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1 INTRODUCTION

The growth of a mammalian organism is effected predominantly by proliferative

events outbalancing apoptosis and increasing total cell number, with some additional

contributions by cell hypertrophy and deposition of extracellular matrix (ECM).

Growth is brought about by the operation of cellular signaling pathways controlled by

growth factors and hormones. In general, growth factors are produced by many tissues

and exert mainly local (autocrine/paracrine) controls that predominate during

embryogenesis, whereas hormones act systemically away from the sites of their

production (Lupu et al. 2001).

Among the peptide growth factors, the insulin-like growth factors (IGF-I and IGF-II)

are unique as they can act both locally as autocrine/paracrine growth factors, and

systemically as a hormone (Cohick & Clemmons 1993; Mohan et al. 1996; Stewart &

Rotwein 1996; Butler & LeRoith 2001). The IGFs have both mitogenic and metabolic

actions that participate in the regulation of proliferation, differentiation, survival and

specific functions of many cell types and tissues under different physiological and

pathological conditions (Stewart & Rotwein 1996). The actions of IGFs, mediated via

the type I IGF receptor (IGF-IR), are modulated by a family of six high-affinity IGF-

binding proteins (IGFBP-1 to -6) by endocrine, autocrine and paracrine mechanisms

(Clemmons 1997; Hwa et al. 1999; Mohan & Baylink 2002). Despite their structural

similarity, each IGFBP has unique properties and exhibits specific functions. Some of

the IGFBPs inhibit IGF actions, whereas others potentiate IGF effects. In addition,

some IGFBPs show direct effects independent of IGF-binding (Rechler 1993; Jones &

Clemmons 1995; Kelley et al. 1996; Clemmons 1997; Rajaram et al. 1997; Hwa et al.

1999; Duan 2002; Firth & Baxter 2002). The majority of the knowledge about these

peptides is obtained from in vitro studies. Generation and analysis of transgenic mice

overexpressing an individual IGFBP allows us to reveal the specific functions of the

corresponding IGFBP in vivo. In the past decade, several transgenic mouse models for

IGFBP-1, -2, -3 and -5 were established, which revealed some specific functions of

the IGFBPs (rev. in Schneider et al. 2000; Silha & Murphy 2002). However, there is

only one smooth muscle-specific transgenic mouse model of IGFBP-4 overexpression

reported so far, and no IGFBP-6-overexpressing mice are available.
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The objective of the study reported here was to investigate the consequences of

IGFBP-4 and -6 overexpression on the growth and development of mice, thereby

determining their specific roles in vivo. For this purpose, transgenic mice

overexpressing murine IGFBP-4 and IGFBP-6 were generated. Transgenic IGFBP-4

was highly expressed in the lymphoid organs, whereas transgenic IGFBP-6

expression was high in the pancreas and large amounts of active IGFBP-6 were found

in the lumen of the duodenum of transgenic mice. The effects of IGFBP-4

overexpression on the body and organ growth (particularly of spleen and thymus), the

development of immune-related cells and the mitogenic response of splenocytes were

evaluated. For IGFBP-6 transgenic mice, the consequences of IGFBP-6 excess on the

body and organ growth (particularly of duodenum) and the glucose homeostasis were

characterized.
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2 REVIEW OF THE LITERATURE

2.1 Transgenic technologies in mice for studying gene function

In the past decade many declared aims of the genome projects have been achieved.

The total genomic sequences of several relatively noncomplex organisms, such as E.

coli (Blattner et al. 1997), yeast (Goffeau et al. 1996), Caenorhabditis (The C.elegans

Sequencing Consortium 1998) and Drosophila (Adams et al. 2000), have already

been determined. The human genome working draft sequence was completed in June

2000, with analyses published in February 2001 (Gustafsson et al. 1999a; Lander et

al. 2001), and the high-quality sequence of the entire human genome will be finished

by the end of 2003. Furthermore, a high-quality draft sequence of the mouse genome

has also been generated at the end of 2002 (Waterston et al. 2002). However, these

achievements are not the end of the road but rather the first step toward the functional

understanding of the genome of human and other organisms. The determined linear

nucleotide sequences remain only lists of A, C, G and T, unless they are given

functional significance. The coding sequences of genes can be identified in a

relatively reliable manner by computational methods, but the exact function of their

protein products can rarely be determined without obtaining additional information by

biochemical or biological methods. Thus, following sequencing, the next step must be

to assign functions to the identified genes. The final goal of genome research today

may look futuristic, but the knowledge of the function of every single gene and the

interactions between them will finally allow us to understand the development and

functioning of an organism as a whole.

Transgenic technology is one of the powerful strategies for determining gene

function, because it enables rapid movement between genotype and phenotype

through specific loss-of-function, overexpression or ectopic expression (Si-Hoe et al.

2001). The mouse represents the excellent model organism of choice for the analysis

of gene function because of its anatomical, physiological, reproductive and genomic

similarity to humans, the ability to manipulate the mouse genome in a random or

targeted way, as well its high fecundity and relatively low maintenance costs (Denny
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& Justice 2000; Malakoff 2000). Therefore, transgenic mice will play a pivotal role in

studying mammalian gene function as we enter the post-genomic era. 

2.1.1 Conventional transgenic technologies in mice

2.1.1.1 Pronuclear DNA microinjection

In most cases, a transgene resembles an expression cassette consisting of a gene

driven by a promoter of choice. The classical transgenic procedure consists of

randomly introducing such a transgene into the genome to generate an overexpression

model (Brinster & Palmiter 1984). To this end, the DNA containing the transgene is

microinjected into the male pronucleus of fertilized mouse zygotes. Subsequently,

viable zygotes are implanted into the oviducts of pseudopregnant foster mothers. On

the average, 10-30% of the resulting offspring bear the transgene in their genome. In

general, a transgenic mouse line is established when the transgene is effectively

transmitted to the following generations in a Mendelian way. Although the transgenic

DNA is present in all cells, transgene expression is dependent on many factors such as

the chosen promoter and enhancer elements, the number of integrated copies and the

locus of integration. 

This kind of transgenesis is employed most commonly for one of the following two

purposes: (i) the forced expression of a recombinant protein to alter the physiology

and/or morphology of the animal, or (ii) the analysis of transcriptional control

mechanisms involved in regulatory pathways (Williams & Wagner 2000). To alter the

phenotype of an intact animal, the transgene may encode a native protein, so that the

experiment addresses the systemic effects at an altered protein level (overexpression)

and the consequences of ectopic expression. Alternatively, the transgene is designed

to encode a mutated protein that has been modified for a special purpose: to produce a

constitutively active (gain-of-function mutant) or dominant-negative (loss-of-function

mutant) form of a specific protein or to mimic a mutation observed in a human

genetic disease.

Another common application is to identify transcriptional control elements that

respond to developmental cues or physiological stimuli. In this application, the coding
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region of a so-called “reporter gene”, such as the gene encoding β-galactosidase

(LacZ), green fluorescent protein (GFP), chloramphenicol acetyltransferase (CAT) or

luciferase (Luc), is linked to the segment of DNA thought to contain the regulatory

elements of interest.

The main limitation of the classical transgenic approach is related to the uncontrolled

integration of the transgene into the host genome. This random integration may

influence the expression of genes situated close to the transgene, and the locus of

integration may affect the expression of the transgene itself. Therefore, it is

mandatory to generate several transgenic mouse lines with comparable transgene

expression patterns that show identical phenotypes.

2.1.1.2 Targeted mutagenesis in mice

2.1.1.2.1 Knockout

Most targeting experiments performed to date were to generate null-mutant animals,

commonly referred to as "knockout" mice (Thomas & Capecchi 1987). The principle

of targeted gene disruption in the mouse is the following: a modified version of the

gene of interest, a so-called targeting vector, is introduced into embryonic stem (ES)

cells. A varying preparation of transfected ES cells will have replaced a wild-type

allele of the endogenous gene with the targeting vector by homologous

recombination. ES cell clones carrying the homologously recombined allele are then

microinjected into blastocyst-stage embryos where they aggregate with the inner cell

mass (ICM). After implantation into the uterus of foster mothers, these embryos will

develop into chimeric mice. When the injected ES cells contribute to the formation of

germ cells in chimeric mice, the ES cell genotype can be propagated to the next

generations.

Since the first mouse with a targeted gene disruption was presented in 1989

(Thompson et al. 1989), thousands of targeted mutations have been described (see the

Transgenic/Targeted Mutation Database: http://tbase.jax.org). Most targeted mice

have been generated to characterize developmental and physiological functions of

http://tbase.jax.org/
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genes in vivo. The approach is especially powerful in revealing the distinctive

functions of genes encoding related proteins.

Sometimes the study of knockout mice reveals unexpected phenotypes and thereby

highlights unsuspected functions of the disrupted gene (for examples see Huang et al.

1993; Wenger & Gassmann 1997). Although such discoveries are serendipitous, they

should not be regarded as marginal. The targeted mutagenesis strategy has boosted the

pace of knowledge in many fields by providing new insights into the functions of

various genes. 

2.1.1.2.2 Knockin

An interesting extension of the knockout approach is the so-called knock-in approach,

in which the targeting vector contains, in addition to the selection cassette, a cDNA of

interest inserted in-frame in an exon of the gene under study. The cDNA is thus

expressed in place of the endogenous gene product. The main advantage of this

approach is that it allows tight control of the expression of the cDNA of interest,

because the cDNA is placed in the context of the complete set of cis-acting regulatory

elements that normally control the expression of the endogenous gene. Furthermore,

this approach avoids the position effect encountered in random gene-addition

transgenesis. A common use of this approach is the targeted mutation of the LacZ

reporter gene, which permits accurate definition of the expression pattern of

endogenous genes (for examples see Schneider-Maunoury et al. 1993; Tajbakhsh et

al. 1996). This approach has also proven to be a powerful tool for studying the

functional relationships among members of a gene family and their potential abilities

to functionally compensate for each other (for example see Hanks et al. 1998). 

2.1.2 Conditional transgenic technologies in mice

Frequently, a genetic change has developmental consequences that either preclude or

complicate studies on adult animals (e.g. embryonic lethality). Furthermore,

conventional knockout strategies affect every cell in an animal, so that it is often

impossible to distinguish primary and secondary changes in a complex phenotype. In

order to tease out more precise information about the role of a gene in a specific cell
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type at a critical stage of disease or development, more sophisticated approaches have

been developed which extend and refine the possibilities of conventional transgenic

technologies: conditional transgenic technologies, which allow flexible temporo-

spatial control of gene expression or deletion by specific stimuli (rev. in Ryding et al.

2001).

2.1.2.1 Conditional overexpression

The ideal conditional overexpression system should allow the investigator to switch

transgene expression on and off, rapidly, reversibly, at any point during development

and postnatal life, and only in the desired cell type. Many systems have been

developed harnessing the inherent responsiveness of specific promoters to various

stimuli, such as tetracycline responsive system, ecdysone induction system and

cytochrome P-450 induction system (rev. in Ryding et al. 2001).

2.1.2.2 Conditional knockout

Embryonic lethality in many conventional knockouts impedes attempts to study gene

function in postnatal life. One way of avoiding this is to ablate specific genes at later

stages of development or adulthood using recombinases. Two members of the �

integrase family of site-specific recombinases (SSR), Cre and Flp, have proven

invaluable for conditional transgenic use.

Cre recombinase of the P1 bacteriophage directs recombination between loxP sites. Its

function is to maintain phage-encoding plasmids as monomers. In a similar manner

the Flp integrase of Saccharomyces cerevisiae mediates recombination between FRT

(FLP recombination target) sites within yeast plasmids. In each case, the only

requirements for DNA rearrangement are the integrase and the recombination sites, no

additional cellular factors are necessary. Both loxP and FRT sites are 34 bp DNA

sequences comprising two 13 bp palindromes separated by an asymmetric 8 bp core.

The recombinases catalyse DNA strand exchange between two aligned recombination

sites, resulting in deletion, duplication, integration, inversion or translocation of
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sequences, according to the orientation of the recombination sites and the number of

molecules involved (Ryding et al. 2001).

The Cre-loxP system.  Modification of a specific gene with loxP sites flanking the

region of interest (so called ‘floxed gene/segment’) is achieved using standard gene

targeting vectors in ES cells. Mice derived from these targeted ES cells can be bred to

homozygosity for the floxed allele, and crossing with other mice transgenic for Cre

recombinase under the control of a specific promoter allows time- or tissue-specific

deletion of the floxed segment. In this way, the activity of the gene can be modified in

a limited range of cells at a particular developmental stage. Crossing with a different

Cre transgenic mouse line allows the generation of a different temporo-spatial pattern

of recombination, and possible phenotype. Tissue specificity is determined by the

choice of promoter driving Cre recombinase expression. Many tissue-specific Cre

transgenic and floxed mice strains are becoming available (see

http://www.mshri.on.ca/nagy/cre.htm). Several strategies have also been designed to

control the timing of recombination, using inducible forms of Cre recombinase

(Ryding et al. 2001). Cre-loxP has been used most extensively for small-scale DNA

rearrangements affecting single loci to study the function of a single gene. However,

it can also be used for generating megabase chromosome rearrangements, which

provides a powerful means for functional analysis of complex genomic regions (Mills

& Bradley 2001).

The Flp-FRT system.  The recombination efficiency of Flp is inferior to that of Cre,

and no ubiquitously expressing reporter lines for Flp are currently available. Thus, the

use of Flp in transgenic mice is at a less advanced stage than that of Cre. However, an

enhanced mutant form of Flp, Flpe, was developed, which exhibits fourfold greater

activity than wild-type form, and maximally excises a target gene in a broadly

expressing reporter line (Buchholz et al. 1998; Rodriguez et al. 2000). Moreover, use

of Flp and Cre in combination allows sophisticated manipulation of loci, for example,

removal of unwanted plasmid sequences from a conditional allele at the ES cell stage

with Flp, and subsequently deletion by Cre in vivo (Moon & Capecchi 2000). A

floxed hypomorphic allele could be knocked out completely using conditional Cre, or

reverted back to wild-type using Flp (Meyers et al. 1998). Recently, a more efficient

targeting method has been developed based on the combined use of the two

http://www.mshri.on.ca/nagy/cre.htm
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independent site-specific recombination systems described above (Lauth et al. 2002).

The gene of interest is flanked by lox P on one side and FRT on the other side (called

a froxed gene). ES cells carrying the froxed gene are transfected with a replacement

plasmid harbouring the same sites and a plasmid expressing Cre and Flpe. This

method, called Froxing, allows to unidirectionally deliver transgenes to a defined

genomic locus, renders the introduced sequence more stable and allows for a higher

integration rate without selection (14-15%), compared to systems that utilize only a

single SSR.

2.1.3 Gene-trap mutagenesis in mice

Both transgenic and gene-targeting technologies require that the gene to be

manipulated has been isolated and that the structure of the gene is known, at least

partially. Another approach that allows the mutagenesis of uncharacterized genes is

the gene-trap technology (Cecconi & Meyer 2000; Wiles et al. 2000). In this strategy,

ES cells are electroporated with a so-called gene trap vector. These vectors are

designed to integrate at random sites in the genome and to use the transcriptional

activity of the endogenous target gene to drive a selection cassette and eventually a

reporter gene. The integration of the gene trap vector may generate an insertional

mutation. The gene trap vector also provides a tag to easily identify the targeted gene

and the reporter gene may be used for an expression analysis, for example, for the

identification of genes with specific expression patterns during embryogenesis. Mice

generated from gene-trapped ES cells are subsequently used for the phenotypic

analysis. The gene-trap technology is a powerful tool for combining large-scale

random mutagenesis in the mouse with a rapid identification of the mutated gene and

characterization of its biological functions.

2.2 Insulin-like growth factor (IGF) system

2.2.1 IGF peptides

In 1957, Salmon et al. found a growth hormone (GH)-dependent serum factor that

stimulated sulfate incorporation into the ECM in rat cartilage. It was initially

designated sulfation factor, and subsequently termed somatomedin C (Daughaday et
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al. 1972), which ultimately was shown to be IGF-I (Rinderknecht & Humbel 1978a).

In the 1960s, several laboratories made efforts to identify serum components with

insulin-like effects on metabolism which were not neutralized by anti-insulin

antibodies. These effects were designated nonsuppressible insulin-like activities

(Froesch et al. 1963; Megyesi et al. 1974), which were ultimately shown to

correspond to both IGF-I and IGF-II (Rinderknecht & Humbel 1976a). In the early

1970s, a polypeptide fraction with multiplication-stimulating activity for chicken

embryo fibroblasts was described in calf serum (Pierson, Jr. & Temin 1972) and rat

liver cell conditioned medium (Dulak & Temin 1973a; Dulak & Temin 1973b) This

factor was then identified as IGF-II (Rinderknecht & Humbel 1978b). The initial

purification of these disparate factors suggested that they had overlapping activities

and the term insulin-like growth factor was proposed to signify their relationship to

insulin and to emphasize their growth-promoting activities (Rinderknecht & Humbel

1976b). It is currently known that insulin-like peptides and their cellular receptors

represent two superfamilies of regulatory proteins whose common ancestry extends

back to early metazoan evolution. The involvement of these proteins in cellular

anabolic processes is widespread throughout the animal world, where both ligand and

receptor homologs are seen to regulate metabolite uptake, mitogenesis, synthetic and

growth functions, and developmental processes (rev. in Kelley et al. 2002).

IGF-I and IGF-II are small single-chain peptides, approximately 7.5 kDa in size,

which are structurally ~70% identical to one another and similar to pro-insulin. In

addition to A and B domains, the IGFs also retain the C domain which is spliced out

of insulin during pro-hormone processing, and contain an additional C-terminal D

domain which is not found in insulin. C-terminal E peptides, which are generally

cleaved posttranslationally, are also found in the IGF pro-peptides (rev. in Rechler &

Nissley 1990; LeRoith & Roberts, Jr. 1993). Unlike insulin which is produced only by

the pancreatic beta cells, IGFs are expressed in many cell types and tissues and act in

endocrine, autocrine or paracrine manner to regulate cellular proliferation, survival

and differentiation (rev. in Cohick & Clemmons 1993; Stewart & Rotwein 1996;

Butler & LeRoith 2001). 

IGF-I is a basic protein of 70 amino acids (aa). The human IGF1 gene is located on

chromosome 12. The major source of circulating IGF-I is the liver, but IGF-I is
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widely expressed in most tissues, especially during postnatal development

(Daughaday & Rotwein 1989). IGF-I was first identified as a mediator of GH actions.

The primary regulator of Igf1 transcription is GH. All species of IGF-I mRNAs

increase after GH administration, although the magnitude of change varies with

tissues and subclasses of mRNA (Roberts, Jr. et al. 1987). In addition to GH,

hormonal, tissue-specific and developmental factors as well as nutritional status all

modify IGF-I expression (Daughaday & Rotwein 1989). Null mutants for Igf1 in mice

show severe growth retardation with a highly variable, strain-dependent perinatal

lethality (Baker et al. 1993; Liu et al. 1993; Powell-Braxton et al. 1993a; Powell-

Braxton et al. 1993b) and also marked alteration in their nervous system (Beck et al.

1995) and reproduction (Baker et al. 1996).

IGF-II is a slightly acidic protein of 67 aa. The human IGF2 gene is located on

chromosome 11, contiguous with the insulin gene. In contrast to IGF-I, IGF-II is

highly expressed embryonically (Stylianopoulou et al. 1988a; Lee et al. 1990). In

rodents, IGF-II levels decrease postnatally ( Moses et al. 1980; Daughaday et al.

1982), except in the choroids plexus and leptomeninges of the brain (Stylianopoulou

et al. 1988b). In human, circulating IGF-II remains high in the adult (Rechler and

Nissley 1990). Although IGF-II expression is also regulated hormonally, the trophic

factors involved in the regulation of IGF-II expression are poorly characterized

(Daughaday & Rotwein 1989). Inactivation of Igf2 gene in mice produces growth-

deficient but fertile and otherwise normal individuals (DeChiara et al. 1990). The

growth deficiency of heterozygous mice carrying a disrupted paternal allele revealed

that the Igf2 gene is subject to maternal genomic imprinting. The imprinting of the

Igf2 gene has led to the argument for additional regulation of IGF-II at the level of

gene dosage (DeChiara et al. 1991; Filson et al. 1993). Although IGF-II is primarily

an important regulator of embryonic growth and differentiation in the rodent,

transgenic mouse models revealed some functions of this peptide in growth,

metabolism and tumorigenesis in postnatal life (rev. in Wolf et al. 1998). 

2.2.2 IGF receptors

Type 1 IGF receptor (IGF-IR). Most of the IGF actions are mediated by IGF-IR. Like

the insulin receptor (IR), the IGF-IR is a member of the tyrosine-kinase class of
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growth factor receptors. The IGF-IR is expressed at the cell surface as a

heterotetramer, comprised of two ligand-binding α and two transmembrane β

subunits. The IGF-IR is similar in topography and sequence to the insulin receptor

(IR) and shares more than 50% amino acid identity (Ullrich et al. 1986; Abbott et al.

1992; LeRoith et al. 1995). The IGF-IR binds IGF-I and IGF-II with high affinity, and

insulin with considerably lower affinity. Ligand binding to extracellular cysteine-rich

region within �-subunits of the IGF-IR induces activation of intracellular tyrosine

kinase domain of each �-subunit. After autophosphorylation on intracellular tyrosine

residues, the receptor is fully activated as a tyrosine kinase towards endogenous

substrates (LeRoith 2000). Activation of the IGF-IR triggers intracellular events that

regulate the cell cycle, apoptosis, cell mobility and gene expression (De Meyts et al.

1994). In addition to binding IGF-I, IGF-II and insulin, the IGF-IR has also been

reported to interact with IGFBP-3 (Mohseni-Zadeh & Binoux 1997), but the

significance of this binding is currently undefined. Igf1r knockout mice weigh 45% of

normal at birth and die immediately afterwards due to respiratory failure (Baker et al.

1993; Liu et al. 1993). A targeted partial invalidation of the Igf1r gene exhibited a

postnatal growth deficit of male hetero- and homozygous mice (Holzenberger et al.

2000). Patients with a deletion of the distal arm of chromosome 15 lack one copy of

the IGF1R gene and exhibit both intrauterine and postnatal growth retardation

(Siebler et al. 1995). Vast overexpression of human IGF-IR in mouse and rat

fibroblasts has been found to cause IGF-dependent neoplastic transformation (Kaleko

et al. 1990). This study highlights a potential role for the IGF-IR in tumorigenesis.

Type II IGF receptor (IGF-IIR). IGF-IIR is a single-chain membrane-spanning

glycoprotein that also is known as the cation-independent mannose-6-phosphate

(Man-6-P) receptor (Kornfeld 1992). The human IGF2R gene has been mapped to

chromosome 6 (Laureys et al. 1988). In opposition to the Igf2 gene, the expression of

the Igf2r gene is paternally imprinted (Barlow et al. 1991). The mature human IGF-

IIR contains 2451 amino acids that can be divided into three regions, a large 2264-

residue extracellular domain, a 23-residue transmembrane region and a 164-residue

C-terminal intracytoplasmic domain (Morgan et al. 1987; Oshima et al. 1988). The

extracellular part of the IGF-IIR encodes a single binding site for IGF-II and two sites

for Man-6-P-containing ligands, and the intracytoplasmic region regulates movement
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among different cellular compartments. IGF-IIR binds IGF-II with high affinity but

interacts minimally with IGF-I and insulin (Kornfeld 1992). The coordinated

expression of IGF-II and IGF-IIR in most mammalian tissues and gene targeting

experiments suggest a role of IGF-IIR in the control of extracellular IGF-II

concentration by receptor-mediated endocytosis and subsequent degradation of the

growth factor in lysosomes (Lau et al. 1994; Ludwig et al. 1996; Braulke 1999).

Currently, there is no evidence that the IGF-IIR is involved in the IGF-signaling.

2.2.3 IGF-binding proteins

Unlike insulin, the IGFs in serum and other biological fluids are bound to specific

IGF-binding proteins (IGFBPs) which were initially discovered as carrier proteins in

serum (Zapf et al. 1975). The IGFBPs represent a family of six conserved proteins

(IGFBP-1 to -6) that bind to IGFs with affinities similar to or greater than the IGF-IR.

