds with the assembly-disassembly of Pil1

upon phosphorylation reported here, as we show that the

assembly and organizational properties of eisosomes are

subject to modulation by phosphorylation. There are multiple
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possible resolutions to this paradox. First, newly made Pil1

may be phosphorylated and its dephosphorylation may

accompany its assembly into eisosomes as part of their

biosynthesis pathway. Our result that turning on Pkh-kinases

dissembles pre-existing eisosomes argues against the notion

that this is the exclusive role of the modification, although it

does not rule it out conclusively. Second, an assembly/

disassembly cycle of eisosomes may play role in their func-

tional properties, yet be locally restricted so that under

normal growth conditions only a few eisosomes in the cell

are affected at any one time. This view would be consistent

with our observation that endocytic events are restricted to a

few active eisosomes at a time. Fluorescent photobleaching

and recovery experiments may have missed the potentially

dynamic behavior of only a few eisosomes. Third, the studies

presented here may represent extreme end points of phos-

phorylation and dephosphorylation that do not truly reflect

physiological conditions. The alternate actions of Pkh-ki-

nases and cognate phosphatases under physiological condi-

tions may only affect a subset of the total spectrum of

potential phosphorylation sites on any particular Pil1 mole-

cule, which could lead to local structural rearrangements

within an eisosome without disrupting the complex as

we observed upon extensive hyperphosphorylation. These

possibilities are not mutually exclusive, and the currently

available information does not allow us to distinguish

between them.

A second paradox results from comparison of our results

with previous data that showed an induction of Pkh activity

by LCBs (Zanolari et al, 2000; Friant et al, 2001; Liu et al,

2005). A possible resolution comes from the observation that

LCBs induce the phosphorylation of certain targets (such as

Lsp1), whereas the activity toward Pil1 is decreased (Zhang

et al, 2004). These data are in good agreement with our

results suggesting that inhibition of sphingolipid synthesis

results in increased activity of Pkh-kinases toward Pil1 and

hyperphosphorylation of the protein.

Third, it is currently unknown why we observe one or a

few large clusters of Pil1 under conditions were most eiso-

somes disassemble. One possibility is that the normal dis-

tribution of eisosomes breaks down under these conditions,

leading to a clustering of molecules that would normally be

part of eisosomes, such as Lsp1. This would then provide an

abnormally high concentration of binding sites for Pil1 at

these sites, which would in turn recruit some of the solubi-

lized Pil1.

Our data suggest that the relative concentrations of

LCBs and/or sphingolipids and ceramides are sensed via
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Figure 6 Phosphorylation of Pil1 regulates eisosome assembly. (A) Non-phosphorylatable Pil1 increases eisosome size. Pil1-GFP with serines
45, 59, 230, and threonine 233 mutated to alanine (pil1(4A)) was expressed as the only Pil1 and analyzed by confocal microscopy.
Representative middle (left panels) and top sections (right panels) are shown. (B) Phospho-mimicking Pil1 mutants fail to assemble into
eisosomes. Pil1 with the same residues indicated in panel A mutated to aspartate were analyzed as in panel A. (C) The pil1(4D) phenotype is
dominant over the inactivation of Pkh-kinases. pil1(4D) was expressed in cells bearing a deletion in PKH2 and a temperature-sensitive allele of
pkh1 (pkh1tspkh2D) grown at either 301C (left panel) or 371C (right panel). Representative confocal midsections are shown. (D) pil1(4A) is
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with elevated Pkh1 levels expressed for 1.5 h form the GAL promoter in galactose-containing medium (see Figure 5A).
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Pkh-kinases and transduced to Pil1 to regulate aspects of

eisosome assembly and/or function. It is currently unknown

how this sensing occurs at a molecular level. Since both

inhibition of LCB and cermides synthesis have a similar effect

on eisosomes, one possibility is that Pkh-kinases sense a

property of the plasma membrane locally, perhaps in the

membrane domain underlying eisosomes where those lipids

are thought to be concentrated. Alternatively, and not mu-

tually exclusive, LCBs or downstream metabolites may act as

second messengers that bind the kinases and mediate the

response of the Pkh-kinases. This is most likely part of a

concerted cellular response to changing conditions that reg-

ulates endocytosis and adjusts the composition of the plasma

membrane according to need.

Sphingolipids have been implicated in the regulation of

many cellular processes such as cell growth, apoptosis,

endocytosis, cell adhesion, and differentiation (Dickson,

1998; Futerman and Hannun, 2004; Dickson et al, 2006). In

yeast, LCBs are massively increased during heat stress and

the endocytic uptake of at least some highly abundant

proteins, such as the uracil permease Fur4, is induced

(Dickson et al, 1997; Jenkins et al, 1997; Bultynck et al,

2006). Moreover, Pkh-kinase-mediated regulation of endocy-

tosis differentially affects the induced uptake of a-factor

receptor Ste2 but not its constitutive recycling (Grosshans

et al, 2006). Pkh-kinase regulation of endocytosis could thus

potentially be used to selectively adjust the composition of

the plasma membrane, suggesting that sphingolipid signaling

might have a broad function in organizing the plasma mem-

brane. Despite our astounding lack of knowledge regarding

the regulation and physiological importance of this pathway,

the potential of sphingolipid signaling as a drug target has

already been demonstrated for myriocin, a compound that

inhibits the generation of sphingolipids; myriocin was first

characterized as an immune suppressive agent inducing

apoptosis of cytotoxic T cells (Fujita et al, 1994). Such

connections promise that expanding our most basic under-

standing of the mechanisms that organize the yeast plasma

membrane may have profound implications for the physiol-

ogy and pathology of mammalian cells.

Materials and methods

Yeast strains and plasmids
All yeast stains were generated in the W303 background. Lsp1-
Cherry was introduced by homologous recombination using a PCR-
based modification (Longtine et al, 1998) to generate the strain
TWY566. The strain expressing Pil1-GFP was described in Walther
et al (2006). PIL1-GFP was cloned into pRS306 and mutated using
site-directed mutagenesis to generate plasmid pPIL4A (harboring
substitutions S45A, S59A, S230A, T233A) or pPIL4D (harboring
S45D, S59D, S230D, and T233D). Plasmids expressing seven
mutations were generated in an analogous manner. Strains
expressing either tagged or untagged versions of Pkh1 and Pkh2
were generated by transforming the following plasmids, which were
generous gifts from Jeremy Thorner: for Pkh1 we transformed
pAM73; for Pkh2, pAM79 (Casamayor et al, 1999) into a Pil1-GFP-
expressing strain; for expression of 3GFP-Pkh1 or 3GFP-Pkh2, we
transformed TWY566 with pFR37 or pER3, respectively (Roelants
et al, 2002). pkh1tspkh2D strains were a generous gift from Howard
Riezman (Friant et al, 2001).

Antibody generation
Antibodies against Pil1 were raised in rabbits against the full-length
recombinant Pil1 protein expressed in Escherichia coli as a GST-
fusion protein. The fusion protein was cleaved from the glutathione

affinity column and further purified by ion-exchange chromato-
graphy on a MonoQ column. This protein was injected into rabbits
in several boost cycles. Serum from rabbits was diluted 1:1000 for
western blots.

Mapping of phosphorylation sites
For the analysis of Pil1 phosphorylation of Pil1, we froze cell from a
100 ml culture at OD¼ 0.7 in 500ml buffer (150 mM KoAc, 20 mM
HEPES, pH 7.8, 1 mM MgAc) in liquid nitrogen. We extracted total
protein by bead milling and subsequently clarified the extract by
two consecutive spins of 4 min, 1000 g. Extracts were incubated
with l-phosphatase according to the manufacturer’s instructions
(NEB) in the presence or absence of a cocktail of phosphatase
inhibitors (Sigma). After 30 min the reaction was stopped by
addition of sample buffer. A 20mg weight of total protein was run on
a 10% SDS–PAGE and analyzed by western blot.

Affinity purification of Pil1 from 1 l of yeast culture expressing
Pil1-myc was accomplished as previously described (Walther et al,
2006). Pil1-myc and eluted from beads with sample buffer (0.24 M
Tris, 8% SDS, 1 mM b-mercaptoethanol, 40% glycerol, and 0.4%
bromophenol blue) and loaded onto 4–20% SDS–PAGE Criterion
Ready Gels (Bio-Rad). In-gel digestions on Pil1 bands were carried
out utilizing a procedure described at http://msf.ucsf.edu/in-
gel.html. Typically, 100 ng of trypsin (porcine, side chain-protected;
Promega, Madison, WI) was used for each gel band, and digestions
were carried out at 371C for 4 h. Peptides were extracted from gel
pieces with 50 ml of 50% acetonitrile, 2% acetic acid three times,
and the extraction solution was dried down to B10ml. An aliquot of
the digestion mixture was injected into an Ultimate capillary LC
system via an FAMOS Autosampler (LC Packings, Sunnyvale, CA),
and separated by a 75mm� 15 cm reverse-phase capillary column at
a flow rate of B330 nl/min. The HPLC eluent was fed directly into
the micro-ion electrospray source of a QSTAR Pulsar QqTOF mass
spectrometer (Applied Biosystem/MDS Sciex, Foster City, CA).
Typical performance characteristics were 48000 resolution with
30 p.p.m. mass measurement accuracy in both MS and CID mode.
LC-MS data were acquired in an information-dependent acquisition
mode, cycling between 1-s MS acquisition followed by 3-s low-
energy CID data acquisition. The centroided peak lists of the CID
spectra were searched against the National Center for Biotechnol-
ogy Information (NCBI) protein database using Batch-Tag, a
program in the in-house version of the University of California
San Francisco ProteinProspector package, considering phosphor-
ylation on serine, threonine, and tyrosine as variable modifications.
The CID spectra with putative phosphorylations were further
inspected manually.

Microscopy
For fluorescence microscopy, yeast cells were grown to an OD¼ 0.6
in either YPD or, when selecting for Pkh expression plasmids, in
synthetic medium lacking leucine. Cells were mounted onto
coverslips previously coated with concanavalin A and directly
imaged either with a Zeiss LSM 510 confocal microscope or an
ANDOR/TiLL iMIC spinning-disk confocal microscope. Images were
processed using ImageJ software (www.rsb.info.nih.gov/ij/).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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Comprehensive mass-spectrometry-based proteome
quantification of haploid versus diploid yeast
Lyris M. F. de Godoy1*, Jesper V. Olsen1*, Jürgen Cox1*, Michael L. Nielsen1*, Nina C. Hubner1, Florian Fröhlich2,
Tobias C. Walther2 & Matthias Mann1

Mass spectrometry is a powerful technology for the analysis of large
numbers of endogenous proteins1,2. However, the analytical chal-
lenges associated with comprehensive identification and relative
quantification of cellular proteomes have so far appeared to be insur-
mountable3. Here, using advances in computational proteomics,
instrument performance and sample preparation strategies, we com-
pare protein levels of essentially all endogenous proteins in haploid
yeast cells to their diploid counterparts. Our analysis spans more
than four orders of magnitude in protein abundance with no dis-
crimination against membrane or low level regulatory proteins.
Stable-isotope labelling by amino acids in cell culture (SILAC) quan-
tification4,5 was very accurate across the proteome, as demonstrated
by one-to-one ratios of most yeast proteins. Key members of the
pheromone pathway were specific to haploid yeast but others were
unaltered, suggesting an efficient control mechanism of the mating
response. Several retrotransposon-associated proteins were specific
to haploid yeast. Gene ontology analysis pinpointed a significant
change for cell wall components in agreement with geometrical con-
siderations: diploid cells have twice the volume but not twice the
surface area of haploid cells. Transcriptome levels agreed poorly with
proteome changes overall. However, after filtering out low confid-
ence microarray measurements, messenger RNA changes and SILAC
ratios correlated very well for pheromone pathway components.
Systems-wide, precise quantification directly at the protein level
opens up new perspectives in post-genomics and systems biology.

Yeast launched the genome era6 and continues to be an informa-
tive model system for genomic and post-genomics technologies. It
has also been a fruitful testing ground for mass spectrometry (MS)-
based proteomics7–10. Repositories of yeast proteomics experiments
contain about 4,000 proteins, albeit with varying confidence of iden-
tification11. Previously, we established that half of the yeast proteome
could be detected with very high stringency by MS in a single experi-
ment12. The phosphoproteome of pheromone signalling has already
been investigated by a SILAC experiment13. Until now, no strategies
have been described to comprehensively identify, much less to com-
prehensively quantify, two states of the yeast proteome against each
other in a single experiment.

To develop methods for proteome-wide quantification, we meta-
bolically labelled haploid and diploid yeast with arginine and lysine
SILAC. We investigated three strategies to achieve deep coverage of
the yeast proteome: extensive fractionation of proteins; fractionation
of digested peptides; and accumulating and sequencing distinct mass
ranges of peptides (Fig. 1, Methods). The second strategy, combining
in-solution digest with peptide separation by isoelectric focusing,
yielded the most proteins (3,987) and is by far the simplest.

Together, we identified 4,399 proteins with 99% certainty
(Supplementary Table 4). Unambiguous identification only requires

a few peptides per protein; however, on average we covered 32% of
each protein sequence.

Previously, expressed yeast genes were detected by a fused tandem
affinity tag (TAP)14 or green fluorescent protein (GFP) tag15 in genome-
wide experiments (Fig. 2a and Table 1) and our data overlaps 89%
with each of these tagging approaches. In addition, MS identified 510
proteins exclusively, including proteins in which the tag interferes with
function, such as tail-anchored membrane proteins and proteins
requiring carboxy-terminal modifications. As judged by MS, several
hundred proteins previously reported at less than 50 copies per cell
were part of different abundance classes over the whole dynamic range
(Supplementary Fig. 5). Our data set is not biased against low-abun-
dance proteins (Fig. 2b) or membrane proteins (30.9% of all proteins
detected and 29.4% of the genome). Only 6% of yeast open reading
frames (ORFs) were detected by both tagging methods but not by MS
(Fig. 2a). This is less than the discrepancy between the tagging methods
and includes 12 proteins that are inaccessible to MS due to a lack of
appropriate tryptic or LysC cleavage sites, 33 proteins with overlapping
genes (which we only counted as single identifications), 11 that have
been removed from the database during the last three years, 8 dubious
genes and 78 proteins for which no western blot quantification had been
possible. Thus, of the accessible proteome, at most a few per cent of
proteins are not detected. High-resolution data from the orbitrap
instrument combined with efficient computational strategies led to very
high peptide mass accuracy (average absolute mass deviation of
590 p.p.b.) and to very high identification rates for mass spectrometric
peptide fragmentation (.53% on SILAC peptide pairs, Fig. 1d and
Methods), contributing to the identification of essentially the entire
yeast proteome expressed in log-phase cells.

Next, we determined the fold change of SILAC peptide pairs for
relative proteome quantification between haploid and diploid yeast
cells. In arginine and lysine double-labelled populations, we noticed
that the proteomes were substantially different due to the presence of
different sets of auxotrophic markers in the haploid and diploid
strains (Supplementary Fig. 6). We therefore based our quantitative
analysis on the lysine-labelled haploid S288C yeast strain and com-
pared it to an isogenic diploid strain (Fig. 1b, c and Methods). A total
of 1,788,451 SILAC peptide pairs were identified and quantified
(median of 32 pairs per protein). Figure 3a and Supplementary
Tables 6 and 7 show the ratios of all 4,033 quantified proteins and
peptides from the lysine-labelling experiments. We achieved very
high quantification accuracy, with 97.3% of the proteome changing
less than 50% in abundance between haploid and diploid cells.
Quantification after fractionation of digested peptides (Fig. 1b)
showed excellent reproducibility (R 5 0.84 on average; Supple-
mentary Fig. 7). One-hundred-and-ninety-six proteins changed
significantly (P , 0.001), and we confirmed the regulation of 29 of
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the top-regulated ones by western blot against either the fused TAP or
GFP tag from the systematic collection14 (Supplementary Fig. 8). All
ratios were in the same direction as that observed by MS-based pro-
teomics. Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way and Gene Ontology analysis (Supplementary Table 8)
highlighted lysine biosynthesis as being upregulated in diploid cells
(P 5 5 3 1026). This is due to heterozygosity for LYS2/lys2 and illus-
trates the ability of proteome-wide quantification to pinpoint altered
metabolic pathways (Supplementary Fig. 9a, c).

Pheromone signalling is required for mating of haploid cells and is
absent from diploid cells16. The top ten haploid-specific proteins as
determined by SILAC are components or transcriptional targets of
pheromone signalling (Supplementary Table 9). Surprisingly, not all
of its members are regulated equally (Fig. 3b). Key components of the
signal transduction pathway and output factors were absent from
diploid cells: the pheromone receptor (Ste2), the signal transducing
G protein (consisting of Ste4, Ste18 and Gpa1), the mitogen-acti-
vated protein kinase (MAPK) scaffold protein Ste5, the MAPK Fus3
and the output transcription factor Ste12. In contrast, the
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Figure 2 | Proteome coverage. a, Comparison of coverage of MS-based
proteomics with GFP- and TAP-tagging methods14,15. Numbers are the
identified proteins by each method and, in parentheses, the number of
dubious open reading frames (ORFs). b, Identified proteins per copy
number bin for MS-based proteomics and the two tagging approaches. Copy
numbers were estimated by correlation between summed peptide intensity
per protein and the quantitative western blotting data14 (Methods).
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Figure 1 | Three strategies for in-depth quantification of the yeast
proteome by SILAC labelling and high-resolution mass spectrometry.
a, Arginine and lysine SILAC labelling of haploid and diploid yeast. Arg10 is
[13C6,15N4]L-arginine, Lys8 is [13C6/15N2]L-lysine, and Arg0 and Lys0 are the
normal, non-substituted amino acids. Extensive fractionation followed by
tryptic digestion and one-dimensional gel electrophoresis as well as online
LC–MS/MS on a hybrid linear ion trap–orbitrap instrument yielded,
through triplicate measurements, 3,639 identified proteins at high
stringency using the MaxQuant algorithms (J.C. and M.M., submitted;
Supplementary Table 1). b, Lysine SILAC labelling of haploid and diploid
yeast. Triplicate measurements of in-solution digestion with endoprotease

LysC followed by isoelectric focusing into 24 fractions and online LC–MS/
MS resulted in a proteome of 3,987 proteins (Supplementary Table 2).
c, Same as b except that each isoelectric fraction is analysed five times with
ion accumulation of a narrow m/z range for higher dynamic range. The
signal-to-noise ratio and dynamic range improved by about a factor of five
(Supplementary Fig. 1) and 3,779 proteins were identified (Supplementary
Table 3). d, Typical contour plot of a single LC–MS/MS run. Peptide pairs
eluting from the column (green) were automatically fragmented (blue
crosses) and more than 60% of sequencing events on SILAC pairs resulted in
successful identification (purple boxes).

Table 1 | Yeast ORFs identified by SILAC-based quantitative proteomics

Number of ORFs TAP GFP nanoLC–MS

Total yeast ORFs 6,608 4,251 4,154 4,399

Characterized yeast
ORFs

4,666 3,629 3,581 3,824

Uncharacterized yeast
ORFs

1,128 581 539 572

Dubious yeast ORFs 814 26 (3%) 23 (3%) 3 (,1%)
Not present in ORF
database

15 11 0

Comparative sequencing shows that 814 of the 6,608 yeast ORFs are never expressed (dubious
ORFs, http://www.yeastgenome.org). Of these only six were identified in this experiment and
three were validated by SILAC-assisted de novo sequencing of several peptides (Supplementary
Table 5 and Supplementary Figs 2–4). Two of the three validated ones were reclassified as
genuine yeast genes during writing of this manuscript (YGL041W-A and YPR170W-B). This
leaves three potential false-positives (0.37% of 815) and suggests that our estimate of a false-
positive identification rate of maximally 1% is conservative.
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MAPKKKK Ste20, the MAPKKK Ste11 and the MAPKK Ste7
remained unchanged. For some of these kinases, such as Ste7 or
Ste11, this is readily explained because they fulfil another function
in the osmolarity-sensing and filamentous growth pathway17. For
other proteins, such as the Far3/7/8/11 protein complex that med-
iates one pathway of cell cycle arrest during the pheromone response,
this is unexpected and might indicate that they have another function
in haploid cells. This suggests another repressive function of Far3
during the cell cycle. Consistently, its inactivation results in faster
growth of haploid cells18.

The proteins encoded by retrotransposons Ty1 and Ty2 are about
ten times more abundant in haploid cells, consistent with regulation
of specific Ty mRNAs by pheromone signalling in haploid cells and
repression in diploid cells by the MATa/a transcription factor19,20.
We also found the Ty1 transcription activator Tec1 to be eight times
more expressed in haploid cells. Little is known about the evolution-
ary advantage of restricting retrotransposition to haploid cells, but
because most wild-type cells are diploid, the repression of transposi-
tion in these cells might be used to minimize the spread of det-
rimental effects through the population.

Cell wall components were statistically significantly reduced in
diploid cells (P 5 2.7 3 1029; Supplementary Table 8). At first
glance, this is surprising because diploid cells are on average twice
as large as haploid cells and also have more cell wall. However, larger
cells need less surface components in relation to ‘bulk’ proteins, and
the observed downregulation (0.77) is very close to what would be
expected from geometrical considerations: a sphere of double
volume has 22/3 the surface and thus should have 22/3/2 5 0.79 the
amount of surface proteins after normalization for the doubled
volume. The list of differentially expressed factors also contains a
number of uncharacterized genes, which can be mined for haploid-
specific functions.

A longstanding question in functional genomics is to what extent
changes in mRNA levels lead to changes of the active agents in the
cell, the proteins21. Overall correlation of mRNA22 and protein
changes was poor (R 5 0.24) and there were large populations of
genes with mRNA but no protein change (Fig. 4a). However, after
we filtered out low-level microarray signals (Supplementary Fig. 10),
the correlation improved to 0.46 (Fig. 4b). Several of the remaining,
discordant mRNA changes seem to be technical artefacts. For
example, INO1, the protein level of which did not change, is the only
representative of several co-regulated genes (for example, CHO1 and

CHO2) that was found upregulated by microarray analysis. CTS1,
which was downregulated according to microarray analysis, was
upregulated when measured by SILAC and western blot. Several
lysine biosynthesis pathway genes seem to be regulated at the protein
but not the mRNA level (magenta in Fig. 4b). However, this is due to
use of lysine auxotrophs in the MS but not the microarray experi-
ments. Among genes only found upregulated by proteomics (blue in
Fig. 4b), cell wall proteins were highly overrepresented
(P 5 7.7 3 1028, see Methods). This could be due to the microarray
experiment not detecting slight expression changes for this class of
proteins. Strongly regulated genes in both data sets were mainly
components of the pheromone response. Here, correlation between
mRNA and protein changes was high (R 5 0.68; Fig. 4c). However,
actual fold changes determined by microarrays deviated considerably
from the values provided by the SILAC quantification
(Supplementary Table 10). This is probably due to technical differ-
ences (that is, microarray measurements are not strictly quantitative)
combined with the fact that the level of mRNA change may not
directly be translated into a change of protein level.

