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Deutsche Zusammenfassung 
 

Während der Entwicklung des visuellen Systems von Drosophila selektieren 

Photorezeptor (R) Axone ihre Zielzellen Schritt für Schritt. Dabei treffen R Axone mit 

unterschiedlichen Identitäten ganz spezifische Entscheidungen zu bestimmten 

Zeitpunkten während der Entwicklung des visuellen Systems. 

Das kürzlich identifizierte Transmembranprotein Golden Goal (Gogo) wird dynamisch 

in allen R Axonen expremiert und lokalisiert vornehmlich in den Wachstumskegeln 

von auswachsenden Axonen. Gogo wird dort für die Steuerung der wachsenden 

Axone während der Entwicklung des visuellen Systems benötigt. In gogo Mutanten 

weisen R1-R6 Axone Fehlprojektionen während der Bildung der Lamina Cartridges 

auf. Dies läßt darauf schließen, daß Gogo für die Wahl der post-synaptischen 

Partner benötigt wird. Zusätzlich konnte eine sehr spezifische Funktion von Gogo in 

R8 Axonen gezeigt werden. Gogo wirkt in diesen Axonen an zwei unterschiedlichen 

Zeitpunkten während ihrer Entwicklung: Gogo reguliert Axon-Axon Interaktionen und 

Axon-Zielzellen Interaktionen. Der Gogo Mutanten Phenotyp in Larven suggeriert, 

daß Gogo abstoßende Axon-Axon Interaktionen zwischen R8 Axonen vermittelt und 

dadurch angemessene Abstände zwischen den Axonen bewirkt. Während den 

Puppenstadien hat Gogo eine andere Funktion. Hier reguliert es die Erkennung der 

temporären Zwischenschicht und die Aufrechterhaltung dieser axonalen Position bis 

zum zeitlich regulierten Weiterwachsen der Axone. Der Phenotyp bei Verlust der 

Gogo Funktion läßt darauf schließen, daß Axone nicht mehr richtig mit ihrer 

temporären Schicht interagieren können und dass diese Interaktion Voraussetzung 

dafür ist, daß R8 Axone in ihre korrekten Zielsäulen einwachsen können und ihre 

richtige Zielschicht zu innervieren. Die Überexpression von Gogo hingegen führt 

dazu, daß R8 Axone permanent an der eigentlich nur temporären Zwischenschicht 

verankert werden. Die beobachteten Überexpressionsphenotypen und dedektierten 

Proteinlevel in Antikörperfärbungen lassen darauf schließen, daß Gogo nach der 

temporären Zwischenphase aus den Axonen verschwinden muss und dadurch erst 

der letzte Auswachsschritt zur finalen Zielschicht M3 initiert werden kann. 

Einzelzell-Mosaik-Analysen haben in Kombination mit Rettungsexperimenten 

gezeigt, daß Gogo autonom in R Axonen benötigt wird. Eine detailierte Untersuchung 

der funktionellen Domänen läßt darauf schließen, daß Gogo als Rezeptor fungiert, 

der an einen bislang unidentifizierten Liganden über die Tsp1 and GOGO Domäne 

bindet. Bei dem kurzen konservierten zytoplasmatischen Tripeptidmotif, daß allen 

identifizierten Gogo Orthologen gemeinsam ist, könnte es sich um eine vermeintliche 
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Regulationsstellen und/oder Interaktionsstelle handeln, die intrazelluläre 

Signalkaskaden auslöst. Die evolutionäre Konservierung des Proteins in 

verschiedenen Arten läßt auf eine große funktionale Relevanz des Moleküls 

schließen. 
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Abstract 
 

During Drosophila visual system development, photoreceptor (R) axons choose their 

correct paths and targets in a step-wise fashion. R axons with different identities 

make specific pathfinding decisions at different stages during development.  

The novel single transmembrane protein Golden goal (Gogo), which is dynamically 

expressed in all R neurons and localizes predominantly to growth cones, is required 

for photoreceptor axon guidance in the developing visual system. R1-R6 missorting 

defects in gogo mutants suggest that Gogo is required for the choice of postsynaptic 

partners during lamina cartridge formation. In addition, a very specific Gogo function 

was shown for R8 axons, where it acts in two distinct steps of R8 photoreceptor axon 

pathfinding: Gogo regulates axon-axon interactions and axon-target interactions in 

R8 photoreceptor axons. gogo loss-of-function phenotypes in larvae suggest that 

Gogo mediates repulsive axon-axon interaction between R8 axons to maintain their 

proper spacing. During pupal development gogo has a distinct function in R8 

temporary layer recognition and position maintenance until the proper extension 

phase. gogo loss-of-function phenotypes indicate that only the proper interaction with 

the intermediate target layer allows R8 axons to enter their correct target columns 

and target the correct target layer within the medulla. Overexpression of Gogo in R 

axons permanently anchors R8s to the temporary layer in the medulla. The observed 

gain-of function phenotype and protein levels detected by antibody stainings suggest 

that Gogo has to be absent within the axon after the intermediate targeting phase to 

allow the initiation of the final targeting step, the extension to the M3 layer.  

Single cell mosaic analyses, in combination with rescue experiments have 

demonstrated the autonomous requirement of Gogo within R axons in axon-axon and 

axon-target interaction. Detailed structure-function experiments argue for a Gogo 

function as a receptor that binds an unidentified ligand through its conserved 

extracellular Tsp1 and GOGO domains. A short conserved cytoplasmic tripeptide 

motif, which is shared by all Gogo orthologues, may serve as a putative regulatory 

site and/or protein interaction domain triggering intracellular signaling events. The 

evolutionary conservation across different species implies a high functional relevance 

of the molecule and probably conserved role in cell-cell communication.  
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Abbreviations 
 
APF Hours after puparium formation 

ato atonal 

att attachment 

BMP bone morphogenetic protein 

CAM cell adhesion molecule 

caps capricious 

ccdB control of cell death 

cMARCM complementary MARCM 

CNS central nervous system 

CUB complement subcomponents Clr/Cls, Uegf, Bmpl 

Df deficiency 

Dscam Down Syndrome cell adhesion molecule 

ECM extracellular matrix 

EGF epidermal growth factor 

EGFR epidermal growth factor receptor 

EM  electron microscopy 

EMS Ethylmethansulfonat 

En Engrailed 

Eph Ephrin receptor 

ey eyeless 

FGF fibroblast growth factor 

FL  full-length 

FLP Flipase 

fmi Flamingo 

FRT Flipase recognition target 

Gal genes induced by galactose 

GFP Green fluorescent protein 

GMR Glass multiple reporter 

GOF gain-of-function 

gogo golden goal 

hh hedgehog 

Ig Immunoglobulin 

L1-L4 lamina monopolar neurons 1-4 

LAR receptor tyrosine phosphatase LAR 

LB Luria-Bertani 

LOF loss-of-function 

LPC lamina precursor cell 
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M1-M10 medulla layers 1-10 

MARCM mosaic analyses with a repressible cell marker 

mKO monomeric Kusabira Orange 

mRNA messenger RNA 

N-Cad N-Cadherin 

NGS normal goat serum 

nls nuclear localization signal 

OE over expression 

OPC Outer proliferation center 

PAGE polyacrylamid gel electrophoresis 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PTP receptor tyrosine phosphatase PTP 

R photoreceptor 

R1-R8 Photoreceptor R1-R8 

RGC retinal ganglion cell 

Rh rhodopsin 

RPTK receptor protein tyrosine kinase 

RPTP receptor protein tyrosine phosphatase 

RT room temperature 

S2 Schneider 2 cell 

Sens senseless 

SNP Single nucleotide polymorphism 

spi Spitz 

TEM transmission electron microscopy 

Tm transmedulla neuron 

Tmtsp transmembrane molecule with thrombospondin module 

TmY transmedulla Y neuron 

Trk tropomyosin receptor kinase 

TSP Thrombospondin 

UAS  upstream activating sequence 

unc uncoordinated 

w White 

Wnt Wg and Int 

WT wild type 
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1 Introduction 

1.1 Molecular mechanism of axon guidance 

 

Only the precise formation of appropriate neuronal circuits during development 

enables sensory perception and behavior in invertebrates and vertebrates. During 

development differentiating neurons extend their axons with astounding precision, 

sometimes over long distances, to approach their target field. Within this region 

axons then choose their specific targets among numerous neurons and assemble 

stable synapses. How are the axons of neurons guided towards their final destination 

and how do they recognize their cellular targets and finally form stable synapses? 

 

In the developing nervous system, a precise neuronal network is formed in a step-

wise fashion through a series of recognition processes. While axons grow towards 

their targets, they undergo dynamic changes resulting in various decisions: They 

turn, selectively fasciculate, halt or extend adjusted with the development of the 

target field. This complex process of axon guidance is controlled by extracellular 

guidance cues provided by the surrounding environment over short or long range 

(Figure 1-1). 

Within the growth cone, a highly sensitive and motile structure at the tip of extending 

axons, guidance receptors detect and integrate multiple specific guidance cues along 

the pathway, which can either be attractive or repulsive, and translate them into 

motility. Extracellular cues can emanate from other axons that run in the vicinity 

involving non diffusible cues like cell surface and extracellular matrix (ECM) proteins 

to assemble the input connections with correct spacing and location. On the other 

hand axon guidance is also mediated over long range, for example by the target cells 

secreting diffusible chemoattractants or chemorepellents. Both, axon-axon 

interactions and axon-target interactions are important for reaching the target and for 

the selection of specific synaptic partners (Dickson, 2002). 
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Figure 1-1  Axon guidance mechanism 
Different mechanisms contribute to guide growth cones: 
Diffusible long-range cues repel (red) or attract (green) axons over a distance (Chemorepulsion or 
Chemoattraction). In addition, non-diffusible or local cues can be provided to growth cones over short-
range. Provided by other axons, repulsive cues (red) result in axon-axon repulsion, whereas attractive 
cues (green) lead to selective fasciculation (adapted from Tessier-Lavigne and Goodman, 1996). 

In recent years several classes of guidance cues and their respective receptors have 

been identified. Interestingly, they were found to be conserved across different 

species, showing the evolutionary conservation of axon guidance mechanism.  

The first evolutionary conserved diffusible guidance cue identified was netrin 

(Hedgecock et al., 1990; Mitchell et al., 1996; Serafini et al., 1994). Netrin functions 

as both chemoattractant and chemorepellent over long range. Attractive and 

repulsive effects of netrin are mediated by DCC/UNC-40/Frazzeled receptors, 

whereas UNC-5 receptors act exclusively repulsive (Chan et al., 1996; Keino-Masu 

et al., 1996; Kolodziej et al., 1996; Leung-Hagesteijn et al., 1992).  

Semaphorins form another important family of axon guidance cues. Grouped into 

eight different classes, this large family encodes both cell-surface and secreted 

proteins that act either repulsive or attractive upon receptor binding. Semaphorins 

signal through multimeric receptor complexes, which predominantly include plexin 

receptors for semaphorin binding and signaling inside the cell. One exception are 

class 3 semaphorins which require the semaphorin-binding co-receptor neuropilin 

(Kruger et al., 2005). Studies in flies and mice suggest that semaphorins mainly act 

over short-range in order to repulse axons from inappropriate targets (Dickson, 2002; 

Raper, 2000).  

The identification of the repellent Slit, a large secreted protein, and its receptor 

Roundabout (Robo) led to the well-understood models of commissural axon 
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pathfinding in Drosophila and formation of the optic chiasm in vertebrates (Dickson, 

2002). 

In addition, a variety of receptor protein tyrosine kinases (RPTKs), as FGF, Trk, 

Derailed/Ryk or Eph receptors and receptor protein tyrosine phosphatases (RPTPs) 

were found to regulate axon growth and guidance (Barbacid, 1995; Callahan et al., 

1995; Desai et al., 1996; McFarlane et al., 1995; Tessier-Lavigne, 1995).  

Another important class of axon guidance molecules is formed by cell adhesion 

molecules (CAMs), which can be divided in the immunoglobulin (Ig) and cadherin 

subfamilies (Rutishauser, 1993). Cadherins form a large family of transmembrane 

proteins (Yagi and Takeichi, 2000) mediating strong homophilic interactions (Miyatani 

et al., 1989). In addition to various roles in nervous system development, they have 

been proposed to be involved in the regulation of target specificity and synapse 

formation (Fannon and Colman, 1996).  

Recently, several studies have shown that classic morphogens and their molecular 

gradients can also function as guidance cues, including three classical morphogen 

families, Wnts, Hedgehogs (Hhs) and BMPs (Schnorrer and Dickson, 2004).  

As the examples above show, a variety of extracellular cues and their receptors that 

guide axons to their targets have been identified (Dickson 2002, Tessier-Lavigne and 

Goodman, 1996). Nevertheless our understanding of this complex process is still 

fragmentary. Especially, the high level of specificity underlying neuronal connectivity 

can still not be explained with the number of known molecules. Therefore it seems 

likely that additional guidance cues and receptors remain to be discovered in order to 

further reveal the mechanism of specific axon guidance decisions. 

 

One hallmark of the cellular environment in the nervous system is its tremendous 

complexity. It is thus particularly challenging to understand the molecular 

mechanisms that regulate the formation of precise patterns of neuronal connectivity. 

However, the extraordinary genetic tools available in the model organism Drosophila 

melanogaster allow to analyze single cells within the nervous system and therefore to 

systematically dissect the complex molecular guidance mechanism. In this study the 

well described fly visual system was used as a model system. 
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1.2 The visual system of the fly 

 

It is now 32 years, since the research on the development of the Drosophila 

compound eye began (Ready et al., 1976). Since then the fly visual system has been 

studied intensively, revealing its beautiful structure and development. The fly visual 

system comprises the compound eyes (retina) and the optic lobes, the visual 

processing centers of the brain. The optic lobes constitute about half of the fly’s brain 

and are composed of four neuropils: the lamina, the medulla, the lobula and the 

lobula plate. The compound eye consists of an array of 800 simple eyes or 

ommatidia, each composed of eight photoreceptor (R) cell types, R1-R8. R cells can 

be classified in two subclasses: six outer cells R1-R6 and two inner cells, R7 and R8. 

Functionally, the outer R cells are responsible for spatial vision, whereas the inner 

cells, which lie above of each other, function in color vision. Unlike in vertebrates, the 

retinal axons of the fly directly project into the visual processing centers of the brain. 

Their precise and complex pattern of neuronal connections has been described at 

the level of individual neurons (Meinertzhagen and Hanson, 1993). 

 

To reach their proper targets in the optic lobe, photoreceptor axons have to make 

multiple pathfinding decisions along the way. Based on their spectral sensitivities, R 

axons target different neuropils within the optic lobe (Figure 1-2A). R1-R6s terminate 

within the first optic ganglion, the lamina, whereas R7 and R8 axons make layer-

specific connections in the second optic ganglion, the medulla (Clandinin and 

Zipursky, 2002). 

In addition to the layer-specific targeting, R axons form a precise topographic map. 

Both lamina and medulla are composed of columnar units which strictly match the 

number of ommatidia in the eye. Columnar units targeted by R cells are organized in 

a strict retinotopic fashion, resulting in an exact map of the visual space reiterated in 

the optic lobe. R8 and R7 of the same ommatidium, which represent one point in 

space, project into the same column and each columnar axon maintains a constant 

distance to neighboring columns (Bazigou et al., 2007; Shinza-Kameda et al., 2006). 

Therefore, each columnar unit in the medulla represents a single point in space. 
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Figure 1-2  Schematic representation of the Drosophila visual system 
(A) Adult visual system. R cells in the retina send axons into the brain. Each ommatidium contains 8 
photoreceptor cell types. R1-R6 axons (green) terminate in the lamina, where they form lamina 
cartridges. R7 (black) and R8 (blue) axons extend through the optic chiasm and terminate in two distinct 
layers in the medulla neuropil, the M6 and M3 layer respectively. Each bundle of R axons is associated 
with five lamina monopolar axons L1-L5 (orange), which also terminate in different layers within the 
medulla. Lamina and medulla are composed of columnar units which strictly match the number of 
ommatidia in the eye. Columnar units targeted by R cells are organized in a strict retinotopic fashion, 
resulting in a precise map of the visual space reiterated in the optic lobe. (B) The lamina cartridge is 
composed of six photoreceptor cells R1-R6 (green) and their synaptic targets L1, L2 and L3 (orange). 
(C) During lamina cartridge formation, R1-R6 (green) from the same ommatidium defasciculate within 
the lamina and extend laterally to different cartridges (gray ovals). R1-R6s from different ommatidia but 
seeing the same point in space converge onto the same cartridge.  

In contrast, the connection pattern of R1-R6 has to be more complex in order to 

represent single points in space. Due to the curvature of the eye the six outer R cells 

from the same ommatidium ‘see’ different points in space. According to the principle 

of superposition, R1-R6 cells deriving from different ommatidia but ‘seeing’ the same 

point in space converge onto a single unit within the lamina, the lamina cartridge 

(Figure 1-2B, C). During lamina cartridge formation R1-R6 cells then form tetradic 

synapses with the lamina monopolar neurons L1, L2, L3 (Fischbach and Dittrich, 

1989; Meinertzhagen and O'Neil, 1991).  

 

As compared to the lamina, the medulla contains more neuronal types and is 

structurally more complex (Figure 1-3). The mature medulla is subdivided into ten 

layers (M1-M10) innervated by 50-60 columnar axons (Fischbach and Dittrich, 1989). 

R8 and R7 axons make layer-specific connections in the M3 and M6 layer, 
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respectively. In contrast to R1-R6, the postsynaptic targets of R7 and R8 have not 

been identified yet. 

Lamina monopolar neurons (L1-L5) from a single lamina column project via the optic 

chiasm into specific layers of a single medulla column (Fischbach and Dittrich, 1989). 

The columnar organization is retained resulting in a one to one correspondence 

between lamina and medulla columns (Figure 1-2A). As a consequence, each 

medulla column receives input directly from R7 and R8 and indirectly from R1-R6 via 

lamina neurons L1-L3. Beside photoreceptor and lamina neurons, a set of higher 

order neurons can be found, most importantly transmedulla cells (Tm) and 

transmedulla Y cells (TmY), which also connect to the lobula and lobula plate (Figure 

1-3). 

 

Figure 1-3  Medulla layering 
Composite scheme of the left compound eye and optic lobe with camera lucida drawings of Golgi 
impregnated neurons to illustrate the layering of the medulla. Ten medulla layers are innervated by a 
large set of columnar axons, each of which showing layer-specific targeting and/or arborizations. Beside 
retinal and lamina neurons the ten layers of the medulla are innervated by a set of higher order neurons, 
transmedulla cells (Tm) and transmedulla Y cells (TmY), which also connect to the lobula and lobula 
plate (adapted from Fischbach and Dittrich, 1989) 
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1.3 Visual system development 

 

The regular, columnar and layered organization of the visual system in adult flies is 

the result of a complex developmental program. The development of the Drosophila 

eye takes place in an epithelial bilayer called the eye imaginal disc, or eye disc. 

Throughout the first and second instar larval stage the eye disc remains unpatterned 

and grows by cell division. However, in the third or final larval instar, at around 40h 

before pupation, pattern formation begins (Meinertzhagen and Hanson, 1993). 

 

Sequential photoreceptor differentiation and outgrowth 
 

The differentiation of the photoreceptor cells begins at the posterior of the eye disc 

and proceeds from posterior to anterior following the morphogenetic furrow (Figure 

1-4). Axon outgrowth from the retina occurs sequentially following the wave of 

cellular differentiation in the eye disc. The first pioneer axons grow out from R8s, 

which differentiate first and define the trajectories for the following axons, R1-R6 and 

finally R7, which form fascicles with R8s from the same ommatidium. R axon 

fascicles first grow towards the base of the eye disc and then turn posterior into the 

optic stalk, a transient tube-like structure connecting the eye disc with the developing 

optic lobe. After exiting the stalk they separate again, but they strictly retain their 

positions according to the retina (Figure 1-4).  

R1-R6 axons innervate the first optic ganglion, the lamina, where they select their 

targets in two temporally distinct steps. Initially, lamina glia cells function as 

intermediate target cells during larval development by providing a stop signal for 

arriving R1-R6 axons (Poeck et al., 2001).  

R8s continue growing into the medulla, where they form evenly spaced topographic 

arrays, maintaining ‘inverted-Y-shaped’ growth cones (Senti et al., 2003). As R7s are 

the last cells to be differentiated and to send axons within each ommatidium, the 

medulla is mainly innervated by R8 axons during larval development. 
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Figure 1-4  Visual system development during 3rd instar larval stage 
R cells differentiate within the eye disc following the morphogenetic furrow from posterior (p) to anterior 
(a). R8 (blue) differentiates first, followed by R1-R6 (green) and finally R7 (black). R1-R6 axons stop 
between rows of lamina glia cells (grey), their intermediate targets, whereas R8 and R7 continue 
projecting into the medulla. Successive waves of ingrowing photoreceptors sequentially induce (arrow) 
and recruit lamina neurons (orange) (adapted from Moses, 2002). 

 

Optic lobe development 
 

While the development of the retina is autonomous (Halder et al., 1995), the 

development of the optic lobe strongly depends on retinal innervation (Meyerowitz 

and Kankel, 1978; Steller et al., 1987). 

The lamina neurons L1-L5 arise from neuroblasts in the outer proliferation center 

(OPC) (Figure 1-4) (White and Kankel, 1978). Their precursors, the lamina precursor 

cells (LPCs) undergo two cell divisions before they differentiate to neurons. After the 

first division, LPCs arrest in the G1 phase. The arrival of R axons then triggers the 

second division, thereby inducing the neurogenesis of lamina neurons. Thus, the 

differentiation of the lamina neurons is directly coupled to the arrival of R axons 

within the lamina. 

As R cell differentiation progresses in a posterior to anterior direction across the eye 

disc, each row of R cells sends their axons in this order (Figure 1-4). Therefore, R 

cells trigger the final cell division and terminal differentiation of the LPCs sequentially 
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in a posterior to anterior direction (Selleck et al., 1992). The molecular basis of this 

induction is the release of two factors, Hedgehog (Hh) and the EGF family member 

Spitz (Spi), by the photoreceptor axons (Huang and Kunes, 1996; Huang et al., 

1998). The concerted induction of lamina neurons allows to adjust the postsynaptic 

lamina neuron population to the number of ingrowing photoreceptor axons. After the 

induction by the photoreceptor axons, lamina monopolar neurons associate with 

photoreceptor axons to form lamina columns.  

In addition, the photoreceptor axons induce the outgrowth of optic lobe cortical axons 

thereby establishing an axon scaffold that guides glial cell migration (Dearborn and 

Kunes, 2004). This mechanism coordinates the arrival of photoreceptor axons in the 

brain with the distribution of glia cells, which are required for axon guidance and 

neuronal survival. 

Consequently, the arriving photoreceptor axons orchestrate the development of the 

optic lobe. The sequential posterior (older) to anterior (younger) axonal innervations 

and the concerted recruitment of lamina neurons and glia cells not only adjusts the 

number of target cells, but also helps establishing the retinotopic columnar 

organization. 

In contrast to the differentiation of lamina neurons that is completely dependent on 

retinal innervation, the differentiation of medulla and lobula neurons seems to be 

largely independent of R axons. Medulla and lobula complex show differentiated 

neurons and retain their columnar organization even in completely eyeless flies. 

Nevertheless, neuronal survival is impaired, as a massive neuronal degeneration has 

been described in the absence of photoreceptor axons (Fischbach, 1983; Fischbach 

and Technau, 1984).  

 

Pupal development 
 

During pupal development, which spans approximately 100h, a massive 

reorganization takes place. Disc eversion transforms the eye disc into the pupal eye 

(Meinertzhagen and Hanson, 1993). The forming optic lobes move and center the 

lamina directly underneath the compound eye. In addition, the medulla neuropil 

rotates through 90° from its original position, forming the optic chiasm 

(Meinertzhagen and Hanson, 1993).  

But most important, during pupal development the final target layer selection of R1-

R8 axons is established followed by synaptogenesis. The stepwise process follows a 

highly coordinated developmental timetable (Figure 1-5A).  
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Figure 1-5  Developmental timetable 
(A) Developmental timetable of the fly visual system. Several key events in the development and 
various organizational features in visual system development (arrows) are indicated. Pupal stages span 
approximately 100 h at 25°C (1h ≈ 1%). MF, morphogenetic furrow in the eye disc (adapted from Ting 
and Lee, 2007) (B) A schematic illustrating the order of R-cell and L1-L5 afferents innervating the 
medulla during early pupal development. The developmental sequences in the eye disc, lamina, and 
medulla are indicated by arrows. R8 (blue), R7 (light grey), and L1-L5 axons (orange) sequentially 
innervate the medulla to reach their temporary layers (indicated with dashed lines). LN, L1-L5 neurons; 
MN, medulla neurons; MG, medulla glia (adapted from Ting et al., 2005). 

Initially during larval development, R1-R6 growth cones deriving from the same 

ommatidia have extended to the lamina as a single fascicle and stopped between 

rows of lamina glia cells, their intermediate targets (Figure 1-4). After terminating 

together and forming intermediate connections they still maintain a tight cluster. 

During pupal development at around 20APF (hours After Puparium Formation) R1-

R6 growth cones start to extend out of this cluster and project laterally to 6 different 

lamina cartridges, in which they form stable synapses with their target neurons, the 

lamina neurons L1-L3 (Figure 1-2C and orange arrow in Figure 1-5A) 

(Meinertzhagen and Hanson, 1993). 