Six IGFBPs cloned in mammals share a 50% homologous protein sequence overall

and up to 80% sequence homology among different mammalian species (Rechler

1993; Kelley et al. 1996). Human IGFBP1 and IGFBP3 genes are located on

chromosome 7, IGFBP2 and IGFBP5 on chromosome 2, IGFBP4 on chromosome 17,

and IGFBP6 on chromosome 12 (Allander et al. 1993; Allander et al. 1994;

Ehrenborg et al. 1999; Hwa et al. 1999). The mammalian IGFBPs share a common

domain organization, possessing a highly cysteine-rich amino (N)-terminal domain

(12 cysteine residues), a cysteine-rich carboxy (C)-terminal domain (6 cysteine

residues), and a central (L) domain with no cysteine residue except in IGFBP-4. The

N- and C-domains are highly conserved among different IGFBPs in a given species,

and the L-domain is highly variable (rev. in Duan 2002). Mutational studies suggest

that both the N- and C-domains are involved in high-affinity IGF-binding (rev. in

Clemmons 2001). IGF-binding may be modulated by IGFBP modifications, such as

glycosylation, phosphorylation and proteolysis, and by cell surface or ECM

association of the IGFBPs (rev. in Baxter 2000; Firth & Baxter 2002). Several low-

affinity IGF binders, termed IGFBP-related proteins (IGFBP-rPs), have also been

discovered that exhibit significant structural homology to the N-domain of the six

high-affinity IGFBPs (rev. in Hwa et al. 1999). The functional significance of the

IGFBP-rPs for the IGF system, if any, is currently unknown.
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IGFBPs are present in serum and other biological fluids and are secreted by a broad

spectrum of cell types. Numerous in vitro studies have demonstrated that IGFBPs

have a diversity of functions depending on cell types, culture conditions, IGFBP dose

and post-translational modification. They all can inhibit IGF actions by binding to

IGFs and preventing the binding of IGFs to the IGF receptors (rev. in Clemmons

1997; Clemmons 1998; Baxter 2000), whereas some of them (e.g. IGFBPs-1, -3 and -

5) also potentiate IGF actions presumably due to their cell surface or ECM association

(rev. in Jones et al. 1993a; Mohan et al. 1995b; Clemmons 1998). In addition, some

IGFBPs (e.g. IGFBP-3 and -5) have IGF-independent actions probably by signaling

via IGFBP receptors (Oh et al. 1993; Leal et al. 1997; Andress 1998) or by nuclear

localization and interaction with transcriptional modulators (Radulescu 1994; Liu et

al. 2000; Amaar et al. 2002). The roles of IGFBPs in vivo are only partially defined.

Transgenic and knockout technologies in mice provide important tools to alter level

and tissue-specificity of expression of a particular IGFBP and – after extensive

phenotypic analysis – draw conclusions regarding its functions. Although knockout

mice have been produced for all IGFBPs, they showed only minor phenotypic

alterations, probably due to functional compensation of the lacking IGFBP by the

remaining ones (Pintar et al. 1995; Pintar et al. 1998; Wood et al. 2000). In contrast,

transgenic mice overexpressing a particular IGFBP exhibited more clear phenotypes,

which confirmed that IGFBPs are important regulators of IGF actions and also

revealed some new functions (rev. in Schneider et al. 2000; Silha & Murphy 2002). A

summary of the established IGFBP transgenic mouse models is shown in Table 2.1.

Table 2.1 Effects of overexpression of IGFBPs and ALS in transgenic mice

IGFBP Transgene a Transgene
expression

Phenotypic manifestation Ref

IGFBP-1 MT-hBP-1

mPGK-rBP-1

h�1AT-hBP-1

entire hBP-1 b

Brain, heart, kidney,
liver, lung, testes
Ubiquitous

Liver

Liver

Abnormal brain development.

Reduction in birth weight, postnatal
growth retardation, reduction in litter
size, impaired glucose tolerance.
Reduced brain weight with structural
alterations, reduced body weight
gain, impaired glucose tolerance,
reduced fecundity, proteinuria and
glomerular lesions.
Impaired glucose tolerance, abnor-

1,2

3

4

5
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IGFBP-2
IGFBP-3

IGFBP-4

IGFBP-5

ALS

CMV-mBP-2
mPGK-hBP-3

CMV-hBP-3

MT-hBP-3

WAP-hBP-3

mSMP-rBP-4

mSMP-rBP4.7A c

sBLG-hBP-5

rOC-rBP-5

CMV-hALS d

Ubiquitous
Ubiquitous

Ubiquitous

Kidney, intestine

Mammary epithelial
cells during late pre-
gnancy and through-
out lactation
Smooth muscle cells
(SMC)

SMC

Mammary epithelial
cells during involu-
tion of the gland

Bone

Ubiquitous

malities in insulin action, growth re-
tardation in early postnatal life.
Reduced postnatal body weight gain.
Reduction in birth weight, postnatal
growth retardation, reduction in litter
size, impaired glucose tolerance.
Reduction in birth weight, postnatal
growth retardation, catch-up growth
after puberty, reduction in litter size,
increased adiposity, impaired gluco-
se tolerance and insulin sensitivity.
Selective organomegaly, spleen, liv-
er, heart.
Reduced size of alveoli at peak lac-
tation, inhibition of the gland from
undergoing programmed remodelling
and apoptosis after weaning.
Smooth muscle hypoplasia, signifi-
cant reduction in wet weight of SMC-
rich tissues, including bladder, intes-
tine, aorta, uterus and stomach, with
no change in total body or carcass
weight.
Greater growth inhibition of SM than
native IGFBP-4.
Impaired mammary gland develop-
ment, decreased mammary cell num-
ber and milk synthesis, premature
cell death.
Transient decrease in trabecular
bone volume, impaired osteoblastic
function, osteopenia.
Modest postnatal growth retardation,
reduction in litter size

6,7
8

8

9

10

11

12

13

14

15

a MT, metallothionein-I promoter; PGK, phosphoglycerate kinase I promoter; �1AT, alpha1-
antitrypsin promoter; CMV, cytomegalovirus promoter; WAP, whey acidic protein promoter;
SMP, smooth muscle �-actin promoter; BLG, �-lactoglobin promoter; OC, osteocalcin
promoter; m, murine; r, rat; s, sheep; h, human. b A 35-kb fragment encompassing the entire
human IGFBP1 structural gene and its regulatory sequences that is responsive to normal
hormonal stimuli. c BP4.7A, a protease-resistant IGFBP-4 mutant. d ALS, the acid-labile subunit
that forms ternary complex with IGFBP-3 and IGF-I or IGF-II, responsible for transport of the
majority of the IGF-I and IGF-II present in the circulation.1, Dai et al. 1994; 2, D'Ercole et al.
1994; 3, Rajkumar et al. 1995; 4, Gay et al. 1997; 5, Crossey et al. 2000; 6, Hoeflich et al.
1999; 7, Hoeflich et al. 2001; 8, Modric et al. 2001; 9, Murphy et al. 1995a; 10,
Neuenschwander et al. 1996; 11, Wang et al. 1998; 12, Zhang et al. 2002; 13, Tonner et al.
2002; 14, Devlin et al. 2002; 15, Silha et al. 2001.
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2.3 IGFBP-4

2.3.1 Genomic organization of the IGFBP-4 gene

The human IGFBP4 gene is located on chromosome 17 (Allander et al. 1993) and

spans about 15.3 kb long (Zazzi et al. 1998). According to the mouse genome

sequence determined so far, the mouse Igfbp4 gene spans 11.3 kb on chromosome 11

(http://www.ncbi.nlm.nih.gov/LocusLink/LocRpt.cgi?l=16010). The rat Igfbp4 gene

spans at least 12 kb of genomic sequence (Gao et al. 1993). The genes for human and

rat IGFBP-4 are composed of four exons separated by three introns, which give them

an arrangement similar to the genes of the other IGFBPs except for IGFBP-3

(Cubbage et al. 1990). The splice sites are highly conserved between human IGFBP4

and rat Igfbp4 genes, but the sizes of the introns vary slightly between the two species

(Zazzi et al. 1998). Cell type-specific transcript sizes were documented in mouse cell

lines which, when translated, suggest an additional non-IGF binding variant present in

mouse cells (Glantschnig et al. 1998).

Alignment of the published rat (Gao et al. 1993), human (Dai et al. 1997) and mouse

(Glantschnig et al. 1998) IGFBP-4 promoter sequences revealed an overall high

evolutionary conservation, but some promoter regions show less conservation and

vary between the three species. It is interesting that the human sequence differs from

rodent sequences by a 12-bp insertion upstream to the transcription initiation codon

(Dai et al. 1997). The IGFBP-4 promoter possesses a typical TATA box and a CAAT

box. Several potential regulatory elements, such as cAMP responsive element (CRE),

steroid responsive element (SRE), AP-1 binding site, Sp1 binding site, exist in the

IGFBP-4 5’ flanking regions of the three species (Gao et al. 1993; Dai et al. 1997;

Glantschnig et al. 1998; Zazzi et al. 1998). These cis-regulatory binding sites provide

the targets for a variety of local and systemic factors such as cAMP, parathyroid

hormone (PTH) and various ligands of the steroid hormone receptor superfamily

(such as glucocorticoids, retinoic acid, triiodothyronine, vitamin D), to regulate the

expression of IGFBP-4 as discussed below.



Review of the literature17

Several Alu repeat sequences are clustered in the proximity (upstream) of the human

IGFBP4 gene, with an average of one Alu sequence per kilobase (Zazzi et al. 1998),

which is a higher frequency than the normal distribution in the human genome

(Houck et al. 1979). This indicates that the IGFBP4 gene is a hot spot for Alu

integration. High-density Alu regions are often sites of genomic instability (Calabretta

et al. 1982) and show a higher frequency of sequence polymorphism (Batzer &

Deininger 2002). Apart from the Alu repeat sequences, several polymorphic

microsatellites were found within the boundaries of the human IGFBP4 gene (Zazzi et

al. 1998). One of these was used as a marker to locate the hereditary breast-ovarian

cancer gene (Tonin et al. 1993). Another highly polymorphic microsatellite was found

in the first intron of the human IGFBP4 gene (Zazzi et al. 1998).

A typical cleavage site for poly(A) was found at the 3’-end of the human IGFBP4

gene, however no conserved poly(A) addition signal was detected within the 30 bp

upstream region. Nevertheless, within this region an AAAAAA and several

AACAAA consensus sequences were found, which could form a degenerate poly(A)

addition signal. The few described eukaryotic genes that do not contain a standard

AAUAAA sequence are involved in alternative polyadenylation, but this does not

seem to be the case for the human IGFBP4 gene, since no variation in mRNA length

has been reported and no alternate polyadenylation site was found within the IGFBP4

gene (Zazzi et al. 1998). 

2.3.2 The structure-function relationship of IGFBP-4

IGFBP-4 is the smallest one of the six IGFBPs. Human (h)IGFBP-4 contains 237 aa,

and rat (r)IGFBP-4 consists of 233 aa. IGFBP-4 contains an N-linked glycosylation

site and commonly exists in biological fluids as a doublet: a 24-kDa non-glycosylated

form and a 28-kDa glycosylated form (Wetterau et al. 1999). IGFBP-4 is unique

among the six IGFBPs by having two extra cysteine residues in the variable L-domain

(Landale et al. 1995), which are linked to each other (Chelius et al. 2001). These

unique properties of IGFBP-4 may be responsible for the distinctive biological

behavior of this binding protein, i.e. solely inhibitory actions and lack of cell surface

association.
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2.3.2.1 IGF-binding

It is generally accepted that the IGF-binding site for the various high-affinity IGFBPs

is located in the N-terminal region. Mutational analysis indicated that the IGF-binding

activity of hIGFBP-4 is mainly determined by the N-terminal region Leu72-Ser91, and

to a lesser extent by the C-terminal motif Cys205-Val214 (Qin et al. 1998). Although

the three-dimensional structure of most IGFBPs has not been determined, disulfide

bridging in IGFBPs appears to be important for maintaining the secondary structure

required for IGF-binding, since all six IGFBPs contain conserved cysteine residues in

both the N-terminal and the C-terminal regions and reduced IGFBPs exhibit little or

no IGF-binding activitiy (Landale et al. 1995; Qin et al. 1998; Neumann & Bach

1999). Direct evidence was provided by disruption of the disulfide linkages in the N-

domain of rat IGFBP-3 which resulted in complete loss of IGF-binding ability

(Hashimoto et al. 1997). There is evidence suggesting that the IGF-binding domain in

hIGFBP-4 involves a hydrophobic motif (Leu72-Met80) located in the distal part of the

conserved N-terminal region, and that the N-terminal Cys residues (Cys9 and Cys12)

are more critical than the C-terminal Cys residues (Cys17 and Cys 20) for IGF-

binding (Byun et al. 2001a). Eight disulfide linkages in rat and human IGFBP-4 have

been determined, four in the N-terminal (two of them are present in all six IGFBPs),

three in the C-terminal (present in IGFBP-2 and -6 as well) and one in the midregion

(Chelius et al. 2001).

Although the IGF-binding is mainly determined by the N-terminal conserved cysteine

residues, the six conserved C-terminal cysteine residues in IGFBP-4 are essential for

high-affinity binding of IGFs (Qin et al. 1998; Standker et al. 2000; Byun et al.

2001a). There is also evidence that in IGFBP-3 (Spencer & Chan 1995) and IGFBP-2

(Forbes et al. 1998; Wang et al. 1988) the C-terminal region plays an important role

in IGF-binding. The six C-terminal cysteine residues in IGFBP-4 are linked in the

same manner as in IGFBP-2 and -6 (Chelius et al. 2001). Both IGFBP-2 and -6 share

a binding preference for IGF-II and have the same C-terminal disulfide linkages,

suggesting that a different disulfide linkage could conceivably influence IGF-II-

binding preference (Forbes et al. 1998). However, IGFBP-4 binds IGF-I and IGF-II

with similar affinities, thus the highly conserved three C-terminal disulfide linkages
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either have no effect on the IGF-binding preference, or they are not the sole

determinants.

2.3.2.2 Cell surface association and tissue distribution

Cell surface and ECM association is one of the possible mechanisms to alter the

affinity of IGFBPs for the IGFs. Both IGFBP-1 and IGFBP-2 have an Arg-Gly-Asp

(RGD) motif, which was shown to bind α5β1 integrin and consequently to mediate

cell surface association of IGFBP-1 (Jones et al. 1993b). IGFBP-2 bound to the

plasma membrane also in the absence of the RGD motif in IGFBP-2 (Hoeflich et al.

2002), indicating that additional mechanisms are involved in cell surface association

of IGFBP-2. IGFBP-2 can bind to heparin, ECM and proteoglycans depending on the

previous binding to IGF molecules (Arai et al. 1996). IGFBP-3 and -5 bind to distinct

membrane receptors (Oh et al. 1993; Andress 1995; Leal et al. 1997; Andress 1998).

However, there is no evidence for cell surface association of IGFBP-4 (Kelley et al.

1996), suggesting that IGFBP-4 exists primarily in a soluble extracellular form.

When IGFBP-3 was perfused through the isolated, beating rat heart, it crossed the

microvascular endothelium and was distributed primarily in cardiac muscle. In

contrast, perfused IGFBP-4 also crossed the microvascular endothelium of the rat

heart, but was preferentially distributed in connective tissue (Bar et al. 1990; Boes et

al. 1992). A small basic C-terminal region (heparin binding domain, HBD) of IGFBP-

3 has been shown to be central to the ability of IGFBP-3 to bind to specific cells, such

as endothelial cells (Booth et al. 1995; Knudtson et al. 2001). When this region was

synthesized as 18-mer peptide (P3), P3 bound to endothelial cells (Booth et al. 1996).

IGFBP-4 has no HBD and does not bind to endothelial cells (Booth et al. 1995).

When the C-terminal 20 amino acids of IGFBP-4 region (P4) are replaced by the

homologous P3, the generated chimeric IGFBP-43 bound specifically to endothelial

cells, and it was distributed in the perfused rat heart similarly as the behavior of

IGFBP-3 and different from that of IGFBP-4 (Knudtson et al. 2001), suggesting that

the C-terminal region of IGFBP-4 is critical for its tissue distribution in the rat heart.

These findings provide a novel potential mechanism of the tissue-specific actions of

the IGFBPs.
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2.3.2.3 Glycosylation

In 1991, Ceda and colleagues isolated two IGFBPs with apparent molecular weights

(MW) of 28 and 24 kDa in the conditioned medium of B104 rat neuroblastoma cells

(Ceda et al. 1991). Sequence analysis revealed that both proteins had identical N-

terminal sequences and appeared to be two forms of IGFBP-4. Treatment of these

IGFBPs with endoglycosidase-F reduced the MW of the 28-kDa IGFBP to 24 kDa.

However, there was no change in the 24-kDa IGFBP. The data from this and other

studies (Carr et al. 1994; Cheung et al. 1991) demonstrated that IGFBP-4 exists as

both N-glycosylated and non-glycosylated protein. Further analysis revealed that a

single N-linked glycosylation site is located at the midregion (Asn104) of the rIGFBP-

4 and that the glycosylation of IGFBP-4 does not affect its binding to IGFs (Chelius et

al. 2001). Five different glycosylation isoforms of rIGFBP-4, isolated from rat serum,

were recently identified (Chelius et al. 2002). All the identified oligosaccharides are

biantennary and differ only in the number of sialic acid terminal residues and/or core

modification with fucose. The physiological significance of the glycosylation in

IGFBP-4 is unknown.

2.3.2.4 Proteolysis

Proteolysis is a major regulatory mechanism of IGFBP-4 functions. Each of the six

IGFBPs can undergo proteolysis, which results in decreased affinity for IGFs. While

some of the proteases can use multiple IGFBPs as a substrate, there are apparently

proteases that are specific for individual IGFBPs (Maile & Holly 1999). An IGF-

dependent IGFBP-4-specific protease was first reported in the media conditioned by

both human and sheep dermal fibroblasts (Fowlkes & Freemark 1992), which was

then identified as pregnancy-associated plasma protein-A (PAPP-A) (Lawrence et al.

1999b). This proteolytic activity has also been detected in the conditioned media from

human osteoblasts (Qin et al. 1999b), vascular smooth muscle cells (Bayes-Genis et

al. 2001), granulosa cells (Conover et al. 2001), trophoblast and decidualized

endometrial stromal cells (Giudice et al. 2002), as well as in ovarian follicular fluid

(Conover et al. 1999) and human pregnancy serum (Byun et al. 2001b).
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PAPP-A was first isolated from human pregnancy serum (Lin et al. 1974) and belongs

to the large metzincin family of metalloproteases (Lawrence et al. 1999a; Boldt et al.

2001). It cleaves IGFBP-4 at a single site, between Met135/Lys136 in hIGFBP-4 (Byun

et al. 2000; Laursen et al. 2002). IGFBP-4 cleavage by PAPP-A uniquely depends on

the presence of IGF (Byun et al. 2000; Laursen et al. 2001). Recent data suggested

that IGFs enhance the proteolysis by binding to IGFBP-4, but not by interaction with

PAPP-A (Qin et al. 2000; Laursen et al. 2001). PAPP-A also cleaves hIGFBP-5

between Ser143/Lys144, which does not require the presence of IGF, but is slightly

inhibited by IGF (Laursen et al. 2001). PAPP-A is secreted as a dimer of 400 kDa, but

exists in human pregnancy serum as a 500 kDa covalent heterotetrameric 2:2 complex

with the proform of eosinophil major basic protein (proMBP), which functions as an

inhibitor of the proteolytic activity of PAPP-A (Overgaard et al. 2000). IGFBP-3, -5

and -6 can also inhibit IGFBP-4 proteolysis, likely through the homologous, highly

basic heparin-binding domains in the C-termini of these IGFBPs (Fowlkes et al.

1997). Proteolysis of IGFBP-4 by PAPP-A enhances IGF bioavailability. Its

physiological significance will be discussed below.

2.3.3 IGFBP-4 expression in vivo and its regulation

IGFBP-4 has been identified in all biological fluids, including serum, follicular fluid,

seminal fluid, interstitial fluid and synovial fluid (Rajaram et al. 1997). It is the

second most abundant IGFBP in adult rat serum after IGFBP-3. Northern blot

analysis revealed that IGFBP-4 mRNA is widely expressed in adult rat tissues,

including adrenal gland, testis, spleen, heart, liver, lung, kidney, stomach,

hypothalamus and brain cortex, with liver being the site of the highest expression

(Shimasaki et al. 1990). The expression of IGFBP-4 was also examined in rat small

intestine (Shoubridge et al. 2001), smooth muscle (Smith et al. 2001), skeletal muscle

(Jennische & Hall 2000), pancreas (Hill et al. 1999), uterus and placenta (Cerro &

Pintar 1997), mouse spinal cord (Arnold et al. 2000), mouse and human thymus (Li et

al. 1996), human prostate (Thomas et al. 2000), bone (Mohan et al. 1995a) and ovary

(Zhou & Bondy 1993; el Roeiy et al. 1994) of several species. In the mouse embryo,

IGFBP-4 transcripts were detected as early as day 11 in different regions, including

telencephalon, mesencephalon, snout, tongue and differentiating sclerotomes. After

14 dpc, IGFBP-4 mRNA was undetectable in the brain, but clearly detectable in lung,
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liver, kidney, intestine, vertebrae, ribs and incisivi (Schuller et al. 1993). IGFBP-4

protein was localized in telencephalon, mesencephalon, heart, liver, lung, tongue,

blood vessels and kidney of 13.5-dpc-mouse embryo by immunohistochemical

analysis (van Kleffens et al. 1999). These findings suggest that IGFBP-4 expression is

developmentally regulated. Moreover, hormones, cytokines and other agents also

regulate the expression of IGFBP-4 in a tissue-specific manner (see Table 2.2). 

Table 2.2 Regulatory mechanisms for IGFBP-4 expression in vivo. 
 
Agent Tissue type/species Effect Reference
GH

GHRA
GHRP-2

T3

T4
hCG

PMSG
FSH
Clenbuterol
Nandrolone
Estrogen
EB1089
LPS

Serum/zinc-deprived rat
Serum/postmenopausal woman
Serum/bGH transgenic mice
Serum, liver/m
Plasma/b (high feed intake)
Plasma/b ( low feed intake)
Kidney, serum/hypothyroid rat
Liver, serum/hypothyroid rat
Uterus/r
Liver, mammary gland/r
Mammary gland/r
Ovary/r
Ovary/r
Ovary/r
Soleus muscle/r
Diaphragm muscle/r
Serum/constitutionally tall girls
Prostate/r
Serum/r

s
s
s
s
s
n
s
s
s
s
i
s
s
s
s
i
s
s
s

Ninh et al. 1998
Kassem et al. 1998
Blackburn et al. 1997
van Neck et al. 2000
Lee et al. 2000
Lee et al. 2000
Voci et al. 2001
Demori et al. 1997b
Bottazzi et al. 1996
Rosato et al. 2002
Huynh 1998
Putowski et al. 1997
Putowski et al. 1997
Putowski et al. 1997
Awede et al. 2002
Lewis et al. 2002
Rooman et al. 2002
Nickerson & Huynh 1999
Soto et al. 1998

GHRA, GH receptor antagonist; GHRP-2, GH releasing peptide-2; T3, triiodothyronine; T4,
thyroxine; hCG, human chorionic gonadotropin; PMSG, pregnant mare’s serum gonadotropin;
FSH, follicle-stimulating hormone; EB1089, vitamin D3 analogue; LPS, lipopolysaccharide; b,
bovine; h, human; m, mouse; r, rat; s, stimulation; i, inhibition; n, no effect.

2.3.4 IGFBP-4 expression in vitro and its regulation

Consistent with the widespread expression of IGFBP-4 in vivo, IGFBP-4 is expressed

by various cell types in vitro, including fibroblasts, osteoblasts, myoblasts, epithelial

cells, endothelial cells, chondrocytes and many kinds of tumor cells. The expression

of IGFBP-4 in vitro is regulated by a large number of agents in a cell type-specific

manner. The effects of these agents are summarized in Table 2.3.
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Table 2.3 Regulatory mechanisms for IGFBP-4 expression in vitro. 