In summary, a combination of SILAC labelling, high-resolution
MS and sophisticated computational proteomics allows accurate
quantitative analysis of an entire proteome. Among several tested
strategies, in-solution digest of unfractionated cell lysate followed
by simple isoelectric focusing of the peptides proved most powerful.

Key advantages of MS-based proteomics are the ability to measure
endogenous rather than tagged versions of proteins, which may have
altered expression levels, and to quantify the entire proteome from
one sample. Our comparison of the proteome with the transcriptome
highlights several crucial points for systems-wide analysis. First, pro-
teomics can directly measure small changes in the amounts of pro-
teins, which might have important effects in the cell. Second, it shows
that the relationship between mRNA and protein levels depends on
the proteins investigated. This effect is likely to be even more notable
in mammalian proteomes, which compared to yeast are more com-
plex and subject to more post-transcriptional control. A mammalian
cell is commonly thought to express 10,000 gene products, which
would only be two to three times the number of genes expressed in
yeast. Thus, we predict that essentially complete mammalian pro-
teomes—with at least one representative protein per expressed
gene—will be feasible with refined versions of our strategy23. The
next challenge will then be proteome-wide identification of func-
tionally important isoforms and modifications.
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METHODS SUMMARY
Yeast diploid and haploid strains were SILAC-labelled as described13 with

[13C6/15N2]L-lysine-and/or [13C6/15N4]L-arginine. The diploid yeast strain TWY

809 was generated by crossing the wild-type BY4741 and BY4742. The haploid strain
for lysine labelling was generated by sporulation of BY4743 and selection for the

lysine auxotroph, MATa cells. Yeast cells were lysed, mixed 1:1, fractionated by SDS–

PAGE and in-gel digested with trypsin as described previously12. Alternatively, after

mixing, proteins were digested in-solution by the endoproteinase LysC and the

resulting peptide mixtures were fractionated by peptide isoelectric focusing. Each

fraction was subsequently analysed by online liquid chromatography–tandem mass

spectrometry (LC–MS/MS). All LC–MS/MS experiments were performed on an

LTQ-Orbitrap (Thermo Fisher Scientific) mass spectrometer connected to an

Agilent 1200 nanoflow HPLC system by means of a nanoelectrospray source

(Proxeon Biosystems). MS full scans were acquired in the Orbitrap analyser using

internal lock mass recalibration in real-time24 whereas tandem mass spectra were

simultaneously recorded in the linear ion trap. Peptides were identified from MS/

MS spectra by searching them against the yeast ORF database (Stanford University)

using the Mascot search algorithm25 (http://www.matrixscience.com), and all

SILAC pairs were quantified by MaxQuant (J.C. and M.M., submitted). For several

of the top-regulated proteins, GFP- or TAP-tagged haploid and diploid strains were

generated and the regulation was confirmed by western blot.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Generation and SILAC-labelling of haploid and diploid yeast strains. The

Saccharomyces cerevisiae diploid strain YLG1 was generated by crossing the

haploid YAL6B MATa strain13 with one of its parental strains, Y15969 MATa
(Euroscarf). The diploid yeast strain TWY 809 was generated by crossing the

wild-type BY4741 and BY4742. The haploid strain for lysine labelling was gen-

erated by sporulation of BY4743 and selection for the lysine auxotroph, MATa
cells. The arginine and lysine double SILAC labelling was performed as

described13, with small modifications. In brief, cells from the haploid YAL6B

strain, which has a LYS1 and ARG4 gene deletions and is therefore a double
auxotroph for lysine and arginine, and the diploid YLG1 strain were grown in

YNB liquid medium containing either 20 mg l21 [13C6/15N2]L-lysine (Lys8) and

5 mg l21 [13C6,15N4]L-arginine (Arg10; Isotec-Sigma) or 20 mg l21
L-lysine and

5 mg l21
L-arginine for ten generations, until they reached log-phase (D600 0.7).

Lysis and protein fractionation strategy. Normal and heavy SILAC-labelled

yeast cells were collected by centrifugation, resuspended in lysis buffer

(150 mM potassium acetate, 2 mM magnesium acetate, 13 protease inhibitor

cocktail (Roche), and 20 mM HEPES, pH 7.4) and frozen in liquid N2. Haploid

and diploid frozen cells were mixed 1:1 on the basis of protein amount (as

determined by Bradford assay) and mechanically disrupted in a milling device

(MM301 Ball Mill, Retsch), with 3 cycles of 3 min at 10 Hz, intercalated by

immersion in liquid N2. All further steps were performed at 4 uC. The extract

was allowed to thaw and centrifuged for 4 min at 1,000g. The pellet was collected,

washed twice with lysis buffer, resuspended in PBS containing 2% SDS, incubated

for 5 min at 65 uC and spun down to remove debris (fraction 1). The sample was

centrifuged for 10 min at 20,000g and the resultant pellet washed twice with lysis

buffer and resuspended in PBS containing 2% SDS (fraction 2). The supernatant

was brought to 60% (NH4)2SO4, incubated for 10 min under rotation to allow
protein precipitation, centrifuged for 10 min at 20,000g and the precipitated

proteins resuspended in PBS containing 2% SDS (fraction 3). The concentration

of (NH4)2SO4 was raised to 80%, the sample processed as before, the precipitated

proteins resuspended in PBS containing 2% SDS (fraction 4) and the remaining

soluble proteins dialysed against PBS containing 2% SDS (fraction 5).

In-solution digestion. Proteins extracted from lysine-labelled haploid and dip-

loid yeast were reduced for 20 min at room temperature (24 uC) in 1 mM dithio-

threitol and then alkylated for 15 min by 5.5 mM iodoacetamide (IAA) at room

temperature in the dark. Endoproteinase LysC (Wako) was added 1:50 (w/w) and

the lysates were digested overnight at room temperature (12 h). Arginine- and

lysine-labelled yeast proteins were digested with LysC in a similar manner, and the

resulting peptide mixtures were diluted with Millipore water to achieve a final

urea concentration below 2 M. Trypsin (modified sequencing grade, Promega)

was added 1:50 (w/w) and digested overnight. Trypsin and LysC activity were

quenched by acidification of the reaction mixtures with TFA to ,pH 2.

Peptide isoelectric focusing. In-solution digested peptides (75mg) were sepa-

rated according to their isoelectric point using the Agilent 3100 OFFGEL frac-

tionator (Agilent, G3100AA). The system was set up according to the manual of
the High Res Kit, pH 3–10 (Agilent, 5188-6424), but strips were exchanged by

24 cm Immobiline DryStrip, pH 3–10 (GE Healthcare, 17-6002-44), and ampho-

lytes were substituted by IPG buffer, pH 3–10 (GE Helthcare, 17-6000-87), used

1:50. Peptides were focused for 50 kilovolt hours (kVh) at a maximum current of

50 mA, maximum voltage of 8,000 V and maximum power of 200 mW into 24

fractions. Each peptide fraction was acidified by adding 3% acetonitrile, 1%

trifluoroacetic acid and 0.5% acetic acid, then desalted and concentrated on a

reversed-phase C18 StageTip26.

Gel electrophoresis and in-gel digestion. Each lysine- and arginine-labelled yeast

protein fraction was boiled in 23 LDS buffer, separated by one-dimensional SDS–

PAGE (4–12% Novex mini-gel, Invitrogen) and visualized by colloidal Coomassie

staining. The entire protein gel lanes were excised and cut into 20 slices each. Every

gel slice was subjected to in-gel digestion with trypsin27. The resulting tryptic

peptides were extracted by 30% acetonitrile in 3% TFA, reduced in a Speed Vac,

and desalted and concentrated on a reversed-phase C18 StageTip26.

Mass spectrometric analysis. All MS experiments were performed on a nano-

flow HPLC system (Agilent Technologies 1200) connected to a hybrid LTQ–

orbitrap classic or XL (Thermo Fisher Scientific) equipped with a nanoelectros-
pray ion source (Proxeon Biosystems) as described24 with a few modifications. In

brief, the peptide mixtures were separated in a 15 cm analytical column (75mm

inner diameter) in-house packed with 3-mm C18 beads (Reprosil-AQ Pur, Dr.

Maisch) with a 2 h gradient from 5% to 40% acetonitrile in 0.5% acetic acid. The

effluent from the HPLC was directly electrosprayed into the mass spectrometer.

The MS instrument was operated in data-dependent mode to automatically

switch between full-scan MS and MS/MS acquisition. Survey full-scan MS spectra

(from m/z 300–2,000) were acquired in the orbitrap with resolution R 5 60,000 at

m/z 400 (after accumulation to a ‘target value’ of 1,000,000 in the linear ion trap).

The ten most intense peptide ions with charge states $2 were sequentially isolated

to a target value of 5,000 and fragmented in the linear ion trap by collisionally

induced dissociation. Fragment ion spectra were recorded with the LTQ detectors

‘in parallel’ with the orbitrap full-scan detection. For all measurements with the

orbitrap detector, a lock-mass ion from ambient air (m/z 391.284286, 429.08875 or

445.120025) was used for internal calibration as described24.

For mass range experiments (similar to ‘gas-phase fractionation’) all samples

were analysed using survey scan MS spectra in one of the following mass regions:

m/z 300–500, m/z 450–650, m/z 600–900, m/z 850–1,250 and m/z 1,200–1,800.

Resolution, lock mass option, ‘target value’ and number of intense peptide peaks

selected for isolation were identical to full-scan analysis (see below), except for the
mass range analysis m/z 1,200–1,800 where charge states $1 were allowed for

isolation. All survey scans where acquired using injection waveforms, which

applies a filter on the injection ions and thereby ejects all ions outside of the

selected mass range. This ensures optimal dynamic range because the ion trap

will only be filled with a population of ions belonging to the mass range of interest.

Identification and quantification of peptides and proteins. The data analysis

was performed with the MaxQuant software as described13 supported by Mascot

as the database search engine for peptide identifications. Peaks in MS scans were

determined as three-dimensional hills in the mass-retention time plane. They

were then assembled to isotope patterns and SILAC pairs by graph-theoretical

methods. MS/MS peak lists were filtered to contain at most six peaks per 100 Da

interval and searched by Mascot (Matrix Science) against a concatenated for-

ward and reversed version of the yeast ORF database (Saccharomyces Genome

Database SGDTM at Stanford University; http://www.yeastgenome.org).

Protein sequences of common contaminants, for example, human keratins

and proteases used, were added to the database. The initial mass tolerance in

MS mode was set to 7 p.p.m. and MS/MS mass tolerance was 0.5 Da. Cysteine

carbamidomethylation was searched as a fixed modification, whereas N-acetyl
protein, N-pyroglutamine and oxidized methionine were searched as variable

modifications. Labelled arginine and lysine were specified as fixed or variable

modifications, depending on the previous knowledge about the parent ion. The

resulting Mascot .dat files were loaded into the MaxQuant software13 together

with the raw data for further analysis. SILAC peptide and protein quantification

was performed automatically with MaxQuant using default settings for para-

meters. Here, for each SILAC pair the ratio is determined by a robust regression

model fitted to all isotopic peaks and all scans that the pair elutes in. SILAC

protein ratios are determined as the median of all peptide ratios assigned to the

protein. Absolute protein quantification was based on extracted ion chromato-

grams of contained peptides. To minimize false identifications, all top-scoring

peptide assignments made by Mascot were filtered based on previous knowledge

of individual peptide mass error, SILAC state and the correct number of lysine

and arginine residues specified by the mass difference observed in the full scan

between the SILAC partners. Furthermore, peptide assignments were statistically

evaluated in a Bayesian model on the basis of sequence length and Mascot score.

We accepted peptides and proteins with a false discovery rate of less than 1%,

estimated on the basis of the number of accepted reverse hits.

Gene ontology and Pfam domain overrepresentation analysis. P values for the
overrepresentation of gene ontology categories and protein domain content

were based on a Wilcoxon–Mann–Whitney test for the presence–absence pattern

of each category and the ratio significance as a continuous value. All P values

below 0.01 are reported. To determine classes of proteins that show a high

protein ratio but only low response on the transcript level, we defined a protein

population with a protein ratio above two and a transcript ratio between one-

half and two. We looked for enrichment of Gene Ontology terms in this class of

proteins compared to the rest by calculating the P value according to the Fisher

exact test.

SILAC-assisted peptide-sequence-tag searching for ambiguous ORFs.
Fragment ion intensities in spectra from ‘light’ and ‘heavy’ forms of a SILAC

peptide pair are highly correlated. The only difference between their spectra is

that C-terminal fragment ions (y-ions) are offset by 8.014 Da or other multiples

of the difference between normal and heavy labelled amino acids. Extraction of

y-ions is therefore straightforward and examples are shown in Supplementary

Figs 2–4 for each of the three ORFs initially assumed not to be expressed.

Searching these SILAC confirmed fragment ions (y-ions) in the yeast database

as peptide-sequence tags28 unambiguously verified identification of the ORFs.

26. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-
assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample
pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

27. Shevchenko, A. et al. Mass spectrometric sequencing of proteins silver-stained
polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

28. Mann, M. & Wilm, M. Error-tolerant identification of peptides in sequence
databases by peptide sequence tags. Anal. Chem. 66, 4390–4399 (1994).
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Introduction
The plasma membrane is highly dynamic and crucial for com-
munication of cells with their environment. It transduces nu-
merous extracellular signals and transports molecules in and out 
of the cell. To accommodate these diverse tasks, it is highly or-
ganized, and plasma membrane processes are tightly coordi-
nated, both spatially and temporally (Simons and Toomre, 2000; 
Anderson and Jacobson, 2002; Simons and Vaz, 2004). How the 
abundance of most lipids and proteins in the plasma membrane 
is regulated is largely unknown.

In the yeast Saccharomyces cerevisiae, the plasma mem-
brane is laterally organized into spatial domains that have dif-
ferent protein and lipid composition. One type of domain 
harbors several integral membrane proteins, such as the argi-
nine transporter Can1 and members of the Sur7 family of pro-
teins and was accordingly termed membrane compartment 

occupied by Can1 (MCC). MCCs were suggested to contain a 
distinct lipid composition enriched in ergosterol, as visualized 
by staining with filipin, a fluorescent marker binding this lipid 
(Malinska et al., 2003; Grossmann et al., 2007).

Yeast mother cells possess 25–45 MCCs that can be visual-
ized as discrete foci in the plasma membrane. MCCs are mutually 
exclusive with a second domain, marked by the plasma membrane 
ATPase Pma1, termed membrane compartment occupied by Pma1 
(MCP; Malinska et al., 2003, 2004). The organization of the plasma 
membrane in distinct spatial domains is at least in part mediated by 
large protein complexes termed eisosomes (Walther et al., 2006). 
Eisosomes lie underneath each MCC forming a punctate, distrib-
uted pattern in the cell cortex. When the gene encoding the major 
eisosome component Pil1 is deleted, MCCs and all remaining eiso-
some proteins investigated so far coalesce into one or a few punctae 
per cell (Walther et al., 2006; Grossmann et al., 2007). In addition 
to concentrating at such eisosome remnants, a significant fraction 

The protein and lipid composition of eukaryotic 
plasma membranes is highly dynamic and regulated 
according to need. The sphingolipid-responsive Pkh 

kinases are candidates for mediating parts of this regula-
tion, as they affect a diverse set of plasma membrane 
functions, such as cortical actin patch organization, effi-
cient endocytosis, and eisosome assembly. Eisosomes are 
large protein complexes underlying the plasma membrane 
and help to sort a group of membrane proteins into dis-
tinct domains. In this study, we identify Nce102 in a  

genome-wide screen for genes involved in eisosome  
organization and Pkh kinase signaling. Nce102 accumu-
lates in membrane domains at eisosomes where Pkh ki-
nases also localize. The relative abundance of Nce102  
in these domains compared with the rest of the plasma 
membrane is dynamically regulated by sphingolipids. 
Furthermore, Nce102 inhibits Pkh kinase signaling and is 
required for plasma membrane organization. Therefore, 
Nce102 might act as a sensor of sphingolipids that regu-
lates plasma membrane function.

A genome-wide screen for genes affecting 
eisosomes reveals Nce102 function in  
sphingolipid signaling
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of MCC transmembrane proteins, such as Sur7, localizes uniformly 
in the plasma membrane. Similarly, the ergosterol marker filipin 
looses its normal punctate eisosome localization in pil1 cells, dis-
tributes more evenly over the plasma membrane surface, and en-
riches at eisosome remnants (Grossmann et al., 2007).

One possible function of MCCs and eisosomes is to regu-
late protein and lipid abundance by sorting them into distinct, 
spatially separated pools where they are stabilized or from which 
they can be endocytosed selectively. Consistent with this notion, 
disruption of MCCs leads to increased turnover of some proteins 
normally localized there (Grossmann et al., 2008). The precise 
molecular function of eisosomes is still unclear, but it was sug-
gested that they regulate sites of endocytosis based on their  
colocalization with endocytic intermediates visualized by the  
lipophilic dye FM4-64 and a hexose transporter GFP fusion pro-
tein (Walther et al., 2006). A clue of how eisosomes might be reg-
ulated is provided by the discovery that Pkh kinases localize at 
eisosomes and that Pil1 and Lsp1 are Pkh kinase substrates 
(Zhang et al., 2004; Walther et al., 2007; Luo et al., 2008).

Pkh kinases regulate physiology and plasma membrane 
functions such as actin patch organization, endocytosis, and 
eisosome assembly (Inagaki et al., 1999; Sun et al., 2000; Friant 
et al., 2001; deHart et al., 2002; Liu et al., 2005; Grosshans et al., 
2006; Daquinag et al., 2007; Walther et al., 2007; Luo et al., 
2008). These responses are mediated by their targets, including 
Ypk1 and Ypk2 (homologues of the mammalian serum gluco-
corticoid kinase), Sch9 (homologue of human AKT kinase), 
Pkc1 (atypical protein kinase C), and myosin-I. In addition, Pkh 
kinase phosphorylation of Pil1 regulates the assembly state of 
eisosomes (Walther et al., 2007; Luo et al., 2008).

Pkh kinases are regulated by sphingoid long chain bases such 
as phytosphingosine (PHS) and dihydrosphingosine, which are 
precursors in sphingolipid synthesis (Zhang et al., 2004). However, 
it is not known how Pkh kinases sense and respond to long chain 
bases. Pkh kinases and several other kinases of the signaling mod-
ule are regulated by levels of long chain bases in vitro, but whether 
this is relevant in vivo and whether it is the only way to control Pkh 
kinase activity is not clear (Zhang et al., 2004; Liu et al., 2005).

In this study, we visually screened for genes that affect 
eisosome organization either directly or through altering Pkh ki-
nase activity. We identified the transmembrane protein Nce102 
as part of the sphingolipid–Pkh signaling network. Our func-
tional experiments suggest that Nce102 might act as a sphingo-
lipid sensor that modulates Pkh kinase activity to regulate plasma 
membrane organization and function.

Results
Nce102 is required for normal  
eisosome organization
To identify genes required for eisosome assembly and organi-
zation, we screened by fluorescence microscopy a systematic 
gene deletion collection into which we introduced GFP-labeled 

Figure 1. A functional genomic screen reveals genes required for eiso-
some organization. (a) Genes with a Pil1 organization phenotype shown 
in functional groups. (b) Nce102 is required for normal eisosome orga-
nization. Images of Pil1-GFP expressed in wild-type (wt; left) or nce102 

cells (right) are shown. (c) Number of eisosomes per mother cell (left), 
cytoplasmic Pil1-GFP fluorescence (middle), and Pil1-GFP fluorescence per 
eisosome (right). Error bars indicate SD. Bar, 5 µm.
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(MAK3, MAK10, and MAK31) showed a similar phenotype 
characterized by fewer eisosomes, increased cytoplasmic  
Pil1-GFP, and little change in the size of remaining eisosomes.

In addition, several hits (YMR031C, YMR086W, and 
MSC3) are good candidates for genes encoding previously 
not recognized eisosome components because they localize 
in a punctuate pattern at the cell periphery similar to eiso-
somes, and at least Ymr031c and Ymr086c were copurified 
with Pil1 (Huh et al., 2003; Grossmann et al., 2008; Deng  
et al., 2009).

In this study, we focused on Nce102 because it is the 
only hit in our screen previously found as a transmembrane 
plasma membrane protein (Cleves et al., 1996). To confirm 
the role of Nce102 in eisosome formation, we investigated 
the localization of Pil1-GFP in nce102 compared with 
wild-type cells. Consistent with the systematic genome-
wide screen, confocal images showed a clear reduction of 

Figure 2. NCE102 is required for normal plasma membrane organization. (a and b) Sur7-GFP (a) and Pma1-GFP (b) were expressed in wild-type (wt) or 
nce102 cells, and representative confocal top (bottom) and mid sections (top) are shown. (c) Wild-type and nce102 cells expressing Pil1-GFP (green) 
were pulse labeled with FM4-64 (red) for 1 min, and representative images are shown. Boxes indicate the area magnified in the bottom panels. (d) Num-
bers of FM4-64 intermediates per cell (n > 50) from images as in c are shown as a histogram. Bars, 5 µm.

Pil1 fusion protein (Pil1-GFP; Fig. S1 a; Tong et al., 2001). 
To determine the effect of individual mutations on eisosomes, 
we grew the library in 96-well plates to mid-log phase and 
imaged cells with an automated microscope. Visual inspec-
tion of the images led to identification of 88 genes that affect 
eisosomes (Fig. 1 a).

To obtain quantitative data for the identified mutants, 
we collected confocal images and quantitated the number  
of eisosomes per cell, the cytosolic fluorescence signal rep-
resenting unassembled Pil1-GFP, the integrated fluores-
cence on the cell surface, the size of individual eisosomes, 
and the percentage of cell surface covered with eisosomes  
(Fig. S1 a). The relative values for these parameters were 
used to cluster the genes according to the similarity of their 
phenotypes (Fig. S1 b).

For example, deletion of genes encoding subunits of the 
NatC complex involved in N-terminal protein acetylation 
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Nce102 is required for membrane 
organization
Eisosomes organize MCCs, and mutation of PIL1 results in 
mislocalization of all tested MCC components (Walther et al., 
2006; Grossmann et al., 2007, 2008). Because NCE102 deletion 

eisosome number and a wider spacing of remaining eiso-
somes (Fig. 1 b). Quantitation revealed that deletion of 
NCE102 results in a twofold decrease of eisosome number 
per mother cell and concomitant increase of cytosolic  
signal (Fig. 1 c).