R7 and R8 axons have extended axons into the developing medulla during larval 

development. This process of axon extension is still not completed during early pupal 

stages (blue arrow in Figure 1-5A). The following medulla layer targeting of R7 and 

R8 involves two selection steps (Ting et al., 2005) (green arrows in Figure 1-5A and 
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Figure 1-6). During early pupal development the leading R8s temporarily stop at the 

superficial medulla, later also referred to as M1 layer (R8-temporary layer) (Figure 

1-5B). Following R7 growth cones overtake R8s and temporarily terminate at an 

immediate adjacent layer, the R7-temporary layer (Figure 1-5B). The segregation of 

R growth cones into two distinct medulla layers is observed at around 17APF (Figure 

1-5B, Figure 1-6). Coordinated with the retinal innervation, the first lamina neurons 

arrive approximately 2-4 hours after the arrival of R7 growth cones and terminate into 

distinct layers between R8 and R7 growth cones (Figure 1-5B).  

During early pupal development, a gradient of R7, R8, and L1-L5 growth cones in the 

medulla neuropil forms along the anterior-posterior axis between newly arriving 

axons projecting into the young anterior edge of the medulla and older growth cones 

in the old posterior edge that has already expanded (Ting et al., 2005) (Figure 1-5B). 

Thus, the resulting spatial gradient of thickness of the medulla during early pupal 

development reflects the sequential ingrow of R cells and induction of lamina 

neurons from posterior (oldest) to anterior (youngest). 

 

 

 

Figure 1-6  Target layer selection of R7 and R8 axons 
The layer specific targeting of R7 and R8 axons takes place in two distinct stages. During the first 
selection stage, R8s (blue) extend axons to a superficial layer in the medulla (R8 intermediate target 
layer). Following R7 axons (grey) terminate in a deeper layer of the developing medulla neuropil (R7 
intermediate target layer).The distance of the two layers increases, whereas the relative position of the 
axons is maintained (see 35APF). During the second selection stage starting from 50 APF R7 and R8 
start extending to their final target layers M6 and M3. During this process R8 send out thin filopodia 
while a bulb-like structure is maintained around the M1 layer. At 55 APF when thickened R8 terminals 
can first be observed at the M3 layer, bulb-like structures are still present at the M1 layer. In adult flies 
this structures have almost completely vanished and mature R8 terminals have formed at the M3 layer. 
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The temporary layers of R8 and R7 are then more and more pushed apart due to 

ingrowing neurons during the first 40 hours of pupal development (Figure 1-6). 

Although the distance between R8 and R7 and the number of observable medulla 

layers increases, the relative position of R7 to R8 is maintained. In the second 

selection step starting from 50APF, R7 and R8 axons simultaneously extend to their 

final target layers, M6 and M3 respectively.  
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1.4 Known regulators of photoreceptor axon guidance 

 
The developing adult visual system represents an excellent model system to 

investigate fundamental strategies involved in axon guidance, including topographic 

map formation, target selection, and selective fasciculation and defasciculation. How 

are these complex steps of axonal pathfinding decisions determined during visual 

system development? 

In some higher order systems, as known for example for vertebrates, the neurons do 

require electric activity in order to shape the connections, especially in the final stage 

of establishing connectivity. However, in the Drosophila visual system it was shown 

that the establishment of R1-R6 connections does not depend on synaptic vesicle 

release or electric activity (Hiesinger et al., 2006). This suggests that the choice of 

synaptic partners of R axons and synaptogenesis are exclusively genetically 

programmed. Therefore, it is primarily the genes that determine axon wiring in the 

Drosophila visual system. 

 

Several studies on the Drosophila visual system attempted to identify the involved 

regulators. Especially cell surface molecules allowing specific R axon guidance 

decisions have been of broad interest. Recent genetic studies have revealed roles for 

several receptors and cell adhesion molecules that control R axonal array 

establishment and target layer selection, such as the two Cadherin superfamily 

members, N-Cadherin (N-Cad) and Flamingo (Fmi), two receptor tyrosine 

phosphatases, LAR and PTP69D, and a cell adhesion molecule, Capricious (Caps) 

(Clandinin et al., 2001; Garrity et al., 1999; Lee et al., 2001; Lee et al., 2003; Maurel-

Zaffran et al., 2001; Newsome et al., 2000; Senti et al., 2003; Shinza-Kameda et al., 

2006).  

During lamina cartridge formation, the three cell surface molecules N-Cad, LAR and 

Fmi where shown to play important roles in different aspects of R1-R6 target 

selection. R1-R6 axons mutant for either gene, N-cad or LAR, fail to extend from their 

ommatidial bundle and do not reach their target lamina cartridge during mid-pupal 

development (Clandinin et al., 2001; Lee et al., 2001), suggesting their involvement 

in the same process. Furthermore, it was shown in mosaic animals that wild type R 

axons fail to extend towards N-cad mutant lamina neurons (Prakash et al., 2005). 

The requirement of N-Cad in both pre- and post-synaptic neurons suggests that the 

homophilic interaction of N-Cads allows this targeting process. Nevertheless N-cad 
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does not guide the axons directly. However, the results clearly show its function in 

contact formation and contact stabilization between R1-R6 and their targets.  

Flamingo, on the other hand, is required for R cells to reach the appropriate target 

cartridge. In fmi mutants, R1-R6 neurons manage to extend out of the cluster but 

select spatially inappropriate targets in the lamina. This missorting leads to the 

formation of lamina cartridges innervated by various numbers of R axons, ranging 

from 3 to more than 15 axonal termini per cartridge (Lee et al., 2003). It was shown 

that Flamingo acts in this context as a short-range homophilic signal between specific 

R cell growth cones to influence their choice of postsynaptic partners. Interestingly, 

individual growth cones seem to be sensitive to differences in Flamingo activity 

through opposing interactions between neighboring cells (Chen and Clandinin, 2008), 

suggesting that the levels of this Cadherins have to be highly regulated and 

balanced. 

 

In addition to the targeting of R1-R6 in the lamina, N-cad, LAR, PTP69D and fmi also 

play crucial roles in the target layer selection of R7 and R8 axons. In N-cad, LAR and 

PTP69D mutants, R7 axons undershoot the correct target layer M6 and terminate 

prematurely at layer M3, which is normally targeted by R8s (Clandinin et al., 2001; 

Lee et al., 2001; Maurel-Zaffran et al., 2001; Newsome et al., 2000). In fmi mutants, 

R8 axon targeting is disrupted and R8s are frequently mistargeted to superficial 

levels of the medulla. Since fmi mutants show abnormal spacing between the 

adjacent axonal tracts in larvae, Fmi has also been implicated in the regulation of 

axon-axon interactions (Lee et al., 2003; Senti et al., 2003).  

From these studies, a Cadherin-based homophilic cell adhesion, possibly controlled 

by the two receptor tyrosine phosphatises, LAR and PTP69D, has emerged as the 

key regulating mechanism of axon-axon and axon-target interaction in the Drosophila 

visual system. However, since both N-Cad and Fmi are expressed on all types of R 

axons and in multiple target layers in the optic lobe, the homophilic interaction of 

these two Cadherins alone cannot account for the distinct target layer selection of R7 

and R8 axons. One of the two phosphatases, LAR, is also broadly expressed in all R 

axons and multiple target layers. In contrast, the homophilic adhesion molecule 

Caps, is specifically expressed on R8 axons only. Loss of caps function results in R8 

target layer selection defects in adult flies and moreover, ectopic expression of caps 

in R7 redirects R7 to the R8 target layer (Shinza-Kameda et al., 2006). These 

findings strongly support the idea that the combination of homophilic adhesive 

interactions with additional combinatorial codes may be the key mechanism to create 

the specificity in layer targeting. A similar mechanism was suggested in vertebrates 

20 



                                                                                                                     Introduction 

 

where the homophilic adhesion molecules, encoded by the two sidekicks genes, 

control layer specific targeting of retinal neurons (Yamagata et al., 2002). In addition, 

specificity could be the result of temporal modulations of Cadherin interactions by so 

far unknown mechanism.  

However, for the visual system of Drosophila, the set of known molecules is not 

enough to shape a complete picture of the highly-selective process of R axon 

connectivity, suggesting that further guidance cues remain to be discovered. 
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1.5 Screen for novel regulators of R axon guidance 

 

To search for novel players in axon pathfinding, classical forward genetic screens 

have been performed in the past using the Drosophila visual system (Martin et al., 

1995). The identification of novel axon guidance molecules, however, involved two 

major problems in previous screens. First, several genes involved in axon guidance 

have important additional functions during early development, as for example 

morphogens (Zou and Lyuksyutova, 2007). Mutations in these genes might result in 

early lethality and could therefore be missed in screens. Second, mutations in key 

axon guidance molecules may not produce informative phenotypes in homozygous 

mutants, as the disruption of the development of target neurons often causes severe 

secondary defects which can not be properly dissected. These problems can be 

overcome with the generation of mosaic animals through site-specific mitotic 

recombination using the FLP/FRT system deriving from yeast (Golic, 1991; Xu and 

Rubin, 1993). FRT (Flipase Recognition Target) sites which are recognized by the 

Flipase (FLP) have been introduced on the fly chromosome to induce recombination 

between homologous chromosomes. In order to induce mosaics for a particular 

chromosome arm FRT sequences were inserted into the genome near the 

centromere on each major chromosome arm (Xu and Rubin, 1993). 

A large scale saturated genetic screen was performed in the lab of Barry Dickson 

employing the eyFLP system, in which the Flipase is expressed under the eye-

specific ey (eyeless) promoter fragment. eyFLP induced mitotic recombination 

generates mosaic flies in which virtually the entire retina, but no other tissue, is 

homozygous for a newly induced mutation (Newsome et al., 2000). Each of the four 

major autosomal arms was screen for EMS-induced mutations. About 40 different 

genetic loci that affect the projection pattern of R axons were identified in a screen of 

32.000 mosaic lines. So far, 36 of the affected genes were identified (Berger et al., 

2008). From the screen one complementation group consisting of three alleles was 

recovered ([D869], [D1600] and [H1675]). Using the mapping method utilizing single-

nucleotide-polymorphisms (SNP) as chromosomal landmarks (Berger et al., 2001), 

single nucleotide mutations were identified for all three alleles within a single gene 

(Figure 1-7A), which we named golden goal (gogo). 

Gogo encodes a novel single transmembrane protein with two conserved 

extracellular domains, a TSP (Thrombospondin) domain and a CUB (complement 

subcomponents Clr/Cls, Uegf, Bmpl) domain (Figure 1-7B). Both domains are 
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implicated in directing the migration of growing cells or growth cones in the 

developing nervous system: e.g. Unc-5 and class 5 Semaphorins contain Tsp1 

domains, while A5 and Neuropilin have CUB domains (Adams and Tucker, 2000; 

Bork and Beckmann, 1993; He and Tessier-Lavigne, 1997; Takagi et al., 1991). As 

both domains are wide-spread protein-protein interaction domains, Gogo protein 

structure strongly indicates a function as a cell adhesion molecule or axon guidance 

receptor, making Gogo a promising candidate for further investigation. 

 

 

 
Figure 1-7  gogo mutant alleles and protein structure 
(A) The entire third chromosome is indicated at the top. The gogo gene is located at the cytology 77B. 
Yellow boxes depict the coding region, grey boxes show untranslated regions. Location of the mutation 
in the respective mutant allele D869, D1600 or H1675 is indicated with arrows. Below: detailed 
explanation of the mutations. The locations of single nucleotide changes are indicated by asterisks. 
Changed nucleotides are in red letters. The amino acid changes caused by the mutations are written in 
the red capital letters. D869 and D1600 carry a mutation in the splice donor site resulting in premature 
stops. The mutation of H1675 introduces a premature stop. 
(B) Gogo protein structure and locations of the mutations in the three different alleles are indicated 
(arrows). The colored boxes and ovals indicate: yellow, signal peptide; purple, Tsp1 domain; red, CUB 
domain; black, transmembrane domain. An uncharacterized N-terminal, but conserved region is marked 
by dashed lines. 
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1.6 The thesis project 

 

The regular, columnar and layered organisation of the visual system is well suited to 

investigate the genetic determination in nervous system wiring. Although several 

important axon guidance molecules have been identified in the visual system of 

Drosophila, the specificity in retinal axon guidance can still not be sufficiently 

explained. 

 

Mutants for Gogo, a novel transmembrane protein, show a strong defect in forming 

retinal connections suggesting a major role in axon guidance. Due to its structure, 

Gogo is a strong candidate for functioning as a cell adhesion molecule or axon 

guidance receptor. This project aims at performing a functional and molecular 

analysis of Gogo, which will reveal new insights in the developmental mechanisms 

that underlie the establishment of the neuronal connectivity in the visual system in 

Drosophila. 

 

The main aim of this work is to clarify Gogo's function in photoreceptors. A possible 

function as a novel axon guidance receptor or merely homophilic cell adhesion can 

be distinguished by a set of possible mosaic experiments. Especially, the 

extraordinary genetic tools available in Drosophila allow approaching this question by 

investigating the behavior of single gogo mutant axons. The available set of R cell 

type specific markers also allows a detailed analysis of gogo function in single 

photoreceptor types during different stages of visual system development. 

Gogo expression analysis and localization of the Gogo protein during development 

can also give hints to reveal its function in R axons, but also imply an importance for 

other neurons or different cell types. 

As the combination of the two conserved extracellular domains, the CUB and TSP 

domain is so fare unknown, detailed structure-function experiments can identify the 

functional domains and help finding evolutionary conserved proteins in other 

organism. 
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2 Materials and Methods 

2.1 Media 

 

Media for bacteria 
 

LB medium 
Bacto-Tryptone 10g/l 

Bacto-Yeast extract 5g/l 

NaCl 5g/l 

pH 7.5 

optional: 

75μg/ml Ampicillin 

50μg/ml Kanamycin 

 

LB plates 
LB medium 1l 

Bacto-Agar 15g 

optional: 

75μg/ml Ampicillin 

50μg/ml Kanamycin 

 

Media for Drosophila flies 
 

Apple agar plates 
7.5 g SELECT Agar was dissolved in 200 ml apple juice (ALDI), boiled in the 

microwave and poured into petri dishes.  

 

Standard Drosophila medium 
For 50 l medium, 585 g Agar was dissolved in 30 l water by heating the mixture to the 

boiling point; meanwhile 3 kg corn flour and 750 g yeast (Femipan Inc.) were mixed 

with water to obtain a homogeneous broth. As soon as the agar was dissolved, 4 kg 

molasses and corn flour/yeast were added. The mélange was filled up with water to 
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50 l and cooked at 96 °C for 1.5 h. 315 ml Propionic acid and 120 g Methylparaben 

were added when the temperature had cooled down to 60 °C. 

 

Blue Yeast paste 
Instant dry yeast (Femipan Inc.) was mixed with Instant blue Drosophila medium 

(Fisher Scientific) and water to obtain a paste of the consistency of peanut butter. 

2.2 Instruments 

Leica SP2 Confocal Microscope   Leica Germany 

Leica MZ16 Fluorescent Dissect scope  Leica Germany 

Leica MS5 Stereomicroscope    Leica Germany 

Leica MZ9.5 Stereomicroscope   Leica Germany 

Leica Axioscope 2 plus Fluorescent Microscope Leica Germany 

Zeiss Axiovert S100     Zeiss Germany 

Leica DFC 320 digital camera    Leica Germany 

Femtojet      Eppendorf Germany 

Micro Grinder EG-400     Narishige Japan 

Micropipette Puller P-97    Sutter USA 

2.3 Enzymes and Standards 

iProof High-Fidelity Polymerase Master Mix  Bio RAD Germany 

Taq DNA Polymerase     NEB Germany 

Gateway BP Clonase II Enzyme Mix   Invitrogen Germany 

Gateway LR Clonase II Enzyme Mix   Invitrogen Germany 

T3 RNA Polymerase     Roche Germany 

T7 RNA Polymerase     Roche Germany 

1kb DNA ladder     NEB Germany 

PageRuler Prestained Protein Ladder  Fermentas Germany 

2.4 Commercial Kits 

QIAquick PCR Purification Kit   Qiagen, Germany 

QIAquick Gel Extraction Kit    Qiagen, Germany 

QIAfilter Plasmid Midi Kit    Qiagen, Germany 

QIAprep Spin Miniprep Kit    Qiagen, Germany 
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2.5 Oligonucleotides 

 

All oligonucleotides were ordered from the company Metabion in Martinsried 

(Germany). 

Table 1 Oligonucleotides 

Primer Sequence Description 

TT1 
5`GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGA 
AGGAGATAGAACCATGCGGAAAAACTCAAAGGA3` 

gogo, gateway 5' attB 
primer from start codon 

TT20 
5`GGGGACCACTTTGTACAAGAAAGCTGGGTCCA 
CGGCCACTTCCTTTGACTTC3` 

gogo, gateway 3' attB 
primer, no stop codon 

TT3 
5`TTGTGGACAACAGAGCGAGTTTTCTTTCGCACC 
GCCAGCACGT3` 

gogo, overlap 3' SP with 
5' TM domain 

TT4 
5`ACGTGCTGGCGGTGCGAAAGAAAACTCGCTCT 
GTTGTCCACAA3` 

gogo, overlap 3' TM with 
5' SP domain 

TT5 
5`TCGCTCCAAGGTCCCCAGCCCTTTCGCACCGC 
CAGCACGT3` 

gogo, overlap 3' SP with 

5' TSP domain 

TT6 
5`ACGTGCTGGCGGTGCGAAAGGGCTGGGGACC 
TTGGAGCGA3` 

gogo, overlap 3' TSP  

with 5' SP domain 

TT7 
5'ACGACATCCTGGTCCAATTTCACCGGTATCCGA 
GTCGCTGA3` 

gogo, overlap 3' GOGO 

with 5' CUB domain 

TT8 
5`TCAGCGACTCGGATACCGGTGAAATTGGACCA 
GGATGTCGT3` 

gogo, overlap 3' CUB 

with 5' GOGO domain 

TT9 
5`TTGTGGACAACAGAGCGAGTTTTCTGGCTCAC 
CTCGGTGCTATT3` 

gogo, overlap 3' TSP 

with 5' TM domain 

TT10 
5`AATAGCACCGAGGTGAGCCAGAAAACTCGCTC 
TGTTGTCCACAA3` 

gogo, overlap 3' TM with 

5' TSP domain 

TT11 
5 `TTGTGGACAACAGAGCGAGTTTTACCGGTATC 
CGAGTCGCTGA3` 

gogo, overlap 3' GOGO 

with 5' TM domain 

TT12 
5`TCAGCGACTCGGATACCGGTAAAACTCGCTCT 
GTTGTCCACAA3` 

gogo, overlap 3' TM with 

5' GOGO domain 

TT15 
5`ACGACATCCTGGTCCAATTTCCTTTCGCACCG 
CCAGCACGT3` 

gogo, overlap 3' SP with 

5' CUB domain 

TT16 
5`ACGTGCTGGCGGTGCGAAAGGAAATTGGACC 
AGGATGTCGT3` 

gogo, overlap 3' CUB 

with 5' SP domain 

TT31 
5'CTGCGCGGGCACCAATGTGGTCTTTCGCACCG 
CCAGCACGT3` 

gogo, overlap 3' SP with 

5' GOGO domain 

TT32 
5`ACGTGCTGGCGGTGCGAAAGACCACATTGGT 
GCCCGCGCAG3' 

gogo, overlap 3' GOGO 

with 5' SP domain 
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TT33 
5`CACTAGTTGGGGTTATATTCCGATTCTTTCGC 
ACCGCCAGCACGT3` 

gogo, overlap 3' SP with 

5' partial GOGO domain 

TT34 
5`ACGTGCTGGCGGTGCGAAAGAATCGGAATAT 
AACCCCAACTAGTG3` 

gogo, overlap 3' partial 

GOGO with 5' SP  

TT49 
5`GGGGACAAGTTTGTACAAAAAAGCAGGCTAC 
CGACGCGAAGTGTTCATCATTCATTA3` 

gogo, gateway 5`attB, 

intergenic Fragment 1  

TT50 
5`GGGGACCACTTTGTACAAGAAAGCTGGGTGA 
TTGCCACGCGACTTTGAGCCAC3` 

gogo, gateway 3`attB + 

intergenic Fragment 1 

TT58 
5`GGGGACAAGTTTGTACAAAAAAGCAGGCTTG 
CTCAGTGAACTACTCATCAACAGAATAATCG3` 

gogo, gateway 5`attB + 

1st Intron Fragment 2 

TT59 
5`GGGGACCACTTTGTACAAGAAAGCTGGGTAC 
GAGGATGAAGCCTAAATTCGAGCAG3` 

gogo, gateway 3`attB + 

1st Intron Fragment 2 

TT53 
5'GGGGACAAGTTTGTACAAAAAAGCAGGCTGCC 
GTTCGTAAATGTTTTTAGTTCGGC3` 

gogo, gateway 5`attB + 

1st Intron Fragment 3 

TT54 
5`GGGGACCACTTTGTACAAGAAAGCTGGGTGGAC 
AAACACACTAAATACCCATGGAAC3` 

gogo, gateway 3`attB + 

1st Intron r Fragment 3 

TT55 
5`GGGGACAAGTTTGTACAAAAAAGCAGGCTAAGC 
TGTCTCTTGCTTGTCAATAGCC3` 

gogo, gateway 5`attB + 

1st Intron Fragment 4 

TT56 
5`GGGGACCACTTTGTACAAGAAAGCTGGGTCTGC 
AAAAAAGAAAAAAGTTGACTTTACTG3` 

gogo, gateway 3`attB + 

1st Intron Fragment 4 

T1B 
UAS 5`GCAGAAGCTTTGCGTACTCGC3` Degenerative PCR 

AD3 5`WGTGNAGWANCANAGA3` Degenerative PCR 

T2D 5`ATTCAAACCCCACGGACATG3` Degenerative PCR 

  

2.6 Plasmids 

 

Gogo constructs 
 

All constructs were generated using the Gateway Recombination Cloning 

(Invitrogen). Gogo full-length (Gogo-FL) and truncated Gogo fragments were 

obtained by overlapping PCR using cDNA clone RE53634. Except for the plasmids 

GMR-gogoΔN-G::myc and GMR-gogoΔN-H::myc. For these two plasmids GMR-

gogoΔN-F::myc was used as a PCR template. attB sites were added directly to PCR 

primers. Fragments were recombined into pDONR221 (Invitrogen) via BP reaction to 
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receive Entry clones. Entry clones were then recombined in the LR reaction with the 

respective Destination Vector to obtain the final plasmid. 

 

Destination vectors used: 

Table 2 Destination vectors 1 

Vector name Description source 

pGMR-myc 

Casper based 

Promoter: GMR 

C-terminal fusion of 

 4x c-myc epitopes 

Stephan Ohler 

pUAST-myc 

Casper based 

Promoter: UAS 

C-terminal fusion of  

4x c-myc epitopes 

Stephan Ohler 

pUAST-gfp 

Casper based 

Promoter: UAS 

C-terminal fusion of GFP 

Stephan Ohler 

 

 
Plasmids used for the generation of transgenic flies: 

Table 3 Gogo plasmids used for transgenic flies 

Plasmid name Encoded Gogo domains source primers 

pGMR-gogoFL::myc full-length protein Stephan Ohler - 

pGMR-gogoΔN::myc 
[SP]1-54 

[Cterm]689-1272
cloned 

TT1, TT3, 

TT4, TT20 

pGMR-gogoΔC::myc [Nterm]1-745 Stephan Ohler - 

pGMR-gogoΔN-A::myc 
[SP]1-54 

[CUB+Cterm]535-1272
cloned 

TT1, TT15, 

TT16, TT20 

pGMR-gogoΔN-B::myc 
[SP+GOGO]1-457 

[Cterm]689-1272
cloned 

TT1, TT11, 

TT12, TT20 

pGMR-gogoΔN-C::myc 

[SP]1-54  

[Tsp1]458-534 

[Cterm]689-1272

cloned 

TT1, TT5, 

TT6, TT9, 

TT10, TT20 

pGMR-gogoΔN-D::myc 
[SP]1-54 

[Tsp1+CUB+Cterm]458-1272
cloned 

TT1, TT5, 

TT6, TT20 
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pGMR-gogoΔN-E::myc 
[SP+GOGO] 1-457 

[CUB+Cterm]535-1272
cloned 

TT1, TT7, 

TT8, TT20 

pGMR-gogoΔN-F::myc 
[SP+GOGO+Tsp1]1-534 

[Cterm]689-1272
cloned 

TT1, TT9, 

TT10, TT20 

pGMR-gogoΔN-G::myc 

[SP]1-54 

[GOGO+Tsp1]204-534

[Cterm]689-1272

cloned 
TT1, TT31, 

TT32, TT20 

pGMR-gogoΔN-H::myc 

[SP] 1-54  

[partial-GOGO+Tsp1]278-534  

[Cterm]689-1272.

cloned 
TT1, TT33, 

TT34, TT20 

pUAS-gogoFL::myc full-length protein Stephan Ohler - 

pUAS- gogoΔC [SP]1-54 +[Cterm]689-1272 Stephan Ohler - 

 

 

Plasmids used for S2 cell transfection 

Table 4 Plasmids used in cell culture 

Plasmid name Encoded Gogo domains source 

pActin-gal4 Gal4 expression Jürgen Knoblich 

pUAS-gogoFL::GFP Gogo full-length protein Stephan Ohler 

pUAS-gogoΔC::GFP Gogo [Nterm]1-745 Stephan Ohler 

pUAS-fmi  Fmi expression T. Uemura 

UAS-citrine Co-Transfection marker T. Uemura 

 

 

gogo enhancer fragments 
 

All constructs were generated using the Gateway Recombination Cloning 

(Invitrogen). PCR products were obtained using genomic DNA from wild type flies 

(W1118). Fragments were recombined into pDONR221 (Invitrogen) via BP reaction to 

receive Entry clones. Entry clones were then recombined with the Destination Vector 

pCaSpeR-DEST6. 
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Destination vector used 

Table 5 Destination vectors 2 

Vector name Description source 

pCaSpeR-DEST6 core hs-> GAL4-SV40 Frederik Wirtz-Peitz 

 

 

Plasmids used for the generation of transgenic flies 

Table 6 gogo enhancer Gal4 plasmids 

Plasmid name Region of gogo locus source primers 

pgogo1-Gal4 700bp intergenic cloned TT49, TT50 

pgogo2-Gal4 6kb 1st intron cloned TT58, TT59 

pgogo3-Gal4 6kb 1st intron cloned TT53, TT54 

pgogo4-Gal4 6kb 1st intron cloned TT55, TT56 

 

2.7 Bacteria strains 

 

DH5α 
Genotype: F- φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rk-, mk+) 

phoA supE44 λ- thi-1 gyrA96 relA1 

Use: cloning 

 

Sure 
Genotype: e14– (McrA–) �(mcrCB-hsdSMR-mrr)171 endA1 supE44 thi-1 gyrA96 

relA1 lac recB recJ sbcC umuC::Tn5 (Kanr) uvrC [F' proAB lacIqZΔM15 Tn10 (Tetr)] 

Use: cloning 

 

DB3.1 
Genotype: F- gyrA96 endA1 Δ(sr1-recA) mcrB mrr hsdS20(rB-, mB BB-) supE44 ara14 

galK2 lacY1 proA2 rpsL20(Smr) xyl5 Δleu mtl1 

Use: Amplification of ccdB containing plasmids, as DB3.1 is not sensitive to CcdB 

effects 
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2.8 Antibodies 

 
Gogo antibody 
 

Anti-Gogo antiserum was obtained from rabbit immunized with a 6xHis tagged 

protein containing 412 amino acids (48-459) of the extracellular domain. The 

antiserum was purified with the Melon Gel IgG Purification Kit (Pierce), and used at a 

dilution of 1:1000.  