Agent Cell types/Species Effect Reference
ACTH
ACTH and IGFs
Activin
Androgen

Angiotensin II

bFGF

cAMP

Dexamethasone

EGF
Estrogen

FSH
GH
Glucagon
Glucose
Hypoxia
IGF-I

IGF-II

IL-1�

Adrenocortical cells/h
Adrenocortical cells/h
Granulosa cells/r
Osteoblasts/h
Granulosa cells/h
Vascular smooth muscle cells/r

Multiple myeloma/h 
Fetal lung fibroblasts/r
Multiple myeloma/h
Vascular smooth muscle cells/h
Osteoblasts/r
L6 myoblasts/r
Articular chonodrocytes/h
Bone marrow stromal cells/r
Bone marrow stromal cells/h
Vascular smooth muscle cells/h
TC3 pancreatic beta cells
Fibroblasts/h,b
Fetal lung fibroblasts/r
MCF-7 breast cancer cells/h
SaOS-2 osteoblasts/h
hFOB/ER9 osteoblasts/h
Granulosa cells/r
TC3 pancreatic beta cells
Ovarian thecal cells/b
Retinal endothelial cells/h
Vascular endothelial cells/b
Retinal endothelial cells/h
Glomerular endothelial cells/h
Uterine myometrial cells
Smooth muscle cells/h
Vascular smooth muscle cells/r
Vascular smooth muscle cells/p
Vascular smooth muscle cells/h
L6 myoblasts/r
Fibroblasts/h 
Fibroblasts/b
SH-SY5Y neuroblastoma cells/h
Marrow stromal cells/h
Adrenocortical cells/b
TC3 pancreatic beta cells
Non-small cell lung cancer cells
SH-SY5Y neuroblastoma cells/h
Ovarian granulosa cells
Articular chonodrocytes/h

n
s
i
i
n
i

n
s
n
s
s
s
i
s
s
s
s
i
s
s
i
s
i
n
n
n
n
i
i
s
i
s
i
i
s
i
s
s
i
s
n
i
s
i
i

Fottner et al. 2001
Fottner et al. 2001
Choi et al. 1997
Gori et al. 1999
Greisen et al. 2002
Anwar et al. 2000;
Gustafsson et al. 1999b
Feliers et al. 1999
Price 1999
Feliers et al. 1999
Hayford et al. 1998
Chen et al. 1998
McCusker & Clemmons 1998
Di Battista et al. 1997
Milne et al. 2001
Cheng et al. 1998
Hayford et al. 1998
Katz et al. 1997
Conover et al. 1995
Price 1999
Qin et al. 1999a
Kudo et al. 1996 & 1997
Kassem et al. 1996
Piferrer et al. 1997
Katz et al. 1997
Chamberlain & Spicer 2001
Giannini et al. 2001
Tucci et al. 1998
Giannini et al. 2001
Giannini et al. 1999
Huynh 2000
Kuemmerle & Teng 2000
Gustafsson et al. 1999b
Duan & Clemmons 1998
Hayford et al. 1998
McCusker & Clemmons 1998
Conover et al. 1995
Conover et al. 1995
Babajko et al. 1997
Thomas et al. 1999
Fottner et al. 1999
Katz et al. 1997
Fottner et al. 1999
Babajko et al. 1997
Chamoun et al. 1999
Di Battista et al. 1997
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IL-6 

IFN-�
Insulin

Insulin+glucagon 
N-myc oncogene
OP-1
PDGF-BB

RA 

T3

TGF�
TGF�1

Thrombin 
TNF-�

D3
WT-1

Fetal lung fibroblast/r
Hepatocytes/r

Multiple myeloma/h
Multiple myeloma/h
Ovarian thecal cells/b
L6 myoblasts/r
TC3 pancreatic beta cells
SH-SY5Y neuroblastoma cells/h
Granulosa cells/h
Ovarian thecal cells/b
SK-N-SH Neuroblastoma cells/h
Osteoblasts/r
Fetal lung fibroblasts/r
Multiple myeloma/h
Articular chonodrocytes/h
SaOS-2 osteoblasts/h
Sertoli cells/p
Neuroblastoma cells/h
Osteoblasts/m
HT-29 colon carcinoma cells
Bone marrow stromal cells/r
Sertoli cells/p
Primary hepatocytes/r
HepG2 hepatoma cells/h
Osteoblasts/m
Granulosa cells/r
Glomerular endothelial cells/h
Multiple myeloma/h
Stromal-vascular cells/p
Vascular smooth muscle cells/r
Multiple myeloma/h
Fetal lung fibroblasts/r
Bone marrow stromal cells/h
Embryonic stem cells/m

s
s

n
s
n
s
n
s
s
i
s
i
s
n
s
s
s
i
s
s
s
s
s
n
s
s
s
n
s
i
n
s
s
s

Price et al. 2002
Fernandez-Celemin & Thissen
2001
Feliers et al. 1999
Feliers et al. 1999
Chamberlain & Spicer 2001
McCusker & Clemmons 1998
Katz et al. 1997
Babajko et al. 1997
Greisen et al. 2002
Chamberlain & Spicer 2001
Chambery et al. 1999
Yeh et al. 1996
Price 1999; Price 2001
Feliers et al. 1999
Di Battista et al. 1997
Kudo et al. 1996 & 1997
Bardi et al. 1999
Chambery et al. 1998
Glantschnig et al. 1996
Corkins et al. 2002
Milne et al. 2001
Bardi et al. 1999
Demori et al. 1997a & b
Demori et al. 1997a
Glantschnig et al. 1996
Piferrer et al. 1997
Giannini et al. 1999
Feliers et al. 1999
Richardson et al. 1998
Anwar et al. 2000
Feliers et al. 1999
Price et al. 2002
Kveiborg et al. 2001
Wagner et al. 2001

ACTH, adrenocorticotropic hormone; bFGF, basic fibroblast growth factor; cAMP, cyclic
adenosine monophosphate; EGF, epidermal growth factor; IL, interleukin; IFN, interferon; OP-
1, osteogenic protein-1; PDGF-BB, platelet-derived growth factor-BB; RA, retinoic acid; TGF,
transforming growth factor; TNF, tumour necrosis factor; D3,1,25-dihydroxyvitamin D3; WT-1,
Wilms tumor-1 protein; b, bovine; h, human; m, mouse; p, porcine; r, rat; s, stimulation; i,
inhibition;  n, no effect. 
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2.3.5 Actions of IGFBP-4

Several lines of evidence suggest that IGFBP-4 functions as a purely inhibitory

protein in vitro and in vivo. These inhibitory actions can be exerted via IGF-

dependent and -independent pathways.

2.3.5.1 IGF-dependent actions

IGFBP-4 inhibits IGF-induced cell proliferation and differentiation in all cell types

studied in vitro so far, including bone cells (Schiltz et al. 1993; Mohan et al. 1995b;

Mohan & Baylink 2002), muscle cells (Damon et al. 1998a; Ewton et al. 1998;

Gustafsson et al. 1999a), B104 rat neuroblastoma cells (Cheung et al. 1991), HT-29

human colon adenocarcinoma cells (Culouscou & Shoyab 1991), and M12 human

prostate cancer cells (Damon et al. 1998b). These inhibitory actions of IGFBP-4 have

been demonstrated to be IGF-dependent on the basis of the following facts: (i)

IGFBP-4 had no effect or lower potency in blocking the biological activity of IGF

analogues which have significantly (> 100-fold) reduced binding affinity to IGFBP-4

(Mohan et al. 1995b); (ii) IGFBP-4 inhibited the binding of IGF-I to purified IGF-IR

in vitro (Mohan et al. 1995b).

Consistent with the in vitro data, IGFBP-4 is also a functional antagonist of IGF

actions in vivo. For example, transgenic mice overexpressing IGFBP-4 selectively in

smooth muscle cells exhibited smooth muscle hypoplasia (Wang et al. 1998; Zhang et

al. 2002), which was in direct contrast to the smooth muscle hypertrophy induced by

IGF-I overexpression (Wang et al. 1997). Moreover, a protease-resistant IGFBP-4

had more potency (Zhang et al. 2002) and the wet weight of selected smooth muscle

tissues was reduced in the Igf1/Igfbp4 double transgenic mice compared to the Igf1

single transgenic mice (Wang et al. 1998), suggesting that these inhibitory effects of

IGFBP-4 are IGF-I-dependent. In agreement with the above data, local administration

of recombinant IGFBP-4 inhibited IGF-I-induced increases of bone formation in mice

(Miyakoshi et al. 1999). 
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In contrast to local IGFBP-4 administration, systemic administration of IGFBP-4

increased bone formation (Miyakoshi et al. 1999; Miyakoshi et al. 2001). This was

the only report regarding a growth-stimulatory effect of IGFBP-4, which was

probably by increasing IGF bioavailability via an IGFBP-4 protease-dependent

mechanism, since systemic administration of the native IGFBP-4, but not the

protease-resistant IGFBP-4, increased the levels of serum free IGF-I, serum

osteocalcin, serum and skeletal alkaline phosphatase and IGFBP-4 proteolytic activity

in serum (Miyakoshi et al. 2001).

2.3.5.2 IGF-independent actions

In addition to IGF-dependent actions, IGF-independent actions of IGFBP-4 have been

suggested, based on the following findings: (i) IGFBP-4 caused a marked inhibition

of ceramide-induced apoptosis of Hs578T human breast cancer cells which lack a

functional IGF-IR (Perks et al. 1999); (ii) IGFBP-4 inhibited human ovarian

steroidogenesis in the presence of either the IGF-IR blocker �IR3 or excess IGFBP-3

to remove the effects of endogenous IGF action (Wright et al. 2002); (iii) Endogenous

IGFBP-4 inhibited the mitogenic effects of IGF and insulin in HT-29 human colonic

adenocarcinoma cells, which could not be compensated by the addition of an excess

of IGF-I and insulin, but by the addition of an antibody against IGFBP-4 (Singh et al.

1994). However, unlike IGFBP-3 and -5, a specific receptor for IGFBP-4 has not been

identified yet. Further studies are necessary to define the mechanism of IGF-

independent actions of IGFBP-4. 

2.3.6 Biological significance of IGFBP-4

2.3.6.1 Reproductive physiology

The expression pattern of IGFBP-4 and its regulation were extensively studied in

human and animal reproductive organs at various reproductive stages. The findings in

these studies indicate important roles of IGFBP-4 for reproduction.

Pregnancy. IGFs, as mitogenic peptides, are important for fetal and placental growth

during pregnancy (Han & Carter 2000). In the human placenta, IGFs regulate
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syncytiotrophoblast steroidogenesis (Nestler 1987; Nestler 1990), glucose and amino

acid transport in the villi (Kniss et al. 1994) and the invasion of the extravillous

trophoblast into the maternal decidua (Han et al. 1996; McKinnon et al. 2001).

IGFBPs are expressed by the maternal decidua and may regulate IGF actions during

pregnancy (Han et al. 1996). In this context IGFBP-4 is particularly interesting for

several reasons: (i) IGFBP-4 is the second most abundant IGFBP in the placental bed

(Han et al. 1996); (ii) PAPP-A is secreted by human trophoblast cells and

decidualized endometrial stroma (Giudice et al. 2002) and is markedly increased in

the maternal circulation as pregnancy progresses (Byun et al. 2000); (iii) in human

pregnancy serum the majority of PAPP-A (> 99%) is found as a PAPP-A/proMBP

complex (Oxvig et al. 1993). During pregnancy, rapid placental development and

fetal growth obviously increases the need for growth-promoting factors such as IGFs.

The mitogenic activity of IGFs at the local cellular level depends on the concentration

of free IGFs that are able to interact with their receptors. The increased IGFBP-4

proteolytic activity resulting from uncomplexed PAPP-A may be required locally to

increase the concentration of free IGFs for placental development and therefore for

fetal growth during pregnancy, whereas the PAPP-A activity in maternal circulation is

inhibited by complex formation with proMBP. The absence of PAPP-A expression in

the placenta of pregnant patients with Cornelia de Lange syndrome, a condition

involving incomplete fetal development and subsequent deformities (Westergaard et

al. 1983), provides direct evidence for a role of PAPP-A in pregnancy. However, the

roles of this complex system of enzyme (PAPP-A), substrate (IGFBP-4), inhibitor

(proMBP) and cofactor (IGF-II) in the placenta and maternal circulation during

human pregnancy deserve further investigation. Different from human, recent data

showed that the IGFBP-4 proteolytic activity in murine serum is not increased during

pregnancy, eventually due to the lower level of PAPP-A expression in the placenta

(Qin et al. 2002; Soe et al. 2002). The significance of this difference between species

is unknown, but this difference must be taken into consideration when the mouse is

used as a model organism for the study of PAPP-A function.

Ovarian physiology. IGFs are produced by ovarian granulosa and theca cells, and

mediate gonadotropin actions on ovarian cellular steroidogenesis and growth

(Poretsky et al. 1999). Regulation of IGF actions within the ovarian follicle is

particularly important in the processes of ovarian follicle development and follicle
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atresia (Monget et al. 2002). As a potent inhibitor of IGF actions, IGFBP-4 appears to

be particularly important in ovarian physiology (Iwashita et al. 1996; Poretsky et al.

1999). High levels of IGFBP-4 are present in small androgen-dominant follicles

(Zhou & Bondy 1993; el Roeiy et al. 1994;) and in follicular fluid from androgen-

dominant follicles (FFa) that are growth-arrested or atretic (Cataldo & Giudice 1992;

San Roman & Magoffin 1993). In contrast, IGFBP-4 is undetectable by ligand blot

analysis in follicular fluid from estrogen-dominant growing follicles (FFe). IGFBP-4

inhibits human ovarian steroidogenesis in vivo (Mason et al. 1998; Wright et al.

2002), and it has been suggested that IGFBP-4 inhibits follicle development by

inhibiting IGF action in the ovary, and conversely, the loss of this inhibitory factor

allows for increased bioavailable IGFs, which coincides with selection of the

dominant follicle (Poretsky et al. 1999). The complexity of this process has become

even more apparent with the finding of the IGFBP-4-specific protease PAPP-A

activity in FFe, but not in FFa (Chandrasekher et al. 1995). PAPP-A is expressed in

human and mouse ovaries, being restricted to healthy granulosa cells and granulosa-

lutein cells (Hourvitz et al. 2000; Hourvitz et al. 2002). This restricted expression

pattern and its co-expression with aromatase and LH receptor in granulosa cells from

preovulatory follicles suggests that PAPP-A could be considered as a functional

marker of follicular development (Mazerbourg et al. 2001). During terminal

development of follicles to the preovulatory stage, degradation of IGFBP-4 by PAPP-

A in the ovary may increase IGF bioavailability that further stimulates granulosa cell

proliferation and steroidogenesis, and then actively participates in the selection of

dominant follicles in vivo. In contrast, in atretic follicles, the IGFBP-4 degradation is

inhibited by locally increased IGFBP-2 and -5 that contain a HBD in their C-terminal

regions (Mazerbourg et al. 2000). The IGFBP-4 protease activity has been reported in

human, ovine, bovine, porcine, equine (Mazerbourg et al. 2000; Mazerbourg et al.

2001) and mouse ovaries (Hourvitz et al. 2002), suggesting a well-conserved

mechanism for this protease in ovarian function.

2.3.6.2 Bone formation

IGFs are the most abundant growth factors stored in the bone and regulate the

proliferation and differentiation of bone cells (Bautista et al. 1990). As in other

tissues, the local activity of IGFs in bone is modulated by IGFBPs. IGFBP-4 is one of



Review of the literature29

the major IGFBPs produced by bone cells (Mohan et al. 1995b) and has been

proposed to function as an important regulator of bone formation. Evidence was

provided by the following findings: (i) IGFBP-4 inhibited both basal and IGF-induced

cell proliferation of MC3T3-E1 mouse osteoblasts and untransformed normal human

bone cells (Mohan et al. 1995b) and the growth of embryonic chicken pelvic cartilage

in vitro (Schiltz et al. 1993); (ii) a single local administration of IGFBP-4 inhibited

IGF-I-induced increases in bone formation, whereas systemic administration of

IGFBP-4 alone increased serum and skeletal levels of bone formation markers

(osteocalcin and alkaline phosphatase) in mice (Miyakoshi et al. 1999; Miyakoshi et

al. 2001). The latter stimulatory effect resulted from an increase of IGF bioavailability

in the circulation via an IGFBP-4 protease-dependent mechanism (Miyakoshi et al.

2001); (iii) the serum level of IGFBP-4 was shown to increase with aging and to

correlate positively with serum PTH levels. PTH upregulated IGFBP-4 expression in

human osteoblasts in vitro, and serum IGFBP-4 levels were found to be increased

during oral 1,25-dihydroxyvitamin D3 therapy in psoriasis patients. These findings

suggest that during calcium deficiency, the increase in serum PTH and 1,25-

dihydroxyvitamin D3 may not only stimulate bone resorption, but also inhibit bone

formation by stimulating IGFBP-4 production in bone cells (Mohan et al. 1995a;

Rajaram et al. 1997); (iv) sera from patients with chronic renal failure (CRF) usually

contain high levels of IGFBP-4, which may contribute to decreased bone formation in

renal osteodystrophy (Van Doorn et al. 2001).

2.3.6.3 Renal pathophysiology

IGFBP-4 is abundantly expressed in the kidney. A site-specific expression pattern of

IGFBP-4 during nephrogenesis was described in human (Matsell et al. 1994), rat

(Price et al. 1995a) and mouse (Lindenbergh-Kortleve et al. 1997), suggesting

specific roles of IGFBP-4 in renal development and physiology. In addition, changes

in IGFBP-4 abundance may be associated with pathological processes of the kidney.

Upregulation of IGFBP-4 levels in serum correlated with the degree of renal

dysfunction and growth retardation of children with CRF (Ulinski et al. 2000; Van

Doorn et al. 2001), while downregulation of renal IGFBP-4 expression was reported

in GH-induced rat hypersomatotrophy (Hise et al. 2001).
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2.3.6.4 IGFBP-4 and cancer

IGFBP-4 is expressed in a range of cells of tumor origin, such as lung

adenocarcinoma (Price et al. 1995b), non-small cell lung cancer (Noll et al. 1996),

breast cancer (Qin et al. 1999a), colon carcinoma (Michell et al. 1997), follicular

thyroid carcinoma (Bachrach et al. 1995), gastric cancer (Yi et al. 2001), glioma

(Bradshaw et al. 1999), hepatoma (Scharf et al. 1998), myeloma (Feliers et al. 1999),

neuroblastoma ( Cheung et al. 1991; Babajko & Binoux 1996), osteosarcoma (Mohan

et al. 1995b) and prostate cancer (Srinivasan et al. 1996; Damon et al. 1998b;

Drivdahl et al. 2001).

In vitro and in vivo studies suggest that IGFBP-4 plays an important role in the

growth regulation of a variety of tumors, possibly by inhibiting autocrine IGF actions

or by as yet unknown IGF-independent mechanisms. Notably, in Coca-2 human colon

carcinoma cells expression of IGFBP-4 mRNA was correlated with cell

differentiation, indicating growth inhibitory effect in that cellular system (Hoeflich et

al. 1996). Proliferation, anchorage-independent growth and tumor development in

athymic nude mice were inhibited by overexpression of IGFBP-4 in M12 prostate

cancer cells. Apoptosis was increased in the IGFBP-4-overexpressing cells, probably

due to sequestrating IGF ligands (Damon et al. 1998b). Blocking of IGFBP-4 with

antibodies enhanced both basal and IGF-stimulated growth of HT-29 human colonic

carcinoma cells in both IGF-dependent and -independent manners (Singh et al. 1994).

Recombinant IGFBP-4 caused marked inhibition of ceramide-induced apoptosis of

Hs578T human breast cancer cells via an IGF-independent pathway (Perks et al.

1999).

2.4 IGFBP-6

2.4.1 Genomic organization of the IGFBP-6 gene

The human IGFBP6 gene spans 4.7 kb on chromosome 12 (Ehrenborg et al. 1999).

The rat Igfbp6 gene is about 5.1 kb long, with a similar genomic organization as the

human IGFBP6 gene (Zhu et al. 1993). Comparison of human, rat and mouse IGFBP-

6 sequences within the proximal promoter showed up to 90% similarity among the
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three species. Four and two clustered transcription initiation sites (TIS) were found in

the 5’-flanking regions of the human IGFBP6 and rat Igfbp6 genes, respectively. In

each case, no TATA box was found, but Sp1 sites are clustered near the TIS of the

IGFBP-6 promoter, like in other TATA-less promoters (Dusing & Wiginton 1994;

Huber et al. 1998). Other putative responsive elements were also identified in the 5’-

flanking region of the human IGFBP6 gene, including retinoic acid response elements

(RAREs), CAAT boxes, CACCC boxes, AP-1, AP-2, AP-3, C/EBPα, C/EBPβ, c-ets-

2, EGR-2, HiNF-C, HSF, NF-1, NFκβ binding sites and a polypurine tract. Only a

few of these sites are conserved in all three species (Dailly et al. 2001). The rat Igfbp6

promoter contains an extended polyadenosine tract (Dailly et al. 2001) and a putative

estrogen responsive element (ERE) (Zhu et al. 1993), which may play a role to shut

off Igfbp6 transcription by means of the estrogen receptor, since it was found that

IGFBP-6 mRNA was expressed only by estrogen receptor-negative human breast

cancer cells but not by estrogen receptor-positive cells (Sheikh et al. 1992). There is a

line of evidence for retinoic acid (RA) being a strong stimulator of IGFBP-6

expression. Three putative RAREs with widely spaced half-sites were found in the

human IGFBP6 promoter region, but only the proximal one was functional, which is

present in the human, rat and mouse IGFBP-6 proximal promoters, whereas the distal

RAREs are not conserved. Each of the hexameric half-sites was shown to bind to

retinoid receptors (Dailly et al. 2001). Moreover, several putative AP-2 binding sites

were identified in the human IGFBP6 promoter region. Interestingly, AP-2 production

can be stimulated by RA treatment in vitro, and AP-2, as well as RA, has been shown

to be developmentally regulated. AP-2 may play a role in vertebrate embryogenesis,

however, there is no evidence for IGFBP-6 expression until late in fetal development

(Ehrenborg et al. 1999).

In contrast to human IGFBP4 gene without conserved poly(A) addition signal, a

single polyadenylation consensus sequence was identified 1 kb downstream of the

stop codon of the human IGFBP6 gene (Ehrenborg et al. 1999).

2.4.2 The structure-function relationship of IGFBP-6

IGFBP-6 is an O-linked glycoprotein with 216 aa in human and 201 aa in rat, which

differs from the other five IGFBPs in a number of aspects (rev. in Bach 1999): (i) the
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highest binding affinity for IGF-II among the six IGFBPs; (ii) marked binding

preference for IGF-II over IGF-I (20-100-fold higher than IGF-I); (iii) limited cell

surface association; (iv) relatively low susceptibility to proteolysis; (v) lack of two

and four of the 12 N-terminal cysteines in human and rat IGFBP-6. Is there a

relationship between the structural features and its special actions? An increasing

body of findings can be used, at least in part, to answer this question.

IGF-II binding preference. Surface plasmon resonance (SPR) studies revealed that

the IGF-II-binding preference of IGFBP-6 is due to the lower dissociation rate of

IGF-II, as compared to IGF-I (Marinaro et al. 1999b). Mutation of residues of hIGF-II

that are important for binding to IGFBPs, such as Phe26, Phe48, Arg49 and Ser50,

decreased its binding to IGFBP-6 to a greater extent than to most other IGFBPs (Bach

et al. 1993), suggesting that the precise structure of IGF-II is critical for its binding to

IGFBP-6. On the other hand, the structural specificity of IGFBP-6 may also

contribute to its IGF-II-binding preference. A chimera IGFBP-65, in which the C-

domain of IGFBP-6 was replaced by the C-domain of IGFBP-5, retained the binding

preference for IGF-II (Twigg et al. 1998). Since the non-conserved L-domains of the

IGFBPs are not thought to be directly involved in IGF-binding, the structural

determinants of the IGF-II-binding preference are therefore likely to reside in the N-

terminus. The high-affinity IGF-binding site of IGFBP-5 has been localized to the N-

terminal sequence containing Cys9 to Cys12, which is equivalent to Cys7 to Cys10 of

hIGFBP-6 (Kalus et al. 1998). Since all IGFBPs share the same disulfide linkages in

this region (Neumann & Bach 1999; Chelius et al. 2001), it is likely that this region

confers high IGF-binding affinity to all IGFBPs, but does not contribute to the IGF-II-

binding preference of IGFBP-6. Human and rat IGFBP-6 lack the adjacent cysteine

pair that is a part of the GC5GC6C7 motif present in the N-domains of IGFBP-1 to -5.

Moreover, the disulfide linkage pattern of the first 6 N-terminal cysteines has been

demonstrated to be inconsistent with other IGFBPs, such as IGFBP-1 and -4

(Neumann & Bach 1999; Chelius et al. 2001). These structural differences might be

responsible for the distinctive IGF-binding characteristics of IGFBP-6. An alternate

possibility is that the structures of the N-domains of IGFBP-6 and other IGFBPs are

folded in a similar way that is stabilized by quite different disulfide linkages. In that

case, assuming the remainder of the structure to be also similar in the six IGFBPs, the

IGF-II-binding preference of IGFBP-6 could depend more on differences in the
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primary sequence compared with other IGFBPs than on differences in three-

dimensional structure, although both are likely to be influential (Neumann & Bach

1999).

Glycosylation. IGFBP-6 is O-glycosylated (Bach et al. 1992), but the effects of

glycosylation on its properties are incompletely understood. The glycosylation sites of

hIGFBP-6 were identified within the non-conserved midregion as Thr126, Ser144,

Thr145, Thr146 and Ser152 (Neumann et al. 1998). Electrospray ionisation mass

spectrometry (ESMS) of glycosylated hIGFBP-6 expressed in Chinese hamster ovary

cells revealed considerable heterogeneity of carbohydrate composition. Major

glycoforms contained 8-16 monosaccharides, including N-acetylhexosamine, hexose

and N-acetylneuraminic acid. One oligosaccharide chain contained 5-6

monosaccharides, while others contained 2-4 monosaccharides (Neumann et al.

1998). The rodent IGFBP-6 is glycosylated to a lesser extent (Bach 1999). O-

glycosylation was reported to delay the clearance of IGFBP-6 from the circulation

(Marinaro et al. 2000a), inhibit proteolysis of IGFBP-6 and the binding of IGFBP-6 to

glycosaminoglycans and PC12 rat phaeochromocytoma cell membranes, but it does

not directly influence the high IGF-II-binding and the IGF-II-binding preference of

IGFBP-6 (Marinaro et al. 2000b).

Proteolysis. Proteolysis of IGFBP-6 has been described in a limited number of

studies. Proteolytic activity against IGFBP-6 was found in media conditioned by NIH-

3T3 fibroblasts (Claussen et al. 1995) and HaCaT keratinocytes (Marinaro et al.

1999a) after acidification, and Madin-Darby canine kidney (MDCK) cells at neutral

pH (Shalamanova et al. 2001). The proteolytic activity in the NIH-3T3 cells was

inhibited to variable extents by a range of protease inhibitors, suggesting that a

cascade of proteases may be involved. It was also inhibited by IGFs. In contrast, the

proteolytic activity in HaCaT keratinocytes was not regulated by IGFs, and it could

only be inhibited by pepstatin A, suggesting that the proteolytic activity is a cathepsin

D-like protease. However, another study suggested that IGFBP-6 was not cleaved by

cathepsin D (Claussen et al. 1997). Moreover, 7S nerve growth factor at high

concentrations also cleaves IGFBP-6 (Rajah et al. 1996). The relative paucity of

described IGFBP-6 proteases may reflect protection of this glycoprotein from

proteolysis by O-linked oligosaccharide chains. Although O-glycosylation can
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partially protect IGFBP-6 from proteolysis by chymotrypsin and trypsin, both

proteases can partly cleave glycosylated IGFBP-6 with different preferred cleavage

sites (Marinaro et al. 2000b). Inferred major cleavage sites of chymotrypsin are Tyr74,

Leu97, Tyr179, Tyr186 and Phe195/Tyr196 in hIGFBP-6, whereas trypsin preferentially

cleaves hIGFBP-6 after Lys118 and Arg199. The resulting fragments have lost the

ability of IGF-II-binding.