Figure 3. Nce102 localizes to both MCC and non-MCC domains in the plasma membrane. (a) Images from cells expressing Nce102-GFP (left; green 
in overlay) and Sur7-mars (middle; red in the overlay) are shown. (b) Intensity profiles of Nce102-GFP and Sur7-mars along the plasma membrane.  
(c) Images from cells expressing Nce102-GFP (left; green in overlay) and Lsp1-mars (middle; red in the overlay) are shown. Boxes indicate the area magnified 
in the bottom panels. (d) Intensity profiles of Nce102-GFP and Lsp1-mars along the plasma membrane. (e) Pil1 is required for normal Nce102 distribution. 
Wild-type (left) and pil1 (right) cells expressing Nce102-GFP are shown. Arrows highlight eisosome remnants. Bars, 5 µm.
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the architecture, assembly, or stability of eisosomes and genes in-
volved in signaling that modifies Pil1 phosphorylation. In fact, 
the nce102 phenotype on Pil1-GFP localization closely re-
sembles the phenotype of pil1(4D) mutant cells, bearing a 
phosphomimicking mutant of Pil1-GFP in which four residues 
that are phosphorylated in the wild-type protein are mutated to 
aspartate (S45D, S59D, S230D, and T233D; Fig. 1 b and Fig. S4 
c; Walther et al., 2007).

Therefore, we tested genetically whether Nce102 acts on 
eisosomes by altering Pil1 phosphorylation that could then indi-
rectly modulate eisosome assembly. If nce102 effect is medi-
ated by phosphorylation, we expect that a pil1(4A)-GFP mutant 
in which four residues that are required for the effect of Pkh  
kinases on eisosome assembly are changed to alanine (S45A, 
S59A, S230A, and T233A; Walther et al., 2007) blocks the effect 
of NCE102 deletion. However, if Nce102’s effect on eisosomes  
is independent of Pil1 phosphorylation state, we expect to see 
similar effects of nce102 on wild-type Pil1 and pil1(4A).  

has a strong effect on eisosomes, we asked whether NCE102 is 
also required for plasma membrane organization. Indeed, com-
pared with wild-type cells in which the MCC marker Sur7-GFP 
was organized in distinct domains, nce102 cells showed only 
few clusters and more uniform localization of Sur7-GFP through-
out the plasma membrane (Fig. 2 a). Furthermore, we observed a 
consistent but less pronounced phenotype on the MCP marker 
Pma1, which localized more uniformly in nce102 cells com-
pared with its normal localization in structured plasma membrane 
domains (Fig. 2 b).

Next, we asked whether Nce102 influences the formation 
of endocytic intermediates formed as foci at eisosomes by using 
the lipophilic tracer FM4-64 (Vida and Emr, 1995; Walther et al., 
2006). FM4-64 foci formed after short chase periods of 1 min 
and colocalized with eisosomes in both wild-type and nce102 
cells (Fig. 2 c). However, when we quantitated the number of 
foci, we found their number greatly reduced in nce102 cells 
(median = 1 foci/cell; Fig. 2 d, right) compared with wild-type 
cells (median = 4 foci/cell; Fig. 2 d, left). Together, this shows 
that normal plasma membrane organization requires Nce102.

Nce102 localizes to the plasma membrane 
at MCC
To answer how Nce102 functions, we first investigated its sub-
cellular localization. In agreement with a recent study that iden-
tified Nce102 as an MCC component, we found Nce102-GFP 
localizing in the plasma membrane and accumulating in foci 
reminiscent of MCCs (Fig. 3 a; Grossmann et al., 2008). This 
notion was further confirmed by colocalization of Nce102 with 
plasma membrane markers but not, for example, with cortical 
ER markers (unpublished data).

To test whether Nce102 foci are MCCs, we investigated 
their localization in respect to Sur7 tagged with the red fluoro-
phore RFP-mars (Fischer et al., 2004), an MCC marker. Nce102 
foci completely overlapped with Sur7-marked MCCs (Fig. 3,  
a and b) with significant levels of Nce102-GFP also diffusely 
localized in the remainder of the plasma membrane. As MCCs 
are membrane domains located over eisosomes, we addition-
ally investigated Nce102-GFP localization in respect to eiso-
somes marked by Lsp1-mars and found that Nce102-GFP foci 
and eisosomes colocalize perfectly (Fig. 3, c and d). Because 
Nce102 is a multipass transmembrane domain protein, it is 
most likely located in the MCC and partially in the remainder 
of the membrane.

One hallmark of proteins localizing to eisosomes or MCCs 
is that they collapse to one or a few eisosome remnants in pil1 
cells (Walther et al., 2006; Grossmann et al., 2007). Indeed, 
Nce102-GFP localization in pil1 cells also closely resembles 
that of MCC proteins such as Sur7. Most of Nce102-GFP localizes 
to one or a few eisosome remnants in pil1 cells, whereas the 
remaining portion shows a uniformly distributed signal through-
out the plasma membrane (Fig. 3 e).

Nce102 acts negatively on Pil1 
phosphorylation
Because eisosome organization is sensitive to Pil1 phosphoryla-
tion, we expected to find genes in our screen that directly affect 

Figure 4. Nonphosphorylatable Pil1 is resistant to nce102 . (a and b) 
Representative top and mid sections of wild-type (wt; left) or nce102 cells 
(right) expressing Pil1-GFP (a) or nonphosphorylatable pil1(4A) fused to 
GFP (b) are shown. Bars, 5 µm.
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Indeed, pil1(4A)-GFP localization was indistinguishable between 
nce102 and wild-type cells, showing slightly more eisosome 
pil1(4A) assembly at the plasma membrane compared with wild-
type Pil1 (Fig. 4 b). Therefore, pil1(4A) is epistatic to nce102. 
Because Pil1 needs to get phosphorylated on residues mutated in 
pil1(4A) to develop the nce102 eisosome phenotype, we con-
clude that Nce102 acts upstream of Pil1 phosphorylation.

When combined with pil1(4D)-GFP, nce102 cells 
showed a similar, albeit slightly more severe phenotype than 
NCE102 pil1(4D)-GFP cells (Fig. S4 c), indicating that phos-
phorylation at additional sites can enhance eisosome disassembly. 
Previous work identified at least seven additional phosphoryla-
tion sites in Pil1, which may mediate this effect (Zhang et al., 
2004; Walther et al., 2007; Luo et al., 2008). Together, pil1(4A) 
epistasis on nce102 and enhancement of the pil1(4D) pheno-
type by nce102 suggest that Nce102 negatively regulates 
Pil1 phosphorylation.

Nce102 inhibits Pil1 phosphorylation
To substantiate these findings, we determined whether the phos-
phorylation state of Pil1 is altered in nce102 cells. To this end, 
we purified Pil1 fused to a tandem affinity purification (TAP) tag 
from wild-type and metabolically heavy lysine-labeled nce102 
cells (stable isotope labeling by amino acids in cell culture [SILAC]; 
Fig. S2 a; Ong et al., 2002) and analyzed it by two strategies. First, 
we mixed proteins of Pil1-TAP eluates 1:1 and separated them by 
SDS-PAGE, resulting in a clearly visible doublet of Pil1, where 
the upper band represents phosphorylated Pil1 (Walther et al., 
2007). Separate analysis of the two bands by liquid chromatogra-
phy (LC) mass spectrometry (MS)/MS revealed that contaminant 
proteins present in both bands have a 1:1 ratio of protein from  
wild-type and nce102 sample, as determined by comparing mean 
peptide peak intensities. In contrast, Pil1 from nce102 was 
30% enriched in the upper phospho-Pil1 band (1.28 ratio, Pil1 
heavy vs. light) and correspondingly decreased in the lower band 
(0.59 ratio, Pil1 heavy vs. light; Fig. 5 a; and Fig. S2, c and d).

In a second approach, we directly mixed, digested, and 
analyzed Pil1 pull-down eluates by LC-MS/MS (Fig. S2 a). From 
this approach, we identified many unphosphorylated peptides 
and, for example, the phosphorylated peptide harboring T233 of 
Pil1 from both wild-type and nce102 cells. Importantly, the 
phosphopeptide was more than threefold more abundant com-
ing from the heavy lysine-labeled nce102 samples compared 
with the wild-type control (Fig. 5 b; and Fig. S2, e and f). The 
total amount of Pil1 was equal in both experiments because  
unphosphorylated peptides were present in a 1:1 ratio (Fig. S2 f). 
Together, these data demonstrate that Pil1 was present in a 
roughly equimolar ratio in both pull-down eluates but that  
phosphorylation at T233 was more than threefold increased in 

Figure 5. Pil1 phosphorylation is increased in nce102 cells. (a) Pil1-TAP 
was purified from SILAC-labeled wild-type and nce102 cells, mixed in 
equal amounts, resolved by SDS-PAGE, and two resulting Pil1 bands were 
separately analyzed by MS. The contaminant Nsr1 was present in a 1:1  
ratio from both strains in each band. Pil1 was1.3-fold enriched in the  
upper band (red) and decreased to a ratio 0.6 in the lower band (black). 

(b) Pil1-TAP purified from SILAC-labeled wild-type and nce102 cells was 
analyzed by MS. Unphosphorylated Pil1 peptide amino acids 222–248 is 
shown in black, and the T233 phosphopeptide is shown in red. (c) Pil1-TAP 
purified from SILAC-labeled untreated cells or treated with myriocin for 1 h 
was analyzed as in b. Representative data of three experiments are shown. 
Ratio H/L denotes the mean ratio of the abundance of heavy- versus light-
labeled peptides.
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on Pil1 phosphorylation occurs through the Pkh kinase path-
way. First, we determined the epistatic relationship between 
Pkh kinase mutants and nce102 using a yeast strain that har-
bors a deletion of PKH2 and a temperature-sensitive allele of 
PKH1 (pkhts; Friant et al., 2001). Already at the permissive tem-
perature, these mutations lead to a strong over-assembly effect 
on eisosomes. Specifically, pkhts strains display large elongated 
threads of Pil1 at the plasma membrane with more of the mem-
brane covered with Pil1 (Fig. 6; Walther et al., 2007). This 
phenotype is also very severe at the restrictive temperature, with 
most of the membrane covered with Pil1 (Fig. S4 e).

Combining pkhts and the nce102 mutations, we found 
that double-mutant cells show a Pil1-GFP phenotype indistin-
guishable from the pkhts phenotype at both 24 (Fig. 6) and 37°C 
(Fig. S4 e). This indicates that Pkh kinases are required to  
obtain the nce102 phenotype and shows that Nce102 acts  
upstream of Pkh kinases, inhibiting them in a linear pathway.

Nce102 acts downstream of long chain 
bases in sphingoid base signaling
Our data suggest that Nce102 acts on Pil1 phosphorylation by 
inhibiting Pkh kinases. Because Pkh kinases are regulated by 
sphingoid bases and both, a block of sphingolipid synthesis and 
nce102, lead to increased Pil1 phosphorylation, Nce102 itself 
may be controlled by sphingolipids, acting upstream of the Pkh 
kinases. Alternatively, Nce102 could be required for efficient 
synthesis of sphingolipids that are then sensed by the kinases by 
some other route. One more possibility is that Nce102 acts in-
dependently of sphingolipids to regulate Pkh kinases.

To distinguish between these possibilities, we tested whether 
Nce102 is required for the synthesis of sphingoid bases. If this 
was the case, addition of exogenous sphingoid base would rescue 
the nce102 phenotype. Exogenously added sphingoid bases can 
enter the cell and rescue a sphingoid base synthesis defect be-
cause addition of 5 µM PHS suppressed the Pil1-GFP phenotype 
of the lcb1-100 mutant (which impairs sphingolipid synthesis) 
both at the permissive and restrictive temperatures (Fig. 7 a).  
In contrast, the eisosome defect of nce102 cells was not rescued 
by addition of PHS under conditions that rescued the lcb1-100 
mutant phenotype (Fig. 7 a) or by a 10-fold higher concentration 
of PHS (unpublished data). Quantitation of eisosome number and 
cytosolic Pil1 levels confirmed the visual evaluation (Fig. 7 b).

These data show that Nce102 is not required for sphingoid 
base synthesis but rather acts downstream of it. Because PHS has 
no additive effect on nce102 cells, sphingolipids and Nce102 
act in the same pathway (Fig. 7 b).

To further test this hypothesis, we investigated the inter-
action between myriocin treatment and nce102. If both act inde-
pendent from each other, we expect an additive effect between 
them. However, this is not the case. As shown in images and quan-
titation of eisosomes, myriocin has no further effect on eisosomes 
in nce102 cells, confirming that sphingolipid signaling and 
Nce102 act in the same pathway on eisosomes (Fig. 7, c and d).

We previously showed that Pil1 hyperphosphorylation 
caused by decreased sphingolipid synthesis causes eisosome dis-
assembly (Walther et al., 2007). If our hypothesis is true and 
Nce102 is an inhibitor of Pil1 phosphorylation acting downstream 

nce102 cells. Therefore, the results of the two biochemical 
approaches converge, demonstrating that Pil1 phosphorylation 
is increased in nce102 cells.

Because Pil1 phosphorylation is inhibited by sphingoid 
bases (Zhang et al., 2004; Walther et al., 2007), we tested whether 
NCE102 deletion results in a similar effect on Pil1 phosphoryla-
tion as sphingolipid depletion. To this end, we measured the rela-
tive abundance of the Pil1 T233 phosphopeptide in cells where 
synthesis of sphingolipids was blocked for 1 h by myriocin, a 
drug targeting the serine palmitoyl transferase that catalyzes the 
rate-limiting step of sphingolipid synthesis, compared with wild-
type cells. In this experiment, we detected a twofold increase of 
Pil1 phosphorylation at T233 after myriocin treatment compared 
with wild-type cells (Fig. 5 c and Fig. S2 g). This shows that the 
block of sphingolipid synthesis by myriocin and NCE102 dele-
tion has a similar effect on Pil1 phosphorylation.

Nce102 acts on Pil1 via Pkh kinases
Several studies show that Pil1 phosphorylation is mediated by 
Pkh kinases (Zhang et al., 2004; Walther et al., 2007; Luo  
et al., 2008). Therefore, we asked whether the effect of Nce102 

Figure 6. Mutation of Pkh kinases is epistatic to nce102. Optical top 
and mid sections of wild-type (wt; top left), nce102 (top right), pkhts (bot-
tom left), or pkh1ts nce102 (bottom right) cells expressing Pil1-GFP are 
shown. Bars, 5 µm.
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Figure 7. Nce102 and sphingolipids act in the same pathway. (a) lcb1-100 but not nce102 is suppressed by sphingoid bases. Wild-type (wt), lcb1-100, 
or nce102 cells expressing Pil1-GFP were analyzed with or without addition of 5 µM PHS, and representative images are shown. (b) Eisosome number per 
mother cell (left) and cytosolic Pil1-GFP fluorescence (right) are shown. (c) Myriocin has no additive effect on nce102 cells. Wild-type and nce102 cells 
were treated for 1 h with 5 µM myriocin, and representative images are shown. (d) Quantitation of eisosome number per mother cell (left) and cytoplasmic 
Pil1-GFP fluorescence (right) of cells treated as in c. Error bars indicate SD. Bars, 5 µm.
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of sphingolipids, we predict that overexpression of Nce102 will 
rescue eisosome disassembly when sphingolipid synthesis is de-
creased. To test this, we expressed Nce102-mars from the induc-
ible Gal promoter in cells that have Pil1-GFP–marked eisosomes. 
When these cells are grown on raffinose, Nce102-mars is not ex-
pressed, and eisosomes appear normal, as these cells also express 
endogenous Nce102 (Fig. 8). When these cells grow on galac-
tose, Nce102-mars is overexpressed (Fig. 8). Strikingly, when we 
blocked sphingolipid synthesis in these cells by treating them with 
myriocin, the normal effect of disassembling eisosomes apparent 
in control cells was completely blocked (Fig. 8). This shows that 
increasing Nce102 levels blocks the effect of inhibiting sphingo-
lipid synthesis on eisosomes.

Together, our genetic experiments thus place Nce102 in a 
linear pathway inhibiting Pkh kinases and suggest a relation-
ship: sphingoid bases → Nce102–| Pkh1/2 → Pil1 phosphoryla-
tion → eisosome disassembly. In this scenario, Nce102 would 
function as part of a sensor relay for sphingoid base or sphingo-
lipid levels.

Nce102 localization responds to changes 
in sphingolipid levels
Because Nce102 negatively regulates Pkh kinases that localize to 
eisosomes, we next tested whether Nce102 distribution between 
MCCs at eisosomes and the rest of the plasma membrane is af-
fected by sphingolipid levels. To this end, we determined Nce102-
GFP localization after blocking sphingolipid synthesis. Strikingly, 
after a 1 h incubation of cells with myriocin, the punctate pattern  
of Nce102-GFP localization in MCCs disappeared, and the pro-
tein distributed diffusely across the plasma membrane (Fig. 9 a). 
Consistently, in intensity plots of surface images, myriocin-
treated cells show a rather flat distribution of the Nce102-GFP 
signal, whereas control samples show many Nce102-GFP peaks 
corresponding to MCCs at eisosomes (Fig. 9 b). Relocalization of 
Nce102-GFP could be reversed by addition of exogenous PHS  
for a short time (15 min). In this case, the MCC pattern of Nce102-
GFP localization reappeared, showing an even more pronounced 
pattern of Nce102-GFP foci than normal (Fig. 9 b).

Nce102 relocalization could be caused by redistribution of 
existing protein in the plasma membrane or new protein synthesis 
under conditions in which myriocin blocks the efficient incorpo-
ration of Nce102 in MCCs. To distinguish these possibilities,  
we added myriocin after a preincubation with the translation-
blocking drug cycloheximide. During persistent translation block, 
Nce102 localized normally to MCCs and the remainder of the 
membrane (Fig. 9 c). Moreover, it still relocalized from MCCs 
after myriocin treatment, indicating that this phenomenon is not 
dependent on protein synthesis (Fig. 9 c). Similarly, when PHS 
was added to cells in which translation was blocked, Nce102  
relocalization occurred normally (Fig. 9 c).

To test whether this effect is specific to the availability of 
sphingoid bases or a more general response to sphingolipid lev-
els, we added aureobasidin to cells for 1 h. This drug inhibits 
complex sphingolipid synthesis from ceramide downstream of 
the formation of sphingoid bases (Nagiec et al., 1997). We ob-
served the same Nce102-GFP redistribution in the plasma 
membrane after aureobasidin or myriocin addition (Fig. 9 a and 

Fig. S4). Consistent with the downstream block of sphingolipid 
synthesis by aureobasidin, addition of exogenous sphingoid 
bases did not result in reformation of the punctate Nce102 
pattern (Fig. S4).

Together, these data suggest an equilibrium of two pools 
of Nce102-GFP localizing to MCCs at eisosomes or to spaces in 
between that is shifted by levels of sphingolipids. Consistent 
with this notion, addition of PHS to untreated cells shifted more 
Nce102-GFP into punctate structures, rendering them more pro-
nounced (Fig. 9, a and b).

In the yeast plasma membrane, many proteins are sensitive 
to extraction by detergents to a different level, and Nce102 was 
previously described operationally as an abundant component of 
detergent-resistant membranes (Bagnat et al., 2000). To test 
whether Nce102 distribution between MCCs and the remainder 

Figure 8. Overexpression of Nce102 suppresses eisosomes disassembly 
after sphingolipid synthesis block. Nce102-mars (right) controlled by the 
Gal promoter was either not expressed in raffinose-containing medium or 
induced in galactose-containing medium in Pil1-GFP (left) cells, which were 
incubated for 1 h with 5 µM myriocin as indicated. Bar, 5 µm.
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proteins embedded in mostly phospholipid bilayers. This differ-
ence can be tested in a velocity sedimentation gradient. Nce102 
from untreated cells was present in most fractions of the gradi-
ent, indicating that it is localized both to detergent-resistant and 
other membranes (Fig. 9 d). When treated with myriocin, Nce102 

of the plasma membrane observed by microscopy is reflected in 
its partitioning between different membrane environments, we 
analyzed its solubility in a buffer containing 1% Triton X-100  
at 4°C. Proteins partitioning into sphingolipid/ergosterol-rich 
domains show lower solubility in this buffer compared with  

Figure 9. Nce102-GFP localization depends 
on sphingolipid levels. (a) Nce102-GFP was 
imaged under normal growth conditions (con-
trol), after addition of 5 µM myriocin for 1 h 
(myriocin), after sequential treatment with 5 µM 
myriocin for 1 h and 50 µM PHS for 15 min 
(myriocin→PHS), or after addition of 50 µM 
PHS for 15 min (PHS). Boxes indicate the area 
magnified in the bottom panels. (b) Fluores-
cence intensities of the area are shown plot-
ted against xy image coordinates. (c) Nce102 
redistribution is not dependent on new protein 
synthesis. Nce102-GFP cells were treated 
with myriocin or myriocin and PHS succes-
sively as in a after 10-min preincubation and 
continued presence of cycloheximide (CHX). 
(d) Nce102 partitions into detergent-resistant 
membranes dependent on sphingoid bases. 
Untreated Nce102-TAP–expressing cells and 
cells treated as in a were lysed in buffer con-
taining 1% Triton X-100 and analyzed by 
gradient centrifugation and Western blotting 
against TAP (left). The same blots were probed 
with Pma1 antibodies (right). (e) pil1(4A)-GFP 
is resistant to disassembly after myriocin treat-
ment. pil1(4A)-GFP–expressing cells were 
imaged after 1-h 5 µM myriocin incubation. 
(f) Redistribution of Nce102-GFP after myrio-
cin treatment is independent of eisosome 
disassembly. Cells expressing pil1(4A) and 
Nce102-GFP were imaged before (left) and 
after 1 h treatment with 5 µM myriocin (right). 
(g and h) Sur7-mars does not behave like 
Nce102 after myriocin treatment. Wild-type 
Pil1 (g) or pil1(4A) (h) cells expressing Sur7-
mars were treated with myriocin and imaged. 
wt, wild type. Bars, 5 µm.
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affecting Pil1 localization (n = 88). It remains to be seen whether 
this difference is caused by different thresholding during the 
screen or biological differences between MCCs versus eiso-
somes. Because Pil1 and MCC components colocalize and PIL1 
is required for normal MCC formation, it is surprising that there 
is little overlap between the two screens: only NCE102, SUR4, 
MNN10, and few biological processes were found in both.  
Examples include retrograde transport from the Golgi apparatus  
to the ER (VPS52 and VPS54 in the MCC screen; VPS51 and 
VPS53 in the Pil1 screen). Therefore, these genes and processes 
likely have a global effect on plasma membrane organization af-
fecting MCCs and eisosomes. Genes that were identified only in 
one screen likely perform more specific functions; future exper-
iments will, for example, show whether YMR086W, YMR031C, 
or genes encoding the NatC complex are important for eiso-
somes but not MCCs.