 

Other primary antibodies 
 

rabbit anti-GFP (Torrey Pines Biolabs, 1:300) 

rabbit anti-GFP Alexa Fluor488-conjugated (Molecular Probes, 1:300) 

rabbit anti-β-gal (Cappel, 1:5000) 

mouse anti-β-gal (Promega, 1:300) 

chicken anti-β-gal (Abcam, 1:1000) 

mouse anti-Myc (9E10; Santa Cruz, 1:300) 

mouse anti-CoralHue Kusabira-Orange (MBL clone 2G9, 1:300) 

mouse Ab24B10 (DSHB, 1:50) 

rat anti-Elav (DSHB 7E8A10, 1:100) 

mouse anti-Tau (Sigma, 1:200) 

rat anti-mCD8 (Caltag, 1:300) 

rabbit anti-Repo (gift from J. Urban, 1:500)  

guinea pig anti-Senseless (gift from H. Bellen, 1:1000) 

sheep anti-Digoxigenin-AP, Fab fragments (Roche 1:2000) 

 

Secondary antibodies 
 

Alexa Fluor-conjugated secondary antibodies (488, 568, 633; Molecular Probes) 

were used at 1:300-1:1000.  
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2.9 Cell culture lines 

 

Drosophila Schneider 2 cells (S2) (Invitrogen) were grown in cell culture. The S2 cell 

line derived from a primary culture of late stage (20-24 hours old) Drosophila 

melanogaster embryos (Schneider, 1972). Many features of the S2 cell line suggest 

that it is derived from a macrophage-like lineage. S2 cells grow at room temperature 

without CO2 as a loose, semi-adherent monolayer in tissue culture flasks and in 

suspension in spinners and shake flasks. 

2.10  Drosophila melanogaster lines 

 

Fly stocks 

Table 7 Fly stocks 

genotype Description/use source 

w1118 w-  flies Bloomington Stock Center 
yw X;  
Pin/CyOy+ II balancer 2nd Barry Dickson 

yw/Yhshid X;  
Pin/CyOy+ II 

balancer 2nd

virgin collection Barry Dickson 

yw X;  
MKRS/TM6By+ III balancer 3rd Barry Dickson 

yw/Yhshid X;  
MKRS/TM6By+ III 

balancer 3rd 

virgin collection Barry Dickson 

yw X;  
Elp/CyO Kr-G U-GFP II;  
Ki/TM3 Kr-G U-GFP III 

double balancer Gaia Tavosanis 

w/Yy+ X;  
nub b Sco It stw/CyO II;  
MKRS/TM6B III 

double balancer Bloomington Stock Center 

yw eyFLP2 C-lacZ X;  
M(3)i[55] FRT80B/TM6By+ III 3rd left, cell lethal Barry Dickson 

yw eyFLP2 Rh1-τlacZ X;  
M(3)i[55] FRT80B/TM3Sery+ III Rh1: R1-R6 marker Barry Dickson 

w eyFLP2 Rh6-mCD8GFPmyc X;  
M(3)i[55] FRT80/TM3 III 

Rh6: adult R8 
marker, stains 70% Barry Dickson 

w eyFLP2 Rh4-mCD8GFPmyc X;  
M(3)i[55] FRT80/TM3 III 

Rh4: R7 marker 
stains 70% Barry Dickson 

yw eyFLP2 C-lacZ X;  
gogo[D869]/TM6By+ III gogo mutant allele Takashi Suzuki 

yw eyFLP2 C-lacZ X;  
gogo[D1600]/TM6By+ III gogo mutant allele Takashi Suzuki 

yw eyFLP2 C-lacZ X;  
gogo[H1675]/TM6By+ III gogo mutant allele Takashi Suzuki 
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yw eyFLP2 C-lacZ X;  
FRT80 tub-GAL80 GMR-mKO 
M(3)i[55]/TM6By+ III 

GMR-mKO: R1-R8 
marker,  
Gogo AB staining 

Satoko Suzuki 

elav-Gal4 hsFLP UAS-mCD8GFP X;  
GMR-KO tub-Gal80 FRT80/TM6By+ III cMARCM Satoko Suzuki 

yw X;  
ey1xFLP/CyO II;  
gogo[D869] FRT80 III 

cMARCM Satoko Suzuki 

yw X;  
ey1xFLP/CyO II;  
gogo[D869] FRT80 UAS-gogoFL-3B/ 
TM6By+ III 

cMARCM Satoko Suzuki 

yw X;  
ey1xFLP/CyO II;  
gogo[D869] FRT80 UAS-gogoΔC-3B/ 
TM6By+ III 

cMARCM Satoko Suzuki 

yw X;  
1xeyFLP/CyO;  
GMR-KO tub-Gal80 FRT80/TM6By+ III 

R8 bundling 
phenotype in larvae, 
small mutant clones 
in pupae 

Satoko Suzuki 

yw GMR-FLP X;  
Gla/CyO II MARCM clones in R7 Larry Zipursky 

w eyFLP2 Rh6-mCD8GFPmyc X ;  
GMR-KO Gal80 FRT80/TM3 III 

making small clones, 
label R8 and WT cells 
in adults 

Takashi Suzuki 

w eyFLP2 Rh6-mCD8GFPmyc X;  
M(3)i[55] cl GMR-KO Gal80 
FRT80/TM3 III 

making large clones, 
label R8 and WT cells 
inadults 

Takashi Suzuki 

yw PM181-Gal4 X R7 specific Gal4 Bloomington Stock Center 
Yw X; 
Pin/Cyo II; 
UAS-mCD8GFP III 

expression of GFP 
localized to axons Bloomington Stock Center 

UAS-GFP:lacZnls II gogo-Gal4 
expression analysis Bloomington Stock Center 

UAS-GFP:lacZnls III gogo-Gal4 
expression analysis Bloomington Stock Center 

GMR-gogo-FLmyc II rescue experiments Stephan Ohler 
GMR-gogo-ΔCmyc II rescue experiments Stephan Ohler 
UAS-gogo-FLmyc-T1 II Gogo OE Barry Dickson 

UAS-gogo-FLmyc-T2 II 
R8 rescue, gogo2-
Gal4 rescue, Gogo 
OE, Western 

Stephan Ohler 

UAS-gogo-FLmyc-2B II Gogo OE, Western Stephan Ohler 
UAS-gogo-FLmyc-3A III Gogo OE, Western Stephan Ohler 

UAS-gogo-FLmyc-3B III cMARCM, R7 rescue, 
Gogo OE, Western Stephan Ohler 

UAS-gogo-FLmyc-3C III Gogo OE, Western Stephan Ohler 
UAS-gogo-ΔCmyc-3B III cMARCM Stephan Ohler 
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Constructed Fly stocks 

Table 8 Constructed Fly stocks 

genotype Description/use 

yw/yw eyFLP2 C-lacZ X;  
ato-τ-myc II; 
gogo[D869] FRT80/TM6By+ III 

ato: R8 marker, mutant R8 phenotype 
analysis in larvae 

yw eyFLP2 C-lacZ X;  
GMR-gogo-FL II;  
gogo[D869] FRT80/TM6By+ III 

transheterozygous rescue 

yw eyFLP2 C-lacZ X; 
GMR-gogo-ΔC II;  
gogo[D869] FRT80/TM6By+ III 

transheterozygous rescue 

 w X;  
ato-τ-myc gogo[D1600] FRT80/TM6By+ III transheterozygous rescue 

ey3.5FLP II;  
M(3)i[55] FRT80/TM6By+ III 

clean ey3.5FLP from Iris Salecker, no 
brain clones, EM 

yw eyFLP2 C-lacZ X;  
109-68Gal4/Cyo;  
M(3)i[55] FRT80/TM6By+ III 

R8 rescue 

yw/yw eyFLP2 C-lacZ X;  
Caps-Gal4 gogo[D869] FRT80/TM6By+ III R8 rescue 

yw/yw eyFLP2 C-lacZ X; 
UAS-Gogo-FLT2/Cyo II;  
Caps-Gal4 gogo[D869] FRT80/TM6By+ III 

R8 rescue 

yw X;  
GMR-Gal4/CyO II;  
gogo[D869] FRT80/TM6By+ III 

positive control for gogo enhancer 
fragment rescue  

yw X;  
UAS-gogo-FL-T2/Cyo II;  
gogo[D1600] FRT80/TM6By+ III 

gogo enhancer fragment rescue 

yw X;  
gogo2-Gal4-T1 II;  
gogo[D869] FRT80/TM6By+ III 

gogo enhancer fragment rescue 

yw eyFLP2 C-lacZ X;  
Gal80 FRT80/TM6By+ III 

Replacement of non-functional stock in 
Bloomington stock collection 

w X;  
PanR7-Gal4 UAS-SybGFP/CyO II;  
Gal80 FRT80/TM6B III 

R7 mutants 

yw X;  
UAS-Gogo−ΔC-3B gogo[D869] FRT80/TM6By+ cMARCM 

yw X;  
UAS-Gogo−FL-3B gogo[D869] FRT80/TM6By+ R7 rescue, cMARCM 

yw eyFLP2 C-lacZ X; ato-t-myc gogo[D869] 
FRT80/TM6By+ pupal stages R8, R8 bundling in larvae 

yw eyFLP2 C-lacZ X,  ato-t-myc FRT80/TM6By+ pupal stages R8, R8 bundling in larvae 
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Generated Transgenic fly lines 

Table 9 Generated transgenic flies 

Transgenic line Injected Plasmid Description 

GMR-gogoΔN::myc-T1 II 

GMR-gogoΔN::myc-T2 II 

GMR-gogoΔN::myc-T3 II 

pGMR-gogoΔN::myc 

Gogo expression in R1-R8 

[SP]1-54 

[Cterm]689-1272

GMR-gogoΔN-A::myc-T1 II 

GMR-gogoΔN-A::myc-T2 II 

GMR-gogoΔN-A::myc-T3 II 

pGMR-gogoΔN-A::myc 

Gogo expression in R1-R8 

[SP]1-54 

[CUB+Cterm]535-1272

GMR-gogoΔN-B::myc-T1 II 

GMR-gogoΔN-B::myc-T2 II 

GMR-gogoΔN-B::myc-T3 II 

pGMR-gogoΔN-B::myc 

Gogo expression in R1-R8 

[SP+GOGO]1-457 

[Cterm]689-1272

GMR-gogoΔN-C::myc-T1 II 

GMR-gogoΔN-C::myc-T2 II 

GMR-gogoΔN-C::myc-T3 II 

pGMR-gogoΔN-C::myc 

Gogo expression in R1-R8 

[SP]1-54 

[Tsp1]458-534 

[Cterm]689-1272

GMR-gogoΔN-D::myc-T1 II 

GMR-gogoΔN-D::myc-T2 II 

GMR-gogoΔN-D::myc-T3 II 

pGMR-gogoΔN-D::myc 

Gogo expression in R1-R8 

[SP]1-54 

[Tsp1+CUB+Cterm]458-1272

GMR-gogoΔN-E::myc-T1 II 

GMR-gogoΔN-E::myc-T2 II 

GMR-gogoΔN-E::myc-T3 II 

pGMR-gogoΔN-E::myc 

Gogo expression in R1-R8 

[SP+GOGO] 1-457 

[CUB+Cterm]535-1272

GMR-gogoΔN-F::myc-T1 II 

GMR-gogoΔN-F::myc-T2 II 

GMR-gogoΔN-F::myc-T3 II 

pGMR-gogoΔN-F::myc 

Gogo expression in R1-R8 

[SP+GOGO+Tsp1]1-534 

[Cterm]689-1272

GMR-gogoΔN-G::myc-T1 II 

GMR-gogoΔN-G::myc-T3 II 

GMR-gogoΔN-G::myc-T4 II 

pGMR-gogoΔN-G::myc 

Gogo expression in R1-R8 

[SP]1-54

[GOGO+Tsp1]204-534

[Cterm]689-1272

GMR-gogoΔN-H::myc-T3 II 

GMR-gogoΔN-H::myc-T4 II 

GMR-gogoΔN-H::myc-T5 II 

pGMR-gogoΔN-H::myc 

Gogo expression in R1-R8 

[SP] 1-54 

[partial-GOGO+Tsp1]278-534   

[Cterm]689-1272.

gogo1-Gal4-T2  

gogo1-Gal4-T3  

gogo1-Gal4-T5  

pgogo1-Gal4 

Potential gogo enhancer 

fragment fused to Gal4 

gogo locus: intergenic 
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gogo2-Gal4-T1 II (closer 

examined in experiments) 

gogo2-Gal4-T4 II 

gogo2-Gal4-T11 II 

pgogo2-Gal4 

Potential gogo enhancer 

fragment fused to Gal4 

gogo locus:1st intron 

gogo3-Gal4-T2 

gogo3-Gal4-T3 

gogo3-Gal4-T4 

pgogo3-Gal4 

Potential gogo enhancer 

fragment fused to Gal4 

gogo locus:1st intron 

gogo4-Gal4-T2 

gogo4-Gal4-T3 

gogo4-Gal4-T4 

pgogo4-Gal4 

Potential gogo enhancer 

fragment fused to Gal4 

gogo locus:1st intron 

2.11  Molecular biology methods 

 
Transformation 
After thawing 100μl competent bacteria from a -80°C stock on ice, the bacteria were 

incubated with 100-150ng of DNA on ice for 30min. The cells were heat-shocked at 

42°C for 90sec and immediately returned on ice for 1-2min. To allow expression of 

resistance genes in transformed bacteria, the cells were shaken for 1h at 37°C after 

the addition of 1ml of LB medium. Afterwards, they were plated on LB plates 

containing selective antibiotics and incubated overnight at 37°C 

 

DNA gel electrophoresis 
DNA is negatively charged and therefore can be separated by electrophoresis 

according to its size (Maniatis, 1986). Depending on the fragment size of the DNA 

the agarose concentration in TAE buffer ranged from 0.5%-2.0%. Ethidium bromide 

was added to the melted agarose to a final concentration of 0.5μg/ml before pouring. 

1xTAE was used as running buffer. 

6x loading buffer     50xTAE (2l)

0.25% Bromphenol blue    484g Tris base 

0.25% Xylene Cyanol     50mM EDRA pH 8.0 

30% Glycerol      114.2ml glacial acetic acid 

100mM Tris pH 7.5     H2O 

100mM EDTA pH 8.0     adjust pH 8.5 with gl. ac. acid 

H2O 
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Gel extraction of DNA 
 

To purify specific DNA fragments, DNA was separated on an agarose gel. The band 

of interest was cut out of the gel using a sterile razor blade and purified using Qiagen 

Gel Extraction Kit as described in the company’s manual. DNA was eluted with 30μl 

H2O. 

 

Plasmid preparations 
 

Bacterial plasmids were purified using the corresponding Qiagen Kits as described in 

the respective manual provided from the company. For Mini-Preps 5ml of overnight 

bacteria culture in LB (containing selective antibiotics) was used. For Midi-Preps 

200ml of overnight culture was used. After plasmid preparation the DNA 

concentration was determined using a photometer. 

 

Polymerase chain reaction (PCR) 
 

Standard PCR reactions were performed as described in the following protocol 

 

25μl assay using Taq Polymerase 

2.5μl 10x reaction buffer (containing 25mM MgCl2) 

0.4μl dNTPs (10mM) 

0.6μl primer sense (10mM) 

0.6μl primer antisense (10mM) 

0.25μl Taq Polymerase 

0.5μl DNA (50ng/μl) 

H2O 

 

Standard PCR program using Taq Polymerase 

1. 94°C      2min 

2. 92°C      30sec 

3. 58°C      30sec 

3. 72°C      30sec/500bp 

5. Step 2 to 4 for 34 more cycles 

6. 72°C      5min 
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25μl assay using iProof Polymerase 

12.5μl 2x iProof Master Mix 

0.6μl primer sense (10mM) 

0.6μl primer antisense (10mM) 

(0.75 DMSO for genomic DNA) 

0.5μl DNA (50ng/μl) 

H2O 

 

Standard PCR program using Taq Polymerase 

1. 98°C      30sec 

2. 98°C      10sec 

3. 58°C      30sec 

3. 72°C      30sec/kb 

5. Step 2 to 4 for 34 more cycles 

6. 72°C      5min 

 

Gateway Recombination Cloning 
 

Invitrogen's Gateway technology uses the well-characterized bacteriophage lambda 

site-specific recombination pathway (Landy, 1989). After infection, the lambda DNA 

recombines with the corresponding bacterial DNA via att (attachment) sites. The 

attachment site in E. coli called attB, (B for bacteria) is recombined with the phage 

site called attP (P for phage) using a phage-encoded enzyme. The integrated phage 

DNA is now flanked by two variant att sites, attL and attR sites. The reverse reaction 

between attL (L for left) and attR (R for right) results in excision of the phage DNA, 

and regenerates the original attB and attP sequences.  

For Gateway cloning the DNA fragment or gene of interest is flanked by two attB 

sites, by simply adding the sites to PCR primers. The attB flanked fragment is then 

recombined with the donor vector carrying two attP sites in a so called BP reaction. 

The recombination creates attL and attR sites. Recombinant entry clones selectively 

grow, as the lethal ccdB (control of cell death) gene, carried by the donor vector, is 

lost due to the recombination. The ccdB protein poisons bacterial DNA gyrase, 

causing degradation of the chromosome and cell death (Bernard P 1992, 1993). The 

obtained entry clone can then be recombined with various destination vectors in the 

LR reaction. The variety of destination vectors allows adding easily N-terminal and C-

39 



                                                                                                   Materials and Methods 

 

terminal tags to the gene of interest or to express the gene under the control of 

different promoters just by performing one recombination step.  

 

Generation of gogo in situ probes (performed by Satoko Suzuki) 
 

Digoxigenin-labeled gogo RNA riboprobes were generated from EST clone RE53634 

containing T7 and T3 RNA polymerase sites upstream and downstream of the cDNA. 

10μg of template DNA was digested with restriction enzymes cutting downstream (for 

sense probe) or upstream (for antisense probe) to linearize the plasmid. The 

linearized DNA was purified using Qiagen PCR purification kit and used as a 

template for in vitro transcription. The reaction mix was incubated at 37°C for 2h and 

then stopped by adding 2μl of 0.5M EDTA. The transcripts (1μl) were checked on an 

agarose gel. Transcripts were hydrolyzed to obtain short RNA probes. 60μl of 

Hydrolysis buffer was added to the transcripts and incubated at 60°C for 10-60min 

[Incubation time in min = (Probe length in kb – 0.15) / 0.0165 x Probe length in kb]. 

Before precipitation with 300μl of chilled 100% EtOH, 8μl of 3M NaOAc (pH 5.2) and 

1ml of 10mg/ml ssDNA was added. After 30min centrifugation the pellet was washed 

with 70% EtOH and air dried. The RNA was resuspended in 20μl H2O and 80μl of 

Hybridization buffer was added. Probes were stored at -20°C. 

 

In vitro transcription mix (20μl assay) (Roche) 

2μl DIG RNA labeling mix 

2μl 10x Transcription buffer 

6μl linearized template DNA 

1μl RNAse inhibitor 

1μl T3 or T7 RNA Polymerase 

H2O 

 

Hydrolysis buffer     Hybridization buffer

60mM Na2CO3      5x SSC (for eye disc pH 7.0) 

40mM NaHCO3 pH 10.2    50% Formamide 

       0.1% Tween20 

       50μg/ml Heparin 

       100μg/ml sonicated denaturized 

       salmon sperm DNA 

 

40 



                                                                                                   Materials and Methods 

 

Isolation of genomic Drosophila DNA 
 

Flies were collected in a 1.5ml eppendorf tube on ice. After adding Solution A to flies, 

they were homogenized using a 200μl pipette tip. 

Added solution A: 1-5 flies 100μl 

   6-10 flies 200μl 

   -50 flies 400μl 

Homogenized flies were incubated at 70°C for 30min, 14μl of 8M KAc was added per 

100μl of solution A. The samples were then put on ice for 30min. After spinning for 

15min at room temperature (RT) at 13,000rpm, the supernatant was transferred to a 

new tube. The same volume of phenol/chloroform as solution A was added. After 

mixing and spinning at 13,000rpm for 5min at RT, the upper aqueous phase was 

transferred to a new tube. As before, the same volume of phenol/chloroform as 

solution A was added. After mixing and spinning at 13,000rpm for 5min at RT, the 

upper aqueous phase was transferred to a new tube as before. DNA was precipitated 

by the addition of isopropanol (0.5 volume of solution A) and spin at 13,000rpm for 

5min at RT. After washing the pellet in 70% EtOH, the pellet was dried and 

resuspended in 100μl of TE. 

 

Solution A      TE

0.1M Tris Hcl pH 9.0     10mM Tris base pH 7.5 

0.1M EDTA pH 8.0     1mM EDTA pH 8.0 

1% SDS      H2O 

H2O 

 

Degenerative PCR 
 

Degenerative PCR is used to map the insertion sites of P elements within the 

genome of Drosophila melanogaster. In this work P-element insertion was used to 

generate transgenic flies. In order to recombine the inserted transgenes with other 

transgenes or mutations the exact localization of the transgene has to be determined 

in order to calculate the expected recombination frequency, as well as the dimension 

of the required fly cross. Degenerative PCR is a sequence of two to three PCR 

reactions using genomic DNA isolated from a specific transgenic fly line. In the first 

PCR reaction one determined primer, specific for the used P-element is used in 

combination with a degenerate primer. The PCR reaction results in the formation of 
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PCR fragments of variable size with one defined and one variable end. These 

fragments are then used in a second or third PCR reaction to enrich the fragments. 

The obtained fragments are directly sequenced using the determined primer as a 

sequencing primer. 

In this work, I searched for the insertion sites of UAS-Gogo-ΔC and UAS-Gogo-FL 

transgenes inserted on the 3rd chromosome to recombine them with a gogo mutant 

allele. Genomic DNA of the transgenic fly lines was isolated as described above as a 

template for the 1st PCR reaction. After the 2nd PCR bands of variable size could be 

visibly detected on agarose gel. The 2nd PCR sample was purified from PCR primers 

using EXOSAP (GE Healthcare Germany) and directly sequenced. 

 

1st PCR (20μl assay) 

2.0μl 10x reaction buffer (containing 25mM MgCl2) 

0.4μl dNTPs (10mM) 

0.4μl T1BUAS primer (10mM) (binds to 3`of P element but is vector specific) 

0.8μl AD3 primer (100mM) (degenerative primer) 

0.25μl Taq Polymerase 

0.8μl DNA 

H2O 

 

1st PCR Programm 

1.  93°C      1min 

2.  95°C      1min 

3.  94°C      1min 

4.  62°C      1min 

5.  72°C      2min30sec 

6.  Step 3 to 5 for 5 more cycles 

7.  94°C      1min 

8.  25°C      3min 

Ramp to 72°C at 0.2°C/sec 

9.  72°C      2min30sec 

10. 94°C      30sec 

11. 68°C      1min 

12. 72°C      2min30sec 

13. 94°C      30sec 

14. 68°C      1min 
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15. 72°C      2min30sec 

16. 94°C      30sec 

17. 44°C      1min 

18. 72°C      2min30sec 

19. Step 10 to 18 for 15 more cycles 

20. 72°C      5min 

 

2nd PCR (20μl assay) 

2.0μl 10x reaction buffer (containing 25mM MgCl2) 

0.4μl dNTPs (10mM) 

0.4μl T2D primer (10mM) (binds to 3`of any P element) 

0.4μl AD3 primer (100mM) (degenerative primer) 

0.25μl Taq Polymerase 

1μl of 1st PCR 

H2O 

 

2nd PCR Programm 

1.  94°C      1min 

2.  94°C      30sec 

3.  64°C      1min 

4.  72°C      2min30sec 

5.  94°C      30sec 

6.  64°C      1min 

7.  72°C      2min30sec 

8.  94°C      30sec 

9.  44°C      1min 

10. 72°C      2min30sec 

11. Step 2 to 10 for 11 more cycles 

11. 72°C      5min 

2.12  Generation of transgenic flies 

 

P-element mediated transformation 
The constructed DNA was inserted into the fly genome via P-element insertion. A P-

element is a native Drosophila-specific transposon. Its excision and insertion in the 
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genome is catalyzed by the transposase which is encoded by the P-element. The P-

element is flanked by inverted repeats containing the transposase recognition site. 