Cell surface association. As noted in the IGFBP-4 section, the C-terminal heparin-

binding domain (HBD) of IGFBP-3 is critical for the ability of IGFBP-3 to bind to

endothelial cells (Booth et al. 1995). Human IGFBP-6 has a similar sequence (His191-

Arg209) (Bach 1999). A synthesized 18-mer peptide based on this IGFBP-6 sequence

(P6) mimics the properties of P3 (Booth et al. 1995; Booth et al. 1996; Booth et al.

2000). However, intact hIGFBP-6 does not bind to endothelial cell monolayers

(Booth et al. 1995). Recently, a chimera IGFBP-63 was generated by replacement of

the P6 region in IGFBP-6 with the homologous P3 region of IGFBP-3 (Boes et al.

2002). Unlike IGFBP-43 (Knudtson et al. 2001), IGFBP-63 did not bind to endothelial

cells, suggesting that there may be other conformational or structural constraints of

IGFBP-6 limiting its cell-association. For example, it is possible that O-linked

carbohydrates mask the heparin-binding site (Marinaro et al. 2000b), since

glycosylation of ECM proteins may affect binding to other matrix components (Varki

1993).

2.4.3 IGFBP-6 expression in vivo and its regulation

IGFBP-6 was originally isolated from cerebrospinal fluid (CSF) (Roghani et al.

1989), but it also exists in other physiological fluids, including serum, amniotic fluid,

follicular fluid and human milk (Baxter & Saunders 1992; Ney et al. 1995; Van

Doorn et al. 1999). The serum levels are about the same as those of IGFBP-2, higher

than those of IGFBP-1 and less than 5 % of those of IGFBP-3. 

IGFBP-6 expression is developmentally regulated. IGFBP-6 mRNA is widely

expressed in the adult rat, with lung being the site of highest expression, but not in the

developing fetal lung (Wallen et al. 1997). In the rat embryo, IGFBP-6 is expressed in

the liver, nasal epithelium, cells surrounding cartilage and some muscle precursor
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cells on embryonic day 14 as determined by in situ hybridization (Cerro et al. 1993).

In the mouse fetus, IGFBP-6 mRNA is expressed at low levels in lung, liver,

vertebrate and ribs in late gestation (Schuller et al. 1993). In contrast, IGFBP-6

mRNA is widely expressed in 14-18-week-old human fetuses at various sites,

including skin, gut, heart, kidney, lung, brain, liver and skeletal muscle (Delhanty et

al. 1993).

IGFBP-6 expression is also hormonally regulated in a tissue-specific manner. In rat

white adipose tissue, levels of IGFBP-6 mRNA were decreased by hypophysectomy

and partially restored by GH but not by IGF-I treatment (Peter et al. 1993). In fetal

lung explant cultures, dexamethasone increased the abundance of IGFBP-6 mRNA

(van de Wetering et al. 1997). In Igf2r/Igf2-deficient mice, a strong increase of

IGFBP-6 immunoreactivity was observed in all cell types of the pancreatic islet, in the

acinar cells and interlobular connective tissue of exocrine pancreas compared with

controls (Braulke et al. 1999). Protein restriction had no effect on the levels of

IGFBP-6 mRNA in the liver and kidney (Lemozy et al. 1994), but levels of IGFBP-6

in rat serum were increased by high-calorie total parenteral nutrition (Ney et al.

1995). IGFBP-6 levels in human serum are about 70% higher in men than women,

decreased by 30% in pregnancy (Baxter & Saunders 1992) and increase gradually

with aging (Van Doorn et al. 1999).

IGFBP-6 expression is regulated in some pathological conditions as well. Levels were

reduced by 60% in patients with active acromegaly, but remained unchanged in

hypothyroid patients (Baxter & Saunders 1992). Levels in blood from the umbilical

cord and adults were similar. In children with CRF, serum IGFBP-6 levels were

increased 5-20-fold. IGFBP-6 levels were inversely correlated with glomerular

filtration rate, but were not correlated with height or changed by GH treatment

(Powell et al. 1997). Serum IGFBP-6 levels are increased in some patients with non-

islet cell tumor hypoglycemia, in which tumors overexpress a large metabolically

active precursor form of IGF-II. Treatment with prednisolone or GH had no effect on

the IGFBP-6 levels, but removal of the tumor normalized the IGFBP-6 levels (Baxter

1996). Furthermore, the levels of IGFBP-6 were significantly elevated in the CSF of

patients with dementia of the Alzheimer type (Tham et al. 1993). In contrast, IGFBP-
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6 levels were significantly decreased in the CSF of children with acute lymphoblastic

leukemia, and remained low during 36 weeks of chemotherapy (How et al. 1999).

2.4.4 IGFBP-6 expression in vitro and its regulation

IGFBP-6 is expressed in a great number of cell types in vitro. These include

transformed and non-transformed fibroblasts (Forbes et al. 1990; Martin et al. 1990),

osteoblasts (Gabbitas & Canalis 1997), myoblasts (Ewton & Florini 1995),

endothelial cells (Moser et al. 1992), epithelial cells (Cohick & Turner 1998), smooth

muscle cells (Boes et al. 1996), skeletal muscle cells (Bayol et al. 2000),

chondrocytes (De Los & Hill 2000), keratinocytes (Kato et al. 1995) and many tumor

cells of different histogenetic origin. As described in Table 2.4, IGFBP-6 is regulated

in a cell type-specific manner by a lot of agents in vitro. Furthermore, IGFBP-6

expression is also regulated during cell differentiation. In general, IGFBP-6

expression appears to be highest when cells are confluent and non-proliferating (rev.

in Bach 1999).

Table 2.4 Regulatory mechanisms for IGFBP-6 expression in vitro

Agent Cell type/Species Effect References
IGF-I

IGF-II

D3

T3

Dexamethasone

Glucocorticoids
RA

Vascular smooth muscle cells/h 
PC12 phaeochromocytoma cells/r
SH-SY5Y neuroblastoma cells/h
Osteoblasts/r

Fibroblasts/h
PC12 phaeochromocytoma cells/r
SH-SY5Y neuroblastoma cells/h
Osteoblasts/r

HT-29 colon cancer cells/h
SK-N-SH neuroblastoma cells/h
Prostate tumor cells/h
SK-N-SH neuroblastoma cells/h
Bone marrow stromal cells/r
Vascular smooth muscle cells/h
PC12 phaeochromocytoma cells/r
Bone marrow stromal cells/r
Fibroblasts/h
Osteoblasts/r
Bronchial epithelial cells/h

s
s
s
n

n
s
s
n

s
s
s
i
n
s
i
n
n
s
s

Hayford et al. 1998
Bach et al. 1997
Babajko et al. 1997
Gabbitas & Canalis 1997
McCarthy et al. 1994
Conover et al. 1995
Bach et al. 1997 & 1998
Babajko et al. 1997
Gabbitas & Canalis 1997
McCarthy et al. 1994
Oh et al. 2001
Chambery et al. 2000
Drivdahl et al. 1995
Chambery et al. 2000
Milne et al. 2001
Hayford et al. 1998
Bach et al. 1997 & 1998
Milne et al. 2001
Conover et al. 1995
Gabbitas & Canalis 1996a
Sueoka et al. 2000a
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TCDD
TPA
cAMP

OP-1
TGF-β1

bFGF
PDGF BB
Prostaglandin E2
hGH
Estradiol
Phorbol esters
N-myc oncogene

MCF-7 breast cancer cells/h
Normal & transformed fibroblasts/h
SK-N-SH neuroblastoma cells/h
Osteoblasts/r
EL4 thymoma cells/m
SK-N-SH neuroblastoma cells/h
Vascular smooth muscle cells/h
MCF-7 breast cancer cells/h
PC12 phaeochromocytoma cells/r
Normal & transformed fibroblasts/h
Mammary epithelial cells/b
Osteoblasts/r
Normal & transformed fibroblasts/h
Osteoblasts/r
Osteoblasts/r
Osteoblasts/r
Osteoblasts/r
Osteoblasts/r
MCF-7 breast cancer cells/h
HEC-1B endometrial carcinoma cells/h
SK-N-SH neuroblastoma cells/h

s
s
s
s
s
s
s
s
s
i
i
i
i
i
n
n
n
n
s
s
i

Martin et al. 1995
Martin et al. 1994
Chambery et al. 2000
Gabbitas & Canalis 1996b
Park et al. 2001
Chambery et al. 2000
Hayford et al. 1998
Martin et al. 1995
Bach et al. 1998
Martin et al. 1994
Cohick & Turner 1998
Yeh et al. 1996
Martin et al. 1994
Gabbitas & Canalis 1997
Gabbitas & Canalis 1997
Gabbitas & Canalis 1997
McCarthy et al. 1994
McCarthy et al. 1994
Martin et al. 1995
Gong et al. 1992
Chambery et al. 1999

TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; TPA, 12-O-tetradecanoyl phorbol 13-acetate; s,
stimu-lation; i, inhibition; n, no effect.

2.4.5 Actions of IGFBP-6

A number of in vitro studies suggested that IGFBP-6 is a relatively specific inhibitor

of IGF-II actions. Exogenously added IGFBP-6 from natural and recombinant sources

inhibited IGF-II-induced proliferation, differentiation, survival and migration in a

wide range of cell types including myoblsts (Bach et al. 1994; Bach et al. 1995;

Ewton & Florini 1995), bronchial epithelial cells (Sueoka et al. 2000a), osteosarcoma

cells (Yan et al. 2001), neuroblastoma cells (Babajko & Binoux 1996; Babajko et al.

1997; Grellier et al. 1998; Babajko et al. 2001; Grellier et al. 2002; Seurin et al.

2002), colon cancer cells (Leng et al. 2001; Oh et al. 2001; Kim et al. 2002a; Kim et

al. 2002b) and rhabdomyosarcoma cells (Gallicchio et al. 2001). In most studies,

IGFBP-6 did not inhibit IGF-I actions or did it with markedly decreased potency. In

myoblasts, IGFBP-6 inhibited the actions of IGF-II and a series of IGF-II mutants in

proportion to their binding affinities, suggesting that IGFBP-6 inhibits IGF-II actions

by forming an IGF-IGFBP-6 complex that prevents IGF binding to the IGF receptor

(Bach et al. 1994; Bach et al. 1995). Overexpression of IGFBP-6 inhibited
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neuroblastoma (Babajko et al. 1997; Grellier et al. 1998; Babajko et al. 2001; Grellier

et al. 2002; Seurin et al. 2002) and rhabdomyosarcoma (Gallicchio et al. 2001)

cellular proliferation in vitro and xenograft growth in vivo, suggesting that IGFBP-6

may be a potential therapeutic agent for some cancers.

As for IGFBP-4, there is no evidence that IGFBP-6 can enhance IGF actions. This

may be due to its relative resistance to proteolysis and lack of cell surface association.

O-glycosylation contributes to both of these properties, so this post-translational

modification may be important in maintaining the inhibitory properties of IGFBP-6.

However, unexpected mitogenic and anti-apoptotic effects of IGFBP-6 were reported

in the human osteoblastic osteosarcoma cell line Saos-2/B-10 which expresses little

IGF-I and IGF-II (Schmid et al. 1999). The mechanism involved in these processes is

not clear.

A number of studies suggested IGF-independent actions of IGFBP-6 based on the

following findings: (i) IGFBP-6 inhibited des(1-3)IGF-I-induced proliferation of

neuroblastoma cells (Babajko et al. 1997; Grellier et al. 1998) and (ii) IGFBP-6-

induced apoptosis of non-small cell lung cancer cells was not affected by addition of

IGF-I or -II (Sueoka et al. 2000b). However, neither a specific receptor nor

mechanisms of IGF-independent actions of IGFBP-6 have been defined yet. Recent

data suggested that IGFBP-6 inhibits osteoblast differentiation by an intracrine

mechanism that may involve nuclear localization to modulate transcription of target

genes (Strong et al. 2002). This may represent a pathway for IGF-independent actions

of IGFBP-6 and indeed a novel paradigm for IGFBP actions in general. 

2.4.6 Biological significance of IGFBP-6

From the information outlined above, it would seem that the main, if not exclusive,

function of IGFBP-6 is to inhibit the actions of IGF-II. Since the actions of IGF-II

have been studied to a far lesser extent than those of IGF-I and are therefore less

completely understood, the biological significance of IGFBP-6 is still largely

unknown.
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Since IGF-II expression is maximal prenatally and largely extinguished in adult

rodents, it has been suggested that IGF-II is mainly a fetal growth factor. However,

IGF-II is the predominant IGF in the human circulation, suggesting that it has a

continuing physiological role in the postnatal life of humans. Studies using transgenic

mice overexpressing IGF-II also supported this contention (rev. in Wolf et al. 1998).

Furthermore, IGF-II has some actions that are not shared by IGF-I. Evidence was

provided by the following findings: (i) while all IGF-I actions were mediated by the

IGF-IR, gene-targeting studies suggested that some prenatal actions of IGF-II were

mediated through a receptor other than IGF receptors (Ludwig et al. 1996); (ii) IGF-II

but not IGF-I stimulated proliferation of fibroblasts lacking IGF-IR through the IR in

vitro (Morrione et al. 1997); (iii) IGF-II has been implicated as an autocrine growth

factor in various tumors (Toretsky & Helman 1996), and systemic administration of

IGF-I could not replace the action of the autocrine IGF-II in the oncogene-induced

islet tumors of transgenic mice (Christofori et al. 1994).

Whether IGFBP-6 regulates these specific actions of IGF-II, needs to be clarified by

further studies, as well as the possibility of IGFBP-6 regulating the actions of IGF-I.

In addition, potential IGF-independent actions of IGFBP-6 should be taken into

consideration.
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3 ANIMALS, MATERIALS AND METHODS

3.1 Animals

Specific pathogen-free (SPF) C57BL/6 inbred mice were purchased from Elevage

Janvier (Le Genest-Saint-Isle, France), and SPF NMRI outbred mice from Charles

River Laboratories (Sulzfeld, Germany). They were maintained and bred under SPF

condition in the facility on the 5th floor in the Gene Center of Munich. The health

status of the facility was monitored based on the guidelines of the Federation of

European Laboratory Animal Science Associations (FELASA) (Rehbinder et al.

1996). Non-SPF C57BL/6 inbred, NMRI outbred and B6D2F1 hybrid mice (Charles

River Laboratories, Germany) were maintained under standard non-barrier conditions

and had free access to standard rodent diets (#V1126 for breeding and #V1534 for

maintaining; Ssniff, Soest, Germany) and tap water in the facilities on the 1st floor in

the Gene Center. Mice used in expression studies and for phenotypic analysis were

weaned at an age of three weeks, marked by ear piercing and housed in cages

separated by sex. At the time of weaning, tail tips were clipped and frozen on dry ice

for genotypic analysis. All experiments were carried out according to the German

Animal Protection Law (Tierschutzgesetz; Genehmigungsaktenzeichen: 211-2531-

31/96).

3.2 Cells and cell culture techniques

3.2.1 Cells

Murine NIH-3T3 fibroblasts (ATCC, Manassas, VA, USA) and human kidney

epithelial cells (293 cells; ATCC) were cultured in Dulbecco’s modified Eagle’s

medium (DMEM; GIBCO, Karlsruhe, Germany) with 10 % heat-inactivated (56 °C,

30 min) fetal calf serum (FCS; GIBCO) at 37 °C, 5% CO2 and 100 % humidity. Cells

were subcultivated (1:5) twice a week.
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3.2.2 Freezing cell lines

After the culture medium was discarded, the cell layer was washed once with

phosphate buffered saline (PBS) and incubated with trypsin-EDTA (0.05% trypsin

and 0.02% EDTA, GIBCO) for 5 min. Trypsin action was stopped by addition of

serum-containing medium and cells were spun down at 250 � g for 5 min. The pellet

was resuspended in pre-cooled 1 ml DMEM + 20% FCS + 10% dimethylsulfoxide

(DMSO; Sigma, Taufkirchen, Germany) and cells were frozen immediately in 1.5-ml

or 1.8-ml cryo vials (Nunc, Kamstrup, Denmark) at -80 °C. After a few days they

were transferred into liquid nitrogen.

PBS (pH 7.4): NaCl 8.00 g
KCl 0.20 g
Na2HPO4 1.44 g
KH2PO4 0.24 g
bidistilled water ad 1000 ml
The buffer was autoclaved.

3.2.3 Thawing cell lines

Cryo vials were removed from liquid nitrogen and incubated in a water-bath of 37 °C

until the frozen medium had melted. The medium containing the cells was diluted in 5

ml medium and washed twice by centrifugation. The resulting cell pellet was

resuspended in the appropriate culture medium.

3.3 Construction of expression vectors

3.3.1 Restriction enzyme digest

Restriction enzyme digests were performed in the recommended buffer and at the

appropriate temperature for 90 min in a 20-100 µl volume. Usually, 10 units of

enzyme (MBI, St. Leon-Rot, Germany) were used for each microgram of DNA.
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3.3.2 Filling 5’- and 3’-protruding ends

Following the restrict enzyme digestion that generated the 5’- or 3’-protruding ends,

the DNA were purified rapidly with the High Pure PCR Product Purification Kit

(Roche, Mannhein, Germany) and eluted with 35 µl of Elution buffer (1 mM Tris-

HCl, pH 8.5). The overhang ends were converted to blunt ends as follows: 10 µl of 5

� T4 DNA polymerase buffer, 5 µl of 1 mM of each dNTP and 2.5 µl of T4 DNA

polymerase (5 units/µl, MBI) were added to 32.5 µl of the purified DNA, and

incubated at 11 °C for 20 min. The reaction was stopped by heating at 70 °C for 10

min.

3.3.3 Dephosphorylation of 5’-ends

After the vector was blunt ended, it was purified as described in the section 3.3.2 and

treated with Calf Intestinal Alkaline Phosphatase (CIAP; MBI) to remove the

phosphate groups from the 5’-ends to prevent self-ligation of the vector. Add the

following components directly to the purified DNA:

10 � CIAP reaction buffer 10 µl

CIAP (0.01 unit/pmol of ends)* 1-2 µl
bidistilled water ad 100 µl
* A general formula for calculating the picomoles of ends of linear double-stranded

DNA is: (µg DNA/kb size of DNA) � 3.04 = pmol of ends.

The mixture was incubated at 37 °C for 30 min. The reaction was stopped by heating

at 85 °C for 15 min. The DNA was then purified as described in the section 3.3.2.

3.3.4 Extraction of DNA fragments from agarose gel

DNA fragments used for further manipulations were separated from other sequences

by electrophoresis in a 1-2% TAE-buffered agarose gel. Ethidium bromide was added

to permit visualization of nucleic acids under ultraviolet (UV) light.

6 � loading buffer at the appropriate volume was added to the samples, they were

loaded into the slots and electrophoresis was performed using 1 � TAE buffer. Gel
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was photographed under UV light at 366 nm (Eagle Eye II, Stratagene, Heidelberg,

Germany), fragments were excised from the gel and weighed. DNA was extracted

with the JETQUICK Gel Extraction Spin Kit (GENOMED, Bad Oeynhausen,

Germany) and the concentration was estimated in a new agarose gel electrophoresis

using 1 µg of the Lambda/HindIII+EcoRI marker (MBI) as a standard.

50 � TAE buffer: Tris 242 g

glacial acetic acid 57.1 ml
0.5 M EDTA, pH 8 100 ml
bidistilled water ad 1000 ml

The buffer was sterilized by autoclaving.

6 � loading buffer: glycerol 3 ml

bidistilled water 7 ml
bromphenol blue one pinch

3.3.5 Ligation of DNA fragments

A molar vector : insert DNA ratio of 1:2 or 1:3 was used in every ligation. The

amount of required insert was obtained using the following formula:

ng of insert =  ng of vector x kb size of insert x molar ratio / kb size of vector

100 ng of vector DNA, appropriate quantity of insert DNA, 1 µl of 10 � ligation

buffer and 1 µl (for overhang ends) or 2 µl (for blunt ends) of T4 DNA ligase (MBI)

prediluted in the ligation buffer (1 unit/µl) were transferred in a sterile 1.5-ml

centrifuge tube, and bidistilled water was added to a final volume of 10 µl. The

ligation mix was incubated at 22 °C for 1-2 h or overnight.

3.3.6 Preparation of competent bacteria

A single colony of TOP10 Escherichia coli [genotype: F- mcrA �(mrr-hsdRMS-

mcrBC) �lacZ�M15 �lacX74 recA1 deoR araD139 �(ara-leu)7697 galU galK rpsL

(StrR) endA1 nupG; Invitrogen, CH Groningen, The Netherlands] from a plate grown



Animals, materials and methods44

for 16-20 h at 37°C was picked and grown in 5 ml TYM medium (containing 50

µg/ml streptomycin; Sigma) at 37 °C overnight with vigorous agitation. 1 - 2.5 ml of

this overnight culture was transferred to 250 ml fresh TYM medium (without

streptomycin) and incubated at 37°C with vigorous agitation to an OD600 of 0.7 to 0.8

(about 2 - 4 h). After chilling for 10 min on ice in six 50-ml Falcon centrifuge tubes

(40 ml culture/tube), cells were recovered by centrifugation at 800 � g and 4 °C for 10

min. The medium was completely removed. The pellet in each tube was carefully

resuspended in 12 ml of ice-cold TfbI buffer and incubated for 10 min on ice. A new

centrifugation was performed at 600 � g and 4 °C for 10 min. The supernatant was

removed again. The pellet in each tube was then carefully resuspended in 1.6 ml of

ice-cold TfbII buffer. Competent bacteria were aliquoted (200 µl) in 1.5-ml centrifuge

tubes and stored at -80°C.

TYM medium: bacto-tryptone 20 g
bacto-yeast extract 5 g
NaCl 5.8 g
bidistilled water ad 1000 ml

The mixture was shaken until the solutes had dissolved, the pH value was adjusted to 7.0
with 5 M NaOH and then the medium was autoclaved. 5 ml of 2 M MgCl2 (presterilized by
filtration) was added to an end concentration of 10 mM after the medium had cooled to RT.

TfbI buffer: 1 M potassium acetate (KOAc) 9 ml
1 M CaCl2 30 ml
glycerol 45 ml
bidistilled water 211 ml

The solution was autoclaved and then 5 ml of 3 M MnCl2 (pre-sterilized by filtration) was
added after the solution had cooled to RT.

TfbII buffer: 1 M MOPS 0.3 ml
1 M KCl 3.0 ml
1 M CaCl2 3.2 ml
glycerol 4.5 ml
bidistilled water 19 ml

The buffer was autoclaved and stored at 4°C.



Animals, materials and methods45

3.3.7 Transformation of bacteria

Competent bacteria were thawed on ice and 40 µl were transferred to a sterile

centrifuge tube. 1 µl of plasmid (5 - 10 ng) or up to 5 µl of a ligation mixture were

added. The ligation was mixed with a pipette, the tube was flicked once and incubated

on ice for 30 min. The tube was transferred to a rack preheated to 37°C, incubated for

exactly 30 s and then rapidly returned to ice and chilled for 5 min. 800 µl of SOC

medium were added to each tube and cultures were incubated for 1 h at 37°C with

vigorous shaking.

SOC medium: bacto-tryptone peptone 20 g
Bacto-yeast extract 5 g
NaCl 0.5 g
bidistilled water ad 950 ml

The mixture was shaken until the solutes had dissolved. 10 ml of a 0.25 M KCl solution
was added and the pH value was adjusted to 7.0, then the medium was autoclaved. The
final medium additionally contains 100 mM MgCl2 and 20 mM glucose.

The appropriate volumes (for plasmids: 5 and 50 µl; for ligations: 100 and 250 µl) of

transformed competent cells were distributed onto agar-LB plates containing 50

µg/ml ampicillin (AppliChem, Damstadt, Germany). Using a sterile bent glass rod,

the transformed cells were gently spread over the surface of the agar plate, which

were subsequently inverted and incubated at 37°C. Colonies appeared within 12-16 h.

Luria-Bertani (LB) medium: bacto-tryptone 10 g
bacto-yeast extract 5 g
NaCl 10 g
bidistilled water ad 1000 ml

The mixture was shaken until the solutes had dissolved, the pH value was
adjusted to 7.0 with 5 M NaOH and then the medium was autoclaved.

Agar-LB plates: LB medium 1000 ml
agar, granulated 15 g
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After autoclaving, swirl the solution to distribute the melted agar evenly. When
the temperature reaches 50 °C, add the antibiotic and pour the plates directly
from the flask in 90 mm Petri dishes. After the medium has hardened
completely, invert the plates and store them at 4 °C.

3.3.8 Preparation of minipreps and midipreps

Colonies were picked with a tooth-pick, immersed in 5 ml LB medium with 50 µg/ml

ampicillin and incubated for 12-18 h at 37 °C under constant agitation. 2 ml of the

bacterial culture were transferred to a centrifuge tube and centrifuged at 15,000 � g

for 30 s at 4°C. The remaining 3 ml bacterial cultures were stored at 4°C.  The

supernatant was discarded and the bacterial pellet was used to prepare minipreps

using the QIAprep Spin Miniprep Kit (QIAGEN) according to the manufacturer’s

instructions. The concentration of the minipreps was determined with a

spectrophotometer (Beckman, Palo Alto, CA, USA). 500 ng of minipreps were used

for restriction enzyme analysis. 