Besides genes globally affecting the plasma membrane, we 
expected to find genes impacting eisosome organization directly 
as well as genes that alter sphingolipid signaling, resulting in  
altered Pil1 phosphorylation and assembly. In the later class, we 
identified Nce102. Besides it, also SUR4, ISC1, and SAC1 are 
likely to act on eisosomes through sphingolipid signaling. Dele-
tion of SUR4, required for fatty acid elongation during sphingo-
lipid synthesis (Han et al., 2002; Paul et al., 2006), or deletion of 
ISC1, the homologue of mammalian neutral sphingomyelinase 
(Sawai et al., 2000), results in accumulation of complex sphingo-
lipids. In our screen, both isc1 and sur4 cells showed hyper-
assembled Pil1-GFP, which is the opposite effect of depleting 
complex sphingolipids by inhibiting their synthesis (Table S2). 
In addition, it was recently reported that sac1 cells have ele-
vated sphingoid bases and reduced levels of complex sphingolipids 
(Brice et al., 2009), and we found them to have fewer eisosomes 
and increased cytoplasmic Pil1-GFP signal (Table S2). We ex-
pect that other genes indentified will also turn out to play a role 
in sphingolipid biology.

In this study, we focused on the function of Nce102, a multi-
spanning plasma membrane protein required for normal eiso-
somes, MCC formation, and plasma membrane organization. 
Initially, Nce102 was identified by Cleves et al. (1996) as re-
quired for nonclassical export of mammalian galectin from yeast. 
The mechanism of Nce102 function in this pathway was not in-
vestigated. Because the assay used requires solubilization of cell-
associated galectin using high pH, it is possible that the basis of 
the effect could be altered protein extractability from nce102 
cells because of their altered plasma membrane.

Our experiments revealed that Nce102 has fascinating 
properties, suggesting that it might act as part of a sphingolipid 
sensor. Most remarkable, its localization is dynamic and respon-
sive to changes in sphingolipid levels: Nce102 partitions between 
two domains in the plasma membrane, MCCs overlying eiso-
somes and the rest of the plasma membrane. We show that the 
distribution between these two domains is controlled by sphin-
golipid availability. Nce102 localization to MCCs brings it into 
close contact with the underlying eisosomes and Pkh kinases 
(Fig. S5; Walther et al., 2007). Nce102 negatively regulates the 
activity of these kinases, and, in the presence of sphingolipids, 
blocks their downstream functions. Conversely, if sphingolipid 

partitioning changed toward the bottom of the gradient, indicat-
ing higher solubility. After short treatment of these cells with 
PHS, Nce102 redistributed to more detergent-insoluble mem-
brane fractions at the top of the gradient. Pma1, a marker for 
MCP membranes, did not significantly alter its migration in the 
gradient after either myriocin or PHS treatment.

Together, these results show that relative levels of Nce102 in 
different plasma membrane domains are regulated by sphingo-
lipids and that this redistribution is highly sensitive to changes in 
membrane composition because it can be observed after small 
perturbations that do not change Pma1 behavior. These data are 
consistent with the hypothesis that Nce102 sphingolipid-mediated 
redistribution is the mechanism by which Nce102 regulates Pil1 
phosphorylation. In this model, Nce102 is recruited to MCCs at 
eisosomes under conditions of sufficient sphingolipids to repress 
Pkh kinase activity toward Pil1 and released from there when 
sphingolipid levels drop, for example, after inhibition of their syn-
thesis by myriocin or aureobasidin. To test this, we determined the 
localization of Nce102-mars relative to Pkh kinases. Pkh2-GFP 
localizes in few very dim spots that colocalize with eisosomes and 
Nce102 foci (Fig. S5, a and b). Importantly, when we blocked 
sphingolipid synthesis with myriocin, Nce102-mars relocalized 
from these foci, leaving Pkh2-GFP behind (Fig. 5, c and d).

If Nce102 acts as a plasma membrane sphingolipid sen-
sor, then its partitioning should be upstream and independent of 
the assembly state of eisosomes. Alternatively, Nce102 redistri-
bution could be a consequence of eisosome disassembly after 
inhibition of sphingolipid synthesis. To test this directly, we 
used pil1(4A) mutant cells in which Pil1 cannot be sufficiently 
phosphorylated. Eisosomes are therefore resistant to activation 
of Pkh kinases (Walther et al., 2007). As expected, when cells 
that express pil1(4A)-GFP as their sole copy of Pil1 are incu-
bated with myriocin, eisosomes remain stable because Pil1(4A) 
does not get sufficiently phosphorylated to disassemble (Fig. 9 e). 
To determine whether Nce102-GFP redistribution is caused by 
disassembly of eisosomes, we investigated the localization of 
Nce102-GFP in pil1(4A) cells. We found it to distribute nor-
mally in both MCCs and the remainder of the plasma membrane 
(Fig. 9 f). When we added myriocin to these cells, eisosomes re-
mained assembled as a result of the pil1(4A) mutation, yet Nce102-
GFP relocalized to become diffusely distributed throughout the 
plasma membrane (Fig. 9 f). To test whether this is a general 
property of MCC proteins, we performed similar experiments 
with cells expressing Sur7-mars. When we treated these cells 
with myriocin, the intensity of Sur7 signal in MCC decreased as 
Pil1 disassembled (Fig. 9 g; not depicted), but this could be com-
pletely blocked by expressing Pil1(4A) (Fig. 9 h). Thus, Nce102-
GFP has a distinct behavior from other MCC components and 
redistributes in the plasma membrane dependent on sphingo-
lipids but independently of the eisosome assembly state.

Discussion
We report a comprehensive screen for genes involved in  
Pil1-GFP localization. Recently, a similar screen using an MCC 
reporter identified 27 genes (Grossmann et al., 2008). Compared 
with that screen, we found roughly three times more genes 
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of their resistance to Triton X-100 detergent extraction. For ex-
ample, the MCP marker Pma1 was also previously used as a 
marker for detergent-resistant lipid rafts (Bagnat et al., 2000; Lee 
et al., 2002; Malinska et al., 2003). The difference in Triton X-100 
solubility between Nce102 and Pma1 after myriocin treatment 
might therefore indicate that these proteins differently partition 
into such lipid rafts or that the MCP is actually more complex 
and contains subdomains not easily resolved by light microscopy. 
Consistent with the later notion, TORC2 (Tor kinase complex 2) 
is localized at a distinct plasma membrane domain separate from 
MCC and MCP and is also partially detergent resistant (Aronova 
et al., 2007; Berchtold and Walther, 2009).

The sensing mechanism of sphingolipids in the plasma 
membrane by Nce102 suggested in this study is different from 
a previous model positing that soluble sphingoid bases in the 
cytoplasm directly control Pkh kinases (Zhang et al., 2004; Liu 
et al., 2005). It is possible that sphingolipids control the activity 
of Pkh kinases at many levels. Sphingoid bases could, for exam-
ple, directly regulate Pkh kinases as in vitro experiments suggest 
(Zhang et al., 2004), and complex sphingolipids could affect 
signaling via Nce102. However, the in vivo effect of direct inhi-
bition of Pkh kinase activity toward Pil1 by sphingoid bases is 
probably minor compared with the Nce102 pathway, as exoge-
nously added PHS was not able to counteract the nce102  
hyperphosphorylation effect on eisosomes.

Our model of regulation of Pkh kinases by complex sphingo-
lipids via the transmembrane protein Nce102 would also bridge 
the topological barrier between the cytoplasmic Pkh kinases and 
complex sphingolipids mainly concentrated in the outer leaflet of 
the plasma membrane (van Meer et al., 2008).

Downstream of sphingolipid sensing, the Nce102–Pkh 
pathway regulates phosphorylation of Pil1 that, when increased, 
always correlated with eisosome disassembly, e.g., in nce102 
cells. This effect could be blocked by mutating phosphorylated 
Pil1 residues to alanines that we previously found were required 
and sufficient for the effect of Pkh kinases on eisosomes (Walther 
et al., 2007). This is different from findings by Luo et al. (2008), 
who reported that a mutant form of Pil1 harboring five phospho-
sites mutated to alanine (S6A, S59A, T233A, S273A, and S299A) 
cannot assemble properly and argued that phosphorylation of Pil1 

synthesis is blocked, Nce102 redistributes away from Pkh ki-
nases (Fig. S5), alleviating their inhibition. Therefore, we pro-
pose a model that Nce102 acts as part of a sphingolipid-sensing 
mechanism and that its distribution in the plasma membrane reg-
ulates Pkh kinases (Fig. 10). In the simplest hypothesis, Nce102 
could simply accomplish repression of the kinases by regulated 
juxtaposition to them, which is a common scheme in kinase sig-
naling. Based on filipin staining, MCCs were suggested as sites 
of increased ergosterol concentration in the plasma membrane 
(Grossmann et al., 2007), and because sterols preferentially  
interact with sphingolipids, it is likely that sphingolipids are also 
concentrated there, forming detergent-resistant, liquid-ordered 
membrane domains or lipid rafts (Simons and Ikonen, 1997;  
Malinska et al., 2003) where Nce102 was found previously (Bagnat 
et al., 2000). Thus, it is possible that Nce102 also reacts to ergos-
terol levels in the plasma membrane. However, we did not ob-
serve an effect of nonessential erg mutants or block of sterol 
synthesis on eisosomes or Nce102 localization (unpublished data). 
Consistent with our model, Nce102 localizes to eisosome rem-
nants that also show increased filipin staining, likely reflecting 
increased concentration of ergosterol and possibly sphingolipids 
(Grossmann et al., 2007). Alternatively, filipin might preferen-
tially report on free sterols not in complex with sphingolipids, 
and staining of MCCs could actually indicate a lower concentra-
tion of sphingolipids in this compartment. This view is supported 
by a recent observation that filipin staining increases if sphingo-
lipid synthesis is blocked (Jin et al., 2008). A further alternative 
is that Nce102 could directly bind sphingolipids, changing its af-
finities to other proteins that help localize it to MCCs and/or 
switching its activity as a Pkh kinase inhibitor on and off. In  
either model, Nce102 leaves the MCC when sphingolipid levels 
there are low, releasing its inhibition of Pkh kinases that now 
phosphorylate Pil1 and other targets. This is consistent with our 
observation that Nce102 detergent solubility changes after inhi-
bition of sphingoid base synthesis, indicating that it partitions 
between different membrane environments. Most likely, this 
change corresponds to the relocalization of Nce102 from MCCs 
to the remainder of the membrane observed by microscopy. The 
interpretation of this result, however, remains vague, as most 
proteins in the yeast plasma membrane differ only in the degree 

Figure 10. Model for Nce102 function in 
sphingolipid sensing. Nce102 (green) senses 
sphingolipid levels in the plasma membrane 
by distributing between the thick sphingolipid-
rich MCC (blue) and the rest of the plasma 
membrane (gray) depending on sphingolipid 
levels. In the MCC, it inhibits Pkh kinases (red) 
that localize under this domain at eisosomes.
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and to regulate a late step in the synthesis of complex sphingo-
lipids (Tabuchi et al., 2006). It is therefore likely that the TORC2 
and Pkh1/2 pathways collaborate to regulate sphingolipid 
metabolism in yeast. Given the similarity of the signaling pathway 
components and its architecture in higher eukaryotes, their out-
put may also be evolutionarily conserved.

Materials and methods
Visual screen
To generate a library of deletion mutants each expressing Pil1-GFP, we 
performed a modification of the synthetic genetic array screen as described 
previously (Tong et al., 2001). In short, a MAT strain containing a chromo-
somal copy of Pil1-GFP marked with a NATR marker, the CAN1 gene 
disrupted by a construct that encodes the MATa promoter driving expres-
sion of the HIS3 gene and the LYP1 gene disrupted by a construct express-
ing LEU2 from the MF promoter (KEM108), was crossed to the MATa 
deletion library BY4741 (each strain marked with KANR). Diploids were 
selected on G418 and nourseothricin and sporulated. From the sporula-
tion, MATa haploids containing both Pil1-GFP and the deletion gene were 
selected with successive pinning on –HIS (selection for MATa cells), G418 
(selection for the gene deletion from the library), canavanine (selection for 
haploid cells harboring can1), S-(2-aminoethyl)-l-cysteine hydrochloride 
(selection for haploid cells harboring lyp1), and nourseothricin (selection 
for Pil1-GFP)-containing media.

For imaging, cells were grown overnight to saturation in 384-well 
plates, transferred to 96-well plates, diluted, and grown for 9 h until they 
reached mid-log phase. Cells were transferred to glass-bottom 96-well 
plates coated with concanavalin A and imaged with a 40× high NA objec-
tive in an ImageXPress Micro (MDS Analytical Technologies). At least six 
different images were taken for each deletion strain.

The images were visually inspected using the software by the micro-
scope manufacturer and classified using three categories: increased cyto-
solic Pil1-GFP fluorescence, altered number or eisosomes, and altered 
pattern of eisosomes. Strains that showed a phenotype in this first round of 
screening were regrown and imaged by using a confocal microscope 
(LSM510; Carl Zeiss, Inc.).

Two optical mid-section and two top-section images were taken for 
each strain, showing 15–40 cells per image. Images were visually ana-
lyzed, and several parameters of the Pil1-GFP signal on the surface of cells 
were quantitated using an image interpretation script developed in MATLAB 
that we named EISURAN (both the source code and an executable  
MATLAB file can be found at http://www.biochem.mpg.de/en/rg/ 
walther/news/index.html). In short, EISURAN first subtracts background 
from the images and then finds the edge of a cell by image dilation. To 
facilitate the quantitation of signal from assembled Pil1, the script thresholds 
the image using Otsu’s method (Otsu, 1979). From the resulting binary image, 
EISURAN calculates the number of positive pixels per cell, a measure for 
the area covered by eisosomes (percentage of cell surface covered by 
eisosomes). It then calculates the mean size of the connected clusters (mean 
pixel number per eisosome cluster on cell surface). To eliminate small back-
ground clusters, a minimum of 20 pixels are used for the lower cut off. In 
some conditions, very large values result caused by connection of eiso-
somes into very large clusters, which are sometimes string formed. To de-
termine how much Pil1 is in individual eisosomes, EISURAN determines the 
mean intensity of each cluster by applying the binary image as a mask on 
the original image, integrating the intensity in each cluster, and averaging 
this intensity over all clusters in an image (mean integrated intensity per 
eisosome cluster on cell surface). Quantitation of eisosome number was 
based on the mean number of eisosomes counted by two independent ob-
servers in optical mid sections of mother cells (eisosome number; mean for 
the wild type = 11.5 ± 1.55).

The cytoplasmic signal was quantitated as the mean intensity of 
a 50 × 50–pixel area in the cytoplasm (cytoplasmic Pil1-GFP signal) 
visible in a confocal mid section of the cell using ImageJ (National Institutes 
of Health). The resulting values were averaged from at least 20 cells,  
analyzed by hierarchical clustering, and displayed using R software 
(http://www.r-project.org).

Yeast strains and plasmids
All yeast strains used as well as their genotypes are listed in Table S1. The 
starter strain used for the screen Pil1-GFP::NATR (KEM 108) was generated 
in the strain YMS196 (provided by N. Krogan, University of California, 

is important for assembly of eisosomes rather than disassembly. 
In this study, even a mutant that lacks these five sites and even two 
additional sites (S6A, S45A, S59A, S230A, T233A, S273A, and 
S299A) still assembles into eisosomes correctly (unpublished data). 
The reason for this difference is unclear but might indicate that 
additional pathways to the Nce102–Pkh kinase module regulate 
Pil1 phosphorylation in a complex fashion.

Besides phosphorylation of Pil1, Pkh kinases modify many 
plasma membrane functions. Therefore, as expected, nce102 
cells show altered organization of the plasma membrane, as ob-
served for MCCs, MCPs, and the endocytic foci marked by the 
lipophilic dye FM4-64. Recently, it was also shown that nce102 
cells have accelerated endocytosis rates of some membrane 
transporters (Grossmann et al., 2008). Pkh kinases also partici-
pate in processes as diverse as cortical actin patch organization, 
cell integrity signaling, endocytosis, and eisosome organization 
(Inagaki et al., 1999; Sun et al., 2000; deHart et al., 2002; Roelants 
et al., 2002; Zhang et al., 2004; Liu et al., 2005; Grosshans et al., 
2006; Walther et al., 2007; Luo et al., 2008). Regulation of these 
diverse processes may help control the composition of the plasma 
membrane according to need, perhaps constituting part of a neg-
ative feedback loop that targets genes involved in sphingolipid 
synthesis. Indeed, expression of such genes, e.g., LCB2, FEN1, 
and SUR4, is strongly negatively correlated to the expression of 
NCE102 when the latter is regulated in response to various phys-
iological conditions, e.g., during diauxic shift, nitrogen deple-
tion, or heat shock (correlations for NCE102/SUR4 are: diauxic 
shift, 0.94; nitrogen starvation, 0.66; and heat shock, 0.85; 
Fig. S3, b–d; DeRisi et al., 1997; Gasch et al., 2000). In addition, 
after prolonged incubation with PHS, we observed Nce102-GFP 
signal at the vacuole (unpublished data), perhaps reflecting an 
adaptation to recalibrate the set level of Pkh signaling after long 
times with high sphingolipids levels.

An important role of Nce102 in regulation of sphingo-
lipids is also supported by the ability of its deletion to suppress the 
growth defect of a mutation in the serine palmitoyl transferase 
subunit TSC3 (Schuldiner et al., 2005; unpublished data) or the 
growth inhibition caused by myriocin (Fig. S3 a), both of which 
reduce the first and rate-limiting step in sphingolipid synthesis.

Salient features of the sphingolipid–Nce102–Pkh kinase 
signaling network are likely conserved between yeast and other 
eukaryotes. Nce102 shares homology with the synaptogyrin/
cellugyrin protein family (Belfort et al., 2005), but the molecu-
lar roles of these proteins are not understood. In contrast, mam-
malian PDK1 kinases (the homologues of yeast Pkh kinases) 
are well characterized, and the general architecture of down-
stream signaling is conserved (Casamayor et al., 1999). In  
either system, full activation of AGC kinases, such as AKT, Sch9, 
serum glucocorticoid kinase, or Ypk1/2, requires phosphoryla-
tion both by PDK1 (in mammalian cells) or Pkh kinases (in 
yeast) and in addition by the conserved kinase complex TORC2 
(Powers, 2007). For yeast, TORC2 signaling has been impli-
cated in the regulation of sphingolipid biosynthesis (Beeler et al., 
1998; Tabuchi et al., 2006; Aronova et al., 2008). This effect of 
TORC2 is mediated by the Pkh kinase target Ypk2 (Aronova  
et al., 2008). Additionally, the Slm proteins were identified as 
targets of both the TORC2 and Pkh kinase signaling pathways 
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Isolation of detergent-resistant membranes
Detergent-resistant membranes were isolated essentially as described pre-
viously (Bagnat et al., 2000). In brief, 20 ODs Nce102-TAP–expressing 
yeast cells were harvested by centrifugation. The pellets were washed once 
with water and lysed in TNE buffer (50 mM Tris-HCl, pH 7.4, 150 mM 
NaCl, and 5 mM EDTA) by vortexing with glass beads twice for 5 min 
each at 4°C. The lysate was cleared of unbroken cells by centrifugation at 
500 g for 5 min and incubated with Triton X-100 (1% final) for 30 min on 
ice. 250 µl lysate was adjusted to 40% Optiprep by adding 500 µl of 60% 
Optiprep solution and overlaid with 1.2 ml of 30% Optiprep in TXNE (TNE 
and 0.1% Triton X-100) and 200 µl TXNE. The samples were centrifuged 
at 55,000 rpm for 2 h in a rotor (S55S; Sorvall), and five fractions of equal 
volume were collected from the top. Proteins of each fraction were precipi-
tated with 10% trichloroacetic acid for 15 min on ice. Precipitates were re-
suspended in 50 µl 2× sample buffer (0.24 M Tris, pH 8.0, 8% SDS, 1 mM 
DTT, 40% glycerol, and 0.4% bromphenol blue) and heated at 65°C. 25-µl 
aliquots were loaded onto 12% SDS-PAGE gel and analyzed by Western 
blotting. Nce102-TAP was detected with a rabbit peroxidase antiperoxi-
dase antibody (Sigma-Aldrich), Pma1 with a rabbit anti-Pma1 antibody 
(Santa Cruz Biotechnology, Inc.), and a horseradish peroxidase–coupled 
goat anti–rabbit IgG antibody (Santa Cruz Biotechnology, Inc.).

MS
700 ODs of light-labeled PIL1-TAP and heavy-labeled PIL1-TAP nce102 cells 
were harvested by centrifugation resuspended in 5 ml of buffer (150 mM 
KOAc, 20 mM Hepes, pH 7.4, 10% glycerol, and complete protease inhibi-
tor cocktail [Roche]) and phosphatase inhibitor cocktail (Sigma-Aldrich) and 
frozen in liquid nitrogen. Total protein was extracted by bead milling; the 
thawed lysates were incubated with Triton X-100 (1% final) for 30 min at 4°C 
and clarified by two consecutive spins of 4 min at 1,000 g. To immunopurify 
Pil1-TAP, equivalent amounts of the lysates of PIL1-TAP cells and PIL1-TAP 
nce102 cells, according to the protein concentration, were incubated with 
IgG conjugated to agarose beads (GE Healthcare) for 2 h, washed, and 
eluted by TEV cleavage and centrifugation. The eluates were mixed, reduced 
for 20 min at RT in 1 mM DTT, and alkylated for 30 min by 5.5 mM iodo-
acetamide at RT in the dark. Nu-PAGE sample buffer (Invitrogen) was added, 
and the sample was loaded onto 4–12% Nu-PAGE Bis-Tris SDS-PAGE gels 
(Invitrogen). Two Pil1 bands were excised from the gel, and proteins were 
digested with endoproteinase LysC in gel overnight at RT. The resulting 
peptides were extracted with 30% acetonitrile and 3% trifluoroacetic acid, 
reduced in a speed vacuum centrifuge, and desalted and concentrated on 
a reversed-phase column (C18 StageTip; Rappsilber et al., 2003).

In a different approach, the mixed eluates were precipitated with 
chloroform/methanol and resuspended in 8 M urea. Proteins were alkyl-
ated, reduced, and directly digested in solution overnight at RT with LysC. 
Peptides were desalted and concentrated on StageTips. Peptides were 
eluted from the StageTips by passage of 2× 20 µl solvent B (80% aceto-
nitrile and 0.5% acetic acid). The volume was reduced to 4 µl in a speed 
vacuum centrifuge, and 2 µl solvent A* (2% acetonitrile and 1% trifluoro-
acetic acid) was added to acidify the sample. Peptides were separated on 
line to the mass spectrometer by using an HPLC system (1200; Agilent 
Technologies). 5-µl samples were loaded with constant flow of 500 nl/min 
onto a 15-cm fused silica emitter with an inner diameter of 75 µm (Proxeon 
Biosystems) packed in house with reverse-phase 3-µm resin (ReproSil-Pur 
C18-AQ; provided by Dr. Maisch GmbH). Peptides were eluted with a 
segmented gradient of 10–60% solvent B over 110 min with a constant 
flow of 250 nl/min. The HPLC system was coupled to a mass spectrometer 
(linear trap quadrupole Orbitrap; Thermo Fisher Scientific) via a nanoscale 
LC interface (Proxeon Biosystems). The spray voltage was set to 2.2 kV, 
and the temperature of the heated capillary was set to 180°C.