The P-element used for the generation of transgenic flies lacks the transposase 

gene. An additional helper plasmid containing the required enzyme has to be co-

injected into the fly. The injected plasmid contains a P-element with a promoter and 

the cDNA of the gene of interest plus a marker gene to identify transgenic flies, 

everything flanked by the inverted repeats. In this work the used P-element contained 

the w+ (white) reporter gene to identify transgenic flies. Homozygous w1118 flies were 

injected. The w1118 allele causes a white eye phenotype.  

 

Germline Transformation 
 
The syncytial blastoderm of Drosophila embryos is an excellent target for gene 

transfer. In order to transform the germline the DNA is microinjected into the 

syncytium at posterior side of the embryo before pole cell formation. These cells will 

later form the germline of the fly. In this way, “new” DNA can be internalized by P-

element insertion during cell formation and is integrated into the genome of the pole 

cells. This is only possible during the first 1.5 hr after fertilization, as during this time 

the embryo forms a syncytium of dividing nuclei (Campos-Ortega, 1997).  

 

DNA preparation 
Plasmid DNA and also the helper plasmid containing the transposase pP(Δ2-3) were 

centrifuged with for 10 min at full speed to avoid dust and dirt clogging the injection 

needle. 

 

Injection mix (20 µl) 

P-element plasmid 12 µg 

pP(Δ2-3)    2 µg 

dH2O 

 

Preparation of fly embryos 
To collect well-staged embryos from w1118 flies, young flies were put 2 days in 

advance to the injection into a population cage on apple agar plates with yeast paste 

and were incubated at 25ºC. The apple agar plates were several times a day. 

Embryos were collected on apple agar plates for 30 min and dechorinated in 50 % 

bleach solution for 2 min. Afterwards they were poured from the apple agar plates 
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onto a membrane filter on a vacuum flask. Then, the embryos were rinsed with H2O 

at least 5 times. Dechorinated embryos were lined up in posterior to anterior 

orientation using a brush with 3 fine bristles. The aligned embryos were then 

transferred to a glass slide greased with Scotch heptane glue and dried in silica gel 

filled box for 13-15min and then covered with Halocarbon oil. 

 

Scotch heptane glue 

Heptane and double-sided Scotch tape (Scotch #665) were put together in a 250 ml 

bottle. Heptane dissolved the glue from the tape resulting in quick evaporating glue. 

 

Microinjection 
The embryos were injected under the microscope with the prepared clean Injection 

mix. A pulled and grinded needle, which was connected to an Eppendorf FemtoJet 

micromanipulator, injected the DNA into the posterior end of the embryos. After 

injection the embryos were incubated at 18 ºC in a wet chamber. Hatched larvae 

were collected after two days and transferred into a fresh fly vial. 

Eppendorf FemtoJet parameters: 

Constant pressure (Pc): 60 hPa  

Pressure of injection (Pi): ~100 hPa  

Time of injection (Ti): ~0.5 sec  

 

Identification and linkage of transgenic insertions 
Flies developing from the injected embryos do not show visible signs for successful 

germline transformation. Therefore every hatched fly has to be crossed clonally to a 

w- fly in order to select for marker gene expression in the next generation. Transgenic 

F1 generation flies contained a single copy of the dominant white+ marker and could 

therefore be selected through their orange eye color.  

In order to prevent transgenic flies from recombination and to link the transgenic 

insertion to a certain chromosome the flies were balanced. A balancer chromosome 

is characterized by a recessive lethality, multiple inversions and a dominant marker. 

Each transgenic fly line was individually crossed to balancers for the second or third 

chromosome. Heterozygous progeny containing one dominant marker and the 

transgene were again crossed. According to Mendel law correctly balanced flies did 

not show any w- progeny in the next generation. Of each construct several 

independent lines were generated and tested. Depending on the expression level, 
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which usually correlates with darkness of eye color, intermediate lines were selected 

and added to the stock collection. 

2.13  Fly genetics 

 

Reporter/Gene expression in photoreceptors 
 

eyFLP 
Different ey (eyeless) enhancer fragments were used. Detailed description can be 

found in the description of the FLP/FRT system (see next chapter) 

 

glass-lacZ 
The glass protein is present in the nuclei of all cells posterior to the morphogenetic 

furrow in the eye-imaginal disc (Moses and Rubin, 1991). In addition expression was 

also observed in the Bolwig's organ and in some cells of the embryonic and third-

instar larval brain. glass protein positively regulates its own expression. For creating a 

glass-lacZ reporter a lacZ enhancer-trap element was inserted at the glass locus 

(Moses and Rubin, 1991). 

 

gmr (glass multiple reporter) 
gmr enhancer is composed of five copies of a Glass response element from the Rh1 

gene and drives expression in all cells behind the morphogenetic furrow (Freeman, 

1996; Hay et al., 1994). 

 

rh1-lacZ 
rh1 (rhodopsin1) enhancer fragment which is specifically expressed in R1-R6 fused 

to lacZ (Mismer and Rubin, 1987; Newsome et al., 2000) 

 

rh4-mCD8GFPmyc 

rh4 (rhodopsin4) enhancer fragment which is specifically expressed in 70% of adult 

R7 (Fortini and Rubin, 1990; Newsome et al., 2000) was subcloned upstream of 

mCD8GFPmyc (Georg Dietzl, unpublished) 

 

ato-τmyc 

ato (atonal) is expressed anterior to the morphogenetic furrow and is strongly 

expressed in R8 after its formation beyond the furrow (Jarman et al., 1994). 
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Expression lasts only in 2-3 rows of R8s corresponding to 4-6h of development. ato-

Gal4 expression can be detected until mid-pupal stages (at least until 55APF). A 2-kb 

R8-specific enhancer fragment derived from the atonal locus was used for the ato-

τmyc reporter (Senti et al., 2003). 

 

rh6-mCD8GFPmyc 

rh6 (rhodopsin6) enhancer fragment which is specifically expressed in 70% of adult 

R8 (Papatsenko et al., 2001) was subcloned upstream of mCD8GFPmyc (Georg 

Dietzl, unpublished). 

 

PM181-Gal4 
PM181-Gal4 is specifically expressed in R7 (Lee et al., 2001) 

 

PANR7-Gal4 
R7-specific driver (Lee et al., 2001) 

 

109-68Gal4 

109-68Gal4 is an enhancer trap insertion on the second chromosome (Jarman and 

Ahmed, 1998; White and Jarman, 2000) and is specifically expressed in R8s starting 

from the 3rd larval stage. Takashi Suzuki examined the expression during pupal 

stages. There is no expression in R7 at any time. 
 

caps-Gal4 
caps-Gal4 is an enhancer trap insertion. caps-Gal4 expression was detected 

specifically in R8 in third instar larvae and throughout pupal stages (Shinza-Kameda 

et al., 2006).  
 

FLP/FRT system 
 

Different ey enhancer fragments were used to induce mitotic recombination upon 

Flipase expression. Depending on the used ey enhancer fragment different clone 

sizes and slightly different expression patterns were obtained. In addition, mutant 

clone size was increased by inserting the Minute mutation M(3)i[55] (RpS17) onto the 

left arm of the 3rd chromosome in trans to the gogo mutant alleles. Minute mutations 

prevent the proliferation or survival of homozygous cells, and retard the proliferation 

of heterozygous cells (Morata and Ripoll, 1975). 
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eyFLP2 (referred to as eyFLP) 

eyFLP is a 258bp eye-specific enhancer fragment from the ey gene upstream of the 

FLPcDNA (Newsome et al., 2000). eyFLP2 represents the transgene which is 

inserted on the X chromosome in a yw background. The ey enhancer fragment used 

in this eyFLP construct does not recapitulate the entire expression pattern of the ey 

gene, but is almost exclusively expressed in the visual system (Hauck et al., 1999). 

Expression begins in the 6-23 cell eye disc primordium in stage 15 embryos and is 

maintained until the final cell divisions in the approx. 15000-cell disc of the late third 

instar larvae. A lower level of expression can also be detected in the optic lobes, 

resulting in the generation of small mutant brain clones in mosaic animals. Mutant 

clone size in the retina without cell lethal mutation ranges from 20-30%. Using a cell 

lethal mutation, almost the entire retina 90% is homozygous mutant (Newsome et al., 

2000).  

 

ey3.5FLP 

ey3.5FLP is a 3.5kb eye-specific enhancer fragment from the ey gene cloned from 

eytTA vector (Bazigou et al., 2007). This clean ey enhancer does not show any brain 

expression 

 

ey1x-FLP.Exel 

ey1x-FLP.Exel expresses FLP recombinase in the pattern of the eyeless gene. One 

copy of the ey enhancer drives FLP expression (Exelixis, Inc.). Obtained mutant 

mosaics are distinctly smaller then using eyFLP without cell lethal mutation. Our 

personal impression is that less than 5% of photoreceptors are mutant. 

 

MARCM (Mosaic analyses with a repressible cell marker) 
 

MARCM (Mosaic analyses with a repressible cell marker) is a widely used 

technique in Drosophila which allows the generation of labeled mutant cells in 

mosaic tissues (Lee and Luo, 1999). Heterozygous or WT cells remain unlabeled. 

To achieve this, the yeast Gal80 protein was introduced into the GAL4-UAS 

expression system in Drosophila. The Gal80 protein inhibits the activity of the 

transcription factor GAL4 (Brand and Perrimon, 1993). Heterozygous cells contain 

the transgene for GAL80 in trans, but on the same chromosomal arm, to the mutated 

gene of interest. Following FLP/FRT-mediated mitotic recombination, the GAL80 
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transgene is removed from the homozygous mutant daughter, allowing expression of 

a GAL4-driven UAS-GFP reporter gene specifically in this mutant cell and its 

progeny.  

 

cMARCM (complementary MARCM) (established by Satoku Suzuki) 
In a normal MARCM situation, homozygous and heterozygous WT cells remain 

unlabeled making it impossible to examine the behavior of mutant and WT cells in 

respect to each other. To circumvent this problem an additional marker mKOrange 

under the control of the promoter GMR was inserted on the Gal80 containing 

chromosomal arm. The monomeric Kusabira Orange (mKOrange) gene was 

obtained from the vector pmKO1-MN1 (MBL). The mKOrange gene fused in frame to 

the 3’ end of mCD8 was tagged with myc epitopes and inserted into the GMR vector 

to generate a GMR-mCD8mKOrange construct and used for generation of transgenic 

flies. Following FLP/FRT-mediated mitotic recombination in cMARCM flies, the mKO 

marker is specifically lost from mutant cells but retained in homozygous and 

heterozygous WT cells, allowing a clear distinction between differentially labeled WT 

and mutant cells. 

2.14  Summary of experimental genotypes 

 

Figure 3-1: 

A´) yw eyFLP C-lacZ; gogo[D869] FRT80B / M(3)i[55] FRT80B 

B´) yw eyFLP Rh1-τlacZ; gogo[D869] FRT80B / M(3)i[55] FRT80B 

C´) yw eyFLP Rh4-mCD8GFPmyc; gogo[D869] FRT80B / M(3)i[55] FRT80B 

D´) yw eyFLP Rh6-mCD8GFPmyc; gogo[D869] FRT80B / M(3)i[55] FRT80B 

 

Figure 3-2: 

B) yw eyFLP C-lacZ; ato-τmyc gogo[D869] FRT80B / M(3)i[55] FRT80B 

D) yw eyFLP C-lacZ; gogo[D869] FRT80B / M(3)i[55] FRT80B 

F) yw eyFLP C-lacZ; gogo[D1600] FRT80B / M(3)i[55] FRT80B 

 

Figure 3-4: 

ii) yw eyFLP C-lacZ; gogo[D869] FRT80B / M(3)i[55] FRT80B 

iii) yw eyFLP C-lacZ; GMR-gogoFL/+; gogo[D869] FRT80B / M(3)i[55] FRT80B 

… 
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Figure 3-8: 

A, D) yw eyFLP C-lacZ; gogo[D869] FRT80B / gogo[1600] FRT80B 

B, E) yw eyFLP C-lacZ; GMR-gogoFLmyc/+; gogo[D869] FRT80B / gogo[1600] 

FRT80B 

C, F) yw eyFLP C-lacZ; GMR-gogoFLmyc/+; gogo[D869] FRT80B / M(3)i[55] 

FRT80B 

 

Figure 3-9: 

F) yw eyFLP C-lacZ; GMR-Gal4 / UAS-gogoFLmyc-T2; gogo[D869] FRT80B / 

gogo[1600] FRT80B 

G) yw eyFLP C-lacZ; gogo2-Gal4 / UAS-gogoFLmyc-T2; gogo[D869] FRT80B / 

gogo[1600] FRT80B 

 

Figure 3-10: 

A) yw eyFLP C-lacZ; gogo[D1600] FRT80B / M(3)i[55] FRT80B 

B, C, D) yw eyFLP C-lacZ; gogo[D1600] FRT80B / M(3)i[55] FRT80B 

D) ey3.5FLP; gogo[DH1675] FRT80B / M(3)i[55] FRT80B 

 

Figure 3-11: 

B) GMR-FLP; PanR7Gal4 UAS-nsyb::GFP/+; gogo[D869] FRT80B/ tub-Gal80 

FRT80B 

C) PM181-Gal4 / yw eyFLP C-lacZ; gogo[D869] FRT80B UAS-gogoFLmyc-3B/ 

M(3)i[55] FRT80B 

D) yw eyFLP C-lacZ; 109-68Gal4 / UAS-gogoFLmyc-T2; caps-Gal4 gogo[D869] 

FRT80B / M(3)i[55] FRT80B 

 

Figure 3-13: (without heat shock!) 

A) hsFLP elav-Gal4 UAS-mCD8GFP; ey1xFLP.Exel/+; 

 FRT80B / GMR-mCD8mKOmyc tub-Gal80 FRT80B 

B, C) hsFLP elav-Gal4 UAS-mCD8GFP; ey1xFLP.Exel/+; gogo[D869] FRT80B / 

GMR-mCD8mKOmyc tub-Gal80 FRT80B 

D) hsFLP elav-Gal4 UAS-mCD8GFP; ey1xFLP.Exel/+; gogo[D869] FRT80B  

UAS-gogoFLmyc-3B / GMR-mCD8mKOmyc tub-Gal80 FRT80B 

E) hsFLP elav-Gal4 UAS-mCD8GFP; ey1xFLP.Exel/+; gogo[D869] FRT80B  

UAS-gogoΔCmyc-3B / GMR-mCD8mKOmyc tub-Gal80 FRT80B 
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Figure 3-14: 

A) yw; ey1xFLP.Exel/+; ato-τmyc FRT80B / GMR-mCD8mKOmyc tub-Gal80 FRT80B 

B, C) yw; ey1xFLP.Exel/+; ato-τmyc gogo[D869] FRT80B / GMR-mCD8mKOmyc 

tub-Gal80 FRT80B 

 

Figure 3-15: 

A, D) yw eyFLP Rh6-mCD8GFPmyc; FRT80B / M(3)i[55] GMR-mCD8mKOmyc tub-

Gal80 FRT80B 

B, E) yw eyFLP Rh6-mCD8GFPmyc; gogo[D869] FRT80B / M(3)i[55] 

GMR-mCD8mKOmyc tub-Gal80 FRT80B 

F) yw eyFLP Rh6-mCD8GFPmyc; gogo[D869] FRT80B / GMR-mCD8mKOmyc tub-

Gal80 FRT80B 

 

Figure 3-16: 

A) yw; ey1xFLP.Exel/+; ato-τmyc FRT80B / GMR-mCD8mKOmyc tub-Gal80 FRT80B 

B-D) yw; ey1xFLP.Exel/+; ato-τmyc gogo[D869] FRT80B / GMR-mCD8mKOmyc tub-

Gal80 FRT80B 

E-G) yw eyFLP Rh6-mCD8GFPmyc; gogo[D869] FRT80B / GMR-mCD8mKOmyc 

tub-Gal80 FRT80B 

 

Figure 3-17: 

A-D) yw eyFLP C-lacZ; ato-τmyc FRT80B / M(3)i[55] FRT80B 

E-G) yw eyFLP C-lacZ; ato-τmyc gogo[D869] FRT80B / M(3)i[55] FRT80B 

H) yw; ey1xFLP.Exel/+; ato-τmyc gogo[D869] FRT80B / GMR-mCD8mKOmyc tub-

Gal80 FRT80B 

 

Figure 3-18: 

A) Rh6-mCD8GFPmyc; GMR-Gal4/+ 

B) Rh6-mCD8GFPmyc; GMR-Gal4/UAS-gogoFLmyc-T1 

C) Rh6-mCD8GFPmyc; GMR-Gal4/UAS-gogoFLmyc-T2 

2.15  Bioinformatics (performed by Alexander Schleiffer) 

 

The GOGO conserved domain was characterized using iterative PSI-BLAST 

searches (Altschul and Koonin, 1998) within the NCBI non redundant database (May 
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2007). The Drosophila N-terminal uncharacterized region (54-458) was used to 

collect proteins from insect genomes. A search with the homologous A.aegypti 

sequence (amino acids 3-357) converges with insect proteins, but in addition, there 

was a subsignificant hit to a Canis familiaris (dog) protein. Interestingly, the 

C.familaris protein contains a TSP1 domain (344-394). Using the dog hit to the 

GOGO domain, other Deuterostomia could be identified. NCBI-BLASTp searches 

within the Ciona intestinalis proteome (Dehal et al., 2002) and the Strongylocentrotus 

purpuratus proteome (Sodergren et al., 2006) revealed one ortholog in each 

proteome. The Caenorhabditis elegans GOGO protein F09F9.4 was identified in a 

HMMer search (Eddy, 1998) using a multiple alignment of GOGO domain proteins 

(Bailey and Gribskov, 1998; Do et al., 2005). The cytoplasmic motif shared by 

insects, worms, and Deuterostomia, was identified within a set of 15 C-termini of 

Gogo orthologues using Meme (Bailey and Gribskov, 1998). 

2.16  Cell culture 

 

Culturing of S2 cells 
 

Cells were grown at 25°C in 12ml S2 growth medium in 50ml tissue culture flasks 

(Falcon). When cell density reached 6 to 20 x106 cells/ml (determined using a 

Neubauer counting chamber), they were split in a 1:5 dilution. Before splitting cells 

were gently resuspended by washing the surface of the flask with a 5ml pipette. 

Clump of cells were broken by briefly pipetting up and down after the cells have 

detached. 

 

S2 growth medium  

Schneider's Drosophila Medium (Promocell) 

1% L-Glutamine (Promocell) 

10% FCS (Promocell) 

1% 100x PenStrep (Sigma-Aldrich) 

 

Transfection of S2 cells 
 

The cells should reach a density of 5x 105 -1x 106 cells/ml before transfection. Cells 

were gently resuspended by washing the surface of the flask with a 5ml pipette. 
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Clump of cells were broken by briefly pipetting up and down after the cells have 

detached. 2ml of cell suspension was placed into each well of a 6-well-plate (Falcon). 

The cells were allowed to settle down for 6-12h. The growth medium was removed 

from the cells and replaced with 1ml serum-free media. In the meantime the 

transfection mix was prepared: In an eppendorf tube 2μg of pActin-Gal4 and 2-8 μg 

of the respective pUAS vector were added to 100μl of serum-free media. In a second 

eppendorf tube 10μl of Cellfectin (Invitrogen) was added to 100μl of serum-free 

media. The content of the two eppendorfs was merged and carefully mixed by 

tapping the tube and then incubated for 30min at RT. After adding 800 μl of serum-

free media the transfection mix was put on the cells. 16h after transfection serum-

free transfection mix was removed from the cell and replaced with S2 growth 

medium. The cells were allowed to grow for 24h before further examination. 

 
Cell aggregation assay (performed by Xiuye Chen) 
 

GFP-tagged gogo constructs (UAS-gogoFL::GFP, UAS-gogoΔC::GFP) were 

transiently expressed in S2 cells by cotransfection with pActin-Gal4 using Cellfectin 

(Invitrogen). As a positive control, pUAS-fmi was cotransfected with Actin-Gal4 and 

UAS-citrine. The aggregation assay was performed for three times starting from 

transfection as described (Matthews et al., 2007). After transfection cells were 

resuspended and diluted to a density of 2x 106 cells/ml. Suspended cells were 

transferred to a 2ml eppendorf tube and rotated at RT at 150RPM for 6h. An aliquot 

of cells (100μl of a 1:5 dilution) was spotted for aggregation. 

2.17  Fly maintenance 

 

Flies were cultured in vials or, for expansion, in bottles with ~2 cm of fly food 

covering the bottom. Vials/bottles were put into cardboard boxes and stored in 

incubators controlling temperature and humidity. Humidity was held constantly 

between 60 and 70%, while the temperature was set to 25 ºC for expanding flies, 

including crossings, and to 18 ºC for maintaining the stock. For R7 specific GMR-FLP 

MARCM, flies were shifted down from 25°C to 18°C for three days after eclosion. For 

examination the flies were anaesthetized with CO2 and put on a CO2 pad underneath 

a stereo microscope. 
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2.18  Biochemistry 

 

Lysis 
 

Dissected larval brains or whole pupae were smashed in 25μl loading buffer using a 

glass homogenizer (Kontes Glass Co. 398) for exactly 1min. Another 25μl loading 

buffer was added and the cell lysat was transferred to an eppendorf tube and stored 

on ice. Protein samples were cooked for 10min at 98°C and subsequently centrifuged 

for 2min at 13.000rpm. The supernatant was transferred to a fresh eppendorf tube 

and either stored at -4°C or directly used for SDS-PAGE. 

 

Immunoblotting 
 

Protein samples were cooked for 10min at 98°C and subsequently centrifuged for 

2min at 13.000rpm. 20μl of the supernatant were separated by SDS-PAGE on a 

7.5% resolving gel Tris-HCl (Bio- Rad Laboratories GmbH). After protein separation 

the bands were blotted to a Hybond ECL Nitrocellulose membrane (Amersham) for 

2h. Membranes were washed briefly with water and incubated with blocking solution 

(5% milk powder in PBS) for 1h. Primary antibody was applied in blocking solution 

o/n at 4°C while rocking in a wet chamber on a shaker. The membrane was washed 

3 x 10 min with PBS. Secondary antibody was applied in PBS for 2-3h at RT on a 

shaker. The membrane was washed 3 x 10 min with PBS and 1x10min in 0.1% 

PBTw (0.1% Tween in PBS). The membrane was incubated in 14ml of ECL solution 

(GE Healthcare) and exposed to Hyperfilm ECL (Amersham). 

 

Running buffer      Blotting buffer

25mM Tris       25mM Tris 

250mM Glycin       250mM Glycin 

0.1% SDS       0.02% SDS 

        30% Methanol 

Loading buffer 

100mM Tris pH 6.8 

40g/l SDS 

20% Glycerol 

0.25g/l Bromphenol Blue 

200mM β-Mercaptoethanol 
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2.19  Histology 

 

S2 cell surface labeling 
GFP-tagged constructs (UAS-gogoFL::GFP, UAS-gogoΔC::GFP and UAS-

mCD8::GFP) were transiently expressed in S2 cells by co-transfection with Actin-

Gal4 using Cellfectin (Invitrogen).48h after transfection, cells were plated on μ-Slide 

VI, Poly-L-Lysine coated slides (Ibidi), as described in the users manual. Fixation 

was done for 30min at 37 degree with 4% Paraformaldehyde. For permeabilization, 

cells were treated with (+Triton) 0.4%Trition or without Triton (-Triton) in PBS for 

10min. After washing, cells were blocked with 5%NGS in PBS and stained with 

primary antibody α-Gogo over night at 4°C. After washing 4x2min with PBS the 

secondary antibody α-rabbit Alexa 568 was applied for 2h at RT. After washing with 

PBS, Vectashield Mounting Medium (Vector Laboratories Inc.) was added to the 

cells. GFP signal was observed directly without immunostaining. 

 

Whole mount brain antibody staining 
 

Whole mount brain antibody stainings were performed of 3rd instar larvae, pupae and 

adult flies. Larval and pupal brains were directly dissected in PBS. For staging of 

pupal development, white pupae that have enclosed shortly were transferred into a 

new vial (representing time point 0 of pupal development = 0APF) and were 

incubated at 25°C for a certain time and then immediately dissected. Pupal cases 

had to be carefully removed around the head region before dissection. Adult female 

or male Drosophila flies were anesthetized with CO2 and transferred into 70% EtOH 

for 30s in order to remove the wax that covers the cuticles. Then the flies were 

dissected in PBS solution. Tracheas that normally cover adult brains were removed. 

All brains were transferred in 100μl of PBS on ice after dissection. 10 μl of 37% 

Formaldehyde were added and the brains were fixed on a shaker for 25min. Then 

brains were washed 3x10min in 0.2% PBT (0.2% Triton-X in PBS). The brains were 

blocked for 30min in 0.2% PBT with 5% NGS and then stained on a shaker from over 

night up to 2 days at 4°C. Antibody solution contained 1st antibody in 0.2% PBT with 

5% NGS. After washing the brains 3x10min in 0.2% PBT the 2nd antibody in 0.2% 

PBT with 5% NGS was applied. Again, the brains were incubated on a shaker from 

over night up to 2 days at 4°C. After washing the brains 3x10min in 0.2% PBT, brains 
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were mounted on microscope slides using Vectashield Mounting Medium (Vector 

Laboratories Inc.) 

 

Whole mount LacZ staining 
 

3rd instar larval brains were dissected in PBS and transferred in PBS on ice. Brains 

were fixed at RT in 0.5% Glutaraldehyde in PBS. After fixation brains were washed 

once in PBS and then incubated in Staining solution at 37°C. The reaction was 

stopped by washes in PBS. Brains were mounted in 70% Glycerol in PBS. 