Following the identification of desirable clones in a miniprep, a midiprep was

prepared. 1 ml of the miniprep culture was added to 100 ml LB medium with

ampicillin (50 µg/ml) and incubated for 12-18 h at 37 °C under constant agitation.

Midipreps were prepared with the Nucleobond AX100 Kit (Macherey-Nagel, Düren,

Germany) according to the manufacturer’s instructions.

3.4 Expression vectors

3.4.1 The H-2Kb-mcIGFBP-4 and -6 constructs

The murine Igfbp4 and Igfbp6 cDNAs (mcIGFBP-4 and -6) were released from

pGEM4Z-mIGFBP-4 and -6 (kindly donated by Dr. Drop, University of Rotterdam,

The Netherlands), blunt ended with T4 DNA polymerase, and then subcloned into the

blunted and dephosphorylated SalI restriction site of the pUC-H2XXS mammalian

expression vector (kindly provided by Prof. Pfeffer, Technical University of Munich,

Germany). Location of the insert in sense direction was confirmed by restriction
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enzyme digest. The injection fragments (5 kb for H-2Kb-mcIGFBP-4 and 4.9 kb for

H-2Kb-mcIGFBP-6) were released from the vectors by a Xho I digest.

3.4.2 The CMV-mgIGFBP-6 construct

The murine Igfbp6 genomic DNA (mgIGFBP-6) was released from pBSK-BP-6(6.0)

(kindly donated by Prof. Braulke, University of Hamburg, Germany) by XhoI and SalI

digests, blunt ended and then subcloned between blunt ended EcoRI and XbaI sites of

the mammalian expression vector pCMV-int, kindly provided by Dr. Kramer

(Martinsried, Germany). The sense recombinant vector was identified by PCR (Taq

DNA polymerase, Qiagen) using primers CMV#3 and mIGFBP-6#7 (see 3.7.1.2).

The injection fragment (7.7 kb) was released from the vector by a SpeI / XhoI digest.

H-2Kb promoter mcIGFBP-4 or -6

Xho  I                                                                  EcoR I         Xho I

beta-globin

Figure 3.1 Schematic representation of the H-2Kb-mcIGFBP-4 and -6 vectors. H-2Kb promoter,
mouse H-2Kb promoter  (2.1 kb); mcIGFBP-4 or -6, mouse Igfbp4 (1176 bp) or
Igfbp6 (1138 bp) complementary deoxyribonucleic acid (cDNA); beta-globin, a 1.7-
kb human �-globin splice cassette including the last 20 bp of the exon 2, all of the
intron 2 (850 bp; shaded box) and exon 3 (228 bp) and the polyadenylation signal
sequence (593 bp). Transgene-specific PCR primers are indicated by arrows.

CMV promoter mgIGFBP-6 hGH-term SV40 ori

Spe I                   EcoR I            EcoR I                                     Xho I

Figure 3.2 Schematic representation of the CMV-mgIGFBP-6 vector. CMV, cytomegalovirus
immediate-early enhancer/promoter (763 bp); mgIGFBP-6, mouse Igfbp6 genomic
deoxyribonucleic acid (6 kb). hGH-term, transcription terminator and polyadenyla-
tion signal (624 bp) of the human growth hormone gene; SV40 ori, SV40 origin of
replication (391 bp).
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3.5 Transfection of cells

In order to determine whether the recombinant expression vectors are functionally

active, they were stably or transiently transfected in the appropriate cells (H-2Kb-

mcIGFBP-4 or -6 stably in NIH-3T3 cells; CMV-mgIGFBP-6 transiently in 293

cells). Cells were seeded into 6-well plates and allowed to grow to 60% confluence. 4

µg of recombinant expression vector and a mock vector lacking the Igfbp4 and Igfbp6

cDNA or the Igfbp6 genomic DNA were transfected using the SuperFect Transfection

Reagent (Qiagen). The transfection mixtures were pipetted as follows:

For stable transfection:

Vector x µl (= 4 µg DNA)
SuperFect Transfection Reagent 9 µl
serum-free DMEM ad 77 µl

For transient transfection:

Vector x µl (= 4 µg DNA)
SuperFect Transfection Reagent 13.5 µl
serum-free DMEM ad 83.5 µl

The components were mixed by pipetting and incubated at RT for 10 min. The cells

were washed once with PBS. 800 µl DMEM with 10% FCS were added to each

transfection mixture and pipetted into each well. The cells were incubated in this

solution for 2.5 h at 37 °C and 5% CO2. Thereafter, they were washed once with PBS

and cultivated in 3 ml DMEM with 10% FCS for 48 h. For transient transfection, the

cells were washed twice with PBS and 2 ml of serum-free DMEM were added. After

two days of culture in the 2 ml serum-free DMEM, the serum-free conditioned media

(SFCM) were collected, centrifuged at 600 � g and 4 °C for 10 min to remove cellular

debris and stored in aliquots at -20 °C until use. Cells were lysed with 1 ml of

TriPure� Isolation Reagent (Roche) to extract RNA. For stable transfection, selection

was started by incubating the cells with selection medium [DMEM containing 10%

FCS and 500 µg/ml geneticin (G-418 sulphate; GIBCO)]. The selection medium was

renewed twice a week. After about two weeks, individual clones developed that had
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stably integrated the vectors. They were picked, subcultured and frozen. The clones

were subcultured in 6-well plates up to 90% confluence, the cells were washed twice

with PBS and incubated with 2 ml of serum-free DMEM for 48 h. SFCM and RNA

were prepared as described above.

3.6 Production of transgenic mice

3.6.1 Generation of transgenic mice by DNA-microinjection

Transgenic mice were generated by microinjection of the XhoI- or SpeI/XhoI-

fragment, released from the expression vectors, into male pronuclei of F2 zygotes

from C57BL/6 � DBA/2 F1 (B6D2F1) parents. The microinjected zygotes were

implanted into the oviduct of pseudopregnant NMRI mice and carried to term.

Founder transgenic mice were backcrossed to wild-type C57BL/6 mice for

establishment and propagation of lines. Transgenic mice were identified by PCR

using DNA recovered from tail clips. Transgene integration pattern was analyzed by

Southern blot.

3.6.2 Generation of H-2Kb-mcIGFBP-4 SPF transgenic mice by
embryo transfer

To analyse the potential effects of transgene expression on the immune system in the

H-2Kb-mcIGFBP-4 transgenic mice, transgenic mice were produced under SPF

conditions by embryo transfer. Male heterozygous H-2Kb-mcIGFBP-4 transgenic

mice, generated by DNA-microinjection under standard non-barrier conditions, were

mated with superovulated female C57BL/6 SPF mice, one-cell-stage embryos were

obtained, transferred into the oviduct of pseudopregnant NMRI mice (SPF) and

carried to term under SPF conditions. The transgenic offspring was backcrossed with

C57BL/6 SPF mice and maintained under SPF conditions.

3.7 Identification of transgenic mice

3.7.1 Polymerase Chain Reaction (PCR)
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3.7.1.1 Proteinase K digest of mouse tails

Tail tips were clipped at weaning and frozen at -80 °C. Fragments of 3-5 mm were cut

and incubated at 56 °C overnight in 1.5-ml centrifuge tubes containing 100 µl of

Kawasaki buffer and 6 µl proteinase K (Sigma, 20 mg/ml in bidistilled water).

Kawasaki buffer (pH 8.3): 20 mM Tris-HCl, pH 8.3
1.5 mM MgCl2
25 mM KCl

The buffer was autoclaved. Tween-20 was added to an end concentration of 0.5%
(v/v) after the solution had cooled to RT.The resulting buffer was kept at RT.

After the overnight digest, the samples were heated at 95 °C for 15 min to inactivate

proteinase K, centrifuged at 15,000 � g and 4 °C for 5 min and the supernatant was

transferred to a new tube. 2 µl of the supernatant were used as template for PCR.

3.7.1.2 PCR conditions

For the detection of construct integration, the following primers were used to amplify

transgene-specific sequences:

H-2Kb-mcIGFBP-4:

mBP4#14  (sense): 5’-TAA GCC TGA GCC TTC TCG TG-3’

�-globin#1 (antisense): 5’-GGC AGC CTG CAC TGG TGG-3’

H-2Kb-mcIGFBP-6:

mBP6#6 (sense): 5’-CAG CTA GTT AGA AAG ATT GCT G-3’

�-globin#1 (antisense): 5’-GGC AGC CTG CAC TGG TGG-3’

CMV-mgIGFBP-6:

CMV#3 (sense): 5’-GTG TAC GGT GGG AGG TC-3’

mBP6#7 (antisense): 5’-CAG GCC ATC CCA GGT CAT-3’
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To confirm the integrity of the DNA isolated from mouse tails, a sequence of the �-

actin gene was amplified using the following primers:

�-actin#1 (sense): 5’-GGC ATC GTG ATG GAC TCC G-3’

�-actin#2 (antisense): 5’-GCT GGA AGG TGG ACA GGG A-3’

The reaction was prepared in 0.2-ml PCR reaction tubes (G. Kisker GbR, Steinfurt,

Germany) on ice. The PCR was carried out with Taq DNA polymerase (5 units/µl;

Qiagen) in a total volume of 20 µl:

DNA sample (template) 2.00 µl
10 x Qiagen PCR buffer 2.00 µl
5 x Q-solution 4.00 µl
25 mM MgCl2 1.25 µl 
1 mM dNTPs 1.00 µl
2 µM sense primer 1.00 µl
2 µM antisense primer 1.00 µl
Taq DNA polymerase 0.10 µl
bidistilled water 7.65 µl

The reaction was performed as following in a Biometra Uno II-Thermoblock

(Göttingen, Germany): denaturation at 94 °C for 4 min, followed by 36 cycles of 94

°C for 1 min (denaturation), 60 °C for 1 min (annealing) and 72 °C for 2 min

(extension); after a final 10-min extension at 72 °C, PCR products were cooled to 4

°C and mixed with 4 µl of 6 � loading buffer, separated in 1.2% TAE-buffered

agarose gels with ethidium bromide and visualized under UV light.

3.7.2 Southern blot

3.7.2.1 Extraction of DNA from tail biopsies

0.5-1 cm of mouse tail tip fragments were used to extract the genomic DNA using

Wizard® Genomic DNA Purification Kit (Promega, Madison, WI, USA) according to

the Technical Manual. DNA concentration was estimated by measuring the OD of



Animals, materials and methods52

100 µl of a 1:50 dilution of the samples at 260 nm and 280 nm in a spectrophotometer

(Beckman). Ratios (260nm/280nm) between 1.6 and 2.0 were considered to indicate

an appropriately pure sample.

3.7.2.2 Digestion and transfer of the DNA

10 µg of genomic DNA were digested with an appropriate restriction enzyme (100

units) in the recommended buffer in a volume of 50 µl overnight (at least 12 h). 10 µl

of 6 � loading buffer were added and the cleaved DNA was separated in a 0.8% TBE-

buffered agarose gel with a kb DNA ladder (MBI), using 1 � TBE as running buffer.

10 � TBE buffer: Tris 121.1 g

boric acid 51.35 g
EDTA 3.72 g
bidistilled water ad 1000 ml

The gel was run until the bromophenol blue had reached at the end of the gel.

Thereafter, the gel was photographed with a ruler and shaken for 30 min in 0.25 M

HCl. After washing twice in distilled water, the gel was shaken for another 30 min in

0.4 M NaOH. The DNA was transferred to a Biodyne A Membrane (nylon

membrane; Pall Gelman Laboratory, Ann Arbor, USA) by alkaline blotting: the gel

was placed upside down over a Saran Wrap plastic film (Dow Chemical Company,

Germany) and air bubbles were removed manually. It was overlaid with the nylon

membrane, two sheets of gel blotting papers (GB002, 0.4mm thick; Schleicher &

Schuell, Dassel, Germany) and a stack of tissue paper towels. Membrane and papers

were cut to fit the gel size and the membrane was cut on the upper left corner to

identify the orientation of the blot. At each step, air bubbles were removed with the

help of a glass pipette. Finally, a glass dish of approximately 1 kg was placed at the

top and capillary transfer took place for 18-24 h. Thereafter, the membrane was

removed and rinsed in 5 � SSC for 1 min, the nucleic acids were crosslinked by

exposition to UV light (120 J/cm2) using a Crosslinker (Biometra, Göttingen,

Germany).
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3.7.2.3 Radioactive probe labeling

100 ng of cDNA were labeled with the HexaLabelTM DNA Labelling Kit (MBI) using

[�-32P]-dCTP (Amersham). The following components were added into a 1.5-ml

centrifuge tube:

cDNA template x µl (=100 ng)
hexanucleotide in 5 x reaction buffer 10 µl
deionized water ad 41 µl

The tube was vortexed and spun down for 3-5 sec, incubated at 95 °C for 10 min,

chilled on ice and spun down quickly. Thereafter, the following components were

added in the same tube:

Mix C 3 µl

[�-32P]-dCTP (10 µCi/µl) 5 µl

Klenow fragment, exo- (5 units/µl) 1 µl 

The tube was shaken once, spun down for 3-5 sec and then incubated at 37 °C for 10

min. After the addition of 4 µl 0.25 mM dNTPs it was incubated again for another 5

min and the reaction was stopped by addition of 1 µl 0.5 M EDTA (pH 8.0).

Unincorporated nucleotides were removed using a MicroSpinTM S-300 HR Column

(Amersham). 5 µl of a 1:100 dilution in water were put into a scintillation vial and the

number of counts per minute (cpm) was estimated in a multi-purpose scintillation

counter (Beckman). The probe was stored on ice if used at the same day or kept at -20

°C for later application. The final cpm value was obtained with the following formula

(the Cerenkov factor corrects the measurements without scintillation liquid):

cpm/µl = cpm � 20 (dilution factor) � 1.55 (Cerenkov factor)

3.7.2.4 Hybridization, washing and signal detection
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The crosslinked membrane was placed into a glass tube and prehybridized with 12 ml

Rapid-Hyb buffer (Amersham) at 65 °C for at least 30 min in a hybridization oven.

During this time, sufficient probe to give a concentration of 2 � 106 cpm/ml in the 12

ml hybridization volume was incubated at 95 °C for 5 min and then chilled

immediately on ice. The denatured probe was added directly to the prehybridization

solution and hybridization occurred at 65 °C for 2 h or overnight. Subsequently, three

wash steps were performed to remove unspecific radioactivity: 1 � 20 min at RT with

2 � SSC / 0.1 % SDS and 2 � 15 min at 65 °C with 1 � SSC / 0.1 % SDS.

20 � SSC (pH 7.0): 3 M NaCl

0.3 M sodium citrate
The buffer was autoclaved and kept at RT.

The hybridization solution with probe and the washing buffers were discarded into the

radioactive waste. The membrane was sealed in a plastic bag and exposed either to a

Storage Phosphor Screen (Molecular Dynamics, Krefeld, Germany) or to an X-ray

film (Amersham). The membrane was not allowed to dry at any time. If background

was still too high, the membrane was washed again more stringently (0.5 � SSC /

0.1% SDS or 0.25 � SSC / 0.1% SDS) and at higher temperatures (up to 70 °C).

3.8 Evaluation of gene expression at the RNA level

To avoid its degradation by nucleases, following attentions should be paid while

working with the extraction, manipulation or analysis of RNA:

- gloves were worn all the time and changed frequently

- all equipment was autoclaved, glasses and magnet stirrers were sterilized at 180 °C

for 8-10 h

- all solutions, except those containing Tris, were made with DEPC-H2O (DEPC-

treated water is used at a final concentration of 0.1 % diethylpyrocarbonate. 1 ml of

DEPC was added into 1000 ml deionized water in a glass bottle. The bottle was

shaken vigorously and incubated at 37 °C for about 2 h, then the solution was

autoclaved and kept at RT.).



Animals, materials and methods55

3.8.1 Extraction of RNA from tissues and cells

50-100 mg tissue samples stored at -80 °C were transferred directly into a 5-ml plastic

tube (Falcon) containing 1 ml of the TriPure� Isolation Reagent (Roche) and

homogenized with a tissue homogenizer (ART Labortechnik, Müllheim, Germany) at

position D (23,500 rpm) for 1 min. The homogenizer was cleaned with 0.2 M NaOH

and thereafter with DEPC-H2O after homogenizing each sample. RNA was extracted

according to the manufacturer’s instructions and dissolved in 50-100 µl DEPC-H2O

according to the size of the pellets. RNA concentration was estimated with a

spectrophotometer (Beckman).

Cells from a well of the 6-well plate were lysed in 1 ml of the TriPure� Isolation

Reagent. RNA was extracted according to the manufacturer’s instruction, resuspended

in 60 µl of DEPC-H2O, and the concentration was estimated as described above.

3.8.2 Reverse Transcription PCR (RT-PCR)

To get rid of DNA contamination in the RNA samples, 10 µg of total RNA were

digested with RNase-free DNase I (Roche) at 37 °C for 30 min in a volume of 20 µl

as following: 

Total RNA x µl (= 10 µg)

10 � DNase I reaction buffer 2 µl

RNase-free DNase I (10-50 units/µl) 1 µl
DEPC-H2O ad 20 µl

The solution was then incubated at 75 °C for 10 min to inactivate the enzyme, chilled

on ice, spun down and stored at -20 °C for further use.

10 � DNase I reaction buffer: 250 mM Tris-HCl, pH 8.3

  375 mM KCl
15 mM MgCl2

The buffer was autoclaved, aliquoted and stored at -20 °C.
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5 µl of the DNase I digests were used for reverse transcription with the M-MLV

reverse transcriptase (GIBCO) at 37 °C for 1 h in a 20-µl volume as following: 

DNase I digested RNA 5.0 µl
oligo dT (15mer, 500 ng/µl) 1.0 µl
dNTPs (10 mM) 2.0 µl
5 x first strand buffer 4.0 µl
DTT (0.1 mM) 2.0 µl
reverse transcriptase 0.1 µl
DEPC-H2O 5.9 µl

The cDNA solution was then incubated at 95 °C for 10 min to inactivate the enzyme,

chilled on ice, spun down and stored at -20 °C for further use. 2 µl of the cDNA

solution were used as template in a PCR reaction as described in section 3.7.1.2.

3.9 Evaluation of gene expression at the protein level

3.9.1 Extraction of protein from tissues

Tissue samples stored at -80 °C were weighed, placed in 5 ml plastic Falcon tubes and

homogenized in protein extraction buffer with a tissue homogenizer (ART

Labortechnik) at position D for 1 min. For each 20 mg tissue, 500 µl extraction buffer

were used. The homogenizer was cleaned with PBS after homogenization of each

sample.

The homogenized samples were placed on ice, transferred to 1.5-ml centrifuge tubes,

incubated at 95 °C for 5 min, chilled on ice and centrifuged at 15,000 � g and 4 °C for

5 min. The supernatants were aliquoted to new centrifuge tubes and stored at -20 °C

until use. 10 µl of them was used for determination of protein concentration.

Protein extraction buffer: 1 M Tris (pH 7.5) 2 ml
Triton X-100 2 ml

5 � Laemmli buffer 20 ml

bidistilled water 76 ml
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5 � Laemmli buffer: 1 M Tris (pH6.8) 65.5 ml

glycerol 100 ml
0.5 M EDTA (pH8.0) 2.0 ml
SDS 20 g
bromophenol blue 0.1%
bidistilled water ad 200 ml

3.9.2 Determination of protein concentration

The protein concentration of the tissue extracts was estimated by the bicinchoninic

acid (BCA; Sigma) protein assay. A set of protein standards of known concentration

was prepared by serially diluting a bovine serum albumin (BSA; Sigma) stock

solution (4 mg/ml in the BSA dilution buffer) with the BSA dilution buffer. 50 µl of

the samples (1:5 diluted in PBS) and the standards were pipetted into 1.5 ml

centrifuge tubes, 200 µl of a mixture of BCA and 4 % CuSO4 (50:1) were added to

each tube and mixed. 100 µl of the mixture was pipetted in duplicate into a 96-well

plate. The plate was incubated at 37 °C for 30 min and the absorbance was measured

at 562 nm with an ELISA reader (Spectra Max 250; Molecular Devices, Sunyvale,

CA, USA). A standard curve was prepared by plotting the absorbance of standards

versus protein concentration. The protein concentration of the samples was

determined using the standard curve. 

BSA dilution buffer: protein extraction buffer 1 ml
PBS 4 ml

The buffer was stored at  4 °C.

3.9.3 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)

16 µl of the SFCM with 4 µl of 5 � Laemmli buffer or 50 µg of protein from the

tissue extract were pipetted into centrifuge tubes, incubated at 95 °C for 5 min and

chilled on ice. 

The proteins were separated using the Mini Protean II System (BioRad, Munich,

Germany). The separating gel (15% acrylamide) was prepared in an Erlenmeyer flask
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under continuous agitation and poured into the gap between the glass plates of the

system, leaving space enough for the stacking gel (about 2.5 cm). The separating gel

was overlaid with bidestilled water to ensure an even surface.

Separating gel: bidistilled water 2.35 ml
(for two gels) 1.5 M Tris-HCl (pH 8.8) 2.5 ml

30% acrylamide 5.0 ml
10% SDS 100 µl
10% ammonium persulfate (APS)* 50 µl
Temed 5 µl

* The 10% APS solution was stored at –20 °C in aliquots.

After complete polymerization (about 1 h), the water was discarded and the stacking

gel (5% acrylamide) was prepared in the same way and loaded on the top of the

separating gel. The comb was inserted taking care to not trap air bubbles under the

teeth.

Stacking gel: bidistilled water 4.2 ml
(for two gels) 0.5 M Tris-HCl (pH 6.8) 0.75 ml

30% acrylamide 0.9 ml
10% SDS 60 µl
10% APS 60 µl
Temed 5 µl

After complete polymerization, the comb was removed and the plates were mounted

in the electrophoresis apparatus, which was filled with SDS-PAGE electrophoresis

buffer.

10 x SDS-PAGE buffer: Tris 30.3 g
glycine 144 g
SDS 10 g
bidistilled water  ad 1000 ml

The buffer was stored at RT.
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Samples were loaded and the electrophoresis was performed initially at 80 V for

about 20 min and then at 120 V until the bromophenol blue left the separating gel at

the bottom. A molecular weight standard (Low molecular weight range, M-3913;

Sigma) was pipetted in the first slot for estimation of the protein size.

3.9.4 Electrophoretic blotting

The gel was removed from the electrophoresis chamber and the separated proteins

were transferred to an Immobilon-P PVDF membrane (Millipore, Bedford, MA,

USA) by semidry electrophoretic blotting in the MilliBlot-Graphite Electroblotter

(MBBDGE001; Millipore). Six sheets of gel blotting paper (Schleicher & Schuell) cut

to the same size as the gel (8.5 cm � 7 cm) were soaked in transfer buffer, stacked one

on the top of the other on the bottom electrode and squeezed with a pipette to remove

air bubbles. The PVDF membrane and then the gel were placed exactly over the paper

stack and were covered with another six soaked gel blotting paper sheets. The upper

electrode was placed and the system was connected to a power supply (POWER PAC

3000; BioRad). The transfer took place for 90 min at 60 mA for each gel (1 mA/cm2).

10 � Transfer buffer: Tris 58.2 g

glycine 29.2 g
SDS 3.7 g
bidistilled water ad 1000 ml 

The buffer was stored at RT. Before use 20% of methanol were added.

After the transfer, the membrane was unambiguously labeled with a ballpoint pen and

the molecular weight standard bands were marked. The membrane was stained with

Ponceau red for 2 min under constant agitation, dried and stored at 4 °C.

Ponceau red: Ponceau S (Sigma) 0.2 g
glacial acetic acid 3 ml
bidistilled water ad 100 ml
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3.9.5 [125I]-IGF-II ligand blot

This methodology, first developed by Hossenlopp et al. (1986), has as major

advantage over traditional Western immunoblot the possibility of detecting bioactive

IGFBPs and a high sensitivity. The membrane containing the separated proteins was

washed and hybridized in 50-ml Falcon plastic tubes in a hybridization oven as

indicated bellow. All incubation steps were performed at 4 °C. The membrane was

dried and IGFBPs visualized on Storage Phophor Image screens or X-ray film. The

following steps were performed:

- washing with 10 ml Tris-buffered saline (TBS) solution with 3% Nonidet P40 for 30

min.

Tris-buffered saline (TBS): NaCl 43.8 g
Tris 6.06 g
bidistilled water ad 5000 ml

The pH value was adjusted to 7.4 with 1 N HCl and the buffer was stored at 4 °C.

- blocking in 5 ml TBS with 1% fish gelatin (Amersham) for at least 2 h.

- washing in 20 ml TBS with 0.1% Tween-20 for 30 min.

- incubation with 5 ml IGF-II tracer (Amersham) overnight.

IGF-II tracer in TBS: fish gelatine 1%
Tween 20 0.1%
[125I]-rhIGF-II 500,000 cpm/ml

- washing 2 � 30 min in 20 ml TBS with 0.1% Tween-20 and 3 � 30 min in 20 ml

TBS.

3.9.6 Western immunoblot

The membrane containing the separated proteins was washed with TBS-T at RT for

10 min, and then incubated at RT for 60 min or at 4 °C overnight in a hybridization

oven with blocking solution (TBS-T buffer with 3% fat-free milk powder).