The mass spectrometer was operated in positive-ion mode. Survey 
full-scan MS spectra (m/z = 300–1,600) were acquired with a resolution of 
60,000 at m/z = 400 after accumulation of 1,000,000 ions. The most 
intense ions (up to five) from the preview survey scan delivered by the Orbi-
trap were sequenced by collision-induced dissociation (collision energy 
35%) in the linear trap quadrupole after accumulation of 5,000 ions. Multi-
stage activation was enabled in all MS/MS events to improve fragmentation 
of phosphopeptides. Maximal filling times were 1,000 ms for the full scans 
and 150 ms for the MS/MS. Precursor ion charge state screening was 
enabled, and all unassigned charge states as well as singly charged peptides 
were rejected. The dynamic exclusion list was restricted to a maximum of 
500 entries with a maximum retention period of 90 s and a relative mass 
window of 10 ppm. Orbitrap measurements were performed enabling the 
lock mass option for survey scans to improve mass accuracy (Olsen et al., 
2005). Data were acquired using the Xcalibur software (version 2.0.5).

San Francisco, San Francisco, CA) by tagging Pil1 with GFP using homol-
ogous recombination. Nce102-GFP::HIS and nce102::NATR were gener-
ated in the W303 wild-type strain by homologous recombination of 
PCR-generated fragments to yield strains TWY840 and TWY842, respec-
tively (Janke et al., 2004). The pil1:KANR NCE102-GFP::HIS was simi-
larly generated by homologous recombination, transforming the 
NCE102-GFP and marker into the pil1 strain TWY226 to yield TWY836. 
Analogously, nce102::NATR Pil1-GFP was generated by transforming a 
PIL1-GFP fragment with an HIS marker into TWY842 to yield TWY837. The 
Nce102-TAP:KANR strain was generated by homologous recombination 
after transforming an Nce102-TAP fragment in the S288C wild-type strain 
to yield TWY897 (Janke et al., 2004). Strains harboring pkhts mutants and 
Pil1-GFP were described previously (Walther et al., 2007). nce102::
NATR was generated by homologous recombination of a PCR fragment in 
a control strain with the same background as pkhts and used to derive a 
strain with pkh1ts pkh2::LEU nce102::NATR Pil1-GFP::URA by crossing, 
sporulation, and selection of haploid cells to yield strain TWY932. All dele-
tion strains were confirmed by PCR, and strains expressing tagged proteins 
were confirmed by PCR and Western blot analysis.

A pil1::KANR nce102::NATR strain was generated by crossing 
pil1 strain TWY226 with the nce102 strain TWY841. Sporulation and 
selection yield TWY898.

pRS306 plasmids containing the PIL1 promoter, the wild type, or 
mutated ORF fused to GFP used for expression of phosphomimicking and 
nonphosphorylatable Pil1 were described previously (Walther et al., 
2007) and were integrated into the URA locus of TWY898 to yield 
TWY931 and TWY934.

Pma1-GFP was created by PCR-mediated tagging in wild type or 
nce102::NATR to generate TWY958 and TWY1049, respectively. Simi-
larly, SUR7-GFP strains were generated to yield TWY956 (wild type) and 
TWY1049 (nce102).

The pGalNce102-mars plasmid was created by cloning a fusion 
PCR product combining the Gal-promoter, the Nce102 ORF, and the mars 
sequence into the NotI and HindIII sites of pRS306. This plasmid was inte-
grated into the URA3 locus of TWY110 to yield TWY1222.

For SILAC labeling, the lysine auxotroph S288C strain TWY70 was 
transformed with a Pil1-TAP fragment to get the Pil1-TAP:KANR strain 
TWY1004 (Janke et al., 2004). To generate a Pil1-TAP:KANR nce102:
NATR strain, TWY1004 was transformed with a nce102 fragment yield-
ing TWY1052 (Janke et al., 2004).

Yeast culture and drug treatment
Yeast cells were grown according to standard procedure. For microscopy, 
cells were grown in synthetic complete medium and bound to concanavalin 
A–treated coverslips. Myriocin (Sigma-Aldrich) and PHS (Sigma-Aldrich) 
were added in concentrations as indicated and incubated for 1 h or 15 min. 
Cycloheximide (Sigma-Aldrich) was added in a concentration of 100 µg/ml 
for 1 h and 15 min before treatment with other drugs.

For SILAC labeling, Pil1-TAP–expressing yeast cells in a wild-type or 
nce102 background were grown in 1 l YNB liquid medium. PIL1-TAP cells 
were grown in the presence of 20 mg/l normal L-lysine, and PIL1-TAP 
nce102 cells were grown in the presence of 20 mg/l L-lysine-U-13C6,15N2 
overnight with at least 10 doublings to OD600 = 0.7.

Microscopy
For fluorescence microscopy, yeast cells were grown to OD = 0.6 in syn-
thetic medium at 30°C unless indicated otherwise. Cells were mounted in 
synthetic media onto coverslips previously coated with concanavalin A and 
directly imaged with a spinning-disk confocal microscope (TiLL iMIC 
CSU22; Andoor) using a back-illuminated EM charge-coupled device cam-
era (iXonEM 897; Andor) and a 100× 1.4 NA oil immersion objective 
(Olympus). From this setup, 16-bit images were collected using Image iQ 
(version 1.9; Andor) in the linear range of the camera. For presentation, 
images were filtered with a smoothening filter averaging 2 pixels, con-
verted to 8-bit images, and cropped using ImageJ software (http://rsbweb 
.nih.gov/ij/).

FM4-64 assay
To measure the formation of early FM4-64 uptake intermediates, either 
wild-type or nce102 cells were grown in mid-log phase to OD = 0.5.  
Approximately 5 ml cell culture was harvested by centrifugation and incu-
bated on ice for 5 min. Cells were then labeled for 10 min with 40 µM 
FM4-64, washed three times in ice-cold medium, and resuspended in RT 
YPD for 5 min. Cells were killed by addition of 10 mM NaN3 and NaF 
each and immediately analyzed by fluorescence microscopy.
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Information on extracellular signals and conditions is often transduced by biological systems

using cascades of protein phosphorylation that affect the activity of enzymes, the localization of

proteins and gene expression. A model to study signal transduction is the response of the yeast

Saccharomyces cerevisiae to osmotic changes as it shares many central themes with information

processing modules in higher eukaryotes. Despite considerable progress in our understanding of

this pathway, the scale and dynamics of this system have not been addressed systematically yet.

Here, we report a comprehensive, quantitative, and time-resolved analysis using high-resolution

mass spectrometry of phospho-proteome and proteome changes in response to osmotic stress in

yeast. We identified 5534 unique phosphopeptide variants and 3383 yeast proteins. More than

15% of the detected phosphorylation site status changed more than two-fold within 5 minutes of

treatment. Many of the corresponding phosphoproteins are involved in the early response to

environmental stress. Surprisingly, we find that 158 regulated phosphorylation sites are potential

substrates of basophilic kinases as opposed to the classical proline-directed MAP kinase network

implicated in stress response mechanisms such as p38 and HOG pathways. Proteome changes

reveal an increase in abundance of more than one hundred proteins after 20 min of salt stress.

Many of these are involved in the cellular response to increased osmolarity, which include

proteins used for glycerol production that is up-regulated to counterbalance the increased

osmolarity of the salt containing growth medium. Although the overall relationship between our

proteome and published mRNA changes is poor we find an excellent correlation between the

subset of osmotic shock up-regulated proteins and their corresponding mRNA changes.

Introduction

Changes of external conditions or signals from the environment

often have far-ranging consequences in the cell. To mediate

these responses, cells use networks of kinases that alter the

phosphorylation status and concomitantly the activity of

many factors. Due to their central importance to understanding

cellular communication, such networks have been characterized

in great detail over the past 30 years.1 Until recently however,

approaches to systematically characterize the global response

of cells to a specific signal have been missing. Advances in

quantitative mass spectrometry close this gap and allow global

profiling of the phosphorylation response.2,3

Here, we used this approach to globally determine changes

of protein regulation in response to hyper-osmotic shock.

Osmotic stress is used as a model to study signal transduction

and is known to cause a multitude of cellular adaptations,

which include changes in signal transduction, protein expression,

and regulation of cell size and volume.4,5 This response has

been studied extensively using mRNA microarrays as well as

hypothesis driven candidate-based approaches. Osmotic stress

induced signaling can activate different signaling pathways.

One of the well known transducers of the osmotic stress signal

is the activation of the MAP kinase high osmolarity glycerol

(HOG) pathway, which is the yeast counterpart of the human

p38 MAPK pathway. Such mitogen-activated protein (MAP)

kinase cascades are often involved in the immediate cellular

response to various external stimuli such as growth factors,

hormones, and environmental stresses.6 Key genes involved in

this pathway encode the Pbs2/Hog4 and Hog1 kinases.7 Hog1

is known to bind and occupy regulatory elements of more

than 30 different genes during periods of osmotic stress,

which results in increased transcription.8 However, little

is still known about the effects of osmotic stress on protein

level and the potential role of phosphorylation in the
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cellular response to this stress. In addition, the full scope of

signal transduction mediated by phosphorylation is so far

unknown.

To globally address these questions, we employ stable

isotope labeling of specific amino acids (SILAC)9 in combination

with high-resolution mass spectrometry and phosphopeptide

enrichment,10 in order to quantify changes in the phospho-

proteome and proteome on a global level in response to

osmotic stress.

Results and discussion

To generate an extensive, time-resolved dataset of proteome

and phospho-proteome changes after hyper-osmotic stress we

employed high-resolution mass spectrometry. To this end,

we used three SILAC encoded populations of yeast cells

auxotrophic for lysine3,11 using either normal L-lysine,

L-lysine-D4 or L-lysine-13C6,
15N2 and compared the untreated

control population with two hyper-osmotic stress conditions

using 0.4 M NaCl for 5 and 20 min, respectively. Cells were

subsequently lysed in 5% SDS containing buffer and proteins

were digested in-solution by the endoproteinase LysC (see

Fig. 1). In most proteomic experiments, trypsin that cleaves

C-terminal to arginine and lysine is the preferred proteolytic

enzyme to generate peptides suitable for mass spectrometric

analysis. However, our previous experimental observations

show that there is a high degree of arginine to proline

conversion in yeast, convoluting the mass spectra obtained.12

Therefore, we used labeling with only lysine followed by Lys-C

digestion to generate peptides for mass spectrometric analysis.

To obtain an in-depth proteome, we separated the complex

peptide mixtures by iso-electric focusing into 12 fractions and

analyzed each of these by online nanoflow HPLC-MS/MS on

hybrid linear ion trap Fourier transform mass spectrometers

(LTQ-FT Ultra and LTQ-Orbitrap XL). For phosphopeptide

analyses, the LysC generated peptide mixtures were separated

by strong-cation exchange (SCX) chromatography into 15

fractions, and phosphopeptides were enriched using TiO2 in

the presence of 2,5-DHB.13 The phosphopeptide mixtures

were analyzed by online LC-MS/MS, sequenced by multi-

stage activated (MSA) collisionally induced dissociation

(CID) and the resulting tandem mass spectra were searched

against a yeast target-decoy database14 using the Mascot

algorithm. All raw MS and Mascot output files were analyzed

together in the software suite MaxQuant,15 where peptide

identifications were filtered using stringent criteria of less than

1 percent final false-discovery rate on both peptide and protein

level, and all identified peptides were quantified. This resulted

in the identification of 26,620 unique peptide variants of which

5534 were unique phosphopeptides (Supplementary Table 3z)
and 3383 proteins (Supplementary Table 2z). We included a

replicate phosphoproteomics experiment in which we made

use of the electron transfer dissociation (ETD) method16

which is the latest generation phosphopeptide sequencing

technology allowing for accurate localization of phosphosites

in modified peptides. From the ETD experiment we can

pinpoint 1588 phosphorylation sites (class A sites with high

localization probability), of which 959 has previously been

published and are publically available from Expasy.org. From

the three CID experiments we localize 2924 class A sites

(1621 already recorded at Expasy.org). Combining the ETD

dataset with three CID experiments we all together identify

peptides from 1728 yeast phosphoproteins and we localize

3084 unique phosphorylation sites. We calculated the phos-

phorylation site ratio as the relative difference between the

phosphopeptide intensities observed from the untreated and

the salt stressed states. We define increased phosphorylation of

a protein as a result of an observed increased ratio of a

phosphopeptide originating from the protein. Of all quantified

class A phosphosites, 800 changed more than two-fold

after 5 or 20 minutes of salt stress. This data show that

osmotic stress regulates hundreds of proteins by altering their

phosphorylation abundance on specific sites within a short

time. Previous large-scale phosphoproteomics projects have

shown that very few phosphorylation sites are only observed

in one condition. This might reflect the overall ‘‘asynchronous’’

cell-cycle state of the cell populations and as a result of this

most regulatory phosphorylation sites are present in low

amounts in all cell populations.

This information rich dataset provides many novel and

interesting insights into the osmotic stress response and

forms a basis for future studies aiming at understanding the

mechanisms of the osmotic stress response. Here, we discuss

some examples of prominently regulated proteins and bio-

logical processes that were detected in our proteomics screen.

To confirm the activation of osmotic stress response in our

system, we searched our phospho-proteome for an increase

of proteins that are considered markers for this signaling

pathway. We found for example serine-248 on Pbs2 had a

3 times higher induced level of phosphorylation. It is the MAP

kinase kinase that plays a key role in cellular signaling after

osmotic stress by directly phosphorylating and thereby

activating the Hog1 MAP kinase pathway (Fig. S1z).
Likewise, we also observed increased abundance levels of

phosphopeptides from other members of the HOG MAPK

pathway such as Ste20 and Sln1. This data served as a positive

control and confirmed the activation of stress signaling in the

analyzed cells. In order to find the prominent protein kinases

involved in osmotic stress signaling, we performed an

unbiased motif analysis to search for enriched sequence motifs

surrounding the phosphorylation sites in our dataset. To

detect target sites with different extent of regulation, we

applied a conservative cut-off for considering a phosphorylation

site to be regulated and grouped the phosphorylation sites in

three groups according to their SILAC ratio in response to

osmotic stress such that phosphosites with a log2 ratio of one

or more were considered up-regulated, sites with a log2 ratio

less than �1 were down-regulated and the rest were considered

as non-changing.

We developed an algorithm that tests for position-specific

over-representation of amino acids compared to an average

background frequency and used it to find enriched motifs

between the up-regulated and non-changing phosphorylation

class A sites. Specific amino acid groups were formed based

on their chemical properties. Interestingly, as shown in the

sequence logo plot (Fig. 2A) the most statistical significantly

over-represented motif from the up-regulated class A

phosphorylation sites conformed to basophilic sequence context
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[R/K]-X-X-[pS/T], which indicates activation of PKA- and

CamKII-like kinases in response to osmotic stress. In contrast,

the most overrepresented sequence motif among the non-

changing phosphosites was highly enriched for acidic amino

Fig. 1 Quantitative proteomics workflow. Control and treated yeast cells are labeled by different stable isotopic versions of lysine, lyzed in SDS,

and mixed together. Protein extracts are digested by endoproteinase LysC, and phosphopeptides are enriched by a combination of strong cation

exchange and TiO2 chromatographies. For proteome quantitation peptide digests were separated according to their pI-value by iso-electric

focusing. Resulting peptide mixtures are separated on nanoflow HPLC and directly measured in a mass spectrometer. Relative peptide

quantitation is based on the first stage of mass spectrometry (Full-scan MS), whereas peptide identification is achieved by fragmentation in the

second stage of mass spectrometry (MS/MS).
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acids surrounding the phosphorylated residue, suggesting that

acidophilic kinases like the casein kinases are not activated by

osmotic stress (Fig. 2B).

The second highest-enriched sequence motif of the

remaining sequences conforms to the proline-directed MAP

kinase [pS/T]-P motif for the upregulated phosphorylation

sites, whereas for the non-changing sites there is a significant

overrepresentation [pS/T]-P-X-[K/R] (Fig. 2C and 2D),

which match exactly to the established CDK1/2 motif.17 In

concordance with this observation, Cdc28 which is the yeast

single homolog of human CDKs and the master regulator

of cell cycle progression, was found to have increased

phosphorylation on tyrosine residue 19 after salt stress

(Fig. S2z). This residue is an inhibitory site of Cdc28 implying

that upon exposure to osmotic stress, yeast cells immediately

undergo cell cycle arrest, which would be a logical cellular

response to this hazardous growth condition.

Moreover, many transcriptional regulators, which abundance

on the protein level were unaffected by the osmotic shock

treatment, showed increased phosphorylation site levels in our

dataset (Fig. 3). At least five transcription factors (Msn2,

Msn4, Hot1, Sko1 and Smp1) have been suggested to be

directly controlled by the Hog1 MAP kinase in response to

osmotic stress, although it is unclear how this control is

exerted.18,19 We find osmotic stress increases the relative levels

of phosphorylation on specific sites on both Msn2 (serine-201,

Fig. 3A) and Msn4 (threonine-142, Fig. 3B). The zinc finger

proteins Msn2 and Msn4 are generic stress factors, which are

controlled by PKA and Hog1 by an unknown mechanism.

They are involved in the regulation of the Ctt1 and Hsp12

genes, both of which we find to be upregulated more

than 7-fold on the protein level after 20 min of salt stress.

Furthermore, we also find increased phosphorylation of

serine-94 and -108 in the cyclic AMP response element

(CRE)-binding basic-leucine zipper protein Sko1 induced, a

critical regulator of osmotic stress-inducible genes (Fig. 3C).

All of these proteins were previously implicated in the stress

response; however, the regulatory mechanism remained

unclear. Interestingly, we find that their phosphorylation is

highly induced, indicating that this may represent a regulatory

mechanism for these transcription factors.

We also find increased phosphorylation site levels on other

transcriptional activators not previously implicated in the

cellular stress response: for example, the AP1-like trans-

cription factor Yap3 is phosphorylated on serine-128 and

serine-133 (Fig. 3D). Since both of these phosphorylation sites

are proline-directed, they might be direct targets of the Hog1

MAP kinase. Yap3 is thought to be a transcriptional activator

that is involved in the environmental stress response and

metabolism control pathways, but has not previously been

implicated directly in osmotic stress. Interestingly, another

member of this family of AP1-like proteins, Yap4, is induced

4-fold on the protein level within 5 minutes of salt stress

(Supplementary Table 2z).
Other transcriptional regulators like the glycolytic genes

transcriptional activator Gcr2 are also phosphorylated in

response to salt stress (Fig. 3E), whereas other transcription

factors involved in other cellular responses such as the

forkhead type Hcm1 appear to not be regulated (Fig. 3F) in

terms of phosphorylation. We also confirm the activation

of other known osmotic stress responders, for example,

activation of serine/threonine-protein kinases Pkh1 and Hal5

as evidenced by the increased phosphorylation of specific

sites on these proteins (Fig. S2z). PKH1 phosphorylates and

activates Ypk1 and Ypk2 and plays a role in the maintenance

Fig. 2 Enriched phosphorylation site motifs. Logoplot of significant

sequence motifs found in the dataset. The height of each amino acid

represents its frequency at that position. (a) R/K-X-X-pS/pT/pY motif

found in 32.0% of the up-regulated sequences compared to an average

background frequency of 12.9% in the non-regulated sequences. (b)

pS/pT/pY-D/E-X-D/E motif found in 13.1% of the non-regulated

sequences compared to a background frequency of 1.1% in the

up-regulated sequences. (c) pS/pT/pY-P motif found in 21.1% of the

up-regulated sequences compared to an average background frequency of

6.3% in the non-regulated sequences. (d) pS/pT/pY-P-X-K/R motif

found in 7.2% of the non-regulated sequences compared to an average

background frequency of 1.2% in the up-regulated sequences.
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of the cell wall integrity during environmental stress.20 Hal5 is

known to help mediate adaptation to salt stress.21
We also measured the proteome changes after osmotic stress

at two different time points and in three biological replicates.

Fig. 3 Regulated phosphorylation sites on transcription factors. Transcriptional regulators showing increased levels of phosphorylation upon

osmotic stress treatment after a time period of 20 min.
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Reproducibility was observed with high correlation and

overlap between the individual experiments (Fig. 4) with

Pearson correlation coefficients of better than 0.86 for all

comparisons. The figure legend to Fig. 4 provides more details

and numbers. More than one hundred proteins are up-regulated

(p o 10�4) after 20 min, whereas less than fifty are down-

regulated (Fig. 5).

To gain functional insights into the regulated proteins, we

performed gene ontology (GO) enrichment analysis using the

web-tool FatiGo (http://www.fatigo.org). This unbiased

analysis revealed that proteins involved in the cellular

stress response are highly over-represented in the group of

up-regulated proteins (p o 10�8), adding further to the

confidence in our dataset. Likewise, proteins involved in the

carbohydrate metabolism are significantly over-represented in

this group (p o 10�10).

To identify functional connections among the regulated

proteins we mapped them to known metabolic and signal

pathways using the metabolic pathway analysis tool at yeast

genome.org. A significant number of the osmotic stress

induced proteins are involved in carbon metabolism, e.g.

glycolytic pathways (Fig. 6). Remarkably, all enzymes involved

in the conversion of glycogen to glucose-6-phosphate are all

regulated upon osmotic shock, which indicates an increased

glycogen metabolism under stress conditions. Likewise, the

enzymes directly involved in the glycerol biosynthesis branch

of the pathway are specifically upregulated, for example,

GPD1, an enzyme that converts dihydroxy-acetone-phosphate

from the glycolytic pathway to glycerol-3-phosphate, is

up-regulated more than 3-fold. Also, HOR2 the rate-limiting

enzyme that converts to glycerol-3-phosphate to glycerol is

4-fold induced within 20 min of osmotic stress. In contrast, all

other members of the glycolytic pathway downstream of

glyceraldehyde-3-phosphate are unchanged in abundance

during osmotic stress. This could suggest that carbon metabolism

redirected from pyruvate synthesis to increased production of

glycerol, functions as an osmolyte that protects proteins in their

native folded and functional states, and thereby aids in

maintaining intra-cellular homeostasis during environmental

stresses such as osmotic shock conditions. In addition to this

role glycerol also increases the intracellular osmolarity in order to

stop or slow down the efflux of water and influx of ions.