 

Buffer B       Staining solution

10mM Sodium Phosphate buffer pH 7.0   500μl Buffer B 

1mM MgCl2       5μl 0.3M Ferricyanide 

150mM NaCl       5μl 0.3M Ferrocyanide 

H2O        5μl 10% Triton X-100 

        5μl 10% X-Gal solution 

        (0.1g X-Gal/1ml DMF) 

 

Cryostat section antibody staining 
 

Adult Drosophila melanogaster flies were anesthetized with CO2. On the fly pad 

Drosophila heads were cut off using straight and sharp Spring scissors Cohan-

Vannas (Fine Science Tools). After removing the proboscis, the heads were 

transferred into 2% Formaldehyde in PBS containing 0.05% TritonX-100 and fixed for 

60-90min at 4°C. After washing the heads in PBS, they were transferred in 12% 

Sucrose in PBS at 4°C for 16h. The heads were removed from the sucrose and 

submerged in a drop of Sakaura Tissue-Tek O.C.T. Compound (Vogel GmbH & Co. 

KG). The heads were allowed to be permeated by the O.C.T. compound for 10-

30min at RT and then embedded in O.C.T in Peel-a-way embedding molds T8 

(Polysciences) and frozen on dry ice. 10-14μm horizontal sections were made using 

the cryostat and loaded onto SuperFrost Plus microscope slides (Menzel). After 

drying the sections for 5min at RT they were fixed in 0.5% Formaldehyde in PBS for 

20-60min at RT and washed in PBS 3x3min. Slides were blocked in 0.3% PBT (0.3% 

Triton-X in PBS) with 1% BSA for 30min. After washing 3x10min in 0.3% PBT, 200μl 

of 1st antibody solution was added to each slide in a wet chamber and incubated over 

night at 4°C. Antibody solution contained 1st antibody in 0.3% PBT with 5% NGS. 
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After washing the slides two times each 3x10min, HRP conjugated secondary 

antibody in 0.3% PBT with 5% NGS was added to the slides in a wet chamber and 

incubated for 4h at RT. Slides were washed through several changes of 0.3% PBT 

and then incubated in DAB staining solution for 15-30min at RT. DAB staining 

solution consists of 0.03% H2O2 in DAB. When reaction has completed, the reaction 

was stopped by washing the slides with PBS. Microscope slides were covered with 

70% Glycerol in PBS and cover slips. 

 

In situ hybridization of larval eye discs 
 

Larval disc preparation 
20-40 larval eye discs were dissected in PBS and transferred in PBS on ice. They 

were fixed in 4% Formaldehyde in PBS for 40-60min and then washed in PBT. The 

discs were dehydrated through a gradually increasing EtOH series (30-100% in 

H2O). After transferring the discs to a glass vial, they were rinsed with EtOH:Xylene 

(1:1), then soaked in pure Xylene for 1h and again rinsed first with EtOH:Xylene (1:1) 

and second with MtOH. Discs were rehydrated through a gradually increasing MtOH 

series (80-0% in H2O). After permeabilizing the discs in 80% Acetone in H2O for 

10min at -20°C, the Acetone was removed and 1ml of PTw added. The discs were 

transferred to eppendorf tubes. After washing the discs 2x10min in PTw, they were 

postfixed for 20min in 4% Formaldehyde and again washed 2x10min in PTw. 

 

Hybridization 
Discs were washed for 10min in Hybridization buffer:PTw (1:1) and in Hybridization 

buffer. Discs in 100μl Hybridization buffer were prehybridized for more then 30min at 

55°C. The Hybridization solution, containing 100μl Hybridization buffer, 1μl 

denaturated salmon sperm DNA (10mg/ml) and 1-5μl of the riboprobe, was 

denaturated at 95°C for 5min and immediately cooled on ice. After preheating the 

Hybridization solution at 55°C it was added to the prepared eye discs. Samples were 

hybridized over night at 55°C. Hybridization was followed by a series of washing 

steps: 1) wash 2x20min in 500μl Hybridization buffer at 55°C; 2) wash 10min in 500μl 

Hybridization buffer at RT; 3) after 5min add 250μl Hybridization buffer/PTw (2:1); 4) 

again after 5min add 250μl Hybridization buffer/PTw (1:1); 5) Remove 500μl of liquid; 

6) add 250μl Hybridization buffer/PTw (1:2) and wash for 5min; 6) wash 10min in 

PTw; 7) wash 10min in PBT 
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Detection 
Samples were blocked in PBT with 5% NGS. Discs were incubated with anti-DIG AP 

antibody in PBT over night at 4°C. After washing 2x20min in PBT, discs were rinsed 

in AP buffer and washed in 1ml of AP buffer for 30min. Most of the liquid was 

removed and the Staining solution added to discs. The sample was allowed to 

develop in the dark at RT for 30-60min. Afterwards the reaction was stopped by 

washing 2x15min in PBT. Samples were stored in PBS. 

 

For double staining, in situ hybridization was performed first and detected with HNPP 

Fluorescent Detection Set (Roche), followed by antibody staining. 

 

AP buffer      Hybridization buffer

100mM NaCl      5xSSC (for eye disc pH 7.0) 

50mM MgCl2      50% Formamide 

Tri-HCl pH 9.5      0.1% Tween20 

       50μg/ml Heparin 

PTw       100μg/ml sonicated denaturated 

PBS 0.1% Tween     salmon sperm DNA 

 

PBT       Staining solution

PBS 0.1% TritonX     1ml AP buffer 

       4.5μl NBT (Roche) 

       3.5μl BCIP (Roche) 
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Transmission electron microscopy (in collaboration with Marianne 
Braun) 
 

Adult Drosophila melanogaster flies were anesthetized with CO2 and transferred into 

70% EtOH for 30s. In PBS Drosophila heads were cut off using straight and sharp 

Spring scissors Cohan-Vannas (Fine Science Tools). After removing the proboscis, 

the heads were transferred into fixative (2.5% glutaraldehyde in PBS) over night. Fly 

heads were postfixed in Dalton solution (containing 1% Osmiumtetroxide, 1% 

Kaliumbichromat and 0.85% Natriumchlorid) and further dehydrated and embedded 

in Epon. Semi-thin sections (1μm) were stained with Toloidinblue. Ultra-thin sections 

(70nm) were obtained with an Ultracut Ultramicrotome (Reichert-Jung) and 

counterstained with Uranylacetat and Leadcitrat. Images with a magnification of 

6000x were taken using a Zeiss EM 10 and JEOL TEM 1230. 
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3 Results 

3.1 Gogo is required for R axon pathfinding 

 

Adult animals in which photoreceptor (R) neurons are specifically homozygous for 

gogo mutation (gogo- eyFLP flies) show a number of defects in all R axon types. 

They display incomplete medulla rotation, combined with the formation of abnormal 

bundles through an ectopic chiasm at the posterior side of the lamina (Figure 3-1A, 

A’). Although R1-6 axons correctly target the lamina, the overall lamina structure 

shows mild irregularities (Figure 3-1B, B’). The projection pattern of R7 axons is 

generally disrupted, resulting in crossings and a low frequency of undershooting the 

medulla layer M6 (Figure 3-1C, C’). R8s have the most striking defects among the R 

cell axons: they cross and bundle, they often overshoot their correct target layer (M3) 

and mistarget to the R7 target layer M6 (Figure 3-1D, D’). Moreover, R8s often stall 

at the temporary layer (M1) and fail to innervate the medulla (Figure 3-1D’ 

arrowheads).  
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Figure 3-1  Pathfinding defects of gogo mutant R axons. 
(A-D) Horizontal cross section images of the adult fly heads: wild type (A-D), gogoD869 eyFLP mutant (A’-
D’). Flies expressing gl-lacZ marker in R1-R8, stained with anti-β-galactosidase (A, A’); Rh1-τlacZ 
expressed in R1-R6, stained with anti-β-galactosidase (B, B’); flies expressing the R7 marker Rh4-
mCD8GFP (C, C’) or R8 marker Rh6-mCD8GFP (D, D’), stained with mAb24B10 (red) and anti-GFP 
(green). Mainly R axons that target the medulla (R7 and R8) exhibit striking phenotypes. They form a 
second chiasm (arrow in A’), bundles and mutual crossings. R7 undershoot their correct target layer 
(arrow in C’) and R8-overshooting phenotypes (arrows in D’) were observed at low frequency. R8s often 
stall at their temporary layer (M1) and fail to innervate the medulla (arrowheads in D’). Scale bars 10μm 

All three isolated mutant gogo alleles, which induce a premature translation stop 

before the transmembrane domain (Figure 1-7), were considered as null alleles, as 

they exhibit the same phenotype of R axon projections in eyFLP mosaics, in sporadic 

survivors of trans-allelic combinations (transheterozygous flies) and over a deficiency 

uncovering gogo locus (Df(3L)ED4858) (Figure 3-1, Figure 3-4; and data not shown).  

 

To look for the onset of axon pathfinding defects in gogo mutants, R8 axons were 

specifically labeled using ato-τmyc (myc tagged bovine Tau protein expressed under 

the R8-specific promoter atonal; Senti et al., 2003) in gogo- eyFLP third instar larvae. 

In wild type, R8 axons are evenly spaced (Figure 3-2A, Ai), whereas in gogo 

mutants, bundles and gaps appear between adjacent R8 axons in the medulla 

(Figure 3-2B, Bi). Interestingly, the defect seems to set in after R8 axons have 

passed through the lamina and reach the medulla. This erroneous pathfinding 

suggests that the proper interaction between gogo- R8 axons is lost, most likely at 

the stage when R axons enter the medulla.  

 

The maturation of optic lobes requires proper R cell differentiation and innervation 

from the compound eye (Huang and Kunes, 1996; Meyerowitz and Kankel, 1978; 

Selleck et al., 1992). However, since all photoreceptors were present and properly 

located in the tangential sections of gogo- eyFLP compound eyes (Figure 3-2E, n=5, 

648 ommatidia for [D1600]; n=3, 494 ommatidia for [H1675]), the observed 

phenotypes in gogo mutants are not due to defects in R cell fate specification. 

Moreover, neurons and glia show no developmental defects in the brain in larval 

gogo- eyFLP mutant brains (Figure 3-2C, D). 
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Figure 3-2  Onset of developmental defects 
(A-B) R8 axons in the larval optic lobe expressing the ato-τmyc transgene stained with anti-Tau and 
anti-Myc antibody. WT R8 axons form parallel tracts and the growth cones are distributed evenly (A, Ai). 
In gogoD869 eyFLP larvae, R8 axons show drastic defects in the medulla. Axons tangle and bundle to 
each other (B, Bi). Magnified images are shown in Ai and Bi. Arrowhead: Lamina plexus. (C-D) The 
optic lobes of third instar larvae are shown. Flies express gl-lacZ marker in R1-R8. Neurons (anti-Elav; 
green), glia (anti-Repo; red) and R axons (anti-β-gal; blue) are stained. In gogoD869 eyFLP mutants, 
location and number of neurons and glia cells are indistinguishable from wild type. (E-F) Tangential 
sections of WT and gogoD1600 eyFLP retina were stained with Toloidinblue: The rhabdomeres of 
photoreceptor neurons develop normally in gogo mutants. Scale bars 10μm 
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3.2 Gogo is evolutionary conserved 

 

Studies in vertebrate and invertebrate systems have revealed that the mechanism 

and the molecules that control axon guidance are highly conserved in evolution 

(Goodman, 1994). Since both the Tsp1 and the CUB domains are widespread across 

animals, the search for homologues was concentrated on the apparently 

uncharacterized N-terminal region (54-458aa, Figure 1-7). A series of PSI-BLAST 

searches within the NCBI non-redundant database was performed in collaboration 

with Alexander Schleiffer (IMP, Vienna). Homologues were not only identified in other 

insects, but also in nematodes and vertebrates. 
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Figure 3-3  Evolutionary conserved Gogo domains 
(A) Gogo protein structure. The colored boxes and ovals indicate: light grey, GOGO domain; purple, 
Tsp1 domain; red, CUB domain; dark grey, signal peptide; black, transmembrane domain. A conserved 
cytoplasmic motif is depicted in orange. (B) Multiple alignment of the GOGO and the TSP1 domain: 
Drosophila Gogo and selected orthologues were aligned using Probcons (Do et al., 2005), manually 
edited with GeneDoc (Nicholas and Jr., 1997) and colored using Clustal X (Jeanmougin et al., 1998). 
The secondary structures of Dm and Mm were predicted by PSIPRED and are shown above (H=helix, 
E=strand, C=coil) (Bryson et al., 2005). An 18 amino acids long unaligned region in Sp has been 
replaced by brackets. Eight conserved cysteines in the GOGO domain are marked with circles. The 
approximate border between the GOGO and the TSP1 domain is indicated by a red vertical line. (C) 
Multiple alignment of a conserved cytoplasmic motif. The YYD tripeptide motif is marked with a black 
bar. Dm, Drosophila melanogaster; Aa, Aedes aegypti; Ag, Anopheles gambiae, Sp; Strongylocentrotus 
purpuratus; Ci, Ciona intestinalis; Dr; Danio rerio; Gg, Gallus gallus; Mm, Mus musculus; Cf, Canis 
familiaris; Hs, Homo sapiens; Cb, Caenorhabditis briggsae; Ce, Caenorhabditis elegans. (D) 
Comparison of the molecular structures of Drosophila Gogo, mouse Tmtsp and C. elegans F09F9.4, 
indicating the similarity of protein organization between the different homologue candidates. Numbers 
indicate the amino acid identity and similarity (in brackets) between the GOGO and Tsp1 domains.  

All homologue candidates contain a so far uncharacterized conserved region, which 

was named the GOGO domain (depicted as a light grey box in Figure 3-3A). The 

GOGO domain encodes eight conserved cysteines and a secondary structure of 

mainly beta strands (Figure 3-3B). This amino acid sequence is predicted to 

assemble an Ig-like fold.  

All homologous proteins sharing the GOGO domain have a Tsp1 domain directly 

adjacent (Figure 3-3D). The CUB domain is missing in vertebrate and nematode 

gogo orthologues. Although there is no overall conservation within the cytoplasmic 

domains of different species, a motif specific for the gogo orthologues was identified. 

The short sequence contains a highly conserved tripeptide motif, YYD that may serve 

as a putative regulatory site and/or protein interaction domain (Figure 3-3A, C). 
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3.3 Gogo requires the GOGO and Tsp1 domain 

 

To assess the functional properties of Gogo’s extracellular domains, a series of 

rescue experiments was performed using Gogo fragments lacking different 

extracellular domains (Figure 3-4A). All fragments were tagged with a myc epitope 

and were expressed in all photoreceptor types using a direct fusion to the R neuron 

specific promoter, GMR (glass multiple reporter). In all rescue experiments, three 

independent insertions for each construct were tested in two different alleles of gogo 

([D869] and [D1600]). The expression of the full length protein (GogoFL) completely 

rescued gogo- eyFLP mutants (Figure 3-4B). In further rescue experiments, Gogo 

was non-functional whenever the Tsp1 domain or parts of the GOGO domain was 

deleted, (Figure 3-4A, B). However, a fragment containing the GOGO and Tsp1 

domain was sufficient to rescue the phenotype (ΔN-G in Figure 3-4A, B), showing the 

importance of the newly identified domain. The expression and localization of the 

expressed transgenes was assessed by Myc staining in the larval retina and optic 

lobe (Figure 3-4C). Extracellular deletion constructs showed no difference to the 

rescuing full-length construct, indicating that the extracellular domain is not required 

for Gogo membrane insertion and localization.  

These results suggest that the GOGO domain and the Tsp1 domain, but not the 

CUB-like domain, constitute the minimal extracellular fragment necessary and 

sufficient for Gogo function. Since the Tsp1 domain interacts with numerous cell-cell 

communication and extracellular matrix proteins (Adams and Tucker, 2000), these 

domains may serve as extracellular interaction domains.  

Figure 3-4  Structure-function analysis 
(A) Full length and truncated gogo transgenes fused to four C-terminal c-myc epitopes are expressed 
under the control of the GMR promoter for rescue experiments. The left column illustrates the structure 
of the different gogo transgenes lacking defined domains. The colored boxes and ovals indicate: light 
grey, GOGO domain; purple, Tsp1 domain; red, CUB domain; yellow, signal peptide; black line, 
transmembrane domain. The column on the right indicates whether these transgenes rescue the R axon 
projection defects in gogo- eyFLP mosaics. (+), rescued; (-), non-rescued. (B) Anti-β-galactosidase 
stainings of horizontal adult head sections of gogoD869 eyFLP mosaics carrying the indicated GMR 
transgene and the glass-lacZ reporter, both are expressed in R1-R8 neurons. The targeting defects of 
gogo mutants (ii) are almost completely rescued with GogoFL (iii) compared to WT (i), but were not 
rescued by GogoΔC (iv). Truncated proteins lacking either parts of the GOGO domain (GogoΔN-H (viii)) 
or the Tsp1 domain in (GogoΔN-E (v)) fail to rescue, whereas the presence of the GOGO domain and 
the Tsp1 domain is sufficient to rescue gogo- eyFLP flies (GogoΔN-F and -G (vi, vii)). (C) The myc 
tagged GMR gogo transgenes were expressed in all photoreceptor types in wild type flies, detected by 
anti-Myc antibody. Expression of the transgenes can be observed in the cross section images of 
developing photoreceptors within the eye disc (left panels) and in axons and growth cones innervating 
the optic lobe (right panels). Independent of their rescuing abilities, transgenes clearly localize to the 
membrane of photoreceptors (white arrows) and more importantly to the growth cones (arrowheads). 
The yellow arrow indicates GogoΔC accumulation in the cell bodies. 
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(D) GogoFL::GFP and GogoΔC::GFP transfected S2 cells were stained with Gogo antibody against the 
N-terminus of the protein (red) without (left columns) or after (right columns) a treatment of detergent 
TritonX. Both constructs clearly show the surface staining of Gogo on the plasmamembrane of the cells 
(red). Staining against GFP is shown in green. The mCD8::GFP construct was used as a negative 
control to show that the Gogo antibody is specific to Gogo expression. Scale bars 10μm 
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3.4 Gogo requires the cytoplasmic domain for its function  

 

In a rescue experiment similar to the one described above, the deletion of the entire 

cytoplasmic domain (GogoΔC) did not rescue the gogo- eyFLP mutant (Figure 3-4A, 

B). To show proper membrane insertion of the GogoΔC fragment, its localization was 

checked in eye discs, optic lobes and in transfected S2 cells. In S2 cells, surface 

labeling without detergent clearly showed that both full length and ΔC constructs 

localized to the surface of the cells (Figure 3-4D). In eye discs and optic lobes, both 

proteins were localized to the cell membrane and enriched at the growth cone 

(Figure 3-4C). A more punctate staining accumulated in the cell body of R neurons 

expressing the ΔC construct (yellow arrow in Figure 3-4C) compared to other non-

rescuing constructs, such as GogoΔN (Figure 3-4C). Nevertheless, localization to the 

membrane, along R axons and to their growth cones, appears comparable to the 

rescuing full length construct. Thus, the performed rescue experiment shows that the 

cytoplasmic domain of Gogo is required for its molecular activity.  
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3.5 Gogo is dynamically expressed in the developing visual 
system 

 

To investigate Gogo's role in axonal pathfinding, its expression during visual system 

development was assessed by gogo in situ hybridization performed by Satoko Suzuki 

and antibody staining performed together with Takashi Suzuki. gogo mRNA 

expression was detected both in the eye disc and the brain of third instar larvae. In 

eye discs, the region posterior to the morphogenetic furrow, where differentiating R 

neurons reside, is stained in a dotted manner (Figure 3-5A). The dotted expression in 

the eye disc was investigated in more detail by double staining of gogo mRNA and 

Elav antibody which labels all R cell types. gogo mRNA  is detected predominantly in 

the center of each ommatidium, where R8 is located (Figure 3-5B-Bi’). The single 

gogo expressing cell in the ommatidial center was identified as R8 by double staining 

using the R8 specific marker Senseless (Sens). The R8 nuclei stained by Senseless 

are nicely enclosed by gogo mRNA, localizing to the cytoplasm of the cell (Figure 

3-5D-Di’). In addition to photoreceptor expression, presumed medulla neurons, 

whose cell bodies lie outside the crescent shape formed by innervating R7/8 neurons 

(Figure 3-5C), showed high levels of gogo mRNA expression. 

 

 

Figure 3-5  gogo in situ staining in eye discs and optic lobes 
(A-D) in situ hybridization of gogo in third instar larvae. In the eye-disc (A,B,D), gogo mRNA is 
expressed in developing photoreceptors posterior to the morphogenetic furrow (arrowheads) (A). 
Staining of gogo mRNA (magenta) and Elav protein (green) shows that gogo mRNA is expressed in one 
cell per ommatidium (B). In the optic lobe, gogo mRNA is expressed in a crescent shape surrounding 
the optic lobe center (C) A 3D image of simultaneous staining gogo mRNA (magenta) and Senseless 
protein (green) shows that gogo mRNA is localized around the Senseless positive nuclei of R8s (D). 
Magnifications: merge (Di); magenta (Di’). a; anterior, p; posterior. Scale bars 10μm 
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A Gogo antibody was generated against the extracellular domain by Takashi Suzuki. 

This Gogo antibody labels R axons, shown by colocalization with labeled R axons. R 

cells were specifically labeled with mKOrange (monomeric Kusabira Orange) 

(Karasawa et al., 2004) under the control of the GMR promoter. In third instar larvae, 

Gogo seems to be absent in the lamina, which is innervated by R1-R6 (Figure 3-6B-

B’), but highly expressed in R axons in the medulla (R7 and/or R8). As the majority of 

R axons innervating the medulla are R8 axons at this stage of development, this 

staining is consistent with the in situ which shows strong gogo expression in R8s in 

the eye disc. In particular, antibody staining at the tip of axons is clearly visible 

(Figure 3-6A-Ai’ arrows), suggesting a role for Gogo in navigating growth cones. The 

most outer axons (arrowhead in Figure 3-6A), which represent the youngest in-

growing axons show the strongest Gogo expression along the axon. Strong staining 

is also observed below the lamina plexus (Figure 3-6A, B, bracket), in the lobula and 

in the lobula plate. Since the in situ also shows robust expression in the region 

outside the medulla crescent where medulla neurons arise, it is very likely that the 

antibody staining in the lobula/lobula plate is mainly caused by the localization of 

Gogo to the processes of unidentified medulla neurons.  

 

 

Figure 3-6 Gogo expression during larval development 
(A-B) Gogo antibody staining of WT third instar optic lobes (A). Gogo (green) localizes predominantly 
along the axon (arrowhead in A) and at the growth cones of R7/8 (arrow in A). The staining in the 
medulla colocalizes with the growth cones marked by GMR-mCD8mKOrange, stained with anti-KO 
(magenta); arrows in Ai, Ai). 3D projection image (using the software AMIRA) shows that Gogo 
expression is not observed on R1-R6 axons, which terminate in the lamina (arrowhead). R axons are 
stained using GMR-mCD8mKOrange (red) and Gogo antibody (green) (B-B’). Scale bars 10μm 
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During early pupal stages, Gogo expression is unambiguously detected in all 

photoreceptor types stained with mKOrange. At 24APF (24hr after puparium 

formation), Gogo is observed in R8 axons and the axonal termini of R7 and R1-6 

(Figure 3-7A-Aii’). Thus, Gogo is expressed in all the photoreceptors at this stage 

(Figure 3-7H, H’). Interestingly, at 40APF, when R1-6s are still involved in lamina 

cartridge formation, Gogo is expressed on all R1-6 axons (Figure 3-7C, C’, D, D’).  

From the mid-pupal stage onward, Gogo expression becomes reduced in the 

photoreceptor axons. At 40APF faint staining can be observed around the M3 layer 

(Figure 3-7E-Ei’). Since the Gogo staining and R axons do not overlap perfectly, it is 

likely that the staining derives from lamina neurons or higher order neurons. 

Similarly, in late stages of pupal development Gogo seems to be present in R 

neurons at a very low level only. At 72APF, Gogo can be rarely seen on the axons of 

R7/8, together with a faint staining of supposedly lamina or medulla neurons (Figure 

3-7F-Fi’). In contrast to the observed protein reduction in photoreceptor axons, Gogo 

protein levels seem not to be altered in the photoreceptor cell bodies. In the retina 

Gogo protein was detected in all photoreceptor types throughout pupal development 

(Figure 3-7G-L’). This observation rather suggests the presence of a mechanism 

regulating Gogo protein level within the axon or growth cone rather than 

transcriptional regulation. 