Animals, materials and methods61

TBS-T buffer: Tris 2.42 g 
NaCl 8 g
1 N HCl 3.8 ml
bidistilled water ad 1000 ml

The pH value was adjusted to 7.6, 0.5 ml Tween-20 was added (end
concentration 0.05%) and the buffer was stored at 4 °C.

After blocking, incubation with the primary antibody diluted in blocking solution was

performed at RT for 60 min. The membrane was then washed 3 times for 5 min at RT

with TBS-T. Incubation with the secondary antibody diluted in blocking buffer took

place at RT for 1 h. Finally, the membrane was washed 3 - 5 times with TBS-T at RT

for 5 min. Detection was performed by incubating the membrane with 2 ml of the

ECL Western blotting detection reagent (Amersham). The membrane was sealed

under plastic and exposed to an ECL film (Amersham) or visualized with the Kodak

Digital Image Station (440CF; NEN� Life Science Products, Inc., Zaventem,

Belgium).

3.9.7 Immunohistochemistry

Mouse pancreata were separated from surrounding tissues, weighed and fixed in 4%

PBS-buffered paraformaldehyde (pH 7.4) for 48 h. The fixed tissues were dehydrated

in an ascending ethanol series and embedded in paraffin. Sections of 3 µm were cut

and deparaffinized prior to immunohistochemical staining. IGFBP-6

immunodetection was performed using chicken anti-mIGFBP-6 antibodies and the

HRP-coupled rabbit anti-chicken IgG according to the method reported by Putzer et

al. (1998), or using rabbit anti-mIGFBP-6 polyclonal antiserum (GroPep Limited

ABN, Thebarton, Australia) and HRP-coupled goat anti-rabbit IgG (Jackson

ImmunoResearch Laboratories, Inc., West Grove, PA, USA) according to the method

reported by van Kleffens et al. (1999).
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3.10 Phenotypic analysis of transgenic mice

3.10.1 H-2Kb-mcIGFBP-4 transgenic mice

3.10.1.1 Analysis of body weight gain and organ weights

The body weight from selected litters was recorded once weekly from weaning to

about three months of age. Eight- and twelve-week-old mice from selected groups

were anesthetized with ether and were bled from the retro-orbital sinus. After

measurement of the distance between nose and the base of the tail (nose-rump-length,

NRL) to the nearest mm, they were killed by cervical dislocation and weighed.

Organs and carcass were separated, blotted dry on paper towels and weighed to the

nearest mg and 0.1 g, respectivly. Complete organs or parts of them were frozen on

dry ice and then stored at -80 °C, or fixed in 4% PBS-buffered paraformaldehyde

solution.

4% paraformaldehyde: Paraformaldahyde (Sigma) 40 g
PBS 1000 ml
4 M NaOH 4 drops

The mixture was heated in a 50°C water bath until the solute was
dissolved. The pH value was adjusted to 7.4 with 1 N HCl.

3.10.1.2 Morphometry of thymus and spleen

The thymus and spleen were released from the surrounding tissues and weighed to the

nearest 0.1 mg. The volumes (V°) of the thymus and spleen were determined using

the fluid displacement method according to Scherle (1970). Briefly, a 50-ml plastic

cylinder filled with about 45 ml of 0.9% NaCl solution was placed on an analytical

balance. Then the organ was hanged with a line and immersed completely in the NaCl

solution without contact with the wall of the cylinder. The increased weight (g) of the

NaCl solution after the organ immersion corresponds to the volume (cm3) of the

immersed organ, because the specific gravity of the 0.9 % NaCl solution is 1.0048

g/cm3 (� 1 g/cm3). The specific gravity of the thymus and spleen was calculated
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according to their weight and volume. Ten animals were used for the measurement (n

= 10).

The organs were fixed in 4% PBS-buffered paraformaldehyde and embedded in

paraffin. Cavalieri’s principle (Gundersen & Jensen, 1987) was applied to estimate

the volume of the paraffin-embedded thymus and spleen. First, the embedded organ

was trimmed free of paraffin, and its length along the longitudinal axis was recorded.

After positioning the first cut randomly within an interval of 1 mm, the organs were

exhaustively sectioned perpendicular to their longitudinal axes into parallel slices of

approximately 1 mm. These slices were placed with the right-hand cut-surface upward

in tissue capsules and re-embedded in paraffin (Figure 3.3). Sections of 3 µm

thickness representing systematic samples of the whole organs were prepared, stained

with HE and subjected to morphometric evaluation.

Figure 3.3: Schematic presentation of sectioning the organ into parallel slices (A) and the
position of the histological sections on the glass slide for morpometrical studies
(B).
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A
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Light microscopic planimetric evaluation was performed on a semiautomated image

analysis system (Videoplan; Zeiss-Kontron, Eching, Germany) coupled to a

microscope via a color video camera (Panasonic, Japan). A 2.5 � objective was used,

providing a 90 � final linear magnification. An object micrometer (Zeiss) was used

for calibration. The cross-sectional areas of organ structures of interest were

determined on images displayed on a color monitor. These structures included the

thymus, cortex and medulla of thymus, the spleen, red pulp (RP), white pulp (WP)

and marginal zone (MZ) of the spleen. The following parameters were calculated:

The volumes of the thymus (th) and spleen (sp) before fixation:

V°(th or sp) = W(th or sp) / 1.10 g/cm3

Mean slice thickness:

T(th or sp)= L(th or sp) / N(th or sp)

The volumes of the thymus and its compartments after embedding:

V�(a) = T(th) x � A(a)

The volumes of the spleen and its compartments after embedding:

V�(b) = T(sp) x � A(b)

The shrinkage factor of thymus or spleen:

Fs(th or sp) = V°(th or sp) / V�(th or sp)

The real volumes of the compartments of thymus (corrected for embedding shrinkage):

V(a) = V�(a) x Fs(th)
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The real volumes of the compartments of spleen (corrected for embedding shrinkage):

V(b) = V�(b) x Fs(sp)

where
W(th) and W(sp) = weight of thymus and spleen before fixation
1.10 g/cm3 = the mean specific gravity of thymus and spleen determined as described above
a = thymus and its compartments (cortex and medulla)
b = spleen and its compartments (RP and WP + MZ)
L(th or sp) = length of the thymus or spleen (in mm)

� A(a) = sum of the cross-sectional areas of the thymus or its compartments

� A(b) = sum of the cross-sectional areas of the spleen or its compartments

N(th or sp) = number of slices per organ

3.10.1.3 Immunological analysis

To investigate the potential effect of transgene expression on the immune function,

the following assays were carried out at the Institute of Medical Microbiology,

Immunology and Hygiene, Technical University of Munich.

3.10.1.3.1 Sample preparation

Blood (400-600 µl) of 7-8-week-old mice was collected by bleeding from the retro-

orbital sinus in a 1-ml lithium-heparin tube (Kabe Labortechnik GmbH, Nümbrecht-

Elsenroth, Germany), centrifuged at 4500 � g for 5 min, and the plasma was

recovered for ELISA analysis. The nucleated peripheral blood cells were obtained

after removal of the erythrocytes by incubating the blood cells in 10 ml lysis buffer

(140 mM NH4Cl, 17 mM Tris-HCl, pH 7.2) for 5 min followed by two washing steps

in FACS buffer (PBS containing 2 % FCS and 0.01 % NaN3).

Eight-week-old mice from selected groups were anesthetized with ether and were

killed by cervical dislocation. The thymus, spleen and subiliac lymph nodes were

taken and cut into small pieces in FACS buffer, cells were pushed through a 100-µm

nylon cell strainer (Becton Dickinson Labware, Le Pont de Claix, France) to obtain



Animals, materials and methods66

single-cell suspensions. Subsequently, thymocytes and cells from the lymph node

were washed twice in FACS buffer. Erythrocytes in the single-cell suspensions from

spleen were removed as above and washed twice in FACS buffer. Suspensions of

bone marrow cells were flushed from the tibiae with FACS buffer.

The cells of each sample were distributed into ten 1.4-ml linbro tubes (Integra

Biosciences, Fernwald, Germany) pre-racked in a 96-linbro rack. All subsequent

pipetting steps were performed with 12-channel pipettes, minimizing labor and

pipetting errors. 

3.10.1.3.2 Flow cytometry (FACS)

For immunofluorescence staining of the nucleated blood cells, thymocytes,

splenocytes and cells from bone marrow and lymph node, Fc receptors were blocked

by incubation with 10 µg/ml 4G8 rat anti-mouse Fc receptor for 5 min. After being

washed with 300 µl FACS buffer, cells were incubated at 4 °C for 20 min with 30 µl

of the respective antibody combination. The antibody-labeling panel consisted of a

number of antibody combinations (Table 3.1).

Table 3.1 Panel of antibody combinations used in the flow cytometry

Blood: 1. CD4 FITC / CD19 PE / CD8 PerCP / CD3e Cy5
2. lambda FITC / Kappa PE / CD5 PerCP / CD45 APC
3. DX5 FITC / CD122 PE / CD8 PerCP / CD3e Cy5
4. CD34 FITC / CD62L PE / CD4 PerCP / CD44 APC

5. H2Kk FITC / �7 intigrin PE / PI control / CD11b APC

Bone marrow: 1. CD43 FITC / IgM PE/B220 APC
2. IgD FITC / B220 PE / CD24 bio Streptavidin Cy5
3. AA4.1 FITC / B220 PE
4. IgD FITC / IgM PE / CD45R APC

Thymus: 1. TCR� FITC / CD8 PE / CD4 Cy5

2. CD25 FITC / CD44 PE / CD4 PerCP / CD8 Cy5
3. CD4 FITC / CD27 PE / CD8 PerCP / CD3 Cy5
4. CD4 FITC / HSA PE / CD8 Cy5
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Spleen: 1. IgD FITC / IgM PE / CD23 bio Strept. PerCP
2. B220 FITC / CD24 bio Strept. PerCP
3. AA4.1 FITC / IgM PE / CD24 bio Strept. PerCP
4. B220 FITC / CD3e Cy5
5. IgD FITC / IgM PE / CD23 bio Strept. APC
6. IgD FITC / IgM PE / CD21 Cy5
7. CD19 PE / CD23 bio PerCP / CD21 Cy 5
8. CD1 PE / B220 APC
9. CD1 PE / IgM bio Strept. Cy 5

Lymph node: 1. B220 PE / CD 3e Cy5
2. IgD FITC / IgM PE / CD45R APC
3. B220 FITC / IgM PE / CD23 bio Strept. PerCP / CD5 Cy5

After incubation, the cells were washed twice and measured on a FacsCalibur (Becton

Dickinson, Mountain View, California, USA). The data were analyzed using the

AttractorsTM and CellQuest softwares (Becton Dickinson) according to Flaswinkel et

al. (2000).

3.10.1.3.3 Proliferation assay

Splenocytes were cultured in flat-bottom 96-well polystyrene microtiter plates (Nunc,

Kamstrup, Denmark) at a density of 2 � 105 cells/ml in 200 µl RPMI 1640 medium

(GIBCO) supplemented with 4 mM glutamine (GIBCO), 1 mM pyruvate (GIBCO),

50 µM 2-mercaptoethanol (Sigma), and 10 % heat-inactivated FCS (GIBCO), 100

U/ml penicillin, 100 µg/ml streptomycin (GIBCO). Splenocytes were stimulated

either with 2 µg/ml Con A (Sigma), 10 µg/ml LPS (Sigma), 5 µg/ml anti-CD3 plus 10

U IL-2 (from Dr. Bauer, Technical University of Munich) or 5 µg/ml goat anti-mouse

IgM antibody (Sigma). After 48 h of culture at 37 °C in an atmosphere of 5% CO2 and

100% relative humidity, the cells were pulsed with 1 µCi of [3H]-thymidine

(Amersham) per well for 18 h of culture. The cells were harvested using a Micro 96

harvester (Skatron Instruments, Tranby, Norway). Incorporation of [3H]-thymidine

was quantified in a Betaplate liquid scintillation counter (Wallac, Gaithersburg, MD,

USA).
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3.10.1.3.4 Basal immunoglobin ELISA

Basal immunoglobulin levels were determined by using sandwich ELISAs specific for

IgM, IgG3 and IgA as described by Flaswinkel et al. (2000). Autoreactive antibody in

plasma was also measured according to Flaswinkel et al. (2000).

3.10.2 CMV-mgIGFBP-6 transgenic mice

3.10.2.1 Analysis of body and organ weights

The body weight of mice was recorded once a week from 3-15 weeks of age. Four-

month-old mice were anesthetized with ether, weighed and bled from the retro-orbital

sinus. After measurement of the NRL, the mice were killed by cervical dislocation.

The weights and gross dimensions of the gastrointestinal tract (GIT) were measured

according to the methods described by Ogiolda et al. (1998). Briefly, the abdominal

cavity was opened, and the caudal end of the duodenum was located and cut with

scissors (the duodenum was identified by the absence of mesentery, whereas

jejunum/ileum are supported by mesentery). Then stomach and duodenum as well as

the other segments of the GIT were separated from adjacent organs and from the

mesentery, respectively, and placed on an ice-cold glass plate. After the lengths of

duodenum, jejunum/ileum, caecum and colon were recorded, small longitudinal

incisions were made, and the luminal contents were flushed out with PBS. The

stomach was removed from the duodenum at the pylorus, opened along the large

curvature, flattened on a piece of paper, and the outline of the surface area was drawn

onto the paper for planimetric evaluation. All other internal organs and the carcass

were weighed to the nearest mg and 0.1 g, respectively. The empty GIT was fixed in

10% PBS-buffered formalin in a glass cylinder. After an overnight fixation, all GIT

segments were blotted dry and weighed. Then they were immersed for a week in

formalin solution and routinely processed for histological analysis. For expression

studies, some mice from all groups were sacrificed as described above. The luminal

contents of the various GIT segments were removed, transferred into individual

centrifuge tubes, solubilized in Laemmli buffer and analyzed immediately as

described above. The empty GIT segments were frozen on dry ice and thereafter kept
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in -80 °C freezer. Samples from the other organs were frozen on dry ice and stored at

-80 �C for RNA and protein isolation or fixed in 4% paraformaldehyde for

histological analysis.

3.10.2.2 Morphometry of duodenum

3.10.2.2.1 Tissue preparation and sampling

The duodenum of each animal was longitudinally opened, randomly spun, flatted on a

sheet of paper and fixed in 10% PBS-buffered formalin. Vertical sections were

created according to Baddeley et al. (1986). Briefly, tissue samples (about 0.8 cm in

length) were taken from four equidistant locations from proximal to distal duodenum.

For each sample, a pair of mutually perpendicular stripes (about 5 mm in length) was

taken, dehydrated and embedded in plastic in order to minimize shrinkage of tissue

(Gerrits & Horobin 1996) according to the following procedure:

- Dehydrate and clear the samples using an automate (Shandon) at RT for 20 h: 1 �

washing solution, 2 h; 2 � 50% ethanol, each 1 h; 2 � 70% ethanol, each 1 h; 2 �

96% ethanol, each 2 h; 3 � 100% ethanol, each 2 h; 2 � xylene, each 2 h.

Washing solution: 

Cacodylic acid sodium salt trihydrate (C2H6AsNaO2	 3H2O) 16.5 g

1 N HCl 6.23 ml
bidistilled water 1500 ml
The pH value was adjusted to 7.2, then 105 g of D (+)-Sucrose (C12H22O11) and

1.105 g CaCl2	 2H2O were added and resolved, pH was adjusted to 7.2. The solution

was stored at RT and prepared freshly every month.

- Incubate with GMA-MMA solution [2-Hydroxyethyl methacrylate (GMA):

Methyl methacrylate (MMA), 1:1] for 18-24 h at 4 °C with gentle agitation.

- Incubate with solution A for 3-4 h (not longer than 4 h) at 4 °C with gentle

agitation.
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- The two tissue samples from the same location were placed on the bottom of a 12

ml embedding plastic cup, oriented perpendicular to surface, then the solution A

containing 0.15% (v/v) N,N-dimethylaniline was poured into the cup. The cups

were covered and placed in a pre-cooled water bath, which was subsequently

placed at 4°C overnight. After the polymerization, the plastic-embedded tissue

blocks were pulled out of the cups and stored in a -20°C freezer.

Solution A: Benbzoyl peroxide (with 25 % water) 3.38 g
MMA 200 ml
GMA 600 ml
Ethylene glycol monobutyl ether 160 ml
Polyethylene glycol 400 20 ml

- 1.5 µm sections were cut normal to the horizontal plane, and PAS (Periodic-Acid-

Schiff) staining was carried out as follows:

A. Incubate with 1% periodic acid solution for 15 min.

B. 3 � rinsing with bidistilled water.

C. Incubate in fresh Schiff’s reagent in dark room for 80 min.

D. Wash with running water for 30 min.

E. Dry on a 60°C stretching table.

F. Incubate with Mayer’s Haemalaun (hematoxylin) solution for 20 min.

G. Wash with running water for 10 min.

H. Rinse shortly in 1% HCl-ethanol solution.

I. Wash with running water for 10 min.

J. Dry on a 60°C stretching table.

K. The sections were at last rinsed shortly in xylene and mounted with Eukitt

mounting medium (O. Kindler GmbH & Co, Freiburg, Germany).

3.10.2.2.2 Morphometric analysis

Light microscopic morphometric evaluation was performed on a semiautomated

image analysis system as described above. A 10 � objective was used, providing a

350 � final linear magnification. A cycloid test system consisting of 35 cycloid arcs

and 70 test points (Fig. 7B in Baddeley et al. 1986) was photocopied on a transparent
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sheet and superimposed over each test field displayed on the monitor screen (Figure

3.4). The vertical axis of the test system was aligned with the vertical direction on the

section. Point counting was performed according to Baddeley et al. (1986). The

number (P) of test points which hit the different layers of duodenum, and the number

(I) of intersection points between cycloid arcs and villous surface were counted. Each

vertical section was completely evaluated. With these data, the following parameters

were calculated:

Fractional volumes of the 3 layers in duodenum (%):

Vv(x/duo) = 100 � � P(x) / � P(duo)

Total volumes of the 3 layers of duodenum (cm3):

V(x) = Vv(x/duo) � V(duo)

Villous surface area density (cm-1):

Sv = 2 (p/l) � M � � I(muc) / � P(muc)
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Figure 3.4 Schematic representation of the cycloid test system (left panel) super-
imposed over a test field of a vertical section of the duodenum (right panel).
Muc, mucosa; Sub, submucosa; Mus, muscularis.
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Total villous surface area (ViSA) of duodenum (cm2):

ViSA = Sv � V(muc)

where
x = one of the three layers of the duodenum: mucosa (muc), submucosa (sub) or muscularis
(mus).

� P(x) = total number of test points which hit the muc, sub or mus layer.

� P(duo) = total number of test points which hit the total duodenal wall.

p/l = the ratio of test points to test curve length = 70/(35 x 1.2 cm) = 1/0.6 (cm-1).
M = the final linear magnification (x 350).

� I(muc) = total number of intersection points between cycloid arcs and villous surface.

� P(muc) = total number of test points which hit the mucosal wall.

V(duo) = W(duo) (g) / 1.06 g/cm3. 

W(duo) = the weight of duodenum before fixation. 
1.06 g/cm3 = the mean specific gravity of the murine small intestine determined using the fluid
displacement method (Ogiolda et al. 1998).
 

3.10.2.3 Scanning electron microscopy

Duodenum samples were taken from one- and two-month-old transgenic and control

mice, opened longitudinally, washed three times in 0.9 % NaCl solution and fixed in 1

% glutaraldehyde solution. The specimens were then washed in PBS (pH 7.4),

dehydrated in ascending concentrations of acetone, dried with a CPD-030 critical-

point dryer (BAL-TEC, Schalksmuehle, Germany), and sputter coated (Balzers Union

SCD-040, Balzers, Wiesbaden, Germany) with gold-palladium, mounted on a stub

and then examined with a scanning electron microscope (DSM-950, Carl Zeiss,

Oberkochen, Germany). 

3.10.2.4 Serum glucose levels
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Blood was extracted from the tail of 12 h-fasted animals and again after a period of 4

hours after the animals had free access to food. Glucose blood levels were measured

with the Medisense Precision QIDTM System (MediSense, Taufkirchen, Germany).

3.10.2.5 Serum glucagon levels

Serum glucagon levels were measured using serum from non-fasted mice with a

commercial glucagon RIA kit (BioTrend GmbH, Cologne, Germany).

3.10.2.6 Glucose tolerance test

12 h-fasted animals received orally 250 µl of 1 M glucose solution/30 g body weight.

Blood was collected from the tail vain immediately prior to glucose administration

and after 10, 30, 60, 90 and 120 min. Blood glucose levels were measured with the

Medisense Precision QIDTM System.

3.10.2.7 Serum insulin levels

Blood was collected by bleeding from the retro-orbital sinus from 12 h-fasted animals

and again after a period of 4 h after the animals had free access to food. Insulin serum

levels were measured with a commercial insulin RIA kit (Insulin-CT, CIS Bio

International, Gif Sur Yvette Cedex, France).

3.11 Statistics

The data were analyzed for significance of differences using the Student’s t-test. A

difference was considered to be statistically significant at p 
 0.05.
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4 RESULTS

4.1 Expression of mIGFBP-4 and -6 in vitro

4.1.1 Expression of mIGFBP-4 and -6 in murine NIH-3T3 fibroblasts

The constructs H-2Kb-mcIGFBP-4 and -6 were tested by stable transfection of murine

NIH-3T3 cells. Several clones were established by G418 selection. Their genomic

integration was analyzed by PCR (data not shown). The human �-globin splicing

cassette allows the unambiguous identification of the transgene transcripts. RT-PCR

revealed that the selected clones expressed transgene mRNA, which were 850-bp

shorter than the corresponding sequences in the expression vectors due to the splicing

of the 850-bp intron in the human �-globin splice cassette, whereas the untransfected

parental cells (P) and mock clone (MC) did not (Figure 4.1 and 4.2). [125I]-IGF-II

ligand blotting analysis showed that a 24 kDa or 26 kDa protein was increased in the

SFCM from pH-2Kb-mcIGFBP-4 or -6 transfected clones compared to P and MC

Figure 4.1 IGFBP-4 expression in NIH-3T3 fibroblasts. A. RT-PCR of H-2Kb-mcIGFBP-4. B.
RT-PCR of �-actin to confirm the efficiency of the reverse transcription (RT). C.
PCR of �-actin without RT to confirm the efficiency of DNase I-digest. D. [125I]-IGF-
II ligand blotting analysis of SFCM from untransfected cells (P), vector-only-
transfected (MC) and H-2Kb-mcIGFBP-4-transfected clones. M, pUC Mix 8 DNA
marker; -, water; p, plasmid pH-2Kb-mcIGFBP-4 (A) and pCR-TOP-beta-actin (B,
C).
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(Figure 4.1 and 4.2), which were identified as being IGFBP-4 or -6 by Western

immunoblotting (Figure 4.7B and 4.15B).

4.1.2 Expression of mIGFBP-6 in human 293 cells

To test the construct CMV-mgIGFBP-6, human 293 cells were transiently transfected

with pCMV-mgIGFBP-6. [125I]-IGF-II ligand blotting showed that a 26-kDa protein

was detected in the SFCM from pCMV-mgIGFBP-6-transfected 293 cells (CMV-

BP6) but not in the ones from the untransfected (P) and vector-only-transfected 293

cells (MK). This protein was identical to the IGFBP-6 expressed by the NIH-3T3

clone #11 described above (Figure 4.3).

Figure 4.2 IGFBP-6 expression in NIH-3T3 fibroblasts. A. RT-PCR of H-2Kb-mcIGFBP-6. B.
RT-PCR of �-actin to confirm the efficiency of the reverse transcription (RT). C.
PCR of �-actin without RT to confirm the efficiency of DNase I-digest. D. [125I]-IGF-
II ligand blotting analysis of SFCM from untransfected cells (P), vector-only-
transfected (MC) and H-2Kb-mcIGFBP-6-transfected clones. M, pUC Mix 8 DNA
marker; -, water; p, plasmid pH-2Kb-mcIGFBP-6 (A) and pCR-TOP-beta-actin (B,
C).
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4.2 H-2Kb-mcIGFBP-4 transgenic mice

4.2.1 Identification of transgenic mice

One litter comprising 3 mice was obtained from microinjected zygotes. Two mice

were identified as being transgenic founders by PCR (data not shown) and

backcrossed with wild-type C57BL/6 mice. Both of them transmitted the transgene to

offspring, producing two transgenic lines (L1 and L2). Genomic integration patterns

of H-2Kb-mcIGFBP-4 in the both lines were analyzed by Southern blot analysis

(Figure 4.4). In wild-type and transgenic animals, hybridization signals of the

endogenous IGFBP-4 were detected at 8 kb and 2.7 kb after EcoRI digest. In addition

to these bands, a 5 kb band, as large as the microinjection fragment, was detected in

both transgenic lines. Furthermore, a band larger than 10 kb was detected in line 1 and

a 10 kb band in line 2.

Two litters comprising 5 animals were obtained from embryo transfer of the line 2 F2-

transgenic mice under SPF conditions. Three of the offspring (F3) were identified as

being transgenic and mated with wild-type C57BL/6 SPF mice under SPF conditions

to generate F4 animals for immunological analysis. 