It is known that during osmotic stress, cells are more prone

to oxidative stresses such as an increased level of hydrogen

peroxide.22 In line with this we find that the most up-regulated

protein, catalase T (CTT1), is an enzyme that catalyzes the

conversion of hydrogen peroxide to water and oxygen that

thereby protects the cell from oxidative damage induced by

hydrogen peroxide.

Under salt stress, Hog1 has been shown to bind directly to

regulatory sequences of more than thirty genes and increases

their mRNA expression within 15 min after hyper-osmotic

shock.8 To assess co-regulation of mRNA and protein changes

upon osmotic stress, we compared our data with a previously

published dataset on mRNA abundance.23 The overall

correlation between our proteome and the mRNAmeasurements

Fig. 4 Reproducibility of Proteome measurements between 0 and 20 min of salt stress. Venn diagrams show 61% overlap between all three

biological replicates, and 80% overlap between two or more-both comparing all quantified proteins (top) or the subset that show a significant

change (bottom). The ratio scatter plots show protein abundance change between 0 and 20 min of salt stress as measured in each experiment and

plotted versus a combined ratio. The combined ratio is used as the quantization of each protein is measured with different precisions within each

experiment depending on the number of underlying measured peptides (see ref. 15 for details). The Pearson correlation coefficient is shown in the

top left corner of each plot. In the top 3 plots, coloring is done according to density, where 50% of the data points are colored red, 25% yellow, and

the remaining 25% are light blue. The 3 lower plots only include proteins which are showing a significantly changed ratio and are colored from

orange to red in increasing significance.
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is poor (Fig. S3Az), perhaps due to a combined effect of

experimental differences, quantitation precision of the two

different measuring techniques (MS versus microarray), and

other differences inevitably present between labs. However,

the induced change in protein abundance seems to correlate

well with the corresponding mRNA changes observed by

microarray studies (Supplementary Table 4 and Fig. S3Bz).
Upregulated proteins include Hsp12, Ald3, Ctt1, which are

known to be induced on both mRNA and protein levels under

stress conditions. Down-regulated proteins include Rad9 and

Hos4, both thought to be substrates of Cdc28. Down-regulation

of protein can be exerted by two different mechanisms; a

decrease in mRNA production or by active protein degradation,

for example through the ubiquitin-proteasome pathway. The

last type of regulation is only captured by quantitative

proteomics screens, and might be the reason why some of

the ratios of some of the significantly down-regulated

proteins—for example Aim38, Mdr1, Nup157 and Rph1—are

not reflected by changes in their mRNA.

Conclusion

We report global regulatory protein changes in yeast cells both

at the proteome and phospho-proteome level upon osmotic

stress. Our data confirm regulation of many proteins known to

be altered in abundance after salt stress and implicating a large

number of novel proteins in the adaptation to high osmolarity

conditions. For example, we find that although the stress-

activated Hog1 MAPK pathway plays a pivotal role in the

osmotic stress response in yeast, other kinase pathways also

seem to play important roles. Furthermore, we find a signifi-

cant correlation between protein changes and their mRNA

and under these conditions, independently confirming the

quality of our dataset. Interestingly, we observe that osmotic

stress influences the expression of many more proteins than

previously anticipated and the regulated proteins participate in

many different aspects of cellular functions. Taken together,

our data significantly expand the knowledge on osmotic stress

mediators regulated on phosphorylation and protein level and

will likely prove valuable for future studies in this field.

Methods

Cell culture, labeling and protein extraction

The yeast Saccharomyces cerevisiae strain S28CC was used in

this study. It contains a lysine deficient gene which makes it

compatible for the use with SILAC. Three different yeast

cell cultures were grown in SILAC friendly YNB medium

containing either 30 mg/L-Lysine, 30 mg/L-Lysine-D4, or

Fig. 5 Proteome changes after 20 min osmotic stress. Overall fold change for the yeast proteome as a function of protein intensity in the MS.

Protein ratios are color-coded according to their ratio significance (significance B as described in ref. 15), which is calculated by estimating the

variance of the distribution of all SILAC pair ratios, taking the summed peptide intensities into account, and reporting the p-value associated

with the z-score for a given ratio. See Cox J et al., Nature Biotechnology, 26, 1367–1372 (2008). Data are normalized such that the median

log-transformed ratio of all peptides identified were zero to correct for unequal sample mixing.
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30 mg/L-Lysine-D8 for a total of ten generations to a

final OD600 of 0.6. At this time, the yeast culture containing

Lysine-D4 was shifted to 0.4 M NaCl for 5 min, and the yeast

culture containing Lysine-D8 was subjected to 0.4 M NaCl for

20 minutes. Cells were harvested by centrifugation for 6 min at

4000 � g at 4 1C, washed twice with ice-cold H2O. Cell lysis

and protein extraction was performed via a slightly modified

version of the Filter Aided Sample Preparation (FASP)

Method.24 Briefly, yeast cells were re-suspended in a lysis

solution containing 5% SDS, 100 mM Tris/HCL pH 7.6,

0.1 M DTT. Cells were incubated at 95 1C for 10 min.

Precipitates were removed via centrifugation for 5 min.

Proteins were mixed in a 1 : 1 : 1 ratio. Proteins were placed

on a Millipore Centrifugal device (Microcon). SDS was

removed through several washes with 8M Urea (pH 8.5 and

pH 8.0) reduced cysteine thiols were alkylated by 0.55M

iodoacetamide, and digested with LysC overnight. The resulting

peptides were desalted using C18 Sep-Pak cartridges (Waters).

Peptide concentration was measured by UV spectrometer with

a spectrum range of 240–340 nm. For proteome analysis,

100 mg of peptides were separated by iso-electric focusing

(IEF) on an Agilent OFFGEL fractionator using the 13 cm

IPG strip with pH = 3–10 followed by LC-MS analysis. All

experiments were performed as three biological replicates.

Phosphopeptide fractionation and enrichment

To separate phosphopeptides from non-phosphorylated

peptides we used strong cation exchange (SCX) chromatography.

8 mg of LysC digests were adjusted by tri-fluoroacetic acid

(TFA) to pH 2.7. Precipitates were cleared by centrifuging at

17000 � g for 10 min. The peptide mixture was loaded onto a

1 ml Resource S column (GE healthcare) connected to the

Äkta Purifier chromatography system (Amersham biosciences).

During loading, the flow-through from the column was collected.

Peptides bound to the column were separated by a linear gradient

of potassium dihydrogen phosphate in 30% acetonitrile and

0.1% TFA.25 Fifteen fractions were collected via an automated

fraction collector. Based on UV absorbance, some fractions

containing low amount of peptides were pooled which resulted

in 10 fractions. Each fraction was subjected to phosphopeptide

enrichment with TiO2 in the presence of 2,5-DHB. Due to the

high peptide amount, the flow-through sample was sequentially

incubated with TiO2 beads for 3 times. Peptide samples

originated from immunoprecipitation were adjusted by to a final

concentration of 30% acetonitrile (MeCN) and pH 2.7.

Phosphopeptide enrichment by TiO2 beads was essentially

as described26 with slight modifications. TiO2 beads were

pre-coated with 2,5-dihydroxybenzoic acid (2,5-DHB) and

stored in a solution of 80% MeCN and 0.1% TFA. From

this a 1 : 1 TiO2 beads- slurry, 5 ml was added to each sample

and rotated end-over-end for 30 min. After one time wash with

1 ml 30% MeCN/1% TFA and one time with 1 ml 50%

MeCN/1% TFA, the phosphopeptides were eluted from

TiO2-C8-StageTips into a 96-well plate with 2 � 20 mL of

20% acetonitrile (MeCN) in 15% ammonia-water solution

(pH 4 11) and dried to 2 mL in a speed-vac.

Mass spectrometric analysis

The dried phosphopeptide mixtures were acidified with 5%

acetonitrile in 0.3% TFA to an end volume of 8 mL and

analyzed by online nanoflow liquid chromatography tandem

mass spectrometry (LC-MS/MS) as described previously26

with a few modifications. Briefly, nanoLC-MS/MS-experiments

were performed on an EASY-nLCt system (Proxeon Biosystems,

Odense, Denmark) connected to an LTQ-Orbitrap XL or 7-T

LTQ-FT Ultra (Thermo Scientific, Bremen, Germany)

through a nanoelectrospray ion source. The phosphopeptides

were auto-sampled directly onto the 15 cm long 75 mm-inner

diameter (i.d.) analytical column packed with reversed-phase

C18 Reprosil AQUA-Pur 3 mm particles at a flow rate of

500 nl/min. The flow rate was reduced to 250 nl/min after

loading, and the phosphopeptides were separated with a linear

gradient of acetonitrile from 5–40% in 0.5% acetic acid for

100 minutes. The effluent from the column was directly

electrosprayed into the mass spectrometer.

Fig. 6 The glycolytic metabolism and glycerol synthesis pathway. All

enzymes of the yeast carbon metabolism pathway are colour-coded

according to their osmotic fold-change. The 20 min osmotic shock

to control ratio as determined by SILAC is indicated for each protein

in red.
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The LTQ Orbitrap XL and LTQ-FT Ultra instruments

under Xcalibur 2.0 were operated in the data dependent mode

to automatically switch between full scan MS and MS/MS

acquisition. Survey full scan MS spectra (from m/z 300–2000)

were acquired with resolution R = 60000 at m/z 400 (after

accumulation to a ‘target value’ of 1 000 000 in the linear ion

trap) in the orbitrap or at with resolution R = 100 000 at

m/z 400 (‘target value’ of 5 000 000) in the FTICR. The ten

most intense multiply-charged ions (z Z 2) were sequentially

isolated and fragmented in the linear ion trap by collisionally

induced dissociation (CID) at a target value of 5000 or a

maximum ion time of 150 ms. All tandem mass spectra were

acquired with the multi-stage activation (MSA) option

enabled for neutral losses of m/z 32.66, 48.99 and 97.97. For

all full scan measurements in the orbitrap detector a lock-mass

ion from ambient air (m/z 445.120025) was used for internal

calibration as described earlier.27 For electron transfer

dissociation (ETD) analysis, we employed an LTQ Orbitrap

XL ETD instrument (Thermo Scientific) that was operated in

a standard top10 ETD mode. Full-scans were analyzed in the

orbitrap at R = 60 K with ETD spectra IT target values:

10 000, ETD ions: 300 000, and a maximum reaction time of

250 ms. The supplemental activation feature was enabled and

recorded in parallel by the LTQ detector system. Anions and

multiply-charged peptide ions were reacted for 100 ms to allow

efficient ETD. Typical mass spectrometric conditions were:

spray voltage, 2.2 kV; no sheath and auxiliary gas flow; heated

capillary temperature, 200 1C; normalized CID collision

energy 40% for MSA in LTQ. The ion selection threshold

was set to 100 counts for MS/MS. An activation q = 0.25 and

activation time of 30 ms for MSA acquisition were used.

Identification and quantification of peptides and proteins using

MaxQuant

Raw FTICR and Orbitrap full-scan MS and ion trap MSA

spectra were processed by MaxQuant as described15 supported

by Mascot (Matrix Science, London, UK) as the database

search engine for peptide identifications. In brief, MaxQuant

uses the entire elution profile of the full-scans, the isotope

distribution, and possible SILAC pairs to determine the

precursor mass with very high precision and an individualized

mass accuracy which is a major part of the identification

process.28 MS/MS peak lists were filtered to contain at most

six peaks per 100 Da interval and searched by Mascot against

a concatenated forward and reversed version of the yeast ORF

sequence database (Stanford University) supplemented

with common contaminants such as human keratins and

endoproteinase LysC. Tandem mass spectra were initially

matched with a mass tolerance of 7 ppm on precursor masses

and 0.5 Da for fragment ions, and strict LysC specificity and

allowing for up to 3 missed tryptic cleavage sites. Cysteine

carbamidomethylation (Cys +57.021464 Da) was searched as

a fixed modification. Labeled lysine was specified as fixed or

variable modification, depending on prior knowledge about

the parent ion. N-acetylation of protein (N-term+42.010565 Da),

N-pyro-glutamine (Gln �17.026549), oxidized methionine

(+15.994915 Da) and phosphorylation of serine, threonine

and tyrosine (Ser/Thr/Tyr +79.966331 Da) were searched as

variable modifications. The resulting Mascot result files (*.dat)

were loaded into the MaxQuant software together with the

raw data for further processing. To minimize false identifications,

all top-scoring peptide assignments made by Mascot were

filtered based on previous knowledge of individual peptide

mass error, SILAC state and the correct number of lysine

residues specified by the mass difference observed in the full

scan between the SILAC partners. Furthermore, peptide

assignments were statistically evaluated in a Bayesian model

on the basis of sequence length and required to have a Mascot

score 4 10. We accepted peptides and proteins with a false

discovery rate of less than 1%, estimated on the basis of the

number of accepted hits from the reverse database. Moreover,

proteins can be identified by a single peptide that MaxQuant

was not able to quantify (could not identify the SILAC triplet)

and therefore these proteins will appear with an intensity of

zero in the table.

Finally, to pinpoint the actual phosphorylated amino acid

residue(s) within all identified phosphopeptide sequences in an

unbiased manner, we calculated the localization probabilities

of all putative serine, threonine and tyrosine phosphorylation

sites using the PTM score algorithm as described.26 As a

further certainty localization measure, the likelihood of phosphate

group transfer during fragmentation was considered,29 where

a high proton mobility of the peptide is equivalent to high

phosphosite localization certainty. Certainty of localization

was grouped into 3 groups, where class A sites indicate likely

correct localization and is defined as peptides with localization

probability above 0.75 and unlikely to be involved in gas phase

phosphate group transfer defined as containing a mobile

proton or with ETD evidence. Class B sites can be considered

presumably correct requiring peptides to have a localization

probability above 0.25 and match one or more of 22 known

kinase motifs and not expected to be involved in phosphate

group transfer defined as having a partially mobile or mobile

proton or ETD evidence. Sites reported as class C are

uncertain and needs further validation.

FatiGo. Statistical analysis of over- and under-represented

genes in our osmotic stress regulated set of proteins was

performed using the FatiGo software (www.fatigo.org)30 using

the non-regulated set of proteins identified as background.

FatiGo performs functional enrichment analysis by comparing

the two lists of proteins by means of a Fisher’s exact test. Gene

modules used in the test were defined to gene ontology (GO)

and KEGG. We used a cut-off threshold of p o 0.01 for

significance after adjusting for multiple testing.

Sequence logo plots

To identify enriched sequence motifs in our phosphorylation

site dataset we developed a new algorithm that iteratively tests

for position specific over-representation of any amino acid

groups in a pre-aligned list of sequences compared to the

average occurrence of the amino acid group in another list. In

each round of iteration the most significant amino acid group

is excluded in a position specific fashion from both lists.

Statistical significant over-representation is calculated using

R’s (a programming language and software environment for

statistical computing and graphics) implementation of the

This journal is �c The Royal Society of Chemistry 2009 Mol. BioSyst., 2009, 5, 1337–1346 | 1345



Fisher’s exact test. Grouping of amino acids were done by the

basis of related chemical properties (acidic, basic, aromatic,

aliphatic, hydrophilic, amide, polar and cyclic). The perl- package

of WebLogo31 was used internally in the algorithm to generate

enriched sequence motifs as output.

For the motif analysis a sequence window of � 6 amino

acids in relation to a central phosphorylated residue was used.

Phosphorylated peptide sequences upregulated more than

two-fold were compared to a background of all non-regulated

residues. This was followed by the inverse analysis. A cut-off

of p o 0.001 was used on the Bonferroni adjusted p-values in

this analysis.
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Abstract
Mass spectrometry and cryo-electron tomography together 
enable the determination of the absolute and relative abundances 
of proteins and their localization, laying the groundwork for 
comprehensive systems analyses of cells.

Biological systems are characterized by the dynamic inter
play of their components, and to understand how individual 
parts act together it is crucial to know the composition of a 
system and how it changes over time. The protein 
components are of prime interest as they provide structure 
and carry out many functions in the cell. The transcriptome 
has been much used as a proxy to infer changes in protein 
expression, as techniques for measuring global RNA levels 
preceded those for measuring the proteome. However, when 
the levels of an mRNA and its corresponding protein are 
systematically compared, many differences in their abun
dance emerge, resulting in poor quantitative correlation 
overall between transcriptome and proteome [13]. Ways of 
measuring protein levels directly are therefore highly 
desirable, and breakthroughs in mass spectrometry (MS)
based proteomics are starting to enable this on a global scale.

In experiments recently published in Nature, Ruedi Aeber
sold and colleagues (Malmström et al. [4]) combined 
MSbased measurements of protein abundance in the 
bacterial pathogen Leptospira interrogans, the agent of 
Weil’s disease, with imaging by cryoelectron tomography 
(CET) of distinct structures of known protein composition, 
such as the flagellar motor (in which the precise number 
and type of the protein subunits can be counted). The CET 
imaging provided a way of confirming the MS protein
quantitation data. The proteinabundance measurements 
then enabled the effect of the antibiotic ciprofloxacin on a 
large fraction of the Leptospira proteome to be determined. 
In this article we describe some of the recent developments 
in MSbased proteomics that enable such experiments, 
focusing on quantitative techniques that will eventually 
allow a complete inventory of cellular proteins. The goal 
for proteomics is the measurement of the absolute and 
relative abundances of proteins at high accuracy and with 
minimal effort. But currently this means a compromise 
between depth of analysis and measurement time.

Identifying proteins by mass spectrometry
Intact proteins are difficult to identify by MS because their 
sequence cannot be obtained by fragmentation and so 
MSbased proteomics relies on analysis of peptides 
obtained by proteinase digestion of the sample. By analogy 
with genomesequencing methods, this approach has been 
called ‘shotgun’ proteomics. The resulting peptide mixtures 
are dauntingly complex and are fractionated before 
submitting them to MS. Several recent studies, including 
the determination of the yeast and Leptospira proteomes 
[2,4], used isoelectric focusing in socalled OFFgels [5,6] 
as a first separation step. Following this initial fractiona
tion, peptides are separated by liquid chromatography 
(LC) most commonly directly coupled to electrospray 
ionization of peptides (ESI) or less frequently to matrix
assisted laser desorption ionization (MALDI) to produce 
ions for MS.

In the next step, masstocharge (m/z) values of peptides 
and their ion intensities are determined by MS (MS1 or 
‘parent ion’ spectra). To reliably identify peptides, the 
(typically) 5 to 20 most abundant peptides are selected for 
further fragmentation, resulting in a sequencecharac ter
istic spectrum (MS2 or fragmentation spectrum) for each 
peptide that is used to search databases to identify the 
peptide (Figure 1a). In the determination of the Leptospira 
proteome, Malmström et al. [4] collected more than 
415,000 MS2 spectra that could be assigned to more than 
18,000 unique peptides, leading to the identification of 
2,221 proteins (61% of the predicted open reading frames). 
To analyze the complex peptide mixtures typical of proteo
mics very high mass resolution is required. Otherwise, MS 
spectra from different peptides overlap, making peptide 
identification and quantification potentially inaccurate and 
unreliable. Precision instruments, in particular orbital 
frequency resonance ion traps such as the Orbitrap [7], are 
therefore most widely used for proteomics.

Methods for comparative quantitative 
proteomics
A common goal in proteomics is the accurate quantification 
and comparison of the proteomes of cells in different 
physiological or developmental states. For Leptospira, the 
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interesting question addressed by Malmström et al. [4] is 
how the proteome reacts to addition of an antibiotic. They 
took the approach of quantifying protein abundance 
directly using a labelfree method, which we shall discuss 
later. Another approach would have been to derivatize the 
peptides from different conditions with isobaric labels that 
yield different, indicative, small molecules after fragmen
tation, a technique called isobaric tag for relative and 
absolute quantitation (iTRAQ) [8]. After fragmentation 
these derivatives yield distinctive small molecules indica
tive of the peptide. In such an experiment, the relative 
abundance of these indicators is used to quantify the 
relative abundance of the different peptides (and thus 
proteins) in the sample.

Metabolic labeling of proteins yields similar information, 
but avoids complications of in vitro coupling such as 
incomplete reactions. Samples are labeled in vivo with 
amino acids (lysine and arginine) labeled with heavy non
radioactive isotopes such as 13C or 15N, and compared with 
samples containing unlabeled amino acids, a technique 
called stable isotope labeling of cells in culture (SILAC) [9]. 
Peptides are then generated by digesting with proteinases 
(for example, trypsin) that cut specifically after labeled 
amino acids, thereby ensuring that each peptide contains 
at least one labeled amino acid. This results in a distinct 
shift in MS spectra between heavy and light peptides. The 
intensity ratio between peaks in a SILAC pair indicates the 
abundance ratio of proteins from which the peptides were 
derived (Figure 1b).

For more accurate measurements, multiple peptides from 
a protein are typically averaged and this analysis is now 
completely automated [10]. Because of the high resolving 
power of Orbitrap mass spectrometers, this methodology 
can be applied to very complex mixtures and closely spaced 
peaks can be well resolved. Together with only one 
previous fractionation step  isoelectric focusing  this 
experimental setup was used for the first quantitation of a 
eukaryotic proteome, that of Saccharomyces cerevisiae, in 
the haploid and diploid phases of the life cycle (4,399 
proteins were identified and 4,033 quantitated from 
1,788,451 SILAC pair peptides [2]). If the abundances of at 
least some proteins are known, as was the case in yeast, 
they can be used to calibrate the MS data and yield absolute 
protein measurements. Advantages of this approach include 
very accurate quantitation and the fact that no previous 
knowledge of proteins that change in abundance is 

required. This is in contrast to the classical protein
detection methods, for example, immunoblotting, where 
reagents are often limiting and a clear hypothesis about 
which protein(s) to measure is required. SILAC, pioneered 
by the Mann laboratory, is now widely used for protein 
analyses in yeast, flies and even mice [1,2,11,12].

Label-free approaches
A limitation of SILAC experiments is that labeling is 
necessary but is not always possible  for example in 
human samples. One option is to compare SILAClabeled 
reference extracts or recombinant proteins against samples 
of interest [13]. Alternatively, it may be desirable to find 
means of reliably quantifying protein abundance directly, 
an approach taken by Malmström et al. [4] for the 
characterization of Leptospira and its reaction to 
ciprofloxacin. Early methods of ‘labelfree’ quantification 
used the frequency of peptide selection for fragmentation 
as a measure of their abundance  termed ‘spectral count
ing’ [14,15]. Because that technique uses an indirect 
measurement for peptide abundance and only works 
reliably for proteins with many available peptides, 
alternatives have been developed. Specifically, peptideion 
intensities in the parent MS1 spectrum are used to quantify 
peptide abundances. For this method, reproducible 
identification of the same peptides in different LCMS runs 
is crucial (Figure 1b). This is achieved by high mass
accuracy measurements, and also by aligning different 
runs based on the LC retention time of matched peptides 
between them [16]. Although still somewhat less accurate 
than quantification methods relying on isotope labels, this 
methodology makes a variety of clinical and environmental 
samples accessible, such as cancer or other biopsies.