The specificity of the generated Gogo antibody was confirmed in gogo- eyFLP larval 

mosaics and by labeling small heterozygous WT clones in an otherwise homozygous 

gogo mutant retina during pupal development. Anti-Gogo staining is not detected in 

gogo mutant retinal cells at 24APF, 40APF and 48APF (Figure 3-7B-B’ and data not 

shown). 
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Figure 3-7 Gogo is dynamically presented on R axons during pupal stages 
Anti-Gogo staining is shown in green (A-L) and R axons are visualized by GMR-mCD8mKOrange in 
magenta (A-F) or blue (G-L), respectively. (A-B’) The optic lobe (A-Aii’) and the retina (B-B’) of 24APF 
pupae. (A) Strong Gogo expression is observed on R axons in the lamina (i) and the medulla (ii). 
Magnifications of the lamina (Ai, Ai’) and the medulla (Aii, Aii’). In the lamina, Gogo localizes to the 
termini of R1-6 (arrowheads in Ai, Ai’). In the medulla, Gogo strongly overlaps with the termini of R7 
(arrowheads in Aii, Aii’) and R8 (arrows in Aii, Aii’). In gogoH1675 eyFLP retina, WT R cells marked with 
GMR-mCD8mKOrange (magenta) completely overlap with Gogo positive cells (green), whereas gogo- 
cells lack Gogo protein (B, B’). (C-Fi’) The optic lobe at 40APF (C-D’), 48APF (E-Ei’) and 72APF (F-Fi’): 
At 40 APF termini of R7 and R8 show Gogo staining (R7, arrowheads; R8, arrows in Ci and Ci’). Gogo is 
strongly localized to the R1-6 axons during lamina cartridge formation (D, D’). At 48APF, overall 
expression of Gogo becomes reduced. Punctate Gogo is seen around the M3 layer to which R8 extends 
its filopodia at this stage (arrows in Ei, Ei’). Gogo expression can be vaguely detected on R axons at 
72APF (arrow in Fi, Fi’). Medulla layers are indicated in Ci, Ei, and Fi. (G-L’) In contrast all 
photoreceptor cell bodies are Gogo protein positive during the pupal stages 10APF, 24APF, 42APF, 48 
APF, 52 APF and 55 APF. Scale bars 10μm. 
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3.6 gogo brain expression is not required for R axon 
guidance 

 

Since expression of Gogo protein is also detected in an undefined population of 

medulla neurons in the Gogo antibody staining, the question whether brain 

expression of Gogo is required for R axon pathfinding arose. To test this, GogoFL 

was specifically expressed in R neurons in transheterozygous gogo- survivors, which 

lack Gogo in the whole animal, including the brain. Therefore, Gogo expressing R 

axons project into optic lobes mutant for gogo. Transheterozygous animals were 

rescued to the same extent as observed in the gogo- eyFLP mutant background after 

expression of GMR-GogoFL (Figure 3-8A-F). Early pathfinding defects during larval 

development were rescued (Figure 3-8B), as well as the adult projection pattern 

(Figure 3-8E). Therefore, Gogo is exclusively required in R axons, but not in the brain 

for R axon pathfinding. This result strongly argues against homophillic (Gogo-Gogo) 

interactions between R axons and target cells, but does not exclude homophilic 

axon-axon interactions among R cells. 

 

In order to assess whether Gogo shows the ability to bind homophilically, Xiuye Chen 

transfected Drosophila culture S2 cells with GFP-tagged GogoFL or GogoΔC, and 

checked whether the cells form aggregates. As a positive control, the homophilic 

cadherin Flamingo (Fmi) was used. It was shown that the expression of full-length 

Fmi protein induced strong aggregation of S2 cells (Usui et al., 1999). Also in our 

positive control experiment, cells transfected with Flamingo showed a very strong 

aggregation (Figure 3-8G). In contrast, neither the GogoFL nor GogoΔC expressing 

cells showed any aggregation (Figure 3-8H, I) in all triplicate experiments. Since the 

S2 aggregation assay is considered a robust assay to assess homophilic 

interactions, the result suggests that Gogo has no ability for homophilic binding. 
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Figure 3-8  Gogo is autonomously required in R axons 
(A-F) Whole-mount confocal images visualizing R cell projections with mAb24B10. (A-C) larval 
phenotypes (D-F) adult phenotypes (A, D) gogoD869/D1600 trans-heterozygous mutant (B, E) 
gogoD869/D1600; GMR-gogoFL: (C, F) gogoD869 eyFLP; GMR-gogoFL. GogoFL rescues both gogo trans-
heterozygous and gogoD869 eyFLP phenotypes (G-I) S2 cells were cotransfected with actin-GAL4 and 
UAS-Flamingo (fmi) +UAS-Citrine (left), UAS-GogoFL::GFP (middle), or  UAS-GogoΔC::GFP (right). 
Cells transfected with flamingo formed aggregates of more than 20 cells. GogoFL or GogoΔC 
transfected cells do not aggregate. Scale bars 10μm. 
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3.7   Identification of the gogo enhancer fragment 

 

Previous experiments have demonstrated that Gogo is autonomously required for R 

axon guidance in visual system development. In situ and antibody staining of Gogo 

confirm this role in R axons. In addition, the performed stainings revealed Gogo 

expression in a population of unidentified neurons in the developing optic lobe. gogo 

in situ staining applied to Drosophila embryos revealed further expression in the CNS 

of the embryo (data not shown). However, investigating Gogo's role in these neurons 

appears difficult as the identity of the cells can hardly be dissected with the quality of 

stainings obtained so far. 

 

One possible strategy to identify these cells can be the identification of the gogo 

enhancer fragment. Using the Gal4/UAS system, gogo-specific expression of marker 

proteins, which can either be localized to the nucleus or to axons, can be highly 

amplified in comparison to endogenous gogo expression. 

Four different fragments (gogo1-4) were cloned upstream of the gal4 gene (Figure 

3-9A). The obtained gogo1-4-Gal4 lines were combined with UAS-GFP:lacZnls (nls, 

nuclear localization signal) and analyzed for expression in 3rd instar larval eye discs. 

For each construct three independent transgenic insertion lines were examined. 

gogo2-Gal4 showed a striking similar expression pattern compared to the gogo in 

situ (Figure 3-9B), whereas none of the other cloned Gal4 lines gave any signal (data 

not shown). UAS-GFP:lacZnls expression driven by gogo2-Gal4 was almost 

restricted to one R cell lying in the middle of each ommatidium (Figure 3-9B, Bi). Only 

few ommatidia contained one or two additional cells with faint expression (Figure 

3-9B, Bi). The cells lying in the middle of each ommatidium were identified as R8 by 

colocalization with the R8 marker Sens (Figure 3-9C, C´, C´´). In contrast to the in 

situ, now a perfect overlap was obtained. The expression pattern was also 

investigated in the optic lobe by expressing the axonal marker UAS-mCD8GFP under 

the control of gogo2-Gal4 (Figure 3-9D, D´). R8 axons projecting into the medulla are 

nicely stained. Consistent with previous results, almost no staining was observed 

within the lamina. Therefore, the obtained expression pattern of gogo2-Gal4 seems 

to resemble the endogenous gogo expression within R axons during larval 

development. In pupae, R7 and R8 showed gogo2-Gal4, UAS-GFP:lacZnls 

expression (Figure 3-9E). In addition, one or two R1-R6 cells showed stainings. One 

of the cells could be identified as R3 due to its position within the ommatidium. The 

pupal expression of the gogo2 enhancer fragment only partially reflects the 
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endogenous expression pattern observed in antibody stainings. Thus, the fragment 

does not contain the entire gogo enhancer. Also no staining is observed below the 

lamina plexus, in the lobula and lobula plate in the larval stainings (Figure 3-9D, D´), 

whereas using the Gogo antibody strong stainings were detected in these regions 

(compare Figure 3-6A, B, bracket). Nevertheless, expression of gogo2-Gal4 

expression could be detected in the CNS of 3rd instar larvae (Figure 3-9F). 
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Figure 3-9 gogo enhancer fragment bashing 
(A) Four different fragments were cloned upstream of the gal4 gene: Fragment 1 derives from the 
intergenic region upstream of the gogo coding sequence; Fragment 2, 3 4 are overlapping 6kb 
fragments spanning the entire first gogo intron. (B, Bi) gogo2-Gal4 drives the expression of UAS-
GFP:lacZnls detected by LacZ antibody staining (green) in eye discs. R1-R8 cells were stained with 
anti-Elav antibody. gogo2-Gal4 is strongly expressed in one R cell lying in the middle of each 
ommatidium (arrows). Few ommatidia contain one or two additional cells with faint expression 
(arrowheads). (C, C´, C´´) gogo2-Gal4 drives the expression of UAS-GFP:lacZnls detected by GFP 
antibody staining (green) in eye discs. R8 cells were labeled with anti-Sens antibody. gogo2-Gal4 
expression is strongest in R8 axons. (D, D´) UAS-mCD8GFP is expressed under the control of gogo2-
Gal4. UAS-mCD8GFP is detected by GFP antibody staining (green). R1-R8 axons were stained with. 
The expression in the optic lobe is restricted to R axons which project into the medulla, but no 
expression is detected below the lamina plexus in the lobula or lobula plate. (E) gogo2-Gal4 UAS-
GFP:lacZnls expression is detected by LacZ staining in R7, R8 and R3 in the pupal retina at 48APF. In 
some of the ommatidia an additional cell showed faint expression (arrowhead) (F) gogo2-Gal4 UAS-
GFP:lacZnls expression detected by LacZ staining the CNS of 3rd instar larvae. (G, H) gogoD869/D1600 
adult flies, R axons are visualized with mAb24B10 antibody. As a positive control UAS-gogoFL-T2 was 
expressed under the control of GMR-Gal4 (F). gogo2-Gal4 UAS-gogoFL-T2 expression rescues the 
axon guidance defect of R7 and R8 axons (G). Scale bars 10μm. 

To test if gogo2-Gal4 expression is sufficient to rescue the gogo mutant phenotype in 

R axons, UAS-gogoFL-T2 was expressed in transheterozygous gogo mutants 

(Figure 3-9H). The projection pattern of R7 and R8 was fully rescued, suggesting that 

the identified enhancer fragment fulfills all functional requirements at least for R7 and 

R8 cells. In addition, it partially reflects the temporal dynamics of endogenous 

expression, starting from R8s during larval development and then expanding to R7s 

and some R1-R6 cells during pupal development. For this reasons, there is a high 

chance that the gogo enhancer fragment could be a useful tool in future experiments 

examining Gogo's function in the CNS. 
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3.8 gogo is required for the assembly of lamina cartridges 

 

The strong gogo expression in all R1-R6 photoreceptors shown by antibody staining 

during pupal suggests a possible requirement of Gogo in theses cell types. Although 

R1-6 axons in gogo eyFLP flies correctly target the lamina and do not overshoot into 

deeper neuropils, the overall lamina structure shows mild irregularities (Figure 3-1B’). 

Gogo antibody staining revealed its expression in R1-R6 during mid pupal stages 

(Figure 3-7D). During this time, R1-R6 axons start extending to their final targets, the 

lamina neurons, to form lamina cartridges. As the observed lamina irregularities in 

gogo mutants could be caused by defects in cartridge formation, the ultra structure of 

the lamina was analyzed using transmission electron microscopy (TEM). 

The lamina of wild type eyFLP controls displays a highly regular array of evenly sized 

cartridges that mainly consist of six R1-R6 terminals surrounding the lamina neurons 

L1 and L2 in the center (Figure 3-10A). In gogo- eyFLP mosaics this array was 

generally disrupted, containing cartridges of variable sizes (Figure 3-10B-C). 

In order to quantify missorting of R1-R6 termini into cartridges, montages of electron 

micrographs covering the lamina were analyzed and quantified excluding the most 

outer lamina regions (Figure 3-10D). In wild type controls the majority (89.7%) of the 

cartridges contained six R terminals (29 cartridges, n=2). Only 10.3% showed 

aberrant numbers ranging from 5 to 7 terminals per cartridge. In contrast, the number 

of determined R1-R6 terminals within each cartridge ranged from 1 to 9 terminals per 

cartridge in gogo- eyFLP flies, indicating a severe missorting defect. In total, 79.1% of 

the cartridges were affected (43 cartridges, n=2). Despite the missorting defect, gogo 

mutant R terminals contained characteristic structures, as capitate projections (glial 

invaginations) (Fabian-Fine et al., 2003) or T-bar-shaped dense structures. These 

features suggest the formation of functional synapses in gogo mutant R terminals 

(Figure 3-10A-Bi) (Bazigou et al., 2007). Since the ey enhancer fragment present in 

eyFLP shows expression in a small proportion of brain cells including lamina 

neurons, the experiment was repeated using a recently published 100% eye-specific 

fragment ey3.5 (Bazigou et al., 2007). In ey3.5FLP mosaics the majority of R cells are 

homozygous mutant, whereas the target cells are reliably WT. Using ey3.5FLP, a only 

slightly weaker phenotype was obtained compared with gogo- eyFLP mosaics (Figure 

3-10C).  

In summary, these results indicate that Gogo mediates interactions between R1-R6 

growth cones within the target region. Nevertheless, the defects in projections could 
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be secondary, reflecting an earlier role in R8 or defects in axon fascicle ordering 

before reaching the lamina. 

 

 

 

Figure 3-10  Lamina cartridge formation in gogo mutants 
(A-C) TEM of adult lamina cartridges: In wild type eyFLP controls six R cell terminals (R highlighted in 
green) are arranged around the lamina neurons L1 and L2 in the center (A). In gogoD1600 eyFLP flies the 
number of terminals varies (B and C). Representative images show cartridges with 8 terminal (B) and 4 
terminals per cartridge (C). R cells contain glia capitate projections (arrows in A, Ai, B, Bi). R axons from 
T-bar shaped synapses (arrowheads in A, Ai, B, Bi).  
(D) Quantification of R cell terminals per cartridge in eyFLP (left panel) and ey3.5FLP mosaics (right 
panel). The distribution of gogo mutant R cells per cartridge (green) is wider compared to WT (gray). WT 
eyFLP: n=2, 29 cartridges; gogoD1600 eyFLP: n=2, 43 cartridges; WT ey3.5FLP: n=2, 66 cartridges; 
gogoD1600 ey3.5Flp: n=2, cartridges 91. 

78 



                                                                                                                           Results 

 

3.9 gogo functions in R8 but not in R7 axons 

 

During larval development R7 axons fasciculate with pioneering R8 axons and simply 

follow their trajectories. Nevertheless, Gogo is expressed strongly in R7s in early-mid 

pupal stages when R7 axonal termini have already segregated from R8s. Thus, it is 

possible that Gogo has an autonomous function in R7 axonal pathfinding during 

pupal development.  

To test Gogo’s requirement in R7, gogo mutant clones were generated specifically in 

R7, but not in R8 cells using the GMR-FLP MARCM system (Figure 3-11A) 

(Clandinin et al., 2001; Lee et al., 2001; Maurel-Zaffran et al., 2001). This experiment 

was performed together with Takashi Suzuki. The GMR-FLP strategy takes 

advantage of the fact that different R cell types are generated in temporally 

separated mitoses. R2–R5 and R8 derive from mitotic divisions occurring anterior to 

the morphogenetic furrow. R1, R6 and R7 derive from mitotic divisions occurring 

posterior to the morphogenetic furrow. To induce mitotic recombination the GMR 

enhancer, which is expressed posterior to the furrow, drives Flipase expression. 

Although all R cell types will express the Flipase, only mitoses happening posterior to 

the furrow, namely in R1, R6 and R7 will induce mitotic recombination, resulting in 

approximately 15% of R1s, R6s, and R7s being homozygous for a particular 

chromosomal arm. To label exclusively mutant R7s the MARCM method (mosaic 

analysis with a repressible cell marker) was used (see chapter 2.13) (Lee and Luo, 

1999). The UAS-synaptobrevin-GFP reporter is expressed under the control of the 

R7-specific PANR7-Gal4 in homozygous mutant R7s only, but dominantly repressed 

by Gal80 in heterozygous R7s.  

Out of 130 gogo mutant R7 axons assessed, not a single R7 showed an abnormal 

phenotype (Figure 3-11B). Due to the possibility that gogo- R7 axons may exhibit 

stronger phenotypes only in gogo mutant R7 populations, clones composed of more 

than two adjacent gogo- R7 axons were analyzed. Out of 25 clones, no aberrant 

phenotype was observed, neither in R7 axons nor their termini (arrows in Figure 

3-11B), indicating that R7 specific loss of gogo does not result in autonomous 

projection defects in R7. 

In addition, the Gal4-UAS system was applied to test if R7-specific gogo expression 

is sufficient to rescue the R7 targeting defects in gogo eyFLP mutants. R7-specific 

UAS-gogoFL-3B expression, using PM181-Gal4 (Lee et al., 2001), did not rescue the 

gogo- eyFLP phenotype (Figure 3-11C). In contrast, GMR-Gal4 driven UAS-gogoFL-

3B expression was able to rescue gogo- eyFLP flies (data not shown). 
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Is R7 pathfinding dependent on the R8 axon? To address this question UAS-gogoFL-

T2 was expressed in gogo eyFLP mutants using a combination of two independent 

R8-specific Gal4 lines, 109-68-Gal4 (White and Jarman, 2000) and caps-Gal4 

(Shinza-Kameda et al., 2006). Although R7 was still mutant for gogo, R8 specific 

gogo expression was sufficient to rescue targeting defects of both, R8s and R7s 

(Figure 3-11D). Using a single R8-specific Gal4 did not rescue or only partially 

rescued gogo eyFLP flies (data not shown). This could be explained by the 

differential expression timing and levels. Therefore, this experiment clearly shows the 

autonomous requirement of Gogo in R8 axons. In contrast, the disruption of R7 

axons in gogo mutants is a consequence of secondary defects deriving from 

abnormally guided R8s. 

 

 

Figure 3-11  gogo functions in R8 axons, but not in R7 
(A) Schematic summary of selective labeling of single gogo mutant R7 axons in adult flies using GMR-
FLP MARCM system (adapted from Lee et al., 2001). White circles indicate the centromere, black bars 
FRT sites. (B) gogo mutant R7 axons generated by the GMR-FLP MARCM method terminate in the 
correct layer of the medulla (arrowheads). Also, R7 clones composed of more than two adjacent axons 
did not show defects (arrows). mAb24B10 (red) labels all R7 and R8 axons, irrespective of their 
genotype; Synaptobrevin-GFP specifically labels gogoD869 mutant R7 axon termini (green). All R8 axons 
(and unlabeled R7 axons) are gogo+. (C) R7-specific expression of gogo induced by PM181-Gal4; UAS-
gogoFL-3B does not rescue the R7 gogoD869 eyFLP phenotype (arrows) (D) R8-specific Gogo 
expression, induced by the combination of 109-68-Gal4 and caps-Gal4 to drive the expression of UAS-
gogoFL-T2, instead rescued both R8 and R7 targeting defects completely in gogoD869 eyFLP flies. R7 
and R8 axons were labeled with mAb24B10 (C, D). Scale bars 10μm.  
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3.10  In larvae gogo- R8 axons lose repulsive interactions 

 

The strong gogo expression in R8 photoreceptors shown by in situ in larval eye discs 

and the intense R8 bundling observed in gogo- eyFLP larvae (Figure 3-2B, Bi) 

suggests a requirement of Gogo in outgrowing R8 photoreceptor axons. The 

formation of axon bundles and gaps within the medulla of gogo- eyFLP larvae 

indicates that the proper interaction between gogo- R8 axons is lost, most likely at the 

stage when R axons enter the medulla. Since most of the R neurons were mutant for 

gogo in these animals, it was unclear whether the cause of spatial gaps and bundles 

was the lack of attraction or repulsion among mutant axons.  

Small patches of homozygous mutant cells (small clones) were generated expressing 

FLP recombinase under the control of the weak eye-specific promoter ey1x FLP.Exel 

(Shinza-Kameda et al., 2006) without introducing a recessive cell lethal mutation on 

the wild type chromosome (see chapter 2.13). The resulting homozygous gogo 

mutant axons were labeled with GFP using the MARCM method (Lee and Luo, 

1999). To distinguish wild type (including heterozygous) axons the GMR-mKOrange 

transgene was introduced as a marker onto the wild type chromosome arm. We refer 

to this modified method as complementary MARCM (cMARCM) (see chapter 2.13), 

established by Satoko Suzuki. This method clearly distinguishes gogo mutant axons, 

labeled with GFP (inserted on the mutant chromosome) and wild type (WT) axons, 

labeled with mKOrange (inserted on the wild type chromosome). 

 

 

Figure 3-12 Schematic summary of methods to generate mosaic animals 
Schematic showing cMARCM (A) and the strategy to specifically label mutant and WT R8 axons (B). For 
both methods, the weak eye-specific promoter ey1x FLP.Exel was used to drive Flipase expression and 
to induce mitotic recombination in a small fraction of R cells. White circles indicate the centromere, black 
bars FRT sites. (A) Left panel: Heterozygous flies carry GMR-mKO, which is expressed in all R axons 
and the Gal80 repressor on one chromosome, in trans the gogoD869 mutation. In heterozygous flies the 
expression of UAS-GFP by the neuronal driver elav-Gal4 is repressed by Gal80. Right upper panel: 
upon recombination the GMR-mKO marker and Gal80 are lost. UAS-GFP expression is no longer 
repressed in homozygous mutant cells. Right lower panel: in heterozygous cells all R cells are labeled 
with mKO, GFP expression is repressed. In the rescue cMARCM experiments either UAS-gogoFL or 
UAS-gogoΔC was recombined to the right arm of the mutant chromosome to be expressed in 
homozygous mutant cells upon mitotic recombination. (B) Left panel: The gogoD869 mutant chromosome 
arm carries the R8-specific marker ato-τmyc, in trans the GMR-mKO marker. Right upper panel: 
Homozygous mutant R8 cells lose mKO expression, but carry instead two copies of ato-τmyc resulting 
in strongly labeled R8 axons. Right lower panel: Heterozygous R8 cells are still labeled with mKO and 
carry only one copy of ato-τmyc, resulting in faint R8 marker staining. 
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The cMARCM analysis was performed together with Satoko Suzuki. In the wild type 

mosaic control, green WT R7/8 axons do not bundle with their green WT neighbors 

(Figure 3-13A-A” and F). In contrast, gogo mutant axons start to form bundles with 

neighboring gogo mutant axons (Figure 3-13B, B’ and F). Interestingly, the red WT 

axons adjacent to the gogo- clone barely seem affected (Figure 3-13B” and F). When 

“single” gogo mutant axons are generated, no visible abnormalities can be detected 

in these mutant axons (Figure 3-13C-C” and F), suggesting that the pathfinding error 

of gogo mutants mainly occurs among mutant axons, but not among mutant and WT 

axons. Pathfinding errors are rescued by reintroducing GogoFL protein within the 

mutant clone, but can not be rescued by reintroducing GogoΔC (Figure 3-13D- E’).  
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Figure 3-13  Axon bundling in small gogo mutant clones 
(A-E) Larval optic lobes of mosaic animals generated by cMARCM. Axons from small clones induced by 
ey1xFLP.Exel are labeled with anti-GFP (green in A-E), and remaining WT axons are labeled with a 
mixture of anti-Myc and anti-KO (red in A-C), or anti-KO alone (red in D and E). In the control, gogo+ 
axons do not bundle and run in parallel to each other (A, A’). A few thick stainings are presumably R7/8 
fascicles deriving from the same ommatidium (red arrows in A’). In  gogoD869 mutant mosaics (B and C),  
gogo- axons from the small clone bundle to each other (red arrows in B’), while single isolated gogo- 
axons do not show any abnormalities (C’). In these animals, surrounding WT axons are hardly affected 
(B” and C”). The gogo- phenotype is rescued by UAS-gogoFL-3B (D), but not by the UAS-gogoΔC-3B 
construct (E). (F) Schematic drawings showing that gogo- axons lose repulsive axon-axon interaction 
and bundle within the clone, but rarely affect surrounding WT axons. Single gogo- axons extend 
normally. Scale bars 10μm. 

 
Although the majority of R axons within the medulla at this time of development 

derive from R8 cells and only few R7 axons have arrived in the medulla, the result 

would be more conclusive if the behaviour of R8 axons was specifically examined. To 

assess the behaviour of mutant R8 axons in detail, the R8 marker ato-τmyc was 

recombined on the same chromosomal arm as the gogo gene (left arm of 3rd 

chromosome). Homozygous gogo mutant R8 axons can therefore be distinguished 

by stronger R8 marker expression and by the lack of mKOrange, which labels only 

WT R7/8 axons. This method clearly distinguishes gogo mutant R8 axons strongly 

expressing ato-τmyc (inserted on the mutant chromosome arm), from wild type R8 

axons labeled with mKOrange (inserted on the wild type chromosome arm).  

83 



                                                                                                                           Results 

 

In small mutant clones, neighboring gogo- R8 axons tend to form bundles (Figure 

3-14B-B” red arrows), whereas the surrounding WT axons are not affected. In some 

cases, gogo- R8 axons that were clearly separated come closer and bundle to each 

other (Figure 3-14B-B” yellow arrows). This suggests that gogo mutant R8 axons 

attract each other over a relatively short distance. For quantification clone borders 

between gogo- and WT axons were examined whether the mutant R8 axon at the 

border favors the adjacent gogo- axon (Figure 3-14Db) or adjacent WT axon (Figure 

3-14Dc), or does not form bundles at all (Figure 3-14Da). In total, 71% of gogo- R8 

axons (75 cases observed) bind to another gogo- R8 axon, whereas none binds to 

the adjacent WT R8 (Figure 3-14C, D). This strongly suggests that Gogo mediates 

repulsive interactions among R8 axons.  

 

 

Figure 3-14  Larval gogo- R8 axons lose axon-axon repulsion 
(A-C) Axons from small clones induced by ey1xFLP.Exel. R8 axons labeled with ato-τmyc are visualized 
by anti-Tau (green). WT axons labeled with mCD8KOrange are stained with anti-mCD8 (red). Since the 
ato-τmyc marker is on the same arm as the gogo gene, strongly stained green axons without red 
staining are gogo- R8 axons. (A-A”) Wild type control clone: ato-τmyc FRT/ GMR-mCD8KO FRT. Axons 
do not form bundles (white arrows in A’). (B-B”) gogoD869 clone: ato-τmyc gogo- FRT/ GMR-mCD8KO 
FRT. Mutant axons bundle (red arrows in G’). Mutant R8 axons that were clearly separated form 
bundles (yellow arrows in B’). (C) gogoD869 clone: ato-τmyc gogo- FRT/ GMR-mCD8KO FRT. 
Representative sample images of the clone border which was used for quantification in (D). gogo- R8 
axons (red arrows) bundle within the clone but adjacent WT axons (white arrows) are barely affected. 
(D) Quantification of the phenotype. The R8 gogo- axon or the R8 control axon at the border of the clone 
was examined to see whether it does not a form bundle (a), bundles to adjacent R8 clone axon (b), or to 
the adjacent WT R8 axon (c). Out of 75 clone borders investigated, 71% of gogo- axons bind to the 
gogo-axon, and none binds to the WT. In WT control clones, 92% of the R8 axons observed at the clone 
border do not form bundles (n=39). Scale bars, 10μm. 
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3.11  R8 target recognition is impaired in gogo mutants 

 

In addition to the aberrant R8 phenotype in gogo mutant larvae we observed an 

additional R8-specific mutant phenotype in adult flies. The expression of the adult 

R8-specific marker Rh6-mCD8GFP revealed that several R8 axons did not extend 

their processes, but rather stalled at the R8 temporary layer (arrowheads in Figure 

3-1). The stalling behavior of R8 axons was closer investigated by Takashi Suzuki in 

order to reveal a possible gogo function in axon-target interaction. The R8 marker 

Rh6-mCD8GFP was used to label the majority (70%) of R8s in adult flies regardless 

of their genotype. In order to distinguish WT and gogo- axons, small clones of WT 

axons were labeled with mKOrange. In large eyFLP clones mutant R8 axons (green 

only) stopped at the temporary layer (Figure 3-15B-B’ red arrows), whereas single 

remaining WT R8s (green and red) managed to correctly extend to the M3 layer. The 

percentage of mutant R8 axons stalling at the temporary layer was quantified 

indirectly. Serial image stacks were taken along the dorsal-ventral axis through gogo- 

eyFLP and wild type eyFLP control clones. For quantification, the non-stalling Rh6-

GFP positive R8 axons were counted within confocal stacks with defined thickness. 