P           MK       CMV-BP6      #11kDa
36 -

29 -

24 -

Figure 4.3 [125I]-IGF-II ligand blotting analysis of SFCM from non-transfected (P), vector-only-
transfected (MK) and pCMV-mgIGFBP-6-transfected 293 cells (CMV-BP6). The
SFCM from pH-2Kb-mcIGFBP-6-transfected NIH-3T3 clone 11 (#11) was loaded as a
positive control.
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4.2.2 Transgene expression

From both of the H-2Kb-mcIGFBP-4 transgenic lines, three transgenic (TG) and three

control mice (WT) were selected for expression studies. Total RNA and protein were

extracted from the following organs/tissues: adrenal gland, bladder, brain, heart,

kidney, liver, lung, ovary/testis, pancreas, salivary gland, skeletal muscle, skin,

spleen, stomach, small and large intestine and thymus. Except for pancreas, total RNA

was successfully extracted from all organs/tissues. The RNA was degraded

consistently in the pancreas (Figure 4.5). RT-PCR revealed ubiquitous expression of

the transgene in all tested organs/tissues (Figure 4.6). However, elevated IGFBP-4

protein levels were detected only in spleen, thymus, lung and kidney by [125I]-IGF-II

ligand blotting and Western immunoblotting (Figure 4.7). IGFBP-4 overexpression

was consistently higher in line 2 than in line 1.

Figure. 4.4 Southern blot analysis of H-2Kb-mcIGFBP-4 transgenic (Line1 and Line 2) and
control (WT) mice. M, kb DNA ladder.
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Figure 4.5 Agarose gel electrophoresis of total RNA extracted from liver, spleen, thymus and
NIH-3T3 cells (3T3) using TriPure� Isolation Reagent.

Liver        Spleen      Thymus     3T3    Pancreas

28 S -

18 S -

Figure 4.6 RT-PCR analysis of transgene mRNA expression in different tissues of H-2Kb-
mcIGFBP-4 transgenic mice: adrenal gland (1), bladder (2), brain (3), heart (4),
kidney (5), liver (6), lung (7), skeletal muscle (8), ovary (9), salivary gland (10), skin
(11), spleen (12), testis (13) and thymus (14). 15, water. 16, pH-2Kb-mcIGFBP-4-
transfected NIH-3T3 clone #9. 17, plasmids pH-2Kb-mcIGFBP-4 (A) or pCR-TOP-
beta-actin (B,C). A. RT-PCR of H-2Kb-mcIGFBP-4. B. RT-PCR of �-actin to confirm
the efficiency of the reverse transcription (RT). C. PCR of �-actin without RT to
confirm the efficiency of DNase I-digest.
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4.2.3 Body weight gain and organ growth

Transgenic mice and non-transgenic littermates from both lines were weighed once a

week from 3 to 10 weeks of age to detect a possible effect of H-2Kb-mcIGFBP-4

transgene expression on body weight gain. No significant difference was observed

between TG and WT animals in both lines (Figure 4.8).

Figure 4.7 IGFBP-4 protein expression in several tissues of transgenic (Line 1 and Line 2) and
control (WT) mice as determined by [125I]-IGF-II ligand blotting (A) and Western
immunoblotting (B). +, SFCM of H-2Kb-mcIGFBP-4-transfected NIH-3T3 clone #9. M,
Sigma low-range protein marker.
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Figure 4.8 Body weight gain of H-2Kb-mcIGFBP-4 transgenic and control mice. The data are
presented as mean � SD.
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NRL, body and organ weights were recorded in 8- and 12-week-old animals. There

was no significant difference in NRL, body and organ weights between TG and WT

mice. The only exception was the thymus of TG mice, which was significantly

reduced in weight when compared to WT mice (Figure 4.9A). This reduction

persisted when thymus weight was related to body weight (Figure 4.9B).

Morphometric analysis revealed that the volumes of thymus and its cortex of TG mice

were significantly reduced compared to WT littermates, whereas the volume of

medulla of thymus was not different between TG and WT animals (Figure 4.10A). In

contrast, there was no significant difference in weight (data not shown), total and

compartment volumes of spleen between TG and WT mice (Figure 4.10B), although

IGFBP-4 was also overexpressed in the spleen.

4.2.4 Flow cytometry

To investigate the potential effect of transgene expression in the thymus and spleen of

H-2Kb-mcIGFBP-4 transgenic mice on the development of lymphocytes, the

lymphocytes from the peripheral blood, thymus, spleen, lymph node and bone marrow

of TG and WT mice (SPF) from line 2 were analyzed by flow cytometry (FACS),

using antibodies against different markers expressed in the T- and B-cells and other

populations of lymphocytes, as described in Material and Methods. No significant

difference was found between the two groups (data not shown).

4.2.5 Basal plasma immunoglobin levels

To detect possible effect of transgene expression in the thymus and spleen of H-2Kb-

mcIGFBP-4 transgenic mice (SPF) on the production of the humoral immuno-

competence, the basal plasma immunoglobin (Ig) levels were measured using ELISAs

specific for IgM, IgG3 and IgA. Plasma autoreactive antibody was also determined.

Their levels of TG mice were not different from the ones of WT littermantes (data not

shown).
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Figure 4.9 Reduced absolute (A) and relative (B) weight of thymus of H-2Kb-mcIGFBP-4
transgenic (TG) mice compared to control (WT) mice. 15-20 mice from each group
were investigated. Data are presented as mean � SD.
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Figure 4.10 A. Thymus, cortex and medulla volumes of 8-week-old H-2Kb-mcIGFBP-4
transgenic (TG) mice (n = 4) and their wild-type (WT) littermates (n = 4). B.
Volumes of spleen, red pulp (RP), white pulp and marginal zone (WP+MZ) of
8-week-old H-2Kb-mcIGFBP-4 TG mice (n = 4) and their WT littermates (n =
4). Data are presented as mean � SD.
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4.2.6 Mitogenic response of splenocytes

To ascertain the proliferative capacity of T- and B-cells in the IGFBP-4 transgenic

mice, splenocytes were stimulated with ConA, anti-CD3 antibody, LPS and anti-IgM

antibody/IL2 respectively. First results revealed that the proliferative activity of

IGFBP-4 transgenic splenocytes was significantly reduced after ConA (p < 0.05) and

LPS (p < 0.01) stimulation, but did not altered after anti-CD3 and anti-IgM/IL2

stimulation (Figure. 4.11). These findings await further confirmation.

Figure 4.11 Proliferation assay of splenocytes from H-2Kb-mcIGFBP-4 transgenic (TG) and
wild-type (WT) mice.
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4.3 H-2Kb-mcIGFBP-6 transgenic mice

4.3.1 Identification of tramsgenic mice

Seven litters comprising 56 mice were obtained from microinjected zygotes. Ten mice

were identified as being transgenic founders by PCR (some of them were shown in

Figure 4.12), and transmitted the transgene to offspring, producing 10 transgenic

lines.

4.3.2 Transgene expression

Transgenic mRNA expression in H-2Kb-mcIGFBP-6 transgenic mice was screened by

RT-PCR as described in the H-2Kb-mcIGFBP-4 transgenic model. Consistent with H-

2Kb-mcIGFBP-4 transgenic mice, transgene was expressed ubiquitously at RNA level

in all tissues of the H-2Kb-mcIGFBP-6 transgenic mice. The results of spleen, kidney,

bladder liver and lung from lines 1 and 4 were shown in Figure 4.13. However, the

IGFBP-6 protein levels were not increased in the TG mice as determined by [125I]-

IGF-II ligand blotting, when compared to the controls (data not shown).

Figure 4.12. PCR analysis of H-2Kb-mcIGFBP-6 transgenic (TG) and wild-type (WT) mice. A,
transgene-specific PCR using primers mBP6#6 and �-globin#1. B, �-actin PCR. M,
pUC Mix 8 DNA marker. +, pH-2Kb-mcIGFBP-6 (A). -, water.
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-613 bp

M   WT WT TG  WT  TG  WT  TG  TG   +     -
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4.4 CMV-mgIGFBP-6 transgenic mice

4.4.1 Identification of transgenic mice

Ten litters comprising 45 mice were obtained from the microinjected zygotes. Five

animals were identified as being transgenic founders by PCR (Figure 4.14) and mated

with wild-type C57BL/6 mice. Four founders transmitted the transgene to offspring,

producing four transgenic lines (lines 1, 2, 4 and 5).

Figure 4.13 RT-PCR analysis of transgene expression in the H-2Kb-mcIGFBP-6 transgenic
(L1, L4) and control (WT) mice. A. RT-PCR of H-2Kb-mcIGFBP-6. B. RT-PCR of
�-actin to confirm the efficiency of the reverse transcription (RT). C. PCR of �-
actin without RT to confirm the efficiency of DNase I-digest. -, water. #11, H-2Kb-
mcIGFBP-6-transfected NIH-3T3 clone #11. p, plasmid pH-2Kb-mcIGFBP-6 (A)
and pCR-TOP-beta-actin (B, C).

     spleen    kidney   bladder     liver      lung
M  L1 L4  WT L1 L4  WT L1 L4  W T L1 L4  WT L1 L4  WT -  #11  p
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Figure 4.14 PCR identification of CMV-mgIGFBP-6 transgenic founders (upper panel) and
Southern blot analysis of the TG and wild-type (WT) mice from the F1-generation
(lower panel). A. transgene-specific PCR using primers CMV#3 and mBP6#7. B. �-
actin PCR. M, pUC Mix 8 DNA marker (upper panel) and kb DNA ladder (lower
panel). -, water. +, plasmids pCMV-mgIGFBP-6 (A) and pCR-TOP-beta-actin (B).
The transgene in L3 was lost in the F1-generation.
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Genomic integration patterns of CMV-mIGFBP-6 in the four transgenic lines were

analyzed by Southern blot analysis (Figure 4.14). In all transgenic and wild-type

mice, hybridization signals of the endogenous IGFBP-6 were detected at 8 kb and 3.8

kb after EcoR I digest. In addition to these bands, a 2.8 kb and a 1.5 kb fragment were

detected in all four transgenic lines. Furthermore, two fragments of 5 kb and 2.3 kb

were detected in line 1; a 3.5 kb band in line 2; a 6 kb band in line 4; and two bands of

7 kb and 4.5 kb in line 5

4.4.2 Transgene expression

Western ligand blot analysis revealed that the abundance of a 26-kDa protein, with

can bind to [125I]-IGF-II, was predominantly high in the pancreas, relatively low in the

liver and lung, and undetectable in other organs of the CMV-mgIGFBP-6 transgenic

mice from all lines. There was no difference between transgenic mice and controls in

the levels of serum IGFBPs. Data are shown only for lines 2 and 5 which were further

characterized (Figure 15A). The 26-kDa IGFBP detected in the pancreas extracts by

ligand blot was IGFBP-6 confirmed by Western immunoblot using chicken anti-

mIGFBP-6 antibodies (Figure 15B). To localize IGFBP-6 expression in the pancreas,

immunohistochemical staining was performed. Two available anti-mouse IGFBP-6

antibodies were used in this study. Although there was strong background, IGFBP-6

immunoreactivity was stronger in exocrine pancreas than in the islets (data not

shown). Interestingly, elevated levels of active IGFBP-6 were also detected in the

luminal content of the duodenum, but neither in the luminal contents of other GIT

segments, nor in the tissue extracts of any GIT segment of transgenic mice (Figure

16). This finding, together with the immunohistochemical staining pattern in the

pancreas, suggests that the increased IGFBP-6 levels in the duodenum of transgenic

mice originated from the exocrine pancreas.
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Figure 4.15 Panel A: [125I]-IGF-II ligand blot analysis of IGFBP-6 expression in pancreas, liver,
lung and serum from CMV-mgIGFBP-6 transgenic mouse lines L2 and L5 and control
(WT) mice. Panel B: Western immunoblot analysis of IGFBP-6 expression in the
pancreata of the TG and WT mice. The SFCM of the H-2Kb-mIGFBP-6-transfected
NIH-3T3 cell clone #11 was loaded as IGFBP-6 protein positive control (+).
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4.4.3 Effects on glucose homeostasis

In order to investigate the potential effect of high IGFBP-6 levels in pancreas on

glucose homeostasis, blood glucose levels and the corresponding serum insulin and

glucagon levels were measured in fasted/refed transgenic and control animals, and a

glucose tolerance test was also carried out. No significant differences between

transgenic and control animals were found (Figure 4.17).

Figure 4.16. Detection of IGFBP-6 protein in the tissue extracts (upper panel) and luminal
contents (lower panel) of different segments of the gastrointestinal tract from CMV-
mgIGFBP-6 transgenic (TG) and control (WT) mice. Increased IGFBP-6 level was
found only in the luminal content of duodenum of transgenic mice. The SFCN of
the H-2Kb-mIGFBP-6-transfected NIH-3T3 clone #11 (+) and pancreas extracts
(PAN) were also loaded as controls. STO, stomach; DUO; duodenum; J-I,
jejunum/ileum; CAE, caecum; COL, colon.
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Figure 4.17. Effect of transgene expression on glucose homeostasis as determined by serum
glucagon (A), glucose (B) and insulin levels (C) and by glucose tolerance tests (D)
of CMV-mgIGFBP-6 transgenic (TG) and control (WT) mice. Data are presented
as mean � SD.
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4.4.4 Effects on body and organ growth

Transgenic mice and nontransgenic littermates from lines 2 and 5 were weighed once

a week from 3-15 weeks of age to detect possible effects of CMV-mIGFBP-6

transgene expression on body weight gain. No significant difference was observed

between transgenic and control animals in both lines (Figure 4.18).

Body and organ weights were recorded in 4-month-old animals. There was no

significant difference in NRL and organ weights between transgenic mice and their

nontransgenic littermates. The only exception was the duodenum of transgenic mice,

which was significantly reduced in length (L2: 17%; L5: 14%) and weight (L2: 32%;

L5: 17%) when compared to controls (Figure 4.19). This reduction persisted when

organ length and weight measurements were related to body weight (Figure 4.20). No

significant difference between transgenic mice and controls was observed for the

weights or lengths of other segments of the GIT. Morphometric analysis revealed that

the fractional volume of mucosa in the duodenum of transgenic mice was significantly

reduced, whereas those of submucosa and muscularis were significantly increased

(Figure 4.21A). Accordingly, the absolute volume of the mucosa of duodenum was

significantly decreased in transgenic mice by 31%, but those of submucosa and

muscularis were not different between the two groups (Figure 4.21B). The mean total

villous surface area (ViSA) of the duodenum of transgenic mice was significantly

smaller (42%) than that of the nontransgenic littermates (Figure 4.22). Scanning

electron microscopic observation suggested that the villous dimension of duodenum is

smaller in transgenic mice than that in control mice (Figure 4.22).
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Figure 4.18 Body weight gain of CMV-mgIGFBP-6 transgenic (TG) and control (WT) mice. The
data are presented as mean � SD.
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Figure 4.19 Absolute weight (A) and length (B) of duodenum of four-month-old transgenic (TG)
and their wild-type (WT) littermates. 15-20 mice from each group were
investigated. Data are presented as mean � SD.
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Figure 4.20 Relative weight (A) and length (B) of duodenum of four-month-old transgenic (TG)
and their wild-type (WT) littermates. 15-20 mice from each group were
investigated. To keep the same dimension, weight and length were separately
related to body weight (BW), and BW1/3, respectivly. Data are presented as mean
� SD.
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Figure 4.21 Fractional (A) and absolute (B) volumes of muscularis, submucosa and mucosa
in/of the duodenum of four-month-old transgenic (TG) mice (n = 4) and their wild-
type (WT) littermates (n = 4). Tissue samples were taken equidistantly from four
locations covering duodenum, and the fractional volume of each layer was
determined as described in Material and Methods. No significant difference was
found among the four locations of each animal (data not shown). Data are
presented as mean � SD.
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Figure 4.22. Upper panel: total villous surface area (ViSA) of the duodenum of 4-month-old female
transgenic (TG) mice (n=4) and their wild-type (WT) littermates (n=4). ViSA was
estimated from vertical sections as described in Materials and Methods. Data are
presented as mean � SD. Lower panel: scanning electron microscopy images of
duodenal mucosa from a 2-month-old TG and a WT mouse. Note that the villous
diameters appear to be reduced in the TG mouse.
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5 DISCUSSION

5.1 Overexpression of IGFBP-4 in transgenic mice

5.1.1 Transgene integration

Initial identification of transgenic founders and transgenic mice in the subsequent

generations was performed with PCR technique using the DNA from tail biopsies.

This simple technique allows us to investigate a large number of animals in a very

short time. However, transgene integration pattern can not be determined by PCR

analysis. To this end, Southern blot analysis is necessary to determine the number of

integration sites, the number of integrated copies, orientation of the copies within the

integration site and the integrity of the construct.

Southern blot analysis showed that two bands of about 8 kb and 2.7 kb representing

the endogenous Igfbp4 were detected in both transgenic and wild-type mice, and a

transgene-specific band of about 5 kb, as large as the microinjection fragment,

represented in all transgenic mice from both lines. Additional bands, a > 10 kb only

present in the mice from line 1 and a 10 kb band only present in the mice from line 2,

represent the genomic regions that flanked the transgene construct in its integration

site, indicating different integration sites in the two transgenic lines. From the

Southern blot, we can see that there were more copies integrated in the genome of line

2 than in line 1. However, the exact number of the integrated copies was not

determined, as we rather focused on the determination of the abundance of expression

of the transgene and its biological activity.

5.1.2 Transgene expression

The transgene H-2Kb-mcIGFBP-4 was found to be transcribed and correctly spliced

in all tissues tested, including adrenal gland, bladder, brain, heart, kidney, liver, lung,

skeletal muscle, ovary, salivary gland, skin, spleen, testis and thymus. However,

elevated protein levels were only detected in the spleen, thymus, lung and kidney by

[125I]-IGF-II ligand blot. The elevated protein in the spleen was confirmed to be

IGFBP-4 by Western immunoblot using an antibody specific for IGFBP-4. The
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biological activity of the transgenic IGFBP-4 was confirmed by its capability to bind

recombinant human IGF-II in a Western ligand blot.

The expression pattern of the transgene was identical in the two different transgenic

mouse lines, indicating that expression of the transgene H-2Kb-mcIGFBP-4 occurs

independently of the integration sites. Except for spleen, thymus, lung and kidney, the

IGFBP-4 protein levels were not elevated in the other tissues, suggesting that

transgenic mRNA expression was high in the spleen, thymus, lung and kidney, and

low in the others. This expression pattern was similar to the endogenous H-2Kb

expression (Morello et al. 1986).

The H-2K gene is one of the class I genes of the major histocompatibility complex

(MHC) of the mouse which encode the heavy chain of cell surface H-2 antigens. The

MHC comprises a multigenic family including both classical H-2 (H-2K, H-2D and

H-2L) and H-2 like (Qa-TL) genes (Weiss et al. 1984). Their expression is

developmentally regulated: classical H-2 antigens are not expressed from the early

embryonic stages of development, become active between embryonic day 11 and 13,

and are expressed and present at the surface of all somatic cells (Morello et al. 1978).

In the adult mouse, the endogenous H-2Kb mRNA expression is ubiquitous, although

the levels are different among the tissues. Its expression is relatively high in lung,

liver, spleen and lymph nodes, intermediate in thymus, kidney and heart, and very low

in muscle, brain, pancreas and testicular germ cells (Morello et al. 1986). Cis-acting

sequences required for establishing this developmental expression pattern are present

in the H-2Kb gene itself, and distinct regulatory elements controlling the tissue

specificity are restricted to the 2-kb upstream promoter sequence (Drezen et al. 1992).

The mouse H-2Kb promoter has been used by several investigators for generation of

transgenic mice expressing hGH (Morello et al. 1986), c-myc (Morello et al. 1989), c-

fos (Ruther et al. 1988), hIGF-II (Buul-Offers et al. 1995) and mutant forms of the

TNFRp55 (Plitz et al. 1999). In these mice, a tissue specificity similar to the

endogenous H-2Kb mRNA expression was observed. In the H-2Kb-mcIGFBP-4

transgenic mice reported here, transgene expression pattern resembled also the

expression of the endogenous H-2Kb gene. Transgene expression was ubiquitous,

being high in the spleen, thymus, lung and kidney, and low in the others. Unlike H-
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2Kb-hGH and H-2Kb-hIGF-II transgenic mice, serum IGFBP-4 level was not

increased in H-2Kb-mcIGFBP-4 transgenic mice, probably due to the low transgene

expression in the liver. According to the property of the H-2Kb promoter as noted

above, transgene expression under the control of this promoter should be high in the

liver, as reported in the H-2Kb-hGH and H-2Kb-hIGF-II transgenic mice (Morello et

al. 1986; Buul-Offers et al. 1995). This different expression in the liver is unknown.

A possibility might be that the IGFBP-4 was degraded after its translation by protease

in the liver. However, experimental evidence is needed to support this notion.

Comparison of transgene expression in both transgenic lines revealed that the

expression in line 2 was higher than line 1. This result is positively correlated with the

integration number of the transgene construct, suggesting a mechanism of gene

expression regulated by gene dosage. Alternatively, this phenomenon could be due to

a position effect.

5.1.3 Effect on body and organ growth

To investigate potential effects of transgene expression on body and organ growth, a

large panel of allometric measurements was carried out as described in Materials and

Methods. Except for the thymus, overexpression of IGFBP-4 during postnatal life did

not affect body and organ growth. This is in contrast to findings in other IGFBP

transgenic mouse models and probably related to the following facts: (i) Circulating

IGFBP levels were not increased. (ii) Elevated tissue levels of IGFBP-4 were only

observed in the spleen, thymus, lung and kidney of H-2Kb-mcIGFBP-4 transgenic

mice. However, the postnatal weight of spleen, lung and kidney was not changed,

indicating that IGFBP-4 has no major effect on growth of these organs. However,

potential histological alteration of these organs of H-2Kb-mIGFBP-4 transgenic mice

warrants further investigation. (iii) The exclusive effect of IGFBP-4 on growth of

thymus might be the consequence of an interaction with a thymus-specific factor

whose identity, however, remains to be unraveled.

The marked decrease in weight and volume of the thymus in the postnatal life is the

outstanding feature of H-2Kb-mcIGFBP-4 transgenic mice. This is directly in contrast

to the phenotype of H-2Kb-hIGF-II transgenic mice (Buul-Offers et al. 1995). Similar
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to our H-2Kb-mcIGFBP-4 transgenic mice, IGF-II was highly expressed in spleen,

thymus and liver in H-2Kb-hIGF-II transgenic mice, and only the postnatal growth of

thymus was promoted by IGF-II overexpression. The absence of splenomegaly in H-

2Kb-hIGF-II transgenic mice was proposed due to the upregulation of IGFBP-3

expression in the spleen by IGF-II overexpreesion (Smink et al. 1999). Whether the

expression of some growth-promoting genes (such as the other components of the IGF

system) was regulated by IGFBP-4 overexpression in the spleen, lung and kidney of

H-2Kb-mcIGFBP-4 transgenic mice is unknown. Further expression studies need to

be done.

In order to define the histological alteration in the thymus and spleen of H-2Kb-

mcIGFBP-4 transgenic mice, histomorphometric analyses were performed. The

transgenic mice showed a significant decrease in cortex volume compared to the

controls, whereas the volume of the medulla was not altered. This finding is also

directly in contrast to the increased cortex size of H-2Kb-hIGF-II transgenic mice

(Van der Ven et al. 1997). No alteration in the architecture of the spleen of H-2Kb-

mcIGFBP-4 transgenic mice was observed, which is in agreement with the unchanged

weight and volume of this organ.

5.1.4 Effect on the immune system

The cross-talk between the endocrine and immune systems has been suggested by

numerous studies, which have been summarized in many reviews (Blalock 1994;

Madden & Felten 1995; Savino & Dardenne 1995; Besedovsky & del Rey 1996).

Cytokines, the soluble factors secreted by the immune cells, exert biological actions

on the endocrine system (Silva et al. 1998), conversely, a variety of hormones and

peptide growth factors have receptors in the tissues of the immune system and

modulate immune functions (Dorshkind & Horseman 2000). Increasing evidence

indicates that GH and IGFs are not only involved in endocrine modulation of the

development and function of the immune system but also act as cytokines to regulate

local growth and differentiation (Buul-Offers & Kooijman 1998; Jeay et al. 2002).

The components of the IGF system have been detected in lymphoid tissues. IGF-I

mRNA and peptide are expressed by myeloid cells, particularly by macrophages in

relatively large amounts (Arkins et al. 1993) and by peripheral lymphocytes in small



Discussion102

amounts (Arkins et al. 1993; Nyman & Pekonen 1993). Bone marrow stromal cells

and thymic epithelial cells also produce IGF-I (Dorshkind 1990; Abboud et al. 1991;

Timsit et al. 1992). IGF-II is the dominant peptide of the insulin family expressed by

human and rat thymic epithelial cells (Geenen et al. 1993). IGF-IR are present on the

majority of B cells, NK cells and monocytes as well as erythrocytes (Polychronakos et

al. 1983; Catanese et al. 1986; Kozak et al. 1987; Tapson et al. 1988; Stuart et al.

1991; Kooijman et al. 1992). Different T-cell populations express different levels of

IGF-IR (Kooijman et al. 1995b), suggesting that IGFs are associated with T-cell

differentiation. Actually, there is increasing evidence indicating that both IGF-I and

IGF-II affect the immune system. IGF-I augments the in vitro proliferation and

differentiation of thymocytes and pro-B cells (Landreth et al. 1992; Gibson et al.