In a series of papers including the Leptospira study, the 
peptideion intensity method has been further developed 
to calibrate MS measurements and yield absolute quanti fi
cations [4,6,17,18]. As standards for calibration, isotope
labeled reference peptides are spiked into samples. 
Comparison of the ion intensities of standards of known 
abundance and of the experimental peptides yields an 
absolute concentration for the latter (Figure 1b). In very 
complex mixtures, it can be difficult to detect such peptide 
pairs, but in principle, advances in instrumentation and 
development of analytic tools should eventually allow the 
measurement of most peptides in a mixture, including 
those spiked as a reference. In the meantime, targeted 
approaches such as selected reaction monitoring (SRM) 

Figure 1 continued 
Quantitative MS-based proteomics. (a) Analysis of complex peptide mixtures by LC-MS2. Peptide mixtures are resolved by liquid 
chromatography, ionized through electrospray and resolved by MS1. Selected peptides are fragmented by collision with an inert gas and the 
resulting MS2 spectra are recorded. (b) Quantitative proteomics strategies. In the SILAC technique, isotope-labeled peptide intensities (I) are 
compared in the MS1 spectra. For ‘label-free’ quantitation, intensities of peptides are compared between different runs. Alternatively, standard 
peptides are spiked into the mixture to yield calibration for absolute peptide abundances. R refers to the ratio between either heavy and light 
peptides (SILAC panel) or ion intensities between different runs (label-free quantitation).
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are promising. In these experiments, a series of mass 
analyzers (for example, a triple quadrupole MS) ‘filters’ 
only targeted peptides. In combination with isotope
labeled standards, the abundance of peptides is quantitated 
by comparison of parent ion pair intensities. As a result of 
effective filtering, SRM assays are performed very fast and 
can monitor a series of peptides. To obtain a calibration 
curve for the Leptospira proteome that can be extrapolated 
to determine the absolute abundances of all detected 
proteins, Malmström et al. [4] used 19 peptides to report 
on proteins ranging in abundance from 40 to 15,000 copies 
per cell. One appeal of this methodology is the rapid 
monitoring of a limited number of proteins, which would 
enable a comparison of abundance in many samples and 
the characterization of protein dynamics over time.

A potential problem with the peptideion intensity method 
is that parent ion scans are usually carried out using 
quadrupoles with high sensitivity and dynamic range but 
low mass accuracy, possibly leading to overlapping peaks 
and convolution of signals when analyzing complex 
mixtures. A remedy for this could be to acquire full high
resolution spectra by scanning MS and then select peptides 
for sequencing by an ‘inclusion’ list. Satisfyingly, in the 
case of Leptospira [4], the quantitation obtained using an 
SRMderived calibration curve agreed very well with the 
counting by CET of the subunits in prominent cellular 
structures such as the flagella and the flagellar motor, or of 
methylaccepting proteins in individual cells. This work 
shows how MSbased proteomics combined with high
resolution CET can yield information on protein abun
dance and localization.

Having obtained accurate measurements of the levels of 
individual proteins, it is then possible to compare prote
omes under different physiological conditions. In the case 
of Leptospira [4], the comparison showed that the 
bacterium reacts to ciprofloxacin by strongly inducing the 
expression of a number of proteins (whose existence was 
previously only predicted from the genome sequence), but 
maintains overall protein concentration. The upregulated 
proteins might include interesting targets for combination 
therapy and the experiment shows in principle how this 
technology can be used for an unbiased systems charac
terization.

Over the past decade, developments in MSbased proteo
mics have greatly accelerated. In particular, new instru
men tation and automation of MSspectra interpretation 
enables the quantification of essentially wholeorganism 
proteomes in single experiments. Tools to calibrate 
measurements are already leading to the determination of 
absolute protein abundances and specialized methods can 
be used to target subsets of proteins. All together, these 
developments predict that MSbased proteomics will 
become a staple technique in systems biology.
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The plasma membrane is the defining feature of the cell, separating 
its interior from the exterior space. It controls exchange and commu-
nication processes between the cell and its environment. The delivery 
of cellular material to the plasma membrane or cell exterior is medi-
ated by exocytosis. Conversely, endocytosis is used to take up plasma 
membrane and external components. In addition, many signaling 
processes occur at the plasma membrane simultaneously and are often 
regulated by the endocytosis of receptors or delivery of messenger 
molecules. To coordinate these processes and maintain cell integ-
rity under changing conditions, both plasma-membrane protein and 
lipid composition are regulated and adjusted to external conditions. 
Despite impressive advances in our understanding of these individual 
processes, it is not well understood how they are coordinated.

To accommodate its many functions, the plasma membrane is 
highly organized, both spatially and temporally. In Saccharomyces 
cerevisiae, several plasma-membrane domains of different compo-
sition are distinguishable by light microscopy. This organization is 
mediated, at least in part, by eisosomes, large protein complexes that 
underlie one of the domains, named MCC after the marker protein 
Can1 found there. When PIL1, encoding a major eisosome compo-
nent, is deleted, cells have abnormal plasma-membrane structure 
with large invaginations and loss of MCC protein organization1,2. 
In addition, the endocytosis of several plasma-membrane proteins 
is either accelerated or delayed2,3. The molecular function of eiso-
somes is still unknown, but recent data show that they interact with 

sphingolipid-regulated Pkh-kinases, which phosphorylate their core 
components and are required for efficient endocytosis4–6. In addi-
tion to Pkh-kinases, Tor kinase complex 2 (TORC2) is implicated in 
sphingolipid metabolism regulation7. However, it is unclear how these 
different signaling pathways are controlled and coordinated as well as 
what their downstream effects are. Experimental evidence supports 
a model in which regulation of sphingolipid, sterol and glycerophos-
pholipid levels in the plasma membrane are coordinated, but mecha-
nistic insights as to how this is achieved are currently lacking8,9. To 
reveal functional links between the different processes, we generated 
a quantitative genetic-interaction map targeting a large set of genes 
implicated in plasma-membrane function.

Genetic interactions have long been used to dissect functional 
relationships between genes. Classically, researchers have looked 
for qualitative differences between observed phenotypes of double 
mutants and the phenotypes of the two related single mutants. More 
recently, we employed the epistatic miniarray profile (E-MAP) 
approach, a variation on synthetic genetic arrays10. This allows for 
the quantitative analysis of genetic interactions, including negative 
(for example, synthetic sick or lethal) as well as positive ones (for 
example, suppression)11. For this approach, a comprehensive set 
of double mutants is generated and their growth is measured. To 
determine individual genetic interactions, deviations of growth rates 
from the medians of all combinations with one particular gene are 
calculated for each combination as a quantitative interaction score 
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A plasma-membrane E-MAP reveals links of the eisosome 
with sphingolipid metabolism and endosomal trafficking
Pablo S Aguilar1,9, Florian Fröhlich2,9, Michael Rehman2,9, Mike Shales3,9, Igor Ulitsky4,8, Agustina Olivera-Couto1,  
Hannes Braberg3, Ron Shamir4, Peter Walter5, Matthias Mann6, Christer S Ejsing7, Nevan J Krogan3 &  
Tobias C Walther2

The plasma membrane delimits the cell and controls material and information exchange between itself and the environment. 
How different plasma-membrane processes are coordinated and how the relative abundance of plasma-membrane lipids and 
proteins is homeostatically maintained are not yet understood. Here, we used a quantitative genetic interaction map, or E-MAP, 
to functionally interrogate a set of ~400 genes involved in various aspects of plasma-membrane biology, including endocytosis, 
signaling, lipid metabolism and eisosome function. From this E-MAP, we derived a set of 57,799 individual interactions between 
genes functioning in these various processes. Using triplet genetic motif analysis, we identified a new component of the eisosome, 
Eis�, and linked the poorly characterized gene EMP70 to endocytic and eisosome function. Finally, we implicated Rom2,  
a GDP/GTP exchange factor for Rho� and Rho2, in the regulation of sphingolipid metabolism.

http://www.nature.com/nsmb/
http://www.nature.com/doifinder/10.1038/nsmb.1829
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(or S-score)12,13. Each mutation has a genetic-interaction profile, or 
phenotypic signature, consisting of all its S-scores with all other genes 
in the E-MAP. A particularly useful parameter to judge the similarities 
of profiles is to compare correlations of two genes’ interactions with all 
other genes in the set. In addition, bioinformatic extraction based on 
mathematical models can be applied to yield functional modules in an 
unbiased fashion from E-MAP datasets, and correlations and S-scores 
can be used to reveal their connections14,15. The E-MAP approach has 
been previously used to functionally interrogate several processes, and 
the dissection of genetic interactions from these E-MAPs has led to a 
deluge of biological insights in a variety of processes11,16–18.

Here we report an E-MAP targeting plasma-membrane functions to gene-
rate previously unknown biological insight relating to plasma-membrane 
functions. Using this E-MAP, we have linked two new genes (EMP70 and 
EIS1) to eisosome function and uncovered a link between GDP/GTP 
exchange protein Rom2 signaling and sphingolipid metabolism.

RESULTS
Overview of the plasma-membrane E-MAP
To address functional relationships between plasma-membrane processes, 
we systematically determined the genetic interactions among a set of 
374 genes involved in plasma-membrane biology. We selected candidate 
genes encoding proteins functioning in membrane transport and organi-
zation, especially eisosomes, actin patches, endocytosis and exocytosis. 
In addition, we picked genes involved in ergosterol and sphingolipid 
metabolism, as these lipids are implicated in many plasma-membrane 
processes. Our selection criteria were based on available functional anno-
tation (gene ontology terms) and a literature survey. We also included 
a diverse set of genes whose products localize to the plasma membrane 
and/or interact genetically or physically with previously characterized 
plasma-membrane genes/proteins. The selected genes were categorized 
into the functional groups presented in Figure 1a and Supplementary 
Table 1. We included a number of genes analyzed in previous systematic 
genetic studies to facilitate comparison between datasets11,16,17. From 
this set, we quantitated a total of 57,799 genetic interactions using the 
E-MAP approach (~83% of the possible interactions).

Previously, we found that gene pairs encoding physically interact-
ing proteins are enriched for positive genetic interactions and show 
a higher propensity for having highly correlated genetic-interaction 
 profiles11,16,17. To assess the richness and quality of the genetic-
 interaction data of the plasma-membrane E-MAP, we compared the 

ously developed algorithm that defines functional modules from quan-
titative genetic and PPI data14 (Supplementary Fig. 2). This method 
identified 18 modules encompassing 53 genes (Supplementary Fig. 2  
and Supplementary Table 3). Genes in each module have similar 
genetic-interaction profiles and form a connected subnetwork in 
the PPI network. These modules corresponded to known protein 
complexes, such as the F-actin capping protein complex and the 
AP-3 adaptor, or to known pathways, such as sphingolipid metabo-
lism, the HOG osmosensory pathway and ergosterol biosynthesis 
(Supplementary Fig. 2). To identify modules for which PPI data is 
not available, we performed the modular analysis without requiring 
PPI connectivity (Supplementary Fig. 3). This identified 29 mod-
ules encompassing 190 genes (Supplementary Table 4 and http://
acgt.cs.tau.ac.il/pmemap). This analysis yielded similar amounts 
of modules for the plasma membrane and the previously reported  
E-MAP on the early secretory pathway11 (Supplementary Table 5). 
Additional information can be extracted by considering interactions 
of single genes with modules (data not shown).

Insights from hierarchical clustering of the genetic-interaction data
Each mutant engenders a genetic-interaction profile, or phenotypic sig-
nature, representing how it genetically interacts with all other mutants 
tested. Comparison of these profiles using hierarchical clustering 
(Fig. 2, Supplementary Data and http://interactome-cmp.ucsf.edu/
plasma_membrane/) is a powerful and unbiased approach to identify 
genes of the same pathway. In the following, we provide a brief summary 
of several functional connections revealed by such gene clustering.

RVS161 and RVS167 encode proteins that operate together in mem-
brane remodeling during endocytosis22. As expected from their over-
lapping functions, rvs161Δ and rvs167Δ clustered together with high 
correlation (correlation = 0.54; Fig. 2, inserts 2 ). Consistent with previ-
ous reports, both share positive genetic interactions with a number of 
genes involved in fatty-acid elongation for sphingolipid synthesis, such 
as FEN1 and SUR4 (ref. 23) (Fig. 2, insert 2d). Notably, we observed 
positive interactions with genes encoding components of the Hog1 
MAP-kinase cascade and the ergosterol biosynthesis pathway (erg3Δ, 
erg5Δ, erg6Δ, Fig. 2, inserts 2). In additions to changes in their sterols,  
these erg mutants have altered sphingolipid composition8. Thus, 
defects resulting from deletion of RVS genes could be compensated by 
erg mutants via changes in sphingolipids. Also in line with previous 
work, both rvs161Δ and rvs167Δ show negative interactions with actin 
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Genes encoding proteins interacting with each other are  
more likely to show positive genetic interactions (b) and  
correlated genetic interaction profiles (c). Green, interaction  
and correlation scores of gene pairs known to encode 
interacting proteins; black, the remainder of gene pairs.

pairwise correlation of genetic-interaction 
profiles to a high-quality set of protein-protein 
interactions (PPIs)19 and found that the power 
of the genetic map to predict PPIs is compar-
able to that of previously published E-MAPs 
(Supplementary Fig. 1). Furthermore, com-
parison of interaction scores or correlation 
coefficients of gene pairs encoding physically 
interacting proteins19–21 (see Supplementary 
Table 2) among all plasma-membrane  
E-MAP gene pairs revealed that they have a 
higher likelihood to interact positively and to 
have correlated genetic-interaction profiles 
(Fig. 1b,c, yellow area under the green graph). 
Conversely, gene pairs with highly correlated 
interaction profiles and positive interactions 
are likely to physically interact.

To better visualize groups of interacting 
genes and their relationships, we used a previ-

http://acgt.cs.tau.ac.il/pmemap
http://acgt.cs.tau.ac.il/pmemap
http://interactome-cmp.ucsf.edu/plasma_membrane/
http://interactome-cmp.ucsf.edu/plasma_membrane/
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cytoskeleton genes, such as BBC1, JSN1 and BZZ1 (refs. 10,24–26) (Fig. 2,  
insert 2a). In addition, we found several previously unrecognized  
relationships, including negative interactions between the RVS genes 
and ire1Δ and hac1Δ, two mediators of the unfolded protein response 
(UPR) control system for endoplasmic reticulum function. Possibly, cells 
react to Rvs deficiency by altering lipid synthesis or transport, which 
in turn activates the UPR. Cells lacking the UPR in addition to the Rvs 
 proteins could have decreased fitness. Consistent with this notion, a 
recent genome-wide study found the UPR activated in rvsΔ cells27.

We also detected many genetic interactions and highly corre-
lated profiles between genes encoding actin-patch components. For 
example, sla1Δ and ede1Δ, which function in endocytosis, are highly 
correlated (correlation = 0.64, Fig. 2, insert 1) and show a nega-
tive genetic interaction (interaction score = −7.7). Unexpectedly, 
given its function in exocytosis rather than endocytosis, we also 
found chs6Δ to be highly correlated with sla1Δ and ede1Δ (correla-
tions ede1Δ-chs6Δ = 0.53 and sla1Δ-chs6Δ = 0.43; Fig. 2, insert 1). 
Furthermore, these three genes all result in negative genetic interac-
tions when any two of them are combined. Collectively, this indicates 
that Chs6 might function in coordinating exo- and endocytosis, 
perhaps by delivering a subset of cargos to the plasma membrane28. 
In this scenario, chs6Δ would lead to the depletion of an endocytic 
factor from the plasma membrane and, as a consequence, a decrease 
in endocytosis efficiency. Combination with mutants defective in 

understand eisosome function in vivo, we genetically analyzed its core 
components, PIL1 and LSP1. As the encoded proteins are >70% identi-
cal and are stoichiometric components of the eisosome, we expected 
very similar genetic profiles for them. Unexpectedly, PIL1 and LSP1 
showed very different genetic interactions and, accordingly, cluster in 
 different regions of the E-MAP (correlation = 0.038; Fig. 2, insert 4). 
This parallels the cell-biological observation that deletion of PIL1 but 
not LSP1 results in strong effects on plasma-membrane organization 
and protein turnover.

To gain further insight into eisosome function, we analyzed the triplet 
genetic motifs (TGMs) in which pil1Δ participates17. TGMs are the 
 simplest motifs apart from binary interactions and can exist in four 
forms: type I (all three genes showing positive genetic interactions), 
type II (two positive and one negative), type III (two negative and one 
positive) and type IV (three negative interactions) (Fig. 3a). We have 
previously shown that genes with all positive genetic interactions (type 
I TGM) are enriched for functioning in the same pathway17. We there-
fore assembled a complete map of type I TGMs found in the plasma-
membrane E-MAP (Supplementary Fig. 4). Because Pil1 has a more 
prominent role than Lsp1 in eisosome and plasma-membrane function, 
we extracted all type I TGMs involving pil1Δ (Fig. 3b). In this represen-
tation, we highlighted genes that are important for eisosome localization 
or are closely related to such genes (YMR031c and EMP70, respec-
tively31; green nodes in Fig. 3b) and characterized them further.
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this process would further decrease the  
fitness of the resulting strains.

We also observed many strong genetic 
interactions between trafficking complexes. 
Genes encoding the retromer complex 
(VPS17, VPS29, VPS35, PEP8), the COG 
complex (COG5, COG6, COG7, COG8) or 
the AP3 complex (APM3, APL5) all formed 
highly correlated clusters in the plasma-
 membrane E-MAP (Fig. 2, insert 4). In addi-
tion, potential new connections between these 
complexes and heretofore poorly character-
ized components of the endocytic machinery 
are apparent in these clusters. As an example, 
the retromer complex coclusters with deletion 
of MON2 (correlation = 0.48), a gene encod-
ing an evolutionarily conserved scaffolding 
protein functioning in endosome-to-Golgi 
trafficking29. Our data suggest that Mon2 acts 
together with the retromer in this process.

Many genes encoding members of signaling 
cascades showed strong genetic relationships. 
For example, two kinases of the cell integrity 
MAP kinase signaling module, Slt2 (the MAP 
kinase) and Bck1 (the MAP kinase kinase 
kinase)30, showed one of the highest correlations 
(0.75). Similarly, genes encoding components of 
retrograde signaling (RTG1, RTG2, RTG3 and 
MKS1) all cluster together (correlation = 0.44) 
indicating that all pairs have high correlation 
coefficients (for example, MKS1/RTG1 correla-
tion coefficient = 0.59; Fig. 2, bottom).

Functional links involving eisosomes
Although the eisosome has been linked to 
endocytosis regulation, details regarding 
its biological roles remain unresolved. To 
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EIS1/YMR031c encodes a novel eisosome component
Because ymr031cΔ and pil1Δ have a positive genetic interaction 
and a correlated interaction profile (Fig. 3b), we tested whether the 
corresponding proteins physically associate. To this end, we fused the 
sequence encoding the green fluorescent protein (GFP) tag to PIL1 
at its endogenous location in the yeast genome and immune-purified 
the expressed Pil1-GFP from a yeast culture that was metabolically 
labeled with heavy, nonradioactive lysine (SILAC)32. In parallel, we 
performed a mock purification from control, light-labeled wild-type 
cells. We identified 533 proteins present over a 10,000-fold dynamic 
range in the mixed eluates from both purifications. As expected, we 
found Pil1 and Lsp1 as well as the recently identified eisosomes bind-
ing protein Mrp8 to be significant outliers, with a high ratio of labeled 

to nonlabeled protein, indicating that they are specific interactors2,33  
(P < 0.0001; Fig. 4a). In addition, we found a number of other specific 
interactors, including Ymr031c, which is consistent with a recent 
report34. To independently confirm this observation, we performed 
immunoprecipitations of TAP-tagged Ymr031c and, as a control, Lsp1, 
and we found that both specifically precipitated Pil1 (Fig. 4b). To test 
whether Ymr031c colocalizes with Pil1, we fluorescently tagged both 
proteins. The signal from Pil1 and Ymr031c perfectly overlapped at 
eisosomes (Fig. 4c, upper panel; Pearson correlation = 0.81 ± 0.06). 
Consistent with these data, Ymr031c was recently detected at MCCs3. 
One prediction for a genuine eisosome component is that it relocal-
izes to eisosome remnants in a PIL1 deletion strain2. We therefore 
investigated Ymr031c-GFP localization in pil1Δ cells and found that 
both Ymr031c and the eisosome component Lsp1 localized to one or 
a few eisosome remnants in the cell periphery (Fig. 4d). To investigate 
whether YMR031c has a role in eisosome architecture or assembly, we 
deleted it and analyzed the localization of eisosome core components 
in the resulting strain. For both Pil1 and Lsp1-GFP, we observed sub-
stantially increased cytosolic fluorescence in ymr031cΔ cells (Fig. 4e,f). 
Collectively, these data show that Ymr031c is physically associated 
with eisosomes and is required for their normal formation. We have 
 therefore named this gene EIS1.

EMP70 is an early endosomal and vacuolar protein
In the genetic network of the plasma-membrane E-MAP, EMP70 is the 
strongest candidate for a functional relationship with PIL1 because (i) 
the two genes have highly correlated genetic profiles (correlation of PIL1 
and EMP70 = 0.37 (EMP70 has the most similar profile to PIL1 of all the 
E-MAP genes); Fig. 5a); (ii) the two genes participate in two type I TGMs 
(Fig. 3b); and (iii) the Emp70 homolog Tmn2 is required for normal Pil1-
GFP localization31. In addition, our modular analysis identified EMP70 
and PIL1 as part of the same six-gene module (Supplementary Fig. 3; 
S-score between PIL1 and EMP70 = 1.78; Supplementary Table 4).
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in ymr031cΔ or control cells. Representative midsections are shown. For each experiment, the number of eisosomes per cell, the GFP fluorescence per 
eisosome and the cytosolic GFP fluorescence were quantified from at least 100 cells and are shown below the images. Scale bars, 2.5 μm.