WT and mutant non-stalling axons can be easily distinguished by the presence or 

absence of the mKOrange expression. In the control animals, 280.5 mKOrange 

negative R8 axons per 100μm section (animals: n=6, 201.5μm in total) correctly 

innervated beyond the temporary layer (Figure 3-15A, C). In gogo mutant mosaics, 

the number of extending gogo mutant R8 axons is reduced to 114.9 axons per 

100 μm section (n=8, 354.2μm in total, Figure 3-15B, B’, C). These numbers 

suggests that around 60% of gogo- R8s are stalling before entering the medulla 

(Figure 3-15C), most likely at the R8 temporary layer. 

Interestingly, similar numbers of mKOrange-positive R8 axons entered the medulla 

columns both in gogo mosaics and wild type mosaics (38.7 R8 axons in control and 

36.2 axons in mutant clones per 100μm; Figure 3-15C), indicating that the final 

targeting of WT axons is not affected by surrounding mutant axons. Two 

representative images show examples (arrowheads in Figure 3-15B) of isolated WT 

R8 axons surrounded by gogo mutant axons, which are able to innervate the medulla 

in a normal manner. These observations strongly suggest that gogo has an 

autonomous function in R8 to regulate axon-target interactions. 

We also detected overshooting of R8 axons to the R7 layer (white arrows in Figure 

3-15B’). The quantification of the overshooting phenotype showed that 8.5 R8 axons 
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per 100 μm inappropriately targeted the R7 layer (n=8, 354.2μm in total), which was 

a clearly smaller fraction than the number of stalling R8 axons. 
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Figure 3-15  gogo mutant R8 axons show target recognition defects 
 (A-B) Images of eyFLP mosaic medulla in horizontal view (plane a in G). Adult R8 axons are labeled 
with Rh6-mCD8GFPmyc and visualized with anti-GFP (green). WT axons are labeled with GMR-
mCD8mKOrange (red). (A) Wild type control clone. (B-B’) Some gogo- R8 axons overshoot to the M6 
layer (white arrows in B’) and many gogo- R8 axons stall at the R8 temporary layer (red arrows in B, B’). 
Note that wild type R8 axons innervate the medulla (white arrowheads in B). (C) The quantification of 
the R8 axons innervating deeper medulla layers in wild type control (top bar) and gogoD869 mutant clone 
(bottom bar). The number of control or gogo mutant R8 axons (mKOrange negative; green bar) and the 
number of WT R8 axons (mKOrange positive; red bar) that enter the medulla were quantified per 100μm 
thickness. The difference in axon number (280.5 -114.9) represents the R8 axons which failed to enter 
the medulla in the mutant mosaics. The number of red+green axons is equivalent in gogo mutant and 
control animals (red bars). (D-F) Images in frontal view from the anterior of the adult optic lobe (plane b 
in G). (D, E, F) Projection of a 14μm-thick confocal stack: (D’, E’, F’) Single focal plane image from (D, 
E, F). Higher magnifications of the boxed areas (i) are shown within each panel. In wild type eyFLP 
control clones, finely-organized parallel axonal tracts are observed (D, D’). In large gogo- eyFLP clones, 
gogo- R8 axons often form bundles with other gogo- axons (E,E’) and make a sharp turn at the surface 
of medulla (arrows in E’). The “stray” phenotype at the surface can also be observed in a single focus 
plane (E’). (F, F’) small gogo- clones were created using eyFLP without cell lethal mutation. Axon 
bundling can be observed within the gogo- clones (arrows in F). While most of the neurons send their 
axons in parallel to each other in a organized way, a small fraction of axons (green without red), which 
are gogo-, turn towards the dorsal-ventral axis within the surface of medulla (arrowheads in F’). (G) 
Schematic drawing of the adult medulla to demonstrate the orientations of the views. 
Scale bars, 10μm.  

Next the same samples were observed from the anterior of the adult optic lobe 

(Figure 3-15D-F’). In this orientation, R8 axonal projections are seen at the temporary 

layer from the top view (plane b in Figure 3-15G). In a 14μm-thick confocal 

projection, wild type control axons are organized in parallel axonal tracts in the wild 

type control (Figure 3-15D). However, in gogo mutant eyFLP clones, gogo- R8 axons 

often make a sharp turn at the surface of the medulla and stray at the surface (Figure 

3-15E). We confirmed this “straying” phenotype at the surface by taking only one 

confocal section image (Figure 3-15E’). In contrast to WT axons, which normally turn 

into the medulla and target the M3 layer which lies underneath, a certain fraction of 

gogo- R8 axons aberrantly turns in the wrong direction and strays at the surface. We 

examined this phenotype in smaller clones, since this abnormal phenotype can be a 

community effect of a large fraction of misguided axons. Strikingly, we observed the 

same phenotype in smaller eyFLP gogo mutant clones without cell lethal mutation 

(see chapter 2.13, Figure 3-15F, F’). While most of the wild type axons are parallel to 

each other in a highly organized way, gogo- axons make an inappropriate turn 

towards the dorsal-ventral axis within the surface of the medulla, qualitatively the 

same phenotype as we observe in the large gogo- clones (compare with Figure 

3-15E-E’). This straying phenotype is striking, since it appears that gogo- axons fail to 

detect pathfinding cues to enter the deeper medulla layers, and that, as a 

consequence, they are misguided and straying along the medulla surface. 
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3.12  Gogo functions in R8 target layer selection 

 

During larval development gogo- axons form bundles which can still be observed in 

adult flies (Figure 3-15F, arrow). Although the striking R8 phenotype in adults 

suggests an autonomous role in later targeting decisions, the targeting defect in 

gogo- adults could also reflect a secondary defect, caused by intense axon bundling 

during larval stages. In order to exclude a secondary defect, small gogo clones were 

created to investigate the behavior of single/few gogo- R8 axons in the absence of 

strong bundling defects. In addition, the preserved overall projection pattern within 

these small mosaics allows a better identification of the respective layers within the 

medulla. 

 

First mosaic animals were observed during mid-pupal stages at 55APF. At this stage 

the final target layer choice of R8s has already been made. R8s have already 

extended their axons to the M3 layer and started to establish their firm connections 

(Figure 1-6A, Figure 3-16A, Ting et al., 2005) Small clones of gogo- axons were 

created by ey1xFLP.Exel. Mutant R8 axons were labeled as described in chapter 

3.10 (Figure 3-12B). All gogo mutant R8 axons strongly express ato-τmyc, whereas 

wild type axons are specifically labeled with mKOrange. Small populations of mutant 

R8 axons showed bundling before the M1 layer, but managed to separate before 

reaching the M1 layer (Figure 3-16B, B’). Nevertheless, gogo mutant R8s often fail to 

extend their axons to M3 and stay at the M1 layer instead. This defect can be 

observed also in single isolated gogo- R8 axons that have not formed bundles 

(arrows in Figure 3-16C-D’). 

In adult flies, small clones were created using eyFLP recombination without using a 

cell lethal mutation (see chapter 2.13). The R8 marker Rh6-mCD8GFP was used to 

label the majority (70%) of R8s. WT axons were specifically labeled with mKOrange. 

The majority of wild type axons create a normal overall projection pattern, which 

precisely defines the position of the medulla layers of interest M1, M3 and M6 

(indicated with dashed lines in Figure 3-16E-G’). In addition to prematurely stopping 

and straying axons (arrowheads in Figure 3-16E, F), M6 layer overshooting of gogo- 

R8 axons was also observed in the small clones (arrow in Figure 3-16G). 

These results strongly indicate that Gogo mediates axon-target interaction 

independent of larval axon-axon interaction. 
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Figure 3-16  Gogo functions in R8 axon-target recognition 
(A-D’) Small populations of wild type (A) or gogoD869 R8 axons (B-D) were created by ey1xFLP.Exel at 
55APF. gogoD869 clone: ato-τmyc gogo- FRT/ GMR-mCD8KO FRT. R8 axons labeled with ato-τmyc are 
visualized by anti-Tau (green). WT axons labeled with mCD8KOrange are stained with anti-mCD8 (red). 
Note that some gogo- R8 axons (strong green without red) extend normally (arrowheads), whereas a 
significant amount of mutant R8 axons shows defects (arrows) (B,B’). Single isolated gogo- R8s often 
fail to extend their axons to M3 (C-C’, arrows) or even stray at the M1 layer (D-D’, arrows). 
(E-G’) Adult medulla targeting phenotype of gogoD869 R8 axons in small clones. R8 axons are labeled 
with Rh6-mCD8GFP, and wild type axons are labeled with GMR-mKOrange. Mosaic clones were 
generated by eyFLP without using a cell lethal mutation. As observed in larger clones, gogo- R8 axons 
often stay at the M1 layer and do not innervate the medulla column (arrowheads in E-F’). The phenotype 
can be seen autonomously either in a single cell clone (E-E’) or in a small cluster of neurons (F-F’). 
Occasionally the gogo- R8 overshoot the correct M3 layer and target the M6 layer (arrow in G, G’). 
Medulla layers are indicated with dashed lines. Scale bars, 10μm.  
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3.13  Gogo mediates axon-target recognition at the R8 
temporary layer 

 

The straying phenotype at the M1 layer infers a possible role of Gogo in the proper 

recognition of the intermediate target layer. In previous experiments only time points 

after the extension phase of R8 from M1 have been analyzed, as shown for 55APF 

or adult flies in chapter 3.12. In order to examine gogo mutant R8 axons during the 

phase of M1 intermediate target layer selection and position maintenance until the 

extension phase at 50APF, R8s were labeled in large eyFLP clones with the R8 

specific marker ato-τmyc and investigated during pupal stages at 17APF, 35APF and 

50APF. 

In wild type flies the segregation of R7 and R8 growth cones into distinct medulla 

layers can be observed at 17APF (Figure 3-17A-A’). Also in gogo- eyFLP flies two 

distinct layers are formed (Figure 3-17E-E’). However, R8 axons display a slightly 

different morphology, as their growth cones appear elongated compared to wild type 

R8 axons. 

In wild type flies at 35 APF, the temporary layers of R8 and R7 are more distant, but 

the relative position of R8 to R7 is maintained (Figure 3-17B-B’). R8s are still 

anchored at the M1 layer without showing visible extensions. In contrast, several 

gogo mutant axons have prematurely started extending from the M1 layer at this 

stage (Figure 3-17F-F’). The early extended axons show a highly irregular pattern 

lacking a strict columnar organisation. Nevertheless R7 and R8 axons seem to 

remain separated, as no complete overlap of R7 and R8 termini was observed. 

At 50 APF when R8s and R7s normally start extending to their final targets (Figure 

3-17D-D’), most of the mutant R8 axons, which have remained at the temporary 

layer, now fail to extend filopodia (Figure 3-17G-G’). Extended R8 axon terminals are 

not restricted to their proper target layer M3 as in WT. In some cases gogo- R8 axons 

even overshoot to the M6 target layer of R7.  

The number of R8 axons which prematurely extended beyond the M1 layer was 

quantified within confocal stacks of defined thickness (Figure 3-17I). In the WT 

control animals, 0 (17APF) and 0.9 (35APF) R8 axons showed thin extensions per 

50μm section earlier than 50 APF (n=2, 28μm and n=3, 56μm respectively). At 50 

APF 104.2 extensions per 50μm were quantified in wild type (n=4, 48μm), showing 

that the final extension of R8s does not occur in WT before this time point (Ting et al., 

2005). In the gogo mutant mosaics, only 0.7 R8 axons showed a slightly different 
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position in deeper medulla layers at 17APF (n=4, 69μm), indicating that the primary 

segregation of R8 and R7 is not affected. Nevertheless, R8 axons fail to immobilize 

until 50 APF, as 34.4 premature R8 axonal extensions are displayed per 50μm at 35 

APF (n=5, 106μm). At 50 APF the number of extending mutant R8 axons is only 

slightly increased to 40.0 axons per 50μm (n=5, 130μm). Strikingly, these 40 axons 

exactly constitute 40% of the quantified extended wild type axons at 50APF, 

reflecting the quantified stalling phenotype in adult (see chapter 3.11). 
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Figure 3-17  gogo R8 axons prematurely extend from their temporary targets 
(A-G’) R8s were labeled in large eyFLP clones with the R8 specific marker ato-τmyc (green). R7 and R8 
axons were stained with mAb24B10 (red). Axonal projections were investigated during pupal stages at 
17APF, 35APF, 50APF and 55APF. (A-D’) WT control clones: At 17APF R8 (arrowhead) and R7 
terminals are separated in two distinct layers (indicated by dashed lines) (A, A’). At 35APF R8 axons 
remain anchored to their temporary target layer (arrowhead) (B, B’). At 50 APF R8 axons extend thin 
filopodia (arrow) to the M3 layer, while bulb-like structures remain at the M1 layer (arrowhead). The two 
final targeting layers M3 and M6 can be easily distinguished (dashed lines) (C, C’). At 55 APF thickened 
R8 terminals appear at the M3 layer (arrow) (D, D´), while the bulb-like structures at the M1 layer slowly 
start to vanish (arrowhead) (D). (E-G’) gogo clones: At 17 APF R8 and R7 are separated in two distinct 
layers (indicated by dashed lines), but R8 terminals show a distinct morphology compared to WT (E, E’). 
At 35 APF prematurely extending R8 axons can be observed. They display thickened axonal terminals 
(arrow). At the same time, the bulb-like structure at the M1 layer seems to be lost (arrowhead). R7 and 
R8 terminals still form separated layers (F, F’).  At 50 APF some R8 axons overshoot to the R7 target 
layer M6. In contrast to WT, all extended axons display thickened terminals (arrow). The majority of R8 
axons fails to extend from the M1 layer (G, G’) (H) Small clone of gogo- R8 axons created by 
ey1xFLP.Exel at 35APF. The gogoD869 clone: ato-τmyc gogo- FRT/ GMR-mCD8KO FRT. R8 axons 
labeled with ato-τmyc are visualized by anti-Tau (green). WT axons labeled with mCD8KOrange are 
stained with anti-mCD8 (red). A single gogo- R8 axon (strong green without red) prematurely extends 
and looses its bulb-like structure at the M1 layer (arrowhead). The extended axon displays a thickened 
terminal (arrow). Magnifications of the boxed areas are shown within each panel. (I) Quantification of 
extending axons during pupal development. Scale bars, 10μm. 
 

92 



                                                                                                                           Results 

 

In addition, the structures of premature extensions clearly contrast the proper 

extensions in wild type flies. At 50 APF, wild type R8 axons start extending thin 

filopodia to deeper medulla layers, while thick bulb-like structures remain at the M1 

layer (Figure 3-17C’). Thickened R8 axon terminals do not appear at the M3 target 

layer before 55 APF (Figure 3-17D’). At the same time, the bulb-like structures at the 

M1 layer slowly disappear in WT. However, in gogo- eyFLP mutants the premature 

extended axons already display thickened terminals, structures different from 

filopodia and seem to lack bulb-like structures at the M1 layer (Figure 3-17F’, G’). For 

closer investigation of the premature extensions small gogo- R8 clones were created 

by ey1xFLP.Exel and investigated at 35APF (Figure 3-17H). In addition to the 

thickened terminals, premature extending axons lack the thick bulb-like structures 

remaining at the M1 layer.  

These results indicate that at least some R8 axon terminals completely loose contact 

to binding sites at the M1 layer and continue to grow out inappropriately. The proper 

recognition of the intermediate target layer and position maintenance until mid pupal 

stages seems to be required to allow R8 axons to enter their correct medulla 

columns and recognize their correct target layer. 
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3.14  Gogo overexpression anchors R8s at the M1 layer 

 

If Gogo is sensing pathfinding cues at the temporary target layer of the medulla, then 

how does Gogo respond to these cues (adhesive/attractive, or repulsive)? To 

distinguish between these possibilities the gogo gain-of-function (GOF) phenotype 

was assessed by overexpressing full length Gogo in R axons. To achieve a higher 

level of expression throughout development, we used GMR-Gal4 to drive UAS-gogo 

expression. Strikingly, 100% of R8s form large bulb-like structures and terminate at 

the M1 layer after overexpression of the transgenic line UAS-gogoT2 (Figure 3-18C, 

C’) (animals: n=5, 196.56μm in total, more than 600 R8 axons estimated). The array 

of large bulbs in the UAS-gogo-T2 GOF (Figures 7B, B’, D) is in clear contrast to the 

uncoordinated turning and stalling in gogo loss-of-function (LOF) (Figure 3-15). The 

R8-specific GOF phenotype strongly argues against a simple artifact, as Gogo is 

overexpressed in R7s as well. In addition, the expression of UAS-gogo-T2 under the 

control of GMR-Gal4 in a gogo mutant background was able to rescue the overall 

projection pattern of R8 and R7, however resulted in R8 axons terminating at the M1 

layer (see large bulbs at the M1 layer in Figure 3-9G). 

 

Milder overexpression phenotypes were observed in different UAS-gogo insertion 

lines (UAS-gogoT1, UAS-gogo2B,-3A,-3B,-3C, Figure 3-18B, B’ and data not 

shown). By overexpression of intermediate transgenes large bulb-like structures were 

maintained to a certain extent at the M1 layer, which normally disappear until 

adulthood in wild type flies (Figure 3-18A). Only few stalling axons were identified in 

different transgenes (quantified for UAS-gogo-T1, Figure 3-18D). However, in 

contrast to UAS-gogoT2 the majority of R8s managed to extend processes to the M3 

layer (Figure 3-18B, B’, C’).  

The variability in phenotypical expressivity could be a consequence of different 

expression levels among the insertion lines used. Expression levels of all available 

myc-tagged UAS-gogo lines (generously provided by Stephan Ohler) were analyzed 

by Western blot at different stages throughout development. The construct with the 

strongest expressivity UAS-gogo-T2 showed the highest expression levels 

throughout all stages investigated. This result points towards a possible correlation 

between expression level and the observed phenotypical strength.  
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Figure 3-18  Gogo overexpression phenotype 
(A-B) Images of the adult flies: All R cell projections (red; mAb24B10) and R8 axons (green; Rh6-
mCD8GFP with anti-GFP) are visualized in the GMR-Gal4/+ control (A, A’) and GMR-Gal4, UAS-
gogoFL-T1/+ (B, B’) and GMR-Gal4, UAS-gogoFL-T2/+ medulla (C, C’). In the gogo overexpression 
using the UAS-gogo T1 line, large bulb-like structures are seen at the M1 layer (arrowheads in B’) and 
few R8 stops. The majority of R8s, however, still managed to extend their processes to the M3 layer. 
We consider this as a mild overexpression phenotype. The UAS-gogo T2 transgene results in a much 
stronger overexpression phenotype. R8 axons terminate at the M1 layer (C’). Note that R7 axons are 
completely normal (B, C’). (D) The quantification of the GMR-Gal4 UAS-gogo overexpression 
experiment. UAS-gogoT1 shows a mild gof phenotype, whereas T2 shows a highly penetrant gof 
phenotype. (E) Western analysis of overexpressed Gogo protein. Left panel: GMR-Gal negative control. 
Five different UAS-gogo insertions tagged with myc were expressed using GMR-Gal4. 3rd instar larval 
brains and whole pupae at 20APF and 50APF were analyzed. Gogo protein was detected using αmyc 
antibody. Tubulin levels assessed by an anti-tubulin (α tub) antibody served as a loading control. Scale 
bars, 10μm. 
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The striking GOF phenotype suggests two different possibilities: either, Gogo is 

sensing a repulsive cue from layers deeper than M1 layer, so that higher activation of 

Gogo repels R8 axons from the M3 layer, or Gogo regulates the attraction/adhesion 

by a cue from the M1 layer temporarily, and abnormally high Gogo levels result in 

permanent anchoring of R8 at the M1 layer. The LOF data supports more the latter 

option, as straying and premature extension of gogo- R8 axons can be explained by 

the presence of attractive/adhesive cues from the M1 layer.  

Thus, it is highly intriguing that gogo function is not only mediating repulsive 

interaction among outgrowing R8 axons, but also has a qualitatively different function 

during pupal development, which appears to involve proper target recognition 

between R8 axon and the milieu at the temporary layer, M1. We propose that this 

second mechanism ensures that the R8 axons locate and maintain the position at the 

correct temporary target site until the proper developmental time point and thereby 

allows the axons to enter the appropriate column in the medulla.  
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4 Discussion 

4.1 Autonomous receptor function in photoreceptor cells 

 

The single transmembrane protein Gogo, which is expressed in photoreceptor cells, 

is required in the retina for axon-axon repulsive interactions and appropriate column 

and target layer selection in the optic lobe of the Drosophila brain. The evolutionary 

conservation of this molecule across different species implies a high functional 

relevance.  

 

The protein structure of Gogo, comprising protein interaction domains present in 

other axon guidance receptors, strongly indicates a function as a receptor or cell 

adhesion molecule. Within the extracellular domain, two conserved regions were 

shown to be essential and sufficient for Gogo function in photoreceptor axons, the 

Tsp1 and the newly identified GOGO domain (Chapter 3.3). Both domains show the 

ability for protein interaction. Eight conserved cysteines within in the GOGO domain 

possibly form four disulfide-bonds to assemble immunoglobulin-like protein 

interaction domains (Takayanagi et al., 2006). Also, the Tsp1 domain shows the 

ability to interact with multiple cell-surface or extracellular proteins, including matrix 

glycoproteins and proteoglycans (Adams and Tucker, 2000).  

So far, there is no evidence that Gogo’s extracellular domain is able to promote 

homophilic binding among Gogo proteins, as shown in S2 cell aggregation assays 

(chapter 3.6). In addition, homophilic interactions are neither required for the 

repulsion among R8 axons nor in axon-target interaction (chapter 3.6, 3.10). All 

results obtained suggest a heterotypic interaction, in which Gogo could act in 

response to an as yet unidentified ligand. 

 

The strict requirement of the cytoplasmic domain, which was demonstrated in rescue 

experiments in two different stages during development, axon-axon interaction in 

larvae (chapter 3.10) and axon-target interaction in adults (chapter 3.3), argues 

against a merely adhesive role of Gogo. In contrast, it was shown for some adhesion 

molecules (such as N-Cad) that the cytoplasmic domain is not needed for homophilic 

adhesion and functionality. Therefore, their function can be achieved without 

intracellular signaling (Yonekura et al., 2007). The opposite is known for repulsive 

guidance receptors, such as Eph receptors or Dscam. Although the physical binding 
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of the extracellular domains to their ligands can be achieved without the cytoplasmic 

domain, still the repulsive response triggered by these receptors strictly requires the 

cytoplasmic domain for intracellular signal transduction (Feldheim et al., 2004; 

Labrador et al., 1997; Matthews et al., 2007; Wojtowicz et al., 2004; Zhu et al., 2006). 

The requirement of Gogo’s cytoplasmic domain argues against a simple adhesive 

role and implies that cytoplasmic signaling is required for Gogo function. The lack of 

an intracellular catalytic domain (as for example a kinase domain) does not contradict 

intracellular signaling events, as shown for the well described family of Robo 

receptors. Similar to Gogo, Robo proteins contain a poorly conserved cytoplasmic 

domain without any obvious catalytic activity (Kidd et al., 1998). But they contain 

short conserved cytoplasmic sequence motifs, which are thought to be binding sites 

for various signaling proteins, as for example Abl/Ena/Vasp, Dock/Nck or the Rho 

GAPs (GTPase activating proteins) Vilse/crGAP (Bashaw et al., 2000; Fan et al., 

2003; Hu et al., 2005; Lundstrom et al., 2004; Wong et al., 2001). 

 

Similarly, there is no overall conservation within the Gogo cytoplasmic domain, 

except for a specific short motif, which is shared by all Gogo orthologues (chapter 

3.2). The short sequence contains a highly conserved tripeptide motif, Tyr-Tyr-Asp 

(YYD) that may serve as a putative regulatory site through phosphorylation of the 

Tyrosine and/or protein interaction domain. It was shown that a similar tripeptide 

motif Asp-Arg-Tyr (DRY) is conserved in mammalian odorant receptors, which 

belong to the family of G protein coupled receptors (GPCRs). Olfactory sensory 

neurons expressing odorant receptors mutant for the DRY motif are deficient in both 

axon targeting and G protein coupling (Imai et al., 2006). In principle, it is feasible 

that the highly conserved Gogo tripeptide also holds the potential to trigger an 

intracellular signaling pathway which could even be conserved across different 

species. For this reason, it would be interesting to investigate a possible functional 

role of this short cytoplasmic motif. Rescue experiments using either deletions of the 

motif or site-directed mutagenesis manipulating the potential phosphorylation-sites 

could be applied in order to investigate this question. 
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Although Gogo expression was detected in brain neurons other than R cells by in situ 

and antibody staining (chapter 3.5), the gogo transheterozygous mutants were 

rescued by the exclusive Gogo expression in R neurons (chapter 3.6). R axon 

targeting is therefore not dependent on Gogo expression within the brain. This result 

not only excludes the possibility of homophilic axon-target interaction, but also shows 

the autonomous requirement in R cells. In addition, a cell-autonomous function of 

Gogo was shown for single axons in mosaic animals. Also in pupae, single gogo 

mutant R8 axons show defects and fail to extend into the medulla column (Figure 

3-16). Vice versa, single isolated WT R8 axons, which are surrounded by 

misprojecting and stopping gogo mutant axons, constituting a reverse MARCM 

situation, correctly innervate the medulla (Figure 3-15B). All these examples nicely 

demonstrate that Gogo acts in a cell-autonomous manner in R8 axons. 