1993; Kooijman et al. 1995b). Systemic administration of IGF-I significantly

increases the size and cellularity of both primary and secondary lymphoid organs in

rodents (Binz et al. 1990; Beschorner et al. 1991; Murphy et al. 1992; Clark et al.

1993; Jardieu et al. 1994). IGF-I administration can also enhance immune response

and alter lymphocyte survival and regeneration in thymus and spleen of the

dexamethasone-treated rat (Hinton et al. 1995; Hinton et al. 1998). Administration of

IGF-II also stimulates growth of thymus and spleen, but to a lesser extent than IGF-I

(Buul-Offers et al. 1994; Conlon et al. 1995). Overexpression of IGF-I in mice

stimulates T- and B-cell development and antigen specific IgG synthesis (Clark et al.

1993; Robbins et al. 1994). Overexpression of IGF-II in transgenic mice leads to a

selective effect on thymic growth, increasing the thymic cellularity and stimulating

the development of phenotypically normal T-cells but not mature B-cells (Buul-Offers

et al. 1995; Kooijman et al. 1995a; Kooijman et al. 1997).

Some evidence indicates that IGFBPs modulate IGF actions in lymphoid tissues as

they do in the circulation and many other tissues. Overexpression of IGFBP-1 in

transgenic mice leads to inconsistent effects on spleen size (Dai et al. 1994; Murphy

et al. 1995b; Rajkumar et al. 1995), overexpression of IGFBP-2 reduces spleen

weight of male transgenic mice (Hoeflich et al. 1999), whereas overexpression of

IGFBP-3 causes increased spleen size (Murphy et al. 1995b). Preliminary data

suggest that IGFBP-2 knockout mice show no gross phenotype except for a reduced

spleen size (Pintar et al. 1995). Some lymphocytes express IGFBPs. By RT-PCR,

normal human peripheral lympocytes were shown to express mRNA for IGFBP-2 and
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-3, and after mitogenic stimulation they additionally expressed IGFBP-4 and -5

(Grellier et al. 1995). IGFBP-4 to -6 are released by murine bone marrow stromal

cells (Grellier et al. 1995). Sheep thymus cells also produce IGFBPs and IGFBP-3

protease in culture, and the secretion is increased by mitogen stimulation (Tonner et

al. 1995). Human leukemic T and B lymphoblasts secrete IGFBP-2 and -4 (Neely et

al. 1991), and their mRNA expression is affected by autocrine/paracrine IGF-II

(Elmlinger et al. 1998). Thymic epithelial cells express different levels of IGFBP-2 to

-6, with a predominance of IGFBP-4 (Kecha et al. 1999). IGFBP-4 has also been

detected in murine thymic macrophages and in macrophage cell lines (Li et al. 1996).

IGFBP-4 is thought to be a consistent inhibitor of IGF actions. Considering the

predominant expression of the transgenic IGFBP-4 in lymphoid organs, we

investigated the potential effect of IGFBP-4 on the development of immune-related

cells and on mitogenic response of splenocytes.

To investigate the potential effects of transgene expression on the development of

immune-related cells, the fractions of various cell types in the bone marrow, thymus,

spleen, lymph node and blood were determined by flow cytometry using antibodies

against different cell surface markers as described in Materials and Methods. Unlike

in H-2Kb-hIGF-II transgenic mice, no difference was found in the parameters

determined so far between H-2Kb-mcIGFBP-4 transgenic mice and control animals.

This finding suggests that overexpression of IGFBP-4 in the thymus and spleen did

not affect the development of the immune-related cells, although growth of the

thymus was significantly inhibited by the transgene expression.

To ascertain the proliferative capacity of T- and B-cells in H-2Kb-mcIGFBP-4

transgenic mice, splenocytes were stimulated with mitogens Con A, anti-CD3, LPS

and anti-IgM/IL2, respectively. The proliferative activity of the splenocytes was

significantly reduced in transgenic mice after Con A and LPS stimulation, but not

after anti-CD3 and anti-IgM/IL2 stimulus, when compared to the wild-type animals.

Usually, Con A is thought to be a T-cell specific activator, and LPS is specific for B-

cell proliferation. However, LPS can also stimulate the proliferation of macrophage

(Paul 1993). Although the location of expression of the transgenic IGFBP-4 in thymus

and spleen has not been characterized yet, the expression of endogenous MHC-I was

shown to be high in the thymic epithelial cells and macrophages (Roitt 1991), as well
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as in the marginal zone macrophages in the spleen (Kraal 1992). There is evidence

indicated that transgenic IGF-II was highly expressed in the non-lymphocytic cells

(monocyte/macrophage and epithelial cells) in the thymus and spleen of H-2Kb-hIGF-

II transgenic mice (Van der Ven et al. 1997). Transgenic IGFBP-4 might also be

expressed in the non-lymphocytic cells, such as macrophages, rather than in the T-

and B-cells. This might be the reason why the development of T- and B-cells and the

proliferative activity of splenocytes of transgenic animals after anti-CD3 and anti-

IgM/IL2 stimulation were not affected. The reduced proliferative activity of the

transgenic splenocytes after Con A and LPS stimulation might be due to the

expression of IGFBP-4 in the macrophages, although it is unknown whether Con A

can also stimulate the proliferation of other cells besides T-cells. Pre-purification of

the lymphocytes from splenocytes may be necessary for the proliferation assay.

Furthermore, detailed expression studies of IGFBP-4 in the thymus and spleen of H-

2Kb-mcIGFBP-4 transgenic mice need to be done.

5.2 Overexpression of IGFBP-6 in transgenic mice

5.2.1 Transgene integration

As in the IGFBP-4 transgenic model, IGFBP-6 transgenic mice were initially

identified by PCR analysis. Ten H-2Kb-mcIGFBP-6 transgenic founders were

obtained, which all transmitted the transgene into the following generations, whereas

one of the five CMV-mgIGFBP-6 transgenic founders lost the transgene construct in

the F1 generation. This instability of the transgene integration is probably due to its

integration site, whose flanking region in the genome may affect the stability of the

transgene.

Southern blot analysis showed that two bands of about 8 kb and 3.8 kb representing

the endogenous Igfbp6 were detected in both transgenic and wild-type animals,

because the genomic DNA sequence of mouse Igfbp6 gene was used in the transgene

construct. However, there were more copies of the two bands in transgenic mice than

in wild-type mice. Two transgene-specific bands of 2.8 kb and 1.5 kb were present in

all transgenic animals. The different density of these two bands was shown in the four
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transgenic lines, suggesting different number of transgene copies were incorporated in

the genome of the four lines. Additional bands of different length were represented in

the offspring from the four transgenic founders, indicating that the four transgenic

strains are independent with different integration sites.

5.2.2 Transgene expression

Consistent with the H-2Kb-mcIGFBP-4 transgenic mouse model, the transgene was

expressed ubiquitously at the RNA level in the H-2Kb-mcIGFBP-6 transgenic mice.

However, the IGFBP-6 protein level was not increased in serum and any tissue of the

H-2Kb-mcIGFBP-6 transgenic mice from 10 lines, although the same expression

vector (pUCH2XXS) was used in both transgenic models. The reason for this

difference is unknown.

To investigate the specific function of IGFBP-6 in vivo, we established another

IGFBP-6 transgenic mouse model (CMV-mgIGFBP-6), in which murine Igfbp6

genomic DNA was cloned under the transcription control of the CMV promoter.

Transgene expression was very high in pancreas, and relatively low in lung and liver.

In the GIT, elevated levels of IGFBP-6 were detected only in the luminal contents of

duodenum from transgenic mice, but neither in the lumen of other segments of the

GIT nor in tissue extracts from flushed GIT segments. Based on the high transgene

expression in the pancreas, which could be located to the exocrine part by

immunohistochemistry, it can be assumed that the luminal IGFBP-6 originated from

the pancreas and was excreted into the lumen of the duodenum. We cannot exclude

that a proportion of the luminal IGFBP-6 was produced by the intestinal mucosa,

although ligand blot analysis of the tissue extracts from preflushed intestinal samples

did not support this possibility. 

The fact that large amounts of active IGFBP-6 were detected by ligand blot analysis

in the luminal contents of the duodenum indicates that the secreted IGFBP-6 was at

least to some degree resistant to proteolysis, although large amounts of the serine

proteases trypsin and chymotrypsin are produced by pancreatic acinar cells as

zymogens and activated in the intestine (Mayer et al. 1999). In addition, they are also

produced by the small intestine itself (Koshikawa et al. 1998). The relative resistance
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of human IGFBP-6 to proteolysis has been shown to be related to O-glycosylation

which inhibits proteolysis by trypsin and chymotrypsin, thus preserving IGF-binding

capacity (Marinaro et al. 2000b). However, upon longer exposure, large amounts of

trypsin and chymotrypsin were able to cleave also O-glycosylated IGFBP-6 (Marinaro

et al. 2000b). In contrast to human IGFBP-6 which contains five O-glycosylation

sites, mouse IGFBP-6 is O-glycosylated only at one site (Bach 1999). It is unclear

whether the presence of active IGFBP-6 in the duodenum of transgenic mice is due to

glycosylation-mediated protection from proteolysis. The distribution of

immunoreactive IGFBP-6 fragments in different segments of the GIT remains to be

determined.

5.2.3 Glucose homeostasis

Insulin is the central hormone in regulating blood glucose levels. However, other

hormonal and non-hormonal factors are also important in blood glucose homeostasis.

On a molar basis, the IGFs are present in the circulation in a 100-fold excess

compared to insulin. Although the IGFs have only about 5% of the insulin-like

activity of insulin, the vast majority of the insulin-like activity present in mammalian

serum is due to the IGFs rather than insulin itself (Burgi et al. 1966). Several lines of

evidence support the idea that the IGFs do indeed have some role in glucose

homeostasis: (i) increased circulating levels of free IGFs induce hypoglycemia (Zapf

1994); (ii) glucose intolerance was observed in liver-specific Igf1-knockout mice

(Yakar et al. 2001). As high-affinity IGF-binders, IGFBPs may modulate the insulin-

like activity of IGFs in the circulation by alteration the concentration of free IGFs.

To investigate the potential effect of IGFBP-6 overexpression on glucose

homeostasis, measurement of serum glucose, glucagon and insulin levels as well as a

glucose tolerance test were performed. No significant difference was found between

CMV-mgIGFBP-6 transgenic and control mice. This finding suggests that IGFBP-6

overexpression in the exocrine pancreas of transgenic mice has no effect on the

production of insulin and glucagon, as well as on blood glucose homeostasis. In

contrast, impaired glucose tolerance was observed in several transgenic mouse models

overexpressing IGFBP-1 (Gay et al. 1997; Rajkumar et al. 1996) or IGFBP-3 (Silha

et al. 2002). In one of the IGFBP-1 transgenic models an increased size and number
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of pancreatic islets, with more beta cells and less alpha cells, was observed (Dheen et

al. 1996). A common feature of these transgenic mice is a significant increase in the

circulating levels of the corresponding IGFBP, which may increase the proportion of

IGFBP-complexed IGF-I in serum and consequently attenuate the hypoglycemic

effect of free IGF-I (Rajkumar et al. 1996; Silha et al. 2002). In our IGFBP-6

transgenic mice, no obvious alteration in the structure of pancreatic islets nor changes

in the activity of any serum IGFBP were observed, which may explain why glucose

homeostasis was not affected.

5.2.4 Effects on body and organ growth

To investigate potential effects of transgene expression on body and organ growth, a

large panel of allometric measurements was performed as described in Materials and

Methods. Except for parameters of growth of the duodenum (see below) no

significant difference was observed between transgenic mice and controls in any of

the parameters investigated. This is in contrast to findings in other IGFBP transgenic

mouse models and probably related to the facts that (a) circulating IGFBP levels were

not increased and (b) high tissue levels of IGFBP-6 were only observed in the

pancreas of our CMV-mIGFBP-6 transgenic mice. However, pancreas weight was not

altered, suggesting that IGFBP-6 has no major effect on growth and – based on the

findings regarding glucose homeostasis – on endocrine functions of the pancreas. A

potential reason for the latter finding could be the expression pattern of the transgene,

which was almost exclusively in the exocrine pancreas. Nevertheless, detailed

histological and ultrastructural studies of the pancreas of CMV-mIGFBP-6 transgenic

mice still need to be done.

In contrast to pancreas, the weight and length of duodenum of the IGFBP-6 transgenic

mice were significantly reduced, compared with their wild-type littermates. The

reduction in weight of the duodenum was mainly attributable to a significantly smaller

volume and surface area of the tunica mucosa in transgenic vs. control mice as

determined by morphometric analysis. This finding suggests that luminal IGFBP-6 is

a specific inhibitor of mucosal growth. 
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Gastrointestinal growth is regulated by many factors, such as nutritional, hormonal,

pharmacological and luminal factors (Klein & McKenzie 1983). It has been well

documented that IGF-I and IGF-II are very important for growth of the gut under

physiological and pathological conditions (Lund 1998; MacDonald 1999). IGFs and

their receptors are expressed in the intestinal tract of several mammalian species

(Brown et al. 1986; Schober et al. 1990; Termanini et al. 1990; Winesett et al. 1995).

Their expression is high in fetal and newborn tissues and decreases with age. The gut

is one of the most responsive target tissue for the IGFs (Read et al. 1991). Oral or

intraluminal administration of IGF peptides stimulates intestinal growth (rev. in

MacDonald 1999), and IGF-I analogues such as des(1-3)IGF-I and long R3-IGF-I

with reduced or poor binding affinities for the IGFBPs have a higher potency

(Garnaut et al. 2002; Steeb et al. 1994),  suggesting that IGFBPs may be important

regulators of IGF actions in the gut, as they are in other tissues and in the circulation.

IGFs and IGFBPs have been detected in human (Baxter et al. 1984; Corps et al. 1988;

Elmlinger et al. 1999; Van Doorn et al. 1999), rat (Donovan et al. 1991; Philipps et al.

1991), porcine (Simmen et al. 1988; Donovan et al. 1994) and bovine milk (Collier et

al. 1991). Recent data indicate that the components of the IGF system present in milk

can, at least in part, arrive intact in the neonatal intestine (Elmlinger et al. 2002).

Although their functional relevance has not been proven, oral intake of IGFs and

IGFBPs may be important for the maturation of the neonatal gastrointestinal tract

(GIT). 

IGFBP-6 mRNA expression was demonstrated in the neonatal porcine small intestine,

with decreasing levels after weaning (Tang et al. 2002). IGFBP-6 was detected in

human milk at a concentration of 6-45 ng/ml (Van Doorn et al. 1999), which is

relatively low compared to the concentration of IGFBP-2 (about 2 µg/ml) (Elmlinger

et al. 1999). However, protease resistance of O-glycosylated IGFBP-6 might lead to

relatively high levels of active IGFBP-6 in the gut. Thus, IGFBP-6 may take part in

the regulation of gut growth and development. A recent study suggested that the

mitogenic activity of IGF-II in human gastric epithelium was tightly inhibited by two

locally produced IGF-II carriers, IGFBP-2 and -6 (Tremblay et al. 2001), providing

direct evidence that IGFBP-6 can regulate GIT growth via an IGF-dependent

mechanism. This observation and the findings of the present study are important in
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the context of gastrointestinal growth in neonatal mammals, considering that IGFBPs

in milk may at least in part arrive intact in the intestine. Whether IGFBP-6 regulates

the bioavailability of IGF-I or IGF-II in the duodenum of our transgenic mouse model

is not known.

In addition to IGF-dependent mechanisms, IGF-independent pathways of IGFBP-6

have to be taken into consideration to explain our present findings, considering the

facts that (i) IGFBP-6 binds IGF-II with a great preference over IGF-I; (ii) the

circulating levels of IGF-II are very low in the postnatal life of rodents, and (iii) a line

of evidence suggests that IGFBP-6 may also act via an IGF-independent manner.

These facts have been reviewed above in the section 2.4.
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6 SUMMARY

Functional analysis of insulin-like growth factor binding protein -4 and -6 in

transgenic mice

Insulin-like growth factors (IGF-I and IGF-II) are expressed in many cell types and

tissues and act in endocrine, autocrine or paracrine manner to regulate cellular

proliferation, survival and differentiation. IGF actions are initiated upon binding to

the type I IGF receptor (IGF-IR) and are modulated through interactions with a family

of six secreted IGF-binding proteins (IGFBP-1 to -6). Although the six conserved

IGFBPs are structurally related, each of them has specific characteristics and may

have specific functions. Most knowledge about the IGFBPs has been gained from the

numerous in vitro studies, their specific roles in vivo are largely unknown. 

Transgenic mice overexpressing a particular IGFBP allow us to investigate the

specific functions of the corresponding IGFBP in vivo. To this end, IGFBP-4- and

IGFBP-6-overexpressing models were established and analyzed in the present study.

First, an expression vector containing the murine H-2Kb promoter and a human beta-

globin splicing cassette was used to construct the transgenes, to obtain ubiquitous

expression of the mouse Igfbp4 and Igfbp6 cDNA. Two lines of H-2Kb-mcIGFBP-4

and ten lines of H-2Kb-mcIGFBP-6 transgenic mice were generated. The transgene

was ubiquitously expressed at RNA level in both transgenic models, however, at

protein level, transgene expression was only detected in the spleen, thymus, lung and

kidney of both H-2Kb-mcIGFBP-4 transgenic lines, but in no organ of H-2Kb-

mcIGFBP-6 transgenic mice. Phenotypic analyses of the H-2Kb-mcIGFBP-4

transgenic model revealed that overexpression of IGFBP-4 had no significant effect

on the postnatal body and organ growth, except that the weight and volume of thymus

in 8- and 12-week-old transgenic mice were significantly reduced (p < 0.05)

compared to the controls. Histomorphometric analysis demonstrated that the volume

of the thymic cortex was significantly decreased in transgenic mice (p < 0.05),

whereas that of the thymic medulla was not changed. The fractions of various cell

types in the bone marrow, thymus, spleen, lymph node and peripheral blood were

determined by flow cytometry. No significant difference was found between
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transgenic and control groups, suggesting that IGFBP-4 excess in the lymphoid

organs did not affect the development of the lymphatic cells. The proliferative

capacity of the splenocytes of transgenic animals was significantly reduced after Con

A and LPS stimulation (p < 0.05), but not altered after the stimulation by anti-CD3

and anti-IgM/IL2. This is probably due to transgenic IGFBP-4 expression restricted in

the non-lymphatic cells. However, detailed expression of the transgene warrants

further investigation.

In order to realize IGFBP-6-overexpressing mice, a second construct was designed,

namely CMV-mgIGFBP-6, in which the mouse Igfbp6 genomic sequence was cloned

under the control of the cytomegalovirus (CMV) promoter. Four independent lines of

transgenic mice were generated. Transgene expression was high in the exocrine

pancreas and relatively low in the lung and liver. The activities of serum IGFBPs

were not different between transgenic mice and controls. In transgenic mice, high

levels of active IGFBP-6 were detected in the luminal content of the duodenum, but

neither in the luminal contents of other segments of the gastrointestinal tract (GIT),

nor in tissue extracts of all GIT segments. Glucose homeostasis was not altered by

IGFBP-6 expression. Postnatal body and organ growth was not affected in transgenic

mice, except for the absolute and relative weight and length of duodenum which were

significantly reduced in 4-month-old transgenic mice as compared to controls (p <

0.05). This reduction was mainly due to a significantly smaller volume and surface

area of the tunica mucosa as determined by histomorphometric analsis. Our analysis

of the first IGFBP-6 transgenic mouse model provides direct evidence for inhibition

of intestinal growth by luminal IGFBP-6 excess. This finding is important in the

context of neonatal intestinal growth of mammals, considering the fact that milk

contains large amount of IGFBPs which may at least in part arrive intact in the

intestine.
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7 ZUSAMMENFASUNG

Funktionelle Analyse der Insulin-like Growth Factor-Bindungsproteine -4 und -6

in transgenen Mäusen

Die insulinänlichen Wachstumsfaktoren (IGF-I und IGF-II) werden in verschiedenen

Zelltypen und Geweben exprimiert, und regulieren Zellproliferation, -überleben und -

differenzierung durch endokrine, autokrine oder parakrine Mechanismen. Die

Aktivitäten der IGFs werden durch den Typ 1 IGF-Rezeptor (IGF-IR) initiiert und

durch die Interaktionen mit einer Familie von sechs IGF-Bindungsproteinen (IGFBP-

1 bis -6) moduliert. Trotz ihrer strukturellen Ähnlichkeiten zeigt jedes IGFBP

spezifische Eigenschaften und spielt eine spezifische Rolle. Weil die meisten

Kenntnisse über die IGFBPs durch in vitro Studien gewonnen wurden, sind ihre

spezifischen Funktionen in vivo weitgehend unklar.

Transgene Mäuse, in denen ein bestimmtes IGFBP überexprimiert ist, eignen sich zur

funktionellen Analyse des entsprechenden IGFBP in vivo bedienen. Deshalb wurden

IGFBP-4 und IGFBP-6 transgene Mausmodelle erstellt und analysiert.

Um eine ubiquitäre Expression der cDNA von Igfbp4 oder Igfbp6 zu erzielen, wurde

ein Expressionsvektor, der den murinen H-2Kb Promotor und eine humane beta-

globin Spleißkassette enthält, zuerst zum Aufbau transgener Konstrukte verwendet.

Zwei Linien H-2Kb-mcIGFBP-4- und zehn Linien H-2Kb-mcIGFBP-6-transgener

Mäuse wurden erstellt. Ubiquitäre transgene Expression wurde auf RNA-Ebene bei

beiden transgenen Modellen erreicht. Erhöhte IGFBP-4 Proteinmengen konnten nur in

Milz, Thymus, Lunge und Niere H-2Kb-mcIGFBP-4-transgener Tiere nachgewiesen

werden, aber nicht bei den H-2Kb-mcIGFBP-6-transgenen Mäusen. Eine

phänotypische Analyse des H-2Kb-mcIGFBP-4-transgenen Modells zeigte keinen

Effekt der IGFBP-4-Überexpression auf das postnatale Körper- und Organwachstum,

bis auf das Gewicht und Volumen des Thymus, das bei 8- und 12-Wochen alten

transgenen Mäusen deutlich reduziert war (p < 0,05). Histomorphometrische

Untersuchungen zeigten, dass das Volumen des Cortexes, aber nicht der Medulla,

verkleinert ist. Die Fraktionen verschiedener Zelltypen aus dem Knochenmark, dem

Thymus, der Milz, dem Lymphknoten und dem peripheren Blut wurden mittels der
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Flowcytometrie untersucht. Es konnte kein Unterschied zwischen den IGFBP-4-

transgenen und Wildtyp-Tieren gezeigt werden. Dieses Ergebnis gibt keinen Hinweis,

dass die IGFBP-4-Überexpression eine Wirkung auf die Entwicklung der

Lymphozyten hat. Nach der Con A- und LPS-Stimulation wurde die

Proliferationskapazität der Milzzellen deutlich verringert, dagegen zeigte sich kein

Unterschied zwischen den transgenen und Wildtyp-Mäusen bei der

Proliferationskapazität nach der Stimulation mit anti-CD3 und anti-IgM/IL-2. Solche

Phänotypen konnten infolge davon sein, dass das Transgen hauptsätzlich in den

Nicht-Lymphozyten exprimiert wird. Jedoch muss das genaue Expressionsmuster des

Transgens in den Lymphorgane weiter studiert werden.

Um die IGFBP-6-Überexpression in vivo zu erreichen, wurde ein zweites

Transgenkonstrukt (CMV-mgIGFBP-6) kloniert, in dem eine genomische Sequenz

des murinen Igfbp6-Gens unter der Transkriptionskontrolle des Cytomegalovirus

(CMV)-Promotors steht. Vier unabhängige transgene Mauslinien wurden erstellt. Die

Transgenexpression war sehr hoch im exokrinen Pankreas und relativ niedrig in

Lunge und Leber der transgenen Tiere. Die Menge aller IGFBPs im Serum

verändertete sich nicht. Interessanterweise wurde eine erhöhte Proteinmenge des

aktiven IGFBP-6 im Lumeninhalt des transgenen Duodenums nachgewiesen, aber

konnte nicht in den Lumeninhalten anderer Segmente des Magen-Darm-Traktes und

auch nicht in den Gewebextrakten aller Segmente des Magen-Darm-Traktes

nachgewiesen werden. Hinsichtlich der Glukosehomöostase und des postnatalen

Körper- und Organwachstums konnte kein Unterschied zwischen den transgenen und

wildtypen Tieren gezeigt werden. Eine Ausnahme waren das Gewicht und die Länge

(absolute und auch relative Werte) des Duodenums 4-Monate-alten-transgener Mäuse,

die im Vergleich zu Wildtyp-Tieren deutlich reduziert waren (p < 0,05).

Morphometrische Untersuchungen zeigten, dass diese Reduzierung die Folge von

einer Verkleinerung von Volumen und Oberfläche der Duodenummukosa war. Die

Analyse des ersten IGFBP-6-transgenen Mausmodels hat einen direkten Hinweis

gegeben, dass erhohte IGFBP-6-Aktivität im Lumen des Darmes das Darmwachstum

verhindern kann. Diese Entdeckung ist wichtig im Kontext vom Darmwachtum bei

der neonatalen Säugertieren, unter Berücksichtigung der Tatsache, dass die Milch eine

grosse Menge von IGFBPs enthält, welche zumindest teilweise intakt den Darm

erreichen können.
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