Figure 4 YMR031C/EIS1 encodes an eisosome component. (a) Affinity 
purification and MS analysis of heavy labeled cells expressing GFP-tagged Pil1 
and untagged control cells. Averaged peptide intensities are plotted against 
heavy/light SILAC ratios. Significant outliers (P < 0.0001) are colored in orange 
or light blue (P < 0.05); other identified proteins are shown in dark blue.  
(b) Pulldown purification from cells expressing tandem affinity-tagged Lsp1, 
Ymr031c or untagged control cells. Inputs and eluates from the pulldown were 
blotted and probed with antibodies against Pil1. (c) Colocalization of GFP-tagged 
Ymr031c with RFPmars-tagged Pil1. Representative confocal midsections 
are shown. The graph shows the intensity profiles for both channels along the 
perimeter of the cell. (d) PIL1 is required for normal localization of Ymr031c. 
Ymr031c-GFP or Lsp1-GFP was expressed and imaged either in WT or pil1Δ 
cells. Representative confocal midsections are shown. (e,f) Ymr031c is required 
for normal eisosome formation. Pil1-GFP (e) or Lsp1-GFP (f) was expressed 

Figure 3 TGMs of the plasma membrane E-MAP. (a) All four potential TGMs 
are shown. Nodes in vertical order represent involvement in the same pathway; 
horizontal orientation indicates possible parallel pathways. (b) Type I TGMs 
that have PIL1 as a node. Nodes in green represent a gene important for Pil1-
GFP localization (YMR031C) or a homolog of such a gene (EMP70)31.
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These genetic links prompted us to investigate EMP70 in more detail 
(Fig. 5). We fluorescently tagged Emp70 with GFP and found that it 
localizes in a complex pattern consisting of a central ring reminis-
cent of vacuoles and several bright foci in the cytoplasm that often 
seem connected to the vacuole (Fig. 5b and Supplementary Video 1). 
Emp70 was previously found in an endosomal membrane fraction35. 
We therefore tested whether cytosolic Emp70 foci represent endosomes. 
We used a number of endosomal markers and found Emp70-GFP foci 
to colocalize with Kex2, marking the early endosome, which in yeast 
is functionally continuous with the trans-Golgi network. In contrast, 
Emp70 localization did not overlap with the late endosomal/prevacuolar 
marker Vps5 (Fig. 5b and Supplementary Fig. 5a).

To test whether the Emp70-labeled compartments are part of the 
endocytic route, we used the endocytosis tracer FM4-64. This lipid 
dye is incorporated in the plasma membrane, taken up by endocytosis 
and trafficked through the endosomal system to the vacuole36. We 
found in pulse-chase experiments that early FM4-64 intermediates 
colocalize with Emp70 foci (Fig. 5c, 0 min). As the dye migrated 
through the endocytic system, it also colocalized with a subset of 
Emp70-positive foci toward the end of the reaction but markedly less 

at intermediate time points (Fig. 5c, 30 min). At the final time point, 
FM4-64 clearly labeled the vacuole delimiting membrane where it 
colocalized with the Emp70-GFP ring staining. Trafficking from early 
endosomes can be blocked by incubation of cells at 16 °C, which leads 
to the accumulation of FM4-64 (ref. 37). Emp70-GFP almost perfectly 
colocalized with FM4-64 when the latter was accumulated in such a 
‘16 °C compartment’, further arguing that Emp70 localizes to early 
endosomes (Supplementary Fig. 5b). Strains harboring a deleted 
or C-terminally tagged SNF7 (an ESCRT-III gene) show a ‘class E’ 
vacuolar protein sorting defect. This is characterized by collapse of 
endosomes to one or a few large class E compartments38,39. Under 
these conditions, Emp70-GFP formed fewer, very large clusters that 
colocalized with Snf7-RFPmars marked class E compartments and 
showed reduced vacuolar membrane staining (Fig. 5d). From these 
data, we conclude that Emp70 localizes to early endosomes and the 
vacuole. To better characterize the localization of Emp70 in these 
two pools, we quantitated the relative amount of Emp70 colocalizing 
with markers for each organelle and found 48% of Emp70 to local-
ize in the TGN/endosomal compartment and 41% at the vacuolar 
membrane (Fig. 5g).

Figure 5 The eisosome-linked Emp70 is 
an early endosomal protein. (a) Genes with 
correlating genetic profiles are shared between 
PIL1 and EMP70 but not PIL1 and LSP1. 
Correlation coefficients between the genetic 
profile of PIL1 and each of the other 373 
profiles in the E-MAP are plotted on the x axis 
against, on the y axis, either the similar set 
of values for the LSP1 profile with all other 
profiles (blue) or those for EMP70 with all other 
profiles (red). Labeled points indicate some 
genes with profiles that are positively correlated 
with both the profile of PIL1 and that of 
EMP70. CC values in blue and red indicate the 
correlation coefficients for the full set of blue 
or red points plotted. (b) Emp70 colocalizes 
with Kex2. Emp70-GFP and Kex2-RFPmars 
were coexpressed and imaged. Representative 
confocal midsections are shown. (c) Emp70 
localizes to an FM4-64 marked endocytic 
compartment. Cells expressing Emp70-GFP 
(green) were pulse labeled with FM4-64 (red) 
and imaged for 1 h. Images of midsections of 
cells at selected time are shown as indicated. 
(d) Emp70 localizes to the class E compartment 
in SNF7 mutants. GFP-tagged Emp70 was 
expressed in cells harboring nonfunctional 
Snf7-RFPmars, resulting in the clustering of 
endosomal proteins in the class E compartment. 
Representative confocal midsections are 
shown. (e) Emp70-GFP foci localize to the cell 
periphery. Emp70-GFP (green) was expressed 
in cells harboring the fluorescent eisosomes 
marker Lsp1-MARS. Representative mid- (left) 
and top sections (right) are shown. Boxes 
highlight selected areas of colocalization.  
(f) PIL1 is required for normal Emp70 localization 
to the cell periphery. Emp70-GFP was expressed 
in cells expressing the plasma membrane marker 
Ylr413w-RFPmars, and foci overlaying this 
marker were counted in more than 100 WT and 
pil1Δ cells. Results are shown as a histogram of 
number of spots opposed to the plasma membrane in each cell. (g) Quantitation of the organelle distribution of Emp70. Emp70-GFP was imaged in live cells 
and analyzed for colocalization with Kex2-RFPmars (n = 100), vacuolar FM4-64 (n = 91), Snf7-RFPmars (n = 93, diploid strain expressing one tagged Snf7 
allele) and Lsp1-Cherry (n = 107). The relative area of overlap between signals was quantified as a percentage of total area occupied by Emp70 signal. Box 
plots representing maxima, 75th percentile, median, 25th percentile and minima are shown for the colocalization with each marker. Scale bars, 2.5 μm.
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During our localization studies, we often observed early endosomal 
foci marked by FM4-64 dynamically associating with the plasma mem-
brane. To test whether the genetic link of EMP70 with PIL1 was reflected 
in the recruitment of Emp70-GFP foci to eisosomes, we investigated the 
Emp70-GFP localization with respect to fluorescently tagged eisosomes. 
Strikingly, we found many spots of Emp70-GFP at eisosomes (Fig. 5e). 
In any given cell, 4% of the total Emp70-GFP signal colocalized with 
an eisosome marker (Fig. 5g and Supplementary Video 2). To test 
whether this association has functional relevance, we investigated the 
Emp70 localization in pil1Δ cells and found a marked reduction of foci 
close to the plasma membrane (Fig. 5f).

EMP70 proteins are required for normal endosomal sorting
To test whether Emp70 is important for early endosome-to-vacuole 
trafficking, we analyzed Kex2-GFP localization in an emp70Δ strain 
and found a substantial Kex2 relocalization from early endosomes 
to the vacuole (Fig. 6a). Kex2 steady-state localization depends on 
signals that send it to early endosomes, which subsequently mature 
into late endosomes, from which Kex2 is actively retrieved40,41. It 
is possible that vacuolar mislocalization of Kex2 in emp70Δ cells 
results from a defect in retrieval from the late endosome or a complex-
 trafficking problem affecting early endosome function. Normally, if 
retrieval is compromised, vacuolar sorted carboxypeptidase Y (CPY) 
is secreted. We tested this and found that, in contrast to the control 
vps1Δ, emp70Δ alone does not lead to CPY secretion42,43. EMP70 has 
two homologs in the genome, TMN2 and TMN3. To address whether 
they could compensate for Emp70 function in its absence, we tested 
CPY secretion in strains with different combinations of the family 
members deleted. TMN2 deletion alone had no effect, and TMN3 
deletion alone only a weak effect, on CPY sorting (Fig. 6b). In con-
trast, combining emp70Δ with either tmn2Δ or tmn2Δ tmn3Δ resulted 
in CPY secretion, showing that Emp70 is functionally redundant 
with Tmn2 in vacuolar protein sorting and that the Emp70 protein  
family is required for normal endosomal function.

Sphingolipid metabolism and its regulation
The plasma-membrane E-MAP interrogates relationships within 
metabolic networks that are important for plasma-membrane func-
tion, including sphingolipid metabolism (Fig. 2, inserts 3a and 3b, 
and Fig. 7a). Consistent with their common function, many of the 
sphingolipid pathway genes showed high correlation (>0.2). Figure 7b 
shows the distance of the action of enzymes in the pathway plotted 
against the correlation coefficient of the corresponding genes. The 
linear best fit on all data points revealed that genes encoding enzymes 
catalyzing subsequent steps are more highly correlated than genes fur-
ther away in the metabolic network. Moreover, whereas most muta-
tions in genes encoding enzymes catalyzing early steps of sphingolipid 
synthesis have negative genetic interactions with each other (Fig. 2, 
insert 3b, and Fig. 7a), they show positive genetic interactions when 
combined with mutations in genes acting late in complex sphingolipid 
formation (Fig. 2, insert 3a, and Fig. 7a). This might indicate that defi-
ciency in late-acting enzymes leads to a buildup of toxic intermediates, 
which can be suppressed by deleting genes encoding upstream-acting 
enzymes. Precedence for this includes inhibition of Aur1, which con-
verts ceramide to inositolphosphoceramide by aureobasidin A, leading 
to complex sphingolipids depletion and a concomitant accumulation 
of ceramide, which both contribute to toxicity44.

The plasma-membrane E-MAP also revealed that ROM2, encod-
ing a Rho1 GTPase exchange factor, has strong genetic connections 
to sphingolipid synthesis genes. For example, ROM2 has correlated 
genetic profiles with FEN1, SUR2, LCB3 and SUR4, all acting early, 
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but shows negative correlation with CSG2 acting late in sphingolipid 
synthesis (Fig. 8a). In addition, a ROM2 deletion mutation results in a 
strong synthetic sick phenotype with lcb3Δ, sur2Δ dpl1Δ and ysr3Δ, all 
genes encoding enzymes catalyzing different steps of sphingolipid meta-
bolism (interaction score < −2; see Fig. 2, insert 3b, and data not shown). 
Together, this suggests that Rom2 is an activator of sphingolipid meta-
bolism. To test this model, we profiled the lipidome of rom2Δ and several 
other mutants in the sphingolipid pathway by ‘shotgun’ lipidomics45. 
ROM2 deletion resulted in a lipid phenotype similar to that of sur2Δ or 
sur4Δ cells (Fig. 8b and Supplementary Table 6). Particularly, ROM2 
deletion led primarily to accumulation of long chain bases and a small 
decrease of ceramides. This argues that Rom2 activates sphingolipid syn-
thesis by regulating the conversion of long chain bases to ceramides.

DISCUSSION
The plasma-membrane E-MAP quantitatively describes interactions 
between genes involved in plasma-membrane processes. Together 
with previous studies, it shows that the E-MAP technology can be 
used to detect protein interactions and signaling pathways as well 
as to uncover complex biological connections. Here, we highlighted 
several examples of novel insights into plasma-membrane function 
derived from the E-MAP, focusing on its spatial organization and 

homeostasis. As an example of a physical interaction revealed from 
the E-MAP data, we investigated Eis1/Ymr031c and defined it as an 
eisosome component. Based on its much lower abundance compared 
to the eisosome core components, it might have a special architectural 
or regulatory role there. This is also a case where we combined data 
from the plasma-membrane E-MAP with our visual screen for genes 
affecting Pil1-GFP localization31, which provides an example how the 
combination of different high-throughput datasets helps to uncover 
previously unrecognized relationships.

Mining of the plasma-membrane E-MAP also yielded informa-
tion on more functional interactions not reflected in physical associa-
tions. The transmembrane protein Emp70 has a fascinatingly complex 
localization and genetically interacts with eisosome components. 
Particularly intriguing is the Emp70 pool localized in endosomal 
structures that often appear connected with the vacuolar membrane. 
This observation raises the possibility that endosomes reach out to 
the plasma membrane and pick up their cargo. It also suggests that 
at least parts of the endosomal membrane system might be a tubular 
network connected to the vacuole, but further detailed cell-biological 
studies will have to clarify this point.

We also used the plasma-membrane E-MAP to interrogate metabolic 
networks and their regulation. The strong correlation profiles of sphin-
golipid synthesis genes argues that novel functionally related genes 
could be found by using the genetic profiles from the plasma-membrane 
E-MAP. For example, genes that function in sphingolipid metabolism or 
are involved in its regulation would be expected to cluster with known 
sphingolipid synthesis genes. Using this logic, we identified Rom2 as 
a regulator of sphingolipid metabolism. Mechanistically, its activator 
function could occur either through ceramide synthesis activation by 
Rom2 or through negative regulation of ceramidase. Between these two 
hypotheses, we consider the first one more likely, as rom2Δ clusters with 
genes encoding ceramide synthase (lag1Δ lac1Δ) but not ydc1Δ, which 
encodes ceramidase (Fig. 2, insert 3b). This is consistent with previous 
findings that connect the Tor2 kinase pathway with Rho1-signaling 
via Rom2 as well as recent findings that TORC2 is required for cera-
mide biosynthesis7,46. This previous study7 implicated an alternative 
branch of TORC2 signaling through the Ypk2 kinase in regulation of 
ceramide biosynthesis but did not rule out involvement of Rom2. The 
effect of ROM2 deletion could either be directly on ceramide synthase 
or, alternatively, could block the synthesis of its substrate, long chain 
fatty acid–CoA. In the latter model, the depletion of long chain fatty 
acids would slow ceramide synthesis and would therefore lead to the 
accumulation of long chain bases, the second substrate of ceramide 
synthase. In either scenario, Rom2 has a stimulatory function in sphin-
golipid synthesis at the step converting long chain bases to ceramides. 
Consistent with this notion, the inhibition of sphingolipid synthesis by 
the antifungal drug myriocin leads to a relocalization of Rom2 from 
the plasma membrane47. Rom2 is recruited to the plasma membrane 
through the binding of phosphoinositol-(4,5)-bisphosphate (PI(4,5)P2) 
by its pleckstrin homology domain, and reduction of PI(4,5)P2 also 
relocalizes Rom2 (ref. 48). This raises the possibility that Rom2 serves 
to connect phosphoinositide and sphingolipid signaling pathways. 
The details of this regulation of sphingolipid metabolism remain to 
be worked out, but it shows how genetic interactions in the plasma-
membrane E-MAP yield novel insights into metabolic networks and 
their regulation.

We anticipate that this dataset will fuel many more mechanistic 
studies. In particular, integration with other data from lipidomics, 
interaction proteomics or systematic visuals screens are likely to reveal 
novel insights into the regulation of plasma-membrane processes. In 
addition, many antifungal drugs target functions connected to the 
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Figure 8 Rom2 interacts with sphingolipid metabolism. (a) Genes with 
correlating genetic profiles are shared between SUR4 and ROM2 but  
not between CSG2 and ROM2. Correlation coefficients between the 
genetic profile of ROM2 and each of the other 373 profiles in the  
E-MAP are plotted on the x axis against, on the y axis, either the similar 
set of values for the SUR4 profile with all other profiles (blue) or those 
for CSG2 with all other profiles (red). Labeled points indicate genes with 
profiles that are positively correlated with the profile of ROM2. CC values  
in blue and red indicate the correlation coefficients for the full set of  
blue or red points plotted. (b) Lipidome profiling of rom2Δ and selected  
sphingolipid metabolism mutants. Lipid class abundances were normalized  
to WT levels. Sterol esters (SE), phosphatidic acid (PA), triacylglycerol 
(TAG), long chain base (LCB) mannosylinositol phosphoceramide 
(MIPC), phosphatidylethanolamine (PE), diacylglycerol (DAG), 
phoshphatidylcholine (PC), phoshphatidylinositol (PI), ceramide (Cer), 
phosphatidylserine (PS) mannosylinositol-2-phosphoceramide (M(IP)2C) 
and inositol phosphoceramide (IPC) levels are shown.
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plasma membrane, such as cell-wall and ergosterol synthesis. Probing 
the set of genes on the E-MAP presented here with a battery of drugs 
and comparing of the resulting drug profiles to the mutant profiles is 
an effective way to identify putative drug targets. This would facilitate 
the identification of compounds impinging on these various processes 
and could potentially have therapeutic value.

METHODS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/nsmb/.

Note: Supplementary information is available on the Nature Structural & Molecular 
Biology website.
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ONLINE METHODS
E-MAP analysis. Generation and analysis of the quantitative genetic interaction 
data was carried out as previously described11–13.

Detection of functional modules. Modules were identified using an algorithm 
described previously14, which was applied to the S-scores in the plasma mem-
brane E-MAP and a PPI network containing 49,010 interactions between 5,815 
yeast genes, compiled from several databases49–51. The algorithm identifies a 
collection of modules and a set of module pairs by optimizing a probabilistic 
scoring function. This function takes into account both similarities of the S-score 
profiles and the raw S-scores by preferring modules of genes having high correla-
tion coefficients (CC-scores) between members of the same complex and negative 
S-scores among members of a module pair. The significance of the CC-scores 
and S-scores was assessed by fitting Gaussian distributions using an expectation-
maximization algorithm.

Yeast strains and culture. All yeast strains used are listed in Supplementary 
Table 7. C-terminal fusions and gene deletions were generated by homologous 
recombination of PCR-generated DNA fragments52. All single-, double- or 
 triple-deletion strains were confirmed by PCR. Strains expressing tagged 
 proteins were confirmed by PCR and fluorescence microscopy or western blot. 
Yeast cells were grown according to standard procedure. For SILAC labeling, 
Pil1-TEV-GFP–expressing and WT yeast cells were grown in the presence of  
20 mg l−1 l-lysine-U-13C6,15N2 and normal l-Lysine, respectively, with at least 
ten doublings to an OD600 = 0.7.

Microscopy. Cells were grown to an OD600 = 0.6 in synthetic medium at 30 °C 
unless indicated. Cells were mounted in synthetic media onto concanavalin A 
coated cover slips and imaged with an ANDOR/TiLL iMIC CSU22 spinning disk 
confocal microscope, using an ANDOR iXonEM 897 EM CCD camera and an 
Olympus 100× 1.4 NA oil immersion objective. We collected 16-bit images using 
Andor Image iQ 1.9 in the linear range of the camera. For presentation, images 
were filtered with a smoothening filter averaging 2 pixels, converted to 8-bit 
images and cropped using ImageJ (http://rsb.info.nih.gov/ij/). For quantitation 
of colocalization, we collected stacks and extracted four-dimensional images for 
individual cells. The area of overlap was quantified dividing the total area of the 
Emp70 signal by the area of overlap determined using the RG2B colocalization 
ImageJ plugin.

FM4-64 uptake assay. Cells exponentially growing at an OD600 = 0.7 (1 ml) were 
harvested, resuspended in 50 μl of medium and chilled on ice for 5 min. FM4-64 
was added to a final concentration of 10 μM and incubated for another 10 min. 
Cells were washed with ice-cold medium, resuspended and incubated for differ-
ent time points, after which cells were killed by 10 mM NaN3 and 10 mM NaF 
and immediately analyzed by microscopy.

CPY secretion assay. The CPY secretion colony blot assay was performed as 
described using anti-CPY antibodies (Invitrogen-A6428)53.

Proteomics. Protein extracts from 70 ODs of ‘light’ and ‘heavy’ labeled cells were 
obtained as described31. For immunopurification, equivalent amounts of proteins 
were incubated with anti-GFP AB-conjugated magnetic nanobeads (Miltenyi 
Biotech) for 5 min at 4 °C and loaded on μMacs columns (Miltenyi Biotech) in a 
magnetic μMacs Separator (Miltenyi Biotech), washed three times with 1 ml of 
lysis buffer with 1% (v/v) Triton-X100, three times with 1 ml of lysis buffer with-
out Triton-X100 and eluted by TEV cleavage. Eluates were mixed, diluted 5× in  
8 M urea, reduced for 20 min at room temperature (22 °C) in 1 mM DTT and then 
alkylated for 30 min by 5.5 mM iodoacetamide in the dark. Then, the eluates were 

digested, desalted and concentrated as described31. Peptides were separated on-
line using an Easy nLC system (Proxeon Biosystems, Odense, Denmark). Samples 
(5 μl) were loaded as described31. Peptides were eluted with a segmented gradient 
of 2–60% solvent B over 102 min with a constant flow of 250 nl min−1. The HPLC 
system was coupled to an LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher 
Scientific) via a nanoscale LC interface (Proxeon Biosystems). The spray volt-
age was 2.2 kV, and the temperature of the heated capillary was 180 °C. Survey 
full scan spectra (m/z = 300–1600) were acquired in positive ion mode with a 
resolution of 60,000 at m/z = 400 after accumulation of 1,000,000 ions. Up to ten 
most-intense ions were sequenced by collision-induced dissociation in the LTQ. 
Precursor ion charge-state screening was enabled, and all unassigned charge states 
as well as singly charged peptides were rejected. The dynamic exclusion list was 
restricted to a maximum of 500 entries with a maximum retention period of 90 s 
and a relative mass window of 10 p.p.m. Orbitrap measurements were performed 
enabling the lock mass option for survey scans to improve mass accuracy54. 
Data were acquired using the Xcalibur software (version 2.1.0, Thermo Fisher 
Scientific) and MaxQuant, version 1.0.1 (ref. 55). The data was searched against 
the yeast database concatenated with reversed copies of all sequences56,57 and 
supplemented with frequent contaminants using Mascot (version 2.2.0, Matrix 
Science58). Carbamidomethylated cysteines were set as fixed, whereas oxidation 
of methionine and N-terminal acetylation were set as variable modifications. 
Maximum allowed mass deviation for MS/MS peaks and missed cleavages were 
0.5 and 3 Da, respectively. Maximum false-discovery rates (FDR) were 0.01 both 
on peptide and protein levels. Minimum required peptide length was 6 residues. 
Proteins with at least two peptides were considered identified.

Lipidomics. Cell were harvested from 20 ml logarithmically growing cultures 
in synthetic medium at 30 °C and washed in water at 4 °C. Cell pellets were 
frozen immediately in liquid nitrogen and were thawed later by adding 155 mM 
NH4HCO3 (pH 8), followed by cell disruption using zirconia beads (0.5 mm; 
BioSpec Products). Lipids were extracted from lysates as previously described45 
and analyzed using a LTQ Orbitrap XL mass spectrometer (Thermo Fisher 
Scientific) equipped with a robotic nanoflow ion source TriVersa NanoMate 
(Advion BioSciences Ltd.). MS survey scans were acquired in positive and nega-
tive ion mode using the Orbitrap analyzer with target mass resolution of 100,000 
and automatic gain control set at 1e5 as the target value45.
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