Both lines of evidence, the autonomous function and the requirement of the 

cytoplasmic domain, provide a strong argument that Gogo could act as a novel 

receptor in axon guidance. 
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4.2 R8 axon-axon interaction 

 

In eye-specific gogo- mosaics, larval axons do not manage to maintain their relative 

positions within the medulla. They entangle each other and form bundles (chapter 

3.10). This disrupts the formation of the retinotopic map, an important feature in 

visual system wiring which allows the continuous representation of visual space in 

the brain. Studies investigating the establishment of topographic maps have 

proposed two basic principles to be involved in the formation of the neuronal map 

during development. The first principle is the existence of positional labels in 

gradients across the projecting and target areas, as shown for ephrin-A/EphA, 

ephrin-B/EphB, Wnt3 and En-2 (Brunet et al., 2005; McLaughlin and O'Leary, 2005; 

Schmitt et al., 2006). In addition to a role for specific graded labels, axon-axon 

mediated competition is thought to be the second key principle (Reber et al., 2004). 

In Drosophila both principles, long-range positional cues and local R axon-axon 

interactions, are thought to be involved in topographic mapping along the 

dorsoventral axis. As positional cues, Eph receptor tyrosine kinase gradients in the 

medulla and DWnt4 positional cues were shown to be required for topographic map 

formation (Dearborn et al., 2002; Sato et al., 2006). Futhermore, independent 

guidance of R axons involving axon-axon competition was proposed (Kunes et al., 

1993; Senti et al., 2003). Interestingly, the homophilic cell adhesion molecule 

Flamingo was shown to be required for competitive or inhibitory interactions between 

adjacent R8 growth cones (Senti et al., 2003). However, the underlying mechanism 

has not been investigated yet. 

 

The observed gogo mutant phenotypes in larvae suggest that during the extension 

phase gogo mutant axons lose repulsive interactions within the medulla, resulting in 

strong axonal bundling. Larval Gogo expression which was present mainly in R8s 

(chapter 3.5) hinted at a function in R8 pioneers, allowing correct spacing of parallel 

outgrowing axons. In small gogo mutant clones R8 mutant axons were shown to 

exclusively form bundles with other R8 mutant axons, while surrounding WT axons 

are not affected (chapter 3.10). This implies an axon-axon repulsive effect among R8 

axons mediated by Gogo. Homophilic interaction with brain cells was excluded by the 

transgenic expression of Gogo in R axons. Gogo expression in R axons which 

project into transheterozygous gogo brains is sufficient to restore normal axonal 
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spacing (chapter 3.6). As a consequence, Gogo resembles a novel regulator of axon-

axon competition in the larval visual system. 

 

How does Gogo prevent inappropriate adhesion or bundling among R8 axons 

through repulsive interaction? In our model, we favor the idea of competitive 

interactions among R8 axons. The idea is that Gogo acts as a heterotypic receptor 

mediating repulsive interactions among R8 axons, but at the same time competes 

with possible adhesive forces among R8 axons (Figure 4-1). Adhesive interactions 

can be the result of expressed homophilic cell adhesion molecules which are 

required for target layer selection and binding, but have to be suppressed during 

axon outgrowth in order to inhibit inappropriate axon-axon interactions. Possible 

candidates for regulated cell adhesion molecules could be for example N-Cadherin, 

as well as the R8-specific expressed adhesion molecule Capricious (Caps). The 

proposed competitive-forces model also explains why single isolated gogo- axons fail 

to form bundles in the absence of other mutant axons and surprisingly project without 

defects (Figure 4-1).  

 

 

 

 

Figure 4-1  Model for competitive axon-axon interactions 
Model for axon-axon interaction; Gogo may be a heterotypic receptor that mediates repulsive interaction 
among R8 axons. In the wild type situation, both attractive and repulsive interactions constitute the 
balanced force between the axons (top). In a single cell mutant clone, the balance between the forces is 
still maintained so that no bundles are formed (middle). When a cluster of axons is mutated, the 
repulsive force is weakened within the clone, so that mutant axons form bundles (bottom). 
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A different competitive model has been proposed for the topographic map formation 

of retinal ganglion cells (RGC) in the mouse. But in contrast to our competitive forces 

model, the RGC–RGC axon-axon competition is governed by comparisons of internal 

EphA receptor repulsive signaling intensities within neighboring axons (Reber et al., 

2004). A difference in signaling intensities between younger and older R8 axons 

could also be true for Gogo, as antibody staining revealed highest protein localization 

to the youngest in-growing axons (chapter 3.5). Nevertheless, no real Gogo gradient 

was observed across R8 axons. Interestingly, also Fmi shows a strikingly similar 

expression pattern during larval development (Lee et al., 2003). 
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4.3 Axon-target interaction 

 

In addition to defects in larval axonal projections, aberrant phenotypes are displayed 

in gogo mutant adult flies in all types of photoreceptors (chapter 3.1), indicating an 

additional requirement in the establishment of proper axonal connections with target 

cells. This was supported by antibody stainings showing Gogo expression in all 

photoreceptor types during certain stages of pupal development (chapter 3.5). 

Expression was observed in R1-R6 axons during the phase of cartridge formation, as 

well as in R7 and R8 axons during the first medulla targeting step, involving the time 

of intermediate target layer recognition and position maintenance. However, Gogo 

expression was not detected in photoreceptor axons during the second targeting step 

in R7 and R8 axons, as well as in R1-R6 axons after 40APF. The dynamic 

expression pattern and regulation of Gogo protein within the axon during pupal 

development argues for a possible function in specific targeting steps. 

 

Initially, R1-6 axons of gogo eyFLP flies correctly target the lamina and do not 

overshoot into deeper neuropils during larval development, but then fail to assemble 

proper lamina cartridges (chapter 3.8). Although the observed phenotype indicates a 

functional role of Gogo in sorting R1-R6 axons to their correct cartridges, 

experimental evidence is required to exclude secondary defects due to the R8 

mistargeting. The possible influence of R8s on R1-R6 projections is based on the 

sequential axon outgrowth during larval development; in which R1-R6 strongly 

depend on the trajectories formed by R8 pioneer axons (chapter 1.3). Observing 

cartridge formation in a R8-specific rescue background (compare chapter 3.9) could 

easily demonstrate that gogo is indeed autonomously required for the choice of 

postsynaptic partners in R1-R6 axons, in addition to the function shown for R8s. 

Furthermore, it would be possible to perform single cell mosaic analysis in R1-R6 

neurons to investigate cell-specific mutant phenotypes.  

Already at this stage of investigations, two arguments make an autonomous function 

in R1-R6 most likely. First, the observed bundling phenotype among mutant R8 

axons is only observed in the medulla when axons have already passed the lamina, 

indicating that the retinotopic map and overall projection is still intact within the 

lamina (chapter 3.1). Second, also fmi has been shown to affect R8 and R1-R6 

independently. In the absence of fmi, bundling of R8 axons is induced, similar to the 

gogo (lof). Despite the defect in R8s an independent role in R1-R6 was demonstrated 
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(Lee et al., 2003; Prakash et al., 2005). Again, the mutant phenotype observed in R1-

R6 axons of fmi mutants is comparably similar to the missorting observed in gogo 

mutants (chapter 3.8) (Lee et al., 2003). 

 

Mutant R7 axons also display targeting defects in adult flies (chapter 3.1). In gogo 

eyFLP flies, R7 axons do not show a strict columnar restriction, reflected by frequent 

crossings. In addition, a small number of axons fail to connect to their proper target 

layer M6 and mistarget to the R8 target layer M3 instead. In contrast to R8s, no 

stalling of R7 axons was observed at the superficial layer of the medulla. In total, R7s 

display a much milder mutant phenotype in comparison to R8 axons. The R7-specific 

gogo mutant clones and the R8-specific rescue experiment disproved an 

autonomous Gogo function in R7 (chapter 3.9), showing that R7s are highly 

dependent on the trajectories formed by R8 axons during larval development. As R7 

axons manage to correctly separate from R8 axons to reach their intermediate target 

layer underneath the R8 temporary layer (chapter 3.13), a fasciculation defect can be 

excluded as the cause for mistargeting. Additional evidence for the lack of Gogo 

function in R7 is provided by the Gogo overexpression experiments (chapter 3.14), in 

which R7s show no targeting defects despite highly elevated Gogo levels. 

 

In addition to Gogo’s early function in R8 axon-axon interaction during larval 

development, the observed gogo mutant phenotype in adults suggested a second 

independent role in R8 axon-target interaction during pupal development. 

Interestingly, several mutants were identified that have striking R-axon guidance 

phenotypes in larvae but less severe phenotype in adults (Berger et al., 2008). The 

shown transience of defects strongly suggests the existence of different mechanism 

underlying the development of larval and adult systems. Vice versa, it is likely that 

the same gene is independently involved in the development of both systems. 

However, also limitations to the existence of completely unrelated mechanism exist 

as shown in our rescue experiment, which argues for a R8-dependent projection 

pattern of R7. 

Nevertheless, two important observations suggest a second, unrelated and 

independent role of Gogo in R8 axon target interaction: First, the majority of R8 

axons fails in properly entering the medulla column and strays at the surface of the 

medulla (chapter 3.11). This phenotype could be reproduced in single gogo mutant 

axons, proving a R8-specific cell-autonomous function in axon-target interaction 

(chapter 3.12). Second, R8 axons overexpressing Gogo permanently terminate at the 

surface layer, whereas R7s remain unaffected (chapter 3.14). 
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In our model (Figure 4-2) we propose that Gogo positively regulates the adhesion of 

R8 axons with the M1 temporary layer during early pupal development and thereby 

prevents R8 axons from prematurely extending from the M1 layer until their proper 

extension time point at 50APF. However, the final R8 targeting step might require 

Gogo removal during mid-pupal stages in order to allow axon extension to the final 

target layer M3. The observation that Gogo protein is detected during the first step of 

R8 targeting, intermediate target layer recognition and position maintenance, but can 

not be detected during the second targeting step, the extension to the M3 layer, 

supports this idea. In the Gogo overexpression situation, high Gogo protein levels are 

present in photoreceptors until late pupal stages due to the amplification using the 

Gal4/UAS system in combination with the very strong promoter GMR. The 

overexpression results in permanent anchoring of R8 axons to the M1 layer (chapter 

3.14). 

 

 

 

Figure 4-2  Model for R8 axon-target interaction 
Model showing Gogo function in R8 axons during pupal development: In WT Gogo is required for the 
M1 layer recognition of R8 axons and position maintenance until 50APF. Gray spots indicate a possible 
pathfinding cue which acts positively on the R8 axons at the M1 layer. A proper intermediate target layer 
interaction allows R8 axons to retain their position. The decrease in the intensity of red in R8 axons 
suggests the down-regulation of Gogo levels after the mid-pupal stage. After Gogo down-regulation, R8 
axons target to their proper target layer within the correct medulla column. Medulla column are indicated 
by dashed lines. In gogo (lof) axons are not able to sense the positive cue at the intermediate layer. 
Axons stray and prematurely extend into deeper medulla layers without showing columnar or M3 layer 
restriction. In gogo (gof) R8 protein levels are not down-regulated. R axons become permanently 
anchored at the M1 layer. 

The R8 mutant phenotype suggests that the proper interaction with the temporary 

targets is lost. However, the position maintenance seems to be absolutely required to 

allow proper entry of R8 axons into medulla columns. The observed straying of 

mutant R8s along the medulla surface in adult flies clearly supports this idea (chapter 

3.11). In addition, it was observed during pupal development that several R8 axons 

fail to maintain their position at their intermediate target layer until their proper 

extension time point at 50APF (chapter 3.13). Structural differences of prematurely 

extending mutant axons, which lack bulb-like structures shown by WT axons at the 
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M1 layer, in deed indicate that these axons have completely lost contact to their 

temporary targets. Premature extensions during pupal development were not 

restricted to invade the deeper medulla, but also extended along the medulla surface 

(chapter 3.12). Therefore, the loss of temporary target layer interaction during pupal 

development is very likely the cause for the observed straying phenotype in adult 

flies. 

Mutant axons that prematurely extend into deeper medulla layers do not oblige 

columnar nor target layer restriction. Their thickened terminals clearly contrast the 

highly coordinated WT R8 outgrowth to the M3 layer, which is initiated by the 

extension of thin filopodia (Figure 4-2).  

Considering the fact that the medulla undergoes dramatic developmental changes 

from the time R8 axons arrive at their intermediate targets until the time point they 

finally start extending to their final targets, the chaotic behavior of premature R8 

axons does not come as a surprise. Each mature medulla column is the result of the 

sequential in-growth of at least 50-60 different neurons processes arranged in 

defined layers (Fischbach and Dittrich, 1989). The extension of R8 axons to their final 

targets has to be exactly timed to the maturation of the medulla neuropil and its 

target layer. It was shown that stereotyped and dynamic interplay between different 

axons during medulla development are involved in forming these precise patterns 

(Nern et al., 2008; Ting et al., 2005). A recent study suggests that the precise 

packing of axon terminals in the medulla is neither a consequence of targeting to pre-

existing layers nor an exact sequence of afferent interactions (Nern et al., 2008). 

Instead it was suggested that layer-specific connectivity emerges through the 

coordinated execution of multiple neuron-specific targeting programs, which also 

depend on each other.  

Interestingly, the photoreceptor cells themselves seem to play an active role in 

shaping their target environment. A recent study proposed that R cell axons release 

Jelly belly (Jeb) to activate Anaplastic lymphoma kinase (Alk) signaling in the brain, 

probably their target neurons (Bazigou et al., 2007). These anterograde signaling 

events are then supposed to regulate late events of R8 axon-target maturation, as 

loss of Jeb/Alk signaling affects the expression of guidance molecules in the R8 

recipient layer M3. Interestingly, one of the altered molecules within the M3 layer is 

Fmi. In addition, loss of fmi in the target region causes R8 targeting effects, similar to 

fmi eyFLP but also to gogo eyFLP flies. This indicates that anterograde signaling 

coordinates the timing of R8 cell growth cone extension with local expression of cell-

adhesion molecules in the M3 layer which are required for R8 axon targeting. 
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As the maturation of the R8 target layer seems to be concerted to photoreceptor 

development, it would be very interesting to investigate the importance of proper 

temporary target layer interaction in this context. Up to date, there is not much 

known, neither about the function of intermediate R8 targeting nor about the process 

of intermediate target layer recognition. However, the identification of the gogo gene, 

which is required in the process, now allows performing further experiments to 

approach these open questions. 

For example, a possible connection between temporary target layer interaction and 

M3 target layer maturation could be easily tested in gogo eyFLP flies by investigating 

Fmi expression in the brain. In the same way, the effect of Gogo OE in R axons on 

the Fmi expression within the M3 layer could be analyzed. In the Gogo OE situation, 

R8 axons correctly target their temporary layer, but than fail to extend to the M3 

layer. The formation of a mature M3 layer in this context would suggest that in deed 

Gogo has to be removed to allow axon extension from the M1, whereas the lack of a 

mature M3 layer would imply that the removal of Gogo could be correlated to 

anterograde Jeb/Alk signaling initiation in R8 axons.  

 

Another interesting observation is the fact that mutant R8s transiently stop at the M1 

layer during early pupal development. R7 axons, which arrive later, manage to 

overtake and separate into a layer distinct from R8s which have arrived and stopped 

in the medulla several hours before. The two distinct layers which can be observed at 

17APF (chapter 3.13) highly suggest that the quality of the intermediate target layer 

itself or of the environment changes after 17APF allowing mutant axons to be 

released from their stopping position and to proceed extending. These supposed 

changes raise the question if Gogo could be actively or indirectly involved in shaping 

the mid-pupal temporary target layer or allowing proper connection to the M1 layer 

after 17APF.  

In this context, R8 axons mutant for caps show a striking similar phenotype 

compared to gogo- flies (Shinza-Kameda et al., 2006). In caps mutant flies, R8 axons 

initially manage to stop at the M1 layer during early pupal development, however, 

during mid-pupal development gaps emerge within the M1 layer, suggesting the 

detachment and premature extension of R8 axons from the M1 layer. Unfortunately, 

the behaviour of R8 axons was not sufficiently investigated in the study by using R8-

specific markers. Interestingly, in the Caps OE situation, some R7 axons, which have 

successfully separated from R8s and reached their temporary target layer in early 

pupae, then started retracting to the R8 temporary layer M1 during mid-pupal stages. 

The Caps OE phenotype clearly contrasts the Gogo OE, where R7 remain 
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completely unaffected despite the increased Gogo levels. These results highly 

suggest that only the combination of Gogo and Caps allows the continuous 

interaction of R8 axons at the M1 layer after 17APF, but both are not required for the 

initial recognition. Caps overexpressing R7 axons, which endogenously express 

Gogo at the same time, then retract to the R8 temporary target layer M1. Two 

experiments could reveal if Gogo and Caps are both required in R8 axons for 

maintaining the growth cones at the M1 layer: First, Caps OE in a gogo eyFLP 

mutant background should abolish the retraction of R7 axons to the M1 layer, and 

second, co-overexpression of Caps and Gogo should increase the number of R7 

axons retracting to the R8 temporary layer M1. The retargeting of R7 axons to the R8 

temporary layer is intriguingly fascinating for a second reason, as in the Caps OE 

situation several R7 axons then seem to behave like R8s during the final targeting 

step and terminate in M3 (Shinza-Kameda et al., 2006). This implies also a possible 

role of intermediate targeting also in defining final target connections. In this sense, 

the co-overexpression of Caps and Gogo could also result in permanent anchoring of 

R7s at the M1 layer. 

 

What are the possible candidate cells serving as temporal targets of R8 axons during 

pupal development? It is known that the processes of lamina neurons L1-L5 

innervate along the R7 and R8 axons and sequentially enter the corresponding 

medulla columns in early pupal stages (Ting et al., 2005). However, by expressing 

the dominant negative form of EGFR in lamina neurons, in which the differentiation of 

L1-L5 is blocked, R8 and R7 still appear to show normal axonal projection at mid-

pupal stage (Ting et al., 2005). Nevertheless it is important to note that the 

corresponding study has not used R8-specific markers in order to properly dissect R8 

axonal behavior. Recently, it has been reported that the abnormality in axonal tiling of 

L1-5 in Dscam2 mutants caused the pathfinding defects of R7/8 axons (Millard et al., 

2007). It is possible that the abnormally guided processes of L1-5 result in a different 

outcome than the simple loss of L1-5. Other possible candidates are the medulla 

neurons, which send their processes into the columnar structure of the M1-M6 layers 

in the outer medulla. Since the mechanism of differentiation and development of 

these neurons and their processes is largely unknown, it will be intriguing to explore 

the role of Gogo in possible interactions between R axons and lamina/medulla 

neuron processes and the contribution of known regulators of R axon guidance in 

this process. Especially the role of broadly expressed Cadherins in these specific 

connections would be of great interest. 

108 



                                                                                                                      Discussion 

 

4.4 Possible genetical interaction with the cadherin Flamingo 

 

Our results define two distinct and specific functions for Gogo in R axon targeting. 

First, it facilitates competitive or inhibitory interactions between adjacent R8 growth 

cones and second, it promotes R8 axon-target interactions. In order to allow these 

completely different functions, it is very likely that Gogo genetically interacts with 

other cell surface molecules, thereby allowing selective interactions first among R 

axons and second with target cells. One promising candidate for such an interaction 

is the protocadherin superfamily member, Fmi. Evidence in support of this idea 

comes from the similarity of their visual system phenotypes and their expression 

patterns (Lee et al., 2003; Senti et al., 2003).  

 

The similarity in the expression pattern is striking. Both Gogo and Fmi are expressed 

in all R neuronal types. In 3rd instar larvae both proteins show the strongest 

expression along axons of newly developed (young) axons in the optic stalk and optic 

lobe (Figure 3-5 and data not shown) (Lee et al., 2003). In addition, both proteins are 

expressed in R1-6 axons during cartridge formation in mid-pupal stages (Figure 3-7) 

(Lee et al., 2003). One of the differences in the expression pattern is the strong Fmi 

expression in lamina neurons and medulla cortical neurons. These stainings strongly 

overlap with the target layers of R8 and R7s in larval and pupal stages (Lee et al., 

2003; Senti et al., 2003), while Gogo expression is hardly detectable in the proximal 

lamina and medulla (Figure 3-7).  

 

Both gogo and fmi mutants show loss of repulsive interaction between adjacent R8s, 

resulting in a bundling of R8 axons in the larval stage. It is noteworthy that Fmi does 

not serve as an ordinary adhesion molecule in this context. In addition, fmi mutants 

display a very similar R1-R6 missorting phenotype during lamina cartridge formation 

(Lee et al., 2003). Recently it was shown that individual R1-R6 growth cones are 

sensitive to differences in Fmi activity through opposing interactions between 

neighboring cells and require these interactions to be balanced in order to extend 

along the appropriate trajectory during lamina cartridge formation (Chen and 

Clandinin, 2008). These results make it very likely that Fmi levels have to be highly 

regulated within the growth cone of R1-R6 axons. But most important, in fmi mutants 

R8s also stop at the superficial layer of the medulla (Senti et al., 2003). Further 

investigations of the fmi mutant phenotype could reveal additional similarities. 

Especially the fmi mutant phenotype during pupal development has not been 
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investigated yet. Fmi's role in homophilic axon-target interaction and the possible 

involvement of Gogo in this process is particularly interesting, as Fmi is expressed 

within several medulla layers in the brain. Most important, Fmi expression has been 

shown to be required in the M3 layer for proper R8 target layer recognition (Bazigou 

et al., 2007).  

Genetical epistasis and overexpression experiments could clarify if the two molecules 

are acting within the same pathway or hint towards a possible regulation of Fmi by 

Gogo. Especially the latter would be of great interest, as it provides new insights in 

the regulation of specific interactions by using broadly expressed homophilic 

adhesion molecules. 

 

In addition to its role in axon guidance, Flamingo was shown to control dendritic 

morphogenesis in the Drosophila embryonic peripheral nervous system (PNS). Due 

to the implied genetical interaction with gogo in photoreceptor axon guidance, it 

would be also interesting to have a closer look at the dendritic development of the 

PNS in a gogo mutant background. In general, the similarities and differences to the 

regulation of axon guidance in R axons might facilitate the understanding of the basic 

molecular specificity underlying neuronal connections. 
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4.5 Outlook 

 

Both axon-axon and axon-target interactions have been demonstrated to play critical 

roles in the formation of visual and olfactory circuits in flies and mammals (Brown et 

al., 2000; Lattemann et al., 2007; Lee et al., 2001; Lee et al., 2003; Maurel-Zaffran et 

al., 2001; Prakash et al., 2005; Senti et al., 2003; Shinza-Kameda et al., 2006; 

Sweeney et al., 2007; Yamagata et al., 2002). However, the underlying molecular 

mechanisms have not been sufficiently elucidated.  

 

Gogo is required for axon-axon and axon-target interaction in the fly visual system. 

Its conserved extracellular domain and cytoplasmic motif indicate an evolutionary 

conserved role in cell-cell communication. The obtained results provide a strong 

argument that Gogo could act as a novel receptor involved in heterotypic interaction 

with an as yet unidentified ligand. Thus, it will be important to identify the relevant 

Gogo ligand. Strong and specific axon pathfinding defects in both gogo LOF mutants 

and GOF transgenic flies make the Drosophila visual system an ideal model to 

search for a functionally relevant and probably conserved ligand for Gogo proteins.  

However, it is also possible that Gogo does not act as classical axon guidance 

receptor. For example, Gogo could act as a co-receptor, which is not directly binding 

to ligands. In addition, one could imagine that Gogo could regulate the membrane 

localization of other guidance receptors or cell adhesion molecules.  

 

In order to show that Gogo has a classic axon guidance receptor function, another 

important task for the future will be to elucidate the intracellular molecular 

mechanisms by which Gogo regulates R axon pathfinding. However, the hints to date 

have been limited. The cytoplasmic domain of homologues found in various species 

appears to have neither obvious catalytic domains or signaling modules, nor an 

overall conservation among species in its primary structure. However, a short 

cytoplasmic motif, shared by GOGO domain orthologues (Figure S4B), may serve as 

a protein interaction domain that binds to a conserved interaction partner. Rescue 

experiments using cytoplasmic deletion constructs or applying site-directed 

mutagenesis to the conserved tri-peptide can possibly give insights in its functional 

importance and the underlying intracellular mechanism. The identification of 

intracellular binding partners will shed light on the signaling pathway downstream of 

Gogo and its conservation in other species. 
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The mammalian homologue Tmtsp is the best characterized molecule of the Gogo 

family so far. It is expressed in endothelial cells and hematopoietic stem cells and the 

level of expression gradually declines as the cells differentiate. However, no obvious 

neuronal expression was reported (Takayanagi et al., 2006). Although Tmtsp may 

not have a functional role in axonal pathfinding in vertebrates, it might have the 

underlying molecular machinery analogous to Drosophila Gogo in the context of cell-

cell communication. Therefore, elucidating exactly how Gogo regulates R axon 

pathfinding in Drosophila may also shed light on the function of gogo homologues in 

other species. 
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